1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/kmem.h> 40 #include <sys/smp.h> 41 #include <sys/dtrace_impl.h> 42 #include <sys/dtrace_bsd.h> 43 #include <machine/clock.h> 44 #include <machine/cpufunc.h> 45 #include <machine/frame.h> 46 #include <machine/psl.h> 47 #include <machine/trap.h> 48 #include <vm/pmap.h> 49 50 extern void dtrace_getnanotime(struct timespec *tsp); 51 extern int (*dtrace_invop_jump_addr)(struct trapframe *); 52 53 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t); 54 int dtrace_invop_start(struct trapframe *frame); 55 void dtrace_invop_init(void); 56 void dtrace_invop_uninit(void); 57 58 typedef struct dtrace_invop_hdlr { 59 int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); 60 struct dtrace_invop_hdlr *dtih_next; 61 } dtrace_invop_hdlr_t; 62 63 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 64 65 int 66 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax) 67 { 68 dtrace_invop_hdlr_t *hdlr; 69 int rval; 70 71 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 72 if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0) 73 return (rval); 74 75 return (0); 76 } 77 78 void 79 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 80 { 81 dtrace_invop_hdlr_t *hdlr; 82 83 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 84 hdlr->dtih_func = func; 85 hdlr->dtih_next = dtrace_invop_hdlr; 86 dtrace_invop_hdlr = hdlr; 87 } 88 89 void 90 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 91 { 92 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 93 94 for (;;) { 95 if (hdlr == NULL) 96 panic("attempt to remove non-existent invop handler"); 97 98 if (hdlr->dtih_func == func) 99 break; 100 101 prev = hdlr; 102 hdlr = hdlr->dtih_next; 103 } 104 105 if (prev == NULL) { 106 ASSERT(dtrace_invop_hdlr == hdlr); 107 dtrace_invop_hdlr = hdlr->dtih_next; 108 } else { 109 ASSERT(dtrace_invop_hdlr != hdlr); 110 prev->dtih_next = hdlr->dtih_next; 111 } 112 113 kmem_free(hdlr, 0); 114 } 115 116 void 117 dtrace_invop_init(void) 118 { 119 120 dtrace_invop_jump_addr = dtrace_invop_start; 121 } 122 123 void 124 dtrace_invop_uninit(void) 125 { 126 127 dtrace_invop_jump_addr = NULL; 128 } 129 130 /*ARGSUSED*/ 131 void 132 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 133 { 134 (*func)(0, (uintptr_t) addr_PTmap); 135 } 136 137 void 138 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 139 { 140 cpuset_t cpus; 141 142 if (cpu == DTRACE_CPUALL) 143 cpus = all_cpus; 144 else 145 CPU_SETOF(cpu, &cpus); 146 147 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, 148 smp_no_rendezvous_barrier, arg); 149 } 150 151 static void 152 dtrace_sync_func(void) 153 { 154 } 155 156 void 157 dtrace_sync(void) 158 { 159 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 160 } 161 162 #ifdef notyet 163 void 164 dtrace_safe_synchronous_signal(void) 165 { 166 kthread_t *t = curthread; 167 struct regs *rp = lwptoregs(ttolwp(t)); 168 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 169 170 ASSERT(t->t_dtrace_on); 171 172 /* 173 * If we're not in the range of scratch addresses, we're not actually 174 * tracing user instructions so turn off the flags. If the instruction 175 * we copied out caused a synchonous trap, reset the pc back to its 176 * original value and turn off the flags. 177 */ 178 if (rp->r_pc < t->t_dtrace_scrpc || 179 rp->r_pc > t->t_dtrace_astpc + isz) { 180 t->t_dtrace_ft = 0; 181 } else if (rp->r_pc == t->t_dtrace_scrpc || 182 rp->r_pc == t->t_dtrace_astpc) { 183 rp->r_pc = t->t_dtrace_pc; 184 t->t_dtrace_ft = 0; 185 } 186 } 187 188 int 189 dtrace_safe_defer_signal(void) 190 { 191 kthread_t *t = curthread; 192 struct regs *rp = lwptoregs(ttolwp(t)); 193 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 194 195 ASSERT(t->t_dtrace_on); 196 197 /* 198 * If we're not in the range of scratch addresses, we're not actually 199 * tracing user instructions so turn off the flags. 200 */ 201 if (rp->r_pc < t->t_dtrace_scrpc || 202 rp->r_pc > t->t_dtrace_astpc + isz) { 203 t->t_dtrace_ft = 0; 204 return (0); 205 } 206 207 /* 208 * If we have executed the original instruction, but we have performed 209 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 210 * registers used to emulate %rip-relative instructions in 64-bit mode, 211 * we'll save ourselves some effort by doing that here and taking the 212 * signal right away. We detect this condition by seeing if the program 213 * counter is the range [scrpc + isz, astpc). 214 */ 215 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 216 rp->r_pc < t->t_dtrace_astpc) { 217 #ifdef __amd64 218 /* 219 * If there is a scratch register and we're on the 220 * instruction immediately after the modified instruction, 221 * restore the value of that scratch register. 222 */ 223 if (t->t_dtrace_reg != 0 && 224 rp->r_pc == t->t_dtrace_scrpc + isz) { 225 switch (t->t_dtrace_reg) { 226 case REG_RAX: 227 rp->r_rax = t->t_dtrace_regv; 228 break; 229 case REG_RCX: 230 rp->r_rcx = t->t_dtrace_regv; 231 break; 232 case REG_R8: 233 rp->r_r8 = t->t_dtrace_regv; 234 break; 235 case REG_R9: 236 rp->r_r9 = t->t_dtrace_regv; 237 break; 238 } 239 } 240 #endif 241 rp->r_pc = t->t_dtrace_npc; 242 t->t_dtrace_ft = 0; 243 return (0); 244 } 245 246 /* 247 * Otherwise, make sure we'll return to the kernel after executing 248 * the copied out instruction and defer the signal. 249 */ 250 if (!t->t_dtrace_step) { 251 ASSERT(rp->r_pc < t->t_dtrace_astpc); 252 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 253 t->t_dtrace_step = 1; 254 } 255 256 t->t_dtrace_ast = 1; 257 258 return (1); 259 } 260 #endif 261 262 static int64_t tgt_cpu_tsc; 263 static int64_t hst_cpu_tsc; 264 static int64_t tsc_skew[MAXCPU]; 265 static uint64_t nsec_scale; 266 267 /* See below for the explanation of this macro. */ 268 #define SCALE_SHIFT 28 269 270 static void 271 dtrace_gethrtime_init_cpu(void *arg) 272 { 273 uintptr_t cpu = (uintptr_t) arg; 274 275 if (cpu == curcpu) 276 tgt_cpu_tsc = rdtsc(); 277 else 278 hst_cpu_tsc = rdtsc(); 279 } 280 281 #ifdef EARLY_AP_STARTUP 282 static void 283 dtrace_gethrtime_init(void *arg) 284 { 285 struct pcpu *pc; 286 uint64_t tsc_f; 287 cpuset_t map; 288 int i; 289 #else 290 /* 291 * Get the frequency and scale factor as early as possible so that they can be 292 * used for boot-time tracing. 293 */ 294 static void 295 dtrace_gethrtime_init_early(void *arg) 296 { 297 uint64_t tsc_f; 298 #endif 299 300 /* 301 * Get TSC frequency known at this moment. 302 * This should be constant if TSC is invariant. 303 * Otherwise tick->time conversion will be inaccurate, but 304 * will preserve monotonic property of TSC. 305 */ 306 tsc_f = atomic_load_acq_64(&tsc_freq); 307 308 /* 309 * The following line checks that nsec_scale calculated below 310 * doesn't overflow 32-bit unsigned integer, so that it can multiply 311 * another 32-bit integer without overflowing 64-bit. 312 * Thus minimum supported TSC frequency is 62.5MHz. 313 */ 314 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), 315 ("TSC frequency is too low")); 316 317 /* 318 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 319 * as possible. 320 * 2^28 factor was chosen quite arbitrarily from practical 321 * considerations: 322 * - it supports TSC frequencies as low as 62.5MHz (see above); 323 * - it provides quite good precision (e < 0.01%) up to THz 324 * (terahertz) values; 325 */ 326 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 327 #ifndef EARLY_AP_STARTUP 328 } 329 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY, 330 dtrace_gethrtime_init_early, NULL); 331 332 static void 333 dtrace_gethrtime_init(void *arg) 334 { 335 struct pcpu *pc; 336 cpuset_t map; 337 int i; 338 #endif 339 340 if (vm_guest != VM_GUEST_NO) 341 return; 342 343 /* The current CPU is the reference one. */ 344 sched_pin(); 345 tsc_skew[curcpu] = 0; 346 CPU_FOREACH(i) { 347 if (i == curcpu) 348 continue; 349 350 pc = pcpu_find(i); 351 CPU_SETOF(PCPU_GET(cpuid), &map); 352 CPU_SET(pc->pc_cpuid, &map); 353 354 smp_rendezvous_cpus(map, NULL, 355 dtrace_gethrtime_init_cpu, 356 smp_no_rendezvous_barrier, (void *)(uintptr_t) i); 357 358 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 359 } 360 sched_unpin(); 361 } 362 #ifdef EARLY_AP_STARTUP 363 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY, 364 dtrace_gethrtime_init, NULL); 365 #else 366 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, 367 NULL); 368 #endif 369 370 /* 371 * DTrace needs a high resolution time function which can 372 * be called from a probe context and guaranteed not to have 373 * instrumented with probes itself. 374 * 375 * Returns nanoseconds since boot. 376 */ 377 uint64_t 378 dtrace_gethrtime(void) 379 { 380 uint64_t tsc; 381 uint32_t lo, hi; 382 register_t rflags; 383 384 /* 385 * We split TSC value into lower and higher 32-bit halves and separately 386 * scale them with nsec_scale, then we scale them down by 2^28 387 * (see nsec_scale calculations) taking into account 32-bit shift of 388 * the higher half and finally add. 389 */ 390 rflags = intr_disable(); 391 tsc = rdtsc() - tsc_skew[curcpu]; 392 intr_restore(rflags); 393 394 lo = tsc; 395 hi = tsc >> 32; 396 return (((lo * nsec_scale) >> SCALE_SHIFT) + 397 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 398 } 399 400 uint64_t 401 dtrace_gethrestime(void) 402 { 403 struct timespec current_time; 404 405 dtrace_getnanotime(¤t_time); 406 407 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 408 } 409 410 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */ 411 int 412 dtrace_trap(struct trapframe *frame, u_int type) 413 { 414 uint16_t nofault; 415 416 /* 417 * A trap can occur while DTrace executes a probe. Before 418 * executing the probe, DTrace blocks re-scheduling and sets 419 * a flag in its per-cpu flags to indicate that it doesn't 420 * want to fault. On returning from the probe, the no-fault 421 * flag is cleared and finally re-scheduling is enabled. 422 * 423 * Check if DTrace has enabled 'no-fault' mode: 424 */ 425 sched_pin(); 426 nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT; 427 sched_unpin(); 428 if (nofault) { 429 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 430 431 /* 432 * There are only a couple of trap types that are expected. 433 * All the rest will be handled in the usual way. 434 */ 435 switch (type) { 436 /* General protection fault. */ 437 case T_PROTFLT: 438 /* Flag an illegal operation. */ 439 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 440 441 /* 442 * Offset the instruction pointer to the instruction 443 * following the one causing the fault. 444 */ 445 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 446 return (1); 447 /* Page fault. */ 448 case T_PAGEFLT: 449 /* Flag a bad address. */ 450 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 451 cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; 452 453 /* 454 * Offset the instruction pointer to the instruction 455 * following the one causing the fault. 456 */ 457 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 458 return (1); 459 default: 460 /* Handle all other traps in the usual way. */ 461 break; 462 } 463 } 464 465 /* Handle the trap in the usual way. */ 466 return (0); 467 } 468