xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/kmem.h>
40 #include <sys/smp.h>
41 #include <sys/dtrace_impl.h>
42 #include <sys/dtrace_bsd.h>
43 #include <machine/clock.h>
44 #include <machine/frame.h>
45 #include <vm/pmap.h>
46 
47 extern uintptr_t 	dtrace_in_probe_addr;
48 extern int		dtrace_in_probe;
49 
50 extern void dtrace_getnanotime(struct timespec *tsp);
51 
52 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
53 
54 typedef struct dtrace_invop_hdlr {
55 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
56 	struct dtrace_invop_hdlr *dtih_next;
57 } dtrace_invop_hdlr_t;
58 
59 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
60 
61 int
62 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
63 {
64 	dtrace_invop_hdlr_t *hdlr;
65 	int rval;
66 
67 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
68 		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
69 			return (rval);
70 
71 	return (0);
72 }
73 
74 void
75 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
76 {
77 	dtrace_invop_hdlr_t *hdlr;
78 
79 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
80 	hdlr->dtih_func = func;
81 	hdlr->dtih_next = dtrace_invop_hdlr;
82 	dtrace_invop_hdlr = hdlr;
83 }
84 
85 void
86 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
87 {
88 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
89 
90 	for (;;) {
91 		if (hdlr == NULL)
92 			panic("attempt to remove non-existent invop handler");
93 
94 		if (hdlr->dtih_func == func)
95 			break;
96 
97 		prev = hdlr;
98 		hdlr = hdlr->dtih_next;
99 	}
100 
101 	if (prev == NULL) {
102 		ASSERT(dtrace_invop_hdlr == hdlr);
103 		dtrace_invop_hdlr = hdlr->dtih_next;
104 	} else {
105 		ASSERT(dtrace_invop_hdlr != hdlr);
106 		prev->dtih_next = hdlr->dtih_next;
107 	}
108 
109 	kmem_free(hdlr, 0);
110 }
111 
112 /*ARGSUSED*/
113 void
114 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
115 {
116 	(*func)(0, (uintptr_t) addr_PTmap);
117 }
118 
119 void
120 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
121 {
122 	cpuset_t cpus;
123 
124 	if (cpu == DTRACE_CPUALL)
125 		cpus = all_cpus;
126 	else
127 		CPU_SETOF(cpu, &cpus);
128 
129 	smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
130 	    smp_no_rendevous_barrier, arg);
131 }
132 
133 static void
134 dtrace_sync_func(void)
135 {
136 }
137 
138 void
139 dtrace_sync(void)
140 {
141         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
142 }
143 
144 #ifdef notyet
145 int (*dtrace_fasttrap_probe_ptr)(struct regs *);
146 int (*dtrace_pid_probe_ptr)(struct regs *);
147 int (*dtrace_return_probe_ptr)(struct regs *);
148 
149 void
150 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
151 {
152 	krwlock_t *rwp;
153 	proc_t *p = curproc;
154 	extern void trap(struct regs *, caddr_t, processorid_t);
155 
156 	if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
157 		if (curthread->t_cred != p->p_cred) {
158 			cred_t *oldcred = curthread->t_cred;
159 			/*
160 			 * DTrace accesses t_cred in probe context.  t_cred
161 			 * must always be either NULL, or point to a valid,
162 			 * allocated cred structure.
163 			 */
164 			curthread->t_cred = crgetcred();
165 			crfree(oldcred);
166 		}
167 	}
168 
169 	if (rp->r_trapno == T_DTRACE_RET) {
170 		uint8_t step = curthread->t_dtrace_step;
171 		uint8_t ret = curthread->t_dtrace_ret;
172 		uintptr_t npc = curthread->t_dtrace_npc;
173 
174 		if (curthread->t_dtrace_ast) {
175 			aston(curthread);
176 			curthread->t_sig_check = 1;
177 		}
178 
179 		/*
180 		 * Clear all user tracing flags.
181 		 */
182 		curthread->t_dtrace_ft = 0;
183 
184 		/*
185 		 * If we weren't expecting to take a return probe trap, kill
186 		 * the process as though it had just executed an unassigned
187 		 * trap instruction.
188 		 */
189 		if (step == 0) {
190 			tsignal(curthread, SIGILL);
191 			return;
192 		}
193 
194 		/*
195 		 * If we hit this trap unrelated to a return probe, we're
196 		 * just here to reset the AST flag since we deferred a signal
197 		 * until after we logically single-stepped the instruction we
198 		 * copied out.
199 		 */
200 		if (ret == 0) {
201 			rp->r_pc = npc;
202 			return;
203 		}
204 
205 		/*
206 		 * We need to wait until after we've called the
207 		 * dtrace_return_probe_ptr function pointer to set %pc.
208 		 */
209 		rwp = &CPU->cpu_ft_lock;
210 		rw_enter(rwp, RW_READER);
211 		if (dtrace_return_probe_ptr != NULL)
212 			(void) (*dtrace_return_probe_ptr)(rp);
213 		rw_exit(rwp);
214 		rp->r_pc = npc;
215 
216 	} else if (rp->r_trapno == T_DTRACE_PROBE) {
217 		rwp = &CPU->cpu_ft_lock;
218 		rw_enter(rwp, RW_READER);
219 		if (dtrace_fasttrap_probe_ptr != NULL)
220 			(void) (*dtrace_fasttrap_probe_ptr)(rp);
221 		rw_exit(rwp);
222 
223 	} else if (rp->r_trapno == T_BPTFLT) {
224 		uint8_t instr;
225 		rwp = &CPU->cpu_ft_lock;
226 
227 		/*
228 		 * The DTrace fasttrap provider uses the breakpoint trap
229 		 * (int 3). We let DTrace take the first crack at handling
230 		 * this trap; if it's not a probe that DTrace knowns about,
231 		 * we call into the trap() routine to handle it like a
232 		 * breakpoint placed by a conventional debugger.
233 		 */
234 		rw_enter(rwp, RW_READER);
235 		if (dtrace_pid_probe_ptr != NULL &&
236 		    (*dtrace_pid_probe_ptr)(rp) == 0) {
237 			rw_exit(rwp);
238 			return;
239 		}
240 		rw_exit(rwp);
241 
242 		/*
243 		 * If the instruction that caused the breakpoint trap doesn't
244 		 * look like an int 3 anymore, it may be that this tracepoint
245 		 * was removed just after the user thread executed it. In
246 		 * that case, return to user land to retry the instuction.
247 		 */
248 		if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 &&
249 		    instr != FASTTRAP_INSTR) {
250 			rp->r_pc--;
251 			return;
252 		}
253 
254 		trap(rp, addr, cpuid);
255 
256 	} else {
257 		trap(rp, addr, cpuid);
258 	}
259 }
260 
261 void
262 dtrace_safe_synchronous_signal(void)
263 {
264 	kthread_t *t = curthread;
265 	struct regs *rp = lwptoregs(ttolwp(t));
266 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
267 
268 	ASSERT(t->t_dtrace_on);
269 
270 	/*
271 	 * If we're not in the range of scratch addresses, we're not actually
272 	 * tracing user instructions so turn off the flags. If the instruction
273 	 * we copied out caused a synchonous trap, reset the pc back to its
274 	 * original value and turn off the flags.
275 	 */
276 	if (rp->r_pc < t->t_dtrace_scrpc ||
277 	    rp->r_pc > t->t_dtrace_astpc + isz) {
278 		t->t_dtrace_ft = 0;
279 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
280 	    rp->r_pc == t->t_dtrace_astpc) {
281 		rp->r_pc = t->t_dtrace_pc;
282 		t->t_dtrace_ft = 0;
283 	}
284 }
285 
286 int
287 dtrace_safe_defer_signal(void)
288 {
289 	kthread_t *t = curthread;
290 	struct regs *rp = lwptoregs(ttolwp(t));
291 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
292 
293 	ASSERT(t->t_dtrace_on);
294 
295 	/*
296 	 * If we're not in the range of scratch addresses, we're not actually
297 	 * tracing user instructions so turn off the flags.
298 	 */
299 	if (rp->r_pc < t->t_dtrace_scrpc ||
300 	    rp->r_pc > t->t_dtrace_astpc + isz) {
301 		t->t_dtrace_ft = 0;
302 		return (0);
303 	}
304 
305 	/*
306 	 * If we have executed the original instruction, but we have performed
307 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
308 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
309 	 * we'll save ourselves some effort by doing that here and taking the
310 	 * signal right away.  We detect this condition by seeing if the program
311 	 * counter is the range [scrpc + isz, astpc).
312 	 */
313 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
314 	    rp->r_pc < t->t_dtrace_astpc) {
315 #ifdef __amd64
316 		/*
317 		 * If there is a scratch register and we're on the
318 		 * instruction immediately after the modified instruction,
319 		 * restore the value of that scratch register.
320 		 */
321 		if (t->t_dtrace_reg != 0 &&
322 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
323 			switch (t->t_dtrace_reg) {
324 			case REG_RAX:
325 				rp->r_rax = t->t_dtrace_regv;
326 				break;
327 			case REG_RCX:
328 				rp->r_rcx = t->t_dtrace_regv;
329 				break;
330 			case REG_R8:
331 				rp->r_r8 = t->t_dtrace_regv;
332 				break;
333 			case REG_R9:
334 				rp->r_r9 = t->t_dtrace_regv;
335 				break;
336 			}
337 		}
338 #endif
339 		rp->r_pc = t->t_dtrace_npc;
340 		t->t_dtrace_ft = 0;
341 		return (0);
342 	}
343 
344 	/*
345 	 * Otherwise, make sure we'll return to the kernel after executing
346 	 * the copied out instruction and defer the signal.
347 	 */
348 	if (!t->t_dtrace_step) {
349 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
350 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
351 		t->t_dtrace_step = 1;
352 	}
353 
354 	t->t_dtrace_ast = 1;
355 
356 	return (1);
357 }
358 #endif
359 
360 static int64_t	tgt_cpu_tsc;
361 static int64_t	hst_cpu_tsc;
362 static int64_t	tsc_skew[MAXCPU];
363 static uint64_t	nsec_scale;
364 
365 /* See below for the explanation of this macro. */
366 #define SCALE_SHIFT	28
367 
368 static void
369 dtrace_gethrtime_init_cpu(void *arg)
370 {
371 	uintptr_t cpu = (uintptr_t) arg;
372 
373 	if (cpu == curcpu)
374 		tgt_cpu_tsc = rdtsc();
375 	else
376 		hst_cpu_tsc = rdtsc();
377 }
378 
379 static void
380 dtrace_gethrtime_init(void *arg)
381 {
382 	struct pcpu *pc;
383 	uint64_t tsc_f;
384 	cpuset_t map;
385 	int i;
386 
387 	/*
388 	 * Get TSC frequency known at this moment.
389 	 * This should be constant if TSC is invariant.
390 	 * Otherwise tick->time conversion will be inaccurate, but
391 	 * will preserve monotonic property of TSC.
392 	 */
393 	tsc_f = atomic_load_acq_64(&tsc_freq);
394 
395 	/*
396 	 * The following line checks that nsec_scale calculated below
397 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
398 	 * another 32-bit integer without overflowing 64-bit.
399 	 * Thus minimum supported TSC frequency is 62.5MHz.
400 	 */
401 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
402 
403 	/*
404 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
405 	 * as possible.
406 	 * 2^28 factor was chosen quite arbitrarily from practical
407 	 * considerations:
408 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
409 	 * - it provides quite good precision (e < 0.01%) up to THz
410 	 *   (terahertz) values;
411 	 */
412 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
413 
414 	/* The current CPU is the reference one. */
415 	sched_pin();
416 	tsc_skew[curcpu] = 0;
417 	CPU_FOREACH(i) {
418 		if (i == curcpu)
419 			continue;
420 
421 		pc = pcpu_find(i);
422 		CPU_SETOF(PCPU_GET(cpuid), &map);
423 		CPU_SET(pc->pc_cpuid, &map);
424 
425 		smp_rendezvous_cpus(map, NULL,
426 		    dtrace_gethrtime_init_cpu,
427 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
428 
429 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
430 	}
431 	sched_unpin();
432 }
433 
434 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
435 
436 /*
437  * DTrace needs a high resolution time function which can
438  * be called from a probe context and guaranteed not to have
439  * instrumented with probes itself.
440  *
441  * Returns nanoseconds since boot.
442  */
443 uint64_t
444 dtrace_gethrtime()
445 {
446 	uint64_t tsc;
447 	uint32_t lo;
448 	uint32_t hi;
449 
450 	/*
451 	 * We split TSC value into lower and higher 32-bit halves and separately
452 	 * scale them with nsec_scale, then we scale them down by 2^28
453 	 * (see nsec_scale calculations) taking into account 32-bit shift of
454 	 * the higher half and finally add.
455 	 */
456 	tsc = rdtsc() - tsc_skew[curcpu];
457 	lo = tsc;
458 	hi = tsc >> 32;
459 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
460 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
461 }
462 
463 uint64_t
464 dtrace_gethrestime(void)
465 {
466 	struct timespec current_time;
467 
468 	dtrace_getnanotime(&current_time);
469 
470 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
471 }
472 
473 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c */
474 int
475 dtrace_trap(struct trapframe *frame, u_int type)
476 {
477 	/*
478 	 * A trap can occur while DTrace executes a probe. Before
479 	 * executing the probe, DTrace blocks re-scheduling and sets
480 	 * a flag in it's per-cpu flags to indicate that it doesn't
481 	 * want to fault. On returning from the probe, the no-fault
482 	 * flag is cleared and finally re-scheduling is enabled.
483 	 *
484 	 * Check if DTrace has enabled 'no-fault' mode:
485 	 *
486 	 */
487 	if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
488 		/*
489 		 * There are only a couple of trap types that are expected.
490 		 * All the rest will be handled in the usual way.
491 		 */
492 		switch (type) {
493 		/* Privilieged instruction fault. */
494 		case T_PRIVINFLT:
495 			break;
496 		/* General protection fault. */
497 		case T_PROTFLT:
498 			/* Flag an illegal operation. */
499 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
500 
501 			/*
502 			 * Offset the instruction pointer to the instruction
503 			 * following the one causing the fault.
504 			 */
505 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
506 			return (1);
507 		/* Page fault. */
508 		case T_PAGEFLT:
509 			/* Flag a bad address. */
510 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
511 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
512 
513 			/*
514 			 * Offset the instruction pointer to the instruction
515 			 * following the one causing the fault.
516 			 */
517 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
518 			return (1);
519 		default:
520 			/* Handle all other traps in the usual way. */
521 			break;
522 		}
523 	}
524 
525 	/* Handle the trap in the usual way. */
526 	return (0);
527 }
528