xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  */
23 /*
24  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /*
29  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/msan.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/dtrace_impl.h>
40 #include <sys/dtrace_bsd.h>
41 #include <cddl/dev/dtrace/dtrace_cddl.h>
42 #include <machine/clock.h>
43 #include <machine/cpufunc.h>
44 #include <machine/frame.h>
45 #include <machine/md_var.h>
46 #include <machine/psl.h>
47 #include <machine/trap.h>
48 #include <vm/pmap.h>
49 
50 extern void dtrace_getnanotime(struct timespec *tsp);
51 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
52 
53 int	dtrace_invop(uintptr_t, struct trapframe *, void **);
54 int	dtrace_invop_start(struct trapframe *frame);
55 void	dtrace_invop_init(void);
56 void	dtrace_invop_uninit(void);
57 
58 typedef struct dtrace_invop_hdlr {
59 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
60 	struct dtrace_invop_hdlr *dtih_next;
61 } dtrace_invop_hdlr_t;
62 
63 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
64 
65 int
66 dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch)
67 {
68 	struct thread *td;
69 	dtrace_invop_hdlr_t *hdlr;
70 	int rval;
71 
72 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
73 
74 	td = curthread;
75 	td->t_dtrace_trapframe = frame;
76 	rval = 0;
77 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) {
78 		rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch);
79 		if (rval != 0)
80 			break;
81 	}
82 	td->t_dtrace_trapframe = NULL;
83 	return (rval);
84 }
85 
86 void
87 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
88 {
89 	dtrace_invop_hdlr_t *hdlr;
90 
91 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
92 	hdlr->dtih_func = func;
93 	hdlr->dtih_next = dtrace_invop_hdlr;
94 	dtrace_invop_hdlr = hdlr;
95 }
96 
97 void
98 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
99 {
100 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
101 
102 	for (;;) {
103 		if (hdlr == NULL)
104 			panic("attempt to remove non-existent invop handler");
105 
106 		if (hdlr->dtih_func == func)
107 			break;
108 
109 		prev = hdlr;
110 		hdlr = hdlr->dtih_next;
111 	}
112 
113 	if (prev == NULL) {
114 		ASSERT(dtrace_invop_hdlr == hdlr);
115 		dtrace_invop_hdlr = hdlr->dtih_next;
116 	} else {
117 		ASSERT(dtrace_invop_hdlr != hdlr);
118 		prev->dtih_next = hdlr->dtih_next;
119 	}
120 
121 	kmem_free(hdlr, 0);
122 }
123 
124 void
125 dtrace_invop_init(void)
126 {
127 
128 	dtrace_invop_jump_addr = dtrace_invop_start;
129 }
130 
131 void
132 dtrace_invop_uninit(void)
133 {
134 
135 	dtrace_invop_jump_addr = NULL;
136 }
137 
138 /*ARGSUSED*/
139 void
140 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
141 {
142 	(*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap);
143 }
144 
145 void
146 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
147 {
148 	cpuset_t cpus;
149 
150 	if (cpu == DTRACE_CPUALL)
151 		cpus = all_cpus;
152 	else
153 		CPU_SETOF(cpu, &cpus);
154 
155 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
156 	    smp_no_rendezvous_barrier, arg);
157 }
158 
159 static void
160 dtrace_sync_func(void)
161 {
162 }
163 
164 void
165 dtrace_sync(void)
166 {
167         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
168 }
169 
170 #ifdef notyet
171 void
172 dtrace_safe_synchronous_signal(void)
173 {
174 	kthread_t *t = curthread;
175 	struct regs *rp = lwptoregs(ttolwp(t));
176 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
177 
178 	ASSERT(t->t_dtrace_on);
179 
180 	/*
181 	 * If we're not in the range of scratch addresses, we're not actually
182 	 * tracing user instructions so turn off the flags. If the instruction
183 	 * we copied out caused a synchonous trap, reset the pc back to its
184 	 * original value and turn off the flags.
185 	 */
186 	if (rp->r_pc < t->t_dtrace_scrpc ||
187 	    rp->r_pc > t->t_dtrace_astpc + isz) {
188 		t->t_dtrace_ft = 0;
189 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
190 	    rp->r_pc == t->t_dtrace_astpc) {
191 		rp->r_pc = t->t_dtrace_pc;
192 		t->t_dtrace_ft = 0;
193 	}
194 }
195 
196 int
197 dtrace_safe_defer_signal(void)
198 {
199 	kthread_t *t = curthread;
200 	struct regs *rp = lwptoregs(ttolwp(t));
201 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
202 
203 	ASSERT(t->t_dtrace_on);
204 
205 	/*
206 	 * If we're not in the range of scratch addresses, we're not actually
207 	 * tracing user instructions so turn off the flags.
208 	 */
209 	if (rp->r_pc < t->t_dtrace_scrpc ||
210 	    rp->r_pc > t->t_dtrace_astpc + isz) {
211 		t->t_dtrace_ft = 0;
212 		return (0);
213 	}
214 
215 	/*
216 	 * If we have executed the original instruction, but we have performed
217 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
218 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
219 	 * we'll save ourselves some effort by doing that here and taking the
220 	 * signal right away.  We detect this condition by seeing if the program
221 	 * counter is the range [scrpc + isz, astpc).
222 	 */
223 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
224 	    rp->r_pc < t->t_dtrace_astpc) {
225 #ifdef __amd64
226 		/*
227 		 * If there is a scratch register and we're on the
228 		 * instruction immediately after the modified instruction,
229 		 * restore the value of that scratch register.
230 		 */
231 		if (t->t_dtrace_reg != 0 &&
232 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
233 			switch (t->t_dtrace_reg) {
234 			case REG_RAX:
235 				rp->r_rax = t->t_dtrace_regv;
236 				break;
237 			case REG_RCX:
238 				rp->r_rcx = t->t_dtrace_regv;
239 				break;
240 			case REG_R8:
241 				rp->r_r8 = t->t_dtrace_regv;
242 				break;
243 			case REG_R9:
244 				rp->r_r9 = t->t_dtrace_regv;
245 				break;
246 			}
247 		}
248 #endif
249 		rp->r_pc = t->t_dtrace_npc;
250 		t->t_dtrace_ft = 0;
251 		return (0);
252 	}
253 
254 	/*
255 	 * Otherwise, make sure we'll return to the kernel after executing
256 	 * the copied out instruction and defer the signal.
257 	 */
258 	if (!t->t_dtrace_step) {
259 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
260 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
261 		t->t_dtrace_step = 1;
262 	}
263 
264 	t->t_dtrace_ast = 1;
265 
266 	return (1);
267 }
268 #endif
269 
270 static int64_t	tgt_cpu_tsc;
271 static int64_t	hst_cpu_tsc;
272 static int64_t	tsc_skew[MAXCPU];
273 static uint64_t	nsec_scale;
274 
275 /* See below for the explanation of this macro. */
276 #define SCALE_SHIFT	28
277 
278 static void
279 dtrace_gethrtime_init_cpu(void *arg)
280 {
281 	uintptr_t cpu = (uintptr_t) arg;
282 
283 	if (cpu == curcpu)
284 		tgt_cpu_tsc = rdtsc();
285 	else
286 		hst_cpu_tsc = rdtsc();
287 }
288 
289 static void
290 dtrace_gethrtime_init(void *arg)
291 {
292 	struct pcpu *pc;
293 	uint64_t tsc_f;
294 	cpuset_t map;
295 	int i;
296 
297 	/*
298 	 * Get TSC frequency known at this moment.
299 	 * This should be constant if TSC is invariant.
300 	 * Otherwise tick->time conversion will be inaccurate, but
301 	 * will preserve monotonic property of TSC.
302 	 */
303 	tsc_f = atomic_load_acq_64(&tsc_freq);
304 
305 	/*
306 	 * The following line checks that nsec_scale calculated below
307 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
308 	 * another 32-bit integer without overflowing 64-bit.
309 	 * Thus minimum supported TSC frequency is 62.5MHz.
310 	 */
311 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
312 	    ("TSC frequency is too low"));
313 
314 	/*
315 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
316 	 * as possible.
317 	 * 2^28 factor was chosen quite arbitrarily from practical
318 	 * considerations:
319 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
320 	 * - it provides quite good precision (e < 0.01%) up to THz
321 	 *   (terahertz) values;
322 	 */
323 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
324 
325 	if (vm_guest != VM_GUEST_NO)
326 		return;
327 
328 	/* The current CPU is the reference one. */
329 	sched_pin();
330 	tsc_skew[curcpu] = 0;
331 	CPU_FOREACH(i) {
332 		if (i == curcpu)
333 			continue;
334 
335 		pc = pcpu_find(i);
336 		CPU_SETOF(PCPU_GET(cpuid), &map);
337 		CPU_SET(pc->pc_cpuid, &map);
338 
339 		smp_rendezvous_cpus(map, NULL,
340 		    dtrace_gethrtime_init_cpu,
341 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
342 
343 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
344 	}
345 	sched_unpin();
346 }
347 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
348     dtrace_gethrtime_init, NULL);
349 
350 /*
351  * DTrace needs a high resolution time function which can
352  * be called from a probe context and guaranteed not to have
353  * instrumented with probes itself.
354  *
355  * Returns nanoseconds since boot.
356  */
357 uint64_t
358 dtrace_gethrtime(void)
359 {
360 	uint64_t tsc;
361 	uint32_t lo, hi;
362 	register_t rflags;
363 
364 	/*
365 	 * We split TSC value into lower and higher 32-bit halves and separately
366 	 * scale them with nsec_scale, then we scale them down by 2^28
367 	 * (see nsec_scale calculations) taking into account 32-bit shift of
368 	 * the higher half and finally add.
369 	 */
370 	rflags = intr_disable();
371 	tsc = rdtsc() - tsc_skew[curcpu];
372 	intr_restore(rflags);
373 
374 	lo = tsc;
375 	hi = tsc >> 32;
376 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
377 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
378 }
379 
380 uint64_t
381 dtrace_gethrestime(void)
382 {
383 	struct timespec current_time;
384 
385 	dtrace_getnanotime(&current_time);
386 
387 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
388 }
389 
390 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
391 int
392 dtrace_trap(struct trapframe *frame, u_int type)
393 {
394 	uint16_t nofault;
395 
396 	/*
397 	 * A trap can occur while DTrace executes a probe. Before
398 	 * executing the probe, DTrace blocks re-scheduling and sets
399 	 * a flag in its per-cpu flags to indicate that it doesn't
400 	 * want to fault. On returning from the probe, the no-fault
401 	 * flag is cleared and finally re-scheduling is enabled.
402 	 *
403 	 * Check if DTrace has enabled 'no-fault' mode:
404 	 */
405 	sched_pin();
406 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
407 	sched_unpin();
408 	if (nofault) {
409 		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
410 
411 		/*
412 		 * There are only a couple of trap types that are expected.
413 		 * All the rest will be handled in the usual way.
414 		 */
415 		switch (type) {
416 		/* General protection fault. */
417 		case T_PROTFLT:
418 			/* Flag an illegal operation. */
419 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
420 
421 			/*
422 			 * Offset the instruction pointer to the instruction
423 			 * following the one causing the fault.
424 			 */
425 			frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip);
426 			return (1);
427 		/* Page fault. */
428 		case T_PAGEFLT:
429 			/* Flag a bad address. */
430 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
431 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
432 
433 			/*
434 			 * Offset the instruction pointer to the instruction
435 			 * following the one causing the fault.
436 			 */
437 			frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip);
438 			return (1);
439 		default:
440 			/* Handle all other traps in the usual way. */
441 			break;
442 		}
443 	}
444 
445 	/* Handle the trap in the usual way. */
446 	return (0);
447 }
448