xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/smp.h>
40 #include <sys/dtrace_impl.h>
41 #include <sys/dtrace_bsd.h>
42 #include <machine/clock.h>
43 #include <machine/cpufunc.h>
44 #include <machine/frame.h>
45 #include <machine/md_var.h>
46 #include <machine/psl.h>
47 #include <machine/trap.h>
48 #include <vm/pmap.h>
49 
50 extern void dtrace_getnanotime(struct timespec *tsp);
51 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
52 
53 int	dtrace_invop(uintptr_t, struct trapframe *, void **);
54 int	dtrace_invop_start(struct trapframe *frame);
55 void	dtrace_invop_init(void);
56 void	dtrace_invop_uninit(void);
57 
58 typedef struct dtrace_invop_hdlr {
59 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
60 	struct dtrace_invop_hdlr *dtih_next;
61 } dtrace_invop_hdlr_t;
62 
63 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
64 
65 int
66 dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch)
67 {
68 	dtrace_invop_hdlr_t *hdlr;
69 	int rval;
70 
71 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) {
72 		rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch);
73 		if (rval != 0)
74 			return (rval);
75 	}
76 	return (0);
77 }
78 
79 void
80 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
81 {
82 	dtrace_invop_hdlr_t *hdlr;
83 
84 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
85 	hdlr->dtih_func = func;
86 	hdlr->dtih_next = dtrace_invop_hdlr;
87 	dtrace_invop_hdlr = hdlr;
88 }
89 
90 void
91 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
92 {
93 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
94 
95 	for (;;) {
96 		if (hdlr == NULL)
97 			panic("attempt to remove non-existent invop handler");
98 
99 		if (hdlr->dtih_func == func)
100 			break;
101 
102 		prev = hdlr;
103 		hdlr = hdlr->dtih_next;
104 	}
105 
106 	if (prev == NULL) {
107 		ASSERT(dtrace_invop_hdlr == hdlr);
108 		dtrace_invop_hdlr = hdlr->dtih_next;
109 	} else {
110 		ASSERT(dtrace_invop_hdlr != hdlr);
111 		prev->dtih_next = hdlr->dtih_next;
112 	}
113 
114 	kmem_free(hdlr, 0);
115 }
116 
117 void
118 dtrace_invop_init(void)
119 {
120 
121 	dtrace_invop_jump_addr = dtrace_invop_start;
122 }
123 
124 void
125 dtrace_invop_uninit(void)
126 {
127 
128 	dtrace_invop_jump_addr = NULL;
129 }
130 
131 /*ARGSUSED*/
132 void
133 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
134 {
135 	(*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap);
136 }
137 
138 void
139 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
140 {
141 	cpuset_t cpus;
142 
143 	if (cpu == DTRACE_CPUALL)
144 		cpus = all_cpus;
145 	else
146 		CPU_SETOF(cpu, &cpus);
147 
148 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
149 	    smp_no_rendezvous_barrier, arg);
150 }
151 
152 static void
153 dtrace_sync_func(void)
154 {
155 }
156 
157 void
158 dtrace_sync(void)
159 {
160         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
161 }
162 
163 #ifdef notyet
164 void
165 dtrace_safe_synchronous_signal(void)
166 {
167 	kthread_t *t = curthread;
168 	struct regs *rp = lwptoregs(ttolwp(t));
169 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
170 
171 	ASSERT(t->t_dtrace_on);
172 
173 	/*
174 	 * If we're not in the range of scratch addresses, we're not actually
175 	 * tracing user instructions so turn off the flags. If the instruction
176 	 * we copied out caused a synchonous trap, reset the pc back to its
177 	 * original value and turn off the flags.
178 	 */
179 	if (rp->r_pc < t->t_dtrace_scrpc ||
180 	    rp->r_pc > t->t_dtrace_astpc + isz) {
181 		t->t_dtrace_ft = 0;
182 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
183 	    rp->r_pc == t->t_dtrace_astpc) {
184 		rp->r_pc = t->t_dtrace_pc;
185 		t->t_dtrace_ft = 0;
186 	}
187 }
188 
189 int
190 dtrace_safe_defer_signal(void)
191 {
192 	kthread_t *t = curthread;
193 	struct regs *rp = lwptoregs(ttolwp(t));
194 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
195 
196 	ASSERT(t->t_dtrace_on);
197 
198 	/*
199 	 * If we're not in the range of scratch addresses, we're not actually
200 	 * tracing user instructions so turn off the flags.
201 	 */
202 	if (rp->r_pc < t->t_dtrace_scrpc ||
203 	    rp->r_pc > t->t_dtrace_astpc + isz) {
204 		t->t_dtrace_ft = 0;
205 		return (0);
206 	}
207 
208 	/*
209 	 * If we have executed the original instruction, but we have performed
210 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
211 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
212 	 * we'll save ourselves some effort by doing that here and taking the
213 	 * signal right away.  We detect this condition by seeing if the program
214 	 * counter is the range [scrpc + isz, astpc).
215 	 */
216 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
217 	    rp->r_pc < t->t_dtrace_astpc) {
218 #ifdef __amd64
219 		/*
220 		 * If there is a scratch register and we're on the
221 		 * instruction immediately after the modified instruction,
222 		 * restore the value of that scratch register.
223 		 */
224 		if (t->t_dtrace_reg != 0 &&
225 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
226 			switch (t->t_dtrace_reg) {
227 			case REG_RAX:
228 				rp->r_rax = t->t_dtrace_regv;
229 				break;
230 			case REG_RCX:
231 				rp->r_rcx = t->t_dtrace_regv;
232 				break;
233 			case REG_R8:
234 				rp->r_r8 = t->t_dtrace_regv;
235 				break;
236 			case REG_R9:
237 				rp->r_r9 = t->t_dtrace_regv;
238 				break;
239 			}
240 		}
241 #endif
242 		rp->r_pc = t->t_dtrace_npc;
243 		t->t_dtrace_ft = 0;
244 		return (0);
245 	}
246 
247 	/*
248 	 * Otherwise, make sure we'll return to the kernel after executing
249 	 * the copied out instruction and defer the signal.
250 	 */
251 	if (!t->t_dtrace_step) {
252 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
253 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
254 		t->t_dtrace_step = 1;
255 	}
256 
257 	t->t_dtrace_ast = 1;
258 
259 	return (1);
260 }
261 #endif
262 
263 static int64_t	tgt_cpu_tsc;
264 static int64_t	hst_cpu_tsc;
265 static int64_t	tsc_skew[MAXCPU];
266 static uint64_t	nsec_scale;
267 
268 /* See below for the explanation of this macro. */
269 #define SCALE_SHIFT	28
270 
271 static void
272 dtrace_gethrtime_init_cpu(void *arg)
273 {
274 	uintptr_t cpu = (uintptr_t) arg;
275 
276 	if (cpu == curcpu)
277 		tgt_cpu_tsc = rdtsc();
278 	else
279 		hst_cpu_tsc = rdtsc();
280 }
281 
282 #ifdef EARLY_AP_STARTUP
283 static void
284 dtrace_gethrtime_init(void *arg)
285 {
286 	struct pcpu *pc;
287 	uint64_t tsc_f;
288 	cpuset_t map;
289 	int i;
290 #else
291 /*
292  * Get the frequency and scale factor as early as possible so that they can be
293  * used for boot-time tracing.
294  */
295 static void
296 dtrace_gethrtime_init_early(void *arg)
297 {
298 	uint64_t tsc_f;
299 #endif
300 
301 	/*
302 	 * Get TSC frequency known at this moment.
303 	 * This should be constant if TSC is invariant.
304 	 * Otherwise tick->time conversion will be inaccurate, but
305 	 * will preserve monotonic property of TSC.
306 	 */
307 	tsc_f = atomic_load_acq_64(&tsc_freq);
308 
309 	/*
310 	 * The following line checks that nsec_scale calculated below
311 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
312 	 * another 32-bit integer without overflowing 64-bit.
313 	 * Thus minimum supported TSC frequency is 62.5MHz.
314 	 */
315 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
316 	    ("TSC frequency is too low"));
317 
318 	/*
319 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
320 	 * as possible.
321 	 * 2^28 factor was chosen quite arbitrarily from practical
322 	 * considerations:
323 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
324 	 * - it provides quite good precision (e < 0.01%) up to THz
325 	 *   (terahertz) values;
326 	 */
327 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
328 #ifndef EARLY_AP_STARTUP
329 }
330 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
331     dtrace_gethrtime_init_early, NULL);
332 
333 static void
334 dtrace_gethrtime_init(void *arg)
335 {
336 	struct pcpu *pc;
337 	cpuset_t map;
338 	int i;
339 #endif
340 
341 	if (vm_guest != VM_GUEST_NO)
342 		return;
343 
344 	/* The current CPU is the reference one. */
345 	sched_pin();
346 	tsc_skew[curcpu] = 0;
347 	CPU_FOREACH(i) {
348 		if (i == curcpu)
349 			continue;
350 
351 		pc = pcpu_find(i);
352 		CPU_SETOF(PCPU_GET(cpuid), &map);
353 		CPU_SET(pc->pc_cpuid, &map);
354 
355 		smp_rendezvous_cpus(map, NULL,
356 		    dtrace_gethrtime_init_cpu,
357 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
358 
359 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
360 	}
361 	sched_unpin();
362 }
363 #ifdef EARLY_AP_STARTUP
364 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
365     dtrace_gethrtime_init, NULL);
366 #else
367 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
368     NULL);
369 #endif
370 
371 /*
372  * DTrace needs a high resolution time function which can
373  * be called from a probe context and guaranteed not to have
374  * instrumented with probes itself.
375  *
376  * Returns nanoseconds since boot.
377  */
378 uint64_t
379 dtrace_gethrtime(void)
380 {
381 	uint64_t tsc;
382 	uint32_t lo, hi;
383 	register_t rflags;
384 
385 	/*
386 	 * We split TSC value into lower and higher 32-bit halves and separately
387 	 * scale them with nsec_scale, then we scale them down by 2^28
388 	 * (see nsec_scale calculations) taking into account 32-bit shift of
389 	 * the higher half and finally add.
390 	 */
391 	rflags = intr_disable();
392 	tsc = rdtsc() - tsc_skew[curcpu];
393 	intr_restore(rflags);
394 
395 	lo = tsc;
396 	hi = tsc >> 32;
397 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
398 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
399 }
400 
401 uint64_t
402 dtrace_gethrestime(void)
403 {
404 	struct timespec current_time;
405 
406 	dtrace_getnanotime(&current_time);
407 
408 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
409 }
410 
411 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
412 int
413 dtrace_trap(struct trapframe *frame, u_int type)
414 {
415 	uint16_t nofault;
416 
417 	/*
418 	 * A trap can occur while DTrace executes a probe. Before
419 	 * executing the probe, DTrace blocks re-scheduling and sets
420 	 * a flag in its per-cpu flags to indicate that it doesn't
421 	 * want to fault. On returning from the probe, the no-fault
422 	 * flag is cleared and finally re-scheduling is enabled.
423 	 *
424 	 * Check if DTrace has enabled 'no-fault' mode:
425 	 */
426 	sched_pin();
427 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
428 	sched_unpin();
429 	if (nofault) {
430 		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
431 
432 		/*
433 		 * There are only a couple of trap types that are expected.
434 		 * All the rest will be handled in the usual way.
435 		 */
436 		switch (type) {
437 		/* General protection fault. */
438 		case T_PROTFLT:
439 			/* Flag an illegal operation. */
440 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
441 
442 			/*
443 			 * Offset the instruction pointer to the instruction
444 			 * following the one causing the fault.
445 			 */
446 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
447 			return (1);
448 		/* Page fault. */
449 		case T_PAGEFLT:
450 			/* Flag a bad address. */
451 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
452 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
453 
454 			/*
455 			 * Offset the instruction pointer to the instruction
456 			 * following the one causing the fault.
457 			 */
458 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
459 			return (1);
460 		default:
461 			/* Handle all other traps in the usual way. */
462 			break;
463 		}
464 	}
465 
466 	/* Handle the trap in the usual way. */
467 	return (0);
468 }
469