1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/smp.h> 40 #include <sys/dtrace_impl.h> 41 #include <sys/dtrace_bsd.h> 42 #include <machine/clock.h> 43 #include <machine/cpufunc.h> 44 #include <machine/frame.h> 45 #include <machine/md_var.h> 46 #include <machine/psl.h> 47 #include <machine/trap.h> 48 #include <vm/pmap.h> 49 50 extern void dtrace_getnanotime(struct timespec *tsp); 51 extern int (*dtrace_invop_jump_addr)(struct trapframe *); 52 53 int dtrace_invop(uintptr_t, struct trapframe *, void **); 54 int dtrace_invop_start(struct trapframe *frame); 55 void dtrace_invop_init(void); 56 void dtrace_invop_uninit(void); 57 58 typedef struct dtrace_invop_hdlr { 59 int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); 60 struct dtrace_invop_hdlr *dtih_next; 61 } dtrace_invop_hdlr_t; 62 63 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 64 65 int 66 dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch) 67 { 68 dtrace_invop_hdlr_t *hdlr; 69 int rval; 70 71 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) { 72 rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch); 73 if (rval != 0) 74 return (rval); 75 } 76 return (0); 77 } 78 79 void 80 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 81 { 82 dtrace_invop_hdlr_t *hdlr; 83 84 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 85 hdlr->dtih_func = func; 86 hdlr->dtih_next = dtrace_invop_hdlr; 87 dtrace_invop_hdlr = hdlr; 88 } 89 90 void 91 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) 92 { 93 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 94 95 for (;;) { 96 if (hdlr == NULL) 97 panic("attempt to remove non-existent invop handler"); 98 99 if (hdlr->dtih_func == func) 100 break; 101 102 prev = hdlr; 103 hdlr = hdlr->dtih_next; 104 } 105 106 if (prev == NULL) { 107 ASSERT(dtrace_invop_hdlr == hdlr); 108 dtrace_invop_hdlr = hdlr->dtih_next; 109 } else { 110 ASSERT(dtrace_invop_hdlr != hdlr); 111 prev->dtih_next = hdlr->dtih_next; 112 } 113 114 kmem_free(hdlr, 0); 115 } 116 117 void 118 dtrace_invop_init(void) 119 { 120 121 dtrace_invop_jump_addr = dtrace_invop_start; 122 } 123 124 void 125 dtrace_invop_uninit(void) 126 { 127 128 dtrace_invop_jump_addr = NULL; 129 } 130 131 /*ARGSUSED*/ 132 void 133 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 134 { 135 (*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap); 136 } 137 138 void 139 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 140 { 141 cpuset_t cpus; 142 143 if (cpu == DTRACE_CPUALL) 144 cpus = all_cpus; 145 else 146 CPU_SETOF(cpu, &cpus); 147 148 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, 149 smp_no_rendezvous_barrier, arg); 150 } 151 152 static void 153 dtrace_sync_func(void) 154 { 155 } 156 157 void 158 dtrace_sync(void) 159 { 160 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 161 } 162 163 #ifdef notyet 164 void 165 dtrace_safe_synchronous_signal(void) 166 { 167 kthread_t *t = curthread; 168 struct regs *rp = lwptoregs(ttolwp(t)); 169 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 170 171 ASSERT(t->t_dtrace_on); 172 173 /* 174 * If we're not in the range of scratch addresses, we're not actually 175 * tracing user instructions so turn off the flags. If the instruction 176 * we copied out caused a synchonous trap, reset the pc back to its 177 * original value and turn off the flags. 178 */ 179 if (rp->r_pc < t->t_dtrace_scrpc || 180 rp->r_pc > t->t_dtrace_astpc + isz) { 181 t->t_dtrace_ft = 0; 182 } else if (rp->r_pc == t->t_dtrace_scrpc || 183 rp->r_pc == t->t_dtrace_astpc) { 184 rp->r_pc = t->t_dtrace_pc; 185 t->t_dtrace_ft = 0; 186 } 187 } 188 189 int 190 dtrace_safe_defer_signal(void) 191 { 192 kthread_t *t = curthread; 193 struct regs *rp = lwptoregs(ttolwp(t)); 194 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 195 196 ASSERT(t->t_dtrace_on); 197 198 /* 199 * If we're not in the range of scratch addresses, we're not actually 200 * tracing user instructions so turn off the flags. 201 */ 202 if (rp->r_pc < t->t_dtrace_scrpc || 203 rp->r_pc > t->t_dtrace_astpc + isz) { 204 t->t_dtrace_ft = 0; 205 return (0); 206 } 207 208 /* 209 * If we have executed the original instruction, but we have performed 210 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 211 * registers used to emulate %rip-relative instructions in 64-bit mode, 212 * we'll save ourselves some effort by doing that here and taking the 213 * signal right away. We detect this condition by seeing if the program 214 * counter is the range [scrpc + isz, astpc). 215 */ 216 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 217 rp->r_pc < t->t_dtrace_astpc) { 218 #ifdef __amd64 219 /* 220 * If there is a scratch register and we're on the 221 * instruction immediately after the modified instruction, 222 * restore the value of that scratch register. 223 */ 224 if (t->t_dtrace_reg != 0 && 225 rp->r_pc == t->t_dtrace_scrpc + isz) { 226 switch (t->t_dtrace_reg) { 227 case REG_RAX: 228 rp->r_rax = t->t_dtrace_regv; 229 break; 230 case REG_RCX: 231 rp->r_rcx = t->t_dtrace_regv; 232 break; 233 case REG_R8: 234 rp->r_r8 = t->t_dtrace_regv; 235 break; 236 case REG_R9: 237 rp->r_r9 = t->t_dtrace_regv; 238 break; 239 } 240 } 241 #endif 242 rp->r_pc = t->t_dtrace_npc; 243 t->t_dtrace_ft = 0; 244 return (0); 245 } 246 247 /* 248 * Otherwise, make sure we'll return to the kernel after executing 249 * the copied out instruction and defer the signal. 250 */ 251 if (!t->t_dtrace_step) { 252 ASSERT(rp->r_pc < t->t_dtrace_astpc); 253 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 254 t->t_dtrace_step = 1; 255 } 256 257 t->t_dtrace_ast = 1; 258 259 return (1); 260 } 261 #endif 262 263 static int64_t tgt_cpu_tsc; 264 static int64_t hst_cpu_tsc; 265 static int64_t tsc_skew[MAXCPU]; 266 static uint64_t nsec_scale; 267 268 /* See below for the explanation of this macro. */ 269 #define SCALE_SHIFT 28 270 271 static void 272 dtrace_gethrtime_init_cpu(void *arg) 273 { 274 uintptr_t cpu = (uintptr_t) arg; 275 276 if (cpu == curcpu) 277 tgt_cpu_tsc = rdtsc(); 278 else 279 hst_cpu_tsc = rdtsc(); 280 } 281 282 #ifdef EARLY_AP_STARTUP 283 static void 284 dtrace_gethrtime_init(void *arg) 285 { 286 struct pcpu *pc; 287 uint64_t tsc_f; 288 cpuset_t map; 289 int i; 290 #else 291 /* 292 * Get the frequency and scale factor as early as possible so that they can be 293 * used for boot-time tracing. 294 */ 295 static void 296 dtrace_gethrtime_init_early(void *arg) 297 { 298 uint64_t tsc_f; 299 #endif 300 301 /* 302 * Get TSC frequency known at this moment. 303 * This should be constant if TSC is invariant. 304 * Otherwise tick->time conversion will be inaccurate, but 305 * will preserve monotonic property of TSC. 306 */ 307 tsc_f = atomic_load_acq_64(&tsc_freq); 308 309 /* 310 * The following line checks that nsec_scale calculated below 311 * doesn't overflow 32-bit unsigned integer, so that it can multiply 312 * another 32-bit integer without overflowing 64-bit. 313 * Thus minimum supported TSC frequency is 62.5MHz. 314 */ 315 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), 316 ("TSC frequency is too low")); 317 318 /* 319 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 320 * as possible. 321 * 2^28 factor was chosen quite arbitrarily from practical 322 * considerations: 323 * - it supports TSC frequencies as low as 62.5MHz (see above); 324 * - it provides quite good precision (e < 0.01%) up to THz 325 * (terahertz) values; 326 */ 327 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 328 #ifndef EARLY_AP_STARTUP 329 } 330 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY, 331 dtrace_gethrtime_init_early, NULL); 332 333 static void 334 dtrace_gethrtime_init(void *arg) 335 { 336 struct pcpu *pc; 337 cpuset_t map; 338 int i; 339 #endif 340 341 if (vm_guest != VM_GUEST_NO) 342 return; 343 344 /* The current CPU is the reference one. */ 345 sched_pin(); 346 tsc_skew[curcpu] = 0; 347 CPU_FOREACH(i) { 348 if (i == curcpu) 349 continue; 350 351 pc = pcpu_find(i); 352 CPU_SETOF(PCPU_GET(cpuid), &map); 353 CPU_SET(pc->pc_cpuid, &map); 354 355 smp_rendezvous_cpus(map, NULL, 356 dtrace_gethrtime_init_cpu, 357 smp_no_rendezvous_barrier, (void *)(uintptr_t) i); 358 359 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 360 } 361 sched_unpin(); 362 } 363 #ifdef EARLY_AP_STARTUP 364 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY, 365 dtrace_gethrtime_init, NULL); 366 #else 367 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, 368 NULL); 369 #endif 370 371 /* 372 * DTrace needs a high resolution time function which can 373 * be called from a probe context and guaranteed not to have 374 * instrumented with probes itself. 375 * 376 * Returns nanoseconds since boot. 377 */ 378 uint64_t 379 dtrace_gethrtime(void) 380 { 381 uint64_t tsc; 382 uint32_t lo, hi; 383 register_t rflags; 384 385 /* 386 * We split TSC value into lower and higher 32-bit halves and separately 387 * scale them with nsec_scale, then we scale them down by 2^28 388 * (see nsec_scale calculations) taking into account 32-bit shift of 389 * the higher half and finally add. 390 */ 391 rflags = intr_disable(); 392 tsc = rdtsc() - tsc_skew[curcpu]; 393 intr_restore(rflags); 394 395 lo = tsc; 396 hi = tsc >> 32; 397 return (((lo * nsec_scale) >> SCALE_SHIFT) + 398 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 399 } 400 401 uint64_t 402 dtrace_gethrestime(void) 403 { 404 struct timespec current_time; 405 406 dtrace_getnanotime(¤t_time); 407 408 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 409 } 410 411 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */ 412 int 413 dtrace_trap(struct trapframe *frame, u_int type) 414 { 415 uint16_t nofault; 416 417 /* 418 * A trap can occur while DTrace executes a probe. Before 419 * executing the probe, DTrace blocks re-scheduling and sets 420 * a flag in its per-cpu flags to indicate that it doesn't 421 * want to fault. On returning from the probe, the no-fault 422 * flag is cleared and finally re-scheduling is enabled. 423 * 424 * Check if DTrace has enabled 'no-fault' mode: 425 */ 426 sched_pin(); 427 nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT; 428 sched_unpin(); 429 if (nofault) { 430 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 431 432 /* 433 * There are only a couple of trap types that are expected. 434 * All the rest will be handled in the usual way. 435 */ 436 switch (type) { 437 /* General protection fault. */ 438 case T_PROTFLT: 439 /* Flag an illegal operation. */ 440 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 441 442 /* 443 * Offset the instruction pointer to the instruction 444 * following the one causing the fault. 445 */ 446 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 447 return (1); 448 /* Page fault. */ 449 case T_PAGEFLT: 450 /* Flag a bad address. */ 451 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 452 cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; 453 454 /* 455 * Offset the instruction pointer to the instruction 456 * following the one causing the fault. 457 */ 458 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 459 return (1); 460 default: 461 /* Handle all other traps in the usual way. */ 462 break; 463 } 464 } 465 466 /* Handle the trap in the usual way. */ 467 return (0); 468 } 469