xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/dtrace_impl.h>
41 #include <sys/dtrace_bsd.h>
42 #include <cddl/dev/dtrace/dtrace_cddl.h>
43 #include <machine/clock.h>
44 #include <machine/cpufunc.h>
45 #include <machine/frame.h>
46 #include <machine/md_var.h>
47 #include <machine/psl.h>
48 #include <machine/trap.h>
49 #include <vm/pmap.h>
50 
51 extern void dtrace_getnanotime(struct timespec *tsp);
52 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
53 
54 int	dtrace_invop(uintptr_t, struct trapframe *, void **);
55 int	dtrace_invop_start(struct trapframe *frame);
56 void	dtrace_invop_init(void);
57 void	dtrace_invop_uninit(void);
58 
59 typedef struct dtrace_invop_hdlr {
60 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
61 	struct dtrace_invop_hdlr *dtih_next;
62 } dtrace_invop_hdlr_t;
63 
64 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
65 
66 int
67 dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch)
68 {
69 	struct thread *td;
70 	dtrace_invop_hdlr_t *hdlr;
71 	int rval;
72 
73 	td = curthread;
74 	td->t_dtrace_trapframe = frame;
75 	rval = 0;
76 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) {
77 		rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch);
78 		if (rval != 0)
79 			break;
80 	}
81 	td->t_dtrace_trapframe = NULL;
82 	return (rval);
83 }
84 
85 void
86 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
87 {
88 	dtrace_invop_hdlr_t *hdlr;
89 
90 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
91 	hdlr->dtih_func = func;
92 	hdlr->dtih_next = dtrace_invop_hdlr;
93 	dtrace_invop_hdlr = hdlr;
94 }
95 
96 void
97 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
98 {
99 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
100 
101 	for (;;) {
102 		if (hdlr == NULL)
103 			panic("attempt to remove non-existent invop handler");
104 
105 		if (hdlr->dtih_func == func)
106 			break;
107 
108 		prev = hdlr;
109 		hdlr = hdlr->dtih_next;
110 	}
111 
112 	if (prev == NULL) {
113 		ASSERT(dtrace_invop_hdlr == hdlr);
114 		dtrace_invop_hdlr = hdlr->dtih_next;
115 	} else {
116 		ASSERT(dtrace_invop_hdlr != hdlr);
117 		prev->dtih_next = hdlr->dtih_next;
118 	}
119 
120 	kmem_free(hdlr, 0);
121 }
122 
123 void
124 dtrace_invop_init(void)
125 {
126 
127 	dtrace_invop_jump_addr = dtrace_invop_start;
128 }
129 
130 void
131 dtrace_invop_uninit(void)
132 {
133 
134 	dtrace_invop_jump_addr = NULL;
135 }
136 
137 /*ARGSUSED*/
138 void
139 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
140 {
141 	(*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap);
142 }
143 
144 void
145 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
146 {
147 	cpuset_t cpus;
148 
149 	if (cpu == DTRACE_CPUALL)
150 		cpus = all_cpus;
151 	else
152 		CPU_SETOF(cpu, &cpus);
153 
154 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
155 	    smp_no_rendezvous_barrier, arg);
156 }
157 
158 static void
159 dtrace_sync_func(void)
160 {
161 }
162 
163 void
164 dtrace_sync(void)
165 {
166         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
167 }
168 
169 #ifdef notyet
170 void
171 dtrace_safe_synchronous_signal(void)
172 {
173 	kthread_t *t = curthread;
174 	struct regs *rp = lwptoregs(ttolwp(t));
175 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
176 
177 	ASSERT(t->t_dtrace_on);
178 
179 	/*
180 	 * If we're not in the range of scratch addresses, we're not actually
181 	 * tracing user instructions so turn off the flags. If the instruction
182 	 * we copied out caused a synchonous trap, reset the pc back to its
183 	 * original value and turn off the flags.
184 	 */
185 	if (rp->r_pc < t->t_dtrace_scrpc ||
186 	    rp->r_pc > t->t_dtrace_astpc + isz) {
187 		t->t_dtrace_ft = 0;
188 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
189 	    rp->r_pc == t->t_dtrace_astpc) {
190 		rp->r_pc = t->t_dtrace_pc;
191 		t->t_dtrace_ft = 0;
192 	}
193 }
194 
195 int
196 dtrace_safe_defer_signal(void)
197 {
198 	kthread_t *t = curthread;
199 	struct regs *rp = lwptoregs(ttolwp(t));
200 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
201 
202 	ASSERT(t->t_dtrace_on);
203 
204 	/*
205 	 * If we're not in the range of scratch addresses, we're not actually
206 	 * tracing user instructions so turn off the flags.
207 	 */
208 	if (rp->r_pc < t->t_dtrace_scrpc ||
209 	    rp->r_pc > t->t_dtrace_astpc + isz) {
210 		t->t_dtrace_ft = 0;
211 		return (0);
212 	}
213 
214 	/*
215 	 * If we have executed the original instruction, but we have performed
216 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
217 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
218 	 * we'll save ourselves some effort by doing that here and taking the
219 	 * signal right away.  We detect this condition by seeing if the program
220 	 * counter is the range [scrpc + isz, astpc).
221 	 */
222 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
223 	    rp->r_pc < t->t_dtrace_astpc) {
224 #ifdef __amd64
225 		/*
226 		 * If there is a scratch register and we're on the
227 		 * instruction immediately after the modified instruction,
228 		 * restore the value of that scratch register.
229 		 */
230 		if (t->t_dtrace_reg != 0 &&
231 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
232 			switch (t->t_dtrace_reg) {
233 			case REG_RAX:
234 				rp->r_rax = t->t_dtrace_regv;
235 				break;
236 			case REG_RCX:
237 				rp->r_rcx = t->t_dtrace_regv;
238 				break;
239 			case REG_R8:
240 				rp->r_r8 = t->t_dtrace_regv;
241 				break;
242 			case REG_R9:
243 				rp->r_r9 = t->t_dtrace_regv;
244 				break;
245 			}
246 		}
247 #endif
248 		rp->r_pc = t->t_dtrace_npc;
249 		t->t_dtrace_ft = 0;
250 		return (0);
251 	}
252 
253 	/*
254 	 * Otherwise, make sure we'll return to the kernel after executing
255 	 * the copied out instruction and defer the signal.
256 	 */
257 	if (!t->t_dtrace_step) {
258 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
259 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
260 		t->t_dtrace_step = 1;
261 	}
262 
263 	t->t_dtrace_ast = 1;
264 
265 	return (1);
266 }
267 #endif
268 
269 static int64_t	tgt_cpu_tsc;
270 static int64_t	hst_cpu_tsc;
271 static int64_t	tsc_skew[MAXCPU];
272 static uint64_t	nsec_scale;
273 
274 /* See below for the explanation of this macro. */
275 #define SCALE_SHIFT	28
276 
277 static void
278 dtrace_gethrtime_init_cpu(void *arg)
279 {
280 	uintptr_t cpu = (uintptr_t) arg;
281 
282 	if (cpu == curcpu)
283 		tgt_cpu_tsc = rdtsc();
284 	else
285 		hst_cpu_tsc = rdtsc();
286 }
287 
288 #ifdef EARLY_AP_STARTUP
289 static void
290 dtrace_gethrtime_init(void *arg)
291 {
292 	struct pcpu *pc;
293 	uint64_t tsc_f;
294 	cpuset_t map;
295 	int i;
296 #else
297 /*
298  * Get the frequency and scale factor as early as possible so that they can be
299  * used for boot-time tracing.
300  */
301 static void
302 dtrace_gethrtime_init_early(void *arg)
303 {
304 	uint64_t tsc_f;
305 #endif
306 
307 	/*
308 	 * Get TSC frequency known at this moment.
309 	 * This should be constant if TSC is invariant.
310 	 * Otherwise tick->time conversion will be inaccurate, but
311 	 * will preserve monotonic property of TSC.
312 	 */
313 	tsc_f = atomic_load_acq_64(&tsc_freq);
314 
315 	/*
316 	 * The following line checks that nsec_scale calculated below
317 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
318 	 * another 32-bit integer without overflowing 64-bit.
319 	 * Thus minimum supported TSC frequency is 62.5MHz.
320 	 */
321 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
322 	    ("TSC frequency is too low"));
323 
324 	/*
325 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
326 	 * as possible.
327 	 * 2^28 factor was chosen quite arbitrarily from practical
328 	 * considerations:
329 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
330 	 * - it provides quite good precision (e < 0.01%) up to THz
331 	 *   (terahertz) values;
332 	 */
333 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
334 #ifndef EARLY_AP_STARTUP
335 }
336 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
337     dtrace_gethrtime_init_early, NULL);
338 
339 static void
340 dtrace_gethrtime_init(void *arg)
341 {
342 	struct pcpu *pc;
343 	cpuset_t map;
344 	int i;
345 #endif
346 
347 	if (vm_guest != VM_GUEST_NO)
348 		return;
349 
350 	/* The current CPU is the reference one. */
351 	sched_pin();
352 	tsc_skew[curcpu] = 0;
353 	CPU_FOREACH(i) {
354 		if (i == curcpu)
355 			continue;
356 
357 		pc = pcpu_find(i);
358 		CPU_SETOF(PCPU_GET(cpuid), &map);
359 		CPU_SET(pc->pc_cpuid, &map);
360 
361 		smp_rendezvous_cpus(map, NULL,
362 		    dtrace_gethrtime_init_cpu,
363 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
364 
365 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
366 	}
367 	sched_unpin();
368 }
369 #ifdef EARLY_AP_STARTUP
370 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
371     dtrace_gethrtime_init, NULL);
372 #else
373 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
374     NULL);
375 #endif
376 
377 /*
378  * DTrace needs a high resolution time function which can
379  * be called from a probe context and guaranteed not to have
380  * instrumented with probes itself.
381  *
382  * Returns nanoseconds since boot.
383  */
384 uint64_t
385 dtrace_gethrtime(void)
386 {
387 	uint64_t tsc;
388 	uint32_t lo, hi;
389 	register_t rflags;
390 
391 	/*
392 	 * We split TSC value into lower and higher 32-bit halves and separately
393 	 * scale them with nsec_scale, then we scale them down by 2^28
394 	 * (see nsec_scale calculations) taking into account 32-bit shift of
395 	 * the higher half and finally add.
396 	 */
397 	rflags = intr_disable();
398 	tsc = rdtsc() - tsc_skew[curcpu];
399 	intr_restore(rflags);
400 
401 	lo = tsc;
402 	hi = tsc >> 32;
403 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
404 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
405 }
406 
407 uint64_t
408 dtrace_gethrestime(void)
409 {
410 	struct timespec current_time;
411 
412 	dtrace_getnanotime(&current_time);
413 
414 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
415 }
416 
417 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
418 int
419 dtrace_trap(struct trapframe *frame, u_int type)
420 {
421 	uint16_t nofault;
422 
423 	/*
424 	 * A trap can occur while DTrace executes a probe. Before
425 	 * executing the probe, DTrace blocks re-scheduling and sets
426 	 * a flag in its per-cpu flags to indicate that it doesn't
427 	 * want to fault. On returning from the probe, the no-fault
428 	 * flag is cleared and finally re-scheduling is enabled.
429 	 *
430 	 * Check if DTrace has enabled 'no-fault' mode:
431 	 */
432 	sched_pin();
433 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
434 	sched_unpin();
435 	if (nofault) {
436 		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
437 
438 		/*
439 		 * There are only a couple of trap types that are expected.
440 		 * All the rest will be handled in the usual way.
441 		 */
442 		switch (type) {
443 		/* General protection fault. */
444 		case T_PROTFLT:
445 			/* Flag an illegal operation. */
446 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
447 
448 			/*
449 			 * Offset the instruction pointer to the instruction
450 			 * following the one causing the fault.
451 			 */
452 			frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip);
453 			return (1);
454 		/* Page fault. */
455 		case T_PAGEFLT:
456 			/* Flag a bad address. */
457 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
458 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
459 
460 			/*
461 			 * Offset the instruction pointer to the instruction
462 			 * following the one causing the fault.
463 			 */
464 			frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip);
465 			return (1);
466 		default:
467 			/* Handle all other traps in the usual way. */
468 			break;
469 		}
470 	}
471 
472 	/* Handle the trap in the usual way. */
473 	return (0);
474 }
475