1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/types.h> 33 #include <sys/kernel.h> 34 #include <sys/malloc.h> 35 #include <sys/kmem.h> 36 #include <sys/smp.h> 37 #include <sys/dtrace_impl.h> 38 #include <sys/dtrace_bsd.h> 39 #include <machine/clock.h> 40 #include <machine/frame.h> 41 #include <vm/pmap.h> 42 43 extern uintptr_t dtrace_in_probe_addr; 44 extern int dtrace_in_probe; 45 46 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); 47 48 typedef struct dtrace_invop_hdlr { 49 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 50 struct dtrace_invop_hdlr *dtih_next; 51 } dtrace_invop_hdlr_t; 52 53 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 54 55 int 56 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 57 { 58 dtrace_invop_hdlr_t *hdlr; 59 int rval; 60 61 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 62 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 63 return (rval); 64 65 return (0); 66 } 67 68 void 69 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 70 { 71 dtrace_invop_hdlr_t *hdlr; 72 73 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 74 hdlr->dtih_func = func; 75 hdlr->dtih_next = dtrace_invop_hdlr; 76 dtrace_invop_hdlr = hdlr; 77 } 78 79 void 80 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 81 { 82 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 83 84 for (;;) { 85 if (hdlr == NULL) 86 panic("attempt to remove non-existent invop handler"); 87 88 if (hdlr->dtih_func == func) 89 break; 90 91 prev = hdlr; 92 hdlr = hdlr->dtih_next; 93 } 94 95 if (prev == NULL) { 96 ASSERT(dtrace_invop_hdlr == hdlr); 97 dtrace_invop_hdlr = hdlr->dtih_next; 98 } else { 99 ASSERT(dtrace_invop_hdlr != hdlr); 100 prev->dtih_next = hdlr->dtih_next; 101 } 102 103 kmem_free(hdlr, 0); 104 } 105 106 /*ARGSUSED*/ 107 void 108 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 109 { 110 (*func)(0, (uintptr_t) addr_PTmap); 111 } 112 113 void 114 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 115 { 116 cpumask_t cpus; 117 118 if (cpu == DTRACE_CPUALL) 119 cpus = all_cpus; 120 else 121 cpus = (cpumask_t)1 << cpu; 122 123 smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func, 124 smp_no_rendevous_barrier, arg); 125 } 126 127 static void 128 dtrace_sync_func(void) 129 { 130 } 131 132 void 133 dtrace_sync(void) 134 { 135 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 136 } 137 138 #ifdef notyet 139 int (*dtrace_fasttrap_probe_ptr)(struct regs *); 140 int (*dtrace_pid_probe_ptr)(struct regs *); 141 int (*dtrace_return_probe_ptr)(struct regs *); 142 143 void 144 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 145 { 146 krwlock_t *rwp; 147 proc_t *p = curproc; 148 extern void trap(struct regs *, caddr_t, processorid_t); 149 150 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 151 if (curthread->t_cred != p->p_cred) { 152 cred_t *oldcred = curthread->t_cred; 153 /* 154 * DTrace accesses t_cred in probe context. t_cred 155 * must always be either NULL, or point to a valid, 156 * allocated cred structure. 157 */ 158 curthread->t_cred = crgetcred(); 159 crfree(oldcred); 160 } 161 } 162 163 if (rp->r_trapno == T_DTRACE_RET) { 164 uint8_t step = curthread->t_dtrace_step; 165 uint8_t ret = curthread->t_dtrace_ret; 166 uintptr_t npc = curthread->t_dtrace_npc; 167 168 if (curthread->t_dtrace_ast) { 169 aston(curthread); 170 curthread->t_sig_check = 1; 171 } 172 173 /* 174 * Clear all user tracing flags. 175 */ 176 curthread->t_dtrace_ft = 0; 177 178 /* 179 * If we weren't expecting to take a return probe trap, kill 180 * the process as though it had just executed an unassigned 181 * trap instruction. 182 */ 183 if (step == 0) { 184 tsignal(curthread, SIGILL); 185 return; 186 } 187 188 /* 189 * If we hit this trap unrelated to a return probe, we're 190 * just here to reset the AST flag since we deferred a signal 191 * until after we logically single-stepped the instruction we 192 * copied out. 193 */ 194 if (ret == 0) { 195 rp->r_pc = npc; 196 return; 197 } 198 199 /* 200 * We need to wait until after we've called the 201 * dtrace_return_probe_ptr function pointer to set %pc. 202 */ 203 rwp = &CPU->cpu_ft_lock; 204 rw_enter(rwp, RW_READER); 205 if (dtrace_return_probe_ptr != NULL) 206 (void) (*dtrace_return_probe_ptr)(rp); 207 rw_exit(rwp); 208 rp->r_pc = npc; 209 210 } else if (rp->r_trapno == T_DTRACE_PROBE) { 211 rwp = &CPU->cpu_ft_lock; 212 rw_enter(rwp, RW_READER); 213 if (dtrace_fasttrap_probe_ptr != NULL) 214 (void) (*dtrace_fasttrap_probe_ptr)(rp); 215 rw_exit(rwp); 216 217 } else if (rp->r_trapno == T_BPTFLT) { 218 uint8_t instr; 219 rwp = &CPU->cpu_ft_lock; 220 221 /* 222 * The DTrace fasttrap provider uses the breakpoint trap 223 * (int 3). We let DTrace take the first crack at handling 224 * this trap; if it's not a probe that DTrace knowns about, 225 * we call into the trap() routine to handle it like a 226 * breakpoint placed by a conventional debugger. 227 */ 228 rw_enter(rwp, RW_READER); 229 if (dtrace_pid_probe_ptr != NULL && 230 (*dtrace_pid_probe_ptr)(rp) == 0) { 231 rw_exit(rwp); 232 return; 233 } 234 rw_exit(rwp); 235 236 /* 237 * If the instruction that caused the breakpoint trap doesn't 238 * look like an int 3 anymore, it may be that this tracepoint 239 * was removed just after the user thread executed it. In 240 * that case, return to user land to retry the instuction. 241 */ 242 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 243 instr != FASTTRAP_INSTR) { 244 rp->r_pc--; 245 return; 246 } 247 248 trap(rp, addr, cpuid); 249 250 } else { 251 trap(rp, addr, cpuid); 252 } 253 } 254 255 void 256 dtrace_safe_synchronous_signal(void) 257 { 258 kthread_t *t = curthread; 259 struct regs *rp = lwptoregs(ttolwp(t)); 260 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 261 262 ASSERT(t->t_dtrace_on); 263 264 /* 265 * If we're not in the range of scratch addresses, we're not actually 266 * tracing user instructions so turn off the flags. If the instruction 267 * we copied out caused a synchonous trap, reset the pc back to its 268 * original value and turn off the flags. 269 */ 270 if (rp->r_pc < t->t_dtrace_scrpc || 271 rp->r_pc > t->t_dtrace_astpc + isz) { 272 t->t_dtrace_ft = 0; 273 } else if (rp->r_pc == t->t_dtrace_scrpc || 274 rp->r_pc == t->t_dtrace_astpc) { 275 rp->r_pc = t->t_dtrace_pc; 276 t->t_dtrace_ft = 0; 277 } 278 } 279 280 int 281 dtrace_safe_defer_signal(void) 282 { 283 kthread_t *t = curthread; 284 struct regs *rp = lwptoregs(ttolwp(t)); 285 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 286 287 ASSERT(t->t_dtrace_on); 288 289 /* 290 * If we're not in the range of scratch addresses, we're not actually 291 * tracing user instructions so turn off the flags. 292 */ 293 if (rp->r_pc < t->t_dtrace_scrpc || 294 rp->r_pc > t->t_dtrace_astpc + isz) { 295 t->t_dtrace_ft = 0; 296 return (0); 297 } 298 299 /* 300 * If we've executed the original instruction, but haven't performed 301 * the jmp back to t->t_dtrace_npc or the clean up of any registers 302 * used to emulate %rip-relative instructions in 64-bit mode, do that 303 * here and take the signal right away. We detect this condition by 304 * seeing if the program counter is the range [scrpc + isz, astpc). 305 */ 306 if (t->t_dtrace_astpc - rp->r_pc < 307 t->t_dtrace_astpc - t->t_dtrace_scrpc - isz) { 308 #ifdef __amd64 309 /* 310 * If there is a scratch register and we're on the 311 * instruction immediately after the modified instruction, 312 * restore the value of that scratch register. 313 */ 314 if (t->t_dtrace_reg != 0 && 315 rp->r_pc == t->t_dtrace_scrpc + isz) { 316 switch (t->t_dtrace_reg) { 317 case REG_RAX: 318 rp->r_rax = t->t_dtrace_regv; 319 break; 320 case REG_RCX: 321 rp->r_rcx = t->t_dtrace_regv; 322 break; 323 case REG_R8: 324 rp->r_r8 = t->t_dtrace_regv; 325 break; 326 case REG_R9: 327 rp->r_r9 = t->t_dtrace_regv; 328 break; 329 } 330 } 331 #endif 332 rp->r_pc = t->t_dtrace_npc; 333 t->t_dtrace_ft = 0; 334 return (0); 335 } 336 337 /* 338 * Otherwise, make sure we'll return to the kernel after executing 339 * the copied out instruction and defer the signal. 340 */ 341 if (!t->t_dtrace_step) { 342 ASSERT(rp->r_pc < t->t_dtrace_astpc); 343 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 344 t->t_dtrace_step = 1; 345 } 346 347 t->t_dtrace_ast = 1; 348 349 return (1); 350 } 351 #endif 352 353 static int64_t tgt_cpu_tsc; 354 static int64_t hst_cpu_tsc; 355 static int64_t tsc_skew[MAXCPU]; 356 static uint64_t nsec_scale; 357 358 /* See below for the explanation of this macro. */ 359 #define SCALE_SHIFT 28 360 361 static void 362 dtrace_gethrtime_init_cpu(void *arg) 363 { 364 uintptr_t cpu = (uintptr_t) arg; 365 366 if (cpu == curcpu) 367 tgt_cpu_tsc = rdtsc(); 368 else 369 hst_cpu_tsc = rdtsc(); 370 } 371 372 static void 373 dtrace_gethrtime_init(void *arg) 374 { 375 struct pcpu *pc; 376 uint64_t tsc_f; 377 cpumask_t map; 378 int i; 379 380 /* 381 * Get TSC frequency known at this moment. 382 * This should be constant if TSC is invariant. 383 * Otherwise tick->time conversion will be inaccurate, but 384 * will preserve monotonic property of TSC. 385 */ 386 tsc_f = atomic_load_acq_64(&tsc_freq); 387 388 /* 389 * The following line checks that nsec_scale calculated below 390 * doesn't overflow 32-bit unsigned integer, so that it can multiply 391 * another 32-bit integer without overflowing 64-bit. 392 * Thus minimum supported TSC frequency is 62.5MHz. 393 */ 394 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); 395 396 /* 397 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 398 * as possible. 399 * 2^28 factor was chosen quite arbitrarily from practical 400 * considerations: 401 * - it supports TSC frequencies as low as 62.5MHz (see above); 402 * - it provides quite good precision (e < 0.01%) up to THz 403 * (terahertz) values; 404 */ 405 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 406 407 /* The current CPU is the reference one. */ 408 sched_pin(); 409 tsc_skew[curcpu] = 0; 410 CPU_FOREACH(i) { 411 if (i == curcpu) 412 continue; 413 414 pc = pcpu_find(i); 415 map = PCPU_GET(cpumask) | pc->pc_cpumask; 416 417 smp_rendezvous_cpus(map, NULL, 418 dtrace_gethrtime_init_cpu, 419 smp_no_rendevous_barrier, (void *)(uintptr_t) i); 420 421 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 422 } 423 sched_unpin(); 424 } 425 426 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); 427 428 /* 429 * DTrace needs a high resolution time function which can 430 * be called from a probe context and guaranteed not to have 431 * instrumented with probes itself. 432 * 433 * Returns nanoseconds since boot. 434 */ 435 uint64_t 436 dtrace_gethrtime() 437 { 438 uint64_t tsc; 439 uint32_t lo; 440 uint32_t hi; 441 442 /* 443 * We split TSC value into lower and higher 32-bit halves and separately 444 * scale them with nsec_scale, then we scale them down by 2^28 445 * (see nsec_scale calculations) taking into account 32-bit shift of 446 * the higher half and finally add. 447 */ 448 tsc = rdtsc() + tsc_skew[curcpu]; 449 lo = tsc; 450 hi = tsc >> 32; 451 return (((lo * nsec_scale) >> SCALE_SHIFT) + 452 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 453 } 454 455 uint64_t 456 dtrace_gethrestime(void) 457 { 458 printf("%s(%d): XXX\n",__func__,__LINE__); 459 return (0); 460 } 461 462 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c */ 463 int 464 dtrace_trap(struct trapframe *frame, u_int type) 465 { 466 /* 467 * A trap can occur while DTrace executes a probe. Before 468 * executing the probe, DTrace blocks re-scheduling and sets 469 * a flag in it's per-cpu flags to indicate that it doesn't 470 * want to fault. On returning from the probe, the no-fault 471 * flag is cleared and finally re-scheduling is enabled. 472 * 473 * Check if DTrace has enabled 'no-fault' mode: 474 * 475 */ 476 if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { 477 /* 478 * There are only a couple of trap types that are expected. 479 * All the rest will be handled in the usual way. 480 */ 481 switch (type) { 482 /* Privilieged instruction fault. */ 483 case T_PRIVINFLT: 484 break; 485 /* General protection fault. */ 486 case T_PROTFLT: 487 /* Flag an illegal operation. */ 488 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 489 490 /* 491 * Offset the instruction pointer to the instruction 492 * following the one causing the fault. 493 */ 494 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 495 return (1); 496 /* Page fault. */ 497 case T_PAGEFLT: 498 /* Flag a bad address. */ 499 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 500 cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; 501 502 /* 503 * Offset the instruction pointer to the instruction 504 * following the one causing the fault. 505 */ 506 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 507 return (1); 508 default: 509 /* Handle all other traps in the usual way. */ 510 break; 511 } 512 } 513 514 /* Handle the trap in the usual way. */ 515 return (0); 516 } 517