xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/kmem.h>
40 #include <sys/smp.h>
41 #include <sys/dtrace_impl.h>
42 #include <sys/dtrace_bsd.h>
43 #include <machine/clock.h>
44 #include <machine/cpufunc.h>
45 #include <machine/frame.h>
46 #include <machine/psl.h>
47 #include <vm/pmap.h>
48 
49 extern void dtrace_getnanotime(struct timespec *tsp);
50 
51 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
52 
53 typedef struct dtrace_invop_hdlr {
54 	int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
55 	struct dtrace_invop_hdlr *dtih_next;
56 } dtrace_invop_hdlr_t;
57 
58 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
59 
60 int
61 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
62 {
63 	dtrace_invop_hdlr_t *hdlr;
64 	int rval;
65 
66 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
67 		if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
68 			return (rval);
69 
70 	return (0);
71 }
72 
73 void
74 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
75 {
76 	dtrace_invop_hdlr_t *hdlr;
77 
78 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
79 	hdlr->dtih_func = func;
80 	hdlr->dtih_next = dtrace_invop_hdlr;
81 	dtrace_invop_hdlr = hdlr;
82 }
83 
84 void
85 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
86 {
87 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
88 
89 	for (;;) {
90 		if (hdlr == NULL)
91 			panic("attempt to remove non-existent invop handler");
92 
93 		if (hdlr->dtih_func == func)
94 			break;
95 
96 		prev = hdlr;
97 		hdlr = hdlr->dtih_next;
98 	}
99 
100 	if (prev == NULL) {
101 		ASSERT(dtrace_invop_hdlr == hdlr);
102 		dtrace_invop_hdlr = hdlr->dtih_next;
103 	} else {
104 		ASSERT(dtrace_invop_hdlr != hdlr);
105 		prev->dtih_next = hdlr->dtih_next;
106 	}
107 
108 	kmem_free(hdlr, 0);
109 }
110 
111 /*ARGSUSED*/
112 void
113 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
114 {
115 	(*func)(0, (uintptr_t) addr_PTmap);
116 }
117 
118 void
119 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
120 {
121 	cpuset_t cpus;
122 
123 	if (cpu == DTRACE_CPUALL)
124 		cpus = all_cpus;
125 	else
126 		CPU_SETOF(cpu, &cpus);
127 
128 	smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
129 	    smp_no_rendezvous_barrier, arg);
130 }
131 
132 static void
133 dtrace_sync_func(void)
134 {
135 }
136 
137 void
138 dtrace_sync(void)
139 {
140         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
141 }
142 
143 #ifdef notyet
144 void
145 dtrace_safe_synchronous_signal(void)
146 {
147 	kthread_t *t = curthread;
148 	struct regs *rp = lwptoregs(ttolwp(t));
149 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
150 
151 	ASSERT(t->t_dtrace_on);
152 
153 	/*
154 	 * If we're not in the range of scratch addresses, we're not actually
155 	 * tracing user instructions so turn off the flags. If the instruction
156 	 * we copied out caused a synchonous trap, reset the pc back to its
157 	 * original value and turn off the flags.
158 	 */
159 	if (rp->r_pc < t->t_dtrace_scrpc ||
160 	    rp->r_pc > t->t_dtrace_astpc + isz) {
161 		t->t_dtrace_ft = 0;
162 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
163 	    rp->r_pc == t->t_dtrace_astpc) {
164 		rp->r_pc = t->t_dtrace_pc;
165 		t->t_dtrace_ft = 0;
166 	}
167 }
168 
169 int
170 dtrace_safe_defer_signal(void)
171 {
172 	kthread_t *t = curthread;
173 	struct regs *rp = lwptoregs(ttolwp(t));
174 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
175 
176 	ASSERT(t->t_dtrace_on);
177 
178 	/*
179 	 * If we're not in the range of scratch addresses, we're not actually
180 	 * tracing user instructions so turn off the flags.
181 	 */
182 	if (rp->r_pc < t->t_dtrace_scrpc ||
183 	    rp->r_pc > t->t_dtrace_astpc + isz) {
184 		t->t_dtrace_ft = 0;
185 		return (0);
186 	}
187 
188 	/*
189 	 * If we have executed the original instruction, but we have performed
190 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
191 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
192 	 * we'll save ourselves some effort by doing that here and taking the
193 	 * signal right away.  We detect this condition by seeing if the program
194 	 * counter is the range [scrpc + isz, astpc).
195 	 */
196 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
197 	    rp->r_pc < t->t_dtrace_astpc) {
198 #ifdef __amd64
199 		/*
200 		 * If there is a scratch register and we're on the
201 		 * instruction immediately after the modified instruction,
202 		 * restore the value of that scratch register.
203 		 */
204 		if (t->t_dtrace_reg != 0 &&
205 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
206 			switch (t->t_dtrace_reg) {
207 			case REG_RAX:
208 				rp->r_rax = t->t_dtrace_regv;
209 				break;
210 			case REG_RCX:
211 				rp->r_rcx = t->t_dtrace_regv;
212 				break;
213 			case REG_R8:
214 				rp->r_r8 = t->t_dtrace_regv;
215 				break;
216 			case REG_R9:
217 				rp->r_r9 = t->t_dtrace_regv;
218 				break;
219 			}
220 		}
221 #endif
222 		rp->r_pc = t->t_dtrace_npc;
223 		t->t_dtrace_ft = 0;
224 		return (0);
225 	}
226 
227 	/*
228 	 * Otherwise, make sure we'll return to the kernel after executing
229 	 * the copied out instruction and defer the signal.
230 	 */
231 	if (!t->t_dtrace_step) {
232 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
233 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
234 		t->t_dtrace_step = 1;
235 	}
236 
237 	t->t_dtrace_ast = 1;
238 
239 	return (1);
240 }
241 #endif
242 
243 static int64_t	tgt_cpu_tsc;
244 static int64_t	hst_cpu_tsc;
245 static int64_t	tsc_skew[MAXCPU];
246 static uint64_t	nsec_scale;
247 
248 /* See below for the explanation of this macro. */
249 #define SCALE_SHIFT	28
250 
251 static void
252 dtrace_gethrtime_init_cpu(void *arg)
253 {
254 	uintptr_t cpu = (uintptr_t) arg;
255 
256 	if (cpu == curcpu)
257 		tgt_cpu_tsc = rdtsc();
258 	else
259 		hst_cpu_tsc = rdtsc();
260 }
261 
262 #ifdef EARLY_AP_STARTUP
263 static void
264 dtrace_gethrtime_init(void *arg)
265 {
266 	struct pcpu *pc;
267 	uint64_t tsc_f;
268 	cpuset_t map;
269 	int i;
270 #else
271 /*
272  * Get the frequency and scale factor as early as possible so that they can be
273  * used for boot-time tracing.
274  */
275 static void
276 dtrace_gethrtime_init_early(void *arg)
277 {
278 	uint64_t tsc_f;
279 #endif
280 
281 	/*
282 	 * Get TSC frequency known at this moment.
283 	 * This should be constant if TSC is invariant.
284 	 * Otherwise tick->time conversion will be inaccurate, but
285 	 * will preserve monotonic property of TSC.
286 	 */
287 	tsc_f = atomic_load_acq_64(&tsc_freq);
288 
289 	/*
290 	 * The following line checks that nsec_scale calculated below
291 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
292 	 * another 32-bit integer without overflowing 64-bit.
293 	 * Thus minimum supported TSC frequency is 62.5MHz.
294 	 */
295 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
296 	    ("TSC frequency is too low"));
297 
298 	/*
299 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
300 	 * as possible.
301 	 * 2^28 factor was chosen quite arbitrarily from practical
302 	 * considerations:
303 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
304 	 * - it provides quite good precision (e < 0.01%) up to THz
305 	 *   (terahertz) values;
306 	 */
307 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
308 #ifndef EARLY_AP_STARTUP
309 }
310 SYSINIT(dtrace_gethrtime_init_early, SI_SUB_CPU, SI_ORDER_ANY,
311     dtrace_gethrtime_init_early, NULL);
312 
313 static void
314 dtrace_gethrtime_init(void *arg)
315 {
316 	struct pcpu *pc;
317 	cpuset_t map;
318 	int i;
319 #endif
320 
321 	/* The current CPU is the reference one. */
322 	sched_pin();
323 	tsc_skew[curcpu] = 0;
324 	CPU_FOREACH(i) {
325 		if (i == curcpu)
326 			continue;
327 
328 		pc = pcpu_find(i);
329 		CPU_SETOF(PCPU_GET(cpuid), &map);
330 		CPU_SET(pc->pc_cpuid, &map);
331 
332 		smp_rendezvous_cpus(map, NULL,
333 		    dtrace_gethrtime_init_cpu,
334 		    smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
335 
336 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
337 	}
338 	sched_unpin();
339 }
340 #ifdef EARLY_AP_STARTUP
341 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
342     dtrace_gethrtime_init, NULL);
343 #else
344 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init,
345     NULL);
346 #endif
347 
348 /*
349  * DTrace needs a high resolution time function which can
350  * be called from a probe context and guaranteed not to have
351  * instrumented with probes itself.
352  *
353  * Returns nanoseconds since boot.
354  */
355 uint64_t
356 dtrace_gethrtime(void)
357 {
358 	uint64_t tsc;
359 	uint32_t lo, hi;
360 	register_t rflags;
361 
362 	/*
363 	 * We split TSC value into lower and higher 32-bit halves and separately
364 	 * scale them with nsec_scale, then we scale them down by 2^28
365 	 * (see nsec_scale calculations) taking into account 32-bit shift of
366 	 * the higher half and finally add.
367 	 */
368 	rflags = intr_disable();
369 	tsc = rdtsc() - tsc_skew[curcpu];
370 	intr_restore(rflags);
371 
372 	lo = tsc;
373 	hi = tsc >> 32;
374 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
375 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
376 }
377 
378 uint64_t
379 dtrace_gethrestime(void)
380 {
381 	struct timespec current_time;
382 
383 	dtrace_getnanotime(&current_time);
384 
385 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
386 }
387 
388 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
389 int
390 dtrace_trap(struct trapframe *frame, u_int type)
391 {
392 	uint16_t nofault;
393 
394 	/*
395 	 * A trap can occur while DTrace executes a probe. Before
396 	 * executing the probe, DTrace blocks re-scheduling and sets
397 	 * a flag in its per-cpu flags to indicate that it doesn't
398 	 * want to fault. On returning from the probe, the no-fault
399 	 * flag is cleared and finally re-scheduling is enabled.
400 	 *
401 	 * Check if DTrace has enabled 'no-fault' mode:
402 	 */
403 	sched_pin();
404 	nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
405 	sched_unpin();
406 	if (nofault) {
407 		KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
408 
409 		/*
410 		 * There are only a couple of trap types that are expected.
411 		 * All the rest will be handled in the usual way.
412 		 */
413 		switch (type) {
414 		/* General protection fault. */
415 		case T_PROTFLT:
416 			/* Flag an illegal operation. */
417 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
418 
419 			/*
420 			 * Offset the instruction pointer to the instruction
421 			 * following the one causing the fault.
422 			 */
423 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
424 			return (1);
425 		/* Page fault. */
426 		case T_PAGEFLT:
427 			/* Flag a bad address. */
428 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
429 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
430 
431 			/*
432 			 * Offset the instruction pointer to the instruction
433 			 * following the one causing the fault.
434 			 */
435 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
436 			return (1);
437 		default:
438 			/* Handle all other traps in the usual way. */
439 			break;
440 		}
441 	}
442 
443 	/* Handle the trap in the usual way. */
444 	return (0);
445 }
446