1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 * 22 * $FreeBSD$ 23 * 24 */ 25 /* 26 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/kmem.h> 40 #include <sys/smp.h> 41 #include <sys/dtrace_impl.h> 42 #include <sys/dtrace_bsd.h> 43 #include <machine/clock.h> 44 #include <machine/frame.h> 45 #include <vm/pmap.h> 46 47 extern uintptr_t dtrace_in_probe_addr; 48 extern int dtrace_in_probe; 49 50 extern void dtrace_getnanotime(struct timespec *tsp); 51 52 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t); 53 54 typedef struct dtrace_invop_hdlr { 55 int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t); 56 struct dtrace_invop_hdlr *dtih_next; 57 } dtrace_invop_hdlr_t; 58 59 dtrace_invop_hdlr_t *dtrace_invop_hdlr; 60 61 int 62 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 63 { 64 dtrace_invop_hdlr_t *hdlr; 65 int rval; 66 67 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) 68 if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0) 69 return (rval); 70 71 return (0); 72 } 73 74 void 75 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 76 { 77 dtrace_invop_hdlr_t *hdlr; 78 79 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); 80 hdlr->dtih_func = func; 81 hdlr->dtih_next = dtrace_invop_hdlr; 82 dtrace_invop_hdlr = hdlr; 83 } 84 85 void 86 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t)) 87 { 88 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; 89 90 for (;;) { 91 if (hdlr == NULL) 92 panic("attempt to remove non-existent invop handler"); 93 94 if (hdlr->dtih_func == func) 95 break; 96 97 prev = hdlr; 98 hdlr = hdlr->dtih_next; 99 } 100 101 if (prev == NULL) { 102 ASSERT(dtrace_invop_hdlr == hdlr); 103 dtrace_invop_hdlr = hdlr->dtih_next; 104 } else { 105 ASSERT(dtrace_invop_hdlr != hdlr); 106 prev->dtih_next = hdlr->dtih_next; 107 } 108 109 kmem_free(hdlr, 0); 110 } 111 112 /*ARGSUSED*/ 113 void 114 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) 115 { 116 (*func)(0, (uintptr_t) addr_PTmap); 117 } 118 119 void 120 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 121 { 122 cpuset_t cpus; 123 124 if (cpu == DTRACE_CPUALL) 125 cpus = all_cpus; 126 else 127 CPU_SETOF(cpu, &cpus); 128 129 smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func, 130 smp_no_rendevous_barrier, arg); 131 } 132 133 static void 134 dtrace_sync_func(void) 135 { 136 } 137 138 void 139 dtrace_sync(void) 140 { 141 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 142 } 143 144 #ifdef notyet 145 int (*dtrace_pid_probe_ptr)(struct regs *); 146 int (*dtrace_return_probe_ptr)(struct regs *); 147 148 void 149 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid) 150 { 151 krwlock_t *rwp; 152 proc_t *p = curproc; 153 extern void trap(struct regs *, caddr_t, processorid_t); 154 155 if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) { 156 if (curthread->t_cred != p->p_cred) { 157 cred_t *oldcred = curthread->t_cred; 158 /* 159 * DTrace accesses t_cred in probe context. t_cred 160 * must always be either NULL, or point to a valid, 161 * allocated cred structure. 162 */ 163 curthread->t_cred = crgetcred(); 164 crfree(oldcred); 165 } 166 } 167 168 if (rp->r_trapno == T_DTRACE_RET) { 169 uint8_t step = curthread->t_dtrace_step; 170 uint8_t ret = curthread->t_dtrace_ret; 171 uintptr_t npc = curthread->t_dtrace_npc; 172 173 if (curthread->t_dtrace_ast) { 174 aston(curthread); 175 curthread->t_sig_check = 1; 176 } 177 178 /* 179 * Clear all user tracing flags. 180 */ 181 curthread->t_dtrace_ft = 0; 182 183 /* 184 * If we weren't expecting to take a return probe trap, kill 185 * the process as though it had just executed an unassigned 186 * trap instruction. 187 */ 188 if (step == 0) { 189 tsignal(curthread, SIGILL); 190 return; 191 } 192 193 /* 194 * If we hit this trap unrelated to a return probe, we're 195 * just here to reset the AST flag since we deferred a signal 196 * until after we logically single-stepped the instruction we 197 * copied out. 198 */ 199 if (ret == 0) { 200 rp->r_pc = npc; 201 return; 202 } 203 204 /* 205 * We need to wait until after we've called the 206 * dtrace_return_probe_ptr function pointer to set %pc. 207 */ 208 rwp = &CPU->cpu_ft_lock; 209 rw_enter(rwp, RW_READER); 210 if (dtrace_return_probe_ptr != NULL) 211 (void) (*dtrace_return_probe_ptr)(rp); 212 rw_exit(rwp); 213 rp->r_pc = npc; 214 215 } else if (rp->r_trapno == T_BPTFLT) { 216 uint8_t instr; 217 rwp = &CPU->cpu_ft_lock; 218 219 /* 220 * The DTrace fasttrap provider uses the breakpoint trap 221 * (int 3). We let DTrace take the first crack at handling 222 * this trap; if it's not a probe that DTrace knowns about, 223 * we call into the trap() routine to handle it like a 224 * breakpoint placed by a conventional debugger. 225 */ 226 rw_enter(rwp, RW_READER); 227 if (dtrace_pid_probe_ptr != NULL && 228 (*dtrace_pid_probe_ptr)(rp) == 0) { 229 rw_exit(rwp); 230 return; 231 } 232 rw_exit(rwp); 233 234 /* 235 * If the instruction that caused the breakpoint trap doesn't 236 * look like an int 3 anymore, it may be that this tracepoint 237 * was removed just after the user thread executed it. In 238 * that case, return to user land to retry the instuction. 239 */ 240 if (fuword8((void *)(rp->r_pc - 1), &instr) == 0 && 241 instr != FASTTRAP_INSTR) { 242 rp->r_pc--; 243 return; 244 } 245 246 trap(rp, addr, cpuid); 247 248 } else { 249 trap(rp, addr, cpuid); 250 } 251 } 252 253 void 254 dtrace_safe_synchronous_signal(void) 255 { 256 kthread_t *t = curthread; 257 struct regs *rp = lwptoregs(ttolwp(t)); 258 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 259 260 ASSERT(t->t_dtrace_on); 261 262 /* 263 * If we're not in the range of scratch addresses, we're not actually 264 * tracing user instructions so turn off the flags. If the instruction 265 * we copied out caused a synchonous trap, reset the pc back to its 266 * original value and turn off the flags. 267 */ 268 if (rp->r_pc < t->t_dtrace_scrpc || 269 rp->r_pc > t->t_dtrace_astpc + isz) { 270 t->t_dtrace_ft = 0; 271 } else if (rp->r_pc == t->t_dtrace_scrpc || 272 rp->r_pc == t->t_dtrace_astpc) { 273 rp->r_pc = t->t_dtrace_pc; 274 t->t_dtrace_ft = 0; 275 } 276 } 277 278 int 279 dtrace_safe_defer_signal(void) 280 { 281 kthread_t *t = curthread; 282 struct regs *rp = lwptoregs(ttolwp(t)); 283 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; 284 285 ASSERT(t->t_dtrace_on); 286 287 /* 288 * If we're not in the range of scratch addresses, we're not actually 289 * tracing user instructions so turn off the flags. 290 */ 291 if (rp->r_pc < t->t_dtrace_scrpc || 292 rp->r_pc > t->t_dtrace_astpc + isz) { 293 t->t_dtrace_ft = 0; 294 return (0); 295 } 296 297 /* 298 * If we have executed the original instruction, but we have performed 299 * neither the jmp back to t->t_dtrace_npc nor the clean up of any 300 * registers used to emulate %rip-relative instructions in 64-bit mode, 301 * we'll save ourselves some effort by doing that here and taking the 302 * signal right away. We detect this condition by seeing if the program 303 * counter is the range [scrpc + isz, astpc). 304 */ 305 if (rp->r_pc >= t->t_dtrace_scrpc + isz && 306 rp->r_pc < t->t_dtrace_astpc) { 307 #ifdef __amd64 308 /* 309 * If there is a scratch register and we're on the 310 * instruction immediately after the modified instruction, 311 * restore the value of that scratch register. 312 */ 313 if (t->t_dtrace_reg != 0 && 314 rp->r_pc == t->t_dtrace_scrpc + isz) { 315 switch (t->t_dtrace_reg) { 316 case REG_RAX: 317 rp->r_rax = t->t_dtrace_regv; 318 break; 319 case REG_RCX: 320 rp->r_rcx = t->t_dtrace_regv; 321 break; 322 case REG_R8: 323 rp->r_r8 = t->t_dtrace_regv; 324 break; 325 case REG_R9: 326 rp->r_r9 = t->t_dtrace_regv; 327 break; 328 } 329 } 330 #endif 331 rp->r_pc = t->t_dtrace_npc; 332 t->t_dtrace_ft = 0; 333 return (0); 334 } 335 336 /* 337 * Otherwise, make sure we'll return to the kernel after executing 338 * the copied out instruction and defer the signal. 339 */ 340 if (!t->t_dtrace_step) { 341 ASSERT(rp->r_pc < t->t_dtrace_astpc); 342 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; 343 t->t_dtrace_step = 1; 344 } 345 346 t->t_dtrace_ast = 1; 347 348 return (1); 349 } 350 #endif 351 352 static int64_t tgt_cpu_tsc; 353 static int64_t hst_cpu_tsc; 354 static int64_t tsc_skew[MAXCPU]; 355 static uint64_t nsec_scale; 356 357 /* See below for the explanation of this macro. */ 358 #define SCALE_SHIFT 28 359 360 static void 361 dtrace_gethrtime_init_cpu(void *arg) 362 { 363 uintptr_t cpu = (uintptr_t) arg; 364 365 if (cpu == curcpu) 366 tgt_cpu_tsc = rdtsc(); 367 else 368 hst_cpu_tsc = rdtsc(); 369 } 370 371 static void 372 dtrace_gethrtime_init(void *arg) 373 { 374 struct pcpu *pc; 375 uint64_t tsc_f; 376 cpuset_t map; 377 int i; 378 379 /* 380 * Get TSC frequency known at this moment. 381 * This should be constant if TSC is invariant. 382 * Otherwise tick->time conversion will be inaccurate, but 383 * will preserve monotonic property of TSC. 384 */ 385 tsc_f = atomic_load_acq_64(&tsc_freq); 386 387 /* 388 * The following line checks that nsec_scale calculated below 389 * doesn't overflow 32-bit unsigned integer, so that it can multiply 390 * another 32-bit integer without overflowing 64-bit. 391 * Thus minimum supported TSC frequency is 62.5MHz. 392 */ 393 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); 394 395 /* 396 * We scale up NANOSEC/tsc_f ratio to preserve as much precision 397 * as possible. 398 * 2^28 factor was chosen quite arbitrarily from practical 399 * considerations: 400 * - it supports TSC frequencies as low as 62.5MHz (see above); 401 * - it provides quite good precision (e < 0.01%) up to THz 402 * (terahertz) values; 403 */ 404 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; 405 406 /* The current CPU is the reference one. */ 407 sched_pin(); 408 tsc_skew[curcpu] = 0; 409 CPU_FOREACH(i) { 410 if (i == curcpu) 411 continue; 412 413 pc = pcpu_find(i); 414 CPU_SETOF(PCPU_GET(cpuid), &map); 415 CPU_SET(pc->pc_cpuid, &map); 416 417 smp_rendezvous_cpus(map, NULL, 418 dtrace_gethrtime_init_cpu, 419 smp_no_rendevous_barrier, (void *)(uintptr_t) i); 420 421 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; 422 } 423 sched_unpin(); 424 } 425 426 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); 427 428 /* 429 * DTrace needs a high resolution time function which can 430 * be called from a probe context and guaranteed not to have 431 * instrumented with probes itself. 432 * 433 * Returns nanoseconds since boot. 434 */ 435 uint64_t 436 dtrace_gethrtime() 437 { 438 uint64_t tsc; 439 uint32_t lo; 440 uint32_t hi; 441 442 /* 443 * We split TSC value into lower and higher 32-bit halves and separately 444 * scale them with nsec_scale, then we scale them down by 2^28 445 * (see nsec_scale calculations) taking into account 32-bit shift of 446 * the higher half and finally add. 447 */ 448 tsc = rdtsc() - tsc_skew[curcpu]; 449 lo = tsc; 450 hi = tsc >> 32; 451 return (((lo * nsec_scale) >> SCALE_SHIFT) + 452 ((hi * nsec_scale) << (32 - SCALE_SHIFT))); 453 } 454 455 uint64_t 456 dtrace_gethrestime(void) 457 { 458 struct timespec current_time; 459 460 dtrace_getnanotime(¤t_time); 461 462 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); 463 } 464 465 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */ 466 int 467 dtrace_trap(struct trapframe *frame) 468 { 469 /* 470 * A trap can occur while DTrace executes a probe. Before 471 * executing the probe, DTrace blocks re-scheduling and sets 472 * a flag in its per-cpu flags to indicate that it doesn't 473 * want to fault. On returning from the probe, the no-fault 474 * flag is cleared and finally re-scheduling is enabled. 475 * 476 * Check if DTrace has enabled 'no-fault' mode: 477 */ 478 if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) { 479 /* 480 * There are only a couple of trap types that are expected. 481 * All the rest will be handled in the usual way. 482 */ 483 switch (frame->tf_trapno) { 484 /* General protection fault. */ 485 case T_PROTFLT: 486 /* Flag an illegal operation. */ 487 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 488 489 /* 490 * Offset the instruction pointer to the instruction 491 * following the one causing the fault. 492 */ 493 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 494 return (1); 495 /* Page fault. */ 496 case T_PAGEFLT: 497 /* Flag a bad address. */ 498 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; 499 cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; 500 501 /* 502 * Offset the instruction pointer to the instruction 503 * following the one causing the fault. 504 */ 505 frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip); 506 return (1); 507 default: 508 /* Handle all other traps in the usual way. */ 509 break; 510 } 511 } 512 513 /* Handle the trap in the usual way. */ 514 return (0); 515 } 516