xref: /freebsd/sys/cddl/dev/dtrace/amd64/dtrace_subr.c (revision 361e428888e630eb708c72cf31579a25ba5d4f03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  *
22  * $FreeBSD$
23  *
24  */
25 /*
26  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 /*
31  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/kmem.h>
40 #include <sys/smp.h>
41 #include <sys/dtrace_impl.h>
42 #include <sys/dtrace_bsd.h>
43 #include <machine/clock.h>
44 #include <machine/frame.h>
45 #include <vm/pmap.h>
46 
47 extern uintptr_t 	dtrace_in_probe_addr;
48 extern int		dtrace_in_probe;
49 
50 extern void dtrace_getnanotime(struct timespec *tsp);
51 
52 int dtrace_invop(uintptr_t, uintptr_t *, uintptr_t);
53 
54 typedef struct dtrace_invop_hdlr {
55 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
56 	struct dtrace_invop_hdlr *dtih_next;
57 } dtrace_invop_hdlr_t;
58 
59 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
60 
61 int
62 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
63 {
64 	dtrace_invop_hdlr_t *hdlr;
65 	int rval;
66 
67 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
68 		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
69 			return (rval);
70 
71 	return (0);
72 }
73 
74 void
75 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
76 {
77 	dtrace_invop_hdlr_t *hdlr;
78 
79 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
80 	hdlr->dtih_func = func;
81 	hdlr->dtih_next = dtrace_invop_hdlr;
82 	dtrace_invop_hdlr = hdlr;
83 }
84 
85 void
86 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
87 {
88 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
89 
90 	for (;;) {
91 		if (hdlr == NULL)
92 			panic("attempt to remove non-existent invop handler");
93 
94 		if (hdlr->dtih_func == func)
95 			break;
96 
97 		prev = hdlr;
98 		hdlr = hdlr->dtih_next;
99 	}
100 
101 	if (prev == NULL) {
102 		ASSERT(dtrace_invop_hdlr == hdlr);
103 		dtrace_invop_hdlr = hdlr->dtih_next;
104 	} else {
105 		ASSERT(dtrace_invop_hdlr != hdlr);
106 		prev->dtih_next = hdlr->dtih_next;
107 	}
108 
109 	kmem_free(hdlr, 0);
110 }
111 
112 /*ARGSUSED*/
113 void
114 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
115 {
116 	(*func)(0, (uintptr_t) addr_PTmap);
117 }
118 
119 void
120 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
121 {
122 	cpuset_t cpus;
123 
124 	if (cpu == DTRACE_CPUALL)
125 		cpus = all_cpus;
126 	else
127 		CPU_SETOF(cpu, &cpus);
128 
129 	smp_rendezvous_cpus(cpus, smp_no_rendevous_barrier, func,
130 	    smp_no_rendevous_barrier, arg);
131 }
132 
133 static void
134 dtrace_sync_func(void)
135 {
136 }
137 
138 void
139 dtrace_sync(void)
140 {
141         dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
142 }
143 
144 #ifdef notyet
145 void
146 dtrace_safe_synchronous_signal(void)
147 {
148 	kthread_t *t = curthread;
149 	struct regs *rp = lwptoregs(ttolwp(t));
150 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
151 
152 	ASSERT(t->t_dtrace_on);
153 
154 	/*
155 	 * If we're not in the range of scratch addresses, we're not actually
156 	 * tracing user instructions so turn off the flags. If the instruction
157 	 * we copied out caused a synchonous trap, reset the pc back to its
158 	 * original value and turn off the flags.
159 	 */
160 	if (rp->r_pc < t->t_dtrace_scrpc ||
161 	    rp->r_pc > t->t_dtrace_astpc + isz) {
162 		t->t_dtrace_ft = 0;
163 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
164 	    rp->r_pc == t->t_dtrace_astpc) {
165 		rp->r_pc = t->t_dtrace_pc;
166 		t->t_dtrace_ft = 0;
167 	}
168 }
169 
170 int
171 dtrace_safe_defer_signal(void)
172 {
173 	kthread_t *t = curthread;
174 	struct regs *rp = lwptoregs(ttolwp(t));
175 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
176 
177 	ASSERT(t->t_dtrace_on);
178 
179 	/*
180 	 * If we're not in the range of scratch addresses, we're not actually
181 	 * tracing user instructions so turn off the flags.
182 	 */
183 	if (rp->r_pc < t->t_dtrace_scrpc ||
184 	    rp->r_pc > t->t_dtrace_astpc + isz) {
185 		t->t_dtrace_ft = 0;
186 		return (0);
187 	}
188 
189 	/*
190 	 * If we have executed the original instruction, but we have performed
191 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
192 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
193 	 * we'll save ourselves some effort by doing that here and taking the
194 	 * signal right away.  We detect this condition by seeing if the program
195 	 * counter is the range [scrpc + isz, astpc).
196 	 */
197 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
198 	    rp->r_pc < t->t_dtrace_astpc) {
199 #ifdef __amd64
200 		/*
201 		 * If there is a scratch register and we're on the
202 		 * instruction immediately after the modified instruction,
203 		 * restore the value of that scratch register.
204 		 */
205 		if (t->t_dtrace_reg != 0 &&
206 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
207 			switch (t->t_dtrace_reg) {
208 			case REG_RAX:
209 				rp->r_rax = t->t_dtrace_regv;
210 				break;
211 			case REG_RCX:
212 				rp->r_rcx = t->t_dtrace_regv;
213 				break;
214 			case REG_R8:
215 				rp->r_r8 = t->t_dtrace_regv;
216 				break;
217 			case REG_R9:
218 				rp->r_r9 = t->t_dtrace_regv;
219 				break;
220 			}
221 		}
222 #endif
223 		rp->r_pc = t->t_dtrace_npc;
224 		t->t_dtrace_ft = 0;
225 		return (0);
226 	}
227 
228 	/*
229 	 * Otherwise, make sure we'll return to the kernel after executing
230 	 * the copied out instruction and defer the signal.
231 	 */
232 	if (!t->t_dtrace_step) {
233 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
234 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
235 		t->t_dtrace_step = 1;
236 	}
237 
238 	t->t_dtrace_ast = 1;
239 
240 	return (1);
241 }
242 #endif
243 
244 static int64_t	tgt_cpu_tsc;
245 static int64_t	hst_cpu_tsc;
246 static int64_t	tsc_skew[MAXCPU];
247 static uint64_t	nsec_scale;
248 
249 /* See below for the explanation of this macro. */
250 #define SCALE_SHIFT	28
251 
252 static void
253 dtrace_gethrtime_init_cpu(void *arg)
254 {
255 	uintptr_t cpu = (uintptr_t) arg;
256 
257 	if (cpu == curcpu)
258 		tgt_cpu_tsc = rdtsc();
259 	else
260 		hst_cpu_tsc = rdtsc();
261 }
262 
263 static void
264 dtrace_gethrtime_init(void *arg)
265 {
266 	struct pcpu *pc;
267 	uint64_t tsc_f;
268 	cpuset_t map;
269 	int i;
270 
271 	/*
272 	 * Get TSC frequency known at this moment.
273 	 * This should be constant if TSC is invariant.
274 	 * Otherwise tick->time conversion will be inaccurate, but
275 	 * will preserve monotonic property of TSC.
276 	 */
277 	tsc_f = atomic_load_acq_64(&tsc_freq);
278 
279 	/*
280 	 * The following line checks that nsec_scale calculated below
281 	 * doesn't overflow 32-bit unsigned integer, so that it can multiply
282 	 * another 32-bit integer without overflowing 64-bit.
283 	 * Thus minimum supported TSC frequency is 62.5MHz.
284 	 */
285 	KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low"));
286 
287 	/*
288 	 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
289 	 * as possible.
290 	 * 2^28 factor was chosen quite arbitrarily from practical
291 	 * considerations:
292 	 * - it supports TSC frequencies as low as 62.5MHz (see above);
293 	 * - it provides quite good precision (e < 0.01%) up to THz
294 	 *   (terahertz) values;
295 	 */
296 	nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
297 
298 	/* The current CPU is the reference one. */
299 	sched_pin();
300 	tsc_skew[curcpu] = 0;
301 	CPU_FOREACH(i) {
302 		if (i == curcpu)
303 			continue;
304 
305 		pc = pcpu_find(i);
306 		CPU_SETOF(PCPU_GET(cpuid), &map);
307 		CPU_SET(pc->pc_cpuid, &map);
308 
309 		smp_rendezvous_cpus(map, NULL,
310 		    dtrace_gethrtime_init_cpu,
311 		    smp_no_rendevous_barrier, (void *)(uintptr_t) i);
312 
313 		tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
314 	}
315 	sched_unpin();
316 }
317 
318 SYSINIT(dtrace_gethrtime_init, SI_SUB_SMP, SI_ORDER_ANY, dtrace_gethrtime_init, NULL);
319 
320 /*
321  * DTrace needs a high resolution time function which can
322  * be called from a probe context and guaranteed not to have
323  * instrumented with probes itself.
324  *
325  * Returns nanoseconds since boot.
326  */
327 uint64_t
328 dtrace_gethrtime()
329 {
330 	uint64_t tsc;
331 	uint32_t lo;
332 	uint32_t hi;
333 
334 	/*
335 	 * We split TSC value into lower and higher 32-bit halves and separately
336 	 * scale them with nsec_scale, then we scale them down by 2^28
337 	 * (see nsec_scale calculations) taking into account 32-bit shift of
338 	 * the higher half and finally add.
339 	 */
340 	tsc = rdtsc() - tsc_skew[curcpu];
341 	lo = tsc;
342 	hi = tsc >> 32;
343 	return (((lo * nsec_scale) >> SCALE_SHIFT) +
344 	    ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
345 }
346 
347 uint64_t
348 dtrace_gethrestime(void)
349 {
350 	struct timespec current_time;
351 
352 	dtrace_getnanotime(&current_time);
353 
354 	return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
355 }
356 
357 /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */
358 int
359 dtrace_trap(struct trapframe *frame, u_int type)
360 {
361 	/*
362 	 * A trap can occur while DTrace executes a probe. Before
363 	 * executing the probe, DTrace blocks re-scheduling and sets
364 	 * a flag in its per-cpu flags to indicate that it doesn't
365 	 * want to fault. On returning from the probe, the no-fault
366 	 * flag is cleared and finally re-scheduling is enabled.
367 	 *
368 	 * Check if DTrace has enabled 'no-fault' mode:
369 	 */
370 	if ((cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT) != 0) {
371 		/*
372 		 * There are only a couple of trap types that are expected.
373 		 * All the rest will be handled in the usual way.
374 		 */
375 		switch (type) {
376 		/* General protection fault. */
377 		case T_PROTFLT:
378 			/* Flag an illegal operation. */
379 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
380 
381 			/*
382 			 * Offset the instruction pointer to the instruction
383 			 * following the one causing the fault.
384 			 */
385 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
386 			return (1);
387 		/* Page fault. */
388 		case T_PAGEFLT:
389 			/* Flag a bad address. */
390 			cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
391 			cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr;
392 
393 			/*
394 			 * Offset the instruction pointer to the instruction
395 			 * following the one causing the fault.
396 			 */
397 			frame->tf_rip += dtrace_instr_size((u_char *) frame->tf_rip);
398 			return (1);
399 		default:
400 			/* Handle all other traps in the usual way. */
401 			break;
402 		}
403 	}
404 
405 	/* Handle the trap in the usual way. */
406 	return (0);
407 }
408