xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  *
23  * $FreeBSD$
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #ifdef illumos
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 #endif
34 
35 #include <sys/fasttrap_isa.h>
36 #include <sys/fasttrap_impl.h>
37 #include <sys/dtrace.h>
38 #include <sys/dtrace_impl.h>
39 #include <sys/cmn_err.h>
40 #ifdef illumos
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/segments.h>
44 #include <sys/x86_archext.h>
45 #else
46 #include <cddl/dev/dtrace/dtrace_cddl.h>
47 #include <sys/types.h>
48 #include <sys/proc.h>
49 #include <sys/rmlock.h>
50 #include <sys/dtrace_bsd.h>
51 #include <cddl/dev/dtrace/x86/regset.h>
52 #include <machine/segments.h>
53 #include <machine/reg.h>
54 #include <machine/pcb.h>
55 #endif
56 #include <sys/sysmacros.h>
57 #ifdef illumos
58 #include <sys/trap.h>
59 #include <sys/archsystm.h>
60 #else
61 #include <sys/ptrace.h>
62 
63 static int
64 uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
65 {
66 	ssize_t n;
67 
68 	PHOLD(p);
69 	n = proc_readmem(curthread, p, uaddr, kaddr, len);
70 	PRELE(p);
71 	if (n != len)
72 		return (ENOMEM);
73 	return (0);
74 }
75 
76 static int
77 uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
78 {
79 	ssize_t n;
80 
81 	PHOLD(p);
82 	n = proc_writemem(curthread, p, uaddr, kaddr, len);
83 	PRELE(p);
84 	if (n != len)
85 		return (ENOMEM);
86 	return (0);
87 }
88 
89 #endif /* illumos */
90 #ifdef __i386__
91 #define	r_rax	r_eax
92 #define	r_rbx	r_ebx
93 #define	r_rip	r_eip
94 #define	r_rflags r_eflags
95 #define	r_rsp	r_esp
96 #define	r_rbp	r_ebp
97 #endif
98 
99 /*
100  * Lossless User-Land Tracing on x86
101  * ---------------------------------
102  *
103  * The execution of most instructions is not dependent on the address; for
104  * these instructions it is sufficient to copy them into the user process's
105  * address space and execute them. To effectively single-step an instruction
106  * in user-land, we copy out the following sequence of instructions to scratch
107  * space in the user thread's ulwp_t structure.
108  *
109  * We then set the program counter (%eip or %rip) to point to this scratch
110  * space. Once execution resumes, the original instruction is executed and
111  * then control flow is redirected to what was originally the subsequent
112  * instruction. If the kernel attemps to deliver a signal while single-
113  * stepping, the signal is deferred and the program counter is moved into the
114  * second sequence of instructions. The second sequence ends in a trap into
115  * the kernel where the deferred signal is then properly handled and delivered.
116  *
117  * For instructions whose execute is position dependent, we perform simple
118  * emulation. These instructions are limited to control transfer
119  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
120  * of %rip-relative addressing that means that almost any instruction can be
121  * position dependent. For all the details on how we emulate generic
122  * instructions included %rip-relative instructions, see the code in
123  * fasttrap_pid_probe() below where we handle instructions of type
124  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
125  */
126 
127 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
128 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
129 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
130 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
131 
132 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
133 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
134 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
135 
136 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
137 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
138 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
139 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
140 #define	FASTTRAP_REX(w, r, x, b)	\
141 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
142 
143 /*
144  * Single-byte op-codes.
145  */
146 #define	FASTTRAP_PUSHL_EBP	0x55
147 
148 #define	FASTTRAP_JO		0x70
149 #define	FASTTRAP_JNO		0x71
150 #define	FASTTRAP_JB		0x72
151 #define	FASTTRAP_JAE		0x73
152 #define	FASTTRAP_JE		0x74
153 #define	FASTTRAP_JNE		0x75
154 #define	FASTTRAP_JBE		0x76
155 #define	FASTTRAP_JA		0x77
156 #define	FASTTRAP_JS		0x78
157 #define	FASTTRAP_JNS		0x79
158 #define	FASTTRAP_JP		0x7a
159 #define	FASTTRAP_JNP		0x7b
160 #define	FASTTRAP_JL		0x7c
161 #define	FASTTRAP_JGE		0x7d
162 #define	FASTTRAP_JLE		0x7e
163 #define	FASTTRAP_JG		0x7f
164 
165 #define	FASTTRAP_NOP		0x90
166 
167 #define	FASTTRAP_MOV_EAX	0xb8
168 #define	FASTTRAP_MOV_ECX	0xb9
169 
170 #define	FASTTRAP_RET16		0xc2
171 #define	FASTTRAP_RET		0xc3
172 
173 #define	FASTTRAP_LOOPNZ		0xe0
174 #define	FASTTRAP_LOOPZ		0xe1
175 #define	FASTTRAP_LOOP		0xe2
176 #define	FASTTRAP_JCXZ		0xe3
177 
178 #define	FASTTRAP_CALL		0xe8
179 #define	FASTTRAP_JMP32		0xe9
180 #define	FASTTRAP_JMP8		0xeb
181 
182 #define	FASTTRAP_INT3		0xcc
183 #define	FASTTRAP_INT		0xcd
184 
185 #define	FASTTRAP_2_BYTE_OP	0x0f
186 #define	FASTTRAP_GROUP5_OP	0xff
187 
188 /*
189  * Two-byte op-codes (second byte only).
190  */
191 #define	FASTTRAP_0F_JO		0x80
192 #define	FASTTRAP_0F_JNO		0x81
193 #define	FASTTRAP_0F_JB		0x82
194 #define	FASTTRAP_0F_JAE		0x83
195 #define	FASTTRAP_0F_JE		0x84
196 #define	FASTTRAP_0F_JNE		0x85
197 #define	FASTTRAP_0F_JBE		0x86
198 #define	FASTTRAP_0F_JA		0x87
199 #define	FASTTRAP_0F_JS		0x88
200 #define	FASTTRAP_0F_JNS		0x89
201 #define	FASTTRAP_0F_JP		0x8a
202 #define	FASTTRAP_0F_JNP		0x8b
203 #define	FASTTRAP_0F_JL		0x8c
204 #define	FASTTRAP_0F_JGE		0x8d
205 #define	FASTTRAP_0F_JLE		0x8e
206 #define	FASTTRAP_0F_JG		0x8f
207 
208 #define	FASTTRAP_EFLAGS_OF	0x800
209 #define	FASTTRAP_EFLAGS_DF	0x400
210 #define	FASTTRAP_EFLAGS_SF	0x080
211 #define	FASTTRAP_EFLAGS_ZF	0x040
212 #define	FASTTRAP_EFLAGS_AF	0x010
213 #define	FASTTRAP_EFLAGS_PF	0x004
214 #define	FASTTRAP_EFLAGS_CF	0x001
215 
216 /*
217  * Instruction prefixes.
218  */
219 #define	FASTTRAP_PREFIX_OPERAND	0x66
220 #define	FASTTRAP_PREFIX_ADDRESS	0x67
221 #define	FASTTRAP_PREFIX_CS	0x2E
222 #define	FASTTRAP_PREFIX_DS	0x3E
223 #define	FASTTRAP_PREFIX_ES	0x26
224 #define	FASTTRAP_PREFIX_FS	0x64
225 #define	FASTTRAP_PREFIX_GS	0x65
226 #define	FASTTRAP_PREFIX_SS	0x36
227 #define	FASTTRAP_PREFIX_LOCK	0xF0
228 #define	FASTTRAP_PREFIX_REP	0xF3
229 #define	FASTTRAP_PREFIX_REPNE	0xF2
230 
231 #define	FASTTRAP_NOREG	0xff
232 
233 /*
234  * Map between instruction register encodings and the kernel constants which
235  * correspond to indicies into struct regs.
236  */
237 #ifdef __amd64
238 static const uint8_t regmap[16] = {
239 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
240 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
241 };
242 #else
243 static const uint8_t regmap[8] = {
244 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
245 };
246 #endif
247 
248 static ulong_t fasttrap_getreg(struct reg *, uint_t);
249 
250 static uint64_t
251 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
252 {
253 	uint64_t value = 0;
254 	int shift = function_entry ? 1 : 0;
255 
256 #ifdef __amd64
257 	if (curproc->p_model == DATAMODEL_LP64) {
258 		uintptr_t *stack;
259 
260 		/*
261 		 * In 64-bit mode, the first six arguments are stored in
262 		 * registers.
263 		 */
264 		if (argno < 6)
265 			switch (argno) {
266 			case 0:
267 				return (rp->r_rdi);
268 			case 1:
269 				return (rp->r_rsi);
270 			case 2:
271 				return (rp->r_rdx);
272 			case 3:
273 				return (rp->r_rcx);
274 			case 4:
275 				return (rp->r_r8);
276 			case 5:
277 				return (rp->r_r9);
278 			}
279 
280 		stack = (uintptr_t *)rp->r_rsp;
281 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
282 		value = dtrace_fulword(&stack[argno - 6 + shift]);
283 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
284 	} else {
285 #endif
286 #ifdef __i386
287 		uint32_t *stack = (uint32_t *)rp->r_esp;
288 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
289 		value = dtrace_fuword32(&stack[argno + shift]);
290 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
291 #endif
292 #ifdef __amd64
293 	}
294 #endif
295 
296 	return (value);
297 }
298 
299 /*ARGSUSED*/
300 int
301 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
302     fasttrap_probe_type_t type)
303 {
304 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
305 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
306 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
307 	uint_t start = 0;
308 	int rmindex, size;
309 	uint8_t seg, rex = 0;
310 
311 	/*
312 	 * Read the instruction at the given address out of the process's
313 	 * address space. We don't have to worry about a debugger
314 	 * changing this instruction before we overwrite it with our trap
315 	 * instruction since P_PR_LOCK is set. Since instructions can span
316 	 * pages, we potentially read the instruction in two parts. If the
317 	 * second part fails, we just zero out that part of the instruction.
318 	 */
319 	if (uread(p, &instr[0], first, pc) != 0)
320 		return (-1);
321 	if (len > first &&
322 	    uread(p, &instr[first], len - first, pc + first) != 0) {
323 		bzero(&instr[first], len - first);
324 		len = first;
325 	}
326 
327 	/*
328 	 * If the disassembly fails, then we have a malformed instruction.
329 	 */
330 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
331 		return (-1);
332 
333 	/*
334 	 * Make sure the disassembler isn't completely broken.
335 	 */
336 	ASSERT(-1 <= rmindex && rmindex < size);
337 
338 	/*
339 	 * If the computed size is greater than the number of bytes read,
340 	 * then it was a malformed instruction possibly because it fell on a
341 	 * page boundary and the subsequent page was missing or because of
342 	 * some malicious user.
343 	 */
344 	if (size > len)
345 		return (-1);
346 
347 	tp->ftt_size = (uint8_t)size;
348 	tp->ftt_segment = FASTTRAP_SEG_NONE;
349 
350 	/*
351 	 * Find the start of the instruction's opcode by processing any
352 	 * legacy prefixes.
353 	 */
354 	for (;;) {
355 		seg = 0;
356 		switch (instr[start]) {
357 		case FASTTRAP_PREFIX_SS:
358 			seg++;
359 			/*FALLTHRU*/
360 		case FASTTRAP_PREFIX_GS:
361 			seg++;
362 			/*FALLTHRU*/
363 		case FASTTRAP_PREFIX_FS:
364 			seg++;
365 			/*FALLTHRU*/
366 		case FASTTRAP_PREFIX_ES:
367 			seg++;
368 			/*FALLTHRU*/
369 		case FASTTRAP_PREFIX_DS:
370 			seg++;
371 			/*FALLTHRU*/
372 		case FASTTRAP_PREFIX_CS:
373 			seg++;
374 			/*FALLTHRU*/
375 		case FASTTRAP_PREFIX_OPERAND:
376 		case FASTTRAP_PREFIX_ADDRESS:
377 		case FASTTRAP_PREFIX_LOCK:
378 		case FASTTRAP_PREFIX_REP:
379 		case FASTTRAP_PREFIX_REPNE:
380 			if (seg != 0) {
381 				/*
382 				 * It's illegal for an instruction to specify
383 				 * two segment prefixes -- give up on this
384 				 * illegal instruction.
385 				 */
386 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
387 					return (-1);
388 
389 				tp->ftt_segment = seg;
390 			}
391 			start++;
392 			continue;
393 		}
394 		break;
395 	}
396 
397 #ifdef __amd64
398 	/*
399 	 * Identify the REX prefix on 64-bit processes.
400 	 */
401 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
402 		rex = instr[start++];
403 #endif
404 
405 	/*
406 	 * Now that we're pretty sure that the instruction is okay, copy the
407 	 * valid part to the tracepoint.
408 	 */
409 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
410 
411 	tp->ftt_type = FASTTRAP_T_COMMON;
412 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
413 		switch (instr[start + 1]) {
414 		case FASTTRAP_0F_JO:
415 		case FASTTRAP_0F_JNO:
416 		case FASTTRAP_0F_JB:
417 		case FASTTRAP_0F_JAE:
418 		case FASTTRAP_0F_JE:
419 		case FASTTRAP_0F_JNE:
420 		case FASTTRAP_0F_JBE:
421 		case FASTTRAP_0F_JA:
422 		case FASTTRAP_0F_JS:
423 		case FASTTRAP_0F_JNS:
424 		case FASTTRAP_0F_JP:
425 		case FASTTRAP_0F_JNP:
426 		case FASTTRAP_0F_JL:
427 		case FASTTRAP_0F_JGE:
428 		case FASTTRAP_0F_JLE:
429 		case FASTTRAP_0F_JG:
430 			tp->ftt_type = FASTTRAP_T_JCC;
431 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
432 			tp->ftt_dest = pc + tp->ftt_size +
433 			    /* LINTED - alignment */
434 			    *(int32_t *)&instr[start + 2];
435 			break;
436 		}
437 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
438 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
439 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
440 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
441 
442 		if (reg == 2 || reg == 4) {
443 			uint_t i, sz;
444 
445 			if (reg == 2)
446 				tp->ftt_type = FASTTRAP_T_CALL;
447 			else
448 				tp->ftt_type = FASTTRAP_T_JMP;
449 
450 			if (mod == 3)
451 				tp->ftt_code = 2;
452 			else
453 				tp->ftt_code = 1;
454 
455 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
456 
457 			/*
458 			 * See AMD x86-64 Architecture Programmer's Manual
459 			 * Volume 3, Section 1.2.7, Table 1-12, and
460 			 * Appendix A.3.1, Table A-15.
461 			 */
462 			if (mod != 3 && rm == 4) {
463 				uint8_t sib = instr[start + 2];
464 				uint_t index = FASTTRAP_SIB_INDEX(sib);
465 				uint_t base = FASTTRAP_SIB_BASE(sib);
466 
467 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
468 
469 				tp->ftt_index = (index == 4) ?
470 				    FASTTRAP_NOREG :
471 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
472 				tp->ftt_base = (mod == 0 && base == 5) ?
473 				    FASTTRAP_NOREG :
474 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
475 
476 				i = 3;
477 				sz = mod == 1 ? 1 : 4;
478 			} else {
479 				/*
480 				 * In 64-bit mode, mod == 0 and r/m == 5
481 				 * denotes %rip-relative addressing; in 32-bit
482 				 * mode, the base register isn't used. In both
483 				 * modes, there is a 32-bit operand.
484 				 */
485 				if (mod == 0 && rm == 5) {
486 #ifdef __amd64
487 					if (p->p_model == DATAMODEL_LP64)
488 						tp->ftt_base = REG_RIP;
489 					else
490 #endif
491 						tp->ftt_base = FASTTRAP_NOREG;
492 					sz = 4;
493 				} else  {
494 					uint8_t base = rm |
495 					    (FASTTRAP_REX_B(rex) << 3);
496 
497 					tp->ftt_base = regmap[base];
498 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
499 				}
500 				tp->ftt_index = FASTTRAP_NOREG;
501 				i = 2;
502 			}
503 
504 			if (sz == 1) {
505 				tp->ftt_dest = *(int8_t *)&instr[start + i];
506 			} else if (sz == 4) {
507 				/* LINTED - alignment */
508 				tp->ftt_dest = *(int32_t *)&instr[start + i];
509 			} else {
510 				tp->ftt_dest = 0;
511 			}
512 		}
513 	} else {
514 		switch (instr[start]) {
515 		case FASTTRAP_RET:
516 			tp->ftt_type = FASTTRAP_T_RET;
517 			break;
518 
519 		case FASTTRAP_RET16:
520 			tp->ftt_type = FASTTRAP_T_RET16;
521 			/* LINTED - alignment */
522 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
523 			break;
524 
525 		case FASTTRAP_JO:
526 		case FASTTRAP_JNO:
527 		case FASTTRAP_JB:
528 		case FASTTRAP_JAE:
529 		case FASTTRAP_JE:
530 		case FASTTRAP_JNE:
531 		case FASTTRAP_JBE:
532 		case FASTTRAP_JA:
533 		case FASTTRAP_JS:
534 		case FASTTRAP_JNS:
535 		case FASTTRAP_JP:
536 		case FASTTRAP_JNP:
537 		case FASTTRAP_JL:
538 		case FASTTRAP_JGE:
539 		case FASTTRAP_JLE:
540 		case FASTTRAP_JG:
541 			tp->ftt_type = FASTTRAP_T_JCC;
542 			tp->ftt_code = instr[start];
543 			tp->ftt_dest = pc + tp->ftt_size +
544 			    (int8_t)instr[start + 1];
545 			break;
546 
547 		case FASTTRAP_LOOPNZ:
548 		case FASTTRAP_LOOPZ:
549 		case FASTTRAP_LOOP:
550 			tp->ftt_type = FASTTRAP_T_LOOP;
551 			tp->ftt_code = instr[start];
552 			tp->ftt_dest = pc + tp->ftt_size +
553 			    (int8_t)instr[start + 1];
554 			break;
555 
556 		case FASTTRAP_JCXZ:
557 			tp->ftt_type = FASTTRAP_T_JCXZ;
558 			tp->ftt_dest = pc + tp->ftt_size +
559 			    (int8_t)instr[start + 1];
560 			break;
561 
562 		case FASTTRAP_CALL:
563 			tp->ftt_type = FASTTRAP_T_CALL;
564 			tp->ftt_dest = pc + tp->ftt_size +
565 			    /* LINTED - alignment */
566 			    *(int32_t *)&instr[start + 1];
567 			tp->ftt_code = 0;
568 			break;
569 
570 		case FASTTRAP_JMP32:
571 			tp->ftt_type = FASTTRAP_T_JMP;
572 			tp->ftt_dest = pc + tp->ftt_size +
573 			    /* LINTED - alignment */
574 			    *(int32_t *)&instr[start + 1];
575 			break;
576 		case FASTTRAP_JMP8:
577 			tp->ftt_type = FASTTRAP_T_JMP;
578 			tp->ftt_dest = pc + tp->ftt_size +
579 			    (int8_t)instr[start + 1];
580 			break;
581 
582 		case FASTTRAP_PUSHL_EBP:
583 			if (start == 0)
584 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
585 			break;
586 
587 		case FASTTRAP_NOP:
588 #ifdef __amd64
589 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
590 
591 			/*
592 			 * On amd64 we have to be careful not to confuse a nop
593 			 * (actually xchgl %eax, %eax) with an instruction using
594 			 * the same opcode, but that does something different
595 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
596 			 */
597 			if (FASTTRAP_REX_B(rex) == 0)
598 #endif
599 				tp->ftt_type = FASTTRAP_T_NOP;
600 			break;
601 
602 		case FASTTRAP_INT3:
603 			/*
604 			 * The pid provider shares the int3 trap with debugger
605 			 * breakpoints so we can't instrument them.
606 			 */
607 			ASSERT(instr[start] == FASTTRAP_INSTR);
608 			return (-1);
609 
610 		case FASTTRAP_INT:
611 			/*
612 			 * Interrupts seem like they could be traced with
613 			 * no negative implications, but it's possible that
614 			 * a thread could be redirected by the trap handling
615 			 * code which would eventually return to the
616 			 * instruction after the interrupt. If the interrupt
617 			 * were in our scratch space, the subsequent
618 			 * instruction might be overwritten before we return.
619 			 * Accordingly we refuse to instrument any interrupt.
620 			 */
621 			return (-1);
622 		}
623 	}
624 
625 #ifdef __amd64
626 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
627 		/*
628 		 * If the process is 64-bit and the instruction type is still
629 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
630 		 * execute it -- we need to watch for %rip-relative
631 		 * addressing mode. See the portion of fasttrap_pid_probe()
632 		 * below where we handle tracepoints with type
633 		 * FASTTRAP_T_COMMON for how we emulate instructions that
634 		 * employ %rip-relative addressing.
635 		 */
636 		if (rmindex != -1) {
637 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
638 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
639 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
640 
641 			ASSERT(rmindex > start);
642 
643 			if (mod == 0 && rm == 5) {
644 				/*
645 				 * We need to be sure to avoid other
646 				 * registers used by this instruction. While
647 				 * the reg field may determine the op code
648 				 * rather than denoting a register, assuming
649 				 * that it denotes a register is always safe.
650 				 * We leave the REX field intact and use
651 				 * whatever value's there for simplicity.
652 				 */
653 				if (reg != 0) {
654 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
655 					    (FASTTRAP_RIP_X *
656 					    FASTTRAP_REX_B(rex));
657 					rm = 0;
658 				} else {
659 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
660 					    (FASTTRAP_RIP_X *
661 					    FASTTRAP_REX_B(rex));
662 					rm = 1;
663 				}
664 
665 				tp->ftt_modrm = tp->ftt_instr[rmindex];
666 				tp->ftt_instr[rmindex] =
667 				    FASTTRAP_MODRM(2, reg, rm);
668 			}
669 		}
670 	}
671 #endif
672 
673 	return (0);
674 }
675 
676 int
677 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
678 {
679 	fasttrap_instr_t instr = FASTTRAP_INSTR;
680 
681 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
682 		return (-1);
683 
684 	return (0);
685 }
686 
687 int
688 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
689 {
690 	uint8_t instr;
691 
692 	/*
693 	 * Distinguish between read or write failures and a changed
694 	 * instruction.
695 	 */
696 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
697 		return (0);
698 	if (instr != FASTTRAP_INSTR)
699 		return (0);
700 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
701 		return (-1);
702 
703 	return (0);
704 }
705 
706 #ifdef __amd64
707 static uintptr_t
708 fasttrap_fulword_noerr(const void *uaddr)
709 {
710 	uintptr_t ret;
711 
712 	if ((ret = fasttrap_fulword(uaddr)) != -1)
713 		return (ret);
714 
715 	return (0);
716 }
717 #endif
718 
719 #ifdef __i386__
720 static uint32_t
721 fasttrap_fuword32_noerr(const void *uaddr)
722 {
723 	uint32_t ret;
724 
725 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
726 		return (ret);
727 
728 	return (0);
729 }
730 #endif
731 
732 static void
733 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
734     uintptr_t new_pc)
735 {
736 	fasttrap_tracepoint_t *tp;
737 	fasttrap_bucket_t *bucket;
738 	fasttrap_id_t *id;
739 #ifdef illumos
740 	kmutex_t *pid_mtx;
741 
742 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
743 	mutex_enter(pid_mtx);
744 #else
745 	struct rm_priotracker tracker;
746 
747 	rm_rlock(&fasttrap_tp_lock, &tracker);
748 #endif
749 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
750 
751 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
752 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
753 		    tp->ftt_proc->ftpc_acount != 0)
754 			break;
755 	}
756 
757 	/*
758 	 * Don't sweat it if we can't find the tracepoint again; unlike
759 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
760 	 * is not essential to the correct execution of the process.
761 	 */
762 	if (tp == NULL) {
763 #ifdef illumos
764 		mutex_exit(pid_mtx);
765 #else
766 		rm_runlock(&fasttrap_tp_lock, &tracker);
767 #endif
768 		return;
769 	}
770 
771 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
772 		/*
773 		 * If there's a branch that could act as a return site, we
774 		 * need to trace it, and check here if the program counter is
775 		 * external to the function.
776 		 */
777 		if (tp->ftt_type != FASTTRAP_T_RET &&
778 		    tp->ftt_type != FASTTRAP_T_RET16 &&
779 		    new_pc - id->fti_probe->ftp_faddr <
780 		    id->fti_probe->ftp_fsize)
781 			continue;
782 
783 		dtrace_probe(id->fti_probe->ftp_id,
784 		    pc - id->fti_probe->ftp_faddr,
785 		    rp->r_rax, rp->r_rbx, 0, 0);
786 	}
787 
788 #ifdef illumos
789 	mutex_exit(pid_mtx);
790 #else
791 	rm_runlock(&fasttrap_tp_lock, &tracker);
792 #endif
793 }
794 
795 static void
796 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
797 {
798 #ifdef illumos
799 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
800 
801 	sqp->sq_info.si_signo = SIGSEGV;
802 	sqp->sq_info.si_code = SEGV_MAPERR;
803 	sqp->sq_info.si_addr = (caddr_t)addr;
804 
805 	mutex_enter(&p->p_lock);
806 	sigaddqa(p, t, sqp);
807 	mutex_exit(&p->p_lock);
808 
809 	if (t != NULL)
810 		aston(t);
811 #else
812 	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
813 
814 	ksiginfo_init(ksi);
815 	ksi->ksi_signo = SIGSEGV;
816 	ksi->ksi_code = SEGV_MAPERR;
817 	ksi->ksi_addr = (caddr_t)addr;
818 	(void) tdksignal(t, SIGSEGV, ksi);
819 #endif
820 }
821 
822 #ifdef __amd64
823 static void
824 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
825     uintptr_t *argv)
826 {
827 	int i, x, cap = MIN(argc, probe->ftp_nargs);
828 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
829 
830 	for (i = 0; i < cap; i++) {
831 		x = probe->ftp_argmap[i];
832 
833 		if (x < 6)
834 			argv[i] = (&rp->r_rdi)[x];
835 		else
836 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
837 	}
838 
839 	for (; i < argc; i++) {
840 		argv[i] = 0;
841 	}
842 }
843 #endif
844 
845 #ifdef __i386__
846 static void
847 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
848     uint32_t *argv)
849 {
850 	int i, x, cap = MIN(argc, probe->ftp_nargs);
851 	uint32_t *stack = (uint32_t *)rp->r_rsp;
852 
853 	for (i = 0; i < cap; i++) {
854 		x = probe->ftp_argmap[i];
855 
856 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
857 	}
858 
859 	for (; i < argc; i++) {
860 		argv[i] = 0;
861 	}
862 }
863 #endif
864 
865 static int
866 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
867 {
868 	proc_t *p = curproc;
869 #ifdef __i386__
870 	struct segment_descriptor *desc;
871 #else
872 	struct user_segment_descriptor *desc;
873 #endif
874 	uint16_t sel = 0, ndx, type;
875 	uintptr_t limit;
876 
877 	switch (tp->ftt_segment) {
878 	case FASTTRAP_SEG_CS:
879 		sel = rp->r_cs;
880 		break;
881 	case FASTTRAP_SEG_DS:
882 		sel = rp->r_ds;
883 		break;
884 	case FASTTRAP_SEG_ES:
885 		sel = rp->r_es;
886 		break;
887 	case FASTTRAP_SEG_FS:
888 		sel = rp->r_fs;
889 		break;
890 	case FASTTRAP_SEG_GS:
891 		sel = rp->r_gs;
892 		break;
893 	case FASTTRAP_SEG_SS:
894 		sel = rp->r_ss;
895 		break;
896 	}
897 
898 	/*
899 	 * Make sure the given segment register specifies a user priority
900 	 * selector rather than a kernel selector.
901 	 */
902 	if (ISPL(sel) != SEL_UPL)
903 		return (-1);
904 
905 	ndx = IDXSEL(sel);
906 
907 	/*
908 	 * Check the bounds and grab the descriptor out of the specified
909 	 * descriptor table.
910 	 */
911 	if (ISLDT(sel)) {
912 #ifdef __i386__
913 		if (ndx > p->p_md.md_ldt->ldt_len)
914 			return (-1);
915 
916 		desc = (struct segment_descriptor *)
917 		    p->p_md.md_ldt[ndx].ldt_base;
918 #else
919 		if (ndx > max_ldt_segment)
920 			return (-1);
921 
922 		desc = (struct user_segment_descriptor *)
923 		    p->p_md.md_ldt[ndx].ldt_base;
924 #endif
925 
926 	} else {
927 		if (ndx >= NGDT)
928 			return (-1);
929 
930 #ifdef __i386__
931 		desc = &gdt[ndx].sd;
932 #else
933 		desc = &gdt[ndx];
934 #endif
935 	}
936 
937 	/*
938 	 * The descriptor must have user privilege level and it must be
939 	 * present in memory.
940 	 */
941 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
942 		return (-1);
943 
944 	type = desc->sd_type;
945 
946 	/*
947 	 * If the S bit in the type field is not set, this descriptor can
948 	 * only be used in system context.
949 	 */
950 	if ((type & 0x10) != 0x10)
951 		return (-1);
952 
953 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
954 
955 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
956 		/*
957 		 * The code/data bit and readable bit must both be set.
958 		 */
959 		if ((type & 0xa) != 0xa)
960 			return (-1);
961 
962 		if (*addr > limit)
963 			return (-1);
964 	} else {
965 		/*
966 		 * The code/data bit must be clear.
967 		 */
968 		if ((type & 0x8) != 0)
969 			return (-1);
970 
971 		/*
972 		 * If the expand-down bit is clear, we just check the limit as
973 		 * it would naturally be applied. Otherwise, we need to check
974 		 * that the address is the range [limit + 1 .. 0xffff] or
975 		 * [limit + 1 ... 0xffffffff] depending on if the default
976 		 * operand size bit is set.
977 		 */
978 		if ((type & 0x4) == 0) {
979 			if (*addr > limit)
980 				return (-1);
981 		} else if (desc->sd_def32) {
982 			if (*addr < limit + 1 || 0xffff < *addr)
983 				return (-1);
984 		} else {
985 			if (*addr < limit + 1 || 0xffffffff < *addr)
986 				return (-1);
987 		}
988 	}
989 
990 	*addr += USD_GETBASE(desc);
991 
992 	return (0);
993 }
994 
995 int
996 fasttrap_pid_probe(struct reg *rp)
997 {
998 	proc_t *p = curproc;
999 #ifndef illumos
1000 	struct rm_priotracker tracker;
1001 	proc_t *pp;
1002 #endif
1003 	uintptr_t pc = rp->r_rip - 1;
1004 	uintptr_t new_pc = 0;
1005 	fasttrap_bucket_t *bucket;
1006 #ifdef illumos
1007 	kmutex_t *pid_mtx;
1008 #endif
1009 	fasttrap_tracepoint_t *tp, tp_local;
1010 	pid_t pid;
1011 	dtrace_icookie_t cookie;
1012 	uint_t is_enabled = 0;
1013 
1014 	/*
1015 	 * It's possible that a user (in a veritable orgy of bad planning)
1016 	 * could redirect this thread's flow of control before it reached the
1017 	 * return probe fasttrap. In this case we need to kill the process
1018 	 * since it's in a unrecoverable state.
1019 	 */
1020 	if (curthread->t_dtrace_step) {
1021 		ASSERT(curthread->t_dtrace_on);
1022 		fasttrap_sigtrap(p, curthread, pc);
1023 		return (0);
1024 	}
1025 
1026 	/*
1027 	 * Clear all user tracing flags.
1028 	 */
1029 	curthread->t_dtrace_ft = 0;
1030 	curthread->t_dtrace_pc = 0;
1031 	curthread->t_dtrace_npc = 0;
1032 	curthread->t_dtrace_scrpc = 0;
1033 	curthread->t_dtrace_astpc = 0;
1034 #ifdef __amd64
1035 	curthread->t_dtrace_regv = 0;
1036 #endif
1037 
1038 	/*
1039 	 * Treat a child created by a call to vfork(2) as if it were its
1040 	 * parent. We know that there's only one thread of control in such a
1041 	 * process: this one.
1042 	 */
1043 #ifdef illumos
1044 	while (p->p_flag & SVFORK) {
1045 		p = p->p_parent;
1046 	}
1047 
1048 	pid = p->p_pid;
1049 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1050 	mutex_enter(pid_mtx);
1051 #else
1052 	pp = p;
1053 	sx_slock(&proctree_lock);
1054 	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1055 		pp = pp->p_pptr;
1056 	pid = pp->p_pid;
1057 	sx_sunlock(&proctree_lock);
1058 	pp = NULL;
1059 
1060 	rm_rlock(&fasttrap_tp_lock, &tracker);
1061 #endif
1062 
1063 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1064 
1065 	/*
1066 	 * Lookup the tracepoint that the process just hit.
1067 	 */
1068 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1069 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1070 		    tp->ftt_proc->ftpc_acount != 0)
1071 			break;
1072 	}
1073 
1074 	/*
1075 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1076 	 * been inserted without using the pid<pid> ioctl interface (see
1077 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1078 	 */
1079 	if (tp == NULL) {
1080 #ifdef illumos
1081 		mutex_exit(pid_mtx);
1082 #else
1083 		rm_runlock(&fasttrap_tp_lock, &tracker);
1084 #endif
1085 		return (-1);
1086 	}
1087 
1088 	/*
1089 	 * Set the program counter to the address of the traced instruction
1090 	 * so that it looks right in ustack() output.
1091 	 */
1092 	rp->r_rip = pc;
1093 
1094 	if (tp->ftt_ids != NULL) {
1095 		fasttrap_id_t *id;
1096 
1097 #ifdef __amd64
1098 		if (p->p_model == DATAMODEL_LP64) {
1099 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1100 				fasttrap_probe_t *probe = id->fti_probe;
1101 
1102 				if (id->fti_ptype == DTFTP_ENTRY) {
1103 					/*
1104 					 * We note that this was an entry
1105 					 * probe to help ustack() find the
1106 					 * first caller.
1107 					 */
1108 					cookie = dtrace_interrupt_disable();
1109 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1110 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1111 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1112 					    rp->r_r8);
1113 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1114 					dtrace_interrupt_enable(cookie);
1115 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1116 					/*
1117 					 * Note that in this case, we don't
1118 					 * call dtrace_probe() since it's only
1119 					 * an artificial probe meant to change
1120 					 * the flow of control so that it
1121 					 * encounters the true probe.
1122 					 */
1123 					is_enabled = 1;
1124 				} else if (probe->ftp_argmap == NULL) {
1125 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1126 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1127 					    rp->r_r8);
1128 				} else {
1129 					uintptr_t t[5];
1130 
1131 					fasttrap_usdt_args64(probe, rp,
1132 					    sizeof (t) / sizeof (t[0]), t);
1133 
1134 					dtrace_probe(probe->ftp_id, t[0], t[1],
1135 					    t[2], t[3], t[4]);
1136 				}
1137 			}
1138 		} else {
1139 #else /* __amd64 */
1140 			uintptr_t s0, s1, s2, s3, s4, s5;
1141 			uint32_t *stack = (uint32_t *)rp->r_esp;
1142 
1143 			/*
1144 			 * In 32-bit mode, all arguments are passed on the
1145 			 * stack. If this is a function entry probe, we need
1146 			 * to skip the first entry on the stack as it
1147 			 * represents the return address rather than a
1148 			 * parameter to the function.
1149 			 */
1150 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1151 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1152 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1153 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1154 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1155 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1156 
1157 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1158 				fasttrap_probe_t *probe = id->fti_probe;
1159 
1160 				if (id->fti_ptype == DTFTP_ENTRY) {
1161 					/*
1162 					 * We note that this was an entry
1163 					 * probe to help ustack() find the
1164 					 * first caller.
1165 					 */
1166 					cookie = dtrace_interrupt_disable();
1167 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1168 					dtrace_probe(probe->ftp_id, s1, s2,
1169 					    s3, s4, s5);
1170 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1171 					dtrace_interrupt_enable(cookie);
1172 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1173 					/*
1174 					 * Note that in this case, we don't
1175 					 * call dtrace_probe() since it's only
1176 					 * an artificial probe meant to change
1177 					 * the flow of control so that it
1178 					 * encounters the true probe.
1179 					 */
1180 					is_enabled = 1;
1181 				} else if (probe->ftp_argmap == NULL) {
1182 					dtrace_probe(probe->ftp_id, s0, s1,
1183 					    s2, s3, s4);
1184 				} else {
1185 					uint32_t t[5];
1186 
1187 					fasttrap_usdt_args32(probe, rp,
1188 					    sizeof (t) / sizeof (t[0]), t);
1189 
1190 					dtrace_probe(probe->ftp_id, t[0], t[1],
1191 					    t[2], t[3], t[4]);
1192 				}
1193 			}
1194 #endif /* __amd64 */
1195 #ifdef __amd64
1196 		}
1197 #endif
1198 	}
1199 
1200 	/*
1201 	 * We're about to do a bunch of work so we cache a local copy of
1202 	 * the tracepoint to emulate the instruction, and then find the
1203 	 * tracepoint again later if we need to light up any return probes.
1204 	 */
1205 	tp_local = *tp;
1206 #ifdef illumos
1207 	mutex_exit(pid_mtx);
1208 #else
1209 	rm_runlock(&fasttrap_tp_lock, &tracker);
1210 #endif
1211 	tp = &tp_local;
1212 
1213 	/*
1214 	 * Set the program counter to appear as though the traced instruction
1215 	 * had completely executed. This ensures that fasttrap_getreg() will
1216 	 * report the expected value for REG_RIP.
1217 	 */
1218 	rp->r_rip = pc + tp->ftt_size;
1219 
1220 	/*
1221 	 * If there's an is-enabled probe connected to this tracepoint it
1222 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1223 	 * instruction that was placed there by DTrace when the binary was
1224 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1225 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1226 	 * emulation logic since we know the inevitable result. It's possible
1227 	 * that a user could construct a scenario where the 'is-enabled'
1228 	 * probe was on some other instruction, but that would be a rather
1229 	 * exotic way to shoot oneself in the foot.
1230 	 */
1231 	if (is_enabled) {
1232 		rp->r_rax = 1;
1233 		new_pc = rp->r_rip;
1234 		goto done;
1235 	}
1236 
1237 	/*
1238 	 * We emulate certain types of instructions to ensure correctness
1239 	 * (in the case of position dependent instructions) or optimize
1240 	 * common cases. The rest we have the thread execute back in user-
1241 	 * land.
1242 	 */
1243 	switch (tp->ftt_type) {
1244 	case FASTTRAP_T_RET:
1245 	case FASTTRAP_T_RET16:
1246 	{
1247 		uintptr_t dst = 0;
1248 		uintptr_t addr = 0;
1249 		int ret = 0;
1250 
1251 		/*
1252 		 * We have to emulate _every_ facet of the behavior of a ret
1253 		 * instruction including what happens if the load from %esp
1254 		 * fails; in that case, we send a SIGSEGV.
1255 		 */
1256 #ifdef __amd64
1257 		if (p->p_model == DATAMODEL_NATIVE) {
1258 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1259 			addr = rp->r_rsp + sizeof (uintptr_t);
1260 		} else {
1261 #endif
1262 #ifdef __i386__
1263 			uint32_t dst32;
1264 			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1265 			dst = dst32;
1266 			addr = rp->r_esp + sizeof (uint32_t);
1267 #endif
1268 #ifdef __amd64
1269 		}
1270 #endif
1271 
1272 		if (ret == -1) {
1273 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1274 			new_pc = pc;
1275 			break;
1276 		}
1277 
1278 		if (tp->ftt_type == FASTTRAP_T_RET16)
1279 			addr += tp->ftt_dest;
1280 
1281 		rp->r_rsp = addr;
1282 		new_pc = dst;
1283 		break;
1284 	}
1285 
1286 	case FASTTRAP_T_JCC:
1287 	{
1288 		uint_t taken = 0;
1289 
1290 		switch (tp->ftt_code) {
1291 		case FASTTRAP_JO:
1292 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1293 			break;
1294 		case FASTTRAP_JNO:
1295 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1296 			break;
1297 		case FASTTRAP_JB:
1298 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1299 			break;
1300 		case FASTTRAP_JAE:
1301 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1302 			break;
1303 		case FASTTRAP_JE:
1304 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1305 			break;
1306 		case FASTTRAP_JNE:
1307 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1308 			break;
1309 		case FASTTRAP_JBE:
1310 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1311 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1312 			break;
1313 		case FASTTRAP_JA:
1314 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1315 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1316 			break;
1317 		case FASTTRAP_JS:
1318 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1319 			break;
1320 		case FASTTRAP_JNS:
1321 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1322 			break;
1323 		case FASTTRAP_JP:
1324 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1325 			break;
1326 		case FASTTRAP_JNP:
1327 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1328 			break;
1329 		case FASTTRAP_JL:
1330 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1331 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1332 			break;
1333 		case FASTTRAP_JGE:
1334 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1335 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1336 			break;
1337 		case FASTTRAP_JLE:
1338 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1339 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1340 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1341 			break;
1342 		case FASTTRAP_JG:
1343 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1344 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1345 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1346 			break;
1347 
1348 		}
1349 
1350 		if (taken)
1351 			new_pc = tp->ftt_dest;
1352 		else
1353 			new_pc = pc + tp->ftt_size;
1354 		break;
1355 	}
1356 
1357 	case FASTTRAP_T_LOOP:
1358 	{
1359 		uint_t taken = 0;
1360 #ifdef __amd64
1361 		greg_t cx = rp->r_rcx--;
1362 #else
1363 		greg_t cx = rp->r_ecx--;
1364 #endif
1365 
1366 		switch (tp->ftt_code) {
1367 		case FASTTRAP_LOOPNZ:
1368 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1369 			    cx != 0;
1370 			break;
1371 		case FASTTRAP_LOOPZ:
1372 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1373 			    cx != 0;
1374 			break;
1375 		case FASTTRAP_LOOP:
1376 			taken = (cx != 0);
1377 			break;
1378 		}
1379 
1380 		if (taken)
1381 			new_pc = tp->ftt_dest;
1382 		else
1383 			new_pc = pc + tp->ftt_size;
1384 		break;
1385 	}
1386 
1387 	case FASTTRAP_T_JCXZ:
1388 	{
1389 #ifdef __amd64
1390 		greg_t cx = rp->r_rcx;
1391 #else
1392 		greg_t cx = rp->r_ecx;
1393 #endif
1394 
1395 		if (cx == 0)
1396 			new_pc = tp->ftt_dest;
1397 		else
1398 			new_pc = pc + tp->ftt_size;
1399 		break;
1400 	}
1401 
1402 	case FASTTRAP_T_PUSHL_EBP:
1403 	{
1404 		int ret = 0;
1405 
1406 #ifdef __amd64
1407 		if (p->p_model == DATAMODEL_NATIVE) {
1408 			rp->r_rsp -= sizeof (uintptr_t);
1409 			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1410 		} else {
1411 #endif
1412 #ifdef __i386__
1413 			rp->r_rsp -= sizeof (uint32_t);
1414 			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1415 #endif
1416 #ifdef __amd64
1417 		}
1418 #endif
1419 
1420 		if (ret == -1) {
1421 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1422 			new_pc = pc;
1423 			break;
1424 		}
1425 
1426 		new_pc = pc + tp->ftt_size;
1427 		break;
1428 	}
1429 
1430 	case FASTTRAP_T_NOP:
1431 		new_pc = pc + tp->ftt_size;
1432 		break;
1433 
1434 	case FASTTRAP_T_JMP:
1435 	case FASTTRAP_T_CALL:
1436 		if (tp->ftt_code == 0) {
1437 			new_pc = tp->ftt_dest;
1438 		} else {
1439 			uintptr_t value, addr = tp->ftt_dest;
1440 
1441 			if (tp->ftt_base != FASTTRAP_NOREG)
1442 				addr += fasttrap_getreg(rp, tp->ftt_base);
1443 			if (tp->ftt_index != FASTTRAP_NOREG)
1444 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1445 				    tp->ftt_scale;
1446 
1447 			if (tp->ftt_code == 1) {
1448 				/*
1449 				 * If there's a segment prefix for this
1450 				 * instruction, we'll need to check permissions
1451 				 * and bounds on the given selector, and adjust
1452 				 * the address accordingly.
1453 				 */
1454 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1455 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1456 					fasttrap_sigsegv(p, curthread, addr);
1457 					new_pc = pc;
1458 					break;
1459 				}
1460 
1461 #ifdef __amd64
1462 				if (p->p_model == DATAMODEL_NATIVE) {
1463 #endif
1464 					if ((value = fasttrap_fulword((void *)addr))
1465 					     == -1) {
1466 						fasttrap_sigsegv(p, curthread,
1467 						    addr);
1468 						new_pc = pc;
1469 						break;
1470 					}
1471 					new_pc = value;
1472 #ifdef __amd64
1473 				} else {
1474 					uint32_t value32;
1475 					addr = (uintptr_t)(uint32_t)addr;
1476 					if ((value32 = fasttrap_fuword32((void *)addr))
1477 					    == -1) {
1478 						fasttrap_sigsegv(p, curthread,
1479 						    addr);
1480 						new_pc = pc;
1481 						break;
1482 					}
1483 					new_pc = value32;
1484 				}
1485 #endif
1486 			} else {
1487 				new_pc = addr;
1488 			}
1489 		}
1490 
1491 		/*
1492 		 * If this is a call instruction, we need to push the return
1493 		 * address onto the stack. If this fails, we send the process
1494 		 * a SIGSEGV and reset the pc to emulate what would happen if
1495 		 * this instruction weren't traced.
1496 		 */
1497 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1498 			int ret = 0;
1499 			uintptr_t addr = 0, pcps;
1500 #ifdef __amd64
1501 			if (p->p_model == DATAMODEL_NATIVE) {
1502 				addr = rp->r_rsp - sizeof (uintptr_t);
1503 				pcps = pc + tp->ftt_size;
1504 				ret = fasttrap_sulword((void *)addr, pcps);
1505 			} else {
1506 #endif
1507 				addr = rp->r_rsp - sizeof (uint32_t);
1508 				pcps = (uint32_t)(pc + tp->ftt_size);
1509 				ret = fasttrap_suword32((void *)addr, pcps);
1510 #ifdef __amd64
1511 			}
1512 #endif
1513 
1514 			if (ret == -1) {
1515 				fasttrap_sigsegv(p, curthread, addr);
1516 				new_pc = pc;
1517 				break;
1518 			}
1519 
1520 			rp->r_rsp = addr;
1521 		}
1522 
1523 		break;
1524 
1525 	case FASTTRAP_T_COMMON:
1526 	{
1527 		uintptr_t addr;
1528 #if defined(__amd64)
1529 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1530 #else
1531 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1532 #endif
1533 		uint_t i = 0;
1534 #ifdef illumos
1535 		klwp_t *lwp = ttolwp(curthread);
1536 
1537 		/*
1538 		 * Compute the address of the ulwp_t and step over the
1539 		 * ul_self pointer. The method used to store the user-land
1540 		 * thread pointer is very different on 32- and 64-bit
1541 		 * kernels.
1542 		 */
1543 #if defined(__amd64)
1544 		if (p->p_model == DATAMODEL_LP64) {
1545 			addr = lwp->lwp_pcb.pcb_fsbase;
1546 			addr += sizeof (void *);
1547 		} else {
1548 			addr = lwp->lwp_pcb.pcb_gsbase;
1549 			addr += sizeof (caddr32_t);
1550 		}
1551 #else
1552 		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1553 		addr += sizeof (void *);
1554 #endif
1555 #else	/* !illumos */
1556 		fasttrap_scrspace_t *scrspace;
1557 		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1558 		if (scrspace == NULL) {
1559 			/*
1560 			 * We failed to allocate scratch space for this thread.
1561 			 * Try to write the original instruction back out and
1562 			 * reset the pc.
1563 			 */
1564 			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1565 			    tp->ftt_size))
1566 				fasttrap_sigtrap(p, curthread, pc);
1567 			new_pc = pc;
1568 			break;
1569 		}
1570 		addr = scrspace->ftss_addr;
1571 #endif /* illumos */
1572 
1573 		/*
1574 		 * Generic Instruction Tracing
1575 		 * ---------------------------
1576 		 *
1577 		 * This is the layout of the scratch space in the user-land
1578 		 * thread structure for our generated instructions.
1579 		 *
1580 		 *	32-bit mode			bytes
1581 		 *	------------------------	-----
1582 		 * a:	<original instruction>		<= 15
1583 		 *	jmp	<pc + tp->ftt_size>	    5
1584 		 * b:	<original instruction>		<= 15
1585 		 *	int	T_DTRACE_RET		    2
1586 		 *					-----
1587 		 *					<= 37
1588 		 *
1589 		 *	64-bit mode			bytes
1590 		 *	------------------------	-----
1591 		 * a:	<original instruction>		<= 15
1592 		 *	jmp	0(%rip)			    6
1593 		 *	<pc + tp->ftt_size>		    8
1594 		 * b:	<original instruction>		<= 15
1595 		 * 	int	T_DTRACE_RET		    2
1596 		 * 					-----
1597 		 * 					<= 46
1598 		 *
1599 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1600 		 * to b. If we encounter a signal on the way out of the
1601 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1602 		 * so that we execute the original instruction and re-enter
1603 		 * the kernel rather than redirecting to the next instruction.
1604 		 *
1605 		 * If there are return probes (so we know that we're going to
1606 		 * need to reenter the kernel after executing the original
1607 		 * instruction), the scratch space will just contain the
1608 		 * original instruction followed by an interrupt -- the same
1609 		 * data as at b.
1610 		 *
1611 		 * %rip-relative Addressing
1612 		 * ------------------------
1613 		 *
1614 		 * There's a further complication in 64-bit mode due to %rip-
1615 		 * relative addressing. While this is clearly a beneficial
1616 		 * architectural decision for position independent code, it's
1617 		 * hard not to see it as a personal attack against the pid
1618 		 * provider since before there was a relatively small set of
1619 		 * instructions to emulate; with %rip-relative addressing,
1620 		 * almost every instruction can potentially depend on the
1621 		 * address at which it's executed. Rather than emulating
1622 		 * the broad spectrum of instructions that can now be
1623 		 * position dependent, we emulate jumps and others as in
1624 		 * 32-bit mode, and take a different tack for instructions
1625 		 * using %rip-relative addressing.
1626 		 *
1627 		 * For every instruction that uses the ModRM byte, the
1628 		 * in-kernel disassembler reports its location. We use the
1629 		 * ModRM byte to identify that an instruction uses
1630 		 * %rip-relative addressing and to see what other registers
1631 		 * the instruction uses. To emulate those instructions,
1632 		 * we modify the instruction to be %rax-relative rather than
1633 		 * %rip-relative (or %rcx-relative if the instruction uses
1634 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1635 		 * we don't have to rewrite the REX prefix). We then load
1636 		 * the value that %rip would have been into the scratch
1637 		 * register and generate an instruction to reset the scratch
1638 		 * register back to its original value. The instruction
1639 		 * sequence looks like this:
1640 		 *
1641 		 *	64-mode %rip-relative		bytes
1642 		 *	------------------------	-----
1643 		 * a:	<modified instruction>		<= 15
1644 		 *	movq	$<value>, %<scratch>	    6
1645 		 *	jmp	0(%rip)			    6
1646 		 *	<pc + tp->ftt_size>		    8
1647 		 * b:	<modified instruction>  	<= 15
1648 		 * 	int	T_DTRACE_RET		    2
1649 		 * 					-----
1650 		 *					   52
1651 		 *
1652 		 * We set curthread->t_dtrace_regv so that upon receiving
1653 		 * a signal we can reset the value of the scratch register.
1654 		 */
1655 
1656 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1657 
1658 		curthread->t_dtrace_scrpc = addr;
1659 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1660 		i += tp->ftt_size;
1661 
1662 #ifdef __amd64
1663 		if (tp->ftt_ripmode != 0) {
1664 			greg_t *reg = NULL;
1665 
1666 			ASSERT(p->p_model == DATAMODEL_LP64);
1667 			ASSERT(tp->ftt_ripmode &
1668 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1669 
1670 			/*
1671 			 * If this was a %rip-relative instruction, we change
1672 			 * it to be either a %rax- or %rcx-relative
1673 			 * instruction (depending on whether those registers
1674 			 * are used as another operand; or %r8- or %r9-
1675 			 * relative depending on the value of REX.B). We then
1676 			 * set that register and generate a movq instruction
1677 			 * to reset the value.
1678 			 */
1679 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1680 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1681 			else
1682 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1683 
1684 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1685 				scratch[i++] = FASTTRAP_MOV_EAX;
1686 			else
1687 				scratch[i++] = FASTTRAP_MOV_ECX;
1688 
1689 			switch (tp->ftt_ripmode) {
1690 			case FASTTRAP_RIP_1:
1691 				reg = &rp->r_rax;
1692 				curthread->t_dtrace_reg = REG_RAX;
1693 				break;
1694 			case FASTTRAP_RIP_2:
1695 				reg = &rp->r_rcx;
1696 				curthread->t_dtrace_reg = REG_RCX;
1697 				break;
1698 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1699 				reg = &rp->r_r8;
1700 				curthread->t_dtrace_reg = REG_R8;
1701 				break;
1702 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1703 				reg = &rp->r_r9;
1704 				curthread->t_dtrace_reg = REG_R9;
1705 				break;
1706 			}
1707 
1708 			/* LINTED - alignment */
1709 			*(uint64_t *)&scratch[i] = *reg;
1710 			curthread->t_dtrace_regv = *reg;
1711 			*reg = pc + tp->ftt_size;
1712 			i += sizeof (uint64_t);
1713 		}
1714 #endif
1715 
1716 		/*
1717 		 * Generate the branch instruction to what would have
1718 		 * normally been the subsequent instruction. In 32-bit mode,
1719 		 * this is just a relative branch; in 64-bit mode this is a
1720 		 * %rip-relative branch that loads the 64-bit pc value
1721 		 * immediately after the jmp instruction.
1722 		 */
1723 #ifdef __amd64
1724 		if (p->p_model == DATAMODEL_LP64) {
1725 			scratch[i++] = FASTTRAP_GROUP5_OP;
1726 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1727 			/* LINTED - alignment */
1728 			*(uint32_t *)&scratch[i] = 0;
1729 			i += sizeof (uint32_t);
1730 			/* LINTED - alignment */
1731 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1732 			i += sizeof (uint64_t);
1733 		} else {
1734 #endif
1735 #ifdef __i386__
1736 			/*
1737 			 * Set up the jmp to the next instruction; note that
1738 			 * the size of the traced instruction cancels out.
1739 			 */
1740 			scratch[i++] = FASTTRAP_JMP32;
1741 			/* LINTED - alignment */
1742 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1743 			i += sizeof (uint32_t);
1744 #endif
1745 #ifdef __amd64
1746 		}
1747 #endif
1748 
1749 		curthread->t_dtrace_astpc = addr + i;
1750 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1751 		i += tp->ftt_size;
1752 		scratch[i++] = FASTTRAP_INT;
1753 		scratch[i++] = T_DTRACE_RET;
1754 
1755 		ASSERT(i <= sizeof (scratch));
1756 
1757 #ifdef illumos
1758 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1759 #else
1760 		if (uwrite(p, scratch, i, addr)) {
1761 #endif
1762 			fasttrap_sigtrap(p, curthread, pc);
1763 			new_pc = pc;
1764 			break;
1765 		}
1766 		if (tp->ftt_retids != NULL) {
1767 			curthread->t_dtrace_step = 1;
1768 			curthread->t_dtrace_ret = 1;
1769 			new_pc = curthread->t_dtrace_astpc;
1770 		} else {
1771 			new_pc = curthread->t_dtrace_scrpc;
1772 		}
1773 
1774 		curthread->t_dtrace_pc = pc;
1775 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1776 		curthread->t_dtrace_on = 1;
1777 		break;
1778 	}
1779 
1780 	default:
1781 		panic("fasttrap: mishandled an instruction");
1782 	}
1783 
1784 done:
1785 	/*
1786 	 * If there were no return probes when we first found the tracepoint,
1787 	 * we should feel no obligation to honor any return probes that were
1788 	 * subsequently enabled -- they'll just have to wait until the next
1789 	 * time around.
1790 	 */
1791 	if (tp->ftt_retids != NULL) {
1792 		/*
1793 		 * We need to wait until the results of the instruction are
1794 		 * apparent before invoking any return probes. If this
1795 		 * instruction was emulated we can just call
1796 		 * fasttrap_return_common(); if it needs to be executed, we
1797 		 * need to wait until the user thread returns to the kernel.
1798 		 */
1799 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1800 			/*
1801 			 * Set the program counter to the address of the traced
1802 			 * instruction so that it looks right in ustack()
1803 			 * output. We had previously set it to the end of the
1804 			 * instruction to simplify %rip-relative addressing.
1805 			 */
1806 			rp->r_rip = pc;
1807 
1808 			fasttrap_return_common(rp, pc, pid, new_pc);
1809 		} else {
1810 			ASSERT(curthread->t_dtrace_ret != 0);
1811 			ASSERT(curthread->t_dtrace_pc == pc);
1812 			ASSERT(curthread->t_dtrace_scrpc != 0);
1813 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1814 		}
1815 	}
1816 
1817 	rp->r_rip = new_pc;
1818 
1819 #ifndef illumos
1820 	PROC_LOCK(p);
1821 	proc_write_regs(curthread, rp);
1822 	PROC_UNLOCK(p);
1823 #endif
1824 
1825 	return (0);
1826 }
1827 
1828 int
1829 fasttrap_return_probe(struct reg *rp)
1830 {
1831 	proc_t *p = curproc;
1832 	uintptr_t pc = curthread->t_dtrace_pc;
1833 	uintptr_t npc = curthread->t_dtrace_npc;
1834 
1835 	curthread->t_dtrace_pc = 0;
1836 	curthread->t_dtrace_npc = 0;
1837 	curthread->t_dtrace_scrpc = 0;
1838 	curthread->t_dtrace_astpc = 0;
1839 
1840 #ifdef illumos
1841 	/*
1842 	 * Treat a child created by a call to vfork(2) as if it were its
1843 	 * parent. We know that there's only one thread of control in such a
1844 	 * process: this one.
1845 	 */
1846 	while (p->p_flag & SVFORK) {
1847 		p = p->p_parent;
1848 	}
1849 #endif
1850 
1851 	/*
1852 	 * We set rp->r_rip to the address of the traced instruction so
1853 	 * that it appears to dtrace_probe() that we're on the original
1854 	 * instruction, and so that the user can't easily detect our
1855 	 * complex web of lies. dtrace_return_probe() (our caller)
1856 	 * will correctly set %pc after we return.
1857 	 */
1858 	rp->r_rip = pc;
1859 
1860 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1861 
1862 	return (0);
1863 }
1864 
1865 /*ARGSUSED*/
1866 uint64_t
1867 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1868     int aframes)
1869 {
1870 	struct reg r;
1871 
1872 	fill_regs(curthread, &r);
1873 
1874 	return (fasttrap_anarg(&r, 1, argno));
1875 }
1876 
1877 /*ARGSUSED*/
1878 uint64_t
1879 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1880     int aframes)
1881 {
1882 	struct reg r;
1883 
1884 	fill_regs(curthread, &r);
1885 
1886 	return (fasttrap_anarg(&r, 0, argno));
1887 }
1888 
1889 static ulong_t
1890 fasttrap_getreg(struct reg *rp, uint_t reg)
1891 {
1892 #ifdef __amd64
1893 	switch (reg) {
1894 	case REG_R15:		return (rp->r_r15);
1895 	case REG_R14:		return (rp->r_r14);
1896 	case REG_R13:		return (rp->r_r13);
1897 	case REG_R12:		return (rp->r_r12);
1898 	case REG_R11:		return (rp->r_r11);
1899 	case REG_R10:		return (rp->r_r10);
1900 	case REG_R9:		return (rp->r_r9);
1901 	case REG_R8:		return (rp->r_r8);
1902 	case REG_RDI:		return (rp->r_rdi);
1903 	case REG_RSI:		return (rp->r_rsi);
1904 	case REG_RBP:		return (rp->r_rbp);
1905 	case REG_RBX:		return (rp->r_rbx);
1906 	case REG_RDX:		return (rp->r_rdx);
1907 	case REG_RCX:		return (rp->r_rcx);
1908 	case REG_RAX:		return (rp->r_rax);
1909 	case REG_TRAPNO:	return (rp->r_trapno);
1910 	case REG_ERR:		return (rp->r_err);
1911 	case REG_RIP:		return (rp->r_rip);
1912 	case REG_CS:		return (rp->r_cs);
1913 #ifdef illumos
1914 	case REG_RFL:		return (rp->r_rfl);
1915 #endif
1916 	case REG_RSP:		return (rp->r_rsp);
1917 	case REG_SS:		return (rp->r_ss);
1918 	case REG_FS:		return (rp->r_fs);
1919 	case REG_GS:		return (rp->r_gs);
1920 	case REG_DS:		return (rp->r_ds);
1921 	case REG_ES:		return (rp->r_es);
1922 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1923 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1924 	}
1925 
1926 	panic("dtrace: illegal register constant");
1927 	/*NOTREACHED*/
1928 #else
1929 #define _NGREG 19
1930 	if (reg >= _NGREG)
1931 		panic("dtrace: illegal register constant");
1932 
1933 	return (((greg_t *)&rp->r_gs)[reg]);
1934 #endif
1935 }
1936