xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  *
23  * $FreeBSD$
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #ifdef illumos
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 #endif
34 
35 #include <sys/fasttrap_isa.h>
36 #include <sys/fasttrap_impl.h>
37 #include <sys/dtrace.h>
38 #include <sys/dtrace_impl.h>
39 #include <sys/cmn_err.h>
40 #ifdef illumos
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/segments.h>
44 #include <sys/x86_archext.h>
45 #else
46 #include <sys/types.h>
47 #include <sys/dtrace_bsd.h>
48 #include <sys/proc.h>
49 #include <sys/rmlock.h>
50 #include <cddl/dev/dtrace/dtrace_cddl.h>
51 #include <cddl/dev/dtrace/x86/regset.h>
52 #include <machine/segments.h>
53 #include <machine/reg.h>
54 #include <machine/pcb.h>
55 #endif
56 #include <sys/sysmacros.h>
57 #ifdef illumos
58 #include <sys/trap.h>
59 #include <sys/archsystm.h>
60 #else
61 #include <sys/ptrace.h>
62 #endif /* illumos */
63 
64 #ifdef __i386__
65 #define	r_rax	r_eax
66 #define	r_rbx	r_ebx
67 #define	r_rip	r_eip
68 #define	r_rflags r_eflags
69 #define	r_rsp	r_esp
70 #define	r_rbp	r_ebp
71 #endif
72 
73 /*
74  * Lossless User-Land Tracing on x86
75  * ---------------------------------
76  *
77  * The execution of most instructions is not dependent on the address; for
78  * these instructions it is sufficient to copy them into the user process's
79  * address space and execute them. To effectively single-step an instruction
80  * in user-land, we copy out the following sequence of instructions to scratch
81  * space in the user thread's ulwp_t structure.
82  *
83  * We then set the program counter (%eip or %rip) to point to this scratch
84  * space. Once execution resumes, the original instruction is executed and
85  * then control flow is redirected to what was originally the subsequent
86  * instruction. If the kernel attemps to deliver a signal while single-
87  * stepping, the signal is deferred and the program counter is moved into the
88  * second sequence of instructions. The second sequence ends in a trap into
89  * the kernel where the deferred signal is then properly handled and delivered.
90  *
91  * For instructions whose execute is position dependent, we perform simple
92  * emulation. These instructions are limited to control transfer
93  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
94  * of %rip-relative addressing that means that almost any instruction can be
95  * position dependent. For all the details on how we emulate generic
96  * instructions included %rip-relative instructions, see the code in
97  * fasttrap_pid_probe() below where we handle instructions of type
98  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
99  */
100 
101 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
102 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
103 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
104 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
105 
106 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
107 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
108 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
109 
110 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
111 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
112 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
113 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
114 #define	FASTTRAP_REX(w, r, x, b)	\
115 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
116 
117 /*
118  * Single-byte op-codes.
119  */
120 #define	FASTTRAP_PUSHL_EBP	0x55
121 
122 #define	FASTTRAP_JO		0x70
123 #define	FASTTRAP_JNO		0x71
124 #define	FASTTRAP_JB		0x72
125 #define	FASTTRAP_JAE		0x73
126 #define	FASTTRAP_JE		0x74
127 #define	FASTTRAP_JNE		0x75
128 #define	FASTTRAP_JBE		0x76
129 #define	FASTTRAP_JA		0x77
130 #define	FASTTRAP_JS		0x78
131 #define	FASTTRAP_JNS		0x79
132 #define	FASTTRAP_JP		0x7a
133 #define	FASTTRAP_JNP		0x7b
134 #define	FASTTRAP_JL		0x7c
135 #define	FASTTRAP_JGE		0x7d
136 #define	FASTTRAP_JLE		0x7e
137 #define	FASTTRAP_JG		0x7f
138 
139 #define	FASTTRAP_NOP		0x90
140 
141 #define	FASTTRAP_MOV_EAX	0xb8
142 #define	FASTTRAP_MOV_ECX	0xb9
143 
144 #define	FASTTRAP_RET16		0xc2
145 #define	FASTTRAP_RET		0xc3
146 
147 #define	FASTTRAP_LOOPNZ		0xe0
148 #define	FASTTRAP_LOOPZ		0xe1
149 #define	FASTTRAP_LOOP		0xe2
150 #define	FASTTRAP_JCXZ		0xe3
151 
152 #define	FASTTRAP_CALL		0xe8
153 #define	FASTTRAP_JMP32		0xe9
154 #define	FASTTRAP_JMP8		0xeb
155 
156 #define	FASTTRAP_INT3		0xcc
157 #define	FASTTRAP_INT		0xcd
158 
159 #define	FASTTRAP_2_BYTE_OP	0x0f
160 #define	FASTTRAP_GROUP5_OP	0xff
161 
162 /*
163  * Two-byte op-codes (second byte only).
164  */
165 #define	FASTTRAP_0F_JO		0x80
166 #define	FASTTRAP_0F_JNO		0x81
167 #define	FASTTRAP_0F_JB		0x82
168 #define	FASTTRAP_0F_JAE		0x83
169 #define	FASTTRAP_0F_JE		0x84
170 #define	FASTTRAP_0F_JNE		0x85
171 #define	FASTTRAP_0F_JBE		0x86
172 #define	FASTTRAP_0F_JA		0x87
173 #define	FASTTRAP_0F_JS		0x88
174 #define	FASTTRAP_0F_JNS		0x89
175 #define	FASTTRAP_0F_JP		0x8a
176 #define	FASTTRAP_0F_JNP		0x8b
177 #define	FASTTRAP_0F_JL		0x8c
178 #define	FASTTRAP_0F_JGE		0x8d
179 #define	FASTTRAP_0F_JLE		0x8e
180 #define	FASTTRAP_0F_JG		0x8f
181 
182 #define	FASTTRAP_EFLAGS_OF	0x800
183 #define	FASTTRAP_EFLAGS_DF	0x400
184 #define	FASTTRAP_EFLAGS_SF	0x080
185 #define	FASTTRAP_EFLAGS_ZF	0x040
186 #define	FASTTRAP_EFLAGS_AF	0x010
187 #define	FASTTRAP_EFLAGS_PF	0x004
188 #define	FASTTRAP_EFLAGS_CF	0x001
189 
190 /*
191  * Instruction prefixes.
192  */
193 #define	FASTTRAP_PREFIX_OPERAND	0x66
194 #define	FASTTRAP_PREFIX_ADDRESS	0x67
195 #define	FASTTRAP_PREFIX_CS	0x2E
196 #define	FASTTRAP_PREFIX_DS	0x3E
197 #define	FASTTRAP_PREFIX_ES	0x26
198 #define	FASTTRAP_PREFIX_FS	0x64
199 #define	FASTTRAP_PREFIX_GS	0x65
200 #define	FASTTRAP_PREFIX_SS	0x36
201 #define	FASTTRAP_PREFIX_LOCK	0xF0
202 #define	FASTTRAP_PREFIX_REP	0xF3
203 #define	FASTTRAP_PREFIX_REPNE	0xF2
204 
205 #define	FASTTRAP_NOREG	0xff
206 
207 /*
208  * Map between instruction register encodings and the kernel constants which
209  * correspond to indicies into struct regs.
210  */
211 #ifdef __amd64
212 static const uint8_t regmap[16] = {
213 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
214 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
215 };
216 #else
217 static const uint8_t regmap[8] = {
218 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
219 };
220 #endif
221 
222 static ulong_t fasttrap_getreg(struct reg *, uint_t);
223 
224 static uint64_t
225 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
226 {
227 	uint64_t value = 0;
228 	int shift = function_entry ? 1 : 0;
229 
230 #ifdef __amd64
231 	if (curproc->p_model == DATAMODEL_LP64) {
232 		uintptr_t *stack;
233 
234 		/*
235 		 * In 64-bit mode, the first six arguments are stored in
236 		 * registers.
237 		 */
238 		if (argno < 6)
239 			switch (argno) {
240 			case 0:
241 				return (rp->r_rdi);
242 			case 1:
243 				return (rp->r_rsi);
244 			case 2:
245 				return (rp->r_rdx);
246 			case 3:
247 				return (rp->r_rcx);
248 			case 4:
249 				return (rp->r_r8);
250 			case 5:
251 				return (rp->r_r9);
252 			}
253 
254 		stack = (uintptr_t *)rp->r_rsp;
255 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
256 		value = dtrace_fulword(&stack[argno - 6 + shift]);
257 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
258 	} else {
259 #endif
260 		uint32_t *stack = (uint32_t *)rp->r_rsp;
261 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
262 		value = dtrace_fuword32(&stack[argno + shift]);
263 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
264 #ifdef __amd64
265 	}
266 #endif
267 
268 	return (value);
269 }
270 
271 /*ARGSUSED*/
272 int
273 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
274     fasttrap_probe_type_t type)
275 {
276 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
277 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
278 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
279 	uint_t start = 0;
280 	int rmindex, size;
281 	uint8_t seg, rex = 0;
282 
283 	/*
284 	 * Read the instruction at the given address out of the process's
285 	 * address space. We don't have to worry about a debugger
286 	 * changing this instruction before we overwrite it with our trap
287 	 * instruction since P_PR_LOCK is set. Since instructions can span
288 	 * pages, we potentially read the instruction in two parts. If the
289 	 * second part fails, we just zero out that part of the instruction.
290 	 */
291 	if (uread(p, &instr[0], first, pc) != 0)
292 		return (-1);
293 	if (len > first &&
294 	    uread(p, &instr[first], len - first, pc + first) != 0) {
295 		bzero(&instr[first], len - first);
296 		len = first;
297 	}
298 
299 	/*
300 	 * If the disassembly fails, then we have a malformed instruction.
301 	 */
302 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
303 		return (-1);
304 
305 	/*
306 	 * Make sure the disassembler isn't completely broken.
307 	 */
308 	ASSERT(-1 <= rmindex && rmindex < size);
309 
310 	/*
311 	 * If the computed size is greater than the number of bytes read,
312 	 * then it was a malformed instruction possibly because it fell on a
313 	 * page boundary and the subsequent page was missing or because of
314 	 * some malicious user.
315 	 */
316 	if (size > len)
317 		return (-1);
318 
319 	tp->ftt_size = (uint8_t)size;
320 	tp->ftt_segment = FASTTRAP_SEG_NONE;
321 
322 	/*
323 	 * Find the start of the instruction's opcode by processing any
324 	 * legacy prefixes.
325 	 */
326 	for (;;) {
327 		seg = 0;
328 		switch (instr[start]) {
329 		case FASTTRAP_PREFIX_SS:
330 			seg++;
331 			/*FALLTHRU*/
332 		case FASTTRAP_PREFIX_GS:
333 			seg++;
334 			/*FALLTHRU*/
335 		case FASTTRAP_PREFIX_FS:
336 			seg++;
337 			/*FALLTHRU*/
338 		case FASTTRAP_PREFIX_ES:
339 			seg++;
340 			/*FALLTHRU*/
341 		case FASTTRAP_PREFIX_DS:
342 			seg++;
343 			/*FALLTHRU*/
344 		case FASTTRAP_PREFIX_CS:
345 			seg++;
346 			/*FALLTHRU*/
347 		case FASTTRAP_PREFIX_OPERAND:
348 		case FASTTRAP_PREFIX_ADDRESS:
349 		case FASTTRAP_PREFIX_LOCK:
350 		case FASTTRAP_PREFIX_REP:
351 		case FASTTRAP_PREFIX_REPNE:
352 			if (seg != 0) {
353 				/*
354 				 * It's illegal for an instruction to specify
355 				 * two segment prefixes -- give up on this
356 				 * illegal instruction.
357 				 */
358 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
359 					return (-1);
360 
361 				tp->ftt_segment = seg;
362 			}
363 			start++;
364 			continue;
365 		}
366 		break;
367 	}
368 
369 #ifdef __amd64
370 	/*
371 	 * Identify the REX prefix on 64-bit processes.
372 	 */
373 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
374 		rex = instr[start++];
375 #endif
376 
377 	/*
378 	 * Now that we're pretty sure that the instruction is okay, copy the
379 	 * valid part to the tracepoint.
380 	 */
381 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
382 
383 	tp->ftt_type = FASTTRAP_T_COMMON;
384 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
385 		switch (instr[start + 1]) {
386 		case FASTTRAP_0F_JO:
387 		case FASTTRAP_0F_JNO:
388 		case FASTTRAP_0F_JB:
389 		case FASTTRAP_0F_JAE:
390 		case FASTTRAP_0F_JE:
391 		case FASTTRAP_0F_JNE:
392 		case FASTTRAP_0F_JBE:
393 		case FASTTRAP_0F_JA:
394 		case FASTTRAP_0F_JS:
395 		case FASTTRAP_0F_JNS:
396 		case FASTTRAP_0F_JP:
397 		case FASTTRAP_0F_JNP:
398 		case FASTTRAP_0F_JL:
399 		case FASTTRAP_0F_JGE:
400 		case FASTTRAP_0F_JLE:
401 		case FASTTRAP_0F_JG:
402 			tp->ftt_type = FASTTRAP_T_JCC;
403 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
404 			tp->ftt_dest = pc + tp->ftt_size +
405 			    /* LINTED - alignment */
406 			    *(int32_t *)&instr[start + 2];
407 			break;
408 		}
409 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
410 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
411 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
412 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
413 
414 		if (reg == 2 || reg == 4) {
415 			uint_t i, sz;
416 
417 			if (reg == 2)
418 				tp->ftt_type = FASTTRAP_T_CALL;
419 			else
420 				tp->ftt_type = FASTTRAP_T_JMP;
421 
422 			if (mod == 3)
423 				tp->ftt_code = 2;
424 			else
425 				tp->ftt_code = 1;
426 
427 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
428 
429 			/*
430 			 * See AMD x86-64 Architecture Programmer's Manual
431 			 * Volume 3, Section 1.2.7, Table 1-12, and
432 			 * Appendix A.3.1, Table A-15.
433 			 */
434 			if (mod != 3 && rm == 4) {
435 				uint8_t sib = instr[start + 2];
436 				uint_t index = FASTTRAP_SIB_INDEX(sib);
437 				uint_t base = FASTTRAP_SIB_BASE(sib);
438 
439 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
440 
441 				tp->ftt_index = (index == 4) ?
442 				    FASTTRAP_NOREG :
443 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
444 				tp->ftt_base = (mod == 0 && base == 5) ?
445 				    FASTTRAP_NOREG :
446 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
447 
448 				i = 3;
449 				sz = mod == 1 ? 1 : 4;
450 			} else {
451 				/*
452 				 * In 64-bit mode, mod == 0 and r/m == 5
453 				 * denotes %rip-relative addressing; in 32-bit
454 				 * mode, the base register isn't used. In both
455 				 * modes, there is a 32-bit operand.
456 				 */
457 				if (mod == 0 && rm == 5) {
458 #ifdef __amd64
459 					if (p->p_model == DATAMODEL_LP64)
460 						tp->ftt_base = REG_RIP;
461 					else
462 #endif
463 						tp->ftt_base = FASTTRAP_NOREG;
464 					sz = 4;
465 				} else  {
466 					uint8_t base = rm |
467 					    (FASTTRAP_REX_B(rex) << 3);
468 
469 					tp->ftt_base = regmap[base];
470 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
471 				}
472 				tp->ftt_index = FASTTRAP_NOREG;
473 				i = 2;
474 			}
475 
476 			if (sz == 1) {
477 				tp->ftt_dest = *(int8_t *)&instr[start + i];
478 			} else if (sz == 4) {
479 				/* LINTED - alignment */
480 				tp->ftt_dest = *(int32_t *)&instr[start + i];
481 			} else {
482 				tp->ftt_dest = 0;
483 			}
484 		}
485 	} else {
486 		switch (instr[start]) {
487 		case FASTTRAP_RET:
488 			tp->ftt_type = FASTTRAP_T_RET;
489 			break;
490 
491 		case FASTTRAP_RET16:
492 			tp->ftt_type = FASTTRAP_T_RET16;
493 			/* LINTED - alignment */
494 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
495 			break;
496 
497 		case FASTTRAP_JO:
498 		case FASTTRAP_JNO:
499 		case FASTTRAP_JB:
500 		case FASTTRAP_JAE:
501 		case FASTTRAP_JE:
502 		case FASTTRAP_JNE:
503 		case FASTTRAP_JBE:
504 		case FASTTRAP_JA:
505 		case FASTTRAP_JS:
506 		case FASTTRAP_JNS:
507 		case FASTTRAP_JP:
508 		case FASTTRAP_JNP:
509 		case FASTTRAP_JL:
510 		case FASTTRAP_JGE:
511 		case FASTTRAP_JLE:
512 		case FASTTRAP_JG:
513 			tp->ftt_type = FASTTRAP_T_JCC;
514 			tp->ftt_code = instr[start];
515 			tp->ftt_dest = pc + tp->ftt_size +
516 			    (int8_t)instr[start + 1];
517 			break;
518 
519 		case FASTTRAP_LOOPNZ:
520 		case FASTTRAP_LOOPZ:
521 		case FASTTRAP_LOOP:
522 			tp->ftt_type = FASTTRAP_T_LOOP;
523 			tp->ftt_code = instr[start];
524 			tp->ftt_dest = pc + tp->ftt_size +
525 			    (int8_t)instr[start + 1];
526 			break;
527 
528 		case FASTTRAP_JCXZ:
529 			tp->ftt_type = FASTTRAP_T_JCXZ;
530 			tp->ftt_dest = pc + tp->ftt_size +
531 			    (int8_t)instr[start + 1];
532 			break;
533 
534 		case FASTTRAP_CALL:
535 			tp->ftt_type = FASTTRAP_T_CALL;
536 			tp->ftt_dest = pc + tp->ftt_size +
537 			    /* LINTED - alignment */
538 			    *(int32_t *)&instr[start + 1];
539 			tp->ftt_code = 0;
540 			break;
541 
542 		case FASTTRAP_JMP32:
543 			tp->ftt_type = FASTTRAP_T_JMP;
544 			tp->ftt_dest = pc + tp->ftt_size +
545 			    /* LINTED - alignment */
546 			    *(int32_t *)&instr[start + 1];
547 			break;
548 		case FASTTRAP_JMP8:
549 			tp->ftt_type = FASTTRAP_T_JMP;
550 			tp->ftt_dest = pc + tp->ftt_size +
551 			    (int8_t)instr[start + 1];
552 			break;
553 
554 		case FASTTRAP_PUSHL_EBP:
555 			if (start == 0)
556 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
557 			break;
558 
559 		case FASTTRAP_NOP:
560 #ifdef __amd64
561 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
562 
563 			/*
564 			 * On amd64 we have to be careful not to confuse a nop
565 			 * (actually xchgl %eax, %eax) with an instruction using
566 			 * the same opcode, but that does something different
567 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
568 			 */
569 			if (FASTTRAP_REX_B(rex) == 0)
570 #endif
571 				tp->ftt_type = FASTTRAP_T_NOP;
572 			break;
573 
574 		case FASTTRAP_INT3:
575 			/*
576 			 * The pid provider shares the int3 trap with debugger
577 			 * breakpoints so we can't instrument them.
578 			 */
579 			ASSERT(instr[start] == FASTTRAP_INSTR);
580 			return (-1);
581 
582 		case FASTTRAP_INT:
583 			/*
584 			 * Interrupts seem like they could be traced with
585 			 * no negative implications, but it's possible that
586 			 * a thread could be redirected by the trap handling
587 			 * code which would eventually return to the
588 			 * instruction after the interrupt. If the interrupt
589 			 * were in our scratch space, the subsequent
590 			 * instruction might be overwritten before we return.
591 			 * Accordingly we refuse to instrument any interrupt.
592 			 */
593 			return (-1);
594 		}
595 	}
596 
597 #ifdef __amd64
598 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
599 		/*
600 		 * If the process is 64-bit and the instruction type is still
601 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
602 		 * execute it -- we need to watch for %rip-relative
603 		 * addressing mode. See the portion of fasttrap_pid_probe()
604 		 * below where we handle tracepoints with type
605 		 * FASTTRAP_T_COMMON for how we emulate instructions that
606 		 * employ %rip-relative addressing.
607 		 */
608 		if (rmindex != -1) {
609 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
610 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
611 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
612 
613 			ASSERT(rmindex > start);
614 
615 			if (mod == 0 && rm == 5) {
616 				/*
617 				 * We need to be sure to avoid other
618 				 * registers used by this instruction. While
619 				 * the reg field may determine the op code
620 				 * rather than denoting a register, assuming
621 				 * that it denotes a register is always safe.
622 				 * We leave the REX field intact and use
623 				 * whatever value's there for simplicity.
624 				 */
625 				if (reg != 0) {
626 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
627 					    (FASTTRAP_RIP_X *
628 					    FASTTRAP_REX_B(rex));
629 					rm = 0;
630 				} else {
631 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
632 					    (FASTTRAP_RIP_X *
633 					    FASTTRAP_REX_B(rex));
634 					rm = 1;
635 				}
636 
637 				tp->ftt_modrm = tp->ftt_instr[rmindex];
638 				tp->ftt_instr[rmindex] =
639 				    FASTTRAP_MODRM(2, reg, rm);
640 			}
641 		}
642 	}
643 #endif
644 
645 	return (0);
646 }
647 
648 int
649 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
650 {
651 	fasttrap_instr_t instr = FASTTRAP_INSTR;
652 
653 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
654 		return (-1);
655 
656 	return (0);
657 }
658 
659 int
660 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
661 {
662 	uint8_t instr;
663 
664 	/*
665 	 * Distinguish between read or write failures and a changed
666 	 * instruction.
667 	 */
668 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
669 		return (0);
670 	if (instr != FASTTRAP_INSTR)
671 		return (0);
672 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
673 		return (-1);
674 
675 	return (0);
676 }
677 
678 #ifdef __amd64
679 static uintptr_t
680 fasttrap_fulword_noerr(const void *uaddr)
681 {
682 	uintptr_t ret;
683 
684 	if ((ret = fasttrap_fulword(uaddr)) != -1)
685 		return (ret);
686 
687 	return (0);
688 }
689 #endif
690 
691 static uint32_t
692 fasttrap_fuword32_noerr(const void *uaddr)
693 {
694 	uint32_t ret;
695 
696 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
697 		return (ret);
698 
699 	return (0);
700 }
701 
702 static void
703 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
704     uintptr_t new_pc)
705 {
706 	fasttrap_tracepoint_t *tp;
707 	fasttrap_bucket_t *bucket;
708 	fasttrap_id_t *id;
709 #ifdef illumos
710 	kmutex_t *pid_mtx;
711 
712 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
713 	mutex_enter(pid_mtx);
714 #else
715 	struct rm_priotracker tracker;
716 
717 	rm_rlock(&fasttrap_tp_lock, &tracker);
718 #endif
719 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
720 
721 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
722 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
723 		    tp->ftt_proc->ftpc_acount != 0)
724 			break;
725 	}
726 
727 	/*
728 	 * Don't sweat it if we can't find the tracepoint again; unlike
729 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
730 	 * is not essential to the correct execution of the process.
731 	 */
732 	if (tp == NULL) {
733 #ifdef illumos
734 		mutex_exit(pid_mtx);
735 #else
736 		rm_runlock(&fasttrap_tp_lock, &tracker);
737 #endif
738 		return;
739 	}
740 
741 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
742 		/*
743 		 * If there's a branch that could act as a return site, we
744 		 * need to trace it, and check here if the program counter is
745 		 * external to the function.
746 		 */
747 		if (tp->ftt_type != FASTTRAP_T_RET &&
748 		    tp->ftt_type != FASTTRAP_T_RET16 &&
749 		    new_pc - id->fti_probe->ftp_faddr <
750 		    id->fti_probe->ftp_fsize)
751 			continue;
752 
753 		dtrace_probe(id->fti_probe->ftp_id,
754 		    pc - id->fti_probe->ftp_faddr,
755 		    rp->r_rax, rp->r_rbx, 0, 0);
756 	}
757 
758 #ifdef illumos
759 	mutex_exit(pid_mtx);
760 #else
761 	rm_runlock(&fasttrap_tp_lock, &tracker);
762 #endif
763 }
764 
765 static void
766 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
767 {
768 #ifdef illumos
769 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
770 
771 	sqp->sq_info.si_signo = SIGSEGV;
772 	sqp->sq_info.si_code = SEGV_MAPERR;
773 	sqp->sq_info.si_addr = (caddr_t)addr;
774 
775 	mutex_enter(&p->p_lock);
776 	sigaddqa(p, t, sqp);
777 	mutex_exit(&p->p_lock);
778 
779 	if (t != NULL)
780 		aston(t);
781 #else
782 	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
783 
784 	ksiginfo_init(ksi);
785 	ksi->ksi_signo = SIGSEGV;
786 	ksi->ksi_code = SEGV_MAPERR;
787 	ksi->ksi_addr = (caddr_t)addr;
788 	(void) tdksignal(t, SIGSEGV, ksi);
789 #endif
790 }
791 
792 #ifdef __amd64
793 static void
794 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
795     uintptr_t *argv)
796 {
797 	int i, x, cap = MIN(argc, probe->ftp_nargs);
798 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
799 
800 	for (i = 0; i < cap; i++) {
801 		x = probe->ftp_argmap[i];
802 
803 		if (x < 6)
804 			argv[i] = (&rp->r_rdi)[x];
805 		else
806 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
807 	}
808 
809 	for (; i < argc; i++) {
810 		argv[i] = 0;
811 	}
812 }
813 #endif
814 
815 static void
816 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
817     uint32_t *argv)
818 {
819 	int i, x, cap = MIN(argc, probe->ftp_nargs);
820 	uint32_t *stack = (uint32_t *)rp->r_rsp;
821 
822 	for (i = 0; i < cap; i++) {
823 		x = probe->ftp_argmap[i];
824 
825 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
826 	}
827 
828 	for (; i < argc; i++) {
829 		argv[i] = 0;
830 	}
831 }
832 
833 static int
834 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
835 {
836 	proc_t *p = curproc;
837 #ifdef __i386__
838 	struct segment_descriptor *desc;
839 #else
840 	struct user_segment_descriptor *desc;
841 #endif
842 	uint16_t sel = 0, ndx, type;
843 	uintptr_t limit;
844 
845 	switch (tp->ftt_segment) {
846 	case FASTTRAP_SEG_CS:
847 		sel = rp->r_cs;
848 		break;
849 	case FASTTRAP_SEG_DS:
850 		sel = rp->r_ds;
851 		break;
852 	case FASTTRAP_SEG_ES:
853 		sel = rp->r_es;
854 		break;
855 	case FASTTRAP_SEG_FS:
856 		sel = rp->r_fs;
857 		break;
858 	case FASTTRAP_SEG_GS:
859 		sel = rp->r_gs;
860 		break;
861 	case FASTTRAP_SEG_SS:
862 		sel = rp->r_ss;
863 		break;
864 	}
865 
866 	/*
867 	 * Make sure the given segment register specifies a user priority
868 	 * selector rather than a kernel selector.
869 	 */
870 	if (ISPL(sel) != SEL_UPL)
871 		return (-1);
872 
873 	ndx = IDXSEL(sel);
874 
875 	/*
876 	 * Check the bounds and grab the descriptor out of the specified
877 	 * descriptor table.
878 	 */
879 	if (ISLDT(sel)) {
880 #ifdef __i386__
881 		if (ndx > p->p_md.md_ldt->ldt_len)
882 			return (-1);
883 
884 		desc = (struct segment_descriptor *)
885 		    p->p_md.md_ldt[ndx].ldt_base;
886 #else
887 		if (ndx > max_ldt_segment)
888 			return (-1);
889 
890 		desc = (struct user_segment_descriptor *)
891 		    p->p_md.md_ldt[ndx].ldt_base;
892 #endif
893 
894 	} else {
895 		if (ndx >= NGDT)
896 			return (-1);
897 
898 #ifdef __i386__
899 		desc = &gdt[ndx].sd;
900 #else
901 		desc = &gdt[ndx];
902 #endif
903 	}
904 
905 	/*
906 	 * The descriptor must have user privilege level and it must be
907 	 * present in memory.
908 	 */
909 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
910 		return (-1);
911 
912 	type = desc->sd_type;
913 
914 	/*
915 	 * If the S bit in the type field is not set, this descriptor can
916 	 * only be used in system context.
917 	 */
918 	if ((type & 0x10) != 0x10)
919 		return (-1);
920 
921 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
922 
923 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
924 		/*
925 		 * The code/data bit and readable bit must both be set.
926 		 */
927 		if ((type & 0xa) != 0xa)
928 			return (-1);
929 
930 		if (*addr > limit)
931 			return (-1);
932 	} else {
933 		/*
934 		 * The code/data bit must be clear.
935 		 */
936 		if ((type & 0x8) != 0)
937 			return (-1);
938 
939 		/*
940 		 * If the expand-down bit is clear, we just check the limit as
941 		 * it would naturally be applied. Otherwise, we need to check
942 		 * that the address is the range [limit + 1 .. 0xffff] or
943 		 * [limit + 1 ... 0xffffffff] depending on if the default
944 		 * operand size bit is set.
945 		 */
946 		if ((type & 0x4) == 0) {
947 			if (*addr > limit)
948 				return (-1);
949 		} else if (desc->sd_def32) {
950 			if (*addr < limit + 1 || 0xffff < *addr)
951 				return (-1);
952 		} else {
953 			if (*addr < limit + 1 || 0xffffffff < *addr)
954 				return (-1);
955 		}
956 	}
957 
958 	*addr += USD_GETBASE(desc);
959 
960 	return (0);
961 }
962 
963 int
964 fasttrap_pid_probe(struct trapframe *tf)
965 {
966 	struct reg reg, *rp;
967 	proc_t *p = curproc, *pp;
968 	struct rm_priotracker tracker;
969 	uintptr_t pc;
970 	uintptr_t new_pc = 0;
971 	fasttrap_bucket_t *bucket;
972 #ifdef illumos
973 	kmutex_t *pid_mtx;
974 #endif
975 	fasttrap_tracepoint_t *tp, tp_local;
976 	pid_t pid;
977 	dtrace_icookie_t cookie;
978 	uint_t is_enabled = 0;
979 
980 	fill_frame_regs(tf, &reg);
981 	rp = &reg;
982 
983 	pc = rp->r_rip - 1;
984 
985 	/*
986 	 * It's possible that a user (in a veritable orgy of bad planning)
987 	 * could redirect this thread's flow of control before it reached the
988 	 * return probe fasttrap. In this case we need to kill the process
989 	 * since it's in a unrecoverable state.
990 	 */
991 	if (curthread->t_dtrace_step) {
992 		ASSERT(curthread->t_dtrace_on);
993 		fasttrap_sigtrap(p, curthread, pc);
994 		return (0);
995 	}
996 
997 	/*
998 	 * Clear all user tracing flags.
999 	 */
1000 	curthread->t_dtrace_ft = 0;
1001 	curthread->t_dtrace_pc = 0;
1002 	curthread->t_dtrace_npc = 0;
1003 	curthread->t_dtrace_scrpc = 0;
1004 	curthread->t_dtrace_astpc = 0;
1005 #ifdef __amd64
1006 	curthread->t_dtrace_regv = 0;
1007 #endif
1008 
1009 	/*
1010 	 * Treat a child created by a call to vfork(2) as if it were its
1011 	 * parent. We know that there's only one thread of control in such a
1012 	 * process: this one.
1013 	 */
1014 #ifdef illumos
1015 	while (p->p_flag & SVFORK) {
1016 		p = p->p_parent;
1017 	}
1018 
1019 	pid = p->p_pid;
1020 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1021 	mutex_enter(pid_mtx);
1022 #else
1023 	pp = p;
1024 	sx_slock(&proctree_lock);
1025 	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1026 		pp = pp->p_pptr;
1027 	pid = pp->p_pid;
1028 	sx_sunlock(&proctree_lock);
1029 	pp = NULL;
1030 
1031 	rm_rlock(&fasttrap_tp_lock, &tracker);
1032 #endif
1033 
1034 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1035 
1036 	/*
1037 	 * Lookup the tracepoint that the process just hit.
1038 	 */
1039 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1040 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1041 		    tp->ftt_proc->ftpc_acount != 0)
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1047 	 * been inserted without using the pid<pid> ioctl interface (see
1048 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1049 	 */
1050 	if (tp == NULL) {
1051 #ifdef illumos
1052 		mutex_exit(pid_mtx);
1053 #else
1054 		rm_runlock(&fasttrap_tp_lock, &tracker);
1055 #endif
1056 		return (-1);
1057 	}
1058 
1059 	/*
1060 	 * Set the program counter to the address of the traced instruction
1061 	 * so that it looks right in ustack() output.
1062 	 */
1063 	rp->r_rip = pc;
1064 
1065 	if (tp->ftt_ids != NULL) {
1066 		fasttrap_id_t *id;
1067 
1068 #ifdef __amd64
1069 		if (p->p_model == DATAMODEL_LP64) {
1070 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1071 				fasttrap_probe_t *probe = id->fti_probe;
1072 
1073 				if (id->fti_ptype == DTFTP_ENTRY) {
1074 					/*
1075 					 * We note that this was an entry
1076 					 * probe to help ustack() find the
1077 					 * first caller.
1078 					 */
1079 					cookie = dtrace_interrupt_disable();
1080 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1081 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1082 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1083 					    rp->r_r8);
1084 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1085 					dtrace_interrupt_enable(cookie);
1086 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1087 					/*
1088 					 * Note that in this case, we don't
1089 					 * call dtrace_probe() since it's only
1090 					 * an artificial probe meant to change
1091 					 * the flow of control so that it
1092 					 * encounters the true probe.
1093 					 */
1094 					is_enabled = 1;
1095 				} else if (probe->ftp_argmap == NULL) {
1096 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1097 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1098 					    rp->r_r8);
1099 				} else {
1100 					uintptr_t t[5];
1101 
1102 					fasttrap_usdt_args64(probe, rp,
1103 					    sizeof (t) / sizeof (t[0]), t);
1104 
1105 					dtrace_probe(probe->ftp_id, t[0], t[1],
1106 					    t[2], t[3], t[4]);
1107 				}
1108 			}
1109 		} else {
1110 #endif
1111 			uintptr_t s0, s1, s2, s3, s4, s5;
1112 			uint32_t *stack = (uint32_t *)rp->r_rsp;
1113 
1114 			/*
1115 			 * In 32-bit mode, all arguments are passed on the
1116 			 * stack. If this is a function entry probe, we need
1117 			 * to skip the first entry on the stack as it
1118 			 * represents the return address rather than a
1119 			 * parameter to the function.
1120 			 */
1121 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1122 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1123 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1124 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1125 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1126 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1127 
1128 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1129 				fasttrap_probe_t *probe = id->fti_probe;
1130 
1131 				if (id->fti_ptype == DTFTP_ENTRY) {
1132 					/*
1133 					 * We note that this was an entry
1134 					 * probe to help ustack() find the
1135 					 * first caller.
1136 					 */
1137 					cookie = dtrace_interrupt_disable();
1138 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1139 					dtrace_probe(probe->ftp_id, s1, s2,
1140 					    s3, s4, s5);
1141 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1142 					dtrace_interrupt_enable(cookie);
1143 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1144 					/*
1145 					 * Note that in this case, we don't
1146 					 * call dtrace_probe() since it's only
1147 					 * an artificial probe meant to change
1148 					 * the flow of control so that it
1149 					 * encounters the true probe.
1150 					 */
1151 					is_enabled = 1;
1152 				} else if (probe->ftp_argmap == NULL) {
1153 					dtrace_probe(probe->ftp_id, s0, s1,
1154 					    s2, s3, s4);
1155 				} else {
1156 					uint32_t t[5];
1157 
1158 					fasttrap_usdt_args32(probe, rp,
1159 					    sizeof (t) / sizeof (t[0]), t);
1160 
1161 					dtrace_probe(probe->ftp_id, t[0], t[1],
1162 					    t[2], t[3], t[4]);
1163 				}
1164 			}
1165 #ifdef __amd64
1166 		}
1167 #endif
1168 	}
1169 
1170 	/*
1171 	 * We're about to do a bunch of work so we cache a local copy of
1172 	 * the tracepoint to emulate the instruction, and then find the
1173 	 * tracepoint again later if we need to light up any return probes.
1174 	 */
1175 	tp_local = *tp;
1176 #ifdef illumos
1177 	mutex_exit(pid_mtx);
1178 #else
1179 	rm_runlock(&fasttrap_tp_lock, &tracker);
1180 #endif
1181 	tp = &tp_local;
1182 
1183 	/*
1184 	 * Set the program counter to appear as though the traced instruction
1185 	 * had completely executed. This ensures that fasttrap_getreg() will
1186 	 * report the expected value for REG_RIP.
1187 	 */
1188 	rp->r_rip = pc + tp->ftt_size;
1189 
1190 	/*
1191 	 * If there's an is-enabled probe connected to this tracepoint it
1192 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1193 	 * instruction that was placed there by DTrace when the binary was
1194 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1195 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1196 	 * emulation logic since we know the inevitable result. It's possible
1197 	 * that a user could construct a scenario where the 'is-enabled'
1198 	 * probe was on some other instruction, but that would be a rather
1199 	 * exotic way to shoot oneself in the foot.
1200 	 */
1201 	if (is_enabled) {
1202 		rp->r_rax = 1;
1203 		new_pc = rp->r_rip;
1204 		goto done;
1205 	}
1206 
1207 	/*
1208 	 * We emulate certain types of instructions to ensure correctness
1209 	 * (in the case of position dependent instructions) or optimize
1210 	 * common cases. The rest we have the thread execute back in user-
1211 	 * land.
1212 	 */
1213 	switch (tp->ftt_type) {
1214 	case FASTTRAP_T_RET:
1215 	case FASTTRAP_T_RET16:
1216 	{
1217 		uintptr_t dst = 0;
1218 		uintptr_t addr = 0;
1219 		int ret = 0;
1220 
1221 		/*
1222 		 * We have to emulate _every_ facet of the behavior of a ret
1223 		 * instruction including what happens if the load from %esp
1224 		 * fails; in that case, we send a SIGSEGV.
1225 		 */
1226 #ifdef __amd64
1227 		if (p->p_model == DATAMODEL_NATIVE) {
1228 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1229 			addr = rp->r_rsp + sizeof (uintptr_t);
1230 		} else {
1231 #endif
1232 			uint32_t dst32;
1233 			ret = dst32 = fasttrap_fuword32((void *)rp->r_rsp);
1234 			dst = dst32;
1235 			addr = rp->r_rsp + sizeof (uint32_t);
1236 #ifdef __amd64
1237 		}
1238 #endif
1239 
1240 		if (ret == -1) {
1241 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1242 			new_pc = pc;
1243 			break;
1244 		}
1245 
1246 		if (tp->ftt_type == FASTTRAP_T_RET16)
1247 			addr += tp->ftt_dest;
1248 
1249 		rp->r_rsp = addr;
1250 		new_pc = dst;
1251 		break;
1252 	}
1253 
1254 	case FASTTRAP_T_JCC:
1255 	{
1256 		uint_t taken = 0;
1257 
1258 		switch (tp->ftt_code) {
1259 		case FASTTRAP_JO:
1260 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1261 			break;
1262 		case FASTTRAP_JNO:
1263 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1264 			break;
1265 		case FASTTRAP_JB:
1266 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1267 			break;
1268 		case FASTTRAP_JAE:
1269 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1270 			break;
1271 		case FASTTRAP_JE:
1272 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1273 			break;
1274 		case FASTTRAP_JNE:
1275 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1276 			break;
1277 		case FASTTRAP_JBE:
1278 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1279 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1280 			break;
1281 		case FASTTRAP_JA:
1282 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1283 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1284 			break;
1285 		case FASTTRAP_JS:
1286 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1287 			break;
1288 		case FASTTRAP_JNS:
1289 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1290 			break;
1291 		case FASTTRAP_JP:
1292 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1293 			break;
1294 		case FASTTRAP_JNP:
1295 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1296 			break;
1297 		case FASTTRAP_JL:
1298 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1299 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1300 			break;
1301 		case FASTTRAP_JGE:
1302 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1303 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1304 			break;
1305 		case FASTTRAP_JLE:
1306 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1307 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1308 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1309 			break;
1310 		case FASTTRAP_JG:
1311 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1312 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1313 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1314 			break;
1315 
1316 		}
1317 
1318 		if (taken)
1319 			new_pc = tp->ftt_dest;
1320 		else
1321 			new_pc = pc + tp->ftt_size;
1322 		break;
1323 	}
1324 
1325 	case FASTTRAP_T_LOOP:
1326 	{
1327 		uint_t taken = 0;
1328 #ifdef __amd64
1329 		greg_t cx = rp->r_rcx--;
1330 #else
1331 		greg_t cx = rp->r_ecx--;
1332 #endif
1333 
1334 		switch (tp->ftt_code) {
1335 		case FASTTRAP_LOOPNZ:
1336 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1337 			    cx != 0;
1338 			break;
1339 		case FASTTRAP_LOOPZ:
1340 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1341 			    cx != 0;
1342 			break;
1343 		case FASTTRAP_LOOP:
1344 			taken = (cx != 0);
1345 			break;
1346 		}
1347 
1348 		if (taken)
1349 			new_pc = tp->ftt_dest;
1350 		else
1351 			new_pc = pc + tp->ftt_size;
1352 		break;
1353 	}
1354 
1355 	case FASTTRAP_T_JCXZ:
1356 	{
1357 #ifdef __amd64
1358 		greg_t cx = rp->r_rcx;
1359 #else
1360 		greg_t cx = rp->r_ecx;
1361 #endif
1362 
1363 		if (cx == 0)
1364 			new_pc = tp->ftt_dest;
1365 		else
1366 			new_pc = pc + tp->ftt_size;
1367 		break;
1368 	}
1369 
1370 	case FASTTRAP_T_PUSHL_EBP:
1371 	{
1372 		int ret = 0;
1373 
1374 #ifdef __amd64
1375 		if (p->p_model == DATAMODEL_NATIVE) {
1376 			rp->r_rsp -= sizeof (uintptr_t);
1377 			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1378 		} else {
1379 #endif
1380 			rp->r_rsp -= sizeof (uint32_t);
1381 			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1382 #ifdef __amd64
1383 		}
1384 #endif
1385 
1386 		if (ret == -1) {
1387 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1388 			new_pc = pc;
1389 			break;
1390 		}
1391 
1392 		new_pc = pc + tp->ftt_size;
1393 		break;
1394 	}
1395 
1396 	case FASTTRAP_T_NOP:
1397 		new_pc = pc + tp->ftt_size;
1398 		break;
1399 
1400 	case FASTTRAP_T_JMP:
1401 	case FASTTRAP_T_CALL:
1402 		if (tp->ftt_code == 0) {
1403 			new_pc = tp->ftt_dest;
1404 		} else {
1405 			uintptr_t value, addr = tp->ftt_dest;
1406 
1407 			if (tp->ftt_base != FASTTRAP_NOREG)
1408 				addr += fasttrap_getreg(rp, tp->ftt_base);
1409 			if (tp->ftt_index != FASTTRAP_NOREG)
1410 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1411 				    tp->ftt_scale;
1412 
1413 			if (tp->ftt_code == 1) {
1414 				/*
1415 				 * If there's a segment prefix for this
1416 				 * instruction, we'll need to check permissions
1417 				 * and bounds on the given selector, and adjust
1418 				 * the address accordingly.
1419 				 */
1420 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1421 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1422 					fasttrap_sigsegv(p, curthread, addr);
1423 					new_pc = pc;
1424 					break;
1425 				}
1426 
1427 #ifdef __amd64
1428 				if (p->p_model == DATAMODEL_NATIVE) {
1429 #endif
1430 					if ((value = fasttrap_fulword((void *)addr))
1431 					     == -1) {
1432 						fasttrap_sigsegv(p, curthread,
1433 						    addr);
1434 						new_pc = pc;
1435 						break;
1436 					}
1437 					new_pc = value;
1438 #ifdef __amd64
1439 				} else {
1440 					uint32_t value32;
1441 					addr = (uintptr_t)(uint32_t)addr;
1442 					if ((value32 = fasttrap_fuword32((void *)addr))
1443 					    == -1) {
1444 						fasttrap_sigsegv(p, curthread,
1445 						    addr);
1446 						new_pc = pc;
1447 						break;
1448 					}
1449 					new_pc = value32;
1450 				}
1451 #endif
1452 			} else {
1453 				new_pc = addr;
1454 			}
1455 		}
1456 
1457 		/*
1458 		 * If this is a call instruction, we need to push the return
1459 		 * address onto the stack. If this fails, we send the process
1460 		 * a SIGSEGV and reset the pc to emulate what would happen if
1461 		 * this instruction weren't traced.
1462 		 */
1463 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1464 			int ret = 0;
1465 			uintptr_t addr = 0, pcps;
1466 #ifdef __amd64
1467 			if (p->p_model == DATAMODEL_NATIVE) {
1468 				addr = rp->r_rsp - sizeof (uintptr_t);
1469 				pcps = pc + tp->ftt_size;
1470 				ret = fasttrap_sulword((void *)addr, pcps);
1471 			} else {
1472 #endif
1473 				addr = rp->r_rsp - sizeof (uint32_t);
1474 				pcps = (uint32_t)(pc + tp->ftt_size);
1475 				ret = fasttrap_suword32((void *)addr, pcps);
1476 #ifdef __amd64
1477 			}
1478 #endif
1479 
1480 			if (ret == -1) {
1481 				fasttrap_sigsegv(p, curthread, addr);
1482 				new_pc = pc;
1483 				break;
1484 			}
1485 
1486 			rp->r_rsp = addr;
1487 		}
1488 
1489 		break;
1490 
1491 	case FASTTRAP_T_COMMON:
1492 	{
1493 		uintptr_t addr;
1494 #if defined(__amd64)
1495 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1496 #else
1497 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1498 #endif
1499 		uint_t i = 0;
1500 #ifdef illumos
1501 		klwp_t *lwp = ttolwp(curthread);
1502 
1503 		/*
1504 		 * Compute the address of the ulwp_t and step over the
1505 		 * ul_self pointer. The method used to store the user-land
1506 		 * thread pointer is very different on 32- and 64-bit
1507 		 * kernels.
1508 		 */
1509 #if defined(__amd64)
1510 		if (p->p_model == DATAMODEL_LP64) {
1511 			addr = lwp->lwp_pcb.pcb_fsbase;
1512 			addr += sizeof (void *);
1513 		} else {
1514 			addr = lwp->lwp_pcb.pcb_gsbase;
1515 			addr += sizeof (caddr32_t);
1516 		}
1517 #else
1518 		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1519 		addr += sizeof (void *);
1520 #endif
1521 #else	/* !illumos */
1522 		fasttrap_scrspace_t *scrspace;
1523 		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1524 		if (scrspace == NULL) {
1525 			/*
1526 			 * We failed to allocate scratch space for this thread.
1527 			 * Try to write the original instruction back out and
1528 			 * reset the pc.
1529 			 */
1530 			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1531 			    tp->ftt_size))
1532 				fasttrap_sigtrap(p, curthread, pc);
1533 			new_pc = pc;
1534 			break;
1535 		}
1536 		addr = scrspace->ftss_addr;
1537 #endif /* illumos */
1538 
1539 		/*
1540 		 * Generic Instruction Tracing
1541 		 * ---------------------------
1542 		 *
1543 		 * This is the layout of the scratch space in the user-land
1544 		 * thread structure for our generated instructions.
1545 		 *
1546 		 *	32-bit mode			bytes
1547 		 *	------------------------	-----
1548 		 * a:	<original instruction>		<= 15
1549 		 *	jmp	<pc + tp->ftt_size>	    5
1550 		 * b:	<original instruction>		<= 15
1551 		 *	int	T_DTRACE_RET		    2
1552 		 *					-----
1553 		 *					<= 37
1554 		 *
1555 		 *	64-bit mode			bytes
1556 		 *	------------------------	-----
1557 		 * a:	<original instruction>		<= 15
1558 		 *	jmp	0(%rip)			    6
1559 		 *	<pc + tp->ftt_size>		    8
1560 		 * b:	<original instruction>		<= 15
1561 		 * 	int	T_DTRACE_RET		    2
1562 		 * 					-----
1563 		 * 					<= 46
1564 		 *
1565 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1566 		 * to b. If we encounter a signal on the way out of the
1567 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1568 		 * so that we execute the original instruction and re-enter
1569 		 * the kernel rather than redirecting to the next instruction.
1570 		 *
1571 		 * If there are return probes (so we know that we're going to
1572 		 * need to reenter the kernel after executing the original
1573 		 * instruction), the scratch space will just contain the
1574 		 * original instruction followed by an interrupt -- the same
1575 		 * data as at b.
1576 		 *
1577 		 * %rip-relative Addressing
1578 		 * ------------------------
1579 		 *
1580 		 * There's a further complication in 64-bit mode due to %rip-
1581 		 * relative addressing. While this is clearly a beneficial
1582 		 * architectural decision for position independent code, it's
1583 		 * hard not to see it as a personal attack against the pid
1584 		 * provider since before there was a relatively small set of
1585 		 * instructions to emulate; with %rip-relative addressing,
1586 		 * almost every instruction can potentially depend on the
1587 		 * address at which it's executed. Rather than emulating
1588 		 * the broad spectrum of instructions that can now be
1589 		 * position dependent, we emulate jumps and others as in
1590 		 * 32-bit mode, and take a different tack for instructions
1591 		 * using %rip-relative addressing.
1592 		 *
1593 		 * For every instruction that uses the ModRM byte, the
1594 		 * in-kernel disassembler reports its location. We use the
1595 		 * ModRM byte to identify that an instruction uses
1596 		 * %rip-relative addressing and to see what other registers
1597 		 * the instruction uses. To emulate those instructions,
1598 		 * we modify the instruction to be %rax-relative rather than
1599 		 * %rip-relative (or %rcx-relative if the instruction uses
1600 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1601 		 * we don't have to rewrite the REX prefix). We then load
1602 		 * the value that %rip would have been into the scratch
1603 		 * register and generate an instruction to reset the scratch
1604 		 * register back to its original value. The instruction
1605 		 * sequence looks like this:
1606 		 *
1607 		 *	64-mode %rip-relative		bytes
1608 		 *	------------------------	-----
1609 		 * a:	<modified instruction>		<= 15
1610 		 *	movq	$<value>, %<scratch>	    6
1611 		 *	jmp	0(%rip)			    6
1612 		 *	<pc + tp->ftt_size>		    8
1613 		 * b:	<modified instruction>  	<= 15
1614 		 * 	int	T_DTRACE_RET		    2
1615 		 * 					-----
1616 		 *					   52
1617 		 *
1618 		 * We set curthread->t_dtrace_regv so that upon receiving
1619 		 * a signal we can reset the value of the scratch register.
1620 		 */
1621 
1622 		ASSERT(tp->ftt_size <= FASTTRAP_MAX_INSTR_SIZE);
1623 
1624 		curthread->t_dtrace_scrpc = addr;
1625 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1626 		i += tp->ftt_size;
1627 
1628 #ifdef __amd64
1629 		if (tp->ftt_ripmode != 0) {
1630 			greg_t *reg = NULL;
1631 
1632 			ASSERT(p->p_model == DATAMODEL_LP64);
1633 			ASSERT(tp->ftt_ripmode &
1634 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1635 
1636 			/*
1637 			 * If this was a %rip-relative instruction, we change
1638 			 * it to be either a %rax- or %rcx-relative
1639 			 * instruction (depending on whether those registers
1640 			 * are used as another operand; or %r8- or %r9-
1641 			 * relative depending on the value of REX.B). We then
1642 			 * set that register and generate a movq instruction
1643 			 * to reset the value.
1644 			 */
1645 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1646 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1647 			else
1648 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1649 
1650 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1651 				scratch[i++] = FASTTRAP_MOV_EAX;
1652 			else
1653 				scratch[i++] = FASTTRAP_MOV_ECX;
1654 
1655 			switch (tp->ftt_ripmode) {
1656 			case FASTTRAP_RIP_1:
1657 				reg = &rp->r_rax;
1658 				curthread->t_dtrace_reg = REG_RAX;
1659 				break;
1660 			case FASTTRAP_RIP_2:
1661 				reg = &rp->r_rcx;
1662 				curthread->t_dtrace_reg = REG_RCX;
1663 				break;
1664 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1665 				reg = &rp->r_r8;
1666 				curthread->t_dtrace_reg = REG_R8;
1667 				break;
1668 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1669 				reg = &rp->r_r9;
1670 				curthread->t_dtrace_reg = REG_R9;
1671 				break;
1672 			}
1673 
1674 			/* LINTED - alignment */
1675 			*(uint64_t *)&scratch[i] = *reg;
1676 			curthread->t_dtrace_regv = *reg;
1677 			*reg = pc + tp->ftt_size;
1678 			i += sizeof (uint64_t);
1679 		}
1680 #endif
1681 
1682 		/*
1683 		 * Generate the branch instruction to what would have
1684 		 * normally been the subsequent instruction. In 32-bit mode,
1685 		 * this is just a relative branch; in 64-bit mode this is a
1686 		 * %rip-relative branch that loads the 64-bit pc value
1687 		 * immediately after the jmp instruction.
1688 		 */
1689 #ifdef __amd64
1690 		if (p->p_model == DATAMODEL_LP64) {
1691 			scratch[i++] = FASTTRAP_GROUP5_OP;
1692 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1693 			/* LINTED - alignment */
1694 			*(uint32_t *)&scratch[i] = 0;
1695 			i += sizeof (uint32_t);
1696 			/* LINTED - alignment */
1697 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1698 			i += sizeof (uint64_t);
1699 		} else {
1700 #endif
1701 			/*
1702 			 * Set up the jmp to the next instruction; note that
1703 			 * the size of the traced instruction cancels out.
1704 			 */
1705 			scratch[i++] = FASTTRAP_JMP32;
1706 			/* LINTED - alignment */
1707 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1708 			i += sizeof (uint32_t);
1709 #ifdef __amd64
1710 		}
1711 #endif
1712 
1713 		curthread->t_dtrace_astpc = addr + i;
1714 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1715 		i += tp->ftt_size;
1716 		scratch[i++] = FASTTRAP_INT;
1717 		scratch[i++] = T_DTRACE_RET;
1718 
1719 		ASSERT(i <= sizeof (scratch));
1720 
1721 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1722 			fasttrap_sigtrap(p, curthread, pc);
1723 			new_pc = pc;
1724 			break;
1725 		}
1726 		if (tp->ftt_retids != NULL) {
1727 			curthread->t_dtrace_step = 1;
1728 			curthread->t_dtrace_ret = 1;
1729 			new_pc = curthread->t_dtrace_astpc;
1730 		} else {
1731 			new_pc = curthread->t_dtrace_scrpc;
1732 		}
1733 
1734 		curthread->t_dtrace_pc = pc;
1735 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1736 		curthread->t_dtrace_on = 1;
1737 		break;
1738 	}
1739 
1740 	default:
1741 		panic("fasttrap: mishandled an instruction");
1742 	}
1743 
1744 done:
1745 	/*
1746 	 * If there were no return probes when we first found the tracepoint,
1747 	 * we should feel no obligation to honor any return probes that were
1748 	 * subsequently enabled -- they'll just have to wait until the next
1749 	 * time around.
1750 	 */
1751 	if (tp->ftt_retids != NULL) {
1752 		/*
1753 		 * We need to wait until the results of the instruction are
1754 		 * apparent before invoking any return probes. If this
1755 		 * instruction was emulated we can just call
1756 		 * fasttrap_return_common(); if it needs to be executed, we
1757 		 * need to wait until the user thread returns to the kernel.
1758 		 */
1759 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1760 			/*
1761 			 * Set the program counter to the address of the traced
1762 			 * instruction so that it looks right in ustack()
1763 			 * output. We had previously set it to the end of the
1764 			 * instruction to simplify %rip-relative addressing.
1765 			 */
1766 			rp->r_rip = pc;
1767 
1768 			fasttrap_return_common(rp, pc, pid, new_pc);
1769 		} else {
1770 			ASSERT(curthread->t_dtrace_ret != 0);
1771 			ASSERT(curthread->t_dtrace_pc == pc);
1772 			ASSERT(curthread->t_dtrace_scrpc != 0);
1773 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1774 		}
1775 	}
1776 
1777 	rp->r_rip = new_pc;
1778 
1779 #ifndef illumos
1780 	PROC_LOCK(p);
1781 	proc_write_regs(curthread, rp);
1782 	PROC_UNLOCK(p);
1783 #endif
1784 
1785 	return (0);
1786 }
1787 
1788 int
1789 fasttrap_return_probe(struct trapframe *tf)
1790 {
1791 	struct reg reg, *rp;
1792 	proc_t *p = curproc;
1793 	uintptr_t pc = curthread->t_dtrace_pc;
1794 	uintptr_t npc = curthread->t_dtrace_npc;
1795 
1796 	fill_frame_regs(tf, &reg);
1797 	rp = &reg;
1798 
1799 	curthread->t_dtrace_pc = 0;
1800 	curthread->t_dtrace_npc = 0;
1801 	curthread->t_dtrace_scrpc = 0;
1802 	curthread->t_dtrace_astpc = 0;
1803 
1804 #ifdef illumos
1805 	/*
1806 	 * Treat a child created by a call to vfork(2) as if it were its
1807 	 * parent. We know that there's only one thread of control in such a
1808 	 * process: this one.
1809 	 */
1810 	while (p->p_flag & SVFORK) {
1811 		p = p->p_parent;
1812 	}
1813 #endif
1814 
1815 	/*
1816 	 * We set rp->r_rip to the address of the traced instruction so
1817 	 * that it appears to dtrace_probe() that we're on the original
1818 	 * instruction.
1819 	 */
1820 	rp->r_rip = pc;
1821 
1822 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1823 
1824 	return (0);
1825 }
1826 
1827 /*ARGSUSED*/
1828 uint64_t
1829 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1830     int aframes)
1831 {
1832 	struct reg r;
1833 
1834 	fill_regs(curthread, &r);
1835 
1836 	return (fasttrap_anarg(&r, 1, argno));
1837 }
1838 
1839 /*ARGSUSED*/
1840 uint64_t
1841 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1842     int aframes)
1843 {
1844 	struct reg r;
1845 
1846 	fill_regs(curthread, &r);
1847 
1848 	return (fasttrap_anarg(&r, 0, argno));
1849 }
1850 
1851 static ulong_t
1852 fasttrap_getreg(struct reg *rp, uint_t reg)
1853 {
1854 #ifdef __amd64
1855 	switch (reg) {
1856 	case REG_R15:		return (rp->r_r15);
1857 	case REG_R14:		return (rp->r_r14);
1858 	case REG_R13:		return (rp->r_r13);
1859 	case REG_R12:		return (rp->r_r12);
1860 	case REG_R11:		return (rp->r_r11);
1861 	case REG_R10:		return (rp->r_r10);
1862 	case REG_R9:		return (rp->r_r9);
1863 	case REG_R8:		return (rp->r_r8);
1864 	case REG_RDI:		return (rp->r_rdi);
1865 	case REG_RSI:		return (rp->r_rsi);
1866 	case REG_RBP:		return (rp->r_rbp);
1867 	case REG_RBX:		return (rp->r_rbx);
1868 	case REG_RDX:		return (rp->r_rdx);
1869 	case REG_RCX:		return (rp->r_rcx);
1870 	case REG_RAX:		return (rp->r_rax);
1871 	case REG_TRAPNO:	return (rp->r_trapno);
1872 	case REG_ERR:		return (rp->r_err);
1873 	case REG_RIP:		return (rp->r_rip);
1874 	case REG_CS:		return (rp->r_cs);
1875 	case REG_RFL:		return (rp->r_rflags);
1876 	case REG_RSP:		return (rp->r_rsp);
1877 	case REG_SS:		return (rp->r_ss);
1878 	case REG_FS:		return (rp->r_fs);
1879 	case REG_GS:		return (rp->r_gs);
1880 	case REG_DS:		return (rp->r_ds);
1881 	case REG_ES:		return (rp->r_es);
1882 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1883 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1884 	}
1885 
1886 	panic("dtrace: illegal register constant");
1887 	/*NOTREACHED*/
1888 #else
1889 #define _NGREG 19
1890 	if (reg >= _NGREG)
1891 		panic("dtrace: illegal register constant");
1892 
1893 	return (((greg_t *)&rp->r_gs)[reg]);
1894 #endif
1895 }
1896