xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision 4f1f4356f3012928b463f9ef1710fb908e48b1e2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  *
23  * $FreeBSD$
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #if defined(sun)
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 #endif
34 
35 #include <sys/fasttrap_isa.h>
36 #include <sys/fasttrap_impl.h>
37 #include <sys/dtrace.h>
38 #include <sys/dtrace_impl.h>
39 #include <sys/cmn_err.h>
40 #if defined(sun)
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/segments.h>
44 #include <sys/x86_archext.h>
45 #else
46 #include <cddl/dev/dtrace/dtrace_cddl.h>
47 #include <sys/types.h>
48 #include <sys/proc.h>
49 #include <sys/dtrace_bsd.h>
50 #include <cddl/dev/dtrace/i386/regset.h>
51 #include <machine/segments.h>
52 #include <machine/reg.h>
53 #include <machine/pcb.h>
54 #endif
55 #include <sys/sysmacros.h>
56 #if defined(sun)
57 #include <sys/trap.h>
58 #include <sys/archsystm.h>
59 #else
60 #include <sys/ptrace.h>
61 
62 static int
63 proc_ops(int op, proc_t *p, void *kaddr, off_t uaddr, size_t len)
64 {
65 	struct iovec iov;
66 	struct uio uio;
67 
68 	iov.iov_base = kaddr;
69 	iov.iov_len = len;
70 	uio.uio_offset = uaddr;
71 	uio.uio_iov = &iov;
72 	uio.uio_resid = len;
73 	uio.uio_iovcnt = 1;
74 	uio.uio_segflg = UIO_SYSSPACE;
75 	uio.uio_td = curthread;
76 	uio.uio_rw = op;
77 	_PHOLD(p);
78 	PROC_UNLOCK(p);
79 	if (proc_rwmem(p, &uio) < 0) {
80 		PROC_LOCK(p);
81 		_PRELE(p);
82 		return (-1);
83 	}
84 	PROC_LOCK(p);
85 	_PRELE(p);
86 
87 	return (0);
88 }
89 
90 static int
91 uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
92 {
93 
94 	return (proc_ops(UIO_READ, p, kaddr, uaddr, len));
95 }
96 
97 static int
98 uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
99 {
100 
101 	return (proc_ops(UIO_WRITE, p, kaddr, uaddr, len));
102 }
103 #endif
104 #ifdef __i386__
105 #define	r_rax	r_eax
106 #define	r_rbx	r_ebx
107 #define	r_rip	r_eip
108 #define	r_rflags r_eflags
109 #define	r_rsp	r_esp
110 #endif
111 
112 /*
113  * Lossless User-Land Tracing on x86
114  * ---------------------------------
115  *
116  * The execution of most instructions is not dependent on the address; for
117  * these instructions it is sufficient to copy them into the user process's
118  * address space and execute them. To effectively single-step an instruction
119  * in user-land, we copy out the following sequence of instructions to scratch
120  * space in the user thread's ulwp_t structure.
121  *
122  * We then set the program counter (%eip or %rip) to point to this scratch
123  * space. Once execution resumes, the original instruction is executed and
124  * then control flow is redirected to what was originally the subsequent
125  * instruction. If the kernel attemps to deliver a signal while single-
126  * stepping, the signal is deferred and the program counter is moved into the
127  * second sequence of instructions. The second sequence ends in a trap into
128  * the kernel where the deferred signal is then properly handled and delivered.
129  *
130  * For instructions whose execute is position dependent, we perform simple
131  * emulation. These instructions are limited to control transfer
132  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
133  * of %rip-relative addressing that means that almost any instruction can be
134  * position dependent. For all the details on how we emulate generic
135  * instructions included %rip-relative instructions, see the code in
136  * fasttrap_pid_probe() below where we handle instructions of type
137  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
138  */
139 
140 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
141 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
142 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
143 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
144 
145 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
146 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
147 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
148 
149 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
150 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
151 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
152 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
153 #define	FASTTRAP_REX(w, r, x, b)	\
154 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
155 
156 /*
157  * Single-byte op-codes.
158  */
159 #define	FASTTRAP_PUSHL_EBP	0x55
160 
161 #define	FASTTRAP_JO		0x70
162 #define	FASTTRAP_JNO		0x71
163 #define	FASTTRAP_JB		0x72
164 #define	FASTTRAP_JAE		0x73
165 #define	FASTTRAP_JE		0x74
166 #define	FASTTRAP_JNE		0x75
167 #define	FASTTRAP_JBE		0x76
168 #define	FASTTRAP_JA		0x77
169 #define	FASTTRAP_JS		0x78
170 #define	FASTTRAP_JNS		0x79
171 #define	FASTTRAP_JP		0x7a
172 #define	FASTTRAP_JNP		0x7b
173 #define	FASTTRAP_JL		0x7c
174 #define	FASTTRAP_JGE		0x7d
175 #define	FASTTRAP_JLE		0x7e
176 #define	FASTTRAP_JG		0x7f
177 
178 #define	FASTTRAP_NOP		0x90
179 
180 #define	FASTTRAP_MOV_EAX	0xb8
181 #define	FASTTRAP_MOV_ECX	0xb9
182 
183 #define	FASTTRAP_RET16		0xc2
184 #define	FASTTRAP_RET		0xc3
185 
186 #define	FASTTRAP_LOOPNZ		0xe0
187 #define	FASTTRAP_LOOPZ		0xe1
188 #define	FASTTRAP_LOOP		0xe2
189 #define	FASTTRAP_JCXZ		0xe3
190 
191 #define	FASTTRAP_CALL		0xe8
192 #define	FASTTRAP_JMP32		0xe9
193 #define	FASTTRAP_JMP8		0xeb
194 
195 #define	FASTTRAP_INT3		0xcc
196 #define	FASTTRAP_INT		0xcd
197 
198 #define	FASTTRAP_2_BYTE_OP	0x0f
199 #define	FASTTRAP_GROUP5_OP	0xff
200 
201 /*
202  * Two-byte op-codes (second byte only).
203  */
204 #define	FASTTRAP_0F_JO		0x80
205 #define	FASTTRAP_0F_JNO		0x81
206 #define	FASTTRAP_0F_JB		0x82
207 #define	FASTTRAP_0F_JAE		0x83
208 #define	FASTTRAP_0F_JE		0x84
209 #define	FASTTRAP_0F_JNE		0x85
210 #define	FASTTRAP_0F_JBE		0x86
211 #define	FASTTRAP_0F_JA		0x87
212 #define	FASTTRAP_0F_JS		0x88
213 #define	FASTTRAP_0F_JNS		0x89
214 #define	FASTTRAP_0F_JP		0x8a
215 #define	FASTTRAP_0F_JNP		0x8b
216 #define	FASTTRAP_0F_JL		0x8c
217 #define	FASTTRAP_0F_JGE		0x8d
218 #define	FASTTRAP_0F_JLE		0x8e
219 #define	FASTTRAP_0F_JG		0x8f
220 
221 #define	FASTTRAP_EFLAGS_OF	0x800
222 #define	FASTTRAP_EFLAGS_DF	0x400
223 #define	FASTTRAP_EFLAGS_SF	0x080
224 #define	FASTTRAP_EFLAGS_ZF	0x040
225 #define	FASTTRAP_EFLAGS_AF	0x010
226 #define	FASTTRAP_EFLAGS_PF	0x004
227 #define	FASTTRAP_EFLAGS_CF	0x001
228 
229 /*
230  * Instruction prefixes.
231  */
232 #define	FASTTRAP_PREFIX_OPERAND	0x66
233 #define	FASTTRAP_PREFIX_ADDRESS	0x67
234 #define	FASTTRAP_PREFIX_CS	0x2E
235 #define	FASTTRAP_PREFIX_DS	0x3E
236 #define	FASTTRAP_PREFIX_ES	0x26
237 #define	FASTTRAP_PREFIX_FS	0x64
238 #define	FASTTRAP_PREFIX_GS	0x65
239 #define	FASTTRAP_PREFIX_SS	0x36
240 #define	FASTTRAP_PREFIX_LOCK	0xF0
241 #define	FASTTRAP_PREFIX_REP	0xF3
242 #define	FASTTRAP_PREFIX_REPNE	0xF2
243 
244 #define	FASTTRAP_NOREG	0xff
245 
246 /*
247  * Map between instruction register encodings and the kernel constants which
248  * correspond to indicies into struct regs.
249  */
250 #ifdef __amd64
251 static const uint8_t regmap[16] = {
252 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
253 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
254 };
255 #else
256 static const uint8_t regmap[8] = {
257 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
258 };
259 #endif
260 
261 static ulong_t fasttrap_getreg(struct reg *, uint_t);
262 
263 static uint64_t
264 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
265 {
266 	uint64_t value = 0;
267 	int shift = function_entry ? 1 : 0;
268 
269 #ifdef __amd64
270 	if (curproc->p_model == DATAMODEL_LP64) {
271 		uintptr_t *stack;
272 
273 		/*
274 		 * In 64-bit mode, the first six arguments are stored in
275 		 * registers.
276 		 */
277 		if (argno < 6)
278 			return ((&rp->r_rdi)[argno]);
279 
280 		stack = (uintptr_t *)rp->r_rsp;
281 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
282 		value = dtrace_fulword(&stack[argno - 6 + shift]);
283 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
284 	} else {
285 #endif
286 #ifdef __i386
287 		uint32_t *stack = (uint32_t *)rp->r_esp;
288 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
289 		value = dtrace_fuword32(&stack[argno + shift]);
290 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
291 #endif
292 #ifdef __amd64
293 	}
294 #endif
295 
296 	return (value);
297 }
298 
299 /*ARGSUSED*/
300 int
301 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
302     fasttrap_probe_type_t type)
303 {
304 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
305 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
306 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
307 	uint_t start = 0;
308 	int rmindex, size;
309 	uint8_t seg, rex = 0;
310 
311 	/*
312 	 * Read the instruction at the given address out of the process's
313 	 * address space. We don't have to worry about a debugger
314 	 * changing this instruction before we overwrite it with our trap
315 	 * instruction since P_PR_LOCK is set. Since instructions can span
316 	 * pages, we potentially read the instruction in two parts. If the
317 	 * second part fails, we just zero out that part of the instruction.
318 	 */
319 	if (uread(p, &instr[0], first, pc) != 0)
320 		return (-1);
321 	if (len > first &&
322 	    uread(p, &instr[first], len - first, pc + first) != 0) {
323 		bzero(&instr[first], len - first);
324 		len = first;
325 	}
326 
327 	/*
328 	 * If the disassembly fails, then we have a malformed instruction.
329 	 */
330 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
331 		return (-1);
332 
333 	/*
334 	 * Make sure the disassembler isn't completely broken.
335 	 */
336 	ASSERT(-1 <= rmindex && rmindex < size);
337 
338 	/*
339 	 * If the computed size is greater than the number of bytes read,
340 	 * then it was a malformed instruction possibly because it fell on a
341 	 * page boundary and the subsequent page was missing or because of
342 	 * some malicious user.
343 	 */
344 	if (size > len)
345 		return (-1);
346 
347 	tp->ftt_size = (uint8_t)size;
348 	tp->ftt_segment = FASTTRAP_SEG_NONE;
349 
350 	/*
351 	 * Find the start of the instruction's opcode by processing any
352 	 * legacy prefixes.
353 	 */
354 	for (;;) {
355 		seg = 0;
356 		switch (instr[start]) {
357 		case FASTTRAP_PREFIX_SS:
358 			seg++;
359 			/*FALLTHRU*/
360 		case FASTTRAP_PREFIX_GS:
361 			seg++;
362 			/*FALLTHRU*/
363 		case FASTTRAP_PREFIX_FS:
364 			seg++;
365 			/*FALLTHRU*/
366 		case FASTTRAP_PREFIX_ES:
367 			seg++;
368 			/*FALLTHRU*/
369 		case FASTTRAP_PREFIX_DS:
370 			seg++;
371 			/*FALLTHRU*/
372 		case FASTTRAP_PREFIX_CS:
373 			seg++;
374 			/*FALLTHRU*/
375 		case FASTTRAP_PREFIX_OPERAND:
376 		case FASTTRAP_PREFIX_ADDRESS:
377 		case FASTTRAP_PREFIX_LOCK:
378 		case FASTTRAP_PREFIX_REP:
379 		case FASTTRAP_PREFIX_REPNE:
380 			if (seg != 0) {
381 				/*
382 				 * It's illegal for an instruction to specify
383 				 * two segment prefixes -- give up on this
384 				 * illegal instruction.
385 				 */
386 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
387 					return (-1);
388 
389 				tp->ftt_segment = seg;
390 			}
391 			start++;
392 			continue;
393 		}
394 		break;
395 	}
396 
397 #ifdef __amd64
398 	/*
399 	 * Identify the REX prefix on 64-bit processes.
400 	 */
401 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
402 		rex = instr[start++];
403 #endif
404 
405 	/*
406 	 * Now that we're pretty sure that the instruction is okay, copy the
407 	 * valid part to the tracepoint.
408 	 */
409 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
410 
411 	tp->ftt_type = FASTTRAP_T_COMMON;
412 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
413 		switch (instr[start + 1]) {
414 		case FASTTRAP_0F_JO:
415 		case FASTTRAP_0F_JNO:
416 		case FASTTRAP_0F_JB:
417 		case FASTTRAP_0F_JAE:
418 		case FASTTRAP_0F_JE:
419 		case FASTTRAP_0F_JNE:
420 		case FASTTRAP_0F_JBE:
421 		case FASTTRAP_0F_JA:
422 		case FASTTRAP_0F_JS:
423 		case FASTTRAP_0F_JNS:
424 		case FASTTRAP_0F_JP:
425 		case FASTTRAP_0F_JNP:
426 		case FASTTRAP_0F_JL:
427 		case FASTTRAP_0F_JGE:
428 		case FASTTRAP_0F_JLE:
429 		case FASTTRAP_0F_JG:
430 			tp->ftt_type = FASTTRAP_T_JCC;
431 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
432 			tp->ftt_dest = pc + tp->ftt_size +
433 			    /* LINTED - alignment */
434 			    *(int32_t *)&instr[start + 2];
435 			break;
436 		}
437 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
438 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
439 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
440 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
441 
442 		if (reg == 2 || reg == 4) {
443 			uint_t i, sz;
444 
445 			if (reg == 2)
446 				tp->ftt_type = FASTTRAP_T_CALL;
447 			else
448 				tp->ftt_type = FASTTRAP_T_JMP;
449 
450 			if (mod == 3)
451 				tp->ftt_code = 2;
452 			else
453 				tp->ftt_code = 1;
454 
455 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
456 
457 			/*
458 			 * See AMD x86-64 Architecture Programmer's Manual
459 			 * Volume 3, Section 1.2.7, Table 1-12, and
460 			 * Appendix A.3.1, Table A-15.
461 			 */
462 			if (mod != 3 && rm == 4) {
463 				uint8_t sib = instr[start + 2];
464 				uint_t index = FASTTRAP_SIB_INDEX(sib);
465 				uint_t base = FASTTRAP_SIB_BASE(sib);
466 
467 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
468 
469 				tp->ftt_index = (index == 4) ?
470 				    FASTTRAP_NOREG :
471 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
472 				tp->ftt_base = (mod == 0 && base == 5) ?
473 				    FASTTRAP_NOREG :
474 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
475 
476 				i = 3;
477 				sz = mod == 1 ? 1 : 4;
478 			} else {
479 				/*
480 				 * In 64-bit mode, mod == 0 and r/m == 5
481 				 * denotes %rip-relative addressing; in 32-bit
482 				 * mode, the base register isn't used. In both
483 				 * modes, there is a 32-bit operand.
484 				 */
485 				if (mod == 0 && rm == 5) {
486 #ifdef __amd64
487 					if (p->p_model == DATAMODEL_LP64)
488 						tp->ftt_base = REG_RIP;
489 					else
490 #endif
491 						tp->ftt_base = FASTTRAP_NOREG;
492 					sz = 4;
493 				} else  {
494 					uint8_t base = rm |
495 					    (FASTTRAP_REX_B(rex) << 3);
496 
497 					tp->ftt_base = regmap[base];
498 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
499 				}
500 				tp->ftt_index = FASTTRAP_NOREG;
501 				i = 2;
502 			}
503 
504 			if (sz == 1) {
505 				tp->ftt_dest = *(int8_t *)&instr[start + i];
506 			} else if (sz == 4) {
507 				/* LINTED - alignment */
508 				tp->ftt_dest = *(int32_t *)&instr[start + i];
509 			} else {
510 				tp->ftt_dest = 0;
511 			}
512 		}
513 	} else {
514 		switch (instr[start]) {
515 		case FASTTRAP_RET:
516 			tp->ftt_type = FASTTRAP_T_RET;
517 			break;
518 
519 		case FASTTRAP_RET16:
520 			tp->ftt_type = FASTTRAP_T_RET16;
521 			/* LINTED - alignment */
522 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
523 			break;
524 
525 		case FASTTRAP_JO:
526 		case FASTTRAP_JNO:
527 		case FASTTRAP_JB:
528 		case FASTTRAP_JAE:
529 		case FASTTRAP_JE:
530 		case FASTTRAP_JNE:
531 		case FASTTRAP_JBE:
532 		case FASTTRAP_JA:
533 		case FASTTRAP_JS:
534 		case FASTTRAP_JNS:
535 		case FASTTRAP_JP:
536 		case FASTTRAP_JNP:
537 		case FASTTRAP_JL:
538 		case FASTTRAP_JGE:
539 		case FASTTRAP_JLE:
540 		case FASTTRAP_JG:
541 			tp->ftt_type = FASTTRAP_T_JCC;
542 			tp->ftt_code = instr[start];
543 			tp->ftt_dest = pc + tp->ftt_size +
544 			    (int8_t)instr[start + 1];
545 			break;
546 
547 		case FASTTRAP_LOOPNZ:
548 		case FASTTRAP_LOOPZ:
549 		case FASTTRAP_LOOP:
550 			tp->ftt_type = FASTTRAP_T_LOOP;
551 			tp->ftt_code = instr[start];
552 			tp->ftt_dest = pc + tp->ftt_size +
553 			    (int8_t)instr[start + 1];
554 			break;
555 
556 		case FASTTRAP_JCXZ:
557 			tp->ftt_type = FASTTRAP_T_JCXZ;
558 			tp->ftt_dest = pc + tp->ftt_size +
559 			    (int8_t)instr[start + 1];
560 			break;
561 
562 		case FASTTRAP_CALL:
563 			tp->ftt_type = FASTTRAP_T_CALL;
564 			tp->ftt_dest = pc + tp->ftt_size +
565 			    /* LINTED - alignment */
566 			    *(int32_t *)&instr[start + 1];
567 			tp->ftt_code = 0;
568 			break;
569 
570 		case FASTTRAP_JMP32:
571 			tp->ftt_type = FASTTRAP_T_JMP;
572 			tp->ftt_dest = pc + tp->ftt_size +
573 			    /* LINTED - alignment */
574 			    *(int32_t *)&instr[start + 1];
575 			break;
576 		case FASTTRAP_JMP8:
577 			tp->ftt_type = FASTTRAP_T_JMP;
578 			tp->ftt_dest = pc + tp->ftt_size +
579 			    (int8_t)instr[start + 1];
580 			break;
581 
582 		case FASTTRAP_PUSHL_EBP:
583 			if (start == 0)
584 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
585 			break;
586 
587 		case FASTTRAP_NOP:
588 #ifdef __amd64
589 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
590 
591 			/*
592 			 * On amd64 we have to be careful not to confuse a nop
593 			 * (actually xchgl %eax, %eax) with an instruction using
594 			 * the same opcode, but that does something different
595 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
596 			 */
597 			if (FASTTRAP_REX_B(rex) == 0)
598 #endif
599 				tp->ftt_type = FASTTRAP_T_NOP;
600 			break;
601 
602 		case FASTTRAP_INT3:
603 			/*
604 			 * The pid provider shares the int3 trap with debugger
605 			 * breakpoints so we can't instrument them.
606 			 */
607 			ASSERT(instr[start] == FASTTRAP_INSTR);
608 			return (-1);
609 
610 		case FASTTRAP_INT:
611 			/*
612 			 * Interrupts seem like they could be traced with
613 			 * no negative implications, but it's possible that
614 			 * a thread could be redirected by the trap handling
615 			 * code which would eventually return to the
616 			 * instruction after the interrupt. If the interrupt
617 			 * were in our scratch space, the subsequent
618 			 * instruction might be overwritten before we return.
619 			 * Accordingly we refuse to instrument any interrupt.
620 			 */
621 			return (-1);
622 		}
623 	}
624 
625 #ifdef __amd64
626 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
627 		/*
628 		 * If the process is 64-bit and the instruction type is still
629 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
630 		 * execute it -- we need to watch for %rip-relative
631 		 * addressing mode. See the portion of fasttrap_pid_probe()
632 		 * below where we handle tracepoints with type
633 		 * FASTTRAP_T_COMMON for how we emulate instructions that
634 		 * employ %rip-relative addressing.
635 		 */
636 		if (rmindex != -1) {
637 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
638 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
639 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
640 
641 			ASSERT(rmindex > start);
642 
643 			if (mod == 0 && rm == 5) {
644 				/*
645 				 * We need to be sure to avoid other
646 				 * registers used by this instruction. While
647 				 * the reg field may determine the op code
648 				 * rather than denoting a register, assuming
649 				 * that it denotes a register is always safe.
650 				 * We leave the REX field intact and use
651 				 * whatever value's there for simplicity.
652 				 */
653 				if (reg != 0) {
654 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
655 					    (FASTTRAP_RIP_X *
656 					    FASTTRAP_REX_B(rex));
657 					rm = 0;
658 				} else {
659 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
660 					    (FASTTRAP_RIP_X *
661 					    FASTTRAP_REX_B(rex));
662 					rm = 1;
663 				}
664 
665 				tp->ftt_modrm = tp->ftt_instr[rmindex];
666 				tp->ftt_instr[rmindex] =
667 				    FASTTRAP_MODRM(2, reg, rm);
668 			}
669 		}
670 	}
671 #endif
672 
673 	return (0);
674 }
675 
676 int
677 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
678 {
679 	fasttrap_instr_t instr = FASTTRAP_INSTR;
680 
681 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
682 		return (-1);
683 
684 	return (0);
685 }
686 
687 int
688 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
689 {
690 	uint8_t instr;
691 
692 	/*
693 	 * Distinguish between read or write failures and a changed
694 	 * instruction.
695 	 */
696 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
697 		return (0);
698 	if (instr != FASTTRAP_INSTR)
699 		return (0);
700 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
701 		return (-1);
702 
703 	return (0);
704 }
705 
706 #ifdef __amd64
707 static uintptr_t
708 fasttrap_fulword_noerr(const void *uaddr)
709 {
710 	uintptr_t ret;
711 
712 	if ((ret = fasttrap_fulword(uaddr)) != -1)
713 		return (ret);
714 
715 	return (0);
716 }
717 #endif
718 
719 #ifdef __i386__
720 static uint32_t
721 fasttrap_fuword32_noerr(const void *uaddr)
722 {
723 	uint32_t ret;
724 
725 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
726 		return (ret);
727 
728 	return (0);
729 }
730 #endif
731 
732 static void
733 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
734     uintptr_t new_pc)
735 {
736 	fasttrap_tracepoint_t *tp;
737 	fasttrap_bucket_t *bucket;
738 	fasttrap_id_t *id;
739 #if defined(sun)
740 	kmutex_t *pid_mtx;
741 #endif
742 
743 #if defined(sun)
744 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
745 	mutex_enter(pid_mtx);
746 #endif
747 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
748 
749 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
750 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
751 		    tp->ftt_proc->ftpc_acount != 0)
752 			break;
753 	}
754 
755 	/*
756 	 * Don't sweat it if we can't find the tracepoint again; unlike
757 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
758 	 * is not essential to the correct execution of the process.
759 	 */
760 	if (tp == NULL) {
761 #if defined(sun)
762 		mutex_exit(pid_mtx);
763 #endif
764 		return;
765 	}
766 
767 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
768 		/*
769 		 * If there's a branch that could act as a return site, we
770 		 * need to trace it, and check here if the program counter is
771 		 * external to the function.
772 		 */
773 		if (tp->ftt_type != FASTTRAP_T_RET &&
774 		    tp->ftt_type != FASTTRAP_T_RET16 &&
775 		    new_pc - id->fti_probe->ftp_faddr <
776 		    id->fti_probe->ftp_fsize)
777 			continue;
778 
779 		dtrace_probe(id->fti_probe->ftp_id,
780 		    pc - id->fti_probe->ftp_faddr,
781 		    rp->r_rax, rp->r_rbx, 0, 0);
782 	}
783 
784 #if defined(sun)
785 	mutex_exit(pid_mtx);
786 #endif
787 }
788 
789 static void
790 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
791 {
792 #if defined(sun)
793 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
794 
795 	sqp->sq_info.si_signo = SIGSEGV;
796 	sqp->sq_info.si_code = SEGV_MAPERR;
797 	sqp->sq_info.si_addr = (caddr_t)addr;
798 
799 	mutex_enter(&p->p_lock);
800 	sigaddqa(p, t, sqp);
801 	mutex_exit(&p->p_lock);
802 
803 	if (t != NULL)
804 		aston(t);
805 #else
806 	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
807 
808 	ksiginfo_init(ksi);
809 	ksi->ksi_signo = SIGSEGV;
810 	ksi->ksi_code = SEGV_MAPERR;
811 	ksi->ksi_addr = (caddr_t)addr;
812 	(void) tdksignal(t, SIGSEGV, ksi);
813 #endif
814 }
815 
816 #ifdef __amd64
817 static void
818 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
819     uintptr_t *argv)
820 {
821 	int i, x, cap = MIN(argc, probe->ftp_nargs);
822 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
823 
824 	for (i = 0; i < cap; i++) {
825 		x = probe->ftp_argmap[i];
826 
827 		if (x < 6)
828 			argv[i] = (&rp->r_rdi)[x];
829 		else
830 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
831 	}
832 
833 	for (; i < argc; i++) {
834 		argv[i] = 0;
835 	}
836 }
837 #endif
838 
839 #ifdef __i386__
840 static void
841 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
842     uint32_t *argv)
843 {
844 	int i, x, cap = MIN(argc, probe->ftp_nargs);
845 	uint32_t *stack = (uint32_t *)rp->r_rsp;
846 
847 	for (i = 0; i < cap; i++) {
848 		x = probe->ftp_argmap[i];
849 
850 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
851 	}
852 
853 	for (; i < argc; i++) {
854 		argv[i] = 0;
855 	}
856 }
857 #endif
858 
859 static int
860 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
861 {
862 	proc_t *p = curproc;
863 #ifdef __i386__
864 	struct segment_descriptor *desc;
865 #else
866 	struct user_segment_descriptor *desc;
867 #endif
868 	uint16_t sel = 0, ndx, type;
869 	uintptr_t limit;
870 
871 	switch (tp->ftt_segment) {
872 	case FASTTRAP_SEG_CS:
873 		sel = rp->r_cs;
874 		break;
875 	case FASTTRAP_SEG_DS:
876 		sel = rp->r_ds;
877 		break;
878 	case FASTTRAP_SEG_ES:
879 		sel = rp->r_es;
880 		break;
881 	case FASTTRAP_SEG_FS:
882 		sel = rp->r_fs;
883 		break;
884 	case FASTTRAP_SEG_GS:
885 		sel = rp->r_gs;
886 		break;
887 	case FASTTRAP_SEG_SS:
888 		sel = rp->r_ss;
889 		break;
890 	}
891 
892 	/*
893 	 * Make sure the given segment register specifies a user priority
894 	 * selector rather than a kernel selector.
895 	 */
896 	if (ISPL(sel) != SEL_UPL)
897 		return (-1);
898 
899 	ndx = IDXSEL(sel);
900 
901 	/*
902 	 * Check the bounds and grab the descriptor out of the specified
903 	 * descriptor table.
904 	 */
905 	if (ISLDT(sel)) {
906 #ifdef __i386__
907 		if (ndx > p->p_md.md_ldt->ldt_len)
908 			return (-1);
909 
910 		desc = (struct segment_descriptor *)
911 		    p->p_md.md_ldt[ndx].ldt_base;
912 #else
913 		if (ndx > max_ldt_segment)
914 			return (-1);
915 
916 		desc = (struct user_segment_descriptor *)
917 		    p->p_md.md_ldt[ndx].ldt_base;
918 #endif
919 
920 	} else {
921 		if (ndx >= NGDT)
922 			return (-1);
923 
924 #ifdef __i386__
925 		desc = &gdt[ndx].sd;
926 #else
927 		desc = &gdt[ndx];
928 #endif
929 	}
930 
931 	/*
932 	 * The descriptor must have user privilege level and it must be
933 	 * present in memory.
934 	 */
935 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
936 		return (-1);
937 
938 	type = desc->sd_type;
939 
940 	/*
941 	 * If the S bit in the type field is not set, this descriptor can
942 	 * only be used in system context.
943 	 */
944 	if ((type & 0x10) != 0x10)
945 		return (-1);
946 
947 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
948 
949 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
950 		/*
951 		 * The code/data bit and readable bit must both be set.
952 		 */
953 		if ((type & 0xa) != 0xa)
954 			return (-1);
955 
956 		if (*addr > limit)
957 			return (-1);
958 	} else {
959 		/*
960 		 * The code/data bit must be clear.
961 		 */
962 		if ((type & 0x8) != 0)
963 			return (-1);
964 
965 		/*
966 		 * If the expand-down bit is clear, we just check the limit as
967 		 * it would naturally be applied. Otherwise, we need to check
968 		 * that the address is the range [limit + 1 .. 0xffff] or
969 		 * [limit + 1 ... 0xffffffff] depending on if the default
970 		 * operand size bit is set.
971 		 */
972 		if ((type & 0x4) == 0) {
973 			if (*addr > limit)
974 				return (-1);
975 		} else if (desc->sd_def32) {
976 			if (*addr < limit + 1 || 0xffff < *addr)
977 				return (-1);
978 		} else {
979 			if (*addr < limit + 1 || 0xffffffff < *addr)
980 				return (-1);
981 		}
982 	}
983 
984 	*addr += USD_GETBASE(desc);
985 
986 	return (0);
987 }
988 
989 int
990 fasttrap_pid_probe(struct reg *rp)
991 {
992 	proc_t *p = curproc;
993 	uintptr_t pc = rp->r_rip - 1;
994 	uintptr_t new_pc = 0;
995 	fasttrap_bucket_t *bucket;
996 #if defined(sun)
997 	kmutex_t *pid_mtx;
998 #endif
999 	fasttrap_tracepoint_t *tp, tp_local;
1000 	pid_t pid;
1001 	dtrace_icookie_t cookie;
1002 	uint_t is_enabled = 0;
1003 
1004 	/*
1005 	 * It's possible that a user (in a veritable orgy of bad planning)
1006 	 * could redirect this thread's flow of control before it reached the
1007 	 * return probe fasttrap. In this case we need to kill the process
1008 	 * since it's in a unrecoverable state.
1009 	 */
1010 	if (curthread->t_dtrace_step) {
1011 		ASSERT(curthread->t_dtrace_on);
1012 		fasttrap_sigtrap(p, curthread, pc);
1013 		return (0);
1014 	}
1015 
1016 	/*
1017 	 * Clear all user tracing flags.
1018 	 */
1019 	curthread->t_dtrace_ft = 0;
1020 	curthread->t_dtrace_pc = 0;
1021 	curthread->t_dtrace_npc = 0;
1022 	curthread->t_dtrace_scrpc = 0;
1023 	curthread->t_dtrace_astpc = 0;
1024 #ifdef __amd64
1025 	curthread->t_dtrace_regv = 0;
1026 #endif
1027 
1028 #if defined(sun)
1029 	/*
1030 	 * Treat a child created by a call to vfork(2) as if it were its
1031 	 * parent. We know that there's only one thread of control in such a
1032 	 * process: this one.
1033 	 */
1034 	while (p->p_flag & SVFORK) {
1035 		p = p->p_parent;
1036 	}
1037 #endif
1038 
1039 	PROC_LOCK(p);
1040 	pid = p->p_pid;
1041 #if defined(sun)
1042 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1043 	mutex_enter(pid_mtx);
1044 #endif
1045 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1046 
1047 	/*
1048 	 * Lookup the tracepoint that the process just hit.
1049 	 */
1050 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1051 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1052 		    tp->ftt_proc->ftpc_acount != 0)
1053 			break;
1054 	}
1055 
1056 	/*
1057 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1058 	 * been inserted without using the pid<pid> ioctl interface (see
1059 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1060 	 */
1061 	if (tp == NULL) {
1062 #if defined(sun)
1063 		mutex_exit(pid_mtx);
1064 #endif
1065 		PROC_UNLOCK(p);
1066 		return (-1);
1067 	}
1068 
1069 	/*
1070 	 * Set the program counter to the address of the traced instruction
1071 	 * so that it looks right in ustack() output.
1072 	 */
1073 	rp->r_rip = pc;
1074 
1075 	if (tp->ftt_ids != NULL) {
1076 		fasttrap_id_t *id;
1077 
1078 #ifdef __amd64
1079 		if (p->p_model == DATAMODEL_LP64) {
1080 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1081 				fasttrap_probe_t *probe = id->fti_probe;
1082 
1083 				if (id->fti_ptype == DTFTP_ENTRY) {
1084 					/*
1085 					 * We note that this was an entry
1086 					 * probe to help ustack() find the
1087 					 * first caller.
1088 					 */
1089 					cookie = dtrace_interrupt_disable();
1090 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1091 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1092 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1093 					    rp->r_r8);
1094 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1095 					dtrace_interrupt_enable(cookie);
1096 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1097 					/*
1098 					 * Note that in this case, we don't
1099 					 * call dtrace_probe() since it's only
1100 					 * an artificial probe meant to change
1101 					 * the flow of control so that it
1102 					 * encounters the true probe.
1103 					 */
1104 					is_enabled = 1;
1105 				} else if (probe->ftp_argmap == NULL) {
1106 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1107 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1108 					    rp->r_r8);
1109 				} else {
1110 					uintptr_t t[5];
1111 
1112 					fasttrap_usdt_args64(probe, rp,
1113 					    sizeof (t) / sizeof (t[0]), t);
1114 
1115 					dtrace_probe(probe->ftp_id, t[0], t[1],
1116 					    t[2], t[3], t[4]);
1117 				}
1118 			}
1119 		} else {
1120 #else /* __amd64 */
1121 			uintptr_t s0, s1, s2, s3, s4, s5;
1122 			uint32_t *stack = (uint32_t *)rp->r_esp;
1123 
1124 			/*
1125 			 * In 32-bit mode, all arguments are passed on the
1126 			 * stack. If this is a function entry probe, we need
1127 			 * to skip the first entry on the stack as it
1128 			 * represents the return address rather than a
1129 			 * parameter to the function.
1130 			 */
1131 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1132 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1133 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1134 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1135 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1136 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1137 
1138 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1139 				fasttrap_probe_t *probe = id->fti_probe;
1140 
1141 				if (id->fti_ptype == DTFTP_ENTRY) {
1142 					/*
1143 					 * We note that this was an entry
1144 					 * probe to help ustack() find the
1145 					 * first caller.
1146 					 */
1147 					cookie = dtrace_interrupt_disable();
1148 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1149 					dtrace_probe(probe->ftp_id, s1, s2,
1150 					    s3, s4, s5);
1151 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1152 					dtrace_interrupt_enable(cookie);
1153 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1154 					/*
1155 					 * Note that in this case, we don't
1156 					 * call dtrace_probe() since it's only
1157 					 * an artificial probe meant to change
1158 					 * the flow of control so that it
1159 					 * encounters the true probe.
1160 					 */
1161 					is_enabled = 1;
1162 				} else if (probe->ftp_argmap == NULL) {
1163 					dtrace_probe(probe->ftp_id, s0, s1,
1164 					    s2, s3, s4);
1165 				} else {
1166 					uint32_t t[5];
1167 
1168 					fasttrap_usdt_args32(probe, rp,
1169 					    sizeof (t) / sizeof (t[0]), t);
1170 
1171 					dtrace_probe(probe->ftp_id, t[0], t[1],
1172 					    t[2], t[3], t[4]);
1173 				}
1174 			}
1175 #endif /* __amd64 */
1176 #ifdef __amd64
1177 		}
1178 #endif
1179 	}
1180 
1181 	/*
1182 	 * We're about to do a bunch of work so we cache a local copy of
1183 	 * the tracepoint to emulate the instruction, and then find the
1184 	 * tracepoint again later if we need to light up any return probes.
1185 	 */
1186 	tp_local = *tp;
1187 	PROC_UNLOCK(p);
1188 #if defined(sun)
1189 	mutex_exit(pid_mtx);
1190 #endif
1191 	tp = &tp_local;
1192 
1193 	/*
1194 	 * Set the program counter to appear as though the traced instruction
1195 	 * had completely executed. This ensures that fasttrap_getreg() will
1196 	 * report the expected value for REG_RIP.
1197 	 */
1198 	rp->r_rip = pc + tp->ftt_size;
1199 
1200 	/*
1201 	 * If there's an is-enabled probe connected to this tracepoint it
1202 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1203 	 * instruction that was placed there by DTrace when the binary was
1204 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1205 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1206 	 * emulation logic since we know the inevitable result. It's possible
1207 	 * that a user could construct a scenario where the 'is-enabled'
1208 	 * probe was on some other instruction, but that would be a rather
1209 	 * exotic way to shoot oneself in the foot.
1210 	 */
1211 	if (is_enabled) {
1212 		rp->r_rax = 1;
1213 		new_pc = rp->r_rip;
1214 		goto done;
1215 	}
1216 
1217 	/*
1218 	 * We emulate certain types of instructions to ensure correctness
1219 	 * (in the case of position dependent instructions) or optimize
1220 	 * common cases. The rest we have the thread execute back in user-
1221 	 * land.
1222 	 */
1223 	switch (tp->ftt_type) {
1224 	case FASTTRAP_T_RET:
1225 	case FASTTRAP_T_RET16:
1226 	{
1227 		uintptr_t dst = 0;
1228 		uintptr_t addr = 0;
1229 		int ret = 0;
1230 
1231 		/*
1232 		 * We have to emulate _every_ facet of the behavior of a ret
1233 		 * instruction including what happens if the load from %esp
1234 		 * fails; in that case, we send a SIGSEGV.
1235 		 */
1236 #ifdef __amd64
1237 		if (p->p_model == DATAMODEL_NATIVE) {
1238 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1239 			addr = rp->r_rsp + sizeof (uintptr_t);
1240 		} else {
1241 #endif
1242 #ifdef __i386__
1243 			uint32_t dst32;
1244 			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1245 			dst = dst32;
1246 			addr = rp->r_esp + sizeof (uint32_t);
1247 #endif
1248 #ifdef __amd64
1249 		}
1250 #endif
1251 
1252 		if (ret == -1) {
1253 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1254 			new_pc = pc;
1255 			break;
1256 		}
1257 
1258 		if (tp->ftt_type == FASTTRAP_T_RET16)
1259 			addr += tp->ftt_dest;
1260 
1261 		rp->r_rsp = addr;
1262 		new_pc = dst;
1263 		break;
1264 	}
1265 
1266 	case FASTTRAP_T_JCC:
1267 	{
1268 		uint_t taken = 0;
1269 
1270 		switch (tp->ftt_code) {
1271 		case FASTTRAP_JO:
1272 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1273 			break;
1274 		case FASTTRAP_JNO:
1275 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1276 			break;
1277 		case FASTTRAP_JB:
1278 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1279 			break;
1280 		case FASTTRAP_JAE:
1281 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1282 			break;
1283 		case FASTTRAP_JE:
1284 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1285 			break;
1286 		case FASTTRAP_JNE:
1287 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1288 			break;
1289 		case FASTTRAP_JBE:
1290 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1291 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1292 			break;
1293 		case FASTTRAP_JA:
1294 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1295 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1296 			break;
1297 		case FASTTRAP_JS:
1298 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1299 			break;
1300 		case FASTTRAP_JNS:
1301 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1302 			break;
1303 		case FASTTRAP_JP:
1304 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1305 			break;
1306 		case FASTTRAP_JNP:
1307 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1308 			break;
1309 		case FASTTRAP_JL:
1310 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1311 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1312 			break;
1313 		case FASTTRAP_JGE:
1314 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1315 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1316 			break;
1317 		case FASTTRAP_JLE:
1318 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1319 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1320 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1321 			break;
1322 		case FASTTRAP_JG:
1323 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1324 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1325 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1326 			break;
1327 
1328 		}
1329 
1330 		if (taken)
1331 			new_pc = tp->ftt_dest;
1332 		else
1333 			new_pc = pc + tp->ftt_size;
1334 		break;
1335 	}
1336 
1337 	case FASTTRAP_T_LOOP:
1338 	{
1339 		uint_t taken = 0;
1340 #ifdef __amd64
1341 		greg_t cx = rp->r_rcx--;
1342 #else
1343 		greg_t cx = rp->r_ecx--;
1344 #endif
1345 
1346 		switch (tp->ftt_code) {
1347 		case FASTTRAP_LOOPNZ:
1348 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1349 			    cx != 0;
1350 			break;
1351 		case FASTTRAP_LOOPZ:
1352 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1353 			    cx != 0;
1354 			break;
1355 		case FASTTRAP_LOOP:
1356 			taken = (cx != 0);
1357 			break;
1358 		}
1359 
1360 		if (taken)
1361 			new_pc = tp->ftt_dest;
1362 		else
1363 			new_pc = pc + tp->ftt_size;
1364 		break;
1365 	}
1366 
1367 	case FASTTRAP_T_JCXZ:
1368 	{
1369 #ifdef __amd64
1370 		greg_t cx = rp->r_rcx;
1371 #else
1372 		greg_t cx = rp->r_ecx;
1373 #endif
1374 
1375 		if (cx == 0)
1376 			new_pc = tp->ftt_dest;
1377 		else
1378 			new_pc = pc + tp->ftt_size;
1379 		break;
1380 	}
1381 
1382 	case FASTTRAP_T_PUSHL_EBP:
1383 	{
1384 		int ret = 0;
1385 		uintptr_t addr = 0;
1386 #ifdef __amd64
1387 		if (p->p_model == DATAMODEL_NATIVE) {
1388 			addr = rp->r_rsp - sizeof (uintptr_t);
1389 			ret = fasttrap_sulword((void *)addr, &rp->r_rsp);
1390 		} else {
1391 #endif
1392 #ifdef __i386__
1393 			addr = rp->r_rsp - sizeof (uint32_t);
1394 			ret = fasttrap_suword32((void *)addr, &rp->r_rsp);
1395 #endif
1396 #ifdef __amd64
1397 		}
1398 #endif
1399 
1400 		if (ret == -1) {
1401 			fasttrap_sigsegv(p, curthread, addr);
1402 			new_pc = pc;
1403 			break;
1404 		}
1405 
1406 		rp->r_rsp = addr;
1407 		new_pc = pc + tp->ftt_size;
1408 		break;
1409 	}
1410 
1411 	case FASTTRAP_T_NOP:
1412 		new_pc = pc + tp->ftt_size;
1413 		break;
1414 
1415 	case FASTTRAP_T_JMP:
1416 	case FASTTRAP_T_CALL:
1417 		if (tp->ftt_code == 0) {
1418 			new_pc = tp->ftt_dest;
1419 		} else {
1420 #ifdef __amd64
1421 			uintptr_t value;
1422 #endif
1423 			uintptr_t addr = tp->ftt_dest;
1424 
1425 			if (tp->ftt_base != FASTTRAP_NOREG)
1426 				addr += fasttrap_getreg(rp, tp->ftt_base);
1427 			if (tp->ftt_index != FASTTRAP_NOREG)
1428 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1429 				    tp->ftt_scale;
1430 
1431 			if (tp->ftt_code == 1) {
1432 				/*
1433 				 * If there's a segment prefix for this
1434 				 * instruction, we'll need to check permissions
1435 				 * and bounds on the given selector, and adjust
1436 				 * the address accordingly.
1437 				 */
1438 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1439 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1440 					fasttrap_sigsegv(p, curthread, addr);
1441 					new_pc = pc;
1442 					break;
1443 				}
1444 
1445 #ifdef __amd64
1446 				if (p->p_model == DATAMODEL_NATIVE) {
1447 					if ((value = fasttrap_fulword((void *)addr))
1448 					     == -1) {
1449 						fasttrap_sigsegv(p, curthread,
1450 						    addr);
1451 						new_pc = pc;
1452 						break;
1453 					}
1454 					new_pc = value;
1455 				} else {
1456 #endif
1457 #ifdef __i386__
1458 					uint32_t value32;
1459 					addr = (uintptr_t)(uint32_t)addr;
1460 					if ((value32 = fasttrap_fuword32((void *)addr))
1461 					    == -1) {
1462 						fasttrap_sigsegv(p, curthread,
1463 						    addr);
1464 						new_pc = pc;
1465 						break;
1466 					}
1467 					new_pc = value32;
1468 #endif
1469 				}
1470 #ifdef __amd64
1471 			} else {
1472 				new_pc = addr;
1473 			}
1474 #endif
1475 		}
1476 
1477 		/*
1478 		 * If this is a call instruction, we need to push the return
1479 		 * address onto the stack. If this fails, we send the process
1480 		 * a SIGSEGV and reset the pc to emulate what would happen if
1481 		 * this instruction weren't traced.
1482 		 */
1483 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1484 			int ret = 0;
1485 			uintptr_t addr = 0, pcps;
1486 #ifdef __amd64
1487 			if (p->p_model == DATAMODEL_NATIVE) {
1488 				addr = rp->r_rsp - sizeof (uintptr_t);
1489 				pcps = pc + tp->ftt_size;
1490 				ret = fasttrap_sulword((void *)addr, &pcps);
1491 			} else {
1492 #endif
1493 #ifdef __i386__
1494 				addr = rp->r_rsp - sizeof (uint32_t);
1495 				pcps = (uint32_t)(pc + tp->ftt_size);
1496 				ret = fasttrap_suword32((void *)addr, &pcps);
1497 #endif
1498 #ifdef __amd64
1499 			}
1500 #endif
1501 
1502 			if (ret == -1) {
1503 				fasttrap_sigsegv(p, curthread, addr);
1504 				new_pc = pc;
1505 				break;
1506 			}
1507 
1508 			rp->r_rsp = addr;
1509 		}
1510 
1511 		break;
1512 
1513 	case FASTTRAP_T_COMMON:
1514 	{
1515 		uintptr_t addr;
1516 #if defined(__amd64)
1517 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1518 #else
1519 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1520 #endif
1521 		uint_t i = 0;
1522 #if defined(sun)
1523 		klwp_t *lwp = ttolwp(curthread);
1524 #endif
1525 
1526 		/*
1527 		 * Compute the address of the ulwp_t and step over the
1528 		 * ul_self pointer. The method used to store the user-land
1529 		 * thread pointer is very different on 32- and 64-bit
1530 		 * kernels.
1531 		 */
1532 #if defined(sun)
1533 #if defined(__amd64)
1534 		if (p->p_model == DATAMODEL_LP64) {
1535 			addr = lwp->lwp_pcb.pcb_fsbase;
1536 			addr += sizeof (void *);
1537 		} else {
1538 			addr = lwp->lwp_pcb.pcb_gsbase;
1539 			addr += sizeof (caddr32_t);
1540 		}
1541 #else
1542 		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1543 		addr += sizeof (void *);
1544 #endif
1545 #endif /* sun */
1546 #ifdef __i386__
1547 		addr = USD_GETBASE(&curthread->td_pcb->pcb_gsd);
1548 #else
1549 		addr = curthread->td_pcb->pcb_gsbase;
1550 #endif
1551 		addr += sizeof (void *);
1552 
1553 		/*
1554 		 * Generic Instruction Tracing
1555 		 * ---------------------------
1556 		 *
1557 		 * This is the layout of the scratch space in the user-land
1558 		 * thread structure for our generated instructions.
1559 		 *
1560 		 *	32-bit mode			bytes
1561 		 *	------------------------	-----
1562 		 * a:	<original instruction>		<= 15
1563 		 *	jmp	<pc + tp->ftt_size>	    5
1564 		 * b:	<original instrction>		<= 15
1565 		 *	int	T_DTRACE_RET		    2
1566 		 *					-----
1567 		 *					<= 37
1568 		 *
1569 		 *	64-bit mode			bytes
1570 		 *	------------------------	-----
1571 		 * a:	<original instruction>		<= 15
1572 		 *	jmp	0(%rip)			    6
1573 		 *	<pc + tp->ftt_size>		    8
1574 		 * b:	<original instruction>		<= 15
1575 		 * 	int	T_DTRACE_RET		    2
1576 		 * 					-----
1577 		 * 					<= 46
1578 		 *
1579 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1580 		 * to b. If we encounter a signal on the way out of the
1581 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1582 		 * so that we execute the original instruction and re-enter
1583 		 * the kernel rather than redirecting to the next instruction.
1584 		 *
1585 		 * If there are return probes (so we know that we're going to
1586 		 * need to reenter the kernel after executing the original
1587 		 * instruction), the scratch space will just contain the
1588 		 * original instruction followed by an interrupt -- the same
1589 		 * data as at b.
1590 		 *
1591 		 * %rip-relative Addressing
1592 		 * ------------------------
1593 		 *
1594 		 * There's a further complication in 64-bit mode due to %rip-
1595 		 * relative addressing. While this is clearly a beneficial
1596 		 * architectural decision for position independent code, it's
1597 		 * hard not to see it as a personal attack against the pid
1598 		 * provider since before there was a relatively small set of
1599 		 * instructions to emulate; with %rip-relative addressing,
1600 		 * almost every instruction can potentially depend on the
1601 		 * address at which it's executed. Rather than emulating
1602 		 * the broad spectrum of instructions that can now be
1603 		 * position dependent, we emulate jumps and others as in
1604 		 * 32-bit mode, and take a different tack for instructions
1605 		 * using %rip-relative addressing.
1606 		 *
1607 		 * For every instruction that uses the ModRM byte, the
1608 		 * in-kernel disassembler reports its location. We use the
1609 		 * ModRM byte to identify that an instruction uses
1610 		 * %rip-relative addressing and to see what other registers
1611 		 * the instruction uses. To emulate those instructions,
1612 		 * we modify the instruction to be %rax-relative rather than
1613 		 * %rip-relative (or %rcx-relative if the instruction uses
1614 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1615 		 * we don't have to rewrite the REX prefix). We then load
1616 		 * the value that %rip would have been into the scratch
1617 		 * register and generate an instruction to reset the scratch
1618 		 * register back to its original value. The instruction
1619 		 * sequence looks like this:
1620 		 *
1621 		 *	64-mode %rip-relative		bytes
1622 		 *	------------------------	-----
1623 		 * a:	<modified instruction>		<= 15
1624 		 *	movq	$<value>, %<scratch>	    6
1625 		 *	jmp	0(%rip)			    6
1626 		 *	<pc + tp->ftt_size>		    8
1627 		 * b:	<modified instruction>  	<= 15
1628 		 * 	int	T_DTRACE_RET		    2
1629 		 * 					-----
1630 		 *					   52
1631 		 *
1632 		 * We set curthread->t_dtrace_regv so that upon receiving
1633 		 * a signal we can reset the value of the scratch register.
1634 		 */
1635 
1636 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1637 
1638 		curthread->t_dtrace_scrpc = addr;
1639 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1640 		i += tp->ftt_size;
1641 
1642 #ifdef __amd64
1643 		if (tp->ftt_ripmode != 0) {
1644 			greg_t *reg = NULL;
1645 
1646 			ASSERT(p->p_model == DATAMODEL_LP64);
1647 			ASSERT(tp->ftt_ripmode &
1648 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1649 
1650 			/*
1651 			 * If this was a %rip-relative instruction, we change
1652 			 * it to be either a %rax- or %rcx-relative
1653 			 * instruction (depending on whether those registers
1654 			 * are used as another operand; or %r8- or %r9-
1655 			 * relative depending on the value of REX.B). We then
1656 			 * set that register and generate a movq instruction
1657 			 * to reset the value.
1658 			 */
1659 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1660 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1661 			else
1662 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1663 
1664 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1665 				scratch[i++] = FASTTRAP_MOV_EAX;
1666 			else
1667 				scratch[i++] = FASTTRAP_MOV_ECX;
1668 
1669 			switch (tp->ftt_ripmode) {
1670 			case FASTTRAP_RIP_1:
1671 				reg = &rp->r_rax;
1672 				curthread->t_dtrace_reg = REG_RAX;
1673 				break;
1674 			case FASTTRAP_RIP_2:
1675 				reg = &rp->r_rcx;
1676 				curthread->t_dtrace_reg = REG_RCX;
1677 				break;
1678 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1679 				reg = &rp->r_r8;
1680 				curthread->t_dtrace_reg = REG_R8;
1681 				break;
1682 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1683 				reg = &rp->r_r9;
1684 				curthread->t_dtrace_reg = REG_R9;
1685 				break;
1686 			}
1687 
1688 			/* LINTED - alignment */
1689 			*(uint64_t *)&scratch[i] = *reg;
1690 			curthread->t_dtrace_regv = *reg;
1691 			*reg = pc + tp->ftt_size;
1692 			i += sizeof (uint64_t);
1693 		}
1694 #endif
1695 
1696 		/*
1697 		 * Generate the branch instruction to what would have
1698 		 * normally been the subsequent instruction. In 32-bit mode,
1699 		 * this is just a relative branch; in 64-bit mode this is a
1700 		 * %rip-relative branch that loads the 64-bit pc value
1701 		 * immediately after the jmp instruction.
1702 		 */
1703 #ifdef __amd64
1704 		if (p->p_model == DATAMODEL_LP64) {
1705 			scratch[i++] = FASTTRAP_GROUP5_OP;
1706 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1707 			/* LINTED - alignment */
1708 			*(uint32_t *)&scratch[i] = 0;
1709 			i += sizeof (uint32_t);
1710 			/* LINTED - alignment */
1711 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1712 			i += sizeof (uint64_t);
1713 		} else {
1714 #endif
1715 #ifdef __i386__
1716 			/*
1717 			 * Set up the jmp to the next instruction; note that
1718 			 * the size of the traced instruction cancels out.
1719 			 */
1720 			scratch[i++] = FASTTRAP_JMP32;
1721 			/* LINTED - alignment */
1722 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1723 			i += sizeof (uint32_t);
1724 #endif
1725 #ifdef __amd64
1726 		}
1727 #endif
1728 
1729 		curthread->t_dtrace_astpc = addr + i;
1730 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1731 		i += tp->ftt_size;
1732 		scratch[i++] = FASTTRAP_INT;
1733 		scratch[i++] = T_DTRACE_RET;
1734 
1735 		ASSERT(i <= sizeof (scratch));
1736 
1737 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1738 			fasttrap_sigtrap(p, curthread, pc);
1739 			new_pc = pc;
1740 			break;
1741 		}
1742 
1743 		if (tp->ftt_retids != NULL) {
1744 			curthread->t_dtrace_step = 1;
1745 			curthread->t_dtrace_ret = 1;
1746 			new_pc = curthread->t_dtrace_astpc;
1747 		} else {
1748 			new_pc = curthread->t_dtrace_scrpc;
1749 		}
1750 
1751 		curthread->t_dtrace_pc = pc;
1752 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1753 		curthread->t_dtrace_on = 1;
1754 		break;
1755 	}
1756 
1757 	default:
1758 		panic("fasttrap: mishandled an instruction");
1759 	}
1760 
1761 done:
1762 	/*
1763 	 * If there were no return probes when we first found the tracepoint,
1764 	 * we should feel no obligation to honor any return probes that were
1765 	 * subsequently enabled -- they'll just have to wait until the next
1766 	 * time around.
1767 	 */
1768 	if (tp->ftt_retids != NULL) {
1769 		/*
1770 		 * We need to wait until the results of the instruction are
1771 		 * apparent before invoking any return probes. If this
1772 		 * instruction was emulated we can just call
1773 		 * fasttrap_return_common(); if it needs to be executed, we
1774 		 * need to wait until the user thread returns to the kernel.
1775 		 */
1776 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1777 			/*
1778 			 * Set the program counter to the address of the traced
1779 			 * instruction so that it looks right in ustack()
1780 			 * output. We had previously set it to the end of the
1781 			 * instruction to simplify %rip-relative addressing.
1782 			 */
1783 			rp->r_rip = pc;
1784 
1785 			fasttrap_return_common(rp, pc, pid, new_pc);
1786 		} else {
1787 			ASSERT(curthread->t_dtrace_ret != 0);
1788 			ASSERT(curthread->t_dtrace_pc == pc);
1789 			ASSERT(curthread->t_dtrace_scrpc != 0);
1790 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1791 		}
1792 	}
1793 
1794 	rp->r_rip = new_pc;
1795 	set_regs(curthread, rp);
1796 
1797 	return (0);
1798 }
1799 
1800 int
1801 fasttrap_return_probe(struct reg *rp)
1802 {
1803 	proc_t *p = curproc;
1804 	uintptr_t pc = curthread->t_dtrace_pc;
1805 	uintptr_t npc = curthread->t_dtrace_npc;
1806 
1807 	curthread->t_dtrace_pc = 0;
1808 	curthread->t_dtrace_npc = 0;
1809 	curthread->t_dtrace_scrpc = 0;
1810 	curthread->t_dtrace_astpc = 0;
1811 
1812 #if defined(sun)
1813 	/*
1814 	 * Treat a child created by a call to vfork(2) as if it were its
1815 	 * parent. We know that there's only one thread of control in such a
1816 	 * process: this one.
1817 	 */
1818 	while (p->p_flag & SVFORK) {
1819 		p = p->p_parent;
1820 	}
1821 #endif
1822 
1823 	/*
1824 	 * We set rp->r_rip to the address of the traced instruction so
1825 	 * that it appears to dtrace_probe() that we're on the original
1826 	 * instruction, and so that the user can't easily detect our
1827 	 * complex web of lies. dtrace_return_probe() (our caller)
1828 	 * will correctly set %pc after we return.
1829 	 */
1830 	rp->r_rip = pc;
1831 
1832 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1833 
1834 	return (0);
1835 }
1836 
1837 /*ARGSUSED*/
1838 uint64_t
1839 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1840     int aframes)
1841 {
1842 	struct reg r;
1843 
1844 	fill_regs(curthread, &r);
1845 
1846 	return (fasttrap_anarg(&r, 1, argno));
1847 }
1848 
1849 /*ARGSUSED*/
1850 uint64_t
1851 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1852     int aframes)
1853 {
1854 	struct reg r;
1855 
1856 	fill_regs(curthread, &r);
1857 
1858 	return (fasttrap_anarg(&r, 0, argno));
1859 }
1860 
1861 static ulong_t
1862 fasttrap_getreg(struct reg *rp, uint_t reg)
1863 {
1864 #ifdef __amd64
1865 	switch (reg) {
1866 	case REG_R15:		return (rp->r_r15);
1867 	case REG_R14:		return (rp->r_r14);
1868 	case REG_R13:		return (rp->r_r13);
1869 	case REG_R12:		return (rp->r_r12);
1870 	case REG_R11:		return (rp->r_r11);
1871 	case REG_R10:		return (rp->r_r10);
1872 	case REG_R9:		return (rp->r_r9);
1873 	case REG_R8:		return (rp->r_r8);
1874 	case REG_RDI:		return (rp->r_rdi);
1875 	case REG_RSI:		return (rp->r_rsi);
1876 	case REG_RBP:		return (rp->r_rbp);
1877 	case REG_RBX:		return (rp->r_rbx);
1878 	case REG_RDX:		return (rp->r_rdx);
1879 	case REG_RCX:		return (rp->r_rcx);
1880 	case REG_RAX:		return (rp->r_rax);
1881 	case REG_TRAPNO:	return (rp->r_trapno);
1882 	case REG_ERR:		return (rp->r_err);
1883 	case REG_RIP:		return (rp->r_rip);
1884 	case REG_CS:		return (rp->r_cs);
1885 #if defined(sun)
1886 	case REG_RFL:		return (rp->r_rfl);
1887 #endif
1888 	case REG_RSP:		return (rp->r_rsp);
1889 	case REG_SS:		return (rp->r_ss);
1890 	case REG_FS:		return (rp->r_fs);
1891 	case REG_GS:		return (rp->r_gs);
1892 	case REG_DS:		return (rp->r_ds);
1893 	case REG_ES:		return (rp->r_es);
1894 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1895 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1896 	}
1897 
1898 	panic("dtrace: illegal register constant");
1899 	/*NOTREACHED*/
1900 #else
1901 #define _NGREG 19
1902 	if (reg >= _NGREG)
1903 		panic("dtrace: illegal register constant");
1904 
1905 	return (((greg_t *)&rp->r_gs)[reg]);
1906 #endif
1907 }
1908