xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  *
23  * $FreeBSD$
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #ifdef illumos
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 #endif
34 
35 #include <sys/fasttrap_isa.h>
36 #include <sys/fasttrap_impl.h>
37 #include <sys/dtrace.h>
38 #include <sys/dtrace_impl.h>
39 #include <sys/cmn_err.h>
40 #ifdef illumos
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/segments.h>
44 #include <sys/x86_archext.h>
45 #else
46 #include <sys/types.h>
47 #include <sys/dtrace_bsd.h>
48 #include <sys/proc.h>
49 #include <sys/rmlock.h>
50 #include <cddl/dev/dtrace/dtrace_cddl.h>
51 #include <cddl/dev/dtrace/x86/regset.h>
52 #include <machine/segments.h>
53 #include <machine/reg.h>
54 #include <machine/pcb.h>
55 #endif
56 #include <sys/sysmacros.h>
57 #ifdef illumos
58 #include <sys/trap.h>
59 #include <sys/archsystm.h>
60 #else
61 #include <sys/ptrace.h>
62 
63 static int
64 uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
65 {
66 	ssize_t n;
67 
68 	PHOLD(p);
69 	n = proc_readmem(curthread, p, uaddr, kaddr, len);
70 	PRELE(p);
71 	if (n != len)
72 		return (ENOMEM);
73 	return (0);
74 }
75 
76 static int
77 uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
78 {
79 	ssize_t n;
80 
81 	PHOLD(p);
82 	n = proc_writemem(curthread, p, uaddr, kaddr, len);
83 	PRELE(p);
84 	if (n != len)
85 		return (ENOMEM);
86 	return (0);
87 }
88 
89 #endif /* illumos */
90 #ifdef __i386__
91 #define	r_rax	r_eax
92 #define	r_rbx	r_ebx
93 #define	r_rip	r_eip
94 #define	r_rflags r_eflags
95 #define	r_rsp	r_esp
96 #define	r_rbp	r_ebp
97 #endif
98 
99 /*
100  * Lossless User-Land Tracing on x86
101  * ---------------------------------
102  *
103  * The execution of most instructions is not dependent on the address; for
104  * these instructions it is sufficient to copy them into the user process's
105  * address space and execute them. To effectively single-step an instruction
106  * in user-land, we copy out the following sequence of instructions to scratch
107  * space in the user thread's ulwp_t structure.
108  *
109  * We then set the program counter (%eip or %rip) to point to this scratch
110  * space. Once execution resumes, the original instruction is executed and
111  * then control flow is redirected to what was originally the subsequent
112  * instruction. If the kernel attemps to deliver a signal while single-
113  * stepping, the signal is deferred and the program counter is moved into the
114  * second sequence of instructions. The second sequence ends in a trap into
115  * the kernel where the deferred signal is then properly handled and delivered.
116  *
117  * For instructions whose execute is position dependent, we perform simple
118  * emulation. These instructions are limited to control transfer
119  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
120  * of %rip-relative addressing that means that almost any instruction can be
121  * position dependent. For all the details on how we emulate generic
122  * instructions included %rip-relative instructions, see the code in
123  * fasttrap_pid_probe() below where we handle instructions of type
124  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
125  */
126 
127 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
128 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
129 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
130 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
131 
132 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
133 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
134 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
135 
136 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
137 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
138 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
139 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
140 #define	FASTTRAP_REX(w, r, x, b)	\
141 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
142 
143 /*
144  * Single-byte op-codes.
145  */
146 #define	FASTTRAP_PUSHL_EBP	0x55
147 
148 #define	FASTTRAP_JO		0x70
149 #define	FASTTRAP_JNO		0x71
150 #define	FASTTRAP_JB		0x72
151 #define	FASTTRAP_JAE		0x73
152 #define	FASTTRAP_JE		0x74
153 #define	FASTTRAP_JNE		0x75
154 #define	FASTTRAP_JBE		0x76
155 #define	FASTTRAP_JA		0x77
156 #define	FASTTRAP_JS		0x78
157 #define	FASTTRAP_JNS		0x79
158 #define	FASTTRAP_JP		0x7a
159 #define	FASTTRAP_JNP		0x7b
160 #define	FASTTRAP_JL		0x7c
161 #define	FASTTRAP_JGE		0x7d
162 #define	FASTTRAP_JLE		0x7e
163 #define	FASTTRAP_JG		0x7f
164 
165 #define	FASTTRAP_NOP		0x90
166 
167 #define	FASTTRAP_MOV_EAX	0xb8
168 #define	FASTTRAP_MOV_ECX	0xb9
169 
170 #define	FASTTRAP_RET16		0xc2
171 #define	FASTTRAP_RET		0xc3
172 
173 #define	FASTTRAP_LOOPNZ		0xe0
174 #define	FASTTRAP_LOOPZ		0xe1
175 #define	FASTTRAP_LOOP		0xe2
176 #define	FASTTRAP_JCXZ		0xe3
177 
178 #define	FASTTRAP_CALL		0xe8
179 #define	FASTTRAP_JMP32		0xe9
180 #define	FASTTRAP_JMP8		0xeb
181 
182 #define	FASTTRAP_INT3		0xcc
183 #define	FASTTRAP_INT		0xcd
184 
185 #define	FASTTRAP_2_BYTE_OP	0x0f
186 #define	FASTTRAP_GROUP5_OP	0xff
187 
188 /*
189  * Two-byte op-codes (second byte only).
190  */
191 #define	FASTTRAP_0F_JO		0x80
192 #define	FASTTRAP_0F_JNO		0x81
193 #define	FASTTRAP_0F_JB		0x82
194 #define	FASTTRAP_0F_JAE		0x83
195 #define	FASTTRAP_0F_JE		0x84
196 #define	FASTTRAP_0F_JNE		0x85
197 #define	FASTTRAP_0F_JBE		0x86
198 #define	FASTTRAP_0F_JA		0x87
199 #define	FASTTRAP_0F_JS		0x88
200 #define	FASTTRAP_0F_JNS		0x89
201 #define	FASTTRAP_0F_JP		0x8a
202 #define	FASTTRAP_0F_JNP		0x8b
203 #define	FASTTRAP_0F_JL		0x8c
204 #define	FASTTRAP_0F_JGE		0x8d
205 #define	FASTTRAP_0F_JLE		0x8e
206 #define	FASTTRAP_0F_JG		0x8f
207 
208 #define	FASTTRAP_EFLAGS_OF	0x800
209 #define	FASTTRAP_EFLAGS_DF	0x400
210 #define	FASTTRAP_EFLAGS_SF	0x080
211 #define	FASTTRAP_EFLAGS_ZF	0x040
212 #define	FASTTRAP_EFLAGS_AF	0x010
213 #define	FASTTRAP_EFLAGS_PF	0x004
214 #define	FASTTRAP_EFLAGS_CF	0x001
215 
216 /*
217  * Instruction prefixes.
218  */
219 #define	FASTTRAP_PREFIX_OPERAND	0x66
220 #define	FASTTRAP_PREFIX_ADDRESS	0x67
221 #define	FASTTRAP_PREFIX_CS	0x2E
222 #define	FASTTRAP_PREFIX_DS	0x3E
223 #define	FASTTRAP_PREFIX_ES	0x26
224 #define	FASTTRAP_PREFIX_FS	0x64
225 #define	FASTTRAP_PREFIX_GS	0x65
226 #define	FASTTRAP_PREFIX_SS	0x36
227 #define	FASTTRAP_PREFIX_LOCK	0xF0
228 #define	FASTTRAP_PREFIX_REP	0xF3
229 #define	FASTTRAP_PREFIX_REPNE	0xF2
230 
231 #define	FASTTRAP_NOREG	0xff
232 
233 /*
234  * Map between instruction register encodings and the kernel constants which
235  * correspond to indicies into struct regs.
236  */
237 #ifdef __amd64
238 static const uint8_t regmap[16] = {
239 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
240 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
241 };
242 #else
243 static const uint8_t regmap[8] = {
244 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
245 };
246 #endif
247 
248 static ulong_t fasttrap_getreg(struct reg *, uint_t);
249 
250 static uint64_t
251 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
252 {
253 	uint64_t value = 0;
254 	int shift = function_entry ? 1 : 0;
255 
256 #ifdef __amd64
257 	if (curproc->p_model == DATAMODEL_LP64) {
258 		uintptr_t *stack;
259 
260 		/*
261 		 * In 64-bit mode, the first six arguments are stored in
262 		 * registers.
263 		 */
264 		if (argno < 6)
265 			switch (argno) {
266 			case 0:
267 				return (rp->r_rdi);
268 			case 1:
269 				return (rp->r_rsi);
270 			case 2:
271 				return (rp->r_rdx);
272 			case 3:
273 				return (rp->r_rcx);
274 			case 4:
275 				return (rp->r_r8);
276 			case 5:
277 				return (rp->r_r9);
278 			}
279 
280 		stack = (uintptr_t *)rp->r_rsp;
281 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
282 		value = dtrace_fulword(&stack[argno - 6 + shift]);
283 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
284 	} else {
285 #endif
286 		uint32_t *stack = (uint32_t *)rp->r_rsp;
287 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
288 		value = dtrace_fuword32(&stack[argno + shift]);
289 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
290 #ifdef __amd64
291 	}
292 #endif
293 
294 	return (value);
295 }
296 
297 /*ARGSUSED*/
298 int
299 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
300     fasttrap_probe_type_t type)
301 {
302 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
303 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
304 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
305 	uint_t start = 0;
306 	int rmindex, size;
307 	uint8_t seg, rex = 0;
308 
309 	/*
310 	 * Read the instruction at the given address out of the process's
311 	 * address space. We don't have to worry about a debugger
312 	 * changing this instruction before we overwrite it with our trap
313 	 * instruction since P_PR_LOCK is set. Since instructions can span
314 	 * pages, we potentially read the instruction in two parts. If the
315 	 * second part fails, we just zero out that part of the instruction.
316 	 */
317 	if (uread(p, &instr[0], first, pc) != 0)
318 		return (-1);
319 	if (len > first &&
320 	    uread(p, &instr[first], len - first, pc + first) != 0) {
321 		bzero(&instr[first], len - first);
322 		len = first;
323 	}
324 
325 	/*
326 	 * If the disassembly fails, then we have a malformed instruction.
327 	 */
328 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
329 		return (-1);
330 
331 	/*
332 	 * Make sure the disassembler isn't completely broken.
333 	 */
334 	ASSERT(-1 <= rmindex && rmindex < size);
335 
336 	/*
337 	 * If the computed size is greater than the number of bytes read,
338 	 * then it was a malformed instruction possibly because it fell on a
339 	 * page boundary and the subsequent page was missing or because of
340 	 * some malicious user.
341 	 */
342 	if (size > len)
343 		return (-1);
344 
345 	tp->ftt_size = (uint8_t)size;
346 	tp->ftt_segment = FASTTRAP_SEG_NONE;
347 
348 	/*
349 	 * Find the start of the instruction's opcode by processing any
350 	 * legacy prefixes.
351 	 */
352 	for (;;) {
353 		seg = 0;
354 		switch (instr[start]) {
355 		case FASTTRAP_PREFIX_SS:
356 			seg++;
357 			/*FALLTHRU*/
358 		case FASTTRAP_PREFIX_GS:
359 			seg++;
360 			/*FALLTHRU*/
361 		case FASTTRAP_PREFIX_FS:
362 			seg++;
363 			/*FALLTHRU*/
364 		case FASTTRAP_PREFIX_ES:
365 			seg++;
366 			/*FALLTHRU*/
367 		case FASTTRAP_PREFIX_DS:
368 			seg++;
369 			/*FALLTHRU*/
370 		case FASTTRAP_PREFIX_CS:
371 			seg++;
372 			/*FALLTHRU*/
373 		case FASTTRAP_PREFIX_OPERAND:
374 		case FASTTRAP_PREFIX_ADDRESS:
375 		case FASTTRAP_PREFIX_LOCK:
376 		case FASTTRAP_PREFIX_REP:
377 		case FASTTRAP_PREFIX_REPNE:
378 			if (seg != 0) {
379 				/*
380 				 * It's illegal for an instruction to specify
381 				 * two segment prefixes -- give up on this
382 				 * illegal instruction.
383 				 */
384 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
385 					return (-1);
386 
387 				tp->ftt_segment = seg;
388 			}
389 			start++;
390 			continue;
391 		}
392 		break;
393 	}
394 
395 #ifdef __amd64
396 	/*
397 	 * Identify the REX prefix on 64-bit processes.
398 	 */
399 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
400 		rex = instr[start++];
401 #endif
402 
403 	/*
404 	 * Now that we're pretty sure that the instruction is okay, copy the
405 	 * valid part to the tracepoint.
406 	 */
407 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
408 
409 	tp->ftt_type = FASTTRAP_T_COMMON;
410 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
411 		switch (instr[start + 1]) {
412 		case FASTTRAP_0F_JO:
413 		case FASTTRAP_0F_JNO:
414 		case FASTTRAP_0F_JB:
415 		case FASTTRAP_0F_JAE:
416 		case FASTTRAP_0F_JE:
417 		case FASTTRAP_0F_JNE:
418 		case FASTTRAP_0F_JBE:
419 		case FASTTRAP_0F_JA:
420 		case FASTTRAP_0F_JS:
421 		case FASTTRAP_0F_JNS:
422 		case FASTTRAP_0F_JP:
423 		case FASTTRAP_0F_JNP:
424 		case FASTTRAP_0F_JL:
425 		case FASTTRAP_0F_JGE:
426 		case FASTTRAP_0F_JLE:
427 		case FASTTRAP_0F_JG:
428 			tp->ftt_type = FASTTRAP_T_JCC;
429 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
430 			tp->ftt_dest = pc + tp->ftt_size +
431 			    /* LINTED - alignment */
432 			    *(int32_t *)&instr[start + 2];
433 			break;
434 		}
435 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
436 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
437 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
438 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
439 
440 		if (reg == 2 || reg == 4) {
441 			uint_t i, sz;
442 
443 			if (reg == 2)
444 				tp->ftt_type = FASTTRAP_T_CALL;
445 			else
446 				tp->ftt_type = FASTTRAP_T_JMP;
447 
448 			if (mod == 3)
449 				tp->ftt_code = 2;
450 			else
451 				tp->ftt_code = 1;
452 
453 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
454 
455 			/*
456 			 * See AMD x86-64 Architecture Programmer's Manual
457 			 * Volume 3, Section 1.2.7, Table 1-12, and
458 			 * Appendix A.3.1, Table A-15.
459 			 */
460 			if (mod != 3 && rm == 4) {
461 				uint8_t sib = instr[start + 2];
462 				uint_t index = FASTTRAP_SIB_INDEX(sib);
463 				uint_t base = FASTTRAP_SIB_BASE(sib);
464 
465 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
466 
467 				tp->ftt_index = (index == 4) ?
468 				    FASTTRAP_NOREG :
469 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
470 				tp->ftt_base = (mod == 0 && base == 5) ?
471 				    FASTTRAP_NOREG :
472 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
473 
474 				i = 3;
475 				sz = mod == 1 ? 1 : 4;
476 			} else {
477 				/*
478 				 * In 64-bit mode, mod == 0 and r/m == 5
479 				 * denotes %rip-relative addressing; in 32-bit
480 				 * mode, the base register isn't used. In both
481 				 * modes, there is a 32-bit operand.
482 				 */
483 				if (mod == 0 && rm == 5) {
484 #ifdef __amd64
485 					if (p->p_model == DATAMODEL_LP64)
486 						tp->ftt_base = REG_RIP;
487 					else
488 #endif
489 						tp->ftt_base = FASTTRAP_NOREG;
490 					sz = 4;
491 				} else  {
492 					uint8_t base = rm |
493 					    (FASTTRAP_REX_B(rex) << 3);
494 
495 					tp->ftt_base = regmap[base];
496 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
497 				}
498 				tp->ftt_index = FASTTRAP_NOREG;
499 				i = 2;
500 			}
501 
502 			if (sz == 1) {
503 				tp->ftt_dest = *(int8_t *)&instr[start + i];
504 			} else if (sz == 4) {
505 				/* LINTED - alignment */
506 				tp->ftt_dest = *(int32_t *)&instr[start + i];
507 			} else {
508 				tp->ftt_dest = 0;
509 			}
510 		}
511 	} else {
512 		switch (instr[start]) {
513 		case FASTTRAP_RET:
514 			tp->ftt_type = FASTTRAP_T_RET;
515 			break;
516 
517 		case FASTTRAP_RET16:
518 			tp->ftt_type = FASTTRAP_T_RET16;
519 			/* LINTED - alignment */
520 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
521 			break;
522 
523 		case FASTTRAP_JO:
524 		case FASTTRAP_JNO:
525 		case FASTTRAP_JB:
526 		case FASTTRAP_JAE:
527 		case FASTTRAP_JE:
528 		case FASTTRAP_JNE:
529 		case FASTTRAP_JBE:
530 		case FASTTRAP_JA:
531 		case FASTTRAP_JS:
532 		case FASTTRAP_JNS:
533 		case FASTTRAP_JP:
534 		case FASTTRAP_JNP:
535 		case FASTTRAP_JL:
536 		case FASTTRAP_JGE:
537 		case FASTTRAP_JLE:
538 		case FASTTRAP_JG:
539 			tp->ftt_type = FASTTRAP_T_JCC;
540 			tp->ftt_code = instr[start];
541 			tp->ftt_dest = pc + tp->ftt_size +
542 			    (int8_t)instr[start + 1];
543 			break;
544 
545 		case FASTTRAP_LOOPNZ:
546 		case FASTTRAP_LOOPZ:
547 		case FASTTRAP_LOOP:
548 			tp->ftt_type = FASTTRAP_T_LOOP;
549 			tp->ftt_code = instr[start];
550 			tp->ftt_dest = pc + tp->ftt_size +
551 			    (int8_t)instr[start + 1];
552 			break;
553 
554 		case FASTTRAP_JCXZ:
555 			tp->ftt_type = FASTTRAP_T_JCXZ;
556 			tp->ftt_dest = pc + tp->ftt_size +
557 			    (int8_t)instr[start + 1];
558 			break;
559 
560 		case FASTTRAP_CALL:
561 			tp->ftt_type = FASTTRAP_T_CALL;
562 			tp->ftt_dest = pc + tp->ftt_size +
563 			    /* LINTED - alignment */
564 			    *(int32_t *)&instr[start + 1];
565 			tp->ftt_code = 0;
566 			break;
567 
568 		case FASTTRAP_JMP32:
569 			tp->ftt_type = FASTTRAP_T_JMP;
570 			tp->ftt_dest = pc + tp->ftt_size +
571 			    /* LINTED - alignment */
572 			    *(int32_t *)&instr[start + 1];
573 			break;
574 		case FASTTRAP_JMP8:
575 			tp->ftt_type = FASTTRAP_T_JMP;
576 			tp->ftt_dest = pc + tp->ftt_size +
577 			    (int8_t)instr[start + 1];
578 			break;
579 
580 		case FASTTRAP_PUSHL_EBP:
581 			if (start == 0)
582 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
583 			break;
584 
585 		case FASTTRAP_NOP:
586 #ifdef __amd64
587 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
588 
589 			/*
590 			 * On amd64 we have to be careful not to confuse a nop
591 			 * (actually xchgl %eax, %eax) with an instruction using
592 			 * the same opcode, but that does something different
593 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
594 			 */
595 			if (FASTTRAP_REX_B(rex) == 0)
596 #endif
597 				tp->ftt_type = FASTTRAP_T_NOP;
598 			break;
599 
600 		case FASTTRAP_INT3:
601 			/*
602 			 * The pid provider shares the int3 trap with debugger
603 			 * breakpoints so we can't instrument them.
604 			 */
605 			ASSERT(instr[start] == FASTTRAP_INSTR);
606 			return (-1);
607 
608 		case FASTTRAP_INT:
609 			/*
610 			 * Interrupts seem like they could be traced with
611 			 * no negative implications, but it's possible that
612 			 * a thread could be redirected by the trap handling
613 			 * code which would eventually return to the
614 			 * instruction after the interrupt. If the interrupt
615 			 * were in our scratch space, the subsequent
616 			 * instruction might be overwritten before we return.
617 			 * Accordingly we refuse to instrument any interrupt.
618 			 */
619 			return (-1);
620 		}
621 	}
622 
623 #ifdef __amd64
624 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
625 		/*
626 		 * If the process is 64-bit and the instruction type is still
627 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
628 		 * execute it -- we need to watch for %rip-relative
629 		 * addressing mode. See the portion of fasttrap_pid_probe()
630 		 * below where we handle tracepoints with type
631 		 * FASTTRAP_T_COMMON for how we emulate instructions that
632 		 * employ %rip-relative addressing.
633 		 */
634 		if (rmindex != -1) {
635 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
636 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
637 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
638 
639 			ASSERT(rmindex > start);
640 
641 			if (mod == 0 && rm == 5) {
642 				/*
643 				 * We need to be sure to avoid other
644 				 * registers used by this instruction. While
645 				 * the reg field may determine the op code
646 				 * rather than denoting a register, assuming
647 				 * that it denotes a register is always safe.
648 				 * We leave the REX field intact and use
649 				 * whatever value's there for simplicity.
650 				 */
651 				if (reg != 0) {
652 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
653 					    (FASTTRAP_RIP_X *
654 					    FASTTRAP_REX_B(rex));
655 					rm = 0;
656 				} else {
657 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
658 					    (FASTTRAP_RIP_X *
659 					    FASTTRAP_REX_B(rex));
660 					rm = 1;
661 				}
662 
663 				tp->ftt_modrm = tp->ftt_instr[rmindex];
664 				tp->ftt_instr[rmindex] =
665 				    FASTTRAP_MODRM(2, reg, rm);
666 			}
667 		}
668 	}
669 #endif
670 
671 	return (0);
672 }
673 
674 int
675 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
676 {
677 	fasttrap_instr_t instr = FASTTRAP_INSTR;
678 
679 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
680 		return (-1);
681 
682 	return (0);
683 }
684 
685 int
686 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
687 {
688 	uint8_t instr;
689 
690 	/*
691 	 * Distinguish between read or write failures and a changed
692 	 * instruction.
693 	 */
694 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
695 		return (0);
696 	if (instr != FASTTRAP_INSTR)
697 		return (0);
698 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
699 		return (-1);
700 
701 	return (0);
702 }
703 
704 #ifdef __amd64
705 static uintptr_t
706 fasttrap_fulword_noerr(const void *uaddr)
707 {
708 	uintptr_t ret;
709 
710 	if ((ret = fasttrap_fulword(uaddr)) != -1)
711 		return (ret);
712 
713 	return (0);
714 }
715 #endif
716 
717 static uint32_t
718 fasttrap_fuword32_noerr(const void *uaddr)
719 {
720 	uint32_t ret;
721 
722 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
723 		return (ret);
724 
725 	return (0);
726 }
727 
728 static void
729 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
730     uintptr_t new_pc)
731 {
732 	fasttrap_tracepoint_t *tp;
733 	fasttrap_bucket_t *bucket;
734 	fasttrap_id_t *id;
735 #ifdef illumos
736 	kmutex_t *pid_mtx;
737 
738 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
739 	mutex_enter(pid_mtx);
740 #else
741 	struct rm_priotracker tracker;
742 
743 	rm_rlock(&fasttrap_tp_lock, &tracker);
744 #endif
745 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
746 
747 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
748 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
749 		    tp->ftt_proc->ftpc_acount != 0)
750 			break;
751 	}
752 
753 	/*
754 	 * Don't sweat it if we can't find the tracepoint again; unlike
755 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
756 	 * is not essential to the correct execution of the process.
757 	 */
758 	if (tp == NULL) {
759 #ifdef illumos
760 		mutex_exit(pid_mtx);
761 #else
762 		rm_runlock(&fasttrap_tp_lock, &tracker);
763 #endif
764 		return;
765 	}
766 
767 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
768 		/*
769 		 * If there's a branch that could act as a return site, we
770 		 * need to trace it, and check here if the program counter is
771 		 * external to the function.
772 		 */
773 		if (tp->ftt_type != FASTTRAP_T_RET &&
774 		    tp->ftt_type != FASTTRAP_T_RET16 &&
775 		    new_pc - id->fti_probe->ftp_faddr <
776 		    id->fti_probe->ftp_fsize)
777 			continue;
778 
779 		dtrace_probe(id->fti_probe->ftp_id,
780 		    pc - id->fti_probe->ftp_faddr,
781 		    rp->r_rax, rp->r_rbx, 0, 0);
782 	}
783 
784 #ifdef illumos
785 	mutex_exit(pid_mtx);
786 #else
787 	rm_runlock(&fasttrap_tp_lock, &tracker);
788 #endif
789 }
790 
791 static void
792 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
793 {
794 #ifdef illumos
795 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
796 
797 	sqp->sq_info.si_signo = SIGSEGV;
798 	sqp->sq_info.si_code = SEGV_MAPERR;
799 	sqp->sq_info.si_addr = (caddr_t)addr;
800 
801 	mutex_enter(&p->p_lock);
802 	sigaddqa(p, t, sqp);
803 	mutex_exit(&p->p_lock);
804 
805 	if (t != NULL)
806 		aston(t);
807 #else
808 	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
809 
810 	ksiginfo_init(ksi);
811 	ksi->ksi_signo = SIGSEGV;
812 	ksi->ksi_code = SEGV_MAPERR;
813 	ksi->ksi_addr = (caddr_t)addr;
814 	(void) tdksignal(t, SIGSEGV, ksi);
815 #endif
816 }
817 
818 #ifdef __amd64
819 static void
820 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
821     uintptr_t *argv)
822 {
823 	int i, x, cap = MIN(argc, probe->ftp_nargs);
824 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
825 
826 	for (i = 0; i < cap; i++) {
827 		x = probe->ftp_argmap[i];
828 
829 		if (x < 6)
830 			argv[i] = (&rp->r_rdi)[x];
831 		else
832 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
833 	}
834 
835 	for (; i < argc; i++) {
836 		argv[i] = 0;
837 	}
838 }
839 #endif
840 
841 static void
842 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
843     uint32_t *argv)
844 {
845 	int i, x, cap = MIN(argc, probe->ftp_nargs);
846 	uint32_t *stack = (uint32_t *)rp->r_rsp;
847 
848 	for (i = 0; i < cap; i++) {
849 		x = probe->ftp_argmap[i];
850 
851 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
852 	}
853 
854 	for (; i < argc; i++) {
855 		argv[i] = 0;
856 	}
857 }
858 
859 static int
860 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
861 {
862 	proc_t *p = curproc;
863 #ifdef __i386__
864 	struct segment_descriptor *desc;
865 #else
866 	struct user_segment_descriptor *desc;
867 #endif
868 	uint16_t sel = 0, ndx, type;
869 	uintptr_t limit;
870 
871 	switch (tp->ftt_segment) {
872 	case FASTTRAP_SEG_CS:
873 		sel = rp->r_cs;
874 		break;
875 	case FASTTRAP_SEG_DS:
876 		sel = rp->r_ds;
877 		break;
878 	case FASTTRAP_SEG_ES:
879 		sel = rp->r_es;
880 		break;
881 	case FASTTRAP_SEG_FS:
882 		sel = rp->r_fs;
883 		break;
884 	case FASTTRAP_SEG_GS:
885 		sel = rp->r_gs;
886 		break;
887 	case FASTTRAP_SEG_SS:
888 		sel = rp->r_ss;
889 		break;
890 	}
891 
892 	/*
893 	 * Make sure the given segment register specifies a user priority
894 	 * selector rather than a kernel selector.
895 	 */
896 	if (ISPL(sel) != SEL_UPL)
897 		return (-1);
898 
899 	ndx = IDXSEL(sel);
900 
901 	/*
902 	 * Check the bounds and grab the descriptor out of the specified
903 	 * descriptor table.
904 	 */
905 	if (ISLDT(sel)) {
906 #ifdef __i386__
907 		if (ndx > p->p_md.md_ldt->ldt_len)
908 			return (-1);
909 
910 		desc = (struct segment_descriptor *)
911 		    p->p_md.md_ldt[ndx].ldt_base;
912 #else
913 		if (ndx > max_ldt_segment)
914 			return (-1);
915 
916 		desc = (struct user_segment_descriptor *)
917 		    p->p_md.md_ldt[ndx].ldt_base;
918 #endif
919 
920 	} else {
921 		if (ndx >= NGDT)
922 			return (-1);
923 
924 #ifdef __i386__
925 		desc = &gdt[ndx].sd;
926 #else
927 		desc = &gdt[ndx];
928 #endif
929 	}
930 
931 	/*
932 	 * The descriptor must have user privilege level and it must be
933 	 * present in memory.
934 	 */
935 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
936 		return (-1);
937 
938 	type = desc->sd_type;
939 
940 	/*
941 	 * If the S bit in the type field is not set, this descriptor can
942 	 * only be used in system context.
943 	 */
944 	if ((type & 0x10) != 0x10)
945 		return (-1);
946 
947 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
948 
949 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
950 		/*
951 		 * The code/data bit and readable bit must both be set.
952 		 */
953 		if ((type & 0xa) != 0xa)
954 			return (-1);
955 
956 		if (*addr > limit)
957 			return (-1);
958 	} else {
959 		/*
960 		 * The code/data bit must be clear.
961 		 */
962 		if ((type & 0x8) != 0)
963 			return (-1);
964 
965 		/*
966 		 * If the expand-down bit is clear, we just check the limit as
967 		 * it would naturally be applied. Otherwise, we need to check
968 		 * that the address is the range [limit + 1 .. 0xffff] or
969 		 * [limit + 1 ... 0xffffffff] depending on if the default
970 		 * operand size bit is set.
971 		 */
972 		if ((type & 0x4) == 0) {
973 			if (*addr > limit)
974 				return (-1);
975 		} else if (desc->sd_def32) {
976 			if (*addr < limit + 1 || 0xffff < *addr)
977 				return (-1);
978 		} else {
979 			if (*addr < limit + 1 || 0xffffffff < *addr)
980 				return (-1);
981 		}
982 	}
983 
984 	*addr += USD_GETBASE(desc);
985 
986 	return (0);
987 }
988 
989 int
990 fasttrap_pid_probe(struct reg *rp)
991 {
992 	proc_t *p = curproc;
993 #ifndef illumos
994 	struct rm_priotracker tracker;
995 	proc_t *pp;
996 #endif
997 	uintptr_t pc = rp->r_rip - 1;
998 	uintptr_t new_pc = 0;
999 	fasttrap_bucket_t *bucket;
1000 #ifdef illumos
1001 	kmutex_t *pid_mtx;
1002 #endif
1003 	fasttrap_tracepoint_t *tp, tp_local;
1004 	pid_t pid;
1005 	dtrace_icookie_t cookie;
1006 	uint_t is_enabled = 0;
1007 
1008 	/*
1009 	 * It's possible that a user (in a veritable orgy of bad planning)
1010 	 * could redirect this thread's flow of control before it reached the
1011 	 * return probe fasttrap. In this case we need to kill the process
1012 	 * since it's in a unrecoverable state.
1013 	 */
1014 	if (curthread->t_dtrace_step) {
1015 		ASSERT(curthread->t_dtrace_on);
1016 		fasttrap_sigtrap(p, curthread, pc);
1017 		return (0);
1018 	}
1019 
1020 	/*
1021 	 * Clear all user tracing flags.
1022 	 */
1023 	curthread->t_dtrace_ft = 0;
1024 	curthread->t_dtrace_pc = 0;
1025 	curthread->t_dtrace_npc = 0;
1026 	curthread->t_dtrace_scrpc = 0;
1027 	curthread->t_dtrace_astpc = 0;
1028 #ifdef __amd64
1029 	curthread->t_dtrace_regv = 0;
1030 #endif
1031 
1032 	/*
1033 	 * Treat a child created by a call to vfork(2) as if it were its
1034 	 * parent. We know that there's only one thread of control in such a
1035 	 * process: this one.
1036 	 */
1037 #ifdef illumos
1038 	while (p->p_flag & SVFORK) {
1039 		p = p->p_parent;
1040 	}
1041 
1042 	pid = p->p_pid;
1043 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1044 	mutex_enter(pid_mtx);
1045 #else
1046 	pp = p;
1047 	sx_slock(&proctree_lock);
1048 	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1049 		pp = pp->p_pptr;
1050 	pid = pp->p_pid;
1051 	sx_sunlock(&proctree_lock);
1052 	pp = NULL;
1053 
1054 	rm_rlock(&fasttrap_tp_lock, &tracker);
1055 #endif
1056 
1057 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1058 
1059 	/*
1060 	 * Lookup the tracepoint that the process just hit.
1061 	 */
1062 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1063 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1064 		    tp->ftt_proc->ftpc_acount != 0)
1065 			break;
1066 	}
1067 
1068 	/*
1069 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1070 	 * been inserted without using the pid<pid> ioctl interface (see
1071 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1072 	 */
1073 	if (tp == NULL) {
1074 #ifdef illumos
1075 		mutex_exit(pid_mtx);
1076 #else
1077 		rm_runlock(&fasttrap_tp_lock, &tracker);
1078 #endif
1079 		return (-1);
1080 	}
1081 
1082 	/*
1083 	 * Set the program counter to the address of the traced instruction
1084 	 * so that it looks right in ustack() output.
1085 	 */
1086 	rp->r_rip = pc;
1087 
1088 	if (tp->ftt_ids != NULL) {
1089 		fasttrap_id_t *id;
1090 
1091 #ifdef __amd64
1092 		if (p->p_model == DATAMODEL_LP64) {
1093 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1094 				fasttrap_probe_t *probe = id->fti_probe;
1095 
1096 				if (id->fti_ptype == DTFTP_ENTRY) {
1097 					/*
1098 					 * We note that this was an entry
1099 					 * probe to help ustack() find the
1100 					 * first caller.
1101 					 */
1102 					cookie = dtrace_interrupt_disable();
1103 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1104 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1105 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1106 					    rp->r_r8);
1107 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1108 					dtrace_interrupt_enable(cookie);
1109 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1110 					/*
1111 					 * Note that in this case, we don't
1112 					 * call dtrace_probe() since it's only
1113 					 * an artificial probe meant to change
1114 					 * the flow of control so that it
1115 					 * encounters the true probe.
1116 					 */
1117 					is_enabled = 1;
1118 				} else if (probe->ftp_argmap == NULL) {
1119 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1120 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1121 					    rp->r_r8);
1122 				} else {
1123 					uintptr_t t[5];
1124 
1125 					fasttrap_usdt_args64(probe, rp,
1126 					    sizeof (t) / sizeof (t[0]), t);
1127 
1128 					dtrace_probe(probe->ftp_id, t[0], t[1],
1129 					    t[2], t[3], t[4]);
1130 				}
1131 			}
1132 		} else {
1133 #endif
1134 			uintptr_t s0, s1, s2, s3, s4, s5;
1135 			uint32_t *stack = (uint32_t *)rp->r_rsp;
1136 
1137 			/*
1138 			 * In 32-bit mode, all arguments are passed on the
1139 			 * stack. If this is a function entry probe, we need
1140 			 * to skip the first entry on the stack as it
1141 			 * represents the return address rather than a
1142 			 * parameter to the function.
1143 			 */
1144 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1145 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1146 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1147 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1148 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1149 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1150 
1151 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1152 				fasttrap_probe_t *probe = id->fti_probe;
1153 
1154 				if (id->fti_ptype == DTFTP_ENTRY) {
1155 					/*
1156 					 * We note that this was an entry
1157 					 * probe to help ustack() find the
1158 					 * first caller.
1159 					 */
1160 					cookie = dtrace_interrupt_disable();
1161 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1162 					dtrace_probe(probe->ftp_id, s1, s2,
1163 					    s3, s4, s5);
1164 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1165 					dtrace_interrupt_enable(cookie);
1166 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1167 					/*
1168 					 * Note that in this case, we don't
1169 					 * call dtrace_probe() since it's only
1170 					 * an artificial probe meant to change
1171 					 * the flow of control so that it
1172 					 * encounters the true probe.
1173 					 */
1174 					is_enabled = 1;
1175 				} else if (probe->ftp_argmap == NULL) {
1176 					dtrace_probe(probe->ftp_id, s0, s1,
1177 					    s2, s3, s4);
1178 				} else {
1179 					uint32_t t[5];
1180 
1181 					fasttrap_usdt_args32(probe, rp,
1182 					    sizeof (t) / sizeof (t[0]), t);
1183 
1184 					dtrace_probe(probe->ftp_id, t[0], t[1],
1185 					    t[2], t[3], t[4]);
1186 				}
1187 			}
1188 #ifdef __amd64
1189 		}
1190 #endif
1191 	}
1192 
1193 	/*
1194 	 * We're about to do a bunch of work so we cache a local copy of
1195 	 * the tracepoint to emulate the instruction, and then find the
1196 	 * tracepoint again later if we need to light up any return probes.
1197 	 */
1198 	tp_local = *tp;
1199 #ifdef illumos
1200 	mutex_exit(pid_mtx);
1201 #else
1202 	rm_runlock(&fasttrap_tp_lock, &tracker);
1203 #endif
1204 	tp = &tp_local;
1205 
1206 	/*
1207 	 * Set the program counter to appear as though the traced instruction
1208 	 * had completely executed. This ensures that fasttrap_getreg() will
1209 	 * report the expected value for REG_RIP.
1210 	 */
1211 	rp->r_rip = pc + tp->ftt_size;
1212 
1213 	/*
1214 	 * If there's an is-enabled probe connected to this tracepoint it
1215 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1216 	 * instruction that was placed there by DTrace when the binary was
1217 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1218 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1219 	 * emulation logic since we know the inevitable result. It's possible
1220 	 * that a user could construct a scenario where the 'is-enabled'
1221 	 * probe was on some other instruction, but that would be a rather
1222 	 * exotic way to shoot oneself in the foot.
1223 	 */
1224 	if (is_enabled) {
1225 		rp->r_rax = 1;
1226 		new_pc = rp->r_rip;
1227 		goto done;
1228 	}
1229 
1230 	/*
1231 	 * We emulate certain types of instructions to ensure correctness
1232 	 * (in the case of position dependent instructions) or optimize
1233 	 * common cases. The rest we have the thread execute back in user-
1234 	 * land.
1235 	 */
1236 	switch (tp->ftt_type) {
1237 	case FASTTRAP_T_RET:
1238 	case FASTTRAP_T_RET16:
1239 	{
1240 		uintptr_t dst = 0;
1241 		uintptr_t addr = 0;
1242 		int ret = 0;
1243 
1244 		/*
1245 		 * We have to emulate _every_ facet of the behavior of a ret
1246 		 * instruction including what happens if the load from %esp
1247 		 * fails; in that case, we send a SIGSEGV.
1248 		 */
1249 #ifdef __amd64
1250 		if (p->p_model == DATAMODEL_NATIVE) {
1251 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1252 			addr = rp->r_rsp + sizeof (uintptr_t);
1253 		} else {
1254 #endif
1255 			uint32_t dst32;
1256 			ret = dst32 = fasttrap_fuword32((void *)rp->r_rsp);
1257 			dst = dst32;
1258 			addr = rp->r_rsp + sizeof (uint32_t);
1259 #ifdef __amd64
1260 		}
1261 #endif
1262 
1263 		if (ret == -1) {
1264 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1265 			new_pc = pc;
1266 			break;
1267 		}
1268 
1269 		if (tp->ftt_type == FASTTRAP_T_RET16)
1270 			addr += tp->ftt_dest;
1271 
1272 		rp->r_rsp = addr;
1273 		new_pc = dst;
1274 		break;
1275 	}
1276 
1277 	case FASTTRAP_T_JCC:
1278 	{
1279 		uint_t taken = 0;
1280 
1281 		switch (tp->ftt_code) {
1282 		case FASTTRAP_JO:
1283 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1284 			break;
1285 		case FASTTRAP_JNO:
1286 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1287 			break;
1288 		case FASTTRAP_JB:
1289 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1290 			break;
1291 		case FASTTRAP_JAE:
1292 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1293 			break;
1294 		case FASTTRAP_JE:
1295 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1296 			break;
1297 		case FASTTRAP_JNE:
1298 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1299 			break;
1300 		case FASTTRAP_JBE:
1301 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1302 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1303 			break;
1304 		case FASTTRAP_JA:
1305 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1306 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1307 			break;
1308 		case FASTTRAP_JS:
1309 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1310 			break;
1311 		case FASTTRAP_JNS:
1312 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1313 			break;
1314 		case FASTTRAP_JP:
1315 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1316 			break;
1317 		case FASTTRAP_JNP:
1318 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1319 			break;
1320 		case FASTTRAP_JL:
1321 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1322 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1323 			break;
1324 		case FASTTRAP_JGE:
1325 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1326 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1327 			break;
1328 		case FASTTRAP_JLE:
1329 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1330 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1331 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1332 			break;
1333 		case FASTTRAP_JG:
1334 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1335 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1336 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1337 			break;
1338 
1339 		}
1340 
1341 		if (taken)
1342 			new_pc = tp->ftt_dest;
1343 		else
1344 			new_pc = pc + tp->ftt_size;
1345 		break;
1346 	}
1347 
1348 	case FASTTRAP_T_LOOP:
1349 	{
1350 		uint_t taken = 0;
1351 #ifdef __amd64
1352 		greg_t cx = rp->r_rcx--;
1353 #else
1354 		greg_t cx = rp->r_ecx--;
1355 #endif
1356 
1357 		switch (tp->ftt_code) {
1358 		case FASTTRAP_LOOPNZ:
1359 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1360 			    cx != 0;
1361 			break;
1362 		case FASTTRAP_LOOPZ:
1363 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1364 			    cx != 0;
1365 			break;
1366 		case FASTTRAP_LOOP:
1367 			taken = (cx != 0);
1368 			break;
1369 		}
1370 
1371 		if (taken)
1372 			new_pc = tp->ftt_dest;
1373 		else
1374 			new_pc = pc + tp->ftt_size;
1375 		break;
1376 	}
1377 
1378 	case FASTTRAP_T_JCXZ:
1379 	{
1380 #ifdef __amd64
1381 		greg_t cx = rp->r_rcx;
1382 #else
1383 		greg_t cx = rp->r_ecx;
1384 #endif
1385 
1386 		if (cx == 0)
1387 			new_pc = tp->ftt_dest;
1388 		else
1389 			new_pc = pc + tp->ftt_size;
1390 		break;
1391 	}
1392 
1393 	case FASTTRAP_T_PUSHL_EBP:
1394 	{
1395 		int ret = 0;
1396 
1397 #ifdef __amd64
1398 		if (p->p_model == DATAMODEL_NATIVE) {
1399 			rp->r_rsp -= sizeof (uintptr_t);
1400 			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1401 		} else {
1402 #endif
1403 			rp->r_rsp -= sizeof (uint32_t);
1404 			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1405 #ifdef __amd64
1406 		}
1407 #endif
1408 
1409 		if (ret == -1) {
1410 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1411 			new_pc = pc;
1412 			break;
1413 		}
1414 
1415 		new_pc = pc + tp->ftt_size;
1416 		break;
1417 	}
1418 
1419 	case FASTTRAP_T_NOP:
1420 		new_pc = pc + tp->ftt_size;
1421 		break;
1422 
1423 	case FASTTRAP_T_JMP:
1424 	case FASTTRAP_T_CALL:
1425 		if (tp->ftt_code == 0) {
1426 			new_pc = tp->ftt_dest;
1427 		} else {
1428 			uintptr_t value, addr = tp->ftt_dest;
1429 
1430 			if (tp->ftt_base != FASTTRAP_NOREG)
1431 				addr += fasttrap_getreg(rp, tp->ftt_base);
1432 			if (tp->ftt_index != FASTTRAP_NOREG)
1433 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1434 				    tp->ftt_scale;
1435 
1436 			if (tp->ftt_code == 1) {
1437 				/*
1438 				 * If there's a segment prefix for this
1439 				 * instruction, we'll need to check permissions
1440 				 * and bounds on the given selector, and adjust
1441 				 * the address accordingly.
1442 				 */
1443 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1444 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1445 					fasttrap_sigsegv(p, curthread, addr);
1446 					new_pc = pc;
1447 					break;
1448 				}
1449 
1450 #ifdef __amd64
1451 				if (p->p_model == DATAMODEL_NATIVE) {
1452 #endif
1453 					if ((value = fasttrap_fulword((void *)addr))
1454 					     == -1) {
1455 						fasttrap_sigsegv(p, curthread,
1456 						    addr);
1457 						new_pc = pc;
1458 						break;
1459 					}
1460 					new_pc = value;
1461 #ifdef __amd64
1462 				} else {
1463 					uint32_t value32;
1464 					addr = (uintptr_t)(uint32_t)addr;
1465 					if ((value32 = fasttrap_fuword32((void *)addr))
1466 					    == -1) {
1467 						fasttrap_sigsegv(p, curthread,
1468 						    addr);
1469 						new_pc = pc;
1470 						break;
1471 					}
1472 					new_pc = value32;
1473 				}
1474 #endif
1475 			} else {
1476 				new_pc = addr;
1477 			}
1478 		}
1479 
1480 		/*
1481 		 * If this is a call instruction, we need to push the return
1482 		 * address onto the stack. If this fails, we send the process
1483 		 * a SIGSEGV and reset the pc to emulate what would happen if
1484 		 * this instruction weren't traced.
1485 		 */
1486 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1487 			int ret = 0;
1488 			uintptr_t addr = 0, pcps;
1489 #ifdef __amd64
1490 			if (p->p_model == DATAMODEL_NATIVE) {
1491 				addr = rp->r_rsp - sizeof (uintptr_t);
1492 				pcps = pc + tp->ftt_size;
1493 				ret = fasttrap_sulword((void *)addr, pcps);
1494 			} else {
1495 #endif
1496 				addr = rp->r_rsp - sizeof (uint32_t);
1497 				pcps = (uint32_t)(pc + tp->ftt_size);
1498 				ret = fasttrap_suword32((void *)addr, pcps);
1499 #ifdef __amd64
1500 			}
1501 #endif
1502 
1503 			if (ret == -1) {
1504 				fasttrap_sigsegv(p, curthread, addr);
1505 				new_pc = pc;
1506 				break;
1507 			}
1508 
1509 			rp->r_rsp = addr;
1510 		}
1511 
1512 		break;
1513 
1514 	case FASTTRAP_T_COMMON:
1515 	{
1516 		uintptr_t addr;
1517 #if defined(__amd64)
1518 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1519 #else
1520 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1521 #endif
1522 		uint_t i = 0;
1523 #ifdef illumos
1524 		klwp_t *lwp = ttolwp(curthread);
1525 
1526 		/*
1527 		 * Compute the address of the ulwp_t and step over the
1528 		 * ul_self pointer. The method used to store the user-land
1529 		 * thread pointer is very different on 32- and 64-bit
1530 		 * kernels.
1531 		 */
1532 #if defined(__amd64)
1533 		if (p->p_model == DATAMODEL_LP64) {
1534 			addr = lwp->lwp_pcb.pcb_fsbase;
1535 			addr += sizeof (void *);
1536 		} else {
1537 			addr = lwp->lwp_pcb.pcb_gsbase;
1538 			addr += sizeof (caddr32_t);
1539 		}
1540 #else
1541 		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1542 		addr += sizeof (void *);
1543 #endif
1544 #else	/* !illumos */
1545 		fasttrap_scrspace_t *scrspace;
1546 		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1547 		if (scrspace == NULL) {
1548 			/*
1549 			 * We failed to allocate scratch space for this thread.
1550 			 * Try to write the original instruction back out and
1551 			 * reset the pc.
1552 			 */
1553 			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1554 			    tp->ftt_size))
1555 				fasttrap_sigtrap(p, curthread, pc);
1556 			new_pc = pc;
1557 			break;
1558 		}
1559 		addr = scrspace->ftss_addr;
1560 #endif /* illumos */
1561 
1562 		/*
1563 		 * Generic Instruction Tracing
1564 		 * ---------------------------
1565 		 *
1566 		 * This is the layout of the scratch space in the user-land
1567 		 * thread structure for our generated instructions.
1568 		 *
1569 		 *	32-bit mode			bytes
1570 		 *	------------------------	-----
1571 		 * a:	<original instruction>		<= 15
1572 		 *	jmp	<pc + tp->ftt_size>	    5
1573 		 * b:	<original instruction>		<= 15
1574 		 *	int	T_DTRACE_RET		    2
1575 		 *					-----
1576 		 *					<= 37
1577 		 *
1578 		 *	64-bit mode			bytes
1579 		 *	------------------------	-----
1580 		 * a:	<original instruction>		<= 15
1581 		 *	jmp	0(%rip)			    6
1582 		 *	<pc + tp->ftt_size>		    8
1583 		 * b:	<original instruction>		<= 15
1584 		 * 	int	T_DTRACE_RET		    2
1585 		 * 					-----
1586 		 * 					<= 46
1587 		 *
1588 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1589 		 * to b. If we encounter a signal on the way out of the
1590 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1591 		 * so that we execute the original instruction and re-enter
1592 		 * the kernel rather than redirecting to the next instruction.
1593 		 *
1594 		 * If there are return probes (so we know that we're going to
1595 		 * need to reenter the kernel after executing the original
1596 		 * instruction), the scratch space will just contain the
1597 		 * original instruction followed by an interrupt -- the same
1598 		 * data as at b.
1599 		 *
1600 		 * %rip-relative Addressing
1601 		 * ------------------------
1602 		 *
1603 		 * There's a further complication in 64-bit mode due to %rip-
1604 		 * relative addressing. While this is clearly a beneficial
1605 		 * architectural decision for position independent code, it's
1606 		 * hard not to see it as a personal attack against the pid
1607 		 * provider since before there was a relatively small set of
1608 		 * instructions to emulate; with %rip-relative addressing,
1609 		 * almost every instruction can potentially depend on the
1610 		 * address at which it's executed. Rather than emulating
1611 		 * the broad spectrum of instructions that can now be
1612 		 * position dependent, we emulate jumps and others as in
1613 		 * 32-bit mode, and take a different tack for instructions
1614 		 * using %rip-relative addressing.
1615 		 *
1616 		 * For every instruction that uses the ModRM byte, the
1617 		 * in-kernel disassembler reports its location. We use the
1618 		 * ModRM byte to identify that an instruction uses
1619 		 * %rip-relative addressing and to see what other registers
1620 		 * the instruction uses. To emulate those instructions,
1621 		 * we modify the instruction to be %rax-relative rather than
1622 		 * %rip-relative (or %rcx-relative if the instruction uses
1623 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1624 		 * we don't have to rewrite the REX prefix). We then load
1625 		 * the value that %rip would have been into the scratch
1626 		 * register and generate an instruction to reset the scratch
1627 		 * register back to its original value. The instruction
1628 		 * sequence looks like this:
1629 		 *
1630 		 *	64-mode %rip-relative		bytes
1631 		 *	------------------------	-----
1632 		 * a:	<modified instruction>		<= 15
1633 		 *	movq	$<value>, %<scratch>	    6
1634 		 *	jmp	0(%rip)			    6
1635 		 *	<pc + tp->ftt_size>		    8
1636 		 * b:	<modified instruction>  	<= 15
1637 		 * 	int	T_DTRACE_RET		    2
1638 		 * 					-----
1639 		 *					   52
1640 		 *
1641 		 * We set curthread->t_dtrace_regv so that upon receiving
1642 		 * a signal we can reset the value of the scratch register.
1643 		 */
1644 
1645 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1646 
1647 		curthread->t_dtrace_scrpc = addr;
1648 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1649 		i += tp->ftt_size;
1650 
1651 #ifdef __amd64
1652 		if (tp->ftt_ripmode != 0) {
1653 			greg_t *reg = NULL;
1654 
1655 			ASSERT(p->p_model == DATAMODEL_LP64);
1656 			ASSERT(tp->ftt_ripmode &
1657 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1658 
1659 			/*
1660 			 * If this was a %rip-relative instruction, we change
1661 			 * it to be either a %rax- or %rcx-relative
1662 			 * instruction (depending on whether those registers
1663 			 * are used as another operand; or %r8- or %r9-
1664 			 * relative depending on the value of REX.B). We then
1665 			 * set that register and generate a movq instruction
1666 			 * to reset the value.
1667 			 */
1668 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1669 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1670 			else
1671 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1672 
1673 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1674 				scratch[i++] = FASTTRAP_MOV_EAX;
1675 			else
1676 				scratch[i++] = FASTTRAP_MOV_ECX;
1677 
1678 			switch (tp->ftt_ripmode) {
1679 			case FASTTRAP_RIP_1:
1680 				reg = &rp->r_rax;
1681 				curthread->t_dtrace_reg = REG_RAX;
1682 				break;
1683 			case FASTTRAP_RIP_2:
1684 				reg = &rp->r_rcx;
1685 				curthread->t_dtrace_reg = REG_RCX;
1686 				break;
1687 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1688 				reg = &rp->r_r8;
1689 				curthread->t_dtrace_reg = REG_R8;
1690 				break;
1691 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1692 				reg = &rp->r_r9;
1693 				curthread->t_dtrace_reg = REG_R9;
1694 				break;
1695 			}
1696 
1697 			/* LINTED - alignment */
1698 			*(uint64_t *)&scratch[i] = *reg;
1699 			curthread->t_dtrace_regv = *reg;
1700 			*reg = pc + tp->ftt_size;
1701 			i += sizeof (uint64_t);
1702 		}
1703 #endif
1704 
1705 		/*
1706 		 * Generate the branch instruction to what would have
1707 		 * normally been the subsequent instruction. In 32-bit mode,
1708 		 * this is just a relative branch; in 64-bit mode this is a
1709 		 * %rip-relative branch that loads the 64-bit pc value
1710 		 * immediately after the jmp instruction.
1711 		 */
1712 #ifdef __amd64
1713 		if (p->p_model == DATAMODEL_LP64) {
1714 			scratch[i++] = FASTTRAP_GROUP5_OP;
1715 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1716 			/* LINTED - alignment */
1717 			*(uint32_t *)&scratch[i] = 0;
1718 			i += sizeof (uint32_t);
1719 			/* LINTED - alignment */
1720 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1721 			i += sizeof (uint64_t);
1722 		} else {
1723 #endif
1724 			/*
1725 			 * Set up the jmp to the next instruction; note that
1726 			 * the size of the traced instruction cancels out.
1727 			 */
1728 			scratch[i++] = FASTTRAP_JMP32;
1729 			/* LINTED - alignment */
1730 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1731 			i += sizeof (uint32_t);
1732 #ifdef __amd64
1733 		}
1734 #endif
1735 
1736 		curthread->t_dtrace_astpc = addr + i;
1737 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1738 		i += tp->ftt_size;
1739 		scratch[i++] = FASTTRAP_INT;
1740 		scratch[i++] = T_DTRACE_RET;
1741 
1742 		ASSERT(i <= sizeof (scratch));
1743 
1744 #ifdef illumos
1745 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1746 #else
1747 		if (uwrite(p, scratch, i, addr)) {
1748 #endif
1749 			fasttrap_sigtrap(p, curthread, pc);
1750 			new_pc = pc;
1751 			break;
1752 		}
1753 		if (tp->ftt_retids != NULL) {
1754 			curthread->t_dtrace_step = 1;
1755 			curthread->t_dtrace_ret = 1;
1756 			new_pc = curthread->t_dtrace_astpc;
1757 		} else {
1758 			new_pc = curthread->t_dtrace_scrpc;
1759 		}
1760 
1761 		curthread->t_dtrace_pc = pc;
1762 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1763 		curthread->t_dtrace_on = 1;
1764 		break;
1765 	}
1766 
1767 	default:
1768 		panic("fasttrap: mishandled an instruction");
1769 	}
1770 
1771 done:
1772 	/*
1773 	 * If there were no return probes when we first found the tracepoint,
1774 	 * we should feel no obligation to honor any return probes that were
1775 	 * subsequently enabled -- they'll just have to wait until the next
1776 	 * time around.
1777 	 */
1778 	if (tp->ftt_retids != NULL) {
1779 		/*
1780 		 * We need to wait until the results of the instruction are
1781 		 * apparent before invoking any return probes. If this
1782 		 * instruction was emulated we can just call
1783 		 * fasttrap_return_common(); if it needs to be executed, we
1784 		 * need to wait until the user thread returns to the kernel.
1785 		 */
1786 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1787 			/*
1788 			 * Set the program counter to the address of the traced
1789 			 * instruction so that it looks right in ustack()
1790 			 * output. We had previously set it to the end of the
1791 			 * instruction to simplify %rip-relative addressing.
1792 			 */
1793 			rp->r_rip = pc;
1794 
1795 			fasttrap_return_common(rp, pc, pid, new_pc);
1796 		} else {
1797 			ASSERT(curthread->t_dtrace_ret != 0);
1798 			ASSERT(curthread->t_dtrace_pc == pc);
1799 			ASSERT(curthread->t_dtrace_scrpc != 0);
1800 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1801 		}
1802 	}
1803 
1804 	rp->r_rip = new_pc;
1805 
1806 #ifndef illumos
1807 	PROC_LOCK(p);
1808 	proc_write_regs(curthread, rp);
1809 	PROC_UNLOCK(p);
1810 #endif
1811 
1812 	return (0);
1813 }
1814 
1815 int
1816 fasttrap_return_probe(struct reg *rp)
1817 {
1818 	proc_t *p = curproc;
1819 	uintptr_t pc = curthread->t_dtrace_pc;
1820 	uintptr_t npc = curthread->t_dtrace_npc;
1821 
1822 	curthread->t_dtrace_pc = 0;
1823 	curthread->t_dtrace_npc = 0;
1824 	curthread->t_dtrace_scrpc = 0;
1825 	curthread->t_dtrace_astpc = 0;
1826 
1827 #ifdef illumos
1828 	/*
1829 	 * Treat a child created by a call to vfork(2) as if it were its
1830 	 * parent. We know that there's only one thread of control in such a
1831 	 * process: this one.
1832 	 */
1833 	while (p->p_flag & SVFORK) {
1834 		p = p->p_parent;
1835 	}
1836 #endif
1837 
1838 	/*
1839 	 * We set rp->r_rip to the address of the traced instruction so
1840 	 * that it appears to dtrace_probe() that we're on the original
1841 	 * instruction, and so that the user can't easily detect our
1842 	 * complex web of lies. dtrace_return_probe() (our caller)
1843 	 * will correctly set %pc after we return.
1844 	 */
1845 	rp->r_rip = pc;
1846 
1847 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1848 
1849 	return (0);
1850 }
1851 
1852 /*ARGSUSED*/
1853 uint64_t
1854 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1855     int aframes)
1856 {
1857 	struct reg r;
1858 
1859 	fill_regs(curthread, &r);
1860 
1861 	return (fasttrap_anarg(&r, 1, argno));
1862 }
1863 
1864 /*ARGSUSED*/
1865 uint64_t
1866 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1867     int aframes)
1868 {
1869 	struct reg r;
1870 
1871 	fill_regs(curthread, &r);
1872 
1873 	return (fasttrap_anarg(&r, 0, argno));
1874 }
1875 
1876 static ulong_t
1877 fasttrap_getreg(struct reg *rp, uint_t reg)
1878 {
1879 #ifdef __amd64
1880 	switch (reg) {
1881 	case REG_R15:		return (rp->r_r15);
1882 	case REG_R14:		return (rp->r_r14);
1883 	case REG_R13:		return (rp->r_r13);
1884 	case REG_R12:		return (rp->r_r12);
1885 	case REG_R11:		return (rp->r_r11);
1886 	case REG_R10:		return (rp->r_r10);
1887 	case REG_R9:		return (rp->r_r9);
1888 	case REG_R8:		return (rp->r_r8);
1889 	case REG_RDI:		return (rp->r_rdi);
1890 	case REG_RSI:		return (rp->r_rsi);
1891 	case REG_RBP:		return (rp->r_rbp);
1892 	case REG_RBX:		return (rp->r_rbx);
1893 	case REG_RDX:		return (rp->r_rdx);
1894 	case REG_RCX:		return (rp->r_rcx);
1895 	case REG_RAX:		return (rp->r_rax);
1896 	case REG_TRAPNO:	return (rp->r_trapno);
1897 	case REG_ERR:		return (rp->r_err);
1898 	case REG_RIP:		return (rp->r_rip);
1899 	case REG_CS:		return (rp->r_cs);
1900 #ifdef illumos
1901 	case REG_RFL:		return (rp->r_rfl);
1902 #endif
1903 	case REG_RSP:		return (rp->r_rsp);
1904 	case REG_SS:		return (rp->r_ss);
1905 	case REG_FS:		return (rp->r_fs);
1906 	case REG_GS:		return (rp->r_gs);
1907 	case REG_DS:		return (rp->r_ds);
1908 	case REG_ES:		return (rp->r_es);
1909 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1910 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1911 	}
1912 
1913 	panic("dtrace: illegal register constant");
1914 	/*NOTREACHED*/
1915 #else
1916 #define _NGREG 19
1917 	if (reg >= _NGREG)
1918 		panic("dtrace: illegal register constant");
1919 
1920 	return (((greg_t *)&rp->r_gs)[reg]);
1921 #endif
1922 }
1923