xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/types.h>
35 #include <sys/dtrace_bsd.h>
36 #include <sys/proc.h>
37 #include <sys/reg.h>
38 #include <sys/rmlock.h>
39 #include <cddl/dev/dtrace/dtrace_cddl.h>
40 #include <cddl/dev/dtrace/x86/regset.h>
41 #include <machine/segments.h>
42 #include <machine/pcb.h>
43 #include <machine/trap.h>
44 #include <sys/sysmacros.h>
45 #include <sys/ptrace.h>
46 
47 #ifdef __i386__
48 #define	r_rax	r_eax
49 #define	r_rbx	r_ebx
50 #define	r_rip	r_eip
51 #define	r_rflags r_eflags
52 #define	r_rsp	r_esp
53 #define	r_rbp	r_ebp
54 #endif
55 
56 /*
57  * Lossless User-Land Tracing on x86
58  * ---------------------------------
59  *
60  * The execution of most instructions is not dependent on the address; for
61  * these instructions it is sufficient to copy them into the user process's
62  * address space and execute them. To effectively single-step an instruction
63  * in user-land, we copy out the following sequence of instructions to scratch
64  * space in the user thread's ulwp_t structure.
65  *
66  * We then set the program counter (%eip or %rip) to point to this scratch
67  * space. Once execution resumes, the original instruction is executed and
68  * then control flow is redirected to what was originally the subsequent
69  * instruction. If the kernel attemps to deliver a signal while single-
70  * stepping, the signal is deferred and the program counter is moved into the
71  * second sequence of instructions. The second sequence ends in a trap into
72  * the kernel where the deferred signal is then properly handled and delivered.
73  *
74  * For instructions whose execute is position dependent, we perform simple
75  * emulation. These instructions are limited to control transfer
76  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
77  * of %rip-relative addressing that means that almost any instruction can be
78  * position dependent. For all the details on how we emulate generic
79  * instructions included %rip-relative instructions, see the code in
80  * fasttrap_pid_probe() below where we handle instructions of type
81  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
82  */
83 
84 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
85 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
86 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
87 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
88 
89 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
90 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
91 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
92 
93 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
94 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
95 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
96 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
97 #define	FASTTRAP_REX(w, r, x, b)	\
98 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
99 
100 /*
101  * Single-byte op-codes.
102  */
103 #define	FASTTRAP_PUSHL_EBP	0x55
104 
105 #define	FASTTRAP_JO		0x70
106 #define	FASTTRAP_JNO		0x71
107 #define	FASTTRAP_JB		0x72
108 #define	FASTTRAP_JAE		0x73
109 #define	FASTTRAP_JE		0x74
110 #define	FASTTRAP_JNE		0x75
111 #define	FASTTRAP_JBE		0x76
112 #define	FASTTRAP_JA		0x77
113 #define	FASTTRAP_JS		0x78
114 #define	FASTTRAP_JNS		0x79
115 #define	FASTTRAP_JP		0x7a
116 #define	FASTTRAP_JNP		0x7b
117 #define	FASTTRAP_JL		0x7c
118 #define	FASTTRAP_JGE		0x7d
119 #define	FASTTRAP_JLE		0x7e
120 #define	FASTTRAP_JG		0x7f
121 
122 #define	FASTTRAP_NOP		0x90
123 
124 #define	FASTTRAP_MOV_EAX	0xb8
125 #define	FASTTRAP_MOV_ECX	0xb9
126 
127 #define	FASTTRAP_RET16		0xc2
128 #define	FASTTRAP_RET		0xc3
129 
130 #define	FASTTRAP_LOOPNZ		0xe0
131 #define	FASTTRAP_LOOPZ		0xe1
132 #define	FASTTRAP_LOOP		0xe2
133 #define	FASTTRAP_JCXZ		0xe3
134 
135 #define	FASTTRAP_CALL		0xe8
136 #define	FASTTRAP_JMP32		0xe9
137 #define	FASTTRAP_JMP8		0xeb
138 
139 #define	FASTTRAP_INT3		0xcc
140 #define	FASTTRAP_INT		0xcd
141 
142 #define	FASTTRAP_2_BYTE_OP	0x0f
143 #define	FASTTRAP_GROUP5_OP	0xff
144 
145 /*
146  * Two-byte op-codes (second byte only).
147  */
148 #define	FASTTRAP_0F_JO		0x80
149 #define	FASTTRAP_0F_JNO		0x81
150 #define	FASTTRAP_0F_JB		0x82
151 #define	FASTTRAP_0F_JAE		0x83
152 #define	FASTTRAP_0F_JE		0x84
153 #define	FASTTRAP_0F_JNE		0x85
154 #define	FASTTRAP_0F_JBE		0x86
155 #define	FASTTRAP_0F_JA		0x87
156 #define	FASTTRAP_0F_JS		0x88
157 #define	FASTTRAP_0F_JNS		0x89
158 #define	FASTTRAP_0F_JP		0x8a
159 #define	FASTTRAP_0F_JNP		0x8b
160 #define	FASTTRAP_0F_JL		0x8c
161 #define	FASTTRAP_0F_JGE		0x8d
162 #define	FASTTRAP_0F_JLE		0x8e
163 #define	FASTTRAP_0F_JG		0x8f
164 
165 #define	FASTTRAP_EFLAGS_OF	0x800
166 #define	FASTTRAP_EFLAGS_DF	0x400
167 #define	FASTTRAP_EFLAGS_SF	0x080
168 #define	FASTTRAP_EFLAGS_ZF	0x040
169 #define	FASTTRAP_EFLAGS_AF	0x010
170 #define	FASTTRAP_EFLAGS_PF	0x004
171 #define	FASTTRAP_EFLAGS_CF	0x001
172 
173 /*
174  * Instruction prefixes.
175  */
176 #define	FASTTRAP_PREFIX_OPERAND	0x66
177 #define	FASTTRAP_PREFIX_ADDRESS	0x67
178 #define	FASTTRAP_PREFIX_CS	0x2E
179 #define	FASTTRAP_PREFIX_DS	0x3E
180 #define	FASTTRAP_PREFIX_ES	0x26
181 #define	FASTTRAP_PREFIX_FS	0x64
182 #define	FASTTRAP_PREFIX_GS	0x65
183 #define	FASTTRAP_PREFIX_SS	0x36
184 #define	FASTTRAP_PREFIX_LOCK	0xF0
185 #define	FASTTRAP_PREFIX_REP	0xF3
186 #define	FASTTRAP_PREFIX_REPNE	0xF2
187 
188 #define	FASTTRAP_NOREG	0xff
189 
190 /*
191  * Map between instruction register encodings and the kernel constants which
192  * correspond to indicies into struct regs.
193  */
194 #ifdef __amd64
195 static const uint8_t regmap[16] = {
196 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
197 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
198 };
199 #else
200 static const uint8_t regmap[8] = {
201 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
202 };
203 #endif
204 
205 static ulong_t fasttrap_getreg(struct reg *, uint_t);
206 
207 static uint64_t
208 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
209 {
210 	uint64_t value = 0;
211 	int shift = function_entry ? 1 : 0;
212 
213 #ifdef __amd64
214 	if (curproc->p_model == DATAMODEL_LP64) {
215 		uintptr_t *stack;
216 
217 		/*
218 		 * In 64-bit mode, the first six arguments are stored in
219 		 * registers.
220 		 */
221 		if (argno < 6)
222 			switch (argno) {
223 			case 0:
224 				return (rp->r_rdi);
225 			case 1:
226 				return (rp->r_rsi);
227 			case 2:
228 				return (rp->r_rdx);
229 			case 3:
230 				return (rp->r_rcx);
231 			case 4:
232 				return (rp->r_r8);
233 			case 5:
234 				return (rp->r_r9);
235 			}
236 
237 		stack = (uintptr_t *)rp->r_rsp;
238 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
239 		value = dtrace_fulword(&stack[argno - 6 + shift]);
240 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
241 	} else {
242 #endif
243 		uint32_t *stack = (uint32_t *)rp->r_rsp;
244 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
245 		value = dtrace_fuword32(&stack[argno + shift]);
246 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
247 #ifdef __amd64
248 	}
249 #endif
250 
251 	return (value);
252 }
253 
254 /*ARGSUSED*/
255 int
256 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
257     fasttrap_probe_type_t type)
258 {
259 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
260 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
261 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
262 	uint_t start = 0;
263 	int rmindex, size;
264 	uint8_t seg, rex = 0;
265 
266 	/*
267 	 * Read the instruction at the given address out of the process's
268 	 * address space. We don't have to worry about a debugger
269 	 * changing this instruction before we overwrite it with our trap
270 	 * instruction since P_PR_LOCK is set. Since instructions can span
271 	 * pages, we potentially read the instruction in two parts. If the
272 	 * second part fails, we just zero out that part of the instruction.
273 	 */
274 	if (uread(p, &instr[0], first, pc) != 0)
275 		return (-1);
276 	if (len > first &&
277 	    uread(p, &instr[first], len - first, pc + first) != 0) {
278 		bzero(&instr[first], len - first);
279 		len = first;
280 	}
281 
282 	/*
283 	 * If the disassembly fails, then we have a malformed instruction.
284 	 */
285 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
286 		return (-1);
287 
288 	/*
289 	 * Make sure the disassembler isn't completely broken.
290 	 */
291 	ASSERT(-1 <= rmindex && rmindex < size);
292 
293 	/*
294 	 * If the computed size is greater than the number of bytes read,
295 	 * then it was a malformed instruction possibly because it fell on a
296 	 * page boundary and the subsequent page was missing or because of
297 	 * some malicious user.
298 	 */
299 	if (size > len)
300 		return (-1);
301 
302 	tp->ftt_size = (uint8_t)size;
303 	tp->ftt_segment = FASTTRAP_SEG_NONE;
304 
305 	/*
306 	 * Find the start of the instruction's opcode by processing any
307 	 * legacy prefixes.
308 	 */
309 	for (;;) {
310 		seg = 0;
311 		switch (instr[start]) {
312 		case FASTTRAP_PREFIX_SS:
313 			seg++;
314 			/*FALLTHRU*/
315 		case FASTTRAP_PREFIX_GS:
316 			seg++;
317 			/*FALLTHRU*/
318 		case FASTTRAP_PREFIX_FS:
319 			seg++;
320 			/*FALLTHRU*/
321 		case FASTTRAP_PREFIX_ES:
322 			seg++;
323 			/*FALLTHRU*/
324 		case FASTTRAP_PREFIX_DS:
325 			seg++;
326 			/*FALLTHRU*/
327 		case FASTTRAP_PREFIX_CS:
328 			seg++;
329 			/*FALLTHRU*/
330 		case FASTTRAP_PREFIX_OPERAND:
331 		case FASTTRAP_PREFIX_ADDRESS:
332 		case FASTTRAP_PREFIX_LOCK:
333 		case FASTTRAP_PREFIX_REP:
334 		case FASTTRAP_PREFIX_REPNE:
335 			if (seg != 0) {
336 				/*
337 				 * It's illegal for an instruction to specify
338 				 * two segment prefixes -- give up on this
339 				 * illegal instruction.
340 				 */
341 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
342 					return (-1);
343 
344 				tp->ftt_segment = seg;
345 			}
346 			start++;
347 			continue;
348 		}
349 		break;
350 	}
351 
352 #ifdef __amd64
353 	/*
354 	 * Identify the REX prefix on 64-bit processes.
355 	 */
356 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
357 		rex = instr[start++];
358 #endif
359 
360 	/*
361 	 * Now that we're pretty sure that the instruction is okay, copy the
362 	 * valid part to the tracepoint.
363 	 */
364 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
365 
366 	tp->ftt_type = FASTTRAP_T_COMMON;
367 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
368 		switch (instr[start + 1]) {
369 		case FASTTRAP_0F_JO:
370 		case FASTTRAP_0F_JNO:
371 		case FASTTRAP_0F_JB:
372 		case FASTTRAP_0F_JAE:
373 		case FASTTRAP_0F_JE:
374 		case FASTTRAP_0F_JNE:
375 		case FASTTRAP_0F_JBE:
376 		case FASTTRAP_0F_JA:
377 		case FASTTRAP_0F_JS:
378 		case FASTTRAP_0F_JNS:
379 		case FASTTRAP_0F_JP:
380 		case FASTTRAP_0F_JNP:
381 		case FASTTRAP_0F_JL:
382 		case FASTTRAP_0F_JGE:
383 		case FASTTRAP_0F_JLE:
384 		case FASTTRAP_0F_JG:
385 			tp->ftt_type = FASTTRAP_T_JCC;
386 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
387 			tp->ftt_dest = pc + tp->ftt_size +
388 			    /* LINTED - alignment */
389 			    *(int32_t *)&instr[start + 2];
390 			break;
391 		}
392 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
393 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
394 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
395 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
396 
397 		if (reg == 2 || reg == 4) {
398 			uint_t i, sz;
399 
400 			if (reg == 2)
401 				tp->ftt_type = FASTTRAP_T_CALL;
402 			else
403 				tp->ftt_type = FASTTRAP_T_JMP;
404 
405 			if (mod == 3)
406 				tp->ftt_code = 2;
407 			else
408 				tp->ftt_code = 1;
409 
410 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
411 
412 			/*
413 			 * See AMD x86-64 Architecture Programmer's Manual
414 			 * Volume 3, Section 1.2.7, Table 1-12, and
415 			 * Appendix A.3.1, Table A-15.
416 			 */
417 			if (mod != 3 && rm == 4) {
418 				uint8_t sib = instr[start + 2];
419 				uint_t index = FASTTRAP_SIB_INDEX(sib);
420 				uint_t base = FASTTRAP_SIB_BASE(sib);
421 
422 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
423 
424 				tp->ftt_index = (index == 4) ?
425 				    FASTTRAP_NOREG :
426 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
427 				tp->ftt_base = (mod == 0 && base == 5) ?
428 				    FASTTRAP_NOREG :
429 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
430 
431 				i = 3;
432 				sz = mod == 1 ? 1 : 4;
433 			} else {
434 				/*
435 				 * In 64-bit mode, mod == 0 and r/m == 5
436 				 * denotes %rip-relative addressing; in 32-bit
437 				 * mode, the base register isn't used. In both
438 				 * modes, there is a 32-bit operand.
439 				 */
440 				if (mod == 0 && rm == 5) {
441 #ifdef __amd64
442 					if (p->p_model == DATAMODEL_LP64)
443 						tp->ftt_base = REG_RIP;
444 					else
445 #endif
446 						tp->ftt_base = FASTTRAP_NOREG;
447 					sz = 4;
448 				} else  {
449 					uint8_t base = rm |
450 					    (FASTTRAP_REX_B(rex) << 3);
451 
452 					tp->ftt_base = regmap[base];
453 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
454 				}
455 				tp->ftt_index = FASTTRAP_NOREG;
456 				i = 2;
457 			}
458 
459 			if (sz == 1) {
460 				tp->ftt_dest = *(int8_t *)&instr[start + i];
461 			} else if (sz == 4) {
462 				/* LINTED - alignment */
463 				tp->ftt_dest = *(int32_t *)&instr[start + i];
464 			} else {
465 				tp->ftt_dest = 0;
466 			}
467 		}
468 	} else {
469 		switch (instr[start]) {
470 		case FASTTRAP_RET:
471 			tp->ftt_type = FASTTRAP_T_RET;
472 			break;
473 
474 		case FASTTRAP_RET16:
475 			tp->ftt_type = FASTTRAP_T_RET16;
476 			/* LINTED - alignment */
477 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
478 			break;
479 
480 		case FASTTRAP_JO:
481 		case FASTTRAP_JNO:
482 		case FASTTRAP_JB:
483 		case FASTTRAP_JAE:
484 		case FASTTRAP_JE:
485 		case FASTTRAP_JNE:
486 		case FASTTRAP_JBE:
487 		case FASTTRAP_JA:
488 		case FASTTRAP_JS:
489 		case FASTTRAP_JNS:
490 		case FASTTRAP_JP:
491 		case FASTTRAP_JNP:
492 		case FASTTRAP_JL:
493 		case FASTTRAP_JGE:
494 		case FASTTRAP_JLE:
495 		case FASTTRAP_JG:
496 			tp->ftt_type = FASTTRAP_T_JCC;
497 			tp->ftt_code = instr[start];
498 			tp->ftt_dest = pc + tp->ftt_size +
499 			    (int8_t)instr[start + 1];
500 			break;
501 
502 		case FASTTRAP_LOOPNZ:
503 		case FASTTRAP_LOOPZ:
504 		case FASTTRAP_LOOP:
505 			tp->ftt_type = FASTTRAP_T_LOOP;
506 			tp->ftt_code = instr[start];
507 			tp->ftt_dest = pc + tp->ftt_size +
508 			    (int8_t)instr[start + 1];
509 			break;
510 
511 		case FASTTRAP_JCXZ:
512 			tp->ftt_type = FASTTRAP_T_JCXZ;
513 			tp->ftt_dest = pc + tp->ftt_size +
514 			    (int8_t)instr[start + 1];
515 			break;
516 
517 		case FASTTRAP_CALL:
518 			tp->ftt_type = FASTTRAP_T_CALL;
519 			tp->ftt_dest = pc + tp->ftt_size +
520 			    /* LINTED - alignment */
521 			    *(int32_t *)&instr[start + 1];
522 			tp->ftt_code = 0;
523 			break;
524 
525 		case FASTTRAP_JMP32:
526 			tp->ftt_type = FASTTRAP_T_JMP;
527 			tp->ftt_dest = pc + tp->ftt_size +
528 			    /* LINTED - alignment */
529 			    *(int32_t *)&instr[start + 1];
530 			break;
531 		case FASTTRAP_JMP8:
532 			tp->ftt_type = FASTTRAP_T_JMP;
533 			tp->ftt_dest = pc + tp->ftt_size +
534 			    (int8_t)instr[start + 1];
535 			break;
536 
537 		case FASTTRAP_PUSHL_EBP:
538 			if (start == 0)
539 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
540 			break;
541 
542 		case FASTTRAP_NOP:
543 #ifdef __amd64
544 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
545 
546 			/*
547 			 * On amd64 we have to be careful not to confuse a nop
548 			 * (actually xchgl %eax, %eax) with an instruction using
549 			 * the same opcode, but that does something different
550 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
551 			 */
552 			if (FASTTRAP_REX_B(rex) == 0)
553 #endif
554 				tp->ftt_type = FASTTRAP_T_NOP;
555 			break;
556 
557 		case FASTTRAP_INT3:
558 			/*
559 			 * The pid provider shares the int3 trap with debugger
560 			 * breakpoints so we can't instrument them.
561 			 */
562 			ASSERT(instr[start] == FASTTRAP_INSTR);
563 			return (-1);
564 
565 		case FASTTRAP_INT:
566 			/*
567 			 * Interrupts seem like they could be traced with
568 			 * no negative implications, but it's possible that
569 			 * a thread could be redirected by the trap handling
570 			 * code which would eventually return to the
571 			 * instruction after the interrupt. If the interrupt
572 			 * were in our scratch space, the subsequent
573 			 * instruction might be overwritten before we return.
574 			 * Accordingly we refuse to instrument any interrupt.
575 			 */
576 			return (-1);
577 		}
578 	}
579 
580 #ifdef __amd64
581 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
582 		/*
583 		 * If the process is 64-bit and the instruction type is still
584 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
585 		 * execute it -- we need to watch for %rip-relative
586 		 * addressing mode. See the portion of fasttrap_pid_probe()
587 		 * below where we handle tracepoints with type
588 		 * FASTTRAP_T_COMMON for how we emulate instructions that
589 		 * employ %rip-relative addressing.
590 		 */
591 		if (rmindex != -1) {
592 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
593 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
594 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
595 
596 			ASSERT(rmindex > start);
597 
598 			if (mod == 0 && rm == 5) {
599 				/*
600 				 * We need to be sure to avoid other
601 				 * registers used by this instruction. While
602 				 * the reg field may determine the op code
603 				 * rather than denoting a register, assuming
604 				 * that it denotes a register is always safe.
605 				 * We leave the REX field intact and use
606 				 * whatever value's there for simplicity.
607 				 */
608 				if (reg != 0) {
609 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
610 					    (FASTTRAP_RIP_X *
611 					    FASTTRAP_REX_B(rex));
612 					rm = 0;
613 				} else {
614 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
615 					    (FASTTRAP_RIP_X *
616 					    FASTTRAP_REX_B(rex));
617 					rm = 1;
618 				}
619 
620 				tp->ftt_modrm = tp->ftt_instr[rmindex];
621 				tp->ftt_instr[rmindex] =
622 				    FASTTRAP_MODRM(2, reg, rm);
623 			}
624 		}
625 	}
626 #endif
627 
628 	return (0);
629 }
630 
631 int
632 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
633 {
634 	fasttrap_instr_t instr = FASTTRAP_INSTR;
635 
636 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
637 		return (-1);
638 
639 	return (0);
640 }
641 
642 int
643 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
644 {
645 	uint8_t instr;
646 
647 	/*
648 	 * Distinguish between read or write failures and a changed
649 	 * instruction.
650 	 */
651 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
652 		return (0);
653 	if (instr != FASTTRAP_INSTR)
654 		return (0);
655 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
656 		return (-1);
657 
658 	return (0);
659 }
660 
661 #ifdef __amd64
662 static uintptr_t
663 fasttrap_fulword_noerr(const void *uaddr)
664 {
665 	uintptr_t ret;
666 
667 	if ((ret = fasttrap_fulword(uaddr)) != -1)
668 		return (ret);
669 
670 	return (0);
671 }
672 #endif
673 
674 static uint32_t
675 fasttrap_fuword32_noerr(const void *uaddr)
676 {
677 	uint32_t ret;
678 
679 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
680 		return (ret);
681 
682 	return (0);
683 }
684 
685 static void
686 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
687     uintptr_t new_pc)
688 {
689 	fasttrap_tracepoint_t *tp;
690 	fasttrap_bucket_t *bucket;
691 	fasttrap_id_t *id;
692 	struct rm_priotracker tracker;
693 
694 	rm_rlock(&fasttrap_tp_lock, &tracker);
695 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
696 
697 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
698 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
699 		    tp->ftt_proc->ftpc_acount != 0)
700 			break;
701 	}
702 
703 	/*
704 	 * Don't sweat it if we can't find the tracepoint again; unlike
705 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
706 	 * is not essential to the correct execution of the process.
707 	 */
708 	if (tp == NULL) {
709 		rm_runlock(&fasttrap_tp_lock, &tracker);
710 		return;
711 	}
712 
713 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
714 		/*
715 		 * If there's a branch that could act as a return site, we
716 		 * need to trace it, and check here if the program counter is
717 		 * external to the function.
718 		 */
719 		if (tp->ftt_type != FASTTRAP_T_RET &&
720 		    tp->ftt_type != FASTTRAP_T_RET16 &&
721 		    new_pc - id->fti_probe->ftp_faddr <
722 		    id->fti_probe->ftp_fsize)
723 			continue;
724 
725 		dtrace_probe(id->fti_probe->ftp_id,
726 		    pc - id->fti_probe->ftp_faddr,
727 		    rp->r_rax, rp->r_rbx, 0, 0);
728 	}
729 
730 	rm_runlock(&fasttrap_tp_lock, &tracker);
731 }
732 
733 static void
734 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
735 {
736 	ksiginfo_t ksi;
737 
738 	ksiginfo_init(&ksi);
739 	ksi.ksi_signo = SIGSEGV;
740 	ksi.ksi_code = SEGV_MAPERR;
741 	ksi.ksi_addr = (caddr_t)addr;
742 	PROC_LOCK(p);
743 	(void)tdksignal(t, SIGSEGV, &ksi);
744 	PROC_UNLOCK(p);
745 }
746 
747 #ifdef __amd64
748 static void
749 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
750     uintptr_t *argv)
751 {
752 	int i, x, cap = MIN(argc, probe->ftp_nargs);
753 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
754 
755 	for (i = 0; i < cap; i++) {
756 		x = probe->ftp_argmap[i];
757 
758 		if (x < 6)
759 			argv[i] = (&rp->r_rdi)[x];
760 		else
761 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
762 	}
763 
764 	for (; i < argc; i++) {
765 		argv[i] = 0;
766 	}
767 }
768 #endif
769 
770 static void
771 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
772     uint32_t *argv)
773 {
774 	int i, x, cap = MIN(argc, probe->ftp_nargs);
775 	uint32_t *stack = (uint32_t *)rp->r_rsp;
776 
777 	for (i = 0; i < cap; i++) {
778 		x = probe->ftp_argmap[i];
779 
780 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
781 	}
782 
783 	for (; i < argc; i++) {
784 		argv[i] = 0;
785 	}
786 }
787 
788 static int
789 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
790 {
791 	proc_t *p = curproc;
792 #ifdef __i386__
793 	struct segment_descriptor *desc;
794 #else
795 	struct user_segment_descriptor *desc;
796 #endif
797 	uint16_t sel = 0, ndx, type;
798 	uintptr_t limit;
799 
800 	switch (tp->ftt_segment) {
801 	case FASTTRAP_SEG_CS:
802 		sel = rp->r_cs;
803 		break;
804 	case FASTTRAP_SEG_DS:
805 		sel = rp->r_ds;
806 		break;
807 	case FASTTRAP_SEG_ES:
808 		sel = rp->r_es;
809 		break;
810 	case FASTTRAP_SEG_FS:
811 		sel = rp->r_fs;
812 		break;
813 	case FASTTRAP_SEG_GS:
814 		sel = rp->r_gs;
815 		break;
816 	case FASTTRAP_SEG_SS:
817 		sel = rp->r_ss;
818 		break;
819 	}
820 
821 	/*
822 	 * Make sure the given segment register specifies a user priority
823 	 * selector rather than a kernel selector.
824 	 */
825 	if (ISPL(sel) != SEL_UPL)
826 		return (-1);
827 
828 	ndx = IDXSEL(sel);
829 
830 	/*
831 	 * Check the bounds and grab the descriptor out of the specified
832 	 * descriptor table.
833 	 */
834 	if (ISLDT(sel)) {
835 #ifdef __i386__
836 		if (ndx > p->p_md.md_ldt->ldt_len)
837 			return (-1);
838 
839 		desc = (struct segment_descriptor *)
840 		    p->p_md.md_ldt[ndx].ldt_base;
841 #else
842 		if (ndx > max_ldt_segment)
843 			return (-1);
844 
845 		desc = (struct user_segment_descriptor *)
846 		    p->p_md.md_ldt[ndx].ldt_base;
847 #endif
848 
849 	} else {
850 		if (ndx >= NGDT)
851 			return (-1);
852 
853 #ifdef __i386__
854 		desc = &gdt[ndx].sd;
855 #else
856 		desc = PCPU_PTR(gdt)[ndx];
857 #endif
858 	}
859 
860 	/*
861 	 * The descriptor must have user privilege level and it must be
862 	 * present in memory.
863 	 */
864 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
865 		return (-1);
866 
867 	type = desc->sd_type;
868 
869 	/*
870 	 * If the S bit in the type field is not set, this descriptor can
871 	 * only be used in system context.
872 	 */
873 	if ((type & 0x10) != 0x10)
874 		return (-1);
875 
876 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
877 
878 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
879 		/*
880 		 * The code/data bit and readable bit must both be set.
881 		 */
882 		if ((type & 0xa) != 0xa)
883 			return (-1);
884 
885 		if (*addr > limit)
886 			return (-1);
887 	} else {
888 		/*
889 		 * The code/data bit must be clear.
890 		 */
891 		if ((type & 0x8) != 0)
892 			return (-1);
893 
894 		/*
895 		 * If the expand-down bit is clear, we just check the limit as
896 		 * it would naturally be applied. Otherwise, we need to check
897 		 * that the address is the range [limit + 1 .. 0xffff] or
898 		 * [limit + 1 ... 0xffffffff] depending on if the default
899 		 * operand size bit is set.
900 		 */
901 		if ((type & 0x4) == 0) {
902 			if (*addr > limit)
903 				return (-1);
904 		} else if (desc->sd_def32) {
905 			if (*addr < limit + 1 || 0xffff < *addr)
906 				return (-1);
907 		} else {
908 			if (*addr < limit + 1 || 0xffffffff < *addr)
909 				return (-1);
910 		}
911 	}
912 
913 	*addr += USD_GETBASE(desc);
914 
915 	return (0);
916 }
917 
918 int
919 fasttrap_pid_probe(struct trapframe *tf)
920 {
921 	struct reg reg, *rp;
922 	proc_t *p = curproc, *pp;
923 	struct rm_priotracker tracker;
924 	uint64_t gen;
925 	uintptr_t pc;
926 	uintptr_t new_pc = 0;
927 	fasttrap_bucket_t *bucket;
928 	fasttrap_tracepoint_t *tp, tp_local;
929 	pid_t pid;
930 	dtrace_icookie_t cookie;
931 	uint_t is_enabled = 0;
932 
933 	fill_frame_regs(tf, &reg);
934 	rp = &reg;
935 
936 	pc = rp->r_rip - 1;
937 
938 	/*
939 	 * It's possible that a user (in a veritable orgy of bad planning)
940 	 * could redirect this thread's flow of control before it reached the
941 	 * return probe fasttrap. In this case we need to kill the process
942 	 * since it's in a unrecoverable state.
943 	 */
944 	if (curthread->t_dtrace_step) {
945 		ASSERT(curthread->t_dtrace_on);
946 		fasttrap_sigtrap(p, curthread, pc);
947 		return (0);
948 	}
949 
950 	/*
951 	 * Clear all user tracing flags.
952 	 */
953 	curthread->t_dtrace_ft = 0;
954 	curthread->t_dtrace_pc = 0;
955 	curthread->t_dtrace_npc = 0;
956 	curthread->t_dtrace_scrpc = 0;
957 	curthread->t_dtrace_astpc = 0;
958 #ifdef __amd64
959 	curthread->t_dtrace_regv = 0;
960 #endif
961 
962 	/*
963 	 * Treat a child created by a call to vfork(2) as if it were its
964 	 * parent. We know that there's only one thread of control in such a
965 	 * process: this one.
966 	 */
967 	pp = p;
968 	sx_slock(&proctree_lock);
969 	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
970 		pp = pp->p_pptr;
971 	pid = pp->p_pid;
972 	if (pp != p) {
973 		PROC_LOCK(pp);
974 		if ((pp->p_flag & P_WEXIT) != 0) {
975 			/*
976 			 * This can happen if the child was created with
977 			 * rfork(2).  Userspace tracing cannot work reliably in
978 			 * such a scenario, but we can at least try.
979 			 */
980 			PROC_UNLOCK(pp);
981 			sx_sunlock(&proctree_lock);
982 			return (-1);
983 		}
984 		_PHOLD(pp);
985 		PROC_UNLOCK(pp);
986 	}
987 	sx_sunlock(&proctree_lock);
988 
989 	rm_rlock(&fasttrap_tp_lock, &tracker);
990 
991 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
992 
993 	/*
994 	 * Lookup the tracepoint that the process just hit.
995 	 */
996 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
997 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
998 		    tp->ftt_proc->ftpc_acount != 0)
999 			break;
1000 	}
1001 
1002 	/*
1003 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1004 	 * been inserted without using the pid<pid> ioctl interface (see
1005 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1006 	 */
1007 	if (tp == NULL) {
1008 		rm_runlock(&fasttrap_tp_lock, &tracker);
1009 		gen = atomic_load_acq_64(&pp->p_fasttrap_tp_gen);
1010 		if (pp != p)
1011 			PRELE(pp);
1012 		if (curthread->t_fasttrap_tp_gen != gen) {
1013 			/*
1014 			 * At least one tracepoint associated with this PID has
1015 			 * been removed from the table since #BP was raised.
1016 			 * Speculate that we hit a tracepoint that has since
1017 			 * been removed, and retry the instruction.
1018 			 */
1019 			curthread->t_fasttrap_tp_gen = gen;
1020 #ifdef __amd64
1021 			tf->tf_rip = pc;
1022 #else
1023 			tf->tf_eip = pc;
1024 #endif
1025 			return (0);
1026 		}
1027 		return (-1);
1028 	}
1029 	if (pp != p)
1030 		PRELE(pp);
1031 
1032 	/*
1033 	 * Set the program counter to the address of the traced instruction
1034 	 * so that it looks right in ustack() output.
1035 	 */
1036 	rp->r_rip = pc;
1037 
1038 	if (tp->ftt_ids != NULL) {
1039 		fasttrap_id_t *id;
1040 
1041 #ifdef __amd64
1042 		if (p->p_model == DATAMODEL_LP64) {
1043 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1044 				fasttrap_probe_t *probe = id->fti_probe;
1045 
1046 				if (id->fti_ptype == DTFTP_ENTRY) {
1047 					/*
1048 					 * We note that this was an entry
1049 					 * probe to help ustack() find the
1050 					 * first caller.
1051 					 */
1052 					cookie = dtrace_interrupt_disable();
1053 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1054 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1055 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1056 					    rp->r_r8);
1057 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1058 					dtrace_interrupt_enable(cookie);
1059 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1060 					/*
1061 					 * Note that in this case, we don't
1062 					 * call dtrace_probe() since it's only
1063 					 * an artificial probe meant to change
1064 					 * the flow of control so that it
1065 					 * encounters the true probe.
1066 					 */
1067 					is_enabled = 1;
1068 				} else if (probe->ftp_argmap == NULL) {
1069 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1070 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1071 					    rp->r_r8);
1072 				} else {
1073 					uintptr_t t[5];
1074 
1075 					fasttrap_usdt_args64(probe, rp,
1076 					    sizeof (t) / sizeof (t[0]), t);
1077 
1078 					dtrace_probe(probe->ftp_id, t[0], t[1],
1079 					    t[2], t[3], t[4]);
1080 				}
1081 			}
1082 		} else {
1083 #endif
1084 			uintptr_t s0, s1, s2, s3, s4, s5;
1085 			uint32_t *stack = (uint32_t *)rp->r_rsp;
1086 
1087 			/*
1088 			 * In 32-bit mode, all arguments are passed on the
1089 			 * stack. If this is a function entry probe, we need
1090 			 * to skip the first entry on the stack as it
1091 			 * represents the return address rather than a
1092 			 * parameter to the function.
1093 			 */
1094 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1095 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1096 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1097 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1098 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1099 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1100 
1101 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1102 				fasttrap_probe_t *probe = id->fti_probe;
1103 
1104 				if (id->fti_ptype == DTFTP_ENTRY) {
1105 					/*
1106 					 * We note that this was an entry
1107 					 * probe to help ustack() find the
1108 					 * first caller.
1109 					 */
1110 					cookie = dtrace_interrupt_disable();
1111 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1112 					dtrace_probe(probe->ftp_id, s1, s2,
1113 					    s3, s4, s5);
1114 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1115 					dtrace_interrupt_enable(cookie);
1116 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1117 					/*
1118 					 * Note that in this case, we don't
1119 					 * call dtrace_probe() since it's only
1120 					 * an artificial probe meant to change
1121 					 * the flow of control so that it
1122 					 * encounters the true probe.
1123 					 */
1124 					is_enabled = 1;
1125 				} else if (probe->ftp_argmap == NULL) {
1126 					dtrace_probe(probe->ftp_id, s0, s1,
1127 					    s2, s3, s4);
1128 				} else {
1129 					uint32_t t[5];
1130 
1131 					fasttrap_usdt_args32(probe, rp,
1132 					    sizeof (t) / sizeof (t[0]), t);
1133 
1134 					dtrace_probe(probe->ftp_id, t[0], t[1],
1135 					    t[2], t[3], t[4]);
1136 				}
1137 			}
1138 #ifdef __amd64
1139 		}
1140 #endif
1141 	}
1142 
1143 	/*
1144 	 * We're about to do a bunch of work so we cache a local copy of
1145 	 * the tracepoint to emulate the instruction, and then find the
1146 	 * tracepoint again later if we need to light up any return probes.
1147 	 */
1148 	tp_local = *tp;
1149 	rm_runlock(&fasttrap_tp_lock, &tracker);
1150 	tp = &tp_local;
1151 
1152 	/*
1153 	 * Set the program counter to appear as though the traced instruction
1154 	 * had completely executed. This ensures that fasttrap_getreg() will
1155 	 * report the expected value for REG_RIP.
1156 	 */
1157 	rp->r_rip = pc + tp->ftt_size;
1158 
1159 	/*
1160 	 * If there's an is-enabled probe connected to this tracepoint it
1161 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1162 	 * instruction that was placed there by DTrace when the binary was
1163 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1164 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1165 	 * emulation logic since we know the inevitable result. It's possible
1166 	 * that a user could construct a scenario where the 'is-enabled'
1167 	 * probe was on some other instruction, but that would be a rather
1168 	 * exotic way to shoot oneself in the foot.
1169 	 */
1170 	if (is_enabled) {
1171 		rp->r_rax = 1;
1172 		new_pc = rp->r_rip;
1173 		goto done;
1174 	}
1175 
1176 	/*
1177 	 * We emulate certain types of instructions to ensure correctness
1178 	 * (in the case of position dependent instructions) or optimize
1179 	 * common cases. The rest we have the thread execute back in user-
1180 	 * land.
1181 	 */
1182 	switch (tp->ftt_type) {
1183 	case FASTTRAP_T_RET:
1184 	case FASTTRAP_T_RET16:
1185 	{
1186 		uintptr_t dst = 0;
1187 		uintptr_t addr = 0;
1188 		int ret = 0;
1189 
1190 		/*
1191 		 * We have to emulate _every_ facet of the behavior of a ret
1192 		 * instruction including what happens if the load from %esp
1193 		 * fails; in that case, we send a SIGSEGV.
1194 		 */
1195 #ifdef __amd64
1196 		if (p->p_model == DATAMODEL_NATIVE) {
1197 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1198 			addr = rp->r_rsp + sizeof (uintptr_t);
1199 		} else {
1200 #endif
1201 			uint32_t dst32;
1202 			ret = dst32 = fasttrap_fuword32((void *)rp->r_rsp);
1203 			dst = dst32;
1204 			addr = rp->r_rsp + sizeof (uint32_t);
1205 #ifdef __amd64
1206 		}
1207 #endif
1208 
1209 		if (ret == -1) {
1210 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1211 			new_pc = pc;
1212 			break;
1213 		}
1214 
1215 		if (tp->ftt_type == FASTTRAP_T_RET16)
1216 			addr += tp->ftt_dest;
1217 
1218 		rp->r_rsp = addr;
1219 		new_pc = dst;
1220 		break;
1221 	}
1222 
1223 	case FASTTRAP_T_JCC:
1224 	{
1225 		uint_t taken = 0;
1226 
1227 		switch (tp->ftt_code) {
1228 		case FASTTRAP_JO:
1229 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1230 			break;
1231 		case FASTTRAP_JNO:
1232 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1233 			break;
1234 		case FASTTRAP_JB:
1235 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1236 			break;
1237 		case FASTTRAP_JAE:
1238 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1239 			break;
1240 		case FASTTRAP_JE:
1241 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1242 			break;
1243 		case FASTTRAP_JNE:
1244 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1245 			break;
1246 		case FASTTRAP_JBE:
1247 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1248 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1249 			break;
1250 		case FASTTRAP_JA:
1251 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1252 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1253 			break;
1254 		case FASTTRAP_JS:
1255 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1256 			break;
1257 		case FASTTRAP_JNS:
1258 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1259 			break;
1260 		case FASTTRAP_JP:
1261 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1262 			break;
1263 		case FASTTRAP_JNP:
1264 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1265 			break;
1266 		case FASTTRAP_JL:
1267 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1268 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1269 			break;
1270 		case FASTTRAP_JGE:
1271 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1272 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1273 			break;
1274 		case FASTTRAP_JLE:
1275 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1276 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1277 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1278 			break;
1279 		case FASTTRAP_JG:
1280 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1281 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1282 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1283 			break;
1284 
1285 		}
1286 
1287 		if (taken)
1288 			new_pc = tp->ftt_dest;
1289 		else
1290 			new_pc = pc + tp->ftt_size;
1291 		break;
1292 	}
1293 
1294 	case FASTTRAP_T_LOOP:
1295 	{
1296 		uint_t taken = 0;
1297 #ifdef __amd64
1298 		greg_t cx = rp->r_rcx--;
1299 #else
1300 		greg_t cx = rp->r_ecx--;
1301 #endif
1302 
1303 		switch (tp->ftt_code) {
1304 		case FASTTRAP_LOOPNZ:
1305 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1306 			    cx != 0;
1307 			break;
1308 		case FASTTRAP_LOOPZ:
1309 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1310 			    cx != 0;
1311 			break;
1312 		case FASTTRAP_LOOP:
1313 			taken = (cx != 0);
1314 			break;
1315 		}
1316 
1317 		if (taken)
1318 			new_pc = tp->ftt_dest;
1319 		else
1320 			new_pc = pc + tp->ftt_size;
1321 		break;
1322 	}
1323 
1324 	case FASTTRAP_T_JCXZ:
1325 	{
1326 #ifdef __amd64
1327 		greg_t cx = rp->r_rcx;
1328 #else
1329 		greg_t cx = rp->r_ecx;
1330 #endif
1331 
1332 		if (cx == 0)
1333 			new_pc = tp->ftt_dest;
1334 		else
1335 			new_pc = pc + tp->ftt_size;
1336 		break;
1337 	}
1338 
1339 	case FASTTRAP_T_PUSHL_EBP:
1340 	{
1341 		int ret = 0;
1342 
1343 #ifdef __amd64
1344 		if (p->p_model == DATAMODEL_NATIVE) {
1345 			rp->r_rsp -= sizeof (uintptr_t);
1346 			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1347 		} else {
1348 #endif
1349 			rp->r_rsp -= sizeof (uint32_t);
1350 			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1351 #ifdef __amd64
1352 		}
1353 #endif
1354 
1355 		if (ret == -1) {
1356 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1357 			new_pc = pc;
1358 			break;
1359 		}
1360 
1361 		new_pc = pc + tp->ftt_size;
1362 		break;
1363 	}
1364 
1365 	case FASTTRAP_T_NOP:
1366 		new_pc = pc + tp->ftt_size;
1367 		break;
1368 
1369 	case FASTTRAP_T_JMP:
1370 	case FASTTRAP_T_CALL:
1371 		if (tp->ftt_code == 0) {
1372 			new_pc = tp->ftt_dest;
1373 		} else {
1374 			uintptr_t value, addr = tp->ftt_dest;
1375 
1376 			if (tp->ftt_base != FASTTRAP_NOREG)
1377 				addr += fasttrap_getreg(rp, tp->ftt_base);
1378 			if (tp->ftt_index != FASTTRAP_NOREG)
1379 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1380 				    tp->ftt_scale;
1381 
1382 			if (tp->ftt_code == 1) {
1383 				/*
1384 				 * If there's a segment prefix for this
1385 				 * instruction, we'll need to check permissions
1386 				 * and bounds on the given selector, and adjust
1387 				 * the address accordingly.
1388 				 */
1389 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1390 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1391 					fasttrap_sigsegv(p, curthread, addr);
1392 					new_pc = pc;
1393 					break;
1394 				}
1395 
1396 #ifdef __amd64
1397 				if (p->p_model == DATAMODEL_NATIVE) {
1398 #endif
1399 					if ((value = fasttrap_fulword((void *)addr))
1400 					     == -1) {
1401 						fasttrap_sigsegv(p, curthread,
1402 						    addr);
1403 						new_pc = pc;
1404 						break;
1405 					}
1406 					new_pc = value;
1407 #ifdef __amd64
1408 				} else {
1409 					uint32_t value32;
1410 					addr = (uintptr_t)(uint32_t)addr;
1411 					if ((value32 = fasttrap_fuword32((void *)addr))
1412 					    == -1) {
1413 						fasttrap_sigsegv(p, curthread,
1414 						    addr);
1415 						new_pc = pc;
1416 						break;
1417 					}
1418 					new_pc = value32;
1419 				}
1420 #endif
1421 			} else {
1422 				new_pc = addr;
1423 			}
1424 		}
1425 
1426 		/*
1427 		 * If this is a call instruction, we need to push the return
1428 		 * address onto the stack. If this fails, we send the process
1429 		 * a SIGSEGV and reset the pc to emulate what would happen if
1430 		 * this instruction weren't traced.
1431 		 */
1432 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1433 			int ret = 0;
1434 			uintptr_t addr = 0, pcps;
1435 #ifdef __amd64
1436 			if (p->p_model == DATAMODEL_NATIVE) {
1437 				addr = rp->r_rsp - sizeof (uintptr_t);
1438 				pcps = pc + tp->ftt_size;
1439 				ret = fasttrap_sulword((void *)addr, pcps);
1440 			} else {
1441 #endif
1442 				addr = rp->r_rsp - sizeof (uint32_t);
1443 				pcps = (uint32_t)(pc + tp->ftt_size);
1444 				ret = fasttrap_suword32((void *)addr, pcps);
1445 #ifdef __amd64
1446 			}
1447 #endif
1448 
1449 			if (ret == -1) {
1450 				fasttrap_sigsegv(p, curthread, addr);
1451 				new_pc = pc;
1452 				break;
1453 			}
1454 
1455 			rp->r_rsp = addr;
1456 		}
1457 
1458 		break;
1459 
1460 	case FASTTRAP_T_COMMON:
1461 	{
1462 		uintptr_t addr;
1463 #if defined(__amd64)
1464 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1465 #else
1466 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1467 #endif
1468 		uint_t i = 0;
1469 		fasttrap_scrspace_t *scrspace;
1470 		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1471 		if (scrspace == NULL) {
1472 			/*
1473 			 * We failed to allocate scratch space for this thread.
1474 			 * Try to write the original instruction back out and
1475 			 * reset the pc.
1476 			 */
1477 			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1478 			    tp->ftt_size))
1479 				fasttrap_sigtrap(p, curthread, pc);
1480 			new_pc = pc;
1481 			break;
1482 		}
1483 		addr = scrspace->ftss_addr;
1484 
1485 		/*
1486 		 * Generic Instruction Tracing
1487 		 * ---------------------------
1488 		 *
1489 		 * This is the layout of the scratch space in the user-land
1490 		 * thread structure for our generated instructions.
1491 		 *
1492 		 *	32-bit mode			bytes
1493 		 *	------------------------	-----
1494 		 * a:	<original instruction>		<= 15
1495 		 *	jmp	<pc + tp->ftt_size>	    5
1496 		 * b:	<original instruction>		<= 15
1497 		 *	int	T_DTRACE_RET		    2
1498 		 *					-----
1499 		 *					<= 37
1500 		 *
1501 		 *	64-bit mode			bytes
1502 		 *	------------------------	-----
1503 		 * a:	<original instruction>		<= 15
1504 		 *	jmp	0(%rip)			    6
1505 		 *	<pc + tp->ftt_size>		    8
1506 		 * b:	<original instruction>		<= 15
1507 		 * 	int	T_DTRACE_RET		    2
1508 		 * 					-----
1509 		 * 					<= 46
1510 		 *
1511 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1512 		 * to b. If we encounter a signal on the way out of the
1513 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1514 		 * so that we execute the original instruction and re-enter
1515 		 * the kernel rather than redirecting to the next instruction.
1516 		 *
1517 		 * If there are return probes (so we know that we're going to
1518 		 * need to reenter the kernel after executing the original
1519 		 * instruction), the scratch space will just contain the
1520 		 * original instruction followed by an interrupt -- the same
1521 		 * data as at b.
1522 		 *
1523 		 * %rip-relative Addressing
1524 		 * ------------------------
1525 		 *
1526 		 * There's a further complication in 64-bit mode due to %rip-
1527 		 * relative addressing. While this is clearly a beneficial
1528 		 * architectural decision for position independent code, it's
1529 		 * hard not to see it as a personal attack against the pid
1530 		 * provider since before there was a relatively small set of
1531 		 * instructions to emulate; with %rip-relative addressing,
1532 		 * almost every instruction can potentially depend on the
1533 		 * address at which it's executed. Rather than emulating
1534 		 * the broad spectrum of instructions that can now be
1535 		 * position dependent, we emulate jumps and others as in
1536 		 * 32-bit mode, and take a different tack for instructions
1537 		 * using %rip-relative addressing.
1538 		 *
1539 		 * For every instruction that uses the ModRM byte, the
1540 		 * in-kernel disassembler reports its location. We use the
1541 		 * ModRM byte to identify that an instruction uses
1542 		 * %rip-relative addressing and to see what other registers
1543 		 * the instruction uses. To emulate those instructions,
1544 		 * we modify the instruction to be %rax-relative rather than
1545 		 * %rip-relative (or %rcx-relative if the instruction uses
1546 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1547 		 * we don't have to rewrite the REX prefix). We then load
1548 		 * the value that %rip would have been into the scratch
1549 		 * register and generate an instruction to reset the scratch
1550 		 * register back to its original value. The instruction
1551 		 * sequence looks like this:
1552 		 *
1553 		 *	64-mode %rip-relative		bytes
1554 		 *	------------------------	-----
1555 		 * a:	<modified instruction>		<= 15
1556 		 *	movq	$<value>, %<scratch>	    6
1557 		 *	jmp	0(%rip)			    6
1558 		 *	<pc + tp->ftt_size>		    8
1559 		 * b:	<modified instruction>  	<= 15
1560 		 * 	int	T_DTRACE_RET		    2
1561 		 * 					-----
1562 		 *					   52
1563 		 *
1564 		 * We set curthread->t_dtrace_regv so that upon receiving
1565 		 * a signal we can reset the value of the scratch register.
1566 		 */
1567 
1568 		ASSERT(tp->ftt_size <= FASTTRAP_MAX_INSTR_SIZE);
1569 
1570 		curthread->t_dtrace_scrpc = addr;
1571 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1572 		i += tp->ftt_size;
1573 
1574 #ifdef __amd64
1575 		if (tp->ftt_ripmode != 0) {
1576 			greg_t *reg = NULL;
1577 
1578 			ASSERT(p->p_model == DATAMODEL_LP64);
1579 			ASSERT(tp->ftt_ripmode &
1580 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1581 
1582 			/*
1583 			 * If this was a %rip-relative instruction, we change
1584 			 * it to be either a %rax- or %rcx-relative
1585 			 * instruction (depending on whether those registers
1586 			 * are used as another operand; or %r8- or %r9-
1587 			 * relative depending on the value of REX.B). We then
1588 			 * set that register and generate a movq instruction
1589 			 * to reset the value.
1590 			 */
1591 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1592 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1593 			else
1594 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1595 
1596 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1597 				scratch[i++] = FASTTRAP_MOV_EAX;
1598 			else
1599 				scratch[i++] = FASTTRAP_MOV_ECX;
1600 
1601 			switch (tp->ftt_ripmode) {
1602 			case FASTTRAP_RIP_1:
1603 				reg = &rp->r_rax;
1604 				curthread->t_dtrace_reg = REG_RAX;
1605 				break;
1606 			case FASTTRAP_RIP_2:
1607 				reg = &rp->r_rcx;
1608 				curthread->t_dtrace_reg = REG_RCX;
1609 				break;
1610 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1611 				reg = &rp->r_r8;
1612 				curthread->t_dtrace_reg = REG_R8;
1613 				break;
1614 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1615 				reg = &rp->r_r9;
1616 				curthread->t_dtrace_reg = REG_R9;
1617 				break;
1618 			}
1619 
1620 			/* LINTED - alignment */
1621 			*(uint64_t *)&scratch[i] = *reg;
1622 			curthread->t_dtrace_regv = *reg;
1623 			*reg = pc + tp->ftt_size;
1624 			i += sizeof (uint64_t);
1625 		}
1626 #endif
1627 
1628 		/*
1629 		 * Generate the branch instruction to what would have
1630 		 * normally been the subsequent instruction. In 32-bit mode,
1631 		 * this is just a relative branch; in 64-bit mode this is a
1632 		 * %rip-relative branch that loads the 64-bit pc value
1633 		 * immediately after the jmp instruction.
1634 		 */
1635 #ifdef __amd64
1636 		if (p->p_model == DATAMODEL_LP64) {
1637 			scratch[i++] = FASTTRAP_GROUP5_OP;
1638 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1639 			/* LINTED - alignment */
1640 			*(uint32_t *)&scratch[i] = 0;
1641 			i += sizeof (uint32_t);
1642 			/* LINTED - alignment */
1643 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1644 			i += sizeof (uint64_t);
1645 		} else {
1646 #endif
1647 			/*
1648 			 * Set up the jmp to the next instruction; note that
1649 			 * the size of the traced instruction cancels out.
1650 			 */
1651 			scratch[i++] = FASTTRAP_JMP32;
1652 			/* LINTED - alignment */
1653 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1654 			i += sizeof (uint32_t);
1655 #ifdef __amd64
1656 		}
1657 #endif
1658 
1659 		curthread->t_dtrace_astpc = addr + i;
1660 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1661 		i += tp->ftt_size;
1662 		scratch[i++] = FASTTRAP_INT;
1663 		scratch[i++] = T_DTRACE_RET;
1664 
1665 		ASSERT(i <= sizeof (scratch));
1666 
1667 		if (uwrite(curproc, scratch, i, addr) != 0) {
1668 			fasttrap_sigtrap(p, curthread, pc);
1669 			new_pc = pc;
1670 			break;
1671 		}
1672 		if (tp->ftt_retids != NULL) {
1673 			curthread->t_dtrace_step = 1;
1674 			curthread->t_dtrace_ret = 1;
1675 			new_pc = curthread->t_dtrace_astpc;
1676 		} else {
1677 			new_pc = curthread->t_dtrace_scrpc;
1678 		}
1679 
1680 		curthread->t_dtrace_pc = pc;
1681 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1682 		curthread->t_dtrace_on = 1;
1683 		break;
1684 	}
1685 
1686 	default:
1687 		panic("fasttrap: mishandled an instruction");
1688 	}
1689 
1690 done:
1691 	/*
1692 	 * If there were no return probes when we first found the tracepoint,
1693 	 * we should feel no obligation to honor any return probes that were
1694 	 * subsequently enabled -- they'll just have to wait until the next
1695 	 * time around.
1696 	 */
1697 	if (tp->ftt_retids != NULL) {
1698 		/*
1699 		 * We need to wait until the results of the instruction are
1700 		 * apparent before invoking any return probes. If this
1701 		 * instruction was emulated we can just call
1702 		 * fasttrap_return_common(); if it needs to be executed, we
1703 		 * need to wait until the user thread returns to the kernel.
1704 		 */
1705 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1706 			/*
1707 			 * Set the program counter to the address of the traced
1708 			 * instruction so that it looks right in ustack()
1709 			 * output. We had previously set it to the end of the
1710 			 * instruction to simplify %rip-relative addressing.
1711 			 */
1712 			rp->r_rip = pc;
1713 
1714 			fasttrap_return_common(rp, pc, pid, new_pc);
1715 		} else {
1716 			ASSERT(curthread->t_dtrace_ret != 0);
1717 			ASSERT(curthread->t_dtrace_pc == pc);
1718 			ASSERT(curthread->t_dtrace_scrpc != 0);
1719 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1720 		}
1721 	}
1722 
1723 	rp->r_rip = new_pc;
1724 
1725 	PROC_LOCK(p);
1726 	proc_write_regs(curthread, rp);
1727 	PROC_UNLOCK(p);
1728 
1729 	return (0);
1730 }
1731 
1732 int
1733 fasttrap_return_probe(struct trapframe *tf)
1734 {
1735 	struct reg reg, *rp;
1736 	proc_t *p = curproc;
1737 	uintptr_t pc = curthread->t_dtrace_pc;
1738 	uintptr_t npc = curthread->t_dtrace_npc;
1739 
1740 	fill_frame_regs(tf, &reg);
1741 	rp = &reg;
1742 
1743 	curthread->t_dtrace_pc = 0;
1744 	curthread->t_dtrace_npc = 0;
1745 	curthread->t_dtrace_scrpc = 0;
1746 	curthread->t_dtrace_astpc = 0;
1747 
1748 #ifdef illumos
1749 	/*
1750 	 * Treat a child created by a call to vfork(2) as if it were its
1751 	 * parent. We know that there's only one thread of control in such a
1752 	 * process: this one.
1753 	 */
1754 	while (p->p_flag & SVFORK) {
1755 		p = p->p_parent;
1756 	}
1757 #endif
1758 
1759 	/*
1760 	 * We set rp->r_rip to the address of the traced instruction so
1761 	 * that it appears to dtrace_probe() that we're on the original
1762 	 * instruction.
1763 	 */
1764 	rp->r_rip = pc;
1765 
1766 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1767 
1768 	return (0);
1769 }
1770 
1771 /*ARGSUSED*/
1772 uint64_t
1773 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1774     int aframes)
1775 {
1776 	struct reg r;
1777 
1778 	fill_regs(curthread, &r);
1779 
1780 	return (fasttrap_anarg(&r, 1, argno));
1781 }
1782 
1783 /*ARGSUSED*/
1784 uint64_t
1785 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1786     int aframes)
1787 {
1788 	struct reg r;
1789 
1790 	fill_regs(curthread, &r);
1791 
1792 	return (fasttrap_anarg(&r, 0, argno));
1793 }
1794 
1795 static ulong_t
1796 fasttrap_getreg(struct reg *rp, uint_t reg)
1797 {
1798 #ifdef __amd64
1799 	switch (reg) {
1800 	case REG_R15:		return (rp->r_r15);
1801 	case REG_R14:		return (rp->r_r14);
1802 	case REG_R13:		return (rp->r_r13);
1803 	case REG_R12:		return (rp->r_r12);
1804 	case REG_R11:		return (rp->r_r11);
1805 	case REG_R10:		return (rp->r_r10);
1806 	case REG_R9:		return (rp->r_r9);
1807 	case REG_R8:		return (rp->r_r8);
1808 	case REG_RDI:		return (rp->r_rdi);
1809 	case REG_RSI:		return (rp->r_rsi);
1810 	case REG_RBP:		return (rp->r_rbp);
1811 	case REG_RBX:		return (rp->r_rbx);
1812 	case REG_RDX:		return (rp->r_rdx);
1813 	case REG_RCX:		return (rp->r_rcx);
1814 	case REG_RAX:		return (rp->r_rax);
1815 	case REG_TRAPNO:	return (rp->r_trapno);
1816 	case REG_ERR:		return (rp->r_err);
1817 	case REG_RIP:		return (rp->r_rip);
1818 	case REG_CS:		return (rp->r_cs);
1819 	case REG_RFL:		return (rp->r_rflags);
1820 	case REG_RSP:		return (rp->r_rsp);
1821 	case REG_SS:		return (rp->r_ss);
1822 	case REG_FS:		return (rp->r_fs);
1823 	case REG_GS:		return (rp->r_gs);
1824 	case REG_DS:		return (rp->r_ds);
1825 	case REG_ES:		return (rp->r_es);
1826 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1827 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1828 	}
1829 
1830 	panic("dtrace: illegal register constant");
1831 	/*NOTREACHED*/
1832 #else
1833 #define _NGREG 19
1834 	if (reg >= _NGREG)
1835 		panic("dtrace: illegal register constant");
1836 
1837 	return (((greg_t *)&rp->r_gs)[reg]);
1838 #endif
1839 }
1840