xref: /freebsd/sys/cddl/contrib/opensolaris/uts/intel/dtrace/fasttrap_isa.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * Portions Copyright 2010 The FreeBSD Foundation
22  *
23  * $FreeBSD$
24  */
25 
26 /*
27  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #ifdef illumos
32 #pragma ident	"%Z%%M%	%I%	%E% SMI"
33 #endif
34 
35 #include <sys/fasttrap_isa.h>
36 #include <sys/fasttrap_impl.h>
37 #include <sys/dtrace.h>
38 #include <sys/dtrace_impl.h>
39 #include <sys/cmn_err.h>
40 #ifdef illumos
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/segments.h>
44 #include <sys/x86_archext.h>
45 #else
46 #include <cddl/dev/dtrace/dtrace_cddl.h>
47 #include <sys/types.h>
48 #include <sys/proc.h>
49 #include <sys/dtrace_bsd.h>
50 #include <cddl/dev/dtrace/x86/regset.h>
51 #include <machine/segments.h>
52 #include <machine/reg.h>
53 #include <machine/pcb.h>
54 #endif
55 #include <sys/sysmacros.h>
56 #ifdef illumos
57 #include <sys/trap.h>
58 #include <sys/archsystm.h>
59 #else
60 #include <sys/ptrace.h>
61 
62 static int
63 uread(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
64 {
65 	ssize_t n;
66 
67 	PHOLD(p);
68 	n = proc_readmem(curthread, p, uaddr, kaddr, len);
69 	PRELE(p);
70 	if (n != len)
71 		return (ENOMEM);
72 	return (0);
73 }
74 
75 static int
76 uwrite(proc_t *p, void *kaddr, size_t len, uintptr_t uaddr)
77 {
78 	ssize_t n;
79 
80 	PHOLD(p);
81 	n = proc_writemem(curthread, p, uaddr, kaddr, len);
82 	PRELE(p);
83 	if (n != len)
84 		return (ENOMEM);
85 	return (0);
86 }
87 
88 #endif /* illumos */
89 #ifdef __i386__
90 #define	r_rax	r_eax
91 #define	r_rbx	r_ebx
92 #define	r_rip	r_eip
93 #define	r_rflags r_eflags
94 #define	r_rsp	r_esp
95 #define	r_rbp	r_ebp
96 #endif
97 
98 /*
99  * Lossless User-Land Tracing on x86
100  * ---------------------------------
101  *
102  * The execution of most instructions is not dependent on the address; for
103  * these instructions it is sufficient to copy them into the user process's
104  * address space and execute them. To effectively single-step an instruction
105  * in user-land, we copy out the following sequence of instructions to scratch
106  * space in the user thread's ulwp_t structure.
107  *
108  * We then set the program counter (%eip or %rip) to point to this scratch
109  * space. Once execution resumes, the original instruction is executed and
110  * then control flow is redirected to what was originally the subsequent
111  * instruction. If the kernel attemps to deliver a signal while single-
112  * stepping, the signal is deferred and the program counter is moved into the
113  * second sequence of instructions. The second sequence ends in a trap into
114  * the kernel where the deferred signal is then properly handled and delivered.
115  *
116  * For instructions whose execute is position dependent, we perform simple
117  * emulation. These instructions are limited to control transfer
118  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
119  * of %rip-relative addressing that means that almost any instruction can be
120  * position dependent. For all the details on how we emulate generic
121  * instructions included %rip-relative instructions, see the code in
122  * fasttrap_pid_probe() below where we handle instructions of type
123  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
124  */
125 
126 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
127 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
128 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
129 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
130 
131 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
132 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
133 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
134 
135 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
136 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
137 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
138 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
139 #define	FASTTRAP_REX(w, r, x, b)	\
140 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
141 
142 /*
143  * Single-byte op-codes.
144  */
145 #define	FASTTRAP_PUSHL_EBP	0x55
146 
147 #define	FASTTRAP_JO		0x70
148 #define	FASTTRAP_JNO		0x71
149 #define	FASTTRAP_JB		0x72
150 #define	FASTTRAP_JAE		0x73
151 #define	FASTTRAP_JE		0x74
152 #define	FASTTRAP_JNE		0x75
153 #define	FASTTRAP_JBE		0x76
154 #define	FASTTRAP_JA		0x77
155 #define	FASTTRAP_JS		0x78
156 #define	FASTTRAP_JNS		0x79
157 #define	FASTTRAP_JP		0x7a
158 #define	FASTTRAP_JNP		0x7b
159 #define	FASTTRAP_JL		0x7c
160 #define	FASTTRAP_JGE		0x7d
161 #define	FASTTRAP_JLE		0x7e
162 #define	FASTTRAP_JG		0x7f
163 
164 #define	FASTTRAP_NOP		0x90
165 
166 #define	FASTTRAP_MOV_EAX	0xb8
167 #define	FASTTRAP_MOV_ECX	0xb9
168 
169 #define	FASTTRAP_RET16		0xc2
170 #define	FASTTRAP_RET		0xc3
171 
172 #define	FASTTRAP_LOOPNZ		0xe0
173 #define	FASTTRAP_LOOPZ		0xe1
174 #define	FASTTRAP_LOOP		0xe2
175 #define	FASTTRAP_JCXZ		0xe3
176 
177 #define	FASTTRAP_CALL		0xe8
178 #define	FASTTRAP_JMP32		0xe9
179 #define	FASTTRAP_JMP8		0xeb
180 
181 #define	FASTTRAP_INT3		0xcc
182 #define	FASTTRAP_INT		0xcd
183 
184 #define	FASTTRAP_2_BYTE_OP	0x0f
185 #define	FASTTRAP_GROUP5_OP	0xff
186 
187 /*
188  * Two-byte op-codes (second byte only).
189  */
190 #define	FASTTRAP_0F_JO		0x80
191 #define	FASTTRAP_0F_JNO		0x81
192 #define	FASTTRAP_0F_JB		0x82
193 #define	FASTTRAP_0F_JAE		0x83
194 #define	FASTTRAP_0F_JE		0x84
195 #define	FASTTRAP_0F_JNE		0x85
196 #define	FASTTRAP_0F_JBE		0x86
197 #define	FASTTRAP_0F_JA		0x87
198 #define	FASTTRAP_0F_JS		0x88
199 #define	FASTTRAP_0F_JNS		0x89
200 #define	FASTTRAP_0F_JP		0x8a
201 #define	FASTTRAP_0F_JNP		0x8b
202 #define	FASTTRAP_0F_JL		0x8c
203 #define	FASTTRAP_0F_JGE		0x8d
204 #define	FASTTRAP_0F_JLE		0x8e
205 #define	FASTTRAP_0F_JG		0x8f
206 
207 #define	FASTTRAP_EFLAGS_OF	0x800
208 #define	FASTTRAP_EFLAGS_DF	0x400
209 #define	FASTTRAP_EFLAGS_SF	0x080
210 #define	FASTTRAP_EFLAGS_ZF	0x040
211 #define	FASTTRAP_EFLAGS_AF	0x010
212 #define	FASTTRAP_EFLAGS_PF	0x004
213 #define	FASTTRAP_EFLAGS_CF	0x001
214 
215 /*
216  * Instruction prefixes.
217  */
218 #define	FASTTRAP_PREFIX_OPERAND	0x66
219 #define	FASTTRAP_PREFIX_ADDRESS	0x67
220 #define	FASTTRAP_PREFIX_CS	0x2E
221 #define	FASTTRAP_PREFIX_DS	0x3E
222 #define	FASTTRAP_PREFIX_ES	0x26
223 #define	FASTTRAP_PREFIX_FS	0x64
224 #define	FASTTRAP_PREFIX_GS	0x65
225 #define	FASTTRAP_PREFIX_SS	0x36
226 #define	FASTTRAP_PREFIX_LOCK	0xF0
227 #define	FASTTRAP_PREFIX_REP	0xF3
228 #define	FASTTRAP_PREFIX_REPNE	0xF2
229 
230 #define	FASTTRAP_NOREG	0xff
231 
232 /*
233  * Map between instruction register encodings and the kernel constants which
234  * correspond to indicies into struct regs.
235  */
236 #ifdef __amd64
237 static const uint8_t regmap[16] = {
238 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
239 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
240 };
241 #else
242 static const uint8_t regmap[8] = {
243 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
244 };
245 #endif
246 
247 static ulong_t fasttrap_getreg(struct reg *, uint_t);
248 
249 static uint64_t
250 fasttrap_anarg(struct reg *rp, int function_entry, int argno)
251 {
252 	uint64_t value = 0;
253 	int shift = function_entry ? 1 : 0;
254 
255 #ifdef __amd64
256 	if (curproc->p_model == DATAMODEL_LP64) {
257 		uintptr_t *stack;
258 
259 		/*
260 		 * In 64-bit mode, the first six arguments are stored in
261 		 * registers.
262 		 */
263 		if (argno < 6)
264 			switch (argno) {
265 			case 0:
266 				return (rp->r_rdi);
267 			case 1:
268 				return (rp->r_rsi);
269 			case 2:
270 				return (rp->r_rdx);
271 			case 3:
272 				return (rp->r_rcx);
273 			case 4:
274 				return (rp->r_r8);
275 			case 5:
276 				return (rp->r_r9);
277 			}
278 
279 		stack = (uintptr_t *)rp->r_rsp;
280 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
281 		value = dtrace_fulword(&stack[argno - 6 + shift]);
282 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
283 	} else {
284 #endif
285 #ifdef __i386
286 		uint32_t *stack = (uint32_t *)rp->r_esp;
287 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
288 		value = dtrace_fuword32(&stack[argno + shift]);
289 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
290 #endif
291 #ifdef __amd64
292 	}
293 #endif
294 
295 	return (value);
296 }
297 
298 /*ARGSUSED*/
299 int
300 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
301     fasttrap_probe_type_t type)
302 {
303 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
304 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
305 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
306 	uint_t start = 0;
307 	int rmindex, size;
308 	uint8_t seg, rex = 0;
309 
310 	/*
311 	 * Read the instruction at the given address out of the process's
312 	 * address space. We don't have to worry about a debugger
313 	 * changing this instruction before we overwrite it with our trap
314 	 * instruction since P_PR_LOCK is set. Since instructions can span
315 	 * pages, we potentially read the instruction in two parts. If the
316 	 * second part fails, we just zero out that part of the instruction.
317 	 */
318 	if (uread(p, &instr[0], first, pc) != 0)
319 		return (-1);
320 	if (len > first &&
321 	    uread(p, &instr[first], len - first, pc + first) != 0) {
322 		bzero(&instr[first], len - first);
323 		len = first;
324 	}
325 
326 	/*
327 	 * If the disassembly fails, then we have a malformed instruction.
328 	 */
329 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
330 		return (-1);
331 
332 	/*
333 	 * Make sure the disassembler isn't completely broken.
334 	 */
335 	ASSERT(-1 <= rmindex && rmindex < size);
336 
337 	/*
338 	 * If the computed size is greater than the number of bytes read,
339 	 * then it was a malformed instruction possibly because it fell on a
340 	 * page boundary and the subsequent page was missing or because of
341 	 * some malicious user.
342 	 */
343 	if (size > len)
344 		return (-1);
345 
346 	tp->ftt_size = (uint8_t)size;
347 	tp->ftt_segment = FASTTRAP_SEG_NONE;
348 
349 	/*
350 	 * Find the start of the instruction's opcode by processing any
351 	 * legacy prefixes.
352 	 */
353 	for (;;) {
354 		seg = 0;
355 		switch (instr[start]) {
356 		case FASTTRAP_PREFIX_SS:
357 			seg++;
358 			/*FALLTHRU*/
359 		case FASTTRAP_PREFIX_GS:
360 			seg++;
361 			/*FALLTHRU*/
362 		case FASTTRAP_PREFIX_FS:
363 			seg++;
364 			/*FALLTHRU*/
365 		case FASTTRAP_PREFIX_ES:
366 			seg++;
367 			/*FALLTHRU*/
368 		case FASTTRAP_PREFIX_DS:
369 			seg++;
370 			/*FALLTHRU*/
371 		case FASTTRAP_PREFIX_CS:
372 			seg++;
373 			/*FALLTHRU*/
374 		case FASTTRAP_PREFIX_OPERAND:
375 		case FASTTRAP_PREFIX_ADDRESS:
376 		case FASTTRAP_PREFIX_LOCK:
377 		case FASTTRAP_PREFIX_REP:
378 		case FASTTRAP_PREFIX_REPNE:
379 			if (seg != 0) {
380 				/*
381 				 * It's illegal for an instruction to specify
382 				 * two segment prefixes -- give up on this
383 				 * illegal instruction.
384 				 */
385 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
386 					return (-1);
387 
388 				tp->ftt_segment = seg;
389 			}
390 			start++;
391 			continue;
392 		}
393 		break;
394 	}
395 
396 #ifdef __amd64
397 	/*
398 	 * Identify the REX prefix on 64-bit processes.
399 	 */
400 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
401 		rex = instr[start++];
402 #endif
403 
404 	/*
405 	 * Now that we're pretty sure that the instruction is okay, copy the
406 	 * valid part to the tracepoint.
407 	 */
408 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
409 
410 	tp->ftt_type = FASTTRAP_T_COMMON;
411 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
412 		switch (instr[start + 1]) {
413 		case FASTTRAP_0F_JO:
414 		case FASTTRAP_0F_JNO:
415 		case FASTTRAP_0F_JB:
416 		case FASTTRAP_0F_JAE:
417 		case FASTTRAP_0F_JE:
418 		case FASTTRAP_0F_JNE:
419 		case FASTTRAP_0F_JBE:
420 		case FASTTRAP_0F_JA:
421 		case FASTTRAP_0F_JS:
422 		case FASTTRAP_0F_JNS:
423 		case FASTTRAP_0F_JP:
424 		case FASTTRAP_0F_JNP:
425 		case FASTTRAP_0F_JL:
426 		case FASTTRAP_0F_JGE:
427 		case FASTTRAP_0F_JLE:
428 		case FASTTRAP_0F_JG:
429 			tp->ftt_type = FASTTRAP_T_JCC;
430 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
431 			tp->ftt_dest = pc + tp->ftt_size +
432 			    /* LINTED - alignment */
433 			    *(int32_t *)&instr[start + 2];
434 			break;
435 		}
436 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
437 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
438 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
439 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
440 
441 		if (reg == 2 || reg == 4) {
442 			uint_t i, sz;
443 
444 			if (reg == 2)
445 				tp->ftt_type = FASTTRAP_T_CALL;
446 			else
447 				tp->ftt_type = FASTTRAP_T_JMP;
448 
449 			if (mod == 3)
450 				tp->ftt_code = 2;
451 			else
452 				tp->ftt_code = 1;
453 
454 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
455 
456 			/*
457 			 * See AMD x86-64 Architecture Programmer's Manual
458 			 * Volume 3, Section 1.2.7, Table 1-12, and
459 			 * Appendix A.3.1, Table A-15.
460 			 */
461 			if (mod != 3 && rm == 4) {
462 				uint8_t sib = instr[start + 2];
463 				uint_t index = FASTTRAP_SIB_INDEX(sib);
464 				uint_t base = FASTTRAP_SIB_BASE(sib);
465 
466 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
467 
468 				tp->ftt_index = (index == 4) ?
469 				    FASTTRAP_NOREG :
470 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
471 				tp->ftt_base = (mod == 0 && base == 5) ?
472 				    FASTTRAP_NOREG :
473 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
474 
475 				i = 3;
476 				sz = mod == 1 ? 1 : 4;
477 			} else {
478 				/*
479 				 * In 64-bit mode, mod == 0 and r/m == 5
480 				 * denotes %rip-relative addressing; in 32-bit
481 				 * mode, the base register isn't used. In both
482 				 * modes, there is a 32-bit operand.
483 				 */
484 				if (mod == 0 && rm == 5) {
485 #ifdef __amd64
486 					if (p->p_model == DATAMODEL_LP64)
487 						tp->ftt_base = REG_RIP;
488 					else
489 #endif
490 						tp->ftt_base = FASTTRAP_NOREG;
491 					sz = 4;
492 				} else  {
493 					uint8_t base = rm |
494 					    (FASTTRAP_REX_B(rex) << 3);
495 
496 					tp->ftt_base = regmap[base];
497 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
498 				}
499 				tp->ftt_index = FASTTRAP_NOREG;
500 				i = 2;
501 			}
502 
503 			if (sz == 1) {
504 				tp->ftt_dest = *(int8_t *)&instr[start + i];
505 			} else if (sz == 4) {
506 				/* LINTED - alignment */
507 				tp->ftt_dest = *(int32_t *)&instr[start + i];
508 			} else {
509 				tp->ftt_dest = 0;
510 			}
511 		}
512 	} else {
513 		switch (instr[start]) {
514 		case FASTTRAP_RET:
515 			tp->ftt_type = FASTTRAP_T_RET;
516 			break;
517 
518 		case FASTTRAP_RET16:
519 			tp->ftt_type = FASTTRAP_T_RET16;
520 			/* LINTED - alignment */
521 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
522 			break;
523 
524 		case FASTTRAP_JO:
525 		case FASTTRAP_JNO:
526 		case FASTTRAP_JB:
527 		case FASTTRAP_JAE:
528 		case FASTTRAP_JE:
529 		case FASTTRAP_JNE:
530 		case FASTTRAP_JBE:
531 		case FASTTRAP_JA:
532 		case FASTTRAP_JS:
533 		case FASTTRAP_JNS:
534 		case FASTTRAP_JP:
535 		case FASTTRAP_JNP:
536 		case FASTTRAP_JL:
537 		case FASTTRAP_JGE:
538 		case FASTTRAP_JLE:
539 		case FASTTRAP_JG:
540 			tp->ftt_type = FASTTRAP_T_JCC;
541 			tp->ftt_code = instr[start];
542 			tp->ftt_dest = pc + tp->ftt_size +
543 			    (int8_t)instr[start + 1];
544 			break;
545 
546 		case FASTTRAP_LOOPNZ:
547 		case FASTTRAP_LOOPZ:
548 		case FASTTRAP_LOOP:
549 			tp->ftt_type = FASTTRAP_T_LOOP;
550 			tp->ftt_code = instr[start];
551 			tp->ftt_dest = pc + tp->ftt_size +
552 			    (int8_t)instr[start + 1];
553 			break;
554 
555 		case FASTTRAP_JCXZ:
556 			tp->ftt_type = FASTTRAP_T_JCXZ;
557 			tp->ftt_dest = pc + tp->ftt_size +
558 			    (int8_t)instr[start + 1];
559 			break;
560 
561 		case FASTTRAP_CALL:
562 			tp->ftt_type = FASTTRAP_T_CALL;
563 			tp->ftt_dest = pc + tp->ftt_size +
564 			    /* LINTED - alignment */
565 			    *(int32_t *)&instr[start + 1];
566 			tp->ftt_code = 0;
567 			break;
568 
569 		case FASTTRAP_JMP32:
570 			tp->ftt_type = FASTTRAP_T_JMP;
571 			tp->ftt_dest = pc + tp->ftt_size +
572 			    /* LINTED - alignment */
573 			    *(int32_t *)&instr[start + 1];
574 			break;
575 		case FASTTRAP_JMP8:
576 			tp->ftt_type = FASTTRAP_T_JMP;
577 			tp->ftt_dest = pc + tp->ftt_size +
578 			    (int8_t)instr[start + 1];
579 			break;
580 
581 		case FASTTRAP_PUSHL_EBP:
582 			if (start == 0)
583 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
584 			break;
585 
586 		case FASTTRAP_NOP:
587 #ifdef __amd64
588 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
589 
590 			/*
591 			 * On amd64 we have to be careful not to confuse a nop
592 			 * (actually xchgl %eax, %eax) with an instruction using
593 			 * the same opcode, but that does something different
594 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
595 			 */
596 			if (FASTTRAP_REX_B(rex) == 0)
597 #endif
598 				tp->ftt_type = FASTTRAP_T_NOP;
599 			break;
600 
601 		case FASTTRAP_INT3:
602 			/*
603 			 * The pid provider shares the int3 trap with debugger
604 			 * breakpoints so we can't instrument them.
605 			 */
606 			ASSERT(instr[start] == FASTTRAP_INSTR);
607 			return (-1);
608 
609 		case FASTTRAP_INT:
610 			/*
611 			 * Interrupts seem like they could be traced with
612 			 * no negative implications, but it's possible that
613 			 * a thread could be redirected by the trap handling
614 			 * code which would eventually return to the
615 			 * instruction after the interrupt. If the interrupt
616 			 * were in our scratch space, the subsequent
617 			 * instruction might be overwritten before we return.
618 			 * Accordingly we refuse to instrument any interrupt.
619 			 */
620 			return (-1);
621 		}
622 	}
623 
624 #ifdef __amd64
625 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
626 		/*
627 		 * If the process is 64-bit and the instruction type is still
628 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
629 		 * execute it -- we need to watch for %rip-relative
630 		 * addressing mode. See the portion of fasttrap_pid_probe()
631 		 * below where we handle tracepoints with type
632 		 * FASTTRAP_T_COMMON for how we emulate instructions that
633 		 * employ %rip-relative addressing.
634 		 */
635 		if (rmindex != -1) {
636 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
637 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
638 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
639 
640 			ASSERT(rmindex > start);
641 
642 			if (mod == 0 && rm == 5) {
643 				/*
644 				 * We need to be sure to avoid other
645 				 * registers used by this instruction. While
646 				 * the reg field may determine the op code
647 				 * rather than denoting a register, assuming
648 				 * that it denotes a register is always safe.
649 				 * We leave the REX field intact and use
650 				 * whatever value's there for simplicity.
651 				 */
652 				if (reg != 0) {
653 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
654 					    (FASTTRAP_RIP_X *
655 					    FASTTRAP_REX_B(rex));
656 					rm = 0;
657 				} else {
658 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
659 					    (FASTTRAP_RIP_X *
660 					    FASTTRAP_REX_B(rex));
661 					rm = 1;
662 				}
663 
664 				tp->ftt_modrm = tp->ftt_instr[rmindex];
665 				tp->ftt_instr[rmindex] =
666 				    FASTTRAP_MODRM(2, reg, rm);
667 			}
668 		}
669 	}
670 #endif
671 
672 	return (0);
673 }
674 
675 int
676 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
677 {
678 	fasttrap_instr_t instr = FASTTRAP_INSTR;
679 
680 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
681 		return (-1);
682 
683 	return (0);
684 }
685 
686 int
687 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
688 {
689 	uint8_t instr;
690 
691 	/*
692 	 * Distinguish between read or write failures and a changed
693 	 * instruction.
694 	 */
695 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
696 		return (0);
697 	if (instr != FASTTRAP_INSTR)
698 		return (0);
699 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
700 		return (-1);
701 
702 	return (0);
703 }
704 
705 #ifdef __amd64
706 static uintptr_t
707 fasttrap_fulword_noerr(const void *uaddr)
708 {
709 	uintptr_t ret;
710 
711 	if ((ret = fasttrap_fulword(uaddr)) != -1)
712 		return (ret);
713 
714 	return (0);
715 }
716 #endif
717 
718 #ifdef __i386__
719 static uint32_t
720 fasttrap_fuword32_noerr(const void *uaddr)
721 {
722 	uint32_t ret;
723 
724 	if ((ret = fasttrap_fuword32(uaddr)) != -1)
725 		return (ret);
726 
727 	return (0);
728 }
729 #endif
730 
731 static void
732 fasttrap_return_common(struct reg *rp, uintptr_t pc, pid_t pid,
733     uintptr_t new_pc)
734 {
735 	fasttrap_tracepoint_t *tp;
736 	fasttrap_bucket_t *bucket;
737 	fasttrap_id_t *id;
738 #ifdef illumos
739 	kmutex_t *pid_mtx;
740 #endif
741 
742 #ifdef illumos
743 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
744 	mutex_enter(pid_mtx);
745 #endif
746 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
747 
748 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
749 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
750 		    tp->ftt_proc->ftpc_acount != 0)
751 			break;
752 	}
753 
754 	/*
755 	 * Don't sweat it if we can't find the tracepoint again; unlike
756 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
757 	 * is not essential to the correct execution of the process.
758 	 */
759 	if (tp == NULL) {
760 #ifdef illumos
761 		mutex_exit(pid_mtx);
762 #endif
763 		return;
764 	}
765 
766 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
767 		/*
768 		 * If there's a branch that could act as a return site, we
769 		 * need to trace it, and check here if the program counter is
770 		 * external to the function.
771 		 */
772 		if (tp->ftt_type != FASTTRAP_T_RET &&
773 		    tp->ftt_type != FASTTRAP_T_RET16 &&
774 		    new_pc - id->fti_probe->ftp_faddr <
775 		    id->fti_probe->ftp_fsize)
776 			continue;
777 
778 		dtrace_probe(id->fti_probe->ftp_id,
779 		    pc - id->fti_probe->ftp_faddr,
780 		    rp->r_rax, rp->r_rbx, 0, 0);
781 	}
782 
783 #ifdef illumos
784 	mutex_exit(pid_mtx);
785 #endif
786 }
787 
788 static void
789 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
790 {
791 #ifdef illumos
792 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
793 
794 	sqp->sq_info.si_signo = SIGSEGV;
795 	sqp->sq_info.si_code = SEGV_MAPERR;
796 	sqp->sq_info.si_addr = (caddr_t)addr;
797 
798 	mutex_enter(&p->p_lock);
799 	sigaddqa(p, t, sqp);
800 	mutex_exit(&p->p_lock);
801 
802 	if (t != NULL)
803 		aston(t);
804 #else
805 	ksiginfo_t *ksi = kmem_zalloc(sizeof (ksiginfo_t), KM_SLEEP);
806 
807 	ksiginfo_init(ksi);
808 	ksi->ksi_signo = SIGSEGV;
809 	ksi->ksi_code = SEGV_MAPERR;
810 	ksi->ksi_addr = (caddr_t)addr;
811 	(void) tdksignal(t, SIGSEGV, ksi);
812 #endif
813 }
814 
815 #ifdef __amd64
816 static void
817 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct reg *rp, int argc,
818     uintptr_t *argv)
819 {
820 	int i, x, cap = MIN(argc, probe->ftp_nargs);
821 	uintptr_t *stack = (uintptr_t *)rp->r_rsp;
822 
823 	for (i = 0; i < cap; i++) {
824 		x = probe->ftp_argmap[i];
825 
826 		if (x < 6)
827 			argv[i] = (&rp->r_rdi)[x];
828 		else
829 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
830 	}
831 
832 	for (; i < argc; i++) {
833 		argv[i] = 0;
834 	}
835 }
836 #endif
837 
838 #ifdef __i386__
839 static void
840 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct reg *rp, int argc,
841     uint32_t *argv)
842 {
843 	int i, x, cap = MIN(argc, probe->ftp_nargs);
844 	uint32_t *stack = (uint32_t *)rp->r_rsp;
845 
846 	for (i = 0; i < cap; i++) {
847 		x = probe->ftp_argmap[i];
848 
849 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
850 	}
851 
852 	for (; i < argc; i++) {
853 		argv[i] = 0;
854 	}
855 }
856 #endif
857 
858 static int
859 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct reg *rp, uintptr_t *addr)
860 {
861 	proc_t *p = curproc;
862 #ifdef __i386__
863 	struct segment_descriptor *desc;
864 #else
865 	struct user_segment_descriptor *desc;
866 #endif
867 	uint16_t sel = 0, ndx, type;
868 	uintptr_t limit;
869 
870 	switch (tp->ftt_segment) {
871 	case FASTTRAP_SEG_CS:
872 		sel = rp->r_cs;
873 		break;
874 	case FASTTRAP_SEG_DS:
875 		sel = rp->r_ds;
876 		break;
877 	case FASTTRAP_SEG_ES:
878 		sel = rp->r_es;
879 		break;
880 	case FASTTRAP_SEG_FS:
881 		sel = rp->r_fs;
882 		break;
883 	case FASTTRAP_SEG_GS:
884 		sel = rp->r_gs;
885 		break;
886 	case FASTTRAP_SEG_SS:
887 		sel = rp->r_ss;
888 		break;
889 	}
890 
891 	/*
892 	 * Make sure the given segment register specifies a user priority
893 	 * selector rather than a kernel selector.
894 	 */
895 	if (ISPL(sel) != SEL_UPL)
896 		return (-1);
897 
898 	ndx = IDXSEL(sel);
899 
900 	/*
901 	 * Check the bounds and grab the descriptor out of the specified
902 	 * descriptor table.
903 	 */
904 	if (ISLDT(sel)) {
905 #ifdef __i386__
906 		if (ndx > p->p_md.md_ldt->ldt_len)
907 			return (-1);
908 
909 		desc = (struct segment_descriptor *)
910 		    p->p_md.md_ldt[ndx].ldt_base;
911 #else
912 		if (ndx > max_ldt_segment)
913 			return (-1);
914 
915 		desc = (struct user_segment_descriptor *)
916 		    p->p_md.md_ldt[ndx].ldt_base;
917 #endif
918 
919 	} else {
920 		if (ndx >= NGDT)
921 			return (-1);
922 
923 #ifdef __i386__
924 		desc = &gdt[ndx].sd;
925 #else
926 		desc = &gdt[ndx];
927 #endif
928 	}
929 
930 	/*
931 	 * The descriptor must have user privilege level and it must be
932 	 * present in memory.
933 	 */
934 	if (desc->sd_dpl != SEL_UPL || desc->sd_p != 1)
935 		return (-1);
936 
937 	type = desc->sd_type;
938 
939 	/*
940 	 * If the S bit in the type field is not set, this descriptor can
941 	 * only be used in system context.
942 	 */
943 	if ((type & 0x10) != 0x10)
944 		return (-1);
945 
946 	limit = USD_GETLIMIT(desc) * (desc->sd_gran ? PAGESIZE : 1);
947 
948 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
949 		/*
950 		 * The code/data bit and readable bit must both be set.
951 		 */
952 		if ((type & 0xa) != 0xa)
953 			return (-1);
954 
955 		if (*addr > limit)
956 			return (-1);
957 	} else {
958 		/*
959 		 * The code/data bit must be clear.
960 		 */
961 		if ((type & 0x8) != 0)
962 			return (-1);
963 
964 		/*
965 		 * If the expand-down bit is clear, we just check the limit as
966 		 * it would naturally be applied. Otherwise, we need to check
967 		 * that the address is the range [limit + 1 .. 0xffff] or
968 		 * [limit + 1 ... 0xffffffff] depending on if the default
969 		 * operand size bit is set.
970 		 */
971 		if ((type & 0x4) == 0) {
972 			if (*addr > limit)
973 				return (-1);
974 		} else if (desc->sd_def32) {
975 			if (*addr < limit + 1 || 0xffff < *addr)
976 				return (-1);
977 		} else {
978 			if (*addr < limit + 1 || 0xffffffff < *addr)
979 				return (-1);
980 		}
981 	}
982 
983 	*addr += USD_GETBASE(desc);
984 
985 	return (0);
986 }
987 
988 int
989 fasttrap_pid_probe(struct reg *rp)
990 {
991 	proc_t *p = curproc;
992 #ifndef illumos
993 	proc_t *pp;
994 #endif
995 	uintptr_t pc = rp->r_rip - 1;
996 	uintptr_t new_pc = 0;
997 	fasttrap_bucket_t *bucket;
998 #ifdef illumos
999 	kmutex_t *pid_mtx;
1000 #endif
1001 	fasttrap_tracepoint_t *tp, tp_local;
1002 	pid_t pid;
1003 	dtrace_icookie_t cookie;
1004 	uint_t is_enabled = 0;
1005 
1006 	/*
1007 	 * It's possible that a user (in a veritable orgy of bad planning)
1008 	 * could redirect this thread's flow of control before it reached the
1009 	 * return probe fasttrap. In this case we need to kill the process
1010 	 * since it's in a unrecoverable state.
1011 	 */
1012 	if (curthread->t_dtrace_step) {
1013 		ASSERT(curthread->t_dtrace_on);
1014 		fasttrap_sigtrap(p, curthread, pc);
1015 		return (0);
1016 	}
1017 
1018 	/*
1019 	 * Clear all user tracing flags.
1020 	 */
1021 	curthread->t_dtrace_ft = 0;
1022 	curthread->t_dtrace_pc = 0;
1023 	curthread->t_dtrace_npc = 0;
1024 	curthread->t_dtrace_scrpc = 0;
1025 	curthread->t_dtrace_astpc = 0;
1026 #ifdef __amd64
1027 	curthread->t_dtrace_regv = 0;
1028 #endif
1029 
1030 	/*
1031 	 * Treat a child created by a call to vfork(2) as if it were its
1032 	 * parent. We know that there's only one thread of control in such a
1033 	 * process: this one.
1034 	 */
1035 #ifdef illumos
1036 	while (p->p_flag & SVFORK) {
1037 		p = p->p_parent;
1038 	}
1039 
1040 	pid = p->p_pid;
1041 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
1042 	mutex_enter(pid_mtx);
1043 #else
1044 	pp = p;
1045 	sx_slock(&proctree_lock);
1046 	while (pp->p_vmspace == pp->p_pptr->p_vmspace)
1047 		pp = pp->p_pptr;
1048 	pid = pp->p_pid;
1049 	sx_sunlock(&proctree_lock);
1050 	pp = NULL;
1051 
1052 	PROC_LOCK(p);
1053 	_PHOLD(p);
1054 #endif
1055 
1056 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
1057 
1058 	/*
1059 	 * Lookup the tracepoint that the process just hit.
1060 	 */
1061 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
1062 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
1063 		    tp->ftt_proc->ftpc_acount != 0)
1064 			break;
1065 	}
1066 
1067 	/*
1068 	 * If we couldn't find a matching tracepoint, either a tracepoint has
1069 	 * been inserted without using the pid<pid> ioctl interface (see
1070 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
1071 	 */
1072 	if (tp == NULL) {
1073 #ifdef illumos
1074 		mutex_exit(pid_mtx);
1075 #else
1076 		_PRELE(p);
1077 		PROC_UNLOCK(p);
1078 #endif
1079 		return (-1);
1080 	}
1081 
1082 	/*
1083 	 * Set the program counter to the address of the traced instruction
1084 	 * so that it looks right in ustack() output.
1085 	 */
1086 	rp->r_rip = pc;
1087 
1088 	if (tp->ftt_ids != NULL) {
1089 		fasttrap_id_t *id;
1090 
1091 #ifdef __amd64
1092 		if (p->p_model == DATAMODEL_LP64) {
1093 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1094 				fasttrap_probe_t *probe = id->fti_probe;
1095 
1096 				if (id->fti_ptype == DTFTP_ENTRY) {
1097 					/*
1098 					 * We note that this was an entry
1099 					 * probe to help ustack() find the
1100 					 * first caller.
1101 					 */
1102 					cookie = dtrace_interrupt_disable();
1103 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1104 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1105 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1106 					    rp->r_r8);
1107 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1108 					dtrace_interrupt_enable(cookie);
1109 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1110 					/*
1111 					 * Note that in this case, we don't
1112 					 * call dtrace_probe() since it's only
1113 					 * an artificial probe meant to change
1114 					 * the flow of control so that it
1115 					 * encounters the true probe.
1116 					 */
1117 					is_enabled = 1;
1118 				} else if (probe->ftp_argmap == NULL) {
1119 					dtrace_probe(probe->ftp_id, rp->r_rdi,
1120 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
1121 					    rp->r_r8);
1122 				} else {
1123 					uintptr_t t[5];
1124 
1125 					fasttrap_usdt_args64(probe, rp,
1126 					    sizeof (t) / sizeof (t[0]), t);
1127 
1128 					dtrace_probe(probe->ftp_id, t[0], t[1],
1129 					    t[2], t[3], t[4]);
1130 				}
1131 			}
1132 		} else {
1133 #else /* __amd64 */
1134 			uintptr_t s0, s1, s2, s3, s4, s5;
1135 			uint32_t *stack = (uint32_t *)rp->r_esp;
1136 
1137 			/*
1138 			 * In 32-bit mode, all arguments are passed on the
1139 			 * stack. If this is a function entry probe, we need
1140 			 * to skip the first entry on the stack as it
1141 			 * represents the return address rather than a
1142 			 * parameter to the function.
1143 			 */
1144 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1145 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1146 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1147 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1148 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1149 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1150 
1151 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1152 				fasttrap_probe_t *probe = id->fti_probe;
1153 
1154 				if (id->fti_ptype == DTFTP_ENTRY) {
1155 					/*
1156 					 * We note that this was an entry
1157 					 * probe to help ustack() find the
1158 					 * first caller.
1159 					 */
1160 					cookie = dtrace_interrupt_disable();
1161 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1162 					dtrace_probe(probe->ftp_id, s1, s2,
1163 					    s3, s4, s5);
1164 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1165 					dtrace_interrupt_enable(cookie);
1166 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1167 					/*
1168 					 * Note that in this case, we don't
1169 					 * call dtrace_probe() since it's only
1170 					 * an artificial probe meant to change
1171 					 * the flow of control so that it
1172 					 * encounters the true probe.
1173 					 */
1174 					is_enabled = 1;
1175 				} else if (probe->ftp_argmap == NULL) {
1176 					dtrace_probe(probe->ftp_id, s0, s1,
1177 					    s2, s3, s4);
1178 				} else {
1179 					uint32_t t[5];
1180 
1181 					fasttrap_usdt_args32(probe, rp,
1182 					    sizeof (t) / sizeof (t[0]), t);
1183 
1184 					dtrace_probe(probe->ftp_id, t[0], t[1],
1185 					    t[2], t[3], t[4]);
1186 				}
1187 			}
1188 #endif /* __amd64 */
1189 #ifdef __amd64
1190 		}
1191 #endif
1192 	}
1193 
1194 	/*
1195 	 * We're about to do a bunch of work so we cache a local copy of
1196 	 * the tracepoint to emulate the instruction, and then find the
1197 	 * tracepoint again later if we need to light up any return probes.
1198 	 */
1199 	tp_local = *tp;
1200 #ifdef illumos
1201 	mutex_exit(pid_mtx);
1202 #else
1203 	PROC_UNLOCK(p);
1204 #endif
1205 	tp = &tp_local;
1206 
1207 	/*
1208 	 * Set the program counter to appear as though the traced instruction
1209 	 * had completely executed. This ensures that fasttrap_getreg() will
1210 	 * report the expected value for REG_RIP.
1211 	 */
1212 	rp->r_rip = pc + tp->ftt_size;
1213 
1214 	/*
1215 	 * If there's an is-enabled probe connected to this tracepoint it
1216 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1217 	 * instruction that was placed there by DTrace when the binary was
1218 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1219 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1220 	 * emulation logic since we know the inevitable result. It's possible
1221 	 * that a user could construct a scenario where the 'is-enabled'
1222 	 * probe was on some other instruction, but that would be a rather
1223 	 * exotic way to shoot oneself in the foot.
1224 	 */
1225 	if (is_enabled) {
1226 		rp->r_rax = 1;
1227 		new_pc = rp->r_rip;
1228 		goto done;
1229 	}
1230 
1231 	/*
1232 	 * We emulate certain types of instructions to ensure correctness
1233 	 * (in the case of position dependent instructions) or optimize
1234 	 * common cases. The rest we have the thread execute back in user-
1235 	 * land.
1236 	 */
1237 	switch (tp->ftt_type) {
1238 	case FASTTRAP_T_RET:
1239 	case FASTTRAP_T_RET16:
1240 	{
1241 		uintptr_t dst = 0;
1242 		uintptr_t addr = 0;
1243 		int ret = 0;
1244 
1245 		/*
1246 		 * We have to emulate _every_ facet of the behavior of a ret
1247 		 * instruction including what happens if the load from %esp
1248 		 * fails; in that case, we send a SIGSEGV.
1249 		 */
1250 #ifdef __amd64
1251 		if (p->p_model == DATAMODEL_NATIVE) {
1252 			ret = dst = fasttrap_fulword((void *)rp->r_rsp);
1253 			addr = rp->r_rsp + sizeof (uintptr_t);
1254 		} else {
1255 #endif
1256 #ifdef __i386__
1257 			uint32_t dst32;
1258 			ret = dst32 = fasttrap_fuword32((void *)rp->r_esp);
1259 			dst = dst32;
1260 			addr = rp->r_esp + sizeof (uint32_t);
1261 #endif
1262 #ifdef __amd64
1263 		}
1264 #endif
1265 
1266 		if (ret == -1) {
1267 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1268 			new_pc = pc;
1269 			break;
1270 		}
1271 
1272 		if (tp->ftt_type == FASTTRAP_T_RET16)
1273 			addr += tp->ftt_dest;
1274 
1275 		rp->r_rsp = addr;
1276 		new_pc = dst;
1277 		break;
1278 	}
1279 
1280 	case FASTTRAP_T_JCC:
1281 	{
1282 		uint_t taken = 0;
1283 
1284 		switch (tp->ftt_code) {
1285 		case FASTTRAP_JO:
1286 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0;
1287 			break;
1288 		case FASTTRAP_JNO:
1289 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0;
1290 			break;
1291 		case FASTTRAP_JB:
1292 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0;
1293 			break;
1294 		case FASTTRAP_JAE:
1295 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0;
1296 			break;
1297 		case FASTTRAP_JE:
1298 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1299 			break;
1300 		case FASTTRAP_JNE:
1301 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1302 			break;
1303 		case FASTTRAP_JBE:
1304 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 ||
1305 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0;
1306 			break;
1307 		case FASTTRAP_JA:
1308 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 &&
1309 			    (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0;
1310 			break;
1311 		case FASTTRAP_JS:
1312 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0;
1313 			break;
1314 		case FASTTRAP_JNS:
1315 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0;
1316 			break;
1317 		case FASTTRAP_JP:
1318 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0;
1319 			break;
1320 		case FASTTRAP_JNP:
1321 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0;
1322 			break;
1323 		case FASTTRAP_JL:
1324 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1325 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1326 			break;
1327 		case FASTTRAP_JGE:
1328 			taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1329 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1330 			break;
1331 		case FASTTRAP_JLE:
1332 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 ||
1333 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) !=
1334 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1335 			break;
1336 		case FASTTRAP_JG:
1337 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1338 			    ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) ==
1339 			    ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0);
1340 			break;
1341 
1342 		}
1343 
1344 		if (taken)
1345 			new_pc = tp->ftt_dest;
1346 		else
1347 			new_pc = pc + tp->ftt_size;
1348 		break;
1349 	}
1350 
1351 	case FASTTRAP_T_LOOP:
1352 	{
1353 		uint_t taken = 0;
1354 #ifdef __amd64
1355 		greg_t cx = rp->r_rcx--;
1356 #else
1357 		greg_t cx = rp->r_ecx--;
1358 #endif
1359 
1360 		switch (tp->ftt_code) {
1361 		case FASTTRAP_LOOPNZ:
1362 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 &&
1363 			    cx != 0;
1364 			break;
1365 		case FASTTRAP_LOOPZ:
1366 			taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 &&
1367 			    cx != 0;
1368 			break;
1369 		case FASTTRAP_LOOP:
1370 			taken = (cx != 0);
1371 			break;
1372 		}
1373 
1374 		if (taken)
1375 			new_pc = tp->ftt_dest;
1376 		else
1377 			new_pc = pc + tp->ftt_size;
1378 		break;
1379 	}
1380 
1381 	case FASTTRAP_T_JCXZ:
1382 	{
1383 #ifdef __amd64
1384 		greg_t cx = rp->r_rcx;
1385 #else
1386 		greg_t cx = rp->r_ecx;
1387 #endif
1388 
1389 		if (cx == 0)
1390 			new_pc = tp->ftt_dest;
1391 		else
1392 			new_pc = pc + tp->ftt_size;
1393 		break;
1394 	}
1395 
1396 	case FASTTRAP_T_PUSHL_EBP:
1397 	{
1398 		int ret = 0;
1399 
1400 #ifdef __amd64
1401 		if (p->p_model == DATAMODEL_NATIVE) {
1402 			rp->r_rsp -= sizeof (uintptr_t);
1403 			ret = fasttrap_sulword((void *)rp->r_rsp, rp->r_rbp);
1404 		} else {
1405 #endif
1406 #ifdef __i386__
1407 			rp->r_rsp -= sizeof (uint32_t);
1408 			ret = fasttrap_suword32((void *)rp->r_rsp, rp->r_rbp);
1409 #endif
1410 #ifdef __amd64
1411 		}
1412 #endif
1413 
1414 		if (ret == -1) {
1415 			fasttrap_sigsegv(p, curthread, rp->r_rsp);
1416 			new_pc = pc;
1417 			break;
1418 		}
1419 
1420 		new_pc = pc + tp->ftt_size;
1421 		break;
1422 	}
1423 
1424 	case FASTTRAP_T_NOP:
1425 		new_pc = pc + tp->ftt_size;
1426 		break;
1427 
1428 	case FASTTRAP_T_JMP:
1429 	case FASTTRAP_T_CALL:
1430 		if (tp->ftt_code == 0) {
1431 			new_pc = tp->ftt_dest;
1432 		} else {
1433 			uintptr_t value, addr = tp->ftt_dest;
1434 
1435 			if (tp->ftt_base != FASTTRAP_NOREG)
1436 				addr += fasttrap_getreg(rp, tp->ftt_base);
1437 			if (tp->ftt_index != FASTTRAP_NOREG)
1438 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1439 				    tp->ftt_scale;
1440 
1441 			if (tp->ftt_code == 1) {
1442 				/*
1443 				 * If there's a segment prefix for this
1444 				 * instruction, we'll need to check permissions
1445 				 * and bounds on the given selector, and adjust
1446 				 * the address accordingly.
1447 				 */
1448 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1449 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1450 					fasttrap_sigsegv(p, curthread, addr);
1451 					new_pc = pc;
1452 					break;
1453 				}
1454 
1455 #ifdef __amd64
1456 				if (p->p_model == DATAMODEL_NATIVE) {
1457 #endif
1458 					if ((value = fasttrap_fulword((void *)addr))
1459 					     == -1) {
1460 						fasttrap_sigsegv(p, curthread,
1461 						    addr);
1462 						new_pc = pc;
1463 						break;
1464 					}
1465 					new_pc = value;
1466 #ifdef __amd64
1467 				} else {
1468 					uint32_t value32;
1469 					addr = (uintptr_t)(uint32_t)addr;
1470 					if ((value32 = fasttrap_fuword32((void *)addr))
1471 					    == -1) {
1472 						fasttrap_sigsegv(p, curthread,
1473 						    addr);
1474 						new_pc = pc;
1475 						break;
1476 					}
1477 					new_pc = value32;
1478 				}
1479 #endif
1480 			} else {
1481 				new_pc = addr;
1482 			}
1483 		}
1484 
1485 		/*
1486 		 * If this is a call instruction, we need to push the return
1487 		 * address onto the stack. If this fails, we send the process
1488 		 * a SIGSEGV and reset the pc to emulate what would happen if
1489 		 * this instruction weren't traced.
1490 		 */
1491 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1492 			int ret = 0;
1493 			uintptr_t addr = 0, pcps;
1494 #ifdef __amd64
1495 			if (p->p_model == DATAMODEL_NATIVE) {
1496 				addr = rp->r_rsp - sizeof (uintptr_t);
1497 				pcps = pc + tp->ftt_size;
1498 				ret = fasttrap_sulword((void *)addr, pcps);
1499 			} else {
1500 #endif
1501 				addr = rp->r_rsp - sizeof (uint32_t);
1502 				pcps = (uint32_t)(pc + tp->ftt_size);
1503 				ret = fasttrap_suword32((void *)addr, pcps);
1504 #ifdef __amd64
1505 			}
1506 #endif
1507 
1508 			if (ret == -1) {
1509 				fasttrap_sigsegv(p, curthread, addr);
1510 				new_pc = pc;
1511 				break;
1512 			}
1513 
1514 			rp->r_rsp = addr;
1515 		}
1516 
1517 		break;
1518 
1519 	case FASTTRAP_T_COMMON:
1520 	{
1521 		uintptr_t addr;
1522 #if defined(__amd64)
1523 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1524 #else
1525 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1526 #endif
1527 		uint_t i = 0;
1528 #ifdef illumos
1529 		klwp_t *lwp = ttolwp(curthread);
1530 
1531 		/*
1532 		 * Compute the address of the ulwp_t and step over the
1533 		 * ul_self pointer. The method used to store the user-land
1534 		 * thread pointer is very different on 32- and 64-bit
1535 		 * kernels.
1536 		 */
1537 #if defined(__amd64)
1538 		if (p->p_model == DATAMODEL_LP64) {
1539 			addr = lwp->lwp_pcb.pcb_fsbase;
1540 			addr += sizeof (void *);
1541 		} else {
1542 			addr = lwp->lwp_pcb.pcb_gsbase;
1543 			addr += sizeof (caddr32_t);
1544 		}
1545 #else
1546 		addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1547 		addr += sizeof (void *);
1548 #endif
1549 #else	/* !illumos */
1550 		fasttrap_scrspace_t *scrspace;
1551 		scrspace = fasttrap_scraddr(curthread, tp->ftt_proc);
1552 		if (scrspace == NULL) {
1553 			/*
1554 			 * We failed to allocate scratch space for this thread.
1555 			 * Try to write the original instruction back out and
1556 			 * reset the pc.
1557 			 */
1558 			if (fasttrap_copyout(tp->ftt_instr, (void *)pc,
1559 			    tp->ftt_size))
1560 				fasttrap_sigtrap(p, curthread, pc);
1561 			new_pc = pc;
1562 			break;
1563 		}
1564 		addr = scrspace->ftss_addr;
1565 #endif /* illumos */
1566 
1567 		/*
1568 		 * Generic Instruction Tracing
1569 		 * ---------------------------
1570 		 *
1571 		 * This is the layout of the scratch space in the user-land
1572 		 * thread structure for our generated instructions.
1573 		 *
1574 		 *	32-bit mode			bytes
1575 		 *	------------------------	-----
1576 		 * a:	<original instruction>		<= 15
1577 		 *	jmp	<pc + tp->ftt_size>	    5
1578 		 * b:	<original instruction>		<= 15
1579 		 *	int	T_DTRACE_RET		    2
1580 		 *					-----
1581 		 *					<= 37
1582 		 *
1583 		 *	64-bit mode			bytes
1584 		 *	------------------------	-----
1585 		 * a:	<original instruction>		<= 15
1586 		 *	jmp	0(%rip)			    6
1587 		 *	<pc + tp->ftt_size>		    8
1588 		 * b:	<original instruction>		<= 15
1589 		 * 	int	T_DTRACE_RET		    2
1590 		 * 					-----
1591 		 * 					<= 46
1592 		 *
1593 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1594 		 * to b. If we encounter a signal on the way out of the
1595 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1596 		 * so that we execute the original instruction and re-enter
1597 		 * the kernel rather than redirecting to the next instruction.
1598 		 *
1599 		 * If there are return probes (so we know that we're going to
1600 		 * need to reenter the kernel after executing the original
1601 		 * instruction), the scratch space will just contain the
1602 		 * original instruction followed by an interrupt -- the same
1603 		 * data as at b.
1604 		 *
1605 		 * %rip-relative Addressing
1606 		 * ------------------------
1607 		 *
1608 		 * There's a further complication in 64-bit mode due to %rip-
1609 		 * relative addressing. While this is clearly a beneficial
1610 		 * architectural decision for position independent code, it's
1611 		 * hard not to see it as a personal attack against the pid
1612 		 * provider since before there was a relatively small set of
1613 		 * instructions to emulate; with %rip-relative addressing,
1614 		 * almost every instruction can potentially depend on the
1615 		 * address at which it's executed. Rather than emulating
1616 		 * the broad spectrum of instructions that can now be
1617 		 * position dependent, we emulate jumps and others as in
1618 		 * 32-bit mode, and take a different tack for instructions
1619 		 * using %rip-relative addressing.
1620 		 *
1621 		 * For every instruction that uses the ModRM byte, the
1622 		 * in-kernel disassembler reports its location. We use the
1623 		 * ModRM byte to identify that an instruction uses
1624 		 * %rip-relative addressing and to see what other registers
1625 		 * the instruction uses. To emulate those instructions,
1626 		 * we modify the instruction to be %rax-relative rather than
1627 		 * %rip-relative (or %rcx-relative if the instruction uses
1628 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1629 		 * we don't have to rewrite the REX prefix). We then load
1630 		 * the value that %rip would have been into the scratch
1631 		 * register and generate an instruction to reset the scratch
1632 		 * register back to its original value. The instruction
1633 		 * sequence looks like this:
1634 		 *
1635 		 *	64-mode %rip-relative		bytes
1636 		 *	------------------------	-----
1637 		 * a:	<modified instruction>		<= 15
1638 		 *	movq	$<value>, %<scratch>	    6
1639 		 *	jmp	0(%rip)			    6
1640 		 *	<pc + tp->ftt_size>		    8
1641 		 * b:	<modified instruction>  	<= 15
1642 		 * 	int	T_DTRACE_RET		    2
1643 		 * 					-----
1644 		 *					   52
1645 		 *
1646 		 * We set curthread->t_dtrace_regv so that upon receiving
1647 		 * a signal we can reset the value of the scratch register.
1648 		 */
1649 
1650 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1651 
1652 		curthread->t_dtrace_scrpc = addr;
1653 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1654 		i += tp->ftt_size;
1655 
1656 #ifdef __amd64
1657 		if (tp->ftt_ripmode != 0) {
1658 			greg_t *reg = NULL;
1659 
1660 			ASSERT(p->p_model == DATAMODEL_LP64);
1661 			ASSERT(tp->ftt_ripmode &
1662 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1663 
1664 			/*
1665 			 * If this was a %rip-relative instruction, we change
1666 			 * it to be either a %rax- or %rcx-relative
1667 			 * instruction (depending on whether those registers
1668 			 * are used as another operand; or %r8- or %r9-
1669 			 * relative depending on the value of REX.B). We then
1670 			 * set that register and generate a movq instruction
1671 			 * to reset the value.
1672 			 */
1673 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1674 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1675 			else
1676 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1677 
1678 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1679 				scratch[i++] = FASTTRAP_MOV_EAX;
1680 			else
1681 				scratch[i++] = FASTTRAP_MOV_ECX;
1682 
1683 			switch (tp->ftt_ripmode) {
1684 			case FASTTRAP_RIP_1:
1685 				reg = &rp->r_rax;
1686 				curthread->t_dtrace_reg = REG_RAX;
1687 				break;
1688 			case FASTTRAP_RIP_2:
1689 				reg = &rp->r_rcx;
1690 				curthread->t_dtrace_reg = REG_RCX;
1691 				break;
1692 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1693 				reg = &rp->r_r8;
1694 				curthread->t_dtrace_reg = REG_R8;
1695 				break;
1696 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1697 				reg = &rp->r_r9;
1698 				curthread->t_dtrace_reg = REG_R9;
1699 				break;
1700 			}
1701 
1702 			/* LINTED - alignment */
1703 			*(uint64_t *)&scratch[i] = *reg;
1704 			curthread->t_dtrace_regv = *reg;
1705 			*reg = pc + tp->ftt_size;
1706 			i += sizeof (uint64_t);
1707 		}
1708 #endif
1709 
1710 		/*
1711 		 * Generate the branch instruction to what would have
1712 		 * normally been the subsequent instruction. In 32-bit mode,
1713 		 * this is just a relative branch; in 64-bit mode this is a
1714 		 * %rip-relative branch that loads the 64-bit pc value
1715 		 * immediately after the jmp instruction.
1716 		 */
1717 #ifdef __amd64
1718 		if (p->p_model == DATAMODEL_LP64) {
1719 			scratch[i++] = FASTTRAP_GROUP5_OP;
1720 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1721 			/* LINTED - alignment */
1722 			*(uint32_t *)&scratch[i] = 0;
1723 			i += sizeof (uint32_t);
1724 			/* LINTED - alignment */
1725 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1726 			i += sizeof (uint64_t);
1727 		} else {
1728 #endif
1729 #ifdef __i386__
1730 			/*
1731 			 * Set up the jmp to the next instruction; note that
1732 			 * the size of the traced instruction cancels out.
1733 			 */
1734 			scratch[i++] = FASTTRAP_JMP32;
1735 			/* LINTED - alignment */
1736 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1737 			i += sizeof (uint32_t);
1738 #endif
1739 #ifdef __amd64
1740 		}
1741 #endif
1742 
1743 		curthread->t_dtrace_astpc = addr + i;
1744 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1745 		i += tp->ftt_size;
1746 		scratch[i++] = FASTTRAP_INT;
1747 		scratch[i++] = T_DTRACE_RET;
1748 
1749 		ASSERT(i <= sizeof (scratch));
1750 
1751 #ifdef illumos
1752 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1753 #else
1754 		if (uwrite(p, scratch, i, addr)) {
1755 #endif
1756 			fasttrap_sigtrap(p, curthread, pc);
1757 			new_pc = pc;
1758 			break;
1759 		}
1760 		if (tp->ftt_retids != NULL) {
1761 			curthread->t_dtrace_step = 1;
1762 			curthread->t_dtrace_ret = 1;
1763 			new_pc = curthread->t_dtrace_astpc;
1764 		} else {
1765 			new_pc = curthread->t_dtrace_scrpc;
1766 		}
1767 
1768 		curthread->t_dtrace_pc = pc;
1769 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1770 		curthread->t_dtrace_on = 1;
1771 		break;
1772 	}
1773 
1774 	default:
1775 		panic("fasttrap: mishandled an instruction");
1776 	}
1777 
1778 done:
1779 	/*
1780 	 * If there were no return probes when we first found the tracepoint,
1781 	 * we should feel no obligation to honor any return probes that were
1782 	 * subsequently enabled -- they'll just have to wait until the next
1783 	 * time around.
1784 	 */
1785 	if (tp->ftt_retids != NULL) {
1786 		/*
1787 		 * We need to wait until the results of the instruction are
1788 		 * apparent before invoking any return probes. If this
1789 		 * instruction was emulated we can just call
1790 		 * fasttrap_return_common(); if it needs to be executed, we
1791 		 * need to wait until the user thread returns to the kernel.
1792 		 */
1793 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1794 			/*
1795 			 * Set the program counter to the address of the traced
1796 			 * instruction so that it looks right in ustack()
1797 			 * output. We had previously set it to the end of the
1798 			 * instruction to simplify %rip-relative addressing.
1799 			 */
1800 			rp->r_rip = pc;
1801 
1802 			fasttrap_return_common(rp, pc, pid, new_pc);
1803 		} else {
1804 			ASSERT(curthread->t_dtrace_ret != 0);
1805 			ASSERT(curthread->t_dtrace_pc == pc);
1806 			ASSERT(curthread->t_dtrace_scrpc != 0);
1807 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1808 		}
1809 	}
1810 
1811 	rp->r_rip = new_pc;
1812 
1813 #ifndef illumos
1814 	PROC_LOCK(p);
1815 	proc_write_regs(curthread, rp);
1816 	_PRELE(p);
1817 	PROC_UNLOCK(p);
1818 #endif
1819 
1820 	return (0);
1821 }
1822 
1823 int
1824 fasttrap_return_probe(struct reg *rp)
1825 {
1826 	proc_t *p = curproc;
1827 	uintptr_t pc = curthread->t_dtrace_pc;
1828 	uintptr_t npc = curthread->t_dtrace_npc;
1829 
1830 	curthread->t_dtrace_pc = 0;
1831 	curthread->t_dtrace_npc = 0;
1832 	curthread->t_dtrace_scrpc = 0;
1833 	curthread->t_dtrace_astpc = 0;
1834 
1835 #ifdef illumos
1836 	/*
1837 	 * Treat a child created by a call to vfork(2) as if it were its
1838 	 * parent. We know that there's only one thread of control in such a
1839 	 * process: this one.
1840 	 */
1841 	while (p->p_flag & SVFORK) {
1842 		p = p->p_parent;
1843 	}
1844 #endif
1845 
1846 	/*
1847 	 * We set rp->r_rip to the address of the traced instruction so
1848 	 * that it appears to dtrace_probe() that we're on the original
1849 	 * instruction, and so that the user can't easily detect our
1850 	 * complex web of lies. dtrace_return_probe() (our caller)
1851 	 * will correctly set %pc after we return.
1852 	 */
1853 	rp->r_rip = pc;
1854 
1855 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1856 
1857 	return (0);
1858 }
1859 
1860 /*ARGSUSED*/
1861 uint64_t
1862 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1863     int aframes)
1864 {
1865 	struct reg r;
1866 
1867 	fill_regs(curthread, &r);
1868 
1869 	return (fasttrap_anarg(&r, 1, argno));
1870 }
1871 
1872 /*ARGSUSED*/
1873 uint64_t
1874 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1875     int aframes)
1876 {
1877 	struct reg r;
1878 
1879 	fill_regs(curthread, &r);
1880 
1881 	return (fasttrap_anarg(&r, 0, argno));
1882 }
1883 
1884 static ulong_t
1885 fasttrap_getreg(struct reg *rp, uint_t reg)
1886 {
1887 #ifdef __amd64
1888 	switch (reg) {
1889 	case REG_R15:		return (rp->r_r15);
1890 	case REG_R14:		return (rp->r_r14);
1891 	case REG_R13:		return (rp->r_r13);
1892 	case REG_R12:		return (rp->r_r12);
1893 	case REG_R11:		return (rp->r_r11);
1894 	case REG_R10:		return (rp->r_r10);
1895 	case REG_R9:		return (rp->r_r9);
1896 	case REG_R8:		return (rp->r_r8);
1897 	case REG_RDI:		return (rp->r_rdi);
1898 	case REG_RSI:		return (rp->r_rsi);
1899 	case REG_RBP:		return (rp->r_rbp);
1900 	case REG_RBX:		return (rp->r_rbx);
1901 	case REG_RDX:		return (rp->r_rdx);
1902 	case REG_RCX:		return (rp->r_rcx);
1903 	case REG_RAX:		return (rp->r_rax);
1904 	case REG_TRAPNO:	return (rp->r_trapno);
1905 	case REG_ERR:		return (rp->r_err);
1906 	case REG_RIP:		return (rp->r_rip);
1907 	case REG_CS:		return (rp->r_cs);
1908 #ifdef illumos
1909 	case REG_RFL:		return (rp->r_rfl);
1910 #endif
1911 	case REG_RSP:		return (rp->r_rsp);
1912 	case REG_SS:		return (rp->r_ss);
1913 	case REG_FS:		return (rp->r_fs);
1914 	case REG_GS:		return (rp->r_gs);
1915 	case REG_DS:		return (rp->r_ds);
1916 	case REG_ES:		return (rp->r_es);
1917 	case REG_FSBASE:	return (rdmsr(MSR_FSBASE));
1918 	case REG_GSBASE:	return (rdmsr(MSR_GSBASE));
1919 	}
1920 
1921 	panic("dtrace: illegal register constant");
1922 	/*NOTREACHED*/
1923 #else
1924 #define _NGREG 19
1925 	if (reg >= _NGREG)
1926 		panic("dtrace: illegal register constant");
1927 
1928 	return (((greg_t *)&rp->r_gs)[reg]);
1929 #endif
1930 }
1931