1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 *flags |= CPU_DTRACE_NOFAULT; \ 553 /*CSTYLED*/ \ 554 rval = *((volatile uint##bits##_t *)addr); \ 555 *flags &= ~CPU_DTRACE_NOFAULT; \ 556 \ 557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 558 } 559 560 #ifdef _LP64 561 #define dtrace_loadptr dtrace_load64 562 #else 563 #define dtrace_loadptr dtrace_load32 564 #endif 565 566 #define DTRACE_DYNHASH_FREE 0 567 #define DTRACE_DYNHASH_SINK 1 568 #define DTRACE_DYNHASH_VALID 2 569 570 #define DTRACE_MATCH_NEXT 0 571 #define DTRACE_MATCH_DONE 1 572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 573 #define DTRACE_STATE_ALIGN 64 574 575 #define DTRACE_FLAGS2FLT(flags) \ 576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 585 DTRACEFLT_UNKNOWN) 586 587 #define DTRACEACT_ISSTRING(act) \ 588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 590 591 /* Function prototype definitions: */ 592 static size_t dtrace_strlen(const char *, size_t); 593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 594 static void dtrace_enabling_provide(dtrace_provider_t *); 595 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 596 static void dtrace_enabling_matchall(void); 597 static void dtrace_enabling_matchall_task(void *); 598 static void dtrace_enabling_reap(void *); 599 static dtrace_state_t *dtrace_anon_grab(void); 600 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 601 dtrace_state_t *, uint64_t, uint64_t); 602 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 603 static void dtrace_buffer_drop(dtrace_buffer_t *); 604 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 605 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 606 dtrace_state_t *, dtrace_mstate_t *); 607 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 608 dtrace_optval_t); 609 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 610 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 611 uint16_t dtrace_load16(uintptr_t); 612 uint32_t dtrace_load32(uintptr_t); 613 uint64_t dtrace_load64(uintptr_t); 614 uint8_t dtrace_load8(uintptr_t); 615 void dtrace_dynvar_clean(dtrace_dstate_t *); 616 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 617 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 618 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 619 static int dtrace_priv_proc(dtrace_state_t *); 620 static void dtrace_getf_barrier(void); 621 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 622 dtrace_mstate_t *, dtrace_vstate_t *); 623 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 624 dtrace_mstate_t *, dtrace_vstate_t *); 625 626 /* 627 * DTrace Probe Context Functions 628 * 629 * These functions are called from probe context. Because probe context is 630 * any context in which C may be called, arbitrarily locks may be held, 631 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 632 * As a result, functions called from probe context may only call other DTrace 633 * support functions -- they may not interact at all with the system at large. 634 * (Note that the ASSERT macro is made probe-context safe by redefining it in 635 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 636 * loads are to be performed from probe context, they _must_ be in terms of 637 * the safe dtrace_load*() variants. 638 * 639 * Some functions in this block are not actually called from probe context; 640 * for these functions, there will be a comment above the function reading 641 * "Note: not called from probe context." 642 */ 643 void 644 dtrace_panic(const char *format, ...) 645 { 646 va_list alist; 647 648 va_start(alist, format); 649 #ifdef __FreeBSD__ 650 vpanic(format, alist); 651 #else 652 dtrace_vpanic(format, alist); 653 #endif 654 va_end(alist); 655 } 656 657 int 658 dtrace_assfail(const char *a, const char *f, int l) 659 { 660 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 661 662 /* 663 * We just need something here that even the most clever compiler 664 * cannot optimize away. 665 */ 666 return (a[(uintptr_t)f]); 667 } 668 669 /* 670 * Atomically increment a specified error counter from probe context. 671 */ 672 static void 673 dtrace_error(uint32_t *counter) 674 { 675 /* 676 * Most counters stored to in probe context are per-CPU counters. 677 * However, there are some error conditions that are sufficiently 678 * arcane that they don't merit per-CPU storage. If these counters 679 * are incremented concurrently on different CPUs, scalability will be 680 * adversely affected -- but we don't expect them to be white-hot in a 681 * correctly constructed enabling... 682 */ 683 uint32_t oval, nval; 684 685 do { 686 oval = *counter; 687 688 if ((nval = oval + 1) == 0) { 689 /* 690 * If the counter would wrap, set it to 1 -- assuring 691 * that the counter is never zero when we have seen 692 * errors. (The counter must be 32-bits because we 693 * aren't guaranteed a 64-bit compare&swap operation.) 694 * To save this code both the infamy of being fingered 695 * by a priggish news story and the indignity of being 696 * the target of a neo-puritan witch trial, we're 697 * carefully avoiding any colorful description of the 698 * likelihood of this condition -- but suffice it to 699 * say that it is only slightly more likely than the 700 * overflow of predicate cache IDs, as discussed in 701 * dtrace_predicate_create(). 702 */ 703 nval = 1; 704 } 705 } while (dtrace_cas32(counter, oval, nval) != oval); 706 } 707 708 /* 709 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 710 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 711 */ 712 /* BEGIN CSTYLED */ 713 DTRACE_LOADFUNC(8) 714 DTRACE_LOADFUNC(16) 715 DTRACE_LOADFUNC(32) 716 DTRACE_LOADFUNC(64) 717 /* END CSTYLED */ 718 719 static int 720 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 721 { 722 if (dest < mstate->dtms_scratch_base) 723 return (0); 724 725 if (dest + size < dest) 726 return (0); 727 728 if (dest + size > mstate->dtms_scratch_ptr) 729 return (0); 730 731 return (1); 732 } 733 734 static int 735 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 736 dtrace_statvar_t **svars, int nsvars) 737 { 738 int i; 739 size_t maxglobalsize, maxlocalsize; 740 741 if (nsvars == 0) 742 return (0); 743 744 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 745 maxlocalsize = maxglobalsize * (mp_maxid + 1); 746 747 for (i = 0; i < nsvars; i++) { 748 dtrace_statvar_t *svar = svars[i]; 749 uint8_t scope; 750 size_t size; 751 752 if (svar == NULL || (size = svar->dtsv_size) == 0) 753 continue; 754 755 scope = svar->dtsv_var.dtdv_scope; 756 757 /* 758 * We verify that our size is valid in the spirit of providing 759 * defense in depth: we want to prevent attackers from using 760 * DTrace to escalate an orthogonal kernel heap corruption bug 761 * into the ability to store to arbitrary locations in memory. 762 */ 763 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 764 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 765 766 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 767 svar->dtsv_size)) { 768 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 769 svar->dtsv_size); 770 return (1); 771 } 772 } 773 774 return (0); 775 } 776 777 /* 778 * Check to see if the address is within a memory region to which a store may 779 * be issued. This includes the DTrace scratch areas, and any DTrace variable 780 * region. The caller of dtrace_canstore() is responsible for performing any 781 * alignment checks that are needed before stores are actually executed. 782 */ 783 static int 784 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 785 dtrace_vstate_t *vstate) 786 { 787 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 788 } 789 790 /* 791 * Implementation of dtrace_canstore which communicates the upper bound of the 792 * allowed memory region. 793 */ 794 static int 795 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 796 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 797 { 798 /* 799 * First, check to see if the address is in scratch space... 800 */ 801 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 802 mstate->dtms_scratch_size)) { 803 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 804 mstate->dtms_scratch_size); 805 return (1); 806 } 807 808 /* 809 * Now check to see if it's a dynamic variable. This check will pick 810 * up both thread-local variables and any global dynamically-allocated 811 * variables. 812 */ 813 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 814 vstate->dtvs_dynvars.dtds_size)) { 815 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 816 uintptr_t base = (uintptr_t)dstate->dtds_base + 817 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 818 uintptr_t chunkoffs; 819 dtrace_dynvar_t *dvar; 820 821 /* 822 * Before we assume that we can store here, we need to make 823 * sure that it isn't in our metadata -- storing to our 824 * dynamic variable metadata would corrupt our state. For 825 * the range to not include any dynamic variable metadata, 826 * it must: 827 * 828 * (1) Start above the hash table that is at the base of 829 * the dynamic variable space 830 * 831 * (2) Have a starting chunk offset that is beyond the 832 * dtrace_dynvar_t that is at the base of every chunk 833 * 834 * (3) Not span a chunk boundary 835 * 836 * (4) Not be in the tuple space of a dynamic variable 837 * 838 */ 839 if (addr < base) 840 return (0); 841 842 chunkoffs = (addr - base) % dstate->dtds_chunksize; 843 844 if (chunkoffs < sizeof (dtrace_dynvar_t)) 845 return (0); 846 847 if (chunkoffs + sz > dstate->dtds_chunksize) 848 return (0); 849 850 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 851 852 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 853 return (0); 854 855 if (chunkoffs < sizeof (dtrace_dynvar_t) + 856 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 857 return (0); 858 859 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 860 return (1); 861 } 862 863 /* 864 * Finally, check the static local and global variables. These checks 865 * take the longest, so we perform them last. 866 */ 867 if (dtrace_canstore_statvar(addr, sz, remain, 868 vstate->dtvs_locals, vstate->dtvs_nlocals)) 869 return (1); 870 871 if (dtrace_canstore_statvar(addr, sz, remain, 872 vstate->dtvs_globals, vstate->dtvs_nglobals)) 873 return (1); 874 875 return (0); 876 } 877 878 879 /* 880 * Convenience routine to check to see if the address is within a memory 881 * region in which a load may be issued given the user's privilege level; 882 * if not, it sets the appropriate error flags and loads 'addr' into the 883 * illegal value slot. 884 * 885 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 886 * appropriate memory access protection. 887 */ 888 static int 889 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 890 dtrace_vstate_t *vstate) 891 { 892 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 893 } 894 895 /* 896 * Implementation of dtrace_canload which communicates the uppoer bound of the 897 * allowed memory region. 898 */ 899 static int 900 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 901 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 902 { 903 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 904 file_t *fp; 905 906 /* 907 * If we hold the privilege to read from kernel memory, then 908 * everything is readable. 909 */ 910 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 911 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 912 return (1); 913 } 914 915 /* 916 * You can obviously read that which you can store. 917 */ 918 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 919 return (1); 920 921 /* 922 * We're allowed to read from our own string table. 923 */ 924 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 925 mstate->dtms_difo->dtdo_strlen)) { 926 DTRACE_RANGE_REMAIN(remain, addr, 927 mstate->dtms_difo->dtdo_strtab, 928 mstate->dtms_difo->dtdo_strlen); 929 return (1); 930 } 931 932 if (vstate->dtvs_state != NULL && 933 dtrace_priv_proc(vstate->dtvs_state)) { 934 proc_t *p; 935 936 /* 937 * When we have privileges to the current process, there are 938 * several context-related kernel structures that are safe to 939 * read, even absent the privilege to read from kernel memory. 940 * These reads are safe because these structures contain only 941 * state that (1) we're permitted to read, (2) is harmless or 942 * (3) contains pointers to additional kernel state that we're 943 * not permitted to read (and as such, do not present an 944 * opportunity for privilege escalation). Finally (and 945 * critically), because of the nature of their relation with 946 * the current thread context, the memory associated with these 947 * structures cannot change over the duration of probe context, 948 * and it is therefore impossible for this memory to be 949 * deallocated and reallocated as something else while it's 950 * being operated upon. 951 */ 952 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 953 DTRACE_RANGE_REMAIN(remain, addr, curthread, 954 sizeof (kthread_t)); 955 return (1); 956 } 957 958 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 959 sz, curthread->t_procp, sizeof (proc_t))) { 960 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 961 sizeof (proc_t)); 962 return (1); 963 } 964 965 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 966 curthread->t_cred, sizeof (cred_t))) { 967 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 968 sizeof (cred_t)); 969 return (1); 970 } 971 972 #ifdef illumos 973 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 974 &(p->p_pidp->pid_id), sizeof (pid_t))) { 975 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 976 sizeof (pid_t)); 977 return (1); 978 } 979 980 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 981 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 982 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 983 offsetof(cpu_t, cpu_pause_thread)); 984 return (1); 985 } 986 #endif 987 } 988 989 if ((fp = mstate->dtms_getf) != NULL) { 990 uintptr_t psz = sizeof (void *); 991 vnode_t *vp; 992 vnodeops_t *op; 993 994 /* 995 * When getf() returns a file_t, the enabling is implicitly 996 * granted the (transient) right to read the returned file_t 997 * as well as the v_path and v_op->vnop_name of the underlying 998 * vnode. These accesses are allowed after a successful 999 * getf() because the members that they refer to cannot change 1000 * once set -- and the barrier logic in the kernel's closef() 1001 * path assures that the file_t and its referenced vode_t 1002 * cannot themselves be stale (that is, it impossible for 1003 * either dtms_getf itself or its f_vnode member to reference 1004 * freed memory). 1005 */ 1006 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1007 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1008 return (1); 1009 } 1010 1011 if ((vp = fp->f_vnode) != NULL) { 1012 size_t slen; 1013 #ifdef illumos 1014 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1015 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1016 psz); 1017 return (1); 1018 } 1019 slen = strlen(vp->v_path) + 1; 1020 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1021 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1022 slen); 1023 return (1); 1024 } 1025 #endif 1026 1027 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1028 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1029 psz); 1030 return (1); 1031 } 1032 1033 #ifdef illumos 1034 if ((op = vp->v_op) != NULL && 1035 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1036 DTRACE_RANGE_REMAIN(remain, addr, 1037 &op->vnop_name, psz); 1038 return (1); 1039 } 1040 1041 if (op != NULL && op->vnop_name != NULL && 1042 DTRACE_INRANGE(addr, sz, op->vnop_name, 1043 (slen = strlen(op->vnop_name) + 1))) { 1044 DTRACE_RANGE_REMAIN(remain, addr, 1045 op->vnop_name, slen); 1046 return (1); 1047 } 1048 #endif 1049 } 1050 } 1051 1052 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1053 *illval = addr; 1054 return (0); 1055 } 1056 1057 /* 1058 * Convenience routine to check to see if a given string is within a memory 1059 * region in which a load may be issued given the user's privilege level; 1060 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1061 * calls in the event that the user has all privileges. 1062 */ 1063 static int 1064 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1065 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1066 { 1067 size_t rsize; 1068 1069 /* 1070 * If we hold the privilege to read from kernel memory, then 1071 * everything is readable. 1072 */ 1073 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1074 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1075 return (1); 1076 } 1077 1078 /* 1079 * Even if the caller is uninterested in querying the remaining valid 1080 * range, it is required to ensure that the access is allowed. 1081 */ 1082 if (remain == NULL) { 1083 remain = &rsize; 1084 } 1085 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1086 size_t strsz; 1087 /* 1088 * Perform the strlen after determining the length of the 1089 * memory region which is accessible. This prevents timing 1090 * information from being used to find NULs in memory which is 1091 * not accessible to the caller. 1092 */ 1093 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1094 MIN(sz, *remain)); 1095 if (strsz <= *remain) { 1096 return (1); 1097 } 1098 } 1099 1100 return (0); 1101 } 1102 1103 /* 1104 * Convenience routine to check to see if a given variable is within a memory 1105 * region in which a load may be issued given the user's privilege level. 1106 */ 1107 static int 1108 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1109 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1110 { 1111 size_t sz; 1112 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1113 1114 /* 1115 * Calculate the max size before performing any checks since even 1116 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1117 * return the max length via 'remain'. 1118 */ 1119 if (type->dtdt_kind == DIF_TYPE_STRING) { 1120 dtrace_state_t *state = vstate->dtvs_state; 1121 1122 if (state != NULL) { 1123 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1124 } else { 1125 /* 1126 * In helper context, we have a NULL state; fall back 1127 * to using the system-wide default for the string size 1128 * in this case. 1129 */ 1130 sz = dtrace_strsize_default; 1131 } 1132 } else { 1133 sz = type->dtdt_size; 1134 } 1135 1136 /* 1137 * If we hold the privilege to read from kernel memory, then 1138 * everything is readable. 1139 */ 1140 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1141 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1142 return (1); 1143 } 1144 1145 if (type->dtdt_kind == DIF_TYPE_STRING) { 1146 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1147 vstate)); 1148 } 1149 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1150 vstate)); 1151 } 1152 1153 /* 1154 * Convert a string to a signed integer using safe loads. 1155 * 1156 * NOTE: This function uses various macros from strtolctype.h to manipulate 1157 * digit values, etc -- these have all been checked to ensure they make 1158 * no additional function calls. 1159 */ 1160 static int64_t 1161 dtrace_strtoll(char *input, int base, size_t limit) 1162 { 1163 uintptr_t pos = (uintptr_t)input; 1164 int64_t val = 0; 1165 int x; 1166 boolean_t neg = B_FALSE; 1167 char c, cc, ccc; 1168 uintptr_t end = pos + limit; 1169 1170 /* 1171 * Consume any whitespace preceding digits. 1172 */ 1173 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1174 pos++; 1175 1176 /* 1177 * Handle an explicit sign if one is present. 1178 */ 1179 if (c == '-' || c == '+') { 1180 if (c == '-') 1181 neg = B_TRUE; 1182 c = dtrace_load8(++pos); 1183 } 1184 1185 /* 1186 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1187 * if present. 1188 */ 1189 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1190 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1191 pos += 2; 1192 c = ccc; 1193 } 1194 1195 /* 1196 * Read in contiguous digits until the first non-digit character. 1197 */ 1198 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1199 c = dtrace_load8(++pos)) 1200 val = val * base + x; 1201 1202 return (neg ? -val : val); 1203 } 1204 1205 /* 1206 * Compare two strings using safe loads. 1207 */ 1208 static int 1209 dtrace_strncmp(char *s1, char *s2, size_t limit) 1210 { 1211 uint8_t c1, c2; 1212 volatile uint16_t *flags; 1213 1214 if (s1 == s2 || limit == 0) 1215 return (0); 1216 1217 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1218 1219 do { 1220 if (s1 == NULL) { 1221 c1 = '\0'; 1222 } else { 1223 c1 = dtrace_load8((uintptr_t)s1++); 1224 } 1225 1226 if (s2 == NULL) { 1227 c2 = '\0'; 1228 } else { 1229 c2 = dtrace_load8((uintptr_t)s2++); 1230 } 1231 1232 if (c1 != c2) 1233 return (c1 - c2); 1234 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1235 1236 return (0); 1237 } 1238 1239 /* 1240 * Compute strlen(s) for a string using safe memory accesses. The additional 1241 * len parameter is used to specify a maximum length to ensure completion. 1242 */ 1243 static size_t 1244 dtrace_strlen(const char *s, size_t lim) 1245 { 1246 uint_t len; 1247 1248 for (len = 0; len != lim; len++) { 1249 if (dtrace_load8((uintptr_t)s++) == '\0') 1250 break; 1251 } 1252 1253 return (len); 1254 } 1255 1256 /* 1257 * Check if an address falls within a toxic region. 1258 */ 1259 static int 1260 dtrace_istoxic(uintptr_t kaddr, size_t size) 1261 { 1262 uintptr_t taddr, tsize; 1263 int i; 1264 1265 for (i = 0; i < dtrace_toxranges; i++) { 1266 taddr = dtrace_toxrange[i].dtt_base; 1267 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1268 1269 if (kaddr - taddr < tsize) { 1270 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1271 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1272 return (1); 1273 } 1274 1275 if (taddr - kaddr < size) { 1276 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1277 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1278 return (1); 1279 } 1280 } 1281 1282 return (0); 1283 } 1284 1285 /* 1286 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1287 * memory specified by the DIF program. The dst is assumed to be safe memory 1288 * that we can store to directly because it is managed by DTrace. As with 1289 * standard bcopy, overlapping copies are handled properly. 1290 */ 1291 static void 1292 dtrace_bcopy(const void *src, void *dst, size_t len) 1293 { 1294 if (len != 0) { 1295 uint8_t *s1 = dst; 1296 const uint8_t *s2 = src; 1297 1298 if (s1 <= s2) { 1299 do { 1300 *s1++ = dtrace_load8((uintptr_t)s2++); 1301 } while (--len != 0); 1302 } else { 1303 s2 += len; 1304 s1 += len; 1305 1306 do { 1307 *--s1 = dtrace_load8((uintptr_t)--s2); 1308 } while (--len != 0); 1309 } 1310 } 1311 } 1312 1313 /* 1314 * Copy src to dst using safe memory accesses, up to either the specified 1315 * length, or the point that a nul byte is encountered. The src is assumed to 1316 * be unsafe memory specified by the DIF program. The dst is assumed to be 1317 * safe memory that we can store to directly because it is managed by DTrace. 1318 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1319 */ 1320 static void 1321 dtrace_strcpy(const void *src, void *dst, size_t len) 1322 { 1323 if (len != 0) { 1324 uint8_t *s1 = dst, c; 1325 const uint8_t *s2 = src; 1326 1327 do { 1328 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1329 } while (--len != 0 && c != '\0'); 1330 } 1331 } 1332 1333 /* 1334 * Copy src to dst, deriving the size and type from the specified (BYREF) 1335 * variable type. The src is assumed to be unsafe memory specified by the DIF 1336 * program. The dst is assumed to be DTrace variable memory that is of the 1337 * specified type; we assume that we can store to directly. 1338 */ 1339 static void 1340 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1341 { 1342 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1343 1344 if (type->dtdt_kind == DIF_TYPE_STRING) { 1345 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1346 } else { 1347 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1348 } 1349 } 1350 1351 /* 1352 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1353 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1354 * safe memory that we can access directly because it is managed by DTrace. 1355 */ 1356 static int 1357 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1358 { 1359 volatile uint16_t *flags; 1360 1361 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1362 1363 if (s1 == s2) 1364 return (0); 1365 1366 if (s1 == NULL || s2 == NULL) 1367 return (1); 1368 1369 if (s1 != s2 && len != 0) { 1370 const uint8_t *ps1 = s1; 1371 const uint8_t *ps2 = s2; 1372 1373 do { 1374 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1375 return (1); 1376 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1377 } 1378 return (0); 1379 } 1380 1381 /* 1382 * Zero the specified region using a simple byte-by-byte loop. Note that this 1383 * is for safe DTrace-managed memory only. 1384 */ 1385 static void 1386 dtrace_bzero(void *dst, size_t len) 1387 { 1388 uchar_t *cp; 1389 1390 for (cp = dst; len != 0; len--) 1391 *cp++ = 0; 1392 } 1393 1394 static void 1395 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1396 { 1397 uint64_t result[2]; 1398 1399 result[0] = addend1[0] + addend2[0]; 1400 result[1] = addend1[1] + addend2[1] + 1401 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1402 1403 sum[0] = result[0]; 1404 sum[1] = result[1]; 1405 } 1406 1407 /* 1408 * Shift the 128-bit value in a by b. If b is positive, shift left. 1409 * If b is negative, shift right. 1410 */ 1411 static void 1412 dtrace_shift_128(uint64_t *a, int b) 1413 { 1414 uint64_t mask; 1415 1416 if (b == 0) 1417 return; 1418 1419 if (b < 0) { 1420 b = -b; 1421 if (b >= 64) { 1422 a[0] = a[1] >> (b - 64); 1423 a[1] = 0; 1424 } else { 1425 a[0] >>= b; 1426 mask = 1LL << (64 - b); 1427 mask -= 1; 1428 a[0] |= ((a[1] & mask) << (64 - b)); 1429 a[1] >>= b; 1430 } 1431 } else { 1432 if (b >= 64) { 1433 a[1] = a[0] << (b - 64); 1434 a[0] = 0; 1435 } else { 1436 a[1] <<= b; 1437 mask = a[0] >> (64 - b); 1438 a[1] |= mask; 1439 a[0] <<= b; 1440 } 1441 } 1442 } 1443 1444 /* 1445 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1446 * use native multiplication on those, and then re-combine into the 1447 * resulting 128-bit value. 1448 * 1449 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1450 * hi1 * hi2 << 64 + 1451 * hi1 * lo2 << 32 + 1452 * hi2 * lo1 << 32 + 1453 * lo1 * lo2 1454 */ 1455 static void 1456 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1457 { 1458 uint64_t hi1, hi2, lo1, lo2; 1459 uint64_t tmp[2]; 1460 1461 hi1 = factor1 >> 32; 1462 hi2 = factor2 >> 32; 1463 1464 lo1 = factor1 & DT_MASK_LO; 1465 lo2 = factor2 & DT_MASK_LO; 1466 1467 product[0] = lo1 * lo2; 1468 product[1] = hi1 * hi2; 1469 1470 tmp[0] = hi1 * lo2; 1471 tmp[1] = 0; 1472 dtrace_shift_128(tmp, 32); 1473 dtrace_add_128(product, tmp, product); 1474 1475 tmp[0] = hi2 * lo1; 1476 tmp[1] = 0; 1477 dtrace_shift_128(tmp, 32); 1478 dtrace_add_128(product, tmp, product); 1479 } 1480 1481 /* 1482 * This privilege check should be used by actions and subroutines to 1483 * verify that the user credentials of the process that enabled the 1484 * invoking ECB match the target credentials 1485 */ 1486 static int 1487 dtrace_priv_proc_common_user(dtrace_state_t *state) 1488 { 1489 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1490 1491 /* 1492 * We should always have a non-NULL state cred here, since if cred 1493 * is null (anonymous tracing), we fast-path bypass this routine. 1494 */ 1495 ASSERT(s_cr != NULL); 1496 1497 if ((cr = CRED()) != NULL && 1498 s_cr->cr_uid == cr->cr_uid && 1499 s_cr->cr_uid == cr->cr_ruid && 1500 s_cr->cr_uid == cr->cr_suid && 1501 s_cr->cr_gid == cr->cr_gid && 1502 s_cr->cr_gid == cr->cr_rgid && 1503 s_cr->cr_gid == cr->cr_sgid) 1504 return (1); 1505 1506 return (0); 1507 } 1508 1509 /* 1510 * This privilege check should be used by actions and subroutines to 1511 * verify that the zone of the process that enabled the invoking ECB 1512 * matches the target credentials 1513 */ 1514 static int 1515 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1516 { 1517 #ifdef illumos 1518 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1519 1520 /* 1521 * We should always have a non-NULL state cred here, since if cred 1522 * is null (anonymous tracing), we fast-path bypass this routine. 1523 */ 1524 ASSERT(s_cr != NULL); 1525 1526 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1527 return (1); 1528 1529 return (0); 1530 #else 1531 return (1); 1532 #endif 1533 } 1534 1535 /* 1536 * This privilege check should be used by actions and subroutines to 1537 * verify that the process has not setuid or changed credentials. 1538 */ 1539 static int 1540 dtrace_priv_proc_common_nocd(void) 1541 { 1542 proc_t *proc; 1543 1544 if ((proc = ttoproc(curthread)) != NULL && 1545 !(proc->p_flag & SNOCD)) 1546 return (1); 1547 1548 return (0); 1549 } 1550 1551 static int 1552 dtrace_priv_proc_destructive(dtrace_state_t *state) 1553 { 1554 int action = state->dts_cred.dcr_action; 1555 1556 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1557 dtrace_priv_proc_common_zone(state) == 0) 1558 goto bad; 1559 1560 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1561 dtrace_priv_proc_common_user(state) == 0) 1562 goto bad; 1563 1564 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1565 dtrace_priv_proc_common_nocd() == 0) 1566 goto bad; 1567 1568 return (1); 1569 1570 bad: 1571 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1572 1573 return (0); 1574 } 1575 1576 static int 1577 dtrace_priv_proc_control(dtrace_state_t *state) 1578 { 1579 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1580 return (1); 1581 1582 if (dtrace_priv_proc_common_zone(state) && 1583 dtrace_priv_proc_common_user(state) && 1584 dtrace_priv_proc_common_nocd()) 1585 return (1); 1586 1587 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1588 1589 return (0); 1590 } 1591 1592 static int 1593 dtrace_priv_proc(dtrace_state_t *state) 1594 { 1595 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1596 return (1); 1597 1598 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1599 1600 return (0); 1601 } 1602 1603 static int 1604 dtrace_priv_kernel(dtrace_state_t *state) 1605 { 1606 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1607 return (1); 1608 1609 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1610 1611 return (0); 1612 } 1613 1614 static int 1615 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1616 { 1617 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1618 return (1); 1619 1620 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1621 1622 return (0); 1623 } 1624 1625 /* 1626 * Determine if the dte_cond of the specified ECB allows for processing of 1627 * the current probe to continue. Note that this routine may allow continued 1628 * processing, but with access(es) stripped from the mstate's dtms_access 1629 * field. 1630 */ 1631 static int 1632 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1633 dtrace_ecb_t *ecb) 1634 { 1635 dtrace_probe_t *probe = ecb->dte_probe; 1636 dtrace_provider_t *prov = probe->dtpr_provider; 1637 dtrace_pops_t *pops = &prov->dtpv_pops; 1638 int mode = DTRACE_MODE_NOPRIV_DROP; 1639 1640 ASSERT(ecb->dte_cond); 1641 1642 #ifdef illumos 1643 if (pops->dtps_mode != NULL) { 1644 mode = pops->dtps_mode(prov->dtpv_arg, 1645 probe->dtpr_id, probe->dtpr_arg); 1646 1647 ASSERT((mode & DTRACE_MODE_USER) || 1648 (mode & DTRACE_MODE_KERNEL)); 1649 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1650 (mode & DTRACE_MODE_NOPRIV_DROP)); 1651 } 1652 1653 /* 1654 * If the dte_cond bits indicate that this consumer is only allowed to 1655 * see user-mode firings of this probe, call the provider's dtps_mode() 1656 * entry point to check that the probe was fired while in a user 1657 * context. If that's not the case, use the policy specified by the 1658 * provider to determine if we drop the probe or merely restrict 1659 * operation. 1660 */ 1661 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1662 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1663 1664 if (!(mode & DTRACE_MODE_USER)) { 1665 if (mode & DTRACE_MODE_NOPRIV_DROP) 1666 return (0); 1667 1668 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1669 } 1670 } 1671 #endif 1672 1673 /* 1674 * This is more subtle than it looks. We have to be absolutely certain 1675 * that CRED() isn't going to change out from under us so it's only 1676 * legit to examine that structure if we're in constrained situations. 1677 * Currently, the only times we'll this check is if a non-super-user 1678 * has enabled the profile or syscall providers -- providers that 1679 * allow visibility of all processes. For the profile case, the check 1680 * above will ensure that we're examining a user context. 1681 */ 1682 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1683 cred_t *cr; 1684 cred_t *s_cr = state->dts_cred.dcr_cred; 1685 proc_t *proc; 1686 1687 ASSERT(s_cr != NULL); 1688 1689 if ((cr = CRED()) == NULL || 1690 s_cr->cr_uid != cr->cr_uid || 1691 s_cr->cr_uid != cr->cr_ruid || 1692 s_cr->cr_uid != cr->cr_suid || 1693 s_cr->cr_gid != cr->cr_gid || 1694 s_cr->cr_gid != cr->cr_rgid || 1695 s_cr->cr_gid != cr->cr_sgid || 1696 (proc = ttoproc(curthread)) == NULL || 1697 (proc->p_flag & SNOCD)) { 1698 if (mode & DTRACE_MODE_NOPRIV_DROP) 1699 return (0); 1700 1701 #ifdef illumos 1702 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1703 #endif 1704 } 1705 } 1706 1707 #ifdef illumos 1708 /* 1709 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1710 * in our zone, check to see if our mode policy is to restrict rather 1711 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1712 * and DTRACE_ACCESS_ARGS 1713 */ 1714 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1715 cred_t *cr; 1716 cred_t *s_cr = state->dts_cred.dcr_cred; 1717 1718 ASSERT(s_cr != NULL); 1719 1720 if ((cr = CRED()) == NULL || 1721 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1722 if (mode & DTRACE_MODE_NOPRIV_DROP) 1723 return (0); 1724 1725 mstate->dtms_access &= 1726 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1727 } 1728 } 1729 #endif 1730 1731 return (1); 1732 } 1733 1734 /* 1735 * Note: not called from probe context. This function is called 1736 * asynchronously (and at a regular interval) from outside of probe context to 1737 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1738 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1739 */ 1740 void 1741 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1742 { 1743 dtrace_dynvar_t *dirty; 1744 dtrace_dstate_percpu_t *dcpu; 1745 dtrace_dynvar_t **rinsep; 1746 int i, j, work = 0; 1747 1748 CPU_FOREACH(i) { 1749 dcpu = &dstate->dtds_percpu[i]; 1750 rinsep = &dcpu->dtdsc_rinsing; 1751 1752 /* 1753 * If the dirty list is NULL, there is no dirty work to do. 1754 */ 1755 if (dcpu->dtdsc_dirty == NULL) 1756 continue; 1757 1758 if (dcpu->dtdsc_rinsing != NULL) { 1759 /* 1760 * If the rinsing list is non-NULL, then it is because 1761 * this CPU was selected to accept another CPU's 1762 * dirty list -- and since that time, dirty buffers 1763 * have accumulated. This is a highly unlikely 1764 * condition, but we choose to ignore the dirty 1765 * buffers -- they'll be picked up a future cleanse. 1766 */ 1767 continue; 1768 } 1769 1770 if (dcpu->dtdsc_clean != NULL) { 1771 /* 1772 * If the clean list is non-NULL, then we're in a 1773 * situation where a CPU has done deallocations (we 1774 * have a non-NULL dirty list) but no allocations (we 1775 * also have a non-NULL clean list). We can't simply 1776 * move the dirty list into the clean list on this 1777 * CPU, yet we also don't want to allow this condition 1778 * to persist, lest a short clean list prevent a 1779 * massive dirty list from being cleaned (which in 1780 * turn could lead to otherwise avoidable dynamic 1781 * drops). To deal with this, we look for some CPU 1782 * with a NULL clean list, NULL dirty list, and NULL 1783 * rinsing list -- and then we borrow this CPU to 1784 * rinse our dirty list. 1785 */ 1786 CPU_FOREACH(j) { 1787 dtrace_dstate_percpu_t *rinser; 1788 1789 rinser = &dstate->dtds_percpu[j]; 1790 1791 if (rinser->dtdsc_rinsing != NULL) 1792 continue; 1793 1794 if (rinser->dtdsc_dirty != NULL) 1795 continue; 1796 1797 if (rinser->dtdsc_clean != NULL) 1798 continue; 1799 1800 rinsep = &rinser->dtdsc_rinsing; 1801 break; 1802 } 1803 1804 if (j > mp_maxid) { 1805 /* 1806 * We were unable to find another CPU that 1807 * could accept this dirty list -- we are 1808 * therefore unable to clean it now. 1809 */ 1810 dtrace_dynvar_failclean++; 1811 continue; 1812 } 1813 } 1814 1815 work = 1; 1816 1817 /* 1818 * Atomically move the dirty list aside. 1819 */ 1820 do { 1821 dirty = dcpu->dtdsc_dirty; 1822 1823 /* 1824 * Before we zap the dirty list, set the rinsing list. 1825 * (This allows for a potential assertion in 1826 * dtrace_dynvar(): if a free dynamic variable appears 1827 * on a hash chain, either the dirty list or the 1828 * rinsing list for some CPU must be non-NULL.) 1829 */ 1830 *rinsep = dirty; 1831 dtrace_membar_producer(); 1832 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1833 dirty, NULL) != dirty); 1834 } 1835 1836 if (!work) { 1837 /* 1838 * We have no work to do; we can simply return. 1839 */ 1840 return; 1841 } 1842 1843 dtrace_sync(); 1844 1845 CPU_FOREACH(i) { 1846 dcpu = &dstate->dtds_percpu[i]; 1847 1848 if (dcpu->dtdsc_rinsing == NULL) 1849 continue; 1850 1851 /* 1852 * We are now guaranteed that no hash chain contains a pointer 1853 * into this dirty list; we can make it clean. 1854 */ 1855 ASSERT(dcpu->dtdsc_clean == NULL); 1856 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1857 dcpu->dtdsc_rinsing = NULL; 1858 } 1859 1860 /* 1861 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1862 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1863 * This prevents a race whereby a CPU incorrectly decides that 1864 * the state should be something other than DTRACE_DSTATE_CLEAN 1865 * after dtrace_dynvar_clean() has completed. 1866 */ 1867 dtrace_sync(); 1868 1869 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1870 } 1871 1872 /* 1873 * Depending on the value of the op parameter, this function looks-up, 1874 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1875 * allocation is requested, this function will return a pointer to a 1876 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1877 * variable can be allocated. If NULL is returned, the appropriate counter 1878 * will be incremented. 1879 */ 1880 dtrace_dynvar_t * 1881 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1882 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1883 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1884 { 1885 uint64_t hashval = DTRACE_DYNHASH_VALID; 1886 dtrace_dynhash_t *hash = dstate->dtds_hash; 1887 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1888 processorid_t me = curcpu, cpu = me; 1889 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1890 size_t bucket, ksize; 1891 size_t chunksize = dstate->dtds_chunksize; 1892 uintptr_t kdata, lock, nstate; 1893 uint_t i; 1894 1895 ASSERT(nkeys != 0); 1896 1897 /* 1898 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1899 * algorithm. For the by-value portions, we perform the algorithm in 1900 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1901 * bit, and seems to have only a minute effect on distribution. For 1902 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1903 * over each referenced byte. It's painful to do this, but it's much 1904 * better than pathological hash distribution. The efficacy of the 1905 * hashing algorithm (and a comparison with other algorithms) may be 1906 * found by running the ::dtrace_dynstat MDB dcmd. 1907 */ 1908 for (i = 0; i < nkeys; i++) { 1909 if (key[i].dttk_size == 0) { 1910 uint64_t val = key[i].dttk_value; 1911 1912 hashval += (val >> 48) & 0xffff; 1913 hashval += (hashval << 10); 1914 hashval ^= (hashval >> 6); 1915 1916 hashval += (val >> 32) & 0xffff; 1917 hashval += (hashval << 10); 1918 hashval ^= (hashval >> 6); 1919 1920 hashval += (val >> 16) & 0xffff; 1921 hashval += (hashval << 10); 1922 hashval ^= (hashval >> 6); 1923 1924 hashval += val & 0xffff; 1925 hashval += (hashval << 10); 1926 hashval ^= (hashval >> 6); 1927 } else { 1928 /* 1929 * This is incredibly painful, but it beats the hell 1930 * out of the alternative. 1931 */ 1932 uint64_t j, size = key[i].dttk_size; 1933 uintptr_t base = (uintptr_t)key[i].dttk_value; 1934 1935 if (!dtrace_canload(base, size, mstate, vstate)) 1936 break; 1937 1938 for (j = 0; j < size; j++) { 1939 hashval += dtrace_load8(base + j); 1940 hashval += (hashval << 10); 1941 hashval ^= (hashval >> 6); 1942 } 1943 } 1944 } 1945 1946 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1947 return (NULL); 1948 1949 hashval += (hashval << 3); 1950 hashval ^= (hashval >> 11); 1951 hashval += (hashval << 15); 1952 1953 /* 1954 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1955 * comes out to be one of our two sentinel hash values. If this 1956 * actually happens, we set the hashval to be a value known to be a 1957 * non-sentinel value. 1958 */ 1959 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1960 hashval = DTRACE_DYNHASH_VALID; 1961 1962 /* 1963 * Yes, it's painful to do a divide here. If the cycle count becomes 1964 * important here, tricks can be pulled to reduce it. (However, it's 1965 * critical that hash collisions be kept to an absolute minimum; 1966 * they're much more painful than a divide.) It's better to have a 1967 * solution that generates few collisions and still keeps things 1968 * relatively simple. 1969 */ 1970 bucket = hashval % dstate->dtds_hashsize; 1971 1972 if (op == DTRACE_DYNVAR_DEALLOC) { 1973 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1974 1975 for (;;) { 1976 while ((lock = *lockp) & 1) 1977 continue; 1978 1979 if (dtrace_casptr((volatile void *)lockp, 1980 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1981 break; 1982 } 1983 1984 dtrace_membar_producer(); 1985 } 1986 1987 top: 1988 prev = NULL; 1989 lock = hash[bucket].dtdh_lock; 1990 1991 dtrace_membar_consumer(); 1992 1993 start = hash[bucket].dtdh_chain; 1994 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1995 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1996 op != DTRACE_DYNVAR_DEALLOC)); 1997 1998 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1999 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 2000 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2001 2002 if (dvar->dtdv_hashval != hashval) { 2003 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2004 /* 2005 * We've reached the sink, and therefore the 2006 * end of the hash chain; we can kick out of 2007 * the loop knowing that we have seen a valid 2008 * snapshot of state. 2009 */ 2010 ASSERT(dvar->dtdv_next == NULL); 2011 ASSERT(dvar == &dtrace_dynhash_sink); 2012 break; 2013 } 2014 2015 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2016 /* 2017 * We've gone off the rails: somewhere along 2018 * the line, one of the members of this hash 2019 * chain was deleted. Note that we could also 2020 * detect this by simply letting this loop run 2021 * to completion, as we would eventually hit 2022 * the end of the dirty list. However, we 2023 * want to avoid running the length of the 2024 * dirty list unnecessarily (it might be quite 2025 * long), so we catch this as early as 2026 * possible by detecting the hash marker. In 2027 * this case, we simply set dvar to NULL and 2028 * break; the conditional after the loop will 2029 * send us back to top. 2030 */ 2031 dvar = NULL; 2032 break; 2033 } 2034 2035 goto next; 2036 } 2037 2038 if (dtuple->dtt_nkeys != nkeys) 2039 goto next; 2040 2041 for (i = 0; i < nkeys; i++, dkey++) { 2042 if (dkey->dttk_size != key[i].dttk_size) 2043 goto next; /* size or type mismatch */ 2044 2045 if (dkey->dttk_size != 0) { 2046 if (dtrace_bcmp( 2047 (void *)(uintptr_t)key[i].dttk_value, 2048 (void *)(uintptr_t)dkey->dttk_value, 2049 dkey->dttk_size)) 2050 goto next; 2051 } else { 2052 if (dkey->dttk_value != key[i].dttk_value) 2053 goto next; 2054 } 2055 } 2056 2057 if (op != DTRACE_DYNVAR_DEALLOC) 2058 return (dvar); 2059 2060 ASSERT(dvar->dtdv_next == NULL || 2061 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2062 2063 if (prev != NULL) { 2064 ASSERT(hash[bucket].dtdh_chain != dvar); 2065 ASSERT(start != dvar); 2066 ASSERT(prev->dtdv_next == dvar); 2067 prev->dtdv_next = dvar->dtdv_next; 2068 } else { 2069 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2070 start, dvar->dtdv_next) != start) { 2071 /* 2072 * We have failed to atomically swing the 2073 * hash table head pointer, presumably because 2074 * of a conflicting allocation on another CPU. 2075 * We need to reread the hash chain and try 2076 * again. 2077 */ 2078 goto top; 2079 } 2080 } 2081 2082 dtrace_membar_producer(); 2083 2084 /* 2085 * Now set the hash value to indicate that it's free. 2086 */ 2087 ASSERT(hash[bucket].dtdh_chain != dvar); 2088 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2089 2090 dtrace_membar_producer(); 2091 2092 /* 2093 * Set the next pointer to point at the dirty list, and 2094 * atomically swing the dirty pointer to the newly freed dvar. 2095 */ 2096 do { 2097 next = dcpu->dtdsc_dirty; 2098 dvar->dtdv_next = next; 2099 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2100 2101 /* 2102 * Finally, unlock this hash bucket. 2103 */ 2104 ASSERT(hash[bucket].dtdh_lock == lock); 2105 ASSERT(lock & 1); 2106 hash[bucket].dtdh_lock++; 2107 2108 return (NULL); 2109 next: 2110 prev = dvar; 2111 continue; 2112 } 2113 2114 if (dvar == NULL) { 2115 /* 2116 * If dvar is NULL, it is because we went off the rails: 2117 * one of the elements that we traversed in the hash chain 2118 * was deleted while we were traversing it. In this case, 2119 * we assert that we aren't doing a dealloc (deallocs lock 2120 * the hash bucket to prevent themselves from racing with 2121 * one another), and retry the hash chain traversal. 2122 */ 2123 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2124 goto top; 2125 } 2126 2127 if (op != DTRACE_DYNVAR_ALLOC) { 2128 /* 2129 * If we are not to allocate a new variable, we want to 2130 * return NULL now. Before we return, check that the value 2131 * of the lock word hasn't changed. If it has, we may have 2132 * seen an inconsistent snapshot. 2133 */ 2134 if (op == DTRACE_DYNVAR_NOALLOC) { 2135 if (hash[bucket].dtdh_lock != lock) 2136 goto top; 2137 } else { 2138 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2139 ASSERT(hash[bucket].dtdh_lock == lock); 2140 ASSERT(lock & 1); 2141 hash[bucket].dtdh_lock++; 2142 } 2143 2144 return (NULL); 2145 } 2146 2147 /* 2148 * We need to allocate a new dynamic variable. The size we need is the 2149 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2150 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2151 * the size of any referred-to data (dsize). We then round the final 2152 * size up to the chunksize for allocation. 2153 */ 2154 for (ksize = 0, i = 0; i < nkeys; i++) 2155 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2156 2157 /* 2158 * This should be pretty much impossible, but could happen if, say, 2159 * strange DIF specified the tuple. Ideally, this should be an 2160 * assertion and not an error condition -- but that requires that the 2161 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2162 * bullet-proof. (That is, it must not be able to be fooled by 2163 * malicious DIF.) Given the lack of backwards branches in DIF, 2164 * solving this would presumably not amount to solving the Halting 2165 * Problem -- but it still seems awfully hard. 2166 */ 2167 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2168 ksize + dsize > chunksize) { 2169 dcpu->dtdsc_drops++; 2170 return (NULL); 2171 } 2172 2173 nstate = DTRACE_DSTATE_EMPTY; 2174 2175 do { 2176 retry: 2177 free = dcpu->dtdsc_free; 2178 2179 if (free == NULL) { 2180 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2181 void *rval; 2182 2183 if (clean == NULL) { 2184 /* 2185 * We're out of dynamic variable space on 2186 * this CPU. Unless we have tried all CPUs, 2187 * we'll try to allocate from a different 2188 * CPU. 2189 */ 2190 switch (dstate->dtds_state) { 2191 case DTRACE_DSTATE_CLEAN: { 2192 void *sp = &dstate->dtds_state; 2193 2194 if (++cpu > mp_maxid) 2195 cpu = 0; 2196 2197 if (dcpu->dtdsc_dirty != NULL && 2198 nstate == DTRACE_DSTATE_EMPTY) 2199 nstate = DTRACE_DSTATE_DIRTY; 2200 2201 if (dcpu->dtdsc_rinsing != NULL) 2202 nstate = DTRACE_DSTATE_RINSING; 2203 2204 dcpu = &dstate->dtds_percpu[cpu]; 2205 2206 if (cpu != me) 2207 goto retry; 2208 2209 (void) dtrace_cas32(sp, 2210 DTRACE_DSTATE_CLEAN, nstate); 2211 2212 /* 2213 * To increment the correct bean 2214 * counter, take another lap. 2215 */ 2216 goto retry; 2217 } 2218 2219 case DTRACE_DSTATE_DIRTY: 2220 dcpu->dtdsc_dirty_drops++; 2221 break; 2222 2223 case DTRACE_DSTATE_RINSING: 2224 dcpu->dtdsc_rinsing_drops++; 2225 break; 2226 2227 case DTRACE_DSTATE_EMPTY: 2228 dcpu->dtdsc_drops++; 2229 break; 2230 } 2231 2232 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2233 return (NULL); 2234 } 2235 2236 /* 2237 * The clean list appears to be non-empty. We want to 2238 * move the clean list to the free list; we start by 2239 * moving the clean pointer aside. 2240 */ 2241 if (dtrace_casptr(&dcpu->dtdsc_clean, 2242 clean, NULL) != clean) { 2243 /* 2244 * We are in one of two situations: 2245 * 2246 * (a) The clean list was switched to the 2247 * free list by another CPU. 2248 * 2249 * (b) The clean list was added to by the 2250 * cleansing cyclic. 2251 * 2252 * In either of these situations, we can 2253 * just reattempt the free list allocation. 2254 */ 2255 goto retry; 2256 } 2257 2258 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2259 2260 /* 2261 * Now we'll move the clean list to our free list. 2262 * It's impossible for this to fail: the only way 2263 * the free list can be updated is through this 2264 * code path, and only one CPU can own the clean list. 2265 * Thus, it would only be possible for this to fail if 2266 * this code were racing with dtrace_dynvar_clean(). 2267 * (That is, if dtrace_dynvar_clean() updated the clean 2268 * list, and we ended up racing to update the free 2269 * list.) This race is prevented by the dtrace_sync() 2270 * in dtrace_dynvar_clean() -- which flushes the 2271 * owners of the clean lists out before resetting 2272 * the clean lists. 2273 */ 2274 dcpu = &dstate->dtds_percpu[me]; 2275 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2276 ASSERT(rval == NULL); 2277 goto retry; 2278 } 2279 2280 dvar = free; 2281 new_free = dvar->dtdv_next; 2282 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2283 2284 /* 2285 * We have now allocated a new chunk. We copy the tuple keys into the 2286 * tuple array and copy any referenced key data into the data space 2287 * following the tuple array. As we do this, we relocate dttk_value 2288 * in the final tuple to point to the key data address in the chunk. 2289 */ 2290 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2291 dvar->dtdv_data = (void *)(kdata + ksize); 2292 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2293 2294 for (i = 0; i < nkeys; i++) { 2295 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2296 size_t kesize = key[i].dttk_size; 2297 2298 if (kesize != 0) { 2299 dtrace_bcopy( 2300 (const void *)(uintptr_t)key[i].dttk_value, 2301 (void *)kdata, kesize); 2302 dkey->dttk_value = kdata; 2303 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2304 } else { 2305 dkey->dttk_value = key[i].dttk_value; 2306 } 2307 2308 dkey->dttk_size = kesize; 2309 } 2310 2311 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2312 dvar->dtdv_hashval = hashval; 2313 dvar->dtdv_next = start; 2314 2315 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2316 return (dvar); 2317 2318 /* 2319 * The cas has failed. Either another CPU is adding an element to 2320 * this hash chain, or another CPU is deleting an element from this 2321 * hash chain. The simplest way to deal with both of these cases 2322 * (though not necessarily the most efficient) is to free our 2323 * allocated block and re-attempt it all. Note that the free is 2324 * to the dirty list and _not_ to the free list. This is to prevent 2325 * races with allocators, above. 2326 */ 2327 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2328 2329 dtrace_membar_producer(); 2330 2331 do { 2332 free = dcpu->dtdsc_dirty; 2333 dvar->dtdv_next = free; 2334 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2335 2336 goto top; 2337 } 2338 2339 /*ARGSUSED*/ 2340 static void 2341 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2342 { 2343 if ((int64_t)nval < (int64_t)*oval) 2344 *oval = nval; 2345 } 2346 2347 /*ARGSUSED*/ 2348 static void 2349 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2350 { 2351 if ((int64_t)nval > (int64_t)*oval) 2352 *oval = nval; 2353 } 2354 2355 static void 2356 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2357 { 2358 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2359 int64_t val = (int64_t)nval; 2360 2361 if (val < 0) { 2362 for (i = 0; i < zero; i++) { 2363 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2364 quanta[i] += incr; 2365 return; 2366 } 2367 } 2368 } else { 2369 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2370 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2371 quanta[i - 1] += incr; 2372 return; 2373 } 2374 } 2375 2376 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2377 return; 2378 } 2379 2380 ASSERT(0); 2381 } 2382 2383 static void 2384 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2385 { 2386 uint64_t arg = *lquanta++; 2387 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2388 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2389 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2390 int32_t val = (int32_t)nval, level; 2391 2392 ASSERT(step != 0); 2393 ASSERT(levels != 0); 2394 2395 if (val < base) { 2396 /* 2397 * This is an underflow. 2398 */ 2399 lquanta[0] += incr; 2400 return; 2401 } 2402 2403 level = (val - base) / step; 2404 2405 if (level < levels) { 2406 lquanta[level + 1] += incr; 2407 return; 2408 } 2409 2410 /* 2411 * This is an overflow. 2412 */ 2413 lquanta[levels + 1] += incr; 2414 } 2415 2416 static int 2417 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2418 uint16_t high, uint16_t nsteps, int64_t value) 2419 { 2420 int64_t this = 1, last, next; 2421 int base = 1, order; 2422 2423 ASSERT(factor <= nsteps); 2424 ASSERT(nsteps % factor == 0); 2425 2426 for (order = 0; order < low; order++) 2427 this *= factor; 2428 2429 /* 2430 * If our value is less than our factor taken to the power of the 2431 * low order of magnitude, it goes into the zeroth bucket. 2432 */ 2433 if (value < (last = this)) 2434 return (0); 2435 2436 for (this *= factor; order <= high; order++) { 2437 int nbuckets = this > nsteps ? nsteps : this; 2438 2439 if ((next = this * factor) < this) { 2440 /* 2441 * We should not generally get log/linear quantizations 2442 * with a high magnitude that allows 64-bits to 2443 * overflow, but we nonetheless protect against this 2444 * by explicitly checking for overflow, and clamping 2445 * our value accordingly. 2446 */ 2447 value = this - 1; 2448 } 2449 2450 if (value < this) { 2451 /* 2452 * If our value lies within this order of magnitude, 2453 * determine its position by taking the offset within 2454 * the order of magnitude, dividing by the bucket 2455 * width, and adding to our (accumulated) base. 2456 */ 2457 return (base + (value - last) / (this / nbuckets)); 2458 } 2459 2460 base += nbuckets - (nbuckets / factor); 2461 last = this; 2462 this = next; 2463 } 2464 2465 /* 2466 * Our value is greater than or equal to our factor taken to the 2467 * power of one plus the high magnitude -- return the top bucket. 2468 */ 2469 return (base); 2470 } 2471 2472 static void 2473 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2474 { 2475 uint64_t arg = *llquanta++; 2476 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2477 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2478 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2479 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2480 2481 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2482 low, high, nsteps, nval)] += incr; 2483 } 2484 2485 /*ARGSUSED*/ 2486 static void 2487 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2488 { 2489 data[0]++; 2490 data[1] += nval; 2491 } 2492 2493 /*ARGSUSED*/ 2494 static void 2495 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2496 { 2497 int64_t snval = (int64_t)nval; 2498 uint64_t tmp[2]; 2499 2500 data[0]++; 2501 data[1] += nval; 2502 2503 /* 2504 * What we want to say here is: 2505 * 2506 * data[2] += nval * nval; 2507 * 2508 * But given that nval is 64-bit, we could easily overflow, so 2509 * we do this as 128-bit arithmetic. 2510 */ 2511 if (snval < 0) 2512 snval = -snval; 2513 2514 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2515 dtrace_add_128(data + 2, tmp, data + 2); 2516 } 2517 2518 /*ARGSUSED*/ 2519 static void 2520 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2521 { 2522 *oval = *oval + 1; 2523 } 2524 2525 /*ARGSUSED*/ 2526 static void 2527 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2528 { 2529 *oval += nval; 2530 } 2531 2532 /* 2533 * Aggregate given the tuple in the principal data buffer, and the aggregating 2534 * action denoted by the specified dtrace_aggregation_t. The aggregation 2535 * buffer is specified as the buf parameter. This routine does not return 2536 * failure; if there is no space in the aggregation buffer, the data will be 2537 * dropped, and a corresponding counter incremented. 2538 */ 2539 static void 2540 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2541 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2542 { 2543 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2544 uint32_t i, ndx, size, fsize; 2545 uint32_t align = sizeof (uint64_t) - 1; 2546 dtrace_aggbuffer_t *agb; 2547 dtrace_aggkey_t *key; 2548 uint32_t hashval = 0, limit, isstr; 2549 caddr_t tomax, data, kdata; 2550 dtrace_actkind_t action; 2551 dtrace_action_t *act; 2552 size_t offs; 2553 2554 if (buf == NULL) 2555 return; 2556 2557 if (!agg->dtag_hasarg) { 2558 /* 2559 * Currently, only quantize() and lquantize() take additional 2560 * arguments, and they have the same semantics: an increment 2561 * value that defaults to 1 when not present. If additional 2562 * aggregating actions take arguments, the setting of the 2563 * default argument value will presumably have to become more 2564 * sophisticated... 2565 */ 2566 arg = 1; 2567 } 2568 2569 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2570 size = rec->dtrd_offset - agg->dtag_base; 2571 fsize = size + rec->dtrd_size; 2572 2573 ASSERT(dbuf->dtb_tomax != NULL); 2574 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2575 2576 if ((tomax = buf->dtb_tomax) == NULL) { 2577 dtrace_buffer_drop(buf); 2578 return; 2579 } 2580 2581 /* 2582 * The metastructure is always at the bottom of the buffer. 2583 */ 2584 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2585 sizeof (dtrace_aggbuffer_t)); 2586 2587 if (buf->dtb_offset == 0) { 2588 /* 2589 * We just kludge up approximately 1/8th of the size to be 2590 * buckets. If this guess ends up being routinely 2591 * off-the-mark, we may need to dynamically readjust this 2592 * based on past performance. 2593 */ 2594 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2595 2596 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2597 (uintptr_t)tomax || hashsize == 0) { 2598 /* 2599 * We've been given a ludicrously small buffer; 2600 * increment our drop count and leave. 2601 */ 2602 dtrace_buffer_drop(buf); 2603 return; 2604 } 2605 2606 /* 2607 * And now, a pathetic attempt to try to get a an odd (or 2608 * perchance, a prime) hash size for better hash distribution. 2609 */ 2610 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2611 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2612 2613 agb->dtagb_hashsize = hashsize; 2614 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2615 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2616 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2617 2618 for (i = 0; i < agb->dtagb_hashsize; i++) 2619 agb->dtagb_hash[i] = NULL; 2620 } 2621 2622 ASSERT(agg->dtag_first != NULL); 2623 ASSERT(agg->dtag_first->dta_intuple); 2624 2625 /* 2626 * Calculate the hash value based on the key. Note that we _don't_ 2627 * include the aggid in the hashing (but we will store it as part of 2628 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2629 * algorithm: a simple, quick algorithm that has no known funnels, and 2630 * gets good distribution in practice. The efficacy of the hashing 2631 * algorithm (and a comparison with other algorithms) may be found by 2632 * running the ::dtrace_aggstat MDB dcmd. 2633 */ 2634 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2635 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2636 limit = i + act->dta_rec.dtrd_size; 2637 ASSERT(limit <= size); 2638 isstr = DTRACEACT_ISSTRING(act); 2639 2640 for (; i < limit; i++) { 2641 hashval += data[i]; 2642 hashval += (hashval << 10); 2643 hashval ^= (hashval >> 6); 2644 2645 if (isstr && data[i] == '\0') 2646 break; 2647 } 2648 } 2649 2650 hashval += (hashval << 3); 2651 hashval ^= (hashval >> 11); 2652 hashval += (hashval << 15); 2653 2654 /* 2655 * Yes, the divide here is expensive -- but it's generally the least 2656 * of the performance issues given the amount of data that we iterate 2657 * over to compute hash values, compare data, etc. 2658 */ 2659 ndx = hashval % agb->dtagb_hashsize; 2660 2661 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2662 ASSERT((caddr_t)key >= tomax); 2663 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2664 2665 if (hashval != key->dtak_hashval || key->dtak_size != size) 2666 continue; 2667 2668 kdata = key->dtak_data; 2669 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2670 2671 for (act = agg->dtag_first; act->dta_intuple; 2672 act = act->dta_next) { 2673 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2674 limit = i + act->dta_rec.dtrd_size; 2675 ASSERT(limit <= size); 2676 isstr = DTRACEACT_ISSTRING(act); 2677 2678 for (; i < limit; i++) { 2679 if (kdata[i] != data[i]) 2680 goto next; 2681 2682 if (isstr && data[i] == '\0') 2683 break; 2684 } 2685 } 2686 2687 if (action != key->dtak_action) { 2688 /* 2689 * We are aggregating on the same value in the same 2690 * aggregation with two different aggregating actions. 2691 * (This should have been picked up in the compiler, 2692 * so we may be dealing with errant or devious DIF.) 2693 * This is an error condition; we indicate as much, 2694 * and return. 2695 */ 2696 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2697 return; 2698 } 2699 2700 /* 2701 * This is a hit: we need to apply the aggregator to 2702 * the value at this key. 2703 */ 2704 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2705 return; 2706 next: 2707 continue; 2708 } 2709 2710 /* 2711 * We didn't find it. We need to allocate some zero-filled space, 2712 * link it into the hash table appropriately, and apply the aggregator 2713 * to the (zero-filled) value. 2714 */ 2715 offs = buf->dtb_offset; 2716 while (offs & (align - 1)) 2717 offs += sizeof (uint32_t); 2718 2719 /* 2720 * If we don't have enough room to both allocate a new key _and_ 2721 * its associated data, increment the drop count and return. 2722 */ 2723 if ((uintptr_t)tomax + offs + fsize > 2724 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2725 dtrace_buffer_drop(buf); 2726 return; 2727 } 2728 2729 /*CONSTCOND*/ 2730 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2731 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2732 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2733 2734 key->dtak_data = kdata = tomax + offs; 2735 buf->dtb_offset = offs + fsize; 2736 2737 /* 2738 * Now copy the data across. 2739 */ 2740 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2741 2742 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2743 kdata[i] = data[i]; 2744 2745 /* 2746 * Because strings are not zeroed out by default, we need to iterate 2747 * looking for actions that store strings, and we need to explicitly 2748 * pad these strings out with zeroes. 2749 */ 2750 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2751 int nul; 2752 2753 if (!DTRACEACT_ISSTRING(act)) 2754 continue; 2755 2756 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2757 limit = i + act->dta_rec.dtrd_size; 2758 ASSERT(limit <= size); 2759 2760 for (nul = 0; i < limit; i++) { 2761 if (nul) { 2762 kdata[i] = '\0'; 2763 continue; 2764 } 2765 2766 if (data[i] != '\0') 2767 continue; 2768 2769 nul = 1; 2770 } 2771 } 2772 2773 for (i = size; i < fsize; i++) 2774 kdata[i] = 0; 2775 2776 key->dtak_hashval = hashval; 2777 key->dtak_size = size; 2778 key->dtak_action = action; 2779 key->dtak_next = agb->dtagb_hash[ndx]; 2780 agb->dtagb_hash[ndx] = key; 2781 2782 /* 2783 * Finally, apply the aggregator. 2784 */ 2785 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2786 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2787 } 2788 2789 /* 2790 * Given consumer state, this routine finds a speculation in the INACTIVE 2791 * state and transitions it into the ACTIVE state. If there is no speculation 2792 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2793 * incremented -- it is up to the caller to take appropriate action. 2794 */ 2795 static int 2796 dtrace_speculation(dtrace_state_t *state) 2797 { 2798 int i = 0; 2799 dtrace_speculation_state_t curstate; 2800 uint32_t *stat = &state->dts_speculations_unavail, count; 2801 2802 while (i < state->dts_nspeculations) { 2803 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2804 2805 curstate = spec->dtsp_state; 2806 2807 if (curstate != DTRACESPEC_INACTIVE) { 2808 if (curstate == DTRACESPEC_COMMITTINGMANY || 2809 curstate == DTRACESPEC_COMMITTING || 2810 curstate == DTRACESPEC_DISCARDING) 2811 stat = &state->dts_speculations_busy; 2812 i++; 2813 continue; 2814 } 2815 2816 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2817 curstate, DTRACESPEC_ACTIVE) == curstate) 2818 return (i + 1); 2819 } 2820 2821 /* 2822 * We couldn't find a speculation. If we found as much as a single 2823 * busy speculation buffer, we'll attribute this failure as "busy" 2824 * instead of "unavail". 2825 */ 2826 do { 2827 count = *stat; 2828 } while (dtrace_cas32(stat, count, count + 1) != count); 2829 2830 return (0); 2831 } 2832 2833 /* 2834 * This routine commits an active speculation. If the specified speculation 2835 * is not in a valid state to perform a commit(), this routine will silently do 2836 * nothing. The state of the specified speculation is transitioned according 2837 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2838 */ 2839 static void 2840 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2841 dtrace_specid_t which) 2842 { 2843 dtrace_speculation_t *spec; 2844 dtrace_buffer_t *src, *dest; 2845 uintptr_t daddr, saddr, dlimit, slimit; 2846 dtrace_speculation_state_t curstate, new = 0; 2847 ssize_t offs; 2848 uint64_t timestamp; 2849 2850 if (which == 0) 2851 return; 2852 2853 if (which > state->dts_nspeculations) { 2854 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2855 return; 2856 } 2857 2858 spec = &state->dts_speculations[which - 1]; 2859 src = &spec->dtsp_buffer[cpu]; 2860 dest = &state->dts_buffer[cpu]; 2861 2862 do { 2863 curstate = spec->dtsp_state; 2864 2865 if (curstate == DTRACESPEC_COMMITTINGMANY) 2866 break; 2867 2868 switch (curstate) { 2869 case DTRACESPEC_INACTIVE: 2870 case DTRACESPEC_DISCARDING: 2871 return; 2872 2873 case DTRACESPEC_COMMITTING: 2874 /* 2875 * This is only possible if we are (a) commit()'ing 2876 * without having done a prior speculate() on this CPU 2877 * and (b) racing with another commit() on a different 2878 * CPU. There's nothing to do -- we just assert that 2879 * our offset is 0. 2880 */ 2881 ASSERT(src->dtb_offset == 0); 2882 return; 2883 2884 case DTRACESPEC_ACTIVE: 2885 new = DTRACESPEC_COMMITTING; 2886 break; 2887 2888 case DTRACESPEC_ACTIVEONE: 2889 /* 2890 * This speculation is active on one CPU. If our 2891 * buffer offset is non-zero, we know that the one CPU 2892 * must be us. Otherwise, we are committing on a 2893 * different CPU from the speculate(), and we must 2894 * rely on being asynchronously cleaned. 2895 */ 2896 if (src->dtb_offset != 0) { 2897 new = DTRACESPEC_COMMITTING; 2898 break; 2899 } 2900 /*FALLTHROUGH*/ 2901 2902 case DTRACESPEC_ACTIVEMANY: 2903 new = DTRACESPEC_COMMITTINGMANY; 2904 break; 2905 2906 default: 2907 ASSERT(0); 2908 } 2909 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2910 curstate, new) != curstate); 2911 2912 /* 2913 * We have set the state to indicate that we are committing this 2914 * speculation. Now reserve the necessary space in the destination 2915 * buffer. 2916 */ 2917 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2918 sizeof (uint64_t), state, NULL)) < 0) { 2919 dtrace_buffer_drop(dest); 2920 goto out; 2921 } 2922 2923 /* 2924 * We have sufficient space to copy the speculative buffer into the 2925 * primary buffer. First, modify the speculative buffer, filling 2926 * in the timestamp of all entries with the curstate time. The data 2927 * must have the commit() time rather than the time it was traced, 2928 * so that all entries in the primary buffer are in timestamp order. 2929 */ 2930 timestamp = dtrace_gethrtime(); 2931 saddr = (uintptr_t)src->dtb_tomax; 2932 slimit = saddr + src->dtb_offset; 2933 while (saddr < slimit) { 2934 size_t size; 2935 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2936 2937 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2938 saddr += sizeof (dtrace_epid_t); 2939 continue; 2940 } 2941 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2942 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2943 2944 ASSERT3U(saddr + size, <=, slimit); 2945 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2946 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2947 2948 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2949 2950 saddr += size; 2951 } 2952 2953 /* 2954 * Copy the buffer across. (Note that this is a 2955 * highly subobtimal bcopy(); in the unlikely event that this becomes 2956 * a serious performance issue, a high-performance DTrace-specific 2957 * bcopy() should obviously be invented.) 2958 */ 2959 daddr = (uintptr_t)dest->dtb_tomax + offs; 2960 dlimit = daddr + src->dtb_offset; 2961 saddr = (uintptr_t)src->dtb_tomax; 2962 2963 /* 2964 * First, the aligned portion. 2965 */ 2966 while (dlimit - daddr >= sizeof (uint64_t)) { 2967 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2968 2969 daddr += sizeof (uint64_t); 2970 saddr += sizeof (uint64_t); 2971 } 2972 2973 /* 2974 * Now any left-over bit... 2975 */ 2976 while (dlimit - daddr) 2977 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2978 2979 /* 2980 * Finally, commit the reserved space in the destination buffer. 2981 */ 2982 dest->dtb_offset = offs + src->dtb_offset; 2983 2984 out: 2985 /* 2986 * If we're lucky enough to be the only active CPU on this speculation 2987 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2988 */ 2989 if (curstate == DTRACESPEC_ACTIVE || 2990 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2991 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2992 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2993 2994 ASSERT(rval == DTRACESPEC_COMMITTING); 2995 } 2996 2997 src->dtb_offset = 0; 2998 src->dtb_xamot_drops += src->dtb_drops; 2999 src->dtb_drops = 0; 3000 } 3001 3002 /* 3003 * This routine discards an active speculation. If the specified speculation 3004 * is not in a valid state to perform a discard(), this routine will silently 3005 * do nothing. The state of the specified speculation is transitioned 3006 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3007 */ 3008 static void 3009 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3010 dtrace_specid_t which) 3011 { 3012 dtrace_speculation_t *spec; 3013 dtrace_speculation_state_t curstate, new = 0; 3014 dtrace_buffer_t *buf; 3015 3016 if (which == 0) 3017 return; 3018 3019 if (which > state->dts_nspeculations) { 3020 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3021 return; 3022 } 3023 3024 spec = &state->dts_speculations[which - 1]; 3025 buf = &spec->dtsp_buffer[cpu]; 3026 3027 do { 3028 curstate = spec->dtsp_state; 3029 3030 switch (curstate) { 3031 case DTRACESPEC_INACTIVE: 3032 case DTRACESPEC_COMMITTINGMANY: 3033 case DTRACESPEC_COMMITTING: 3034 case DTRACESPEC_DISCARDING: 3035 return; 3036 3037 case DTRACESPEC_ACTIVE: 3038 case DTRACESPEC_ACTIVEMANY: 3039 new = DTRACESPEC_DISCARDING; 3040 break; 3041 3042 case DTRACESPEC_ACTIVEONE: 3043 if (buf->dtb_offset != 0) { 3044 new = DTRACESPEC_INACTIVE; 3045 } else { 3046 new = DTRACESPEC_DISCARDING; 3047 } 3048 break; 3049 3050 default: 3051 ASSERT(0); 3052 } 3053 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3054 curstate, new) != curstate); 3055 3056 buf->dtb_offset = 0; 3057 buf->dtb_drops = 0; 3058 } 3059 3060 /* 3061 * Note: not called from probe context. This function is called 3062 * asynchronously from cross call context to clean any speculations that are 3063 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3064 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3065 * speculation. 3066 */ 3067 static void 3068 dtrace_speculation_clean_here(dtrace_state_t *state) 3069 { 3070 dtrace_icookie_t cookie; 3071 processorid_t cpu = curcpu; 3072 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3073 dtrace_specid_t i; 3074 3075 cookie = dtrace_interrupt_disable(); 3076 3077 if (dest->dtb_tomax == NULL) { 3078 dtrace_interrupt_enable(cookie); 3079 return; 3080 } 3081 3082 for (i = 0; i < state->dts_nspeculations; i++) { 3083 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3084 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3085 3086 if (src->dtb_tomax == NULL) 3087 continue; 3088 3089 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3090 src->dtb_offset = 0; 3091 continue; 3092 } 3093 3094 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3095 continue; 3096 3097 if (src->dtb_offset == 0) 3098 continue; 3099 3100 dtrace_speculation_commit(state, cpu, i + 1); 3101 } 3102 3103 dtrace_interrupt_enable(cookie); 3104 } 3105 3106 /* 3107 * Note: not called from probe context. This function is called 3108 * asynchronously (and at a regular interval) to clean any speculations that 3109 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3110 * is work to be done, it cross calls all CPUs to perform that work; 3111 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3112 * INACTIVE state until they have been cleaned by all CPUs. 3113 */ 3114 static void 3115 dtrace_speculation_clean(dtrace_state_t *state) 3116 { 3117 int work = 0, rv; 3118 dtrace_specid_t i; 3119 3120 for (i = 0; i < state->dts_nspeculations; i++) { 3121 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3122 3123 ASSERT(!spec->dtsp_cleaning); 3124 3125 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3126 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3127 continue; 3128 3129 work++; 3130 spec->dtsp_cleaning = 1; 3131 } 3132 3133 if (!work) 3134 return; 3135 3136 dtrace_xcall(DTRACE_CPUALL, 3137 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3138 3139 /* 3140 * We now know that all CPUs have committed or discarded their 3141 * speculation buffers, as appropriate. We can now set the state 3142 * to inactive. 3143 */ 3144 for (i = 0; i < state->dts_nspeculations; i++) { 3145 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3146 dtrace_speculation_state_t curstate, new; 3147 3148 if (!spec->dtsp_cleaning) 3149 continue; 3150 3151 curstate = spec->dtsp_state; 3152 ASSERT(curstate == DTRACESPEC_DISCARDING || 3153 curstate == DTRACESPEC_COMMITTINGMANY); 3154 3155 new = DTRACESPEC_INACTIVE; 3156 3157 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3158 ASSERT(rv == curstate); 3159 spec->dtsp_cleaning = 0; 3160 } 3161 } 3162 3163 /* 3164 * Called as part of a speculate() to get the speculative buffer associated 3165 * with a given speculation. Returns NULL if the specified speculation is not 3166 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3167 * the active CPU is not the specified CPU -- the speculation will be 3168 * atomically transitioned into the ACTIVEMANY state. 3169 */ 3170 static dtrace_buffer_t * 3171 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3172 dtrace_specid_t which) 3173 { 3174 dtrace_speculation_t *spec; 3175 dtrace_speculation_state_t curstate, new = 0; 3176 dtrace_buffer_t *buf; 3177 3178 if (which == 0) 3179 return (NULL); 3180 3181 if (which > state->dts_nspeculations) { 3182 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3183 return (NULL); 3184 } 3185 3186 spec = &state->dts_speculations[which - 1]; 3187 buf = &spec->dtsp_buffer[cpuid]; 3188 3189 do { 3190 curstate = spec->dtsp_state; 3191 3192 switch (curstate) { 3193 case DTRACESPEC_INACTIVE: 3194 case DTRACESPEC_COMMITTINGMANY: 3195 case DTRACESPEC_DISCARDING: 3196 return (NULL); 3197 3198 case DTRACESPEC_COMMITTING: 3199 ASSERT(buf->dtb_offset == 0); 3200 return (NULL); 3201 3202 case DTRACESPEC_ACTIVEONE: 3203 /* 3204 * This speculation is currently active on one CPU. 3205 * Check the offset in the buffer; if it's non-zero, 3206 * that CPU must be us (and we leave the state alone). 3207 * If it's zero, assume that we're starting on a new 3208 * CPU -- and change the state to indicate that the 3209 * speculation is active on more than one CPU. 3210 */ 3211 if (buf->dtb_offset != 0) 3212 return (buf); 3213 3214 new = DTRACESPEC_ACTIVEMANY; 3215 break; 3216 3217 case DTRACESPEC_ACTIVEMANY: 3218 return (buf); 3219 3220 case DTRACESPEC_ACTIVE: 3221 new = DTRACESPEC_ACTIVEONE; 3222 break; 3223 3224 default: 3225 ASSERT(0); 3226 } 3227 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3228 curstate, new) != curstate); 3229 3230 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3231 return (buf); 3232 } 3233 3234 /* 3235 * Return a string. In the event that the user lacks the privilege to access 3236 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3237 * don't fail access checking. 3238 * 3239 * dtrace_dif_variable() uses this routine as a helper for various 3240 * builtin values such as 'execname' and 'probefunc.' 3241 */ 3242 uintptr_t 3243 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3244 dtrace_mstate_t *mstate) 3245 { 3246 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3247 uintptr_t ret; 3248 size_t strsz; 3249 3250 /* 3251 * The easy case: this probe is allowed to read all of memory, so 3252 * we can just return this as a vanilla pointer. 3253 */ 3254 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3255 return (addr); 3256 3257 /* 3258 * This is the tougher case: we copy the string in question from 3259 * kernel memory into scratch memory and return it that way: this 3260 * ensures that we won't trip up when access checking tests the 3261 * BYREF return value. 3262 */ 3263 strsz = dtrace_strlen((char *)addr, size) + 1; 3264 3265 if (mstate->dtms_scratch_ptr + strsz > 3266 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3267 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3268 return (0); 3269 } 3270 3271 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3272 strsz); 3273 ret = mstate->dtms_scratch_ptr; 3274 mstate->dtms_scratch_ptr += strsz; 3275 return (ret); 3276 } 3277 3278 /* 3279 * Return a string from a memoy address which is known to have one or 3280 * more concatenated, individually zero terminated, sub-strings. 3281 * In the event that the user lacks the privilege to access 3282 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3283 * don't fail access checking. 3284 * 3285 * dtrace_dif_variable() uses this routine as a helper for various 3286 * builtin values such as 'execargs'. 3287 */ 3288 static uintptr_t 3289 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3290 dtrace_mstate_t *mstate) 3291 { 3292 char *p; 3293 size_t i; 3294 uintptr_t ret; 3295 3296 if (mstate->dtms_scratch_ptr + strsz > 3297 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3298 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3299 return (0); 3300 } 3301 3302 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3303 strsz); 3304 3305 /* Replace sub-string termination characters with a space. */ 3306 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3307 p++, i++) 3308 if (*p == '\0') 3309 *p = ' '; 3310 3311 ret = mstate->dtms_scratch_ptr; 3312 mstate->dtms_scratch_ptr += strsz; 3313 return (ret); 3314 } 3315 3316 /* 3317 * This function implements the DIF emulator's variable lookups. The emulator 3318 * passes a reserved variable identifier and optional built-in array index. 3319 */ 3320 static uint64_t 3321 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3322 uint64_t ndx) 3323 { 3324 /* 3325 * If we're accessing one of the uncached arguments, we'll turn this 3326 * into a reference in the args array. 3327 */ 3328 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3329 ndx = v - DIF_VAR_ARG0; 3330 v = DIF_VAR_ARGS; 3331 } 3332 3333 switch (v) { 3334 case DIF_VAR_ARGS: 3335 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3336 if (ndx >= sizeof (mstate->dtms_arg) / 3337 sizeof (mstate->dtms_arg[0])) { 3338 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3339 dtrace_provider_t *pv; 3340 uint64_t val; 3341 3342 pv = mstate->dtms_probe->dtpr_provider; 3343 if (pv->dtpv_pops.dtps_getargval != NULL) 3344 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3345 mstate->dtms_probe->dtpr_id, 3346 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3347 else 3348 val = dtrace_getarg(ndx, aframes); 3349 3350 /* 3351 * This is regrettably required to keep the compiler 3352 * from tail-optimizing the call to dtrace_getarg(). 3353 * The condition always evaluates to true, but the 3354 * compiler has no way of figuring that out a priori. 3355 * (None of this would be necessary if the compiler 3356 * could be relied upon to _always_ tail-optimize 3357 * the call to dtrace_getarg() -- but it can't.) 3358 */ 3359 if (mstate->dtms_probe != NULL) 3360 return (val); 3361 3362 ASSERT(0); 3363 } 3364 3365 return (mstate->dtms_arg[ndx]); 3366 3367 case DIF_VAR_REGS: 3368 case DIF_VAR_UREGS: { 3369 struct trapframe *tframe; 3370 3371 if (!dtrace_priv_proc(state)) 3372 return (0); 3373 3374 if (v == DIF_VAR_REGS) 3375 tframe = curthread->t_dtrace_trapframe; 3376 else 3377 tframe = curthread->td_frame; 3378 3379 if (tframe == NULL) { 3380 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3381 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3382 return (0); 3383 } 3384 3385 return (dtrace_getreg(tframe, ndx)); 3386 } 3387 3388 case DIF_VAR_CURTHREAD: 3389 if (!dtrace_priv_proc(state)) 3390 return (0); 3391 return ((uint64_t)(uintptr_t)curthread); 3392 3393 case DIF_VAR_TIMESTAMP: 3394 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3395 mstate->dtms_timestamp = dtrace_gethrtime(); 3396 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3397 } 3398 return (mstate->dtms_timestamp); 3399 3400 case DIF_VAR_VTIMESTAMP: 3401 ASSERT(dtrace_vtime_references != 0); 3402 return (curthread->t_dtrace_vtime); 3403 3404 case DIF_VAR_WALLTIMESTAMP: 3405 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3406 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3407 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3408 } 3409 return (mstate->dtms_walltimestamp); 3410 3411 #ifdef illumos 3412 case DIF_VAR_IPL: 3413 if (!dtrace_priv_kernel(state)) 3414 return (0); 3415 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3416 mstate->dtms_ipl = dtrace_getipl(); 3417 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3418 } 3419 return (mstate->dtms_ipl); 3420 #endif 3421 3422 case DIF_VAR_EPID: 3423 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3424 return (mstate->dtms_epid); 3425 3426 case DIF_VAR_ID: 3427 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3428 return (mstate->dtms_probe->dtpr_id); 3429 3430 case DIF_VAR_STACKDEPTH: 3431 if (!dtrace_priv_kernel(state)) 3432 return (0); 3433 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3434 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3435 3436 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3437 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3438 } 3439 return (mstate->dtms_stackdepth); 3440 3441 case DIF_VAR_USTACKDEPTH: 3442 if (!dtrace_priv_proc(state)) 3443 return (0); 3444 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3445 /* 3446 * See comment in DIF_VAR_PID. 3447 */ 3448 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3449 CPU_ON_INTR(CPU)) { 3450 mstate->dtms_ustackdepth = 0; 3451 } else { 3452 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3453 mstate->dtms_ustackdepth = 3454 dtrace_getustackdepth(); 3455 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3456 } 3457 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3458 } 3459 return (mstate->dtms_ustackdepth); 3460 3461 case DIF_VAR_CALLER: 3462 if (!dtrace_priv_kernel(state)) 3463 return (0); 3464 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3465 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3466 3467 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3468 /* 3469 * If this is an unanchored probe, we are 3470 * required to go through the slow path: 3471 * dtrace_caller() only guarantees correct 3472 * results for anchored probes. 3473 */ 3474 pc_t caller[2] = {0, 0}; 3475 3476 dtrace_getpcstack(caller, 2, aframes, 3477 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3478 mstate->dtms_caller = caller[1]; 3479 } else if ((mstate->dtms_caller = 3480 dtrace_caller(aframes)) == -1) { 3481 /* 3482 * We have failed to do this the quick way; 3483 * we must resort to the slower approach of 3484 * calling dtrace_getpcstack(). 3485 */ 3486 pc_t caller = 0; 3487 3488 dtrace_getpcstack(&caller, 1, aframes, NULL); 3489 mstate->dtms_caller = caller; 3490 } 3491 3492 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3493 } 3494 return (mstate->dtms_caller); 3495 3496 case DIF_VAR_UCALLER: 3497 if (!dtrace_priv_proc(state)) 3498 return (0); 3499 3500 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3501 uint64_t ustack[3]; 3502 3503 /* 3504 * dtrace_getupcstack() fills in the first uint64_t 3505 * with the current PID. The second uint64_t will 3506 * be the program counter at user-level. The third 3507 * uint64_t will contain the caller, which is what 3508 * we're after. 3509 */ 3510 ustack[2] = 0; 3511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3512 dtrace_getupcstack(ustack, 3); 3513 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3514 mstate->dtms_ucaller = ustack[2]; 3515 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3516 } 3517 3518 return (mstate->dtms_ucaller); 3519 3520 case DIF_VAR_PROBEPROV: 3521 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3522 return (dtrace_dif_varstr( 3523 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3524 state, mstate)); 3525 3526 case DIF_VAR_PROBEMOD: 3527 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3528 return (dtrace_dif_varstr( 3529 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3530 state, mstate)); 3531 3532 case DIF_VAR_PROBEFUNC: 3533 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3534 return (dtrace_dif_varstr( 3535 (uintptr_t)mstate->dtms_probe->dtpr_func, 3536 state, mstate)); 3537 3538 case DIF_VAR_PROBENAME: 3539 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3540 return (dtrace_dif_varstr( 3541 (uintptr_t)mstate->dtms_probe->dtpr_name, 3542 state, mstate)); 3543 3544 case DIF_VAR_PID: 3545 if (!dtrace_priv_proc(state)) 3546 return (0); 3547 3548 #ifdef illumos 3549 /* 3550 * Note that we are assuming that an unanchored probe is 3551 * always due to a high-level interrupt. (And we're assuming 3552 * that there is only a single high level interrupt.) 3553 */ 3554 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3555 return (pid0.pid_id); 3556 3557 /* 3558 * It is always safe to dereference one's own t_procp pointer: 3559 * it always points to a valid, allocated proc structure. 3560 * Further, it is always safe to dereference the p_pidp member 3561 * of one's own proc structure. (These are truisms becuase 3562 * threads and processes don't clean up their own state -- 3563 * they leave that task to whomever reaps them.) 3564 */ 3565 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3566 #else 3567 return ((uint64_t)curproc->p_pid); 3568 #endif 3569 3570 case DIF_VAR_PPID: 3571 if (!dtrace_priv_proc(state)) 3572 return (0); 3573 3574 #ifdef illumos 3575 /* 3576 * See comment in DIF_VAR_PID. 3577 */ 3578 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3579 return (pid0.pid_id); 3580 3581 /* 3582 * It is always safe to dereference one's own t_procp pointer: 3583 * it always points to a valid, allocated proc structure. 3584 * (This is true because threads don't clean up their own 3585 * state -- they leave that task to whomever reaps them.) 3586 */ 3587 return ((uint64_t)curthread->t_procp->p_ppid); 3588 #else 3589 if (curproc->p_pid == proc0.p_pid) 3590 return (curproc->p_pid); 3591 else 3592 return (curproc->p_pptr->p_pid); 3593 #endif 3594 3595 case DIF_VAR_TID: 3596 #ifdef illumos 3597 /* 3598 * See comment in DIF_VAR_PID. 3599 */ 3600 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3601 return (0); 3602 #endif 3603 3604 return ((uint64_t)curthread->t_tid); 3605 3606 case DIF_VAR_EXECARGS: { 3607 struct pargs *p_args = curthread->td_proc->p_args; 3608 3609 if (p_args == NULL) 3610 return(0); 3611 3612 return (dtrace_dif_varstrz( 3613 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3614 } 3615 3616 case DIF_VAR_EXECNAME: 3617 #ifdef illumos 3618 if (!dtrace_priv_proc(state)) 3619 return (0); 3620 3621 /* 3622 * See comment in DIF_VAR_PID. 3623 */ 3624 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3625 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3626 3627 /* 3628 * It is always safe to dereference one's own t_procp pointer: 3629 * it always points to a valid, allocated proc structure. 3630 * (This is true because threads don't clean up their own 3631 * state -- they leave that task to whomever reaps them.) 3632 */ 3633 return (dtrace_dif_varstr( 3634 (uintptr_t)curthread->t_procp->p_user.u_comm, 3635 state, mstate)); 3636 #else 3637 return (dtrace_dif_varstr( 3638 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3639 #endif 3640 3641 case DIF_VAR_ZONENAME: 3642 #ifdef illumos 3643 if (!dtrace_priv_proc(state)) 3644 return (0); 3645 3646 /* 3647 * See comment in DIF_VAR_PID. 3648 */ 3649 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3650 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3651 3652 /* 3653 * It is always safe to dereference one's own t_procp pointer: 3654 * it always points to a valid, allocated proc structure. 3655 * (This is true because threads don't clean up their own 3656 * state -- they leave that task to whomever reaps them.) 3657 */ 3658 return (dtrace_dif_varstr( 3659 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3660 state, mstate)); 3661 #elif defined(__FreeBSD__) 3662 /* 3663 * On FreeBSD, we introduce compatibility to zonename by falling through 3664 * into jailname. 3665 */ 3666 case DIF_VAR_JAILNAME: 3667 if (!dtrace_priv_kernel(state)) 3668 return (0); 3669 3670 return (dtrace_dif_varstr( 3671 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3672 state, mstate)); 3673 3674 case DIF_VAR_JID: 3675 if (!dtrace_priv_kernel(state)) 3676 return (0); 3677 3678 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3679 #else 3680 return (0); 3681 #endif 3682 3683 case DIF_VAR_UID: 3684 if (!dtrace_priv_proc(state)) 3685 return (0); 3686 3687 #ifdef illumos 3688 /* 3689 * See comment in DIF_VAR_PID. 3690 */ 3691 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3692 return ((uint64_t)p0.p_cred->cr_uid); 3693 3694 /* 3695 * It is always safe to dereference one's own t_procp pointer: 3696 * it always points to a valid, allocated proc structure. 3697 * (This is true because threads don't clean up their own 3698 * state -- they leave that task to whomever reaps them.) 3699 * 3700 * Additionally, it is safe to dereference one's own process 3701 * credential, since this is never NULL after process birth. 3702 */ 3703 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3704 #else 3705 return ((uint64_t)curthread->td_ucred->cr_uid); 3706 #endif 3707 3708 case DIF_VAR_GID: 3709 if (!dtrace_priv_proc(state)) 3710 return (0); 3711 3712 #ifdef illumos 3713 /* 3714 * See comment in DIF_VAR_PID. 3715 */ 3716 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3717 return ((uint64_t)p0.p_cred->cr_gid); 3718 3719 /* 3720 * It is always safe to dereference one's own t_procp pointer: 3721 * it always points to a valid, allocated proc structure. 3722 * (This is true because threads don't clean up their own 3723 * state -- they leave that task to whomever reaps them.) 3724 * 3725 * Additionally, it is safe to dereference one's own process 3726 * credential, since this is never NULL after process birth. 3727 */ 3728 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3729 #else 3730 return ((uint64_t)curthread->td_ucred->cr_gid); 3731 #endif 3732 3733 case DIF_VAR_ERRNO: { 3734 #ifdef illumos 3735 klwp_t *lwp; 3736 if (!dtrace_priv_proc(state)) 3737 return (0); 3738 3739 /* 3740 * See comment in DIF_VAR_PID. 3741 */ 3742 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3743 return (0); 3744 3745 /* 3746 * It is always safe to dereference one's own t_lwp pointer in 3747 * the event that this pointer is non-NULL. (This is true 3748 * because threads and lwps don't clean up their own state -- 3749 * they leave that task to whomever reaps them.) 3750 */ 3751 if ((lwp = curthread->t_lwp) == NULL) 3752 return (0); 3753 3754 return ((uint64_t)lwp->lwp_errno); 3755 #else 3756 return (curthread->td_errno); 3757 #endif 3758 } 3759 #ifndef illumos 3760 case DIF_VAR_CPU: { 3761 return curcpu; 3762 } 3763 #endif 3764 default: 3765 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3766 return (0); 3767 } 3768 } 3769 3770 3771 typedef enum dtrace_json_state { 3772 DTRACE_JSON_REST = 1, 3773 DTRACE_JSON_OBJECT, 3774 DTRACE_JSON_STRING, 3775 DTRACE_JSON_STRING_ESCAPE, 3776 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3777 DTRACE_JSON_COLON, 3778 DTRACE_JSON_COMMA, 3779 DTRACE_JSON_VALUE, 3780 DTRACE_JSON_IDENTIFIER, 3781 DTRACE_JSON_NUMBER, 3782 DTRACE_JSON_NUMBER_FRAC, 3783 DTRACE_JSON_NUMBER_EXP, 3784 DTRACE_JSON_COLLECT_OBJECT 3785 } dtrace_json_state_t; 3786 3787 /* 3788 * This function possesses just enough knowledge about JSON to extract a single 3789 * value from a JSON string and store it in the scratch buffer. It is able 3790 * to extract nested object values, and members of arrays by index. 3791 * 3792 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3793 * be looked up as we descend into the object tree. e.g. 3794 * 3795 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3796 * with nelems = 5. 3797 * 3798 * The run time of this function must be bounded above by strsize to limit the 3799 * amount of work done in probe context. As such, it is implemented as a 3800 * simple state machine, reading one character at a time using safe loads 3801 * until we find the requested element, hit a parsing error or run off the 3802 * end of the object or string. 3803 * 3804 * As there is no way for a subroutine to return an error without interrupting 3805 * clause execution, we simply return NULL in the event of a missing key or any 3806 * other error condition. Each NULL return in this function is commented with 3807 * the error condition it represents -- parsing or otherwise. 3808 * 3809 * The set of states for the state machine closely matches the JSON 3810 * specification (http://json.org/). Briefly: 3811 * 3812 * DTRACE_JSON_REST: 3813 * Skip whitespace until we find either a top-level Object, moving 3814 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3815 * 3816 * DTRACE_JSON_OBJECT: 3817 * Locate the next key String in an Object. Sets a flag to denote 3818 * the next String as a key string and moves to DTRACE_JSON_STRING. 3819 * 3820 * DTRACE_JSON_COLON: 3821 * Skip whitespace until we find the colon that separates key Strings 3822 * from their values. Once found, move to DTRACE_JSON_VALUE. 3823 * 3824 * DTRACE_JSON_VALUE: 3825 * Detects the type of the next value (String, Number, Identifier, Object 3826 * or Array) and routes to the states that process that type. Here we also 3827 * deal with the element selector list if we are requested to traverse down 3828 * into the object tree. 3829 * 3830 * DTRACE_JSON_COMMA: 3831 * Skip whitespace until we find the comma that separates key-value pairs 3832 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3833 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3834 * states return to this state at the end of their value, unless otherwise 3835 * noted. 3836 * 3837 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3838 * Processes a Number literal from the JSON, including any exponent 3839 * component that may be present. Numbers are returned as strings, which 3840 * may be passed to strtoll() if an integer is required. 3841 * 3842 * DTRACE_JSON_IDENTIFIER: 3843 * Processes a "true", "false" or "null" literal in the JSON. 3844 * 3845 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3846 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3847 * Processes a String literal from the JSON, whether the String denotes 3848 * a key, a value or part of a larger Object. Handles all escape sequences 3849 * present in the specification, including four-digit unicode characters, 3850 * but merely includes the escape sequence without converting it to the 3851 * actual escaped character. If the String is flagged as a key, we 3852 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3853 * 3854 * DTRACE_JSON_COLLECT_OBJECT: 3855 * This state collects an entire Object (or Array), correctly handling 3856 * embedded strings. If the full element selector list matches this nested 3857 * object, we return the Object in full as a string. If not, we use this 3858 * state to skip to the next value at this level and continue processing. 3859 * 3860 * NOTE: This function uses various macros from strtolctype.h to manipulate 3861 * digit values, etc -- these have all been checked to ensure they make 3862 * no additional function calls. 3863 */ 3864 static char * 3865 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3866 char *dest) 3867 { 3868 dtrace_json_state_t state = DTRACE_JSON_REST; 3869 int64_t array_elem = INT64_MIN; 3870 int64_t array_pos = 0; 3871 uint8_t escape_unicount = 0; 3872 boolean_t string_is_key = B_FALSE; 3873 boolean_t collect_object = B_FALSE; 3874 boolean_t found_key = B_FALSE; 3875 boolean_t in_array = B_FALSE; 3876 uint32_t braces = 0, brackets = 0; 3877 char *elem = elemlist; 3878 char *dd = dest; 3879 uintptr_t cur; 3880 3881 for (cur = json; cur < json + size; cur++) { 3882 char cc = dtrace_load8(cur); 3883 if (cc == '\0') 3884 return (NULL); 3885 3886 switch (state) { 3887 case DTRACE_JSON_REST: 3888 if (isspace(cc)) 3889 break; 3890 3891 if (cc == '{') { 3892 state = DTRACE_JSON_OBJECT; 3893 break; 3894 } 3895 3896 if (cc == '[') { 3897 in_array = B_TRUE; 3898 array_pos = 0; 3899 array_elem = dtrace_strtoll(elem, 10, size); 3900 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3901 state = DTRACE_JSON_VALUE; 3902 break; 3903 } 3904 3905 /* 3906 * ERROR: expected to find a top-level object or array. 3907 */ 3908 return (NULL); 3909 case DTRACE_JSON_OBJECT: 3910 if (isspace(cc)) 3911 break; 3912 3913 if (cc == '"') { 3914 state = DTRACE_JSON_STRING; 3915 string_is_key = B_TRUE; 3916 break; 3917 } 3918 3919 /* 3920 * ERROR: either the object did not start with a key 3921 * string, or we've run off the end of the object 3922 * without finding the requested key. 3923 */ 3924 return (NULL); 3925 case DTRACE_JSON_STRING: 3926 if (cc == '\\') { 3927 *dd++ = '\\'; 3928 state = DTRACE_JSON_STRING_ESCAPE; 3929 break; 3930 } 3931 3932 if (cc == '"') { 3933 if (collect_object) { 3934 /* 3935 * We don't reset the dest here, as 3936 * the string is part of a larger 3937 * object being collected. 3938 */ 3939 *dd++ = cc; 3940 collect_object = B_FALSE; 3941 state = DTRACE_JSON_COLLECT_OBJECT; 3942 break; 3943 } 3944 *dd = '\0'; 3945 dd = dest; /* reset string buffer */ 3946 if (string_is_key) { 3947 if (dtrace_strncmp(dest, elem, 3948 size) == 0) 3949 found_key = B_TRUE; 3950 } else if (found_key) { 3951 if (nelems > 1) { 3952 /* 3953 * We expected an object, not 3954 * this string. 3955 */ 3956 return (NULL); 3957 } 3958 return (dest); 3959 } 3960 state = string_is_key ? DTRACE_JSON_COLON : 3961 DTRACE_JSON_COMMA; 3962 string_is_key = B_FALSE; 3963 break; 3964 } 3965 3966 *dd++ = cc; 3967 break; 3968 case DTRACE_JSON_STRING_ESCAPE: 3969 *dd++ = cc; 3970 if (cc == 'u') { 3971 escape_unicount = 0; 3972 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3973 } else { 3974 state = DTRACE_JSON_STRING; 3975 } 3976 break; 3977 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3978 if (!isxdigit(cc)) { 3979 /* 3980 * ERROR: invalid unicode escape, expected 3981 * four valid hexidecimal digits. 3982 */ 3983 return (NULL); 3984 } 3985 3986 *dd++ = cc; 3987 if (++escape_unicount == 4) 3988 state = DTRACE_JSON_STRING; 3989 break; 3990 case DTRACE_JSON_COLON: 3991 if (isspace(cc)) 3992 break; 3993 3994 if (cc == ':') { 3995 state = DTRACE_JSON_VALUE; 3996 break; 3997 } 3998 3999 /* 4000 * ERROR: expected a colon. 4001 */ 4002 return (NULL); 4003 case DTRACE_JSON_COMMA: 4004 if (isspace(cc)) 4005 break; 4006 4007 if (cc == ',') { 4008 if (in_array) { 4009 state = DTRACE_JSON_VALUE; 4010 if (++array_pos == array_elem) 4011 found_key = B_TRUE; 4012 } else { 4013 state = DTRACE_JSON_OBJECT; 4014 } 4015 break; 4016 } 4017 4018 /* 4019 * ERROR: either we hit an unexpected character, or 4020 * we reached the end of the object or array without 4021 * finding the requested key. 4022 */ 4023 return (NULL); 4024 case DTRACE_JSON_IDENTIFIER: 4025 if (islower(cc)) { 4026 *dd++ = cc; 4027 break; 4028 } 4029 4030 *dd = '\0'; 4031 dd = dest; /* reset string buffer */ 4032 4033 if (dtrace_strncmp(dest, "true", 5) == 0 || 4034 dtrace_strncmp(dest, "false", 6) == 0 || 4035 dtrace_strncmp(dest, "null", 5) == 0) { 4036 if (found_key) { 4037 if (nelems > 1) { 4038 /* 4039 * ERROR: We expected an object, 4040 * not this identifier. 4041 */ 4042 return (NULL); 4043 } 4044 return (dest); 4045 } else { 4046 cur--; 4047 state = DTRACE_JSON_COMMA; 4048 break; 4049 } 4050 } 4051 4052 /* 4053 * ERROR: we did not recognise the identifier as one 4054 * of those in the JSON specification. 4055 */ 4056 return (NULL); 4057 case DTRACE_JSON_NUMBER: 4058 if (cc == '.') { 4059 *dd++ = cc; 4060 state = DTRACE_JSON_NUMBER_FRAC; 4061 break; 4062 } 4063 4064 if (cc == 'x' || cc == 'X') { 4065 /* 4066 * ERROR: specification explicitly excludes 4067 * hexidecimal or octal numbers. 4068 */ 4069 return (NULL); 4070 } 4071 4072 /* FALLTHRU */ 4073 case DTRACE_JSON_NUMBER_FRAC: 4074 if (cc == 'e' || cc == 'E') { 4075 *dd++ = cc; 4076 state = DTRACE_JSON_NUMBER_EXP; 4077 break; 4078 } 4079 4080 if (cc == '+' || cc == '-') { 4081 /* 4082 * ERROR: expect sign as part of exponent only. 4083 */ 4084 return (NULL); 4085 } 4086 /* FALLTHRU */ 4087 case DTRACE_JSON_NUMBER_EXP: 4088 if (isdigit(cc) || cc == '+' || cc == '-') { 4089 *dd++ = cc; 4090 break; 4091 } 4092 4093 *dd = '\0'; 4094 dd = dest; /* reset string buffer */ 4095 if (found_key) { 4096 if (nelems > 1) { 4097 /* 4098 * ERROR: We expected an object, not 4099 * this number. 4100 */ 4101 return (NULL); 4102 } 4103 return (dest); 4104 } 4105 4106 cur--; 4107 state = DTRACE_JSON_COMMA; 4108 break; 4109 case DTRACE_JSON_VALUE: 4110 if (isspace(cc)) 4111 break; 4112 4113 if (cc == '{' || cc == '[') { 4114 if (nelems > 1 && found_key) { 4115 in_array = cc == '[' ? B_TRUE : B_FALSE; 4116 /* 4117 * If our element selector directs us 4118 * to descend into this nested object, 4119 * then move to the next selector 4120 * element in the list and restart the 4121 * state machine. 4122 */ 4123 while (*elem != '\0') 4124 elem++; 4125 elem++; /* skip the inter-element NUL */ 4126 nelems--; 4127 dd = dest; 4128 if (in_array) { 4129 state = DTRACE_JSON_VALUE; 4130 array_pos = 0; 4131 array_elem = dtrace_strtoll( 4132 elem, 10, size); 4133 found_key = array_elem == 0 ? 4134 B_TRUE : B_FALSE; 4135 } else { 4136 found_key = B_FALSE; 4137 state = DTRACE_JSON_OBJECT; 4138 } 4139 break; 4140 } 4141 4142 /* 4143 * Otherwise, we wish to either skip this 4144 * nested object or return it in full. 4145 */ 4146 if (cc == '[') 4147 brackets = 1; 4148 else 4149 braces = 1; 4150 *dd++ = cc; 4151 state = DTRACE_JSON_COLLECT_OBJECT; 4152 break; 4153 } 4154 4155 if (cc == '"') { 4156 state = DTRACE_JSON_STRING; 4157 break; 4158 } 4159 4160 if (islower(cc)) { 4161 /* 4162 * Here we deal with true, false and null. 4163 */ 4164 *dd++ = cc; 4165 state = DTRACE_JSON_IDENTIFIER; 4166 break; 4167 } 4168 4169 if (cc == '-' || isdigit(cc)) { 4170 *dd++ = cc; 4171 state = DTRACE_JSON_NUMBER; 4172 break; 4173 } 4174 4175 /* 4176 * ERROR: unexpected character at start of value. 4177 */ 4178 return (NULL); 4179 case DTRACE_JSON_COLLECT_OBJECT: 4180 if (cc == '\0') 4181 /* 4182 * ERROR: unexpected end of input. 4183 */ 4184 return (NULL); 4185 4186 *dd++ = cc; 4187 if (cc == '"') { 4188 collect_object = B_TRUE; 4189 state = DTRACE_JSON_STRING; 4190 break; 4191 } 4192 4193 if (cc == ']') { 4194 if (brackets-- == 0) { 4195 /* 4196 * ERROR: unbalanced brackets. 4197 */ 4198 return (NULL); 4199 } 4200 } else if (cc == '}') { 4201 if (braces-- == 0) { 4202 /* 4203 * ERROR: unbalanced braces. 4204 */ 4205 return (NULL); 4206 } 4207 } else if (cc == '{') { 4208 braces++; 4209 } else if (cc == '[') { 4210 brackets++; 4211 } 4212 4213 if (brackets == 0 && braces == 0) { 4214 if (found_key) { 4215 *dd = '\0'; 4216 return (dest); 4217 } 4218 dd = dest; /* reset string buffer */ 4219 state = DTRACE_JSON_COMMA; 4220 } 4221 break; 4222 } 4223 } 4224 return (NULL); 4225 } 4226 4227 /* 4228 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4229 * Notice that we don't bother validating the proper number of arguments or 4230 * their types in the tuple stack. This isn't needed because all argument 4231 * interpretation is safe because of our load safety -- the worst that can 4232 * happen is that a bogus program can obtain bogus results. 4233 */ 4234 static void 4235 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4236 dtrace_key_t *tupregs, int nargs, 4237 dtrace_mstate_t *mstate, dtrace_state_t *state) 4238 { 4239 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4240 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4241 dtrace_vstate_t *vstate = &state->dts_vstate; 4242 4243 #ifdef illumos 4244 union { 4245 mutex_impl_t mi; 4246 uint64_t mx; 4247 } m; 4248 4249 union { 4250 krwlock_t ri; 4251 uintptr_t rw; 4252 } r; 4253 #else 4254 struct thread *lowner; 4255 union { 4256 struct lock_object *li; 4257 uintptr_t lx; 4258 } l; 4259 #endif 4260 4261 switch (subr) { 4262 case DIF_SUBR_RAND: 4263 regs[rd] = dtrace_xoroshiro128_plus_next( 4264 state->dts_rstate[curcpu]); 4265 break; 4266 4267 #ifdef illumos 4268 case DIF_SUBR_MUTEX_OWNED: 4269 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4270 mstate, vstate)) { 4271 regs[rd] = 0; 4272 break; 4273 } 4274 4275 m.mx = dtrace_load64(tupregs[0].dttk_value); 4276 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4277 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4278 else 4279 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4280 break; 4281 4282 case DIF_SUBR_MUTEX_OWNER: 4283 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4284 mstate, vstate)) { 4285 regs[rd] = 0; 4286 break; 4287 } 4288 4289 m.mx = dtrace_load64(tupregs[0].dttk_value); 4290 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4291 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4292 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4293 else 4294 regs[rd] = 0; 4295 break; 4296 4297 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4298 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4299 mstate, vstate)) { 4300 regs[rd] = 0; 4301 break; 4302 } 4303 4304 m.mx = dtrace_load64(tupregs[0].dttk_value); 4305 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4306 break; 4307 4308 case DIF_SUBR_MUTEX_TYPE_SPIN: 4309 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4310 mstate, vstate)) { 4311 regs[rd] = 0; 4312 break; 4313 } 4314 4315 m.mx = dtrace_load64(tupregs[0].dttk_value); 4316 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4317 break; 4318 4319 case DIF_SUBR_RW_READ_HELD: { 4320 uintptr_t tmp; 4321 4322 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4323 mstate, vstate)) { 4324 regs[rd] = 0; 4325 break; 4326 } 4327 4328 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4329 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4330 break; 4331 } 4332 4333 case DIF_SUBR_RW_WRITE_HELD: 4334 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4335 mstate, vstate)) { 4336 regs[rd] = 0; 4337 break; 4338 } 4339 4340 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4341 regs[rd] = _RW_WRITE_HELD(&r.ri); 4342 break; 4343 4344 case DIF_SUBR_RW_ISWRITER: 4345 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4346 mstate, vstate)) { 4347 regs[rd] = 0; 4348 break; 4349 } 4350 4351 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4352 regs[rd] = _RW_ISWRITER(&r.ri); 4353 break; 4354 4355 #else /* !illumos */ 4356 case DIF_SUBR_MUTEX_OWNED: 4357 if (!dtrace_canload(tupregs[0].dttk_value, 4358 sizeof (struct lock_object), mstate, vstate)) { 4359 regs[rd] = 0; 4360 break; 4361 } 4362 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4363 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4364 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4365 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4366 break; 4367 4368 case DIF_SUBR_MUTEX_OWNER: 4369 if (!dtrace_canload(tupregs[0].dttk_value, 4370 sizeof (struct lock_object), mstate, vstate)) { 4371 regs[rd] = 0; 4372 break; 4373 } 4374 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4375 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4376 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4377 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4378 regs[rd] = (uintptr_t)lowner; 4379 break; 4380 4381 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4382 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4383 mstate, vstate)) { 4384 regs[rd] = 0; 4385 break; 4386 } 4387 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4388 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4389 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4390 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4391 break; 4392 4393 case DIF_SUBR_MUTEX_TYPE_SPIN: 4394 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4395 mstate, vstate)) { 4396 regs[rd] = 0; 4397 break; 4398 } 4399 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4401 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4402 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4403 break; 4404 4405 case DIF_SUBR_RW_READ_HELD: 4406 case DIF_SUBR_SX_SHARED_HELD: 4407 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4408 mstate, vstate)) { 4409 regs[rd] = 0; 4410 break; 4411 } 4412 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4413 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4414 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4415 lowner == NULL; 4416 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4417 break; 4418 4419 case DIF_SUBR_RW_WRITE_HELD: 4420 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4421 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4422 mstate, vstate)) { 4423 regs[rd] = 0; 4424 break; 4425 } 4426 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4427 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4428 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4429 lowner != NULL; 4430 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4431 break; 4432 4433 case DIF_SUBR_RW_ISWRITER: 4434 case DIF_SUBR_SX_ISEXCLUSIVE: 4435 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4436 mstate, vstate)) { 4437 regs[rd] = 0; 4438 break; 4439 } 4440 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4441 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4442 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4443 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4444 regs[rd] = (lowner == curthread); 4445 break; 4446 #endif /* illumos */ 4447 4448 case DIF_SUBR_BCOPY: { 4449 /* 4450 * We need to be sure that the destination is in the scratch 4451 * region -- no other region is allowed. 4452 */ 4453 uintptr_t src = tupregs[0].dttk_value; 4454 uintptr_t dest = tupregs[1].dttk_value; 4455 size_t size = tupregs[2].dttk_value; 4456 4457 if (!dtrace_inscratch(dest, size, mstate)) { 4458 *flags |= CPU_DTRACE_BADADDR; 4459 *illval = regs[rd]; 4460 break; 4461 } 4462 4463 if (!dtrace_canload(src, size, mstate, vstate)) { 4464 regs[rd] = 0; 4465 break; 4466 } 4467 4468 dtrace_bcopy((void *)src, (void *)dest, size); 4469 break; 4470 } 4471 4472 case DIF_SUBR_ALLOCA: 4473 case DIF_SUBR_COPYIN: { 4474 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4475 uint64_t size = 4476 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4477 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4478 4479 /* 4480 * This action doesn't require any credential checks since 4481 * probes will not activate in user contexts to which the 4482 * enabling user does not have permissions. 4483 */ 4484 4485 /* 4486 * Rounding up the user allocation size could have overflowed 4487 * a large, bogus allocation (like -1ULL) to 0. 4488 */ 4489 if (scratch_size < size || 4490 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4492 regs[rd] = 0; 4493 break; 4494 } 4495 4496 if (subr == DIF_SUBR_COPYIN) { 4497 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4498 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4499 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4500 } 4501 4502 mstate->dtms_scratch_ptr += scratch_size; 4503 regs[rd] = dest; 4504 break; 4505 } 4506 4507 case DIF_SUBR_COPYINTO: { 4508 uint64_t size = tupregs[1].dttk_value; 4509 uintptr_t dest = tupregs[2].dttk_value; 4510 4511 /* 4512 * This action doesn't require any credential checks since 4513 * probes will not activate in user contexts to which the 4514 * enabling user does not have permissions. 4515 */ 4516 if (!dtrace_inscratch(dest, size, mstate)) { 4517 *flags |= CPU_DTRACE_BADADDR; 4518 *illval = regs[rd]; 4519 break; 4520 } 4521 4522 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4523 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4524 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4525 break; 4526 } 4527 4528 case DIF_SUBR_COPYINSTR: { 4529 uintptr_t dest = mstate->dtms_scratch_ptr; 4530 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4531 4532 if (nargs > 1 && tupregs[1].dttk_value < size) 4533 size = tupregs[1].dttk_value + 1; 4534 4535 /* 4536 * This action doesn't require any credential checks since 4537 * probes will not activate in user contexts to which the 4538 * enabling user does not have permissions. 4539 */ 4540 if (!DTRACE_INSCRATCH(mstate, size)) { 4541 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4542 regs[rd] = 0; 4543 break; 4544 } 4545 4546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4547 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4548 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4549 4550 ((char *)dest)[size - 1] = '\0'; 4551 mstate->dtms_scratch_ptr += size; 4552 regs[rd] = dest; 4553 break; 4554 } 4555 4556 #ifdef illumos 4557 case DIF_SUBR_MSGSIZE: 4558 case DIF_SUBR_MSGDSIZE: { 4559 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4560 uintptr_t wptr, rptr; 4561 size_t count = 0; 4562 int cont = 0; 4563 4564 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4565 4566 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4567 vstate)) { 4568 regs[rd] = 0; 4569 break; 4570 } 4571 4572 wptr = dtrace_loadptr(baddr + 4573 offsetof(mblk_t, b_wptr)); 4574 4575 rptr = dtrace_loadptr(baddr + 4576 offsetof(mblk_t, b_rptr)); 4577 4578 if (wptr < rptr) { 4579 *flags |= CPU_DTRACE_BADADDR; 4580 *illval = tupregs[0].dttk_value; 4581 break; 4582 } 4583 4584 daddr = dtrace_loadptr(baddr + 4585 offsetof(mblk_t, b_datap)); 4586 4587 baddr = dtrace_loadptr(baddr + 4588 offsetof(mblk_t, b_cont)); 4589 4590 /* 4591 * We want to prevent against denial-of-service here, 4592 * so we're only going to search the list for 4593 * dtrace_msgdsize_max mblks. 4594 */ 4595 if (cont++ > dtrace_msgdsize_max) { 4596 *flags |= CPU_DTRACE_ILLOP; 4597 break; 4598 } 4599 4600 if (subr == DIF_SUBR_MSGDSIZE) { 4601 if (dtrace_load8(daddr + 4602 offsetof(dblk_t, db_type)) != M_DATA) 4603 continue; 4604 } 4605 4606 count += wptr - rptr; 4607 } 4608 4609 if (!(*flags & CPU_DTRACE_FAULT)) 4610 regs[rd] = count; 4611 4612 break; 4613 } 4614 #endif 4615 4616 case DIF_SUBR_PROGENYOF: { 4617 pid_t pid = tupregs[0].dttk_value; 4618 proc_t *p; 4619 int rval = 0; 4620 4621 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4622 4623 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4624 #ifdef illumos 4625 if (p->p_pidp->pid_id == pid) { 4626 #else 4627 if (p->p_pid == pid) { 4628 #endif 4629 rval = 1; 4630 break; 4631 } 4632 } 4633 4634 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4635 4636 regs[rd] = rval; 4637 break; 4638 } 4639 4640 case DIF_SUBR_SPECULATION: 4641 regs[rd] = dtrace_speculation(state); 4642 break; 4643 4644 case DIF_SUBR_COPYOUT: { 4645 uintptr_t kaddr = tupregs[0].dttk_value; 4646 uintptr_t uaddr = tupregs[1].dttk_value; 4647 uint64_t size = tupregs[2].dttk_value; 4648 4649 if (!dtrace_destructive_disallow && 4650 dtrace_priv_proc_control(state) && 4651 !dtrace_istoxic(kaddr, size) && 4652 dtrace_canload(kaddr, size, mstate, vstate)) { 4653 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4654 dtrace_copyout(kaddr, uaddr, size, flags); 4655 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4656 } 4657 break; 4658 } 4659 4660 case DIF_SUBR_COPYOUTSTR: { 4661 uintptr_t kaddr = tupregs[0].dttk_value; 4662 uintptr_t uaddr = tupregs[1].dttk_value; 4663 uint64_t size = tupregs[2].dttk_value; 4664 size_t lim; 4665 4666 if (!dtrace_destructive_disallow && 4667 dtrace_priv_proc_control(state) && 4668 !dtrace_istoxic(kaddr, size) && 4669 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4670 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4671 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4672 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4673 } 4674 break; 4675 } 4676 4677 case DIF_SUBR_STRLEN: { 4678 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4679 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4680 size_t lim; 4681 4682 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4683 regs[rd] = 0; 4684 break; 4685 } 4686 4687 regs[rd] = dtrace_strlen((char *)addr, lim); 4688 break; 4689 } 4690 4691 case DIF_SUBR_STRCHR: 4692 case DIF_SUBR_STRRCHR: { 4693 /* 4694 * We're going to iterate over the string looking for the 4695 * specified character. We will iterate until we have reached 4696 * the string length or we have found the character. If this 4697 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4698 * of the specified character instead of the first. 4699 */ 4700 uintptr_t addr = tupregs[0].dttk_value; 4701 uintptr_t addr_limit; 4702 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4703 size_t lim; 4704 char c, target = (char)tupregs[1].dttk_value; 4705 4706 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4707 regs[rd] = 0; 4708 break; 4709 } 4710 addr_limit = addr + lim; 4711 4712 for (regs[rd] = 0; addr < addr_limit; addr++) { 4713 if ((c = dtrace_load8(addr)) == target) { 4714 regs[rd] = addr; 4715 4716 if (subr == DIF_SUBR_STRCHR) 4717 break; 4718 } 4719 4720 if (c == '\0') 4721 break; 4722 } 4723 break; 4724 } 4725 4726 case DIF_SUBR_STRSTR: 4727 case DIF_SUBR_INDEX: 4728 case DIF_SUBR_RINDEX: { 4729 /* 4730 * We're going to iterate over the string looking for the 4731 * specified string. We will iterate until we have reached 4732 * the string length or we have found the string. (Yes, this 4733 * is done in the most naive way possible -- but considering 4734 * that the string we're searching for is likely to be 4735 * relatively short, the complexity of Rabin-Karp or similar 4736 * hardly seems merited.) 4737 */ 4738 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4739 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4740 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4741 size_t len = dtrace_strlen(addr, size); 4742 size_t sublen = dtrace_strlen(substr, size); 4743 char *limit = addr + len, *orig = addr; 4744 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4745 int inc = 1; 4746 4747 regs[rd] = notfound; 4748 4749 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4750 regs[rd] = 0; 4751 break; 4752 } 4753 4754 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4755 vstate)) { 4756 regs[rd] = 0; 4757 break; 4758 } 4759 4760 /* 4761 * strstr() and index()/rindex() have similar semantics if 4762 * both strings are the empty string: strstr() returns a 4763 * pointer to the (empty) string, and index() and rindex() 4764 * both return index 0 (regardless of any position argument). 4765 */ 4766 if (sublen == 0 && len == 0) { 4767 if (subr == DIF_SUBR_STRSTR) 4768 regs[rd] = (uintptr_t)addr; 4769 else 4770 regs[rd] = 0; 4771 break; 4772 } 4773 4774 if (subr != DIF_SUBR_STRSTR) { 4775 if (subr == DIF_SUBR_RINDEX) { 4776 limit = orig - 1; 4777 addr += len; 4778 inc = -1; 4779 } 4780 4781 /* 4782 * Both index() and rindex() take an optional position 4783 * argument that denotes the starting position. 4784 */ 4785 if (nargs == 3) { 4786 int64_t pos = (int64_t)tupregs[2].dttk_value; 4787 4788 /* 4789 * If the position argument to index() is 4790 * negative, Perl implicitly clamps it at 4791 * zero. This semantic is a little surprising 4792 * given the special meaning of negative 4793 * positions to similar Perl functions like 4794 * substr(), but it appears to reflect a 4795 * notion that index() can start from a 4796 * negative index and increment its way up to 4797 * the string. Given this notion, Perl's 4798 * rindex() is at least self-consistent in 4799 * that it implicitly clamps positions greater 4800 * than the string length to be the string 4801 * length. Where Perl completely loses 4802 * coherence, however, is when the specified 4803 * substring is the empty string (""). In 4804 * this case, even if the position is 4805 * negative, rindex() returns 0 -- and even if 4806 * the position is greater than the length, 4807 * index() returns the string length. These 4808 * semantics violate the notion that index() 4809 * should never return a value less than the 4810 * specified position and that rindex() should 4811 * never return a value greater than the 4812 * specified position. (One assumes that 4813 * these semantics are artifacts of Perl's 4814 * implementation and not the results of 4815 * deliberate design -- it beggars belief that 4816 * even Larry Wall could desire such oddness.) 4817 * While in the abstract one would wish for 4818 * consistent position semantics across 4819 * substr(), index() and rindex() -- or at the 4820 * very least self-consistent position 4821 * semantics for index() and rindex() -- we 4822 * instead opt to keep with the extant Perl 4823 * semantics, in all their broken glory. (Do 4824 * we have more desire to maintain Perl's 4825 * semantics than Perl does? Probably.) 4826 */ 4827 if (subr == DIF_SUBR_RINDEX) { 4828 if (pos < 0) { 4829 if (sublen == 0) 4830 regs[rd] = 0; 4831 break; 4832 } 4833 4834 if (pos > len) 4835 pos = len; 4836 } else { 4837 if (pos < 0) 4838 pos = 0; 4839 4840 if (pos >= len) { 4841 if (sublen == 0) 4842 regs[rd] = len; 4843 break; 4844 } 4845 } 4846 4847 addr = orig + pos; 4848 } 4849 } 4850 4851 for (regs[rd] = notfound; addr != limit; addr += inc) { 4852 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4853 if (subr != DIF_SUBR_STRSTR) { 4854 /* 4855 * As D index() and rindex() are 4856 * modeled on Perl (and not on awk), 4857 * we return a zero-based (and not a 4858 * one-based) index. (For you Perl 4859 * weenies: no, we're not going to add 4860 * $[ -- and shouldn't you be at a con 4861 * or something?) 4862 */ 4863 regs[rd] = (uintptr_t)(addr - orig); 4864 break; 4865 } 4866 4867 ASSERT(subr == DIF_SUBR_STRSTR); 4868 regs[rd] = (uintptr_t)addr; 4869 break; 4870 } 4871 } 4872 4873 break; 4874 } 4875 4876 case DIF_SUBR_STRTOK: { 4877 uintptr_t addr = tupregs[0].dttk_value; 4878 uintptr_t tokaddr = tupregs[1].dttk_value; 4879 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4880 uintptr_t limit, toklimit; 4881 size_t clim; 4882 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4883 char *dest = (char *)mstate->dtms_scratch_ptr; 4884 int i; 4885 4886 /* 4887 * Check both the token buffer and (later) the input buffer, 4888 * since both could be non-scratch addresses. 4889 */ 4890 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4891 regs[rd] = 0; 4892 break; 4893 } 4894 toklimit = tokaddr + clim; 4895 4896 if (!DTRACE_INSCRATCH(mstate, size)) { 4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4898 regs[rd] = 0; 4899 break; 4900 } 4901 4902 if (addr == 0) { 4903 /* 4904 * If the address specified is NULL, we use our saved 4905 * strtok pointer from the mstate. Note that this 4906 * means that the saved strtok pointer is _only_ 4907 * valid within multiple enablings of the same probe -- 4908 * it behaves like an implicit clause-local variable. 4909 */ 4910 addr = mstate->dtms_strtok; 4911 limit = mstate->dtms_strtok_limit; 4912 } else { 4913 /* 4914 * If the user-specified address is non-NULL we must 4915 * access check it. This is the only time we have 4916 * a chance to do so, since this address may reside 4917 * in the string table of this clause-- future calls 4918 * (when we fetch addr from mstate->dtms_strtok) 4919 * would fail this access check. 4920 */ 4921 if (!dtrace_strcanload(addr, size, &clim, mstate, 4922 vstate)) { 4923 regs[rd] = 0; 4924 break; 4925 } 4926 limit = addr + clim; 4927 } 4928 4929 /* 4930 * First, zero the token map, and then process the token 4931 * string -- setting a bit in the map for every character 4932 * found in the token string. 4933 */ 4934 for (i = 0; i < sizeof (tokmap); i++) 4935 tokmap[i] = 0; 4936 4937 for (; tokaddr < toklimit; tokaddr++) { 4938 if ((c = dtrace_load8(tokaddr)) == '\0') 4939 break; 4940 4941 ASSERT((c >> 3) < sizeof (tokmap)); 4942 tokmap[c >> 3] |= (1 << (c & 0x7)); 4943 } 4944 4945 for (; addr < limit; addr++) { 4946 /* 4947 * We're looking for a character that is _not_ 4948 * contained in the token string. 4949 */ 4950 if ((c = dtrace_load8(addr)) == '\0') 4951 break; 4952 4953 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4954 break; 4955 } 4956 4957 if (c == '\0') { 4958 /* 4959 * We reached the end of the string without finding 4960 * any character that was not in the token string. 4961 * We return NULL in this case, and we set the saved 4962 * address to NULL as well. 4963 */ 4964 regs[rd] = 0; 4965 mstate->dtms_strtok = 0; 4966 mstate->dtms_strtok_limit = 0; 4967 break; 4968 } 4969 4970 /* 4971 * From here on, we're copying into the destination string. 4972 */ 4973 for (i = 0; addr < limit && i < size - 1; addr++) { 4974 if ((c = dtrace_load8(addr)) == '\0') 4975 break; 4976 4977 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4978 break; 4979 4980 ASSERT(i < size); 4981 dest[i++] = c; 4982 } 4983 4984 ASSERT(i < size); 4985 dest[i] = '\0'; 4986 regs[rd] = (uintptr_t)dest; 4987 mstate->dtms_scratch_ptr += size; 4988 mstate->dtms_strtok = addr; 4989 mstate->dtms_strtok_limit = limit; 4990 break; 4991 } 4992 4993 case DIF_SUBR_SUBSTR: { 4994 uintptr_t s = tupregs[0].dttk_value; 4995 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4996 char *d = (char *)mstate->dtms_scratch_ptr; 4997 int64_t index = (int64_t)tupregs[1].dttk_value; 4998 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4999 size_t len = dtrace_strlen((char *)s, size); 5000 int64_t i; 5001 5002 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5003 regs[rd] = 0; 5004 break; 5005 } 5006 5007 if (!DTRACE_INSCRATCH(mstate, size)) { 5008 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5009 regs[rd] = 0; 5010 break; 5011 } 5012 5013 if (nargs <= 2) 5014 remaining = (int64_t)size; 5015 5016 if (index < 0) { 5017 index += len; 5018 5019 if (index < 0 && index + remaining > 0) { 5020 remaining += index; 5021 index = 0; 5022 } 5023 } 5024 5025 if (index >= len || index < 0) { 5026 remaining = 0; 5027 } else if (remaining < 0) { 5028 remaining += len - index; 5029 } else if (index + remaining > size) { 5030 remaining = size - index; 5031 } 5032 5033 for (i = 0; i < remaining; i++) { 5034 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5035 break; 5036 } 5037 5038 d[i] = '\0'; 5039 5040 mstate->dtms_scratch_ptr += size; 5041 regs[rd] = (uintptr_t)d; 5042 break; 5043 } 5044 5045 case DIF_SUBR_JSON: { 5046 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5047 uintptr_t json = tupregs[0].dttk_value; 5048 size_t jsonlen = dtrace_strlen((char *)json, size); 5049 uintptr_t elem = tupregs[1].dttk_value; 5050 size_t elemlen = dtrace_strlen((char *)elem, size); 5051 5052 char *dest = (char *)mstate->dtms_scratch_ptr; 5053 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5054 char *ee = elemlist; 5055 int nelems = 1; 5056 uintptr_t cur; 5057 5058 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5059 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5060 regs[rd] = 0; 5061 break; 5062 } 5063 5064 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5065 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5066 regs[rd] = 0; 5067 break; 5068 } 5069 5070 /* 5071 * Read the element selector and split it up into a packed list 5072 * of strings. 5073 */ 5074 for (cur = elem; cur < elem + elemlen; cur++) { 5075 char cc = dtrace_load8(cur); 5076 5077 if (cur == elem && cc == '[') { 5078 /* 5079 * If the first element selector key is 5080 * actually an array index then ignore the 5081 * bracket. 5082 */ 5083 continue; 5084 } 5085 5086 if (cc == ']') 5087 continue; 5088 5089 if (cc == '.' || cc == '[') { 5090 nelems++; 5091 cc = '\0'; 5092 } 5093 5094 *ee++ = cc; 5095 } 5096 *ee++ = '\0'; 5097 5098 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5099 nelems, dest)) != 0) 5100 mstate->dtms_scratch_ptr += jsonlen + 1; 5101 break; 5102 } 5103 5104 case DIF_SUBR_TOUPPER: 5105 case DIF_SUBR_TOLOWER: { 5106 uintptr_t s = tupregs[0].dttk_value; 5107 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5108 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5109 size_t len = dtrace_strlen((char *)s, size); 5110 char lower, upper, convert; 5111 int64_t i; 5112 5113 if (subr == DIF_SUBR_TOUPPER) { 5114 lower = 'a'; 5115 upper = 'z'; 5116 convert = 'A'; 5117 } else { 5118 lower = 'A'; 5119 upper = 'Z'; 5120 convert = 'a'; 5121 } 5122 5123 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5124 regs[rd] = 0; 5125 break; 5126 } 5127 5128 if (!DTRACE_INSCRATCH(mstate, size)) { 5129 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5130 regs[rd] = 0; 5131 break; 5132 } 5133 5134 for (i = 0; i < size - 1; i++) { 5135 if ((c = dtrace_load8(s + i)) == '\0') 5136 break; 5137 5138 if (c >= lower && c <= upper) 5139 c = convert + (c - lower); 5140 5141 dest[i] = c; 5142 } 5143 5144 ASSERT(i < size); 5145 dest[i] = '\0'; 5146 regs[rd] = (uintptr_t)dest; 5147 mstate->dtms_scratch_ptr += size; 5148 break; 5149 } 5150 5151 #ifdef illumos 5152 case DIF_SUBR_GETMAJOR: 5153 #ifdef _LP64 5154 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5155 #else 5156 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5157 #endif 5158 break; 5159 5160 case DIF_SUBR_GETMINOR: 5161 #ifdef _LP64 5162 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5163 #else 5164 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5165 #endif 5166 break; 5167 5168 case DIF_SUBR_DDI_PATHNAME: { 5169 /* 5170 * This one is a galactic mess. We are going to roughly 5171 * emulate ddi_pathname(), but it's made more complicated 5172 * by the fact that we (a) want to include the minor name and 5173 * (b) must proceed iteratively instead of recursively. 5174 */ 5175 uintptr_t dest = mstate->dtms_scratch_ptr; 5176 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5177 char *start = (char *)dest, *end = start + size - 1; 5178 uintptr_t daddr = tupregs[0].dttk_value; 5179 int64_t minor = (int64_t)tupregs[1].dttk_value; 5180 char *s; 5181 int i, len, depth = 0; 5182 5183 /* 5184 * Due to all the pointer jumping we do and context we must 5185 * rely upon, we just mandate that the user must have kernel 5186 * read privileges to use this routine. 5187 */ 5188 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5189 *flags |= CPU_DTRACE_KPRIV; 5190 *illval = daddr; 5191 regs[rd] = 0; 5192 } 5193 5194 if (!DTRACE_INSCRATCH(mstate, size)) { 5195 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5196 regs[rd] = 0; 5197 break; 5198 } 5199 5200 *end = '\0'; 5201 5202 /* 5203 * We want to have a name for the minor. In order to do this, 5204 * we need to walk the minor list from the devinfo. We want 5205 * to be sure that we don't infinitely walk a circular list, 5206 * so we check for circularity by sending a scout pointer 5207 * ahead two elements for every element that we iterate over; 5208 * if the list is circular, these will ultimately point to the 5209 * same element. You may recognize this little trick as the 5210 * answer to a stupid interview question -- one that always 5211 * seems to be asked by those who had to have it laboriously 5212 * explained to them, and who can't even concisely describe 5213 * the conditions under which one would be forced to resort to 5214 * this technique. Needless to say, those conditions are 5215 * found here -- and probably only here. Is this the only use 5216 * of this infamous trick in shipping, production code? If it 5217 * isn't, it probably should be... 5218 */ 5219 if (minor != -1) { 5220 uintptr_t maddr = dtrace_loadptr(daddr + 5221 offsetof(struct dev_info, devi_minor)); 5222 5223 uintptr_t next = offsetof(struct ddi_minor_data, next); 5224 uintptr_t name = offsetof(struct ddi_minor_data, 5225 d_minor) + offsetof(struct ddi_minor, name); 5226 uintptr_t dev = offsetof(struct ddi_minor_data, 5227 d_minor) + offsetof(struct ddi_minor, dev); 5228 uintptr_t scout; 5229 5230 if (maddr != NULL) 5231 scout = dtrace_loadptr(maddr + next); 5232 5233 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5234 uint64_t m; 5235 #ifdef _LP64 5236 m = dtrace_load64(maddr + dev) & MAXMIN64; 5237 #else 5238 m = dtrace_load32(maddr + dev) & MAXMIN; 5239 #endif 5240 if (m != minor) { 5241 maddr = dtrace_loadptr(maddr + next); 5242 5243 if (scout == NULL) 5244 continue; 5245 5246 scout = dtrace_loadptr(scout + next); 5247 5248 if (scout == NULL) 5249 continue; 5250 5251 scout = dtrace_loadptr(scout + next); 5252 5253 if (scout == NULL) 5254 continue; 5255 5256 if (scout == maddr) { 5257 *flags |= CPU_DTRACE_ILLOP; 5258 break; 5259 } 5260 5261 continue; 5262 } 5263 5264 /* 5265 * We have the minor data. Now we need to 5266 * copy the minor's name into the end of the 5267 * pathname. 5268 */ 5269 s = (char *)dtrace_loadptr(maddr + name); 5270 len = dtrace_strlen(s, size); 5271 5272 if (*flags & CPU_DTRACE_FAULT) 5273 break; 5274 5275 if (len != 0) { 5276 if ((end -= (len + 1)) < start) 5277 break; 5278 5279 *end = ':'; 5280 } 5281 5282 for (i = 1; i <= len; i++) 5283 end[i] = dtrace_load8((uintptr_t)s++); 5284 break; 5285 } 5286 } 5287 5288 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5289 ddi_node_state_t devi_state; 5290 5291 devi_state = dtrace_load32(daddr + 5292 offsetof(struct dev_info, devi_node_state)); 5293 5294 if (*flags & CPU_DTRACE_FAULT) 5295 break; 5296 5297 if (devi_state >= DS_INITIALIZED) { 5298 s = (char *)dtrace_loadptr(daddr + 5299 offsetof(struct dev_info, devi_addr)); 5300 len = dtrace_strlen(s, size); 5301 5302 if (*flags & CPU_DTRACE_FAULT) 5303 break; 5304 5305 if (len != 0) { 5306 if ((end -= (len + 1)) < start) 5307 break; 5308 5309 *end = '@'; 5310 } 5311 5312 for (i = 1; i <= len; i++) 5313 end[i] = dtrace_load8((uintptr_t)s++); 5314 } 5315 5316 /* 5317 * Now for the node name... 5318 */ 5319 s = (char *)dtrace_loadptr(daddr + 5320 offsetof(struct dev_info, devi_node_name)); 5321 5322 daddr = dtrace_loadptr(daddr + 5323 offsetof(struct dev_info, devi_parent)); 5324 5325 /* 5326 * If our parent is NULL (that is, if we're the root 5327 * node), we're going to use the special path 5328 * "devices". 5329 */ 5330 if (daddr == 0) 5331 s = "devices"; 5332 5333 len = dtrace_strlen(s, size); 5334 if (*flags & CPU_DTRACE_FAULT) 5335 break; 5336 5337 if ((end -= (len + 1)) < start) 5338 break; 5339 5340 for (i = 1; i <= len; i++) 5341 end[i] = dtrace_load8((uintptr_t)s++); 5342 *end = '/'; 5343 5344 if (depth++ > dtrace_devdepth_max) { 5345 *flags |= CPU_DTRACE_ILLOP; 5346 break; 5347 } 5348 } 5349 5350 if (end < start) 5351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5352 5353 if (daddr == 0) { 5354 regs[rd] = (uintptr_t)end; 5355 mstate->dtms_scratch_ptr += size; 5356 } 5357 5358 break; 5359 } 5360 #endif 5361 5362 case DIF_SUBR_STRJOIN: { 5363 char *d = (char *)mstate->dtms_scratch_ptr; 5364 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5365 uintptr_t s1 = tupregs[0].dttk_value; 5366 uintptr_t s2 = tupregs[1].dttk_value; 5367 int i = 0, j = 0; 5368 size_t lim1, lim2; 5369 char c; 5370 5371 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5372 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5373 regs[rd] = 0; 5374 break; 5375 } 5376 5377 if (!DTRACE_INSCRATCH(mstate, size)) { 5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5379 regs[rd] = 0; 5380 break; 5381 } 5382 5383 for (;;) { 5384 if (i >= size) { 5385 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5386 regs[rd] = 0; 5387 break; 5388 } 5389 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5390 if ((d[i++] = c) == '\0') { 5391 i--; 5392 break; 5393 } 5394 } 5395 5396 for (;;) { 5397 if (i >= size) { 5398 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5399 regs[rd] = 0; 5400 break; 5401 } 5402 5403 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5404 if ((d[i++] = c) == '\0') 5405 break; 5406 } 5407 5408 if (i < size) { 5409 mstate->dtms_scratch_ptr += i; 5410 regs[rd] = (uintptr_t)d; 5411 } 5412 5413 break; 5414 } 5415 5416 case DIF_SUBR_STRTOLL: { 5417 uintptr_t s = tupregs[0].dttk_value; 5418 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5419 size_t lim; 5420 int base = 10; 5421 5422 if (nargs > 1) { 5423 if ((base = tupregs[1].dttk_value) <= 1 || 5424 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5425 *flags |= CPU_DTRACE_ILLOP; 5426 break; 5427 } 5428 } 5429 5430 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5431 regs[rd] = INT64_MIN; 5432 break; 5433 } 5434 5435 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5436 break; 5437 } 5438 5439 case DIF_SUBR_LLTOSTR: { 5440 int64_t i = (int64_t)tupregs[0].dttk_value; 5441 uint64_t val, digit; 5442 uint64_t size = 65; /* enough room for 2^64 in binary */ 5443 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5444 int base = 10; 5445 5446 if (nargs > 1) { 5447 if ((base = tupregs[1].dttk_value) <= 1 || 5448 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5449 *flags |= CPU_DTRACE_ILLOP; 5450 break; 5451 } 5452 } 5453 5454 val = (base == 10 && i < 0) ? i * -1 : i; 5455 5456 if (!DTRACE_INSCRATCH(mstate, size)) { 5457 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5458 regs[rd] = 0; 5459 break; 5460 } 5461 5462 for (*end-- = '\0'; val; val /= base) { 5463 if ((digit = val % base) <= '9' - '0') { 5464 *end-- = '0' + digit; 5465 } else { 5466 *end-- = 'a' + (digit - ('9' - '0') - 1); 5467 } 5468 } 5469 5470 if (i == 0 && base == 16) 5471 *end-- = '0'; 5472 5473 if (base == 16) 5474 *end-- = 'x'; 5475 5476 if (i == 0 || base == 8 || base == 16) 5477 *end-- = '0'; 5478 5479 if (i < 0 && base == 10) 5480 *end-- = '-'; 5481 5482 regs[rd] = (uintptr_t)end + 1; 5483 mstate->dtms_scratch_ptr += size; 5484 break; 5485 } 5486 5487 case DIF_SUBR_HTONS: 5488 case DIF_SUBR_NTOHS: 5489 #if BYTE_ORDER == BIG_ENDIAN 5490 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5491 #else 5492 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5493 #endif 5494 break; 5495 5496 5497 case DIF_SUBR_HTONL: 5498 case DIF_SUBR_NTOHL: 5499 #if BYTE_ORDER == BIG_ENDIAN 5500 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5501 #else 5502 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5503 #endif 5504 break; 5505 5506 5507 case DIF_SUBR_HTONLL: 5508 case DIF_SUBR_NTOHLL: 5509 #if BYTE_ORDER == BIG_ENDIAN 5510 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5511 #else 5512 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5513 #endif 5514 break; 5515 5516 5517 case DIF_SUBR_DIRNAME: 5518 case DIF_SUBR_BASENAME: { 5519 char *dest = (char *)mstate->dtms_scratch_ptr; 5520 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5521 uintptr_t src = tupregs[0].dttk_value; 5522 int i, j, len = dtrace_strlen((char *)src, size); 5523 int lastbase = -1, firstbase = -1, lastdir = -1; 5524 int start, end; 5525 5526 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5527 regs[rd] = 0; 5528 break; 5529 } 5530 5531 if (!DTRACE_INSCRATCH(mstate, size)) { 5532 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5533 regs[rd] = 0; 5534 break; 5535 } 5536 5537 /* 5538 * The basename and dirname for a zero-length string is 5539 * defined to be "." 5540 */ 5541 if (len == 0) { 5542 len = 1; 5543 src = (uintptr_t)"."; 5544 } 5545 5546 /* 5547 * Start from the back of the string, moving back toward the 5548 * front until we see a character that isn't a slash. That 5549 * character is the last character in the basename. 5550 */ 5551 for (i = len - 1; i >= 0; i--) { 5552 if (dtrace_load8(src + i) != '/') 5553 break; 5554 } 5555 5556 if (i >= 0) 5557 lastbase = i; 5558 5559 /* 5560 * Starting from the last character in the basename, move 5561 * towards the front until we find a slash. The character 5562 * that we processed immediately before that is the first 5563 * character in the basename. 5564 */ 5565 for (; i >= 0; i--) { 5566 if (dtrace_load8(src + i) == '/') 5567 break; 5568 } 5569 5570 if (i >= 0) 5571 firstbase = i + 1; 5572 5573 /* 5574 * Now keep going until we find a non-slash character. That 5575 * character is the last character in the dirname. 5576 */ 5577 for (; i >= 0; i--) { 5578 if (dtrace_load8(src + i) != '/') 5579 break; 5580 } 5581 5582 if (i >= 0) 5583 lastdir = i; 5584 5585 ASSERT(!(lastbase == -1 && firstbase != -1)); 5586 ASSERT(!(firstbase == -1 && lastdir != -1)); 5587 5588 if (lastbase == -1) { 5589 /* 5590 * We didn't find a non-slash character. We know that 5591 * the length is non-zero, so the whole string must be 5592 * slashes. In either the dirname or the basename 5593 * case, we return '/'. 5594 */ 5595 ASSERT(firstbase == -1); 5596 firstbase = lastbase = lastdir = 0; 5597 } 5598 5599 if (firstbase == -1) { 5600 /* 5601 * The entire string consists only of a basename 5602 * component. If we're looking for dirname, we need 5603 * to change our string to be just "."; if we're 5604 * looking for a basename, we'll just set the first 5605 * character of the basename to be 0. 5606 */ 5607 if (subr == DIF_SUBR_DIRNAME) { 5608 ASSERT(lastdir == -1); 5609 src = (uintptr_t)"."; 5610 lastdir = 0; 5611 } else { 5612 firstbase = 0; 5613 } 5614 } 5615 5616 if (subr == DIF_SUBR_DIRNAME) { 5617 if (lastdir == -1) { 5618 /* 5619 * We know that we have a slash in the name -- 5620 * or lastdir would be set to 0, above. And 5621 * because lastdir is -1, we know that this 5622 * slash must be the first character. (That 5623 * is, the full string must be of the form 5624 * "/basename".) In this case, the last 5625 * character of the directory name is 0. 5626 */ 5627 lastdir = 0; 5628 } 5629 5630 start = 0; 5631 end = lastdir; 5632 } else { 5633 ASSERT(subr == DIF_SUBR_BASENAME); 5634 ASSERT(firstbase != -1 && lastbase != -1); 5635 start = firstbase; 5636 end = lastbase; 5637 } 5638 5639 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5640 dest[j] = dtrace_load8(src + i); 5641 5642 dest[j] = '\0'; 5643 regs[rd] = (uintptr_t)dest; 5644 mstate->dtms_scratch_ptr += size; 5645 break; 5646 } 5647 5648 case DIF_SUBR_GETF: { 5649 uintptr_t fd = tupregs[0].dttk_value; 5650 struct filedesc *fdp; 5651 file_t *fp; 5652 5653 if (!dtrace_priv_proc(state)) { 5654 regs[rd] = 0; 5655 break; 5656 } 5657 fdp = curproc->p_fd; 5658 FILEDESC_SLOCK(fdp); 5659 /* 5660 * XXXMJG this looks broken as no ref is taken. 5661 */ 5662 fp = fget_noref(fdp, fd); 5663 mstate->dtms_getf = fp; 5664 regs[rd] = (uintptr_t)fp; 5665 FILEDESC_SUNLOCK(fdp); 5666 break; 5667 } 5668 5669 case DIF_SUBR_CLEANPATH: { 5670 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5671 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5672 uintptr_t src = tupregs[0].dttk_value; 5673 size_t lim; 5674 int i = 0, j = 0; 5675 #ifdef illumos 5676 zone_t *z; 5677 #endif 5678 5679 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5680 regs[rd] = 0; 5681 break; 5682 } 5683 5684 if (!DTRACE_INSCRATCH(mstate, size)) { 5685 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5686 regs[rd] = 0; 5687 break; 5688 } 5689 5690 /* 5691 * Move forward, loading each character. 5692 */ 5693 do { 5694 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5695 next: 5696 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5697 break; 5698 5699 if (c != '/') { 5700 dest[j++] = c; 5701 continue; 5702 } 5703 5704 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5705 5706 if (c == '/') { 5707 /* 5708 * We have two slashes -- we can just advance 5709 * to the next character. 5710 */ 5711 goto next; 5712 } 5713 5714 if (c != '.') { 5715 /* 5716 * This is not "." and it's not ".." -- we can 5717 * just store the "/" and this character and 5718 * drive on. 5719 */ 5720 dest[j++] = '/'; 5721 dest[j++] = c; 5722 continue; 5723 } 5724 5725 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5726 5727 if (c == '/') { 5728 /* 5729 * This is a "/./" component. We're not going 5730 * to store anything in the destination buffer; 5731 * we're just going to go to the next component. 5732 */ 5733 goto next; 5734 } 5735 5736 if (c != '.') { 5737 /* 5738 * This is not ".." -- we can just store the 5739 * "/." and this character and continue 5740 * processing. 5741 */ 5742 dest[j++] = '/'; 5743 dest[j++] = '.'; 5744 dest[j++] = c; 5745 continue; 5746 } 5747 5748 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5749 5750 if (c != '/' && c != '\0') { 5751 /* 5752 * This is not ".." -- it's "..[mumble]". 5753 * We'll store the "/.." and this character 5754 * and continue processing. 5755 */ 5756 dest[j++] = '/'; 5757 dest[j++] = '.'; 5758 dest[j++] = '.'; 5759 dest[j++] = c; 5760 continue; 5761 } 5762 5763 /* 5764 * This is "/../" or "/..\0". We need to back up 5765 * our destination pointer until we find a "/". 5766 */ 5767 i--; 5768 while (j != 0 && dest[--j] != '/') 5769 continue; 5770 5771 if (c == '\0') 5772 dest[++j] = '/'; 5773 } while (c != '\0'); 5774 5775 dest[j] = '\0'; 5776 5777 #ifdef illumos 5778 if (mstate->dtms_getf != NULL && 5779 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5780 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5781 /* 5782 * If we've done a getf() as a part of this ECB and we 5783 * don't have kernel access (and we're not in the global 5784 * zone), check if the path we cleaned up begins with 5785 * the zone's root path, and trim it off if so. Note 5786 * that this is an output cleanliness issue, not a 5787 * security issue: knowing one's zone root path does 5788 * not enable privilege escalation. 5789 */ 5790 if (strstr(dest, z->zone_rootpath) == dest) 5791 dest += strlen(z->zone_rootpath) - 1; 5792 } 5793 #endif 5794 5795 regs[rd] = (uintptr_t)dest; 5796 mstate->dtms_scratch_ptr += size; 5797 break; 5798 } 5799 5800 case DIF_SUBR_INET_NTOA: 5801 case DIF_SUBR_INET_NTOA6: 5802 case DIF_SUBR_INET_NTOP: { 5803 size_t size; 5804 int af, argi, i; 5805 char *base, *end; 5806 5807 if (subr == DIF_SUBR_INET_NTOP) { 5808 af = (int)tupregs[0].dttk_value; 5809 argi = 1; 5810 } else { 5811 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5812 argi = 0; 5813 } 5814 5815 if (af == AF_INET) { 5816 ipaddr_t ip4; 5817 uint8_t *ptr8, val; 5818 5819 if (!dtrace_canload(tupregs[argi].dttk_value, 5820 sizeof (ipaddr_t), mstate, vstate)) { 5821 regs[rd] = 0; 5822 break; 5823 } 5824 5825 /* 5826 * Safely load the IPv4 address. 5827 */ 5828 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5829 5830 /* 5831 * Check an IPv4 string will fit in scratch. 5832 */ 5833 size = INET_ADDRSTRLEN; 5834 if (!DTRACE_INSCRATCH(mstate, size)) { 5835 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5836 regs[rd] = 0; 5837 break; 5838 } 5839 base = (char *)mstate->dtms_scratch_ptr; 5840 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5841 5842 /* 5843 * Stringify as a dotted decimal quad. 5844 */ 5845 *end-- = '\0'; 5846 ptr8 = (uint8_t *)&ip4; 5847 for (i = 3; i >= 0; i--) { 5848 val = ptr8[i]; 5849 5850 if (val == 0) { 5851 *end-- = '0'; 5852 } else { 5853 for (; val; val /= 10) { 5854 *end-- = '0' + (val % 10); 5855 } 5856 } 5857 5858 if (i > 0) 5859 *end-- = '.'; 5860 } 5861 ASSERT(end + 1 >= base); 5862 5863 } else if (af == AF_INET6) { 5864 struct in6_addr ip6; 5865 int firstzero, tryzero, numzero, v6end; 5866 uint16_t val; 5867 const char digits[] = "0123456789abcdef"; 5868 5869 /* 5870 * Stringify using RFC 1884 convention 2 - 16 bit 5871 * hexadecimal values with a zero-run compression. 5872 * Lower case hexadecimal digits are used. 5873 * eg, fe80::214:4fff:fe0b:76c8. 5874 * The IPv4 embedded form is returned for inet_ntop, 5875 * just the IPv4 string is returned for inet_ntoa6. 5876 */ 5877 5878 if (!dtrace_canload(tupregs[argi].dttk_value, 5879 sizeof (struct in6_addr), mstate, vstate)) { 5880 regs[rd] = 0; 5881 break; 5882 } 5883 5884 /* 5885 * Safely load the IPv6 address. 5886 */ 5887 dtrace_bcopy( 5888 (void *)(uintptr_t)tupregs[argi].dttk_value, 5889 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5890 5891 /* 5892 * Check an IPv6 string will fit in scratch. 5893 */ 5894 size = INET6_ADDRSTRLEN; 5895 if (!DTRACE_INSCRATCH(mstate, size)) { 5896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5897 regs[rd] = 0; 5898 break; 5899 } 5900 base = (char *)mstate->dtms_scratch_ptr; 5901 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5902 *end-- = '\0'; 5903 5904 /* 5905 * Find the longest run of 16 bit zero values 5906 * for the single allowed zero compression - "::". 5907 */ 5908 firstzero = -1; 5909 tryzero = -1; 5910 numzero = 1; 5911 for (i = 0; i < sizeof (struct in6_addr); i++) { 5912 #ifdef illumos 5913 if (ip6._S6_un._S6_u8[i] == 0 && 5914 #else 5915 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5916 #endif 5917 tryzero == -1 && i % 2 == 0) { 5918 tryzero = i; 5919 continue; 5920 } 5921 5922 if (tryzero != -1 && 5923 #ifdef illumos 5924 (ip6._S6_un._S6_u8[i] != 0 || 5925 #else 5926 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5927 #endif 5928 i == sizeof (struct in6_addr) - 1)) { 5929 5930 if (i - tryzero <= numzero) { 5931 tryzero = -1; 5932 continue; 5933 } 5934 5935 firstzero = tryzero; 5936 numzero = i - i % 2 - tryzero; 5937 tryzero = -1; 5938 5939 #ifdef illumos 5940 if (ip6._S6_un._S6_u8[i] == 0 && 5941 #else 5942 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5943 #endif 5944 i == sizeof (struct in6_addr) - 1) 5945 numzero += 2; 5946 } 5947 } 5948 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5949 5950 /* 5951 * Check for an IPv4 embedded address. 5952 */ 5953 v6end = sizeof (struct in6_addr) - 2; 5954 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5955 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5956 for (i = sizeof (struct in6_addr) - 1; 5957 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5958 ASSERT(end >= base); 5959 5960 #ifdef illumos 5961 val = ip6._S6_un._S6_u8[i]; 5962 #else 5963 val = ip6.__u6_addr.__u6_addr8[i]; 5964 #endif 5965 5966 if (val == 0) { 5967 *end-- = '0'; 5968 } else { 5969 for (; val; val /= 10) { 5970 *end-- = '0' + val % 10; 5971 } 5972 } 5973 5974 if (i > DTRACE_V4MAPPED_OFFSET) 5975 *end-- = '.'; 5976 } 5977 5978 if (subr == DIF_SUBR_INET_NTOA6) 5979 goto inetout; 5980 5981 /* 5982 * Set v6end to skip the IPv4 address that 5983 * we have already stringified. 5984 */ 5985 v6end = 10; 5986 } 5987 5988 /* 5989 * Build the IPv6 string by working through the 5990 * address in reverse. 5991 */ 5992 for (i = v6end; i >= 0; i -= 2) { 5993 ASSERT(end >= base); 5994 5995 if (i == firstzero + numzero - 2) { 5996 *end-- = ':'; 5997 *end-- = ':'; 5998 i -= numzero - 2; 5999 continue; 6000 } 6001 6002 if (i < 14 && i != firstzero - 2) 6003 *end-- = ':'; 6004 6005 #ifdef illumos 6006 val = (ip6._S6_un._S6_u8[i] << 8) + 6007 ip6._S6_un._S6_u8[i + 1]; 6008 #else 6009 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6010 ip6.__u6_addr.__u6_addr8[i + 1]; 6011 #endif 6012 6013 if (val == 0) { 6014 *end-- = '0'; 6015 } else { 6016 for (; val; val /= 16) { 6017 *end-- = digits[val % 16]; 6018 } 6019 } 6020 } 6021 ASSERT(end + 1 >= base); 6022 6023 } else { 6024 /* 6025 * The user didn't use AH_INET or AH_INET6. 6026 */ 6027 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6028 regs[rd] = 0; 6029 break; 6030 } 6031 6032 inetout: regs[rd] = (uintptr_t)end + 1; 6033 mstate->dtms_scratch_ptr += size; 6034 break; 6035 } 6036 6037 case DIF_SUBR_MEMREF: { 6038 uintptr_t size = 2 * sizeof(uintptr_t); 6039 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6040 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6041 6042 /* address and length */ 6043 memref[0] = tupregs[0].dttk_value; 6044 memref[1] = tupregs[1].dttk_value; 6045 6046 regs[rd] = (uintptr_t) memref; 6047 mstate->dtms_scratch_ptr += scratch_size; 6048 break; 6049 } 6050 6051 #ifndef illumos 6052 case DIF_SUBR_MEMSTR: { 6053 char *str = (char *)mstate->dtms_scratch_ptr; 6054 uintptr_t mem = tupregs[0].dttk_value; 6055 char c = tupregs[1].dttk_value; 6056 size_t size = tupregs[2].dttk_value; 6057 uint8_t n; 6058 int i; 6059 6060 regs[rd] = 0; 6061 6062 if (size == 0) 6063 break; 6064 6065 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6066 break; 6067 6068 if (!DTRACE_INSCRATCH(mstate, size)) { 6069 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6070 break; 6071 } 6072 6073 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6074 *flags |= CPU_DTRACE_ILLOP; 6075 break; 6076 } 6077 6078 for (i = 0; i < size - 1; i++) { 6079 n = dtrace_load8(mem++); 6080 str[i] = (n == 0) ? c : n; 6081 } 6082 str[size - 1] = 0; 6083 6084 regs[rd] = (uintptr_t)str; 6085 mstate->dtms_scratch_ptr += size; 6086 break; 6087 } 6088 #endif 6089 } 6090 } 6091 6092 /* 6093 * Emulate the execution of DTrace IR instructions specified by the given 6094 * DIF object. This function is deliberately void of assertions as all of 6095 * the necessary checks are handled by a call to dtrace_difo_validate(). 6096 */ 6097 static uint64_t 6098 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6099 dtrace_vstate_t *vstate, dtrace_state_t *state) 6100 { 6101 const dif_instr_t *text = difo->dtdo_buf; 6102 const uint_t textlen = difo->dtdo_len; 6103 const char *strtab = difo->dtdo_strtab; 6104 const uint64_t *inttab = difo->dtdo_inttab; 6105 6106 uint64_t rval = 0; 6107 dtrace_statvar_t *svar; 6108 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6109 dtrace_difv_t *v; 6110 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6111 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6112 6113 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6114 uint64_t regs[DIF_DIR_NREGS]; 6115 uint64_t *tmp; 6116 6117 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6118 int64_t cc_r; 6119 uint_t pc = 0, id, opc = 0; 6120 uint8_t ttop = 0; 6121 dif_instr_t instr; 6122 uint_t r1, r2, rd; 6123 6124 /* 6125 * We stash the current DIF object into the machine state: we need it 6126 * for subsequent access checking. 6127 */ 6128 mstate->dtms_difo = difo; 6129 6130 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6131 6132 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6133 opc = pc; 6134 6135 instr = text[pc++]; 6136 r1 = DIF_INSTR_R1(instr); 6137 r2 = DIF_INSTR_R2(instr); 6138 rd = DIF_INSTR_RD(instr); 6139 6140 switch (DIF_INSTR_OP(instr)) { 6141 case DIF_OP_OR: 6142 regs[rd] = regs[r1] | regs[r2]; 6143 break; 6144 case DIF_OP_XOR: 6145 regs[rd] = regs[r1] ^ regs[r2]; 6146 break; 6147 case DIF_OP_AND: 6148 regs[rd] = regs[r1] & regs[r2]; 6149 break; 6150 case DIF_OP_SLL: 6151 regs[rd] = regs[r1] << regs[r2]; 6152 break; 6153 case DIF_OP_SRL: 6154 regs[rd] = regs[r1] >> regs[r2]; 6155 break; 6156 case DIF_OP_SUB: 6157 regs[rd] = regs[r1] - regs[r2]; 6158 break; 6159 case DIF_OP_ADD: 6160 regs[rd] = regs[r1] + regs[r2]; 6161 break; 6162 case DIF_OP_MUL: 6163 regs[rd] = regs[r1] * regs[r2]; 6164 break; 6165 case DIF_OP_SDIV: 6166 if (regs[r2] == 0) { 6167 regs[rd] = 0; 6168 *flags |= CPU_DTRACE_DIVZERO; 6169 } else { 6170 regs[rd] = (int64_t)regs[r1] / 6171 (int64_t)regs[r2]; 6172 } 6173 break; 6174 6175 case DIF_OP_UDIV: 6176 if (regs[r2] == 0) { 6177 regs[rd] = 0; 6178 *flags |= CPU_DTRACE_DIVZERO; 6179 } else { 6180 regs[rd] = regs[r1] / regs[r2]; 6181 } 6182 break; 6183 6184 case DIF_OP_SREM: 6185 if (regs[r2] == 0) { 6186 regs[rd] = 0; 6187 *flags |= CPU_DTRACE_DIVZERO; 6188 } else { 6189 regs[rd] = (int64_t)regs[r1] % 6190 (int64_t)regs[r2]; 6191 } 6192 break; 6193 6194 case DIF_OP_UREM: 6195 if (regs[r2] == 0) { 6196 regs[rd] = 0; 6197 *flags |= CPU_DTRACE_DIVZERO; 6198 } else { 6199 regs[rd] = regs[r1] % regs[r2]; 6200 } 6201 break; 6202 6203 case DIF_OP_NOT: 6204 regs[rd] = ~regs[r1]; 6205 break; 6206 case DIF_OP_MOV: 6207 regs[rd] = regs[r1]; 6208 break; 6209 case DIF_OP_CMP: 6210 cc_r = regs[r1] - regs[r2]; 6211 cc_n = cc_r < 0; 6212 cc_z = cc_r == 0; 6213 cc_v = 0; 6214 cc_c = regs[r1] < regs[r2]; 6215 break; 6216 case DIF_OP_TST: 6217 cc_n = cc_v = cc_c = 0; 6218 cc_z = regs[r1] == 0; 6219 break; 6220 case DIF_OP_BA: 6221 pc = DIF_INSTR_LABEL(instr); 6222 break; 6223 case DIF_OP_BE: 6224 if (cc_z) 6225 pc = DIF_INSTR_LABEL(instr); 6226 break; 6227 case DIF_OP_BNE: 6228 if (cc_z == 0) 6229 pc = DIF_INSTR_LABEL(instr); 6230 break; 6231 case DIF_OP_BG: 6232 if ((cc_z | (cc_n ^ cc_v)) == 0) 6233 pc = DIF_INSTR_LABEL(instr); 6234 break; 6235 case DIF_OP_BGU: 6236 if ((cc_c | cc_z) == 0) 6237 pc = DIF_INSTR_LABEL(instr); 6238 break; 6239 case DIF_OP_BGE: 6240 if ((cc_n ^ cc_v) == 0) 6241 pc = DIF_INSTR_LABEL(instr); 6242 break; 6243 case DIF_OP_BGEU: 6244 if (cc_c == 0) 6245 pc = DIF_INSTR_LABEL(instr); 6246 break; 6247 case DIF_OP_BL: 6248 if (cc_n ^ cc_v) 6249 pc = DIF_INSTR_LABEL(instr); 6250 break; 6251 case DIF_OP_BLU: 6252 if (cc_c) 6253 pc = DIF_INSTR_LABEL(instr); 6254 break; 6255 case DIF_OP_BLE: 6256 if (cc_z | (cc_n ^ cc_v)) 6257 pc = DIF_INSTR_LABEL(instr); 6258 break; 6259 case DIF_OP_BLEU: 6260 if (cc_c | cc_z) 6261 pc = DIF_INSTR_LABEL(instr); 6262 break; 6263 case DIF_OP_RLDSB: 6264 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6265 break; 6266 /*FALLTHROUGH*/ 6267 case DIF_OP_LDSB: 6268 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6269 break; 6270 case DIF_OP_RLDSH: 6271 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6272 break; 6273 /*FALLTHROUGH*/ 6274 case DIF_OP_LDSH: 6275 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6276 break; 6277 case DIF_OP_RLDSW: 6278 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6279 break; 6280 /*FALLTHROUGH*/ 6281 case DIF_OP_LDSW: 6282 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6283 break; 6284 case DIF_OP_RLDUB: 6285 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6286 break; 6287 /*FALLTHROUGH*/ 6288 case DIF_OP_LDUB: 6289 regs[rd] = dtrace_load8(regs[r1]); 6290 break; 6291 case DIF_OP_RLDUH: 6292 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6293 break; 6294 /*FALLTHROUGH*/ 6295 case DIF_OP_LDUH: 6296 regs[rd] = dtrace_load16(regs[r1]); 6297 break; 6298 case DIF_OP_RLDUW: 6299 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6300 break; 6301 /*FALLTHROUGH*/ 6302 case DIF_OP_LDUW: 6303 regs[rd] = dtrace_load32(regs[r1]); 6304 break; 6305 case DIF_OP_RLDX: 6306 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6307 break; 6308 /*FALLTHROUGH*/ 6309 case DIF_OP_LDX: 6310 regs[rd] = dtrace_load64(regs[r1]); 6311 break; 6312 case DIF_OP_ULDSB: 6313 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6314 regs[rd] = (int8_t) 6315 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6316 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6317 break; 6318 case DIF_OP_ULDSH: 6319 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6320 regs[rd] = (int16_t) 6321 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6322 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6323 break; 6324 case DIF_OP_ULDSW: 6325 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6326 regs[rd] = (int32_t) 6327 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6328 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6329 break; 6330 case DIF_OP_ULDUB: 6331 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6332 regs[rd] = 6333 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6334 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6335 break; 6336 case DIF_OP_ULDUH: 6337 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6338 regs[rd] = 6339 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6340 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6341 break; 6342 case DIF_OP_ULDUW: 6343 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6344 regs[rd] = 6345 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6346 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6347 break; 6348 case DIF_OP_ULDX: 6349 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6350 regs[rd] = 6351 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6352 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6353 break; 6354 case DIF_OP_RET: 6355 rval = regs[rd]; 6356 pc = textlen; 6357 break; 6358 case DIF_OP_NOP: 6359 break; 6360 case DIF_OP_SETX: 6361 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6362 break; 6363 case DIF_OP_SETS: 6364 regs[rd] = (uint64_t)(uintptr_t) 6365 (strtab + DIF_INSTR_STRING(instr)); 6366 break; 6367 case DIF_OP_SCMP: { 6368 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6369 uintptr_t s1 = regs[r1]; 6370 uintptr_t s2 = regs[r2]; 6371 size_t lim1, lim2; 6372 6373 /* 6374 * If one of the strings is NULL then the limit becomes 6375 * 0 which compares 0 characters in dtrace_strncmp() 6376 * resulting in a false positive. dtrace_strncmp() 6377 * treats a NULL as an empty 1-char string. 6378 */ 6379 lim1 = lim2 = 1; 6380 6381 if (s1 != 0 && 6382 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6383 break; 6384 if (s2 != 0 && 6385 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6386 break; 6387 6388 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6389 MIN(lim1, lim2)); 6390 6391 cc_n = cc_r < 0; 6392 cc_z = cc_r == 0; 6393 cc_v = cc_c = 0; 6394 break; 6395 } 6396 case DIF_OP_LDGA: 6397 regs[rd] = dtrace_dif_variable(mstate, state, 6398 r1, regs[r2]); 6399 break; 6400 case DIF_OP_LDGS: 6401 id = DIF_INSTR_VAR(instr); 6402 6403 if (id >= DIF_VAR_OTHER_UBASE) { 6404 uintptr_t a; 6405 6406 id -= DIF_VAR_OTHER_UBASE; 6407 svar = vstate->dtvs_globals[id]; 6408 ASSERT(svar != NULL); 6409 v = &svar->dtsv_var; 6410 6411 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6412 regs[rd] = svar->dtsv_data; 6413 break; 6414 } 6415 6416 a = (uintptr_t)svar->dtsv_data; 6417 6418 if (*(uint8_t *)a == UINT8_MAX) { 6419 /* 6420 * If the 0th byte is set to UINT8_MAX 6421 * then this is to be treated as a 6422 * reference to a NULL variable. 6423 */ 6424 regs[rd] = 0; 6425 } else { 6426 regs[rd] = a + sizeof (uint64_t); 6427 } 6428 6429 break; 6430 } 6431 6432 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6433 break; 6434 6435 case DIF_OP_STGS: 6436 id = DIF_INSTR_VAR(instr); 6437 6438 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6439 id -= DIF_VAR_OTHER_UBASE; 6440 6441 VERIFY(id < vstate->dtvs_nglobals); 6442 svar = vstate->dtvs_globals[id]; 6443 ASSERT(svar != NULL); 6444 v = &svar->dtsv_var; 6445 6446 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6447 uintptr_t a = (uintptr_t)svar->dtsv_data; 6448 size_t lim; 6449 6450 ASSERT(a != 0); 6451 ASSERT(svar->dtsv_size != 0); 6452 6453 if (regs[rd] == 0) { 6454 *(uint8_t *)a = UINT8_MAX; 6455 break; 6456 } else { 6457 *(uint8_t *)a = 0; 6458 a += sizeof (uint64_t); 6459 } 6460 if (!dtrace_vcanload( 6461 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6462 &lim, mstate, vstate)) 6463 break; 6464 6465 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6466 (void *)a, &v->dtdv_type, lim); 6467 break; 6468 } 6469 6470 svar->dtsv_data = regs[rd]; 6471 break; 6472 6473 case DIF_OP_LDTA: 6474 /* 6475 * There are no DTrace built-in thread-local arrays at 6476 * present. This opcode is saved for future work. 6477 */ 6478 *flags |= CPU_DTRACE_ILLOP; 6479 regs[rd] = 0; 6480 break; 6481 6482 case DIF_OP_LDLS: 6483 id = DIF_INSTR_VAR(instr); 6484 6485 if (id < DIF_VAR_OTHER_UBASE) { 6486 /* 6487 * For now, this has no meaning. 6488 */ 6489 regs[rd] = 0; 6490 break; 6491 } 6492 6493 id -= DIF_VAR_OTHER_UBASE; 6494 6495 ASSERT(id < vstate->dtvs_nlocals); 6496 ASSERT(vstate->dtvs_locals != NULL); 6497 6498 svar = vstate->dtvs_locals[id]; 6499 ASSERT(svar != NULL); 6500 v = &svar->dtsv_var; 6501 6502 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6503 uintptr_t a = (uintptr_t)svar->dtsv_data; 6504 size_t sz = v->dtdv_type.dtdt_size; 6505 size_t lim; 6506 6507 sz += sizeof (uint64_t); 6508 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6509 a += curcpu * sz; 6510 6511 if (*(uint8_t *)a == UINT8_MAX) { 6512 /* 6513 * If the 0th byte is set to UINT8_MAX 6514 * then this is to be treated as a 6515 * reference to a NULL variable. 6516 */ 6517 regs[rd] = 0; 6518 } else { 6519 regs[rd] = a + sizeof (uint64_t); 6520 } 6521 6522 break; 6523 } 6524 6525 ASSERT(svar->dtsv_size == 6526 (mp_maxid + 1) * sizeof (uint64_t)); 6527 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6528 regs[rd] = tmp[curcpu]; 6529 break; 6530 6531 case DIF_OP_STLS: 6532 id = DIF_INSTR_VAR(instr); 6533 6534 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6535 id -= DIF_VAR_OTHER_UBASE; 6536 VERIFY(id < vstate->dtvs_nlocals); 6537 6538 ASSERT(vstate->dtvs_locals != NULL); 6539 svar = vstate->dtvs_locals[id]; 6540 ASSERT(svar != NULL); 6541 v = &svar->dtsv_var; 6542 6543 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6544 uintptr_t a = (uintptr_t)svar->dtsv_data; 6545 size_t sz = v->dtdv_type.dtdt_size; 6546 size_t lim; 6547 6548 sz += sizeof (uint64_t); 6549 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6550 a += curcpu * sz; 6551 6552 if (regs[rd] == 0) { 6553 *(uint8_t *)a = UINT8_MAX; 6554 break; 6555 } else { 6556 *(uint8_t *)a = 0; 6557 a += sizeof (uint64_t); 6558 } 6559 6560 if (!dtrace_vcanload( 6561 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6562 &lim, mstate, vstate)) 6563 break; 6564 6565 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6566 (void *)a, &v->dtdv_type, lim); 6567 break; 6568 } 6569 6570 ASSERT(svar->dtsv_size == 6571 (mp_maxid + 1) * sizeof (uint64_t)); 6572 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6573 tmp[curcpu] = regs[rd]; 6574 break; 6575 6576 case DIF_OP_LDTS: { 6577 dtrace_dynvar_t *dvar; 6578 dtrace_key_t *key; 6579 6580 id = DIF_INSTR_VAR(instr); 6581 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6582 id -= DIF_VAR_OTHER_UBASE; 6583 v = &vstate->dtvs_tlocals[id]; 6584 6585 key = &tupregs[DIF_DTR_NREGS]; 6586 key[0].dttk_value = (uint64_t)id; 6587 key[0].dttk_size = 0; 6588 DTRACE_TLS_THRKEY(key[1].dttk_value); 6589 key[1].dttk_size = 0; 6590 6591 dvar = dtrace_dynvar(dstate, 2, key, 6592 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6593 mstate, vstate); 6594 6595 if (dvar == NULL) { 6596 regs[rd] = 0; 6597 break; 6598 } 6599 6600 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6601 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6602 } else { 6603 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6604 } 6605 6606 break; 6607 } 6608 6609 case DIF_OP_STTS: { 6610 dtrace_dynvar_t *dvar; 6611 dtrace_key_t *key; 6612 6613 id = DIF_INSTR_VAR(instr); 6614 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6615 id -= DIF_VAR_OTHER_UBASE; 6616 VERIFY(id < vstate->dtvs_ntlocals); 6617 6618 key = &tupregs[DIF_DTR_NREGS]; 6619 key[0].dttk_value = (uint64_t)id; 6620 key[0].dttk_size = 0; 6621 DTRACE_TLS_THRKEY(key[1].dttk_value); 6622 key[1].dttk_size = 0; 6623 v = &vstate->dtvs_tlocals[id]; 6624 6625 dvar = dtrace_dynvar(dstate, 2, key, 6626 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6627 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6628 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6629 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6630 6631 /* 6632 * Given that we're storing to thread-local data, 6633 * we need to flush our predicate cache. 6634 */ 6635 curthread->t_predcache = 0; 6636 6637 if (dvar == NULL) 6638 break; 6639 6640 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6641 size_t lim; 6642 6643 if (!dtrace_vcanload( 6644 (void *)(uintptr_t)regs[rd], 6645 &v->dtdv_type, &lim, mstate, vstate)) 6646 break; 6647 6648 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6649 dvar->dtdv_data, &v->dtdv_type, lim); 6650 } else { 6651 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6652 } 6653 6654 break; 6655 } 6656 6657 case DIF_OP_SRA: 6658 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6659 break; 6660 6661 case DIF_OP_CALL: 6662 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6663 regs, tupregs, ttop, mstate, state); 6664 break; 6665 6666 case DIF_OP_PUSHTR: 6667 if (ttop == DIF_DTR_NREGS) { 6668 *flags |= CPU_DTRACE_TUPOFLOW; 6669 break; 6670 } 6671 6672 if (r1 == DIF_TYPE_STRING) { 6673 /* 6674 * If this is a string type and the size is 0, 6675 * we'll use the system-wide default string 6676 * size. Note that we are _not_ looking at 6677 * the value of the DTRACEOPT_STRSIZE option; 6678 * had this been set, we would expect to have 6679 * a non-zero size value in the "pushtr". 6680 */ 6681 tupregs[ttop].dttk_size = 6682 dtrace_strlen((char *)(uintptr_t)regs[rd], 6683 regs[r2] ? regs[r2] : 6684 dtrace_strsize_default) + 1; 6685 } else { 6686 if (regs[r2] > LONG_MAX) { 6687 *flags |= CPU_DTRACE_ILLOP; 6688 break; 6689 } 6690 6691 tupregs[ttop].dttk_size = regs[r2]; 6692 } 6693 6694 tupregs[ttop++].dttk_value = regs[rd]; 6695 break; 6696 6697 case DIF_OP_PUSHTV: 6698 if (ttop == DIF_DTR_NREGS) { 6699 *flags |= CPU_DTRACE_TUPOFLOW; 6700 break; 6701 } 6702 6703 tupregs[ttop].dttk_value = regs[rd]; 6704 tupregs[ttop++].dttk_size = 0; 6705 break; 6706 6707 case DIF_OP_POPTS: 6708 if (ttop != 0) 6709 ttop--; 6710 break; 6711 6712 case DIF_OP_FLUSHTS: 6713 ttop = 0; 6714 break; 6715 6716 case DIF_OP_LDGAA: 6717 case DIF_OP_LDTAA: { 6718 dtrace_dynvar_t *dvar; 6719 dtrace_key_t *key = tupregs; 6720 uint_t nkeys = ttop; 6721 6722 id = DIF_INSTR_VAR(instr); 6723 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6724 id -= DIF_VAR_OTHER_UBASE; 6725 6726 key[nkeys].dttk_value = (uint64_t)id; 6727 key[nkeys++].dttk_size = 0; 6728 6729 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6730 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6731 key[nkeys++].dttk_size = 0; 6732 VERIFY(id < vstate->dtvs_ntlocals); 6733 v = &vstate->dtvs_tlocals[id]; 6734 } else { 6735 VERIFY(id < vstate->dtvs_nglobals); 6736 v = &vstate->dtvs_globals[id]->dtsv_var; 6737 } 6738 6739 dvar = dtrace_dynvar(dstate, nkeys, key, 6740 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6741 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6742 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6743 6744 if (dvar == NULL) { 6745 regs[rd] = 0; 6746 break; 6747 } 6748 6749 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6750 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6751 } else { 6752 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6753 } 6754 6755 break; 6756 } 6757 6758 case DIF_OP_STGAA: 6759 case DIF_OP_STTAA: { 6760 dtrace_dynvar_t *dvar; 6761 dtrace_key_t *key = tupregs; 6762 uint_t nkeys = ttop; 6763 6764 id = DIF_INSTR_VAR(instr); 6765 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6766 id -= DIF_VAR_OTHER_UBASE; 6767 6768 key[nkeys].dttk_value = (uint64_t)id; 6769 key[nkeys++].dttk_size = 0; 6770 6771 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6772 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6773 key[nkeys++].dttk_size = 0; 6774 VERIFY(id < vstate->dtvs_ntlocals); 6775 v = &vstate->dtvs_tlocals[id]; 6776 } else { 6777 VERIFY(id < vstate->dtvs_nglobals); 6778 v = &vstate->dtvs_globals[id]->dtsv_var; 6779 } 6780 6781 dvar = dtrace_dynvar(dstate, nkeys, key, 6782 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6783 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6784 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6785 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6786 6787 if (dvar == NULL) 6788 break; 6789 6790 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6791 size_t lim; 6792 6793 if (!dtrace_vcanload( 6794 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6795 &lim, mstate, vstate)) 6796 break; 6797 6798 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6799 dvar->dtdv_data, &v->dtdv_type, lim); 6800 } else { 6801 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6802 } 6803 6804 break; 6805 } 6806 6807 case DIF_OP_ALLOCS: { 6808 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6809 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6810 6811 /* 6812 * Rounding up the user allocation size could have 6813 * overflowed large, bogus allocations (like -1ULL) to 6814 * 0. 6815 */ 6816 if (size < regs[r1] || 6817 !DTRACE_INSCRATCH(mstate, size)) { 6818 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6819 regs[rd] = 0; 6820 break; 6821 } 6822 6823 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6824 mstate->dtms_scratch_ptr += size; 6825 regs[rd] = ptr; 6826 break; 6827 } 6828 6829 case DIF_OP_COPYS: 6830 if (!dtrace_canstore(regs[rd], regs[r2], 6831 mstate, vstate)) { 6832 *flags |= CPU_DTRACE_BADADDR; 6833 *illval = regs[rd]; 6834 break; 6835 } 6836 6837 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6838 break; 6839 6840 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6841 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6842 break; 6843 6844 case DIF_OP_STB: 6845 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6846 *flags |= CPU_DTRACE_BADADDR; 6847 *illval = regs[rd]; 6848 break; 6849 } 6850 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6851 break; 6852 6853 case DIF_OP_STH: 6854 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6855 *flags |= CPU_DTRACE_BADADDR; 6856 *illval = regs[rd]; 6857 break; 6858 } 6859 if (regs[rd] & 1) { 6860 *flags |= CPU_DTRACE_BADALIGN; 6861 *illval = regs[rd]; 6862 break; 6863 } 6864 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6865 break; 6866 6867 case DIF_OP_STW: 6868 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6869 *flags |= CPU_DTRACE_BADADDR; 6870 *illval = regs[rd]; 6871 break; 6872 } 6873 if (regs[rd] & 3) { 6874 *flags |= CPU_DTRACE_BADALIGN; 6875 *illval = regs[rd]; 6876 break; 6877 } 6878 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6879 break; 6880 6881 case DIF_OP_STX: 6882 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6883 *flags |= CPU_DTRACE_BADADDR; 6884 *illval = regs[rd]; 6885 break; 6886 } 6887 if (regs[rd] & 7) { 6888 *flags |= CPU_DTRACE_BADALIGN; 6889 *illval = regs[rd]; 6890 break; 6891 } 6892 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6893 break; 6894 } 6895 } 6896 6897 if (!(*flags & CPU_DTRACE_FAULT)) 6898 return (rval); 6899 6900 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6901 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6902 6903 return (0); 6904 } 6905 6906 static void 6907 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6908 { 6909 dtrace_probe_t *probe = ecb->dte_probe; 6910 dtrace_provider_t *prov = probe->dtpr_provider; 6911 char c[DTRACE_FULLNAMELEN + 80], *str; 6912 char *msg = "dtrace: breakpoint action at probe "; 6913 char *ecbmsg = " (ecb "; 6914 uintptr_t val = (uintptr_t)ecb; 6915 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6916 6917 if (dtrace_destructive_disallow) 6918 return; 6919 6920 /* 6921 * It's impossible to be taking action on the NULL probe. 6922 */ 6923 ASSERT(probe != NULL); 6924 6925 /* 6926 * This is a poor man's (destitute man's?) sprintf(): we want to 6927 * print the provider name, module name, function name and name of 6928 * the probe, along with the hex address of the ECB with the breakpoint 6929 * action -- all of which we must place in the character buffer by 6930 * hand. 6931 */ 6932 while (*msg != '\0') 6933 c[i++] = *msg++; 6934 6935 for (str = prov->dtpv_name; *str != '\0'; str++) 6936 c[i++] = *str; 6937 c[i++] = ':'; 6938 6939 for (str = probe->dtpr_mod; *str != '\0'; str++) 6940 c[i++] = *str; 6941 c[i++] = ':'; 6942 6943 for (str = probe->dtpr_func; *str != '\0'; str++) 6944 c[i++] = *str; 6945 c[i++] = ':'; 6946 6947 for (str = probe->dtpr_name; *str != '\0'; str++) 6948 c[i++] = *str; 6949 6950 while (*ecbmsg != '\0') 6951 c[i++] = *ecbmsg++; 6952 6953 while (shift >= 0) { 6954 size_t mask = (size_t)0xf << shift; 6955 6956 if (val >= ((size_t)1 << shift)) 6957 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6958 shift -= 4; 6959 } 6960 6961 c[i++] = ')'; 6962 c[i] = '\0'; 6963 6964 #ifdef illumos 6965 debug_enter(c); 6966 #else 6967 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6968 #endif 6969 } 6970 6971 static void 6972 dtrace_action_panic(dtrace_ecb_t *ecb) 6973 { 6974 dtrace_probe_t *probe = ecb->dte_probe; 6975 6976 /* 6977 * It's impossible to be taking action on the NULL probe. 6978 */ 6979 ASSERT(probe != NULL); 6980 6981 if (dtrace_destructive_disallow) 6982 return; 6983 6984 if (dtrace_panicked != NULL) 6985 return; 6986 6987 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6988 return; 6989 6990 /* 6991 * We won the right to panic. (We want to be sure that only one 6992 * thread calls panic() from dtrace_probe(), and that panic() is 6993 * called exactly once.) 6994 */ 6995 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6996 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6997 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6998 } 6999 7000 static void 7001 dtrace_action_raise(uint64_t sig) 7002 { 7003 if (dtrace_destructive_disallow) 7004 return; 7005 7006 if (sig >= NSIG) { 7007 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7008 return; 7009 } 7010 7011 #ifdef illumos 7012 /* 7013 * raise() has a queue depth of 1 -- we ignore all subsequent 7014 * invocations of the raise() action. 7015 */ 7016 if (curthread->t_dtrace_sig == 0) 7017 curthread->t_dtrace_sig = (uint8_t)sig; 7018 7019 curthread->t_sig_check = 1; 7020 aston(curthread); 7021 #else 7022 struct proc *p = curproc; 7023 PROC_LOCK(p); 7024 kern_psignal(p, sig); 7025 PROC_UNLOCK(p); 7026 #endif 7027 } 7028 7029 static void 7030 dtrace_action_stop(void) 7031 { 7032 if (dtrace_destructive_disallow) 7033 return; 7034 7035 #ifdef illumos 7036 if (!curthread->t_dtrace_stop) { 7037 curthread->t_dtrace_stop = 1; 7038 curthread->t_sig_check = 1; 7039 aston(curthread); 7040 } 7041 #else 7042 struct proc *p = curproc; 7043 PROC_LOCK(p); 7044 kern_psignal(p, SIGSTOP); 7045 PROC_UNLOCK(p); 7046 #endif 7047 } 7048 7049 static void 7050 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7051 { 7052 hrtime_t now; 7053 volatile uint16_t *flags; 7054 #ifdef illumos 7055 cpu_t *cpu = CPU; 7056 #else 7057 cpu_t *cpu = &solaris_cpu[curcpu]; 7058 #endif 7059 7060 if (dtrace_destructive_disallow) 7061 return; 7062 7063 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7064 7065 now = dtrace_gethrtime(); 7066 7067 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7068 /* 7069 * We need to advance the mark to the current time. 7070 */ 7071 cpu->cpu_dtrace_chillmark = now; 7072 cpu->cpu_dtrace_chilled = 0; 7073 } 7074 7075 /* 7076 * Now check to see if the requested chill time would take us over 7077 * the maximum amount of time allowed in the chill interval. (Or 7078 * worse, if the calculation itself induces overflow.) 7079 */ 7080 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7081 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7082 *flags |= CPU_DTRACE_ILLOP; 7083 return; 7084 } 7085 7086 while (dtrace_gethrtime() - now < val) 7087 continue; 7088 7089 /* 7090 * Normally, we assure that the value of the variable "timestamp" does 7091 * not change within an ECB. The presence of chill() represents an 7092 * exception to this rule, however. 7093 */ 7094 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7095 cpu->cpu_dtrace_chilled += val; 7096 } 7097 7098 static void 7099 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7100 uint64_t *buf, uint64_t arg) 7101 { 7102 int nframes = DTRACE_USTACK_NFRAMES(arg); 7103 int strsize = DTRACE_USTACK_STRSIZE(arg); 7104 uint64_t *pcs = &buf[1], *fps; 7105 char *str = (char *)&pcs[nframes]; 7106 int size, offs = 0, i, j; 7107 size_t rem; 7108 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7109 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7110 char *sym; 7111 7112 /* 7113 * Should be taking a faster path if string space has not been 7114 * allocated. 7115 */ 7116 ASSERT(strsize != 0); 7117 7118 /* 7119 * We will first allocate some temporary space for the frame pointers. 7120 */ 7121 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7122 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7123 (nframes * sizeof (uint64_t)); 7124 7125 if (!DTRACE_INSCRATCH(mstate, size)) { 7126 /* 7127 * Not enough room for our frame pointers -- need to indicate 7128 * that we ran out of scratch space. 7129 */ 7130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7131 return; 7132 } 7133 7134 mstate->dtms_scratch_ptr += size; 7135 saved = mstate->dtms_scratch_ptr; 7136 7137 /* 7138 * Now get a stack with both program counters and frame pointers. 7139 */ 7140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7141 dtrace_getufpstack(buf, fps, nframes + 1); 7142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7143 7144 /* 7145 * If that faulted, we're cooked. 7146 */ 7147 if (*flags & CPU_DTRACE_FAULT) 7148 goto out; 7149 7150 /* 7151 * Now we want to walk up the stack, calling the USTACK helper. For 7152 * each iteration, we restore the scratch pointer. 7153 */ 7154 for (i = 0; i < nframes; i++) { 7155 mstate->dtms_scratch_ptr = saved; 7156 7157 if (offs >= strsize) 7158 break; 7159 7160 sym = (char *)(uintptr_t)dtrace_helper( 7161 DTRACE_HELPER_ACTION_USTACK, 7162 mstate, state, pcs[i], fps[i]); 7163 7164 /* 7165 * If we faulted while running the helper, we're going to 7166 * clear the fault and null out the corresponding string. 7167 */ 7168 if (*flags & CPU_DTRACE_FAULT) { 7169 *flags &= ~CPU_DTRACE_FAULT; 7170 str[offs++] = '\0'; 7171 continue; 7172 } 7173 7174 if (sym == NULL) { 7175 str[offs++] = '\0'; 7176 continue; 7177 } 7178 7179 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7180 &(state->dts_vstate))) { 7181 str[offs++] = '\0'; 7182 continue; 7183 } 7184 7185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7186 7187 /* 7188 * Now copy in the string that the helper returned to us. 7189 */ 7190 for (j = 0; offs + j < strsize && j < rem; j++) { 7191 if ((str[offs + j] = sym[j]) == '\0') 7192 break; 7193 } 7194 7195 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7196 7197 offs += j + 1; 7198 } 7199 7200 if (offs >= strsize) { 7201 /* 7202 * If we didn't have room for all of the strings, we don't 7203 * abort processing -- this needn't be a fatal error -- but we 7204 * still want to increment a counter (dts_stkstroverflows) to 7205 * allow this condition to be warned about. (If this is from 7206 * a jstack() action, it is easily tuned via jstackstrsize.) 7207 */ 7208 dtrace_error(&state->dts_stkstroverflows); 7209 } 7210 7211 while (offs < strsize) 7212 str[offs++] = '\0'; 7213 7214 out: 7215 mstate->dtms_scratch_ptr = old; 7216 } 7217 7218 static void 7219 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7220 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7221 { 7222 volatile uint16_t *flags; 7223 uint64_t val = *valp; 7224 size_t valoffs = *valoffsp; 7225 7226 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7227 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7228 7229 /* 7230 * If this is a string, we're going to only load until we find the zero 7231 * byte -- after which we'll store zero bytes. 7232 */ 7233 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7234 char c = '\0' + 1; 7235 size_t s; 7236 7237 for (s = 0; s < size; s++) { 7238 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7239 c = dtrace_load8(val++); 7240 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7241 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7242 c = dtrace_fuword8((void *)(uintptr_t)val++); 7243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7244 if (*flags & CPU_DTRACE_FAULT) 7245 break; 7246 } 7247 7248 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7249 7250 if (c == '\0' && intuple) 7251 break; 7252 } 7253 } else { 7254 uint8_t c; 7255 while (valoffs < end) { 7256 if (dtkind == DIF_TF_BYREF) { 7257 c = dtrace_load8(val++); 7258 } else if (dtkind == DIF_TF_BYUREF) { 7259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7260 c = dtrace_fuword8((void *)(uintptr_t)val++); 7261 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7262 if (*flags & CPU_DTRACE_FAULT) 7263 break; 7264 } 7265 7266 DTRACE_STORE(uint8_t, tomax, 7267 valoffs++, c); 7268 } 7269 } 7270 7271 *valp = val; 7272 *valoffsp = valoffs; 7273 } 7274 7275 /* 7276 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7277 * defined, we also assert that we are not recursing unless the probe ID is an 7278 * error probe. 7279 */ 7280 static dtrace_icookie_t 7281 dtrace_probe_enter(dtrace_id_t id) 7282 { 7283 dtrace_icookie_t cookie; 7284 7285 cookie = dtrace_interrupt_disable(); 7286 7287 /* 7288 * Unless this is an ERROR probe, we are not allowed to recurse in 7289 * dtrace_probe(). Recursing into DTrace probe usually means that a 7290 * function is instrumented that should not have been instrumented or 7291 * that the ordering guarantee of the records will be violated, 7292 * resulting in unexpected output. If there is an exception to this 7293 * assertion, a new case should be added. 7294 */ 7295 ASSERT(curthread->t_dtrace_inprobe == 0 || 7296 id == dtrace_probeid_error); 7297 curthread->t_dtrace_inprobe = 1; 7298 7299 return (cookie); 7300 } 7301 7302 /* 7303 * Clears the per-thread inprobe flag and enables interrupts. 7304 */ 7305 static void 7306 dtrace_probe_exit(dtrace_icookie_t cookie) 7307 { 7308 7309 curthread->t_dtrace_inprobe = 0; 7310 dtrace_interrupt_enable(cookie); 7311 } 7312 7313 /* 7314 * If you're looking for the epicenter of DTrace, you just found it. This 7315 * is the function called by the provider to fire a probe -- from which all 7316 * subsequent probe-context DTrace activity emanates. 7317 */ 7318 void 7319 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7320 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7321 { 7322 processorid_t cpuid; 7323 dtrace_icookie_t cookie; 7324 dtrace_probe_t *probe; 7325 dtrace_mstate_t mstate; 7326 dtrace_ecb_t *ecb; 7327 dtrace_action_t *act; 7328 intptr_t offs; 7329 size_t size; 7330 int vtime, onintr; 7331 volatile uint16_t *flags; 7332 hrtime_t now; 7333 7334 if (KERNEL_PANICKED()) 7335 return; 7336 7337 #ifdef illumos 7338 /* 7339 * Kick out immediately if this CPU is still being born (in which case 7340 * curthread will be set to -1) or the current thread can't allow 7341 * probes in its current context. 7342 */ 7343 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7344 return; 7345 #endif 7346 7347 cookie = dtrace_probe_enter(id); 7348 probe = dtrace_probes[id - 1]; 7349 cpuid = curcpu; 7350 onintr = CPU_ON_INTR(CPU); 7351 7352 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7353 probe->dtpr_predcache == curthread->t_predcache) { 7354 /* 7355 * We have hit in the predicate cache; we know that 7356 * this predicate would evaluate to be false. 7357 */ 7358 dtrace_probe_exit(cookie); 7359 return; 7360 } 7361 7362 #ifdef illumos 7363 if (panic_quiesce) { 7364 #else 7365 if (KERNEL_PANICKED()) { 7366 #endif 7367 /* 7368 * We don't trace anything if we're panicking. 7369 */ 7370 dtrace_probe_exit(cookie); 7371 return; 7372 } 7373 7374 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7375 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7376 vtime = dtrace_vtime_references != 0; 7377 7378 if (vtime && curthread->t_dtrace_start) 7379 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7380 7381 mstate.dtms_difo = NULL; 7382 mstate.dtms_probe = probe; 7383 mstate.dtms_strtok = 0; 7384 mstate.dtms_arg[0] = arg0; 7385 mstate.dtms_arg[1] = arg1; 7386 mstate.dtms_arg[2] = arg2; 7387 mstate.dtms_arg[3] = arg3; 7388 mstate.dtms_arg[4] = arg4; 7389 7390 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7391 7392 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7393 dtrace_predicate_t *pred = ecb->dte_predicate; 7394 dtrace_state_t *state = ecb->dte_state; 7395 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7396 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7397 dtrace_vstate_t *vstate = &state->dts_vstate; 7398 dtrace_provider_t *prov = probe->dtpr_provider; 7399 uint64_t tracememsize = 0; 7400 int committed = 0; 7401 caddr_t tomax; 7402 7403 /* 7404 * A little subtlety with the following (seemingly innocuous) 7405 * declaration of the automatic 'val': by looking at the 7406 * code, you might think that it could be declared in the 7407 * action processing loop, below. (That is, it's only used in 7408 * the action processing loop.) However, it must be declared 7409 * out of that scope because in the case of DIF expression 7410 * arguments to aggregating actions, one iteration of the 7411 * action loop will use the last iteration's value. 7412 */ 7413 uint64_t val = 0; 7414 7415 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7416 mstate.dtms_getf = NULL; 7417 7418 *flags &= ~CPU_DTRACE_ERROR; 7419 7420 if (prov == dtrace_provider) { 7421 /* 7422 * If dtrace itself is the provider of this probe, 7423 * we're only going to continue processing the ECB if 7424 * arg0 (the dtrace_state_t) is equal to the ECB's 7425 * creating state. (This prevents disjoint consumers 7426 * from seeing one another's metaprobes.) 7427 */ 7428 if (arg0 != (uint64_t)(uintptr_t)state) 7429 continue; 7430 } 7431 7432 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7433 /* 7434 * We're not currently active. If our provider isn't 7435 * the dtrace pseudo provider, we're not interested. 7436 */ 7437 if (prov != dtrace_provider) 7438 continue; 7439 7440 /* 7441 * Now we must further check if we are in the BEGIN 7442 * probe. If we are, we will only continue processing 7443 * if we're still in WARMUP -- if one BEGIN enabling 7444 * has invoked the exit() action, we don't want to 7445 * evaluate subsequent BEGIN enablings. 7446 */ 7447 if (probe->dtpr_id == dtrace_probeid_begin && 7448 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7449 ASSERT(state->dts_activity == 7450 DTRACE_ACTIVITY_DRAINING); 7451 continue; 7452 } 7453 } 7454 7455 if (ecb->dte_cond) { 7456 /* 7457 * If the dte_cond bits indicate that this 7458 * consumer is only allowed to see user-mode firings 7459 * of this probe, call the provider's dtps_usermode() 7460 * entry point to check that the probe was fired 7461 * while in a user context. Skip this ECB if that's 7462 * not the case. 7463 */ 7464 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7465 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7466 probe->dtpr_id, probe->dtpr_arg) == 0) 7467 continue; 7468 7469 #ifdef illumos 7470 /* 7471 * This is more subtle than it looks. We have to be 7472 * absolutely certain that CRED() isn't going to 7473 * change out from under us so it's only legit to 7474 * examine that structure if we're in constrained 7475 * situations. Currently, the only times we'll this 7476 * check is if a non-super-user has enabled the 7477 * profile or syscall providers -- providers that 7478 * allow visibility of all processes. For the 7479 * profile case, the check above will ensure that 7480 * we're examining a user context. 7481 */ 7482 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7483 cred_t *cr; 7484 cred_t *s_cr = 7485 ecb->dte_state->dts_cred.dcr_cred; 7486 proc_t *proc; 7487 7488 ASSERT(s_cr != NULL); 7489 7490 if ((cr = CRED()) == NULL || 7491 s_cr->cr_uid != cr->cr_uid || 7492 s_cr->cr_uid != cr->cr_ruid || 7493 s_cr->cr_uid != cr->cr_suid || 7494 s_cr->cr_gid != cr->cr_gid || 7495 s_cr->cr_gid != cr->cr_rgid || 7496 s_cr->cr_gid != cr->cr_sgid || 7497 (proc = ttoproc(curthread)) == NULL || 7498 (proc->p_flag & SNOCD)) 7499 continue; 7500 } 7501 7502 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7503 cred_t *cr; 7504 cred_t *s_cr = 7505 ecb->dte_state->dts_cred.dcr_cred; 7506 7507 ASSERT(s_cr != NULL); 7508 7509 if ((cr = CRED()) == NULL || 7510 s_cr->cr_zone->zone_id != 7511 cr->cr_zone->zone_id) 7512 continue; 7513 } 7514 #endif 7515 } 7516 7517 if (now - state->dts_alive > dtrace_deadman_timeout) { 7518 /* 7519 * We seem to be dead. Unless we (a) have kernel 7520 * destructive permissions (b) have explicitly enabled 7521 * destructive actions and (c) destructive actions have 7522 * not been disabled, we're going to transition into 7523 * the KILLED state, from which no further processing 7524 * on this state will be performed. 7525 */ 7526 if (!dtrace_priv_kernel_destructive(state) || 7527 !state->dts_cred.dcr_destructive || 7528 dtrace_destructive_disallow) { 7529 void *activity = &state->dts_activity; 7530 dtrace_activity_t curstate; 7531 7532 do { 7533 curstate = state->dts_activity; 7534 } while (dtrace_cas32(activity, curstate, 7535 DTRACE_ACTIVITY_KILLED) != curstate); 7536 7537 continue; 7538 } 7539 } 7540 7541 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7542 ecb->dte_alignment, state, &mstate)) < 0) 7543 continue; 7544 7545 tomax = buf->dtb_tomax; 7546 ASSERT(tomax != NULL); 7547 7548 if (ecb->dte_size != 0) { 7549 dtrace_rechdr_t dtrh; 7550 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7551 mstate.dtms_timestamp = dtrace_gethrtime(); 7552 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7553 } 7554 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7555 dtrh.dtrh_epid = ecb->dte_epid; 7556 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7557 mstate.dtms_timestamp); 7558 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7559 } 7560 7561 mstate.dtms_epid = ecb->dte_epid; 7562 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7563 7564 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7565 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7566 else 7567 mstate.dtms_access = 0; 7568 7569 if (pred != NULL) { 7570 dtrace_difo_t *dp = pred->dtp_difo; 7571 uint64_t rval; 7572 7573 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7574 7575 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7576 dtrace_cacheid_t cid = probe->dtpr_predcache; 7577 7578 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7579 /* 7580 * Update the predicate cache... 7581 */ 7582 ASSERT(cid == pred->dtp_cacheid); 7583 curthread->t_predcache = cid; 7584 } 7585 7586 continue; 7587 } 7588 } 7589 7590 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7591 act != NULL; act = act->dta_next) { 7592 size_t valoffs; 7593 dtrace_difo_t *dp; 7594 dtrace_recdesc_t *rec = &act->dta_rec; 7595 7596 size = rec->dtrd_size; 7597 valoffs = offs + rec->dtrd_offset; 7598 7599 if (DTRACEACT_ISAGG(act->dta_kind)) { 7600 uint64_t v = 0xbad; 7601 dtrace_aggregation_t *agg; 7602 7603 agg = (dtrace_aggregation_t *)act; 7604 7605 if ((dp = act->dta_difo) != NULL) 7606 v = dtrace_dif_emulate(dp, 7607 &mstate, vstate, state); 7608 7609 if (*flags & CPU_DTRACE_ERROR) 7610 continue; 7611 7612 /* 7613 * Note that we always pass the expression 7614 * value from the previous iteration of the 7615 * action loop. This value will only be used 7616 * if there is an expression argument to the 7617 * aggregating action, denoted by the 7618 * dtag_hasarg field. 7619 */ 7620 dtrace_aggregate(agg, buf, 7621 offs, aggbuf, v, val); 7622 continue; 7623 } 7624 7625 switch (act->dta_kind) { 7626 case DTRACEACT_STOP: 7627 if (dtrace_priv_proc_destructive(state)) 7628 dtrace_action_stop(); 7629 continue; 7630 7631 case DTRACEACT_BREAKPOINT: 7632 if (dtrace_priv_kernel_destructive(state)) 7633 dtrace_action_breakpoint(ecb); 7634 continue; 7635 7636 case DTRACEACT_PANIC: 7637 if (dtrace_priv_kernel_destructive(state)) 7638 dtrace_action_panic(ecb); 7639 continue; 7640 7641 case DTRACEACT_STACK: 7642 if (!dtrace_priv_kernel(state)) 7643 continue; 7644 7645 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7646 size / sizeof (pc_t), probe->dtpr_aframes, 7647 DTRACE_ANCHORED(probe) ? NULL : 7648 (uint32_t *)arg0); 7649 continue; 7650 7651 case DTRACEACT_JSTACK: 7652 case DTRACEACT_USTACK: 7653 if (!dtrace_priv_proc(state)) 7654 continue; 7655 7656 /* 7657 * See comment in DIF_VAR_PID. 7658 */ 7659 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7660 CPU_ON_INTR(CPU)) { 7661 int depth = DTRACE_USTACK_NFRAMES( 7662 rec->dtrd_arg) + 1; 7663 7664 dtrace_bzero((void *)(tomax + valoffs), 7665 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7666 + depth * sizeof (uint64_t)); 7667 7668 continue; 7669 } 7670 7671 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7672 curproc->p_dtrace_helpers != NULL) { 7673 /* 7674 * This is the slow path -- we have 7675 * allocated string space, and we're 7676 * getting the stack of a process that 7677 * has helpers. Call into a separate 7678 * routine to perform this processing. 7679 */ 7680 dtrace_action_ustack(&mstate, state, 7681 (uint64_t *)(tomax + valoffs), 7682 rec->dtrd_arg); 7683 continue; 7684 } 7685 7686 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7687 dtrace_getupcstack((uint64_t *) 7688 (tomax + valoffs), 7689 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7690 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7691 continue; 7692 7693 default: 7694 break; 7695 } 7696 7697 dp = act->dta_difo; 7698 ASSERT(dp != NULL); 7699 7700 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7701 7702 if (*flags & CPU_DTRACE_ERROR) 7703 continue; 7704 7705 switch (act->dta_kind) { 7706 case DTRACEACT_SPECULATE: { 7707 dtrace_rechdr_t *dtrh; 7708 7709 ASSERT(buf == &state->dts_buffer[cpuid]); 7710 buf = dtrace_speculation_buffer(state, 7711 cpuid, val); 7712 7713 if (buf == NULL) { 7714 *flags |= CPU_DTRACE_DROP; 7715 continue; 7716 } 7717 7718 offs = dtrace_buffer_reserve(buf, 7719 ecb->dte_needed, ecb->dte_alignment, 7720 state, NULL); 7721 7722 if (offs < 0) { 7723 *flags |= CPU_DTRACE_DROP; 7724 continue; 7725 } 7726 7727 tomax = buf->dtb_tomax; 7728 ASSERT(tomax != NULL); 7729 7730 if (ecb->dte_size == 0) 7731 continue; 7732 7733 ASSERT3U(ecb->dte_size, >=, 7734 sizeof (dtrace_rechdr_t)); 7735 dtrh = ((void *)(tomax + offs)); 7736 dtrh->dtrh_epid = ecb->dte_epid; 7737 /* 7738 * When the speculation is committed, all of 7739 * the records in the speculative buffer will 7740 * have their timestamps set to the commit 7741 * time. Until then, it is set to a sentinel 7742 * value, for debugability. 7743 */ 7744 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7745 continue; 7746 } 7747 7748 case DTRACEACT_PRINTM: { 7749 /* 7750 * printm() assumes that the DIF returns a 7751 * pointer returned by memref(). memref() is a 7752 * subroutine that is used to get around the 7753 * single-valued returns of DIF and is assumed 7754 * to always be allocated in the scratch space. 7755 * Therefore, we need to validate that the 7756 * pointer given to printm() is in the scratch 7757 * space in order to avoid a potential panic. 7758 */ 7759 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7760 7761 if (!DTRACE_INSCRATCHPTR(&mstate, 7762 (uintptr_t)memref, 2 * sizeof(uintptr_t))) { 7763 *flags |= CPU_DTRACE_BADADDR; 7764 continue; 7765 } 7766 7767 /* Get the size from the memref. */ 7768 size = memref[1]; 7769 7770 /* 7771 * Check if the size exceeds the allocated 7772 * buffer size. 7773 */ 7774 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7775 /* Flag a drop! */ 7776 *flags |= CPU_DTRACE_DROP; 7777 continue; 7778 } 7779 7780 /* Store the size in the buffer first. */ 7781 DTRACE_STORE(uintptr_t, tomax, 7782 valoffs, size); 7783 7784 /* 7785 * Offset the buffer address to the start 7786 * of the data. 7787 */ 7788 valoffs += sizeof(uintptr_t); 7789 7790 /* 7791 * Reset to the memory address rather than 7792 * the memref array, then let the BYREF 7793 * code below do the work to store the 7794 * memory data in the buffer. 7795 */ 7796 val = memref[0]; 7797 break; 7798 } 7799 7800 case DTRACEACT_CHILL: 7801 if (dtrace_priv_kernel_destructive(state)) 7802 dtrace_action_chill(&mstate, val); 7803 continue; 7804 7805 case DTRACEACT_RAISE: 7806 if (dtrace_priv_proc_destructive(state)) 7807 dtrace_action_raise(val); 7808 continue; 7809 7810 case DTRACEACT_COMMIT: 7811 ASSERT(!committed); 7812 7813 /* 7814 * We need to commit our buffer state. 7815 */ 7816 if (ecb->dte_size) 7817 buf->dtb_offset = offs + ecb->dte_size; 7818 buf = &state->dts_buffer[cpuid]; 7819 dtrace_speculation_commit(state, cpuid, val); 7820 committed = 1; 7821 continue; 7822 7823 case DTRACEACT_DISCARD: 7824 dtrace_speculation_discard(state, cpuid, val); 7825 continue; 7826 7827 case DTRACEACT_DIFEXPR: 7828 case DTRACEACT_LIBACT: 7829 case DTRACEACT_PRINTF: 7830 case DTRACEACT_PRINTA: 7831 case DTRACEACT_SYSTEM: 7832 case DTRACEACT_FREOPEN: 7833 case DTRACEACT_TRACEMEM: 7834 break; 7835 7836 case DTRACEACT_TRACEMEM_DYNSIZE: 7837 tracememsize = val; 7838 break; 7839 7840 case DTRACEACT_SYM: 7841 case DTRACEACT_MOD: 7842 if (!dtrace_priv_kernel(state)) 7843 continue; 7844 break; 7845 7846 case DTRACEACT_USYM: 7847 case DTRACEACT_UMOD: 7848 case DTRACEACT_UADDR: { 7849 #ifdef illumos 7850 struct pid *pid = curthread->t_procp->p_pidp; 7851 #endif 7852 7853 if (!dtrace_priv_proc(state)) 7854 continue; 7855 7856 DTRACE_STORE(uint64_t, tomax, 7857 #ifdef illumos 7858 valoffs, (uint64_t)pid->pid_id); 7859 #else 7860 valoffs, (uint64_t) curproc->p_pid); 7861 #endif 7862 DTRACE_STORE(uint64_t, tomax, 7863 valoffs + sizeof (uint64_t), val); 7864 7865 continue; 7866 } 7867 7868 case DTRACEACT_EXIT: { 7869 /* 7870 * For the exit action, we are going to attempt 7871 * to atomically set our activity to be 7872 * draining. If this fails (either because 7873 * another CPU has beat us to the exit action, 7874 * or because our current activity is something 7875 * other than ACTIVE or WARMUP), we will 7876 * continue. This assures that the exit action 7877 * can be successfully recorded at most once 7878 * when we're in the ACTIVE state. If we're 7879 * encountering the exit() action while in 7880 * COOLDOWN, however, we want to honor the new 7881 * status code. (We know that we're the only 7882 * thread in COOLDOWN, so there is no race.) 7883 */ 7884 void *activity = &state->dts_activity; 7885 dtrace_activity_t curstate = state->dts_activity; 7886 7887 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7888 break; 7889 7890 if (curstate != DTRACE_ACTIVITY_WARMUP) 7891 curstate = DTRACE_ACTIVITY_ACTIVE; 7892 7893 if (dtrace_cas32(activity, curstate, 7894 DTRACE_ACTIVITY_DRAINING) != curstate) { 7895 *flags |= CPU_DTRACE_DROP; 7896 continue; 7897 } 7898 7899 break; 7900 } 7901 7902 default: 7903 ASSERT(0); 7904 } 7905 7906 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7907 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7908 uintptr_t end = valoffs + size; 7909 7910 if (tracememsize != 0 && 7911 valoffs + tracememsize < end) { 7912 end = valoffs + tracememsize; 7913 tracememsize = 0; 7914 } 7915 7916 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7917 !dtrace_vcanload((void *)(uintptr_t)val, 7918 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7919 continue; 7920 7921 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7922 &val, end, act->dta_intuple, 7923 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7924 DIF_TF_BYREF: DIF_TF_BYUREF); 7925 continue; 7926 } 7927 7928 switch (size) { 7929 case 0: 7930 break; 7931 7932 case sizeof (uint8_t): 7933 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7934 break; 7935 case sizeof (uint16_t): 7936 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7937 break; 7938 case sizeof (uint32_t): 7939 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7940 break; 7941 case sizeof (uint64_t): 7942 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7943 break; 7944 default: 7945 /* 7946 * Any other size should have been returned by 7947 * reference, not by value. 7948 */ 7949 ASSERT(0); 7950 break; 7951 } 7952 } 7953 7954 if (*flags & CPU_DTRACE_DROP) 7955 continue; 7956 7957 if (*flags & CPU_DTRACE_FAULT) { 7958 int ndx; 7959 dtrace_action_t *err; 7960 7961 buf->dtb_errors++; 7962 7963 if (probe->dtpr_id == dtrace_probeid_error) { 7964 /* 7965 * There's nothing we can do -- we had an 7966 * error on the error probe. We bump an 7967 * error counter to at least indicate that 7968 * this condition happened. 7969 */ 7970 dtrace_error(&state->dts_dblerrors); 7971 continue; 7972 } 7973 7974 if (vtime) { 7975 /* 7976 * Before recursing on dtrace_probe(), we 7977 * need to explicitly clear out our start 7978 * time to prevent it from being accumulated 7979 * into t_dtrace_vtime. 7980 */ 7981 curthread->t_dtrace_start = 0; 7982 } 7983 7984 /* 7985 * Iterate over the actions to figure out which action 7986 * we were processing when we experienced the error. 7987 * Note that act points _past_ the faulting action; if 7988 * act is ecb->dte_action, the fault was in the 7989 * predicate, if it's ecb->dte_action->dta_next it's 7990 * in action #1, and so on. 7991 */ 7992 for (err = ecb->dte_action, ndx = 0; 7993 err != act; err = err->dta_next, ndx++) 7994 continue; 7995 7996 dtrace_probe_error(state, ecb->dte_epid, ndx, 7997 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7998 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7999 cpu_core[cpuid].cpuc_dtrace_illval); 8000 8001 continue; 8002 } 8003 8004 if (!committed) 8005 buf->dtb_offset = offs + ecb->dte_size; 8006 } 8007 8008 if (vtime) 8009 curthread->t_dtrace_start = dtrace_gethrtime(); 8010 8011 dtrace_probe_exit(cookie); 8012 } 8013 8014 /* 8015 * DTrace Probe Hashing Functions 8016 * 8017 * The functions in this section (and indeed, the functions in remaining 8018 * sections) are not _called_ from probe context. (Any exceptions to this are 8019 * marked with a "Note:".) Rather, they are called from elsewhere in the 8020 * DTrace framework to look-up probes in, add probes to and remove probes from 8021 * the DTrace probe hashes. (Each probe is hashed by each element of the 8022 * probe tuple -- allowing for fast lookups, regardless of what was 8023 * specified.) 8024 */ 8025 static uint_t 8026 dtrace_hash_str(const char *p) 8027 { 8028 unsigned int g; 8029 uint_t hval = 0; 8030 8031 while (*p) { 8032 hval = (hval << 4) + *p++; 8033 if ((g = (hval & 0xf0000000)) != 0) 8034 hval ^= g >> 24; 8035 hval &= ~g; 8036 } 8037 return (hval); 8038 } 8039 8040 static dtrace_hash_t * 8041 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs) 8042 { 8043 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8044 8045 hash->dth_stroffs = stroffs; 8046 hash->dth_nextoffs = nextoffs; 8047 hash->dth_prevoffs = prevoffs; 8048 8049 hash->dth_size = 1; 8050 hash->dth_mask = hash->dth_size - 1; 8051 8052 hash->dth_tab = kmem_zalloc(hash->dth_size * 8053 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8054 8055 return (hash); 8056 } 8057 8058 static void 8059 dtrace_hash_destroy(dtrace_hash_t *hash) 8060 { 8061 #ifdef DEBUG 8062 int i; 8063 8064 for (i = 0; i < hash->dth_size; i++) 8065 ASSERT(hash->dth_tab[i] == NULL); 8066 #endif 8067 8068 kmem_free(hash->dth_tab, 8069 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8070 kmem_free(hash, sizeof (dtrace_hash_t)); 8071 } 8072 8073 static void 8074 dtrace_hash_resize(dtrace_hash_t *hash) 8075 { 8076 int size = hash->dth_size, i, ndx; 8077 int new_size = hash->dth_size << 1; 8078 int new_mask = new_size - 1; 8079 dtrace_hashbucket_t **new_tab, *bucket, *next; 8080 8081 ASSERT((new_size & new_mask) == 0); 8082 8083 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8084 8085 for (i = 0; i < size; i++) { 8086 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8087 dtrace_probe_t *probe = bucket->dthb_chain; 8088 8089 ASSERT(probe != NULL); 8090 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8091 8092 next = bucket->dthb_next; 8093 bucket->dthb_next = new_tab[ndx]; 8094 new_tab[ndx] = bucket; 8095 } 8096 } 8097 8098 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8099 hash->dth_tab = new_tab; 8100 hash->dth_size = new_size; 8101 hash->dth_mask = new_mask; 8102 } 8103 8104 static void 8105 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8106 { 8107 int hashval = DTRACE_HASHSTR(hash, new); 8108 int ndx = hashval & hash->dth_mask; 8109 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8110 dtrace_probe_t **nextp, **prevp; 8111 8112 for (; bucket != NULL; bucket = bucket->dthb_next) { 8113 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8114 goto add; 8115 } 8116 8117 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8118 dtrace_hash_resize(hash); 8119 dtrace_hash_add(hash, new); 8120 return; 8121 } 8122 8123 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8124 bucket->dthb_next = hash->dth_tab[ndx]; 8125 hash->dth_tab[ndx] = bucket; 8126 hash->dth_nbuckets++; 8127 8128 add: 8129 nextp = DTRACE_HASHNEXT(hash, new); 8130 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8131 *nextp = bucket->dthb_chain; 8132 8133 if (bucket->dthb_chain != NULL) { 8134 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8135 ASSERT(*prevp == NULL); 8136 *prevp = new; 8137 } 8138 8139 bucket->dthb_chain = new; 8140 bucket->dthb_len++; 8141 } 8142 8143 static dtrace_probe_t * 8144 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8145 { 8146 int hashval = DTRACE_HASHSTR(hash, template); 8147 int ndx = hashval & hash->dth_mask; 8148 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8149 8150 for (; bucket != NULL; bucket = bucket->dthb_next) { 8151 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8152 return (bucket->dthb_chain); 8153 } 8154 8155 return (NULL); 8156 } 8157 8158 static int 8159 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8160 { 8161 int hashval = DTRACE_HASHSTR(hash, template); 8162 int ndx = hashval & hash->dth_mask; 8163 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8164 8165 for (; bucket != NULL; bucket = bucket->dthb_next) { 8166 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8167 return (bucket->dthb_len); 8168 } 8169 8170 return (0); 8171 } 8172 8173 static void 8174 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8175 { 8176 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8177 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8178 8179 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8180 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8181 8182 /* 8183 * Find the bucket that we're removing this probe from. 8184 */ 8185 for (; bucket != NULL; bucket = bucket->dthb_next) { 8186 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8187 break; 8188 } 8189 8190 ASSERT(bucket != NULL); 8191 8192 if (*prevp == NULL) { 8193 if (*nextp == NULL) { 8194 /* 8195 * The removed probe was the only probe on this 8196 * bucket; we need to remove the bucket. 8197 */ 8198 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8199 8200 ASSERT(bucket->dthb_chain == probe); 8201 ASSERT(b != NULL); 8202 8203 if (b == bucket) { 8204 hash->dth_tab[ndx] = bucket->dthb_next; 8205 } else { 8206 while (b->dthb_next != bucket) 8207 b = b->dthb_next; 8208 b->dthb_next = bucket->dthb_next; 8209 } 8210 8211 ASSERT(hash->dth_nbuckets > 0); 8212 hash->dth_nbuckets--; 8213 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8214 return; 8215 } 8216 8217 bucket->dthb_chain = *nextp; 8218 } else { 8219 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8220 } 8221 8222 if (*nextp != NULL) 8223 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8224 } 8225 8226 /* 8227 * DTrace Utility Functions 8228 * 8229 * These are random utility functions that are _not_ called from probe context. 8230 */ 8231 static int 8232 dtrace_badattr(const dtrace_attribute_t *a) 8233 { 8234 return (a->dtat_name > DTRACE_STABILITY_MAX || 8235 a->dtat_data > DTRACE_STABILITY_MAX || 8236 a->dtat_class > DTRACE_CLASS_MAX); 8237 } 8238 8239 /* 8240 * Return a duplicate copy of a string. If the specified string is NULL, 8241 * this function returns a zero-length string. 8242 */ 8243 static char * 8244 dtrace_strdup(const char *str) 8245 { 8246 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8247 8248 if (str != NULL) 8249 (void) strcpy(new, str); 8250 8251 return (new); 8252 } 8253 8254 #define DTRACE_ISALPHA(c) \ 8255 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8256 8257 static int 8258 dtrace_badname(const char *s) 8259 { 8260 char c; 8261 8262 if (s == NULL || (c = *s++) == '\0') 8263 return (0); 8264 8265 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8266 return (1); 8267 8268 while ((c = *s++) != '\0') { 8269 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8270 c != '-' && c != '_' && c != '.' && c != '`') 8271 return (1); 8272 } 8273 8274 return (0); 8275 } 8276 8277 static void 8278 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8279 { 8280 uint32_t priv; 8281 8282 #ifdef illumos 8283 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8284 /* 8285 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8286 */ 8287 priv = DTRACE_PRIV_ALL; 8288 } else { 8289 *uidp = crgetuid(cr); 8290 *zoneidp = crgetzoneid(cr); 8291 8292 priv = 0; 8293 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8294 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8295 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8296 priv |= DTRACE_PRIV_USER; 8297 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8298 priv |= DTRACE_PRIV_PROC; 8299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8300 priv |= DTRACE_PRIV_OWNER; 8301 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8302 priv |= DTRACE_PRIV_ZONEOWNER; 8303 } 8304 #else 8305 priv = DTRACE_PRIV_ALL; 8306 #endif 8307 8308 *privp = priv; 8309 } 8310 8311 #ifdef DTRACE_ERRDEBUG 8312 static void 8313 dtrace_errdebug(const char *str) 8314 { 8315 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8316 int occupied = 0; 8317 8318 mutex_enter(&dtrace_errlock); 8319 dtrace_errlast = str; 8320 dtrace_errthread = curthread; 8321 8322 while (occupied++ < DTRACE_ERRHASHSZ) { 8323 if (dtrace_errhash[hval].dter_msg == str) { 8324 dtrace_errhash[hval].dter_count++; 8325 goto out; 8326 } 8327 8328 if (dtrace_errhash[hval].dter_msg != NULL) { 8329 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8330 continue; 8331 } 8332 8333 dtrace_errhash[hval].dter_msg = str; 8334 dtrace_errhash[hval].dter_count = 1; 8335 goto out; 8336 } 8337 8338 panic("dtrace: undersized error hash"); 8339 out: 8340 mutex_exit(&dtrace_errlock); 8341 } 8342 #endif 8343 8344 /* 8345 * DTrace Matching Functions 8346 * 8347 * These functions are used to match groups of probes, given some elements of 8348 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8349 */ 8350 static int 8351 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8352 zoneid_t zoneid) 8353 { 8354 if (priv != DTRACE_PRIV_ALL) { 8355 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8356 uint32_t match = priv & ppriv; 8357 8358 /* 8359 * No PRIV_DTRACE_* privileges... 8360 */ 8361 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8362 DTRACE_PRIV_KERNEL)) == 0) 8363 return (0); 8364 8365 /* 8366 * No matching bits, but there were bits to match... 8367 */ 8368 if (match == 0 && ppriv != 0) 8369 return (0); 8370 8371 /* 8372 * Need to have permissions to the process, but don't... 8373 */ 8374 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8375 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8376 return (0); 8377 } 8378 8379 /* 8380 * Need to be in the same zone unless we possess the 8381 * privilege to examine all zones. 8382 */ 8383 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8384 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8385 return (0); 8386 } 8387 } 8388 8389 return (1); 8390 } 8391 8392 /* 8393 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8394 * consists of input pattern strings and an ops-vector to evaluate them. 8395 * This function returns >0 for match, 0 for no match, and <0 for error. 8396 */ 8397 static int 8398 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8399 uint32_t priv, uid_t uid, zoneid_t zoneid) 8400 { 8401 dtrace_provider_t *pvp = prp->dtpr_provider; 8402 int rv; 8403 8404 if (pvp->dtpv_defunct) 8405 return (0); 8406 8407 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8408 return (rv); 8409 8410 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8411 return (rv); 8412 8413 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8414 return (rv); 8415 8416 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8417 return (rv); 8418 8419 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8420 return (0); 8421 8422 return (rv); 8423 } 8424 8425 /* 8426 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8427 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8428 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8429 * In addition, all of the recursion cases except for '*' matching have been 8430 * unwound. For '*', we still implement recursive evaluation, but a depth 8431 * counter is maintained and matching is aborted if we recurse too deep. 8432 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8433 */ 8434 static int 8435 dtrace_match_glob(const char *s, const char *p, int depth) 8436 { 8437 const char *olds; 8438 char s1, c; 8439 int gs; 8440 8441 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8442 return (-1); 8443 8444 if (s == NULL) 8445 s = ""; /* treat NULL as empty string */ 8446 8447 top: 8448 olds = s; 8449 s1 = *s++; 8450 8451 if (p == NULL) 8452 return (0); 8453 8454 if ((c = *p++) == '\0') 8455 return (s1 == '\0'); 8456 8457 switch (c) { 8458 case '[': { 8459 int ok = 0, notflag = 0; 8460 char lc = '\0'; 8461 8462 if (s1 == '\0') 8463 return (0); 8464 8465 if (*p == '!') { 8466 notflag = 1; 8467 p++; 8468 } 8469 8470 if ((c = *p++) == '\0') 8471 return (0); 8472 8473 do { 8474 if (c == '-' && lc != '\0' && *p != ']') { 8475 if ((c = *p++) == '\0') 8476 return (0); 8477 if (c == '\\' && (c = *p++) == '\0') 8478 return (0); 8479 8480 if (notflag) { 8481 if (s1 < lc || s1 > c) 8482 ok++; 8483 else 8484 return (0); 8485 } else if (lc <= s1 && s1 <= c) 8486 ok++; 8487 8488 } else if (c == '\\' && (c = *p++) == '\0') 8489 return (0); 8490 8491 lc = c; /* save left-hand 'c' for next iteration */ 8492 8493 if (notflag) { 8494 if (s1 != c) 8495 ok++; 8496 else 8497 return (0); 8498 } else if (s1 == c) 8499 ok++; 8500 8501 if ((c = *p++) == '\0') 8502 return (0); 8503 8504 } while (c != ']'); 8505 8506 if (ok) 8507 goto top; 8508 8509 return (0); 8510 } 8511 8512 case '\\': 8513 if ((c = *p++) == '\0') 8514 return (0); 8515 /*FALLTHRU*/ 8516 8517 default: 8518 if (c != s1) 8519 return (0); 8520 /*FALLTHRU*/ 8521 8522 case '?': 8523 if (s1 != '\0') 8524 goto top; 8525 return (0); 8526 8527 case '*': 8528 while (*p == '*') 8529 p++; /* consecutive *'s are identical to a single one */ 8530 8531 if (*p == '\0') 8532 return (1); 8533 8534 for (s = olds; *s != '\0'; s++) { 8535 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8536 return (gs); 8537 } 8538 8539 return (0); 8540 } 8541 } 8542 8543 /*ARGSUSED*/ 8544 static int 8545 dtrace_match_string(const char *s, const char *p, int depth) 8546 { 8547 return (s != NULL && strcmp(s, p) == 0); 8548 } 8549 8550 /*ARGSUSED*/ 8551 static int 8552 dtrace_match_nul(const char *s, const char *p, int depth) 8553 { 8554 return (1); /* always match the empty pattern */ 8555 } 8556 8557 /*ARGSUSED*/ 8558 static int 8559 dtrace_match_nonzero(const char *s, const char *p, int depth) 8560 { 8561 return (s != NULL && s[0] != '\0'); 8562 } 8563 8564 static int 8565 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8566 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8567 { 8568 dtrace_probe_t template, *probe; 8569 dtrace_hash_t *hash = NULL; 8570 int len, best = INT_MAX, nmatched = 0; 8571 dtrace_id_t i; 8572 8573 ASSERT(MUTEX_HELD(&dtrace_lock)); 8574 8575 /* 8576 * If the probe ID is specified in the key, just lookup by ID and 8577 * invoke the match callback once if a matching probe is found. 8578 */ 8579 if (pkp->dtpk_id != DTRACE_IDNONE) { 8580 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8581 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8582 (void) (*matched)(probe, arg); 8583 nmatched++; 8584 } 8585 return (nmatched); 8586 } 8587 8588 template.dtpr_mod = (char *)pkp->dtpk_mod; 8589 template.dtpr_func = (char *)pkp->dtpk_func; 8590 template.dtpr_name = (char *)pkp->dtpk_name; 8591 8592 /* 8593 * We want to find the most distinct of the module name, function 8594 * name, and name. So for each one that is not a glob pattern or 8595 * empty string, we perform a lookup in the corresponding hash and 8596 * use the hash table with the fewest collisions to do our search. 8597 */ 8598 if (pkp->dtpk_mmatch == &dtrace_match_string && 8599 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8600 best = len; 8601 hash = dtrace_bymod; 8602 } 8603 8604 if (pkp->dtpk_fmatch == &dtrace_match_string && 8605 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8606 best = len; 8607 hash = dtrace_byfunc; 8608 } 8609 8610 if (pkp->dtpk_nmatch == &dtrace_match_string && 8611 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8612 best = len; 8613 hash = dtrace_byname; 8614 } 8615 8616 /* 8617 * If we did not select a hash table, iterate over every probe and 8618 * invoke our callback for each one that matches our input probe key. 8619 */ 8620 if (hash == NULL) { 8621 for (i = 0; i < dtrace_nprobes; i++) { 8622 if ((probe = dtrace_probes[i]) == NULL || 8623 dtrace_match_probe(probe, pkp, priv, uid, 8624 zoneid) <= 0) 8625 continue; 8626 8627 nmatched++; 8628 8629 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8630 break; 8631 } 8632 8633 return (nmatched); 8634 } 8635 8636 /* 8637 * If we selected a hash table, iterate over each probe of the same key 8638 * name and invoke the callback for every probe that matches the other 8639 * attributes of our input probe key. 8640 */ 8641 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8642 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8643 8644 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8645 continue; 8646 8647 nmatched++; 8648 8649 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8650 break; 8651 } 8652 8653 return (nmatched); 8654 } 8655 8656 /* 8657 * Return the function pointer dtrace_probecmp() should use to compare the 8658 * specified pattern with a string. For NULL or empty patterns, we select 8659 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8660 * For non-empty non-glob strings, we use dtrace_match_string(). 8661 */ 8662 static dtrace_probekey_f * 8663 dtrace_probekey_func(const char *p) 8664 { 8665 char c; 8666 8667 if (p == NULL || *p == '\0') 8668 return (&dtrace_match_nul); 8669 8670 while ((c = *p++) != '\0') { 8671 if (c == '[' || c == '?' || c == '*' || c == '\\') 8672 return (&dtrace_match_glob); 8673 } 8674 8675 return (&dtrace_match_string); 8676 } 8677 8678 /* 8679 * Build a probe comparison key for use with dtrace_match_probe() from the 8680 * given probe description. By convention, a null key only matches anchored 8681 * probes: if each field is the empty string, reset dtpk_fmatch to 8682 * dtrace_match_nonzero(). 8683 */ 8684 static void 8685 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8686 { 8687 pkp->dtpk_prov = pdp->dtpd_provider; 8688 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8689 8690 pkp->dtpk_mod = pdp->dtpd_mod; 8691 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8692 8693 pkp->dtpk_func = pdp->dtpd_func; 8694 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8695 8696 pkp->dtpk_name = pdp->dtpd_name; 8697 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8698 8699 pkp->dtpk_id = pdp->dtpd_id; 8700 8701 if (pkp->dtpk_id == DTRACE_IDNONE && 8702 pkp->dtpk_pmatch == &dtrace_match_nul && 8703 pkp->dtpk_mmatch == &dtrace_match_nul && 8704 pkp->dtpk_fmatch == &dtrace_match_nul && 8705 pkp->dtpk_nmatch == &dtrace_match_nul) 8706 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8707 } 8708 8709 /* 8710 * DTrace Provider-to-Framework API Functions 8711 * 8712 * These functions implement much of the Provider-to-Framework API, as 8713 * described in <sys/dtrace.h>. The parts of the API not in this section are 8714 * the functions in the API for probe management (found below), and 8715 * dtrace_probe() itself (found above). 8716 */ 8717 8718 /* 8719 * Register the calling provider with the DTrace framework. This should 8720 * generally be called by DTrace providers in their attach(9E) entry point. 8721 */ 8722 int 8723 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8724 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8725 { 8726 dtrace_provider_t *provider; 8727 8728 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8729 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8730 "arguments", name ? name : "<NULL>"); 8731 return (EINVAL); 8732 } 8733 8734 if (name[0] == '\0' || dtrace_badname(name)) { 8735 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8736 "provider name", name); 8737 return (EINVAL); 8738 } 8739 8740 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8741 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8742 pops->dtps_destroy == NULL || 8743 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8744 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8745 "provider ops", name); 8746 return (EINVAL); 8747 } 8748 8749 if (dtrace_badattr(&pap->dtpa_provider) || 8750 dtrace_badattr(&pap->dtpa_mod) || 8751 dtrace_badattr(&pap->dtpa_func) || 8752 dtrace_badattr(&pap->dtpa_name) || 8753 dtrace_badattr(&pap->dtpa_args)) { 8754 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8755 "provider attributes", name); 8756 return (EINVAL); 8757 } 8758 8759 if (priv & ~DTRACE_PRIV_ALL) { 8760 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8761 "privilege attributes", name); 8762 return (EINVAL); 8763 } 8764 8765 if ((priv & DTRACE_PRIV_KERNEL) && 8766 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8767 pops->dtps_usermode == NULL) { 8768 cmn_err(CE_WARN, "failed to register provider '%s': need " 8769 "dtps_usermode() op for given privilege attributes", name); 8770 return (EINVAL); 8771 } 8772 8773 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8774 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8775 (void) strcpy(provider->dtpv_name, name); 8776 8777 provider->dtpv_attr = *pap; 8778 provider->dtpv_priv.dtpp_flags = priv; 8779 if (cr != NULL) { 8780 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8781 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8782 } 8783 provider->dtpv_pops = *pops; 8784 8785 if (pops->dtps_provide == NULL) { 8786 ASSERT(pops->dtps_provide_module != NULL); 8787 provider->dtpv_pops.dtps_provide = 8788 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8789 } 8790 8791 if (pops->dtps_provide_module == NULL) { 8792 ASSERT(pops->dtps_provide != NULL); 8793 provider->dtpv_pops.dtps_provide_module = 8794 (void (*)(void *, modctl_t *))dtrace_nullop; 8795 } 8796 8797 if (pops->dtps_suspend == NULL) { 8798 ASSERT(pops->dtps_resume == NULL); 8799 provider->dtpv_pops.dtps_suspend = 8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8801 provider->dtpv_pops.dtps_resume = 8802 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8803 } 8804 8805 provider->dtpv_arg = arg; 8806 *idp = (dtrace_provider_id_t)provider; 8807 8808 if (pops == &dtrace_provider_ops) { 8809 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8810 ASSERT(MUTEX_HELD(&dtrace_lock)); 8811 ASSERT(dtrace_anon.dta_enabling == NULL); 8812 8813 /* 8814 * We make sure that the DTrace provider is at the head of 8815 * the provider chain. 8816 */ 8817 provider->dtpv_next = dtrace_provider; 8818 dtrace_provider = provider; 8819 return (0); 8820 } 8821 8822 mutex_enter(&dtrace_provider_lock); 8823 mutex_enter(&dtrace_lock); 8824 8825 /* 8826 * If there is at least one provider registered, we'll add this 8827 * provider after the first provider. 8828 */ 8829 if (dtrace_provider != NULL) { 8830 provider->dtpv_next = dtrace_provider->dtpv_next; 8831 dtrace_provider->dtpv_next = provider; 8832 } else { 8833 dtrace_provider = provider; 8834 } 8835 8836 if (dtrace_retained != NULL) { 8837 dtrace_enabling_provide(provider); 8838 8839 /* 8840 * Now we need to call dtrace_enabling_matchall() -- which 8841 * will acquire cpu_lock and dtrace_lock. We therefore need 8842 * to drop all of our locks before calling into it... 8843 */ 8844 mutex_exit(&dtrace_lock); 8845 mutex_exit(&dtrace_provider_lock); 8846 dtrace_enabling_matchall(); 8847 8848 return (0); 8849 } 8850 8851 mutex_exit(&dtrace_lock); 8852 mutex_exit(&dtrace_provider_lock); 8853 8854 return (0); 8855 } 8856 8857 /* 8858 * Unregister the specified provider from the DTrace framework. This should 8859 * generally be called by DTrace providers in their detach(9E) entry point. 8860 */ 8861 int 8862 dtrace_unregister(dtrace_provider_id_t id) 8863 { 8864 dtrace_provider_t *old = (dtrace_provider_t *)id; 8865 dtrace_provider_t *prev = NULL; 8866 int i, self = 0, noreap = 0; 8867 dtrace_probe_t *probe, *first = NULL; 8868 8869 if (old->dtpv_pops.dtps_enable == 8870 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8871 /* 8872 * If DTrace itself is the provider, we're called with locks 8873 * already held. 8874 */ 8875 ASSERT(old == dtrace_provider); 8876 #ifdef illumos 8877 ASSERT(dtrace_devi != NULL); 8878 #endif 8879 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8880 ASSERT(MUTEX_HELD(&dtrace_lock)); 8881 self = 1; 8882 8883 if (dtrace_provider->dtpv_next != NULL) { 8884 /* 8885 * There's another provider here; return failure. 8886 */ 8887 return (EBUSY); 8888 } 8889 } else { 8890 mutex_enter(&dtrace_provider_lock); 8891 #ifdef illumos 8892 mutex_enter(&mod_lock); 8893 #endif 8894 mutex_enter(&dtrace_lock); 8895 } 8896 8897 /* 8898 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8899 * probes, we refuse to let providers slither away, unless this 8900 * provider has already been explicitly invalidated. 8901 */ 8902 if (!old->dtpv_defunct && 8903 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8904 dtrace_anon.dta_state->dts_necbs > 0))) { 8905 if (!self) { 8906 mutex_exit(&dtrace_lock); 8907 #ifdef illumos 8908 mutex_exit(&mod_lock); 8909 #endif 8910 mutex_exit(&dtrace_provider_lock); 8911 } 8912 return (EBUSY); 8913 } 8914 8915 /* 8916 * Attempt to destroy the probes associated with this provider. 8917 */ 8918 for (i = 0; i < dtrace_nprobes; i++) { 8919 if ((probe = dtrace_probes[i]) == NULL) 8920 continue; 8921 8922 if (probe->dtpr_provider != old) 8923 continue; 8924 8925 if (probe->dtpr_ecb == NULL) 8926 continue; 8927 8928 /* 8929 * If we are trying to unregister a defunct provider, and the 8930 * provider was made defunct within the interval dictated by 8931 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8932 * attempt to reap our enablings. To denote that the provider 8933 * should reattempt to unregister itself at some point in the 8934 * future, we will return a differentiable error code (EAGAIN 8935 * instead of EBUSY) in this case. 8936 */ 8937 if (dtrace_gethrtime() - old->dtpv_defunct > 8938 dtrace_unregister_defunct_reap) 8939 noreap = 1; 8940 8941 if (!self) { 8942 mutex_exit(&dtrace_lock); 8943 #ifdef illumos 8944 mutex_exit(&mod_lock); 8945 #endif 8946 mutex_exit(&dtrace_provider_lock); 8947 } 8948 8949 if (noreap) 8950 return (EBUSY); 8951 8952 (void) taskq_dispatch(dtrace_taskq, 8953 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8954 8955 return (EAGAIN); 8956 } 8957 8958 /* 8959 * All of the probes for this provider are disabled; we can safely 8960 * remove all of them from their hash chains and from the probe array. 8961 */ 8962 for (i = 0; i < dtrace_nprobes; i++) { 8963 if ((probe = dtrace_probes[i]) == NULL) 8964 continue; 8965 8966 if (probe->dtpr_provider != old) 8967 continue; 8968 8969 dtrace_probes[i] = NULL; 8970 8971 dtrace_hash_remove(dtrace_bymod, probe); 8972 dtrace_hash_remove(dtrace_byfunc, probe); 8973 dtrace_hash_remove(dtrace_byname, probe); 8974 8975 if (first == NULL) { 8976 first = probe; 8977 probe->dtpr_nextmod = NULL; 8978 } else { 8979 probe->dtpr_nextmod = first; 8980 first = probe; 8981 } 8982 } 8983 8984 /* 8985 * The provider's probes have been removed from the hash chains and 8986 * from the probe array. Now issue a dtrace_sync() to be sure that 8987 * everyone has cleared out from any probe array processing. 8988 */ 8989 dtrace_sync(); 8990 8991 for (probe = first; probe != NULL; probe = first) { 8992 first = probe->dtpr_nextmod; 8993 8994 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8995 probe->dtpr_arg); 8996 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8997 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8998 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8999 #ifdef illumos 9000 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9001 #else 9002 free_unr(dtrace_arena, probe->dtpr_id); 9003 #endif 9004 kmem_free(probe, sizeof (dtrace_probe_t)); 9005 } 9006 9007 if ((prev = dtrace_provider) == old) { 9008 #ifdef illumos 9009 ASSERT(self || dtrace_devi == NULL); 9010 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9011 #endif 9012 dtrace_provider = old->dtpv_next; 9013 } else { 9014 while (prev != NULL && prev->dtpv_next != old) 9015 prev = prev->dtpv_next; 9016 9017 if (prev == NULL) { 9018 panic("attempt to unregister non-existent " 9019 "dtrace provider %p\n", (void *)id); 9020 } 9021 9022 prev->dtpv_next = old->dtpv_next; 9023 } 9024 9025 if (!self) { 9026 mutex_exit(&dtrace_lock); 9027 #ifdef illumos 9028 mutex_exit(&mod_lock); 9029 #endif 9030 mutex_exit(&dtrace_provider_lock); 9031 } 9032 9033 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9034 kmem_free(old, sizeof (dtrace_provider_t)); 9035 9036 return (0); 9037 } 9038 9039 /* 9040 * Invalidate the specified provider. All subsequent probe lookups for the 9041 * specified provider will fail, but its probes will not be removed. 9042 */ 9043 void 9044 dtrace_invalidate(dtrace_provider_id_t id) 9045 { 9046 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9047 9048 ASSERT(pvp->dtpv_pops.dtps_enable != 9049 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9050 9051 mutex_enter(&dtrace_provider_lock); 9052 mutex_enter(&dtrace_lock); 9053 9054 pvp->dtpv_defunct = dtrace_gethrtime(); 9055 9056 mutex_exit(&dtrace_lock); 9057 mutex_exit(&dtrace_provider_lock); 9058 } 9059 9060 /* 9061 * Indicate whether or not DTrace has attached. 9062 */ 9063 int 9064 dtrace_attached(void) 9065 { 9066 /* 9067 * dtrace_provider will be non-NULL iff the DTrace driver has 9068 * attached. (It's non-NULL because DTrace is always itself a 9069 * provider.) 9070 */ 9071 return (dtrace_provider != NULL); 9072 } 9073 9074 /* 9075 * Remove all the unenabled probes for the given provider. This function is 9076 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9077 * -- just as many of its associated probes as it can. 9078 */ 9079 int 9080 dtrace_condense(dtrace_provider_id_t id) 9081 { 9082 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9083 int i; 9084 dtrace_probe_t *probe; 9085 9086 /* 9087 * Make sure this isn't the dtrace provider itself. 9088 */ 9089 ASSERT(prov->dtpv_pops.dtps_enable != 9090 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9091 9092 mutex_enter(&dtrace_provider_lock); 9093 mutex_enter(&dtrace_lock); 9094 9095 /* 9096 * Attempt to destroy the probes associated with this provider. 9097 */ 9098 for (i = 0; i < dtrace_nprobes; i++) { 9099 if ((probe = dtrace_probes[i]) == NULL) 9100 continue; 9101 9102 if (probe->dtpr_provider != prov) 9103 continue; 9104 9105 if (probe->dtpr_ecb != NULL) 9106 continue; 9107 9108 dtrace_probes[i] = NULL; 9109 9110 dtrace_hash_remove(dtrace_bymod, probe); 9111 dtrace_hash_remove(dtrace_byfunc, probe); 9112 dtrace_hash_remove(dtrace_byname, probe); 9113 9114 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9115 probe->dtpr_arg); 9116 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9117 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9118 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9119 kmem_free(probe, sizeof (dtrace_probe_t)); 9120 #ifdef illumos 9121 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9122 #else 9123 free_unr(dtrace_arena, i + 1); 9124 #endif 9125 } 9126 9127 mutex_exit(&dtrace_lock); 9128 mutex_exit(&dtrace_provider_lock); 9129 9130 return (0); 9131 } 9132 9133 /* 9134 * DTrace Probe Management Functions 9135 * 9136 * The functions in this section perform the DTrace probe management, 9137 * including functions to create probes, look-up probes, and call into the 9138 * providers to request that probes be provided. Some of these functions are 9139 * in the Provider-to-Framework API; these functions can be identified by the 9140 * fact that they are not declared "static". 9141 */ 9142 9143 /* 9144 * Create a probe with the specified module name, function name, and name. 9145 */ 9146 dtrace_id_t 9147 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9148 const char *func, const char *name, int aframes, void *arg) 9149 { 9150 dtrace_probe_t *probe, **probes; 9151 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9152 dtrace_id_t id; 9153 9154 if (provider == dtrace_provider) { 9155 ASSERT(MUTEX_HELD(&dtrace_lock)); 9156 } else { 9157 mutex_enter(&dtrace_lock); 9158 } 9159 9160 #ifdef illumos 9161 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9162 VM_BESTFIT | VM_SLEEP); 9163 #else 9164 id = alloc_unr(dtrace_arena); 9165 #endif 9166 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9167 9168 probe->dtpr_id = id; 9169 probe->dtpr_gen = dtrace_probegen++; 9170 probe->dtpr_mod = dtrace_strdup(mod); 9171 probe->dtpr_func = dtrace_strdup(func); 9172 probe->dtpr_name = dtrace_strdup(name); 9173 probe->dtpr_arg = arg; 9174 probe->dtpr_aframes = aframes; 9175 probe->dtpr_provider = provider; 9176 9177 dtrace_hash_add(dtrace_bymod, probe); 9178 dtrace_hash_add(dtrace_byfunc, probe); 9179 dtrace_hash_add(dtrace_byname, probe); 9180 9181 if (id - 1 >= dtrace_nprobes) { 9182 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9183 size_t nsize = osize << 1; 9184 9185 if (nsize == 0) { 9186 ASSERT(osize == 0); 9187 ASSERT(dtrace_probes == NULL); 9188 nsize = sizeof (dtrace_probe_t *); 9189 } 9190 9191 probes = kmem_zalloc(nsize, KM_SLEEP); 9192 9193 if (dtrace_probes == NULL) { 9194 ASSERT(osize == 0); 9195 dtrace_probes = probes; 9196 dtrace_nprobes = 1; 9197 } else { 9198 dtrace_probe_t **oprobes = dtrace_probes; 9199 9200 bcopy(oprobes, probes, osize); 9201 dtrace_membar_producer(); 9202 dtrace_probes = probes; 9203 9204 dtrace_sync(); 9205 9206 /* 9207 * All CPUs are now seeing the new probes array; we can 9208 * safely free the old array. 9209 */ 9210 kmem_free(oprobes, osize); 9211 dtrace_nprobes <<= 1; 9212 } 9213 9214 ASSERT(id - 1 < dtrace_nprobes); 9215 } 9216 9217 ASSERT(dtrace_probes[id - 1] == NULL); 9218 dtrace_probes[id - 1] = probe; 9219 9220 if (provider != dtrace_provider) 9221 mutex_exit(&dtrace_lock); 9222 9223 return (id); 9224 } 9225 9226 static dtrace_probe_t * 9227 dtrace_probe_lookup_id(dtrace_id_t id) 9228 { 9229 ASSERT(MUTEX_HELD(&dtrace_lock)); 9230 9231 if (id == 0 || id > dtrace_nprobes) 9232 return (NULL); 9233 9234 return (dtrace_probes[id - 1]); 9235 } 9236 9237 static int 9238 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9239 { 9240 *((dtrace_id_t *)arg) = probe->dtpr_id; 9241 9242 return (DTRACE_MATCH_DONE); 9243 } 9244 9245 /* 9246 * Look up a probe based on provider and one or more of module name, function 9247 * name and probe name. 9248 */ 9249 dtrace_id_t 9250 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9251 char *func, char *name) 9252 { 9253 dtrace_probekey_t pkey; 9254 dtrace_id_t id; 9255 int match; 9256 9257 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9258 pkey.dtpk_pmatch = &dtrace_match_string; 9259 pkey.dtpk_mod = mod; 9260 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9261 pkey.dtpk_func = func; 9262 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9263 pkey.dtpk_name = name; 9264 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9265 pkey.dtpk_id = DTRACE_IDNONE; 9266 9267 mutex_enter(&dtrace_lock); 9268 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9269 dtrace_probe_lookup_match, &id); 9270 mutex_exit(&dtrace_lock); 9271 9272 ASSERT(match == 1 || match == 0); 9273 return (match ? id : 0); 9274 } 9275 9276 /* 9277 * Returns the probe argument associated with the specified probe. 9278 */ 9279 void * 9280 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9281 { 9282 dtrace_probe_t *probe; 9283 void *rval = NULL; 9284 9285 mutex_enter(&dtrace_lock); 9286 9287 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9288 probe->dtpr_provider == (dtrace_provider_t *)id) 9289 rval = probe->dtpr_arg; 9290 9291 mutex_exit(&dtrace_lock); 9292 9293 return (rval); 9294 } 9295 9296 /* 9297 * Copy a probe into a probe description. 9298 */ 9299 static void 9300 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9301 { 9302 bzero(pdp, sizeof (dtrace_probedesc_t)); 9303 pdp->dtpd_id = prp->dtpr_id; 9304 9305 (void) strncpy(pdp->dtpd_provider, 9306 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9307 9308 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9309 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9310 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9311 } 9312 9313 /* 9314 * Called to indicate that a probe -- or probes -- should be provided by a 9315 * specfied provider. If the specified description is NULL, the provider will 9316 * be told to provide all of its probes. (This is done whenever a new 9317 * consumer comes along, or whenever a retained enabling is to be matched.) If 9318 * the specified description is non-NULL, the provider is given the 9319 * opportunity to dynamically provide the specified probe, allowing providers 9320 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9321 * probes.) If the provider is NULL, the operations will be applied to all 9322 * providers; if the provider is non-NULL the operations will only be applied 9323 * to the specified provider. The dtrace_provider_lock must be held, and the 9324 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9325 * will need to grab the dtrace_lock when it reenters the framework through 9326 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9327 */ 9328 static void 9329 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9330 { 9331 #ifdef illumos 9332 modctl_t *ctl; 9333 #endif 9334 int all = 0; 9335 9336 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9337 9338 if (prv == NULL) { 9339 all = 1; 9340 prv = dtrace_provider; 9341 } 9342 9343 do { 9344 /* 9345 * First, call the blanket provide operation. 9346 */ 9347 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9348 9349 #ifdef illumos 9350 /* 9351 * Now call the per-module provide operation. We will grab 9352 * mod_lock to prevent the list from being modified. Note 9353 * that this also prevents the mod_busy bits from changing. 9354 * (mod_busy can only be changed with mod_lock held.) 9355 */ 9356 mutex_enter(&mod_lock); 9357 9358 ctl = &modules; 9359 do { 9360 if (ctl->mod_busy || ctl->mod_mp == NULL) 9361 continue; 9362 9363 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9364 9365 } while ((ctl = ctl->mod_next) != &modules); 9366 9367 mutex_exit(&mod_lock); 9368 #endif 9369 } while (all && (prv = prv->dtpv_next) != NULL); 9370 } 9371 9372 #ifdef illumos 9373 /* 9374 * Iterate over each probe, and call the Framework-to-Provider API function 9375 * denoted by offs. 9376 */ 9377 static void 9378 dtrace_probe_foreach(uintptr_t offs) 9379 { 9380 dtrace_provider_t *prov; 9381 void (*func)(void *, dtrace_id_t, void *); 9382 dtrace_probe_t *probe; 9383 dtrace_icookie_t cookie; 9384 int i; 9385 9386 /* 9387 * We disable interrupts to walk through the probe array. This is 9388 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9389 * won't see stale data. 9390 */ 9391 cookie = dtrace_interrupt_disable(); 9392 9393 for (i = 0; i < dtrace_nprobes; i++) { 9394 if ((probe = dtrace_probes[i]) == NULL) 9395 continue; 9396 9397 if (probe->dtpr_ecb == NULL) { 9398 /* 9399 * This probe isn't enabled -- don't call the function. 9400 */ 9401 continue; 9402 } 9403 9404 prov = probe->dtpr_provider; 9405 func = *((void(**)(void *, dtrace_id_t, void *)) 9406 ((uintptr_t)&prov->dtpv_pops + offs)); 9407 9408 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9409 } 9410 9411 dtrace_interrupt_enable(cookie); 9412 } 9413 #endif 9414 9415 static int 9416 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9417 { 9418 dtrace_probekey_t pkey; 9419 uint32_t priv; 9420 uid_t uid; 9421 zoneid_t zoneid; 9422 9423 ASSERT(MUTEX_HELD(&dtrace_lock)); 9424 dtrace_ecb_create_cache = NULL; 9425 9426 if (desc == NULL) { 9427 /* 9428 * If we're passed a NULL description, we're being asked to 9429 * create an ECB with a NULL probe. 9430 */ 9431 (void) dtrace_ecb_create_enable(NULL, enab); 9432 return (0); 9433 } 9434 9435 dtrace_probekey(desc, &pkey); 9436 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9437 &priv, &uid, &zoneid); 9438 9439 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9440 enab)); 9441 } 9442 9443 /* 9444 * DTrace Helper Provider Functions 9445 */ 9446 static void 9447 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9448 { 9449 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9450 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9451 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9452 } 9453 9454 static void 9455 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9456 const dof_provider_t *dofprov, char *strtab) 9457 { 9458 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9460 dofprov->dofpv_provattr); 9461 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9462 dofprov->dofpv_modattr); 9463 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9464 dofprov->dofpv_funcattr); 9465 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9466 dofprov->dofpv_nameattr); 9467 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9468 dofprov->dofpv_argsattr); 9469 } 9470 9471 static void 9472 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9473 { 9474 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9475 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9476 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9477 dof_provider_t *provider; 9478 dof_probe_t *probe; 9479 uint32_t *off, *enoff; 9480 uint8_t *arg; 9481 char *strtab; 9482 uint_t i, nprobes; 9483 dtrace_helper_provdesc_t dhpv; 9484 dtrace_helper_probedesc_t dhpb; 9485 dtrace_meta_t *meta = dtrace_meta_pid; 9486 dtrace_mops_t *mops = &meta->dtm_mops; 9487 void *parg; 9488 9489 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9490 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9491 provider->dofpv_strtab * dof->dofh_secsize); 9492 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9493 provider->dofpv_probes * dof->dofh_secsize); 9494 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9495 provider->dofpv_prargs * dof->dofh_secsize); 9496 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9497 provider->dofpv_proffs * dof->dofh_secsize); 9498 9499 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9500 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9501 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9502 enoff = NULL; 9503 9504 /* 9505 * See dtrace_helper_provider_validate(). 9506 */ 9507 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9508 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9509 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9510 provider->dofpv_prenoffs * dof->dofh_secsize); 9511 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9512 } 9513 9514 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9515 9516 /* 9517 * Create the provider. 9518 */ 9519 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9520 9521 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9522 return; 9523 9524 meta->dtm_count++; 9525 9526 /* 9527 * Create the probes. 9528 */ 9529 for (i = 0; i < nprobes; i++) { 9530 probe = (dof_probe_t *)(uintptr_t)(daddr + 9531 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9532 9533 /* See the check in dtrace_helper_provider_validate(). */ 9534 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9535 continue; 9536 9537 dhpb.dthpb_mod = dhp->dofhp_mod; 9538 dhpb.dthpb_func = strtab + probe->dofpr_func; 9539 dhpb.dthpb_name = strtab + probe->dofpr_name; 9540 dhpb.dthpb_base = probe->dofpr_addr; 9541 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9542 dhpb.dthpb_noffs = probe->dofpr_noffs; 9543 if (enoff != NULL) { 9544 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9545 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9546 } else { 9547 dhpb.dthpb_enoffs = NULL; 9548 dhpb.dthpb_nenoffs = 0; 9549 } 9550 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9551 dhpb.dthpb_nargc = probe->dofpr_nargc; 9552 dhpb.dthpb_xargc = probe->dofpr_xargc; 9553 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9554 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9555 9556 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9557 } 9558 } 9559 9560 static void 9561 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9562 { 9563 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9564 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9565 int i; 9566 9567 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9568 9569 for (i = 0; i < dof->dofh_secnum; i++) { 9570 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9571 dof->dofh_secoff + i * dof->dofh_secsize); 9572 9573 if (sec->dofs_type != DOF_SECT_PROVIDER) 9574 continue; 9575 9576 dtrace_helper_provide_one(dhp, sec, pid); 9577 } 9578 9579 /* 9580 * We may have just created probes, so we must now rematch against 9581 * any retained enablings. Note that this call will acquire both 9582 * cpu_lock and dtrace_lock; the fact that we are holding 9583 * dtrace_meta_lock now is what defines the ordering with respect to 9584 * these three locks. 9585 */ 9586 dtrace_enabling_matchall(); 9587 } 9588 9589 static void 9590 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9591 { 9592 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9593 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9594 dof_sec_t *str_sec; 9595 dof_provider_t *provider; 9596 char *strtab; 9597 dtrace_helper_provdesc_t dhpv; 9598 dtrace_meta_t *meta = dtrace_meta_pid; 9599 dtrace_mops_t *mops = &meta->dtm_mops; 9600 9601 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9602 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9603 provider->dofpv_strtab * dof->dofh_secsize); 9604 9605 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9606 9607 /* 9608 * Create the provider. 9609 */ 9610 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9611 9612 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9613 9614 meta->dtm_count--; 9615 } 9616 9617 static void 9618 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9619 { 9620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9621 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9622 int i; 9623 9624 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9625 9626 for (i = 0; i < dof->dofh_secnum; i++) { 9627 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9628 dof->dofh_secoff + i * dof->dofh_secsize); 9629 9630 if (sec->dofs_type != DOF_SECT_PROVIDER) 9631 continue; 9632 9633 dtrace_helper_provider_remove_one(dhp, sec, pid); 9634 } 9635 } 9636 9637 /* 9638 * DTrace Meta Provider-to-Framework API Functions 9639 * 9640 * These functions implement the Meta Provider-to-Framework API, as described 9641 * in <sys/dtrace.h>. 9642 */ 9643 int 9644 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9645 dtrace_meta_provider_id_t *idp) 9646 { 9647 dtrace_meta_t *meta; 9648 dtrace_helpers_t *help, *next; 9649 int i; 9650 9651 *idp = DTRACE_METAPROVNONE; 9652 9653 /* 9654 * We strictly don't need the name, but we hold onto it for 9655 * debuggability. All hail error queues! 9656 */ 9657 if (name == NULL) { 9658 cmn_err(CE_WARN, "failed to register meta-provider: " 9659 "invalid name"); 9660 return (EINVAL); 9661 } 9662 9663 if (mops == NULL || 9664 mops->dtms_create_probe == NULL || 9665 mops->dtms_provide_pid == NULL || 9666 mops->dtms_remove_pid == NULL) { 9667 cmn_err(CE_WARN, "failed to register meta-register %s: " 9668 "invalid ops", name); 9669 return (EINVAL); 9670 } 9671 9672 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9673 meta->dtm_mops = *mops; 9674 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9675 (void) strcpy(meta->dtm_name, name); 9676 meta->dtm_arg = arg; 9677 9678 mutex_enter(&dtrace_meta_lock); 9679 mutex_enter(&dtrace_lock); 9680 9681 if (dtrace_meta_pid != NULL) { 9682 mutex_exit(&dtrace_lock); 9683 mutex_exit(&dtrace_meta_lock); 9684 cmn_err(CE_WARN, "failed to register meta-register %s: " 9685 "user-land meta-provider exists", name); 9686 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9687 kmem_free(meta, sizeof (dtrace_meta_t)); 9688 return (EINVAL); 9689 } 9690 9691 dtrace_meta_pid = meta; 9692 *idp = (dtrace_meta_provider_id_t)meta; 9693 9694 /* 9695 * If there are providers and probes ready to go, pass them 9696 * off to the new meta provider now. 9697 */ 9698 9699 help = dtrace_deferred_pid; 9700 dtrace_deferred_pid = NULL; 9701 9702 mutex_exit(&dtrace_lock); 9703 9704 while (help != NULL) { 9705 for (i = 0; i < help->dthps_nprovs; i++) { 9706 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9707 help->dthps_pid); 9708 } 9709 9710 next = help->dthps_next; 9711 help->dthps_next = NULL; 9712 help->dthps_prev = NULL; 9713 help->dthps_deferred = 0; 9714 help = next; 9715 } 9716 9717 mutex_exit(&dtrace_meta_lock); 9718 9719 return (0); 9720 } 9721 9722 int 9723 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9724 { 9725 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9726 9727 mutex_enter(&dtrace_meta_lock); 9728 mutex_enter(&dtrace_lock); 9729 9730 if (old == dtrace_meta_pid) { 9731 pp = &dtrace_meta_pid; 9732 } else { 9733 panic("attempt to unregister non-existent " 9734 "dtrace meta-provider %p\n", (void *)old); 9735 } 9736 9737 if (old->dtm_count != 0) { 9738 mutex_exit(&dtrace_lock); 9739 mutex_exit(&dtrace_meta_lock); 9740 return (EBUSY); 9741 } 9742 9743 *pp = NULL; 9744 9745 mutex_exit(&dtrace_lock); 9746 mutex_exit(&dtrace_meta_lock); 9747 9748 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9749 kmem_free(old, sizeof (dtrace_meta_t)); 9750 9751 return (0); 9752 } 9753 9754 9755 /* 9756 * DTrace DIF Object Functions 9757 */ 9758 static int 9759 dtrace_difo_err(uint_t pc, const char *format, ...) 9760 { 9761 if (dtrace_err_verbose) { 9762 va_list alist; 9763 9764 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9765 va_start(alist, format); 9766 (void) vuprintf(format, alist); 9767 va_end(alist); 9768 } 9769 9770 #ifdef DTRACE_ERRDEBUG 9771 dtrace_errdebug(format); 9772 #endif 9773 return (1); 9774 } 9775 9776 /* 9777 * Validate a DTrace DIF object by checking the IR instructions. The following 9778 * rules are currently enforced by dtrace_difo_validate(): 9779 * 9780 * 1. Each instruction must have a valid opcode 9781 * 2. Each register, string, variable, or subroutine reference must be valid 9782 * 3. No instruction can modify register %r0 (must be zero) 9783 * 4. All instruction reserved bits must be set to zero 9784 * 5. The last instruction must be a "ret" instruction 9785 * 6. All branch targets must reference a valid instruction _after_ the branch 9786 */ 9787 static int 9788 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9789 cred_t *cr) 9790 { 9791 int err = 0, i; 9792 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9793 int kcheckload; 9794 uint_t pc; 9795 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9796 9797 kcheckload = cr == NULL || 9798 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9799 9800 dp->dtdo_destructive = 0; 9801 9802 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9803 dif_instr_t instr = dp->dtdo_buf[pc]; 9804 9805 uint_t r1 = DIF_INSTR_R1(instr); 9806 uint_t r2 = DIF_INSTR_R2(instr); 9807 uint_t rd = DIF_INSTR_RD(instr); 9808 uint_t rs = DIF_INSTR_RS(instr); 9809 uint_t label = DIF_INSTR_LABEL(instr); 9810 uint_t v = DIF_INSTR_VAR(instr); 9811 uint_t subr = DIF_INSTR_SUBR(instr); 9812 uint_t type = DIF_INSTR_TYPE(instr); 9813 uint_t op = DIF_INSTR_OP(instr); 9814 9815 switch (op) { 9816 case DIF_OP_OR: 9817 case DIF_OP_XOR: 9818 case DIF_OP_AND: 9819 case DIF_OP_SLL: 9820 case DIF_OP_SRL: 9821 case DIF_OP_SRA: 9822 case DIF_OP_SUB: 9823 case DIF_OP_ADD: 9824 case DIF_OP_MUL: 9825 case DIF_OP_SDIV: 9826 case DIF_OP_UDIV: 9827 case DIF_OP_SREM: 9828 case DIF_OP_UREM: 9829 case DIF_OP_COPYS: 9830 if (r1 >= nregs) 9831 err += efunc(pc, "invalid register %u\n", r1); 9832 if (r2 >= nregs) 9833 err += efunc(pc, "invalid register %u\n", r2); 9834 if (rd >= nregs) 9835 err += efunc(pc, "invalid register %u\n", rd); 9836 if (rd == 0) 9837 err += efunc(pc, "cannot write to %%r0\n"); 9838 break; 9839 case DIF_OP_NOT: 9840 case DIF_OP_MOV: 9841 case DIF_OP_ALLOCS: 9842 if (r1 >= nregs) 9843 err += efunc(pc, "invalid register %u\n", r1); 9844 if (r2 != 0) 9845 err += efunc(pc, "non-zero reserved bits\n"); 9846 if (rd >= nregs) 9847 err += efunc(pc, "invalid register %u\n", rd); 9848 if (rd == 0) 9849 err += efunc(pc, "cannot write to %%r0\n"); 9850 break; 9851 case DIF_OP_LDSB: 9852 case DIF_OP_LDSH: 9853 case DIF_OP_LDSW: 9854 case DIF_OP_LDUB: 9855 case DIF_OP_LDUH: 9856 case DIF_OP_LDUW: 9857 case DIF_OP_LDX: 9858 if (r1 >= nregs) 9859 err += efunc(pc, "invalid register %u\n", r1); 9860 if (r2 != 0) 9861 err += efunc(pc, "non-zero reserved bits\n"); 9862 if (rd >= nregs) 9863 err += efunc(pc, "invalid register %u\n", rd); 9864 if (rd == 0) 9865 err += efunc(pc, "cannot write to %%r0\n"); 9866 if (kcheckload) 9867 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9868 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9869 break; 9870 case DIF_OP_RLDSB: 9871 case DIF_OP_RLDSH: 9872 case DIF_OP_RLDSW: 9873 case DIF_OP_RLDUB: 9874 case DIF_OP_RLDUH: 9875 case DIF_OP_RLDUW: 9876 case DIF_OP_RLDX: 9877 if (r1 >= nregs) 9878 err += efunc(pc, "invalid register %u\n", r1); 9879 if (r2 != 0) 9880 err += efunc(pc, "non-zero reserved bits\n"); 9881 if (rd >= nregs) 9882 err += efunc(pc, "invalid register %u\n", rd); 9883 if (rd == 0) 9884 err += efunc(pc, "cannot write to %%r0\n"); 9885 break; 9886 case DIF_OP_ULDSB: 9887 case DIF_OP_ULDSH: 9888 case DIF_OP_ULDSW: 9889 case DIF_OP_ULDUB: 9890 case DIF_OP_ULDUH: 9891 case DIF_OP_ULDUW: 9892 case DIF_OP_ULDX: 9893 if (r1 >= nregs) 9894 err += efunc(pc, "invalid register %u\n", r1); 9895 if (r2 != 0) 9896 err += efunc(pc, "non-zero reserved bits\n"); 9897 if (rd >= nregs) 9898 err += efunc(pc, "invalid register %u\n", rd); 9899 if (rd == 0) 9900 err += efunc(pc, "cannot write to %%r0\n"); 9901 break; 9902 case DIF_OP_STB: 9903 case DIF_OP_STH: 9904 case DIF_OP_STW: 9905 case DIF_OP_STX: 9906 if (r1 >= nregs) 9907 err += efunc(pc, "invalid register %u\n", r1); 9908 if (r2 != 0) 9909 err += efunc(pc, "non-zero reserved bits\n"); 9910 if (rd >= nregs) 9911 err += efunc(pc, "invalid register %u\n", rd); 9912 if (rd == 0) 9913 err += efunc(pc, "cannot write to 0 address\n"); 9914 break; 9915 case DIF_OP_CMP: 9916 case DIF_OP_SCMP: 9917 if (r1 >= nregs) 9918 err += efunc(pc, "invalid register %u\n", r1); 9919 if (r2 >= nregs) 9920 err += efunc(pc, "invalid register %u\n", r2); 9921 if (rd != 0) 9922 err += efunc(pc, "non-zero reserved bits\n"); 9923 break; 9924 case DIF_OP_TST: 9925 if (r1 >= nregs) 9926 err += efunc(pc, "invalid register %u\n", r1); 9927 if (r2 != 0 || rd != 0) 9928 err += efunc(pc, "non-zero reserved bits\n"); 9929 break; 9930 case DIF_OP_BA: 9931 case DIF_OP_BE: 9932 case DIF_OP_BNE: 9933 case DIF_OP_BG: 9934 case DIF_OP_BGU: 9935 case DIF_OP_BGE: 9936 case DIF_OP_BGEU: 9937 case DIF_OP_BL: 9938 case DIF_OP_BLU: 9939 case DIF_OP_BLE: 9940 case DIF_OP_BLEU: 9941 if (label >= dp->dtdo_len) { 9942 err += efunc(pc, "invalid branch target %u\n", 9943 label); 9944 } 9945 if (label <= pc) { 9946 err += efunc(pc, "backward branch to %u\n", 9947 label); 9948 } 9949 break; 9950 case DIF_OP_RET: 9951 if (r1 != 0 || r2 != 0) 9952 err += efunc(pc, "non-zero reserved bits\n"); 9953 if (rd >= nregs) 9954 err += efunc(pc, "invalid register %u\n", rd); 9955 break; 9956 case DIF_OP_NOP: 9957 case DIF_OP_POPTS: 9958 case DIF_OP_FLUSHTS: 9959 if (r1 != 0 || r2 != 0 || rd != 0) 9960 err += efunc(pc, "non-zero reserved bits\n"); 9961 break; 9962 case DIF_OP_SETX: 9963 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9964 err += efunc(pc, "invalid integer ref %u\n", 9965 DIF_INSTR_INTEGER(instr)); 9966 } 9967 if (rd >= nregs) 9968 err += efunc(pc, "invalid register %u\n", rd); 9969 if (rd == 0) 9970 err += efunc(pc, "cannot write to %%r0\n"); 9971 break; 9972 case DIF_OP_SETS: 9973 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9974 err += efunc(pc, "invalid string ref %u\n", 9975 DIF_INSTR_STRING(instr)); 9976 } 9977 if (rd >= nregs) 9978 err += efunc(pc, "invalid register %u\n", rd); 9979 if (rd == 0) 9980 err += efunc(pc, "cannot write to %%r0\n"); 9981 break; 9982 case DIF_OP_LDGA: 9983 case DIF_OP_LDTA: 9984 if (r1 > DIF_VAR_ARRAY_MAX) 9985 err += efunc(pc, "invalid array %u\n", r1); 9986 if (r2 >= nregs) 9987 err += efunc(pc, "invalid register %u\n", r2); 9988 if (rd >= nregs) 9989 err += efunc(pc, "invalid register %u\n", rd); 9990 if (rd == 0) 9991 err += efunc(pc, "cannot write to %%r0\n"); 9992 break; 9993 case DIF_OP_LDGS: 9994 case DIF_OP_LDTS: 9995 case DIF_OP_LDLS: 9996 case DIF_OP_LDGAA: 9997 case DIF_OP_LDTAA: 9998 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9999 err += efunc(pc, "invalid variable %u\n", v); 10000 if (rd >= nregs) 10001 err += efunc(pc, "invalid register %u\n", rd); 10002 if (rd == 0) 10003 err += efunc(pc, "cannot write to %%r0\n"); 10004 break; 10005 case DIF_OP_STGS: 10006 case DIF_OP_STTS: 10007 case DIF_OP_STLS: 10008 case DIF_OP_STGAA: 10009 case DIF_OP_STTAA: 10010 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10011 err += efunc(pc, "invalid variable %u\n", v); 10012 if (rs >= nregs) 10013 err += efunc(pc, "invalid register %u\n", rd); 10014 break; 10015 case DIF_OP_CALL: 10016 if (subr > DIF_SUBR_MAX) 10017 err += efunc(pc, "invalid subr %u\n", subr); 10018 if (rd >= nregs) 10019 err += efunc(pc, "invalid register %u\n", rd); 10020 if (rd == 0) 10021 err += efunc(pc, "cannot write to %%r0\n"); 10022 10023 if (subr == DIF_SUBR_COPYOUT || 10024 subr == DIF_SUBR_COPYOUTSTR) { 10025 dp->dtdo_destructive = 1; 10026 } 10027 10028 if (subr == DIF_SUBR_GETF) { 10029 #ifdef __FreeBSD__ 10030 err += efunc(pc, "getf() not supported"); 10031 #else 10032 /* 10033 * If we have a getf() we need to record that 10034 * in our state. Note that our state can be 10035 * NULL if this is a helper -- but in that 10036 * case, the call to getf() is itself illegal, 10037 * and will be caught (slightly later) when 10038 * the helper is validated. 10039 */ 10040 if (vstate->dtvs_state != NULL) 10041 vstate->dtvs_state->dts_getf++; 10042 #endif 10043 } 10044 10045 break; 10046 case DIF_OP_PUSHTR: 10047 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10048 err += efunc(pc, "invalid ref type %u\n", type); 10049 if (r2 >= nregs) 10050 err += efunc(pc, "invalid register %u\n", r2); 10051 if (rs >= nregs) 10052 err += efunc(pc, "invalid register %u\n", rs); 10053 break; 10054 case DIF_OP_PUSHTV: 10055 if (type != DIF_TYPE_CTF) 10056 err += efunc(pc, "invalid val type %u\n", type); 10057 if (r2 >= nregs) 10058 err += efunc(pc, "invalid register %u\n", r2); 10059 if (rs >= nregs) 10060 err += efunc(pc, "invalid register %u\n", rs); 10061 break; 10062 default: 10063 err += efunc(pc, "invalid opcode %u\n", 10064 DIF_INSTR_OP(instr)); 10065 } 10066 } 10067 10068 if (dp->dtdo_len != 0 && 10069 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10070 err += efunc(dp->dtdo_len - 1, 10071 "expected 'ret' as last DIF instruction\n"); 10072 } 10073 10074 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10075 /* 10076 * If we're not returning by reference, the size must be either 10077 * 0 or the size of one of the base types. 10078 */ 10079 switch (dp->dtdo_rtype.dtdt_size) { 10080 case 0: 10081 case sizeof (uint8_t): 10082 case sizeof (uint16_t): 10083 case sizeof (uint32_t): 10084 case sizeof (uint64_t): 10085 break; 10086 10087 default: 10088 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10089 } 10090 } 10091 10092 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10093 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10094 dtrace_diftype_t *vt, *et; 10095 uint_t id, ndx; 10096 10097 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10098 v->dtdv_scope != DIFV_SCOPE_THREAD && 10099 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10100 err += efunc(i, "unrecognized variable scope %d\n", 10101 v->dtdv_scope); 10102 break; 10103 } 10104 10105 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10106 v->dtdv_kind != DIFV_KIND_SCALAR) { 10107 err += efunc(i, "unrecognized variable type %d\n", 10108 v->dtdv_kind); 10109 break; 10110 } 10111 10112 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10113 err += efunc(i, "%d exceeds variable id limit\n", id); 10114 break; 10115 } 10116 10117 if (id < DIF_VAR_OTHER_UBASE) 10118 continue; 10119 10120 /* 10121 * For user-defined variables, we need to check that this 10122 * definition is identical to any previous definition that we 10123 * encountered. 10124 */ 10125 ndx = id - DIF_VAR_OTHER_UBASE; 10126 10127 switch (v->dtdv_scope) { 10128 case DIFV_SCOPE_GLOBAL: 10129 if (maxglobal == -1 || ndx > maxglobal) 10130 maxglobal = ndx; 10131 10132 if (ndx < vstate->dtvs_nglobals) { 10133 dtrace_statvar_t *svar; 10134 10135 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10136 existing = &svar->dtsv_var; 10137 } 10138 10139 break; 10140 10141 case DIFV_SCOPE_THREAD: 10142 if (maxtlocal == -1 || ndx > maxtlocal) 10143 maxtlocal = ndx; 10144 10145 if (ndx < vstate->dtvs_ntlocals) 10146 existing = &vstate->dtvs_tlocals[ndx]; 10147 break; 10148 10149 case DIFV_SCOPE_LOCAL: 10150 if (maxlocal == -1 || ndx > maxlocal) 10151 maxlocal = ndx; 10152 10153 if (ndx < vstate->dtvs_nlocals) { 10154 dtrace_statvar_t *svar; 10155 10156 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10157 existing = &svar->dtsv_var; 10158 } 10159 10160 break; 10161 } 10162 10163 vt = &v->dtdv_type; 10164 10165 if (vt->dtdt_flags & DIF_TF_BYREF) { 10166 if (vt->dtdt_size == 0) { 10167 err += efunc(i, "zero-sized variable\n"); 10168 break; 10169 } 10170 10171 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10172 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10173 vt->dtdt_size > dtrace_statvar_maxsize) { 10174 err += efunc(i, "oversized by-ref static\n"); 10175 break; 10176 } 10177 } 10178 10179 if (existing == NULL || existing->dtdv_id == 0) 10180 continue; 10181 10182 ASSERT(existing->dtdv_id == v->dtdv_id); 10183 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10184 10185 if (existing->dtdv_kind != v->dtdv_kind) 10186 err += efunc(i, "%d changed variable kind\n", id); 10187 10188 et = &existing->dtdv_type; 10189 10190 if (vt->dtdt_flags != et->dtdt_flags) { 10191 err += efunc(i, "%d changed variable type flags\n", id); 10192 break; 10193 } 10194 10195 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10196 err += efunc(i, "%d changed variable type size\n", id); 10197 break; 10198 } 10199 } 10200 10201 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10202 dif_instr_t instr = dp->dtdo_buf[pc]; 10203 10204 uint_t v = DIF_INSTR_VAR(instr); 10205 uint_t op = DIF_INSTR_OP(instr); 10206 10207 switch (op) { 10208 case DIF_OP_LDGS: 10209 case DIF_OP_LDGAA: 10210 case DIF_OP_STGS: 10211 case DIF_OP_STGAA: 10212 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10213 err += efunc(pc, "invalid variable %u\n", v); 10214 break; 10215 case DIF_OP_LDTS: 10216 case DIF_OP_LDTAA: 10217 case DIF_OP_STTS: 10218 case DIF_OP_STTAA: 10219 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10220 err += efunc(pc, "invalid variable %u\n", v); 10221 break; 10222 case DIF_OP_LDLS: 10223 case DIF_OP_STLS: 10224 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10225 err += efunc(pc, "invalid variable %u\n", v); 10226 break; 10227 default: 10228 break; 10229 } 10230 } 10231 10232 return (err); 10233 } 10234 10235 /* 10236 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10237 * are much more constrained than normal DIFOs. Specifically, they may 10238 * not: 10239 * 10240 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10241 * miscellaneous string routines 10242 * 2. Access DTrace variables other than the args[] array, and the 10243 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10244 * 3. Have thread-local variables. 10245 * 4. Have dynamic variables. 10246 */ 10247 static int 10248 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10249 { 10250 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10251 int err = 0; 10252 uint_t pc; 10253 10254 for (pc = 0; pc < dp->dtdo_len; pc++) { 10255 dif_instr_t instr = dp->dtdo_buf[pc]; 10256 10257 uint_t v = DIF_INSTR_VAR(instr); 10258 uint_t subr = DIF_INSTR_SUBR(instr); 10259 uint_t op = DIF_INSTR_OP(instr); 10260 10261 switch (op) { 10262 case DIF_OP_OR: 10263 case DIF_OP_XOR: 10264 case DIF_OP_AND: 10265 case DIF_OP_SLL: 10266 case DIF_OP_SRL: 10267 case DIF_OP_SRA: 10268 case DIF_OP_SUB: 10269 case DIF_OP_ADD: 10270 case DIF_OP_MUL: 10271 case DIF_OP_SDIV: 10272 case DIF_OP_UDIV: 10273 case DIF_OP_SREM: 10274 case DIF_OP_UREM: 10275 case DIF_OP_COPYS: 10276 case DIF_OP_NOT: 10277 case DIF_OP_MOV: 10278 case DIF_OP_RLDSB: 10279 case DIF_OP_RLDSH: 10280 case DIF_OP_RLDSW: 10281 case DIF_OP_RLDUB: 10282 case DIF_OP_RLDUH: 10283 case DIF_OP_RLDUW: 10284 case DIF_OP_RLDX: 10285 case DIF_OP_ULDSB: 10286 case DIF_OP_ULDSH: 10287 case DIF_OP_ULDSW: 10288 case DIF_OP_ULDUB: 10289 case DIF_OP_ULDUH: 10290 case DIF_OP_ULDUW: 10291 case DIF_OP_ULDX: 10292 case DIF_OP_STB: 10293 case DIF_OP_STH: 10294 case DIF_OP_STW: 10295 case DIF_OP_STX: 10296 case DIF_OP_ALLOCS: 10297 case DIF_OP_CMP: 10298 case DIF_OP_SCMP: 10299 case DIF_OP_TST: 10300 case DIF_OP_BA: 10301 case DIF_OP_BE: 10302 case DIF_OP_BNE: 10303 case DIF_OP_BG: 10304 case DIF_OP_BGU: 10305 case DIF_OP_BGE: 10306 case DIF_OP_BGEU: 10307 case DIF_OP_BL: 10308 case DIF_OP_BLU: 10309 case DIF_OP_BLE: 10310 case DIF_OP_BLEU: 10311 case DIF_OP_RET: 10312 case DIF_OP_NOP: 10313 case DIF_OP_POPTS: 10314 case DIF_OP_FLUSHTS: 10315 case DIF_OP_SETX: 10316 case DIF_OP_SETS: 10317 case DIF_OP_LDGA: 10318 case DIF_OP_LDLS: 10319 case DIF_OP_STGS: 10320 case DIF_OP_STLS: 10321 case DIF_OP_PUSHTR: 10322 case DIF_OP_PUSHTV: 10323 break; 10324 10325 case DIF_OP_LDGS: 10326 if (v >= DIF_VAR_OTHER_UBASE) 10327 break; 10328 10329 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10330 break; 10331 10332 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10333 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10334 v == DIF_VAR_EXECARGS || 10335 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10336 v == DIF_VAR_UID || v == DIF_VAR_GID) 10337 break; 10338 10339 err += efunc(pc, "illegal variable %u\n", v); 10340 break; 10341 10342 case DIF_OP_LDTA: 10343 case DIF_OP_LDTS: 10344 case DIF_OP_LDGAA: 10345 case DIF_OP_LDTAA: 10346 err += efunc(pc, "illegal dynamic variable load\n"); 10347 break; 10348 10349 case DIF_OP_STTS: 10350 case DIF_OP_STGAA: 10351 case DIF_OP_STTAA: 10352 err += efunc(pc, "illegal dynamic variable store\n"); 10353 break; 10354 10355 case DIF_OP_CALL: 10356 if (subr == DIF_SUBR_ALLOCA || 10357 subr == DIF_SUBR_BCOPY || 10358 subr == DIF_SUBR_COPYIN || 10359 subr == DIF_SUBR_COPYINTO || 10360 subr == DIF_SUBR_COPYINSTR || 10361 subr == DIF_SUBR_INDEX || 10362 subr == DIF_SUBR_INET_NTOA || 10363 subr == DIF_SUBR_INET_NTOA6 || 10364 subr == DIF_SUBR_INET_NTOP || 10365 subr == DIF_SUBR_JSON || 10366 subr == DIF_SUBR_LLTOSTR || 10367 subr == DIF_SUBR_STRTOLL || 10368 subr == DIF_SUBR_RINDEX || 10369 subr == DIF_SUBR_STRCHR || 10370 subr == DIF_SUBR_STRJOIN || 10371 subr == DIF_SUBR_STRRCHR || 10372 subr == DIF_SUBR_STRSTR || 10373 subr == DIF_SUBR_HTONS || 10374 subr == DIF_SUBR_HTONL || 10375 subr == DIF_SUBR_HTONLL || 10376 subr == DIF_SUBR_NTOHS || 10377 subr == DIF_SUBR_NTOHL || 10378 subr == DIF_SUBR_NTOHLL || 10379 subr == DIF_SUBR_MEMREF) 10380 break; 10381 #ifdef __FreeBSD__ 10382 if (subr == DIF_SUBR_MEMSTR) 10383 break; 10384 #endif 10385 10386 err += efunc(pc, "invalid subr %u\n", subr); 10387 break; 10388 10389 default: 10390 err += efunc(pc, "invalid opcode %u\n", 10391 DIF_INSTR_OP(instr)); 10392 } 10393 } 10394 10395 return (err); 10396 } 10397 10398 /* 10399 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10400 * basis; 0 if not. 10401 */ 10402 static int 10403 dtrace_difo_cacheable(dtrace_difo_t *dp) 10404 { 10405 int i; 10406 10407 if (dp == NULL) 10408 return (0); 10409 10410 for (i = 0; i < dp->dtdo_varlen; i++) { 10411 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10412 10413 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10414 continue; 10415 10416 switch (v->dtdv_id) { 10417 case DIF_VAR_CURTHREAD: 10418 case DIF_VAR_PID: 10419 case DIF_VAR_TID: 10420 case DIF_VAR_EXECARGS: 10421 case DIF_VAR_EXECNAME: 10422 case DIF_VAR_ZONENAME: 10423 break; 10424 10425 default: 10426 return (0); 10427 } 10428 } 10429 10430 /* 10431 * This DIF object may be cacheable. Now we need to look for any 10432 * array loading instructions, any memory loading instructions, or 10433 * any stores to thread-local variables. 10434 */ 10435 for (i = 0; i < dp->dtdo_len; i++) { 10436 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10437 10438 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10439 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10440 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10441 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10442 return (0); 10443 } 10444 10445 return (1); 10446 } 10447 10448 static void 10449 dtrace_difo_hold(dtrace_difo_t *dp) 10450 { 10451 int i; 10452 10453 ASSERT(MUTEX_HELD(&dtrace_lock)); 10454 10455 dp->dtdo_refcnt++; 10456 ASSERT(dp->dtdo_refcnt != 0); 10457 10458 /* 10459 * We need to check this DIF object for references to the variable 10460 * DIF_VAR_VTIMESTAMP. 10461 */ 10462 for (i = 0; i < dp->dtdo_varlen; i++) { 10463 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10464 10465 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10466 continue; 10467 10468 if (dtrace_vtime_references++ == 0) 10469 dtrace_vtime_enable(); 10470 } 10471 } 10472 10473 /* 10474 * This routine calculates the dynamic variable chunksize for a given DIF 10475 * object. The calculation is not fool-proof, and can probably be tricked by 10476 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10477 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10478 * if a dynamic variable size exceeds the chunksize. 10479 */ 10480 static void 10481 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10482 { 10483 uint64_t sval = 0; 10484 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10485 const dif_instr_t *text = dp->dtdo_buf; 10486 uint_t pc, srd = 0; 10487 uint_t ttop = 0; 10488 size_t size, ksize; 10489 uint_t id, i; 10490 10491 for (pc = 0; pc < dp->dtdo_len; pc++) { 10492 dif_instr_t instr = text[pc]; 10493 uint_t op = DIF_INSTR_OP(instr); 10494 uint_t rd = DIF_INSTR_RD(instr); 10495 uint_t r1 = DIF_INSTR_R1(instr); 10496 uint_t nkeys = 0; 10497 uchar_t scope = 0; 10498 10499 dtrace_key_t *key = tupregs; 10500 10501 switch (op) { 10502 case DIF_OP_SETX: 10503 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10504 srd = rd; 10505 continue; 10506 10507 case DIF_OP_STTS: 10508 key = &tupregs[DIF_DTR_NREGS]; 10509 key[0].dttk_size = 0; 10510 key[1].dttk_size = 0; 10511 nkeys = 2; 10512 scope = DIFV_SCOPE_THREAD; 10513 break; 10514 10515 case DIF_OP_STGAA: 10516 case DIF_OP_STTAA: 10517 nkeys = ttop; 10518 10519 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10520 key[nkeys++].dttk_size = 0; 10521 10522 key[nkeys++].dttk_size = 0; 10523 10524 if (op == DIF_OP_STTAA) { 10525 scope = DIFV_SCOPE_THREAD; 10526 } else { 10527 scope = DIFV_SCOPE_GLOBAL; 10528 } 10529 10530 break; 10531 10532 case DIF_OP_PUSHTR: 10533 if (ttop == DIF_DTR_NREGS) 10534 return; 10535 10536 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10537 /* 10538 * If the register for the size of the "pushtr" 10539 * is %r0 (or the value is 0) and the type is 10540 * a string, we'll use the system-wide default 10541 * string size. 10542 */ 10543 tupregs[ttop++].dttk_size = 10544 dtrace_strsize_default; 10545 } else { 10546 if (srd == 0) 10547 return; 10548 10549 if (sval > LONG_MAX) 10550 return; 10551 10552 tupregs[ttop++].dttk_size = sval; 10553 } 10554 10555 break; 10556 10557 case DIF_OP_PUSHTV: 10558 if (ttop == DIF_DTR_NREGS) 10559 return; 10560 10561 tupregs[ttop++].dttk_size = 0; 10562 break; 10563 10564 case DIF_OP_FLUSHTS: 10565 ttop = 0; 10566 break; 10567 10568 case DIF_OP_POPTS: 10569 if (ttop != 0) 10570 ttop--; 10571 break; 10572 } 10573 10574 sval = 0; 10575 srd = 0; 10576 10577 if (nkeys == 0) 10578 continue; 10579 10580 /* 10581 * We have a dynamic variable allocation; calculate its size. 10582 */ 10583 for (ksize = 0, i = 0; i < nkeys; i++) 10584 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10585 10586 size = sizeof (dtrace_dynvar_t); 10587 size += sizeof (dtrace_key_t) * (nkeys - 1); 10588 size += ksize; 10589 10590 /* 10591 * Now we need to determine the size of the stored data. 10592 */ 10593 id = DIF_INSTR_VAR(instr); 10594 10595 for (i = 0; i < dp->dtdo_varlen; i++) { 10596 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10597 10598 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10599 size += v->dtdv_type.dtdt_size; 10600 break; 10601 } 10602 } 10603 10604 if (i == dp->dtdo_varlen) 10605 return; 10606 10607 /* 10608 * We have the size. If this is larger than the chunk size 10609 * for our dynamic variable state, reset the chunk size. 10610 */ 10611 size = P2ROUNDUP(size, sizeof (uint64_t)); 10612 10613 /* 10614 * Before setting the chunk size, check that we're not going 10615 * to set it to a negative value... 10616 */ 10617 if (size > LONG_MAX) 10618 return; 10619 10620 /* 10621 * ...and make certain that we didn't badly overflow. 10622 */ 10623 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10624 return; 10625 10626 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10627 vstate->dtvs_dynvars.dtds_chunksize = size; 10628 } 10629 } 10630 10631 static void 10632 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10633 { 10634 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10635 uint_t id; 10636 10637 ASSERT(MUTEX_HELD(&dtrace_lock)); 10638 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10639 10640 for (i = 0; i < dp->dtdo_varlen; i++) { 10641 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10642 dtrace_statvar_t *svar, ***svarp = NULL; 10643 size_t dsize = 0; 10644 uint8_t scope = v->dtdv_scope; 10645 int *np = NULL; 10646 10647 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10648 continue; 10649 10650 id -= DIF_VAR_OTHER_UBASE; 10651 10652 switch (scope) { 10653 case DIFV_SCOPE_THREAD: 10654 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10655 dtrace_difv_t *tlocals; 10656 10657 if ((ntlocals = (otlocals << 1)) == 0) 10658 ntlocals = 1; 10659 10660 osz = otlocals * sizeof (dtrace_difv_t); 10661 nsz = ntlocals * sizeof (dtrace_difv_t); 10662 10663 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10664 10665 if (osz != 0) { 10666 bcopy(vstate->dtvs_tlocals, 10667 tlocals, osz); 10668 kmem_free(vstate->dtvs_tlocals, osz); 10669 } 10670 10671 vstate->dtvs_tlocals = tlocals; 10672 vstate->dtvs_ntlocals = ntlocals; 10673 } 10674 10675 vstate->dtvs_tlocals[id] = *v; 10676 continue; 10677 10678 case DIFV_SCOPE_LOCAL: 10679 np = &vstate->dtvs_nlocals; 10680 svarp = &vstate->dtvs_locals; 10681 10682 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10683 dsize = (mp_maxid + 1) * 10684 (v->dtdv_type.dtdt_size + 10685 sizeof (uint64_t)); 10686 else 10687 dsize = (mp_maxid + 1) * sizeof (uint64_t); 10688 10689 break; 10690 10691 case DIFV_SCOPE_GLOBAL: 10692 np = &vstate->dtvs_nglobals; 10693 svarp = &vstate->dtvs_globals; 10694 10695 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10696 dsize = v->dtdv_type.dtdt_size + 10697 sizeof (uint64_t); 10698 10699 break; 10700 10701 default: 10702 ASSERT(0); 10703 } 10704 10705 while (id >= (oldsvars = *np)) { 10706 dtrace_statvar_t **statics; 10707 int newsvars, oldsize, newsize; 10708 10709 if ((newsvars = (oldsvars << 1)) == 0) 10710 newsvars = 1; 10711 10712 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10713 newsize = newsvars * sizeof (dtrace_statvar_t *); 10714 10715 statics = kmem_zalloc(newsize, KM_SLEEP); 10716 10717 if (oldsize != 0) { 10718 bcopy(*svarp, statics, oldsize); 10719 kmem_free(*svarp, oldsize); 10720 } 10721 10722 *svarp = statics; 10723 *np = newsvars; 10724 } 10725 10726 if ((svar = (*svarp)[id]) == NULL) { 10727 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10728 svar->dtsv_var = *v; 10729 10730 if ((svar->dtsv_size = dsize) != 0) { 10731 svar->dtsv_data = (uint64_t)(uintptr_t) 10732 kmem_zalloc(dsize, KM_SLEEP); 10733 } 10734 10735 (*svarp)[id] = svar; 10736 } 10737 10738 svar->dtsv_refcnt++; 10739 } 10740 10741 dtrace_difo_chunksize(dp, vstate); 10742 dtrace_difo_hold(dp); 10743 } 10744 10745 static dtrace_difo_t * 10746 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10747 { 10748 dtrace_difo_t *new; 10749 size_t sz; 10750 10751 ASSERT(dp->dtdo_buf != NULL); 10752 ASSERT(dp->dtdo_refcnt != 0); 10753 10754 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10755 10756 ASSERT(dp->dtdo_buf != NULL); 10757 sz = dp->dtdo_len * sizeof (dif_instr_t); 10758 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10759 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10760 new->dtdo_len = dp->dtdo_len; 10761 10762 if (dp->dtdo_strtab != NULL) { 10763 ASSERT(dp->dtdo_strlen != 0); 10764 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10765 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10766 new->dtdo_strlen = dp->dtdo_strlen; 10767 } 10768 10769 if (dp->dtdo_inttab != NULL) { 10770 ASSERT(dp->dtdo_intlen != 0); 10771 sz = dp->dtdo_intlen * sizeof (uint64_t); 10772 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10773 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10774 new->dtdo_intlen = dp->dtdo_intlen; 10775 } 10776 10777 if (dp->dtdo_vartab != NULL) { 10778 ASSERT(dp->dtdo_varlen != 0); 10779 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10780 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10781 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10782 new->dtdo_varlen = dp->dtdo_varlen; 10783 } 10784 10785 dtrace_difo_init(new, vstate); 10786 return (new); 10787 } 10788 10789 static void 10790 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10791 { 10792 int i; 10793 10794 ASSERT(dp->dtdo_refcnt == 0); 10795 10796 for (i = 0; i < dp->dtdo_varlen; i++) { 10797 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10798 dtrace_statvar_t *svar, **svarp = NULL; 10799 uint_t id; 10800 uint8_t scope = v->dtdv_scope; 10801 int *np = NULL; 10802 10803 switch (scope) { 10804 case DIFV_SCOPE_THREAD: 10805 continue; 10806 10807 case DIFV_SCOPE_LOCAL: 10808 np = &vstate->dtvs_nlocals; 10809 svarp = vstate->dtvs_locals; 10810 break; 10811 10812 case DIFV_SCOPE_GLOBAL: 10813 np = &vstate->dtvs_nglobals; 10814 svarp = vstate->dtvs_globals; 10815 break; 10816 10817 default: 10818 ASSERT(0); 10819 } 10820 10821 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10822 continue; 10823 10824 id -= DIF_VAR_OTHER_UBASE; 10825 ASSERT(id < *np); 10826 10827 svar = svarp[id]; 10828 ASSERT(svar != NULL); 10829 ASSERT(svar->dtsv_refcnt > 0); 10830 10831 if (--svar->dtsv_refcnt > 0) 10832 continue; 10833 10834 if (svar->dtsv_size != 0) { 10835 ASSERT(svar->dtsv_data != 0); 10836 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10837 svar->dtsv_size); 10838 } 10839 10840 kmem_free(svar, sizeof (dtrace_statvar_t)); 10841 svarp[id] = NULL; 10842 } 10843 10844 if (dp->dtdo_buf != NULL) 10845 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10846 if (dp->dtdo_inttab != NULL) 10847 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10848 if (dp->dtdo_strtab != NULL) 10849 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10850 if (dp->dtdo_vartab != NULL) 10851 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10852 10853 kmem_free(dp, sizeof (dtrace_difo_t)); 10854 } 10855 10856 static void 10857 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10858 { 10859 int i; 10860 10861 ASSERT(MUTEX_HELD(&dtrace_lock)); 10862 ASSERT(dp->dtdo_refcnt != 0); 10863 10864 for (i = 0; i < dp->dtdo_varlen; i++) { 10865 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10866 10867 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10868 continue; 10869 10870 ASSERT(dtrace_vtime_references > 0); 10871 if (--dtrace_vtime_references == 0) 10872 dtrace_vtime_disable(); 10873 } 10874 10875 if (--dp->dtdo_refcnt == 0) 10876 dtrace_difo_destroy(dp, vstate); 10877 } 10878 10879 /* 10880 * DTrace Format Functions 10881 */ 10882 static uint16_t 10883 dtrace_format_add(dtrace_state_t *state, char *str) 10884 { 10885 char *fmt, **new; 10886 uint16_t ndx, len = strlen(str) + 1; 10887 10888 fmt = kmem_zalloc(len, KM_SLEEP); 10889 bcopy(str, fmt, len); 10890 10891 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10892 if (state->dts_formats[ndx] == NULL) { 10893 state->dts_formats[ndx] = fmt; 10894 return (ndx + 1); 10895 } 10896 } 10897 10898 if (state->dts_nformats == USHRT_MAX) { 10899 /* 10900 * This is only likely if a denial-of-service attack is being 10901 * attempted. As such, it's okay to fail silently here. 10902 */ 10903 kmem_free(fmt, len); 10904 return (0); 10905 } 10906 10907 /* 10908 * For simplicity, we always resize the formats array to be exactly the 10909 * number of formats. 10910 */ 10911 ndx = state->dts_nformats++; 10912 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10913 10914 if (state->dts_formats != NULL) { 10915 ASSERT(ndx != 0); 10916 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10917 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10918 } 10919 10920 state->dts_formats = new; 10921 state->dts_formats[ndx] = fmt; 10922 10923 return (ndx + 1); 10924 } 10925 10926 static void 10927 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10928 { 10929 char *fmt; 10930 10931 ASSERT(state->dts_formats != NULL); 10932 ASSERT(format <= state->dts_nformats); 10933 ASSERT(state->dts_formats[format - 1] != NULL); 10934 10935 fmt = state->dts_formats[format - 1]; 10936 kmem_free(fmt, strlen(fmt) + 1); 10937 state->dts_formats[format - 1] = NULL; 10938 } 10939 10940 static void 10941 dtrace_format_destroy(dtrace_state_t *state) 10942 { 10943 int i; 10944 10945 if (state->dts_nformats == 0) { 10946 ASSERT(state->dts_formats == NULL); 10947 return; 10948 } 10949 10950 ASSERT(state->dts_formats != NULL); 10951 10952 for (i = 0; i < state->dts_nformats; i++) { 10953 char *fmt = state->dts_formats[i]; 10954 10955 if (fmt == NULL) 10956 continue; 10957 10958 kmem_free(fmt, strlen(fmt) + 1); 10959 } 10960 10961 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10962 state->dts_nformats = 0; 10963 state->dts_formats = NULL; 10964 } 10965 10966 /* 10967 * DTrace Predicate Functions 10968 */ 10969 static dtrace_predicate_t * 10970 dtrace_predicate_create(dtrace_difo_t *dp) 10971 { 10972 dtrace_predicate_t *pred; 10973 10974 ASSERT(MUTEX_HELD(&dtrace_lock)); 10975 ASSERT(dp->dtdo_refcnt != 0); 10976 10977 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10978 pred->dtp_difo = dp; 10979 pred->dtp_refcnt = 1; 10980 10981 if (!dtrace_difo_cacheable(dp)) 10982 return (pred); 10983 10984 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10985 /* 10986 * This is only theoretically possible -- we have had 2^32 10987 * cacheable predicates on this machine. We cannot allow any 10988 * more predicates to become cacheable: as unlikely as it is, 10989 * there may be a thread caching a (now stale) predicate cache 10990 * ID. (N.B.: the temptation is being successfully resisted to 10991 * have this cmn_err() "Holy shit -- we executed this code!") 10992 */ 10993 return (pred); 10994 } 10995 10996 pred->dtp_cacheid = dtrace_predcache_id++; 10997 10998 return (pred); 10999 } 11000 11001 static void 11002 dtrace_predicate_hold(dtrace_predicate_t *pred) 11003 { 11004 ASSERT(MUTEX_HELD(&dtrace_lock)); 11005 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11006 ASSERT(pred->dtp_refcnt > 0); 11007 11008 pred->dtp_refcnt++; 11009 } 11010 11011 static void 11012 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11013 { 11014 dtrace_difo_t *dp = pred->dtp_difo; 11015 11016 ASSERT(MUTEX_HELD(&dtrace_lock)); 11017 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11018 ASSERT(pred->dtp_refcnt > 0); 11019 11020 if (--pred->dtp_refcnt == 0) { 11021 dtrace_difo_release(pred->dtp_difo, vstate); 11022 kmem_free(pred, sizeof (dtrace_predicate_t)); 11023 } 11024 } 11025 11026 /* 11027 * DTrace Action Description Functions 11028 */ 11029 static dtrace_actdesc_t * 11030 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11031 uint64_t uarg, uint64_t arg) 11032 { 11033 dtrace_actdesc_t *act; 11034 11035 #ifdef illumos 11036 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11037 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11038 #endif 11039 11040 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11041 act->dtad_kind = kind; 11042 act->dtad_ntuple = ntuple; 11043 act->dtad_uarg = uarg; 11044 act->dtad_arg = arg; 11045 act->dtad_refcnt = 1; 11046 11047 return (act); 11048 } 11049 11050 static void 11051 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11052 { 11053 ASSERT(act->dtad_refcnt >= 1); 11054 act->dtad_refcnt++; 11055 } 11056 11057 static void 11058 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11059 { 11060 dtrace_actkind_t kind = act->dtad_kind; 11061 dtrace_difo_t *dp; 11062 11063 ASSERT(act->dtad_refcnt >= 1); 11064 11065 if (--act->dtad_refcnt != 0) 11066 return; 11067 11068 if ((dp = act->dtad_difo) != NULL) 11069 dtrace_difo_release(dp, vstate); 11070 11071 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11072 char *str = (char *)(uintptr_t)act->dtad_arg; 11073 11074 #ifdef illumos 11075 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11076 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11077 #endif 11078 11079 if (str != NULL) 11080 kmem_free(str, strlen(str) + 1); 11081 } 11082 11083 kmem_free(act, sizeof (dtrace_actdesc_t)); 11084 } 11085 11086 /* 11087 * DTrace ECB Functions 11088 */ 11089 static dtrace_ecb_t * 11090 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11091 { 11092 dtrace_ecb_t *ecb; 11093 dtrace_epid_t epid; 11094 11095 ASSERT(MUTEX_HELD(&dtrace_lock)); 11096 11097 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11098 ecb->dte_predicate = NULL; 11099 ecb->dte_probe = probe; 11100 11101 /* 11102 * The default size is the size of the default action: recording 11103 * the header. 11104 */ 11105 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11106 ecb->dte_alignment = sizeof (dtrace_epid_t); 11107 11108 epid = state->dts_epid++; 11109 11110 if (epid - 1 >= state->dts_necbs) { 11111 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11112 int necbs = state->dts_necbs << 1; 11113 11114 ASSERT(epid == state->dts_necbs + 1); 11115 11116 if (necbs == 0) { 11117 ASSERT(oecbs == NULL); 11118 necbs = 1; 11119 } 11120 11121 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11122 11123 if (oecbs != NULL) 11124 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11125 11126 dtrace_membar_producer(); 11127 state->dts_ecbs = ecbs; 11128 11129 if (oecbs != NULL) { 11130 /* 11131 * If this state is active, we must dtrace_sync() 11132 * before we can free the old dts_ecbs array: we're 11133 * coming in hot, and there may be active ring 11134 * buffer processing (which indexes into the dts_ecbs 11135 * array) on another CPU. 11136 */ 11137 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11138 dtrace_sync(); 11139 11140 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11141 } 11142 11143 dtrace_membar_producer(); 11144 state->dts_necbs = necbs; 11145 } 11146 11147 ecb->dte_state = state; 11148 11149 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11150 dtrace_membar_producer(); 11151 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11152 11153 return (ecb); 11154 } 11155 11156 static void 11157 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11158 { 11159 dtrace_probe_t *probe = ecb->dte_probe; 11160 11161 ASSERT(MUTEX_HELD(&cpu_lock)); 11162 ASSERT(MUTEX_HELD(&dtrace_lock)); 11163 ASSERT(ecb->dte_next == NULL); 11164 11165 if (probe == NULL) { 11166 /* 11167 * This is the NULL probe -- there's nothing to do. 11168 */ 11169 return; 11170 } 11171 11172 if (probe->dtpr_ecb == NULL) { 11173 dtrace_provider_t *prov = probe->dtpr_provider; 11174 11175 /* 11176 * We're the first ECB on this probe. 11177 */ 11178 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11179 11180 if (ecb->dte_predicate != NULL) 11181 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11182 11183 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11184 probe->dtpr_id, probe->dtpr_arg); 11185 } else { 11186 /* 11187 * This probe is already active. Swing the last pointer to 11188 * point to the new ECB, and issue a dtrace_sync() to assure 11189 * that all CPUs have seen the change. 11190 */ 11191 ASSERT(probe->dtpr_ecb_last != NULL); 11192 probe->dtpr_ecb_last->dte_next = ecb; 11193 probe->dtpr_ecb_last = ecb; 11194 probe->dtpr_predcache = 0; 11195 11196 dtrace_sync(); 11197 } 11198 } 11199 11200 static int 11201 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11202 { 11203 dtrace_action_t *act; 11204 uint32_t curneeded = UINT32_MAX; 11205 uint32_t aggbase = UINT32_MAX; 11206 11207 /* 11208 * If we record anything, we always record the dtrace_rechdr_t. (And 11209 * we always record it first.) 11210 */ 11211 ecb->dte_size = sizeof (dtrace_rechdr_t); 11212 ecb->dte_alignment = sizeof (dtrace_epid_t); 11213 11214 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11215 dtrace_recdesc_t *rec = &act->dta_rec; 11216 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11217 11218 ecb->dte_alignment = MAX(ecb->dte_alignment, 11219 rec->dtrd_alignment); 11220 11221 if (DTRACEACT_ISAGG(act->dta_kind)) { 11222 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11223 11224 ASSERT(rec->dtrd_size != 0); 11225 ASSERT(agg->dtag_first != NULL); 11226 ASSERT(act->dta_prev->dta_intuple); 11227 ASSERT(aggbase != UINT32_MAX); 11228 ASSERT(curneeded != UINT32_MAX); 11229 11230 agg->dtag_base = aggbase; 11231 11232 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11233 rec->dtrd_offset = curneeded; 11234 if (curneeded + rec->dtrd_size < curneeded) 11235 return (EINVAL); 11236 curneeded += rec->dtrd_size; 11237 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11238 11239 aggbase = UINT32_MAX; 11240 curneeded = UINT32_MAX; 11241 } else if (act->dta_intuple) { 11242 if (curneeded == UINT32_MAX) { 11243 /* 11244 * This is the first record in a tuple. Align 11245 * curneeded to be at offset 4 in an 8-byte 11246 * aligned block. 11247 */ 11248 ASSERT(act->dta_prev == NULL || 11249 !act->dta_prev->dta_intuple); 11250 ASSERT3U(aggbase, ==, UINT32_MAX); 11251 curneeded = P2PHASEUP(ecb->dte_size, 11252 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11253 11254 aggbase = curneeded - sizeof (dtrace_aggid_t); 11255 ASSERT(IS_P2ALIGNED(aggbase, 11256 sizeof (uint64_t))); 11257 } 11258 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11259 rec->dtrd_offset = curneeded; 11260 if (curneeded + rec->dtrd_size < curneeded) 11261 return (EINVAL); 11262 curneeded += rec->dtrd_size; 11263 } else { 11264 /* tuples must be followed by an aggregation */ 11265 ASSERT(act->dta_prev == NULL || 11266 !act->dta_prev->dta_intuple); 11267 11268 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11269 rec->dtrd_alignment); 11270 rec->dtrd_offset = ecb->dte_size; 11271 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11272 return (EINVAL); 11273 ecb->dte_size += rec->dtrd_size; 11274 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11275 } 11276 } 11277 11278 if ((act = ecb->dte_action) != NULL && 11279 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11280 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11281 /* 11282 * If the size is still sizeof (dtrace_rechdr_t), then all 11283 * actions store no data; set the size to 0. 11284 */ 11285 ecb->dte_size = 0; 11286 } 11287 11288 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11289 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11290 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11291 ecb->dte_needed); 11292 return (0); 11293 } 11294 11295 static dtrace_action_t * 11296 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11297 { 11298 dtrace_aggregation_t *agg; 11299 size_t size = sizeof (uint64_t); 11300 int ntuple = desc->dtad_ntuple; 11301 dtrace_action_t *act; 11302 dtrace_recdesc_t *frec; 11303 dtrace_aggid_t aggid; 11304 dtrace_state_t *state = ecb->dte_state; 11305 11306 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11307 agg->dtag_ecb = ecb; 11308 11309 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11310 11311 switch (desc->dtad_kind) { 11312 case DTRACEAGG_MIN: 11313 agg->dtag_initial = INT64_MAX; 11314 agg->dtag_aggregate = dtrace_aggregate_min; 11315 break; 11316 11317 case DTRACEAGG_MAX: 11318 agg->dtag_initial = INT64_MIN; 11319 agg->dtag_aggregate = dtrace_aggregate_max; 11320 break; 11321 11322 case DTRACEAGG_COUNT: 11323 agg->dtag_aggregate = dtrace_aggregate_count; 11324 break; 11325 11326 case DTRACEAGG_QUANTIZE: 11327 agg->dtag_aggregate = dtrace_aggregate_quantize; 11328 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11329 sizeof (uint64_t); 11330 break; 11331 11332 case DTRACEAGG_LQUANTIZE: { 11333 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11334 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11335 11336 agg->dtag_initial = desc->dtad_arg; 11337 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11338 11339 if (step == 0 || levels == 0) 11340 goto err; 11341 11342 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11343 break; 11344 } 11345 11346 case DTRACEAGG_LLQUANTIZE: { 11347 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11348 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11349 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11350 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11351 int64_t v; 11352 11353 agg->dtag_initial = desc->dtad_arg; 11354 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11355 11356 if (factor < 2 || low >= high || nsteps < factor) 11357 goto err; 11358 11359 /* 11360 * Now check that the number of steps evenly divides a power 11361 * of the factor. (This assures both integer bucket size and 11362 * linearity within each magnitude.) 11363 */ 11364 for (v = factor; v < nsteps; v *= factor) 11365 continue; 11366 11367 if ((v % nsteps) || (nsteps % factor)) 11368 goto err; 11369 11370 size = (dtrace_aggregate_llquantize_bucket(factor, 11371 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11372 break; 11373 } 11374 11375 case DTRACEAGG_AVG: 11376 agg->dtag_aggregate = dtrace_aggregate_avg; 11377 size = sizeof (uint64_t) * 2; 11378 break; 11379 11380 case DTRACEAGG_STDDEV: 11381 agg->dtag_aggregate = dtrace_aggregate_stddev; 11382 size = sizeof (uint64_t) * 4; 11383 break; 11384 11385 case DTRACEAGG_SUM: 11386 agg->dtag_aggregate = dtrace_aggregate_sum; 11387 break; 11388 11389 default: 11390 goto err; 11391 } 11392 11393 agg->dtag_action.dta_rec.dtrd_size = size; 11394 11395 if (ntuple == 0) 11396 goto err; 11397 11398 /* 11399 * We must make sure that we have enough actions for the n-tuple. 11400 */ 11401 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11402 if (DTRACEACT_ISAGG(act->dta_kind)) 11403 break; 11404 11405 if (--ntuple == 0) { 11406 /* 11407 * This is the action with which our n-tuple begins. 11408 */ 11409 agg->dtag_first = act; 11410 goto success; 11411 } 11412 } 11413 11414 /* 11415 * This n-tuple is short by ntuple elements. Return failure. 11416 */ 11417 ASSERT(ntuple != 0); 11418 err: 11419 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11420 return (NULL); 11421 11422 success: 11423 /* 11424 * If the last action in the tuple has a size of zero, it's actually 11425 * an expression argument for the aggregating action. 11426 */ 11427 ASSERT(ecb->dte_action_last != NULL); 11428 act = ecb->dte_action_last; 11429 11430 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11431 ASSERT(act->dta_difo != NULL); 11432 11433 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11434 agg->dtag_hasarg = 1; 11435 } 11436 11437 /* 11438 * We need to allocate an id for this aggregation. 11439 */ 11440 #ifdef illumos 11441 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11442 VM_BESTFIT | VM_SLEEP); 11443 #else 11444 aggid = alloc_unr(state->dts_aggid_arena); 11445 #endif 11446 11447 if (aggid - 1 >= state->dts_naggregations) { 11448 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11449 dtrace_aggregation_t **aggs; 11450 int naggs = state->dts_naggregations << 1; 11451 int onaggs = state->dts_naggregations; 11452 11453 ASSERT(aggid == state->dts_naggregations + 1); 11454 11455 if (naggs == 0) { 11456 ASSERT(oaggs == NULL); 11457 naggs = 1; 11458 } 11459 11460 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11461 11462 if (oaggs != NULL) { 11463 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11464 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11465 } 11466 11467 state->dts_aggregations = aggs; 11468 state->dts_naggregations = naggs; 11469 } 11470 11471 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11472 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11473 11474 frec = &agg->dtag_first->dta_rec; 11475 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11476 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11477 11478 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11479 ASSERT(!act->dta_intuple); 11480 act->dta_intuple = 1; 11481 } 11482 11483 return (&agg->dtag_action); 11484 } 11485 11486 static void 11487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11488 { 11489 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11490 dtrace_state_t *state = ecb->dte_state; 11491 dtrace_aggid_t aggid = agg->dtag_id; 11492 11493 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11494 #ifdef illumos 11495 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11496 #else 11497 free_unr(state->dts_aggid_arena, aggid); 11498 #endif 11499 11500 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11501 state->dts_aggregations[aggid - 1] = NULL; 11502 11503 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11504 } 11505 11506 static int 11507 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11508 { 11509 dtrace_action_t *action, *last; 11510 dtrace_difo_t *dp = desc->dtad_difo; 11511 uint32_t size = 0, align = sizeof (uint8_t), mask; 11512 uint16_t format = 0; 11513 dtrace_recdesc_t *rec; 11514 dtrace_state_t *state = ecb->dte_state; 11515 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11516 uint64_t arg = desc->dtad_arg; 11517 11518 ASSERT(MUTEX_HELD(&dtrace_lock)); 11519 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11520 11521 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11522 /* 11523 * If this is an aggregating action, there must be neither 11524 * a speculate nor a commit on the action chain. 11525 */ 11526 dtrace_action_t *act; 11527 11528 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11529 if (act->dta_kind == DTRACEACT_COMMIT) 11530 return (EINVAL); 11531 11532 if (act->dta_kind == DTRACEACT_SPECULATE) 11533 return (EINVAL); 11534 } 11535 11536 action = dtrace_ecb_aggregation_create(ecb, desc); 11537 11538 if (action == NULL) 11539 return (EINVAL); 11540 } else { 11541 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11542 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11543 dp != NULL && dp->dtdo_destructive)) { 11544 state->dts_destructive = 1; 11545 } 11546 11547 switch (desc->dtad_kind) { 11548 case DTRACEACT_PRINTF: 11549 case DTRACEACT_PRINTA: 11550 case DTRACEACT_SYSTEM: 11551 case DTRACEACT_FREOPEN: 11552 case DTRACEACT_DIFEXPR: 11553 /* 11554 * We know that our arg is a string -- turn it into a 11555 * format. 11556 */ 11557 if (arg == 0) { 11558 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11559 desc->dtad_kind == DTRACEACT_DIFEXPR); 11560 format = 0; 11561 } else { 11562 ASSERT(arg != 0); 11563 #ifdef illumos 11564 ASSERT(arg > KERNELBASE); 11565 #endif 11566 format = dtrace_format_add(state, 11567 (char *)(uintptr_t)arg); 11568 } 11569 11570 /*FALLTHROUGH*/ 11571 case DTRACEACT_LIBACT: 11572 case DTRACEACT_TRACEMEM: 11573 case DTRACEACT_TRACEMEM_DYNSIZE: 11574 if (dp == NULL) 11575 return (EINVAL); 11576 11577 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11578 break; 11579 11580 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11581 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11582 return (EINVAL); 11583 11584 size = opt[DTRACEOPT_STRSIZE]; 11585 } 11586 11587 break; 11588 11589 case DTRACEACT_STACK: 11590 if ((nframes = arg) == 0) { 11591 nframes = opt[DTRACEOPT_STACKFRAMES]; 11592 ASSERT(nframes > 0); 11593 arg = nframes; 11594 } 11595 11596 size = nframes * sizeof (pc_t); 11597 break; 11598 11599 case DTRACEACT_JSTACK: 11600 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11601 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11602 11603 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11604 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11605 11606 arg = DTRACE_USTACK_ARG(nframes, strsize); 11607 11608 /*FALLTHROUGH*/ 11609 case DTRACEACT_USTACK: 11610 if (desc->dtad_kind != DTRACEACT_JSTACK && 11611 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11612 strsize = DTRACE_USTACK_STRSIZE(arg); 11613 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11614 ASSERT(nframes > 0); 11615 arg = DTRACE_USTACK_ARG(nframes, strsize); 11616 } 11617 11618 /* 11619 * Save a slot for the pid. 11620 */ 11621 size = (nframes + 1) * sizeof (uint64_t); 11622 size += DTRACE_USTACK_STRSIZE(arg); 11623 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11624 11625 break; 11626 11627 case DTRACEACT_SYM: 11628 case DTRACEACT_MOD: 11629 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11630 sizeof (uint64_t)) || 11631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11632 return (EINVAL); 11633 break; 11634 11635 case DTRACEACT_USYM: 11636 case DTRACEACT_UMOD: 11637 case DTRACEACT_UADDR: 11638 if (dp == NULL || 11639 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11640 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11641 return (EINVAL); 11642 11643 /* 11644 * We have a slot for the pid, plus a slot for the 11645 * argument. To keep things simple (aligned with 11646 * bitness-neutral sizing), we store each as a 64-bit 11647 * quantity. 11648 */ 11649 size = 2 * sizeof (uint64_t); 11650 break; 11651 11652 case DTRACEACT_STOP: 11653 case DTRACEACT_BREAKPOINT: 11654 case DTRACEACT_PANIC: 11655 break; 11656 11657 case DTRACEACT_CHILL: 11658 case DTRACEACT_DISCARD: 11659 case DTRACEACT_RAISE: 11660 if (dp == NULL) 11661 return (EINVAL); 11662 break; 11663 11664 case DTRACEACT_EXIT: 11665 if (dp == NULL || 11666 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11667 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11668 return (EINVAL); 11669 break; 11670 11671 case DTRACEACT_SPECULATE: 11672 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11673 return (EINVAL); 11674 11675 if (dp == NULL) 11676 return (EINVAL); 11677 11678 state->dts_speculates = 1; 11679 break; 11680 11681 case DTRACEACT_PRINTM: 11682 size = dp->dtdo_rtype.dtdt_size; 11683 break; 11684 11685 case DTRACEACT_COMMIT: { 11686 dtrace_action_t *act = ecb->dte_action; 11687 11688 for (; act != NULL; act = act->dta_next) { 11689 if (act->dta_kind == DTRACEACT_COMMIT) 11690 return (EINVAL); 11691 } 11692 11693 if (dp == NULL) 11694 return (EINVAL); 11695 break; 11696 } 11697 11698 default: 11699 return (EINVAL); 11700 } 11701 11702 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11703 /* 11704 * If this is a data-storing action or a speculate, 11705 * we must be sure that there isn't a commit on the 11706 * action chain. 11707 */ 11708 dtrace_action_t *act = ecb->dte_action; 11709 11710 for (; act != NULL; act = act->dta_next) { 11711 if (act->dta_kind == DTRACEACT_COMMIT) 11712 return (EINVAL); 11713 } 11714 } 11715 11716 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11717 action->dta_rec.dtrd_size = size; 11718 } 11719 11720 action->dta_refcnt = 1; 11721 rec = &action->dta_rec; 11722 size = rec->dtrd_size; 11723 11724 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11725 if (!(size & mask)) { 11726 align = mask + 1; 11727 break; 11728 } 11729 } 11730 11731 action->dta_kind = desc->dtad_kind; 11732 11733 if ((action->dta_difo = dp) != NULL) 11734 dtrace_difo_hold(dp); 11735 11736 rec->dtrd_action = action->dta_kind; 11737 rec->dtrd_arg = arg; 11738 rec->dtrd_uarg = desc->dtad_uarg; 11739 rec->dtrd_alignment = (uint16_t)align; 11740 rec->dtrd_format = format; 11741 11742 if ((last = ecb->dte_action_last) != NULL) { 11743 ASSERT(ecb->dte_action != NULL); 11744 action->dta_prev = last; 11745 last->dta_next = action; 11746 } else { 11747 ASSERT(ecb->dte_action == NULL); 11748 ecb->dte_action = action; 11749 } 11750 11751 ecb->dte_action_last = action; 11752 11753 return (0); 11754 } 11755 11756 static void 11757 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11758 { 11759 dtrace_action_t *act = ecb->dte_action, *next; 11760 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11761 dtrace_difo_t *dp; 11762 uint16_t format; 11763 11764 if (act != NULL && act->dta_refcnt > 1) { 11765 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11766 act->dta_refcnt--; 11767 } else { 11768 for (; act != NULL; act = next) { 11769 next = act->dta_next; 11770 ASSERT(next != NULL || act == ecb->dte_action_last); 11771 ASSERT(act->dta_refcnt == 1); 11772 11773 if ((format = act->dta_rec.dtrd_format) != 0) 11774 dtrace_format_remove(ecb->dte_state, format); 11775 11776 if ((dp = act->dta_difo) != NULL) 11777 dtrace_difo_release(dp, vstate); 11778 11779 if (DTRACEACT_ISAGG(act->dta_kind)) { 11780 dtrace_ecb_aggregation_destroy(ecb, act); 11781 } else { 11782 kmem_free(act, sizeof (dtrace_action_t)); 11783 } 11784 } 11785 } 11786 11787 ecb->dte_action = NULL; 11788 ecb->dte_action_last = NULL; 11789 ecb->dte_size = 0; 11790 } 11791 11792 static void 11793 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11794 { 11795 /* 11796 * We disable the ECB by removing it from its probe. 11797 */ 11798 dtrace_ecb_t *pecb, *prev = NULL; 11799 dtrace_probe_t *probe = ecb->dte_probe; 11800 11801 ASSERT(MUTEX_HELD(&dtrace_lock)); 11802 11803 if (probe == NULL) { 11804 /* 11805 * This is the NULL probe; there is nothing to disable. 11806 */ 11807 return; 11808 } 11809 11810 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11811 if (pecb == ecb) 11812 break; 11813 prev = pecb; 11814 } 11815 11816 ASSERT(pecb != NULL); 11817 11818 if (prev == NULL) { 11819 probe->dtpr_ecb = ecb->dte_next; 11820 } else { 11821 prev->dte_next = ecb->dte_next; 11822 } 11823 11824 if (ecb == probe->dtpr_ecb_last) { 11825 ASSERT(ecb->dte_next == NULL); 11826 probe->dtpr_ecb_last = prev; 11827 } 11828 11829 /* 11830 * The ECB has been disconnected from the probe; now sync to assure 11831 * that all CPUs have seen the change before returning. 11832 */ 11833 dtrace_sync(); 11834 11835 if (probe->dtpr_ecb == NULL) { 11836 /* 11837 * That was the last ECB on the probe; clear the predicate 11838 * cache ID for the probe, disable it and sync one more time 11839 * to assure that we'll never hit it again. 11840 */ 11841 dtrace_provider_t *prov = probe->dtpr_provider; 11842 11843 ASSERT(ecb->dte_next == NULL); 11844 ASSERT(probe->dtpr_ecb_last == NULL); 11845 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11846 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11847 probe->dtpr_id, probe->dtpr_arg); 11848 dtrace_sync(); 11849 } else { 11850 /* 11851 * There is at least one ECB remaining on the probe. If there 11852 * is _exactly_ one, set the probe's predicate cache ID to be 11853 * the predicate cache ID of the remaining ECB. 11854 */ 11855 ASSERT(probe->dtpr_ecb_last != NULL); 11856 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11857 11858 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11859 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11860 11861 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11862 11863 if (p != NULL) 11864 probe->dtpr_predcache = p->dtp_cacheid; 11865 } 11866 11867 ecb->dte_next = NULL; 11868 } 11869 } 11870 11871 static void 11872 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11873 { 11874 dtrace_state_t *state = ecb->dte_state; 11875 dtrace_vstate_t *vstate = &state->dts_vstate; 11876 dtrace_predicate_t *pred; 11877 dtrace_epid_t epid = ecb->dte_epid; 11878 11879 ASSERT(MUTEX_HELD(&dtrace_lock)); 11880 ASSERT(ecb->dte_next == NULL); 11881 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11882 11883 if ((pred = ecb->dte_predicate) != NULL) 11884 dtrace_predicate_release(pred, vstate); 11885 11886 dtrace_ecb_action_remove(ecb); 11887 11888 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11889 state->dts_ecbs[epid - 1] = NULL; 11890 11891 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11892 } 11893 11894 static dtrace_ecb_t * 11895 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11896 dtrace_enabling_t *enab) 11897 { 11898 dtrace_ecb_t *ecb; 11899 dtrace_predicate_t *pred; 11900 dtrace_actdesc_t *act; 11901 dtrace_provider_t *prov; 11902 dtrace_ecbdesc_t *desc = enab->dten_current; 11903 11904 ASSERT(MUTEX_HELD(&dtrace_lock)); 11905 ASSERT(state != NULL); 11906 11907 ecb = dtrace_ecb_add(state, probe); 11908 ecb->dte_uarg = desc->dted_uarg; 11909 11910 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11911 dtrace_predicate_hold(pred); 11912 ecb->dte_predicate = pred; 11913 } 11914 11915 if (probe != NULL) { 11916 /* 11917 * If the provider shows more leg than the consumer is old 11918 * enough to see, we need to enable the appropriate implicit 11919 * predicate bits to prevent the ecb from activating at 11920 * revealing times. 11921 * 11922 * Providers specifying DTRACE_PRIV_USER at register time 11923 * are stating that they need the /proc-style privilege 11924 * model to be enforced, and this is what DTRACE_COND_OWNER 11925 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11926 */ 11927 prov = probe->dtpr_provider; 11928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11930 ecb->dte_cond |= DTRACE_COND_OWNER; 11931 11932 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11933 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11934 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11935 11936 /* 11937 * If the provider shows us kernel innards and the user 11938 * is lacking sufficient privilege, enable the 11939 * DTRACE_COND_USERMODE implicit predicate. 11940 */ 11941 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11942 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11943 ecb->dte_cond |= DTRACE_COND_USERMODE; 11944 } 11945 11946 if (dtrace_ecb_create_cache != NULL) { 11947 /* 11948 * If we have a cached ecb, we'll use its action list instead 11949 * of creating our own (saving both time and space). 11950 */ 11951 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11952 dtrace_action_t *act = cached->dte_action; 11953 11954 if (act != NULL) { 11955 ASSERT(act->dta_refcnt > 0); 11956 act->dta_refcnt++; 11957 ecb->dte_action = act; 11958 ecb->dte_action_last = cached->dte_action_last; 11959 ecb->dte_needed = cached->dte_needed; 11960 ecb->dte_size = cached->dte_size; 11961 ecb->dte_alignment = cached->dte_alignment; 11962 } 11963 11964 return (ecb); 11965 } 11966 11967 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11968 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11969 dtrace_ecb_destroy(ecb); 11970 return (NULL); 11971 } 11972 } 11973 11974 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11975 dtrace_ecb_destroy(ecb); 11976 return (NULL); 11977 } 11978 11979 return (dtrace_ecb_create_cache = ecb); 11980 } 11981 11982 static int 11983 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11984 { 11985 dtrace_ecb_t *ecb; 11986 dtrace_enabling_t *enab = arg; 11987 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11988 11989 ASSERT(state != NULL); 11990 11991 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11992 /* 11993 * This probe was created in a generation for which this 11994 * enabling has previously created ECBs; we don't want to 11995 * enable it again, so just kick out. 11996 */ 11997 return (DTRACE_MATCH_NEXT); 11998 } 11999 12000 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12001 return (DTRACE_MATCH_DONE); 12002 12003 dtrace_ecb_enable(ecb); 12004 return (DTRACE_MATCH_NEXT); 12005 } 12006 12007 static dtrace_ecb_t * 12008 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12009 { 12010 dtrace_ecb_t *ecb; 12011 12012 ASSERT(MUTEX_HELD(&dtrace_lock)); 12013 12014 if (id == 0 || id > state->dts_necbs) 12015 return (NULL); 12016 12017 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12018 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12019 12020 return (state->dts_ecbs[id - 1]); 12021 } 12022 12023 static dtrace_aggregation_t * 12024 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12025 { 12026 dtrace_aggregation_t *agg; 12027 12028 ASSERT(MUTEX_HELD(&dtrace_lock)); 12029 12030 if (id == 0 || id > state->dts_naggregations) 12031 return (NULL); 12032 12033 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12034 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12035 agg->dtag_id == id); 12036 12037 return (state->dts_aggregations[id - 1]); 12038 } 12039 12040 /* 12041 * DTrace Buffer Functions 12042 * 12043 * The following functions manipulate DTrace buffers. Most of these functions 12044 * are called in the context of establishing or processing consumer state; 12045 * exceptions are explicitly noted. 12046 */ 12047 12048 /* 12049 * Note: called from cross call context. This function switches the two 12050 * buffers on a given CPU. The atomicity of this operation is assured by 12051 * disabling interrupts while the actual switch takes place; the disabling of 12052 * interrupts serializes the execution with any execution of dtrace_probe() on 12053 * the same CPU. 12054 */ 12055 static void 12056 dtrace_buffer_switch(dtrace_buffer_t *buf) 12057 { 12058 caddr_t tomax = buf->dtb_tomax; 12059 caddr_t xamot = buf->dtb_xamot; 12060 dtrace_icookie_t cookie; 12061 hrtime_t now; 12062 12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12064 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12065 12066 cookie = dtrace_interrupt_disable(); 12067 now = dtrace_gethrtime(); 12068 buf->dtb_tomax = xamot; 12069 buf->dtb_xamot = tomax; 12070 buf->dtb_xamot_drops = buf->dtb_drops; 12071 buf->dtb_xamot_offset = buf->dtb_offset; 12072 buf->dtb_xamot_errors = buf->dtb_errors; 12073 buf->dtb_xamot_flags = buf->dtb_flags; 12074 buf->dtb_offset = 0; 12075 buf->dtb_drops = 0; 12076 buf->dtb_errors = 0; 12077 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12078 buf->dtb_interval = now - buf->dtb_switched; 12079 buf->dtb_switched = now; 12080 dtrace_interrupt_enable(cookie); 12081 } 12082 12083 /* 12084 * Note: called from cross call context. This function activates a buffer 12085 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12086 * is guaranteed by the disabling of interrupts. 12087 */ 12088 static void 12089 dtrace_buffer_activate(dtrace_state_t *state) 12090 { 12091 dtrace_buffer_t *buf; 12092 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12093 12094 buf = &state->dts_buffer[curcpu]; 12095 12096 if (buf->dtb_tomax != NULL) { 12097 /* 12098 * We might like to assert that the buffer is marked inactive, 12099 * but this isn't necessarily true: the buffer for the CPU 12100 * that processes the BEGIN probe has its buffer activated 12101 * manually. In this case, we take the (harmless) action 12102 * re-clearing the bit INACTIVE bit. 12103 */ 12104 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12105 } 12106 12107 dtrace_interrupt_enable(cookie); 12108 } 12109 12110 #ifdef __FreeBSD__ 12111 /* 12112 * Activate the specified per-CPU buffer. This is used instead of 12113 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12114 * activating anonymous state. 12115 */ 12116 static void 12117 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12118 { 12119 12120 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12121 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12122 } 12123 #endif 12124 12125 static int 12126 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12127 processorid_t cpu, int *factor) 12128 { 12129 #ifdef illumos 12130 cpu_t *cp; 12131 #endif 12132 dtrace_buffer_t *buf; 12133 int allocated = 0, desired = 0; 12134 12135 #ifdef illumos 12136 ASSERT(MUTEX_HELD(&cpu_lock)); 12137 ASSERT(MUTEX_HELD(&dtrace_lock)); 12138 12139 *factor = 1; 12140 12141 if (size > dtrace_nonroot_maxsize && 12142 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12143 return (EFBIG); 12144 12145 cp = cpu_list; 12146 12147 do { 12148 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12149 continue; 12150 12151 buf = &bufs[cp->cpu_id]; 12152 12153 /* 12154 * If there is already a buffer allocated for this CPU, it 12155 * is only possible that this is a DR event. In this case, 12156 */ 12157 if (buf->dtb_tomax != NULL) { 12158 ASSERT(buf->dtb_size == size); 12159 continue; 12160 } 12161 12162 ASSERT(buf->dtb_xamot == NULL); 12163 12164 if ((buf->dtb_tomax = kmem_zalloc(size, 12165 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12166 goto err; 12167 12168 buf->dtb_size = size; 12169 buf->dtb_flags = flags; 12170 buf->dtb_offset = 0; 12171 buf->dtb_drops = 0; 12172 12173 if (flags & DTRACEBUF_NOSWITCH) 12174 continue; 12175 12176 if ((buf->dtb_xamot = kmem_zalloc(size, 12177 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12178 goto err; 12179 } while ((cp = cp->cpu_next) != cpu_list); 12180 12181 return (0); 12182 12183 err: 12184 cp = cpu_list; 12185 12186 do { 12187 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12188 continue; 12189 12190 buf = &bufs[cp->cpu_id]; 12191 desired += 2; 12192 12193 if (buf->dtb_xamot != NULL) { 12194 ASSERT(buf->dtb_tomax != NULL); 12195 ASSERT(buf->dtb_size == size); 12196 kmem_free(buf->dtb_xamot, size); 12197 allocated++; 12198 } 12199 12200 if (buf->dtb_tomax != NULL) { 12201 ASSERT(buf->dtb_size == size); 12202 kmem_free(buf->dtb_tomax, size); 12203 allocated++; 12204 } 12205 12206 buf->dtb_tomax = NULL; 12207 buf->dtb_xamot = NULL; 12208 buf->dtb_size = 0; 12209 } while ((cp = cp->cpu_next) != cpu_list); 12210 #else 12211 int i; 12212 12213 *factor = 1; 12214 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12215 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12216 /* 12217 * FreeBSD isn't good at limiting the amount of memory we 12218 * ask to malloc, so let's place a limit here before trying 12219 * to do something that might well end in tears at bedtime. 12220 */ 12221 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12222 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12223 return (ENOMEM); 12224 #endif 12225 12226 ASSERT(MUTEX_HELD(&dtrace_lock)); 12227 CPU_FOREACH(i) { 12228 if (cpu != DTRACE_CPUALL && cpu != i) 12229 continue; 12230 12231 buf = &bufs[i]; 12232 12233 /* 12234 * If there is already a buffer allocated for this CPU, it 12235 * is only possible that this is a DR event. In this case, 12236 * the buffer size must match our specified size. 12237 */ 12238 if (buf->dtb_tomax != NULL) { 12239 ASSERT(buf->dtb_size == size); 12240 continue; 12241 } 12242 12243 ASSERT(buf->dtb_xamot == NULL); 12244 12245 if ((buf->dtb_tomax = kmem_zalloc(size, 12246 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12247 goto err; 12248 12249 buf->dtb_size = size; 12250 buf->dtb_flags = flags; 12251 buf->dtb_offset = 0; 12252 buf->dtb_drops = 0; 12253 12254 if (flags & DTRACEBUF_NOSWITCH) 12255 continue; 12256 12257 if ((buf->dtb_xamot = kmem_zalloc(size, 12258 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12259 goto err; 12260 } 12261 12262 return (0); 12263 12264 err: 12265 /* 12266 * Error allocating memory, so free the buffers that were 12267 * allocated before the failed allocation. 12268 */ 12269 CPU_FOREACH(i) { 12270 if (cpu != DTRACE_CPUALL && cpu != i) 12271 continue; 12272 12273 buf = &bufs[i]; 12274 desired += 2; 12275 12276 if (buf->dtb_xamot != NULL) { 12277 ASSERT(buf->dtb_tomax != NULL); 12278 ASSERT(buf->dtb_size == size); 12279 kmem_free(buf->dtb_xamot, size); 12280 allocated++; 12281 } 12282 12283 if (buf->dtb_tomax != NULL) { 12284 ASSERT(buf->dtb_size == size); 12285 kmem_free(buf->dtb_tomax, size); 12286 allocated++; 12287 } 12288 12289 buf->dtb_tomax = NULL; 12290 buf->dtb_xamot = NULL; 12291 buf->dtb_size = 0; 12292 12293 } 12294 #endif 12295 *factor = desired / (allocated > 0 ? allocated : 1); 12296 12297 return (ENOMEM); 12298 } 12299 12300 /* 12301 * Note: called from probe context. This function just increments the drop 12302 * count on a buffer. It has been made a function to allow for the 12303 * possibility of understanding the source of mysterious drop counts. (A 12304 * problem for which one may be particularly disappointed that DTrace cannot 12305 * be used to understand DTrace.) 12306 */ 12307 static void 12308 dtrace_buffer_drop(dtrace_buffer_t *buf) 12309 { 12310 buf->dtb_drops++; 12311 } 12312 12313 /* 12314 * Note: called from probe context. This function is called to reserve space 12315 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12316 * mstate. Returns the new offset in the buffer, or a negative value if an 12317 * error has occurred. 12318 */ 12319 static ssize_t 12320 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12321 dtrace_state_t *state, dtrace_mstate_t *mstate) 12322 { 12323 ssize_t offs = buf->dtb_offset, soffs; 12324 intptr_t woffs; 12325 caddr_t tomax; 12326 size_t total; 12327 12328 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12329 return (-1); 12330 12331 if ((tomax = buf->dtb_tomax) == NULL) { 12332 dtrace_buffer_drop(buf); 12333 return (-1); 12334 } 12335 12336 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12337 while (offs & (align - 1)) { 12338 /* 12339 * Assert that our alignment is off by a number which 12340 * is itself sizeof (uint32_t) aligned. 12341 */ 12342 ASSERT(!((align - (offs & (align - 1))) & 12343 (sizeof (uint32_t) - 1))); 12344 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12345 offs += sizeof (uint32_t); 12346 } 12347 12348 if ((soffs = offs + needed) > buf->dtb_size) { 12349 dtrace_buffer_drop(buf); 12350 return (-1); 12351 } 12352 12353 if (mstate == NULL) 12354 return (offs); 12355 12356 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12357 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12358 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12359 12360 return (offs); 12361 } 12362 12363 if (buf->dtb_flags & DTRACEBUF_FILL) { 12364 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12365 (buf->dtb_flags & DTRACEBUF_FULL)) 12366 return (-1); 12367 goto out; 12368 } 12369 12370 total = needed + (offs & (align - 1)); 12371 12372 /* 12373 * For a ring buffer, life is quite a bit more complicated. Before 12374 * we can store any padding, we need to adjust our wrapping offset. 12375 * (If we've never before wrapped or we're not about to, no adjustment 12376 * is required.) 12377 */ 12378 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12379 offs + total > buf->dtb_size) { 12380 woffs = buf->dtb_xamot_offset; 12381 12382 if (offs + total > buf->dtb_size) { 12383 /* 12384 * We can't fit in the end of the buffer. First, a 12385 * sanity check that we can fit in the buffer at all. 12386 */ 12387 if (total > buf->dtb_size) { 12388 dtrace_buffer_drop(buf); 12389 return (-1); 12390 } 12391 12392 /* 12393 * We're going to be storing at the top of the buffer, 12394 * so now we need to deal with the wrapped offset. We 12395 * only reset our wrapped offset to 0 if it is 12396 * currently greater than the current offset. If it 12397 * is less than the current offset, it is because a 12398 * previous allocation induced a wrap -- but the 12399 * allocation didn't subsequently take the space due 12400 * to an error or false predicate evaluation. In this 12401 * case, we'll just leave the wrapped offset alone: if 12402 * the wrapped offset hasn't been advanced far enough 12403 * for this allocation, it will be adjusted in the 12404 * lower loop. 12405 */ 12406 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12407 if (woffs >= offs) 12408 woffs = 0; 12409 } else { 12410 woffs = 0; 12411 } 12412 12413 /* 12414 * Now we know that we're going to be storing to the 12415 * top of the buffer and that there is room for us 12416 * there. We need to clear the buffer from the current 12417 * offset to the end (there may be old gunk there). 12418 */ 12419 while (offs < buf->dtb_size) 12420 tomax[offs++] = 0; 12421 12422 /* 12423 * We need to set our offset to zero. And because we 12424 * are wrapping, we need to set the bit indicating as 12425 * much. We can also adjust our needed space back 12426 * down to the space required by the ECB -- we know 12427 * that the top of the buffer is aligned. 12428 */ 12429 offs = 0; 12430 total = needed; 12431 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12432 } else { 12433 /* 12434 * There is room for us in the buffer, so we simply 12435 * need to check the wrapped offset. 12436 */ 12437 if (woffs < offs) { 12438 /* 12439 * The wrapped offset is less than the offset. 12440 * This can happen if we allocated buffer space 12441 * that induced a wrap, but then we didn't 12442 * subsequently take the space due to an error 12443 * or false predicate evaluation. This is 12444 * okay; we know that _this_ allocation isn't 12445 * going to induce a wrap. We still can't 12446 * reset the wrapped offset to be zero, 12447 * however: the space may have been trashed in 12448 * the previous failed probe attempt. But at 12449 * least the wrapped offset doesn't need to 12450 * be adjusted at all... 12451 */ 12452 goto out; 12453 } 12454 } 12455 12456 while (offs + total > woffs) { 12457 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12458 size_t size; 12459 12460 if (epid == DTRACE_EPIDNONE) { 12461 size = sizeof (uint32_t); 12462 } else { 12463 ASSERT3U(epid, <=, state->dts_necbs); 12464 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12465 12466 size = state->dts_ecbs[epid - 1]->dte_size; 12467 } 12468 12469 ASSERT(woffs + size <= buf->dtb_size); 12470 ASSERT(size != 0); 12471 12472 if (woffs + size == buf->dtb_size) { 12473 /* 12474 * We've reached the end of the buffer; we want 12475 * to set the wrapped offset to 0 and break 12476 * out. However, if the offs is 0, then we're 12477 * in a strange edge-condition: the amount of 12478 * space that we want to reserve plus the size 12479 * of the record that we're overwriting is 12480 * greater than the size of the buffer. This 12481 * is problematic because if we reserve the 12482 * space but subsequently don't consume it (due 12483 * to a failed predicate or error) the wrapped 12484 * offset will be 0 -- yet the EPID at offset 0 12485 * will not be committed. This situation is 12486 * relatively easy to deal with: if we're in 12487 * this case, the buffer is indistinguishable 12488 * from one that hasn't wrapped; we need only 12489 * finish the job by clearing the wrapped bit, 12490 * explicitly setting the offset to be 0, and 12491 * zero'ing out the old data in the buffer. 12492 */ 12493 if (offs == 0) { 12494 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12495 buf->dtb_offset = 0; 12496 woffs = total; 12497 12498 while (woffs < buf->dtb_size) 12499 tomax[woffs++] = 0; 12500 } 12501 12502 woffs = 0; 12503 break; 12504 } 12505 12506 woffs += size; 12507 } 12508 12509 /* 12510 * We have a wrapped offset. It may be that the wrapped offset 12511 * has become zero -- that's okay. 12512 */ 12513 buf->dtb_xamot_offset = woffs; 12514 } 12515 12516 out: 12517 /* 12518 * Now we can plow the buffer with any necessary padding. 12519 */ 12520 while (offs & (align - 1)) { 12521 /* 12522 * Assert that our alignment is off by a number which 12523 * is itself sizeof (uint32_t) aligned. 12524 */ 12525 ASSERT(!((align - (offs & (align - 1))) & 12526 (sizeof (uint32_t) - 1))); 12527 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12528 offs += sizeof (uint32_t); 12529 } 12530 12531 if (buf->dtb_flags & DTRACEBUF_FILL) { 12532 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12533 buf->dtb_flags |= DTRACEBUF_FULL; 12534 return (-1); 12535 } 12536 } 12537 12538 if (mstate == NULL) 12539 return (offs); 12540 12541 /* 12542 * For ring buffers and fill buffers, the scratch space is always 12543 * the inactive buffer. 12544 */ 12545 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12546 mstate->dtms_scratch_size = buf->dtb_size; 12547 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12548 12549 return (offs); 12550 } 12551 12552 static void 12553 dtrace_buffer_polish(dtrace_buffer_t *buf) 12554 { 12555 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12556 ASSERT(MUTEX_HELD(&dtrace_lock)); 12557 12558 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12559 return; 12560 12561 /* 12562 * We need to polish the ring buffer. There are three cases: 12563 * 12564 * - The first (and presumably most common) is that there is no gap 12565 * between the buffer offset and the wrapped offset. In this case, 12566 * there is nothing in the buffer that isn't valid data; we can 12567 * mark the buffer as polished and return. 12568 * 12569 * - The second (less common than the first but still more common 12570 * than the third) is that there is a gap between the buffer offset 12571 * and the wrapped offset, and the wrapped offset is larger than the 12572 * buffer offset. This can happen because of an alignment issue, or 12573 * can happen because of a call to dtrace_buffer_reserve() that 12574 * didn't subsequently consume the buffer space. In this case, 12575 * we need to zero the data from the buffer offset to the wrapped 12576 * offset. 12577 * 12578 * - The third (and least common) is that there is a gap between the 12579 * buffer offset and the wrapped offset, but the wrapped offset is 12580 * _less_ than the buffer offset. This can only happen because a 12581 * call to dtrace_buffer_reserve() induced a wrap, but the space 12582 * was not subsequently consumed. In this case, we need to zero the 12583 * space from the offset to the end of the buffer _and_ from the 12584 * top of the buffer to the wrapped offset. 12585 */ 12586 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12587 bzero(buf->dtb_tomax + buf->dtb_offset, 12588 buf->dtb_xamot_offset - buf->dtb_offset); 12589 } 12590 12591 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12592 bzero(buf->dtb_tomax + buf->dtb_offset, 12593 buf->dtb_size - buf->dtb_offset); 12594 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12595 } 12596 } 12597 12598 /* 12599 * This routine determines if data generated at the specified time has likely 12600 * been entirely consumed at user-level. This routine is called to determine 12601 * if an ECB on a defunct probe (but for an active enabling) can be safely 12602 * disabled and destroyed. 12603 */ 12604 static int 12605 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12606 { 12607 int i; 12608 12609 CPU_FOREACH(i) { 12610 dtrace_buffer_t *buf = &bufs[i]; 12611 12612 if (buf->dtb_size == 0) 12613 continue; 12614 12615 if (buf->dtb_flags & DTRACEBUF_RING) 12616 return (0); 12617 12618 if (!buf->dtb_switched && buf->dtb_offset != 0) 12619 return (0); 12620 12621 if (buf->dtb_switched - buf->dtb_interval < when) 12622 return (0); 12623 } 12624 12625 return (1); 12626 } 12627 12628 static void 12629 dtrace_buffer_free(dtrace_buffer_t *bufs) 12630 { 12631 int i; 12632 12633 CPU_FOREACH(i) { 12634 dtrace_buffer_t *buf = &bufs[i]; 12635 12636 if (buf->dtb_tomax == NULL) { 12637 ASSERT(buf->dtb_xamot == NULL); 12638 ASSERT(buf->dtb_size == 0); 12639 continue; 12640 } 12641 12642 if (buf->dtb_xamot != NULL) { 12643 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12644 kmem_free(buf->dtb_xamot, buf->dtb_size); 12645 } 12646 12647 kmem_free(buf->dtb_tomax, buf->dtb_size); 12648 buf->dtb_size = 0; 12649 buf->dtb_tomax = NULL; 12650 buf->dtb_xamot = NULL; 12651 } 12652 } 12653 12654 /* 12655 * DTrace Enabling Functions 12656 */ 12657 static dtrace_enabling_t * 12658 dtrace_enabling_create(dtrace_vstate_t *vstate) 12659 { 12660 dtrace_enabling_t *enab; 12661 12662 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12663 enab->dten_vstate = vstate; 12664 12665 return (enab); 12666 } 12667 12668 static void 12669 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12670 { 12671 dtrace_ecbdesc_t **ndesc; 12672 size_t osize, nsize; 12673 12674 /* 12675 * We can't add to enablings after we've enabled them, or after we've 12676 * retained them. 12677 */ 12678 ASSERT(enab->dten_probegen == 0); 12679 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12680 12681 if (enab->dten_ndesc < enab->dten_maxdesc) { 12682 enab->dten_desc[enab->dten_ndesc++] = ecb; 12683 return; 12684 } 12685 12686 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12687 12688 if (enab->dten_maxdesc == 0) { 12689 enab->dten_maxdesc = 1; 12690 } else { 12691 enab->dten_maxdesc <<= 1; 12692 } 12693 12694 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12695 12696 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12697 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12698 bcopy(enab->dten_desc, ndesc, osize); 12699 if (enab->dten_desc != NULL) 12700 kmem_free(enab->dten_desc, osize); 12701 12702 enab->dten_desc = ndesc; 12703 enab->dten_desc[enab->dten_ndesc++] = ecb; 12704 } 12705 12706 static void 12707 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12708 dtrace_probedesc_t *pd) 12709 { 12710 dtrace_ecbdesc_t *new; 12711 dtrace_predicate_t *pred; 12712 dtrace_actdesc_t *act; 12713 12714 /* 12715 * We're going to create a new ECB description that matches the 12716 * specified ECB in every way, but has the specified probe description. 12717 */ 12718 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12719 12720 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12721 dtrace_predicate_hold(pred); 12722 12723 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12724 dtrace_actdesc_hold(act); 12725 12726 new->dted_action = ecb->dted_action; 12727 new->dted_pred = ecb->dted_pred; 12728 new->dted_probe = *pd; 12729 new->dted_uarg = ecb->dted_uarg; 12730 12731 dtrace_enabling_add(enab, new); 12732 } 12733 12734 static void 12735 dtrace_enabling_dump(dtrace_enabling_t *enab) 12736 { 12737 int i; 12738 12739 for (i = 0; i < enab->dten_ndesc; i++) { 12740 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12741 12742 #ifdef __FreeBSD__ 12743 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12744 desc->dtpd_provider, desc->dtpd_mod, 12745 desc->dtpd_func, desc->dtpd_name); 12746 #else 12747 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12748 desc->dtpd_provider, desc->dtpd_mod, 12749 desc->dtpd_func, desc->dtpd_name); 12750 #endif 12751 } 12752 } 12753 12754 static void 12755 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12756 { 12757 int i; 12758 dtrace_ecbdesc_t *ep; 12759 dtrace_vstate_t *vstate = enab->dten_vstate; 12760 12761 ASSERT(MUTEX_HELD(&dtrace_lock)); 12762 12763 for (i = 0; i < enab->dten_ndesc; i++) { 12764 dtrace_actdesc_t *act, *next; 12765 dtrace_predicate_t *pred; 12766 12767 ep = enab->dten_desc[i]; 12768 12769 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12770 dtrace_predicate_release(pred, vstate); 12771 12772 for (act = ep->dted_action; act != NULL; act = next) { 12773 next = act->dtad_next; 12774 dtrace_actdesc_release(act, vstate); 12775 } 12776 12777 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12778 } 12779 12780 if (enab->dten_desc != NULL) 12781 kmem_free(enab->dten_desc, 12782 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12783 12784 /* 12785 * If this was a retained enabling, decrement the dts_nretained count 12786 * and take it off of the dtrace_retained list. 12787 */ 12788 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12789 dtrace_retained == enab) { 12790 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12791 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12792 enab->dten_vstate->dtvs_state->dts_nretained--; 12793 dtrace_retained_gen++; 12794 } 12795 12796 if (enab->dten_prev == NULL) { 12797 if (dtrace_retained == enab) { 12798 dtrace_retained = enab->dten_next; 12799 12800 if (dtrace_retained != NULL) 12801 dtrace_retained->dten_prev = NULL; 12802 } 12803 } else { 12804 ASSERT(enab != dtrace_retained); 12805 ASSERT(dtrace_retained != NULL); 12806 enab->dten_prev->dten_next = enab->dten_next; 12807 } 12808 12809 if (enab->dten_next != NULL) { 12810 ASSERT(dtrace_retained != NULL); 12811 enab->dten_next->dten_prev = enab->dten_prev; 12812 } 12813 12814 kmem_free(enab, sizeof (dtrace_enabling_t)); 12815 } 12816 12817 static int 12818 dtrace_enabling_retain(dtrace_enabling_t *enab) 12819 { 12820 dtrace_state_t *state; 12821 12822 ASSERT(MUTEX_HELD(&dtrace_lock)); 12823 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12824 ASSERT(enab->dten_vstate != NULL); 12825 12826 state = enab->dten_vstate->dtvs_state; 12827 ASSERT(state != NULL); 12828 12829 /* 12830 * We only allow each state to retain dtrace_retain_max enablings. 12831 */ 12832 if (state->dts_nretained >= dtrace_retain_max) 12833 return (ENOSPC); 12834 12835 state->dts_nretained++; 12836 dtrace_retained_gen++; 12837 12838 if (dtrace_retained == NULL) { 12839 dtrace_retained = enab; 12840 return (0); 12841 } 12842 12843 enab->dten_next = dtrace_retained; 12844 dtrace_retained->dten_prev = enab; 12845 dtrace_retained = enab; 12846 12847 return (0); 12848 } 12849 12850 static int 12851 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12852 dtrace_probedesc_t *create) 12853 { 12854 dtrace_enabling_t *new, *enab; 12855 int found = 0, err = ENOENT; 12856 12857 ASSERT(MUTEX_HELD(&dtrace_lock)); 12858 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12859 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12860 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12861 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12862 12863 new = dtrace_enabling_create(&state->dts_vstate); 12864 12865 /* 12866 * Iterate over all retained enablings, looking for enablings that 12867 * match the specified state. 12868 */ 12869 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12870 int i; 12871 12872 /* 12873 * dtvs_state can only be NULL for helper enablings -- and 12874 * helper enablings can't be retained. 12875 */ 12876 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12877 12878 if (enab->dten_vstate->dtvs_state != state) 12879 continue; 12880 12881 /* 12882 * Now iterate over each probe description; we're looking for 12883 * an exact match to the specified probe description. 12884 */ 12885 for (i = 0; i < enab->dten_ndesc; i++) { 12886 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12887 dtrace_probedesc_t *pd = &ep->dted_probe; 12888 12889 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12890 continue; 12891 12892 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12893 continue; 12894 12895 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12896 continue; 12897 12898 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12899 continue; 12900 12901 /* 12902 * We have a winning probe! Add it to our growing 12903 * enabling. 12904 */ 12905 found = 1; 12906 dtrace_enabling_addlike(new, ep, create); 12907 } 12908 } 12909 12910 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12911 dtrace_enabling_destroy(new); 12912 return (err); 12913 } 12914 12915 return (0); 12916 } 12917 12918 static void 12919 dtrace_enabling_retract(dtrace_state_t *state) 12920 { 12921 dtrace_enabling_t *enab, *next; 12922 12923 ASSERT(MUTEX_HELD(&dtrace_lock)); 12924 12925 /* 12926 * Iterate over all retained enablings, destroy the enablings retained 12927 * for the specified state. 12928 */ 12929 for (enab = dtrace_retained; enab != NULL; enab = next) { 12930 next = enab->dten_next; 12931 12932 /* 12933 * dtvs_state can only be NULL for helper enablings -- and 12934 * helper enablings can't be retained. 12935 */ 12936 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12937 12938 if (enab->dten_vstate->dtvs_state == state) { 12939 ASSERT(state->dts_nretained > 0); 12940 dtrace_enabling_destroy(enab); 12941 } 12942 } 12943 12944 ASSERT(state->dts_nretained == 0); 12945 } 12946 12947 static int 12948 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12949 { 12950 int i = 0; 12951 int matched = 0; 12952 12953 ASSERT(MUTEX_HELD(&cpu_lock)); 12954 ASSERT(MUTEX_HELD(&dtrace_lock)); 12955 12956 for (i = 0; i < enab->dten_ndesc; i++) { 12957 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12958 12959 enab->dten_current = ep; 12960 enab->dten_error = 0; 12961 12962 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12963 12964 if (enab->dten_error != 0) { 12965 /* 12966 * If we get an error half-way through enabling the 12967 * probes, we kick out -- perhaps with some number of 12968 * them enabled. Leaving enabled probes enabled may 12969 * be slightly confusing for user-level, but we expect 12970 * that no one will attempt to actually drive on in 12971 * the face of such errors. If this is an anonymous 12972 * enabling (indicated with a NULL nmatched pointer), 12973 * we cmn_err() a message. We aren't expecting to 12974 * get such an error -- such as it can exist at all, 12975 * it would be a result of corrupted DOF in the driver 12976 * properties. 12977 */ 12978 if (nmatched == NULL) { 12979 cmn_err(CE_WARN, "dtrace_enabling_match() " 12980 "error on %p: %d", (void *)ep, 12981 enab->dten_error); 12982 } 12983 12984 return (enab->dten_error); 12985 } 12986 } 12987 12988 enab->dten_probegen = dtrace_probegen; 12989 if (nmatched != NULL) 12990 *nmatched = matched; 12991 12992 return (0); 12993 } 12994 12995 static void 12996 dtrace_enabling_matchall_task(void *args __unused) 12997 { 12998 dtrace_enabling_matchall(); 12999 } 13000 13001 static void 13002 dtrace_enabling_matchall(void) 13003 { 13004 dtrace_enabling_t *enab; 13005 13006 mutex_enter(&cpu_lock); 13007 mutex_enter(&dtrace_lock); 13008 13009 /* 13010 * Iterate over all retained enablings to see if any probes match 13011 * against them. We only perform this operation on enablings for which 13012 * we have sufficient permissions by virtue of being in the global zone 13013 * or in the same zone as the DTrace client. Because we can be called 13014 * after dtrace_detach() has been called, we cannot assert that there 13015 * are retained enablings. We can safely load from dtrace_retained, 13016 * however: the taskq_destroy() at the end of dtrace_detach() will 13017 * block pending our completion. 13018 */ 13019 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13020 #ifdef illumos 13021 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13022 13023 if (INGLOBALZONE(curproc) || 13024 cr != NULL && getzoneid() == crgetzoneid(cr)) 13025 #endif 13026 (void) dtrace_enabling_match(enab, NULL); 13027 } 13028 13029 mutex_exit(&dtrace_lock); 13030 mutex_exit(&cpu_lock); 13031 } 13032 13033 /* 13034 * If an enabling is to be enabled without having matched probes (that is, if 13035 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13036 * enabling must be _primed_ by creating an ECB for every ECB description. 13037 * This must be done to assure that we know the number of speculations, the 13038 * number of aggregations, the minimum buffer size needed, etc. before we 13039 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13040 * enabling any probes, we create ECBs for every ECB decription, but with a 13041 * NULL probe -- which is exactly what this function does. 13042 */ 13043 static void 13044 dtrace_enabling_prime(dtrace_state_t *state) 13045 { 13046 dtrace_enabling_t *enab; 13047 int i; 13048 13049 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13050 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13051 13052 if (enab->dten_vstate->dtvs_state != state) 13053 continue; 13054 13055 /* 13056 * We don't want to prime an enabling more than once, lest 13057 * we allow a malicious user to induce resource exhaustion. 13058 * (The ECBs that result from priming an enabling aren't 13059 * leaked -- but they also aren't deallocated until the 13060 * consumer state is destroyed.) 13061 */ 13062 if (enab->dten_primed) 13063 continue; 13064 13065 for (i = 0; i < enab->dten_ndesc; i++) { 13066 enab->dten_current = enab->dten_desc[i]; 13067 (void) dtrace_probe_enable(NULL, enab); 13068 } 13069 13070 enab->dten_primed = 1; 13071 } 13072 } 13073 13074 /* 13075 * Called to indicate that probes should be provided due to retained 13076 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13077 * must take an initial lap through the enabling calling the dtps_provide() 13078 * entry point explicitly to allow for autocreated probes. 13079 */ 13080 static void 13081 dtrace_enabling_provide(dtrace_provider_t *prv) 13082 { 13083 int i, all = 0; 13084 dtrace_probedesc_t desc; 13085 dtrace_genid_t gen; 13086 13087 ASSERT(MUTEX_HELD(&dtrace_lock)); 13088 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13089 13090 if (prv == NULL) { 13091 all = 1; 13092 prv = dtrace_provider; 13093 } 13094 13095 do { 13096 dtrace_enabling_t *enab; 13097 void *parg = prv->dtpv_arg; 13098 13099 retry: 13100 gen = dtrace_retained_gen; 13101 for (enab = dtrace_retained; enab != NULL; 13102 enab = enab->dten_next) { 13103 for (i = 0; i < enab->dten_ndesc; i++) { 13104 desc = enab->dten_desc[i]->dted_probe; 13105 mutex_exit(&dtrace_lock); 13106 prv->dtpv_pops.dtps_provide(parg, &desc); 13107 mutex_enter(&dtrace_lock); 13108 /* 13109 * Process the retained enablings again if 13110 * they have changed while we weren't holding 13111 * dtrace_lock. 13112 */ 13113 if (gen != dtrace_retained_gen) 13114 goto retry; 13115 } 13116 } 13117 } while (all && (prv = prv->dtpv_next) != NULL); 13118 13119 mutex_exit(&dtrace_lock); 13120 dtrace_probe_provide(NULL, all ? NULL : prv); 13121 mutex_enter(&dtrace_lock); 13122 } 13123 13124 /* 13125 * Called to reap ECBs that are attached to probes from defunct providers. 13126 */ 13127 static void 13128 dtrace_enabling_reap(void *args __unused) 13129 { 13130 dtrace_provider_t *prov; 13131 dtrace_probe_t *probe; 13132 dtrace_ecb_t *ecb; 13133 hrtime_t when; 13134 int i; 13135 13136 mutex_enter(&cpu_lock); 13137 mutex_enter(&dtrace_lock); 13138 13139 for (i = 0; i < dtrace_nprobes; i++) { 13140 if ((probe = dtrace_probes[i]) == NULL) 13141 continue; 13142 13143 if (probe->dtpr_ecb == NULL) 13144 continue; 13145 13146 prov = probe->dtpr_provider; 13147 13148 if ((when = prov->dtpv_defunct) == 0) 13149 continue; 13150 13151 /* 13152 * We have ECBs on a defunct provider: we want to reap these 13153 * ECBs to allow the provider to unregister. The destruction 13154 * of these ECBs must be done carefully: if we destroy the ECB 13155 * and the consumer later wishes to consume an EPID that 13156 * corresponds to the destroyed ECB (and if the EPID metadata 13157 * has not been previously consumed), the consumer will abort 13158 * processing on the unknown EPID. To reduce (but not, sadly, 13159 * eliminate) the possibility of this, we will only destroy an 13160 * ECB for a defunct provider if, for the state that 13161 * corresponds to the ECB: 13162 * 13163 * (a) There is no speculative tracing (which can effectively 13164 * cache an EPID for an arbitrary amount of time). 13165 * 13166 * (b) The principal buffers have been switched twice since the 13167 * provider became defunct. 13168 * 13169 * (c) The aggregation buffers are of zero size or have been 13170 * switched twice since the provider became defunct. 13171 * 13172 * We use dts_speculates to determine (a) and call a function 13173 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13174 * that as soon as we've been unable to destroy one of the ECBs 13175 * associated with the probe, we quit trying -- reaping is only 13176 * fruitful in as much as we can destroy all ECBs associated 13177 * with the defunct provider's probes. 13178 */ 13179 while ((ecb = probe->dtpr_ecb) != NULL) { 13180 dtrace_state_t *state = ecb->dte_state; 13181 dtrace_buffer_t *buf = state->dts_buffer; 13182 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13183 13184 if (state->dts_speculates) 13185 break; 13186 13187 if (!dtrace_buffer_consumed(buf, when)) 13188 break; 13189 13190 if (!dtrace_buffer_consumed(aggbuf, when)) 13191 break; 13192 13193 dtrace_ecb_disable(ecb); 13194 ASSERT(probe->dtpr_ecb != ecb); 13195 dtrace_ecb_destroy(ecb); 13196 } 13197 } 13198 13199 mutex_exit(&dtrace_lock); 13200 mutex_exit(&cpu_lock); 13201 } 13202 13203 /* 13204 * DTrace DOF Functions 13205 */ 13206 /*ARGSUSED*/ 13207 static void 13208 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13209 { 13210 if (dtrace_err_verbose) 13211 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13212 13213 #ifdef DTRACE_ERRDEBUG 13214 dtrace_errdebug(str); 13215 #endif 13216 } 13217 13218 /* 13219 * Create DOF out of a currently enabled state. Right now, we only create 13220 * DOF containing the run-time options -- but this could be expanded to create 13221 * complete DOF representing the enabled state. 13222 */ 13223 static dof_hdr_t * 13224 dtrace_dof_create(dtrace_state_t *state) 13225 { 13226 dof_hdr_t *dof; 13227 dof_sec_t *sec; 13228 dof_optdesc_t *opt; 13229 int i, len = sizeof (dof_hdr_t) + 13230 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13231 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13232 13233 ASSERT(MUTEX_HELD(&dtrace_lock)); 13234 13235 dof = kmem_zalloc(len, KM_SLEEP); 13236 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13237 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13238 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13239 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13240 13241 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13242 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13243 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13244 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13245 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13246 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13247 13248 dof->dofh_flags = 0; 13249 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13250 dof->dofh_secsize = sizeof (dof_sec_t); 13251 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13252 dof->dofh_secoff = sizeof (dof_hdr_t); 13253 dof->dofh_loadsz = len; 13254 dof->dofh_filesz = len; 13255 dof->dofh_pad = 0; 13256 13257 /* 13258 * Fill in the option section header... 13259 */ 13260 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13261 sec->dofs_type = DOF_SECT_OPTDESC; 13262 sec->dofs_align = sizeof (uint64_t); 13263 sec->dofs_flags = DOF_SECF_LOAD; 13264 sec->dofs_entsize = sizeof (dof_optdesc_t); 13265 13266 opt = (dof_optdesc_t *)((uintptr_t)sec + 13267 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13268 13269 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13270 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13271 13272 for (i = 0; i < DTRACEOPT_MAX; i++) { 13273 opt[i].dofo_option = i; 13274 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13275 opt[i].dofo_value = state->dts_options[i]; 13276 } 13277 13278 return (dof); 13279 } 13280 13281 static dof_hdr_t * 13282 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13283 { 13284 dof_hdr_t hdr, *dof; 13285 13286 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13287 13288 /* 13289 * First, we're going to copyin() the sizeof (dof_hdr_t). 13290 */ 13291 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13292 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13293 *errp = EFAULT; 13294 return (NULL); 13295 } 13296 13297 /* 13298 * Now we'll allocate the entire DOF and copy it in -- provided 13299 * that the length isn't outrageous. 13300 */ 13301 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13302 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13303 *errp = E2BIG; 13304 return (NULL); 13305 } 13306 13307 if (hdr.dofh_loadsz < sizeof (hdr)) { 13308 dtrace_dof_error(&hdr, "invalid load size"); 13309 *errp = EINVAL; 13310 return (NULL); 13311 } 13312 13313 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13314 13315 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13316 dof->dofh_loadsz != hdr.dofh_loadsz) { 13317 kmem_free(dof, hdr.dofh_loadsz); 13318 *errp = EFAULT; 13319 return (NULL); 13320 } 13321 13322 return (dof); 13323 } 13324 13325 #ifdef __FreeBSD__ 13326 static dof_hdr_t * 13327 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13328 { 13329 dof_hdr_t hdr, *dof; 13330 struct thread *td; 13331 size_t loadsz; 13332 13333 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13334 13335 td = curthread; 13336 13337 /* 13338 * First, we're going to copyin() the sizeof (dof_hdr_t). 13339 */ 13340 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13341 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13342 *errp = EFAULT; 13343 return (NULL); 13344 } 13345 13346 /* 13347 * Now we'll allocate the entire DOF and copy it in -- provided 13348 * that the length isn't outrageous. 13349 */ 13350 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13351 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13352 *errp = E2BIG; 13353 return (NULL); 13354 } 13355 loadsz = (size_t)hdr.dofh_loadsz; 13356 13357 if (loadsz < sizeof (hdr)) { 13358 dtrace_dof_error(&hdr, "invalid load size"); 13359 *errp = EINVAL; 13360 return (NULL); 13361 } 13362 13363 dof = kmem_alloc(loadsz, KM_SLEEP); 13364 13365 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13366 dof->dofh_loadsz != loadsz) { 13367 kmem_free(dof, hdr.dofh_loadsz); 13368 *errp = EFAULT; 13369 return (NULL); 13370 } 13371 13372 return (dof); 13373 } 13374 13375 static __inline uchar_t 13376 dtrace_dof_char(char c) 13377 { 13378 13379 switch (c) { 13380 case '0': 13381 case '1': 13382 case '2': 13383 case '3': 13384 case '4': 13385 case '5': 13386 case '6': 13387 case '7': 13388 case '8': 13389 case '9': 13390 return (c - '0'); 13391 case 'A': 13392 case 'B': 13393 case 'C': 13394 case 'D': 13395 case 'E': 13396 case 'F': 13397 return (c - 'A' + 10); 13398 case 'a': 13399 case 'b': 13400 case 'c': 13401 case 'd': 13402 case 'e': 13403 case 'f': 13404 return (c - 'a' + 10); 13405 } 13406 /* Should not reach here. */ 13407 return (UCHAR_MAX); 13408 } 13409 #endif /* __FreeBSD__ */ 13410 13411 static dof_hdr_t * 13412 dtrace_dof_property(const char *name) 13413 { 13414 #ifdef __FreeBSD__ 13415 uint8_t *dofbuf; 13416 u_char *data, *eol; 13417 caddr_t doffile; 13418 size_t bytes, len, i; 13419 dof_hdr_t *dof; 13420 u_char c1, c2; 13421 13422 dof = NULL; 13423 13424 doffile = preload_search_by_type("dtrace_dof"); 13425 if (doffile == NULL) 13426 return (NULL); 13427 13428 data = preload_fetch_addr(doffile); 13429 len = preload_fetch_size(doffile); 13430 for (;;) { 13431 /* Look for the end of the line. All lines end in a newline. */ 13432 eol = memchr(data, '\n', len); 13433 if (eol == NULL) 13434 return (NULL); 13435 13436 if (strncmp(name, data, strlen(name)) == 0) 13437 break; 13438 13439 eol++; /* skip past the newline */ 13440 len -= eol - data; 13441 data = eol; 13442 } 13443 13444 /* We've found the data corresponding to the specified key. */ 13445 13446 data += strlen(name) + 1; /* skip past the '=' */ 13447 len = eol - data; 13448 if (len % 2 != 0) { 13449 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13450 goto doferr; 13451 } 13452 bytes = len / 2; 13453 if (bytes < sizeof(dof_hdr_t)) { 13454 dtrace_dof_error(NULL, "truncated header"); 13455 goto doferr; 13456 } 13457 13458 /* 13459 * Each byte is represented by the two ASCII characters in its hex 13460 * representation. 13461 */ 13462 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13463 for (i = 0; i < bytes; i++) { 13464 c1 = dtrace_dof_char(data[i * 2]); 13465 c2 = dtrace_dof_char(data[i * 2 + 1]); 13466 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13467 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13468 goto doferr; 13469 } 13470 dofbuf[i] = c1 * 16 + c2; 13471 } 13472 13473 dof = (dof_hdr_t *)dofbuf; 13474 if (bytes < dof->dofh_loadsz) { 13475 dtrace_dof_error(NULL, "truncated DOF"); 13476 goto doferr; 13477 } 13478 13479 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13480 dtrace_dof_error(NULL, "oversized DOF"); 13481 goto doferr; 13482 } 13483 13484 return (dof); 13485 13486 doferr: 13487 free(dof, M_SOLARIS); 13488 return (NULL); 13489 #else /* __FreeBSD__ */ 13490 uchar_t *buf; 13491 uint64_t loadsz; 13492 unsigned int len, i; 13493 dof_hdr_t *dof; 13494 13495 /* 13496 * Unfortunately, array of values in .conf files are always (and 13497 * only) interpreted to be integer arrays. We must read our DOF 13498 * as an integer array, and then squeeze it into a byte array. 13499 */ 13500 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13501 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13502 return (NULL); 13503 13504 for (i = 0; i < len; i++) 13505 buf[i] = (uchar_t)(((int *)buf)[i]); 13506 13507 if (len < sizeof (dof_hdr_t)) { 13508 ddi_prop_free(buf); 13509 dtrace_dof_error(NULL, "truncated header"); 13510 return (NULL); 13511 } 13512 13513 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13514 ddi_prop_free(buf); 13515 dtrace_dof_error(NULL, "truncated DOF"); 13516 return (NULL); 13517 } 13518 13519 if (loadsz >= dtrace_dof_maxsize) { 13520 ddi_prop_free(buf); 13521 dtrace_dof_error(NULL, "oversized DOF"); 13522 return (NULL); 13523 } 13524 13525 dof = kmem_alloc(loadsz, KM_SLEEP); 13526 bcopy(buf, dof, loadsz); 13527 ddi_prop_free(buf); 13528 13529 return (dof); 13530 #endif /* !__FreeBSD__ */ 13531 } 13532 13533 static void 13534 dtrace_dof_destroy(dof_hdr_t *dof) 13535 { 13536 kmem_free(dof, dof->dofh_loadsz); 13537 } 13538 13539 /* 13540 * Return the dof_sec_t pointer corresponding to a given section index. If the 13541 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13542 * a type other than DOF_SECT_NONE is specified, the header is checked against 13543 * this type and NULL is returned if the types do not match. 13544 */ 13545 static dof_sec_t * 13546 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13547 { 13548 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13549 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13550 13551 if (i >= dof->dofh_secnum) { 13552 dtrace_dof_error(dof, "referenced section index is invalid"); 13553 return (NULL); 13554 } 13555 13556 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13557 dtrace_dof_error(dof, "referenced section is not loadable"); 13558 return (NULL); 13559 } 13560 13561 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13562 dtrace_dof_error(dof, "referenced section is the wrong type"); 13563 return (NULL); 13564 } 13565 13566 return (sec); 13567 } 13568 13569 static dtrace_probedesc_t * 13570 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13571 { 13572 dof_probedesc_t *probe; 13573 dof_sec_t *strtab; 13574 uintptr_t daddr = (uintptr_t)dof; 13575 uintptr_t str; 13576 size_t size; 13577 13578 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13579 dtrace_dof_error(dof, "invalid probe section"); 13580 return (NULL); 13581 } 13582 13583 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13584 dtrace_dof_error(dof, "bad alignment in probe description"); 13585 return (NULL); 13586 } 13587 13588 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13589 dtrace_dof_error(dof, "truncated probe description"); 13590 return (NULL); 13591 } 13592 13593 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13594 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13595 13596 if (strtab == NULL) 13597 return (NULL); 13598 13599 str = daddr + strtab->dofs_offset; 13600 size = strtab->dofs_size; 13601 13602 if (probe->dofp_provider >= strtab->dofs_size) { 13603 dtrace_dof_error(dof, "corrupt probe provider"); 13604 return (NULL); 13605 } 13606 13607 (void) strncpy(desc->dtpd_provider, 13608 (char *)(str + probe->dofp_provider), 13609 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13610 13611 if (probe->dofp_mod >= strtab->dofs_size) { 13612 dtrace_dof_error(dof, "corrupt probe module"); 13613 return (NULL); 13614 } 13615 13616 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13617 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13618 13619 if (probe->dofp_func >= strtab->dofs_size) { 13620 dtrace_dof_error(dof, "corrupt probe function"); 13621 return (NULL); 13622 } 13623 13624 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13625 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13626 13627 if (probe->dofp_name >= strtab->dofs_size) { 13628 dtrace_dof_error(dof, "corrupt probe name"); 13629 return (NULL); 13630 } 13631 13632 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13633 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13634 13635 return (desc); 13636 } 13637 13638 static dtrace_difo_t * 13639 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13640 cred_t *cr) 13641 { 13642 dtrace_difo_t *dp; 13643 size_t ttl = 0; 13644 dof_difohdr_t *dofd; 13645 uintptr_t daddr = (uintptr_t)dof; 13646 size_t max = dtrace_difo_maxsize; 13647 int i, l, n; 13648 13649 static const struct { 13650 int section; 13651 int bufoffs; 13652 int lenoffs; 13653 int entsize; 13654 int align; 13655 const char *msg; 13656 } difo[] = { 13657 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13658 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13659 sizeof (dif_instr_t), "multiple DIF sections" }, 13660 13661 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13662 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13663 sizeof (uint64_t), "multiple integer tables" }, 13664 13665 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13666 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13667 sizeof (char), "multiple string tables" }, 13668 13669 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13670 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13671 sizeof (uint_t), "multiple variable tables" }, 13672 13673 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13674 }; 13675 13676 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13677 dtrace_dof_error(dof, "invalid DIFO header section"); 13678 return (NULL); 13679 } 13680 13681 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13682 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13683 return (NULL); 13684 } 13685 13686 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13687 sec->dofs_size % sizeof (dof_secidx_t)) { 13688 dtrace_dof_error(dof, "bad size in DIFO header"); 13689 return (NULL); 13690 } 13691 13692 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13693 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13694 13695 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13696 dp->dtdo_rtype = dofd->dofd_rtype; 13697 13698 for (l = 0; l < n; l++) { 13699 dof_sec_t *subsec; 13700 void **bufp; 13701 uint32_t *lenp; 13702 13703 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13704 dofd->dofd_links[l])) == NULL) 13705 goto err; /* invalid section link */ 13706 13707 if (ttl + subsec->dofs_size > max) { 13708 dtrace_dof_error(dof, "exceeds maximum size"); 13709 goto err; 13710 } 13711 13712 ttl += subsec->dofs_size; 13713 13714 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13715 if (subsec->dofs_type != difo[i].section) 13716 continue; 13717 13718 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13719 dtrace_dof_error(dof, "section not loaded"); 13720 goto err; 13721 } 13722 13723 if (subsec->dofs_align != difo[i].align) { 13724 dtrace_dof_error(dof, "bad alignment"); 13725 goto err; 13726 } 13727 13728 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13729 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13730 13731 if (*bufp != NULL) { 13732 dtrace_dof_error(dof, difo[i].msg); 13733 goto err; 13734 } 13735 13736 if (difo[i].entsize != subsec->dofs_entsize) { 13737 dtrace_dof_error(dof, "entry size mismatch"); 13738 goto err; 13739 } 13740 13741 if (subsec->dofs_entsize != 0 && 13742 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13743 dtrace_dof_error(dof, "corrupt entry size"); 13744 goto err; 13745 } 13746 13747 *lenp = subsec->dofs_size; 13748 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13749 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13750 *bufp, subsec->dofs_size); 13751 13752 if (subsec->dofs_entsize != 0) 13753 *lenp /= subsec->dofs_entsize; 13754 13755 break; 13756 } 13757 13758 /* 13759 * If we encounter a loadable DIFO sub-section that is not 13760 * known to us, assume this is a broken program and fail. 13761 */ 13762 if (difo[i].section == DOF_SECT_NONE && 13763 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13764 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13765 goto err; 13766 } 13767 } 13768 13769 if (dp->dtdo_buf == NULL) { 13770 /* 13771 * We can't have a DIF object without DIF text. 13772 */ 13773 dtrace_dof_error(dof, "missing DIF text"); 13774 goto err; 13775 } 13776 13777 /* 13778 * Before we validate the DIF object, run through the variable table 13779 * looking for the strings -- if any of their size are under, we'll set 13780 * their size to be the system-wide default string size. Note that 13781 * this should _not_ happen if the "strsize" option has been set -- 13782 * in this case, the compiler should have set the size to reflect the 13783 * setting of the option. 13784 */ 13785 for (i = 0; i < dp->dtdo_varlen; i++) { 13786 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13787 dtrace_diftype_t *t = &v->dtdv_type; 13788 13789 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13790 continue; 13791 13792 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13793 t->dtdt_size = dtrace_strsize_default; 13794 } 13795 13796 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13797 goto err; 13798 13799 dtrace_difo_init(dp, vstate); 13800 return (dp); 13801 13802 err: 13803 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13804 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13805 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13806 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13807 13808 kmem_free(dp, sizeof (dtrace_difo_t)); 13809 return (NULL); 13810 } 13811 13812 static dtrace_predicate_t * 13813 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13814 cred_t *cr) 13815 { 13816 dtrace_difo_t *dp; 13817 13818 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13819 return (NULL); 13820 13821 return (dtrace_predicate_create(dp)); 13822 } 13823 13824 static dtrace_actdesc_t * 13825 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13826 cred_t *cr) 13827 { 13828 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13829 dof_actdesc_t *desc; 13830 dof_sec_t *difosec; 13831 size_t offs; 13832 uintptr_t daddr = (uintptr_t)dof; 13833 uint64_t arg; 13834 dtrace_actkind_t kind; 13835 13836 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13837 dtrace_dof_error(dof, "invalid action section"); 13838 return (NULL); 13839 } 13840 13841 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13842 dtrace_dof_error(dof, "truncated action description"); 13843 return (NULL); 13844 } 13845 13846 if (sec->dofs_align != sizeof (uint64_t)) { 13847 dtrace_dof_error(dof, "bad alignment in action description"); 13848 return (NULL); 13849 } 13850 13851 if (sec->dofs_size < sec->dofs_entsize) { 13852 dtrace_dof_error(dof, "section entry size exceeds total size"); 13853 return (NULL); 13854 } 13855 13856 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13857 dtrace_dof_error(dof, "bad entry size in action description"); 13858 return (NULL); 13859 } 13860 13861 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13862 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13863 return (NULL); 13864 } 13865 13866 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13867 desc = (dof_actdesc_t *)(daddr + 13868 (uintptr_t)sec->dofs_offset + offs); 13869 kind = (dtrace_actkind_t)desc->dofa_kind; 13870 13871 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13872 (kind != DTRACEACT_PRINTA || 13873 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13874 (kind == DTRACEACT_DIFEXPR && 13875 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13876 dof_sec_t *strtab; 13877 char *str, *fmt; 13878 uint64_t i; 13879 13880 /* 13881 * The argument to these actions is an index into the 13882 * DOF string table. For printf()-like actions, this 13883 * is the format string. For print(), this is the 13884 * CTF type of the expression result. 13885 */ 13886 if ((strtab = dtrace_dof_sect(dof, 13887 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13888 goto err; 13889 13890 str = (char *)((uintptr_t)dof + 13891 (uintptr_t)strtab->dofs_offset); 13892 13893 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13894 if (str[i] == '\0') 13895 break; 13896 } 13897 13898 if (i >= strtab->dofs_size) { 13899 dtrace_dof_error(dof, "bogus format string"); 13900 goto err; 13901 } 13902 13903 if (i == desc->dofa_arg) { 13904 dtrace_dof_error(dof, "empty format string"); 13905 goto err; 13906 } 13907 13908 i -= desc->dofa_arg; 13909 fmt = kmem_alloc(i + 1, KM_SLEEP); 13910 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13911 arg = (uint64_t)(uintptr_t)fmt; 13912 } else { 13913 if (kind == DTRACEACT_PRINTA) { 13914 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13915 arg = 0; 13916 } else { 13917 arg = desc->dofa_arg; 13918 } 13919 } 13920 13921 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13922 desc->dofa_uarg, arg); 13923 13924 if (last != NULL) { 13925 last->dtad_next = act; 13926 } else { 13927 first = act; 13928 } 13929 13930 last = act; 13931 13932 if (desc->dofa_difo == DOF_SECIDX_NONE) 13933 continue; 13934 13935 if ((difosec = dtrace_dof_sect(dof, 13936 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13937 goto err; 13938 13939 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13940 13941 if (act->dtad_difo == NULL) 13942 goto err; 13943 } 13944 13945 ASSERT(first != NULL); 13946 return (first); 13947 13948 err: 13949 for (act = first; act != NULL; act = next) { 13950 next = act->dtad_next; 13951 dtrace_actdesc_release(act, vstate); 13952 } 13953 13954 return (NULL); 13955 } 13956 13957 static dtrace_ecbdesc_t * 13958 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13959 cred_t *cr) 13960 { 13961 dtrace_ecbdesc_t *ep; 13962 dof_ecbdesc_t *ecb; 13963 dtrace_probedesc_t *desc; 13964 dtrace_predicate_t *pred = NULL; 13965 13966 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13967 dtrace_dof_error(dof, "truncated ECB description"); 13968 return (NULL); 13969 } 13970 13971 if (sec->dofs_align != sizeof (uint64_t)) { 13972 dtrace_dof_error(dof, "bad alignment in ECB description"); 13973 return (NULL); 13974 } 13975 13976 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13977 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13978 13979 if (sec == NULL) 13980 return (NULL); 13981 13982 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13983 ep->dted_uarg = ecb->dofe_uarg; 13984 desc = &ep->dted_probe; 13985 13986 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13987 goto err; 13988 13989 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13990 if ((sec = dtrace_dof_sect(dof, 13991 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13992 goto err; 13993 13994 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13995 goto err; 13996 13997 ep->dted_pred.dtpdd_predicate = pred; 13998 } 13999 14000 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 14001 if ((sec = dtrace_dof_sect(dof, 14002 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 14003 goto err; 14004 14005 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 14006 14007 if (ep->dted_action == NULL) 14008 goto err; 14009 } 14010 14011 return (ep); 14012 14013 err: 14014 if (pred != NULL) 14015 dtrace_predicate_release(pred, vstate); 14016 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14017 return (NULL); 14018 } 14019 14020 /* 14021 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14022 * specified DOF. SETX relocations are computed using 'ubase', the base load 14023 * address of the object containing the DOF, and DOFREL relocations are relative 14024 * to the relocation offset within the DOF. 14025 */ 14026 static int 14027 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14028 uint64_t udaddr) 14029 { 14030 uintptr_t daddr = (uintptr_t)dof; 14031 uintptr_t ts_end; 14032 dof_relohdr_t *dofr = 14033 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14034 dof_sec_t *ss, *rs, *ts; 14035 dof_relodesc_t *r; 14036 uint_t i, n; 14037 14038 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14039 sec->dofs_align != sizeof (dof_secidx_t)) { 14040 dtrace_dof_error(dof, "invalid relocation header"); 14041 return (-1); 14042 } 14043 14044 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14045 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14046 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14047 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14048 14049 if (ss == NULL || rs == NULL || ts == NULL) 14050 return (-1); /* dtrace_dof_error() has been called already */ 14051 14052 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14053 rs->dofs_align != sizeof (uint64_t)) { 14054 dtrace_dof_error(dof, "invalid relocation section"); 14055 return (-1); 14056 } 14057 14058 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14059 n = rs->dofs_size / rs->dofs_entsize; 14060 14061 for (i = 0; i < n; i++) { 14062 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14063 14064 switch (r->dofr_type) { 14065 case DOF_RELO_NONE: 14066 break; 14067 case DOF_RELO_SETX: 14068 case DOF_RELO_DOFREL: 14069 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14070 sizeof (uint64_t) > ts->dofs_size) { 14071 dtrace_dof_error(dof, "bad relocation offset"); 14072 return (-1); 14073 } 14074 14075 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14076 dtrace_dof_error(dof, "bad relocation offset"); 14077 return (-1); 14078 } 14079 14080 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14081 dtrace_dof_error(dof, "misaligned setx relo"); 14082 return (-1); 14083 } 14084 14085 if (r->dofr_type == DOF_RELO_SETX) 14086 *(uint64_t *)taddr += ubase; 14087 else 14088 *(uint64_t *)taddr += 14089 udaddr + ts->dofs_offset + r->dofr_offset; 14090 break; 14091 default: 14092 dtrace_dof_error(dof, "invalid relocation type"); 14093 return (-1); 14094 } 14095 14096 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14097 } 14098 14099 return (0); 14100 } 14101 14102 /* 14103 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14104 * header: it should be at the front of a memory region that is at least 14105 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14106 * size. It need not be validated in any other way. 14107 */ 14108 static int 14109 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14110 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14111 { 14112 uint64_t len = dof->dofh_loadsz, seclen; 14113 uintptr_t daddr = (uintptr_t)dof; 14114 dtrace_ecbdesc_t *ep; 14115 dtrace_enabling_t *enab; 14116 uint_t i; 14117 14118 ASSERT(MUTEX_HELD(&dtrace_lock)); 14119 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14120 14121 /* 14122 * Check the DOF header identification bytes. In addition to checking 14123 * valid settings, we also verify that unused bits/bytes are zeroed so 14124 * we can use them later without fear of regressing existing binaries. 14125 */ 14126 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14127 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14128 dtrace_dof_error(dof, "DOF magic string mismatch"); 14129 return (-1); 14130 } 14131 14132 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14133 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14134 dtrace_dof_error(dof, "DOF has invalid data model"); 14135 return (-1); 14136 } 14137 14138 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14139 dtrace_dof_error(dof, "DOF encoding mismatch"); 14140 return (-1); 14141 } 14142 14143 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14144 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14145 dtrace_dof_error(dof, "DOF version mismatch"); 14146 return (-1); 14147 } 14148 14149 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14150 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14151 return (-1); 14152 } 14153 14154 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14155 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14156 return (-1); 14157 } 14158 14159 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14160 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14161 return (-1); 14162 } 14163 14164 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14165 if (dof->dofh_ident[i] != 0) { 14166 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14167 return (-1); 14168 } 14169 } 14170 14171 if (dof->dofh_flags & ~DOF_FL_VALID) { 14172 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14173 return (-1); 14174 } 14175 14176 if (dof->dofh_secsize == 0) { 14177 dtrace_dof_error(dof, "zero section header size"); 14178 return (-1); 14179 } 14180 14181 /* 14182 * Check that the section headers don't exceed the amount of DOF 14183 * data. Note that we cast the section size and number of sections 14184 * to uint64_t's to prevent possible overflow in the multiplication. 14185 */ 14186 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14187 14188 if (dof->dofh_secoff > len || seclen > len || 14189 dof->dofh_secoff + seclen > len) { 14190 dtrace_dof_error(dof, "truncated section headers"); 14191 return (-1); 14192 } 14193 14194 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14195 dtrace_dof_error(dof, "misaligned section headers"); 14196 return (-1); 14197 } 14198 14199 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14200 dtrace_dof_error(dof, "misaligned section size"); 14201 return (-1); 14202 } 14203 14204 /* 14205 * Take an initial pass through the section headers to be sure that 14206 * the headers don't have stray offsets. If the 'noprobes' flag is 14207 * set, do not permit sections relating to providers, probes, or args. 14208 */ 14209 for (i = 0; i < dof->dofh_secnum; i++) { 14210 dof_sec_t *sec = (dof_sec_t *)(daddr + 14211 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14212 14213 if (noprobes) { 14214 switch (sec->dofs_type) { 14215 case DOF_SECT_PROVIDER: 14216 case DOF_SECT_PROBES: 14217 case DOF_SECT_PRARGS: 14218 case DOF_SECT_PROFFS: 14219 dtrace_dof_error(dof, "illegal sections " 14220 "for enabling"); 14221 return (-1); 14222 } 14223 } 14224 14225 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14226 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14227 dtrace_dof_error(dof, "loadable section with load " 14228 "flag unset"); 14229 return (-1); 14230 } 14231 14232 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14233 continue; /* just ignore non-loadable sections */ 14234 14235 if (!ISP2(sec->dofs_align)) { 14236 dtrace_dof_error(dof, "bad section alignment"); 14237 return (-1); 14238 } 14239 14240 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14241 dtrace_dof_error(dof, "misaligned section"); 14242 return (-1); 14243 } 14244 14245 if (sec->dofs_offset > len || sec->dofs_size > len || 14246 sec->dofs_offset + sec->dofs_size > len) { 14247 dtrace_dof_error(dof, "corrupt section header"); 14248 return (-1); 14249 } 14250 14251 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14252 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14253 dtrace_dof_error(dof, "non-terminating string table"); 14254 return (-1); 14255 } 14256 } 14257 14258 /* 14259 * Take a second pass through the sections and locate and perform any 14260 * relocations that are present. We do this after the first pass to 14261 * be sure that all sections have had their headers validated. 14262 */ 14263 for (i = 0; i < dof->dofh_secnum; i++) { 14264 dof_sec_t *sec = (dof_sec_t *)(daddr + 14265 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14266 14267 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14268 continue; /* skip sections that are not loadable */ 14269 14270 switch (sec->dofs_type) { 14271 case DOF_SECT_URELHDR: 14272 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14273 return (-1); 14274 break; 14275 } 14276 } 14277 14278 if ((enab = *enabp) == NULL) 14279 enab = *enabp = dtrace_enabling_create(vstate); 14280 14281 for (i = 0; i < dof->dofh_secnum; i++) { 14282 dof_sec_t *sec = (dof_sec_t *)(daddr + 14283 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14284 14285 if (sec->dofs_type != DOF_SECT_ECBDESC) 14286 continue; 14287 14288 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14289 dtrace_enabling_destroy(enab); 14290 *enabp = NULL; 14291 return (-1); 14292 } 14293 14294 dtrace_enabling_add(enab, ep); 14295 } 14296 14297 return (0); 14298 } 14299 14300 /* 14301 * Process DOF for any options. This routine assumes that the DOF has been 14302 * at least processed by dtrace_dof_slurp(). 14303 */ 14304 static int 14305 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14306 { 14307 int i, rval; 14308 uint32_t entsize; 14309 size_t offs; 14310 dof_optdesc_t *desc; 14311 14312 for (i = 0; i < dof->dofh_secnum; i++) { 14313 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14314 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14315 14316 if (sec->dofs_type != DOF_SECT_OPTDESC) 14317 continue; 14318 14319 if (sec->dofs_align != sizeof (uint64_t)) { 14320 dtrace_dof_error(dof, "bad alignment in " 14321 "option description"); 14322 return (EINVAL); 14323 } 14324 14325 if ((entsize = sec->dofs_entsize) == 0) { 14326 dtrace_dof_error(dof, "zeroed option entry size"); 14327 return (EINVAL); 14328 } 14329 14330 if (entsize < sizeof (dof_optdesc_t)) { 14331 dtrace_dof_error(dof, "bad option entry size"); 14332 return (EINVAL); 14333 } 14334 14335 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14336 desc = (dof_optdesc_t *)((uintptr_t)dof + 14337 (uintptr_t)sec->dofs_offset + offs); 14338 14339 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14340 dtrace_dof_error(dof, "non-zero option string"); 14341 return (EINVAL); 14342 } 14343 14344 if (desc->dofo_value == DTRACEOPT_UNSET) { 14345 dtrace_dof_error(dof, "unset option"); 14346 return (EINVAL); 14347 } 14348 14349 if ((rval = dtrace_state_option(state, 14350 desc->dofo_option, desc->dofo_value)) != 0) { 14351 dtrace_dof_error(dof, "rejected option"); 14352 return (rval); 14353 } 14354 } 14355 } 14356 14357 return (0); 14358 } 14359 14360 /* 14361 * DTrace Consumer State Functions 14362 */ 14363 static int 14364 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14365 { 14366 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14367 void *base; 14368 uintptr_t limit; 14369 dtrace_dynvar_t *dvar, *next, *start; 14370 int i; 14371 14372 ASSERT(MUTEX_HELD(&dtrace_lock)); 14373 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14374 14375 bzero(dstate, sizeof (dtrace_dstate_t)); 14376 14377 if ((dstate->dtds_chunksize = chunksize) == 0) 14378 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14379 14380 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14381 14382 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14383 size = min; 14384 14385 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14386 return (ENOMEM); 14387 14388 dstate->dtds_size = size; 14389 dstate->dtds_base = base; 14390 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14391 bzero(dstate->dtds_percpu, 14392 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t)); 14393 14394 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14395 14396 if (hashsize != 1 && (hashsize & 1)) 14397 hashsize--; 14398 14399 dstate->dtds_hashsize = hashsize; 14400 dstate->dtds_hash = dstate->dtds_base; 14401 14402 /* 14403 * Set all of our hash buckets to point to the single sink, and (if 14404 * it hasn't already been set), set the sink's hash value to be the 14405 * sink sentinel value. The sink is needed for dynamic variable 14406 * lookups to know that they have iterated over an entire, valid hash 14407 * chain. 14408 */ 14409 for (i = 0; i < hashsize; i++) 14410 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14411 14412 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14413 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14414 14415 /* 14416 * Determine number of active CPUs. Divide free list evenly among 14417 * active CPUs. 14418 */ 14419 start = (dtrace_dynvar_t *) 14420 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14421 limit = (uintptr_t)base + size; 14422 14423 VERIFY((uintptr_t)start < limit); 14424 VERIFY((uintptr_t)start >= (uintptr_t)base); 14425 14426 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1); 14427 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14428 14429 CPU_FOREACH(i) { 14430 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14431 14432 /* 14433 * If we don't even have enough chunks to make it once through 14434 * NCPUs, we're just going to allocate everything to the first 14435 * CPU. And if we're on the last CPU, we're going to allocate 14436 * whatever is left over. In either case, we set the limit to 14437 * be the limit of the dynamic variable space. 14438 */ 14439 if (maxper == 0 || i == mp_maxid) { 14440 limit = (uintptr_t)base + size; 14441 start = NULL; 14442 } else { 14443 limit = (uintptr_t)start + maxper; 14444 start = (dtrace_dynvar_t *)limit; 14445 } 14446 14447 VERIFY(limit <= (uintptr_t)base + size); 14448 14449 for (;;) { 14450 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14451 dstate->dtds_chunksize); 14452 14453 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14454 break; 14455 14456 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14457 (uintptr_t)dvar <= (uintptr_t)base + size); 14458 dvar->dtdv_next = next; 14459 dvar = next; 14460 } 14461 14462 if (maxper == 0) 14463 break; 14464 } 14465 14466 return (0); 14467 } 14468 14469 static void 14470 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14471 { 14472 ASSERT(MUTEX_HELD(&cpu_lock)); 14473 14474 if (dstate->dtds_base == NULL) 14475 return; 14476 14477 kmem_free(dstate->dtds_base, dstate->dtds_size); 14478 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14479 } 14480 14481 static void 14482 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14483 { 14484 /* 14485 * Logical XOR, where are you? 14486 */ 14487 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14488 14489 if (vstate->dtvs_nglobals > 0) { 14490 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14491 sizeof (dtrace_statvar_t *)); 14492 } 14493 14494 if (vstate->dtvs_ntlocals > 0) { 14495 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14496 sizeof (dtrace_difv_t)); 14497 } 14498 14499 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14500 14501 if (vstate->dtvs_nlocals > 0) { 14502 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14503 sizeof (dtrace_statvar_t *)); 14504 } 14505 } 14506 14507 #ifdef illumos 14508 static void 14509 dtrace_state_clean(dtrace_state_t *state) 14510 { 14511 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14512 return; 14513 14514 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14515 dtrace_speculation_clean(state); 14516 } 14517 14518 static void 14519 dtrace_state_deadman(dtrace_state_t *state) 14520 { 14521 hrtime_t now; 14522 14523 dtrace_sync(); 14524 14525 now = dtrace_gethrtime(); 14526 14527 if (state != dtrace_anon.dta_state && 14528 now - state->dts_laststatus >= dtrace_deadman_user) 14529 return; 14530 14531 /* 14532 * We must be sure that dts_alive never appears to be less than the 14533 * value upon entry to dtrace_state_deadman(), and because we lack a 14534 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14535 * store INT64_MAX to it, followed by a memory barrier, followed by 14536 * the new value. This assures that dts_alive never appears to be 14537 * less than its true value, regardless of the order in which the 14538 * stores to the underlying storage are issued. 14539 */ 14540 state->dts_alive = INT64_MAX; 14541 dtrace_membar_producer(); 14542 state->dts_alive = now; 14543 } 14544 #else /* !illumos */ 14545 static void 14546 dtrace_state_clean(void *arg) 14547 { 14548 dtrace_state_t *state = arg; 14549 dtrace_optval_t *opt = state->dts_options; 14550 14551 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14552 return; 14553 14554 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14555 dtrace_speculation_clean(state); 14556 14557 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14558 dtrace_state_clean, state); 14559 } 14560 14561 static void 14562 dtrace_state_deadman(void *arg) 14563 { 14564 dtrace_state_t *state = arg; 14565 hrtime_t now; 14566 14567 dtrace_sync(); 14568 14569 dtrace_debug_output(); 14570 14571 now = dtrace_gethrtime(); 14572 14573 if (state != dtrace_anon.dta_state && 14574 now - state->dts_laststatus >= dtrace_deadman_user) 14575 return; 14576 14577 /* 14578 * We must be sure that dts_alive never appears to be less than the 14579 * value upon entry to dtrace_state_deadman(), and because we lack a 14580 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14581 * store INT64_MAX to it, followed by a memory barrier, followed by 14582 * the new value. This assures that dts_alive never appears to be 14583 * less than its true value, regardless of the order in which the 14584 * stores to the underlying storage are issued. 14585 */ 14586 state->dts_alive = INT64_MAX; 14587 dtrace_membar_producer(); 14588 state->dts_alive = now; 14589 14590 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14591 dtrace_state_deadman, state); 14592 } 14593 #endif /* illumos */ 14594 14595 static dtrace_state_t * 14596 #ifdef illumos 14597 dtrace_state_create(dev_t *devp, cred_t *cr) 14598 #else 14599 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14600 #endif 14601 { 14602 #ifdef illumos 14603 minor_t minor; 14604 major_t major; 14605 #else 14606 cred_t *cr = NULL; 14607 int m = 0; 14608 #endif 14609 char c[30]; 14610 dtrace_state_t *state; 14611 dtrace_optval_t *opt; 14612 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i; 14613 int cpu_it; 14614 14615 ASSERT(MUTEX_HELD(&dtrace_lock)); 14616 ASSERT(MUTEX_HELD(&cpu_lock)); 14617 14618 #ifdef illumos 14619 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14620 VM_BESTFIT | VM_SLEEP); 14621 14622 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14623 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14624 return (NULL); 14625 } 14626 14627 state = ddi_get_soft_state(dtrace_softstate, minor); 14628 #else 14629 if (dev != NULL) { 14630 cr = dev->si_cred; 14631 m = dev2unit(dev); 14632 } 14633 14634 /* Allocate memory for the state. */ 14635 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14636 #endif 14637 14638 state->dts_epid = DTRACE_EPIDNONE + 1; 14639 14640 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14641 #ifdef illumos 14642 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14643 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14644 14645 if (devp != NULL) { 14646 major = getemajor(*devp); 14647 } else { 14648 major = ddi_driver_major(dtrace_devi); 14649 } 14650 14651 state->dts_dev = makedevice(major, minor); 14652 14653 if (devp != NULL) 14654 *devp = state->dts_dev; 14655 #else 14656 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14657 state->dts_dev = dev; 14658 #endif 14659 14660 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14661 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14662 14663 /* 14664 * Allocate and initialise the per-process per-CPU random state. 14665 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14666 * assumed to be seeded at this point (if from Fortuna seed file). 14667 */ 14668 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14669 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) { 14670 /* 14671 * Each CPU is assigned a 2^64 period, non-overlapping 14672 * subsequence. 14673 */ 14674 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1], 14675 state->dts_rstate[cpu_it]); 14676 } 14677 14678 #ifdef illumos 14679 state->dts_cleaner = CYCLIC_NONE; 14680 state->dts_deadman = CYCLIC_NONE; 14681 #else 14682 callout_init(&state->dts_cleaner, 1); 14683 callout_init(&state->dts_deadman, 1); 14684 #endif 14685 state->dts_vstate.dtvs_state = state; 14686 14687 for (i = 0; i < DTRACEOPT_MAX; i++) 14688 state->dts_options[i] = DTRACEOPT_UNSET; 14689 14690 /* 14691 * Set the default options. 14692 */ 14693 opt = state->dts_options; 14694 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14695 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14696 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14697 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14698 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14699 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14700 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14701 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14702 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14703 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14704 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14705 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14706 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14707 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14708 14709 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14710 14711 /* 14712 * Depending on the user credentials, we set flag bits which alter probe 14713 * visibility or the amount of destructiveness allowed. In the case of 14714 * actual anonymous tracing, or the possession of all privileges, all of 14715 * the normal checks are bypassed. 14716 */ 14717 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14718 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14719 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14720 } else { 14721 /* 14722 * Set up the credentials for this instantiation. We take a 14723 * hold on the credential to prevent it from disappearing on 14724 * us; this in turn prevents the zone_t referenced by this 14725 * credential from disappearing. This means that we can 14726 * examine the credential and the zone from probe context. 14727 */ 14728 crhold(cr); 14729 state->dts_cred.dcr_cred = cr; 14730 14731 /* 14732 * CRA_PROC means "we have *some* privilege for dtrace" and 14733 * unlocks the use of variables like pid, zonename, etc. 14734 */ 14735 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14736 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14737 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14738 } 14739 14740 /* 14741 * dtrace_user allows use of syscall and profile providers. 14742 * If the user also has proc_owner and/or proc_zone, we 14743 * extend the scope to include additional visibility and 14744 * destructive power. 14745 */ 14746 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14747 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14748 state->dts_cred.dcr_visible |= 14749 DTRACE_CRV_ALLPROC; 14750 14751 state->dts_cred.dcr_action |= 14752 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14753 } 14754 14755 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14756 state->dts_cred.dcr_visible |= 14757 DTRACE_CRV_ALLZONE; 14758 14759 state->dts_cred.dcr_action |= 14760 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14761 } 14762 14763 /* 14764 * If we have all privs in whatever zone this is, 14765 * we can do destructive things to processes which 14766 * have altered credentials. 14767 */ 14768 #ifdef illumos 14769 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14770 cr->cr_zone->zone_privset)) { 14771 state->dts_cred.dcr_action |= 14772 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14773 } 14774 #endif 14775 } 14776 14777 /* 14778 * Holding the dtrace_kernel privilege also implies that 14779 * the user has the dtrace_user privilege from a visibility 14780 * perspective. But without further privileges, some 14781 * destructive actions are not available. 14782 */ 14783 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14784 /* 14785 * Make all probes in all zones visible. However, 14786 * this doesn't mean that all actions become available 14787 * to all zones. 14788 */ 14789 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14790 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14791 14792 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14793 DTRACE_CRA_PROC; 14794 /* 14795 * Holding proc_owner means that destructive actions 14796 * for *this* zone are allowed. 14797 */ 14798 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14799 state->dts_cred.dcr_action |= 14800 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14801 14802 /* 14803 * Holding proc_zone means that destructive actions 14804 * for this user/group ID in all zones is allowed. 14805 */ 14806 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14807 state->dts_cred.dcr_action |= 14808 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14809 14810 #ifdef illumos 14811 /* 14812 * If we have all privs in whatever zone this is, 14813 * we can do destructive things to processes which 14814 * have altered credentials. 14815 */ 14816 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14817 cr->cr_zone->zone_privset)) { 14818 state->dts_cred.dcr_action |= 14819 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14820 } 14821 #endif 14822 } 14823 14824 /* 14825 * Holding the dtrace_proc privilege gives control over fasttrap 14826 * and pid providers. We need to grant wider destructive 14827 * privileges in the event that the user has proc_owner and/or 14828 * proc_zone. 14829 */ 14830 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14831 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14832 state->dts_cred.dcr_action |= 14833 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14834 14835 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14836 state->dts_cred.dcr_action |= 14837 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14838 } 14839 } 14840 14841 return (state); 14842 } 14843 14844 static int 14845 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14846 { 14847 dtrace_optval_t *opt = state->dts_options, size; 14848 processorid_t cpu = 0; 14849 int flags = 0, rval, factor, divisor = 1; 14850 14851 ASSERT(MUTEX_HELD(&dtrace_lock)); 14852 ASSERT(MUTEX_HELD(&cpu_lock)); 14853 ASSERT(which < DTRACEOPT_MAX); 14854 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14855 (state == dtrace_anon.dta_state && 14856 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14857 14858 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14859 return (0); 14860 14861 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14862 cpu = opt[DTRACEOPT_CPU]; 14863 14864 if (which == DTRACEOPT_SPECSIZE) 14865 flags |= DTRACEBUF_NOSWITCH; 14866 14867 if (which == DTRACEOPT_BUFSIZE) { 14868 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14869 flags |= DTRACEBUF_RING; 14870 14871 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14872 flags |= DTRACEBUF_FILL; 14873 14874 if (state != dtrace_anon.dta_state || 14875 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14876 flags |= DTRACEBUF_INACTIVE; 14877 } 14878 14879 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14880 /* 14881 * The size must be 8-byte aligned. If the size is not 8-byte 14882 * aligned, drop it down by the difference. 14883 */ 14884 if (size & (sizeof (uint64_t) - 1)) 14885 size -= size & (sizeof (uint64_t) - 1); 14886 14887 if (size < state->dts_reserve) { 14888 /* 14889 * Buffers always must be large enough to accommodate 14890 * their prereserved space. We return E2BIG instead 14891 * of ENOMEM in this case to allow for user-level 14892 * software to differentiate the cases. 14893 */ 14894 return (E2BIG); 14895 } 14896 14897 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14898 14899 if (rval != ENOMEM) { 14900 opt[which] = size; 14901 return (rval); 14902 } 14903 14904 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14905 return (rval); 14906 14907 for (divisor = 2; divisor < factor; divisor <<= 1) 14908 continue; 14909 } 14910 14911 return (ENOMEM); 14912 } 14913 14914 static int 14915 dtrace_state_buffers(dtrace_state_t *state) 14916 { 14917 dtrace_speculation_t *spec = state->dts_speculations; 14918 int rval, i; 14919 14920 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14921 DTRACEOPT_BUFSIZE)) != 0) 14922 return (rval); 14923 14924 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14925 DTRACEOPT_AGGSIZE)) != 0) 14926 return (rval); 14927 14928 for (i = 0; i < state->dts_nspeculations; i++) { 14929 if ((rval = dtrace_state_buffer(state, 14930 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14931 return (rval); 14932 } 14933 14934 return (0); 14935 } 14936 14937 static void 14938 dtrace_state_prereserve(dtrace_state_t *state) 14939 { 14940 dtrace_ecb_t *ecb; 14941 dtrace_probe_t *probe; 14942 14943 state->dts_reserve = 0; 14944 14945 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14946 return; 14947 14948 /* 14949 * If our buffer policy is a "fill" buffer policy, we need to set the 14950 * prereserved space to be the space required by the END probes. 14951 */ 14952 probe = dtrace_probes[dtrace_probeid_end - 1]; 14953 ASSERT(probe != NULL); 14954 14955 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14956 if (ecb->dte_state != state) 14957 continue; 14958 14959 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14960 } 14961 } 14962 14963 static int 14964 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14965 { 14966 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14967 dtrace_speculation_t *spec; 14968 dtrace_buffer_t *buf; 14969 #ifdef illumos 14970 cyc_handler_t hdlr; 14971 cyc_time_t when; 14972 #endif 14973 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 14974 dtrace_icookie_t cookie; 14975 14976 mutex_enter(&cpu_lock); 14977 mutex_enter(&dtrace_lock); 14978 14979 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14980 rval = EBUSY; 14981 goto out; 14982 } 14983 14984 /* 14985 * Before we can perform any checks, we must prime all of the 14986 * retained enablings that correspond to this state. 14987 */ 14988 dtrace_enabling_prime(state); 14989 14990 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14991 rval = EACCES; 14992 goto out; 14993 } 14994 14995 dtrace_state_prereserve(state); 14996 14997 /* 14998 * Now we want to do is try to allocate our speculations. 14999 * We do not automatically resize the number of speculations; if 15000 * this fails, we will fail the operation. 15001 */ 15002 nspec = opt[DTRACEOPT_NSPEC]; 15003 ASSERT(nspec != DTRACEOPT_UNSET); 15004 15005 if (nspec > INT_MAX) { 15006 rval = ENOMEM; 15007 goto out; 15008 } 15009 15010 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15011 KM_NOSLEEP | KM_NORMALPRI); 15012 15013 if (spec == NULL) { 15014 rval = ENOMEM; 15015 goto out; 15016 } 15017 15018 state->dts_speculations = spec; 15019 state->dts_nspeculations = (int)nspec; 15020 15021 for (i = 0; i < nspec; i++) { 15022 if ((buf = kmem_zalloc(bufsize, 15023 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15024 rval = ENOMEM; 15025 goto err; 15026 } 15027 15028 spec[i].dtsp_buffer = buf; 15029 } 15030 15031 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15032 if (dtrace_anon.dta_state == NULL) { 15033 rval = ENOENT; 15034 goto out; 15035 } 15036 15037 if (state->dts_necbs != 0) { 15038 rval = EALREADY; 15039 goto out; 15040 } 15041 15042 state->dts_anon = dtrace_anon_grab(); 15043 ASSERT(state->dts_anon != NULL); 15044 state = state->dts_anon; 15045 15046 /* 15047 * We want "grabanon" to be set in the grabbed state, so we'll 15048 * copy that option value from the grabbing state into the 15049 * grabbed state. 15050 */ 15051 state->dts_options[DTRACEOPT_GRABANON] = 15052 opt[DTRACEOPT_GRABANON]; 15053 15054 *cpu = dtrace_anon.dta_beganon; 15055 15056 /* 15057 * If the anonymous state is active (as it almost certainly 15058 * is if the anonymous enabling ultimately matched anything), 15059 * we don't allow any further option processing -- but we 15060 * don't return failure. 15061 */ 15062 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15063 goto out; 15064 } 15065 15066 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15067 opt[DTRACEOPT_AGGSIZE] != 0) { 15068 if (state->dts_aggregations == NULL) { 15069 /* 15070 * We're not going to create an aggregation buffer 15071 * because we don't have any ECBs that contain 15072 * aggregations -- set this option to 0. 15073 */ 15074 opt[DTRACEOPT_AGGSIZE] = 0; 15075 } else { 15076 /* 15077 * If we have an aggregation buffer, we must also have 15078 * a buffer to use as scratch. 15079 */ 15080 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15081 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15082 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15083 } 15084 } 15085 } 15086 15087 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15088 opt[DTRACEOPT_SPECSIZE] != 0) { 15089 if (!state->dts_speculates) { 15090 /* 15091 * We're not going to create speculation buffers 15092 * because we don't have any ECBs that actually 15093 * speculate -- set the speculation size to 0. 15094 */ 15095 opt[DTRACEOPT_SPECSIZE] = 0; 15096 } 15097 } 15098 15099 /* 15100 * The bare minimum size for any buffer that we're actually going to 15101 * do anything to is sizeof (uint64_t). 15102 */ 15103 sz = sizeof (uint64_t); 15104 15105 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15106 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15107 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15108 /* 15109 * A buffer size has been explicitly set to 0 (or to a size 15110 * that will be adjusted to 0) and we need the space -- we 15111 * need to return failure. We return ENOSPC to differentiate 15112 * it from failing to allocate a buffer due to failure to meet 15113 * the reserve (for which we return E2BIG). 15114 */ 15115 rval = ENOSPC; 15116 goto out; 15117 } 15118 15119 if ((rval = dtrace_state_buffers(state)) != 0) 15120 goto err; 15121 15122 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15123 sz = dtrace_dstate_defsize; 15124 15125 do { 15126 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15127 15128 if (rval == 0) 15129 break; 15130 15131 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15132 goto err; 15133 } while (sz >>= 1); 15134 15135 opt[DTRACEOPT_DYNVARSIZE] = sz; 15136 15137 if (rval != 0) 15138 goto err; 15139 15140 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15141 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15142 15143 if (opt[DTRACEOPT_CLEANRATE] == 0) 15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15145 15146 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15147 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15148 15149 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15150 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15151 15152 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15153 #ifdef illumos 15154 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15155 hdlr.cyh_arg = state; 15156 hdlr.cyh_level = CY_LOW_LEVEL; 15157 15158 when.cyt_when = 0; 15159 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15160 15161 state->dts_cleaner = cyclic_add(&hdlr, &when); 15162 15163 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15164 hdlr.cyh_arg = state; 15165 hdlr.cyh_level = CY_LOW_LEVEL; 15166 15167 when.cyt_when = 0; 15168 when.cyt_interval = dtrace_deadman_interval; 15169 15170 state->dts_deadman = cyclic_add(&hdlr, &when); 15171 #else 15172 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15173 dtrace_state_clean, state); 15174 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15175 dtrace_state_deadman, state); 15176 #endif 15177 15178 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15179 15180 #ifdef illumos 15181 if (state->dts_getf != 0 && 15182 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15183 /* 15184 * We don't have kernel privs but we have at least one call 15185 * to getf(); we need to bump our zone's count, and (if 15186 * this is the first enabling to have an unprivileged call 15187 * to getf()) we need to hook into closef(). 15188 */ 15189 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15190 15191 if (dtrace_getf++ == 0) { 15192 ASSERT(dtrace_closef == NULL); 15193 dtrace_closef = dtrace_getf_barrier; 15194 } 15195 } 15196 #endif 15197 15198 /* 15199 * Now it's time to actually fire the BEGIN probe. We need to disable 15200 * interrupts here both to record the CPU on which we fired the BEGIN 15201 * probe (the data from this CPU will be processed first at user 15202 * level) and to manually activate the buffer for this CPU. 15203 */ 15204 cookie = dtrace_interrupt_disable(); 15205 *cpu = curcpu; 15206 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15207 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15208 15209 dtrace_probe(dtrace_probeid_begin, 15210 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15211 dtrace_interrupt_enable(cookie); 15212 /* 15213 * We may have had an exit action from a BEGIN probe; only change our 15214 * state to ACTIVE if we're still in WARMUP. 15215 */ 15216 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15217 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15218 15219 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15220 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15221 15222 #ifdef __FreeBSD__ 15223 /* 15224 * We enable anonymous tracing before APs are started, so we must 15225 * activate buffers using the current CPU. 15226 */ 15227 if (state == dtrace_anon.dta_state) { 15228 CPU_FOREACH(i) 15229 dtrace_buffer_activate_cpu(state, i); 15230 } else 15231 dtrace_xcall(DTRACE_CPUALL, 15232 (dtrace_xcall_t)dtrace_buffer_activate, state); 15233 #else 15234 /* 15235 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15236 * want each CPU to transition its principal buffer out of the 15237 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15238 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15239 * atomically transition from processing none of a state's ECBs to 15240 * processing all of them. 15241 */ 15242 dtrace_xcall(DTRACE_CPUALL, 15243 (dtrace_xcall_t)dtrace_buffer_activate, state); 15244 #endif 15245 goto out; 15246 15247 err: 15248 dtrace_buffer_free(state->dts_buffer); 15249 dtrace_buffer_free(state->dts_aggbuffer); 15250 15251 if ((nspec = state->dts_nspeculations) == 0) { 15252 ASSERT(state->dts_speculations == NULL); 15253 goto out; 15254 } 15255 15256 spec = state->dts_speculations; 15257 ASSERT(spec != NULL); 15258 15259 for (i = 0; i < state->dts_nspeculations; i++) { 15260 if ((buf = spec[i].dtsp_buffer) == NULL) 15261 break; 15262 15263 dtrace_buffer_free(buf); 15264 kmem_free(buf, bufsize); 15265 } 15266 15267 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15268 state->dts_nspeculations = 0; 15269 state->dts_speculations = NULL; 15270 15271 out: 15272 mutex_exit(&dtrace_lock); 15273 mutex_exit(&cpu_lock); 15274 15275 return (rval); 15276 } 15277 15278 static int 15279 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15280 { 15281 dtrace_icookie_t cookie; 15282 15283 ASSERT(MUTEX_HELD(&dtrace_lock)); 15284 15285 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15286 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15287 return (EINVAL); 15288 15289 /* 15290 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15291 * to be sure that every CPU has seen it. See below for the details 15292 * on why this is done. 15293 */ 15294 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15295 dtrace_sync(); 15296 15297 /* 15298 * By this point, it is impossible for any CPU to be still processing 15299 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15300 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15301 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15302 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15303 * iff we're in the END probe. 15304 */ 15305 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15306 dtrace_sync(); 15307 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15308 15309 /* 15310 * Finally, we can release the reserve and call the END probe. We 15311 * disable interrupts across calling the END probe to allow us to 15312 * return the CPU on which we actually called the END probe. This 15313 * allows user-land to be sure that this CPU's principal buffer is 15314 * processed last. 15315 */ 15316 state->dts_reserve = 0; 15317 15318 cookie = dtrace_interrupt_disable(); 15319 *cpu = curcpu; 15320 dtrace_probe(dtrace_probeid_end, 15321 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15322 dtrace_interrupt_enable(cookie); 15323 15324 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15325 dtrace_sync(); 15326 15327 #ifdef illumos 15328 if (state->dts_getf != 0 && 15329 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15330 /* 15331 * We don't have kernel privs but we have at least one call 15332 * to getf(); we need to lower our zone's count, and (if 15333 * this is the last enabling to have an unprivileged call 15334 * to getf()) we need to clear the closef() hook. 15335 */ 15336 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15337 ASSERT(dtrace_closef == dtrace_getf_barrier); 15338 ASSERT(dtrace_getf > 0); 15339 15340 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15341 15342 if (--dtrace_getf == 0) 15343 dtrace_closef = NULL; 15344 } 15345 #endif 15346 15347 return (0); 15348 } 15349 15350 static int 15351 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15352 dtrace_optval_t val) 15353 { 15354 ASSERT(MUTEX_HELD(&dtrace_lock)); 15355 15356 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15357 return (EBUSY); 15358 15359 if (option >= DTRACEOPT_MAX) 15360 return (EINVAL); 15361 15362 if (option != DTRACEOPT_CPU && val < 0) 15363 return (EINVAL); 15364 15365 switch (option) { 15366 case DTRACEOPT_DESTRUCTIVE: 15367 if (dtrace_destructive_disallow) 15368 return (EACCES); 15369 15370 state->dts_cred.dcr_destructive = 1; 15371 break; 15372 15373 case DTRACEOPT_BUFSIZE: 15374 case DTRACEOPT_DYNVARSIZE: 15375 case DTRACEOPT_AGGSIZE: 15376 case DTRACEOPT_SPECSIZE: 15377 case DTRACEOPT_STRSIZE: 15378 if (val < 0) 15379 return (EINVAL); 15380 15381 if (val >= LONG_MAX) { 15382 /* 15383 * If this is an otherwise negative value, set it to 15384 * the highest multiple of 128m less than LONG_MAX. 15385 * Technically, we're adjusting the size without 15386 * regard to the buffer resizing policy, but in fact, 15387 * this has no effect -- if we set the buffer size to 15388 * ~LONG_MAX and the buffer policy is ultimately set to 15389 * be "manual", the buffer allocation is guaranteed to 15390 * fail, if only because the allocation requires two 15391 * buffers. (We set the the size to the highest 15392 * multiple of 128m because it ensures that the size 15393 * will remain a multiple of a megabyte when 15394 * repeatedly halved -- all the way down to 15m.) 15395 */ 15396 val = LONG_MAX - (1 << 27) + 1; 15397 } 15398 } 15399 15400 state->dts_options[option] = val; 15401 15402 return (0); 15403 } 15404 15405 static void 15406 dtrace_state_destroy(dtrace_state_t *state) 15407 { 15408 dtrace_ecb_t *ecb; 15409 dtrace_vstate_t *vstate = &state->dts_vstate; 15410 #ifdef illumos 15411 minor_t minor = getminor(state->dts_dev); 15412 #endif 15413 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15414 dtrace_speculation_t *spec = state->dts_speculations; 15415 int nspec = state->dts_nspeculations; 15416 uint32_t match; 15417 15418 ASSERT(MUTEX_HELD(&dtrace_lock)); 15419 ASSERT(MUTEX_HELD(&cpu_lock)); 15420 15421 /* 15422 * First, retract any retained enablings for this state. 15423 */ 15424 dtrace_enabling_retract(state); 15425 ASSERT(state->dts_nretained == 0); 15426 15427 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15428 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15429 /* 15430 * We have managed to come into dtrace_state_destroy() on a 15431 * hot enabling -- almost certainly because of a disorderly 15432 * shutdown of a consumer. (That is, a consumer that is 15433 * exiting without having called dtrace_stop().) In this case, 15434 * we're going to set our activity to be KILLED, and then 15435 * issue a sync to be sure that everyone is out of probe 15436 * context before we start blowing away ECBs. 15437 */ 15438 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15439 dtrace_sync(); 15440 } 15441 15442 /* 15443 * Release the credential hold we took in dtrace_state_create(). 15444 */ 15445 if (state->dts_cred.dcr_cred != NULL) 15446 crfree(state->dts_cred.dcr_cred); 15447 15448 /* 15449 * Now we can safely disable and destroy any enabled probes. Because 15450 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15451 * (especially if they're all enabled), we take two passes through the 15452 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15453 * in the second we disable whatever is left over. 15454 */ 15455 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15456 for (i = 0; i < state->dts_necbs; i++) { 15457 if ((ecb = state->dts_ecbs[i]) == NULL) 15458 continue; 15459 15460 if (match && ecb->dte_probe != NULL) { 15461 dtrace_probe_t *probe = ecb->dte_probe; 15462 dtrace_provider_t *prov = probe->dtpr_provider; 15463 15464 if (!(prov->dtpv_priv.dtpp_flags & match)) 15465 continue; 15466 } 15467 15468 dtrace_ecb_disable(ecb); 15469 dtrace_ecb_destroy(ecb); 15470 } 15471 15472 if (!match) 15473 break; 15474 } 15475 15476 /* 15477 * Before we free the buffers, perform one more sync to assure that 15478 * every CPU is out of probe context. 15479 */ 15480 dtrace_sync(); 15481 15482 dtrace_buffer_free(state->dts_buffer); 15483 dtrace_buffer_free(state->dts_aggbuffer); 15484 15485 for (i = 0; i < nspec; i++) 15486 dtrace_buffer_free(spec[i].dtsp_buffer); 15487 15488 #ifdef illumos 15489 if (state->dts_cleaner != CYCLIC_NONE) 15490 cyclic_remove(state->dts_cleaner); 15491 15492 if (state->dts_deadman != CYCLIC_NONE) 15493 cyclic_remove(state->dts_deadman); 15494 #else 15495 callout_stop(&state->dts_cleaner); 15496 callout_drain(&state->dts_cleaner); 15497 callout_stop(&state->dts_deadman); 15498 callout_drain(&state->dts_deadman); 15499 #endif 15500 15501 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15502 dtrace_vstate_fini(vstate); 15503 if (state->dts_ecbs != NULL) 15504 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15505 15506 if (state->dts_aggregations != NULL) { 15507 #ifdef DEBUG 15508 for (i = 0; i < state->dts_naggregations; i++) 15509 ASSERT(state->dts_aggregations[i] == NULL); 15510 #endif 15511 ASSERT(state->dts_naggregations > 0); 15512 kmem_free(state->dts_aggregations, 15513 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15514 } 15515 15516 kmem_free(state->dts_buffer, bufsize); 15517 kmem_free(state->dts_aggbuffer, bufsize); 15518 15519 for (i = 0; i < nspec; i++) 15520 kmem_free(spec[i].dtsp_buffer, bufsize); 15521 15522 if (spec != NULL) 15523 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15524 15525 dtrace_format_destroy(state); 15526 15527 if (state->dts_aggid_arena != NULL) { 15528 #ifdef illumos 15529 vmem_destroy(state->dts_aggid_arena); 15530 #else 15531 delete_unrhdr(state->dts_aggid_arena); 15532 #endif 15533 state->dts_aggid_arena = NULL; 15534 } 15535 #ifdef illumos 15536 ddi_soft_state_free(dtrace_softstate, minor); 15537 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15538 #endif 15539 } 15540 15541 /* 15542 * DTrace Anonymous Enabling Functions 15543 */ 15544 static dtrace_state_t * 15545 dtrace_anon_grab(void) 15546 { 15547 dtrace_state_t *state; 15548 15549 ASSERT(MUTEX_HELD(&dtrace_lock)); 15550 15551 if ((state = dtrace_anon.dta_state) == NULL) { 15552 ASSERT(dtrace_anon.dta_enabling == NULL); 15553 return (NULL); 15554 } 15555 15556 ASSERT(dtrace_anon.dta_enabling != NULL); 15557 ASSERT(dtrace_retained != NULL); 15558 15559 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15560 dtrace_anon.dta_enabling = NULL; 15561 dtrace_anon.dta_state = NULL; 15562 15563 return (state); 15564 } 15565 15566 static void 15567 dtrace_anon_property(void) 15568 { 15569 int i, rv; 15570 dtrace_state_t *state; 15571 dof_hdr_t *dof; 15572 char c[32]; /* enough for "dof-data-" + digits */ 15573 15574 ASSERT(MUTEX_HELD(&dtrace_lock)); 15575 ASSERT(MUTEX_HELD(&cpu_lock)); 15576 15577 for (i = 0; ; i++) { 15578 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15579 15580 dtrace_err_verbose = 1; 15581 15582 if ((dof = dtrace_dof_property(c)) == NULL) { 15583 dtrace_err_verbose = 0; 15584 break; 15585 } 15586 15587 #ifdef illumos 15588 /* 15589 * We want to create anonymous state, so we need to transition 15590 * the kernel debugger to indicate that DTrace is active. If 15591 * this fails (e.g. because the debugger has modified text in 15592 * some way), we won't continue with the processing. 15593 */ 15594 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15595 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15596 "enabling ignored."); 15597 dtrace_dof_destroy(dof); 15598 break; 15599 } 15600 #endif 15601 15602 /* 15603 * If we haven't allocated an anonymous state, we'll do so now. 15604 */ 15605 if ((state = dtrace_anon.dta_state) == NULL) { 15606 state = dtrace_state_create(NULL, NULL); 15607 dtrace_anon.dta_state = state; 15608 15609 if (state == NULL) { 15610 /* 15611 * This basically shouldn't happen: the only 15612 * failure mode from dtrace_state_create() is a 15613 * failure of ddi_soft_state_zalloc() that 15614 * itself should never happen. Still, the 15615 * interface allows for a failure mode, and 15616 * we want to fail as gracefully as possible: 15617 * we'll emit an error message and cease 15618 * processing anonymous state in this case. 15619 */ 15620 cmn_err(CE_WARN, "failed to create " 15621 "anonymous state"); 15622 dtrace_dof_destroy(dof); 15623 break; 15624 } 15625 } 15626 15627 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15628 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15629 15630 if (rv == 0) 15631 rv = dtrace_dof_options(dof, state); 15632 15633 dtrace_err_verbose = 0; 15634 dtrace_dof_destroy(dof); 15635 15636 if (rv != 0) { 15637 /* 15638 * This is malformed DOF; chuck any anonymous state 15639 * that we created. 15640 */ 15641 ASSERT(dtrace_anon.dta_enabling == NULL); 15642 dtrace_state_destroy(state); 15643 dtrace_anon.dta_state = NULL; 15644 break; 15645 } 15646 15647 ASSERT(dtrace_anon.dta_enabling != NULL); 15648 } 15649 15650 if (dtrace_anon.dta_enabling != NULL) { 15651 int rval; 15652 15653 /* 15654 * dtrace_enabling_retain() can only fail because we are 15655 * trying to retain more enablings than are allowed -- but 15656 * we only have one anonymous enabling, and we are guaranteed 15657 * to be allowed at least one retained enabling; we assert 15658 * that dtrace_enabling_retain() returns success. 15659 */ 15660 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15661 ASSERT(rval == 0); 15662 15663 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15664 } 15665 } 15666 15667 /* 15668 * DTrace Helper Functions 15669 */ 15670 static void 15671 dtrace_helper_trace(dtrace_helper_action_t *helper, 15672 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15673 { 15674 uint32_t size, next, nnext, i; 15675 dtrace_helptrace_t *ent, *buffer; 15676 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15677 15678 if ((buffer = dtrace_helptrace_buffer) == NULL) 15679 return; 15680 15681 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15682 15683 /* 15684 * What would a tracing framework be without its own tracing 15685 * framework? (Well, a hell of a lot simpler, for starters...) 15686 */ 15687 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15688 sizeof (uint64_t) - sizeof (uint64_t); 15689 15690 /* 15691 * Iterate until we can allocate a slot in the trace buffer. 15692 */ 15693 do { 15694 next = dtrace_helptrace_next; 15695 15696 if (next + size < dtrace_helptrace_bufsize) { 15697 nnext = next + size; 15698 } else { 15699 nnext = size; 15700 } 15701 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15702 15703 /* 15704 * We have our slot; fill it in. 15705 */ 15706 if (nnext == size) { 15707 dtrace_helptrace_wrapped++; 15708 next = 0; 15709 } 15710 15711 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15712 ent->dtht_helper = helper; 15713 ent->dtht_where = where; 15714 ent->dtht_nlocals = vstate->dtvs_nlocals; 15715 15716 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15717 mstate->dtms_fltoffs : -1; 15718 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15719 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15720 15721 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15722 dtrace_statvar_t *svar; 15723 15724 if ((svar = vstate->dtvs_locals[i]) == NULL) 15725 continue; 15726 15727 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t)); 15728 ent->dtht_locals[i] = 15729 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15730 } 15731 } 15732 15733 static uint64_t 15734 dtrace_helper(int which, dtrace_mstate_t *mstate, 15735 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15736 { 15737 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15738 uint64_t sarg0 = mstate->dtms_arg[0]; 15739 uint64_t sarg1 = mstate->dtms_arg[1]; 15740 uint64_t rval = 0; 15741 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15742 dtrace_helper_action_t *helper; 15743 dtrace_vstate_t *vstate; 15744 dtrace_difo_t *pred; 15745 int i, trace = dtrace_helptrace_buffer != NULL; 15746 15747 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15748 15749 if (helpers == NULL) 15750 return (0); 15751 15752 if ((helper = helpers->dthps_actions[which]) == NULL) 15753 return (0); 15754 15755 vstate = &helpers->dthps_vstate; 15756 mstate->dtms_arg[0] = arg0; 15757 mstate->dtms_arg[1] = arg1; 15758 15759 /* 15760 * Now iterate over each helper. If its predicate evaluates to 'true', 15761 * we'll call the corresponding actions. Note that the below calls 15762 * to dtrace_dif_emulate() may set faults in machine state. This is 15763 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15764 * the stored DIF offset with its own (which is the desired behavior). 15765 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15766 * from machine state; this is okay, too. 15767 */ 15768 for (; helper != NULL; helper = helper->dtha_next) { 15769 if ((pred = helper->dtha_predicate) != NULL) { 15770 if (trace) 15771 dtrace_helper_trace(helper, mstate, vstate, 0); 15772 15773 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15774 goto next; 15775 15776 if (*flags & CPU_DTRACE_FAULT) 15777 goto err; 15778 } 15779 15780 for (i = 0; i < helper->dtha_nactions; i++) { 15781 if (trace) 15782 dtrace_helper_trace(helper, 15783 mstate, vstate, i + 1); 15784 15785 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15786 mstate, vstate, state); 15787 15788 if (*flags & CPU_DTRACE_FAULT) 15789 goto err; 15790 } 15791 15792 next: 15793 if (trace) 15794 dtrace_helper_trace(helper, mstate, vstate, 15795 DTRACE_HELPTRACE_NEXT); 15796 } 15797 15798 if (trace) 15799 dtrace_helper_trace(helper, mstate, vstate, 15800 DTRACE_HELPTRACE_DONE); 15801 15802 /* 15803 * Restore the arg0 that we saved upon entry. 15804 */ 15805 mstate->dtms_arg[0] = sarg0; 15806 mstate->dtms_arg[1] = sarg1; 15807 15808 return (rval); 15809 15810 err: 15811 if (trace) 15812 dtrace_helper_trace(helper, mstate, vstate, 15813 DTRACE_HELPTRACE_ERR); 15814 15815 /* 15816 * Restore the arg0 that we saved upon entry. 15817 */ 15818 mstate->dtms_arg[0] = sarg0; 15819 mstate->dtms_arg[1] = sarg1; 15820 15821 return (0); 15822 } 15823 15824 static void 15825 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15826 dtrace_vstate_t *vstate) 15827 { 15828 int i; 15829 15830 if (helper->dtha_predicate != NULL) 15831 dtrace_difo_release(helper->dtha_predicate, vstate); 15832 15833 for (i = 0; i < helper->dtha_nactions; i++) { 15834 ASSERT(helper->dtha_actions[i] != NULL); 15835 dtrace_difo_release(helper->dtha_actions[i], vstate); 15836 } 15837 15838 kmem_free(helper->dtha_actions, 15839 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15840 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15841 } 15842 15843 static int 15844 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15845 { 15846 proc_t *p = curproc; 15847 dtrace_vstate_t *vstate; 15848 int i; 15849 15850 if (help == NULL) 15851 help = p->p_dtrace_helpers; 15852 15853 ASSERT(MUTEX_HELD(&dtrace_lock)); 15854 15855 if (help == NULL || gen > help->dthps_generation) 15856 return (EINVAL); 15857 15858 vstate = &help->dthps_vstate; 15859 15860 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15861 dtrace_helper_action_t *last = NULL, *h, *next; 15862 15863 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15864 next = h->dtha_next; 15865 15866 if (h->dtha_generation == gen) { 15867 if (last != NULL) { 15868 last->dtha_next = next; 15869 } else { 15870 help->dthps_actions[i] = next; 15871 } 15872 15873 dtrace_helper_action_destroy(h, vstate); 15874 } else { 15875 last = h; 15876 } 15877 } 15878 } 15879 15880 /* 15881 * Interate until we've cleared out all helper providers with the 15882 * given generation number. 15883 */ 15884 for (;;) { 15885 dtrace_helper_provider_t *prov; 15886 15887 /* 15888 * Look for a helper provider with the right generation. We 15889 * have to start back at the beginning of the list each time 15890 * because we drop dtrace_lock. It's unlikely that we'll make 15891 * more than two passes. 15892 */ 15893 for (i = 0; i < help->dthps_nprovs; i++) { 15894 prov = help->dthps_provs[i]; 15895 15896 if (prov->dthp_generation == gen) 15897 break; 15898 } 15899 15900 /* 15901 * If there were no matches, we're done. 15902 */ 15903 if (i == help->dthps_nprovs) 15904 break; 15905 15906 /* 15907 * Move the last helper provider into this slot. 15908 */ 15909 help->dthps_nprovs--; 15910 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15911 help->dthps_provs[help->dthps_nprovs] = NULL; 15912 15913 mutex_exit(&dtrace_lock); 15914 15915 /* 15916 * If we have a meta provider, remove this helper provider. 15917 */ 15918 mutex_enter(&dtrace_meta_lock); 15919 if (dtrace_meta_pid != NULL) { 15920 ASSERT(dtrace_deferred_pid == NULL); 15921 dtrace_helper_provider_remove(&prov->dthp_prov, 15922 p->p_pid); 15923 } 15924 mutex_exit(&dtrace_meta_lock); 15925 15926 dtrace_helper_provider_destroy(prov); 15927 15928 mutex_enter(&dtrace_lock); 15929 } 15930 15931 return (0); 15932 } 15933 15934 static int 15935 dtrace_helper_validate(dtrace_helper_action_t *helper) 15936 { 15937 int err = 0, i; 15938 dtrace_difo_t *dp; 15939 15940 if ((dp = helper->dtha_predicate) != NULL) 15941 err += dtrace_difo_validate_helper(dp); 15942 15943 for (i = 0; i < helper->dtha_nactions; i++) 15944 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15945 15946 return (err == 0); 15947 } 15948 15949 static int 15950 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15951 dtrace_helpers_t *help) 15952 { 15953 dtrace_helper_action_t *helper, *last; 15954 dtrace_actdesc_t *act; 15955 dtrace_vstate_t *vstate; 15956 dtrace_predicate_t *pred; 15957 int count = 0, nactions = 0, i; 15958 15959 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15960 return (EINVAL); 15961 15962 last = help->dthps_actions[which]; 15963 vstate = &help->dthps_vstate; 15964 15965 for (count = 0; last != NULL; last = last->dtha_next) { 15966 count++; 15967 if (last->dtha_next == NULL) 15968 break; 15969 } 15970 15971 /* 15972 * If we already have dtrace_helper_actions_max helper actions for this 15973 * helper action type, we'll refuse to add a new one. 15974 */ 15975 if (count >= dtrace_helper_actions_max) 15976 return (ENOSPC); 15977 15978 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15979 helper->dtha_generation = help->dthps_generation; 15980 15981 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15982 ASSERT(pred->dtp_difo != NULL); 15983 dtrace_difo_hold(pred->dtp_difo); 15984 helper->dtha_predicate = pred->dtp_difo; 15985 } 15986 15987 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15988 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15989 goto err; 15990 15991 if (act->dtad_difo == NULL) 15992 goto err; 15993 15994 nactions++; 15995 } 15996 15997 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15998 (helper->dtha_nactions = nactions), KM_SLEEP); 15999 16000 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 16001 dtrace_difo_hold(act->dtad_difo); 16002 helper->dtha_actions[i++] = act->dtad_difo; 16003 } 16004 16005 if (!dtrace_helper_validate(helper)) 16006 goto err; 16007 16008 if (last == NULL) { 16009 help->dthps_actions[which] = helper; 16010 } else { 16011 last->dtha_next = helper; 16012 } 16013 16014 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16015 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16016 dtrace_helptrace_next = 0; 16017 } 16018 16019 return (0); 16020 err: 16021 dtrace_helper_action_destroy(helper, vstate); 16022 return (EINVAL); 16023 } 16024 16025 static void 16026 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16027 dof_helper_t *dofhp) 16028 { 16029 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16030 16031 mutex_enter(&dtrace_meta_lock); 16032 mutex_enter(&dtrace_lock); 16033 16034 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16035 /* 16036 * If the dtrace module is loaded but not attached, or if 16037 * there aren't isn't a meta provider registered to deal with 16038 * these provider descriptions, we need to postpone creating 16039 * the actual providers until later. 16040 */ 16041 16042 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16043 dtrace_deferred_pid != help) { 16044 help->dthps_deferred = 1; 16045 help->dthps_pid = p->p_pid; 16046 help->dthps_next = dtrace_deferred_pid; 16047 help->dthps_prev = NULL; 16048 if (dtrace_deferred_pid != NULL) 16049 dtrace_deferred_pid->dthps_prev = help; 16050 dtrace_deferred_pid = help; 16051 } 16052 16053 mutex_exit(&dtrace_lock); 16054 16055 } else if (dofhp != NULL) { 16056 /* 16057 * If the dtrace module is loaded and we have a particular 16058 * helper provider description, pass that off to the 16059 * meta provider. 16060 */ 16061 16062 mutex_exit(&dtrace_lock); 16063 16064 dtrace_helper_provide(dofhp, p->p_pid); 16065 16066 } else { 16067 /* 16068 * Otherwise, just pass all the helper provider descriptions 16069 * off to the meta provider. 16070 */ 16071 16072 int i; 16073 mutex_exit(&dtrace_lock); 16074 16075 for (i = 0; i < help->dthps_nprovs; i++) { 16076 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16077 p->p_pid); 16078 } 16079 } 16080 16081 mutex_exit(&dtrace_meta_lock); 16082 } 16083 16084 static int 16085 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16086 { 16087 dtrace_helper_provider_t *hprov, **tmp_provs; 16088 uint_t tmp_maxprovs, i; 16089 16090 ASSERT(MUTEX_HELD(&dtrace_lock)); 16091 ASSERT(help != NULL); 16092 16093 /* 16094 * If we already have dtrace_helper_providers_max helper providers, 16095 * we're refuse to add a new one. 16096 */ 16097 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16098 return (ENOSPC); 16099 16100 /* 16101 * Check to make sure this isn't a duplicate. 16102 */ 16103 for (i = 0; i < help->dthps_nprovs; i++) { 16104 if (dofhp->dofhp_addr == 16105 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16106 return (EALREADY); 16107 } 16108 16109 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16110 hprov->dthp_prov = *dofhp; 16111 hprov->dthp_ref = 1; 16112 hprov->dthp_generation = gen; 16113 16114 /* 16115 * Allocate a bigger table for helper providers if it's already full. 16116 */ 16117 if (help->dthps_maxprovs == help->dthps_nprovs) { 16118 tmp_maxprovs = help->dthps_maxprovs; 16119 tmp_provs = help->dthps_provs; 16120 16121 if (help->dthps_maxprovs == 0) 16122 help->dthps_maxprovs = 2; 16123 else 16124 help->dthps_maxprovs *= 2; 16125 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16126 help->dthps_maxprovs = dtrace_helper_providers_max; 16127 16128 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16129 16130 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16131 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16132 16133 if (tmp_provs != NULL) { 16134 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16135 sizeof (dtrace_helper_provider_t *)); 16136 kmem_free(tmp_provs, tmp_maxprovs * 16137 sizeof (dtrace_helper_provider_t *)); 16138 } 16139 } 16140 16141 help->dthps_provs[help->dthps_nprovs] = hprov; 16142 help->dthps_nprovs++; 16143 16144 return (0); 16145 } 16146 16147 static void 16148 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16149 { 16150 mutex_enter(&dtrace_lock); 16151 16152 if (--hprov->dthp_ref == 0) { 16153 dof_hdr_t *dof; 16154 mutex_exit(&dtrace_lock); 16155 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16156 dtrace_dof_destroy(dof); 16157 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16158 } else { 16159 mutex_exit(&dtrace_lock); 16160 } 16161 } 16162 16163 static int 16164 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16165 { 16166 uintptr_t daddr = (uintptr_t)dof; 16167 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16168 dof_provider_t *provider; 16169 dof_probe_t *probe; 16170 uint8_t *arg; 16171 char *strtab, *typestr; 16172 dof_stridx_t typeidx; 16173 size_t typesz; 16174 uint_t nprobes, j, k; 16175 16176 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16177 16178 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16179 dtrace_dof_error(dof, "misaligned section offset"); 16180 return (-1); 16181 } 16182 16183 /* 16184 * The section needs to be large enough to contain the DOF provider 16185 * structure appropriate for the given version. 16186 */ 16187 if (sec->dofs_size < 16188 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16189 offsetof(dof_provider_t, dofpv_prenoffs) : 16190 sizeof (dof_provider_t))) { 16191 dtrace_dof_error(dof, "provider section too small"); 16192 return (-1); 16193 } 16194 16195 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16196 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16197 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16198 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16199 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16200 16201 if (str_sec == NULL || prb_sec == NULL || 16202 arg_sec == NULL || off_sec == NULL) 16203 return (-1); 16204 16205 enoff_sec = NULL; 16206 16207 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16208 provider->dofpv_prenoffs != DOF_SECT_NONE && 16209 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16210 provider->dofpv_prenoffs)) == NULL) 16211 return (-1); 16212 16213 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16214 16215 if (provider->dofpv_name >= str_sec->dofs_size || 16216 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16217 dtrace_dof_error(dof, "invalid provider name"); 16218 return (-1); 16219 } 16220 16221 if (prb_sec->dofs_entsize == 0 || 16222 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16223 dtrace_dof_error(dof, "invalid entry size"); 16224 return (-1); 16225 } 16226 16227 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16228 dtrace_dof_error(dof, "misaligned entry size"); 16229 return (-1); 16230 } 16231 16232 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16233 dtrace_dof_error(dof, "invalid entry size"); 16234 return (-1); 16235 } 16236 16237 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16238 dtrace_dof_error(dof, "misaligned section offset"); 16239 return (-1); 16240 } 16241 16242 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16243 dtrace_dof_error(dof, "invalid entry size"); 16244 return (-1); 16245 } 16246 16247 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16248 16249 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16250 16251 /* 16252 * Take a pass through the probes to check for errors. 16253 */ 16254 for (j = 0; j < nprobes; j++) { 16255 probe = (dof_probe_t *)(uintptr_t)(daddr + 16256 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16257 16258 if (probe->dofpr_func >= str_sec->dofs_size) { 16259 dtrace_dof_error(dof, "invalid function name"); 16260 return (-1); 16261 } 16262 16263 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16264 dtrace_dof_error(dof, "function name too long"); 16265 /* 16266 * Keep going if the function name is too long. 16267 * Unlike provider and probe names, we cannot reasonably 16268 * impose restrictions on function names, since they're 16269 * a property of the code being instrumented. We will 16270 * skip this probe in dtrace_helper_provide_one(). 16271 */ 16272 } 16273 16274 if (probe->dofpr_name >= str_sec->dofs_size || 16275 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16276 dtrace_dof_error(dof, "invalid probe name"); 16277 return (-1); 16278 } 16279 16280 /* 16281 * The offset count must not wrap the index, and the offsets 16282 * must also not overflow the section's data. 16283 */ 16284 if (probe->dofpr_offidx + probe->dofpr_noffs < 16285 probe->dofpr_offidx || 16286 (probe->dofpr_offidx + probe->dofpr_noffs) * 16287 off_sec->dofs_entsize > off_sec->dofs_size) { 16288 dtrace_dof_error(dof, "invalid probe offset"); 16289 return (-1); 16290 } 16291 16292 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16293 /* 16294 * If there's no is-enabled offset section, make sure 16295 * there aren't any is-enabled offsets. Otherwise 16296 * perform the same checks as for probe offsets 16297 * (immediately above). 16298 */ 16299 if (enoff_sec == NULL) { 16300 if (probe->dofpr_enoffidx != 0 || 16301 probe->dofpr_nenoffs != 0) { 16302 dtrace_dof_error(dof, "is-enabled " 16303 "offsets with null section"); 16304 return (-1); 16305 } 16306 } else if (probe->dofpr_enoffidx + 16307 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16308 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16309 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16310 dtrace_dof_error(dof, "invalid is-enabled " 16311 "offset"); 16312 return (-1); 16313 } 16314 16315 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16316 dtrace_dof_error(dof, "zero probe and " 16317 "is-enabled offsets"); 16318 return (-1); 16319 } 16320 } else if (probe->dofpr_noffs == 0) { 16321 dtrace_dof_error(dof, "zero probe offsets"); 16322 return (-1); 16323 } 16324 16325 if (probe->dofpr_argidx + probe->dofpr_xargc < 16326 probe->dofpr_argidx || 16327 (probe->dofpr_argidx + probe->dofpr_xargc) * 16328 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16329 dtrace_dof_error(dof, "invalid args"); 16330 return (-1); 16331 } 16332 16333 typeidx = probe->dofpr_nargv; 16334 typestr = strtab + probe->dofpr_nargv; 16335 for (k = 0; k < probe->dofpr_nargc; k++) { 16336 if (typeidx >= str_sec->dofs_size) { 16337 dtrace_dof_error(dof, "bad " 16338 "native argument type"); 16339 return (-1); 16340 } 16341 16342 typesz = strlen(typestr) + 1; 16343 if (typesz > DTRACE_ARGTYPELEN) { 16344 dtrace_dof_error(dof, "native " 16345 "argument type too long"); 16346 return (-1); 16347 } 16348 typeidx += typesz; 16349 typestr += typesz; 16350 } 16351 16352 typeidx = probe->dofpr_xargv; 16353 typestr = strtab + probe->dofpr_xargv; 16354 for (k = 0; k < probe->dofpr_xargc; k++) { 16355 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16356 dtrace_dof_error(dof, "bad " 16357 "native argument index"); 16358 return (-1); 16359 } 16360 16361 if (typeidx >= str_sec->dofs_size) { 16362 dtrace_dof_error(dof, "bad " 16363 "translated argument type"); 16364 return (-1); 16365 } 16366 16367 typesz = strlen(typestr) + 1; 16368 if (typesz > DTRACE_ARGTYPELEN) { 16369 dtrace_dof_error(dof, "translated argument " 16370 "type too long"); 16371 return (-1); 16372 } 16373 16374 typeidx += typesz; 16375 typestr += typesz; 16376 } 16377 } 16378 16379 return (0); 16380 } 16381 16382 static int 16383 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16384 { 16385 dtrace_helpers_t *help; 16386 dtrace_vstate_t *vstate; 16387 dtrace_enabling_t *enab = NULL; 16388 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16389 uintptr_t daddr = (uintptr_t)dof; 16390 16391 ASSERT(MUTEX_HELD(&dtrace_lock)); 16392 16393 if ((help = p->p_dtrace_helpers) == NULL) 16394 help = dtrace_helpers_create(p); 16395 16396 vstate = &help->dthps_vstate; 16397 16398 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16399 dhp->dofhp_dof, B_FALSE)) != 0) { 16400 dtrace_dof_destroy(dof); 16401 return (rv); 16402 } 16403 16404 /* 16405 * Look for helper providers and validate their descriptions. 16406 */ 16407 for (i = 0; i < dof->dofh_secnum; i++) { 16408 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16409 dof->dofh_secoff + i * dof->dofh_secsize); 16410 16411 if (sec->dofs_type != DOF_SECT_PROVIDER) 16412 continue; 16413 16414 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16415 dtrace_enabling_destroy(enab); 16416 dtrace_dof_destroy(dof); 16417 return (-1); 16418 } 16419 16420 nprovs++; 16421 } 16422 16423 /* 16424 * Now we need to walk through the ECB descriptions in the enabling. 16425 */ 16426 for (i = 0; i < enab->dten_ndesc; i++) { 16427 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16428 dtrace_probedesc_t *desc = &ep->dted_probe; 16429 16430 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16431 continue; 16432 16433 if (strcmp(desc->dtpd_mod, "helper") != 0) 16434 continue; 16435 16436 if (strcmp(desc->dtpd_func, "ustack") != 0) 16437 continue; 16438 16439 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16440 ep, help)) != 0) { 16441 /* 16442 * Adding this helper action failed -- we are now going 16443 * to rip out the entire generation and return failure. 16444 */ 16445 (void) dtrace_helper_destroygen(help, 16446 help->dthps_generation); 16447 dtrace_enabling_destroy(enab); 16448 dtrace_dof_destroy(dof); 16449 return (-1); 16450 } 16451 16452 nhelpers++; 16453 } 16454 16455 if (nhelpers < enab->dten_ndesc) 16456 dtrace_dof_error(dof, "unmatched helpers"); 16457 16458 gen = help->dthps_generation++; 16459 dtrace_enabling_destroy(enab); 16460 16461 if (nprovs > 0) { 16462 /* 16463 * Now that this is in-kernel, we change the sense of the 16464 * members: dofhp_dof denotes the in-kernel copy of the DOF 16465 * and dofhp_addr denotes the address at user-level. 16466 */ 16467 dhp->dofhp_addr = dhp->dofhp_dof; 16468 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16469 16470 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16471 mutex_exit(&dtrace_lock); 16472 dtrace_helper_provider_register(p, help, dhp); 16473 mutex_enter(&dtrace_lock); 16474 16475 destroy = 0; 16476 } 16477 } 16478 16479 if (destroy) 16480 dtrace_dof_destroy(dof); 16481 16482 return (gen); 16483 } 16484 16485 static dtrace_helpers_t * 16486 dtrace_helpers_create(proc_t *p) 16487 { 16488 dtrace_helpers_t *help; 16489 16490 ASSERT(MUTEX_HELD(&dtrace_lock)); 16491 ASSERT(p->p_dtrace_helpers == NULL); 16492 16493 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16494 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16495 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16496 16497 p->p_dtrace_helpers = help; 16498 dtrace_helpers++; 16499 16500 return (help); 16501 } 16502 16503 #ifdef illumos 16504 static 16505 #endif 16506 void 16507 dtrace_helpers_destroy(proc_t *p) 16508 { 16509 dtrace_helpers_t *help; 16510 dtrace_vstate_t *vstate; 16511 #ifdef illumos 16512 proc_t *p = curproc; 16513 #endif 16514 int i; 16515 16516 mutex_enter(&dtrace_lock); 16517 16518 ASSERT(p->p_dtrace_helpers != NULL); 16519 ASSERT(dtrace_helpers > 0); 16520 16521 help = p->p_dtrace_helpers; 16522 vstate = &help->dthps_vstate; 16523 16524 /* 16525 * We're now going to lose the help from this process. 16526 */ 16527 p->p_dtrace_helpers = NULL; 16528 dtrace_sync(); 16529 16530 /* 16531 * Destory the helper actions. 16532 */ 16533 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16534 dtrace_helper_action_t *h, *next; 16535 16536 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16537 next = h->dtha_next; 16538 dtrace_helper_action_destroy(h, vstate); 16539 h = next; 16540 } 16541 } 16542 16543 mutex_exit(&dtrace_lock); 16544 16545 /* 16546 * Destroy the helper providers. 16547 */ 16548 if (help->dthps_maxprovs > 0) { 16549 mutex_enter(&dtrace_meta_lock); 16550 if (dtrace_meta_pid != NULL) { 16551 ASSERT(dtrace_deferred_pid == NULL); 16552 16553 for (i = 0; i < help->dthps_nprovs; i++) { 16554 dtrace_helper_provider_remove( 16555 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16556 } 16557 } else { 16558 mutex_enter(&dtrace_lock); 16559 ASSERT(help->dthps_deferred == 0 || 16560 help->dthps_next != NULL || 16561 help->dthps_prev != NULL || 16562 help == dtrace_deferred_pid); 16563 16564 /* 16565 * Remove the helper from the deferred list. 16566 */ 16567 if (help->dthps_next != NULL) 16568 help->dthps_next->dthps_prev = help->dthps_prev; 16569 if (help->dthps_prev != NULL) 16570 help->dthps_prev->dthps_next = help->dthps_next; 16571 if (dtrace_deferred_pid == help) { 16572 dtrace_deferred_pid = help->dthps_next; 16573 ASSERT(help->dthps_prev == NULL); 16574 } 16575 16576 mutex_exit(&dtrace_lock); 16577 } 16578 16579 mutex_exit(&dtrace_meta_lock); 16580 16581 for (i = 0; i < help->dthps_nprovs; i++) { 16582 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16583 } 16584 16585 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16586 sizeof (dtrace_helper_provider_t *)); 16587 } 16588 16589 mutex_enter(&dtrace_lock); 16590 16591 dtrace_vstate_fini(&help->dthps_vstate); 16592 kmem_free(help->dthps_actions, 16593 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16594 kmem_free(help, sizeof (dtrace_helpers_t)); 16595 16596 --dtrace_helpers; 16597 mutex_exit(&dtrace_lock); 16598 } 16599 16600 #ifdef illumos 16601 static 16602 #endif 16603 void 16604 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16605 { 16606 dtrace_helpers_t *help, *newhelp; 16607 dtrace_helper_action_t *helper, *new, *last; 16608 dtrace_difo_t *dp; 16609 dtrace_vstate_t *vstate; 16610 int i, j, sz, hasprovs = 0; 16611 16612 mutex_enter(&dtrace_lock); 16613 ASSERT(from->p_dtrace_helpers != NULL); 16614 ASSERT(dtrace_helpers > 0); 16615 16616 help = from->p_dtrace_helpers; 16617 newhelp = dtrace_helpers_create(to); 16618 ASSERT(to->p_dtrace_helpers != NULL); 16619 16620 newhelp->dthps_generation = help->dthps_generation; 16621 vstate = &newhelp->dthps_vstate; 16622 16623 /* 16624 * Duplicate the helper actions. 16625 */ 16626 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16627 if ((helper = help->dthps_actions[i]) == NULL) 16628 continue; 16629 16630 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16631 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16632 KM_SLEEP); 16633 new->dtha_generation = helper->dtha_generation; 16634 16635 if ((dp = helper->dtha_predicate) != NULL) { 16636 dp = dtrace_difo_duplicate(dp, vstate); 16637 new->dtha_predicate = dp; 16638 } 16639 16640 new->dtha_nactions = helper->dtha_nactions; 16641 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16642 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16643 16644 for (j = 0; j < new->dtha_nactions; j++) { 16645 dtrace_difo_t *dp = helper->dtha_actions[j]; 16646 16647 ASSERT(dp != NULL); 16648 dp = dtrace_difo_duplicate(dp, vstate); 16649 new->dtha_actions[j] = dp; 16650 } 16651 16652 if (last != NULL) { 16653 last->dtha_next = new; 16654 } else { 16655 newhelp->dthps_actions[i] = new; 16656 } 16657 16658 last = new; 16659 } 16660 } 16661 16662 /* 16663 * Duplicate the helper providers and register them with the 16664 * DTrace framework. 16665 */ 16666 if (help->dthps_nprovs > 0) { 16667 newhelp->dthps_nprovs = help->dthps_nprovs; 16668 newhelp->dthps_maxprovs = help->dthps_nprovs; 16669 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16670 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16671 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16672 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16673 newhelp->dthps_provs[i]->dthp_ref++; 16674 } 16675 16676 hasprovs = 1; 16677 } 16678 16679 mutex_exit(&dtrace_lock); 16680 16681 if (hasprovs) 16682 dtrace_helper_provider_register(to, newhelp, NULL); 16683 } 16684 16685 /* 16686 * DTrace Hook Functions 16687 */ 16688 static void 16689 dtrace_module_loaded(modctl_t *ctl) 16690 { 16691 dtrace_provider_t *prv; 16692 16693 mutex_enter(&dtrace_provider_lock); 16694 #ifdef illumos 16695 mutex_enter(&mod_lock); 16696 #endif 16697 16698 #ifdef illumos 16699 ASSERT(ctl->mod_busy); 16700 #endif 16701 16702 /* 16703 * We're going to call each providers per-module provide operation 16704 * specifying only this module. 16705 */ 16706 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16707 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16708 16709 #ifdef illumos 16710 mutex_exit(&mod_lock); 16711 #endif 16712 mutex_exit(&dtrace_provider_lock); 16713 16714 /* 16715 * If we have any retained enablings, we need to match against them. 16716 * Enabling probes requires that cpu_lock be held, and we cannot hold 16717 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16718 * module. (In particular, this happens when loading scheduling 16719 * classes.) So if we have any retained enablings, we need to dispatch 16720 * our task queue to do the match for us. 16721 */ 16722 mutex_enter(&dtrace_lock); 16723 16724 if (dtrace_retained == NULL) { 16725 mutex_exit(&dtrace_lock); 16726 return; 16727 } 16728 16729 (void)taskq_dispatch(dtrace_taskq, 16730 (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP); 16731 16732 mutex_exit(&dtrace_lock); 16733 16734 /* 16735 * And now, for a little heuristic sleaze: in general, we want to 16736 * match modules as soon as they load. However, we cannot guarantee 16737 * this, because it would lead us to the lock ordering violation 16738 * outlined above. The common case, of course, is that cpu_lock is 16739 * _not_ held -- so we delay here for a clock tick, hoping that that's 16740 * long enough for the task queue to do its work. If it's not, it's 16741 * not a serious problem -- it just means that the module that we 16742 * just loaded may not be immediately instrumentable. 16743 */ 16744 delay(1); 16745 } 16746 16747 static void 16748 #ifdef illumos 16749 dtrace_module_unloaded(modctl_t *ctl) 16750 #else 16751 dtrace_module_unloaded(modctl_t *ctl, int *error) 16752 #endif 16753 { 16754 dtrace_probe_t template, *probe, *first, *next; 16755 dtrace_provider_t *prov; 16756 #ifndef illumos 16757 char modname[DTRACE_MODNAMELEN]; 16758 size_t len; 16759 #endif 16760 16761 #ifdef illumos 16762 template.dtpr_mod = ctl->mod_modname; 16763 #else 16764 /* Handle the fact that ctl->filename may end in ".ko". */ 16765 strlcpy(modname, ctl->filename, sizeof(modname)); 16766 len = strlen(ctl->filename); 16767 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16768 modname[len - 3] = '\0'; 16769 template.dtpr_mod = modname; 16770 #endif 16771 16772 mutex_enter(&dtrace_provider_lock); 16773 #ifdef illumos 16774 mutex_enter(&mod_lock); 16775 #endif 16776 mutex_enter(&dtrace_lock); 16777 16778 #ifndef illumos 16779 if (ctl->nenabled > 0) { 16780 /* Don't allow unloads if a probe is enabled. */ 16781 mutex_exit(&dtrace_provider_lock); 16782 mutex_exit(&dtrace_lock); 16783 *error = -1; 16784 printf( 16785 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16786 return; 16787 } 16788 #endif 16789 16790 if (dtrace_bymod == NULL) { 16791 /* 16792 * The DTrace module is loaded (obviously) but not attached; 16793 * we don't have any work to do. 16794 */ 16795 mutex_exit(&dtrace_provider_lock); 16796 #ifdef illumos 16797 mutex_exit(&mod_lock); 16798 #endif 16799 mutex_exit(&dtrace_lock); 16800 return; 16801 } 16802 16803 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16804 probe != NULL; probe = probe->dtpr_nextmod) { 16805 if (probe->dtpr_ecb != NULL) { 16806 mutex_exit(&dtrace_provider_lock); 16807 #ifdef illumos 16808 mutex_exit(&mod_lock); 16809 #endif 16810 mutex_exit(&dtrace_lock); 16811 16812 /* 16813 * This shouldn't _actually_ be possible -- we're 16814 * unloading a module that has an enabled probe in it. 16815 * (It's normally up to the provider to make sure that 16816 * this can't happen.) However, because dtps_enable() 16817 * doesn't have a failure mode, there can be an 16818 * enable/unload race. Upshot: we don't want to 16819 * assert, but we're not going to disable the 16820 * probe, either. 16821 */ 16822 if (dtrace_err_verbose) { 16823 #ifdef illumos 16824 cmn_err(CE_WARN, "unloaded module '%s' had " 16825 "enabled probes", ctl->mod_modname); 16826 #else 16827 cmn_err(CE_WARN, "unloaded module '%s' had " 16828 "enabled probes", modname); 16829 #endif 16830 } 16831 16832 return; 16833 } 16834 } 16835 16836 probe = first; 16837 16838 for (first = NULL; probe != NULL; probe = next) { 16839 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16840 16841 dtrace_probes[probe->dtpr_id - 1] = NULL; 16842 16843 next = probe->dtpr_nextmod; 16844 dtrace_hash_remove(dtrace_bymod, probe); 16845 dtrace_hash_remove(dtrace_byfunc, probe); 16846 dtrace_hash_remove(dtrace_byname, probe); 16847 16848 if (first == NULL) { 16849 first = probe; 16850 probe->dtpr_nextmod = NULL; 16851 } else { 16852 probe->dtpr_nextmod = first; 16853 first = probe; 16854 } 16855 } 16856 16857 /* 16858 * We've removed all of the module's probes from the hash chains and 16859 * from the probe array. Now issue a dtrace_sync() to be sure that 16860 * everyone has cleared out from any probe array processing. 16861 */ 16862 dtrace_sync(); 16863 16864 for (probe = first; probe != NULL; probe = first) { 16865 first = probe->dtpr_nextmod; 16866 prov = probe->dtpr_provider; 16867 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16868 probe->dtpr_arg); 16869 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16870 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16871 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16872 #ifdef illumos 16873 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16874 #else 16875 free_unr(dtrace_arena, probe->dtpr_id); 16876 #endif 16877 kmem_free(probe, sizeof (dtrace_probe_t)); 16878 } 16879 16880 mutex_exit(&dtrace_lock); 16881 #ifdef illumos 16882 mutex_exit(&mod_lock); 16883 #endif 16884 mutex_exit(&dtrace_provider_lock); 16885 } 16886 16887 #ifndef illumos 16888 static void 16889 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16890 { 16891 16892 dtrace_module_loaded(lf); 16893 } 16894 16895 static void 16896 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16897 { 16898 16899 if (*error != 0) 16900 /* We already have an error, so don't do anything. */ 16901 return; 16902 dtrace_module_unloaded(lf, error); 16903 } 16904 #endif 16905 16906 #ifdef illumos 16907 static void 16908 dtrace_suspend(void) 16909 { 16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16911 } 16912 16913 static void 16914 dtrace_resume(void) 16915 { 16916 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16917 } 16918 #endif 16919 16920 static int 16921 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16922 { 16923 ASSERT(MUTEX_HELD(&cpu_lock)); 16924 mutex_enter(&dtrace_lock); 16925 16926 switch (what) { 16927 case CPU_CONFIG: { 16928 dtrace_state_t *state; 16929 dtrace_optval_t *opt, rs, c; 16930 16931 /* 16932 * For now, we only allocate a new buffer for anonymous state. 16933 */ 16934 if ((state = dtrace_anon.dta_state) == NULL) 16935 break; 16936 16937 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16938 break; 16939 16940 opt = state->dts_options; 16941 c = opt[DTRACEOPT_CPU]; 16942 16943 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16944 break; 16945 16946 /* 16947 * Regardless of what the actual policy is, we're going to 16948 * temporarily set our resize policy to be manual. We're 16949 * also going to temporarily set our CPU option to denote 16950 * the newly configured CPU. 16951 */ 16952 rs = opt[DTRACEOPT_BUFRESIZE]; 16953 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16954 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16955 16956 (void) dtrace_state_buffers(state); 16957 16958 opt[DTRACEOPT_BUFRESIZE] = rs; 16959 opt[DTRACEOPT_CPU] = c; 16960 16961 break; 16962 } 16963 16964 case CPU_UNCONFIG: 16965 /* 16966 * We don't free the buffer in the CPU_UNCONFIG case. (The 16967 * buffer will be freed when the consumer exits.) 16968 */ 16969 break; 16970 16971 default: 16972 break; 16973 } 16974 16975 mutex_exit(&dtrace_lock); 16976 return (0); 16977 } 16978 16979 #ifdef illumos 16980 static void 16981 dtrace_cpu_setup_initial(processorid_t cpu) 16982 { 16983 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16984 } 16985 #endif 16986 16987 static void 16988 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16989 { 16990 if (dtrace_toxranges >= dtrace_toxranges_max) { 16991 int osize, nsize; 16992 dtrace_toxrange_t *range; 16993 16994 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16995 16996 if (osize == 0) { 16997 ASSERT(dtrace_toxrange == NULL); 16998 ASSERT(dtrace_toxranges_max == 0); 16999 dtrace_toxranges_max = 1; 17000 } else { 17001 dtrace_toxranges_max <<= 1; 17002 } 17003 17004 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17005 range = kmem_zalloc(nsize, KM_SLEEP); 17006 17007 if (dtrace_toxrange != NULL) { 17008 ASSERT(osize != 0); 17009 bcopy(dtrace_toxrange, range, osize); 17010 kmem_free(dtrace_toxrange, osize); 17011 } 17012 17013 dtrace_toxrange = range; 17014 } 17015 17016 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17017 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17018 17019 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17020 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17021 dtrace_toxranges++; 17022 } 17023 17024 static void 17025 dtrace_getf_barrier(void) 17026 { 17027 #ifdef illumos 17028 /* 17029 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17030 * that contain calls to getf(), this routine will be called on every 17031 * closef() before either the underlying vnode is released or the 17032 * file_t itself is freed. By the time we are here, it is essential 17033 * that the file_t can no longer be accessed from a call to getf() 17034 * in probe context -- that assures that a dtrace_sync() can be used 17035 * to clear out any enablings referring to the old structures. 17036 */ 17037 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17038 kcred->cr_zone->zone_dtrace_getf != 0) 17039 dtrace_sync(); 17040 #endif 17041 } 17042 17043 /* 17044 * DTrace Driver Cookbook Functions 17045 */ 17046 #ifdef illumos 17047 /*ARGSUSED*/ 17048 static int 17049 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17050 { 17051 dtrace_provider_id_t id; 17052 dtrace_state_t *state = NULL; 17053 dtrace_enabling_t *enab; 17054 17055 mutex_enter(&cpu_lock); 17056 mutex_enter(&dtrace_provider_lock); 17057 mutex_enter(&dtrace_lock); 17058 17059 if (ddi_soft_state_init(&dtrace_softstate, 17060 sizeof (dtrace_state_t), 0) != 0) { 17061 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17062 mutex_exit(&cpu_lock); 17063 mutex_exit(&dtrace_provider_lock); 17064 mutex_exit(&dtrace_lock); 17065 return (DDI_FAILURE); 17066 } 17067 17068 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17069 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17070 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17071 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17072 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17073 ddi_remove_minor_node(devi, NULL); 17074 ddi_soft_state_fini(&dtrace_softstate); 17075 mutex_exit(&cpu_lock); 17076 mutex_exit(&dtrace_provider_lock); 17077 mutex_exit(&dtrace_lock); 17078 return (DDI_FAILURE); 17079 } 17080 17081 ddi_report_dev(devi); 17082 dtrace_devi = devi; 17083 17084 dtrace_modload = dtrace_module_loaded; 17085 dtrace_modunload = dtrace_module_unloaded; 17086 dtrace_cpu_init = dtrace_cpu_setup_initial; 17087 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17088 dtrace_helpers_fork = dtrace_helpers_duplicate; 17089 dtrace_cpustart_init = dtrace_suspend; 17090 dtrace_cpustart_fini = dtrace_resume; 17091 dtrace_debugger_init = dtrace_suspend; 17092 dtrace_debugger_fini = dtrace_resume; 17093 17094 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17095 17096 ASSERT(MUTEX_HELD(&cpu_lock)); 17097 17098 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17099 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17100 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17101 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17102 VM_SLEEP | VMC_IDENTIFIER); 17103 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17104 1, INT_MAX, 0); 17105 17106 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17107 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17108 NULL, NULL, NULL, NULL, NULL, 0); 17109 17110 ASSERT(MUTEX_HELD(&cpu_lock)); 17111 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17112 offsetof(dtrace_probe_t, dtpr_nextmod), 17113 offsetof(dtrace_probe_t, dtpr_prevmod)); 17114 17115 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17116 offsetof(dtrace_probe_t, dtpr_nextfunc), 17117 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17118 17119 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17120 offsetof(dtrace_probe_t, dtpr_nextname), 17121 offsetof(dtrace_probe_t, dtpr_prevname)); 17122 17123 if (dtrace_retain_max < 1) { 17124 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17125 "setting to 1", dtrace_retain_max); 17126 dtrace_retain_max = 1; 17127 } 17128 17129 /* 17130 * Now discover our toxic ranges. 17131 */ 17132 dtrace_toxic_ranges(dtrace_toxrange_add); 17133 17134 /* 17135 * Before we register ourselves as a provider to our own framework, 17136 * we would like to assert that dtrace_provider is NULL -- but that's 17137 * not true if we were loaded as a dependency of a DTrace provider. 17138 * Once we've registered, we can assert that dtrace_provider is our 17139 * pseudo provider. 17140 */ 17141 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17142 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17143 17144 ASSERT(dtrace_provider != NULL); 17145 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17146 17147 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17148 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17149 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17150 dtrace_provider, NULL, NULL, "END", 0, NULL); 17151 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17152 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17153 17154 dtrace_anon_property(); 17155 mutex_exit(&cpu_lock); 17156 17157 /* 17158 * If there are already providers, we must ask them to provide their 17159 * probes, and then match any anonymous enabling against them. Note 17160 * that there should be no other retained enablings at this time: 17161 * the only retained enablings at this time should be the anonymous 17162 * enabling. 17163 */ 17164 if (dtrace_anon.dta_enabling != NULL) { 17165 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17166 17167 dtrace_enabling_provide(NULL); 17168 state = dtrace_anon.dta_state; 17169 17170 /* 17171 * We couldn't hold cpu_lock across the above call to 17172 * dtrace_enabling_provide(), but we must hold it to actually 17173 * enable the probes. We have to drop all of our locks, pick 17174 * up cpu_lock, and regain our locks before matching the 17175 * retained anonymous enabling. 17176 */ 17177 mutex_exit(&dtrace_lock); 17178 mutex_exit(&dtrace_provider_lock); 17179 17180 mutex_enter(&cpu_lock); 17181 mutex_enter(&dtrace_provider_lock); 17182 mutex_enter(&dtrace_lock); 17183 17184 if ((enab = dtrace_anon.dta_enabling) != NULL) 17185 (void) dtrace_enabling_match(enab, NULL); 17186 17187 mutex_exit(&cpu_lock); 17188 } 17189 17190 mutex_exit(&dtrace_lock); 17191 mutex_exit(&dtrace_provider_lock); 17192 17193 if (state != NULL) { 17194 /* 17195 * If we created any anonymous state, set it going now. 17196 */ 17197 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17198 } 17199 17200 return (DDI_SUCCESS); 17201 } 17202 #endif /* illumos */ 17203 17204 #ifndef illumos 17205 static void dtrace_dtr(void *); 17206 #endif 17207 17208 /*ARGSUSED*/ 17209 static int 17210 #ifdef illumos 17211 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17212 #else 17213 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17214 #endif 17215 { 17216 dtrace_state_t *state; 17217 uint32_t priv; 17218 uid_t uid; 17219 zoneid_t zoneid; 17220 17221 #ifdef illumos 17222 if (getminor(*devp) == DTRACEMNRN_HELPER) 17223 return (0); 17224 17225 /* 17226 * If this wasn't an open with the "helper" minor, then it must be 17227 * the "dtrace" minor. 17228 */ 17229 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17230 return (ENXIO); 17231 #else 17232 cred_t *cred_p = NULL; 17233 cred_p = dev->si_cred; 17234 17235 /* 17236 * If no DTRACE_PRIV_* bits are set in the credential, then the 17237 * caller lacks sufficient permission to do anything with DTrace. 17238 */ 17239 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17240 if (priv == DTRACE_PRIV_NONE) { 17241 #endif 17242 17243 return (EACCES); 17244 } 17245 17246 /* 17247 * Ask all providers to provide all their probes. 17248 */ 17249 mutex_enter(&dtrace_provider_lock); 17250 dtrace_probe_provide(NULL, NULL); 17251 mutex_exit(&dtrace_provider_lock); 17252 17253 mutex_enter(&cpu_lock); 17254 mutex_enter(&dtrace_lock); 17255 dtrace_opens++; 17256 dtrace_membar_producer(); 17257 17258 #ifdef illumos 17259 /* 17260 * If the kernel debugger is active (that is, if the kernel debugger 17261 * modified text in some way), we won't allow the open. 17262 */ 17263 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17264 dtrace_opens--; 17265 mutex_exit(&cpu_lock); 17266 mutex_exit(&dtrace_lock); 17267 return (EBUSY); 17268 } 17269 17270 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17271 /* 17272 * If DTrace helper tracing is enabled, we need to allocate the 17273 * trace buffer and initialize the values. 17274 */ 17275 dtrace_helptrace_buffer = 17276 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17277 dtrace_helptrace_next = 0; 17278 dtrace_helptrace_wrapped = 0; 17279 dtrace_helptrace_enable = 0; 17280 } 17281 17282 state = dtrace_state_create(devp, cred_p); 17283 #else 17284 state = dtrace_state_create(dev, NULL); 17285 devfs_set_cdevpriv(state, dtrace_dtr); 17286 #endif 17287 17288 mutex_exit(&cpu_lock); 17289 17290 if (state == NULL) { 17291 #ifdef illumos 17292 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17293 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17294 #else 17295 --dtrace_opens; 17296 #endif 17297 mutex_exit(&dtrace_lock); 17298 return (EAGAIN); 17299 } 17300 17301 mutex_exit(&dtrace_lock); 17302 17303 return (0); 17304 } 17305 17306 /*ARGSUSED*/ 17307 #ifdef illumos 17308 static int 17309 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17310 #else 17311 static void 17312 dtrace_dtr(void *data) 17313 #endif 17314 { 17315 #ifdef illumos 17316 minor_t minor = getminor(dev); 17317 dtrace_state_t *state; 17318 #endif 17319 dtrace_helptrace_t *buf = NULL; 17320 17321 #ifdef illumos 17322 if (minor == DTRACEMNRN_HELPER) 17323 return (0); 17324 17325 state = ddi_get_soft_state(dtrace_softstate, minor); 17326 #else 17327 dtrace_state_t *state = data; 17328 #endif 17329 17330 mutex_enter(&cpu_lock); 17331 mutex_enter(&dtrace_lock); 17332 17333 #ifdef illumos 17334 if (state->dts_anon) 17335 #else 17336 if (state != NULL && state->dts_anon) 17337 #endif 17338 { 17339 /* 17340 * There is anonymous state. Destroy that first. 17341 */ 17342 ASSERT(dtrace_anon.dta_state == NULL); 17343 dtrace_state_destroy(state->dts_anon); 17344 } 17345 17346 if (dtrace_helptrace_disable) { 17347 /* 17348 * If we have been told to disable helper tracing, set the 17349 * buffer to NULL before calling into dtrace_state_destroy(); 17350 * we take advantage of its dtrace_sync() to know that no 17351 * CPU is in probe context with enabled helper tracing 17352 * after it returns. 17353 */ 17354 buf = dtrace_helptrace_buffer; 17355 dtrace_helptrace_buffer = NULL; 17356 } 17357 17358 #ifdef illumos 17359 dtrace_state_destroy(state); 17360 #else 17361 if (state != NULL) { 17362 dtrace_state_destroy(state); 17363 kmem_free(state, 0); 17364 } 17365 #endif 17366 ASSERT(dtrace_opens > 0); 17367 17368 #ifdef illumos 17369 /* 17370 * Only relinquish control of the kernel debugger interface when there 17371 * are no consumers and no anonymous enablings. 17372 */ 17373 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17374 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17375 #else 17376 --dtrace_opens; 17377 #endif 17378 17379 if (buf != NULL) { 17380 kmem_free(buf, dtrace_helptrace_bufsize); 17381 dtrace_helptrace_disable = 0; 17382 } 17383 17384 mutex_exit(&dtrace_lock); 17385 mutex_exit(&cpu_lock); 17386 17387 #ifdef illumos 17388 return (0); 17389 #endif 17390 } 17391 17392 #ifdef illumos 17393 /*ARGSUSED*/ 17394 static int 17395 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17396 { 17397 int rval; 17398 dof_helper_t help, *dhp = NULL; 17399 17400 switch (cmd) { 17401 case DTRACEHIOC_ADDDOF: 17402 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17403 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17404 return (EFAULT); 17405 } 17406 17407 dhp = &help; 17408 arg = (intptr_t)help.dofhp_dof; 17409 /*FALLTHROUGH*/ 17410 17411 case DTRACEHIOC_ADD: { 17412 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17413 17414 if (dof == NULL) 17415 return (rval); 17416 17417 mutex_enter(&dtrace_lock); 17418 17419 /* 17420 * dtrace_helper_slurp() takes responsibility for the dof -- 17421 * it may free it now or it may save it and free it later. 17422 */ 17423 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17424 *rv = rval; 17425 rval = 0; 17426 } else { 17427 rval = EINVAL; 17428 } 17429 17430 mutex_exit(&dtrace_lock); 17431 return (rval); 17432 } 17433 17434 case DTRACEHIOC_REMOVE: { 17435 mutex_enter(&dtrace_lock); 17436 rval = dtrace_helper_destroygen(NULL, arg); 17437 mutex_exit(&dtrace_lock); 17438 17439 return (rval); 17440 } 17441 17442 default: 17443 break; 17444 } 17445 17446 return (ENOTTY); 17447 } 17448 17449 /*ARGSUSED*/ 17450 static int 17451 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17452 { 17453 minor_t minor = getminor(dev); 17454 dtrace_state_t *state; 17455 int rval; 17456 17457 if (minor == DTRACEMNRN_HELPER) 17458 return (dtrace_ioctl_helper(cmd, arg, rv)); 17459 17460 state = ddi_get_soft_state(dtrace_softstate, minor); 17461 17462 if (state->dts_anon) { 17463 ASSERT(dtrace_anon.dta_state == NULL); 17464 state = state->dts_anon; 17465 } 17466 17467 switch (cmd) { 17468 case DTRACEIOC_PROVIDER: { 17469 dtrace_providerdesc_t pvd; 17470 dtrace_provider_t *pvp; 17471 17472 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17473 return (EFAULT); 17474 17475 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17476 mutex_enter(&dtrace_provider_lock); 17477 17478 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17479 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17480 break; 17481 } 17482 17483 mutex_exit(&dtrace_provider_lock); 17484 17485 if (pvp == NULL) 17486 return (ESRCH); 17487 17488 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17489 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17490 17491 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17492 return (EFAULT); 17493 17494 return (0); 17495 } 17496 17497 case DTRACEIOC_EPROBE: { 17498 dtrace_eprobedesc_t epdesc; 17499 dtrace_ecb_t *ecb; 17500 dtrace_action_t *act; 17501 void *buf; 17502 size_t size; 17503 uintptr_t dest; 17504 int nrecs; 17505 17506 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17507 return (EFAULT); 17508 17509 mutex_enter(&dtrace_lock); 17510 17511 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17512 mutex_exit(&dtrace_lock); 17513 return (EINVAL); 17514 } 17515 17516 if (ecb->dte_probe == NULL) { 17517 mutex_exit(&dtrace_lock); 17518 return (EINVAL); 17519 } 17520 17521 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17522 epdesc.dtepd_uarg = ecb->dte_uarg; 17523 epdesc.dtepd_size = ecb->dte_size; 17524 17525 nrecs = epdesc.dtepd_nrecs; 17526 epdesc.dtepd_nrecs = 0; 17527 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17528 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17529 continue; 17530 17531 epdesc.dtepd_nrecs++; 17532 } 17533 17534 /* 17535 * Now that we have the size, we need to allocate a temporary 17536 * buffer in which to store the complete description. We need 17537 * the temporary buffer to be able to drop dtrace_lock() 17538 * across the copyout(), below. 17539 */ 17540 size = sizeof (dtrace_eprobedesc_t) + 17541 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17542 17543 buf = kmem_alloc(size, KM_SLEEP); 17544 dest = (uintptr_t)buf; 17545 17546 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17547 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17548 17549 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17550 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17551 continue; 17552 17553 if (nrecs-- == 0) 17554 break; 17555 17556 bcopy(&act->dta_rec, (void *)dest, 17557 sizeof (dtrace_recdesc_t)); 17558 dest += sizeof (dtrace_recdesc_t); 17559 } 17560 17561 mutex_exit(&dtrace_lock); 17562 17563 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17564 kmem_free(buf, size); 17565 return (EFAULT); 17566 } 17567 17568 kmem_free(buf, size); 17569 return (0); 17570 } 17571 17572 case DTRACEIOC_AGGDESC: { 17573 dtrace_aggdesc_t aggdesc; 17574 dtrace_action_t *act; 17575 dtrace_aggregation_t *agg; 17576 int nrecs; 17577 uint32_t offs; 17578 dtrace_recdesc_t *lrec; 17579 void *buf; 17580 size_t size; 17581 uintptr_t dest; 17582 17583 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17584 return (EFAULT); 17585 17586 mutex_enter(&dtrace_lock); 17587 17588 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17589 mutex_exit(&dtrace_lock); 17590 return (EINVAL); 17591 } 17592 17593 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17594 17595 nrecs = aggdesc.dtagd_nrecs; 17596 aggdesc.dtagd_nrecs = 0; 17597 17598 offs = agg->dtag_base; 17599 lrec = &agg->dtag_action.dta_rec; 17600 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17601 17602 for (act = agg->dtag_first; ; act = act->dta_next) { 17603 ASSERT(act->dta_intuple || 17604 DTRACEACT_ISAGG(act->dta_kind)); 17605 17606 /* 17607 * If this action has a record size of zero, it 17608 * denotes an argument to the aggregating action. 17609 * Because the presence of this record doesn't (or 17610 * shouldn't) affect the way the data is interpreted, 17611 * we don't copy it out to save user-level the 17612 * confusion of dealing with a zero-length record. 17613 */ 17614 if (act->dta_rec.dtrd_size == 0) { 17615 ASSERT(agg->dtag_hasarg); 17616 continue; 17617 } 17618 17619 aggdesc.dtagd_nrecs++; 17620 17621 if (act == &agg->dtag_action) 17622 break; 17623 } 17624 17625 /* 17626 * Now that we have the size, we need to allocate a temporary 17627 * buffer in which to store the complete description. We need 17628 * the temporary buffer to be able to drop dtrace_lock() 17629 * across the copyout(), below. 17630 */ 17631 size = sizeof (dtrace_aggdesc_t) + 17632 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17633 17634 buf = kmem_alloc(size, KM_SLEEP); 17635 dest = (uintptr_t)buf; 17636 17637 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17638 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17639 17640 for (act = agg->dtag_first; ; act = act->dta_next) { 17641 dtrace_recdesc_t rec = act->dta_rec; 17642 17643 /* 17644 * See the comment in the above loop for why we pass 17645 * over zero-length records. 17646 */ 17647 if (rec.dtrd_size == 0) { 17648 ASSERT(agg->dtag_hasarg); 17649 continue; 17650 } 17651 17652 if (nrecs-- == 0) 17653 break; 17654 17655 rec.dtrd_offset -= offs; 17656 bcopy(&rec, (void *)dest, sizeof (rec)); 17657 dest += sizeof (dtrace_recdesc_t); 17658 17659 if (act == &agg->dtag_action) 17660 break; 17661 } 17662 17663 mutex_exit(&dtrace_lock); 17664 17665 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17666 kmem_free(buf, size); 17667 return (EFAULT); 17668 } 17669 17670 kmem_free(buf, size); 17671 return (0); 17672 } 17673 17674 case DTRACEIOC_ENABLE: { 17675 dof_hdr_t *dof; 17676 dtrace_enabling_t *enab = NULL; 17677 dtrace_vstate_t *vstate; 17678 int err = 0; 17679 17680 *rv = 0; 17681 17682 /* 17683 * If a NULL argument has been passed, we take this as our 17684 * cue to reevaluate our enablings. 17685 */ 17686 if (arg == NULL) { 17687 dtrace_enabling_matchall(); 17688 17689 return (0); 17690 } 17691 17692 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17693 return (rval); 17694 17695 mutex_enter(&cpu_lock); 17696 mutex_enter(&dtrace_lock); 17697 vstate = &state->dts_vstate; 17698 17699 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17700 mutex_exit(&dtrace_lock); 17701 mutex_exit(&cpu_lock); 17702 dtrace_dof_destroy(dof); 17703 return (EBUSY); 17704 } 17705 17706 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17707 mutex_exit(&dtrace_lock); 17708 mutex_exit(&cpu_lock); 17709 dtrace_dof_destroy(dof); 17710 return (EINVAL); 17711 } 17712 17713 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17714 dtrace_enabling_destroy(enab); 17715 mutex_exit(&dtrace_lock); 17716 mutex_exit(&cpu_lock); 17717 dtrace_dof_destroy(dof); 17718 return (rval); 17719 } 17720 17721 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17722 err = dtrace_enabling_retain(enab); 17723 } else { 17724 dtrace_enabling_destroy(enab); 17725 } 17726 17727 mutex_exit(&cpu_lock); 17728 mutex_exit(&dtrace_lock); 17729 dtrace_dof_destroy(dof); 17730 17731 return (err); 17732 } 17733 17734 case DTRACEIOC_REPLICATE: { 17735 dtrace_repldesc_t desc; 17736 dtrace_probedesc_t *match = &desc.dtrpd_match; 17737 dtrace_probedesc_t *create = &desc.dtrpd_create; 17738 int err; 17739 17740 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17741 return (EFAULT); 17742 17743 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17744 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17745 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17746 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17747 17748 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17749 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17750 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17751 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17752 17753 mutex_enter(&dtrace_lock); 17754 err = dtrace_enabling_replicate(state, match, create); 17755 mutex_exit(&dtrace_lock); 17756 17757 return (err); 17758 } 17759 17760 case DTRACEIOC_PROBEMATCH: 17761 case DTRACEIOC_PROBES: { 17762 dtrace_probe_t *probe = NULL; 17763 dtrace_probedesc_t desc; 17764 dtrace_probekey_t pkey; 17765 dtrace_id_t i; 17766 int m = 0; 17767 uint32_t priv; 17768 uid_t uid; 17769 zoneid_t zoneid; 17770 17771 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17772 return (EFAULT); 17773 17774 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17775 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17776 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17777 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17778 17779 /* 17780 * Before we attempt to match this probe, we want to give 17781 * all providers the opportunity to provide it. 17782 */ 17783 if (desc.dtpd_id == DTRACE_IDNONE) { 17784 mutex_enter(&dtrace_provider_lock); 17785 dtrace_probe_provide(&desc, NULL); 17786 mutex_exit(&dtrace_provider_lock); 17787 desc.dtpd_id++; 17788 } 17789 17790 if (cmd == DTRACEIOC_PROBEMATCH) { 17791 dtrace_probekey(&desc, &pkey); 17792 pkey.dtpk_id = DTRACE_IDNONE; 17793 } 17794 17795 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17796 17797 mutex_enter(&dtrace_lock); 17798 17799 if (cmd == DTRACEIOC_PROBEMATCH) { 17800 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17801 if ((probe = dtrace_probes[i - 1]) != NULL && 17802 (m = dtrace_match_probe(probe, &pkey, 17803 priv, uid, zoneid)) != 0) 17804 break; 17805 } 17806 17807 if (m < 0) { 17808 mutex_exit(&dtrace_lock); 17809 return (EINVAL); 17810 } 17811 17812 } else { 17813 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17814 if ((probe = dtrace_probes[i - 1]) != NULL && 17815 dtrace_match_priv(probe, priv, uid, zoneid)) 17816 break; 17817 } 17818 } 17819 17820 if (probe == NULL) { 17821 mutex_exit(&dtrace_lock); 17822 return (ESRCH); 17823 } 17824 17825 dtrace_probe_description(probe, &desc); 17826 mutex_exit(&dtrace_lock); 17827 17828 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17829 return (EFAULT); 17830 17831 return (0); 17832 } 17833 17834 case DTRACEIOC_PROBEARG: { 17835 dtrace_argdesc_t desc; 17836 dtrace_probe_t *probe; 17837 dtrace_provider_t *prov; 17838 17839 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17840 return (EFAULT); 17841 17842 if (desc.dtargd_id == DTRACE_IDNONE) 17843 return (EINVAL); 17844 17845 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17846 return (EINVAL); 17847 17848 mutex_enter(&dtrace_provider_lock); 17849 mutex_enter(&mod_lock); 17850 mutex_enter(&dtrace_lock); 17851 17852 if (desc.dtargd_id > dtrace_nprobes) { 17853 mutex_exit(&dtrace_lock); 17854 mutex_exit(&mod_lock); 17855 mutex_exit(&dtrace_provider_lock); 17856 return (EINVAL); 17857 } 17858 17859 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17860 mutex_exit(&dtrace_lock); 17861 mutex_exit(&mod_lock); 17862 mutex_exit(&dtrace_provider_lock); 17863 return (EINVAL); 17864 } 17865 17866 mutex_exit(&dtrace_lock); 17867 17868 prov = probe->dtpr_provider; 17869 17870 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17871 /* 17872 * There isn't any typed information for this probe. 17873 * Set the argument number to DTRACE_ARGNONE. 17874 */ 17875 desc.dtargd_ndx = DTRACE_ARGNONE; 17876 } else { 17877 desc.dtargd_native[0] = '\0'; 17878 desc.dtargd_xlate[0] = '\0'; 17879 desc.dtargd_mapping = desc.dtargd_ndx; 17880 17881 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17882 probe->dtpr_id, probe->dtpr_arg, &desc); 17883 } 17884 17885 mutex_exit(&mod_lock); 17886 mutex_exit(&dtrace_provider_lock); 17887 17888 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17889 return (EFAULT); 17890 17891 return (0); 17892 } 17893 17894 case DTRACEIOC_GO: { 17895 processorid_t cpuid; 17896 rval = dtrace_state_go(state, &cpuid); 17897 17898 if (rval != 0) 17899 return (rval); 17900 17901 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17902 return (EFAULT); 17903 17904 return (0); 17905 } 17906 17907 case DTRACEIOC_STOP: { 17908 processorid_t cpuid; 17909 17910 mutex_enter(&dtrace_lock); 17911 rval = dtrace_state_stop(state, &cpuid); 17912 mutex_exit(&dtrace_lock); 17913 17914 if (rval != 0) 17915 return (rval); 17916 17917 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17918 return (EFAULT); 17919 17920 return (0); 17921 } 17922 17923 case DTRACEIOC_DOFGET: { 17924 dof_hdr_t hdr, *dof; 17925 uint64_t len; 17926 17927 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17928 return (EFAULT); 17929 17930 mutex_enter(&dtrace_lock); 17931 dof = dtrace_dof_create(state); 17932 mutex_exit(&dtrace_lock); 17933 17934 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17935 rval = copyout(dof, (void *)arg, len); 17936 dtrace_dof_destroy(dof); 17937 17938 return (rval == 0 ? 0 : EFAULT); 17939 } 17940 17941 case DTRACEIOC_AGGSNAP: 17942 case DTRACEIOC_BUFSNAP: { 17943 dtrace_bufdesc_t desc; 17944 caddr_t cached; 17945 dtrace_buffer_t *buf; 17946 17947 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17948 return (EFAULT); 17949 17950 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17951 return (EINVAL); 17952 17953 mutex_enter(&dtrace_lock); 17954 17955 if (cmd == DTRACEIOC_BUFSNAP) { 17956 buf = &state->dts_buffer[desc.dtbd_cpu]; 17957 } else { 17958 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17959 } 17960 17961 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17962 size_t sz = buf->dtb_offset; 17963 17964 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17965 mutex_exit(&dtrace_lock); 17966 return (EBUSY); 17967 } 17968 17969 /* 17970 * If this buffer has already been consumed, we're 17971 * going to indicate that there's nothing left here 17972 * to consume. 17973 */ 17974 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17975 mutex_exit(&dtrace_lock); 17976 17977 desc.dtbd_size = 0; 17978 desc.dtbd_drops = 0; 17979 desc.dtbd_errors = 0; 17980 desc.dtbd_oldest = 0; 17981 sz = sizeof (desc); 17982 17983 if (copyout(&desc, (void *)arg, sz) != 0) 17984 return (EFAULT); 17985 17986 return (0); 17987 } 17988 17989 /* 17990 * If this is a ring buffer that has wrapped, we want 17991 * to copy the whole thing out. 17992 */ 17993 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17994 dtrace_buffer_polish(buf); 17995 sz = buf->dtb_size; 17996 } 17997 17998 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17999 mutex_exit(&dtrace_lock); 18000 return (EFAULT); 18001 } 18002 18003 desc.dtbd_size = sz; 18004 desc.dtbd_drops = buf->dtb_drops; 18005 desc.dtbd_errors = buf->dtb_errors; 18006 desc.dtbd_oldest = buf->dtb_xamot_offset; 18007 desc.dtbd_timestamp = dtrace_gethrtime(); 18008 18009 mutex_exit(&dtrace_lock); 18010 18011 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18012 return (EFAULT); 18013 18014 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18015 18016 return (0); 18017 } 18018 18019 if (buf->dtb_tomax == NULL) { 18020 ASSERT(buf->dtb_xamot == NULL); 18021 mutex_exit(&dtrace_lock); 18022 return (ENOENT); 18023 } 18024 18025 cached = buf->dtb_tomax; 18026 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18027 18028 dtrace_xcall(desc.dtbd_cpu, 18029 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18030 18031 state->dts_errors += buf->dtb_xamot_errors; 18032 18033 /* 18034 * If the buffers did not actually switch, then the cross call 18035 * did not take place -- presumably because the given CPU is 18036 * not in the ready set. If this is the case, we'll return 18037 * ENOENT. 18038 */ 18039 if (buf->dtb_tomax == cached) { 18040 ASSERT(buf->dtb_xamot != cached); 18041 mutex_exit(&dtrace_lock); 18042 return (ENOENT); 18043 } 18044 18045 ASSERT(cached == buf->dtb_xamot); 18046 18047 /* 18048 * We have our snapshot; now copy it out. 18049 */ 18050 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18051 buf->dtb_xamot_offset) != 0) { 18052 mutex_exit(&dtrace_lock); 18053 return (EFAULT); 18054 } 18055 18056 desc.dtbd_size = buf->dtb_xamot_offset; 18057 desc.dtbd_drops = buf->dtb_xamot_drops; 18058 desc.dtbd_errors = buf->dtb_xamot_errors; 18059 desc.dtbd_oldest = 0; 18060 desc.dtbd_timestamp = buf->dtb_switched; 18061 18062 mutex_exit(&dtrace_lock); 18063 18064 /* 18065 * Finally, copy out the buffer description. 18066 */ 18067 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18068 return (EFAULT); 18069 18070 return (0); 18071 } 18072 18073 case DTRACEIOC_CONF: { 18074 dtrace_conf_t conf; 18075 18076 bzero(&conf, sizeof (conf)); 18077 conf.dtc_difversion = DIF_VERSION; 18078 conf.dtc_difintregs = DIF_DIR_NREGS; 18079 conf.dtc_diftupregs = DIF_DTR_NREGS; 18080 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18081 18082 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18083 return (EFAULT); 18084 18085 return (0); 18086 } 18087 18088 case DTRACEIOC_STATUS: { 18089 dtrace_status_t stat; 18090 dtrace_dstate_t *dstate; 18091 int i, j; 18092 uint64_t nerrs; 18093 18094 /* 18095 * See the comment in dtrace_state_deadman() for the reason 18096 * for setting dts_laststatus to INT64_MAX before setting 18097 * it to the correct value. 18098 */ 18099 state->dts_laststatus = INT64_MAX; 18100 dtrace_membar_producer(); 18101 state->dts_laststatus = dtrace_gethrtime(); 18102 18103 bzero(&stat, sizeof (stat)); 18104 18105 mutex_enter(&dtrace_lock); 18106 18107 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18108 mutex_exit(&dtrace_lock); 18109 return (ENOENT); 18110 } 18111 18112 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18113 stat.dtst_exiting = 1; 18114 18115 nerrs = state->dts_errors; 18116 dstate = &state->dts_vstate.dtvs_dynvars; 18117 18118 for (i = 0; i < NCPU; i++) { 18119 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18120 18121 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18122 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18123 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18124 18125 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18126 stat.dtst_filled++; 18127 18128 nerrs += state->dts_buffer[i].dtb_errors; 18129 18130 for (j = 0; j < state->dts_nspeculations; j++) { 18131 dtrace_speculation_t *spec; 18132 dtrace_buffer_t *buf; 18133 18134 spec = &state->dts_speculations[j]; 18135 buf = &spec->dtsp_buffer[i]; 18136 stat.dtst_specdrops += buf->dtb_xamot_drops; 18137 } 18138 } 18139 18140 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18141 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18142 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18143 stat.dtst_dblerrors = state->dts_dblerrors; 18144 stat.dtst_killed = 18145 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18146 stat.dtst_errors = nerrs; 18147 18148 mutex_exit(&dtrace_lock); 18149 18150 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18151 return (EFAULT); 18152 18153 return (0); 18154 } 18155 18156 case DTRACEIOC_FORMAT: { 18157 dtrace_fmtdesc_t fmt; 18158 char *str; 18159 int len; 18160 18161 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18162 return (EFAULT); 18163 18164 mutex_enter(&dtrace_lock); 18165 18166 if (fmt.dtfd_format == 0 || 18167 fmt.dtfd_format > state->dts_nformats) { 18168 mutex_exit(&dtrace_lock); 18169 return (EINVAL); 18170 } 18171 18172 /* 18173 * Format strings are allocated contiguously and they are 18174 * never freed; if a format index is less than the number 18175 * of formats, we can assert that the format map is non-NULL 18176 * and that the format for the specified index is non-NULL. 18177 */ 18178 ASSERT(state->dts_formats != NULL); 18179 str = state->dts_formats[fmt.dtfd_format - 1]; 18180 ASSERT(str != NULL); 18181 18182 len = strlen(str) + 1; 18183 18184 if (len > fmt.dtfd_length) { 18185 fmt.dtfd_length = len; 18186 18187 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18188 mutex_exit(&dtrace_lock); 18189 return (EINVAL); 18190 } 18191 } else { 18192 if (copyout(str, fmt.dtfd_string, len) != 0) { 18193 mutex_exit(&dtrace_lock); 18194 return (EINVAL); 18195 } 18196 } 18197 18198 mutex_exit(&dtrace_lock); 18199 return (0); 18200 } 18201 18202 default: 18203 break; 18204 } 18205 18206 return (ENOTTY); 18207 } 18208 18209 /*ARGSUSED*/ 18210 static int 18211 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18212 { 18213 dtrace_state_t *state; 18214 18215 switch (cmd) { 18216 case DDI_DETACH: 18217 break; 18218 18219 case DDI_SUSPEND: 18220 return (DDI_SUCCESS); 18221 18222 default: 18223 return (DDI_FAILURE); 18224 } 18225 18226 mutex_enter(&cpu_lock); 18227 mutex_enter(&dtrace_provider_lock); 18228 mutex_enter(&dtrace_lock); 18229 18230 ASSERT(dtrace_opens == 0); 18231 18232 if (dtrace_helpers > 0) { 18233 mutex_exit(&dtrace_provider_lock); 18234 mutex_exit(&dtrace_lock); 18235 mutex_exit(&cpu_lock); 18236 return (DDI_FAILURE); 18237 } 18238 18239 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18240 mutex_exit(&dtrace_provider_lock); 18241 mutex_exit(&dtrace_lock); 18242 mutex_exit(&cpu_lock); 18243 return (DDI_FAILURE); 18244 } 18245 18246 dtrace_provider = NULL; 18247 18248 if ((state = dtrace_anon_grab()) != NULL) { 18249 /* 18250 * If there were ECBs on this state, the provider should 18251 * have not been allowed to detach; assert that there is 18252 * none. 18253 */ 18254 ASSERT(state->dts_necbs == 0); 18255 dtrace_state_destroy(state); 18256 18257 /* 18258 * If we're being detached with anonymous state, we need to 18259 * indicate to the kernel debugger that DTrace is now inactive. 18260 */ 18261 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18262 } 18263 18264 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18265 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18266 dtrace_cpu_init = NULL; 18267 dtrace_helpers_cleanup = NULL; 18268 dtrace_helpers_fork = NULL; 18269 dtrace_cpustart_init = NULL; 18270 dtrace_cpustart_fini = NULL; 18271 dtrace_debugger_init = NULL; 18272 dtrace_debugger_fini = NULL; 18273 dtrace_modload = NULL; 18274 dtrace_modunload = NULL; 18275 18276 ASSERT(dtrace_getf == 0); 18277 ASSERT(dtrace_closef == NULL); 18278 18279 mutex_exit(&cpu_lock); 18280 18281 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18282 dtrace_probes = NULL; 18283 dtrace_nprobes = 0; 18284 18285 dtrace_hash_destroy(dtrace_bymod); 18286 dtrace_hash_destroy(dtrace_byfunc); 18287 dtrace_hash_destroy(dtrace_byname); 18288 dtrace_bymod = NULL; 18289 dtrace_byfunc = NULL; 18290 dtrace_byname = NULL; 18291 18292 kmem_cache_destroy(dtrace_state_cache); 18293 vmem_destroy(dtrace_minor); 18294 vmem_destroy(dtrace_arena); 18295 18296 if (dtrace_toxrange != NULL) { 18297 kmem_free(dtrace_toxrange, 18298 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18299 dtrace_toxrange = NULL; 18300 dtrace_toxranges = 0; 18301 dtrace_toxranges_max = 0; 18302 } 18303 18304 ddi_remove_minor_node(dtrace_devi, NULL); 18305 dtrace_devi = NULL; 18306 18307 ddi_soft_state_fini(&dtrace_softstate); 18308 18309 ASSERT(dtrace_vtime_references == 0); 18310 ASSERT(dtrace_opens == 0); 18311 ASSERT(dtrace_retained == NULL); 18312 18313 mutex_exit(&dtrace_lock); 18314 mutex_exit(&dtrace_provider_lock); 18315 18316 /* 18317 * We don't destroy the task queue until after we have dropped our 18318 * locks (taskq_destroy() may block on running tasks). To prevent 18319 * attempting to do work after we have effectively detached but before 18320 * the task queue has been destroyed, all tasks dispatched via the 18321 * task queue must check that DTrace is still attached before 18322 * performing any operation. 18323 */ 18324 taskq_destroy(dtrace_taskq); 18325 dtrace_taskq = NULL; 18326 18327 return (DDI_SUCCESS); 18328 } 18329 #endif 18330 18331 #ifdef illumos 18332 /*ARGSUSED*/ 18333 static int 18334 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18335 { 18336 int error; 18337 18338 switch (infocmd) { 18339 case DDI_INFO_DEVT2DEVINFO: 18340 *result = (void *)dtrace_devi; 18341 error = DDI_SUCCESS; 18342 break; 18343 case DDI_INFO_DEVT2INSTANCE: 18344 *result = (void *)0; 18345 error = DDI_SUCCESS; 18346 break; 18347 default: 18348 error = DDI_FAILURE; 18349 } 18350 return (error); 18351 } 18352 #endif 18353 18354 #ifdef illumos 18355 static struct cb_ops dtrace_cb_ops = { 18356 dtrace_open, /* open */ 18357 dtrace_close, /* close */ 18358 nulldev, /* strategy */ 18359 nulldev, /* print */ 18360 nodev, /* dump */ 18361 nodev, /* read */ 18362 nodev, /* write */ 18363 dtrace_ioctl, /* ioctl */ 18364 nodev, /* devmap */ 18365 nodev, /* mmap */ 18366 nodev, /* segmap */ 18367 nochpoll, /* poll */ 18368 ddi_prop_op, /* cb_prop_op */ 18369 0, /* streamtab */ 18370 D_NEW | D_MP /* Driver compatibility flag */ 18371 }; 18372 18373 static struct dev_ops dtrace_ops = { 18374 DEVO_REV, /* devo_rev */ 18375 0, /* refcnt */ 18376 dtrace_info, /* get_dev_info */ 18377 nulldev, /* identify */ 18378 nulldev, /* probe */ 18379 dtrace_attach, /* attach */ 18380 dtrace_detach, /* detach */ 18381 nodev, /* reset */ 18382 &dtrace_cb_ops, /* driver operations */ 18383 NULL, /* bus operations */ 18384 nodev /* dev power */ 18385 }; 18386 18387 static struct modldrv modldrv = { 18388 &mod_driverops, /* module type (this is a pseudo driver) */ 18389 "Dynamic Tracing", /* name of module */ 18390 &dtrace_ops, /* driver ops */ 18391 }; 18392 18393 static struct modlinkage modlinkage = { 18394 MODREV_1, 18395 (void *)&modldrv, 18396 NULL 18397 }; 18398 18399 int 18400 _init(void) 18401 { 18402 return (mod_install(&modlinkage)); 18403 } 18404 18405 int 18406 _info(struct modinfo *modinfop) 18407 { 18408 return (mod_info(&modlinkage, modinfop)); 18409 } 18410 18411 int 18412 _fini(void) 18413 { 18414 return (mod_remove(&modlinkage)); 18415 } 18416 #else 18417 18418 static d_ioctl_t dtrace_ioctl; 18419 static d_ioctl_t dtrace_ioctl_helper; 18420 static void dtrace_load(void *); 18421 static int dtrace_unload(void); 18422 static struct cdev *dtrace_dev; 18423 static struct cdev *helper_dev; 18424 18425 void dtrace_invop_init(void); 18426 void dtrace_invop_uninit(void); 18427 18428 static struct cdevsw dtrace_cdevsw = { 18429 .d_version = D_VERSION, 18430 .d_ioctl = dtrace_ioctl, 18431 .d_open = dtrace_open, 18432 .d_name = "dtrace", 18433 }; 18434 18435 static struct cdevsw helper_cdevsw = { 18436 .d_version = D_VERSION, 18437 .d_ioctl = dtrace_ioctl_helper, 18438 .d_name = "helper", 18439 }; 18440 18441 #include <dtrace_anon.c> 18442 #include <dtrace_ioctl.c> 18443 #include <dtrace_load.c> 18444 #include <dtrace_modevent.c> 18445 #include <dtrace_sysctl.c> 18446 #include <dtrace_unload.c> 18447 #include <dtrace_vtime.c> 18448 #include <dtrace_hacks.c> 18449 18450 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18451 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18452 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18453 18454 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18455 MODULE_VERSION(dtrace, 1); 18456 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18457 #endif 18458