1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #include <sys/errno.h> 70 #include <sys/param.h> 71 #include <sys/types.h> 72 #ifndef illumos 73 #include <sys/time.h> 74 #endif 75 #include <sys/stat.h> 76 #include <sys/conf.h> 77 #include <sys/systm.h> 78 #include <sys/endian.h> 79 #ifdef illumos 80 #include <sys/ddi.h> 81 #include <sys/sunddi.h> 82 #endif 83 #include <sys/cpuvar.h> 84 #include <sys/kmem.h> 85 #ifdef illumos 86 #include <sys/strsubr.h> 87 #endif 88 #include <sys/sysmacros.h> 89 #include <sys/dtrace_impl.h> 90 #include <sys/atomic.h> 91 #include <sys/cmn_err.h> 92 #ifdef illumos 93 #include <sys/mutex_impl.h> 94 #include <sys/rwlock_impl.h> 95 #endif 96 #include <sys/ctf_api.h> 97 #ifdef illumos 98 #include <sys/panic.h> 99 #include <sys/priv_impl.h> 100 #endif 101 #ifdef illumos 102 #include <sys/cred_impl.h> 103 #include <sys/procfs_isa.h> 104 #endif 105 #include <sys/taskq.h> 106 #ifdef illumos 107 #include <sys/mkdev.h> 108 #include <sys/kdi.h> 109 #endif 110 #include <sys/zone.h> 111 #include <sys/socket.h> 112 #include <netinet/in.h> 113 #include "strtolctype.h" 114 115 /* FreeBSD includes: */ 116 #ifndef illumos 117 #include <sys/callout.h> 118 #include <sys/ctype.h> 119 #include <sys/eventhandler.h> 120 #include <sys/limits.h> 121 #include <sys/linker.h> 122 #include <sys/kdb.h> 123 #include <sys/jail.h> 124 #include <sys/kernel.h> 125 #include <sys/malloc.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/ptrace.h> 129 #include <sys/random.h> 130 #include <sys/rwlock.h> 131 #include <sys/sx.h> 132 #include <sys/sysctl.h> 133 134 135 #include <sys/mount.h> 136 #undef AT_UID 137 #undef AT_GID 138 #include <sys/vnode.h> 139 #include <sys/cred.h> 140 141 #include <sys/dtrace_bsd.h> 142 143 #include <netinet/in.h> 144 145 #include "dtrace_cddl.h" 146 #include "dtrace_debug.c" 147 #endif 148 149 #include "dtrace_xoroshiro128_plus.h" 150 151 /* 152 * DTrace Tunable Variables 153 * 154 * The following variables may be tuned by adding a line to /etc/system that 155 * includes both the name of the DTrace module ("dtrace") and the name of the 156 * variable. For example: 157 * 158 * set dtrace:dtrace_destructive_disallow = 1 159 * 160 * In general, the only variables that one should be tuning this way are those 161 * that affect system-wide DTrace behavior, and for which the default behavior 162 * is undesirable. Most of these variables are tunable on a per-consumer 163 * basis using DTrace options, and need not be tuned on a system-wide basis. 164 * When tuning these variables, avoid pathological values; while some attempt 165 * is made to verify the integrity of these variables, they are not considered 166 * part of the supported interface to DTrace, and they are therefore not 167 * checked comprehensively. Further, these variables should not be tuned 168 * dynamically via "mdb -kw" or other means; they should only be tuned via 169 * /etc/system. 170 */ 171 int dtrace_destructive_disallow = 0; 172 #ifndef illumos 173 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 174 int dtrace_allow_destructive = 1; 175 #endif 176 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 177 size_t dtrace_difo_maxsize = (256 * 1024); 178 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 179 size_t dtrace_statvar_maxsize = (16 * 1024); 180 size_t dtrace_actions_max = (16 * 1024); 181 size_t dtrace_retain_max = 1024; 182 dtrace_optval_t dtrace_helper_actions_max = 128; 183 dtrace_optval_t dtrace_helper_providers_max = 32; 184 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 185 size_t dtrace_strsize_default = 256; 186 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 187 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 188 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 189 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 190 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 192 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 193 dtrace_optval_t dtrace_nspec_default = 1; 194 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 195 dtrace_optval_t dtrace_stackframes_default = 20; 196 dtrace_optval_t dtrace_ustackframes_default = 20; 197 dtrace_optval_t dtrace_jstackframes_default = 50; 198 dtrace_optval_t dtrace_jstackstrsize_default = 512; 199 int dtrace_msgdsize_max = 128; 200 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 201 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 202 int dtrace_devdepth_max = 32; 203 int dtrace_err_verbose; 204 hrtime_t dtrace_deadman_interval = NANOSEC; 205 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 206 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 207 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 208 #ifndef illumos 209 int dtrace_memstr_max = 4096; 210 #endif 211 212 /* 213 * DTrace External Variables 214 * 215 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 216 * available to DTrace consumers via the backtick (`) syntax. One of these, 217 * dtrace_zero, is made deliberately so: it is provided as a source of 218 * well-known, zero-filled memory. While this variable is not documented, 219 * it is used by some translators as an implementation detail. 220 */ 221 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 222 223 /* 224 * DTrace Internal Variables 225 */ 226 #ifdef illumos 227 static dev_info_t *dtrace_devi; /* device info */ 228 #endif 229 #ifdef illumos 230 static vmem_t *dtrace_arena; /* probe ID arena */ 231 static vmem_t *dtrace_minor; /* minor number arena */ 232 #else 233 static taskq_t *dtrace_taskq; /* task queue */ 234 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 235 #endif 236 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 237 static int dtrace_nprobes; /* number of probes */ 238 static dtrace_provider_t *dtrace_provider; /* provider list */ 239 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 240 static int dtrace_opens; /* number of opens */ 241 static int dtrace_helpers; /* number of helpers */ 242 static int dtrace_getf; /* number of unpriv getf()s */ 243 #ifdef illumos 244 static void *dtrace_softstate; /* softstate pointer */ 245 #endif 246 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 247 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 248 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 249 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 250 static int dtrace_toxranges; /* number of toxic ranges */ 251 static int dtrace_toxranges_max; /* size of toxic range array */ 252 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 253 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 254 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 255 static kthread_t *dtrace_panicked; /* panicking thread */ 256 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 257 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 258 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 259 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 260 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 261 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 262 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 263 #ifndef illumos 264 static struct mtx dtrace_unr_mtx; 265 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 266 static eventhandler_tag dtrace_kld_load_tag; 267 static eventhandler_tag dtrace_kld_unload_try_tag; 268 #endif 269 270 /* 271 * DTrace Locking 272 * DTrace is protected by three (relatively coarse-grained) locks: 273 * 274 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 275 * including enabling state, probes, ECBs, consumer state, helper state, 276 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 277 * probe context is lock-free -- synchronization is handled via the 278 * dtrace_sync() cross call mechanism. 279 * 280 * (2) dtrace_provider_lock is required when manipulating provider state, or 281 * when provider state must be held constant. 282 * 283 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 284 * when meta provider state must be held constant. 285 * 286 * The lock ordering between these three locks is dtrace_meta_lock before 287 * dtrace_provider_lock before dtrace_lock. (In particular, there are 288 * several places where dtrace_provider_lock is held by the framework as it 289 * calls into the providers -- which then call back into the framework, 290 * grabbing dtrace_lock.) 291 * 292 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 293 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 294 * role as a coarse-grained lock; it is acquired before both of these locks. 295 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 296 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 297 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 298 * acquired _between_ dtrace_provider_lock and dtrace_lock. 299 */ 300 static kmutex_t dtrace_lock; /* probe state lock */ 301 static kmutex_t dtrace_provider_lock; /* provider state lock */ 302 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 303 304 #ifndef illumos 305 /* XXX FreeBSD hacks. */ 306 #define cr_suid cr_svuid 307 #define cr_sgid cr_svgid 308 #define ipaddr_t in_addr_t 309 #define mod_modname pathname 310 #define vuprintf vprintf 311 #ifndef crgetzoneid 312 #define crgetzoneid(_a) 0 313 #endif 314 #define ttoproc(_a) ((_a)->td_proc) 315 #define SNOCD 0 316 #define CPU_ON_INTR(_a) 0 317 318 #define PRIV_EFFECTIVE (1 << 0) 319 #define PRIV_DTRACE_KERNEL (1 << 1) 320 #define PRIV_DTRACE_PROC (1 << 2) 321 #define PRIV_DTRACE_USER (1 << 3) 322 #define PRIV_PROC_OWNER (1 << 4) 323 #define PRIV_PROC_ZONE (1 << 5) 324 #define PRIV_ALL ~0 325 326 SYSCTL_DECL(_debug_dtrace); 327 SYSCTL_DECL(_kern_dtrace); 328 #endif 329 330 #ifdef illumos 331 #define curcpu CPU->cpu_id 332 #endif 333 334 335 /* 336 * DTrace Provider Variables 337 * 338 * These are the variables relating to DTrace as a provider (that is, the 339 * provider of the BEGIN, END, and ERROR probes). 340 */ 341 static dtrace_pattr_t dtrace_provider_attr = { 342 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 347 }; 348 349 static void 350 dtrace_nullop(void) 351 {} 352 353 static dtrace_pops_t dtrace_provider_ops = { 354 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 355 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 356 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 360 .dtps_getargdesc = NULL, 361 .dtps_getargval = NULL, 362 .dtps_usermode = NULL, 363 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 364 }; 365 366 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 367 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 368 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 369 370 /* 371 * DTrace Helper Tracing Variables 372 * 373 * These variables should be set dynamically to enable helper tracing. The 374 * only variables that should be set are dtrace_helptrace_enable (which should 375 * be set to a non-zero value to allocate helper tracing buffers on the next 376 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 377 * non-zero value to deallocate helper tracing buffers on the next close of 378 * /dev/dtrace). When (and only when) helper tracing is disabled, the 379 * buffer size may also be set via dtrace_helptrace_bufsize. 380 */ 381 int dtrace_helptrace_enable = 0; 382 int dtrace_helptrace_disable = 0; 383 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 384 uint32_t dtrace_helptrace_nlocals; 385 static dtrace_helptrace_t *dtrace_helptrace_buffer; 386 static uint32_t dtrace_helptrace_next = 0; 387 static int dtrace_helptrace_wrapped = 0; 388 389 /* 390 * DTrace Error Hashing 391 * 392 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 393 * table. This is very useful for checking coverage of tests that are 394 * expected to induce DIF or DOF processing errors, and may be useful for 395 * debugging problems in the DIF code generator or in DOF generation . The 396 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 397 */ 398 #ifdef DEBUG 399 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 400 static const char *dtrace_errlast; 401 static kthread_t *dtrace_errthread; 402 static kmutex_t dtrace_errlock; 403 #endif 404 405 /* 406 * DTrace Macros and Constants 407 * 408 * These are various macros that are useful in various spots in the 409 * implementation, along with a few random constants that have no meaning 410 * outside of the implementation. There is no real structure to this cpp 411 * mishmash -- but is there ever? 412 */ 413 #define DTRACE_HASHSTR(hash, probe) \ 414 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 415 416 #define DTRACE_HASHNEXT(hash, probe) \ 417 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 418 419 #define DTRACE_HASHPREV(hash, probe) \ 420 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 421 422 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 423 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 424 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 425 426 #define DTRACE_AGGHASHSIZE_SLEW 17 427 428 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 429 430 /* 431 * The key for a thread-local variable consists of the lower 61 bits of the 432 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 433 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 434 * equal to a variable identifier. This is necessary (but not sufficient) to 435 * assure that global associative arrays never collide with thread-local 436 * variables. To guarantee that they cannot collide, we must also define the 437 * order for keying dynamic variables. That order is: 438 * 439 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 440 * 441 * Because the variable-key and the tls-key are in orthogonal spaces, there is 442 * no way for a global variable key signature to match a thread-local key 443 * signature. 444 */ 445 #ifdef illumos 446 #define DTRACE_TLS_THRKEY(where) { \ 447 uint_t intr = 0; \ 448 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 449 for (; actv; actv >>= 1) \ 450 intr++; \ 451 ASSERT(intr < (1 << 3)); \ 452 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 453 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 454 } 455 #else 456 #define DTRACE_TLS_THRKEY(where) { \ 457 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 458 uint_t intr = 0; \ 459 uint_t actv = _c->cpu_intr_actv; \ 460 for (; actv; actv >>= 1) \ 461 intr++; \ 462 ASSERT(intr < (1 << 3)); \ 463 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 464 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 465 } 466 #endif 467 468 #define DT_BSWAP_8(x) ((x) & 0xff) 469 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 470 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 471 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 472 473 #define DT_MASK_LO 0x00000000FFFFFFFFULL 474 475 #define DTRACE_STORE(type, tomax, offset, what) \ 476 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 477 478 #if !defined(__x86) && !defined(__aarch64__) 479 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 480 if (addr & (size - 1)) { \ 481 *flags |= CPU_DTRACE_BADALIGN; \ 482 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 483 return (0); \ 484 } 485 #else 486 #define DTRACE_ALIGNCHECK(addr, size, flags) 487 #endif 488 489 /* 490 * Test whether a range of memory starting at testaddr of size testsz falls 491 * within the range of memory described by addr, sz. We take care to avoid 492 * problems with overflow and underflow of the unsigned quantities, and 493 * disallow all negative sizes. Ranges of size 0 are allowed. 494 */ 495 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 496 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 497 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 498 (testaddr) + (testsz) >= (testaddr)) 499 500 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 501 do { \ 502 if ((remp) != NULL) { \ 503 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 504 } \ 505 } while (0) 506 507 508 /* 509 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 510 * alloc_sz on the righthand side of the comparison in order to avoid overflow 511 * or underflow in the comparison with it. This is simpler than the INRANGE 512 * check above, because we know that the dtms_scratch_ptr is valid in the 513 * range. Allocations of size zero are allowed. 514 */ 515 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 516 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 517 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 518 519 #define DTRACE_LOADFUNC(bits) \ 520 /*CSTYLED*/ \ 521 uint##bits##_t \ 522 dtrace_load##bits(uintptr_t addr) \ 523 { \ 524 size_t size = bits / NBBY; \ 525 /*CSTYLED*/ \ 526 uint##bits##_t rval; \ 527 int i; \ 528 volatile uint16_t *flags = (volatile uint16_t *) \ 529 &cpu_core[curcpu].cpuc_dtrace_flags; \ 530 \ 531 DTRACE_ALIGNCHECK(addr, size, flags); \ 532 \ 533 for (i = 0; i < dtrace_toxranges; i++) { \ 534 if (addr >= dtrace_toxrange[i].dtt_limit) \ 535 continue; \ 536 \ 537 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 538 continue; \ 539 \ 540 /* \ 541 * This address falls within a toxic region; return 0. \ 542 */ \ 543 *flags |= CPU_DTRACE_BADADDR; \ 544 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 545 return (0); \ 546 } \ 547 \ 548 *flags |= CPU_DTRACE_NOFAULT; \ 549 /*CSTYLED*/ \ 550 rval = *((volatile uint##bits##_t *)addr); \ 551 *flags &= ~CPU_DTRACE_NOFAULT; \ 552 \ 553 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 554 } 555 556 #ifdef _LP64 557 #define dtrace_loadptr dtrace_load64 558 #else 559 #define dtrace_loadptr dtrace_load32 560 #endif 561 562 #define DTRACE_DYNHASH_FREE 0 563 #define DTRACE_DYNHASH_SINK 1 564 #define DTRACE_DYNHASH_VALID 2 565 566 #define DTRACE_MATCH_NEXT 0 567 #define DTRACE_MATCH_DONE 1 568 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 569 #define DTRACE_STATE_ALIGN 64 570 571 #define DTRACE_FLAGS2FLT(flags) \ 572 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 573 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 574 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 575 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 576 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 577 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 578 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 579 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 580 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 581 DTRACEFLT_UNKNOWN) 582 583 #define DTRACEACT_ISSTRING(act) \ 584 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 585 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 586 587 /* Function prototype definitions: */ 588 static size_t dtrace_strlen(const char *, size_t); 589 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 590 static void dtrace_enabling_provide(dtrace_provider_t *); 591 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 592 static void dtrace_enabling_matchall(void); 593 static void dtrace_enabling_reap(void); 594 static dtrace_state_t *dtrace_anon_grab(void); 595 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 596 dtrace_state_t *, uint64_t, uint64_t); 597 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 598 static void dtrace_buffer_drop(dtrace_buffer_t *); 599 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 600 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 601 dtrace_state_t *, dtrace_mstate_t *); 602 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 603 dtrace_optval_t); 604 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 605 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 606 uint16_t dtrace_load16(uintptr_t); 607 uint32_t dtrace_load32(uintptr_t); 608 uint64_t dtrace_load64(uintptr_t); 609 uint8_t dtrace_load8(uintptr_t); 610 void dtrace_dynvar_clean(dtrace_dstate_t *); 611 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 612 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 613 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 614 static int dtrace_priv_proc(dtrace_state_t *); 615 static void dtrace_getf_barrier(void); 616 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 617 dtrace_mstate_t *, dtrace_vstate_t *); 618 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 619 dtrace_mstate_t *, dtrace_vstate_t *); 620 621 /* 622 * DTrace Probe Context Functions 623 * 624 * These functions are called from probe context. Because probe context is 625 * any context in which C may be called, arbitrarily locks may be held, 626 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 627 * As a result, functions called from probe context may only call other DTrace 628 * support functions -- they may not interact at all with the system at large. 629 * (Note that the ASSERT macro is made probe-context safe by redefining it in 630 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 631 * loads are to be performed from probe context, they _must_ be in terms of 632 * the safe dtrace_load*() variants. 633 * 634 * Some functions in this block are not actually called from probe context; 635 * for these functions, there will be a comment above the function reading 636 * "Note: not called from probe context." 637 */ 638 void 639 dtrace_panic(const char *format, ...) 640 { 641 va_list alist; 642 643 va_start(alist, format); 644 #ifdef __FreeBSD__ 645 vpanic(format, alist); 646 #else 647 dtrace_vpanic(format, alist); 648 #endif 649 va_end(alist); 650 } 651 652 int 653 dtrace_assfail(const char *a, const char *f, int l) 654 { 655 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 656 657 /* 658 * We just need something here that even the most clever compiler 659 * cannot optimize away. 660 */ 661 return (a[(uintptr_t)f]); 662 } 663 664 /* 665 * Atomically increment a specified error counter from probe context. 666 */ 667 static void 668 dtrace_error(uint32_t *counter) 669 { 670 /* 671 * Most counters stored to in probe context are per-CPU counters. 672 * However, there are some error conditions that are sufficiently 673 * arcane that they don't merit per-CPU storage. If these counters 674 * are incremented concurrently on different CPUs, scalability will be 675 * adversely affected -- but we don't expect them to be white-hot in a 676 * correctly constructed enabling... 677 */ 678 uint32_t oval, nval; 679 680 do { 681 oval = *counter; 682 683 if ((nval = oval + 1) == 0) { 684 /* 685 * If the counter would wrap, set it to 1 -- assuring 686 * that the counter is never zero when we have seen 687 * errors. (The counter must be 32-bits because we 688 * aren't guaranteed a 64-bit compare&swap operation.) 689 * To save this code both the infamy of being fingered 690 * by a priggish news story and the indignity of being 691 * the target of a neo-puritan witch trial, we're 692 * carefully avoiding any colorful description of the 693 * likelihood of this condition -- but suffice it to 694 * say that it is only slightly more likely than the 695 * overflow of predicate cache IDs, as discussed in 696 * dtrace_predicate_create(). 697 */ 698 nval = 1; 699 } 700 } while (dtrace_cas32(counter, oval, nval) != oval); 701 } 702 703 /* 704 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 705 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 706 */ 707 /* BEGIN CSTYLED */ 708 DTRACE_LOADFUNC(8) 709 DTRACE_LOADFUNC(16) 710 DTRACE_LOADFUNC(32) 711 DTRACE_LOADFUNC(64) 712 /* END CSTYLED */ 713 714 static int 715 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 716 { 717 if (dest < mstate->dtms_scratch_base) 718 return (0); 719 720 if (dest + size < dest) 721 return (0); 722 723 if (dest + size > mstate->dtms_scratch_ptr) 724 return (0); 725 726 return (1); 727 } 728 729 static int 730 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 731 dtrace_statvar_t **svars, int nsvars) 732 { 733 int i; 734 size_t maxglobalsize, maxlocalsize; 735 736 if (nsvars == 0) 737 return (0); 738 739 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 740 maxlocalsize = maxglobalsize * NCPU; 741 742 for (i = 0; i < nsvars; i++) { 743 dtrace_statvar_t *svar = svars[i]; 744 uint8_t scope; 745 size_t size; 746 747 if (svar == NULL || (size = svar->dtsv_size) == 0) 748 continue; 749 750 scope = svar->dtsv_var.dtdv_scope; 751 752 /* 753 * We verify that our size is valid in the spirit of providing 754 * defense in depth: we want to prevent attackers from using 755 * DTrace to escalate an orthogonal kernel heap corruption bug 756 * into the ability to store to arbitrary locations in memory. 757 */ 758 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 759 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 760 761 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 762 svar->dtsv_size)) { 763 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 764 svar->dtsv_size); 765 return (1); 766 } 767 } 768 769 return (0); 770 } 771 772 /* 773 * Check to see if the address is within a memory region to which a store may 774 * be issued. This includes the DTrace scratch areas, and any DTrace variable 775 * region. The caller of dtrace_canstore() is responsible for performing any 776 * alignment checks that are needed before stores are actually executed. 777 */ 778 static int 779 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 780 dtrace_vstate_t *vstate) 781 { 782 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 783 } 784 785 /* 786 * Implementation of dtrace_canstore which communicates the upper bound of the 787 * allowed memory region. 788 */ 789 static int 790 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 791 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 792 { 793 /* 794 * First, check to see if the address is in scratch space... 795 */ 796 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 797 mstate->dtms_scratch_size)) { 798 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 799 mstate->dtms_scratch_size); 800 return (1); 801 } 802 803 /* 804 * Now check to see if it's a dynamic variable. This check will pick 805 * up both thread-local variables and any global dynamically-allocated 806 * variables. 807 */ 808 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 809 vstate->dtvs_dynvars.dtds_size)) { 810 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 811 uintptr_t base = (uintptr_t)dstate->dtds_base + 812 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 813 uintptr_t chunkoffs; 814 dtrace_dynvar_t *dvar; 815 816 /* 817 * Before we assume that we can store here, we need to make 818 * sure that it isn't in our metadata -- storing to our 819 * dynamic variable metadata would corrupt our state. For 820 * the range to not include any dynamic variable metadata, 821 * it must: 822 * 823 * (1) Start above the hash table that is at the base of 824 * the dynamic variable space 825 * 826 * (2) Have a starting chunk offset that is beyond the 827 * dtrace_dynvar_t that is at the base of every chunk 828 * 829 * (3) Not span a chunk boundary 830 * 831 * (4) Not be in the tuple space of a dynamic variable 832 * 833 */ 834 if (addr < base) 835 return (0); 836 837 chunkoffs = (addr - base) % dstate->dtds_chunksize; 838 839 if (chunkoffs < sizeof (dtrace_dynvar_t)) 840 return (0); 841 842 if (chunkoffs + sz > dstate->dtds_chunksize) 843 return (0); 844 845 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 846 847 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 848 return (0); 849 850 if (chunkoffs < sizeof (dtrace_dynvar_t) + 851 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 852 return (0); 853 854 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 855 return (1); 856 } 857 858 /* 859 * Finally, check the static local and global variables. These checks 860 * take the longest, so we perform them last. 861 */ 862 if (dtrace_canstore_statvar(addr, sz, remain, 863 vstate->dtvs_locals, vstate->dtvs_nlocals)) 864 return (1); 865 866 if (dtrace_canstore_statvar(addr, sz, remain, 867 vstate->dtvs_globals, vstate->dtvs_nglobals)) 868 return (1); 869 870 return (0); 871 } 872 873 874 /* 875 * Convenience routine to check to see if the address is within a memory 876 * region in which a load may be issued given the user's privilege level; 877 * if not, it sets the appropriate error flags and loads 'addr' into the 878 * illegal value slot. 879 * 880 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 881 * appropriate memory access protection. 882 */ 883 static int 884 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 885 dtrace_vstate_t *vstate) 886 { 887 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 888 } 889 890 /* 891 * Implementation of dtrace_canload which communicates the uppoer bound of the 892 * allowed memory region. 893 */ 894 static int 895 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 896 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 897 { 898 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 899 file_t *fp; 900 901 /* 902 * If we hold the privilege to read from kernel memory, then 903 * everything is readable. 904 */ 905 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 906 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 907 return (1); 908 } 909 910 /* 911 * You can obviously read that which you can store. 912 */ 913 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 914 return (1); 915 916 /* 917 * We're allowed to read from our own string table. 918 */ 919 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 920 mstate->dtms_difo->dtdo_strlen)) { 921 DTRACE_RANGE_REMAIN(remain, addr, 922 mstate->dtms_difo->dtdo_strtab, 923 mstate->dtms_difo->dtdo_strlen); 924 return (1); 925 } 926 927 if (vstate->dtvs_state != NULL && 928 dtrace_priv_proc(vstate->dtvs_state)) { 929 proc_t *p; 930 931 /* 932 * When we have privileges to the current process, there are 933 * several context-related kernel structures that are safe to 934 * read, even absent the privilege to read from kernel memory. 935 * These reads are safe because these structures contain only 936 * state that (1) we're permitted to read, (2) is harmless or 937 * (3) contains pointers to additional kernel state that we're 938 * not permitted to read (and as such, do not present an 939 * opportunity for privilege escalation). Finally (and 940 * critically), because of the nature of their relation with 941 * the current thread context, the memory associated with these 942 * structures cannot change over the duration of probe context, 943 * and it is therefore impossible for this memory to be 944 * deallocated and reallocated as something else while it's 945 * being operated upon. 946 */ 947 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 948 DTRACE_RANGE_REMAIN(remain, addr, curthread, 949 sizeof (kthread_t)); 950 return (1); 951 } 952 953 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 954 sz, curthread->t_procp, sizeof (proc_t))) { 955 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 956 sizeof (proc_t)); 957 return (1); 958 } 959 960 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 961 curthread->t_cred, sizeof (cred_t))) { 962 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 963 sizeof (cred_t)); 964 return (1); 965 } 966 967 #ifdef illumos 968 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 969 &(p->p_pidp->pid_id), sizeof (pid_t))) { 970 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 971 sizeof (pid_t)); 972 return (1); 973 } 974 975 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 976 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 977 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 978 offsetof(cpu_t, cpu_pause_thread)); 979 return (1); 980 } 981 #endif 982 } 983 984 if ((fp = mstate->dtms_getf) != NULL) { 985 uintptr_t psz = sizeof (void *); 986 vnode_t *vp; 987 vnodeops_t *op; 988 989 /* 990 * When getf() returns a file_t, the enabling is implicitly 991 * granted the (transient) right to read the returned file_t 992 * as well as the v_path and v_op->vnop_name of the underlying 993 * vnode. These accesses are allowed after a successful 994 * getf() because the members that they refer to cannot change 995 * once set -- and the barrier logic in the kernel's closef() 996 * path assures that the file_t and its referenced vode_t 997 * cannot themselves be stale (that is, it impossible for 998 * either dtms_getf itself or its f_vnode member to reference 999 * freed memory). 1000 */ 1001 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1002 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1003 return (1); 1004 } 1005 1006 if ((vp = fp->f_vnode) != NULL) { 1007 size_t slen; 1008 #ifdef illumos 1009 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1010 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1011 psz); 1012 return (1); 1013 } 1014 slen = strlen(vp->v_path) + 1; 1015 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1016 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1017 slen); 1018 return (1); 1019 } 1020 #endif 1021 1022 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1023 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1024 psz); 1025 return (1); 1026 } 1027 1028 #ifdef illumos 1029 if ((op = vp->v_op) != NULL && 1030 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1031 DTRACE_RANGE_REMAIN(remain, addr, 1032 &op->vnop_name, psz); 1033 return (1); 1034 } 1035 1036 if (op != NULL && op->vnop_name != NULL && 1037 DTRACE_INRANGE(addr, sz, op->vnop_name, 1038 (slen = strlen(op->vnop_name) + 1))) { 1039 DTRACE_RANGE_REMAIN(remain, addr, 1040 op->vnop_name, slen); 1041 return (1); 1042 } 1043 #endif 1044 } 1045 } 1046 1047 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1048 *illval = addr; 1049 return (0); 1050 } 1051 1052 /* 1053 * Convenience routine to check to see if a given string is within a memory 1054 * region in which a load may be issued given the user's privilege level; 1055 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1056 * calls in the event that the user has all privileges. 1057 */ 1058 static int 1059 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1060 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1061 { 1062 size_t rsize; 1063 1064 /* 1065 * If we hold the privilege to read from kernel memory, then 1066 * everything is readable. 1067 */ 1068 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1069 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1070 return (1); 1071 } 1072 1073 /* 1074 * Even if the caller is uninterested in querying the remaining valid 1075 * range, it is required to ensure that the access is allowed. 1076 */ 1077 if (remain == NULL) { 1078 remain = &rsize; 1079 } 1080 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1081 size_t strsz; 1082 /* 1083 * Perform the strlen after determining the length of the 1084 * memory region which is accessible. This prevents timing 1085 * information from being used to find NULs in memory which is 1086 * not accessible to the caller. 1087 */ 1088 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1089 MIN(sz, *remain)); 1090 if (strsz <= *remain) { 1091 return (1); 1092 } 1093 } 1094 1095 return (0); 1096 } 1097 1098 /* 1099 * Convenience routine to check to see if a given variable is within a memory 1100 * region in which a load may be issued given the user's privilege level. 1101 */ 1102 static int 1103 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1104 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1105 { 1106 size_t sz; 1107 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1108 1109 /* 1110 * Calculate the max size before performing any checks since even 1111 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1112 * return the max length via 'remain'. 1113 */ 1114 if (type->dtdt_kind == DIF_TYPE_STRING) { 1115 dtrace_state_t *state = vstate->dtvs_state; 1116 1117 if (state != NULL) { 1118 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1119 } else { 1120 /* 1121 * In helper context, we have a NULL state; fall back 1122 * to using the system-wide default for the string size 1123 * in this case. 1124 */ 1125 sz = dtrace_strsize_default; 1126 } 1127 } else { 1128 sz = type->dtdt_size; 1129 } 1130 1131 /* 1132 * If we hold the privilege to read from kernel memory, then 1133 * everything is readable. 1134 */ 1135 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1136 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1137 return (1); 1138 } 1139 1140 if (type->dtdt_kind == DIF_TYPE_STRING) { 1141 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1142 vstate)); 1143 } 1144 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1145 vstate)); 1146 } 1147 1148 /* 1149 * Convert a string to a signed integer using safe loads. 1150 * 1151 * NOTE: This function uses various macros from strtolctype.h to manipulate 1152 * digit values, etc -- these have all been checked to ensure they make 1153 * no additional function calls. 1154 */ 1155 static int64_t 1156 dtrace_strtoll(char *input, int base, size_t limit) 1157 { 1158 uintptr_t pos = (uintptr_t)input; 1159 int64_t val = 0; 1160 int x; 1161 boolean_t neg = B_FALSE; 1162 char c, cc, ccc; 1163 uintptr_t end = pos + limit; 1164 1165 /* 1166 * Consume any whitespace preceding digits. 1167 */ 1168 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1169 pos++; 1170 1171 /* 1172 * Handle an explicit sign if one is present. 1173 */ 1174 if (c == '-' || c == '+') { 1175 if (c == '-') 1176 neg = B_TRUE; 1177 c = dtrace_load8(++pos); 1178 } 1179 1180 /* 1181 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1182 * if present. 1183 */ 1184 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1185 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1186 pos += 2; 1187 c = ccc; 1188 } 1189 1190 /* 1191 * Read in contiguous digits until the first non-digit character. 1192 */ 1193 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1194 c = dtrace_load8(++pos)) 1195 val = val * base + x; 1196 1197 return (neg ? -val : val); 1198 } 1199 1200 /* 1201 * Compare two strings using safe loads. 1202 */ 1203 static int 1204 dtrace_strncmp(char *s1, char *s2, size_t limit) 1205 { 1206 uint8_t c1, c2; 1207 volatile uint16_t *flags; 1208 1209 if (s1 == s2 || limit == 0) 1210 return (0); 1211 1212 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1213 1214 do { 1215 if (s1 == NULL) { 1216 c1 = '\0'; 1217 } else { 1218 c1 = dtrace_load8((uintptr_t)s1++); 1219 } 1220 1221 if (s2 == NULL) { 1222 c2 = '\0'; 1223 } else { 1224 c2 = dtrace_load8((uintptr_t)s2++); 1225 } 1226 1227 if (c1 != c2) 1228 return (c1 - c2); 1229 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1230 1231 return (0); 1232 } 1233 1234 /* 1235 * Compute strlen(s) for a string using safe memory accesses. The additional 1236 * len parameter is used to specify a maximum length to ensure completion. 1237 */ 1238 static size_t 1239 dtrace_strlen(const char *s, size_t lim) 1240 { 1241 uint_t len; 1242 1243 for (len = 0; len != lim; len++) { 1244 if (dtrace_load8((uintptr_t)s++) == '\0') 1245 break; 1246 } 1247 1248 return (len); 1249 } 1250 1251 /* 1252 * Check if an address falls within a toxic region. 1253 */ 1254 static int 1255 dtrace_istoxic(uintptr_t kaddr, size_t size) 1256 { 1257 uintptr_t taddr, tsize; 1258 int i; 1259 1260 for (i = 0; i < dtrace_toxranges; i++) { 1261 taddr = dtrace_toxrange[i].dtt_base; 1262 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1263 1264 if (kaddr - taddr < tsize) { 1265 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1266 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1267 return (1); 1268 } 1269 1270 if (taddr - kaddr < size) { 1271 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1272 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1273 return (1); 1274 } 1275 } 1276 1277 return (0); 1278 } 1279 1280 /* 1281 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1282 * memory specified by the DIF program. The dst is assumed to be safe memory 1283 * that we can store to directly because it is managed by DTrace. As with 1284 * standard bcopy, overlapping copies are handled properly. 1285 */ 1286 static void 1287 dtrace_bcopy(const void *src, void *dst, size_t len) 1288 { 1289 if (len != 0) { 1290 uint8_t *s1 = dst; 1291 const uint8_t *s2 = src; 1292 1293 if (s1 <= s2) { 1294 do { 1295 *s1++ = dtrace_load8((uintptr_t)s2++); 1296 } while (--len != 0); 1297 } else { 1298 s2 += len; 1299 s1 += len; 1300 1301 do { 1302 *--s1 = dtrace_load8((uintptr_t)--s2); 1303 } while (--len != 0); 1304 } 1305 } 1306 } 1307 1308 /* 1309 * Copy src to dst using safe memory accesses, up to either the specified 1310 * length, or the point that a nul byte is encountered. The src is assumed to 1311 * be unsafe memory specified by the DIF program. The dst is assumed to be 1312 * safe memory that we can store to directly because it is managed by DTrace. 1313 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1314 */ 1315 static void 1316 dtrace_strcpy(const void *src, void *dst, size_t len) 1317 { 1318 if (len != 0) { 1319 uint8_t *s1 = dst, c; 1320 const uint8_t *s2 = src; 1321 1322 do { 1323 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1324 } while (--len != 0 && c != '\0'); 1325 } 1326 } 1327 1328 /* 1329 * Copy src to dst, deriving the size and type from the specified (BYREF) 1330 * variable type. The src is assumed to be unsafe memory specified by the DIF 1331 * program. The dst is assumed to be DTrace variable memory that is of the 1332 * specified type; we assume that we can store to directly. 1333 */ 1334 static void 1335 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1336 { 1337 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1338 1339 if (type->dtdt_kind == DIF_TYPE_STRING) { 1340 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1341 } else { 1342 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1343 } 1344 } 1345 1346 /* 1347 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1348 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1349 * safe memory that we can access directly because it is managed by DTrace. 1350 */ 1351 static int 1352 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1353 { 1354 volatile uint16_t *flags; 1355 1356 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1357 1358 if (s1 == s2) 1359 return (0); 1360 1361 if (s1 == NULL || s2 == NULL) 1362 return (1); 1363 1364 if (s1 != s2 && len != 0) { 1365 const uint8_t *ps1 = s1; 1366 const uint8_t *ps2 = s2; 1367 1368 do { 1369 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1370 return (1); 1371 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1372 } 1373 return (0); 1374 } 1375 1376 /* 1377 * Zero the specified region using a simple byte-by-byte loop. Note that this 1378 * is for safe DTrace-managed memory only. 1379 */ 1380 static void 1381 dtrace_bzero(void *dst, size_t len) 1382 { 1383 uchar_t *cp; 1384 1385 for (cp = dst; len != 0; len--) 1386 *cp++ = 0; 1387 } 1388 1389 static void 1390 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1391 { 1392 uint64_t result[2]; 1393 1394 result[0] = addend1[0] + addend2[0]; 1395 result[1] = addend1[1] + addend2[1] + 1396 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1397 1398 sum[0] = result[0]; 1399 sum[1] = result[1]; 1400 } 1401 1402 /* 1403 * Shift the 128-bit value in a by b. If b is positive, shift left. 1404 * If b is negative, shift right. 1405 */ 1406 static void 1407 dtrace_shift_128(uint64_t *a, int b) 1408 { 1409 uint64_t mask; 1410 1411 if (b == 0) 1412 return; 1413 1414 if (b < 0) { 1415 b = -b; 1416 if (b >= 64) { 1417 a[0] = a[1] >> (b - 64); 1418 a[1] = 0; 1419 } else { 1420 a[0] >>= b; 1421 mask = 1LL << (64 - b); 1422 mask -= 1; 1423 a[0] |= ((a[1] & mask) << (64 - b)); 1424 a[1] >>= b; 1425 } 1426 } else { 1427 if (b >= 64) { 1428 a[1] = a[0] << (b - 64); 1429 a[0] = 0; 1430 } else { 1431 a[1] <<= b; 1432 mask = a[0] >> (64 - b); 1433 a[1] |= mask; 1434 a[0] <<= b; 1435 } 1436 } 1437 } 1438 1439 /* 1440 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1441 * use native multiplication on those, and then re-combine into the 1442 * resulting 128-bit value. 1443 * 1444 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1445 * hi1 * hi2 << 64 + 1446 * hi1 * lo2 << 32 + 1447 * hi2 * lo1 << 32 + 1448 * lo1 * lo2 1449 */ 1450 static void 1451 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1452 { 1453 uint64_t hi1, hi2, lo1, lo2; 1454 uint64_t tmp[2]; 1455 1456 hi1 = factor1 >> 32; 1457 hi2 = factor2 >> 32; 1458 1459 lo1 = factor1 & DT_MASK_LO; 1460 lo2 = factor2 & DT_MASK_LO; 1461 1462 product[0] = lo1 * lo2; 1463 product[1] = hi1 * hi2; 1464 1465 tmp[0] = hi1 * lo2; 1466 tmp[1] = 0; 1467 dtrace_shift_128(tmp, 32); 1468 dtrace_add_128(product, tmp, product); 1469 1470 tmp[0] = hi2 * lo1; 1471 tmp[1] = 0; 1472 dtrace_shift_128(tmp, 32); 1473 dtrace_add_128(product, tmp, product); 1474 } 1475 1476 /* 1477 * This privilege check should be used by actions and subroutines to 1478 * verify that the user credentials of the process that enabled the 1479 * invoking ECB match the target credentials 1480 */ 1481 static int 1482 dtrace_priv_proc_common_user(dtrace_state_t *state) 1483 { 1484 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1485 1486 /* 1487 * We should always have a non-NULL state cred here, since if cred 1488 * is null (anonymous tracing), we fast-path bypass this routine. 1489 */ 1490 ASSERT(s_cr != NULL); 1491 1492 if ((cr = CRED()) != NULL && 1493 s_cr->cr_uid == cr->cr_uid && 1494 s_cr->cr_uid == cr->cr_ruid && 1495 s_cr->cr_uid == cr->cr_suid && 1496 s_cr->cr_gid == cr->cr_gid && 1497 s_cr->cr_gid == cr->cr_rgid && 1498 s_cr->cr_gid == cr->cr_sgid) 1499 return (1); 1500 1501 return (0); 1502 } 1503 1504 /* 1505 * This privilege check should be used by actions and subroutines to 1506 * verify that the zone of the process that enabled the invoking ECB 1507 * matches the target credentials 1508 */ 1509 static int 1510 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1511 { 1512 #ifdef illumos 1513 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1514 1515 /* 1516 * We should always have a non-NULL state cred here, since if cred 1517 * is null (anonymous tracing), we fast-path bypass this routine. 1518 */ 1519 ASSERT(s_cr != NULL); 1520 1521 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1522 return (1); 1523 1524 return (0); 1525 #else 1526 return (1); 1527 #endif 1528 } 1529 1530 /* 1531 * This privilege check should be used by actions and subroutines to 1532 * verify that the process has not setuid or changed credentials. 1533 */ 1534 static int 1535 dtrace_priv_proc_common_nocd(void) 1536 { 1537 proc_t *proc; 1538 1539 if ((proc = ttoproc(curthread)) != NULL && 1540 !(proc->p_flag & SNOCD)) 1541 return (1); 1542 1543 return (0); 1544 } 1545 1546 static int 1547 dtrace_priv_proc_destructive(dtrace_state_t *state) 1548 { 1549 int action = state->dts_cred.dcr_action; 1550 1551 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1552 dtrace_priv_proc_common_zone(state) == 0) 1553 goto bad; 1554 1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1556 dtrace_priv_proc_common_user(state) == 0) 1557 goto bad; 1558 1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1560 dtrace_priv_proc_common_nocd() == 0) 1561 goto bad; 1562 1563 return (1); 1564 1565 bad: 1566 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1567 1568 return (0); 1569 } 1570 1571 static int 1572 dtrace_priv_proc_control(dtrace_state_t *state) 1573 { 1574 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1575 return (1); 1576 1577 if (dtrace_priv_proc_common_zone(state) && 1578 dtrace_priv_proc_common_user(state) && 1579 dtrace_priv_proc_common_nocd()) 1580 return (1); 1581 1582 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1583 1584 return (0); 1585 } 1586 1587 static int 1588 dtrace_priv_proc(dtrace_state_t *state) 1589 { 1590 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1591 return (1); 1592 1593 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1594 1595 return (0); 1596 } 1597 1598 static int 1599 dtrace_priv_kernel(dtrace_state_t *state) 1600 { 1601 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1602 return (1); 1603 1604 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1605 1606 return (0); 1607 } 1608 1609 static int 1610 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1611 { 1612 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1613 return (1); 1614 1615 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1616 1617 return (0); 1618 } 1619 1620 /* 1621 * Determine if the dte_cond of the specified ECB allows for processing of 1622 * the current probe to continue. Note that this routine may allow continued 1623 * processing, but with access(es) stripped from the mstate's dtms_access 1624 * field. 1625 */ 1626 static int 1627 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1628 dtrace_ecb_t *ecb) 1629 { 1630 dtrace_probe_t *probe = ecb->dte_probe; 1631 dtrace_provider_t *prov = probe->dtpr_provider; 1632 dtrace_pops_t *pops = &prov->dtpv_pops; 1633 int mode = DTRACE_MODE_NOPRIV_DROP; 1634 1635 ASSERT(ecb->dte_cond); 1636 1637 #ifdef illumos 1638 if (pops->dtps_mode != NULL) { 1639 mode = pops->dtps_mode(prov->dtpv_arg, 1640 probe->dtpr_id, probe->dtpr_arg); 1641 1642 ASSERT((mode & DTRACE_MODE_USER) || 1643 (mode & DTRACE_MODE_KERNEL)); 1644 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1645 (mode & DTRACE_MODE_NOPRIV_DROP)); 1646 } 1647 1648 /* 1649 * If the dte_cond bits indicate that this consumer is only allowed to 1650 * see user-mode firings of this probe, call the provider's dtps_mode() 1651 * entry point to check that the probe was fired while in a user 1652 * context. If that's not the case, use the policy specified by the 1653 * provider to determine if we drop the probe or merely restrict 1654 * operation. 1655 */ 1656 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1657 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1658 1659 if (!(mode & DTRACE_MODE_USER)) { 1660 if (mode & DTRACE_MODE_NOPRIV_DROP) 1661 return (0); 1662 1663 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1664 } 1665 } 1666 #endif 1667 1668 /* 1669 * This is more subtle than it looks. We have to be absolutely certain 1670 * that CRED() isn't going to change out from under us so it's only 1671 * legit to examine that structure if we're in constrained situations. 1672 * Currently, the only times we'll this check is if a non-super-user 1673 * has enabled the profile or syscall providers -- providers that 1674 * allow visibility of all processes. For the profile case, the check 1675 * above will ensure that we're examining a user context. 1676 */ 1677 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1678 cred_t *cr; 1679 cred_t *s_cr = state->dts_cred.dcr_cred; 1680 proc_t *proc; 1681 1682 ASSERT(s_cr != NULL); 1683 1684 if ((cr = CRED()) == NULL || 1685 s_cr->cr_uid != cr->cr_uid || 1686 s_cr->cr_uid != cr->cr_ruid || 1687 s_cr->cr_uid != cr->cr_suid || 1688 s_cr->cr_gid != cr->cr_gid || 1689 s_cr->cr_gid != cr->cr_rgid || 1690 s_cr->cr_gid != cr->cr_sgid || 1691 (proc = ttoproc(curthread)) == NULL || 1692 (proc->p_flag & SNOCD)) { 1693 if (mode & DTRACE_MODE_NOPRIV_DROP) 1694 return (0); 1695 1696 #ifdef illumos 1697 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1698 #endif 1699 } 1700 } 1701 1702 #ifdef illumos 1703 /* 1704 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1705 * in our zone, check to see if our mode policy is to restrict rather 1706 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1707 * and DTRACE_ACCESS_ARGS 1708 */ 1709 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1710 cred_t *cr; 1711 cred_t *s_cr = state->dts_cred.dcr_cred; 1712 1713 ASSERT(s_cr != NULL); 1714 1715 if ((cr = CRED()) == NULL || 1716 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1717 if (mode & DTRACE_MODE_NOPRIV_DROP) 1718 return (0); 1719 1720 mstate->dtms_access &= 1721 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1722 } 1723 } 1724 #endif 1725 1726 return (1); 1727 } 1728 1729 /* 1730 * Note: not called from probe context. This function is called 1731 * asynchronously (and at a regular interval) from outside of probe context to 1732 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1733 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1734 */ 1735 void 1736 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1737 { 1738 dtrace_dynvar_t *dirty; 1739 dtrace_dstate_percpu_t *dcpu; 1740 dtrace_dynvar_t **rinsep; 1741 int i, j, work = 0; 1742 1743 for (i = 0; i < NCPU; i++) { 1744 dcpu = &dstate->dtds_percpu[i]; 1745 rinsep = &dcpu->dtdsc_rinsing; 1746 1747 /* 1748 * If the dirty list is NULL, there is no dirty work to do. 1749 */ 1750 if (dcpu->dtdsc_dirty == NULL) 1751 continue; 1752 1753 if (dcpu->dtdsc_rinsing != NULL) { 1754 /* 1755 * If the rinsing list is non-NULL, then it is because 1756 * this CPU was selected to accept another CPU's 1757 * dirty list -- and since that time, dirty buffers 1758 * have accumulated. This is a highly unlikely 1759 * condition, but we choose to ignore the dirty 1760 * buffers -- they'll be picked up a future cleanse. 1761 */ 1762 continue; 1763 } 1764 1765 if (dcpu->dtdsc_clean != NULL) { 1766 /* 1767 * If the clean list is non-NULL, then we're in a 1768 * situation where a CPU has done deallocations (we 1769 * have a non-NULL dirty list) but no allocations (we 1770 * also have a non-NULL clean list). We can't simply 1771 * move the dirty list into the clean list on this 1772 * CPU, yet we also don't want to allow this condition 1773 * to persist, lest a short clean list prevent a 1774 * massive dirty list from being cleaned (which in 1775 * turn could lead to otherwise avoidable dynamic 1776 * drops). To deal with this, we look for some CPU 1777 * with a NULL clean list, NULL dirty list, and NULL 1778 * rinsing list -- and then we borrow this CPU to 1779 * rinse our dirty list. 1780 */ 1781 for (j = 0; j < NCPU; j++) { 1782 dtrace_dstate_percpu_t *rinser; 1783 1784 rinser = &dstate->dtds_percpu[j]; 1785 1786 if (rinser->dtdsc_rinsing != NULL) 1787 continue; 1788 1789 if (rinser->dtdsc_dirty != NULL) 1790 continue; 1791 1792 if (rinser->dtdsc_clean != NULL) 1793 continue; 1794 1795 rinsep = &rinser->dtdsc_rinsing; 1796 break; 1797 } 1798 1799 if (j == NCPU) { 1800 /* 1801 * We were unable to find another CPU that 1802 * could accept this dirty list -- we are 1803 * therefore unable to clean it now. 1804 */ 1805 dtrace_dynvar_failclean++; 1806 continue; 1807 } 1808 } 1809 1810 work = 1; 1811 1812 /* 1813 * Atomically move the dirty list aside. 1814 */ 1815 do { 1816 dirty = dcpu->dtdsc_dirty; 1817 1818 /* 1819 * Before we zap the dirty list, set the rinsing list. 1820 * (This allows for a potential assertion in 1821 * dtrace_dynvar(): if a free dynamic variable appears 1822 * on a hash chain, either the dirty list or the 1823 * rinsing list for some CPU must be non-NULL.) 1824 */ 1825 *rinsep = dirty; 1826 dtrace_membar_producer(); 1827 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1828 dirty, NULL) != dirty); 1829 } 1830 1831 if (!work) { 1832 /* 1833 * We have no work to do; we can simply return. 1834 */ 1835 return; 1836 } 1837 1838 dtrace_sync(); 1839 1840 for (i = 0; i < NCPU; i++) { 1841 dcpu = &dstate->dtds_percpu[i]; 1842 1843 if (dcpu->dtdsc_rinsing == NULL) 1844 continue; 1845 1846 /* 1847 * We are now guaranteed that no hash chain contains a pointer 1848 * into this dirty list; we can make it clean. 1849 */ 1850 ASSERT(dcpu->dtdsc_clean == NULL); 1851 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1852 dcpu->dtdsc_rinsing = NULL; 1853 } 1854 1855 /* 1856 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1857 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1858 * This prevents a race whereby a CPU incorrectly decides that 1859 * the state should be something other than DTRACE_DSTATE_CLEAN 1860 * after dtrace_dynvar_clean() has completed. 1861 */ 1862 dtrace_sync(); 1863 1864 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1865 } 1866 1867 /* 1868 * Depending on the value of the op parameter, this function looks-up, 1869 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1870 * allocation is requested, this function will return a pointer to a 1871 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1872 * variable can be allocated. If NULL is returned, the appropriate counter 1873 * will be incremented. 1874 */ 1875 dtrace_dynvar_t * 1876 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1877 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1878 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1879 { 1880 uint64_t hashval = DTRACE_DYNHASH_VALID; 1881 dtrace_dynhash_t *hash = dstate->dtds_hash; 1882 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1883 processorid_t me = curcpu, cpu = me; 1884 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1885 size_t bucket, ksize; 1886 size_t chunksize = dstate->dtds_chunksize; 1887 uintptr_t kdata, lock, nstate; 1888 uint_t i; 1889 1890 ASSERT(nkeys != 0); 1891 1892 /* 1893 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1894 * algorithm. For the by-value portions, we perform the algorithm in 1895 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1896 * bit, and seems to have only a minute effect on distribution. For 1897 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1898 * over each referenced byte. It's painful to do this, but it's much 1899 * better than pathological hash distribution. The efficacy of the 1900 * hashing algorithm (and a comparison with other algorithms) may be 1901 * found by running the ::dtrace_dynstat MDB dcmd. 1902 */ 1903 for (i = 0; i < nkeys; i++) { 1904 if (key[i].dttk_size == 0) { 1905 uint64_t val = key[i].dttk_value; 1906 1907 hashval += (val >> 48) & 0xffff; 1908 hashval += (hashval << 10); 1909 hashval ^= (hashval >> 6); 1910 1911 hashval += (val >> 32) & 0xffff; 1912 hashval += (hashval << 10); 1913 hashval ^= (hashval >> 6); 1914 1915 hashval += (val >> 16) & 0xffff; 1916 hashval += (hashval << 10); 1917 hashval ^= (hashval >> 6); 1918 1919 hashval += val & 0xffff; 1920 hashval += (hashval << 10); 1921 hashval ^= (hashval >> 6); 1922 } else { 1923 /* 1924 * This is incredibly painful, but it beats the hell 1925 * out of the alternative. 1926 */ 1927 uint64_t j, size = key[i].dttk_size; 1928 uintptr_t base = (uintptr_t)key[i].dttk_value; 1929 1930 if (!dtrace_canload(base, size, mstate, vstate)) 1931 break; 1932 1933 for (j = 0; j < size; j++) { 1934 hashval += dtrace_load8(base + j); 1935 hashval += (hashval << 10); 1936 hashval ^= (hashval >> 6); 1937 } 1938 } 1939 } 1940 1941 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1942 return (NULL); 1943 1944 hashval += (hashval << 3); 1945 hashval ^= (hashval >> 11); 1946 hashval += (hashval << 15); 1947 1948 /* 1949 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1950 * comes out to be one of our two sentinel hash values. If this 1951 * actually happens, we set the hashval to be a value known to be a 1952 * non-sentinel value. 1953 */ 1954 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1955 hashval = DTRACE_DYNHASH_VALID; 1956 1957 /* 1958 * Yes, it's painful to do a divide here. If the cycle count becomes 1959 * important here, tricks can be pulled to reduce it. (However, it's 1960 * critical that hash collisions be kept to an absolute minimum; 1961 * they're much more painful than a divide.) It's better to have a 1962 * solution that generates few collisions and still keeps things 1963 * relatively simple. 1964 */ 1965 bucket = hashval % dstate->dtds_hashsize; 1966 1967 if (op == DTRACE_DYNVAR_DEALLOC) { 1968 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1969 1970 for (;;) { 1971 while ((lock = *lockp) & 1) 1972 continue; 1973 1974 if (dtrace_casptr((volatile void *)lockp, 1975 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1976 break; 1977 } 1978 1979 dtrace_membar_producer(); 1980 } 1981 1982 top: 1983 prev = NULL; 1984 lock = hash[bucket].dtdh_lock; 1985 1986 dtrace_membar_consumer(); 1987 1988 start = hash[bucket].dtdh_chain; 1989 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1990 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1991 op != DTRACE_DYNVAR_DEALLOC)); 1992 1993 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1994 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1995 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1996 1997 if (dvar->dtdv_hashval != hashval) { 1998 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1999 /* 2000 * We've reached the sink, and therefore the 2001 * end of the hash chain; we can kick out of 2002 * the loop knowing that we have seen a valid 2003 * snapshot of state. 2004 */ 2005 ASSERT(dvar->dtdv_next == NULL); 2006 ASSERT(dvar == &dtrace_dynhash_sink); 2007 break; 2008 } 2009 2010 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2011 /* 2012 * We've gone off the rails: somewhere along 2013 * the line, one of the members of this hash 2014 * chain was deleted. Note that we could also 2015 * detect this by simply letting this loop run 2016 * to completion, as we would eventually hit 2017 * the end of the dirty list. However, we 2018 * want to avoid running the length of the 2019 * dirty list unnecessarily (it might be quite 2020 * long), so we catch this as early as 2021 * possible by detecting the hash marker. In 2022 * this case, we simply set dvar to NULL and 2023 * break; the conditional after the loop will 2024 * send us back to top. 2025 */ 2026 dvar = NULL; 2027 break; 2028 } 2029 2030 goto next; 2031 } 2032 2033 if (dtuple->dtt_nkeys != nkeys) 2034 goto next; 2035 2036 for (i = 0; i < nkeys; i++, dkey++) { 2037 if (dkey->dttk_size != key[i].dttk_size) 2038 goto next; /* size or type mismatch */ 2039 2040 if (dkey->dttk_size != 0) { 2041 if (dtrace_bcmp( 2042 (void *)(uintptr_t)key[i].dttk_value, 2043 (void *)(uintptr_t)dkey->dttk_value, 2044 dkey->dttk_size)) 2045 goto next; 2046 } else { 2047 if (dkey->dttk_value != key[i].dttk_value) 2048 goto next; 2049 } 2050 } 2051 2052 if (op != DTRACE_DYNVAR_DEALLOC) 2053 return (dvar); 2054 2055 ASSERT(dvar->dtdv_next == NULL || 2056 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2057 2058 if (prev != NULL) { 2059 ASSERT(hash[bucket].dtdh_chain != dvar); 2060 ASSERT(start != dvar); 2061 ASSERT(prev->dtdv_next == dvar); 2062 prev->dtdv_next = dvar->dtdv_next; 2063 } else { 2064 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2065 start, dvar->dtdv_next) != start) { 2066 /* 2067 * We have failed to atomically swing the 2068 * hash table head pointer, presumably because 2069 * of a conflicting allocation on another CPU. 2070 * We need to reread the hash chain and try 2071 * again. 2072 */ 2073 goto top; 2074 } 2075 } 2076 2077 dtrace_membar_producer(); 2078 2079 /* 2080 * Now set the hash value to indicate that it's free. 2081 */ 2082 ASSERT(hash[bucket].dtdh_chain != dvar); 2083 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2084 2085 dtrace_membar_producer(); 2086 2087 /* 2088 * Set the next pointer to point at the dirty list, and 2089 * atomically swing the dirty pointer to the newly freed dvar. 2090 */ 2091 do { 2092 next = dcpu->dtdsc_dirty; 2093 dvar->dtdv_next = next; 2094 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2095 2096 /* 2097 * Finally, unlock this hash bucket. 2098 */ 2099 ASSERT(hash[bucket].dtdh_lock == lock); 2100 ASSERT(lock & 1); 2101 hash[bucket].dtdh_lock++; 2102 2103 return (NULL); 2104 next: 2105 prev = dvar; 2106 continue; 2107 } 2108 2109 if (dvar == NULL) { 2110 /* 2111 * If dvar is NULL, it is because we went off the rails: 2112 * one of the elements that we traversed in the hash chain 2113 * was deleted while we were traversing it. In this case, 2114 * we assert that we aren't doing a dealloc (deallocs lock 2115 * the hash bucket to prevent themselves from racing with 2116 * one another), and retry the hash chain traversal. 2117 */ 2118 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2119 goto top; 2120 } 2121 2122 if (op != DTRACE_DYNVAR_ALLOC) { 2123 /* 2124 * If we are not to allocate a new variable, we want to 2125 * return NULL now. Before we return, check that the value 2126 * of the lock word hasn't changed. If it has, we may have 2127 * seen an inconsistent snapshot. 2128 */ 2129 if (op == DTRACE_DYNVAR_NOALLOC) { 2130 if (hash[bucket].dtdh_lock != lock) 2131 goto top; 2132 } else { 2133 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2134 ASSERT(hash[bucket].dtdh_lock == lock); 2135 ASSERT(lock & 1); 2136 hash[bucket].dtdh_lock++; 2137 } 2138 2139 return (NULL); 2140 } 2141 2142 /* 2143 * We need to allocate a new dynamic variable. The size we need is the 2144 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2145 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2146 * the size of any referred-to data (dsize). We then round the final 2147 * size up to the chunksize for allocation. 2148 */ 2149 for (ksize = 0, i = 0; i < nkeys; i++) 2150 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2151 2152 /* 2153 * This should be pretty much impossible, but could happen if, say, 2154 * strange DIF specified the tuple. Ideally, this should be an 2155 * assertion and not an error condition -- but that requires that the 2156 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2157 * bullet-proof. (That is, it must not be able to be fooled by 2158 * malicious DIF.) Given the lack of backwards branches in DIF, 2159 * solving this would presumably not amount to solving the Halting 2160 * Problem -- but it still seems awfully hard. 2161 */ 2162 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2163 ksize + dsize > chunksize) { 2164 dcpu->dtdsc_drops++; 2165 return (NULL); 2166 } 2167 2168 nstate = DTRACE_DSTATE_EMPTY; 2169 2170 do { 2171 retry: 2172 free = dcpu->dtdsc_free; 2173 2174 if (free == NULL) { 2175 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2176 void *rval; 2177 2178 if (clean == NULL) { 2179 /* 2180 * We're out of dynamic variable space on 2181 * this CPU. Unless we have tried all CPUs, 2182 * we'll try to allocate from a different 2183 * CPU. 2184 */ 2185 switch (dstate->dtds_state) { 2186 case DTRACE_DSTATE_CLEAN: { 2187 void *sp = &dstate->dtds_state; 2188 2189 if (++cpu >= NCPU) 2190 cpu = 0; 2191 2192 if (dcpu->dtdsc_dirty != NULL && 2193 nstate == DTRACE_DSTATE_EMPTY) 2194 nstate = DTRACE_DSTATE_DIRTY; 2195 2196 if (dcpu->dtdsc_rinsing != NULL) 2197 nstate = DTRACE_DSTATE_RINSING; 2198 2199 dcpu = &dstate->dtds_percpu[cpu]; 2200 2201 if (cpu != me) 2202 goto retry; 2203 2204 (void) dtrace_cas32(sp, 2205 DTRACE_DSTATE_CLEAN, nstate); 2206 2207 /* 2208 * To increment the correct bean 2209 * counter, take another lap. 2210 */ 2211 goto retry; 2212 } 2213 2214 case DTRACE_DSTATE_DIRTY: 2215 dcpu->dtdsc_dirty_drops++; 2216 break; 2217 2218 case DTRACE_DSTATE_RINSING: 2219 dcpu->dtdsc_rinsing_drops++; 2220 break; 2221 2222 case DTRACE_DSTATE_EMPTY: 2223 dcpu->dtdsc_drops++; 2224 break; 2225 } 2226 2227 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2228 return (NULL); 2229 } 2230 2231 /* 2232 * The clean list appears to be non-empty. We want to 2233 * move the clean list to the free list; we start by 2234 * moving the clean pointer aside. 2235 */ 2236 if (dtrace_casptr(&dcpu->dtdsc_clean, 2237 clean, NULL) != clean) { 2238 /* 2239 * We are in one of two situations: 2240 * 2241 * (a) The clean list was switched to the 2242 * free list by another CPU. 2243 * 2244 * (b) The clean list was added to by the 2245 * cleansing cyclic. 2246 * 2247 * In either of these situations, we can 2248 * just reattempt the free list allocation. 2249 */ 2250 goto retry; 2251 } 2252 2253 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2254 2255 /* 2256 * Now we'll move the clean list to our free list. 2257 * It's impossible for this to fail: the only way 2258 * the free list can be updated is through this 2259 * code path, and only one CPU can own the clean list. 2260 * Thus, it would only be possible for this to fail if 2261 * this code were racing with dtrace_dynvar_clean(). 2262 * (That is, if dtrace_dynvar_clean() updated the clean 2263 * list, and we ended up racing to update the free 2264 * list.) This race is prevented by the dtrace_sync() 2265 * in dtrace_dynvar_clean() -- which flushes the 2266 * owners of the clean lists out before resetting 2267 * the clean lists. 2268 */ 2269 dcpu = &dstate->dtds_percpu[me]; 2270 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2271 ASSERT(rval == NULL); 2272 goto retry; 2273 } 2274 2275 dvar = free; 2276 new_free = dvar->dtdv_next; 2277 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2278 2279 /* 2280 * We have now allocated a new chunk. We copy the tuple keys into the 2281 * tuple array and copy any referenced key data into the data space 2282 * following the tuple array. As we do this, we relocate dttk_value 2283 * in the final tuple to point to the key data address in the chunk. 2284 */ 2285 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2286 dvar->dtdv_data = (void *)(kdata + ksize); 2287 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2288 2289 for (i = 0; i < nkeys; i++) { 2290 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2291 size_t kesize = key[i].dttk_size; 2292 2293 if (kesize != 0) { 2294 dtrace_bcopy( 2295 (const void *)(uintptr_t)key[i].dttk_value, 2296 (void *)kdata, kesize); 2297 dkey->dttk_value = kdata; 2298 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2299 } else { 2300 dkey->dttk_value = key[i].dttk_value; 2301 } 2302 2303 dkey->dttk_size = kesize; 2304 } 2305 2306 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2307 dvar->dtdv_hashval = hashval; 2308 dvar->dtdv_next = start; 2309 2310 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2311 return (dvar); 2312 2313 /* 2314 * The cas has failed. Either another CPU is adding an element to 2315 * this hash chain, or another CPU is deleting an element from this 2316 * hash chain. The simplest way to deal with both of these cases 2317 * (though not necessarily the most efficient) is to free our 2318 * allocated block and re-attempt it all. Note that the free is 2319 * to the dirty list and _not_ to the free list. This is to prevent 2320 * races with allocators, above. 2321 */ 2322 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2323 2324 dtrace_membar_producer(); 2325 2326 do { 2327 free = dcpu->dtdsc_dirty; 2328 dvar->dtdv_next = free; 2329 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2330 2331 goto top; 2332 } 2333 2334 /*ARGSUSED*/ 2335 static void 2336 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2337 { 2338 if ((int64_t)nval < (int64_t)*oval) 2339 *oval = nval; 2340 } 2341 2342 /*ARGSUSED*/ 2343 static void 2344 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2345 { 2346 if ((int64_t)nval > (int64_t)*oval) 2347 *oval = nval; 2348 } 2349 2350 static void 2351 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2352 { 2353 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2354 int64_t val = (int64_t)nval; 2355 2356 if (val < 0) { 2357 for (i = 0; i < zero; i++) { 2358 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2359 quanta[i] += incr; 2360 return; 2361 } 2362 } 2363 } else { 2364 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2365 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2366 quanta[i - 1] += incr; 2367 return; 2368 } 2369 } 2370 2371 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2372 return; 2373 } 2374 2375 ASSERT(0); 2376 } 2377 2378 static void 2379 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2380 { 2381 uint64_t arg = *lquanta++; 2382 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2383 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2384 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2385 int32_t val = (int32_t)nval, level; 2386 2387 ASSERT(step != 0); 2388 ASSERT(levels != 0); 2389 2390 if (val < base) { 2391 /* 2392 * This is an underflow. 2393 */ 2394 lquanta[0] += incr; 2395 return; 2396 } 2397 2398 level = (val - base) / step; 2399 2400 if (level < levels) { 2401 lquanta[level + 1] += incr; 2402 return; 2403 } 2404 2405 /* 2406 * This is an overflow. 2407 */ 2408 lquanta[levels + 1] += incr; 2409 } 2410 2411 static int 2412 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2413 uint16_t high, uint16_t nsteps, int64_t value) 2414 { 2415 int64_t this = 1, last, next; 2416 int base = 1, order; 2417 2418 ASSERT(factor <= nsteps); 2419 ASSERT(nsteps % factor == 0); 2420 2421 for (order = 0; order < low; order++) 2422 this *= factor; 2423 2424 /* 2425 * If our value is less than our factor taken to the power of the 2426 * low order of magnitude, it goes into the zeroth bucket. 2427 */ 2428 if (value < (last = this)) 2429 return (0); 2430 2431 for (this *= factor; order <= high; order++) { 2432 int nbuckets = this > nsteps ? nsteps : this; 2433 2434 if ((next = this * factor) < this) { 2435 /* 2436 * We should not generally get log/linear quantizations 2437 * with a high magnitude that allows 64-bits to 2438 * overflow, but we nonetheless protect against this 2439 * by explicitly checking for overflow, and clamping 2440 * our value accordingly. 2441 */ 2442 value = this - 1; 2443 } 2444 2445 if (value < this) { 2446 /* 2447 * If our value lies within this order of magnitude, 2448 * determine its position by taking the offset within 2449 * the order of magnitude, dividing by the bucket 2450 * width, and adding to our (accumulated) base. 2451 */ 2452 return (base + (value - last) / (this / nbuckets)); 2453 } 2454 2455 base += nbuckets - (nbuckets / factor); 2456 last = this; 2457 this = next; 2458 } 2459 2460 /* 2461 * Our value is greater than or equal to our factor taken to the 2462 * power of one plus the high magnitude -- return the top bucket. 2463 */ 2464 return (base); 2465 } 2466 2467 static void 2468 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2469 { 2470 uint64_t arg = *llquanta++; 2471 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2472 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2473 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2474 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2475 2476 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2477 low, high, nsteps, nval)] += incr; 2478 } 2479 2480 /*ARGSUSED*/ 2481 static void 2482 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2483 { 2484 data[0]++; 2485 data[1] += nval; 2486 } 2487 2488 /*ARGSUSED*/ 2489 static void 2490 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2491 { 2492 int64_t snval = (int64_t)nval; 2493 uint64_t tmp[2]; 2494 2495 data[0]++; 2496 data[1] += nval; 2497 2498 /* 2499 * What we want to say here is: 2500 * 2501 * data[2] += nval * nval; 2502 * 2503 * But given that nval is 64-bit, we could easily overflow, so 2504 * we do this as 128-bit arithmetic. 2505 */ 2506 if (snval < 0) 2507 snval = -snval; 2508 2509 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2510 dtrace_add_128(data + 2, tmp, data + 2); 2511 } 2512 2513 /*ARGSUSED*/ 2514 static void 2515 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2516 { 2517 *oval = *oval + 1; 2518 } 2519 2520 /*ARGSUSED*/ 2521 static void 2522 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2523 { 2524 *oval += nval; 2525 } 2526 2527 /* 2528 * Aggregate given the tuple in the principal data buffer, and the aggregating 2529 * action denoted by the specified dtrace_aggregation_t. The aggregation 2530 * buffer is specified as the buf parameter. This routine does not return 2531 * failure; if there is no space in the aggregation buffer, the data will be 2532 * dropped, and a corresponding counter incremented. 2533 */ 2534 static void 2535 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2536 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2537 { 2538 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2539 uint32_t i, ndx, size, fsize; 2540 uint32_t align = sizeof (uint64_t) - 1; 2541 dtrace_aggbuffer_t *agb; 2542 dtrace_aggkey_t *key; 2543 uint32_t hashval = 0, limit, isstr; 2544 caddr_t tomax, data, kdata; 2545 dtrace_actkind_t action; 2546 dtrace_action_t *act; 2547 uintptr_t offs; 2548 2549 if (buf == NULL) 2550 return; 2551 2552 if (!agg->dtag_hasarg) { 2553 /* 2554 * Currently, only quantize() and lquantize() take additional 2555 * arguments, and they have the same semantics: an increment 2556 * value that defaults to 1 when not present. If additional 2557 * aggregating actions take arguments, the setting of the 2558 * default argument value will presumably have to become more 2559 * sophisticated... 2560 */ 2561 arg = 1; 2562 } 2563 2564 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2565 size = rec->dtrd_offset - agg->dtag_base; 2566 fsize = size + rec->dtrd_size; 2567 2568 ASSERT(dbuf->dtb_tomax != NULL); 2569 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2570 2571 if ((tomax = buf->dtb_tomax) == NULL) { 2572 dtrace_buffer_drop(buf); 2573 return; 2574 } 2575 2576 /* 2577 * The metastructure is always at the bottom of the buffer. 2578 */ 2579 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2580 sizeof (dtrace_aggbuffer_t)); 2581 2582 if (buf->dtb_offset == 0) { 2583 /* 2584 * We just kludge up approximately 1/8th of the size to be 2585 * buckets. If this guess ends up being routinely 2586 * off-the-mark, we may need to dynamically readjust this 2587 * based on past performance. 2588 */ 2589 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2590 2591 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2592 (uintptr_t)tomax || hashsize == 0) { 2593 /* 2594 * We've been given a ludicrously small buffer; 2595 * increment our drop count and leave. 2596 */ 2597 dtrace_buffer_drop(buf); 2598 return; 2599 } 2600 2601 /* 2602 * And now, a pathetic attempt to try to get a an odd (or 2603 * perchance, a prime) hash size for better hash distribution. 2604 */ 2605 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2606 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2607 2608 agb->dtagb_hashsize = hashsize; 2609 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2610 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2611 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2612 2613 for (i = 0; i < agb->dtagb_hashsize; i++) 2614 agb->dtagb_hash[i] = NULL; 2615 } 2616 2617 ASSERT(agg->dtag_first != NULL); 2618 ASSERT(agg->dtag_first->dta_intuple); 2619 2620 /* 2621 * Calculate the hash value based on the key. Note that we _don't_ 2622 * include the aggid in the hashing (but we will store it as part of 2623 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2624 * algorithm: a simple, quick algorithm that has no known funnels, and 2625 * gets good distribution in practice. The efficacy of the hashing 2626 * algorithm (and a comparison with other algorithms) may be found by 2627 * running the ::dtrace_aggstat MDB dcmd. 2628 */ 2629 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2630 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2631 limit = i + act->dta_rec.dtrd_size; 2632 ASSERT(limit <= size); 2633 isstr = DTRACEACT_ISSTRING(act); 2634 2635 for (; i < limit; i++) { 2636 hashval += data[i]; 2637 hashval += (hashval << 10); 2638 hashval ^= (hashval >> 6); 2639 2640 if (isstr && data[i] == '\0') 2641 break; 2642 } 2643 } 2644 2645 hashval += (hashval << 3); 2646 hashval ^= (hashval >> 11); 2647 hashval += (hashval << 15); 2648 2649 /* 2650 * Yes, the divide here is expensive -- but it's generally the least 2651 * of the performance issues given the amount of data that we iterate 2652 * over to compute hash values, compare data, etc. 2653 */ 2654 ndx = hashval % agb->dtagb_hashsize; 2655 2656 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2657 ASSERT((caddr_t)key >= tomax); 2658 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2659 2660 if (hashval != key->dtak_hashval || key->dtak_size != size) 2661 continue; 2662 2663 kdata = key->dtak_data; 2664 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2665 2666 for (act = agg->dtag_first; act->dta_intuple; 2667 act = act->dta_next) { 2668 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2669 limit = i + act->dta_rec.dtrd_size; 2670 ASSERT(limit <= size); 2671 isstr = DTRACEACT_ISSTRING(act); 2672 2673 for (; i < limit; i++) { 2674 if (kdata[i] != data[i]) 2675 goto next; 2676 2677 if (isstr && data[i] == '\0') 2678 break; 2679 } 2680 } 2681 2682 if (action != key->dtak_action) { 2683 /* 2684 * We are aggregating on the same value in the same 2685 * aggregation with two different aggregating actions. 2686 * (This should have been picked up in the compiler, 2687 * so we may be dealing with errant or devious DIF.) 2688 * This is an error condition; we indicate as much, 2689 * and return. 2690 */ 2691 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2692 return; 2693 } 2694 2695 /* 2696 * This is a hit: we need to apply the aggregator to 2697 * the value at this key. 2698 */ 2699 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2700 return; 2701 next: 2702 continue; 2703 } 2704 2705 /* 2706 * We didn't find it. We need to allocate some zero-filled space, 2707 * link it into the hash table appropriately, and apply the aggregator 2708 * to the (zero-filled) value. 2709 */ 2710 offs = buf->dtb_offset; 2711 while (offs & (align - 1)) 2712 offs += sizeof (uint32_t); 2713 2714 /* 2715 * If we don't have enough room to both allocate a new key _and_ 2716 * its associated data, increment the drop count and return. 2717 */ 2718 if ((uintptr_t)tomax + offs + fsize > 2719 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2720 dtrace_buffer_drop(buf); 2721 return; 2722 } 2723 2724 /*CONSTCOND*/ 2725 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2726 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2727 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2728 2729 key->dtak_data = kdata = tomax + offs; 2730 buf->dtb_offset = offs + fsize; 2731 2732 /* 2733 * Now copy the data across. 2734 */ 2735 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2736 2737 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2738 kdata[i] = data[i]; 2739 2740 /* 2741 * Because strings are not zeroed out by default, we need to iterate 2742 * looking for actions that store strings, and we need to explicitly 2743 * pad these strings out with zeroes. 2744 */ 2745 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2746 int nul; 2747 2748 if (!DTRACEACT_ISSTRING(act)) 2749 continue; 2750 2751 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2752 limit = i + act->dta_rec.dtrd_size; 2753 ASSERT(limit <= size); 2754 2755 for (nul = 0; i < limit; i++) { 2756 if (nul) { 2757 kdata[i] = '\0'; 2758 continue; 2759 } 2760 2761 if (data[i] != '\0') 2762 continue; 2763 2764 nul = 1; 2765 } 2766 } 2767 2768 for (i = size; i < fsize; i++) 2769 kdata[i] = 0; 2770 2771 key->dtak_hashval = hashval; 2772 key->dtak_size = size; 2773 key->dtak_action = action; 2774 key->dtak_next = agb->dtagb_hash[ndx]; 2775 agb->dtagb_hash[ndx] = key; 2776 2777 /* 2778 * Finally, apply the aggregator. 2779 */ 2780 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2781 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2782 } 2783 2784 /* 2785 * Given consumer state, this routine finds a speculation in the INACTIVE 2786 * state and transitions it into the ACTIVE state. If there is no speculation 2787 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2788 * incremented -- it is up to the caller to take appropriate action. 2789 */ 2790 static int 2791 dtrace_speculation(dtrace_state_t *state) 2792 { 2793 int i = 0; 2794 dtrace_speculation_state_t curstate; 2795 uint32_t *stat = &state->dts_speculations_unavail, count; 2796 2797 while (i < state->dts_nspeculations) { 2798 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2799 2800 curstate = spec->dtsp_state; 2801 2802 if (curstate != DTRACESPEC_INACTIVE) { 2803 if (curstate == DTRACESPEC_COMMITTINGMANY || 2804 curstate == DTRACESPEC_COMMITTING || 2805 curstate == DTRACESPEC_DISCARDING) 2806 stat = &state->dts_speculations_busy; 2807 i++; 2808 continue; 2809 } 2810 2811 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2812 curstate, DTRACESPEC_ACTIVE) == curstate) 2813 return (i + 1); 2814 } 2815 2816 /* 2817 * We couldn't find a speculation. If we found as much as a single 2818 * busy speculation buffer, we'll attribute this failure as "busy" 2819 * instead of "unavail". 2820 */ 2821 do { 2822 count = *stat; 2823 } while (dtrace_cas32(stat, count, count + 1) != count); 2824 2825 return (0); 2826 } 2827 2828 /* 2829 * This routine commits an active speculation. If the specified speculation 2830 * is not in a valid state to perform a commit(), this routine will silently do 2831 * nothing. The state of the specified speculation is transitioned according 2832 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2833 */ 2834 static void 2835 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2836 dtrace_specid_t which) 2837 { 2838 dtrace_speculation_t *spec; 2839 dtrace_buffer_t *src, *dest; 2840 uintptr_t daddr, saddr, dlimit, slimit; 2841 dtrace_speculation_state_t curstate, new = 0; 2842 intptr_t offs; 2843 uint64_t timestamp; 2844 2845 if (which == 0) 2846 return; 2847 2848 if (which > state->dts_nspeculations) { 2849 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2850 return; 2851 } 2852 2853 spec = &state->dts_speculations[which - 1]; 2854 src = &spec->dtsp_buffer[cpu]; 2855 dest = &state->dts_buffer[cpu]; 2856 2857 do { 2858 curstate = spec->dtsp_state; 2859 2860 if (curstate == DTRACESPEC_COMMITTINGMANY) 2861 break; 2862 2863 switch (curstate) { 2864 case DTRACESPEC_INACTIVE: 2865 case DTRACESPEC_DISCARDING: 2866 return; 2867 2868 case DTRACESPEC_COMMITTING: 2869 /* 2870 * This is only possible if we are (a) commit()'ing 2871 * without having done a prior speculate() on this CPU 2872 * and (b) racing with another commit() on a different 2873 * CPU. There's nothing to do -- we just assert that 2874 * our offset is 0. 2875 */ 2876 ASSERT(src->dtb_offset == 0); 2877 return; 2878 2879 case DTRACESPEC_ACTIVE: 2880 new = DTRACESPEC_COMMITTING; 2881 break; 2882 2883 case DTRACESPEC_ACTIVEONE: 2884 /* 2885 * This speculation is active on one CPU. If our 2886 * buffer offset is non-zero, we know that the one CPU 2887 * must be us. Otherwise, we are committing on a 2888 * different CPU from the speculate(), and we must 2889 * rely on being asynchronously cleaned. 2890 */ 2891 if (src->dtb_offset != 0) { 2892 new = DTRACESPEC_COMMITTING; 2893 break; 2894 } 2895 /*FALLTHROUGH*/ 2896 2897 case DTRACESPEC_ACTIVEMANY: 2898 new = DTRACESPEC_COMMITTINGMANY; 2899 break; 2900 2901 default: 2902 ASSERT(0); 2903 } 2904 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2905 curstate, new) != curstate); 2906 2907 /* 2908 * We have set the state to indicate that we are committing this 2909 * speculation. Now reserve the necessary space in the destination 2910 * buffer. 2911 */ 2912 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2913 sizeof (uint64_t), state, NULL)) < 0) { 2914 dtrace_buffer_drop(dest); 2915 goto out; 2916 } 2917 2918 /* 2919 * We have sufficient space to copy the speculative buffer into the 2920 * primary buffer. First, modify the speculative buffer, filling 2921 * in the timestamp of all entries with the curstate time. The data 2922 * must have the commit() time rather than the time it was traced, 2923 * so that all entries in the primary buffer are in timestamp order. 2924 */ 2925 timestamp = dtrace_gethrtime(); 2926 saddr = (uintptr_t)src->dtb_tomax; 2927 slimit = saddr + src->dtb_offset; 2928 while (saddr < slimit) { 2929 size_t size; 2930 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2931 2932 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2933 saddr += sizeof (dtrace_epid_t); 2934 continue; 2935 } 2936 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2937 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2938 2939 ASSERT3U(saddr + size, <=, slimit); 2940 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2941 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2942 2943 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2944 2945 saddr += size; 2946 } 2947 2948 /* 2949 * Copy the buffer across. (Note that this is a 2950 * highly subobtimal bcopy(); in the unlikely event that this becomes 2951 * a serious performance issue, a high-performance DTrace-specific 2952 * bcopy() should obviously be invented.) 2953 */ 2954 daddr = (uintptr_t)dest->dtb_tomax + offs; 2955 dlimit = daddr + src->dtb_offset; 2956 saddr = (uintptr_t)src->dtb_tomax; 2957 2958 /* 2959 * First, the aligned portion. 2960 */ 2961 while (dlimit - daddr >= sizeof (uint64_t)) { 2962 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2963 2964 daddr += sizeof (uint64_t); 2965 saddr += sizeof (uint64_t); 2966 } 2967 2968 /* 2969 * Now any left-over bit... 2970 */ 2971 while (dlimit - daddr) 2972 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2973 2974 /* 2975 * Finally, commit the reserved space in the destination buffer. 2976 */ 2977 dest->dtb_offset = offs + src->dtb_offset; 2978 2979 out: 2980 /* 2981 * If we're lucky enough to be the only active CPU on this speculation 2982 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2983 */ 2984 if (curstate == DTRACESPEC_ACTIVE || 2985 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2986 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2987 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2988 2989 ASSERT(rval == DTRACESPEC_COMMITTING); 2990 } 2991 2992 src->dtb_offset = 0; 2993 src->dtb_xamot_drops += src->dtb_drops; 2994 src->dtb_drops = 0; 2995 } 2996 2997 /* 2998 * This routine discards an active speculation. If the specified speculation 2999 * is not in a valid state to perform a discard(), this routine will silently 3000 * do nothing. The state of the specified speculation is transitioned 3001 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3002 */ 3003 static void 3004 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3005 dtrace_specid_t which) 3006 { 3007 dtrace_speculation_t *spec; 3008 dtrace_speculation_state_t curstate, new = 0; 3009 dtrace_buffer_t *buf; 3010 3011 if (which == 0) 3012 return; 3013 3014 if (which > state->dts_nspeculations) { 3015 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3016 return; 3017 } 3018 3019 spec = &state->dts_speculations[which - 1]; 3020 buf = &spec->dtsp_buffer[cpu]; 3021 3022 do { 3023 curstate = spec->dtsp_state; 3024 3025 switch (curstate) { 3026 case DTRACESPEC_INACTIVE: 3027 case DTRACESPEC_COMMITTINGMANY: 3028 case DTRACESPEC_COMMITTING: 3029 case DTRACESPEC_DISCARDING: 3030 return; 3031 3032 case DTRACESPEC_ACTIVE: 3033 case DTRACESPEC_ACTIVEMANY: 3034 new = DTRACESPEC_DISCARDING; 3035 break; 3036 3037 case DTRACESPEC_ACTIVEONE: 3038 if (buf->dtb_offset != 0) { 3039 new = DTRACESPEC_INACTIVE; 3040 } else { 3041 new = DTRACESPEC_DISCARDING; 3042 } 3043 break; 3044 3045 default: 3046 ASSERT(0); 3047 } 3048 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3049 curstate, new) != curstate); 3050 3051 buf->dtb_offset = 0; 3052 buf->dtb_drops = 0; 3053 } 3054 3055 /* 3056 * Note: not called from probe context. This function is called 3057 * asynchronously from cross call context to clean any speculations that are 3058 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3059 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3060 * speculation. 3061 */ 3062 static void 3063 dtrace_speculation_clean_here(dtrace_state_t *state) 3064 { 3065 dtrace_icookie_t cookie; 3066 processorid_t cpu = curcpu; 3067 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3068 dtrace_specid_t i; 3069 3070 cookie = dtrace_interrupt_disable(); 3071 3072 if (dest->dtb_tomax == NULL) { 3073 dtrace_interrupt_enable(cookie); 3074 return; 3075 } 3076 3077 for (i = 0; i < state->dts_nspeculations; i++) { 3078 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3079 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3080 3081 if (src->dtb_tomax == NULL) 3082 continue; 3083 3084 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3085 src->dtb_offset = 0; 3086 continue; 3087 } 3088 3089 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3090 continue; 3091 3092 if (src->dtb_offset == 0) 3093 continue; 3094 3095 dtrace_speculation_commit(state, cpu, i + 1); 3096 } 3097 3098 dtrace_interrupt_enable(cookie); 3099 } 3100 3101 /* 3102 * Note: not called from probe context. This function is called 3103 * asynchronously (and at a regular interval) to clean any speculations that 3104 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3105 * is work to be done, it cross calls all CPUs to perform that work; 3106 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3107 * INACTIVE state until they have been cleaned by all CPUs. 3108 */ 3109 static void 3110 dtrace_speculation_clean(dtrace_state_t *state) 3111 { 3112 int work = 0, rv; 3113 dtrace_specid_t i; 3114 3115 for (i = 0; i < state->dts_nspeculations; i++) { 3116 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3117 3118 ASSERT(!spec->dtsp_cleaning); 3119 3120 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3121 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3122 continue; 3123 3124 work++; 3125 spec->dtsp_cleaning = 1; 3126 } 3127 3128 if (!work) 3129 return; 3130 3131 dtrace_xcall(DTRACE_CPUALL, 3132 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3133 3134 /* 3135 * We now know that all CPUs have committed or discarded their 3136 * speculation buffers, as appropriate. We can now set the state 3137 * to inactive. 3138 */ 3139 for (i = 0; i < state->dts_nspeculations; i++) { 3140 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3141 dtrace_speculation_state_t curstate, new; 3142 3143 if (!spec->dtsp_cleaning) 3144 continue; 3145 3146 curstate = spec->dtsp_state; 3147 ASSERT(curstate == DTRACESPEC_DISCARDING || 3148 curstate == DTRACESPEC_COMMITTINGMANY); 3149 3150 new = DTRACESPEC_INACTIVE; 3151 3152 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3153 ASSERT(rv == curstate); 3154 spec->dtsp_cleaning = 0; 3155 } 3156 } 3157 3158 /* 3159 * Called as part of a speculate() to get the speculative buffer associated 3160 * with a given speculation. Returns NULL if the specified speculation is not 3161 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3162 * the active CPU is not the specified CPU -- the speculation will be 3163 * atomically transitioned into the ACTIVEMANY state. 3164 */ 3165 static dtrace_buffer_t * 3166 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3167 dtrace_specid_t which) 3168 { 3169 dtrace_speculation_t *spec; 3170 dtrace_speculation_state_t curstate, new = 0; 3171 dtrace_buffer_t *buf; 3172 3173 if (which == 0) 3174 return (NULL); 3175 3176 if (which > state->dts_nspeculations) { 3177 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3178 return (NULL); 3179 } 3180 3181 spec = &state->dts_speculations[which - 1]; 3182 buf = &spec->dtsp_buffer[cpuid]; 3183 3184 do { 3185 curstate = spec->dtsp_state; 3186 3187 switch (curstate) { 3188 case DTRACESPEC_INACTIVE: 3189 case DTRACESPEC_COMMITTINGMANY: 3190 case DTRACESPEC_DISCARDING: 3191 return (NULL); 3192 3193 case DTRACESPEC_COMMITTING: 3194 ASSERT(buf->dtb_offset == 0); 3195 return (NULL); 3196 3197 case DTRACESPEC_ACTIVEONE: 3198 /* 3199 * This speculation is currently active on one CPU. 3200 * Check the offset in the buffer; if it's non-zero, 3201 * that CPU must be us (and we leave the state alone). 3202 * If it's zero, assume that we're starting on a new 3203 * CPU -- and change the state to indicate that the 3204 * speculation is active on more than one CPU. 3205 */ 3206 if (buf->dtb_offset != 0) 3207 return (buf); 3208 3209 new = DTRACESPEC_ACTIVEMANY; 3210 break; 3211 3212 case DTRACESPEC_ACTIVEMANY: 3213 return (buf); 3214 3215 case DTRACESPEC_ACTIVE: 3216 new = DTRACESPEC_ACTIVEONE; 3217 break; 3218 3219 default: 3220 ASSERT(0); 3221 } 3222 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3223 curstate, new) != curstate); 3224 3225 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3226 return (buf); 3227 } 3228 3229 /* 3230 * Return a string. In the event that the user lacks the privilege to access 3231 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3232 * don't fail access checking. 3233 * 3234 * dtrace_dif_variable() uses this routine as a helper for various 3235 * builtin values such as 'execname' and 'probefunc.' 3236 */ 3237 uintptr_t 3238 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3239 dtrace_mstate_t *mstate) 3240 { 3241 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3242 uintptr_t ret; 3243 size_t strsz; 3244 3245 /* 3246 * The easy case: this probe is allowed to read all of memory, so 3247 * we can just return this as a vanilla pointer. 3248 */ 3249 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3250 return (addr); 3251 3252 /* 3253 * This is the tougher case: we copy the string in question from 3254 * kernel memory into scratch memory and return it that way: this 3255 * ensures that we won't trip up when access checking tests the 3256 * BYREF return value. 3257 */ 3258 strsz = dtrace_strlen((char *)addr, size) + 1; 3259 3260 if (mstate->dtms_scratch_ptr + strsz > 3261 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3262 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3263 return (0); 3264 } 3265 3266 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3267 strsz); 3268 ret = mstate->dtms_scratch_ptr; 3269 mstate->dtms_scratch_ptr += strsz; 3270 return (ret); 3271 } 3272 3273 /* 3274 * Return a string from a memoy address which is known to have one or 3275 * more concatenated, individually zero terminated, sub-strings. 3276 * In the event that the user lacks the privilege to access 3277 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3278 * don't fail access checking. 3279 * 3280 * dtrace_dif_variable() uses this routine as a helper for various 3281 * builtin values such as 'execargs'. 3282 */ 3283 static uintptr_t 3284 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3285 dtrace_mstate_t *mstate) 3286 { 3287 char *p; 3288 size_t i; 3289 uintptr_t ret; 3290 3291 if (mstate->dtms_scratch_ptr + strsz > 3292 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3293 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3294 return (0); 3295 } 3296 3297 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3298 strsz); 3299 3300 /* Replace sub-string termination characters with a space. */ 3301 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3302 p++, i++) 3303 if (*p == '\0') 3304 *p = ' '; 3305 3306 ret = mstate->dtms_scratch_ptr; 3307 mstate->dtms_scratch_ptr += strsz; 3308 return (ret); 3309 } 3310 3311 /* 3312 * This function implements the DIF emulator's variable lookups. The emulator 3313 * passes a reserved variable identifier and optional built-in array index. 3314 */ 3315 static uint64_t 3316 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3317 uint64_t ndx) 3318 { 3319 /* 3320 * If we're accessing one of the uncached arguments, we'll turn this 3321 * into a reference in the args array. 3322 */ 3323 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3324 ndx = v - DIF_VAR_ARG0; 3325 v = DIF_VAR_ARGS; 3326 } 3327 3328 switch (v) { 3329 case DIF_VAR_ARGS: 3330 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3331 if (ndx >= sizeof (mstate->dtms_arg) / 3332 sizeof (mstate->dtms_arg[0])) { 3333 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3334 dtrace_provider_t *pv; 3335 uint64_t val; 3336 3337 pv = mstate->dtms_probe->dtpr_provider; 3338 if (pv->dtpv_pops.dtps_getargval != NULL) 3339 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3340 mstate->dtms_probe->dtpr_id, 3341 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3342 else 3343 val = dtrace_getarg(ndx, aframes); 3344 3345 /* 3346 * This is regrettably required to keep the compiler 3347 * from tail-optimizing the call to dtrace_getarg(). 3348 * The condition always evaluates to true, but the 3349 * compiler has no way of figuring that out a priori. 3350 * (None of this would be necessary if the compiler 3351 * could be relied upon to _always_ tail-optimize 3352 * the call to dtrace_getarg() -- but it can't.) 3353 */ 3354 if (mstate->dtms_probe != NULL) 3355 return (val); 3356 3357 ASSERT(0); 3358 } 3359 3360 return (mstate->dtms_arg[ndx]); 3361 3362 #ifdef illumos 3363 case DIF_VAR_UREGS: { 3364 klwp_t *lwp; 3365 3366 if (!dtrace_priv_proc(state)) 3367 return (0); 3368 3369 if ((lwp = curthread->t_lwp) == NULL) { 3370 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3371 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 3372 return (0); 3373 } 3374 3375 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3376 return (0); 3377 } 3378 #else 3379 case DIF_VAR_UREGS: { 3380 struct trapframe *tframe; 3381 3382 if (!dtrace_priv_proc(state)) 3383 return (0); 3384 3385 if ((tframe = curthread->td_frame) == NULL) { 3386 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3387 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3388 return (0); 3389 } 3390 3391 return (dtrace_getreg(tframe, ndx)); 3392 } 3393 #endif 3394 3395 case DIF_VAR_CURTHREAD: 3396 if (!dtrace_priv_proc(state)) 3397 return (0); 3398 return ((uint64_t)(uintptr_t)curthread); 3399 3400 case DIF_VAR_TIMESTAMP: 3401 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3402 mstate->dtms_timestamp = dtrace_gethrtime(); 3403 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3404 } 3405 return (mstate->dtms_timestamp); 3406 3407 case DIF_VAR_VTIMESTAMP: 3408 ASSERT(dtrace_vtime_references != 0); 3409 return (curthread->t_dtrace_vtime); 3410 3411 case DIF_VAR_WALLTIMESTAMP: 3412 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3413 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3414 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3415 } 3416 return (mstate->dtms_walltimestamp); 3417 3418 #ifdef illumos 3419 case DIF_VAR_IPL: 3420 if (!dtrace_priv_kernel(state)) 3421 return (0); 3422 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3423 mstate->dtms_ipl = dtrace_getipl(); 3424 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3425 } 3426 return (mstate->dtms_ipl); 3427 #endif 3428 3429 case DIF_VAR_EPID: 3430 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3431 return (mstate->dtms_epid); 3432 3433 case DIF_VAR_ID: 3434 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3435 return (mstate->dtms_probe->dtpr_id); 3436 3437 case DIF_VAR_STACKDEPTH: 3438 if (!dtrace_priv_kernel(state)) 3439 return (0); 3440 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3441 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3442 3443 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3444 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3445 } 3446 return (mstate->dtms_stackdepth); 3447 3448 case DIF_VAR_USTACKDEPTH: 3449 if (!dtrace_priv_proc(state)) 3450 return (0); 3451 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3452 /* 3453 * See comment in DIF_VAR_PID. 3454 */ 3455 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3456 CPU_ON_INTR(CPU)) { 3457 mstate->dtms_ustackdepth = 0; 3458 } else { 3459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3460 mstate->dtms_ustackdepth = 3461 dtrace_getustackdepth(); 3462 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3463 } 3464 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3465 } 3466 return (mstate->dtms_ustackdepth); 3467 3468 case DIF_VAR_CALLER: 3469 if (!dtrace_priv_kernel(state)) 3470 return (0); 3471 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3472 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3473 3474 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3475 /* 3476 * If this is an unanchored probe, we are 3477 * required to go through the slow path: 3478 * dtrace_caller() only guarantees correct 3479 * results for anchored probes. 3480 */ 3481 pc_t caller[2] = {0, 0}; 3482 3483 dtrace_getpcstack(caller, 2, aframes, 3484 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3485 mstate->dtms_caller = caller[1]; 3486 } else if ((mstate->dtms_caller = 3487 dtrace_caller(aframes)) == -1) { 3488 /* 3489 * We have failed to do this the quick way; 3490 * we must resort to the slower approach of 3491 * calling dtrace_getpcstack(). 3492 */ 3493 pc_t caller = 0; 3494 3495 dtrace_getpcstack(&caller, 1, aframes, NULL); 3496 mstate->dtms_caller = caller; 3497 } 3498 3499 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3500 } 3501 return (mstate->dtms_caller); 3502 3503 case DIF_VAR_UCALLER: 3504 if (!dtrace_priv_proc(state)) 3505 return (0); 3506 3507 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3508 uint64_t ustack[3]; 3509 3510 /* 3511 * dtrace_getupcstack() fills in the first uint64_t 3512 * with the current PID. The second uint64_t will 3513 * be the program counter at user-level. The third 3514 * uint64_t will contain the caller, which is what 3515 * we're after. 3516 */ 3517 ustack[2] = 0; 3518 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3519 dtrace_getupcstack(ustack, 3); 3520 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3521 mstate->dtms_ucaller = ustack[2]; 3522 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3523 } 3524 3525 return (mstate->dtms_ucaller); 3526 3527 case DIF_VAR_PROBEPROV: 3528 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3529 return (dtrace_dif_varstr( 3530 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3531 state, mstate)); 3532 3533 case DIF_VAR_PROBEMOD: 3534 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3535 return (dtrace_dif_varstr( 3536 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3537 state, mstate)); 3538 3539 case DIF_VAR_PROBEFUNC: 3540 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3541 return (dtrace_dif_varstr( 3542 (uintptr_t)mstate->dtms_probe->dtpr_func, 3543 state, mstate)); 3544 3545 case DIF_VAR_PROBENAME: 3546 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3547 return (dtrace_dif_varstr( 3548 (uintptr_t)mstate->dtms_probe->dtpr_name, 3549 state, mstate)); 3550 3551 case DIF_VAR_PID: 3552 if (!dtrace_priv_proc(state)) 3553 return (0); 3554 3555 #ifdef illumos 3556 /* 3557 * Note that we are assuming that an unanchored probe is 3558 * always due to a high-level interrupt. (And we're assuming 3559 * that there is only a single high level interrupt.) 3560 */ 3561 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3562 return (pid0.pid_id); 3563 3564 /* 3565 * It is always safe to dereference one's own t_procp pointer: 3566 * it always points to a valid, allocated proc structure. 3567 * Further, it is always safe to dereference the p_pidp member 3568 * of one's own proc structure. (These are truisms becuase 3569 * threads and processes don't clean up their own state -- 3570 * they leave that task to whomever reaps them.) 3571 */ 3572 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3573 #else 3574 return ((uint64_t)curproc->p_pid); 3575 #endif 3576 3577 case DIF_VAR_PPID: 3578 if (!dtrace_priv_proc(state)) 3579 return (0); 3580 3581 #ifdef illumos 3582 /* 3583 * See comment in DIF_VAR_PID. 3584 */ 3585 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3586 return (pid0.pid_id); 3587 3588 /* 3589 * It is always safe to dereference one's own t_procp pointer: 3590 * it always points to a valid, allocated proc structure. 3591 * (This is true because threads don't clean up their own 3592 * state -- they leave that task to whomever reaps them.) 3593 */ 3594 return ((uint64_t)curthread->t_procp->p_ppid); 3595 #else 3596 if (curproc->p_pid == proc0.p_pid) 3597 return (curproc->p_pid); 3598 else 3599 return (curproc->p_pptr->p_pid); 3600 #endif 3601 3602 case DIF_VAR_TID: 3603 #ifdef illumos 3604 /* 3605 * See comment in DIF_VAR_PID. 3606 */ 3607 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3608 return (0); 3609 #endif 3610 3611 return ((uint64_t)curthread->t_tid); 3612 3613 case DIF_VAR_EXECARGS: { 3614 struct pargs *p_args = curthread->td_proc->p_args; 3615 3616 if (p_args == NULL) 3617 return(0); 3618 3619 return (dtrace_dif_varstrz( 3620 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3621 } 3622 3623 case DIF_VAR_EXECNAME: 3624 #ifdef illumos 3625 if (!dtrace_priv_proc(state)) 3626 return (0); 3627 3628 /* 3629 * See comment in DIF_VAR_PID. 3630 */ 3631 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3632 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3633 3634 /* 3635 * It is always safe to dereference one's own t_procp pointer: 3636 * it always points to a valid, allocated proc structure. 3637 * (This is true because threads don't clean up their own 3638 * state -- they leave that task to whomever reaps them.) 3639 */ 3640 return (dtrace_dif_varstr( 3641 (uintptr_t)curthread->t_procp->p_user.u_comm, 3642 state, mstate)); 3643 #else 3644 return (dtrace_dif_varstr( 3645 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3646 #endif 3647 3648 case DIF_VAR_ZONENAME: 3649 #ifdef illumos 3650 if (!dtrace_priv_proc(state)) 3651 return (0); 3652 3653 /* 3654 * See comment in DIF_VAR_PID. 3655 */ 3656 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3657 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3658 3659 /* 3660 * It is always safe to dereference one's own t_procp pointer: 3661 * it always points to a valid, allocated proc structure. 3662 * (This is true because threads don't clean up their own 3663 * state -- they leave that task to whomever reaps them.) 3664 */ 3665 return (dtrace_dif_varstr( 3666 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3667 state, mstate)); 3668 #elif defined(__FreeBSD__) 3669 /* 3670 * On FreeBSD, we introduce compatibility to zonename by falling through 3671 * into jailname. 3672 */ 3673 case DIF_VAR_JAILNAME: 3674 if (!dtrace_priv_kernel(state)) 3675 return (0); 3676 3677 return (dtrace_dif_varstr( 3678 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3679 state, mstate)); 3680 3681 case DIF_VAR_JID: 3682 if (!dtrace_priv_kernel(state)) 3683 return (0); 3684 3685 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3686 #else 3687 return (0); 3688 #endif 3689 3690 case DIF_VAR_UID: 3691 if (!dtrace_priv_proc(state)) 3692 return (0); 3693 3694 #ifdef illumos 3695 /* 3696 * See comment in DIF_VAR_PID. 3697 */ 3698 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3699 return ((uint64_t)p0.p_cred->cr_uid); 3700 3701 /* 3702 * It is always safe to dereference one's own t_procp pointer: 3703 * it always points to a valid, allocated proc structure. 3704 * (This is true because threads don't clean up their own 3705 * state -- they leave that task to whomever reaps them.) 3706 * 3707 * Additionally, it is safe to dereference one's own process 3708 * credential, since this is never NULL after process birth. 3709 */ 3710 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3711 #else 3712 return ((uint64_t)curthread->td_ucred->cr_uid); 3713 #endif 3714 3715 case DIF_VAR_GID: 3716 if (!dtrace_priv_proc(state)) 3717 return (0); 3718 3719 #ifdef illumos 3720 /* 3721 * See comment in DIF_VAR_PID. 3722 */ 3723 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3724 return ((uint64_t)p0.p_cred->cr_gid); 3725 3726 /* 3727 * It is always safe to dereference one's own t_procp pointer: 3728 * it always points to a valid, allocated proc structure. 3729 * (This is true because threads don't clean up their own 3730 * state -- they leave that task to whomever reaps them.) 3731 * 3732 * Additionally, it is safe to dereference one's own process 3733 * credential, since this is never NULL after process birth. 3734 */ 3735 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3736 #else 3737 return ((uint64_t)curthread->td_ucred->cr_gid); 3738 #endif 3739 3740 case DIF_VAR_ERRNO: { 3741 #ifdef illumos 3742 klwp_t *lwp; 3743 if (!dtrace_priv_proc(state)) 3744 return (0); 3745 3746 /* 3747 * See comment in DIF_VAR_PID. 3748 */ 3749 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3750 return (0); 3751 3752 /* 3753 * It is always safe to dereference one's own t_lwp pointer in 3754 * the event that this pointer is non-NULL. (This is true 3755 * because threads and lwps don't clean up their own state -- 3756 * they leave that task to whomever reaps them.) 3757 */ 3758 if ((lwp = curthread->t_lwp) == NULL) 3759 return (0); 3760 3761 return ((uint64_t)lwp->lwp_errno); 3762 #else 3763 return (curthread->td_errno); 3764 #endif 3765 } 3766 #ifndef illumos 3767 case DIF_VAR_CPU: { 3768 return curcpu; 3769 } 3770 #endif 3771 default: 3772 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3773 return (0); 3774 } 3775 } 3776 3777 3778 typedef enum dtrace_json_state { 3779 DTRACE_JSON_REST = 1, 3780 DTRACE_JSON_OBJECT, 3781 DTRACE_JSON_STRING, 3782 DTRACE_JSON_STRING_ESCAPE, 3783 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3784 DTRACE_JSON_COLON, 3785 DTRACE_JSON_COMMA, 3786 DTRACE_JSON_VALUE, 3787 DTRACE_JSON_IDENTIFIER, 3788 DTRACE_JSON_NUMBER, 3789 DTRACE_JSON_NUMBER_FRAC, 3790 DTRACE_JSON_NUMBER_EXP, 3791 DTRACE_JSON_COLLECT_OBJECT 3792 } dtrace_json_state_t; 3793 3794 /* 3795 * This function possesses just enough knowledge about JSON to extract a single 3796 * value from a JSON string and store it in the scratch buffer. It is able 3797 * to extract nested object values, and members of arrays by index. 3798 * 3799 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3800 * be looked up as we descend into the object tree. e.g. 3801 * 3802 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3803 * with nelems = 5. 3804 * 3805 * The run time of this function must be bounded above by strsize to limit the 3806 * amount of work done in probe context. As such, it is implemented as a 3807 * simple state machine, reading one character at a time using safe loads 3808 * until we find the requested element, hit a parsing error or run off the 3809 * end of the object or string. 3810 * 3811 * As there is no way for a subroutine to return an error without interrupting 3812 * clause execution, we simply return NULL in the event of a missing key or any 3813 * other error condition. Each NULL return in this function is commented with 3814 * the error condition it represents -- parsing or otherwise. 3815 * 3816 * The set of states for the state machine closely matches the JSON 3817 * specification (http://json.org/). Briefly: 3818 * 3819 * DTRACE_JSON_REST: 3820 * Skip whitespace until we find either a top-level Object, moving 3821 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3822 * 3823 * DTRACE_JSON_OBJECT: 3824 * Locate the next key String in an Object. Sets a flag to denote 3825 * the next String as a key string and moves to DTRACE_JSON_STRING. 3826 * 3827 * DTRACE_JSON_COLON: 3828 * Skip whitespace until we find the colon that separates key Strings 3829 * from their values. Once found, move to DTRACE_JSON_VALUE. 3830 * 3831 * DTRACE_JSON_VALUE: 3832 * Detects the type of the next value (String, Number, Identifier, Object 3833 * or Array) and routes to the states that process that type. Here we also 3834 * deal with the element selector list if we are requested to traverse down 3835 * into the object tree. 3836 * 3837 * DTRACE_JSON_COMMA: 3838 * Skip whitespace until we find the comma that separates key-value pairs 3839 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3840 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3841 * states return to this state at the end of their value, unless otherwise 3842 * noted. 3843 * 3844 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3845 * Processes a Number literal from the JSON, including any exponent 3846 * component that may be present. Numbers are returned as strings, which 3847 * may be passed to strtoll() if an integer is required. 3848 * 3849 * DTRACE_JSON_IDENTIFIER: 3850 * Processes a "true", "false" or "null" literal in the JSON. 3851 * 3852 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3853 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3854 * Processes a String literal from the JSON, whether the String denotes 3855 * a key, a value or part of a larger Object. Handles all escape sequences 3856 * present in the specification, including four-digit unicode characters, 3857 * but merely includes the escape sequence without converting it to the 3858 * actual escaped character. If the String is flagged as a key, we 3859 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3860 * 3861 * DTRACE_JSON_COLLECT_OBJECT: 3862 * This state collects an entire Object (or Array), correctly handling 3863 * embedded strings. If the full element selector list matches this nested 3864 * object, we return the Object in full as a string. If not, we use this 3865 * state to skip to the next value at this level and continue processing. 3866 * 3867 * NOTE: This function uses various macros from strtolctype.h to manipulate 3868 * digit values, etc -- these have all been checked to ensure they make 3869 * no additional function calls. 3870 */ 3871 static char * 3872 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3873 char *dest) 3874 { 3875 dtrace_json_state_t state = DTRACE_JSON_REST; 3876 int64_t array_elem = INT64_MIN; 3877 int64_t array_pos = 0; 3878 uint8_t escape_unicount = 0; 3879 boolean_t string_is_key = B_FALSE; 3880 boolean_t collect_object = B_FALSE; 3881 boolean_t found_key = B_FALSE; 3882 boolean_t in_array = B_FALSE; 3883 uint32_t braces = 0, brackets = 0; 3884 char *elem = elemlist; 3885 char *dd = dest; 3886 uintptr_t cur; 3887 3888 for (cur = json; cur < json + size; cur++) { 3889 char cc = dtrace_load8(cur); 3890 if (cc == '\0') 3891 return (NULL); 3892 3893 switch (state) { 3894 case DTRACE_JSON_REST: 3895 if (isspace(cc)) 3896 break; 3897 3898 if (cc == '{') { 3899 state = DTRACE_JSON_OBJECT; 3900 break; 3901 } 3902 3903 if (cc == '[') { 3904 in_array = B_TRUE; 3905 array_pos = 0; 3906 array_elem = dtrace_strtoll(elem, 10, size); 3907 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3908 state = DTRACE_JSON_VALUE; 3909 break; 3910 } 3911 3912 /* 3913 * ERROR: expected to find a top-level object or array. 3914 */ 3915 return (NULL); 3916 case DTRACE_JSON_OBJECT: 3917 if (isspace(cc)) 3918 break; 3919 3920 if (cc == '"') { 3921 state = DTRACE_JSON_STRING; 3922 string_is_key = B_TRUE; 3923 break; 3924 } 3925 3926 /* 3927 * ERROR: either the object did not start with a key 3928 * string, or we've run off the end of the object 3929 * without finding the requested key. 3930 */ 3931 return (NULL); 3932 case DTRACE_JSON_STRING: 3933 if (cc == '\\') { 3934 *dd++ = '\\'; 3935 state = DTRACE_JSON_STRING_ESCAPE; 3936 break; 3937 } 3938 3939 if (cc == '"') { 3940 if (collect_object) { 3941 /* 3942 * We don't reset the dest here, as 3943 * the string is part of a larger 3944 * object being collected. 3945 */ 3946 *dd++ = cc; 3947 collect_object = B_FALSE; 3948 state = DTRACE_JSON_COLLECT_OBJECT; 3949 break; 3950 } 3951 *dd = '\0'; 3952 dd = dest; /* reset string buffer */ 3953 if (string_is_key) { 3954 if (dtrace_strncmp(dest, elem, 3955 size) == 0) 3956 found_key = B_TRUE; 3957 } else if (found_key) { 3958 if (nelems > 1) { 3959 /* 3960 * We expected an object, not 3961 * this string. 3962 */ 3963 return (NULL); 3964 } 3965 return (dest); 3966 } 3967 state = string_is_key ? DTRACE_JSON_COLON : 3968 DTRACE_JSON_COMMA; 3969 string_is_key = B_FALSE; 3970 break; 3971 } 3972 3973 *dd++ = cc; 3974 break; 3975 case DTRACE_JSON_STRING_ESCAPE: 3976 *dd++ = cc; 3977 if (cc == 'u') { 3978 escape_unicount = 0; 3979 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3980 } else { 3981 state = DTRACE_JSON_STRING; 3982 } 3983 break; 3984 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3985 if (!isxdigit(cc)) { 3986 /* 3987 * ERROR: invalid unicode escape, expected 3988 * four valid hexidecimal digits. 3989 */ 3990 return (NULL); 3991 } 3992 3993 *dd++ = cc; 3994 if (++escape_unicount == 4) 3995 state = DTRACE_JSON_STRING; 3996 break; 3997 case DTRACE_JSON_COLON: 3998 if (isspace(cc)) 3999 break; 4000 4001 if (cc == ':') { 4002 state = DTRACE_JSON_VALUE; 4003 break; 4004 } 4005 4006 /* 4007 * ERROR: expected a colon. 4008 */ 4009 return (NULL); 4010 case DTRACE_JSON_COMMA: 4011 if (isspace(cc)) 4012 break; 4013 4014 if (cc == ',') { 4015 if (in_array) { 4016 state = DTRACE_JSON_VALUE; 4017 if (++array_pos == array_elem) 4018 found_key = B_TRUE; 4019 } else { 4020 state = DTRACE_JSON_OBJECT; 4021 } 4022 break; 4023 } 4024 4025 /* 4026 * ERROR: either we hit an unexpected character, or 4027 * we reached the end of the object or array without 4028 * finding the requested key. 4029 */ 4030 return (NULL); 4031 case DTRACE_JSON_IDENTIFIER: 4032 if (islower(cc)) { 4033 *dd++ = cc; 4034 break; 4035 } 4036 4037 *dd = '\0'; 4038 dd = dest; /* reset string buffer */ 4039 4040 if (dtrace_strncmp(dest, "true", 5) == 0 || 4041 dtrace_strncmp(dest, "false", 6) == 0 || 4042 dtrace_strncmp(dest, "null", 5) == 0) { 4043 if (found_key) { 4044 if (nelems > 1) { 4045 /* 4046 * ERROR: We expected an object, 4047 * not this identifier. 4048 */ 4049 return (NULL); 4050 } 4051 return (dest); 4052 } else { 4053 cur--; 4054 state = DTRACE_JSON_COMMA; 4055 break; 4056 } 4057 } 4058 4059 /* 4060 * ERROR: we did not recognise the identifier as one 4061 * of those in the JSON specification. 4062 */ 4063 return (NULL); 4064 case DTRACE_JSON_NUMBER: 4065 if (cc == '.') { 4066 *dd++ = cc; 4067 state = DTRACE_JSON_NUMBER_FRAC; 4068 break; 4069 } 4070 4071 if (cc == 'x' || cc == 'X') { 4072 /* 4073 * ERROR: specification explicitly excludes 4074 * hexidecimal or octal numbers. 4075 */ 4076 return (NULL); 4077 } 4078 4079 /* FALLTHRU */ 4080 case DTRACE_JSON_NUMBER_FRAC: 4081 if (cc == 'e' || cc == 'E') { 4082 *dd++ = cc; 4083 state = DTRACE_JSON_NUMBER_EXP; 4084 break; 4085 } 4086 4087 if (cc == '+' || cc == '-') { 4088 /* 4089 * ERROR: expect sign as part of exponent only. 4090 */ 4091 return (NULL); 4092 } 4093 /* FALLTHRU */ 4094 case DTRACE_JSON_NUMBER_EXP: 4095 if (isdigit(cc) || cc == '+' || cc == '-') { 4096 *dd++ = cc; 4097 break; 4098 } 4099 4100 *dd = '\0'; 4101 dd = dest; /* reset string buffer */ 4102 if (found_key) { 4103 if (nelems > 1) { 4104 /* 4105 * ERROR: We expected an object, not 4106 * this number. 4107 */ 4108 return (NULL); 4109 } 4110 return (dest); 4111 } 4112 4113 cur--; 4114 state = DTRACE_JSON_COMMA; 4115 break; 4116 case DTRACE_JSON_VALUE: 4117 if (isspace(cc)) 4118 break; 4119 4120 if (cc == '{' || cc == '[') { 4121 if (nelems > 1 && found_key) { 4122 in_array = cc == '[' ? B_TRUE : B_FALSE; 4123 /* 4124 * If our element selector directs us 4125 * to descend into this nested object, 4126 * then move to the next selector 4127 * element in the list and restart the 4128 * state machine. 4129 */ 4130 while (*elem != '\0') 4131 elem++; 4132 elem++; /* skip the inter-element NUL */ 4133 nelems--; 4134 dd = dest; 4135 if (in_array) { 4136 state = DTRACE_JSON_VALUE; 4137 array_pos = 0; 4138 array_elem = dtrace_strtoll( 4139 elem, 10, size); 4140 found_key = array_elem == 0 ? 4141 B_TRUE : B_FALSE; 4142 } else { 4143 found_key = B_FALSE; 4144 state = DTRACE_JSON_OBJECT; 4145 } 4146 break; 4147 } 4148 4149 /* 4150 * Otherwise, we wish to either skip this 4151 * nested object or return it in full. 4152 */ 4153 if (cc == '[') 4154 brackets = 1; 4155 else 4156 braces = 1; 4157 *dd++ = cc; 4158 state = DTRACE_JSON_COLLECT_OBJECT; 4159 break; 4160 } 4161 4162 if (cc == '"') { 4163 state = DTRACE_JSON_STRING; 4164 break; 4165 } 4166 4167 if (islower(cc)) { 4168 /* 4169 * Here we deal with true, false and null. 4170 */ 4171 *dd++ = cc; 4172 state = DTRACE_JSON_IDENTIFIER; 4173 break; 4174 } 4175 4176 if (cc == '-' || isdigit(cc)) { 4177 *dd++ = cc; 4178 state = DTRACE_JSON_NUMBER; 4179 break; 4180 } 4181 4182 /* 4183 * ERROR: unexpected character at start of value. 4184 */ 4185 return (NULL); 4186 case DTRACE_JSON_COLLECT_OBJECT: 4187 if (cc == '\0') 4188 /* 4189 * ERROR: unexpected end of input. 4190 */ 4191 return (NULL); 4192 4193 *dd++ = cc; 4194 if (cc == '"') { 4195 collect_object = B_TRUE; 4196 state = DTRACE_JSON_STRING; 4197 break; 4198 } 4199 4200 if (cc == ']') { 4201 if (brackets-- == 0) { 4202 /* 4203 * ERROR: unbalanced brackets. 4204 */ 4205 return (NULL); 4206 } 4207 } else if (cc == '}') { 4208 if (braces-- == 0) { 4209 /* 4210 * ERROR: unbalanced braces. 4211 */ 4212 return (NULL); 4213 } 4214 } else if (cc == '{') { 4215 braces++; 4216 } else if (cc == '[') { 4217 brackets++; 4218 } 4219 4220 if (brackets == 0 && braces == 0) { 4221 if (found_key) { 4222 *dd = '\0'; 4223 return (dest); 4224 } 4225 dd = dest; /* reset string buffer */ 4226 state = DTRACE_JSON_COMMA; 4227 } 4228 break; 4229 } 4230 } 4231 return (NULL); 4232 } 4233 4234 /* 4235 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4236 * Notice that we don't bother validating the proper number of arguments or 4237 * their types in the tuple stack. This isn't needed because all argument 4238 * interpretation is safe because of our load safety -- the worst that can 4239 * happen is that a bogus program can obtain bogus results. 4240 */ 4241 static void 4242 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4243 dtrace_key_t *tupregs, int nargs, 4244 dtrace_mstate_t *mstate, dtrace_state_t *state) 4245 { 4246 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4247 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4248 dtrace_vstate_t *vstate = &state->dts_vstate; 4249 4250 #ifdef illumos 4251 union { 4252 mutex_impl_t mi; 4253 uint64_t mx; 4254 } m; 4255 4256 union { 4257 krwlock_t ri; 4258 uintptr_t rw; 4259 } r; 4260 #else 4261 struct thread *lowner; 4262 union { 4263 struct lock_object *li; 4264 uintptr_t lx; 4265 } l; 4266 #endif 4267 4268 switch (subr) { 4269 case DIF_SUBR_RAND: 4270 regs[rd] = dtrace_xoroshiro128_plus_next( 4271 state->dts_rstate[curcpu]); 4272 break; 4273 4274 #ifdef illumos 4275 case DIF_SUBR_MUTEX_OWNED: 4276 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4277 mstate, vstate)) { 4278 regs[rd] = 0; 4279 break; 4280 } 4281 4282 m.mx = dtrace_load64(tupregs[0].dttk_value); 4283 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4284 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4285 else 4286 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4287 break; 4288 4289 case DIF_SUBR_MUTEX_OWNER: 4290 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4291 mstate, vstate)) { 4292 regs[rd] = 0; 4293 break; 4294 } 4295 4296 m.mx = dtrace_load64(tupregs[0].dttk_value); 4297 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4298 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4299 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4300 else 4301 regs[rd] = 0; 4302 break; 4303 4304 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4305 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4306 mstate, vstate)) { 4307 regs[rd] = 0; 4308 break; 4309 } 4310 4311 m.mx = dtrace_load64(tupregs[0].dttk_value); 4312 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4313 break; 4314 4315 case DIF_SUBR_MUTEX_TYPE_SPIN: 4316 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4317 mstate, vstate)) { 4318 regs[rd] = 0; 4319 break; 4320 } 4321 4322 m.mx = dtrace_load64(tupregs[0].dttk_value); 4323 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4324 break; 4325 4326 case DIF_SUBR_RW_READ_HELD: { 4327 uintptr_t tmp; 4328 4329 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4330 mstate, vstate)) { 4331 regs[rd] = 0; 4332 break; 4333 } 4334 4335 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4336 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4337 break; 4338 } 4339 4340 case DIF_SUBR_RW_WRITE_HELD: 4341 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4342 mstate, vstate)) { 4343 regs[rd] = 0; 4344 break; 4345 } 4346 4347 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4348 regs[rd] = _RW_WRITE_HELD(&r.ri); 4349 break; 4350 4351 case DIF_SUBR_RW_ISWRITER: 4352 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4353 mstate, vstate)) { 4354 regs[rd] = 0; 4355 break; 4356 } 4357 4358 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4359 regs[rd] = _RW_ISWRITER(&r.ri); 4360 break; 4361 4362 #else /* !illumos */ 4363 case DIF_SUBR_MUTEX_OWNED: 4364 if (!dtrace_canload(tupregs[0].dttk_value, 4365 sizeof (struct lock_object), mstate, vstate)) { 4366 regs[rd] = 0; 4367 break; 4368 } 4369 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4371 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4372 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4373 break; 4374 4375 case DIF_SUBR_MUTEX_OWNER: 4376 if (!dtrace_canload(tupregs[0].dttk_value, 4377 sizeof (struct lock_object), mstate, vstate)) { 4378 regs[rd] = 0; 4379 break; 4380 } 4381 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4382 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4383 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4384 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4385 regs[rd] = (uintptr_t)lowner; 4386 break; 4387 4388 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4389 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4390 mstate, vstate)) { 4391 regs[rd] = 0; 4392 break; 4393 } 4394 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4395 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4396 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4397 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4398 break; 4399 4400 case DIF_SUBR_MUTEX_TYPE_SPIN: 4401 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4402 mstate, vstate)) { 4403 regs[rd] = 0; 4404 break; 4405 } 4406 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4407 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4408 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4409 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4410 break; 4411 4412 case DIF_SUBR_RW_READ_HELD: 4413 case DIF_SUBR_SX_SHARED_HELD: 4414 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4415 mstate, vstate)) { 4416 regs[rd] = 0; 4417 break; 4418 } 4419 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4420 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4421 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4422 lowner == NULL; 4423 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4424 break; 4425 4426 case DIF_SUBR_RW_WRITE_HELD: 4427 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4428 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4429 mstate, vstate)) { 4430 regs[rd] = 0; 4431 break; 4432 } 4433 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4434 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4435 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4436 lowner != NULL; 4437 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4438 break; 4439 4440 case DIF_SUBR_RW_ISWRITER: 4441 case DIF_SUBR_SX_ISEXCLUSIVE: 4442 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4443 mstate, vstate)) { 4444 regs[rd] = 0; 4445 break; 4446 } 4447 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4448 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4449 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4450 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4451 regs[rd] = (lowner == curthread); 4452 break; 4453 #endif /* illumos */ 4454 4455 case DIF_SUBR_BCOPY: { 4456 /* 4457 * We need to be sure that the destination is in the scratch 4458 * region -- no other region is allowed. 4459 */ 4460 uintptr_t src = tupregs[0].dttk_value; 4461 uintptr_t dest = tupregs[1].dttk_value; 4462 size_t size = tupregs[2].dttk_value; 4463 4464 if (!dtrace_inscratch(dest, size, mstate)) { 4465 *flags |= CPU_DTRACE_BADADDR; 4466 *illval = regs[rd]; 4467 break; 4468 } 4469 4470 if (!dtrace_canload(src, size, mstate, vstate)) { 4471 regs[rd] = 0; 4472 break; 4473 } 4474 4475 dtrace_bcopy((void *)src, (void *)dest, size); 4476 break; 4477 } 4478 4479 case DIF_SUBR_ALLOCA: 4480 case DIF_SUBR_COPYIN: { 4481 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4482 uint64_t size = 4483 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4484 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4485 4486 /* 4487 * This action doesn't require any credential checks since 4488 * probes will not activate in user contexts to which the 4489 * enabling user does not have permissions. 4490 */ 4491 4492 /* 4493 * Rounding up the user allocation size could have overflowed 4494 * a large, bogus allocation (like -1ULL) to 0. 4495 */ 4496 if (scratch_size < size || 4497 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4498 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4499 regs[rd] = 0; 4500 break; 4501 } 4502 4503 if (subr == DIF_SUBR_COPYIN) { 4504 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4505 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4506 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4507 } 4508 4509 mstate->dtms_scratch_ptr += scratch_size; 4510 regs[rd] = dest; 4511 break; 4512 } 4513 4514 case DIF_SUBR_COPYINTO: { 4515 uint64_t size = tupregs[1].dttk_value; 4516 uintptr_t dest = tupregs[2].dttk_value; 4517 4518 /* 4519 * This action doesn't require any credential checks since 4520 * probes will not activate in user contexts to which the 4521 * enabling user does not have permissions. 4522 */ 4523 if (!dtrace_inscratch(dest, size, mstate)) { 4524 *flags |= CPU_DTRACE_BADADDR; 4525 *illval = regs[rd]; 4526 break; 4527 } 4528 4529 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4530 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4531 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4532 break; 4533 } 4534 4535 case DIF_SUBR_COPYINSTR: { 4536 uintptr_t dest = mstate->dtms_scratch_ptr; 4537 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4538 4539 if (nargs > 1 && tupregs[1].dttk_value < size) 4540 size = tupregs[1].dttk_value + 1; 4541 4542 /* 4543 * This action doesn't require any credential checks since 4544 * probes will not activate in user contexts to which the 4545 * enabling user does not have permissions. 4546 */ 4547 if (!DTRACE_INSCRATCH(mstate, size)) { 4548 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4549 regs[rd] = 0; 4550 break; 4551 } 4552 4553 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4554 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4555 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4556 4557 ((char *)dest)[size - 1] = '\0'; 4558 mstate->dtms_scratch_ptr += size; 4559 regs[rd] = dest; 4560 break; 4561 } 4562 4563 #ifdef illumos 4564 case DIF_SUBR_MSGSIZE: 4565 case DIF_SUBR_MSGDSIZE: { 4566 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4567 uintptr_t wptr, rptr; 4568 size_t count = 0; 4569 int cont = 0; 4570 4571 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4572 4573 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4574 vstate)) { 4575 regs[rd] = 0; 4576 break; 4577 } 4578 4579 wptr = dtrace_loadptr(baddr + 4580 offsetof(mblk_t, b_wptr)); 4581 4582 rptr = dtrace_loadptr(baddr + 4583 offsetof(mblk_t, b_rptr)); 4584 4585 if (wptr < rptr) { 4586 *flags |= CPU_DTRACE_BADADDR; 4587 *illval = tupregs[0].dttk_value; 4588 break; 4589 } 4590 4591 daddr = dtrace_loadptr(baddr + 4592 offsetof(mblk_t, b_datap)); 4593 4594 baddr = dtrace_loadptr(baddr + 4595 offsetof(mblk_t, b_cont)); 4596 4597 /* 4598 * We want to prevent against denial-of-service here, 4599 * so we're only going to search the list for 4600 * dtrace_msgdsize_max mblks. 4601 */ 4602 if (cont++ > dtrace_msgdsize_max) { 4603 *flags |= CPU_DTRACE_ILLOP; 4604 break; 4605 } 4606 4607 if (subr == DIF_SUBR_MSGDSIZE) { 4608 if (dtrace_load8(daddr + 4609 offsetof(dblk_t, db_type)) != M_DATA) 4610 continue; 4611 } 4612 4613 count += wptr - rptr; 4614 } 4615 4616 if (!(*flags & CPU_DTRACE_FAULT)) 4617 regs[rd] = count; 4618 4619 break; 4620 } 4621 #endif 4622 4623 case DIF_SUBR_PROGENYOF: { 4624 pid_t pid = tupregs[0].dttk_value; 4625 proc_t *p; 4626 int rval = 0; 4627 4628 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4629 4630 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4631 #ifdef illumos 4632 if (p->p_pidp->pid_id == pid) { 4633 #else 4634 if (p->p_pid == pid) { 4635 #endif 4636 rval = 1; 4637 break; 4638 } 4639 } 4640 4641 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4642 4643 regs[rd] = rval; 4644 break; 4645 } 4646 4647 case DIF_SUBR_SPECULATION: 4648 regs[rd] = dtrace_speculation(state); 4649 break; 4650 4651 case DIF_SUBR_COPYOUT: { 4652 uintptr_t kaddr = tupregs[0].dttk_value; 4653 uintptr_t uaddr = tupregs[1].dttk_value; 4654 uint64_t size = tupregs[2].dttk_value; 4655 4656 if (!dtrace_destructive_disallow && 4657 dtrace_priv_proc_control(state) && 4658 !dtrace_istoxic(kaddr, size) && 4659 dtrace_canload(kaddr, size, mstate, vstate)) { 4660 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4661 dtrace_copyout(kaddr, uaddr, size, flags); 4662 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4663 } 4664 break; 4665 } 4666 4667 case DIF_SUBR_COPYOUTSTR: { 4668 uintptr_t kaddr = tupregs[0].dttk_value; 4669 uintptr_t uaddr = tupregs[1].dttk_value; 4670 uint64_t size = tupregs[2].dttk_value; 4671 size_t lim; 4672 4673 if (!dtrace_destructive_disallow && 4674 dtrace_priv_proc_control(state) && 4675 !dtrace_istoxic(kaddr, size) && 4676 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4677 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4678 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4679 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4680 } 4681 break; 4682 } 4683 4684 case DIF_SUBR_STRLEN: { 4685 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4686 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4687 size_t lim; 4688 4689 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4690 regs[rd] = 0; 4691 break; 4692 } 4693 4694 regs[rd] = dtrace_strlen((char *)addr, lim); 4695 break; 4696 } 4697 4698 case DIF_SUBR_STRCHR: 4699 case DIF_SUBR_STRRCHR: { 4700 /* 4701 * We're going to iterate over the string looking for the 4702 * specified character. We will iterate until we have reached 4703 * the string length or we have found the character. If this 4704 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4705 * of the specified character instead of the first. 4706 */ 4707 uintptr_t addr = tupregs[0].dttk_value; 4708 uintptr_t addr_limit; 4709 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4710 size_t lim; 4711 char c, target = (char)tupregs[1].dttk_value; 4712 4713 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4714 regs[rd] = 0; 4715 break; 4716 } 4717 addr_limit = addr + lim; 4718 4719 for (regs[rd] = 0; addr < addr_limit; addr++) { 4720 if ((c = dtrace_load8(addr)) == target) { 4721 regs[rd] = addr; 4722 4723 if (subr == DIF_SUBR_STRCHR) 4724 break; 4725 } 4726 4727 if (c == '\0') 4728 break; 4729 } 4730 break; 4731 } 4732 4733 case DIF_SUBR_STRSTR: 4734 case DIF_SUBR_INDEX: 4735 case DIF_SUBR_RINDEX: { 4736 /* 4737 * We're going to iterate over the string looking for the 4738 * specified string. We will iterate until we have reached 4739 * the string length or we have found the string. (Yes, this 4740 * is done in the most naive way possible -- but considering 4741 * that the string we're searching for is likely to be 4742 * relatively short, the complexity of Rabin-Karp or similar 4743 * hardly seems merited.) 4744 */ 4745 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4746 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4747 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4748 size_t len = dtrace_strlen(addr, size); 4749 size_t sublen = dtrace_strlen(substr, size); 4750 char *limit = addr + len, *orig = addr; 4751 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4752 int inc = 1; 4753 4754 regs[rd] = notfound; 4755 4756 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4757 regs[rd] = 0; 4758 break; 4759 } 4760 4761 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4762 vstate)) { 4763 regs[rd] = 0; 4764 break; 4765 } 4766 4767 /* 4768 * strstr() and index()/rindex() have similar semantics if 4769 * both strings are the empty string: strstr() returns a 4770 * pointer to the (empty) string, and index() and rindex() 4771 * both return index 0 (regardless of any position argument). 4772 */ 4773 if (sublen == 0 && len == 0) { 4774 if (subr == DIF_SUBR_STRSTR) 4775 regs[rd] = (uintptr_t)addr; 4776 else 4777 regs[rd] = 0; 4778 break; 4779 } 4780 4781 if (subr != DIF_SUBR_STRSTR) { 4782 if (subr == DIF_SUBR_RINDEX) { 4783 limit = orig - 1; 4784 addr += len; 4785 inc = -1; 4786 } 4787 4788 /* 4789 * Both index() and rindex() take an optional position 4790 * argument that denotes the starting position. 4791 */ 4792 if (nargs == 3) { 4793 int64_t pos = (int64_t)tupregs[2].dttk_value; 4794 4795 /* 4796 * If the position argument to index() is 4797 * negative, Perl implicitly clamps it at 4798 * zero. This semantic is a little surprising 4799 * given the special meaning of negative 4800 * positions to similar Perl functions like 4801 * substr(), but it appears to reflect a 4802 * notion that index() can start from a 4803 * negative index and increment its way up to 4804 * the string. Given this notion, Perl's 4805 * rindex() is at least self-consistent in 4806 * that it implicitly clamps positions greater 4807 * than the string length to be the string 4808 * length. Where Perl completely loses 4809 * coherence, however, is when the specified 4810 * substring is the empty string (""). In 4811 * this case, even if the position is 4812 * negative, rindex() returns 0 -- and even if 4813 * the position is greater than the length, 4814 * index() returns the string length. These 4815 * semantics violate the notion that index() 4816 * should never return a value less than the 4817 * specified position and that rindex() should 4818 * never return a value greater than the 4819 * specified position. (One assumes that 4820 * these semantics are artifacts of Perl's 4821 * implementation and not the results of 4822 * deliberate design -- it beggars belief that 4823 * even Larry Wall could desire such oddness.) 4824 * While in the abstract one would wish for 4825 * consistent position semantics across 4826 * substr(), index() and rindex() -- or at the 4827 * very least self-consistent position 4828 * semantics for index() and rindex() -- we 4829 * instead opt to keep with the extant Perl 4830 * semantics, in all their broken glory. (Do 4831 * we have more desire to maintain Perl's 4832 * semantics than Perl does? Probably.) 4833 */ 4834 if (subr == DIF_SUBR_RINDEX) { 4835 if (pos < 0) { 4836 if (sublen == 0) 4837 regs[rd] = 0; 4838 break; 4839 } 4840 4841 if (pos > len) 4842 pos = len; 4843 } else { 4844 if (pos < 0) 4845 pos = 0; 4846 4847 if (pos >= len) { 4848 if (sublen == 0) 4849 regs[rd] = len; 4850 break; 4851 } 4852 } 4853 4854 addr = orig + pos; 4855 } 4856 } 4857 4858 for (regs[rd] = notfound; addr != limit; addr += inc) { 4859 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4860 if (subr != DIF_SUBR_STRSTR) { 4861 /* 4862 * As D index() and rindex() are 4863 * modeled on Perl (and not on awk), 4864 * we return a zero-based (and not a 4865 * one-based) index. (For you Perl 4866 * weenies: no, we're not going to add 4867 * $[ -- and shouldn't you be at a con 4868 * or something?) 4869 */ 4870 regs[rd] = (uintptr_t)(addr - orig); 4871 break; 4872 } 4873 4874 ASSERT(subr == DIF_SUBR_STRSTR); 4875 regs[rd] = (uintptr_t)addr; 4876 break; 4877 } 4878 } 4879 4880 break; 4881 } 4882 4883 case DIF_SUBR_STRTOK: { 4884 uintptr_t addr = tupregs[0].dttk_value; 4885 uintptr_t tokaddr = tupregs[1].dttk_value; 4886 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4887 uintptr_t limit, toklimit; 4888 size_t clim; 4889 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4890 char *dest = (char *)mstate->dtms_scratch_ptr; 4891 int i; 4892 4893 /* 4894 * Check both the token buffer and (later) the input buffer, 4895 * since both could be non-scratch addresses. 4896 */ 4897 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4898 regs[rd] = 0; 4899 break; 4900 } 4901 toklimit = tokaddr + clim; 4902 4903 if (!DTRACE_INSCRATCH(mstate, size)) { 4904 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4905 regs[rd] = 0; 4906 break; 4907 } 4908 4909 if (addr == 0) { 4910 /* 4911 * If the address specified is NULL, we use our saved 4912 * strtok pointer from the mstate. Note that this 4913 * means that the saved strtok pointer is _only_ 4914 * valid within multiple enablings of the same probe -- 4915 * it behaves like an implicit clause-local variable. 4916 */ 4917 addr = mstate->dtms_strtok; 4918 limit = mstate->dtms_strtok_limit; 4919 } else { 4920 /* 4921 * If the user-specified address is non-NULL we must 4922 * access check it. This is the only time we have 4923 * a chance to do so, since this address may reside 4924 * in the string table of this clause-- future calls 4925 * (when we fetch addr from mstate->dtms_strtok) 4926 * would fail this access check. 4927 */ 4928 if (!dtrace_strcanload(addr, size, &clim, mstate, 4929 vstate)) { 4930 regs[rd] = 0; 4931 break; 4932 } 4933 limit = addr + clim; 4934 } 4935 4936 /* 4937 * First, zero the token map, and then process the token 4938 * string -- setting a bit in the map for every character 4939 * found in the token string. 4940 */ 4941 for (i = 0; i < sizeof (tokmap); i++) 4942 tokmap[i] = 0; 4943 4944 for (; tokaddr < toklimit; tokaddr++) { 4945 if ((c = dtrace_load8(tokaddr)) == '\0') 4946 break; 4947 4948 ASSERT((c >> 3) < sizeof (tokmap)); 4949 tokmap[c >> 3] |= (1 << (c & 0x7)); 4950 } 4951 4952 for (; addr < limit; addr++) { 4953 /* 4954 * We're looking for a character that is _not_ 4955 * contained in the token string. 4956 */ 4957 if ((c = dtrace_load8(addr)) == '\0') 4958 break; 4959 4960 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4961 break; 4962 } 4963 4964 if (c == '\0') { 4965 /* 4966 * We reached the end of the string without finding 4967 * any character that was not in the token string. 4968 * We return NULL in this case, and we set the saved 4969 * address to NULL as well. 4970 */ 4971 regs[rd] = 0; 4972 mstate->dtms_strtok = 0; 4973 mstate->dtms_strtok_limit = 0; 4974 break; 4975 } 4976 4977 /* 4978 * From here on, we're copying into the destination string. 4979 */ 4980 for (i = 0; addr < limit && i < size - 1; addr++) { 4981 if ((c = dtrace_load8(addr)) == '\0') 4982 break; 4983 4984 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4985 break; 4986 4987 ASSERT(i < size); 4988 dest[i++] = c; 4989 } 4990 4991 ASSERT(i < size); 4992 dest[i] = '\0'; 4993 regs[rd] = (uintptr_t)dest; 4994 mstate->dtms_scratch_ptr += size; 4995 mstate->dtms_strtok = addr; 4996 mstate->dtms_strtok_limit = limit; 4997 break; 4998 } 4999 5000 case DIF_SUBR_SUBSTR: { 5001 uintptr_t s = tupregs[0].dttk_value; 5002 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5003 char *d = (char *)mstate->dtms_scratch_ptr; 5004 int64_t index = (int64_t)tupregs[1].dttk_value; 5005 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5006 size_t len = dtrace_strlen((char *)s, size); 5007 int64_t i; 5008 5009 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5010 regs[rd] = 0; 5011 break; 5012 } 5013 5014 if (!DTRACE_INSCRATCH(mstate, size)) { 5015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5016 regs[rd] = 0; 5017 break; 5018 } 5019 5020 if (nargs <= 2) 5021 remaining = (int64_t)size; 5022 5023 if (index < 0) { 5024 index += len; 5025 5026 if (index < 0 && index + remaining > 0) { 5027 remaining += index; 5028 index = 0; 5029 } 5030 } 5031 5032 if (index >= len || index < 0) { 5033 remaining = 0; 5034 } else if (remaining < 0) { 5035 remaining += len - index; 5036 } else if (index + remaining > size) { 5037 remaining = size - index; 5038 } 5039 5040 for (i = 0; i < remaining; i++) { 5041 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5042 break; 5043 } 5044 5045 d[i] = '\0'; 5046 5047 mstate->dtms_scratch_ptr += size; 5048 regs[rd] = (uintptr_t)d; 5049 break; 5050 } 5051 5052 case DIF_SUBR_JSON: { 5053 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5054 uintptr_t json = tupregs[0].dttk_value; 5055 size_t jsonlen = dtrace_strlen((char *)json, size); 5056 uintptr_t elem = tupregs[1].dttk_value; 5057 size_t elemlen = dtrace_strlen((char *)elem, size); 5058 5059 char *dest = (char *)mstate->dtms_scratch_ptr; 5060 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5061 char *ee = elemlist; 5062 int nelems = 1; 5063 uintptr_t cur; 5064 5065 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5066 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5067 regs[rd] = 0; 5068 break; 5069 } 5070 5071 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5072 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5073 regs[rd] = 0; 5074 break; 5075 } 5076 5077 /* 5078 * Read the element selector and split it up into a packed list 5079 * of strings. 5080 */ 5081 for (cur = elem; cur < elem + elemlen; cur++) { 5082 char cc = dtrace_load8(cur); 5083 5084 if (cur == elem && cc == '[') { 5085 /* 5086 * If the first element selector key is 5087 * actually an array index then ignore the 5088 * bracket. 5089 */ 5090 continue; 5091 } 5092 5093 if (cc == ']') 5094 continue; 5095 5096 if (cc == '.' || cc == '[') { 5097 nelems++; 5098 cc = '\0'; 5099 } 5100 5101 *ee++ = cc; 5102 } 5103 *ee++ = '\0'; 5104 5105 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5106 nelems, dest)) != 0) 5107 mstate->dtms_scratch_ptr += jsonlen + 1; 5108 break; 5109 } 5110 5111 case DIF_SUBR_TOUPPER: 5112 case DIF_SUBR_TOLOWER: { 5113 uintptr_t s = tupregs[0].dttk_value; 5114 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5115 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5116 size_t len = dtrace_strlen((char *)s, size); 5117 char lower, upper, convert; 5118 int64_t i; 5119 5120 if (subr == DIF_SUBR_TOUPPER) { 5121 lower = 'a'; 5122 upper = 'z'; 5123 convert = 'A'; 5124 } else { 5125 lower = 'A'; 5126 upper = 'Z'; 5127 convert = 'a'; 5128 } 5129 5130 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5131 regs[rd] = 0; 5132 break; 5133 } 5134 5135 if (!DTRACE_INSCRATCH(mstate, size)) { 5136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5137 regs[rd] = 0; 5138 break; 5139 } 5140 5141 for (i = 0; i < size - 1; i++) { 5142 if ((c = dtrace_load8(s + i)) == '\0') 5143 break; 5144 5145 if (c >= lower && c <= upper) 5146 c = convert + (c - lower); 5147 5148 dest[i] = c; 5149 } 5150 5151 ASSERT(i < size); 5152 dest[i] = '\0'; 5153 regs[rd] = (uintptr_t)dest; 5154 mstate->dtms_scratch_ptr += size; 5155 break; 5156 } 5157 5158 #ifdef illumos 5159 case DIF_SUBR_GETMAJOR: 5160 #ifdef _LP64 5161 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5162 #else 5163 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5164 #endif 5165 break; 5166 5167 case DIF_SUBR_GETMINOR: 5168 #ifdef _LP64 5169 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5170 #else 5171 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5172 #endif 5173 break; 5174 5175 case DIF_SUBR_DDI_PATHNAME: { 5176 /* 5177 * This one is a galactic mess. We are going to roughly 5178 * emulate ddi_pathname(), but it's made more complicated 5179 * by the fact that we (a) want to include the minor name and 5180 * (b) must proceed iteratively instead of recursively. 5181 */ 5182 uintptr_t dest = mstate->dtms_scratch_ptr; 5183 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5184 char *start = (char *)dest, *end = start + size - 1; 5185 uintptr_t daddr = tupregs[0].dttk_value; 5186 int64_t minor = (int64_t)tupregs[1].dttk_value; 5187 char *s; 5188 int i, len, depth = 0; 5189 5190 /* 5191 * Due to all the pointer jumping we do and context we must 5192 * rely upon, we just mandate that the user must have kernel 5193 * read privileges to use this routine. 5194 */ 5195 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5196 *flags |= CPU_DTRACE_KPRIV; 5197 *illval = daddr; 5198 regs[rd] = 0; 5199 } 5200 5201 if (!DTRACE_INSCRATCH(mstate, size)) { 5202 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5203 regs[rd] = 0; 5204 break; 5205 } 5206 5207 *end = '\0'; 5208 5209 /* 5210 * We want to have a name for the minor. In order to do this, 5211 * we need to walk the minor list from the devinfo. We want 5212 * to be sure that we don't infinitely walk a circular list, 5213 * so we check for circularity by sending a scout pointer 5214 * ahead two elements for every element that we iterate over; 5215 * if the list is circular, these will ultimately point to the 5216 * same element. You may recognize this little trick as the 5217 * answer to a stupid interview question -- one that always 5218 * seems to be asked by those who had to have it laboriously 5219 * explained to them, and who can't even concisely describe 5220 * the conditions under which one would be forced to resort to 5221 * this technique. Needless to say, those conditions are 5222 * found here -- and probably only here. Is this the only use 5223 * of this infamous trick in shipping, production code? If it 5224 * isn't, it probably should be... 5225 */ 5226 if (minor != -1) { 5227 uintptr_t maddr = dtrace_loadptr(daddr + 5228 offsetof(struct dev_info, devi_minor)); 5229 5230 uintptr_t next = offsetof(struct ddi_minor_data, next); 5231 uintptr_t name = offsetof(struct ddi_minor_data, 5232 d_minor) + offsetof(struct ddi_minor, name); 5233 uintptr_t dev = offsetof(struct ddi_minor_data, 5234 d_minor) + offsetof(struct ddi_minor, dev); 5235 uintptr_t scout; 5236 5237 if (maddr != NULL) 5238 scout = dtrace_loadptr(maddr + next); 5239 5240 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5241 uint64_t m; 5242 #ifdef _LP64 5243 m = dtrace_load64(maddr + dev) & MAXMIN64; 5244 #else 5245 m = dtrace_load32(maddr + dev) & MAXMIN; 5246 #endif 5247 if (m != minor) { 5248 maddr = dtrace_loadptr(maddr + next); 5249 5250 if (scout == NULL) 5251 continue; 5252 5253 scout = dtrace_loadptr(scout + next); 5254 5255 if (scout == NULL) 5256 continue; 5257 5258 scout = dtrace_loadptr(scout + next); 5259 5260 if (scout == NULL) 5261 continue; 5262 5263 if (scout == maddr) { 5264 *flags |= CPU_DTRACE_ILLOP; 5265 break; 5266 } 5267 5268 continue; 5269 } 5270 5271 /* 5272 * We have the minor data. Now we need to 5273 * copy the minor's name into the end of the 5274 * pathname. 5275 */ 5276 s = (char *)dtrace_loadptr(maddr + name); 5277 len = dtrace_strlen(s, size); 5278 5279 if (*flags & CPU_DTRACE_FAULT) 5280 break; 5281 5282 if (len != 0) { 5283 if ((end -= (len + 1)) < start) 5284 break; 5285 5286 *end = ':'; 5287 } 5288 5289 for (i = 1; i <= len; i++) 5290 end[i] = dtrace_load8((uintptr_t)s++); 5291 break; 5292 } 5293 } 5294 5295 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5296 ddi_node_state_t devi_state; 5297 5298 devi_state = dtrace_load32(daddr + 5299 offsetof(struct dev_info, devi_node_state)); 5300 5301 if (*flags & CPU_DTRACE_FAULT) 5302 break; 5303 5304 if (devi_state >= DS_INITIALIZED) { 5305 s = (char *)dtrace_loadptr(daddr + 5306 offsetof(struct dev_info, devi_addr)); 5307 len = dtrace_strlen(s, size); 5308 5309 if (*flags & CPU_DTRACE_FAULT) 5310 break; 5311 5312 if (len != 0) { 5313 if ((end -= (len + 1)) < start) 5314 break; 5315 5316 *end = '@'; 5317 } 5318 5319 for (i = 1; i <= len; i++) 5320 end[i] = dtrace_load8((uintptr_t)s++); 5321 } 5322 5323 /* 5324 * Now for the node name... 5325 */ 5326 s = (char *)dtrace_loadptr(daddr + 5327 offsetof(struct dev_info, devi_node_name)); 5328 5329 daddr = dtrace_loadptr(daddr + 5330 offsetof(struct dev_info, devi_parent)); 5331 5332 /* 5333 * If our parent is NULL (that is, if we're the root 5334 * node), we're going to use the special path 5335 * "devices". 5336 */ 5337 if (daddr == 0) 5338 s = "devices"; 5339 5340 len = dtrace_strlen(s, size); 5341 if (*flags & CPU_DTRACE_FAULT) 5342 break; 5343 5344 if ((end -= (len + 1)) < start) 5345 break; 5346 5347 for (i = 1; i <= len; i++) 5348 end[i] = dtrace_load8((uintptr_t)s++); 5349 *end = '/'; 5350 5351 if (depth++ > dtrace_devdepth_max) { 5352 *flags |= CPU_DTRACE_ILLOP; 5353 break; 5354 } 5355 } 5356 5357 if (end < start) 5358 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5359 5360 if (daddr == 0) { 5361 regs[rd] = (uintptr_t)end; 5362 mstate->dtms_scratch_ptr += size; 5363 } 5364 5365 break; 5366 } 5367 #endif 5368 5369 case DIF_SUBR_STRJOIN: { 5370 char *d = (char *)mstate->dtms_scratch_ptr; 5371 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5372 uintptr_t s1 = tupregs[0].dttk_value; 5373 uintptr_t s2 = tupregs[1].dttk_value; 5374 int i = 0, j = 0; 5375 size_t lim1, lim2; 5376 char c; 5377 5378 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5379 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5380 regs[rd] = 0; 5381 break; 5382 } 5383 5384 if (!DTRACE_INSCRATCH(mstate, size)) { 5385 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5386 regs[rd] = 0; 5387 break; 5388 } 5389 5390 for (;;) { 5391 if (i >= size) { 5392 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5393 regs[rd] = 0; 5394 break; 5395 } 5396 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5397 if ((d[i++] = c) == '\0') { 5398 i--; 5399 break; 5400 } 5401 } 5402 5403 for (;;) { 5404 if (i >= size) { 5405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5406 regs[rd] = 0; 5407 break; 5408 } 5409 5410 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5411 if ((d[i++] = c) == '\0') 5412 break; 5413 } 5414 5415 if (i < size) { 5416 mstate->dtms_scratch_ptr += i; 5417 regs[rd] = (uintptr_t)d; 5418 } 5419 5420 break; 5421 } 5422 5423 case DIF_SUBR_STRTOLL: { 5424 uintptr_t s = tupregs[0].dttk_value; 5425 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5426 size_t lim; 5427 int base = 10; 5428 5429 if (nargs > 1) { 5430 if ((base = tupregs[1].dttk_value) <= 1 || 5431 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5432 *flags |= CPU_DTRACE_ILLOP; 5433 break; 5434 } 5435 } 5436 5437 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5438 regs[rd] = INT64_MIN; 5439 break; 5440 } 5441 5442 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5443 break; 5444 } 5445 5446 case DIF_SUBR_LLTOSTR: { 5447 int64_t i = (int64_t)tupregs[0].dttk_value; 5448 uint64_t val, digit; 5449 uint64_t size = 65; /* enough room for 2^64 in binary */ 5450 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5451 int base = 10; 5452 5453 if (nargs > 1) { 5454 if ((base = tupregs[1].dttk_value) <= 1 || 5455 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5456 *flags |= CPU_DTRACE_ILLOP; 5457 break; 5458 } 5459 } 5460 5461 val = (base == 10 && i < 0) ? i * -1 : i; 5462 5463 if (!DTRACE_INSCRATCH(mstate, size)) { 5464 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5465 regs[rd] = 0; 5466 break; 5467 } 5468 5469 for (*end-- = '\0'; val; val /= base) { 5470 if ((digit = val % base) <= '9' - '0') { 5471 *end-- = '0' + digit; 5472 } else { 5473 *end-- = 'a' + (digit - ('9' - '0') - 1); 5474 } 5475 } 5476 5477 if (i == 0 && base == 16) 5478 *end-- = '0'; 5479 5480 if (base == 16) 5481 *end-- = 'x'; 5482 5483 if (i == 0 || base == 8 || base == 16) 5484 *end-- = '0'; 5485 5486 if (i < 0 && base == 10) 5487 *end-- = '-'; 5488 5489 regs[rd] = (uintptr_t)end + 1; 5490 mstate->dtms_scratch_ptr += size; 5491 break; 5492 } 5493 5494 case DIF_SUBR_HTONS: 5495 case DIF_SUBR_NTOHS: 5496 #if BYTE_ORDER == BIG_ENDIAN 5497 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5498 #else 5499 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5500 #endif 5501 break; 5502 5503 5504 case DIF_SUBR_HTONL: 5505 case DIF_SUBR_NTOHL: 5506 #if BYTE_ORDER == BIG_ENDIAN 5507 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5508 #else 5509 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5510 #endif 5511 break; 5512 5513 5514 case DIF_SUBR_HTONLL: 5515 case DIF_SUBR_NTOHLL: 5516 #if BYTE_ORDER == BIG_ENDIAN 5517 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5518 #else 5519 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5520 #endif 5521 break; 5522 5523 5524 case DIF_SUBR_DIRNAME: 5525 case DIF_SUBR_BASENAME: { 5526 char *dest = (char *)mstate->dtms_scratch_ptr; 5527 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5528 uintptr_t src = tupregs[0].dttk_value; 5529 int i, j, len = dtrace_strlen((char *)src, size); 5530 int lastbase = -1, firstbase = -1, lastdir = -1; 5531 int start, end; 5532 5533 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5534 regs[rd] = 0; 5535 break; 5536 } 5537 5538 if (!DTRACE_INSCRATCH(mstate, size)) { 5539 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5540 regs[rd] = 0; 5541 break; 5542 } 5543 5544 /* 5545 * The basename and dirname for a zero-length string is 5546 * defined to be "." 5547 */ 5548 if (len == 0) { 5549 len = 1; 5550 src = (uintptr_t)"."; 5551 } 5552 5553 /* 5554 * Start from the back of the string, moving back toward the 5555 * front until we see a character that isn't a slash. That 5556 * character is the last character in the basename. 5557 */ 5558 for (i = len - 1; i >= 0; i--) { 5559 if (dtrace_load8(src + i) != '/') 5560 break; 5561 } 5562 5563 if (i >= 0) 5564 lastbase = i; 5565 5566 /* 5567 * Starting from the last character in the basename, move 5568 * towards the front until we find a slash. The character 5569 * that we processed immediately before that is the first 5570 * character in the basename. 5571 */ 5572 for (; i >= 0; i--) { 5573 if (dtrace_load8(src + i) == '/') 5574 break; 5575 } 5576 5577 if (i >= 0) 5578 firstbase = i + 1; 5579 5580 /* 5581 * Now keep going until we find a non-slash character. That 5582 * character is the last character in the dirname. 5583 */ 5584 for (; i >= 0; i--) { 5585 if (dtrace_load8(src + i) != '/') 5586 break; 5587 } 5588 5589 if (i >= 0) 5590 lastdir = i; 5591 5592 ASSERT(!(lastbase == -1 && firstbase != -1)); 5593 ASSERT(!(firstbase == -1 && lastdir != -1)); 5594 5595 if (lastbase == -1) { 5596 /* 5597 * We didn't find a non-slash character. We know that 5598 * the length is non-zero, so the whole string must be 5599 * slashes. In either the dirname or the basename 5600 * case, we return '/'. 5601 */ 5602 ASSERT(firstbase == -1); 5603 firstbase = lastbase = lastdir = 0; 5604 } 5605 5606 if (firstbase == -1) { 5607 /* 5608 * The entire string consists only of a basename 5609 * component. If we're looking for dirname, we need 5610 * to change our string to be just "."; if we're 5611 * looking for a basename, we'll just set the first 5612 * character of the basename to be 0. 5613 */ 5614 if (subr == DIF_SUBR_DIRNAME) { 5615 ASSERT(lastdir == -1); 5616 src = (uintptr_t)"."; 5617 lastdir = 0; 5618 } else { 5619 firstbase = 0; 5620 } 5621 } 5622 5623 if (subr == DIF_SUBR_DIRNAME) { 5624 if (lastdir == -1) { 5625 /* 5626 * We know that we have a slash in the name -- 5627 * or lastdir would be set to 0, above. And 5628 * because lastdir is -1, we know that this 5629 * slash must be the first character. (That 5630 * is, the full string must be of the form 5631 * "/basename".) In this case, the last 5632 * character of the directory name is 0. 5633 */ 5634 lastdir = 0; 5635 } 5636 5637 start = 0; 5638 end = lastdir; 5639 } else { 5640 ASSERT(subr == DIF_SUBR_BASENAME); 5641 ASSERT(firstbase != -1 && lastbase != -1); 5642 start = firstbase; 5643 end = lastbase; 5644 } 5645 5646 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5647 dest[j] = dtrace_load8(src + i); 5648 5649 dest[j] = '\0'; 5650 regs[rd] = (uintptr_t)dest; 5651 mstate->dtms_scratch_ptr += size; 5652 break; 5653 } 5654 5655 case DIF_SUBR_GETF: { 5656 uintptr_t fd = tupregs[0].dttk_value; 5657 struct filedesc *fdp; 5658 file_t *fp; 5659 5660 if (!dtrace_priv_proc(state)) { 5661 regs[rd] = 0; 5662 break; 5663 } 5664 fdp = curproc->p_fd; 5665 FILEDESC_SLOCK(fdp); 5666 fp = fget_locked(fdp, fd); 5667 mstate->dtms_getf = fp; 5668 regs[rd] = (uintptr_t)fp; 5669 FILEDESC_SUNLOCK(fdp); 5670 break; 5671 } 5672 5673 case DIF_SUBR_CLEANPATH: { 5674 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5675 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5676 uintptr_t src = tupregs[0].dttk_value; 5677 size_t lim; 5678 int i = 0, j = 0; 5679 #ifdef illumos 5680 zone_t *z; 5681 #endif 5682 5683 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5684 regs[rd] = 0; 5685 break; 5686 } 5687 5688 if (!DTRACE_INSCRATCH(mstate, size)) { 5689 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5690 regs[rd] = 0; 5691 break; 5692 } 5693 5694 /* 5695 * Move forward, loading each character. 5696 */ 5697 do { 5698 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5699 next: 5700 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5701 break; 5702 5703 if (c != '/') { 5704 dest[j++] = c; 5705 continue; 5706 } 5707 5708 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5709 5710 if (c == '/') { 5711 /* 5712 * We have two slashes -- we can just advance 5713 * to the next character. 5714 */ 5715 goto next; 5716 } 5717 5718 if (c != '.') { 5719 /* 5720 * This is not "." and it's not ".." -- we can 5721 * just store the "/" and this character and 5722 * drive on. 5723 */ 5724 dest[j++] = '/'; 5725 dest[j++] = c; 5726 continue; 5727 } 5728 5729 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5730 5731 if (c == '/') { 5732 /* 5733 * This is a "/./" component. We're not going 5734 * to store anything in the destination buffer; 5735 * we're just going to go to the next component. 5736 */ 5737 goto next; 5738 } 5739 5740 if (c != '.') { 5741 /* 5742 * This is not ".." -- we can just store the 5743 * "/." and this character and continue 5744 * processing. 5745 */ 5746 dest[j++] = '/'; 5747 dest[j++] = '.'; 5748 dest[j++] = c; 5749 continue; 5750 } 5751 5752 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5753 5754 if (c != '/' && c != '\0') { 5755 /* 5756 * This is not ".." -- it's "..[mumble]". 5757 * We'll store the "/.." and this character 5758 * and continue processing. 5759 */ 5760 dest[j++] = '/'; 5761 dest[j++] = '.'; 5762 dest[j++] = '.'; 5763 dest[j++] = c; 5764 continue; 5765 } 5766 5767 /* 5768 * This is "/../" or "/..\0". We need to back up 5769 * our destination pointer until we find a "/". 5770 */ 5771 i--; 5772 while (j != 0 && dest[--j] != '/') 5773 continue; 5774 5775 if (c == '\0') 5776 dest[++j] = '/'; 5777 } while (c != '\0'); 5778 5779 dest[j] = '\0'; 5780 5781 #ifdef illumos 5782 if (mstate->dtms_getf != NULL && 5783 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5784 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5785 /* 5786 * If we've done a getf() as a part of this ECB and we 5787 * don't have kernel access (and we're not in the global 5788 * zone), check if the path we cleaned up begins with 5789 * the zone's root path, and trim it off if so. Note 5790 * that this is an output cleanliness issue, not a 5791 * security issue: knowing one's zone root path does 5792 * not enable privilege escalation. 5793 */ 5794 if (strstr(dest, z->zone_rootpath) == dest) 5795 dest += strlen(z->zone_rootpath) - 1; 5796 } 5797 #endif 5798 5799 regs[rd] = (uintptr_t)dest; 5800 mstate->dtms_scratch_ptr += size; 5801 break; 5802 } 5803 5804 case DIF_SUBR_INET_NTOA: 5805 case DIF_SUBR_INET_NTOA6: 5806 case DIF_SUBR_INET_NTOP: { 5807 size_t size; 5808 int af, argi, i; 5809 char *base, *end; 5810 5811 if (subr == DIF_SUBR_INET_NTOP) { 5812 af = (int)tupregs[0].dttk_value; 5813 argi = 1; 5814 } else { 5815 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5816 argi = 0; 5817 } 5818 5819 if (af == AF_INET) { 5820 ipaddr_t ip4; 5821 uint8_t *ptr8, val; 5822 5823 if (!dtrace_canload(tupregs[argi].dttk_value, 5824 sizeof (ipaddr_t), mstate, vstate)) { 5825 regs[rd] = 0; 5826 break; 5827 } 5828 5829 /* 5830 * Safely load the IPv4 address. 5831 */ 5832 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5833 5834 /* 5835 * Check an IPv4 string will fit in scratch. 5836 */ 5837 size = INET_ADDRSTRLEN; 5838 if (!DTRACE_INSCRATCH(mstate, size)) { 5839 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5840 regs[rd] = 0; 5841 break; 5842 } 5843 base = (char *)mstate->dtms_scratch_ptr; 5844 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5845 5846 /* 5847 * Stringify as a dotted decimal quad. 5848 */ 5849 *end-- = '\0'; 5850 ptr8 = (uint8_t *)&ip4; 5851 for (i = 3; i >= 0; i--) { 5852 val = ptr8[i]; 5853 5854 if (val == 0) { 5855 *end-- = '0'; 5856 } else { 5857 for (; val; val /= 10) { 5858 *end-- = '0' + (val % 10); 5859 } 5860 } 5861 5862 if (i > 0) 5863 *end-- = '.'; 5864 } 5865 ASSERT(end + 1 >= base); 5866 5867 } else if (af == AF_INET6) { 5868 struct in6_addr ip6; 5869 int firstzero, tryzero, numzero, v6end; 5870 uint16_t val; 5871 const char digits[] = "0123456789abcdef"; 5872 5873 /* 5874 * Stringify using RFC 1884 convention 2 - 16 bit 5875 * hexadecimal values with a zero-run compression. 5876 * Lower case hexadecimal digits are used. 5877 * eg, fe80::214:4fff:fe0b:76c8. 5878 * The IPv4 embedded form is returned for inet_ntop, 5879 * just the IPv4 string is returned for inet_ntoa6. 5880 */ 5881 5882 if (!dtrace_canload(tupregs[argi].dttk_value, 5883 sizeof (struct in6_addr), mstate, vstate)) { 5884 regs[rd] = 0; 5885 break; 5886 } 5887 5888 /* 5889 * Safely load the IPv6 address. 5890 */ 5891 dtrace_bcopy( 5892 (void *)(uintptr_t)tupregs[argi].dttk_value, 5893 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5894 5895 /* 5896 * Check an IPv6 string will fit in scratch. 5897 */ 5898 size = INET6_ADDRSTRLEN; 5899 if (!DTRACE_INSCRATCH(mstate, size)) { 5900 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5901 regs[rd] = 0; 5902 break; 5903 } 5904 base = (char *)mstate->dtms_scratch_ptr; 5905 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5906 *end-- = '\0'; 5907 5908 /* 5909 * Find the longest run of 16 bit zero values 5910 * for the single allowed zero compression - "::". 5911 */ 5912 firstzero = -1; 5913 tryzero = -1; 5914 numzero = 1; 5915 for (i = 0; i < sizeof (struct in6_addr); i++) { 5916 #ifdef illumos 5917 if (ip6._S6_un._S6_u8[i] == 0 && 5918 #else 5919 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5920 #endif 5921 tryzero == -1 && i % 2 == 0) { 5922 tryzero = i; 5923 continue; 5924 } 5925 5926 if (tryzero != -1 && 5927 #ifdef illumos 5928 (ip6._S6_un._S6_u8[i] != 0 || 5929 #else 5930 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5931 #endif 5932 i == sizeof (struct in6_addr) - 1)) { 5933 5934 if (i - tryzero <= numzero) { 5935 tryzero = -1; 5936 continue; 5937 } 5938 5939 firstzero = tryzero; 5940 numzero = i - i % 2 - tryzero; 5941 tryzero = -1; 5942 5943 #ifdef illumos 5944 if (ip6._S6_un._S6_u8[i] == 0 && 5945 #else 5946 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5947 #endif 5948 i == sizeof (struct in6_addr) - 1) 5949 numzero += 2; 5950 } 5951 } 5952 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5953 5954 /* 5955 * Check for an IPv4 embedded address. 5956 */ 5957 v6end = sizeof (struct in6_addr) - 2; 5958 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5959 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5960 for (i = sizeof (struct in6_addr) - 1; 5961 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5962 ASSERT(end >= base); 5963 5964 #ifdef illumos 5965 val = ip6._S6_un._S6_u8[i]; 5966 #else 5967 val = ip6.__u6_addr.__u6_addr8[i]; 5968 #endif 5969 5970 if (val == 0) { 5971 *end-- = '0'; 5972 } else { 5973 for (; val; val /= 10) { 5974 *end-- = '0' + val % 10; 5975 } 5976 } 5977 5978 if (i > DTRACE_V4MAPPED_OFFSET) 5979 *end-- = '.'; 5980 } 5981 5982 if (subr == DIF_SUBR_INET_NTOA6) 5983 goto inetout; 5984 5985 /* 5986 * Set v6end to skip the IPv4 address that 5987 * we have already stringified. 5988 */ 5989 v6end = 10; 5990 } 5991 5992 /* 5993 * Build the IPv6 string by working through the 5994 * address in reverse. 5995 */ 5996 for (i = v6end; i >= 0; i -= 2) { 5997 ASSERT(end >= base); 5998 5999 if (i == firstzero + numzero - 2) { 6000 *end-- = ':'; 6001 *end-- = ':'; 6002 i -= numzero - 2; 6003 continue; 6004 } 6005 6006 if (i < 14 && i != firstzero - 2) 6007 *end-- = ':'; 6008 6009 #ifdef illumos 6010 val = (ip6._S6_un._S6_u8[i] << 8) + 6011 ip6._S6_un._S6_u8[i + 1]; 6012 #else 6013 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6014 ip6.__u6_addr.__u6_addr8[i + 1]; 6015 #endif 6016 6017 if (val == 0) { 6018 *end-- = '0'; 6019 } else { 6020 for (; val; val /= 16) { 6021 *end-- = digits[val % 16]; 6022 } 6023 } 6024 } 6025 ASSERT(end + 1 >= base); 6026 6027 } else { 6028 /* 6029 * The user didn't use AH_INET or AH_INET6. 6030 */ 6031 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6032 regs[rd] = 0; 6033 break; 6034 } 6035 6036 inetout: regs[rd] = (uintptr_t)end + 1; 6037 mstate->dtms_scratch_ptr += size; 6038 break; 6039 } 6040 6041 case DIF_SUBR_MEMREF: { 6042 uintptr_t size = 2 * sizeof(uintptr_t); 6043 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6044 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6045 6046 /* address and length */ 6047 memref[0] = tupregs[0].dttk_value; 6048 memref[1] = tupregs[1].dttk_value; 6049 6050 regs[rd] = (uintptr_t) memref; 6051 mstate->dtms_scratch_ptr += scratch_size; 6052 break; 6053 } 6054 6055 #ifndef illumos 6056 case DIF_SUBR_MEMSTR: { 6057 char *str = (char *)mstate->dtms_scratch_ptr; 6058 uintptr_t mem = tupregs[0].dttk_value; 6059 char c = tupregs[1].dttk_value; 6060 size_t size = tupregs[2].dttk_value; 6061 uint8_t n; 6062 int i; 6063 6064 regs[rd] = 0; 6065 6066 if (size == 0) 6067 break; 6068 6069 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6070 break; 6071 6072 if (!DTRACE_INSCRATCH(mstate, size)) { 6073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6074 break; 6075 } 6076 6077 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6078 *flags |= CPU_DTRACE_ILLOP; 6079 break; 6080 } 6081 6082 for (i = 0; i < size - 1; i++) { 6083 n = dtrace_load8(mem++); 6084 str[i] = (n == 0) ? c : n; 6085 } 6086 str[size - 1] = 0; 6087 6088 regs[rd] = (uintptr_t)str; 6089 mstate->dtms_scratch_ptr += size; 6090 break; 6091 } 6092 #endif 6093 } 6094 } 6095 6096 /* 6097 * Emulate the execution of DTrace IR instructions specified by the given 6098 * DIF object. This function is deliberately void of assertions as all of 6099 * the necessary checks are handled by a call to dtrace_difo_validate(). 6100 */ 6101 static uint64_t 6102 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6103 dtrace_vstate_t *vstate, dtrace_state_t *state) 6104 { 6105 const dif_instr_t *text = difo->dtdo_buf; 6106 const uint_t textlen = difo->dtdo_len; 6107 const char *strtab = difo->dtdo_strtab; 6108 const uint64_t *inttab = difo->dtdo_inttab; 6109 6110 uint64_t rval = 0; 6111 dtrace_statvar_t *svar; 6112 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6113 dtrace_difv_t *v; 6114 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6115 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6116 6117 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6118 uint64_t regs[DIF_DIR_NREGS]; 6119 uint64_t *tmp; 6120 6121 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6122 int64_t cc_r; 6123 uint_t pc = 0, id, opc = 0; 6124 uint8_t ttop = 0; 6125 dif_instr_t instr; 6126 uint_t r1, r2, rd; 6127 6128 /* 6129 * We stash the current DIF object into the machine state: we need it 6130 * for subsequent access checking. 6131 */ 6132 mstate->dtms_difo = difo; 6133 6134 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6135 6136 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6137 opc = pc; 6138 6139 instr = text[pc++]; 6140 r1 = DIF_INSTR_R1(instr); 6141 r2 = DIF_INSTR_R2(instr); 6142 rd = DIF_INSTR_RD(instr); 6143 6144 switch (DIF_INSTR_OP(instr)) { 6145 case DIF_OP_OR: 6146 regs[rd] = regs[r1] | regs[r2]; 6147 break; 6148 case DIF_OP_XOR: 6149 regs[rd] = regs[r1] ^ regs[r2]; 6150 break; 6151 case DIF_OP_AND: 6152 regs[rd] = regs[r1] & regs[r2]; 6153 break; 6154 case DIF_OP_SLL: 6155 regs[rd] = regs[r1] << regs[r2]; 6156 break; 6157 case DIF_OP_SRL: 6158 regs[rd] = regs[r1] >> regs[r2]; 6159 break; 6160 case DIF_OP_SUB: 6161 regs[rd] = regs[r1] - regs[r2]; 6162 break; 6163 case DIF_OP_ADD: 6164 regs[rd] = regs[r1] + regs[r2]; 6165 break; 6166 case DIF_OP_MUL: 6167 regs[rd] = regs[r1] * regs[r2]; 6168 break; 6169 case DIF_OP_SDIV: 6170 if (regs[r2] == 0) { 6171 regs[rd] = 0; 6172 *flags |= CPU_DTRACE_DIVZERO; 6173 } else { 6174 regs[rd] = (int64_t)regs[r1] / 6175 (int64_t)regs[r2]; 6176 } 6177 break; 6178 6179 case DIF_OP_UDIV: 6180 if (regs[r2] == 0) { 6181 regs[rd] = 0; 6182 *flags |= CPU_DTRACE_DIVZERO; 6183 } else { 6184 regs[rd] = regs[r1] / regs[r2]; 6185 } 6186 break; 6187 6188 case DIF_OP_SREM: 6189 if (regs[r2] == 0) { 6190 regs[rd] = 0; 6191 *flags |= CPU_DTRACE_DIVZERO; 6192 } else { 6193 regs[rd] = (int64_t)regs[r1] % 6194 (int64_t)regs[r2]; 6195 } 6196 break; 6197 6198 case DIF_OP_UREM: 6199 if (regs[r2] == 0) { 6200 regs[rd] = 0; 6201 *flags |= CPU_DTRACE_DIVZERO; 6202 } else { 6203 regs[rd] = regs[r1] % regs[r2]; 6204 } 6205 break; 6206 6207 case DIF_OP_NOT: 6208 regs[rd] = ~regs[r1]; 6209 break; 6210 case DIF_OP_MOV: 6211 regs[rd] = regs[r1]; 6212 break; 6213 case DIF_OP_CMP: 6214 cc_r = regs[r1] - regs[r2]; 6215 cc_n = cc_r < 0; 6216 cc_z = cc_r == 0; 6217 cc_v = 0; 6218 cc_c = regs[r1] < regs[r2]; 6219 break; 6220 case DIF_OP_TST: 6221 cc_n = cc_v = cc_c = 0; 6222 cc_z = regs[r1] == 0; 6223 break; 6224 case DIF_OP_BA: 6225 pc = DIF_INSTR_LABEL(instr); 6226 break; 6227 case DIF_OP_BE: 6228 if (cc_z) 6229 pc = DIF_INSTR_LABEL(instr); 6230 break; 6231 case DIF_OP_BNE: 6232 if (cc_z == 0) 6233 pc = DIF_INSTR_LABEL(instr); 6234 break; 6235 case DIF_OP_BG: 6236 if ((cc_z | (cc_n ^ cc_v)) == 0) 6237 pc = DIF_INSTR_LABEL(instr); 6238 break; 6239 case DIF_OP_BGU: 6240 if ((cc_c | cc_z) == 0) 6241 pc = DIF_INSTR_LABEL(instr); 6242 break; 6243 case DIF_OP_BGE: 6244 if ((cc_n ^ cc_v) == 0) 6245 pc = DIF_INSTR_LABEL(instr); 6246 break; 6247 case DIF_OP_BGEU: 6248 if (cc_c == 0) 6249 pc = DIF_INSTR_LABEL(instr); 6250 break; 6251 case DIF_OP_BL: 6252 if (cc_n ^ cc_v) 6253 pc = DIF_INSTR_LABEL(instr); 6254 break; 6255 case DIF_OP_BLU: 6256 if (cc_c) 6257 pc = DIF_INSTR_LABEL(instr); 6258 break; 6259 case DIF_OP_BLE: 6260 if (cc_z | (cc_n ^ cc_v)) 6261 pc = DIF_INSTR_LABEL(instr); 6262 break; 6263 case DIF_OP_BLEU: 6264 if (cc_c | cc_z) 6265 pc = DIF_INSTR_LABEL(instr); 6266 break; 6267 case DIF_OP_RLDSB: 6268 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6269 break; 6270 /*FALLTHROUGH*/ 6271 case DIF_OP_LDSB: 6272 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6273 break; 6274 case DIF_OP_RLDSH: 6275 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6276 break; 6277 /*FALLTHROUGH*/ 6278 case DIF_OP_LDSH: 6279 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6280 break; 6281 case DIF_OP_RLDSW: 6282 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6283 break; 6284 /*FALLTHROUGH*/ 6285 case DIF_OP_LDSW: 6286 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6287 break; 6288 case DIF_OP_RLDUB: 6289 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6290 break; 6291 /*FALLTHROUGH*/ 6292 case DIF_OP_LDUB: 6293 regs[rd] = dtrace_load8(regs[r1]); 6294 break; 6295 case DIF_OP_RLDUH: 6296 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6297 break; 6298 /*FALLTHROUGH*/ 6299 case DIF_OP_LDUH: 6300 regs[rd] = dtrace_load16(regs[r1]); 6301 break; 6302 case DIF_OP_RLDUW: 6303 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6304 break; 6305 /*FALLTHROUGH*/ 6306 case DIF_OP_LDUW: 6307 regs[rd] = dtrace_load32(regs[r1]); 6308 break; 6309 case DIF_OP_RLDX: 6310 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6311 break; 6312 /*FALLTHROUGH*/ 6313 case DIF_OP_LDX: 6314 regs[rd] = dtrace_load64(regs[r1]); 6315 break; 6316 case DIF_OP_ULDSB: 6317 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6318 regs[rd] = (int8_t) 6319 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6320 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6321 break; 6322 case DIF_OP_ULDSH: 6323 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6324 regs[rd] = (int16_t) 6325 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6326 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6327 break; 6328 case DIF_OP_ULDSW: 6329 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6330 regs[rd] = (int32_t) 6331 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6332 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6333 break; 6334 case DIF_OP_ULDUB: 6335 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6336 regs[rd] = 6337 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6338 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6339 break; 6340 case DIF_OP_ULDUH: 6341 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6342 regs[rd] = 6343 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6344 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6345 break; 6346 case DIF_OP_ULDUW: 6347 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6348 regs[rd] = 6349 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6350 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6351 break; 6352 case DIF_OP_ULDX: 6353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6354 regs[rd] = 6355 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6356 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6357 break; 6358 case DIF_OP_RET: 6359 rval = regs[rd]; 6360 pc = textlen; 6361 break; 6362 case DIF_OP_NOP: 6363 break; 6364 case DIF_OP_SETX: 6365 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6366 break; 6367 case DIF_OP_SETS: 6368 regs[rd] = (uint64_t)(uintptr_t) 6369 (strtab + DIF_INSTR_STRING(instr)); 6370 break; 6371 case DIF_OP_SCMP: { 6372 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6373 uintptr_t s1 = regs[r1]; 6374 uintptr_t s2 = regs[r2]; 6375 size_t lim1, lim2; 6376 6377 /* 6378 * If one of the strings is NULL then the limit becomes 6379 * 0 which compares 0 characters in dtrace_strncmp() 6380 * resulting in a false positive. dtrace_strncmp() 6381 * treats a NULL as an empty 1-char string. 6382 */ 6383 lim1 = lim2 = 1; 6384 6385 if (s1 != 0 && 6386 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6387 break; 6388 if (s2 != 0 && 6389 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6390 break; 6391 6392 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6393 MIN(lim1, lim2)); 6394 6395 cc_n = cc_r < 0; 6396 cc_z = cc_r == 0; 6397 cc_v = cc_c = 0; 6398 break; 6399 } 6400 case DIF_OP_LDGA: 6401 regs[rd] = dtrace_dif_variable(mstate, state, 6402 r1, regs[r2]); 6403 break; 6404 case DIF_OP_LDGS: 6405 id = DIF_INSTR_VAR(instr); 6406 6407 if (id >= DIF_VAR_OTHER_UBASE) { 6408 uintptr_t a; 6409 6410 id -= DIF_VAR_OTHER_UBASE; 6411 svar = vstate->dtvs_globals[id]; 6412 ASSERT(svar != NULL); 6413 v = &svar->dtsv_var; 6414 6415 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6416 regs[rd] = svar->dtsv_data; 6417 break; 6418 } 6419 6420 a = (uintptr_t)svar->dtsv_data; 6421 6422 if (*(uint8_t *)a == UINT8_MAX) { 6423 /* 6424 * If the 0th byte is set to UINT8_MAX 6425 * then this is to be treated as a 6426 * reference to a NULL variable. 6427 */ 6428 regs[rd] = 0; 6429 } else { 6430 regs[rd] = a + sizeof (uint64_t); 6431 } 6432 6433 break; 6434 } 6435 6436 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6437 break; 6438 6439 case DIF_OP_STGS: 6440 id = DIF_INSTR_VAR(instr); 6441 6442 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6443 id -= DIF_VAR_OTHER_UBASE; 6444 6445 VERIFY(id < vstate->dtvs_nglobals); 6446 svar = vstate->dtvs_globals[id]; 6447 ASSERT(svar != NULL); 6448 v = &svar->dtsv_var; 6449 6450 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6451 uintptr_t a = (uintptr_t)svar->dtsv_data; 6452 size_t lim; 6453 6454 ASSERT(a != 0); 6455 ASSERT(svar->dtsv_size != 0); 6456 6457 if (regs[rd] == 0) { 6458 *(uint8_t *)a = UINT8_MAX; 6459 break; 6460 } else { 6461 *(uint8_t *)a = 0; 6462 a += sizeof (uint64_t); 6463 } 6464 if (!dtrace_vcanload( 6465 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6466 &lim, mstate, vstate)) 6467 break; 6468 6469 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6470 (void *)a, &v->dtdv_type, lim); 6471 break; 6472 } 6473 6474 svar->dtsv_data = regs[rd]; 6475 break; 6476 6477 case DIF_OP_LDTA: 6478 /* 6479 * There are no DTrace built-in thread-local arrays at 6480 * present. This opcode is saved for future work. 6481 */ 6482 *flags |= CPU_DTRACE_ILLOP; 6483 regs[rd] = 0; 6484 break; 6485 6486 case DIF_OP_LDLS: 6487 id = DIF_INSTR_VAR(instr); 6488 6489 if (id < DIF_VAR_OTHER_UBASE) { 6490 /* 6491 * For now, this has no meaning. 6492 */ 6493 regs[rd] = 0; 6494 break; 6495 } 6496 6497 id -= DIF_VAR_OTHER_UBASE; 6498 6499 ASSERT(id < vstate->dtvs_nlocals); 6500 ASSERT(vstate->dtvs_locals != NULL); 6501 6502 svar = vstate->dtvs_locals[id]; 6503 ASSERT(svar != NULL); 6504 v = &svar->dtsv_var; 6505 6506 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6507 uintptr_t a = (uintptr_t)svar->dtsv_data; 6508 size_t sz = v->dtdv_type.dtdt_size; 6509 size_t lim; 6510 6511 sz += sizeof (uint64_t); 6512 ASSERT(svar->dtsv_size == NCPU * sz); 6513 a += curcpu * sz; 6514 6515 if (*(uint8_t *)a == UINT8_MAX) { 6516 /* 6517 * If the 0th byte is set to UINT8_MAX 6518 * then this is to be treated as a 6519 * reference to a NULL variable. 6520 */ 6521 regs[rd] = 0; 6522 } else { 6523 regs[rd] = a + sizeof (uint64_t); 6524 } 6525 6526 break; 6527 } 6528 6529 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6530 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6531 regs[rd] = tmp[curcpu]; 6532 break; 6533 6534 case DIF_OP_STLS: 6535 id = DIF_INSTR_VAR(instr); 6536 6537 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6538 id -= DIF_VAR_OTHER_UBASE; 6539 VERIFY(id < vstate->dtvs_nlocals); 6540 6541 ASSERT(vstate->dtvs_locals != NULL); 6542 svar = vstate->dtvs_locals[id]; 6543 ASSERT(svar != NULL); 6544 v = &svar->dtsv_var; 6545 6546 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6547 uintptr_t a = (uintptr_t)svar->dtsv_data; 6548 size_t sz = v->dtdv_type.dtdt_size; 6549 size_t lim; 6550 6551 sz += sizeof (uint64_t); 6552 ASSERT(svar->dtsv_size == NCPU * sz); 6553 a += curcpu * sz; 6554 6555 if (regs[rd] == 0) { 6556 *(uint8_t *)a = UINT8_MAX; 6557 break; 6558 } else { 6559 *(uint8_t *)a = 0; 6560 a += sizeof (uint64_t); 6561 } 6562 6563 if (!dtrace_vcanload( 6564 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6565 &lim, mstate, vstate)) 6566 break; 6567 6568 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6569 (void *)a, &v->dtdv_type, lim); 6570 break; 6571 } 6572 6573 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6574 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6575 tmp[curcpu] = regs[rd]; 6576 break; 6577 6578 case DIF_OP_LDTS: { 6579 dtrace_dynvar_t *dvar; 6580 dtrace_key_t *key; 6581 6582 id = DIF_INSTR_VAR(instr); 6583 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6584 id -= DIF_VAR_OTHER_UBASE; 6585 v = &vstate->dtvs_tlocals[id]; 6586 6587 key = &tupregs[DIF_DTR_NREGS]; 6588 key[0].dttk_value = (uint64_t)id; 6589 key[0].dttk_size = 0; 6590 DTRACE_TLS_THRKEY(key[1].dttk_value); 6591 key[1].dttk_size = 0; 6592 6593 dvar = dtrace_dynvar(dstate, 2, key, 6594 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6595 mstate, vstate); 6596 6597 if (dvar == NULL) { 6598 regs[rd] = 0; 6599 break; 6600 } 6601 6602 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6603 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6604 } else { 6605 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6606 } 6607 6608 break; 6609 } 6610 6611 case DIF_OP_STTS: { 6612 dtrace_dynvar_t *dvar; 6613 dtrace_key_t *key; 6614 6615 id = DIF_INSTR_VAR(instr); 6616 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6617 id -= DIF_VAR_OTHER_UBASE; 6618 VERIFY(id < vstate->dtvs_ntlocals); 6619 6620 key = &tupregs[DIF_DTR_NREGS]; 6621 key[0].dttk_value = (uint64_t)id; 6622 key[0].dttk_size = 0; 6623 DTRACE_TLS_THRKEY(key[1].dttk_value); 6624 key[1].dttk_size = 0; 6625 v = &vstate->dtvs_tlocals[id]; 6626 6627 dvar = dtrace_dynvar(dstate, 2, key, 6628 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6629 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6630 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6631 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6632 6633 /* 6634 * Given that we're storing to thread-local data, 6635 * we need to flush our predicate cache. 6636 */ 6637 curthread->t_predcache = 0; 6638 6639 if (dvar == NULL) 6640 break; 6641 6642 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6643 size_t lim; 6644 6645 if (!dtrace_vcanload( 6646 (void *)(uintptr_t)regs[rd], 6647 &v->dtdv_type, &lim, mstate, vstate)) 6648 break; 6649 6650 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6651 dvar->dtdv_data, &v->dtdv_type, lim); 6652 } else { 6653 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6654 } 6655 6656 break; 6657 } 6658 6659 case DIF_OP_SRA: 6660 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6661 break; 6662 6663 case DIF_OP_CALL: 6664 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6665 regs, tupregs, ttop, mstate, state); 6666 break; 6667 6668 case DIF_OP_PUSHTR: 6669 if (ttop == DIF_DTR_NREGS) { 6670 *flags |= CPU_DTRACE_TUPOFLOW; 6671 break; 6672 } 6673 6674 if (r1 == DIF_TYPE_STRING) { 6675 /* 6676 * If this is a string type and the size is 0, 6677 * we'll use the system-wide default string 6678 * size. Note that we are _not_ looking at 6679 * the value of the DTRACEOPT_STRSIZE option; 6680 * had this been set, we would expect to have 6681 * a non-zero size value in the "pushtr". 6682 */ 6683 tupregs[ttop].dttk_size = 6684 dtrace_strlen((char *)(uintptr_t)regs[rd], 6685 regs[r2] ? regs[r2] : 6686 dtrace_strsize_default) + 1; 6687 } else { 6688 if (regs[r2] > LONG_MAX) { 6689 *flags |= CPU_DTRACE_ILLOP; 6690 break; 6691 } 6692 6693 tupregs[ttop].dttk_size = regs[r2]; 6694 } 6695 6696 tupregs[ttop++].dttk_value = regs[rd]; 6697 break; 6698 6699 case DIF_OP_PUSHTV: 6700 if (ttop == DIF_DTR_NREGS) { 6701 *flags |= CPU_DTRACE_TUPOFLOW; 6702 break; 6703 } 6704 6705 tupregs[ttop].dttk_value = regs[rd]; 6706 tupregs[ttop++].dttk_size = 0; 6707 break; 6708 6709 case DIF_OP_POPTS: 6710 if (ttop != 0) 6711 ttop--; 6712 break; 6713 6714 case DIF_OP_FLUSHTS: 6715 ttop = 0; 6716 break; 6717 6718 case DIF_OP_LDGAA: 6719 case DIF_OP_LDTAA: { 6720 dtrace_dynvar_t *dvar; 6721 dtrace_key_t *key = tupregs; 6722 uint_t nkeys = ttop; 6723 6724 id = DIF_INSTR_VAR(instr); 6725 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6726 id -= DIF_VAR_OTHER_UBASE; 6727 6728 key[nkeys].dttk_value = (uint64_t)id; 6729 key[nkeys++].dttk_size = 0; 6730 6731 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6732 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6733 key[nkeys++].dttk_size = 0; 6734 VERIFY(id < vstate->dtvs_ntlocals); 6735 v = &vstate->dtvs_tlocals[id]; 6736 } else { 6737 VERIFY(id < vstate->dtvs_nglobals); 6738 v = &vstate->dtvs_globals[id]->dtsv_var; 6739 } 6740 6741 dvar = dtrace_dynvar(dstate, nkeys, key, 6742 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6743 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6744 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6745 6746 if (dvar == NULL) { 6747 regs[rd] = 0; 6748 break; 6749 } 6750 6751 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6752 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6753 } else { 6754 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6755 } 6756 6757 break; 6758 } 6759 6760 case DIF_OP_STGAA: 6761 case DIF_OP_STTAA: { 6762 dtrace_dynvar_t *dvar; 6763 dtrace_key_t *key = tupregs; 6764 uint_t nkeys = ttop; 6765 6766 id = DIF_INSTR_VAR(instr); 6767 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6768 id -= DIF_VAR_OTHER_UBASE; 6769 6770 key[nkeys].dttk_value = (uint64_t)id; 6771 key[nkeys++].dttk_size = 0; 6772 6773 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6774 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6775 key[nkeys++].dttk_size = 0; 6776 VERIFY(id < vstate->dtvs_ntlocals); 6777 v = &vstate->dtvs_tlocals[id]; 6778 } else { 6779 VERIFY(id < vstate->dtvs_nglobals); 6780 v = &vstate->dtvs_globals[id]->dtsv_var; 6781 } 6782 6783 dvar = dtrace_dynvar(dstate, nkeys, key, 6784 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6785 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6786 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6787 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6788 6789 if (dvar == NULL) 6790 break; 6791 6792 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6793 size_t lim; 6794 6795 if (!dtrace_vcanload( 6796 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6797 &lim, mstate, vstate)) 6798 break; 6799 6800 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6801 dvar->dtdv_data, &v->dtdv_type, lim); 6802 } else { 6803 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6804 } 6805 6806 break; 6807 } 6808 6809 case DIF_OP_ALLOCS: { 6810 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6811 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6812 6813 /* 6814 * Rounding up the user allocation size could have 6815 * overflowed large, bogus allocations (like -1ULL) to 6816 * 0. 6817 */ 6818 if (size < regs[r1] || 6819 !DTRACE_INSCRATCH(mstate, size)) { 6820 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6821 regs[rd] = 0; 6822 break; 6823 } 6824 6825 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6826 mstate->dtms_scratch_ptr += size; 6827 regs[rd] = ptr; 6828 break; 6829 } 6830 6831 case DIF_OP_COPYS: 6832 if (!dtrace_canstore(regs[rd], regs[r2], 6833 mstate, vstate)) { 6834 *flags |= CPU_DTRACE_BADADDR; 6835 *illval = regs[rd]; 6836 break; 6837 } 6838 6839 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6840 break; 6841 6842 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6843 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6844 break; 6845 6846 case DIF_OP_STB: 6847 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6848 *flags |= CPU_DTRACE_BADADDR; 6849 *illval = regs[rd]; 6850 break; 6851 } 6852 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6853 break; 6854 6855 case DIF_OP_STH: 6856 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6857 *flags |= CPU_DTRACE_BADADDR; 6858 *illval = regs[rd]; 6859 break; 6860 } 6861 if (regs[rd] & 1) { 6862 *flags |= CPU_DTRACE_BADALIGN; 6863 *illval = regs[rd]; 6864 break; 6865 } 6866 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6867 break; 6868 6869 case DIF_OP_STW: 6870 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6871 *flags |= CPU_DTRACE_BADADDR; 6872 *illval = regs[rd]; 6873 break; 6874 } 6875 if (regs[rd] & 3) { 6876 *flags |= CPU_DTRACE_BADALIGN; 6877 *illval = regs[rd]; 6878 break; 6879 } 6880 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6881 break; 6882 6883 case DIF_OP_STX: 6884 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6885 *flags |= CPU_DTRACE_BADADDR; 6886 *illval = regs[rd]; 6887 break; 6888 } 6889 if (regs[rd] & 7) { 6890 *flags |= CPU_DTRACE_BADALIGN; 6891 *illval = regs[rd]; 6892 break; 6893 } 6894 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6895 break; 6896 } 6897 } 6898 6899 if (!(*flags & CPU_DTRACE_FAULT)) 6900 return (rval); 6901 6902 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6903 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6904 6905 return (0); 6906 } 6907 6908 static void 6909 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6910 { 6911 dtrace_probe_t *probe = ecb->dte_probe; 6912 dtrace_provider_t *prov = probe->dtpr_provider; 6913 char c[DTRACE_FULLNAMELEN + 80], *str; 6914 char *msg = "dtrace: breakpoint action at probe "; 6915 char *ecbmsg = " (ecb "; 6916 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6917 uintptr_t val = (uintptr_t)ecb; 6918 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6919 6920 if (dtrace_destructive_disallow) 6921 return; 6922 6923 /* 6924 * It's impossible to be taking action on the NULL probe. 6925 */ 6926 ASSERT(probe != NULL); 6927 6928 /* 6929 * This is a poor man's (destitute man's?) sprintf(): we want to 6930 * print the provider name, module name, function name and name of 6931 * the probe, along with the hex address of the ECB with the breakpoint 6932 * action -- all of which we must place in the character buffer by 6933 * hand. 6934 */ 6935 while (*msg != '\0') 6936 c[i++] = *msg++; 6937 6938 for (str = prov->dtpv_name; *str != '\0'; str++) 6939 c[i++] = *str; 6940 c[i++] = ':'; 6941 6942 for (str = probe->dtpr_mod; *str != '\0'; str++) 6943 c[i++] = *str; 6944 c[i++] = ':'; 6945 6946 for (str = probe->dtpr_func; *str != '\0'; str++) 6947 c[i++] = *str; 6948 c[i++] = ':'; 6949 6950 for (str = probe->dtpr_name; *str != '\0'; str++) 6951 c[i++] = *str; 6952 6953 while (*ecbmsg != '\0') 6954 c[i++] = *ecbmsg++; 6955 6956 while (shift >= 0) { 6957 mask = (uintptr_t)0xf << shift; 6958 6959 if (val >= ((uintptr_t)1 << shift)) 6960 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6961 shift -= 4; 6962 } 6963 6964 c[i++] = ')'; 6965 c[i] = '\0'; 6966 6967 #ifdef illumos 6968 debug_enter(c); 6969 #else 6970 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6971 #endif 6972 } 6973 6974 static void 6975 dtrace_action_panic(dtrace_ecb_t *ecb) 6976 { 6977 dtrace_probe_t *probe = ecb->dte_probe; 6978 6979 /* 6980 * It's impossible to be taking action on the NULL probe. 6981 */ 6982 ASSERT(probe != NULL); 6983 6984 if (dtrace_destructive_disallow) 6985 return; 6986 6987 if (dtrace_panicked != NULL) 6988 return; 6989 6990 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6991 return; 6992 6993 /* 6994 * We won the right to panic. (We want to be sure that only one 6995 * thread calls panic() from dtrace_probe(), and that panic() is 6996 * called exactly once.) 6997 */ 6998 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6999 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 7000 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7001 } 7002 7003 static void 7004 dtrace_action_raise(uint64_t sig) 7005 { 7006 if (dtrace_destructive_disallow) 7007 return; 7008 7009 if (sig >= NSIG) { 7010 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7011 return; 7012 } 7013 7014 #ifdef illumos 7015 /* 7016 * raise() has a queue depth of 1 -- we ignore all subsequent 7017 * invocations of the raise() action. 7018 */ 7019 if (curthread->t_dtrace_sig == 0) 7020 curthread->t_dtrace_sig = (uint8_t)sig; 7021 7022 curthread->t_sig_check = 1; 7023 aston(curthread); 7024 #else 7025 struct proc *p = curproc; 7026 PROC_LOCK(p); 7027 kern_psignal(p, sig); 7028 PROC_UNLOCK(p); 7029 #endif 7030 } 7031 7032 static void 7033 dtrace_action_stop(void) 7034 { 7035 if (dtrace_destructive_disallow) 7036 return; 7037 7038 #ifdef illumos 7039 if (!curthread->t_dtrace_stop) { 7040 curthread->t_dtrace_stop = 1; 7041 curthread->t_sig_check = 1; 7042 aston(curthread); 7043 } 7044 #else 7045 struct proc *p = curproc; 7046 PROC_LOCK(p); 7047 kern_psignal(p, SIGSTOP); 7048 PROC_UNLOCK(p); 7049 #endif 7050 } 7051 7052 static void 7053 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7054 { 7055 hrtime_t now; 7056 volatile uint16_t *flags; 7057 #ifdef illumos 7058 cpu_t *cpu = CPU; 7059 #else 7060 cpu_t *cpu = &solaris_cpu[curcpu]; 7061 #endif 7062 7063 if (dtrace_destructive_disallow) 7064 return; 7065 7066 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7067 7068 now = dtrace_gethrtime(); 7069 7070 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7071 /* 7072 * We need to advance the mark to the current time. 7073 */ 7074 cpu->cpu_dtrace_chillmark = now; 7075 cpu->cpu_dtrace_chilled = 0; 7076 } 7077 7078 /* 7079 * Now check to see if the requested chill time would take us over 7080 * the maximum amount of time allowed in the chill interval. (Or 7081 * worse, if the calculation itself induces overflow.) 7082 */ 7083 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7084 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7085 *flags |= CPU_DTRACE_ILLOP; 7086 return; 7087 } 7088 7089 while (dtrace_gethrtime() - now < val) 7090 continue; 7091 7092 /* 7093 * Normally, we assure that the value of the variable "timestamp" does 7094 * not change within an ECB. The presence of chill() represents an 7095 * exception to this rule, however. 7096 */ 7097 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7098 cpu->cpu_dtrace_chilled += val; 7099 } 7100 7101 static void 7102 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7103 uint64_t *buf, uint64_t arg) 7104 { 7105 int nframes = DTRACE_USTACK_NFRAMES(arg); 7106 int strsize = DTRACE_USTACK_STRSIZE(arg); 7107 uint64_t *pcs = &buf[1], *fps; 7108 char *str = (char *)&pcs[nframes]; 7109 int size, offs = 0, i, j; 7110 size_t rem; 7111 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7112 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7113 char *sym; 7114 7115 /* 7116 * Should be taking a faster path if string space has not been 7117 * allocated. 7118 */ 7119 ASSERT(strsize != 0); 7120 7121 /* 7122 * We will first allocate some temporary space for the frame pointers. 7123 */ 7124 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7125 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7126 (nframes * sizeof (uint64_t)); 7127 7128 if (!DTRACE_INSCRATCH(mstate, size)) { 7129 /* 7130 * Not enough room for our frame pointers -- need to indicate 7131 * that we ran out of scratch space. 7132 */ 7133 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7134 return; 7135 } 7136 7137 mstate->dtms_scratch_ptr += size; 7138 saved = mstate->dtms_scratch_ptr; 7139 7140 /* 7141 * Now get a stack with both program counters and frame pointers. 7142 */ 7143 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7144 dtrace_getufpstack(buf, fps, nframes + 1); 7145 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7146 7147 /* 7148 * If that faulted, we're cooked. 7149 */ 7150 if (*flags & CPU_DTRACE_FAULT) 7151 goto out; 7152 7153 /* 7154 * Now we want to walk up the stack, calling the USTACK helper. For 7155 * each iteration, we restore the scratch pointer. 7156 */ 7157 for (i = 0; i < nframes; i++) { 7158 mstate->dtms_scratch_ptr = saved; 7159 7160 if (offs >= strsize) 7161 break; 7162 7163 sym = (char *)(uintptr_t)dtrace_helper( 7164 DTRACE_HELPER_ACTION_USTACK, 7165 mstate, state, pcs[i], fps[i]); 7166 7167 /* 7168 * If we faulted while running the helper, we're going to 7169 * clear the fault and null out the corresponding string. 7170 */ 7171 if (*flags & CPU_DTRACE_FAULT) { 7172 *flags &= ~CPU_DTRACE_FAULT; 7173 str[offs++] = '\0'; 7174 continue; 7175 } 7176 7177 if (sym == NULL) { 7178 str[offs++] = '\0'; 7179 continue; 7180 } 7181 7182 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7183 &(state->dts_vstate))) { 7184 str[offs++] = '\0'; 7185 continue; 7186 } 7187 7188 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7189 7190 /* 7191 * Now copy in the string that the helper returned to us. 7192 */ 7193 for (j = 0; offs + j < strsize && j < rem; j++) { 7194 if ((str[offs + j] = sym[j]) == '\0') 7195 break; 7196 } 7197 7198 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7199 7200 offs += j + 1; 7201 } 7202 7203 if (offs >= strsize) { 7204 /* 7205 * If we didn't have room for all of the strings, we don't 7206 * abort processing -- this needn't be a fatal error -- but we 7207 * still want to increment a counter (dts_stkstroverflows) to 7208 * allow this condition to be warned about. (If this is from 7209 * a jstack() action, it is easily tuned via jstackstrsize.) 7210 */ 7211 dtrace_error(&state->dts_stkstroverflows); 7212 } 7213 7214 while (offs < strsize) 7215 str[offs++] = '\0'; 7216 7217 out: 7218 mstate->dtms_scratch_ptr = old; 7219 } 7220 7221 static void 7222 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7223 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7224 { 7225 volatile uint16_t *flags; 7226 uint64_t val = *valp; 7227 size_t valoffs = *valoffsp; 7228 7229 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7230 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7231 7232 /* 7233 * If this is a string, we're going to only load until we find the zero 7234 * byte -- after which we'll store zero bytes. 7235 */ 7236 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7237 char c = '\0' + 1; 7238 size_t s; 7239 7240 for (s = 0; s < size; s++) { 7241 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7242 c = dtrace_load8(val++); 7243 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7244 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7245 c = dtrace_fuword8((void *)(uintptr_t)val++); 7246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7247 if (*flags & CPU_DTRACE_FAULT) 7248 break; 7249 } 7250 7251 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7252 7253 if (c == '\0' && intuple) 7254 break; 7255 } 7256 } else { 7257 uint8_t c; 7258 while (valoffs < end) { 7259 if (dtkind == DIF_TF_BYREF) { 7260 c = dtrace_load8(val++); 7261 } else if (dtkind == DIF_TF_BYUREF) { 7262 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7263 c = dtrace_fuword8((void *)(uintptr_t)val++); 7264 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7265 if (*flags & CPU_DTRACE_FAULT) 7266 break; 7267 } 7268 7269 DTRACE_STORE(uint8_t, tomax, 7270 valoffs++, c); 7271 } 7272 } 7273 7274 *valp = val; 7275 *valoffsp = valoffs; 7276 } 7277 7278 /* 7279 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7280 * defined, we also assert that we are not recursing unless the probe ID is an 7281 * error probe. 7282 */ 7283 static dtrace_icookie_t 7284 dtrace_probe_enter(dtrace_id_t id) 7285 { 7286 dtrace_icookie_t cookie; 7287 7288 cookie = dtrace_interrupt_disable(); 7289 7290 /* 7291 * Unless this is an ERROR probe, we are not allowed to recurse in 7292 * dtrace_probe(). Recursing into DTrace probe usually means that a 7293 * function is instrumented that should not have been instrumented or 7294 * that the ordering guarantee of the records will be violated, 7295 * resulting in unexpected output. If there is an exception to this 7296 * assertion, a new case should be added. 7297 */ 7298 ASSERT(curthread->t_dtrace_inprobe == 0 || 7299 id == dtrace_probeid_error); 7300 curthread->t_dtrace_inprobe = 1; 7301 7302 return (cookie); 7303 } 7304 7305 /* 7306 * Clears the per-thread inprobe flag and enables interrupts. 7307 */ 7308 static void 7309 dtrace_probe_exit(dtrace_icookie_t cookie) 7310 { 7311 7312 curthread->t_dtrace_inprobe = 0; 7313 dtrace_interrupt_enable(cookie); 7314 } 7315 7316 /* 7317 * If you're looking for the epicenter of DTrace, you just found it. This 7318 * is the function called by the provider to fire a probe -- from which all 7319 * subsequent probe-context DTrace activity emanates. 7320 */ 7321 void 7322 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7323 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7324 { 7325 processorid_t cpuid; 7326 dtrace_icookie_t cookie; 7327 dtrace_probe_t *probe; 7328 dtrace_mstate_t mstate; 7329 dtrace_ecb_t *ecb; 7330 dtrace_action_t *act; 7331 intptr_t offs; 7332 size_t size; 7333 int vtime, onintr; 7334 volatile uint16_t *flags; 7335 hrtime_t now; 7336 7337 if (panicstr != NULL) 7338 return; 7339 7340 #ifdef illumos 7341 /* 7342 * Kick out immediately if this CPU is still being born (in which case 7343 * curthread will be set to -1) or the current thread can't allow 7344 * probes in its current context. 7345 */ 7346 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7347 return; 7348 #endif 7349 7350 cookie = dtrace_probe_enter(id); 7351 probe = dtrace_probes[id - 1]; 7352 cpuid = curcpu; 7353 onintr = CPU_ON_INTR(CPU); 7354 7355 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7356 probe->dtpr_predcache == curthread->t_predcache) { 7357 /* 7358 * We have hit in the predicate cache; we know that 7359 * this predicate would evaluate to be false. 7360 */ 7361 dtrace_probe_exit(cookie); 7362 return; 7363 } 7364 7365 #ifdef illumos 7366 if (panic_quiesce) { 7367 #else 7368 if (panicstr != NULL) { 7369 #endif 7370 /* 7371 * We don't trace anything if we're panicking. 7372 */ 7373 dtrace_probe_exit(cookie); 7374 return; 7375 } 7376 7377 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7378 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7379 vtime = dtrace_vtime_references != 0; 7380 7381 if (vtime && curthread->t_dtrace_start) 7382 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7383 7384 mstate.dtms_difo = NULL; 7385 mstate.dtms_probe = probe; 7386 mstate.dtms_strtok = 0; 7387 mstate.dtms_arg[0] = arg0; 7388 mstate.dtms_arg[1] = arg1; 7389 mstate.dtms_arg[2] = arg2; 7390 mstate.dtms_arg[3] = arg3; 7391 mstate.dtms_arg[4] = arg4; 7392 7393 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7394 7395 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7396 dtrace_predicate_t *pred = ecb->dte_predicate; 7397 dtrace_state_t *state = ecb->dte_state; 7398 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7399 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7400 dtrace_vstate_t *vstate = &state->dts_vstate; 7401 dtrace_provider_t *prov = probe->dtpr_provider; 7402 uint64_t tracememsize = 0; 7403 int committed = 0; 7404 caddr_t tomax; 7405 7406 /* 7407 * A little subtlety with the following (seemingly innocuous) 7408 * declaration of the automatic 'val': by looking at the 7409 * code, you might think that it could be declared in the 7410 * action processing loop, below. (That is, it's only used in 7411 * the action processing loop.) However, it must be declared 7412 * out of that scope because in the case of DIF expression 7413 * arguments to aggregating actions, one iteration of the 7414 * action loop will use the last iteration's value. 7415 */ 7416 uint64_t val = 0; 7417 7418 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7419 mstate.dtms_getf = NULL; 7420 7421 *flags &= ~CPU_DTRACE_ERROR; 7422 7423 if (prov == dtrace_provider) { 7424 /* 7425 * If dtrace itself is the provider of this probe, 7426 * we're only going to continue processing the ECB if 7427 * arg0 (the dtrace_state_t) is equal to the ECB's 7428 * creating state. (This prevents disjoint consumers 7429 * from seeing one another's metaprobes.) 7430 */ 7431 if (arg0 != (uint64_t)(uintptr_t)state) 7432 continue; 7433 } 7434 7435 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7436 /* 7437 * We're not currently active. If our provider isn't 7438 * the dtrace pseudo provider, we're not interested. 7439 */ 7440 if (prov != dtrace_provider) 7441 continue; 7442 7443 /* 7444 * Now we must further check if we are in the BEGIN 7445 * probe. If we are, we will only continue processing 7446 * if we're still in WARMUP -- if one BEGIN enabling 7447 * has invoked the exit() action, we don't want to 7448 * evaluate subsequent BEGIN enablings. 7449 */ 7450 if (probe->dtpr_id == dtrace_probeid_begin && 7451 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7452 ASSERT(state->dts_activity == 7453 DTRACE_ACTIVITY_DRAINING); 7454 continue; 7455 } 7456 } 7457 7458 if (ecb->dte_cond) { 7459 /* 7460 * If the dte_cond bits indicate that this 7461 * consumer is only allowed to see user-mode firings 7462 * of this probe, call the provider's dtps_usermode() 7463 * entry point to check that the probe was fired 7464 * while in a user context. Skip this ECB if that's 7465 * not the case. 7466 */ 7467 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7468 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7469 probe->dtpr_id, probe->dtpr_arg) == 0) 7470 continue; 7471 7472 #ifdef illumos 7473 /* 7474 * This is more subtle than it looks. We have to be 7475 * absolutely certain that CRED() isn't going to 7476 * change out from under us so it's only legit to 7477 * examine that structure if we're in constrained 7478 * situations. Currently, the only times we'll this 7479 * check is if a non-super-user has enabled the 7480 * profile or syscall providers -- providers that 7481 * allow visibility of all processes. For the 7482 * profile case, the check above will ensure that 7483 * we're examining a user context. 7484 */ 7485 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7486 cred_t *cr; 7487 cred_t *s_cr = 7488 ecb->dte_state->dts_cred.dcr_cred; 7489 proc_t *proc; 7490 7491 ASSERT(s_cr != NULL); 7492 7493 if ((cr = CRED()) == NULL || 7494 s_cr->cr_uid != cr->cr_uid || 7495 s_cr->cr_uid != cr->cr_ruid || 7496 s_cr->cr_uid != cr->cr_suid || 7497 s_cr->cr_gid != cr->cr_gid || 7498 s_cr->cr_gid != cr->cr_rgid || 7499 s_cr->cr_gid != cr->cr_sgid || 7500 (proc = ttoproc(curthread)) == NULL || 7501 (proc->p_flag & SNOCD)) 7502 continue; 7503 } 7504 7505 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7506 cred_t *cr; 7507 cred_t *s_cr = 7508 ecb->dte_state->dts_cred.dcr_cred; 7509 7510 ASSERT(s_cr != NULL); 7511 7512 if ((cr = CRED()) == NULL || 7513 s_cr->cr_zone->zone_id != 7514 cr->cr_zone->zone_id) 7515 continue; 7516 } 7517 #endif 7518 } 7519 7520 if (now - state->dts_alive > dtrace_deadman_timeout) { 7521 /* 7522 * We seem to be dead. Unless we (a) have kernel 7523 * destructive permissions (b) have explicitly enabled 7524 * destructive actions and (c) destructive actions have 7525 * not been disabled, we're going to transition into 7526 * the KILLED state, from which no further processing 7527 * on this state will be performed. 7528 */ 7529 if (!dtrace_priv_kernel_destructive(state) || 7530 !state->dts_cred.dcr_destructive || 7531 dtrace_destructive_disallow) { 7532 void *activity = &state->dts_activity; 7533 dtrace_activity_t curstate; 7534 7535 do { 7536 curstate = state->dts_activity; 7537 } while (dtrace_cas32(activity, curstate, 7538 DTRACE_ACTIVITY_KILLED) != curstate); 7539 7540 continue; 7541 } 7542 } 7543 7544 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7545 ecb->dte_alignment, state, &mstate)) < 0) 7546 continue; 7547 7548 tomax = buf->dtb_tomax; 7549 ASSERT(tomax != NULL); 7550 7551 if (ecb->dte_size != 0) { 7552 dtrace_rechdr_t dtrh; 7553 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7554 mstate.dtms_timestamp = dtrace_gethrtime(); 7555 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7556 } 7557 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7558 dtrh.dtrh_epid = ecb->dte_epid; 7559 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7560 mstate.dtms_timestamp); 7561 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7562 } 7563 7564 mstate.dtms_epid = ecb->dte_epid; 7565 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7566 7567 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7568 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7569 else 7570 mstate.dtms_access = 0; 7571 7572 if (pred != NULL) { 7573 dtrace_difo_t *dp = pred->dtp_difo; 7574 uint64_t rval; 7575 7576 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7577 7578 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7579 dtrace_cacheid_t cid = probe->dtpr_predcache; 7580 7581 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7582 /* 7583 * Update the predicate cache... 7584 */ 7585 ASSERT(cid == pred->dtp_cacheid); 7586 curthread->t_predcache = cid; 7587 } 7588 7589 continue; 7590 } 7591 } 7592 7593 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7594 act != NULL; act = act->dta_next) { 7595 size_t valoffs; 7596 dtrace_difo_t *dp; 7597 dtrace_recdesc_t *rec = &act->dta_rec; 7598 7599 size = rec->dtrd_size; 7600 valoffs = offs + rec->dtrd_offset; 7601 7602 if (DTRACEACT_ISAGG(act->dta_kind)) { 7603 uint64_t v = 0xbad; 7604 dtrace_aggregation_t *agg; 7605 7606 agg = (dtrace_aggregation_t *)act; 7607 7608 if ((dp = act->dta_difo) != NULL) 7609 v = dtrace_dif_emulate(dp, 7610 &mstate, vstate, state); 7611 7612 if (*flags & CPU_DTRACE_ERROR) 7613 continue; 7614 7615 /* 7616 * Note that we always pass the expression 7617 * value from the previous iteration of the 7618 * action loop. This value will only be used 7619 * if there is an expression argument to the 7620 * aggregating action, denoted by the 7621 * dtag_hasarg field. 7622 */ 7623 dtrace_aggregate(agg, buf, 7624 offs, aggbuf, v, val); 7625 continue; 7626 } 7627 7628 switch (act->dta_kind) { 7629 case DTRACEACT_STOP: 7630 if (dtrace_priv_proc_destructive(state)) 7631 dtrace_action_stop(); 7632 continue; 7633 7634 case DTRACEACT_BREAKPOINT: 7635 if (dtrace_priv_kernel_destructive(state)) 7636 dtrace_action_breakpoint(ecb); 7637 continue; 7638 7639 case DTRACEACT_PANIC: 7640 if (dtrace_priv_kernel_destructive(state)) 7641 dtrace_action_panic(ecb); 7642 continue; 7643 7644 case DTRACEACT_STACK: 7645 if (!dtrace_priv_kernel(state)) 7646 continue; 7647 7648 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7649 size / sizeof (pc_t), probe->dtpr_aframes, 7650 DTRACE_ANCHORED(probe) ? NULL : 7651 (uint32_t *)arg0); 7652 continue; 7653 7654 case DTRACEACT_JSTACK: 7655 case DTRACEACT_USTACK: 7656 if (!dtrace_priv_proc(state)) 7657 continue; 7658 7659 /* 7660 * See comment in DIF_VAR_PID. 7661 */ 7662 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7663 CPU_ON_INTR(CPU)) { 7664 int depth = DTRACE_USTACK_NFRAMES( 7665 rec->dtrd_arg) + 1; 7666 7667 dtrace_bzero((void *)(tomax + valoffs), 7668 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7669 + depth * sizeof (uint64_t)); 7670 7671 continue; 7672 } 7673 7674 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7675 curproc->p_dtrace_helpers != NULL) { 7676 /* 7677 * This is the slow path -- we have 7678 * allocated string space, and we're 7679 * getting the stack of a process that 7680 * has helpers. Call into a separate 7681 * routine to perform this processing. 7682 */ 7683 dtrace_action_ustack(&mstate, state, 7684 (uint64_t *)(tomax + valoffs), 7685 rec->dtrd_arg); 7686 continue; 7687 } 7688 7689 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7690 dtrace_getupcstack((uint64_t *) 7691 (tomax + valoffs), 7692 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7693 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7694 continue; 7695 7696 default: 7697 break; 7698 } 7699 7700 dp = act->dta_difo; 7701 ASSERT(dp != NULL); 7702 7703 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7704 7705 if (*flags & CPU_DTRACE_ERROR) 7706 continue; 7707 7708 switch (act->dta_kind) { 7709 case DTRACEACT_SPECULATE: { 7710 dtrace_rechdr_t *dtrh; 7711 7712 ASSERT(buf == &state->dts_buffer[cpuid]); 7713 buf = dtrace_speculation_buffer(state, 7714 cpuid, val); 7715 7716 if (buf == NULL) { 7717 *flags |= CPU_DTRACE_DROP; 7718 continue; 7719 } 7720 7721 offs = dtrace_buffer_reserve(buf, 7722 ecb->dte_needed, ecb->dte_alignment, 7723 state, NULL); 7724 7725 if (offs < 0) { 7726 *flags |= CPU_DTRACE_DROP; 7727 continue; 7728 } 7729 7730 tomax = buf->dtb_tomax; 7731 ASSERT(tomax != NULL); 7732 7733 if (ecb->dte_size == 0) 7734 continue; 7735 7736 ASSERT3U(ecb->dte_size, >=, 7737 sizeof (dtrace_rechdr_t)); 7738 dtrh = ((void *)(tomax + offs)); 7739 dtrh->dtrh_epid = ecb->dte_epid; 7740 /* 7741 * When the speculation is committed, all of 7742 * the records in the speculative buffer will 7743 * have their timestamps set to the commit 7744 * time. Until then, it is set to a sentinel 7745 * value, for debugability. 7746 */ 7747 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7748 continue; 7749 } 7750 7751 case DTRACEACT_PRINTM: { 7752 /* The DIF returns a 'memref'. */ 7753 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7754 7755 /* Get the size from the memref. */ 7756 size = memref[1]; 7757 7758 /* 7759 * Check if the size exceeds the allocated 7760 * buffer size. 7761 */ 7762 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7763 /* Flag a drop! */ 7764 *flags |= CPU_DTRACE_DROP; 7765 continue; 7766 } 7767 7768 /* Store the size in the buffer first. */ 7769 DTRACE_STORE(uintptr_t, tomax, 7770 valoffs, size); 7771 7772 /* 7773 * Offset the buffer address to the start 7774 * of the data. 7775 */ 7776 valoffs += sizeof(uintptr_t); 7777 7778 /* 7779 * Reset to the memory address rather than 7780 * the memref array, then let the BYREF 7781 * code below do the work to store the 7782 * memory data in the buffer. 7783 */ 7784 val = memref[0]; 7785 break; 7786 } 7787 7788 case DTRACEACT_CHILL: 7789 if (dtrace_priv_kernel_destructive(state)) 7790 dtrace_action_chill(&mstate, val); 7791 continue; 7792 7793 case DTRACEACT_RAISE: 7794 if (dtrace_priv_proc_destructive(state)) 7795 dtrace_action_raise(val); 7796 continue; 7797 7798 case DTRACEACT_COMMIT: 7799 ASSERT(!committed); 7800 7801 /* 7802 * We need to commit our buffer state. 7803 */ 7804 if (ecb->dte_size) 7805 buf->dtb_offset = offs + ecb->dte_size; 7806 buf = &state->dts_buffer[cpuid]; 7807 dtrace_speculation_commit(state, cpuid, val); 7808 committed = 1; 7809 continue; 7810 7811 case DTRACEACT_DISCARD: 7812 dtrace_speculation_discard(state, cpuid, val); 7813 continue; 7814 7815 case DTRACEACT_DIFEXPR: 7816 case DTRACEACT_LIBACT: 7817 case DTRACEACT_PRINTF: 7818 case DTRACEACT_PRINTA: 7819 case DTRACEACT_SYSTEM: 7820 case DTRACEACT_FREOPEN: 7821 case DTRACEACT_TRACEMEM: 7822 break; 7823 7824 case DTRACEACT_TRACEMEM_DYNSIZE: 7825 tracememsize = val; 7826 break; 7827 7828 case DTRACEACT_SYM: 7829 case DTRACEACT_MOD: 7830 if (!dtrace_priv_kernel(state)) 7831 continue; 7832 break; 7833 7834 case DTRACEACT_USYM: 7835 case DTRACEACT_UMOD: 7836 case DTRACEACT_UADDR: { 7837 #ifdef illumos 7838 struct pid *pid = curthread->t_procp->p_pidp; 7839 #endif 7840 7841 if (!dtrace_priv_proc(state)) 7842 continue; 7843 7844 DTRACE_STORE(uint64_t, tomax, 7845 #ifdef illumos 7846 valoffs, (uint64_t)pid->pid_id); 7847 #else 7848 valoffs, (uint64_t) curproc->p_pid); 7849 #endif 7850 DTRACE_STORE(uint64_t, tomax, 7851 valoffs + sizeof (uint64_t), val); 7852 7853 continue; 7854 } 7855 7856 case DTRACEACT_EXIT: { 7857 /* 7858 * For the exit action, we are going to attempt 7859 * to atomically set our activity to be 7860 * draining. If this fails (either because 7861 * another CPU has beat us to the exit action, 7862 * or because our current activity is something 7863 * other than ACTIVE or WARMUP), we will 7864 * continue. This assures that the exit action 7865 * can be successfully recorded at most once 7866 * when we're in the ACTIVE state. If we're 7867 * encountering the exit() action while in 7868 * COOLDOWN, however, we want to honor the new 7869 * status code. (We know that we're the only 7870 * thread in COOLDOWN, so there is no race.) 7871 */ 7872 void *activity = &state->dts_activity; 7873 dtrace_activity_t curstate = state->dts_activity; 7874 7875 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7876 break; 7877 7878 if (curstate != DTRACE_ACTIVITY_WARMUP) 7879 curstate = DTRACE_ACTIVITY_ACTIVE; 7880 7881 if (dtrace_cas32(activity, curstate, 7882 DTRACE_ACTIVITY_DRAINING) != curstate) { 7883 *flags |= CPU_DTRACE_DROP; 7884 continue; 7885 } 7886 7887 break; 7888 } 7889 7890 default: 7891 ASSERT(0); 7892 } 7893 7894 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7895 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7896 uintptr_t end = valoffs + size; 7897 7898 if (tracememsize != 0 && 7899 valoffs + tracememsize < end) { 7900 end = valoffs + tracememsize; 7901 tracememsize = 0; 7902 } 7903 7904 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7905 !dtrace_vcanload((void *)(uintptr_t)val, 7906 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7907 continue; 7908 7909 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7910 &val, end, act->dta_intuple, 7911 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7912 DIF_TF_BYREF: DIF_TF_BYUREF); 7913 continue; 7914 } 7915 7916 switch (size) { 7917 case 0: 7918 break; 7919 7920 case sizeof (uint8_t): 7921 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7922 break; 7923 case sizeof (uint16_t): 7924 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7925 break; 7926 case sizeof (uint32_t): 7927 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7928 break; 7929 case sizeof (uint64_t): 7930 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7931 break; 7932 default: 7933 /* 7934 * Any other size should have been returned by 7935 * reference, not by value. 7936 */ 7937 ASSERT(0); 7938 break; 7939 } 7940 } 7941 7942 if (*flags & CPU_DTRACE_DROP) 7943 continue; 7944 7945 if (*flags & CPU_DTRACE_FAULT) { 7946 int ndx; 7947 dtrace_action_t *err; 7948 7949 buf->dtb_errors++; 7950 7951 if (probe->dtpr_id == dtrace_probeid_error) { 7952 /* 7953 * There's nothing we can do -- we had an 7954 * error on the error probe. We bump an 7955 * error counter to at least indicate that 7956 * this condition happened. 7957 */ 7958 dtrace_error(&state->dts_dblerrors); 7959 continue; 7960 } 7961 7962 if (vtime) { 7963 /* 7964 * Before recursing on dtrace_probe(), we 7965 * need to explicitly clear out our start 7966 * time to prevent it from being accumulated 7967 * into t_dtrace_vtime. 7968 */ 7969 curthread->t_dtrace_start = 0; 7970 } 7971 7972 /* 7973 * Iterate over the actions to figure out which action 7974 * we were processing when we experienced the error. 7975 * Note that act points _past_ the faulting action; if 7976 * act is ecb->dte_action, the fault was in the 7977 * predicate, if it's ecb->dte_action->dta_next it's 7978 * in action #1, and so on. 7979 */ 7980 for (err = ecb->dte_action, ndx = 0; 7981 err != act; err = err->dta_next, ndx++) 7982 continue; 7983 7984 dtrace_probe_error(state, ecb->dte_epid, ndx, 7985 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7986 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7987 cpu_core[cpuid].cpuc_dtrace_illval); 7988 7989 continue; 7990 } 7991 7992 if (!committed) 7993 buf->dtb_offset = offs + ecb->dte_size; 7994 } 7995 7996 if (vtime) 7997 curthread->t_dtrace_start = dtrace_gethrtime(); 7998 7999 dtrace_probe_exit(cookie); 8000 } 8001 8002 /* 8003 * DTrace Probe Hashing Functions 8004 * 8005 * The functions in this section (and indeed, the functions in remaining 8006 * sections) are not _called_ from probe context. (Any exceptions to this are 8007 * marked with a "Note:".) Rather, they are called from elsewhere in the 8008 * DTrace framework to look-up probes in, add probes to and remove probes from 8009 * the DTrace probe hashes. (Each probe is hashed by each element of the 8010 * probe tuple -- allowing for fast lookups, regardless of what was 8011 * specified.) 8012 */ 8013 static uint_t 8014 dtrace_hash_str(const char *p) 8015 { 8016 unsigned int g; 8017 uint_t hval = 0; 8018 8019 while (*p) { 8020 hval = (hval << 4) + *p++; 8021 if ((g = (hval & 0xf0000000)) != 0) 8022 hval ^= g >> 24; 8023 hval &= ~g; 8024 } 8025 return (hval); 8026 } 8027 8028 static dtrace_hash_t * 8029 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8030 { 8031 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8032 8033 hash->dth_stroffs = stroffs; 8034 hash->dth_nextoffs = nextoffs; 8035 hash->dth_prevoffs = prevoffs; 8036 8037 hash->dth_size = 1; 8038 hash->dth_mask = hash->dth_size - 1; 8039 8040 hash->dth_tab = kmem_zalloc(hash->dth_size * 8041 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8042 8043 return (hash); 8044 } 8045 8046 static void 8047 dtrace_hash_destroy(dtrace_hash_t *hash) 8048 { 8049 #ifdef DEBUG 8050 int i; 8051 8052 for (i = 0; i < hash->dth_size; i++) 8053 ASSERT(hash->dth_tab[i] == NULL); 8054 #endif 8055 8056 kmem_free(hash->dth_tab, 8057 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8058 kmem_free(hash, sizeof (dtrace_hash_t)); 8059 } 8060 8061 static void 8062 dtrace_hash_resize(dtrace_hash_t *hash) 8063 { 8064 int size = hash->dth_size, i, ndx; 8065 int new_size = hash->dth_size << 1; 8066 int new_mask = new_size - 1; 8067 dtrace_hashbucket_t **new_tab, *bucket, *next; 8068 8069 ASSERT((new_size & new_mask) == 0); 8070 8071 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8072 8073 for (i = 0; i < size; i++) { 8074 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8075 dtrace_probe_t *probe = bucket->dthb_chain; 8076 8077 ASSERT(probe != NULL); 8078 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8079 8080 next = bucket->dthb_next; 8081 bucket->dthb_next = new_tab[ndx]; 8082 new_tab[ndx] = bucket; 8083 } 8084 } 8085 8086 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8087 hash->dth_tab = new_tab; 8088 hash->dth_size = new_size; 8089 hash->dth_mask = new_mask; 8090 } 8091 8092 static void 8093 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8094 { 8095 int hashval = DTRACE_HASHSTR(hash, new); 8096 int ndx = hashval & hash->dth_mask; 8097 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8098 dtrace_probe_t **nextp, **prevp; 8099 8100 for (; bucket != NULL; bucket = bucket->dthb_next) { 8101 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8102 goto add; 8103 } 8104 8105 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8106 dtrace_hash_resize(hash); 8107 dtrace_hash_add(hash, new); 8108 return; 8109 } 8110 8111 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8112 bucket->dthb_next = hash->dth_tab[ndx]; 8113 hash->dth_tab[ndx] = bucket; 8114 hash->dth_nbuckets++; 8115 8116 add: 8117 nextp = DTRACE_HASHNEXT(hash, new); 8118 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8119 *nextp = bucket->dthb_chain; 8120 8121 if (bucket->dthb_chain != NULL) { 8122 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8123 ASSERT(*prevp == NULL); 8124 *prevp = new; 8125 } 8126 8127 bucket->dthb_chain = new; 8128 bucket->dthb_len++; 8129 } 8130 8131 static dtrace_probe_t * 8132 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8133 { 8134 int hashval = DTRACE_HASHSTR(hash, template); 8135 int ndx = hashval & hash->dth_mask; 8136 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8137 8138 for (; bucket != NULL; bucket = bucket->dthb_next) { 8139 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8140 return (bucket->dthb_chain); 8141 } 8142 8143 return (NULL); 8144 } 8145 8146 static int 8147 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8148 { 8149 int hashval = DTRACE_HASHSTR(hash, template); 8150 int ndx = hashval & hash->dth_mask; 8151 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8152 8153 for (; bucket != NULL; bucket = bucket->dthb_next) { 8154 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8155 return (bucket->dthb_len); 8156 } 8157 8158 return (0); 8159 } 8160 8161 static void 8162 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8163 { 8164 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8165 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8166 8167 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8168 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8169 8170 /* 8171 * Find the bucket that we're removing this probe from. 8172 */ 8173 for (; bucket != NULL; bucket = bucket->dthb_next) { 8174 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8175 break; 8176 } 8177 8178 ASSERT(bucket != NULL); 8179 8180 if (*prevp == NULL) { 8181 if (*nextp == NULL) { 8182 /* 8183 * The removed probe was the only probe on this 8184 * bucket; we need to remove the bucket. 8185 */ 8186 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8187 8188 ASSERT(bucket->dthb_chain == probe); 8189 ASSERT(b != NULL); 8190 8191 if (b == bucket) { 8192 hash->dth_tab[ndx] = bucket->dthb_next; 8193 } else { 8194 while (b->dthb_next != bucket) 8195 b = b->dthb_next; 8196 b->dthb_next = bucket->dthb_next; 8197 } 8198 8199 ASSERT(hash->dth_nbuckets > 0); 8200 hash->dth_nbuckets--; 8201 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8202 return; 8203 } 8204 8205 bucket->dthb_chain = *nextp; 8206 } else { 8207 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8208 } 8209 8210 if (*nextp != NULL) 8211 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8212 } 8213 8214 /* 8215 * DTrace Utility Functions 8216 * 8217 * These are random utility functions that are _not_ called from probe context. 8218 */ 8219 static int 8220 dtrace_badattr(const dtrace_attribute_t *a) 8221 { 8222 return (a->dtat_name > DTRACE_STABILITY_MAX || 8223 a->dtat_data > DTRACE_STABILITY_MAX || 8224 a->dtat_class > DTRACE_CLASS_MAX); 8225 } 8226 8227 /* 8228 * Return a duplicate copy of a string. If the specified string is NULL, 8229 * this function returns a zero-length string. 8230 */ 8231 static char * 8232 dtrace_strdup(const char *str) 8233 { 8234 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8235 8236 if (str != NULL) 8237 (void) strcpy(new, str); 8238 8239 return (new); 8240 } 8241 8242 #define DTRACE_ISALPHA(c) \ 8243 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8244 8245 static int 8246 dtrace_badname(const char *s) 8247 { 8248 char c; 8249 8250 if (s == NULL || (c = *s++) == '\0') 8251 return (0); 8252 8253 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8254 return (1); 8255 8256 while ((c = *s++) != '\0') { 8257 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8258 c != '-' && c != '_' && c != '.' && c != '`') 8259 return (1); 8260 } 8261 8262 return (0); 8263 } 8264 8265 static void 8266 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8267 { 8268 uint32_t priv; 8269 8270 #ifdef illumos 8271 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8272 /* 8273 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8274 */ 8275 priv = DTRACE_PRIV_ALL; 8276 } else { 8277 *uidp = crgetuid(cr); 8278 *zoneidp = crgetzoneid(cr); 8279 8280 priv = 0; 8281 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8282 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8283 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8284 priv |= DTRACE_PRIV_USER; 8285 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8286 priv |= DTRACE_PRIV_PROC; 8287 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8288 priv |= DTRACE_PRIV_OWNER; 8289 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8290 priv |= DTRACE_PRIV_ZONEOWNER; 8291 } 8292 #else 8293 priv = DTRACE_PRIV_ALL; 8294 #endif 8295 8296 *privp = priv; 8297 } 8298 8299 #ifdef DTRACE_ERRDEBUG 8300 static void 8301 dtrace_errdebug(const char *str) 8302 { 8303 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8304 int occupied = 0; 8305 8306 mutex_enter(&dtrace_errlock); 8307 dtrace_errlast = str; 8308 dtrace_errthread = curthread; 8309 8310 while (occupied++ < DTRACE_ERRHASHSZ) { 8311 if (dtrace_errhash[hval].dter_msg == str) { 8312 dtrace_errhash[hval].dter_count++; 8313 goto out; 8314 } 8315 8316 if (dtrace_errhash[hval].dter_msg != NULL) { 8317 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8318 continue; 8319 } 8320 8321 dtrace_errhash[hval].dter_msg = str; 8322 dtrace_errhash[hval].dter_count = 1; 8323 goto out; 8324 } 8325 8326 panic("dtrace: undersized error hash"); 8327 out: 8328 mutex_exit(&dtrace_errlock); 8329 } 8330 #endif 8331 8332 /* 8333 * DTrace Matching Functions 8334 * 8335 * These functions are used to match groups of probes, given some elements of 8336 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8337 */ 8338 static int 8339 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8340 zoneid_t zoneid) 8341 { 8342 if (priv != DTRACE_PRIV_ALL) { 8343 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8344 uint32_t match = priv & ppriv; 8345 8346 /* 8347 * No PRIV_DTRACE_* privileges... 8348 */ 8349 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8350 DTRACE_PRIV_KERNEL)) == 0) 8351 return (0); 8352 8353 /* 8354 * No matching bits, but there were bits to match... 8355 */ 8356 if (match == 0 && ppriv != 0) 8357 return (0); 8358 8359 /* 8360 * Need to have permissions to the process, but don't... 8361 */ 8362 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8363 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8364 return (0); 8365 } 8366 8367 /* 8368 * Need to be in the same zone unless we possess the 8369 * privilege to examine all zones. 8370 */ 8371 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8372 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8373 return (0); 8374 } 8375 } 8376 8377 return (1); 8378 } 8379 8380 /* 8381 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8382 * consists of input pattern strings and an ops-vector to evaluate them. 8383 * This function returns >0 for match, 0 for no match, and <0 for error. 8384 */ 8385 static int 8386 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8387 uint32_t priv, uid_t uid, zoneid_t zoneid) 8388 { 8389 dtrace_provider_t *pvp = prp->dtpr_provider; 8390 int rv; 8391 8392 if (pvp->dtpv_defunct) 8393 return (0); 8394 8395 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8396 return (rv); 8397 8398 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8399 return (rv); 8400 8401 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8402 return (rv); 8403 8404 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8405 return (rv); 8406 8407 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8408 return (0); 8409 8410 return (rv); 8411 } 8412 8413 /* 8414 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8415 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8416 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8417 * In addition, all of the recursion cases except for '*' matching have been 8418 * unwound. For '*', we still implement recursive evaluation, but a depth 8419 * counter is maintained and matching is aborted if we recurse too deep. 8420 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8421 */ 8422 static int 8423 dtrace_match_glob(const char *s, const char *p, int depth) 8424 { 8425 const char *olds; 8426 char s1, c; 8427 int gs; 8428 8429 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8430 return (-1); 8431 8432 if (s == NULL) 8433 s = ""; /* treat NULL as empty string */ 8434 8435 top: 8436 olds = s; 8437 s1 = *s++; 8438 8439 if (p == NULL) 8440 return (0); 8441 8442 if ((c = *p++) == '\0') 8443 return (s1 == '\0'); 8444 8445 switch (c) { 8446 case '[': { 8447 int ok = 0, notflag = 0; 8448 char lc = '\0'; 8449 8450 if (s1 == '\0') 8451 return (0); 8452 8453 if (*p == '!') { 8454 notflag = 1; 8455 p++; 8456 } 8457 8458 if ((c = *p++) == '\0') 8459 return (0); 8460 8461 do { 8462 if (c == '-' && lc != '\0' && *p != ']') { 8463 if ((c = *p++) == '\0') 8464 return (0); 8465 if (c == '\\' && (c = *p++) == '\0') 8466 return (0); 8467 8468 if (notflag) { 8469 if (s1 < lc || s1 > c) 8470 ok++; 8471 else 8472 return (0); 8473 } else if (lc <= s1 && s1 <= c) 8474 ok++; 8475 8476 } else if (c == '\\' && (c = *p++) == '\0') 8477 return (0); 8478 8479 lc = c; /* save left-hand 'c' for next iteration */ 8480 8481 if (notflag) { 8482 if (s1 != c) 8483 ok++; 8484 else 8485 return (0); 8486 } else if (s1 == c) 8487 ok++; 8488 8489 if ((c = *p++) == '\0') 8490 return (0); 8491 8492 } while (c != ']'); 8493 8494 if (ok) 8495 goto top; 8496 8497 return (0); 8498 } 8499 8500 case '\\': 8501 if ((c = *p++) == '\0') 8502 return (0); 8503 /*FALLTHRU*/ 8504 8505 default: 8506 if (c != s1) 8507 return (0); 8508 /*FALLTHRU*/ 8509 8510 case '?': 8511 if (s1 != '\0') 8512 goto top; 8513 return (0); 8514 8515 case '*': 8516 while (*p == '*') 8517 p++; /* consecutive *'s are identical to a single one */ 8518 8519 if (*p == '\0') 8520 return (1); 8521 8522 for (s = olds; *s != '\0'; s++) { 8523 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8524 return (gs); 8525 } 8526 8527 return (0); 8528 } 8529 } 8530 8531 /*ARGSUSED*/ 8532 static int 8533 dtrace_match_string(const char *s, const char *p, int depth) 8534 { 8535 return (s != NULL && strcmp(s, p) == 0); 8536 } 8537 8538 /*ARGSUSED*/ 8539 static int 8540 dtrace_match_nul(const char *s, const char *p, int depth) 8541 { 8542 return (1); /* always match the empty pattern */ 8543 } 8544 8545 /*ARGSUSED*/ 8546 static int 8547 dtrace_match_nonzero(const char *s, const char *p, int depth) 8548 { 8549 return (s != NULL && s[0] != '\0'); 8550 } 8551 8552 static int 8553 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8554 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8555 { 8556 dtrace_probe_t template, *probe; 8557 dtrace_hash_t *hash = NULL; 8558 int len, best = INT_MAX, nmatched = 0; 8559 dtrace_id_t i; 8560 8561 ASSERT(MUTEX_HELD(&dtrace_lock)); 8562 8563 /* 8564 * If the probe ID is specified in the key, just lookup by ID and 8565 * invoke the match callback once if a matching probe is found. 8566 */ 8567 if (pkp->dtpk_id != DTRACE_IDNONE) { 8568 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8569 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8570 (void) (*matched)(probe, arg); 8571 nmatched++; 8572 } 8573 return (nmatched); 8574 } 8575 8576 template.dtpr_mod = (char *)pkp->dtpk_mod; 8577 template.dtpr_func = (char *)pkp->dtpk_func; 8578 template.dtpr_name = (char *)pkp->dtpk_name; 8579 8580 /* 8581 * We want to find the most distinct of the module name, function 8582 * name, and name. So for each one that is not a glob pattern or 8583 * empty string, we perform a lookup in the corresponding hash and 8584 * use the hash table with the fewest collisions to do our search. 8585 */ 8586 if (pkp->dtpk_mmatch == &dtrace_match_string && 8587 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8588 best = len; 8589 hash = dtrace_bymod; 8590 } 8591 8592 if (pkp->dtpk_fmatch == &dtrace_match_string && 8593 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8594 best = len; 8595 hash = dtrace_byfunc; 8596 } 8597 8598 if (pkp->dtpk_nmatch == &dtrace_match_string && 8599 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8600 best = len; 8601 hash = dtrace_byname; 8602 } 8603 8604 /* 8605 * If we did not select a hash table, iterate over every probe and 8606 * invoke our callback for each one that matches our input probe key. 8607 */ 8608 if (hash == NULL) { 8609 for (i = 0; i < dtrace_nprobes; i++) { 8610 if ((probe = dtrace_probes[i]) == NULL || 8611 dtrace_match_probe(probe, pkp, priv, uid, 8612 zoneid) <= 0) 8613 continue; 8614 8615 nmatched++; 8616 8617 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8618 break; 8619 } 8620 8621 return (nmatched); 8622 } 8623 8624 /* 8625 * If we selected a hash table, iterate over each probe of the same key 8626 * name and invoke the callback for every probe that matches the other 8627 * attributes of our input probe key. 8628 */ 8629 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8630 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8631 8632 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8633 continue; 8634 8635 nmatched++; 8636 8637 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8638 break; 8639 } 8640 8641 return (nmatched); 8642 } 8643 8644 /* 8645 * Return the function pointer dtrace_probecmp() should use to compare the 8646 * specified pattern with a string. For NULL or empty patterns, we select 8647 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8648 * For non-empty non-glob strings, we use dtrace_match_string(). 8649 */ 8650 static dtrace_probekey_f * 8651 dtrace_probekey_func(const char *p) 8652 { 8653 char c; 8654 8655 if (p == NULL || *p == '\0') 8656 return (&dtrace_match_nul); 8657 8658 while ((c = *p++) != '\0') { 8659 if (c == '[' || c == '?' || c == '*' || c == '\\') 8660 return (&dtrace_match_glob); 8661 } 8662 8663 return (&dtrace_match_string); 8664 } 8665 8666 /* 8667 * Build a probe comparison key for use with dtrace_match_probe() from the 8668 * given probe description. By convention, a null key only matches anchored 8669 * probes: if each field is the empty string, reset dtpk_fmatch to 8670 * dtrace_match_nonzero(). 8671 */ 8672 static void 8673 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8674 { 8675 pkp->dtpk_prov = pdp->dtpd_provider; 8676 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8677 8678 pkp->dtpk_mod = pdp->dtpd_mod; 8679 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8680 8681 pkp->dtpk_func = pdp->dtpd_func; 8682 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8683 8684 pkp->dtpk_name = pdp->dtpd_name; 8685 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8686 8687 pkp->dtpk_id = pdp->dtpd_id; 8688 8689 if (pkp->dtpk_id == DTRACE_IDNONE && 8690 pkp->dtpk_pmatch == &dtrace_match_nul && 8691 pkp->dtpk_mmatch == &dtrace_match_nul && 8692 pkp->dtpk_fmatch == &dtrace_match_nul && 8693 pkp->dtpk_nmatch == &dtrace_match_nul) 8694 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8695 } 8696 8697 /* 8698 * DTrace Provider-to-Framework API Functions 8699 * 8700 * These functions implement much of the Provider-to-Framework API, as 8701 * described in <sys/dtrace.h>. The parts of the API not in this section are 8702 * the functions in the API for probe management (found below), and 8703 * dtrace_probe() itself (found above). 8704 */ 8705 8706 /* 8707 * Register the calling provider with the DTrace framework. This should 8708 * generally be called by DTrace providers in their attach(9E) entry point. 8709 */ 8710 int 8711 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8712 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8713 { 8714 dtrace_provider_t *provider; 8715 8716 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8717 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8718 "arguments", name ? name : "<NULL>"); 8719 return (EINVAL); 8720 } 8721 8722 if (name[0] == '\0' || dtrace_badname(name)) { 8723 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8724 "provider name", name); 8725 return (EINVAL); 8726 } 8727 8728 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8729 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8730 pops->dtps_destroy == NULL || 8731 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8732 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8733 "provider ops", name); 8734 return (EINVAL); 8735 } 8736 8737 if (dtrace_badattr(&pap->dtpa_provider) || 8738 dtrace_badattr(&pap->dtpa_mod) || 8739 dtrace_badattr(&pap->dtpa_func) || 8740 dtrace_badattr(&pap->dtpa_name) || 8741 dtrace_badattr(&pap->dtpa_args)) { 8742 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8743 "provider attributes", name); 8744 return (EINVAL); 8745 } 8746 8747 if (priv & ~DTRACE_PRIV_ALL) { 8748 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8749 "privilege attributes", name); 8750 return (EINVAL); 8751 } 8752 8753 if ((priv & DTRACE_PRIV_KERNEL) && 8754 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8755 pops->dtps_usermode == NULL) { 8756 cmn_err(CE_WARN, "failed to register provider '%s': need " 8757 "dtps_usermode() op for given privilege attributes", name); 8758 return (EINVAL); 8759 } 8760 8761 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8762 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8763 (void) strcpy(provider->dtpv_name, name); 8764 8765 provider->dtpv_attr = *pap; 8766 provider->dtpv_priv.dtpp_flags = priv; 8767 if (cr != NULL) { 8768 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8769 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8770 } 8771 provider->dtpv_pops = *pops; 8772 8773 if (pops->dtps_provide == NULL) { 8774 ASSERT(pops->dtps_provide_module != NULL); 8775 provider->dtpv_pops.dtps_provide = 8776 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8777 } 8778 8779 if (pops->dtps_provide_module == NULL) { 8780 ASSERT(pops->dtps_provide != NULL); 8781 provider->dtpv_pops.dtps_provide_module = 8782 (void (*)(void *, modctl_t *))dtrace_nullop; 8783 } 8784 8785 if (pops->dtps_suspend == NULL) { 8786 ASSERT(pops->dtps_resume == NULL); 8787 provider->dtpv_pops.dtps_suspend = 8788 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8789 provider->dtpv_pops.dtps_resume = 8790 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8791 } 8792 8793 provider->dtpv_arg = arg; 8794 *idp = (dtrace_provider_id_t)provider; 8795 8796 if (pops == &dtrace_provider_ops) { 8797 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8798 ASSERT(MUTEX_HELD(&dtrace_lock)); 8799 ASSERT(dtrace_anon.dta_enabling == NULL); 8800 8801 /* 8802 * We make sure that the DTrace provider is at the head of 8803 * the provider chain. 8804 */ 8805 provider->dtpv_next = dtrace_provider; 8806 dtrace_provider = provider; 8807 return (0); 8808 } 8809 8810 mutex_enter(&dtrace_provider_lock); 8811 mutex_enter(&dtrace_lock); 8812 8813 /* 8814 * If there is at least one provider registered, we'll add this 8815 * provider after the first provider. 8816 */ 8817 if (dtrace_provider != NULL) { 8818 provider->dtpv_next = dtrace_provider->dtpv_next; 8819 dtrace_provider->dtpv_next = provider; 8820 } else { 8821 dtrace_provider = provider; 8822 } 8823 8824 if (dtrace_retained != NULL) { 8825 dtrace_enabling_provide(provider); 8826 8827 /* 8828 * Now we need to call dtrace_enabling_matchall() -- which 8829 * will acquire cpu_lock and dtrace_lock. We therefore need 8830 * to drop all of our locks before calling into it... 8831 */ 8832 mutex_exit(&dtrace_lock); 8833 mutex_exit(&dtrace_provider_lock); 8834 dtrace_enabling_matchall(); 8835 8836 return (0); 8837 } 8838 8839 mutex_exit(&dtrace_lock); 8840 mutex_exit(&dtrace_provider_lock); 8841 8842 return (0); 8843 } 8844 8845 /* 8846 * Unregister the specified provider from the DTrace framework. This should 8847 * generally be called by DTrace providers in their detach(9E) entry point. 8848 */ 8849 int 8850 dtrace_unregister(dtrace_provider_id_t id) 8851 { 8852 dtrace_provider_t *old = (dtrace_provider_t *)id; 8853 dtrace_provider_t *prev = NULL; 8854 int i, self = 0, noreap = 0; 8855 dtrace_probe_t *probe, *first = NULL; 8856 8857 if (old->dtpv_pops.dtps_enable == 8858 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8859 /* 8860 * If DTrace itself is the provider, we're called with locks 8861 * already held. 8862 */ 8863 ASSERT(old == dtrace_provider); 8864 #ifdef illumos 8865 ASSERT(dtrace_devi != NULL); 8866 #endif 8867 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8868 ASSERT(MUTEX_HELD(&dtrace_lock)); 8869 self = 1; 8870 8871 if (dtrace_provider->dtpv_next != NULL) { 8872 /* 8873 * There's another provider here; return failure. 8874 */ 8875 return (EBUSY); 8876 } 8877 } else { 8878 mutex_enter(&dtrace_provider_lock); 8879 #ifdef illumos 8880 mutex_enter(&mod_lock); 8881 #endif 8882 mutex_enter(&dtrace_lock); 8883 } 8884 8885 /* 8886 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8887 * probes, we refuse to let providers slither away, unless this 8888 * provider has already been explicitly invalidated. 8889 */ 8890 if (!old->dtpv_defunct && 8891 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8892 dtrace_anon.dta_state->dts_necbs > 0))) { 8893 if (!self) { 8894 mutex_exit(&dtrace_lock); 8895 #ifdef illumos 8896 mutex_exit(&mod_lock); 8897 #endif 8898 mutex_exit(&dtrace_provider_lock); 8899 } 8900 return (EBUSY); 8901 } 8902 8903 /* 8904 * Attempt to destroy the probes associated with this provider. 8905 */ 8906 for (i = 0; i < dtrace_nprobes; i++) { 8907 if ((probe = dtrace_probes[i]) == NULL) 8908 continue; 8909 8910 if (probe->dtpr_provider != old) 8911 continue; 8912 8913 if (probe->dtpr_ecb == NULL) 8914 continue; 8915 8916 /* 8917 * If we are trying to unregister a defunct provider, and the 8918 * provider was made defunct within the interval dictated by 8919 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8920 * attempt to reap our enablings. To denote that the provider 8921 * should reattempt to unregister itself at some point in the 8922 * future, we will return a differentiable error code (EAGAIN 8923 * instead of EBUSY) in this case. 8924 */ 8925 if (dtrace_gethrtime() - old->dtpv_defunct > 8926 dtrace_unregister_defunct_reap) 8927 noreap = 1; 8928 8929 if (!self) { 8930 mutex_exit(&dtrace_lock); 8931 #ifdef illumos 8932 mutex_exit(&mod_lock); 8933 #endif 8934 mutex_exit(&dtrace_provider_lock); 8935 } 8936 8937 if (noreap) 8938 return (EBUSY); 8939 8940 (void) taskq_dispatch(dtrace_taskq, 8941 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8942 8943 return (EAGAIN); 8944 } 8945 8946 /* 8947 * All of the probes for this provider are disabled; we can safely 8948 * remove all of them from their hash chains and from the probe array. 8949 */ 8950 for (i = 0; i < dtrace_nprobes; i++) { 8951 if ((probe = dtrace_probes[i]) == NULL) 8952 continue; 8953 8954 if (probe->dtpr_provider != old) 8955 continue; 8956 8957 dtrace_probes[i] = NULL; 8958 8959 dtrace_hash_remove(dtrace_bymod, probe); 8960 dtrace_hash_remove(dtrace_byfunc, probe); 8961 dtrace_hash_remove(dtrace_byname, probe); 8962 8963 if (first == NULL) { 8964 first = probe; 8965 probe->dtpr_nextmod = NULL; 8966 } else { 8967 probe->dtpr_nextmod = first; 8968 first = probe; 8969 } 8970 } 8971 8972 /* 8973 * The provider's probes have been removed from the hash chains and 8974 * from the probe array. Now issue a dtrace_sync() to be sure that 8975 * everyone has cleared out from any probe array processing. 8976 */ 8977 dtrace_sync(); 8978 8979 for (probe = first; probe != NULL; probe = first) { 8980 first = probe->dtpr_nextmod; 8981 8982 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8983 probe->dtpr_arg); 8984 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8985 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8986 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8987 #ifdef illumos 8988 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8989 #else 8990 free_unr(dtrace_arena, probe->dtpr_id); 8991 #endif 8992 kmem_free(probe, sizeof (dtrace_probe_t)); 8993 } 8994 8995 if ((prev = dtrace_provider) == old) { 8996 #ifdef illumos 8997 ASSERT(self || dtrace_devi == NULL); 8998 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8999 #endif 9000 dtrace_provider = old->dtpv_next; 9001 } else { 9002 while (prev != NULL && prev->dtpv_next != old) 9003 prev = prev->dtpv_next; 9004 9005 if (prev == NULL) { 9006 panic("attempt to unregister non-existent " 9007 "dtrace provider %p\n", (void *)id); 9008 } 9009 9010 prev->dtpv_next = old->dtpv_next; 9011 } 9012 9013 if (!self) { 9014 mutex_exit(&dtrace_lock); 9015 #ifdef illumos 9016 mutex_exit(&mod_lock); 9017 #endif 9018 mutex_exit(&dtrace_provider_lock); 9019 } 9020 9021 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9022 kmem_free(old, sizeof (dtrace_provider_t)); 9023 9024 return (0); 9025 } 9026 9027 /* 9028 * Invalidate the specified provider. All subsequent probe lookups for the 9029 * specified provider will fail, but its probes will not be removed. 9030 */ 9031 void 9032 dtrace_invalidate(dtrace_provider_id_t id) 9033 { 9034 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9035 9036 ASSERT(pvp->dtpv_pops.dtps_enable != 9037 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9038 9039 mutex_enter(&dtrace_provider_lock); 9040 mutex_enter(&dtrace_lock); 9041 9042 pvp->dtpv_defunct = dtrace_gethrtime(); 9043 9044 mutex_exit(&dtrace_lock); 9045 mutex_exit(&dtrace_provider_lock); 9046 } 9047 9048 /* 9049 * Indicate whether or not DTrace has attached. 9050 */ 9051 int 9052 dtrace_attached(void) 9053 { 9054 /* 9055 * dtrace_provider will be non-NULL iff the DTrace driver has 9056 * attached. (It's non-NULL because DTrace is always itself a 9057 * provider.) 9058 */ 9059 return (dtrace_provider != NULL); 9060 } 9061 9062 /* 9063 * Remove all the unenabled probes for the given provider. This function is 9064 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9065 * -- just as many of its associated probes as it can. 9066 */ 9067 int 9068 dtrace_condense(dtrace_provider_id_t id) 9069 { 9070 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9071 int i; 9072 dtrace_probe_t *probe; 9073 9074 /* 9075 * Make sure this isn't the dtrace provider itself. 9076 */ 9077 ASSERT(prov->dtpv_pops.dtps_enable != 9078 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9079 9080 mutex_enter(&dtrace_provider_lock); 9081 mutex_enter(&dtrace_lock); 9082 9083 /* 9084 * Attempt to destroy the probes associated with this provider. 9085 */ 9086 for (i = 0; i < dtrace_nprobes; i++) { 9087 if ((probe = dtrace_probes[i]) == NULL) 9088 continue; 9089 9090 if (probe->dtpr_provider != prov) 9091 continue; 9092 9093 if (probe->dtpr_ecb != NULL) 9094 continue; 9095 9096 dtrace_probes[i] = NULL; 9097 9098 dtrace_hash_remove(dtrace_bymod, probe); 9099 dtrace_hash_remove(dtrace_byfunc, probe); 9100 dtrace_hash_remove(dtrace_byname, probe); 9101 9102 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9103 probe->dtpr_arg); 9104 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9105 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9106 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9107 kmem_free(probe, sizeof (dtrace_probe_t)); 9108 #ifdef illumos 9109 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9110 #else 9111 free_unr(dtrace_arena, i + 1); 9112 #endif 9113 } 9114 9115 mutex_exit(&dtrace_lock); 9116 mutex_exit(&dtrace_provider_lock); 9117 9118 return (0); 9119 } 9120 9121 /* 9122 * DTrace Probe Management Functions 9123 * 9124 * The functions in this section perform the DTrace probe management, 9125 * including functions to create probes, look-up probes, and call into the 9126 * providers to request that probes be provided. Some of these functions are 9127 * in the Provider-to-Framework API; these functions can be identified by the 9128 * fact that they are not declared "static". 9129 */ 9130 9131 /* 9132 * Create a probe with the specified module name, function name, and name. 9133 */ 9134 dtrace_id_t 9135 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9136 const char *func, const char *name, int aframes, void *arg) 9137 { 9138 dtrace_probe_t *probe, **probes; 9139 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9140 dtrace_id_t id; 9141 9142 if (provider == dtrace_provider) { 9143 ASSERT(MUTEX_HELD(&dtrace_lock)); 9144 } else { 9145 mutex_enter(&dtrace_lock); 9146 } 9147 9148 #ifdef illumos 9149 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9150 VM_BESTFIT | VM_SLEEP); 9151 #else 9152 id = alloc_unr(dtrace_arena); 9153 #endif 9154 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9155 9156 probe->dtpr_id = id; 9157 probe->dtpr_gen = dtrace_probegen++; 9158 probe->dtpr_mod = dtrace_strdup(mod); 9159 probe->dtpr_func = dtrace_strdup(func); 9160 probe->dtpr_name = dtrace_strdup(name); 9161 probe->dtpr_arg = arg; 9162 probe->dtpr_aframes = aframes; 9163 probe->dtpr_provider = provider; 9164 9165 dtrace_hash_add(dtrace_bymod, probe); 9166 dtrace_hash_add(dtrace_byfunc, probe); 9167 dtrace_hash_add(dtrace_byname, probe); 9168 9169 if (id - 1 >= dtrace_nprobes) { 9170 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9171 size_t nsize = osize << 1; 9172 9173 if (nsize == 0) { 9174 ASSERT(osize == 0); 9175 ASSERT(dtrace_probes == NULL); 9176 nsize = sizeof (dtrace_probe_t *); 9177 } 9178 9179 probes = kmem_zalloc(nsize, KM_SLEEP); 9180 9181 if (dtrace_probes == NULL) { 9182 ASSERT(osize == 0); 9183 dtrace_probes = probes; 9184 dtrace_nprobes = 1; 9185 } else { 9186 dtrace_probe_t **oprobes = dtrace_probes; 9187 9188 bcopy(oprobes, probes, osize); 9189 dtrace_membar_producer(); 9190 dtrace_probes = probes; 9191 9192 dtrace_sync(); 9193 9194 /* 9195 * All CPUs are now seeing the new probes array; we can 9196 * safely free the old array. 9197 */ 9198 kmem_free(oprobes, osize); 9199 dtrace_nprobes <<= 1; 9200 } 9201 9202 ASSERT(id - 1 < dtrace_nprobes); 9203 } 9204 9205 ASSERT(dtrace_probes[id - 1] == NULL); 9206 dtrace_probes[id - 1] = probe; 9207 9208 if (provider != dtrace_provider) 9209 mutex_exit(&dtrace_lock); 9210 9211 return (id); 9212 } 9213 9214 static dtrace_probe_t * 9215 dtrace_probe_lookup_id(dtrace_id_t id) 9216 { 9217 ASSERT(MUTEX_HELD(&dtrace_lock)); 9218 9219 if (id == 0 || id > dtrace_nprobes) 9220 return (NULL); 9221 9222 return (dtrace_probes[id - 1]); 9223 } 9224 9225 static int 9226 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9227 { 9228 *((dtrace_id_t *)arg) = probe->dtpr_id; 9229 9230 return (DTRACE_MATCH_DONE); 9231 } 9232 9233 /* 9234 * Look up a probe based on provider and one or more of module name, function 9235 * name and probe name. 9236 */ 9237 dtrace_id_t 9238 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9239 char *func, char *name) 9240 { 9241 dtrace_probekey_t pkey; 9242 dtrace_id_t id; 9243 int match; 9244 9245 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9246 pkey.dtpk_pmatch = &dtrace_match_string; 9247 pkey.dtpk_mod = mod; 9248 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9249 pkey.dtpk_func = func; 9250 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9251 pkey.dtpk_name = name; 9252 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9253 pkey.dtpk_id = DTRACE_IDNONE; 9254 9255 mutex_enter(&dtrace_lock); 9256 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9257 dtrace_probe_lookup_match, &id); 9258 mutex_exit(&dtrace_lock); 9259 9260 ASSERT(match == 1 || match == 0); 9261 return (match ? id : 0); 9262 } 9263 9264 /* 9265 * Returns the probe argument associated with the specified probe. 9266 */ 9267 void * 9268 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9269 { 9270 dtrace_probe_t *probe; 9271 void *rval = NULL; 9272 9273 mutex_enter(&dtrace_lock); 9274 9275 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9276 probe->dtpr_provider == (dtrace_provider_t *)id) 9277 rval = probe->dtpr_arg; 9278 9279 mutex_exit(&dtrace_lock); 9280 9281 return (rval); 9282 } 9283 9284 /* 9285 * Copy a probe into a probe description. 9286 */ 9287 static void 9288 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9289 { 9290 bzero(pdp, sizeof (dtrace_probedesc_t)); 9291 pdp->dtpd_id = prp->dtpr_id; 9292 9293 (void) strncpy(pdp->dtpd_provider, 9294 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9295 9296 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9297 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9298 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9299 } 9300 9301 /* 9302 * Called to indicate that a probe -- or probes -- should be provided by a 9303 * specfied provider. If the specified description is NULL, the provider will 9304 * be told to provide all of its probes. (This is done whenever a new 9305 * consumer comes along, or whenever a retained enabling is to be matched.) If 9306 * the specified description is non-NULL, the provider is given the 9307 * opportunity to dynamically provide the specified probe, allowing providers 9308 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9309 * probes.) If the provider is NULL, the operations will be applied to all 9310 * providers; if the provider is non-NULL the operations will only be applied 9311 * to the specified provider. The dtrace_provider_lock must be held, and the 9312 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9313 * will need to grab the dtrace_lock when it reenters the framework through 9314 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9315 */ 9316 static void 9317 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9318 { 9319 #ifdef illumos 9320 modctl_t *ctl; 9321 #endif 9322 int all = 0; 9323 9324 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9325 9326 if (prv == NULL) { 9327 all = 1; 9328 prv = dtrace_provider; 9329 } 9330 9331 do { 9332 /* 9333 * First, call the blanket provide operation. 9334 */ 9335 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9336 9337 #ifdef illumos 9338 /* 9339 * Now call the per-module provide operation. We will grab 9340 * mod_lock to prevent the list from being modified. Note 9341 * that this also prevents the mod_busy bits from changing. 9342 * (mod_busy can only be changed with mod_lock held.) 9343 */ 9344 mutex_enter(&mod_lock); 9345 9346 ctl = &modules; 9347 do { 9348 if (ctl->mod_busy || ctl->mod_mp == NULL) 9349 continue; 9350 9351 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9352 9353 } while ((ctl = ctl->mod_next) != &modules); 9354 9355 mutex_exit(&mod_lock); 9356 #endif 9357 } while (all && (prv = prv->dtpv_next) != NULL); 9358 } 9359 9360 #ifdef illumos 9361 /* 9362 * Iterate over each probe, and call the Framework-to-Provider API function 9363 * denoted by offs. 9364 */ 9365 static void 9366 dtrace_probe_foreach(uintptr_t offs) 9367 { 9368 dtrace_provider_t *prov; 9369 void (*func)(void *, dtrace_id_t, void *); 9370 dtrace_probe_t *probe; 9371 dtrace_icookie_t cookie; 9372 int i; 9373 9374 /* 9375 * We disable interrupts to walk through the probe array. This is 9376 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9377 * won't see stale data. 9378 */ 9379 cookie = dtrace_interrupt_disable(); 9380 9381 for (i = 0; i < dtrace_nprobes; i++) { 9382 if ((probe = dtrace_probes[i]) == NULL) 9383 continue; 9384 9385 if (probe->dtpr_ecb == NULL) { 9386 /* 9387 * This probe isn't enabled -- don't call the function. 9388 */ 9389 continue; 9390 } 9391 9392 prov = probe->dtpr_provider; 9393 func = *((void(**)(void *, dtrace_id_t, void *)) 9394 ((uintptr_t)&prov->dtpv_pops + offs)); 9395 9396 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9397 } 9398 9399 dtrace_interrupt_enable(cookie); 9400 } 9401 #endif 9402 9403 static int 9404 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9405 { 9406 dtrace_probekey_t pkey; 9407 uint32_t priv; 9408 uid_t uid; 9409 zoneid_t zoneid; 9410 9411 ASSERT(MUTEX_HELD(&dtrace_lock)); 9412 dtrace_ecb_create_cache = NULL; 9413 9414 if (desc == NULL) { 9415 /* 9416 * If we're passed a NULL description, we're being asked to 9417 * create an ECB with a NULL probe. 9418 */ 9419 (void) dtrace_ecb_create_enable(NULL, enab); 9420 return (0); 9421 } 9422 9423 dtrace_probekey(desc, &pkey); 9424 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9425 &priv, &uid, &zoneid); 9426 9427 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9428 enab)); 9429 } 9430 9431 /* 9432 * DTrace Helper Provider Functions 9433 */ 9434 static void 9435 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9436 { 9437 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9438 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9439 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9440 } 9441 9442 static void 9443 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9444 const dof_provider_t *dofprov, char *strtab) 9445 { 9446 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9447 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9448 dofprov->dofpv_provattr); 9449 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9450 dofprov->dofpv_modattr); 9451 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9452 dofprov->dofpv_funcattr); 9453 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9454 dofprov->dofpv_nameattr); 9455 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9456 dofprov->dofpv_argsattr); 9457 } 9458 9459 static void 9460 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9461 { 9462 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9463 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9464 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9465 dof_provider_t *provider; 9466 dof_probe_t *probe; 9467 uint32_t *off, *enoff; 9468 uint8_t *arg; 9469 char *strtab; 9470 uint_t i, nprobes; 9471 dtrace_helper_provdesc_t dhpv; 9472 dtrace_helper_probedesc_t dhpb; 9473 dtrace_meta_t *meta = dtrace_meta_pid; 9474 dtrace_mops_t *mops = &meta->dtm_mops; 9475 void *parg; 9476 9477 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9478 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9479 provider->dofpv_strtab * dof->dofh_secsize); 9480 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9481 provider->dofpv_probes * dof->dofh_secsize); 9482 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9483 provider->dofpv_prargs * dof->dofh_secsize); 9484 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9485 provider->dofpv_proffs * dof->dofh_secsize); 9486 9487 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9488 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9489 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9490 enoff = NULL; 9491 9492 /* 9493 * See dtrace_helper_provider_validate(). 9494 */ 9495 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9496 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9497 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9498 provider->dofpv_prenoffs * dof->dofh_secsize); 9499 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9500 } 9501 9502 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9503 9504 /* 9505 * Create the provider. 9506 */ 9507 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9508 9509 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9510 return; 9511 9512 meta->dtm_count++; 9513 9514 /* 9515 * Create the probes. 9516 */ 9517 for (i = 0; i < nprobes; i++) { 9518 probe = (dof_probe_t *)(uintptr_t)(daddr + 9519 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9520 9521 /* See the check in dtrace_helper_provider_validate(). */ 9522 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9523 continue; 9524 9525 dhpb.dthpb_mod = dhp->dofhp_mod; 9526 dhpb.dthpb_func = strtab + probe->dofpr_func; 9527 dhpb.dthpb_name = strtab + probe->dofpr_name; 9528 dhpb.dthpb_base = probe->dofpr_addr; 9529 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9530 dhpb.dthpb_noffs = probe->dofpr_noffs; 9531 if (enoff != NULL) { 9532 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9533 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9534 } else { 9535 dhpb.dthpb_enoffs = NULL; 9536 dhpb.dthpb_nenoffs = 0; 9537 } 9538 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9539 dhpb.dthpb_nargc = probe->dofpr_nargc; 9540 dhpb.dthpb_xargc = probe->dofpr_xargc; 9541 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9542 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9543 9544 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9545 } 9546 } 9547 9548 static void 9549 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9550 { 9551 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9552 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9553 int i; 9554 9555 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9556 9557 for (i = 0; i < dof->dofh_secnum; i++) { 9558 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9559 dof->dofh_secoff + i * dof->dofh_secsize); 9560 9561 if (sec->dofs_type != DOF_SECT_PROVIDER) 9562 continue; 9563 9564 dtrace_helper_provide_one(dhp, sec, pid); 9565 } 9566 9567 /* 9568 * We may have just created probes, so we must now rematch against 9569 * any retained enablings. Note that this call will acquire both 9570 * cpu_lock and dtrace_lock; the fact that we are holding 9571 * dtrace_meta_lock now is what defines the ordering with respect to 9572 * these three locks. 9573 */ 9574 dtrace_enabling_matchall(); 9575 } 9576 9577 static void 9578 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9579 { 9580 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9581 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9582 dof_sec_t *str_sec; 9583 dof_provider_t *provider; 9584 char *strtab; 9585 dtrace_helper_provdesc_t dhpv; 9586 dtrace_meta_t *meta = dtrace_meta_pid; 9587 dtrace_mops_t *mops = &meta->dtm_mops; 9588 9589 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9590 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9591 provider->dofpv_strtab * dof->dofh_secsize); 9592 9593 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9594 9595 /* 9596 * Create the provider. 9597 */ 9598 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9599 9600 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9601 9602 meta->dtm_count--; 9603 } 9604 9605 static void 9606 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9607 { 9608 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9609 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9610 int i; 9611 9612 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9613 9614 for (i = 0; i < dof->dofh_secnum; i++) { 9615 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9616 dof->dofh_secoff + i * dof->dofh_secsize); 9617 9618 if (sec->dofs_type != DOF_SECT_PROVIDER) 9619 continue; 9620 9621 dtrace_helper_provider_remove_one(dhp, sec, pid); 9622 } 9623 } 9624 9625 /* 9626 * DTrace Meta Provider-to-Framework API Functions 9627 * 9628 * These functions implement the Meta Provider-to-Framework API, as described 9629 * in <sys/dtrace.h>. 9630 */ 9631 int 9632 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9633 dtrace_meta_provider_id_t *idp) 9634 { 9635 dtrace_meta_t *meta; 9636 dtrace_helpers_t *help, *next; 9637 int i; 9638 9639 *idp = DTRACE_METAPROVNONE; 9640 9641 /* 9642 * We strictly don't need the name, but we hold onto it for 9643 * debuggability. All hail error queues! 9644 */ 9645 if (name == NULL) { 9646 cmn_err(CE_WARN, "failed to register meta-provider: " 9647 "invalid name"); 9648 return (EINVAL); 9649 } 9650 9651 if (mops == NULL || 9652 mops->dtms_create_probe == NULL || 9653 mops->dtms_provide_pid == NULL || 9654 mops->dtms_remove_pid == NULL) { 9655 cmn_err(CE_WARN, "failed to register meta-register %s: " 9656 "invalid ops", name); 9657 return (EINVAL); 9658 } 9659 9660 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9661 meta->dtm_mops = *mops; 9662 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9663 (void) strcpy(meta->dtm_name, name); 9664 meta->dtm_arg = arg; 9665 9666 mutex_enter(&dtrace_meta_lock); 9667 mutex_enter(&dtrace_lock); 9668 9669 if (dtrace_meta_pid != NULL) { 9670 mutex_exit(&dtrace_lock); 9671 mutex_exit(&dtrace_meta_lock); 9672 cmn_err(CE_WARN, "failed to register meta-register %s: " 9673 "user-land meta-provider exists", name); 9674 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9675 kmem_free(meta, sizeof (dtrace_meta_t)); 9676 return (EINVAL); 9677 } 9678 9679 dtrace_meta_pid = meta; 9680 *idp = (dtrace_meta_provider_id_t)meta; 9681 9682 /* 9683 * If there are providers and probes ready to go, pass them 9684 * off to the new meta provider now. 9685 */ 9686 9687 help = dtrace_deferred_pid; 9688 dtrace_deferred_pid = NULL; 9689 9690 mutex_exit(&dtrace_lock); 9691 9692 while (help != NULL) { 9693 for (i = 0; i < help->dthps_nprovs; i++) { 9694 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9695 help->dthps_pid); 9696 } 9697 9698 next = help->dthps_next; 9699 help->dthps_next = NULL; 9700 help->dthps_prev = NULL; 9701 help->dthps_deferred = 0; 9702 help = next; 9703 } 9704 9705 mutex_exit(&dtrace_meta_lock); 9706 9707 return (0); 9708 } 9709 9710 int 9711 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9712 { 9713 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9714 9715 mutex_enter(&dtrace_meta_lock); 9716 mutex_enter(&dtrace_lock); 9717 9718 if (old == dtrace_meta_pid) { 9719 pp = &dtrace_meta_pid; 9720 } else { 9721 panic("attempt to unregister non-existent " 9722 "dtrace meta-provider %p\n", (void *)old); 9723 } 9724 9725 if (old->dtm_count != 0) { 9726 mutex_exit(&dtrace_lock); 9727 mutex_exit(&dtrace_meta_lock); 9728 return (EBUSY); 9729 } 9730 9731 *pp = NULL; 9732 9733 mutex_exit(&dtrace_lock); 9734 mutex_exit(&dtrace_meta_lock); 9735 9736 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9737 kmem_free(old, sizeof (dtrace_meta_t)); 9738 9739 return (0); 9740 } 9741 9742 9743 /* 9744 * DTrace DIF Object Functions 9745 */ 9746 static int 9747 dtrace_difo_err(uint_t pc, const char *format, ...) 9748 { 9749 if (dtrace_err_verbose) { 9750 va_list alist; 9751 9752 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9753 va_start(alist, format); 9754 (void) vuprintf(format, alist); 9755 va_end(alist); 9756 } 9757 9758 #ifdef DTRACE_ERRDEBUG 9759 dtrace_errdebug(format); 9760 #endif 9761 return (1); 9762 } 9763 9764 /* 9765 * Validate a DTrace DIF object by checking the IR instructions. The following 9766 * rules are currently enforced by dtrace_difo_validate(): 9767 * 9768 * 1. Each instruction must have a valid opcode 9769 * 2. Each register, string, variable, or subroutine reference must be valid 9770 * 3. No instruction can modify register %r0 (must be zero) 9771 * 4. All instruction reserved bits must be set to zero 9772 * 5. The last instruction must be a "ret" instruction 9773 * 6. All branch targets must reference a valid instruction _after_ the branch 9774 */ 9775 static int 9776 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9777 cred_t *cr) 9778 { 9779 int err = 0, i; 9780 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9781 int kcheckload; 9782 uint_t pc; 9783 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9784 9785 kcheckload = cr == NULL || 9786 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9787 9788 dp->dtdo_destructive = 0; 9789 9790 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9791 dif_instr_t instr = dp->dtdo_buf[pc]; 9792 9793 uint_t r1 = DIF_INSTR_R1(instr); 9794 uint_t r2 = DIF_INSTR_R2(instr); 9795 uint_t rd = DIF_INSTR_RD(instr); 9796 uint_t rs = DIF_INSTR_RS(instr); 9797 uint_t label = DIF_INSTR_LABEL(instr); 9798 uint_t v = DIF_INSTR_VAR(instr); 9799 uint_t subr = DIF_INSTR_SUBR(instr); 9800 uint_t type = DIF_INSTR_TYPE(instr); 9801 uint_t op = DIF_INSTR_OP(instr); 9802 9803 switch (op) { 9804 case DIF_OP_OR: 9805 case DIF_OP_XOR: 9806 case DIF_OP_AND: 9807 case DIF_OP_SLL: 9808 case DIF_OP_SRL: 9809 case DIF_OP_SRA: 9810 case DIF_OP_SUB: 9811 case DIF_OP_ADD: 9812 case DIF_OP_MUL: 9813 case DIF_OP_SDIV: 9814 case DIF_OP_UDIV: 9815 case DIF_OP_SREM: 9816 case DIF_OP_UREM: 9817 case DIF_OP_COPYS: 9818 if (r1 >= nregs) 9819 err += efunc(pc, "invalid register %u\n", r1); 9820 if (r2 >= nregs) 9821 err += efunc(pc, "invalid register %u\n", r2); 9822 if (rd >= nregs) 9823 err += efunc(pc, "invalid register %u\n", rd); 9824 if (rd == 0) 9825 err += efunc(pc, "cannot write to %r0\n"); 9826 break; 9827 case DIF_OP_NOT: 9828 case DIF_OP_MOV: 9829 case DIF_OP_ALLOCS: 9830 if (r1 >= nregs) 9831 err += efunc(pc, "invalid register %u\n", r1); 9832 if (r2 != 0) 9833 err += efunc(pc, "non-zero reserved bits\n"); 9834 if (rd >= nregs) 9835 err += efunc(pc, "invalid register %u\n", rd); 9836 if (rd == 0) 9837 err += efunc(pc, "cannot write to %r0\n"); 9838 break; 9839 case DIF_OP_LDSB: 9840 case DIF_OP_LDSH: 9841 case DIF_OP_LDSW: 9842 case DIF_OP_LDUB: 9843 case DIF_OP_LDUH: 9844 case DIF_OP_LDUW: 9845 case DIF_OP_LDX: 9846 if (r1 >= nregs) 9847 err += efunc(pc, "invalid register %u\n", r1); 9848 if (r2 != 0) 9849 err += efunc(pc, "non-zero reserved bits\n"); 9850 if (rd >= nregs) 9851 err += efunc(pc, "invalid register %u\n", rd); 9852 if (rd == 0) 9853 err += efunc(pc, "cannot write to %r0\n"); 9854 if (kcheckload) 9855 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9856 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9857 break; 9858 case DIF_OP_RLDSB: 9859 case DIF_OP_RLDSH: 9860 case DIF_OP_RLDSW: 9861 case DIF_OP_RLDUB: 9862 case DIF_OP_RLDUH: 9863 case DIF_OP_RLDUW: 9864 case DIF_OP_RLDX: 9865 if (r1 >= nregs) 9866 err += efunc(pc, "invalid register %u\n", r1); 9867 if (r2 != 0) 9868 err += efunc(pc, "non-zero reserved bits\n"); 9869 if (rd >= nregs) 9870 err += efunc(pc, "invalid register %u\n", rd); 9871 if (rd == 0) 9872 err += efunc(pc, "cannot write to %r0\n"); 9873 break; 9874 case DIF_OP_ULDSB: 9875 case DIF_OP_ULDSH: 9876 case DIF_OP_ULDSW: 9877 case DIF_OP_ULDUB: 9878 case DIF_OP_ULDUH: 9879 case DIF_OP_ULDUW: 9880 case DIF_OP_ULDX: 9881 if (r1 >= nregs) 9882 err += efunc(pc, "invalid register %u\n", r1); 9883 if (r2 != 0) 9884 err += efunc(pc, "non-zero reserved bits\n"); 9885 if (rd >= nregs) 9886 err += efunc(pc, "invalid register %u\n", rd); 9887 if (rd == 0) 9888 err += efunc(pc, "cannot write to %r0\n"); 9889 break; 9890 case DIF_OP_STB: 9891 case DIF_OP_STH: 9892 case DIF_OP_STW: 9893 case DIF_OP_STX: 9894 if (r1 >= nregs) 9895 err += efunc(pc, "invalid register %u\n", r1); 9896 if (r2 != 0) 9897 err += efunc(pc, "non-zero reserved bits\n"); 9898 if (rd >= nregs) 9899 err += efunc(pc, "invalid register %u\n", rd); 9900 if (rd == 0) 9901 err += efunc(pc, "cannot write to 0 address\n"); 9902 break; 9903 case DIF_OP_CMP: 9904 case DIF_OP_SCMP: 9905 if (r1 >= nregs) 9906 err += efunc(pc, "invalid register %u\n", r1); 9907 if (r2 >= nregs) 9908 err += efunc(pc, "invalid register %u\n", r2); 9909 if (rd != 0) 9910 err += efunc(pc, "non-zero reserved bits\n"); 9911 break; 9912 case DIF_OP_TST: 9913 if (r1 >= nregs) 9914 err += efunc(pc, "invalid register %u\n", r1); 9915 if (r2 != 0 || rd != 0) 9916 err += efunc(pc, "non-zero reserved bits\n"); 9917 break; 9918 case DIF_OP_BA: 9919 case DIF_OP_BE: 9920 case DIF_OP_BNE: 9921 case DIF_OP_BG: 9922 case DIF_OP_BGU: 9923 case DIF_OP_BGE: 9924 case DIF_OP_BGEU: 9925 case DIF_OP_BL: 9926 case DIF_OP_BLU: 9927 case DIF_OP_BLE: 9928 case DIF_OP_BLEU: 9929 if (label >= dp->dtdo_len) { 9930 err += efunc(pc, "invalid branch target %u\n", 9931 label); 9932 } 9933 if (label <= pc) { 9934 err += efunc(pc, "backward branch to %u\n", 9935 label); 9936 } 9937 break; 9938 case DIF_OP_RET: 9939 if (r1 != 0 || r2 != 0) 9940 err += efunc(pc, "non-zero reserved bits\n"); 9941 if (rd >= nregs) 9942 err += efunc(pc, "invalid register %u\n", rd); 9943 break; 9944 case DIF_OP_NOP: 9945 case DIF_OP_POPTS: 9946 case DIF_OP_FLUSHTS: 9947 if (r1 != 0 || r2 != 0 || rd != 0) 9948 err += efunc(pc, "non-zero reserved bits\n"); 9949 break; 9950 case DIF_OP_SETX: 9951 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9952 err += efunc(pc, "invalid integer ref %u\n", 9953 DIF_INSTR_INTEGER(instr)); 9954 } 9955 if (rd >= nregs) 9956 err += efunc(pc, "invalid register %u\n", rd); 9957 if (rd == 0) 9958 err += efunc(pc, "cannot write to %r0\n"); 9959 break; 9960 case DIF_OP_SETS: 9961 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9962 err += efunc(pc, "invalid string ref %u\n", 9963 DIF_INSTR_STRING(instr)); 9964 } 9965 if (rd >= nregs) 9966 err += efunc(pc, "invalid register %u\n", rd); 9967 if (rd == 0) 9968 err += efunc(pc, "cannot write to %r0\n"); 9969 break; 9970 case DIF_OP_LDGA: 9971 case DIF_OP_LDTA: 9972 if (r1 > DIF_VAR_ARRAY_MAX) 9973 err += efunc(pc, "invalid array %u\n", r1); 9974 if (r2 >= nregs) 9975 err += efunc(pc, "invalid register %u\n", r2); 9976 if (rd >= nregs) 9977 err += efunc(pc, "invalid register %u\n", rd); 9978 if (rd == 0) 9979 err += efunc(pc, "cannot write to %r0\n"); 9980 break; 9981 case DIF_OP_LDGS: 9982 case DIF_OP_LDTS: 9983 case DIF_OP_LDLS: 9984 case DIF_OP_LDGAA: 9985 case DIF_OP_LDTAA: 9986 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9987 err += efunc(pc, "invalid variable %u\n", v); 9988 if (rd >= nregs) 9989 err += efunc(pc, "invalid register %u\n", rd); 9990 if (rd == 0) 9991 err += efunc(pc, "cannot write to %r0\n"); 9992 break; 9993 case DIF_OP_STGS: 9994 case DIF_OP_STTS: 9995 case DIF_OP_STLS: 9996 case DIF_OP_STGAA: 9997 case DIF_OP_STTAA: 9998 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9999 err += efunc(pc, "invalid variable %u\n", v); 10000 if (rs >= nregs) 10001 err += efunc(pc, "invalid register %u\n", rd); 10002 break; 10003 case DIF_OP_CALL: 10004 if (subr > DIF_SUBR_MAX) 10005 err += efunc(pc, "invalid subr %u\n", subr); 10006 if (rd >= nregs) 10007 err += efunc(pc, "invalid register %u\n", rd); 10008 if (rd == 0) 10009 err += efunc(pc, "cannot write to %r0\n"); 10010 10011 if (subr == DIF_SUBR_COPYOUT || 10012 subr == DIF_SUBR_COPYOUTSTR) { 10013 dp->dtdo_destructive = 1; 10014 } 10015 10016 if (subr == DIF_SUBR_GETF) { 10017 #ifdef __FreeBSD__ 10018 err += efunc(pc, "getf() not supported"); 10019 #else 10020 /* 10021 * If we have a getf() we need to record that 10022 * in our state. Note that our state can be 10023 * NULL if this is a helper -- but in that 10024 * case, the call to getf() is itself illegal, 10025 * and will be caught (slightly later) when 10026 * the helper is validated. 10027 */ 10028 if (vstate->dtvs_state != NULL) 10029 vstate->dtvs_state->dts_getf++; 10030 #endif 10031 } 10032 10033 break; 10034 case DIF_OP_PUSHTR: 10035 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10036 err += efunc(pc, "invalid ref type %u\n", type); 10037 if (r2 >= nregs) 10038 err += efunc(pc, "invalid register %u\n", r2); 10039 if (rs >= nregs) 10040 err += efunc(pc, "invalid register %u\n", rs); 10041 break; 10042 case DIF_OP_PUSHTV: 10043 if (type != DIF_TYPE_CTF) 10044 err += efunc(pc, "invalid val type %u\n", type); 10045 if (r2 >= nregs) 10046 err += efunc(pc, "invalid register %u\n", r2); 10047 if (rs >= nregs) 10048 err += efunc(pc, "invalid register %u\n", rs); 10049 break; 10050 default: 10051 err += efunc(pc, "invalid opcode %u\n", 10052 DIF_INSTR_OP(instr)); 10053 } 10054 } 10055 10056 if (dp->dtdo_len != 0 && 10057 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10058 err += efunc(dp->dtdo_len - 1, 10059 "expected 'ret' as last DIF instruction\n"); 10060 } 10061 10062 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10063 /* 10064 * If we're not returning by reference, the size must be either 10065 * 0 or the size of one of the base types. 10066 */ 10067 switch (dp->dtdo_rtype.dtdt_size) { 10068 case 0: 10069 case sizeof (uint8_t): 10070 case sizeof (uint16_t): 10071 case sizeof (uint32_t): 10072 case sizeof (uint64_t): 10073 break; 10074 10075 default: 10076 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10077 } 10078 } 10079 10080 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10081 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10082 dtrace_diftype_t *vt, *et; 10083 uint_t id, ndx; 10084 10085 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10086 v->dtdv_scope != DIFV_SCOPE_THREAD && 10087 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10088 err += efunc(i, "unrecognized variable scope %d\n", 10089 v->dtdv_scope); 10090 break; 10091 } 10092 10093 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10094 v->dtdv_kind != DIFV_KIND_SCALAR) { 10095 err += efunc(i, "unrecognized variable type %d\n", 10096 v->dtdv_kind); 10097 break; 10098 } 10099 10100 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10101 err += efunc(i, "%d exceeds variable id limit\n", id); 10102 break; 10103 } 10104 10105 if (id < DIF_VAR_OTHER_UBASE) 10106 continue; 10107 10108 /* 10109 * For user-defined variables, we need to check that this 10110 * definition is identical to any previous definition that we 10111 * encountered. 10112 */ 10113 ndx = id - DIF_VAR_OTHER_UBASE; 10114 10115 switch (v->dtdv_scope) { 10116 case DIFV_SCOPE_GLOBAL: 10117 if (maxglobal == -1 || ndx > maxglobal) 10118 maxglobal = ndx; 10119 10120 if (ndx < vstate->dtvs_nglobals) { 10121 dtrace_statvar_t *svar; 10122 10123 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10124 existing = &svar->dtsv_var; 10125 } 10126 10127 break; 10128 10129 case DIFV_SCOPE_THREAD: 10130 if (maxtlocal == -1 || ndx > maxtlocal) 10131 maxtlocal = ndx; 10132 10133 if (ndx < vstate->dtvs_ntlocals) 10134 existing = &vstate->dtvs_tlocals[ndx]; 10135 break; 10136 10137 case DIFV_SCOPE_LOCAL: 10138 if (maxlocal == -1 || ndx > maxlocal) 10139 maxlocal = ndx; 10140 10141 if (ndx < vstate->dtvs_nlocals) { 10142 dtrace_statvar_t *svar; 10143 10144 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10145 existing = &svar->dtsv_var; 10146 } 10147 10148 break; 10149 } 10150 10151 vt = &v->dtdv_type; 10152 10153 if (vt->dtdt_flags & DIF_TF_BYREF) { 10154 if (vt->dtdt_size == 0) { 10155 err += efunc(i, "zero-sized variable\n"); 10156 break; 10157 } 10158 10159 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10160 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10161 vt->dtdt_size > dtrace_statvar_maxsize) { 10162 err += efunc(i, "oversized by-ref static\n"); 10163 break; 10164 } 10165 } 10166 10167 if (existing == NULL || existing->dtdv_id == 0) 10168 continue; 10169 10170 ASSERT(existing->dtdv_id == v->dtdv_id); 10171 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10172 10173 if (existing->dtdv_kind != v->dtdv_kind) 10174 err += efunc(i, "%d changed variable kind\n", id); 10175 10176 et = &existing->dtdv_type; 10177 10178 if (vt->dtdt_flags != et->dtdt_flags) { 10179 err += efunc(i, "%d changed variable type flags\n", id); 10180 break; 10181 } 10182 10183 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10184 err += efunc(i, "%d changed variable type size\n", id); 10185 break; 10186 } 10187 } 10188 10189 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10190 dif_instr_t instr = dp->dtdo_buf[pc]; 10191 10192 uint_t v = DIF_INSTR_VAR(instr); 10193 uint_t op = DIF_INSTR_OP(instr); 10194 10195 switch (op) { 10196 case DIF_OP_LDGS: 10197 case DIF_OP_LDGAA: 10198 case DIF_OP_STGS: 10199 case DIF_OP_STGAA: 10200 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10201 err += efunc(pc, "invalid variable %u\n", v); 10202 break; 10203 case DIF_OP_LDTS: 10204 case DIF_OP_LDTAA: 10205 case DIF_OP_STTS: 10206 case DIF_OP_STTAA: 10207 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10208 err += efunc(pc, "invalid variable %u\n", v); 10209 break; 10210 case DIF_OP_LDLS: 10211 case DIF_OP_STLS: 10212 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10213 err += efunc(pc, "invalid variable %u\n", v); 10214 break; 10215 default: 10216 break; 10217 } 10218 } 10219 10220 return (err); 10221 } 10222 10223 /* 10224 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10225 * are much more constrained than normal DIFOs. Specifically, they may 10226 * not: 10227 * 10228 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10229 * miscellaneous string routines 10230 * 2. Access DTrace variables other than the args[] array, and the 10231 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10232 * 3. Have thread-local variables. 10233 * 4. Have dynamic variables. 10234 */ 10235 static int 10236 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10237 { 10238 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10239 int err = 0; 10240 uint_t pc; 10241 10242 for (pc = 0; pc < dp->dtdo_len; pc++) { 10243 dif_instr_t instr = dp->dtdo_buf[pc]; 10244 10245 uint_t v = DIF_INSTR_VAR(instr); 10246 uint_t subr = DIF_INSTR_SUBR(instr); 10247 uint_t op = DIF_INSTR_OP(instr); 10248 10249 switch (op) { 10250 case DIF_OP_OR: 10251 case DIF_OP_XOR: 10252 case DIF_OP_AND: 10253 case DIF_OP_SLL: 10254 case DIF_OP_SRL: 10255 case DIF_OP_SRA: 10256 case DIF_OP_SUB: 10257 case DIF_OP_ADD: 10258 case DIF_OP_MUL: 10259 case DIF_OP_SDIV: 10260 case DIF_OP_UDIV: 10261 case DIF_OP_SREM: 10262 case DIF_OP_UREM: 10263 case DIF_OP_COPYS: 10264 case DIF_OP_NOT: 10265 case DIF_OP_MOV: 10266 case DIF_OP_RLDSB: 10267 case DIF_OP_RLDSH: 10268 case DIF_OP_RLDSW: 10269 case DIF_OP_RLDUB: 10270 case DIF_OP_RLDUH: 10271 case DIF_OP_RLDUW: 10272 case DIF_OP_RLDX: 10273 case DIF_OP_ULDSB: 10274 case DIF_OP_ULDSH: 10275 case DIF_OP_ULDSW: 10276 case DIF_OP_ULDUB: 10277 case DIF_OP_ULDUH: 10278 case DIF_OP_ULDUW: 10279 case DIF_OP_ULDX: 10280 case DIF_OP_STB: 10281 case DIF_OP_STH: 10282 case DIF_OP_STW: 10283 case DIF_OP_STX: 10284 case DIF_OP_ALLOCS: 10285 case DIF_OP_CMP: 10286 case DIF_OP_SCMP: 10287 case DIF_OP_TST: 10288 case DIF_OP_BA: 10289 case DIF_OP_BE: 10290 case DIF_OP_BNE: 10291 case DIF_OP_BG: 10292 case DIF_OP_BGU: 10293 case DIF_OP_BGE: 10294 case DIF_OP_BGEU: 10295 case DIF_OP_BL: 10296 case DIF_OP_BLU: 10297 case DIF_OP_BLE: 10298 case DIF_OP_BLEU: 10299 case DIF_OP_RET: 10300 case DIF_OP_NOP: 10301 case DIF_OP_POPTS: 10302 case DIF_OP_FLUSHTS: 10303 case DIF_OP_SETX: 10304 case DIF_OP_SETS: 10305 case DIF_OP_LDGA: 10306 case DIF_OP_LDLS: 10307 case DIF_OP_STGS: 10308 case DIF_OP_STLS: 10309 case DIF_OP_PUSHTR: 10310 case DIF_OP_PUSHTV: 10311 break; 10312 10313 case DIF_OP_LDGS: 10314 if (v >= DIF_VAR_OTHER_UBASE) 10315 break; 10316 10317 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10318 break; 10319 10320 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10321 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10322 v == DIF_VAR_EXECARGS || 10323 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10324 v == DIF_VAR_UID || v == DIF_VAR_GID) 10325 break; 10326 10327 err += efunc(pc, "illegal variable %u\n", v); 10328 break; 10329 10330 case DIF_OP_LDTA: 10331 case DIF_OP_LDTS: 10332 case DIF_OP_LDGAA: 10333 case DIF_OP_LDTAA: 10334 err += efunc(pc, "illegal dynamic variable load\n"); 10335 break; 10336 10337 case DIF_OP_STTS: 10338 case DIF_OP_STGAA: 10339 case DIF_OP_STTAA: 10340 err += efunc(pc, "illegal dynamic variable store\n"); 10341 break; 10342 10343 case DIF_OP_CALL: 10344 if (subr == DIF_SUBR_ALLOCA || 10345 subr == DIF_SUBR_BCOPY || 10346 subr == DIF_SUBR_COPYIN || 10347 subr == DIF_SUBR_COPYINTO || 10348 subr == DIF_SUBR_COPYINSTR || 10349 subr == DIF_SUBR_INDEX || 10350 subr == DIF_SUBR_INET_NTOA || 10351 subr == DIF_SUBR_INET_NTOA6 || 10352 subr == DIF_SUBR_INET_NTOP || 10353 subr == DIF_SUBR_JSON || 10354 subr == DIF_SUBR_LLTOSTR || 10355 subr == DIF_SUBR_STRTOLL || 10356 subr == DIF_SUBR_RINDEX || 10357 subr == DIF_SUBR_STRCHR || 10358 subr == DIF_SUBR_STRJOIN || 10359 subr == DIF_SUBR_STRRCHR || 10360 subr == DIF_SUBR_STRSTR || 10361 subr == DIF_SUBR_HTONS || 10362 subr == DIF_SUBR_HTONL || 10363 subr == DIF_SUBR_HTONLL || 10364 subr == DIF_SUBR_NTOHS || 10365 subr == DIF_SUBR_NTOHL || 10366 subr == DIF_SUBR_NTOHLL || 10367 subr == DIF_SUBR_MEMREF) 10368 break; 10369 #ifdef __FreeBSD__ 10370 if (subr == DIF_SUBR_MEMSTR) 10371 break; 10372 #endif 10373 10374 err += efunc(pc, "invalid subr %u\n", subr); 10375 break; 10376 10377 default: 10378 err += efunc(pc, "invalid opcode %u\n", 10379 DIF_INSTR_OP(instr)); 10380 } 10381 } 10382 10383 return (err); 10384 } 10385 10386 /* 10387 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10388 * basis; 0 if not. 10389 */ 10390 static int 10391 dtrace_difo_cacheable(dtrace_difo_t *dp) 10392 { 10393 int i; 10394 10395 if (dp == NULL) 10396 return (0); 10397 10398 for (i = 0; i < dp->dtdo_varlen; i++) { 10399 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10400 10401 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10402 continue; 10403 10404 switch (v->dtdv_id) { 10405 case DIF_VAR_CURTHREAD: 10406 case DIF_VAR_PID: 10407 case DIF_VAR_TID: 10408 case DIF_VAR_EXECARGS: 10409 case DIF_VAR_EXECNAME: 10410 case DIF_VAR_ZONENAME: 10411 break; 10412 10413 default: 10414 return (0); 10415 } 10416 } 10417 10418 /* 10419 * This DIF object may be cacheable. Now we need to look for any 10420 * array loading instructions, any memory loading instructions, or 10421 * any stores to thread-local variables. 10422 */ 10423 for (i = 0; i < dp->dtdo_len; i++) { 10424 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10425 10426 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10427 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10428 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10429 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10430 return (0); 10431 } 10432 10433 return (1); 10434 } 10435 10436 static void 10437 dtrace_difo_hold(dtrace_difo_t *dp) 10438 { 10439 int i; 10440 10441 ASSERT(MUTEX_HELD(&dtrace_lock)); 10442 10443 dp->dtdo_refcnt++; 10444 ASSERT(dp->dtdo_refcnt != 0); 10445 10446 /* 10447 * We need to check this DIF object for references to the variable 10448 * DIF_VAR_VTIMESTAMP. 10449 */ 10450 for (i = 0; i < dp->dtdo_varlen; i++) { 10451 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10452 10453 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10454 continue; 10455 10456 if (dtrace_vtime_references++ == 0) 10457 dtrace_vtime_enable(); 10458 } 10459 } 10460 10461 /* 10462 * This routine calculates the dynamic variable chunksize for a given DIF 10463 * object. The calculation is not fool-proof, and can probably be tricked by 10464 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10465 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10466 * if a dynamic variable size exceeds the chunksize. 10467 */ 10468 static void 10469 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10470 { 10471 uint64_t sval = 0; 10472 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10473 const dif_instr_t *text = dp->dtdo_buf; 10474 uint_t pc, srd = 0; 10475 uint_t ttop = 0; 10476 size_t size, ksize; 10477 uint_t id, i; 10478 10479 for (pc = 0; pc < dp->dtdo_len; pc++) { 10480 dif_instr_t instr = text[pc]; 10481 uint_t op = DIF_INSTR_OP(instr); 10482 uint_t rd = DIF_INSTR_RD(instr); 10483 uint_t r1 = DIF_INSTR_R1(instr); 10484 uint_t nkeys = 0; 10485 uchar_t scope = 0; 10486 10487 dtrace_key_t *key = tupregs; 10488 10489 switch (op) { 10490 case DIF_OP_SETX: 10491 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10492 srd = rd; 10493 continue; 10494 10495 case DIF_OP_STTS: 10496 key = &tupregs[DIF_DTR_NREGS]; 10497 key[0].dttk_size = 0; 10498 key[1].dttk_size = 0; 10499 nkeys = 2; 10500 scope = DIFV_SCOPE_THREAD; 10501 break; 10502 10503 case DIF_OP_STGAA: 10504 case DIF_OP_STTAA: 10505 nkeys = ttop; 10506 10507 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10508 key[nkeys++].dttk_size = 0; 10509 10510 key[nkeys++].dttk_size = 0; 10511 10512 if (op == DIF_OP_STTAA) { 10513 scope = DIFV_SCOPE_THREAD; 10514 } else { 10515 scope = DIFV_SCOPE_GLOBAL; 10516 } 10517 10518 break; 10519 10520 case DIF_OP_PUSHTR: 10521 if (ttop == DIF_DTR_NREGS) 10522 return; 10523 10524 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10525 /* 10526 * If the register for the size of the "pushtr" 10527 * is %r0 (or the value is 0) and the type is 10528 * a string, we'll use the system-wide default 10529 * string size. 10530 */ 10531 tupregs[ttop++].dttk_size = 10532 dtrace_strsize_default; 10533 } else { 10534 if (srd == 0) 10535 return; 10536 10537 if (sval > LONG_MAX) 10538 return; 10539 10540 tupregs[ttop++].dttk_size = sval; 10541 } 10542 10543 break; 10544 10545 case DIF_OP_PUSHTV: 10546 if (ttop == DIF_DTR_NREGS) 10547 return; 10548 10549 tupregs[ttop++].dttk_size = 0; 10550 break; 10551 10552 case DIF_OP_FLUSHTS: 10553 ttop = 0; 10554 break; 10555 10556 case DIF_OP_POPTS: 10557 if (ttop != 0) 10558 ttop--; 10559 break; 10560 } 10561 10562 sval = 0; 10563 srd = 0; 10564 10565 if (nkeys == 0) 10566 continue; 10567 10568 /* 10569 * We have a dynamic variable allocation; calculate its size. 10570 */ 10571 for (ksize = 0, i = 0; i < nkeys; i++) 10572 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10573 10574 size = sizeof (dtrace_dynvar_t); 10575 size += sizeof (dtrace_key_t) * (nkeys - 1); 10576 size += ksize; 10577 10578 /* 10579 * Now we need to determine the size of the stored data. 10580 */ 10581 id = DIF_INSTR_VAR(instr); 10582 10583 for (i = 0; i < dp->dtdo_varlen; i++) { 10584 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10585 10586 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10587 size += v->dtdv_type.dtdt_size; 10588 break; 10589 } 10590 } 10591 10592 if (i == dp->dtdo_varlen) 10593 return; 10594 10595 /* 10596 * We have the size. If this is larger than the chunk size 10597 * for our dynamic variable state, reset the chunk size. 10598 */ 10599 size = P2ROUNDUP(size, sizeof (uint64_t)); 10600 10601 /* 10602 * Before setting the chunk size, check that we're not going 10603 * to set it to a negative value... 10604 */ 10605 if (size > LONG_MAX) 10606 return; 10607 10608 /* 10609 * ...and make certain that we didn't badly overflow. 10610 */ 10611 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10612 return; 10613 10614 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10615 vstate->dtvs_dynvars.dtds_chunksize = size; 10616 } 10617 } 10618 10619 static void 10620 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10621 { 10622 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10623 uint_t id; 10624 10625 ASSERT(MUTEX_HELD(&dtrace_lock)); 10626 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10627 10628 for (i = 0; i < dp->dtdo_varlen; i++) { 10629 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10630 dtrace_statvar_t *svar, ***svarp = NULL; 10631 size_t dsize = 0; 10632 uint8_t scope = v->dtdv_scope; 10633 int *np = NULL; 10634 10635 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10636 continue; 10637 10638 id -= DIF_VAR_OTHER_UBASE; 10639 10640 switch (scope) { 10641 case DIFV_SCOPE_THREAD: 10642 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10643 dtrace_difv_t *tlocals; 10644 10645 if ((ntlocals = (otlocals << 1)) == 0) 10646 ntlocals = 1; 10647 10648 osz = otlocals * sizeof (dtrace_difv_t); 10649 nsz = ntlocals * sizeof (dtrace_difv_t); 10650 10651 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10652 10653 if (osz != 0) { 10654 bcopy(vstate->dtvs_tlocals, 10655 tlocals, osz); 10656 kmem_free(vstate->dtvs_tlocals, osz); 10657 } 10658 10659 vstate->dtvs_tlocals = tlocals; 10660 vstate->dtvs_ntlocals = ntlocals; 10661 } 10662 10663 vstate->dtvs_tlocals[id] = *v; 10664 continue; 10665 10666 case DIFV_SCOPE_LOCAL: 10667 np = &vstate->dtvs_nlocals; 10668 svarp = &vstate->dtvs_locals; 10669 10670 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10671 dsize = NCPU * (v->dtdv_type.dtdt_size + 10672 sizeof (uint64_t)); 10673 else 10674 dsize = NCPU * sizeof (uint64_t); 10675 10676 break; 10677 10678 case DIFV_SCOPE_GLOBAL: 10679 np = &vstate->dtvs_nglobals; 10680 svarp = &vstate->dtvs_globals; 10681 10682 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10683 dsize = v->dtdv_type.dtdt_size + 10684 sizeof (uint64_t); 10685 10686 break; 10687 10688 default: 10689 ASSERT(0); 10690 } 10691 10692 while (id >= (oldsvars = *np)) { 10693 dtrace_statvar_t **statics; 10694 int newsvars, oldsize, newsize; 10695 10696 if ((newsvars = (oldsvars << 1)) == 0) 10697 newsvars = 1; 10698 10699 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10700 newsize = newsvars * sizeof (dtrace_statvar_t *); 10701 10702 statics = kmem_zalloc(newsize, KM_SLEEP); 10703 10704 if (oldsize != 0) { 10705 bcopy(*svarp, statics, oldsize); 10706 kmem_free(*svarp, oldsize); 10707 } 10708 10709 *svarp = statics; 10710 *np = newsvars; 10711 } 10712 10713 if ((svar = (*svarp)[id]) == NULL) { 10714 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10715 svar->dtsv_var = *v; 10716 10717 if ((svar->dtsv_size = dsize) != 0) { 10718 svar->dtsv_data = (uint64_t)(uintptr_t) 10719 kmem_zalloc(dsize, KM_SLEEP); 10720 } 10721 10722 (*svarp)[id] = svar; 10723 } 10724 10725 svar->dtsv_refcnt++; 10726 } 10727 10728 dtrace_difo_chunksize(dp, vstate); 10729 dtrace_difo_hold(dp); 10730 } 10731 10732 static dtrace_difo_t * 10733 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10734 { 10735 dtrace_difo_t *new; 10736 size_t sz; 10737 10738 ASSERT(dp->dtdo_buf != NULL); 10739 ASSERT(dp->dtdo_refcnt != 0); 10740 10741 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10742 10743 ASSERT(dp->dtdo_buf != NULL); 10744 sz = dp->dtdo_len * sizeof (dif_instr_t); 10745 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10746 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10747 new->dtdo_len = dp->dtdo_len; 10748 10749 if (dp->dtdo_strtab != NULL) { 10750 ASSERT(dp->dtdo_strlen != 0); 10751 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10752 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10753 new->dtdo_strlen = dp->dtdo_strlen; 10754 } 10755 10756 if (dp->dtdo_inttab != NULL) { 10757 ASSERT(dp->dtdo_intlen != 0); 10758 sz = dp->dtdo_intlen * sizeof (uint64_t); 10759 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10760 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10761 new->dtdo_intlen = dp->dtdo_intlen; 10762 } 10763 10764 if (dp->dtdo_vartab != NULL) { 10765 ASSERT(dp->dtdo_varlen != 0); 10766 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10767 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10768 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10769 new->dtdo_varlen = dp->dtdo_varlen; 10770 } 10771 10772 dtrace_difo_init(new, vstate); 10773 return (new); 10774 } 10775 10776 static void 10777 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10778 { 10779 int i; 10780 10781 ASSERT(dp->dtdo_refcnt == 0); 10782 10783 for (i = 0; i < dp->dtdo_varlen; i++) { 10784 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10785 dtrace_statvar_t *svar, **svarp = NULL; 10786 uint_t id; 10787 uint8_t scope = v->dtdv_scope; 10788 int *np = NULL; 10789 10790 switch (scope) { 10791 case DIFV_SCOPE_THREAD: 10792 continue; 10793 10794 case DIFV_SCOPE_LOCAL: 10795 np = &vstate->dtvs_nlocals; 10796 svarp = vstate->dtvs_locals; 10797 break; 10798 10799 case DIFV_SCOPE_GLOBAL: 10800 np = &vstate->dtvs_nglobals; 10801 svarp = vstate->dtvs_globals; 10802 break; 10803 10804 default: 10805 ASSERT(0); 10806 } 10807 10808 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10809 continue; 10810 10811 id -= DIF_VAR_OTHER_UBASE; 10812 ASSERT(id < *np); 10813 10814 svar = svarp[id]; 10815 ASSERT(svar != NULL); 10816 ASSERT(svar->dtsv_refcnt > 0); 10817 10818 if (--svar->dtsv_refcnt > 0) 10819 continue; 10820 10821 if (svar->dtsv_size != 0) { 10822 ASSERT(svar->dtsv_data != 0); 10823 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10824 svar->dtsv_size); 10825 } 10826 10827 kmem_free(svar, sizeof (dtrace_statvar_t)); 10828 svarp[id] = NULL; 10829 } 10830 10831 if (dp->dtdo_buf != NULL) 10832 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10833 if (dp->dtdo_inttab != NULL) 10834 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10835 if (dp->dtdo_strtab != NULL) 10836 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10837 if (dp->dtdo_vartab != NULL) 10838 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10839 10840 kmem_free(dp, sizeof (dtrace_difo_t)); 10841 } 10842 10843 static void 10844 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10845 { 10846 int i; 10847 10848 ASSERT(MUTEX_HELD(&dtrace_lock)); 10849 ASSERT(dp->dtdo_refcnt != 0); 10850 10851 for (i = 0; i < dp->dtdo_varlen; i++) { 10852 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10853 10854 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10855 continue; 10856 10857 ASSERT(dtrace_vtime_references > 0); 10858 if (--dtrace_vtime_references == 0) 10859 dtrace_vtime_disable(); 10860 } 10861 10862 if (--dp->dtdo_refcnt == 0) 10863 dtrace_difo_destroy(dp, vstate); 10864 } 10865 10866 /* 10867 * DTrace Format Functions 10868 */ 10869 static uint16_t 10870 dtrace_format_add(dtrace_state_t *state, char *str) 10871 { 10872 char *fmt, **new; 10873 uint16_t ndx, len = strlen(str) + 1; 10874 10875 fmt = kmem_zalloc(len, KM_SLEEP); 10876 bcopy(str, fmt, len); 10877 10878 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10879 if (state->dts_formats[ndx] == NULL) { 10880 state->dts_formats[ndx] = fmt; 10881 return (ndx + 1); 10882 } 10883 } 10884 10885 if (state->dts_nformats == USHRT_MAX) { 10886 /* 10887 * This is only likely if a denial-of-service attack is being 10888 * attempted. As such, it's okay to fail silently here. 10889 */ 10890 kmem_free(fmt, len); 10891 return (0); 10892 } 10893 10894 /* 10895 * For simplicity, we always resize the formats array to be exactly the 10896 * number of formats. 10897 */ 10898 ndx = state->dts_nformats++; 10899 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10900 10901 if (state->dts_formats != NULL) { 10902 ASSERT(ndx != 0); 10903 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10904 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10905 } 10906 10907 state->dts_formats = new; 10908 state->dts_formats[ndx] = fmt; 10909 10910 return (ndx + 1); 10911 } 10912 10913 static void 10914 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10915 { 10916 char *fmt; 10917 10918 ASSERT(state->dts_formats != NULL); 10919 ASSERT(format <= state->dts_nformats); 10920 ASSERT(state->dts_formats[format - 1] != NULL); 10921 10922 fmt = state->dts_formats[format - 1]; 10923 kmem_free(fmt, strlen(fmt) + 1); 10924 state->dts_formats[format - 1] = NULL; 10925 } 10926 10927 static void 10928 dtrace_format_destroy(dtrace_state_t *state) 10929 { 10930 int i; 10931 10932 if (state->dts_nformats == 0) { 10933 ASSERT(state->dts_formats == NULL); 10934 return; 10935 } 10936 10937 ASSERT(state->dts_formats != NULL); 10938 10939 for (i = 0; i < state->dts_nformats; i++) { 10940 char *fmt = state->dts_formats[i]; 10941 10942 if (fmt == NULL) 10943 continue; 10944 10945 kmem_free(fmt, strlen(fmt) + 1); 10946 } 10947 10948 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10949 state->dts_nformats = 0; 10950 state->dts_formats = NULL; 10951 } 10952 10953 /* 10954 * DTrace Predicate Functions 10955 */ 10956 static dtrace_predicate_t * 10957 dtrace_predicate_create(dtrace_difo_t *dp) 10958 { 10959 dtrace_predicate_t *pred; 10960 10961 ASSERT(MUTEX_HELD(&dtrace_lock)); 10962 ASSERT(dp->dtdo_refcnt != 0); 10963 10964 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10965 pred->dtp_difo = dp; 10966 pred->dtp_refcnt = 1; 10967 10968 if (!dtrace_difo_cacheable(dp)) 10969 return (pred); 10970 10971 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10972 /* 10973 * This is only theoretically possible -- we have had 2^32 10974 * cacheable predicates on this machine. We cannot allow any 10975 * more predicates to become cacheable: as unlikely as it is, 10976 * there may be a thread caching a (now stale) predicate cache 10977 * ID. (N.B.: the temptation is being successfully resisted to 10978 * have this cmn_err() "Holy shit -- we executed this code!") 10979 */ 10980 return (pred); 10981 } 10982 10983 pred->dtp_cacheid = dtrace_predcache_id++; 10984 10985 return (pred); 10986 } 10987 10988 static void 10989 dtrace_predicate_hold(dtrace_predicate_t *pred) 10990 { 10991 ASSERT(MUTEX_HELD(&dtrace_lock)); 10992 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10993 ASSERT(pred->dtp_refcnt > 0); 10994 10995 pred->dtp_refcnt++; 10996 } 10997 10998 static void 10999 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11000 { 11001 dtrace_difo_t *dp = pred->dtp_difo; 11002 11003 ASSERT(MUTEX_HELD(&dtrace_lock)); 11004 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11005 ASSERT(pred->dtp_refcnt > 0); 11006 11007 if (--pred->dtp_refcnt == 0) { 11008 dtrace_difo_release(pred->dtp_difo, vstate); 11009 kmem_free(pred, sizeof (dtrace_predicate_t)); 11010 } 11011 } 11012 11013 /* 11014 * DTrace Action Description Functions 11015 */ 11016 static dtrace_actdesc_t * 11017 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11018 uint64_t uarg, uint64_t arg) 11019 { 11020 dtrace_actdesc_t *act; 11021 11022 #ifdef illumos 11023 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11024 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11025 #endif 11026 11027 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11028 act->dtad_kind = kind; 11029 act->dtad_ntuple = ntuple; 11030 act->dtad_uarg = uarg; 11031 act->dtad_arg = arg; 11032 act->dtad_refcnt = 1; 11033 11034 return (act); 11035 } 11036 11037 static void 11038 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11039 { 11040 ASSERT(act->dtad_refcnt >= 1); 11041 act->dtad_refcnt++; 11042 } 11043 11044 static void 11045 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11046 { 11047 dtrace_actkind_t kind = act->dtad_kind; 11048 dtrace_difo_t *dp; 11049 11050 ASSERT(act->dtad_refcnt >= 1); 11051 11052 if (--act->dtad_refcnt != 0) 11053 return; 11054 11055 if ((dp = act->dtad_difo) != NULL) 11056 dtrace_difo_release(dp, vstate); 11057 11058 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11059 char *str = (char *)(uintptr_t)act->dtad_arg; 11060 11061 #ifdef illumos 11062 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11063 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11064 #endif 11065 11066 if (str != NULL) 11067 kmem_free(str, strlen(str) + 1); 11068 } 11069 11070 kmem_free(act, sizeof (dtrace_actdesc_t)); 11071 } 11072 11073 /* 11074 * DTrace ECB Functions 11075 */ 11076 static dtrace_ecb_t * 11077 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11078 { 11079 dtrace_ecb_t *ecb; 11080 dtrace_epid_t epid; 11081 11082 ASSERT(MUTEX_HELD(&dtrace_lock)); 11083 11084 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11085 ecb->dte_predicate = NULL; 11086 ecb->dte_probe = probe; 11087 11088 /* 11089 * The default size is the size of the default action: recording 11090 * the header. 11091 */ 11092 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11093 ecb->dte_alignment = sizeof (dtrace_epid_t); 11094 11095 epid = state->dts_epid++; 11096 11097 if (epid - 1 >= state->dts_necbs) { 11098 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11099 int necbs = state->dts_necbs << 1; 11100 11101 ASSERT(epid == state->dts_necbs + 1); 11102 11103 if (necbs == 0) { 11104 ASSERT(oecbs == NULL); 11105 necbs = 1; 11106 } 11107 11108 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11109 11110 if (oecbs != NULL) 11111 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11112 11113 dtrace_membar_producer(); 11114 state->dts_ecbs = ecbs; 11115 11116 if (oecbs != NULL) { 11117 /* 11118 * If this state is active, we must dtrace_sync() 11119 * before we can free the old dts_ecbs array: we're 11120 * coming in hot, and there may be active ring 11121 * buffer processing (which indexes into the dts_ecbs 11122 * array) on another CPU. 11123 */ 11124 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11125 dtrace_sync(); 11126 11127 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11128 } 11129 11130 dtrace_membar_producer(); 11131 state->dts_necbs = necbs; 11132 } 11133 11134 ecb->dte_state = state; 11135 11136 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11137 dtrace_membar_producer(); 11138 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11139 11140 return (ecb); 11141 } 11142 11143 static void 11144 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11145 { 11146 dtrace_probe_t *probe = ecb->dte_probe; 11147 11148 ASSERT(MUTEX_HELD(&cpu_lock)); 11149 ASSERT(MUTEX_HELD(&dtrace_lock)); 11150 ASSERT(ecb->dte_next == NULL); 11151 11152 if (probe == NULL) { 11153 /* 11154 * This is the NULL probe -- there's nothing to do. 11155 */ 11156 return; 11157 } 11158 11159 if (probe->dtpr_ecb == NULL) { 11160 dtrace_provider_t *prov = probe->dtpr_provider; 11161 11162 /* 11163 * We're the first ECB on this probe. 11164 */ 11165 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11166 11167 if (ecb->dte_predicate != NULL) 11168 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11169 11170 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11171 probe->dtpr_id, probe->dtpr_arg); 11172 } else { 11173 /* 11174 * This probe is already active. Swing the last pointer to 11175 * point to the new ECB, and issue a dtrace_sync() to assure 11176 * that all CPUs have seen the change. 11177 */ 11178 ASSERT(probe->dtpr_ecb_last != NULL); 11179 probe->dtpr_ecb_last->dte_next = ecb; 11180 probe->dtpr_ecb_last = ecb; 11181 probe->dtpr_predcache = 0; 11182 11183 dtrace_sync(); 11184 } 11185 } 11186 11187 static int 11188 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11189 { 11190 dtrace_action_t *act; 11191 uint32_t curneeded = UINT32_MAX; 11192 uint32_t aggbase = UINT32_MAX; 11193 11194 /* 11195 * If we record anything, we always record the dtrace_rechdr_t. (And 11196 * we always record it first.) 11197 */ 11198 ecb->dte_size = sizeof (dtrace_rechdr_t); 11199 ecb->dte_alignment = sizeof (dtrace_epid_t); 11200 11201 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11202 dtrace_recdesc_t *rec = &act->dta_rec; 11203 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11204 11205 ecb->dte_alignment = MAX(ecb->dte_alignment, 11206 rec->dtrd_alignment); 11207 11208 if (DTRACEACT_ISAGG(act->dta_kind)) { 11209 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11210 11211 ASSERT(rec->dtrd_size != 0); 11212 ASSERT(agg->dtag_first != NULL); 11213 ASSERT(act->dta_prev->dta_intuple); 11214 ASSERT(aggbase != UINT32_MAX); 11215 ASSERT(curneeded != UINT32_MAX); 11216 11217 agg->dtag_base = aggbase; 11218 11219 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11220 rec->dtrd_offset = curneeded; 11221 if (curneeded + rec->dtrd_size < curneeded) 11222 return (EINVAL); 11223 curneeded += rec->dtrd_size; 11224 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11225 11226 aggbase = UINT32_MAX; 11227 curneeded = UINT32_MAX; 11228 } else if (act->dta_intuple) { 11229 if (curneeded == UINT32_MAX) { 11230 /* 11231 * This is the first record in a tuple. Align 11232 * curneeded to be at offset 4 in an 8-byte 11233 * aligned block. 11234 */ 11235 ASSERT(act->dta_prev == NULL || 11236 !act->dta_prev->dta_intuple); 11237 ASSERT3U(aggbase, ==, UINT32_MAX); 11238 curneeded = P2PHASEUP(ecb->dte_size, 11239 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11240 11241 aggbase = curneeded - sizeof (dtrace_aggid_t); 11242 ASSERT(IS_P2ALIGNED(aggbase, 11243 sizeof (uint64_t))); 11244 } 11245 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11246 rec->dtrd_offset = curneeded; 11247 if (curneeded + rec->dtrd_size < curneeded) 11248 return (EINVAL); 11249 curneeded += rec->dtrd_size; 11250 } else { 11251 /* tuples must be followed by an aggregation */ 11252 ASSERT(act->dta_prev == NULL || 11253 !act->dta_prev->dta_intuple); 11254 11255 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11256 rec->dtrd_alignment); 11257 rec->dtrd_offset = ecb->dte_size; 11258 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11259 return (EINVAL); 11260 ecb->dte_size += rec->dtrd_size; 11261 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11262 } 11263 } 11264 11265 if ((act = ecb->dte_action) != NULL && 11266 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11267 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11268 /* 11269 * If the size is still sizeof (dtrace_rechdr_t), then all 11270 * actions store no data; set the size to 0. 11271 */ 11272 ecb->dte_size = 0; 11273 } 11274 11275 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11276 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11277 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11278 ecb->dte_needed); 11279 return (0); 11280 } 11281 11282 static dtrace_action_t * 11283 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11284 { 11285 dtrace_aggregation_t *agg; 11286 size_t size = sizeof (uint64_t); 11287 int ntuple = desc->dtad_ntuple; 11288 dtrace_action_t *act; 11289 dtrace_recdesc_t *frec; 11290 dtrace_aggid_t aggid; 11291 dtrace_state_t *state = ecb->dte_state; 11292 11293 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11294 agg->dtag_ecb = ecb; 11295 11296 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11297 11298 switch (desc->dtad_kind) { 11299 case DTRACEAGG_MIN: 11300 agg->dtag_initial = INT64_MAX; 11301 agg->dtag_aggregate = dtrace_aggregate_min; 11302 break; 11303 11304 case DTRACEAGG_MAX: 11305 agg->dtag_initial = INT64_MIN; 11306 agg->dtag_aggregate = dtrace_aggregate_max; 11307 break; 11308 11309 case DTRACEAGG_COUNT: 11310 agg->dtag_aggregate = dtrace_aggregate_count; 11311 break; 11312 11313 case DTRACEAGG_QUANTIZE: 11314 agg->dtag_aggregate = dtrace_aggregate_quantize; 11315 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11316 sizeof (uint64_t); 11317 break; 11318 11319 case DTRACEAGG_LQUANTIZE: { 11320 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11321 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11322 11323 agg->dtag_initial = desc->dtad_arg; 11324 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11325 11326 if (step == 0 || levels == 0) 11327 goto err; 11328 11329 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11330 break; 11331 } 11332 11333 case DTRACEAGG_LLQUANTIZE: { 11334 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11335 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11336 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11337 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11338 int64_t v; 11339 11340 agg->dtag_initial = desc->dtad_arg; 11341 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11342 11343 if (factor < 2 || low >= high || nsteps < factor) 11344 goto err; 11345 11346 /* 11347 * Now check that the number of steps evenly divides a power 11348 * of the factor. (This assures both integer bucket size and 11349 * linearity within each magnitude.) 11350 */ 11351 for (v = factor; v < nsteps; v *= factor) 11352 continue; 11353 11354 if ((v % nsteps) || (nsteps % factor)) 11355 goto err; 11356 11357 size = (dtrace_aggregate_llquantize_bucket(factor, 11358 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11359 break; 11360 } 11361 11362 case DTRACEAGG_AVG: 11363 agg->dtag_aggregate = dtrace_aggregate_avg; 11364 size = sizeof (uint64_t) * 2; 11365 break; 11366 11367 case DTRACEAGG_STDDEV: 11368 agg->dtag_aggregate = dtrace_aggregate_stddev; 11369 size = sizeof (uint64_t) * 4; 11370 break; 11371 11372 case DTRACEAGG_SUM: 11373 agg->dtag_aggregate = dtrace_aggregate_sum; 11374 break; 11375 11376 default: 11377 goto err; 11378 } 11379 11380 agg->dtag_action.dta_rec.dtrd_size = size; 11381 11382 if (ntuple == 0) 11383 goto err; 11384 11385 /* 11386 * We must make sure that we have enough actions for the n-tuple. 11387 */ 11388 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11389 if (DTRACEACT_ISAGG(act->dta_kind)) 11390 break; 11391 11392 if (--ntuple == 0) { 11393 /* 11394 * This is the action with which our n-tuple begins. 11395 */ 11396 agg->dtag_first = act; 11397 goto success; 11398 } 11399 } 11400 11401 /* 11402 * This n-tuple is short by ntuple elements. Return failure. 11403 */ 11404 ASSERT(ntuple != 0); 11405 err: 11406 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11407 return (NULL); 11408 11409 success: 11410 /* 11411 * If the last action in the tuple has a size of zero, it's actually 11412 * an expression argument for the aggregating action. 11413 */ 11414 ASSERT(ecb->dte_action_last != NULL); 11415 act = ecb->dte_action_last; 11416 11417 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11418 ASSERT(act->dta_difo != NULL); 11419 11420 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11421 agg->dtag_hasarg = 1; 11422 } 11423 11424 /* 11425 * We need to allocate an id for this aggregation. 11426 */ 11427 #ifdef illumos 11428 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11429 VM_BESTFIT | VM_SLEEP); 11430 #else 11431 aggid = alloc_unr(state->dts_aggid_arena); 11432 #endif 11433 11434 if (aggid - 1 >= state->dts_naggregations) { 11435 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11436 dtrace_aggregation_t **aggs; 11437 int naggs = state->dts_naggregations << 1; 11438 int onaggs = state->dts_naggregations; 11439 11440 ASSERT(aggid == state->dts_naggregations + 1); 11441 11442 if (naggs == 0) { 11443 ASSERT(oaggs == NULL); 11444 naggs = 1; 11445 } 11446 11447 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11448 11449 if (oaggs != NULL) { 11450 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11451 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11452 } 11453 11454 state->dts_aggregations = aggs; 11455 state->dts_naggregations = naggs; 11456 } 11457 11458 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11459 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11460 11461 frec = &agg->dtag_first->dta_rec; 11462 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11463 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11464 11465 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11466 ASSERT(!act->dta_intuple); 11467 act->dta_intuple = 1; 11468 } 11469 11470 return (&agg->dtag_action); 11471 } 11472 11473 static void 11474 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11475 { 11476 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11477 dtrace_state_t *state = ecb->dte_state; 11478 dtrace_aggid_t aggid = agg->dtag_id; 11479 11480 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11481 #ifdef illumos 11482 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11483 #else 11484 free_unr(state->dts_aggid_arena, aggid); 11485 #endif 11486 11487 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11488 state->dts_aggregations[aggid - 1] = NULL; 11489 11490 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11491 } 11492 11493 static int 11494 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11495 { 11496 dtrace_action_t *action, *last; 11497 dtrace_difo_t *dp = desc->dtad_difo; 11498 uint32_t size = 0, align = sizeof (uint8_t), mask; 11499 uint16_t format = 0; 11500 dtrace_recdesc_t *rec; 11501 dtrace_state_t *state = ecb->dte_state; 11502 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11503 uint64_t arg = desc->dtad_arg; 11504 11505 ASSERT(MUTEX_HELD(&dtrace_lock)); 11506 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11507 11508 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11509 /* 11510 * If this is an aggregating action, there must be neither 11511 * a speculate nor a commit on the action chain. 11512 */ 11513 dtrace_action_t *act; 11514 11515 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11516 if (act->dta_kind == DTRACEACT_COMMIT) 11517 return (EINVAL); 11518 11519 if (act->dta_kind == DTRACEACT_SPECULATE) 11520 return (EINVAL); 11521 } 11522 11523 action = dtrace_ecb_aggregation_create(ecb, desc); 11524 11525 if (action == NULL) 11526 return (EINVAL); 11527 } else { 11528 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11529 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11530 dp != NULL && dp->dtdo_destructive)) { 11531 state->dts_destructive = 1; 11532 } 11533 11534 switch (desc->dtad_kind) { 11535 case DTRACEACT_PRINTF: 11536 case DTRACEACT_PRINTA: 11537 case DTRACEACT_SYSTEM: 11538 case DTRACEACT_FREOPEN: 11539 case DTRACEACT_DIFEXPR: 11540 /* 11541 * We know that our arg is a string -- turn it into a 11542 * format. 11543 */ 11544 if (arg == 0) { 11545 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11546 desc->dtad_kind == DTRACEACT_DIFEXPR); 11547 format = 0; 11548 } else { 11549 ASSERT(arg != 0); 11550 #ifdef illumos 11551 ASSERT(arg > KERNELBASE); 11552 #endif 11553 format = dtrace_format_add(state, 11554 (char *)(uintptr_t)arg); 11555 } 11556 11557 /*FALLTHROUGH*/ 11558 case DTRACEACT_LIBACT: 11559 case DTRACEACT_TRACEMEM: 11560 case DTRACEACT_TRACEMEM_DYNSIZE: 11561 if (dp == NULL) 11562 return (EINVAL); 11563 11564 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11565 break; 11566 11567 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11568 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11569 return (EINVAL); 11570 11571 size = opt[DTRACEOPT_STRSIZE]; 11572 } 11573 11574 break; 11575 11576 case DTRACEACT_STACK: 11577 if ((nframes = arg) == 0) { 11578 nframes = opt[DTRACEOPT_STACKFRAMES]; 11579 ASSERT(nframes > 0); 11580 arg = nframes; 11581 } 11582 11583 size = nframes * sizeof (pc_t); 11584 break; 11585 11586 case DTRACEACT_JSTACK: 11587 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11588 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11589 11590 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11591 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11592 11593 arg = DTRACE_USTACK_ARG(nframes, strsize); 11594 11595 /*FALLTHROUGH*/ 11596 case DTRACEACT_USTACK: 11597 if (desc->dtad_kind != DTRACEACT_JSTACK && 11598 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11599 strsize = DTRACE_USTACK_STRSIZE(arg); 11600 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11601 ASSERT(nframes > 0); 11602 arg = DTRACE_USTACK_ARG(nframes, strsize); 11603 } 11604 11605 /* 11606 * Save a slot for the pid. 11607 */ 11608 size = (nframes + 1) * sizeof (uint64_t); 11609 size += DTRACE_USTACK_STRSIZE(arg); 11610 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11611 11612 break; 11613 11614 case DTRACEACT_SYM: 11615 case DTRACEACT_MOD: 11616 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11617 sizeof (uint64_t)) || 11618 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11619 return (EINVAL); 11620 break; 11621 11622 case DTRACEACT_USYM: 11623 case DTRACEACT_UMOD: 11624 case DTRACEACT_UADDR: 11625 if (dp == NULL || 11626 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11627 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11628 return (EINVAL); 11629 11630 /* 11631 * We have a slot for the pid, plus a slot for the 11632 * argument. To keep things simple (aligned with 11633 * bitness-neutral sizing), we store each as a 64-bit 11634 * quantity. 11635 */ 11636 size = 2 * sizeof (uint64_t); 11637 break; 11638 11639 case DTRACEACT_STOP: 11640 case DTRACEACT_BREAKPOINT: 11641 case DTRACEACT_PANIC: 11642 break; 11643 11644 case DTRACEACT_CHILL: 11645 case DTRACEACT_DISCARD: 11646 case DTRACEACT_RAISE: 11647 if (dp == NULL) 11648 return (EINVAL); 11649 break; 11650 11651 case DTRACEACT_EXIT: 11652 if (dp == NULL || 11653 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11654 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11655 return (EINVAL); 11656 break; 11657 11658 case DTRACEACT_SPECULATE: 11659 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11660 return (EINVAL); 11661 11662 if (dp == NULL) 11663 return (EINVAL); 11664 11665 state->dts_speculates = 1; 11666 break; 11667 11668 case DTRACEACT_PRINTM: 11669 size = dp->dtdo_rtype.dtdt_size; 11670 break; 11671 11672 case DTRACEACT_COMMIT: { 11673 dtrace_action_t *act = ecb->dte_action; 11674 11675 for (; act != NULL; act = act->dta_next) { 11676 if (act->dta_kind == DTRACEACT_COMMIT) 11677 return (EINVAL); 11678 } 11679 11680 if (dp == NULL) 11681 return (EINVAL); 11682 break; 11683 } 11684 11685 default: 11686 return (EINVAL); 11687 } 11688 11689 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11690 /* 11691 * If this is a data-storing action or a speculate, 11692 * we must be sure that there isn't a commit on the 11693 * action chain. 11694 */ 11695 dtrace_action_t *act = ecb->dte_action; 11696 11697 for (; act != NULL; act = act->dta_next) { 11698 if (act->dta_kind == DTRACEACT_COMMIT) 11699 return (EINVAL); 11700 } 11701 } 11702 11703 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11704 action->dta_rec.dtrd_size = size; 11705 } 11706 11707 action->dta_refcnt = 1; 11708 rec = &action->dta_rec; 11709 size = rec->dtrd_size; 11710 11711 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11712 if (!(size & mask)) { 11713 align = mask + 1; 11714 break; 11715 } 11716 } 11717 11718 action->dta_kind = desc->dtad_kind; 11719 11720 if ((action->dta_difo = dp) != NULL) 11721 dtrace_difo_hold(dp); 11722 11723 rec->dtrd_action = action->dta_kind; 11724 rec->dtrd_arg = arg; 11725 rec->dtrd_uarg = desc->dtad_uarg; 11726 rec->dtrd_alignment = (uint16_t)align; 11727 rec->dtrd_format = format; 11728 11729 if ((last = ecb->dte_action_last) != NULL) { 11730 ASSERT(ecb->dte_action != NULL); 11731 action->dta_prev = last; 11732 last->dta_next = action; 11733 } else { 11734 ASSERT(ecb->dte_action == NULL); 11735 ecb->dte_action = action; 11736 } 11737 11738 ecb->dte_action_last = action; 11739 11740 return (0); 11741 } 11742 11743 static void 11744 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11745 { 11746 dtrace_action_t *act = ecb->dte_action, *next; 11747 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11748 dtrace_difo_t *dp; 11749 uint16_t format; 11750 11751 if (act != NULL && act->dta_refcnt > 1) { 11752 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11753 act->dta_refcnt--; 11754 } else { 11755 for (; act != NULL; act = next) { 11756 next = act->dta_next; 11757 ASSERT(next != NULL || act == ecb->dte_action_last); 11758 ASSERT(act->dta_refcnt == 1); 11759 11760 if ((format = act->dta_rec.dtrd_format) != 0) 11761 dtrace_format_remove(ecb->dte_state, format); 11762 11763 if ((dp = act->dta_difo) != NULL) 11764 dtrace_difo_release(dp, vstate); 11765 11766 if (DTRACEACT_ISAGG(act->dta_kind)) { 11767 dtrace_ecb_aggregation_destroy(ecb, act); 11768 } else { 11769 kmem_free(act, sizeof (dtrace_action_t)); 11770 } 11771 } 11772 } 11773 11774 ecb->dte_action = NULL; 11775 ecb->dte_action_last = NULL; 11776 ecb->dte_size = 0; 11777 } 11778 11779 static void 11780 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11781 { 11782 /* 11783 * We disable the ECB by removing it from its probe. 11784 */ 11785 dtrace_ecb_t *pecb, *prev = NULL; 11786 dtrace_probe_t *probe = ecb->dte_probe; 11787 11788 ASSERT(MUTEX_HELD(&dtrace_lock)); 11789 11790 if (probe == NULL) { 11791 /* 11792 * This is the NULL probe; there is nothing to disable. 11793 */ 11794 return; 11795 } 11796 11797 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11798 if (pecb == ecb) 11799 break; 11800 prev = pecb; 11801 } 11802 11803 ASSERT(pecb != NULL); 11804 11805 if (prev == NULL) { 11806 probe->dtpr_ecb = ecb->dte_next; 11807 } else { 11808 prev->dte_next = ecb->dte_next; 11809 } 11810 11811 if (ecb == probe->dtpr_ecb_last) { 11812 ASSERT(ecb->dte_next == NULL); 11813 probe->dtpr_ecb_last = prev; 11814 } 11815 11816 /* 11817 * The ECB has been disconnected from the probe; now sync to assure 11818 * that all CPUs have seen the change before returning. 11819 */ 11820 dtrace_sync(); 11821 11822 if (probe->dtpr_ecb == NULL) { 11823 /* 11824 * That was the last ECB on the probe; clear the predicate 11825 * cache ID for the probe, disable it and sync one more time 11826 * to assure that we'll never hit it again. 11827 */ 11828 dtrace_provider_t *prov = probe->dtpr_provider; 11829 11830 ASSERT(ecb->dte_next == NULL); 11831 ASSERT(probe->dtpr_ecb_last == NULL); 11832 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11833 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11834 probe->dtpr_id, probe->dtpr_arg); 11835 dtrace_sync(); 11836 } else { 11837 /* 11838 * There is at least one ECB remaining on the probe. If there 11839 * is _exactly_ one, set the probe's predicate cache ID to be 11840 * the predicate cache ID of the remaining ECB. 11841 */ 11842 ASSERT(probe->dtpr_ecb_last != NULL); 11843 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11844 11845 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11846 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11847 11848 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11849 11850 if (p != NULL) 11851 probe->dtpr_predcache = p->dtp_cacheid; 11852 } 11853 11854 ecb->dte_next = NULL; 11855 } 11856 } 11857 11858 static void 11859 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11860 { 11861 dtrace_state_t *state = ecb->dte_state; 11862 dtrace_vstate_t *vstate = &state->dts_vstate; 11863 dtrace_predicate_t *pred; 11864 dtrace_epid_t epid = ecb->dte_epid; 11865 11866 ASSERT(MUTEX_HELD(&dtrace_lock)); 11867 ASSERT(ecb->dte_next == NULL); 11868 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11869 11870 if ((pred = ecb->dte_predicate) != NULL) 11871 dtrace_predicate_release(pred, vstate); 11872 11873 dtrace_ecb_action_remove(ecb); 11874 11875 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11876 state->dts_ecbs[epid - 1] = NULL; 11877 11878 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11879 } 11880 11881 static dtrace_ecb_t * 11882 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11883 dtrace_enabling_t *enab) 11884 { 11885 dtrace_ecb_t *ecb; 11886 dtrace_predicate_t *pred; 11887 dtrace_actdesc_t *act; 11888 dtrace_provider_t *prov; 11889 dtrace_ecbdesc_t *desc = enab->dten_current; 11890 11891 ASSERT(MUTEX_HELD(&dtrace_lock)); 11892 ASSERT(state != NULL); 11893 11894 ecb = dtrace_ecb_add(state, probe); 11895 ecb->dte_uarg = desc->dted_uarg; 11896 11897 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11898 dtrace_predicate_hold(pred); 11899 ecb->dte_predicate = pred; 11900 } 11901 11902 if (probe != NULL) { 11903 /* 11904 * If the provider shows more leg than the consumer is old 11905 * enough to see, we need to enable the appropriate implicit 11906 * predicate bits to prevent the ecb from activating at 11907 * revealing times. 11908 * 11909 * Providers specifying DTRACE_PRIV_USER at register time 11910 * are stating that they need the /proc-style privilege 11911 * model to be enforced, and this is what DTRACE_COND_OWNER 11912 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11913 */ 11914 prov = probe->dtpr_provider; 11915 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11916 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11917 ecb->dte_cond |= DTRACE_COND_OWNER; 11918 11919 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11920 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11921 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11922 11923 /* 11924 * If the provider shows us kernel innards and the user 11925 * is lacking sufficient privilege, enable the 11926 * DTRACE_COND_USERMODE implicit predicate. 11927 */ 11928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11930 ecb->dte_cond |= DTRACE_COND_USERMODE; 11931 } 11932 11933 if (dtrace_ecb_create_cache != NULL) { 11934 /* 11935 * If we have a cached ecb, we'll use its action list instead 11936 * of creating our own (saving both time and space). 11937 */ 11938 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11939 dtrace_action_t *act = cached->dte_action; 11940 11941 if (act != NULL) { 11942 ASSERT(act->dta_refcnt > 0); 11943 act->dta_refcnt++; 11944 ecb->dte_action = act; 11945 ecb->dte_action_last = cached->dte_action_last; 11946 ecb->dte_needed = cached->dte_needed; 11947 ecb->dte_size = cached->dte_size; 11948 ecb->dte_alignment = cached->dte_alignment; 11949 } 11950 11951 return (ecb); 11952 } 11953 11954 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11955 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11956 dtrace_ecb_destroy(ecb); 11957 return (NULL); 11958 } 11959 } 11960 11961 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11962 dtrace_ecb_destroy(ecb); 11963 return (NULL); 11964 } 11965 11966 return (dtrace_ecb_create_cache = ecb); 11967 } 11968 11969 static int 11970 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11971 { 11972 dtrace_ecb_t *ecb; 11973 dtrace_enabling_t *enab = arg; 11974 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11975 11976 ASSERT(state != NULL); 11977 11978 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11979 /* 11980 * This probe was created in a generation for which this 11981 * enabling has previously created ECBs; we don't want to 11982 * enable it again, so just kick out. 11983 */ 11984 return (DTRACE_MATCH_NEXT); 11985 } 11986 11987 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11988 return (DTRACE_MATCH_DONE); 11989 11990 dtrace_ecb_enable(ecb); 11991 return (DTRACE_MATCH_NEXT); 11992 } 11993 11994 static dtrace_ecb_t * 11995 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11996 { 11997 dtrace_ecb_t *ecb; 11998 11999 ASSERT(MUTEX_HELD(&dtrace_lock)); 12000 12001 if (id == 0 || id > state->dts_necbs) 12002 return (NULL); 12003 12004 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12005 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12006 12007 return (state->dts_ecbs[id - 1]); 12008 } 12009 12010 static dtrace_aggregation_t * 12011 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12012 { 12013 dtrace_aggregation_t *agg; 12014 12015 ASSERT(MUTEX_HELD(&dtrace_lock)); 12016 12017 if (id == 0 || id > state->dts_naggregations) 12018 return (NULL); 12019 12020 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12021 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12022 agg->dtag_id == id); 12023 12024 return (state->dts_aggregations[id - 1]); 12025 } 12026 12027 /* 12028 * DTrace Buffer Functions 12029 * 12030 * The following functions manipulate DTrace buffers. Most of these functions 12031 * are called in the context of establishing or processing consumer state; 12032 * exceptions are explicitly noted. 12033 */ 12034 12035 /* 12036 * Note: called from cross call context. This function switches the two 12037 * buffers on a given CPU. The atomicity of this operation is assured by 12038 * disabling interrupts while the actual switch takes place; the disabling of 12039 * interrupts serializes the execution with any execution of dtrace_probe() on 12040 * the same CPU. 12041 */ 12042 static void 12043 dtrace_buffer_switch(dtrace_buffer_t *buf) 12044 { 12045 caddr_t tomax = buf->dtb_tomax; 12046 caddr_t xamot = buf->dtb_xamot; 12047 dtrace_icookie_t cookie; 12048 hrtime_t now; 12049 12050 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12051 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12052 12053 cookie = dtrace_interrupt_disable(); 12054 now = dtrace_gethrtime(); 12055 buf->dtb_tomax = xamot; 12056 buf->dtb_xamot = tomax; 12057 buf->dtb_xamot_drops = buf->dtb_drops; 12058 buf->dtb_xamot_offset = buf->dtb_offset; 12059 buf->dtb_xamot_errors = buf->dtb_errors; 12060 buf->dtb_xamot_flags = buf->dtb_flags; 12061 buf->dtb_offset = 0; 12062 buf->dtb_drops = 0; 12063 buf->dtb_errors = 0; 12064 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12065 buf->dtb_interval = now - buf->dtb_switched; 12066 buf->dtb_switched = now; 12067 dtrace_interrupt_enable(cookie); 12068 } 12069 12070 /* 12071 * Note: called from cross call context. This function activates a buffer 12072 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12073 * is guaranteed by the disabling of interrupts. 12074 */ 12075 static void 12076 dtrace_buffer_activate(dtrace_state_t *state) 12077 { 12078 dtrace_buffer_t *buf; 12079 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12080 12081 buf = &state->dts_buffer[curcpu]; 12082 12083 if (buf->dtb_tomax != NULL) { 12084 /* 12085 * We might like to assert that the buffer is marked inactive, 12086 * but this isn't necessarily true: the buffer for the CPU 12087 * that processes the BEGIN probe has its buffer activated 12088 * manually. In this case, we take the (harmless) action 12089 * re-clearing the bit INACTIVE bit. 12090 */ 12091 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12092 } 12093 12094 dtrace_interrupt_enable(cookie); 12095 } 12096 12097 #ifdef __FreeBSD__ 12098 /* 12099 * Activate the specified per-CPU buffer. This is used instead of 12100 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12101 * activating anonymous state. 12102 */ 12103 static void 12104 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12105 { 12106 12107 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12108 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12109 } 12110 #endif 12111 12112 static int 12113 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12114 processorid_t cpu, int *factor) 12115 { 12116 #ifdef illumos 12117 cpu_t *cp; 12118 #endif 12119 dtrace_buffer_t *buf; 12120 int allocated = 0, desired = 0; 12121 12122 #ifdef illumos 12123 ASSERT(MUTEX_HELD(&cpu_lock)); 12124 ASSERT(MUTEX_HELD(&dtrace_lock)); 12125 12126 *factor = 1; 12127 12128 if (size > dtrace_nonroot_maxsize && 12129 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12130 return (EFBIG); 12131 12132 cp = cpu_list; 12133 12134 do { 12135 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12136 continue; 12137 12138 buf = &bufs[cp->cpu_id]; 12139 12140 /* 12141 * If there is already a buffer allocated for this CPU, it 12142 * is only possible that this is a DR event. In this case, 12143 */ 12144 if (buf->dtb_tomax != NULL) { 12145 ASSERT(buf->dtb_size == size); 12146 continue; 12147 } 12148 12149 ASSERT(buf->dtb_xamot == NULL); 12150 12151 if ((buf->dtb_tomax = kmem_zalloc(size, 12152 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12153 goto err; 12154 12155 buf->dtb_size = size; 12156 buf->dtb_flags = flags; 12157 buf->dtb_offset = 0; 12158 buf->dtb_drops = 0; 12159 12160 if (flags & DTRACEBUF_NOSWITCH) 12161 continue; 12162 12163 if ((buf->dtb_xamot = kmem_zalloc(size, 12164 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12165 goto err; 12166 } while ((cp = cp->cpu_next) != cpu_list); 12167 12168 return (0); 12169 12170 err: 12171 cp = cpu_list; 12172 12173 do { 12174 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12175 continue; 12176 12177 buf = &bufs[cp->cpu_id]; 12178 desired += 2; 12179 12180 if (buf->dtb_xamot != NULL) { 12181 ASSERT(buf->dtb_tomax != NULL); 12182 ASSERT(buf->dtb_size == size); 12183 kmem_free(buf->dtb_xamot, size); 12184 allocated++; 12185 } 12186 12187 if (buf->dtb_tomax != NULL) { 12188 ASSERT(buf->dtb_size == size); 12189 kmem_free(buf->dtb_tomax, size); 12190 allocated++; 12191 } 12192 12193 buf->dtb_tomax = NULL; 12194 buf->dtb_xamot = NULL; 12195 buf->dtb_size = 0; 12196 } while ((cp = cp->cpu_next) != cpu_list); 12197 #else 12198 int i; 12199 12200 *factor = 1; 12201 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12202 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12203 /* 12204 * FreeBSD isn't good at limiting the amount of memory we 12205 * ask to malloc, so let's place a limit here before trying 12206 * to do something that might well end in tears at bedtime. 12207 */ 12208 if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) 12209 return (ENOMEM); 12210 #endif 12211 12212 ASSERT(MUTEX_HELD(&dtrace_lock)); 12213 CPU_FOREACH(i) { 12214 if (cpu != DTRACE_CPUALL && cpu != i) 12215 continue; 12216 12217 buf = &bufs[i]; 12218 12219 /* 12220 * If there is already a buffer allocated for this CPU, it 12221 * is only possible that this is a DR event. In this case, 12222 * the buffer size must match our specified size. 12223 */ 12224 if (buf->dtb_tomax != NULL) { 12225 ASSERT(buf->dtb_size == size); 12226 continue; 12227 } 12228 12229 ASSERT(buf->dtb_xamot == NULL); 12230 12231 if ((buf->dtb_tomax = kmem_zalloc(size, 12232 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12233 goto err; 12234 12235 buf->dtb_size = size; 12236 buf->dtb_flags = flags; 12237 buf->dtb_offset = 0; 12238 buf->dtb_drops = 0; 12239 12240 if (flags & DTRACEBUF_NOSWITCH) 12241 continue; 12242 12243 if ((buf->dtb_xamot = kmem_zalloc(size, 12244 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12245 goto err; 12246 } 12247 12248 return (0); 12249 12250 err: 12251 /* 12252 * Error allocating memory, so free the buffers that were 12253 * allocated before the failed allocation. 12254 */ 12255 CPU_FOREACH(i) { 12256 if (cpu != DTRACE_CPUALL && cpu != i) 12257 continue; 12258 12259 buf = &bufs[i]; 12260 desired += 2; 12261 12262 if (buf->dtb_xamot != NULL) { 12263 ASSERT(buf->dtb_tomax != NULL); 12264 ASSERT(buf->dtb_size == size); 12265 kmem_free(buf->dtb_xamot, size); 12266 allocated++; 12267 } 12268 12269 if (buf->dtb_tomax != NULL) { 12270 ASSERT(buf->dtb_size == size); 12271 kmem_free(buf->dtb_tomax, size); 12272 allocated++; 12273 } 12274 12275 buf->dtb_tomax = NULL; 12276 buf->dtb_xamot = NULL; 12277 buf->dtb_size = 0; 12278 12279 } 12280 #endif 12281 *factor = desired / (allocated > 0 ? allocated : 1); 12282 12283 return (ENOMEM); 12284 } 12285 12286 /* 12287 * Note: called from probe context. This function just increments the drop 12288 * count on a buffer. It has been made a function to allow for the 12289 * possibility of understanding the source of mysterious drop counts. (A 12290 * problem for which one may be particularly disappointed that DTrace cannot 12291 * be used to understand DTrace.) 12292 */ 12293 static void 12294 dtrace_buffer_drop(dtrace_buffer_t *buf) 12295 { 12296 buf->dtb_drops++; 12297 } 12298 12299 /* 12300 * Note: called from probe context. This function is called to reserve space 12301 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12302 * mstate. Returns the new offset in the buffer, or a negative value if an 12303 * error has occurred. 12304 */ 12305 static intptr_t 12306 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12307 dtrace_state_t *state, dtrace_mstate_t *mstate) 12308 { 12309 intptr_t offs = buf->dtb_offset, soffs; 12310 intptr_t woffs; 12311 caddr_t tomax; 12312 size_t total; 12313 12314 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12315 return (-1); 12316 12317 if ((tomax = buf->dtb_tomax) == NULL) { 12318 dtrace_buffer_drop(buf); 12319 return (-1); 12320 } 12321 12322 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12323 while (offs & (align - 1)) { 12324 /* 12325 * Assert that our alignment is off by a number which 12326 * is itself sizeof (uint32_t) aligned. 12327 */ 12328 ASSERT(!((align - (offs & (align - 1))) & 12329 (sizeof (uint32_t) - 1))); 12330 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12331 offs += sizeof (uint32_t); 12332 } 12333 12334 if ((soffs = offs + needed) > buf->dtb_size) { 12335 dtrace_buffer_drop(buf); 12336 return (-1); 12337 } 12338 12339 if (mstate == NULL) 12340 return (offs); 12341 12342 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12343 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12344 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12345 12346 return (offs); 12347 } 12348 12349 if (buf->dtb_flags & DTRACEBUF_FILL) { 12350 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12351 (buf->dtb_flags & DTRACEBUF_FULL)) 12352 return (-1); 12353 goto out; 12354 } 12355 12356 total = needed + (offs & (align - 1)); 12357 12358 /* 12359 * For a ring buffer, life is quite a bit more complicated. Before 12360 * we can store any padding, we need to adjust our wrapping offset. 12361 * (If we've never before wrapped or we're not about to, no adjustment 12362 * is required.) 12363 */ 12364 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12365 offs + total > buf->dtb_size) { 12366 woffs = buf->dtb_xamot_offset; 12367 12368 if (offs + total > buf->dtb_size) { 12369 /* 12370 * We can't fit in the end of the buffer. First, a 12371 * sanity check that we can fit in the buffer at all. 12372 */ 12373 if (total > buf->dtb_size) { 12374 dtrace_buffer_drop(buf); 12375 return (-1); 12376 } 12377 12378 /* 12379 * We're going to be storing at the top of the buffer, 12380 * so now we need to deal with the wrapped offset. We 12381 * only reset our wrapped offset to 0 if it is 12382 * currently greater than the current offset. If it 12383 * is less than the current offset, it is because a 12384 * previous allocation induced a wrap -- but the 12385 * allocation didn't subsequently take the space due 12386 * to an error or false predicate evaluation. In this 12387 * case, we'll just leave the wrapped offset alone: if 12388 * the wrapped offset hasn't been advanced far enough 12389 * for this allocation, it will be adjusted in the 12390 * lower loop. 12391 */ 12392 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12393 if (woffs >= offs) 12394 woffs = 0; 12395 } else { 12396 woffs = 0; 12397 } 12398 12399 /* 12400 * Now we know that we're going to be storing to the 12401 * top of the buffer and that there is room for us 12402 * there. We need to clear the buffer from the current 12403 * offset to the end (there may be old gunk there). 12404 */ 12405 while (offs < buf->dtb_size) 12406 tomax[offs++] = 0; 12407 12408 /* 12409 * We need to set our offset to zero. And because we 12410 * are wrapping, we need to set the bit indicating as 12411 * much. We can also adjust our needed space back 12412 * down to the space required by the ECB -- we know 12413 * that the top of the buffer is aligned. 12414 */ 12415 offs = 0; 12416 total = needed; 12417 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12418 } else { 12419 /* 12420 * There is room for us in the buffer, so we simply 12421 * need to check the wrapped offset. 12422 */ 12423 if (woffs < offs) { 12424 /* 12425 * The wrapped offset is less than the offset. 12426 * This can happen if we allocated buffer space 12427 * that induced a wrap, but then we didn't 12428 * subsequently take the space due to an error 12429 * or false predicate evaluation. This is 12430 * okay; we know that _this_ allocation isn't 12431 * going to induce a wrap. We still can't 12432 * reset the wrapped offset to be zero, 12433 * however: the space may have been trashed in 12434 * the previous failed probe attempt. But at 12435 * least the wrapped offset doesn't need to 12436 * be adjusted at all... 12437 */ 12438 goto out; 12439 } 12440 } 12441 12442 while (offs + total > woffs) { 12443 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12444 size_t size; 12445 12446 if (epid == DTRACE_EPIDNONE) { 12447 size = sizeof (uint32_t); 12448 } else { 12449 ASSERT3U(epid, <=, state->dts_necbs); 12450 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12451 12452 size = state->dts_ecbs[epid - 1]->dte_size; 12453 } 12454 12455 ASSERT(woffs + size <= buf->dtb_size); 12456 ASSERT(size != 0); 12457 12458 if (woffs + size == buf->dtb_size) { 12459 /* 12460 * We've reached the end of the buffer; we want 12461 * to set the wrapped offset to 0 and break 12462 * out. However, if the offs is 0, then we're 12463 * in a strange edge-condition: the amount of 12464 * space that we want to reserve plus the size 12465 * of the record that we're overwriting is 12466 * greater than the size of the buffer. This 12467 * is problematic because if we reserve the 12468 * space but subsequently don't consume it (due 12469 * to a failed predicate or error) the wrapped 12470 * offset will be 0 -- yet the EPID at offset 0 12471 * will not be committed. This situation is 12472 * relatively easy to deal with: if we're in 12473 * this case, the buffer is indistinguishable 12474 * from one that hasn't wrapped; we need only 12475 * finish the job by clearing the wrapped bit, 12476 * explicitly setting the offset to be 0, and 12477 * zero'ing out the old data in the buffer. 12478 */ 12479 if (offs == 0) { 12480 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12481 buf->dtb_offset = 0; 12482 woffs = total; 12483 12484 while (woffs < buf->dtb_size) 12485 tomax[woffs++] = 0; 12486 } 12487 12488 woffs = 0; 12489 break; 12490 } 12491 12492 woffs += size; 12493 } 12494 12495 /* 12496 * We have a wrapped offset. It may be that the wrapped offset 12497 * has become zero -- that's okay. 12498 */ 12499 buf->dtb_xamot_offset = woffs; 12500 } 12501 12502 out: 12503 /* 12504 * Now we can plow the buffer with any necessary padding. 12505 */ 12506 while (offs & (align - 1)) { 12507 /* 12508 * Assert that our alignment is off by a number which 12509 * is itself sizeof (uint32_t) aligned. 12510 */ 12511 ASSERT(!((align - (offs & (align - 1))) & 12512 (sizeof (uint32_t) - 1))); 12513 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12514 offs += sizeof (uint32_t); 12515 } 12516 12517 if (buf->dtb_flags & DTRACEBUF_FILL) { 12518 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12519 buf->dtb_flags |= DTRACEBUF_FULL; 12520 return (-1); 12521 } 12522 } 12523 12524 if (mstate == NULL) 12525 return (offs); 12526 12527 /* 12528 * For ring buffers and fill buffers, the scratch space is always 12529 * the inactive buffer. 12530 */ 12531 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12532 mstate->dtms_scratch_size = buf->dtb_size; 12533 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12534 12535 return (offs); 12536 } 12537 12538 static void 12539 dtrace_buffer_polish(dtrace_buffer_t *buf) 12540 { 12541 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12542 ASSERT(MUTEX_HELD(&dtrace_lock)); 12543 12544 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12545 return; 12546 12547 /* 12548 * We need to polish the ring buffer. There are three cases: 12549 * 12550 * - The first (and presumably most common) is that there is no gap 12551 * between the buffer offset and the wrapped offset. In this case, 12552 * there is nothing in the buffer that isn't valid data; we can 12553 * mark the buffer as polished and return. 12554 * 12555 * - The second (less common than the first but still more common 12556 * than the third) is that there is a gap between the buffer offset 12557 * and the wrapped offset, and the wrapped offset is larger than the 12558 * buffer offset. This can happen because of an alignment issue, or 12559 * can happen because of a call to dtrace_buffer_reserve() that 12560 * didn't subsequently consume the buffer space. In this case, 12561 * we need to zero the data from the buffer offset to the wrapped 12562 * offset. 12563 * 12564 * - The third (and least common) is that there is a gap between the 12565 * buffer offset and the wrapped offset, but the wrapped offset is 12566 * _less_ than the buffer offset. This can only happen because a 12567 * call to dtrace_buffer_reserve() induced a wrap, but the space 12568 * was not subsequently consumed. In this case, we need to zero the 12569 * space from the offset to the end of the buffer _and_ from the 12570 * top of the buffer to the wrapped offset. 12571 */ 12572 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12573 bzero(buf->dtb_tomax + buf->dtb_offset, 12574 buf->dtb_xamot_offset - buf->dtb_offset); 12575 } 12576 12577 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12578 bzero(buf->dtb_tomax + buf->dtb_offset, 12579 buf->dtb_size - buf->dtb_offset); 12580 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12581 } 12582 } 12583 12584 /* 12585 * This routine determines if data generated at the specified time has likely 12586 * been entirely consumed at user-level. This routine is called to determine 12587 * if an ECB on a defunct probe (but for an active enabling) can be safely 12588 * disabled and destroyed. 12589 */ 12590 static int 12591 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12592 { 12593 int i; 12594 12595 for (i = 0; i < NCPU; i++) { 12596 dtrace_buffer_t *buf = &bufs[i]; 12597 12598 if (buf->dtb_size == 0) 12599 continue; 12600 12601 if (buf->dtb_flags & DTRACEBUF_RING) 12602 return (0); 12603 12604 if (!buf->dtb_switched && buf->dtb_offset != 0) 12605 return (0); 12606 12607 if (buf->dtb_switched - buf->dtb_interval < when) 12608 return (0); 12609 } 12610 12611 return (1); 12612 } 12613 12614 static void 12615 dtrace_buffer_free(dtrace_buffer_t *bufs) 12616 { 12617 int i; 12618 12619 for (i = 0; i < NCPU; i++) { 12620 dtrace_buffer_t *buf = &bufs[i]; 12621 12622 if (buf->dtb_tomax == NULL) { 12623 ASSERT(buf->dtb_xamot == NULL); 12624 ASSERT(buf->dtb_size == 0); 12625 continue; 12626 } 12627 12628 if (buf->dtb_xamot != NULL) { 12629 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12630 kmem_free(buf->dtb_xamot, buf->dtb_size); 12631 } 12632 12633 kmem_free(buf->dtb_tomax, buf->dtb_size); 12634 buf->dtb_size = 0; 12635 buf->dtb_tomax = NULL; 12636 buf->dtb_xamot = NULL; 12637 } 12638 } 12639 12640 /* 12641 * DTrace Enabling Functions 12642 */ 12643 static dtrace_enabling_t * 12644 dtrace_enabling_create(dtrace_vstate_t *vstate) 12645 { 12646 dtrace_enabling_t *enab; 12647 12648 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12649 enab->dten_vstate = vstate; 12650 12651 return (enab); 12652 } 12653 12654 static void 12655 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12656 { 12657 dtrace_ecbdesc_t **ndesc; 12658 size_t osize, nsize; 12659 12660 /* 12661 * We can't add to enablings after we've enabled them, or after we've 12662 * retained them. 12663 */ 12664 ASSERT(enab->dten_probegen == 0); 12665 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12666 12667 if (enab->dten_ndesc < enab->dten_maxdesc) { 12668 enab->dten_desc[enab->dten_ndesc++] = ecb; 12669 return; 12670 } 12671 12672 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12673 12674 if (enab->dten_maxdesc == 0) { 12675 enab->dten_maxdesc = 1; 12676 } else { 12677 enab->dten_maxdesc <<= 1; 12678 } 12679 12680 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12681 12682 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12683 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12684 bcopy(enab->dten_desc, ndesc, osize); 12685 if (enab->dten_desc != NULL) 12686 kmem_free(enab->dten_desc, osize); 12687 12688 enab->dten_desc = ndesc; 12689 enab->dten_desc[enab->dten_ndesc++] = ecb; 12690 } 12691 12692 static void 12693 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12694 dtrace_probedesc_t *pd) 12695 { 12696 dtrace_ecbdesc_t *new; 12697 dtrace_predicate_t *pred; 12698 dtrace_actdesc_t *act; 12699 12700 /* 12701 * We're going to create a new ECB description that matches the 12702 * specified ECB in every way, but has the specified probe description. 12703 */ 12704 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12705 12706 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12707 dtrace_predicate_hold(pred); 12708 12709 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12710 dtrace_actdesc_hold(act); 12711 12712 new->dted_action = ecb->dted_action; 12713 new->dted_pred = ecb->dted_pred; 12714 new->dted_probe = *pd; 12715 new->dted_uarg = ecb->dted_uarg; 12716 12717 dtrace_enabling_add(enab, new); 12718 } 12719 12720 static void 12721 dtrace_enabling_dump(dtrace_enabling_t *enab) 12722 { 12723 int i; 12724 12725 for (i = 0; i < enab->dten_ndesc; i++) { 12726 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12727 12728 #ifdef __FreeBSD__ 12729 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12730 desc->dtpd_provider, desc->dtpd_mod, 12731 desc->dtpd_func, desc->dtpd_name); 12732 #else 12733 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12734 desc->dtpd_provider, desc->dtpd_mod, 12735 desc->dtpd_func, desc->dtpd_name); 12736 #endif 12737 } 12738 } 12739 12740 static void 12741 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12742 { 12743 int i; 12744 dtrace_ecbdesc_t *ep; 12745 dtrace_vstate_t *vstate = enab->dten_vstate; 12746 12747 ASSERT(MUTEX_HELD(&dtrace_lock)); 12748 12749 for (i = 0; i < enab->dten_ndesc; i++) { 12750 dtrace_actdesc_t *act, *next; 12751 dtrace_predicate_t *pred; 12752 12753 ep = enab->dten_desc[i]; 12754 12755 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12756 dtrace_predicate_release(pred, vstate); 12757 12758 for (act = ep->dted_action; act != NULL; act = next) { 12759 next = act->dtad_next; 12760 dtrace_actdesc_release(act, vstate); 12761 } 12762 12763 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12764 } 12765 12766 if (enab->dten_desc != NULL) 12767 kmem_free(enab->dten_desc, 12768 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12769 12770 /* 12771 * If this was a retained enabling, decrement the dts_nretained count 12772 * and take it off of the dtrace_retained list. 12773 */ 12774 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12775 dtrace_retained == enab) { 12776 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12777 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12778 enab->dten_vstate->dtvs_state->dts_nretained--; 12779 dtrace_retained_gen++; 12780 } 12781 12782 if (enab->dten_prev == NULL) { 12783 if (dtrace_retained == enab) { 12784 dtrace_retained = enab->dten_next; 12785 12786 if (dtrace_retained != NULL) 12787 dtrace_retained->dten_prev = NULL; 12788 } 12789 } else { 12790 ASSERT(enab != dtrace_retained); 12791 ASSERT(dtrace_retained != NULL); 12792 enab->dten_prev->dten_next = enab->dten_next; 12793 } 12794 12795 if (enab->dten_next != NULL) { 12796 ASSERT(dtrace_retained != NULL); 12797 enab->dten_next->dten_prev = enab->dten_prev; 12798 } 12799 12800 kmem_free(enab, sizeof (dtrace_enabling_t)); 12801 } 12802 12803 static int 12804 dtrace_enabling_retain(dtrace_enabling_t *enab) 12805 { 12806 dtrace_state_t *state; 12807 12808 ASSERT(MUTEX_HELD(&dtrace_lock)); 12809 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12810 ASSERT(enab->dten_vstate != NULL); 12811 12812 state = enab->dten_vstate->dtvs_state; 12813 ASSERT(state != NULL); 12814 12815 /* 12816 * We only allow each state to retain dtrace_retain_max enablings. 12817 */ 12818 if (state->dts_nretained >= dtrace_retain_max) 12819 return (ENOSPC); 12820 12821 state->dts_nretained++; 12822 dtrace_retained_gen++; 12823 12824 if (dtrace_retained == NULL) { 12825 dtrace_retained = enab; 12826 return (0); 12827 } 12828 12829 enab->dten_next = dtrace_retained; 12830 dtrace_retained->dten_prev = enab; 12831 dtrace_retained = enab; 12832 12833 return (0); 12834 } 12835 12836 static int 12837 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12838 dtrace_probedesc_t *create) 12839 { 12840 dtrace_enabling_t *new, *enab; 12841 int found = 0, err = ENOENT; 12842 12843 ASSERT(MUTEX_HELD(&dtrace_lock)); 12844 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12845 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12846 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12847 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12848 12849 new = dtrace_enabling_create(&state->dts_vstate); 12850 12851 /* 12852 * Iterate over all retained enablings, looking for enablings that 12853 * match the specified state. 12854 */ 12855 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12856 int i; 12857 12858 /* 12859 * dtvs_state can only be NULL for helper enablings -- and 12860 * helper enablings can't be retained. 12861 */ 12862 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12863 12864 if (enab->dten_vstate->dtvs_state != state) 12865 continue; 12866 12867 /* 12868 * Now iterate over each probe description; we're looking for 12869 * an exact match to the specified probe description. 12870 */ 12871 for (i = 0; i < enab->dten_ndesc; i++) { 12872 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12873 dtrace_probedesc_t *pd = &ep->dted_probe; 12874 12875 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12876 continue; 12877 12878 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12879 continue; 12880 12881 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12882 continue; 12883 12884 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12885 continue; 12886 12887 /* 12888 * We have a winning probe! Add it to our growing 12889 * enabling. 12890 */ 12891 found = 1; 12892 dtrace_enabling_addlike(new, ep, create); 12893 } 12894 } 12895 12896 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12897 dtrace_enabling_destroy(new); 12898 return (err); 12899 } 12900 12901 return (0); 12902 } 12903 12904 static void 12905 dtrace_enabling_retract(dtrace_state_t *state) 12906 { 12907 dtrace_enabling_t *enab, *next; 12908 12909 ASSERT(MUTEX_HELD(&dtrace_lock)); 12910 12911 /* 12912 * Iterate over all retained enablings, destroy the enablings retained 12913 * for the specified state. 12914 */ 12915 for (enab = dtrace_retained; enab != NULL; enab = next) { 12916 next = enab->dten_next; 12917 12918 /* 12919 * dtvs_state can only be NULL for helper enablings -- and 12920 * helper enablings can't be retained. 12921 */ 12922 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12923 12924 if (enab->dten_vstate->dtvs_state == state) { 12925 ASSERT(state->dts_nretained > 0); 12926 dtrace_enabling_destroy(enab); 12927 } 12928 } 12929 12930 ASSERT(state->dts_nretained == 0); 12931 } 12932 12933 static int 12934 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12935 { 12936 int i = 0; 12937 int matched = 0; 12938 12939 ASSERT(MUTEX_HELD(&cpu_lock)); 12940 ASSERT(MUTEX_HELD(&dtrace_lock)); 12941 12942 for (i = 0; i < enab->dten_ndesc; i++) { 12943 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12944 12945 enab->dten_current = ep; 12946 enab->dten_error = 0; 12947 12948 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12949 12950 if (enab->dten_error != 0) { 12951 /* 12952 * If we get an error half-way through enabling the 12953 * probes, we kick out -- perhaps with some number of 12954 * them enabled. Leaving enabled probes enabled may 12955 * be slightly confusing for user-level, but we expect 12956 * that no one will attempt to actually drive on in 12957 * the face of such errors. If this is an anonymous 12958 * enabling (indicated with a NULL nmatched pointer), 12959 * we cmn_err() a message. We aren't expecting to 12960 * get such an error -- such as it can exist at all, 12961 * it would be a result of corrupted DOF in the driver 12962 * properties. 12963 */ 12964 if (nmatched == NULL) { 12965 cmn_err(CE_WARN, "dtrace_enabling_match() " 12966 "error on %p: %d", (void *)ep, 12967 enab->dten_error); 12968 } 12969 12970 return (enab->dten_error); 12971 } 12972 } 12973 12974 enab->dten_probegen = dtrace_probegen; 12975 if (nmatched != NULL) 12976 *nmatched = matched; 12977 12978 return (0); 12979 } 12980 12981 static void 12982 dtrace_enabling_matchall(void) 12983 { 12984 dtrace_enabling_t *enab; 12985 12986 mutex_enter(&cpu_lock); 12987 mutex_enter(&dtrace_lock); 12988 12989 /* 12990 * Iterate over all retained enablings to see if any probes match 12991 * against them. We only perform this operation on enablings for which 12992 * we have sufficient permissions by virtue of being in the global zone 12993 * or in the same zone as the DTrace client. Because we can be called 12994 * after dtrace_detach() has been called, we cannot assert that there 12995 * are retained enablings. We can safely load from dtrace_retained, 12996 * however: the taskq_destroy() at the end of dtrace_detach() will 12997 * block pending our completion. 12998 */ 12999 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13000 #ifdef illumos 13001 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13002 13003 if (INGLOBALZONE(curproc) || 13004 cr != NULL && getzoneid() == crgetzoneid(cr)) 13005 #endif 13006 (void) dtrace_enabling_match(enab, NULL); 13007 } 13008 13009 mutex_exit(&dtrace_lock); 13010 mutex_exit(&cpu_lock); 13011 } 13012 13013 /* 13014 * If an enabling is to be enabled without having matched probes (that is, if 13015 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13016 * enabling must be _primed_ by creating an ECB for every ECB description. 13017 * This must be done to assure that we know the number of speculations, the 13018 * number of aggregations, the minimum buffer size needed, etc. before we 13019 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13020 * enabling any probes, we create ECBs for every ECB decription, but with a 13021 * NULL probe -- which is exactly what this function does. 13022 */ 13023 static void 13024 dtrace_enabling_prime(dtrace_state_t *state) 13025 { 13026 dtrace_enabling_t *enab; 13027 int i; 13028 13029 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13030 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13031 13032 if (enab->dten_vstate->dtvs_state != state) 13033 continue; 13034 13035 /* 13036 * We don't want to prime an enabling more than once, lest 13037 * we allow a malicious user to induce resource exhaustion. 13038 * (The ECBs that result from priming an enabling aren't 13039 * leaked -- but they also aren't deallocated until the 13040 * consumer state is destroyed.) 13041 */ 13042 if (enab->dten_primed) 13043 continue; 13044 13045 for (i = 0; i < enab->dten_ndesc; i++) { 13046 enab->dten_current = enab->dten_desc[i]; 13047 (void) dtrace_probe_enable(NULL, enab); 13048 } 13049 13050 enab->dten_primed = 1; 13051 } 13052 } 13053 13054 /* 13055 * Called to indicate that probes should be provided due to retained 13056 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13057 * must take an initial lap through the enabling calling the dtps_provide() 13058 * entry point explicitly to allow for autocreated probes. 13059 */ 13060 static void 13061 dtrace_enabling_provide(dtrace_provider_t *prv) 13062 { 13063 int i, all = 0; 13064 dtrace_probedesc_t desc; 13065 dtrace_genid_t gen; 13066 13067 ASSERT(MUTEX_HELD(&dtrace_lock)); 13068 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13069 13070 if (prv == NULL) { 13071 all = 1; 13072 prv = dtrace_provider; 13073 } 13074 13075 do { 13076 dtrace_enabling_t *enab; 13077 void *parg = prv->dtpv_arg; 13078 13079 retry: 13080 gen = dtrace_retained_gen; 13081 for (enab = dtrace_retained; enab != NULL; 13082 enab = enab->dten_next) { 13083 for (i = 0; i < enab->dten_ndesc; i++) { 13084 desc = enab->dten_desc[i]->dted_probe; 13085 mutex_exit(&dtrace_lock); 13086 prv->dtpv_pops.dtps_provide(parg, &desc); 13087 mutex_enter(&dtrace_lock); 13088 /* 13089 * Process the retained enablings again if 13090 * they have changed while we weren't holding 13091 * dtrace_lock. 13092 */ 13093 if (gen != dtrace_retained_gen) 13094 goto retry; 13095 } 13096 } 13097 } while (all && (prv = prv->dtpv_next) != NULL); 13098 13099 mutex_exit(&dtrace_lock); 13100 dtrace_probe_provide(NULL, all ? NULL : prv); 13101 mutex_enter(&dtrace_lock); 13102 } 13103 13104 /* 13105 * Called to reap ECBs that are attached to probes from defunct providers. 13106 */ 13107 static void 13108 dtrace_enabling_reap(void) 13109 { 13110 dtrace_provider_t *prov; 13111 dtrace_probe_t *probe; 13112 dtrace_ecb_t *ecb; 13113 hrtime_t when; 13114 int i; 13115 13116 mutex_enter(&cpu_lock); 13117 mutex_enter(&dtrace_lock); 13118 13119 for (i = 0; i < dtrace_nprobes; i++) { 13120 if ((probe = dtrace_probes[i]) == NULL) 13121 continue; 13122 13123 if (probe->dtpr_ecb == NULL) 13124 continue; 13125 13126 prov = probe->dtpr_provider; 13127 13128 if ((when = prov->dtpv_defunct) == 0) 13129 continue; 13130 13131 /* 13132 * We have ECBs on a defunct provider: we want to reap these 13133 * ECBs to allow the provider to unregister. The destruction 13134 * of these ECBs must be done carefully: if we destroy the ECB 13135 * and the consumer later wishes to consume an EPID that 13136 * corresponds to the destroyed ECB (and if the EPID metadata 13137 * has not been previously consumed), the consumer will abort 13138 * processing on the unknown EPID. To reduce (but not, sadly, 13139 * eliminate) the possibility of this, we will only destroy an 13140 * ECB for a defunct provider if, for the state that 13141 * corresponds to the ECB: 13142 * 13143 * (a) There is no speculative tracing (which can effectively 13144 * cache an EPID for an arbitrary amount of time). 13145 * 13146 * (b) The principal buffers have been switched twice since the 13147 * provider became defunct. 13148 * 13149 * (c) The aggregation buffers are of zero size or have been 13150 * switched twice since the provider became defunct. 13151 * 13152 * We use dts_speculates to determine (a) and call a function 13153 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13154 * that as soon as we've been unable to destroy one of the ECBs 13155 * associated with the probe, we quit trying -- reaping is only 13156 * fruitful in as much as we can destroy all ECBs associated 13157 * with the defunct provider's probes. 13158 */ 13159 while ((ecb = probe->dtpr_ecb) != NULL) { 13160 dtrace_state_t *state = ecb->dte_state; 13161 dtrace_buffer_t *buf = state->dts_buffer; 13162 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13163 13164 if (state->dts_speculates) 13165 break; 13166 13167 if (!dtrace_buffer_consumed(buf, when)) 13168 break; 13169 13170 if (!dtrace_buffer_consumed(aggbuf, when)) 13171 break; 13172 13173 dtrace_ecb_disable(ecb); 13174 ASSERT(probe->dtpr_ecb != ecb); 13175 dtrace_ecb_destroy(ecb); 13176 } 13177 } 13178 13179 mutex_exit(&dtrace_lock); 13180 mutex_exit(&cpu_lock); 13181 } 13182 13183 /* 13184 * DTrace DOF Functions 13185 */ 13186 /*ARGSUSED*/ 13187 static void 13188 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13189 { 13190 if (dtrace_err_verbose) 13191 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13192 13193 #ifdef DTRACE_ERRDEBUG 13194 dtrace_errdebug(str); 13195 #endif 13196 } 13197 13198 /* 13199 * Create DOF out of a currently enabled state. Right now, we only create 13200 * DOF containing the run-time options -- but this could be expanded to create 13201 * complete DOF representing the enabled state. 13202 */ 13203 static dof_hdr_t * 13204 dtrace_dof_create(dtrace_state_t *state) 13205 { 13206 dof_hdr_t *dof; 13207 dof_sec_t *sec; 13208 dof_optdesc_t *opt; 13209 int i, len = sizeof (dof_hdr_t) + 13210 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13211 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13212 13213 ASSERT(MUTEX_HELD(&dtrace_lock)); 13214 13215 dof = kmem_zalloc(len, KM_SLEEP); 13216 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13217 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13218 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13219 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13220 13221 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13222 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13223 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13224 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13225 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13226 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13227 13228 dof->dofh_flags = 0; 13229 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13230 dof->dofh_secsize = sizeof (dof_sec_t); 13231 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13232 dof->dofh_secoff = sizeof (dof_hdr_t); 13233 dof->dofh_loadsz = len; 13234 dof->dofh_filesz = len; 13235 dof->dofh_pad = 0; 13236 13237 /* 13238 * Fill in the option section header... 13239 */ 13240 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13241 sec->dofs_type = DOF_SECT_OPTDESC; 13242 sec->dofs_align = sizeof (uint64_t); 13243 sec->dofs_flags = DOF_SECF_LOAD; 13244 sec->dofs_entsize = sizeof (dof_optdesc_t); 13245 13246 opt = (dof_optdesc_t *)((uintptr_t)sec + 13247 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13248 13249 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13250 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13251 13252 for (i = 0; i < DTRACEOPT_MAX; i++) { 13253 opt[i].dofo_option = i; 13254 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13255 opt[i].dofo_value = state->dts_options[i]; 13256 } 13257 13258 return (dof); 13259 } 13260 13261 static dof_hdr_t * 13262 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13263 { 13264 dof_hdr_t hdr, *dof; 13265 13266 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13267 13268 /* 13269 * First, we're going to copyin() the sizeof (dof_hdr_t). 13270 */ 13271 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13272 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13273 *errp = EFAULT; 13274 return (NULL); 13275 } 13276 13277 /* 13278 * Now we'll allocate the entire DOF and copy it in -- provided 13279 * that the length isn't outrageous. 13280 */ 13281 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13282 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13283 *errp = E2BIG; 13284 return (NULL); 13285 } 13286 13287 if (hdr.dofh_loadsz < sizeof (hdr)) { 13288 dtrace_dof_error(&hdr, "invalid load size"); 13289 *errp = EINVAL; 13290 return (NULL); 13291 } 13292 13293 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13294 13295 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13296 dof->dofh_loadsz != hdr.dofh_loadsz) { 13297 kmem_free(dof, hdr.dofh_loadsz); 13298 *errp = EFAULT; 13299 return (NULL); 13300 } 13301 13302 return (dof); 13303 } 13304 13305 #ifdef __FreeBSD__ 13306 static dof_hdr_t * 13307 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13308 { 13309 dof_hdr_t hdr, *dof; 13310 struct thread *td; 13311 size_t loadsz; 13312 13313 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13314 13315 td = curthread; 13316 13317 /* 13318 * First, we're going to copyin() the sizeof (dof_hdr_t). 13319 */ 13320 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13321 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13322 *errp = EFAULT; 13323 return (NULL); 13324 } 13325 13326 /* 13327 * Now we'll allocate the entire DOF and copy it in -- provided 13328 * that the length isn't outrageous. 13329 */ 13330 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13331 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13332 *errp = E2BIG; 13333 return (NULL); 13334 } 13335 loadsz = (size_t)hdr.dofh_loadsz; 13336 13337 if (loadsz < sizeof (hdr)) { 13338 dtrace_dof_error(&hdr, "invalid load size"); 13339 *errp = EINVAL; 13340 return (NULL); 13341 } 13342 13343 dof = kmem_alloc(loadsz, KM_SLEEP); 13344 13345 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13346 dof->dofh_loadsz != loadsz) { 13347 kmem_free(dof, hdr.dofh_loadsz); 13348 *errp = EFAULT; 13349 return (NULL); 13350 } 13351 13352 return (dof); 13353 } 13354 13355 static __inline uchar_t 13356 dtrace_dof_char(char c) 13357 { 13358 13359 switch (c) { 13360 case '0': 13361 case '1': 13362 case '2': 13363 case '3': 13364 case '4': 13365 case '5': 13366 case '6': 13367 case '7': 13368 case '8': 13369 case '9': 13370 return (c - '0'); 13371 case 'A': 13372 case 'B': 13373 case 'C': 13374 case 'D': 13375 case 'E': 13376 case 'F': 13377 return (c - 'A' + 10); 13378 case 'a': 13379 case 'b': 13380 case 'c': 13381 case 'd': 13382 case 'e': 13383 case 'f': 13384 return (c - 'a' + 10); 13385 } 13386 /* Should not reach here. */ 13387 return (UCHAR_MAX); 13388 } 13389 #endif /* __FreeBSD__ */ 13390 13391 static dof_hdr_t * 13392 dtrace_dof_property(const char *name) 13393 { 13394 #ifdef __FreeBSD__ 13395 uint8_t *dofbuf; 13396 u_char *data, *eol; 13397 caddr_t doffile; 13398 size_t bytes, len, i; 13399 dof_hdr_t *dof; 13400 u_char c1, c2; 13401 13402 dof = NULL; 13403 13404 doffile = preload_search_by_type("dtrace_dof"); 13405 if (doffile == NULL) 13406 return (NULL); 13407 13408 data = preload_fetch_addr(doffile); 13409 len = preload_fetch_size(doffile); 13410 for (;;) { 13411 /* Look for the end of the line. All lines end in a newline. */ 13412 eol = memchr(data, '\n', len); 13413 if (eol == NULL) 13414 return (NULL); 13415 13416 if (strncmp(name, data, strlen(name)) == 0) 13417 break; 13418 13419 eol++; /* skip past the newline */ 13420 len -= eol - data; 13421 data = eol; 13422 } 13423 13424 /* We've found the data corresponding to the specified key. */ 13425 13426 data += strlen(name) + 1; /* skip past the '=' */ 13427 len = eol - data; 13428 if (len % 2 != 0) { 13429 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13430 goto doferr; 13431 } 13432 bytes = len / 2; 13433 if (bytes < sizeof(dof_hdr_t)) { 13434 dtrace_dof_error(NULL, "truncated header"); 13435 goto doferr; 13436 } 13437 13438 /* 13439 * Each byte is represented by the two ASCII characters in its hex 13440 * representation. 13441 */ 13442 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13443 for (i = 0; i < bytes; i++) { 13444 c1 = dtrace_dof_char(data[i * 2]); 13445 c2 = dtrace_dof_char(data[i * 2 + 1]); 13446 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13447 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13448 goto doferr; 13449 } 13450 dofbuf[i] = c1 * 16 + c2; 13451 } 13452 13453 dof = (dof_hdr_t *)dofbuf; 13454 if (bytes < dof->dofh_loadsz) { 13455 dtrace_dof_error(NULL, "truncated DOF"); 13456 goto doferr; 13457 } 13458 13459 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13460 dtrace_dof_error(NULL, "oversized DOF"); 13461 goto doferr; 13462 } 13463 13464 return (dof); 13465 13466 doferr: 13467 free(dof, M_SOLARIS); 13468 return (NULL); 13469 #else /* __FreeBSD__ */ 13470 uchar_t *buf; 13471 uint64_t loadsz; 13472 unsigned int len, i; 13473 dof_hdr_t *dof; 13474 13475 /* 13476 * Unfortunately, array of values in .conf files are always (and 13477 * only) interpreted to be integer arrays. We must read our DOF 13478 * as an integer array, and then squeeze it into a byte array. 13479 */ 13480 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13481 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13482 return (NULL); 13483 13484 for (i = 0; i < len; i++) 13485 buf[i] = (uchar_t)(((int *)buf)[i]); 13486 13487 if (len < sizeof (dof_hdr_t)) { 13488 ddi_prop_free(buf); 13489 dtrace_dof_error(NULL, "truncated header"); 13490 return (NULL); 13491 } 13492 13493 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13494 ddi_prop_free(buf); 13495 dtrace_dof_error(NULL, "truncated DOF"); 13496 return (NULL); 13497 } 13498 13499 if (loadsz >= dtrace_dof_maxsize) { 13500 ddi_prop_free(buf); 13501 dtrace_dof_error(NULL, "oversized DOF"); 13502 return (NULL); 13503 } 13504 13505 dof = kmem_alloc(loadsz, KM_SLEEP); 13506 bcopy(buf, dof, loadsz); 13507 ddi_prop_free(buf); 13508 13509 return (dof); 13510 #endif /* !__FreeBSD__ */ 13511 } 13512 13513 static void 13514 dtrace_dof_destroy(dof_hdr_t *dof) 13515 { 13516 kmem_free(dof, dof->dofh_loadsz); 13517 } 13518 13519 /* 13520 * Return the dof_sec_t pointer corresponding to a given section index. If the 13521 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13522 * a type other than DOF_SECT_NONE is specified, the header is checked against 13523 * this type and NULL is returned if the types do not match. 13524 */ 13525 static dof_sec_t * 13526 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13527 { 13528 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13529 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13530 13531 if (i >= dof->dofh_secnum) { 13532 dtrace_dof_error(dof, "referenced section index is invalid"); 13533 return (NULL); 13534 } 13535 13536 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13537 dtrace_dof_error(dof, "referenced section is not loadable"); 13538 return (NULL); 13539 } 13540 13541 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13542 dtrace_dof_error(dof, "referenced section is the wrong type"); 13543 return (NULL); 13544 } 13545 13546 return (sec); 13547 } 13548 13549 static dtrace_probedesc_t * 13550 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13551 { 13552 dof_probedesc_t *probe; 13553 dof_sec_t *strtab; 13554 uintptr_t daddr = (uintptr_t)dof; 13555 uintptr_t str; 13556 size_t size; 13557 13558 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13559 dtrace_dof_error(dof, "invalid probe section"); 13560 return (NULL); 13561 } 13562 13563 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13564 dtrace_dof_error(dof, "bad alignment in probe description"); 13565 return (NULL); 13566 } 13567 13568 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13569 dtrace_dof_error(dof, "truncated probe description"); 13570 return (NULL); 13571 } 13572 13573 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13574 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13575 13576 if (strtab == NULL) 13577 return (NULL); 13578 13579 str = daddr + strtab->dofs_offset; 13580 size = strtab->dofs_size; 13581 13582 if (probe->dofp_provider >= strtab->dofs_size) { 13583 dtrace_dof_error(dof, "corrupt probe provider"); 13584 return (NULL); 13585 } 13586 13587 (void) strncpy(desc->dtpd_provider, 13588 (char *)(str + probe->dofp_provider), 13589 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13590 13591 if (probe->dofp_mod >= strtab->dofs_size) { 13592 dtrace_dof_error(dof, "corrupt probe module"); 13593 return (NULL); 13594 } 13595 13596 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13597 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13598 13599 if (probe->dofp_func >= strtab->dofs_size) { 13600 dtrace_dof_error(dof, "corrupt probe function"); 13601 return (NULL); 13602 } 13603 13604 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13605 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13606 13607 if (probe->dofp_name >= strtab->dofs_size) { 13608 dtrace_dof_error(dof, "corrupt probe name"); 13609 return (NULL); 13610 } 13611 13612 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13613 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13614 13615 return (desc); 13616 } 13617 13618 static dtrace_difo_t * 13619 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13620 cred_t *cr) 13621 { 13622 dtrace_difo_t *dp; 13623 size_t ttl = 0; 13624 dof_difohdr_t *dofd; 13625 uintptr_t daddr = (uintptr_t)dof; 13626 size_t max = dtrace_difo_maxsize; 13627 int i, l, n; 13628 13629 static const struct { 13630 int section; 13631 int bufoffs; 13632 int lenoffs; 13633 int entsize; 13634 int align; 13635 const char *msg; 13636 } difo[] = { 13637 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13638 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13639 sizeof (dif_instr_t), "multiple DIF sections" }, 13640 13641 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13642 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13643 sizeof (uint64_t), "multiple integer tables" }, 13644 13645 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13646 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13647 sizeof (char), "multiple string tables" }, 13648 13649 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13650 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13651 sizeof (uint_t), "multiple variable tables" }, 13652 13653 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13654 }; 13655 13656 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13657 dtrace_dof_error(dof, "invalid DIFO header section"); 13658 return (NULL); 13659 } 13660 13661 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13662 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13663 return (NULL); 13664 } 13665 13666 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13667 sec->dofs_size % sizeof (dof_secidx_t)) { 13668 dtrace_dof_error(dof, "bad size in DIFO header"); 13669 return (NULL); 13670 } 13671 13672 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13673 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13674 13675 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13676 dp->dtdo_rtype = dofd->dofd_rtype; 13677 13678 for (l = 0; l < n; l++) { 13679 dof_sec_t *subsec; 13680 void **bufp; 13681 uint32_t *lenp; 13682 13683 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13684 dofd->dofd_links[l])) == NULL) 13685 goto err; /* invalid section link */ 13686 13687 if (ttl + subsec->dofs_size > max) { 13688 dtrace_dof_error(dof, "exceeds maximum size"); 13689 goto err; 13690 } 13691 13692 ttl += subsec->dofs_size; 13693 13694 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13695 if (subsec->dofs_type != difo[i].section) 13696 continue; 13697 13698 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13699 dtrace_dof_error(dof, "section not loaded"); 13700 goto err; 13701 } 13702 13703 if (subsec->dofs_align != difo[i].align) { 13704 dtrace_dof_error(dof, "bad alignment"); 13705 goto err; 13706 } 13707 13708 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13709 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13710 13711 if (*bufp != NULL) { 13712 dtrace_dof_error(dof, difo[i].msg); 13713 goto err; 13714 } 13715 13716 if (difo[i].entsize != subsec->dofs_entsize) { 13717 dtrace_dof_error(dof, "entry size mismatch"); 13718 goto err; 13719 } 13720 13721 if (subsec->dofs_entsize != 0 && 13722 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13723 dtrace_dof_error(dof, "corrupt entry size"); 13724 goto err; 13725 } 13726 13727 *lenp = subsec->dofs_size; 13728 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13729 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13730 *bufp, subsec->dofs_size); 13731 13732 if (subsec->dofs_entsize != 0) 13733 *lenp /= subsec->dofs_entsize; 13734 13735 break; 13736 } 13737 13738 /* 13739 * If we encounter a loadable DIFO sub-section that is not 13740 * known to us, assume this is a broken program and fail. 13741 */ 13742 if (difo[i].section == DOF_SECT_NONE && 13743 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13744 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13745 goto err; 13746 } 13747 } 13748 13749 if (dp->dtdo_buf == NULL) { 13750 /* 13751 * We can't have a DIF object without DIF text. 13752 */ 13753 dtrace_dof_error(dof, "missing DIF text"); 13754 goto err; 13755 } 13756 13757 /* 13758 * Before we validate the DIF object, run through the variable table 13759 * looking for the strings -- if any of their size are under, we'll set 13760 * their size to be the system-wide default string size. Note that 13761 * this should _not_ happen if the "strsize" option has been set -- 13762 * in this case, the compiler should have set the size to reflect the 13763 * setting of the option. 13764 */ 13765 for (i = 0; i < dp->dtdo_varlen; i++) { 13766 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13767 dtrace_diftype_t *t = &v->dtdv_type; 13768 13769 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13770 continue; 13771 13772 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13773 t->dtdt_size = dtrace_strsize_default; 13774 } 13775 13776 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13777 goto err; 13778 13779 dtrace_difo_init(dp, vstate); 13780 return (dp); 13781 13782 err: 13783 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13784 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13785 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13786 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13787 13788 kmem_free(dp, sizeof (dtrace_difo_t)); 13789 return (NULL); 13790 } 13791 13792 static dtrace_predicate_t * 13793 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13794 cred_t *cr) 13795 { 13796 dtrace_difo_t *dp; 13797 13798 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13799 return (NULL); 13800 13801 return (dtrace_predicate_create(dp)); 13802 } 13803 13804 static dtrace_actdesc_t * 13805 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13806 cred_t *cr) 13807 { 13808 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13809 dof_actdesc_t *desc; 13810 dof_sec_t *difosec; 13811 size_t offs; 13812 uintptr_t daddr = (uintptr_t)dof; 13813 uint64_t arg; 13814 dtrace_actkind_t kind; 13815 13816 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13817 dtrace_dof_error(dof, "invalid action section"); 13818 return (NULL); 13819 } 13820 13821 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13822 dtrace_dof_error(dof, "truncated action description"); 13823 return (NULL); 13824 } 13825 13826 if (sec->dofs_align != sizeof (uint64_t)) { 13827 dtrace_dof_error(dof, "bad alignment in action description"); 13828 return (NULL); 13829 } 13830 13831 if (sec->dofs_size < sec->dofs_entsize) { 13832 dtrace_dof_error(dof, "section entry size exceeds total size"); 13833 return (NULL); 13834 } 13835 13836 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13837 dtrace_dof_error(dof, "bad entry size in action description"); 13838 return (NULL); 13839 } 13840 13841 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13842 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13843 return (NULL); 13844 } 13845 13846 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13847 desc = (dof_actdesc_t *)(daddr + 13848 (uintptr_t)sec->dofs_offset + offs); 13849 kind = (dtrace_actkind_t)desc->dofa_kind; 13850 13851 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13852 (kind != DTRACEACT_PRINTA || 13853 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13854 (kind == DTRACEACT_DIFEXPR && 13855 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13856 dof_sec_t *strtab; 13857 char *str, *fmt; 13858 uint64_t i; 13859 13860 /* 13861 * The argument to these actions is an index into the 13862 * DOF string table. For printf()-like actions, this 13863 * is the format string. For print(), this is the 13864 * CTF type of the expression result. 13865 */ 13866 if ((strtab = dtrace_dof_sect(dof, 13867 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13868 goto err; 13869 13870 str = (char *)((uintptr_t)dof + 13871 (uintptr_t)strtab->dofs_offset); 13872 13873 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13874 if (str[i] == '\0') 13875 break; 13876 } 13877 13878 if (i >= strtab->dofs_size) { 13879 dtrace_dof_error(dof, "bogus format string"); 13880 goto err; 13881 } 13882 13883 if (i == desc->dofa_arg) { 13884 dtrace_dof_error(dof, "empty format string"); 13885 goto err; 13886 } 13887 13888 i -= desc->dofa_arg; 13889 fmt = kmem_alloc(i + 1, KM_SLEEP); 13890 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13891 arg = (uint64_t)(uintptr_t)fmt; 13892 } else { 13893 if (kind == DTRACEACT_PRINTA) { 13894 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13895 arg = 0; 13896 } else { 13897 arg = desc->dofa_arg; 13898 } 13899 } 13900 13901 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13902 desc->dofa_uarg, arg); 13903 13904 if (last != NULL) { 13905 last->dtad_next = act; 13906 } else { 13907 first = act; 13908 } 13909 13910 last = act; 13911 13912 if (desc->dofa_difo == DOF_SECIDX_NONE) 13913 continue; 13914 13915 if ((difosec = dtrace_dof_sect(dof, 13916 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13917 goto err; 13918 13919 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13920 13921 if (act->dtad_difo == NULL) 13922 goto err; 13923 } 13924 13925 ASSERT(first != NULL); 13926 return (first); 13927 13928 err: 13929 for (act = first; act != NULL; act = next) { 13930 next = act->dtad_next; 13931 dtrace_actdesc_release(act, vstate); 13932 } 13933 13934 return (NULL); 13935 } 13936 13937 static dtrace_ecbdesc_t * 13938 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13939 cred_t *cr) 13940 { 13941 dtrace_ecbdesc_t *ep; 13942 dof_ecbdesc_t *ecb; 13943 dtrace_probedesc_t *desc; 13944 dtrace_predicate_t *pred = NULL; 13945 13946 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13947 dtrace_dof_error(dof, "truncated ECB description"); 13948 return (NULL); 13949 } 13950 13951 if (sec->dofs_align != sizeof (uint64_t)) { 13952 dtrace_dof_error(dof, "bad alignment in ECB description"); 13953 return (NULL); 13954 } 13955 13956 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13957 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13958 13959 if (sec == NULL) 13960 return (NULL); 13961 13962 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13963 ep->dted_uarg = ecb->dofe_uarg; 13964 desc = &ep->dted_probe; 13965 13966 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13967 goto err; 13968 13969 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13970 if ((sec = dtrace_dof_sect(dof, 13971 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13972 goto err; 13973 13974 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13975 goto err; 13976 13977 ep->dted_pred.dtpdd_predicate = pred; 13978 } 13979 13980 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13981 if ((sec = dtrace_dof_sect(dof, 13982 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13983 goto err; 13984 13985 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13986 13987 if (ep->dted_action == NULL) 13988 goto err; 13989 } 13990 13991 return (ep); 13992 13993 err: 13994 if (pred != NULL) 13995 dtrace_predicate_release(pred, vstate); 13996 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13997 return (NULL); 13998 } 13999 14000 /* 14001 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14002 * specified DOF. SETX relocations are computed using 'ubase', the base load 14003 * address of the object containing the DOF, and DOFREL relocations are relative 14004 * to the relocation offset within the DOF. 14005 */ 14006 static int 14007 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14008 uint64_t udaddr) 14009 { 14010 uintptr_t daddr = (uintptr_t)dof; 14011 uintptr_t ts_end; 14012 dof_relohdr_t *dofr = 14013 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14014 dof_sec_t *ss, *rs, *ts; 14015 dof_relodesc_t *r; 14016 uint_t i, n; 14017 14018 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14019 sec->dofs_align != sizeof (dof_secidx_t)) { 14020 dtrace_dof_error(dof, "invalid relocation header"); 14021 return (-1); 14022 } 14023 14024 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14025 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14026 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14027 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14028 14029 if (ss == NULL || rs == NULL || ts == NULL) 14030 return (-1); /* dtrace_dof_error() has been called already */ 14031 14032 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14033 rs->dofs_align != sizeof (uint64_t)) { 14034 dtrace_dof_error(dof, "invalid relocation section"); 14035 return (-1); 14036 } 14037 14038 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14039 n = rs->dofs_size / rs->dofs_entsize; 14040 14041 for (i = 0; i < n; i++) { 14042 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14043 14044 switch (r->dofr_type) { 14045 case DOF_RELO_NONE: 14046 break; 14047 case DOF_RELO_SETX: 14048 case DOF_RELO_DOFREL: 14049 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14050 sizeof (uint64_t) > ts->dofs_size) { 14051 dtrace_dof_error(dof, "bad relocation offset"); 14052 return (-1); 14053 } 14054 14055 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14056 dtrace_dof_error(dof, "bad relocation offset"); 14057 return (-1); 14058 } 14059 14060 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14061 dtrace_dof_error(dof, "misaligned setx relo"); 14062 return (-1); 14063 } 14064 14065 if (r->dofr_type == DOF_RELO_SETX) 14066 *(uint64_t *)taddr += ubase; 14067 else 14068 *(uint64_t *)taddr += 14069 udaddr + ts->dofs_offset + r->dofr_offset; 14070 break; 14071 default: 14072 dtrace_dof_error(dof, "invalid relocation type"); 14073 return (-1); 14074 } 14075 14076 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14077 } 14078 14079 return (0); 14080 } 14081 14082 /* 14083 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14084 * header: it should be at the front of a memory region that is at least 14085 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14086 * size. It need not be validated in any other way. 14087 */ 14088 static int 14089 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14090 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14091 { 14092 uint64_t len = dof->dofh_loadsz, seclen; 14093 uintptr_t daddr = (uintptr_t)dof; 14094 dtrace_ecbdesc_t *ep; 14095 dtrace_enabling_t *enab; 14096 uint_t i; 14097 14098 ASSERT(MUTEX_HELD(&dtrace_lock)); 14099 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14100 14101 /* 14102 * Check the DOF header identification bytes. In addition to checking 14103 * valid settings, we also verify that unused bits/bytes are zeroed so 14104 * we can use them later without fear of regressing existing binaries. 14105 */ 14106 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14107 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14108 dtrace_dof_error(dof, "DOF magic string mismatch"); 14109 return (-1); 14110 } 14111 14112 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14113 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14114 dtrace_dof_error(dof, "DOF has invalid data model"); 14115 return (-1); 14116 } 14117 14118 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14119 dtrace_dof_error(dof, "DOF encoding mismatch"); 14120 return (-1); 14121 } 14122 14123 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14124 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14125 dtrace_dof_error(dof, "DOF version mismatch"); 14126 return (-1); 14127 } 14128 14129 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14130 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14131 return (-1); 14132 } 14133 14134 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14135 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14136 return (-1); 14137 } 14138 14139 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14140 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14141 return (-1); 14142 } 14143 14144 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14145 if (dof->dofh_ident[i] != 0) { 14146 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14147 return (-1); 14148 } 14149 } 14150 14151 if (dof->dofh_flags & ~DOF_FL_VALID) { 14152 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14153 return (-1); 14154 } 14155 14156 if (dof->dofh_secsize == 0) { 14157 dtrace_dof_error(dof, "zero section header size"); 14158 return (-1); 14159 } 14160 14161 /* 14162 * Check that the section headers don't exceed the amount of DOF 14163 * data. Note that we cast the section size and number of sections 14164 * to uint64_t's to prevent possible overflow in the multiplication. 14165 */ 14166 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14167 14168 if (dof->dofh_secoff > len || seclen > len || 14169 dof->dofh_secoff + seclen > len) { 14170 dtrace_dof_error(dof, "truncated section headers"); 14171 return (-1); 14172 } 14173 14174 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14175 dtrace_dof_error(dof, "misaligned section headers"); 14176 return (-1); 14177 } 14178 14179 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14180 dtrace_dof_error(dof, "misaligned section size"); 14181 return (-1); 14182 } 14183 14184 /* 14185 * Take an initial pass through the section headers to be sure that 14186 * the headers don't have stray offsets. If the 'noprobes' flag is 14187 * set, do not permit sections relating to providers, probes, or args. 14188 */ 14189 for (i = 0; i < dof->dofh_secnum; i++) { 14190 dof_sec_t *sec = (dof_sec_t *)(daddr + 14191 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14192 14193 if (noprobes) { 14194 switch (sec->dofs_type) { 14195 case DOF_SECT_PROVIDER: 14196 case DOF_SECT_PROBES: 14197 case DOF_SECT_PRARGS: 14198 case DOF_SECT_PROFFS: 14199 dtrace_dof_error(dof, "illegal sections " 14200 "for enabling"); 14201 return (-1); 14202 } 14203 } 14204 14205 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14206 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14207 dtrace_dof_error(dof, "loadable section with load " 14208 "flag unset"); 14209 return (-1); 14210 } 14211 14212 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14213 continue; /* just ignore non-loadable sections */ 14214 14215 if (!ISP2(sec->dofs_align)) { 14216 dtrace_dof_error(dof, "bad section alignment"); 14217 return (-1); 14218 } 14219 14220 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14221 dtrace_dof_error(dof, "misaligned section"); 14222 return (-1); 14223 } 14224 14225 if (sec->dofs_offset > len || sec->dofs_size > len || 14226 sec->dofs_offset + sec->dofs_size > len) { 14227 dtrace_dof_error(dof, "corrupt section header"); 14228 return (-1); 14229 } 14230 14231 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14232 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14233 dtrace_dof_error(dof, "non-terminating string table"); 14234 return (-1); 14235 } 14236 } 14237 14238 /* 14239 * Take a second pass through the sections and locate and perform any 14240 * relocations that are present. We do this after the first pass to 14241 * be sure that all sections have had their headers validated. 14242 */ 14243 for (i = 0; i < dof->dofh_secnum; i++) { 14244 dof_sec_t *sec = (dof_sec_t *)(daddr + 14245 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14246 14247 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14248 continue; /* skip sections that are not loadable */ 14249 14250 switch (sec->dofs_type) { 14251 case DOF_SECT_URELHDR: 14252 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14253 return (-1); 14254 break; 14255 } 14256 } 14257 14258 if ((enab = *enabp) == NULL) 14259 enab = *enabp = dtrace_enabling_create(vstate); 14260 14261 for (i = 0; i < dof->dofh_secnum; i++) { 14262 dof_sec_t *sec = (dof_sec_t *)(daddr + 14263 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14264 14265 if (sec->dofs_type != DOF_SECT_ECBDESC) 14266 continue; 14267 14268 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14269 dtrace_enabling_destroy(enab); 14270 *enabp = NULL; 14271 return (-1); 14272 } 14273 14274 dtrace_enabling_add(enab, ep); 14275 } 14276 14277 return (0); 14278 } 14279 14280 /* 14281 * Process DOF for any options. This routine assumes that the DOF has been 14282 * at least processed by dtrace_dof_slurp(). 14283 */ 14284 static int 14285 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14286 { 14287 int i, rval; 14288 uint32_t entsize; 14289 size_t offs; 14290 dof_optdesc_t *desc; 14291 14292 for (i = 0; i < dof->dofh_secnum; i++) { 14293 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14294 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14295 14296 if (sec->dofs_type != DOF_SECT_OPTDESC) 14297 continue; 14298 14299 if (sec->dofs_align != sizeof (uint64_t)) { 14300 dtrace_dof_error(dof, "bad alignment in " 14301 "option description"); 14302 return (EINVAL); 14303 } 14304 14305 if ((entsize = sec->dofs_entsize) == 0) { 14306 dtrace_dof_error(dof, "zeroed option entry size"); 14307 return (EINVAL); 14308 } 14309 14310 if (entsize < sizeof (dof_optdesc_t)) { 14311 dtrace_dof_error(dof, "bad option entry size"); 14312 return (EINVAL); 14313 } 14314 14315 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14316 desc = (dof_optdesc_t *)((uintptr_t)dof + 14317 (uintptr_t)sec->dofs_offset + offs); 14318 14319 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14320 dtrace_dof_error(dof, "non-zero option string"); 14321 return (EINVAL); 14322 } 14323 14324 if (desc->dofo_value == DTRACEOPT_UNSET) { 14325 dtrace_dof_error(dof, "unset option"); 14326 return (EINVAL); 14327 } 14328 14329 if ((rval = dtrace_state_option(state, 14330 desc->dofo_option, desc->dofo_value)) != 0) { 14331 dtrace_dof_error(dof, "rejected option"); 14332 return (rval); 14333 } 14334 } 14335 } 14336 14337 return (0); 14338 } 14339 14340 /* 14341 * DTrace Consumer State Functions 14342 */ 14343 static int 14344 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14345 { 14346 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14347 void *base; 14348 uintptr_t limit; 14349 dtrace_dynvar_t *dvar, *next, *start; 14350 int i; 14351 14352 ASSERT(MUTEX_HELD(&dtrace_lock)); 14353 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14354 14355 bzero(dstate, sizeof (dtrace_dstate_t)); 14356 14357 if ((dstate->dtds_chunksize = chunksize) == 0) 14358 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14359 14360 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14361 14362 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14363 size = min; 14364 14365 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14366 return (ENOMEM); 14367 14368 dstate->dtds_size = size; 14369 dstate->dtds_base = base; 14370 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14371 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14372 14373 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14374 14375 if (hashsize != 1 && (hashsize & 1)) 14376 hashsize--; 14377 14378 dstate->dtds_hashsize = hashsize; 14379 dstate->dtds_hash = dstate->dtds_base; 14380 14381 /* 14382 * Set all of our hash buckets to point to the single sink, and (if 14383 * it hasn't already been set), set the sink's hash value to be the 14384 * sink sentinel value. The sink is needed for dynamic variable 14385 * lookups to know that they have iterated over an entire, valid hash 14386 * chain. 14387 */ 14388 for (i = 0; i < hashsize; i++) 14389 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14390 14391 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14392 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14393 14394 /* 14395 * Determine number of active CPUs. Divide free list evenly among 14396 * active CPUs. 14397 */ 14398 start = (dtrace_dynvar_t *) 14399 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14400 limit = (uintptr_t)base + size; 14401 14402 VERIFY((uintptr_t)start < limit); 14403 VERIFY((uintptr_t)start >= (uintptr_t)base); 14404 14405 maxper = (limit - (uintptr_t)start) / NCPU; 14406 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14407 14408 #ifndef illumos 14409 CPU_FOREACH(i) { 14410 #else 14411 for (i = 0; i < NCPU; i++) { 14412 #endif 14413 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14414 14415 /* 14416 * If we don't even have enough chunks to make it once through 14417 * NCPUs, we're just going to allocate everything to the first 14418 * CPU. And if we're on the last CPU, we're going to allocate 14419 * whatever is left over. In either case, we set the limit to 14420 * be the limit of the dynamic variable space. 14421 */ 14422 if (maxper == 0 || i == NCPU - 1) { 14423 limit = (uintptr_t)base + size; 14424 start = NULL; 14425 } else { 14426 limit = (uintptr_t)start + maxper; 14427 start = (dtrace_dynvar_t *)limit; 14428 } 14429 14430 VERIFY(limit <= (uintptr_t)base + size); 14431 14432 for (;;) { 14433 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14434 dstate->dtds_chunksize); 14435 14436 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14437 break; 14438 14439 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14440 (uintptr_t)dvar <= (uintptr_t)base + size); 14441 dvar->dtdv_next = next; 14442 dvar = next; 14443 } 14444 14445 if (maxper == 0) 14446 break; 14447 } 14448 14449 return (0); 14450 } 14451 14452 static void 14453 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14454 { 14455 ASSERT(MUTEX_HELD(&cpu_lock)); 14456 14457 if (dstate->dtds_base == NULL) 14458 return; 14459 14460 kmem_free(dstate->dtds_base, dstate->dtds_size); 14461 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14462 } 14463 14464 static void 14465 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14466 { 14467 /* 14468 * Logical XOR, where are you? 14469 */ 14470 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14471 14472 if (vstate->dtvs_nglobals > 0) { 14473 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14474 sizeof (dtrace_statvar_t *)); 14475 } 14476 14477 if (vstate->dtvs_ntlocals > 0) { 14478 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14479 sizeof (dtrace_difv_t)); 14480 } 14481 14482 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14483 14484 if (vstate->dtvs_nlocals > 0) { 14485 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14486 sizeof (dtrace_statvar_t *)); 14487 } 14488 } 14489 14490 #ifdef illumos 14491 static void 14492 dtrace_state_clean(dtrace_state_t *state) 14493 { 14494 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14495 return; 14496 14497 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14498 dtrace_speculation_clean(state); 14499 } 14500 14501 static void 14502 dtrace_state_deadman(dtrace_state_t *state) 14503 { 14504 hrtime_t now; 14505 14506 dtrace_sync(); 14507 14508 now = dtrace_gethrtime(); 14509 14510 if (state != dtrace_anon.dta_state && 14511 now - state->dts_laststatus >= dtrace_deadman_user) 14512 return; 14513 14514 /* 14515 * We must be sure that dts_alive never appears to be less than the 14516 * value upon entry to dtrace_state_deadman(), and because we lack a 14517 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14518 * store INT64_MAX to it, followed by a memory barrier, followed by 14519 * the new value. This assures that dts_alive never appears to be 14520 * less than its true value, regardless of the order in which the 14521 * stores to the underlying storage are issued. 14522 */ 14523 state->dts_alive = INT64_MAX; 14524 dtrace_membar_producer(); 14525 state->dts_alive = now; 14526 } 14527 #else /* !illumos */ 14528 static void 14529 dtrace_state_clean(void *arg) 14530 { 14531 dtrace_state_t *state = arg; 14532 dtrace_optval_t *opt = state->dts_options; 14533 14534 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14535 return; 14536 14537 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14538 dtrace_speculation_clean(state); 14539 14540 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14541 dtrace_state_clean, state); 14542 } 14543 14544 static void 14545 dtrace_state_deadman(void *arg) 14546 { 14547 dtrace_state_t *state = arg; 14548 hrtime_t now; 14549 14550 dtrace_sync(); 14551 14552 dtrace_debug_output(); 14553 14554 now = dtrace_gethrtime(); 14555 14556 if (state != dtrace_anon.dta_state && 14557 now - state->dts_laststatus >= dtrace_deadman_user) 14558 return; 14559 14560 /* 14561 * We must be sure that dts_alive never appears to be less than the 14562 * value upon entry to dtrace_state_deadman(), and because we lack a 14563 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14564 * store INT64_MAX to it, followed by a memory barrier, followed by 14565 * the new value. This assures that dts_alive never appears to be 14566 * less than its true value, regardless of the order in which the 14567 * stores to the underlying storage are issued. 14568 */ 14569 state->dts_alive = INT64_MAX; 14570 dtrace_membar_producer(); 14571 state->dts_alive = now; 14572 14573 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14574 dtrace_state_deadman, state); 14575 } 14576 #endif /* illumos */ 14577 14578 static dtrace_state_t * 14579 #ifdef illumos 14580 dtrace_state_create(dev_t *devp, cred_t *cr) 14581 #else 14582 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14583 #endif 14584 { 14585 #ifdef illumos 14586 minor_t minor; 14587 major_t major; 14588 #else 14589 cred_t *cr = NULL; 14590 int m = 0; 14591 #endif 14592 char c[30]; 14593 dtrace_state_t *state; 14594 dtrace_optval_t *opt; 14595 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14596 int cpu_it; 14597 14598 ASSERT(MUTEX_HELD(&dtrace_lock)); 14599 ASSERT(MUTEX_HELD(&cpu_lock)); 14600 14601 #ifdef illumos 14602 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14603 VM_BESTFIT | VM_SLEEP); 14604 14605 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14606 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14607 return (NULL); 14608 } 14609 14610 state = ddi_get_soft_state(dtrace_softstate, minor); 14611 #else 14612 if (dev != NULL) { 14613 cr = dev->si_cred; 14614 m = dev2unit(dev); 14615 } 14616 14617 /* Allocate memory for the state. */ 14618 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14619 #endif 14620 14621 state->dts_epid = DTRACE_EPIDNONE + 1; 14622 14623 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14624 #ifdef illumos 14625 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14626 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14627 14628 if (devp != NULL) { 14629 major = getemajor(*devp); 14630 } else { 14631 major = ddi_driver_major(dtrace_devi); 14632 } 14633 14634 state->dts_dev = makedevice(major, minor); 14635 14636 if (devp != NULL) 14637 *devp = state->dts_dev; 14638 #else 14639 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14640 state->dts_dev = dev; 14641 #endif 14642 14643 /* 14644 * We allocate NCPU buffers. On the one hand, this can be quite 14645 * a bit of memory per instance (nearly 36K on a Starcat). On the 14646 * other hand, it saves an additional memory reference in the probe 14647 * path. 14648 */ 14649 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14650 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14651 14652 /* 14653 * Allocate and initialise the per-process per-CPU random state. 14654 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14655 * assumed to be seeded at this point (if from Fortuna seed file). 14656 */ 14657 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14658 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 14659 /* 14660 * Each CPU is assigned a 2^64 period, non-overlapping 14661 * subsequence. 14662 */ 14663 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 14664 state->dts_rstate[cpu_it]); 14665 } 14666 14667 #ifdef illumos 14668 state->dts_cleaner = CYCLIC_NONE; 14669 state->dts_deadman = CYCLIC_NONE; 14670 #else 14671 callout_init(&state->dts_cleaner, 1); 14672 callout_init(&state->dts_deadman, 1); 14673 #endif 14674 state->dts_vstate.dtvs_state = state; 14675 14676 for (i = 0; i < DTRACEOPT_MAX; i++) 14677 state->dts_options[i] = DTRACEOPT_UNSET; 14678 14679 /* 14680 * Set the default options. 14681 */ 14682 opt = state->dts_options; 14683 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14684 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14685 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14686 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14687 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14688 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14689 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14690 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14691 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14692 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14693 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14694 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14695 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14696 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14697 14698 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14699 14700 /* 14701 * Depending on the user credentials, we set flag bits which alter probe 14702 * visibility or the amount of destructiveness allowed. In the case of 14703 * actual anonymous tracing, or the possession of all privileges, all of 14704 * the normal checks are bypassed. 14705 */ 14706 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14707 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14708 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14709 } else { 14710 /* 14711 * Set up the credentials for this instantiation. We take a 14712 * hold on the credential to prevent it from disappearing on 14713 * us; this in turn prevents the zone_t referenced by this 14714 * credential from disappearing. This means that we can 14715 * examine the credential and the zone from probe context. 14716 */ 14717 crhold(cr); 14718 state->dts_cred.dcr_cred = cr; 14719 14720 /* 14721 * CRA_PROC means "we have *some* privilege for dtrace" and 14722 * unlocks the use of variables like pid, zonename, etc. 14723 */ 14724 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14725 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14726 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14727 } 14728 14729 /* 14730 * dtrace_user allows use of syscall and profile providers. 14731 * If the user also has proc_owner and/or proc_zone, we 14732 * extend the scope to include additional visibility and 14733 * destructive power. 14734 */ 14735 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14736 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14737 state->dts_cred.dcr_visible |= 14738 DTRACE_CRV_ALLPROC; 14739 14740 state->dts_cred.dcr_action |= 14741 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14742 } 14743 14744 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14745 state->dts_cred.dcr_visible |= 14746 DTRACE_CRV_ALLZONE; 14747 14748 state->dts_cred.dcr_action |= 14749 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14750 } 14751 14752 /* 14753 * If we have all privs in whatever zone this is, 14754 * we can do destructive things to processes which 14755 * have altered credentials. 14756 */ 14757 #ifdef illumos 14758 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14759 cr->cr_zone->zone_privset)) { 14760 state->dts_cred.dcr_action |= 14761 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14762 } 14763 #endif 14764 } 14765 14766 /* 14767 * Holding the dtrace_kernel privilege also implies that 14768 * the user has the dtrace_user privilege from a visibility 14769 * perspective. But without further privileges, some 14770 * destructive actions are not available. 14771 */ 14772 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14773 /* 14774 * Make all probes in all zones visible. However, 14775 * this doesn't mean that all actions become available 14776 * to all zones. 14777 */ 14778 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14779 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14780 14781 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14782 DTRACE_CRA_PROC; 14783 /* 14784 * Holding proc_owner means that destructive actions 14785 * for *this* zone are allowed. 14786 */ 14787 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14788 state->dts_cred.dcr_action |= 14789 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14790 14791 /* 14792 * Holding proc_zone means that destructive actions 14793 * for this user/group ID in all zones is allowed. 14794 */ 14795 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14796 state->dts_cred.dcr_action |= 14797 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14798 14799 #ifdef illumos 14800 /* 14801 * If we have all privs in whatever zone this is, 14802 * we can do destructive things to processes which 14803 * have altered credentials. 14804 */ 14805 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14806 cr->cr_zone->zone_privset)) { 14807 state->dts_cred.dcr_action |= 14808 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14809 } 14810 #endif 14811 } 14812 14813 /* 14814 * Holding the dtrace_proc privilege gives control over fasttrap 14815 * and pid providers. We need to grant wider destructive 14816 * privileges in the event that the user has proc_owner and/or 14817 * proc_zone. 14818 */ 14819 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14820 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14821 state->dts_cred.dcr_action |= 14822 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14823 14824 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14825 state->dts_cred.dcr_action |= 14826 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14827 } 14828 } 14829 14830 return (state); 14831 } 14832 14833 static int 14834 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14835 { 14836 dtrace_optval_t *opt = state->dts_options, size; 14837 processorid_t cpu = 0; 14838 int flags = 0, rval, factor, divisor = 1; 14839 14840 ASSERT(MUTEX_HELD(&dtrace_lock)); 14841 ASSERT(MUTEX_HELD(&cpu_lock)); 14842 ASSERT(which < DTRACEOPT_MAX); 14843 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14844 (state == dtrace_anon.dta_state && 14845 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14846 14847 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14848 return (0); 14849 14850 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14851 cpu = opt[DTRACEOPT_CPU]; 14852 14853 if (which == DTRACEOPT_SPECSIZE) 14854 flags |= DTRACEBUF_NOSWITCH; 14855 14856 if (which == DTRACEOPT_BUFSIZE) { 14857 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14858 flags |= DTRACEBUF_RING; 14859 14860 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14861 flags |= DTRACEBUF_FILL; 14862 14863 if (state != dtrace_anon.dta_state || 14864 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14865 flags |= DTRACEBUF_INACTIVE; 14866 } 14867 14868 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14869 /* 14870 * The size must be 8-byte aligned. If the size is not 8-byte 14871 * aligned, drop it down by the difference. 14872 */ 14873 if (size & (sizeof (uint64_t) - 1)) 14874 size -= size & (sizeof (uint64_t) - 1); 14875 14876 if (size < state->dts_reserve) { 14877 /* 14878 * Buffers always must be large enough to accommodate 14879 * their prereserved space. We return E2BIG instead 14880 * of ENOMEM in this case to allow for user-level 14881 * software to differentiate the cases. 14882 */ 14883 return (E2BIG); 14884 } 14885 14886 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14887 14888 if (rval != ENOMEM) { 14889 opt[which] = size; 14890 return (rval); 14891 } 14892 14893 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14894 return (rval); 14895 14896 for (divisor = 2; divisor < factor; divisor <<= 1) 14897 continue; 14898 } 14899 14900 return (ENOMEM); 14901 } 14902 14903 static int 14904 dtrace_state_buffers(dtrace_state_t *state) 14905 { 14906 dtrace_speculation_t *spec = state->dts_speculations; 14907 int rval, i; 14908 14909 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14910 DTRACEOPT_BUFSIZE)) != 0) 14911 return (rval); 14912 14913 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14914 DTRACEOPT_AGGSIZE)) != 0) 14915 return (rval); 14916 14917 for (i = 0; i < state->dts_nspeculations; i++) { 14918 if ((rval = dtrace_state_buffer(state, 14919 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14920 return (rval); 14921 } 14922 14923 return (0); 14924 } 14925 14926 static void 14927 dtrace_state_prereserve(dtrace_state_t *state) 14928 { 14929 dtrace_ecb_t *ecb; 14930 dtrace_probe_t *probe; 14931 14932 state->dts_reserve = 0; 14933 14934 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14935 return; 14936 14937 /* 14938 * If our buffer policy is a "fill" buffer policy, we need to set the 14939 * prereserved space to be the space required by the END probes. 14940 */ 14941 probe = dtrace_probes[dtrace_probeid_end - 1]; 14942 ASSERT(probe != NULL); 14943 14944 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14945 if (ecb->dte_state != state) 14946 continue; 14947 14948 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14949 } 14950 } 14951 14952 static int 14953 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14954 { 14955 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14956 dtrace_speculation_t *spec; 14957 dtrace_buffer_t *buf; 14958 #ifdef illumos 14959 cyc_handler_t hdlr; 14960 cyc_time_t when; 14961 #endif 14962 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14963 dtrace_icookie_t cookie; 14964 14965 mutex_enter(&cpu_lock); 14966 mutex_enter(&dtrace_lock); 14967 14968 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14969 rval = EBUSY; 14970 goto out; 14971 } 14972 14973 /* 14974 * Before we can perform any checks, we must prime all of the 14975 * retained enablings that correspond to this state. 14976 */ 14977 dtrace_enabling_prime(state); 14978 14979 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14980 rval = EACCES; 14981 goto out; 14982 } 14983 14984 dtrace_state_prereserve(state); 14985 14986 /* 14987 * Now we want to do is try to allocate our speculations. 14988 * We do not automatically resize the number of speculations; if 14989 * this fails, we will fail the operation. 14990 */ 14991 nspec = opt[DTRACEOPT_NSPEC]; 14992 ASSERT(nspec != DTRACEOPT_UNSET); 14993 14994 if (nspec > INT_MAX) { 14995 rval = ENOMEM; 14996 goto out; 14997 } 14998 14999 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15000 KM_NOSLEEP | KM_NORMALPRI); 15001 15002 if (spec == NULL) { 15003 rval = ENOMEM; 15004 goto out; 15005 } 15006 15007 state->dts_speculations = spec; 15008 state->dts_nspeculations = (int)nspec; 15009 15010 for (i = 0; i < nspec; i++) { 15011 if ((buf = kmem_zalloc(bufsize, 15012 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15013 rval = ENOMEM; 15014 goto err; 15015 } 15016 15017 spec[i].dtsp_buffer = buf; 15018 } 15019 15020 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15021 if (dtrace_anon.dta_state == NULL) { 15022 rval = ENOENT; 15023 goto out; 15024 } 15025 15026 if (state->dts_necbs != 0) { 15027 rval = EALREADY; 15028 goto out; 15029 } 15030 15031 state->dts_anon = dtrace_anon_grab(); 15032 ASSERT(state->dts_anon != NULL); 15033 state = state->dts_anon; 15034 15035 /* 15036 * We want "grabanon" to be set in the grabbed state, so we'll 15037 * copy that option value from the grabbing state into the 15038 * grabbed state. 15039 */ 15040 state->dts_options[DTRACEOPT_GRABANON] = 15041 opt[DTRACEOPT_GRABANON]; 15042 15043 *cpu = dtrace_anon.dta_beganon; 15044 15045 /* 15046 * If the anonymous state is active (as it almost certainly 15047 * is if the anonymous enabling ultimately matched anything), 15048 * we don't allow any further option processing -- but we 15049 * don't return failure. 15050 */ 15051 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15052 goto out; 15053 } 15054 15055 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15056 opt[DTRACEOPT_AGGSIZE] != 0) { 15057 if (state->dts_aggregations == NULL) { 15058 /* 15059 * We're not going to create an aggregation buffer 15060 * because we don't have any ECBs that contain 15061 * aggregations -- set this option to 0. 15062 */ 15063 opt[DTRACEOPT_AGGSIZE] = 0; 15064 } else { 15065 /* 15066 * If we have an aggregation buffer, we must also have 15067 * a buffer to use as scratch. 15068 */ 15069 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15070 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15071 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15072 } 15073 } 15074 } 15075 15076 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15077 opt[DTRACEOPT_SPECSIZE] != 0) { 15078 if (!state->dts_speculates) { 15079 /* 15080 * We're not going to create speculation buffers 15081 * because we don't have any ECBs that actually 15082 * speculate -- set the speculation size to 0. 15083 */ 15084 opt[DTRACEOPT_SPECSIZE] = 0; 15085 } 15086 } 15087 15088 /* 15089 * The bare minimum size for any buffer that we're actually going to 15090 * do anything to is sizeof (uint64_t). 15091 */ 15092 sz = sizeof (uint64_t); 15093 15094 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15095 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15096 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15097 /* 15098 * A buffer size has been explicitly set to 0 (or to a size 15099 * that will be adjusted to 0) and we need the space -- we 15100 * need to return failure. We return ENOSPC to differentiate 15101 * it from failing to allocate a buffer due to failure to meet 15102 * the reserve (for which we return E2BIG). 15103 */ 15104 rval = ENOSPC; 15105 goto out; 15106 } 15107 15108 if ((rval = dtrace_state_buffers(state)) != 0) 15109 goto err; 15110 15111 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15112 sz = dtrace_dstate_defsize; 15113 15114 do { 15115 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15116 15117 if (rval == 0) 15118 break; 15119 15120 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15121 goto err; 15122 } while (sz >>= 1); 15123 15124 opt[DTRACEOPT_DYNVARSIZE] = sz; 15125 15126 if (rval != 0) 15127 goto err; 15128 15129 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15130 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15131 15132 if (opt[DTRACEOPT_CLEANRATE] == 0) 15133 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15134 15135 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15136 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15137 15138 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15139 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15140 15141 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15142 #ifdef illumos 15143 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15144 hdlr.cyh_arg = state; 15145 hdlr.cyh_level = CY_LOW_LEVEL; 15146 15147 when.cyt_when = 0; 15148 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15149 15150 state->dts_cleaner = cyclic_add(&hdlr, &when); 15151 15152 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15153 hdlr.cyh_arg = state; 15154 hdlr.cyh_level = CY_LOW_LEVEL; 15155 15156 when.cyt_when = 0; 15157 when.cyt_interval = dtrace_deadman_interval; 15158 15159 state->dts_deadman = cyclic_add(&hdlr, &when); 15160 #else 15161 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15162 dtrace_state_clean, state); 15163 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15164 dtrace_state_deadman, state); 15165 #endif 15166 15167 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15168 15169 #ifdef illumos 15170 if (state->dts_getf != 0 && 15171 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15172 /* 15173 * We don't have kernel privs but we have at least one call 15174 * to getf(); we need to bump our zone's count, and (if 15175 * this is the first enabling to have an unprivileged call 15176 * to getf()) we need to hook into closef(). 15177 */ 15178 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15179 15180 if (dtrace_getf++ == 0) { 15181 ASSERT(dtrace_closef == NULL); 15182 dtrace_closef = dtrace_getf_barrier; 15183 } 15184 } 15185 #endif 15186 15187 /* 15188 * Now it's time to actually fire the BEGIN probe. We need to disable 15189 * interrupts here both to record the CPU on which we fired the BEGIN 15190 * probe (the data from this CPU will be processed first at user 15191 * level) and to manually activate the buffer for this CPU. 15192 */ 15193 cookie = dtrace_interrupt_disable(); 15194 *cpu = curcpu; 15195 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15196 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15197 15198 dtrace_probe(dtrace_probeid_begin, 15199 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15200 dtrace_interrupt_enable(cookie); 15201 /* 15202 * We may have had an exit action from a BEGIN probe; only change our 15203 * state to ACTIVE if we're still in WARMUP. 15204 */ 15205 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15206 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15207 15208 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15209 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15210 15211 #ifdef __FreeBSD__ 15212 /* 15213 * We enable anonymous tracing before APs are started, so we must 15214 * activate buffers using the current CPU. 15215 */ 15216 if (state == dtrace_anon.dta_state) 15217 for (int i = 0; i < NCPU; i++) 15218 dtrace_buffer_activate_cpu(state, i); 15219 else 15220 dtrace_xcall(DTRACE_CPUALL, 15221 (dtrace_xcall_t)dtrace_buffer_activate, state); 15222 #else 15223 /* 15224 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15225 * want each CPU to transition its principal buffer out of the 15226 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15227 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15228 * atomically transition from processing none of a state's ECBs to 15229 * processing all of them. 15230 */ 15231 dtrace_xcall(DTRACE_CPUALL, 15232 (dtrace_xcall_t)dtrace_buffer_activate, state); 15233 #endif 15234 goto out; 15235 15236 err: 15237 dtrace_buffer_free(state->dts_buffer); 15238 dtrace_buffer_free(state->dts_aggbuffer); 15239 15240 if ((nspec = state->dts_nspeculations) == 0) { 15241 ASSERT(state->dts_speculations == NULL); 15242 goto out; 15243 } 15244 15245 spec = state->dts_speculations; 15246 ASSERT(spec != NULL); 15247 15248 for (i = 0; i < state->dts_nspeculations; i++) { 15249 if ((buf = spec[i].dtsp_buffer) == NULL) 15250 break; 15251 15252 dtrace_buffer_free(buf); 15253 kmem_free(buf, bufsize); 15254 } 15255 15256 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15257 state->dts_nspeculations = 0; 15258 state->dts_speculations = NULL; 15259 15260 out: 15261 mutex_exit(&dtrace_lock); 15262 mutex_exit(&cpu_lock); 15263 15264 return (rval); 15265 } 15266 15267 static int 15268 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15269 { 15270 dtrace_icookie_t cookie; 15271 15272 ASSERT(MUTEX_HELD(&dtrace_lock)); 15273 15274 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15275 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15276 return (EINVAL); 15277 15278 /* 15279 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15280 * to be sure that every CPU has seen it. See below for the details 15281 * on why this is done. 15282 */ 15283 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15284 dtrace_sync(); 15285 15286 /* 15287 * By this point, it is impossible for any CPU to be still processing 15288 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15289 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15290 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15291 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15292 * iff we're in the END probe. 15293 */ 15294 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15295 dtrace_sync(); 15296 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15297 15298 /* 15299 * Finally, we can release the reserve and call the END probe. We 15300 * disable interrupts across calling the END probe to allow us to 15301 * return the CPU on which we actually called the END probe. This 15302 * allows user-land to be sure that this CPU's principal buffer is 15303 * processed last. 15304 */ 15305 state->dts_reserve = 0; 15306 15307 cookie = dtrace_interrupt_disable(); 15308 *cpu = curcpu; 15309 dtrace_probe(dtrace_probeid_end, 15310 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15311 dtrace_interrupt_enable(cookie); 15312 15313 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15314 dtrace_sync(); 15315 15316 #ifdef illumos 15317 if (state->dts_getf != 0 && 15318 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15319 /* 15320 * We don't have kernel privs but we have at least one call 15321 * to getf(); we need to lower our zone's count, and (if 15322 * this is the last enabling to have an unprivileged call 15323 * to getf()) we need to clear the closef() hook. 15324 */ 15325 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15326 ASSERT(dtrace_closef == dtrace_getf_barrier); 15327 ASSERT(dtrace_getf > 0); 15328 15329 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15330 15331 if (--dtrace_getf == 0) 15332 dtrace_closef = NULL; 15333 } 15334 #endif 15335 15336 return (0); 15337 } 15338 15339 static int 15340 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15341 dtrace_optval_t val) 15342 { 15343 ASSERT(MUTEX_HELD(&dtrace_lock)); 15344 15345 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15346 return (EBUSY); 15347 15348 if (option >= DTRACEOPT_MAX) 15349 return (EINVAL); 15350 15351 if (option != DTRACEOPT_CPU && val < 0) 15352 return (EINVAL); 15353 15354 switch (option) { 15355 case DTRACEOPT_DESTRUCTIVE: 15356 if (dtrace_destructive_disallow) 15357 return (EACCES); 15358 15359 state->dts_cred.dcr_destructive = 1; 15360 break; 15361 15362 case DTRACEOPT_BUFSIZE: 15363 case DTRACEOPT_DYNVARSIZE: 15364 case DTRACEOPT_AGGSIZE: 15365 case DTRACEOPT_SPECSIZE: 15366 case DTRACEOPT_STRSIZE: 15367 if (val < 0) 15368 return (EINVAL); 15369 15370 if (val >= LONG_MAX) { 15371 /* 15372 * If this is an otherwise negative value, set it to 15373 * the highest multiple of 128m less than LONG_MAX. 15374 * Technically, we're adjusting the size without 15375 * regard to the buffer resizing policy, but in fact, 15376 * this has no effect -- if we set the buffer size to 15377 * ~LONG_MAX and the buffer policy is ultimately set to 15378 * be "manual", the buffer allocation is guaranteed to 15379 * fail, if only because the allocation requires two 15380 * buffers. (We set the the size to the highest 15381 * multiple of 128m because it ensures that the size 15382 * will remain a multiple of a megabyte when 15383 * repeatedly halved -- all the way down to 15m.) 15384 */ 15385 val = LONG_MAX - (1 << 27) + 1; 15386 } 15387 } 15388 15389 state->dts_options[option] = val; 15390 15391 return (0); 15392 } 15393 15394 static void 15395 dtrace_state_destroy(dtrace_state_t *state) 15396 { 15397 dtrace_ecb_t *ecb; 15398 dtrace_vstate_t *vstate = &state->dts_vstate; 15399 #ifdef illumos 15400 minor_t minor = getminor(state->dts_dev); 15401 #endif 15402 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15403 dtrace_speculation_t *spec = state->dts_speculations; 15404 int nspec = state->dts_nspeculations; 15405 uint32_t match; 15406 15407 ASSERT(MUTEX_HELD(&dtrace_lock)); 15408 ASSERT(MUTEX_HELD(&cpu_lock)); 15409 15410 /* 15411 * First, retract any retained enablings for this state. 15412 */ 15413 dtrace_enabling_retract(state); 15414 ASSERT(state->dts_nretained == 0); 15415 15416 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15417 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15418 /* 15419 * We have managed to come into dtrace_state_destroy() on a 15420 * hot enabling -- almost certainly because of a disorderly 15421 * shutdown of a consumer. (That is, a consumer that is 15422 * exiting without having called dtrace_stop().) In this case, 15423 * we're going to set our activity to be KILLED, and then 15424 * issue a sync to be sure that everyone is out of probe 15425 * context before we start blowing away ECBs. 15426 */ 15427 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15428 dtrace_sync(); 15429 } 15430 15431 /* 15432 * Release the credential hold we took in dtrace_state_create(). 15433 */ 15434 if (state->dts_cred.dcr_cred != NULL) 15435 crfree(state->dts_cred.dcr_cred); 15436 15437 /* 15438 * Now we can safely disable and destroy any enabled probes. Because 15439 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15440 * (especially if they're all enabled), we take two passes through the 15441 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15442 * in the second we disable whatever is left over. 15443 */ 15444 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15445 for (i = 0; i < state->dts_necbs; i++) { 15446 if ((ecb = state->dts_ecbs[i]) == NULL) 15447 continue; 15448 15449 if (match && ecb->dte_probe != NULL) { 15450 dtrace_probe_t *probe = ecb->dte_probe; 15451 dtrace_provider_t *prov = probe->dtpr_provider; 15452 15453 if (!(prov->dtpv_priv.dtpp_flags & match)) 15454 continue; 15455 } 15456 15457 dtrace_ecb_disable(ecb); 15458 dtrace_ecb_destroy(ecb); 15459 } 15460 15461 if (!match) 15462 break; 15463 } 15464 15465 /* 15466 * Before we free the buffers, perform one more sync to assure that 15467 * every CPU is out of probe context. 15468 */ 15469 dtrace_sync(); 15470 15471 dtrace_buffer_free(state->dts_buffer); 15472 dtrace_buffer_free(state->dts_aggbuffer); 15473 15474 for (i = 0; i < nspec; i++) 15475 dtrace_buffer_free(spec[i].dtsp_buffer); 15476 15477 #ifdef illumos 15478 if (state->dts_cleaner != CYCLIC_NONE) 15479 cyclic_remove(state->dts_cleaner); 15480 15481 if (state->dts_deadman != CYCLIC_NONE) 15482 cyclic_remove(state->dts_deadman); 15483 #else 15484 callout_stop(&state->dts_cleaner); 15485 callout_drain(&state->dts_cleaner); 15486 callout_stop(&state->dts_deadman); 15487 callout_drain(&state->dts_deadman); 15488 #endif 15489 15490 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15491 dtrace_vstate_fini(vstate); 15492 if (state->dts_ecbs != NULL) 15493 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15494 15495 if (state->dts_aggregations != NULL) { 15496 #ifdef DEBUG 15497 for (i = 0; i < state->dts_naggregations; i++) 15498 ASSERT(state->dts_aggregations[i] == NULL); 15499 #endif 15500 ASSERT(state->dts_naggregations > 0); 15501 kmem_free(state->dts_aggregations, 15502 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15503 } 15504 15505 kmem_free(state->dts_buffer, bufsize); 15506 kmem_free(state->dts_aggbuffer, bufsize); 15507 15508 for (i = 0; i < nspec; i++) 15509 kmem_free(spec[i].dtsp_buffer, bufsize); 15510 15511 if (spec != NULL) 15512 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15513 15514 dtrace_format_destroy(state); 15515 15516 if (state->dts_aggid_arena != NULL) { 15517 #ifdef illumos 15518 vmem_destroy(state->dts_aggid_arena); 15519 #else 15520 delete_unrhdr(state->dts_aggid_arena); 15521 #endif 15522 state->dts_aggid_arena = NULL; 15523 } 15524 #ifdef illumos 15525 ddi_soft_state_free(dtrace_softstate, minor); 15526 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15527 #endif 15528 } 15529 15530 /* 15531 * DTrace Anonymous Enabling Functions 15532 */ 15533 static dtrace_state_t * 15534 dtrace_anon_grab(void) 15535 { 15536 dtrace_state_t *state; 15537 15538 ASSERT(MUTEX_HELD(&dtrace_lock)); 15539 15540 if ((state = dtrace_anon.dta_state) == NULL) { 15541 ASSERT(dtrace_anon.dta_enabling == NULL); 15542 return (NULL); 15543 } 15544 15545 ASSERT(dtrace_anon.dta_enabling != NULL); 15546 ASSERT(dtrace_retained != NULL); 15547 15548 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15549 dtrace_anon.dta_enabling = NULL; 15550 dtrace_anon.dta_state = NULL; 15551 15552 return (state); 15553 } 15554 15555 static void 15556 dtrace_anon_property(void) 15557 { 15558 int i, rv; 15559 dtrace_state_t *state; 15560 dof_hdr_t *dof; 15561 char c[32]; /* enough for "dof-data-" + digits */ 15562 15563 ASSERT(MUTEX_HELD(&dtrace_lock)); 15564 ASSERT(MUTEX_HELD(&cpu_lock)); 15565 15566 for (i = 0; ; i++) { 15567 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15568 15569 dtrace_err_verbose = 1; 15570 15571 if ((dof = dtrace_dof_property(c)) == NULL) { 15572 dtrace_err_verbose = 0; 15573 break; 15574 } 15575 15576 #ifdef illumos 15577 /* 15578 * We want to create anonymous state, so we need to transition 15579 * the kernel debugger to indicate that DTrace is active. If 15580 * this fails (e.g. because the debugger has modified text in 15581 * some way), we won't continue with the processing. 15582 */ 15583 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15584 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15585 "enabling ignored."); 15586 dtrace_dof_destroy(dof); 15587 break; 15588 } 15589 #endif 15590 15591 /* 15592 * If we haven't allocated an anonymous state, we'll do so now. 15593 */ 15594 if ((state = dtrace_anon.dta_state) == NULL) { 15595 state = dtrace_state_create(NULL, NULL); 15596 dtrace_anon.dta_state = state; 15597 15598 if (state == NULL) { 15599 /* 15600 * This basically shouldn't happen: the only 15601 * failure mode from dtrace_state_create() is a 15602 * failure of ddi_soft_state_zalloc() that 15603 * itself should never happen. Still, the 15604 * interface allows for a failure mode, and 15605 * we want to fail as gracefully as possible: 15606 * we'll emit an error message and cease 15607 * processing anonymous state in this case. 15608 */ 15609 cmn_err(CE_WARN, "failed to create " 15610 "anonymous state"); 15611 dtrace_dof_destroy(dof); 15612 break; 15613 } 15614 } 15615 15616 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15617 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15618 15619 if (rv == 0) 15620 rv = dtrace_dof_options(dof, state); 15621 15622 dtrace_err_verbose = 0; 15623 dtrace_dof_destroy(dof); 15624 15625 if (rv != 0) { 15626 /* 15627 * This is malformed DOF; chuck any anonymous state 15628 * that we created. 15629 */ 15630 ASSERT(dtrace_anon.dta_enabling == NULL); 15631 dtrace_state_destroy(state); 15632 dtrace_anon.dta_state = NULL; 15633 break; 15634 } 15635 15636 ASSERT(dtrace_anon.dta_enabling != NULL); 15637 } 15638 15639 if (dtrace_anon.dta_enabling != NULL) { 15640 int rval; 15641 15642 /* 15643 * dtrace_enabling_retain() can only fail because we are 15644 * trying to retain more enablings than are allowed -- but 15645 * we only have one anonymous enabling, and we are guaranteed 15646 * to be allowed at least one retained enabling; we assert 15647 * that dtrace_enabling_retain() returns success. 15648 */ 15649 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15650 ASSERT(rval == 0); 15651 15652 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15653 } 15654 } 15655 15656 /* 15657 * DTrace Helper Functions 15658 */ 15659 static void 15660 dtrace_helper_trace(dtrace_helper_action_t *helper, 15661 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15662 { 15663 uint32_t size, next, nnext, i; 15664 dtrace_helptrace_t *ent, *buffer; 15665 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15666 15667 if ((buffer = dtrace_helptrace_buffer) == NULL) 15668 return; 15669 15670 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15671 15672 /* 15673 * What would a tracing framework be without its own tracing 15674 * framework? (Well, a hell of a lot simpler, for starters...) 15675 */ 15676 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15677 sizeof (uint64_t) - sizeof (uint64_t); 15678 15679 /* 15680 * Iterate until we can allocate a slot in the trace buffer. 15681 */ 15682 do { 15683 next = dtrace_helptrace_next; 15684 15685 if (next + size < dtrace_helptrace_bufsize) { 15686 nnext = next + size; 15687 } else { 15688 nnext = size; 15689 } 15690 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15691 15692 /* 15693 * We have our slot; fill it in. 15694 */ 15695 if (nnext == size) { 15696 dtrace_helptrace_wrapped++; 15697 next = 0; 15698 } 15699 15700 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15701 ent->dtht_helper = helper; 15702 ent->dtht_where = where; 15703 ent->dtht_nlocals = vstate->dtvs_nlocals; 15704 15705 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15706 mstate->dtms_fltoffs : -1; 15707 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15708 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15709 15710 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15711 dtrace_statvar_t *svar; 15712 15713 if ((svar = vstate->dtvs_locals[i]) == NULL) 15714 continue; 15715 15716 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15717 ent->dtht_locals[i] = 15718 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15719 } 15720 } 15721 15722 static uint64_t 15723 dtrace_helper(int which, dtrace_mstate_t *mstate, 15724 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15725 { 15726 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15727 uint64_t sarg0 = mstate->dtms_arg[0]; 15728 uint64_t sarg1 = mstate->dtms_arg[1]; 15729 uint64_t rval = 0; 15730 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15731 dtrace_helper_action_t *helper; 15732 dtrace_vstate_t *vstate; 15733 dtrace_difo_t *pred; 15734 int i, trace = dtrace_helptrace_buffer != NULL; 15735 15736 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15737 15738 if (helpers == NULL) 15739 return (0); 15740 15741 if ((helper = helpers->dthps_actions[which]) == NULL) 15742 return (0); 15743 15744 vstate = &helpers->dthps_vstate; 15745 mstate->dtms_arg[0] = arg0; 15746 mstate->dtms_arg[1] = arg1; 15747 15748 /* 15749 * Now iterate over each helper. If its predicate evaluates to 'true', 15750 * we'll call the corresponding actions. Note that the below calls 15751 * to dtrace_dif_emulate() may set faults in machine state. This is 15752 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15753 * the stored DIF offset with its own (which is the desired behavior). 15754 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15755 * from machine state; this is okay, too. 15756 */ 15757 for (; helper != NULL; helper = helper->dtha_next) { 15758 if ((pred = helper->dtha_predicate) != NULL) { 15759 if (trace) 15760 dtrace_helper_trace(helper, mstate, vstate, 0); 15761 15762 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15763 goto next; 15764 15765 if (*flags & CPU_DTRACE_FAULT) 15766 goto err; 15767 } 15768 15769 for (i = 0; i < helper->dtha_nactions; i++) { 15770 if (trace) 15771 dtrace_helper_trace(helper, 15772 mstate, vstate, i + 1); 15773 15774 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15775 mstate, vstate, state); 15776 15777 if (*flags & CPU_DTRACE_FAULT) 15778 goto err; 15779 } 15780 15781 next: 15782 if (trace) 15783 dtrace_helper_trace(helper, mstate, vstate, 15784 DTRACE_HELPTRACE_NEXT); 15785 } 15786 15787 if (trace) 15788 dtrace_helper_trace(helper, mstate, vstate, 15789 DTRACE_HELPTRACE_DONE); 15790 15791 /* 15792 * Restore the arg0 that we saved upon entry. 15793 */ 15794 mstate->dtms_arg[0] = sarg0; 15795 mstate->dtms_arg[1] = sarg1; 15796 15797 return (rval); 15798 15799 err: 15800 if (trace) 15801 dtrace_helper_trace(helper, mstate, vstate, 15802 DTRACE_HELPTRACE_ERR); 15803 15804 /* 15805 * Restore the arg0 that we saved upon entry. 15806 */ 15807 mstate->dtms_arg[0] = sarg0; 15808 mstate->dtms_arg[1] = sarg1; 15809 15810 return (0); 15811 } 15812 15813 static void 15814 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15815 dtrace_vstate_t *vstate) 15816 { 15817 int i; 15818 15819 if (helper->dtha_predicate != NULL) 15820 dtrace_difo_release(helper->dtha_predicate, vstate); 15821 15822 for (i = 0; i < helper->dtha_nactions; i++) { 15823 ASSERT(helper->dtha_actions[i] != NULL); 15824 dtrace_difo_release(helper->dtha_actions[i], vstate); 15825 } 15826 15827 kmem_free(helper->dtha_actions, 15828 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15829 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15830 } 15831 15832 static int 15833 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15834 { 15835 proc_t *p = curproc; 15836 dtrace_vstate_t *vstate; 15837 int i; 15838 15839 if (help == NULL) 15840 help = p->p_dtrace_helpers; 15841 15842 ASSERT(MUTEX_HELD(&dtrace_lock)); 15843 15844 if (help == NULL || gen > help->dthps_generation) 15845 return (EINVAL); 15846 15847 vstate = &help->dthps_vstate; 15848 15849 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15850 dtrace_helper_action_t *last = NULL, *h, *next; 15851 15852 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15853 next = h->dtha_next; 15854 15855 if (h->dtha_generation == gen) { 15856 if (last != NULL) { 15857 last->dtha_next = next; 15858 } else { 15859 help->dthps_actions[i] = next; 15860 } 15861 15862 dtrace_helper_action_destroy(h, vstate); 15863 } else { 15864 last = h; 15865 } 15866 } 15867 } 15868 15869 /* 15870 * Interate until we've cleared out all helper providers with the 15871 * given generation number. 15872 */ 15873 for (;;) { 15874 dtrace_helper_provider_t *prov; 15875 15876 /* 15877 * Look for a helper provider with the right generation. We 15878 * have to start back at the beginning of the list each time 15879 * because we drop dtrace_lock. It's unlikely that we'll make 15880 * more than two passes. 15881 */ 15882 for (i = 0; i < help->dthps_nprovs; i++) { 15883 prov = help->dthps_provs[i]; 15884 15885 if (prov->dthp_generation == gen) 15886 break; 15887 } 15888 15889 /* 15890 * If there were no matches, we're done. 15891 */ 15892 if (i == help->dthps_nprovs) 15893 break; 15894 15895 /* 15896 * Move the last helper provider into this slot. 15897 */ 15898 help->dthps_nprovs--; 15899 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15900 help->dthps_provs[help->dthps_nprovs] = NULL; 15901 15902 mutex_exit(&dtrace_lock); 15903 15904 /* 15905 * If we have a meta provider, remove this helper provider. 15906 */ 15907 mutex_enter(&dtrace_meta_lock); 15908 if (dtrace_meta_pid != NULL) { 15909 ASSERT(dtrace_deferred_pid == NULL); 15910 dtrace_helper_provider_remove(&prov->dthp_prov, 15911 p->p_pid); 15912 } 15913 mutex_exit(&dtrace_meta_lock); 15914 15915 dtrace_helper_provider_destroy(prov); 15916 15917 mutex_enter(&dtrace_lock); 15918 } 15919 15920 return (0); 15921 } 15922 15923 static int 15924 dtrace_helper_validate(dtrace_helper_action_t *helper) 15925 { 15926 int err = 0, i; 15927 dtrace_difo_t *dp; 15928 15929 if ((dp = helper->dtha_predicate) != NULL) 15930 err += dtrace_difo_validate_helper(dp); 15931 15932 for (i = 0; i < helper->dtha_nactions; i++) 15933 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15934 15935 return (err == 0); 15936 } 15937 15938 static int 15939 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15940 dtrace_helpers_t *help) 15941 { 15942 dtrace_helper_action_t *helper, *last; 15943 dtrace_actdesc_t *act; 15944 dtrace_vstate_t *vstate; 15945 dtrace_predicate_t *pred; 15946 int count = 0, nactions = 0, i; 15947 15948 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15949 return (EINVAL); 15950 15951 last = help->dthps_actions[which]; 15952 vstate = &help->dthps_vstate; 15953 15954 for (count = 0; last != NULL; last = last->dtha_next) { 15955 count++; 15956 if (last->dtha_next == NULL) 15957 break; 15958 } 15959 15960 /* 15961 * If we already have dtrace_helper_actions_max helper actions for this 15962 * helper action type, we'll refuse to add a new one. 15963 */ 15964 if (count >= dtrace_helper_actions_max) 15965 return (ENOSPC); 15966 15967 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15968 helper->dtha_generation = help->dthps_generation; 15969 15970 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15971 ASSERT(pred->dtp_difo != NULL); 15972 dtrace_difo_hold(pred->dtp_difo); 15973 helper->dtha_predicate = pred->dtp_difo; 15974 } 15975 15976 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15977 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15978 goto err; 15979 15980 if (act->dtad_difo == NULL) 15981 goto err; 15982 15983 nactions++; 15984 } 15985 15986 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15987 (helper->dtha_nactions = nactions), KM_SLEEP); 15988 15989 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15990 dtrace_difo_hold(act->dtad_difo); 15991 helper->dtha_actions[i++] = act->dtad_difo; 15992 } 15993 15994 if (!dtrace_helper_validate(helper)) 15995 goto err; 15996 15997 if (last == NULL) { 15998 help->dthps_actions[which] = helper; 15999 } else { 16000 last->dtha_next = helper; 16001 } 16002 16003 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16004 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16005 dtrace_helptrace_next = 0; 16006 } 16007 16008 return (0); 16009 err: 16010 dtrace_helper_action_destroy(helper, vstate); 16011 return (EINVAL); 16012 } 16013 16014 static void 16015 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16016 dof_helper_t *dofhp) 16017 { 16018 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16019 16020 mutex_enter(&dtrace_meta_lock); 16021 mutex_enter(&dtrace_lock); 16022 16023 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16024 /* 16025 * If the dtrace module is loaded but not attached, or if 16026 * there aren't isn't a meta provider registered to deal with 16027 * these provider descriptions, we need to postpone creating 16028 * the actual providers until later. 16029 */ 16030 16031 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16032 dtrace_deferred_pid != help) { 16033 help->dthps_deferred = 1; 16034 help->dthps_pid = p->p_pid; 16035 help->dthps_next = dtrace_deferred_pid; 16036 help->dthps_prev = NULL; 16037 if (dtrace_deferred_pid != NULL) 16038 dtrace_deferred_pid->dthps_prev = help; 16039 dtrace_deferred_pid = help; 16040 } 16041 16042 mutex_exit(&dtrace_lock); 16043 16044 } else if (dofhp != NULL) { 16045 /* 16046 * If the dtrace module is loaded and we have a particular 16047 * helper provider description, pass that off to the 16048 * meta provider. 16049 */ 16050 16051 mutex_exit(&dtrace_lock); 16052 16053 dtrace_helper_provide(dofhp, p->p_pid); 16054 16055 } else { 16056 /* 16057 * Otherwise, just pass all the helper provider descriptions 16058 * off to the meta provider. 16059 */ 16060 16061 int i; 16062 mutex_exit(&dtrace_lock); 16063 16064 for (i = 0; i < help->dthps_nprovs; i++) { 16065 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16066 p->p_pid); 16067 } 16068 } 16069 16070 mutex_exit(&dtrace_meta_lock); 16071 } 16072 16073 static int 16074 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16075 { 16076 dtrace_helper_provider_t *hprov, **tmp_provs; 16077 uint_t tmp_maxprovs, i; 16078 16079 ASSERT(MUTEX_HELD(&dtrace_lock)); 16080 ASSERT(help != NULL); 16081 16082 /* 16083 * If we already have dtrace_helper_providers_max helper providers, 16084 * we're refuse to add a new one. 16085 */ 16086 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16087 return (ENOSPC); 16088 16089 /* 16090 * Check to make sure this isn't a duplicate. 16091 */ 16092 for (i = 0; i < help->dthps_nprovs; i++) { 16093 if (dofhp->dofhp_addr == 16094 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16095 return (EALREADY); 16096 } 16097 16098 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16099 hprov->dthp_prov = *dofhp; 16100 hprov->dthp_ref = 1; 16101 hprov->dthp_generation = gen; 16102 16103 /* 16104 * Allocate a bigger table for helper providers if it's already full. 16105 */ 16106 if (help->dthps_maxprovs == help->dthps_nprovs) { 16107 tmp_maxprovs = help->dthps_maxprovs; 16108 tmp_provs = help->dthps_provs; 16109 16110 if (help->dthps_maxprovs == 0) 16111 help->dthps_maxprovs = 2; 16112 else 16113 help->dthps_maxprovs *= 2; 16114 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16115 help->dthps_maxprovs = dtrace_helper_providers_max; 16116 16117 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16118 16119 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16120 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16121 16122 if (tmp_provs != NULL) { 16123 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16124 sizeof (dtrace_helper_provider_t *)); 16125 kmem_free(tmp_provs, tmp_maxprovs * 16126 sizeof (dtrace_helper_provider_t *)); 16127 } 16128 } 16129 16130 help->dthps_provs[help->dthps_nprovs] = hprov; 16131 help->dthps_nprovs++; 16132 16133 return (0); 16134 } 16135 16136 static void 16137 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16138 { 16139 mutex_enter(&dtrace_lock); 16140 16141 if (--hprov->dthp_ref == 0) { 16142 dof_hdr_t *dof; 16143 mutex_exit(&dtrace_lock); 16144 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16145 dtrace_dof_destroy(dof); 16146 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16147 } else { 16148 mutex_exit(&dtrace_lock); 16149 } 16150 } 16151 16152 static int 16153 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16154 { 16155 uintptr_t daddr = (uintptr_t)dof; 16156 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16157 dof_provider_t *provider; 16158 dof_probe_t *probe; 16159 uint8_t *arg; 16160 char *strtab, *typestr; 16161 dof_stridx_t typeidx; 16162 size_t typesz; 16163 uint_t nprobes, j, k; 16164 16165 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16166 16167 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16168 dtrace_dof_error(dof, "misaligned section offset"); 16169 return (-1); 16170 } 16171 16172 /* 16173 * The section needs to be large enough to contain the DOF provider 16174 * structure appropriate for the given version. 16175 */ 16176 if (sec->dofs_size < 16177 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16178 offsetof(dof_provider_t, dofpv_prenoffs) : 16179 sizeof (dof_provider_t))) { 16180 dtrace_dof_error(dof, "provider section too small"); 16181 return (-1); 16182 } 16183 16184 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16185 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16186 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16187 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16188 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16189 16190 if (str_sec == NULL || prb_sec == NULL || 16191 arg_sec == NULL || off_sec == NULL) 16192 return (-1); 16193 16194 enoff_sec = NULL; 16195 16196 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16197 provider->dofpv_prenoffs != DOF_SECT_NONE && 16198 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16199 provider->dofpv_prenoffs)) == NULL) 16200 return (-1); 16201 16202 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16203 16204 if (provider->dofpv_name >= str_sec->dofs_size || 16205 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16206 dtrace_dof_error(dof, "invalid provider name"); 16207 return (-1); 16208 } 16209 16210 if (prb_sec->dofs_entsize == 0 || 16211 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16212 dtrace_dof_error(dof, "invalid entry size"); 16213 return (-1); 16214 } 16215 16216 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16217 dtrace_dof_error(dof, "misaligned entry size"); 16218 return (-1); 16219 } 16220 16221 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16222 dtrace_dof_error(dof, "invalid entry size"); 16223 return (-1); 16224 } 16225 16226 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16227 dtrace_dof_error(dof, "misaligned section offset"); 16228 return (-1); 16229 } 16230 16231 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16232 dtrace_dof_error(dof, "invalid entry size"); 16233 return (-1); 16234 } 16235 16236 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16237 16238 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16239 16240 /* 16241 * Take a pass through the probes to check for errors. 16242 */ 16243 for (j = 0; j < nprobes; j++) { 16244 probe = (dof_probe_t *)(uintptr_t)(daddr + 16245 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16246 16247 if (probe->dofpr_func >= str_sec->dofs_size) { 16248 dtrace_dof_error(dof, "invalid function name"); 16249 return (-1); 16250 } 16251 16252 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16253 dtrace_dof_error(dof, "function name too long"); 16254 /* 16255 * Keep going if the function name is too long. 16256 * Unlike provider and probe names, we cannot reasonably 16257 * impose restrictions on function names, since they're 16258 * a property of the code being instrumented. We will 16259 * skip this probe in dtrace_helper_provide_one(). 16260 */ 16261 } 16262 16263 if (probe->dofpr_name >= str_sec->dofs_size || 16264 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16265 dtrace_dof_error(dof, "invalid probe name"); 16266 return (-1); 16267 } 16268 16269 /* 16270 * The offset count must not wrap the index, and the offsets 16271 * must also not overflow the section's data. 16272 */ 16273 if (probe->dofpr_offidx + probe->dofpr_noffs < 16274 probe->dofpr_offidx || 16275 (probe->dofpr_offidx + probe->dofpr_noffs) * 16276 off_sec->dofs_entsize > off_sec->dofs_size) { 16277 dtrace_dof_error(dof, "invalid probe offset"); 16278 return (-1); 16279 } 16280 16281 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16282 /* 16283 * If there's no is-enabled offset section, make sure 16284 * there aren't any is-enabled offsets. Otherwise 16285 * perform the same checks as for probe offsets 16286 * (immediately above). 16287 */ 16288 if (enoff_sec == NULL) { 16289 if (probe->dofpr_enoffidx != 0 || 16290 probe->dofpr_nenoffs != 0) { 16291 dtrace_dof_error(dof, "is-enabled " 16292 "offsets with null section"); 16293 return (-1); 16294 } 16295 } else if (probe->dofpr_enoffidx + 16296 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16297 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16298 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16299 dtrace_dof_error(dof, "invalid is-enabled " 16300 "offset"); 16301 return (-1); 16302 } 16303 16304 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16305 dtrace_dof_error(dof, "zero probe and " 16306 "is-enabled offsets"); 16307 return (-1); 16308 } 16309 } else if (probe->dofpr_noffs == 0) { 16310 dtrace_dof_error(dof, "zero probe offsets"); 16311 return (-1); 16312 } 16313 16314 if (probe->dofpr_argidx + probe->dofpr_xargc < 16315 probe->dofpr_argidx || 16316 (probe->dofpr_argidx + probe->dofpr_xargc) * 16317 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16318 dtrace_dof_error(dof, "invalid args"); 16319 return (-1); 16320 } 16321 16322 typeidx = probe->dofpr_nargv; 16323 typestr = strtab + probe->dofpr_nargv; 16324 for (k = 0; k < probe->dofpr_nargc; k++) { 16325 if (typeidx >= str_sec->dofs_size) { 16326 dtrace_dof_error(dof, "bad " 16327 "native argument type"); 16328 return (-1); 16329 } 16330 16331 typesz = strlen(typestr) + 1; 16332 if (typesz > DTRACE_ARGTYPELEN) { 16333 dtrace_dof_error(dof, "native " 16334 "argument type too long"); 16335 return (-1); 16336 } 16337 typeidx += typesz; 16338 typestr += typesz; 16339 } 16340 16341 typeidx = probe->dofpr_xargv; 16342 typestr = strtab + probe->dofpr_xargv; 16343 for (k = 0; k < probe->dofpr_xargc; k++) { 16344 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16345 dtrace_dof_error(dof, "bad " 16346 "native argument index"); 16347 return (-1); 16348 } 16349 16350 if (typeidx >= str_sec->dofs_size) { 16351 dtrace_dof_error(dof, "bad " 16352 "translated argument type"); 16353 return (-1); 16354 } 16355 16356 typesz = strlen(typestr) + 1; 16357 if (typesz > DTRACE_ARGTYPELEN) { 16358 dtrace_dof_error(dof, "translated argument " 16359 "type too long"); 16360 return (-1); 16361 } 16362 16363 typeidx += typesz; 16364 typestr += typesz; 16365 } 16366 } 16367 16368 return (0); 16369 } 16370 16371 static int 16372 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16373 { 16374 dtrace_helpers_t *help; 16375 dtrace_vstate_t *vstate; 16376 dtrace_enabling_t *enab = NULL; 16377 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16378 uintptr_t daddr = (uintptr_t)dof; 16379 16380 ASSERT(MUTEX_HELD(&dtrace_lock)); 16381 16382 if ((help = p->p_dtrace_helpers) == NULL) 16383 help = dtrace_helpers_create(p); 16384 16385 vstate = &help->dthps_vstate; 16386 16387 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16388 dhp->dofhp_dof, B_FALSE)) != 0) { 16389 dtrace_dof_destroy(dof); 16390 return (rv); 16391 } 16392 16393 /* 16394 * Look for helper providers and validate their descriptions. 16395 */ 16396 for (i = 0; i < dof->dofh_secnum; i++) { 16397 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16398 dof->dofh_secoff + i * dof->dofh_secsize); 16399 16400 if (sec->dofs_type != DOF_SECT_PROVIDER) 16401 continue; 16402 16403 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16404 dtrace_enabling_destroy(enab); 16405 dtrace_dof_destroy(dof); 16406 return (-1); 16407 } 16408 16409 nprovs++; 16410 } 16411 16412 /* 16413 * Now we need to walk through the ECB descriptions in the enabling. 16414 */ 16415 for (i = 0; i < enab->dten_ndesc; i++) { 16416 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16417 dtrace_probedesc_t *desc = &ep->dted_probe; 16418 16419 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16420 continue; 16421 16422 if (strcmp(desc->dtpd_mod, "helper") != 0) 16423 continue; 16424 16425 if (strcmp(desc->dtpd_func, "ustack") != 0) 16426 continue; 16427 16428 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16429 ep, help)) != 0) { 16430 /* 16431 * Adding this helper action failed -- we are now going 16432 * to rip out the entire generation and return failure. 16433 */ 16434 (void) dtrace_helper_destroygen(help, 16435 help->dthps_generation); 16436 dtrace_enabling_destroy(enab); 16437 dtrace_dof_destroy(dof); 16438 return (-1); 16439 } 16440 16441 nhelpers++; 16442 } 16443 16444 if (nhelpers < enab->dten_ndesc) 16445 dtrace_dof_error(dof, "unmatched helpers"); 16446 16447 gen = help->dthps_generation++; 16448 dtrace_enabling_destroy(enab); 16449 16450 if (nprovs > 0) { 16451 /* 16452 * Now that this is in-kernel, we change the sense of the 16453 * members: dofhp_dof denotes the in-kernel copy of the DOF 16454 * and dofhp_addr denotes the address at user-level. 16455 */ 16456 dhp->dofhp_addr = dhp->dofhp_dof; 16457 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16458 16459 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16460 mutex_exit(&dtrace_lock); 16461 dtrace_helper_provider_register(p, help, dhp); 16462 mutex_enter(&dtrace_lock); 16463 16464 destroy = 0; 16465 } 16466 } 16467 16468 if (destroy) 16469 dtrace_dof_destroy(dof); 16470 16471 return (gen); 16472 } 16473 16474 static dtrace_helpers_t * 16475 dtrace_helpers_create(proc_t *p) 16476 { 16477 dtrace_helpers_t *help; 16478 16479 ASSERT(MUTEX_HELD(&dtrace_lock)); 16480 ASSERT(p->p_dtrace_helpers == NULL); 16481 16482 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16483 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16484 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16485 16486 p->p_dtrace_helpers = help; 16487 dtrace_helpers++; 16488 16489 return (help); 16490 } 16491 16492 #ifdef illumos 16493 static 16494 #endif 16495 void 16496 dtrace_helpers_destroy(proc_t *p) 16497 { 16498 dtrace_helpers_t *help; 16499 dtrace_vstate_t *vstate; 16500 #ifdef illumos 16501 proc_t *p = curproc; 16502 #endif 16503 int i; 16504 16505 mutex_enter(&dtrace_lock); 16506 16507 ASSERT(p->p_dtrace_helpers != NULL); 16508 ASSERT(dtrace_helpers > 0); 16509 16510 help = p->p_dtrace_helpers; 16511 vstate = &help->dthps_vstate; 16512 16513 /* 16514 * We're now going to lose the help from this process. 16515 */ 16516 p->p_dtrace_helpers = NULL; 16517 dtrace_sync(); 16518 16519 /* 16520 * Destory the helper actions. 16521 */ 16522 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16523 dtrace_helper_action_t *h, *next; 16524 16525 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16526 next = h->dtha_next; 16527 dtrace_helper_action_destroy(h, vstate); 16528 h = next; 16529 } 16530 } 16531 16532 mutex_exit(&dtrace_lock); 16533 16534 /* 16535 * Destroy the helper providers. 16536 */ 16537 if (help->dthps_maxprovs > 0) { 16538 mutex_enter(&dtrace_meta_lock); 16539 if (dtrace_meta_pid != NULL) { 16540 ASSERT(dtrace_deferred_pid == NULL); 16541 16542 for (i = 0; i < help->dthps_nprovs; i++) { 16543 dtrace_helper_provider_remove( 16544 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16545 } 16546 } else { 16547 mutex_enter(&dtrace_lock); 16548 ASSERT(help->dthps_deferred == 0 || 16549 help->dthps_next != NULL || 16550 help->dthps_prev != NULL || 16551 help == dtrace_deferred_pid); 16552 16553 /* 16554 * Remove the helper from the deferred list. 16555 */ 16556 if (help->dthps_next != NULL) 16557 help->dthps_next->dthps_prev = help->dthps_prev; 16558 if (help->dthps_prev != NULL) 16559 help->dthps_prev->dthps_next = help->dthps_next; 16560 if (dtrace_deferred_pid == help) { 16561 dtrace_deferred_pid = help->dthps_next; 16562 ASSERT(help->dthps_prev == NULL); 16563 } 16564 16565 mutex_exit(&dtrace_lock); 16566 } 16567 16568 mutex_exit(&dtrace_meta_lock); 16569 16570 for (i = 0; i < help->dthps_nprovs; i++) { 16571 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16572 } 16573 16574 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16575 sizeof (dtrace_helper_provider_t *)); 16576 } 16577 16578 mutex_enter(&dtrace_lock); 16579 16580 dtrace_vstate_fini(&help->dthps_vstate); 16581 kmem_free(help->dthps_actions, 16582 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16583 kmem_free(help, sizeof (dtrace_helpers_t)); 16584 16585 --dtrace_helpers; 16586 mutex_exit(&dtrace_lock); 16587 } 16588 16589 #ifdef illumos 16590 static 16591 #endif 16592 void 16593 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16594 { 16595 dtrace_helpers_t *help, *newhelp; 16596 dtrace_helper_action_t *helper, *new, *last; 16597 dtrace_difo_t *dp; 16598 dtrace_vstate_t *vstate; 16599 int i, j, sz, hasprovs = 0; 16600 16601 mutex_enter(&dtrace_lock); 16602 ASSERT(from->p_dtrace_helpers != NULL); 16603 ASSERT(dtrace_helpers > 0); 16604 16605 help = from->p_dtrace_helpers; 16606 newhelp = dtrace_helpers_create(to); 16607 ASSERT(to->p_dtrace_helpers != NULL); 16608 16609 newhelp->dthps_generation = help->dthps_generation; 16610 vstate = &newhelp->dthps_vstate; 16611 16612 /* 16613 * Duplicate the helper actions. 16614 */ 16615 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16616 if ((helper = help->dthps_actions[i]) == NULL) 16617 continue; 16618 16619 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16620 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16621 KM_SLEEP); 16622 new->dtha_generation = helper->dtha_generation; 16623 16624 if ((dp = helper->dtha_predicate) != NULL) { 16625 dp = dtrace_difo_duplicate(dp, vstate); 16626 new->dtha_predicate = dp; 16627 } 16628 16629 new->dtha_nactions = helper->dtha_nactions; 16630 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16631 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16632 16633 for (j = 0; j < new->dtha_nactions; j++) { 16634 dtrace_difo_t *dp = helper->dtha_actions[j]; 16635 16636 ASSERT(dp != NULL); 16637 dp = dtrace_difo_duplicate(dp, vstate); 16638 new->dtha_actions[j] = dp; 16639 } 16640 16641 if (last != NULL) { 16642 last->dtha_next = new; 16643 } else { 16644 newhelp->dthps_actions[i] = new; 16645 } 16646 16647 last = new; 16648 } 16649 } 16650 16651 /* 16652 * Duplicate the helper providers and register them with the 16653 * DTrace framework. 16654 */ 16655 if (help->dthps_nprovs > 0) { 16656 newhelp->dthps_nprovs = help->dthps_nprovs; 16657 newhelp->dthps_maxprovs = help->dthps_nprovs; 16658 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16659 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16660 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16661 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16662 newhelp->dthps_provs[i]->dthp_ref++; 16663 } 16664 16665 hasprovs = 1; 16666 } 16667 16668 mutex_exit(&dtrace_lock); 16669 16670 if (hasprovs) 16671 dtrace_helper_provider_register(to, newhelp, NULL); 16672 } 16673 16674 /* 16675 * DTrace Hook Functions 16676 */ 16677 static void 16678 dtrace_module_loaded(modctl_t *ctl) 16679 { 16680 dtrace_provider_t *prv; 16681 16682 mutex_enter(&dtrace_provider_lock); 16683 #ifdef illumos 16684 mutex_enter(&mod_lock); 16685 #endif 16686 16687 #ifdef illumos 16688 ASSERT(ctl->mod_busy); 16689 #endif 16690 16691 /* 16692 * We're going to call each providers per-module provide operation 16693 * specifying only this module. 16694 */ 16695 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16696 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16697 16698 #ifdef illumos 16699 mutex_exit(&mod_lock); 16700 #endif 16701 mutex_exit(&dtrace_provider_lock); 16702 16703 /* 16704 * If we have any retained enablings, we need to match against them. 16705 * Enabling probes requires that cpu_lock be held, and we cannot hold 16706 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16707 * module. (In particular, this happens when loading scheduling 16708 * classes.) So if we have any retained enablings, we need to dispatch 16709 * our task queue to do the match for us. 16710 */ 16711 mutex_enter(&dtrace_lock); 16712 16713 if (dtrace_retained == NULL) { 16714 mutex_exit(&dtrace_lock); 16715 return; 16716 } 16717 16718 (void) taskq_dispatch(dtrace_taskq, 16719 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16720 16721 mutex_exit(&dtrace_lock); 16722 16723 /* 16724 * And now, for a little heuristic sleaze: in general, we want to 16725 * match modules as soon as they load. However, we cannot guarantee 16726 * this, because it would lead us to the lock ordering violation 16727 * outlined above. The common case, of course, is that cpu_lock is 16728 * _not_ held -- so we delay here for a clock tick, hoping that that's 16729 * long enough for the task queue to do its work. If it's not, it's 16730 * not a serious problem -- it just means that the module that we 16731 * just loaded may not be immediately instrumentable. 16732 */ 16733 delay(1); 16734 } 16735 16736 static void 16737 #ifdef illumos 16738 dtrace_module_unloaded(modctl_t *ctl) 16739 #else 16740 dtrace_module_unloaded(modctl_t *ctl, int *error) 16741 #endif 16742 { 16743 dtrace_probe_t template, *probe, *first, *next; 16744 dtrace_provider_t *prov; 16745 #ifndef illumos 16746 char modname[DTRACE_MODNAMELEN]; 16747 size_t len; 16748 #endif 16749 16750 #ifdef illumos 16751 template.dtpr_mod = ctl->mod_modname; 16752 #else 16753 /* Handle the fact that ctl->filename may end in ".ko". */ 16754 strlcpy(modname, ctl->filename, sizeof(modname)); 16755 len = strlen(ctl->filename); 16756 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16757 modname[len - 3] = '\0'; 16758 template.dtpr_mod = modname; 16759 #endif 16760 16761 mutex_enter(&dtrace_provider_lock); 16762 #ifdef illumos 16763 mutex_enter(&mod_lock); 16764 #endif 16765 mutex_enter(&dtrace_lock); 16766 16767 #ifndef illumos 16768 if (ctl->nenabled > 0) { 16769 /* Don't allow unloads if a probe is enabled. */ 16770 mutex_exit(&dtrace_provider_lock); 16771 mutex_exit(&dtrace_lock); 16772 *error = -1; 16773 printf( 16774 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16775 return; 16776 } 16777 #endif 16778 16779 if (dtrace_bymod == NULL) { 16780 /* 16781 * The DTrace module is loaded (obviously) but not attached; 16782 * we don't have any work to do. 16783 */ 16784 mutex_exit(&dtrace_provider_lock); 16785 #ifdef illumos 16786 mutex_exit(&mod_lock); 16787 #endif 16788 mutex_exit(&dtrace_lock); 16789 return; 16790 } 16791 16792 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16793 probe != NULL; probe = probe->dtpr_nextmod) { 16794 if (probe->dtpr_ecb != NULL) { 16795 mutex_exit(&dtrace_provider_lock); 16796 #ifdef illumos 16797 mutex_exit(&mod_lock); 16798 #endif 16799 mutex_exit(&dtrace_lock); 16800 16801 /* 16802 * This shouldn't _actually_ be possible -- we're 16803 * unloading a module that has an enabled probe in it. 16804 * (It's normally up to the provider to make sure that 16805 * this can't happen.) However, because dtps_enable() 16806 * doesn't have a failure mode, there can be an 16807 * enable/unload race. Upshot: we don't want to 16808 * assert, but we're not going to disable the 16809 * probe, either. 16810 */ 16811 if (dtrace_err_verbose) { 16812 #ifdef illumos 16813 cmn_err(CE_WARN, "unloaded module '%s' had " 16814 "enabled probes", ctl->mod_modname); 16815 #else 16816 cmn_err(CE_WARN, "unloaded module '%s' had " 16817 "enabled probes", modname); 16818 #endif 16819 } 16820 16821 return; 16822 } 16823 } 16824 16825 probe = first; 16826 16827 for (first = NULL; probe != NULL; probe = next) { 16828 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16829 16830 dtrace_probes[probe->dtpr_id - 1] = NULL; 16831 16832 next = probe->dtpr_nextmod; 16833 dtrace_hash_remove(dtrace_bymod, probe); 16834 dtrace_hash_remove(dtrace_byfunc, probe); 16835 dtrace_hash_remove(dtrace_byname, probe); 16836 16837 if (first == NULL) { 16838 first = probe; 16839 probe->dtpr_nextmod = NULL; 16840 } else { 16841 probe->dtpr_nextmod = first; 16842 first = probe; 16843 } 16844 } 16845 16846 /* 16847 * We've removed all of the module's probes from the hash chains and 16848 * from the probe array. Now issue a dtrace_sync() to be sure that 16849 * everyone has cleared out from any probe array processing. 16850 */ 16851 dtrace_sync(); 16852 16853 for (probe = first; probe != NULL; probe = first) { 16854 first = probe->dtpr_nextmod; 16855 prov = probe->dtpr_provider; 16856 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16857 probe->dtpr_arg); 16858 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16859 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16860 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16861 #ifdef illumos 16862 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16863 #else 16864 free_unr(dtrace_arena, probe->dtpr_id); 16865 #endif 16866 kmem_free(probe, sizeof (dtrace_probe_t)); 16867 } 16868 16869 mutex_exit(&dtrace_lock); 16870 #ifdef illumos 16871 mutex_exit(&mod_lock); 16872 #endif 16873 mutex_exit(&dtrace_provider_lock); 16874 } 16875 16876 #ifndef illumos 16877 static void 16878 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16879 { 16880 16881 dtrace_module_loaded(lf); 16882 } 16883 16884 static void 16885 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16886 { 16887 16888 if (*error != 0) 16889 /* We already have an error, so don't do anything. */ 16890 return; 16891 dtrace_module_unloaded(lf, error); 16892 } 16893 #endif 16894 16895 #ifdef illumos 16896 static void 16897 dtrace_suspend(void) 16898 { 16899 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16900 } 16901 16902 static void 16903 dtrace_resume(void) 16904 { 16905 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16906 } 16907 #endif 16908 16909 static int 16910 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16911 { 16912 ASSERT(MUTEX_HELD(&cpu_lock)); 16913 mutex_enter(&dtrace_lock); 16914 16915 switch (what) { 16916 case CPU_CONFIG: { 16917 dtrace_state_t *state; 16918 dtrace_optval_t *opt, rs, c; 16919 16920 /* 16921 * For now, we only allocate a new buffer for anonymous state. 16922 */ 16923 if ((state = dtrace_anon.dta_state) == NULL) 16924 break; 16925 16926 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16927 break; 16928 16929 opt = state->dts_options; 16930 c = opt[DTRACEOPT_CPU]; 16931 16932 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16933 break; 16934 16935 /* 16936 * Regardless of what the actual policy is, we're going to 16937 * temporarily set our resize policy to be manual. We're 16938 * also going to temporarily set our CPU option to denote 16939 * the newly configured CPU. 16940 */ 16941 rs = opt[DTRACEOPT_BUFRESIZE]; 16942 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16943 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16944 16945 (void) dtrace_state_buffers(state); 16946 16947 opt[DTRACEOPT_BUFRESIZE] = rs; 16948 opt[DTRACEOPT_CPU] = c; 16949 16950 break; 16951 } 16952 16953 case CPU_UNCONFIG: 16954 /* 16955 * We don't free the buffer in the CPU_UNCONFIG case. (The 16956 * buffer will be freed when the consumer exits.) 16957 */ 16958 break; 16959 16960 default: 16961 break; 16962 } 16963 16964 mutex_exit(&dtrace_lock); 16965 return (0); 16966 } 16967 16968 #ifdef illumos 16969 static void 16970 dtrace_cpu_setup_initial(processorid_t cpu) 16971 { 16972 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16973 } 16974 #endif 16975 16976 static void 16977 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16978 { 16979 if (dtrace_toxranges >= dtrace_toxranges_max) { 16980 int osize, nsize; 16981 dtrace_toxrange_t *range; 16982 16983 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16984 16985 if (osize == 0) { 16986 ASSERT(dtrace_toxrange == NULL); 16987 ASSERT(dtrace_toxranges_max == 0); 16988 dtrace_toxranges_max = 1; 16989 } else { 16990 dtrace_toxranges_max <<= 1; 16991 } 16992 16993 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16994 range = kmem_zalloc(nsize, KM_SLEEP); 16995 16996 if (dtrace_toxrange != NULL) { 16997 ASSERT(osize != 0); 16998 bcopy(dtrace_toxrange, range, osize); 16999 kmem_free(dtrace_toxrange, osize); 17000 } 17001 17002 dtrace_toxrange = range; 17003 } 17004 17005 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17006 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17007 17008 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17009 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17010 dtrace_toxranges++; 17011 } 17012 17013 static void 17014 dtrace_getf_barrier() 17015 { 17016 #ifdef illumos 17017 /* 17018 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17019 * that contain calls to getf(), this routine will be called on every 17020 * closef() before either the underlying vnode is released or the 17021 * file_t itself is freed. By the time we are here, it is essential 17022 * that the file_t can no longer be accessed from a call to getf() 17023 * in probe context -- that assures that a dtrace_sync() can be used 17024 * to clear out any enablings referring to the old structures. 17025 */ 17026 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17027 kcred->cr_zone->zone_dtrace_getf != 0) 17028 dtrace_sync(); 17029 #endif 17030 } 17031 17032 /* 17033 * DTrace Driver Cookbook Functions 17034 */ 17035 #ifdef illumos 17036 /*ARGSUSED*/ 17037 static int 17038 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17039 { 17040 dtrace_provider_id_t id; 17041 dtrace_state_t *state = NULL; 17042 dtrace_enabling_t *enab; 17043 17044 mutex_enter(&cpu_lock); 17045 mutex_enter(&dtrace_provider_lock); 17046 mutex_enter(&dtrace_lock); 17047 17048 if (ddi_soft_state_init(&dtrace_softstate, 17049 sizeof (dtrace_state_t), 0) != 0) { 17050 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17051 mutex_exit(&cpu_lock); 17052 mutex_exit(&dtrace_provider_lock); 17053 mutex_exit(&dtrace_lock); 17054 return (DDI_FAILURE); 17055 } 17056 17057 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17058 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17059 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17060 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17061 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17062 ddi_remove_minor_node(devi, NULL); 17063 ddi_soft_state_fini(&dtrace_softstate); 17064 mutex_exit(&cpu_lock); 17065 mutex_exit(&dtrace_provider_lock); 17066 mutex_exit(&dtrace_lock); 17067 return (DDI_FAILURE); 17068 } 17069 17070 ddi_report_dev(devi); 17071 dtrace_devi = devi; 17072 17073 dtrace_modload = dtrace_module_loaded; 17074 dtrace_modunload = dtrace_module_unloaded; 17075 dtrace_cpu_init = dtrace_cpu_setup_initial; 17076 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17077 dtrace_helpers_fork = dtrace_helpers_duplicate; 17078 dtrace_cpustart_init = dtrace_suspend; 17079 dtrace_cpustart_fini = dtrace_resume; 17080 dtrace_debugger_init = dtrace_suspend; 17081 dtrace_debugger_fini = dtrace_resume; 17082 17083 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17084 17085 ASSERT(MUTEX_HELD(&cpu_lock)); 17086 17087 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17088 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17089 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17090 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17091 VM_SLEEP | VMC_IDENTIFIER); 17092 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17093 1, INT_MAX, 0); 17094 17095 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17096 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17097 NULL, NULL, NULL, NULL, NULL, 0); 17098 17099 ASSERT(MUTEX_HELD(&cpu_lock)); 17100 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17101 offsetof(dtrace_probe_t, dtpr_nextmod), 17102 offsetof(dtrace_probe_t, dtpr_prevmod)); 17103 17104 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17105 offsetof(dtrace_probe_t, dtpr_nextfunc), 17106 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17107 17108 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17109 offsetof(dtrace_probe_t, dtpr_nextname), 17110 offsetof(dtrace_probe_t, dtpr_prevname)); 17111 17112 if (dtrace_retain_max < 1) { 17113 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17114 "setting to 1", dtrace_retain_max); 17115 dtrace_retain_max = 1; 17116 } 17117 17118 /* 17119 * Now discover our toxic ranges. 17120 */ 17121 dtrace_toxic_ranges(dtrace_toxrange_add); 17122 17123 /* 17124 * Before we register ourselves as a provider to our own framework, 17125 * we would like to assert that dtrace_provider is NULL -- but that's 17126 * not true if we were loaded as a dependency of a DTrace provider. 17127 * Once we've registered, we can assert that dtrace_provider is our 17128 * pseudo provider. 17129 */ 17130 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17131 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17132 17133 ASSERT(dtrace_provider != NULL); 17134 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17135 17136 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17137 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17138 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17139 dtrace_provider, NULL, NULL, "END", 0, NULL); 17140 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17141 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17142 17143 dtrace_anon_property(); 17144 mutex_exit(&cpu_lock); 17145 17146 /* 17147 * If there are already providers, we must ask them to provide their 17148 * probes, and then match any anonymous enabling against them. Note 17149 * that there should be no other retained enablings at this time: 17150 * the only retained enablings at this time should be the anonymous 17151 * enabling. 17152 */ 17153 if (dtrace_anon.dta_enabling != NULL) { 17154 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17155 17156 dtrace_enabling_provide(NULL); 17157 state = dtrace_anon.dta_state; 17158 17159 /* 17160 * We couldn't hold cpu_lock across the above call to 17161 * dtrace_enabling_provide(), but we must hold it to actually 17162 * enable the probes. We have to drop all of our locks, pick 17163 * up cpu_lock, and regain our locks before matching the 17164 * retained anonymous enabling. 17165 */ 17166 mutex_exit(&dtrace_lock); 17167 mutex_exit(&dtrace_provider_lock); 17168 17169 mutex_enter(&cpu_lock); 17170 mutex_enter(&dtrace_provider_lock); 17171 mutex_enter(&dtrace_lock); 17172 17173 if ((enab = dtrace_anon.dta_enabling) != NULL) 17174 (void) dtrace_enabling_match(enab, NULL); 17175 17176 mutex_exit(&cpu_lock); 17177 } 17178 17179 mutex_exit(&dtrace_lock); 17180 mutex_exit(&dtrace_provider_lock); 17181 17182 if (state != NULL) { 17183 /* 17184 * If we created any anonymous state, set it going now. 17185 */ 17186 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17187 } 17188 17189 return (DDI_SUCCESS); 17190 } 17191 #endif /* illumos */ 17192 17193 #ifndef illumos 17194 static void dtrace_dtr(void *); 17195 #endif 17196 17197 /*ARGSUSED*/ 17198 static int 17199 #ifdef illumos 17200 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17201 #else 17202 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17203 #endif 17204 { 17205 dtrace_state_t *state; 17206 uint32_t priv; 17207 uid_t uid; 17208 zoneid_t zoneid; 17209 17210 #ifdef illumos 17211 if (getminor(*devp) == DTRACEMNRN_HELPER) 17212 return (0); 17213 17214 /* 17215 * If this wasn't an open with the "helper" minor, then it must be 17216 * the "dtrace" minor. 17217 */ 17218 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17219 return (ENXIO); 17220 #else 17221 cred_t *cred_p = NULL; 17222 cred_p = dev->si_cred; 17223 17224 /* 17225 * If no DTRACE_PRIV_* bits are set in the credential, then the 17226 * caller lacks sufficient permission to do anything with DTrace. 17227 */ 17228 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17229 if (priv == DTRACE_PRIV_NONE) { 17230 #endif 17231 17232 return (EACCES); 17233 } 17234 17235 /* 17236 * Ask all providers to provide all their probes. 17237 */ 17238 mutex_enter(&dtrace_provider_lock); 17239 dtrace_probe_provide(NULL, NULL); 17240 mutex_exit(&dtrace_provider_lock); 17241 17242 mutex_enter(&cpu_lock); 17243 mutex_enter(&dtrace_lock); 17244 dtrace_opens++; 17245 dtrace_membar_producer(); 17246 17247 #ifdef illumos 17248 /* 17249 * If the kernel debugger is active (that is, if the kernel debugger 17250 * modified text in some way), we won't allow the open. 17251 */ 17252 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17253 dtrace_opens--; 17254 mutex_exit(&cpu_lock); 17255 mutex_exit(&dtrace_lock); 17256 return (EBUSY); 17257 } 17258 17259 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17260 /* 17261 * If DTrace helper tracing is enabled, we need to allocate the 17262 * trace buffer and initialize the values. 17263 */ 17264 dtrace_helptrace_buffer = 17265 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17266 dtrace_helptrace_next = 0; 17267 dtrace_helptrace_wrapped = 0; 17268 dtrace_helptrace_enable = 0; 17269 } 17270 17271 state = dtrace_state_create(devp, cred_p); 17272 #else 17273 state = dtrace_state_create(dev, NULL); 17274 devfs_set_cdevpriv(state, dtrace_dtr); 17275 #endif 17276 17277 mutex_exit(&cpu_lock); 17278 17279 if (state == NULL) { 17280 #ifdef illumos 17281 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17282 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17283 #else 17284 --dtrace_opens; 17285 #endif 17286 mutex_exit(&dtrace_lock); 17287 return (EAGAIN); 17288 } 17289 17290 mutex_exit(&dtrace_lock); 17291 17292 return (0); 17293 } 17294 17295 /*ARGSUSED*/ 17296 #ifdef illumos 17297 static int 17298 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17299 #else 17300 static void 17301 dtrace_dtr(void *data) 17302 #endif 17303 { 17304 #ifdef illumos 17305 minor_t minor = getminor(dev); 17306 dtrace_state_t *state; 17307 #endif 17308 dtrace_helptrace_t *buf = NULL; 17309 17310 #ifdef illumos 17311 if (minor == DTRACEMNRN_HELPER) 17312 return (0); 17313 17314 state = ddi_get_soft_state(dtrace_softstate, minor); 17315 #else 17316 dtrace_state_t *state = data; 17317 #endif 17318 17319 mutex_enter(&cpu_lock); 17320 mutex_enter(&dtrace_lock); 17321 17322 #ifdef illumos 17323 if (state->dts_anon) 17324 #else 17325 if (state != NULL && state->dts_anon) 17326 #endif 17327 { 17328 /* 17329 * There is anonymous state. Destroy that first. 17330 */ 17331 ASSERT(dtrace_anon.dta_state == NULL); 17332 dtrace_state_destroy(state->dts_anon); 17333 } 17334 17335 if (dtrace_helptrace_disable) { 17336 /* 17337 * If we have been told to disable helper tracing, set the 17338 * buffer to NULL before calling into dtrace_state_destroy(); 17339 * we take advantage of its dtrace_sync() to know that no 17340 * CPU is in probe context with enabled helper tracing 17341 * after it returns. 17342 */ 17343 buf = dtrace_helptrace_buffer; 17344 dtrace_helptrace_buffer = NULL; 17345 } 17346 17347 #ifdef illumos 17348 dtrace_state_destroy(state); 17349 #else 17350 if (state != NULL) { 17351 dtrace_state_destroy(state); 17352 kmem_free(state, 0); 17353 } 17354 #endif 17355 ASSERT(dtrace_opens > 0); 17356 17357 #ifdef illumos 17358 /* 17359 * Only relinquish control of the kernel debugger interface when there 17360 * are no consumers and no anonymous enablings. 17361 */ 17362 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17363 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17364 #else 17365 --dtrace_opens; 17366 #endif 17367 17368 if (buf != NULL) { 17369 kmem_free(buf, dtrace_helptrace_bufsize); 17370 dtrace_helptrace_disable = 0; 17371 } 17372 17373 mutex_exit(&dtrace_lock); 17374 mutex_exit(&cpu_lock); 17375 17376 #ifdef illumos 17377 return (0); 17378 #endif 17379 } 17380 17381 #ifdef illumos 17382 /*ARGSUSED*/ 17383 static int 17384 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17385 { 17386 int rval; 17387 dof_helper_t help, *dhp = NULL; 17388 17389 switch (cmd) { 17390 case DTRACEHIOC_ADDDOF: 17391 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17392 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17393 return (EFAULT); 17394 } 17395 17396 dhp = &help; 17397 arg = (intptr_t)help.dofhp_dof; 17398 /*FALLTHROUGH*/ 17399 17400 case DTRACEHIOC_ADD: { 17401 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17402 17403 if (dof == NULL) 17404 return (rval); 17405 17406 mutex_enter(&dtrace_lock); 17407 17408 /* 17409 * dtrace_helper_slurp() takes responsibility for the dof -- 17410 * it may free it now or it may save it and free it later. 17411 */ 17412 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17413 *rv = rval; 17414 rval = 0; 17415 } else { 17416 rval = EINVAL; 17417 } 17418 17419 mutex_exit(&dtrace_lock); 17420 return (rval); 17421 } 17422 17423 case DTRACEHIOC_REMOVE: { 17424 mutex_enter(&dtrace_lock); 17425 rval = dtrace_helper_destroygen(NULL, arg); 17426 mutex_exit(&dtrace_lock); 17427 17428 return (rval); 17429 } 17430 17431 default: 17432 break; 17433 } 17434 17435 return (ENOTTY); 17436 } 17437 17438 /*ARGSUSED*/ 17439 static int 17440 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17441 { 17442 minor_t minor = getminor(dev); 17443 dtrace_state_t *state; 17444 int rval; 17445 17446 if (minor == DTRACEMNRN_HELPER) 17447 return (dtrace_ioctl_helper(cmd, arg, rv)); 17448 17449 state = ddi_get_soft_state(dtrace_softstate, minor); 17450 17451 if (state->dts_anon) { 17452 ASSERT(dtrace_anon.dta_state == NULL); 17453 state = state->dts_anon; 17454 } 17455 17456 switch (cmd) { 17457 case DTRACEIOC_PROVIDER: { 17458 dtrace_providerdesc_t pvd; 17459 dtrace_provider_t *pvp; 17460 17461 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17462 return (EFAULT); 17463 17464 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17465 mutex_enter(&dtrace_provider_lock); 17466 17467 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17468 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17469 break; 17470 } 17471 17472 mutex_exit(&dtrace_provider_lock); 17473 17474 if (pvp == NULL) 17475 return (ESRCH); 17476 17477 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17478 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17479 17480 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17481 return (EFAULT); 17482 17483 return (0); 17484 } 17485 17486 case DTRACEIOC_EPROBE: { 17487 dtrace_eprobedesc_t epdesc; 17488 dtrace_ecb_t *ecb; 17489 dtrace_action_t *act; 17490 void *buf; 17491 size_t size; 17492 uintptr_t dest; 17493 int nrecs; 17494 17495 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17496 return (EFAULT); 17497 17498 mutex_enter(&dtrace_lock); 17499 17500 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17501 mutex_exit(&dtrace_lock); 17502 return (EINVAL); 17503 } 17504 17505 if (ecb->dte_probe == NULL) { 17506 mutex_exit(&dtrace_lock); 17507 return (EINVAL); 17508 } 17509 17510 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17511 epdesc.dtepd_uarg = ecb->dte_uarg; 17512 epdesc.dtepd_size = ecb->dte_size; 17513 17514 nrecs = epdesc.dtepd_nrecs; 17515 epdesc.dtepd_nrecs = 0; 17516 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17517 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17518 continue; 17519 17520 epdesc.dtepd_nrecs++; 17521 } 17522 17523 /* 17524 * Now that we have the size, we need to allocate a temporary 17525 * buffer in which to store the complete description. We need 17526 * the temporary buffer to be able to drop dtrace_lock() 17527 * across the copyout(), below. 17528 */ 17529 size = sizeof (dtrace_eprobedesc_t) + 17530 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17531 17532 buf = kmem_alloc(size, KM_SLEEP); 17533 dest = (uintptr_t)buf; 17534 17535 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17536 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17537 17538 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17539 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17540 continue; 17541 17542 if (nrecs-- == 0) 17543 break; 17544 17545 bcopy(&act->dta_rec, (void *)dest, 17546 sizeof (dtrace_recdesc_t)); 17547 dest += sizeof (dtrace_recdesc_t); 17548 } 17549 17550 mutex_exit(&dtrace_lock); 17551 17552 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17553 kmem_free(buf, size); 17554 return (EFAULT); 17555 } 17556 17557 kmem_free(buf, size); 17558 return (0); 17559 } 17560 17561 case DTRACEIOC_AGGDESC: { 17562 dtrace_aggdesc_t aggdesc; 17563 dtrace_action_t *act; 17564 dtrace_aggregation_t *agg; 17565 int nrecs; 17566 uint32_t offs; 17567 dtrace_recdesc_t *lrec; 17568 void *buf; 17569 size_t size; 17570 uintptr_t dest; 17571 17572 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17573 return (EFAULT); 17574 17575 mutex_enter(&dtrace_lock); 17576 17577 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17578 mutex_exit(&dtrace_lock); 17579 return (EINVAL); 17580 } 17581 17582 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17583 17584 nrecs = aggdesc.dtagd_nrecs; 17585 aggdesc.dtagd_nrecs = 0; 17586 17587 offs = agg->dtag_base; 17588 lrec = &agg->dtag_action.dta_rec; 17589 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17590 17591 for (act = agg->dtag_first; ; act = act->dta_next) { 17592 ASSERT(act->dta_intuple || 17593 DTRACEACT_ISAGG(act->dta_kind)); 17594 17595 /* 17596 * If this action has a record size of zero, it 17597 * denotes an argument to the aggregating action. 17598 * Because the presence of this record doesn't (or 17599 * shouldn't) affect the way the data is interpreted, 17600 * we don't copy it out to save user-level the 17601 * confusion of dealing with a zero-length record. 17602 */ 17603 if (act->dta_rec.dtrd_size == 0) { 17604 ASSERT(agg->dtag_hasarg); 17605 continue; 17606 } 17607 17608 aggdesc.dtagd_nrecs++; 17609 17610 if (act == &agg->dtag_action) 17611 break; 17612 } 17613 17614 /* 17615 * Now that we have the size, we need to allocate a temporary 17616 * buffer in which to store the complete description. We need 17617 * the temporary buffer to be able to drop dtrace_lock() 17618 * across the copyout(), below. 17619 */ 17620 size = sizeof (dtrace_aggdesc_t) + 17621 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17622 17623 buf = kmem_alloc(size, KM_SLEEP); 17624 dest = (uintptr_t)buf; 17625 17626 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17627 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17628 17629 for (act = agg->dtag_first; ; act = act->dta_next) { 17630 dtrace_recdesc_t rec = act->dta_rec; 17631 17632 /* 17633 * See the comment in the above loop for why we pass 17634 * over zero-length records. 17635 */ 17636 if (rec.dtrd_size == 0) { 17637 ASSERT(agg->dtag_hasarg); 17638 continue; 17639 } 17640 17641 if (nrecs-- == 0) 17642 break; 17643 17644 rec.dtrd_offset -= offs; 17645 bcopy(&rec, (void *)dest, sizeof (rec)); 17646 dest += sizeof (dtrace_recdesc_t); 17647 17648 if (act == &agg->dtag_action) 17649 break; 17650 } 17651 17652 mutex_exit(&dtrace_lock); 17653 17654 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17655 kmem_free(buf, size); 17656 return (EFAULT); 17657 } 17658 17659 kmem_free(buf, size); 17660 return (0); 17661 } 17662 17663 case DTRACEIOC_ENABLE: { 17664 dof_hdr_t *dof; 17665 dtrace_enabling_t *enab = NULL; 17666 dtrace_vstate_t *vstate; 17667 int err = 0; 17668 17669 *rv = 0; 17670 17671 /* 17672 * If a NULL argument has been passed, we take this as our 17673 * cue to reevaluate our enablings. 17674 */ 17675 if (arg == NULL) { 17676 dtrace_enabling_matchall(); 17677 17678 return (0); 17679 } 17680 17681 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17682 return (rval); 17683 17684 mutex_enter(&cpu_lock); 17685 mutex_enter(&dtrace_lock); 17686 vstate = &state->dts_vstate; 17687 17688 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17689 mutex_exit(&dtrace_lock); 17690 mutex_exit(&cpu_lock); 17691 dtrace_dof_destroy(dof); 17692 return (EBUSY); 17693 } 17694 17695 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17696 mutex_exit(&dtrace_lock); 17697 mutex_exit(&cpu_lock); 17698 dtrace_dof_destroy(dof); 17699 return (EINVAL); 17700 } 17701 17702 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17703 dtrace_enabling_destroy(enab); 17704 mutex_exit(&dtrace_lock); 17705 mutex_exit(&cpu_lock); 17706 dtrace_dof_destroy(dof); 17707 return (rval); 17708 } 17709 17710 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17711 err = dtrace_enabling_retain(enab); 17712 } else { 17713 dtrace_enabling_destroy(enab); 17714 } 17715 17716 mutex_exit(&cpu_lock); 17717 mutex_exit(&dtrace_lock); 17718 dtrace_dof_destroy(dof); 17719 17720 return (err); 17721 } 17722 17723 case DTRACEIOC_REPLICATE: { 17724 dtrace_repldesc_t desc; 17725 dtrace_probedesc_t *match = &desc.dtrpd_match; 17726 dtrace_probedesc_t *create = &desc.dtrpd_create; 17727 int err; 17728 17729 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17730 return (EFAULT); 17731 17732 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17733 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17734 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17735 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17736 17737 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17738 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17739 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17740 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17741 17742 mutex_enter(&dtrace_lock); 17743 err = dtrace_enabling_replicate(state, match, create); 17744 mutex_exit(&dtrace_lock); 17745 17746 return (err); 17747 } 17748 17749 case DTRACEIOC_PROBEMATCH: 17750 case DTRACEIOC_PROBES: { 17751 dtrace_probe_t *probe = NULL; 17752 dtrace_probedesc_t desc; 17753 dtrace_probekey_t pkey; 17754 dtrace_id_t i; 17755 int m = 0; 17756 uint32_t priv; 17757 uid_t uid; 17758 zoneid_t zoneid; 17759 17760 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17761 return (EFAULT); 17762 17763 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17764 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17765 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17766 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17767 17768 /* 17769 * Before we attempt to match this probe, we want to give 17770 * all providers the opportunity to provide it. 17771 */ 17772 if (desc.dtpd_id == DTRACE_IDNONE) { 17773 mutex_enter(&dtrace_provider_lock); 17774 dtrace_probe_provide(&desc, NULL); 17775 mutex_exit(&dtrace_provider_lock); 17776 desc.dtpd_id++; 17777 } 17778 17779 if (cmd == DTRACEIOC_PROBEMATCH) { 17780 dtrace_probekey(&desc, &pkey); 17781 pkey.dtpk_id = DTRACE_IDNONE; 17782 } 17783 17784 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17785 17786 mutex_enter(&dtrace_lock); 17787 17788 if (cmd == DTRACEIOC_PROBEMATCH) { 17789 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17790 if ((probe = dtrace_probes[i - 1]) != NULL && 17791 (m = dtrace_match_probe(probe, &pkey, 17792 priv, uid, zoneid)) != 0) 17793 break; 17794 } 17795 17796 if (m < 0) { 17797 mutex_exit(&dtrace_lock); 17798 return (EINVAL); 17799 } 17800 17801 } else { 17802 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17803 if ((probe = dtrace_probes[i - 1]) != NULL && 17804 dtrace_match_priv(probe, priv, uid, zoneid)) 17805 break; 17806 } 17807 } 17808 17809 if (probe == NULL) { 17810 mutex_exit(&dtrace_lock); 17811 return (ESRCH); 17812 } 17813 17814 dtrace_probe_description(probe, &desc); 17815 mutex_exit(&dtrace_lock); 17816 17817 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17818 return (EFAULT); 17819 17820 return (0); 17821 } 17822 17823 case DTRACEIOC_PROBEARG: { 17824 dtrace_argdesc_t desc; 17825 dtrace_probe_t *probe; 17826 dtrace_provider_t *prov; 17827 17828 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17829 return (EFAULT); 17830 17831 if (desc.dtargd_id == DTRACE_IDNONE) 17832 return (EINVAL); 17833 17834 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17835 return (EINVAL); 17836 17837 mutex_enter(&dtrace_provider_lock); 17838 mutex_enter(&mod_lock); 17839 mutex_enter(&dtrace_lock); 17840 17841 if (desc.dtargd_id > dtrace_nprobes) { 17842 mutex_exit(&dtrace_lock); 17843 mutex_exit(&mod_lock); 17844 mutex_exit(&dtrace_provider_lock); 17845 return (EINVAL); 17846 } 17847 17848 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17849 mutex_exit(&dtrace_lock); 17850 mutex_exit(&mod_lock); 17851 mutex_exit(&dtrace_provider_lock); 17852 return (EINVAL); 17853 } 17854 17855 mutex_exit(&dtrace_lock); 17856 17857 prov = probe->dtpr_provider; 17858 17859 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17860 /* 17861 * There isn't any typed information for this probe. 17862 * Set the argument number to DTRACE_ARGNONE. 17863 */ 17864 desc.dtargd_ndx = DTRACE_ARGNONE; 17865 } else { 17866 desc.dtargd_native[0] = '\0'; 17867 desc.dtargd_xlate[0] = '\0'; 17868 desc.dtargd_mapping = desc.dtargd_ndx; 17869 17870 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17871 probe->dtpr_id, probe->dtpr_arg, &desc); 17872 } 17873 17874 mutex_exit(&mod_lock); 17875 mutex_exit(&dtrace_provider_lock); 17876 17877 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17878 return (EFAULT); 17879 17880 return (0); 17881 } 17882 17883 case DTRACEIOC_GO: { 17884 processorid_t cpuid; 17885 rval = dtrace_state_go(state, &cpuid); 17886 17887 if (rval != 0) 17888 return (rval); 17889 17890 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17891 return (EFAULT); 17892 17893 return (0); 17894 } 17895 17896 case DTRACEIOC_STOP: { 17897 processorid_t cpuid; 17898 17899 mutex_enter(&dtrace_lock); 17900 rval = dtrace_state_stop(state, &cpuid); 17901 mutex_exit(&dtrace_lock); 17902 17903 if (rval != 0) 17904 return (rval); 17905 17906 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17907 return (EFAULT); 17908 17909 return (0); 17910 } 17911 17912 case DTRACEIOC_DOFGET: { 17913 dof_hdr_t hdr, *dof; 17914 uint64_t len; 17915 17916 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17917 return (EFAULT); 17918 17919 mutex_enter(&dtrace_lock); 17920 dof = dtrace_dof_create(state); 17921 mutex_exit(&dtrace_lock); 17922 17923 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17924 rval = copyout(dof, (void *)arg, len); 17925 dtrace_dof_destroy(dof); 17926 17927 return (rval == 0 ? 0 : EFAULT); 17928 } 17929 17930 case DTRACEIOC_AGGSNAP: 17931 case DTRACEIOC_BUFSNAP: { 17932 dtrace_bufdesc_t desc; 17933 caddr_t cached; 17934 dtrace_buffer_t *buf; 17935 17936 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17937 return (EFAULT); 17938 17939 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17940 return (EINVAL); 17941 17942 mutex_enter(&dtrace_lock); 17943 17944 if (cmd == DTRACEIOC_BUFSNAP) { 17945 buf = &state->dts_buffer[desc.dtbd_cpu]; 17946 } else { 17947 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17948 } 17949 17950 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17951 size_t sz = buf->dtb_offset; 17952 17953 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17954 mutex_exit(&dtrace_lock); 17955 return (EBUSY); 17956 } 17957 17958 /* 17959 * If this buffer has already been consumed, we're 17960 * going to indicate that there's nothing left here 17961 * to consume. 17962 */ 17963 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17964 mutex_exit(&dtrace_lock); 17965 17966 desc.dtbd_size = 0; 17967 desc.dtbd_drops = 0; 17968 desc.dtbd_errors = 0; 17969 desc.dtbd_oldest = 0; 17970 sz = sizeof (desc); 17971 17972 if (copyout(&desc, (void *)arg, sz) != 0) 17973 return (EFAULT); 17974 17975 return (0); 17976 } 17977 17978 /* 17979 * If this is a ring buffer that has wrapped, we want 17980 * to copy the whole thing out. 17981 */ 17982 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17983 dtrace_buffer_polish(buf); 17984 sz = buf->dtb_size; 17985 } 17986 17987 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17988 mutex_exit(&dtrace_lock); 17989 return (EFAULT); 17990 } 17991 17992 desc.dtbd_size = sz; 17993 desc.dtbd_drops = buf->dtb_drops; 17994 desc.dtbd_errors = buf->dtb_errors; 17995 desc.dtbd_oldest = buf->dtb_xamot_offset; 17996 desc.dtbd_timestamp = dtrace_gethrtime(); 17997 17998 mutex_exit(&dtrace_lock); 17999 18000 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18001 return (EFAULT); 18002 18003 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18004 18005 return (0); 18006 } 18007 18008 if (buf->dtb_tomax == NULL) { 18009 ASSERT(buf->dtb_xamot == NULL); 18010 mutex_exit(&dtrace_lock); 18011 return (ENOENT); 18012 } 18013 18014 cached = buf->dtb_tomax; 18015 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18016 18017 dtrace_xcall(desc.dtbd_cpu, 18018 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18019 18020 state->dts_errors += buf->dtb_xamot_errors; 18021 18022 /* 18023 * If the buffers did not actually switch, then the cross call 18024 * did not take place -- presumably because the given CPU is 18025 * not in the ready set. If this is the case, we'll return 18026 * ENOENT. 18027 */ 18028 if (buf->dtb_tomax == cached) { 18029 ASSERT(buf->dtb_xamot != cached); 18030 mutex_exit(&dtrace_lock); 18031 return (ENOENT); 18032 } 18033 18034 ASSERT(cached == buf->dtb_xamot); 18035 18036 /* 18037 * We have our snapshot; now copy it out. 18038 */ 18039 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18040 buf->dtb_xamot_offset) != 0) { 18041 mutex_exit(&dtrace_lock); 18042 return (EFAULT); 18043 } 18044 18045 desc.dtbd_size = buf->dtb_xamot_offset; 18046 desc.dtbd_drops = buf->dtb_xamot_drops; 18047 desc.dtbd_errors = buf->dtb_xamot_errors; 18048 desc.dtbd_oldest = 0; 18049 desc.dtbd_timestamp = buf->dtb_switched; 18050 18051 mutex_exit(&dtrace_lock); 18052 18053 /* 18054 * Finally, copy out the buffer description. 18055 */ 18056 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18057 return (EFAULT); 18058 18059 return (0); 18060 } 18061 18062 case DTRACEIOC_CONF: { 18063 dtrace_conf_t conf; 18064 18065 bzero(&conf, sizeof (conf)); 18066 conf.dtc_difversion = DIF_VERSION; 18067 conf.dtc_difintregs = DIF_DIR_NREGS; 18068 conf.dtc_diftupregs = DIF_DTR_NREGS; 18069 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18070 18071 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18072 return (EFAULT); 18073 18074 return (0); 18075 } 18076 18077 case DTRACEIOC_STATUS: { 18078 dtrace_status_t stat; 18079 dtrace_dstate_t *dstate; 18080 int i, j; 18081 uint64_t nerrs; 18082 18083 /* 18084 * See the comment in dtrace_state_deadman() for the reason 18085 * for setting dts_laststatus to INT64_MAX before setting 18086 * it to the correct value. 18087 */ 18088 state->dts_laststatus = INT64_MAX; 18089 dtrace_membar_producer(); 18090 state->dts_laststatus = dtrace_gethrtime(); 18091 18092 bzero(&stat, sizeof (stat)); 18093 18094 mutex_enter(&dtrace_lock); 18095 18096 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18097 mutex_exit(&dtrace_lock); 18098 return (ENOENT); 18099 } 18100 18101 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18102 stat.dtst_exiting = 1; 18103 18104 nerrs = state->dts_errors; 18105 dstate = &state->dts_vstate.dtvs_dynvars; 18106 18107 for (i = 0; i < NCPU; i++) { 18108 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18109 18110 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18111 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18112 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18113 18114 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18115 stat.dtst_filled++; 18116 18117 nerrs += state->dts_buffer[i].dtb_errors; 18118 18119 for (j = 0; j < state->dts_nspeculations; j++) { 18120 dtrace_speculation_t *spec; 18121 dtrace_buffer_t *buf; 18122 18123 spec = &state->dts_speculations[j]; 18124 buf = &spec->dtsp_buffer[i]; 18125 stat.dtst_specdrops += buf->dtb_xamot_drops; 18126 } 18127 } 18128 18129 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18130 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18131 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18132 stat.dtst_dblerrors = state->dts_dblerrors; 18133 stat.dtst_killed = 18134 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18135 stat.dtst_errors = nerrs; 18136 18137 mutex_exit(&dtrace_lock); 18138 18139 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18140 return (EFAULT); 18141 18142 return (0); 18143 } 18144 18145 case DTRACEIOC_FORMAT: { 18146 dtrace_fmtdesc_t fmt; 18147 char *str; 18148 int len; 18149 18150 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18151 return (EFAULT); 18152 18153 mutex_enter(&dtrace_lock); 18154 18155 if (fmt.dtfd_format == 0 || 18156 fmt.dtfd_format > state->dts_nformats) { 18157 mutex_exit(&dtrace_lock); 18158 return (EINVAL); 18159 } 18160 18161 /* 18162 * Format strings are allocated contiguously and they are 18163 * never freed; if a format index is less than the number 18164 * of formats, we can assert that the format map is non-NULL 18165 * and that the format for the specified index is non-NULL. 18166 */ 18167 ASSERT(state->dts_formats != NULL); 18168 str = state->dts_formats[fmt.dtfd_format - 1]; 18169 ASSERT(str != NULL); 18170 18171 len = strlen(str) + 1; 18172 18173 if (len > fmt.dtfd_length) { 18174 fmt.dtfd_length = len; 18175 18176 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18177 mutex_exit(&dtrace_lock); 18178 return (EINVAL); 18179 } 18180 } else { 18181 if (copyout(str, fmt.dtfd_string, len) != 0) { 18182 mutex_exit(&dtrace_lock); 18183 return (EINVAL); 18184 } 18185 } 18186 18187 mutex_exit(&dtrace_lock); 18188 return (0); 18189 } 18190 18191 default: 18192 break; 18193 } 18194 18195 return (ENOTTY); 18196 } 18197 18198 /*ARGSUSED*/ 18199 static int 18200 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18201 { 18202 dtrace_state_t *state; 18203 18204 switch (cmd) { 18205 case DDI_DETACH: 18206 break; 18207 18208 case DDI_SUSPEND: 18209 return (DDI_SUCCESS); 18210 18211 default: 18212 return (DDI_FAILURE); 18213 } 18214 18215 mutex_enter(&cpu_lock); 18216 mutex_enter(&dtrace_provider_lock); 18217 mutex_enter(&dtrace_lock); 18218 18219 ASSERT(dtrace_opens == 0); 18220 18221 if (dtrace_helpers > 0) { 18222 mutex_exit(&dtrace_provider_lock); 18223 mutex_exit(&dtrace_lock); 18224 mutex_exit(&cpu_lock); 18225 return (DDI_FAILURE); 18226 } 18227 18228 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18229 mutex_exit(&dtrace_provider_lock); 18230 mutex_exit(&dtrace_lock); 18231 mutex_exit(&cpu_lock); 18232 return (DDI_FAILURE); 18233 } 18234 18235 dtrace_provider = NULL; 18236 18237 if ((state = dtrace_anon_grab()) != NULL) { 18238 /* 18239 * If there were ECBs on this state, the provider should 18240 * have not been allowed to detach; assert that there is 18241 * none. 18242 */ 18243 ASSERT(state->dts_necbs == 0); 18244 dtrace_state_destroy(state); 18245 18246 /* 18247 * If we're being detached with anonymous state, we need to 18248 * indicate to the kernel debugger that DTrace is now inactive. 18249 */ 18250 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18251 } 18252 18253 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18254 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18255 dtrace_cpu_init = NULL; 18256 dtrace_helpers_cleanup = NULL; 18257 dtrace_helpers_fork = NULL; 18258 dtrace_cpustart_init = NULL; 18259 dtrace_cpustart_fini = NULL; 18260 dtrace_debugger_init = NULL; 18261 dtrace_debugger_fini = NULL; 18262 dtrace_modload = NULL; 18263 dtrace_modunload = NULL; 18264 18265 ASSERT(dtrace_getf == 0); 18266 ASSERT(dtrace_closef == NULL); 18267 18268 mutex_exit(&cpu_lock); 18269 18270 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18271 dtrace_probes = NULL; 18272 dtrace_nprobes = 0; 18273 18274 dtrace_hash_destroy(dtrace_bymod); 18275 dtrace_hash_destroy(dtrace_byfunc); 18276 dtrace_hash_destroy(dtrace_byname); 18277 dtrace_bymod = NULL; 18278 dtrace_byfunc = NULL; 18279 dtrace_byname = NULL; 18280 18281 kmem_cache_destroy(dtrace_state_cache); 18282 vmem_destroy(dtrace_minor); 18283 vmem_destroy(dtrace_arena); 18284 18285 if (dtrace_toxrange != NULL) { 18286 kmem_free(dtrace_toxrange, 18287 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18288 dtrace_toxrange = NULL; 18289 dtrace_toxranges = 0; 18290 dtrace_toxranges_max = 0; 18291 } 18292 18293 ddi_remove_minor_node(dtrace_devi, NULL); 18294 dtrace_devi = NULL; 18295 18296 ddi_soft_state_fini(&dtrace_softstate); 18297 18298 ASSERT(dtrace_vtime_references == 0); 18299 ASSERT(dtrace_opens == 0); 18300 ASSERT(dtrace_retained == NULL); 18301 18302 mutex_exit(&dtrace_lock); 18303 mutex_exit(&dtrace_provider_lock); 18304 18305 /* 18306 * We don't destroy the task queue until after we have dropped our 18307 * locks (taskq_destroy() may block on running tasks). To prevent 18308 * attempting to do work after we have effectively detached but before 18309 * the task queue has been destroyed, all tasks dispatched via the 18310 * task queue must check that DTrace is still attached before 18311 * performing any operation. 18312 */ 18313 taskq_destroy(dtrace_taskq); 18314 dtrace_taskq = NULL; 18315 18316 return (DDI_SUCCESS); 18317 } 18318 #endif 18319 18320 #ifdef illumos 18321 /*ARGSUSED*/ 18322 static int 18323 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18324 { 18325 int error; 18326 18327 switch (infocmd) { 18328 case DDI_INFO_DEVT2DEVINFO: 18329 *result = (void *)dtrace_devi; 18330 error = DDI_SUCCESS; 18331 break; 18332 case DDI_INFO_DEVT2INSTANCE: 18333 *result = (void *)0; 18334 error = DDI_SUCCESS; 18335 break; 18336 default: 18337 error = DDI_FAILURE; 18338 } 18339 return (error); 18340 } 18341 #endif 18342 18343 #ifdef illumos 18344 static struct cb_ops dtrace_cb_ops = { 18345 dtrace_open, /* open */ 18346 dtrace_close, /* close */ 18347 nulldev, /* strategy */ 18348 nulldev, /* print */ 18349 nodev, /* dump */ 18350 nodev, /* read */ 18351 nodev, /* write */ 18352 dtrace_ioctl, /* ioctl */ 18353 nodev, /* devmap */ 18354 nodev, /* mmap */ 18355 nodev, /* segmap */ 18356 nochpoll, /* poll */ 18357 ddi_prop_op, /* cb_prop_op */ 18358 0, /* streamtab */ 18359 D_NEW | D_MP /* Driver compatibility flag */ 18360 }; 18361 18362 static struct dev_ops dtrace_ops = { 18363 DEVO_REV, /* devo_rev */ 18364 0, /* refcnt */ 18365 dtrace_info, /* get_dev_info */ 18366 nulldev, /* identify */ 18367 nulldev, /* probe */ 18368 dtrace_attach, /* attach */ 18369 dtrace_detach, /* detach */ 18370 nodev, /* reset */ 18371 &dtrace_cb_ops, /* driver operations */ 18372 NULL, /* bus operations */ 18373 nodev /* dev power */ 18374 }; 18375 18376 static struct modldrv modldrv = { 18377 &mod_driverops, /* module type (this is a pseudo driver) */ 18378 "Dynamic Tracing", /* name of module */ 18379 &dtrace_ops, /* driver ops */ 18380 }; 18381 18382 static struct modlinkage modlinkage = { 18383 MODREV_1, 18384 (void *)&modldrv, 18385 NULL 18386 }; 18387 18388 int 18389 _init(void) 18390 { 18391 return (mod_install(&modlinkage)); 18392 } 18393 18394 int 18395 _info(struct modinfo *modinfop) 18396 { 18397 return (mod_info(&modlinkage, modinfop)); 18398 } 18399 18400 int 18401 _fini(void) 18402 { 18403 return (mod_remove(&modlinkage)); 18404 } 18405 #else 18406 18407 static d_ioctl_t dtrace_ioctl; 18408 static d_ioctl_t dtrace_ioctl_helper; 18409 static void dtrace_load(void *); 18410 static int dtrace_unload(void); 18411 static struct cdev *dtrace_dev; 18412 static struct cdev *helper_dev; 18413 18414 void dtrace_invop_init(void); 18415 void dtrace_invop_uninit(void); 18416 18417 static struct cdevsw dtrace_cdevsw = { 18418 .d_version = D_VERSION, 18419 .d_ioctl = dtrace_ioctl, 18420 .d_open = dtrace_open, 18421 .d_name = "dtrace", 18422 }; 18423 18424 static struct cdevsw helper_cdevsw = { 18425 .d_version = D_VERSION, 18426 .d_ioctl = dtrace_ioctl_helper, 18427 .d_name = "helper", 18428 }; 18429 18430 #include <dtrace_anon.c> 18431 #include <dtrace_ioctl.c> 18432 #include <dtrace_load.c> 18433 #include <dtrace_modevent.c> 18434 #include <dtrace_sysctl.c> 18435 #include <dtrace_unload.c> 18436 #include <dtrace_vtime.c> 18437 #include <dtrace_hacks.c> 18438 #include <dtrace_isa.c> 18439 18440 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18441 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18442 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18443 18444 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18445 MODULE_VERSION(dtrace, 1); 18446 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18447 #endif 18448