xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision e8e8c939350bdf3c228a411caa9660c607c27a11)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/sysctl.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/dtrace_bsd.h>
129 #include <netinet/in.h>
130 #include "dtrace_cddl.h"
131 #include "dtrace_debug.c"
132 #endif
133 
134 /*
135  * DTrace Tunable Variables
136  *
137  * The following variables may be tuned by adding a line to /etc/system that
138  * includes both the name of the DTrace module ("dtrace") and the name of the
139  * variable.  For example:
140  *
141  *   set dtrace:dtrace_destructive_disallow = 1
142  *
143  * In general, the only variables that one should be tuning this way are those
144  * that affect system-wide DTrace behavior, and for which the default behavior
145  * is undesirable.  Most of these variables are tunable on a per-consumer
146  * basis using DTrace options, and need not be tuned on a system-wide basis.
147  * When tuning these variables, avoid pathological values; while some attempt
148  * is made to verify the integrity of these variables, they are not considered
149  * part of the supported interface to DTrace, and they are therefore not
150  * checked comprehensively.  Further, these variables should not be tuned
151  * dynamically via "mdb -kw" or other means; they should only be tuned via
152  * /etc/system.
153  */
154 int		dtrace_destructive_disallow = 0;
155 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156 size_t		dtrace_difo_maxsize = (256 * 1024);
157 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158 size_t		dtrace_global_maxsize = (16 * 1024);
159 size_t		dtrace_actions_max = (16 * 1024);
160 size_t		dtrace_retain_max = 1024;
161 dtrace_optval_t	dtrace_helper_actions_max = 128;
162 dtrace_optval_t	dtrace_helper_providers_max = 32;
163 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164 size_t		dtrace_strsize_default = 256;
165 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172 dtrace_optval_t	dtrace_nspec_default = 1;
173 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174 dtrace_optval_t dtrace_stackframes_default = 20;
175 dtrace_optval_t dtrace_ustackframes_default = 20;
176 dtrace_optval_t dtrace_jstackframes_default = 50;
177 dtrace_optval_t dtrace_jstackstrsize_default = 512;
178 int		dtrace_msgdsize_max = 128;
179 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
180 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181 int		dtrace_devdepth_max = 32;
182 int		dtrace_err_verbose;
183 hrtime_t	dtrace_deadman_interval = NANOSEC;
184 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187 #ifndef illumos
188 int		dtrace_memstr_max = 4096;
189 #endif
190 
191 /*
192  * DTrace External Variables
193  *
194  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
195  * available to DTrace consumers via the backtick (`) syntax.  One of these,
196  * dtrace_zero, is made deliberately so:  it is provided as a source of
197  * well-known, zero-filled memory.  While this variable is not documented,
198  * it is used by some translators as an implementation detail.
199  */
200 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
201 
202 /*
203  * DTrace Internal Variables
204  */
205 #ifdef illumos
206 static dev_info_t	*dtrace_devi;		/* device info */
207 #endif
208 #ifdef illumos
209 static vmem_t		*dtrace_arena;		/* probe ID arena */
210 static vmem_t		*dtrace_minor;		/* minor number arena */
211 #else
212 static taskq_t		*dtrace_taskq;		/* task queue */
213 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
214 #endif
215 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
216 static int		dtrace_nprobes;		/* number of probes */
217 static dtrace_provider_t *dtrace_provider;	/* provider list */
218 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
219 static int		dtrace_opens;		/* number of opens */
220 static int		dtrace_helpers;		/* number of helpers */
221 static int		dtrace_getf;		/* number of unpriv getf()s */
222 #ifdef illumos
223 static void		*dtrace_softstate;	/* softstate pointer */
224 #endif
225 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229 static int		dtrace_toxranges;	/* number of toxic ranges */
230 static int		dtrace_toxranges_max;	/* size of toxic range array */
231 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234 static kthread_t	*dtrace_panicked;	/* panicking thread */
235 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
240 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
241 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
242 #ifndef illumos
243 static struct mtx	dtrace_unr_mtx;
244 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
245 int		dtrace_in_probe;	/* non-zero if executing a probe */
246 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
247 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
248 #endif
249 static eventhandler_tag	dtrace_kld_load_tag;
250 static eventhandler_tag	dtrace_kld_unload_try_tag;
251 #endif
252 
253 /*
254  * DTrace Locking
255  * DTrace is protected by three (relatively coarse-grained) locks:
256  *
257  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258  *     including enabling state, probes, ECBs, consumer state, helper state,
259  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
260  *     probe context is lock-free -- synchronization is handled via the
261  *     dtrace_sync() cross call mechanism.
262  *
263  * (2) dtrace_provider_lock is required when manipulating provider state, or
264  *     when provider state must be held constant.
265  *
266  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267  *     when meta provider state must be held constant.
268  *
269  * The lock ordering between these three locks is dtrace_meta_lock before
270  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
271  * several places where dtrace_provider_lock is held by the framework as it
272  * calls into the providers -- which then call back into the framework,
273  * grabbing dtrace_lock.)
274  *
275  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
276  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277  * role as a coarse-grained lock; it is acquired before both of these locks.
278  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
279  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281  * acquired _between_ dtrace_provider_lock and dtrace_lock.
282  */
283 static kmutex_t		dtrace_lock;		/* probe state lock */
284 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
285 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
286 
287 #ifndef illumos
288 /* XXX FreeBSD hacks. */
289 #define cr_suid		cr_svuid
290 #define cr_sgid		cr_svgid
291 #define	ipaddr_t	in_addr_t
292 #define mod_modname	pathname
293 #define vuprintf	vprintf
294 #define ttoproc(_a)	((_a)->td_proc)
295 #define crgetzoneid(_a)	0
296 #define	NCPU		MAXCPU
297 #define SNOCD		0
298 #define CPU_ON_INTR(_a)	0
299 
300 #define PRIV_EFFECTIVE		(1 << 0)
301 #define PRIV_DTRACE_KERNEL	(1 << 1)
302 #define PRIV_DTRACE_PROC	(1 << 2)
303 #define PRIV_DTRACE_USER	(1 << 3)
304 #define PRIV_PROC_OWNER		(1 << 4)
305 #define PRIV_PROC_ZONE		(1 << 5)
306 #define PRIV_ALL		~0
307 
308 SYSCTL_DECL(_debug_dtrace);
309 SYSCTL_DECL(_kern_dtrace);
310 #endif
311 
312 #ifdef illumos
313 #define curcpu	CPU->cpu_id
314 #endif
315 
316 
317 /*
318  * DTrace Provider Variables
319  *
320  * These are the variables relating to DTrace as a provider (that is, the
321  * provider of the BEGIN, END, and ERROR probes).
322  */
323 static dtrace_pattr_t	dtrace_provider_attr = {
324 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
326 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329 };
330 
331 static void
332 dtrace_nullop(void)
333 {}
334 
335 static dtrace_pops_t	dtrace_provider_ops = {
336 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
337 	(void (*)(void *, modctl_t *))dtrace_nullop,
338 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342 	NULL,
343 	NULL,
344 	NULL,
345 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
346 };
347 
348 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
349 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
350 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
351 
352 /*
353  * DTrace Helper Tracing Variables
354  *
355  * These variables should be set dynamically to enable helper tracing.  The
356  * only variables that should be set are dtrace_helptrace_enable (which should
357  * be set to a non-zero value to allocate helper tracing buffers on the next
358  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
359  * non-zero value to deallocate helper tracing buffers on the next close of
360  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
361  * buffer size may also be set via dtrace_helptrace_bufsize.
362  */
363 int			dtrace_helptrace_enable = 0;
364 int			dtrace_helptrace_disable = 0;
365 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
366 uint32_t		dtrace_helptrace_nlocals;
367 static dtrace_helptrace_t *dtrace_helptrace_buffer;
368 static uint32_t		dtrace_helptrace_next = 0;
369 static int		dtrace_helptrace_wrapped = 0;
370 
371 /*
372  * DTrace Error Hashing
373  *
374  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
375  * table.  This is very useful for checking coverage of tests that are
376  * expected to induce DIF or DOF processing errors, and may be useful for
377  * debugging problems in the DIF code generator or in DOF generation .  The
378  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
379  */
380 #ifdef DEBUG
381 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
382 static const char *dtrace_errlast;
383 static kthread_t *dtrace_errthread;
384 static kmutex_t dtrace_errlock;
385 #endif
386 
387 /*
388  * DTrace Macros and Constants
389  *
390  * These are various macros that are useful in various spots in the
391  * implementation, along with a few random constants that have no meaning
392  * outside of the implementation.  There is no real structure to this cpp
393  * mishmash -- but is there ever?
394  */
395 #define	DTRACE_HASHSTR(hash, probe)	\
396 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
397 
398 #define	DTRACE_HASHNEXT(hash, probe)	\
399 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
400 
401 #define	DTRACE_HASHPREV(hash, probe)	\
402 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
403 
404 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
405 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
406 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
407 
408 #define	DTRACE_AGGHASHSIZE_SLEW		17
409 
410 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
411 
412 /*
413  * The key for a thread-local variable consists of the lower 61 bits of the
414  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
415  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
416  * equal to a variable identifier.  This is necessary (but not sufficient) to
417  * assure that global associative arrays never collide with thread-local
418  * variables.  To guarantee that they cannot collide, we must also define the
419  * order for keying dynamic variables.  That order is:
420  *
421  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
422  *
423  * Because the variable-key and the tls-key are in orthogonal spaces, there is
424  * no way for a global variable key signature to match a thread-local key
425  * signature.
426  */
427 #ifdef illumos
428 #define	DTRACE_TLS_THRKEY(where) { \
429 	uint_t intr = 0; \
430 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
431 	for (; actv; actv >>= 1) \
432 		intr++; \
433 	ASSERT(intr < (1 << 3)); \
434 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
435 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
436 }
437 #else
438 #define	DTRACE_TLS_THRKEY(where) { \
439 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
440 	uint_t intr = 0; \
441 	uint_t actv = _c->cpu_intr_actv; \
442 	for (; actv; actv >>= 1) \
443 		intr++; \
444 	ASSERT(intr < (1 << 3)); \
445 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
446 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
447 }
448 #endif
449 
450 #define	DT_BSWAP_8(x)	((x) & 0xff)
451 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
452 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
453 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
454 
455 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
456 
457 #define	DTRACE_STORE(type, tomax, offset, what) \
458 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
459 
460 #ifndef __x86
461 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
462 	if (addr & (size - 1)) {					\
463 		*flags |= CPU_DTRACE_BADALIGN;				\
464 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
465 		return (0);						\
466 	}
467 #else
468 #define	DTRACE_ALIGNCHECK(addr, size, flags)
469 #endif
470 
471 /*
472  * Test whether a range of memory starting at testaddr of size testsz falls
473  * within the range of memory described by addr, sz.  We take care to avoid
474  * problems with overflow and underflow of the unsigned quantities, and
475  * disallow all negative sizes.  Ranges of size 0 are allowed.
476  */
477 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
478 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
479 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
480 	(testaddr) + (testsz) >= (testaddr))
481 
482 /*
483  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
484  * alloc_sz on the righthand side of the comparison in order to avoid overflow
485  * or underflow in the comparison with it.  This is simpler than the INRANGE
486  * check above, because we know that the dtms_scratch_ptr is valid in the
487  * range.  Allocations of size zero are allowed.
488  */
489 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
490 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
491 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
492 
493 #define	DTRACE_LOADFUNC(bits)						\
494 /*CSTYLED*/								\
495 uint##bits##_t								\
496 dtrace_load##bits(uintptr_t addr)					\
497 {									\
498 	size_t size = bits / NBBY;					\
499 	/*CSTYLED*/							\
500 	uint##bits##_t rval;						\
501 	int i;								\
502 	volatile uint16_t *flags = (volatile uint16_t *)		\
503 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
504 									\
505 	DTRACE_ALIGNCHECK(addr, size, flags);				\
506 									\
507 	for (i = 0; i < dtrace_toxranges; i++) {			\
508 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
509 			continue;					\
510 									\
511 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
512 			continue;					\
513 									\
514 		/*							\
515 		 * This address falls within a toxic region; return 0.	\
516 		 */							\
517 		*flags |= CPU_DTRACE_BADADDR;				\
518 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
519 		return (0);						\
520 	}								\
521 									\
522 	*flags |= CPU_DTRACE_NOFAULT;					\
523 	/*CSTYLED*/							\
524 	rval = *((volatile uint##bits##_t *)addr);			\
525 	*flags &= ~CPU_DTRACE_NOFAULT;					\
526 									\
527 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
528 }
529 
530 #ifdef _LP64
531 #define	dtrace_loadptr	dtrace_load64
532 #else
533 #define	dtrace_loadptr	dtrace_load32
534 #endif
535 
536 #define	DTRACE_DYNHASH_FREE	0
537 #define	DTRACE_DYNHASH_SINK	1
538 #define	DTRACE_DYNHASH_VALID	2
539 
540 #define	DTRACE_MATCH_NEXT	0
541 #define	DTRACE_MATCH_DONE	1
542 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
543 #define	DTRACE_STATE_ALIGN	64
544 
545 #define	DTRACE_FLAGS2FLT(flags)						\
546 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
547 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
548 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
549 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
550 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
551 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
552 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
553 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
554 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
555 	DTRACEFLT_UNKNOWN)
556 
557 #define	DTRACEACT_ISSTRING(act)						\
558 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
559 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
560 
561 /* Function prototype definitions: */
562 static size_t dtrace_strlen(const char *, size_t);
563 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
564 static void dtrace_enabling_provide(dtrace_provider_t *);
565 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
566 static void dtrace_enabling_matchall(void);
567 static void dtrace_enabling_reap(void);
568 static dtrace_state_t *dtrace_anon_grab(void);
569 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
570     dtrace_state_t *, uint64_t, uint64_t);
571 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
572 static void dtrace_buffer_drop(dtrace_buffer_t *);
573 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
574 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
575     dtrace_state_t *, dtrace_mstate_t *);
576 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
577     dtrace_optval_t);
578 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
579 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
580 uint16_t dtrace_load16(uintptr_t);
581 uint32_t dtrace_load32(uintptr_t);
582 uint64_t dtrace_load64(uintptr_t);
583 uint8_t dtrace_load8(uintptr_t);
584 void dtrace_dynvar_clean(dtrace_dstate_t *);
585 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
586     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
587 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
588 static int dtrace_priv_proc(dtrace_state_t *);
589 static void dtrace_getf_barrier(void);
590 
591 /*
592  * DTrace Probe Context Functions
593  *
594  * These functions are called from probe context.  Because probe context is
595  * any context in which C may be called, arbitrarily locks may be held,
596  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
597  * As a result, functions called from probe context may only call other DTrace
598  * support functions -- they may not interact at all with the system at large.
599  * (Note that the ASSERT macro is made probe-context safe by redefining it in
600  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
601  * loads are to be performed from probe context, they _must_ be in terms of
602  * the safe dtrace_load*() variants.
603  *
604  * Some functions in this block are not actually called from probe context;
605  * for these functions, there will be a comment above the function reading
606  * "Note:  not called from probe context."
607  */
608 void
609 dtrace_panic(const char *format, ...)
610 {
611 	va_list alist;
612 
613 	va_start(alist, format);
614 #ifdef __FreeBSD__
615 	vpanic(format, alist);
616 #else
617 	dtrace_vpanic(format, alist);
618 #endif
619 	va_end(alist);
620 }
621 
622 int
623 dtrace_assfail(const char *a, const char *f, int l)
624 {
625 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
626 
627 	/*
628 	 * We just need something here that even the most clever compiler
629 	 * cannot optimize away.
630 	 */
631 	return (a[(uintptr_t)f]);
632 }
633 
634 /*
635  * Atomically increment a specified error counter from probe context.
636  */
637 static void
638 dtrace_error(uint32_t *counter)
639 {
640 	/*
641 	 * Most counters stored to in probe context are per-CPU counters.
642 	 * However, there are some error conditions that are sufficiently
643 	 * arcane that they don't merit per-CPU storage.  If these counters
644 	 * are incremented concurrently on different CPUs, scalability will be
645 	 * adversely affected -- but we don't expect them to be white-hot in a
646 	 * correctly constructed enabling...
647 	 */
648 	uint32_t oval, nval;
649 
650 	do {
651 		oval = *counter;
652 
653 		if ((nval = oval + 1) == 0) {
654 			/*
655 			 * If the counter would wrap, set it to 1 -- assuring
656 			 * that the counter is never zero when we have seen
657 			 * errors.  (The counter must be 32-bits because we
658 			 * aren't guaranteed a 64-bit compare&swap operation.)
659 			 * To save this code both the infamy of being fingered
660 			 * by a priggish news story and the indignity of being
661 			 * the target of a neo-puritan witch trial, we're
662 			 * carefully avoiding any colorful description of the
663 			 * likelihood of this condition -- but suffice it to
664 			 * say that it is only slightly more likely than the
665 			 * overflow of predicate cache IDs, as discussed in
666 			 * dtrace_predicate_create().
667 			 */
668 			nval = 1;
669 		}
670 	} while (dtrace_cas32(counter, oval, nval) != oval);
671 }
672 
673 /*
674  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
675  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
676  */
677 DTRACE_LOADFUNC(8)
678 DTRACE_LOADFUNC(16)
679 DTRACE_LOADFUNC(32)
680 DTRACE_LOADFUNC(64)
681 
682 static int
683 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
684 {
685 	if (dest < mstate->dtms_scratch_base)
686 		return (0);
687 
688 	if (dest + size < dest)
689 		return (0);
690 
691 	if (dest + size > mstate->dtms_scratch_ptr)
692 		return (0);
693 
694 	return (1);
695 }
696 
697 static int
698 dtrace_canstore_statvar(uint64_t addr, size_t sz,
699     dtrace_statvar_t **svars, int nsvars)
700 {
701 	int i;
702 
703 	for (i = 0; i < nsvars; i++) {
704 		dtrace_statvar_t *svar = svars[i];
705 
706 		if (svar == NULL || svar->dtsv_size == 0)
707 			continue;
708 
709 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
710 			return (1);
711 	}
712 
713 	return (0);
714 }
715 
716 /*
717  * Check to see if the address is within a memory region to which a store may
718  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
719  * region.  The caller of dtrace_canstore() is responsible for performing any
720  * alignment checks that are needed before stores are actually executed.
721  */
722 static int
723 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
724     dtrace_vstate_t *vstate)
725 {
726 	/*
727 	 * First, check to see if the address is in scratch space...
728 	 */
729 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
730 	    mstate->dtms_scratch_size))
731 		return (1);
732 
733 	/*
734 	 * Now check to see if it's a dynamic variable.  This check will pick
735 	 * up both thread-local variables and any global dynamically-allocated
736 	 * variables.
737 	 */
738 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
739 	    vstate->dtvs_dynvars.dtds_size)) {
740 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
741 		uintptr_t base = (uintptr_t)dstate->dtds_base +
742 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
743 		uintptr_t chunkoffs;
744 
745 		/*
746 		 * Before we assume that we can store here, we need to make
747 		 * sure that it isn't in our metadata -- storing to our
748 		 * dynamic variable metadata would corrupt our state.  For
749 		 * the range to not include any dynamic variable metadata,
750 		 * it must:
751 		 *
752 		 *	(1) Start above the hash table that is at the base of
753 		 *	the dynamic variable space
754 		 *
755 		 *	(2) Have a starting chunk offset that is beyond the
756 		 *	dtrace_dynvar_t that is at the base of every chunk
757 		 *
758 		 *	(3) Not span a chunk boundary
759 		 *
760 		 */
761 		if (addr < base)
762 			return (0);
763 
764 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
765 
766 		if (chunkoffs < sizeof (dtrace_dynvar_t))
767 			return (0);
768 
769 		if (chunkoffs + sz > dstate->dtds_chunksize)
770 			return (0);
771 
772 		return (1);
773 	}
774 
775 	/*
776 	 * Finally, check the static local and global variables.  These checks
777 	 * take the longest, so we perform them last.
778 	 */
779 	if (dtrace_canstore_statvar(addr, sz,
780 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
781 		return (1);
782 
783 	if (dtrace_canstore_statvar(addr, sz,
784 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
785 		return (1);
786 
787 	return (0);
788 }
789 
790 
791 /*
792  * Convenience routine to check to see if the address is within a memory
793  * region in which a load may be issued given the user's privilege level;
794  * if not, it sets the appropriate error flags and loads 'addr' into the
795  * illegal value slot.
796  *
797  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
798  * appropriate memory access protection.
799  */
800 static int
801 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
802     dtrace_vstate_t *vstate)
803 {
804 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
805 	file_t *fp;
806 
807 	/*
808 	 * If we hold the privilege to read from kernel memory, then
809 	 * everything is readable.
810 	 */
811 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
812 		return (1);
813 
814 	/*
815 	 * You can obviously read that which you can store.
816 	 */
817 	if (dtrace_canstore(addr, sz, mstate, vstate))
818 		return (1);
819 
820 	/*
821 	 * We're allowed to read from our own string table.
822 	 */
823 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
824 	    mstate->dtms_difo->dtdo_strlen))
825 		return (1);
826 
827 	if (vstate->dtvs_state != NULL &&
828 	    dtrace_priv_proc(vstate->dtvs_state)) {
829 		proc_t *p;
830 
831 		/*
832 		 * When we have privileges to the current process, there are
833 		 * several context-related kernel structures that are safe to
834 		 * read, even absent the privilege to read from kernel memory.
835 		 * These reads are safe because these structures contain only
836 		 * state that (1) we're permitted to read, (2) is harmless or
837 		 * (3) contains pointers to additional kernel state that we're
838 		 * not permitted to read (and as such, do not present an
839 		 * opportunity for privilege escalation).  Finally (and
840 		 * critically), because of the nature of their relation with
841 		 * the current thread context, the memory associated with these
842 		 * structures cannot change over the duration of probe context,
843 		 * and it is therefore impossible for this memory to be
844 		 * deallocated and reallocated as something else while it's
845 		 * being operated upon.
846 		 */
847 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
848 			return (1);
849 
850 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
851 		    sz, curthread->t_procp, sizeof (proc_t))) {
852 			return (1);
853 		}
854 
855 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
856 		    curthread->t_cred, sizeof (cred_t))) {
857 			return (1);
858 		}
859 
860 #ifdef illumos
861 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
862 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
863 			return (1);
864 		}
865 
866 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
867 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
868 			return (1);
869 		}
870 #endif
871 	}
872 
873 	if ((fp = mstate->dtms_getf) != NULL) {
874 		uintptr_t psz = sizeof (void *);
875 		vnode_t *vp;
876 		vnodeops_t *op;
877 
878 		/*
879 		 * When getf() returns a file_t, the enabling is implicitly
880 		 * granted the (transient) right to read the returned file_t
881 		 * as well as the v_path and v_op->vnop_name of the underlying
882 		 * vnode.  These accesses are allowed after a successful
883 		 * getf() because the members that they refer to cannot change
884 		 * once set -- and the barrier logic in the kernel's closef()
885 		 * path assures that the file_t and its referenced vode_t
886 		 * cannot themselves be stale (that is, it impossible for
887 		 * either dtms_getf itself or its f_vnode member to reference
888 		 * freed memory).
889 		 */
890 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
891 			return (1);
892 
893 		if ((vp = fp->f_vnode) != NULL) {
894 #ifdef illumos
895 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
896 				return (1);
897 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
898 			    vp->v_path, strlen(vp->v_path) + 1)) {
899 				return (1);
900 			}
901 #endif
902 
903 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
904 				return (1);
905 
906 #ifdef illumos
907 			if ((op = vp->v_op) != NULL &&
908 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
909 				return (1);
910 			}
911 
912 			if (op != NULL && op->vnop_name != NULL &&
913 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
914 			    strlen(op->vnop_name) + 1)) {
915 				return (1);
916 			}
917 #endif
918 		}
919 	}
920 
921 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
922 	*illval = addr;
923 	return (0);
924 }
925 
926 /*
927  * Convenience routine to check to see if a given string is within a memory
928  * region in which a load may be issued given the user's privilege level;
929  * this exists so that we don't need to issue unnecessary dtrace_strlen()
930  * calls in the event that the user has all privileges.
931  */
932 static int
933 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
934     dtrace_vstate_t *vstate)
935 {
936 	size_t strsz;
937 
938 	/*
939 	 * If we hold the privilege to read from kernel memory, then
940 	 * everything is readable.
941 	 */
942 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
943 		return (1);
944 
945 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
946 	if (dtrace_canload(addr, strsz, mstate, vstate))
947 		return (1);
948 
949 	return (0);
950 }
951 
952 /*
953  * Convenience routine to check to see if a given variable is within a memory
954  * region in which a load may be issued given the user's privilege level.
955  */
956 static int
957 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
958     dtrace_vstate_t *vstate)
959 {
960 	size_t sz;
961 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
962 
963 	/*
964 	 * If we hold the privilege to read from kernel memory, then
965 	 * everything is readable.
966 	 */
967 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
968 		return (1);
969 
970 	if (type->dtdt_kind == DIF_TYPE_STRING)
971 		sz = dtrace_strlen(src,
972 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
973 	else
974 		sz = type->dtdt_size;
975 
976 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
977 }
978 
979 /*
980  * Convert a string to a signed integer using safe loads.
981  *
982  * NOTE: This function uses various macros from strtolctype.h to manipulate
983  * digit values, etc -- these have all been checked to ensure they make
984  * no additional function calls.
985  */
986 static int64_t
987 dtrace_strtoll(char *input, int base, size_t limit)
988 {
989 	uintptr_t pos = (uintptr_t)input;
990 	int64_t val = 0;
991 	int x;
992 	boolean_t neg = B_FALSE;
993 	char c, cc, ccc;
994 	uintptr_t end = pos + limit;
995 
996 	/*
997 	 * Consume any whitespace preceding digits.
998 	 */
999 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1000 		pos++;
1001 
1002 	/*
1003 	 * Handle an explicit sign if one is present.
1004 	 */
1005 	if (c == '-' || c == '+') {
1006 		if (c == '-')
1007 			neg = B_TRUE;
1008 		c = dtrace_load8(++pos);
1009 	}
1010 
1011 	/*
1012 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1013 	 * if present.
1014 	 */
1015 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1016 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1017 		pos += 2;
1018 		c = ccc;
1019 	}
1020 
1021 	/*
1022 	 * Read in contiguous digits until the first non-digit character.
1023 	 */
1024 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1025 	    c = dtrace_load8(++pos))
1026 		val = val * base + x;
1027 
1028 	return (neg ? -val : val);
1029 }
1030 
1031 /*
1032  * Compare two strings using safe loads.
1033  */
1034 static int
1035 dtrace_strncmp(char *s1, char *s2, size_t limit)
1036 {
1037 	uint8_t c1, c2;
1038 	volatile uint16_t *flags;
1039 
1040 	if (s1 == s2 || limit == 0)
1041 		return (0);
1042 
1043 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1044 
1045 	do {
1046 		if (s1 == NULL) {
1047 			c1 = '\0';
1048 		} else {
1049 			c1 = dtrace_load8((uintptr_t)s1++);
1050 		}
1051 
1052 		if (s2 == NULL) {
1053 			c2 = '\0';
1054 		} else {
1055 			c2 = dtrace_load8((uintptr_t)s2++);
1056 		}
1057 
1058 		if (c1 != c2)
1059 			return (c1 - c2);
1060 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1061 
1062 	return (0);
1063 }
1064 
1065 /*
1066  * Compute strlen(s) for a string using safe memory accesses.  The additional
1067  * len parameter is used to specify a maximum length to ensure completion.
1068  */
1069 static size_t
1070 dtrace_strlen(const char *s, size_t lim)
1071 {
1072 	uint_t len;
1073 
1074 	for (len = 0; len != lim; len++) {
1075 		if (dtrace_load8((uintptr_t)s++) == '\0')
1076 			break;
1077 	}
1078 
1079 	return (len);
1080 }
1081 
1082 /*
1083  * Check if an address falls within a toxic region.
1084  */
1085 static int
1086 dtrace_istoxic(uintptr_t kaddr, size_t size)
1087 {
1088 	uintptr_t taddr, tsize;
1089 	int i;
1090 
1091 	for (i = 0; i < dtrace_toxranges; i++) {
1092 		taddr = dtrace_toxrange[i].dtt_base;
1093 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1094 
1095 		if (kaddr - taddr < tsize) {
1096 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1097 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1098 			return (1);
1099 		}
1100 
1101 		if (taddr - kaddr < size) {
1102 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1103 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1104 			return (1);
1105 		}
1106 	}
1107 
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1113  * memory specified by the DIF program.  The dst is assumed to be safe memory
1114  * that we can store to directly because it is managed by DTrace.  As with
1115  * standard bcopy, overlapping copies are handled properly.
1116  */
1117 static void
1118 dtrace_bcopy(const void *src, void *dst, size_t len)
1119 {
1120 	if (len != 0) {
1121 		uint8_t *s1 = dst;
1122 		const uint8_t *s2 = src;
1123 
1124 		if (s1 <= s2) {
1125 			do {
1126 				*s1++ = dtrace_load8((uintptr_t)s2++);
1127 			} while (--len != 0);
1128 		} else {
1129 			s2 += len;
1130 			s1 += len;
1131 
1132 			do {
1133 				*--s1 = dtrace_load8((uintptr_t)--s2);
1134 			} while (--len != 0);
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * Copy src to dst using safe memory accesses, up to either the specified
1141  * length, or the point that a nul byte is encountered.  The src is assumed to
1142  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1143  * safe memory that we can store to directly because it is managed by DTrace.
1144  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1145  */
1146 static void
1147 dtrace_strcpy(const void *src, void *dst, size_t len)
1148 {
1149 	if (len != 0) {
1150 		uint8_t *s1 = dst, c;
1151 		const uint8_t *s2 = src;
1152 
1153 		do {
1154 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1155 		} while (--len != 0 && c != '\0');
1156 	}
1157 }
1158 
1159 /*
1160  * Copy src to dst, deriving the size and type from the specified (BYREF)
1161  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1162  * program.  The dst is assumed to be DTrace variable memory that is of the
1163  * specified type; we assume that we can store to directly.
1164  */
1165 static void
1166 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1167 {
1168 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1169 
1170 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1171 		dtrace_strcpy(src, dst, type->dtdt_size);
1172 	} else {
1173 		dtrace_bcopy(src, dst, type->dtdt_size);
1174 	}
1175 }
1176 
1177 /*
1178  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1179  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1180  * safe memory that we can access directly because it is managed by DTrace.
1181  */
1182 static int
1183 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1184 {
1185 	volatile uint16_t *flags;
1186 
1187 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1188 
1189 	if (s1 == s2)
1190 		return (0);
1191 
1192 	if (s1 == NULL || s2 == NULL)
1193 		return (1);
1194 
1195 	if (s1 != s2 && len != 0) {
1196 		const uint8_t *ps1 = s1;
1197 		const uint8_t *ps2 = s2;
1198 
1199 		do {
1200 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1201 				return (1);
1202 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1203 	}
1204 	return (0);
1205 }
1206 
1207 /*
1208  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1209  * is for safe DTrace-managed memory only.
1210  */
1211 static void
1212 dtrace_bzero(void *dst, size_t len)
1213 {
1214 	uchar_t *cp;
1215 
1216 	for (cp = dst; len != 0; len--)
1217 		*cp++ = 0;
1218 }
1219 
1220 static void
1221 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1222 {
1223 	uint64_t result[2];
1224 
1225 	result[0] = addend1[0] + addend2[0];
1226 	result[1] = addend1[1] + addend2[1] +
1227 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1228 
1229 	sum[0] = result[0];
1230 	sum[1] = result[1];
1231 }
1232 
1233 /*
1234  * Shift the 128-bit value in a by b. If b is positive, shift left.
1235  * If b is negative, shift right.
1236  */
1237 static void
1238 dtrace_shift_128(uint64_t *a, int b)
1239 {
1240 	uint64_t mask;
1241 
1242 	if (b == 0)
1243 		return;
1244 
1245 	if (b < 0) {
1246 		b = -b;
1247 		if (b >= 64) {
1248 			a[0] = a[1] >> (b - 64);
1249 			a[1] = 0;
1250 		} else {
1251 			a[0] >>= b;
1252 			mask = 1LL << (64 - b);
1253 			mask -= 1;
1254 			a[0] |= ((a[1] & mask) << (64 - b));
1255 			a[1] >>= b;
1256 		}
1257 	} else {
1258 		if (b >= 64) {
1259 			a[1] = a[0] << (b - 64);
1260 			a[0] = 0;
1261 		} else {
1262 			a[1] <<= b;
1263 			mask = a[0] >> (64 - b);
1264 			a[1] |= mask;
1265 			a[0] <<= b;
1266 		}
1267 	}
1268 }
1269 
1270 /*
1271  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1272  * use native multiplication on those, and then re-combine into the
1273  * resulting 128-bit value.
1274  *
1275  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1276  *     hi1 * hi2 << 64 +
1277  *     hi1 * lo2 << 32 +
1278  *     hi2 * lo1 << 32 +
1279  *     lo1 * lo2
1280  */
1281 static void
1282 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1283 {
1284 	uint64_t hi1, hi2, lo1, lo2;
1285 	uint64_t tmp[2];
1286 
1287 	hi1 = factor1 >> 32;
1288 	hi2 = factor2 >> 32;
1289 
1290 	lo1 = factor1 & DT_MASK_LO;
1291 	lo2 = factor2 & DT_MASK_LO;
1292 
1293 	product[0] = lo1 * lo2;
1294 	product[1] = hi1 * hi2;
1295 
1296 	tmp[0] = hi1 * lo2;
1297 	tmp[1] = 0;
1298 	dtrace_shift_128(tmp, 32);
1299 	dtrace_add_128(product, tmp, product);
1300 
1301 	tmp[0] = hi2 * lo1;
1302 	tmp[1] = 0;
1303 	dtrace_shift_128(tmp, 32);
1304 	dtrace_add_128(product, tmp, product);
1305 }
1306 
1307 /*
1308  * This privilege check should be used by actions and subroutines to
1309  * verify that the user credentials of the process that enabled the
1310  * invoking ECB match the target credentials
1311  */
1312 static int
1313 dtrace_priv_proc_common_user(dtrace_state_t *state)
1314 {
1315 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1316 
1317 	/*
1318 	 * We should always have a non-NULL state cred here, since if cred
1319 	 * is null (anonymous tracing), we fast-path bypass this routine.
1320 	 */
1321 	ASSERT(s_cr != NULL);
1322 
1323 	if ((cr = CRED()) != NULL &&
1324 	    s_cr->cr_uid == cr->cr_uid &&
1325 	    s_cr->cr_uid == cr->cr_ruid &&
1326 	    s_cr->cr_uid == cr->cr_suid &&
1327 	    s_cr->cr_gid == cr->cr_gid &&
1328 	    s_cr->cr_gid == cr->cr_rgid &&
1329 	    s_cr->cr_gid == cr->cr_sgid)
1330 		return (1);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * This privilege check should be used by actions and subroutines to
1337  * verify that the zone of the process that enabled the invoking ECB
1338  * matches the target credentials
1339  */
1340 static int
1341 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1342 {
1343 #ifdef illumos
1344 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1345 
1346 	/*
1347 	 * We should always have a non-NULL state cred here, since if cred
1348 	 * is null (anonymous tracing), we fast-path bypass this routine.
1349 	 */
1350 	ASSERT(s_cr != NULL);
1351 
1352 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1353 		return (1);
1354 
1355 	return (0);
1356 #else
1357 	return (1);
1358 #endif
1359 }
1360 
1361 /*
1362  * This privilege check should be used by actions and subroutines to
1363  * verify that the process has not setuid or changed credentials.
1364  */
1365 static int
1366 dtrace_priv_proc_common_nocd(void)
1367 {
1368 	proc_t *proc;
1369 
1370 	if ((proc = ttoproc(curthread)) != NULL &&
1371 	    !(proc->p_flag & SNOCD))
1372 		return (1);
1373 
1374 	return (0);
1375 }
1376 
1377 static int
1378 dtrace_priv_proc_destructive(dtrace_state_t *state)
1379 {
1380 	int action = state->dts_cred.dcr_action;
1381 
1382 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1383 	    dtrace_priv_proc_common_zone(state) == 0)
1384 		goto bad;
1385 
1386 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1387 	    dtrace_priv_proc_common_user(state) == 0)
1388 		goto bad;
1389 
1390 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1391 	    dtrace_priv_proc_common_nocd() == 0)
1392 		goto bad;
1393 
1394 	return (1);
1395 
1396 bad:
1397 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1398 
1399 	return (0);
1400 }
1401 
1402 static int
1403 dtrace_priv_proc_control(dtrace_state_t *state)
1404 {
1405 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1406 		return (1);
1407 
1408 	if (dtrace_priv_proc_common_zone(state) &&
1409 	    dtrace_priv_proc_common_user(state) &&
1410 	    dtrace_priv_proc_common_nocd())
1411 		return (1);
1412 
1413 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1414 
1415 	return (0);
1416 }
1417 
1418 static int
1419 dtrace_priv_proc(dtrace_state_t *state)
1420 {
1421 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1422 		return (1);
1423 
1424 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1425 
1426 	return (0);
1427 }
1428 
1429 static int
1430 dtrace_priv_kernel(dtrace_state_t *state)
1431 {
1432 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1433 		return (1);
1434 
1435 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1436 
1437 	return (0);
1438 }
1439 
1440 static int
1441 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1442 {
1443 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1444 		return (1);
1445 
1446 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1447 
1448 	return (0);
1449 }
1450 
1451 /*
1452  * Determine if the dte_cond of the specified ECB allows for processing of
1453  * the current probe to continue.  Note that this routine may allow continued
1454  * processing, but with access(es) stripped from the mstate's dtms_access
1455  * field.
1456  */
1457 static int
1458 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1459     dtrace_ecb_t *ecb)
1460 {
1461 	dtrace_probe_t *probe = ecb->dte_probe;
1462 	dtrace_provider_t *prov = probe->dtpr_provider;
1463 	dtrace_pops_t *pops = &prov->dtpv_pops;
1464 	int mode = DTRACE_MODE_NOPRIV_DROP;
1465 
1466 	ASSERT(ecb->dte_cond);
1467 
1468 #ifdef illumos
1469 	if (pops->dtps_mode != NULL) {
1470 		mode = pops->dtps_mode(prov->dtpv_arg,
1471 		    probe->dtpr_id, probe->dtpr_arg);
1472 
1473 		ASSERT((mode & DTRACE_MODE_USER) ||
1474 		    (mode & DTRACE_MODE_KERNEL));
1475 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1476 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1477 	}
1478 
1479 	/*
1480 	 * If the dte_cond bits indicate that this consumer is only allowed to
1481 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1482 	 * entry point to check that the probe was fired while in a user
1483 	 * context.  If that's not the case, use the policy specified by the
1484 	 * provider to determine if we drop the probe or merely restrict
1485 	 * operation.
1486 	 */
1487 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1488 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1489 
1490 		if (!(mode & DTRACE_MODE_USER)) {
1491 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1492 				return (0);
1493 
1494 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1495 		}
1496 	}
1497 #endif
1498 
1499 	/*
1500 	 * This is more subtle than it looks. We have to be absolutely certain
1501 	 * that CRED() isn't going to change out from under us so it's only
1502 	 * legit to examine that structure if we're in constrained situations.
1503 	 * Currently, the only times we'll this check is if a non-super-user
1504 	 * has enabled the profile or syscall providers -- providers that
1505 	 * allow visibility of all processes. For the profile case, the check
1506 	 * above will ensure that we're examining a user context.
1507 	 */
1508 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1509 		cred_t *cr;
1510 		cred_t *s_cr = state->dts_cred.dcr_cred;
1511 		proc_t *proc;
1512 
1513 		ASSERT(s_cr != NULL);
1514 
1515 		if ((cr = CRED()) == NULL ||
1516 		    s_cr->cr_uid != cr->cr_uid ||
1517 		    s_cr->cr_uid != cr->cr_ruid ||
1518 		    s_cr->cr_uid != cr->cr_suid ||
1519 		    s_cr->cr_gid != cr->cr_gid ||
1520 		    s_cr->cr_gid != cr->cr_rgid ||
1521 		    s_cr->cr_gid != cr->cr_sgid ||
1522 		    (proc = ttoproc(curthread)) == NULL ||
1523 		    (proc->p_flag & SNOCD)) {
1524 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1525 				return (0);
1526 
1527 #ifdef illumos
1528 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1529 #endif
1530 		}
1531 	}
1532 
1533 #ifdef illumos
1534 	/*
1535 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1536 	 * in our zone, check to see if our mode policy is to restrict rather
1537 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1538 	 * and DTRACE_ACCESS_ARGS
1539 	 */
1540 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1541 		cred_t *cr;
1542 		cred_t *s_cr = state->dts_cred.dcr_cred;
1543 
1544 		ASSERT(s_cr != NULL);
1545 
1546 		if ((cr = CRED()) == NULL ||
1547 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1548 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1549 				return (0);
1550 
1551 			mstate->dtms_access &=
1552 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1553 		}
1554 	}
1555 #endif
1556 
1557 	return (1);
1558 }
1559 
1560 /*
1561  * Note:  not called from probe context.  This function is called
1562  * asynchronously (and at a regular interval) from outside of probe context to
1563  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1564  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1565  */
1566 void
1567 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1568 {
1569 	dtrace_dynvar_t *dirty;
1570 	dtrace_dstate_percpu_t *dcpu;
1571 	dtrace_dynvar_t **rinsep;
1572 	int i, j, work = 0;
1573 
1574 	for (i = 0; i < NCPU; i++) {
1575 		dcpu = &dstate->dtds_percpu[i];
1576 		rinsep = &dcpu->dtdsc_rinsing;
1577 
1578 		/*
1579 		 * If the dirty list is NULL, there is no dirty work to do.
1580 		 */
1581 		if (dcpu->dtdsc_dirty == NULL)
1582 			continue;
1583 
1584 		if (dcpu->dtdsc_rinsing != NULL) {
1585 			/*
1586 			 * If the rinsing list is non-NULL, then it is because
1587 			 * this CPU was selected to accept another CPU's
1588 			 * dirty list -- and since that time, dirty buffers
1589 			 * have accumulated.  This is a highly unlikely
1590 			 * condition, but we choose to ignore the dirty
1591 			 * buffers -- they'll be picked up a future cleanse.
1592 			 */
1593 			continue;
1594 		}
1595 
1596 		if (dcpu->dtdsc_clean != NULL) {
1597 			/*
1598 			 * If the clean list is non-NULL, then we're in a
1599 			 * situation where a CPU has done deallocations (we
1600 			 * have a non-NULL dirty list) but no allocations (we
1601 			 * also have a non-NULL clean list).  We can't simply
1602 			 * move the dirty list into the clean list on this
1603 			 * CPU, yet we also don't want to allow this condition
1604 			 * to persist, lest a short clean list prevent a
1605 			 * massive dirty list from being cleaned (which in
1606 			 * turn could lead to otherwise avoidable dynamic
1607 			 * drops).  To deal with this, we look for some CPU
1608 			 * with a NULL clean list, NULL dirty list, and NULL
1609 			 * rinsing list -- and then we borrow this CPU to
1610 			 * rinse our dirty list.
1611 			 */
1612 			for (j = 0; j < NCPU; j++) {
1613 				dtrace_dstate_percpu_t *rinser;
1614 
1615 				rinser = &dstate->dtds_percpu[j];
1616 
1617 				if (rinser->dtdsc_rinsing != NULL)
1618 					continue;
1619 
1620 				if (rinser->dtdsc_dirty != NULL)
1621 					continue;
1622 
1623 				if (rinser->dtdsc_clean != NULL)
1624 					continue;
1625 
1626 				rinsep = &rinser->dtdsc_rinsing;
1627 				break;
1628 			}
1629 
1630 			if (j == NCPU) {
1631 				/*
1632 				 * We were unable to find another CPU that
1633 				 * could accept this dirty list -- we are
1634 				 * therefore unable to clean it now.
1635 				 */
1636 				dtrace_dynvar_failclean++;
1637 				continue;
1638 			}
1639 		}
1640 
1641 		work = 1;
1642 
1643 		/*
1644 		 * Atomically move the dirty list aside.
1645 		 */
1646 		do {
1647 			dirty = dcpu->dtdsc_dirty;
1648 
1649 			/*
1650 			 * Before we zap the dirty list, set the rinsing list.
1651 			 * (This allows for a potential assertion in
1652 			 * dtrace_dynvar():  if a free dynamic variable appears
1653 			 * on a hash chain, either the dirty list or the
1654 			 * rinsing list for some CPU must be non-NULL.)
1655 			 */
1656 			*rinsep = dirty;
1657 			dtrace_membar_producer();
1658 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1659 		    dirty, NULL) != dirty);
1660 	}
1661 
1662 	if (!work) {
1663 		/*
1664 		 * We have no work to do; we can simply return.
1665 		 */
1666 		return;
1667 	}
1668 
1669 	dtrace_sync();
1670 
1671 	for (i = 0; i < NCPU; i++) {
1672 		dcpu = &dstate->dtds_percpu[i];
1673 
1674 		if (dcpu->dtdsc_rinsing == NULL)
1675 			continue;
1676 
1677 		/*
1678 		 * We are now guaranteed that no hash chain contains a pointer
1679 		 * into this dirty list; we can make it clean.
1680 		 */
1681 		ASSERT(dcpu->dtdsc_clean == NULL);
1682 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1683 		dcpu->dtdsc_rinsing = NULL;
1684 	}
1685 
1686 	/*
1687 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1688 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1689 	 * This prevents a race whereby a CPU incorrectly decides that
1690 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1691 	 * after dtrace_dynvar_clean() has completed.
1692 	 */
1693 	dtrace_sync();
1694 
1695 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1696 }
1697 
1698 /*
1699  * Depending on the value of the op parameter, this function looks-up,
1700  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1701  * allocation is requested, this function will return a pointer to a
1702  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1703  * variable can be allocated.  If NULL is returned, the appropriate counter
1704  * will be incremented.
1705  */
1706 dtrace_dynvar_t *
1707 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1708     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1709     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1710 {
1711 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1712 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1713 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1714 	processorid_t me = curcpu, cpu = me;
1715 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1716 	size_t bucket, ksize;
1717 	size_t chunksize = dstate->dtds_chunksize;
1718 	uintptr_t kdata, lock, nstate;
1719 	uint_t i;
1720 
1721 	ASSERT(nkeys != 0);
1722 
1723 	/*
1724 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1725 	 * algorithm.  For the by-value portions, we perform the algorithm in
1726 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1727 	 * bit, and seems to have only a minute effect on distribution.  For
1728 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1729 	 * over each referenced byte.  It's painful to do this, but it's much
1730 	 * better than pathological hash distribution.  The efficacy of the
1731 	 * hashing algorithm (and a comparison with other algorithms) may be
1732 	 * found by running the ::dtrace_dynstat MDB dcmd.
1733 	 */
1734 	for (i = 0; i < nkeys; i++) {
1735 		if (key[i].dttk_size == 0) {
1736 			uint64_t val = key[i].dttk_value;
1737 
1738 			hashval += (val >> 48) & 0xffff;
1739 			hashval += (hashval << 10);
1740 			hashval ^= (hashval >> 6);
1741 
1742 			hashval += (val >> 32) & 0xffff;
1743 			hashval += (hashval << 10);
1744 			hashval ^= (hashval >> 6);
1745 
1746 			hashval += (val >> 16) & 0xffff;
1747 			hashval += (hashval << 10);
1748 			hashval ^= (hashval >> 6);
1749 
1750 			hashval += val & 0xffff;
1751 			hashval += (hashval << 10);
1752 			hashval ^= (hashval >> 6);
1753 		} else {
1754 			/*
1755 			 * This is incredibly painful, but it beats the hell
1756 			 * out of the alternative.
1757 			 */
1758 			uint64_t j, size = key[i].dttk_size;
1759 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1760 
1761 			if (!dtrace_canload(base, size, mstate, vstate))
1762 				break;
1763 
1764 			for (j = 0; j < size; j++) {
1765 				hashval += dtrace_load8(base + j);
1766 				hashval += (hashval << 10);
1767 				hashval ^= (hashval >> 6);
1768 			}
1769 		}
1770 	}
1771 
1772 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1773 		return (NULL);
1774 
1775 	hashval += (hashval << 3);
1776 	hashval ^= (hashval >> 11);
1777 	hashval += (hashval << 15);
1778 
1779 	/*
1780 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1781 	 * comes out to be one of our two sentinel hash values.  If this
1782 	 * actually happens, we set the hashval to be a value known to be a
1783 	 * non-sentinel value.
1784 	 */
1785 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1786 		hashval = DTRACE_DYNHASH_VALID;
1787 
1788 	/*
1789 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1790 	 * important here, tricks can be pulled to reduce it.  (However, it's
1791 	 * critical that hash collisions be kept to an absolute minimum;
1792 	 * they're much more painful than a divide.)  It's better to have a
1793 	 * solution that generates few collisions and still keeps things
1794 	 * relatively simple.
1795 	 */
1796 	bucket = hashval % dstate->dtds_hashsize;
1797 
1798 	if (op == DTRACE_DYNVAR_DEALLOC) {
1799 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1800 
1801 		for (;;) {
1802 			while ((lock = *lockp) & 1)
1803 				continue;
1804 
1805 			if (dtrace_casptr((volatile void *)lockp,
1806 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1807 				break;
1808 		}
1809 
1810 		dtrace_membar_producer();
1811 	}
1812 
1813 top:
1814 	prev = NULL;
1815 	lock = hash[bucket].dtdh_lock;
1816 
1817 	dtrace_membar_consumer();
1818 
1819 	start = hash[bucket].dtdh_chain;
1820 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1821 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1822 	    op != DTRACE_DYNVAR_DEALLOC));
1823 
1824 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1825 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1826 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1827 
1828 		if (dvar->dtdv_hashval != hashval) {
1829 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1830 				/*
1831 				 * We've reached the sink, and therefore the
1832 				 * end of the hash chain; we can kick out of
1833 				 * the loop knowing that we have seen a valid
1834 				 * snapshot of state.
1835 				 */
1836 				ASSERT(dvar->dtdv_next == NULL);
1837 				ASSERT(dvar == &dtrace_dynhash_sink);
1838 				break;
1839 			}
1840 
1841 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1842 				/*
1843 				 * We've gone off the rails:  somewhere along
1844 				 * the line, one of the members of this hash
1845 				 * chain was deleted.  Note that we could also
1846 				 * detect this by simply letting this loop run
1847 				 * to completion, as we would eventually hit
1848 				 * the end of the dirty list.  However, we
1849 				 * want to avoid running the length of the
1850 				 * dirty list unnecessarily (it might be quite
1851 				 * long), so we catch this as early as
1852 				 * possible by detecting the hash marker.  In
1853 				 * this case, we simply set dvar to NULL and
1854 				 * break; the conditional after the loop will
1855 				 * send us back to top.
1856 				 */
1857 				dvar = NULL;
1858 				break;
1859 			}
1860 
1861 			goto next;
1862 		}
1863 
1864 		if (dtuple->dtt_nkeys != nkeys)
1865 			goto next;
1866 
1867 		for (i = 0; i < nkeys; i++, dkey++) {
1868 			if (dkey->dttk_size != key[i].dttk_size)
1869 				goto next; /* size or type mismatch */
1870 
1871 			if (dkey->dttk_size != 0) {
1872 				if (dtrace_bcmp(
1873 				    (void *)(uintptr_t)key[i].dttk_value,
1874 				    (void *)(uintptr_t)dkey->dttk_value,
1875 				    dkey->dttk_size))
1876 					goto next;
1877 			} else {
1878 				if (dkey->dttk_value != key[i].dttk_value)
1879 					goto next;
1880 			}
1881 		}
1882 
1883 		if (op != DTRACE_DYNVAR_DEALLOC)
1884 			return (dvar);
1885 
1886 		ASSERT(dvar->dtdv_next == NULL ||
1887 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1888 
1889 		if (prev != NULL) {
1890 			ASSERT(hash[bucket].dtdh_chain != dvar);
1891 			ASSERT(start != dvar);
1892 			ASSERT(prev->dtdv_next == dvar);
1893 			prev->dtdv_next = dvar->dtdv_next;
1894 		} else {
1895 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1896 			    start, dvar->dtdv_next) != start) {
1897 				/*
1898 				 * We have failed to atomically swing the
1899 				 * hash table head pointer, presumably because
1900 				 * of a conflicting allocation on another CPU.
1901 				 * We need to reread the hash chain and try
1902 				 * again.
1903 				 */
1904 				goto top;
1905 			}
1906 		}
1907 
1908 		dtrace_membar_producer();
1909 
1910 		/*
1911 		 * Now set the hash value to indicate that it's free.
1912 		 */
1913 		ASSERT(hash[bucket].dtdh_chain != dvar);
1914 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1915 
1916 		dtrace_membar_producer();
1917 
1918 		/*
1919 		 * Set the next pointer to point at the dirty list, and
1920 		 * atomically swing the dirty pointer to the newly freed dvar.
1921 		 */
1922 		do {
1923 			next = dcpu->dtdsc_dirty;
1924 			dvar->dtdv_next = next;
1925 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1926 
1927 		/*
1928 		 * Finally, unlock this hash bucket.
1929 		 */
1930 		ASSERT(hash[bucket].dtdh_lock == lock);
1931 		ASSERT(lock & 1);
1932 		hash[bucket].dtdh_lock++;
1933 
1934 		return (NULL);
1935 next:
1936 		prev = dvar;
1937 		continue;
1938 	}
1939 
1940 	if (dvar == NULL) {
1941 		/*
1942 		 * If dvar is NULL, it is because we went off the rails:
1943 		 * one of the elements that we traversed in the hash chain
1944 		 * was deleted while we were traversing it.  In this case,
1945 		 * we assert that we aren't doing a dealloc (deallocs lock
1946 		 * the hash bucket to prevent themselves from racing with
1947 		 * one another), and retry the hash chain traversal.
1948 		 */
1949 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1950 		goto top;
1951 	}
1952 
1953 	if (op != DTRACE_DYNVAR_ALLOC) {
1954 		/*
1955 		 * If we are not to allocate a new variable, we want to
1956 		 * return NULL now.  Before we return, check that the value
1957 		 * of the lock word hasn't changed.  If it has, we may have
1958 		 * seen an inconsistent snapshot.
1959 		 */
1960 		if (op == DTRACE_DYNVAR_NOALLOC) {
1961 			if (hash[bucket].dtdh_lock != lock)
1962 				goto top;
1963 		} else {
1964 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1965 			ASSERT(hash[bucket].dtdh_lock == lock);
1966 			ASSERT(lock & 1);
1967 			hash[bucket].dtdh_lock++;
1968 		}
1969 
1970 		return (NULL);
1971 	}
1972 
1973 	/*
1974 	 * We need to allocate a new dynamic variable.  The size we need is the
1975 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1976 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1977 	 * the size of any referred-to data (dsize).  We then round the final
1978 	 * size up to the chunksize for allocation.
1979 	 */
1980 	for (ksize = 0, i = 0; i < nkeys; i++)
1981 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1982 
1983 	/*
1984 	 * This should be pretty much impossible, but could happen if, say,
1985 	 * strange DIF specified the tuple.  Ideally, this should be an
1986 	 * assertion and not an error condition -- but that requires that the
1987 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1988 	 * bullet-proof.  (That is, it must not be able to be fooled by
1989 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1990 	 * solving this would presumably not amount to solving the Halting
1991 	 * Problem -- but it still seems awfully hard.
1992 	 */
1993 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1994 	    ksize + dsize > chunksize) {
1995 		dcpu->dtdsc_drops++;
1996 		return (NULL);
1997 	}
1998 
1999 	nstate = DTRACE_DSTATE_EMPTY;
2000 
2001 	do {
2002 retry:
2003 		free = dcpu->dtdsc_free;
2004 
2005 		if (free == NULL) {
2006 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2007 			void *rval;
2008 
2009 			if (clean == NULL) {
2010 				/*
2011 				 * We're out of dynamic variable space on
2012 				 * this CPU.  Unless we have tried all CPUs,
2013 				 * we'll try to allocate from a different
2014 				 * CPU.
2015 				 */
2016 				switch (dstate->dtds_state) {
2017 				case DTRACE_DSTATE_CLEAN: {
2018 					void *sp = &dstate->dtds_state;
2019 
2020 					if (++cpu >= NCPU)
2021 						cpu = 0;
2022 
2023 					if (dcpu->dtdsc_dirty != NULL &&
2024 					    nstate == DTRACE_DSTATE_EMPTY)
2025 						nstate = DTRACE_DSTATE_DIRTY;
2026 
2027 					if (dcpu->dtdsc_rinsing != NULL)
2028 						nstate = DTRACE_DSTATE_RINSING;
2029 
2030 					dcpu = &dstate->dtds_percpu[cpu];
2031 
2032 					if (cpu != me)
2033 						goto retry;
2034 
2035 					(void) dtrace_cas32(sp,
2036 					    DTRACE_DSTATE_CLEAN, nstate);
2037 
2038 					/*
2039 					 * To increment the correct bean
2040 					 * counter, take another lap.
2041 					 */
2042 					goto retry;
2043 				}
2044 
2045 				case DTRACE_DSTATE_DIRTY:
2046 					dcpu->dtdsc_dirty_drops++;
2047 					break;
2048 
2049 				case DTRACE_DSTATE_RINSING:
2050 					dcpu->dtdsc_rinsing_drops++;
2051 					break;
2052 
2053 				case DTRACE_DSTATE_EMPTY:
2054 					dcpu->dtdsc_drops++;
2055 					break;
2056 				}
2057 
2058 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2059 				return (NULL);
2060 			}
2061 
2062 			/*
2063 			 * The clean list appears to be non-empty.  We want to
2064 			 * move the clean list to the free list; we start by
2065 			 * moving the clean pointer aside.
2066 			 */
2067 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2068 			    clean, NULL) != clean) {
2069 				/*
2070 				 * We are in one of two situations:
2071 				 *
2072 				 *  (a)	The clean list was switched to the
2073 				 *	free list by another CPU.
2074 				 *
2075 				 *  (b)	The clean list was added to by the
2076 				 *	cleansing cyclic.
2077 				 *
2078 				 * In either of these situations, we can
2079 				 * just reattempt the free list allocation.
2080 				 */
2081 				goto retry;
2082 			}
2083 
2084 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2085 
2086 			/*
2087 			 * Now we'll move the clean list to our free list.
2088 			 * It's impossible for this to fail:  the only way
2089 			 * the free list can be updated is through this
2090 			 * code path, and only one CPU can own the clean list.
2091 			 * Thus, it would only be possible for this to fail if
2092 			 * this code were racing with dtrace_dynvar_clean().
2093 			 * (That is, if dtrace_dynvar_clean() updated the clean
2094 			 * list, and we ended up racing to update the free
2095 			 * list.)  This race is prevented by the dtrace_sync()
2096 			 * in dtrace_dynvar_clean() -- which flushes the
2097 			 * owners of the clean lists out before resetting
2098 			 * the clean lists.
2099 			 */
2100 			dcpu = &dstate->dtds_percpu[me];
2101 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2102 			ASSERT(rval == NULL);
2103 			goto retry;
2104 		}
2105 
2106 		dvar = free;
2107 		new_free = dvar->dtdv_next;
2108 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2109 
2110 	/*
2111 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2112 	 * tuple array and copy any referenced key data into the data space
2113 	 * following the tuple array.  As we do this, we relocate dttk_value
2114 	 * in the final tuple to point to the key data address in the chunk.
2115 	 */
2116 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2117 	dvar->dtdv_data = (void *)(kdata + ksize);
2118 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2119 
2120 	for (i = 0; i < nkeys; i++) {
2121 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2122 		size_t kesize = key[i].dttk_size;
2123 
2124 		if (kesize != 0) {
2125 			dtrace_bcopy(
2126 			    (const void *)(uintptr_t)key[i].dttk_value,
2127 			    (void *)kdata, kesize);
2128 			dkey->dttk_value = kdata;
2129 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2130 		} else {
2131 			dkey->dttk_value = key[i].dttk_value;
2132 		}
2133 
2134 		dkey->dttk_size = kesize;
2135 	}
2136 
2137 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2138 	dvar->dtdv_hashval = hashval;
2139 	dvar->dtdv_next = start;
2140 
2141 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2142 		return (dvar);
2143 
2144 	/*
2145 	 * The cas has failed.  Either another CPU is adding an element to
2146 	 * this hash chain, or another CPU is deleting an element from this
2147 	 * hash chain.  The simplest way to deal with both of these cases
2148 	 * (though not necessarily the most efficient) is to free our
2149 	 * allocated block and tail-call ourselves.  Note that the free is
2150 	 * to the dirty list and _not_ to the free list.  This is to prevent
2151 	 * races with allocators, above.
2152 	 */
2153 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2154 
2155 	dtrace_membar_producer();
2156 
2157 	do {
2158 		free = dcpu->dtdsc_dirty;
2159 		dvar->dtdv_next = free;
2160 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2161 
2162 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2163 }
2164 
2165 /*ARGSUSED*/
2166 static void
2167 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2168 {
2169 	if ((int64_t)nval < (int64_t)*oval)
2170 		*oval = nval;
2171 }
2172 
2173 /*ARGSUSED*/
2174 static void
2175 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2176 {
2177 	if ((int64_t)nval > (int64_t)*oval)
2178 		*oval = nval;
2179 }
2180 
2181 static void
2182 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2183 {
2184 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2185 	int64_t val = (int64_t)nval;
2186 
2187 	if (val < 0) {
2188 		for (i = 0; i < zero; i++) {
2189 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2190 				quanta[i] += incr;
2191 				return;
2192 			}
2193 		}
2194 	} else {
2195 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2196 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2197 				quanta[i - 1] += incr;
2198 				return;
2199 			}
2200 		}
2201 
2202 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2203 		return;
2204 	}
2205 
2206 	ASSERT(0);
2207 }
2208 
2209 static void
2210 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2211 {
2212 	uint64_t arg = *lquanta++;
2213 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2214 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2215 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2216 	int32_t val = (int32_t)nval, level;
2217 
2218 	ASSERT(step != 0);
2219 	ASSERT(levels != 0);
2220 
2221 	if (val < base) {
2222 		/*
2223 		 * This is an underflow.
2224 		 */
2225 		lquanta[0] += incr;
2226 		return;
2227 	}
2228 
2229 	level = (val - base) / step;
2230 
2231 	if (level < levels) {
2232 		lquanta[level + 1] += incr;
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * This is an overflow.
2238 	 */
2239 	lquanta[levels + 1] += incr;
2240 }
2241 
2242 static int
2243 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2244     uint16_t high, uint16_t nsteps, int64_t value)
2245 {
2246 	int64_t this = 1, last, next;
2247 	int base = 1, order;
2248 
2249 	ASSERT(factor <= nsteps);
2250 	ASSERT(nsteps % factor == 0);
2251 
2252 	for (order = 0; order < low; order++)
2253 		this *= factor;
2254 
2255 	/*
2256 	 * If our value is less than our factor taken to the power of the
2257 	 * low order of magnitude, it goes into the zeroth bucket.
2258 	 */
2259 	if (value < (last = this))
2260 		return (0);
2261 
2262 	for (this *= factor; order <= high; order++) {
2263 		int nbuckets = this > nsteps ? nsteps : this;
2264 
2265 		if ((next = this * factor) < this) {
2266 			/*
2267 			 * We should not generally get log/linear quantizations
2268 			 * with a high magnitude that allows 64-bits to
2269 			 * overflow, but we nonetheless protect against this
2270 			 * by explicitly checking for overflow, and clamping
2271 			 * our value accordingly.
2272 			 */
2273 			value = this - 1;
2274 		}
2275 
2276 		if (value < this) {
2277 			/*
2278 			 * If our value lies within this order of magnitude,
2279 			 * determine its position by taking the offset within
2280 			 * the order of magnitude, dividing by the bucket
2281 			 * width, and adding to our (accumulated) base.
2282 			 */
2283 			return (base + (value - last) / (this / nbuckets));
2284 		}
2285 
2286 		base += nbuckets - (nbuckets / factor);
2287 		last = this;
2288 		this = next;
2289 	}
2290 
2291 	/*
2292 	 * Our value is greater than or equal to our factor taken to the
2293 	 * power of one plus the high magnitude -- return the top bucket.
2294 	 */
2295 	return (base);
2296 }
2297 
2298 static void
2299 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2300 {
2301 	uint64_t arg = *llquanta++;
2302 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2303 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2304 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2305 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2306 
2307 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2308 	    low, high, nsteps, nval)] += incr;
2309 }
2310 
2311 /*ARGSUSED*/
2312 static void
2313 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2314 {
2315 	data[0]++;
2316 	data[1] += nval;
2317 }
2318 
2319 /*ARGSUSED*/
2320 static void
2321 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2322 {
2323 	int64_t snval = (int64_t)nval;
2324 	uint64_t tmp[2];
2325 
2326 	data[0]++;
2327 	data[1] += nval;
2328 
2329 	/*
2330 	 * What we want to say here is:
2331 	 *
2332 	 * data[2] += nval * nval;
2333 	 *
2334 	 * But given that nval is 64-bit, we could easily overflow, so
2335 	 * we do this as 128-bit arithmetic.
2336 	 */
2337 	if (snval < 0)
2338 		snval = -snval;
2339 
2340 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2341 	dtrace_add_128(data + 2, tmp, data + 2);
2342 }
2343 
2344 /*ARGSUSED*/
2345 static void
2346 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2347 {
2348 	*oval = *oval + 1;
2349 }
2350 
2351 /*ARGSUSED*/
2352 static void
2353 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2354 {
2355 	*oval += nval;
2356 }
2357 
2358 /*
2359  * Aggregate given the tuple in the principal data buffer, and the aggregating
2360  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2361  * buffer is specified as the buf parameter.  This routine does not return
2362  * failure; if there is no space in the aggregation buffer, the data will be
2363  * dropped, and a corresponding counter incremented.
2364  */
2365 static void
2366 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2367     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2368 {
2369 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2370 	uint32_t i, ndx, size, fsize;
2371 	uint32_t align = sizeof (uint64_t) - 1;
2372 	dtrace_aggbuffer_t *agb;
2373 	dtrace_aggkey_t *key;
2374 	uint32_t hashval = 0, limit, isstr;
2375 	caddr_t tomax, data, kdata;
2376 	dtrace_actkind_t action;
2377 	dtrace_action_t *act;
2378 	uintptr_t offs;
2379 
2380 	if (buf == NULL)
2381 		return;
2382 
2383 	if (!agg->dtag_hasarg) {
2384 		/*
2385 		 * Currently, only quantize() and lquantize() take additional
2386 		 * arguments, and they have the same semantics:  an increment
2387 		 * value that defaults to 1 when not present.  If additional
2388 		 * aggregating actions take arguments, the setting of the
2389 		 * default argument value will presumably have to become more
2390 		 * sophisticated...
2391 		 */
2392 		arg = 1;
2393 	}
2394 
2395 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2396 	size = rec->dtrd_offset - agg->dtag_base;
2397 	fsize = size + rec->dtrd_size;
2398 
2399 	ASSERT(dbuf->dtb_tomax != NULL);
2400 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2401 
2402 	if ((tomax = buf->dtb_tomax) == NULL) {
2403 		dtrace_buffer_drop(buf);
2404 		return;
2405 	}
2406 
2407 	/*
2408 	 * The metastructure is always at the bottom of the buffer.
2409 	 */
2410 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2411 	    sizeof (dtrace_aggbuffer_t));
2412 
2413 	if (buf->dtb_offset == 0) {
2414 		/*
2415 		 * We just kludge up approximately 1/8th of the size to be
2416 		 * buckets.  If this guess ends up being routinely
2417 		 * off-the-mark, we may need to dynamically readjust this
2418 		 * based on past performance.
2419 		 */
2420 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2421 
2422 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2423 		    (uintptr_t)tomax || hashsize == 0) {
2424 			/*
2425 			 * We've been given a ludicrously small buffer;
2426 			 * increment our drop count and leave.
2427 			 */
2428 			dtrace_buffer_drop(buf);
2429 			return;
2430 		}
2431 
2432 		/*
2433 		 * And now, a pathetic attempt to try to get a an odd (or
2434 		 * perchance, a prime) hash size for better hash distribution.
2435 		 */
2436 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2437 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2438 
2439 		agb->dtagb_hashsize = hashsize;
2440 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2441 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2442 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2443 
2444 		for (i = 0; i < agb->dtagb_hashsize; i++)
2445 			agb->dtagb_hash[i] = NULL;
2446 	}
2447 
2448 	ASSERT(agg->dtag_first != NULL);
2449 	ASSERT(agg->dtag_first->dta_intuple);
2450 
2451 	/*
2452 	 * Calculate the hash value based on the key.  Note that we _don't_
2453 	 * include the aggid in the hashing (but we will store it as part of
2454 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2455 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2456 	 * gets good distribution in practice.  The efficacy of the hashing
2457 	 * algorithm (and a comparison with other algorithms) may be found by
2458 	 * running the ::dtrace_aggstat MDB dcmd.
2459 	 */
2460 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2461 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2462 		limit = i + act->dta_rec.dtrd_size;
2463 		ASSERT(limit <= size);
2464 		isstr = DTRACEACT_ISSTRING(act);
2465 
2466 		for (; i < limit; i++) {
2467 			hashval += data[i];
2468 			hashval += (hashval << 10);
2469 			hashval ^= (hashval >> 6);
2470 
2471 			if (isstr && data[i] == '\0')
2472 				break;
2473 		}
2474 	}
2475 
2476 	hashval += (hashval << 3);
2477 	hashval ^= (hashval >> 11);
2478 	hashval += (hashval << 15);
2479 
2480 	/*
2481 	 * Yes, the divide here is expensive -- but it's generally the least
2482 	 * of the performance issues given the amount of data that we iterate
2483 	 * over to compute hash values, compare data, etc.
2484 	 */
2485 	ndx = hashval % agb->dtagb_hashsize;
2486 
2487 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2488 		ASSERT((caddr_t)key >= tomax);
2489 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2490 
2491 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2492 			continue;
2493 
2494 		kdata = key->dtak_data;
2495 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2496 
2497 		for (act = agg->dtag_first; act->dta_intuple;
2498 		    act = act->dta_next) {
2499 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2500 			limit = i + act->dta_rec.dtrd_size;
2501 			ASSERT(limit <= size);
2502 			isstr = DTRACEACT_ISSTRING(act);
2503 
2504 			for (; i < limit; i++) {
2505 				if (kdata[i] != data[i])
2506 					goto next;
2507 
2508 				if (isstr && data[i] == '\0')
2509 					break;
2510 			}
2511 		}
2512 
2513 		if (action != key->dtak_action) {
2514 			/*
2515 			 * We are aggregating on the same value in the same
2516 			 * aggregation with two different aggregating actions.
2517 			 * (This should have been picked up in the compiler,
2518 			 * so we may be dealing with errant or devious DIF.)
2519 			 * This is an error condition; we indicate as much,
2520 			 * and return.
2521 			 */
2522 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2523 			return;
2524 		}
2525 
2526 		/*
2527 		 * This is a hit:  we need to apply the aggregator to
2528 		 * the value at this key.
2529 		 */
2530 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2531 		return;
2532 next:
2533 		continue;
2534 	}
2535 
2536 	/*
2537 	 * We didn't find it.  We need to allocate some zero-filled space,
2538 	 * link it into the hash table appropriately, and apply the aggregator
2539 	 * to the (zero-filled) value.
2540 	 */
2541 	offs = buf->dtb_offset;
2542 	while (offs & (align - 1))
2543 		offs += sizeof (uint32_t);
2544 
2545 	/*
2546 	 * If we don't have enough room to both allocate a new key _and_
2547 	 * its associated data, increment the drop count and return.
2548 	 */
2549 	if ((uintptr_t)tomax + offs + fsize >
2550 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2551 		dtrace_buffer_drop(buf);
2552 		return;
2553 	}
2554 
2555 	/*CONSTCOND*/
2556 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2557 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2558 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2559 
2560 	key->dtak_data = kdata = tomax + offs;
2561 	buf->dtb_offset = offs + fsize;
2562 
2563 	/*
2564 	 * Now copy the data across.
2565 	 */
2566 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2567 
2568 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2569 		kdata[i] = data[i];
2570 
2571 	/*
2572 	 * Because strings are not zeroed out by default, we need to iterate
2573 	 * looking for actions that store strings, and we need to explicitly
2574 	 * pad these strings out with zeroes.
2575 	 */
2576 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2577 		int nul;
2578 
2579 		if (!DTRACEACT_ISSTRING(act))
2580 			continue;
2581 
2582 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2583 		limit = i + act->dta_rec.dtrd_size;
2584 		ASSERT(limit <= size);
2585 
2586 		for (nul = 0; i < limit; i++) {
2587 			if (nul) {
2588 				kdata[i] = '\0';
2589 				continue;
2590 			}
2591 
2592 			if (data[i] != '\0')
2593 				continue;
2594 
2595 			nul = 1;
2596 		}
2597 	}
2598 
2599 	for (i = size; i < fsize; i++)
2600 		kdata[i] = 0;
2601 
2602 	key->dtak_hashval = hashval;
2603 	key->dtak_size = size;
2604 	key->dtak_action = action;
2605 	key->dtak_next = agb->dtagb_hash[ndx];
2606 	agb->dtagb_hash[ndx] = key;
2607 
2608 	/*
2609 	 * Finally, apply the aggregator.
2610 	 */
2611 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2612 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2613 }
2614 
2615 /*
2616  * Given consumer state, this routine finds a speculation in the INACTIVE
2617  * state and transitions it into the ACTIVE state.  If there is no speculation
2618  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2619  * incremented -- it is up to the caller to take appropriate action.
2620  */
2621 static int
2622 dtrace_speculation(dtrace_state_t *state)
2623 {
2624 	int i = 0;
2625 	dtrace_speculation_state_t current;
2626 	uint32_t *stat = &state->dts_speculations_unavail, count;
2627 
2628 	while (i < state->dts_nspeculations) {
2629 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2630 
2631 		current = spec->dtsp_state;
2632 
2633 		if (current != DTRACESPEC_INACTIVE) {
2634 			if (current == DTRACESPEC_COMMITTINGMANY ||
2635 			    current == DTRACESPEC_COMMITTING ||
2636 			    current == DTRACESPEC_DISCARDING)
2637 				stat = &state->dts_speculations_busy;
2638 			i++;
2639 			continue;
2640 		}
2641 
2642 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2643 		    current, DTRACESPEC_ACTIVE) == current)
2644 			return (i + 1);
2645 	}
2646 
2647 	/*
2648 	 * We couldn't find a speculation.  If we found as much as a single
2649 	 * busy speculation buffer, we'll attribute this failure as "busy"
2650 	 * instead of "unavail".
2651 	 */
2652 	do {
2653 		count = *stat;
2654 	} while (dtrace_cas32(stat, count, count + 1) != count);
2655 
2656 	return (0);
2657 }
2658 
2659 /*
2660  * This routine commits an active speculation.  If the specified speculation
2661  * is not in a valid state to perform a commit(), this routine will silently do
2662  * nothing.  The state of the specified speculation is transitioned according
2663  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2664  */
2665 static void
2666 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2667     dtrace_specid_t which)
2668 {
2669 	dtrace_speculation_t *spec;
2670 	dtrace_buffer_t *src, *dest;
2671 	uintptr_t daddr, saddr, dlimit, slimit;
2672 	dtrace_speculation_state_t current, new = 0;
2673 	intptr_t offs;
2674 	uint64_t timestamp;
2675 
2676 	if (which == 0)
2677 		return;
2678 
2679 	if (which > state->dts_nspeculations) {
2680 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2681 		return;
2682 	}
2683 
2684 	spec = &state->dts_speculations[which - 1];
2685 	src = &spec->dtsp_buffer[cpu];
2686 	dest = &state->dts_buffer[cpu];
2687 
2688 	do {
2689 		current = spec->dtsp_state;
2690 
2691 		if (current == DTRACESPEC_COMMITTINGMANY)
2692 			break;
2693 
2694 		switch (current) {
2695 		case DTRACESPEC_INACTIVE:
2696 		case DTRACESPEC_DISCARDING:
2697 			return;
2698 
2699 		case DTRACESPEC_COMMITTING:
2700 			/*
2701 			 * This is only possible if we are (a) commit()'ing
2702 			 * without having done a prior speculate() on this CPU
2703 			 * and (b) racing with another commit() on a different
2704 			 * CPU.  There's nothing to do -- we just assert that
2705 			 * our offset is 0.
2706 			 */
2707 			ASSERT(src->dtb_offset == 0);
2708 			return;
2709 
2710 		case DTRACESPEC_ACTIVE:
2711 			new = DTRACESPEC_COMMITTING;
2712 			break;
2713 
2714 		case DTRACESPEC_ACTIVEONE:
2715 			/*
2716 			 * This speculation is active on one CPU.  If our
2717 			 * buffer offset is non-zero, we know that the one CPU
2718 			 * must be us.  Otherwise, we are committing on a
2719 			 * different CPU from the speculate(), and we must
2720 			 * rely on being asynchronously cleaned.
2721 			 */
2722 			if (src->dtb_offset != 0) {
2723 				new = DTRACESPEC_COMMITTING;
2724 				break;
2725 			}
2726 			/*FALLTHROUGH*/
2727 
2728 		case DTRACESPEC_ACTIVEMANY:
2729 			new = DTRACESPEC_COMMITTINGMANY;
2730 			break;
2731 
2732 		default:
2733 			ASSERT(0);
2734 		}
2735 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2736 	    current, new) != current);
2737 
2738 	/*
2739 	 * We have set the state to indicate that we are committing this
2740 	 * speculation.  Now reserve the necessary space in the destination
2741 	 * buffer.
2742 	 */
2743 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2744 	    sizeof (uint64_t), state, NULL)) < 0) {
2745 		dtrace_buffer_drop(dest);
2746 		goto out;
2747 	}
2748 
2749 	/*
2750 	 * We have sufficient space to copy the speculative buffer into the
2751 	 * primary buffer.  First, modify the speculative buffer, filling
2752 	 * in the timestamp of all entries with the current time.  The data
2753 	 * must have the commit() time rather than the time it was traced,
2754 	 * so that all entries in the primary buffer are in timestamp order.
2755 	 */
2756 	timestamp = dtrace_gethrtime();
2757 	saddr = (uintptr_t)src->dtb_tomax;
2758 	slimit = saddr + src->dtb_offset;
2759 	while (saddr < slimit) {
2760 		size_t size;
2761 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2762 
2763 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2764 			saddr += sizeof (dtrace_epid_t);
2765 			continue;
2766 		}
2767 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2768 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2769 
2770 		ASSERT3U(saddr + size, <=, slimit);
2771 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2772 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2773 
2774 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2775 
2776 		saddr += size;
2777 	}
2778 
2779 	/*
2780 	 * Copy the buffer across.  (Note that this is a
2781 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2782 	 * a serious performance issue, a high-performance DTrace-specific
2783 	 * bcopy() should obviously be invented.)
2784 	 */
2785 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2786 	dlimit = daddr + src->dtb_offset;
2787 	saddr = (uintptr_t)src->dtb_tomax;
2788 
2789 	/*
2790 	 * First, the aligned portion.
2791 	 */
2792 	while (dlimit - daddr >= sizeof (uint64_t)) {
2793 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2794 
2795 		daddr += sizeof (uint64_t);
2796 		saddr += sizeof (uint64_t);
2797 	}
2798 
2799 	/*
2800 	 * Now any left-over bit...
2801 	 */
2802 	while (dlimit - daddr)
2803 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2804 
2805 	/*
2806 	 * Finally, commit the reserved space in the destination buffer.
2807 	 */
2808 	dest->dtb_offset = offs + src->dtb_offset;
2809 
2810 out:
2811 	/*
2812 	 * If we're lucky enough to be the only active CPU on this speculation
2813 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2814 	 */
2815 	if (current == DTRACESPEC_ACTIVE ||
2816 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2817 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2818 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2819 
2820 		ASSERT(rval == DTRACESPEC_COMMITTING);
2821 	}
2822 
2823 	src->dtb_offset = 0;
2824 	src->dtb_xamot_drops += src->dtb_drops;
2825 	src->dtb_drops = 0;
2826 }
2827 
2828 /*
2829  * This routine discards an active speculation.  If the specified speculation
2830  * is not in a valid state to perform a discard(), this routine will silently
2831  * do nothing.  The state of the specified speculation is transitioned
2832  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2833  */
2834 static void
2835 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2836     dtrace_specid_t which)
2837 {
2838 	dtrace_speculation_t *spec;
2839 	dtrace_speculation_state_t current, new = 0;
2840 	dtrace_buffer_t *buf;
2841 
2842 	if (which == 0)
2843 		return;
2844 
2845 	if (which > state->dts_nspeculations) {
2846 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2847 		return;
2848 	}
2849 
2850 	spec = &state->dts_speculations[which - 1];
2851 	buf = &spec->dtsp_buffer[cpu];
2852 
2853 	do {
2854 		current = spec->dtsp_state;
2855 
2856 		switch (current) {
2857 		case DTRACESPEC_INACTIVE:
2858 		case DTRACESPEC_COMMITTINGMANY:
2859 		case DTRACESPEC_COMMITTING:
2860 		case DTRACESPEC_DISCARDING:
2861 			return;
2862 
2863 		case DTRACESPEC_ACTIVE:
2864 		case DTRACESPEC_ACTIVEMANY:
2865 			new = DTRACESPEC_DISCARDING;
2866 			break;
2867 
2868 		case DTRACESPEC_ACTIVEONE:
2869 			if (buf->dtb_offset != 0) {
2870 				new = DTRACESPEC_INACTIVE;
2871 			} else {
2872 				new = DTRACESPEC_DISCARDING;
2873 			}
2874 			break;
2875 
2876 		default:
2877 			ASSERT(0);
2878 		}
2879 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2880 	    current, new) != current);
2881 
2882 	buf->dtb_offset = 0;
2883 	buf->dtb_drops = 0;
2884 }
2885 
2886 /*
2887  * Note:  not called from probe context.  This function is called
2888  * asynchronously from cross call context to clean any speculations that are
2889  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2890  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2891  * speculation.
2892  */
2893 static void
2894 dtrace_speculation_clean_here(dtrace_state_t *state)
2895 {
2896 	dtrace_icookie_t cookie;
2897 	processorid_t cpu = curcpu;
2898 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2899 	dtrace_specid_t i;
2900 
2901 	cookie = dtrace_interrupt_disable();
2902 
2903 	if (dest->dtb_tomax == NULL) {
2904 		dtrace_interrupt_enable(cookie);
2905 		return;
2906 	}
2907 
2908 	for (i = 0; i < state->dts_nspeculations; i++) {
2909 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2910 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2911 
2912 		if (src->dtb_tomax == NULL)
2913 			continue;
2914 
2915 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2916 			src->dtb_offset = 0;
2917 			continue;
2918 		}
2919 
2920 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2921 			continue;
2922 
2923 		if (src->dtb_offset == 0)
2924 			continue;
2925 
2926 		dtrace_speculation_commit(state, cpu, i + 1);
2927 	}
2928 
2929 	dtrace_interrupt_enable(cookie);
2930 }
2931 
2932 /*
2933  * Note:  not called from probe context.  This function is called
2934  * asynchronously (and at a regular interval) to clean any speculations that
2935  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2936  * is work to be done, it cross calls all CPUs to perform that work;
2937  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2938  * INACTIVE state until they have been cleaned by all CPUs.
2939  */
2940 static void
2941 dtrace_speculation_clean(dtrace_state_t *state)
2942 {
2943 	int work = 0, rv;
2944 	dtrace_specid_t i;
2945 
2946 	for (i = 0; i < state->dts_nspeculations; i++) {
2947 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2948 
2949 		ASSERT(!spec->dtsp_cleaning);
2950 
2951 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2952 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2953 			continue;
2954 
2955 		work++;
2956 		spec->dtsp_cleaning = 1;
2957 	}
2958 
2959 	if (!work)
2960 		return;
2961 
2962 	dtrace_xcall(DTRACE_CPUALL,
2963 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2964 
2965 	/*
2966 	 * We now know that all CPUs have committed or discarded their
2967 	 * speculation buffers, as appropriate.  We can now set the state
2968 	 * to inactive.
2969 	 */
2970 	for (i = 0; i < state->dts_nspeculations; i++) {
2971 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2972 		dtrace_speculation_state_t current, new;
2973 
2974 		if (!spec->dtsp_cleaning)
2975 			continue;
2976 
2977 		current = spec->dtsp_state;
2978 		ASSERT(current == DTRACESPEC_DISCARDING ||
2979 		    current == DTRACESPEC_COMMITTINGMANY);
2980 
2981 		new = DTRACESPEC_INACTIVE;
2982 
2983 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2984 		ASSERT(rv == current);
2985 		spec->dtsp_cleaning = 0;
2986 	}
2987 }
2988 
2989 /*
2990  * Called as part of a speculate() to get the speculative buffer associated
2991  * with a given speculation.  Returns NULL if the specified speculation is not
2992  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2993  * the active CPU is not the specified CPU -- the speculation will be
2994  * atomically transitioned into the ACTIVEMANY state.
2995  */
2996 static dtrace_buffer_t *
2997 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2998     dtrace_specid_t which)
2999 {
3000 	dtrace_speculation_t *spec;
3001 	dtrace_speculation_state_t current, new = 0;
3002 	dtrace_buffer_t *buf;
3003 
3004 	if (which == 0)
3005 		return (NULL);
3006 
3007 	if (which > state->dts_nspeculations) {
3008 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3009 		return (NULL);
3010 	}
3011 
3012 	spec = &state->dts_speculations[which - 1];
3013 	buf = &spec->dtsp_buffer[cpuid];
3014 
3015 	do {
3016 		current = spec->dtsp_state;
3017 
3018 		switch (current) {
3019 		case DTRACESPEC_INACTIVE:
3020 		case DTRACESPEC_COMMITTINGMANY:
3021 		case DTRACESPEC_DISCARDING:
3022 			return (NULL);
3023 
3024 		case DTRACESPEC_COMMITTING:
3025 			ASSERT(buf->dtb_offset == 0);
3026 			return (NULL);
3027 
3028 		case DTRACESPEC_ACTIVEONE:
3029 			/*
3030 			 * This speculation is currently active on one CPU.
3031 			 * Check the offset in the buffer; if it's non-zero,
3032 			 * that CPU must be us (and we leave the state alone).
3033 			 * If it's zero, assume that we're starting on a new
3034 			 * CPU -- and change the state to indicate that the
3035 			 * speculation is active on more than one CPU.
3036 			 */
3037 			if (buf->dtb_offset != 0)
3038 				return (buf);
3039 
3040 			new = DTRACESPEC_ACTIVEMANY;
3041 			break;
3042 
3043 		case DTRACESPEC_ACTIVEMANY:
3044 			return (buf);
3045 
3046 		case DTRACESPEC_ACTIVE:
3047 			new = DTRACESPEC_ACTIVEONE;
3048 			break;
3049 
3050 		default:
3051 			ASSERT(0);
3052 		}
3053 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3054 	    current, new) != current);
3055 
3056 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3057 	return (buf);
3058 }
3059 
3060 /*
3061  * Return a string.  In the event that the user lacks the privilege to access
3062  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3063  * don't fail access checking.
3064  *
3065  * dtrace_dif_variable() uses this routine as a helper for various
3066  * builtin values such as 'execname' and 'probefunc.'
3067  */
3068 uintptr_t
3069 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3070     dtrace_mstate_t *mstate)
3071 {
3072 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3073 	uintptr_t ret;
3074 	size_t strsz;
3075 
3076 	/*
3077 	 * The easy case: this probe is allowed to read all of memory, so
3078 	 * we can just return this as a vanilla pointer.
3079 	 */
3080 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3081 		return (addr);
3082 
3083 	/*
3084 	 * This is the tougher case: we copy the string in question from
3085 	 * kernel memory into scratch memory and return it that way: this
3086 	 * ensures that we won't trip up when access checking tests the
3087 	 * BYREF return value.
3088 	 */
3089 	strsz = dtrace_strlen((char *)addr, size) + 1;
3090 
3091 	if (mstate->dtms_scratch_ptr + strsz >
3092 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3093 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3094 		return (0);
3095 	}
3096 
3097 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3098 	    strsz);
3099 	ret = mstate->dtms_scratch_ptr;
3100 	mstate->dtms_scratch_ptr += strsz;
3101 	return (ret);
3102 }
3103 
3104 /*
3105  * Return a string from a memoy address which is known to have one or
3106  * more concatenated, individually zero terminated, sub-strings.
3107  * In the event that the user lacks the privilege to access
3108  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3109  * don't fail access checking.
3110  *
3111  * dtrace_dif_variable() uses this routine as a helper for various
3112  * builtin values such as 'execargs'.
3113  */
3114 static uintptr_t
3115 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3116     dtrace_mstate_t *mstate)
3117 {
3118 	char *p;
3119 	size_t i;
3120 	uintptr_t ret;
3121 
3122 	if (mstate->dtms_scratch_ptr + strsz >
3123 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3124 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3125 		return (0);
3126 	}
3127 
3128 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3129 	    strsz);
3130 
3131 	/* Replace sub-string termination characters with a space. */
3132 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3133 	    p++, i++)
3134 		if (*p == '\0')
3135 			*p = ' ';
3136 
3137 	ret = mstate->dtms_scratch_ptr;
3138 	mstate->dtms_scratch_ptr += strsz;
3139 	return (ret);
3140 }
3141 
3142 /*
3143  * This function implements the DIF emulator's variable lookups.  The emulator
3144  * passes a reserved variable identifier and optional built-in array index.
3145  */
3146 static uint64_t
3147 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3148     uint64_t ndx)
3149 {
3150 	/*
3151 	 * If we're accessing one of the uncached arguments, we'll turn this
3152 	 * into a reference in the args array.
3153 	 */
3154 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3155 		ndx = v - DIF_VAR_ARG0;
3156 		v = DIF_VAR_ARGS;
3157 	}
3158 
3159 	switch (v) {
3160 	case DIF_VAR_ARGS:
3161 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3162 		if (ndx >= sizeof (mstate->dtms_arg) /
3163 		    sizeof (mstate->dtms_arg[0])) {
3164 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3165 			dtrace_provider_t *pv;
3166 			uint64_t val;
3167 
3168 			pv = mstate->dtms_probe->dtpr_provider;
3169 			if (pv->dtpv_pops.dtps_getargval != NULL)
3170 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3171 				    mstate->dtms_probe->dtpr_id,
3172 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3173 			else
3174 				val = dtrace_getarg(ndx, aframes);
3175 
3176 			/*
3177 			 * This is regrettably required to keep the compiler
3178 			 * from tail-optimizing the call to dtrace_getarg().
3179 			 * The condition always evaluates to true, but the
3180 			 * compiler has no way of figuring that out a priori.
3181 			 * (None of this would be necessary if the compiler
3182 			 * could be relied upon to _always_ tail-optimize
3183 			 * the call to dtrace_getarg() -- but it can't.)
3184 			 */
3185 			if (mstate->dtms_probe != NULL)
3186 				return (val);
3187 
3188 			ASSERT(0);
3189 		}
3190 
3191 		return (mstate->dtms_arg[ndx]);
3192 
3193 #ifdef illumos
3194 	case DIF_VAR_UREGS: {
3195 		klwp_t *lwp;
3196 
3197 		if (!dtrace_priv_proc(state))
3198 			return (0);
3199 
3200 		if ((lwp = curthread->t_lwp) == NULL) {
3201 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3202 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3203 			return (0);
3204 		}
3205 
3206 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3207 		return (0);
3208 	}
3209 #else
3210 	case DIF_VAR_UREGS: {
3211 		struct trapframe *tframe;
3212 
3213 		if (!dtrace_priv_proc(state))
3214 			return (0);
3215 
3216 		if ((tframe = curthread->td_frame) == NULL) {
3217 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3218 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3219 			return (0);
3220 		}
3221 
3222 		return (dtrace_getreg(tframe, ndx));
3223 	}
3224 #endif
3225 
3226 	case DIF_VAR_CURTHREAD:
3227 		if (!dtrace_priv_proc(state))
3228 			return (0);
3229 		return ((uint64_t)(uintptr_t)curthread);
3230 
3231 	case DIF_VAR_TIMESTAMP:
3232 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3233 			mstate->dtms_timestamp = dtrace_gethrtime();
3234 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3235 		}
3236 		return (mstate->dtms_timestamp);
3237 
3238 	case DIF_VAR_VTIMESTAMP:
3239 		ASSERT(dtrace_vtime_references != 0);
3240 		return (curthread->t_dtrace_vtime);
3241 
3242 	case DIF_VAR_WALLTIMESTAMP:
3243 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3244 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3245 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3246 		}
3247 		return (mstate->dtms_walltimestamp);
3248 
3249 #ifdef illumos
3250 	case DIF_VAR_IPL:
3251 		if (!dtrace_priv_kernel(state))
3252 			return (0);
3253 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3254 			mstate->dtms_ipl = dtrace_getipl();
3255 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3256 		}
3257 		return (mstate->dtms_ipl);
3258 #endif
3259 
3260 	case DIF_VAR_EPID:
3261 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3262 		return (mstate->dtms_epid);
3263 
3264 	case DIF_VAR_ID:
3265 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3266 		return (mstate->dtms_probe->dtpr_id);
3267 
3268 	case DIF_VAR_STACKDEPTH:
3269 		if (!dtrace_priv_kernel(state))
3270 			return (0);
3271 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3272 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3273 
3274 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3275 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3276 		}
3277 		return (mstate->dtms_stackdepth);
3278 
3279 	case DIF_VAR_USTACKDEPTH:
3280 		if (!dtrace_priv_proc(state))
3281 			return (0);
3282 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3283 			/*
3284 			 * See comment in DIF_VAR_PID.
3285 			 */
3286 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3287 			    CPU_ON_INTR(CPU)) {
3288 				mstate->dtms_ustackdepth = 0;
3289 			} else {
3290 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3291 				mstate->dtms_ustackdepth =
3292 				    dtrace_getustackdepth();
3293 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3294 			}
3295 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3296 		}
3297 		return (mstate->dtms_ustackdepth);
3298 
3299 	case DIF_VAR_CALLER:
3300 		if (!dtrace_priv_kernel(state))
3301 			return (0);
3302 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3303 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3304 
3305 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3306 				/*
3307 				 * If this is an unanchored probe, we are
3308 				 * required to go through the slow path:
3309 				 * dtrace_caller() only guarantees correct
3310 				 * results for anchored probes.
3311 				 */
3312 				pc_t caller[2] = {0, 0};
3313 
3314 				dtrace_getpcstack(caller, 2, aframes,
3315 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3316 				mstate->dtms_caller = caller[1];
3317 			} else if ((mstate->dtms_caller =
3318 			    dtrace_caller(aframes)) == -1) {
3319 				/*
3320 				 * We have failed to do this the quick way;
3321 				 * we must resort to the slower approach of
3322 				 * calling dtrace_getpcstack().
3323 				 */
3324 				pc_t caller = 0;
3325 
3326 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3327 				mstate->dtms_caller = caller;
3328 			}
3329 
3330 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3331 		}
3332 		return (mstate->dtms_caller);
3333 
3334 	case DIF_VAR_UCALLER:
3335 		if (!dtrace_priv_proc(state))
3336 			return (0);
3337 
3338 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3339 			uint64_t ustack[3];
3340 
3341 			/*
3342 			 * dtrace_getupcstack() fills in the first uint64_t
3343 			 * with the current PID.  The second uint64_t will
3344 			 * be the program counter at user-level.  The third
3345 			 * uint64_t will contain the caller, which is what
3346 			 * we're after.
3347 			 */
3348 			ustack[2] = 0;
3349 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3350 			dtrace_getupcstack(ustack, 3);
3351 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3352 			mstate->dtms_ucaller = ustack[2];
3353 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3354 		}
3355 
3356 		return (mstate->dtms_ucaller);
3357 
3358 	case DIF_VAR_PROBEPROV:
3359 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3360 		return (dtrace_dif_varstr(
3361 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3362 		    state, mstate));
3363 
3364 	case DIF_VAR_PROBEMOD:
3365 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3366 		return (dtrace_dif_varstr(
3367 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3368 		    state, mstate));
3369 
3370 	case DIF_VAR_PROBEFUNC:
3371 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3372 		return (dtrace_dif_varstr(
3373 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3374 		    state, mstate));
3375 
3376 	case DIF_VAR_PROBENAME:
3377 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3378 		return (dtrace_dif_varstr(
3379 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3380 		    state, mstate));
3381 
3382 	case DIF_VAR_PID:
3383 		if (!dtrace_priv_proc(state))
3384 			return (0);
3385 
3386 #ifdef illumos
3387 		/*
3388 		 * Note that we are assuming that an unanchored probe is
3389 		 * always due to a high-level interrupt.  (And we're assuming
3390 		 * that there is only a single high level interrupt.)
3391 		 */
3392 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3393 			return (pid0.pid_id);
3394 
3395 		/*
3396 		 * It is always safe to dereference one's own t_procp pointer:
3397 		 * it always points to a valid, allocated proc structure.
3398 		 * Further, it is always safe to dereference the p_pidp member
3399 		 * of one's own proc structure.  (These are truisms becuase
3400 		 * threads and processes don't clean up their own state --
3401 		 * they leave that task to whomever reaps them.)
3402 		 */
3403 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3404 #else
3405 		return ((uint64_t)curproc->p_pid);
3406 #endif
3407 
3408 	case DIF_VAR_PPID:
3409 		if (!dtrace_priv_proc(state))
3410 			return (0);
3411 
3412 #ifdef illumos
3413 		/*
3414 		 * See comment in DIF_VAR_PID.
3415 		 */
3416 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3417 			return (pid0.pid_id);
3418 
3419 		/*
3420 		 * It is always safe to dereference one's own t_procp pointer:
3421 		 * it always points to a valid, allocated proc structure.
3422 		 * (This is true because threads don't clean up their own
3423 		 * state -- they leave that task to whomever reaps them.)
3424 		 */
3425 		return ((uint64_t)curthread->t_procp->p_ppid);
3426 #else
3427 		if (curproc->p_pid == proc0.p_pid)
3428 			return (curproc->p_pid);
3429 		else
3430 			return (curproc->p_pptr->p_pid);
3431 #endif
3432 
3433 	case DIF_VAR_TID:
3434 #ifdef illumos
3435 		/*
3436 		 * See comment in DIF_VAR_PID.
3437 		 */
3438 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3439 			return (0);
3440 #endif
3441 
3442 		return ((uint64_t)curthread->t_tid);
3443 
3444 	case DIF_VAR_EXECARGS: {
3445 		struct pargs *p_args = curthread->td_proc->p_args;
3446 
3447 		if (p_args == NULL)
3448 			return(0);
3449 
3450 		return (dtrace_dif_varstrz(
3451 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3452 	}
3453 
3454 	case DIF_VAR_EXECNAME:
3455 #ifdef illumos
3456 		if (!dtrace_priv_proc(state))
3457 			return (0);
3458 
3459 		/*
3460 		 * See comment in DIF_VAR_PID.
3461 		 */
3462 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3463 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3464 
3465 		/*
3466 		 * It is always safe to dereference one's own t_procp pointer:
3467 		 * it always points to a valid, allocated proc structure.
3468 		 * (This is true because threads don't clean up their own
3469 		 * state -- they leave that task to whomever reaps them.)
3470 		 */
3471 		return (dtrace_dif_varstr(
3472 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3473 		    state, mstate));
3474 #else
3475 		return (dtrace_dif_varstr(
3476 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3477 #endif
3478 
3479 	case DIF_VAR_ZONENAME:
3480 #ifdef illumos
3481 		if (!dtrace_priv_proc(state))
3482 			return (0);
3483 
3484 		/*
3485 		 * See comment in DIF_VAR_PID.
3486 		 */
3487 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3488 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3489 
3490 		/*
3491 		 * It is always safe to dereference one's own t_procp pointer:
3492 		 * it always points to a valid, allocated proc structure.
3493 		 * (This is true because threads don't clean up their own
3494 		 * state -- they leave that task to whomever reaps them.)
3495 		 */
3496 		return (dtrace_dif_varstr(
3497 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3498 		    state, mstate));
3499 #else
3500 		return (0);
3501 #endif
3502 
3503 	case DIF_VAR_UID:
3504 		if (!dtrace_priv_proc(state))
3505 			return (0);
3506 
3507 #ifdef illumos
3508 		/*
3509 		 * See comment in DIF_VAR_PID.
3510 		 */
3511 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3512 			return ((uint64_t)p0.p_cred->cr_uid);
3513 #endif
3514 
3515 		/*
3516 		 * It is always safe to dereference one's own t_procp pointer:
3517 		 * it always points to a valid, allocated proc structure.
3518 		 * (This is true because threads don't clean up their own
3519 		 * state -- they leave that task to whomever reaps them.)
3520 		 *
3521 		 * Additionally, it is safe to dereference one's own process
3522 		 * credential, since this is never NULL after process birth.
3523 		 */
3524 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3525 
3526 	case DIF_VAR_GID:
3527 		if (!dtrace_priv_proc(state))
3528 			return (0);
3529 
3530 #ifdef illumos
3531 		/*
3532 		 * See comment in DIF_VAR_PID.
3533 		 */
3534 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3535 			return ((uint64_t)p0.p_cred->cr_gid);
3536 #endif
3537 
3538 		/*
3539 		 * It is always safe to dereference one's own t_procp pointer:
3540 		 * it always points to a valid, allocated proc structure.
3541 		 * (This is true because threads don't clean up their own
3542 		 * state -- they leave that task to whomever reaps them.)
3543 		 *
3544 		 * Additionally, it is safe to dereference one's own process
3545 		 * credential, since this is never NULL after process birth.
3546 		 */
3547 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3548 
3549 	case DIF_VAR_ERRNO: {
3550 #ifdef illumos
3551 		klwp_t *lwp;
3552 		if (!dtrace_priv_proc(state))
3553 			return (0);
3554 
3555 		/*
3556 		 * See comment in DIF_VAR_PID.
3557 		 */
3558 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3559 			return (0);
3560 
3561 		/*
3562 		 * It is always safe to dereference one's own t_lwp pointer in
3563 		 * the event that this pointer is non-NULL.  (This is true
3564 		 * because threads and lwps don't clean up their own state --
3565 		 * they leave that task to whomever reaps them.)
3566 		 */
3567 		if ((lwp = curthread->t_lwp) == NULL)
3568 			return (0);
3569 
3570 		return ((uint64_t)lwp->lwp_errno);
3571 #else
3572 		return (curthread->td_errno);
3573 #endif
3574 	}
3575 #ifndef illumos
3576 	case DIF_VAR_CPU: {
3577 		return curcpu;
3578 	}
3579 #endif
3580 	default:
3581 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3582 		return (0);
3583 	}
3584 }
3585 
3586 
3587 typedef enum dtrace_json_state {
3588 	DTRACE_JSON_REST = 1,
3589 	DTRACE_JSON_OBJECT,
3590 	DTRACE_JSON_STRING,
3591 	DTRACE_JSON_STRING_ESCAPE,
3592 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3593 	DTRACE_JSON_COLON,
3594 	DTRACE_JSON_COMMA,
3595 	DTRACE_JSON_VALUE,
3596 	DTRACE_JSON_IDENTIFIER,
3597 	DTRACE_JSON_NUMBER,
3598 	DTRACE_JSON_NUMBER_FRAC,
3599 	DTRACE_JSON_NUMBER_EXP,
3600 	DTRACE_JSON_COLLECT_OBJECT
3601 } dtrace_json_state_t;
3602 
3603 /*
3604  * This function possesses just enough knowledge about JSON to extract a single
3605  * value from a JSON string and store it in the scratch buffer.  It is able
3606  * to extract nested object values, and members of arrays by index.
3607  *
3608  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3609  * be looked up as we descend into the object tree.  e.g.
3610  *
3611  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3612  *       with nelems = 5.
3613  *
3614  * The run time of this function must be bounded above by strsize to limit the
3615  * amount of work done in probe context.  As such, it is implemented as a
3616  * simple state machine, reading one character at a time using safe loads
3617  * until we find the requested element, hit a parsing error or run off the
3618  * end of the object or string.
3619  *
3620  * As there is no way for a subroutine to return an error without interrupting
3621  * clause execution, we simply return NULL in the event of a missing key or any
3622  * other error condition.  Each NULL return in this function is commented with
3623  * the error condition it represents -- parsing or otherwise.
3624  *
3625  * The set of states for the state machine closely matches the JSON
3626  * specification (http://json.org/).  Briefly:
3627  *
3628  *   DTRACE_JSON_REST:
3629  *     Skip whitespace until we find either a top-level Object, moving
3630  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3631  *
3632  *   DTRACE_JSON_OBJECT:
3633  *     Locate the next key String in an Object.  Sets a flag to denote
3634  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3635  *
3636  *   DTRACE_JSON_COLON:
3637  *     Skip whitespace until we find the colon that separates key Strings
3638  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3639  *
3640  *   DTRACE_JSON_VALUE:
3641  *     Detects the type of the next value (String, Number, Identifier, Object
3642  *     or Array) and routes to the states that process that type.  Here we also
3643  *     deal with the element selector list if we are requested to traverse down
3644  *     into the object tree.
3645  *
3646  *   DTRACE_JSON_COMMA:
3647  *     Skip whitespace until we find the comma that separates key-value pairs
3648  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3649  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3650  *     states return to this state at the end of their value, unless otherwise
3651  *     noted.
3652  *
3653  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3654  *     Processes a Number literal from the JSON, including any exponent
3655  *     component that may be present.  Numbers are returned as strings, which
3656  *     may be passed to strtoll() if an integer is required.
3657  *
3658  *   DTRACE_JSON_IDENTIFIER:
3659  *     Processes a "true", "false" or "null" literal in the JSON.
3660  *
3661  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3662  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3663  *     Processes a String literal from the JSON, whether the String denotes
3664  *     a key, a value or part of a larger Object.  Handles all escape sequences
3665  *     present in the specification, including four-digit unicode characters,
3666  *     but merely includes the escape sequence without converting it to the
3667  *     actual escaped character.  If the String is flagged as a key, we
3668  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3669  *
3670  *   DTRACE_JSON_COLLECT_OBJECT:
3671  *     This state collects an entire Object (or Array), correctly handling
3672  *     embedded strings.  If the full element selector list matches this nested
3673  *     object, we return the Object in full as a string.  If not, we use this
3674  *     state to skip to the next value at this level and continue processing.
3675  *
3676  * NOTE: This function uses various macros from strtolctype.h to manipulate
3677  * digit values, etc -- these have all been checked to ensure they make
3678  * no additional function calls.
3679  */
3680 static char *
3681 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3682     char *dest)
3683 {
3684 	dtrace_json_state_t state = DTRACE_JSON_REST;
3685 	int64_t array_elem = INT64_MIN;
3686 	int64_t array_pos = 0;
3687 	uint8_t escape_unicount = 0;
3688 	boolean_t string_is_key = B_FALSE;
3689 	boolean_t collect_object = B_FALSE;
3690 	boolean_t found_key = B_FALSE;
3691 	boolean_t in_array = B_FALSE;
3692 	uint32_t braces = 0, brackets = 0;
3693 	char *elem = elemlist;
3694 	char *dd = dest;
3695 	uintptr_t cur;
3696 
3697 	for (cur = json; cur < json + size; cur++) {
3698 		char cc = dtrace_load8(cur);
3699 		if (cc == '\0')
3700 			return (NULL);
3701 
3702 		switch (state) {
3703 		case DTRACE_JSON_REST:
3704 			if (isspace(cc))
3705 				break;
3706 
3707 			if (cc == '{') {
3708 				state = DTRACE_JSON_OBJECT;
3709 				break;
3710 			}
3711 
3712 			if (cc == '[') {
3713 				in_array = B_TRUE;
3714 				array_pos = 0;
3715 				array_elem = dtrace_strtoll(elem, 10, size);
3716 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3717 				state = DTRACE_JSON_VALUE;
3718 				break;
3719 			}
3720 
3721 			/*
3722 			 * ERROR: expected to find a top-level object or array.
3723 			 */
3724 			return (NULL);
3725 		case DTRACE_JSON_OBJECT:
3726 			if (isspace(cc))
3727 				break;
3728 
3729 			if (cc == '"') {
3730 				state = DTRACE_JSON_STRING;
3731 				string_is_key = B_TRUE;
3732 				break;
3733 			}
3734 
3735 			/*
3736 			 * ERROR: either the object did not start with a key
3737 			 * string, or we've run off the end of the object
3738 			 * without finding the requested key.
3739 			 */
3740 			return (NULL);
3741 		case DTRACE_JSON_STRING:
3742 			if (cc == '\\') {
3743 				*dd++ = '\\';
3744 				state = DTRACE_JSON_STRING_ESCAPE;
3745 				break;
3746 			}
3747 
3748 			if (cc == '"') {
3749 				if (collect_object) {
3750 					/*
3751 					 * We don't reset the dest here, as
3752 					 * the string is part of a larger
3753 					 * object being collected.
3754 					 */
3755 					*dd++ = cc;
3756 					collect_object = B_FALSE;
3757 					state = DTRACE_JSON_COLLECT_OBJECT;
3758 					break;
3759 				}
3760 				*dd = '\0';
3761 				dd = dest; /* reset string buffer */
3762 				if (string_is_key) {
3763 					if (dtrace_strncmp(dest, elem,
3764 					    size) == 0)
3765 						found_key = B_TRUE;
3766 				} else if (found_key) {
3767 					if (nelems > 1) {
3768 						/*
3769 						 * We expected an object, not
3770 						 * this string.
3771 						 */
3772 						return (NULL);
3773 					}
3774 					return (dest);
3775 				}
3776 				state = string_is_key ? DTRACE_JSON_COLON :
3777 				    DTRACE_JSON_COMMA;
3778 				string_is_key = B_FALSE;
3779 				break;
3780 			}
3781 
3782 			*dd++ = cc;
3783 			break;
3784 		case DTRACE_JSON_STRING_ESCAPE:
3785 			*dd++ = cc;
3786 			if (cc == 'u') {
3787 				escape_unicount = 0;
3788 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3789 			} else {
3790 				state = DTRACE_JSON_STRING;
3791 			}
3792 			break;
3793 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3794 			if (!isxdigit(cc)) {
3795 				/*
3796 				 * ERROR: invalid unicode escape, expected
3797 				 * four valid hexidecimal digits.
3798 				 */
3799 				return (NULL);
3800 			}
3801 
3802 			*dd++ = cc;
3803 			if (++escape_unicount == 4)
3804 				state = DTRACE_JSON_STRING;
3805 			break;
3806 		case DTRACE_JSON_COLON:
3807 			if (isspace(cc))
3808 				break;
3809 
3810 			if (cc == ':') {
3811 				state = DTRACE_JSON_VALUE;
3812 				break;
3813 			}
3814 
3815 			/*
3816 			 * ERROR: expected a colon.
3817 			 */
3818 			return (NULL);
3819 		case DTRACE_JSON_COMMA:
3820 			if (isspace(cc))
3821 				break;
3822 
3823 			if (cc == ',') {
3824 				if (in_array) {
3825 					state = DTRACE_JSON_VALUE;
3826 					if (++array_pos == array_elem)
3827 						found_key = B_TRUE;
3828 				} else {
3829 					state = DTRACE_JSON_OBJECT;
3830 				}
3831 				break;
3832 			}
3833 
3834 			/*
3835 			 * ERROR: either we hit an unexpected character, or
3836 			 * we reached the end of the object or array without
3837 			 * finding the requested key.
3838 			 */
3839 			return (NULL);
3840 		case DTRACE_JSON_IDENTIFIER:
3841 			if (islower(cc)) {
3842 				*dd++ = cc;
3843 				break;
3844 			}
3845 
3846 			*dd = '\0';
3847 			dd = dest; /* reset string buffer */
3848 
3849 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3850 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3851 			    dtrace_strncmp(dest, "null", 5) == 0) {
3852 				if (found_key) {
3853 					if (nelems > 1) {
3854 						/*
3855 						 * ERROR: We expected an object,
3856 						 * not this identifier.
3857 						 */
3858 						return (NULL);
3859 					}
3860 					return (dest);
3861 				} else {
3862 					cur--;
3863 					state = DTRACE_JSON_COMMA;
3864 					break;
3865 				}
3866 			}
3867 
3868 			/*
3869 			 * ERROR: we did not recognise the identifier as one
3870 			 * of those in the JSON specification.
3871 			 */
3872 			return (NULL);
3873 		case DTRACE_JSON_NUMBER:
3874 			if (cc == '.') {
3875 				*dd++ = cc;
3876 				state = DTRACE_JSON_NUMBER_FRAC;
3877 				break;
3878 			}
3879 
3880 			if (cc == 'x' || cc == 'X') {
3881 				/*
3882 				 * ERROR: specification explicitly excludes
3883 				 * hexidecimal or octal numbers.
3884 				 */
3885 				return (NULL);
3886 			}
3887 
3888 			/* FALLTHRU */
3889 		case DTRACE_JSON_NUMBER_FRAC:
3890 			if (cc == 'e' || cc == 'E') {
3891 				*dd++ = cc;
3892 				state = DTRACE_JSON_NUMBER_EXP;
3893 				break;
3894 			}
3895 
3896 			if (cc == '+' || cc == '-') {
3897 				/*
3898 				 * ERROR: expect sign as part of exponent only.
3899 				 */
3900 				return (NULL);
3901 			}
3902 			/* FALLTHRU */
3903 		case DTRACE_JSON_NUMBER_EXP:
3904 			if (isdigit(cc) || cc == '+' || cc == '-') {
3905 				*dd++ = cc;
3906 				break;
3907 			}
3908 
3909 			*dd = '\0';
3910 			dd = dest; /* reset string buffer */
3911 			if (found_key) {
3912 				if (nelems > 1) {
3913 					/*
3914 					 * ERROR: We expected an object, not
3915 					 * this number.
3916 					 */
3917 					return (NULL);
3918 				}
3919 				return (dest);
3920 			}
3921 
3922 			cur--;
3923 			state = DTRACE_JSON_COMMA;
3924 			break;
3925 		case DTRACE_JSON_VALUE:
3926 			if (isspace(cc))
3927 				break;
3928 
3929 			if (cc == '{' || cc == '[') {
3930 				if (nelems > 1 && found_key) {
3931 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3932 					/*
3933 					 * If our element selector directs us
3934 					 * to descend into this nested object,
3935 					 * then move to the next selector
3936 					 * element in the list and restart the
3937 					 * state machine.
3938 					 */
3939 					while (*elem != '\0')
3940 						elem++;
3941 					elem++; /* skip the inter-element NUL */
3942 					nelems--;
3943 					dd = dest;
3944 					if (in_array) {
3945 						state = DTRACE_JSON_VALUE;
3946 						array_pos = 0;
3947 						array_elem = dtrace_strtoll(
3948 						    elem, 10, size);
3949 						found_key = array_elem == 0 ?
3950 						    B_TRUE : B_FALSE;
3951 					} else {
3952 						found_key = B_FALSE;
3953 						state = DTRACE_JSON_OBJECT;
3954 					}
3955 					break;
3956 				}
3957 
3958 				/*
3959 				 * Otherwise, we wish to either skip this
3960 				 * nested object or return it in full.
3961 				 */
3962 				if (cc == '[')
3963 					brackets = 1;
3964 				else
3965 					braces = 1;
3966 				*dd++ = cc;
3967 				state = DTRACE_JSON_COLLECT_OBJECT;
3968 				break;
3969 			}
3970 
3971 			if (cc == '"') {
3972 				state = DTRACE_JSON_STRING;
3973 				break;
3974 			}
3975 
3976 			if (islower(cc)) {
3977 				/*
3978 				 * Here we deal with true, false and null.
3979 				 */
3980 				*dd++ = cc;
3981 				state = DTRACE_JSON_IDENTIFIER;
3982 				break;
3983 			}
3984 
3985 			if (cc == '-' || isdigit(cc)) {
3986 				*dd++ = cc;
3987 				state = DTRACE_JSON_NUMBER;
3988 				break;
3989 			}
3990 
3991 			/*
3992 			 * ERROR: unexpected character at start of value.
3993 			 */
3994 			return (NULL);
3995 		case DTRACE_JSON_COLLECT_OBJECT:
3996 			if (cc == '\0')
3997 				/*
3998 				 * ERROR: unexpected end of input.
3999 				 */
4000 				return (NULL);
4001 
4002 			*dd++ = cc;
4003 			if (cc == '"') {
4004 				collect_object = B_TRUE;
4005 				state = DTRACE_JSON_STRING;
4006 				break;
4007 			}
4008 
4009 			if (cc == ']') {
4010 				if (brackets-- == 0) {
4011 					/*
4012 					 * ERROR: unbalanced brackets.
4013 					 */
4014 					return (NULL);
4015 				}
4016 			} else if (cc == '}') {
4017 				if (braces-- == 0) {
4018 					/*
4019 					 * ERROR: unbalanced braces.
4020 					 */
4021 					return (NULL);
4022 				}
4023 			} else if (cc == '{') {
4024 				braces++;
4025 			} else if (cc == '[') {
4026 				brackets++;
4027 			}
4028 
4029 			if (brackets == 0 && braces == 0) {
4030 				if (found_key) {
4031 					*dd = '\0';
4032 					return (dest);
4033 				}
4034 				dd = dest; /* reset string buffer */
4035 				state = DTRACE_JSON_COMMA;
4036 			}
4037 			break;
4038 		}
4039 	}
4040 	return (NULL);
4041 }
4042 
4043 /*
4044  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4045  * Notice that we don't bother validating the proper number of arguments or
4046  * their types in the tuple stack.  This isn't needed because all argument
4047  * interpretation is safe because of our load safety -- the worst that can
4048  * happen is that a bogus program can obtain bogus results.
4049  */
4050 static void
4051 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4052     dtrace_key_t *tupregs, int nargs,
4053     dtrace_mstate_t *mstate, dtrace_state_t *state)
4054 {
4055 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4056 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4057 	dtrace_vstate_t *vstate = &state->dts_vstate;
4058 
4059 #ifdef illumos
4060 	union {
4061 		mutex_impl_t mi;
4062 		uint64_t mx;
4063 	} m;
4064 
4065 	union {
4066 		krwlock_t ri;
4067 		uintptr_t rw;
4068 	} r;
4069 #else
4070 	struct thread *lowner;
4071 	union {
4072 		struct lock_object *li;
4073 		uintptr_t lx;
4074 	} l;
4075 #endif
4076 
4077 	switch (subr) {
4078 	case DIF_SUBR_RAND:
4079 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4080 		break;
4081 
4082 #ifdef illumos
4083 	case DIF_SUBR_MUTEX_OWNED:
4084 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4085 		    mstate, vstate)) {
4086 			regs[rd] = 0;
4087 			break;
4088 		}
4089 
4090 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4091 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4092 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4093 		else
4094 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4095 		break;
4096 
4097 	case DIF_SUBR_MUTEX_OWNER:
4098 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4099 		    mstate, vstate)) {
4100 			regs[rd] = 0;
4101 			break;
4102 		}
4103 
4104 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4105 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4106 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4107 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4108 		else
4109 			regs[rd] = 0;
4110 		break;
4111 
4112 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4113 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4114 		    mstate, vstate)) {
4115 			regs[rd] = 0;
4116 			break;
4117 		}
4118 
4119 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4120 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4121 		break;
4122 
4123 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4124 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4125 		    mstate, vstate)) {
4126 			regs[rd] = 0;
4127 			break;
4128 		}
4129 
4130 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4131 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4132 		break;
4133 
4134 	case DIF_SUBR_RW_READ_HELD: {
4135 		uintptr_t tmp;
4136 
4137 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4138 		    mstate, vstate)) {
4139 			regs[rd] = 0;
4140 			break;
4141 		}
4142 
4143 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4144 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4145 		break;
4146 	}
4147 
4148 	case DIF_SUBR_RW_WRITE_HELD:
4149 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4150 		    mstate, vstate)) {
4151 			regs[rd] = 0;
4152 			break;
4153 		}
4154 
4155 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4156 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4157 		break;
4158 
4159 	case DIF_SUBR_RW_ISWRITER:
4160 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4161 		    mstate, vstate)) {
4162 			regs[rd] = 0;
4163 			break;
4164 		}
4165 
4166 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4167 		regs[rd] = _RW_ISWRITER(&r.ri);
4168 		break;
4169 
4170 #else /* !illumos */
4171 	case DIF_SUBR_MUTEX_OWNED:
4172 		if (!dtrace_canload(tupregs[0].dttk_value,
4173 			sizeof (struct lock_object), mstate, vstate)) {
4174 			regs[rd] = 0;
4175 			break;
4176 		}
4177 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4178 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4179 		break;
4180 
4181 	case DIF_SUBR_MUTEX_OWNER:
4182 		if (!dtrace_canload(tupregs[0].dttk_value,
4183 			sizeof (struct lock_object), mstate, vstate)) {
4184 			regs[rd] = 0;
4185 			break;
4186 		}
4187 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4188 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4189 		regs[rd] = (uintptr_t)lowner;
4190 		break;
4191 
4192 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4193 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4194 		    mstate, vstate)) {
4195 			regs[rd] = 0;
4196 			break;
4197 		}
4198 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4199 		/* XXX - should be only LC_SLEEPABLE? */
4200 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4201 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4202 		break;
4203 
4204 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4205 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4206 		    mstate, vstate)) {
4207 			regs[rd] = 0;
4208 			break;
4209 		}
4210 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4211 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4212 		break;
4213 
4214 	case DIF_SUBR_RW_READ_HELD:
4215 	case DIF_SUBR_SX_SHARED_HELD:
4216 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4217 		    mstate, vstate)) {
4218 			regs[rd] = 0;
4219 			break;
4220 		}
4221 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4222 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4223 		    lowner == NULL;
4224 		break;
4225 
4226 	case DIF_SUBR_RW_WRITE_HELD:
4227 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4228 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4229 		    mstate, vstate)) {
4230 			regs[rd] = 0;
4231 			break;
4232 		}
4233 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4234 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4235 		regs[rd] = (lowner == curthread);
4236 		break;
4237 
4238 	case DIF_SUBR_RW_ISWRITER:
4239 	case DIF_SUBR_SX_ISEXCLUSIVE:
4240 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4241 		    mstate, vstate)) {
4242 			regs[rd] = 0;
4243 			break;
4244 		}
4245 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4246 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4247 		    lowner != NULL;
4248 		break;
4249 #endif /* illumos */
4250 
4251 	case DIF_SUBR_BCOPY: {
4252 		/*
4253 		 * We need to be sure that the destination is in the scratch
4254 		 * region -- no other region is allowed.
4255 		 */
4256 		uintptr_t src = tupregs[0].dttk_value;
4257 		uintptr_t dest = tupregs[1].dttk_value;
4258 		size_t size = tupregs[2].dttk_value;
4259 
4260 		if (!dtrace_inscratch(dest, size, mstate)) {
4261 			*flags |= CPU_DTRACE_BADADDR;
4262 			*illval = regs[rd];
4263 			break;
4264 		}
4265 
4266 		if (!dtrace_canload(src, size, mstate, vstate)) {
4267 			regs[rd] = 0;
4268 			break;
4269 		}
4270 
4271 		dtrace_bcopy((void *)src, (void *)dest, size);
4272 		break;
4273 	}
4274 
4275 	case DIF_SUBR_ALLOCA:
4276 	case DIF_SUBR_COPYIN: {
4277 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4278 		uint64_t size =
4279 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4280 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4281 
4282 		/*
4283 		 * This action doesn't require any credential checks since
4284 		 * probes will not activate in user contexts to which the
4285 		 * enabling user does not have permissions.
4286 		 */
4287 
4288 		/*
4289 		 * Rounding up the user allocation size could have overflowed
4290 		 * a large, bogus allocation (like -1ULL) to 0.
4291 		 */
4292 		if (scratch_size < size ||
4293 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4294 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4295 			regs[rd] = 0;
4296 			break;
4297 		}
4298 
4299 		if (subr == DIF_SUBR_COPYIN) {
4300 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4301 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4302 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4303 		}
4304 
4305 		mstate->dtms_scratch_ptr += scratch_size;
4306 		regs[rd] = dest;
4307 		break;
4308 	}
4309 
4310 	case DIF_SUBR_COPYINTO: {
4311 		uint64_t size = tupregs[1].dttk_value;
4312 		uintptr_t dest = tupregs[2].dttk_value;
4313 
4314 		/*
4315 		 * This action doesn't require any credential checks since
4316 		 * probes will not activate in user contexts to which the
4317 		 * enabling user does not have permissions.
4318 		 */
4319 		if (!dtrace_inscratch(dest, size, mstate)) {
4320 			*flags |= CPU_DTRACE_BADADDR;
4321 			*illval = regs[rd];
4322 			break;
4323 		}
4324 
4325 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4326 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4327 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4328 		break;
4329 	}
4330 
4331 	case DIF_SUBR_COPYINSTR: {
4332 		uintptr_t dest = mstate->dtms_scratch_ptr;
4333 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4334 
4335 		if (nargs > 1 && tupregs[1].dttk_value < size)
4336 			size = tupregs[1].dttk_value + 1;
4337 
4338 		/*
4339 		 * This action doesn't require any credential checks since
4340 		 * probes will not activate in user contexts to which the
4341 		 * enabling user does not have permissions.
4342 		 */
4343 		if (!DTRACE_INSCRATCH(mstate, size)) {
4344 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4345 			regs[rd] = 0;
4346 			break;
4347 		}
4348 
4349 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4350 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4351 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4352 
4353 		((char *)dest)[size - 1] = '\0';
4354 		mstate->dtms_scratch_ptr += size;
4355 		regs[rd] = dest;
4356 		break;
4357 	}
4358 
4359 #ifdef illumos
4360 	case DIF_SUBR_MSGSIZE:
4361 	case DIF_SUBR_MSGDSIZE: {
4362 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4363 		uintptr_t wptr, rptr;
4364 		size_t count = 0;
4365 		int cont = 0;
4366 
4367 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4368 
4369 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4370 			    vstate)) {
4371 				regs[rd] = 0;
4372 				break;
4373 			}
4374 
4375 			wptr = dtrace_loadptr(baddr +
4376 			    offsetof(mblk_t, b_wptr));
4377 
4378 			rptr = dtrace_loadptr(baddr +
4379 			    offsetof(mblk_t, b_rptr));
4380 
4381 			if (wptr < rptr) {
4382 				*flags |= CPU_DTRACE_BADADDR;
4383 				*illval = tupregs[0].dttk_value;
4384 				break;
4385 			}
4386 
4387 			daddr = dtrace_loadptr(baddr +
4388 			    offsetof(mblk_t, b_datap));
4389 
4390 			baddr = dtrace_loadptr(baddr +
4391 			    offsetof(mblk_t, b_cont));
4392 
4393 			/*
4394 			 * We want to prevent against denial-of-service here,
4395 			 * so we're only going to search the list for
4396 			 * dtrace_msgdsize_max mblks.
4397 			 */
4398 			if (cont++ > dtrace_msgdsize_max) {
4399 				*flags |= CPU_DTRACE_ILLOP;
4400 				break;
4401 			}
4402 
4403 			if (subr == DIF_SUBR_MSGDSIZE) {
4404 				if (dtrace_load8(daddr +
4405 				    offsetof(dblk_t, db_type)) != M_DATA)
4406 					continue;
4407 			}
4408 
4409 			count += wptr - rptr;
4410 		}
4411 
4412 		if (!(*flags & CPU_DTRACE_FAULT))
4413 			regs[rd] = count;
4414 
4415 		break;
4416 	}
4417 #endif
4418 
4419 	case DIF_SUBR_PROGENYOF: {
4420 		pid_t pid = tupregs[0].dttk_value;
4421 		proc_t *p;
4422 		int rval = 0;
4423 
4424 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4425 
4426 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4427 #ifdef illumos
4428 			if (p->p_pidp->pid_id == pid) {
4429 #else
4430 			if (p->p_pid == pid) {
4431 #endif
4432 				rval = 1;
4433 				break;
4434 			}
4435 		}
4436 
4437 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4438 
4439 		regs[rd] = rval;
4440 		break;
4441 	}
4442 
4443 	case DIF_SUBR_SPECULATION:
4444 		regs[rd] = dtrace_speculation(state);
4445 		break;
4446 
4447 	case DIF_SUBR_COPYOUT: {
4448 		uintptr_t kaddr = tupregs[0].dttk_value;
4449 		uintptr_t uaddr = tupregs[1].dttk_value;
4450 		uint64_t size = tupregs[2].dttk_value;
4451 
4452 		if (!dtrace_destructive_disallow &&
4453 		    dtrace_priv_proc_control(state) &&
4454 		    !dtrace_istoxic(kaddr, size)) {
4455 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4456 			dtrace_copyout(kaddr, uaddr, size, flags);
4457 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4458 		}
4459 		break;
4460 	}
4461 
4462 	case DIF_SUBR_COPYOUTSTR: {
4463 		uintptr_t kaddr = tupregs[0].dttk_value;
4464 		uintptr_t uaddr = tupregs[1].dttk_value;
4465 		uint64_t size = tupregs[2].dttk_value;
4466 
4467 		if (!dtrace_destructive_disallow &&
4468 		    dtrace_priv_proc_control(state) &&
4469 		    !dtrace_istoxic(kaddr, size)) {
4470 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4471 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4472 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4473 		}
4474 		break;
4475 	}
4476 
4477 	case DIF_SUBR_STRLEN: {
4478 		size_t sz;
4479 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4480 		sz = dtrace_strlen((char *)addr,
4481 		    state->dts_options[DTRACEOPT_STRSIZE]);
4482 
4483 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4484 			regs[rd] = 0;
4485 			break;
4486 		}
4487 
4488 		regs[rd] = sz;
4489 
4490 		break;
4491 	}
4492 
4493 	case DIF_SUBR_STRCHR:
4494 	case DIF_SUBR_STRRCHR: {
4495 		/*
4496 		 * We're going to iterate over the string looking for the
4497 		 * specified character.  We will iterate until we have reached
4498 		 * the string length or we have found the character.  If this
4499 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4500 		 * of the specified character instead of the first.
4501 		 */
4502 		uintptr_t saddr = tupregs[0].dttk_value;
4503 		uintptr_t addr = tupregs[0].dttk_value;
4504 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4505 		char c, target = (char)tupregs[1].dttk_value;
4506 
4507 		for (regs[rd] = 0; addr < limit; addr++) {
4508 			if ((c = dtrace_load8(addr)) == target) {
4509 				regs[rd] = addr;
4510 
4511 				if (subr == DIF_SUBR_STRCHR)
4512 					break;
4513 			}
4514 
4515 			if (c == '\0')
4516 				break;
4517 		}
4518 
4519 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4520 			regs[rd] = 0;
4521 			break;
4522 		}
4523 
4524 		break;
4525 	}
4526 
4527 	case DIF_SUBR_STRSTR:
4528 	case DIF_SUBR_INDEX:
4529 	case DIF_SUBR_RINDEX: {
4530 		/*
4531 		 * We're going to iterate over the string looking for the
4532 		 * specified string.  We will iterate until we have reached
4533 		 * the string length or we have found the string.  (Yes, this
4534 		 * is done in the most naive way possible -- but considering
4535 		 * that the string we're searching for is likely to be
4536 		 * relatively short, the complexity of Rabin-Karp or similar
4537 		 * hardly seems merited.)
4538 		 */
4539 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4540 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4541 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4542 		size_t len = dtrace_strlen(addr, size);
4543 		size_t sublen = dtrace_strlen(substr, size);
4544 		char *limit = addr + len, *orig = addr;
4545 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4546 		int inc = 1;
4547 
4548 		regs[rd] = notfound;
4549 
4550 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4551 			regs[rd] = 0;
4552 			break;
4553 		}
4554 
4555 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4556 		    vstate)) {
4557 			regs[rd] = 0;
4558 			break;
4559 		}
4560 
4561 		/*
4562 		 * strstr() and index()/rindex() have similar semantics if
4563 		 * both strings are the empty string: strstr() returns a
4564 		 * pointer to the (empty) string, and index() and rindex()
4565 		 * both return index 0 (regardless of any position argument).
4566 		 */
4567 		if (sublen == 0 && len == 0) {
4568 			if (subr == DIF_SUBR_STRSTR)
4569 				regs[rd] = (uintptr_t)addr;
4570 			else
4571 				regs[rd] = 0;
4572 			break;
4573 		}
4574 
4575 		if (subr != DIF_SUBR_STRSTR) {
4576 			if (subr == DIF_SUBR_RINDEX) {
4577 				limit = orig - 1;
4578 				addr += len;
4579 				inc = -1;
4580 			}
4581 
4582 			/*
4583 			 * Both index() and rindex() take an optional position
4584 			 * argument that denotes the starting position.
4585 			 */
4586 			if (nargs == 3) {
4587 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4588 
4589 				/*
4590 				 * If the position argument to index() is
4591 				 * negative, Perl implicitly clamps it at
4592 				 * zero.  This semantic is a little surprising
4593 				 * given the special meaning of negative
4594 				 * positions to similar Perl functions like
4595 				 * substr(), but it appears to reflect a
4596 				 * notion that index() can start from a
4597 				 * negative index and increment its way up to
4598 				 * the string.  Given this notion, Perl's
4599 				 * rindex() is at least self-consistent in
4600 				 * that it implicitly clamps positions greater
4601 				 * than the string length to be the string
4602 				 * length.  Where Perl completely loses
4603 				 * coherence, however, is when the specified
4604 				 * substring is the empty string ("").  In
4605 				 * this case, even if the position is
4606 				 * negative, rindex() returns 0 -- and even if
4607 				 * the position is greater than the length,
4608 				 * index() returns the string length.  These
4609 				 * semantics violate the notion that index()
4610 				 * should never return a value less than the
4611 				 * specified position and that rindex() should
4612 				 * never return a value greater than the
4613 				 * specified position.  (One assumes that
4614 				 * these semantics are artifacts of Perl's
4615 				 * implementation and not the results of
4616 				 * deliberate design -- it beggars belief that
4617 				 * even Larry Wall could desire such oddness.)
4618 				 * While in the abstract one would wish for
4619 				 * consistent position semantics across
4620 				 * substr(), index() and rindex() -- or at the
4621 				 * very least self-consistent position
4622 				 * semantics for index() and rindex() -- we
4623 				 * instead opt to keep with the extant Perl
4624 				 * semantics, in all their broken glory.  (Do
4625 				 * we have more desire to maintain Perl's
4626 				 * semantics than Perl does?  Probably.)
4627 				 */
4628 				if (subr == DIF_SUBR_RINDEX) {
4629 					if (pos < 0) {
4630 						if (sublen == 0)
4631 							regs[rd] = 0;
4632 						break;
4633 					}
4634 
4635 					if (pos > len)
4636 						pos = len;
4637 				} else {
4638 					if (pos < 0)
4639 						pos = 0;
4640 
4641 					if (pos >= len) {
4642 						if (sublen == 0)
4643 							regs[rd] = len;
4644 						break;
4645 					}
4646 				}
4647 
4648 				addr = orig + pos;
4649 			}
4650 		}
4651 
4652 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4653 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4654 				if (subr != DIF_SUBR_STRSTR) {
4655 					/*
4656 					 * As D index() and rindex() are
4657 					 * modeled on Perl (and not on awk),
4658 					 * we return a zero-based (and not a
4659 					 * one-based) index.  (For you Perl
4660 					 * weenies: no, we're not going to add
4661 					 * $[ -- and shouldn't you be at a con
4662 					 * or something?)
4663 					 */
4664 					regs[rd] = (uintptr_t)(addr - orig);
4665 					break;
4666 				}
4667 
4668 				ASSERT(subr == DIF_SUBR_STRSTR);
4669 				regs[rd] = (uintptr_t)addr;
4670 				break;
4671 			}
4672 		}
4673 
4674 		break;
4675 	}
4676 
4677 	case DIF_SUBR_STRTOK: {
4678 		uintptr_t addr = tupregs[0].dttk_value;
4679 		uintptr_t tokaddr = tupregs[1].dttk_value;
4680 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4681 		uintptr_t limit, toklimit = tokaddr + size;
4682 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4683 		char *dest = (char *)mstate->dtms_scratch_ptr;
4684 		int i;
4685 
4686 		/*
4687 		 * Check both the token buffer and (later) the input buffer,
4688 		 * since both could be non-scratch addresses.
4689 		 */
4690 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4691 			regs[rd] = 0;
4692 			break;
4693 		}
4694 
4695 		if (!DTRACE_INSCRATCH(mstate, size)) {
4696 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4697 			regs[rd] = 0;
4698 			break;
4699 		}
4700 
4701 		if (addr == 0) {
4702 			/*
4703 			 * If the address specified is NULL, we use our saved
4704 			 * strtok pointer from the mstate.  Note that this
4705 			 * means that the saved strtok pointer is _only_
4706 			 * valid within multiple enablings of the same probe --
4707 			 * it behaves like an implicit clause-local variable.
4708 			 */
4709 			addr = mstate->dtms_strtok;
4710 		} else {
4711 			/*
4712 			 * If the user-specified address is non-NULL we must
4713 			 * access check it.  This is the only time we have
4714 			 * a chance to do so, since this address may reside
4715 			 * in the string table of this clause-- future calls
4716 			 * (when we fetch addr from mstate->dtms_strtok)
4717 			 * would fail this access check.
4718 			 */
4719 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4720 				regs[rd] = 0;
4721 				break;
4722 			}
4723 		}
4724 
4725 		/*
4726 		 * First, zero the token map, and then process the token
4727 		 * string -- setting a bit in the map for every character
4728 		 * found in the token string.
4729 		 */
4730 		for (i = 0; i < sizeof (tokmap); i++)
4731 			tokmap[i] = 0;
4732 
4733 		for (; tokaddr < toklimit; tokaddr++) {
4734 			if ((c = dtrace_load8(tokaddr)) == '\0')
4735 				break;
4736 
4737 			ASSERT((c >> 3) < sizeof (tokmap));
4738 			tokmap[c >> 3] |= (1 << (c & 0x7));
4739 		}
4740 
4741 		for (limit = addr + size; addr < limit; addr++) {
4742 			/*
4743 			 * We're looking for a character that is _not_ contained
4744 			 * in the token string.
4745 			 */
4746 			if ((c = dtrace_load8(addr)) == '\0')
4747 				break;
4748 
4749 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4750 				break;
4751 		}
4752 
4753 		if (c == '\0') {
4754 			/*
4755 			 * We reached the end of the string without finding
4756 			 * any character that was not in the token string.
4757 			 * We return NULL in this case, and we set the saved
4758 			 * address to NULL as well.
4759 			 */
4760 			regs[rd] = 0;
4761 			mstate->dtms_strtok = 0;
4762 			break;
4763 		}
4764 
4765 		/*
4766 		 * From here on, we're copying into the destination string.
4767 		 */
4768 		for (i = 0; addr < limit && i < size - 1; addr++) {
4769 			if ((c = dtrace_load8(addr)) == '\0')
4770 				break;
4771 
4772 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4773 				break;
4774 
4775 			ASSERT(i < size);
4776 			dest[i++] = c;
4777 		}
4778 
4779 		ASSERT(i < size);
4780 		dest[i] = '\0';
4781 		regs[rd] = (uintptr_t)dest;
4782 		mstate->dtms_scratch_ptr += size;
4783 		mstate->dtms_strtok = addr;
4784 		break;
4785 	}
4786 
4787 	case DIF_SUBR_SUBSTR: {
4788 		uintptr_t s = tupregs[0].dttk_value;
4789 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4790 		char *d = (char *)mstate->dtms_scratch_ptr;
4791 		int64_t index = (int64_t)tupregs[1].dttk_value;
4792 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4793 		size_t len = dtrace_strlen((char *)s, size);
4794 		int64_t i;
4795 
4796 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4797 			regs[rd] = 0;
4798 			break;
4799 		}
4800 
4801 		if (!DTRACE_INSCRATCH(mstate, size)) {
4802 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4803 			regs[rd] = 0;
4804 			break;
4805 		}
4806 
4807 		if (nargs <= 2)
4808 			remaining = (int64_t)size;
4809 
4810 		if (index < 0) {
4811 			index += len;
4812 
4813 			if (index < 0 && index + remaining > 0) {
4814 				remaining += index;
4815 				index = 0;
4816 			}
4817 		}
4818 
4819 		if (index >= len || index < 0) {
4820 			remaining = 0;
4821 		} else if (remaining < 0) {
4822 			remaining += len - index;
4823 		} else if (index + remaining > size) {
4824 			remaining = size - index;
4825 		}
4826 
4827 		for (i = 0; i < remaining; i++) {
4828 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4829 				break;
4830 		}
4831 
4832 		d[i] = '\0';
4833 
4834 		mstate->dtms_scratch_ptr += size;
4835 		regs[rd] = (uintptr_t)d;
4836 		break;
4837 	}
4838 
4839 	case DIF_SUBR_JSON: {
4840 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4841 		uintptr_t json = tupregs[0].dttk_value;
4842 		size_t jsonlen = dtrace_strlen((char *)json, size);
4843 		uintptr_t elem = tupregs[1].dttk_value;
4844 		size_t elemlen = dtrace_strlen((char *)elem, size);
4845 
4846 		char *dest = (char *)mstate->dtms_scratch_ptr;
4847 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4848 		char *ee = elemlist;
4849 		int nelems = 1;
4850 		uintptr_t cur;
4851 
4852 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4853 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4854 			regs[rd] = 0;
4855 			break;
4856 		}
4857 
4858 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4859 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4860 			regs[rd] = 0;
4861 			break;
4862 		}
4863 
4864 		/*
4865 		 * Read the element selector and split it up into a packed list
4866 		 * of strings.
4867 		 */
4868 		for (cur = elem; cur < elem + elemlen; cur++) {
4869 			char cc = dtrace_load8(cur);
4870 
4871 			if (cur == elem && cc == '[') {
4872 				/*
4873 				 * If the first element selector key is
4874 				 * actually an array index then ignore the
4875 				 * bracket.
4876 				 */
4877 				continue;
4878 			}
4879 
4880 			if (cc == ']')
4881 				continue;
4882 
4883 			if (cc == '.' || cc == '[') {
4884 				nelems++;
4885 				cc = '\0';
4886 			}
4887 
4888 			*ee++ = cc;
4889 		}
4890 		*ee++ = '\0';
4891 
4892 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4893 		    nelems, dest)) != 0)
4894 			mstate->dtms_scratch_ptr += jsonlen + 1;
4895 		break;
4896 	}
4897 
4898 	case DIF_SUBR_TOUPPER:
4899 	case DIF_SUBR_TOLOWER: {
4900 		uintptr_t s = tupregs[0].dttk_value;
4901 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4902 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4903 		size_t len = dtrace_strlen((char *)s, size);
4904 		char lower, upper, convert;
4905 		int64_t i;
4906 
4907 		if (subr == DIF_SUBR_TOUPPER) {
4908 			lower = 'a';
4909 			upper = 'z';
4910 			convert = 'A';
4911 		} else {
4912 			lower = 'A';
4913 			upper = 'Z';
4914 			convert = 'a';
4915 		}
4916 
4917 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4918 			regs[rd] = 0;
4919 			break;
4920 		}
4921 
4922 		if (!DTRACE_INSCRATCH(mstate, size)) {
4923 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4924 			regs[rd] = 0;
4925 			break;
4926 		}
4927 
4928 		for (i = 0; i < size - 1; i++) {
4929 			if ((c = dtrace_load8(s + i)) == '\0')
4930 				break;
4931 
4932 			if (c >= lower && c <= upper)
4933 				c = convert + (c - lower);
4934 
4935 			dest[i] = c;
4936 		}
4937 
4938 		ASSERT(i < size);
4939 		dest[i] = '\0';
4940 		regs[rd] = (uintptr_t)dest;
4941 		mstate->dtms_scratch_ptr += size;
4942 		break;
4943 	}
4944 
4945 #ifdef illumos
4946 	case DIF_SUBR_GETMAJOR:
4947 #ifdef _LP64
4948 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4949 #else
4950 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4951 #endif
4952 		break;
4953 
4954 	case DIF_SUBR_GETMINOR:
4955 #ifdef _LP64
4956 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4957 #else
4958 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4959 #endif
4960 		break;
4961 
4962 	case DIF_SUBR_DDI_PATHNAME: {
4963 		/*
4964 		 * This one is a galactic mess.  We are going to roughly
4965 		 * emulate ddi_pathname(), but it's made more complicated
4966 		 * by the fact that we (a) want to include the minor name and
4967 		 * (b) must proceed iteratively instead of recursively.
4968 		 */
4969 		uintptr_t dest = mstate->dtms_scratch_ptr;
4970 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4971 		char *start = (char *)dest, *end = start + size - 1;
4972 		uintptr_t daddr = tupregs[0].dttk_value;
4973 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4974 		char *s;
4975 		int i, len, depth = 0;
4976 
4977 		/*
4978 		 * Due to all the pointer jumping we do and context we must
4979 		 * rely upon, we just mandate that the user must have kernel
4980 		 * read privileges to use this routine.
4981 		 */
4982 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4983 			*flags |= CPU_DTRACE_KPRIV;
4984 			*illval = daddr;
4985 			regs[rd] = 0;
4986 		}
4987 
4988 		if (!DTRACE_INSCRATCH(mstate, size)) {
4989 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4990 			regs[rd] = 0;
4991 			break;
4992 		}
4993 
4994 		*end = '\0';
4995 
4996 		/*
4997 		 * We want to have a name for the minor.  In order to do this,
4998 		 * we need to walk the minor list from the devinfo.  We want
4999 		 * to be sure that we don't infinitely walk a circular list,
5000 		 * so we check for circularity by sending a scout pointer
5001 		 * ahead two elements for every element that we iterate over;
5002 		 * if the list is circular, these will ultimately point to the
5003 		 * same element.  You may recognize this little trick as the
5004 		 * answer to a stupid interview question -- one that always
5005 		 * seems to be asked by those who had to have it laboriously
5006 		 * explained to them, and who can't even concisely describe
5007 		 * the conditions under which one would be forced to resort to
5008 		 * this technique.  Needless to say, those conditions are
5009 		 * found here -- and probably only here.  Is this the only use
5010 		 * of this infamous trick in shipping, production code?  If it
5011 		 * isn't, it probably should be...
5012 		 */
5013 		if (minor != -1) {
5014 			uintptr_t maddr = dtrace_loadptr(daddr +
5015 			    offsetof(struct dev_info, devi_minor));
5016 
5017 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5018 			uintptr_t name = offsetof(struct ddi_minor_data,
5019 			    d_minor) + offsetof(struct ddi_minor, name);
5020 			uintptr_t dev = offsetof(struct ddi_minor_data,
5021 			    d_minor) + offsetof(struct ddi_minor, dev);
5022 			uintptr_t scout;
5023 
5024 			if (maddr != NULL)
5025 				scout = dtrace_loadptr(maddr + next);
5026 
5027 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5028 				uint64_t m;
5029 #ifdef _LP64
5030 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5031 #else
5032 				m = dtrace_load32(maddr + dev) & MAXMIN;
5033 #endif
5034 				if (m != minor) {
5035 					maddr = dtrace_loadptr(maddr + next);
5036 
5037 					if (scout == NULL)
5038 						continue;
5039 
5040 					scout = dtrace_loadptr(scout + next);
5041 
5042 					if (scout == NULL)
5043 						continue;
5044 
5045 					scout = dtrace_loadptr(scout + next);
5046 
5047 					if (scout == NULL)
5048 						continue;
5049 
5050 					if (scout == maddr) {
5051 						*flags |= CPU_DTRACE_ILLOP;
5052 						break;
5053 					}
5054 
5055 					continue;
5056 				}
5057 
5058 				/*
5059 				 * We have the minor data.  Now we need to
5060 				 * copy the minor's name into the end of the
5061 				 * pathname.
5062 				 */
5063 				s = (char *)dtrace_loadptr(maddr + name);
5064 				len = dtrace_strlen(s, size);
5065 
5066 				if (*flags & CPU_DTRACE_FAULT)
5067 					break;
5068 
5069 				if (len != 0) {
5070 					if ((end -= (len + 1)) < start)
5071 						break;
5072 
5073 					*end = ':';
5074 				}
5075 
5076 				for (i = 1; i <= len; i++)
5077 					end[i] = dtrace_load8((uintptr_t)s++);
5078 				break;
5079 			}
5080 		}
5081 
5082 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5083 			ddi_node_state_t devi_state;
5084 
5085 			devi_state = dtrace_load32(daddr +
5086 			    offsetof(struct dev_info, devi_node_state));
5087 
5088 			if (*flags & CPU_DTRACE_FAULT)
5089 				break;
5090 
5091 			if (devi_state >= DS_INITIALIZED) {
5092 				s = (char *)dtrace_loadptr(daddr +
5093 				    offsetof(struct dev_info, devi_addr));
5094 				len = dtrace_strlen(s, size);
5095 
5096 				if (*flags & CPU_DTRACE_FAULT)
5097 					break;
5098 
5099 				if (len != 0) {
5100 					if ((end -= (len + 1)) < start)
5101 						break;
5102 
5103 					*end = '@';
5104 				}
5105 
5106 				for (i = 1; i <= len; i++)
5107 					end[i] = dtrace_load8((uintptr_t)s++);
5108 			}
5109 
5110 			/*
5111 			 * Now for the node name...
5112 			 */
5113 			s = (char *)dtrace_loadptr(daddr +
5114 			    offsetof(struct dev_info, devi_node_name));
5115 
5116 			daddr = dtrace_loadptr(daddr +
5117 			    offsetof(struct dev_info, devi_parent));
5118 
5119 			/*
5120 			 * If our parent is NULL (that is, if we're the root
5121 			 * node), we're going to use the special path
5122 			 * "devices".
5123 			 */
5124 			if (daddr == 0)
5125 				s = "devices";
5126 
5127 			len = dtrace_strlen(s, size);
5128 			if (*flags & CPU_DTRACE_FAULT)
5129 				break;
5130 
5131 			if ((end -= (len + 1)) < start)
5132 				break;
5133 
5134 			for (i = 1; i <= len; i++)
5135 				end[i] = dtrace_load8((uintptr_t)s++);
5136 			*end = '/';
5137 
5138 			if (depth++ > dtrace_devdepth_max) {
5139 				*flags |= CPU_DTRACE_ILLOP;
5140 				break;
5141 			}
5142 		}
5143 
5144 		if (end < start)
5145 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5146 
5147 		if (daddr == 0) {
5148 			regs[rd] = (uintptr_t)end;
5149 			mstate->dtms_scratch_ptr += size;
5150 		}
5151 
5152 		break;
5153 	}
5154 #endif
5155 
5156 	case DIF_SUBR_STRJOIN: {
5157 		char *d = (char *)mstate->dtms_scratch_ptr;
5158 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5159 		uintptr_t s1 = tupregs[0].dttk_value;
5160 		uintptr_t s2 = tupregs[1].dttk_value;
5161 		int i = 0;
5162 
5163 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5164 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5165 			regs[rd] = 0;
5166 			break;
5167 		}
5168 
5169 		if (!DTRACE_INSCRATCH(mstate, size)) {
5170 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5171 			regs[rd] = 0;
5172 			break;
5173 		}
5174 
5175 		for (;;) {
5176 			if (i >= size) {
5177 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5178 				regs[rd] = 0;
5179 				break;
5180 			}
5181 
5182 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5183 				i--;
5184 				break;
5185 			}
5186 		}
5187 
5188 		for (;;) {
5189 			if (i >= size) {
5190 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5191 				regs[rd] = 0;
5192 				break;
5193 			}
5194 
5195 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5196 				break;
5197 		}
5198 
5199 		if (i < size) {
5200 			mstate->dtms_scratch_ptr += i;
5201 			regs[rd] = (uintptr_t)d;
5202 		}
5203 
5204 		break;
5205 	}
5206 
5207 	case DIF_SUBR_STRTOLL: {
5208 		uintptr_t s = tupregs[0].dttk_value;
5209 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5210 		int base = 10;
5211 
5212 		if (nargs > 1) {
5213 			if ((base = tupregs[1].dttk_value) <= 1 ||
5214 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5215 				*flags |= CPU_DTRACE_ILLOP;
5216 				break;
5217 			}
5218 		}
5219 
5220 		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5221 			regs[rd] = INT64_MIN;
5222 			break;
5223 		}
5224 
5225 		regs[rd] = dtrace_strtoll((char *)s, base, size);
5226 		break;
5227 	}
5228 
5229 	case DIF_SUBR_LLTOSTR: {
5230 		int64_t i = (int64_t)tupregs[0].dttk_value;
5231 		uint64_t val, digit;
5232 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5233 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5234 		int base = 10;
5235 
5236 		if (nargs > 1) {
5237 			if ((base = tupregs[1].dttk_value) <= 1 ||
5238 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5239 				*flags |= CPU_DTRACE_ILLOP;
5240 				break;
5241 			}
5242 		}
5243 
5244 		val = (base == 10 && i < 0) ? i * -1 : i;
5245 
5246 		if (!DTRACE_INSCRATCH(mstate, size)) {
5247 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5248 			regs[rd] = 0;
5249 			break;
5250 		}
5251 
5252 		for (*end-- = '\0'; val; val /= base) {
5253 			if ((digit = val % base) <= '9' - '0') {
5254 				*end-- = '0' + digit;
5255 			} else {
5256 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5257 			}
5258 		}
5259 
5260 		if (i == 0 && base == 16)
5261 			*end-- = '0';
5262 
5263 		if (base == 16)
5264 			*end-- = 'x';
5265 
5266 		if (i == 0 || base == 8 || base == 16)
5267 			*end-- = '0';
5268 
5269 		if (i < 0 && base == 10)
5270 			*end-- = '-';
5271 
5272 		regs[rd] = (uintptr_t)end + 1;
5273 		mstate->dtms_scratch_ptr += size;
5274 		break;
5275 	}
5276 
5277 	case DIF_SUBR_HTONS:
5278 	case DIF_SUBR_NTOHS:
5279 #if BYTE_ORDER == BIG_ENDIAN
5280 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5281 #else
5282 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5283 #endif
5284 		break;
5285 
5286 
5287 	case DIF_SUBR_HTONL:
5288 	case DIF_SUBR_NTOHL:
5289 #if BYTE_ORDER == BIG_ENDIAN
5290 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5291 #else
5292 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5293 #endif
5294 		break;
5295 
5296 
5297 	case DIF_SUBR_HTONLL:
5298 	case DIF_SUBR_NTOHLL:
5299 #if BYTE_ORDER == BIG_ENDIAN
5300 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5301 #else
5302 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5303 #endif
5304 		break;
5305 
5306 
5307 	case DIF_SUBR_DIRNAME:
5308 	case DIF_SUBR_BASENAME: {
5309 		char *dest = (char *)mstate->dtms_scratch_ptr;
5310 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5311 		uintptr_t src = tupregs[0].dttk_value;
5312 		int i, j, len = dtrace_strlen((char *)src, size);
5313 		int lastbase = -1, firstbase = -1, lastdir = -1;
5314 		int start, end;
5315 
5316 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5317 			regs[rd] = 0;
5318 			break;
5319 		}
5320 
5321 		if (!DTRACE_INSCRATCH(mstate, size)) {
5322 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5323 			regs[rd] = 0;
5324 			break;
5325 		}
5326 
5327 		/*
5328 		 * The basename and dirname for a zero-length string is
5329 		 * defined to be "."
5330 		 */
5331 		if (len == 0) {
5332 			len = 1;
5333 			src = (uintptr_t)".";
5334 		}
5335 
5336 		/*
5337 		 * Start from the back of the string, moving back toward the
5338 		 * front until we see a character that isn't a slash.  That
5339 		 * character is the last character in the basename.
5340 		 */
5341 		for (i = len - 1; i >= 0; i--) {
5342 			if (dtrace_load8(src + i) != '/')
5343 				break;
5344 		}
5345 
5346 		if (i >= 0)
5347 			lastbase = i;
5348 
5349 		/*
5350 		 * Starting from the last character in the basename, move
5351 		 * towards the front until we find a slash.  The character
5352 		 * that we processed immediately before that is the first
5353 		 * character in the basename.
5354 		 */
5355 		for (; i >= 0; i--) {
5356 			if (dtrace_load8(src + i) == '/')
5357 				break;
5358 		}
5359 
5360 		if (i >= 0)
5361 			firstbase = i + 1;
5362 
5363 		/*
5364 		 * Now keep going until we find a non-slash character.  That
5365 		 * character is the last character in the dirname.
5366 		 */
5367 		for (; i >= 0; i--) {
5368 			if (dtrace_load8(src + i) != '/')
5369 				break;
5370 		}
5371 
5372 		if (i >= 0)
5373 			lastdir = i;
5374 
5375 		ASSERT(!(lastbase == -1 && firstbase != -1));
5376 		ASSERT(!(firstbase == -1 && lastdir != -1));
5377 
5378 		if (lastbase == -1) {
5379 			/*
5380 			 * We didn't find a non-slash character.  We know that
5381 			 * the length is non-zero, so the whole string must be
5382 			 * slashes.  In either the dirname or the basename
5383 			 * case, we return '/'.
5384 			 */
5385 			ASSERT(firstbase == -1);
5386 			firstbase = lastbase = lastdir = 0;
5387 		}
5388 
5389 		if (firstbase == -1) {
5390 			/*
5391 			 * The entire string consists only of a basename
5392 			 * component.  If we're looking for dirname, we need
5393 			 * to change our string to be just "."; if we're
5394 			 * looking for a basename, we'll just set the first
5395 			 * character of the basename to be 0.
5396 			 */
5397 			if (subr == DIF_SUBR_DIRNAME) {
5398 				ASSERT(lastdir == -1);
5399 				src = (uintptr_t)".";
5400 				lastdir = 0;
5401 			} else {
5402 				firstbase = 0;
5403 			}
5404 		}
5405 
5406 		if (subr == DIF_SUBR_DIRNAME) {
5407 			if (lastdir == -1) {
5408 				/*
5409 				 * We know that we have a slash in the name --
5410 				 * or lastdir would be set to 0, above.  And
5411 				 * because lastdir is -1, we know that this
5412 				 * slash must be the first character.  (That
5413 				 * is, the full string must be of the form
5414 				 * "/basename".)  In this case, the last
5415 				 * character of the directory name is 0.
5416 				 */
5417 				lastdir = 0;
5418 			}
5419 
5420 			start = 0;
5421 			end = lastdir;
5422 		} else {
5423 			ASSERT(subr == DIF_SUBR_BASENAME);
5424 			ASSERT(firstbase != -1 && lastbase != -1);
5425 			start = firstbase;
5426 			end = lastbase;
5427 		}
5428 
5429 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5430 			dest[j] = dtrace_load8(src + i);
5431 
5432 		dest[j] = '\0';
5433 		regs[rd] = (uintptr_t)dest;
5434 		mstate->dtms_scratch_ptr += size;
5435 		break;
5436 	}
5437 
5438 	case DIF_SUBR_GETF: {
5439 		uintptr_t fd = tupregs[0].dttk_value;
5440 		struct filedesc *fdp;
5441 		file_t *fp;
5442 
5443 		if (!dtrace_priv_proc(state)) {
5444 			regs[rd] = 0;
5445 			break;
5446 		}
5447 		fdp = curproc->p_fd;
5448 		FILEDESC_SLOCK(fdp);
5449 		fp = fget_locked(fdp, fd);
5450 		mstate->dtms_getf = fp;
5451 		regs[rd] = (uintptr_t)fp;
5452 		FILEDESC_SUNLOCK(fdp);
5453 		break;
5454 	}
5455 
5456 	case DIF_SUBR_CLEANPATH: {
5457 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5458 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5459 		uintptr_t src = tupregs[0].dttk_value;
5460 		int i = 0, j = 0;
5461 #ifdef illumos
5462 		zone_t *z;
5463 #endif
5464 
5465 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5466 			regs[rd] = 0;
5467 			break;
5468 		}
5469 
5470 		if (!DTRACE_INSCRATCH(mstate, size)) {
5471 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5472 			regs[rd] = 0;
5473 			break;
5474 		}
5475 
5476 		/*
5477 		 * Move forward, loading each character.
5478 		 */
5479 		do {
5480 			c = dtrace_load8(src + i++);
5481 next:
5482 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5483 				break;
5484 
5485 			if (c != '/') {
5486 				dest[j++] = c;
5487 				continue;
5488 			}
5489 
5490 			c = dtrace_load8(src + i++);
5491 
5492 			if (c == '/') {
5493 				/*
5494 				 * We have two slashes -- we can just advance
5495 				 * to the next character.
5496 				 */
5497 				goto next;
5498 			}
5499 
5500 			if (c != '.') {
5501 				/*
5502 				 * This is not "." and it's not ".." -- we can
5503 				 * just store the "/" and this character and
5504 				 * drive on.
5505 				 */
5506 				dest[j++] = '/';
5507 				dest[j++] = c;
5508 				continue;
5509 			}
5510 
5511 			c = dtrace_load8(src + i++);
5512 
5513 			if (c == '/') {
5514 				/*
5515 				 * This is a "/./" component.  We're not going
5516 				 * to store anything in the destination buffer;
5517 				 * we're just going to go to the next component.
5518 				 */
5519 				goto next;
5520 			}
5521 
5522 			if (c != '.') {
5523 				/*
5524 				 * This is not ".." -- we can just store the
5525 				 * "/." and this character and continue
5526 				 * processing.
5527 				 */
5528 				dest[j++] = '/';
5529 				dest[j++] = '.';
5530 				dest[j++] = c;
5531 				continue;
5532 			}
5533 
5534 			c = dtrace_load8(src + i++);
5535 
5536 			if (c != '/' && c != '\0') {
5537 				/*
5538 				 * This is not ".." -- it's "..[mumble]".
5539 				 * We'll store the "/.." and this character
5540 				 * and continue processing.
5541 				 */
5542 				dest[j++] = '/';
5543 				dest[j++] = '.';
5544 				dest[j++] = '.';
5545 				dest[j++] = c;
5546 				continue;
5547 			}
5548 
5549 			/*
5550 			 * This is "/../" or "/..\0".  We need to back up
5551 			 * our destination pointer until we find a "/".
5552 			 */
5553 			i--;
5554 			while (j != 0 && dest[--j] != '/')
5555 				continue;
5556 
5557 			if (c == '\0')
5558 				dest[++j] = '/';
5559 		} while (c != '\0');
5560 
5561 		dest[j] = '\0';
5562 
5563 #ifdef illumos
5564 		if (mstate->dtms_getf != NULL &&
5565 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5566 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5567 			/*
5568 			 * If we've done a getf() as a part of this ECB and we
5569 			 * don't have kernel access (and we're not in the global
5570 			 * zone), check if the path we cleaned up begins with
5571 			 * the zone's root path, and trim it off if so.  Note
5572 			 * that this is an output cleanliness issue, not a
5573 			 * security issue: knowing one's zone root path does
5574 			 * not enable privilege escalation.
5575 			 */
5576 			if (strstr(dest, z->zone_rootpath) == dest)
5577 				dest += strlen(z->zone_rootpath) - 1;
5578 		}
5579 #endif
5580 
5581 		regs[rd] = (uintptr_t)dest;
5582 		mstate->dtms_scratch_ptr += size;
5583 		break;
5584 	}
5585 
5586 	case DIF_SUBR_INET_NTOA:
5587 	case DIF_SUBR_INET_NTOA6:
5588 	case DIF_SUBR_INET_NTOP: {
5589 		size_t size;
5590 		int af, argi, i;
5591 		char *base, *end;
5592 
5593 		if (subr == DIF_SUBR_INET_NTOP) {
5594 			af = (int)tupregs[0].dttk_value;
5595 			argi = 1;
5596 		} else {
5597 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5598 			argi = 0;
5599 		}
5600 
5601 		if (af == AF_INET) {
5602 			ipaddr_t ip4;
5603 			uint8_t *ptr8, val;
5604 
5605 			/*
5606 			 * Safely load the IPv4 address.
5607 			 */
5608 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5609 
5610 			/*
5611 			 * Check an IPv4 string will fit in scratch.
5612 			 */
5613 			size = INET_ADDRSTRLEN;
5614 			if (!DTRACE_INSCRATCH(mstate, size)) {
5615 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5616 				regs[rd] = 0;
5617 				break;
5618 			}
5619 			base = (char *)mstate->dtms_scratch_ptr;
5620 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5621 
5622 			/*
5623 			 * Stringify as a dotted decimal quad.
5624 			 */
5625 			*end-- = '\0';
5626 			ptr8 = (uint8_t *)&ip4;
5627 			for (i = 3; i >= 0; i--) {
5628 				val = ptr8[i];
5629 
5630 				if (val == 0) {
5631 					*end-- = '0';
5632 				} else {
5633 					for (; val; val /= 10) {
5634 						*end-- = '0' + (val % 10);
5635 					}
5636 				}
5637 
5638 				if (i > 0)
5639 					*end-- = '.';
5640 			}
5641 			ASSERT(end + 1 >= base);
5642 
5643 		} else if (af == AF_INET6) {
5644 			struct in6_addr ip6;
5645 			int firstzero, tryzero, numzero, v6end;
5646 			uint16_t val;
5647 			const char digits[] = "0123456789abcdef";
5648 
5649 			/*
5650 			 * Stringify using RFC 1884 convention 2 - 16 bit
5651 			 * hexadecimal values with a zero-run compression.
5652 			 * Lower case hexadecimal digits are used.
5653 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5654 			 * The IPv4 embedded form is returned for inet_ntop,
5655 			 * just the IPv4 string is returned for inet_ntoa6.
5656 			 */
5657 
5658 			/*
5659 			 * Safely load the IPv6 address.
5660 			 */
5661 			dtrace_bcopy(
5662 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5663 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5664 
5665 			/*
5666 			 * Check an IPv6 string will fit in scratch.
5667 			 */
5668 			size = INET6_ADDRSTRLEN;
5669 			if (!DTRACE_INSCRATCH(mstate, size)) {
5670 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5671 				regs[rd] = 0;
5672 				break;
5673 			}
5674 			base = (char *)mstate->dtms_scratch_ptr;
5675 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5676 			*end-- = '\0';
5677 
5678 			/*
5679 			 * Find the longest run of 16 bit zero values
5680 			 * for the single allowed zero compression - "::".
5681 			 */
5682 			firstzero = -1;
5683 			tryzero = -1;
5684 			numzero = 1;
5685 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5686 #ifdef illumos
5687 				if (ip6._S6_un._S6_u8[i] == 0 &&
5688 #else
5689 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5690 #endif
5691 				    tryzero == -1 && i % 2 == 0) {
5692 					tryzero = i;
5693 					continue;
5694 				}
5695 
5696 				if (tryzero != -1 &&
5697 #ifdef illumos
5698 				    (ip6._S6_un._S6_u8[i] != 0 ||
5699 #else
5700 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5701 #endif
5702 				    i == sizeof (struct in6_addr) - 1)) {
5703 
5704 					if (i - tryzero <= numzero) {
5705 						tryzero = -1;
5706 						continue;
5707 					}
5708 
5709 					firstzero = tryzero;
5710 					numzero = i - i % 2 - tryzero;
5711 					tryzero = -1;
5712 
5713 #ifdef illumos
5714 					if (ip6._S6_un._S6_u8[i] == 0 &&
5715 #else
5716 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5717 #endif
5718 					    i == sizeof (struct in6_addr) - 1)
5719 						numzero += 2;
5720 				}
5721 			}
5722 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5723 
5724 			/*
5725 			 * Check for an IPv4 embedded address.
5726 			 */
5727 			v6end = sizeof (struct in6_addr) - 2;
5728 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5729 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5730 				for (i = sizeof (struct in6_addr) - 1;
5731 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5732 					ASSERT(end >= base);
5733 
5734 #ifdef illumos
5735 					val = ip6._S6_un._S6_u8[i];
5736 #else
5737 					val = ip6.__u6_addr.__u6_addr8[i];
5738 #endif
5739 
5740 					if (val == 0) {
5741 						*end-- = '0';
5742 					} else {
5743 						for (; val; val /= 10) {
5744 							*end-- = '0' + val % 10;
5745 						}
5746 					}
5747 
5748 					if (i > DTRACE_V4MAPPED_OFFSET)
5749 						*end-- = '.';
5750 				}
5751 
5752 				if (subr == DIF_SUBR_INET_NTOA6)
5753 					goto inetout;
5754 
5755 				/*
5756 				 * Set v6end to skip the IPv4 address that
5757 				 * we have already stringified.
5758 				 */
5759 				v6end = 10;
5760 			}
5761 
5762 			/*
5763 			 * Build the IPv6 string by working through the
5764 			 * address in reverse.
5765 			 */
5766 			for (i = v6end; i >= 0; i -= 2) {
5767 				ASSERT(end >= base);
5768 
5769 				if (i == firstzero + numzero - 2) {
5770 					*end-- = ':';
5771 					*end-- = ':';
5772 					i -= numzero - 2;
5773 					continue;
5774 				}
5775 
5776 				if (i < 14 && i != firstzero - 2)
5777 					*end-- = ':';
5778 
5779 #ifdef illumos
5780 				val = (ip6._S6_un._S6_u8[i] << 8) +
5781 				    ip6._S6_un._S6_u8[i + 1];
5782 #else
5783 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5784 				    ip6.__u6_addr.__u6_addr8[i + 1];
5785 #endif
5786 
5787 				if (val == 0) {
5788 					*end-- = '0';
5789 				} else {
5790 					for (; val; val /= 16) {
5791 						*end-- = digits[val % 16];
5792 					}
5793 				}
5794 			}
5795 			ASSERT(end + 1 >= base);
5796 
5797 		} else {
5798 			/*
5799 			 * The user didn't use AH_INET or AH_INET6.
5800 			 */
5801 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5802 			regs[rd] = 0;
5803 			break;
5804 		}
5805 
5806 inetout:	regs[rd] = (uintptr_t)end + 1;
5807 		mstate->dtms_scratch_ptr += size;
5808 		break;
5809 	}
5810 
5811 	case DIF_SUBR_MEMREF: {
5812 		uintptr_t size = 2 * sizeof(uintptr_t);
5813 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5814 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5815 
5816 		/* address and length */
5817 		memref[0] = tupregs[0].dttk_value;
5818 		memref[1] = tupregs[1].dttk_value;
5819 
5820 		regs[rd] = (uintptr_t) memref;
5821 		mstate->dtms_scratch_ptr += scratch_size;
5822 		break;
5823 	}
5824 
5825 #ifndef illumos
5826 	case DIF_SUBR_MEMSTR: {
5827 		char *str = (char *)mstate->dtms_scratch_ptr;
5828 		uintptr_t mem = tupregs[0].dttk_value;
5829 		char c = tupregs[1].dttk_value;
5830 		size_t size = tupregs[2].dttk_value;
5831 		uint8_t n;
5832 		int i;
5833 
5834 		regs[rd] = 0;
5835 
5836 		if (size == 0)
5837 			break;
5838 
5839 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5840 			break;
5841 
5842 		if (!DTRACE_INSCRATCH(mstate, size)) {
5843 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5844 			break;
5845 		}
5846 
5847 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5848 			*flags |= CPU_DTRACE_ILLOP;
5849 			break;
5850 		}
5851 
5852 		for (i = 0; i < size - 1; i++) {
5853 			n = dtrace_load8(mem++);
5854 			str[i] = (n == 0) ? c : n;
5855 		}
5856 		str[size - 1] = 0;
5857 
5858 		regs[rd] = (uintptr_t)str;
5859 		mstate->dtms_scratch_ptr += size;
5860 		break;
5861 	}
5862 #endif
5863 
5864 	case DIF_SUBR_TYPEREF: {
5865 		uintptr_t size = 4 * sizeof(uintptr_t);
5866 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5867 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5868 
5869 		/* address, num_elements, type_str, type_len */
5870 		typeref[0] = tupregs[0].dttk_value;
5871 		typeref[1] = tupregs[1].dttk_value;
5872 		typeref[2] = tupregs[2].dttk_value;
5873 		typeref[3] = tupregs[3].dttk_value;
5874 
5875 		regs[rd] = (uintptr_t) typeref;
5876 		mstate->dtms_scratch_ptr += scratch_size;
5877 		break;
5878 	}
5879 	}
5880 }
5881 
5882 /*
5883  * Emulate the execution of DTrace IR instructions specified by the given
5884  * DIF object.  This function is deliberately void of assertions as all of
5885  * the necessary checks are handled by a call to dtrace_difo_validate().
5886  */
5887 static uint64_t
5888 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5889     dtrace_vstate_t *vstate, dtrace_state_t *state)
5890 {
5891 	const dif_instr_t *text = difo->dtdo_buf;
5892 	const uint_t textlen = difo->dtdo_len;
5893 	const char *strtab = difo->dtdo_strtab;
5894 	const uint64_t *inttab = difo->dtdo_inttab;
5895 
5896 	uint64_t rval = 0;
5897 	dtrace_statvar_t *svar;
5898 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5899 	dtrace_difv_t *v;
5900 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5901 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5902 
5903 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5904 	uint64_t regs[DIF_DIR_NREGS];
5905 	uint64_t *tmp;
5906 
5907 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5908 	int64_t cc_r;
5909 	uint_t pc = 0, id, opc = 0;
5910 	uint8_t ttop = 0;
5911 	dif_instr_t instr;
5912 	uint_t r1, r2, rd;
5913 
5914 	/*
5915 	 * We stash the current DIF object into the machine state: we need it
5916 	 * for subsequent access checking.
5917 	 */
5918 	mstate->dtms_difo = difo;
5919 
5920 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5921 
5922 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5923 		opc = pc;
5924 
5925 		instr = text[pc++];
5926 		r1 = DIF_INSTR_R1(instr);
5927 		r2 = DIF_INSTR_R2(instr);
5928 		rd = DIF_INSTR_RD(instr);
5929 
5930 		switch (DIF_INSTR_OP(instr)) {
5931 		case DIF_OP_OR:
5932 			regs[rd] = regs[r1] | regs[r2];
5933 			break;
5934 		case DIF_OP_XOR:
5935 			regs[rd] = regs[r1] ^ regs[r2];
5936 			break;
5937 		case DIF_OP_AND:
5938 			regs[rd] = regs[r1] & regs[r2];
5939 			break;
5940 		case DIF_OP_SLL:
5941 			regs[rd] = regs[r1] << regs[r2];
5942 			break;
5943 		case DIF_OP_SRL:
5944 			regs[rd] = regs[r1] >> regs[r2];
5945 			break;
5946 		case DIF_OP_SUB:
5947 			regs[rd] = regs[r1] - regs[r2];
5948 			break;
5949 		case DIF_OP_ADD:
5950 			regs[rd] = regs[r1] + regs[r2];
5951 			break;
5952 		case DIF_OP_MUL:
5953 			regs[rd] = regs[r1] * regs[r2];
5954 			break;
5955 		case DIF_OP_SDIV:
5956 			if (regs[r2] == 0) {
5957 				regs[rd] = 0;
5958 				*flags |= CPU_DTRACE_DIVZERO;
5959 			} else {
5960 				regs[rd] = (int64_t)regs[r1] /
5961 				    (int64_t)regs[r2];
5962 			}
5963 			break;
5964 
5965 		case DIF_OP_UDIV:
5966 			if (regs[r2] == 0) {
5967 				regs[rd] = 0;
5968 				*flags |= CPU_DTRACE_DIVZERO;
5969 			} else {
5970 				regs[rd] = regs[r1] / regs[r2];
5971 			}
5972 			break;
5973 
5974 		case DIF_OP_SREM:
5975 			if (regs[r2] == 0) {
5976 				regs[rd] = 0;
5977 				*flags |= CPU_DTRACE_DIVZERO;
5978 			} else {
5979 				regs[rd] = (int64_t)regs[r1] %
5980 				    (int64_t)regs[r2];
5981 			}
5982 			break;
5983 
5984 		case DIF_OP_UREM:
5985 			if (regs[r2] == 0) {
5986 				regs[rd] = 0;
5987 				*flags |= CPU_DTRACE_DIVZERO;
5988 			} else {
5989 				regs[rd] = regs[r1] % regs[r2];
5990 			}
5991 			break;
5992 
5993 		case DIF_OP_NOT:
5994 			regs[rd] = ~regs[r1];
5995 			break;
5996 		case DIF_OP_MOV:
5997 			regs[rd] = regs[r1];
5998 			break;
5999 		case DIF_OP_CMP:
6000 			cc_r = regs[r1] - regs[r2];
6001 			cc_n = cc_r < 0;
6002 			cc_z = cc_r == 0;
6003 			cc_v = 0;
6004 			cc_c = regs[r1] < regs[r2];
6005 			break;
6006 		case DIF_OP_TST:
6007 			cc_n = cc_v = cc_c = 0;
6008 			cc_z = regs[r1] == 0;
6009 			break;
6010 		case DIF_OP_BA:
6011 			pc = DIF_INSTR_LABEL(instr);
6012 			break;
6013 		case DIF_OP_BE:
6014 			if (cc_z)
6015 				pc = DIF_INSTR_LABEL(instr);
6016 			break;
6017 		case DIF_OP_BNE:
6018 			if (cc_z == 0)
6019 				pc = DIF_INSTR_LABEL(instr);
6020 			break;
6021 		case DIF_OP_BG:
6022 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6023 				pc = DIF_INSTR_LABEL(instr);
6024 			break;
6025 		case DIF_OP_BGU:
6026 			if ((cc_c | cc_z) == 0)
6027 				pc = DIF_INSTR_LABEL(instr);
6028 			break;
6029 		case DIF_OP_BGE:
6030 			if ((cc_n ^ cc_v) == 0)
6031 				pc = DIF_INSTR_LABEL(instr);
6032 			break;
6033 		case DIF_OP_BGEU:
6034 			if (cc_c == 0)
6035 				pc = DIF_INSTR_LABEL(instr);
6036 			break;
6037 		case DIF_OP_BL:
6038 			if (cc_n ^ cc_v)
6039 				pc = DIF_INSTR_LABEL(instr);
6040 			break;
6041 		case DIF_OP_BLU:
6042 			if (cc_c)
6043 				pc = DIF_INSTR_LABEL(instr);
6044 			break;
6045 		case DIF_OP_BLE:
6046 			if (cc_z | (cc_n ^ cc_v))
6047 				pc = DIF_INSTR_LABEL(instr);
6048 			break;
6049 		case DIF_OP_BLEU:
6050 			if (cc_c | cc_z)
6051 				pc = DIF_INSTR_LABEL(instr);
6052 			break;
6053 		case DIF_OP_RLDSB:
6054 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6055 				break;
6056 			/*FALLTHROUGH*/
6057 		case DIF_OP_LDSB:
6058 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6059 			break;
6060 		case DIF_OP_RLDSH:
6061 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6062 				break;
6063 			/*FALLTHROUGH*/
6064 		case DIF_OP_LDSH:
6065 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6066 			break;
6067 		case DIF_OP_RLDSW:
6068 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6069 				break;
6070 			/*FALLTHROUGH*/
6071 		case DIF_OP_LDSW:
6072 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6073 			break;
6074 		case DIF_OP_RLDUB:
6075 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6076 				break;
6077 			/*FALLTHROUGH*/
6078 		case DIF_OP_LDUB:
6079 			regs[rd] = dtrace_load8(regs[r1]);
6080 			break;
6081 		case DIF_OP_RLDUH:
6082 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6083 				break;
6084 			/*FALLTHROUGH*/
6085 		case DIF_OP_LDUH:
6086 			regs[rd] = dtrace_load16(regs[r1]);
6087 			break;
6088 		case DIF_OP_RLDUW:
6089 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6090 				break;
6091 			/*FALLTHROUGH*/
6092 		case DIF_OP_LDUW:
6093 			regs[rd] = dtrace_load32(regs[r1]);
6094 			break;
6095 		case DIF_OP_RLDX:
6096 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6097 				break;
6098 			/*FALLTHROUGH*/
6099 		case DIF_OP_LDX:
6100 			regs[rd] = dtrace_load64(regs[r1]);
6101 			break;
6102 		case DIF_OP_ULDSB:
6103 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6104 			regs[rd] = (int8_t)
6105 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6106 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6107 			break;
6108 		case DIF_OP_ULDSH:
6109 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6110 			regs[rd] = (int16_t)
6111 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6112 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6113 			break;
6114 		case DIF_OP_ULDSW:
6115 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6116 			regs[rd] = (int32_t)
6117 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6118 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6119 			break;
6120 		case DIF_OP_ULDUB:
6121 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6122 			regs[rd] =
6123 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6124 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6125 			break;
6126 		case DIF_OP_ULDUH:
6127 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6128 			regs[rd] =
6129 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6130 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6131 			break;
6132 		case DIF_OP_ULDUW:
6133 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6134 			regs[rd] =
6135 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6136 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6137 			break;
6138 		case DIF_OP_ULDX:
6139 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6140 			regs[rd] =
6141 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6142 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6143 			break;
6144 		case DIF_OP_RET:
6145 			rval = regs[rd];
6146 			pc = textlen;
6147 			break;
6148 		case DIF_OP_NOP:
6149 			break;
6150 		case DIF_OP_SETX:
6151 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6152 			break;
6153 		case DIF_OP_SETS:
6154 			regs[rd] = (uint64_t)(uintptr_t)
6155 			    (strtab + DIF_INSTR_STRING(instr));
6156 			break;
6157 		case DIF_OP_SCMP: {
6158 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6159 			uintptr_t s1 = regs[r1];
6160 			uintptr_t s2 = regs[r2];
6161 
6162 			if (s1 != 0 &&
6163 			    !dtrace_strcanload(s1, sz, mstate, vstate))
6164 				break;
6165 			if (s2 != 0 &&
6166 			    !dtrace_strcanload(s2, sz, mstate, vstate))
6167 				break;
6168 
6169 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6170 
6171 			cc_n = cc_r < 0;
6172 			cc_z = cc_r == 0;
6173 			cc_v = cc_c = 0;
6174 			break;
6175 		}
6176 		case DIF_OP_LDGA:
6177 			regs[rd] = dtrace_dif_variable(mstate, state,
6178 			    r1, regs[r2]);
6179 			break;
6180 		case DIF_OP_LDGS:
6181 			id = DIF_INSTR_VAR(instr);
6182 
6183 			if (id >= DIF_VAR_OTHER_UBASE) {
6184 				uintptr_t a;
6185 
6186 				id -= DIF_VAR_OTHER_UBASE;
6187 				svar = vstate->dtvs_globals[id];
6188 				ASSERT(svar != NULL);
6189 				v = &svar->dtsv_var;
6190 
6191 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6192 					regs[rd] = svar->dtsv_data;
6193 					break;
6194 				}
6195 
6196 				a = (uintptr_t)svar->dtsv_data;
6197 
6198 				if (*(uint8_t *)a == UINT8_MAX) {
6199 					/*
6200 					 * If the 0th byte is set to UINT8_MAX
6201 					 * then this is to be treated as a
6202 					 * reference to a NULL variable.
6203 					 */
6204 					regs[rd] = 0;
6205 				} else {
6206 					regs[rd] = a + sizeof (uint64_t);
6207 				}
6208 
6209 				break;
6210 			}
6211 
6212 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6213 			break;
6214 
6215 		case DIF_OP_STGS:
6216 			id = DIF_INSTR_VAR(instr);
6217 
6218 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6219 			id -= DIF_VAR_OTHER_UBASE;
6220 
6221 			svar = vstate->dtvs_globals[id];
6222 			ASSERT(svar != NULL);
6223 			v = &svar->dtsv_var;
6224 
6225 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6226 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6227 
6228 				ASSERT(a != 0);
6229 				ASSERT(svar->dtsv_size != 0);
6230 
6231 				if (regs[rd] == 0) {
6232 					*(uint8_t *)a = UINT8_MAX;
6233 					break;
6234 				} else {
6235 					*(uint8_t *)a = 0;
6236 					a += sizeof (uint64_t);
6237 				}
6238 				if (!dtrace_vcanload(
6239 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6240 				    mstate, vstate))
6241 					break;
6242 
6243 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6244 				    (void *)a, &v->dtdv_type);
6245 				break;
6246 			}
6247 
6248 			svar->dtsv_data = regs[rd];
6249 			break;
6250 
6251 		case DIF_OP_LDTA:
6252 			/*
6253 			 * There are no DTrace built-in thread-local arrays at
6254 			 * present.  This opcode is saved for future work.
6255 			 */
6256 			*flags |= CPU_DTRACE_ILLOP;
6257 			regs[rd] = 0;
6258 			break;
6259 
6260 		case DIF_OP_LDLS:
6261 			id = DIF_INSTR_VAR(instr);
6262 
6263 			if (id < DIF_VAR_OTHER_UBASE) {
6264 				/*
6265 				 * For now, this has no meaning.
6266 				 */
6267 				regs[rd] = 0;
6268 				break;
6269 			}
6270 
6271 			id -= DIF_VAR_OTHER_UBASE;
6272 
6273 			ASSERT(id < vstate->dtvs_nlocals);
6274 			ASSERT(vstate->dtvs_locals != NULL);
6275 
6276 			svar = vstate->dtvs_locals[id];
6277 			ASSERT(svar != NULL);
6278 			v = &svar->dtsv_var;
6279 
6280 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6281 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6282 				size_t sz = v->dtdv_type.dtdt_size;
6283 
6284 				sz += sizeof (uint64_t);
6285 				ASSERT(svar->dtsv_size == NCPU * sz);
6286 				a += curcpu * sz;
6287 
6288 				if (*(uint8_t *)a == UINT8_MAX) {
6289 					/*
6290 					 * If the 0th byte is set to UINT8_MAX
6291 					 * then this is to be treated as a
6292 					 * reference to a NULL variable.
6293 					 */
6294 					regs[rd] = 0;
6295 				} else {
6296 					regs[rd] = a + sizeof (uint64_t);
6297 				}
6298 
6299 				break;
6300 			}
6301 
6302 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6303 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6304 			regs[rd] = tmp[curcpu];
6305 			break;
6306 
6307 		case DIF_OP_STLS:
6308 			id = DIF_INSTR_VAR(instr);
6309 
6310 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6311 			id -= DIF_VAR_OTHER_UBASE;
6312 			ASSERT(id < vstate->dtvs_nlocals);
6313 
6314 			ASSERT(vstate->dtvs_locals != NULL);
6315 			svar = vstate->dtvs_locals[id];
6316 			ASSERT(svar != NULL);
6317 			v = &svar->dtsv_var;
6318 
6319 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6320 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6321 				size_t sz = v->dtdv_type.dtdt_size;
6322 
6323 				sz += sizeof (uint64_t);
6324 				ASSERT(svar->dtsv_size == NCPU * sz);
6325 				a += curcpu * sz;
6326 
6327 				if (regs[rd] == 0) {
6328 					*(uint8_t *)a = UINT8_MAX;
6329 					break;
6330 				} else {
6331 					*(uint8_t *)a = 0;
6332 					a += sizeof (uint64_t);
6333 				}
6334 
6335 				if (!dtrace_vcanload(
6336 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6337 				    mstate, vstate))
6338 					break;
6339 
6340 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6341 				    (void *)a, &v->dtdv_type);
6342 				break;
6343 			}
6344 
6345 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6346 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6347 			tmp[curcpu] = regs[rd];
6348 			break;
6349 
6350 		case DIF_OP_LDTS: {
6351 			dtrace_dynvar_t *dvar;
6352 			dtrace_key_t *key;
6353 
6354 			id = DIF_INSTR_VAR(instr);
6355 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6356 			id -= DIF_VAR_OTHER_UBASE;
6357 			v = &vstate->dtvs_tlocals[id];
6358 
6359 			key = &tupregs[DIF_DTR_NREGS];
6360 			key[0].dttk_value = (uint64_t)id;
6361 			key[0].dttk_size = 0;
6362 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6363 			key[1].dttk_size = 0;
6364 
6365 			dvar = dtrace_dynvar(dstate, 2, key,
6366 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6367 			    mstate, vstate);
6368 
6369 			if (dvar == NULL) {
6370 				regs[rd] = 0;
6371 				break;
6372 			}
6373 
6374 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6375 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6376 			} else {
6377 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6378 			}
6379 
6380 			break;
6381 		}
6382 
6383 		case DIF_OP_STTS: {
6384 			dtrace_dynvar_t *dvar;
6385 			dtrace_key_t *key;
6386 
6387 			id = DIF_INSTR_VAR(instr);
6388 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6389 			id -= DIF_VAR_OTHER_UBASE;
6390 
6391 			key = &tupregs[DIF_DTR_NREGS];
6392 			key[0].dttk_value = (uint64_t)id;
6393 			key[0].dttk_size = 0;
6394 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6395 			key[1].dttk_size = 0;
6396 			v = &vstate->dtvs_tlocals[id];
6397 
6398 			dvar = dtrace_dynvar(dstate, 2, key,
6399 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6400 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6401 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6402 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6403 
6404 			/*
6405 			 * Given that we're storing to thread-local data,
6406 			 * we need to flush our predicate cache.
6407 			 */
6408 			curthread->t_predcache = 0;
6409 
6410 			if (dvar == NULL)
6411 				break;
6412 
6413 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6414 				if (!dtrace_vcanload(
6415 				    (void *)(uintptr_t)regs[rd],
6416 				    &v->dtdv_type, mstate, vstate))
6417 					break;
6418 
6419 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6420 				    dvar->dtdv_data, &v->dtdv_type);
6421 			} else {
6422 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6423 			}
6424 
6425 			break;
6426 		}
6427 
6428 		case DIF_OP_SRA:
6429 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6430 			break;
6431 
6432 		case DIF_OP_CALL:
6433 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6434 			    regs, tupregs, ttop, mstate, state);
6435 			break;
6436 
6437 		case DIF_OP_PUSHTR:
6438 			if (ttop == DIF_DTR_NREGS) {
6439 				*flags |= CPU_DTRACE_TUPOFLOW;
6440 				break;
6441 			}
6442 
6443 			if (r1 == DIF_TYPE_STRING) {
6444 				/*
6445 				 * If this is a string type and the size is 0,
6446 				 * we'll use the system-wide default string
6447 				 * size.  Note that we are _not_ looking at
6448 				 * the value of the DTRACEOPT_STRSIZE option;
6449 				 * had this been set, we would expect to have
6450 				 * a non-zero size value in the "pushtr".
6451 				 */
6452 				tupregs[ttop].dttk_size =
6453 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6454 				    regs[r2] ? regs[r2] :
6455 				    dtrace_strsize_default) + 1;
6456 			} else {
6457 				tupregs[ttop].dttk_size = regs[r2];
6458 			}
6459 
6460 			tupregs[ttop++].dttk_value = regs[rd];
6461 			break;
6462 
6463 		case DIF_OP_PUSHTV:
6464 			if (ttop == DIF_DTR_NREGS) {
6465 				*flags |= CPU_DTRACE_TUPOFLOW;
6466 				break;
6467 			}
6468 
6469 			tupregs[ttop].dttk_value = regs[rd];
6470 			tupregs[ttop++].dttk_size = 0;
6471 			break;
6472 
6473 		case DIF_OP_POPTS:
6474 			if (ttop != 0)
6475 				ttop--;
6476 			break;
6477 
6478 		case DIF_OP_FLUSHTS:
6479 			ttop = 0;
6480 			break;
6481 
6482 		case DIF_OP_LDGAA:
6483 		case DIF_OP_LDTAA: {
6484 			dtrace_dynvar_t *dvar;
6485 			dtrace_key_t *key = tupregs;
6486 			uint_t nkeys = ttop;
6487 
6488 			id = DIF_INSTR_VAR(instr);
6489 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6490 			id -= DIF_VAR_OTHER_UBASE;
6491 
6492 			key[nkeys].dttk_value = (uint64_t)id;
6493 			key[nkeys++].dttk_size = 0;
6494 
6495 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6496 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6497 				key[nkeys++].dttk_size = 0;
6498 				v = &vstate->dtvs_tlocals[id];
6499 			} else {
6500 				v = &vstate->dtvs_globals[id]->dtsv_var;
6501 			}
6502 
6503 			dvar = dtrace_dynvar(dstate, nkeys, key,
6504 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6505 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6506 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6507 
6508 			if (dvar == NULL) {
6509 				regs[rd] = 0;
6510 				break;
6511 			}
6512 
6513 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6514 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6515 			} else {
6516 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6517 			}
6518 
6519 			break;
6520 		}
6521 
6522 		case DIF_OP_STGAA:
6523 		case DIF_OP_STTAA: {
6524 			dtrace_dynvar_t *dvar;
6525 			dtrace_key_t *key = tupregs;
6526 			uint_t nkeys = ttop;
6527 
6528 			id = DIF_INSTR_VAR(instr);
6529 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6530 			id -= DIF_VAR_OTHER_UBASE;
6531 
6532 			key[nkeys].dttk_value = (uint64_t)id;
6533 			key[nkeys++].dttk_size = 0;
6534 
6535 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6536 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6537 				key[nkeys++].dttk_size = 0;
6538 				v = &vstate->dtvs_tlocals[id];
6539 			} else {
6540 				v = &vstate->dtvs_globals[id]->dtsv_var;
6541 			}
6542 
6543 			dvar = dtrace_dynvar(dstate, nkeys, key,
6544 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6545 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6546 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6547 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6548 
6549 			if (dvar == NULL)
6550 				break;
6551 
6552 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6553 				if (!dtrace_vcanload(
6554 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6555 				    mstate, vstate))
6556 					break;
6557 
6558 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6559 				    dvar->dtdv_data, &v->dtdv_type);
6560 			} else {
6561 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6562 			}
6563 
6564 			break;
6565 		}
6566 
6567 		case DIF_OP_ALLOCS: {
6568 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6569 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6570 
6571 			/*
6572 			 * Rounding up the user allocation size could have
6573 			 * overflowed large, bogus allocations (like -1ULL) to
6574 			 * 0.
6575 			 */
6576 			if (size < regs[r1] ||
6577 			    !DTRACE_INSCRATCH(mstate, size)) {
6578 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6579 				regs[rd] = 0;
6580 				break;
6581 			}
6582 
6583 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6584 			mstate->dtms_scratch_ptr += size;
6585 			regs[rd] = ptr;
6586 			break;
6587 		}
6588 
6589 		case DIF_OP_COPYS:
6590 			if (!dtrace_canstore(regs[rd], regs[r2],
6591 			    mstate, vstate)) {
6592 				*flags |= CPU_DTRACE_BADADDR;
6593 				*illval = regs[rd];
6594 				break;
6595 			}
6596 
6597 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6598 				break;
6599 
6600 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6601 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6602 			break;
6603 
6604 		case DIF_OP_STB:
6605 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6606 				*flags |= CPU_DTRACE_BADADDR;
6607 				*illval = regs[rd];
6608 				break;
6609 			}
6610 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6611 			break;
6612 
6613 		case DIF_OP_STH:
6614 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6615 				*flags |= CPU_DTRACE_BADADDR;
6616 				*illval = regs[rd];
6617 				break;
6618 			}
6619 			if (regs[rd] & 1) {
6620 				*flags |= CPU_DTRACE_BADALIGN;
6621 				*illval = regs[rd];
6622 				break;
6623 			}
6624 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6625 			break;
6626 
6627 		case DIF_OP_STW:
6628 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6629 				*flags |= CPU_DTRACE_BADADDR;
6630 				*illval = regs[rd];
6631 				break;
6632 			}
6633 			if (regs[rd] & 3) {
6634 				*flags |= CPU_DTRACE_BADALIGN;
6635 				*illval = regs[rd];
6636 				break;
6637 			}
6638 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6639 			break;
6640 
6641 		case DIF_OP_STX:
6642 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6643 				*flags |= CPU_DTRACE_BADADDR;
6644 				*illval = regs[rd];
6645 				break;
6646 			}
6647 			if (regs[rd] & 7) {
6648 				*flags |= CPU_DTRACE_BADALIGN;
6649 				*illval = regs[rd];
6650 				break;
6651 			}
6652 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6653 			break;
6654 		}
6655 	}
6656 
6657 	if (!(*flags & CPU_DTRACE_FAULT))
6658 		return (rval);
6659 
6660 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6661 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6662 
6663 	return (0);
6664 }
6665 
6666 static void
6667 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6668 {
6669 	dtrace_probe_t *probe = ecb->dte_probe;
6670 	dtrace_provider_t *prov = probe->dtpr_provider;
6671 	char c[DTRACE_FULLNAMELEN + 80], *str;
6672 	char *msg = "dtrace: breakpoint action at probe ";
6673 	char *ecbmsg = " (ecb ";
6674 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6675 	uintptr_t val = (uintptr_t)ecb;
6676 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6677 
6678 	if (dtrace_destructive_disallow)
6679 		return;
6680 
6681 	/*
6682 	 * It's impossible to be taking action on the NULL probe.
6683 	 */
6684 	ASSERT(probe != NULL);
6685 
6686 	/*
6687 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6688 	 * print the provider name, module name, function name and name of
6689 	 * the probe, along with the hex address of the ECB with the breakpoint
6690 	 * action -- all of which we must place in the character buffer by
6691 	 * hand.
6692 	 */
6693 	while (*msg != '\0')
6694 		c[i++] = *msg++;
6695 
6696 	for (str = prov->dtpv_name; *str != '\0'; str++)
6697 		c[i++] = *str;
6698 	c[i++] = ':';
6699 
6700 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6701 		c[i++] = *str;
6702 	c[i++] = ':';
6703 
6704 	for (str = probe->dtpr_func; *str != '\0'; str++)
6705 		c[i++] = *str;
6706 	c[i++] = ':';
6707 
6708 	for (str = probe->dtpr_name; *str != '\0'; str++)
6709 		c[i++] = *str;
6710 
6711 	while (*ecbmsg != '\0')
6712 		c[i++] = *ecbmsg++;
6713 
6714 	while (shift >= 0) {
6715 		mask = (uintptr_t)0xf << shift;
6716 
6717 		if (val >= ((uintptr_t)1 << shift))
6718 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6719 		shift -= 4;
6720 	}
6721 
6722 	c[i++] = ')';
6723 	c[i] = '\0';
6724 
6725 #ifdef illumos
6726 	debug_enter(c);
6727 #else
6728 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6729 #endif
6730 }
6731 
6732 static void
6733 dtrace_action_panic(dtrace_ecb_t *ecb)
6734 {
6735 	dtrace_probe_t *probe = ecb->dte_probe;
6736 
6737 	/*
6738 	 * It's impossible to be taking action on the NULL probe.
6739 	 */
6740 	ASSERT(probe != NULL);
6741 
6742 	if (dtrace_destructive_disallow)
6743 		return;
6744 
6745 	if (dtrace_panicked != NULL)
6746 		return;
6747 
6748 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6749 		return;
6750 
6751 	/*
6752 	 * We won the right to panic.  (We want to be sure that only one
6753 	 * thread calls panic() from dtrace_probe(), and that panic() is
6754 	 * called exactly once.)
6755 	 */
6756 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6757 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6758 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6759 }
6760 
6761 static void
6762 dtrace_action_raise(uint64_t sig)
6763 {
6764 	if (dtrace_destructive_disallow)
6765 		return;
6766 
6767 	if (sig >= NSIG) {
6768 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6769 		return;
6770 	}
6771 
6772 #ifdef illumos
6773 	/*
6774 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6775 	 * invocations of the raise() action.
6776 	 */
6777 	if (curthread->t_dtrace_sig == 0)
6778 		curthread->t_dtrace_sig = (uint8_t)sig;
6779 
6780 	curthread->t_sig_check = 1;
6781 	aston(curthread);
6782 #else
6783 	struct proc *p = curproc;
6784 	PROC_LOCK(p);
6785 	kern_psignal(p, sig);
6786 	PROC_UNLOCK(p);
6787 #endif
6788 }
6789 
6790 static void
6791 dtrace_action_stop(void)
6792 {
6793 	if (dtrace_destructive_disallow)
6794 		return;
6795 
6796 #ifdef illumos
6797 	if (!curthread->t_dtrace_stop) {
6798 		curthread->t_dtrace_stop = 1;
6799 		curthread->t_sig_check = 1;
6800 		aston(curthread);
6801 	}
6802 #else
6803 	struct proc *p = curproc;
6804 	PROC_LOCK(p);
6805 	kern_psignal(p, SIGSTOP);
6806 	PROC_UNLOCK(p);
6807 #endif
6808 }
6809 
6810 static void
6811 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6812 {
6813 	hrtime_t now;
6814 	volatile uint16_t *flags;
6815 #ifdef illumos
6816 	cpu_t *cpu = CPU;
6817 #else
6818 	cpu_t *cpu = &solaris_cpu[curcpu];
6819 #endif
6820 
6821 	if (dtrace_destructive_disallow)
6822 		return;
6823 
6824 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6825 
6826 	now = dtrace_gethrtime();
6827 
6828 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6829 		/*
6830 		 * We need to advance the mark to the current time.
6831 		 */
6832 		cpu->cpu_dtrace_chillmark = now;
6833 		cpu->cpu_dtrace_chilled = 0;
6834 	}
6835 
6836 	/*
6837 	 * Now check to see if the requested chill time would take us over
6838 	 * the maximum amount of time allowed in the chill interval.  (Or
6839 	 * worse, if the calculation itself induces overflow.)
6840 	 */
6841 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6842 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6843 		*flags |= CPU_DTRACE_ILLOP;
6844 		return;
6845 	}
6846 
6847 	while (dtrace_gethrtime() - now < val)
6848 		continue;
6849 
6850 	/*
6851 	 * Normally, we assure that the value of the variable "timestamp" does
6852 	 * not change within an ECB.  The presence of chill() represents an
6853 	 * exception to this rule, however.
6854 	 */
6855 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6856 	cpu->cpu_dtrace_chilled += val;
6857 }
6858 
6859 static void
6860 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6861     uint64_t *buf, uint64_t arg)
6862 {
6863 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6864 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6865 	uint64_t *pcs = &buf[1], *fps;
6866 	char *str = (char *)&pcs[nframes];
6867 	int size, offs = 0, i, j;
6868 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6869 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6870 	char *sym;
6871 
6872 	/*
6873 	 * Should be taking a faster path if string space has not been
6874 	 * allocated.
6875 	 */
6876 	ASSERT(strsize != 0);
6877 
6878 	/*
6879 	 * We will first allocate some temporary space for the frame pointers.
6880 	 */
6881 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6882 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6883 	    (nframes * sizeof (uint64_t));
6884 
6885 	if (!DTRACE_INSCRATCH(mstate, size)) {
6886 		/*
6887 		 * Not enough room for our frame pointers -- need to indicate
6888 		 * that we ran out of scratch space.
6889 		 */
6890 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6891 		return;
6892 	}
6893 
6894 	mstate->dtms_scratch_ptr += size;
6895 	saved = mstate->dtms_scratch_ptr;
6896 
6897 	/*
6898 	 * Now get a stack with both program counters and frame pointers.
6899 	 */
6900 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6901 	dtrace_getufpstack(buf, fps, nframes + 1);
6902 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6903 
6904 	/*
6905 	 * If that faulted, we're cooked.
6906 	 */
6907 	if (*flags & CPU_DTRACE_FAULT)
6908 		goto out;
6909 
6910 	/*
6911 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6912 	 * each iteration, we restore the scratch pointer.
6913 	 */
6914 	for (i = 0; i < nframes; i++) {
6915 		mstate->dtms_scratch_ptr = saved;
6916 
6917 		if (offs >= strsize)
6918 			break;
6919 
6920 		sym = (char *)(uintptr_t)dtrace_helper(
6921 		    DTRACE_HELPER_ACTION_USTACK,
6922 		    mstate, state, pcs[i], fps[i]);
6923 
6924 		/*
6925 		 * If we faulted while running the helper, we're going to
6926 		 * clear the fault and null out the corresponding string.
6927 		 */
6928 		if (*flags & CPU_DTRACE_FAULT) {
6929 			*flags &= ~CPU_DTRACE_FAULT;
6930 			str[offs++] = '\0';
6931 			continue;
6932 		}
6933 
6934 		if (sym == NULL) {
6935 			str[offs++] = '\0';
6936 			continue;
6937 		}
6938 
6939 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6940 
6941 		/*
6942 		 * Now copy in the string that the helper returned to us.
6943 		 */
6944 		for (j = 0; offs + j < strsize; j++) {
6945 			if ((str[offs + j] = sym[j]) == '\0')
6946 				break;
6947 		}
6948 
6949 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6950 
6951 		offs += j + 1;
6952 	}
6953 
6954 	if (offs >= strsize) {
6955 		/*
6956 		 * If we didn't have room for all of the strings, we don't
6957 		 * abort processing -- this needn't be a fatal error -- but we
6958 		 * still want to increment a counter (dts_stkstroverflows) to
6959 		 * allow this condition to be warned about.  (If this is from
6960 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6961 		 */
6962 		dtrace_error(&state->dts_stkstroverflows);
6963 	}
6964 
6965 	while (offs < strsize)
6966 		str[offs++] = '\0';
6967 
6968 out:
6969 	mstate->dtms_scratch_ptr = old;
6970 }
6971 
6972 static void
6973 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6974     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6975 {
6976 	volatile uint16_t *flags;
6977 	uint64_t val = *valp;
6978 	size_t valoffs = *valoffsp;
6979 
6980 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6981 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6982 
6983 	/*
6984 	 * If this is a string, we're going to only load until we find the zero
6985 	 * byte -- after which we'll store zero bytes.
6986 	 */
6987 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6988 		char c = '\0' + 1;
6989 		size_t s;
6990 
6991 		for (s = 0; s < size; s++) {
6992 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6993 				c = dtrace_load8(val++);
6994 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6995 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6996 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6997 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6998 				if (*flags & CPU_DTRACE_FAULT)
6999 					break;
7000 			}
7001 
7002 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7003 
7004 			if (c == '\0' && intuple)
7005 				break;
7006 		}
7007 	} else {
7008 		uint8_t c;
7009 		while (valoffs < end) {
7010 			if (dtkind == DIF_TF_BYREF) {
7011 				c = dtrace_load8(val++);
7012 			} else if (dtkind == DIF_TF_BYUREF) {
7013 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7014 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7015 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7016 				if (*flags & CPU_DTRACE_FAULT)
7017 					break;
7018 			}
7019 
7020 			DTRACE_STORE(uint8_t, tomax,
7021 			    valoffs++, c);
7022 		}
7023 	}
7024 
7025 	*valp = val;
7026 	*valoffsp = valoffs;
7027 }
7028 
7029 /*
7030  * If you're looking for the epicenter of DTrace, you just found it.  This
7031  * is the function called by the provider to fire a probe -- from which all
7032  * subsequent probe-context DTrace activity emanates.
7033  */
7034 void
7035 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7036     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7037 {
7038 	processorid_t cpuid;
7039 	dtrace_icookie_t cookie;
7040 	dtrace_probe_t *probe;
7041 	dtrace_mstate_t mstate;
7042 	dtrace_ecb_t *ecb;
7043 	dtrace_action_t *act;
7044 	intptr_t offs;
7045 	size_t size;
7046 	int vtime, onintr;
7047 	volatile uint16_t *flags;
7048 	hrtime_t now;
7049 
7050 	if (panicstr != NULL)
7051 		return;
7052 
7053 #ifdef illumos
7054 	/*
7055 	 * Kick out immediately if this CPU is still being born (in which case
7056 	 * curthread will be set to -1) or the current thread can't allow
7057 	 * probes in its current context.
7058 	 */
7059 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7060 		return;
7061 #endif
7062 
7063 	cookie = dtrace_interrupt_disable();
7064 	probe = dtrace_probes[id - 1];
7065 	cpuid = curcpu;
7066 	onintr = CPU_ON_INTR(CPU);
7067 
7068 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7069 	    probe->dtpr_predcache == curthread->t_predcache) {
7070 		/*
7071 		 * We have hit in the predicate cache; we know that
7072 		 * this predicate would evaluate to be false.
7073 		 */
7074 		dtrace_interrupt_enable(cookie);
7075 		return;
7076 	}
7077 
7078 #ifdef illumos
7079 	if (panic_quiesce) {
7080 #else
7081 	if (panicstr != NULL) {
7082 #endif
7083 		/*
7084 		 * We don't trace anything if we're panicking.
7085 		 */
7086 		dtrace_interrupt_enable(cookie);
7087 		return;
7088 	}
7089 
7090 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7091 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7092 	vtime = dtrace_vtime_references != 0;
7093 
7094 	if (vtime && curthread->t_dtrace_start)
7095 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7096 
7097 	mstate.dtms_difo = NULL;
7098 	mstate.dtms_probe = probe;
7099 	mstate.dtms_strtok = 0;
7100 	mstate.dtms_arg[0] = arg0;
7101 	mstate.dtms_arg[1] = arg1;
7102 	mstate.dtms_arg[2] = arg2;
7103 	mstate.dtms_arg[3] = arg3;
7104 	mstate.dtms_arg[4] = arg4;
7105 
7106 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7107 
7108 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7109 		dtrace_predicate_t *pred = ecb->dte_predicate;
7110 		dtrace_state_t *state = ecb->dte_state;
7111 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7112 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7113 		dtrace_vstate_t *vstate = &state->dts_vstate;
7114 		dtrace_provider_t *prov = probe->dtpr_provider;
7115 		uint64_t tracememsize = 0;
7116 		int committed = 0;
7117 		caddr_t tomax;
7118 
7119 		/*
7120 		 * A little subtlety with the following (seemingly innocuous)
7121 		 * declaration of the automatic 'val':  by looking at the
7122 		 * code, you might think that it could be declared in the
7123 		 * action processing loop, below.  (That is, it's only used in
7124 		 * the action processing loop.)  However, it must be declared
7125 		 * out of that scope because in the case of DIF expression
7126 		 * arguments to aggregating actions, one iteration of the
7127 		 * action loop will use the last iteration's value.
7128 		 */
7129 		uint64_t val = 0;
7130 
7131 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7132 		mstate.dtms_getf = NULL;
7133 
7134 		*flags &= ~CPU_DTRACE_ERROR;
7135 
7136 		if (prov == dtrace_provider) {
7137 			/*
7138 			 * If dtrace itself is the provider of this probe,
7139 			 * we're only going to continue processing the ECB if
7140 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7141 			 * creating state.  (This prevents disjoint consumers
7142 			 * from seeing one another's metaprobes.)
7143 			 */
7144 			if (arg0 != (uint64_t)(uintptr_t)state)
7145 				continue;
7146 		}
7147 
7148 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7149 			/*
7150 			 * We're not currently active.  If our provider isn't
7151 			 * the dtrace pseudo provider, we're not interested.
7152 			 */
7153 			if (prov != dtrace_provider)
7154 				continue;
7155 
7156 			/*
7157 			 * Now we must further check if we are in the BEGIN
7158 			 * probe.  If we are, we will only continue processing
7159 			 * if we're still in WARMUP -- if one BEGIN enabling
7160 			 * has invoked the exit() action, we don't want to
7161 			 * evaluate subsequent BEGIN enablings.
7162 			 */
7163 			if (probe->dtpr_id == dtrace_probeid_begin &&
7164 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7165 				ASSERT(state->dts_activity ==
7166 				    DTRACE_ACTIVITY_DRAINING);
7167 				continue;
7168 			}
7169 		}
7170 
7171 		if (ecb->dte_cond) {
7172 			/*
7173 			 * If the dte_cond bits indicate that this
7174 			 * consumer is only allowed to see user-mode firings
7175 			 * of this probe, call the provider's dtps_usermode()
7176 			 * entry point to check that the probe was fired
7177 			 * while in a user context. Skip this ECB if that's
7178 			 * not the case.
7179 			 */
7180 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7181 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7182 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7183 				continue;
7184 
7185 #ifdef illumos
7186 			/*
7187 			 * This is more subtle than it looks. We have to be
7188 			 * absolutely certain that CRED() isn't going to
7189 			 * change out from under us so it's only legit to
7190 			 * examine that structure if we're in constrained
7191 			 * situations. Currently, the only times we'll this
7192 			 * check is if a non-super-user has enabled the
7193 			 * profile or syscall providers -- providers that
7194 			 * allow visibility of all processes. For the
7195 			 * profile case, the check above will ensure that
7196 			 * we're examining a user context.
7197 			 */
7198 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7199 				cred_t *cr;
7200 				cred_t *s_cr =
7201 				    ecb->dte_state->dts_cred.dcr_cred;
7202 				proc_t *proc;
7203 
7204 				ASSERT(s_cr != NULL);
7205 
7206 				if ((cr = CRED()) == NULL ||
7207 				    s_cr->cr_uid != cr->cr_uid ||
7208 				    s_cr->cr_uid != cr->cr_ruid ||
7209 				    s_cr->cr_uid != cr->cr_suid ||
7210 				    s_cr->cr_gid != cr->cr_gid ||
7211 				    s_cr->cr_gid != cr->cr_rgid ||
7212 				    s_cr->cr_gid != cr->cr_sgid ||
7213 				    (proc = ttoproc(curthread)) == NULL ||
7214 				    (proc->p_flag & SNOCD))
7215 					continue;
7216 			}
7217 
7218 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7219 				cred_t *cr;
7220 				cred_t *s_cr =
7221 				    ecb->dte_state->dts_cred.dcr_cred;
7222 
7223 				ASSERT(s_cr != NULL);
7224 
7225 				if ((cr = CRED()) == NULL ||
7226 				    s_cr->cr_zone->zone_id !=
7227 				    cr->cr_zone->zone_id)
7228 					continue;
7229 			}
7230 #endif
7231 		}
7232 
7233 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7234 			/*
7235 			 * We seem to be dead.  Unless we (a) have kernel
7236 			 * destructive permissions (b) have explicitly enabled
7237 			 * destructive actions and (c) destructive actions have
7238 			 * not been disabled, we're going to transition into
7239 			 * the KILLED state, from which no further processing
7240 			 * on this state will be performed.
7241 			 */
7242 			if (!dtrace_priv_kernel_destructive(state) ||
7243 			    !state->dts_cred.dcr_destructive ||
7244 			    dtrace_destructive_disallow) {
7245 				void *activity = &state->dts_activity;
7246 				dtrace_activity_t current;
7247 
7248 				do {
7249 					current = state->dts_activity;
7250 				} while (dtrace_cas32(activity, current,
7251 				    DTRACE_ACTIVITY_KILLED) != current);
7252 
7253 				continue;
7254 			}
7255 		}
7256 
7257 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7258 		    ecb->dte_alignment, state, &mstate)) < 0)
7259 			continue;
7260 
7261 		tomax = buf->dtb_tomax;
7262 		ASSERT(tomax != NULL);
7263 
7264 		if (ecb->dte_size != 0) {
7265 			dtrace_rechdr_t dtrh;
7266 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7267 				mstate.dtms_timestamp = dtrace_gethrtime();
7268 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7269 			}
7270 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7271 			dtrh.dtrh_epid = ecb->dte_epid;
7272 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7273 			    mstate.dtms_timestamp);
7274 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7275 		}
7276 
7277 		mstate.dtms_epid = ecb->dte_epid;
7278 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7279 
7280 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7281 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7282 		else
7283 			mstate.dtms_access = 0;
7284 
7285 		if (pred != NULL) {
7286 			dtrace_difo_t *dp = pred->dtp_difo;
7287 			int rval;
7288 
7289 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7290 
7291 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7292 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7293 
7294 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7295 					/*
7296 					 * Update the predicate cache...
7297 					 */
7298 					ASSERT(cid == pred->dtp_cacheid);
7299 					curthread->t_predcache = cid;
7300 				}
7301 
7302 				continue;
7303 			}
7304 		}
7305 
7306 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7307 		    act != NULL; act = act->dta_next) {
7308 			size_t valoffs;
7309 			dtrace_difo_t *dp;
7310 			dtrace_recdesc_t *rec = &act->dta_rec;
7311 
7312 			size = rec->dtrd_size;
7313 			valoffs = offs + rec->dtrd_offset;
7314 
7315 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7316 				uint64_t v = 0xbad;
7317 				dtrace_aggregation_t *agg;
7318 
7319 				agg = (dtrace_aggregation_t *)act;
7320 
7321 				if ((dp = act->dta_difo) != NULL)
7322 					v = dtrace_dif_emulate(dp,
7323 					    &mstate, vstate, state);
7324 
7325 				if (*flags & CPU_DTRACE_ERROR)
7326 					continue;
7327 
7328 				/*
7329 				 * Note that we always pass the expression
7330 				 * value from the previous iteration of the
7331 				 * action loop.  This value will only be used
7332 				 * if there is an expression argument to the
7333 				 * aggregating action, denoted by the
7334 				 * dtag_hasarg field.
7335 				 */
7336 				dtrace_aggregate(agg, buf,
7337 				    offs, aggbuf, v, val);
7338 				continue;
7339 			}
7340 
7341 			switch (act->dta_kind) {
7342 			case DTRACEACT_STOP:
7343 				if (dtrace_priv_proc_destructive(state))
7344 					dtrace_action_stop();
7345 				continue;
7346 
7347 			case DTRACEACT_BREAKPOINT:
7348 				if (dtrace_priv_kernel_destructive(state))
7349 					dtrace_action_breakpoint(ecb);
7350 				continue;
7351 
7352 			case DTRACEACT_PANIC:
7353 				if (dtrace_priv_kernel_destructive(state))
7354 					dtrace_action_panic(ecb);
7355 				continue;
7356 
7357 			case DTRACEACT_STACK:
7358 				if (!dtrace_priv_kernel(state))
7359 					continue;
7360 
7361 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7362 				    size / sizeof (pc_t), probe->dtpr_aframes,
7363 				    DTRACE_ANCHORED(probe) ? NULL :
7364 				    (uint32_t *)arg0);
7365 				continue;
7366 
7367 			case DTRACEACT_JSTACK:
7368 			case DTRACEACT_USTACK:
7369 				if (!dtrace_priv_proc(state))
7370 					continue;
7371 
7372 				/*
7373 				 * See comment in DIF_VAR_PID.
7374 				 */
7375 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7376 				    CPU_ON_INTR(CPU)) {
7377 					int depth = DTRACE_USTACK_NFRAMES(
7378 					    rec->dtrd_arg) + 1;
7379 
7380 					dtrace_bzero((void *)(tomax + valoffs),
7381 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7382 					    + depth * sizeof (uint64_t));
7383 
7384 					continue;
7385 				}
7386 
7387 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7388 				    curproc->p_dtrace_helpers != NULL) {
7389 					/*
7390 					 * This is the slow path -- we have
7391 					 * allocated string space, and we're
7392 					 * getting the stack of a process that
7393 					 * has helpers.  Call into a separate
7394 					 * routine to perform this processing.
7395 					 */
7396 					dtrace_action_ustack(&mstate, state,
7397 					    (uint64_t *)(tomax + valoffs),
7398 					    rec->dtrd_arg);
7399 					continue;
7400 				}
7401 
7402 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7403 				dtrace_getupcstack((uint64_t *)
7404 				    (tomax + valoffs),
7405 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7406 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7407 				continue;
7408 
7409 			default:
7410 				break;
7411 			}
7412 
7413 			dp = act->dta_difo;
7414 			ASSERT(dp != NULL);
7415 
7416 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7417 
7418 			if (*flags & CPU_DTRACE_ERROR)
7419 				continue;
7420 
7421 			switch (act->dta_kind) {
7422 			case DTRACEACT_SPECULATE: {
7423 				dtrace_rechdr_t *dtrh;
7424 
7425 				ASSERT(buf == &state->dts_buffer[cpuid]);
7426 				buf = dtrace_speculation_buffer(state,
7427 				    cpuid, val);
7428 
7429 				if (buf == NULL) {
7430 					*flags |= CPU_DTRACE_DROP;
7431 					continue;
7432 				}
7433 
7434 				offs = dtrace_buffer_reserve(buf,
7435 				    ecb->dte_needed, ecb->dte_alignment,
7436 				    state, NULL);
7437 
7438 				if (offs < 0) {
7439 					*flags |= CPU_DTRACE_DROP;
7440 					continue;
7441 				}
7442 
7443 				tomax = buf->dtb_tomax;
7444 				ASSERT(tomax != NULL);
7445 
7446 				if (ecb->dte_size == 0)
7447 					continue;
7448 
7449 				ASSERT3U(ecb->dte_size, >=,
7450 				    sizeof (dtrace_rechdr_t));
7451 				dtrh = ((void *)(tomax + offs));
7452 				dtrh->dtrh_epid = ecb->dte_epid;
7453 				/*
7454 				 * When the speculation is committed, all of
7455 				 * the records in the speculative buffer will
7456 				 * have their timestamps set to the commit
7457 				 * time.  Until then, it is set to a sentinel
7458 				 * value, for debugability.
7459 				 */
7460 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7461 				continue;
7462 			}
7463 
7464 			case DTRACEACT_PRINTM: {
7465 				/* The DIF returns a 'memref'. */
7466 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7467 
7468 				/* Get the size from the memref. */
7469 				size = memref[1];
7470 
7471 				/*
7472 				 * Check if the size exceeds the allocated
7473 				 * buffer size.
7474 				 */
7475 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7476 					/* Flag a drop! */
7477 					*flags |= CPU_DTRACE_DROP;
7478 					continue;
7479 				}
7480 
7481 				/* Store the size in the buffer first. */
7482 				DTRACE_STORE(uintptr_t, tomax,
7483 				    valoffs, size);
7484 
7485 				/*
7486 				 * Offset the buffer address to the start
7487 				 * of the data.
7488 				 */
7489 				valoffs += sizeof(uintptr_t);
7490 
7491 				/*
7492 				 * Reset to the memory address rather than
7493 				 * the memref array, then let the BYREF
7494 				 * code below do the work to store the
7495 				 * memory data in the buffer.
7496 				 */
7497 				val = memref[0];
7498 				break;
7499 			}
7500 
7501 			case DTRACEACT_PRINTT: {
7502 				/* The DIF returns a 'typeref'. */
7503 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7504 				char c = '\0' + 1;
7505 				size_t s;
7506 
7507 				/*
7508 				 * Get the type string length and round it
7509 				 * up so that the data that follows is
7510 				 * aligned for easy access.
7511 				 */
7512 				size_t typs = strlen((char *) typeref[2]) + 1;
7513 				typs = roundup(typs,  sizeof(uintptr_t));
7514 
7515 				/*
7516 				 *Get the size from the typeref using the
7517 				 * number of elements and the type size.
7518 				 */
7519 				size = typeref[1] * typeref[3];
7520 
7521 				/*
7522 				 * Check if the size exceeds the allocated
7523 				 * buffer size.
7524 				 */
7525 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7526 					/* Flag a drop! */
7527 					*flags |= CPU_DTRACE_DROP;
7528 
7529 				}
7530 
7531 				/* Store the size in the buffer first. */
7532 				DTRACE_STORE(uintptr_t, tomax,
7533 				    valoffs, size);
7534 				valoffs += sizeof(uintptr_t);
7535 
7536 				/* Store the type size in the buffer. */
7537 				DTRACE_STORE(uintptr_t, tomax,
7538 				    valoffs, typeref[3]);
7539 				valoffs += sizeof(uintptr_t);
7540 
7541 				val = typeref[2];
7542 
7543 				for (s = 0; s < typs; s++) {
7544 					if (c != '\0')
7545 						c = dtrace_load8(val++);
7546 
7547 					DTRACE_STORE(uint8_t, tomax,
7548 					    valoffs++, c);
7549 				}
7550 
7551 				/*
7552 				 * Reset to the memory address rather than
7553 				 * the typeref array, then let the BYREF
7554 				 * code below do the work to store the
7555 				 * memory data in the buffer.
7556 				 */
7557 				val = typeref[0];
7558 				break;
7559 			}
7560 
7561 			case DTRACEACT_CHILL:
7562 				if (dtrace_priv_kernel_destructive(state))
7563 					dtrace_action_chill(&mstate, val);
7564 				continue;
7565 
7566 			case DTRACEACT_RAISE:
7567 				if (dtrace_priv_proc_destructive(state))
7568 					dtrace_action_raise(val);
7569 				continue;
7570 
7571 			case DTRACEACT_COMMIT:
7572 				ASSERT(!committed);
7573 
7574 				/*
7575 				 * We need to commit our buffer state.
7576 				 */
7577 				if (ecb->dte_size)
7578 					buf->dtb_offset = offs + ecb->dte_size;
7579 				buf = &state->dts_buffer[cpuid];
7580 				dtrace_speculation_commit(state, cpuid, val);
7581 				committed = 1;
7582 				continue;
7583 
7584 			case DTRACEACT_DISCARD:
7585 				dtrace_speculation_discard(state, cpuid, val);
7586 				continue;
7587 
7588 			case DTRACEACT_DIFEXPR:
7589 			case DTRACEACT_LIBACT:
7590 			case DTRACEACT_PRINTF:
7591 			case DTRACEACT_PRINTA:
7592 			case DTRACEACT_SYSTEM:
7593 			case DTRACEACT_FREOPEN:
7594 			case DTRACEACT_TRACEMEM:
7595 				break;
7596 
7597 			case DTRACEACT_TRACEMEM_DYNSIZE:
7598 				tracememsize = val;
7599 				break;
7600 
7601 			case DTRACEACT_SYM:
7602 			case DTRACEACT_MOD:
7603 				if (!dtrace_priv_kernel(state))
7604 					continue;
7605 				break;
7606 
7607 			case DTRACEACT_USYM:
7608 			case DTRACEACT_UMOD:
7609 			case DTRACEACT_UADDR: {
7610 #ifdef illumos
7611 				struct pid *pid = curthread->t_procp->p_pidp;
7612 #endif
7613 
7614 				if (!dtrace_priv_proc(state))
7615 					continue;
7616 
7617 				DTRACE_STORE(uint64_t, tomax,
7618 #ifdef illumos
7619 				    valoffs, (uint64_t)pid->pid_id);
7620 #else
7621 				    valoffs, (uint64_t) curproc->p_pid);
7622 #endif
7623 				DTRACE_STORE(uint64_t, tomax,
7624 				    valoffs + sizeof (uint64_t), val);
7625 
7626 				continue;
7627 			}
7628 
7629 			case DTRACEACT_EXIT: {
7630 				/*
7631 				 * For the exit action, we are going to attempt
7632 				 * to atomically set our activity to be
7633 				 * draining.  If this fails (either because
7634 				 * another CPU has beat us to the exit action,
7635 				 * or because our current activity is something
7636 				 * other than ACTIVE or WARMUP), we will
7637 				 * continue.  This assures that the exit action
7638 				 * can be successfully recorded at most once
7639 				 * when we're in the ACTIVE state.  If we're
7640 				 * encountering the exit() action while in
7641 				 * COOLDOWN, however, we want to honor the new
7642 				 * status code.  (We know that we're the only
7643 				 * thread in COOLDOWN, so there is no race.)
7644 				 */
7645 				void *activity = &state->dts_activity;
7646 				dtrace_activity_t current = state->dts_activity;
7647 
7648 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7649 					break;
7650 
7651 				if (current != DTRACE_ACTIVITY_WARMUP)
7652 					current = DTRACE_ACTIVITY_ACTIVE;
7653 
7654 				if (dtrace_cas32(activity, current,
7655 				    DTRACE_ACTIVITY_DRAINING) != current) {
7656 					*flags |= CPU_DTRACE_DROP;
7657 					continue;
7658 				}
7659 
7660 				break;
7661 			}
7662 
7663 			default:
7664 				ASSERT(0);
7665 			}
7666 
7667 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7668 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7669 				uintptr_t end = valoffs + size;
7670 
7671 				if (tracememsize != 0 &&
7672 				    valoffs + tracememsize < end) {
7673 					end = valoffs + tracememsize;
7674 					tracememsize = 0;
7675 				}
7676 
7677 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7678 				    !dtrace_vcanload((void *)(uintptr_t)val,
7679 				    &dp->dtdo_rtype, &mstate, vstate))
7680 					continue;
7681 
7682 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7683 				    &val, end, act->dta_intuple,
7684 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7685 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7686 				continue;
7687 			}
7688 
7689 			switch (size) {
7690 			case 0:
7691 				break;
7692 
7693 			case sizeof (uint8_t):
7694 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7695 				break;
7696 			case sizeof (uint16_t):
7697 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7698 				break;
7699 			case sizeof (uint32_t):
7700 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7701 				break;
7702 			case sizeof (uint64_t):
7703 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7704 				break;
7705 			default:
7706 				/*
7707 				 * Any other size should have been returned by
7708 				 * reference, not by value.
7709 				 */
7710 				ASSERT(0);
7711 				break;
7712 			}
7713 		}
7714 
7715 		if (*flags & CPU_DTRACE_DROP)
7716 			continue;
7717 
7718 		if (*flags & CPU_DTRACE_FAULT) {
7719 			int ndx;
7720 			dtrace_action_t *err;
7721 
7722 			buf->dtb_errors++;
7723 
7724 			if (probe->dtpr_id == dtrace_probeid_error) {
7725 				/*
7726 				 * There's nothing we can do -- we had an
7727 				 * error on the error probe.  We bump an
7728 				 * error counter to at least indicate that
7729 				 * this condition happened.
7730 				 */
7731 				dtrace_error(&state->dts_dblerrors);
7732 				continue;
7733 			}
7734 
7735 			if (vtime) {
7736 				/*
7737 				 * Before recursing on dtrace_probe(), we
7738 				 * need to explicitly clear out our start
7739 				 * time to prevent it from being accumulated
7740 				 * into t_dtrace_vtime.
7741 				 */
7742 				curthread->t_dtrace_start = 0;
7743 			}
7744 
7745 			/*
7746 			 * Iterate over the actions to figure out which action
7747 			 * we were processing when we experienced the error.
7748 			 * Note that act points _past_ the faulting action; if
7749 			 * act is ecb->dte_action, the fault was in the
7750 			 * predicate, if it's ecb->dte_action->dta_next it's
7751 			 * in action #1, and so on.
7752 			 */
7753 			for (err = ecb->dte_action, ndx = 0;
7754 			    err != act; err = err->dta_next, ndx++)
7755 				continue;
7756 
7757 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7758 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7759 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7760 			    cpu_core[cpuid].cpuc_dtrace_illval);
7761 
7762 			continue;
7763 		}
7764 
7765 		if (!committed)
7766 			buf->dtb_offset = offs + ecb->dte_size;
7767 	}
7768 
7769 	if (vtime)
7770 		curthread->t_dtrace_start = dtrace_gethrtime();
7771 
7772 	dtrace_interrupt_enable(cookie);
7773 }
7774 
7775 /*
7776  * DTrace Probe Hashing Functions
7777  *
7778  * The functions in this section (and indeed, the functions in remaining
7779  * sections) are not _called_ from probe context.  (Any exceptions to this are
7780  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7781  * DTrace framework to look-up probes in, add probes to and remove probes from
7782  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7783  * probe tuple -- allowing for fast lookups, regardless of what was
7784  * specified.)
7785  */
7786 static uint_t
7787 dtrace_hash_str(const char *p)
7788 {
7789 	unsigned int g;
7790 	uint_t hval = 0;
7791 
7792 	while (*p) {
7793 		hval = (hval << 4) + *p++;
7794 		if ((g = (hval & 0xf0000000)) != 0)
7795 			hval ^= g >> 24;
7796 		hval &= ~g;
7797 	}
7798 	return (hval);
7799 }
7800 
7801 static dtrace_hash_t *
7802 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7803 {
7804 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7805 
7806 	hash->dth_stroffs = stroffs;
7807 	hash->dth_nextoffs = nextoffs;
7808 	hash->dth_prevoffs = prevoffs;
7809 
7810 	hash->dth_size = 1;
7811 	hash->dth_mask = hash->dth_size - 1;
7812 
7813 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7814 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7815 
7816 	return (hash);
7817 }
7818 
7819 static void
7820 dtrace_hash_destroy(dtrace_hash_t *hash)
7821 {
7822 #ifdef DEBUG
7823 	int i;
7824 
7825 	for (i = 0; i < hash->dth_size; i++)
7826 		ASSERT(hash->dth_tab[i] == NULL);
7827 #endif
7828 
7829 	kmem_free(hash->dth_tab,
7830 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7831 	kmem_free(hash, sizeof (dtrace_hash_t));
7832 }
7833 
7834 static void
7835 dtrace_hash_resize(dtrace_hash_t *hash)
7836 {
7837 	int size = hash->dth_size, i, ndx;
7838 	int new_size = hash->dth_size << 1;
7839 	int new_mask = new_size - 1;
7840 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7841 
7842 	ASSERT((new_size & new_mask) == 0);
7843 
7844 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7845 
7846 	for (i = 0; i < size; i++) {
7847 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7848 			dtrace_probe_t *probe = bucket->dthb_chain;
7849 
7850 			ASSERT(probe != NULL);
7851 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7852 
7853 			next = bucket->dthb_next;
7854 			bucket->dthb_next = new_tab[ndx];
7855 			new_tab[ndx] = bucket;
7856 		}
7857 	}
7858 
7859 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7860 	hash->dth_tab = new_tab;
7861 	hash->dth_size = new_size;
7862 	hash->dth_mask = new_mask;
7863 }
7864 
7865 static void
7866 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7867 {
7868 	int hashval = DTRACE_HASHSTR(hash, new);
7869 	int ndx = hashval & hash->dth_mask;
7870 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7871 	dtrace_probe_t **nextp, **prevp;
7872 
7873 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7874 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7875 			goto add;
7876 	}
7877 
7878 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7879 		dtrace_hash_resize(hash);
7880 		dtrace_hash_add(hash, new);
7881 		return;
7882 	}
7883 
7884 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7885 	bucket->dthb_next = hash->dth_tab[ndx];
7886 	hash->dth_tab[ndx] = bucket;
7887 	hash->dth_nbuckets++;
7888 
7889 add:
7890 	nextp = DTRACE_HASHNEXT(hash, new);
7891 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7892 	*nextp = bucket->dthb_chain;
7893 
7894 	if (bucket->dthb_chain != NULL) {
7895 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7896 		ASSERT(*prevp == NULL);
7897 		*prevp = new;
7898 	}
7899 
7900 	bucket->dthb_chain = new;
7901 	bucket->dthb_len++;
7902 }
7903 
7904 static dtrace_probe_t *
7905 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7906 {
7907 	int hashval = DTRACE_HASHSTR(hash, template);
7908 	int ndx = hashval & hash->dth_mask;
7909 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7910 
7911 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7912 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7913 			return (bucket->dthb_chain);
7914 	}
7915 
7916 	return (NULL);
7917 }
7918 
7919 static int
7920 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7921 {
7922 	int hashval = DTRACE_HASHSTR(hash, template);
7923 	int ndx = hashval & hash->dth_mask;
7924 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7925 
7926 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7927 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7928 			return (bucket->dthb_len);
7929 	}
7930 
7931 	return (0);
7932 }
7933 
7934 static void
7935 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7936 {
7937 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7938 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7939 
7940 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7941 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7942 
7943 	/*
7944 	 * Find the bucket that we're removing this probe from.
7945 	 */
7946 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7947 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7948 			break;
7949 	}
7950 
7951 	ASSERT(bucket != NULL);
7952 
7953 	if (*prevp == NULL) {
7954 		if (*nextp == NULL) {
7955 			/*
7956 			 * The removed probe was the only probe on this
7957 			 * bucket; we need to remove the bucket.
7958 			 */
7959 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7960 
7961 			ASSERT(bucket->dthb_chain == probe);
7962 			ASSERT(b != NULL);
7963 
7964 			if (b == bucket) {
7965 				hash->dth_tab[ndx] = bucket->dthb_next;
7966 			} else {
7967 				while (b->dthb_next != bucket)
7968 					b = b->dthb_next;
7969 				b->dthb_next = bucket->dthb_next;
7970 			}
7971 
7972 			ASSERT(hash->dth_nbuckets > 0);
7973 			hash->dth_nbuckets--;
7974 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7975 			return;
7976 		}
7977 
7978 		bucket->dthb_chain = *nextp;
7979 	} else {
7980 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7981 	}
7982 
7983 	if (*nextp != NULL)
7984 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7985 }
7986 
7987 /*
7988  * DTrace Utility Functions
7989  *
7990  * These are random utility functions that are _not_ called from probe context.
7991  */
7992 static int
7993 dtrace_badattr(const dtrace_attribute_t *a)
7994 {
7995 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7996 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7997 	    a->dtat_class > DTRACE_CLASS_MAX);
7998 }
7999 
8000 /*
8001  * Return a duplicate copy of a string.  If the specified string is NULL,
8002  * this function returns a zero-length string.
8003  */
8004 static char *
8005 dtrace_strdup(const char *str)
8006 {
8007 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8008 
8009 	if (str != NULL)
8010 		(void) strcpy(new, str);
8011 
8012 	return (new);
8013 }
8014 
8015 #define	DTRACE_ISALPHA(c)	\
8016 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8017 
8018 static int
8019 dtrace_badname(const char *s)
8020 {
8021 	char c;
8022 
8023 	if (s == NULL || (c = *s++) == '\0')
8024 		return (0);
8025 
8026 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8027 		return (1);
8028 
8029 	while ((c = *s++) != '\0') {
8030 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8031 		    c != '-' && c != '_' && c != '.' && c != '`')
8032 			return (1);
8033 	}
8034 
8035 	return (0);
8036 }
8037 
8038 static void
8039 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8040 {
8041 	uint32_t priv;
8042 
8043 #ifdef illumos
8044 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8045 		/*
8046 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8047 		 */
8048 		priv = DTRACE_PRIV_ALL;
8049 	} else {
8050 		*uidp = crgetuid(cr);
8051 		*zoneidp = crgetzoneid(cr);
8052 
8053 		priv = 0;
8054 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8055 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8056 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8057 			priv |= DTRACE_PRIV_USER;
8058 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8059 			priv |= DTRACE_PRIV_PROC;
8060 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8061 			priv |= DTRACE_PRIV_OWNER;
8062 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8063 			priv |= DTRACE_PRIV_ZONEOWNER;
8064 	}
8065 #else
8066 	priv = DTRACE_PRIV_ALL;
8067 #endif
8068 
8069 	*privp = priv;
8070 }
8071 
8072 #ifdef DTRACE_ERRDEBUG
8073 static void
8074 dtrace_errdebug(const char *str)
8075 {
8076 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8077 	int occupied = 0;
8078 
8079 	mutex_enter(&dtrace_errlock);
8080 	dtrace_errlast = str;
8081 	dtrace_errthread = curthread;
8082 
8083 	while (occupied++ < DTRACE_ERRHASHSZ) {
8084 		if (dtrace_errhash[hval].dter_msg == str) {
8085 			dtrace_errhash[hval].dter_count++;
8086 			goto out;
8087 		}
8088 
8089 		if (dtrace_errhash[hval].dter_msg != NULL) {
8090 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8091 			continue;
8092 		}
8093 
8094 		dtrace_errhash[hval].dter_msg = str;
8095 		dtrace_errhash[hval].dter_count = 1;
8096 		goto out;
8097 	}
8098 
8099 	panic("dtrace: undersized error hash");
8100 out:
8101 	mutex_exit(&dtrace_errlock);
8102 }
8103 #endif
8104 
8105 /*
8106  * DTrace Matching Functions
8107  *
8108  * These functions are used to match groups of probes, given some elements of
8109  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8110  */
8111 static int
8112 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8113     zoneid_t zoneid)
8114 {
8115 	if (priv != DTRACE_PRIV_ALL) {
8116 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8117 		uint32_t match = priv & ppriv;
8118 
8119 		/*
8120 		 * No PRIV_DTRACE_* privileges...
8121 		 */
8122 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8123 		    DTRACE_PRIV_KERNEL)) == 0)
8124 			return (0);
8125 
8126 		/*
8127 		 * No matching bits, but there were bits to match...
8128 		 */
8129 		if (match == 0 && ppriv != 0)
8130 			return (0);
8131 
8132 		/*
8133 		 * Need to have permissions to the process, but don't...
8134 		 */
8135 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8136 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8137 			return (0);
8138 		}
8139 
8140 		/*
8141 		 * Need to be in the same zone unless we possess the
8142 		 * privilege to examine all zones.
8143 		 */
8144 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8145 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8146 			return (0);
8147 		}
8148 	}
8149 
8150 	return (1);
8151 }
8152 
8153 /*
8154  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8155  * consists of input pattern strings and an ops-vector to evaluate them.
8156  * This function returns >0 for match, 0 for no match, and <0 for error.
8157  */
8158 static int
8159 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8160     uint32_t priv, uid_t uid, zoneid_t zoneid)
8161 {
8162 	dtrace_provider_t *pvp = prp->dtpr_provider;
8163 	int rv;
8164 
8165 	if (pvp->dtpv_defunct)
8166 		return (0);
8167 
8168 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8169 		return (rv);
8170 
8171 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8172 		return (rv);
8173 
8174 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8175 		return (rv);
8176 
8177 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8178 		return (rv);
8179 
8180 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8181 		return (0);
8182 
8183 	return (rv);
8184 }
8185 
8186 /*
8187  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8188  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8189  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8190  * In addition, all of the recursion cases except for '*' matching have been
8191  * unwound.  For '*', we still implement recursive evaluation, but a depth
8192  * counter is maintained and matching is aborted if we recurse too deep.
8193  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8194  */
8195 static int
8196 dtrace_match_glob(const char *s, const char *p, int depth)
8197 {
8198 	const char *olds;
8199 	char s1, c;
8200 	int gs;
8201 
8202 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8203 		return (-1);
8204 
8205 	if (s == NULL)
8206 		s = ""; /* treat NULL as empty string */
8207 
8208 top:
8209 	olds = s;
8210 	s1 = *s++;
8211 
8212 	if (p == NULL)
8213 		return (0);
8214 
8215 	if ((c = *p++) == '\0')
8216 		return (s1 == '\0');
8217 
8218 	switch (c) {
8219 	case '[': {
8220 		int ok = 0, notflag = 0;
8221 		char lc = '\0';
8222 
8223 		if (s1 == '\0')
8224 			return (0);
8225 
8226 		if (*p == '!') {
8227 			notflag = 1;
8228 			p++;
8229 		}
8230 
8231 		if ((c = *p++) == '\0')
8232 			return (0);
8233 
8234 		do {
8235 			if (c == '-' && lc != '\0' && *p != ']') {
8236 				if ((c = *p++) == '\0')
8237 					return (0);
8238 				if (c == '\\' && (c = *p++) == '\0')
8239 					return (0);
8240 
8241 				if (notflag) {
8242 					if (s1 < lc || s1 > c)
8243 						ok++;
8244 					else
8245 						return (0);
8246 				} else if (lc <= s1 && s1 <= c)
8247 					ok++;
8248 
8249 			} else if (c == '\\' && (c = *p++) == '\0')
8250 				return (0);
8251 
8252 			lc = c; /* save left-hand 'c' for next iteration */
8253 
8254 			if (notflag) {
8255 				if (s1 != c)
8256 					ok++;
8257 				else
8258 					return (0);
8259 			} else if (s1 == c)
8260 				ok++;
8261 
8262 			if ((c = *p++) == '\0')
8263 				return (0);
8264 
8265 		} while (c != ']');
8266 
8267 		if (ok)
8268 			goto top;
8269 
8270 		return (0);
8271 	}
8272 
8273 	case '\\':
8274 		if ((c = *p++) == '\0')
8275 			return (0);
8276 		/*FALLTHRU*/
8277 
8278 	default:
8279 		if (c != s1)
8280 			return (0);
8281 		/*FALLTHRU*/
8282 
8283 	case '?':
8284 		if (s1 != '\0')
8285 			goto top;
8286 		return (0);
8287 
8288 	case '*':
8289 		while (*p == '*')
8290 			p++; /* consecutive *'s are identical to a single one */
8291 
8292 		if (*p == '\0')
8293 			return (1);
8294 
8295 		for (s = olds; *s != '\0'; s++) {
8296 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8297 				return (gs);
8298 		}
8299 
8300 		return (0);
8301 	}
8302 }
8303 
8304 /*ARGSUSED*/
8305 static int
8306 dtrace_match_string(const char *s, const char *p, int depth)
8307 {
8308 	return (s != NULL && strcmp(s, p) == 0);
8309 }
8310 
8311 /*ARGSUSED*/
8312 static int
8313 dtrace_match_nul(const char *s, const char *p, int depth)
8314 {
8315 	return (1); /* always match the empty pattern */
8316 }
8317 
8318 /*ARGSUSED*/
8319 static int
8320 dtrace_match_nonzero(const char *s, const char *p, int depth)
8321 {
8322 	return (s != NULL && s[0] != '\0');
8323 }
8324 
8325 static int
8326 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8327     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8328 {
8329 	dtrace_probe_t template, *probe;
8330 	dtrace_hash_t *hash = NULL;
8331 	int len, best = INT_MAX, nmatched = 0;
8332 	dtrace_id_t i;
8333 
8334 	ASSERT(MUTEX_HELD(&dtrace_lock));
8335 
8336 	/*
8337 	 * If the probe ID is specified in the key, just lookup by ID and
8338 	 * invoke the match callback once if a matching probe is found.
8339 	 */
8340 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8341 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8342 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8343 			(void) (*matched)(probe, arg);
8344 			nmatched++;
8345 		}
8346 		return (nmatched);
8347 	}
8348 
8349 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8350 	template.dtpr_func = (char *)pkp->dtpk_func;
8351 	template.dtpr_name = (char *)pkp->dtpk_name;
8352 
8353 	/*
8354 	 * We want to find the most distinct of the module name, function
8355 	 * name, and name.  So for each one that is not a glob pattern or
8356 	 * empty string, we perform a lookup in the corresponding hash and
8357 	 * use the hash table with the fewest collisions to do our search.
8358 	 */
8359 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8360 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8361 		best = len;
8362 		hash = dtrace_bymod;
8363 	}
8364 
8365 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8366 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8367 		best = len;
8368 		hash = dtrace_byfunc;
8369 	}
8370 
8371 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8372 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8373 		best = len;
8374 		hash = dtrace_byname;
8375 	}
8376 
8377 	/*
8378 	 * If we did not select a hash table, iterate over every probe and
8379 	 * invoke our callback for each one that matches our input probe key.
8380 	 */
8381 	if (hash == NULL) {
8382 		for (i = 0; i < dtrace_nprobes; i++) {
8383 			if ((probe = dtrace_probes[i]) == NULL ||
8384 			    dtrace_match_probe(probe, pkp, priv, uid,
8385 			    zoneid) <= 0)
8386 				continue;
8387 
8388 			nmatched++;
8389 
8390 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8391 				break;
8392 		}
8393 
8394 		return (nmatched);
8395 	}
8396 
8397 	/*
8398 	 * If we selected a hash table, iterate over each probe of the same key
8399 	 * name and invoke the callback for every probe that matches the other
8400 	 * attributes of our input probe key.
8401 	 */
8402 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8403 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8404 
8405 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8406 			continue;
8407 
8408 		nmatched++;
8409 
8410 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8411 			break;
8412 	}
8413 
8414 	return (nmatched);
8415 }
8416 
8417 /*
8418  * Return the function pointer dtrace_probecmp() should use to compare the
8419  * specified pattern with a string.  For NULL or empty patterns, we select
8420  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8421  * For non-empty non-glob strings, we use dtrace_match_string().
8422  */
8423 static dtrace_probekey_f *
8424 dtrace_probekey_func(const char *p)
8425 {
8426 	char c;
8427 
8428 	if (p == NULL || *p == '\0')
8429 		return (&dtrace_match_nul);
8430 
8431 	while ((c = *p++) != '\0') {
8432 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8433 			return (&dtrace_match_glob);
8434 	}
8435 
8436 	return (&dtrace_match_string);
8437 }
8438 
8439 /*
8440  * Build a probe comparison key for use with dtrace_match_probe() from the
8441  * given probe description.  By convention, a null key only matches anchored
8442  * probes: if each field is the empty string, reset dtpk_fmatch to
8443  * dtrace_match_nonzero().
8444  */
8445 static void
8446 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8447 {
8448 	pkp->dtpk_prov = pdp->dtpd_provider;
8449 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8450 
8451 	pkp->dtpk_mod = pdp->dtpd_mod;
8452 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8453 
8454 	pkp->dtpk_func = pdp->dtpd_func;
8455 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8456 
8457 	pkp->dtpk_name = pdp->dtpd_name;
8458 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8459 
8460 	pkp->dtpk_id = pdp->dtpd_id;
8461 
8462 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8463 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8464 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8465 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8466 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8467 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8468 }
8469 
8470 /*
8471  * DTrace Provider-to-Framework API Functions
8472  *
8473  * These functions implement much of the Provider-to-Framework API, as
8474  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8475  * the functions in the API for probe management (found below), and
8476  * dtrace_probe() itself (found above).
8477  */
8478 
8479 /*
8480  * Register the calling provider with the DTrace framework.  This should
8481  * generally be called by DTrace providers in their attach(9E) entry point.
8482  */
8483 int
8484 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8485     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8486 {
8487 	dtrace_provider_t *provider;
8488 
8489 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8490 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8491 		    "arguments", name ? name : "<NULL>");
8492 		return (EINVAL);
8493 	}
8494 
8495 	if (name[0] == '\0' || dtrace_badname(name)) {
8496 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8497 		    "provider name", name);
8498 		return (EINVAL);
8499 	}
8500 
8501 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8502 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8503 	    pops->dtps_destroy == NULL ||
8504 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8505 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8506 		    "provider ops", name);
8507 		return (EINVAL);
8508 	}
8509 
8510 	if (dtrace_badattr(&pap->dtpa_provider) ||
8511 	    dtrace_badattr(&pap->dtpa_mod) ||
8512 	    dtrace_badattr(&pap->dtpa_func) ||
8513 	    dtrace_badattr(&pap->dtpa_name) ||
8514 	    dtrace_badattr(&pap->dtpa_args)) {
8515 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8516 		    "provider attributes", name);
8517 		return (EINVAL);
8518 	}
8519 
8520 	if (priv & ~DTRACE_PRIV_ALL) {
8521 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8522 		    "privilege attributes", name);
8523 		return (EINVAL);
8524 	}
8525 
8526 	if ((priv & DTRACE_PRIV_KERNEL) &&
8527 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8528 	    pops->dtps_usermode == NULL) {
8529 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8530 		    "dtps_usermode() op for given privilege attributes", name);
8531 		return (EINVAL);
8532 	}
8533 
8534 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8535 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8536 	(void) strcpy(provider->dtpv_name, name);
8537 
8538 	provider->dtpv_attr = *pap;
8539 	provider->dtpv_priv.dtpp_flags = priv;
8540 	if (cr != NULL) {
8541 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8542 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8543 	}
8544 	provider->dtpv_pops = *pops;
8545 
8546 	if (pops->dtps_provide == NULL) {
8547 		ASSERT(pops->dtps_provide_module != NULL);
8548 		provider->dtpv_pops.dtps_provide =
8549 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8550 	}
8551 
8552 	if (pops->dtps_provide_module == NULL) {
8553 		ASSERT(pops->dtps_provide != NULL);
8554 		provider->dtpv_pops.dtps_provide_module =
8555 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8556 	}
8557 
8558 	if (pops->dtps_suspend == NULL) {
8559 		ASSERT(pops->dtps_resume == NULL);
8560 		provider->dtpv_pops.dtps_suspend =
8561 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8562 		provider->dtpv_pops.dtps_resume =
8563 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8564 	}
8565 
8566 	provider->dtpv_arg = arg;
8567 	*idp = (dtrace_provider_id_t)provider;
8568 
8569 	if (pops == &dtrace_provider_ops) {
8570 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8571 		ASSERT(MUTEX_HELD(&dtrace_lock));
8572 		ASSERT(dtrace_anon.dta_enabling == NULL);
8573 
8574 		/*
8575 		 * We make sure that the DTrace provider is at the head of
8576 		 * the provider chain.
8577 		 */
8578 		provider->dtpv_next = dtrace_provider;
8579 		dtrace_provider = provider;
8580 		return (0);
8581 	}
8582 
8583 	mutex_enter(&dtrace_provider_lock);
8584 	mutex_enter(&dtrace_lock);
8585 
8586 	/*
8587 	 * If there is at least one provider registered, we'll add this
8588 	 * provider after the first provider.
8589 	 */
8590 	if (dtrace_provider != NULL) {
8591 		provider->dtpv_next = dtrace_provider->dtpv_next;
8592 		dtrace_provider->dtpv_next = provider;
8593 	} else {
8594 		dtrace_provider = provider;
8595 	}
8596 
8597 	if (dtrace_retained != NULL) {
8598 		dtrace_enabling_provide(provider);
8599 
8600 		/*
8601 		 * Now we need to call dtrace_enabling_matchall() -- which
8602 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8603 		 * to drop all of our locks before calling into it...
8604 		 */
8605 		mutex_exit(&dtrace_lock);
8606 		mutex_exit(&dtrace_provider_lock);
8607 		dtrace_enabling_matchall();
8608 
8609 		return (0);
8610 	}
8611 
8612 	mutex_exit(&dtrace_lock);
8613 	mutex_exit(&dtrace_provider_lock);
8614 
8615 	return (0);
8616 }
8617 
8618 /*
8619  * Unregister the specified provider from the DTrace framework.  This should
8620  * generally be called by DTrace providers in their detach(9E) entry point.
8621  */
8622 int
8623 dtrace_unregister(dtrace_provider_id_t id)
8624 {
8625 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8626 	dtrace_provider_t *prev = NULL;
8627 	int i, self = 0, noreap = 0;
8628 	dtrace_probe_t *probe, *first = NULL;
8629 
8630 	if (old->dtpv_pops.dtps_enable ==
8631 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8632 		/*
8633 		 * If DTrace itself is the provider, we're called with locks
8634 		 * already held.
8635 		 */
8636 		ASSERT(old == dtrace_provider);
8637 #ifdef illumos
8638 		ASSERT(dtrace_devi != NULL);
8639 #endif
8640 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8641 		ASSERT(MUTEX_HELD(&dtrace_lock));
8642 		self = 1;
8643 
8644 		if (dtrace_provider->dtpv_next != NULL) {
8645 			/*
8646 			 * There's another provider here; return failure.
8647 			 */
8648 			return (EBUSY);
8649 		}
8650 	} else {
8651 		mutex_enter(&dtrace_provider_lock);
8652 #ifdef illumos
8653 		mutex_enter(&mod_lock);
8654 #endif
8655 		mutex_enter(&dtrace_lock);
8656 	}
8657 
8658 	/*
8659 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8660 	 * probes, we refuse to let providers slither away, unless this
8661 	 * provider has already been explicitly invalidated.
8662 	 */
8663 	if (!old->dtpv_defunct &&
8664 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8665 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8666 		if (!self) {
8667 			mutex_exit(&dtrace_lock);
8668 #ifdef illumos
8669 			mutex_exit(&mod_lock);
8670 #endif
8671 			mutex_exit(&dtrace_provider_lock);
8672 		}
8673 		return (EBUSY);
8674 	}
8675 
8676 	/*
8677 	 * Attempt to destroy the probes associated with this provider.
8678 	 */
8679 	for (i = 0; i < dtrace_nprobes; i++) {
8680 		if ((probe = dtrace_probes[i]) == NULL)
8681 			continue;
8682 
8683 		if (probe->dtpr_provider != old)
8684 			continue;
8685 
8686 		if (probe->dtpr_ecb == NULL)
8687 			continue;
8688 
8689 		/*
8690 		 * If we are trying to unregister a defunct provider, and the
8691 		 * provider was made defunct within the interval dictated by
8692 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8693 		 * attempt to reap our enablings.  To denote that the provider
8694 		 * should reattempt to unregister itself at some point in the
8695 		 * future, we will return a differentiable error code (EAGAIN
8696 		 * instead of EBUSY) in this case.
8697 		 */
8698 		if (dtrace_gethrtime() - old->dtpv_defunct >
8699 		    dtrace_unregister_defunct_reap)
8700 			noreap = 1;
8701 
8702 		if (!self) {
8703 			mutex_exit(&dtrace_lock);
8704 #ifdef illumos
8705 			mutex_exit(&mod_lock);
8706 #endif
8707 			mutex_exit(&dtrace_provider_lock);
8708 		}
8709 
8710 		if (noreap)
8711 			return (EBUSY);
8712 
8713 		(void) taskq_dispatch(dtrace_taskq,
8714 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8715 
8716 		return (EAGAIN);
8717 	}
8718 
8719 	/*
8720 	 * All of the probes for this provider are disabled; we can safely
8721 	 * remove all of them from their hash chains and from the probe array.
8722 	 */
8723 	for (i = 0; i < dtrace_nprobes; i++) {
8724 		if ((probe = dtrace_probes[i]) == NULL)
8725 			continue;
8726 
8727 		if (probe->dtpr_provider != old)
8728 			continue;
8729 
8730 		dtrace_probes[i] = NULL;
8731 
8732 		dtrace_hash_remove(dtrace_bymod, probe);
8733 		dtrace_hash_remove(dtrace_byfunc, probe);
8734 		dtrace_hash_remove(dtrace_byname, probe);
8735 
8736 		if (first == NULL) {
8737 			first = probe;
8738 			probe->dtpr_nextmod = NULL;
8739 		} else {
8740 			probe->dtpr_nextmod = first;
8741 			first = probe;
8742 		}
8743 	}
8744 
8745 	/*
8746 	 * The provider's probes have been removed from the hash chains and
8747 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8748 	 * everyone has cleared out from any probe array processing.
8749 	 */
8750 	dtrace_sync();
8751 
8752 	for (probe = first; probe != NULL; probe = first) {
8753 		first = probe->dtpr_nextmod;
8754 
8755 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8756 		    probe->dtpr_arg);
8757 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8758 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8759 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8760 #ifdef illumos
8761 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8762 #else
8763 		free_unr(dtrace_arena, probe->dtpr_id);
8764 #endif
8765 		kmem_free(probe, sizeof (dtrace_probe_t));
8766 	}
8767 
8768 	if ((prev = dtrace_provider) == old) {
8769 #ifdef illumos
8770 		ASSERT(self || dtrace_devi == NULL);
8771 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8772 #endif
8773 		dtrace_provider = old->dtpv_next;
8774 	} else {
8775 		while (prev != NULL && prev->dtpv_next != old)
8776 			prev = prev->dtpv_next;
8777 
8778 		if (prev == NULL) {
8779 			panic("attempt to unregister non-existent "
8780 			    "dtrace provider %p\n", (void *)id);
8781 		}
8782 
8783 		prev->dtpv_next = old->dtpv_next;
8784 	}
8785 
8786 	if (!self) {
8787 		mutex_exit(&dtrace_lock);
8788 #ifdef illumos
8789 		mutex_exit(&mod_lock);
8790 #endif
8791 		mutex_exit(&dtrace_provider_lock);
8792 	}
8793 
8794 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8795 	kmem_free(old, sizeof (dtrace_provider_t));
8796 
8797 	return (0);
8798 }
8799 
8800 /*
8801  * Invalidate the specified provider.  All subsequent probe lookups for the
8802  * specified provider will fail, but its probes will not be removed.
8803  */
8804 void
8805 dtrace_invalidate(dtrace_provider_id_t id)
8806 {
8807 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8808 
8809 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8810 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8811 
8812 	mutex_enter(&dtrace_provider_lock);
8813 	mutex_enter(&dtrace_lock);
8814 
8815 	pvp->dtpv_defunct = dtrace_gethrtime();
8816 
8817 	mutex_exit(&dtrace_lock);
8818 	mutex_exit(&dtrace_provider_lock);
8819 }
8820 
8821 /*
8822  * Indicate whether or not DTrace has attached.
8823  */
8824 int
8825 dtrace_attached(void)
8826 {
8827 	/*
8828 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8829 	 * attached.  (It's non-NULL because DTrace is always itself a
8830 	 * provider.)
8831 	 */
8832 	return (dtrace_provider != NULL);
8833 }
8834 
8835 /*
8836  * Remove all the unenabled probes for the given provider.  This function is
8837  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8838  * -- just as many of its associated probes as it can.
8839  */
8840 int
8841 dtrace_condense(dtrace_provider_id_t id)
8842 {
8843 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8844 	int i;
8845 	dtrace_probe_t *probe;
8846 
8847 	/*
8848 	 * Make sure this isn't the dtrace provider itself.
8849 	 */
8850 	ASSERT(prov->dtpv_pops.dtps_enable !=
8851 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8852 
8853 	mutex_enter(&dtrace_provider_lock);
8854 	mutex_enter(&dtrace_lock);
8855 
8856 	/*
8857 	 * Attempt to destroy the probes associated with this provider.
8858 	 */
8859 	for (i = 0; i < dtrace_nprobes; i++) {
8860 		if ((probe = dtrace_probes[i]) == NULL)
8861 			continue;
8862 
8863 		if (probe->dtpr_provider != prov)
8864 			continue;
8865 
8866 		if (probe->dtpr_ecb != NULL)
8867 			continue;
8868 
8869 		dtrace_probes[i] = NULL;
8870 
8871 		dtrace_hash_remove(dtrace_bymod, probe);
8872 		dtrace_hash_remove(dtrace_byfunc, probe);
8873 		dtrace_hash_remove(dtrace_byname, probe);
8874 
8875 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8876 		    probe->dtpr_arg);
8877 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8878 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8879 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8880 		kmem_free(probe, sizeof (dtrace_probe_t));
8881 #ifdef illumos
8882 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8883 #else
8884 		free_unr(dtrace_arena, i + 1);
8885 #endif
8886 	}
8887 
8888 	mutex_exit(&dtrace_lock);
8889 	mutex_exit(&dtrace_provider_lock);
8890 
8891 	return (0);
8892 }
8893 
8894 /*
8895  * DTrace Probe Management Functions
8896  *
8897  * The functions in this section perform the DTrace probe management,
8898  * including functions to create probes, look-up probes, and call into the
8899  * providers to request that probes be provided.  Some of these functions are
8900  * in the Provider-to-Framework API; these functions can be identified by the
8901  * fact that they are not declared "static".
8902  */
8903 
8904 /*
8905  * Create a probe with the specified module name, function name, and name.
8906  */
8907 dtrace_id_t
8908 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8909     const char *func, const char *name, int aframes, void *arg)
8910 {
8911 	dtrace_probe_t *probe, **probes;
8912 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8913 	dtrace_id_t id;
8914 
8915 	if (provider == dtrace_provider) {
8916 		ASSERT(MUTEX_HELD(&dtrace_lock));
8917 	} else {
8918 		mutex_enter(&dtrace_lock);
8919 	}
8920 
8921 #ifdef illumos
8922 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8923 	    VM_BESTFIT | VM_SLEEP);
8924 #else
8925 	id = alloc_unr(dtrace_arena);
8926 #endif
8927 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8928 
8929 	probe->dtpr_id = id;
8930 	probe->dtpr_gen = dtrace_probegen++;
8931 	probe->dtpr_mod = dtrace_strdup(mod);
8932 	probe->dtpr_func = dtrace_strdup(func);
8933 	probe->dtpr_name = dtrace_strdup(name);
8934 	probe->dtpr_arg = arg;
8935 	probe->dtpr_aframes = aframes;
8936 	probe->dtpr_provider = provider;
8937 
8938 	dtrace_hash_add(dtrace_bymod, probe);
8939 	dtrace_hash_add(dtrace_byfunc, probe);
8940 	dtrace_hash_add(dtrace_byname, probe);
8941 
8942 	if (id - 1 >= dtrace_nprobes) {
8943 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8944 		size_t nsize = osize << 1;
8945 
8946 		if (nsize == 0) {
8947 			ASSERT(osize == 0);
8948 			ASSERT(dtrace_probes == NULL);
8949 			nsize = sizeof (dtrace_probe_t *);
8950 		}
8951 
8952 		probes = kmem_zalloc(nsize, KM_SLEEP);
8953 
8954 		if (dtrace_probes == NULL) {
8955 			ASSERT(osize == 0);
8956 			dtrace_probes = probes;
8957 			dtrace_nprobes = 1;
8958 		} else {
8959 			dtrace_probe_t **oprobes = dtrace_probes;
8960 
8961 			bcopy(oprobes, probes, osize);
8962 			dtrace_membar_producer();
8963 			dtrace_probes = probes;
8964 
8965 			dtrace_sync();
8966 
8967 			/*
8968 			 * All CPUs are now seeing the new probes array; we can
8969 			 * safely free the old array.
8970 			 */
8971 			kmem_free(oprobes, osize);
8972 			dtrace_nprobes <<= 1;
8973 		}
8974 
8975 		ASSERT(id - 1 < dtrace_nprobes);
8976 	}
8977 
8978 	ASSERT(dtrace_probes[id - 1] == NULL);
8979 	dtrace_probes[id - 1] = probe;
8980 
8981 	if (provider != dtrace_provider)
8982 		mutex_exit(&dtrace_lock);
8983 
8984 	return (id);
8985 }
8986 
8987 static dtrace_probe_t *
8988 dtrace_probe_lookup_id(dtrace_id_t id)
8989 {
8990 	ASSERT(MUTEX_HELD(&dtrace_lock));
8991 
8992 	if (id == 0 || id > dtrace_nprobes)
8993 		return (NULL);
8994 
8995 	return (dtrace_probes[id - 1]);
8996 }
8997 
8998 static int
8999 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9000 {
9001 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9002 
9003 	return (DTRACE_MATCH_DONE);
9004 }
9005 
9006 /*
9007  * Look up a probe based on provider and one or more of module name, function
9008  * name and probe name.
9009  */
9010 dtrace_id_t
9011 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9012     char *func, char *name)
9013 {
9014 	dtrace_probekey_t pkey;
9015 	dtrace_id_t id;
9016 	int match;
9017 
9018 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9019 	pkey.dtpk_pmatch = &dtrace_match_string;
9020 	pkey.dtpk_mod = mod;
9021 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9022 	pkey.dtpk_func = func;
9023 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9024 	pkey.dtpk_name = name;
9025 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9026 	pkey.dtpk_id = DTRACE_IDNONE;
9027 
9028 	mutex_enter(&dtrace_lock);
9029 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9030 	    dtrace_probe_lookup_match, &id);
9031 	mutex_exit(&dtrace_lock);
9032 
9033 	ASSERT(match == 1 || match == 0);
9034 	return (match ? id : 0);
9035 }
9036 
9037 /*
9038  * Returns the probe argument associated with the specified probe.
9039  */
9040 void *
9041 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9042 {
9043 	dtrace_probe_t *probe;
9044 	void *rval = NULL;
9045 
9046 	mutex_enter(&dtrace_lock);
9047 
9048 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9049 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9050 		rval = probe->dtpr_arg;
9051 
9052 	mutex_exit(&dtrace_lock);
9053 
9054 	return (rval);
9055 }
9056 
9057 /*
9058  * Copy a probe into a probe description.
9059  */
9060 static void
9061 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9062 {
9063 	bzero(pdp, sizeof (dtrace_probedesc_t));
9064 	pdp->dtpd_id = prp->dtpr_id;
9065 
9066 	(void) strncpy(pdp->dtpd_provider,
9067 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9068 
9069 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9070 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9071 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9072 }
9073 
9074 /*
9075  * Called to indicate that a probe -- or probes -- should be provided by a
9076  * specfied provider.  If the specified description is NULL, the provider will
9077  * be told to provide all of its probes.  (This is done whenever a new
9078  * consumer comes along, or whenever a retained enabling is to be matched.) If
9079  * the specified description is non-NULL, the provider is given the
9080  * opportunity to dynamically provide the specified probe, allowing providers
9081  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9082  * probes.)  If the provider is NULL, the operations will be applied to all
9083  * providers; if the provider is non-NULL the operations will only be applied
9084  * to the specified provider.  The dtrace_provider_lock must be held, and the
9085  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9086  * will need to grab the dtrace_lock when it reenters the framework through
9087  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9088  */
9089 static void
9090 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9091 {
9092 #ifdef illumos
9093 	modctl_t *ctl;
9094 #endif
9095 	int all = 0;
9096 
9097 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9098 
9099 	if (prv == NULL) {
9100 		all = 1;
9101 		prv = dtrace_provider;
9102 	}
9103 
9104 	do {
9105 		/*
9106 		 * First, call the blanket provide operation.
9107 		 */
9108 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9109 
9110 #ifdef illumos
9111 		/*
9112 		 * Now call the per-module provide operation.  We will grab
9113 		 * mod_lock to prevent the list from being modified.  Note
9114 		 * that this also prevents the mod_busy bits from changing.
9115 		 * (mod_busy can only be changed with mod_lock held.)
9116 		 */
9117 		mutex_enter(&mod_lock);
9118 
9119 		ctl = &modules;
9120 		do {
9121 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9122 				continue;
9123 
9124 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9125 
9126 		} while ((ctl = ctl->mod_next) != &modules);
9127 
9128 		mutex_exit(&mod_lock);
9129 #endif
9130 	} while (all && (prv = prv->dtpv_next) != NULL);
9131 }
9132 
9133 #ifdef illumos
9134 /*
9135  * Iterate over each probe, and call the Framework-to-Provider API function
9136  * denoted by offs.
9137  */
9138 static void
9139 dtrace_probe_foreach(uintptr_t offs)
9140 {
9141 	dtrace_provider_t *prov;
9142 	void (*func)(void *, dtrace_id_t, void *);
9143 	dtrace_probe_t *probe;
9144 	dtrace_icookie_t cookie;
9145 	int i;
9146 
9147 	/*
9148 	 * We disable interrupts to walk through the probe array.  This is
9149 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9150 	 * won't see stale data.
9151 	 */
9152 	cookie = dtrace_interrupt_disable();
9153 
9154 	for (i = 0; i < dtrace_nprobes; i++) {
9155 		if ((probe = dtrace_probes[i]) == NULL)
9156 			continue;
9157 
9158 		if (probe->dtpr_ecb == NULL) {
9159 			/*
9160 			 * This probe isn't enabled -- don't call the function.
9161 			 */
9162 			continue;
9163 		}
9164 
9165 		prov = probe->dtpr_provider;
9166 		func = *((void(**)(void *, dtrace_id_t, void *))
9167 		    ((uintptr_t)&prov->dtpv_pops + offs));
9168 
9169 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9170 	}
9171 
9172 	dtrace_interrupt_enable(cookie);
9173 }
9174 #endif
9175 
9176 static int
9177 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9178 {
9179 	dtrace_probekey_t pkey;
9180 	uint32_t priv;
9181 	uid_t uid;
9182 	zoneid_t zoneid;
9183 
9184 	ASSERT(MUTEX_HELD(&dtrace_lock));
9185 	dtrace_ecb_create_cache = NULL;
9186 
9187 	if (desc == NULL) {
9188 		/*
9189 		 * If we're passed a NULL description, we're being asked to
9190 		 * create an ECB with a NULL probe.
9191 		 */
9192 		(void) dtrace_ecb_create_enable(NULL, enab);
9193 		return (0);
9194 	}
9195 
9196 	dtrace_probekey(desc, &pkey);
9197 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9198 	    &priv, &uid, &zoneid);
9199 
9200 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9201 	    enab));
9202 }
9203 
9204 /*
9205  * DTrace Helper Provider Functions
9206  */
9207 static void
9208 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9209 {
9210 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9211 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9212 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9213 }
9214 
9215 static void
9216 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9217     const dof_provider_t *dofprov, char *strtab)
9218 {
9219 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9220 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9221 	    dofprov->dofpv_provattr);
9222 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9223 	    dofprov->dofpv_modattr);
9224 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9225 	    dofprov->dofpv_funcattr);
9226 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9227 	    dofprov->dofpv_nameattr);
9228 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9229 	    dofprov->dofpv_argsattr);
9230 }
9231 
9232 static void
9233 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9234 {
9235 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9236 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9237 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9238 	dof_provider_t *provider;
9239 	dof_probe_t *probe;
9240 	uint32_t *off, *enoff;
9241 	uint8_t *arg;
9242 	char *strtab;
9243 	uint_t i, nprobes;
9244 	dtrace_helper_provdesc_t dhpv;
9245 	dtrace_helper_probedesc_t dhpb;
9246 	dtrace_meta_t *meta = dtrace_meta_pid;
9247 	dtrace_mops_t *mops = &meta->dtm_mops;
9248 	void *parg;
9249 
9250 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9251 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9252 	    provider->dofpv_strtab * dof->dofh_secsize);
9253 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9254 	    provider->dofpv_probes * dof->dofh_secsize);
9255 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9256 	    provider->dofpv_prargs * dof->dofh_secsize);
9257 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9258 	    provider->dofpv_proffs * dof->dofh_secsize);
9259 
9260 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9261 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9262 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9263 	enoff = NULL;
9264 
9265 	/*
9266 	 * See dtrace_helper_provider_validate().
9267 	 */
9268 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9269 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9270 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9271 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9272 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9273 	}
9274 
9275 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9276 
9277 	/*
9278 	 * Create the provider.
9279 	 */
9280 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9281 
9282 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9283 		return;
9284 
9285 	meta->dtm_count++;
9286 
9287 	/*
9288 	 * Create the probes.
9289 	 */
9290 	for (i = 0; i < nprobes; i++) {
9291 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9292 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9293 
9294 		dhpb.dthpb_mod = dhp->dofhp_mod;
9295 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9296 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9297 		dhpb.dthpb_base = probe->dofpr_addr;
9298 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9299 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9300 		if (enoff != NULL) {
9301 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9302 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9303 		} else {
9304 			dhpb.dthpb_enoffs = NULL;
9305 			dhpb.dthpb_nenoffs = 0;
9306 		}
9307 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9308 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9309 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9310 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9311 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9312 
9313 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9314 	}
9315 }
9316 
9317 static void
9318 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9319 {
9320 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9321 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9322 	int i;
9323 
9324 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9325 
9326 	for (i = 0; i < dof->dofh_secnum; i++) {
9327 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9328 		    dof->dofh_secoff + i * dof->dofh_secsize);
9329 
9330 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9331 			continue;
9332 
9333 		dtrace_helper_provide_one(dhp, sec, pid);
9334 	}
9335 
9336 	/*
9337 	 * We may have just created probes, so we must now rematch against
9338 	 * any retained enablings.  Note that this call will acquire both
9339 	 * cpu_lock and dtrace_lock; the fact that we are holding
9340 	 * dtrace_meta_lock now is what defines the ordering with respect to
9341 	 * these three locks.
9342 	 */
9343 	dtrace_enabling_matchall();
9344 }
9345 
9346 static void
9347 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9348 {
9349 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9350 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9351 	dof_sec_t *str_sec;
9352 	dof_provider_t *provider;
9353 	char *strtab;
9354 	dtrace_helper_provdesc_t dhpv;
9355 	dtrace_meta_t *meta = dtrace_meta_pid;
9356 	dtrace_mops_t *mops = &meta->dtm_mops;
9357 
9358 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9359 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9360 	    provider->dofpv_strtab * dof->dofh_secsize);
9361 
9362 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9363 
9364 	/*
9365 	 * Create the provider.
9366 	 */
9367 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9368 
9369 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9370 
9371 	meta->dtm_count--;
9372 }
9373 
9374 static void
9375 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9376 {
9377 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9378 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9379 	int i;
9380 
9381 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9382 
9383 	for (i = 0; i < dof->dofh_secnum; i++) {
9384 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9385 		    dof->dofh_secoff + i * dof->dofh_secsize);
9386 
9387 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9388 			continue;
9389 
9390 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9391 	}
9392 }
9393 
9394 /*
9395  * DTrace Meta Provider-to-Framework API Functions
9396  *
9397  * These functions implement the Meta Provider-to-Framework API, as described
9398  * in <sys/dtrace.h>.
9399  */
9400 int
9401 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9402     dtrace_meta_provider_id_t *idp)
9403 {
9404 	dtrace_meta_t *meta;
9405 	dtrace_helpers_t *help, *next;
9406 	int i;
9407 
9408 	*idp = DTRACE_METAPROVNONE;
9409 
9410 	/*
9411 	 * We strictly don't need the name, but we hold onto it for
9412 	 * debuggability. All hail error queues!
9413 	 */
9414 	if (name == NULL) {
9415 		cmn_err(CE_WARN, "failed to register meta-provider: "
9416 		    "invalid name");
9417 		return (EINVAL);
9418 	}
9419 
9420 	if (mops == NULL ||
9421 	    mops->dtms_create_probe == NULL ||
9422 	    mops->dtms_provide_pid == NULL ||
9423 	    mops->dtms_remove_pid == NULL) {
9424 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9425 		    "invalid ops", name);
9426 		return (EINVAL);
9427 	}
9428 
9429 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9430 	meta->dtm_mops = *mops;
9431 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9432 	(void) strcpy(meta->dtm_name, name);
9433 	meta->dtm_arg = arg;
9434 
9435 	mutex_enter(&dtrace_meta_lock);
9436 	mutex_enter(&dtrace_lock);
9437 
9438 	if (dtrace_meta_pid != NULL) {
9439 		mutex_exit(&dtrace_lock);
9440 		mutex_exit(&dtrace_meta_lock);
9441 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9442 		    "user-land meta-provider exists", name);
9443 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9444 		kmem_free(meta, sizeof (dtrace_meta_t));
9445 		return (EINVAL);
9446 	}
9447 
9448 	dtrace_meta_pid = meta;
9449 	*idp = (dtrace_meta_provider_id_t)meta;
9450 
9451 	/*
9452 	 * If there are providers and probes ready to go, pass them
9453 	 * off to the new meta provider now.
9454 	 */
9455 
9456 	help = dtrace_deferred_pid;
9457 	dtrace_deferred_pid = NULL;
9458 
9459 	mutex_exit(&dtrace_lock);
9460 
9461 	while (help != NULL) {
9462 		for (i = 0; i < help->dthps_nprovs; i++) {
9463 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9464 			    help->dthps_pid);
9465 		}
9466 
9467 		next = help->dthps_next;
9468 		help->dthps_next = NULL;
9469 		help->dthps_prev = NULL;
9470 		help->dthps_deferred = 0;
9471 		help = next;
9472 	}
9473 
9474 	mutex_exit(&dtrace_meta_lock);
9475 
9476 	return (0);
9477 }
9478 
9479 int
9480 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9481 {
9482 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9483 
9484 	mutex_enter(&dtrace_meta_lock);
9485 	mutex_enter(&dtrace_lock);
9486 
9487 	if (old == dtrace_meta_pid) {
9488 		pp = &dtrace_meta_pid;
9489 	} else {
9490 		panic("attempt to unregister non-existent "
9491 		    "dtrace meta-provider %p\n", (void *)old);
9492 	}
9493 
9494 	if (old->dtm_count != 0) {
9495 		mutex_exit(&dtrace_lock);
9496 		mutex_exit(&dtrace_meta_lock);
9497 		return (EBUSY);
9498 	}
9499 
9500 	*pp = NULL;
9501 
9502 	mutex_exit(&dtrace_lock);
9503 	mutex_exit(&dtrace_meta_lock);
9504 
9505 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9506 	kmem_free(old, sizeof (dtrace_meta_t));
9507 
9508 	return (0);
9509 }
9510 
9511 
9512 /*
9513  * DTrace DIF Object Functions
9514  */
9515 static int
9516 dtrace_difo_err(uint_t pc, const char *format, ...)
9517 {
9518 	if (dtrace_err_verbose) {
9519 		va_list alist;
9520 
9521 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9522 		va_start(alist, format);
9523 		(void) vuprintf(format, alist);
9524 		va_end(alist);
9525 	}
9526 
9527 #ifdef DTRACE_ERRDEBUG
9528 	dtrace_errdebug(format);
9529 #endif
9530 	return (1);
9531 }
9532 
9533 /*
9534  * Validate a DTrace DIF object by checking the IR instructions.  The following
9535  * rules are currently enforced by dtrace_difo_validate():
9536  *
9537  * 1. Each instruction must have a valid opcode
9538  * 2. Each register, string, variable, or subroutine reference must be valid
9539  * 3. No instruction can modify register %r0 (must be zero)
9540  * 4. All instruction reserved bits must be set to zero
9541  * 5. The last instruction must be a "ret" instruction
9542  * 6. All branch targets must reference a valid instruction _after_ the branch
9543  */
9544 static int
9545 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9546     cred_t *cr)
9547 {
9548 	int err = 0, i;
9549 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9550 	int kcheckload;
9551 	uint_t pc;
9552 
9553 	kcheckload = cr == NULL ||
9554 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9555 
9556 	dp->dtdo_destructive = 0;
9557 
9558 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9559 		dif_instr_t instr = dp->dtdo_buf[pc];
9560 
9561 		uint_t r1 = DIF_INSTR_R1(instr);
9562 		uint_t r2 = DIF_INSTR_R2(instr);
9563 		uint_t rd = DIF_INSTR_RD(instr);
9564 		uint_t rs = DIF_INSTR_RS(instr);
9565 		uint_t label = DIF_INSTR_LABEL(instr);
9566 		uint_t v = DIF_INSTR_VAR(instr);
9567 		uint_t subr = DIF_INSTR_SUBR(instr);
9568 		uint_t type = DIF_INSTR_TYPE(instr);
9569 		uint_t op = DIF_INSTR_OP(instr);
9570 
9571 		switch (op) {
9572 		case DIF_OP_OR:
9573 		case DIF_OP_XOR:
9574 		case DIF_OP_AND:
9575 		case DIF_OP_SLL:
9576 		case DIF_OP_SRL:
9577 		case DIF_OP_SRA:
9578 		case DIF_OP_SUB:
9579 		case DIF_OP_ADD:
9580 		case DIF_OP_MUL:
9581 		case DIF_OP_SDIV:
9582 		case DIF_OP_UDIV:
9583 		case DIF_OP_SREM:
9584 		case DIF_OP_UREM:
9585 		case DIF_OP_COPYS:
9586 			if (r1 >= nregs)
9587 				err += efunc(pc, "invalid register %u\n", r1);
9588 			if (r2 >= nregs)
9589 				err += efunc(pc, "invalid register %u\n", r2);
9590 			if (rd >= nregs)
9591 				err += efunc(pc, "invalid register %u\n", rd);
9592 			if (rd == 0)
9593 				err += efunc(pc, "cannot write to %r0\n");
9594 			break;
9595 		case DIF_OP_NOT:
9596 		case DIF_OP_MOV:
9597 		case DIF_OP_ALLOCS:
9598 			if (r1 >= nregs)
9599 				err += efunc(pc, "invalid register %u\n", r1);
9600 			if (r2 != 0)
9601 				err += efunc(pc, "non-zero reserved bits\n");
9602 			if (rd >= nregs)
9603 				err += efunc(pc, "invalid register %u\n", rd);
9604 			if (rd == 0)
9605 				err += efunc(pc, "cannot write to %r0\n");
9606 			break;
9607 		case DIF_OP_LDSB:
9608 		case DIF_OP_LDSH:
9609 		case DIF_OP_LDSW:
9610 		case DIF_OP_LDUB:
9611 		case DIF_OP_LDUH:
9612 		case DIF_OP_LDUW:
9613 		case DIF_OP_LDX:
9614 			if (r1 >= nregs)
9615 				err += efunc(pc, "invalid register %u\n", r1);
9616 			if (r2 != 0)
9617 				err += efunc(pc, "non-zero reserved bits\n");
9618 			if (rd >= nregs)
9619 				err += efunc(pc, "invalid register %u\n", rd);
9620 			if (rd == 0)
9621 				err += efunc(pc, "cannot write to %r0\n");
9622 			if (kcheckload)
9623 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9624 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9625 			break;
9626 		case DIF_OP_RLDSB:
9627 		case DIF_OP_RLDSH:
9628 		case DIF_OP_RLDSW:
9629 		case DIF_OP_RLDUB:
9630 		case DIF_OP_RLDUH:
9631 		case DIF_OP_RLDUW:
9632 		case DIF_OP_RLDX:
9633 			if (r1 >= nregs)
9634 				err += efunc(pc, "invalid register %u\n", r1);
9635 			if (r2 != 0)
9636 				err += efunc(pc, "non-zero reserved bits\n");
9637 			if (rd >= nregs)
9638 				err += efunc(pc, "invalid register %u\n", rd);
9639 			if (rd == 0)
9640 				err += efunc(pc, "cannot write to %r0\n");
9641 			break;
9642 		case DIF_OP_ULDSB:
9643 		case DIF_OP_ULDSH:
9644 		case DIF_OP_ULDSW:
9645 		case DIF_OP_ULDUB:
9646 		case DIF_OP_ULDUH:
9647 		case DIF_OP_ULDUW:
9648 		case DIF_OP_ULDX:
9649 			if (r1 >= nregs)
9650 				err += efunc(pc, "invalid register %u\n", r1);
9651 			if (r2 != 0)
9652 				err += efunc(pc, "non-zero reserved bits\n");
9653 			if (rd >= nregs)
9654 				err += efunc(pc, "invalid register %u\n", rd);
9655 			if (rd == 0)
9656 				err += efunc(pc, "cannot write to %r0\n");
9657 			break;
9658 		case DIF_OP_STB:
9659 		case DIF_OP_STH:
9660 		case DIF_OP_STW:
9661 		case DIF_OP_STX:
9662 			if (r1 >= nregs)
9663 				err += efunc(pc, "invalid register %u\n", r1);
9664 			if (r2 != 0)
9665 				err += efunc(pc, "non-zero reserved bits\n");
9666 			if (rd >= nregs)
9667 				err += efunc(pc, "invalid register %u\n", rd);
9668 			if (rd == 0)
9669 				err += efunc(pc, "cannot write to 0 address\n");
9670 			break;
9671 		case DIF_OP_CMP:
9672 		case DIF_OP_SCMP:
9673 			if (r1 >= nregs)
9674 				err += efunc(pc, "invalid register %u\n", r1);
9675 			if (r2 >= nregs)
9676 				err += efunc(pc, "invalid register %u\n", r2);
9677 			if (rd != 0)
9678 				err += efunc(pc, "non-zero reserved bits\n");
9679 			break;
9680 		case DIF_OP_TST:
9681 			if (r1 >= nregs)
9682 				err += efunc(pc, "invalid register %u\n", r1);
9683 			if (r2 != 0 || rd != 0)
9684 				err += efunc(pc, "non-zero reserved bits\n");
9685 			break;
9686 		case DIF_OP_BA:
9687 		case DIF_OP_BE:
9688 		case DIF_OP_BNE:
9689 		case DIF_OP_BG:
9690 		case DIF_OP_BGU:
9691 		case DIF_OP_BGE:
9692 		case DIF_OP_BGEU:
9693 		case DIF_OP_BL:
9694 		case DIF_OP_BLU:
9695 		case DIF_OP_BLE:
9696 		case DIF_OP_BLEU:
9697 			if (label >= dp->dtdo_len) {
9698 				err += efunc(pc, "invalid branch target %u\n",
9699 				    label);
9700 			}
9701 			if (label <= pc) {
9702 				err += efunc(pc, "backward branch to %u\n",
9703 				    label);
9704 			}
9705 			break;
9706 		case DIF_OP_RET:
9707 			if (r1 != 0 || r2 != 0)
9708 				err += efunc(pc, "non-zero reserved bits\n");
9709 			if (rd >= nregs)
9710 				err += efunc(pc, "invalid register %u\n", rd);
9711 			break;
9712 		case DIF_OP_NOP:
9713 		case DIF_OP_POPTS:
9714 		case DIF_OP_FLUSHTS:
9715 			if (r1 != 0 || r2 != 0 || rd != 0)
9716 				err += efunc(pc, "non-zero reserved bits\n");
9717 			break;
9718 		case DIF_OP_SETX:
9719 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9720 				err += efunc(pc, "invalid integer ref %u\n",
9721 				    DIF_INSTR_INTEGER(instr));
9722 			}
9723 			if (rd >= nregs)
9724 				err += efunc(pc, "invalid register %u\n", rd);
9725 			if (rd == 0)
9726 				err += efunc(pc, "cannot write to %r0\n");
9727 			break;
9728 		case DIF_OP_SETS:
9729 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9730 				err += efunc(pc, "invalid string ref %u\n",
9731 				    DIF_INSTR_STRING(instr));
9732 			}
9733 			if (rd >= nregs)
9734 				err += efunc(pc, "invalid register %u\n", rd);
9735 			if (rd == 0)
9736 				err += efunc(pc, "cannot write to %r0\n");
9737 			break;
9738 		case DIF_OP_LDGA:
9739 		case DIF_OP_LDTA:
9740 			if (r1 > DIF_VAR_ARRAY_MAX)
9741 				err += efunc(pc, "invalid array %u\n", r1);
9742 			if (r2 >= nregs)
9743 				err += efunc(pc, "invalid register %u\n", r2);
9744 			if (rd >= nregs)
9745 				err += efunc(pc, "invalid register %u\n", rd);
9746 			if (rd == 0)
9747 				err += efunc(pc, "cannot write to %r0\n");
9748 			break;
9749 		case DIF_OP_LDGS:
9750 		case DIF_OP_LDTS:
9751 		case DIF_OP_LDLS:
9752 		case DIF_OP_LDGAA:
9753 		case DIF_OP_LDTAA:
9754 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9755 				err += efunc(pc, "invalid variable %u\n", v);
9756 			if (rd >= nregs)
9757 				err += efunc(pc, "invalid register %u\n", rd);
9758 			if (rd == 0)
9759 				err += efunc(pc, "cannot write to %r0\n");
9760 			break;
9761 		case DIF_OP_STGS:
9762 		case DIF_OP_STTS:
9763 		case DIF_OP_STLS:
9764 		case DIF_OP_STGAA:
9765 		case DIF_OP_STTAA:
9766 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9767 				err += efunc(pc, "invalid variable %u\n", v);
9768 			if (rs >= nregs)
9769 				err += efunc(pc, "invalid register %u\n", rd);
9770 			break;
9771 		case DIF_OP_CALL:
9772 			if (subr > DIF_SUBR_MAX)
9773 				err += efunc(pc, "invalid subr %u\n", subr);
9774 			if (rd >= nregs)
9775 				err += efunc(pc, "invalid register %u\n", rd);
9776 			if (rd == 0)
9777 				err += efunc(pc, "cannot write to %r0\n");
9778 
9779 			if (subr == DIF_SUBR_COPYOUT ||
9780 			    subr == DIF_SUBR_COPYOUTSTR) {
9781 				dp->dtdo_destructive = 1;
9782 			}
9783 
9784 			if (subr == DIF_SUBR_GETF) {
9785 				/*
9786 				 * If we have a getf() we need to record that
9787 				 * in our state.  Note that our state can be
9788 				 * NULL if this is a helper -- but in that
9789 				 * case, the call to getf() is itself illegal,
9790 				 * and will be caught (slightly later) when
9791 				 * the helper is validated.
9792 				 */
9793 				if (vstate->dtvs_state != NULL)
9794 					vstate->dtvs_state->dts_getf++;
9795 			}
9796 
9797 			break;
9798 		case DIF_OP_PUSHTR:
9799 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9800 				err += efunc(pc, "invalid ref type %u\n", type);
9801 			if (r2 >= nregs)
9802 				err += efunc(pc, "invalid register %u\n", r2);
9803 			if (rs >= nregs)
9804 				err += efunc(pc, "invalid register %u\n", rs);
9805 			break;
9806 		case DIF_OP_PUSHTV:
9807 			if (type != DIF_TYPE_CTF)
9808 				err += efunc(pc, "invalid val type %u\n", type);
9809 			if (r2 >= nregs)
9810 				err += efunc(pc, "invalid register %u\n", r2);
9811 			if (rs >= nregs)
9812 				err += efunc(pc, "invalid register %u\n", rs);
9813 			break;
9814 		default:
9815 			err += efunc(pc, "invalid opcode %u\n",
9816 			    DIF_INSTR_OP(instr));
9817 		}
9818 	}
9819 
9820 	if (dp->dtdo_len != 0 &&
9821 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9822 		err += efunc(dp->dtdo_len - 1,
9823 		    "expected 'ret' as last DIF instruction\n");
9824 	}
9825 
9826 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9827 		/*
9828 		 * If we're not returning by reference, the size must be either
9829 		 * 0 or the size of one of the base types.
9830 		 */
9831 		switch (dp->dtdo_rtype.dtdt_size) {
9832 		case 0:
9833 		case sizeof (uint8_t):
9834 		case sizeof (uint16_t):
9835 		case sizeof (uint32_t):
9836 		case sizeof (uint64_t):
9837 			break;
9838 
9839 		default:
9840 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9841 		}
9842 	}
9843 
9844 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9845 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9846 		dtrace_diftype_t *vt, *et;
9847 		uint_t id, ndx;
9848 
9849 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9850 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9851 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9852 			err += efunc(i, "unrecognized variable scope %d\n",
9853 			    v->dtdv_scope);
9854 			break;
9855 		}
9856 
9857 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9858 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9859 			err += efunc(i, "unrecognized variable type %d\n",
9860 			    v->dtdv_kind);
9861 			break;
9862 		}
9863 
9864 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9865 			err += efunc(i, "%d exceeds variable id limit\n", id);
9866 			break;
9867 		}
9868 
9869 		if (id < DIF_VAR_OTHER_UBASE)
9870 			continue;
9871 
9872 		/*
9873 		 * For user-defined variables, we need to check that this
9874 		 * definition is identical to any previous definition that we
9875 		 * encountered.
9876 		 */
9877 		ndx = id - DIF_VAR_OTHER_UBASE;
9878 
9879 		switch (v->dtdv_scope) {
9880 		case DIFV_SCOPE_GLOBAL:
9881 			if (ndx < vstate->dtvs_nglobals) {
9882 				dtrace_statvar_t *svar;
9883 
9884 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9885 					existing = &svar->dtsv_var;
9886 			}
9887 
9888 			break;
9889 
9890 		case DIFV_SCOPE_THREAD:
9891 			if (ndx < vstate->dtvs_ntlocals)
9892 				existing = &vstate->dtvs_tlocals[ndx];
9893 			break;
9894 
9895 		case DIFV_SCOPE_LOCAL:
9896 			if (ndx < vstate->dtvs_nlocals) {
9897 				dtrace_statvar_t *svar;
9898 
9899 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9900 					existing = &svar->dtsv_var;
9901 			}
9902 
9903 			break;
9904 		}
9905 
9906 		vt = &v->dtdv_type;
9907 
9908 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9909 			if (vt->dtdt_size == 0) {
9910 				err += efunc(i, "zero-sized variable\n");
9911 				break;
9912 			}
9913 
9914 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9915 			    vt->dtdt_size > dtrace_global_maxsize) {
9916 				err += efunc(i, "oversized by-ref global\n");
9917 				break;
9918 			}
9919 		}
9920 
9921 		if (existing == NULL || existing->dtdv_id == 0)
9922 			continue;
9923 
9924 		ASSERT(existing->dtdv_id == v->dtdv_id);
9925 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9926 
9927 		if (existing->dtdv_kind != v->dtdv_kind)
9928 			err += efunc(i, "%d changed variable kind\n", id);
9929 
9930 		et = &existing->dtdv_type;
9931 
9932 		if (vt->dtdt_flags != et->dtdt_flags) {
9933 			err += efunc(i, "%d changed variable type flags\n", id);
9934 			break;
9935 		}
9936 
9937 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9938 			err += efunc(i, "%d changed variable type size\n", id);
9939 			break;
9940 		}
9941 	}
9942 
9943 	return (err);
9944 }
9945 
9946 /*
9947  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9948  * are much more constrained than normal DIFOs.  Specifically, they may
9949  * not:
9950  *
9951  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9952  *    miscellaneous string routines
9953  * 2. Access DTrace variables other than the args[] array, and the
9954  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9955  * 3. Have thread-local variables.
9956  * 4. Have dynamic variables.
9957  */
9958 static int
9959 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9960 {
9961 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9962 	int err = 0;
9963 	uint_t pc;
9964 
9965 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9966 		dif_instr_t instr = dp->dtdo_buf[pc];
9967 
9968 		uint_t v = DIF_INSTR_VAR(instr);
9969 		uint_t subr = DIF_INSTR_SUBR(instr);
9970 		uint_t op = DIF_INSTR_OP(instr);
9971 
9972 		switch (op) {
9973 		case DIF_OP_OR:
9974 		case DIF_OP_XOR:
9975 		case DIF_OP_AND:
9976 		case DIF_OP_SLL:
9977 		case DIF_OP_SRL:
9978 		case DIF_OP_SRA:
9979 		case DIF_OP_SUB:
9980 		case DIF_OP_ADD:
9981 		case DIF_OP_MUL:
9982 		case DIF_OP_SDIV:
9983 		case DIF_OP_UDIV:
9984 		case DIF_OP_SREM:
9985 		case DIF_OP_UREM:
9986 		case DIF_OP_COPYS:
9987 		case DIF_OP_NOT:
9988 		case DIF_OP_MOV:
9989 		case DIF_OP_RLDSB:
9990 		case DIF_OP_RLDSH:
9991 		case DIF_OP_RLDSW:
9992 		case DIF_OP_RLDUB:
9993 		case DIF_OP_RLDUH:
9994 		case DIF_OP_RLDUW:
9995 		case DIF_OP_RLDX:
9996 		case DIF_OP_ULDSB:
9997 		case DIF_OP_ULDSH:
9998 		case DIF_OP_ULDSW:
9999 		case DIF_OP_ULDUB:
10000 		case DIF_OP_ULDUH:
10001 		case DIF_OP_ULDUW:
10002 		case DIF_OP_ULDX:
10003 		case DIF_OP_STB:
10004 		case DIF_OP_STH:
10005 		case DIF_OP_STW:
10006 		case DIF_OP_STX:
10007 		case DIF_OP_ALLOCS:
10008 		case DIF_OP_CMP:
10009 		case DIF_OP_SCMP:
10010 		case DIF_OP_TST:
10011 		case DIF_OP_BA:
10012 		case DIF_OP_BE:
10013 		case DIF_OP_BNE:
10014 		case DIF_OP_BG:
10015 		case DIF_OP_BGU:
10016 		case DIF_OP_BGE:
10017 		case DIF_OP_BGEU:
10018 		case DIF_OP_BL:
10019 		case DIF_OP_BLU:
10020 		case DIF_OP_BLE:
10021 		case DIF_OP_BLEU:
10022 		case DIF_OP_RET:
10023 		case DIF_OP_NOP:
10024 		case DIF_OP_POPTS:
10025 		case DIF_OP_FLUSHTS:
10026 		case DIF_OP_SETX:
10027 		case DIF_OP_SETS:
10028 		case DIF_OP_LDGA:
10029 		case DIF_OP_LDLS:
10030 		case DIF_OP_STGS:
10031 		case DIF_OP_STLS:
10032 		case DIF_OP_PUSHTR:
10033 		case DIF_OP_PUSHTV:
10034 			break;
10035 
10036 		case DIF_OP_LDGS:
10037 			if (v >= DIF_VAR_OTHER_UBASE)
10038 				break;
10039 
10040 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10041 				break;
10042 
10043 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10044 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10045 			    v == DIF_VAR_EXECARGS ||
10046 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10047 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10048 				break;
10049 
10050 			err += efunc(pc, "illegal variable %u\n", v);
10051 			break;
10052 
10053 		case DIF_OP_LDTA:
10054 		case DIF_OP_LDTS:
10055 		case DIF_OP_LDGAA:
10056 		case DIF_OP_LDTAA:
10057 			err += efunc(pc, "illegal dynamic variable load\n");
10058 			break;
10059 
10060 		case DIF_OP_STTS:
10061 		case DIF_OP_STGAA:
10062 		case DIF_OP_STTAA:
10063 			err += efunc(pc, "illegal dynamic variable store\n");
10064 			break;
10065 
10066 		case DIF_OP_CALL:
10067 			if (subr == DIF_SUBR_ALLOCA ||
10068 			    subr == DIF_SUBR_BCOPY ||
10069 			    subr == DIF_SUBR_COPYIN ||
10070 			    subr == DIF_SUBR_COPYINTO ||
10071 			    subr == DIF_SUBR_COPYINSTR ||
10072 			    subr == DIF_SUBR_INDEX ||
10073 			    subr == DIF_SUBR_INET_NTOA ||
10074 			    subr == DIF_SUBR_INET_NTOA6 ||
10075 			    subr == DIF_SUBR_INET_NTOP ||
10076 			    subr == DIF_SUBR_JSON ||
10077 			    subr == DIF_SUBR_LLTOSTR ||
10078 			    subr == DIF_SUBR_STRTOLL ||
10079 			    subr == DIF_SUBR_RINDEX ||
10080 			    subr == DIF_SUBR_STRCHR ||
10081 			    subr == DIF_SUBR_STRJOIN ||
10082 			    subr == DIF_SUBR_STRRCHR ||
10083 			    subr == DIF_SUBR_STRSTR ||
10084 			    subr == DIF_SUBR_HTONS ||
10085 			    subr == DIF_SUBR_HTONL ||
10086 			    subr == DIF_SUBR_HTONLL ||
10087 			    subr == DIF_SUBR_NTOHS ||
10088 			    subr == DIF_SUBR_NTOHL ||
10089 			    subr == DIF_SUBR_NTOHLL ||
10090 			    subr == DIF_SUBR_MEMREF ||
10091 #ifndef illumos
10092 			    subr == DIF_SUBR_MEMSTR ||
10093 #endif
10094 			    subr == DIF_SUBR_TYPEREF)
10095 				break;
10096 
10097 			err += efunc(pc, "invalid subr %u\n", subr);
10098 			break;
10099 
10100 		default:
10101 			err += efunc(pc, "invalid opcode %u\n",
10102 			    DIF_INSTR_OP(instr));
10103 		}
10104 	}
10105 
10106 	return (err);
10107 }
10108 
10109 /*
10110  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10111  * basis; 0 if not.
10112  */
10113 static int
10114 dtrace_difo_cacheable(dtrace_difo_t *dp)
10115 {
10116 	int i;
10117 
10118 	if (dp == NULL)
10119 		return (0);
10120 
10121 	for (i = 0; i < dp->dtdo_varlen; i++) {
10122 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10123 
10124 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10125 			continue;
10126 
10127 		switch (v->dtdv_id) {
10128 		case DIF_VAR_CURTHREAD:
10129 		case DIF_VAR_PID:
10130 		case DIF_VAR_TID:
10131 		case DIF_VAR_EXECARGS:
10132 		case DIF_VAR_EXECNAME:
10133 		case DIF_VAR_ZONENAME:
10134 			break;
10135 
10136 		default:
10137 			return (0);
10138 		}
10139 	}
10140 
10141 	/*
10142 	 * This DIF object may be cacheable.  Now we need to look for any
10143 	 * array loading instructions, any memory loading instructions, or
10144 	 * any stores to thread-local variables.
10145 	 */
10146 	for (i = 0; i < dp->dtdo_len; i++) {
10147 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10148 
10149 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10150 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10151 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10152 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10153 			return (0);
10154 	}
10155 
10156 	return (1);
10157 }
10158 
10159 static void
10160 dtrace_difo_hold(dtrace_difo_t *dp)
10161 {
10162 	int i;
10163 
10164 	ASSERT(MUTEX_HELD(&dtrace_lock));
10165 
10166 	dp->dtdo_refcnt++;
10167 	ASSERT(dp->dtdo_refcnt != 0);
10168 
10169 	/*
10170 	 * We need to check this DIF object for references to the variable
10171 	 * DIF_VAR_VTIMESTAMP.
10172 	 */
10173 	for (i = 0; i < dp->dtdo_varlen; i++) {
10174 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10175 
10176 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10177 			continue;
10178 
10179 		if (dtrace_vtime_references++ == 0)
10180 			dtrace_vtime_enable();
10181 	}
10182 }
10183 
10184 /*
10185  * This routine calculates the dynamic variable chunksize for a given DIF
10186  * object.  The calculation is not fool-proof, and can probably be tricked by
10187  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10188  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10189  * if a dynamic variable size exceeds the chunksize.
10190  */
10191 static void
10192 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10193 {
10194 	uint64_t sval = 0;
10195 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10196 	const dif_instr_t *text = dp->dtdo_buf;
10197 	uint_t pc, srd = 0;
10198 	uint_t ttop = 0;
10199 	size_t size, ksize;
10200 	uint_t id, i;
10201 
10202 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10203 		dif_instr_t instr = text[pc];
10204 		uint_t op = DIF_INSTR_OP(instr);
10205 		uint_t rd = DIF_INSTR_RD(instr);
10206 		uint_t r1 = DIF_INSTR_R1(instr);
10207 		uint_t nkeys = 0;
10208 		uchar_t scope = 0;
10209 
10210 		dtrace_key_t *key = tupregs;
10211 
10212 		switch (op) {
10213 		case DIF_OP_SETX:
10214 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10215 			srd = rd;
10216 			continue;
10217 
10218 		case DIF_OP_STTS:
10219 			key = &tupregs[DIF_DTR_NREGS];
10220 			key[0].dttk_size = 0;
10221 			key[1].dttk_size = 0;
10222 			nkeys = 2;
10223 			scope = DIFV_SCOPE_THREAD;
10224 			break;
10225 
10226 		case DIF_OP_STGAA:
10227 		case DIF_OP_STTAA:
10228 			nkeys = ttop;
10229 
10230 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10231 				key[nkeys++].dttk_size = 0;
10232 
10233 			key[nkeys++].dttk_size = 0;
10234 
10235 			if (op == DIF_OP_STTAA) {
10236 				scope = DIFV_SCOPE_THREAD;
10237 			} else {
10238 				scope = DIFV_SCOPE_GLOBAL;
10239 			}
10240 
10241 			break;
10242 
10243 		case DIF_OP_PUSHTR:
10244 			if (ttop == DIF_DTR_NREGS)
10245 				return;
10246 
10247 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10248 				/*
10249 				 * If the register for the size of the "pushtr"
10250 				 * is %r0 (or the value is 0) and the type is
10251 				 * a string, we'll use the system-wide default
10252 				 * string size.
10253 				 */
10254 				tupregs[ttop++].dttk_size =
10255 				    dtrace_strsize_default;
10256 			} else {
10257 				if (srd == 0)
10258 					return;
10259 
10260 				tupregs[ttop++].dttk_size = sval;
10261 			}
10262 
10263 			break;
10264 
10265 		case DIF_OP_PUSHTV:
10266 			if (ttop == DIF_DTR_NREGS)
10267 				return;
10268 
10269 			tupregs[ttop++].dttk_size = 0;
10270 			break;
10271 
10272 		case DIF_OP_FLUSHTS:
10273 			ttop = 0;
10274 			break;
10275 
10276 		case DIF_OP_POPTS:
10277 			if (ttop != 0)
10278 				ttop--;
10279 			break;
10280 		}
10281 
10282 		sval = 0;
10283 		srd = 0;
10284 
10285 		if (nkeys == 0)
10286 			continue;
10287 
10288 		/*
10289 		 * We have a dynamic variable allocation; calculate its size.
10290 		 */
10291 		for (ksize = 0, i = 0; i < nkeys; i++)
10292 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10293 
10294 		size = sizeof (dtrace_dynvar_t);
10295 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10296 		size += ksize;
10297 
10298 		/*
10299 		 * Now we need to determine the size of the stored data.
10300 		 */
10301 		id = DIF_INSTR_VAR(instr);
10302 
10303 		for (i = 0; i < dp->dtdo_varlen; i++) {
10304 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10305 
10306 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10307 				size += v->dtdv_type.dtdt_size;
10308 				break;
10309 			}
10310 		}
10311 
10312 		if (i == dp->dtdo_varlen)
10313 			return;
10314 
10315 		/*
10316 		 * We have the size.  If this is larger than the chunk size
10317 		 * for our dynamic variable state, reset the chunk size.
10318 		 */
10319 		size = P2ROUNDUP(size, sizeof (uint64_t));
10320 
10321 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10322 			vstate->dtvs_dynvars.dtds_chunksize = size;
10323 	}
10324 }
10325 
10326 static void
10327 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10328 {
10329 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10330 	uint_t id;
10331 
10332 	ASSERT(MUTEX_HELD(&dtrace_lock));
10333 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10334 
10335 	for (i = 0; i < dp->dtdo_varlen; i++) {
10336 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10337 		dtrace_statvar_t *svar, ***svarp = NULL;
10338 		size_t dsize = 0;
10339 		uint8_t scope = v->dtdv_scope;
10340 		int *np = NULL;
10341 
10342 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10343 			continue;
10344 
10345 		id -= DIF_VAR_OTHER_UBASE;
10346 
10347 		switch (scope) {
10348 		case DIFV_SCOPE_THREAD:
10349 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10350 				dtrace_difv_t *tlocals;
10351 
10352 				if ((ntlocals = (otlocals << 1)) == 0)
10353 					ntlocals = 1;
10354 
10355 				osz = otlocals * sizeof (dtrace_difv_t);
10356 				nsz = ntlocals * sizeof (dtrace_difv_t);
10357 
10358 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10359 
10360 				if (osz != 0) {
10361 					bcopy(vstate->dtvs_tlocals,
10362 					    tlocals, osz);
10363 					kmem_free(vstate->dtvs_tlocals, osz);
10364 				}
10365 
10366 				vstate->dtvs_tlocals = tlocals;
10367 				vstate->dtvs_ntlocals = ntlocals;
10368 			}
10369 
10370 			vstate->dtvs_tlocals[id] = *v;
10371 			continue;
10372 
10373 		case DIFV_SCOPE_LOCAL:
10374 			np = &vstate->dtvs_nlocals;
10375 			svarp = &vstate->dtvs_locals;
10376 
10377 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10378 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10379 				    sizeof (uint64_t));
10380 			else
10381 				dsize = NCPU * sizeof (uint64_t);
10382 
10383 			break;
10384 
10385 		case DIFV_SCOPE_GLOBAL:
10386 			np = &vstate->dtvs_nglobals;
10387 			svarp = &vstate->dtvs_globals;
10388 
10389 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10390 				dsize = v->dtdv_type.dtdt_size +
10391 				    sizeof (uint64_t);
10392 
10393 			break;
10394 
10395 		default:
10396 			ASSERT(0);
10397 		}
10398 
10399 		while (id >= (oldsvars = *np)) {
10400 			dtrace_statvar_t **statics;
10401 			int newsvars, oldsize, newsize;
10402 
10403 			if ((newsvars = (oldsvars << 1)) == 0)
10404 				newsvars = 1;
10405 
10406 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10407 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10408 
10409 			statics = kmem_zalloc(newsize, KM_SLEEP);
10410 
10411 			if (oldsize != 0) {
10412 				bcopy(*svarp, statics, oldsize);
10413 				kmem_free(*svarp, oldsize);
10414 			}
10415 
10416 			*svarp = statics;
10417 			*np = newsvars;
10418 		}
10419 
10420 		if ((svar = (*svarp)[id]) == NULL) {
10421 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10422 			svar->dtsv_var = *v;
10423 
10424 			if ((svar->dtsv_size = dsize) != 0) {
10425 				svar->dtsv_data = (uint64_t)(uintptr_t)
10426 				    kmem_zalloc(dsize, KM_SLEEP);
10427 			}
10428 
10429 			(*svarp)[id] = svar;
10430 		}
10431 
10432 		svar->dtsv_refcnt++;
10433 	}
10434 
10435 	dtrace_difo_chunksize(dp, vstate);
10436 	dtrace_difo_hold(dp);
10437 }
10438 
10439 static dtrace_difo_t *
10440 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10441 {
10442 	dtrace_difo_t *new;
10443 	size_t sz;
10444 
10445 	ASSERT(dp->dtdo_buf != NULL);
10446 	ASSERT(dp->dtdo_refcnt != 0);
10447 
10448 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10449 
10450 	ASSERT(dp->dtdo_buf != NULL);
10451 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10452 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10453 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10454 	new->dtdo_len = dp->dtdo_len;
10455 
10456 	if (dp->dtdo_strtab != NULL) {
10457 		ASSERT(dp->dtdo_strlen != 0);
10458 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10459 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10460 		new->dtdo_strlen = dp->dtdo_strlen;
10461 	}
10462 
10463 	if (dp->dtdo_inttab != NULL) {
10464 		ASSERT(dp->dtdo_intlen != 0);
10465 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10466 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10467 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10468 		new->dtdo_intlen = dp->dtdo_intlen;
10469 	}
10470 
10471 	if (dp->dtdo_vartab != NULL) {
10472 		ASSERT(dp->dtdo_varlen != 0);
10473 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10474 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10475 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10476 		new->dtdo_varlen = dp->dtdo_varlen;
10477 	}
10478 
10479 	dtrace_difo_init(new, vstate);
10480 	return (new);
10481 }
10482 
10483 static void
10484 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10485 {
10486 	int i;
10487 
10488 	ASSERT(dp->dtdo_refcnt == 0);
10489 
10490 	for (i = 0; i < dp->dtdo_varlen; i++) {
10491 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10492 		dtrace_statvar_t *svar, **svarp = NULL;
10493 		uint_t id;
10494 		uint8_t scope = v->dtdv_scope;
10495 		int *np = NULL;
10496 
10497 		switch (scope) {
10498 		case DIFV_SCOPE_THREAD:
10499 			continue;
10500 
10501 		case DIFV_SCOPE_LOCAL:
10502 			np = &vstate->dtvs_nlocals;
10503 			svarp = vstate->dtvs_locals;
10504 			break;
10505 
10506 		case DIFV_SCOPE_GLOBAL:
10507 			np = &vstate->dtvs_nglobals;
10508 			svarp = vstate->dtvs_globals;
10509 			break;
10510 
10511 		default:
10512 			ASSERT(0);
10513 		}
10514 
10515 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10516 			continue;
10517 
10518 		id -= DIF_VAR_OTHER_UBASE;
10519 		ASSERT(id < *np);
10520 
10521 		svar = svarp[id];
10522 		ASSERT(svar != NULL);
10523 		ASSERT(svar->dtsv_refcnt > 0);
10524 
10525 		if (--svar->dtsv_refcnt > 0)
10526 			continue;
10527 
10528 		if (svar->dtsv_size != 0) {
10529 			ASSERT(svar->dtsv_data != 0);
10530 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10531 			    svar->dtsv_size);
10532 		}
10533 
10534 		kmem_free(svar, sizeof (dtrace_statvar_t));
10535 		svarp[id] = NULL;
10536 	}
10537 
10538 	if (dp->dtdo_buf != NULL)
10539 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10540 	if (dp->dtdo_inttab != NULL)
10541 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10542 	if (dp->dtdo_strtab != NULL)
10543 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10544 	if (dp->dtdo_vartab != NULL)
10545 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10546 
10547 	kmem_free(dp, sizeof (dtrace_difo_t));
10548 }
10549 
10550 static void
10551 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10552 {
10553 	int i;
10554 
10555 	ASSERT(MUTEX_HELD(&dtrace_lock));
10556 	ASSERT(dp->dtdo_refcnt != 0);
10557 
10558 	for (i = 0; i < dp->dtdo_varlen; i++) {
10559 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10560 
10561 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10562 			continue;
10563 
10564 		ASSERT(dtrace_vtime_references > 0);
10565 		if (--dtrace_vtime_references == 0)
10566 			dtrace_vtime_disable();
10567 	}
10568 
10569 	if (--dp->dtdo_refcnt == 0)
10570 		dtrace_difo_destroy(dp, vstate);
10571 }
10572 
10573 /*
10574  * DTrace Format Functions
10575  */
10576 static uint16_t
10577 dtrace_format_add(dtrace_state_t *state, char *str)
10578 {
10579 	char *fmt, **new;
10580 	uint16_t ndx, len = strlen(str) + 1;
10581 
10582 	fmt = kmem_zalloc(len, KM_SLEEP);
10583 	bcopy(str, fmt, len);
10584 
10585 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10586 		if (state->dts_formats[ndx] == NULL) {
10587 			state->dts_formats[ndx] = fmt;
10588 			return (ndx + 1);
10589 		}
10590 	}
10591 
10592 	if (state->dts_nformats == USHRT_MAX) {
10593 		/*
10594 		 * This is only likely if a denial-of-service attack is being
10595 		 * attempted.  As such, it's okay to fail silently here.
10596 		 */
10597 		kmem_free(fmt, len);
10598 		return (0);
10599 	}
10600 
10601 	/*
10602 	 * For simplicity, we always resize the formats array to be exactly the
10603 	 * number of formats.
10604 	 */
10605 	ndx = state->dts_nformats++;
10606 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10607 
10608 	if (state->dts_formats != NULL) {
10609 		ASSERT(ndx != 0);
10610 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10611 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10612 	}
10613 
10614 	state->dts_formats = new;
10615 	state->dts_formats[ndx] = fmt;
10616 
10617 	return (ndx + 1);
10618 }
10619 
10620 static void
10621 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10622 {
10623 	char *fmt;
10624 
10625 	ASSERT(state->dts_formats != NULL);
10626 	ASSERT(format <= state->dts_nformats);
10627 	ASSERT(state->dts_formats[format - 1] != NULL);
10628 
10629 	fmt = state->dts_formats[format - 1];
10630 	kmem_free(fmt, strlen(fmt) + 1);
10631 	state->dts_formats[format - 1] = NULL;
10632 }
10633 
10634 static void
10635 dtrace_format_destroy(dtrace_state_t *state)
10636 {
10637 	int i;
10638 
10639 	if (state->dts_nformats == 0) {
10640 		ASSERT(state->dts_formats == NULL);
10641 		return;
10642 	}
10643 
10644 	ASSERT(state->dts_formats != NULL);
10645 
10646 	for (i = 0; i < state->dts_nformats; i++) {
10647 		char *fmt = state->dts_formats[i];
10648 
10649 		if (fmt == NULL)
10650 			continue;
10651 
10652 		kmem_free(fmt, strlen(fmt) + 1);
10653 	}
10654 
10655 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10656 	state->dts_nformats = 0;
10657 	state->dts_formats = NULL;
10658 }
10659 
10660 /*
10661  * DTrace Predicate Functions
10662  */
10663 static dtrace_predicate_t *
10664 dtrace_predicate_create(dtrace_difo_t *dp)
10665 {
10666 	dtrace_predicate_t *pred;
10667 
10668 	ASSERT(MUTEX_HELD(&dtrace_lock));
10669 	ASSERT(dp->dtdo_refcnt != 0);
10670 
10671 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10672 	pred->dtp_difo = dp;
10673 	pred->dtp_refcnt = 1;
10674 
10675 	if (!dtrace_difo_cacheable(dp))
10676 		return (pred);
10677 
10678 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10679 		/*
10680 		 * This is only theoretically possible -- we have had 2^32
10681 		 * cacheable predicates on this machine.  We cannot allow any
10682 		 * more predicates to become cacheable:  as unlikely as it is,
10683 		 * there may be a thread caching a (now stale) predicate cache
10684 		 * ID. (N.B.: the temptation is being successfully resisted to
10685 		 * have this cmn_err() "Holy shit -- we executed this code!")
10686 		 */
10687 		return (pred);
10688 	}
10689 
10690 	pred->dtp_cacheid = dtrace_predcache_id++;
10691 
10692 	return (pred);
10693 }
10694 
10695 static void
10696 dtrace_predicate_hold(dtrace_predicate_t *pred)
10697 {
10698 	ASSERT(MUTEX_HELD(&dtrace_lock));
10699 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10700 	ASSERT(pred->dtp_refcnt > 0);
10701 
10702 	pred->dtp_refcnt++;
10703 }
10704 
10705 static void
10706 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10707 {
10708 	dtrace_difo_t *dp = pred->dtp_difo;
10709 
10710 	ASSERT(MUTEX_HELD(&dtrace_lock));
10711 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10712 	ASSERT(pred->dtp_refcnt > 0);
10713 
10714 	if (--pred->dtp_refcnt == 0) {
10715 		dtrace_difo_release(pred->dtp_difo, vstate);
10716 		kmem_free(pred, sizeof (dtrace_predicate_t));
10717 	}
10718 }
10719 
10720 /*
10721  * DTrace Action Description Functions
10722  */
10723 static dtrace_actdesc_t *
10724 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10725     uint64_t uarg, uint64_t arg)
10726 {
10727 	dtrace_actdesc_t *act;
10728 
10729 #ifdef illumos
10730 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10731 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10732 #endif
10733 
10734 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10735 	act->dtad_kind = kind;
10736 	act->dtad_ntuple = ntuple;
10737 	act->dtad_uarg = uarg;
10738 	act->dtad_arg = arg;
10739 	act->dtad_refcnt = 1;
10740 
10741 	return (act);
10742 }
10743 
10744 static void
10745 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10746 {
10747 	ASSERT(act->dtad_refcnt >= 1);
10748 	act->dtad_refcnt++;
10749 }
10750 
10751 static void
10752 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10753 {
10754 	dtrace_actkind_t kind = act->dtad_kind;
10755 	dtrace_difo_t *dp;
10756 
10757 	ASSERT(act->dtad_refcnt >= 1);
10758 
10759 	if (--act->dtad_refcnt != 0)
10760 		return;
10761 
10762 	if ((dp = act->dtad_difo) != NULL)
10763 		dtrace_difo_release(dp, vstate);
10764 
10765 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10766 		char *str = (char *)(uintptr_t)act->dtad_arg;
10767 
10768 #ifdef illumos
10769 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10770 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10771 #endif
10772 
10773 		if (str != NULL)
10774 			kmem_free(str, strlen(str) + 1);
10775 	}
10776 
10777 	kmem_free(act, sizeof (dtrace_actdesc_t));
10778 }
10779 
10780 /*
10781  * DTrace ECB Functions
10782  */
10783 static dtrace_ecb_t *
10784 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10785 {
10786 	dtrace_ecb_t *ecb;
10787 	dtrace_epid_t epid;
10788 
10789 	ASSERT(MUTEX_HELD(&dtrace_lock));
10790 
10791 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10792 	ecb->dte_predicate = NULL;
10793 	ecb->dte_probe = probe;
10794 
10795 	/*
10796 	 * The default size is the size of the default action: recording
10797 	 * the header.
10798 	 */
10799 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10800 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10801 
10802 	epid = state->dts_epid++;
10803 
10804 	if (epid - 1 >= state->dts_necbs) {
10805 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10806 		int necbs = state->dts_necbs << 1;
10807 
10808 		ASSERT(epid == state->dts_necbs + 1);
10809 
10810 		if (necbs == 0) {
10811 			ASSERT(oecbs == NULL);
10812 			necbs = 1;
10813 		}
10814 
10815 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10816 
10817 		if (oecbs != NULL)
10818 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10819 
10820 		dtrace_membar_producer();
10821 		state->dts_ecbs = ecbs;
10822 
10823 		if (oecbs != NULL) {
10824 			/*
10825 			 * If this state is active, we must dtrace_sync()
10826 			 * before we can free the old dts_ecbs array:  we're
10827 			 * coming in hot, and there may be active ring
10828 			 * buffer processing (which indexes into the dts_ecbs
10829 			 * array) on another CPU.
10830 			 */
10831 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10832 				dtrace_sync();
10833 
10834 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10835 		}
10836 
10837 		dtrace_membar_producer();
10838 		state->dts_necbs = necbs;
10839 	}
10840 
10841 	ecb->dte_state = state;
10842 
10843 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10844 	dtrace_membar_producer();
10845 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10846 
10847 	return (ecb);
10848 }
10849 
10850 static void
10851 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10852 {
10853 	dtrace_probe_t *probe = ecb->dte_probe;
10854 
10855 	ASSERT(MUTEX_HELD(&cpu_lock));
10856 	ASSERT(MUTEX_HELD(&dtrace_lock));
10857 	ASSERT(ecb->dte_next == NULL);
10858 
10859 	if (probe == NULL) {
10860 		/*
10861 		 * This is the NULL probe -- there's nothing to do.
10862 		 */
10863 		return;
10864 	}
10865 
10866 	if (probe->dtpr_ecb == NULL) {
10867 		dtrace_provider_t *prov = probe->dtpr_provider;
10868 
10869 		/*
10870 		 * We're the first ECB on this probe.
10871 		 */
10872 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10873 
10874 		if (ecb->dte_predicate != NULL)
10875 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10876 
10877 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10878 		    probe->dtpr_id, probe->dtpr_arg);
10879 	} else {
10880 		/*
10881 		 * This probe is already active.  Swing the last pointer to
10882 		 * point to the new ECB, and issue a dtrace_sync() to assure
10883 		 * that all CPUs have seen the change.
10884 		 */
10885 		ASSERT(probe->dtpr_ecb_last != NULL);
10886 		probe->dtpr_ecb_last->dte_next = ecb;
10887 		probe->dtpr_ecb_last = ecb;
10888 		probe->dtpr_predcache = 0;
10889 
10890 		dtrace_sync();
10891 	}
10892 }
10893 
10894 static void
10895 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10896 {
10897 	dtrace_action_t *act;
10898 	uint32_t curneeded = UINT32_MAX;
10899 	uint32_t aggbase = UINT32_MAX;
10900 
10901 	/*
10902 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10903 	 * we always record it first.)
10904 	 */
10905 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10906 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10907 
10908 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10909 		dtrace_recdesc_t *rec = &act->dta_rec;
10910 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10911 
10912 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10913 		    rec->dtrd_alignment);
10914 
10915 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10916 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10917 
10918 			ASSERT(rec->dtrd_size != 0);
10919 			ASSERT(agg->dtag_first != NULL);
10920 			ASSERT(act->dta_prev->dta_intuple);
10921 			ASSERT(aggbase != UINT32_MAX);
10922 			ASSERT(curneeded != UINT32_MAX);
10923 
10924 			agg->dtag_base = aggbase;
10925 
10926 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10927 			rec->dtrd_offset = curneeded;
10928 			curneeded += rec->dtrd_size;
10929 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10930 
10931 			aggbase = UINT32_MAX;
10932 			curneeded = UINT32_MAX;
10933 		} else if (act->dta_intuple) {
10934 			if (curneeded == UINT32_MAX) {
10935 				/*
10936 				 * This is the first record in a tuple.  Align
10937 				 * curneeded to be at offset 4 in an 8-byte
10938 				 * aligned block.
10939 				 */
10940 				ASSERT(act->dta_prev == NULL ||
10941 				    !act->dta_prev->dta_intuple);
10942 				ASSERT3U(aggbase, ==, UINT32_MAX);
10943 				curneeded = P2PHASEUP(ecb->dte_size,
10944 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10945 
10946 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10947 				ASSERT(IS_P2ALIGNED(aggbase,
10948 				    sizeof (uint64_t)));
10949 			}
10950 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10951 			rec->dtrd_offset = curneeded;
10952 			curneeded += rec->dtrd_size;
10953 		} else {
10954 			/* tuples must be followed by an aggregation */
10955 			ASSERT(act->dta_prev == NULL ||
10956 			    !act->dta_prev->dta_intuple);
10957 
10958 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10959 			    rec->dtrd_alignment);
10960 			rec->dtrd_offset = ecb->dte_size;
10961 			ecb->dte_size += rec->dtrd_size;
10962 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10963 		}
10964 	}
10965 
10966 	if ((act = ecb->dte_action) != NULL &&
10967 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10968 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10969 		/*
10970 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10971 		 * actions store no data; set the size to 0.
10972 		 */
10973 		ecb->dte_size = 0;
10974 	}
10975 
10976 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10977 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10978 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10979 	    ecb->dte_needed);
10980 }
10981 
10982 static dtrace_action_t *
10983 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10984 {
10985 	dtrace_aggregation_t *agg;
10986 	size_t size = sizeof (uint64_t);
10987 	int ntuple = desc->dtad_ntuple;
10988 	dtrace_action_t *act;
10989 	dtrace_recdesc_t *frec;
10990 	dtrace_aggid_t aggid;
10991 	dtrace_state_t *state = ecb->dte_state;
10992 
10993 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10994 	agg->dtag_ecb = ecb;
10995 
10996 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10997 
10998 	switch (desc->dtad_kind) {
10999 	case DTRACEAGG_MIN:
11000 		agg->dtag_initial = INT64_MAX;
11001 		agg->dtag_aggregate = dtrace_aggregate_min;
11002 		break;
11003 
11004 	case DTRACEAGG_MAX:
11005 		agg->dtag_initial = INT64_MIN;
11006 		agg->dtag_aggregate = dtrace_aggregate_max;
11007 		break;
11008 
11009 	case DTRACEAGG_COUNT:
11010 		agg->dtag_aggregate = dtrace_aggregate_count;
11011 		break;
11012 
11013 	case DTRACEAGG_QUANTIZE:
11014 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11015 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11016 		    sizeof (uint64_t);
11017 		break;
11018 
11019 	case DTRACEAGG_LQUANTIZE: {
11020 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11021 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11022 
11023 		agg->dtag_initial = desc->dtad_arg;
11024 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11025 
11026 		if (step == 0 || levels == 0)
11027 			goto err;
11028 
11029 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11030 		break;
11031 	}
11032 
11033 	case DTRACEAGG_LLQUANTIZE: {
11034 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11035 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11036 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11037 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11038 		int64_t v;
11039 
11040 		agg->dtag_initial = desc->dtad_arg;
11041 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11042 
11043 		if (factor < 2 || low >= high || nsteps < factor)
11044 			goto err;
11045 
11046 		/*
11047 		 * Now check that the number of steps evenly divides a power
11048 		 * of the factor.  (This assures both integer bucket size and
11049 		 * linearity within each magnitude.)
11050 		 */
11051 		for (v = factor; v < nsteps; v *= factor)
11052 			continue;
11053 
11054 		if ((v % nsteps) || (nsteps % factor))
11055 			goto err;
11056 
11057 		size = (dtrace_aggregate_llquantize_bucket(factor,
11058 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11059 		break;
11060 	}
11061 
11062 	case DTRACEAGG_AVG:
11063 		agg->dtag_aggregate = dtrace_aggregate_avg;
11064 		size = sizeof (uint64_t) * 2;
11065 		break;
11066 
11067 	case DTRACEAGG_STDDEV:
11068 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11069 		size = sizeof (uint64_t) * 4;
11070 		break;
11071 
11072 	case DTRACEAGG_SUM:
11073 		agg->dtag_aggregate = dtrace_aggregate_sum;
11074 		break;
11075 
11076 	default:
11077 		goto err;
11078 	}
11079 
11080 	agg->dtag_action.dta_rec.dtrd_size = size;
11081 
11082 	if (ntuple == 0)
11083 		goto err;
11084 
11085 	/*
11086 	 * We must make sure that we have enough actions for the n-tuple.
11087 	 */
11088 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11089 		if (DTRACEACT_ISAGG(act->dta_kind))
11090 			break;
11091 
11092 		if (--ntuple == 0) {
11093 			/*
11094 			 * This is the action with which our n-tuple begins.
11095 			 */
11096 			agg->dtag_first = act;
11097 			goto success;
11098 		}
11099 	}
11100 
11101 	/*
11102 	 * This n-tuple is short by ntuple elements.  Return failure.
11103 	 */
11104 	ASSERT(ntuple != 0);
11105 err:
11106 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11107 	return (NULL);
11108 
11109 success:
11110 	/*
11111 	 * If the last action in the tuple has a size of zero, it's actually
11112 	 * an expression argument for the aggregating action.
11113 	 */
11114 	ASSERT(ecb->dte_action_last != NULL);
11115 	act = ecb->dte_action_last;
11116 
11117 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11118 		ASSERT(act->dta_difo != NULL);
11119 
11120 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11121 			agg->dtag_hasarg = 1;
11122 	}
11123 
11124 	/*
11125 	 * We need to allocate an id for this aggregation.
11126 	 */
11127 #ifdef illumos
11128 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11129 	    VM_BESTFIT | VM_SLEEP);
11130 #else
11131 	aggid = alloc_unr(state->dts_aggid_arena);
11132 #endif
11133 
11134 	if (aggid - 1 >= state->dts_naggregations) {
11135 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11136 		dtrace_aggregation_t **aggs;
11137 		int naggs = state->dts_naggregations << 1;
11138 		int onaggs = state->dts_naggregations;
11139 
11140 		ASSERT(aggid == state->dts_naggregations + 1);
11141 
11142 		if (naggs == 0) {
11143 			ASSERT(oaggs == NULL);
11144 			naggs = 1;
11145 		}
11146 
11147 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11148 
11149 		if (oaggs != NULL) {
11150 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11151 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11152 		}
11153 
11154 		state->dts_aggregations = aggs;
11155 		state->dts_naggregations = naggs;
11156 	}
11157 
11158 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11159 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11160 
11161 	frec = &agg->dtag_first->dta_rec;
11162 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11163 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11164 
11165 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11166 		ASSERT(!act->dta_intuple);
11167 		act->dta_intuple = 1;
11168 	}
11169 
11170 	return (&agg->dtag_action);
11171 }
11172 
11173 static void
11174 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11175 {
11176 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11177 	dtrace_state_t *state = ecb->dte_state;
11178 	dtrace_aggid_t aggid = agg->dtag_id;
11179 
11180 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11181 #ifdef illumos
11182 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11183 #else
11184 	free_unr(state->dts_aggid_arena, aggid);
11185 #endif
11186 
11187 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11188 	state->dts_aggregations[aggid - 1] = NULL;
11189 
11190 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11191 }
11192 
11193 static int
11194 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11195 {
11196 	dtrace_action_t *action, *last;
11197 	dtrace_difo_t *dp = desc->dtad_difo;
11198 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11199 	uint16_t format = 0;
11200 	dtrace_recdesc_t *rec;
11201 	dtrace_state_t *state = ecb->dte_state;
11202 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11203 	uint64_t arg = desc->dtad_arg;
11204 
11205 	ASSERT(MUTEX_HELD(&dtrace_lock));
11206 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11207 
11208 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11209 		/*
11210 		 * If this is an aggregating action, there must be neither
11211 		 * a speculate nor a commit on the action chain.
11212 		 */
11213 		dtrace_action_t *act;
11214 
11215 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11216 			if (act->dta_kind == DTRACEACT_COMMIT)
11217 				return (EINVAL);
11218 
11219 			if (act->dta_kind == DTRACEACT_SPECULATE)
11220 				return (EINVAL);
11221 		}
11222 
11223 		action = dtrace_ecb_aggregation_create(ecb, desc);
11224 
11225 		if (action == NULL)
11226 			return (EINVAL);
11227 	} else {
11228 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11229 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11230 		    dp != NULL && dp->dtdo_destructive)) {
11231 			state->dts_destructive = 1;
11232 		}
11233 
11234 		switch (desc->dtad_kind) {
11235 		case DTRACEACT_PRINTF:
11236 		case DTRACEACT_PRINTA:
11237 		case DTRACEACT_SYSTEM:
11238 		case DTRACEACT_FREOPEN:
11239 		case DTRACEACT_DIFEXPR:
11240 			/*
11241 			 * We know that our arg is a string -- turn it into a
11242 			 * format.
11243 			 */
11244 			if (arg == 0) {
11245 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11246 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11247 				format = 0;
11248 			} else {
11249 				ASSERT(arg != 0);
11250 #ifdef illumos
11251 				ASSERT(arg > KERNELBASE);
11252 #endif
11253 				format = dtrace_format_add(state,
11254 				    (char *)(uintptr_t)arg);
11255 			}
11256 
11257 			/*FALLTHROUGH*/
11258 		case DTRACEACT_LIBACT:
11259 		case DTRACEACT_TRACEMEM:
11260 		case DTRACEACT_TRACEMEM_DYNSIZE:
11261 			if (dp == NULL)
11262 				return (EINVAL);
11263 
11264 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11265 				break;
11266 
11267 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11268 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11269 					return (EINVAL);
11270 
11271 				size = opt[DTRACEOPT_STRSIZE];
11272 			}
11273 
11274 			break;
11275 
11276 		case DTRACEACT_STACK:
11277 			if ((nframes = arg) == 0) {
11278 				nframes = opt[DTRACEOPT_STACKFRAMES];
11279 				ASSERT(nframes > 0);
11280 				arg = nframes;
11281 			}
11282 
11283 			size = nframes * sizeof (pc_t);
11284 			break;
11285 
11286 		case DTRACEACT_JSTACK:
11287 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11288 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11289 
11290 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11291 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11292 
11293 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11294 
11295 			/*FALLTHROUGH*/
11296 		case DTRACEACT_USTACK:
11297 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11298 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11299 				strsize = DTRACE_USTACK_STRSIZE(arg);
11300 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11301 				ASSERT(nframes > 0);
11302 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11303 			}
11304 
11305 			/*
11306 			 * Save a slot for the pid.
11307 			 */
11308 			size = (nframes + 1) * sizeof (uint64_t);
11309 			size += DTRACE_USTACK_STRSIZE(arg);
11310 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11311 
11312 			break;
11313 
11314 		case DTRACEACT_SYM:
11315 		case DTRACEACT_MOD:
11316 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11317 			    sizeof (uint64_t)) ||
11318 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11319 				return (EINVAL);
11320 			break;
11321 
11322 		case DTRACEACT_USYM:
11323 		case DTRACEACT_UMOD:
11324 		case DTRACEACT_UADDR:
11325 			if (dp == NULL ||
11326 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11327 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11328 				return (EINVAL);
11329 
11330 			/*
11331 			 * We have a slot for the pid, plus a slot for the
11332 			 * argument.  To keep things simple (aligned with
11333 			 * bitness-neutral sizing), we store each as a 64-bit
11334 			 * quantity.
11335 			 */
11336 			size = 2 * sizeof (uint64_t);
11337 			break;
11338 
11339 		case DTRACEACT_STOP:
11340 		case DTRACEACT_BREAKPOINT:
11341 		case DTRACEACT_PANIC:
11342 			break;
11343 
11344 		case DTRACEACT_CHILL:
11345 		case DTRACEACT_DISCARD:
11346 		case DTRACEACT_RAISE:
11347 			if (dp == NULL)
11348 				return (EINVAL);
11349 			break;
11350 
11351 		case DTRACEACT_EXIT:
11352 			if (dp == NULL ||
11353 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11354 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11355 				return (EINVAL);
11356 			break;
11357 
11358 		case DTRACEACT_SPECULATE:
11359 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11360 				return (EINVAL);
11361 
11362 			if (dp == NULL)
11363 				return (EINVAL);
11364 
11365 			state->dts_speculates = 1;
11366 			break;
11367 
11368 		case DTRACEACT_PRINTM:
11369 		    	size = dp->dtdo_rtype.dtdt_size;
11370 			break;
11371 
11372 		case DTRACEACT_PRINTT:
11373 		    	size = dp->dtdo_rtype.dtdt_size;
11374 			break;
11375 
11376 		case DTRACEACT_COMMIT: {
11377 			dtrace_action_t *act = ecb->dte_action;
11378 
11379 			for (; act != NULL; act = act->dta_next) {
11380 				if (act->dta_kind == DTRACEACT_COMMIT)
11381 					return (EINVAL);
11382 			}
11383 
11384 			if (dp == NULL)
11385 				return (EINVAL);
11386 			break;
11387 		}
11388 
11389 		default:
11390 			return (EINVAL);
11391 		}
11392 
11393 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11394 			/*
11395 			 * If this is a data-storing action or a speculate,
11396 			 * we must be sure that there isn't a commit on the
11397 			 * action chain.
11398 			 */
11399 			dtrace_action_t *act = ecb->dte_action;
11400 
11401 			for (; act != NULL; act = act->dta_next) {
11402 				if (act->dta_kind == DTRACEACT_COMMIT)
11403 					return (EINVAL);
11404 			}
11405 		}
11406 
11407 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11408 		action->dta_rec.dtrd_size = size;
11409 	}
11410 
11411 	action->dta_refcnt = 1;
11412 	rec = &action->dta_rec;
11413 	size = rec->dtrd_size;
11414 
11415 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11416 		if (!(size & mask)) {
11417 			align = mask + 1;
11418 			break;
11419 		}
11420 	}
11421 
11422 	action->dta_kind = desc->dtad_kind;
11423 
11424 	if ((action->dta_difo = dp) != NULL)
11425 		dtrace_difo_hold(dp);
11426 
11427 	rec->dtrd_action = action->dta_kind;
11428 	rec->dtrd_arg = arg;
11429 	rec->dtrd_uarg = desc->dtad_uarg;
11430 	rec->dtrd_alignment = (uint16_t)align;
11431 	rec->dtrd_format = format;
11432 
11433 	if ((last = ecb->dte_action_last) != NULL) {
11434 		ASSERT(ecb->dte_action != NULL);
11435 		action->dta_prev = last;
11436 		last->dta_next = action;
11437 	} else {
11438 		ASSERT(ecb->dte_action == NULL);
11439 		ecb->dte_action = action;
11440 	}
11441 
11442 	ecb->dte_action_last = action;
11443 
11444 	return (0);
11445 }
11446 
11447 static void
11448 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11449 {
11450 	dtrace_action_t *act = ecb->dte_action, *next;
11451 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11452 	dtrace_difo_t *dp;
11453 	uint16_t format;
11454 
11455 	if (act != NULL && act->dta_refcnt > 1) {
11456 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11457 		act->dta_refcnt--;
11458 	} else {
11459 		for (; act != NULL; act = next) {
11460 			next = act->dta_next;
11461 			ASSERT(next != NULL || act == ecb->dte_action_last);
11462 			ASSERT(act->dta_refcnt == 1);
11463 
11464 			if ((format = act->dta_rec.dtrd_format) != 0)
11465 				dtrace_format_remove(ecb->dte_state, format);
11466 
11467 			if ((dp = act->dta_difo) != NULL)
11468 				dtrace_difo_release(dp, vstate);
11469 
11470 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11471 				dtrace_ecb_aggregation_destroy(ecb, act);
11472 			} else {
11473 				kmem_free(act, sizeof (dtrace_action_t));
11474 			}
11475 		}
11476 	}
11477 
11478 	ecb->dte_action = NULL;
11479 	ecb->dte_action_last = NULL;
11480 	ecb->dte_size = 0;
11481 }
11482 
11483 static void
11484 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11485 {
11486 	/*
11487 	 * We disable the ECB by removing it from its probe.
11488 	 */
11489 	dtrace_ecb_t *pecb, *prev = NULL;
11490 	dtrace_probe_t *probe = ecb->dte_probe;
11491 
11492 	ASSERT(MUTEX_HELD(&dtrace_lock));
11493 
11494 	if (probe == NULL) {
11495 		/*
11496 		 * This is the NULL probe; there is nothing to disable.
11497 		 */
11498 		return;
11499 	}
11500 
11501 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11502 		if (pecb == ecb)
11503 			break;
11504 		prev = pecb;
11505 	}
11506 
11507 	ASSERT(pecb != NULL);
11508 
11509 	if (prev == NULL) {
11510 		probe->dtpr_ecb = ecb->dte_next;
11511 	} else {
11512 		prev->dte_next = ecb->dte_next;
11513 	}
11514 
11515 	if (ecb == probe->dtpr_ecb_last) {
11516 		ASSERT(ecb->dte_next == NULL);
11517 		probe->dtpr_ecb_last = prev;
11518 	}
11519 
11520 	/*
11521 	 * The ECB has been disconnected from the probe; now sync to assure
11522 	 * that all CPUs have seen the change before returning.
11523 	 */
11524 	dtrace_sync();
11525 
11526 	if (probe->dtpr_ecb == NULL) {
11527 		/*
11528 		 * That was the last ECB on the probe; clear the predicate
11529 		 * cache ID for the probe, disable it and sync one more time
11530 		 * to assure that we'll never hit it again.
11531 		 */
11532 		dtrace_provider_t *prov = probe->dtpr_provider;
11533 
11534 		ASSERT(ecb->dte_next == NULL);
11535 		ASSERT(probe->dtpr_ecb_last == NULL);
11536 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11537 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11538 		    probe->dtpr_id, probe->dtpr_arg);
11539 		dtrace_sync();
11540 	} else {
11541 		/*
11542 		 * There is at least one ECB remaining on the probe.  If there
11543 		 * is _exactly_ one, set the probe's predicate cache ID to be
11544 		 * the predicate cache ID of the remaining ECB.
11545 		 */
11546 		ASSERT(probe->dtpr_ecb_last != NULL);
11547 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11548 
11549 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11550 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11551 
11552 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11553 
11554 			if (p != NULL)
11555 				probe->dtpr_predcache = p->dtp_cacheid;
11556 		}
11557 
11558 		ecb->dte_next = NULL;
11559 	}
11560 }
11561 
11562 static void
11563 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11564 {
11565 	dtrace_state_t *state = ecb->dte_state;
11566 	dtrace_vstate_t *vstate = &state->dts_vstate;
11567 	dtrace_predicate_t *pred;
11568 	dtrace_epid_t epid = ecb->dte_epid;
11569 
11570 	ASSERT(MUTEX_HELD(&dtrace_lock));
11571 	ASSERT(ecb->dte_next == NULL);
11572 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11573 
11574 	if ((pred = ecb->dte_predicate) != NULL)
11575 		dtrace_predicate_release(pred, vstate);
11576 
11577 	dtrace_ecb_action_remove(ecb);
11578 
11579 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11580 	state->dts_ecbs[epid - 1] = NULL;
11581 
11582 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11583 }
11584 
11585 static dtrace_ecb_t *
11586 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11587     dtrace_enabling_t *enab)
11588 {
11589 	dtrace_ecb_t *ecb;
11590 	dtrace_predicate_t *pred;
11591 	dtrace_actdesc_t *act;
11592 	dtrace_provider_t *prov;
11593 	dtrace_ecbdesc_t *desc = enab->dten_current;
11594 
11595 	ASSERT(MUTEX_HELD(&dtrace_lock));
11596 	ASSERT(state != NULL);
11597 
11598 	ecb = dtrace_ecb_add(state, probe);
11599 	ecb->dte_uarg = desc->dted_uarg;
11600 
11601 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11602 		dtrace_predicate_hold(pred);
11603 		ecb->dte_predicate = pred;
11604 	}
11605 
11606 	if (probe != NULL) {
11607 		/*
11608 		 * If the provider shows more leg than the consumer is old
11609 		 * enough to see, we need to enable the appropriate implicit
11610 		 * predicate bits to prevent the ecb from activating at
11611 		 * revealing times.
11612 		 *
11613 		 * Providers specifying DTRACE_PRIV_USER at register time
11614 		 * are stating that they need the /proc-style privilege
11615 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11616 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11617 		 */
11618 		prov = probe->dtpr_provider;
11619 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11620 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11621 			ecb->dte_cond |= DTRACE_COND_OWNER;
11622 
11623 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11624 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11625 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11626 
11627 		/*
11628 		 * If the provider shows us kernel innards and the user
11629 		 * is lacking sufficient privilege, enable the
11630 		 * DTRACE_COND_USERMODE implicit predicate.
11631 		 */
11632 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11633 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11634 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11635 	}
11636 
11637 	if (dtrace_ecb_create_cache != NULL) {
11638 		/*
11639 		 * If we have a cached ecb, we'll use its action list instead
11640 		 * of creating our own (saving both time and space).
11641 		 */
11642 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11643 		dtrace_action_t *act = cached->dte_action;
11644 
11645 		if (act != NULL) {
11646 			ASSERT(act->dta_refcnt > 0);
11647 			act->dta_refcnt++;
11648 			ecb->dte_action = act;
11649 			ecb->dte_action_last = cached->dte_action_last;
11650 			ecb->dte_needed = cached->dte_needed;
11651 			ecb->dte_size = cached->dte_size;
11652 			ecb->dte_alignment = cached->dte_alignment;
11653 		}
11654 
11655 		return (ecb);
11656 	}
11657 
11658 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11659 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11660 			dtrace_ecb_destroy(ecb);
11661 			return (NULL);
11662 		}
11663 	}
11664 
11665 	dtrace_ecb_resize(ecb);
11666 
11667 	return (dtrace_ecb_create_cache = ecb);
11668 }
11669 
11670 static int
11671 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11672 {
11673 	dtrace_ecb_t *ecb;
11674 	dtrace_enabling_t *enab = arg;
11675 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11676 
11677 	ASSERT(state != NULL);
11678 
11679 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11680 		/*
11681 		 * This probe was created in a generation for which this
11682 		 * enabling has previously created ECBs; we don't want to
11683 		 * enable it again, so just kick out.
11684 		 */
11685 		return (DTRACE_MATCH_NEXT);
11686 	}
11687 
11688 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11689 		return (DTRACE_MATCH_DONE);
11690 
11691 	dtrace_ecb_enable(ecb);
11692 	return (DTRACE_MATCH_NEXT);
11693 }
11694 
11695 static dtrace_ecb_t *
11696 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11697 {
11698 	dtrace_ecb_t *ecb;
11699 
11700 	ASSERT(MUTEX_HELD(&dtrace_lock));
11701 
11702 	if (id == 0 || id > state->dts_necbs)
11703 		return (NULL);
11704 
11705 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11706 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11707 
11708 	return (state->dts_ecbs[id - 1]);
11709 }
11710 
11711 static dtrace_aggregation_t *
11712 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11713 {
11714 	dtrace_aggregation_t *agg;
11715 
11716 	ASSERT(MUTEX_HELD(&dtrace_lock));
11717 
11718 	if (id == 0 || id > state->dts_naggregations)
11719 		return (NULL);
11720 
11721 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11722 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11723 	    agg->dtag_id == id);
11724 
11725 	return (state->dts_aggregations[id - 1]);
11726 }
11727 
11728 /*
11729  * DTrace Buffer Functions
11730  *
11731  * The following functions manipulate DTrace buffers.  Most of these functions
11732  * are called in the context of establishing or processing consumer state;
11733  * exceptions are explicitly noted.
11734  */
11735 
11736 /*
11737  * Note:  called from cross call context.  This function switches the two
11738  * buffers on a given CPU.  The atomicity of this operation is assured by
11739  * disabling interrupts while the actual switch takes place; the disabling of
11740  * interrupts serializes the execution with any execution of dtrace_probe() on
11741  * the same CPU.
11742  */
11743 static void
11744 dtrace_buffer_switch(dtrace_buffer_t *buf)
11745 {
11746 	caddr_t tomax = buf->dtb_tomax;
11747 	caddr_t xamot = buf->dtb_xamot;
11748 	dtrace_icookie_t cookie;
11749 	hrtime_t now;
11750 
11751 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11752 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11753 
11754 	cookie = dtrace_interrupt_disable();
11755 	now = dtrace_gethrtime();
11756 	buf->dtb_tomax = xamot;
11757 	buf->dtb_xamot = tomax;
11758 	buf->dtb_xamot_drops = buf->dtb_drops;
11759 	buf->dtb_xamot_offset = buf->dtb_offset;
11760 	buf->dtb_xamot_errors = buf->dtb_errors;
11761 	buf->dtb_xamot_flags = buf->dtb_flags;
11762 	buf->dtb_offset = 0;
11763 	buf->dtb_drops = 0;
11764 	buf->dtb_errors = 0;
11765 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11766 	buf->dtb_interval = now - buf->dtb_switched;
11767 	buf->dtb_switched = now;
11768 	dtrace_interrupt_enable(cookie);
11769 }
11770 
11771 /*
11772  * Note:  called from cross call context.  This function activates a buffer
11773  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11774  * is guaranteed by the disabling of interrupts.
11775  */
11776 static void
11777 dtrace_buffer_activate(dtrace_state_t *state)
11778 {
11779 	dtrace_buffer_t *buf;
11780 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11781 
11782 	buf = &state->dts_buffer[curcpu];
11783 
11784 	if (buf->dtb_tomax != NULL) {
11785 		/*
11786 		 * We might like to assert that the buffer is marked inactive,
11787 		 * but this isn't necessarily true:  the buffer for the CPU
11788 		 * that processes the BEGIN probe has its buffer activated
11789 		 * manually.  In this case, we take the (harmless) action
11790 		 * re-clearing the bit INACTIVE bit.
11791 		 */
11792 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11793 	}
11794 
11795 	dtrace_interrupt_enable(cookie);
11796 }
11797 
11798 static int
11799 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11800     processorid_t cpu, int *factor)
11801 {
11802 #ifdef illumos
11803 	cpu_t *cp;
11804 #endif
11805 	dtrace_buffer_t *buf;
11806 	int allocated = 0, desired = 0;
11807 
11808 #ifdef illumos
11809 	ASSERT(MUTEX_HELD(&cpu_lock));
11810 	ASSERT(MUTEX_HELD(&dtrace_lock));
11811 
11812 	*factor = 1;
11813 
11814 	if (size > dtrace_nonroot_maxsize &&
11815 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11816 		return (EFBIG);
11817 
11818 	cp = cpu_list;
11819 
11820 	do {
11821 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11822 			continue;
11823 
11824 		buf = &bufs[cp->cpu_id];
11825 
11826 		/*
11827 		 * If there is already a buffer allocated for this CPU, it
11828 		 * is only possible that this is a DR event.  In this case,
11829 		 */
11830 		if (buf->dtb_tomax != NULL) {
11831 			ASSERT(buf->dtb_size == size);
11832 			continue;
11833 		}
11834 
11835 		ASSERT(buf->dtb_xamot == NULL);
11836 
11837 		if ((buf->dtb_tomax = kmem_zalloc(size,
11838 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11839 			goto err;
11840 
11841 		buf->dtb_size = size;
11842 		buf->dtb_flags = flags;
11843 		buf->dtb_offset = 0;
11844 		buf->dtb_drops = 0;
11845 
11846 		if (flags & DTRACEBUF_NOSWITCH)
11847 			continue;
11848 
11849 		if ((buf->dtb_xamot = kmem_zalloc(size,
11850 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11851 			goto err;
11852 	} while ((cp = cp->cpu_next) != cpu_list);
11853 
11854 	return (0);
11855 
11856 err:
11857 	cp = cpu_list;
11858 
11859 	do {
11860 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11861 			continue;
11862 
11863 		buf = &bufs[cp->cpu_id];
11864 		desired += 2;
11865 
11866 		if (buf->dtb_xamot != NULL) {
11867 			ASSERT(buf->dtb_tomax != NULL);
11868 			ASSERT(buf->dtb_size == size);
11869 			kmem_free(buf->dtb_xamot, size);
11870 			allocated++;
11871 		}
11872 
11873 		if (buf->dtb_tomax != NULL) {
11874 			ASSERT(buf->dtb_size == size);
11875 			kmem_free(buf->dtb_tomax, size);
11876 			allocated++;
11877 		}
11878 
11879 		buf->dtb_tomax = NULL;
11880 		buf->dtb_xamot = NULL;
11881 		buf->dtb_size = 0;
11882 	} while ((cp = cp->cpu_next) != cpu_list);
11883 #else
11884 	int i;
11885 
11886 	*factor = 1;
11887 #if defined(__amd64__) || defined(__arm__) || defined(__mips__) || defined(__powerpc__)
11888 	/*
11889 	 * FreeBSD isn't good at limiting the amount of memory we
11890 	 * ask to malloc, so let's place a limit here before trying
11891 	 * to do something that might well end in tears at bedtime.
11892 	 */
11893 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11894 		return (ENOMEM);
11895 #endif
11896 
11897 	ASSERT(MUTEX_HELD(&dtrace_lock));
11898 	CPU_FOREACH(i) {
11899 		if (cpu != DTRACE_CPUALL && cpu != i)
11900 			continue;
11901 
11902 		buf = &bufs[i];
11903 
11904 		/*
11905 		 * If there is already a buffer allocated for this CPU, it
11906 		 * is only possible that this is a DR event.  In this case,
11907 		 * the buffer size must match our specified size.
11908 		 */
11909 		if (buf->dtb_tomax != NULL) {
11910 			ASSERT(buf->dtb_size == size);
11911 			continue;
11912 		}
11913 
11914 		ASSERT(buf->dtb_xamot == NULL);
11915 
11916 		if ((buf->dtb_tomax = kmem_zalloc(size,
11917 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11918 			goto err;
11919 
11920 		buf->dtb_size = size;
11921 		buf->dtb_flags = flags;
11922 		buf->dtb_offset = 0;
11923 		buf->dtb_drops = 0;
11924 
11925 		if (flags & DTRACEBUF_NOSWITCH)
11926 			continue;
11927 
11928 		if ((buf->dtb_xamot = kmem_zalloc(size,
11929 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11930 			goto err;
11931 	}
11932 
11933 	return (0);
11934 
11935 err:
11936 	/*
11937 	 * Error allocating memory, so free the buffers that were
11938 	 * allocated before the failed allocation.
11939 	 */
11940 	CPU_FOREACH(i) {
11941 		if (cpu != DTRACE_CPUALL && cpu != i)
11942 			continue;
11943 
11944 		buf = &bufs[i];
11945 		desired += 2;
11946 
11947 		if (buf->dtb_xamot != NULL) {
11948 			ASSERT(buf->dtb_tomax != NULL);
11949 			ASSERT(buf->dtb_size == size);
11950 			kmem_free(buf->dtb_xamot, size);
11951 			allocated++;
11952 		}
11953 
11954 		if (buf->dtb_tomax != NULL) {
11955 			ASSERT(buf->dtb_size == size);
11956 			kmem_free(buf->dtb_tomax, size);
11957 			allocated++;
11958 		}
11959 
11960 		buf->dtb_tomax = NULL;
11961 		buf->dtb_xamot = NULL;
11962 		buf->dtb_size = 0;
11963 
11964 	}
11965 #endif
11966 	*factor = desired / (allocated > 0 ? allocated : 1);
11967 
11968 	return (ENOMEM);
11969 }
11970 
11971 /*
11972  * Note:  called from probe context.  This function just increments the drop
11973  * count on a buffer.  It has been made a function to allow for the
11974  * possibility of understanding the source of mysterious drop counts.  (A
11975  * problem for which one may be particularly disappointed that DTrace cannot
11976  * be used to understand DTrace.)
11977  */
11978 static void
11979 dtrace_buffer_drop(dtrace_buffer_t *buf)
11980 {
11981 	buf->dtb_drops++;
11982 }
11983 
11984 /*
11985  * Note:  called from probe context.  This function is called to reserve space
11986  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11987  * mstate.  Returns the new offset in the buffer, or a negative value if an
11988  * error has occurred.
11989  */
11990 static intptr_t
11991 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11992     dtrace_state_t *state, dtrace_mstate_t *mstate)
11993 {
11994 	intptr_t offs = buf->dtb_offset, soffs;
11995 	intptr_t woffs;
11996 	caddr_t tomax;
11997 	size_t total;
11998 
11999 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12000 		return (-1);
12001 
12002 	if ((tomax = buf->dtb_tomax) == NULL) {
12003 		dtrace_buffer_drop(buf);
12004 		return (-1);
12005 	}
12006 
12007 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12008 		while (offs & (align - 1)) {
12009 			/*
12010 			 * Assert that our alignment is off by a number which
12011 			 * is itself sizeof (uint32_t) aligned.
12012 			 */
12013 			ASSERT(!((align - (offs & (align - 1))) &
12014 			    (sizeof (uint32_t) - 1)));
12015 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12016 			offs += sizeof (uint32_t);
12017 		}
12018 
12019 		if ((soffs = offs + needed) > buf->dtb_size) {
12020 			dtrace_buffer_drop(buf);
12021 			return (-1);
12022 		}
12023 
12024 		if (mstate == NULL)
12025 			return (offs);
12026 
12027 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12028 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12029 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12030 
12031 		return (offs);
12032 	}
12033 
12034 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12035 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12036 		    (buf->dtb_flags & DTRACEBUF_FULL))
12037 			return (-1);
12038 		goto out;
12039 	}
12040 
12041 	total = needed + (offs & (align - 1));
12042 
12043 	/*
12044 	 * For a ring buffer, life is quite a bit more complicated.  Before
12045 	 * we can store any padding, we need to adjust our wrapping offset.
12046 	 * (If we've never before wrapped or we're not about to, no adjustment
12047 	 * is required.)
12048 	 */
12049 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12050 	    offs + total > buf->dtb_size) {
12051 		woffs = buf->dtb_xamot_offset;
12052 
12053 		if (offs + total > buf->dtb_size) {
12054 			/*
12055 			 * We can't fit in the end of the buffer.  First, a
12056 			 * sanity check that we can fit in the buffer at all.
12057 			 */
12058 			if (total > buf->dtb_size) {
12059 				dtrace_buffer_drop(buf);
12060 				return (-1);
12061 			}
12062 
12063 			/*
12064 			 * We're going to be storing at the top of the buffer,
12065 			 * so now we need to deal with the wrapped offset.  We
12066 			 * only reset our wrapped offset to 0 if it is
12067 			 * currently greater than the current offset.  If it
12068 			 * is less than the current offset, it is because a
12069 			 * previous allocation induced a wrap -- but the
12070 			 * allocation didn't subsequently take the space due
12071 			 * to an error or false predicate evaluation.  In this
12072 			 * case, we'll just leave the wrapped offset alone: if
12073 			 * the wrapped offset hasn't been advanced far enough
12074 			 * for this allocation, it will be adjusted in the
12075 			 * lower loop.
12076 			 */
12077 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12078 				if (woffs >= offs)
12079 					woffs = 0;
12080 			} else {
12081 				woffs = 0;
12082 			}
12083 
12084 			/*
12085 			 * Now we know that we're going to be storing to the
12086 			 * top of the buffer and that there is room for us
12087 			 * there.  We need to clear the buffer from the current
12088 			 * offset to the end (there may be old gunk there).
12089 			 */
12090 			while (offs < buf->dtb_size)
12091 				tomax[offs++] = 0;
12092 
12093 			/*
12094 			 * We need to set our offset to zero.  And because we
12095 			 * are wrapping, we need to set the bit indicating as
12096 			 * much.  We can also adjust our needed space back
12097 			 * down to the space required by the ECB -- we know
12098 			 * that the top of the buffer is aligned.
12099 			 */
12100 			offs = 0;
12101 			total = needed;
12102 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12103 		} else {
12104 			/*
12105 			 * There is room for us in the buffer, so we simply
12106 			 * need to check the wrapped offset.
12107 			 */
12108 			if (woffs < offs) {
12109 				/*
12110 				 * The wrapped offset is less than the offset.
12111 				 * This can happen if we allocated buffer space
12112 				 * that induced a wrap, but then we didn't
12113 				 * subsequently take the space due to an error
12114 				 * or false predicate evaluation.  This is
12115 				 * okay; we know that _this_ allocation isn't
12116 				 * going to induce a wrap.  We still can't
12117 				 * reset the wrapped offset to be zero,
12118 				 * however: the space may have been trashed in
12119 				 * the previous failed probe attempt.  But at
12120 				 * least the wrapped offset doesn't need to
12121 				 * be adjusted at all...
12122 				 */
12123 				goto out;
12124 			}
12125 		}
12126 
12127 		while (offs + total > woffs) {
12128 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12129 			size_t size;
12130 
12131 			if (epid == DTRACE_EPIDNONE) {
12132 				size = sizeof (uint32_t);
12133 			} else {
12134 				ASSERT3U(epid, <=, state->dts_necbs);
12135 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12136 
12137 				size = state->dts_ecbs[epid - 1]->dte_size;
12138 			}
12139 
12140 			ASSERT(woffs + size <= buf->dtb_size);
12141 			ASSERT(size != 0);
12142 
12143 			if (woffs + size == buf->dtb_size) {
12144 				/*
12145 				 * We've reached the end of the buffer; we want
12146 				 * to set the wrapped offset to 0 and break
12147 				 * out.  However, if the offs is 0, then we're
12148 				 * in a strange edge-condition:  the amount of
12149 				 * space that we want to reserve plus the size
12150 				 * of the record that we're overwriting is
12151 				 * greater than the size of the buffer.  This
12152 				 * is problematic because if we reserve the
12153 				 * space but subsequently don't consume it (due
12154 				 * to a failed predicate or error) the wrapped
12155 				 * offset will be 0 -- yet the EPID at offset 0
12156 				 * will not be committed.  This situation is
12157 				 * relatively easy to deal with:  if we're in
12158 				 * this case, the buffer is indistinguishable
12159 				 * from one that hasn't wrapped; we need only
12160 				 * finish the job by clearing the wrapped bit,
12161 				 * explicitly setting the offset to be 0, and
12162 				 * zero'ing out the old data in the buffer.
12163 				 */
12164 				if (offs == 0) {
12165 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12166 					buf->dtb_offset = 0;
12167 					woffs = total;
12168 
12169 					while (woffs < buf->dtb_size)
12170 						tomax[woffs++] = 0;
12171 				}
12172 
12173 				woffs = 0;
12174 				break;
12175 			}
12176 
12177 			woffs += size;
12178 		}
12179 
12180 		/*
12181 		 * We have a wrapped offset.  It may be that the wrapped offset
12182 		 * has become zero -- that's okay.
12183 		 */
12184 		buf->dtb_xamot_offset = woffs;
12185 	}
12186 
12187 out:
12188 	/*
12189 	 * Now we can plow the buffer with any necessary padding.
12190 	 */
12191 	while (offs & (align - 1)) {
12192 		/*
12193 		 * Assert that our alignment is off by a number which
12194 		 * is itself sizeof (uint32_t) aligned.
12195 		 */
12196 		ASSERT(!((align - (offs & (align - 1))) &
12197 		    (sizeof (uint32_t) - 1)));
12198 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12199 		offs += sizeof (uint32_t);
12200 	}
12201 
12202 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12203 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12204 			buf->dtb_flags |= DTRACEBUF_FULL;
12205 			return (-1);
12206 		}
12207 	}
12208 
12209 	if (mstate == NULL)
12210 		return (offs);
12211 
12212 	/*
12213 	 * For ring buffers and fill buffers, the scratch space is always
12214 	 * the inactive buffer.
12215 	 */
12216 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12217 	mstate->dtms_scratch_size = buf->dtb_size;
12218 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12219 
12220 	return (offs);
12221 }
12222 
12223 static void
12224 dtrace_buffer_polish(dtrace_buffer_t *buf)
12225 {
12226 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12227 	ASSERT(MUTEX_HELD(&dtrace_lock));
12228 
12229 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12230 		return;
12231 
12232 	/*
12233 	 * We need to polish the ring buffer.  There are three cases:
12234 	 *
12235 	 * - The first (and presumably most common) is that there is no gap
12236 	 *   between the buffer offset and the wrapped offset.  In this case,
12237 	 *   there is nothing in the buffer that isn't valid data; we can
12238 	 *   mark the buffer as polished and return.
12239 	 *
12240 	 * - The second (less common than the first but still more common
12241 	 *   than the third) is that there is a gap between the buffer offset
12242 	 *   and the wrapped offset, and the wrapped offset is larger than the
12243 	 *   buffer offset.  This can happen because of an alignment issue, or
12244 	 *   can happen because of a call to dtrace_buffer_reserve() that
12245 	 *   didn't subsequently consume the buffer space.  In this case,
12246 	 *   we need to zero the data from the buffer offset to the wrapped
12247 	 *   offset.
12248 	 *
12249 	 * - The third (and least common) is that there is a gap between the
12250 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12251 	 *   _less_ than the buffer offset.  This can only happen because a
12252 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12253 	 *   was not subsequently consumed.  In this case, we need to zero the
12254 	 *   space from the offset to the end of the buffer _and_ from the
12255 	 *   top of the buffer to the wrapped offset.
12256 	 */
12257 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12258 		bzero(buf->dtb_tomax + buf->dtb_offset,
12259 		    buf->dtb_xamot_offset - buf->dtb_offset);
12260 	}
12261 
12262 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12263 		bzero(buf->dtb_tomax + buf->dtb_offset,
12264 		    buf->dtb_size - buf->dtb_offset);
12265 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12266 	}
12267 }
12268 
12269 /*
12270  * This routine determines if data generated at the specified time has likely
12271  * been entirely consumed at user-level.  This routine is called to determine
12272  * if an ECB on a defunct probe (but for an active enabling) can be safely
12273  * disabled and destroyed.
12274  */
12275 static int
12276 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12277 {
12278 	int i;
12279 
12280 	for (i = 0; i < NCPU; i++) {
12281 		dtrace_buffer_t *buf = &bufs[i];
12282 
12283 		if (buf->dtb_size == 0)
12284 			continue;
12285 
12286 		if (buf->dtb_flags & DTRACEBUF_RING)
12287 			return (0);
12288 
12289 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12290 			return (0);
12291 
12292 		if (buf->dtb_switched - buf->dtb_interval < when)
12293 			return (0);
12294 	}
12295 
12296 	return (1);
12297 }
12298 
12299 static void
12300 dtrace_buffer_free(dtrace_buffer_t *bufs)
12301 {
12302 	int i;
12303 
12304 	for (i = 0; i < NCPU; i++) {
12305 		dtrace_buffer_t *buf = &bufs[i];
12306 
12307 		if (buf->dtb_tomax == NULL) {
12308 			ASSERT(buf->dtb_xamot == NULL);
12309 			ASSERT(buf->dtb_size == 0);
12310 			continue;
12311 		}
12312 
12313 		if (buf->dtb_xamot != NULL) {
12314 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12315 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12316 		}
12317 
12318 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12319 		buf->dtb_size = 0;
12320 		buf->dtb_tomax = NULL;
12321 		buf->dtb_xamot = NULL;
12322 	}
12323 }
12324 
12325 /*
12326  * DTrace Enabling Functions
12327  */
12328 static dtrace_enabling_t *
12329 dtrace_enabling_create(dtrace_vstate_t *vstate)
12330 {
12331 	dtrace_enabling_t *enab;
12332 
12333 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12334 	enab->dten_vstate = vstate;
12335 
12336 	return (enab);
12337 }
12338 
12339 static void
12340 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12341 {
12342 	dtrace_ecbdesc_t **ndesc;
12343 	size_t osize, nsize;
12344 
12345 	/*
12346 	 * We can't add to enablings after we've enabled them, or after we've
12347 	 * retained them.
12348 	 */
12349 	ASSERT(enab->dten_probegen == 0);
12350 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12351 
12352 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12353 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12354 		return;
12355 	}
12356 
12357 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12358 
12359 	if (enab->dten_maxdesc == 0) {
12360 		enab->dten_maxdesc = 1;
12361 	} else {
12362 		enab->dten_maxdesc <<= 1;
12363 	}
12364 
12365 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12366 
12367 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12368 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12369 	bcopy(enab->dten_desc, ndesc, osize);
12370 	if (enab->dten_desc != NULL)
12371 		kmem_free(enab->dten_desc, osize);
12372 
12373 	enab->dten_desc = ndesc;
12374 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12375 }
12376 
12377 static void
12378 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12379     dtrace_probedesc_t *pd)
12380 {
12381 	dtrace_ecbdesc_t *new;
12382 	dtrace_predicate_t *pred;
12383 	dtrace_actdesc_t *act;
12384 
12385 	/*
12386 	 * We're going to create a new ECB description that matches the
12387 	 * specified ECB in every way, but has the specified probe description.
12388 	 */
12389 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12390 
12391 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12392 		dtrace_predicate_hold(pred);
12393 
12394 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12395 		dtrace_actdesc_hold(act);
12396 
12397 	new->dted_action = ecb->dted_action;
12398 	new->dted_pred = ecb->dted_pred;
12399 	new->dted_probe = *pd;
12400 	new->dted_uarg = ecb->dted_uarg;
12401 
12402 	dtrace_enabling_add(enab, new);
12403 }
12404 
12405 static void
12406 dtrace_enabling_dump(dtrace_enabling_t *enab)
12407 {
12408 	int i;
12409 
12410 	for (i = 0; i < enab->dten_ndesc; i++) {
12411 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12412 
12413 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12414 		    desc->dtpd_provider, desc->dtpd_mod,
12415 		    desc->dtpd_func, desc->dtpd_name);
12416 	}
12417 }
12418 
12419 static void
12420 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12421 {
12422 	int i;
12423 	dtrace_ecbdesc_t *ep;
12424 	dtrace_vstate_t *vstate = enab->dten_vstate;
12425 
12426 	ASSERT(MUTEX_HELD(&dtrace_lock));
12427 
12428 	for (i = 0; i < enab->dten_ndesc; i++) {
12429 		dtrace_actdesc_t *act, *next;
12430 		dtrace_predicate_t *pred;
12431 
12432 		ep = enab->dten_desc[i];
12433 
12434 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12435 			dtrace_predicate_release(pred, vstate);
12436 
12437 		for (act = ep->dted_action; act != NULL; act = next) {
12438 			next = act->dtad_next;
12439 			dtrace_actdesc_release(act, vstate);
12440 		}
12441 
12442 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12443 	}
12444 
12445 	if (enab->dten_desc != NULL)
12446 		kmem_free(enab->dten_desc,
12447 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12448 
12449 	/*
12450 	 * If this was a retained enabling, decrement the dts_nretained count
12451 	 * and take it off of the dtrace_retained list.
12452 	 */
12453 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12454 	    dtrace_retained == enab) {
12455 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12456 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12457 		enab->dten_vstate->dtvs_state->dts_nretained--;
12458 		dtrace_retained_gen++;
12459 	}
12460 
12461 	if (enab->dten_prev == NULL) {
12462 		if (dtrace_retained == enab) {
12463 			dtrace_retained = enab->dten_next;
12464 
12465 			if (dtrace_retained != NULL)
12466 				dtrace_retained->dten_prev = NULL;
12467 		}
12468 	} else {
12469 		ASSERT(enab != dtrace_retained);
12470 		ASSERT(dtrace_retained != NULL);
12471 		enab->dten_prev->dten_next = enab->dten_next;
12472 	}
12473 
12474 	if (enab->dten_next != NULL) {
12475 		ASSERT(dtrace_retained != NULL);
12476 		enab->dten_next->dten_prev = enab->dten_prev;
12477 	}
12478 
12479 	kmem_free(enab, sizeof (dtrace_enabling_t));
12480 }
12481 
12482 static int
12483 dtrace_enabling_retain(dtrace_enabling_t *enab)
12484 {
12485 	dtrace_state_t *state;
12486 
12487 	ASSERT(MUTEX_HELD(&dtrace_lock));
12488 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12489 	ASSERT(enab->dten_vstate != NULL);
12490 
12491 	state = enab->dten_vstate->dtvs_state;
12492 	ASSERT(state != NULL);
12493 
12494 	/*
12495 	 * We only allow each state to retain dtrace_retain_max enablings.
12496 	 */
12497 	if (state->dts_nretained >= dtrace_retain_max)
12498 		return (ENOSPC);
12499 
12500 	state->dts_nretained++;
12501 	dtrace_retained_gen++;
12502 
12503 	if (dtrace_retained == NULL) {
12504 		dtrace_retained = enab;
12505 		return (0);
12506 	}
12507 
12508 	enab->dten_next = dtrace_retained;
12509 	dtrace_retained->dten_prev = enab;
12510 	dtrace_retained = enab;
12511 
12512 	return (0);
12513 }
12514 
12515 static int
12516 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12517     dtrace_probedesc_t *create)
12518 {
12519 	dtrace_enabling_t *new, *enab;
12520 	int found = 0, err = ENOENT;
12521 
12522 	ASSERT(MUTEX_HELD(&dtrace_lock));
12523 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12524 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12525 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12526 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12527 
12528 	new = dtrace_enabling_create(&state->dts_vstate);
12529 
12530 	/*
12531 	 * Iterate over all retained enablings, looking for enablings that
12532 	 * match the specified state.
12533 	 */
12534 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12535 		int i;
12536 
12537 		/*
12538 		 * dtvs_state can only be NULL for helper enablings -- and
12539 		 * helper enablings can't be retained.
12540 		 */
12541 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12542 
12543 		if (enab->dten_vstate->dtvs_state != state)
12544 			continue;
12545 
12546 		/*
12547 		 * Now iterate over each probe description; we're looking for
12548 		 * an exact match to the specified probe description.
12549 		 */
12550 		for (i = 0; i < enab->dten_ndesc; i++) {
12551 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12552 			dtrace_probedesc_t *pd = &ep->dted_probe;
12553 
12554 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12555 				continue;
12556 
12557 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12558 				continue;
12559 
12560 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12561 				continue;
12562 
12563 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12564 				continue;
12565 
12566 			/*
12567 			 * We have a winning probe!  Add it to our growing
12568 			 * enabling.
12569 			 */
12570 			found = 1;
12571 			dtrace_enabling_addlike(new, ep, create);
12572 		}
12573 	}
12574 
12575 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12576 		dtrace_enabling_destroy(new);
12577 		return (err);
12578 	}
12579 
12580 	return (0);
12581 }
12582 
12583 static void
12584 dtrace_enabling_retract(dtrace_state_t *state)
12585 {
12586 	dtrace_enabling_t *enab, *next;
12587 
12588 	ASSERT(MUTEX_HELD(&dtrace_lock));
12589 
12590 	/*
12591 	 * Iterate over all retained enablings, destroy the enablings retained
12592 	 * for the specified state.
12593 	 */
12594 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12595 		next = enab->dten_next;
12596 
12597 		/*
12598 		 * dtvs_state can only be NULL for helper enablings -- and
12599 		 * helper enablings can't be retained.
12600 		 */
12601 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12602 
12603 		if (enab->dten_vstate->dtvs_state == state) {
12604 			ASSERT(state->dts_nretained > 0);
12605 			dtrace_enabling_destroy(enab);
12606 		}
12607 	}
12608 
12609 	ASSERT(state->dts_nretained == 0);
12610 }
12611 
12612 static int
12613 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12614 {
12615 	int i = 0;
12616 	int matched = 0;
12617 
12618 	ASSERT(MUTEX_HELD(&cpu_lock));
12619 	ASSERT(MUTEX_HELD(&dtrace_lock));
12620 
12621 	for (i = 0; i < enab->dten_ndesc; i++) {
12622 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12623 
12624 		enab->dten_current = ep;
12625 		enab->dten_error = 0;
12626 
12627 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12628 
12629 		if (enab->dten_error != 0) {
12630 			/*
12631 			 * If we get an error half-way through enabling the
12632 			 * probes, we kick out -- perhaps with some number of
12633 			 * them enabled.  Leaving enabled probes enabled may
12634 			 * be slightly confusing for user-level, but we expect
12635 			 * that no one will attempt to actually drive on in
12636 			 * the face of such errors.  If this is an anonymous
12637 			 * enabling (indicated with a NULL nmatched pointer),
12638 			 * we cmn_err() a message.  We aren't expecting to
12639 			 * get such an error -- such as it can exist at all,
12640 			 * it would be a result of corrupted DOF in the driver
12641 			 * properties.
12642 			 */
12643 			if (nmatched == NULL) {
12644 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12645 				    "error on %p: %d", (void *)ep,
12646 				    enab->dten_error);
12647 			}
12648 
12649 			return (enab->dten_error);
12650 		}
12651 	}
12652 
12653 	enab->dten_probegen = dtrace_probegen;
12654 	if (nmatched != NULL)
12655 		*nmatched = matched;
12656 
12657 	return (0);
12658 }
12659 
12660 static void
12661 dtrace_enabling_matchall(void)
12662 {
12663 	dtrace_enabling_t *enab;
12664 
12665 	mutex_enter(&cpu_lock);
12666 	mutex_enter(&dtrace_lock);
12667 
12668 	/*
12669 	 * Iterate over all retained enablings to see if any probes match
12670 	 * against them.  We only perform this operation on enablings for which
12671 	 * we have sufficient permissions by virtue of being in the global zone
12672 	 * or in the same zone as the DTrace client.  Because we can be called
12673 	 * after dtrace_detach() has been called, we cannot assert that there
12674 	 * are retained enablings.  We can safely load from dtrace_retained,
12675 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12676 	 * block pending our completion.
12677 	 */
12678 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12679 #ifdef illumos
12680 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12681 
12682 		if (INGLOBALZONE(curproc) ||
12683 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12684 #endif
12685 			(void) dtrace_enabling_match(enab, NULL);
12686 	}
12687 
12688 	mutex_exit(&dtrace_lock);
12689 	mutex_exit(&cpu_lock);
12690 }
12691 
12692 /*
12693  * If an enabling is to be enabled without having matched probes (that is, if
12694  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12695  * enabling must be _primed_ by creating an ECB for every ECB description.
12696  * This must be done to assure that we know the number of speculations, the
12697  * number of aggregations, the minimum buffer size needed, etc. before we
12698  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12699  * enabling any probes, we create ECBs for every ECB decription, but with a
12700  * NULL probe -- which is exactly what this function does.
12701  */
12702 static void
12703 dtrace_enabling_prime(dtrace_state_t *state)
12704 {
12705 	dtrace_enabling_t *enab;
12706 	int i;
12707 
12708 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12709 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12710 
12711 		if (enab->dten_vstate->dtvs_state != state)
12712 			continue;
12713 
12714 		/*
12715 		 * We don't want to prime an enabling more than once, lest
12716 		 * we allow a malicious user to induce resource exhaustion.
12717 		 * (The ECBs that result from priming an enabling aren't
12718 		 * leaked -- but they also aren't deallocated until the
12719 		 * consumer state is destroyed.)
12720 		 */
12721 		if (enab->dten_primed)
12722 			continue;
12723 
12724 		for (i = 0; i < enab->dten_ndesc; i++) {
12725 			enab->dten_current = enab->dten_desc[i];
12726 			(void) dtrace_probe_enable(NULL, enab);
12727 		}
12728 
12729 		enab->dten_primed = 1;
12730 	}
12731 }
12732 
12733 /*
12734  * Called to indicate that probes should be provided due to retained
12735  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12736  * must take an initial lap through the enabling calling the dtps_provide()
12737  * entry point explicitly to allow for autocreated probes.
12738  */
12739 static void
12740 dtrace_enabling_provide(dtrace_provider_t *prv)
12741 {
12742 	int i, all = 0;
12743 	dtrace_probedesc_t desc;
12744 	dtrace_genid_t gen;
12745 
12746 	ASSERT(MUTEX_HELD(&dtrace_lock));
12747 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12748 
12749 	if (prv == NULL) {
12750 		all = 1;
12751 		prv = dtrace_provider;
12752 	}
12753 
12754 	do {
12755 		dtrace_enabling_t *enab;
12756 		void *parg = prv->dtpv_arg;
12757 
12758 retry:
12759 		gen = dtrace_retained_gen;
12760 		for (enab = dtrace_retained; enab != NULL;
12761 		    enab = enab->dten_next) {
12762 			for (i = 0; i < enab->dten_ndesc; i++) {
12763 				desc = enab->dten_desc[i]->dted_probe;
12764 				mutex_exit(&dtrace_lock);
12765 				prv->dtpv_pops.dtps_provide(parg, &desc);
12766 				mutex_enter(&dtrace_lock);
12767 				/*
12768 				 * Process the retained enablings again if
12769 				 * they have changed while we weren't holding
12770 				 * dtrace_lock.
12771 				 */
12772 				if (gen != dtrace_retained_gen)
12773 					goto retry;
12774 			}
12775 		}
12776 	} while (all && (prv = prv->dtpv_next) != NULL);
12777 
12778 	mutex_exit(&dtrace_lock);
12779 	dtrace_probe_provide(NULL, all ? NULL : prv);
12780 	mutex_enter(&dtrace_lock);
12781 }
12782 
12783 /*
12784  * Called to reap ECBs that are attached to probes from defunct providers.
12785  */
12786 static void
12787 dtrace_enabling_reap(void)
12788 {
12789 	dtrace_provider_t *prov;
12790 	dtrace_probe_t *probe;
12791 	dtrace_ecb_t *ecb;
12792 	hrtime_t when;
12793 	int i;
12794 
12795 	mutex_enter(&cpu_lock);
12796 	mutex_enter(&dtrace_lock);
12797 
12798 	for (i = 0; i < dtrace_nprobes; i++) {
12799 		if ((probe = dtrace_probes[i]) == NULL)
12800 			continue;
12801 
12802 		if (probe->dtpr_ecb == NULL)
12803 			continue;
12804 
12805 		prov = probe->dtpr_provider;
12806 
12807 		if ((when = prov->dtpv_defunct) == 0)
12808 			continue;
12809 
12810 		/*
12811 		 * We have ECBs on a defunct provider:  we want to reap these
12812 		 * ECBs to allow the provider to unregister.  The destruction
12813 		 * of these ECBs must be done carefully:  if we destroy the ECB
12814 		 * and the consumer later wishes to consume an EPID that
12815 		 * corresponds to the destroyed ECB (and if the EPID metadata
12816 		 * has not been previously consumed), the consumer will abort
12817 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12818 		 * eliminate) the possibility of this, we will only destroy an
12819 		 * ECB for a defunct provider if, for the state that
12820 		 * corresponds to the ECB:
12821 		 *
12822 		 *  (a)	There is no speculative tracing (which can effectively
12823 		 *	cache an EPID for an arbitrary amount of time).
12824 		 *
12825 		 *  (b)	The principal buffers have been switched twice since the
12826 		 *	provider became defunct.
12827 		 *
12828 		 *  (c)	The aggregation buffers are of zero size or have been
12829 		 *	switched twice since the provider became defunct.
12830 		 *
12831 		 * We use dts_speculates to determine (a) and call a function
12832 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12833 		 * that as soon as we've been unable to destroy one of the ECBs
12834 		 * associated with the probe, we quit trying -- reaping is only
12835 		 * fruitful in as much as we can destroy all ECBs associated
12836 		 * with the defunct provider's probes.
12837 		 */
12838 		while ((ecb = probe->dtpr_ecb) != NULL) {
12839 			dtrace_state_t *state = ecb->dte_state;
12840 			dtrace_buffer_t *buf = state->dts_buffer;
12841 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12842 
12843 			if (state->dts_speculates)
12844 				break;
12845 
12846 			if (!dtrace_buffer_consumed(buf, when))
12847 				break;
12848 
12849 			if (!dtrace_buffer_consumed(aggbuf, when))
12850 				break;
12851 
12852 			dtrace_ecb_disable(ecb);
12853 			ASSERT(probe->dtpr_ecb != ecb);
12854 			dtrace_ecb_destroy(ecb);
12855 		}
12856 	}
12857 
12858 	mutex_exit(&dtrace_lock);
12859 	mutex_exit(&cpu_lock);
12860 }
12861 
12862 /*
12863  * DTrace DOF Functions
12864  */
12865 /*ARGSUSED*/
12866 static void
12867 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12868 {
12869 	if (dtrace_err_verbose)
12870 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12871 
12872 #ifdef DTRACE_ERRDEBUG
12873 	dtrace_errdebug(str);
12874 #endif
12875 }
12876 
12877 /*
12878  * Create DOF out of a currently enabled state.  Right now, we only create
12879  * DOF containing the run-time options -- but this could be expanded to create
12880  * complete DOF representing the enabled state.
12881  */
12882 static dof_hdr_t *
12883 dtrace_dof_create(dtrace_state_t *state)
12884 {
12885 	dof_hdr_t *dof;
12886 	dof_sec_t *sec;
12887 	dof_optdesc_t *opt;
12888 	int i, len = sizeof (dof_hdr_t) +
12889 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12890 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12891 
12892 	ASSERT(MUTEX_HELD(&dtrace_lock));
12893 
12894 	dof = kmem_zalloc(len, KM_SLEEP);
12895 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12896 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12897 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12898 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12899 
12900 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12901 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12902 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12903 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12904 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12905 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12906 
12907 	dof->dofh_flags = 0;
12908 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12909 	dof->dofh_secsize = sizeof (dof_sec_t);
12910 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12911 	dof->dofh_secoff = sizeof (dof_hdr_t);
12912 	dof->dofh_loadsz = len;
12913 	dof->dofh_filesz = len;
12914 	dof->dofh_pad = 0;
12915 
12916 	/*
12917 	 * Fill in the option section header...
12918 	 */
12919 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12920 	sec->dofs_type = DOF_SECT_OPTDESC;
12921 	sec->dofs_align = sizeof (uint64_t);
12922 	sec->dofs_flags = DOF_SECF_LOAD;
12923 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12924 
12925 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12926 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12927 
12928 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12929 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12930 
12931 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12932 		opt[i].dofo_option = i;
12933 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12934 		opt[i].dofo_value = state->dts_options[i];
12935 	}
12936 
12937 	return (dof);
12938 }
12939 
12940 static dof_hdr_t *
12941 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12942 {
12943 	dof_hdr_t hdr, *dof;
12944 
12945 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12946 
12947 	/*
12948 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12949 	 */
12950 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12951 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12952 		*errp = EFAULT;
12953 		return (NULL);
12954 	}
12955 
12956 	/*
12957 	 * Now we'll allocate the entire DOF and copy it in -- provided
12958 	 * that the length isn't outrageous.
12959 	 */
12960 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12961 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12962 		*errp = E2BIG;
12963 		return (NULL);
12964 	}
12965 
12966 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12967 		dtrace_dof_error(&hdr, "invalid load size");
12968 		*errp = EINVAL;
12969 		return (NULL);
12970 	}
12971 
12972 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12973 
12974 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12975 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12976 		kmem_free(dof, hdr.dofh_loadsz);
12977 		*errp = EFAULT;
12978 		return (NULL);
12979 	}
12980 
12981 	return (dof);
12982 }
12983 
12984 #ifndef illumos
12985 static __inline uchar_t
12986 dtrace_dof_char(char c) {
12987 	switch (c) {
12988 	case '0':
12989 	case '1':
12990 	case '2':
12991 	case '3':
12992 	case '4':
12993 	case '5':
12994 	case '6':
12995 	case '7':
12996 	case '8':
12997 	case '9':
12998 		return (c - '0');
12999 	case 'A':
13000 	case 'B':
13001 	case 'C':
13002 	case 'D':
13003 	case 'E':
13004 	case 'F':
13005 		return (c - 'A' + 10);
13006 	case 'a':
13007 	case 'b':
13008 	case 'c':
13009 	case 'd':
13010 	case 'e':
13011 	case 'f':
13012 		return (c - 'a' + 10);
13013 	}
13014 	/* Should not reach here. */
13015 	return (0);
13016 }
13017 #endif
13018 
13019 static dof_hdr_t *
13020 dtrace_dof_property(const char *name)
13021 {
13022 	uchar_t *buf;
13023 	uint64_t loadsz;
13024 	unsigned int len, i;
13025 	dof_hdr_t *dof;
13026 
13027 #ifdef illumos
13028 	/*
13029 	 * Unfortunately, array of values in .conf files are always (and
13030 	 * only) interpreted to be integer arrays.  We must read our DOF
13031 	 * as an integer array, and then squeeze it into a byte array.
13032 	 */
13033 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13034 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13035 		return (NULL);
13036 
13037 	for (i = 0; i < len; i++)
13038 		buf[i] = (uchar_t)(((int *)buf)[i]);
13039 
13040 	if (len < sizeof (dof_hdr_t)) {
13041 		ddi_prop_free(buf);
13042 		dtrace_dof_error(NULL, "truncated header");
13043 		return (NULL);
13044 	}
13045 
13046 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13047 		ddi_prop_free(buf);
13048 		dtrace_dof_error(NULL, "truncated DOF");
13049 		return (NULL);
13050 	}
13051 
13052 	if (loadsz >= dtrace_dof_maxsize) {
13053 		ddi_prop_free(buf);
13054 		dtrace_dof_error(NULL, "oversized DOF");
13055 		return (NULL);
13056 	}
13057 
13058 	dof = kmem_alloc(loadsz, KM_SLEEP);
13059 	bcopy(buf, dof, loadsz);
13060 	ddi_prop_free(buf);
13061 #else
13062 	char *p;
13063 	char *p_env;
13064 
13065 	if ((p_env = kern_getenv(name)) == NULL)
13066 		return (NULL);
13067 
13068 	len = strlen(p_env) / 2;
13069 
13070 	buf = kmem_alloc(len, KM_SLEEP);
13071 
13072 	dof = (dof_hdr_t *) buf;
13073 
13074 	p = p_env;
13075 
13076 	for (i = 0; i < len; i++) {
13077 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13078 		     dtrace_dof_char(p[1]);
13079 		p += 2;
13080 	}
13081 
13082 	freeenv(p_env);
13083 
13084 	if (len < sizeof (dof_hdr_t)) {
13085 		kmem_free(buf, 0);
13086 		dtrace_dof_error(NULL, "truncated header");
13087 		return (NULL);
13088 	}
13089 
13090 	if (len < (loadsz = dof->dofh_loadsz)) {
13091 		kmem_free(buf, 0);
13092 		dtrace_dof_error(NULL, "truncated DOF");
13093 		return (NULL);
13094 	}
13095 
13096 	if (loadsz >= dtrace_dof_maxsize) {
13097 		kmem_free(buf, 0);
13098 		dtrace_dof_error(NULL, "oversized DOF");
13099 		return (NULL);
13100 	}
13101 #endif
13102 
13103 	return (dof);
13104 }
13105 
13106 static void
13107 dtrace_dof_destroy(dof_hdr_t *dof)
13108 {
13109 	kmem_free(dof, dof->dofh_loadsz);
13110 }
13111 
13112 /*
13113  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13114  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13115  * a type other than DOF_SECT_NONE is specified, the header is checked against
13116  * this type and NULL is returned if the types do not match.
13117  */
13118 static dof_sec_t *
13119 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13120 {
13121 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13122 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13123 
13124 	if (i >= dof->dofh_secnum) {
13125 		dtrace_dof_error(dof, "referenced section index is invalid");
13126 		return (NULL);
13127 	}
13128 
13129 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13130 		dtrace_dof_error(dof, "referenced section is not loadable");
13131 		return (NULL);
13132 	}
13133 
13134 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13135 		dtrace_dof_error(dof, "referenced section is the wrong type");
13136 		return (NULL);
13137 	}
13138 
13139 	return (sec);
13140 }
13141 
13142 static dtrace_probedesc_t *
13143 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13144 {
13145 	dof_probedesc_t *probe;
13146 	dof_sec_t *strtab;
13147 	uintptr_t daddr = (uintptr_t)dof;
13148 	uintptr_t str;
13149 	size_t size;
13150 
13151 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13152 		dtrace_dof_error(dof, "invalid probe section");
13153 		return (NULL);
13154 	}
13155 
13156 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13157 		dtrace_dof_error(dof, "bad alignment in probe description");
13158 		return (NULL);
13159 	}
13160 
13161 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13162 		dtrace_dof_error(dof, "truncated probe description");
13163 		return (NULL);
13164 	}
13165 
13166 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13167 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13168 
13169 	if (strtab == NULL)
13170 		return (NULL);
13171 
13172 	str = daddr + strtab->dofs_offset;
13173 	size = strtab->dofs_size;
13174 
13175 	if (probe->dofp_provider >= strtab->dofs_size) {
13176 		dtrace_dof_error(dof, "corrupt probe provider");
13177 		return (NULL);
13178 	}
13179 
13180 	(void) strncpy(desc->dtpd_provider,
13181 	    (char *)(str + probe->dofp_provider),
13182 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13183 
13184 	if (probe->dofp_mod >= strtab->dofs_size) {
13185 		dtrace_dof_error(dof, "corrupt probe module");
13186 		return (NULL);
13187 	}
13188 
13189 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13190 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13191 
13192 	if (probe->dofp_func >= strtab->dofs_size) {
13193 		dtrace_dof_error(dof, "corrupt probe function");
13194 		return (NULL);
13195 	}
13196 
13197 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13198 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13199 
13200 	if (probe->dofp_name >= strtab->dofs_size) {
13201 		dtrace_dof_error(dof, "corrupt probe name");
13202 		return (NULL);
13203 	}
13204 
13205 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13206 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13207 
13208 	return (desc);
13209 }
13210 
13211 static dtrace_difo_t *
13212 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13213     cred_t *cr)
13214 {
13215 	dtrace_difo_t *dp;
13216 	size_t ttl = 0;
13217 	dof_difohdr_t *dofd;
13218 	uintptr_t daddr = (uintptr_t)dof;
13219 	size_t max = dtrace_difo_maxsize;
13220 	int i, l, n;
13221 
13222 	static const struct {
13223 		int section;
13224 		int bufoffs;
13225 		int lenoffs;
13226 		int entsize;
13227 		int align;
13228 		const char *msg;
13229 	} difo[] = {
13230 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13231 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13232 		sizeof (dif_instr_t), "multiple DIF sections" },
13233 
13234 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13235 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13236 		sizeof (uint64_t), "multiple integer tables" },
13237 
13238 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13239 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13240 		sizeof (char), "multiple string tables" },
13241 
13242 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13243 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13244 		sizeof (uint_t), "multiple variable tables" },
13245 
13246 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13247 	};
13248 
13249 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13250 		dtrace_dof_error(dof, "invalid DIFO header section");
13251 		return (NULL);
13252 	}
13253 
13254 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13255 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13256 		return (NULL);
13257 	}
13258 
13259 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13260 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13261 		dtrace_dof_error(dof, "bad size in DIFO header");
13262 		return (NULL);
13263 	}
13264 
13265 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13266 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13267 
13268 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13269 	dp->dtdo_rtype = dofd->dofd_rtype;
13270 
13271 	for (l = 0; l < n; l++) {
13272 		dof_sec_t *subsec;
13273 		void **bufp;
13274 		uint32_t *lenp;
13275 
13276 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13277 		    dofd->dofd_links[l])) == NULL)
13278 			goto err; /* invalid section link */
13279 
13280 		if (ttl + subsec->dofs_size > max) {
13281 			dtrace_dof_error(dof, "exceeds maximum size");
13282 			goto err;
13283 		}
13284 
13285 		ttl += subsec->dofs_size;
13286 
13287 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13288 			if (subsec->dofs_type != difo[i].section)
13289 				continue;
13290 
13291 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13292 				dtrace_dof_error(dof, "section not loaded");
13293 				goto err;
13294 			}
13295 
13296 			if (subsec->dofs_align != difo[i].align) {
13297 				dtrace_dof_error(dof, "bad alignment");
13298 				goto err;
13299 			}
13300 
13301 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13302 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13303 
13304 			if (*bufp != NULL) {
13305 				dtrace_dof_error(dof, difo[i].msg);
13306 				goto err;
13307 			}
13308 
13309 			if (difo[i].entsize != subsec->dofs_entsize) {
13310 				dtrace_dof_error(dof, "entry size mismatch");
13311 				goto err;
13312 			}
13313 
13314 			if (subsec->dofs_entsize != 0 &&
13315 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13316 				dtrace_dof_error(dof, "corrupt entry size");
13317 				goto err;
13318 			}
13319 
13320 			*lenp = subsec->dofs_size;
13321 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13322 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13323 			    *bufp, subsec->dofs_size);
13324 
13325 			if (subsec->dofs_entsize != 0)
13326 				*lenp /= subsec->dofs_entsize;
13327 
13328 			break;
13329 		}
13330 
13331 		/*
13332 		 * If we encounter a loadable DIFO sub-section that is not
13333 		 * known to us, assume this is a broken program and fail.
13334 		 */
13335 		if (difo[i].section == DOF_SECT_NONE &&
13336 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13337 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13338 			goto err;
13339 		}
13340 	}
13341 
13342 	if (dp->dtdo_buf == NULL) {
13343 		/*
13344 		 * We can't have a DIF object without DIF text.
13345 		 */
13346 		dtrace_dof_error(dof, "missing DIF text");
13347 		goto err;
13348 	}
13349 
13350 	/*
13351 	 * Before we validate the DIF object, run through the variable table
13352 	 * looking for the strings -- if any of their size are under, we'll set
13353 	 * their size to be the system-wide default string size.  Note that
13354 	 * this should _not_ happen if the "strsize" option has been set --
13355 	 * in this case, the compiler should have set the size to reflect the
13356 	 * setting of the option.
13357 	 */
13358 	for (i = 0; i < dp->dtdo_varlen; i++) {
13359 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13360 		dtrace_diftype_t *t = &v->dtdv_type;
13361 
13362 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13363 			continue;
13364 
13365 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13366 			t->dtdt_size = dtrace_strsize_default;
13367 	}
13368 
13369 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13370 		goto err;
13371 
13372 	dtrace_difo_init(dp, vstate);
13373 	return (dp);
13374 
13375 err:
13376 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13377 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13378 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13379 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13380 
13381 	kmem_free(dp, sizeof (dtrace_difo_t));
13382 	return (NULL);
13383 }
13384 
13385 static dtrace_predicate_t *
13386 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13387     cred_t *cr)
13388 {
13389 	dtrace_difo_t *dp;
13390 
13391 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13392 		return (NULL);
13393 
13394 	return (dtrace_predicate_create(dp));
13395 }
13396 
13397 static dtrace_actdesc_t *
13398 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13399     cred_t *cr)
13400 {
13401 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13402 	dof_actdesc_t *desc;
13403 	dof_sec_t *difosec;
13404 	size_t offs;
13405 	uintptr_t daddr = (uintptr_t)dof;
13406 	uint64_t arg;
13407 	dtrace_actkind_t kind;
13408 
13409 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13410 		dtrace_dof_error(dof, "invalid action section");
13411 		return (NULL);
13412 	}
13413 
13414 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13415 		dtrace_dof_error(dof, "truncated action description");
13416 		return (NULL);
13417 	}
13418 
13419 	if (sec->dofs_align != sizeof (uint64_t)) {
13420 		dtrace_dof_error(dof, "bad alignment in action description");
13421 		return (NULL);
13422 	}
13423 
13424 	if (sec->dofs_size < sec->dofs_entsize) {
13425 		dtrace_dof_error(dof, "section entry size exceeds total size");
13426 		return (NULL);
13427 	}
13428 
13429 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13430 		dtrace_dof_error(dof, "bad entry size in action description");
13431 		return (NULL);
13432 	}
13433 
13434 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13435 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13436 		return (NULL);
13437 	}
13438 
13439 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13440 		desc = (dof_actdesc_t *)(daddr +
13441 		    (uintptr_t)sec->dofs_offset + offs);
13442 		kind = (dtrace_actkind_t)desc->dofa_kind;
13443 
13444 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13445 		    (kind != DTRACEACT_PRINTA ||
13446 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13447 		    (kind == DTRACEACT_DIFEXPR &&
13448 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13449 			dof_sec_t *strtab;
13450 			char *str, *fmt;
13451 			uint64_t i;
13452 
13453 			/*
13454 			 * The argument to these actions is an index into the
13455 			 * DOF string table.  For printf()-like actions, this
13456 			 * is the format string.  For print(), this is the
13457 			 * CTF type of the expression result.
13458 			 */
13459 			if ((strtab = dtrace_dof_sect(dof,
13460 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13461 				goto err;
13462 
13463 			str = (char *)((uintptr_t)dof +
13464 			    (uintptr_t)strtab->dofs_offset);
13465 
13466 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13467 				if (str[i] == '\0')
13468 					break;
13469 			}
13470 
13471 			if (i >= strtab->dofs_size) {
13472 				dtrace_dof_error(dof, "bogus format string");
13473 				goto err;
13474 			}
13475 
13476 			if (i == desc->dofa_arg) {
13477 				dtrace_dof_error(dof, "empty format string");
13478 				goto err;
13479 			}
13480 
13481 			i -= desc->dofa_arg;
13482 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13483 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13484 			arg = (uint64_t)(uintptr_t)fmt;
13485 		} else {
13486 			if (kind == DTRACEACT_PRINTA) {
13487 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13488 				arg = 0;
13489 			} else {
13490 				arg = desc->dofa_arg;
13491 			}
13492 		}
13493 
13494 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13495 		    desc->dofa_uarg, arg);
13496 
13497 		if (last != NULL) {
13498 			last->dtad_next = act;
13499 		} else {
13500 			first = act;
13501 		}
13502 
13503 		last = act;
13504 
13505 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13506 			continue;
13507 
13508 		if ((difosec = dtrace_dof_sect(dof,
13509 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13510 			goto err;
13511 
13512 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13513 
13514 		if (act->dtad_difo == NULL)
13515 			goto err;
13516 	}
13517 
13518 	ASSERT(first != NULL);
13519 	return (first);
13520 
13521 err:
13522 	for (act = first; act != NULL; act = next) {
13523 		next = act->dtad_next;
13524 		dtrace_actdesc_release(act, vstate);
13525 	}
13526 
13527 	return (NULL);
13528 }
13529 
13530 static dtrace_ecbdesc_t *
13531 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13532     cred_t *cr)
13533 {
13534 	dtrace_ecbdesc_t *ep;
13535 	dof_ecbdesc_t *ecb;
13536 	dtrace_probedesc_t *desc;
13537 	dtrace_predicate_t *pred = NULL;
13538 
13539 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13540 		dtrace_dof_error(dof, "truncated ECB description");
13541 		return (NULL);
13542 	}
13543 
13544 	if (sec->dofs_align != sizeof (uint64_t)) {
13545 		dtrace_dof_error(dof, "bad alignment in ECB description");
13546 		return (NULL);
13547 	}
13548 
13549 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13550 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13551 
13552 	if (sec == NULL)
13553 		return (NULL);
13554 
13555 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13556 	ep->dted_uarg = ecb->dofe_uarg;
13557 	desc = &ep->dted_probe;
13558 
13559 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13560 		goto err;
13561 
13562 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13563 		if ((sec = dtrace_dof_sect(dof,
13564 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13565 			goto err;
13566 
13567 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13568 			goto err;
13569 
13570 		ep->dted_pred.dtpdd_predicate = pred;
13571 	}
13572 
13573 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13574 		if ((sec = dtrace_dof_sect(dof,
13575 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13576 			goto err;
13577 
13578 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13579 
13580 		if (ep->dted_action == NULL)
13581 			goto err;
13582 	}
13583 
13584 	return (ep);
13585 
13586 err:
13587 	if (pred != NULL)
13588 		dtrace_predicate_release(pred, vstate);
13589 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13590 	return (NULL);
13591 }
13592 
13593 /*
13594  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13595  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13596  * site of any user SETX relocations to account for load object base address.
13597  * In the future, if we need other relocations, this function can be extended.
13598  */
13599 static int
13600 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13601 {
13602 	uintptr_t daddr = (uintptr_t)dof;
13603 	dof_relohdr_t *dofr =
13604 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13605 	dof_sec_t *ss, *rs, *ts;
13606 	dof_relodesc_t *r;
13607 	uint_t i, n;
13608 
13609 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13610 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13611 		dtrace_dof_error(dof, "invalid relocation header");
13612 		return (-1);
13613 	}
13614 
13615 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13616 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13617 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13618 
13619 	if (ss == NULL || rs == NULL || ts == NULL)
13620 		return (-1); /* dtrace_dof_error() has been called already */
13621 
13622 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13623 	    rs->dofs_align != sizeof (uint64_t)) {
13624 		dtrace_dof_error(dof, "invalid relocation section");
13625 		return (-1);
13626 	}
13627 
13628 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13629 	n = rs->dofs_size / rs->dofs_entsize;
13630 
13631 	for (i = 0; i < n; i++) {
13632 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13633 
13634 		switch (r->dofr_type) {
13635 		case DOF_RELO_NONE:
13636 			break;
13637 		case DOF_RELO_SETX:
13638 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13639 			    sizeof (uint64_t) > ts->dofs_size) {
13640 				dtrace_dof_error(dof, "bad relocation offset");
13641 				return (-1);
13642 			}
13643 
13644 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13645 				dtrace_dof_error(dof, "misaligned setx relo");
13646 				return (-1);
13647 			}
13648 
13649 			*(uint64_t *)taddr += ubase;
13650 			break;
13651 		default:
13652 			dtrace_dof_error(dof, "invalid relocation type");
13653 			return (-1);
13654 		}
13655 
13656 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13657 	}
13658 
13659 	return (0);
13660 }
13661 
13662 /*
13663  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13664  * header:  it should be at the front of a memory region that is at least
13665  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13666  * size.  It need not be validated in any other way.
13667  */
13668 static int
13669 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13670     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13671 {
13672 	uint64_t len = dof->dofh_loadsz, seclen;
13673 	uintptr_t daddr = (uintptr_t)dof;
13674 	dtrace_ecbdesc_t *ep;
13675 	dtrace_enabling_t *enab;
13676 	uint_t i;
13677 
13678 	ASSERT(MUTEX_HELD(&dtrace_lock));
13679 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13680 
13681 	/*
13682 	 * Check the DOF header identification bytes.  In addition to checking
13683 	 * valid settings, we also verify that unused bits/bytes are zeroed so
13684 	 * we can use them later without fear of regressing existing binaries.
13685 	 */
13686 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13687 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13688 		dtrace_dof_error(dof, "DOF magic string mismatch");
13689 		return (-1);
13690 	}
13691 
13692 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13693 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13694 		dtrace_dof_error(dof, "DOF has invalid data model");
13695 		return (-1);
13696 	}
13697 
13698 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13699 		dtrace_dof_error(dof, "DOF encoding mismatch");
13700 		return (-1);
13701 	}
13702 
13703 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13704 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13705 		dtrace_dof_error(dof, "DOF version mismatch");
13706 		return (-1);
13707 	}
13708 
13709 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13710 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13711 		return (-1);
13712 	}
13713 
13714 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13715 		dtrace_dof_error(dof, "DOF uses too many integer registers");
13716 		return (-1);
13717 	}
13718 
13719 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13720 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13721 		return (-1);
13722 	}
13723 
13724 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13725 		if (dof->dofh_ident[i] != 0) {
13726 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13727 			return (-1);
13728 		}
13729 	}
13730 
13731 	if (dof->dofh_flags & ~DOF_FL_VALID) {
13732 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13733 		return (-1);
13734 	}
13735 
13736 	if (dof->dofh_secsize == 0) {
13737 		dtrace_dof_error(dof, "zero section header size");
13738 		return (-1);
13739 	}
13740 
13741 	/*
13742 	 * Check that the section headers don't exceed the amount of DOF
13743 	 * data.  Note that we cast the section size and number of sections
13744 	 * to uint64_t's to prevent possible overflow in the multiplication.
13745 	 */
13746 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13747 
13748 	if (dof->dofh_secoff > len || seclen > len ||
13749 	    dof->dofh_secoff + seclen > len) {
13750 		dtrace_dof_error(dof, "truncated section headers");
13751 		return (-1);
13752 	}
13753 
13754 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13755 		dtrace_dof_error(dof, "misaligned section headers");
13756 		return (-1);
13757 	}
13758 
13759 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13760 		dtrace_dof_error(dof, "misaligned section size");
13761 		return (-1);
13762 	}
13763 
13764 	/*
13765 	 * Take an initial pass through the section headers to be sure that
13766 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13767 	 * set, do not permit sections relating to providers, probes, or args.
13768 	 */
13769 	for (i = 0; i < dof->dofh_secnum; i++) {
13770 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13771 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13772 
13773 		if (noprobes) {
13774 			switch (sec->dofs_type) {
13775 			case DOF_SECT_PROVIDER:
13776 			case DOF_SECT_PROBES:
13777 			case DOF_SECT_PRARGS:
13778 			case DOF_SECT_PROFFS:
13779 				dtrace_dof_error(dof, "illegal sections "
13780 				    "for enabling");
13781 				return (-1);
13782 			}
13783 		}
13784 
13785 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13786 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13787 			dtrace_dof_error(dof, "loadable section with load "
13788 			    "flag unset");
13789 			return (-1);
13790 		}
13791 
13792 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13793 			continue; /* just ignore non-loadable sections */
13794 
13795 		if (!ISP2(sec->dofs_align)) {
13796 			dtrace_dof_error(dof, "bad section alignment");
13797 			return (-1);
13798 		}
13799 
13800 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13801 			dtrace_dof_error(dof, "misaligned section");
13802 			return (-1);
13803 		}
13804 
13805 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13806 		    sec->dofs_offset + sec->dofs_size > len) {
13807 			dtrace_dof_error(dof, "corrupt section header");
13808 			return (-1);
13809 		}
13810 
13811 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13812 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13813 			dtrace_dof_error(dof, "non-terminating string table");
13814 			return (-1);
13815 		}
13816 	}
13817 
13818 	/*
13819 	 * Take a second pass through the sections and locate and perform any
13820 	 * relocations that are present.  We do this after the first pass to
13821 	 * be sure that all sections have had their headers validated.
13822 	 */
13823 	for (i = 0; i < dof->dofh_secnum; i++) {
13824 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13825 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13826 
13827 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13828 			continue; /* skip sections that are not loadable */
13829 
13830 		switch (sec->dofs_type) {
13831 		case DOF_SECT_URELHDR:
13832 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13833 				return (-1);
13834 			break;
13835 		}
13836 	}
13837 
13838 	if ((enab = *enabp) == NULL)
13839 		enab = *enabp = dtrace_enabling_create(vstate);
13840 
13841 	for (i = 0; i < dof->dofh_secnum; i++) {
13842 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13843 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13844 
13845 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13846 			continue;
13847 
13848 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13849 			dtrace_enabling_destroy(enab);
13850 			*enabp = NULL;
13851 			return (-1);
13852 		}
13853 
13854 		dtrace_enabling_add(enab, ep);
13855 	}
13856 
13857 	return (0);
13858 }
13859 
13860 /*
13861  * Process DOF for any options.  This routine assumes that the DOF has been
13862  * at least processed by dtrace_dof_slurp().
13863  */
13864 static int
13865 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13866 {
13867 	int i, rval;
13868 	uint32_t entsize;
13869 	size_t offs;
13870 	dof_optdesc_t *desc;
13871 
13872 	for (i = 0; i < dof->dofh_secnum; i++) {
13873 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13874 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13875 
13876 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13877 			continue;
13878 
13879 		if (sec->dofs_align != sizeof (uint64_t)) {
13880 			dtrace_dof_error(dof, "bad alignment in "
13881 			    "option description");
13882 			return (EINVAL);
13883 		}
13884 
13885 		if ((entsize = sec->dofs_entsize) == 0) {
13886 			dtrace_dof_error(dof, "zeroed option entry size");
13887 			return (EINVAL);
13888 		}
13889 
13890 		if (entsize < sizeof (dof_optdesc_t)) {
13891 			dtrace_dof_error(dof, "bad option entry size");
13892 			return (EINVAL);
13893 		}
13894 
13895 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13896 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13897 			    (uintptr_t)sec->dofs_offset + offs);
13898 
13899 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13900 				dtrace_dof_error(dof, "non-zero option string");
13901 				return (EINVAL);
13902 			}
13903 
13904 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13905 				dtrace_dof_error(dof, "unset option");
13906 				return (EINVAL);
13907 			}
13908 
13909 			if ((rval = dtrace_state_option(state,
13910 			    desc->dofo_option, desc->dofo_value)) != 0) {
13911 				dtrace_dof_error(dof, "rejected option");
13912 				return (rval);
13913 			}
13914 		}
13915 	}
13916 
13917 	return (0);
13918 }
13919 
13920 /*
13921  * DTrace Consumer State Functions
13922  */
13923 static int
13924 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13925 {
13926 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13927 	void *base;
13928 	uintptr_t limit;
13929 	dtrace_dynvar_t *dvar, *next, *start;
13930 	int i;
13931 
13932 	ASSERT(MUTEX_HELD(&dtrace_lock));
13933 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13934 
13935 	bzero(dstate, sizeof (dtrace_dstate_t));
13936 
13937 	if ((dstate->dtds_chunksize = chunksize) == 0)
13938 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13939 
13940 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13941 		size = min;
13942 
13943 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13944 		return (ENOMEM);
13945 
13946 	dstate->dtds_size = size;
13947 	dstate->dtds_base = base;
13948 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13949 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13950 
13951 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13952 
13953 	if (hashsize != 1 && (hashsize & 1))
13954 		hashsize--;
13955 
13956 	dstate->dtds_hashsize = hashsize;
13957 	dstate->dtds_hash = dstate->dtds_base;
13958 
13959 	/*
13960 	 * Set all of our hash buckets to point to the single sink, and (if
13961 	 * it hasn't already been set), set the sink's hash value to be the
13962 	 * sink sentinel value.  The sink is needed for dynamic variable
13963 	 * lookups to know that they have iterated over an entire, valid hash
13964 	 * chain.
13965 	 */
13966 	for (i = 0; i < hashsize; i++)
13967 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13968 
13969 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13970 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13971 
13972 	/*
13973 	 * Determine number of active CPUs.  Divide free list evenly among
13974 	 * active CPUs.
13975 	 */
13976 	start = (dtrace_dynvar_t *)
13977 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13978 	limit = (uintptr_t)base + size;
13979 
13980 	maxper = (limit - (uintptr_t)start) / NCPU;
13981 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13982 
13983 #ifndef illumos
13984 	CPU_FOREACH(i) {
13985 #else
13986 	for (i = 0; i < NCPU; i++) {
13987 #endif
13988 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13989 
13990 		/*
13991 		 * If we don't even have enough chunks to make it once through
13992 		 * NCPUs, we're just going to allocate everything to the first
13993 		 * CPU.  And if we're on the last CPU, we're going to allocate
13994 		 * whatever is left over.  In either case, we set the limit to
13995 		 * be the limit of the dynamic variable space.
13996 		 */
13997 		if (maxper == 0 || i == NCPU - 1) {
13998 			limit = (uintptr_t)base + size;
13999 			start = NULL;
14000 		} else {
14001 			limit = (uintptr_t)start + maxper;
14002 			start = (dtrace_dynvar_t *)limit;
14003 		}
14004 
14005 		ASSERT(limit <= (uintptr_t)base + size);
14006 
14007 		for (;;) {
14008 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14009 			    dstate->dtds_chunksize);
14010 
14011 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14012 				break;
14013 
14014 			dvar->dtdv_next = next;
14015 			dvar = next;
14016 		}
14017 
14018 		if (maxper == 0)
14019 			break;
14020 	}
14021 
14022 	return (0);
14023 }
14024 
14025 static void
14026 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14027 {
14028 	ASSERT(MUTEX_HELD(&cpu_lock));
14029 
14030 	if (dstate->dtds_base == NULL)
14031 		return;
14032 
14033 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14034 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14035 }
14036 
14037 static void
14038 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14039 {
14040 	/*
14041 	 * Logical XOR, where are you?
14042 	 */
14043 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14044 
14045 	if (vstate->dtvs_nglobals > 0) {
14046 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14047 		    sizeof (dtrace_statvar_t *));
14048 	}
14049 
14050 	if (vstate->dtvs_ntlocals > 0) {
14051 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14052 		    sizeof (dtrace_difv_t));
14053 	}
14054 
14055 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14056 
14057 	if (vstate->dtvs_nlocals > 0) {
14058 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14059 		    sizeof (dtrace_statvar_t *));
14060 	}
14061 }
14062 
14063 #ifdef illumos
14064 static void
14065 dtrace_state_clean(dtrace_state_t *state)
14066 {
14067 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14068 		return;
14069 
14070 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14071 	dtrace_speculation_clean(state);
14072 }
14073 
14074 static void
14075 dtrace_state_deadman(dtrace_state_t *state)
14076 {
14077 	hrtime_t now;
14078 
14079 	dtrace_sync();
14080 
14081 	now = dtrace_gethrtime();
14082 
14083 	if (state != dtrace_anon.dta_state &&
14084 	    now - state->dts_laststatus >= dtrace_deadman_user)
14085 		return;
14086 
14087 	/*
14088 	 * We must be sure that dts_alive never appears to be less than the
14089 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14090 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14091 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14092 	 * the new value.  This assures that dts_alive never appears to be
14093 	 * less than its true value, regardless of the order in which the
14094 	 * stores to the underlying storage are issued.
14095 	 */
14096 	state->dts_alive = INT64_MAX;
14097 	dtrace_membar_producer();
14098 	state->dts_alive = now;
14099 }
14100 #else	/* !illumos */
14101 static void
14102 dtrace_state_clean(void *arg)
14103 {
14104 	dtrace_state_t *state = arg;
14105 	dtrace_optval_t *opt = state->dts_options;
14106 
14107 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14108 		return;
14109 
14110 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14111 	dtrace_speculation_clean(state);
14112 
14113 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14114 	    dtrace_state_clean, state);
14115 }
14116 
14117 static void
14118 dtrace_state_deadman(void *arg)
14119 {
14120 	dtrace_state_t *state = arg;
14121 	hrtime_t now;
14122 
14123 	dtrace_sync();
14124 
14125 	dtrace_debug_output();
14126 
14127 	now = dtrace_gethrtime();
14128 
14129 	if (state != dtrace_anon.dta_state &&
14130 	    now - state->dts_laststatus >= dtrace_deadman_user)
14131 		return;
14132 
14133 	/*
14134 	 * We must be sure that dts_alive never appears to be less than the
14135 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14136 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14137 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14138 	 * the new value.  This assures that dts_alive never appears to be
14139 	 * less than its true value, regardless of the order in which the
14140 	 * stores to the underlying storage are issued.
14141 	 */
14142 	state->dts_alive = INT64_MAX;
14143 	dtrace_membar_producer();
14144 	state->dts_alive = now;
14145 
14146 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14147 	    dtrace_state_deadman, state);
14148 }
14149 #endif	/* illumos */
14150 
14151 static dtrace_state_t *
14152 #ifdef illumos
14153 dtrace_state_create(dev_t *devp, cred_t *cr)
14154 #else
14155 dtrace_state_create(struct cdev *dev)
14156 #endif
14157 {
14158 #ifdef illumos
14159 	minor_t minor;
14160 	major_t major;
14161 #else
14162 	cred_t *cr = NULL;
14163 	int m = 0;
14164 #endif
14165 	char c[30];
14166 	dtrace_state_t *state;
14167 	dtrace_optval_t *opt;
14168 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14169 
14170 	ASSERT(MUTEX_HELD(&dtrace_lock));
14171 	ASSERT(MUTEX_HELD(&cpu_lock));
14172 
14173 #ifdef illumos
14174 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14175 	    VM_BESTFIT | VM_SLEEP);
14176 
14177 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14178 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14179 		return (NULL);
14180 	}
14181 
14182 	state = ddi_get_soft_state(dtrace_softstate, minor);
14183 #else
14184 	if (dev != NULL) {
14185 		cr = dev->si_cred;
14186 		m = dev2unit(dev);
14187 	}
14188 
14189 	/* Allocate memory for the state. */
14190 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14191 #endif
14192 
14193 	state->dts_epid = DTRACE_EPIDNONE + 1;
14194 
14195 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14196 #ifdef illumos
14197 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14198 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14199 
14200 	if (devp != NULL) {
14201 		major = getemajor(*devp);
14202 	} else {
14203 		major = ddi_driver_major(dtrace_devi);
14204 	}
14205 
14206 	state->dts_dev = makedevice(major, minor);
14207 
14208 	if (devp != NULL)
14209 		*devp = state->dts_dev;
14210 #else
14211 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14212 	state->dts_dev = dev;
14213 #endif
14214 
14215 	/*
14216 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14217 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14218 	 * other hand, it saves an additional memory reference in the probe
14219 	 * path.
14220 	 */
14221 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14222 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14223 
14224 #ifdef illumos
14225 	state->dts_cleaner = CYCLIC_NONE;
14226 	state->dts_deadman = CYCLIC_NONE;
14227 #else
14228 	callout_init(&state->dts_cleaner, 1);
14229 	callout_init(&state->dts_deadman, 1);
14230 #endif
14231 	state->dts_vstate.dtvs_state = state;
14232 
14233 	for (i = 0; i < DTRACEOPT_MAX; i++)
14234 		state->dts_options[i] = DTRACEOPT_UNSET;
14235 
14236 	/*
14237 	 * Set the default options.
14238 	 */
14239 	opt = state->dts_options;
14240 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14241 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14242 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14243 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14244 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14245 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14246 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14247 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14248 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14249 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14250 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14251 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14252 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14253 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14254 
14255 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14256 
14257 	/*
14258 	 * Depending on the user credentials, we set flag bits which alter probe
14259 	 * visibility or the amount of destructiveness allowed.  In the case of
14260 	 * actual anonymous tracing, or the possession of all privileges, all of
14261 	 * the normal checks are bypassed.
14262 	 */
14263 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14264 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14265 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14266 	} else {
14267 		/*
14268 		 * Set up the credentials for this instantiation.  We take a
14269 		 * hold on the credential to prevent it from disappearing on
14270 		 * us; this in turn prevents the zone_t referenced by this
14271 		 * credential from disappearing.  This means that we can
14272 		 * examine the credential and the zone from probe context.
14273 		 */
14274 		crhold(cr);
14275 		state->dts_cred.dcr_cred = cr;
14276 
14277 		/*
14278 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14279 		 * unlocks the use of variables like pid, zonename, etc.
14280 		 */
14281 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14282 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14283 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14284 		}
14285 
14286 		/*
14287 		 * dtrace_user allows use of syscall and profile providers.
14288 		 * If the user also has proc_owner and/or proc_zone, we
14289 		 * extend the scope to include additional visibility and
14290 		 * destructive power.
14291 		 */
14292 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14293 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14294 				state->dts_cred.dcr_visible |=
14295 				    DTRACE_CRV_ALLPROC;
14296 
14297 				state->dts_cred.dcr_action |=
14298 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14299 			}
14300 
14301 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14302 				state->dts_cred.dcr_visible |=
14303 				    DTRACE_CRV_ALLZONE;
14304 
14305 				state->dts_cred.dcr_action |=
14306 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14307 			}
14308 
14309 			/*
14310 			 * If we have all privs in whatever zone this is,
14311 			 * we can do destructive things to processes which
14312 			 * have altered credentials.
14313 			 */
14314 #ifdef illumos
14315 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14316 			    cr->cr_zone->zone_privset)) {
14317 				state->dts_cred.dcr_action |=
14318 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14319 			}
14320 #endif
14321 		}
14322 
14323 		/*
14324 		 * Holding the dtrace_kernel privilege also implies that
14325 		 * the user has the dtrace_user privilege from a visibility
14326 		 * perspective.  But without further privileges, some
14327 		 * destructive actions are not available.
14328 		 */
14329 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14330 			/*
14331 			 * Make all probes in all zones visible.  However,
14332 			 * this doesn't mean that all actions become available
14333 			 * to all zones.
14334 			 */
14335 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14336 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14337 
14338 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14339 			    DTRACE_CRA_PROC;
14340 			/*
14341 			 * Holding proc_owner means that destructive actions
14342 			 * for *this* zone are allowed.
14343 			 */
14344 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14345 				state->dts_cred.dcr_action |=
14346 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14347 
14348 			/*
14349 			 * Holding proc_zone means that destructive actions
14350 			 * for this user/group ID in all zones is allowed.
14351 			 */
14352 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14353 				state->dts_cred.dcr_action |=
14354 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14355 
14356 #ifdef illumos
14357 			/*
14358 			 * If we have all privs in whatever zone this is,
14359 			 * we can do destructive things to processes which
14360 			 * have altered credentials.
14361 			 */
14362 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14363 			    cr->cr_zone->zone_privset)) {
14364 				state->dts_cred.dcr_action |=
14365 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14366 			}
14367 #endif
14368 		}
14369 
14370 		/*
14371 		 * Holding the dtrace_proc privilege gives control over fasttrap
14372 		 * and pid providers.  We need to grant wider destructive
14373 		 * privileges in the event that the user has proc_owner and/or
14374 		 * proc_zone.
14375 		 */
14376 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14377 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14378 				state->dts_cred.dcr_action |=
14379 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14380 
14381 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14382 				state->dts_cred.dcr_action |=
14383 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14384 		}
14385 	}
14386 
14387 	return (state);
14388 }
14389 
14390 static int
14391 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14392 {
14393 	dtrace_optval_t *opt = state->dts_options, size;
14394 	processorid_t cpu = 0;;
14395 	int flags = 0, rval, factor, divisor = 1;
14396 
14397 	ASSERT(MUTEX_HELD(&dtrace_lock));
14398 	ASSERT(MUTEX_HELD(&cpu_lock));
14399 	ASSERT(which < DTRACEOPT_MAX);
14400 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14401 	    (state == dtrace_anon.dta_state &&
14402 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14403 
14404 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14405 		return (0);
14406 
14407 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14408 		cpu = opt[DTRACEOPT_CPU];
14409 
14410 	if (which == DTRACEOPT_SPECSIZE)
14411 		flags |= DTRACEBUF_NOSWITCH;
14412 
14413 	if (which == DTRACEOPT_BUFSIZE) {
14414 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14415 			flags |= DTRACEBUF_RING;
14416 
14417 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14418 			flags |= DTRACEBUF_FILL;
14419 
14420 		if (state != dtrace_anon.dta_state ||
14421 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14422 			flags |= DTRACEBUF_INACTIVE;
14423 	}
14424 
14425 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14426 		/*
14427 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14428 		 * aligned, drop it down by the difference.
14429 		 */
14430 		if (size & (sizeof (uint64_t) - 1))
14431 			size -= size & (sizeof (uint64_t) - 1);
14432 
14433 		if (size < state->dts_reserve) {
14434 			/*
14435 			 * Buffers always must be large enough to accommodate
14436 			 * their prereserved space.  We return E2BIG instead
14437 			 * of ENOMEM in this case to allow for user-level
14438 			 * software to differentiate the cases.
14439 			 */
14440 			return (E2BIG);
14441 		}
14442 
14443 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14444 
14445 		if (rval != ENOMEM) {
14446 			opt[which] = size;
14447 			return (rval);
14448 		}
14449 
14450 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14451 			return (rval);
14452 
14453 		for (divisor = 2; divisor < factor; divisor <<= 1)
14454 			continue;
14455 	}
14456 
14457 	return (ENOMEM);
14458 }
14459 
14460 static int
14461 dtrace_state_buffers(dtrace_state_t *state)
14462 {
14463 	dtrace_speculation_t *spec = state->dts_speculations;
14464 	int rval, i;
14465 
14466 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14467 	    DTRACEOPT_BUFSIZE)) != 0)
14468 		return (rval);
14469 
14470 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14471 	    DTRACEOPT_AGGSIZE)) != 0)
14472 		return (rval);
14473 
14474 	for (i = 0; i < state->dts_nspeculations; i++) {
14475 		if ((rval = dtrace_state_buffer(state,
14476 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14477 			return (rval);
14478 	}
14479 
14480 	return (0);
14481 }
14482 
14483 static void
14484 dtrace_state_prereserve(dtrace_state_t *state)
14485 {
14486 	dtrace_ecb_t *ecb;
14487 	dtrace_probe_t *probe;
14488 
14489 	state->dts_reserve = 0;
14490 
14491 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14492 		return;
14493 
14494 	/*
14495 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14496 	 * prereserved space to be the space required by the END probes.
14497 	 */
14498 	probe = dtrace_probes[dtrace_probeid_end - 1];
14499 	ASSERT(probe != NULL);
14500 
14501 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14502 		if (ecb->dte_state != state)
14503 			continue;
14504 
14505 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14506 	}
14507 }
14508 
14509 static int
14510 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14511 {
14512 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14513 	dtrace_speculation_t *spec;
14514 	dtrace_buffer_t *buf;
14515 #ifdef illumos
14516 	cyc_handler_t hdlr;
14517 	cyc_time_t when;
14518 #endif
14519 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14520 	dtrace_icookie_t cookie;
14521 
14522 	mutex_enter(&cpu_lock);
14523 	mutex_enter(&dtrace_lock);
14524 
14525 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14526 		rval = EBUSY;
14527 		goto out;
14528 	}
14529 
14530 	/*
14531 	 * Before we can perform any checks, we must prime all of the
14532 	 * retained enablings that correspond to this state.
14533 	 */
14534 	dtrace_enabling_prime(state);
14535 
14536 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14537 		rval = EACCES;
14538 		goto out;
14539 	}
14540 
14541 	dtrace_state_prereserve(state);
14542 
14543 	/*
14544 	 * Now we want to do is try to allocate our speculations.
14545 	 * We do not automatically resize the number of speculations; if
14546 	 * this fails, we will fail the operation.
14547 	 */
14548 	nspec = opt[DTRACEOPT_NSPEC];
14549 	ASSERT(nspec != DTRACEOPT_UNSET);
14550 
14551 	if (nspec > INT_MAX) {
14552 		rval = ENOMEM;
14553 		goto out;
14554 	}
14555 
14556 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14557 	    KM_NOSLEEP | KM_NORMALPRI);
14558 
14559 	if (spec == NULL) {
14560 		rval = ENOMEM;
14561 		goto out;
14562 	}
14563 
14564 	state->dts_speculations = spec;
14565 	state->dts_nspeculations = (int)nspec;
14566 
14567 	for (i = 0; i < nspec; i++) {
14568 		if ((buf = kmem_zalloc(bufsize,
14569 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14570 			rval = ENOMEM;
14571 			goto err;
14572 		}
14573 
14574 		spec[i].dtsp_buffer = buf;
14575 	}
14576 
14577 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14578 		if (dtrace_anon.dta_state == NULL) {
14579 			rval = ENOENT;
14580 			goto out;
14581 		}
14582 
14583 		if (state->dts_necbs != 0) {
14584 			rval = EALREADY;
14585 			goto out;
14586 		}
14587 
14588 		state->dts_anon = dtrace_anon_grab();
14589 		ASSERT(state->dts_anon != NULL);
14590 		state = state->dts_anon;
14591 
14592 		/*
14593 		 * We want "grabanon" to be set in the grabbed state, so we'll
14594 		 * copy that option value from the grabbing state into the
14595 		 * grabbed state.
14596 		 */
14597 		state->dts_options[DTRACEOPT_GRABANON] =
14598 		    opt[DTRACEOPT_GRABANON];
14599 
14600 		*cpu = dtrace_anon.dta_beganon;
14601 
14602 		/*
14603 		 * If the anonymous state is active (as it almost certainly
14604 		 * is if the anonymous enabling ultimately matched anything),
14605 		 * we don't allow any further option processing -- but we
14606 		 * don't return failure.
14607 		 */
14608 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14609 			goto out;
14610 	}
14611 
14612 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14613 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14614 		if (state->dts_aggregations == NULL) {
14615 			/*
14616 			 * We're not going to create an aggregation buffer
14617 			 * because we don't have any ECBs that contain
14618 			 * aggregations -- set this option to 0.
14619 			 */
14620 			opt[DTRACEOPT_AGGSIZE] = 0;
14621 		} else {
14622 			/*
14623 			 * If we have an aggregation buffer, we must also have
14624 			 * a buffer to use as scratch.
14625 			 */
14626 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14627 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14628 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14629 			}
14630 		}
14631 	}
14632 
14633 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14634 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14635 		if (!state->dts_speculates) {
14636 			/*
14637 			 * We're not going to create speculation buffers
14638 			 * because we don't have any ECBs that actually
14639 			 * speculate -- set the speculation size to 0.
14640 			 */
14641 			opt[DTRACEOPT_SPECSIZE] = 0;
14642 		}
14643 	}
14644 
14645 	/*
14646 	 * The bare minimum size for any buffer that we're actually going to
14647 	 * do anything to is sizeof (uint64_t).
14648 	 */
14649 	sz = sizeof (uint64_t);
14650 
14651 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14652 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14653 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14654 		/*
14655 		 * A buffer size has been explicitly set to 0 (or to a size
14656 		 * that will be adjusted to 0) and we need the space -- we
14657 		 * need to return failure.  We return ENOSPC to differentiate
14658 		 * it from failing to allocate a buffer due to failure to meet
14659 		 * the reserve (for which we return E2BIG).
14660 		 */
14661 		rval = ENOSPC;
14662 		goto out;
14663 	}
14664 
14665 	if ((rval = dtrace_state_buffers(state)) != 0)
14666 		goto err;
14667 
14668 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14669 		sz = dtrace_dstate_defsize;
14670 
14671 	do {
14672 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14673 
14674 		if (rval == 0)
14675 			break;
14676 
14677 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14678 			goto err;
14679 	} while (sz >>= 1);
14680 
14681 	opt[DTRACEOPT_DYNVARSIZE] = sz;
14682 
14683 	if (rval != 0)
14684 		goto err;
14685 
14686 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14687 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14688 
14689 	if (opt[DTRACEOPT_CLEANRATE] == 0)
14690 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14691 
14692 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14693 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14694 
14695 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14696 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14697 
14698 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14699 #ifdef illumos
14700 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14701 	hdlr.cyh_arg = state;
14702 	hdlr.cyh_level = CY_LOW_LEVEL;
14703 
14704 	when.cyt_when = 0;
14705 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14706 
14707 	state->dts_cleaner = cyclic_add(&hdlr, &when);
14708 
14709 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14710 	hdlr.cyh_arg = state;
14711 	hdlr.cyh_level = CY_LOW_LEVEL;
14712 
14713 	when.cyt_when = 0;
14714 	when.cyt_interval = dtrace_deadman_interval;
14715 
14716 	state->dts_deadman = cyclic_add(&hdlr, &when);
14717 #else
14718 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14719 	    dtrace_state_clean, state);
14720 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14721 	    dtrace_state_deadman, state);
14722 #endif
14723 
14724 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14725 
14726 #ifdef illumos
14727 	if (state->dts_getf != 0 &&
14728 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14729 		/*
14730 		 * We don't have kernel privs but we have at least one call
14731 		 * to getf(); we need to bump our zone's count, and (if
14732 		 * this is the first enabling to have an unprivileged call
14733 		 * to getf()) we need to hook into closef().
14734 		 */
14735 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14736 
14737 		if (dtrace_getf++ == 0) {
14738 			ASSERT(dtrace_closef == NULL);
14739 			dtrace_closef = dtrace_getf_barrier;
14740 		}
14741 	}
14742 #endif
14743 
14744 	/*
14745 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14746 	 * interrupts here both to record the CPU on which we fired the BEGIN
14747 	 * probe (the data from this CPU will be processed first at user
14748 	 * level) and to manually activate the buffer for this CPU.
14749 	 */
14750 	cookie = dtrace_interrupt_disable();
14751 	*cpu = curcpu;
14752 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14753 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14754 
14755 	dtrace_probe(dtrace_probeid_begin,
14756 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14757 	dtrace_interrupt_enable(cookie);
14758 	/*
14759 	 * We may have had an exit action from a BEGIN probe; only change our
14760 	 * state to ACTIVE if we're still in WARMUP.
14761 	 */
14762 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14763 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14764 
14765 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14766 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14767 
14768 	/*
14769 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14770 	 * want each CPU to transition its principal buffer out of the
14771 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14772 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14773 	 * atomically transition from processing none of a state's ECBs to
14774 	 * processing all of them.
14775 	 */
14776 	dtrace_xcall(DTRACE_CPUALL,
14777 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14778 	goto out;
14779 
14780 err:
14781 	dtrace_buffer_free(state->dts_buffer);
14782 	dtrace_buffer_free(state->dts_aggbuffer);
14783 
14784 	if ((nspec = state->dts_nspeculations) == 0) {
14785 		ASSERT(state->dts_speculations == NULL);
14786 		goto out;
14787 	}
14788 
14789 	spec = state->dts_speculations;
14790 	ASSERT(spec != NULL);
14791 
14792 	for (i = 0; i < state->dts_nspeculations; i++) {
14793 		if ((buf = spec[i].dtsp_buffer) == NULL)
14794 			break;
14795 
14796 		dtrace_buffer_free(buf);
14797 		kmem_free(buf, bufsize);
14798 	}
14799 
14800 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14801 	state->dts_nspeculations = 0;
14802 	state->dts_speculations = NULL;
14803 
14804 out:
14805 	mutex_exit(&dtrace_lock);
14806 	mutex_exit(&cpu_lock);
14807 
14808 	return (rval);
14809 }
14810 
14811 static int
14812 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14813 {
14814 	dtrace_icookie_t cookie;
14815 
14816 	ASSERT(MUTEX_HELD(&dtrace_lock));
14817 
14818 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14819 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14820 		return (EINVAL);
14821 
14822 	/*
14823 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14824 	 * to be sure that every CPU has seen it.  See below for the details
14825 	 * on why this is done.
14826 	 */
14827 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14828 	dtrace_sync();
14829 
14830 	/*
14831 	 * By this point, it is impossible for any CPU to be still processing
14832 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14833 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14834 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14835 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14836 	 * iff we're in the END probe.
14837 	 */
14838 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14839 	dtrace_sync();
14840 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14841 
14842 	/*
14843 	 * Finally, we can release the reserve and call the END probe.  We
14844 	 * disable interrupts across calling the END probe to allow us to
14845 	 * return the CPU on which we actually called the END probe.  This
14846 	 * allows user-land to be sure that this CPU's principal buffer is
14847 	 * processed last.
14848 	 */
14849 	state->dts_reserve = 0;
14850 
14851 	cookie = dtrace_interrupt_disable();
14852 	*cpu = curcpu;
14853 	dtrace_probe(dtrace_probeid_end,
14854 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14855 	dtrace_interrupt_enable(cookie);
14856 
14857 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14858 	dtrace_sync();
14859 
14860 #ifdef illumos
14861 	if (state->dts_getf != 0 &&
14862 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14863 		/*
14864 		 * We don't have kernel privs but we have at least one call
14865 		 * to getf(); we need to lower our zone's count, and (if
14866 		 * this is the last enabling to have an unprivileged call
14867 		 * to getf()) we need to clear the closef() hook.
14868 		 */
14869 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14870 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14871 		ASSERT(dtrace_getf > 0);
14872 
14873 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14874 
14875 		if (--dtrace_getf == 0)
14876 			dtrace_closef = NULL;
14877 	}
14878 #endif
14879 
14880 	return (0);
14881 }
14882 
14883 static int
14884 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14885     dtrace_optval_t val)
14886 {
14887 	ASSERT(MUTEX_HELD(&dtrace_lock));
14888 
14889 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14890 		return (EBUSY);
14891 
14892 	if (option >= DTRACEOPT_MAX)
14893 		return (EINVAL);
14894 
14895 	if (option != DTRACEOPT_CPU && val < 0)
14896 		return (EINVAL);
14897 
14898 	switch (option) {
14899 	case DTRACEOPT_DESTRUCTIVE:
14900 		if (dtrace_destructive_disallow)
14901 			return (EACCES);
14902 
14903 		state->dts_cred.dcr_destructive = 1;
14904 		break;
14905 
14906 	case DTRACEOPT_BUFSIZE:
14907 	case DTRACEOPT_DYNVARSIZE:
14908 	case DTRACEOPT_AGGSIZE:
14909 	case DTRACEOPT_SPECSIZE:
14910 	case DTRACEOPT_STRSIZE:
14911 		if (val < 0)
14912 			return (EINVAL);
14913 
14914 		if (val >= LONG_MAX) {
14915 			/*
14916 			 * If this is an otherwise negative value, set it to
14917 			 * the highest multiple of 128m less than LONG_MAX.
14918 			 * Technically, we're adjusting the size without
14919 			 * regard to the buffer resizing policy, but in fact,
14920 			 * this has no effect -- if we set the buffer size to
14921 			 * ~LONG_MAX and the buffer policy is ultimately set to
14922 			 * be "manual", the buffer allocation is guaranteed to
14923 			 * fail, if only because the allocation requires two
14924 			 * buffers.  (We set the the size to the highest
14925 			 * multiple of 128m because it ensures that the size
14926 			 * will remain a multiple of a megabyte when
14927 			 * repeatedly halved -- all the way down to 15m.)
14928 			 */
14929 			val = LONG_MAX - (1 << 27) + 1;
14930 		}
14931 	}
14932 
14933 	state->dts_options[option] = val;
14934 
14935 	return (0);
14936 }
14937 
14938 static void
14939 dtrace_state_destroy(dtrace_state_t *state)
14940 {
14941 	dtrace_ecb_t *ecb;
14942 	dtrace_vstate_t *vstate = &state->dts_vstate;
14943 #ifdef illumos
14944 	minor_t minor = getminor(state->dts_dev);
14945 #endif
14946 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14947 	dtrace_speculation_t *spec = state->dts_speculations;
14948 	int nspec = state->dts_nspeculations;
14949 	uint32_t match;
14950 
14951 	ASSERT(MUTEX_HELD(&dtrace_lock));
14952 	ASSERT(MUTEX_HELD(&cpu_lock));
14953 
14954 	/*
14955 	 * First, retract any retained enablings for this state.
14956 	 */
14957 	dtrace_enabling_retract(state);
14958 	ASSERT(state->dts_nretained == 0);
14959 
14960 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14961 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14962 		/*
14963 		 * We have managed to come into dtrace_state_destroy() on a
14964 		 * hot enabling -- almost certainly because of a disorderly
14965 		 * shutdown of a consumer.  (That is, a consumer that is
14966 		 * exiting without having called dtrace_stop().) In this case,
14967 		 * we're going to set our activity to be KILLED, and then
14968 		 * issue a sync to be sure that everyone is out of probe
14969 		 * context before we start blowing away ECBs.
14970 		 */
14971 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14972 		dtrace_sync();
14973 	}
14974 
14975 	/*
14976 	 * Release the credential hold we took in dtrace_state_create().
14977 	 */
14978 	if (state->dts_cred.dcr_cred != NULL)
14979 		crfree(state->dts_cred.dcr_cred);
14980 
14981 	/*
14982 	 * Now we can safely disable and destroy any enabled probes.  Because
14983 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14984 	 * (especially if they're all enabled), we take two passes through the
14985 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14986 	 * in the second we disable whatever is left over.
14987 	 */
14988 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14989 		for (i = 0; i < state->dts_necbs; i++) {
14990 			if ((ecb = state->dts_ecbs[i]) == NULL)
14991 				continue;
14992 
14993 			if (match && ecb->dte_probe != NULL) {
14994 				dtrace_probe_t *probe = ecb->dte_probe;
14995 				dtrace_provider_t *prov = probe->dtpr_provider;
14996 
14997 				if (!(prov->dtpv_priv.dtpp_flags & match))
14998 					continue;
14999 			}
15000 
15001 			dtrace_ecb_disable(ecb);
15002 			dtrace_ecb_destroy(ecb);
15003 		}
15004 
15005 		if (!match)
15006 			break;
15007 	}
15008 
15009 	/*
15010 	 * Before we free the buffers, perform one more sync to assure that
15011 	 * every CPU is out of probe context.
15012 	 */
15013 	dtrace_sync();
15014 
15015 	dtrace_buffer_free(state->dts_buffer);
15016 	dtrace_buffer_free(state->dts_aggbuffer);
15017 
15018 	for (i = 0; i < nspec; i++)
15019 		dtrace_buffer_free(spec[i].dtsp_buffer);
15020 
15021 #ifdef illumos
15022 	if (state->dts_cleaner != CYCLIC_NONE)
15023 		cyclic_remove(state->dts_cleaner);
15024 
15025 	if (state->dts_deadman != CYCLIC_NONE)
15026 		cyclic_remove(state->dts_deadman);
15027 #else
15028 	callout_stop(&state->dts_cleaner);
15029 	callout_drain(&state->dts_cleaner);
15030 	callout_stop(&state->dts_deadman);
15031 	callout_drain(&state->dts_deadman);
15032 #endif
15033 
15034 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15035 	dtrace_vstate_fini(vstate);
15036 	if (state->dts_ecbs != NULL)
15037 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15038 
15039 	if (state->dts_aggregations != NULL) {
15040 #ifdef DEBUG
15041 		for (i = 0; i < state->dts_naggregations; i++)
15042 			ASSERT(state->dts_aggregations[i] == NULL);
15043 #endif
15044 		ASSERT(state->dts_naggregations > 0);
15045 		kmem_free(state->dts_aggregations,
15046 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15047 	}
15048 
15049 	kmem_free(state->dts_buffer, bufsize);
15050 	kmem_free(state->dts_aggbuffer, bufsize);
15051 
15052 	for (i = 0; i < nspec; i++)
15053 		kmem_free(spec[i].dtsp_buffer, bufsize);
15054 
15055 	if (spec != NULL)
15056 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15057 
15058 	dtrace_format_destroy(state);
15059 
15060 	if (state->dts_aggid_arena != NULL) {
15061 #ifdef illumos
15062 		vmem_destroy(state->dts_aggid_arena);
15063 #else
15064 		delete_unrhdr(state->dts_aggid_arena);
15065 #endif
15066 		state->dts_aggid_arena = NULL;
15067 	}
15068 #ifdef illumos
15069 	ddi_soft_state_free(dtrace_softstate, minor);
15070 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15071 #endif
15072 }
15073 
15074 /*
15075  * DTrace Anonymous Enabling Functions
15076  */
15077 static dtrace_state_t *
15078 dtrace_anon_grab(void)
15079 {
15080 	dtrace_state_t *state;
15081 
15082 	ASSERT(MUTEX_HELD(&dtrace_lock));
15083 
15084 	if ((state = dtrace_anon.dta_state) == NULL) {
15085 		ASSERT(dtrace_anon.dta_enabling == NULL);
15086 		return (NULL);
15087 	}
15088 
15089 	ASSERT(dtrace_anon.dta_enabling != NULL);
15090 	ASSERT(dtrace_retained != NULL);
15091 
15092 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15093 	dtrace_anon.dta_enabling = NULL;
15094 	dtrace_anon.dta_state = NULL;
15095 
15096 	return (state);
15097 }
15098 
15099 static void
15100 dtrace_anon_property(void)
15101 {
15102 	int i, rv;
15103 	dtrace_state_t *state;
15104 	dof_hdr_t *dof;
15105 	char c[32];		/* enough for "dof-data-" + digits */
15106 
15107 	ASSERT(MUTEX_HELD(&dtrace_lock));
15108 	ASSERT(MUTEX_HELD(&cpu_lock));
15109 
15110 	for (i = 0; ; i++) {
15111 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15112 
15113 		dtrace_err_verbose = 1;
15114 
15115 		if ((dof = dtrace_dof_property(c)) == NULL) {
15116 			dtrace_err_verbose = 0;
15117 			break;
15118 		}
15119 
15120 #ifdef illumos
15121 		/*
15122 		 * We want to create anonymous state, so we need to transition
15123 		 * the kernel debugger to indicate that DTrace is active.  If
15124 		 * this fails (e.g. because the debugger has modified text in
15125 		 * some way), we won't continue with the processing.
15126 		 */
15127 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15128 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15129 			    "enabling ignored.");
15130 			dtrace_dof_destroy(dof);
15131 			break;
15132 		}
15133 #endif
15134 
15135 		/*
15136 		 * If we haven't allocated an anonymous state, we'll do so now.
15137 		 */
15138 		if ((state = dtrace_anon.dta_state) == NULL) {
15139 #ifdef illumos
15140 			state = dtrace_state_create(NULL, NULL);
15141 #else
15142 			state = dtrace_state_create(NULL);
15143 #endif
15144 			dtrace_anon.dta_state = state;
15145 
15146 			if (state == NULL) {
15147 				/*
15148 				 * This basically shouldn't happen:  the only
15149 				 * failure mode from dtrace_state_create() is a
15150 				 * failure of ddi_soft_state_zalloc() that
15151 				 * itself should never happen.  Still, the
15152 				 * interface allows for a failure mode, and
15153 				 * we want to fail as gracefully as possible:
15154 				 * we'll emit an error message and cease
15155 				 * processing anonymous state in this case.
15156 				 */
15157 				cmn_err(CE_WARN, "failed to create "
15158 				    "anonymous state");
15159 				dtrace_dof_destroy(dof);
15160 				break;
15161 			}
15162 		}
15163 
15164 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15165 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15166 
15167 		if (rv == 0)
15168 			rv = dtrace_dof_options(dof, state);
15169 
15170 		dtrace_err_verbose = 0;
15171 		dtrace_dof_destroy(dof);
15172 
15173 		if (rv != 0) {
15174 			/*
15175 			 * This is malformed DOF; chuck any anonymous state
15176 			 * that we created.
15177 			 */
15178 			ASSERT(dtrace_anon.dta_enabling == NULL);
15179 			dtrace_state_destroy(state);
15180 			dtrace_anon.dta_state = NULL;
15181 			break;
15182 		}
15183 
15184 		ASSERT(dtrace_anon.dta_enabling != NULL);
15185 	}
15186 
15187 	if (dtrace_anon.dta_enabling != NULL) {
15188 		int rval;
15189 
15190 		/*
15191 		 * dtrace_enabling_retain() can only fail because we are
15192 		 * trying to retain more enablings than are allowed -- but
15193 		 * we only have one anonymous enabling, and we are guaranteed
15194 		 * to be allowed at least one retained enabling; we assert
15195 		 * that dtrace_enabling_retain() returns success.
15196 		 */
15197 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15198 		ASSERT(rval == 0);
15199 
15200 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15201 	}
15202 }
15203 
15204 /*
15205  * DTrace Helper Functions
15206  */
15207 static void
15208 dtrace_helper_trace(dtrace_helper_action_t *helper,
15209     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15210 {
15211 	uint32_t size, next, nnext, i;
15212 	dtrace_helptrace_t *ent, *buffer;
15213 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15214 
15215 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15216 		return;
15217 
15218 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15219 
15220 	/*
15221 	 * What would a tracing framework be without its own tracing
15222 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15223 	 */
15224 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15225 	    sizeof (uint64_t) - sizeof (uint64_t);
15226 
15227 	/*
15228 	 * Iterate until we can allocate a slot in the trace buffer.
15229 	 */
15230 	do {
15231 		next = dtrace_helptrace_next;
15232 
15233 		if (next + size < dtrace_helptrace_bufsize) {
15234 			nnext = next + size;
15235 		} else {
15236 			nnext = size;
15237 		}
15238 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15239 
15240 	/*
15241 	 * We have our slot; fill it in.
15242 	 */
15243 	if (nnext == size) {
15244 		dtrace_helptrace_wrapped++;
15245 		next = 0;
15246 	}
15247 
15248 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15249 	ent->dtht_helper = helper;
15250 	ent->dtht_where = where;
15251 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15252 
15253 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15254 	    mstate->dtms_fltoffs : -1;
15255 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15256 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15257 
15258 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15259 		dtrace_statvar_t *svar;
15260 
15261 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15262 			continue;
15263 
15264 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15265 		ent->dtht_locals[i] =
15266 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15267 	}
15268 }
15269 
15270 static uint64_t
15271 dtrace_helper(int which, dtrace_mstate_t *mstate,
15272     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15273 {
15274 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15275 	uint64_t sarg0 = mstate->dtms_arg[0];
15276 	uint64_t sarg1 = mstate->dtms_arg[1];
15277 	uint64_t rval = 0;
15278 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15279 	dtrace_helper_action_t *helper;
15280 	dtrace_vstate_t *vstate;
15281 	dtrace_difo_t *pred;
15282 	int i, trace = dtrace_helptrace_buffer != NULL;
15283 
15284 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15285 
15286 	if (helpers == NULL)
15287 		return (0);
15288 
15289 	if ((helper = helpers->dthps_actions[which]) == NULL)
15290 		return (0);
15291 
15292 	vstate = &helpers->dthps_vstate;
15293 	mstate->dtms_arg[0] = arg0;
15294 	mstate->dtms_arg[1] = arg1;
15295 
15296 	/*
15297 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15298 	 * we'll call the corresponding actions.  Note that the below calls
15299 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15300 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15301 	 * the stored DIF offset with its own (which is the desired behavior).
15302 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15303 	 * from machine state; this is okay, too.
15304 	 */
15305 	for (; helper != NULL; helper = helper->dtha_next) {
15306 		if ((pred = helper->dtha_predicate) != NULL) {
15307 			if (trace)
15308 				dtrace_helper_trace(helper, mstate, vstate, 0);
15309 
15310 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15311 				goto next;
15312 
15313 			if (*flags & CPU_DTRACE_FAULT)
15314 				goto err;
15315 		}
15316 
15317 		for (i = 0; i < helper->dtha_nactions; i++) {
15318 			if (trace)
15319 				dtrace_helper_trace(helper,
15320 				    mstate, vstate, i + 1);
15321 
15322 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15323 			    mstate, vstate, state);
15324 
15325 			if (*flags & CPU_DTRACE_FAULT)
15326 				goto err;
15327 		}
15328 
15329 next:
15330 		if (trace)
15331 			dtrace_helper_trace(helper, mstate, vstate,
15332 			    DTRACE_HELPTRACE_NEXT);
15333 	}
15334 
15335 	if (trace)
15336 		dtrace_helper_trace(helper, mstate, vstate,
15337 		    DTRACE_HELPTRACE_DONE);
15338 
15339 	/*
15340 	 * Restore the arg0 that we saved upon entry.
15341 	 */
15342 	mstate->dtms_arg[0] = sarg0;
15343 	mstate->dtms_arg[1] = sarg1;
15344 
15345 	return (rval);
15346 
15347 err:
15348 	if (trace)
15349 		dtrace_helper_trace(helper, mstate, vstate,
15350 		    DTRACE_HELPTRACE_ERR);
15351 
15352 	/*
15353 	 * Restore the arg0 that we saved upon entry.
15354 	 */
15355 	mstate->dtms_arg[0] = sarg0;
15356 	mstate->dtms_arg[1] = sarg1;
15357 
15358 	return (0);
15359 }
15360 
15361 static void
15362 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15363     dtrace_vstate_t *vstate)
15364 {
15365 	int i;
15366 
15367 	if (helper->dtha_predicate != NULL)
15368 		dtrace_difo_release(helper->dtha_predicate, vstate);
15369 
15370 	for (i = 0; i < helper->dtha_nactions; i++) {
15371 		ASSERT(helper->dtha_actions[i] != NULL);
15372 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15373 	}
15374 
15375 	kmem_free(helper->dtha_actions,
15376 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15377 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15378 }
15379 
15380 static int
15381 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15382 {
15383 	proc_t *p = curproc;
15384 	dtrace_vstate_t *vstate;
15385 	int i;
15386 
15387 	if (help == NULL)
15388 		help = p->p_dtrace_helpers;
15389 
15390 	ASSERT(MUTEX_HELD(&dtrace_lock));
15391 
15392 	if (help == NULL || gen > help->dthps_generation)
15393 		return (EINVAL);
15394 
15395 	vstate = &help->dthps_vstate;
15396 
15397 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15398 		dtrace_helper_action_t *last = NULL, *h, *next;
15399 
15400 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15401 			next = h->dtha_next;
15402 
15403 			if (h->dtha_generation == gen) {
15404 				if (last != NULL) {
15405 					last->dtha_next = next;
15406 				} else {
15407 					help->dthps_actions[i] = next;
15408 				}
15409 
15410 				dtrace_helper_action_destroy(h, vstate);
15411 			} else {
15412 				last = h;
15413 			}
15414 		}
15415 	}
15416 
15417 	/*
15418 	 * Interate until we've cleared out all helper providers with the
15419 	 * given generation number.
15420 	 */
15421 	for (;;) {
15422 		dtrace_helper_provider_t *prov;
15423 
15424 		/*
15425 		 * Look for a helper provider with the right generation. We
15426 		 * have to start back at the beginning of the list each time
15427 		 * because we drop dtrace_lock. It's unlikely that we'll make
15428 		 * more than two passes.
15429 		 */
15430 		for (i = 0; i < help->dthps_nprovs; i++) {
15431 			prov = help->dthps_provs[i];
15432 
15433 			if (prov->dthp_generation == gen)
15434 				break;
15435 		}
15436 
15437 		/*
15438 		 * If there were no matches, we're done.
15439 		 */
15440 		if (i == help->dthps_nprovs)
15441 			break;
15442 
15443 		/*
15444 		 * Move the last helper provider into this slot.
15445 		 */
15446 		help->dthps_nprovs--;
15447 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15448 		help->dthps_provs[help->dthps_nprovs] = NULL;
15449 
15450 		mutex_exit(&dtrace_lock);
15451 
15452 		/*
15453 		 * If we have a meta provider, remove this helper provider.
15454 		 */
15455 		mutex_enter(&dtrace_meta_lock);
15456 		if (dtrace_meta_pid != NULL) {
15457 			ASSERT(dtrace_deferred_pid == NULL);
15458 			dtrace_helper_provider_remove(&prov->dthp_prov,
15459 			    p->p_pid);
15460 		}
15461 		mutex_exit(&dtrace_meta_lock);
15462 
15463 		dtrace_helper_provider_destroy(prov);
15464 
15465 		mutex_enter(&dtrace_lock);
15466 	}
15467 
15468 	return (0);
15469 }
15470 
15471 static int
15472 dtrace_helper_validate(dtrace_helper_action_t *helper)
15473 {
15474 	int err = 0, i;
15475 	dtrace_difo_t *dp;
15476 
15477 	if ((dp = helper->dtha_predicate) != NULL)
15478 		err += dtrace_difo_validate_helper(dp);
15479 
15480 	for (i = 0; i < helper->dtha_nactions; i++)
15481 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15482 
15483 	return (err == 0);
15484 }
15485 
15486 static int
15487 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15488     dtrace_helpers_t *help)
15489 {
15490 	dtrace_helper_action_t *helper, *last;
15491 	dtrace_actdesc_t *act;
15492 	dtrace_vstate_t *vstate;
15493 	dtrace_predicate_t *pred;
15494 	int count = 0, nactions = 0, i;
15495 
15496 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15497 		return (EINVAL);
15498 
15499 	last = help->dthps_actions[which];
15500 	vstate = &help->dthps_vstate;
15501 
15502 	for (count = 0; last != NULL; last = last->dtha_next) {
15503 		count++;
15504 		if (last->dtha_next == NULL)
15505 			break;
15506 	}
15507 
15508 	/*
15509 	 * If we already have dtrace_helper_actions_max helper actions for this
15510 	 * helper action type, we'll refuse to add a new one.
15511 	 */
15512 	if (count >= dtrace_helper_actions_max)
15513 		return (ENOSPC);
15514 
15515 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15516 	helper->dtha_generation = help->dthps_generation;
15517 
15518 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15519 		ASSERT(pred->dtp_difo != NULL);
15520 		dtrace_difo_hold(pred->dtp_difo);
15521 		helper->dtha_predicate = pred->dtp_difo;
15522 	}
15523 
15524 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15525 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15526 			goto err;
15527 
15528 		if (act->dtad_difo == NULL)
15529 			goto err;
15530 
15531 		nactions++;
15532 	}
15533 
15534 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15535 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15536 
15537 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15538 		dtrace_difo_hold(act->dtad_difo);
15539 		helper->dtha_actions[i++] = act->dtad_difo;
15540 	}
15541 
15542 	if (!dtrace_helper_validate(helper))
15543 		goto err;
15544 
15545 	if (last == NULL) {
15546 		help->dthps_actions[which] = helper;
15547 	} else {
15548 		last->dtha_next = helper;
15549 	}
15550 
15551 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15552 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15553 		dtrace_helptrace_next = 0;
15554 	}
15555 
15556 	return (0);
15557 err:
15558 	dtrace_helper_action_destroy(helper, vstate);
15559 	return (EINVAL);
15560 }
15561 
15562 static void
15563 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15564     dof_helper_t *dofhp)
15565 {
15566 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15567 
15568 	mutex_enter(&dtrace_meta_lock);
15569 	mutex_enter(&dtrace_lock);
15570 
15571 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15572 		/*
15573 		 * If the dtrace module is loaded but not attached, or if
15574 		 * there aren't isn't a meta provider registered to deal with
15575 		 * these provider descriptions, we need to postpone creating
15576 		 * the actual providers until later.
15577 		 */
15578 
15579 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15580 		    dtrace_deferred_pid != help) {
15581 			help->dthps_deferred = 1;
15582 			help->dthps_pid = p->p_pid;
15583 			help->dthps_next = dtrace_deferred_pid;
15584 			help->dthps_prev = NULL;
15585 			if (dtrace_deferred_pid != NULL)
15586 				dtrace_deferred_pid->dthps_prev = help;
15587 			dtrace_deferred_pid = help;
15588 		}
15589 
15590 		mutex_exit(&dtrace_lock);
15591 
15592 	} else if (dofhp != NULL) {
15593 		/*
15594 		 * If the dtrace module is loaded and we have a particular
15595 		 * helper provider description, pass that off to the
15596 		 * meta provider.
15597 		 */
15598 
15599 		mutex_exit(&dtrace_lock);
15600 
15601 		dtrace_helper_provide(dofhp, p->p_pid);
15602 
15603 	} else {
15604 		/*
15605 		 * Otherwise, just pass all the helper provider descriptions
15606 		 * off to the meta provider.
15607 		 */
15608 
15609 		int i;
15610 		mutex_exit(&dtrace_lock);
15611 
15612 		for (i = 0; i < help->dthps_nprovs; i++) {
15613 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15614 			    p->p_pid);
15615 		}
15616 	}
15617 
15618 	mutex_exit(&dtrace_meta_lock);
15619 }
15620 
15621 static int
15622 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
15623 {
15624 	dtrace_helper_provider_t *hprov, **tmp_provs;
15625 	uint_t tmp_maxprovs, i;
15626 
15627 	ASSERT(MUTEX_HELD(&dtrace_lock));
15628 	ASSERT(help != NULL);
15629 
15630 	/*
15631 	 * If we already have dtrace_helper_providers_max helper providers,
15632 	 * we're refuse to add a new one.
15633 	 */
15634 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15635 		return (ENOSPC);
15636 
15637 	/*
15638 	 * Check to make sure this isn't a duplicate.
15639 	 */
15640 	for (i = 0; i < help->dthps_nprovs; i++) {
15641 		if (dofhp->dofhp_dof ==
15642 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15643 			return (EALREADY);
15644 	}
15645 
15646 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15647 	hprov->dthp_prov = *dofhp;
15648 	hprov->dthp_ref = 1;
15649 	hprov->dthp_generation = gen;
15650 
15651 	/*
15652 	 * Allocate a bigger table for helper providers if it's already full.
15653 	 */
15654 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15655 		tmp_maxprovs = help->dthps_maxprovs;
15656 		tmp_provs = help->dthps_provs;
15657 
15658 		if (help->dthps_maxprovs == 0)
15659 			help->dthps_maxprovs = 2;
15660 		else
15661 			help->dthps_maxprovs *= 2;
15662 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15663 			help->dthps_maxprovs = dtrace_helper_providers_max;
15664 
15665 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15666 
15667 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15668 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15669 
15670 		if (tmp_provs != NULL) {
15671 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15672 			    sizeof (dtrace_helper_provider_t *));
15673 			kmem_free(tmp_provs, tmp_maxprovs *
15674 			    sizeof (dtrace_helper_provider_t *));
15675 		}
15676 	}
15677 
15678 	help->dthps_provs[help->dthps_nprovs] = hprov;
15679 	help->dthps_nprovs++;
15680 
15681 	return (0);
15682 }
15683 
15684 static void
15685 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15686 {
15687 	mutex_enter(&dtrace_lock);
15688 
15689 	if (--hprov->dthp_ref == 0) {
15690 		dof_hdr_t *dof;
15691 		mutex_exit(&dtrace_lock);
15692 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15693 		dtrace_dof_destroy(dof);
15694 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15695 	} else {
15696 		mutex_exit(&dtrace_lock);
15697 	}
15698 }
15699 
15700 static int
15701 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15702 {
15703 	uintptr_t daddr = (uintptr_t)dof;
15704 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15705 	dof_provider_t *provider;
15706 	dof_probe_t *probe;
15707 	uint8_t *arg;
15708 	char *strtab, *typestr;
15709 	dof_stridx_t typeidx;
15710 	size_t typesz;
15711 	uint_t nprobes, j, k;
15712 
15713 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15714 
15715 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15716 		dtrace_dof_error(dof, "misaligned section offset");
15717 		return (-1);
15718 	}
15719 
15720 	/*
15721 	 * The section needs to be large enough to contain the DOF provider
15722 	 * structure appropriate for the given version.
15723 	 */
15724 	if (sec->dofs_size <
15725 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15726 	    offsetof(dof_provider_t, dofpv_prenoffs) :
15727 	    sizeof (dof_provider_t))) {
15728 		dtrace_dof_error(dof, "provider section too small");
15729 		return (-1);
15730 	}
15731 
15732 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15733 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15734 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15735 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15736 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15737 
15738 	if (str_sec == NULL || prb_sec == NULL ||
15739 	    arg_sec == NULL || off_sec == NULL)
15740 		return (-1);
15741 
15742 	enoff_sec = NULL;
15743 
15744 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15745 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15746 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15747 	    provider->dofpv_prenoffs)) == NULL)
15748 		return (-1);
15749 
15750 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15751 
15752 	if (provider->dofpv_name >= str_sec->dofs_size ||
15753 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15754 		dtrace_dof_error(dof, "invalid provider name");
15755 		return (-1);
15756 	}
15757 
15758 	if (prb_sec->dofs_entsize == 0 ||
15759 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15760 		dtrace_dof_error(dof, "invalid entry size");
15761 		return (-1);
15762 	}
15763 
15764 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15765 		dtrace_dof_error(dof, "misaligned entry size");
15766 		return (-1);
15767 	}
15768 
15769 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15770 		dtrace_dof_error(dof, "invalid entry size");
15771 		return (-1);
15772 	}
15773 
15774 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15775 		dtrace_dof_error(dof, "misaligned section offset");
15776 		return (-1);
15777 	}
15778 
15779 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15780 		dtrace_dof_error(dof, "invalid entry size");
15781 		return (-1);
15782 	}
15783 
15784 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15785 
15786 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15787 
15788 	/*
15789 	 * Take a pass through the probes to check for errors.
15790 	 */
15791 	for (j = 0; j < nprobes; j++) {
15792 		probe = (dof_probe_t *)(uintptr_t)(daddr +
15793 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15794 
15795 		if (probe->dofpr_func >= str_sec->dofs_size) {
15796 			dtrace_dof_error(dof, "invalid function name");
15797 			return (-1);
15798 		}
15799 
15800 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15801 			dtrace_dof_error(dof, "function name too long");
15802 			return (-1);
15803 		}
15804 
15805 		if (probe->dofpr_name >= str_sec->dofs_size ||
15806 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15807 			dtrace_dof_error(dof, "invalid probe name");
15808 			return (-1);
15809 		}
15810 
15811 		/*
15812 		 * The offset count must not wrap the index, and the offsets
15813 		 * must also not overflow the section's data.
15814 		 */
15815 		if (probe->dofpr_offidx + probe->dofpr_noffs <
15816 		    probe->dofpr_offidx ||
15817 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15818 		    off_sec->dofs_entsize > off_sec->dofs_size) {
15819 			dtrace_dof_error(dof, "invalid probe offset");
15820 			return (-1);
15821 		}
15822 
15823 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15824 			/*
15825 			 * If there's no is-enabled offset section, make sure
15826 			 * there aren't any is-enabled offsets. Otherwise
15827 			 * perform the same checks as for probe offsets
15828 			 * (immediately above).
15829 			 */
15830 			if (enoff_sec == NULL) {
15831 				if (probe->dofpr_enoffidx != 0 ||
15832 				    probe->dofpr_nenoffs != 0) {
15833 					dtrace_dof_error(dof, "is-enabled "
15834 					    "offsets with null section");
15835 					return (-1);
15836 				}
15837 			} else if (probe->dofpr_enoffidx +
15838 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15839 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15840 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15841 				dtrace_dof_error(dof, "invalid is-enabled "
15842 				    "offset");
15843 				return (-1);
15844 			}
15845 
15846 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15847 				dtrace_dof_error(dof, "zero probe and "
15848 				    "is-enabled offsets");
15849 				return (-1);
15850 			}
15851 		} else if (probe->dofpr_noffs == 0) {
15852 			dtrace_dof_error(dof, "zero probe offsets");
15853 			return (-1);
15854 		}
15855 
15856 		if (probe->dofpr_argidx + probe->dofpr_xargc <
15857 		    probe->dofpr_argidx ||
15858 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15859 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15860 			dtrace_dof_error(dof, "invalid args");
15861 			return (-1);
15862 		}
15863 
15864 		typeidx = probe->dofpr_nargv;
15865 		typestr = strtab + probe->dofpr_nargv;
15866 		for (k = 0; k < probe->dofpr_nargc; k++) {
15867 			if (typeidx >= str_sec->dofs_size) {
15868 				dtrace_dof_error(dof, "bad "
15869 				    "native argument type");
15870 				return (-1);
15871 			}
15872 
15873 			typesz = strlen(typestr) + 1;
15874 			if (typesz > DTRACE_ARGTYPELEN) {
15875 				dtrace_dof_error(dof, "native "
15876 				    "argument type too long");
15877 				return (-1);
15878 			}
15879 			typeidx += typesz;
15880 			typestr += typesz;
15881 		}
15882 
15883 		typeidx = probe->dofpr_xargv;
15884 		typestr = strtab + probe->dofpr_xargv;
15885 		for (k = 0; k < probe->dofpr_xargc; k++) {
15886 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15887 				dtrace_dof_error(dof, "bad "
15888 				    "native argument index");
15889 				return (-1);
15890 			}
15891 
15892 			if (typeidx >= str_sec->dofs_size) {
15893 				dtrace_dof_error(dof, "bad "
15894 				    "translated argument type");
15895 				return (-1);
15896 			}
15897 
15898 			typesz = strlen(typestr) + 1;
15899 			if (typesz > DTRACE_ARGTYPELEN) {
15900 				dtrace_dof_error(dof, "translated argument "
15901 				    "type too long");
15902 				return (-1);
15903 			}
15904 
15905 			typeidx += typesz;
15906 			typestr += typesz;
15907 		}
15908 	}
15909 
15910 	return (0);
15911 }
15912 
15913 static int
15914 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15915 {
15916 	dtrace_helpers_t *help;
15917 	dtrace_vstate_t *vstate;
15918 	dtrace_enabling_t *enab = NULL;
15919 	proc_t *p = curproc;
15920 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15921 	uintptr_t daddr = (uintptr_t)dof;
15922 
15923 	ASSERT(MUTEX_HELD(&dtrace_lock));
15924 
15925 #ifdef __FreeBSD__
15926 	if (dhp->dofhp_pid != p->p_pid) {
15927 		if ((p = pfind(dhp->dofhp_pid)) == NULL)
15928 			return (-1);
15929 		if (!P_SHOULDSTOP(p) ||
15930 		    (p->p_flag & P_TRACED) == 0 ||
15931 		    p->p_pptr->p_pid != curproc->p_pid) {
15932 			PROC_UNLOCK(p);
15933 			return (-1);
15934 		}
15935 		PROC_UNLOCK(p);
15936 	}
15937 #endif
15938 
15939 	if ((help = p->p_dtrace_helpers) == NULL)
15940 		help = dtrace_helpers_create(p);
15941 
15942 	vstate = &help->dthps_vstate;
15943 
15944 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15945 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15946 		dtrace_dof_destroy(dof);
15947 		return (rv);
15948 	}
15949 
15950 	/*
15951 	 * Look for helper providers and validate their descriptions.
15952 	 */
15953 	if (dhp != NULL) {
15954 		for (i = 0; i < dof->dofh_secnum; i++) {
15955 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15956 			    dof->dofh_secoff + i * dof->dofh_secsize);
15957 
15958 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15959 				continue;
15960 
15961 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15962 				dtrace_enabling_destroy(enab);
15963 				dtrace_dof_destroy(dof);
15964 				return (-1);
15965 			}
15966 
15967 			nprovs++;
15968 		}
15969 	}
15970 
15971 	/*
15972 	 * Now we need to walk through the ECB descriptions in the enabling.
15973 	 */
15974 	for (i = 0; i < enab->dten_ndesc; i++) {
15975 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15976 		dtrace_probedesc_t *desc = &ep->dted_probe;
15977 
15978 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15979 			continue;
15980 
15981 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15982 			continue;
15983 
15984 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15985 			continue;
15986 
15987 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15988 		    ep, help)) != 0) {
15989 			/*
15990 			 * Adding this helper action failed -- we are now going
15991 			 * to rip out the entire generation and return failure.
15992 			 */
15993 			(void) dtrace_helper_destroygen(help,
15994 			    help->dthps_generation);
15995 			dtrace_enabling_destroy(enab);
15996 			dtrace_dof_destroy(dof);
15997 			return (-1);
15998 		}
15999 
16000 		nhelpers++;
16001 	}
16002 
16003 	if (nhelpers < enab->dten_ndesc)
16004 		dtrace_dof_error(dof, "unmatched helpers");
16005 
16006 	gen = help->dthps_generation++;
16007 	dtrace_enabling_destroy(enab);
16008 
16009 	if (dhp != NULL && nprovs > 0) {
16010 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16011 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16012 			mutex_exit(&dtrace_lock);
16013 			dtrace_helper_provider_register(p, help, dhp);
16014 			mutex_enter(&dtrace_lock);
16015 
16016 			destroy = 0;
16017 		}
16018 	}
16019 
16020 	if (destroy)
16021 		dtrace_dof_destroy(dof);
16022 
16023 	return (gen);
16024 }
16025 
16026 static dtrace_helpers_t *
16027 dtrace_helpers_create(proc_t *p)
16028 {
16029 	dtrace_helpers_t *help;
16030 
16031 	ASSERT(MUTEX_HELD(&dtrace_lock));
16032 	ASSERT(p->p_dtrace_helpers == NULL);
16033 
16034 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16035 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16036 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16037 
16038 	p->p_dtrace_helpers = help;
16039 	dtrace_helpers++;
16040 
16041 	return (help);
16042 }
16043 
16044 #ifdef illumos
16045 static
16046 #endif
16047 void
16048 dtrace_helpers_destroy(proc_t *p)
16049 {
16050 	dtrace_helpers_t *help;
16051 	dtrace_vstate_t *vstate;
16052 #ifdef illumos
16053 	proc_t *p = curproc;
16054 #endif
16055 	int i;
16056 
16057 	mutex_enter(&dtrace_lock);
16058 
16059 	ASSERT(p->p_dtrace_helpers != NULL);
16060 	ASSERT(dtrace_helpers > 0);
16061 
16062 	help = p->p_dtrace_helpers;
16063 	vstate = &help->dthps_vstate;
16064 
16065 	/*
16066 	 * We're now going to lose the help from this process.
16067 	 */
16068 	p->p_dtrace_helpers = NULL;
16069 	dtrace_sync();
16070 
16071 	/*
16072 	 * Destory the helper actions.
16073 	 */
16074 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16075 		dtrace_helper_action_t *h, *next;
16076 
16077 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16078 			next = h->dtha_next;
16079 			dtrace_helper_action_destroy(h, vstate);
16080 			h = next;
16081 		}
16082 	}
16083 
16084 	mutex_exit(&dtrace_lock);
16085 
16086 	/*
16087 	 * Destroy the helper providers.
16088 	 */
16089 	if (help->dthps_maxprovs > 0) {
16090 		mutex_enter(&dtrace_meta_lock);
16091 		if (dtrace_meta_pid != NULL) {
16092 			ASSERT(dtrace_deferred_pid == NULL);
16093 
16094 			for (i = 0; i < help->dthps_nprovs; i++) {
16095 				dtrace_helper_provider_remove(
16096 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16097 			}
16098 		} else {
16099 			mutex_enter(&dtrace_lock);
16100 			ASSERT(help->dthps_deferred == 0 ||
16101 			    help->dthps_next != NULL ||
16102 			    help->dthps_prev != NULL ||
16103 			    help == dtrace_deferred_pid);
16104 
16105 			/*
16106 			 * Remove the helper from the deferred list.
16107 			 */
16108 			if (help->dthps_next != NULL)
16109 				help->dthps_next->dthps_prev = help->dthps_prev;
16110 			if (help->dthps_prev != NULL)
16111 				help->dthps_prev->dthps_next = help->dthps_next;
16112 			if (dtrace_deferred_pid == help) {
16113 				dtrace_deferred_pid = help->dthps_next;
16114 				ASSERT(help->dthps_prev == NULL);
16115 			}
16116 
16117 			mutex_exit(&dtrace_lock);
16118 		}
16119 
16120 		mutex_exit(&dtrace_meta_lock);
16121 
16122 		for (i = 0; i < help->dthps_nprovs; i++) {
16123 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16124 		}
16125 
16126 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16127 		    sizeof (dtrace_helper_provider_t *));
16128 	}
16129 
16130 	mutex_enter(&dtrace_lock);
16131 
16132 	dtrace_vstate_fini(&help->dthps_vstate);
16133 	kmem_free(help->dthps_actions,
16134 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16135 	kmem_free(help, sizeof (dtrace_helpers_t));
16136 
16137 	--dtrace_helpers;
16138 	mutex_exit(&dtrace_lock);
16139 }
16140 
16141 #ifdef illumos
16142 static
16143 #endif
16144 void
16145 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16146 {
16147 	dtrace_helpers_t *help, *newhelp;
16148 	dtrace_helper_action_t *helper, *new, *last;
16149 	dtrace_difo_t *dp;
16150 	dtrace_vstate_t *vstate;
16151 	int i, j, sz, hasprovs = 0;
16152 
16153 	mutex_enter(&dtrace_lock);
16154 	ASSERT(from->p_dtrace_helpers != NULL);
16155 	ASSERT(dtrace_helpers > 0);
16156 
16157 	help = from->p_dtrace_helpers;
16158 	newhelp = dtrace_helpers_create(to);
16159 	ASSERT(to->p_dtrace_helpers != NULL);
16160 
16161 	newhelp->dthps_generation = help->dthps_generation;
16162 	vstate = &newhelp->dthps_vstate;
16163 
16164 	/*
16165 	 * Duplicate the helper actions.
16166 	 */
16167 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16168 		if ((helper = help->dthps_actions[i]) == NULL)
16169 			continue;
16170 
16171 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16172 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16173 			    KM_SLEEP);
16174 			new->dtha_generation = helper->dtha_generation;
16175 
16176 			if ((dp = helper->dtha_predicate) != NULL) {
16177 				dp = dtrace_difo_duplicate(dp, vstate);
16178 				new->dtha_predicate = dp;
16179 			}
16180 
16181 			new->dtha_nactions = helper->dtha_nactions;
16182 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16183 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16184 
16185 			for (j = 0; j < new->dtha_nactions; j++) {
16186 				dtrace_difo_t *dp = helper->dtha_actions[j];
16187 
16188 				ASSERT(dp != NULL);
16189 				dp = dtrace_difo_duplicate(dp, vstate);
16190 				new->dtha_actions[j] = dp;
16191 			}
16192 
16193 			if (last != NULL) {
16194 				last->dtha_next = new;
16195 			} else {
16196 				newhelp->dthps_actions[i] = new;
16197 			}
16198 
16199 			last = new;
16200 		}
16201 	}
16202 
16203 	/*
16204 	 * Duplicate the helper providers and register them with the
16205 	 * DTrace framework.
16206 	 */
16207 	if (help->dthps_nprovs > 0) {
16208 		newhelp->dthps_nprovs = help->dthps_nprovs;
16209 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16210 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16211 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16212 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16213 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16214 			newhelp->dthps_provs[i]->dthp_ref++;
16215 		}
16216 
16217 		hasprovs = 1;
16218 	}
16219 
16220 	mutex_exit(&dtrace_lock);
16221 
16222 	if (hasprovs)
16223 		dtrace_helper_provider_register(to, newhelp, NULL);
16224 }
16225 
16226 /*
16227  * DTrace Hook Functions
16228  */
16229 static void
16230 dtrace_module_loaded(modctl_t *ctl)
16231 {
16232 	dtrace_provider_t *prv;
16233 
16234 	mutex_enter(&dtrace_provider_lock);
16235 #ifdef illumos
16236 	mutex_enter(&mod_lock);
16237 #endif
16238 
16239 #ifdef illumos
16240 	ASSERT(ctl->mod_busy);
16241 #endif
16242 
16243 	/*
16244 	 * We're going to call each providers per-module provide operation
16245 	 * specifying only this module.
16246 	 */
16247 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16248 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16249 
16250 #ifdef illumos
16251 	mutex_exit(&mod_lock);
16252 #endif
16253 	mutex_exit(&dtrace_provider_lock);
16254 
16255 	/*
16256 	 * If we have any retained enablings, we need to match against them.
16257 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16258 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16259 	 * module.  (In particular, this happens when loading scheduling
16260 	 * classes.)  So if we have any retained enablings, we need to dispatch
16261 	 * our task queue to do the match for us.
16262 	 */
16263 	mutex_enter(&dtrace_lock);
16264 
16265 	if (dtrace_retained == NULL) {
16266 		mutex_exit(&dtrace_lock);
16267 		return;
16268 	}
16269 
16270 	(void) taskq_dispatch(dtrace_taskq,
16271 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16272 
16273 	mutex_exit(&dtrace_lock);
16274 
16275 	/*
16276 	 * And now, for a little heuristic sleaze:  in general, we want to
16277 	 * match modules as soon as they load.  However, we cannot guarantee
16278 	 * this, because it would lead us to the lock ordering violation
16279 	 * outlined above.  The common case, of course, is that cpu_lock is
16280 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16281 	 * long enough for the task queue to do its work.  If it's not, it's
16282 	 * not a serious problem -- it just means that the module that we
16283 	 * just loaded may not be immediately instrumentable.
16284 	 */
16285 	delay(1);
16286 }
16287 
16288 static void
16289 #ifdef illumos
16290 dtrace_module_unloaded(modctl_t *ctl)
16291 #else
16292 dtrace_module_unloaded(modctl_t *ctl, int *error)
16293 #endif
16294 {
16295 	dtrace_probe_t template, *probe, *first, *next;
16296 	dtrace_provider_t *prov;
16297 #ifndef illumos
16298 	char modname[DTRACE_MODNAMELEN];
16299 	size_t len;
16300 #endif
16301 
16302 #ifdef illumos
16303 	template.dtpr_mod = ctl->mod_modname;
16304 #else
16305 	/* Handle the fact that ctl->filename may end in ".ko". */
16306 	strlcpy(modname, ctl->filename, sizeof(modname));
16307 	len = strlen(ctl->filename);
16308 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16309 		modname[len - 3] = '\0';
16310 	template.dtpr_mod = modname;
16311 #endif
16312 
16313 	mutex_enter(&dtrace_provider_lock);
16314 #ifdef illumos
16315 	mutex_enter(&mod_lock);
16316 #endif
16317 	mutex_enter(&dtrace_lock);
16318 
16319 #ifndef illumos
16320 	if (ctl->nenabled > 0) {
16321 		/* Don't allow unloads if a probe is enabled. */
16322 		mutex_exit(&dtrace_provider_lock);
16323 		mutex_exit(&dtrace_lock);
16324 		*error = -1;
16325 		printf(
16326 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16327 		return;
16328 	}
16329 #endif
16330 
16331 	if (dtrace_bymod == NULL) {
16332 		/*
16333 		 * The DTrace module is loaded (obviously) but not attached;
16334 		 * we don't have any work to do.
16335 		 */
16336 		mutex_exit(&dtrace_provider_lock);
16337 #ifdef illumos
16338 		mutex_exit(&mod_lock);
16339 #endif
16340 		mutex_exit(&dtrace_lock);
16341 		return;
16342 	}
16343 
16344 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16345 	    probe != NULL; probe = probe->dtpr_nextmod) {
16346 		if (probe->dtpr_ecb != NULL) {
16347 			mutex_exit(&dtrace_provider_lock);
16348 #ifdef illumos
16349 			mutex_exit(&mod_lock);
16350 #endif
16351 			mutex_exit(&dtrace_lock);
16352 
16353 			/*
16354 			 * This shouldn't _actually_ be possible -- we're
16355 			 * unloading a module that has an enabled probe in it.
16356 			 * (It's normally up to the provider to make sure that
16357 			 * this can't happen.)  However, because dtps_enable()
16358 			 * doesn't have a failure mode, there can be an
16359 			 * enable/unload race.  Upshot:  we don't want to
16360 			 * assert, but we're not going to disable the
16361 			 * probe, either.
16362 			 */
16363 			if (dtrace_err_verbose) {
16364 #ifdef illumos
16365 				cmn_err(CE_WARN, "unloaded module '%s' had "
16366 				    "enabled probes", ctl->mod_modname);
16367 #else
16368 				cmn_err(CE_WARN, "unloaded module '%s' had "
16369 				    "enabled probes", modname);
16370 #endif
16371 			}
16372 
16373 			return;
16374 		}
16375 	}
16376 
16377 	probe = first;
16378 
16379 	for (first = NULL; probe != NULL; probe = next) {
16380 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16381 
16382 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16383 
16384 		next = probe->dtpr_nextmod;
16385 		dtrace_hash_remove(dtrace_bymod, probe);
16386 		dtrace_hash_remove(dtrace_byfunc, probe);
16387 		dtrace_hash_remove(dtrace_byname, probe);
16388 
16389 		if (first == NULL) {
16390 			first = probe;
16391 			probe->dtpr_nextmod = NULL;
16392 		} else {
16393 			probe->dtpr_nextmod = first;
16394 			first = probe;
16395 		}
16396 	}
16397 
16398 	/*
16399 	 * We've removed all of the module's probes from the hash chains and
16400 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16401 	 * everyone has cleared out from any probe array processing.
16402 	 */
16403 	dtrace_sync();
16404 
16405 	for (probe = first; probe != NULL; probe = first) {
16406 		first = probe->dtpr_nextmod;
16407 		prov = probe->dtpr_provider;
16408 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16409 		    probe->dtpr_arg);
16410 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16411 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16412 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16413 #ifdef illumos
16414 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16415 #else
16416 		free_unr(dtrace_arena, probe->dtpr_id);
16417 #endif
16418 		kmem_free(probe, sizeof (dtrace_probe_t));
16419 	}
16420 
16421 	mutex_exit(&dtrace_lock);
16422 #ifdef illumos
16423 	mutex_exit(&mod_lock);
16424 #endif
16425 	mutex_exit(&dtrace_provider_lock);
16426 }
16427 
16428 #ifndef illumos
16429 static void
16430 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16431 {
16432 
16433 	dtrace_module_loaded(lf);
16434 }
16435 
16436 static void
16437 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16438 {
16439 
16440 	if (*error != 0)
16441 		/* We already have an error, so don't do anything. */
16442 		return;
16443 	dtrace_module_unloaded(lf, error);
16444 }
16445 #endif
16446 
16447 #ifdef illumos
16448 static void
16449 dtrace_suspend(void)
16450 {
16451 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16452 }
16453 
16454 static void
16455 dtrace_resume(void)
16456 {
16457 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16458 }
16459 #endif
16460 
16461 static int
16462 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16463 {
16464 	ASSERT(MUTEX_HELD(&cpu_lock));
16465 	mutex_enter(&dtrace_lock);
16466 
16467 	switch (what) {
16468 	case CPU_CONFIG: {
16469 		dtrace_state_t *state;
16470 		dtrace_optval_t *opt, rs, c;
16471 
16472 		/*
16473 		 * For now, we only allocate a new buffer for anonymous state.
16474 		 */
16475 		if ((state = dtrace_anon.dta_state) == NULL)
16476 			break;
16477 
16478 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16479 			break;
16480 
16481 		opt = state->dts_options;
16482 		c = opt[DTRACEOPT_CPU];
16483 
16484 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16485 			break;
16486 
16487 		/*
16488 		 * Regardless of what the actual policy is, we're going to
16489 		 * temporarily set our resize policy to be manual.  We're
16490 		 * also going to temporarily set our CPU option to denote
16491 		 * the newly configured CPU.
16492 		 */
16493 		rs = opt[DTRACEOPT_BUFRESIZE];
16494 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16495 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16496 
16497 		(void) dtrace_state_buffers(state);
16498 
16499 		opt[DTRACEOPT_BUFRESIZE] = rs;
16500 		opt[DTRACEOPT_CPU] = c;
16501 
16502 		break;
16503 	}
16504 
16505 	case CPU_UNCONFIG:
16506 		/*
16507 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16508 		 * buffer will be freed when the consumer exits.)
16509 		 */
16510 		break;
16511 
16512 	default:
16513 		break;
16514 	}
16515 
16516 	mutex_exit(&dtrace_lock);
16517 	return (0);
16518 }
16519 
16520 #ifdef illumos
16521 static void
16522 dtrace_cpu_setup_initial(processorid_t cpu)
16523 {
16524 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16525 }
16526 #endif
16527 
16528 static void
16529 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16530 {
16531 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16532 		int osize, nsize;
16533 		dtrace_toxrange_t *range;
16534 
16535 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16536 
16537 		if (osize == 0) {
16538 			ASSERT(dtrace_toxrange == NULL);
16539 			ASSERT(dtrace_toxranges_max == 0);
16540 			dtrace_toxranges_max = 1;
16541 		} else {
16542 			dtrace_toxranges_max <<= 1;
16543 		}
16544 
16545 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16546 		range = kmem_zalloc(nsize, KM_SLEEP);
16547 
16548 		if (dtrace_toxrange != NULL) {
16549 			ASSERT(osize != 0);
16550 			bcopy(dtrace_toxrange, range, osize);
16551 			kmem_free(dtrace_toxrange, osize);
16552 		}
16553 
16554 		dtrace_toxrange = range;
16555 	}
16556 
16557 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16558 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16559 
16560 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16561 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16562 	dtrace_toxranges++;
16563 }
16564 
16565 static void
16566 dtrace_getf_barrier()
16567 {
16568 #ifdef illumos
16569 	/*
16570 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16571 	 * that contain calls to getf(), this routine will be called on every
16572 	 * closef() before either the underlying vnode is released or the
16573 	 * file_t itself is freed.  By the time we are here, it is essential
16574 	 * that the file_t can no longer be accessed from a call to getf()
16575 	 * in probe context -- that assures that a dtrace_sync() can be used
16576 	 * to clear out any enablings referring to the old structures.
16577 	 */
16578 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16579 	    kcred->cr_zone->zone_dtrace_getf != 0)
16580 		dtrace_sync();
16581 #endif
16582 }
16583 
16584 /*
16585  * DTrace Driver Cookbook Functions
16586  */
16587 #ifdef illumos
16588 /*ARGSUSED*/
16589 static int
16590 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16591 {
16592 	dtrace_provider_id_t id;
16593 	dtrace_state_t *state = NULL;
16594 	dtrace_enabling_t *enab;
16595 
16596 	mutex_enter(&cpu_lock);
16597 	mutex_enter(&dtrace_provider_lock);
16598 	mutex_enter(&dtrace_lock);
16599 
16600 	if (ddi_soft_state_init(&dtrace_softstate,
16601 	    sizeof (dtrace_state_t), 0) != 0) {
16602 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16603 		mutex_exit(&cpu_lock);
16604 		mutex_exit(&dtrace_provider_lock);
16605 		mutex_exit(&dtrace_lock);
16606 		return (DDI_FAILURE);
16607 	}
16608 
16609 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16610 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16611 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16612 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16613 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16614 		ddi_remove_minor_node(devi, NULL);
16615 		ddi_soft_state_fini(&dtrace_softstate);
16616 		mutex_exit(&cpu_lock);
16617 		mutex_exit(&dtrace_provider_lock);
16618 		mutex_exit(&dtrace_lock);
16619 		return (DDI_FAILURE);
16620 	}
16621 
16622 	ddi_report_dev(devi);
16623 	dtrace_devi = devi;
16624 
16625 	dtrace_modload = dtrace_module_loaded;
16626 	dtrace_modunload = dtrace_module_unloaded;
16627 	dtrace_cpu_init = dtrace_cpu_setup_initial;
16628 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16629 	dtrace_helpers_fork = dtrace_helpers_duplicate;
16630 	dtrace_cpustart_init = dtrace_suspend;
16631 	dtrace_cpustart_fini = dtrace_resume;
16632 	dtrace_debugger_init = dtrace_suspend;
16633 	dtrace_debugger_fini = dtrace_resume;
16634 
16635 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16636 
16637 	ASSERT(MUTEX_HELD(&cpu_lock));
16638 
16639 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16640 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16641 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16642 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16643 	    VM_SLEEP | VMC_IDENTIFIER);
16644 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16645 	    1, INT_MAX, 0);
16646 
16647 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16648 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16649 	    NULL, NULL, NULL, NULL, NULL, 0);
16650 
16651 	ASSERT(MUTEX_HELD(&cpu_lock));
16652 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16653 	    offsetof(dtrace_probe_t, dtpr_nextmod),
16654 	    offsetof(dtrace_probe_t, dtpr_prevmod));
16655 
16656 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16657 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16658 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16659 
16660 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16661 	    offsetof(dtrace_probe_t, dtpr_nextname),
16662 	    offsetof(dtrace_probe_t, dtpr_prevname));
16663 
16664 	if (dtrace_retain_max < 1) {
16665 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16666 		    "setting to 1", dtrace_retain_max);
16667 		dtrace_retain_max = 1;
16668 	}
16669 
16670 	/*
16671 	 * Now discover our toxic ranges.
16672 	 */
16673 	dtrace_toxic_ranges(dtrace_toxrange_add);
16674 
16675 	/*
16676 	 * Before we register ourselves as a provider to our own framework,
16677 	 * we would like to assert that dtrace_provider is NULL -- but that's
16678 	 * not true if we were loaded as a dependency of a DTrace provider.
16679 	 * Once we've registered, we can assert that dtrace_provider is our
16680 	 * pseudo provider.
16681 	 */
16682 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16683 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16684 
16685 	ASSERT(dtrace_provider != NULL);
16686 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16687 
16688 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16689 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16690 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16691 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16692 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16693 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16694 
16695 	dtrace_anon_property();
16696 	mutex_exit(&cpu_lock);
16697 
16698 	/*
16699 	 * If there are already providers, we must ask them to provide their
16700 	 * probes, and then match any anonymous enabling against them.  Note
16701 	 * that there should be no other retained enablings at this time:
16702 	 * the only retained enablings at this time should be the anonymous
16703 	 * enabling.
16704 	 */
16705 	if (dtrace_anon.dta_enabling != NULL) {
16706 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16707 
16708 		dtrace_enabling_provide(NULL);
16709 		state = dtrace_anon.dta_state;
16710 
16711 		/*
16712 		 * We couldn't hold cpu_lock across the above call to
16713 		 * dtrace_enabling_provide(), but we must hold it to actually
16714 		 * enable the probes.  We have to drop all of our locks, pick
16715 		 * up cpu_lock, and regain our locks before matching the
16716 		 * retained anonymous enabling.
16717 		 */
16718 		mutex_exit(&dtrace_lock);
16719 		mutex_exit(&dtrace_provider_lock);
16720 
16721 		mutex_enter(&cpu_lock);
16722 		mutex_enter(&dtrace_provider_lock);
16723 		mutex_enter(&dtrace_lock);
16724 
16725 		if ((enab = dtrace_anon.dta_enabling) != NULL)
16726 			(void) dtrace_enabling_match(enab, NULL);
16727 
16728 		mutex_exit(&cpu_lock);
16729 	}
16730 
16731 	mutex_exit(&dtrace_lock);
16732 	mutex_exit(&dtrace_provider_lock);
16733 
16734 	if (state != NULL) {
16735 		/*
16736 		 * If we created any anonymous state, set it going now.
16737 		 */
16738 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16739 	}
16740 
16741 	return (DDI_SUCCESS);
16742 }
16743 #endif	/* illumos */
16744 
16745 #ifndef illumos
16746 static void dtrace_dtr(void *);
16747 #endif
16748 
16749 /*ARGSUSED*/
16750 static int
16751 #ifdef illumos
16752 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16753 #else
16754 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16755 #endif
16756 {
16757 	dtrace_state_t *state;
16758 	uint32_t priv;
16759 	uid_t uid;
16760 	zoneid_t zoneid;
16761 
16762 #ifdef illumos
16763 	if (getminor(*devp) == DTRACEMNRN_HELPER)
16764 		return (0);
16765 
16766 	/*
16767 	 * If this wasn't an open with the "helper" minor, then it must be
16768 	 * the "dtrace" minor.
16769 	 */
16770 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16771 		return (ENXIO);
16772 #else
16773 	cred_t *cred_p = NULL;
16774 	cred_p = dev->si_cred;
16775 
16776 	/*
16777 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16778 	 * caller lacks sufficient permission to do anything with DTrace.
16779 	 */
16780 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16781 	if (priv == DTRACE_PRIV_NONE) {
16782 #endif
16783 
16784 		return (EACCES);
16785 	}
16786 
16787 	/*
16788 	 * Ask all providers to provide all their probes.
16789 	 */
16790 	mutex_enter(&dtrace_provider_lock);
16791 	dtrace_probe_provide(NULL, NULL);
16792 	mutex_exit(&dtrace_provider_lock);
16793 
16794 	mutex_enter(&cpu_lock);
16795 	mutex_enter(&dtrace_lock);
16796 	dtrace_opens++;
16797 	dtrace_membar_producer();
16798 
16799 #ifdef illumos
16800 	/*
16801 	 * If the kernel debugger is active (that is, if the kernel debugger
16802 	 * modified text in some way), we won't allow the open.
16803 	 */
16804 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16805 		dtrace_opens--;
16806 		mutex_exit(&cpu_lock);
16807 		mutex_exit(&dtrace_lock);
16808 		return (EBUSY);
16809 	}
16810 
16811 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16812 		/*
16813 		 * If DTrace helper tracing is enabled, we need to allocate the
16814 		 * trace buffer and initialize the values.
16815 		 */
16816 		dtrace_helptrace_buffer =
16817 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16818 		dtrace_helptrace_next = 0;
16819 		dtrace_helptrace_wrapped = 0;
16820 		dtrace_helptrace_enable = 0;
16821 	}
16822 
16823 	state = dtrace_state_create(devp, cred_p);
16824 #else
16825 	state = dtrace_state_create(dev);
16826 	devfs_set_cdevpriv(state, dtrace_dtr);
16827 #endif
16828 
16829 	mutex_exit(&cpu_lock);
16830 
16831 	if (state == NULL) {
16832 #ifdef illumos
16833 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16834 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16835 #else
16836 		--dtrace_opens;
16837 #endif
16838 		mutex_exit(&dtrace_lock);
16839 		return (EAGAIN);
16840 	}
16841 
16842 	mutex_exit(&dtrace_lock);
16843 
16844 	return (0);
16845 }
16846 
16847 /*ARGSUSED*/
16848 #ifdef illumos
16849 static int
16850 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16851 #else
16852 static void
16853 dtrace_dtr(void *data)
16854 #endif
16855 {
16856 #ifdef illumos
16857 	minor_t minor = getminor(dev);
16858 	dtrace_state_t *state;
16859 #endif
16860 	dtrace_helptrace_t *buf = NULL;
16861 
16862 #ifdef illumos
16863 	if (minor == DTRACEMNRN_HELPER)
16864 		return (0);
16865 
16866 	state = ddi_get_soft_state(dtrace_softstate, minor);
16867 #else
16868 	dtrace_state_t *state = data;
16869 #endif
16870 
16871 	mutex_enter(&cpu_lock);
16872 	mutex_enter(&dtrace_lock);
16873 
16874 #ifdef illumos
16875 	if (state->dts_anon)
16876 #else
16877 	if (state != NULL && state->dts_anon)
16878 #endif
16879 	{
16880 		/*
16881 		 * There is anonymous state. Destroy that first.
16882 		 */
16883 		ASSERT(dtrace_anon.dta_state == NULL);
16884 		dtrace_state_destroy(state->dts_anon);
16885 	}
16886 
16887 	if (dtrace_helptrace_disable) {
16888 		/*
16889 		 * If we have been told to disable helper tracing, set the
16890 		 * buffer to NULL before calling into dtrace_state_destroy();
16891 		 * we take advantage of its dtrace_sync() to know that no
16892 		 * CPU is in probe context with enabled helper tracing
16893 		 * after it returns.
16894 		 */
16895 		buf = dtrace_helptrace_buffer;
16896 		dtrace_helptrace_buffer = NULL;
16897 	}
16898 
16899 #ifdef illumos
16900 	dtrace_state_destroy(state);
16901 #else
16902 	if (state != NULL) {
16903 		dtrace_state_destroy(state);
16904 		kmem_free(state, 0);
16905 	}
16906 #endif
16907 	ASSERT(dtrace_opens > 0);
16908 
16909 #ifdef illumos
16910 	/*
16911 	 * Only relinquish control of the kernel debugger interface when there
16912 	 * are no consumers and no anonymous enablings.
16913 	 */
16914 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16915 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16916 #else
16917 	--dtrace_opens;
16918 #endif
16919 
16920 	if (buf != NULL) {
16921 		kmem_free(buf, dtrace_helptrace_bufsize);
16922 		dtrace_helptrace_disable = 0;
16923 	}
16924 
16925 	mutex_exit(&dtrace_lock);
16926 	mutex_exit(&cpu_lock);
16927 
16928 #ifdef illumos
16929 	return (0);
16930 #endif
16931 }
16932 
16933 #ifdef illumos
16934 /*ARGSUSED*/
16935 static int
16936 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16937 {
16938 	int rval;
16939 	dof_helper_t help, *dhp = NULL;
16940 
16941 	switch (cmd) {
16942 	case DTRACEHIOC_ADDDOF:
16943 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16944 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16945 			return (EFAULT);
16946 		}
16947 
16948 		dhp = &help;
16949 		arg = (intptr_t)help.dofhp_dof;
16950 		/*FALLTHROUGH*/
16951 
16952 	case DTRACEHIOC_ADD: {
16953 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16954 
16955 		if (dof == NULL)
16956 			return (rval);
16957 
16958 		mutex_enter(&dtrace_lock);
16959 
16960 		/*
16961 		 * dtrace_helper_slurp() takes responsibility for the dof --
16962 		 * it may free it now or it may save it and free it later.
16963 		 */
16964 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16965 			*rv = rval;
16966 			rval = 0;
16967 		} else {
16968 			rval = EINVAL;
16969 		}
16970 
16971 		mutex_exit(&dtrace_lock);
16972 		return (rval);
16973 	}
16974 
16975 	case DTRACEHIOC_REMOVE: {
16976 		mutex_enter(&dtrace_lock);
16977 		rval = dtrace_helper_destroygen(NULL, arg);
16978 		mutex_exit(&dtrace_lock);
16979 
16980 		return (rval);
16981 	}
16982 
16983 	default:
16984 		break;
16985 	}
16986 
16987 	return (ENOTTY);
16988 }
16989 
16990 /*ARGSUSED*/
16991 static int
16992 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16993 {
16994 	minor_t minor = getminor(dev);
16995 	dtrace_state_t *state;
16996 	int rval;
16997 
16998 	if (minor == DTRACEMNRN_HELPER)
16999 		return (dtrace_ioctl_helper(cmd, arg, rv));
17000 
17001 	state = ddi_get_soft_state(dtrace_softstate, minor);
17002 
17003 	if (state->dts_anon) {
17004 		ASSERT(dtrace_anon.dta_state == NULL);
17005 		state = state->dts_anon;
17006 	}
17007 
17008 	switch (cmd) {
17009 	case DTRACEIOC_PROVIDER: {
17010 		dtrace_providerdesc_t pvd;
17011 		dtrace_provider_t *pvp;
17012 
17013 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17014 			return (EFAULT);
17015 
17016 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17017 		mutex_enter(&dtrace_provider_lock);
17018 
17019 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17020 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17021 				break;
17022 		}
17023 
17024 		mutex_exit(&dtrace_provider_lock);
17025 
17026 		if (pvp == NULL)
17027 			return (ESRCH);
17028 
17029 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17030 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17031 
17032 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17033 			return (EFAULT);
17034 
17035 		return (0);
17036 	}
17037 
17038 	case DTRACEIOC_EPROBE: {
17039 		dtrace_eprobedesc_t epdesc;
17040 		dtrace_ecb_t *ecb;
17041 		dtrace_action_t *act;
17042 		void *buf;
17043 		size_t size;
17044 		uintptr_t dest;
17045 		int nrecs;
17046 
17047 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17048 			return (EFAULT);
17049 
17050 		mutex_enter(&dtrace_lock);
17051 
17052 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17053 			mutex_exit(&dtrace_lock);
17054 			return (EINVAL);
17055 		}
17056 
17057 		if (ecb->dte_probe == NULL) {
17058 			mutex_exit(&dtrace_lock);
17059 			return (EINVAL);
17060 		}
17061 
17062 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17063 		epdesc.dtepd_uarg = ecb->dte_uarg;
17064 		epdesc.dtepd_size = ecb->dte_size;
17065 
17066 		nrecs = epdesc.dtepd_nrecs;
17067 		epdesc.dtepd_nrecs = 0;
17068 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17069 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17070 				continue;
17071 
17072 			epdesc.dtepd_nrecs++;
17073 		}
17074 
17075 		/*
17076 		 * Now that we have the size, we need to allocate a temporary
17077 		 * buffer in which to store the complete description.  We need
17078 		 * the temporary buffer to be able to drop dtrace_lock()
17079 		 * across the copyout(), below.
17080 		 */
17081 		size = sizeof (dtrace_eprobedesc_t) +
17082 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17083 
17084 		buf = kmem_alloc(size, KM_SLEEP);
17085 		dest = (uintptr_t)buf;
17086 
17087 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17088 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17089 
17090 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17091 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17092 				continue;
17093 
17094 			if (nrecs-- == 0)
17095 				break;
17096 
17097 			bcopy(&act->dta_rec, (void *)dest,
17098 			    sizeof (dtrace_recdesc_t));
17099 			dest += sizeof (dtrace_recdesc_t);
17100 		}
17101 
17102 		mutex_exit(&dtrace_lock);
17103 
17104 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17105 			kmem_free(buf, size);
17106 			return (EFAULT);
17107 		}
17108 
17109 		kmem_free(buf, size);
17110 		return (0);
17111 	}
17112 
17113 	case DTRACEIOC_AGGDESC: {
17114 		dtrace_aggdesc_t aggdesc;
17115 		dtrace_action_t *act;
17116 		dtrace_aggregation_t *agg;
17117 		int nrecs;
17118 		uint32_t offs;
17119 		dtrace_recdesc_t *lrec;
17120 		void *buf;
17121 		size_t size;
17122 		uintptr_t dest;
17123 
17124 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17125 			return (EFAULT);
17126 
17127 		mutex_enter(&dtrace_lock);
17128 
17129 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17130 			mutex_exit(&dtrace_lock);
17131 			return (EINVAL);
17132 		}
17133 
17134 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17135 
17136 		nrecs = aggdesc.dtagd_nrecs;
17137 		aggdesc.dtagd_nrecs = 0;
17138 
17139 		offs = agg->dtag_base;
17140 		lrec = &agg->dtag_action.dta_rec;
17141 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17142 
17143 		for (act = agg->dtag_first; ; act = act->dta_next) {
17144 			ASSERT(act->dta_intuple ||
17145 			    DTRACEACT_ISAGG(act->dta_kind));
17146 
17147 			/*
17148 			 * If this action has a record size of zero, it
17149 			 * denotes an argument to the aggregating action.
17150 			 * Because the presence of this record doesn't (or
17151 			 * shouldn't) affect the way the data is interpreted,
17152 			 * we don't copy it out to save user-level the
17153 			 * confusion of dealing with a zero-length record.
17154 			 */
17155 			if (act->dta_rec.dtrd_size == 0) {
17156 				ASSERT(agg->dtag_hasarg);
17157 				continue;
17158 			}
17159 
17160 			aggdesc.dtagd_nrecs++;
17161 
17162 			if (act == &agg->dtag_action)
17163 				break;
17164 		}
17165 
17166 		/*
17167 		 * Now that we have the size, we need to allocate a temporary
17168 		 * buffer in which to store the complete description.  We need
17169 		 * the temporary buffer to be able to drop dtrace_lock()
17170 		 * across the copyout(), below.
17171 		 */
17172 		size = sizeof (dtrace_aggdesc_t) +
17173 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17174 
17175 		buf = kmem_alloc(size, KM_SLEEP);
17176 		dest = (uintptr_t)buf;
17177 
17178 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17179 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17180 
17181 		for (act = agg->dtag_first; ; act = act->dta_next) {
17182 			dtrace_recdesc_t rec = act->dta_rec;
17183 
17184 			/*
17185 			 * See the comment in the above loop for why we pass
17186 			 * over zero-length records.
17187 			 */
17188 			if (rec.dtrd_size == 0) {
17189 				ASSERT(agg->dtag_hasarg);
17190 				continue;
17191 			}
17192 
17193 			if (nrecs-- == 0)
17194 				break;
17195 
17196 			rec.dtrd_offset -= offs;
17197 			bcopy(&rec, (void *)dest, sizeof (rec));
17198 			dest += sizeof (dtrace_recdesc_t);
17199 
17200 			if (act == &agg->dtag_action)
17201 				break;
17202 		}
17203 
17204 		mutex_exit(&dtrace_lock);
17205 
17206 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17207 			kmem_free(buf, size);
17208 			return (EFAULT);
17209 		}
17210 
17211 		kmem_free(buf, size);
17212 		return (0);
17213 	}
17214 
17215 	case DTRACEIOC_ENABLE: {
17216 		dof_hdr_t *dof;
17217 		dtrace_enabling_t *enab = NULL;
17218 		dtrace_vstate_t *vstate;
17219 		int err = 0;
17220 
17221 		*rv = 0;
17222 
17223 		/*
17224 		 * If a NULL argument has been passed, we take this as our
17225 		 * cue to reevaluate our enablings.
17226 		 */
17227 		if (arg == NULL) {
17228 			dtrace_enabling_matchall();
17229 
17230 			return (0);
17231 		}
17232 
17233 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17234 			return (rval);
17235 
17236 		mutex_enter(&cpu_lock);
17237 		mutex_enter(&dtrace_lock);
17238 		vstate = &state->dts_vstate;
17239 
17240 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17241 			mutex_exit(&dtrace_lock);
17242 			mutex_exit(&cpu_lock);
17243 			dtrace_dof_destroy(dof);
17244 			return (EBUSY);
17245 		}
17246 
17247 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17248 			mutex_exit(&dtrace_lock);
17249 			mutex_exit(&cpu_lock);
17250 			dtrace_dof_destroy(dof);
17251 			return (EINVAL);
17252 		}
17253 
17254 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17255 			dtrace_enabling_destroy(enab);
17256 			mutex_exit(&dtrace_lock);
17257 			mutex_exit(&cpu_lock);
17258 			dtrace_dof_destroy(dof);
17259 			return (rval);
17260 		}
17261 
17262 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17263 			err = dtrace_enabling_retain(enab);
17264 		} else {
17265 			dtrace_enabling_destroy(enab);
17266 		}
17267 
17268 		mutex_exit(&cpu_lock);
17269 		mutex_exit(&dtrace_lock);
17270 		dtrace_dof_destroy(dof);
17271 
17272 		return (err);
17273 	}
17274 
17275 	case DTRACEIOC_REPLICATE: {
17276 		dtrace_repldesc_t desc;
17277 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17278 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17279 		int err;
17280 
17281 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17282 			return (EFAULT);
17283 
17284 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17285 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17286 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17287 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17288 
17289 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17290 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17291 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17292 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17293 
17294 		mutex_enter(&dtrace_lock);
17295 		err = dtrace_enabling_replicate(state, match, create);
17296 		mutex_exit(&dtrace_lock);
17297 
17298 		return (err);
17299 	}
17300 
17301 	case DTRACEIOC_PROBEMATCH:
17302 	case DTRACEIOC_PROBES: {
17303 		dtrace_probe_t *probe = NULL;
17304 		dtrace_probedesc_t desc;
17305 		dtrace_probekey_t pkey;
17306 		dtrace_id_t i;
17307 		int m = 0;
17308 		uint32_t priv;
17309 		uid_t uid;
17310 		zoneid_t zoneid;
17311 
17312 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17313 			return (EFAULT);
17314 
17315 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17316 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17317 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17318 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17319 
17320 		/*
17321 		 * Before we attempt to match this probe, we want to give
17322 		 * all providers the opportunity to provide it.
17323 		 */
17324 		if (desc.dtpd_id == DTRACE_IDNONE) {
17325 			mutex_enter(&dtrace_provider_lock);
17326 			dtrace_probe_provide(&desc, NULL);
17327 			mutex_exit(&dtrace_provider_lock);
17328 			desc.dtpd_id++;
17329 		}
17330 
17331 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17332 			dtrace_probekey(&desc, &pkey);
17333 			pkey.dtpk_id = DTRACE_IDNONE;
17334 		}
17335 
17336 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17337 
17338 		mutex_enter(&dtrace_lock);
17339 
17340 		if (cmd == DTRACEIOC_PROBEMATCH) {
17341 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17342 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17343 				    (m = dtrace_match_probe(probe, &pkey,
17344 				    priv, uid, zoneid)) != 0)
17345 					break;
17346 			}
17347 
17348 			if (m < 0) {
17349 				mutex_exit(&dtrace_lock);
17350 				return (EINVAL);
17351 			}
17352 
17353 		} else {
17354 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17355 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17356 				    dtrace_match_priv(probe, priv, uid, zoneid))
17357 					break;
17358 			}
17359 		}
17360 
17361 		if (probe == NULL) {
17362 			mutex_exit(&dtrace_lock);
17363 			return (ESRCH);
17364 		}
17365 
17366 		dtrace_probe_description(probe, &desc);
17367 		mutex_exit(&dtrace_lock);
17368 
17369 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17370 			return (EFAULT);
17371 
17372 		return (0);
17373 	}
17374 
17375 	case DTRACEIOC_PROBEARG: {
17376 		dtrace_argdesc_t desc;
17377 		dtrace_probe_t *probe;
17378 		dtrace_provider_t *prov;
17379 
17380 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17381 			return (EFAULT);
17382 
17383 		if (desc.dtargd_id == DTRACE_IDNONE)
17384 			return (EINVAL);
17385 
17386 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17387 			return (EINVAL);
17388 
17389 		mutex_enter(&dtrace_provider_lock);
17390 		mutex_enter(&mod_lock);
17391 		mutex_enter(&dtrace_lock);
17392 
17393 		if (desc.dtargd_id > dtrace_nprobes) {
17394 			mutex_exit(&dtrace_lock);
17395 			mutex_exit(&mod_lock);
17396 			mutex_exit(&dtrace_provider_lock);
17397 			return (EINVAL);
17398 		}
17399 
17400 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17401 			mutex_exit(&dtrace_lock);
17402 			mutex_exit(&mod_lock);
17403 			mutex_exit(&dtrace_provider_lock);
17404 			return (EINVAL);
17405 		}
17406 
17407 		mutex_exit(&dtrace_lock);
17408 
17409 		prov = probe->dtpr_provider;
17410 
17411 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17412 			/*
17413 			 * There isn't any typed information for this probe.
17414 			 * Set the argument number to DTRACE_ARGNONE.
17415 			 */
17416 			desc.dtargd_ndx = DTRACE_ARGNONE;
17417 		} else {
17418 			desc.dtargd_native[0] = '\0';
17419 			desc.dtargd_xlate[0] = '\0';
17420 			desc.dtargd_mapping = desc.dtargd_ndx;
17421 
17422 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17423 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17424 		}
17425 
17426 		mutex_exit(&mod_lock);
17427 		mutex_exit(&dtrace_provider_lock);
17428 
17429 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17430 			return (EFAULT);
17431 
17432 		return (0);
17433 	}
17434 
17435 	case DTRACEIOC_GO: {
17436 		processorid_t cpuid;
17437 		rval = dtrace_state_go(state, &cpuid);
17438 
17439 		if (rval != 0)
17440 			return (rval);
17441 
17442 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17443 			return (EFAULT);
17444 
17445 		return (0);
17446 	}
17447 
17448 	case DTRACEIOC_STOP: {
17449 		processorid_t cpuid;
17450 
17451 		mutex_enter(&dtrace_lock);
17452 		rval = dtrace_state_stop(state, &cpuid);
17453 		mutex_exit(&dtrace_lock);
17454 
17455 		if (rval != 0)
17456 			return (rval);
17457 
17458 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17459 			return (EFAULT);
17460 
17461 		return (0);
17462 	}
17463 
17464 	case DTRACEIOC_DOFGET: {
17465 		dof_hdr_t hdr, *dof;
17466 		uint64_t len;
17467 
17468 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17469 			return (EFAULT);
17470 
17471 		mutex_enter(&dtrace_lock);
17472 		dof = dtrace_dof_create(state);
17473 		mutex_exit(&dtrace_lock);
17474 
17475 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17476 		rval = copyout(dof, (void *)arg, len);
17477 		dtrace_dof_destroy(dof);
17478 
17479 		return (rval == 0 ? 0 : EFAULT);
17480 	}
17481 
17482 	case DTRACEIOC_AGGSNAP:
17483 	case DTRACEIOC_BUFSNAP: {
17484 		dtrace_bufdesc_t desc;
17485 		caddr_t cached;
17486 		dtrace_buffer_t *buf;
17487 
17488 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17489 			return (EFAULT);
17490 
17491 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17492 			return (EINVAL);
17493 
17494 		mutex_enter(&dtrace_lock);
17495 
17496 		if (cmd == DTRACEIOC_BUFSNAP) {
17497 			buf = &state->dts_buffer[desc.dtbd_cpu];
17498 		} else {
17499 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17500 		}
17501 
17502 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17503 			size_t sz = buf->dtb_offset;
17504 
17505 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17506 				mutex_exit(&dtrace_lock);
17507 				return (EBUSY);
17508 			}
17509 
17510 			/*
17511 			 * If this buffer has already been consumed, we're
17512 			 * going to indicate that there's nothing left here
17513 			 * to consume.
17514 			 */
17515 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17516 				mutex_exit(&dtrace_lock);
17517 
17518 				desc.dtbd_size = 0;
17519 				desc.dtbd_drops = 0;
17520 				desc.dtbd_errors = 0;
17521 				desc.dtbd_oldest = 0;
17522 				sz = sizeof (desc);
17523 
17524 				if (copyout(&desc, (void *)arg, sz) != 0)
17525 					return (EFAULT);
17526 
17527 				return (0);
17528 			}
17529 
17530 			/*
17531 			 * If this is a ring buffer that has wrapped, we want
17532 			 * to copy the whole thing out.
17533 			 */
17534 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17535 				dtrace_buffer_polish(buf);
17536 				sz = buf->dtb_size;
17537 			}
17538 
17539 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17540 				mutex_exit(&dtrace_lock);
17541 				return (EFAULT);
17542 			}
17543 
17544 			desc.dtbd_size = sz;
17545 			desc.dtbd_drops = buf->dtb_drops;
17546 			desc.dtbd_errors = buf->dtb_errors;
17547 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17548 			desc.dtbd_timestamp = dtrace_gethrtime();
17549 
17550 			mutex_exit(&dtrace_lock);
17551 
17552 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17553 				return (EFAULT);
17554 
17555 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17556 
17557 			return (0);
17558 		}
17559 
17560 		if (buf->dtb_tomax == NULL) {
17561 			ASSERT(buf->dtb_xamot == NULL);
17562 			mutex_exit(&dtrace_lock);
17563 			return (ENOENT);
17564 		}
17565 
17566 		cached = buf->dtb_tomax;
17567 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17568 
17569 		dtrace_xcall(desc.dtbd_cpu,
17570 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17571 
17572 		state->dts_errors += buf->dtb_xamot_errors;
17573 
17574 		/*
17575 		 * If the buffers did not actually switch, then the cross call
17576 		 * did not take place -- presumably because the given CPU is
17577 		 * not in the ready set.  If this is the case, we'll return
17578 		 * ENOENT.
17579 		 */
17580 		if (buf->dtb_tomax == cached) {
17581 			ASSERT(buf->dtb_xamot != cached);
17582 			mutex_exit(&dtrace_lock);
17583 			return (ENOENT);
17584 		}
17585 
17586 		ASSERT(cached == buf->dtb_xamot);
17587 
17588 		/*
17589 		 * We have our snapshot; now copy it out.
17590 		 */
17591 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17592 		    buf->dtb_xamot_offset) != 0) {
17593 			mutex_exit(&dtrace_lock);
17594 			return (EFAULT);
17595 		}
17596 
17597 		desc.dtbd_size = buf->dtb_xamot_offset;
17598 		desc.dtbd_drops = buf->dtb_xamot_drops;
17599 		desc.dtbd_errors = buf->dtb_xamot_errors;
17600 		desc.dtbd_oldest = 0;
17601 		desc.dtbd_timestamp = buf->dtb_switched;
17602 
17603 		mutex_exit(&dtrace_lock);
17604 
17605 		/*
17606 		 * Finally, copy out the buffer description.
17607 		 */
17608 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17609 			return (EFAULT);
17610 
17611 		return (0);
17612 	}
17613 
17614 	case DTRACEIOC_CONF: {
17615 		dtrace_conf_t conf;
17616 
17617 		bzero(&conf, sizeof (conf));
17618 		conf.dtc_difversion = DIF_VERSION;
17619 		conf.dtc_difintregs = DIF_DIR_NREGS;
17620 		conf.dtc_diftupregs = DIF_DTR_NREGS;
17621 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17622 
17623 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17624 			return (EFAULT);
17625 
17626 		return (0);
17627 	}
17628 
17629 	case DTRACEIOC_STATUS: {
17630 		dtrace_status_t stat;
17631 		dtrace_dstate_t *dstate;
17632 		int i, j;
17633 		uint64_t nerrs;
17634 
17635 		/*
17636 		 * See the comment in dtrace_state_deadman() for the reason
17637 		 * for setting dts_laststatus to INT64_MAX before setting
17638 		 * it to the correct value.
17639 		 */
17640 		state->dts_laststatus = INT64_MAX;
17641 		dtrace_membar_producer();
17642 		state->dts_laststatus = dtrace_gethrtime();
17643 
17644 		bzero(&stat, sizeof (stat));
17645 
17646 		mutex_enter(&dtrace_lock);
17647 
17648 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17649 			mutex_exit(&dtrace_lock);
17650 			return (ENOENT);
17651 		}
17652 
17653 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17654 			stat.dtst_exiting = 1;
17655 
17656 		nerrs = state->dts_errors;
17657 		dstate = &state->dts_vstate.dtvs_dynvars;
17658 
17659 		for (i = 0; i < NCPU; i++) {
17660 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17661 
17662 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17663 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17664 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17665 
17666 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17667 				stat.dtst_filled++;
17668 
17669 			nerrs += state->dts_buffer[i].dtb_errors;
17670 
17671 			for (j = 0; j < state->dts_nspeculations; j++) {
17672 				dtrace_speculation_t *spec;
17673 				dtrace_buffer_t *buf;
17674 
17675 				spec = &state->dts_speculations[j];
17676 				buf = &spec->dtsp_buffer[i];
17677 				stat.dtst_specdrops += buf->dtb_xamot_drops;
17678 			}
17679 		}
17680 
17681 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17682 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17683 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17684 		stat.dtst_dblerrors = state->dts_dblerrors;
17685 		stat.dtst_killed =
17686 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17687 		stat.dtst_errors = nerrs;
17688 
17689 		mutex_exit(&dtrace_lock);
17690 
17691 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17692 			return (EFAULT);
17693 
17694 		return (0);
17695 	}
17696 
17697 	case DTRACEIOC_FORMAT: {
17698 		dtrace_fmtdesc_t fmt;
17699 		char *str;
17700 		int len;
17701 
17702 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17703 			return (EFAULT);
17704 
17705 		mutex_enter(&dtrace_lock);
17706 
17707 		if (fmt.dtfd_format == 0 ||
17708 		    fmt.dtfd_format > state->dts_nformats) {
17709 			mutex_exit(&dtrace_lock);
17710 			return (EINVAL);
17711 		}
17712 
17713 		/*
17714 		 * Format strings are allocated contiguously and they are
17715 		 * never freed; if a format index is less than the number
17716 		 * of formats, we can assert that the format map is non-NULL
17717 		 * and that the format for the specified index is non-NULL.
17718 		 */
17719 		ASSERT(state->dts_formats != NULL);
17720 		str = state->dts_formats[fmt.dtfd_format - 1];
17721 		ASSERT(str != NULL);
17722 
17723 		len = strlen(str) + 1;
17724 
17725 		if (len > fmt.dtfd_length) {
17726 			fmt.dtfd_length = len;
17727 
17728 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17729 				mutex_exit(&dtrace_lock);
17730 				return (EINVAL);
17731 			}
17732 		} else {
17733 			if (copyout(str, fmt.dtfd_string, len) != 0) {
17734 				mutex_exit(&dtrace_lock);
17735 				return (EINVAL);
17736 			}
17737 		}
17738 
17739 		mutex_exit(&dtrace_lock);
17740 		return (0);
17741 	}
17742 
17743 	default:
17744 		break;
17745 	}
17746 
17747 	return (ENOTTY);
17748 }
17749 
17750 /*ARGSUSED*/
17751 static int
17752 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17753 {
17754 	dtrace_state_t *state;
17755 
17756 	switch (cmd) {
17757 	case DDI_DETACH:
17758 		break;
17759 
17760 	case DDI_SUSPEND:
17761 		return (DDI_SUCCESS);
17762 
17763 	default:
17764 		return (DDI_FAILURE);
17765 	}
17766 
17767 	mutex_enter(&cpu_lock);
17768 	mutex_enter(&dtrace_provider_lock);
17769 	mutex_enter(&dtrace_lock);
17770 
17771 	ASSERT(dtrace_opens == 0);
17772 
17773 	if (dtrace_helpers > 0) {
17774 		mutex_exit(&dtrace_provider_lock);
17775 		mutex_exit(&dtrace_lock);
17776 		mutex_exit(&cpu_lock);
17777 		return (DDI_FAILURE);
17778 	}
17779 
17780 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17781 		mutex_exit(&dtrace_provider_lock);
17782 		mutex_exit(&dtrace_lock);
17783 		mutex_exit(&cpu_lock);
17784 		return (DDI_FAILURE);
17785 	}
17786 
17787 	dtrace_provider = NULL;
17788 
17789 	if ((state = dtrace_anon_grab()) != NULL) {
17790 		/*
17791 		 * If there were ECBs on this state, the provider should
17792 		 * have not been allowed to detach; assert that there is
17793 		 * none.
17794 		 */
17795 		ASSERT(state->dts_necbs == 0);
17796 		dtrace_state_destroy(state);
17797 
17798 		/*
17799 		 * If we're being detached with anonymous state, we need to
17800 		 * indicate to the kernel debugger that DTrace is now inactive.
17801 		 */
17802 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17803 	}
17804 
17805 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17806 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17807 	dtrace_cpu_init = NULL;
17808 	dtrace_helpers_cleanup = NULL;
17809 	dtrace_helpers_fork = NULL;
17810 	dtrace_cpustart_init = NULL;
17811 	dtrace_cpustart_fini = NULL;
17812 	dtrace_debugger_init = NULL;
17813 	dtrace_debugger_fini = NULL;
17814 	dtrace_modload = NULL;
17815 	dtrace_modunload = NULL;
17816 
17817 	ASSERT(dtrace_getf == 0);
17818 	ASSERT(dtrace_closef == NULL);
17819 
17820 	mutex_exit(&cpu_lock);
17821 
17822 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17823 	dtrace_probes = NULL;
17824 	dtrace_nprobes = 0;
17825 
17826 	dtrace_hash_destroy(dtrace_bymod);
17827 	dtrace_hash_destroy(dtrace_byfunc);
17828 	dtrace_hash_destroy(dtrace_byname);
17829 	dtrace_bymod = NULL;
17830 	dtrace_byfunc = NULL;
17831 	dtrace_byname = NULL;
17832 
17833 	kmem_cache_destroy(dtrace_state_cache);
17834 	vmem_destroy(dtrace_minor);
17835 	vmem_destroy(dtrace_arena);
17836 
17837 	if (dtrace_toxrange != NULL) {
17838 		kmem_free(dtrace_toxrange,
17839 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17840 		dtrace_toxrange = NULL;
17841 		dtrace_toxranges = 0;
17842 		dtrace_toxranges_max = 0;
17843 	}
17844 
17845 	ddi_remove_minor_node(dtrace_devi, NULL);
17846 	dtrace_devi = NULL;
17847 
17848 	ddi_soft_state_fini(&dtrace_softstate);
17849 
17850 	ASSERT(dtrace_vtime_references == 0);
17851 	ASSERT(dtrace_opens == 0);
17852 	ASSERT(dtrace_retained == NULL);
17853 
17854 	mutex_exit(&dtrace_lock);
17855 	mutex_exit(&dtrace_provider_lock);
17856 
17857 	/*
17858 	 * We don't destroy the task queue until after we have dropped our
17859 	 * locks (taskq_destroy() may block on running tasks).  To prevent
17860 	 * attempting to do work after we have effectively detached but before
17861 	 * the task queue has been destroyed, all tasks dispatched via the
17862 	 * task queue must check that DTrace is still attached before
17863 	 * performing any operation.
17864 	 */
17865 	taskq_destroy(dtrace_taskq);
17866 	dtrace_taskq = NULL;
17867 
17868 	return (DDI_SUCCESS);
17869 }
17870 #endif
17871 
17872 #ifdef illumos
17873 /*ARGSUSED*/
17874 static int
17875 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17876 {
17877 	int error;
17878 
17879 	switch (infocmd) {
17880 	case DDI_INFO_DEVT2DEVINFO:
17881 		*result = (void *)dtrace_devi;
17882 		error = DDI_SUCCESS;
17883 		break;
17884 	case DDI_INFO_DEVT2INSTANCE:
17885 		*result = (void *)0;
17886 		error = DDI_SUCCESS;
17887 		break;
17888 	default:
17889 		error = DDI_FAILURE;
17890 	}
17891 	return (error);
17892 }
17893 #endif
17894 
17895 #ifdef illumos
17896 static struct cb_ops dtrace_cb_ops = {
17897 	dtrace_open,		/* open */
17898 	dtrace_close,		/* close */
17899 	nulldev,		/* strategy */
17900 	nulldev,		/* print */
17901 	nodev,			/* dump */
17902 	nodev,			/* read */
17903 	nodev,			/* write */
17904 	dtrace_ioctl,		/* ioctl */
17905 	nodev,			/* devmap */
17906 	nodev,			/* mmap */
17907 	nodev,			/* segmap */
17908 	nochpoll,		/* poll */
17909 	ddi_prop_op,		/* cb_prop_op */
17910 	0,			/* streamtab  */
17911 	D_NEW | D_MP		/* Driver compatibility flag */
17912 };
17913 
17914 static struct dev_ops dtrace_ops = {
17915 	DEVO_REV,		/* devo_rev */
17916 	0,			/* refcnt */
17917 	dtrace_info,		/* get_dev_info */
17918 	nulldev,		/* identify */
17919 	nulldev,		/* probe */
17920 	dtrace_attach,		/* attach */
17921 	dtrace_detach,		/* detach */
17922 	nodev,			/* reset */
17923 	&dtrace_cb_ops,		/* driver operations */
17924 	NULL,			/* bus operations */
17925 	nodev			/* dev power */
17926 };
17927 
17928 static struct modldrv modldrv = {
17929 	&mod_driverops,		/* module type (this is a pseudo driver) */
17930 	"Dynamic Tracing",	/* name of module */
17931 	&dtrace_ops,		/* driver ops */
17932 };
17933 
17934 static struct modlinkage modlinkage = {
17935 	MODREV_1,
17936 	(void *)&modldrv,
17937 	NULL
17938 };
17939 
17940 int
17941 _init(void)
17942 {
17943 	return (mod_install(&modlinkage));
17944 }
17945 
17946 int
17947 _info(struct modinfo *modinfop)
17948 {
17949 	return (mod_info(&modlinkage, modinfop));
17950 }
17951 
17952 int
17953 _fini(void)
17954 {
17955 	return (mod_remove(&modlinkage));
17956 }
17957 #else
17958 
17959 static d_ioctl_t	dtrace_ioctl;
17960 static d_ioctl_t	dtrace_ioctl_helper;
17961 static void		dtrace_load(void *);
17962 static int		dtrace_unload(void);
17963 static struct cdev	*dtrace_dev;
17964 static struct cdev	*helper_dev;
17965 
17966 void dtrace_invop_init(void);
17967 void dtrace_invop_uninit(void);
17968 
17969 static struct cdevsw dtrace_cdevsw = {
17970 	.d_version	= D_VERSION,
17971 	.d_ioctl	= dtrace_ioctl,
17972 	.d_open		= dtrace_open,
17973 	.d_name		= "dtrace",
17974 };
17975 
17976 static struct cdevsw helper_cdevsw = {
17977 	.d_version	= D_VERSION,
17978 	.d_ioctl	= dtrace_ioctl_helper,
17979 	.d_name		= "helper",
17980 };
17981 
17982 #include <dtrace_anon.c>
17983 #include <dtrace_ioctl.c>
17984 #include <dtrace_load.c>
17985 #include <dtrace_modevent.c>
17986 #include <dtrace_sysctl.c>
17987 #include <dtrace_unload.c>
17988 #include <dtrace_vtime.c>
17989 #include <dtrace_hacks.c>
17990 #include <dtrace_isa.c>
17991 
17992 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
17993 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
17994 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
17995 
17996 DEV_MODULE(dtrace, dtrace_modevent, NULL);
17997 MODULE_VERSION(dtrace, 1);
17998 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
17999 #endif
18000