1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #include <sys/errno.h> 70 #if !defined(sun) 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/modctl.h> 75 #include <sys/conf.h> 76 #include <sys/systm.h> 77 #if defined(sun) 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #if defined(sun) 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #if defined(sun) 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #if defined(sun) 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #include <sys/policy.h> 100 #if defined(sun) 101 #include <sys/cred_impl.h> 102 #include <sys/procfs_isa.h> 103 #endif 104 #include <sys/taskq.h> 105 #if defined(sun) 106 #include <sys/mkdev.h> 107 #include <sys/kdi.h> 108 #endif 109 #include <sys/zone.h> 110 #include <sys/socket.h> 111 #include <netinet/in.h> 112 #include "strtolctype.h" 113 114 /* FreeBSD includes: */ 115 #if !defined(sun) 116 #include <sys/callout.h> 117 #include <sys/ctype.h> 118 #include <sys/eventhandler.h> 119 #include <sys/limits.h> 120 #include <sys/kdb.h> 121 #include <sys/kernel.h> 122 #include <sys/malloc.h> 123 #include <sys/sysctl.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/rwlock.h> 127 #include <sys/sx.h> 128 #include <sys/dtrace_bsd.h> 129 #include <netinet/in.h> 130 #include "dtrace_cddl.h" 131 #include "dtrace_debug.c" 132 #endif 133 134 /* 135 * DTrace Tunable Variables 136 * 137 * The following variables may be tuned by adding a line to /etc/system that 138 * includes both the name of the DTrace module ("dtrace") and the name of the 139 * variable. For example: 140 * 141 * set dtrace:dtrace_destructive_disallow = 1 142 * 143 * In general, the only variables that one should be tuning this way are those 144 * that affect system-wide DTrace behavior, and for which the default behavior 145 * is undesirable. Most of these variables are tunable on a per-consumer 146 * basis using DTrace options, and need not be tuned on a system-wide basis. 147 * When tuning these variables, avoid pathological values; while some attempt 148 * is made to verify the integrity of these variables, they are not considered 149 * part of the supported interface to DTrace, and they are therefore not 150 * checked comprehensively. Further, these variables should not be tuned 151 * dynamically via "mdb -kw" or other means; they should only be tuned via 152 * /etc/system. 153 */ 154 int dtrace_destructive_disallow = 0; 155 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 156 size_t dtrace_difo_maxsize = (256 * 1024); 157 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 158 size_t dtrace_global_maxsize = (16 * 1024); 159 size_t dtrace_actions_max = (16 * 1024); 160 size_t dtrace_retain_max = 1024; 161 dtrace_optval_t dtrace_helper_actions_max = 128; 162 dtrace_optval_t dtrace_helper_providers_max = 32; 163 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 164 size_t dtrace_strsize_default = 256; 165 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 166 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 167 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 168 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 169 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 171 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 172 dtrace_optval_t dtrace_nspec_default = 1; 173 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 174 dtrace_optval_t dtrace_stackframes_default = 20; 175 dtrace_optval_t dtrace_ustackframes_default = 20; 176 dtrace_optval_t dtrace_jstackframes_default = 50; 177 dtrace_optval_t dtrace_jstackstrsize_default = 512; 178 int dtrace_msgdsize_max = 128; 179 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 180 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 181 int dtrace_devdepth_max = 32; 182 int dtrace_err_verbose; 183 hrtime_t dtrace_deadman_interval = NANOSEC; 184 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 185 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 186 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 187 #if !defined(sun) 188 int dtrace_memstr_max = 4096; 189 #endif 190 191 /* 192 * DTrace External Variables 193 * 194 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 195 * available to DTrace consumers via the backtick (`) syntax. One of these, 196 * dtrace_zero, is made deliberately so: it is provided as a source of 197 * well-known, zero-filled memory. While this variable is not documented, 198 * it is used by some translators as an implementation detail. 199 */ 200 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 201 202 /* 203 * DTrace Internal Variables 204 */ 205 #if defined(sun) 206 static dev_info_t *dtrace_devi; /* device info */ 207 #endif 208 #if defined(sun) 209 static vmem_t *dtrace_arena; /* probe ID arena */ 210 static vmem_t *dtrace_minor; /* minor number arena */ 211 #else 212 static taskq_t *dtrace_taskq; /* task queue */ 213 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 214 #endif 215 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 216 static int dtrace_nprobes; /* number of probes */ 217 static dtrace_provider_t *dtrace_provider; /* provider list */ 218 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 219 static int dtrace_opens; /* number of opens */ 220 static int dtrace_helpers; /* number of helpers */ 221 static int dtrace_getf; /* number of unpriv getf()s */ 222 #if defined(sun) 223 static void *dtrace_softstate; /* softstate pointer */ 224 #endif 225 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 226 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 227 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 228 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 229 static int dtrace_toxranges; /* number of toxic ranges */ 230 static int dtrace_toxranges_max; /* size of toxic range array */ 231 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 232 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 233 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 234 static kthread_t *dtrace_panicked; /* panicking thread */ 235 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 236 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 237 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 238 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 239 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 240 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 241 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 242 #if !defined(sun) 243 static struct mtx dtrace_unr_mtx; 244 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 245 int dtrace_in_probe; /* non-zero if executing a probe */ 246 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__) 247 uintptr_t dtrace_in_probe_addr; /* Address of invop when already in probe */ 248 #endif 249 static eventhandler_tag dtrace_kld_load_tag; 250 static eventhandler_tag dtrace_kld_unload_try_tag; 251 #endif 252 253 /* 254 * DTrace Locking 255 * DTrace is protected by three (relatively coarse-grained) locks: 256 * 257 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 258 * including enabling state, probes, ECBs, consumer state, helper state, 259 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 260 * probe context is lock-free -- synchronization is handled via the 261 * dtrace_sync() cross call mechanism. 262 * 263 * (2) dtrace_provider_lock is required when manipulating provider state, or 264 * when provider state must be held constant. 265 * 266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 267 * when meta provider state must be held constant. 268 * 269 * The lock ordering between these three locks is dtrace_meta_lock before 270 * dtrace_provider_lock before dtrace_lock. (In particular, there are 271 * several places where dtrace_provider_lock is held by the framework as it 272 * calls into the providers -- which then call back into the framework, 273 * grabbing dtrace_lock.) 274 * 275 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 277 * role as a coarse-grained lock; it is acquired before both of these locks. 278 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 281 * acquired _between_ dtrace_provider_lock and dtrace_lock. 282 */ 283 static kmutex_t dtrace_lock; /* probe state lock */ 284 static kmutex_t dtrace_provider_lock; /* provider state lock */ 285 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 286 287 #if !defined(sun) 288 /* XXX FreeBSD hacks. */ 289 #define cr_suid cr_svuid 290 #define cr_sgid cr_svgid 291 #define ipaddr_t in_addr_t 292 #define mod_modname pathname 293 #define vuprintf vprintf 294 #define ttoproc(_a) ((_a)->td_proc) 295 #define crgetzoneid(_a) 0 296 #define NCPU MAXCPU 297 #define SNOCD 0 298 #define CPU_ON_INTR(_a) 0 299 300 #define PRIV_EFFECTIVE (1 << 0) 301 #define PRIV_DTRACE_KERNEL (1 << 1) 302 #define PRIV_DTRACE_PROC (1 << 2) 303 #define PRIV_DTRACE_USER (1 << 3) 304 #define PRIV_PROC_OWNER (1 << 4) 305 #define PRIV_PROC_ZONE (1 << 5) 306 #define PRIV_ALL ~0 307 308 SYSCTL_DECL(_debug_dtrace); 309 SYSCTL_DECL(_kern_dtrace); 310 #endif 311 312 #if defined(sun) 313 #define curcpu CPU->cpu_id 314 #endif 315 316 317 /* 318 * DTrace Provider Variables 319 * 320 * These are the variables relating to DTrace as a provider (that is, the 321 * provider of the BEGIN, END, and ERROR probes). 322 */ 323 static dtrace_pattr_t dtrace_provider_attr = { 324 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 325 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 326 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 327 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 329 }; 330 331 static void 332 dtrace_nullop(void) 333 {} 334 335 static dtrace_pops_t dtrace_provider_ops = { 336 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 337 (void (*)(void *, modctl_t *))dtrace_nullop, 338 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 339 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 340 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 341 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 342 NULL, 343 NULL, 344 NULL, 345 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 346 }; 347 348 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 349 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 350 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 351 352 /* 353 * DTrace Helper Tracing Variables 354 */ 355 uint32_t dtrace_helptrace_next = 0; 356 uint32_t dtrace_helptrace_nlocals; 357 char *dtrace_helptrace_buffer; 358 int dtrace_helptrace_bufsize = 512 * 1024; 359 360 #ifdef DEBUG 361 int dtrace_helptrace_enabled = 1; 362 #else 363 int dtrace_helptrace_enabled = 0; 364 #endif 365 366 /* 367 * DTrace Error Hashing 368 * 369 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 370 * table. This is very useful for checking coverage of tests that are 371 * expected to induce DIF or DOF processing errors, and may be useful for 372 * debugging problems in the DIF code generator or in DOF generation . The 373 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 374 */ 375 #ifdef DEBUG 376 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 377 static const char *dtrace_errlast; 378 static kthread_t *dtrace_errthread; 379 static kmutex_t dtrace_errlock; 380 #endif 381 382 /* 383 * DTrace Macros and Constants 384 * 385 * These are various macros that are useful in various spots in the 386 * implementation, along with a few random constants that have no meaning 387 * outside of the implementation. There is no real structure to this cpp 388 * mishmash -- but is there ever? 389 */ 390 #define DTRACE_HASHSTR(hash, probe) \ 391 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 392 393 #define DTRACE_HASHNEXT(hash, probe) \ 394 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 395 396 #define DTRACE_HASHPREV(hash, probe) \ 397 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 398 399 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 400 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 401 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 402 403 #define DTRACE_AGGHASHSIZE_SLEW 17 404 405 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 406 407 /* 408 * The key for a thread-local variable consists of the lower 61 bits of the 409 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 410 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 411 * equal to a variable identifier. This is necessary (but not sufficient) to 412 * assure that global associative arrays never collide with thread-local 413 * variables. To guarantee that they cannot collide, we must also define the 414 * order for keying dynamic variables. That order is: 415 * 416 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 417 * 418 * Because the variable-key and the tls-key are in orthogonal spaces, there is 419 * no way for a global variable key signature to match a thread-local key 420 * signature. 421 */ 422 #if defined(sun) 423 #define DTRACE_TLS_THRKEY(where) { \ 424 uint_t intr = 0; \ 425 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 426 for (; actv; actv >>= 1) \ 427 intr++; \ 428 ASSERT(intr < (1 << 3)); \ 429 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 430 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 431 } 432 #else 433 #define DTRACE_TLS_THRKEY(where) { \ 434 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 435 uint_t intr = 0; \ 436 uint_t actv = _c->cpu_intr_actv; \ 437 for (; actv; actv >>= 1) \ 438 intr++; \ 439 ASSERT(intr < (1 << 3)); \ 440 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 441 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 442 } 443 #endif 444 445 #define DT_BSWAP_8(x) ((x) & 0xff) 446 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 447 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 448 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 449 450 #define DT_MASK_LO 0x00000000FFFFFFFFULL 451 452 #define DTRACE_STORE(type, tomax, offset, what) \ 453 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 454 455 #ifndef __x86 456 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 457 if (addr & (size - 1)) { \ 458 *flags |= CPU_DTRACE_BADALIGN; \ 459 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 460 return (0); \ 461 } 462 #else 463 #define DTRACE_ALIGNCHECK(addr, size, flags) 464 #endif 465 466 /* 467 * Test whether a range of memory starting at testaddr of size testsz falls 468 * within the range of memory described by addr, sz. We take care to avoid 469 * problems with overflow and underflow of the unsigned quantities, and 470 * disallow all negative sizes. Ranges of size 0 are allowed. 471 */ 472 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 473 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 474 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 475 (testaddr) + (testsz) >= (testaddr)) 476 477 /* 478 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 479 * alloc_sz on the righthand side of the comparison in order to avoid overflow 480 * or underflow in the comparison with it. This is simpler than the INRANGE 481 * check above, because we know that the dtms_scratch_ptr is valid in the 482 * range. Allocations of size zero are allowed. 483 */ 484 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 485 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 486 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 487 488 #define DTRACE_LOADFUNC(bits) \ 489 /*CSTYLED*/ \ 490 uint##bits##_t \ 491 dtrace_load##bits(uintptr_t addr) \ 492 { \ 493 size_t size = bits / NBBY; \ 494 /*CSTYLED*/ \ 495 uint##bits##_t rval; \ 496 int i; \ 497 volatile uint16_t *flags = (volatile uint16_t *) \ 498 &cpu_core[curcpu].cpuc_dtrace_flags; \ 499 \ 500 DTRACE_ALIGNCHECK(addr, size, flags); \ 501 \ 502 for (i = 0; i < dtrace_toxranges; i++) { \ 503 if (addr >= dtrace_toxrange[i].dtt_limit) \ 504 continue; \ 505 \ 506 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 507 continue; \ 508 \ 509 /* \ 510 * This address falls within a toxic region; return 0. \ 511 */ \ 512 *flags |= CPU_DTRACE_BADADDR; \ 513 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 514 return (0); \ 515 } \ 516 \ 517 *flags |= CPU_DTRACE_NOFAULT; \ 518 /*CSTYLED*/ \ 519 rval = *((volatile uint##bits##_t *)addr); \ 520 *flags &= ~CPU_DTRACE_NOFAULT; \ 521 \ 522 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 523 } 524 525 #ifdef _LP64 526 #define dtrace_loadptr dtrace_load64 527 #else 528 #define dtrace_loadptr dtrace_load32 529 #endif 530 531 #define DTRACE_DYNHASH_FREE 0 532 #define DTRACE_DYNHASH_SINK 1 533 #define DTRACE_DYNHASH_VALID 2 534 535 #define DTRACE_MATCH_NEXT 0 536 #define DTRACE_MATCH_DONE 1 537 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 538 #define DTRACE_STATE_ALIGN 64 539 540 #define DTRACE_FLAGS2FLT(flags) \ 541 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 542 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 543 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 544 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 545 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 546 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 547 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 548 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 549 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 550 DTRACEFLT_UNKNOWN) 551 552 #define DTRACEACT_ISSTRING(act) \ 553 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 554 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 555 556 /* Function prototype definitions: */ 557 static size_t dtrace_strlen(const char *, size_t); 558 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 559 static void dtrace_enabling_provide(dtrace_provider_t *); 560 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 561 static void dtrace_enabling_matchall(void); 562 static void dtrace_enabling_reap(void); 563 static dtrace_state_t *dtrace_anon_grab(void); 564 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 565 dtrace_state_t *, uint64_t, uint64_t); 566 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 567 static void dtrace_buffer_drop(dtrace_buffer_t *); 568 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 569 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 570 dtrace_state_t *, dtrace_mstate_t *); 571 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 572 dtrace_optval_t); 573 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 574 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 575 uint16_t dtrace_load16(uintptr_t); 576 uint32_t dtrace_load32(uintptr_t); 577 uint64_t dtrace_load64(uintptr_t); 578 uint8_t dtrace_load8(uintptr_t); 579 void dtrace_dynvar_clean(dtrace_dstate_t *); 580 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 581 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 582 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 583 static int dtrace_priv_proc(dtrace_state_t *); 584 static void dtrace_getf_barrier(void); 585 586 /* 587 * DTrace Probe Context Functions 588 * 589 * These functions are called from probe context. Because probe context is 590 * any context in which C may be called, arbitrarily locks may be held, 591 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 592 * As a result, functions called from probe context may only call other DTrace 593 * support functions -- they may not interact at all with the system at large. 594 * (Note that the ASSERT macro is made probe-context safe by redefining it in 595 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 596 * loads are to be performed from probe context, they _must_ be in terms of 597 * the safe dtrace_load*() variants. 598 * 599 * Some functions in this block are not actually called from probe context; 600 * for these functions, there will be a comment above the function reading 601 * "Note: not called from probe context." 602 */ 603 void 604 dtrace_panic(const char *format, ...) 605 { 606 va_list alist; 607 608 va_start(alist, format); 609 dtrace_vpanic(format, alist); 610 va_end(alist); 611 } 612 613 int 614 dtrace_assfail(const char *a, const char *f, int l) 615 { 616 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 617 618 /* 619 * We just need something here that even the most clever compiler 620 * cannot optimize away. 621 */ 622 return (a[(uintptr_t)f]); 623 } 624 625 /* 626 * Atomically increment a specified error counter from probe context. 627 */ 628 static void 629 dtrace_error(uint32_t *counter) 630 { 631 /* 632 * Most counters stored to in probe context are per-CPU counters. 633 * However, there are some error conditions that are sufficiently 634 * arcane that they don't merit per-CPU storage. If these counters 635 * are incremented concurrently on different CPUs, scalability will be 636 * adversely affected -- but we don't expect them to be white-hot in a 637 * correctly constructed enabling... 638 */ 639 uint32_t oval, nval; 640 641 do { 642 oval = *counter; 643 644 if ((nval = oval + 1) == 0) { 645 /* 646 * If the counter would wrap, set it to 1 -- assuring 647 * that the counter is never zero when we have seen 648 * errors. (The counter must be 32-bits because we 649 * aren't guaranteed a 64-bit compare&swap operation.) 650 * To save this code both the infamy of being fingered 651 * by a priggish news story and the indignity of being 652 * the target of a neo-puritan witch trial, we're 653 * carefully avoiding any colorful description of the 654 * likelihood of this condition -- but suffice it to 655 * say that it is only slightly more likely than the 656 * overflow of predicate cache IDs, as discussed in 657 * dtrace_predicate_create(). 658 */ 659 nval = 1; 660 } 661 } while (dtrace_cas32(counter, oval, nval) != oval); 662 } 663 664 /* 665 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 666 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 667 */ 668 DTRACE_LOADFUNC(8) 669 DTRACE_LOADFUNC(16) 670 DTRACE_LOADFUNC(32) 671 DTRACE_LOADFUNC(64) 672 673 static int 674 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 675 { 676 if (dest < mstate->dtms_scratch_base) 677 return (0); 678 679 if (dest + size < dest) 680 return (0); 681 682 if (dest + size > mstate->dtms_scratch_ptr) 683 return (0); 684 685 return (1); 686 } 687 688 static int 689 dtrace_canstore_statvar(uint64_t addr, size_t sz, 690 dtrace_statvar_t **svars, int nsvars) 691 { 692 int i; 693 694 for (i = 0; i < nsvars; i++) { 695 dtrace_statvar_t *svar = svars[i]; 696 697 if (svar == NULL || svar->dtsv_size == 0) 698 continue; 699 700 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 701 return (1); 702 } 703 704 return (0); 705 } 706 707 /* 708 * Check to see if the address is within a memory region to which a store may 709 * be issued. This includes the DTrace scratch areas, and any DTrace variable 710 * region. The caller of dtrace_canstore() is responsible for performing any 711 * alignment checks that are needed before stores are actually executed. 712 */ 713 static int 714 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 715 dtrace_vstate_t *vstate) 716 { 717 /* 718 * First, check to see if the address is in scratch space... 719 */ 720 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 721 mstate->dtms_scratch_size)) 722 return (1); 723 724 /* 725 * Now check to see if it's a dynamic variable. This check will pick 726 * up both thread-local variables and any global dynamically-allocated 727 * variables. 728 */ 729 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 730 vstate->dtvs_dynvars.dtds_size)) { 731 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 732 uintptr_t base = (uintptr_t)dstate->dtds_base + 733 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 734 uintptr_t chunkoffs; 735 736 /* 737 * Before we assume that we can store here, we need to make 738 * sure that it isn't in our metadata -- storing to our 739 * dynamic variable metadata would corrupt our state. For 740 * the range to not include any dynamic variable metadata, 741 * it must: 742 * 743 * (1) Start above the hash table that is at the base of 744 * the dynamic variable space 745 * 746 * (2) Have a starting chunk offset that is beyond the 747 * dtrace_dynvar_t that is at the base of every chunk 748 * 749 * (3) Not span a chunk boundary 750 * 751 */ 752 if (addr < base) 753 return (0); 754 755 chunkoffs = (addr - base) % dstate->dtds_chunksize; 756 757 if (chunkoffs < sizeof (dtrace_dynvar_t)) 758 return (0); 759 760 if (chunkoffs + sz > dstate->dtds_chunksize) 761 return (0); 762 763 return (1); 764 } 765 766 /* 767 * Finally, check the static local and global variables. These checks 768 * take the longest, so we perform them last. 769 */ 770 if (dtrace_canstore_statvar(addr, sz, 771 vstate->dtvs_locals, vstate->dtvs_nlocals)) 772 return (1); 773 774 if (dtrace_canstore_statvar(addr, sz, 775 vstate->dtvs_globals, vstate->dtvs_nglobals)) 776 return (1); 777 778 return (0); 779 } 780 781 782 /* 783 * Convenience routine to check to see if the address is within a memory 784 * region in which a load may be issued given the user's privilege level; 785 * if not, it sets the appropriate error flags and loads 'addr' into the 786 * illegal value slot. 787 * 788 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 789 * appropriate memory access protection. 790 */ 791 static int 792 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 793 dtrace_vstate_t *vstate) 794 { 795 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 796 file_t *fp; 797 798 /* 799 * If we hold the privilege to read from kernel memory, then 800 * everything is readable. 801 */ 802 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 803 return (1); 804 805 /* 806 * You can obviously read that which you can store. 807 */ 808 if (dtrace_canstore(addr, sz, mstate, vstate)) 809 return (1); 810 811 /* 812 * We're allowed to read from our own string table. 813 */ 814 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 815 mstate->dtms_difo->dtdo_strlen)) 816 return (1); 817 818 if (vstate->dtvs_state != NULL && 819 dtrace_priv_proc(vstate->dtvs_state)) { 820 proc_t *p; 821 822 /* 823 * When we have privileges to the current process, there are 824 * several context-related kernel structures that are safe to 825 * read, even absent the privilege to read from kernel memory. 826 * These reads are safe because these structures contain only 827 * state that (1) we're permitted to read, (2) is harmless or 828 * (3) contains pointers to additional kernel state that we're 829 * not permitted to read (and as such, do not present an 830 * opportunity for privilege escalation). Finally (and 831 * critically), because of the nature of their relation with 832 * the current thread context, the memory associated with these 833 * structures cannot change over the duration of probe context, 834 * and it is therefore impossible for this memory to be 835 * deallocated and reallocated as something else while it's 836 * being operated upon. 837 */ 838 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 839 return (1); 840 841 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 842 sz, curthread->t_procp, sizeof (proc_t))) { 843 return (1); 844 } 845 846 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 847 curthread->t_cred, sizeof (cred_t))) { 848 return (1); 849 } 850 851 #if defined(sun) 852 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 853 &(p->p_pidp->pid_id), sizeof (pid_t))) { 854 return (1); 855 } 856 857 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 858 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 859 return (1); 860 } 861 #endif 862 } 863 864 if ((fp = mstate->dtms_getf) != NULL) { 865 uintptr_t psz = sizeof (void *); 866 vnode_t *vp; 867 vnodeops_t *op; 868 869 /* 870 * When getf() returns a file_t, the enabling is implicitly 871 * granted the (transient) right to read the returned file_t 872 * as well as the v_path and v_op->vnop_name of the underlying 873 * vnode. These accesses are allowed after a successful 874 * getf() because the members that they refer to cannot change 875 * once set -- and the barrier logic in the kernel's closef() 876 * path assures that the file_t and its referenced vode_t 877 * cannot themselves be stale (that is, it impossible for 878 * either dtms_getf itself or its f_vnode member to reference 879 * freed memory). 880 */ 881 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 882 return (1); 883 884 if ((vp = fp->f_vnode) != NULL) { 885 #if defined(sun) 886 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 887 return (1); 888 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 889 vp->v_path, strlen(vp->v_path) + 1)) { 890 return (1); 891 } 892 #endif 893 894 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 895 return (1); 896 897 #if defined(sun) 898 if ((op = vp->v_op) != NULL && 899 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 900 return (1); 901 } 902 903 if (op != NULL && op->vnop_name != NULL && 904 DTRACE_INRANGE(addr, sz, op->vnop_name, 905 strlen(op->vnop_name) + 1)) { 906 return (1); 907 } 908 #endif 909 } 910 } 911 912 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 913 *illval = addr; 914 return (0); 915 } 916 917 /* 918 * Convenience routine to check to see if a given string is within a memory 919 * region in which a load may be issued given the user's privilege level; 920 * this exists so that we don't need to issue unnecessary dtrace_strlen() 921 * calls in the event that the user has all privileges. 922 */ 923 static int 924 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 925 dtrace_vstate_t *vstate) 926 { 927 size_t strsz; 928 929 /* 930 * If we hold the privilege to read from kernel memory, then 931 * everything is readable. 932 */ 933 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 934 return (1); 935 936 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 937 if (dtrace_canload(addr, strsz, mstate, vstate)) 938 return (1); 939 940 return (0); 941 } 942 943 /* 944 * Convenience routine to check to see if a given variable is within a memory 945 * region in which a load may be issued given the user's privilege level. 946 */ 947 static int 948 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 949 dtrace_vstate_t *vstate) 950 { 951 size_t sz; 952 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 953 954 /* 955 * If we hold the privilege to read from kernel memory, then 956 * everything is readable. 957 */ 958 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 959 return (1); 960 961 if (type->dtdt_kind == DIF_TYPE_STRING) 962 sz = dtrace_strlen(src, 963 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 964 else 965 sz = type->dtdt_size; 966 967 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 968 } 969 970 /* 971 * Convert a string to a signed integer using safe loads. 972 * 973 * NOTE: This function uses various macros from strtolctype.h to manipulate 974 * digit values, etc -- these have all been checked to ensure they make 975 * no additional function calls. 976 */ 977 static int64_t 978 dtrace_strtoll(char *input, int base, size_t limit) 979 { 980 uintptr_t pos = (uintptr_t)input; 981 int64_t val = 0; 982 int x; 983 boolean_t neg = B_FALSE; 984 char c, cc, ccc; 985 uintptr_t end = pos + limit; 986 987 /* 988 * Consume any whitespace preceding digits. 989 */ 990 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 991 pos++; 992 993 /* 994 * Handle an explicit sign if one is present. 995 */ 996 if (c == '-' || c == '+') { 997 if (c == '-') 998 neg = B_TRUE; 999 c = dtrace_load8(++pos); 1000 } 1001 1002 /* 1003 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1004 * if present. 1005 */ 1006 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1007 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1008 pos += 2; 1009 c = ccc; 1010 } 1011 1012 /* 1013 * Read in contiguous digits until the first non-digit character. 1014 */ 1015 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1016 c = dtrace_load8(++pos)) 1017 val = val * base + x; 1018 1019 return (neg ? -val : val); 1020 } 1021 1022 /* 1023 * Compare two strings using safe loads. 1024 */ 1025 static int 1026 dtrace_strncmp(char *s1, char *s2, size_t limit) 1027 { 1028 uint8_t c1, c2; 1029 volatile uint16_t *flags; 1030 1031 if (s1 == s2 || limit == 0) 1032 return (0); 1033 1034 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1035 1036 do { 1037 if (s1 == NULL) { 1038 c1 = '\0'; 1039 } else { 1040 c1 = dtrace_load8((uintptr_t)s1++); 1041 } 1042 1043 if (s2 == NULL) { 1044 c2 = '\0'; 1045 } else { 1046 c2 = dtrace_load8((uintptr_t)s2++); 1047 } 1048 1049 if (c1 != c2) 1050 return (c1 - c2); 1051 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1052 1053 return (0); 1054 } 1055 1056 /* 1057 * Compute strlen(s) for a string using safe memory accesses. The additional 1058 * len parameter is used to specify a maximum length to ensure completion. 1059 */ 1060 static size_t 1061 dtrace_strlen(const char *s, size_t lim) 1062 { 1063 uint_t len; 1064 1065 for (len = 0; len != lim; len++) { 1066 if (dtrace_load8((uintptr_t)s++) == '\0') 1067 break; 1068 } 1069 1070 return (len); 1071 } 1072 1073 /* 1074 * Check if an address falls within a toxic region. 1075 */ 1076 static int 1077 dtrace_istoxic(uintptr_t kaddr, size_t size) 1078 { 1079 uintptr_t taddr, tsize; 1080 int i; 1081 1082 for (i = 0; i < dtrace_toxranges; i++) { 1083 taddr = dtrace_toxrange[i].dtt_base; 1084 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1085 1086 if (kaddr - taddr < tsize) { 1087 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1088 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1089 return (1); 1090 } 1091 1092 if (taddr - kaddr < size) { 1093 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1094 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1095 return (1); 1096 } 1097 } 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1104 * memory specified by the DIF program. The dst is assumed to be safe memory 1105 * that we can store to directly because it is managed by DTrace. As with 1106 * standard bcopy, overlapping copies are handled properly. 1107 */ 1108 static void 1109 dtrace_bcopy(const void *src, void *dst, size_t len) 1110 { 1111 if (len != 0) { 1112 uint8_t *s1 = dst; 1113 const uint8_t *s2 = src; 1114 1115 if (s1 <= s2) { 1116 do { 1117 *s1++ = dtrace_load8((uintptr_t)s2++); 1118 } while (--len != 0); 1119 } else { 1120 s2 += len; 1121 s1 += len; 1122 1123 do { 1124 *--s1 = dtrace_load8((uintptr_t)--s2); 1125 } while (--len != 0); 1126 } 1127 } 1128 } 1129 1130 /* 1131 * Copy src to dst using safe memory accesses, up to either the specified 1132 * length, or the point that a nul byte is encountered. The src is assumed to 1133 * be unsafe memory specified by the DIF program. The dst is assumed to be 1134 * safe memory that we can store to directly because it is managed by DTrace. 1135 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1136 */ 1137 static void 1138 dtrace_strcpy(const void *src, void *dst, size_t len) 1139 { 1140 if (len != 0) { 1141 uint8_t *s1 = dst, c; 1142 const uint8_t *s2 = src; 1143 1144 do { 1145 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1146 } while (--len != 0 && c != '\0'); 1147 } 1148 } 1149 1150 /* 1151 * Copy src to dst, deriving the size and type from the specified (BYREF) 1152 * variable type. The src is assumed to be unsafe memory specified by the DIF 1153 * program. The dst is assumed to be DTrace variable memory that is of the 1154 * specified type; we assume that we can store to directly. 1155 */ 1156 static void 1157 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1158 { 1159 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1160 1161 if (type->dtdt_kind == DIF_TYPE_STRING) { 1162 dtrace_strcpy(src, dst, type->dtdt_size); 1163 } else { 1164 dtrace_bcopy(src, dst, type->dtdt_size); 1165 } 1166 } 1167 1168 /* 1169 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1170 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1171 * safe memory that we can access directly because it is managed by DTrace. 1172 */ 1173 static int 1174 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1175 { 1176 volatile uint16_t *flags; 1177 1178 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1179 1180 if (s1 == s2) 1181 return (0); 1182 1183 if (s1 == NULL || s2 == NULL) 1184 return (1); 1185 1186 if (s1 != s2 && len != 0) { 1187 const uint8_t *ps1 = s1; 1188 const uint8_t *ps2 = s2; 1189 1190 do { 1191 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1192 return (1); 1193 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1194 } 1195 return (0); 1196 } 1197 1198 /* 1199 * Zero the specified region using a simple byte-by-byte loop. Note that this 1200 * is for safe DTrace-managed memory only. 1201 */ 1202 static void 1203 dtrace_bzero(void *dst, size_t len) 1204 { 1205 uchar_t *cp; 1206 1207 for (cp = dst; len != 0; len--) 1208 *cp++ = 0; 1209 } 1210 1211 static void 1212 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1213 { 1214 uint64_t result[2]; 1215 1216 result[0] = addend1[0] + addend2[0]; 1217 result[1] = addend1[1] + addend2[1] + 1218 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1219 1220 sum[0] = result[0]; 1221 sum[1] = result[1]; 1222 } 1223 1224 /* 1225 * Shift the 128-bit value in a by b. If b is positive, shift left. 1226 * If b is negative, shift right. 1227 */ 1228 static void 1229 dtrace_shift_128(uint64_t *a, int b) 1230 { 1231 uint64_t mask; 1232 1233 if (b == 0) 1234 return; 1235 1236 if (b < 0) { 1237 b = -b; 1238 if (b >= 64) { 1239 a[0] = a[1] >> (b - 64); 1240 a[1] = 0; 1241 } else { 1242 a[0] >>= b; 1243 mask = 1LL << (64 - b); 1244 mask -= 1; 1245 a[0] |= ((a[1] & mask) << (64 - b)); 1246 a[1] >>= b; 1247 } 1248 } else { 1249 if (b >= 64) { 1250 a[1] = a[0] << (b - 64); 1251 a[0] = 0; 1252 } else { 1253 a[1] <<= b; 1254 mask = a[0] >> (64 - b); 1255 a[1] |= mask; 1256 a[0] <<= b; 1257 } 1258 } 1259 } 1260 1261 /* 1262 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1263 * use native multiplication on those, and then re-combine into the 1264 * resulting 128-bit value. 1265 * 1266 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1267 * hi1 * hi2 << 64 + 1268 * hi1 * lo2 << 32 + 1269 * hi2 * lo1 << 32 + 1270 * lo1 * lo2 1271 */ 1272 static void 1273 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1274 { 1275 uint64_t hi1, hi2, lo1, lo2; 1276 uint64_t tmp[2]; 1277 1278 hi1 = factor1 >> 32; 1279 hi2 = factor2 >> 32; 1280 1281 lo1 = factor1 & DT_MASK_LO; 1282 lo2 = factor2 & DT_MASK_LO; 1283 1284 product[0] = lo1 * lo2; 1285 product[1] = hi1 * hi2; 1286 1287 tmp[0] = hi1 * lo2; 1288 tmp[1] = 0; 1289 dtrace_shift_128(tmp, 32); 1290 dtrace_add_128(product, tmp, product); 1291 1292 tmp[0] = hi2 * lo1; 1293 tmp[1] = 0; 1294 dtrace_shift_128(tmp, 32); 1295 dtrace_add_128(product, tmp, product); 1296 } 1297 1298 /* 1299 * This privilege check should be used by actions and subroutines to 1300 * verify that the user credentials of the process that enabled the 1301 * invoking ECB match the target credentials 1302 */ 1303 static int 1304 dtrace_priv_proc_common_user(dtrace_state_t *state) 1305 { 1306 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1307 1308 /* 1309 * We should always have a non-NULL state cred here, since if cred 1310 * is null (anonymous tracing), we fast-path bypass this routine. 1311 */ 1312 ASSERT(s_cr != NULL); 1313 1314 if ((cr = CRED()) != NULL && 1315 s_cr->cr_uid == cr->cr_uid && 1316 s_cr->cr_uid == cr->cr_ruid && 1317 s_cr->cr_uid == cr->cr_suid && 1318 s_cr->cr_gid == cr->cr_gid && 1319 s_cr->cr_gid == cr->cr_rgid && 1320 s_cr->cr_gid == cr->cr_sgid) 1321 return (1); 1322 1323 return (0); 1324 } 1325 1326 /* 1327 * This privilege check should be used by actions and subroutines to 1328 * verify that the zone of the process that enabled the invoking ECB 1329 * matches the target credentials 1330 */ 1331 static int 1332 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1333 { 1334 #if defined(sun) 1335 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1336 1337 /* 1338 * We should always have a non-NULL state cred here, since if cred 1339 * is null (anonymous tracing), we fast-path bypass this routine. 1340 */ 1341 ASSERT(s_cr != NULL); 1342 1343 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1344 return (1); 1345 1346 return (0); 1347 #else 1348 return (1); 1349 #endif 1350 } 1351 1352 /* 1353 * This privilege check should be used by actions and subroutines to 1354 * verify that the process has not setuid or changed credentials. 1355 */ 1356 static int 1357 dtrace_priv_proc_common_nocd(void) 1358 { 1359 proc_t *proc; 1360 1361 if ((proc = ttoproc(curthread)) != NULL && 1362 !(proc->p_flag & SNOCD)) 1363 return (1); 1364 1365 return (0); 1366 } 1367 1368 static int 1369 dtrace_priv_proc_destructive(dtrace_state_t *state) 1370 { 1371 int action = state->dts_cred.dcr_action; 1372 1373 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1374 dtrace_priv_proc_common_zone(state) == 0) 1375 goto bad; 1376 1377 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1378 dtrace_priv_proc_common_user(state) == 0) 1379 goto bad; 1380 1381 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1382 dtrace_priv_proc_common_nocd() == 0) 1383 goto bad; 1384 1385 return (1); 1386 1387 bad: 1388 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1389 1390 return (0); 1391 } 1392 1393 static int 1394 dtrace_priv_proc_control(dtrace_state_t *state) 1395 { 1396 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1397 return (1); 1398 1399 if (dtrace_priv_proc_common_zone(state) && 1400 dtrace_priv_proc_common_user(state) && 1401 dtrace_priv_proc_common_nocd()) 1402 return (1); 1403 1404 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1405 1406 return (0); 1407 } 1408 1409 static int 1410 dtrace_priv_proc(dtrace_state_t *state) 1411 { 1412 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1413 return (1); 1414 1415 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1416 1417 return (0); 1418 } 1419 1420 static int 1421 dtrace_priv_kernel(dtrace_state_t *state) 1422 { 1423 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1424 return (1); 1425 1426 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1427 1428 return (0); 1429 } 1430 1431 static int 1432 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1433 { 1434 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1435 return (1); 1436 1437 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1438 1439 return (0); 1440 } 1441 1442 /* 1443 * Determine if the dte_cond of the specified ECB allows for processing of 1444 * the current probe to continue. Note that this routine may allow continued 1445 * processing, but with access(es) stripped from the mstate's dtms_access 1446 * field. 1447 */ 1448 static int 1449 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1450 dtrace_ecb_t *ecb) 1451 { 1452 dtrace_probe_t *probe = ecb->dte_probe; 1453 dtrace_provider_t *prov = probe->dtpr_provider; 1454 dtrace_pops_t *pops = &prov->dtpv_pops; 1455 int mode = DTRACE_MODE_NOPRIV_DROP; 1456 1457 ASSERT(ecb->dte_cond); 1458 1459 #if defined(sun) 1460 if (pops->dtps_mode != NULL) { 1461 mode = pops->dtps_mode(prov->dtpv_arg, 1462 probe->dtpr_id, probe->dtpr_arg); 1463 1464 ASSERT((mode & DTRACE_MODE_USER) || 1465 (mode & DTRACE_MODE_KERNEL)); 1466 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1467 (mode & DTRACE_MODE_NOPRIV_DROP)); 1468 } 1469 1470 /* 1471 * If the dte_cond bits indicate that this consumer is only allowed to 1472 * see user-mode firings of this probe, call the provider's dtps_mode() 1473 * entry point to check that the probe was fired while in a user 1474 * context. If that's not the case, use the policy specified by the 1475 * provider to determine if we drop the probe or merely restrict 1476 * operation. 1477 */ 1478 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1479 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1480 1481 if (!(mode & DTRACE_MODE_USER)) { 1482 if (mode & DTRACE_MODE_NOPRIV_DROP) 1483 return (0); 1484 1485 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1486 } 1487 } 1488 #endif 1489 1490 /* 1491 * This is more subtle than it looks. We have to be absolutely certain 1492 * that CRED() isn't going to change out from under us so it's only 1493 * legit to examine that structure if we're in constrained situations. 1494 * Currently, the only times we'll this check is if a non-super-user 1495 * has enabled the profile or syscall providers -- providers that 1496 * allow visibility of all processes. For the profile case, the check 1497 * above will ensure that we're examining a user context. 1498 */ 1499 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1500 cred_t *cr; 1501 cred_t *s_cr = state->dts_cred.dcr_cred; 1502 proc_t *proc; 1503 1504 ASSERT(s_cr != NULL); 1505 1506 if ((cr = CRED()) == NULL || 1507 s_cr->cr_uid != cr->cr_uid || 1508 s_cr->cr_uid != cr->cr_ruid || 1509 s_cr->cr_uid != cr->cr_suid || 1510 s_cr->cr_gid != cr->cr_gid || 1511 s_cr->cr_gid != cr->cr_rgid || 1512 s_cr->cr_gid != cr->cr_sgid || 1513 (proc = ttoproc(curthread)) == NULL || 1514 (proc->p_flag & SNOCD)) { 1515 if (mode & DTRACE_MODE_NOPRIV_DROP) 1516 return (0); 1517 1518 #if defined(sun) 1519 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1520 #endif 1521 } 1522 } 1523 1524 #if defined(sun) 1525 /* 1526 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1527 * in our zone, check to see if our mode policy is to restrict rather 1528 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1529 * and DTRACE_ACCESS_ARGS 1530 */ 1531 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1532 cred_t *cr; 1533 cred_t *s_cr = state->dts_cred.dcr_cred; 1534 1535 ASSERT(s_cr != NULL); 1536 1537 if ((cr = CRED()) == NULL || 1538 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1539 if (mode & DTRACE_MODE_NOPRIV_DROP) 1540 return (0); 1541 1542 mstate->dtms_access &= 1543 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1544 } 1545 } 1546 #endif 1547 1548 return (1); 1549 } 1550 1551 /* 1552 * Note: not called from probe context. This function is called 1553 * asynchronously (and at a regular interval) from outside of probe context to 1554 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1555 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1556 */ 1557 void 1558 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1559 { 1560 dtrace_dynvar_t *dirty; 1561 dtrace_dstate_percpu_t *dcpu; 1562 dtrace_dynvar_t **rinsep; 1563 int i, j, work = 0; 1564 1565 for (i = 0; i < NCPU; i++) { 1566 dcpu = &dstate->dtds_percpu[i]; 1567 rinsep = &dcpu->dtdsc_rinsing; 1568 1569 /* 1570 * If the dirty list is NULL, there is no dirty work to do. 1571 */ 1572 if (dcpu->dtdsc_dirty == NULL) 1573 continue; 1574 1575 if (dcpu->dtdsc_rinsing != NULL) { 1576 /* 1577 * If the rinsing list is non-NULL, then it is because 1578 * this CPU was selected to accept another CPU's 1579 * dirty list -- and since that time, dirty buffers 1580 * have accumulated. This is a highly unlikely 1581 * condition, but we choose to ignore the dirty 1582 * buffers -- they'll be picked up a future cleanse. 1583 */ 1584 continue; 1585 } 1586 1587 if (dcpu->dtdsc_clean != NULL) { 1588 /* 1589 * If the clean list is non-NULL, then we're in a 1590 * situation where a CPU has done deallocations (we 1591 * have a non-NULL dirty list) but no allocations (we 1592 * also have a non-NULL clean list). We can't simply 1593 * move the dirty list into the clean list on this 1594 * CPU, yet we also don't want to allow this condition 1595 * to persist, lest a short clean list prevent a 1596 * massive dirty list from being cleaned (which in 1597 * turn could lead to otherwise avoidable dynamic 1598 * drops). To deal with this, we look for some CPU 1599 * with a NULL clean list, NULL dirty list, and NULL 1600 * rinsing list -- and then we borrow this CPU to 1601 * rinse our dirty list. 1602 */ 1603 for (j = 0; j < NCPU; j++) { 1604 dtrace_dstate_percpu_t *rinser; 1605 1606 rinser = &dstate->dtds_percpu[j]; 1607 1608 if (rinser->dtdsc_rinsing != NULL) 1609 continue; 1610 1611 if (rinser->dtdsc_dirty != NULL) 1612 continue; 1613 1614 if (rinser->dtdsc_clean != NULL) 1615 continue; 1616 1617 rinsep = &rinser->dtdsc_rinsing; 1618 break; 1619 } 1620 1621 if (j == NCPU) { 1622 /* 1623 * We were unable to find another CPU that 1624 * could accept this dirty list -- we are 1625 * therefore unable to clean it now. 1626 */ 1627 dtrace_dynvar_failclean++; 1628 continue; 1629 } 1630 } 1631 1632 work = 1; 1633 1634 /* 1635 * Atomically move the dirty list aside. 1636 */ 1637 do { 1638 dirty = dcpu->dtdsc_dirty; 1639 1640 /* 1641 * Before we zap the dirty list, set the rinsing list. 1642 * (This allows for a potential assertion in 1643 * dtrace_dynvar(): if a free dynamic variable appears 1644 * on a hash chain, either the dirty list or the 1645 * rinsing list for some CPU must be non-NULL.) 1646 */ 1647 *rinsep = dirty; 1648 dtrace_membar_producer(); 1649 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1650 dirty, NULL) != dirty); 1651 } 1652 1653 if (!work) { 1654 /* 1655 * We have no work to do; we can simply return. 1656 */ 1657 return; 1658 } 1659 1660 dtrace_sync(); 1661 1662 for (i = 0; i < NCPU; i++) { 1663 dcpu = &dstate->dtds_percpu[i]; 1664 1665 if (dcpu->dtdsc_rinsing == NULL) 1666 continue; 1667 1668 /* 1669 * We are now guaranteed that no hash chain contains a pointer 1670 * into this dirty list; we can make it clean. 1671 */ 1672 ASSERT(dcpu->dtdsc_clean == NULL); 1673 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1674 dcpu->dtdsc_rinsing = NULL; 1675 } 1676 1677 /* 1678 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1679 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1680 * This prevents a race whereby a CPU incorrectly decides that 1681 * the state should be something other than DTRACE_DSTATE_CLEAN 1682 * after dtrace_dynvar_clean() has completed. 1683 */ 1684 dtrace_sync(); 1685 1686 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1687 } 1688 1689 /* 1690 * Depending on the value of the op parameter, this function looks-up, 1691 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1692 * allocation is requested, this function will return a pointer to a 1693 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1694 * variable can be allocated. If NULL is returned, the appropriate counter 1695 * will be incremented. 1696 */ 1697 dtrace_dynvar_t * 1698 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1699 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1700 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1701 { 1702 uint64_t hashval = DTRACE_DYNHASH_VALID; 1703 dtrace_dynhash_t *hash = dstate->dtds_hash; 1704 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1705 processorid_t me = curcpu, cpu = me; 1706 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1707 size_t bucket, ksize; 1708 size_t chunksize = dstate->dtds_chunksize; 1709 uintptr_t kdata, lock, nstate; 1710 uint_t i; 1711 1712 ASSERT(nkeys != 0); 1713 1714 /* 1715 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1716 * algorithm. For the by-value portions, we perform the algorithm in 1717 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1718 * bit, and seems to have only a minute effect on distribution. For 1719 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1720 * over each referenced byte. It's painful to do this, but it's much 1721 * better than pathological hash distribution. The efficacy of the 1722 * hashing algorithm (and a comparison with other algorithms) may be 1723 * found by running the ::dtrace_dynstat MDB dcmd. 1724 */ 1725 for (i = 0; i < nkeys; i++) { 1726 if (key[i].dttk_size == 0) { 1727 uint64_t val = key[i].dttk_value; 1728 1729 hashval += (val >> 48) & 0xffff; 1730 hashval += (hashval << 10); 1731 hashval ^= (hashval >> 6); 1732 1733 hashval += (val >> 32) & 0xffff; 1734 hashval += (hashval << 10); 1735 hashval ^= (hashval >> 6); 1736 1737 hashval += (val >> 16) & 0xffff; 1738 hashval += (hashval << 10); 1739 hashval ^= (hashval >> 6); 1740 1741 hashval += val & 0xffff; 1742 hashval += (hashval << 10); 1743 hashval ^= (hashval >> 6); 1744 } else { 1745 /* 1746 * This is incredibly painful, but it beats the hell 1747 * out of the alternative. 1748 */ 1749 uint64_t j, size = key[i].dttk_size; 1750 uintptr_t base = (uintptr_t)key[i].dttk_value; 1751 1752 if (!dtrace_canload(base, size, mstate, vstate)) 1753 break; 1754 1755 for (j = 0; j < size; j++) { 1756 hashval += dtrace_load8(base + j); 1757 hashval += (hashval << 10); 1758 hashval ^= (hashval >> 6); 1759 } 1760 } 1761 } 1762 1763 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1764 return (NULL); 1765 1766 hashval += (hashval << 3); 1767 hashval ^= (hashval >> 11); 1768 hashval += (hashval << 15); 1769 1770 /* 1771 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1772 * comes out to be one of our two sentinel hash values. If this 1773 * actually happens, we set the hashval to be a value known to be a 1774 * non-sentinel value. 1775 */ 1776 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1777 hashval = DTRACE_DYNHASH_VALID; 1778 1779 /* 1780 * Yes, it's painful to do a divide here. If the cycle count becomes 1781 * important here, tricks can be pulled to reduce it. (However, it's 1782 * critical that hash collisions be kept to an absolute minimum; 1783 * they're much more painful than a divide.) It's better to have a 1784 * solution that generates few collisions and still keeps things 1785 * relatively simple. 1786 */ 1787 bucket = hashval % dstate->dtds_hashsize; 1788 1789 if (op == DTRACE_DYNVAR_DEALLOC) { 1790 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1791 1792 for (;;) { 1793 while ((lock = *lockp) & 1) 1794 continue; 1795 1796 if (dtrace_casptr((volatile void *)lockp, 1797 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1798 break; 1799 } 1800 1801 dtrace_membar_producer(); 1802 } 1803 1804 top: 1805 prev = NULL; 1806 lock = hash[bucket].dtdh_lock; 1807 1808 dtrace_membar_consumer(); 1809 1810 start = hash[bucket].dtdh_chain; 1811 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1812 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1813 op != DTRACE_DYNVAR_DEALLOC)); 1814 1815 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1816 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1817 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1818 1819 if (dvar->dtdv_hashval != hashval) { 1820 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1821 /* 1822 * We've reached the sink, and therefore the 1823 * end of the hash chain; we can kick out of 1824 * the loop knowing that we have seen a valid 1825 * snapshot of state. 1826 */ 1827 ASSERT(dvar->dtdv_next == NULL); 1828 ASSERT(dvar == &dtrace_dynhash_sink); 1829 break; 1830 } 1831 1832 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1833 /* 1834 * We've gone off the rails: somewhere along 1835 * the line, one of the members of this hash 1836 * chain was deleted. Note that we could also 1837 * detect this by simply letting this loop run 1838 * to completion, as we would eventually hit 1839 * the end of the dirty list. However, we 1840 * want to avoid running the length of the 1841 * dirty list unnecessarily (it might be quite 1842 * long), so we catch this as early as 1843 * possible by detecting the hash marker. In 1844 * this case, we simply set dvar to NULL and 1845 * break; the conditional after the loop will 1846 * send us back to top. 1847 */ 1848 dvar = NULL; 1849 break; 1850 } 1851 1852 goto next; 1853 } 1854 1855 if (dtuple->dtt_nkeys != nkeys) 1856 goto next; 1857 1858 for (i = 0; i < nkeys; i++, dkey++) { 1859 if (dkey->dttk_size != key[i].dttk_size) 1860 goto next; /* size or type mismatch */ 1861 1862 if (dkey->dttk_size != 0) { 1863 if (dtrace_bcmp( 1864 (void *)(uintptr_t)key[i].dttk_value, 1865 (void *)(uintptr_t)dkey->dttk_value, 1866 dkey->dttk_size)) 1867 goto next; 1868 } else { 1869 if (dkey->dttk_value != key[i].dttk_value) 1870 goto next; 1871 } 1872 } 1873 1874 if (op != DTRACE_DYNVAR_DEALLOC) 1875 return (dvar); 1876 1877 ASSERT(dvar->dtdv_next == NULL || 1878 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1879 1880 if (prev != NULL) { 1881 ASSERT(hash[bucket].dtdh_chain != dvar); 1882 ASSERT(start != dvar); 1883 ASSERT(prev->dtdv_next == dvar); 1884 prev->dtdv_next = dvar->dtdv_next; 1885 } else { 1886 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1887 start, dvar->dtdv_next) != start) { 1888 /* 1889 * We have failed to atomically swing the 1890 * hash table head pointer, presumably because 1891 * of a conflicting allocation on another CPU. 1892 * We need to reread the hash chain and try 1893 * again. 1894 */ 1895 goto top; 1896 } 1897 } 1898 1899 dtrace_membar_producer(); 1900 1901 /* 1902 * Now set the hash value to indicate that it's free. 1903 */ 1904 ASSERT(hash[bucket].dtdh_chain != dvar); 1905 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1906 1907 dtrace_membar_producer(); 1908 1909 /* 1910 * Set the next pointer to point at the dirty list, and 1911 * atomically swing the dirty pointer to the newly freed dvar. 1912 */ 1913 do { 1914 next = dcpu->dtdsc_dirty; 1915 dvar->dtdv_next = next; 1916 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1917 1918 /* 1919 * Finally, unlock this hash bucket. 1920 */ 1921 ASSERT(hash[bucket].dtdh_lock == lock); 1922 ASSERT(lock & 1); 1923 hash[bucket].dtdh_lock++; 1924 1925 return (NULL); 1926 next: 1927 prev = dvar; 1928 continue; 1929 } 1930 1931 if (dvar == NULL) { 1932 /* 1933 * If dvar is NULL, it is because we went off the rails: 1934 * one of the elements that we traversed in the hash chain 1935 * was deleted while we were traversing it. In this case, 1936 * we assert that we aren't doing a dealloc (deallocs lock 1937 * the hash bucket to prevent themselves from racing with 1938 * one another), and retry the hash chain traversal. 1939 */ 1940 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1941 goto top; 1942 } 1943 1944 if (op != DTRACE_DYNVAR_ALLOC) { 1945 /* 1946 * If we are not to allocate a new variable, we want to 1947 * return NULL now. Before we return, check that the value 1948 * of the lock word hasn't changed. If it has, we may have 1949 * seen an inconsistent snapshot. 1950 */ 1951 if (op == DTRACE_DYNVAR_NOALLOC) { 1952 if (hash[bucket].dtdh_lock != lock) 1953 goto top; 1954 } else { 1955 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1956 ASSERT(hash[bucket].dtdh_lock == lock); 1957 ASSERT(lock & 1); 1958 hash[bucket].dtdh_lock++; 1959 } 1960 1961 return (NULL); 1962 } 1963 1964 /* 1965 * We need to allocate a new dynamic variable. The size we need is the 1966 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1967 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1968 * the size of any referred-to data (dsize). We then round the final 1969 * size up to the chunksize for allocation. 1970 */ 1971 for (ksize = 0, i = 0; i < nkeys; i++) 1972 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1973 1974 /* 1975 * This should be pretty much impossible, but could happen if, say, 1976 * strange DIF specified the tuple. Ideally, this should be an 1977 * assertion and not an error condition -- but that requires that the 1978 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1979 * bullet-proof. (That is, it must not be able to be fooled by 1980 * malicious DIF.) Given the lack of backwards branches in DIF, 1981 * solving this would presumably not amount to solving the Halting 1982 * Problem -- but it still seems awfully hard. 1983 */ 1984 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1985 ksize + dsize > chunksize) { 1986 dcpu->dtdsc_drops++; 1987 return (NULL); 1988 } 1989 1990 nstate = DTRACE_DSTATE_EMPTY; 1991 1992 do { 1993 retry: 1994 free = dcpu->dtdsc_free; 1995 1996 if (free == NULL) { 1997 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1998 void *rval; 1999 2000 if (clean == NULL) { 2001 /* 2002 * We're out of dynamic variable space on 2003 * this CPU. Unless we have tried all CPUs, 2004 * we'll try to allocate from a different 2005 * CPU. 2006 */ 2007 switch (dstate->dtds_state) { 2008 case DTRACE_DSTATE_CLEAN: { 2009 void *sp = &dstate->dtds_state; 2010 2011 if (++cpu >= NCPU) 2012 cpu = 0; 2013 2014 if (dcpu->dtdsc_dirty != NULL && 2015 nstate == DTRACE_DSTATE_EMPTY) 2016 nstate = DTRACE_DSTATE_DIRTY; 2017 2018 if (dcpu->dtdsc_rinsing != NULL) 2019 nstate = DTRACE_DSTATE_RINSING; 2020 2021 dcpu = &dstate->dtds_percpu[cpu]; 2022 2023 if (cpu != me) 2024 goto retry; 2025 2026 (void) dtrace_cas32(sp, 2027 DTRACE_DSTATE_CLEAN, nstate); 2028 2029 /* 2030 * To increment the correct bean 2031 * counter, take another lap. 2032 */ 2033 goto retry; 2034 } 2035 2036 case DTRACE_DSTATE_DIRTY: 2037 dcpu->dtdsc_dirty_drops++; 2038 break; 2039 2040 case DTRACE_DSTATE_RINSING: 2041 dcpu->dtdsc_rinsing_drops++; 2042 break; 2043 2044 case DTRACE_DSTATE_EMPTY: 2045 dcpu->dtdsc_drops++; 2046 break; 2047 } 2048 2049 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2050 return (NULL); 2051 } 2052 2053 /* 2054 * The clean list appears to be non-empty. We want to 2055 * move the clean list to the free list; we start by 2056 * moving the clean pointer aside. 2057 */ 2058 if (dtrace_casptr(&dcpu->dtdsc_clean, 2059 clean, NULL) != clean) { 2060 /* 2061 * We are in one of two situations: 2062 * 2063 * (a) The clean list was switched to the 2064 * free list by another CPU. 2065 * 2066 * (b) The clean list was added to by the 2067 * cleansing cyclic. 2068 * 2069 * In either of these situations, we can 2070 * just reattempt the free list allocation. 2071 */ 2072 goto retry; 2073 } 2074 2075 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2076 2077 /* 2078 * Now we'll move the clean list to our free list. 2079 * It's impossible for this to fail: the only way 2080 * the free list can be updated is through this 2081 * code path, and only one CPU can own the clean list. 2082 * Thus, it would only be possible for this to fail if 2083 * this code were racing with dtrace_dynvar_clean(). 2084 * (That is, if dtrace_dynvar_clean() updated the clean 2085 * list, and we ended up racing to update the free 2086 * list.) This race is prevented by the dtrace_sync() 2087 * in dtrace_dynvar_clean() -- which flushes the 2088 * owners of the clean lists out before resetting 2089 * the clean lists. 2090 */ 2091 dcpu = &dstate->dtds_percpu[me]; 2092 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2093 ASSERT(rval == NULL); 2094 goto retry; 2095 } 2096 2097 dvar = free; 2098 new_free = dvar->dtdv_next; 2099 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2100 2101 /* 2102 * We have now allocated a new chunk. We copy the tuple keys into the 2103 * tuple array and copy any referenced key data into the data space 2104 * following the tuple array. As we do this, we relocate dttk_value 2105 * in the final tuple to point to the key data address in the chunk. 2106 */ 2107 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2108 dvar->dtdv_data = (void *)(kdata + ksize); 2109 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2110 2111 for (i = 0; i < nkeys; i++) { 2112 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2113 size_t kesize = key[i].dttk_size; 2114 2115 if (kesize != 0) { 2116 dtrace_bcopy( 2117 (const void *)(uintptr_t)key[i].dttk_value, 2118 (void *)kdata, kesize); 2119 dkey->dttk_value = kdata; 2120 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2121 } else { 2122 dkey->dttk_value = key[i].dttk_value; 2123 } 2124 2125 dkey->dttk_size = kesize; 2126 } 2127 2128 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2129 dvar->dtdv_hashval = hashval; 2130 dvar->dtdv_next = start; 2131 2132 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2133 return (dvar); 2134 2135 /* 2136 * The cas has failed. Either another CPU is adding an element to 2137 * this hash chain, or another CPU is deleting an element from this 2138 * hash chain. The simplest way to deal with both of these cases 2139 * (though not necessarily the most efficient) is to free our 2140 * allocated block and tail-call ourselves. Note that the free is 2141 * to the dirty list and _not_ to the free list. This is to prevent 2142 * races with allocators, above. 2143 */ 2144 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2145 2146 dtrace_membar_producer(); 2147 2148 do { 2149 free = dcpu->dtdsc_dirty; 2150 dvar->dtdv_next = free; 2151 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2152 2153 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2154 } 2155 2156 /*ARGSUSED*/ 2157 static void 2158 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2159 { 2160 if ((int64_t)nval < (int64_t)*oval) 2161 *oval = nval; 2162 } 2163 2164 /*ARGSUSED*/ 2165 static void 2166 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2167 { 2168 if ((int64_t)nval > (int64_t)*oval) 2169 *oval = nval; 2170 } 2171 2172 static void 2173 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2174 { 2175 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2176 int64_t val = (int64_t)nval; 2177 2178 if (val < 0) { 2179 for (i = 0; i < zero; i++) { 2180 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2181 quanta[i] += incr; 2182 return; 2183 } 2184 } 2185 } else { 2186 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2187 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2188 quanta[i - 1] += incr; 2189 return; 2190 } 2191 } 2192 2193 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2194 return; 2195 } 2196 2197 ASSERT(0); 2198 } 2199 2200 static void 2201 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2202 { 2203 uint64_t arg = *lquanta++; 2204 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2205 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2206 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2207 int32_t val = (int32_t)nval, level; 2208 2209 ASSERT(step != 0); 2210 ASSERT(levels != 0); 2211 2212 if (val < base) { 2213 /* 2214 * This is an underflow. 2215 */ 2216 lquanta[0] += incr; 2217 return; 2218 } 2219 2220 level = (val - base) / step; 2221 2222 if (level < levels) { 2223 lquanta[level + 1] += incr; 2224 return; 2225 } 2226 2227 /* 2228 * This is an overflow. 2229 */ 2230 lquanta[levels + 1] += incr; 2231 } 2232 2233 static int 2234 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2235 uint16_t high, uint16_t nsteps, int64_t value) 2236 { 2237 int64_t this = 1, last, next; 2238 int base = 1, order; 2239 2240 ASSERT(factor <= nsteps); 2241 ASSERT(nsteps % factor == 0); 2242 2243 for (order = 0; order < low; order++) 2244 this *= factor; 2245 2246 /* 2247 * If our value is less than our factor taken to the power of the 2248 * low order of magnitude, it goes into the zeroth bucket. 2249 */ 2250 if (value < (last = this)) 2251 return (0); 2252 2253 for (this *= factor; order <= high; order++) { 2254 int nbuckets = this > nsteps ? nsteps : this; 2255 2256 if ((next = this * factor) < this) { 2257 /* 2258 * We should not generally get log/linear quantizations 2259 * with a high magnitude that allows 64-bits to 2260 * overflow, but we nonetheless protect against this 2261 * by explicitly checking for overflow, and clamping 2262 * our value accordingly. 2263 */ 2264 value = this - 1; 2265 } 2266 2267 if (value < this) { 2268 /* 2269 * If our value lies within this order of magnitude, 2270 * determine its position by taking the offset within 2271 * the order of magnitude, dividing by the bucket 2272 * width, and adding to our (accumulated) base. 2273 */ 2274 return (base + (value - last) / (this / nbuckets)); 2275 } 2276 2277 base += nbuckets - (nbuckets / factor); 2278 last = this; 2279 this = next; 2280 } 2281 2282 /* 2283 * Our value is greater than or equal to our factor taken to the 2284 * power of one plus the high magnitude -- return the top bucket. 2285 */ 2286 return (base); 2287 } 2288 2289 static void 2290 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2291 { 2292 uint64_t arg = *llquanta++; 2293 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2294 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2295 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2296 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2297 2298 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2299 low, high, nsteps, nval)] += incr; 2300 } 2301 2302 /*ARGSUSED*/ 2303 static void 2304 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2305 { 2306 data[0]++; 2307 data[1] += nval; 2308 } 2309 2310 /*ARGSUSED*/ 2311 static void 2312 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2313 { 2314 int64_t snval = (int64_t)nval; 2315 uint64_t tmp[2]; 2316 2317 data[0]++; 2318 data[1] += nval; 2319 2320 /* 2321 * What we want to say here is: 2322 * 2323 * data[2] += nval * nval; 2324 * 2325 * But given that nval is 64-bit, we could easily overflow, so 2326 * we do this as 128-bit arithmetic. 2327 */ 2328 if (snval < 0) 2329 snval = -snval; 2330 2331 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2332 dtrace_add_128(data + 2, tmp, data + 2); 2333 } 2334 2335 /*ARGSUSED*/ 2336 static void 2337 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2338 { 2339 *oval = *oval + 1; 2340 } 2341 2342 /*ARGSUSED*/ 2343 static void 2344 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2345 { 2346 *oval += nval; 2347 } 2348 2349 /* 2350 * Aggregate given the tuple in the principal data buffer, and the aggregating 2351 * action denoted by the specified dtrace_aggregation_t. The aggregation 2352 * buffer is specified as the buf parameter. This routine does not return 2353 * failure; if there is no space in the aggregation buffer, the data will be 2354 * dropped, and a corresponding counter incremented. 2355 */ 2356 static void 2357 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2358 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2359 { 2360 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2361 uint32_t i, ndx, size, fsize; 2362 uint32_t align = sizeof (uint64_t) - 1; 2363 dtrace_aggbuffer_t *agb; 2364 dtrace_aggkey_t *key; 2365 uint32_t hashval = 0, limit, isstr; 2366 caddr_t tomax, data, kdata; 2367 dtrace_actkind_t action; 2368 dtrace_action_t *act; 2369 uintptr_t offs; 2370 2371 if (buf == NULL) 2372 return; 2373 2374 if (!agg->dtag_hasarg) { 2375 /* 2376 * Currently, only quantize() and lquantize() take additional 2377 * arguments, and they have the same semantics: an increment 2378 * value that defaults to 1 when not present. If additional 2379 * aggregating actions take arguments, the setting of the 2380 * default argument value will presumably have to become more 2381 * sophisticated... 2382 */ 2383 arg = 1; 2384 } 2385 2386 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2387 size = rec->dtrd_offset - agg->dtag_base; 2388 fsize = size + rec->dtrd_size; 2389 2390 ASSERT(dbuf->dtb_tomax != NULL); 2391 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2392 2393 if ((tomax = buf->dtb_tomax) == NULL) { 2394 dtrace_buffer_drop(buf); 2395 return; 2396 } 2397 2398 /* 2399 * The metastructure is always at the bottom of the buffer. 2400 */ 2401 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2402 sizeof (dtrace_aggbuffer_t)); 2403 2404 if (buf->dtb_offset == 0) { 2405 /* 2406 * We just kludge up approximately 1/8th of the size to be 2407 * buckets. If this guess ends up being routinely 2408 * off-the-mark, we may need to dynamically readjust this 2409 * based on past performance. 2410 */ 2411 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2412 2413 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2414 (uintptr_t)tomax || hashsize == 0) { 2415 /* 2416 * We've been given a ludicrously small buffer; 2417 * increment our drop count and leave. 2418 */ 2419 dtrace_buffer_drop(buf); 2420 return; 2421 } 2422 2423 /* 2424 * And now, a pathetic attempt to try to get a an odd (or 2425 * perchance, a prime) hash size for better hash distribution. 2426 */ 2427 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2428 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2429 2430 agb->dtagb_hashsize = hashsize; 2431 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2432 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2433 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2434 2435 for (i = 0; i < agb->dtagb_hashsize; i++) 2436 agb->dtagb_hash[i] = NULL; 2437 } 2438 2439 ASSERT(agg->dtag_first != NULL); 2440 ASSERT(agg->dtag_first->dta_intuple); 2441 2442 /* 2443 * Calculate the hash value based on the key. Note that we _don't_ 2444 * include the aggid in the hashing (but we will store it as part of 2445 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2446 * algorithm: a simple, quick algorithm that has no known funnels, and 2447 * gets good distribution in practice. The efficacy of the hashing 2448 * algorithm (and a comparison with other algorithms) may be found by 2449 * running the ::dtrace_aggstat MDB dcmd. 2450 */ 2451 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2452 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2453 limit = i + act->dta_rec.dtrd_size; 2454 ASSERT(limit <= size); 2455 isstr = DTRACEACT_ISSTRING(act); 2456 2457 for (; i < limit; i++) { 2458 hashval += data[i]; 2459 hashval += (hashval << 10); 2460 hashval ^= (hashval >> 6); 2461 2462 if (isstr && data[i] == '\0') 2463 break; 2464 } 2465 } 2466 2467 hashval += (hashval << 3); 2468 hashval ^= (hashval >> 11); 2469 hashval += (hashval << 15); 2470 2471 /* 2472 * Yes, the divide here is expensive -- but it's generally the least 2473 * of the performance issues given the amount of data that we iterate 2474 * over to compute hash values, compare data, etc. 2475 */ 2476 ndx = hashval % agb->dtagb_hashsize; 2477 2478 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2479 ASSERT((caddr_t)key >= tomax); 2480 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2481 2482 if (hashval != key->dtak_hashval || key->dtak_size != size) 2483 continue; 2484 2485 kdata = key->dtak_data; 2486 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2487 2488 for (act = agg->dtag_first; act->dta_intuple; 2489 act = act->dta_next) { 2490 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2491 limit = i + act->dta_rec.dtrd_size; 2492 ASSERT(limit <= size); 2493 isstr = DTRACEACT_ISSTRING(act); 2494 2495 for (; i < limit; i++) { 2496 if (kdata[i] != data[i]) 2497 goto next; 2498 2499 if (isstr && data[i] == '\0') 2500 break; 2501 } 2502 } 2503 2504 if (action != key->dtak_action) { 2505 /* 2506 * We are aggregating on the same value in the same 2507 * aggregation with two different aggregating actions. 2508 * (This should have been picked up in the compiler, 2509 * so we may be dealing with errant or devious DIF.) 2510 * This is an error condition; we indicate as much, 2511 * and return. 2512 */ 2513 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2514 return; 2515 } 2516 2517 /* 2518 * This is a hit: we need to apply the aggregator to 2519 * the value at this key. 2520 */ 2521 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2522 return; 2523 next: 2524 continue; 2525 } 2526 2527 /* 2528 * We didn't find it. We need to allocate some zero-filled space, 2529 * link it into the hash table appropriately, and apply the aggregator 2530 * to the (zero-filled) value. 2531 */ 2532 offs = buf->dtb_offset; 2533 while (offs & (align - 1)) 2534 offs += sizeof (uint32_t); 2535 2536 /* 2537 * If we don't have enough room to both allocate a new key _and_ 2538 * its associated data, increment the drop count and return. 2539 */ 2540 if ((uintptr_t)tomax + offs + fsize > 2541 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2542 dtrace_buffer_drop(buf); 2543 return; 2544 } 2545 2546 /*CONSTCOND*/ 2547 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2548 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2549 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2550 2551 key->dtak_data = kdata = tomax + offs; 2552 buf->dtb_offset = offs + fsize; 2553 2554 /* 2555 * Now copy the data across. 2556 */ 2557 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2558 2559 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2560 kdata[i] = data[i]; 2561 2562 /* 2563 * Because strings are not zeroed out by default, we need to iterate 2564 * looking for actions that store strings, and we need to explicitly 2565 * pad these strings out with zeroes. 2566 */ 2567 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2568 int nul; 2569 2570 if (!DTRACEACT_ISSTRING(act)) 2571 continue; 2572 2573 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2574 limit = i + act->dta_rec.dtrd_size; 2575 ASSERT(limit <= size); 2576 2577 for (nul = 0; i < limit; i++) { 2578 if (nul) { 2579 kdata[i] = '\0'; 2580 continue; 2581 } 2582 2583 if (data[i] != '\0') 2584 continue; 2585 2586 nul = 1; 2587 } 2588 } 2589 2590 for (i = size; i < fsize; i++) 2591 kdata[i] = 0; 2592 2593 key->dtak_hashval = hashval; 2594 key->dtak_size = size; 2595 key->dtak_action = action; 2596 key->dtak_next = agb->dtagb_hash[ndx]; 2597 agb->dtagb_hash[ndx] = key; 2598 2599 /* 2600 * Finally, apply the aggregator. 2601 */ 2602 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2603 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2604 } 2605 2606 /* 2607 * Given consumer state, this routine finds a speculation in the INACTIVE 2608 * state and transitions it into the ACTIVE state. If there is no speculation 2609 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2610 * incremented -- it is up to the caller to take appropriate action. 2611 */ 2612 static int 2613 dtrace_speculation(dtrace_state_t *state) 2614 { 2615 int i = 0; 2616 dtrace_speculation_state_t current; 2617 uint32_t *stat = &state->dts_speculations_unavail, count; 2618 2619 while (i < state->dts_nspeculations) { 2620 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2621 2622 current = spec->dtsp_state; 2623 2624 if (current != DTRACESPEC_INACTIVE) { 2625 if (current == DTRACESPEC_COMMITTINGMANY || 2626 current == DTRACESPEC_COMMITTING || 2627 current == DTRACESPEC_DISCARDING) 2628 stat = &state->dts_speculations_busy; 2629 i++; 2630 continue; 2631 } 2632 2633 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2634 current, DTRACESPEC_ACTIVE) == current) 2635 return (i + 1); 2636 } 2637 2638 /* 2639 * We couldn't find a speculation. If we found as much as a single 2640 * busy speculation buffer, we'll attribute this failure as "busy" 2641 * instead of "unavail". 2642 */ 2643 do { 2644 count = *stat; 2645 } while (dtrace_cas32(stat, count, count + 1) != count); 2646 2647 return (0); 2648 } 2649 2650 /* 2651 * This routine commits an active speculation. If the specified speculation 2652 * is not in a valid state to perform a commit(), this routine will silently do 2653 * nothing. The state of the specified speculation is transitioned according 2654 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2655 */ 2656 static void 2657 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2658 dtrace_specid_t which) 2659 { 2660 dtrace_speculation_t *spec; 2661 dtrace_buffer_t *src, *dest; 2662 uintptr_t daddr, saddr, dlimit, slimit; 2663 dtrace_speculation_state_t current, new = 0; 2664 intptr_t offs; 2665 uint64_t timestamp; 2666 2667 if (which == 0) 2668 return; 2669 2670 if (which > state->dts_nspeculations) { 2671 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2672 return; 2673 } 2674 2675 spec = &state->dts_speculations[which - 1]; 2676 src = &spec->dtsp_buffer[cpu]; 2677 dest = &state->dts_buffer[cpu]; 2678 2679 do { 2680 current = spec->dtsp_state; 2681 2682 if (current == DTRACESPEC_COMMITTINGMANY) 2683 break; 2684 2685 switch (current) { 2686 case DTRACESPEC_INACTIVE: 2687 case DTRACESPEC_DISCARDING: 2688 return; 2689 2690 case DTRACESPEC_COMMITTING: 2691 /* 2692 * This is only possible if we are (a) commit()'ing 2693 * without having done a prior speculate() on this CPU 2694 * and (b) racing with another commit() on a different 2695 * CPU. There's nothing to do -- we just assert that 2696 * our offset is 0. 2697 */ 2698 ASSERT(src->dtb_offset == 0); 2699 return; 2700 2701 case DTRACESPEC_ACTIVE: 2702 new = DTRACESPEC_COMMITTING; 2703 break; 2704 2705 case DTRACESPEC_ACTIVEONE: 2706 /* 2707 * This speculation is active on one CPU. If our 2708 * buffer offset is non-zero, we know that the one CPU 2709 * must be us. Otherwise, we are committing on a 2710 * different CPU from the speculate(), and we must 2711 * rely on being asynchronously cleaned. 2712 */ 2713 if (src->dtb_offset != 0) { 2714 new = DTRACESPEC_COMMITTING; 2715 break; 2716 } 2717 /*FALLTHROUGH*/ 2718 2719 case DTRACESPEC_ACTIVEMANY: 2720 new = DTRACESPEC_COMMITTINGMANY; 2721 break; 2722 2723 default: 2724 ASSERT(0); 2725 } 2726 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2727 current, new) != current); 2728 2729 /* 2730 * We have set the state to indicate that we are committing this 2731 * speculation. Now reserve the necessary space in the destination 2732 * buffer. 2733 */ 2734 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2735 sizeof (uint64_t), state, NULL)) < 0) { 2736 dtrace_buffer_drop(dest); 2737 goto out; 2738 } 2739 2740 /* 2741 * We have sufficient space to copy the speculative buffer into the 2742 * primary buffer. First, modify the speculative buffer, filling 2743 * in the timestamp of all entries with the current time. The data 2744 * must have the commit() time rather than the time it was traced, 2745 * so that all entries in the primary buffer are in timestamp order. 2746 */ 2747 timestamp = dtrace_gethrtime(); 2748 saddr = (uintptr_t)src->dtb_tomax; 2749 slimit = saddr + src->dtb_offset; 2750 while (saddr < slimit) { 2751 size_t size; 2752 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2753 2754 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2755 saddr += sizeof (dtrace_epid_t); 2756 continue; 2757 } 2758 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2759 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2760 2761 ASSERT3U(saddr + size, <=, slimit); 2762 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2763 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2764 2765 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2766 2767 saddr += size; 2768 } 2769 2770 /* 2771 * Copy the buffer across. (Note that this is a 2772 * highly subobtimal bcopy(); in the unlikely event that this becomes 2773 * a serious performance issue, a high-performance DTrace-specific 2774 * bcopy() should obviously be invented.) 2775 */ 2776 daddr = (uintptr_t)dest->dtb_tomax + offs; 2777 dlimit = daddr + src->dtb_offset; 2778 saddr = (uintptr_t)src->dtb_tomax; 2779 2780 /* 2781 * First, the aligned portion. 2782 */ 2783 while (dlimit - daddr >= sizeof (uint64_t)) { 2784 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2785 2786 daddr += sizeof (uint64_t); 2787 saddr += sizeof (uint64_t); 2788 } 2789 2790 /* 2791 * Now any left-over bit... 2792 */ 2793 while (dlimit - daddr) 2794 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2795 2796 /* 2797 * Finally, commit the reserved space in the destination buffer. 2798 */ 2799 dest->dtb_offset = offs + src->dtb_offset; 2800 2801 out: 2802 /* 2803 * If we're lucky enough to be the only active CPU on this speculation 2804 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2805 */ 2806 if (current == DTRACESPEC_ACTIVE || 2807 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2808 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2809 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2810 2811 ASSERT(rval == DTRACESPEC_COMMITTING); 2812 } 2813 2814 src->dtb_offset = 0; 2815 src->dtb_xamot_drops += src->dtb_drops; 2816 src->dtb_drops = 0; 2817 } 2818 2819 /* 2820 * This routine discards an active speculation. If the specified speculation 2821 * is not in a valid state to perform a discard(), this routine will silently 2822 * do nothing. The state of the specified speculation is transitioned 2823 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2824 */ 2825 static void 2826 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2827 dtrace_specid_t which) 2828 { 2829 dtrace_speculation_t *spec; 2830 dtrace_speculation_state_t current, new = 0; 2831 dtrace_buffer_t *buf; 2832 2833 if (which == 0) 2834 return; 2835 2836 if (which > state->dts_nspeculations) { 2837 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2838 return; 2839 } 2840 2841 spec = &state->dts_speculations[which - 1]; 2842 buf = &spec->dtsp_buffer[cpu]; 2843 2844 do { 2845 current = spec->dtsp_state; 2846 2847 switch (current) { 2848 case DTRACESPEC_INACTIVE: 2849 case DTRACESPEC_COMMITTINGMANY: 2850 case DTRACESPEC_COMMITTING: 2851 case DTRACESPEC_DISCARDING: 2852 return; 2853 2854 case DTRACESPEC_ACTIVE: 2855 case DTRACESPEC_ACTIVEMANY: 2856 new = DTRACESPEC_DISCARDING; 2857 break; 2858 2859 case DTRACESPEC_ACTIVEONE: 2860 if (buf->dtb_offset != 0) { 2861 new = DTRACESPEC_INACTIVE; 2862 } else { 2863 new = DTRACESPEC_DISCARDING; 2864 } 2865 break; 2866 2867 default: 2868 ASSERT(0); 2869 } 2870 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2871 current, new) != current); 2872 2873 buf->dtb_offset = 0; 2874 buf->dtb_drops = 0; 2875 } 2876 2877 /* 2878 * Note: not called from probe context. This function is called 2879 * asynchronously from cross call context to clean any speculations that are 2880 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2881 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2882 * speculation. 2883 */ 2884 static void 2885 dtrace_speculation_clean_here(dtrace_state_t *state) 2886 { 2887 dtrace_icookie_t cookie; 2888 processorid_t cpu = curcpu; 2889 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2890 dtrace_specid_t i; 2891 2892 cookie = dtrace_interrupt_disable(); 2893 2894 if (dest->dtb_tomax == NULL) { 2895 dtrace_interrupt_enable(cookie); 2896 return; 2897 } 2898 2899 for (i = 0; i < state->dts_nspeculations; i++) { 2900 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2901 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2902 2903 if (src->dtb_tomax == NULL) 2904 continue; 2905 2906 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2907 src->dtb_offset = 0; 2908 continue; 2909 } 2910 2911 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2912 continue; 2913 2914 if (src->dtb_offset == 0) 2915 continue; 2916 2917 dtrace_speculation_commit(state, cpu, i + 1); 2918 } 2919 2920 dtrace_interrupt_enable(cookie); 2921 } 2922 2923 /* 2924 * Note: not called from probe context. This function is called 2925 * asynchronously (and at a regular interval) to clean any speculations that 2926 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2927 * is work to be done, it cross calls all CPUs to perform that work; 2928 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2929 * INACTIVE state until they have been cleaned by all CPUs. 2930 */ 2931 static void 2932 dtrace_speculation_clean(dtrace_state_t *state) 2933 { 2934 int work = 0, rv; 2935 dtrace_specid_t i; 2936 2937 for (i = 0; i < state->dts_nspeculations; i++) { 2938 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2939 2940 ASSERT(!spec->dtsp_cleaning); 2941 2942 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2943 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2944 continue; 2945 2946 work++; 2947 spec->dtsp_cleaning = 1; 2948 } 2949 2950 if (!work) 2951 return; 2952 2953 dtrace_xcall(DTRACE_CPUALL, 2954 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2955 2956 /* 2957 * We now know that all CPUs have committed or discarded their 2958 * speculation buffers, as appropriate. We can now set the state 2959 * to inactive. 2960 */ 2961 for (i = 0; i < state->dts_nspeculations; i++) { 2962 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2963 dtrace_speculation_state_t current, new; 2964 2965 if (!spec->dtsp_cleaning) 2966 continue; 2967 2968 current = spec->dtsp_state; 2969 ASSERT(current == DTRACESPEC_DISCARDING || 2970 current == DTRACESPEC_COMMITTINGMANY); 2971 2972 new = DTRACESPEC_INACTIVE; 2973 2974 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2975 ASSERT(rv == current); 2976 spec->dtsp_cleaning = 0; 2977 } 2978 } 2979 2980 /* 2981 * Called as part of a speculate() to get the speculative buffer associated 2982 * with a given speculation. Returns NULL if the specified speculation is not 2983 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2984 * the active CPU is not the specified CPU -- the speculation will be 2985 * atomically transitioned into the ACTIVEMANY state. 2986 */ 2987 static dtrace_buffer_t * 2988 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2989 dtrace_specid_t which) 2990 { 2991 dtrace_speculation_t *spec; 2992 dtrace_speculation_state_t current, new = 0; 2993 dtrace_buffer_t *buf; 2994 2995 if (which == 0) 2996 return (NULL); 2997 2998 if (which > state->dts_nspeculations) { 2999 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3000 return (NULL); 3001 } 3002 3003 spec = &state->dts_speculations[which - 1]; 3004 buf = &spec->dtsp_buffer[cpuid]; 3005 3006 do { 3007 current = spec->dtsp_state; 3008 3009 switch (current) { 3010 case DTRACESPEC_INACTIVE: 3011 case DTRACESPEC_COMMITTINGMANY: 3012 case DTRACESPEC_DISCARDING: 3013 return (NULL); 3014 3015 case DTRACESPEC_COMMITTING: 3016 ASSERT(buf->dtb_offset == 0); 3017 return (NULL); 3018 3019 case DTRACESPEC_ACTIVEONE: 3020 /* 3021 * This speculation is currently active on one CPU. 3022 * Check the offset in the buffer; if it's non-zero, 3023 * that CPU must be us (and we leave the state alone). 3024 * If it's zero, assume that we're starting on a new 3025 * CPU -- and change the state to indicate that the 3026 * speculation is active on more than one CPU. 3027 */ 3028 if (buf->dtb_offset != 0) 3029 return (buf); 3030 3031 new = DTRACESPEC_ACTIVEMANY; 3032 break; 3033 3034 case DTRACESPEC_ACTIVEMANY: 3035 return (buf); 3036 3037 case DTRACESPEC_ACTIVE: 3038 new = DTRACESPEC_ACTIVEONE; 3039 break; 3040 3041 default: 3042 ASSERT(0); 3043 } 3044 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3045 current, new) != current); 3046 3047 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3048 return (buf); 3049 } 3050 3051 /* 3052 * Return a string. In the event that the user lacks the privilege to access 3053 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3054 * don't fail access checking. 3055 * 3056 * dtrace_dif_variable() uses this routine as a helper for various 3057 * builtin values such as 'execname' and 'probefunc.' 3058 */ 3059 uintptr_t 3060 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3061 dtrace_mstate_t *mstate) 3062 { 3063 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3064 uintptr_t ret; 3065 size_t strsz; 3066 3067 /* 3068 * The easy case: this probe is allowed to read all of memory, so 3069 * we can just return this as a vanilla pointer. 3070 */ 3071 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3072 return (addr); 3073 3074 /* 3075 * This is the tougher case: we copy the string in question from 3076 * kernel memory into scratch memory and return it that way: this 3077 * ensures that we won't trip up when access checking tests the 3078 * BYREF return value. 3079 */ 3080 strsz = dtrace_strlen((char *)addr, size) + 1; 3081 3082 if (mstate->dtms_scratch_ptr + strsz > 3083 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3084 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3085 return (0); 3086 } 3087 3088 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3089 strsz); 3090 ret = mstate->dtms_scratch_ptr; 3091 mstate->dtms_scratch_ptr += strsz; 3092 return (ret); 3093 } 3094 3095 /* 3096 * Return a string from a memoy address which is known to have one or 3097 * more concatenated, individually zero terminated, sub-strings. 3098 * In the event that the user lacks the privilege to access 3099 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3100 * don't fail access checking. 3101 * 3102 * dtrace_dif_variable() uses this routine as a helper for various 3103 * builtin values such as 'execargs'. 3104 */ 3105 static uintptr_t 3106 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3107 dtrace_mstate_t *mstate) 3108 { 3109 char *p; 3110 size_t i; 3111 uintptr_t ret; 3112 3113 if (mstate->dtms_scratch_ptr + strsz > 3114 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3116 return (0); 3117 } 3118 3119 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3120 strsz); 3121 3122 /* Replace sub-string termination characters with a space. */ 3123 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3124 p++, i++) 3125 if (*p == '\0') 3126 *p = ' '; 3127 3128 ret = mstate->dtms_scratch_ptr; 3129 mstate->dtms_scratch_ptr += strsz; 3130 return (ret); 3131 } 3132 3133 /* 3134 * This function implements the DIF emulator's variable lookups. The emulator 3135 * passes a reserved variable identifier and optional built-in array index. 3136 */ 3137 static uint64_t 3138 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3139 uint64_t ndx) 3140 { 3141 /* 3142 * If we're accessing one of the uncached arguments, we'll turn this 3143 * into a reference in the args array. 3144 */ 3145 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3146 ndx = v - DIF_VAR_ARG0; 3147 v = DIF_VAR_ARGS; 3148 } 3149 3150 switch (v) { 3151 case DIF_VAR_ARGS: 3152 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3153 if (ndx >= sizeof (mstate->dtms_arg) / 3154 sizeof (mstate->dtms_arg[0])) { 3155 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3156 dtrace_provider_t *pv; 3157 uint64_t val; 3158 3159 pv = mstate->dtms_probe->dtpr_provider; 3160 if (pv->dtpv_pops.dtps_getargval != NULL) 3161 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3162 mstate->dtms_probe->dtpr_id, 3163 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3164 else 3165 val = dtrace_getarg(ndx, aframes); 3166 3167 /* 3168 * This is regrettably required to keep the compiler 3169 * from tail-optimizing the call to dtrace_getarg(). 3170 * The condition always evaluates to true, but the 3171 * compiler has no way of figuring that out a priori. 3172 * (None of this would be necessary if the compiler 3173 * could be relied upon to _always_ tail-optimize 3174 * the call to dtrace_getarg() -- but it can't.) 3175 */ 3176 if (mstate->dtms_probe != NULL) 3177 return (val); 3178 3179 ASSERT(0); 3180 } 3181 3182 return (mstate->dtms_arg[ndx]); 3183 3184 #if defined(sun) 3185 case DIF_VAR_UREGS: { 3186 klwp_t *lwp; 3187 3188 if (!dtrace_priv_proc(state)) 3189 return (0); 3190 3191 if ((lwp = curthread->t_lwp) == NULL) { 3192 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3193 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 3194 return (0); 3195 } 3196 3197 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3198 return (0); 3199 } 3200 #else 3201 case DIF_VAR_UREGS: { 3202 struct trapframe *tframe; 3203 3204 if (!dtrace_priv_proc(state)) 3205 return (0); 3206 3207 if ((tframe = curthread->td_frame) == NULL) { 3208 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3209 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3210 return (0); 3211 } 3212 3213 return (dtrace_getreg(tframe, ndx)); 3214 } 3215 #endif 3216 3217 case DIF_VAR_CURTHREAD: 3218 if (!dtrace_priv_proc(state)) 3219 return (0); 3220 return ((uint64_t)(uintptr_t)curthread); 3221 3222 case DIF_VAR_TIMESTAMP: 3223 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3224 mstate->dtms_timestamp = dtrace_gethrtime(); 3225 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3226 } 3227 return (mstate->dtms_timestamp); 3228 3229 case DIF_VAR_VTIMESTAMP: 3230 ASSERT(dtrace_vtime_references != 0); 3231 return (curthread->t_dtrace_vtime); 3232 3233 case DIF_VAR_WALLTIMESTAMP: 3234 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3235 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3236 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3237 } 3238 return (mstate->dtms_walltimestamp); 3239 3240 #if defined(sun) 3241 case DIF_VAR_IPL: 3242 if (!dtrace_priv_kernel(state)) 3243 return (0); 3244 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3245 mstate->dtms_ipl = dtrace_getipl(); 3246 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3247 } 3248 return (mstate->dtms_ipl); 3249 #endif 3250 3251 case DIF_VAR_EPID: 3252 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3253 return (mstate->dtms_epid); 3254 3255 case DIF_VAR_ID: 3256 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3257 return (mstate->dtms_probe->dtpr_id); 3258 3259 case DIF_VAR_STACKDEPTH: 3260 if (!dtrace_priv_kernel(state)) 3261 return (0); 3262 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3263 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3264 3265 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3266 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3267 } 3268 return (mstate->dtms_stackdepth); 3269 3270 case DIF_VAR_USTACKDEPTH: 3271 if (!dtrace_priv_proc(state)) 3272 return (0); 3273 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3274 /* 3275 * See comment in DIF_VAR_PID. 3276 */ 3277 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3278 CPU_ON_INTR(CPU)) { 3279 mstate->dtms_ustackdepth = 0; 3280 } else { 3281 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3282 mstate->dtms_ustackdepth = 3283 dtrace_getustackdepth(); 3284 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3285 } 3286 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3287 } 3288 return (mstate->dtms_ustackdepth); 3289 3290 case DIF_VAR_CALLER: 3291 if (!dtrace_priv_kernel(state)) 3292 return (0); 3293 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3294 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3295 3296 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3297 /* 3298 * If this is an unanchored probe, we are 3299 * required to go through the slow path: 3300 * dtrace_caller() only guarantees correct 3301 * results for anchored probes. 3302 */ 3303 pc_t caller[2] = {0, 0}; 3304 3305 dtrace_getpcstack(caller, 2, aframes, 3306 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3307 mstate->dtms_caller = caller[1]; 3308 } else if ((mstate->dtms_caller = 3309 dtrace_caller(aframes)) == -1) { 3310 /* 3311 * We have failed to do this the quick way; 3312 * we must resort to the slower approach of 3313 * calling dtrace_getpcstack(). 3314 */ 3315 pc_t caller = 0; 3316 3317 dtrace_getpcstack(&caller, 1, aframes, NULL); 3318 mstate->dtms_caller = caller; 3319 } 3320 3321 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3322 } 3323 return (mstate->dtms_caller); 3324 3325 case DIF_VAR_UCALLER: 3326 if (!dtrace_priv_proc(state)) 3327 return (0); 3328 3329 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3330 uint64_t ustack[3]; 3331 3332 /* 3333 * dtrace_getupcstack() fills in the first uint64_t 3334 * with the current PID. The second uint64_t will 3335 * be the program counter at user-level. The third 3336 * uint64_t will contain the caller, which is what 3337 * we're after. 3338 */ 3339 ustack[2] = 0; 3340 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3341 dtrace_getupcstack(ustack, 3); 3342 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3343 mstate->dtms_ucaller = ustack[2]; 3344 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3345 } 3346 3347 return (mstate->dtms_ucaller); 3348 3349 case DIF_VAR_PROBEPROV: 3350 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3351 return (dtrace_dif_varstr( 3352 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3353 state, mstate)); 3354 3355 case DIF_VAR_PROBEMOD: 3356 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3357 return (dtrace_dif_varstr( 3358 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3359 state, mstate)); 3360 3361 case DIF_VAR_PROBEFUNC: 3362 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3363 return (dtrace_dif_varstr( 3364 (uintptr_t)mstate->dtms_probe->dtpr_func, 3365 state, mstate)); 3366 3367 case DIF_VAR_PROBENAME: 3368 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3369 return (dtrace_dif_varstr( 3370 (uintptr_t)mstate->dtms_probe->dtpr_name, 3371 state, mstate)); 3372 3373 case DIF_VAR_PID: 3374 if (!dtrace_priv_proc(state)) 3375 return (0); 3376 3377 #if defined(sun) 3378 /* 3379 * Note that we are assuming that an unanchored probe is 3380 * always due to a high-level interrupt. (And we're assuming 3381 * that there is only a single high level interrupt.) 3382 */ 3383 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3384 return (pid0.pid_id); 3385 3386 /* 3387 * It is always safe to dereference one's own t_procp pointer: 3388 * it always points to a valid, allocated proc structure. 3389 * Further, it is always safe to dereference the p_pidp member 3390 * of one's own proc structure. (These are truisms becuase 3391 * threads and processes don't clean up their own state -- 3392 * they leave that task to whomever reaps them.) 3393 */ 3394 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3395 #else 3396 return ((uint64_t)curproc->p_pid); 3397 #endif 3398 3399 case DIF_VAR_PPID: 3400 if (!dtrace_priv_proc(state)) 3401 return (0); 3402 3403 #if defined(sun) 3404 /* 3405 * See comment in DIF_VAR_PID. 3406 */ 3407 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3408 return (pid0.pid_id); 3409 3410 /* 3411 * It is always safe to dereference one's own t_procp pointer: 3412 * it always points to a valid, allocated proc structure. 3413 * (This is true because threads don't clean up their own 3414 * state -- they leave that task to whomever reaps them.) 3415 */ 3416 return ((uint64_t)curthread->t_procp->p_ppid); 3417 #else 3418 if (curproc->p_pid == proc0.p_pid) 3419 return (curproc->p_pid); 3420 else 3421 return (curproc->p_pptr->p_pid); 3422 #endif 3423 3424 case DIF_VAR_TID: 3425 #if defined(sun) 3426 /* 3427 * See comment in DIF_VAR_PID. 3428 */ 3429 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3430 return (0); 3431 #endif 3432 3433 return ((uint64_t)curthread->t_tid); 3434 3435 case DIF_VAR_EXECARGS: { 3436 struct pargs *p_args = curthread->td_proc->p_args; 3437 3438 if (p_args == NULL) 3439 return(0); 3440 3441 return (dtrace_dif_varstrz( 3442 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3443 } 3444 3445 case DIF_VAR_EXECNAME: 3446 #if defined(sun) 3447 if (!dtrace_priv_proc(state)) 3448 return (0); 3449 3450 /* 3451 * See comment in DIF_VAR_PID. 3452 */ 3453 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3454 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3455 3456 /* 3457 * It is always safe to dereference one's own t_procp pointer: 3458 * it always points to a valid, allocated proc structure. 3459 * (This is true because threads don't clean up their own 3460 * state -- they leave that task to whomever reaps them.) 3461 */ 3462 return (dtrace_dif_varstr( 3463 (uintptr_t)curthread->t_procp->p_user.u_comm, 3464 state, mstate)); 3465 #else 3466 return (dtrace_dif_varstr( 3467 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3468 #endif 3469 3470 case DIF_VAR_ZONENAME: 3471 #if defined(sun) 3472 if (!dtrace_priv_proc(state)) 3473 return (0); 3474 3475 /* 3476 * See comment in DIF_VAR_PID. 3477 */ 3478 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3479 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3480 3481 /* 3482 * It is always safe to dereference one's own t_procp pointer: 3483 * it always points to a valid, allocated proc structure. 3484 * (This is true because threads don't clean up their own 3485 * state -- they leave that task to whomever reaps them.) 3486 */ 3487 return (dtrace_dif_varstr( 3488 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3489 state, mstate)); 3490 #else 3491 return (0); 3492 #endif 3493 3494 case DIF_VAR_UID: 3495 if (!dtrace_priv_proc(state)) 3496 return (0); 3497 3498 #if defined(sun) 3499 /* 3500 * See comment in DIF_VAR_PID. 3501 */ 3502 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3503 return ((uint64_t)p0.p_cred->cr_uid); 3504 #endif 3505 3506 /* 3507 * It is always safe to dereference one's own t_procp pointer: 3508 * it always points to a valid, allocated proc structure. 3509 * (This is true because threads don't clean up their own 3510 * state -- they leave that task to whomever reaps them.) 3511 * 3512 * Additionally, it is safe to dereference one's own process 3513 * credential, since this is never NULL after process birth. 3514 */ 3515 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3516 3517 case DIF_VAR_GID: 3518 if (!dtrace_priv_proc(state)) 3519 return (0); 3520 3521 #if defined(sun) 3522 /* 3523 * See comment in DIF_VAR_PID. 3524 */ 3525 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3526 return ((uint64_t)p0.p_cred->cr_gid); 3527 #endif 3528 3529 /* 3530 * It is always safe to dereference one's own t_procp pointer: 3531 * it always points to a valid, allocated proc structure. 3532 * (This is true because threads don't clean up their own 3533 * state -- they leave that task to whomever reaps them.) 3534 * 3535 * Additionally, it is safe to dereference one's own process 3536 * credential, since this is never NULL after process birth. 3537 */ 3538 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3539 3540 case DIF_VAR_ERRNO: { 3541 #if defined(sun) 3542 klwp_t *lwp; 3543 if (!dtrace_priv_proc(state)) 3544 return (0); 3545 3546 /* 3547 * See comment in DIF_VAR_PID. 3548 */ 3549 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3550 return (0); 3551 3552 /* 3553 * It is always safe to dereference one's own t_lwp pointer in 3554 * the event that this pointer is non-NULL. (This is true 3555 * because threads and lwps don't clean up their own state -- 3556 * they leave that task to whomever reaps them.) 3557 */ 3558 if ((lwp = curthread->t_lwp) == NULL) 3559 return (0); 3560 3561 return ((uint64_t)lwp->lwp_errno); 3562 #else 3563 return (curthread->td_errno); 3564 #endif 3565 } 3566 #if !defined(sun) 3567 case DIF_VAR_CPU: { 3568 return curcpu; 3569 } 3570 #endif 3571 default: 3572 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3573 return (0); 3574 } 3575 } 3576 3577 3578 typedef enum dtrace_json_state { 3579 DTRACE_JSON_REST = 1, 3580 DTRACE_JSON_OBJECT, 3581 DTRACE_JSON_STRING, 3582 DTRACE_JSON_STRING_ESCAPE, 3583 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3584 DTRACE_JSON_COLON, 3585 DTRACE_JSON_COMMA, 3586 DTRACE_JSON_VALUE, 3587 DTRACE_JSON_IDENTIFIER, 3588 DTRACE_JSON_NUMBER, 3589 DTRACE_JSON_NUMBER_FRAC, 3590 DTRACE_JSON_NUMBER_EXP, 3591 DTRACE_JSON_COLLECT_OBJECT 3592 } dtrace_json_state_t; 3593 3594 /* 3595 * This function possesses just enough knowledge about JSON to extract a single 3596 * value from a JSON string and store it in the scratch buffer. It is able 3597 * to extract nested object values, and members of arrays by index. 3598 * 3599 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3600 * be looked up as we descend into the object tree. e.g. 3601 * 3602 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3603 * with nelems = 5. 3604 * 3605 * The run time of this function must be bounded above by strsize to limit the 3606 * amount of work done in probe context. As such, it is implemented as a 3607 * simple state machine, reading one character at a time using safe loads 3608 * until we find the requested element, hit a parsing error or run off the 3609 * end of the object or string. 3610 * 3611 * As there is no way for a subroutine to return an error without interrupting 3612 * clause execution, we simply return NULL in the event of a missing key or any 3613 * other error condition. Each NULL return in this function is commented with 3614 * the error condition it represents -- parsing or otherwise. 3615 * 3616 * The set of states for the state machine closely matches the JSON 3617 * specification (http://json.org/). Briefly: 3618 * 3619 * DTRACE_JSON_REST: 3620 * Skip whitespace until we find either a top-level Object, moving 3621 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3622 * 3623 * DTRACE_JSON_OBJECT: 3624 * Locate the next key String in an Object. Sets a flag to denote 3625 * the next String as a key string and moves to DTRACE_JSON_STRING. 3626 * 3627 * DTRACE_JSON_COLON: 3628 * Skip whitespace until we find the colon that separates key Strings 3629 * from their values. Once found, move to DTRACE_JSON_VALUE. 3630 * 3631 * DTRACE_JSON_VALUE: 3632 * Detects the type of the next value (String, Number, Identifier, Object 3633 * or Array) and routes to the states that process that type. Here we also 3634 * deal with the element selector list if we are requested to traverse down 3635 * into the object tree. 3636 * 3637 * DTRACE_JSON_COMMA: 3638 * Skip whitespace until we find the comma that separates key-value pairs 3639 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3640 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3641 * states return to this state at the end of their value, unless otherwise 3642 * noted. 3643 * 3644 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3645 * Processes a Number literal from the JSON, including any exponent 3646 * component that may be present. Numbers are returned as strings, which 3647 * may be passed to strtoll() if an integer is required. 3648 * 3649 * DTRACE_JSON_IDENTIFIER: 3650 * Processes a "true", "false" or "null" literal in the JSON. 3651 * 3652 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3653 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3654 * Processes a String literal from the JSON, whether the String denotes 3655 * a key, a value or part of a larger Object. Handles all escape sequences 3656 * present in the specification, including four-digit unicode characters, 3657 * but merely includes the escape sequence without converting it to the 3658 * actual escaped character. If the String is flagged as a key, we 3659 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3660 * 3661 * DTRACE_JSON_COLLECT_OBJECT: 3662 * This state collects an entire Object (or Array), correctly handling 3663 * embedded strings. If the full element selector list matches this nested 3664 * object, we return the Object in full as a string. If not, we use this 3665 * state to skip to the next value at this level and continue processing. 3666 * 3667 * NOTE: This function uses various macros from strtolctype.h to manipulate 3668 * digit values, etc -- these have all been checked to ensure they make 3669 * no additional function calls. 3670 */ 3671 static char * 3672 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3673 char *dest) 3674 { 3675 dtrace_json_state_t state = DTRACE_JSON_REST; 3676 int64_t array_elem = INT64_MIN; 3677 int64_t array_pos = 0; 3678 uint8_t escape_unicount = 0; 3679 boolean_t string_is_key = B_FALSE; 3680 boolean_t collect_object = B_FALSE; 3681 boolean_t found_key = B_FALSE; 3682 boolean_t in_array = B_FALSE; 3683 uint32_t braces = 0, brackets = 0; 3684 char *elem = elemlist; 3685 char *dd = dest; 3686 uintptr_t cur; 3687 3688 for (cur = json; cur < json + size; cur++) { 3689 char cc = dtrace_load8(cur); 3690 if (cc == '\0') 3691 return (NULL); 3692 3693 switch (state) { 3694 case DTRACE_JSON_REST: 3695 if (isspace(cc)) 3696 break; 3697 3698 if (cc == '{') { 3699 state = DTRACE_JSON_OBJECT; 3700 break; 3701 } 3702 3703 if (cc == '[') { 3704 in_array = B_TRUE; 3705 array_pos = 0; 3706 array_elem = dtrace_strtoll(elem, 10, size); 3707 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3708 state = DTRACE_JSON_VALUE; 3709 break; 3710 } 3711 3712 /* 3713 * ERROR: expected to find a top-level object or array. 3714 */ 3715 return (NULL); 3716 case DTRACE_JSON_OBJECT: 3717 if (isspace(cc)) 3718 break; 3719 3720 if (cc == '"') { 3721 state = DTRACE_JSON_STRING; 3722 string_is_key = B_TRUE; 3723 break; 3724 } 3725 3726 /* 3727 * ERROR: either the object did not start with a key 3728 * string, or we've run off the end of the object 3729 * without finding the requested key. 3730 */ 3731 return (NULL); 3732 case DTRACE_JSON_STRING: 3733 if (cc == '\\') { 3734 *dd++ = '\\'; 3735 state = DTRACE_JSON_STRING_ESCAPE; 3736 break; 3737 } 3738 3739 if (cc == '"') { 3740 if (collect_object) { 3741 /* 3742 * We don't reset the dest here, as 3743 * the string is part of a larger 3744 * object being collected. 3745 */ 3746 *dd++ = cc; 3747 collect_object = B_FALSE; 3748 state = DTRACE_JSON_COLLECT_OBJECT; 3749 break; 3750 } 3751 *dd = '\0'; 3752 dd = dest; /* reset string buffer */ 3753 if (string_is_key) { 3754 if (dtrace_strncmp(dest, elem, 3755 size) == 0) 3756 found_key = B_TRUE; 3757 } else if (found_key) { 3758 if (nelems > 1) { 3759 /* 3760 * We expected an object, not 3761 * this string. 3762 */ 3763 return (NULL); 3764 } 3765 return (dest); 3766 } 3767 state = string_is_key ? DTRACE_JSON_COLON : 3768 DTRACE_JSON_COMMA; 3769 string_is_key = B_FALSE; 3770 break; 3771 } 3772 3773 *dd++ = cc; 3774 break; 3775 case DTRACE_JSON_STRING_ESCAPE: 3776 *dd++ = cc; 3777 if (cc == 'u') { 3778 escape_unicount = 0; 3779 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3780 } else { 3781 state = DTRACE_JSON_STRING; 3782 } 3783 break; 3784 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3785 if (!isxdigit(cc)) { 3786 /* 3787 * ERROR: invalid unicode escape, expected 3788 * four valid hexidecimal digits. 3789 */ 3790 return (NULL); 3791 } 3792 3793 *dd++ = cc; 3794 if (++escape_unicount == 4) 3795 state = DTRACE_JSON_STRING; 3796 break; 3797 case DTRACE_JSON_COLON: 3798 if (isspace(cc)) 3799 break; 3800 3801 if (cc == ':') { 3802 state = DTRACE_JSON_VALUE; 3803 break; 3804 } 3805 3806 /* 3807 * ERROR: expected a colon. 3808 */ 3809 return (NULL); 3810 case DTRACE_JSON_COMMA: 3811 if (isspace(cc)) 3812 break; 3813 3814 if (cc == ',') { 3815 if (in_array) { 3816 state = DTRACE_JSON_VALUE; 3817 if (++array_pos == array_elem) 3818 found_key = B_TRUE; 3819 } else { 3820 state = DTRACE_JSON_OBJECT; 3821 } 3822 break; 3823 } 3824 3825 /* 3826 * ERROR: either we hit an unexpected character, or 3827 * we reached the end of the object or array without 3828 * finding the requested key. 3829 */ 3830 return (NULL); 3831 case DTRACE_JSON_IDENTIFIER: 3832 if (islower(cc)) { 3833 *dd++ = cc; 3834 break; 3835 } 3836 3837 *dd = '\0'; 3838 dd = dest; /* reset string buffer */ 3839 3840 if (dtrace_strncmp(dest, "true", 5) == 0 || 3841 dtrace_strncmp(dest, "false", 6) == 0 || 3842 dtrace_strncmp(dest, "null", 5) == 0) { 3843 if (found_key) { 3844 if (nelems > 1) { 3845 /* 3846 * ERROR: We expected an object, 3847 * not this identifier. 3848 */ 3849 return (NULL); 3850 } 3851 return (dest); 3852 } else { 3853 cur--; 3854 state = DTRACE_JSON_COMMA; 3855 break; 3856 } 3857 } 3858 3859 /* 3860 * ERROR: we did not recognise the identifier as one 3861 * of those in the JSON specification. 3862 */ 3863 return (NULL); 3864 case DTRACE_JSON_NUMBER: 3865 if (cc == '.') { 3866 *dd++ = cc; 3867 state = DTRACE_JSON_NUMBER_FRAC; 3868 break; 3869 } 3870 3871 if (cc == 'x' || cc == 'X') { 3872 /* 3873 * ERROR: specification explicitly excludes 3874 * hexidecimal or octal numbers. 3875 */ 3876 return (NULL); 3877 } 3878 3879 /* FALLTHRU */ 3880 case DTRACE_JSON_NUMBER_FRAC: 3881 if (cc == 'e' || cc == 'E') { 3882 *dd++ = cc; 3883 state = DTRACE_JSON_NUMBER_EXP; 3884 break; 3885 } 3886 3887 if (cc == '+' || cc == '-') { 3888 /* 3889 * ERROR: expect sign as part of exponent only. 3890 */ 3891 return (NULL); 3892 } 3893 /* FALLTHRU */ 3894 case DTRACE_JSON_NUMBER_EXP: 3895 if (isdigit(cc) || cc == '+' || cc == '-') { 3896 *dd++ = cc; 3897 break; 3898 } 3899 3900 *dd = '\0'; 3901 dd = dest; /* reset string buffer */ 3902 if (found_key) { 3903 if (nelems > 1) { 3904 /* 3905 * ERROR: We expected an object, not 3906 * this number. 3907 */ 3908 return (NULL); 3909 } 3910 return (dest); 3911 } 3912 3913 cur--; 3914 state = DTRACE_JSON_COMMA; 3915 break; 3916 case DTRACE_JSON_VALUE: 3917 if (isspace(cc)) 3918 break; 3919 3920 if (cc == '{' || cc == '[') { 3921 if (nelems > 1 && found_key) { 3922 in_array = cc == '[' ? B_TRUE : B_FALSE; 3923 /* 3924 * If our element selector directs us 3925 * to descend into this nested object, 3926 * then move to the next selector 3927 * element in the list and restart the 3928 * state machine. 3929 */ 3930 while (*elem != '\0') 3931 elem++; 3932 elem++; /* skip the inter-element NUL */ 3933 nelems--; 3934 dd = dest; 3935 if (in_array) { 3936 state = DTRACE_JSON_VALUE; 3937 array_pos = 0; 3938 array_elem = dtrace_strtoll( 3939 elem, 10, size); 3940 found_key = array_elem == 0 ? 3941 B_TRUE : B_FALSE; 3942 } else { 3943 found_key = B_FALSE; 3944 state = DTRACE_JSON_OBJECT; 3945 } 3946 break; 3947 } 3948 3949 /* 3950 * Otherwise, we wish to either skip this 3951 * nested object or return it in full. 3952 */ 3953 if (cc == '[') 3954 brackets = 1; 3955 else 3956 braces = 1; 3957 *dd++ = cc; 3958 state = DTRACE_JSON_COLLECT_OBJECT; 3959 break; 3960 } 3961 3962 if (cc == '"') { 3963 state = DTRACE_JSON_STRING; 3964 break; 3965 } 3966 3967 if (islower(cc)) { 3968 /* 3969 * Here we deal with true, false and null. 3970 */ 3971 *dd++ = cc; 3972 state = DTRACE_JSON_IDENTIFIER; 3973 break; 3974 } 3975 3976 if (cc == '-' || isdigit(cc)) { 3977 *dd++ = cc; 3978 state = DTRACE_JSON_NUMBER; 3979 break; 3980 } 3981 3982 /* 3983 * ERROR: unexpected character at start of value. 3984 */ 3985 return (NULL); 3986 case DTRACE_JSON_COLLECT_OBJECT: 3987 if (cc == '\0') 3988 /* 3989 * ERROR: unexpected end of input. 3990 */ 3991 return (NULL); 3992 3993 *dd++ = cc; 3994 if (cc == '"') { 3995 collect_object = B_TRUE; 3996 state = DTRACE_JSON_STRING; 3997 break; 3998 } 3999 4000 if (cc == ']') { 4001 if (brackets-- == 0) { 4002 /* 4003 * ERROR: unbalanced brackets. 4004 */ 4005 return (NULL); 4006 } 4007 } else if (cc == '}') { 4008 if (braces-- == 0) { 4009 /* 4010 * ERROR: unbalanced braces. 4011 */ 4012 return (NULL); 4013 } 4014 } else if (cc == '{') { 4015 braces++; 4016 } else if (cc == '[') { 4017 brackets++; 4018 } 4019 4020 if (brackets == 0 && braces == 0) { 4021 if (found_key) { 4022 *dd = '\0'; 4023 return (dest); 4024 } 4025 dd = dest; /* reset string buffer */ 4026 state = DTRACE_JSON_COMMA; 4027 } 4028 break; 4029 } 4030 } 4031 return (NULL); 4032 } 4033 4034 /* 4035 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4036 * Notice that we don't bother validating the proper number of arguments or 4037 * their types in the tuple stack. This isn't needed because all argument 4038 * interpretation is safe because of our load safety -- the worst that can 4039 * happen is that a bogus program can obtain bogus results. 4040 */ 4041 static void 4042 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4043 dtrace_key_t *tupregs, int nargs, 4044 dtrace_mstate_t *mstate, dtrace_state_t *state) 4045 { 4046 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4047 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4048 dtrace_vstate_t *vstate = &state->dts_vstate; 4049 4050 #if defined(sun) 4051 union { 4052 mutex_impl_t mi; 4053 uint64_t mx; 4054 } m; 4055 4056 union { 4057 krwlock_t ri; 4058 uintptr_t rw; 4059 } r; 4060 #else 4061 struct thread *lowner; 4062 union { 4063 struct lock_object *li; 4064 uintptr_t lx; 4065 } l; 4066 #endif 4067 4068 switch (subr) { 4069 case DIF_SUBR_RAND: 4070 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4071 break; 4072 4073 #if defined(sun) 4074 case DIF_SUBR_MUTEX_OWNED: 4075 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4076 mstate, vstate)) { 4077 regs[rd] = 0; 4078 break; 4079 } 4080 4081 m.mx = dtrace_load64(tupregs[0].dttk_value); 4082 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4083 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4084 else 4085 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4086 break; 4087 4088 case DIF_SUBR_MUTEX_OWNER: 4089 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4090 mstate, vstate)) { 4091 regs[rd] = 0; 4092 break; 4093 } 4094 4095 m.mx = dtrace_load64(tupregs[0].dttk_value); 4096 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4097 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4098 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4099 else 4100 regs[rd] = 0; 4101 break; 4102 4103 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4104 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4105 mstate, vstate)) { 4106 regs[rd] = 0; 4107 break; 4108 } 4109 4110 m.mx = dtrace_load64(tupregs[0].dttk_value); 4111 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4112 break; 4113 4114 case DIF_SUBR_MUTEX_TYPE_SPIN: 4115 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4116 mstate, vstate)) { 4117 regs[rd] = 0; 4118 break; 4119 } 4120 4121 m.mx = dtrace_load64(tupregs[0].dttk_value); 4122 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4123 break; 4124 4125 case DIF_SUBR_RW_READ_HELD: { 4126 uintptr_t tmp; 4127 4128 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4129 mstate, vstate)) { 4130 regs[rd] = 0; 4131 break; 4132 } 4133 4134 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4135 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4136 break; 4137 } 4138 4139 case DIF_SUBR_RW_WRITE_HELD: 4140 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4141 mstate, vstate)) { 4142 regs[rd] = 0; 4143 break; 4144 } 4145 4146 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4147 regs[rd] = _RW_WRITE_HELD(&r.ri); 4148 break; 4149 4150 case DIF_SUBR_RW_ISWRITER: 4151 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4152 mstate, vstate)) { 4153 regs[rd] = 0; 4154 break; 4155 } 4156 4157 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4158 regs[rd] = _RW_ISWRITER(&r.ri); 4159 break; 4160 4161 #else 4162 case DIF_SUBR_MUTEX_OWNED: 4163 if (!dtrace_canload(tupregs[0].dttk_value, 4164 sizeof (struct lock_object), mstate, vstate)) { 4165 regs[rd] = 0; 4166 break; 4167 } 4168 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4169 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4170 break; 4171 4172 case DIF_SUBR_MUTEX_OWNER: 4173 if (!dtrace_canload(tupregs[0].dttk_value, 4174 sizeof (struct lock_object), mstate, vstate)) { 4175 regs[rd] = 0; 4176 break; 4177 } 4178 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4179 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4180 regs[rd] = (uintptr_t)lowner; 4181 break; 4182 4183 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4184 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4185 mstate, vstate)) { 4186 regs[rd] = 0; 4187 break; 4188 } 4189 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4190 /* XXX - should be only LC_SLEEPABLE? */ 4191 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & 4192 (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0; 4193 break; 4194 4195 case DIF_SUBR_MUTEX_TYPE_SPIN: 4196 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4197 mstate, vstate)) { 4198 regs[rd] = 0; 4199 break; 4200 } 4201 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4202 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4203 break; 4204 4205 case DIF_SUBR_RW_READ_HELD: 4206 case DIF_SUBR_SX_SHARED_HELD: 4207 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4208 mstate, vstate)) { 4209 regs[rd] = 0; 4210 break; 4211 } 4212 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4213 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4214 lowner == NULL; 4215 break; 4216 4217 case DIF_SUBR_RW_WRITE_HELD: 4218 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4219 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4220 mstate, vstate)) { 4221 regs[rd] = 0; 4222 break; 4223 } 4224 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4225 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4226 regs[rd] = (lowner == curthread); 4227 break; 4228 4229 case DIF_SUBR_RW_ISWRITER: 4230 case DIF_SUBR_SX_ISEXCLUSIVE: 4231 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4232 mstate, vstate)) { 4233 regs[rd] = 0; 4234 break; 4235 } 4236 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4237 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4238 lowner != NULL; 4239 break; 4240 #endif /* ! defined(sun) */ 4241 4242 case DIF_SUBR_BCOPY: { 4243 /* 4244 * We need to be sure that the destination is in the scratch 4245 * region -- no other region is allowed. 4246 */ 4247 uintptr_t src = tupregs[0].dttk_value; 4248 uintptr_t dest = tupregs[1].dttk_value; 4249 size_t size = tupregs[2].dttk_value; 4250 4251 if (!dtrace_inscratch(dest, size, mstate)) { 4252 *flags |= CPU_DTRACE_BADADDR; 4253 *illval = regs[rd]; 4254 break; 4255 } 4256 4257 if (!dtrace_canload(src, size, mstate, vstate)) { 4258 regs[rd] = 0; 4259 break; 4260 } 4261 4262 dtrace_bcopy((void *)src, (void *)dest, size); 4263 break; 4264 } 4265 4266 case DIF_SUBR_ALLOCA: 4267 case DIF_SUBR_COPYIN: { 4268 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4269 uint64_t size = 4270 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4271 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4272 4273 /* 4274 * This action doesn't require any credential checks since 4275 * probes will not activate in user contexts to which the 4276 * enabling user does not have permissions. 4277 */ 4278 4279 /* 4280 * Rounding up the user allocation size could have overflowed 4281 * a large, bogus allocation (like -1ULL) to 0. 4282 */ 4283 if (scratch_size < size || 4284 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4285 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4286 regs[rd] = 0; 4287 break; 4288 } 4289 4290 if (subr == DIF_SUBR_COPYIN) { 4291 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4292 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4293 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4294 } 4295 4296 mstate->dtms_scratch_ptr += scratch_size; 4297 regs[rd] = dest; 4298 break; 4299 } 4300 4301 case DIF_SUBR_COPYINTO: { 4302 uint64_t size = tupregs[1].dttk_value; 4303 uintptr_t dest = tupregs[2].dttk_value; 4304 4305 /* 4306 * This action doesn't require any credential checks since 4307 * probes will not activate in user contexts to which the 4308 * enabling user does not have permissions. 4309 */ 4310 if (!dtrace_inscratch(dest, size, mstate)) { 4311 *flags |= CPU_DTRACE_BADADDR; 4312 *illval = regs[rd]; 4313 break; 4314 } 4315 4316 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4317 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4318 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4319 break; 4320 } 4321 4322 case DIF_SUBR_COPYINSTR: { 4323 uintptr_t dest = mstate->dtms_scratch_ptr; 4324 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4325 4326 if (nargs > 1 && tupregs[1].dttk_value < size) 4327 size = tupregs[1].dttk_value + 1; 4328 4329 /* 4330 * This action doesn't require any credential checks since 4331 * probes will not activate in user contexts to which the 4332 * enabling user does not have permissions. 4333 */ 4334 if (!DTRACE_INSCRATCH(mstate, size)) { 4335 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4336 regs[rd] = 0; 4337 break; 4338 } 4339 4340 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4341 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4342 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4343 4344 ((char *)dest)[size - 1] = '\0'; 4345 mstate->dtms_scratch_ptr += size; 4346 regs[rd] = dest; 4347 break; 4348 } 4349 4350 #if defined(sun) 4351 case DIF_SUBR_MSGSIZE: 4352 case DIF_SUBR_MSGDSIZE: { 4353 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4354 uintptr_t wptr, rptr; 4355 size_t count = 0; 4356 int cont = 0; 4357 4358 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4359 4360 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4361 vstate)) { 4362 regs[rd] = 0; 4363 break; 4364 } 4365 4366 wptr = dtrace_loadptr(baddr + 4367 offsetof(mblk_t, b_wptr)); 4368 4369 rptr = dtrace_loadptr(baddr + 4370 offsetof(mblk_t, b_rptr)); 4371 4372 if (wptr < rptr) { 4373 *flags |= CPU_DTRACE_BADADDR; 4374 *illval = tupregs[0].dttk_value; 4375 break; 4376 } 4377 4378 daddr = dtrace_loadptr(baddr + 4379 offsetof(mblk_t, b_datap)); 4380 4381 baddr = dtrace_loadptr(baddr + 4382 offsetof(mblk_t, b_cont)); 4383 4384 /* 4385 * We want to prevent against denial-of-service here, 4386 * so we're only going to search the list for 4387 * dtrace_msgdsize_max mblks. 4388 */ 4389 if (cont++ > dtrace_msgdsize_max) { 4390 *flags |= CPU_DTRACE_ILLOP; 4391 break; 4392 } 4393 4394 if (subr == DIF_SUBR_MSGDSIZE) { 4395 if (dtrace_load8(daddr + 4396 offsetof(dblk_t, db_type)) != M_DATA) 4397 continue; 4398 } 4399 4400 count += wptr - rptr; 4401 } 4402 4403 if (!(*flags & CPU_DTRACE_FAULT)) 4404 regs[rd] = count; 4405 4406 break; 4407 } 4408 #endif 4409 4410 case DIF_SUBR_PROGENYOF: { 4411 pid_t pid = tupregs[0].dttk_value; 4412 proc_t *p; 4413 int rval = 0; 4414 4415 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4416 4417 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4418 #if defined(sun) 4419 if (p->p_pidp->pid_id == pid) { 4420 #else 4421 if (p->p_pid == pid) { 4422 #endif 4423 rval = 1; 4424 break; 4425 } 4426 } 4427 4428 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4429 4430 regs[rd] = rval; 4431 break; 4432 } 4433 4434 case DIF_SUBR_SPECULATION: 4435 regs[rd] = dtrace_speculation(state); 4436 break; 4437 4438 case DIF_SUBR_COPYOUT: { 4439 uintptr_t kaddr = tupregs[0].dttk_value; 4440 uintptr_t uaddr = tupregs[1].dttk_value; 4441 uint64_t size = tupregs[2].dttk_value; 4442 4443 if (!dtrace_destructive_disallow && 4444 dtrace_priv_proc_control(state) && 4445 !dtrace_istoxic(kaddr, size)) { 4446 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4447 dtrace_copyout(kaddr, uaddr, size, flags); 4448 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4449 } 4450 break; 4451 } 4452 4453 case DIF_SUBR_COPYOUTSTR: { 4454 uintptr_t kaddr = tupregs[0].dttk_value; 4455 uintptr_t uaddr = tupregs[1].dttk_value; 4456 uint64_t size = tupregs[2].dttk_value; 4457 4458 if (!dtrace_destructive_disallow && 4459 dtrace_priv_proc_control(state) && 4460 !dtrace_istoxic(kaddr, size)) { 4461 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4462 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4463 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4464 } 4465 break; 4466 } 4467 4468 case DIF_SUBR_STRLEN: { 4469 size_t sz; 4470 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4471 sz = dtrace_strlen((char *)addr, 4472 state->dts_options[DTRACEOPT_STRSIZE]); 4473 4474 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4475 regs[rd] = 0; 4476 break; 4477 } 4478 4479 regs[rd] = sz; 4480 4481 break; 4482 } 4483 4484 case DIF_SUBR_STRCHR: 4485 case DIF_SUBR_STRRCHR: { 4486 /* 4487 * We're going to iterate over the string looking for the 4488 * specified character. We will iterate until we have reached 4489 * the string length or we have found the character. If this 4490 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4491 * of the specified character instead of the first. 4492 */ 4493 uintptr_t saddr = tupregs[0].dttk_value; 4494 uintptr_t addr = tupregs[0].dttk_value; 4495 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4496 char c, target = (char)tupregs[1].dttk_value; 4497 4498 for (regs[rd] = 0; addr < limit; addr++) { 4499 if ((c = dtrace_load8(addr)) == target) { 4500 regs[rd] = addr; 4501 4502 if (subr == DIF_SUBR_STRCHR) 4503 break; 4504 } 4505 4506 if (c == '\0') 4507 break; 4508 } 4509 4510 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4511 regs[rd] = 0; 4512 break; 4513 } 4514 4515 break; 4516 } 4517 4518 case DIF_SUBR_STRSTR: 4519 case DIF_SUBR_INDEX: 4520 case DIF_SUBR_RINDEX: { 4521 /* 4522 * We're going to iterate over the string looking for the 4523 * specified string. We will iterate until we have reached 4524 * the string length or we have found the string. (Yes, this 4525 * is done in the most naive way possible -- but considering 4526 * that the string we're searching for is likely to be 4527 * relatively short, the complexity of Rabin-Karp or similar 4528 * hardly seems merited.) 4529 */ 4530 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4531 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4532 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4533 size_t len = dtrace_strlen(addr, size); 4534 size_t sublen = dtrace_strlen(substr, size); 4535 char *limit = addr + len, *orig = addr; 4536 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4537 int inc = 1; 4538 4539 regs[rd] = notfound; 4540 4541 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4542 regs[rd] = 0; 4543 break; 4544 } 4545 4546 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4547 vstate)) { 4548 regs[rd] = 0; 4549 break; 4550 } 4551 4552 /* 4553 * strstr() and index()/rindex() have similar semantics if 4554 * both strings are the empty string: strstr() returns a 4555 * pointer to the (empty) string, and index() and rindex() 4556 * both return index 0 (regardless of any position argument). 4557 */ 4558 if (sublen == 0 && len == 0) { 4559 if (subr == DIF_SUBR_STRSTR) 4560 regs[rd] = (uintptr_t)addr; 4561 else 4562 regs[rd] = 0; 4563 break; 4564 } 4565 4566 if (subr != DIF_SUBR_STRSTR) { 4567 if (subr == DIF_SUBR_RINDEX) { 4568 limit = orig - 1; 4569 addr += len; 4570 inc = -1; 4571 } 4572 4573 /* 4574 * Both index() and rindex() take an optional position 4575 * argument that denotes the starting position. 4576 */ 4577 if (nargs == 3) { 4578 int64_t pos = (int64_t)tupregs[2].dttk_value; 4579 4580 /* 4581 * If the position argument to index() is 4582 * negative, Perl implicitly clamps it at 4583 * zero. This semantic is a little surprising 4584 * given the special meaning of negative 4585 * positions to similar Perl functions like 4586 * substr(), but it appears to reflect a 4587 * notion that index() can start from a 4588 * negative index and increment its way up to 4589 * the string. Given this notion, Perl's 4590 * rindex() is at least self-consistent in 4591 * that it implicitly clamps positions greater 4592 * than the string length to be the string 4593 * length. Where Perl completely loses 4594 * coherence, however, is when the specified 4595 * substring is the empty string (""). In 4596 * this case, even if the position is 4597 * negative, rindex() returns 0 -- and even if 4598 * the position is greater than the length, 4599 * index() returns the string length. These 4600 * semantics violate the notion that index() 4601 * should never return a value less than the 4602 * specified position and that rindex() should 4603 * never return a value greater than the 4604 * specified position. (One assumes that 4605 * these semantics are artifacts of Perl's 4606 * implementation and not the results of 4607 * deliberate design -- it beggars belief that 4608 * even Larry Wall could desire such oddness.) 4609 * While in the abstract one would wish for 4610 * consistent position semantics across 4611 * substr(), index() and rindex() -- or at the 4612 * very least self-consistent position 4613 * semantics for index() and rindex() -- we 4614 * instead opt to keep with the extant Perl 4615 * semantics, in all their broken glory. (Do 4616 * we have more desire to maintain Perl's 4617 * semantics than Perl does? Probably.) 4618 */ 4619 if (subr == DIF_SUBR_RINDEX) { 4620 if (pos < 0) { 4621 if (sublen == 0) 4622 regs[rd] = 0; 4623 break; 4624 } 4625 4626 if (pos > len) 4627 pos = len; 4628 } else { 4629 if (pos < 0) 4630 pos = 0; 4631 4632 if (pos >= len) { 4633 if (sublen == 0) 4634 regs[rd] = len; 4635 break; 4636 } 4637 } 4638 4639 addr = orig + pos; 4640 } 4641 } 4642 4643 for (regs[rd] = notfound; addr != limit; addr += inc) { 4644 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4645 if (subr != DIF_SUBR_STRSTR) { 4646 /* 4647 * As D index() and rindex() are 4648 * modeled on Perl (and not on awk), 4649 * we return a zero-based (and not a 4650 * one-based) index. (For you Perl 4651 * weenies: no, we're not going to add 4652 * $[ -- and shouldn't you be at a con 4653 * or something?) 4654 */ 4655 regs[rd] = (uintptr_t)(addr - orig); 4656 break; 4657 } 4658 4659 ASSERT(subr == DIF_SUBR_STRSTR); 4660 regs[rd] = (uintptr_t)addr; 4661 break; 4662 } 4663 } 4664 4665 break; 4666 } 4667 4668 case DIF_SUBR_STRTOK: { 4669 uintptr_t addr = tupregs[0].dttk_value; 4670 uintptr_t tokaddr = tupregs[1].dttk_value; 4671 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4672 uintptr_t limit, toklimit = tokaddr + size; 4673 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4674 char *dest = (char *)mstate->dtms_scratch_ptr; 4675 int i; 4676 4677 /* 4678 * Check both the token buffer and (later) the input buffer, 4679 * since both could be non-scratch addresses. 4680 */ 4681 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4682 regs[rd] = 0; 4683 break; 4684 } 4685 4686 if (!DTRACE_INSCRATCH(mstate, size)) { 4687 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4688 regs[rd] = 0; 4689 break; 4690 } 4691 4692 if (addr == 0) { 4693 /* 4694 * If the address specified is NULL, we use our saved 4695 * strtok pointer from the mstate. Note that this 4696 * means that the saved strtok pointer is _only_ 4697 * valid within multiple enablings of the same probe -- 4698 * it behaves like an implicit clause-local variable. 4699 */ 4700 addr = mstate->dtms_strtok; 4701 } else { 4702 /* 4703 * If the user-specified address is non-NULL we must 4704 * access check it. This is the only time we have 4705 * a chance to do so, since this address may reside 4706 * in the string table of this clause-- future calls 4707 * (when we fetch addr from mstate->dtms_strtok) 4708 * would fail this access check. 4709 */ 4710 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4711 regs[rd] = 0; 4712 break; 4713 } 4714 } 4715 4716 /* 4717 * First, zero the token map, and then process the token 4718 * string -- setting a bit in the map for every character 4719 * found in the token string. 4720 */ 4721 for (i = 0; i < sizeof (tokmap); i++) 4722 tokmap[i] = 0; 4723 4724 for (; tokaddr < toklimit; tokaddr++) { 4725 if ((c = dtrace_load8(tokaddr)) == '\0') 4726 break; 4727 4728 ASSERT((c >> 3) < sizeof (tokmap)); 4729 tokmap[c >> 3] |= (1 << (c & 0x7)); 4730 } 4731 4732 for (limit = addr + size; addr < limit; addr++) { 4733 /* 4734 * We're looking for a character that is _not_ contained 4735 * in the token string. 4736 */ 4737 if ((c = dtrace_load8(addr)) == '\0') 4738 break; 4739 4740 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4741 break; 4742 } 4743 4744 if (c == '\0') { 4745 /* 4746 * We reached the end of the string without finding 4747 * any character that was not in the token string. 4748 * We return NULL in this case, and we set the saved 4749 * address to NULL as well. 4750 */ 4751 regs[rd] = 0; 4752 mstate->dtms_strtok = 0; 4753 break; 4754 } 4755 4756 /* 4757 * From here on, we're copying into the destination string. 4758 */ 4759 for (i = 0; addr < limit && i < size - 1; addr++) { 4760 if ((c = dtrace_load8(addr)) == '\0') 4761 break; 4762 4763 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4764 break; 4765 4766 ASSERT(i < size); 4767 dest[i++] = c; 4768 } 4769 4770 ASSERT(i < size); 4771 dest[i] = '\0'; 4772 regs[rd] = (uintptr_t)dest; 4773 mstate->dtms_scratch_ptr += size; 4774 mstate->dtms_strtok = addr; 4775 break; 4776 } 4777 4778 case DIF_SUBR_SUBSTR: { 4779 uintptr_t s = tupregs[0].dttk_value; 4780 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4781 char *d = (char *)mstate->dtms_scratch_ptr; 4782 int64_t index = (int64_t)tupregs[1].dttk_value; 4783 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4784 size_t len = dtrace_strlen((char *)s, size); 4785 int64_t i; 4786 4787 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4788 regs[rd] = 0; 4789 break; 4790 } 4791 4792 if (!DTRACE_INSCRATCH(mstate, size)) { 4793 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4794 regs[rd] = 0; 4795 break; 4796 } 4797 4798 if (nargs <= 2) 4799 remaining = (int64_t)size; 4800 4801 if (index < 0) { 4802 index += len; 4803 4804 if (index < 0 && index + remaining > 0) { 4805 remaining += index; 4806 index = 0; 4807 } 4808 } 4809 4810 if (index >= len || index < 0) { 4811 remaining = 0; 4812 } else if (remaining < 0) { 4813 remaining += len - index; 4814 } else if (index + remaining > size) { 4815 remaining = size - index; 4816 } 4817 4818 for (i = 0; i < remaining; i++) { 4819 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4820 break; 4821 } 4822 4823 d[i] = '\0'; 4824 4825 mstate->dtms_scratch_ptr += size; 4826 regs[rd] = (uintptr_t)d; 4827 break; 4828 } 4829 4830 case DIF_SUBR_JSON: { 4831 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4832 uintptr_t json = tupregs[0].dttk_value; 4833 size_t jsonlen = dtrace_strlen((char *)json, size); 4834 uintptr_t elem = tupregs[1].dttk_value; 4835 size_t elemlen = dtrace_strlen((char *)elem, size); 4836 4837 char *dest = (char *)mstate->dtms_scratch_ptr; 4838 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4839 char *ee = elemlist; 4840 int nelems = 1; 4841 uintptr_t cur; 4842 4843 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4844 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4845 regs[rd] = 0; 4846 break; 4847 } 4848 4849 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4850 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4851 regs[rd] = 0; 4852 break; 4853 } 4854 4855 /* 4856 * Read the element selector and split it up into a packed list 4857 * of strings. 4858 */ 4859 for (cur = elem; cur < elem + elemlen; cur++) { 4860 char cc = dtrace_load8(cur); 4861 4862 if (cur == elem && cc == '[') { 4863 /* 4864 * If the first element selector key is 4865 * actually an array index then ignore the 4866 * bracket. 4867 */ 4868 continue; 4869 } 4870 4871 if (cc == ']') 4872 continue; 4873 4874 if (cc == '.' || cc == '[') { 4875 nelems++; 4876 cc = '\0'; 4877 } 4878 4879 *ee++ = cc; 4880 } 4881 *ee++ = '\0'; 4882 4883 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4884 nelems, dest)) != 0) 4885 mstate->dtms_scratch_ptr += jsonlen + 1; 4886 break; 4887 } 4888 4889 case DIF_SUBR_TOUPPER: 4890 case DIF_SUBR_TOLOWER: { 4891 uintptr_t s = tupregs[0].dttk_value; 4892 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4893 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4894 size_t len = dtrace_strlen((char *)s, size); 4895 char lower, upper, convert; 4896 int64_t i; 4897 4898 if (subr == DIF_SUBR_TOUPPER) { 4899 lower = 'a'; 4900 upper = 'z'; 4901 convert = 'A'; 4902 } else { 4903 lower = 'A'; 4904 upper = 'Z'; 4905 convert = 'a'; 4906 } 4907 4908 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4909 regs[rd] = 0; 4910 break; 4911 } 4912 4913 if (!DTRACE_INSCRATCH(mstate, size)) { 4914 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4915 regs[rd] = 0; 4916 break; 4917 } 4918 4919 for (i = 0; i < size - 1; i++) { 4920 if ((c = dtrace_load8(s + i)) == '\0') 4921 break; 4922 4923 if (c >= lower && c <= upper) 4924 c = convert + (c - lower); 4925 4926 dest[i] = c; 4927 } 4928 4929 ASSERT(i < size); 4930 dest[i] = '\0'; 4931 regs[rd] = (uintptr_t)dest; 4932 mstate->dtms_scratch_ptr += size; 4933 break; 4934 } 4935 4936 #if defined(sun) 4937 case DIF_SUBR_GETMAJOR: 4938 #ifdef _LP64 4939 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4940 #else 4941 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4942 #endif 4943 break; 4944 4945 case DIF_SUBR_GETMINOR: 4946 #ifdef _LP64 4947 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4948 #else 4949 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4950 #endif 4951 break; 4952 4953 case DIF_SUBR_DDI_PATHNAME: { 4954 /* 4955 * This one is a galactic mess. We are going to roughly 4956 * emulate ddi_pathname(), but it's made more complicated 4957 * by the fact that we (a) want to include the minor name and 4958 * (b) must proceed iteratively instead of recursively. 4959 */ 4960 uintptr_t dest = mstate->dtms_scratch_ptr; 4961 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4962 char *start = (char *)dest, *end = start + size - 1; 4963 uintptr_t daddr = tupregs[0].dttk_value; 4964 int64_t minor = (int64_t)tupregs[1].dttk_value; 4965 char *s; 4966 int i, len, depth = 0; 4967 4968 /* 4969 * Due to all the pointer jumping we do and context we must 4970 * rely upon, we just mandate that the user must have kernel 4971 * read privileges to use this routine. 4972 */ 4973 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4974 *flags |= CPU_DTRACE_KPRIV; 4975 *illval = daddr; 4976 regs[rd] = 0; 4977 } 4978 4979 if (!DTRACE_INSCRATCH(mstate, size)) { 4980 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4981 regs[rd] = 0; 4982 break; 4983 } 4984 4985 *end = '\0'; 4986 4987 /* 4988 * We want to have a name for the minor. In order to do this, 4989 * we need to walk the minor list from the devinfo. We want 4990 * to be sure that we don't infinitely walk a circular list, 4991 * so we check for circularity by sending a scout pointer 4992 * ahead two elements for every element that we iterate over; 4993 * if the list is circular, these will ultimately point to the 4994 * same element. You may recognize this little trick as the 4995 * answer to a stupid interview question -- one that always 4996 * seems to be asked by those who had to have it laboriously 4997 * explained to them, and who can't even concisely describe 4998 * the conditions under which one would be forced to resort to 4999 * this technique. Needless to say, those conditions are 5000 * found here -- and probably only here. Is this the only use 5001 * of this infamous trick in shipping, production code? If it 5002 * isn't, it probably should be... 5003 */ 5004 if (minor != -1) { 5005 uintptr_t maddr = dtrace_loadptr(daddr + 5006 offsetof(struct dev_info, devi_minor)); 5007 5008 uintptr_t next = offsetof(struct ddi_minor_data, next); 5009 uintptr_t name = offsetof(struct ddi_minor_data, 5010 d_minor) + offsetof(struct ddi_minor, name); 5011 uintptr_t dev = offsetof(struct ddi_minor_data, 5012 d_minor) + offsetof(struct ddi_minor, dev); 5013 uintptr_t scout; 5014 5015 if (maddr != NULL) 5016 scout = dtrace_loadptr(maddr + next); 5017 5018 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5019 uint64_t m; 5020 #ifdef _LP64 5021 m = dtrace_load64(maddr + dev) & MAXMIN64; 5022 #else 5023 m = dtrace_load32(maddr + dev) & MAXMIN; 5024 #endif 5025 if (m != minor) { 5026 maddr = dtrace_loadptr(maddr + next); 5027 5028 if (scout == NULL) 5029 continue; 5030 5031 scout = dtrace_loadptr(scout + next); 5032 5033 if (scout == NULL) 5034 continue; 5035 5036 scout = dtrace_loadptr(scout + next); 5037 5038 if (scout == NULL) 5039 continue; 5040 5041 if (scout == maddr) { 5042 *flags |= CPU_DTRACE_ILLOP; 5043 break; 5044 } 5045 5046 continue; 5047 } 5048 5049 /* 5050 * We have the minor data. Now we need to 5051 * copy the minor's name into the end of the 5052 * pathname. 5053 */ 5054 s = (char *)dtrace_loadptr(maddr + name); 5055 len = dtrace_strlen(s, size); 5056 5057 if (*flags & CPU_DTRACE_FAULT) 5058 break; 5059 5060 if (len != 0) { 5061 if ((end -= (len + 1)) < start) 5062 break; 5063 5064 *end = ':'; 5065 } 5066 5067 for (i = 1; i <= len; i++) 5068 end[i] = dtrace_load8((uintptr_t)s++); 5069 break; 5070 } 5071 } 5072 5073 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5074 ddi_node_state_t devi_state; 5075 5076 devi_state = dtrace_load32(daddr + 5077 offsetof(struct dev_info, devi_node_state)); 5078 5079 if (*flags & CPU_DTRACE_FAULT) 5080 break; 5081 5082 if (devi_state >= DS_INITIALIZED) { 5083 s = (char *)dtrace_loadptr(daddr + 5084 offsetof(struct dev_info, devi_addr)); 5085 len = dtrace_strlen(s, size); 5086 5087 if (*flags & CPU_DTRACE_FAULT) 5088 break; 5089 5090 if (len != 0) { 5091 if ((end -= (len + 1)) < start) 5092 break; 5093 5094 *end = '@'; 5095 } 5096 5097 for (i = 1; i <= len; i++) 5098 end[i] = dtrace_load8((uintptr_t)s++); 5099 } 5100 5101 /* 5102 * Now for the node name... 5103 */ 5104 s = (char *)dtrace_loadptr(daddr + 5105 offsetof(struct dev_info, devi_node_name)); 5106 5107 daddr = dtrace_loadptr(daddr + 5108 offsetof(struct dev_info, devi_parent)); 5109 5110 /* 5111 * If our parent is NULL (that is, if we're the root 5112 * node), we're going to use the special path 5113 * "devices". 5114 */ 5115 if (daddr == 0) 5116 s = "devices"; 5117 5118 len = dtrace_strlen(s, size); 5119 if (*flags & CPU_DTRACE_FAULT) 5120 break; 5121 5122 if ((end -= (len + 1)) < start) 5123 break; 5124 5125 for (i = 1; i <= len; i++) 5126 end[i] = dtrace_load8((uintptr_t)s++); 5127 *end = '/'; 5128 5129 if (depth++ > dtrace_devdepth_max) { 5130 *flags |= CPU_DTRACE_ILLOP; 5131 break; 5132 } 5133 } 5134 5135 if (end < start) 5136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5137 5138 if (daddr == 0) { 5139 regs[rd] = (uintptr_t)end; 5140 mstate->dtms_scratch_ptr += size; 5141 } 5142 5143 break; 5144 } 5145 #endif 5146 5147 case DIF_SUBR_STRJOIN: { 5148 char *d = (char *)mstate->dtms_scratch_ptr; 5149 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5150 uintptr_t s1 = tupregs[0].dttk_value; 5151 uintptr_t s2 = tupregs[1].dttk_value; 5152 int i = 0; 5153 5154 if (!dtrace_strcanload(s1, size, mstate, vstate) || 5155 !dtrace_strcanload(s2, size, mstate, vstate)) { 5156 regs[rd] = 0; 5157 break; 5158 } 5159 5160 if (!DTRACE_INSCRATCH(mstate, size)) { 5161 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5162 regs[rd] = 0; 5163 break; 5164 } 5165 5166 for (;;) { 5167 if (i >= size) { 5168 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5169 regs[rd] = 0; 5170 break; 5171 } 5172 5173 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 5174 i--; 5175 break; 5176 } 5177 } 5178 5179 for (;;) { 5180 if (i >= size) { 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5182 regs[rd] = 0; 5183 break; 5184 } 5185 5186 if ((d[i++] = dtrace_load8(s2++)) == '\0') 5187 break; 5188 } 5189 5190 if (i < size) { 5191 mstate->dtms_scratch_ptr += i; 5192 regs[rd] = (uintptr_t)d; 5193 } 5194 5195 break; 5196 } 5197 5198 case DIF_SUBR_STRTOLL: { 5199 uintptr_t s = tupregs[0].dttk_value; 5200 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5201 int base = 10; 5202 5203 if (nargs > 1) { 5204 if ((base = tupregs[1].dttk_value) <= 1 || 5205 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5206 *flags |= CPU_DTRACE_ILLOP; 5207 break; 5208 } 5209 } 5210 5211 if (!dtrace_strcanload(s, size, mstate, vstate)) { 5212 regs[rd] = INT64_MIN; 5213 break; 5214 } 5215 5216 regs[rd] = dtrace_strtoll((char *)s, base, size); 5217 break; 5218 } 5219 5220 case DIF_SUBR_LLTOSTR: { 5221 int64_t i = (int64_t)tupregs[0].dttk_value; 5222 uint64_t val, digit; 5223 uint64_t size = 65; /* enough room for 2^64 in binary */ 5224 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5225 int base = 10; 5226 5227 if (nargs > 1) { 5228 if ((base = tupregs[1].dttk_value) <= 1 || 5229 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5230 *flags |= CPU_DTRACE_ILLOP; 5231 break; 5232 } 5233 } 5234 5235 val = (base == 10 && i < 0) ? i * -1 : i; 5236 5237 if (!DTRACE_INSCRATCH(mstate, size)) { 5238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5239 regs[rd] = 0; 5240 break; 5241 } 5242 5243 for (*end-- = '\0'; val; val /= base) { 5244 if ((digit = val % base) <= '9' - '0') { 5245 *end-- = '0' + digit; 5246 } else { 5247 *end-- = 'a' + (digit - ('9' - '0') - 1); 5248 } 5249 } 5250 5251 if (i == 0 && base == 16) 5252 *end-- = '0'; 5253 5254 if (base == 16) 5255 *end-- = 'x'; 5256 5257 if (i == 0 || base == 8 || base == 16) 5258 *end-- = '0'; 5259 5260 if (i < 0 && base == 10) 5261 *end-- = '-'; 5262 5263 regs[rd] = (uintptr_t)end + 1; 5264 mstate->dtms_scratch_ptr += size; 5265 break; 5266 } 5267 5268 case DIF_SUBR_HTONS: 5269 case DIF_SUBR_NTOHS: 5270 #if BYTE_ORDER == BIG_ENDIAN 5271 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5272 #else 5273 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5274 #endif 5275 break; 5276 5277 5278 case DIF_SUBR_HTONL: 5279 case DIF_SUBR_NTOHL: 5280 #if BYTE_ORDER == BIG_ENDIAN 5281 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5282 #else 5283 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5284 #endif 5285 break; 5286 5287 5288 case DIF_SUBR_HTONLL: 5289 case DIF_SUBR_NTOHLL: 5290 #if BYTE_ORDER == BIG_ENDIAN 5291 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5292 #else 5293 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5294 #endif 5295 break; 5296 5297 5298 case DIF_SUBR_DIRNAME: 5299 case DIF_SUBR_BASENAME: { 5300 char *dest = (char *)mstate->dtms_scratch_ptr; 5301 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5302 uintptr_t src = tupregs[0].dttk_value; 5303 int i, j, len = dtrace_strlen((char *)src, size); 5304 int lastbase = -1, firstbase = -1, lastdir = -1; 5305 int start, end; 5306 5307 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5308 regs[rd] = 0; 5309 break; 5310 } 5311 5312 if (!DTRACE_INSCRATCH(mstate, size)) { 5313 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5314 regs[rd] = 0; 5315 break; 5316 } 5317 5318 /* 5319 * The basename and dirname for a zero-length string is 5320 * defined to be "." 5321 */ 5322 if (len == 0) { 5323 len = 1; 5324 src = (uintptr_t)"."; 5325 } 5326 5327 /* 5328 * Start from the back of the string, moving back toward the 5329 * front until we see a character that isn't a slash. That 5330 * character is the last character in the basename. 5331 */ 5332 for (i = len - 1; i >= 0; i--) { 5333 if (dtrace_load8(src + i) != '/') 5334 break; 5335 } 5336 5337 if (i >= 0) 5338 lastbase = i; 5339 5340 /* 5341 * Starting from the last character in the basename, move 5342 * towards the front until we find a slash. The character 5343 * that we processed immediately before that is the first 5344 * character in the basename. 5345 */ 5346 for (; i >= 0; i--) { 5347 if (dtrace_load8(src + i) == '/') 5348 break; 5349 } 5350 5351 if (i >= 0) 5352 firstbase = i + 1; 5353 5354 /* 5355 * Now keep going until we find a non-slash character. That 5356 * character is the last character in the dirname. 5357 */ 5358 for (; i >= 0; i--) { 5359 if (dtrace_load8(src + i) != '/') 5360 break; 5361 } 5362 5363 if (i >= 0) 5364 lastdir = i; 5365 5366 ASSERT(!(lastbase == -1 && firstbase != -1)); 5367 ASSERT(!(firstbase == -1 && lastdir != -1)); 5368 5369 if (lastbase == -1) { 5370 /* 5371 * We didn't find a non-slash character. We know that 5372 * the length is non-zero, so the whole string must be 5373 * slashes. In either the dirname or the basename 5374 * case, we return '/'. 5375 */ 5376 ASSERT(firstbase == -1); 5377 firstbase = lastbase = lastdir = 0; 5378 } 5379 5380 if (firstbase == -1) { 5381 /* 5382 * The entire string consists only of a basename 5383 * component. If we're looking for dirname, we need 5384 * to change our string to be just "."; if we're 5385 * looking for a basename, we'll just set the first 5386 * character of the basename to be 0. 5387 */ 5388 if (subr == DIF_SUBR_DIRNAME) { 5389 ASSERT(lastdir == -1); 5390 src = (uintptr_t)"."; 5391 lastdir = 0; 5392 } else { 5393 firstbase = 0; 5394 } 5395 } 5396 5397 if (subr == DIF_SUBR_DIRNAME) { 5398 if (lastdir == -1) { 5399 /* 5400 * We know that we have a slash in the name -- 5401 * or lastdir would be set to 0, above. And 5402 * because lastdir is -1, we know that this 5403 * slash must be the first character. (That 5404 * is, the full string must be of the form 5405 * "/basename".) In this case, the last 5406 * character of the directory name is 0. 5407 */ 5408 lastdir = 0; 5409 } 5410 5411 start = 0; 5412 end = lastdir; 5413 } else { 5414 ASSERT(subr == DIF_SUBR_BASENAME); 5415 ASSERT(firstbase != -1 && lastbase != -1); 5416 start = firstbase; 5417 end = lastbase; 5418 } 5419 5420 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5421 dest[j] = dtrace_load8(src + i); 5422 5423 dest[j] = '\0'; 5424 regs[rd] = (uintptr_t)dest; 5425 mstate->dtms_scratch_ptr += size; 5426 break; 5427 } 5428 5429 case DIF_SUBR_GETF: { 5430 uintptr_t fd = tupregs[0].dttk_value; 5431 struct filedesc *fdp; 5432 file_t *fp; 5433 5434 if (!dtrace_priv_proc(state)) { 5435 regs[rd] = 0; 5436 break; 5437 } 5438 fdp = curproc->p_fd; 5439 FILEDESC_SLOCK(fdp); 5440 fp = fget_locked(fdp, fd); 5441 mstate->dtms_getf = fp; 5442 regs[rd] = (uintptr_t)fp; 5443 FILEDESC_SUNLOCK(fdp); 5444 break; 5445 } 5446 5447 case DIF_SUBR_CLEANPATH: { 5448 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5449 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5450 uintptr_t src = tupregs[0].dttk_value; 5451 int i = 0, j = 0; 5452 #if defined(sun) 5453 zone_t *z; 5454 #endif 5455 5456 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5457 regs[rd] = 0; 5458 break; 5459 } 5460 5461 if (!DTRACE_INSCRATCH(mstate, size)) { 5462 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5463 regs[rd] = 0; 5464 break; 5465 } 5466 5467 /* 5468 * Move forward, loading each character. 5469 */ 5470 do { 5471 c = dtrace_load8(src + i++); 5472 next: 5473 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5474 break; 5475 5476 if (c != '/') { 5477 dest[j++] = c; 5478 continue; 5479 } 5480 5481 c = dtrace_load8(src + i++); 5482 5483 if (c == '/') { 5484 /* 5485 * We have two slashes -- we can just advance 5486 * to the next character. 5487 */ 5488 goto next; 5489 } 5490 5491 if (c != '.') { 5492 /* 5493 * This is not "." and it's not ".." -- we can 5494 * just store the "/" and this character and 5495 * drive on. 5496 */ 5497 dest[j++] = '/'; 5498 dest[j++] = c; 5499 continue; 5500 } 5501 5502 c = dtrace_load8(src + i++); 5503 5504 if (c == '/') { 5505 /* 5506 * This is a "/./" component. We're not going 5507 * to store anything in the destination buffer; 5508 * we're just going to go to the next component. 5509 */ 5510 goto next; 5511 } 5512 5513 if (c != '.') { 5514 /* 5515 * This is not ".." -- we can just store the 5516 * "/." and this character and continue 5517 * processing. 5518 */ 5519 dest[j++] = '/'; 5520 dest[j++] = '.'; 5521 dest[j++] = c; 5522 continue; 5523 } 5524 5525 c = dtrace_load8(src + i++); 5526 5527 if (c != '/' && c != '\0') { 5528 /* 5529 * This is not ".." -- it's "..[mumble]". 5530 * We'll store the "/.." and this character 5531 * and continue processing. 5532 */ 5533 dest[j++] = '/'; 5534 dest[j++] = '.'; 5535 dest[j++] = '.'; 5536 dest[j++] = c; 5537 continue; 5538 } 5539 5540 /* 5541 * This is "/../" or "/..\0". We need to back up 5542 * our destination pointer until we find a "/". 5543 */ 5544 i--; 5545 while (j != 0 && dest[--j] != '/') 5546 continue; 5547 5548 if (c == '\0') 5549 dest[++j] = '/'; 5550 } while (c != '\0'); 5551 5552 dest[j] = '\0'; 5553 5554 #if defined(sun) 5555 if (mstate->dtms_getf != NULL && 5556 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5557 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5558 /* 5559 * If we've done a getf() as a part of this ECB and we 5560 * don't have kernel access (and we're not in the global 5561 * zone), check if the path we cleaned up begins with 5562 * the zone's root path, and trim it off if so. Note 5563 * that this is an output cleanliness issue, not a 5564 * security issue: knowing one's zone root path does 5565 * not enable privilege escalation. 5566 */ 5567 if (strstr(dest, z->zone_rootpath) == dest) 5568 dest += strlen(z->zone_rootpath) - 1; 5569 } 5570 #endif 5571 5572 regs[rd] = (uintptr_t)dest; 5573 mstate->dtms_scratch_ptr += size; 5574 break; 5575 } 5576 5577 case DIF_SUBR_INET_NTOA: 5578 case DIF_SUBR_INET_NTOA6: 5579 case DIF_SUBR_INET_NTOP: { 5580 size_t size; 5581 int af, argi, i; 5582 char *base, *end; 5583 5584 if (subr == DIF_SUBR_INET_NTOP) { 5585 af = (int)tupregs[0].dttk_value; 5586 argi = 1; 5587 } else { 5588 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5589 argi = 0; 5590 } 5591 5592 if (af == AF_INET) { 5593 ipaddr_t ip4; 5594 uint8_t *ptr8, val; 5595 5596 /* 5597 * Safely load the IPv4 address. 5598 */ 5599 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5600 5601 /* 5602 * Check an IPv4 string will fit in scratch. 5603 */ 5604 size = INET_ADDRSTRLEN; 5605 if (!DTRACE_INSCRATCH(mstate, size)) { 5606 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5607 regs[rd] = 0; 5608 break; 5609 } 5610 base = (char *)mstate->dtms_scratch_ptr; 5611 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5612 5613 /* 5614 * Stringify as a dotted decimal quad. 5615 */ 5616 *end-- = '\0'; 5617 ptr8 = (uint8_t *)&ip4; 5618 for (i = 3; i >= 0; i--) { 5619 val = ptr8[i]; 5620 5621 if (val == 0) { 5622 *end-- = '0'; 5623 } else { 5624 for (; val; val /= 10) { 5625 *end-- = '0' + (val % 10); 5626 } 5627 } 5628 5629 if (i > 0) 5630 *end-- = '.'; 5631 } 5632 ASSERT(end + 1 >= base); 5633 5634 } else if (af == AF_INET6) { 5635 struct in6_addr ip6; 5636 int firstzero, tryzero, numzero, v6end; 5637 uint16_t val; 5638 const char digits[] = "0123456789abcdef"; 5639 5640 /* 5641 * Stringify using RFC 1884 convention 2 - 16 bit 5642 * hexadecimal values with a zero-run compression. 5643 * Lower case hexadecimal digits are used. 5644 * eg, fe80::214:4fff:fe0b:76c8. 5645 * The IPv4 embedded form is returned for inet_ntop, 5646 * just the IPv4 string is returned for inet_ntoa6. 5647 */ 5648 5649 /* 5650 * Safely load the IPv6 address. 5651 */ 5652 dtrace_bcopy( 5653 (void *)(uintptr_t)tupregs[argi].dttk_value, 5654 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5655 5656 /* 5657 * Check an IPv6 string will fit in scratch. 5658 */ 5659 size = INET6_ADDRSTRLEN; 5660 if (!DTRACE_INSCRATCH(mstate, size)) { 5661 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5662 regs[rd] = 0; 5663 break; 5664 } 5665 base = (char *)mstate->dtms_scratch_ptr; 5666 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5667 *end-- = '\0'; 5668 5669 /* 5670 * Find the longest run of 16 bit zero values 5671 * for the single allowed zero compression - "::". 5672 */ 5673 firstzero = -1; 5674 tryzero = -1; 5675 numzero = 1; 5676 for (i = 0; i < sizeof (struct in6_addr); i++) { 5677 #if defined(sun) 5678 if (ip6._S6_un._S6_u8[i] == 0 && 5679 #else 5680 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5681 #endif 5682 tryzero == -1 && i % 2 == 0) { 5683 tryzero = i; 5684 continue; 5685 } 5686 5687 if (tryzero != -1 && 5688 #if defined(sun) 5689 (ip6._S6_un._S6_u8[i] != 0 || 5690 #else 5691 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5692 #endif 5693 i == sizeof (struct in6_addr) - 1)) { 5694 5695 if (i - tryzero <= numzero) { 5696 tryzero = -1; 5697 continue; 5698 } 5699 5700 firstzero = tryzero; 5701 numzero = i - i % 2 - tryzero; 5702 tryzero = -1; 5703 5704 #if defined(sun) 5705 if (ip6._S6_un._S6_u8[i] == 0 && 5706 #else 5707 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5708 #endif 5709 i == sizeof (struct in6_addr) - 1) 5710 numzero += 2; 5711 } 5712 } 5713 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5714 5715 /* 5716 * Check for an IPv4 embedded address. 5717 */ 5718 v6end = sizeof (struct in6_addr) - 2; 5719 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5720 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5721 for (i = sizeof (struct in6_addr) - 1; 5722 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5723 ASSERT(end >= base); 5724 5725 #if defined(sun) 5726 val = ip6._S6_un._S6_u8[i]; 5727 #else 5728 val = ip6.__u6_addr.__u6_addr8[i]; 5729 #endif 5730 5731 if (val == 0) { 5732 *end-- = '0'; 5733 } else { 5734 for (; val; val /= 10) { 5735 *end-- = '0' + val % 10; 5736 } 5737 } 5738 5739 if (i > DTRACE_V4MAPPED_OFFSET) 5740 *end-- = '.'; 5741 } 5742 5743 if (subr == DIF_SUBR_INET_NTOA6) 5744 goto inetout; 5745 5746 /* 5747 * Set v6end to skip the IPv4 address that 5748 * we have already stringified. 5749 */ 5750 v6end = 10; 5751 } 5752 5753 /* 5754 * Build the IPv6 string by working through the 5755 * address in reverse. 5756 */ 5757 for (i = v6end; i >= 0; i -= 2) { 5758 ASSERT(end >= base); 5759 5760 if (i == firstzero + numzero - 2) { 5761 *end-- = ':'; 5762 *end-- = ':'; 5763 i -= numzero - 2; 5764 continue; 5765 } 5766 5767 if (i < 14 && i != firstzero - 2) 5768 *end-- = ':'; 5769 5770 #if defined(sun) 5771 val = (ip6._S6_un._S6_u8[i] << 8) + 5772 ip6._S6_un._S6_u8[i + 1]; 5773 #else 5774 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 5775 ip6.__u6_addr.__u6_addr8[i + 1]; 5776 #endif 5777 5778 if (val == 0) { 5779 *end-- = '0'; 5780 } else { 5781 for (; val; val /= 16) { 5782 *end-- = digits[val % 16]; 5783 } 5784 } 5785 } 5786 ASSERT(end + 1 >= base); 5787 5788 } else { 5789 /* 5790 * The user didn't use AH_INET or AH_INET6. 5791 */ 5792 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5793 regs[rd] = 0; 5794 break; 5795 } 5796 5797 inetout: regs[rd] = (uintptr_t)end + 1; 5798 mstate->dtms_scratch_ptr += size; 5799 break; 5800 } 5801 5802 case DIF_SUBR_MEMREF: { 5803 uintptr_t size = 2 * sizeof(uintptr_t); 5804 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 5805 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 5806 5807 /* address and length */ 5808 memref[0] = tupregs[0].dttk_value; 5809 memref[1] = tupregs[1].dttk_value; 5810 5811 regs[rd] = (uintptr_t) memref; 5812 mstate->dtms_scratch_ptr += scratch_size; 5813 break; 5814 } 5815 5816 #if !defined(sun) 5817 case DIF_SUBR_MEMSTR: { 5818 char *str = (char *)mstate->dtms_scratch_ptr; 5819 uintptr_t mem = tupregs[0].dttk_value; 5820 char c = tupregs[1].dttk_value; 5821 size_t size = tupregs[2].dttk_value; 5822 uint8_t n; 5823 int i; 5824 5825 regs[rd] = 0; 5826 5827 if (size == 0) 5828 break; 5829 5830 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 5831 break; 5832 5833 if (!DTRACE_INSCRATCH(mstate, size)) { 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5835 break; 5836 } 5837 5838 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 5839 *flags |= CPU_DTRACE_ILLOP; 5840 break; 5841 } 5842 5843 for (i = 0; i < size - 1; i++) { 5844 n = dtrace_load8(mem++); 5845 str[i] = (n == 0) ? c : n; 5846 } 5847 str[size - 1] = 0; 5848 5849 regs[rd] = (uintptr_t)str; 5850 mstate->dtms_scratch_ptr += size; 5851 break; 5852 } 5853 #endif 5854 5855 case DIF_SUBR_TYPEREF: { 5856 uintptr_t size = 4 * sizeof(uintptr_t); 5857 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 5858 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size; 5859 5860 /* address, num_elements, type_str, type_len */ 5861 typeref[0] = tupregs[0].dttk_value; 5862 typeref[1] = tupregs[1].dttk_value; 5863 typeref[2] = tupregs[2].dttk_value; 5864 typeref[3] = tupregs[3].dttk_value; 5865 5866 regs[rd] = (uintptr_t) typeref; 5867 mstate->dtms_scratch_ptr += scratch_size; 5868 break; 5869 } 5870 } 5871 } 5872 5873 /* 5874 * Emulate the execution of DTrace IR instructions specified by the given 5875 * DIF object. This function is deliberately void of assertions as all of 5876 * the necessary checks are handled by a call to dtrace_difo_validate(). 5877 */ 5878 static uint64_t 5879 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5880 dtrace_vstate_t *vstate, dtrace_state_t *state) 5881 { 5882 const dif_instr_t *text = difo->dtdo_buf; 5883 const uint_t textlen = difo->dtdo_len; 5884 const char *strtab = difo->dtdo_strtab; 5885 const uint64_t *inttab = difo->dtdo_inttab; 5886 5887 uint64_t rval = 0; 5888 dtrace_statvar_t *svar; 5889 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5890 dtrace_difv_t *v; 5891 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 5892 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 5893 5894 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5895 uint64_t regs[DIF_DIR_NREGS]; 5896 uint64_t *tmp; 5897 5898 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5899 int64_t cc_r; 5900 uint_t pc = 0, id, opc = 0; 5901 uint8_t ttop = 0; 5902 dif_instr_t instr; 5903 uint_t r1, r2, rd; 5904 5905 /* 5906 * We stash the current DIF object into the machine state: we need it 5907 * for subsequent access checking. 5908 */ 5909 mstate->dtms_difo = difo; 5910 5911 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5912 5913 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5914 opc = pc; 5915 5916 instr = text[pc++]; 5917 r1 = DIF_INSTR_R1(instr); 5918 r2 = DIF_INSTR_R2(instr); 5919 rd = DIF_INSTR_RD(instr); 5920 5921 switch (DIF_INSTR_OP(instr)) { 5922 case DIF_OP_OR: 5923 regs[rd] = regs[r1] | regs[r2]; 5924 break; 5925 case DIF_OP_XOR: 5926 regs[rd] = regs[r1] ^ regs[r2]; 5927 break; 5928 case DIF_OP_AND: 5929 regs[rd] = regs[r1] & regs[r2]; 5930 break; 5931 case DIF_OP_SLL: 5932 regs[rd] = regs[r1] << regs[r2]; 5933 break; 5934 case DIF_OP_SRL: 5935 regs[rd] = regs[r1] >> regs[r2]; 5936 break; 5937 case DIF_OP_SUB: 5938 regs[rd] = regs[r1] - regs[r2]; 5939 break; 5940 case DIF_OP_ADD: 5941 regs[rd] = regs[r1] + regs[r2]; 5942 break; 5943 case DIF_OP_MUL: 5944 regs[rd] = regs[r1] * regs[r2]; 5945 break; 5946 case DIF_OP_SDIV: 5947 if (regs[r2] == 0) { 5948 regs[rd] = 0; 5949 *flags |= CPU_DTRACE_DIVZERO; 5950 } else { 5951 regs[rd] = (int64_t)regs[r1] / 5952 (int64_t)regs[r2]; 5953 } 5954 break; 5955 5956 case DIF_OP_UDIV: 5957 if (regs[r2] == 0) { 5958 regs[rd] = 0; 5959 *flags |= CPU_DTRACE_DIVZERO; 5960 } else { 5961 regs[rd] = regs[r1] / regs[r2]; 5962 } 5963 break; 5964 5965 case DIF_OP_SREM: 5966 if (regs[r2] == 0) { 5967 regs[rd] = 0; 5968 *flags |= CPU_DTRACE_DIVZERO; 5969 } else { 5970 regs[rd] = (int64_t)regs[r1] % 5971 (int64_t)regs[r2]; 5972 } 5973 break; 5974 5975 case DIF_OP_UREM: 5976 if (regs[r2] == 0) { 5977 regs[rd] = 0; 5978 *flags |= CPU_DTRACE_DIVZERO; 5979 } else { 5980 regs[rd] = regs[r1] % regs[r2]; 5981 } 5982 break; 5983 5984 case DIF_OP_NOT: 5985 regs[rd] = ~regs[r1]; 5986 break; 5987 case DIF_OP_MOV: 5988 regs[rd] = regs[r1]; 5989 break; 5990 case DIF_OP_CMP: 5991 cc_r = regs[r1] - regs[r2]; 5992 cc_n = cc_r < 0; 5993 cc_z = cc_r == 0; 5994 cc_v = 0; 5995 cc_c = regs[r1] < regs[r2]; 5996 break; 5997 case DIF_OP_TST: 5998 cc_n = cc_v = cc_c = 0; 5999 cc_z = regs[r1] == 0; 6000 break; 6001 case DIF_OP_BA: 6002 pc = DIF_INSTR_LABEL(instr); 6003 break; 6004 case DIF_OP_BE: 6005 if (cc_z) 6006 pc = DIF_INSTR_LABEL(instr); 6007 break; 6008 case DIF_OP_BNE: 6009 if (cc_z == 0) 6010 pc = DIF_INSTR_LABEL(instr); 6011 break; 6012 case DIF_OP_BG: 6013 if ((cc_z | (cc_n ^ cc_v)) == 0) 6014 pc = DIF_INSTR_LABEL(instr); 6015 break; 6016 case DIF_OP_BGU: 6017 if ((cc_c | cc_z) == 0) 6018 pc = DIF_INSTR_LABEL(instr); 6019 break; 6020 case DIF_OP_BGE: 6021 if ((cc_n ^ cc_v) == 0) 6022 pc = DIF_INSTR_LABEL(instr); 6023 break; 6024 case DIF_OP_BGEU: 6025 if (cc_c == 0) 6026 pc = DIF_INSTR_LABEL(instr); 6027 break; 6028 case DIF_OP_BL: 6029 if (cc_n ^ cc_v) 6030 pc = DIF_INSTR_LABEL(instr); 6031 break; 6032 case DIF_OP_BLU: 6033 if (cc_c) 6034 pc = DIF_INSTR_LABEL(instr); 6035 break; 6036 case DIF_OP_BLE: 6037 if (cc_z | (cc_n ^ cc_v)) 6038 pc = DIF_INSTR_LABEL(instr); 6039 break; 6040 case DIF_OP_BLEU: 6041 if (cc_c | cc_z) 6042 pc = DIF_INSTR_LABEL(instr); 6043 break; 6044 case DIF_OP_RLDSB: 6045 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6046 break; 6047 /*FALLTHROUGH*/ 6048 case DIF_OP_LDSB: 6049 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6050 break; 6051 case DIF_OP_RLDSH: 6052 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6053 break; 6054 /*FALLTHROUGH*/ 6055 case DIF_OP_LDSH: 6056 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6057 break; 6058 case DIF_OP_RLDSW: 6059 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6060 break; 6061 /*FALLTHROUGH*/ 6062 case DIF_OP_LDSW: 6063 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6064 break; 6065 case DIF_OP_RLDUB: 6066 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6067 break; 6068 /*FALLTHROUGH*/ 6069 case DIF_OP_LDUB: 6070 regs[rd] = dtrace_load8(regs[r1]); 6071 break; 6072 case DIF_OP_RLDUH: 6073 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6074 break; 6075 /*FALLTHROUGH*/ 6076 case DIF_OP_LDUH: 6077 regs[rd] = dtrace_load16(regs[r1]); 6078 break; 6079 case DIF_OP_RLDUW: 6080 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6081 break; 6082 /*FALLTHROUGH*/ 6083 case DIF_OP_LDUW: 6084 regs[rd] = dtrace_load32(regs[r1]); 6085 break; 6086 case DIF_OP_RLDX: 6087 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6088 break; 6089 /*FALLTHROUGH*/ 6090 case DIF_OP_LDX: 6091 regs[rd] = dtrace_load64(regs[r1]); 6092 break; 6093 case DIF_OP_ULDSB: 6094 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6095 regs[rd] = (int8_t) 6096 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6097 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6098 break; 6099 case DIF_OP_ULDSH: 6100 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6101 regs[rd] = (int16_t) 6102 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6103 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6104 break; 6105 case DIF_OP_ULDSW: 6106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6107 regs[rd] = (int32_t) 6108 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6109 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6110 break; 6111 case DIF_OP_ULDUB: 6112 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6113 regs[rd] = 6114 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6115 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6116 break; 6117 case DIF_OP_ULDUH: 6118 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6119 regs[rd] = 6120 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6121 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6122 break; 6123 case DIF_OP_ULDUW: 6124 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6125 regs[rd] = 6126 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6127 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6128 break; 6129 case DIF_OP_ULDX: 6130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6131 regs[rd] = 6132 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6133 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6134 break; 6135 case DIF_OP_RET: 6136 rval = regs[rd]; 6137 pc = textlen; 6138 break; 6139 case DIF_OP_NOP: 6140 break; 6141 case DIF_OP_SETX: 6142 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6143 break; 6144 case DIF_OP_SETS: 6145 regs[rd] = (uint64_t)(uintptr_t) 6146 (strtab + DIF_INSTR_STRING(instr)); 6147 break; 6148 case DIF_OP_SCMP: { 6149 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6150 uintptr_t s1 = regs[r1]; 6151 uintptr_t s2 = regs[r2]; 6152 6153 if (s1 != 0 && 6154 !dtrace_strcanload(s1, sz, mstate, vstate)) 6155 break; 6156 if (s2 != 0 && 6157 !dtrace_strcanload(s2, sz, mstate, vstate)) 6158 break; 6159 6160 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 6161 6162 cc_n = cc_r < 0; 6163 cc_z = cc_r == 0; 6164 cc_v = cc_c = 0; 6165 break; 6166 } 6167 case DIF_OP_LDGA: 6168 regs[rd] = dtrace_dif_variable(mstate, state, 6169 r1, regs[r2]); 6170 break; 6171 case DIF_OP_LDGS: 6172 id = DIF_INSTR_VAR(instr); 6173 6174 if (id >= DIF_VAR_OTHER_UBASE) { 6175 uintptr_t a; 6176 6177 id -= DIF_VAR_OTHER_UBASE; 6178 svar = vstate->dtvs_globals[id]; 6179 ASSERT(svar != NULL); 6180 v = &svar->dtsv_var; 6181 6182 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6183 regs[rd] = svar->dtsv_data; 6184 break; 6185 } 6186 6187 a = (uintptr_t)svar->dtsv_data; 6188 6189 if (*(uint8_t *)a == UINT8_MAX) { 6190 /* 6191 * If the 0th byte is set to UINT8_MAX 6192 * then this is to be treated as a 6193 * reference to a NULL variable. 6194 */ 6195 regs[rd] = 0; 6196 } else { 6197 regs[rd] = a + sizeof (uint64_t); 6198 } 6199 6200 break; 6201 } 6202 6203 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6204 break; 6205 6206 case DIF_OP_STGS: 6207 id = DIF_INSTR_VAR(instr); 6208 6209 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6210 id -= DIF_VAR_OTHER_UBASE; 6211 6212 svar = vstate->dtvs_globals[id]; 6213 ASSERT(svar != NULL); 6214 v = &svar->dtsv_var; 6215 6216 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6217 uintptr_t a = (uintptr_t)svar->dtsv_data; 6218 6219 ASSERT(a != 0); 6220 ASSERT(svar->dtsv_size != 0); 6221 6222 if (regs[rd] == 0) { 6223 *(uint8_t *)a = UINT8_MAX; 6224 break; 6225 } else { 6226 *(uint8_t *)a = 0; 6227 a += sizeof (uint64_t); 6228 } 6229 if (!dtrace_vcanload( 6230 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6231 mstate, vstate)) 6232 break; 6233 6234 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6235 (void *)a, &v->dtdv_type); 6236 break; 6237 } 6238 6239 svar->dtsv_data = regs[rd]; 6240 break; 6241 6242 case DIF_OP_LDTA: 6243 /* 6244 * There are no DTrace built-in thread-local arrays at 6245 * present. This opcode is saved for future work. 6246 */ 6247 *flags |= CPU_DTRACE_ILLOP; 6248 regs[rd] = 0; 6249 break; 6250 6251 case DIF_OP_LDLS: 6252 id = DIF_INSTR_VAR(instr); 6253 6254 if (id < DIF_VAR_OTHER_UBASE) { 6255 /* 6256 * For now, this has no meaning. 6257 */ 6258 regs[rd] = 0; 6259 break; 6260 } 6261 6262 id -= DIF_VAR_OTHER_UBASE; 6263 6264 ASSERT(id < vstate->dtvs_nlocals); 6265 ASSERT(vstate->dtvs_locals != NULL); 6266 6267 svar = vstate->dtvs_locals[id]; 6268 ASSERT(svar != NULL); 6269 v = &svar->dtsv_var; 6270 6271 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6272 uintptr_t a = (uintptr_t)svar->dtsv_data; 6273 size_t sz = v->dtdv_type.dtdt_size; 6274 6275 sz += sizeof (uint64_t); 6276 ASSERT(svar->dtsv_size == NCPU * sz); 6277 a += curcpu * sz; 6278 6279 if (*(uint8_t *)a == UINT8_MAX) { 6280 /* 6281 * If the 0th byte is set to UINT8_MAX 6282 * then this is to be treated as a 6283 * reference to a NULL variable. 6284 */ 6285 regs[rd] = 0; 6286 } else { 6287 regs[rd] = a + sizeof (uint64_t); 6288 } 6289 6290 break; 6291 } 6292 6293 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6294 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6295 regs[rd] = tmp[curcpu]; 6296 break; 6297 6298 case DIF_OP_STLS: 6299 id = DIF_INSTR_VAR(instr); 6300 6301 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6302 id -= DIF_VAR_OTHER_UBASE; 6303 ASSERT(id < vstate->dtvs_nlocals); 6304 6305 ASSERT(vstate->dtvs_locals != NULL); 6306 svar = vstate->dtvs_locals[id]; 6307 ASSERT(svar != NULL); 6308 v = &svar->dtsv_var; 6309 6310 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6311 uintptr_t a = (uintptr_t)svar->dtsv_data; 6312 size_t sz = v->dtdv_type.dtdt_size; 6313 6314 sz += sizeof (uint64_t); 6315 ASSERT(svar->dtsv_size == NCPU * sz); 6316 a += curcpu * sz; 6317 6318 if (regs[rd] == 0) { 6319 *(uint8_t *)a = UINT8_MAX; 6320 break; 6321 } else { 6322 *(uint8_t *)a = 0; 6323 a += sizeof (uint64_t); 6324 } 6325 6326 if (!dtrace_vcanload( 6327 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6328 mstate, vstate)) 6329 break; 6330 6331 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6332 (void *)a, &v->dtdv_type); 6333 break; 6334 } 6335 6336 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6337 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6338 tmp[curcpu] = regs[rd]; 6339 break; 6340 6341 case DIF_OP_LDTS: { 6342 dtrace_dynvar_t *dvar; 6343 dtrace_key_t *key; 6344 6345 id = DIF_INSTR_VAR(instr); 6346 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6347 id -= DIF_VAR_OTHER_UBASE; 6348 v = &vstate->dtvs_tlocals[id]; 6349 6350 key = &tupregs[DIF_DTR_NREGS]; 6351 key[0].dttk_value = (uint64_t)id; 6352 key[0].dttk_size = 0; 6353 DTRACE_TLS_THRKEY(key[1].dttk_value); 6354 key[1].dttk_size = 0; 6355 6356 dvar = dtrace_dynvar(dstate, 2, key, 6357 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6358 mstate, vstate); 6359 6360 if (dvar == NULL) { 6361 regs[rd] = 0; 6362 break; 6363 } 6364 6365 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6366 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6367 } else { 6368 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6369 } 6370 6371 break; 6372 } 6373 6374 case DIF_OP_STTS: { 6375 dtrace_dynvar_t *dvar; 6376 dtrace_key_t *key; 6377 6378 id = DIF_INSTR_VAR(instr); 6379 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6380 id -= DIF_VAR_OTHER_UBASE; 6381 6382 key = &tupregs[DIF_DTR_NREGS]; 6383 key[0].dttk_value = (uint64_t)id; 6384 key[0].dttk_size = 0; 6385 DTRACE_TLS_THRKEY(key[1].dttk_value); 6386 key[1].dttk_size = 0; 6387 v = &vstate->dtvs_tlocals[id]; 6388 6389 dvar = dtrace_dynvar(dstate, 2, key, 6390 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6391 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6392 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6393 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6394 6395 /* 6396 * Given that we're storing to thread-local data, 6397 * we need to flush our predicate cache. 6398 */ 6399 curthread->t_predcache = 0; 6400 6401 if (dvar == NULL) 6402 break; 6403 6404 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6405 if (!dtrace_vcanload( 6406 (void *)(uintptr_t)regs[rd], 6407 &v->dtdv_type, mstate, vstate)) 6408 break; 6409 6410 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6411 dvar->dtdv_data, &v->dtdv_type); 6412 } else { 6413 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6414 } 6415 6416 break; 6417 } 6418 6419 case DIF_OP_SRA: 6420 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6421 break; 6422 6423 case DIF_OP_CALL: 6424 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6425 regs, tupregs, ttop, mstate, state); 6426 break; 6427 6428 case DIF_OP_PUSHTR: 6429 if (ttop == DIF_DTR_NREGS) { 6430 *flags |= CPU_DTRACE_TUPOFLOW; 6431 break; 6432 } 6433 6434 if (r1 == DIF_TYPE_STRING) { 6435 /* 6436 * If this is a string type and the size is 0, 6437 * we'll use the system-wide default string 6438 * size. Note that we are _not_ looking at 6439 * the value of the DTRACEOPT_STRSIZE option; 6440 * had this been set, we would expect to have 6441 * a non-zero size value in the "pushtr". 6442 */ 6443 tupregs[ttop].dttk_size = 6444 dtrace_strlen((char *)(uintptr_t)regs[rd], 6445 regs[r2] ? regs[r2] : 6446 dtrace_strsize_default) + 1; 6447 } else { 6448 tupregs[ttop].dttk_size = regs[r2]; 6449 } 6450 6451 tupregs[ttop++].dttk_value = regs[rd]; 6452 break; 6453 6454 case DIF_OP_PUSHTV: 6455 if (ttop == DIF_DTR_NREGS) { 6456 *flags |= CPU_DTRACE_TUPOFLOW; 6457 break; 6458 } 6459 6460 tupregs[ttop].dttk_value = regs[rd]; 6461 tupregs[ttop++].dttk_size = 0; 6462 break; 6463 6464 case DIF_OP_POPTS: 6465 if (ttop != 0) 6466 ttop--; 6467 break; 6468 6469 case DIF_OP_FLUSHTS: 6470 ttop = 0; 6471 break; 6472 6473 case DIF_OP_LDGAA: 6474 case DIF_OP_LDTAA: { 6475 dtrace_dynvar_t *dvar; 6476 dtrace_key_t *key = tupregs; 6477 uint_t nkeys = ttop; 6478 6479 id = DIF_INSTR_VAR(instr); 6480 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6481 id -= DIF_VAR_OTHER_UBASE; 6482 6483 key[nkeys].dttk_value = (uint64_t)id; 6484 key[nkeys++].dttk_size = 0; 6485 6486 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6487 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6488 key[nkeys++].dttk_size = 0; 6489 v = &vstate->dtvs_tlocals[id]; 6490 } else { 6491 v = &vstate->dtvs_globals[id]->dtsv_var; 6492 } 6493 6494 dvar = dtrace_dynvar(dstate, nkeys, key, 6495 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6496 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6497 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6498 6499 if (dvar == NULL) { 6500 regs[rd] = 0; 6501 break; 6502 } 6503 6504 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6505 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6506 } else { 6507 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6508 } 6509 6510 break; 6511 } 6512 6513 case DIF_OP_STGAA: 6514 case DIF_OP_STTAA: { 6515 dtrace_dynvar_t *dvar; 6516 dtrace_key_t *key = tupregs; 6517 uint_t nkeys = ttop; 6518 6519 id = DIF_INSTR_VAR(instr); 6520 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6521 id -= DIF_VAR_OTHER_UBASE; 6522 6523 key[nkeys].dttk_value = (uint64_t)id; 6524 key[nkeys++].dttk_size = 0; 6525 6526 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6527 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6528 key[nkeys++].dttk_size = 0; 6529 v = &vstate->dtvs_tlocals[id]; 6530 } else { 6531 v = &vstate->dtvs_globals[id]->dtsv_var; 6532 } 6533 6534 dvar = dtrace_dynvar(dstate, nkeys, key, 6535 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6536 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6537 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6538 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6539 6540 if (dvar == NULL) 6541 break; 6542 6543 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6544 if (!dtrace_vcanload( 6545 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6546 mstate, vstate)) 6547 break; 6548 6549 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6550 dvar->dtdv_data, &v->dtdv_type); 6551 } else { 6552 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6553 } 6554 6555 break; 6556 } 6557 6558 case DIF_OP_ALLOCS: { 6559 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6560 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6561 6562 /* 6563 * Rounding up the user allocation size could have 6564 * overflowed large, bogus allocations (like -1ULL) to 6565 * 0. 6566 */ 6567 if (size < regs[r1] || 6568 !DTRACE_INSCRATCH(mstate, size)) { 6569 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6570 regs[rd] = 0; 6571 break; 6572 } 6573 6574 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6575 mstate->dtms_scratch_ptr += size; 6576 regs[rd] = ptr; 6577 break; 6578 } 6579 6580 case DIF_OP_COPYS: 6581 if (!dtrace_canstore(regs[rd], regs[r2], 6582 mstate, vstate)) { 6583 *flags |= CPU_DTRACE_BADADDR; 6584 *illval = regs[rd]; 6585 break; 6586 } 6587 6588 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6589 break; 6590 6591 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6592 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6593 break; 6594 6595 case DIF_OP_STB: 6596 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6597 *flags |= CPU_DTRACE_BADADDR; 6598 *illval = regs[rd]; 6599 break; 6600 } 6601 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6602 break; 6603 6604 case DIF_OP_STH: 6605 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6606 *flags |= CPU_DTRACE_BADADDR; 6607 *illval = regs[rd]; 6608 break; 6609 } 6610 if (regs[rd] & 1) { 6611 *flags |= CPU_DTRACE_BADALIGN; 6612 *illval = regs[rd]; 6613 break; 6614 } 6615 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6616 break; 6617 6618 case DIF_OP_STW: 6619 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6620 *flags |= CPU_DTRACE_BADADDR; 6621 *illval = regs[rd]; 6622 break; 6623 } 6624 if (regs[rd] & 3) { 6625 *flags |= CPU_DTRACE_BADALIGN; 6626 *illval = regs[rd]; 6627 break; 6628 } 6629 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6630 break; 6631 6632 case DIF_OP_STX: 6633 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6634 *flags |= CPU_DTRACE_BADADDR; 6635 *illval = regs[rd]; 6636 break; 6637 } 6638 if (regs[rd] & 7) { 6639 *flags |= CPU_DTRACE_BADALIGN; 6640 *illval = regs[rd]; 6641 break; 6642 } 6643 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6644 break; 6645 } 6646 } 6647 6648 if (!(*flags & CPU_DTRACE_FAULT)) 6649 return (rval); 6650 6651 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6652 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6653 6654 return (0); 6655 } 6656 6657 static void 6658 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6659 { 6660 dtrace_probe_t *probe = ecb->dte_probe; 6661 dtrace_provider_t *prov = probe->dtpr_provider; 6662 char c[DTRACE_FULLNAMELEN + 80], *str; 6663 char *msg = "dtrace: breakpoint action at probe "; 6664 char *ecbmsg = " (ecb "; 6665 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6666 uintptr_t val = (uintptr_t)ecb; 6667 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6668 6669 if (dtrace_destructive_disallow) 6670 return; 6671 6672 /* 6673 * It's impossible to be taking action on the NULL probe. 6674 */ 6675 ASSERT(probe != NULL); 6676 6677 /* 6678 * This is a poor man's (destitute man's?) sprintf(): we want to 6679 * print the provider name, module name, function name and name of 6680 * the probe, along with the hex address of the ECB with the breakpoint 6681 * action -- all of which we must place in the character buffer by 6682 * hand. 6683 */ 6684 while (*msg != '\0') 6685 c[i++] = *msg++; 6686 6687 for (str = prov->dtpv_name; *str != '\0'; str++) 6688 c[i++] = *str; 6689 c[i++] = ':'; 6690 6691 for (str = probe->dtpr_mod; *str != '\0'; str++) 6692 c[i++] = *str; 6693 c[i++] = ':'; 6694 6695 for (str = probe->dtpr_func; *str != '\0'; str++) 6696 c[i++] = *str; 6697 c[i++] = ':'; 6698 6699 for (str = probe->dtpr_name; *str != '\0'; str++) 6700 c[i++] = *str; 6701 6702 while (*ecbmsg != '\0') 6703 c[i++] = *ecbmsg++; 6704 6705 while (shift >= 0) { 6706 mask = (uintptr_t)0xf << shift; 6707 6708 if (val >= ((uintptr_t)1 << shift)) 6709 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6710 shift -= 4; 6711 } 6712 6713 c[i++] = ')'; 6714 c[i] = '\0'; 6715 6716 #if defined(sun) 6717 debug_enter(c); 6718 #else 6719 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6720 #endif 6721 } 6722 6723 static void 6724 dtrace_action_panic(dtrace_ecb_t *ecb) 6725 { 6726 dtrace_probe_t *probe = ecb->dte_probe; 6727 6728 /* 6729 * It's impossible to be taking action on the NULL probe. 6730 */ 6731 ASSERT(probe != NULL); 6732 6733 if (dtrace_destructive_disallow) 6734 return; 6735 6736 if (dtrace_panicked != NULL) 6737 return; 6738 6739 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6740 return; 6741 6742 /* 6743 * We won the right to panic. (We want to be sure that only one 6744 * thread calls panic() from dtrace_probe(), and that panic() is 6745 * called exactly once.) 6746 */ 6747 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6748 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6749 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6750 } 6751 6752 static void 6753 dtrace_action_raise(uint64_t sig) 6754 { 6755 if (dtrace_destructive_disallow) 6756 return; 6757 6758 if (sig >= NSIG) { 6759 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6760 return; 6761 } 6762 6763 #if defined(sun) 6764 /* 6765 * raise() has a queue depth of 1 -- we ignore all subsequent 6766 * invocations of the raise() action. 6767 */ 6768 if (curthread->t_dtrace_sig == 0) 6769 curthread->t_dtrace_sig = (uint8_t)sig; 6770 6771 curthread->t_sig_check = 1; 6772 aston(curthread); 6773 #else 6774 struct proc *p = curproc; 6775 PROC_LOCK(p); 6776 kern_psignal(p, sig); 6777 PROC_UNLOCK(p); 6778 #endif 6779 } 6780 6781 static void 6782 dtrace_action_stop(void) 6783 { 6784 if (dtrace_destructive_disallow) 6785 return; 6786 6787 #if defined(sun) 6788 if (!curthread->t_dtrace_stop) { 6789 curthread->t_dtrace_stop = 1; 6790 curthread->t_sig_check = 1; 6791 aston(curthread); 6792 } 6793 #else 6794 struct proc *p = curproc; 6795 PROC_LOCK(p); 6796 kern_psignal(p, SIGSTOP); 6797 PROC_UNLOCK(p); 6798 #endif 6799 } 6800 6801 static void 6802 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6803 { 6804 hrtime_t now; 6805 volatile uint16_t *flags; 6806 #if defined(sun) 6807 cpu_t *cpu = CPU; 6808 #else 6809 cpu_t *cpu = &solaris_cpu[curcpu]; 6810 #endif 6811 6812 if (dtrace_destructive_disallow) 6813 return; 6814 6815 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 6816 6817 now = dtrace_gethrtime(); 6818 6819 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6820 /* 6821 * We need to advance the mark to the current time. 6822 */ 6823 cpu->cpu_dtrace_chillmark = now; 6824 cpu->cpu_dtrace_chilled = 0; 6825 } 6826 6827 /* 6828 * Now check to see if the requested chill time would take us over 6829 * the maximum amount of time allowed in the chill interval. (Or 6830 * worse, if the calculation itself induces overflow.) 6831 */ 6832 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6833 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6834 *flags |= CPU_DTRACE_ILLOP; 6835 return; 6836 } 6837 6838 while (dtrace_gethrtime() - now < val) 6839 continue; 6840 6841 /* 6842 * Normally, we assure that the value of the variable "timestamp" does 6843 * not change within an ECB. The presence of chill() represents an 6844 * exception to this rule, however. 6845 */ 6846 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6847 cpu->cpu_dtrace_chilled += val; 6848 } 6849 6850 static void 6851 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6852 uint64_t *buf, uint64_t arg) 6853 { 6854 int nframes = DTRACE_USTACK_NFRAMES(arg); 6855 int strsize = DTRACE_USTACK_STRSIZE(arg); 6856 uint64_t *pcs = &buf[1], *fps; 6857 char *str = (char *)&pcs[nframes]; 6858 int size, offs = 0, i, j; 6859 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6860 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6861 char *sym; 6862 6863 /* 6864 * Should be taking a faster path if string space has not been 6865 * allocated. 6866 */ 6867 ASSERT(strsize != 0); 6868 6869 /* 6870 * We will first allocate some temporary space for the frame pointers. 6871 */ 6872 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6873 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6874 (nframes * sizeof (uint64_t)); 6875 6876 if (!DTRACE_INSCRATCH(mstate, size)) { 6877 /* 6878 * Not enough room for our frame pointers -- need to indicate 6879 * that we ran out of scratch space. 6880 */ 6881 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6882 return; 6883 } 6884 6885 mstate->dtms_scratch_ptr += size; 6886 saved = mstate->dtms_scratch_ptr; 6887 6888 /* 6889 * Now get a stack with both program counters and frame pointers. 6890 */ 6891 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6892 dtrace_getufpstack(buf, fps, nframes + 1); 6893 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6894 6895 /* 6896 * If that faulted, we're cooked. 6897 */ 6898 if (*flags & CPU_DTRACE_FAULT) 6899 goto out; 6900 6901 /* 6902 * Now we want to walk up the stack, calling the USTACK helper. For 6903 * each iteration, we restore the scratch pointer. 6904 */ 6905 for (i = 0; i < nframes; i++) { 6906 mstate->dtms_scratch_ptr = saved; 6907 6908 if (offs >= strsize) 6909 break; 6910 6911 sym = (char *)(uintptr_t)dtrace_helper( 6912 DTRACE_HELPER_ACTION_USTACK, 6913 mstate, state, pcs[i], fps[i]); 6914 6915 /* 6916 * If we faulted while running the helper, we're going to 6917 * clear the fault and null out the corresponding string. 6918 */ 6919 if (*flags & CPU_DTRACE_FAULT) { 6920 *flags &= ~CPU_DTRACE_FAULT; 6921 str[offs++] = '\0'; 6922 continue; 6923 } 6924 6925 if (sym == NULL) { 6926 str[offs++] = '\0'; 6927 continue; 6928 } 6929 6930 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6931 6932 /* 6933 * Now copy in the string that the helper returned to us. 6934 */ 6935 for (j = 0; offs + j < strsize; j++) { 6936 if ((str[offs + j] = sym[j]) == '\0') 6937 break; 6938 } 6939 6940 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6941 6942 offs += j + 1; 6943 } 6944 6945 if (offs >= strsize) { 6946 /* 6947 * If we didn't have room for all of the strings, we don't 6948 * abort processing -- this needn't be a fatal error -- but we 6949 * still want to increment a counter (dts_stkstroverflows) to 6950 * allow this condition to be warned about. (If this is from 6951 * a jstack() action, it is easily tuned via jstackstrsize.) 6952 */ 6953 dtrace_error(&state->dts_stkstroverflows); 6954 } 6955 6956 while (offs < strsize) 6957 str[offs++] = '\0'; 6958 6959 out: 6960 mstate->dtms_scratch_ptr = old; 6961 } 6962 6963 static void 6964 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6965 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6966 { 6967 volatile uint16_t *flags; 6968 uint64_t val = *valp; 6969 size_t valoffs = *valoffsp; 6970 6971 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 6972 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6973 6974 /* 6975 * If this is a string, we're going to only load until we find the zero 6976 * byte -- after which we'll store zero bytes. 6977 */ 6978 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6979 char c = '\0' + 1; 6980 size_t s; 6981 6982 for (s = 0; s < size; s++) { 6983 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6984 c = dtrace_load8(val++); 6985 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6986 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6987 c = dtrace_fuword8((void *)(uintptr_t)val++); 6988 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6989 if (*flags & CPU_DTRACE_FAULT) 6990 break; 6991 } 6992 6993 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6994 6995 if (c == '\0' && intuple) 6996 break; 6997 } 6998 } else { 6999 uint8_t c; 7000 while (valoffs < end) { 7001 if (dtkind == DIF_TF_BYREF) { 7002 c = dtrace_load8(val++); 7003 } else if (dtkind == DIF_TF_BYUREF) { 7004 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7005 c = dtrace_fuword8((void *)(uintptr_t)val++); 7006 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7007 if (*flags & CPU_DTRACE_FAULT) 7008 break; 7009 } 7010 7011 DTRACE_STORE(uint8_t, tomax, 7012 valoffs++, c); 7013 } 7014 } 7015 7016 *valp = val; 7017 *valoffsp = valoffs; 7018 } 7019 7020 /* 7021 * If you're looking for the epicenter of DTrace, you just found it. This 7022 * is the function called by the provider to fire a probe -- from which all 7023 * subsequent probe-context DTrace activity emanates. 7024 */ 7025 void 7026 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7027 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7028 { 7029 processorid_t cpuid; 7030 dtrace_icookie_t cookie; 7031 dtrace_probe_t *probe; 7032 dtrace_mstate_t mstate; 7033 dtrace_ecb_t *ecb; 7034 dtrace_action_t *act; 7035 intptr_t offs; 7036 size_t size; 7037 int vtime, onintr; 7038 volatile uint16_t *flags; 7039 hrtime_t now; 7040 7041 if (panicstr != NULL) 7042 return; 7043 7044 #if defined(sun) 7045 /* 7046 * Kick out immediately if this CPU is still being born (in which case 7047 * curthread will be set to -1) or the current thread can't allow 7048 * probes in its current context. 7049 */ 7050 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7051 return; 7052 #endif 7053 7054 cookie = dtrace_interrupt_disable(); 7055 probe = dtrace_probes[id - 1]; 7056 cpuid = curcpu; 7057 onintr = CPU_ON_INTR(CPU); 7058 7059 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7060 probe->dtpr_predcache == curthread->t_predcache) { 7061 /* 7062 * We have hit in the predicate cache; we know that 7063 * this predicate would evaluate to be false. 7064 */ 7065 dtrace_interrupt_enable(cookie); 7066 return; 7067 } 7068 7069 #if defined(sun) 7070 if (panic_quiesce) { 7071 #else 7072 if (panicstr != NULL) { 7073 #endif 7074 /* 7075 * We don't trace anything if we're panicking. 7076 */ 7077 dtrace_interrupt_enable(cookie); 7078 return; 7079 } 7080 7081 now = dtrace_gethrtime(); 7082 vtime = dtrace_vtime_references != 0; 7083 7084 if (vtime && curthread->t_dtrace_start) 7085 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7086 7087 mstate.dtms_difo = NULL; 7088 mstate.dtms_probe = probe; 7089 mstate.dtms_strtok = 0; 7090 mstate.dtms_arg[0] = arg0; 7091 mstate.dtms_arg[1] = arg1; 7092 mstate.dtms_arg[2] = arg2; 7093 mstate.dtms_arg[3] = arg3; 7094 mstate.dtms_arg[4] = arg4; 7095 7096 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7097 7098 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7099 dtrace_predicate_t *pred = ecb->dte_predicate; 7100 dtrace_state_t *state = ecb->dte_state; 7101 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7102 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7103 dtrace_vstate_t *vstate = &state->dts_vstate; 7104 dtrace_provider_t *prov = probe->dtpr_provider; 7105 uint64_t tracememsize = 0; 7106 int committed = 0; 7107 caddr_t tomax; 7108 7109 /* 7110 * A little subtlety with the following (seemingly innocuous) 7111 * declaration of the automatic 'val': by looking at the 7112 * code, you might think that it could be declared in the 7113 * action processing loop, below. (That is, it's only used in 7114 * the action processing loop.) However, it must be declared 7115 * out of that scope because in the case of DIF expression 7116 * arguments to aggregating actions, one iteration of the 7117 * action loop will use the last iteration's value. 7118 */ 7119 uint64_t val = 0; 7120 7121 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7122 mstate.dtms_getf = NULL; 7123 7124 *flags &= ~CPU_DTRACE_ERROR; 7125 7126 if (prov == dtrace_provider) { 7127 /* 7128 * If dtrace itself is the provider of this probe, 7129 * we're only going to continue processing the ECB if 7130 * arg0 (the dtrace_state_t) is equal to the ECB's 7131 * creating state. (This prevents disjoint consumers 7132 * from seeing one another's metaprobes.) 7133 */ 7134 if (arg0 != (uint64_t)(uintptr_t)state) 7135 continue; 7136 } 7137 7138 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7139 /* 7140 * We're not currently active. If our provider isn't 7141 * the dtrace pseudo provider, we're not interested. 7142 */ 7143 if (prov != dtrace_provider) 7144 continue; 7145 7146 /* 7147 * Now we must further check if we are in the BEGIN 7148 * probe. If we are, we will only continue processing 7149 * if we're still in WARMUP -- if one BEGIN enabling 7150 * has invoked the exit() action, we don't want to 7151 * evaluate subsequent BEGIN enablings. 7152 */ 7153 if (probe->dtpr_id == dtrace_probeid_begin && 7154 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7155 ASSERT(state->dts_activity == 7156 DTRACE_ACTIVITY_DRAINING); 7157 continue; 7158 } 7159 } 7160 7161 if (ecb->dte_cond) { 7162 /* 7163 * If the dte_cond bits indicate that this 7164 * consumer is only allowed to see user-mode firings 7165 * of this probe, call the provider's dtps_usermode() 7166 * entry point to check that the probe was fired 7167 * while in a user context. Skip this ECB if that's 7168 * not the case. 7169 */ 7170 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7171 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7172 probe->dtpr_id, probe->dtpr_arg) == 0) 7173 continue; 7174 7175 #if defined(sun) 7176 /* 7177 * This is more subtle than it looks. We have to be 7178 * absolutely certain that CRED() isn't going to 7179 * change out from under us so it's only legit to 7180 * examine that structure if we're in constrained 7181 * situations. Currently, the only times we'll this 7182 * check is if a non-super-user has enabled the 7183 * profile or syscall providers -- providers that 7184 * allow visibility of all processes. For the 7185 * profile case, the check above will ensure that 7186 * we're examining a user context. 7187 */ 7188 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7189 cred_t *cr; 7190 cred_t *s_cr = 7191 ecb->dte_state->dts_cred.dcr_cred; 7192 proc_t *proc; 7193 7194 ASSERT(s_cr != NULL); 7195 7196 if ((cr = CRED()) == NULL || 7197 s_cr->cr_uid != cr->cr_uid || 7198 s_cr->cr_uid != cr->cr_ruid || 7199 s_cr->cr_uid != cr->cr_suid || 7200 s_cr->cr_gid != cr->cr_gid || 7201 s_cr->cr_gid != cr->cr_rgid || 7202 s_cr->cr_gid != cr->cr_sgid || 7203 (proc = ttoproc(curthread)) == NULL || 7204 (proc->p_flag & SNOCD)) 7205 continue; 7206 } 7207 7208 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7209 cred_t *cr; 7210 cred_t *s_cr = 7211 ecb->dte_state->dts_cred.dcr_cred; 7212 7213 ASSERT(s_cr != NULL); 7214 7215 if ((cr = CRED()) == NULL || 7216 s_cr->cr_zone->zone_id != 7217 cr->cr_zone->zone_id) 7218 continue; 7219 } 7220 #endif 7221 } 7222 7223 if (now - state->dts_alive > dtrace_deadman_timeout) { 7224 /* 7225 * We seem to be dead. Unless we (a) have kernel 7226 * destructive permissions (b) have explicitly enabled 7227 * destructive actions and (c) destructive actions have 7228 * not been disabled, we're going to transition into 7229 * the KILLED state, from which no further processing 7230 * on this state will be performed. 7231 */ 7232 if (!dtrace_priv_kernel_destructive(state) || 7233 !state->dts_cred.dcr_destructive || 7234 dtrace_destructive_disallow) { 7235 void *activity = &state->dts_activity; 7236 dtrace_activity_t current; 7237 7238 do { 7239 current = state->dts_activity; 7240 } while (dtrace_cas32(activity, current, 7241 DTRACE_ACTIVITY_KILLED) != current); 7242 7243 continue; 7244 } 7245 } 7246 7247 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7248 ecb->dte_alignment, state, &mstate)) < 0) 7249 continue; 7250 7251 tomax = buf->dtb_tomax; 7252 ASSERT(tomax != NULL); 7253 7254 if (ecb->dte_size != 0) { 7255 dtrace_rechdr_t dtrh; 7256 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7257 mstate.dtms_timestamp = dtrace_gethrtime(); 7258 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7259 } 7260 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7261 dtrh.dtrh_epid = ecb->dte_epid; 7262 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7263 mstate.dtms_timestamp); 7264 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7265 } 7266 7267 mstate.dtms_epid = ecb->dte_epid; 7268 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7269 7270 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7271 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7272 else 7273 mstate.dtms_access = 0; 7274 7275 if (pred != NULL) { 7276 dtrace_difo_t *dp = pred->dtp_difo; 7277 int rval; 7278 7279 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7280 7281 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7282 dtrace_cacheid_t cid = probe->dtpr_predcache; 7283 7284 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7285 /* 7286 * Update the predicate cache... 7287 */ 7288 ASSERT(cid == pred->dtp_cacheid); 7289 curthread->t_predcache = cid; 7290 } 7291 7292 continue; 7293 } 7294 } 7295 7296 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7297 act != NULL; act = act->dta_next) { 7298 size_t valoffs; 7299 dtrace_difo_t *dp; 7300 dtrace_recdesc_t *rec = &act->dta_rec; 7301 7302 size = rec->dtrd_size; 7303 valoffs = offs + rec->dtrd_offset; 7304 7305 if (DTRACEACT_ISAGG(act->dta_kind)) { 7306 uint64_t v = 0xbad; 7307 dtrace_aggregation_t *agg; 7308 7309 agg = (dtrace_aggregation_t *)act; 7310 7311 if ((dp = act->dta_difo) != NULL) 7312 v = dtrace_dif_emulate(dp, 7313 &mstate, vstate, state); 7314 7315 if (*flags & CPU_DTRACE_ERROR) 7316 continue; 7317 7318 /* 7319 * Note that we always pass the expression 7320 * value from the previous iteration of the 7321 * action loop. This value will only be used 7322 * if there is an expression argument to the 7323 * aggregating action, denoted by the 7324 * dtag_hasarg field. 7325 */ 7326 dtrace_aggregate(agg, buf, 7327 offs, aggbuf, v, val); 7328 continue; 7329 } 7330 7331 switch (act->dta_kind) { 7332 case DTRACEACT_STOP: 7333 if (dtrace_priv_proc_destructive(state)) 7334 dtrace_action_stop(); 7335 continue; 7336 7337 case DTRACEACT_BREAKPOINT: 7338 if (dtrace_priv_kernel_destructive(state)) 7339 dtrace_action_breakpoint(ecb); 7340 continue; 7341 7342 case DTRACEACT_PANIC: 7343 if (dtrace_priv_kernel_destructive(state)) 7344 dtrace_action_panic(ecb); 7345 continue; 7346 7347 case DTRACEACT_STACK: 7348 if (!dtrace_priv_kernel(state)) 7349 continue; 7350 7351 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7352 size / sizeof (pc_t), probe->dtpr_aframes, 7353 DTRACE_ANCHORED(probe) ? NULL : 7354 (uint32_t *)arg0); 7355 continue; 7356 7357 case DTRACEACT_JSTACK: 7358 case DTRACEACT_USTACK: 7359 if (!dtrace_priv_proc(state)) 7360 continue; 7361 7362 /* 7363 * See comment in DIF_VAR_PID. 7364 */ 7365 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7366 CPU_ON_INTR(CPU)) { 7367 int depth = DTRACE_USTACK_NFRAMES( 7368 rec->dtrd_arg) + 1; 7369 7370 dtrace_bzero((void *)(tomax + valoffs), 7371 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7372 + depth * sizeof (uint64_t)); 7373 7374 continue; 7375 } 7376 7377 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7378 curproc->p_dtrace_helpers != NULL) { 7379 /* 7380 * This is the slow path -- we have 7381 * allocated string space, and we're 7382 * getting the stack of a process that 7383 * has helpers. Call into a separate 7384 * routine to perform this processing. 7385 */ 7386 dtrace_action_ustack(&mstate, state, 7387 (uint64_t *)(tomax + valoffs), 7388 rec->dtrd_arg); 7389 continue; 7390 } 7391 7392 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7393 dtrace_getupcstack((uint64_t *) 7394 (tomax + valoffs), 7395 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7396 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7397 continue; 7398 7399 default: 7400 break; 7401 } 7402 7403 dp = act->dta_difo; 7404 ASSERT(dp != NULL); 7405 7406 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7407 7408 if (*flags & CPU_DTRACE_ERROR) 7409 continue; 7410 7411 switch (act->dta_kind) { 7412 case DTRACEACT_SPECULATE: { 7413 dtrace_rechdr_t *dtrh; 7414 7415 ASSERT(buf == &state->dts_buffer[cpuid]); 7416 buf = dtrace_speculation_buffer(state, 7417 cpuid, val); 7418 7419 if (buf == NULL) { 7420 *flags |= CPU_DTRACE_DROP; 7421 continue; 7422 } 7423 7424 offs = dtrace_buffer_reserve(buf, 7425 ecb->dte_needed, ecb->dte_alignment, 7426 state, NULL); 7427 7428 if (offs < 0) { 7429 *flags |= CPU_DTRACE_DROP; 7430 continue; 7431 } 7432 7433 tomax = buf->dtb_tomax; 7434 ASSERT(tomax != NULL); 7435 7436 if (ecb->dte_size == 0) 7437 continue; 7438 7439 ASSERT3U(ecb->dte_size, >=, 7440 sizeof (dtrace_rechdr_t)); 7441 dtrh = ((void *)(tomax + offs)); 7442 dtrh->dtrh_epid = ecb->dte_epid; 7443 /* 7444 * When the speculation is committed, all of 7445 * the records in the speculative buffer will 7446 * have their timestamps set to the commit 7447 * time. Until then, it is set to a sentinel 7448 * value, for debugability. 7449 */ 7450 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7451 continue; 7452 } 7453 7454 case DTRACEACT_PRINTM: { 7455 /* The DIF returns a 'memref'. */ 7456 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7457 7458 /* Get the size from the memref. */ 7459 size = memref[1]; 7460 7461 /* 7462 * Check if the size exceeds the allocated 7463 * buffer size. 7464 */ 7465 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7466 /* Flag a drop! */ 7467 *flags |= CPU_DTRACE_DROP; 7468 continue; 7469 } 7470 7471 /* Store the size in the buffer first. */ 7472 DTRACE_STORE(uintptr_t, tomax, 7473 valoffs, size); 7474 7475 /* 7476 * Offset the buffer address to the start 7477 * of the data. 7478 */ 7479 valoffs += sizeof(uintptr_t); 7480 7481 /* 7482 * Reset to the memory address rather than 7483 * the memref array, then let the BYREF 7484 * code below do the work to store the 7485 * memory data in the buffer. 7486 */ 7487 val = memref[0]; 7488 break; 7489 } 7490 7491 case DTRACEACT_PRINTT: { 7492 /* The DIF returns a 'typeref'. */ 7493 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val; 7494 char c = '\0' + 1; 7495 size_t s; 7496 7497 /* 7498 * Get the type string length and round it 7499 * up so that the data that follows is 7500 * aligned for easy access. 7501 */ 7502 size_t typs = strlen((char *) typeref[2]) + 1; 7503 typs = roundup(typs, sizeof(uintptr_t)); 7504 7505 /* 7506 *Get the size from the typeref using the 7507 * number of elements and the type size. 7508 */ 7509 size = typeref[1] * typeref[3]; 7510 7511 /* 7512 * Check if the size exceeds the allocated 7513 * buffer size. 7514 */ 7515 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7516 /* Flag a drop! */ 7517 *flags |= CPU_DTRACE_DROP; 7518 7519 } 7520 7521 /* Store the size in the buffer first. */ 7522 DTRACE_STORE(uintptr_t, tomax, 7523 valoffs, size); 7524 valoffs += sizeof(uintptr_t); 7525 7526 /* Store the type size in the buffer. */ 7527 DTRACE_STORE(uintptr_t, tomax, 7528 valoffs, typeref[3]); 7529 valoffs += sizeof(uintptr_t); 7530 7531 val = typeref[2]; 7532 7533 for (s = 0; s < typs; s++) { 7534 if (c != '\0') 7535 c = dtrace_load8(val++); 7536 7537 DTRACE_STORE(uint8_t, tomax, 7538 valoffs++, c); 7539 } 7540 7541 /* 7542 * Reset to the memory address rather than 7543 * the typeref array, then let the BYREF 7544 * code below do the work to store the 7545 * memory data in the buffer. 7546 */ 7547 val = typeref[0]; 7548 break; 7549 } 7550 7551 case DTRACEACT_CHILL: 7552 if (dtrace_priv_kernel_destructive(state)) 7553 dtrace_action_chill(&mstate, val); 7554 continue; 7555 7556 case DTRACEACT_RAISE: 7557 if (dtrace_priv_proc_destructive(state)) 7558 dtrace_action_raise(val); 7559 continue; 7560 7561 case DTRACEACT_COMMIT: 7562 ASSERT(!committed); 7563 7564 /* 7565 * We need to commit our buffer state. 7566 */ 7567 if (ecb->dte_size) 7568 buf->dtb_offset = offs + ecb->dte_size; 7569 buf = &state->dts_buffer[cpuid]; 7570 dtrace_speculation_commit(state, cpuid, val); 7571 committed = 1; 7572 continue; 7573 7574 case DTRACEACT_DISCARD: 7575 dtrace_speculation_discard(state, cpuid, val); 7576 continue; 7577 7578 case DTRACEACT_DIFEXPR: 7579 case DTRACEACT_LIBACT: 7580 case DTRACEACT_PRINTF: 7581 case DTRACEACT_PRINTA: 7582 case DTRACEACT_SYSTEM: 7583 case DTRACEACT_FREOPEN: 7584 case DTRACEACT_TRACEMEM: 7585 break; 7586 7587 case DTRACEACT_TRACEMEM_DYNSIZE: 7588 tracememsize = val; 7589 break; 7590 7591 case DTRACEACT_SYM: 7592 case DTRACEACT_MOD: 7593 if (!dtrace_priv_kernel(state)) 7594 continue; 7595 break; 7596 7597 case DTRACEACT_USYM: 7598 case DTRACEACT_UMOD: 7599 case DTRACEACT_UADDR: { 7600 #if defined(sun) 7601 struct pid *pid = curthread->t_procp->p_pidp; 7602 #endif 7603 7604 if (!dtrace_priv_proc(state)) 7605 continue; 7606 7607 DTRACE_STORE(uint64_t, tomax, 7608 #if defined(sun) 7609 valoffs, (uint64_t)pid->pid_id); 7610 #else 7611 valoffs, (uint64_t) curproc->p_pid); 7612 #endif 7613 DTRACE_STORE(uint64_t, tomax, 7614 valoffs + sizeof (uint64_t), val); 7615 7616 continue; 7617 } 7618 7619 case DTRACEACT_EXIT: { 7620 /* 7621 * For the exit action, we are going to attempt 7622 * to atomically set our activity to be 7623 * draining. If this fails (either because 7624 * another CPU has beat us to the exit action, 7625 * or because our current activity is something 7626 * other than ACTIVE or WARMUP), we will 7627 * continue. This assures that the exit action 7628 * can be successfully recorded at most once 7629 * when we're in the ACTIVE state. If we're 7630 * encountering the exit() action while in 7631 * COOLDOWN, however, we want to honor the new 7632 * status code. (We know that we're the only 7633 * thread in COOLDOWN, so there is no race.) 7634 */ 7635 void *activity = &state->dts_activity; 7636 dtrace_activity_t current = state->dts_activity; 7637 7638 if (current == DTRACE_ACTIVITY_COOLDOWN) 7639 break; 7640 7641 if (current != DTRACE_ACTIVITY_WARMUP) 7642 current = DTRACE_ACTIVITY_ACTIVE; 7643 7644 if (dtrace_cas32(activity, current, 7645 DTRACE_ACTIVITY_DRAINING) != current) { 7646 *flags |= CPU_DTRACE_DROP; 7647 continue; 7648 } 7649 7650 break; 7651 } 7652 7653 default: 7654 ASSERT(0); 7655 } 7656 7657 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7658 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7659 uintptr_t end = valoffs + size; 7660 7661 if (tracememsize != 0 && 7662 valoffs + tracememsize < end) { 7663 end = valoffs + tracememsize; 7664 tracememsize = 0; 7665 } 7666 7667 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7668 !dtrace_vcanload((void *)(uintptr_t)val, 7669 &dp->dtdo_rtype, &mstate, vstate)) 7670 continue; 7671 7672 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7673 &val, end, act->dta_intuple, 7674 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7675 DIF_TF_BYREF: DIF_TF_BYUREF); 7676 continue; 7677 } 7678 7679 switch (size) { 7680 case 0: 7681 break; 7682 7683 case sizeof (uint8_t): 7684 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7685 break; 7686 case sizeof (uint16_t): 7687 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7688 break; 7689 case sizeof (uint32_t): 7690 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7691 break; 7692 case sizeof (uint64_t): 7693 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7694 break; 7695 default: 7696 /* 7697 * Any other size should have been returned by 7698 * reference, not by value. 7699 */ 7700 ASSERT(0); 7701 break; 7702 } 7703 } 7704 7705 if (*flags & CPU_DTRACE_DROP) 7706 continue; 7707 7708 if (*flags & CPU_DTRACE_FAULT) { 7709 int ndx; 7710 dtrace_action_t *err; 7711 7712 buf->dtb_errors++; 7713 7714 if (probe->dtpr_id == dtrace_probeid_error) { 7715 /* 7716 * There's nothing we can do -- we had an 7717 * error on the error probe. We bump an 7718 * error counter to at least indicate that 7719 * this condition happened. 7720 */ 7721 dtrace_error(&state->dts_dblerrors); 7722 continue; 7723 } 7724 7725 if (vtime) { 7726 /* 7727 * Before recursing on dtrace_probe(), we 7728 * need to explicitly clear out our start 7729 * time to prevent it from being accumulated 7730 * into t_dtrace_vtime. 7731 */ 7732 curthread->t_dtrace_start = 0; 7733 } 7734 7735 /* 7736 * Iterate over the actions to figure out which action 7737 * we were processing when we experienced the error. 7738 * Note that act points _past_ the faulting action; if 7739 * act is ecb->dte_action, the fault was in the 7740 * predicate, if it's ecb->dte_action->dta_next it's 7741 * in action #1, and so on. 7742 */ 7743 for (err = ecb->dte_action, ndx = 0; 7744 err != act; err = err->dta_next, ndx++) 7745 continue; 7746 7747 dtrace_probe_error(state, ecb->dte_epid, ndx, 7748 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7749 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7750 cpu_core[cpuid].cpuc_dtrace_illval); 7751 7752 continue; 7753 } 7754 7755 if (!committed) 7756 buf->dtb_offset = offs + ecb->dte_size; 7757 } 7758 7759 if (vtime) 7760 curthread->t_dtrace_start = dtrace_gethrtime(); 7761 7762 dtrace_interrupt_enable(cookie); 7763 } 7764 7765 /* 7766 * DTrace Probe Hashing Functions 7767 * 7768 * The functions in this section (and indeed, the functions in remaining 7769 * sections) are not _called_ from probe context. (Any exceptions to this are 7770 * marked with a "Note:".) Rather, they are called from elsewhere in the 7771 * DTrace framework to look-up probes in, add probes to and remove probes from 7772 * the DTrace probe hashes. (Each probe is hashed by each element of the 7773 * probe tuple -- allowing for fast lookups, regardless of what was 7774 * specified.) 7775 */ 7776 static uint_t 7777 dtrace_hash_str(const char *p) 7778 { 7779 unsigned int g; 7780 uint_t hval = 0; 7781 7782 while (*p) { 7783 hval = (hval << 4) + *p++; 7784 if ((g = (hval & 0xf0000000)) != 0) 7785 hval ^= g >> 24; 7786 hval &= ~g; 7787 } 7788 return (hval); 7789 } 7790 7791 static dtrace_hash_t * 7792 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7793 { 7794 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7795 7796 hash->dth_stroffs = stroffs; 7797 hash->dth_nextoffs = nextoffs; 7798 hash->dth_prevoffs = prevoffs; 7799 7800 hash->dth_size = 1; 7801 hash->dth_mask = hash->dth_size - 1; 7802 7803 hash->dth_tab = kmem_zalloc(hash->dth_size * 7804 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7805 7806 return (hash); 7807 } 7808 7809 static void 7810 dtrace_hash_destroy(dtrace_hash_t *hash) 7811 { 7812 #ifdef DEBUG 7813 int i; 7814 7815 for (i = 0; i < hash->dth_size; i++) 7816 ASSERT(hash->dth_tab[i] == NULL); 7817 #endif 7818 7819 kmem_free(hash->dth_tab, 7820 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7821 kmem_free(hash, sizeof (dtrace_hash_t)); 7822 } 7823 7824 static void 7825 dtrace_hash_resize(dtrace_hash_t *hash) 7826 { 7827 int size = hash->dth_size, i, ndx; 7828 int new_size = hash->dth_size << 1; 7829 int new_mask = new_size - 1; 7830 dtrace_hashbucket_t **new_tab, *bucket, *next; 7831 7832 ASSERT((new_size & new_mask) == 0); 7833 7834 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7835 7836 for (i = 0; i < size; i++) { 7837 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7838 dtrace_probe_t *probe = bucket->dthb_chain; 7839 7840 ASSERT(probe != NULL); 7841 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7842 7843 next = bucket->dthb_next; 7844 bucket->dthb_next = new_tab[ndx]; 7845 new_tab[ndx] = bucket; 7846 } 7847 } 7848 7849 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7850 hash->dth_tab = new_tab; 7851 hash->dth_size = new_size; 7852 hash->dth_mask = new_mask; 7853 } 7854 7855 static void 7856 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7857 { 7858 int hashval = DTRACE_HASHSTR(hash, new); 7859 int ndx = hashval & hash->dth_mask; 7860 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7861 dtrace_probe_t **nextp, **prevp; 7862 7863 for (; bucket != NULL; bucket = bucket->dthb_next) { 7864 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7865 goto add; 7866 } 7867 7868 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7869 dtrace_hash_resize(hash); 7870 dtrace_hash_add(hash, new); 7871 return; 7872 } 7873 7874 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7875 bucket->dthb_next = hash->dth_tab[ndx]; 7876 hash->dth_tab[ndx] = bucket; 7877 hash->dth_nbuckets++; 7878 7879 add: 7880 nextp = DTRACE_HASHNEXT(hash, new); 7881 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7882 *nextp = bucket->dthb_chain; 7883 7884 if (bucket->dthb_chain != NULL) { 7885 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7886 ASSERT(*prevp == NULL); 7887 *prevp = new; 7888 } 7889 7890 bucket->dthb_chain = new; 7891 bucket->dthb_len++; 7892 } 7893 7894 static dtrace_probe_t * 7895 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7896 { 7897 int hashval = DTRACE_HASHSTR(hash, template); 7898 int ndx = hashval & hash->dth_mask; 7899 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7900 7901 for (; bucket != NULL; bucket = bucket->dthb_next) { 7902 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7903 return (bucket->dthb_chain); 7904 } 7905 7906 return (NULL); 7907 } 7908 7909 static int 7910 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7911 { 7912 int hashval = DTRACE_HASHSTR(hash, template); 7913 int ndx = hashval & hash->dth_mask; 7914 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7915 7916 for (; bucket != NULL; bucket = bucket->dthb_next) { 7917 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7918 return (bucket->dthb_len); 7919 } 7920 7921 return (0); 7922 } 7923 7924 static void 7925 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7926 { 7927 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7928 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7929 7930 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7931 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7932 7933 /* 7934 * Find the bucket that we're removing this probe from. 7935 */ 7936 for (; bucket != NULL; bucket = bucket->dthb_next) { 7937 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7938 break; 7939 } 7940 7941 ASSERT(bucket != NULL); 7942 7943 if (*prevp == NULL) { 7944 if (*nextp == NULL) { 7945 /* 7946 * The removed probe was the only probe on this 7947 * bucket; we need to remove the bucket. 7948 */ 7949 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7950 7951 ASSERT(bucket->dthb_chain == probe); 7952 ASSERT(b != NULL); 7953 7954 if (b == bucket) { 7955 hash->dth_tab[ndx] = bucket->dthb_next; 7956 } else { 7957 while (b->dthb_next != bucket) 7958 b = b->dthb_next; 7959 b->dthb_next = bucket->dthb_next; 7960 } 7961 7962 ASSERT(hash->dth_nbuckets > 0); 7963 hash->dth_nbuckets--; 7964 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7965 return; 7966 } 7967 7968 bucket->dthb_chain = *nextp; 7969 } else { 7970 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7971 } 7972 7973 if (*nextp != NULL) 7974 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7975 } 7976 7977 /* 7978 * DTrace Utility Functions 7979 * 7980 * These are random utility functions that are _not_ called from probe context. 7981 */ 7982 static int 7983 dtrace_badattr(const dtrace_attribute_t *a) 7984 { 7985 return (a->dtat_name > DTRACE_STABILITY_MAX || 7986 a->dtat_data > DTRACE_STABILITY_MAX || 7987 a->dtat_class > DTRACE_CLASS_MAX); 7988 } 7989 7990 /* 7991 * Return a duplicate copy of a string. If the specified string is NULL, 7992 * this function returns a zero-length string. 7993 */ 7994 static char * 7995 dtrace_strdup(const char *str) 7996 { 7997 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7998 7999 if (str != NULL) 8000 (void) strcpy(new, str); 8001 8002 return (new); 8003 } 8004 8005 #define DTRACE_ISALPHA(c) \ 8006 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8007 8008 static int 8009 dtrace_badname(const char *s) 8010 { 8011 char c; 8012 8013 if (s == NULL || (c = *s++) == '\0') 8014 return (0); 8015 8016 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8017 return (1); 8018 8019 while ((c = *s++) != '\0') { 8020 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8021 c != '-' && c != '_' && c != '.' && c != '`') 8022 return (1); 8023 } 8024 8025 return (0); 8026 } 8027 8028 static void 8029 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8030 { 8031 uint32_t priv; 8032 8033 #if defined(sun) 8034 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8035 /* 8036 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8037 */ 8038 priv = DTRACE_PRIV_ALL; 8039 } else { 8040 *uidp = crgetuid(cr); 8041 *zoneidp = crgetzoneid(cr); 8042 8043 priv = 0; 8044 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8045 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8046 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8047 priv |= DTRACE_PRIV_USER; 8048 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8049 priv |= DTRACE_PRIV_PROC; 8050 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8051 priv |= DTRACE_PRIV_OWNER; 8052 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8053 priv |= DTRACE_PRIV_ZONEOWNER; 8054 } 8055 #else 8056 priv = DTRACE_PRIV_ALL; 8057 #endif 8058 8059 *privp = priv; 8060 } 8061 8062 #ifdef DTRACE_ERRDEBUG 8063 static void 8064 dtrace_errdebug(const char *str) 8065 { 8066 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8067 int occupied = 0; 8068 8069 mutex_enter(&dtrace_errlock); 8070 dtrace_errlast = str; 8071 dtrace_errthread = curthread; 8072 8073 while (occupied++ < DTRACE_ERRHASHSZ) { 8074 if (dtrace_errhash[hval].dter_msg == str) { 8075 dtrace_errhash[hval].dter_count++; 8076 goto out; 8077 } 8078 8079 if (dtrace_errhash[hval].dter_msg != NULL) { 8080 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8081 continue; 8082 } 8083 8084 dtrace_errhash[hval].dter_msg = str; 8085 dtrace_errhash[hval].dter_count = 1; 8086 goto out; 8087 } 8088 8089 panic("dtrace: undersized error hash"); 8090 out: 8091 mutex_exit(&dtrace_errlock); 8092 } 8093 #endif 8094 8095 /* 8096 * DTrace Matching Functions 8097 * 8098 * These functions are used to match groups of probes, given some elements of 8099 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8100 */ 8101 static int 8102 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8103 zoneid_t zoneid) 8104 { 8105 if (priv != DTRACE_PRIV_ALL) { 8106 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8107 uint32_t match = priv & ppriv; 8108 8109 /* 8110 * No PRIV_DTRACE_* privileges... 8111 */ 8112 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8113 DTRACE_PRIV_KERNEL)) == 0) 8114 return (0); 8115 8116 /* 8117 * No matching bits, but there were bits to match... 8118 */ 8119 if (match == 0 && ppriv != 0) 8120 return (0); 8121 8122 /* 8123 * Need to have permissions to the process, but don't... 8124 */ 8125 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8126 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8127 return (0); 8128 } 8129 8130 /* 8131 * Need to be in the same zone unless we possess the 8132 * privilege to examine all zones. 8133 */ 8134 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8135 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8136 return (0); 8137 } 8138 } 8139 8140 return (1); 8141 } 8142 8143 /* 8144 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8145 * consists of input pattern strings and an ops-vector to evaluate them. 8146 * This function returns >0 for match, 0 for no match, and <0 for error. 8147 */ 8148 static int 8149 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8150 uint32_t priv, uid_t uid, zoneid_t zoneid) 8151 { 8152 dtrace_provider_t *pvp = prp->dtpr_provider; 8153 int rv; 8154 8155 if (pvp->dtpv_defunct) 8156 return (0); 8157 8158 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8159 return (rv); 8160 8161 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8162 return (rv); 8163 8164 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8165 return (rv); 8166 8167 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8168 return (rv); 8169 8170 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8171 return (0); 8172 8173 return (rv); 8174 } 8175 8176 /* 8177 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8178 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8179 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8180 * In addition, all of the recursion cases except for '*' matching have been 8181 * unwound. For '*', we still implement recursive evaluation, but a depth 8182 * counter is maintained and matching is aborted if we recurse too deep. 8183 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8184 */ 8185 static int 8186 dtrace_match_glob(const char *s, const char *p, int depth) 8187 { 8188 const char *olds; 8189 char s1, c; 8190 int gs; 8191 8192 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8193 return (-1); 8194 8195 if (s == NULL) 8196 s = ""; /* treat NULL as empty string */ 8197 8198 top: 8199 olds = s; 8200 s1 = *s++; 8201 8202 if (p == NULL) 8203 return (0); 8204 8205 if ((c = *p++) == '\0') 8206 return (s1 == '\0'); 8207 8208 switch (c) { 8209 case '[': { 8210 int ok = 0, notflag = 0; 8211 char lc = '\0'; 8212 8213 if (s1 == '\0') 8214 return (0); 8215 8216 if (*p == '!') { 8217 notflag = 1; 8218 p++; 8219 } 8220 8221 if ((c = *p++) == '\0') 8222 return (0); 8223 8224 do { 8225 if (c == '-' && lc != '\0' && *p != ']') { 8226 if ((c = *p++) == '\0') 8227 return (0); 8228 if (c == '\\' && (c = *p++) == '\0') 8229 return (0); 8230 8231 if (notflag) { 8232 if (s1 < lc || s1 > c) 8233 ok++; 8234 else 8235 return (0); 8236 } else if (lc <= s1 && s1 <= c) 8237 ok++; 8238 8239 } else if (c == '\\' && (c = *p++) == '\0') 8240 return (0); 8241 8242 lc = c; /* save left-hand 'c' for next iteration */ 8243 8244 if (notflag) { 8245 if (s1 != c) 8246 ok++; 8247 else 8248 return (0); 8249 } else if (s1 == c) 8250 ok++; 8251 8252 if ((c = *p++) == '\0') 8253 return (0); 8254 8255 } while (c != ']'); 8256 8257 if (ok) 8258 goto top; 8259 8260 return (0); 8261 } 8262 8263 case '\\': 8264 if ((c = *p++) == '\0') 8265 return (0); 8266 /*FALLTHRU*/ 8267 8268 default: 8269 if (c != s1) 8270 return (0); 8271 /*FALLTHRU*/ 8272 8273 case '?': 8274 if (s1 != '\0') 8275 goto top; 8276 return (0); 8277 8278 case '*': 8279 while (*p == '*') 8280 p++; /* consecutive *'s are identical to a single one */ 8281 8282 if (*p == '\0') 8283 return (1); 8284 8285 for (s = olds; *s != '\0'; s++) { 8286 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8287 return (gs); 8288 } 8289 8290 return (0); 8291 } 8292 } 8293 8294 /*ARGSUSED*/ 8295 static int 8296 dtrace_match_string(const char *s, const char *p, int depth) 8297 { 8298 return (s != NULL && strcmp(s, p) == 0); 8299 } 8300 8301 /*ARGSUSED*/ 8302 static int 8303 dtrace_match_nul(const char *s, const char *p, int depth) 8304 { 8305 return (1); /* always match the empty pattern */ 8306 } 8307 8308 /*ARGSUSED*/ 8309 static int 8310 dtrace_match_nonzero(const char *s, const char *p, int depth) 8311 { 8312 return (s != NULL && s[0] != '\0'); 8313 } 8314 8315 static int 8316 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8317 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8318 { 8319 dtrace_probe_t template, *probe; 8320 dtrace_hash_t *hash = NULL; 8321 int len, best = INT_MAX, nmatched = 0; 8322 dtrace_id_t i; 8323 8324 ASSERT(MUTEX_HELD(&dtrace_lock)); 8325 8326 /* 8327 * If the probe ID is specified in the key, just lookup by ID and 8328 * invoke the match callback once if a matching probe is found. 8329 */ 8330 if (pkp->dtpk_id != DTRACE_IDNONE) { 8331 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8332 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8333 (void) (*matched)(probe, arg); 8334 nmatched++; 8335 } 8336 return (nmatched); 8337 } 8338 8339 template.dtpr_mod = (char *)pkp->dtpk_mod; 8340 template.dtpr_func = (char *)pkp->dtpk_func; 8341 template.dtpr_name = (char *)pkp->dtpk_name; 8342 8343 /* 8344 * We want to find the most distinct of the module name, function 8345 * name, and name. So for each one that is not a glob pattern or 8346 * empty string, we perform a lookup in the corresponding hash and 8347 * use the hash table with the fewest collisions to do our search. 8348 */ 8349 if (pkp->dtpk_mmatch == &dtrace_match_string && 8350 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8351 best = len; 8352 hash = dtrace_bymod; 8353 } 8354 8355 if (pkp->dtpk_fmatch == &dtrace_match_string && 8356 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8357 best = len; 8358 hash = dtrace_byfunc; 8359 } 8360 8361 if (pkp->dtpk_nmatch == &dtrace_match_string && 8362 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8363 best = len; 8364 hash = dtrace_byname; 8365 } 8366 8367 /* 8368 * If we did not select a hash table, iterate over every probe and 8369 * invoke our callback for each one that matches our input probe key. 8370 */ 8371 if (hash == NULL) { 8372 for (i = 0; i < dtrace_nprobes; i++) { 8373 if ((probe = dtrace_probes[i]) == NULL || 8374 dtrace_match_probe(probe, pkp, priv, uid, 8375 zoneid) <= 0) 8376 continue; 8377 8378 nmatched++; 8379 8380 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8381 break; 8382 } 8383 8384 return (nmatched); 8385 } 8386 8387 /* 8388 * If we selected a hash table, iterate over each probe of the same key 8389 * name and invoke the callback for every probe that matches the other 8390 * attributes of our input probe key. 8391 */ 8392 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8393 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8394 8395 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8396 continue; 8397 8398 nmatched++; 8399 8400 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8401 break; 8402 } 8403 8404 return (nmatched); 8405 } 8406 8407 /* 8408 * Return the function pointer dtrace_probecmp() should use to compare the 8409 * specified pattern with a string. For NULL or empty patterns, we select 8410 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8411 * For non-empty non-glob strings, we use dtrace_match_string(). 8412 */ 8413 static dtrace_probekey_f * 8414 dtrace_probekey_func(const char *p) 8415 { 8416 char c; 8417 8418 if (p == NULL || *p == '\0') 8419 return (&dtrace_match_nul); 8420 8421 while ((c = *p++) != '\0') { 8422 if (c == '[' || c == '?' || c == '*' || c == '\\') 8423 return (&dtrace_match_glob); 8424 } 8425 8426 return (&dtrace_match_string); 8427 } 8428 8429 /* 8430 * Build a probe comparison key for use with dtrace_match_probe() from the 8431 * given probe description. By convention, a null key only matches anchored 8432 * probes: if each field is the empty string, reset dtpk_fmatch to 8433 * dtrace_match_nonzero(). 8434 */ 8435 static void 8436 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8437 { 8438 pkp->dtpk_prov = pdp->dtpd_provider; 8439 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8440 8441 pkp->dtpk_mod = pdp->dtpd_mod; 8442 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8443 8444 pkp->dtpk_func = pdp->dtpd_func; 8445 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8446 8447 pkp->dtpk_name = pdp->dtpd_name; 8448 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8449 8450 pkp->dtpk_id = pdp->dtpd_id; 8451 8452 if (pkp->dtpk_id == DTRACE_IDNONE && 8453 pkp->dtpk_pmatch == &dtrace_match_nul && 8454 pkp->dtpk_mmatch == &dtrace_match_nul && 8455 pkp->dtpk_fmatch == &dtrace_match_nul && 8456 pkp->dtpk_nmatch == &dtrace_match_nul) 8457 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8458 } 8459 8460 /* 8461 * DTrace Provider-to-Framework API Functions 8462 * 8463 * These functions implement much of the Provider-to-Framework API, as 8464 * described in <sys/dtrace.h>. The parts of the API not in this section are 8465 * the functions in the API for probe management (found below), and 8466 * dtrace_probe() itself (found above). 8467 */ 8468 8469 /* 8470 * Register the calling provider with the DTrace framework. This should 8471 * generally be called by DTrace providers in their attach(9E) entry point. 8472 */ 8473 int 8474 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8475 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8476 { 8477 dtrace_provider_t *provider; 8478 8479 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8480 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8481 "arguments", name ? name : "<NULL>"); 8482 return (EINVAL); 8483 } 8484 8485 if (name[0] == '\0' || dtrace_badname(name)) { 8486 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8487 "provider name", name); 8488 return (EINVAL); 8489 } 8490 8491 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8492 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8493 pops->dtps_destroy == NULL || 8494 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8495 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8496 "provider ops", name); 8497 return (EINVAL); 8498 } 8499 8500 if (dtrace_badattr(&pap->dtpa_provider) || 8501 dtrace_badattr(&pap->dtpa_mod) || 8502 dtrace_badattr(&pap->dtpa_func) || 8503 dtrace_badattr(&pap->dtpa_name) || 8504 dtrace_badattr(&pap->dtpa_args)) { 8505 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8506 "provider attributes", name); 8507 return (EINVAL); 8508 } 8509 8510 if (priv & ~DTRACE_PRIV_ALL) { 8511 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8512 "privilege attributes", name); 8513 return (EINVAL); 8514 } 8515 8516 if ((priv & DTRACE_PRIV_KERNEL) && 8517 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8518 pops->dtps_usermode == NULL) { 8519 cmn_err(CE_WARN, "failed to register provider '%s': need " 8520 "dtps_usermode() op for given privilege attributes", name); 8521 return (EINVAL); 8522 } 8523 8524 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8525 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8526 (void) strcpy(provider->dtpv_name, name); 8527 8528 provider->dtpv_attr = *pap; 8529 provider->dtpv_priv.dtpp_flags = priv; 8530 if (cr != NULL) { 8531 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8532 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8533 } 8534 provider->dtpv_pops = *pops; 8535 8536 if (pops->dtps_provide == NULL) { 8537 ASSERT(pops->dtps_provide_module != NULL); 8538 provider->dtpv_pops.dtps_provide = 8539 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8540 } 8541 8542 if (pops->dtps_provide_module == NULL) { 8543 ASSERT(pops->dtps_provide != NULL); 8544 provider->dtpv_pops.dtps_provide_module = 8545 (void (*)(void *, modctl_t *))dtrace_nullop; 8546 } 8547 8548 if (pops->dtps_suspend == NULL) { 8549 ASSERT(pops->dtps_resume == NULL); 8550 provider->dtpv_pops.dtps_suspend = 8551 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8552 provider->dtpv_pops.dtps_resume = 8553 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8554 } 8555 8556 provider->dtpv_arg = arg; 8557 *idp = (dtrace_provider_id_t)provider; 8558 8559 if (pops == &dtrace_provider_ops) { 8560 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8561 ASSERT(MUTEX_HELD(&dtrace_lock)); 8562 ASSERT(dtrace_anon.dta_enabling == NULL); 8563 8564 /* 8565 * We make sure that the DTrace provider is at the head of 8566 * the provider chain. 8567 */ 8568 provider->dtpv_next = dtrace_provider; 8569 dtrace_provider = provider; 8570 return (0); 8571 } 8572 8573 mutex_enter(&dtrace_provider_lock); 8574 mutex_enter(&dtrace_lock); 8575 8576 /* 8577 * If there is at least one provider registered, we'll add this 8578 * provider after the first provider. 8579 */ 8580 if (dtrace_provider != NULL) { 8581 provider->dtpv_next = dtrace_provider->dtpv_next; 8582 dtrace_provider->dtpv_next = provider; 8583 } else { 8584 dtrace_provider = provider; 8585 } 8586 8587 if (dtrace_retained != NULL) { 8588 dtrace_enabling_provide(provider); 8589 8590 /* 8591 * Now we need to call dtrace_enabling_matchall() -- which 8592 * will acquire cpu_lock and dtrace_lock. We therefore need 8593 * to drop all of our locks before calling into it... 8594 */ 8595 mutex_exit(&dtrace_lock); 8596 mutex_exit(&dtrace_provider_lock); 8597 dtrace_enabling_matchall(); 8598 8599 return (0); 8600 } 8601 8602 mutex_exit(&dtrace_lock); 8603 mutex_exit(&dtrace_provider_lock); 8604 8605 return (0); 8606 } 8607 8608 /* 8609 * Unregister the specified provider from the DTrace framework. This should 8610 * generally be called by DTrace providers in their detach(9E) entry point. 8611 */ 8612 int 8613 dtrace_unregister(dtrace_provider_id_t id) 8614 { 8615 dtrace_provider_t *old = (dtrace_provider_t *)id; 8616 dtrace_provider_t *prev = NULL; 8617 int i, self = 0, noreap = 0; 8618 dtrace_probe_t *probe, *first = NULL; 8619 8620 if (old->dtpv_pops.dtps_enable == 8621 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8622 /* 8623 * If DTrace itself is the provider, we're called with locks 8624 * already held. 8625 */ 8626 ASSERT(old == dtrace_provider); 8627 #if defined(sun) 8628 ASSERT(dtrace_devi != NULL); 8629 #endif 8630 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8631 ASSERT(MUTEX_HELD(&dtrace_lock)); 8632 self = 1; 8633 8634 if (dtrace_provider->dtpv_next != NULL) { 8635 /* 8636 * There's another provider here; return failure. 8637 */ 8638 return (EBUSY); 8639 } 8640 } else { 8641 mutex_enter(&dtrace_provider_lock); 8642 #if defined(sun) 8643 mutex_enter(&mod_lock); 8644 #endif 8645 mutex_enter(&dtrace_lock); 8646 } 8647 8648 /* 8649 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8650 * probes, we refuse to let providers slither away, unless this 8651 * provider has already been explicitly invalidated. 8652 */ 8653 if (!old->dtpv_defunct && 8654 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8655 dtrace_anon.dta_state->dts_necbs > 0))) { 8656 if (!self) { 8657 mutex_exit(&dtrace_lock); 8658 #if defined(sun) 8659 mutex_exit(&mod_lock); 8660 #endif 8661 mutex_exit(&dtrace_provider_lock); 8662 } 8663 return (EBUSY); 8664 } 8665 8666 /* 8667 * Attempt to destroy the probes associated with this provider. 8668 */ 8669 for (i = 0; i < dtrace_nprobes; i++) { 8670 if ((probe = dtrace_probes[i]) == NULL) 8671 continue; 8672 8673 if (probe->dtpr_provider != old) 8674 continue; 8675 8676 if (probe->dtpr_ecb == NULL) 8677 continue; 8678 8679 /* 8680 * If we are trying to unregister a defunct provider, and the 8681 * provider was made defunct within the interval dictated by 8682 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8683 * attempt to reap our enablings. To denote that the provider 8684 * should reattempt to unregister itself at some point in the 8685 * future, we will return a differentiable error code (EAGAIN 8686 * instead of EBUSY) in this case. 8687 */ 8688 if (dtrace_gethrtime() - old->dtpv_defunct > 8689 dtrace_unregister_defunct_reap) 8690 noreap = 1; 8691 8692 if (!self) { 8693 mutex_exit(&dtrace_lock); 8694 #if defined(sun) 8695 mutex_exit(&mod_lock); 8696 #endif 8697 mutex_exit(&dtrace_provider_lock); 8698 } 8699 8700 if (noreap) 8701 return (EBUSY); 8702 8703 (void) taskq_dispatch(dtrace_taskq, 8704 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8705 8706 return (EAGAIN); 8707 } 8708 8709 /* 8710 * All of the probes for this provider are disabled; we can safely 8711 * remove all of them from their hash chains and from the probe array. 8712 */ 8713 for (i = 0; i < dtrace_nprobes; i++) { 8714 if ((probe = dtrace_probes[i]) == NULL) 8715 continue; 8716 8717 if (probe->dtpr_provider != old) 8718 continue; 8719 8720 dtrace_probes[i] = NULL; 8721 8722 dtrace_hash_remove(dtrace_bymod, probe); 8723 dtrace_hash_remove(dtrace_byfunc, probe); 8724 dtrace_hash_remove(dtrace_byname, probe); 8725 8726 if (first == NULL) { 8727 first = probe; 8728 probe->dtpr_nextmod = NULL; 8729 } else { 8730 probe->dtpr_nextmod = first; 8731 first = probe; 8732 } 8733 } 8734 8735 /* 8736 * The provider's probes have been removed from the hash chains and 8737 * from the probe array. Now issue a dtrace_sync() to be sure that 8738 * everyone has cleared out from any probe array processing. 8739 */ 8740 dtrace_sync(); 8741 8742 for (probe = first; probe != NULL; probe = first) { 8743 first = probe->dtpr_nextmod; 8744 8745 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8746 probe->dtpr_arg); 8747 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8748 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8749 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8750 #if defined(sun) 8751 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8752 #else 8753 free_unr(dtrace_arena, probe->dtpr_id); 8754 #endif 8755 kmem_free(probe, sizeof (dtrace_probe_t)); 8756 } 8757 8758 if ((prev = dtrace_provider) == old) { 8759 #if defined(sun) 8760 ASSERT(self || dtrace_devi == NULL); 8761 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8762 #endif 8763 dtrace_provider = old->dtpv_next; 8764 } else { 8765 while (prev != NULL && prev->dtpv_next != old) 8766 prev = prev->dtpv_next; 8767 8768 if (prev == NULL) { 8769 panic("attempt to unregister non-existent " 8770 "dtrace provider %p\n", (void *)id); 8771 } 8772 8773 prev->dtpv_next = old->dtpv_next; 8774 } 8775 8776 if (!self) { 8777 mutex_exit(&dtrace_lock); 8778 #if defined(sun) 8779 mutex_exit(&mod_lock); 8780 #endif 8781 mutex_exit(&dtrace_provider_lock); 8782 } 8783 8784 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8785 kmem_free(old, sizeof (dtrace_provider_t)); 8786 8787 return (0); 8788 } 8789 8790 /* 8791 * Invalidate the specified provider. All subsequent probe lookups for the 8792 * specified provider will fail, but its probes will not be removed. 8793 */ 8794 void 8795 dtrace_invalidate(dtrace_provider_id_t id) 8796 { 8797 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8798 8799 ASSERT(pvp->dtpv_pops.dtps_enable != 8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 8801 8802 mutex_enter(&dtrace_provider_lock); 8803 mutex_enter(&dtrace_lock); 8804 8805 pvp->dtpv_defunct = dtrace_gethrtime(); 8806 8807 mutex_exit(&dtrace_lock); 8808 mutex_exit(&dtrace_provider_lock); 8809 } 8810 8811 /* 8812 * Indicate whether or not DTrace has attached. 8813 */ 8814 int 8815 dtrace_attached(void) 8816 { 8817 /* 8818 * dtrace_provider will be non-NULL iff the DTrace driver has 8819 * attached. (It's non-NULL because DTrace is always itself a 8820 * provider.) 8821 */ 8822 return (dtrace_provider != NULL); 8823 } 8824 8825 /* 8826 * Remove all the unenabled probes for the given provider. This function is 8827 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8828 * -- just as many of its associated probes as it can. 8829 */ 8830 int 8831 dtrace_condense(dtrace_provider_id_t id) 8832 { 8833 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8834 int i; 8835 dtrace_probe_t *probe; 8836 8837 /* 8838 * Make sure this isn't the dtrace provider itself. 8839 */ 8840 ASSERT(prov->dtpv_pops.dtps_enable != 8841 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 8842 8843 mutex_enter(&dtrace_provider_lock); 8844 mutex_enter(&dtrace_lock); 8845 8846 /* 8847 * Attempt to destroy the probes associated with this provider. 8848 */ 8849 for (i = 0; i < dtrace_nprobes; i++) { 8850 if ((probe = dtrace_probes[i]) == NULL) 8851 continue; 8852 8853 if (probe->dtpr_provider != prov) 8854 continue; 8855 8856 if (probe->dtpr_ecb != NULL) 8857 continue; 8858 8859 dtrace_probes[i] = NULL; 8860 8861 dtrace_hash_remove(dtrace_bymod, probe); 8862 dtrace_hash_remove(dtrace_byfunc, probe); 8863 dtrace_hash_remove(dtrace_byname, probe); 8864 8865 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8866 probe->dtpr_arg); 8867 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8868 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8869 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8870 kmem_free(probe, sizeof (dtrace_probe_t)); 8871 #if defined(sun) 8872 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8873 #else 8874 free_unr(dtrace_arena, i + 1); 8875 #endif 8876 } 8877 8878 mutex_exit(&dtrace_lock); 8879 mutex_exit(&dtrace_provider_lock); 8880 8881 return (0); 8882 } 8883 8884 /* 8885 * DTrace Probe Management Functions 8886 * 8887 * The functions in this section perform the DTrace probe management, 8888 * including functions to create probes, look-up probes, and call into the 8889 * providers to request that probes be provided. Some of these functions are 8890 * in the Provider-to-Framework API; these functions can be identified by the 8891 * fact that they are not declared "static". 8892 */ 8893 8894 /* 8895 * Create a probe with the specified module name, function name, and name. 8896 */ 8897 dtrace_id_t 8898 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8899 const char *func, const char *name, int aframes, void *arg) 8900 { 8901 dtrace_probe_t *probe, **probes; 8902 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8903 dtrace_id_t id; 8904 8905 if (provider == dtrace_provider) { 8906 ASSERT(MUTEX_HELD(&dtrace_lock)); 8907 } else { 8908 mutex_enter(&dtrace_lock); 8909 } 8910 8911 #if defined(sun) 8912 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8913 VM_BESTFIT | VM_SLEEP); 8914 #else 8915 id = alloc_unr(dtrace_arena); 8916 #endif 8917 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8918 8919 probe->dtpr_id = id; 8920 probe->dtpr_gen = dtrace_probegen++; 8921 probe->dtpr_mod = dtrace_strdup(mod); 8922 probe->dtpr_func = dtrace_strdup(func); 8923 probe->dtpr_name = dtrace_strdup(name); 8924 probe->dtpr_arg = arg; 8925 probe->dtpr_aframes = aframes; 8926 probe->dtpr_provider = provider; 8927 8928 dtrace_hash_add(dtrace_bymod, probe); 8929 dtrace_hash_add(dtrace_byfunc, probe); 8930 dtrace_hash_add(dtrace_byname, probe); 8931 8932 if (id - 1 >= dtrace_nprobes) { 8933 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8934 size_t nsize = osize << 1; 8935 8936 if (nsize == 0) { 8937 ASSERT(osize == 0); 8938 ASSERT(dtrace_probes == NULL); 8939 nsize = sizeof (dtrace_probe_t *); 8940 } 8941 8942 probes = kmem_zalloc(nsize, KM_SLEEP); 8943 8944 if (dtrace_probes == NULL) { 8945 ASSERT(osize == 0); 8946 dtrace_probes = probes; 8947 dtrace_nprobes = 1; 8948 } else { 8949 dtrace_probe_t **oprobes = dtrace_probes; 8950 8951 bcopy(oprobes, probes, osize); 8952 dtrace_membar_producer(); 8953 dtrace_probes = probes; 8954 8955 dtrace_sync(); 8956 8957 /* 8958 * All CPUs are now seeing the new probes array; we can 8959 * safely free the old array. 8960 */ 8961 kmem_free(oprobes, osize); 8962 dtrace_nprobes <<= 1; 8963 } 8964 8965 ASSERT(id - 1 < dtrace_nprobes); 8966 } 8967 8968 ASSERT(dtrace_probes[id - 1] == NULL); 8969 dtrace_probes[id - 1] = probe; 8970 8971 if (provider != dtrace_provider) 8972 mutex_exit(&dtrace_lock); 8973 8974 return (id); 8975 } 8976 8977 static dtrace_probe_t * 8978 dtrace_probe_lookup_id(dtrace_id_t id) 8979 { 8980 ASSERT(MUTEX_HELD(&dtrace_lock)); 8981 8982 if (id == 0 || id > dtrace_nprobes) 8983 return (NULL); 8984 8985 return (dtrace_probes[id - 1]); 8986 } 8987 8988 static int 8989 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8990 { 8991 *((dtrace_id_t *)arg) = probe->dtpr_id; 8992 8993 return (DTRACE_MATCH_DONE); 8994 } 8995 8996 /* 8997 * Look up a probe based on provider and one or more of module name, function 8998 * name and probe name. 8999 */ 9000 dtrace_id_t 9001 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9002 char *func, char *name) 9003 { 9004 dtrace_probekey_t pkey; 9005 dtrace_id_t id; 9006 int match; 9007 9008 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9009 pkey.dtpk_pmatch = &dtrace_match_string; 9010 pkey.dtpk_mod = mod; 9011 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9012 pkey.dtpk_func = func; 9013 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9014 pkey.dtpk_name = name; 9015 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9016 pkey.dtpk_id = DTRACE_IDNONE; 9017 9018 mutex_enter(&dtrace_lock); 9019 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9020 dtrace_probe_lookup_match, &id); 9021 mutex_exit(&dtrace_lock); 9022 9023 ASSERT(match == 1 || match == 0); 9024 return (match ? id : 0); 9025 } 9026 9027 /* 9028 * Returns the probe argument associated with the specified probe. 9029 */ 9030 void * 9031 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9032 { 9033 dtrace_probe_t *probe; 9034 void *rval = NULL; 9035 9036 mutex_enter(&dtrace_lock); 9037 9038 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9039 probe->dtpr_provider == (dtrace_provider_t *)id) 9040 rval = probe->dtpr_arg; 9041 9042 mutex_exit(&dtrace_lock); 9043 9044 return (rval); 9045 } 9046 9047 /* 9048 * Copy a probe into a probe description. 9049 */ 9050 static void 9051 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9052 { 9053 bzero(pdp, sizeof (dtrace_probedesc_t)); 9054 pdp->dtpd_id = prp->dtpr_id; 9055 9056 (void) strncpy(pdp->dtpd_provider, 9057 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9058 9059 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9060 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9061 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9062 } 9063 9064 /* 9065 * Called to indicate that a probe -- or probes -- should be provided by a 9066 * specfied provider. If the specified description is NULL, the provider will 9067 * be told to provide all of its probes. (This is done whenever a new 9068 * consumer comes along, or whenever a retained enabling is to be matched.) If 9069 * the specified description is non-NULL, the provider is given the 9070 * opportunity to dynamically provide the specified probe, allowing providers 9071 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9072 * probes.) If the provider is NULL, the operations will be applied to all 9073 * providers; if the provider is non-NULL the operations will only be applied 9074 * to the specified provider. The dtrace_provider_lock must be held, and the 9075 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9076 * will need to grab the dtrace_lock when it reenters the framework through 9077 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9078 */ 9079 static void 9080 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9081 { 9082 #if defined(sun) 9083 modctl_t *ctl; 9084 #endif 9085 int all = 0; 9086 9087 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9088 9089 if (prv == NULL) { 9090 all = 1; 9091 prv = dtrace_provider; 9092 } 9093 9094 do { 9095 /* 9096 * First, call the blanket provide operation. 9097 */ 9098 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9099 9100 #if defined(sun) 9101 /* 9102 * Now call the per-module provide operation. We will grab 9103 * mod_lock to prevent the list from being modified. Note 9104 * that this also prevents the mod_busy bits from changing. 9105 * (mod_busy can only be changed with mod_lock held.) 9106 */ 9107 mutex_enter(&mod_lock); 9108 9109 ctl = &modules; 9110 do { 9111 if (ctl->mod_busy || ctl->mod_mp == NULL) 9112 continue; 9113 9114 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9115 9116 } while ((ctl = ctl->mod_next) != &modules); 9117 9118 mutex_exit(&mod_lock); 9119 #endif 9120 } while (all && (prv = prv->dtpv_next) != NULL); 9121 } 9122 9123 #if defined(sun) 9124 /* 9125 * Iterate over each probe, and call the Framework-to-Provider API function 9126 * denoted by offs. 9127 */ 9128 static void 9129 dtrace_probe_foreach(uintptr_t offs) 9130 { 9131 dtrace_provider_t *prov; 9132 void (*func)(void *, dtrace_id_t, void *); 9133 dtrace_probe_t *probe; 9134 dtrace_icookie_t cookie; 9135 int i; 9136 9137 /* 9138 * We disable interrupts to walk through the probe array. This is 9139 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9140 * won't see stale data. 9141 */ 9142 cookie = dtrace_interrupt_disable(); 9143 9144 for (i = 0; i < dtrace_nprobes; i++) { 9145 if ((probe = dtrace_probes[i]) == NULL) 9146 continue; 9147 9148 if (probe->dtpr_ecb == NULL) { 9149 /* 9150 * This probe isn't enabled -- don't call the function. 9151 */ 9152 continue; 9153 } 9154 9155 prov = probe->dtpr_provider; 9156 func = *((void(**)(void *, dtrace_id_t, void *)) 9157 ((uintptr_t)&prov->dtpv_pops + offs)); 9158 9159 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9160 } 9161 9162 dtrace_interrupt_enable(cookie); 9163 } 9164 #endif 9165 9166 static int 9167 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9168 { 9169 dtrace_probekey_t pkey; 9170 uint32_t priv; 9171 uid_t uid; 9172 zoneid_t zoneid; 9173 9174 ASSERT(MUTEX_HELD(&dtrace_lock)); 9175 dtrace_ecb_create_cache = NULL; 9176 9177 if (desc == NULL) { 9178 /* 9179 * If we're passed a NULL description, we're being asked to 9180 * create an ECB with a NULL probe. 9181 */ 9182 (void) dtrace_ecb_create_enable(NULL, enab); 9183 return (0); 9184 } 9185 9186 dtrace_probekey(desc, &pkey); 9187 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9188 &priv, &uid, &zoneid); 9189 9190 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9191 enab)); 9192 } 9193 9194 /* 9195 * DTrace Helper Provider Functions 9196 */ 9197 static void 9198 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9199 { 9200 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9201 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9202 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9203 } 9204 9205 static void 9206 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9207 const dof_provider_t *dofprov, char *strtab) 9208 { 9209 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9210 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9211 dofprov->dofpv_provattr); 9212 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9213 dofprov->dofpv_modattr); 9214 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9215 dofprov->dofpv_funcattr); 9216 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9217 dofprov->dofpv_nameattr); 9218 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9219 dofprov->dofpv_argsattr); 9220 } 9221 9222 static void 9223 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9224 { 9225 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9226 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9227 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9228 dof_provider_t *provider; 9229 dof_probe_t *probe; 9230 uint32_t *off, *enoff; 9231 uint8_t *arg; 9232 char *strtab; 9233 uint_t i, nprobes; 9234 dtrace_helper_provdesc_t dhpv; 9235 dtrace_helper_probedesc_t dhpb; 9236 dtrace_meta_t *meta = dtrace_meta_pid; 9237 dtrace_mops_t *mops = &meta->dtm_mops; 9238 void *parg; 9239 9240 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9241 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9242 provider->dofpv_strtab * dof->dofh_secsize); 9243 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9244 provider->dofpv_probes * dof->dofh_secsize); 9245 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9246 provider->dofpv_prargs * dof->dofh_secsize); 9247 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9248 provider->dofpv_proffs * dof->dofh_secsize); 9249 9250 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9251 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9252 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9253 enoff = NULL; 9254 9255 /* 9256 * See dtrace_helper_provider_validate(). 9257 */ 9258 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9259 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9260 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9261 provider->dofpv_prenoffs * dof->dofh_secsize); 9262 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9263 } 9264 9265 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9266 9267 /* 9268 * Create the provider. 9269 */ 9270 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9271 9272 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9273 return; 9274 9275 meta->dtm_count++; 9276 9277 /* 9278 * Create the probes. 9279 */ 9280 for (i = 0; i < nprobes; i++) { 9281 probe = (dof_probe_t *)(uintptr_t)(daddr + 9282 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9283 9284 dhpb.dthpb_mod = dhp->dofhp_mod; 9285 dhpb.dthpb_func = strtab + probe->dofpr_func; 9286 dhpb.dthpb_name = strtab + probe->dofpr_name; 9287 dhpb.dthpb_base = probe->dofpr_addr; 9288 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9289 dhpb.dthpb_noffs = probe->dofpr_noffs; 9290 if (enoff != NULL) { 9291 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9292 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9293 } else { 9294 dhpb.dthpb_enoffs = NULL; 9295 dhpb.dthpb_nenoffs = 0; 9296 } 9297 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9298 dhpb.dthpb_nargc = probe->dofpr_nargc; 9299 dhpb.dthpb_xargc = probe->dofpr_xargc; 9300 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9301 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9302 9303 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9304 } 9305 } 9306 9307 static void 9308 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9309 { 9310 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9311 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9312 int i; 9313 9314 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9315 9316 for (i = 0; i < dof->dofh_secnum; i++) { 9317 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9318 dof->dofh_secoff + i * dof->dofh_secsize); 9319 9320 if (sec->dofs_type != DOF_SECT_PROVIDER) 9321 continue; 9322 9323 dtrace_helper_provide_one(dhp, sec, pid); 9324 } 9325 9326 /* 9327 * We may have just created probes, so we must now rematch against 9328 * any retained enablings. Note that this call will acquire both 9329 * cpu_lock and dtrace_lock; the fact that we are holding 9330 * dtrace_meta_lock now is what defines the ordering with respect to 9331 * these three locks. 9332 */ 9333 dtrace_enabling_matchall(); 9334 } 9335 9336 static void 9337 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9338 { 9339 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9340 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9341 dof_sec_t *str_sec; 9342 dof_provider_t *provider; 9343 char *strtab; 9344 dtrace_helper_provdesc_t dhpv; 9345 dtrace_meta_t *meta = dtrace_meta_pid; 9346 dtrace_mops_t *mops = &meta->dtm_mops; 9347 9348 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9349 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9350 provider->dofpv_strtab * dof->dofh_secsize); 9351 9352 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9353 9354 /* 9355 * Create the provider. 9356 */ 9357 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9358 9359 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9360 9361 meta->dtm_count--; 9362 } 9363 9364 static void 9365 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9366 { 9367 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9368 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9369 int i; 9370 9371 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9372 9373 for (i = 0; i < dof->dofh_secnum; i++) { 9374 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9375 dof->dofh_secoff + i * dof->dofh_secsize); 9376 9377 if (sec->dofs_type != DOF_SECT_PROVIDER) 9378 continue; 9379 9380 dtrace_helper_provider_remove_one(dhp, sec, pid); 9381 } 9382 } 9383 9384 /* 9385 * DTrace Meta Provider-to-Framework API Functions 9386 * 9387 * These functions implement the Meta Provider-to-Framework API, as described 9388 * in <sys/dtrace.h>. 9389 */ 9390 int 9391 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9392 dtrace_meta_provider_id_t *idp) 9393 { 9394 dtrace_meta_t *meta; 9395 dtrace_helpers_t *help, *next; 9396 int i; 9397 9398 *idp = DTRACE_METAPROVNONE; 9399 9400 /* 9401 * We strictly don't need the name, but we hold onto it for 9402 * debuggability. All hail error queues! 9403 */ 9404 if (name == NULL) { 9405 cmn_err(CE_WARN, "failed to register meta-provider: " 9406 "invalid name"); 9407 return (EINVAL); 9408 } 9409 9410 if (mops == NULL || 9411 mops->dtms_create_probe == NULL || 9412 mops->dtms_provide_pid == NULL || 9413 mops->dtms_remove_pid == NULL) { 9414 cmn_err(CE_WARN, "failed to register meta-register %s: " 9415 "invalid ops", name); 9416 return (EINVAL); 9417 } 9418 9419 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9420 meta->dtm_mops = *mops; 9421 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9422 (void) strcpy(meta->dtm_name, name); 9423 meta->dtm_arg = arg; 9424 9425 mutex_enter(&dtrace_meta_lock); 9426 mutex_enter(&dtrace_lock); 9427 9428 if (dtrace_meta_pid != NULL) { 9429 mutex_exit(&dtrace_lock); 9430 mutex_exit(&dtrace_meta_lock); 9431 cmn_err(CE_WARN, "failed to register meta-register %s: " 9432 "user-land meta-provider exists", name); 9433 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9434 kmem_free(meta, sizeof (dtrace_meta_t)); 9435 return (EINVAL); 9436 } 9437 9438 dtrace_meta_pid = meta; 9439 *idp = (dtrace_meta_provider_id_t)meta; 9440 9441 /* 9442 * If there are providers and probes ready to go, pass them 9443 * off to the new meta provider now. 9444 */ 9445 9446 help = dtrace_deferred_pid; 9447 dtrace_deferred_pid = NULL; 9448 9449 mutex_exit(&dtrace_lock); 9450 9451 while (help != NULL) { 9452 for (i = 0; i < help->dthps_nprovs; i++) { 9453 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9454 help->dthps_pid); 9455 } 9456 9457 next = help->dthps_next; 9458 help->dthps_next = NULL; 9459 help->dthps_prev = NULL; 9460 help->dthps_deferred = 0; 9461 help = next; 9462 } 9463 9464 mutex_exit(&dtrace_meta_lock); 9465 9466 return (0); 9467 } 9468 9469 int 9470 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9471 { 9472 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9473 9474 mutex_enter(&dtrace_meta_lock); 9475 mutex_enter(&dtrace_lock); 9476 9477 if (old == dtrace_meta_pid) { 9478 pp = &dtrace_meta_pid; 9479 } else { 9480 panic("attempt to unregister non-existent " 9481 "dtrace meta-provider %p\n", (void *)old); 9482 } 9483 9484 if (old->dtm_count != 0) { 9485 mutex_exit(&dtrace_lock); 9486 mutex_exit(&dtrace_meta_lock); 9487 return (EBUSY); 9488 } 9489 9490 *pp = NULL; 9491 9492 mutex_exit(&dtrace_lock); 9493 mutex_exit(&dtrace_meta_lock); 9494 9495 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9496 kmem_free(old, sizeof (dtrace_meta_t)); 9497 9498 return (0); 9499 } 9500 9501 9502 /* 9503 * DTrace DIF Object Functions 9504 */ 9505 static int 9506 dtrace_difo_err(uint_t pc, const char *format, ...) 9507 { 9508 if (dtrace_err_verbose) { 9509 va_list alist; 9510 9511 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9512 va_start(alist, format); 9513 (void) vuprintf(format, alist); 9514 va_end(alist); 9515 } 9516 9517 #ifdef DTRACE_ERRDEBUG 9518 dtrace_errdebug(format); 9519 #endif 9520 return (1); 9521 } 9522 9523 /* 9524 * Validate a DTrace DIF object by checking the IR instructions. The following 9525 * rules are currently enforced by dtrace_difo_validate(): 9526 * 9527 * 1. Each instruction must have a valid opcode 9528 * 2. Each register, string, variable, or subroutine reference must be valid 9529 * 3. No instruction can modify register %r0 (must be zero) 9530 * 4. All instruction reserved bits must be set to zero 9531 * 5. The last instruction must be a "ret" instruction 9532 * 6. All branch targets must reference a valid instruction _after_ the branch 9533 */ 9534 static int 9535 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9536 cred_t *cr) 9537 { 9538 int err = 0, i; 9539 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9540 int kcheckload; 9541 uint_t pc; 9542 9543 kcheckload = cr == NULL || 9544 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9545 9546 dp->dtdo_destructive = 0; 9547 9548 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9549 dif_instr_t instr = dp->dtdo_buf[pc]; 9550 9551 uint_t r1 = DIF_INSTR_R1(instr); 9552 uint_t r2 = DIF_INSTR_R2(instr); 9553 uint_t rd = DIF_INSTR_RD(instr); 9554 uint_t rs = DIF_INSTR_RS(instr); 9555 uint_t label = DIF_INSTR_LABEL(instr); 9556 uint_t v = DIF_INSTR_VAR(instr); 9557 uint_t subr = DIF_INSTR_SUBR(instr); 9558 uint_t type = DIF_INSTR_TYPE(instr); 9559 uint_t op = DIF_INSTR_OP(instr); 9560 9561 switch (op) { 9562 case DIF_OP_OR: 9563 case DIF_OP_XOR: 9564 case DIF_OP_AND: 9565 case DIF_OP_SLL: 9566 case DIF_OP_SRL: 9567 case DIF_OP_SRA: 9568 case DIF_OP_SUB: 9569 case DIF_OP_ADD: 9570 case DIF_OP_MUL: 9571 case DIF_OP_SDIV: 9572 case DIF_OP_UDIV: 9573 case DIF_OP_SREM: 9574 case DIF_OP_UREM: 9575 case DIF_OP_COPYS: 9576 if (r1 >= nregs) 9577 err += efunc(pc, "invalid register %u\n", r1); 9578 if (r2 >= nregs) 9579 err += efunc(pc, "invalid register %u\n", r2); 9580 if (rd >= nregs) 9581 err += efunc(pc, "invalid register %u\n", rd); 9582 if (rd == 0) 9583 err += efunc(pc, "cannot write to %r0\n"); 9584 break; 9585 case DIF_OP_NOT: 9586 case DIF_OP_MOV: 9587 case DIF_OP_ALLOCS: 9588 if (r1 >= nregs) 9589 err += efunc(pc, "invalid register %u\n", r1); 9590 if (r2 != 0) 9591 err += efunc(pc, "non-zero reserved bits\n"); 9592 if (rd >= nregs) 9593 err += efunc(pc, "invalid register %u\n", rd); 9594 if (rd == 0) 9595 err += efunc(pc, "cannot write to %r0\n"); 9596 break; 9597 case DIF_OP_LDSB: 9598 case DIF_OP_LDSH: 9599 case DIF_OP_LDSW: 9600 case DIF_OP_LDUB: 9601 case DIF_OP_LDUH: 9602 case DIF_OP_LDUW: 9603 case DIF_OP_LDX: 9604 if (r1 >= nregs) 9605 err += efunc(pc, "invalid register %u\n", r1); 9606 if (r2 != 0) 9607 err += efunc(pc, "non-zero reserved bits\n"); 9608 if (rd >= nregs) 9609 err += efunc(pc, "invalid register %u\n", rd); 9610 if (rd == 0) 9611 err += efunc(pc, "cannot write to %r0\n"); 9612 if (kcheckload) 9613 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9614 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9615 break; 9616 case DIF_OP_RLDSB: 9617 case DIF_OP_RLDSH: 9618 case DIF_OP_RLDSW: 9619 case DIF_OP_RLDUB: 9620 case DIF_OP_RLDUH: 9621 case DIF_OP_RLDUW: 9622 case DIF_OP_RLDX: 9623 if (r1 >= nregs) 9624 err += efunc(pc, "invalid register %u\n", r1); 9625 if (r2 != 0) 9626 err += efunc(pc, "non-zero reserved bits\n"); 9627 if (rd >= nregs) 9628 err += efunc(pc, "invalid register %u\n", rd); 9629 if (rd == 0) 9630 err += efunc(pc, "cannot write to %r0\n"); 9631 break; 9632 case DIF_OP_ULDSB: 9633 case DIF_OP_ULDSH: 9634 case DIF_OP_ULDSW: 9635 case DIF_OP_ULDUB: 9636 case DIF_OP_ULDUH: 9637 case DIF_OP_ULDUW: 9638 case DIF_OP_ULDX: 9639 if (r1 >= nregs) 9640 err += efunc(pc, "invalid register %u\n", r1); 9641 if (r2 != 0) 9642 err += efunc(pc, "non-zero reserved bits\n"); 9643 if (rd >= nregs) 9644 err += efunc(pc, "invalid register %u\n", rd); 9645 if (rd == 0) 9646 err += efunc(pc, "cannot write to %r0\n"); 9647 break; 9648 case DIF_OP_STB: 9649 case DIF_OP_STH: 9650 case DIF_OP_STW: 9651 case DIF_OP_STX: 9652 if (r1 >= nregs) 9653 err += efunc(pc, "invalid register %u\n", r1); 9654 if (r2 != 0) 9655 err += efunc(pc, "non-zero reserved bits\n"); 9656 if (rd >= nregs) 9657 err += efunc(pc, "invalid register %u\n", rd); 9658 if (rd == 0) 9659 err += efunc(pc, "cannot write to 0 address\n"); 9660 break; 9661 case DIF_OP_CMP: 9662 case DIF_OP_SCMP: 9663 if (r1 >= nregs) 9664 err += efunc(pc, "invalid register %u\n", r1); 9665 if (r2 >= nregs) 9666 err += efunc(pc, "invalid register %u\n", r2); 9667 if (rd != 0) 9668 err += efunc(pc, "non-zero reserved bits\n"); 9669 break; 9670 case DIF_OP_TST: 9671 if (r1 >= nregs) 9672 err += efunc(pc, "invalid register %u\n", r1); 9673 if (r2 != 0 || rd != 0) 9674 err += efunc(pc, "non-zero reserved bits\n"); 9675 break; 9676 case DIF_OP_BA: 9677 case DIF_OP_BE: 9678 case DIF_OP_BNE: 9679 case DIF_OP_BG: 9680 case DIF_OP_BGU: 9681 case DIF_OP_BGE: 9682 case DIF_OP_BGEU: 9683 case DIF_OP_BL: 9684 case DIF_OP_BLU: 9685 case DIF_OP_BLE: 9686 case DIF_OP_BLEU: 9687 if (label >= dp->dtdo_len) { 9688 err += efunc(pc, "invalid branch target %u\n", 9689 label); 9690 } 9691 if (label <= pc) { 9692 err += efunc(pc, "backward branch to %u\n", 9693 label); 9694 } 9695 break; 9696 case DIF_OP_RET: 9697 if (r1 != 0 || r2 != 0) 9698 err += efunc(pc, "non-zero reserved bits\n"); 9699 if (rd >= nregs) 9700 err += efunc(pc, "invalid register %u\n", rd); 9701 break; 9702 case DIF_OP_NOP: 9703 case DIF_OP_POPTS: 9704 case DIF_OP_FLUSHTS: 9705 if (r1 != 0 || r2 != 0 || rd != 0) 9706 err += efunc(pc, "non-zero reserved bits\n"); 9707 break; 9708 case DIF_OP_SETX: 9709 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9710 err += efunc(pc, "invalid integer ref %u\n", 9711 DIF_INSTR_INTEGER(instr)); 9712 } 9713 if (rd >= nregs) 9714 err += efunc(pc, "invalid register %u\n", rd); 9715 if (rd == 0) 9716 err += efunc(pc, "cannot write to %r0\n"); 9717 break; 9718 case DIF_OP_SETS: 9719 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9720 err += efunc(pc, "invalid string ref %u\n", 9721 DIF_INSTR_STRING(instr)); 9722 } 9723 if (rd >= nregs) 9724 err += efunc(pc, "invalid register %u\n", rd); 9725 if (rd == 0) 9726 err += efunc(pc, "cannot write to %r0\n"); 9727 break; 9728 case DIF_OP_LDGA: 9729 case DIF_OP_LDTA: 9730 if (r1 > DIF_VAR_ARRAY_MAX) 9731 err += efunc(pc, "invalid array %u\n", r1); 9732 if (r2 >= nregs) 9733 err += efunc(pc, "invalid register %u\n", r2); 9734 if (rd >= nregs) 9735 err += efunc(pc, "invalid register %u\n", rd); 9736 if (rd == 0) 9737 err += efunc(pc, "cannot write to %r0\n"); 9738 break; 9739 case DIF_OP_LDGS: 9740 case DIF_OP_LDTS: 9741 case DIF_OP_LDLS: 9742 case DIF_OP_LDGAA: 9743 case DIF_OP_LDTAA: 9744 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9745 err += efunc(pc, "invalid variable %u\n", v); 9746 if (rd >= nregs) 9747 err += efunc(pc, "invalid register %u\n", rd); 9748 if (rd == 0) 9749 err += efunc(pc, "cannot write to %r0\n"); 9750 break; 9751 case DIF_OP_STGS: 9752 case DIF_OP_STTS: 9753 case DIF_OP_STLS: 9754 case DIF_OP_STGAA: 9755 case DIF_OP_STTAA: 9756 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9757 err += efunc(pc, "invalid variable %u\n", v); 9758 if (rs >= nregs) 9759 err += efunc(pc, "invalid register %u\n", rd); 9760 break; 9761 case DIF_OP_CALL: 9762 if (subr > DIF_SUBR_MAX) 9763 err += efunc(pc, "invalid subr %u\n", subr); 9764 if (rd >= nregs) 9765 err += efunc(pc, "invalid register %u\n", rd); 9766 if (rd == 0) 9767 err += efunc(pc, "cannot write to %r0\n"); 9768 9769 if (subr == DIF_SUBR_COPYOUT || 9770 subr == DIF_SUBR_COPYOUTSTR) { 9771 dp->dtdo_destructive = 1; 9772 } 9773 9774 if (subr == DIF_SUBR_GETF) { 9775 /* 9776 * If we have a getf() we need to record that 9777 * in our state. Note that our state can be 9778 * NULL if this is a helper -- but in that 9779 * case, the call to getf() is itself illegal, 9780 * and will be caught (slightly later) when 9781 * the helper is validated. 9782 */ 9783 if (vstate->dtvs_state != NULL) 9784 vstate->dtvs_state->dts_getf++; 9785 } 9786 9787 break; 9788 case DIF_OP_PUSHTR: 9789 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9790 err += efunc(pc, "invalid ref type %u\n", type); 9791 if (r2 >= nregs) 9792 err += efunc(pc, "invalid register %u\n", r2); 9793 if (rs >= nregs) 9794 err += efunc(pc, "invalid register %u\n", rs); 9795 break; 9796 case DIF_OP_PUSHTV: 9797 if (type != DIF_TYPE_CTF) 9798 err += efunc(pc, "invalid val type %u\n", type); 9799 if (r2 >= nregs) 9800 err += efunc(pc, "invalid register %u\n", r2); 9801 if (rs >= nregs) 9802 err += efunc(pc, "invalid register %u\n", rs); 9803 break; 9804 default: 9805 err += efunc(pc, "invalid opcode %u\n", 9806 DIF_INSTR_OP(instr)); 9807 } 9808 } 9809 9810 if (dp->dtdo_len != 0 && 9811 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9812 err += efunc(dp->dtdo_len - 1, 9813 "expected 'ret' as last DIF instruction\n"); 9814 } 9815 9816 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9817 /* 9818 * If we're not returning by reference, the size must be either 9819 * 0 or the size of one of the base types. 9820 */ 9821 switch (dp->dtdo_rtype.dtdt_size) { 9822 case 0: 9823 case sizeof (uint8_t): 9824 case sizeof (uint16_t): 9825 case sizeof (uint32_t): 9826 case sizeof (uint64_t): 9827 break; 9828 9829 default: 9830 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9831 } 9832 } 9833 9834 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9835 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9836 dtrace_diftype_t *vt, *et; 9837 uint_t id, ndx; 9838 9839 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9840 v->dtdv_scope != DIFV_SCOPE_THREAD && 9841 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9842 err += efunc(i, "unrecognized variable scope %d\n", 9843 v->dtdv_scope); 9844 break; 9845 } 9846 9847 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9848 v->dtdv_kind != DIFV_KIND_SCALAR) { 9849 err += efunc(i, "unrecognized variable type %d\n", 9850 v->dtdv_kind); 9851 break; 9852 } 9853 9854 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9855 err += efunc(i, "%d exceeds variable id limit\n", id); 9856 break; 9857 } 9858 9859 if (id < DIF_VAR_OTHER_UBASE) 9860 continue; 9861 9862 /* 9863 * For user-defined variables, we need to check that this 9864 * definition is identical to any previous definition that we 9865 * encountered. 9866 */ 9867 ndx = id - DIF_VAR_OTHER_UBASE; 9868 9869 switch (v->dtdv_scope) { 9870 case DIFV_SCOPE_GLOBAL: 9871 if (ndx < vstate->dtvs_nglobals) { 9872 dtrace_statvar_t *svar; 9873 9874 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9875 existing = &svar->dtsv_var; 9876 } 9877 9878 break; 9879 9880 case DIFV_SCOPE_THREAD: 9881 if (ndx < vstate->dtvs_ntlocals) 9882 existing = &vstate->dtvs_tlocals[ndx]; 9883 break; 9884 9885 case DIFV_SCOPE_LOCAL: 9886 if (ndx < vstate->dtvs_nlocals) { 9887 dtrace_statvar_t *svar; 9888 9889 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9890 existing = &svar->dtsv_var; 9891 } 9892 9893 break; 9894 } 9895 9896 vt = &v->dtdv_type; 9897 9898 if (vt->dtdt_flags & DIF_TF_BYREF) { 9899 if (vt->dtdt_size == 0) { 9900 err += efunc(i, "zero-sized variable\n"); 9901 break; 9902 } 9903 9904 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9905 vt->dtdt_size > dtrace_global_maxsize) { 9906 err += efunc(i, "oversized by-ref global\n"); 9907 break; 9908 } 9909 } 9910 9911 if (existing == NULL || existing->dtdv_id == 0) 9912 continue; 9913 9914 ASSERT(existing->dtdv_id == v->dtdv_id); 9915 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9916 9917 if (existing->dtdv_kind != v->dtdv_kind) 9918 err += efunc(i, "%d changed variable kind\n", id); 9919 9920 et = &existing->dtdv_type; 9921 9922 if (vt->dtdt_flags != et->dtdt_flags) { 9923 err += efunc(i, "%d changed variable type flags\n", id); 9924 break; 9925 } 9926 9927 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9928 err += efunc(i, "%d changed variable type size\n", id); 9929 break; 9930 } 9931 } 9932 9933 return (err); 9934 } 9935 9936 /* 9937 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9938 * are much more constrained than normal DIFOs. Specifically, they may 9939 * not: 9940 * 9941 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9942 * miscellaneous string routines 9943 * 2. Access DTrace variables other than the args[] array, and the 9944 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9945 * 3. Have thread-local variables. 9946 * 4. Have dynamic variables. 9947 */ 9948 static int 9949 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9950 { 9951 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9952 int err = 0; 9953 uint_t pc; 9954 9955 for (pc = 0; pc < dp->dtdo_len; pc++) { 9956 dif_instr_t instr = dp->dtdo_buf[pc]; 9957 9958 uint_t v = DIF_INSTR_VAR(instr); 9959 uint_t subr = DIF_INSTR_SUBR(instr); 9960 uint_t op = DIF_INSTR_OP(instr); 9961 9962 switch (op) { 9963 case DIF_OP_OR: 9964 case DIF_OP_XOR: 9965 case DIF_OP_AND: 9966 case DIF_OP_SLL: 9967 case DIF_OP_SRL: 9968 case DIF_OP_SRA: 9969 case DIF_OP_SUB: 9970 case DIF_OP_ADD: 9971 case DIF_OP_MUL: 9972 case DIF_OP_SDIV: 9973 case DIF_OP_UDIV: 9974 case DIF_OP_SREM: 9975 case DIF_OP_UREM: 9976 case DIF_OP_COPYS: 9977 case DIF_OP_NOT: 9978 case DIF_OP_MOV: 9979 case DIF_OP_RLDSB: 9980 case DIF_OP_RLDSH: 9981 case DIF_OP_RLDSW: 9982 case DIF_OP_RLDUB: 9983 case DIF_OP_RLDUH: 9984 case DIF_OP_RLDUW: 9985 case DIF_OP_RLDX: 9986 case DIF_OP_ULDSB: 9987 case DIF_OP_ULDSH: 9988 case DIF_OP_ULDSW: 9989 case DIF_OP_ULDUB: 9990 case DIF_OP_ULDUH: 9991 case DIF_OP_ULDUW: 9992 case DIF_OP_ULDX: 9993 case DIF_OP_STB: 9994 case DIF_OP_STH: 9995 case DIF_OP_STW: 9996 case DIF_OP_STX: 9997 case DIF_OP_ALLOCS: 9998 case DIF_OP_CMP: 9999 case DIF_OP_SCMP: 10000 case DIF_OP_TST: 10001 case DIF_OP_BA: 10002 case DIF_OP_BE: 10003 case DIF_OP_BNE: 10004 case DIF_OP_BG: 10005 case DIF_OP_BGU: 10006 case DIF_OP_BGE: 10007 case DIF_OP_BGEU: 10008 case DIF_OP_BL: 10009 case DIF_OP_BLU: 10010 case DIF_OP_BLE: 10011 case DIF_OP_BLEU: 10012 case DIF_OP_RET: 10013 case DIF_OP_NOP: 10014 case DIF_OP_POPTS: 10015 case DIF_OP_FLUSHTS: 10016 case DIF_OP_SETX: 10017 case DIF_OP_SETS: 10018 case DIF_OP_LDGA: 10019 case DIF_OP_LDLS: 10020 case DIF_OP_STGS: 10021 case DIF_OP_STLS: 10022 case DIF_OP_PUSHTR: 10023 case DIF_OP_PUSHTV: 10024 break; 10025 10026 case DIF_OP_LDGS: 10027 if (v >= DIF_VAR_OTHER_UBASE) 10028 break; 10029 10030 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10031 break; 10032 10033 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10034 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10035 v == DIF_VAR_EXECARGS || 10036 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10037 v == DIF_VAR_UID || v == DIF_VAR_GID) 10038 break; 10039 10040 err += efunc(pc, "illegal variable %u\n", v); 10041 break; 10042 10043 case DIF_OP_LDTA: 10044 case DIF_OP_LDTS: 10045 case DIF_OP_LDGAA: 10046 case DIF_OP_LDTAA: 10047 err += efunc(pc, "illegal dynamic variable load\n"); 10048 break; 10049 10050 case DIF_OP_STTS: 10051 case DIF_OP_STGAA: 10052 case DIF_OP_STTAA: 10053 err += efunc(pc, "illegal dynamic variable store\n"); 10054 break; 10055 10056 case DIF_OP_CALL: 10057 if (subr == DIF_SUBR_ALLOCA || 10058 subr == DIF_SUBR_BCOPY || 10059 subr == DIF_SUBR_COPYIN || 10060 subr == DIF_SUBR_COPYINTO || 10061 subr == DIF_SUBR_COPYINSTR || 10062 subr == DIF_SUBR_INDEX || 10063 subr == DIF_SUBR_INET_NTOA || 10064 subr == DIF_SUBR_INET_NTOA6 || 10065 subr == DIF_SUBR_INET_NTOP || 10066 subr == DIF_SUBR_JSON || 10067 subr == DIF_SUBR_LLTOSTR || 10068 subr == DIF_SUBR_STRTOLL || 10069 subr == DIF_SUBR_RINDEX || 10070 subr == DIF_SUBR_STRCHR || 10071 subr == DIF_SUBR_STRJOIN || 10072 subr == DIF_SUBR_STRRCHR || 10073 subr == DIF_SUBR_STRSTR || 10074 subr == DIF_SUBR_HTONS || 10075 subr == DIF_SUBR_HTONL || 10076 subr == DIF_SUBR_HTONLL || 10077 subr == DIF_SUBR_NTOHS || 10078 subr == DIF_SUBR_NTOHL || 10079 subr == DIF_SUBR_NTOHLL || 10080 subr == DIF_SUBR_MEMREF || 10081 #if !defined(sun) 10082 subr == DIF_SUBR_MEMSTR || 10083 #endif 10084 subr == DIF_SUBR_TYPEREF) 10085 break; 10086 10087 err += efunc(pc, "invalid subr %u\n", subr); 10088 break; 10089 10090 default: 10091 err += efunc(pc, "invalid opcode %u\n", 10092 DIF_INSTR_OP(instr)); 10093 } 10094 } 10095 10096 return (err); 10097 } 10098 10099 /* 10100 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10101 * basis; 0 if not. 10102 */ 10103 static int 10104 dtrace_difo_cacheable(dtrace_difo_t *dp) 10105 { 10106 int i; 10107 10108 if (dp == NULL) 10109 return (0); 10110 10111 for (i = 0; i < dp->dtdo_varlen; i++) { 10112 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10113 10114 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10115 continue; 10116 10117 switch (v->dtdv_id) { 10118 case DIF_VAR_CURTHREAD: 10119 case DIF_VAR_PID: 10120 case DIF_VAR_TID: 10121 case DIF_VAR_EXECARGS: 10122 case DIF_VAR_EXECNAME: 10123 case DIF_VAR_ZONENAME: 10124 break; 10125 10126 default: 10127 return (0); 10128 } 10129 } 10130 10131 /* 10132 * This DIF object may be cacheable. Now we need to look for any 10133 * array loading instructions, any memory loading instructions, or 10134 * any stores to thread-local variables. 10135 */ 10136 for (i = 0; i < dp->dtdo_len; i++) { 10137 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10138 10139 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10140 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10141 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10142 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10143 return (0); 10144 } 10145 10146 return (1); 10147 } 10148 10149 static void 10150 dtrace_difo_hold(dtrace_difo_t *dp) 10151 { 10152 int i; 10153 10154 ASSERT(MUTEX_HELD(&dtrace_lock)); 10155 10156 dp->dtdo_refcnt++; 10157 ASSERT(dp->dtdo_refcnt != 0); 10158 10159 /* 10160 * We need to check this DIF object for references to the variable 10161 * DIF_VAR_VTIMESTAMP. 10162 */ 10163 for (i = 0; i < dp->dtdo_varlen; i++) { 10164 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10165 10166 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10167 continue; 10168 10169 if (dtrace_vtime_references++ == 0) 10170 dtrace_vtime_enable(); 10171 } 10172 } 10173 10174 /* 10175 * This routine calculates the dynamic variable chunksize for a given DIF 10176 * object. The calculation is not fool-proof, and can probably be tricked by 10177 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10178 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10179 * if a dynamic variable size exceeds the chunksize. 10180 */ 10181 static void 10182 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10183 { 10184 uint64_t sval = 0; 10185 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10186 const dif_instr_t *text = dp->dtdo_buf; 10187 uint_t pc, srd = 0; 10188 uint_t ttop = 0; 10189 size_t size, ksize; 10190 uint_t id, i; 10191 10192 for (pc = 0; pc < dp->dtdo_len; pc++) { 10193 dif_instr_t instr = text[pc]; 10194 uint_t op = DIF_INSTR_OP(instr); 10195 uint_t rd = DIF_INSTR_RD(instr); 10196 uint_t r1 = DIF_INSTR_R1(instr); 10197 uint_t nkeys = 0; 10198 uchar_t scope = 0; 10199 10200 dtrace_key_t *key = tupregs; 10201 10202 switch (op) { 10203 case DIF_OP_SETX: 10204 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10205 srd = rd; 10206 continue; 10207 10208 case DIF_OP_STTS: 10209 key = &tupregs[DIF_DTR_NREGS]; 10210 key[0].dttk_size = 0; 10211 key[1].dttk_size = 0; 10212 nkeys = 2; 10213 scope = DIFV_SCOPE_THREAD; 10214 break; 10215 10216 case DIF_OP_STGAA: 10217 case DIF_OP_STTAA: 10218 nkeys = ttop; 10219 10220 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10221 key[nkeys++].dttk_size = 0; 10222 10223 key[nkeys++].dttk_size = 0; 10224 10225 if (op == DIF_OP_STTAA) { 10226 scope = DIFV_SCOPE_THREAD; 10227 } else { 10228 scope = DIFV_SCOPE_GLOBAL; 10229 } 10230 10231 break; 10232 10233 case DIF_OP_PUSHTR: 10234 if (ttop == DIF_DTR_NREGS) 10235 return; 10236 10237 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10238 /* 10239 * If the register for the size of the "pushtr" 10240 * is %r0 (or the value is 0) and the type is 10241 * a string, we'll use the system-wide default 10242 * string size. 10243 */ 10244 tupregs[ttop++].dttk_size = 10245 dtrace_strsize_default; 10246 } else { 10247 if (srd == 0) 10248 return; 10249 10250 tupregs[ttop++].dttk_size = sval; 10251 } 10252 10253 break; 10254 10255 case DIF_OP_PUSHTV: 10256 if (ttop == DIF_DTR_NREGS) 10257 return; 10258 10259 tupregs[ttop++].dttk_size = 0; 10260 break; 10261 10262 case DIF_OP_FLUSHTS: 10263 ttop = 0; 10264 break; 10265 10266 case DIF_OP_POPTS: 10267 if (ttop != 0) 10268 ttop--; 10269 break; 10270 } 10271 10272 sval = 0; 10273 srd = 0; 10274 10275 if (nkeys == 0) 10276 continue; 10277 10278 /* 10279 * We have a dynamic variable allocation; calculate its size. 10280 */ 10281 for (ksize = 0, i = 0; i < nkeys; i++) 10282 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10283 10284 size = sizeof (dtrace_dynvar_t); 10285 size += sizeof (dtrace_key_t) * (nkeys - 1); 10286 size += ksize; 10287 10288 /* 10289 * Now we need to determine the size of the stored data. 10290 */ 10291 id = DIF_INSTR_VAR(instr); 10292 10293 for (i = 0; i < dp->dtdo_varlen; i++) { 10294 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10295 10296 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10297 size += v->dtdv_type.dtdt_size; 10298 break; 10299 } 10300 } 10301 10302 if (i == dp->dtdo_varlen) 10303 return; 10304 10305 /* 10306 * We have the size. If this is larger than the chunk size 10307 * for our dynamic variable state, reset the chunk size. 10308 */ 10309 size = P2ROUNDUP(size, sizeof (uint64_t)); 10310 10311 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10312 vstate->dtvs_dynvars.dtds_chunksize = size; 10313 } 10314 } 10315 10316 static void 10317 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10318 { 10319 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10320 uint_t id; 10321 10322 ASSERT(MUTEX_HELD(&dtrace_lock)); 10323 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10324 10325 for (i = 0; i < dp->dtdo_varlen; i++) { 10326 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10327 dtrace_statvar_t *svar, ***svarp = NULL; 10328 size_t dsize = 0; 10329 uint8_t scope = v->dtdv_scope; 10330 int *np = NULL; 10331 10332 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10333 continue; 10334 10335 id -= DIF_VAR_OTHER_UBASE; 10336 10337 switch (scope) { 10338 case DIFV_SCOPE_THREAD: 10339 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10340 dtrace_difv_t *tlocals; 10341 10342 if ((ntlocals = (otlocals << 1)) == 0) 10343 ntlocals = 1; 10344 10345 osz = otlocals * sizeof (dtrace_difv_t); 10346 nsz = ntlocals * sizeof (dtrace_difv_t); 10347 10348 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10349 10350 if (osz != 0) { 10351 bcopy(vstate->dtvs_tlocals, 10352 tlocals, osz); 10353 kmem_free(vstate->dtvs_tlocals, osz); 10354 } 10355 10356 vstate->dtvs_tlocals = tlocals; 10357 vstate->dtvs_ntlocals = ntlocals; 10358 } 10359 10360 vstate->dtvs_tlocals[id] = *v; 10361 continue; 10362 10363 case DIFV_SCOPE_LOCAL: 10364 np = &vstate->dtvs_nlocals; 10365 svarp = &vstate->dtvs_locals; 10366 10367 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10368 dsize = NCPU * (v->dtdv_type.dtdt_size + 10369 sizeof (uint64_t)); 10370 else 10371 dsize = NCPU * sizeof (uint64_t); 10372 10373 break; 10374 10375 case DIFV_SCOPE_GLOBAL: 10376 np = &vstate->dtvs_nglobals; 10377 svarp = &vstate->dtvs_globals; 10378 10379 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10380 dsize = v->dtdv_type.dtdt_size + 10381 sizeof (uint64_t); 10382 10383 break; 10384 10385 default: 10386 ASSERT(0); 10387 } 10388 10389 while (id >= (oldsvars = *np)) { 10390 dtrace_statvar_t **statics; 10391 int newsvars, oldsize, newsize; 10392 10393 if ((newsvars = (oldsvars << 1)) == 0) 10394 newsvars = 1; 10395 10396 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10397 newsize = newsvars * sizeof (dtrace_statvar_t *); 10398 10399 statics = kmem_zalloc(newsize, KM_SLEEP); 10400 10401 if (oldsize != 0) { 10402 bcopy(*svarp, statics, oldsize); 10403 kmem_free(*svarp, oldsize); 10404 } 10405 10406 *svarp = statics; 10407 *np = newsvars; 10408 } 10409 10410 if ((svar = (*svarp)[id]) == NULL) { 10411 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10412 svar->dtsv_var = *v; 10413 10414 if ((svar->dtsv_size = dsize) != 0) { 10415 svar->dtsv_data = (uint64_t)(uintptr_t) 10416 kmem_zalloc(dsize, KM_SLEEP); 10417 } 10418 10419 (*svarp)[id] = svar; 10420 } 10421 10422 svar->dtsv_refcnt++; 10423 } 10424 10425 dtrace_difo_chunksize(dp, vstate); 10426 dtrace_difo_hold(dp); 10427 } 10428 10429 static dtrace_difo_t * 10430 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10431 { 10432 dtrace_difo_t *new; 10433 size_t sz; 10434 10435 ASSERT(dp->dtdo_buf != NULL); 10436 ASSERT(dp->dtdo_refcnt != 0); 10437 10438 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10439 10440 ASSERT(dp->dtdo_buf != NULL); 10441 sz = dp->dtdo_len * sizeof (dif_instr_t); 10442 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10443 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10444 new->dtdo_len = dp->dtdo_len; 10445 10446 if (dp->dtdo_strtab != NULL) { 10447 ASSERT(dp->dtdo_strlen != 0); 10448 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10449 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10450 new->dtdo_strlen = dp->dtdo_strlen; 10451 } 10452 10453 if (dp->dtdo_inttab != NULL) { 10454 ASSERT(dp->dtdo_intlen != 0); 10455 sz = dp->dtdo_intlen * sizeof (uint64_t); 10456 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10457 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10458 new->dtdo_intlen = dp->dtdo_intlen; 10459 } 10460 10461 if (dp->dtdo_vartab != NULL) { 10462 ASSERT(dp->dtdo_varlen != 0); 10463 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10464 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10465 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10466 new->dtdo_varlen = dp->dtdo_varlen; 10467 } 10468 10469 dtrace_difo_init(new, vstate); 10470 return (new); 10471 } 10472 10473 static void 10474 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10475 { 10476 int i; 10477 10478 ASSERT(dp->dtdo_refcnt == 0); 10479 10480 for (i = 0; i < dp->dtdo_varlen; i++) { 10481 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10482 dtrace_statvar_t *svar, **svarp = NULL; 10483 uint_t id; 10484 uint8_t scope = v->dtdv_scope; 10485 int *np = NULL; 10486 10487 switch (scope) { 10488 case DIFV_SCOPE_THREAD: 10489 continue; 10490 10491 case DIFV_SCOPE_LOCAL: 10492 np = &vstate->dtvs_nlocals; 10493 svarp = vstate->dtvs_locals; 10494 break; 10495 10496 case DIFV_SCOPE_GLOBAL: 10497 np = &vstate->dtvs_nglobals; 10498 svarp = vstate->dtvs_globals; 10499 break; 10500 10501 default: 10502 ASSERT(0); 10503 } 10504 10505 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10506 continue; 10507 10508 id -= DIF_VAR_OTHER_UBASE; 10509 ASSERT(id < *np); 10510 10511 svar = svarp[id]; 10512 ASSERT(svar != NULL); 10513 ASSERT(svar->dtsv_refcnt > 0); 10514 10515 if (--svar->dtsv_refcnt > 0) 10516 continue; 10517 10518 if (svar->dtsv_size != 0) { 10519 ASSERT(svar->dtsv_data != 0); 10520 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10521 svar->dtsv_size); 10522 } 10523 10524 kmem_free(svar, sizeof (dtrace_statvar_t)); 10525 svarp[id] = NULL; 10526 } 10527 10528 if (dp->dtdo_buf != NULL) 10529 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10530 if (dp->dtdo_inttab != NULL) 10531 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10532 if (dp->dtdo_strtab != NULL) 10533 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10534 if (dp->dtdo_vartab != NULL) 10535 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10536 10537 kmem_free(dp, sizeof (dtrace_difo_t)); 10538 } 10539 10540 static void 10541 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10542 { 10543 int i; 10544 10545 ASSERT(MUTEX_HELD(&dtrace_lock)); 10546 ASSERT(dp->dtdo_refcnt != 0); 10547 10548 for (i = 0; i < dp->dtdo_varlen; i++) { 10549 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10550 10551 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10552 continue; 10553 10554 ASSERT(dtrace_vtime_references > 0); 10555 if (--dtrace_vtime_references == 0) 10556 dtrace_vtime_disable(); 10557 } 10558 10559 if (--dp->dtdo_refcnt == 0) 10560 dtrace_difo_destroy(dp, vstate); 10561 } 10562 10563 /* 10564 * DTrace Format Functions 10565 */ 10566 static uint16_t 10567 dtrace_format_add(dtrace_state_t *state, char *str) 10568 { 10569 char *fmt, **new; 10570 uint16_t ndx, len = strlen(str) + 1; 10571 10572 fmt = kmem_zalloc(len, KM_SLEEP); 10573 bcopy(str, fmt, len); 10574 10575 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10576 if (state->dts_formats[ndx] == NULL) { 10577 state->dts_formats[ndx] = fmt; 10578 return (ndx + 1); 10579 } 10580 } 10581 10582 if (state->dts_nformats == USHRT_MAX) { 10583 /* 10584 * This is only likely if a denial-of-service attack is being 10585 * attempted. As such, it's okay to fail silently here. 10586 */ 10587 kmem_free(fmt, len); 10588 return (0); 10589 } 10590 10591 /* 10592 * For simplicity, we always resize the formats array to be exactly the 10593 * number of formats. 10594 */ 10595 ndx = state->dts_nformats++; 10596 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10597 10598 if (state->dts_formats != NULL) { 10599 ASSERT(ndx != 0); 10600 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10601 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10602 } 10603 10604 state->dts_formats = new; 10605 state->dts_formats[ndx] = fmt; 10606 10607 return (ndx + 1); 10608 } 10609 10610 static void 10611 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10612 { 10613 char *fmt; 10614 10615 ASSERT(state->dts_formats != NULL); 10616 ASSERT(format <= state->dts_nformats); 10617 ASSERT(state->dts_formats[format - 1] != NULL); 10618 10619 fmt = state->dts_formats[format - 1]; 10620 kmem_free(fmt, strlen(fmt) + 1); 10621 state->dts_formats[format - 1] = NULL; 10622 } 10623 10624 static void 10625 dtrace_format_destroy(dtrace_state_t *state) 10626 { 10627 int i; 10628 10629 if (state->dts_nformats == 0) { 10630 ASSERT(state->dts_formats == NULL); 10631 return; 10632 } 10633 10634 ASSERT(state->dts_formats != NULL); 10635 10636 for (i = 0; i < state->dts_nformats; i++) { 10637 char *fmt = state->dts_formats[i]; 10638 10639 if (fmt == NULL) 10640 continue; 10641 10642 kmem_free(fmt, strlen(fmt) + 1); 10643 } 10644 10645 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10646 state->dts_nformats = 0; 10647 state->dts_formats = NULL; 10648 } 10649 10650 /* 10651 * DTrace Predicate Functions 10652 */ 10653 static dtrace_predicate_t * 10654 dtrace_predicate_create(dtrace_difo_t *dp) 10655 { 10656 dtrace_predicate_t *pred; 10657 10658 ASSERT(MUTEX_HELD(&dtrace_lock)); 10659 ASSERT(dp->dtdo_refcnt != 0); 10660 10661 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10662 pred->dtp_difo = dp; 10663 pred->dtp_refcnt = 1; 10664 10665 if (!dtrace_difo_cacheable(dp)) 10666 return (pred); 10667 10668 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10669 /* 10670 * This is only theoretically possible -- we have had 2^32 10671 * cacheable predicates on this machine. We cannot allow any 10672 * more predicates to become cacheable: as unlikely as it is, 10673 * there may be a thread caching a (now stale) predicate cache 10674 * ID. (N.B.: the temptation is being successfully resisted to 10675 * have this cmn_err() "Holy shit -- we executed this code!") 10676 */ 10677 return (pred); 10678 } 10679 10680 pred->dtp_cacheid = dtrace_predcache_id++; 10681 10682 return (pred); 10683 } 10684 10685 static void 10686 dtrace_predicate_hold(dtrace_predicate_t *pred) 10687 { 10688 ASSERT(MUTEX_HELD(&dtrace_lock)); 10689 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10690 ASSERT(pred->dtp_refcnt > 0); 10691 10692 pred->dtp_refcnt++; 10693 } 10694 10695 static void 10696 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10697 { 10698 dtrace_difo_t *dp = pred->dtp_difo; 10699 10700 ASSERT(MUTEX_HELD(&dtrace_lock)); 10701 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10702 ASSERT(pred->dtp_refcnt > 0); 10703 10704 if (--pred->dtp_refcnt == 0) { 10705 dtrace_difo_release(pred->dtp_difo, vstate); 10706 kmem_free(pred, sizeof (dtrace_predicate_t)); 10707 } 10708 } 10709 10710 /* 10711 * DTrace Action Description Functions 10712 */ 10713 static dtrace_actdesc_t * 10714 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10715 uint64_t uarg, uint64_t arg) 10716 { 10717 dtrace_actdesc_t *act; 10718 10719 #if defined(sun) 10720 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10721 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10722 #endif 10723 10724 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10725 act->dtad_kind = kind; 10726 act->dtad_ntuple = ntuple; 10727 act->dtad_uarg = uarg; 10728 act->dtad_arg = arg; 10729 act->dtad_refcnt = 1; 10730 10731 return (act); 10732 } 10733 10734 static void 10735 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10736 { 10737 ASSERT(act->dtad_refcnt >= 1); 10738 act->dtad_refcnt++; 10739 } 10740 10741 static void 10742 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10743 { 10744 dtrace_actkind_t kind = act->dtad_kind; 10745 dtrace_difo_t *dp; 10746 10747 ASSERT(act->dtad_refcnt >= 1); 10748 10749 if (--act->dtad_refcnt != 0) 10750 return; 10751 10752 if ((dp = act->dtad_difo) != NULL) 10753 dtrace_difo_release(dp, vstate); 10754 10755 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10756 char *str = (char *)(uintptr_t)act->dtad_arg; 10757 10758 #if defined(sun) 10759 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10760 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10761 #endif 10762 10763 if (str != NULL) 10764 kmem_free(str, strlen(str) + 1); 10765 } 10766 10767 kmem_free(act, sizeof (dtrace_actdesc_t)); 10768 } 10769 10770 /* 10771 * DTrace ECB Functions 10772 */ 10773 static dtrace_ecb_t * 10774 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10775 { 10776 dtrace_ecb_t *ecb; 10777 dtrace_epid_t epid; 10778 10779 ASSERT(MUTEX_HELD(&dtrace_lock)); 10780 10781 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10782 ecb->dte_predicate = NULL; 10783 ecb->dte_probe = probe; 10784 10785 /* 10786 * The default size is the size of the default action: recording 10787 * the header. 10788 */ 10789 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10790 ecb->dte_alignment = sizeof (dtrace_epid_t); 10791 10792 epid = state->dts_epid++; 10793 10794 if (epid - 1 >= state->dts_necbs) { 10795 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10796 int necbs = state->dts_necbs << 1; 10797 10798 ASSERT(epid == state->dts_necbs + 1); 10799 10800 if (necbs == 0) { 10801 ASSERT(oecbs == NULL); 10802 necbs = 1; 10803 } 10804 10805 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10806 10807 if (oecbs != NULL) 10808 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10809 10810 dtrace_membar_producer(); 10811 state->dts_ecbs = ecbs; 10812 10813 if (oecbs != NULL) { 10814 /* 10815 * If this state is active, we must dtrace_sync() 10816 * before we can free the old dts_ecbs array: we're 10817 * coming in hot, and there may be active ring 10818 * buffer processing (which indexes into the dts_ecbs 10819 * array) on another CPU. 10820 */ 10821 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10822 dtrace_sync(); 10823 10824 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10825 } 10826 10827 dtrace_membar_producer(); 10828 state->dts_necbs = necbs; 10829 } 10830 10831 ecb->dte_state = state; 10832 10833 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10834 dtrace_membar_producer(); 10835 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10836 10837 return (ecb); 10838 } 10839 10840 static void 10841 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10842 { 10843 dtrace_probe_t *probe = ecb->dte_probe; 10844 10845 ASSERT(MUTEX_HELD(&cpu_lock)); 10846 ASSERT(MUTEX_HELD(&dtrace_lock)); 10847 ASSERT(ecb->dte_next == NULL); 10848 10849 if (probe == NULL) { 10850 /* 10851 * This is the NULL probe -- there's nothing to do. 10852 */ 10853 return; 10854 } 10855 10856 if (probe->dtpr_ecb == NULL) { 10857 dtrace_provider_t *prov = probe->dtpr_provider; 10858 10859 /* 10860 * We're the first ECB on this probe. 10861 */ 10862 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10863 10864 if (ecb->dte_predicate != NULL) 10865 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10866 10867 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10868 probe->dtpr_id, probe->dtpr_arg); 10869 } else { 10870 /* 10871 * This probe is already active. Swing the last pointer to 10872 * point to the new ECB, and issue a dtrace_sync() to assure 10873 * that all CPUs have seen the change. 10874 */ 10875 ASSERT(probe->dtpr_ecb_last != NULL); 10876 probe->dtpr_ecb_last->dte_next = ecb; 10877 probe->dtpr_ecb_last = ecb; 10878 probe->dtpr_predcache = 0; 10879 10880 dtrace_sync(); 10881 } 10882 } 10883 10884 static void 10885 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10886 { 10887 dtrace_action_t *act; 10888 uint32_t curneeded = UINT32_MAX; 10889 uint32_t aggbase = UINT32_MAX; 10890 10891 /* 10892 * If we record anything, we always record the dtrace_rechdr_t. (And 10893 * we always record it first.) 10894 */ 10895 ecb->dte_size = sizeof (dtrace_rechdr_t); 10896 ecb->dte_alignment = sizeof (dtrace_epid_t); 10897 10898 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10899 dtrace_recdesc_t *rec = &act->dta_rec; 10900 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10901 10902 ecb->dte_alignment = MAX(ecb->dte_alignment, 10903 rec->dtrd_alignment); 10904 10905 if (DTRACEACT_ISAGG(act->dta_kind)) { 10906 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10907 10908 ASSERT(rec->dtrd_size != 0); 10909 ASSERT(agg->dtag_first != NULL); 10910 ASSERT(act->dta_prev->dta_intuple); 10911 ASSERT(aggbase != UINT32_MAX); 10912 ASSERT(curneeded != UINT32_MAX); 10913 10914 agg->dtag_base = aggbase; 10915 10916 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10917 rec->dtrd_offset = curneeded; 10918 curneeded += rec->dtrd_size; 10919 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10920 10921 aggbase = UINT32_MAX; 10922 curneeded = UINT32_MAX; 10923 } else if (act->dta_intuple) { 10924 if (curneeded == UINT32_MAX) { 10925 /* 10926 * This is the first record in a tuple. Align 10927 * curneeded to be at offset 4 in an 8-byte 10928 * aligned block. 10929 */ 10930 ASSERT(act->dta_prev == NULL || 10931 !act->dta_prev->dta_intuple); 10932 ASSERT3U(aggbase, ==, UINT32_MAX); 10933 curneeded = P2PHASEUP(ecb->dte_size, 10934 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10935 10936 aggbase = curneeded - sizeof (dtrace_aggid_t); 10937 ASSERT(IS_P2ALIGNED(aggbase, 10938 sizeof (uint64_t))); 10939 } 10940 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10941 rec->dtrd_offset = curneeded; 10942 curneeded += rec->dtrd_size; 10943 } else { 10944 /* tuples must be followed by an aggregation */ 10945 ASSERT(act->dta_prev == NULL || 10946 !act->dta_prev->dta_intuple); 10947 10948 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10949 rec->dtrd_alignment); 10950 rec->dtrd_offset = ecb->dte_size; 10951 ecb->dte_size += rec->dtrd_size; 10952 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10953 } 10954 } 10955 10956 if ((act = ecb->dte_action) != NULL && 10957 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10958 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10959 /* 10960 * If the size is still sizeof (dtrace_rechdr_t), then all 10961 * actions store no data; set the size to 0. 10962 */ 10963 ecb->dte_size = 0; 10964 } 10965 10966 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10967 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10968 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10969 ecb->dte_needed); 10970 } 10971 10972 static dtrace_action_t * 10973 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10974 { 10975 dtrace_aggregation_t *agg; 10976 size_t size = sizeof (uint64_t); 10977 int ntuple = desc->dtad_ntuple; 10978 dtrace_action_t *act; 10979 dtrace_recdesc_t *frec; 10980 dtrace_aggid_t aggid; 10981 dtrace_state_t *state = ecb->dte_state; 10982 10983 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10984 agg->dtag_ecb = ecb; 10985 10986 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10987 10988 switch (desc->dtad_kind) { 10989 case DTRACEAGG_MIN: 10990 agg->dtag_initial = INT64_MAX; 10991 agg->dtag_aggregate = dtrace_aggregate_min; 10992 break; 10993 10994 case DTRACEAGG_MAX: 10995 agg->dtag_initial = INT64_MIN; 10996 agg->dtag_aggregate = dtrace_aggregate_max; 10997 break; 10998 10999 case DTRACEAGG_COUNT: 11000 agg->dtag_aggregate = dtrace_aggregate_count; 11001 break; 11002 11003 case DTRACEAGG_QUANTIZE: 11004 agg->dtag_aggregate = dtrace_aggregate_quantize; 11005 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11006 sizeof (uint64_t); 11007 break; 11008 11009 case DTRACEAGG_LQUANTIZE: { 11010 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11011 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11012 11013 agg->dtag_initial = desc->dtad_arg; 11014 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11015 11016 if (step == 0 || levels == 0) 11017 goto err; 11018 11019 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11020 break; 11021 } 11022 11023 case DTRACEAGG_LLQUANTIZE: { 11024 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11025 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11026 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11027 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11028 int64_t v; 11029 11030 agg->dtag_initial = desc->dtad_arg; 11031 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11032 11033 if (factor < 2 || low >= high || nsteps < factor) 11034 goto err; 11035 11036 /* 11037 * Now check that the number of steps evenly divides a power 11038 * of the factor. (This assures both integer bucket size and 11039 * linearity within each magnitude.) 11040 */ 11041 for (v = factor; v < nsteps; v *= factor) 11042 continue; 11043 11044 if ((v % nsteps) || (nsteps % factor)) 11045 goto err; 11046 11047 size = (dtrace_aggregate_llquantize_bucket(factor, 11048 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11049 break; 11050 } 11051 11052 case DTRACEAGG_AVG: 11053 agg->dtag_aggregate = dtrace_aggregate_avg; 11054 size = sizeof (uint64_t) * 2; 11055 break; 11056 11057 case DTRACEAGG_STDDEV: 11058 agg->dtag_aggregate = dtrace_aggregate_stddev; 11059 size = sizeof (uint64_t) * 4; 11060 break; 11061 11062 case DTRACEAGG_SUM: 11063 agg->dtag_aggregate = dtrace_aggregate_sum; 11064 break; 11065 11066 default: 11067 goto err; 11068 } 11069 11070 agg->dtag_action.dta_rec.dtrd_size = size; 11071 11072 if (ntuple == 0) 11073 goto err; 11074 11075 /* 11076 * We must make sure that we have enough actions for the n-tuple. 11077 */ 11078 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11079 if (DTRACEACT_ISAGG(act->dta_kind)) 11080 break; 11081 11082 if (--ntuple == 0) { 11083 /* 11084 * This is the action with which our n-tuple begins. 11085 */ 11086 agg->dtag_first = act; 11087 goto success; 11088 } 11089 } 11090 11091 /* 11092 * This n-tuple is short by ntuple elements. Return failure. 11093 */ 11094 ASSERT(ntuple != 0); 11095 err: 11096 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11097 return (NULL); 11098 11099 success: 11100 /* 11101 * If the last action in the tuple has a size of zero, it's actually 11102 * an expression argument for the aggregating action. 11103 */ 11104 ASSERT(ecb->dte_action_last != NULL); 11105 act = ecb->dte_action_last; 11106 11107 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11108 ASSERT(act->dta_difo != NULL); 11109 11110 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11111 agg->dtag_hasarg = 1; 11112 } 11113 11114 /* 11115 * We need to allocate an id for this aggregation. 11116 */ 11117 #if defined(sun) 11118 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11119 VM_BESTFIT | VM_SLEEP); 11120 #else 11121 aggid = alloc_unr(state->dts_aggid_arena); 11122 #endif 11123 11124 if (aggid - 1 >= state->dts_naggregations) { 11125 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11126 dtrace_aggregation_t **aggs; 11127 int naggs = state->dts_naggregations << 1; 11128 int onaggs = state->dts_naggregations; 11129 11130 ASSERT(aggid == state->dts_naggregations + 1); 11131 11132 if (naggs == 0) { 11133 ASSERT(oaggs == NULL); 11134 naggs = 1; 11135 } 11136 11137 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11138 11139 if (oaggs != NULL) { 11140 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11141 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11142 } 11143 11144 state->dts_aggregations = aggs; 11145 state->dts_naggregations = naggs; 11146 } 11147 11148 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11149 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11150 11151 frec = &agg->dtag_first->dta_rec; 11152 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11153 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11154 11155 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11156 ASSERT(!act->dta_intuple); 11157 act->dta_intuple = 1; 11158 } 11159 11160 return (&agg->dtag_action); 11161 } 11162 11163 static void 11164 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11165 { 11166 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11167 dtrace_state_t *state = ecb->dte_state; 11168 dtrace_aggid_t aggid = agg->dtag_id; 11169 11170 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11171 #if defined(sun) 11172 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11173 #else 11174 free_unr(state->dts_aggid_arena, aggid); 11175 #endif 11176 11177 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11178 state->dts_aggregations[aggid - 1] = NULL; 11179 11180 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11181 } 11182 11183 static int 11184 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11185 { 11186 dtrace_action_t *action, *last; 11187 dtrace_difo_t *dp = desc->dtad_difo; 11188 uint32_t size = 0, align = sizeof (uint8_t), mask; 11189 uint16_t format = 0; 11190 dtrace_recdesc_t *rec; 11191 dtrace_state_t *state = ecb->dte_state; 11192 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11193 uint64_t arg = desc->dtad_arg; 11194 11195 ASSERT(MUTEX_HELD(&dtrace_lock)); 11196 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11197 11198 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11199 /* 11200 * If this is an aggregating action, there must be neither 11201 * a speculate nor a commit on the action chain. 11202 */ 11203 dtrace_action_t *act; 11204 11205 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11206 if (act->dta_kind == DTRACEACT_COMMIT) 11207 return (EINVAL); 11208 11209 if (act->dta_kind == DTRACEACT_SPECULATE) 11210 return (EINVAL); 11211 } 11212 11213 action = dtrace_ecb_aggregation_create(ecb, desc); 11214 11215 if (action == NULL) 11216 return (EINVAL); 11217 } else { 11218 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11219 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11220 dp != NULL && dp->dtdo_destructive)) { 11221 state->dts_destructive = 1; 11222 } 11223 11224 switch (desc->dtad_kind) { 11225 case DTRACEACT_PRINTF: 11226 case DTRACEACT_PRINTA: 11227 case DTRACEACT_SYSTEM: 11228 case DTRACEACT_FREOPEN: 11229 case DTRACEACT_DIFEXPR: 11230 /* 11231 * We know that our arg is a string -- turn it into a 11232 * format. 11233 */ 11234 if (arg == 0) { 11235 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11236 desc->dtad_kind == DTRACEACT_DIFEXPR); 11237 format = 0; 11238 } else { 11239 ASSERT(arg != 0); 11240 #if defined(sun) 11241 ASSERT(arg > KERNELBASE); 11242 #endif 11243 format = dtrace_format_add(state, 11244 (char *)(uintptr_t)arg); 11245 } 11246 11247 /*FALLTHROUGH*/ 11248 case DTRACEACT_LIBACT: 11249 case DTRACEACT_TRACEMEM: 11250 case DTRACEACT_TRACEMEM_DYNSIZE: 11251 if (dp == NULL) 11252 return (EINVAL); 11253 11254 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11255 break; 11256 11257 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11258 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11259 return (EINVAL); 11260 11261 size = opt[DTRACEOPT_STRSIZE]; 11262 } 11263 11264 break; 11265 11266 case DTRACEACT_STACK: 11267 if ((nframes = arg) == 0) { 11268 nframes = opt[DTRACEOPT_STACKFRAMES]; 11269 ASSERT(nframes > 0); 11270 arg = nframes; 11271 } 11272 11273 size = nframes * sizeof (pc_t); 11274 break; 11275 11276 case DTRACEACT_JSTACK: 11277 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11278 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11279 11280 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11281 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11282 11283 arg = DTRACE_USTACK_ARG(nframes, strsize); 11284 11285 /*FALLTHROUGH*/ 11286 case DTRACEACT_USTACK: 11287 if (desc->dtad_kind != DTRACEACT_JSTACK && 11288 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11289 strsize = DTRACE_USTACK_STRSIZE(arg); 11290 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11291 ASSERT(nframes > 0); 11292 arg = DTRACE_USTACK_ARG(nframes, strsize); 11293 } 11294 11295 /* 11296 * Save a slot for the pid. 11297 */ 11298 size = (nframes + 1) * sizeof (uint64_t); 11299 size += DTRACE_USTACK_STRSIZE(arg); 11300 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11301 11302 break; 11303 11304 case DTRACEACT_SYM: 11305 case DTRACEACT_MOD: 11306 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11307 sizeof (uint64_t)) || 11308 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11309 return (EINVAL); 11310 break; 11311 11312 case DTRACEACT_USYM: 11313 case DTRACEACT_UMOD: 11314 case DTRACEACT_UADDR: 11315 if (dp == NULL || 11316 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11317 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11318 return (EINVAL); 11319 11320 /* 11321 * We have a slot for the pid, plus a slot for the 11322 * argument. To keep things simple (aligned with 11323 * bitness-neutral sizing), we store each as a 64-bit 11324 * quantity. 11325 */ 11326 size = 2 * sizeof (uint64_t); 11327 break; 11328 11329 case DTRACEACT_STOP: 11330 case DTRACEACT_BREAKPOINT: 11331 case DTRACEACT_PANIC: 11332 break; 11333 11334 case DTRACEACT_CHILL: 11335 case DTRACEACT_DISCARD: 11336 case DTRACEACT_RAISE: 11337 if (dp == NULL) 11338 return (EINVAL); 11339 break; 11340 11341 case DTRACEACT_EXIT: 11342 if (dp == NULL || 11343 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11344 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11345 return (EINVAL); 11346 break; 11347 11348 case DTRACEACT_SPECULATE: 11349 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11350 return (EINVAL); 11351 11352 if (dp == NULL) 11353 return (EINVAL); 11354 11355 state->dts_speculates = 1; 11356 break; 11357 11358 case DTRACEACT_PRINTM: 11359 size = dp->dtdo_rtype.dtdt_size; 11360 break; 11361 11362 case DTRACEACT_PRINTT: 11363 size = dp->dtdo_rtype.dtdt_size; 11364 break; 11365 11366 case DTRACEACT_COMMIT: { 11367 dtrace_action_t *act = ecb->dte_action; 11368 11369 for (; act != NULL; act = act->dta_next) { 11370 if (act->dta_kind == DTRACEACT_COMMIT) 11371 return (EINVAL); 11372 } 11373 11374 if (dp == NULL) 11375 return (EINVAL); 11376 break; 11377 } 11378 11379 default: 11380 return (EINVAL); 11381 } 11382 11383 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11384 /* 11385 * If this is a data-storing action or a speculate, 11386 * we must be sure that there isn't a commit on the 11387 * action chain. 11388 */ 11389 dtrace_action_t *act = ecb->dte_action; 11390 11391 for (; act != NULL; act = act->dta_next) { 11392 if (act->dta_kind == DTRACEACT_COMMIT) 11393 return (EINVAL); 11394 } 11395 } 11396 11397 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11398 action->dta_rec.dtrd_size = size; 11399 } 11400 11401 action->dta_refcnt = 1; 11402 rec = &action->dta_rec; 11403 size = rec->dtrd_size; 11404 11405 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11406 if (!(size & mask)) { 11407 align = mask + 1; 11408 break; 11409 } 11410 } 11411 11412 action->dta_kind = desc->dtad_kind; 11413 11414 if ((action->dta_difo = dp) != NULL) 11415 dtrace_difo_hold(dp); 11416 11417 rec->dtrd_action = action->dta_kind; 11418 rec->dtrd_arg = arg; 11419 rec->dtrd_uarg = desc->dtad_uarg; 11420 rec->dtrd_alignment = (uint16_t)align; 11421 rec->dtrd_format = format; 11422 11423 if ((last = ecb->dte_action_last) != NULL) { 11424 ASSERT(ecb->dte_action != NULL); 11425 action->dta_prev = last; 11426 last->dta_next = action; 11427 } else { 11428 ASSERT(ecb->dte_action == NULL); 11429 ecb->dte_action = action; 11430 } 11431 11432 ecb->dte_action_last = action; 11433 11434 return (0); 11435 } 11436 11437 static void 11438 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11439 { 11440 dtrace_action_t *act = ecb->dte_action, *next; 11441 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11442 dtrace_difo_t *dp; 11443 uint16_t format; 11444 11445 if (act != NULL && act->dta_refcnt > 1) { 11446 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11447 act->dta_refcnt--; 11448 } else { 11449 for (; act != NULL; act = next) { 11450 next = act->dta_next; 11451 ASSERT(next != NULL || act == ecb->dte_action_last); 11452 ASSERT(act->dta_refcnt == 1); 11453 11454 if ((format = act->dta_rec.dtrd_format) != 0) 11455 dtrace_format_remove(ecb->dte_state, format); 11456 11457 if ((dp = act->dta_difo) != NULL) 11458 dtrace_difo_release(dp, vstate); 11459 11460 if (DTRACEACT_ISAGG(act->dta_kind)) { 11461 dtrace_ecb_aggregation_destroy(ecb, act); 11462 } else { 11463 kmem_free(act, sizeof (dtrace_action_t)); 11464 } 11465 } 11466 } 11467 11468 ecb->dte_action = NULL; 11469 ecb->dte_action_last = NULL; 11470 ecb->dte_size = 0; 11471 } 11472 11473 static void 11474 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11475 { 11476 /* 11477 * We disable the ECB by removing it from its probe. 11478 */ 11479 dtrace_ecb_t *pecb, *prev = NULL; 11480 dtrace_probe_t *probe = ecb->dte_probe; 11481 11482 ASSERT(MUTEX_HELD(&dtrace_lock)); 11483 11484 if (probe == NULL) { 11485 /* 11486 * This is the NULL probe; there is nothing to disable. 11487 */ 11488 return; 11489 } 11490 11491 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11492 if (pecb == ecb) 11493 break; 11494 prev = pecb; 11495 } 11496 11497 ASSERT(pecb != NULL); 11498 11499 if (prev == NULL) { 11500 probe->dtpr_ecb = ecb->dte_next; 11501 } else { 11502 prev->dte_next = ecb->dte_next; 11503 } 11504 11505 if (ecb == probe->dtpr_ecb_last) { 11506 ASSERT(ecb->dte_next == NULL); 11507 probe->dtpr_ecb_last = prev; 11508 } 11509 11510 /* 11511 * The ECB has been disconnected from the probe; now sync to assure 11512 * that all CPUs have seen the change before returning. 11513 */ 11514 dtrace_sync(); 11515 11516 if (probe->dtpr_ecb == NULL) { 11517 /* 11518 * That was the last ECB on the probe; clear the predicate 11519 * cache ID for the probe, disable it and sync one more time 11520 * to assure that we'll never hit it again. 11521 */ 11522 dtrace_provider_t *prov = probe->dtpr_provider; 11523 11524 ASSERT(ecb->dte_next == NULL); 11525 ASSERT(probe->dtpr_ecb_last == NULL); 11526 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11527 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11528 probe->dtpr_id, probe->dtpr_arg); 11529 dtrace_sync(); 11530 } else { 11531 /* 11532 * There is at least one ECB remaining on the probe. If there 11533 * is _exactly_ one, set the probe's predicate cache ID to be 11534 * the predicate cache ID of the remaining ECB. 11535 */ 11536 ASSERT(probe->dtpr_ecb_last != NULL); 11537 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11538 11539 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11540 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11541 11542 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11543 11544 if (p != NULL) 11545 probe->dtpr_predcache = p->dtp_cacheid; 11546 } 11547 11548 ecb->dte_next = NULL; 11549 } 11550 } 11551 11552 static void 11553 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11554 { 11555 dtrace_state_t *state = ecb->dte_state; 11556 dtrace_vstate_t *vstate = &state->dts_vstate; 11557 dtrace_predicate_t *pred; 11558 dtrace_epid_t epid = ecb->dte_epid; 11559 11560 ASSERT(MUTEX_HELD(&dtrace_lock)); 11561 ASSERT(ecb->dte_next == NULL); 11562 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11563 11564 if ((pred = ecb->dte_predicate) != NULL) 11565 dtrace_predicate_release(pred, vstate); 11566 11567 dtrace_ecb_action_remove(ecb); 11568 11569 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11570 state->dts_ecbs[epid - 1] = NULL; 11571 11572 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11573 } 11574 11575 static dtrace_ecb_t * 11576 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11577 dtrace_enabling_t *enab) 11578 { 11579 dtrace_ecb_t *ecb; 11580 dtrace_predicate_t *pred; 11581 dtrace_actdesc_t *act; 11582 dtrace_provider_t *prov; 11583 dtrace_ecbdesc_t *desc = enab->dten_current; 11584 11585 ASSERT(MUTEX_HELD(&dtrace_lock)); 11586 ASSERT(state != NULL); 11587 11588 ecb = dtrace_ecb_add(state, probe); 11589 ecb->dte_uarg = desc->dted_uarg; 11590 11591 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11592 dtrace_predicate_hold(pred); 11593 ecb->dte_predicate = pred; 11594 } 11595 11596 if (probe != NULL) { 11597 /* 11598 * If the provider shows more leg than the consumer is old 11599 * enough to see, we need to enable the appropriate implicit 11600 * predicate bits to prevent the ecb from activating at 11601 * revealing times. 11602 * 11603 * Providers specifying DTRACE_PRIV_USER at register time 11604 * are stating that they need the /proc-style privilege 11605 * model to be enforced, and this is what DTRACE_COND_OWNER 11606 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11607 */ 11608 prov = probe->dtpr_provider; 11609 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11610 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11611 ecb->dte_cond |= DTRACE_COND_OWNER; 11612 11613 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11614 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11615 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11616 11617 /* 11618 * If the provider shows us kernel innards and the user 11619 * is lacking sufficient privilege, enable the 11620 * DTRACE_COND_USERMODE implicit predicate. 11621 */ 11622 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11623 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11624 ecb->dte_cond |= DTRACE_COND_USERMODE; 11625 } 11626 11627 if (dtrace_ecb_create_cache != NULL) { 11628 /* 11629 * If we have a cached ecb, we'll use its action list instead 11630 * of creating our own (saving both time and space). 11631 */ 11632 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11633 dtrace_action_t *act = cached->dte_action; 11634 11635 if (act != NULL) { 11636 ASSERT(act->dta_refcnt > 0); 11637 act->dta_refcnt++; 11638 ecb->dte_action = act; 11639 ecb->dte_action_last = cached->dte_action_last; 11640 ecb->dte_needed = cached->dte_needed; 11641 ecb->dte_size = cached->dte_size; 11642 ecb->dte_alignment = cached->dte_alignment; 11643 } 11644 11645 return (ecb); 11646 } 11647 11648 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11649 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11650 dtrace_ecb_destroy(ecb); 11651 return (NULL); 11652 } 11653 } 11654 11655 dtrace_ecb_resize(ecb); 11656 11657 return (dtrace_ecb_create_cache = ecb); 11658 } 11659 11660 static int 11661 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11662 { 11663 dtrace_ecb_t *ecb; 11664 dtrace_enabling_t *enab = arg; 11665 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11666 11667 ASSERT(state != NULL); 11668 11669 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11670 /* 11671 * This probe was created in a generation for which this 11672 * enabling has previously created ECBs; we don't want to 11673 * enable it again, so just kick out. 11674 */ 11675 return (DTRACE_MATCH_NEXT); 11676 } 11677 11678 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11679 return (DTRACE_MATCH_DONE); 11680 11681 dtrace_ecb_enable(ecb); 11682 return (DTRACE_MATCH_NEXT); 11683 } 11684 11685 static dtrace_ecb_t * 11686 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11687 { 11688 dtrace_ecb_t *ecb; 11689 11690 ASSERT(MUTEX_HELD(&dtrace_lock)); 11691 11692 if (id == 0 || id > state->dts_necbs) 11693 return (NULL); 11694 11695 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11696 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11697 11698 return (state->dts_ecbs[id - 1]); 11699 } 11700 11701 static dtrace_aggregation_t * 11702 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11703 { 11704 dtrace_aggregation_t *agg; 11705 11706 ASSERT(MUTEX_HELD(&dtrace_lock)); 11707 11708 if (id == 0 || id > state->dts_naggregations) 11709 return (NULL); 11710 11711 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11712 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11713 agg->dtag_id == id); 11714 11715 return (state->dts_aggregations[id - 1]); 11716 } 11717 11718 /* 11719 * DTrace Buffer Functions 11720 * 11721 * The following functions manipulate DTrace buffers. Most of these functions 11722 * are called in the context of establishing or processing consumer state; 11723 * exceptions are explicitly noted. 11724 */ 11725 11726 /* 11727 * Note: called from cross call context. This function switches the two 11728 * buffers on a given CPU. The atomicity of this operation is assured by 11729 * disabling interrupts while the actual switch takes place; the disabling of 11730 * interrupts serializes the execution with any execution of dtrace_probe() on 11731 * the same CPU. 11732 */ 11733 static void 11734 dtrace_buffer_switch(dtrace_buffer_t *buf) 11735 { 11736 caddr_t tomax = buf->dtb_tomax; 11737 caddr_t xamot = buf->dtb_xamot; 11738 dtrace_icookie_t cookie; 11739 hrtime_t now; 11740 11741 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11742 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11743 11744 cookie = dtrace_interrupt_disable(); 11745 now = dtrace_gethrtime(); 11746 buf->dtb_tomax = xamot; 11747 buf->dtb_xamot = tomax; 11748 buf->dtb_xamot_drops = buf->dtb_drops; 11749 buf->dtb_xamot_offset = buf->dtb_offset; 11750 buf->dtb_xamot_errors = buf->dtb_errors; 11751 buf->dtb_xamot_flags = buf->dtb_flags; 11752 buf->dtb_offset = 0; 11753 buf->dtb_drops = 0; 11754 buf->dtb_errors = 0; 11755 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11756 buf->dtb_interval = now - buf->dtb_switched; 11757 buf->dtb_switched = now; 11758 dtrace_interrupt_enable(cookie); 11759 } 11760 11761 /* 11762 * Note: called from cross call context. This function activates a buffer 11763 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11764 * is guaranteed by the disabling of interrupts. 11765 */ 11766 static void 11767 dtrace_buffer_activate(dtrace_state_t *state) 11768 { 11769 dtrace_buffer_t *buf; 11770 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11771 11772 buf = &state->dts_buffer[curcpu]; 11773 11774 if (buf->dtb_tomax != NULL) { 11775 /* 11776 * We might like to assert that the buffer is marked inactive, 11777 * but this isn't necessarily true: the buffer for the CPU 11778 * that processes the BEGIN probe has its buffer activated 11779 * manually. In this case, we take the (harmless) action 11780 * re-clearing the bit INACTIVE bit. 11781 */ 11782 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11783 } 11784 11785 dtrace_interrupt_enable(cookie); 11786 } 11787 11788 static int 11789 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11790 processorid_t cpu, int *factor) 11791 { 11792 #if defined(sun) 11793 cpu_t *cp; 11794 #endif 11795 dtrace_buffer_t *buf; 11796 int allocated = 0, desired = 0; 11797 11798 #if defined(sun) 11799 ASSERT(MUTEX_HELD(&cpu_lock)); 11800 ASSERT(MUTEX_HELD(&dtrace_lock)); 11801 11802 *factor = 1; 11803 11804 if (size > dtrace_nonroot_maxsize && 11805 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11806 return (EFBIG); 11807 11808 cp = cpu_list; 11809 11810 do { 11811 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11812 continue; 11813 11814 buf = &bufs[cp->cpu_id]; 11815 11816 /* 11817 * If there is already a buffer allocated for this CPU, it 11818 * is only possible that this is a DR event. In this case, 11819 */ 11820 if (buf->dtb_tomax != NULL) { 11821 ASSERT(buf->dtb_size == size); 11822 continue; 11823 } 11824 11825 ASSERT(buf->dtb_xamot == NULL); 11826 11827 if ((buf->dtb_tomax = kmem_zalloc(size, 11828 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11829 goto err; 11830 11831 buf->dtb_size = size; 11832 buf->dtb_flags = flags; 11833 buf->dtb_offset = 0; 11834 buf->dtb_drops = 0; 11835 11836 if (flags & DTRACEBUF_NOSWITCH) 11837 continue; 11838 11839 if ((buf->dtb_xamot = kmem_zalloc(size, 11840 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11841 goto err; 11842 } while ((cp = cp->cpu_next) != cpu_list); 11843 11844 return (0); 11845 11846 err: 11847 cp = cpu_list; 11848 11849 do { 11850 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11851 continue; 11852 11853 buf = &bufs[cp->cpu_id]; 11854 desired += 2; 11855 11856 if (buf->dtb_xamot != NULL) { 11857 ASSERT(buf->dtb_tomax != NULL); 11858 ASSERT(buf->dtb_size == size); 11859 kmem_free(buf->dtb_xamot, size); 11860 allocated++; 11861 } 11862 11863 if (buf->dtb_tomax != NULL) { 11864 ASSERT(buf->dtb_size == size); 11865 kmem_free(buf->dtb_tomax, size); 11866 allocated++; 11867 } 11868 11869 buf->dtb_tomax = NULL; 11870 buf->dtb_xamot = NULL; 11871 buf->dtb_size = 0; 11872 } while ((cp = cp->cpu_next) != cpu_list); 11873 #else 11874 int i; 11875 11876 *factor = 1; 11877 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__) 11878 /* 11879 * FreeBSD isn't good at limiting the amount of memory we 11880 * ask to malloc, so let's place a limit here before trying 11881 * to do something that might well end in tears at bedtime. 11882 */ 11883 if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) 11884 return (ENOMEM); 11885 #endif 11886 11887 ASSERT(MUTEX_HELD(&dtrace_lock)); 11888 CPU_FOREACH(i) { 11889 if (cpu != DTRACE_CPUALL && cpu != i) 11890 continue; 11891 11892 buf = &bufs[i]; 11893 11894 /* 11895 * If there is already a buffer allocated for this CPU, it 11896 * is only possible that this is a DR event. In this case, 11897 * the buffer size must match our specified size. 11898 */ 11899 if (buf->dtb_tomax != NULL) { 11900 ASSERT(buf->dtb_size == size); 11901 continue; 11902 } 11903 11904 ASSERT(buf->dtb_xamot == NULL); 11905 11906 if ((buf->dtb_tomax = kmem_zalloc(size, 11907 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11908 goto err; 11909 11910 buf->dtb_size = size; 11911 buf->dtb_flags = flags; 11912 buf->dtb_offset = 0; 11913 buf->dtb_drops = 0; 11914 11915 if (flags & DTRACEBUF_NOSWITCH) 11916 continue; 11917 11918 if ((buf->dtb_xamot = kmem_zalloc(size, 11919 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11920 goto err; 11921 } 11922 11923 return (0); 11924 11925 err: 11926 /* 11927 * Error allocating memory, so free the buffers that were 11928 * allocated before the failed allocation. 11929 */ 11930 CPU_FOREACH(i) { 11931 if (cpu != DTRACE_CPUALL && cpu != i) 11932 continue; 11933 11934 buf = &bufs[i]; 11935 desired += 2; 11936 11937 if (buf->dtb_xamot != NULL) { 11938 ASSERT(buf->dtb_tomax != NULL); 11939 ASSERT(buf->dtb_size == size); 11940 kmem_free(buf->dtb_xamot, size); 11941 allocated++; 11942 } 11943 11944 if (buf->dtb_tomax != NULL) { 11945 ASSERT(buf->dtb_size == size); 11946 kmem_free(buf->dtb_tomax, size); 11947 allocated++; 11948 } 11949 11950 buf->dtb_tomax = NULL; 11951 buf->dtb_xamot = NULL; 11952 buf->dtb_size = 0; 11953 11954 } 11955 #endif 11956 *factor = desired / (allocated > 0 ? allocated : 1); 11957 11958 return (ENOMEM); 11959 } 11960 11961 /* 11962 * Note: called from probe context. This function just increments the drop 11963 * count on a buffer. It has been made a function to allow for the 11964 * possibility of understanding the source of mysterious drop counts. (A 11965 * problem for which one may be particularly disappointed that DTrace cannot 11966 * be used to understand DTrace.) 11967 */ 11968 static void 11969 dtrace_buffer_drop(dtrace_buffer_t *buf) 11970 { 11971 buf->dtb_drops++; 11972 } 11973 11974 /* 11975 * Note: called from probe context. This function is called to reserve space 11976 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11977 * mstate. Returns the new offset in the buffer, or a negative value if an 11978 * error has occurred. 11979 */ 11980 static intptr_t 11981 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11982 dtrace_state_t *state, dtrace_mstate_t *mstate) 11983 { 11984 intptr_t offs = buf->dtb_offset, soffs; 11985 intptr_t woffs; 11986 caddr_t tomax; 11987 size_t total; 11988 11989 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11990 return (-1); 11991 11992 if ((tomax = buf->dtb_tomax) == NULL) { 11993 dtrace_buffer_drop(buf); 11994 return (-1); 11995 } 11996 11997 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11998 while (offs & (align - 1)) { 11999 /* 12000 * Assert that our alignment is off by a number which 12001 * is itself sizeof (uint32_t) aligned. 12002 */ 12003 ASSERT(!((align - (offs & (align - 1))) & 12004 (sizeof (uint32_t) - 1))); 12005 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12006 offs += sizeof (uint32_t); 12007 } 12008 12009 if ((soffs = offs + needed) > buf->dtb_size) { 12010 dtrace_buffer_drop(buf); 12011 return (-1); 12012 } 12013 12014 if (mstate == NULL) 12015 return (offs); 12016 12017 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12018 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12019 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12020 12021 return (offs); 12022 } 12023 12024 if (buf->dtb_flags & DTRACEBUF_FILL) { 12025 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12026 (buf->dtb_flags & DTRACEBUF_FULL)) 12027 return (-1); 12028 goto out; 12029 } 12030 12031 total = needed + (offs & (align - 1)); 12032 12033 /* 12034 * For a ring buffer, life is quite a bit more complicated. Before 12035 * we can store any padding, we need to adjust our wrapping offset. 12036 * (If we've never before wrapped or we're not about to, no adjustment 12037 * is required.) 12038 */ 12039 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12040 offs + total > buf->dtb_size) { 12041 woffs = buf->dtb_xamot_offset; 12042 12043 if (offs + total > buf->dtb_size) { 12044 /* 12045 * We can't fit in the end of the buffer. First, a 12046 * sanity check that we can fit in the buffer at all. 12047 */ 12048 if (total > buf->dtb_size) { 12049 dtrace_buffer_drop(buf); 12050 return (-1); 12051 } 12052 12053 /* 12054 * We're going to be storing at the top of the buffer, 12055 * so now we need to deal with the wrapped offset. We 12056 * only reset our wrapped offset to 0 if it is 12057 * currently greater than the current offset. If it 12058 * is less than the current offset, it is because a 12059 * previous allocation induced a wrap -- but the 12060 * allocation didn't subsequently take the space due 12061 * to an error or false predicate evaluation. In this 12062 * case, we'll just leave the wrapped offset alone: if 12063 * the wrapped offset hasn't been advanced far enough 12064 * for this allocation, it will be adjusted in the 12065 * lower loop. 12066 */ 12067 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12068 if (woffs >= offs) 12069 woffs = 0; 12070 } else { 12071 woffs = 0; 12072 } 12073 12074 /* 12075 * Now we know that we're going to be storing to the 12076 * top of the buffer and that there is room for us 12077 * there. We need to clear the buffer from the current 12078 * offset to the end (there may be old gunk there). 12079 */ 12080 while (offs < buf->dtb_size) 12081 tomax[offs++] = 0; 12082 12083 /* 12084 * We need to set our offset to zero. And because we 12085 * are wrapping, we need to set the bit indicating as 12086 * much. We can also adjust our needed space back 12087 * down to the space required by the ECB -- we know 12088 * that the top of the buffer is aligned. 12089 */ 12090 offs = 0; 12091 total = needed; 12092 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12093 } else { 12094 /* 12095 * There is room for us in the buffer, so we simply 12096 * need to check the wrapped offset. 12097 */ 12098 if (woffs < offs) { 12099 /* 12100 * The wrapped offset is less than the offset. 12101 * This can happen if we allocated buffer space 12102 * that induced a wrap, but then we didn't 12103 * subsequently take the space due to an error 12104 * or false predicate evaluation. This is 12105 * okay; we know that _this_ allocation isn't 12106 * going to induce a wrap. We still can't 12107 * reset the wrapped offset to be zero, 12108 * however: the space may have been trashed in 12109 * the previous failed probe attempt. But at 12110 * least the wrapped offset doesn't need to 12111 * be adjusted at all... 12112 */ 12113 goto out; 12114 } 12115 } 12116 12117 while (offs + total > woffs) { 12118 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12119 size_t size; 12120 12121 if (epid == DTRACE_EPIDNONE) { 12122 size = sizeof (uint32_t); 12123 } else { 12124 ASSERT3U(epid, <=, state->dts_necbs); 12125 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12126 12127 size = state->dts_ecbs[epid - 1]->dte_size; 12128 } 12129 12130 ASSERT(woffs + size <= buf->dtb_size); 12131 ASSERT(size != 0); 12132 12133 if (woffs + size == buf->dtb_size) { 12134 /* 12135 * We've reached the end of the buffer; we want 12136 * to set the wrapped offset to 0 and break 12137 * out. However, if the offs is 0, then we're 12138 * in a strange edge-condition: the amount of 12139 * space that we want to reserve plus the size 12140 * of the record that we're overwriting is 12141 * greater than the size of the buffer. This 12142 * is problematic because if we reserve the 12143 * space but subsequently don't consume it (due 12144 * to a failed predicate or error) the wrapped 12145 * offset will be 0 -- yet the EPID at offset 0 12146 * will not be committed. This situation is 12147 * relatively easy to deal with: if we're in 12148 * this case, the buffer is indistinguishable 12149 * from one that hasn't wrapped; we need only 12150 * finish the job by clearing the wrapped bit, 12151 * explicitly setting the offset to be 0, and 12152 * zero'ing out the old data in the buffer. 12153 */ 12154 if (offs == 0) { 12155 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12156 buf->dtb_offset = 0; 12157 woffs = total; 12158 12159 while (woffs < buf->dtb_size) 12160 tomax[woffs++] = 0; 12161 } 12162 12163 woffs = 0; 12164 break; 12165 } 12166 12167 woffs += size; 12168 } 12169 12170 /* 12171 * We have a wrapped offset. It may be that the wrapped offset 12172 * has become zero -- that's okay. 12173 */ 12174 buf->dtb_xamot_offset = woffs; 12175 } 12176 12177 out: 12178 /* 12179 * Now we can plow the buffer with any necessary padding. 12180 */ 12181 while (offs & (align - 1)) { 12182 /* 12183 * Assert that our alignment is off by a number which 12184 * is itself sizeof (uint32_t) aligned. 12185 */ 12186 ASSERT(!((align - (offs & (align - 1))) & 12187 (sizeof (uint32_t) - 1))); 12188 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12189 offs += sizeof (uint32_t); 12190 } 12191 12192 if (buf->dtb_flags & DTRACEBUF_FILL) { 12193 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12194 buf->dtb_flags |= DTRACEBUF_FULL; 12195 return (-1); 12196 } 12197 } 12198 12199 if (mstate == NULL) 12200 return (offs); 12201 12202 /* 12203 * For ring buffers and fill buffers, the scratch space is always 12204 * the inactive buffer. 12205 */ 12206 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12207 mstate->dtms_scratch_size = buf->dtb_size; 12208 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12209 12210 return (offs); 12211 } 12212 12213 static void 12214 dtrace_buffer_polish(dtrace_buffer_t *buf) 12215 { 12216 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12217 ASSERT(MUTEX_HELD(&dtrace_lock)); 12218 12219 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12220 return; 12221 12222 /* 12223 * We need to polish the ring buffer. There are three cases: 12224 * 12225 * - The first (and presumably most common) is that there is no gap 12226 * between the buffer offset and the wrapped offset. In this case, 12227 * there is nothing in the buffer that isn't valid data; we can 12228 * mark the buffer as polished and return. 12229 * 12230 * - The second (less common than the first but still more common 12231 * than the third) is that there is a gap between the buffer offset 12232 * and the wrapped offset, and the wrapped offset is larger than the 12233 * buffer offset. This can happen because of an alignment issue, or 12234 * can happen because of a call to dtrace_buffer_reserve() that 12235 * didn't subsequently consume the buffer space. In this case, 12236 * we need to zero the data from the buffer offset to the wrapped 12237 * offset. 12238 * 12239 * - The third (and least common) is that there is a gap between the 12240 * buffer offset and the wrapped offset, but the wrapped offset is 12241 * _less_ than the buffer offset. This can only happen because a 12242 * call to dtrace_buffer_reserve() induced a wrap, but the space 12243 * was not subsequently consumed. In this case, we need to zero the 12244 * space from the offset to the end of the buffer _and_ from the 12245 * top of the buffer to the wrapped offset. 12246 */ 12247 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12248 bzero(buf->dtb_tomax + buf->dtb_offset, 12249 buf->dtb_xamot_offset - buf->dtb_offset); 12250 } 12251 12252 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12253 bzero(buf->dtb_tomax + buf->dtb_offset, 12254 buf->dtb_size - buf->dtb_offset); 12255 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12256 } 12257 } 12258 12259 /* 12260 * This routine determines if data generated at the specified time has likely 12261 * been entirely consumed at user-level. This routine is called to determine 12262 * if an ECB on a defunct probe (but for an active enabling) can be safely 12263 * disabled and destroyed. 12264 */ 12265 static int 12266 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12267 { 12268 int i; 12269 12270 for (i = 0; i < NCPU; i++) { 12271 dtrace_buffer_t *buf = &bufs[i]; 12272 12273 if (buf->dtb_size == 0) 12274 continue; 12275 12276 if (buf->dtb_flags & DTRACEBUF_RING) 12277 return (0); 12278 12279 if (!buf->dtb_switched && buf->dtb_offset != 0) 12280 return (0); 12281 12282 if (buf->dtb_switched - buf->dtb_interval < when) 12283 return (0); 12284 } 12285 12286 return (1); 12287 } 12288 12289 static void 12290 dtrace_buffer_free(dtrace_buffer_t *bufs) 12291 { 12292 int i; 12293 12294 for (i = 0; i < NCPU; i++) { 12295 dtrace_buffer_t *buf = &bufs[i]; 12296 12297 if (buf->dtb_tomax == NULL) { 12298 ASSERT(buf->dtb_xamot == NULL); 12299 ASSERT(buf->dtb_size == 0); 12300 continue; 12301 } 12302 12303 if (buf->dtb_xamot != NULL) { 12304 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12305 kmem_free(buf->dtb_xamot, buf->dtb_size); 12306 } 12307 12308 kmem_free(buf->dtb_tomax, buf->dtb_size); 12309 buf->dtb_size = 0; 12310 buf->dtb_tomax = NULL; 12311 buf->dtb_xamot = NULL; 12312 } 12313 } 12314 12315 /* 12316 * DTrace Enabling Functions 12317 */ 12318 static dtrace_enabling_t * 12319 dtrace_enabling_create(dtrace_vstate_t *vstate) 12320 { 12321 dtrace_enabling_t *enab; 12322 12323 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12324 enab->dten_vstate = vstate; 12325 12326 return (enab); 12327 } 12328 12329 static void 12330 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12331 { 12332 dtrace_ecbdesc_t **ndesc; 12333 size_t osize, nsize; 12334 12335 /* 12336 * We can't add to enablings after we've enabled them, or after we've 12337 * retained them. 12338 */ 12339 ASSERT(enab->dten_probegen == 0); 12340 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12341 12342 if (enab->dten_ndesc < enab->dten_maxdesc) { 12343 enab->dten_desc[enab->dten_ndesc++] = ecb; 12344 return; 12345 } 12346 12347 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12348 12349 if (enab->dten_maxdesc == 0) { 12350 enab->dten_maxdesc = 1; 12351 } else { 12352 enab->dten_maxdesc <<= 1; 12353 } 12354 12355 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12356 12357 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12358 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12359 bcopy(enab->dten_desc, ndesc, osize); 12360 if (enab->dten_desc != NULL) 12361 kmem_free(enab->dten_desc, osize); 12362 12363 enab->dten_desc = ndesc; 12364 enab->dten_desc[enab->dten_ndesc++] = ecb; 12365 } 12366 12367 static void 12368 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12369 dtrace_probedesc_t *pd) 12370 { 12371 dtrace_ecbdesc_t *new; 12372 dtrace_predicate_t *pred; 12373 dtrace_actdesc_t *act; 12374 12375 /* 12376 * We're going to create a new ECB description that matches the 12377 * specified ECB in every way, but has the specified probe description. 12378 */ 12379 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12380 12381 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12382 dtrace_predicate_hold(pred); 12383 12384 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12385 dtrace_actdesc_hold(act); 12386 12387 new->dted_action = ecb->dted_action; 12388 new->dted_pred = ecb->dted_pred; 12389 new->dted_probe = *pd; 12390 new->dted_uarg = ecb->dted_uarg; 12391 12392 dtrace_enabling_add(enab, new); 12393 } 12394 12395 static void 12396 dtrace_enabling_dump(dtrace_enabling_t *enab) 12397 { 12398 int i; 12399 12400 for (i = 0; i < enab->dten_ndesc; i++) { 12401 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12402 12403 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12404 desc->dtpd_provider, desc->dtpd_mod, 12405 desc->dtpd_func, desc->dtpd_name); 12406 } 12407 } 12408 12409 static void 12410 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12411 { 12412 int i; 12413 dtrace_ecbdesc_t *ep; 12414 dtrace_vstate_t *vstate = enab->dten_vstate; 12415 12416 ASSERT(MUTEX_HELD(&dtrace_lock)); 12417 12418 for (i = 0; i < enab->dten_ndesc; i++) { 12419 dtrace_actdesc_t *act, *next; 12420 dtrace_predicate_t *pred; 12421 12422 ep = enab->dten_desc[i]; 12423 12424 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12425 dtrace_predicate_release(pred, vstate); 12426 12427 for (act = ep->dted_action; act != NULL; act = next) { 12428 next = act->dtad_next; 12429 dtrace_actdesc_release(act, vstate); 12430 } 12431 12432 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12433 } 12434 12435 if (enab->dten_desc != NULL) 12436 kmem_free(enab->dten_desc, 12437 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12438 12439 /* 12440 * If this was a retained enabling, decrement the dts_nretained count 12441 * and take it off of the dtrace_retained list. 12442 */ 12443 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12444 dtrace_retained == enab) { 12445 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12446 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12447 enab->dten_vstate->dtvs_state->dts_nretained--; 12448 dtrace_retained_gen++; 12449 } 12450 12451 if (enab->dten_prev == NULL) { 12452 if (dtrace_retained == enab) { 12453 dtrace_retained = enab->dten_next; 12454 12455 if (dtrace_retained != NULL) 12456 dtrace_retained->dten_prev = NULL; 12457 } 12458 } else { 12459 ASSERT(enab != dtrace_retained); 12460 ASSERT(dtrace_retained != NULL); 12461 enab->dten_prev->dten_next = enab->dten_next; 12462 } 12463 12464 if (enab->dten_next != NULL) { 12465 ASSERT(dtrace_retained != NULL); 12466 enab->dten_next->dten_prev = enab->dten_prev; 12467 } 12468 12469 kmem_free(enab, sizeof (dtrace_enabling_t)); 12470 } 12471 12472 static int 12473 dtrace_enabling_retain(dtrace_enabling_t *enab) 12474 { 12475 dtrace_state_t *state; 12476 12477 ASSERT(MUTEX_HELD(&dtrace_lock)); 12478 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12479 ASSERT(enab->dten_vstate != NULL); 12480 12481 state = enab->dten_vstate->dtvs_state; 12482 ASSERT(state != NULL); 12483 12484 /* 12485 * We only allow each state to retain dtrace_retain_max enablings. 12486 */ 12487 if (state->dts_nretained >= dtrace_retain_max) 12488 return (ENOSPC); 12489 12490 state->dts_nretained++; 12491 dtrace_retained_gen++; 12492 12493 if (dtrace_retained == NULL) { 12494 dtrace_retained = enab; 12495 return (0); 12496 } 12497 12498 enab->dten_next = dtrace_retained; 12499 dtrace_retained->dten_prev = enab; 12500 dtrace_retained = enab; 12501 12502 return (0); 12503 } 12504 12505 static int 12506 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12507 dtrace_probedesc_t *create) 12508 { 12509 dtrace_enabling_t *new, *enab; 12510 int found = 0, err = ENOENT; 12511 12512 ASSERT(MUTEX_HELD(&dtrace_lock)); 12513 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12514 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12515 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12516 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12517 12518 new = dtrace_enabling_create(&state->dts_vstate); 12519 12520 /* 12521 * Iterate over all retained enablings, looking for enablings that 12522 * match the specified state. 12523 */ 12524 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12525 int i; 12526 12527 /* 12528 * dtvs_state can only be NULL for helper enablings -- and 12529 * helper enablings can't be retained. 12530 */ 12531 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12532 12533 if (enab->dten_vstate->dtvs_state != state) 12534 continue; 12535 12536 /* 12537 * Now iterate over each probe description; we're looking for 12538 * an exact match to the specified probe description. 12539 */ 12540 for (i = 0; i < enab->dten_ndesc; i++) { 12541 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12542 dtrace_probedesc_t *pd = &ep->dted_probe; 12543 12544 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12545 continue; 12546 12547 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12548 continue; 12549 12550 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12551 continue; 12552 12553 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12554 continue; 12555 12556 /* 12557 * We have a winning probe! Add it to our growing 12558 * enabling. 12559 */ 12560 found = 1; 12561 dtrace_enabling_addlike(new, ep, create); 12562 } 12563 } 12564 12565 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12566 dtrace_enabling_destroy(new); 12567 return (err); 12568 } 12569 12570 return (0); 12571 } 12572 12573 static void 12574 dtrace_enabling_retract(dtrace_state_t *state) 12575 { 12576 dtrace_enabling_t *enab, *next; 12577 12578 ASSERT(MUTEX_HELD(&dtrace_lock)); 12579 12580 /* 12581 * Iterate over all retained enablings, destroy the enablings retained 12582 * for the specified state. 12583 */ 12584 for (enab = dtrace_retained; enab != NULL; enab = next) { 12585 next = enab->dten_next; 12586 12587 /* 12588 * dtvs_state can only be NULL for helper enablings -- and 12589 * helper enablings can't be retained. 12590 */ 12591 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12592 12593 if (enab->dten_vstate->dtvs_state == state) { 12594 ASSERT(state->dts_nretained > 0); 12595 dtrace_enabling_destroy(enab); 12596 } 12597 } 12598 12599 ASSERT(state->dts_nretained == 0); 12600 } 12601 12602 static int 12603 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12604 { 12605 int i = 0; 12606 int matched = 0; 12607 12608 ASSERT(MUTEX_HELD(&cpu_lock)); 12609 ASSERT(MUTEX_HELD(&dtrace_lock)); 12610 12611 for (i = 0; i < enab->dten_ndesc; i++) { 12612 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12613 12614 enab->dten_current = ep; 12615 enab->dten_error = 0; 12616 12617 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12618 12619 if (enab->dten_error != 0) { 12620 /* 12621 * If we get an error half-way through enabling the 12622 * probes, we kick out -- perhaps with some number of 12623 * them enabled. Leaving enabled probes enabled may 12624 * be slightly confusing for user-level, but we expect 12625 * that no one will attempt to actually drive on in 12626 * the face of such errors. If this is an anonymous 12627 * enabling (indicated with a NULL nmatched pointer), 12628 * we cmn_err() a message. We aren't expecting to 12629 * get such an error -- such as it can exist at all, 12630 * it would be a result of corrupted DOF in the driver 12631 * properties. 12632 */ 12633 if (nmatched == NULL) { 12634 cmn_err(CE_WARN, "dtrace_enabling_match() " 12635 "error on %p: %d", (void *)ep, 12636 enab->dten_error); 12637 } 12638 12639 return (enab->dten_error); 12640 } 12641 } 12642 12643 enab->dten_probegen = dtrace_probegen; 12644 if (nmatched != NULL) 12645 *nmatched = matched; 12646 12647 return (0); 12648 } 12649 12650 static void 12651 dtrace_enabling_matchall(void) 12652 { 12653 dtrace_enabling_t *enab; 12654 12655 mutex_enter(&cpu_lock); 12656 mutex_enter(&dtrace_lock); 12657 12658 /* 12659 * Iterate over all retained enablings to see if any probes match 12660 * against them. We only perform this operation on enablings for which 12661 * we have sufficient permissions by virtue of being in the global zone 12662 * or in the same zone as the DTrace client. Because we can be called 12663 * after dtrace_detach() has been called, we cannot assert that there 12664 * are retained enablings. We can safely load from dtrace_retained, 12665 * however: the taskq_destroy() at the end of dtrace_detach() will 12666 * block pending our completion. 12667 */ 12668 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12669 #if defined(sun) 12670 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 12671 12672 if (INGLOBALZONE(curproc) || 12673 cr != NULL && getzoneid() == crgetzoneid(cr)) 12674 #endif 12675 (void) dtrace_enabling_match(enab, NULL); 12676 } 12677 12678 mutex_exit(&dtrace_lock); 12679 mutex_exit(&cpu_lock); 12680 } 12681 12682 /* 12683 * If an enabling is to be enabled without having matched probes (that is, if 12684 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12685 * enabling must be _primed_ by creating an ECB for every ECB description. 12686 * This must be done to assure that we know the number of speculations, the 12687 * number of aggregations, the minimum buffer size needed, etc. before we 12688 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12689 * enabling any probes, we create ECBs for every ECB decription, but with a 12690 * NULL probe -- which is exactly what this function does. 12691 */ 12692 static void 12693 dtrace_enabling_prime(dtrace_state_t *state) 12694 { 12695 dtrace_enabling_t *enab; 12696 int i; 12697 12698 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12699 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12700 12701 if (enab->dten_vstate->dtvs_state != state) 12702 continue; 12703 12704 /* 12705 * We don't want to prime an enabling more than once, lest 12706 * we allow a malicious user to induce resource exhaustion. 12707 * (The ECBs that result from priming an enabling aren't 12708 * leaked -- but they also aren't deallocated until the 12709 * consumer state is destroyed.) 12710 */ 12711 if (enab->dten_primed) 12712 continue; 12713 12714 for (i = 0; i < enab->dten_ndesc; i++) { 12715 enab->dten_current = enab->dten_desc[i]; 12716 (void) dtrace_probe_enable(NULL, enab); 12717 } 12718 12719 enab->dten_primed = 1; 12720 } 12721 } 12722 12723 /* 12724 * Called to indicate that probes should be provided due to retained 12725 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12726 * must take an initial lap through the enabling calling the dtps_provide() 12727 * entry point explicitly to allow for autocreated probes. 12728 */ 12729 static void 12730 dtrace_enabling_provide(dtrace_provider_t *prv) 12731 { 12732 int i, all = 0; 12733 dtrace_probedesc_t desc; 12734 dtrace_genid_t gen; 12735 12736 ASSERT(MUTEX_HELD(&dtrace_lock)); 12737 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12738 12739 if (prv == NULL) { 12740 all = 1; 12741 prv = dtrace_provider; 12742 } 12743 12744 do { 12745 dtrace_enabling_t *enab; 12746 void *parg = prv->dtpv_arg; 12747 12748 retry: 12749 gen = dtrace_retained_gen; 12750 for (enab = dtrace_retained; enab != NULL; 12751 enab = enab->dten_next) { 12752 for (i = 0; i < enab->dten_ndesc; i++) { 12753 desc = enab->dten_desc[i]->dted_probe; 12754 mutex_exit(&dtrace_lock); 12755 prv->dtpv_pops.dtps_provide(parg, &desc); 12756 mutex_enter(&dtrace_lock); 12757 /* 12758 * Process the retained enablings again if 12759 * they have changed while we weren't holding 12760 * dtrace_lock. 12761 */ 12762 if (gen != dtrace_retained_gen) 12763 goto retry; 12764 } 12765 } 12766 } while (all && (prv = prv->dtpv_next) != NULL); 12767 12768 mutex_exit(&dtrace_lock); 12769 dtrace_probe_provide(NULL, all ? NULL : prv); 12770 mutex_enter(&dtrace_lock); 12771 } 12772 12773 /* 12774 * Called to reap ECBs that are attached to probes from defunct providers. 12775 */ 12776 static void 12777 dtrace_enabling_reap(void) 12778 { 12779 dtrace_provider_t *prov; 12780 dtrace_probe_t *probe; 12781 dtrace_ecb_t *ecb; 12782 hrtime_t when; 12783 int i; 12784 12785 mutex_enter(&cpu_lock); 12786 mutex_enter(&dtrace_lock); 12787 12788 for (i = 0; i < dtrace_nprobes; i++) { 12789 if ((probe = dtrace_probes[i]) == NULL) 12790 continue; 12791 12792 if (probe->dtpr_ecb == NULL) 12793 continue; 12794 12795 prov = probe->dtpr_provider; 12796 12797 if ((when = prov->dtpv_defunct) == 0) 12798 continue; 12799 12800 /* 12801 * We have ECBs on a defunct provider: we want to reap these 12802 * ECBs to allow the provider to unregister. The destruction 12803 * of these ECBs must be done carefully: if we destroy the ECB 12804 * and the consumer later wishes to consume an EPID that 12805 * corresponds to the destroyed ECB (and if the EPID metadata 12806 * has not been previously consumed), the consumer will abort 12807 * processing on the unknown EPID. To reduce (but not, sadly, 12808 * eliminate) the possibility of this, we will only destroy an 12809 * ECB for a defunct provider if, for the state that 12810 * corresponds to the ECB: 12811 * 12812 * (a) There is no speculative tracing (which can effectively 12813 * cache an EPID for an arbitrary amount of time). 12814 * 12815 * (b) The principal buffers have been switched twice since the 12816 * provider became defunct. 12817 * 12818 * (c) The aggregation buffers are of zero size or have been 12819 * switched twice since the provider became defunct. 12820 * 12821 * We use dts_speculates to determine (a) and call a function 12822 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12823 * that as soon as we've been unable to destroy one of the ECBs 12824 * associated with the probe, we quit trying -- reaping is only 12825 * fruitful in as much as we can destroy all ECBs associated 12826 * with the defunct provider's probes. 12827 */ 12828 while ((ecb = probe->dtpr_ecb) != NULL) { 12829 dtrace_state_t *state = ecb->dte_state; 12830 dtrace_buffer_t *buf = state->dts_buffer; 12831 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12832 12833 if (state->dts_speculates) 12834 break; 12835 12836 if (!dtrace_buffer_consumed(buf, when)) 12837 break; 12838 12839 if (!dtrace_buffer_consumed(aggbuf, when)) 12840 break; 12841 12842 dtrace_ecb_disable(ecb); 12843 ASSERT(probe->dtpr_ecb != ecb); 12844 dtrace_ecb_destroy(ecb); 12845 } 12846 } 12847 12848 mutex_exit(&dtrace_lock); 12849 mutex_exit(&cpu_lock); 12850 } 12851 12852 /* 12853 * DTrace DOF Functions 12854 */ 12855 /*ARGSUSED*/ 12856 static void 12857 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12858 { 12859 if (dtrace_err_verbose) 12860 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12861 12862 #ifdef DTRACE_ERRDEBUG 12863 dtrace_errdebug(str); 12864 #endif 12865 } 12866 12867 /* 12868 * Create DOF out of a currently enabled state. Right now, we only create 12869 * DOF containing the run-time options -- but this could be expanded to create 12870 * complete DOF representing the enabled state. 12871 */ 12872 static dof_hdr_t * 12873 dtrace_dof_create(dtrace_state_t *state) 12874 { 12875 dof_hdr_t *dof; 12876 dof_sec_t *sec; 12877 dof_optdesc_t *opt; 12878 int i, len = sizeof (dof_hdr_t) + 12879 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12880 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12881 12882 ASSERT(MUTEX_HELD(&dtrace_lock)); 12883 12884 dof = kmem_zalloc(len, KM_SLEEP); 12885 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12886 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12887 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12888 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12889 12890 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12891 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12892 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12893 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12894 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12895 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12896 12897 dof->dofh_flags = 0; 12898 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12899 dof->dofh_secsize = sizeof (dof_sec_t); 12900 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12901 dof->dofh_secoff = sizeof (dof_hdr_t); 12902 dof->dofh_loadsz = len; 12903 dof->dofh_filesz = len; 12904 dof->dofh_pad = 0; 12905 12906 /* 12907 * Fill in the option section header... 12908 */ 12909 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12910 sec->dofs_type = DOF_SECT_OPTDESC; 12911 sec->dofs_align = sizeof (uint64_t); 12912 sec->dofs_flags = DOF_SECF_LOAD; 12913 sec->dofs_entsize = sizeof (dof_optdesc_t); 12914 12915 opt = (dof_optdesc_t *)((uintptr_t)sec + 12916 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12917 12918 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12919 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12920 12921 for (i = 0; i < DTRACEOPT_MAX; i++) { 12922 opt[i].dofo_option = i; 12923 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12924 opt[i].dofo_value = state->dts_options[i]; 12925 } 12926 12927 return (dof); 12928 } 12929 12930 static dof_hdr_t * 12931 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12932 { 12933 dof_hdr_t hdr, *dof; 12934 12935 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12936 12937 /* 12938 * First, we're going to copyin() the sizeof (dof_hdr_t). 12939 */ 12940 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12941 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12942 *errp = EFAULT; 12943 return (NULL); 12944 } 12945 12946 /* 12947 * Now we'll allocate the entire DOF and copy it in -- provided 12948 * that the length isn't outrageous. 12949 */ 12950 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12951 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12952 *errp = E2BIG; 12953 return (NULL); 12954 } 12955 12956 if (hdr.dofh_loadsz < sizeof (hdr)) { 12957 dtrace_dof_error(&hdr, "invalid load size"); 12958 *errp = EINVAL; 12959 return (NULL); 12960 } 12961 12962 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12963 12964 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12965 dof->dofh_loadsz != hdr.dofh_loadsz) { 12966 kmem_free(dof, hdr.dofh_loadsz); 12967 *errp = EFAULT; 12968 return (NULL); 12969 } 12970 12971 return (dof); 12972 } 12973 12974 #if !defined(sun) 12975 static __inline uchar_t 12976 dtrace_dof_char(char c) { 12977 switch (c) { 12978 case '0': 12979 case '1': 12980 case '2': 12981 case '3': 12982 case '4': 12983 case '5': 12984 case '6': 12985 case '7': 12986 case '8': 12987 case '9': 12988 return (c - '0'); 12989 case 'A': 12990 case 'B': 12991 case 'C': 12992 case 'D': 12993 case 'E': 12994 case 'F': 12995 return (c - 'A' + 10); 12996 case 'a': 12997 case 'b': 12998 case 'c': 12999 case 'd': 13000 case 'e': 13001 case 'f': 13002 return (c - 'a' + 10); 13003 } 13004 /* Should not reach here. */ 13005 return (0); 13006 } 13007 #endif 13008 13009 static dof_hdr_t * 13010 dtrace_dof_property(const char *name) 13011 { 13012 uchar_t *buf; 13013 uint64_t loadsz; 13014 unsigned int len, i; 13015 dof_hdr_t *dof; 13016 13017 #if defined(sun) 13018 /* 13019 * Unfortunately, array of values in .conf files are always (and 13020 * only) interpreted to be integer arrays. We must read our DOF 13021 * as an integer array, and then squeeze it into a byte array. 13022 */ 13023 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13024 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13025 return (NULL); 13026 13027 for (i = 0; i < len; i++) 13028 buf[i] = (uchar_t)(((int *)buf)[i]); 13029 13030 if (len < sizeof (dof_hdr_t)) { 13031 ddi_prop_free(buf); 13032 dtrace_dof_error(NULL, "truncated header"); 13033 return (NULL); 13034 } 13035 13036 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13037 ddi_prop_free(buf); 13038 dtrace_dof_error(NULL, "truncated DOF"); 13039 return (NULL); 13040 } 13041 13042 if (loadsz >= dtrace_dof_maxsize) { 13043 ddi_prop_free(buf); 13044 dtrace_dof_error(NULL, "oversized DOF"); 13045 return (NULL); 13046 } 13047 13048 dof = kmem_alloc(loadsz, KM_SLEEP); 13049 bcopy(buf, dof, loadsz); 13050 ddi_prop_free(buf); 13051 #else 13052 char *p; 13053 char *p_env; 13054 13055 if ((p_env = kern_getenv(name)) == NULL) 13056 return (NULL); 13057 13058 len = strlen(p_env) / 2; 13059 13060 buf = kmem_alloc(len, KM_SLEEP); 13061 13062 dof = (dof_hdr_t *) buf; 13063 13064 p = p_env; 13065 13066 for (i = 0; i < len; i++) { 13067 buf[i] = (dtrace_dof_char(p[0]) << 4) | 13068 dtrace_dof_char(p[1]); 13069 p += 2; 13070 } 13071 13072 freeenv(p_env); 13073 13074 if (len < sizeof (dof_hdr_t)) { 13075 kmem_free(buf, 0); 13076 dtrace_dof_error(NULL, "truncated header"); 13077 return (NULL); 13078 } 13079 13080 if (len < (loadsz = dof->dofh_loadsz)) { 13081 kmem_free(buf, 0); 13082 dtrace_dof_error(NULL, "truncated DOF"); 13083 return (NULL); 13084 } 13085 13086 if (loadsz >= dtrace_dof_maxsize) { 13087 kmem_free(buf, 0); 13088 dtrace_dof_error(NULL, "oversized DOF"); 13089 return (NULL); 13090 } 13091 #endif 13092 13093 return (dof); 13094 } 13095 13096 static void 13097 dtrace_dof_destroy(dof_hdr_t *dof) 13098 { 13099 kmem_free(dof, dof->dofh_loadsz); 13100 } 13101 13102 /* 13103 * Return the dof_sec_t pointer corresponding to a given section index. If the 13104 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13105 * a type other than DOF_SECT_NONE is specified, the header is checked against 13106 * this type and NULL is returned if the types do not match. 13107 */ 13108 static dof_sec_t * 13109 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13110 { 13111 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13112 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13113 13114 if (i >= dof->dofh_secnum) { 13115 dtrace_dof_error(dof, "referenced section index is invalid"); 13116 return (NULL); 13117 } 13118 13119 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13120 dtrace_dof_error(dof, "referenced section is not loadable"); 13121 return (NULL); 13122 } 13123 13124 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13125 dtrace_dof_error(dof, "referenced section is the wrong type"); 13126 return (NULL); 13127 } 13128 13129 return (sec); 13130 } 13131 13132 static dtrace_probedesc_t * 13133 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13134 { 13135 dof_probedesc_t *probe; 13136 dof_sec_t *strtab; 13137 uintptr_t daddr = (uintptr_t)dof; 13138 uintptr_t str; 13139 size_t size; 13140 13141 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13142 dtrace_dof_error(dof, "invalid probe section"); 13143 return (NULL); 13144 } 13145 13146 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13147 dtrace_dof_error(dof, "bad alignment in probe description"); 13148 return (NULL); 13149 } 13150 13151 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13152 dtrace_dof_error(dof, "truncated probe description"); 13153 return (NULL); 13154 } 13155 13156 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13157 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13158 13159 if (strtab == NULL) 13160 return (NULL); 13161 13162 str = daddr + strtab->dofs_offset; 13163 size = strtab->dofs_size; 13164 13165 if (probe->dofp_provider >= strtab->dofs_size) { 13166 dtrace_dof_error(dof, "corrupt probe provider"); 13167 return (NULL); 13168 } 13169 13170 (void) strncpy(desc->dtpd_provider, 13171 (char *)(str + probe->dofp_provider), 13172 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13173 13174 if (probe->dofp_mod >= strtab->dofs_size) { 13175 dtrace_dof_error(dof, "corrupt probe module"); 13176 return (NULL); 13177 } 13178 13179 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13180 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13181 13182 if (probe->dofp_func >= strtab->dofs_size) { 13183 dtrace_dof_error(dof, "corrupt probe function"); 13184 return (NULL); 13185 } 13186 13187 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13188 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13189 13190 if (probe->dofp_name >= strtab->dofs_size) { 13191 dtrace_dof_error(dof, "corrupt probe name"); 13192 return (NULL); 13193 } 13194 13195 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13196 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13197 13198 return (desc); 13199 } 13200 13201 static dtrace_difo_t * 13202 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13203 cred_t *cr) 13204 { 13205 dtrace_difo_t *dp; 13206 size_t ttl = 0; 13207 dof_difohdr_t *dofd; 13208 uintptr_t daddr = (uintptr_t)dof; 13209 size_t max = dtrace_difo_maxsize; 13210 int i, l, n; 13211 13212 static const struct { 13213 int section; 13214 int bufoffs; 13215 int lenoffs; 13216 int entsize; 13217 int align; 13218 const char *msg; 13219 } difo[] = { 13220 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13221 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13222 sizeof (dif_instr_t), "multiple DIF sections" }, 13223 13224 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13225 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13226 sizeof (uint64_t), "multiple integer tables" }, 13227 13228 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13229 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13230 sizeof (char), "multiple string tables" }, 13231 13232 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13233 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13234 sizeof (uint_t), "multiple variable tables" }, 13235 13236 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13237 }; 13238 13239 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13240 dtrace_dof_error(dof, "invalid DIFO header section"); 13241 return (NULL); 13242 } 13243 13244 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13245 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13246 return (NULL); 13247 } 13248 13249 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13250 sec->dofs_size % sizeof (dof_secidx_t)) { 13251 dtrace_dof_error(dof, "bad size in DIFO header"); 13252 return (NULL); 13253 } 13254 13255 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13256 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13257 13258 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13259 dp->dtdo_rtype = dofd->dofd_rtype; 13260 13261 for (l = 0; l < n; l++) { 13262 dof_sec_t *subsec; 13263 void **bufp; 13264 uint32_t *lenp; 13265 13266 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13267 dofd->dofd_links[l])) == NULL) 13268 goto err; /* invalid section link */ 13269 13270 if (ttl + subsec->dofs_size > max) { 13271 dtrace_dof_error(dof, "exceeds maximum size"); 13272 goto err; 13273 } 13274 13275 ttl += subsec->dofs_size; 13276 13277 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13278 if (subsec->dofs_type != difo[i].section) 13279 continue; 13280 13281 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13282 dtrace_dof_error(dof, "section not loaded"); 13283 goto err; 13284 } 13285 13286 if (subsec->dofs_align != difo[i].align) { 13287 dtrace_dof_error(dof, "bad alignment"); 13288 goto err; 13289 } 13290 13291 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13292 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13293 13294 if (*bufp != NULL) { 13295 dtrace_dof_error(dof, difo[i].msg); 13296 goto err; 13297 } 13298 13299 if (difo[i].entsize != subsec->dofs_entsize) { 13300 dtrace_dof_error(dof, "entry size mismatch"); 13301 goto err; 13302 } 13303 13304 if (subsec->dofs_entsize != 0 && 13305 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13306 dtrace_dof_error(dof, "corrupt entry size"); 13307 goto err; 13308 } 13309 13310 *lenp = subsec->dofs_size; 13311 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13312 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13313 *bufp, subsec->dofs_size); 13314 13315 if (subsec->dofs_entsize != 0) 13316 *lenp /= subsec->dofs_entsize; 13317 13318 break; 13319 } 13320 13321 /* 13322 * If we encounter a loadable DIFO sub-section that is not 13323 * known to us, assume this is a broken program and fail. 13324 */ 13325 if (difo[i].section == DOF_SECT_NONE && 13326 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13327 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13328 goto err; 13329 } 13330 } 13331 13332 if (dp->dtdo_buf == NULL) { 13333 /* 13334 * We can't have a DIF object without DIF text. 13335 */ 13336 dtrace_dof_error(dof, "missing DIF text"); 13337 goto err; 13338 } 13339 13340 /* 13341 * Before we validate the DIF object, run through the variable table 13342 * looking for the strings -- if any of their size are under, we'll set 13343 * their size to be the system-wide default string size. Note that 13344 * this should _not_ happen if the "strsize" option has been set -- 13345 * in this case, the compiler should have set the size to reflect the 13346 * setting of the option. 13347 */ 13348 for (i = 0; i < dp->dtdo_varlen; i++) { 13349 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13350 dtrace_diftype_t *t = &v->dtdv_type; 13351 13352 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13353 continue; 13354 13355 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13356 t->dtdt_size = dtrace_strsize_default; 13357 } 13358 13359 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13360 goto err; 13361 13362 dtrace_difo_init(dp, vstate); 13363 return (dp); 13364 13365 err: 13366 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13367 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13368 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13369 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13370 13371 kmem_free(dp, sizeof (dtrace_difo_t)); 13372 return (NULL); 13373 } 13374 13375 static dtrace_predicate_t * 13376 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13377 cred_t *cr) 13378 { 13379 dtrace_difo_t *dp; 13380 13381 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13382 return (NULL); 13383 13384 return (dtrace_predicate_create(dp)); 13385 } 13386 13387 static dtrace_actdesc_t * 13388 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13389 cred_t *cr) 13390 { 13391 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13392 dof_actdesc_t *desc; 13393 dof_sec_t *difosec; 13394 size_t offs; 13395 uintptr_t daddr = (uintptr_t)dof; 13396 uint64_t arg; 13397 dtrace_actkind_t kind; 13398 13399 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13400 dtrace_dof_error(dof, "invalid action section"); 13401 return (NULL); 13402 } 13403 13404 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13405 dtrace_dof_error(dof, "truncated action description"); 13406 return (NULL); 13407 } 13408 13409 if (sec->dofs_align != sizeof (uint64_t)) { 13410 dtrace_dof_error(dof, "bad alignment in action description"); 13411 return (NULL); 13412 } 13413 13414 if (sec->dofs_size < sec->dofs_entsize) { 13415 dtrace_dof_error(dof, "section entry size exceeds total size"); 13416 return (NULL); 13417 } 13418 13419 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13420 dtrace_dof_error(dof, "bad entry size in action description"); 13421 return (NULL); 13422 } 13423 13424 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13425 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13426 return (NULL); 13427 } 13428 13429 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13430 desc = (dof_actdesc_t *)(daddr + 13431 (uintptr_t)sec->dofs_offset + offs); 13432 kind = (dtrace_actkind_t)desc->dofa_kind; 13433 13434 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13435 (kind != DTRACEACT_PRINTA || 13436 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13437 (kind == DTRACEACT_DIFEXPR && 13438 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13439 dof_sec_t *strtab; 13440 char *str, *fmt; 13441 uint64_t i; 13442 13443 /* 13444 * The argument to these actions is an index into the 13445 * DOF string table. For printf()-like actions, this 13446 * is the format string. For print(), this is the 13447 * CTF type of the expression result. 13448 */ 13449 if ((strtab = dtrace_dof_sect(dof, 13450 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13451 goto err; 13452 13453 str = (char *)((uintptr_t)dof + 13454 (uintptr_t)strtab->dofs_offset); 13455 13456 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13457 if (str[i] == '\0') 13458 break; 13459 } 13460 13461 if (i >= strtab->dofs_size) { 13462 dtrace_dof_error(dof, "bogus format string"); 13463 goto err; 13464 } 13465 13466 if (i == desc->dofa_arg) { 13467 dtrace_dof_error(dof, "empty format string"); 13468 goto err; 13469 } 13470 13471 i -= desc->dofa_arg; 13472 fmt = kmem_alloc(i + 1, KM_SLEEP); 13473 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13474 arg = (uint64_t)(uintptr_t)fmt; 13475 } else { 13476 if (kind == DTRACEACT_PRINTA) { 13477 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13478 arg = 0; 13479 } else { 13480 arg = desc->dofa_arg; 13481 } 13482 } 13483 13484 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13485 desc->dofa_uarg, arg); 13486 13487 if (last != NULL) { 13488 last->dtad_next = act; 13489 } else { 13490 first = act; 13491 } 13492 13493 last = act; 13494 13495 if (desc->dofa_difo == DOF_SECIDX_NONE) 13496 continue; 13497 13498 if ((difosec = dtrace_dof_sect(dof, 13499 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13500 goto err; 13501 13502 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13503 13504 if (act->dtad_difo == NULL) 13505 goto err; 13506 } 13507 13508 ASSERT(first != NULL); 13509 return (first); 13510 13511 err: 13512 for (act = first; act != NULL; act = next) { 13513 next = act->dtad_next; 13514 dtrace_actdesc_release(act, vstate); 13515 } 13516 13517 return (NULL); 13518 } 13519 13520 static dtrace_ecbdesc_t * 13521 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13522 cred_t *cr) 13523 { 13524 dtrace_ecbdesc_t *ep; 13525 dof_ecbdesc_t *ecb; 13526 dtrace_probedesc_t *desc; 13527 dtrace_predicate_t *pred = NULL; 13528 13529 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13530 dtrace_dof_error(dof, "truncated ECB description"); 13531 return (NULL); 13532 } 13533 13534 if (sec->dofs_align != sizeof (uint64_t)) { 13535 dtrace_dof_error(dof, "bad alignment in ECB description"); 13536 return (NULL); 13537 } 13538 13539 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13540 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13541 13542 if (sec == NULL) 13543 return (NULL); 13544 13545 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13546 ep->dted_uarg = ecb->dofe_uarg; 13547 desc = &ep->dted_probe; 13548 13549 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13550 goto err; 13551 13552 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13553 if ((sec = dtrace_dof_sect(dof, 13554 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13555 goto err; 13556 13557 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13558 goto err; 13559 13560 ep->dted_pred.dtpdd_predicate = pred; 13561 } 13562 13563 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13564 if ((sec = dtrace_dof_sect(dof, 13565 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13566 goto err; 13567 13568 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13569 13570 if (ep->dted_action == NULL) 13571 goto err; 13572 } 13573 13574 return (ep); 13575 13576 err: 13577 if (pred != NULL) 13578 dtrace_predicate_release(pred, vstate); 13579 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13580 return (NULL); 13581 } 13582 13583 /* 13584 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13585 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13586 * site of any user SETX relocations to account for load object base address. 13587 * In the future, if we need other relocations, this function can be extended. 13588 */ 13589 static int 13590 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13591 { 13592 uintptr_t daddr = (uintptr_t)dof; 13593 dof_relohdr_t *dofr = 13594 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13595 dof_sec_t *ss, *rs, *ts; 13596 dof_relodesc_t *r; 13597 uint_t i, n; 13598 13599 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13600 sec->dofs_align != sizeof (dof_secidx_t)) { 13601 dtrace_dof_error(dof, "invalid relocation header"); 13602 return (-1); 13603 } 13604 13605 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13606 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13607 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13608 13609 if (ss == NULL || rs == NULL || ts == NULL) 13610 return (-1); /* dtrace_dof_error() has been called already */ 13611 13612 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13613 rs->dofs_align != sizeof (uint64_t)) { 13614 dtrace_dof_error(dof, "invalid relocation section"); 13615 return (-1); 13616 } 13617 13618 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13619 n = rs->dofs_size / rs->dofs_entsize; 13620 13621 for (i = 0; i < n; i++) { 13622 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13623 13624 switch (r->dofr_type) { 13625 case DOF_RELO_NONE: 13626 break; 13627 case DOF_RELO_SETX: 13628 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13629 sizeof (uint64_t) > ts->dofs_size) { 13630 dtrace_dof_error(dof, "bad relocation offset"); 13631 return (-1); 13632 } 13633 13634 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13635 dtrace_dof_error(dof, "misaligned setx relo"); 13636 return (-1); 13637 } 13638 13639 *(uint64_t *)taddr += ubase; 13640 break; 13641 default: 13642 dtrace_dof_error(dof, "invalid relocation type"); 13643 return (-1); 13644 } 13645 13646 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13647 } 13648 13649 return (0); 13650 } 13651 13652 /* 13653 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13654 * header: it should be at the front of a memory region that is at least 13655 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13656 * size. It need not be validated in any other way. 13657 */ 13658 static int 13659 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13660 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13661 { 13662 uint64_t len = dof->dofh_loadsz, seclen; 13663 uintptr_t daddr = (uintptr_t)dof; 13664 dtrace_ecbdesc_t *ep; 13665 dtrace_enabling_t *enab; 13666 uint_t i; 13667 13668 ASSERT(MUTEX_HELD(&dtrace_lock)); 13669 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13670 13671 /* 13672 * Check the DOF header identification bytes. In addition to checking 13673 * valid settings, we also verify that unused bits/bytes are zeroed so 13674 * we can use them later without fear of regressing existing binaries. 13675 */ 13676 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13677 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13678 dtrace_dof_error(dof, "DOF magic string mismatch"); 13679 return (-1); 13680 } 13681 13682 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13683 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13684 dtrace_dof_error(dof, "DOF has invalid data model"); 13685 return (-1); 13686 } 13687 13688 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13689 dtrace_dof_error(dof, "DOF encoding mismatch"); 13690 return (-1); 13691 } 13692 13693 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13694 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13695 dtrace_dof_error(dof, "DOF version mismatch"); 13696 return (-1); 13697 } 13698 13699 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13700 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13701 return (-1); 13702 } 13703 13704 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13705 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13706 return (-1); 13707 } 13708 13709 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13710 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13711 return (-1); 13712 } 13713 13714 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13715 if (dof->dofh_ident[i] != 0) { 13716 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13717 return (-1); 13718 } 13719 } 13720 13721 if (dof->dofh_flags & ~DOF_FL_VALID) { 13722 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13723 return (-1); 13724 } 13725 13726 if (dof->dofh_secsize == 0) { 13727 dtrace_dof_error(dof, "zero section header size"); 13728 return (-1); 13729 } 13730 13731 /* 13732 * Check that the section headers don't exceed the amount of DOF 13733 * data. Note that we cast the section size and number of sections 13734 * to uint64_t's to prevent possible overflow in the multiplication. 13735 */ 13736 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13737 13738 if (dof->dofh_secoff > len || seclen > len || 13739 dof->dofh_secoff + seclen > len) { 13740 dtrace_dof_error(dof, "truncated section headers"); 13741 return (-1); 13742 } 13743 13744 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13745 dtrace_dof_error(dof, "misaligned section headers"); 13746 return (-1); 13747 } 13748 13749 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13750 dtrace_dof_error(dof, "misaligned section size"); 13751 return (-1); 13752 } 13753 13754 /* 13755 * Take an initial pass through the section headers to be sure that 13756 * the headers don't have stray offsets. If the 'noprobes' flag is 13757 * set, do not permit sections relating to providers, probes, or args. 13758 */ 13759 for (i = 0; i < dof->dofh_secnum; i++) { 13760 dof_sec_t *sec = (dof_sec_t *)(daddr + 13761 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13762 13763 if (noprobes) { 13764 switch (sec->dofs_type) { 13765 case DOF_SECT_PROVIDER: 13766 case DOF_SECT_PROBES: 13767 case DOF_SECT_PRARGS: 13768 case DOF_SECT_PROFFS: 13769 dtrace_dof_error(dof, "illegal sections " 13770 "for enabling"); 13771 return (-1); 13772 } 13773 } 13774 13775 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13776 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13777 dtrace_dof_error(dof, "loadable section with load " 13778 "flag unset"); 13779 return (-1); 13780 } 13781 13782 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13783 continue; /* just ignore non-loadable sections */ 13784 13785 if (!ISP2(sec->dofs_align)) { 13786 dtrace_dof_error(dof, "bad section alignment"); 13787 return (-1); 13788 } 13789 13790 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13791 dtrace_dof_error(dof, "misaligned section"); 13792 return (-1); 13793 } 13794 13795 if (sec->dofs_offset > len || sec->dofs_size > len || 13796 sec->dofs_offset + sec->dofs_size > len) { 13797 dtrace_dof_error(dof, "corrupt section header"); 13798 return (-1); 13799 } 13800 13801 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13802 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13803 dtrace_dof_error(dof, "non-terminating string table"); 13804 return (-1); 13805 } 13806 } 13807 13808 /* 13809 * Take a second pass through the sections and locate and perform any 13810 * relocations that are present. We do this after the first pass to 13811 * be sure that all sections have had their headers validated. 13812 */ 13813 for (i = 0; i < dof->dofh_secnum; i++) { 13814 dof_sec_t *sec = (dof_sec_t *)(daddr + 13815 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13816 13817 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13818 continue; /* skip sections that are not loadable */ 13819 13820 switch (sec->dofs_type) { 13821 case DOF_SECT_URELHDR: 13822 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13823 return (-1); 13824 break; 13825 } 13826 } 13827 13828 if ((enab = *enabp) == NULL) 13829 enab = *enabp = dtrace_enabling_create(vstate); 13830 13831 for (i = 0; i < dof->dofh_secnum; i++) { 13832 dof_sec_t *sec = (dof_sec_t *)(daddr + 13833 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13834 13835 if (sec->dofs_type != DOF_SECT_ECBDESC) 13836 continue; 13837 13838 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13839 dtrace_enabling_destroy(enab); 13840 *enabp = NULL; 13841 return (-1); 13842 } 13843 13844 dtrace_enabling_add(enab, ep); 13845 } 13846 13847 return (0); 13848 } 13849 13850 /* 13851 * Process DOF for any options. This routine assumes that the DOF has been 13852 * at least processed by dtrace_dof_slurp(). 13853 */ 13854 static int 13855 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13856 { 13857 int i, rval; 13858 uint32_t entsize; 13859 size_t offs; 13860 dof_optdesc_t *desc; 13861 13862 for (i = 0; i < dof->dofh_secnum; i++) { 13863 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13864 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13865 13866 if (sec->dofs_type != DOF_SECT_OPTDESC) 13867 continue; 13868 13869 if (sec->dofs_align != sizeof (uint64_t)) { 13870 dtrace_dof_error(dof, "bad alignment in " 13871 "option description"); 13872 return (EINVAL); 13873 } 13874 13875 if ((entsize = sec->dofs_entsize) == 0) { 13876 dtrace_dof_error(dof, "zeroed option entry size"); 13877 return (EINVAL); 13878 } 13879 13880 if (entsize < sizeof (dof_optdesc_t)) { 13881 dtrace_dof_error(dof, "bad option entry size"); 13882 return (EINVAL); 13883 } 13884 13885 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13886 desc = (dof_optdesc_t *)((uintptr_t)dof + 13887 (uintptr_t)sec->dofs_offset + offs); 13888 13889 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13890 dtrace_dof_error(dof, "non-zero option string"); 13891 return (EINVAL); 13892 } 13893 13894 if (desc->dofo_value == DTRACEOPT_UNSET) { 13895 dtrace_dof_error(dof, "unset option"); 13896 return (EINVAL); 13897 } 13898 13899 if ((rval = dtrace_state_option(state, 13900 desc->dofo_option, desc->dofo_value)) != 0) { 13901 dtrace_dof_error(dof, "rejected option"); 13902 return (rval); 13903 } 13904 } 13905 } 13906 13907 return (0); 13908 } 13909 13910 /* 13911 * DTrace Consumer State Functions 13912 */ 13913 static int 13914 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13915 { 13916 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13917 void *base; 13918 uintptr_t limit; 13919 dtrace_dynvar_t *dvar, *next, *start; 13920 int i; 13921 13922 ASSERT(MUTEX_HELD(&dtrace_lock)); 13923 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13924 13925 bzero(dstate, sizeof (dtrace_dstate_t)); 13926 13927 if ((dstate->dtds_chunksize = chunksize) == 0) 13928 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13929 13930 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13931 size = min; 13932 13933 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13934 return (ENOMEM); 13935 13936 dstate->dtds_size = size; 13937 dstate->dtds_base = base; 13938 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13939 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13940 13941 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13942 13943 if (hashsize != 1 && (hashsize & 1)) 13944 hashsize--; 13945 13946 dstate->dtds_hashsize = hashsize; 13947 dstate->dtds_hash = dstate->dtds_base; 13948 13949 /* 13950 * Set all of our hash buckets to point to the single sink, and (if 13951 * it hasn't already been set), set the sink's hash value to be the 13952 * sink sentinel value. The sink is needed for dynamic variable 13953 * lookups to know that they have iterated over an entire, valid hash 13954 * chain. 13955 */ 13956 for (i = 0; i < hashsize; i++) 13957 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13958 13959 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13960 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13961 13962 /* 13963 * Determine number of active CPUs. Divide free list evenly among 13964 * active CPUs. 13965 */ 13966 start = (dtrace_dynvar_t *) 13967 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13968 limit = (uintptr_t)base + size; 13969 13970 maxper = (limit - (uintptr_t)start) / NCPU; 13971 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13972 13973 #if !defined(sun) 13974 CPU_FOREACH(i) { 13975 #else 13976 for (i = 0; i < NCPU; i++) { 13977 #endif 13978 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13979 13980 /* 13981 * If we don't even have enough chunks to make it once through 13982 * NCPUs, we're just going to allocate everything to the first 13983 * CPU. And if we're on the last CPU, we're going to allocate 13984 * whatever is left over. In either case, we set the limit to 13985 * be the limit of the dynamic variable space. 13986 */ 13987 if (maxper == 0 || i == NCPU - 1) { 13988 limit = (uintptr_t)base + size; 13989 start = NULL; 13990 } else { 13991 limit = (uintptr_t)start + maxper; 13992 start = (dtrace_dynvar_t *)limit; 13993 } 13994 13995 ASSERT(limit <= (uintptr_t)base + size); 13996 13997 for (;;) { 13998 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13999 dstate->dtds_chunksize); 14000 14001 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14002 break; 14003 14004 dvar->dtdv_next = next; 14005 dvar = next; 14006 } 14007 14008 if (maxper == 0) 14009 break; 14010 } 14011 14012 return (0); 14013 } 14014 14015 static void 14016 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14017 { 14018 ASSERT(MUTEX_HELD(&cpu_lock)); 14019 14020 if (dstate->dtds_base == NULL) 14021 return; 14022 14023 kmem_free(dstate->dtds_base, dstate->dtds_size); 14024 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14025 } 14026 14027 static void 14028 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14029 { 14030 /* 14031 * Logical XOR, where are you? 14032 */ 14033 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14034 14035 if (vstate->dtvs_nglobals > 0) { 14036 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14037 sizeof (dtrace_statvar_t *)); 14038 } 14039 14040 if (vstate->dtvs_ntlocals > 0) { 14041 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14042 sizeof (dtrace_difv_t)); 14043 } 14044 14045 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14046 14047 if (vstate->dtvs_nlocals > 0) { 14048 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14049 sizeof (dtrace_statvar_t *)); 14050 } 14051 } 14052 14053 #if defined(sun) 14054 static void 14055 dtrace_state_clean(dtrace_state_t *state) 14056 { 14057 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14058 return; 14059 14060 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14061 dtrace_speculation_clean(state); 14062 } 14063 14064 static void 14065 dtrace_state_deadman(dtrace_state_t *state) 14066 { 14067 hrtime_t now; 14068 14069 dtrace_sync(); 14070 14071 now = dtrace_gethrtime(); 14072 14073 if (state != dtrace_anon.dta_state && 14074 now - state->dts_laststatus >= dtrace_deadman_user) 14075 return; 14076 14077 /* 14078 * We must be sure that dts_alive never appears to be less than the 14079 * value upon entry to dtrace_state_deadman(), and because we lack a 14080 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14081 * store INT64_MAX to it, followed by a memory barrier, followed by 14082 * the new value. This assures that dts_alive never appears to be 14083 * less than its true value, regardless of the order in which the 14084 * stores to the underlying storage are issued. 14085 */ 14086 state->dts_alive = INT64_MAX; 14087 dtrace_membar_producer(); 14088 state->dts_alive = now; 14089 } 14090 #else 14091 static void 14092 dtrace_state_clean(void *arg) 14093 { 14094 dtrace_state_t *state = arg; 14095 dtrace_optval_t *opt = state->dts_options; 14096 14097 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14098 return; 14099 14100 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14101 dtrace_speculation_clean(state); 14102 14103 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14104 dtrace_state_clean, state); 14105 } 14106 14107 static void 14108 dtrace_state_deadman(void *arg) 14109 { 14110 dtrace_state_t *state = arg; 14111 hrtime_t now; 14112 14113 dtrace_sync(); 14114 14115 dtrace_debug_output(); 14116 14117 now = dtrace_gethrtime(); 14118 14119 if (state != dtrace_anon.dta_state && 14120 now - state->dts_laststatus >= dtrace_deadman_user) 14121 return; 14122 14123 /* 14124 * We must be sure that dts_alive never appears to be less than the 14125 * value upon entry to dtrace_state_deadman(), and because we lack a 14126 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14127 * store INT64_MAX to it, followed by a memory barrier, followed by 14128 * the new value. This assures that dts_alive never appears to be 14129 * less than its true value, regardless of the order in which the 14130 * stores to the underlying storage are issued. 14131 */ 14132 state->dts_alive = INT64_MAX; 14133 dtrace_membar_producer(); 14134 state->dts_alive = now; 14135 14136 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14137 dtrace_state_deadman, state); 14138 } 14139 #endif 14140 14141 static dtrace_state_t * 14142 #if defined(sun) 14143 dtrace_state_create(dev_t *devp, cred_t *cr) 14144 #else 14145 dtrace_state_create(struct cdev *dev) 14146 #endif 14147 { 14148 #if defined(sun) 14149 minor_t minor; 14150 major_t major; 14151 #else 14152 cred_t *cr = NULL; 14153 int m = 0; 14154 #endif 14155 char c[30]; 14156 dtrace_state_t *state; 14157 dtrace_optval_t *opt; 14158 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14159 14160 ASSERT(MUTEX_HELD(&dtrace_lock)); 14161 ASSERT(MUTEX_HELD(&cpu_lock)); 14162 14163 #if defined(sun) 14164 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14165 VM_BESTFIT | VM_SLEEP); 14166 14167 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14168 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14169 return (NULL); 14170 } 14171 14172 state = ddi_get_soft_state(dtrace_softstate, minor); 14173 #else 14174 if (dev != NULL) { 14175 cr = dev->si_cred; 14176 m = dev2unit(dev); 14177 } 14178 14179 /* Allocate memory for the state. */ 14180 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14181 #endif 14182 14183 state->dts_epid = DTRACE_EPIDNONE + 1; 14184 14185 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14186 #if defined(sun) 14187 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14188 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14189 14190 if (devp != NULL) { 14191 major = getemajor(*devp); 14192 } else { 14193 major = ddi_driver_major(dtrace_devi); 14194 } 14195 14196 state->dts_dev = makedevice(major, minor); 14197 14198 if (devp != NULL) 14199 *devp = state->dts_dev; 14200 #else 14201 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14202 state->dts_dev = dev; 14203 #endif 14204 14205 /* 14206 * We allocate NCPU buffers. On the one hand, this can be quite 14207 * a bit of memory per instance (nearly 36K on a Starcat). On the 14208 * other hand, it saves an additional memory reference in the probe 14209 * path. 14210 */ 14211 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14212 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14213 14214 #if defined(sun) 14215 state->dts_cleaner = CYCLIC_NONE; 14216 state->dts_deadman = CYCLIC_NONE; 14217 #else 14218 callout_init(&state->dts_cleaner, CALLOUT_MPSAFE); 14219 callout_init(&state->dts_deadman, CALLOUT_MPSAFE); 14220 #endif 14221 state->dts_vstate.dtvs_state = state; 14222 14223 for (i = 0; i < DTRACEOPT_MAX; i++) 14224 state->dts_options[i] = DTRACEOPT_UNSET; 14225 14226 /* 14227 * Set the default options. 14228 */ 14229 opt = state->dts_options; 14230 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14231 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14232 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14233 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14234 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14235 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14236 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14237 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14238 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14239 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14240 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14241 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14242 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14243 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14244 14245 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14246 14247 /* 14248 * Depending on the user credentials, we set flag bits which alter probe 14249 * visibility or the amount of destructiveness allowed. In the case of 14250 * actual anonymous tracing, or the possession of all privileges, all of 14251 * the normal checks are bypassed. 14252 */ 14253 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14254 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14255 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14256 } else { 14257 /* 14258 * Set up the credentials for this instantiation. We take a 14259 * hold on the credential to prevent it from disappearing on 14260 * us; this in turn prevents the zone_t referenced by this 14261 * credential from disappearing. This means that we can 14262 * examine the credential and the zone from probe context. 14263 */ 14264 crhold(cr); 14265 state->dts_cred.dcr_cred = cr; 14266 14267 /* 14268 * CRA_PROC means "we have *some* privilege for dtrace" and 14269 * unlocks the use of variables like pid, zonename, etc. 14270 */ 14271 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14272 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14273 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14274 } 14275 14276 /* 14277 * dtrace_user allows use of syscall and profile providers. 14278 * If the user also has proc_owner and/or proc_zone, we 14279 * extend the scope to include additional visibility and 14280 * destructive power. 14281 */ 14282 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14283 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14284 state->dts_cred.dcr_visible |= 14285 DTRACE_CRV_ALLPROC; 14286 14287 state->dts_cred.dcr_action |= 14288 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14289 } 14290 14291 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14292 state->dts_cred.dcr_visible |= 14293 DTRACE_CRV_ALLZONE; 14294 14295 state->dts_cred.dcr_action |= 14296 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14297 } 14298 14299 /* 14300 * If we have all privs in whatever zone this is, 14301 * we can do destructive things to processes which 14302 * have altered credentials. 14303 */ 14304 #if defined(sun) 14305 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14306 cr->cr_zone->zone_privset)) { 14307 state->dts_cred.dcr_action |= 14308 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14309 } 14310 #endif 14311 } 14312 14313 /* 14314 * Holding the dtrace_kernel privilege also implies that 14315 * the user has the dtrace_user privilege from a visibility 14316 * perspective. But without further privileges, some 14317 * destructive actions are not available. 14318 */ 14319 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14320 /* 14321 * Make all probes in all zones visible. However, 14322 * this doesn't mean that all actions become available 14323 * to all zones. 14324 */ 14325 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14326 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14327 14328 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14329 DTRACE_CRA_PROC; 14330 /* 14331 * Holding proc_owner means that destructive actions 14332 * for *this* zone are allowed. 14333 */ 14334 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14335 state->dts_cred.dcr_action |= 14336 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14337 14338 /* 14339 * Holding proc_zone means that destructive actions 14340 * for this user/group ID in all zones is allowed. 14341 */ 14342 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14343 state->dts_cred.dcr_action |= 14344 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14345 14346 #if defined(sun) 14347 /* 14348 * If we have all privs in whatever zone this is, 14349 * we can do destructive things to processes which 14350 * have altered credentials. 14351 */ 14352 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14353 cr->cr_zone->zone_privset)) { 14354 state->dts_cred.dcr_action |= 14355 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14356 } 14357 #endif 14358 } 14359 14360 /* 14361 * Holding the dtrace_proc privilege gives control over fasttrap 14362 * and pid providers. We need to grant wider destructive 14363 * privileges in the event that the user has proc_owner and/or 14364 * proc_zone. 14365 */ 14366 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14367 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14368 state->dts_cred.dcr_action |= 14369 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14370 14371 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14372 state->dts_cred.dcr_action |= 14373 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14374 } 14375 } 14376 14377 return (state); 14378 } 14379 14380 static int 14381 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14382 { 14383 dtrace_optval_t *opt = state->dts_options, size; 14384 processorid_t cpu = 0;; 14385 int flags = 0, rval, factor, divisor = 1; 14386 14387 ASSERT(MUTEX_HELD(&dtrace_lock)); 14388 ASSERT(MUTEX_HELD(&cpu_lock)); 14389 ASSERT(which < DTRACEOPT_MAX); 14390 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14391 (state == dtrace_anon.dta_state && 14392 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14393 14394 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14395 return (0); 14396 14397 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14398 cpu = opt[DTRACEOPT_CPU]; 14399 14400 if (which == DTRACEOPT_SPECSIZE) 14401 flags |= DTRACEBUF_NOSWITCH; 14402 14403 if (which == DTRACEOPT_BUFSIZE) { 14404 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14405 flags |= DTRACEBUF_RING; 14406 14407 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14408 flags |= DTRACEBUF_FILL; 14409 14410 if (state != dtrace_anon.dta_state || 14411 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14412 flags |= DTRACEBUF_INACTIVE; 14413 } 14414 14415 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14416 /* 14417 * The size must be 8-byte aligned. If the size is not 8-byte 14418 * aligned, drop it down by the difference. 14419 */ 14420 if (size & (sizeof (uint64_t) - 1)) 14421 size -= size & (sizeof (uint64_t) - 1); 14422 14423 if (size < state->dts_reserve) { 14424 /* 14425 * Buffers always must be large enough to accommodate 14426 * their prereserved space. We return E2BIG instead 14427 * of ENOMEM in this case to allow for user-level 14428 * software to differentiate the cases. 14429 */ 14430 return (E2BIG); 14431 } 14432 14433 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14434 14435 if (rval != ENOMEM) { 14436 opt[which] = size; 14437 return (rval); 14438 } 14439 14440 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14441 return (rval); 14442 14443 for (divisor = 2; divisor < factor; divisor <<= 1) 14444 continue; 14445 } 14446 14447 return (ENOMEM); 14448 } 14449 14450 static int 14451 dtrace_state_buffers(dtrace_state_t *state) 14452 { 14453 dtrace_speculation_t *spec = state->dts_speculations; 14454 int rval, i; 14455 14456 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14457 DTRACEOPT_BUFSIZE)) != 0) 14458 return (rval); 14459 14460 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14461 DTRACEOPT_AGGSIZE)) != 0) 14462 return (rval); 14463 14464 for (i = 0; i < state->dts_nspeculations; i++) { 14465 if ((rval = dtrace_state_buffer(state, 14466 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14467 return (rval); 14468 } 14469 14470 return (0); 14471 } 14472 14473 static void 14474 dtrace_state_prereserve(dtrace_state_t *state) 14475 { 14476 dtrace_ecb_t *ecb; 14477 dtrace_probe_t *probe; 14478 14479 state->dts_reserve = 0; 14480 14481 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14482 return; 14483 14484 /* 14485 * If our buffer policy is a "fill" buffer policy, we need to set the 14486 * prereserved space to be the space required by the END probes. 14487 */ 14488 probe = dtrace_probes[dtrace_probeid_end - 1]; 14489 ASSERT(probe != NULL); 14490 14491 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14492 if (ecb->dte_state != state) 14493 continue; 14494 14495 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14496 } 14497 } 14498 14499 static int 14500 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14501 { 14502 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14503 dtrace_speculation_t *spec; 14504 dtrace_buffer_t *buf; 14505 #if defined(sun) 14506 cyc_handler_t hdlr; 14507 cyc_time_t when; 14508 #endif 14509 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14510 dtrace_icookie_t cookie; 14511 14512 mutex_enter(&cpu_lock); 14513 mutex_enter(&dtrace_lock); 14514 14515 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14516 rval = EBUSY; 14517 goto out; 14518 } 14519 14520 /* 14521 * Before we can perform any checks, we must prime all of the 14522 * retained enablings that correspond to this state. 14523 */ 14524 dtrace_enabling_prime(state); 14525 14526 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14527 rval = EACCES; 14528 goto out; 14529 } 14530 14531 dtrace_state_prereserve(state); 14532 14533 /* 14534 * Now we want to do is try to allocate our speculations. 14535 * We do not automatically resize the number of speculations; if 14536 * this fails, we will fail the operation. 14537 */ 14538 nspec = opt[DTRACEOPT_NSPEC]; 14539 ASSERT(nspec != DTRACEOPT_UNSET); 14540 14541 if (nspec > INT_MAX) { 14542 rval = ENOMEM; 14543 goto out; 14544 } 14545 14546 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14547 KM_NOSLEEP | KM_NORMALPRI); 14548 14549 if (spec == NULL) { 14550 rval = ENOMEM; 14551 goto out; 14552 } 14553 14554 state->dts_speculations = spec; 14555 state->dts_nspeculations = (int)nspec; 14556 14557 for (i = 0; i < nspec; i++) { 14558 if ((buf = kmem_zalloc(bufsize, 14559 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14560 rval = ENOMEM; 14561 goto err; 14562 } 14563 14564 spec[i].dtsp_buffer = buf; 14565 } 14566 14567 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14568 if (dtrace_anon.dta_state == NULL) { 14569 rval = ENOENT; 14570 goto out; 14571 } 14572 14573 if (state->dts_necbs != 0) { 14574 rval = EALREADY; 14575 goto out; 14576 } 14577 14578 state->dts_anon = dtrace_anon_grab(); 14579 ASSERT(state->dts_anon != NULL); 14580 state = state->dts_anon; 14581 14582 /* 14583 * We want "grabanon" to be set in the grabbed state, so we'll 14584 * copy that option value from the grabbing state into the 14585 * grabbed state. 14586 */ 14587 state->dts_options[DTRACEOPT_GRABANON] = 14588 opt[DTRACEOPT_GRABANON]; 14589 14590 *cpu = dtrace_anon.dta_beganon; 14591 14592 /* 14593 * If the anonymous state is active (as it almost certainly 14594 * is if the anonymous enabling ultimately matched anything), 14595 * we don't allow any further option processing -- but we 14596 * don't return failure. 14597 */ 14598 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14599 goto out; 14600 } 14601 14602 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14603 opt[DTRACEOPT_AGGSIZE] != 0) { 14604 if (state->dts_aggregations == NULL) { 14605 /* 14606 * We're not going to create an aggregation buffer 14607 * because we don't have any ECBs that contain 14608 * aggregations -- set this option to 0. 14609 */ 14610 opt[DTRACEOPT_AGGSIZE] = 0; 14611 } else { 14612 /* 14613 * If we have an aggregation buffer, we must also have 14614 * a buffer to use as scratch. 14615 */ 14616 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14617 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14618 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14619 } 14620 } 14621 } 14622 14623 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14624 opt[DTRACEOPT_SPECSIZE] != 0) { 14625 if (!state->dts_speculates) { 14626 /* 14627 * We're not going to create speculation buffers 14628 * because we don't have any ECBs that actually 14629 * speculate -- set the speculation size to 0. 14630 */ 14631 opt[DTRACEOPT_SPECSIZE] = 0; 14632 } 14633 } 14634 14635 /* 14636 * The bare minimum size for any buffer that we're actually going to 14637 * do anything to is sizeof (uint64_t). 14638 */ 14639 sz = sizeof (uint64_t); 14640 14641 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14642 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14643 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14644 /* 14645 * A buffer size has been explicitly set to 0 (or to a size 14646 * that will be adjusted to 0) and we need the space -- we 14647 * need to return failure. We return ENOSPC to differentiate 14648 * it from failing to allocate a buffer due to failure to meet 14649 * the reserve (for which we return E2BIG). 14650 */ 14651 rval = ENOSPC; 14652 goto out; 14653 } 14654 14655 if ((rval = dtrace_state_buffers(state)) != 0) 14656 goto err; 14657 14658 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14659 sz = dtrace_dstate_defsize; 14660 14661 do { 14662 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14663 14664 if (rval == 0) 14665 break; 14666 14667 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14668 goto err; 14669 } while (sz >>= 1); 14670 14671 opt[DTRACEOPT_DYNVARSIZE] = sz; 14672 14673 if (rval != 0) 14674 goto err; 14675 14676 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14677 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14678 14679 if (opt[DTRACEOPT_CLEANRATE] == 0) 14680 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14681 14682 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14683 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14684 14685 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14686 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14687 14688 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14689 #if defined(sun) 14690 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14691 hdlr.cyh_arg = state; 14692 hdlr.cyh_level = CY_LOW_LEVEL; 14693 14694 when.cyt_when = 0; 14695 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14696 14697 state->dts_cleaner = cyclic_add(&hdlr, &when); 14698 14699 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14700 hdlr.cyh_arg = state; 14701 hdlr.cyh_level = CY_LOW_LEVEL; 14702 14703 when.cyt_when = 0; 14704 when.cyt_interval = dtrace_deadman_interval; 14705 14706 state->dts_deadman = cyclic_add(&hdlr, &when); 14707 #else 14708 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14709 dtrace_state_clean, state); 14710 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14711 dtrace_state_deadman, state); 14712 #endif 14713 14714 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14715 14716 #if defined(sun) 14717 if (state->dts_getf != 0 && 14718 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14719 /* 14720 * We don't have kernel privs but we have at least one call 14721 * to getf(); we need to bump our zone's count, and (if 14722 * this is the first enabling to have an unprivileged call 14723 * to getf()) we need to hook into closef(). 14724 */ 14725 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14726 14727 if (dtrace_getf++ == 0) { 14728 ASSERT(dtrace_closef == NULL); 14729 dtrace_closef = dtrace_getf_barrier; 14730 } 14731 } 14732 #endif 14733 14734 /* 14735 * Now it's time to actually fire the BEGIN probe. We need to disable 14736 * interrupts here both to record the CPU on which we fired the BEGIN 14737 * probe (the data from this CPU will be processed first at user 14738 * level) and to manually activate the buffer for this CPU. 14739 */ 14740 cookie = dtrace_interrupt_disable(); 14741 *cpu = curcpu; 14742 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14743 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14744 14745 dtrace_probe(dtrace_probeid_begin, 14746 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14747 dtrace_interrupt_enable(cookie); 14748 /* 14749 * We may have had an exit action from a BEGIN probe; only change our 14750 * state to ACTIVE if we're still in WARMUP. 14751 */ 14752 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14753 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14754 14755 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14756 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14757 14758 /* 14759 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14760 * want each CPU to transition its principal buffer out of the 14761 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14762 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14763 * atomically transition from processing none of a state's ECBs to 14764 * processing all of them. 14765 */ 14766 dtrace_xcall(DTRACE_CPUALL, 14767 (dtrace_xcall_t)dtrace_buffer_activate, state); 14768 goto out; 14769 14770 err: 14771 dtrace_buffer_free(state->dts_buffer); 14772 dtrace_buffer_free(state->dts_aggbuffer); 14773 14774 if ((nspec = state->dts_nspeculations) == 0) { 14775 ASSERT(state->dts_speculations == NULL); 14776 goto out; 14777 } 14778 14779 spec = state->dts_speculations; 14780 ASSERT(spec != NULL); 14781 14782 for (i = 0; i < state->dts_nspeculations; i++) { 14783 if ((buf = spec[i].dtsp_buffer) == NULL) 14784 break; 14785 14786 dtrace_buffer_free(buf); 14787 kmem_free(buf, bufsize); 14788 } 14789 14790 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14791 state->dts_nspeculations = 0; 14792 state->dts_speculations = NULL; 14793 14794 out: 14795 mutex_exit(&dtrace_lock); 14796 mutex_exit(&cpu_lock); 14797 14798 return (rval); 14799 } 14800 14801 static int 14802 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14803 { 14804 dtrace_icookie_t cookie; 14805 14806 ASSERT(MUTEX_HELD(&dtrace_lock)); 14807 14808 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14809 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14810 return (EINVAL); 14811 14812 /* 14813 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14814 * to be sure that every CPU has seen it. See below for the details 14815 * on why this is done. 14816 */ 14817 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14818 dtrace_sync(); 14819 14820 /* 14821 * By this point, it is impossible for any CPU to be still processing 14822 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14823 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14824 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14825 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14826 * iff we're in the END probe. 14827 */ 14828 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14829 dtrace_sync(); 14830 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14831 14832 /* 14833 * Finally, we can release the reserve and call the END probe. We 14834 * disable interrupts across calling the END probe to allow us to 14835 * return the CPU on which we actually called the END probe. This 14836 * allows user-land to be sure that this CPU's principal buffer is 14837 * processed last. 14838 */ 14839 state->dts_reserve = 0; 14840 14841 cookie = dtrace_interrupt_disable(); 14842 *cpu = curcpu; 14843 dtrace_probe(dtrace_probeid_end, 14844 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14845 dtrace_interrupt_enable(cookie); 14846 14847 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14848 dtrace_sync(); 14849 14850 #if defined(sun) 14851 if (state->dts_getf != 0 && 14852 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14853 /* 14854 * We don't have kernel privs but we have at least one call 14855 * to getf(); we need to lower our zone's count, and (if 14856 * this is the last enabling to have an unprivileged call 14857 * to getf()) we need to clear the closef() hook. 14858 */ 14859 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14860 ASSERT(dtrace_closef == dtrace_getf_barrier); 14861 ASSERT(dtrace_getf > 0); 14862 14863 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14864 14865 if (--dtrace_getf == 0) 14866 dtrace_closef = NULL; 14867 } 14868 #endif 14869 14870 return (0); 14871 } 14872 14873 static int 14874 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14875 dtrace_optval_t val) 14876 { 14877 ASSERT(MUTEX_HELD(&dtrace_lock)); 14878 14879 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14880 return (EBUSY); 14881 14882 if (option >= DTRACEOPT_MAX) 14883 return (EINVAL); 14884 14885 if (option != DTRACEOPT_CPU && val < 0) 14886 return (EINVAL); 14887 14888 switch (option) { 14889 case DTRACEOPT_DESTRUCTIVE: 14890 if (dtrace_destructive_disallow) 14891 return (EACCES); 14892 14893 state->dts_cred.dcr_destructive = 1; 14894 break; 14895 14896 case DTRACEOPT_BUFSIZE: 14897 case DTRACEOPT_DYNVARSIZE: 14898 case DTRACEOPT_AGGSIZE: 14899 case DTRACEOPT_SPECSIZE: 14900 case DTRACEOPT_STRSIZE: 14901 if (val < 0) 14902 return (EINVAL); 14903 14904 if (val >= LONG_MAX) { 14905 /* 14906 * If this is an otherwise negative value, set it to 14907 * the highest multiple of 128m less than LONG_MAX. 14908 * Technically, we're adjusting the size without 14909 * regard to the buffer resizing policy, but in fact, 14910 * this has no effect -- if we set the buffer size to 14911 * ~LONG_MAX and the buffer policy is ultimately set to 14912 * be "manual", the buffer allocation is guaranteed to 14913 * fail, if only because the allocation requires two 14914 * buffers. (We set the the size to the highest 14915 * multiple of 128m because it ensures that the size 14916 * will remain a multiple of a megabyte when 14917 * repeatedly halved -- all the way down to 15m.) 14918 */ 14919 val = LONG_MAX - (1 << 27) + 1; 14920 } 14921 } 14922 14923 state->dts_options[option] = val; 14924 14925 return (0); 14926 } 14927 14928 static void 14929 dtrace_state_destroy(dtrace_state_t *state) 14930 { 14931 dtrace_ecb_t *ecb; 14932 dtrace_vstate_t *vstate = &state->dts_vstate; 14933 #if defined(sun) 14934 minor_t minor = getminor(state->dts_dev); 14935 #endif 14936 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14937 dtrace_speculation_t *spec = state->dts_speculations; 14938 int nspec = state->dts_nspeculations; 14939 uint32_t match; 14940 14941 ASSERT(MUTEX_HELD(&dtrace_lock)); 14942 ASSERT(MUTEX_HELD(&cpu_lock)); 14943 14944 /* 14945 * First, retract any retained enablings for this state. 14946 */ 14947 dtrace_enabling_retract(state); 14948 ASSERT(state->dts_nretained == 0); 14949 14950 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14951 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14952 /* 14953 * We have managed to come into dtrace_state_destroy() on a 14954 * hot enabling -- almost certainly because of a disorderly 14955 * shutdown of a consumer. (That is, a consumer that is 14956 * exiting without having called dtrace_stop().) In this case, 14957 * we're going to set our activity to be KILLED, and then 14958 * issue a sync to be sure that everyone is out of probe 14959 * context before we start blowing away ECBs. 14960 */ 14961 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14962 dtrace_sync(); 14963 } 14964 14965 /* 14966 * Release the credential hold we took in dtrace_state_create(). 14967 */ 14968 if (state->dts_cred.dcr_cred != NULL) 14969 crfree(state->dts_cred.dcr_cred); 14970 14971 /* 14972 * Now we can safely disable and destroy any enabled probes. Because 14973 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14974 * (especially if they're all enabled), we take two passes through the 14975 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14976 * in the second we disable whatever is left over. 14977 */ 14978 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14979 for (i = 0; i < state->dts_necbs; i++) { 14980 if ((ecb = state->dts_ecbs[i]) == NULL) 14981 continue; 14982 14983 if (match && ecb->dte_probe != NULL) { 14984 dtrace_probe_t *probe = ecb->dte_probe; 14985 dtrace_provider_t *prov = probe->dtpr_provider; 14986 14987 if (!(prov->dtpv_priv.dtpp_flags & match)) 14988 continue; 14989 } 14990 14991 dtrace_ecb_disable(ecb); 14992 dtrace_ecb_destroy(ecb); 14993 } 14994 14995 if (!match) 14996 break; 14997 } 14998 14999 /* 15000 * Before we free the buffers, perform one more sync to assure that 15001 * every CPU is out of probe context. 15002 */ 15003 dtrace_sync(); 15004 15005 dtrace_buffer_free(state->dts_buffer); 15006 dtrace_buffer_free(state->dts_aggbuffer); 15007 15008 for (i = 0; i < nspec; i++) 15009 dtrace_buffer_free(spec[i].dtsp_buffer); 15010 15011 #if defined(sun) 15012 if (state->dts_cleaner != CYCLIC_NONE) 15013 cyclic_remove(state->dts_cleaner); 15014 15015 if (state->dts_deadman != CYCLIC_NONE) 15016 cyclic_remove(state->dts_deadman); 15017 #else 15018 callout_stop(&state->dts_cleaner); 15019 callout_drain(&state->dts_cleaner); 15020 callout_stop(&state->dts_deadman); 15021 callout_drain(&state->dts_deadman); 15022 #endif 15023 15024 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15025 dtrace_vstate_fini(vstate); 15026 if (state->dts_ecbs != NULL) 15027 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15028 15029 if (state->dts_aggregations != NULL) { 15030 #ifdef DEBUG 15031 for (i = 0; i < state->dts_naggregations; i++) 15032 ASSERT(state->dts_aggregations[i] == NULL); 15033 #endif 15034 ASSERT(state->dts_naggregations > 0); 15035 kmem_free(state->dts_aggregations, 15036 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15037 } 15038 15039 kmem_free(state->dts_buffer, bufsize); 15040 kmem_free(state->dts_aggbuffer, bufsize); 15041 15042 for (i = 0; i < nspec; i++) 15043 kmem_free(spec[i].dtsp_buffer, bufsize); 15044 15045 if (spec != NULL) 15046 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15047 15048 dtrace_format_destroy(state); 15049 15050 if (state->dts_aggid_arena != NULL) { 15051 #if defined(sun) 15052 vmem_destroy(state->dts_aggid_arena); 15053 #else 15054 delete_unrhdr(state->dts_aggid_arena); 15055 #endif 15056 state->dts_aggid_arena = NULL; 15057 } 15058 #if defined(sun) 15059 ddi_soft_state_free(dtrace_softstate, minor); 15060 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15061 #endif 15062 } 15063 15064 /* 15065 * DTrace Anonymous Enabling Functions 15066 */ 15067 static dtrace_state_t * 15068 dtrace_anon_grab(void) 15069 { 15070 dtrace_state_t *state; 15071 15072 ASSERT(MUTEX_HELD(&dtrace_lock)); 15073 15074 if ((state = dtrace_anon.dta_state) == NULL) { 15075 ASSERT(dtrace_anon.dta_enabling == NULL); 15076 return (NULL); 15077 } 15078 15079 ASSERT(dtrace_anon.dta_enabling != NULL); 15080 ASSERT(dtrace_retained != NULL); 15081 15082 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15083 dtrace_anon.dta_enabling = NULL; 15084 dtrace_anon.dta_state = NULL; 15085 15086 return (state); 15087 } 15088 15089 static void 15090 dtrace_anon_property(void) 15091 { 15092 int i, rv; 15093 dtrace_state_t *state; 15094 dof_hdr_t *dof; 15095 char c[32]; /* enough for "dof-data-" + digits */ 15096 15097 ASSERT(MUTEX_HELD(&dtrace_lock)); 15098 ASSERT(MUTEX_HELD(&cpu_lock)); 15099 15100 for (i = 0; ; i++) { 15101 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15102 15103 dtrace_err_verbose = 1; 15104 15105 if ((dof = dtrace_dof_property(c)) == NULL) { 15106 dtrace_err_verbose = 0; 15107 break; 15108 } 15109 15110 #if defined(sun) 15111 /* 15112 * We want to create anonymous state, so we need to transition 15113 * the kernel debugger to indicate that DTrace is active. If 15114 * this fails (e.g. because the debugger has modified text in 15115 * some way), we won't continue with the processing. 15116 */ 15117 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15118 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15119 "enabling ignored."); 15120 dtrace_dof_destroy(dof); 15121 break; 15122 } 15123 #endif 15124 15125 /* 15126 * If we haven't allocated an anonymous state, we'll do so now. 15127 */ 15128 if ((state = dtrace_anon.dta_state) == NULL) { 15129 #if defined(sun) 15130 state = dtrace_state_create(NULL, NULL); 15131 #else 15132 state = dtrace_state_create(NULL); 15133 #endif 15134 dtrace_anon.dta_state = state; 15135 15136 if (state == NULL) { 15137 /* 15138 * This basically shouldn't happen: the only 15139 * failure mode from dtrace_state_create() is a 15140 * failure of ddi_soft_state_zalloc() that 15141 * itself should never happen. Still, the 15142 * interface allows for a failure mode, and 15143 * we want to fail as gracefully as possible: 15144 * we'll emit an error message and cease 15145 * processing anonymous state in this case. 15146 */ 15147 cmn_err(CE_WARN, "failed to create " 15148 "anonymous state"); 15149 dtrace_dof_destroy(dof); 15150 break; 15151 } 15152 } 15153 15154 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15155 &dtrace_anon.dta_enabling, 0, B_TRUE); 15156 15157 if (rv == 0) 15158 rv = dtrace_dof_options(dof, state); 15159 15160 dtrace_err_verbose = 0; 15161 dtrace_dof_destroy(dof); 15162 15163 if (rv != 0) { 15164 /* 15165 * This is malformed DOF; chuck any anonymous state 15166 * that we created. 15167 */ 15168 ASSERT(dtrace_anon.dta_enabling == NULL); 15169 dtrace_state_destroy(state); 15170 dtrace_anon.dta_state = NULL; 15171 break; 15172 } 15173 15174 ASSERT(dtrace_anon.dta_enabling != NULL); 15175 } 15176 15177 if (dtrace_anon.dta_enabling != NULL) { 15178 int rval; 15179 15180 /* 15181 * dtrace_enabling_retain() can only fail because we are 15182 * trying to retain more enablings than are allowed -- but 15183 * we only have one anonymous enabling, and we are guaranteed 15184 * to be allowed at least one retained enabling; we assert 15185 * that dtrace_enabling_retain() returns success. 15186 */ 15187 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15188 ASSERT(rval == 0); 15189 15190 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15191 } 15192 } 15193 15194 /* 15195 * DTrace Helper Functions 15196 */ 15197 static void 15198 dtrace_helper_trace(dtrace_helper_action_t *helper, 15199 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15200 { 15201 uint32_t size, next, nnext, i; 15202 dtrace_helptrace_t *ent; 15203 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15204 15205 if (!dtrace_helptrace_enabled) 15206 return; 15207 15208 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15209 15210 /* 15211 * What would a tracing framework be without its own tracing 15212 * framework? (Well, a hell of a lot simpler, for starters...) 15213 */ 15214 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15215 sizeof (uint64_t) - sizeof (uint64_t); 15216 15217 /* 15218 * Iterate until we can allocate a slot in the trace buffer. 15219 */ 15220 do { 15221 next = dtrace_helptrace_next; 15222 15223 if (next + size < dtrace_helptrace_bufsize) { 15224 nnext = next + size; 15225 } else { 15226 nnext = size; 15227 } 15228 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15229 15230 /* 15231 * We have our slot; fill it in. 15232 */ 15233 if (nnext == size) 15234 next = 0; 15235 15236 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 15237 ent->dtht_helper = helper; 15238 ent->dtht_where = where; 15239 ent->dtht_nlocals = vstate->dtvs_nlocals; 15240 15241 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15242 mstate->dtms_fltoffs : -1; 15243 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15244 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15245 15246 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15247 dtrace_statvar_t *svar; 15248 15249 if ((svar = vstate->dtvs_locals[i]) == NULL) 15250 continue; 15251 15252 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15253 ent->dtht_locals[i] = 15254 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15255 } 15256 } 15257 15258 static uint64_t 15259 dtrace_helper(int which, dtrace_mstate_t *mstate, 15260 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15261 { 15262 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15263 uint64_t sarg0 = mstate->dtms_arg[0]; 15264 uint64_t sarg1 = mstate->dtms_arg[1]; 15265 uint64_t rval = 0; 15266 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15267 dtrace_helper_action_t *helper; 15268 dtrace_vstate_t *vstate; 15269 dtrace_difo_t *pred; 15270 int i, trace = dtrace_helptrace_enabled; 15271 15272 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15273 15274 if (helpers == NULL) 15275 return (0); 15276 15277 if ((helper = helpers->dthps_actions[which]) == NULL) 15278 return (0); 15279 15280 vstate = &helpers->dthps_vstate; 15281 mstate->dtms_arg[0] = arg0; 15282 mstate->dtms_arg[1] = arg1; 15283 15284 /* 15285 * Now iterate over each helper. If its predicate evaluates to 'true', 15286 * we'll call the corresponding actions. Note that the below calls 15287 * to dtrace_dif_emulate() may set faults in machine state. This is 15288 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15289 * the stored DIF offset with its own (which is the desired behavior). 15290 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15291 * from machine state; this is okay, too. 15292 */ 15293 for (; helper != NULL; helper = helper->dtha_next) { 15294 if ((pred = helper->dtha_predicate) != NULL) { 15295 if (trace) 15296 dtrace_helper_trace(helper, mstate, vstate, 0); 15297 15298 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15299 goto next; 15300 15301 if (*flags & CPU_DTRACE_FAULT) 15302 goto err; 15303 } 15304 15305 for (i = 0; i < helper->dtha_nactions; i++) { 15306 if (trace) 15307 dtrace_helper_trace(helper, 15308 mstate, vstate, i + 1); 15309 15310 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15311 mstate, vstate, state); 15312 15313 if (*flags & CPU_DTRACE_FAULT) 15314 goto err; 15315 } 15316 15317 next: 15318 if (trace) 15319 dtrace_helper_trace(helper, mstate, vstate, 15320 DTRACE_HELPTRACE_NEXT); 15321 } 15322 15323 if (trace) 15324 dtrace_helper_trace(helper, mstate, vstate, 15325 DTRACE_HELPTRACE_DONE); 15326 15327 /* 15328 * Restore the arg0 that we saved upon entry. 15329 */ 15330 mstate->dtms_arg[0] = sarg0; 15331 mstate->dtms_arg[1] = sarg1; 15332 15333 return (rval); 15334 15335 err: 15336 if (trace) 15337 dtrace_helper_trace(helper, mstate, vstate, 15338 DTRACE_HELPTRACE_ERR); 15339 15340 /* 15341 * Restore the arg0 that we saved upon entry. 15342 */ 15343 mstate->dtms_arg[0] = sarg0; 15344 mstate->dtms_arg[1] = sarg1; 15345 15346 return (0); 15347 } 15348 15349 static void 15350 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15351 dtrace_vstate_t *vstate) 15352 { 15353 int i; 15354 15355 if (helper->dtha_predicate != NULL) 15356 dtrace_difo_release(helper->dtha_predicate, vstate); 15357 15358 for (i = 0; i < helper->dtha_nactions; i++) { 15359 ASSERT(helper->dtha_actions[i] != NULL); 15360 dtrace_difo_release(helper->dtha_actions[i], vstate); 15361 } 15362 15363 kmem_free(helper->dtha_actions, 15364 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15365 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15366 } 15367 15368 static int 15369 dtrace_helper_destroygen(int gen) 15370 { 15371 proc_t *p = curproc; 15372 dtrace_helpers_t *help = p->p_dtrace_helpers; 15373 dtrace_vstate_t *vstate; 15374 int i; 15375 15376 ASSERT(MUTEX_HELD(&dtrace_lock)); 15377 15378 if (help == NULL || gen > help->dthps_generation) 15379 return (EINVAL); 15380 15381 vstate = &help->dthps_vstate; 15382 15383 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15384 dtrace_helper_action_t *last = NULL, *h, *next; 15385 15386 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15387 next = h->dtha_next; 15388 15389 if (h->dtha_generation == gen) { 15390 if (last != NULL) { 15391 last->dtha_next = next; 15392 } else { 15393 help->dthps_actions[i] = next; 15394 } 15395 15396 dtrace_helper_action_destroy(h, vstate); 15397 } else { 15398 last = h; 15399 } 15400 } 15401 } 15402 15403 /* 15404 * Interate until we've cleared out all helper providers with the 15405 * given generation number. 15406 */ 15407 for (;;) { 15408 dtrace_helper_provider_t *prov; 15409 15410 /* 15411 * Look for a helper provider with the right generation. We 15412 * have to start back at the beginning of the list each time 15413 * because we drop dtrace_lock. It's unlikely that we'll make 15414 * more than two passes. 15415 */ 15416 for (i = 0; i < help->dthps_nprovs; i++) { 15417 prov = help->dthps_provs[i]; 15418 15419 if (prov->dthp_generation == gen) 15420 break; 15421 } 15422 15423 /* 15424 * If there were no matches, we're done. 15425 */ 15426 if (i == help->dthps_nprovs) 15427 break; 15428 15429 /* 15430 * Move the last helper provider into this slot. 15431 */ 15432 help->dthps_nprovs--; 15433 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15434 help->dthps_provs[help->dthps_nprovs] = NULL; 15435 15436 mutex_exit(&dtrace_lock); 15437 15438 /* 15439 * If we have a meta provider, remove this helper provider. 15440 */ 15441 mutex_enter(&dtrace_meta_lock); 15442 if (dtrace_meta_pid != NULL) { 15443 ASSERT(dtrace_deferred_pid == NULL); 15444 dtrace_helper_provider_remove(&prov->dthp_prov, 15445 p->p_pid); 15446 } 15447 mutex_exit(&dtrace_meta_lock); 15448 15449 dtrace_helper_provider_destroy(prov); 15450 15451 mutex_enter(&dtrace_lock); 15452 } 15453 15454 return (0); 15455 } 15456 15457 static int 15458 dtrace_helper_validate(dtrace_helper_action_t *helper) 15459 { 15460 int err = 0, i; 15461 dtrace_difo_t *dp; 15462 15463 if ((dp = helper->dtha_predicate) != NULL) 15464 err += dtrace_difo_validate_helper(dp); 15465 15466 for (i = 0; i < helper->dtha_nactions; i++) 15467 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15468 15469 return (err == 0); 15470 } 15471 15472 static int 15473 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 15474 { 15475 dtrace_helpers_t *help; 15476 dtrace_helper_action_t *helper, *last; 15477 dtrace_actdesc_t *act; 15478 dtrace_vstate_t *vstate; 15479 dtrace_predicate_t *pred; 15480 int count = 0, nactions = 0, i; 15481 15482 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15483 return (EINVAL); 15484 15485 help = curproc->p_dtrace_helpers; 15486 last = help->dthps_actions[which]; 15487 vstate = &help->dthps_vstate; 15488 15489 for (count = 0; last != NULL; last = last->dtha_next) { 15490 count++; 15491 if (last->dtha_next == NULL) 15492 break; 15493 } 15494 15495 /* 15496 * If we already have dtrace_helper_actions_max helper actions for this 15497 * helper action type, we'll refuse to add a new one. 15498 */ 15499 if (count >= dtrace_helper_actions_max) 15500 return (ENOSPC); 15501 15502 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15503 helper->dtha_generation = help->dthps_generation; 15504 15505 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15506 ASSERT(pred->dtp_difo != NULL); 15507 dtrace_difo_hold(pred->dtp_difo); 15508 helper->dtha_predicate = pred->dtp_difo; 15509 } 15510 15511 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15512 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15513 goto err; 15514 15515 if (act->dtad_difo == NULL) 15516 goto err; 15517 15518 nactions++; 15519 } 15520 15521 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15522 (helper->dtha_nactions = nactions), KM_SLEEP); 15523 15524 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15525 dtrace_difo_hold(act->dtad_difo); 15526 helper->dtha_actions[i++] = act->dtad_difo; 15527 } 15528 15529 if (!dtrace_helper_validate(helper)) 15530 goto err; 15531 15532 if (last == NULL) { 15533 help->dthps_actions[which] = helper; 15534 } else { 15535 last->dtha_next = helper; 15536 } 15537 15538 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15539 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15540 dtrace_helptrace_next = 0; 15541 } 15542 15543 return (0); 15544 err: 15545 dtrace_helper_action_destroy(helper, vstate); 15546 return (EINVAL); 15547 } 15548 15549 static void 15550 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15551 dof_helper_t *dofhp) 15552 { 15553 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15554 15555 mutex_enter(&dtrace_meta_lock); 15556 mutex_enter(&dtrace_lock); 15557 15558 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15559 /* 15560 * If the dtrace module is loaded but not attached, or if 15561 * there aren't isn't a meta provider registered to deal with 15562 * these provider descriptions, we need to postpone creating 15563 * the actual providers until later. 15564 */ 15565 15566 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15567 dtrace_deferred_pid != help) { 15568 help->dthps_deferred = 1; 15569 help->dthps_pid = p->p_pid; 15570 help->dthps_next = dtrace_deferred_pid; 15571 help->dthps_prev = NULL; 15572 if (dtrace_deferred_pid != NULL) 15573 dtrace_deferred_pid->dthps_prev = help; 15574 dtrace_deferred_pid = help; 15575 } 15576 15577 mutex_exit(&dtrace_lock); 15578 15579 } else if (dofhp != NULL) { 15580 /* 15581 * If the dtrace module is loaded and we have a particular 15582 * helper provider description, pass that off to the 15583 * meta provider. 15584 */ 15585 15586 mutex_exit(&dtrace_lock); 15587 15588 dtrace_helper_provide(dofhp, p->p_pid); 15589 15590 } else { 15591 /* 15592 * Otherwise, just pass all the helper provider descriptions 15593 * off to the meta provider. 15594 */ 15595 15596 int i; 15597 mutex_exit(&dtrace_lock); 15598 15599 for (i = 0; i < help->dthps_nprovs; i++) { 15600 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15601 p->p_pid); 15602 } 15603 } 15604 15605 mutex_exit(&dtrace_meta_lock); 15606 } 15607 15608 static int 15609 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15610 { 15611 dtrace_helpers_t *help; 15612 dtrace_helper_provider_t *hprov, **tmp_provs; 15613 uint_t tmp_maxprovs, i; 15614 15615 ASSERT(MUTEX_HELD(&dtrace_lock)); 15616 15617 help = curproc->p_dtrace_helpers; 15618 ASSERT(help != NULL); 15619 15620 /* 15621 * If we already have dtrace_helper_providers_max helper providers, 15622 * we're refuse to add a new one. 15623 */ 15624 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15625 return (ENOSPC); 15626 15627 /* 15628 * Check to make sure this isn't a duplicate. 15629 */ 15630 for (i = 0; i < help->dthps_nprovs; i++) { 15631 if (dofhp->dofhp_dof == 15632 help->dthps_provs[i]->dthp_prov.dofhp_dof) 15633 return (EALREADY); 15634 } 15635 15636 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15637 hprov->dthp_prov = *dofhp; 15638 hprov->dthp_ref = 1; 15639 hprov->dthp_generation = gen; 15640 15641 /* 15642 * Allocate a bigger table for helper providers if it's already full. 15643 */ 15644 if (help->dthps_maxprovs == help->dthps_nprovs) { 15645 tmp_maxprovs = help->dthps_maxprovs; 15646 tmp_provs = help->dthps_provs; 15647 15648 if (help->dthps_maxprovs == 0) 15649 help->dthps_maxprovs = 2; 15650 else 15651 help->dthps_maxprovs *= 2; 15652 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15653 help->dthps_maxprovs = dtrace_helper_providers_max; 15654 15655 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15656 15657 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15658 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15659 15660 if (tmp_provs != NULL) { 15661 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15662 sizeof (dtrace_helper_provider_t *)); 15663 kmem_free(tmp_provs, tmp_maxprovs * 15664 sizeof (dtrace_helper_provider_t *)); 15665 } 15666 } 15667 15668 help->dthps_provs[help->dthps_nprovs] = hprov; 15669 help->dthps_nprovs++; 15670 15671 return (0); 15672 } 15673 15674 static void 15675 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15676 { 15677 mutex_enter(&dtrace_lock); 15678 15679 if (--hprov->dthp_ref == 0) { 15680 dof_hdr_t *dof; 15681 mutex_exit(&dtrace_lock); 15682 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15683 dtrace_dof_destroy(dof); 15684 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15685 } else { 15686 mutex_exit(&dtrace_lock); 15687 } 15688 } 15689 15690 static int 15691 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15692 { 15693 uintptr_t daddr = (uintptr_t)dof; 15694 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15695 dof_provider_t *provider; 15696 dof_probe_t *probe; 15697 uint8_t *arg; 15698 char *strtab, *typestr; 15699 dof_stridx_t typeidx; 15700 size_t typesz; 15701 uint_t nprobes, j, k; 15702 15703 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15704 15705 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15706 dtrace_dof_error(dof, "misaligned section offset"); 15707 return (-1); 15708 } 15709 15710 /* 15711 * The section needs to be large enough to contain the DOF provider 15712 * structure appropriate for the given version. 15713 */ 15714 if (sec->dofs_size < 15715 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15716 offsetof(dof_provider_t, dofpv_prenoffs) : 15717 sizeof (dof_provider_t))) { 15718 dtrace_dof_error(dof, "provider section too small"); 15719 return (-1); 15720 } 15721 15722 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15723 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15724 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15725 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15726 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15727 15728 if (str_sec == NULL || prb_sec == NULL || 15729 arg_sec == NULL || off_sec == NULL) 15730 return (-1); 15731 15732 enoff_sec = NULL; 15733 15734 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15735 provider->dofpv_prenoffs != DOF_SECT_NONE && 15736 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15737 provider->dofpv_prenoffs)) == NULL) 15738 return (-1); 15739 15740 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15741 15742 if (provider->dofpv_name >= str_sec->dofs_size || 15743 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15744 dtrace_dof_error(dof, "invalid provider name"); 15745 return (-1); 15746 } 15747 15748 if (prb_sec->dofs_entsize == 0 || 15749 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15750 dtrace_dof_error(dof, "invalid entry size"); 15751 return (-1); 15752 } 15753 15754 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15755 dtrace_dof_error(dof, "misaligned entry size"); 15756 return (-1); 15757 } 15758 15759 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15760 dtrace_dof_error(dof, "invalid entry size"); 15761 return (-1); 15762 } 15763 15764 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15765 dtrace_dof_error(dof, "misaligned section offset"); 15766 return (-1); 15767 } 15768 15769 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15770 dtrace_dof_error(dof, "invalid entry size"); 15771 return (-1); 15772 } 15773 15774 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15775 15776 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15777 15778 /* 15779 * Take a pass through the probes to check for errors. 15780 */ 15781 for (j = 0; j < nprobes; j++) { 15782 probe = (dof_probe_t *)(uintptr_t)(daddr + 15783 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15784 15785 if (probe->dofpr_func >= str_sec->dofs_size) { 15786 dtrace_dof_error(dof, "invalid function name"); 15787 return (-1); 15788 } 15789 15790 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15791 dtrace_dof_error(dof, "function name too long"); 15792 return (-1); 15793 } 15794 15795 if (probe->dofpr_name >= str_sec->dofs_size || 15796 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15797 dtrace_dof_error(dof, "invalid probe name"); 15798 return (-1); 15799 } 15800 15801 /* 15802 * The offset count must not wrap the index, and the offsets 15803 * must also not overflow the section's data. 15804 */ 15805 if (probe->dofpr_offidx + probe->dofpr_noffs < 15806 probe->dofpr_offidx || 15807 (probe->dofpr_offidx + probe->dofpr_noffs) * 15808 off_sec->dofs_entsize > off_sec->dofs_size) { 15809 dtrace_dof_error(dof, "invalid probe offset"); 15810 return (-1); 15811 } 15812 15813 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15814 /* 15815 * If there's no is-enabled offset section, make sure 15816 * there aren't any is-enabled offsets. Otherwise 15817 * perform the same checks as for probe offsets 15818 * (immediately above). 15819 */ 15820 if (enoff_sec == NULL) { 15821 if (probe->dofpr_enoffidx != 0 || 15822 probe->dofpr_nenoffs != 0) { 15823 dtrace_dof_error(dof, "is-enabled " 15824 "offsets with null section"); 15825 return (-1); 15826 } 15827 } else if (probe->dofpr_enoffidx + 15828 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15829 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15830 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15831 dtrace_dof_error(dof, "invalid is-enabled " 15832 "offset"); 15833 return (-1); 15834 } 15835 15836 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15837 dtrace_dof_error(dof, "zero probe and " 15838 "is-enabled offsets"); 15839 return (-1); 15840 } 15841 } else if (probe->dofpr_noffs == 0) { 15842 dtrace_dof_error(dof, "zero probe offsets"); 15843 return (-1); 15844 } 15845 15846 if (probe->dofpr_argidx + probe->dofpr_xargc < 15847 probe->dofpr_argidx || 15848 (probe->dofpr_argidx + probe->dofpr_xargc) * 15849 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15850 dtrace_dof_error(dof, "invalid args"); 15851 return (-1); 15852 } 15853 15854 typeidx = probe->dofpr_nargv; 15855 typestr = strtab + probe->dofpr_nargv; 15856 for (k = 0; k < probe->dofpr_nargc; k++) { 15857 if (typeidx >= str_sec->dofs_size) { 15858 dtrace_dof_error(dof, "bad " 15859 "native argument type"); 15860 return (-1); 15861 } 15862 15863 typesz = strlen(typestr) + 1; 15864 if (typesz > DTRACE_ARGTYPELEN) { 15865 dtrace_dof_error(dof, "native " 15866 "argument type too long"); 15867 return (-1); 15868 } 15869 typeidx += typesz; 15870 typestr += typesz; 15871 } 15872 15873 typeidx = probe->dofpr_xargv; 15874 typestr = strtab + probe->dofpr_xargv; 15875 for (k = 0; k < probe->dofpr_xargc; k++) { 15876 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15877 dtrace_dof_error(dof, "bad " 15878 "native argument index"); 15879 return (-1); 15880 } 15881 15882 if (typeidx >= str_sec->dofs_size) { 15883 dtrace_dof_error(dof, "bad " 15884 "translated argument type"); 15885 return (-1); 15886 } 15887 15888 typesz = strlen(typestr) + 1; 15889 if (typesz > DTRACE_ARGTYPELEN) { 15890 dtrace_dof_error(dof, "translated argument " 15891 "type too long"); 15892 return (-1); 15893 } 15894 15895 typeidx += typesz; 15896 typestr += typesz; 15897 } 15898 } 15899 15900 return (0); 15901 } 15902 15903 static int 15904 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15905 { 15906 dtrace_helpers_t *help; 15907 dtrace_vstate_t *vstate; 15908 dtrace_enabling_t *enab = NULL; 15909 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15910 uintptr_t daddr = (uintptr_t)dof; 15911 15912 ASSERT(MUTEX_HELD(&dtrace_lock)); 15913 15914 if ((help = curproc->p_dtrace_helpers) == NULL) 15915 help = dtrace_helpers_create(curproc); 15916 15917 vstate = &help->dthps_vstate; 15918 15919 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15920 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15921 dtrace_dof_destroy(dof); 15922 return (rv); 15923 } 15924 15925 /* 15926 * Look for helper providers and validate their descriptions. 15927 */ 15928 if (dhp != NULL) { 15929 for (i = 0; i < dof->dofh_secnum; i++) { 15930 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15931 dof->dofh_secoff + i * dof->dofh_secsize); 15932 15933 if (sec->dofs_type != DOF_SECT_PROVIDER) 15934 continue; 15935 15936 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15937 dtrace_enabling_destroy(enab); 15938 dtrace_dof_destroy(dof); 15939 return (-1); 15940 } 15941 15942 nprovs++; 15943 } 15944 } 15945 15946 /* 15947 * Now we need to walk through the ECB descriptions in the enabling. 15948 */ 15949 for (i = 0; i < enab->dten_ndesc; i++) { 15950 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15951 dtrace_probedesc_t *desc = &ep->dted_probe; 15952 15953 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15954 continue; 15955 15956 if (strcmp(desc->dtpd_mod, "helper") != 0) 15957 continue; 15958 15959 if (strcmp(desc->dtpd_func, "ustack") != 0) 15960 continue; 15961 15962 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15963 ep)) != 0) { 15964 /* 15965 * Adding this helper action failed -- we are now going 15966 * to rip out the entire generation and return failure. 15967 */ 15968 (void) dtrace_helper_destroygen(help->dthps_generation); 15969 dtrace_enabling_destroy(enab); 15970 dtrace_dof_destroy(dof); 15971 return (-1); 15972 } 15973 15974 nhelpers++; 15975 } 15976 15977 if (nhelpers < enab->dten_ndesc) 15978 dtrace_dof_error(dof, "unmatched helpers"); 15979 15980 gen = help->dthps_generation++; 15981 dtrace_enabling_destroy(enab); 15982 15983 if (dhp != NULL && nprovs > 0) { 15984 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15985 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15986 mutex_exit(&dtrace_lock); 15987 dtrace_helper_provider_register(curproc, help, dhp); 15988 mutex_enter(&dtrace_lock); 15989 15990 destroy = 0; 15991 } 15992 } 15993 15994 if (destroy) 15995 dtrace_dof_destroy(dof); 15996 15997 return (gen); 15998 } 15999 16000 static dtrace_helpers_t * 16001 dtrace_helpers_create(proc_t *p) 16002 { 16003 dtrace_helpers_t *help; 16004 16005 ASSERT(MUTEX_HELD(&dtrace_lock)); 16006 ASSERT(p->p_dtrace_helpers == NULL); 16007 16008 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16009 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16010 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16011 16012 p->p_dtrace_helpers = help; 16013 dtrace_helpers++; 16014 16015 return (help); 16016 } 16017 16018 #if defined(sun) 16019 static 16020 #endif 16021 void 16022 dtrace_helpers_destroy(proc_t *p) 16023 { 16024 dtrace_helpers_t *help; 16025 dtrace_vstate_t *vstate; 16026 #if defined(sun) 16027 proc_t *p = curproc; 16028 #endif 16029 int i; 16030 16031 mutex_enter(&dtrace_lock); 16032 16033 ASSERT(p->p_dtrace_helpers != NULL); 16034 ASSERT(dtrace_helpers > 0); 16035 16036 help = p->p_dtrace_helpers; 16037 vstate = &help->dthps_vstate; 16038 16039 /* 16040 * We're now going to lose the help from this process. 16041 */ 16042 p->p_dtrace_helpers = NULL; 16043 dtrace_sync(); 16044 16045 /* 16046 * Destory the helper actions. 16047 */ 16048 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16049 dtrace_helper_action_t *h, *next; 16050 16051 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16052 next = h->dtha_next; 16053 dtrace_helper_action_destroy(h, vstate); 16054 h = next; 16055 } 16056 } 16057 16058 mutex_exit(&dtrace_lock); 16059 16060 /* 16061 * Destroy the helper providers. 16062 */ 16063 if (help->dthps_maxprovs > 0) { 16064 mutex_enter(&dtrace_meta_lock); 16065 if (dtrace_meta_pid != NULL) { 16066 ASSERT(dtrace_deferred_pid == NULL); 16067 16068 for (i = 0; i < help->dthps_nprovs; i++) { 16069 dtrace_helper_provider_remove( 16070 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16071 } 16072 } else { 16073 mutex_enter(&dtrace_lock); 16074 ASSERT(help->dthps_deferred == 0 || 16075 help->dthps_next != NULL || 16076 help->dthps_prev != NULL || 16077 help == dtrace_deferred_pid); 16078 16079 /* 16080 * Remove the helper from the deferred list. 16081 */ 16082 if (help->dthps_next != NULL) 16083 help->dthps_next->dthps_prev = help->dthps_prev; 16084 if (help->dthps_prev != NULL) 16085 help->dthps_prev->dthps_next = help->dthps_next; 16086 if (dtrace_deferred_pid == help) { 16087 dtrace_deferred_pid = help->dthps_next; 16088 ASSERT(help->dthps_prev == NULL); 16089 } 16090 16091 mutex_exit(&dtrace_lock); 16092 } 16093 16094 mutex_exit(&dtrace_meta_lock); 16095 16096 for (i = 0; i < help->dthps_nprovs; i++) { 16097 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16098 } 16099 16100 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16101 sizeof (dtrace_helper_provider_t *)); 16102 } 16103 16104 mutex_enter(&dtrace_lock); 16105 16106 dtrace_vstate_fini(&help->dthps_vstate); 16107 kmem_free(help->dthps_actions, 16108 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16109 kmem_free(help, sizeof (dtrace_helpers_t)); 16110 16111 --dtrace_helpers; 16112 mutex_exit(&dtrace_lock); 16113 } 16114 16115 #if defined(sun) 16116 static 16117 #endif 16118 void 16119 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16120 { 16121 dtrace_helpers_t *help, *newhelp; 16122 dtrace_helper_action_t *helper, *new, *last; 16123 dtrace_difo_t *dp; 16124 dtrace_vstate_t *vstate; 16125 int i, j, sz, hasprovs = 0; 16126 16127 mutex_enter(&dtrace_lock); 16128 ASSERT(from->p_dtrace_helpers != NULL); 16129 ASSERT(dtrace_helpers > 0); 16130 16131 help = from->p_dtrace_helpers; 16132 newhelp = dtrace_helpers_create(to); 16133 ASSERT(to->p_dtrace_helpers != NULL); 16134 16135 newhelp->dthps_generation = help->dthps_generation; 16136 vstate = &newhelp->dthps_vstate; 16137 16138 /* 16139 * Duplicate the helper actions. 16140 */ 16141 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16142 if ((helper = help->dthps_actions[i]) == NULL) 16143 continue; 16144 16145 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16146 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16147 KM_SLEEP); 16148 new->dtha_generation = helper->dtha_generation; 16149 16150 if ((dp = helper->dtha_predicate) != NULL) { 16151 dp = dtrace_difo_duplicate(dp, vstate); 16152 new->dtha_predicate = dp; 16153 } 16154 16155 new->dtha_nactions = helper->dtha_nactions; 16156 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16157 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16158 16159 for (j = 0; j < new->dtha_nactions; j++) { 16160 dtrace_difo_t *dp = helper->dtha_actions[j]; 16161 16162 ASSERT(dp != NULL); 16163 dp = dtrace_difo_duplicate(dp, vstate); 16164 new->dtha_actions[j] = dp; 16165 } 16166 16167 if (last != NULL) { 16168 last->dtha_next = new; 16169 } else { 16170 newhelp->dthps_actions[i] = new; 16171 } 16172 16173 last = new; 16174 } 16175 } 16176 16177 /* 16178 * Duplicate the helper providers and register them with the 16179 * DTrace framework. 16180 */ 16181 if (help->dthps_nprovs > 0) { 16182 newhelp->dthps_nprovs = help->dthps_nprovs; 16183 newhelp->dthps_maxprovs = help->dthps_nprovs; 16184 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16185 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16186 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16187 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16188 newhelp->dthps_provs[i]->dthp_ref++; 16189 } 16190 16191 hasprovs = 1; 16192 } 16193 16194 mutex_exit(&dtrace_lock); 16195 16196 if (hasprovs) 16197 dtrace_helper_provider_register(to, newhelp, NULL); 16198 } 16199 16200 /* 16201 * DTrace Hook Functions 16202 */ 16203 static void 16204 dtrace_module_loaded(modctl_t *ctl) 16205 { 16206 dtrace_provider_t *prv; 16207 16208 mutex_enter(&dtrace_provider_lock); 16209 #if defined(sun) 16210 mutex_enter(&mod_lock); 16211 #endif 16212 16213 #if defined(sun) 16214 ASSERT(ctl->mod_busy); 16215 #endif 16216 16217 /* 16218 * We're going to call each providers per-module provide operation 16219 * specifying only this module. 16220 */ 16221 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16222 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16223 16224 #if defined(sun) 16225 mutex_exit(&mod_lock); 16226 #endif 16227 mutex_exit(&dtrace_provider_lock); 16228 16229 /* 16230 * If we have any retained enablings, we need to match against them. 16231 * Enabling probes requires that cpu_lock be held, and we cannot hold 16232 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16233 * module. (In particular, this happens when loading scheduling 16234 * classes.) So if we have any retained enablings, we need to dispatch 16235 * our task queue to do the match for us. 16236 */ 16237 mutex_enter(&dtrace_lock); 16238 16239 if (dtrace_retained == NULL) { 16240 mutex_exit(&dtrace_lock); 16241 return; 16242 } 16243 16244 (void) taskq_dispatch(dtrace_taskq, 16245 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16246 16247 mutex_exit(&dtrace_lock); 16248 16249 /* 16250 * And now, for a little heuristic sleaze: in general, we want to 16251 * match modules as soon as they load. However, we cannot guarantee 16252 * this, because it would lead us to the lock ordering violation 16253 * outlined above. The common case, of course, is that cpu_lock is 16254 * _not_ held -- so we delay here for a clock tick, hoping that that's 16255 * long enough for the task queue to do its work. If it's not, it's 16256 * not a serious problem -- it just means that the module that we 16257 * just loaded may not be immediately instrumentable. 16258 */ 16259 delay(1); 16260 } 16261 16262 static void 16263 #if defined(sun) 16264 dtrace_module_unloaded(modctl_t *ctl) 16265 #else 16266 dtrace_module_unloaded(modctl_t *ctl, int *error) 16267 #endif 16268 { 16269 dtrace_probe_t template, *probe, *first, *next; 16270 dtrace_provider_t *prov; 16271 #if !defined(sun) 16272 char modname[DTRACE_MODNAMELEN]; 16273 size_t len; 16274 #endif 16275 16276 #if defined(sun) 16277 template.dtpr_mod = ctl->mod_modname; 16278 #else 16279 /* Handle the fact that ctl->filename may end in ".ko". */ 16280 strlcpy(modname, ctl->filename, sizeof(modname)); 16281 len = strlen(ctl->filename); 16282 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16283 modname[len - 3] = '\0'; 16284 template.dtpr_mod = modname; 16285 #endif 16286 16287 mutex_enter(&dtrace_provider_lock); 16288 #if defined(sun) 16289 mutex_enter(&mod_lock); 16290 #endif 16291 mutex_enter(&dtrace_lock); 16292 16293 #if !defined(sun) 16294 if (ctl->nenabled > 0) { 16295 /* Don't allow unloads if a probe is enabled. */ 16296 mutex_exit(&dtrace_provider_lock); 16297 mutex_exit(&dtrace_lock); 16298 *error = -1; 16299 printf( 16300 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16301 return; 16302 } 16303 #endif 16304 16305 if (dtrace_bymod == NULL) { 16306 /* 16307 * The DTrace module is loaded (obviously) but not attached; 16308 * we don't have any work to do. 16309 */ 16310 mutex_exit(&dtrace_provider_lock); 16311 #if defined(sun) 16312 mutex_exit(&mod_lock); 16313 #endif 16314 mutex_exit(&dtrace_lock); 16315 return; 16316 } 16317 16318 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16319 probe != NULL; probe = probe->dtpr_nextmod) { 16320 if (probe->dtpr_ecb != NULL) { 16321 mutex_exit(&dtrace_provider_lock); 16322 #if defined(sun) 16323 mutex_exit(&mod_lock); 16324 #endif 16325 mutex_exit(&dtrace_lock); 16326 16327 /* 16328 * This shouldn't _actually_ be possible -- we're 16329 * unloading a module that has an enabled probe in it. 16330 * (It's normally up to the provider to make sure that 16331 * this can't happen.) However, because dtps_enable() 16332 * doesn't have a failure mode, there can be an 16333 * enable/unload race. Upshot: we don't want to 16334 * assert, but we're not going to disable the 16335 * probe, either. 16336 */ 16337 if (dtrace_err_verbose) { 16338 #if defined(sun) 16339 cmn_err(CE_WARN, "unloaded module '%s' had " 16340 "enabled probes", ctl->mod_modname); 16341 #else 16342 cmn_err(CE_WARN, "unloaded module '%s' had " 16343 "enabled probes", modname); 16344 #endif 16345 } 16346 16347 return; 16348 } 16349 } 16350 16351 probe = first; 16352 16353 for (first = NULL; probe != NULL; probe = next) { 16354 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16355 16356 dtrace_probes[probe->dtpr_id - 1] = NULL; 16357 16358 next = probe->dtpr_nextmod; 16359 dtrace_hash_remove(dtrace_bymod, probe); 16360 dtrace_hash_remove(dtrace_byfunc, probe); 16361 dtrace_hash_remove(dtrace_byname, probe); 16362 16363 if (first == NULL) { 16364 first = probe; 16365 probe->dtpr_nextmod = NULL; 16366 } else { 16367 probe->dtpr_nextmod = first; 16368 first = probe; 16369 } 16370 } 16371 16372 /* 16373 * We've removed all of the module's probes from the hash chains and 16374 * from the probe array. Now issue a dtrace_sync() to be sure that 16375 * everyone has cleared out from any probe array processing. 16376 */ 16377 dtrace_sync(); 16378 16379 for (probe = first; probe != NULL; probe = first) { 16380 first = probe->dtpr_nextmod; 16381 prov = probe->dtpr_provider; 16382 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16383 probe->dtpr_arg); 16384 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16385 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16386 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16387 #if defined(sun) 16388 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16389 #else 16390 free_unr(dtrace_arena, probe->dtpr_id); 16391 #endif 16392 kmem_free(probe, sizeof (dtrace_probe_t)); 16393 } 16394 16395 mutex_exit(&dtrace_lock); 16396 #if defined(sun) 16397 mutex_exit(&mod_lock); 16398 #endif 16399 mutex_exit(&dtrace_provider_lock); 16400 } 16401 16402 #if !defined(sun) 16403 static void 16404 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16405 { 16406 16407 dtrace_module_loaded(lf); 16408 } 16409 16410 static void 16411 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16412 { 16413 16414 if (*error != 0) 16415 /* We already have an error, so don't do anything. */ 16416 return; 16417 dtrace_module_unloaded(lf, error); 16418 } 16419 #endif 16420 16421 #if defined(sun) 16422 static void 16423 dtrace_suspend(void) 16424 { 16425 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16426 } 16427 16428 static void 16429 dtrace_resume(void) 16430 { 16431 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16432 } 16433 #endif 16434 16435 static int 16436 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16437 { 16438 ASSERT(MUTEX_HELD(&cpu_lock)); 16439 mutex_enter(&dtrace_lock); 16440 16441 switch (what) { 16442 case CPU_CONFIG: { 16443 dtrace_state_t *state; 16444 dtrace_optval_t *opt, rs, c; 16445 16446 /* 16447 * For now, we only allocate a new buffer for anonymous state. 16448 */ 16449 if ((state = dtrace_anon.dta_state) == NULL) 16450 break; 16451 16452 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16453 break; 16454 16455 opt = state->dts_options; 16456 c = opt[DTRACEOPT_CPU]; 16457 16458 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16459 break; 16460 16461 /* 16462 * Regardless of what the actual policy is, we're going to 16463 * temporarily set our resize policy to be manual. We're 16464 * also going to temporarily set our CPU option to denote 16465 * the newly configured CPU. 16466 */ 16467 rs = opt[DTRACEOPT_BUFRESIZE]; 16468 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16469 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16470 16471 (void) dtrace_state_buffers(state); 16472 16473 opt[DTRACEOPT_BUFRESIZE] = rs; 16474 opt[DTRACEOPT_CPU] = c; 16475 16476 break; 16477 } 16478 16479 case CPU_UNCONFIG: 16480 /* 16481 * We don't free the buffer in the CPU_UNCONFIG case. (The 16482 * buffer will be freed when the consumer exits.) 16483 */ 16484 break; 16485 16486 default: 16487 break; 16488 } 16489 16490 mutex_exit(&dtrace_lock); 16491 return (0); 16492 } 16493 16494 #if defined(sun) 16495 static void 16496 dtrace_cpu_setup_initial(processorid_t cpu) 16497 { 16498 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16499 } 16500 #endif 16501 16502 static void 16503 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16504 { 16505 if (dtrace_toxranges >= dtrace_toxranges_max) { 16506 int osize, nsize; 16507 dtrace_toxrange_t *range; 16508 16509 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16510 16511 if (osize == 0) { 16512 ASSERT(dtrace_toxrange == NULL); 16513 ASSERT(dtrace_toxranges_max == 0); 16514 dtrace_toxranges_max = 1; 16515 } else { 16516 dtrace_toxranges_max <<= 1; 16517 } 16518 16519 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16520 range = kmem_zalloc(nsize, KM_SLEEP); 16521 16522 if (dtrace_toxrange != NULL) { 16523 ASSERT(osize != 0); 16524 bcopy(dtrace_toxrange, range, osize); 16525 kmem_free(dtrace_toxrange, osize); 16526 } 16527 16528 dtrace_toxrange = range; 16529 } 16530 16531 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 16532 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 16533 16534 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 16535 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 16536 dtrace_toxranges++; 16537 } 16538 16539 static void 16540 dtrace_getf_barrier() 16541 { 16542 #if defined(sun) 16543 /* 16544 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 16545 * that contain calls to getf(), this routine will be called on every 16546 * closef() before either the underlying vnode is released or the 16547 * file_t itself is freed. By the time we are here, it is essential 16548 * that the file_t can no longer be accessed from a call to getf() 16549 * in probe context -- that assures that a dtrace_sync() can be used 16550 * to clear out any enablings referring to the old structures. 16551 */ 16552 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 16553 kcred->cr_zone->zone_dtrace_getf != 0) 16554 dtrace_sync(); 16555 #endif 16556 } 16557 16558 /* 16559 * DTrace Driver Cookbook Functions 16560 */ 16561 #if defined(sun) 16562 /*ARGSUSED*/ 16563 static int 16564 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 16565 { 16566 dtrace_provider_id_t id; 16567 dtrace_state_t *state = NULL; 16568 dtrace_enabling_t *enab; 16569 16570 mutex_enter(&cpu_lock); 16571 mutex_enter(&dtrace_provider_lock); 16572 mutex_enter(&dtrace_lock); 16573 16574 if (ddi_soft_state_init(&dtrace_softstate, 16575 sizeof (dtrace_state_t), 0) != 0) { 16576 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16577 mutex_exit(&cpu_lock); 16578 mutex_exit(&dtrace_provider_lock); 16579 mutex_exit(&dtrace_lock); 16580 return (DDI_FAILURE); 16581 } 16582 16583 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16584 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 16585 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16586 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 16587 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16588 ddi_remove_minor_node(devi, NULL); 16589 ddi_soft_state_fini(&dtrace_softstate); 16590 mutex_exit(&cpu_lock); 16591 mutex_exit(&dtrace_provider_lock); 16592 mutex_exit(&dtrace_lock); 16593 return (DDI_FAILURE); 16594 } 16595 16596 ddi_report_dev(devi); 16597 dtrace_devi = devi; 16598 16599 dtrace_modload = dtrace_module_loaded; 16600 dtrace_modunload = dtrace_module_unloaded; 16601 dtrace_cpu_init = dtrace_cpu_setup_initial; 16602 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16603 dtrace_helpers_fork = dtrace_helpers_duplicate; 16604 dtrace_cpustart_init = dtrace_suspend; 16605 dtrace_cpustart_fini = dtrace_resume; 16606 dtrace_debugger_init = dtrace_suspend; 16607 dtrace_debugger_fini = dtrace_resume; 16608 16609 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16610 16611 ASSERT(MUTEX_HELD(&cpu_lock)); 16612 16613 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16614 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16615 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16616 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16617 VM_SLEEP | VMC_IDENTIFIER); 16618 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16619 1, INT_MAX, 0); 16620 16621 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16622 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16623 NULL, NULL, NULL, NULL, NULL, 0); 16624 16625 ASSERT(MUTEX_HELD(&cpu_lock)); 16626 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16627 offsetof(dtrace_probe_t, dtpr_nextmod), 16628 offsetof(dtrace_probe_t, dtpr_prevmod)); 16629 16630 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16631 offsetof(dtrace_probe_t, dtpr_nextfunc), 16632 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16633 16634 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16635 offsetof(dtrace_probe_t, dtpr_nextname), 16636 offsetof(dtrace_probe_t, dtpr_prevname)); 16637 16638 if (dtrace_retain_max < 1) { 16639 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16640 "setting to 1", dtrace_retain_max); 16641 dtrace_retain_max = 1; 16642 } 16643 16644 /* 16645 * Now discover our toxic ranges. 16646 */ 16647 dtrace_toxic_ranges(dtrace_toxrange_add); 16648 16649 /* 16650 * Before we register ourselves as a provider to our own framework, 16651 * we would like to assert that dtrace_provider is NULL -- but that's 16652 * not true if we were loaded as a dependency of a DTrace provider. 16653 * Once we've registered, we can assert that dtrace_provider is our 16654 * pseudo provider. 16655 */ 16656 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16657 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16658 16659 ASSERT(dtrace_provider != NULL); 16660 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16661 16662 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16663 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16664 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16665 dtrace_provider, NULL, NULL, "END", 0, NULL); 16666 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16667 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16668 16669 dtrace_anon_property(); 16670 mutex_exit(&cpu_lock); 16671 16672 /* 16673 * If DTrace helper tracing is enabled, we need to allocate the 16674 * trace buffer and initialize the values. 16675 */ 16676 if (dtrace_helptrace_enabled) { 16677 ASSERT(dtrace_helptrace_buffer == NULL); 16678 dtrace_helptrace_buffer = 16679 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16680 dtrace_helptrace_next = 0; 16681 } 16682 16683 /* 16684 * If there are already providers, we must ask them to provide their 16685 * probes, and then match any anonymous enabling against them. Note 16686 * that there should be no other retained enablings at this time: 16687 * the only retained enablings at this time should be the anonymous 16688 * enabling. 16689 */ 16690 if (dtrace_anon.dta_enabling != NULL) { 16691 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16692 16693 dtrace_enabling_provide(NULL); 16694 state = dtrace_anon.dta_state; 16695 16696 /* 16697 * We couldn't hold cpu_lock across the above call to 16698 * dtrace_enabling_provide(), but we must hold it to actually 16699 * enable the probes. We have to drop all of our locks, pick 16700 * up cpu_lock, and regain our locks before matching the 16701 * retained anonymous enabling. 16702 */ 16703 mutex_exit(&dtrace_lock); 16704 mutex_exit(&dtrace_provider_lock); 16705 16706 mutex_enter(&cpu_lock); 16707 mutex_enter(&dtrace_provider_lock); 16708 mutex_enter(&dtrace_lock); 16709 16710 if ((enab = dtrace_anon.dta_enabling) != NULL) 16711 (void) dtrace_enabling_match(enab, NULL); 16712 16713 mutex_exit(&cpu_lock); 16714 } 16715 16716 mutex_exit(&dtrace_lock); 16717 mutex_exit(&dtrace_provider_lock); 16718 16719 if (state != NULL) { 16720 /* 16721 * If we created any anonymous state, set it going now. 16722 */ 16723 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16724 } 16725 16726 return (DDI_SUCCESS); 16727 } 16728 #endif 16729 16730 #if !defined(sun) 16731 static void dtrace_dtr(void *); 16732 #endif 16733 16734 /*ARGSUSED*/ 16735 static int 16736 #if defined(sun) 16737 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16738 #else 16739 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 16740 #endif 16741 { 16742 dtrace_state_t *state; 16743 uint32_t priv; 16744 uid_t uid; 16745 zoneid_t zoneid; 16746 16747 #if defined(sun) 16748 if (getminor(*devp) == DTRACEMNRN_HELPER) 16749 return (0); 16750 16751 /* 16752 * If this wasn't an open with the "helper" minor, then it must be 16753 * the "dtrace" minor. 16754 */ 16755 if (getminor(*devp) == DTRACEMNRN_DTRACE) 16756 return (ENXIO); 16757 #else 16758 cred_t *cred_p = NULL; 16759 cred_p = dev->si_cred; 16760 16761 /* 16762 * If no DTRACE_PRIV_* bits are set in the credential, then the 16763 * caller lacks sufficient permission to do anything with DTrace. 16764 */ 16765 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16766 if (priv == DTRACE_PRIV_NONE) { 16767 #endif 16768 16769 return (EACCES); 16770 } 16771 16772 /* 16773 * Ask all providers to provide all their probes. 16774 */ 16775 mutex_enter(&dtrace_provider_lock); 16776 dtrace_probe_provide(NULL, NULL); 16777 mutex_exit(&dtrace_provider_lock); 16778 16779 mutex_enter(&cpu_lock); 16780 mutex_enter(&dtrace_lock); 16781 dtrace_opens++; 16782 dtrace_membar_producer(); 16783 16784 #if defined(sun) 16785 /* 16786 * If the kernel debugger is active (that is, if the kernel debugger 16787 * modified text in some way), we won't allow the open. 16788 */ 16789 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16790 dtrace_opens--; 16791 mutex_exit(&cpu_lock); 16792 mutex_exit(&dtrace_lock); 16793 return (EBUSY); 16794 } 16795 16796 state = dtrace_state_create(devp, cred_p); 16797 #else 16798 state = dtrace_state_create(dev); 16799 devfs_set_cdevpriv(state, dtrace_dtr); 16800 #endif 16801 16802 mutex_exit(&cpu_lock); 16803 16804 if (state == NULL) { 16805 #if defined(sun) 16806 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16807 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16808 #else 16809 --dtrace_opens; 16810 #endif 16811 mutex_exit(&dtrace_lock); 16812 return (EAGAIN); 16813 } 16814 16815 mutex_exit(&dtrace_lock); 16816 16817 return (0); 16818 } 16819 16820 /*ARGSUSED*/ 16821 #if defined(sun) 16822 static int 16823 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16824 #else 16825 static void 16826 dtrace_dtr(void *data) 16827 #endif 16828 { 16829 #if defined(sun) 16830 minor_t minor = getminor(dev); 16831 dtrace_state_t *state; 16832 16833 if (minor == DTRACEMNRN_HELPER) 16834 return (0); 16835 16836 state = ddi_get_soft_state(dtrace_softstate, minor); 16837 #else 16838 dtrace_state_t *state = data; 16839 #endif 16840 16841 mutex_enter(&cpu_lock); 16842 mutex_enter(&dtrace_lock); 16843 16844 if (state != NULL) { 16845 if (state->dts_anon) { 16846 /* 16847 * There is anonymous state. Destroy that first. 16848 */ 16849 ASSERT(dtrace_anon.dta_state == NULL); 16850 dtrace_state_destroy(state->dts_anon); 16851 } 16852 16853 dtrace_state_destroy(state); 16854 16855 #if !defined(sun) 16856 kmem_free(state, 0); 16857 #endif 16858 } 16859 16860 ASSERT(dtrace_opens > 0); 16861 #if defined(sun) 16862 /* 16863 * Only relinquish control of the kernel debugger interface when there 16864 * are no consumers and no anonymous enablings. 16865 */ 16866 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16867 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16868 #else 16869 --dtrace_opens; 16870 #endif 16871 16872 mutex_exit(&dtrace_lock); 16873 mutex_exit(&cpu_lock); 16874 16875 #if defined(sun) 16876 return (0); 16877 #endif 16878 } 16879 16880 #if defined(sun) 16881 /*ARGSUSED*/ 16882 static int 16883 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16884 { 16885 int rval; 16886 dof_helper_t help, *dhp = NULL; 16887 16888 switch (cmd) { 16889 case DTRACEHIOC_ADDDOF: 16890 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16891 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16892 return (EFAULT); 16893 } 16894 16895 dhp = &help; 16896 arg = (intptr_t)help.dofhp_dof; 16897 /*FALLTHROUGH*/ 16898 16899 case DTRACEHIOC_ADD: { 16900 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16901 16902 if (dof == NULL) 16903 return (rval); 16904 16905 mutex_enter(&dtrace_lock); 16906 16907 /* 16908 * dtrace_helper_slurp() takes responsibility for the dof -- 16909 * it may free it now or it may save it and free it later. 16910 */ 16911 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16912 *rv = rval; 16913 rval = 0; 16914 } else { 16915 rval = EINVAL; 16916 } 16917 16918 mutex_exit(&dtrace_lock); 16919 return (rval); 16920 } 16921 16922 case DTRACEHIOC_REMOVE: { 16923 mutex_enter(&dtrace_lock); 16924 rval = dtrace_helper_destroygen(arg); 16925 mutex_exit(&dtrace_lock); 16926 16927 return (rval); 16928 } 16929 16930 default: 16931 break; 16932 } 16933 16934 return (ENOTTY); 16935 } 16936 16937 /*ARGSUSED*/ 16938 static int 16939 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16940 { 16941 minor_t minor = getminor(dev); 16942 dtrace_state_t *state; 16943 int rval; 16944 16945 if (minor == DTRACEMNRN_HELPER) 16946 return (dtrace_ioctl_helper(cmd, arg, rv)); 16947 16948 state = ddi_get_soft_state(dtrace_softstate, minor); 16949 16950 if (state->dts_anon) { 16951 ASSERT(dtrace_anon.dta_state == NULL); 16952 state = state->dts_anon; 16953 } 16954 16955 switch (cmd) { 16956 case DTRACEIOC_PROVIDER: { 16957 dtrace_providerdesc_t pvd; 16958 dtrace_provider_t *pvp; 16959 16960 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16961 return (EFAULT); 16962 16963 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16964 mutex_enter(&dtrace_provider_lock); 16965 16966 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16967 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16968 break; 16969 } 16970 16971 mutex_exit(&dtrace_provider_lock); 16972 16973 if (pvp == NULL) 16974 return (ESRCH); 16975 16976 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16977 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16978 16979 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16980 return (EFAULT); 16981 16982 return (0); 16983 } 16984 16985 case DTRACEIOC_EPROBE: { 16986 dtrace_eprobedesc_t epdesc; 16987 dtrace_ecb_t *ecb; 16988 dtrace_action_t *act; 16989 void *buf; 16990 size_t size; 16991 uintptr_t dest; 16992 int nrecs; 16993 16994 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16995 return (EFAULT); 16996 16997 mutex_enter(&dtrace_lock); 16998 16999 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17000 mutex_exit(&dtrace_lock); 17001 return (EINVAL); 17002 } 17003 17004 if (ecb->dte_probe == NULL) { 17005 mutex_exit(&dtrace_lock); 17006 return (EINVAL); 17007 } 17008 17009 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17010 epdesc.dtepd_uarg = ecb->dte_uarg; 17011 epdesc.dtepd_size = ecb->dte_size; 17012 17013 nrecs = epdesc.dtepd_nrecs; 17014 epdesc.dtepd_nrecs = 0; 17015 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17016 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17017 continue; 17018 17019 epdesc.dtepd_nrecs++; 17020 } 17021 17022 /* 17023 * Now that we have the size, we need to allocate a temporary 17024 * buffer in which to store the complete description. We need 17025 * the temporary buffer to be able to drop dtrace_lock() 17026 * across the copyout(), below. 17027 */ 17028 size = sizeof (dtrace_eprobedesc_t) + 17029 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17030 17031 buf = kmem_alloc(size, KM_SLEEP); 17032 dest = (uintptr_t)buf; 17033 17034 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17035 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17036 17037 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17038 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17039 continue; 17040 17041 if (nrecs-- == 0) 17042 break; 17043 17044 bcopy(&act->dta_rec, (void *)dest, 17045 sizeof (dtrace_recdesc_t)); 17046 dest += sizeof (dtrace_recdesc_t); 17047 } 17048 17049 mutex_exit(&dtrace_lock); 17050 17051 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17052 kmem_free(buf, size); 17053 return (EFAULT); 17054 } 17055 17056 kmem_free(buf, size); 17057 return (0); 17058 } 17059 17060 case DTRACEIOC_AGGDESC: { 17061 dtrace_aggdesc_t aggdesc; 17062 dtrace_action_t *act; 17063 dtrace_aggregation_t *agg; 17064 int nrecs; 17065 uint32_t offs; 17066 dtrace_recdesc_t *lrec; 17067 void *buf; 17068 size_t size; 17069 uintptr_t dest; 17070 17071 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17072 return (EFAULT); 17073 17074 mutex_enter(&dtrace_lock); 17075 17076 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17077 mutex_exit(&dtrace_lock); 17078 return (EINVAL); 17079 } 17080 17081 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17082 17083 nrecs = aggdesc.dtagd_nrecs; 17084 aggdesc.dtagd_nrecs = 0; 17085 17086 offs = agg->dtag_base; 17087 lrec = &agg->dtag_action.dta_rec; 17088 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17089 17090 for (act = agg->dtag_first; ; act = act->dta_next) { 17091 ASSERT(act->dta_intuple || 17092 DTRACEACT_ISAGG(act->dta_kind)); 17093 17094 /* 17095 * If this action has a record size of zero, it 17096 * denotes an argument to the aggregating action. 17097 * Because the presence of this record doesn't (or 17098 * shouldn't) affect the way the data is interpreted, 17099 * we don't copy it out to save user-level the 17100 * confusion of dealing with a zero-length record. 17101 */ 17102 if (act->dta_rec.dtrd_size == 0) { 17103 ASSERT(agg->dtag_hasarg); 17104 continue; 17105 } 17106 17107 aggdesc.dtagd_nrecs++; 17108 17109 if (act == &agg->dtag_action) 17110 break; 17111 } 17112 17113 /* 17114 * Now that we have the size, we need to allocate a temporary 17115 * buffer in which to store the complete description. We need 17116 * the temporary buffer to be able to drop dtrace_lock() 17117 * across the copyout(), below. 17118 */ 17119 size = sizeof (dtrace_aggdesc_t) + 17120 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17121 17122 buf = kmem_alloc(size, KM_SLEEP); 17123 dest = (uintptr_t)buf; 17124 17125 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17126 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17127 17128 for (act = agg->dtag_first; ; act = act->dta_next) { 17129 dtrace_recdesc_t rec = act->dta_rec; 17130 17131 /* 17132 * See the comment in the above loop for why we pass 17133 * over zero-length records. 17134 */ 17135 if (rec.dtrd_size == 0) { 17136 ASSERT(agg->dtag_hasarg); 17137 continue; 17138 } 17139 17140 if (nrecs-- == 0) 17141 break; 17142 17143 rec.dtrd_offset -= offs; 17144 bcopy(&rec, (void *)dest, sizeof (rec)); 17145 dest += sizeof (dtrace_recdesc_t); 17146 17147 if (act == &agg->dtag_action) 17148 break; 17149 } 17150 17151 mutex_exit(&dtrace_lock); 17152 17153 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17154 kmem_free(buf, size); 17155 return (EFAULT); 17156 } 17157 17158 kmem_free(buf, size); 17159 return (0); 17160 } 17161 17162 case DTRACEIOC_ENABLE: { 17163 dof_hdr_t *dof; 17164 dtrace_enabling_t *enab = NULL; 17165 dtrace_vstate_t *vstate; 17166 int err = 0; 17167 17168 *rv = 0; 17169 17170 /* 17171 * If a NULL argument has been passed, we take this as our 17172 * cue to reevaluate our enablings. 17173 */ 17174 if (arg == NULL) { 17175 dtrace_enabling_matchall(); 17176 17177 return (0); 17178 } 17179 17180 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17181 return (rval); 17182 17183 mutex_enter(&cpu_lock); 17184 mutex_enter(&dtrace_lock); 17185 vstate = &state->dts_vstate; 17186 17187 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17188 mutex_exit(&dtrace_lock); 17189 mutex_exit(&cpu_lock); 17190 dtrace_dof_destroy(dof); 17191 return (EBUSY); 17192 } 17193 17194 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17195 mutex_exit(&dtrace_lock); 17196 mutex_exit(&cpu_lock); 17197 dtrace_dof_destroy(dof); 17198 return (EINVAL); 17199 } 17200 17201 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17202 dtrace_enabling_destroy(enab); 17203 mutex_exit(&dtrace_lock); 17204 mutex_exit(&cpu_lock); 17205 dtrace_dof_destroy(dof); 17206 return (rval); 17207 } 17208 17209 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17210 err = dtrace_enabling_retain(enab); 17211 } else { 17212 dtrace_enabling_destroy(enab); 17213 } 17214 17215 mutex_exit(&cpu_lock); 17216 mutex_exit(&dtrace_lock); 17217 dtrace_dof_destroy(dof); 17218 17219 return (err); 17220 } 17221 17222 case DTRACEIOC_REPLICATE: { 17223 dtrace_repldesc_t desc; 17224 dtrace_probedesc_t *match = &desc.dtrpd_match; 17225 dtrace_probedesc_t *create = &desc.dtrpd_create; 17226 int err; 17227 17228 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17229 return (EFAULT); 17230 17231 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17232 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17233 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17234 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17235 17236 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17237 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17238 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17239 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17240 17241 mutex_enter(&dtrace_lock); 17242 err = dtrace_enabling_replicate(state, match, create); 17243 mutex_exit(&dtrace_lock); 17244 17245 return (err); 17246 } 17247 17248 case DTRACEIOC_PROBEMATCH: 17249 case DTRACEIOC_PROBES: { 17250 dtrace_probe_t *probe = NULL; 17251 dtrace_probedesc_t desc; 17252 dtrace_probekey_t pkey; 17253 dtrace_id_t i; 17254 int m = 0; 17255 uint32_t priv; 17256 uid_t uid; 17257 zoneid_t zoneid; 17258 17259 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17260 return (EFAULT); 17261 17262 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17263 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17264 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17265 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17266 17267 /* 17268 * Before we attempt to match this probe, we want to give 17269 * all providers the opportunity to provide it. 17270 */ 17271 if (desc.dtpd_id == DTRACE_IDNONE) { 17272 mutex_enter(&dtrace_provider_lock); 17273 dtrace_probe_provide(&desc, NULL); 17274 mutex_exit(&dtrace_provider_lock); 17275 desc.dtpd_id++; 17276 } 17277 17278 if (cmd == DTRACEIOC_PROBEMATCH) { 17279 dtrace_probekey(&desc, &pkey); 17280 pkey.dtpk_id = DTRACE_IDNONE; 17281 } 17282 17283 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17284 17285 mutex_enter(&dtrace_lock); 17286 17287 if (cmd == DTRACEIOC_PROBEMATCH) { 17288 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17289 if ((probe = dtrace_probes[i - 1]) != NULL && 17290 (m = dtrace_match_probe(probe, &pkey, 17291 priv, uid, zoneid)) != 0) 17292 break; 17293 } 17294 17295 if (m < 0) { 17296 mutex_exit(&dtrace_lock); 17297 return (EINVAL); 17298 } 17299 17300 } else { 17301 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17302 if ((probe = dtrace_probes[i - 1]) != NULL && 17303 dtrace_match_priv(probe, priv, uid, zoneid)) 17304 break; 17305 } 17306 } 17307 17308 if (probe == NULL) { 17309 mutex_exit(&dtrace_lock); 17310 return (ESRCH); 17311 } 17312 17313 dtrace_probe_description(probe, &desc); 17314 mutex_exit(&dtrace_lock); 17315 17316 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17317 return (EFAULT); 17318 17319 return (0); 17320 } 17321 17322 case DTRACEIOC_PROBEARG: { 17323 dtrace_argdesc_t desc; 17324 dtrace_probe_t *probe; 17325 dtrace_provider_t *prov; 17326 17327 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17328 return (EFAULT); 17329 17330 if (desc.dtargd_id == DTRACE_IDNONE) 17331 return (EINVAL); 17332 17333 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17334 return (EINVAL); 17335 17336 mutex_enter(&dtrace_provider_lock); 17337 mutex_enter(&mod_lock); 17338 mutex_enter(&dtrace_lock); 17339 17340 if (desc.dtargd_id > dtrace_nprobes) { 17341 mutex_exit(&dtrace_lock); 17342 mutex_exit(&mod_lock); 17343 mutex_exit(&dtrace_provider_lock); 17344 return (EINVAL); 17345 } 17346 17347 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17348 mutex_exit(&dtrace_lock); 17349 mutex_exit(&mod_lock); 17350 mutex_exit(&dtrace_provider_lock); 17351 return (EINVAL); 17352 } 17353 17354 mutex_exit(&dtrace_lock); 17355 17356 prov = probe->dtpr_provider; 17357 17358 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17359 /* 17360 * There isn't any typed information for this probe. 17361 * Set the argument number to DTRACE_ARGNONE. 17362 */ 17363 desc.dtargd_ndx = DTRACE_ARGNONE; 17364 } else { 17365 desc.dtargd_native[0] = '\0'; 17366 desc.dtargd_xlate[0] = '\0'; 17367 desc.dtargd_mapping = desc.dtargd_ndx; 17368 17369 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17370 probe->dtpr_id, probe->dtpr_arg, &desc); 17371 } 17372 17373 mutex_exit(&mod_lock); 17374 mutex_exit(&dtrace_provider_lock); 17375 17376 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17377 return (EFAULT); 17378 17379 return (0); 17380 } 17381 17382 case DTRACEIOC_GO: { 17383 processorid_t cpuid; 17384 rval = dtrace_state_go(state, &cpuid); 17385 17386 if (rval != 0) 17387 return (rval); 17388 17389 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17390 return (EFAULT); 17391 17392 return (0); 17393 } 17394 17395 case DTRACEIOC_STOP: { 17396 processorid_t cpuid; 17397 17398 mutex_enter(&dtrace_lock); 17399 rval = dtrace_state_stop(state, &cpuid); 17400 mutex_exit(&dtrace_lock); 17401 17402 if (rval != 0) 17403 return (rval); 17404 17405 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17406 return (EFAULT); 17407 17408 return (0); 17409 } 17410 17411 case DTRACEIOC_DOFGET: { 17412 dof_hdr_t hdr, *dof; 17413 uint64_t len; 17414 17415 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17416 return (EFAULT); 17417 17418 mutex_enter(&dtrace_lock); 17419 dof = dtrace_dof_create(state); 17420 mutex_exit(&dtrace_lock); 17421 17422 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17423 rval = copyout(dof, (void *)arg, len); 17424 dtrace_dof_destroy(dof); 17425 17426 return (rval == 0 ? 0 : EFAULT); 17427 } 17428 17429 case DTRACEIOC_AGGSNAP: 17430 case DTRACEIOC_BUFSNAP: { 17431 dtrace_bufdesc_t desc; 17432 caddr_t cached; 17433 dtrace_buffer_t *buf; 17434 17435 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17436 return (EFAULT); 17437 17438 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17439 return (EINVAL); 17440 17441 mutex_enter(&dtrace_lock); 17442 17443 if (cmd == DTRACEIOC_BUFSNAP) { 17444 buf = &state->dts_buffer[desc.dtbd_cpu]; 17445 } else { 17446 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17447 } 17448 17449 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17450 size_t sz = buf->dtb_offset; 17451 17452 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17453 mutex_exit(&dtrace_lock); 17454 return (EBUSY); 17455 } 17456 17457 /* 17458 * If this buffer has already been consumed, we're 17459 * going to indicate that there's nothing left here 17460 * to consume. 17461 */ 17462 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17463 mutex_exit(&dtrace_lock); 17464 17465 desc.dtbd_size = 0; 17466 desc.dtbd_drops = 0; 17467 desc.dtbd_errors = 0; 17468 desc.dtbd_oldest = 0; 17469 sz = sizeof (desc); 17470 17471 if (copyout(&desc, (void *)arg, sz) != 0) 17472 return (EFAULT); 17473 17474 return (0); 17475 } 17476 17477 /* 17478 * If this is a ring buffer that has wrapped, we want 17479 * to copy the whole thing out. 17480 */ 17481 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17482 dtrace_buffer_polish(buf); 17483 sz = buf->dtb_size; 17484 } 17485 17486 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17487 mutex_exit(&dtrace_lock); 17488 return (EFAULT); 17489 } 17490 17491 desc.dtbd_size = sz; 17492 desc.dtbd_drops = buf->dtb_drops; 17493 desc.dtbd_errors = buf->dtb_errors; 17494 desc.dtbd_oldest = buf->dtb_xamot_offset; 17495 desc.dtbd_timestamp = dtrace_gethrtime(); 17496 17497 mutex_exit(&dtrace_lock); 17498 17499 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17500 return (EFAULT); 17501 17502 buf->dtb_flags |= DTRACEBUF_CONSUMED; 17503 17504 return (0); 17505 } 17506 17507 if (buf->dtb_tomax == NULL) { 17508 ASSERT(buf->dtb_xamot == NULL); 17509 mutex_exit(&dtrace_lock); 17510 return (ENOENT); 17511 } 17512 17513 cached = buf->dtb_tomax; 17514 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 17515 17516 dtrace_xcall(desc.dtbd_cpu, 17517 (dtrace_xcall_t)dtrace_buffer_switch, buf); 17518 17519 state->dts_errors += buf->dtb_xamot_errors; 17520 17521 /* 17522 * If the buffers did not actually switch, then the cross call 17523 * did not take place -- presumably because the given CPU is 17524 * not in the ready set. If this is the case, we'll return 17525 * ENOENT. 17526 */ 17527 if (buf->dtb_tomax == cached) { 17528 ASSERT(buf->dtb_xamot != cached); 17529 mutex_exit(&dtrace_lock); 17530 return (ENOENT); 17531 } 17532 17533 ASSERT(cached == buf->dtb_xamot); 17534 17535 /* 17536 * We have our snapshot; now copy it out. 17537 */ 17538 if (copyout(buf->dtb_xamot, desc.dtbd_data, 17539 buf->dtb_xamot_offset) != 0) { 17540 mutex_exit(&dtrace_lock); 17541 return (EFAULT); 17542 } 17543 17544 desc.dtbd_size = buf->dtb_xamot_offset; 17545 desc.dtbd_drops = buf->dtb_xamot_drops; 17546 desc.dtbd_errors = buf->dtb_xamot_errors; 17547 desc.dtbd_oldest = 0; 17548 desc.dtbd_timestamp = buf->dtb_switched; 17549 17550 mutex_exit(&dtrace_lock); 17551 17552 /* 17553 * Finally, copy out the buffer description. 17554 */ 17555 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17556 return (EFAULT); 17557 17558 return (0); 17559 } 17560 17561 case DTRACEIOC_CONF: { 17562 dtrace_conf_t conf; 17563 17564 bzero(&conf, sizeof (conf)); 17565 conf.dtc_difversion = DIF_VERSION; 17566 conf.dtc_difintregs = DIF_DIR_NREGS; 17567 conf.dtc_diftupregs = DIF_DTR_NREGS; 17568 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 17569 17570 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 17571 return (EFAULT); 17572 17573 return (0); 17574 } 17575 17576 case DTRACEIOC_STATUS: { 17577 dtrace_status_t stat; 17578 dtrace_dstate_t *dstate; 17579 int i, j; 17580 uint64_t nerrs; 17581 17582 /* 17583 * See the comment in dtrace_state_deadman() for the reason 17584 * for setting dts_laststatus to INT64_MAX before setting 17585 * it to the correct value. 17586 */ 17587 state->dts_laststatus = INT64_MAX; 17588 dtrace_membar_producer(); 17589 state->dts_laststatus = dtrace_gethrtime(); 17590 17591 bzero(&stat, sizeof (stat)); 17592 17593 mutex_enter(&dtrace_lock); 17594 17595 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 17596 mutex_exit(&dtrace_lock); 17597 return (ENOENT); 17598 } 17599 17600 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 17601 stat.dtst_exiting = 1; 17602 17603 nerrs = state->dts_errors; 17604 dstate = &state->dts_vstate.dtvs_dynvars; 17605 17606 for (i = 0; i < NCPU; i++) { 17607 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17608 17609 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17610 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17611 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17612 17613 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17614 stat.dtst_filled++; 17615 17616 nerrs += state->dts_buffer[i].dtb_errors; 17617 17618 for (j = 0; j < state->dts_nspeculations; j++) { 17619 dtrace_speculation_t *spec; 17620 dtrace_buffer_t *buf; 17621 17622 spec = &state->dts_speculations[j]; 17623 buf = &spec->dtsp_buffer[i]; 17624 stat.dtst_specdrops += buf->dtb_xamot_drops; 17625 } 17626 } 17627 17628 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17629 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17630 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17631 stat.dtst_dblerrors = state->dts_dblerrors; 17632 stat.dtst_killed = 17633 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17634 stat.dtst_errors = nerrs; 17635 17636 mutex_exit(&dtrace_lock); 17637 17638 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17639 return (EFAULT); 17640 17641 return (0); 17642 } 17643 17644 case DTRACEIOC_FORMAT: { 17645 dtrace_fmtdesc_t fmt; 17646 char *str; 17647 int len; 17648 17649 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17650 return (EFAULT); 17651 17652 mutex_enter(&dtrace_lock); 17653 17654 if (fmt.dtfd_format == 0 || 17655 fmt.dtfd_format > state->dts_nformats) { 17656 mutex_exit(&dtrace_lock); 17657 return (EINVAL); 17658 } 17659 17660 /* 17661 * Format strings are allocated contiguously and they are 17662 * never freed; if a format index is less than the number 17663 * of formats, we can assert that the format map is non-NULL 17664 * and that the format for the specified index is non-NULL. 17665 */ 17666 ASSERT(state->dts_formats != NULL); 17667 str = state->dts_formats[fmt.dtfd_format - 1]; 17668 ASSERT(str != NULL); 17669 17670 len = strlen(str) + 1; 17671 17672 if (len > fmt.dtfd_length) { 17673 fmt.dtfd_length = len; 17674 17675 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17676 mutex_exit(&dtrace_lock); 17677 return (EINVAL); 17678 } 17679 } else { 17680 if (copyout(str, fmt.dtfd_string, len) != 0) { 17681 mutex_exit(&dtrace_lock); 17682 return (EINVAL); 17683 } 17684 } 17685 17686 mutex_exit(&dtrace_lock); 17687 return (0); 17688 } 17689 17690 default: 17691 break; 17692 } 17693 17694 return (ENOTTY); 17695 } 17696 17697 /*ARGSUSED*/ 17698 static int 17699 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17700 { 17701 dtrace_state_t *state; 17702 17703 switch (cmd) { 17704 case DDI_DETACH: 17705 break; 17706 17707 case DDI_SUSPEND: 17708 return (DDI_SUCCESS); 17709 17710 default: 17711 return (DDI_FAILURE); 17712 } 17713 17714 mutex_enter(&cpu_lock); 17715 mutex_enter(&dtrace_provider_lock); 17716 mutex_enter(&dtrace_lock); 17717 17718 ASSERT(dtrace_opens == 0); 17719 17720 if (dtrace_helpers > 0) { 17721 mutex_exit(&dtrace_provider_lock); 17722 mutex_exit(&dtrace_lock); 17723 mutex_exit(&cpu_lock); 17724 return (DDI_FAILURE); 17725 } 17726 17727 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17728 mutex_exit(&dtrace_provider_lock); 17729 mutex_exit(&dtrace_lock); 17730 mutex_exit(&cpu_lock); 17731 return (DDI_FAILURE); 17732 } 17733 17734 dtrace_provider = NULL; 17735 17736 if ((state = dtrace_anon_grab()) != NULL) { 17737 /* 17738 * If there were ECBs on this state, the provider should 17739 * have not been allowed to detach; assert that there is 17740 * none. 17741 */ 17742 ASSERT(state->dts_necbs == 0); 17743 dtrace_state_destroy(state); 17744 17745 /* 17746 * If we're being detached with anonymous state, we need to 17747 * indicate to the kernel debugger that DTrace is now inactive. 17748 */ 17749 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17750 } 17751 17752 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17753 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17754 dtrace_cpu_init = NULL; 17755 dtrace_helpers_cleanup = NULL; 17756 dtrace_helpers_fork = NULL; 17757 dtrace_cpustart_init = NULL; 17758 dtrace_cpustart_fini = NULL; 17759 dtrace_debugger_init = NULL; 17760 dtrace_debugger_fini = NULL; 17761 dtrace_modload = NULL; 17762 dtrace_modunload = NULL; 17763 17764 ASSERT(dtrace_getf == 0); 17765 ASSERT(dtrace_closef == NULL); 17766 17767 mutex_exit(&cpu_lock); 17768 17769 if (dtrace_helptrace_enabled) { 17770 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 17771 dtrace_helptrace_buffer = NULL; 17772 } 17773 17774 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17775 dtrace_probes = NULL; 17776 dtrace_nprobes = 0; 17777 17778 dtrace_hash_destroy(dtrace_bymod); 17779 dtrace_hash_destroy(dtrace_byfunc); 17780 dtrace_hash_destroy(dtrace_byname); 17781 dtrace_bymod = NULL; 17782 dtrace_byfunc = NULL; 17783 dtrace_byname = NULL; 17784 17785 kmem_cache_destroy(dtrace_state_cache); 17786 vmem_destroy(dtrace_minor); 17787 vmem_destroy(dtrace_arena); 17788 17789 if (dtrace_toxrange != NULL) { 17790 kmem_free(dtrace_toxrange, 17791 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17792 dtrace_toxrange = NULL; 17793 dtrace_toxranges = 0; 17794 dtrace_toxranges_max = 0; 17795 } 17796 17797 ddi_remove_minor_node(dtrace_devi, NULL); 17798 dtrace_devi = NULL; 17799 17800 ddi_soft_state_fini(&dtrace_softstate); 17801 17802 ASSERT(dtrace_vtime_references == 0); 17803 ASSERT(dtrace_opens == 0); 17804 ASSERT(dtrace_retained == NULL); 17805 17806 mutex_exit(&dtrace_lock); 17807 mutex_exit(&dtrace_provider_lock); 17808 17809 /* 17810 * We don't destroy the task queue until after we have dropped our 17811 * locks (taskq_destroy() may block on running tasks). To prevent 17812 * attempting to do work after we have effectively detached but before 17813 * the task queue has been destroyed, all tasks dispatched via the 17814 * task queue must check that DTrace is still attached before 17815 * performing any operation. 17816 */ 17817 taskq_destroy(dtrace_taskq); 17818 dtrace_taskq = NULL; 17819 17820 return (DDI_SUCCESS); 17821 } 17822 #endif 17823 17824 #if defined(sun) 17825 /*ARGSUSED*/ 17826 static int 17827 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17828 { 17829 int error; 17830 17831 switch (infocmd) { 17832 case DDI_INFO_DEVT2DEVINFO: 17833 *result = (void *)dtrace_devi; 17834 error = DDI_SUCCESS; 17835 break; 17836 case DDI_INFO_DEVT2INSTANCE: 17837 *result = (void *)0; 17838 error = DDI_SUCCESS; 17839 break; 17840 default: 17841 error = DDI_FAILURE; 17842 } 17843 return (error); 17844 } 17845 #endif 17846 17847 #if defined(sun) 17848 static struct cb_ops dtrace_cb_ops = { 17849 dtrace_open, /* open */ 17850 dtrace_close, /* close */ 17851 nulldev, /* strategy */ 17852 nulldev, /* print */ 17853 nodev, /* dump */ 17854 nodev, /* read */ 17855 nodev, /* write */ 17856 dtrace_ioctl, /* ioctl */ 17857 nodev, /* devmap */ 17858 nodev, /* mmap */ 17859 nodev, /* segmap */ 17860 nochpoll, /* poll */ 17861 ddi_prop_op, /* cb_prop_op */ 17862 0, /* streamtab */ 17863 D_NEW | D_MP /* Driver compatibility flag */ 17864 }; 17865 17866 static struct dev_ops dtrace_ops = { 17867 DEVO_REV, /* devo_rev */ 17868 0, /* refcnt */ 17869 dtrace_info, /* get_dev_info */ 17870 nulldev, /* identify */ 17871 nulldev, /* probe */ 17872 dtrace_attach, /* attach */ 17873 dtrace_detach, /* detach */ 17874 nodev, /* reset */ 17875 &dtrace_cb_ops, /* driver operations */ 17876 NULL, /* bus operations */ 17877 nodev /* dev power */ 17878 }; 17879 17880 static struct modldrv modldrv = { 17881 &mod_driverops, /* module type (this is a pseudo driver) */ 17882 "Dynamic Tracing", /* name of module */ 17883 &dtrace_ops, /* driver ops */ 17884 }; 17885 17886 static struct modlinkage modlinkage = { 17887 MODREV_1, 17888 (void *)&modldrv, 17889 NULL 17890 }; 17891 17892 int 17893 _init(void) 17894 { 17895 return (mod_install(&modlinkage)); 17896 } 17897 17898 int 17899 _info(struct modinfo *modinfop) 17900 { 17901 return (mod_info(&modlinkage, modinfop)); 17902 } 17903 17904 int 17905 _fini(void) 17906 { 17907 return (mod_remove(&modlinkage)); 17908 } 17909 #else 17910 17911 static d_ioctl_t dtrace_ioctl; 17912 static d_ioctl_t dtrace_ioctl_helper; 17913 static void dtrace_load(void *); 17914 static int dtrace_unload(void); 17915 static struct cdev *dtrace_dev; 17916 static struct cdev *helper_dev; 17917 17918 void dtrace_invop_init(void); 17919 void dtrace_invop_uninit(void); 17920 17921 static struct cdevsw dtrace_cdevsw = { 17922 .d_version = D_VERSION, 17923 .d_ioctl = dtrace_ioctl, 17924 .d_open = dtrace_open, 17925 .d_name = "dtrace", 17926 }; 17927 17928 static struct cdevsw helper_cdevsw = { 17929 .d_version = D_VERSION, 17930 .d_ioctl = dtrace_ioctl_helper, 17931 .d_name = "helper", 17932 }; 17933 17934 #include <dtrace_anon.c> 17935 #include <dtrace_ioctl.c> 17936 #include <dtrace_load.c> 17937 #include <dtrace_modevent.c> 17938 #include <dtrace_sysctl.c> 17939 #include <dtrace_unload.c> 17940 #include <dtrace_vtime.c> 17941 #include <dtrace_hacks.c> 17942 #include <dtrace_isa.c> 17943 17944 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 17945 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 17946 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 17947 17948 DEV_MODULE(dtrace, dtrace_modevent, NULL); 17949 MODULE_VERSION(dtrace, 1); 17950 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 17951 #endif 17952