xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/linker.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 
132 #include <sys/dtrace_bsd.h>
133 
134 #include <netinet/in.h>
135 
136 #include "dtrace_cddl.h"
137 #include "dtrace_debug.c"
138 #endif
139 
140 #include "dtrace_xoroshiro128_plus.h"
141 
142 /*
143  * DTrace Tunable Variables
144  *
145  * The following variables may be tuned by adding a line to /etc/system that
146  * includes both the name of the DTrace module ("dtrace") and the name of the
147  * variable.  For example:
148  *
149  *   set dtrace:dtrace_destructive_disallow = 1
150  *
151  * In general, the only variables that one should be tuning this way are those
152  * that affect system-wide DTrace behavior, and for which the default behavior
153  * is undesirable.  Most of these variables are tunable on a per-consumer
154  * basis using DTrace options, and need not be tuned on a system-wide basis.
155  * When tuning these variables, avoid pathological values; while some attempt
156  * is made to verify the integrity of these variables, they are not considered
157  * part of the supported interface to DTrace, and they are therefore not
158  * checked comprehensively.  Further, these variables should not be tuned
159  * dynamically via "mdb -kw" or other means; they should only be tuned via
160  * /etc/system.
161  */
162 int		dtrace_destructive_disallow = 0;
163 #ifndef illumos
164 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
165 int		dtrace_allow_destructive = 1;
166 #endif
167 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
168 size_t		dtrace_difo_maxsize = (256 * 1024);
169 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
170 size_t		dtrace_statvar_maxsize = (16 * 1024);
171 size_t		dtrace_actions_max = (16 * 1024);
172 size_t		dtrace_retain_max = 1024;
173 dtrace_optval_t	dtrace_helper_actions_max = 128;
174 dtrace_optval_t	dtrace_helper_providers_max = 32;
175 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
176 size_t		dtrace_strsize_default = 256;
177 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
178 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
179 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
180 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
181 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
182 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
183 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
184 dtrace_optval_t	dtrace_nspec_default = 1;
185 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
186 dtrace_optval_t dtrace_stackframes_default = 20;
187 dtrace_optval_t dtrace_ustackframes_default = 20;
188 dtrace_optval_t dtrace_jstackframes_default = 50;
189 dtrace_optval_t dtrace_jstackstrsize_default = 512;
190 int		dtrace_msgdsize_max = 128;
191 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
192 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
193 int		dtrace_devdepth_max = 32;
194 int		dtrace_err_verbose;
195 hrtime_t	dtrace_deadman_interval = NANOSEC;
196 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
197 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
198 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
199 #ifndef illumos
200 int		dtrace_memstr_max = 4096;
201 #endif
202 
203 /*
204  * DTrace External Variables
205  *
206  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
207  * available to DTrace consumers via the backtick (`) syntax.  One of these,
208  * dtrace_zero, is made deliberately so:  it is provided as a source of
209  * well-known, zero-filled memory.  While this variable is not documented,
210  * it is used by some translators as an implementation detail.
211  */
212 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
213 
214 /*
215  * DTrace Internal Variables
216  */
217 #ifdef illumos
218 static dev_info_t	*dtrace_devi;		/* device info */
219 #endif
220 #ifdef illumos
221 static vmem_t		*dtrace_arena;		/* probe ID arena */
222 static vmem_t		*dtrace_minor;		/* minor number arena */
223 #else
224 static taskq_t		*dtrace_taskq;		/* task queue */
225 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
226 #endif
227 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
228 static int		dtrace_nprobes;		/* number of probes */
229 static dtrace_provider_t *dtrace_provider;	/* provider list */
230 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
231 static int		dtrace_opens;		/* number of opens */
232 static int		dtrace_helpers;		/* number of helpers */
233 static int		dtrace_getf;		/* number of unpriv getf()s */
234 #ifdef illumos
235 static void		*dtrace_softstate;	/* softstate pointer */
236 #endif
237 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
238 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
239 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
240 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
241 static int		dtrace_toxranges;	/* number of toxic ranges */
242 static int		dtrace_toxranges_max;	/* size of toxic range array */
243 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
244 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
245 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
246 static kthread_t	*dtrace_panicked;	/* panicking thread */
247 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
248 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
249 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
250 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
251 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
252 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
253 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
254 #ifndef illumos
255 static struct mtx	dtrace_unr_mtx;
256 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
257 static eventhandler_tag	dtrace_kld_load_tag;
258 static eventhandler_tag	dtrace_kld_unload_try_tag;
259 #endif
260 
261 /*
262  * DTrace Locking
263  * DTrace is protected by three (relatively coarse-grained) locks:
264  *
265  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
266  *     including enabling state, probes, ECBs, consumer state, helper state,
267  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
268  *     probe context is lock-free -- synchronization is handled via the
269  *     dtrace_sync() cross call mechanism.
270  *
271  * (2) dtrace_provider_lock is required when manipulating provider state, or
272  *     when provider state must be held constant.
273  *
274  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
275  *     when meta provider state must be held constant.
276  *
277  * The lock ordering between these three locks is dtrace_meta_lock before
278  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
279  * several places where dtrace_provider_lock is held by the framework as it
280  * calls into the providers -- which then call back into the framework,
281  * grabbing dtrace_lock.)
282  *
283  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
284  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
285  * role as a coarse-grained lock; it is acquired before both of these locks.
286  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
287  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
288  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
289  * acquired _between_ dtrace_provider_lock and dtrace_lock.
290  */
291 static kmutex_t		dtrace_lock;		/* probe state lock */
292 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
293 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
294 
295 #ifndef illumos
296 /* XXX FreeBSD hacks. */
297 #define cr_suid		cr_svuid
298 #define cr_sgid		cr_svgid
299 #define	ipaddr_t	in_addr_t
300 #define mod_modname	pathname
301 #define vuprintf	vprintf
302 #define ttoproc(_a)	((_a)->td_proc)
303 #define crgetzoneid(_a)	0
304 #define SNOCD		0
305 #define CPU_ON_INTR(_a)	0
306 
307 #define PRIV_EFFECTIVE		(1 << 0)
308 #define PRIV_DTRACE_KERNEL	(1 << 1)
309 #define PRIV_DTRACE_PROC	(1 << 2)
310 #define PRIV_DTRACE_USER	(1 << 3)
311 #define PRIV_PROC_OWNER		(1 << 4)
312 #define PRIV_PROC_ZONE		(1 << 5)
313 #define PRIV_ALL		~0
314 
315 SYSCTL_DECL(_debug_dtrace);
316 SYSCTL_DECL(_kern_dtrace);
317 #endif
318 
319 #ifdef illumos
320 #define curcpu	CPU->cpu_id
321 #endif
322 
323 
324 /*
325  * DTrace Provider Variables
326  *
327  * These are the variables relating to DTrace as a provider (that is, the
328  * provider of the BEGIN, END, and ERROR probes).
329  */
330 static dtrace_pattr_t	dtrace_provider_attr = {
331 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
332 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
333 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
334 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
335 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
336 };
337 
338 static void
339 dtrace_nullop(void)
340 {}
341 
342 static dtrace_pops_t dtrace_provider_ops = {
343 	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
344 	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
345 	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346 	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
347 	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
348 	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
349 	.dtps_getargdesc =	NULL,
350 	.dtps_getargval =	NULL,
351 	.dtps_usermode =	NULL,
352 	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
353 };
354 
355 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
356 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
357 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
358 
359 /*
360  * DTrace Helper Tracing Variables
361  *
362  * These variables should be set dynamically to enable helper tracing.  The
363  * only variables that should be set are dtrace_helptrace_enable (which should
364  * be set to a non-zero value to allocate helper tracing buffers on the next
365  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
366  * non-zero value to deallocate helper tracing buffers on the next close of
367  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
368  * buffer size may also be set via dtrace_helptrace_bufsize.
369  */
370 int			dtrace_helptrace_enable = 0;
371 int			dtrace_helptrace_disable = 0;
372 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
373 uint32_t		dtrace_helptrace_nlocals;
374 static dtrace_helptrace_t *dtrace_helptrace_buffer;
375 static uint32_t		dtrace_helptrace_next = 0;
376 static int		dtrace_helptrace_wrapped = 0;
377 
378 /*
379  * DTrace Error Hashing
380  *
381  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
382  * table.  This is very useful for checking coverage of tests that are
383  * expected to induce DIF or DOF processing errors, and may be useful for
384  * debugging problems in the DIF code generator or in DOF generation .  The
385  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
386  */
387 #ifdef DEBUG
388 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
389 static const char *dtrace_errlast;
390 static kthread_t *dtrace_errthread;
391 static kmutex_t dtrace_errlock;
392 #endif
393 
394 /*
395  * DTrace Macros and Constants
396  *
397  * These are various macros that are useful in various spots in the
398  * implementation, along with a few random constants that have no meaning
399  * outside of the implementation.  There is no real structure to this cpp
400  * mishmash -- but is there ever?
401  */
402 #define	DTRACE_HASHSTR(hash, probe)	\
403 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
404 
405 #define	DTRACE_HASHNEXT(hash, probe)	\
406 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
407 
408 #define	DTRACE_HASHPREV(hash, probe)	\
409 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
410 
411 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
412 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
413 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
414 
415 #define	DTRACE_AGGHASHSIZE_SLEW		17
416 
417 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
418 
419 /*
420  * The key for a thread-local variable consists of the lower 61 bits of the
421  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
422  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
423  * equal to a variable identifier.  This is necessary (but not sufficient) to
424  * assure that global associative arrays never collide with thread-local
425  * variables.  To guarantee that they cannot collide, we must also define the
426  * order for keying dynamic variables.  That order is:
427  *
428  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
429  *
430  * Because the variable-key and the tls-key are in orthogonal spaces, there is
431  * no way for a global variable key signature to match a thread-local key
432  * signature.
433  */
434 #ifdef illumos
435 #define	DTRACE_TLS_THRKEY(where) { \
436 	uint_t intr = 0; \
437 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
438 	for (; actv; actv >>= 1) \
439 		intr++; \
440 	ASSERT(intr < (1 << 3)); \
441 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
442 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
443 }
444 #else
445 #define	DTRACE_TLS_THRKEY(where) { \
446 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
447 	uint_t intr = 0; \
448 	uint_t actv = _c->cpu_intr_actv; \
449 	for (; actv; actv >>= 1) \
450 		intr++; \
451 	ASSERT(intr < (1 << 3)); \
452 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
453 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
454 }
455 #endif
456 
457 #define	DT_BSWAP_8(x)	((x) & 0xff)
458 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
459 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
460 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
461 
462 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
463 
464 #define	DTRACE_STORE(type, tomax, offset, what) \
465 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
466 
467 #ifndef __x86
468 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
469 	if (addr & (size - 1)) {					\
470 		*flags |= CPU_DTRACE_BADALIGN;				\
471 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
472 		return (0);						\
473 	}
474 #else
475 #define	DTRACE_ALIGNCHECK(addr, size, flags)
476 #endif
477 
478 /*
479  * Test whether a range of memory starting at testaddr of size testsz falls
480  * within the range of memory described by addr, sz.  We take care to avoid
481  * problems with overflow and underflow of the unsigned quantities, and
482  * disallow all negative sizes.  Ranges of size 0 are allowed.
483  */
484 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
485 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
486 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
487 	(testaddr) + (testsz) >= (testaddr))
488 
489 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
490 do {									\
491 	if ((remp) != NULL) {						\
492 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
493 	}								\
494 _NOTE(CONSTCOND) } while (0)
495 
496 
497 /*
498  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
499  * alloc_sz on the righthand side of the comparison in order to avoid overflow
500  * or underflow in the comparison with it.  This is simpler than the INRANGE
501  * check above, because we know that the dtms_scratch_ptr is valid in the
502  * range.  Allocations of size zero are allowed.
503  */
504 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
505 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
506 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
507 
508 #define	DTRACE_LOADFUNC(bits)						\
509 /*CSTYLED*/								\
510 uint##bits##_t								\
511 dtrace_load##bits(uintptr_t addr)					\
512 {									\
513 	size_t size = bits / NBBY;					\
514 	/*CSTYLED*/							\
515 	uint##bits##_t rval;						\
516 	int i;								\
517 	volatile uint16_t *flags = (volatile uint16_t *)		\
518 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
519 									\
520 	DTRACE_ALIGNCHECK(addr, size, flags);				\
521 									\
522 	for (i = 0; i < dtrace_toxranges; i++) {			\
523 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
524 			continue;					\
525 									\
526 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
527 			continue;					\
528 									\
529 		/*							\
530 		 * This address falls within a toxic region; return 0.	\
531 		 */							\
532 		*flags |= CPU_DTRACE_BADADDR;				\
533 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
534 		return (0);						\
535 	}								\
536 									\
537 	*flags |= CPU_DTRACE_NOFAULT;					\
538 	/*CSTYLED*/							\
539 	rval = *((volatile uint##bits##_t *)addr);			\
540 	*flags &= ~CPU_DTRACE_NOFAULT;					\
541 									\
542 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
543 }
544 
545 #ifdef _LP64
546 #define	dtrace_loadptr	dtrace_load64
547 #else
548 #define	dtrace_loadptr	dtrace_load32
549 #endif
550 
551 #define	DTRACE_DYNHASH_FREE	0
552 #define	DTRACE_DYNHASH_SINK	1
553 #define	DTRACE_DYNHASH_VALID	2
554 
555 #define	DTRACE_MATCH_NEXT	0
556 #define	DTRACE_MATCH_DONE	1
557 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
558 #define	DTRACE_STATE_ALIGN	64
559 
560 #define	DTRACE_FLAGS2FLT(flags)						\
561 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
562 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
563 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
564 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
565 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
566 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
567 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
568 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
569 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
570 	DTRACEFLT_UNKNOWN)
571 
572 #define	DTRACEACT_ISSTRING(act)						\
573 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
574 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
575 
576 /* Function prototype definitions: */
577 static size_t dtrace_strlen(const char *, size_t);
578 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
579 static void dtrace_enabling_provide(dtrace_provider_t *);
580 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
581 static void dtrace_enabling_matchall(void);
582 static void dtrace_enabling_reap(void);
583 static dtrace_state_t *dtrace_anon_grab(void);
584 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
585     dtrace_state_t *, uint64_t, uint64_t);
586 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
587 static void dtrace_buffer_drop(dtrace_buffer_t *);
588 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
589 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
590     dtrace_state_t *, dtrace_mstate_t *);
591 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
592     dtrace_optval_t);
593 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
594 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
595 uint16_t dtrace_load16(uintptr_t);
596 uint32_t dtrace_load32(uintptr_t);
597 uint64_t dtrace_load64(uintptr_t);
598 uint8_t dtrace_load8(uintptr_t);
599 void dtrace_dynvar_clean(dtrace_dstate_t *);
600 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
601     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
602 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
603 static int dtrace_priv_proc(dtrace_state_t *);
604 static void dtrace_getf_barrier(void);
605 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
606     dtrace_mstate_t *, dtrace_vstate_t *);
607 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
608     dtrace_mstate_t *, dtrace_vstate_t *);
609 
610 /*
611  * DTrace Probe Context Functions
612  *
613  * These functions are called from probe context.  Because probe context is
614  * any context in which C may be called, arbitrarily locks may be held,
615  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
616  * As a result, functions called from probe context may only call other DTrace
617  * support functions -- they may not interact at all with the system at large.
618  * (Note that the ASSERT macro is made probe-context safe by redefining it in
619  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
620  * loads are to be performed from probe context, they _must_ be in terms of
621  * the safe dtrace_load*() variants.
622  *
623  * Some functions in this block are not actually called from probe context;
624  * for these functions, there will be a comment above the function reading
625  * "Note:  not called from probe context."
626  */
627 void
628 dtrace_panic(const char *format, ...)
629 {
630 	va_list alist;
631 
632 	va_start(alist, format);
633 #ifdef __FreeBSD__
634 	vpanic(format, alist);
635 #else
636 	dtrace_vpanic(format, alist);
637 #endif
638 	va_end(alist);
639 }
640 
641 int
642 dtrace_assfail(const char *a, const char *f, int l)
643 {
644 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
645 
646 	/*
647 	 * We just need something here that even the most clever compiler
648 	 * cannot optimize away.
649 	 */
650 	return (a[(uintptr_t)f]);
651 }
652 
653 /*
654  * Atomically increment a specified error counter from probe context.
655  */
656 static void
657 dtrace_error(uint32_t *counter)
658 {
659 	/*
660 	 * Most counters stored to in probe context are per-CPU counters.
661 	 * However, there are some error conditions that are sufficiently
662 	 * arcane that they don't merit per-CPU storage.  If these counters
663 	 * are incremented concurrently on different CPUs, scalability will be
664 	 * adversely affected -- but we don't expect them to be white-hot in a
665 	 * correctly constructed enabling...
666 	 */
667 	uint32_t oval, nval;
668 
669 	do {
670 		oval = *counter;
671 
672 		if ((nval = oval + 1) == 0) {
673 			/*
674 			 * If the counter would wrap, set it to 1 -- assuring
675 			 * that the counter is never zero when we have seen
676 			 * errors.  (The counter must be 32-bits because we
677 			 * aren't guaranteed a 64-bit compare&swap operation.)
678 			 * To save this code both the infamy of being fingered
679 			 * by a priggish news story and the indignity of being
680 			 * the target of a neo-puritan witch trial, we're
681 			 * carefully avoiding any colorful description of the
682 			 * likelihood of this condition -- but suffice it to
683 			 * say that it is only slightly more likely than the
684 			 * overflow of predicate cache IDs, as discussed in
685 			 * dtrace_predicate_create().
686 			 */
687 			nval = 1;
688 		}
689 	} while (dtrace_cas32(counter, oval, nval) != oval);
690 }
691 
692 /*
693  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
694  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
695  */
696 /* BEGIN CSTYLED */
697 DTRACE_LOADFUNC(8)
698 DTRACE_LOADFUNC(16)
699 DTRACE_LOADFUNC(32)
700 DTRACE_LOADFUNC(64)
701 /* END CSTYLED */
702 
703 static int
704 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
705 {
706 	if (dest < mstate->dtms_scratch_base)
707 		return (0);
708 
709 	if (dest + size < dest)
710 		return (0);
711 
712 	if (dest + size > mstate->dtms_scratch_ptr)
713 		return (0);
714 
715 	return (1);
716 }
717 
718 static int
719 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
720     dtrace_statvar_t **svars, int nsvars)
721 {
722 	int i;
723 	size_t maxglobalsize, maxlocalsize;
724 
725 	if (nsvars == 0)
726 		return (0);
727 
728 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
729 	maxlocalsize = maxglobalsize * NCPU;
730 
731 	for (i = 0; i < nsvars; i++) {
732 		dtrace_statvar_t *svar = svars[i];
733 		uint8_t scope;
734 		size_t size;
735 
736 		if (svar == NULL || (size = svar->dtsv_size) == 0)
737 			continue;
738 
739 		scope = svar->dtsv_var.dtdv_scope;
740 
741 		/*
742 		 * We verify that our size is valid in the spirit of providing
743 		 * defense in depth:  we want to prevent attackers from using
744 		 * DTrace to escalate an orthogonal kernel heap corruption bug
745 		 * into the ability to store to arbitrary locations in memory.
746 		 */
747 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
748 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
749 
750 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
751 		    svar->dtsv_size)) {
752 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
753 			    svar->dtsv_size);
754 			return (1);
755 		}
756 	}
757 
758 	return (0);
759 }
760 
761 /*
762  * Check to see if the address is within a memory region to which a store may
763  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
764  * region.  The caller of dtrace_canstore() is responsible for performing any
765  * alignment checks that are needed before stores are actually executed.
766  */
767 static int
768 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
769     dtrace_vstate_t *vstate)
770 {
771 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
772 }
773 
774 /*
775  * Implementation of dtrace_canstore which communicates the upper bound of the
776  * allowed memory region.
777  */
778 static int
779 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
780     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
781 {
782 	/*
783 	 * First, check to see if the address is in scratch space...
784 	 */
785 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
786 	    mstate->dtms_scratch_size)) {
787 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
788 		    mstate->dtms_scratch_size);
789 		return (1);
790 	}
791 
792 	/*
793 	 * Now check to see if it's a dynamic variable.  This check will pick
794 	 * up both thread-local variables and any global dynamically-allocated
795 	 * variables.
796 	 */
797 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
798 	    vstate->dtvs_dynvars.dtds_size)) {
799 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
800 		uintptr_t base = (uintptr_t)dstate->dtds_base +
801 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
802 		uintptr_t chunkoffs;
803 		dtrace_dynvar_t *dvar;
804 
805 		/*
806 		 * Before we assume that we can store here, we need to make
807 		 * sure that it isn't in our metadata -- storing to our
808 		 * dynamic variable metadata would corrupt our state.  For
809 		 * the range to not include any dynamic variable metadata,
810 		 * it must:
811 		 *
812 		 *	(1) Start above the hash table that is at the base of
813 		 *	the dynamic variable space
814 		 *
815 		 *	(2) Have a starting chunk offset that is beyond the
816 		 *	dtrace_dynvar_t that is at the base of every chunk
817 		 *
818 		 *	(3) Not span a chunk boundary
819 		 *
820 		 *	(4) Not be in the tuple space of a dynamic variable
821 		 *
822 		 */
823 		if (addr < base)
824 			return (0);
825 
826 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
827 
828 		if (chunkoffs < sizeof (dtrace_dynvar_t))
829 			return (0);
830 
831 		if (chunkoffs + sz > dstate->dtds_chunksize)
832 			return (0);
833 
834 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
835 
836 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
837 			return (0);
838 
839 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
840 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
841 			return (0);
842 
843 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
844 		return (1);
845 	}
846 
847 	/*
848 	 * Finally, check the static local and global variables.  These checks
849 	 * take the longest, so we perform them last.
850 	 */
851 	if (dtrace_canstore_statvar(addr, sz, remain,
852 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
853 		return (1);
854 
855 	if (dtrace_canstore_statvar(addr, sz, remain,
856 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
857 		return (1);
858 
859 	return (0);
860 }
861 
862 
863 /*
864  * Convenience routine to check to see if the address is within a memory
865  * region in which a load may be issued given the user's privilege level;
866  * if not, it sets the appropriate error flags and loads 'addr' into the
867  * illegal value slot.
868  *
869  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
870  * appropriate memory access protection.
871  */
872 static int
873 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
874     dtrace_vstate_t *vstate)
875 {
876 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
877 }
878 
879 /*
880  * Implementation of dtrace_canload which communicates the uppoer bound of the
881  * allowed memory region.
882  */
883 static int
884 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
885     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
886 {
887 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
888 	file_t *fp;
889 
890 	/*
891 	 * If we hold the privilege to read from kernel memory, then
892 	 * everything is readable.
893 	 */
894 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
895 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
896 		return (1);
897 	}
898 
899 	/*
900 	 * You can obviously read that which you can store.
901 	 */
902 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
903 		return (1);
904 
905 	/*
906 	 * We're allowed to read from our own string table.
907 	 */
908 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
909 	    mstate->dtms_difo->dtdo_strlen)) {
910 		DTRACE_RANGE_REMAIN(remain, addr,
911 		    mstate->dtms_difo->dtdo_strtab,
912 		    mstate->dtms_difo->dtdo_strlen);
913 		return (1);
914 	}
915 
916 	if (vstate->dtvs_state != NULL &&
917 	    dtrace_priv_proc(vstate->dtvs_state)) {
918 		proc_t *p;
919 
920 		/*
921 		 * When we have privileges to the current process, there are
922 		 * several context-related kernel structures that are safe to
923 		 * read, even absent the privilege to read from kernel memory.
924 		 * These reads are safe because these structures contain only
925 		 * state that (1) we're permitted to read, (2) is harmless or
926 		 * (3) contains pointers to additional kernel state that we're
927 		 * not permitted to read (and as such, do not present an
928 		 * opportunity for privilege escalation).  Finally (and
929 		 * critically), because of the nature of their relation with
930 		 * the current thread context, the memory associated with these
931 		 * structures cannot change over the duration of probe context,
932 		 * and it is therefore impossible for this memory to be
933 		 * deallocated and reallocated as something else while it's
934 		 * being operated upon.
935 		 */
936 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
937 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
938 			    sizeof (kthread_t));
939 			return (1);
940 		}
941 
942 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
943 		    sz, curthread->t_procp, sizeof (proc_t))) {
944 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
945 			    sizeof (proc_t));
946 			return (1);
947 		}
948 
949 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
950 		    curthread->t_cred, sizeof (cred_t))) {
951 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
952 			    sizeof (cred_t));
953 			return (1);
954 		}
955 
956 #ifdef illumos
957 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
958 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
959 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
960 			    sizeof (pid_t));
961 			return (1);
962 		}
963 
964 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
965 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
966 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
967 			    offsetof(cpu_t, cpu_pause_thread));
968 			return (1);
969 		}
970 #endif
971 	}
972 
973 	if ((fp = mstate->dtms_getf) != NULL) {
974 		uintptr_t psz = sizeof (void *);
975 		vnode_t *vp;
976 		vnodeops_t *op;
977 
978 		/*
979 		 * When getf() returns a file_t, the enabling is implicitly
980 		 * granted the (transient) right to read the returned file_t
981 		 * as well as the v_path and v_op->vnop_name of the underlying
982 		 * vnode.  These accesses are allowed after a successful
983 		 * getf() because the members that they refer to cannot change
984 		 * once set -- and the barrier logic in the kernel's closef()
985 		 * path assures that the file_t and its referenced vode_t
986 		 * cannot themselves be stale (that is, it impossible for
987 		 * either dtms_getf itself or its f_vnode member to reference
988 		 * freed memory).
989 		 */
990 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
991 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
992 			return (1);
993 		}
994 
995 		if ((vp = fp->f_vnode) != NULL) {
996 			size_t slen;
997 #ifdef illumos
998 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
999 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1000 				    psz);
1001 				return (1);
1002 			}
1003 			slen = strlen(vp->v_path) + 1;
1004 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1005 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1006 				    slen);
1007 				return (1);
1008 			}
1009 #endif
1010 
1011 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1012 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1013 				    psz);
1014 				return (1);
1015 			}
1016 
1017 #ifdef illumos
1018 			if ((op = vp->v_op) != NULL &&
1019 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1020 				DTRACE_RANGE_REMAIN(remain, addr,
1021 				    &op->vnop_name, psz);
1022 				return (1);
1023 			}
1024 
1025 			if (op != NULL && op->vnop_name != NULL &&
1026 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1027 			    (slen = strlen(op->vnop_name) + 1))) {
1028 				DTRACE_RANGE_REMAIN(remain, addr,
1029 				    op->vnop_name, slen);
1030 				return (1);
1031 			}
1032 #endif
1033 		}
1034 	}
1035 
1036 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1037 	*illval = addr;
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Convenience routine to check to see if a given string is within a memory
1043  * region in which a load may be issued given the user's privilege level;
1044  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1045  * calls in the event that the user has all privileges.
1046  */
1047 static int
1048 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1049     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1050 {
1051 	size_t rsize;
1052 
1053 	/*
1054 	 * If we hold the privilege to read from kernel memory, then
1055 	 * everything is readable.
1056 	 */
1057 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1058 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1059 		return (1);
1060 	}
1061 
1062 	/*
1063 	 * Even if the caller is uninterested in querying the remaining valid
1064 	 * range, it is required to ensure that the access is allowed.
1065 	 */
1066 	if (remain == NULL) {
1067 		remain = &rsize;
1068 	}
1069 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1070 		size_t strsz;
1071 		/*
1072 		 * Perform the strlen after determining the length of the
1073 		 * memory region which is accessible.  This prevents timing
1074 		 * information from being used to find NULs in memory which is
1075 		 * not accessible to the caller.
1076 		 */
1077 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1078 		    MIN(sz, *remain));
1079 		if (strsz <= *remain) {
1080 			return (1);
1081 		}
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Convenience routine to check to see if a given variable is within a memory
1089  * region in which a load may be issued given the user's privilege level.
1090  */
1091 static int
1092 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1093     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1094 {
1095 	size_t sz;
1096 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1097 
1098 	/*
1099 	 * Calculate the max size before performing any checks since even
1100 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1101 	 * return the max length via 'remain'.
1102 	 */
1103 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1104 		dtrace_state_t *state = vstate->dtvs_state;
1105 
1106 		if (state != NULL) {
1107 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1108 		} else {
1109 			/*
1110 			 * In helper context, we have a NULL state; fall back
1111 			 * to using the system-wide default for the string size
1112 			 * in this case.
1113 			 */
1114 			sz = dtrace_strsize_default;
1115 		}
1116 	} else {
1117 		sz = type->dtdt_size;
1118 	}
1119 
1120 	/*
1121 	 * If we hold the privilege to read from kernel memory, then
1122 	 * everything is readable.
1123 	 */
1124 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1125 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1126 		return (1);
1127 	}
1128 
1129 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1130 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1131 		    vstate));
1132 	}
1133 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1134 	    vstate));
1135 }
1136 
1137 /*
1138  * Convert a string to a signed integer using safe loads.
1139  *
1140  * NOTE: This function uses various macros from strtolctype.h to manipulate
1141  * digit values, etc -- these have all been checked to ensure they make
1142  * no additional function calls.
1143  */
1144 static int64_t
1145 dtrace_strtoll(char *input, int base, size_t limit)
1146 {
1147 	uintptr_t pos = (uintptr_t)input;
1148 	int64_t val = 0;
1149 	int x;
1150 	boolean_t neg = B_FALSE;
1151 	char c, cc, ccc;
1152 	uintptr_t end = pos + limit;
1153 
1154 	/*
1155 	 * Consume any whitespace preceding digits.
1156 	 */
1157 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1158 		pos++;
1159 
1160 	/*
1161 	 * Handle an explicit sign if one is present.
1162 	 */
1163 	if (c == '-' || c == '+') {
1164 		if (c == '-')
1165 			neg = B_TRUE;
1166 		c = dtrace_load8(++pos);
1167 	}
1168 
1169 	/*
1170 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1171 	 * if present.
1172 	 */
1173 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1174 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1175 		pos += 2;
1176 		c = ccc;
1177 	}
1178 
1179 	/*
1180 	 * Read in contiguous digits until the first non-digit character.
1181 	 */
1182 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1183 	    c = dtrace_load8(++pos))
1184 		val = val * base + x;
1185 
1186 	return (neg ? -val : val);
1187 }
1188 
1189 /*
1190  * Compare two strings using safe loads.
1191  */
1192 static int
1193 dtrace_strncmp(char *s1, char *s2, size_t limit)
1194 {
1195 	uint8_t c1, c2;
1196 	volatile uint16_t *flags;
1197 
1198 	if (s1 == s2 || limit == 0)
1199 		return (0);
1200 
1201 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1202 
1203 	do {
1204 		if (s1 == NULL) {
1205 			c1 = '\0';
1206 		} else {
1207 			c1 = dtrace_load8((uintptr_t)s1++);
1208 		}
1209 
1210 		if (s2 == NULL) {
1211 			c2 = '\0';
1212 		} else {
1213 			c2 = dtrace_load8((uintptr_t)s2++);
1214 		}
1215 
1216 		if (c1 != c2)
1217 			return (c1 - c2);
1218 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Compute strlen(s) for a string using safe memory accesses.  The additional
1225  * len parameter is used to specify a maximum length to ensure completion.
1226  */
1227 static size_t
1228 dtrace_strlen(const char *s, size_t lim)
1229 {
1230 	uint_t len;
1231 
1232 	for (len = 0; len != lim; len++) {
1233 		if (dtrace_load8((uintptr_t)s++) == '\0')
1234 			break;
1235 	}
1236 
1237 	return (len);
1238 }
1239 
1240 /*
1241  * Check if an address falls within a toxic region.
1242  */
1243 static int
1244 dtrace_istoxic(uintptr_t kaddr, size_t size)
1245 {
1246 	uintptr_t taddr, tsize;
1247 	int i;
1248 
1249 	for (i = 0; i < dtrace_toxranges; i++) {
1250 		taddr = dtrace_toxrange[i].dtt_base;
1251 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1252 
1253 		if (kaddr - taddr < tsize) {
1254 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1255 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1256 			return (1);
1257 		}
1258 
1259 		if (taddr - kaddr < size) {
1260 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1261 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1262 			return (1);
1263 		}
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1271  * memory specified by the DIF program.  The dst is assumed to be safe memory
1272  * that we can store to directly because it is managed by DTrace.  As with
1273  * standard bcopy, overlapping copies are handled properly.
1274  */
1275 static void
1276 dtrace_bcopy(const void *src, void *dst, size_t len)
1277 {
1278 	if (len != 0) {
1279 		uint8_t *s1 = dst;
1280 		const uint8_t *s2 = src;
1281 
1282 		if (s1 <= s2) {
1283 			do {
1284 				*s1++ = dtrace_load8((uintptr_t)s2++);
1285 			} while (--len != 0);
1286 		} else {
1287 			s2 += len;
1288 			s1 += len;
1289 
1290 			do {
1291 				*--s1 = dtrace_load8((uintptr_t)--s2);
1292 			} while (--len != 0);
1293 		}
1294 	}
1295 }
1296 
1297 /*
1298  * Copy src to dst using safe memory accesses, up to either the specified
1299  * length, or the point that a nul byte is encountered.  The src is assumed to
1300  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1301  * safe memory that we can store to directly because it is managed by DTrace.
1302  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1303  */
1304 static void
1305 dtrace_strcpy(const void *src, void *dst, size_t len)
1306 {
1307 	if (len != 0) {
1308 		uint8_t *s1 = dst, c;
1309 		const uint8_t *s2 = src;
1310 
1311 		do {
1312 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1313 		} while (--len != 0 && c != '\0');
1314 	}
1315 }
1316 
1317 /*
1318  * Copy src to dst, deriving the size and type from the specified (BYREF)
1319  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1320  * program.  The dst is assumed to be DTrace variable memory that is of the
1321  * specified type; we assume that we can store to directly.
1322  */
1323 static void
1324 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1325 {
1326 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1327 
1328 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1329 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1330 	} else {
1331 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1332 	}
1333 }
1334 
1335 /*
1336  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1337  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1338  * safe memory that we can access directly because it is managed by DTrace.
1339  */
1340 static int
1341 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1342 {
1343 	volatile uint16_t *flags;
1344 
1345 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1346 
1347 	if (s1 == s2)
1348 		return (0);
1349 
1350 	if (s1 == NULL || s2 == NULL)
1351 		return (1);
1352 
1353 	if (s1 != s2 && len != 0) {
1354 		const uint8_t *ps1 = s1;
1355 		const uint8_t *ps2 = s2;
1356 
1357 		do {
1358 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1359 				return (1);
1360 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1361 	}
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1367  * is for safe DTrace-managed memory only.
1368  */
1369 static void
1370 dtrace_bzero(void *dst, size_t len)
1371 {
1372 	uchar_t *cp;
1373 
1374 	for (cp = dst; len != 0; len--)
1375 		*cp++ = 0;
1376 }
1377 
1378 static void
1379 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1380 {
1381 	uint64_t result[2];
1382 
1383 	result[0] = addend1[0] + addend2[0];
1384 	result[1] = addend1[1] + addend2[1] +
1385 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1386 
1387 	sum[0] = result[0];
1388 	sum[1] = result[1];
1389 }
1390 
1391 /*
1392  * Shift the 128-bit value in a by b. If b is positive, shift left.
1393  * If b is negative, shift right.
1394  */
1395 static void
1396 dtrace_shift_128(uint64_t *a, int b)
1397 {
1398 	uint64_t mask;
1399 
1400 	if (b == 0)
1401 		return;
1402 
1403 	if (b < 0) {
1404 		b = -b;
1405 		if (b >= 64) {
1406 			a[0] = a[1] >> (b - 64);
1407 			a[1] = 0;
1408 		} else {
1409 			a[0] >>= b;
1410 			mask = 1LL << (64 - b);
1411 			mask -= 1;
1412 			a[0] |= ((a[1] & mask) << (64 - b));
1413 			a[1] >>= b;
1414 		}
1415 	} else {
1416 		if (b >= 64) {
1417 			a[1] = a[0] << (b - 64);
1418 			a[0] = 0;
1419 		} else {
1420 			a[1] <<= b;
1421 			mask = a[0] >> (64 - b);
1422 			a[1] |= mask;
1423 			a[0] <<= b;
1424 		}
1425 	}
1426 }
1427 
1428 /*
1429  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1430  * use native multiplication on those, and then re-combine into the
1431  * resulting 128-bit value.
1432  *
1433  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1434  *     hi1 * hi2 << 64 +
1435  *     hi1 * lo2 << 32 +
1436  *     hi2 * lo1 << 32 +
1437  *     lo1 * lo2
1438  */
1439 static void
1440 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1441 {
1442 	uint64_t hi1, hi2, lo1, lo2;
1443 	uint64_t tmp[2];
1444 
1445 	hi1 = factor1 >> 32;
1446 	hi2 = factor2 >> 32;
1447 
1448 	lo1 = factor1 & DT_MASK_LO;
1449 	lo2 = factor2 & DT_MASK_LO;
1450 
1451 	product[0] = lo1 * lo2;
1452 	product[1] = hi1 * hi2;
1453 
1454 	tmp[0] = hi1 * lo2;
1455 	tmp[1] = 0;
1456 	dtrace_shift_128(tmp, 32);
1457 	dtrace_add_128(product, tmp, product);
1458 
1459 	tmp[0] = hi2 * lo1;
1460 	tmp[1] = 0;
1461 	dtrace_shift_128(tmp, 32);
1462 	dtrace_add_128(product, tmp, product);
1463 }
1464 
1465 /*
1466  * This privilege check should be used by actions and subroutines to
1467  * verify that the user credentials of the process that enabled the
1468  * invoking ECB match the target credentials
1469  */
1470 static int
1471 dtrace_priv_proc_common_user(dtrace_state_t *state)
1472 {
1473 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1474 
1475 	/*
1476 	 * We should always have a non-NULL state cred here, since if cred
1477 	 * is null (anonymous tracing), we fast-path bypass this routine.
1478 	 */
1479 	ASSERT(s_cr != NULL);
1480 
1481 	if ((cr = CRED()) != NULL &&
1482 	    s_cr->cr_uid == cr->cr_uid &&
1483 	    s_cr->cr_uid == cr->cr_ruid &&
1484 	    s_cr->cr_uid == cr->cr_suid &&
1485 	    s_cr->cr_gid == cr->cr_gid &&
1486 	    s_cr->cr_gid == cr->cr_rgid &&
1487 	    s_cr->cr_gid == cr->cr_sgid)
1488 		return (1);
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * This privilege check should be used by actions and subroutines to
1495  * verify that the zone of the process that enabled the invoking ECB
1496  * matches the target credentials
1497  */
1498 static int
1499 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1500 {
1501 #ifdef illumos
1502 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1503 
1504 	/*
1505 	 * We should always have a non-NULL state cred here, since if cred
1506 	 * is null (anonymous tracing), we fast-path bypass this routine.
1507 	 */
1508 	ASSERT(s_cr != NULL);
1509 
1510 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1511 		return (1);
1512 
1513 	return (0);
1514 #else
1515 	return (1);
1516 #endif
1517 }
1518 
1519 /*
1520  * This privilege check should be used by actions and subroutines to
1521  * verify that the process has not setuid or changed credentials.
1522  */
1523 static int
1524 dtrace_priv_proc_common_nocd(void)
1525 {
1526 	proc_t *proc;
1527 
1528 	if ((proc = ttoproc(curthread)) != NULL &&
1529 	    !(proc->p_flag & SNOCD))
1530 		return (1);
1531 
1532 	return (0);
1533 }
1534 
1535 static int
1536 dtrace_priv_proc_destructive(dtrace_state_t *state)
1537 {
1538 	int action = state->dts_cred.dcr_action;
1539 
1540 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1541 	    dtrace_priv_proc_common_zone(state) == 0)
1542 		goto bad;
1543 
1544 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1545 	    dtrace_priv_proc_common_user(state) == 0)
1546 		goto bad;
1547 
1548 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1549 	    dtrace_priv_proc_common_nocd() == 0)
1550 		goto bad;
1551 
1552 	return (1);
1553 
1554 bad:
1555 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1556 
1557 	return (0);
1558 }
1559 
1560 static int
1561 dtrace_priv_proc_control(dtrace_state_t *state)
1562 {
1563 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1564 		return (1);
1565 
1566 	if (dtrace_priv_proc_common_zone(state) &&
1567 	    dtrace_priv_proc_common_user(state) &&
1568 	    dtrace_priv_proc_common_nocd())
1569 		return (1);
1570 
1571 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1572 
1573 	return (0);
1574 }
1575 
1576 static int
1577 dtrace_priv_proc(dtrace_state_t *state)
1578 {
1579 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1580 		return (1);
1581 
1582 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1583 
1584 	return (0);
1585 }
1586 
1587 static int
1588 dtrace_priv_kernel(dtrace_state_t *state)
1589 {
1590 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1591 		return (1);
1592 
1593 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1594 
1595 	return (0);
1596 }
1597 
1598 static int
1599 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1600 {
1601 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1602 		return (1);
1603 
1604 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1605 
1606 	return (0);
1607 }
1608 
1609 /*
1610  * Determine if the dte_cond of the specified ECB allows for processing of
1611  * the current probe to continue.  Note that this routine may allow continued
1612  * processing, but with access(es) stripped from the mstate's dtms_access
1613  * field.
1614  */
1615 static int
1616 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1617     dtrace_ecb_t *ecb)
1618 {
1619 	dtrace_probe_t *probe = ecb->dte_probe;
1620 	dtrace_provider_t *prov = probe->dtpr_provider;
1621 	dtrace_pops_t *pops = &prov->dtpv_pops;
1622 	int mode = DTRACE_MODE_NOPRIV_DROP;
1623 
1624 	ASSERT(ecb->dte_cond);
1625 
1626 #ifdef illumos
1627 	if (pops->dtps_mode != NULL) {
1628 		mode = pops->dtps_mode(prov->dtpv_arg,
1629 		    probe->dtpr_id, probe->dtpr_arg);
1630 
1631 		ASSERT((mode & DTRACE_MODE_USER) ||
1632 		    (mode & DTRACE_MODE_KERNEL));
1633 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1634 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1635 	}
1636 
1637 	/*
1638 	 * If the dte_cond bits indicate that this consumer is only allowed to
1639 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1640 	 * entry point to check that the probe was fired while in a user
1641 	 * context.  If that's not the case, use the policy specified by the
1642 	 * provider to determine if we drop the probe or merely restrict
1643 	 * operation.
1644 	 */
1645 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1646 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1647 
1648 		if (!(mode & DTRACE_MODE_USER)) {
1649 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1650 				return (0);
1651 
1652 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1653 		}
1654 	}
1655 #endif
1656 
1657 	/*
1658 	 * This is more subtle than it looks. We have to be absolutely certain
1659 	 * that CRED() isn't going to change out from under us so it's only
1660 	 * legit to examine that structure if we're in constrained situations.
1661 	 * Currently, the only times we'll this check is if a non-super-user
1662 	 * has enabled the profile or syscall providers -- providers that
1663 	 * allow visibility of all processes. For the profile case, the check
1664 	 * above will ensure that we're examining a user context.
1665 	 */
1666 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1667 		cred_t *cr;
1668 		cred_t *s_cr = state->dts_cred.dcr_cred;
1669 		proc_t *proc;
1670 
1671 		ASSERT(s_cr != NULL);
1672 
1673 		if ((cr = CRED()) == NULL ||
1674 		    s_cr->cr_uid != cr->cr_uid ||
1675 		    s_cr->cr_uid != cr->cr_ruid ||
1676 		    s_cr->cr_uid != cr->cr_suid ||
1677 		    s_cr->cr_gid != cr->cr_gid ||
1678 		    s_cr->cr_gid != cr->cr_rgid ||
1679 		    s_cr->cr_gid != cr->cr_sgid ||
1680 		    (proc = ttoproc(curthread)) == NULL ||
1681 		    (proc->p_flag & SNOCD)) {
1682 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1683 				return (0);
1684 
1685 #ifdef illumos
1686 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1687 #endif
1688 		}
1689 	}
1690 
1691 #ifdef illumos
1692 	/*
1693 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1694 	 * in our zone, check to see if our mode policy is to restrict rather
1695 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1696 	 * and DTRACE_ACCESS_ARGS
1697 	 */
1698 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1699 		cred_t *cr;
1700 		cred_t *s_cr = state->dts_cred.dcr_cred;
1701 
1702 		ASSERT(s_cr != NULL);
1703 
1704 		if ((cr = CRED()) == NULL ||
1705 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1706 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1707 				return (0);
1708 
1709 			mstate->dtms_access &=
1710 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1711 		}
1712 	}
1713 #endif
1714 
1715 	return (1);
1716 }
1717 
1718 /*
1719  * Note:  not called from probe context.  This function is called
1720  * asynchronously (and at a regular interval) from outside of probe context to
1721  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1722  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1723  */
1724 void
1725 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1726 {
1727 	dtrace_dynvar_t *dirty;
1728 	dtrace_dstate_percpu_t *dcpu;
1729 	dtrace_dynvar_t **rinsep;
1730 	int i, j, work = 0;
1731 
1732 	for (i = 0; i < NCPU; i++) {
1733 		dcpu = &dstate->dtds_percpu[i];
1734 		rinsep = &dcpu->dtdsc_rinsing;
1735 
1736 		/*
1737 		 * If the dirty list is NULL, there is no dirty work to do.
1738 		 */
1739 		if (dcpu->dtdsc_dirty == NULL)
1740 			continue;
1741 
1742 		if (dcpu->dtdsc_rinsing != NULL) {
1743 			/*
1744 			 * If the rinsing list is non-NULL, then it is because
1745 			 * this CPU was selected to accept another CPU's
1746 			 * dirty list -- and since that time, dirty buffers
1747 			 * have accumulated.  This is a highly unlikely
1748 			 * condition, but we choose to ignore the dirty
1749 			 * buffers -- they'll be picked up a future cleanse.
1750 			 */
1751 			continue;
1752 		}
1753 
1754 		if (dcpu->dtdsc_clean != NULL) {
1755 			/*
1756 			 * If the clean list is non-NULL, then we're in a
1757 			 * situation where a CPU has done deallocations (we
1758 			 * have a non-NULL dirty list) but no allocations (we
1759 			 * also have a non-NULL clean list).  We can't simply
1760 			 * move the dirty list into the clean list on this
1761 			 * CPU, yet we also don't want to allow this condition
1762 			 * to persist, lest a short clean list prevent a
1763 			 * massive dirty list from being cleaned (which in
1764 			 * turn could lead to otherwise avoidable dynamic
1765 			 * drops).  To deal with this, we look for some CPU
1766 			 * with a NULL clean list, NULL dirty list, and NULL
1767 			 * rinsing list -- and then we borrow this CPU to
1768 			 * rinse our dirty list.
1769 			 */
1770 			for (j = 0; j < NCPU; j++) {
1771 				dtrace_dstate_percpu_t *rinser;
1772 
1773 				rinser = &dstate->dtds_percpu[j];
1774 
1775 				if (rinser->dtdsc_rinsing != NULL)
1776 					continue;
1777 
1778 				if (rinser->dtdsc_dirty != NULL)
1779 					continue;
1780 
1781 				if (rinser->dtdsc_clean != NULL)
1782 					continue;
1783 
1784 				rinsep = &rinser->dtdsc_rinsing;
1785 				break;
1786 			}
1787 
1788 			if (j == NCPU) {
1789 				/*
1790 				 * We were unable to find another CPU that
1791 				 * could accept this dirty list -- we are
1792 				 * therefore unable to clean it now.
1793 				 */
1794 				dtrace_dynvar_failclean++;
1795 				continue;
1796 			}
1797 		}
1798 
1799 		work = 1;
1800 
1801 		/*
1802 		 * Atomically move the dirty list aside.
1803 		 */
1804 		do {
1805 			dirty = dcpu->dtdsc_dirty;
1806 
1807 			/*
1808 			 * Before we zap the dirty list, set the rinsing list.
1809 			 * (This allows for a potential assertion in
1810 			 * dtrace_dynvar():  if a free dynamic variable appears
1811 			 * on a hash chain, either the dirty list or the
1812 			 * rinsing list for some CPU must be non-NULL.)
1813 			 */
1814 			*rinsep = dirty;
1815 			dtrace_membar_producer();
1816 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1817 		    dirty, NULL) != dirty);
1818 	}
1819 
1820 	if (!work) {
1821 		/*
1822 		 * We have no work to do; we can simply return.
1823 		 */
1824 		return;
1825 	}
1826 
1827 	dtrace_sync();
1828 
1829 	for (i = 0; i < NCPU; i++) {
1830 		dcpu = &dstate->dtds_percpu[i];
1831 
1832 		if (dcpu->dtdsc_rinsing == NULL)
1833 			continue;
1834 
1835 		/*
1836 		 * We are now guaranteed that no hash chain contains a pointer
1837 		 * into this dirty list; we can make it clean.
1838 		 */
1839 		ASSERT(dcpu->dtdsc_clean == NULL);
1840 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1841 		dcpu->dtdsc_rinsing = NULL;
1842 	}
1843 
1844 	/*
1845 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1846 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1847 	 * This prevents a race whereby a CPU incorrectly decides that
1848 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1849 	 * after dtrace_dynvar_clean() has completed.
1850 	 */
1851 	dtrace_sync();
1852 
1853 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1854 }
1855 
1856 /*
1857  * Depending on the value of the op parameter, this function looks-up,
1858  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1859  * allocation is requested, this function will return a pointer to a
1860  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1861  * variable can be allocated.  If NULL is returned, the appropriate counter
1862  * will be incremented.
1863  */
1864 dtrace_dynvar_t *
1865 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1866     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1867     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1868 {
1869 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1870 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1871 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1872 	processorid_t me = curcpu, cpu = me;
1873 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1874 	size_t bucket, ksize;
1875 	size_t chunksize = dstate->dtds_chunksize;
1876 	uintptr_t kdata, lock, nstate;
1877 	uint_t i;
1878 
1879 	ASSERT(nkeys != 0);
1880 
1881 	/*
1882 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1883 	 * algorithm.  For the by-value portions, we perform the algorithm in
1884 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1885 	 * bit, and seems to have only a minute effect on distribution.  For
1886 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1887 	 * over each referenced byte.  It's painful to do this, but it's much
1888 	 * better than pathological hash distribution.  The efficacy of the
1889 	 * hashing algorithm (and a comparison with other algorithms) may be
1890 	 * found by running the ::dtrace_dynstat MDB dcmd.
1891 	 */
1892 	for (i = 0; i < nkeys; i++) {
1893 		if (key[i].dttk_size == 0) {
1894 			uint64_t val = key[i].dttk_value;
1895 
1896 			hashval += (val >> 48) & 0xffff;
1897 			hashval += (hashval << 10);
1898 			hashval ^= (hashval >> 6);
1899 
1900 			hashval += (val >> 32) & 0xffff;
1901 			hashval += (hashval << 10);
1902 			hashval ^= (hashval >> 6);
1903 
1904 			hashval += (val >> 16) & 0xffff;
1905 			hashval += (hashval << 10);
1906 			hashval ^= (hashval >> 6);
1907 
1908 			hashval += val & 0xffff;
1909 			hashval += (hashval << 10);
1910 			hashval ^= (hashval >> 6);
1911 		} else {
1912 			/*
1913 			 * This is incredibly painful, but it beats the hell
1914 			 * out of the alternative.
1915 			 */
1916 			uint64_t j, size = key[i].dttk_size;
1917 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1918 
1919 			if (!dtrace_canload(base, size, mstate, vstate))
1920 				break;
1921 
1922 			for (j = 0; j < size; j++) {
1923 				hashval += dtrace_load8(base + j);
1924 				hashval += (hashval << 10);
1925 				hashval ^= (hashval >> 6);
1926 			}
1927 		}
1928 	}
1929 
1930 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1931 		return (NULL);
1932 
1933 	hashval += (hashval << 3);
1934 	hashval ^= (hashval >> 11);
1935 	hashval += (hashval << 15);
1936 
1937 	/*
1938 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1939 	 * comes out to be one of our two sentinel hash values.  If this
1940 	 * actually happens, we set the hashval to be a value known to be a
1941 	 * non-sentinel value.
1942 	 */
1943 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1944 		hashval = DTRACE_DYNHASH_VALID;
1945 
1946 	/*
1947 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1948 	 * important here, tricks can be pulled to reduce it.  (However, it's
1949 	 * critical that hash collisions be kept to an absolute minimum;
1950 	 * they're much more painful than a divide.)  It's better to have a
1951 	 * solution that generates few collisions and still keeps things
1952 	 * relatively simple.
1953 	 */
1954 	bucket = hashval % dstate->dtds_hashsize;
1955 
1956 	if (op == DTRACE_DYNVAR_DEALLOC) {
1957 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1958 
1959 		for (;;) {
1960 			while ((lock = *lockp) & 1)
1961 				continue;
1962 
1963 			if (dtrace_casptr((volatile void *)lockp,
1964 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1965 				break;
1966 		}
1967 
1968 		dtrace_membar_producer();
1969 	}
1970 
1971 top:
1972 	prev = NULL;
1973 	lock = hash[bucket].dtdh_lock;
1974 
1975 	dtrace_membar_consumer();
1976 
1977 	start = hash[bucket].dtdh_chain;
1978 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1979 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1980 	    op != DTRACE_DYNVAR_DEALLOC));
1981 
1982 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1983 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1984 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1985 
1986 		if (dvar->dtdv_hashval != hashval) {
1987 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1988 				/*
1989 				 * We've reached the sink, and therefore the
1990 				 * end of the hash chain; we can kick out of
1991 				 * the loop knowing that we have seen a valid
1992 				 * snapshot of state.
1993 				 */
1994 				ASSERT(dvar->dtdv_next == NULL);
1995 				ASSERT(dvar == &dtrace_dynhash_sink);
1996 				break;
1997 			}
1998 
1999 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2000 				/*
2001 				 * We've gone off the rails:  somewhere along
2002 				 * the line, one of the members of this hash
2003 				 * chain was deleted.  Note that we could also
2004 				 * detect this by simply letting this loop run
2005 				 * to completion, as we would eventually hit
2006 				 * the end of the dirty list.  However, we
2007 				 * want to avoid running the length of the
2008 				 * dirty list unnecessarily (it might be quite
2009 				 * long), so we catch this as early as
2010 				 * possible by detecting the hash marker.  In
2011 				 * this case, we simply set dvar to NULL and
2012 				 * break; the conditional after the loop will
2013 				 * send us back to top.
2014 				 */
2015 				dvar = NULL;
2016 				break;
2017 			}
2018 
2019 			goto next;
2020 		}
2021 
2022 		if (dtuple->dtt_nkeys != nkeys)
2023 			goto next;
2024 
2025 		for (i = 0; i < nkeys; i++, dkey++) {
2026 			if (dkey->dttk_size != key[i].dttk_size)
2027 				goto next; /* size or type mismatch */
2028 
2029 			if (dkey->dttk_size != 0) {
2030 				if (dtrace_bcmp(
2031 				    (void *)(uintptr_t)key[i].dttk_value,
2032 				    (void *)(uintptr_t)dkey->dttk_value,
2033 				    dkey->dttk_size))
2034 					goto next;
2035 			} else {
2036 				if (dkey->dttk_value != key[i].dttk_value)
2037 					goto next;
2038 			}
2039 		}
2040 
2041 		if (op != DTRACE_DYNVAR_DEALLOC)
2042 			return (dvar);
2043 
2044 		ASSERT(dvar->dtdv_next == NULL ||
2045 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2046 
2047 		if (prev != NULL) {
2048 			ASSERT(hash[bucket].dtdh_chain != dvar);
2049 			ASSERT(start != dvar);
2050 			ASSERT(prev->dtdv_next == dvar);
2051 			prev->dtdv_next = dvar->dtdv_next;
2052 		} else {
2053 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2054 			    start, dvar->dtdv_next) != start) {
2055 				/*
2056 				 * We have failed to atomically swing the
2057 				 * hash table head pointer, presumably because
2058 				 * of a conflicting allocation on another CPU.
2059 				 * We need to reread the hash chain and try
2060 				 * again.
2061 				 */
2062 				goto top;
2063 			}
2064 		}
2065 
2066 		dtrace_membar_producer();
2067 
2068 		/*
2069 		 * Now set the hash value to indicate that it's free.
2070 		 */
2071 		ASSERT(hash[bucket].dtdh_chain != dvar);
2072 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2073 
2074 		dtrace_membar_producer();
2075 
2076 		/*
2077 		 * Set the next pointer to point at the dirty list, and
2078 		 * atomically swing the dirty pointer to the newly freed dvar.
2079 		 */
2080 		do {
2081 			next = dcpu->dtdsc_dirty;
2082 			dvar->dtdv_next = next;
2083 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2084 
2085 		/*
2086 		 * Finally, unlock this hash bucket.
2087 		 */
2088 		ASSERT(hash[bucket].dtdh_lock == lock);
2089 		ASSERT(lock & 1);
2090 		hash[bucket].dtdh_lock++;
2091 
2092 		return (NULL);
2093 next:
2094 		prev = dvar;
2095 		continue;
2096 	}
2097 
2098 	if (dvar == NULL) {
2099 		/*
2100 		 * If dvar is NULL, it is because we went off the rails:
2101 		 * one of the elements that we traversed in the hash chain
2102 		 * was deleted while we were traversing it.  In this case,
2103 		 * we assert that we aren't doing a dealloc (deallocs lock
2104 		 * the hash bucket to prevent themselves from racing with
2105 		 * one another), and retry the hash chain traversal.
2106 		 */
2107 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2108 		goto top;
2109 	}
2110 
2111 	if (op != DTRACE_DYNVAR_ALLOC) {
2112 		/*
2113 		 * If we are not to allocate a new variable, we want to
2114 		 * return NULL now.  Before we return, check that the value
2115 		 * of the lock word hasn't changed.  If it has, we may have
2116 		 * seen an inconsistent snapshot.
2117 		 */
2118 		if (op == DTRACE_DYNVAR_NOALLOC) {
2119 			if (hash[bucket].dtdh_lock != lock)
2120 				goto top;
2121 		} else {
2122 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2123 			ASSERT(hash[bucket].dtdh_lock == lock);
2124 			ASSERT(lock & 1);
2125 			hash[bucket].dtdh_lock++;
2126 		}
2127 
2128 		return (NULL);
2129 	}
2130 
2131 	/*
2132 	 * We need to allocate a new dynamic variable.  The size we need is the
2133 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2134 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2135 	 * the size of any referred-to data (dsize).  We then round the final
2136 	 * size up to the chunksize for allocation.
2137 	 */
2138 	for (ksize = 0, i = 0; i < nkeys; i++)
2139 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2140 
2141 	/*
2142 	 * This should be pretty much impossible, but could happen if, say,
2143 	 * strange DIF specified the tuple.  Ideally, this should be an
2144 	 * assertion and not an error condition -- but that requires that the
2145 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2146 	 * bullet-proof.  (That is, it must not be able to be fooled by
2147 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2148 	 * solving this would presumably not amount to solving the Halting
2149 	 * Problem -- but it still seems awfully hard.
2150 	 */
2151 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2152 	    ksize + dsize > chunksize) {
2153 		dcpu->dtdsc_drops++;
2154 		return (NULL);
2155 	}
2156 
2157 	nstate = DTRACE_DSTATE_EMPTY;
2158 
2159 	do {
2160 retry:
2161 		free = dcpu->dtdsc_free;
2162 
2163 		if (free == NULL) {
2164 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2165 			void *rval;
2166 
2167 			if (clean == NULL) {
2168 				/*
2169 				 * We're out of dynamic variable space on
2170 				 * this CPU.  Unless we have tried all CPUs,
2171 				 * we'll try to allocate from a different
2172 				 * CPU.
2173 				 */
2174 				switch (dstate->dtds_state) {
2175 				case DTRACE_DSTATE_CLEAN: {
2176 					void *sp = &dstate->dtds_state;
2177 
2178 					if (++cpu >= NCPU)
2179 						cpu = 0;
2180 
2181 					if (dcpu->dtdsc_dirty != NULL &&
2182 					    nstate == DTRACE_DSTATE_EMPTY)
2183 						nstate = DTRACE_DSTATE_DIRTY;
2184 
2185 					if (dcpu->dtdsc_rinsing != NULL)
2186 						nstate = DTRACE_DSTATE_RINSING;
2187 
2188 					dcpu = &dstate->dtds_percpu[cpu];
2189 
2190 					if (cpu != me)
2191 						goto retry;
2192 
2193 					(void) dtrace_cas32(sp,
2194 					    DTRACE_DSTATE_CLEAN, nstate);
2195 
2196 					/*
2197 					 * To increment the correct bean
2198 					 * counter, take another lap.
2199 					 */
2200 					goto retry;
2201 				}
2202 
2203 				case DTRACE_DSTATE_DIRTY:
2204 					dcpu->dtdsc_dirty_drops++;
2205 					break;
2206 
2207 				case DTRACE_DSTATE_RINSING:
2208 					dcpu->dtdsc_rinsing_drops++;
2209 					break;
2210 
2211 				case DTRACE_DSTATE_EMPTY:
2212 					dcpu->dtdsc_drops++;
2213 					break;
2214 				}
2215 
2216 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2217 				return (NULL);
2218 			}
2219 
2220 			/*
2221 			 * The clean list appears to be non-empty.  We want to
2222 			 * move the clean list to the free list; we start by
2223 			 * moving the clean pointer aside.
2224 			 */
2225 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2226 			    clean, NULL) != clean) {
2227 				/*
2228 				 * We are in one of two situations:
2229 				 *
2230 				 *  (a)	The clean list was switched to the
2231 				 *	free list by another CPU.
2232 				 *
2233 				 *  (b)	The clean list was added to by the
2234 				 *	cleansing cyclic.
2235 				 *
2236 				 * In either of these situations, we can
2237 				 * just reattempt the free list allocation.
2238 				 */
2239 				goto retry;
2240 			}
2241 
2242 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2243 
2244 			/*
2245 			 * Now we'll move the clean list to our free list.
2246 			 * It's impossible for this to fail:  the only way
2247 			 * the free list can be updated is through this
2248 			 * code path, and only one CPU can own the clean list.
2249 			 * Thus, it would only be possible for this to fail if
2250 			 * this code were racing with dtrace_dynvar_clean().
2251 			 * (That is, if dtrace_dynvar_clean() updated the clean
2252 			 * list, and we ended up racing to update the free
2253 			 * list.)  This race is prevented by the dtrace_sync()
2254 			 * in dtrace_dynvar_clean() -- which flushes the
2255 			 * owners of the clean lists out before resetting
2256 			 * the clean lists.
2257 			 */
2258 			dcpu = &dstate->dtds_percpu[me];
2259 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2260 			ASSERT(rval == NULL);
2261 			goto retry;
2262 		}
2263 
2264 		dvar = free;
2265 		new_free = dvar->dtdv_next;
2266 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2267 
2268 	/*
2269 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2270 	 * tuple array and copy any referenced key data into the data space
2271 	 * following the tuple array.  As we do this, we relocate dttk_value
2272 	 * in the final tuple to point to the key data address in the chunk.
2273 	 */
2274 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2275 	dvar->dtdv_data = (void *)(kdata + ksize);
2276 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2277 
2278 	for (i = 0; i < nkeys; i++) {
2279 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2280 		size_t kesize = key[i].dttk_size;
2281 
2282 		if (kesize != 0) {
2283 			dtrace_bcopy(
2284 			    (const void *)(uintptr_t)key[i].dttk_value,
2285 			    (void *)kdata, kesize);
2286 			dkey->dttk_value = kdata;
2287 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2288 		} else {
2289 			dkey->dttk_value = key[i].dttk_value;
2290 		}
2291 
2292 		dkey->dttk_size = kesize;
2293 	}
2294 
2295 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2296 	dvar->dtdv_hashval = hashval;
2297 	dvar->dtdv_next = start;
2298 
2299 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2300 		return (dvar);
2301 
2302 	/*
2303 	 * The cas has failed.  Either another CPU is adding an element to
2304 	 * this hash chain, or another CPU is deleting an element from this
2305 	 * hash chain.  The simplest way to deal with both of these cases
2306 	 * (though not necessarily the most efficient) is to free our
2307 	 * allocated block and re-attempt it all.  Note that the free is
2308 	 * to the dirty list and _not_ to the free list.  This is to prevent
2309 	 * races with allocators, above.
2310 	 */
2311 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2312 
2313 	dtrace_membar_producer();
2314 
2315 	do {
2316 		free = dcpu->dtdsc_dirty;
2317 		dvar->dtdv_next = free;
2318 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2319 
2320 	goto top;
2321 }
2322 
2323 /*ARGSUSED*/
2324 static void
2325 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2326 {
2327 	if ((int64_t)nval < (int64_t)*oval)
2328 		*oval = nval;
2329 }
2330 
2331 /*ARGSUSED*/
2332 static void
2333 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2334 {
2335 	if ((int64_t)nval > (int64_t)*oval)
2336 		*oval = nval;
2337 }
2338 
2339 static void
2340 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2341 {
2342 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2343 	int64_t val = (int64_t)nval;
2344 
2345 	if (val < 0) {
2346 		for (i = 0; i < zero; i++) {
2347 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2348 				quanta[i] += incr;
2349 				return;
2350 			}
2351 		}
2352 	} else {
2353 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2354 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2355 				quanta[i - 1] += incr;
2356 				return;
2357 			}
2358 		}
2359 
2360 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2361 		return;
2362 	}
2363 
2364 	ASSERT(0);
2365 }
2366 
2367 static void
2368 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2369 {
2370 	uint64_t arg = *lquanta++;
2371 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2372 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2373 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2374 	int32_t val = (int32_t)nval, level;
2375 
2376 	ASSERT(step != 0);
2377 	ASSERT(levels != 0);
2378 
2379 	if (val < base) {
2380 		/*
2381 		 * This is an underflow.
2382 		 */
2383 		lquanta[0] += incr;
2384 		return;
2385 	}
2386 
2387 	level = (val - base) / step;
2388 
2389 	if (level < levels) {
2390 		lquanta[level + 1] += incr;
2391 		return;
2392 	}
2393 
2394 	/*
2395 	 * This is an overflow.
2396 	 */
2397 	lquanta[levels + 1] += incr;
2398 }
2399 
2400 static int
2401 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2402     uint16_t high, uint16_t nsteps, int64_t value)
2403 {
2404 	int64_t this = 1, last, next;
2405 	int base = 1, order;
2406 
2407 	ASSERT(factor <= nsteps);
2408 	ASSERT(nsteps % factor == 0);
2409 
2410 	for (order = 0; order < low; order++)
2411 		this *= factor;
2412 
2413 	/*
2414 	 * If our value is less than our factor taken to the power of the
2415 	 * low order of magnitude, it goes into the zeroth bucket.
2416 	 */
2417 	if (value < (last = this))
2418 		return (0);
2419 
2420 	for (this *= factor; order <= high; order++) {
2421 		int nbuckets = this > nsteps ? nsteps : this;
2422 
2423 		if ((next = this * factor) < this) {
2424 			/*
2425 			 * We should not generally get log/linear quantizations
2426 			 * with a high magnitude that allows 64-bits to
2427 			 * overflow, but we nonetheless protect against this
2428 			 * by explicitly checking for overflow, and clamping
2429 			 * our value accordingly.
2430 			 */
2431 			value = this - 1;
2432 		}
2433 
2434 		if (value < this) {
2435 			/*
2436 			 * If our value lies within this order of magnitude,
2437 			 * determine its position by taking the offset within
2438 			 * the order of magnitude, dividing by the bucket
2439 			 * width, and adding to our (accumulated) base.
2440 			 */
2441 			return (base + (value - last) / (this / nbuckets));
2442 		}
2443 
2444 		base += nbuckets - (nbuckets / factor);
2445 		last = this;
2446 		this = next;
2447 	}
2448 
2449 	/*
2450 	 * Our value is greater than or equal to our factor taken to the
2451 	 * power of one plus the high magnitude -- return the top bucket.
2452 	 */
2453 	return (base);
2454 }
2455 
2456 static void
2457 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2458 {
2459 	uint64_t arg = *llquanta++;
2460 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2461 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2462 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2463 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2464 
2465 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2466 	    low, high, nsteps, nval)] += incr;
2467 }
2468 
2469 /*ARGSUSED*/
2470 static void
2471 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2472 {
2473 	data[0]++;
2474 	data[1] += nval;
2475 }
2476 
2477 /*ARGSUSED*/
2478 static void
2479 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2480 {
2481 	int64_t snval = (int64_t)nval;
2482 	uint64_t tmp[2];
2483 
2484 	data[0]++;
2485 	data[1] += nval;
2486 
2487 	/*
2488 	 * What we want to say here is:
2489 	 *
2490 	 * data[2] += nval * nval;
2491 	 *
2492 	 * But given that nval is 64-bit, we could easily overflow, so
2493 	 * we do this as 128-bit arithmetic.
2494 	 */
2495 	if (snval < 0)
2496 		snval = -snval;
2497 
2498 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2499 	dtrace_add_128(data + 2, tmp, data + 2);
2500 }
2501 
2502 /*ARGSUSED*/
2503 static void
2504 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2505 {
2506 	*oval = *oval + 1;
2507 }
2508 
2509 /*ARGSUSED*/
2510 static void
2511 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2512 {
2513 	*oval += nval;
2514 }
2515 
2516 /*
2517  * Aggregate given the tuple in the principal data buffer, and the aggregating
2518  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2519  * buffer is specified as the buf parameter.  This routine does not return
2520  * failure; if there is no space in the aggregation buffer, the data will be
2521  * dropped, and a corresponding counter incremented.
2522  */
2523 static void
2524 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2525     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2526 {
2527 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2528 	uint32_t i, ndx, size, fsize;
2529 	uint32_t align = sizeof (uint64_t) - 1;
2530 	dtrace_aggbuffer_t *agb;
2531 	dtrace_aggkey_t *key;
2532 	uint32_t hashval = 0, limit, isstr;
2533 	caddr_t tomax, data, kdata;
2534 	dtrace_actkind_t action;
2535 	dtrace_action_t *act;
2536 	uintptr_t offs;
2537 
2538 	if (buf == NULL)
2539 		return;
2540 
2541 	if (!agg->dtag_hasarg) {
2542 		/*
2543 		 * Currently, only quantize() and lquantize() take additional
2544 		 * arguments, and they have the same semantics:  an increment
2545 		 * value that defaults to 1 when not present.  If additional
2546 		 * aggregating actions take arguments, the setting of the
2547 		 * default argument value will presumably have to become more
2548 		 * sophisticated...
2549 		 */
2550 		arg = 1;
2551 	}
2552 
2553 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2554 	size = rec->dtrd_offset - agg->dtag_base;
2555 	fsize = size + rec->dtrd_size;
2556 
2557 	ASSERT(dbuf->dtb_tomax != NULL);
2558 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2559 
2560 	if ((tomax = buf->dtb_tomax) == NULL) {
2561 		dtrace_buffer_drop(buf);
2562 		return;
2563 	}
2564 
2565 	/*
2566 	 * The metastructure is always at the bottom of the buffer.
2567 	 */
2568 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2569 	    sizeof (dtrace_aggbuffer_t));
2570 
2571 	if (buf->dtb_offset == 0) {
2572 		/*
2573 		 * We just kludge up approximately 1/8th of the size to be
2574 		 * buckets.  If this guess ends up being routinely
2575 		 * off-the-mark, we may need to dynamically readjust this
2576 		 * based on past performance.
2577 		 */
2578 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2579 
2580 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2581 		    (uintptr_t)tomax || hashsize == 0) {
2582 			/*
2583 			 * We've been given a ludicrously small buffer;
2584 			 * increment our drop count and leave.
2585 			 */
2586 			dtrace_buffer_drop(buf);
2587 			return;
2588 		}
2589 
2590 		/*
2591 		 * And now, a pathetic attempt to try to get a an odd (or
2592 		 * perchance, a prime) hash size for better hash distribution.
2593 		 */
2594 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2595 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2596 
2597 		agb->dtagb_hashsize = hashsize;
2598 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2599 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2600 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2601 
2602 		for (i = 0; i < agb->dtagb_hashsize; i++)
2603 			agb->dtagb_hash[i] = NULL;
2604 	}
2605 
2606 	ASSERT(agg->dtag_first != NULL);
2607 	ASSERT(agg->dtag_first->dta_intuple);
2608 
2609 	/*
2610 	 * Calculate the hash value based on the key.  Note that we _don't_
2611 	 * include the aggid in the hashing (but we will store it as part of
2612 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2613 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2614 	 * gets good distribution in practice.  The efficacy of the hashing
2615 	 * algorithm (and a comparison with other algorithms) may be found by
2616 	 * running the ::dtrace_aggstat MDB dcmd.
2617 	 */
2618 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2619 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2620 		limit = i + act->dta_rec.dtrd_size;
2621 		ASSERT(limit <= size);
2622 		isstr = DTRACEACT_ISSTRING(act);
2623 
2624 		for (; i < limit; i++) {
2625 			hashval += data[i];
2626 			hashval += (hashval << 10);
2627 			hashval ^= (hashval >> 6);
2628 
2629 			if (isstr && data[i] == '\0')
2630 				break;
2631 		}
2632 	}
2633 
2634 	hashval += (hashval << 3);
2635 	hashval ^= (hashval >> 11);
2636 	hashval += (hashval << 15);
2637 
2638 	/*
2639 	 * Yes, the divide here is expensive -- but it's generally the least
2640 	 * of the performance issues given the amount of data that we iterate
2641 	 * over to compute hash values, compare data, etc.
2642 	 */
2643 	ndx = hashval % agb->dtagb_hashsize;
2644 
2645 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2646 		ASSERT((caddr_t)key >= tomax);
2647 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2648 
2649 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2650 			continue;
2651 
2652 		kdata = key->dtak_data;
2653 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2654 
2655 		for (act = agg->dtag_first; act->dta_intuple;
2656 		    act = act->dta_next) {
2657 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2658 			limit = i + act->dta_rec.dtrd_size;
2659 			ASSERT(limit <= size);
2660 			isstr = DTRACEACT_ISSTRING(act);
2661 
2662 			for (; i < limit; i++) {
2663 				if (kdata[i] != data[i])
2664 					goto next;
2665 
2666 				if (isstr && data[i] == '\0')
2667 					break;
2668 			}
2669 		}
2670 
2671 		if (action != key->dtak_action) {
2672 			/*
2673 			 * We are aggregating on the same value in the same
2674 			 * aggregation with two different aggregating actions.
2675 			 * (This should have been picked up in the compiler,
2676 			 * so we may be dealing with errant or devious DIF.)
2677 			 * This is an error condition; we indicate as much,
2678 			 * and return.
2679 			 */
2680 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2681 			return;
2682 		}
2683 
2684 		/*
2685 		 * This is a hit:  we need to apply the aggregator to
2686 		 * the value at this key.
2687 		 */
2688 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2689 		return;
2690 next:
2691 		continue;
2692 	}
2693 
2694 	/*
2695 	 * We didn't find it.  We need to allocate some zero-filled space,
2696 	 * link it into the hash table appropriately, and apply the aggregator
2697 	 * to the (zero-filled) value.
2698 	 */
2699 	offs = buf->dtb_offset;
2700 	while (offs & (align - 1))
2701 		offs += sizeof (uint32_t);
2702 
2703 	/*
2704 	 * If we don't have enough room to both allocate a new key _and_
2705 	 * its associated data, increment the drop count and return.
2706 	 */
2707 	if ((uintptr_t)tomax + offs + fsize >
2708 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2709 		dtrace_buffer_drop(buf);
2710 		return;
2711 	}
2712 
2713 	/*CONSTCOND*/
2714 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2715 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2716 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2717 
2718 	key->dtak_data = kdata = tomax + offs;
2719 	buf->dtb_offset = offs + fsize;
2720 
2721 	/*
2722 	 * Now copy the data across.
2723 	 */
2724 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2725 
2726 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2727 		kdata[i] = data[i];
2728 
2729 	/*
2730 	 * Because strings are not zeroed out by default, we need to iterate
2731 	 * looking for actions that store strings, and we need to explicitly
2732 	 * pad these strings out with zeroes.
2733 	 */
2734 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2735 		int nul;
2736 
2737 		if (!DTRACEACT_ISSTRING(act))
2738 			continue;
2739 
2740 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2741 		limit = i + act->dta_rec.dtrd_size;
2742 		ASSERT(limit <= size);
2743 
2744 		for (nul = 0; i < limit; i++) {
2745 			if (nul) {
2746 				kdata[i] = '\0';
2747 				continue;
2748 			}
2749 
2750 			if (data[i] != '\0')
2751 				continue;
2752 
2753 			nul = 1;
2754 		}
2755 	}
2756 
2757 	for (i = size; i < fsize; i++)
2758 		kdata[i] = 0;
2759 
2760 	key->dtak_hashval = hashval;
2761 	key->dtak_size = size;
2762 	key->dtak_action = action;
2763 	key->dtak_next = agb->dtagb_hash[ndx];
2764 	agb->dtagb_hash[ndx] = key;
2765 
2766 	/*
2767 	 * Finally, apply the aggregator.
2768 	 */
2769 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2770 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2771 }
2772 
2773 /*
2774  * Given consumer state, this routine finds a speculation in the INACTIVE
2775  * state and transitions it into the ACTIVE state.  If there is no speculation
2776  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2777  * incremented -- it is up to the caller to take appropriate action.
2778  */
2779 static int
2780 dtrace_speculation(dtrace_state_t *state)
2781 {
2782 	int i = 0;
2783 	dtrace_speculation_state_t current;
2784 	uint32_t *stat = &state->dts_speculations_unavail, count;
2785 
2786 	while (i < state->dts_nspeculations) {
2787 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2788 
2789 		current = spec->dtsp_state;
2790 
2791 		if (current != DTRACESPEC_INACTIVE) {
2792 			if (current == DTRACESPEC_COMMITTINGMANY ||
2793 			    current == DTRACESPEC_COMMITTING ||
2794 			    current == DTRACESPEC_DISCARDING)
2795 				stat = &state->dts_speculations_busy;
2796 			i++;
2797 			continue;
2798 		}
2799 
2800 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2801 		    current, DTRACESPEC_ACTIVE) == current)
2802 			return (i + 1);
2803 	}
2804 
2805 	/*
2806 	 * We couldn't find a speculation.  If we found as much as a single
2807 	 * busy speculation buffer, we'll attribute this failure as "busy"
2808 	 * instead of "unavail".
2809 	 */
2810 	do {
2811 		count = *stat;
2812 	} while (dtrace_cas32(stat, count, count + 1) != count);
2813 
2814 	return (0);
2815 }
2816 
2817 /*
2818  * This routine commits an active speculation.  If the specified speculation
2819  * is not in a valid state to perform a commit(), this routine will silently do
2820  * nothing.  The state of the specified speculation is transitioned according
2821  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2822  */
2823 static void
2824 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2825     dtrace_specid_t which)
2826 {
2827 	dtrace_speculation_t *spec;
2828 	dtrace_buffer_t *src, *dest;
2829 	uintptr_t daddr, saddr, dlimit, slimit;
2830 	dtrace_speculation_state_t current, new = 0;
2831 	intptr_t offs;
2832 	uint64_t timestamp;
2833 
2834 	if (which == 0)
2835 		return;
2836 
2837 	if (which > state->dts_nspeculations) {
2838 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2839 		return;
2840 	}
2841 
2842 	spec = &state->dts_speculations[which - 1];
2843 	src = &spec->dtsp_buffer[cpu];
2844 	dest = &state->dts_buffer[cpu];
2845 
2846 	do {
2847 		current = spec->dtsp_state;
2848 
2849 		if (current == DTRACESPEC_COMMITTINGMANY)
2850 			break;
2851 
2852 		switch (current) {
2853 		case DTRACESPEC_INACTIVE:
2854 		case DTRACESPEC_DISCARDING:
2855 			return;
2856 
2857 		case DTRACESPEC_COMMITTING:
2858 			/*
2859 			 * This is only possible if we are (a) commit()'ing
2860 			 * without having done a prior speculate() on this CPU
2861 			 * and (b) racing with another commit() on a different
2862 			 * CPU.  There's nothing to do -- we just assert that
2863 			 * our offset is 0.
2864 			 */
2865 			ASSERT(src->dtb_offset == 0);
2866 			return;
2867 
2868 		case DTRACESPEC_ACTIVE:
2869 			new = DTRACESPEC_COMMITTING;
2870 			break;
2871 
2872 		case DTRACESPEC_ACTIVEONE:
2873 			/*
2874 			 * This speculation is active on one CPU.  If our
2875 			 * buffer offset is non-zero, we know that the one CPU
2876 			 * must be us.  Otherwise, we are committing on a
2877 			 * different CPU from the speculate(), and we must
2878 			 * rely on being asynchronously cleaned.
2879 			 */
2880 			if (src->dtb_offset != 0) {
2881 				new = DTRACESPEC_COMMITTING;
2882 				break;
2883 			}
2884 			/*FALLTHROUGH*/
2885 
2886 		case DTRACESPEC_ACTIVEMANY:
2887 			new = DTRACESPEC_COMMITTINGMANY;
2888 			break;
2889 
2890 		default:
2891 			ASSERT(0);
2892 		}
2893 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2894 	    current, new) != current);
2895 
2896 	/*
2897 	 * We have set the state to indicate that we are committing this
2898 	 * speculation.  Now reserve the necessary space in the destination
2899 	 * buffer.
2900 	 */
2901 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2902 	    sizeof (uint64_t), state, NULL)) < 0) {
2903 		dtrace_buffer_drop(dest);
2904 		goto out;
2905 	}
2906 
2907 	/*
2908 	 * We have sufficient space to copy the speculative buffer into the
2909 	 * primary buffer.  First, modify the speculative buffer, filling
2910 	 * in the timestamp of all entries with the current time.  The data
2911 	 * must have the commit() time rather than the time it was traced,
2912 	 * so that all entries in the primary buffer are in timestamp order.
2913 	 */
2914 	timestamp = dtrace_gethrtime();
2915 	saddr = (uintptr_t)src->dtb_tomax;
2916 	slimit = saddr + src->dtb_offset;
2917 	while (saddr < slimit) {
2918 		size_t size;
2919 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2920 
2921 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2922 			saddr += sizeof (dtrace_epid_t);
2923 			continue;
2924 		}
2925 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2926 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2927 
2928 		ASSERT3U(saddr + size, <=, slimit);
2929 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2930 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2931 
2932 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2933 
2934 		saddr += size;
2935 	}
2936 
2937 	/*
2938 	 * Copy the buffer across.  (Note that this is a
2939 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2940 	 * a serious performance issue, a high-performance DTrace-specific
2941 	 * bcopy() should obviously be invented.)
2942 	 */
2943 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2944 	dlimit = daddr + src->dtb_offset;
2945 	saddr = (uintptr_t)src->dtb_tomax;
2946 
2947 	/*
2948 	 * First, the aligned portion.
2949 	 */
2950 	while (dlimit - daddr >= sizeof (uint64_t)) {
2951 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2952 
2953 		daddr += sizeof (uint64_t);
2954 		saddr += sizeof (uint64_t);
2955 	}
2956 
2957 	/*
2958 	 * Now any left-over bit...
2959 	 */
2960 	while (dlimit - daddr)
2961 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2962 
2963 	/*
2964 	 * Finally, commit the reserved space in the destination buffer.
2965 	 */
2966 	dest->dtb_offset = offs + src->dtb_offset;
2967 
2968 out:
2969 	/*
2970 	 * If we're lucky enough to be the only active CPU on this speculation
2971 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2972 	 */
2973 	if (current == DTRACESPEC_ACTIVE ||
2974 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2975 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2976 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2977 
2978 		ASSERT(rval == DTRACESPEC_COMMITTING);
2979 	}
2980 
2981 	src->dtb_offset = 0;
2982 	src->dtb_xamot_drops += src->dtb_drops;
2983 	src->dtb_drops = 0;
2984 }
2985 
2986 /*
2987  * This routine discards an active speculation.  If the specified speculation
2988  * is not in a valid state to perform a discard(), this routine will silently
2989  * do nothing.  The state of the specified speculation is transitioned
2990  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2991  */
2992 static void
2993 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2994     dtrace_specid_t which)
2995 {
2996 	dtrace_speculation_t *spec;
2997 	dtrace_speculation_state_t current, new = 0;
2998 	dtrace_buffer_t *buf;
2999 
3000 	if (which == 0)
3001 		return;
3002 
3003 	if (which > state->dts_nspeculations) {
3004 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3005 		return;
3006 	}
3007 
3008 	spec = &state->dts_speculations[which - 1];
3009 	buf = &spec->dtsp_buffer[cpu];
3010 
3011 	do {
3012 		current = spec->dtsp_state;
3013 
3014 		switch (current) {
3015 		case DTRACESPEC_INACTIVE:
3016 		case DTRACESPEC_COMMITTINGMANY:
3017 		case DTRACESPEC_COMMITTING:
3018 		case DTRACESPEC_DISCARDING:
3019 			return;
3020 
3021 		case DTRACESPEC_ACTIVE:
3022 		case DTRACESPEC_ACTIVEMANY:
3023 			new = DTRACESPEC_DISCARDING;
3024 			break;
3025 
3026 		case DTRACESPEC_ACTIVEONE:
3027 			if (buf->dtb_offset != 0) {
3028 				new = DTRACESPEC_INACTIVE;
3029 			} else {
3030 				new = DTRACESPEC_DISCARDING;
3031 			}
3032 			break;
3033 
3034 		default:
3035 			ASSERT(0);
3036 		}
3037 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3038 	    current, new) != current);
3039 
3040 	buf->dtb_offset = 0;
3041 	buf->dtb_drops = 0;
3042 }
3043 
3044 /*
3045  * Note:  not called from probe context.  This function is called
3046  * asynchronously from cross call context to clean any speculations that are
3047  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3048  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3049  * speculation.
3050  */
3051 static void
3052 dtrace_speculation_clean_here(dtrace_state_t *state)
3053 {
3054 	dtrace_icookie_t cookie;
3055 	processorid_t cpu = curcpu;
3056 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3057 	dtrace_specid_t i;
3058 
3059 	cookie = dtrace_interrupt_disable();
3060 
3061 	if (dest->dtb_tomax == NULL) {
3062 		dtrace_interrupt_enable(cookie);
3063 		return;
3064 	}
3065 
3066 	for (i = 0; i < state->dts_nspeculations; i++) {
3067 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3068 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3069 
3070 		if (src->dtb_tomax == NULL)
3071 			continue;
3072 
3073 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3074 			src->dtb_offset = 0;
3075 			continue;
3076 		}
3077 
3078 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3079 			continue;
3080 
3081 		if (src->dtb_offset == 0)
3082 			continue;
3083 
3084 		dtrace_speculation_commit(state, cpu, i + 1);
3085 	}
3086 
3087 	dtrace_interrupt_enable(cookie);
3088 }
3089 
3090 /*
3091  * Note:  not called from probe context.  This function is called
3092  * asynchronously (and at a regular interval) to clean any speculations that
3093  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3094  * is work to be done, it cross calls all CPUs to perform that work;
3095  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3096  * INACTIVE state until they have been cleaned by all CPUs.
3097  */
3098 static void
3099 dtrace_speculation_clean(dtrace_state_t *state)
3100 {
3101 	int work = 0, rv;
3102 	dtrace_specid_t i;
3103 
3104 	for (i = 0; i < state->dts_nspeculations; i++) {
3105 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3106 
3107 		ASSERT(!spec->dtsp_cleaning);
3108 
3109 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3110 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3111 			continue;
3112 
3113 		work++;
3114 		spec->dtsp_cleaning = 1;
3115 	}
3116 
3117 	if (!work)
3118 		return;
3119 
3120 	dtrace_xcall(DTRACE_CPUALL,
3121 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3122 
3123 	/*
3124 	 * We now know that all CPUs have committed or discarded their
3125 	 * speculation buffers, as appropriate.  We can now set the state
3126 	 * to inactive.
3127 	 */
3128 	for (i = 0; i < state->dts_nspeculations; i++) {
3129 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3130 		dtrace_speculation_state_t current, new;
3131 
3132 		if (!spec->dtsp_cleaning)
3133 			continue;
3134 
3135 		current = spec->dtsp_state;
3136 		ASSERT(current == DTRACESPEC_DISCARDING ||
3137 		    current == DTRACESPEC_COMMITTINGMANY);
3138 
3139 		new = DTRACESPEC_INACTIVE;
3140 
3141 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3142 		ASSERT(rv == current);
3143 		spec->dtsp_cleaning = 0;
3144 	}
3145 }
3146 
3147 /*
3148  * Called as part of a speculate() to get the speculative buffer associated
3149  * with a given speculation.  Returns NULL if the specified speculation is not
3150  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3151  * the active CPU is not the specified CPU -- the speculation will be
3152  * atomically transitioned into the ACTIVEMANY state.
3153  */
3154 static dtrace_buffer_t *
3155 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3156     dtrace_specid_t which)
3157 {
3158 	dtrace_speculation_t *spec;
3159 	dtrace_speculation_state_t current, new = 0;
3160 	dtrace_buffer_t *buf;
3161 
3162 	if (which == 0)
3163 		return (NULL);
3164 
3165 	if (which > state->dts_nspeculations) {
3166 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3167 		return (NULL);
3168 	}
3169 
3170 	spec = &state->dts_speculations[which - 1];
3171 	buf = &spec->dtsp_buffer[cpuid];
3172 
3173 	do {
3174 		current = spec->dtsp_state;
3175 
3176 		switch (current) {
3177 		case DTRACESPEC_INACTIVE:
3178 		case DTRACESPEC_COMMITTINGMANY:
3179 		case DTRACESPEC_DISCARDING:
3180 			return (NULL);
3181 
3182 		case DTRACESPEC_COMMITTING:
3183 			ASSERT(buf->dtb_offset == 0);
3184 			return (NULL);
3185 
3186 		case DTRACESPEC_ACTIVEONE:
3187 			/*
3188 			 * This speculation is currently active on one CPU.
3189 			 * Check the offset in the buffer; if it's non-zero,
3190 			 * that CPU must be us (and we leave the state alone).
3191 			 * If it's zero, assume that we're starting on a new
3192 			 * CPU -- and change the state to indicate that the
3193 			 * speculation is active on more than one CPU.
3194 			 */
3195 			if (buf->dtb_offset != 0)
3196 				return (buf);
3197 
3198 			new = DTRACESPEC_ACTIVEMANY;
3199 			break;
3200 
3201 		case DTRACESPEC_ACTIVEMANY:
3202 			return (buf);
3203 
3204 		case DTRACESPEC_ACTIVE:
3205 			new = DTRACESPEC_ACTIVEONE;
3206 			break;
3207 
3208 		default:
3209 			ASSERT(0);
3210 		}
3211 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3212 	    current, new) != current);
3213 
3214 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3215 	return (buf);
3216 }
3217 
3218 /*
3219  * Return a string.  In the event that the user lacks the privilege to access
3220  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3221  * don't fail access checking.
3222  *
3223  * dtrace_dif_variable() uses this routine as a helper for various
3224  * builtin values such as 'execname' and 'probefunc.'
3225  */
3226 uintptr_t
3227 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3228     dtrace_mstate_t *mstate)
3229 {
3230 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3231 	uintptr_t ret;
3232 	size_t strsz;
3233 
3234 	/*
3235 	 * The easy case: this probe is allowed to read all of memory, so
3236 	 * we can just return this as a vanilla pointer.
3237 	 */
3238 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3239 		return (addr);
3240 
3241 	/*
3242 	 * This is the tougher case: we copy the string in question from
3243 	 * kernel memory into scratch memory and return it that way: this
3244 	 * ensures that we won't trip up when access checking tests the
3245 	 * BYREF return value.
3246 	 */
3247 	strsz = dtrace_strlen((char *)addr, size) + 1;
3248 
3249 	if (mstate->dtms_scratch_ptr + strsz >
3250 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3251 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3252 		return (0);
3253 	}
3254 
3255 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3256 	    strsz);
3257 	ret = mstate->dtms_scratch_ptr;
3258 	mstate->dtms_scratch_ptr += strsz;
3259 	return (ret);
3260 }
3261 
3262 /*
3263  * Return a string from a memoy address which is known to have one or
3264  * more concatenated, individually zero terminated, sub-strings.
3265  * In the event that the user lacks the privilege to access
3266  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3267  * don't fail access checking.
3268  *
3269  * dtrace_dif_variable() uses this routine as a helper for various
3270  * builtin values such as 'execargs'.
3271  */
3272 static uintptr_t
3273 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3274     dtrace_mstate_t *mstate)
3275 {
3276 	char *p;
3277 	size_t i;
3278 	uintptr_t ret;
3279 
3280 	if (mstate->dtms_scratch_ptr + strsz >
3281 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3282 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3283 		return (0);
3284 	}
3285 
3286 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3287 	    strsz);
3288 
3289 	/* Replace sub-string termination characters with a space. */
3290 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3291 	    p++, i++)
3292 		if (*p == '\0')
3293 			*p = ' ';
3294 
3295 	ret = mstate->dtms_scratch_ptr;
3296 	mstate->dtms_scratch_ptr += strsz;
3297 	return (ret);
3298 }
3299 
3300 /*
3301  * This function implements the DIF emulator's variable lookups.  The emulator
3302  * passes a reserved variable identifier and optional built-in array index.
3303  */
3304 static uint64_t
3305 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3306     uint64_t ndx)
3307 {
3308 	/*
3309 	 * If we're accessing one of the uncached arguments, we'll turn this
3310 	 * into a reference in the args array.
3311 	 */
3312 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3313 		ndx = v - DIF_VAR_ARG0;
3314 		v = DIF_VAR_ARGS;
3315 	}
3316 
3317 	switch (v) {
3318 	case DIF_VAR_ARGS:
3319 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3320 		if (ndx >= sizeof (mstate->dtms_arg) /
3321 		    sizeof (mstate->dtms_arg[0])) {
3322 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3323 			dtrace_provider_t *pv;
3324 			uint64_t val;
3325 
3326 			pv = mstate->dtms_probe->dtpr_provider;
3327 			if (pv->dtpv_pops.dtps_getargval != NULL)
3328 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3329 				    mstate->dtms_probe->dtpr_id,
3330 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3331 			else
3332 				val = dtrace_getarg(ndx, aframes);
3333 
3334 			/*
3335 			 * This is regrettably required to keep the compiler
3336 			 * from tail-optimizing the call to dtrace_getarg().
3337 			 * The condition always evaluates to true, but the
3338 			 * compiler has no way of figuring that out a priori.
3339 			 * (None of this would be necessary if the compiler
3340 			 * could be relied upon to _always_ tail-optimize
3341 			 * the call to dtrace_getarg() -- but it can't.)
3342 			 */
3343 			if (mstate->dtms_probe != NULL)
3344 				return (val);
3345 
3346 			ASSERT(0);
3347 		}
3348 
3349 		return (mstate->dtms_arg[ndx]);
3350 
3351 #ifdef illumos
3352 	case DIF_VAR_UREGS: {
3353 		klwp_t *lwp;
3354 
3355 		if (!dtrace_priv_proc(state))
3356 			return (0);
3357 
3358 		if ((lwp = curthread->t_lwp) == NULL) {
3359 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3360 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3361 			return (0);
3362 		}
3363 
3364 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3365 		return (0);
3366 	}
3367 #else
3368 	case DIF_VAR_UREGS: {
3369 		struct trapframe *tframe;
3370 
3371 		if (!dtrace_priv_proc(state))
3372 			return (0);
3373 
3374 		if ((tframe = curthread->td_frame) == NULL) {
3375 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3376 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3377 			return (0);
3378 		}
3379 
3380 		return (dtrace_getreg(tframe, ndx));
3381 	}
3382 #endif
3383 
3384 	case DIF_VAR_CURTHREAD:
3385 		if (!dtrace_priv_proc(state))
3386 			return (0);
3387 		return ((uint64_t)(uintptr_t)curthread);
3388 
3389 	case DIF_VAR_TIMESTAMP:
3390 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3391 			mstate->dtms_timestamp = dtrace_gethrtime();
3392 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3393 		}
3394 		return (mstate->dtms_timestamp);
3395 
3396 	case DIF_VAR_VTIMESTAMP:
3397 		ASSERT(dtrace_vtime_references != 0);
3398 		return (curthread->t_dtrace_vtime);
3399 
3400 	case DIF_VAR_WALLTIMESTAMP:
3401 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3402 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3403 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3404 		}
3405 		return (mstate->dtms_walltimestamp);
3406 
3407 #ifdef illumos
3408 	case DIF_VAR_IPL:
3409 		if (!dtrace_priv_kernel(state))
3410 			return (0);
3411 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3412 			mstate->dtms_ipl = dtrace_getipl();
3413 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3414 		}
3415 		return (mstate->dtms_ipl);
3416 #endif
3417 
3418 	case DIF_VAR_EPID:
3419 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3420 		return (mstate->dtms_epid);
3421 
3422 	case DIF_VAR_ID:
3423 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3424 		return (mstate->dtms_probe->dtpr_id);
3425 
3426 	case DIF_VAR_STACKDEPTH:
3427 		if (!dtrace_priv_kernel(state))
3428 			return (0);
3429 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3430 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3431 
3432 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3433 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3434 		}
3435 		return (mstate->dtms_stackdepth);
3436 
3437 	case DIF_VAR_USTACKDEPTH:
3438 		if (!dtrace_priv_proc(state))
3439 			return (0);
3440 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3441 			/*
3442 			 * See comment in DIF_VAR_PID.
3443 			 */
3444 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3445 			    CPU_ON_INTR(CPU)) {
3446 				mstate->dtms_ustackdepth = 0;
3447 			} else {
3448 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3449 				mstate->dtms_ustackdepth =
3450 				    dtrace_getustackdepth();
3451 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3452 			}
3453 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3454 		}
3455 		return (mstate->dtms_ustackdepth);
3456 
3457 	case DIF_VAR_CALLER:
3458 		if (!dtrace_priv_kernel(state))
3459 			return (0);
3460 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3461 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3462 
3463 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3464 				/*
3465 				 * If this is an unanchored probe, we are
3466 				 * required to go through the slow path:
3467 				 * dtrace_caller() only guarantees correct
3468 				 * results for anchored probes.
3469 				 */
3470 				pc_t caller[2] = {0, 0};
3471 
3472 				dtrace_getpcstack(caller, 2, aframes,
3473 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3474 				mstate->dtms_caller = caller[1];
3475 			} else if ((mstate->dtms_caller =
3476 			    dtrace_caller(aframes)) == -1) {
3477 				/*
3478 				 * We have failed to do this the quick way;
3479 				 * we must resort to the slower approach of
3480 				 * calling dtrace_getpcstack().
3481 				 */
3482 				pc_t caller = 0;
3483 
3484 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3485 				mstate->dtms_caller = caller;
3486 			}
3487 
3488 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3489 		}
3490 		return (mstate->dtms_caller);
3491 
3492 	case DIF_VAR_UCALLER:
3493 		if (!dtrace_priv_proc(state))
3494 			return (0);
3495 
3496 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3497 			uint64_t ustack[3];
3498 
3499 			/*
3500 			 * dtrace_getupcstack() fills in the first uint64_t
3501 			 * with the current PID.  The second uint64_t will
3502 			 * be the program counter at user-level.  The third
3503 			 * uint64_t will contain the caller, which is what
3504 			 * we're after.
3505 			 */
3506 			ustack[2] = 0;
3507 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3508 			dtrace_getupcstack(ustack, 3);
3509 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3510 			mstate->dtms_ucaller = ustack[2];
3511 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3512 		}
3513 
3514 		return (mstate->dtms_ucaller);
3515 
3516 	case DIF_VAR_PROBEPROV:
3517 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3518 		return (dtrace_dif_varstr(
3519 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3520 		    state, mstate));
3521 
3522 	case DIF_VAR_PROBEMOD:
3523 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3524 		return (dtrace_dif_varstr(
3525 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3526 		    state, mstate));
3527 
3528 	case DIF_VAR_PROBEFUNC:
3529 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3530 		return (dtrace_dif_varstr(
3531 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3532 		    state, mstate));
3533 
3534 	case DIF_VAR_PROBENAME:
3535 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3536 		return (dtrace_dif_varstr(
3537 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3538 		    state, mstate));
3539 
3540 	case DIF_VAR_PID:
3541 		if (!dtrace_priv_proc(state))
3542 			return (0);
3543 
3544 #ifdef illumos
3545 		/*
3546 		 * Note that we are assuming that an unanchored probe is
3547 		 * always due to a high-level interrupt.  (And we're assuming
3548 		 * that there is only a single high level interrupt.)
3549 		 */
3550 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3551 			return (pid0.pid_id);
3552 
3553 		/*
3554 		 * It is always safe to dereference one's own t_procp pointer:
3555 		 * it always points to a valid, allocated proc structure.
3556 		 * Further, it is always safe to dereference the p_pidp member
3557 		 * of one's own proc structure.  (These are truisms becuase
3558 		 * threads and processes don't clean up their own state --
3559 		 * they leave that task to whomever reaps them.)
3560 		 */
3561 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3562 #else
3563 		return ((uint64_t)curproc->p_pid);
3564 #endif
3565 
3566 	case DIF_VAR_PPID:
3567 		if (!dtrace_priv_proc(state))
3568 			return (0);
3569 
3570 #ifdef illumos
3571 		/*
3572 		 * See comment in DIF_VAR_PID.
3573 		 */
3574 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3575 			return (pid0.pid_id);
3576 
3577 		/*
3578 		 * It is always safe to dereference one's own t_procp pointer:
3579 		 * it always points to a valid, allocated proc structure.
3580 		 * (This is true because threads don't clean up their own
3581 		 * state -- they leave that task to whomever reaps them.)
3582 		 */
3583 		return ((uint64_t)curthread->t_procp->p_ppid);
3584 #else
3585 		if (curproc->p_pid == proc0.p_pid)
3586 			return (curproc->p_pid);
3587 		else
3588 			return (curproc->p_pptr->p_pid);
3589 #endif
3590 
3591 	case DIF_VAR_TID:
3592 #ifdef illumos
3593 		/*
3594 		 * See comment in DIF_VAR_PID.
3595 		 */
3596 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3597 			return (0);
3598 #endif
3599 
3600 		return ((uint64_t)curthread->t_tid);
3601 
3602 	case DIF_VAR_EXECARGS: {
3603 		struct pargs *p_args = curthread->td_proc->p_args;
3604 
3605 		if (p_args == NULL)
3606 			return(0);
3607 
3608 		return (dtrace_dif_varstrz(
3609 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3610 	}
3611 
3612 	case DIF_VAR_EXECNAME:
3613 #ifdef illumos
3614 		if (!dtrace_priv_proc(state))
3615 			return (0);
3616 
3617 		/*
3618 		 * See comment in DIF_VAR_PID.
3619 		 */
3620 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3621 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3622 
3623 		/*
3624 		 * It is always safe to dereference one's own t_procp pointer:
3625 		 * it always points to a valid, allocated proc structure.
3626 		 * (This is true because threads don't clean up their own
3627 		 * state -- they leave that task to whomever reaps them.)
3628 		 */
3629 		return (dtrace_dif_varstr(
3630 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3631 		    state, mstate));
3632 #else
3633 		return (dtrace_dif_varstr(
3634 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3635 #endif
3636 
3637 	case DIF_VAR_ZONENAME:
3638 #ifdef illumos
3639 		if (!dtrace_priv_proc(state))
3640 			return (0);
3641 
3642 		/*
3643 		 * See comment in DIF_VAR_PID.
3644 		 */
3645 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3646 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3647 
3648 		/*
3649 		 * It is always safe to dereference one's own t_procp pointer:
3650 		 * it always points to a valid, allocated proc structure.
3651 		 * (This is true because threads don't clean up their own
3652 		 * state -- they leave that task to whomever reaps them.)
3653 		 */
3654 		return (dtrace_dif_varstr(
3655 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3656 		    state, mstate));
3657 #elif defined(__FreeBSD__)
3658 	/*
3659 	 * On FreeBSD, we introduce compatibility to zonename by falling through
3660 	 * into jailname.
3661 	 */
3662 	case DIF_VAR_JAILNAME:
3663 		if (!dtrace_priv_kernel(state))
3664 			return (0);
3665 
3666 		return (dtrace_dif_varstr(
3667 		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3668 		    state, mstate));
3669 
3670 	case DIF_VAR_JID:
3671 		if (!dtrace_priv_kernel(state))
3672 			return (0);
3673 
3674 		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3675 #else
3676 		return (0);
3677 #endif
3678 
3679 	case DIF_VAR_UID:
3680 		if (!dtrace_priv_proc(state))
3681 			return (0);
3682 
3683 #ifdef illumos
3684 		/*
3685 		 * See comment in DIF_VAR_PID.
3686 		 */
3687 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3688 			return ((uint64_t)p0.p_cred->cr_uid);
3689 
3690 		/*
3691 		 * It is always safe to dereference one's own t_procp pointer:
3692 		 * it always points to a valid, allocated proc structure.
3693 		 * (This is true because threads don't clean up their own
3694 		 * state -- they leave that task to whomever reaps them.)
3695 		 *
3696 		 * Additionally, it is safe to dereference one's own process
3697 		 * credential, since this is never NULL after process birth.
3698 		 */
3699 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3700 #else
3701 		return ((uint64_t)curthread->td_ucred->cr_uid);
3702 #endif
3703 
3704 	case DIF_VAR_GID:
3705 		if (!dtrace_priv_proc(state))
3706 			return (0);
3707 
3708 #ifdef illumos
3709 		/*
3710 		 * See comment in DIF_VAR_PID.
3711 		 */
3712 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3713 			return ((uint64_t)p0.p_cred->cr_gid);
3714 
3715 		/*
3716 		 * It is always safe to dereference one's own t_procp pointer:
3717 		 * it always points to a valid, allocated proc structure.
3718 		 * (This is true because threads don't clean up their own
3719 		 * state -- they leave that task to whomever reaps them.)
3720 		 *
3721 		 * Additionally, it is safe to dereference one's own process
3722 		 * credential, since this is never NULL after process birth.
3723 		 */
3724 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3725 #else
3726 		return ((uint64_t)curthread->td_ucred->cr_gid);
3727 #endif
3728 
3729 	case DIF_VAR_ERRNO: {
3730 #ifdef illumos
3731 		klwp_t *lwp;
3732 		if (!dtrace_priv_proc(state))
3733 			return (0);
3734 
3735 		/*
3736 		 * See comment in DIF_VAR_PID.
3737 		 */
3738 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3739 			return (0);
3740 
3741 		/*
3742 		 * It is always safe to dereference one's own t_lwp pointer in
3743 		 * the event that this pointer is non-NULL.  (This is true
3744 		 * because threads and lwps don't clean up their own state --
3745 		 * they leave that task to whomever reaps them.)
3746 		 */
3747 		if ((lwp = curthread->t_lwp) == NULL)
3748 			return (0);
3749 
3750 		return ((uint64_t)lwp->lwp_errno);
3751 #else
3752 		return (curthread->td_errno);
3753 #endif
3754 	}
3755 #ifndef illumos
3756 	case DIF_VAR_CPU: {
3757 		return curcpu;
3758 	}
3759 #endif
3760 	default:
3761 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3762 		return (0);
3763 	}
3764 }
3765 
3766 
3767 typedef enum dtrace_json_state {
3768 	DTRACE_JSON_REST = 1,
3769 	DTRACE_JSON_OBJECT,
3770 	DTRACE_JSON_STRING,
3771 	DTRACE_JSON_STRING_ESCAPE,
3772 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3773 	DTRACE_JSON_COLON,
3774 	DTRACE_JSON_COMMA,
3775 	DTRACE_JSON_VALUE,
3776 	DTRACE_JSON_IDENTIFIER,
3777 	DTRACE_JSON_NUMBER,
3778 	DTRACE_JSON_NUMBER_FRAC,
3779 	DTRACE_JSON_NUMBER_EXP,
3780 	DTRACE_JSON_COLLECT_OBJECT
3781 } dtrace_json_state_t;
3782 
3783 /*
3784  * This function possesses just enough knowledge about JSON to extract a single
3785  * value from a JSON string and store it in the scratch buffer.  It is able
3786  * to extract nested object values, and members of arrays by index.
3787  *
3788  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3789  * be looked up as we descend into the object tree.  e.g.
3790  *
3791  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3792  *       with nelems = 5.
3793  *
3794  * The run time of this function must be bounded above by strsize to limit the
3795  * amount of work done in probe context.  As such, it is implemented as a
3796  * simple state machine, reading one character at a time using safe loads
3797  * until we find the requested element, hit a parsing error or run off the
3798  * end of the object or string.
3799  *
3800  * As there is no way for a subroutine to return an error without interrupting
3801  * clause execution, we simply return NULL in the event of a missing key or any
3802  * other error condition.  Each NULL return in this function is commented with
3803  * the error condition it represents -- parsing or otherwise.
3804  *
3805  * The set of states for the state machine closely matches the JSON
3806  * specification (http://json.org/).  Briefly:
3807  *
3808  *   DTRACE_JSON_REST:
3809  *     Skip whitespace until we find either a top-level Object, moving
3810  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3811  *
3812  *   DTRACE_JSON_OBJECT:
3813  *     Locate the next key String in an Object.  Sets a flag to denote
3814  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3815  *
3816  *   DTRACE_JSON_COLON:
3817  *     Skip whitespace until we find the colon that separates key Strings
3818  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3819  *
3820  *   DTRACE_JSON_VALUE:
3821  *     Detects the type of the next value (String, Number, Identifier, Object
3822  *     or Array) and routes to the states that process that type.  Here we also
3823  *     deal with the element selector list if we are requested to traverse down
3824  *     into the object tree.
3825  *
3826  *   DTRACE_JSON_COMMA:
3827  *     Skip whitespace until we find the comma that separates key-value pairs
3828  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3829  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3830  *     states return to this state at the end of their value, unless otherwise
3831  *     noted.
3832  *
3833  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3834  *     Processes a Number literal from the JSON, including any exponent
3835  *     component that may be present.  Numbers are returned as strings, which
3836  *     may be passed to strtoll() if an integer is required.
3837  *
3838  *   DTRACE_JSON_IDENTIFIER:
3839  *     Processes a "true", "false" or "null" literal in the JSON.
3840  *
3841  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3842  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3843  *     Processes a String literal from the JSON, whether the String denotes
3844  *     a key, a value or part of a larger Object.  Handles all escape sequences
3845  *     present in the specification, including four-digit unicode characters,
3846  *     but merely includes the escape sequence without converting it to the
3847  *     actual escaped character.  If the String is flagged as a key, we
3848  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3849  *
3850  *   DTRACE_JSON_COLLECT_OBJECT:
3851  *     This state collects an entire Object (or Array), correctly handling
3852  *     embedded strings.  If the full element selector list matches this nested
3853  *     object, we return the Object in full as a string.  If not, we use this
3854  *     state to skip to the next value at this level and continue processing.
3855  *
3856  * NOTE: This function uses various macros from strtolctype.h to manipulate
3857  * digit values, etc -- these have all been checked to ensure they make
3858  * no additional function calls.
3859  */
3860 static char *
3861 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3862     char *dest)
3863 {
3864 	dtrace_json_state_t state = DTRACE_JSON_REST;
3865 	int64_t array_elem = INT64_MIN;
3866 	int64_t array_pos = 0;
3867 	uint8_t escape_unicount = 0;
3868 	boolean_t string_is_key = B_FALSE;
3869 	boolean_t collect_object = B_FALSE;
3870 	boolean_t found_key = B_FALSE;
3871 	boolean_t in_array = B_FALSE;
3872 	uint32_t braces = 0, brackets = 0;
3873 	char *elem = elemlist;
3874 	char *dd = dest;
3875 	uintptr_t cur;
3876 
3877 	for (cur = json; cur < json + size; cur++) {
3878 		char cc = dtrace_load8(cur);
3879 		if (cc == '\0')
3880 			return (NULL);
3881 
3882 		switch (state) {
3883 		case DTRACE_JSON_REST:
3884 			if (isspace(cc))
3885 				break;
3886 
3887 			if (cc == '{') {
3888 				state = DTRACE_JSON_OBJECT;
3889 				break;
3890 			}
3891 
3892 			if (cc == '[') {
3893 				in_array = B_TRUE;
3894 				array_pos = 0;
3895 				array_elem = dtrace_strtoll(elem, 10, size);
3896 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3897 				state = DTRACE_JSON_VALUE;
3898 				break;
3899 			}
3900 
3901 			/*
3902 			 * ERROR: expected to find a top-level object or array.
3903 			 */
3904 			return (NULL);
3905 		case DTRACE_JSON_OBJECT:
3906 			if (isspace(cc))
3907 				break;
3908 
3909 			if (cc == '"') {
3910 				state = DTRACE_JSON_STRING;
3911 				string_is_key = B_TRUE;
3912 				break;
3913 			}
3914 
3915 			/*
3916 			 * ERROR: either the object did not start with a key
3917 			 * string, or we've run off the end of the object
3918 			 * without finding the requested key.
3919 			 */
3920 			return (NULL);
3921 		case DTRACE_JSON_STRING:
3922 			if (cc == '\\') {
3923 				*dd++ = '\\';
3924 				state = DTRACE_JSON_STRING_ESCAPE;
3925 				break;
3926 			}
3927 
3928 			if (cc == '"') {
3929 				if (collect_object) {
3930 					/*
3931 					 * We don't reset the dest here, as
3932 					 * the string is part of a larger
3933 					 * object being collected.
3934 					 */
3935 					*dd++ = cc;
3936 					collect_object = B_FALSE;
3937 					state = DTRACE_JSON_COLLECT_OBJECT;
3938 					break;
3939 				}
3940 				*dd = '\0';
3941 				dd = dest; /* reset string buffer */
3942 				if (string_is_key) {
3943 					if (dtrace_strncmp(dest, elem,
3944 					    size) == 0)
3945 						found_key = B_TRUE;
3946 				} else if (found_key) {
3947 					if (nelems > 1) {
3948 						/*
3949 						 * We expected an object, not
3950 						 * this string.
3951 						 */
3952 						return (NULL);
3953 					}
3954 					return (dest);
3955 				}
3956 				state = string_is_key ? DTRACE_JSON_COLON :
3957 				    DTRACE_JSON_COMMA;
3958 				string_is_key = B_FALSE;
3959 				break;
3960 			}
3961 
3962 			*dd++ = cc;
3963 			break;
3964 		case DTRACE_JSON_STRING_ESCAPE:
3965 			*dd++ = cc;
3966 			if (cc == 'u') {
3967 				escape_unicount = 0;
3968 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3969 			} else {
3970 				state = DTRACE_JSON_STRING;
3971 			}
3972 			break;
3973 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3974 			if (!isxdigit(cc)) {
3975 				/*
3976 				 * ERROR: invalid unicode escape, expected
3977 				 * four valid hexidecimal digits.
3978 				 */
3979 				return (NULL);
3980 			}
3981 
3982 			*dd++ = cc;
3983 			if (++escape_unicount == 4)
3984 				state = DTRACE_JSON_STRING;
3985 			break;
3986 		case DTRACE_JSON_COLON:
3987 			if (isspace(cc))
3988 				break;
3989 
3990 			if (cc == ':') {
3991 				state = DTRACE_JSON_VALUE;
3992 				break;
3993 			}
3994 
3995 			/*
3996 			 * ERROR: expected a colon.
3997 			 */
3998 			return (NULL);
3999 		case DTRACE_JSON_COMMA:
4000 			if (isspace(cc))
4001 				break;
4002 
4003 			if (cc == ',') {
4004 				if (in_array) {
4005 					state = DTRACE_JSON_VALUE;
4006 					if (++array_pos == array_elem)
4007 						found_key = B_TRUE;
4008 				} else {
4009 					state = DTRACE_JSON_OBJECT;
4010 				}
4011 				break;
4012 			}
4013 
4014 			/*
4015 			 * ERROR: either we hit an unexpected character, or
4016 			 * we reached the end of the object or array without
4017 			 * finding the requested key.
4018 			 */
4019 			return (NULL);
4020 		case DTRACE_JSON_IDENTIFIER:
4021 			if (islower(cc)) {
4022 				*dd++ = cc;
4023 				break;
4024 			}
4025 
4026 			*dd = '\0';
4027 			dd = dest; /* reset string buffer */
4028 
4029 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4030 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4031 			    dtrace_strncmp(dest, "null", 5) == 0) {
4032 				if (found_key) {
4033 					if (nelems > 1) {
4034 						/*
4035 						 * ERROR: We expected an object,
4036 						 * not this identifier.
4037 						 */
4038 						return (NULL);
4039 					}
4040 					return (dest);
4041 				} else {
4042 					cur--;
4043 					state = DTRACE_JSON_COMMA;
4044 					break;
4045 				}
4046 			}
4047 
4048 			/*
4049 			 * ERROR: we did not recognise the identifier as one
4050 			 * of those in the JSON specification.
4051 			 */
4052 			return (NULL);
4053 		case DTRACE_JSON_NUMBER:
4054 			if (cc == '.') {
4055 				*dd++ = cc;
4056 				state = DTRACE_JSON_NUMBER_FRAC;
4057 				break;
4058 			}
4059 
4060 			if (cc == 'x' || cc == 'X') {
4061 				/*
4062 				 * ERROR: specification explicitly excludes
4063 				 * hexidecimal or octal numbers.
4064 				 */
4065 				return (NULL);
4066 			}
4067 
4068 			/* FALLTHRU */
4069 		case DTRACE_JSON_NUMBER_FRAC:
4070 			if (cc == 'e' || cc == 'E') {
4071 				*dd++ = cc;
4072 				state = DTRACE_JSON_NUMBER_EXP;
4073 				break;
4074 			}
4075 
4076 			if (cc == '+' || cc == '-') {
4077 				/*
4078 				 * ERROR: expect sign as part of exponent only.
4079 				 */
4080 				return (NULL);
4081 			}
4082 			/* FALLTHRU */
4083 		case DTRACE_JSON_NUMBER_EXP:
4084 			if (isdigit(cc) || cc == '+' || cc == '-') {
4085 				*dd++ = cc;
4086 				break;
4087 			}
4088 
4089 			*dd = '\0';
4090 			dd = dest; /* reset string buffer */
4091 			if (found_key) {
4092 				if (nelems > 1) {
4093 					/*
4094 					 * ERROR: We expected an object, not
4095 					 * this number.
4096 					 */
4097 					return (NULL);
4098 				}
4099 				return (dest);
4100 			}
4101 
4102 			cur--;
4103 			state = DTRACE_JSON_COMMA;
4104 			break;
4105 		case DTRACE_JSON_VALUE:
4106 			if (isspace(cc))
4107 				break;
4108 
4109 			if (cc == '{' || cc == '[') {
4110 				if (nelems > 1 && found_key) {
4111 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4112 					/*
4113 					 * If our element selector directs us
4114 					 * to descend into this nested object,
4115 					 * then move to the next selector
4116 					 * element in the list and restart the
4117 					 * state machine.
4118 					 */
4119 					while (*elem != '\0')
4120 						elem++;
4121 					elem++; /* skip the inter-element NUL */
4122 					nelems--;
4123 					dd = dest;
4124 					if (in_array) {
4125 						state = DTRACE_JSON_VALUE;
4126 						array_pos = 0;
4127 						array_elem = dtrace_strtoll(
4128 						    elem, 10, size);
4129 						found_key = array_elem == 0 ?
4130 						    B_TRUE : B_FALSE;
4131 					} else {
4132 						found_key = B_FALSE;
4133 						state = DTRACE_JSON_OBJECT;
4134 					}
4135 					break;
4136 				}
4137 
4138 				/*
4139 				 * Otherwise, we wish to either skip this
4140 				 * nested object or return it in full.
4141 				 */
4142 				if (cc == '[')
4143 					brackets = 1;
4144 				else
4145 					braces = 1;
4146 				*dd++ = cc;
4147 				state = DTRACE_JSON_COLLECT_OBJECT;
4148 				break;
4149 			}
4150 
4151 			if (cc == '"') {
4152 				state = DTRACE_JSON_STRING;
4153 				break;
4154 			}
4155 
4156 			if (islower(cc)) {
4157 				/*
4158 				 * Here we deal with true, false and null.
4159 				 */
4160 				*dd++ = cc;
4161 				state = DTRACE_JSON_IDENTIFIER;
4162 				break;
4163 			}
4164 
4165 			if (cc == '-' || isdigit(cc)) {
4166 				*dd++ = cc;
4167 				state = DTRACE_JSON_NUMBER;
4168 				break;
4169 			}
4170 
4171 			/*
4172 			 * ERROR: unexpected character at start of value.
4173 			 */
4174 			return (NULL);
4175 		case DTRACE_JSON_COLLECT_OBJECT:
4176 			if (cc == '\0')
4177 				/*
4178 				 * ERROR: unexpected end of input.
4179 				 */
4180 				return (NULL);
4181 
4182 			*dd++ = cc;
4183 			if (cc == '"') {
4184 				collect_object = B_TRUE;
4185 				state = DTRACE_JSON_STRING;
4186 				break;
4187 			}
4188 
4189 			if (cc == ']') {
4190 				if (brackets-- == 0) {
4191 					/*
4192 					 * ERROR: unbalanced brackets.
4193 					 */
4194 					return (NULL);
4195 				}
4196 			} else if (cc == '}') {
4197 				if (braces-- == 0) {
4198 					/*
4199 					 * ERROR: unbalanced braces.
4200 					 */
4201 					return (NULL);
4202 				}
4203 			} else if (cc == '{') {
4204 				braces++;
4205 			} else if (cc == '[') {
4206 				brackets++;
4207 			}
4208 
4209 			if (brackets == 0 && braces == 0) {
4210 				if (found_key) {
4211 					*dd = '\0';
4212 					return (dest);
4213 				}
4214 				dd = dest; /* reset string buffer */
4215 				state = DTRACE_JSON_COMMA;
4216 			}
4217 			break;
4218 		}
4219 	}
4220 	return (NULL);
4221 }
4222 
4223 /*
4224  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4225  * Notice that we don't bother validating the proper number of arguments or
4226  * their types in the tuple stack.  This isn't needed because all argument
4227  * interpretation is safe because of our load safety -- the worst that can
4228  * happen is that a bogus program can obtain bogus results.
4229  */
4230 static void
4231 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4232     dtrace_key_t *tupregs, int nargs,
4233     dtrace_mstate_t *mstate, dtrace_state_t *state)
4234 {
4235 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4236 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4237 	dtrace_vstate_t *vstate = &state->dts_vstate;
4238 
4239 #ifdef illumos
4240 	union {
4241 		mutex_impl_t mi;
4242 		uint64_t mx;
4243 	} m;
4244 
4245 	union {
4246 		krwlock_t ri;
4247 		uintptr_t rw;
4248 	} r;
4249 #else
4250 	struct thread *lowner;
4251 	union {
4252 		struct lock_object *li;
4253 		uintptr_t lx;
4254 	} l;
4255 #endif
4256 
4257 	switch (subr) {
4258 	case DIF_SUBR_RAND:
4259 		regs[rd] = dtrace_xoroshiro128_plus_next(
4260 		    state->dts_rstate[curcpu]);
4261 		break;
4262 
4263 #ifdef illumos
4264 	case DIF_SUBR_MUTEX_OWNED:
4265 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4266 		    mstate, vstate)) {
4267 			regs[rd] = 0;
4268 			break;
4269 		}
4270 
4271 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4272 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4273 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4274 		else
4275 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4276 		break;
4277 
4278 	case DIF_SUBR_MUTEX_OWNER:
4279 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4280 		    mstate, vstate)) {
4281 			regs[rd] = 0;
4282 			break;
4283 		}
4284 
4285 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4286 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4287 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4288 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4289 		else
4290 			regs[rd] = 0;
4291 		break;
4292 
4293 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4294 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4295 		    mstate, vstate)) {
4296 			regs[rd] = 0;
4297 			break;
4298 		}
4299 
4300 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4301 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4302 		break;
4303 
4304 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4305 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4306 		    mstate, vstate)) {
4307 			regs[rd] = 0;
4308 			break;
4309 		}
4310 
4311 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4312 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4313 		break;
4314 
4315 	case DIF_SUBR_RW_READ_HELD: {
4316 		uintptr_t tmp;
4317 
4318 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4319 		    mstate, vstate)) {
4320 			regs[rd] = 0;
4321 			break;
4322 		}
4323 
4324 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4325 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4326 		break;
4327 	}
4328 
4329 	case DIF_SUBR_RW_WRITE_HELD:
4330 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4331 		    mstate, vstate)) {
4332 			regs[rd] = 0;
4333 			break;
4334 		}
4335 
4336 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4337 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4338 		break;
4339 
4340 	case DIF_SUBR_RW_ISWRITER:
4341 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4342 		    mstate, vstate)) {
4343 			regs[rd] = 0;
4344 			break;
4345 		}
4346 
4347 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4348 		regs[rd] = _RW_ISWRITER(&r.ri);
4349 		break;
4350 
4351 #else /* !illumos */
4352 	case DIF_SUBR_MUTEX_OWNED:
4353 		if (!dtrace_canload(tupregs[0].dttk_value,
4354 			sizeof (struct lock_object), mstate, vstate)) {
4355 			regs[rd] = 0;
4356 			break;
4357 		}
4358 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4359 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4360 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4361 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4362 		break;
4363 
4364 	case DIF_SUBR_MUTEX_OWNER:
4365 		if (!dtrace_canload(tupregs[0].dttk_value,
4366 			sizeof (struct lock_object), mstate, vstate)) {
4367 			regs[rd] = 0;
4368 			break;
4369 		}
4370 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4371 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4372 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4373 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4374 		regs[rd] = (uintptr_t)lowner;
4375 		break;
4376 
4377 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4378 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4379 		    mstate, vstate)) {
4380 			regs[rd] = 0;
4381 			break;
4382 		}
4383 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4384 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4385 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4386 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4387 		break;
4388 
4389 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4390 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4391 		    mstate, vstate)) {
4392 			regs[rd] = 0;
4393 			break;
4394 		}
4395 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4396 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4397 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4398 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4399 		break;
4400 
4401 	case DIF_SUBR_RW_READ_HELD:
4402 	case DIF_SUBR_SX_SHARED_HELD:
4403 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4404 		    mstate, vstate)) {
4405 			regs[rd] = 0;
4406 			break;
4407 		}
4408 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4409 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4410 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4411 		    lowner == NULL;
4412 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4413 		break;
4414 
4415 	case DIF_SUBR_RW_WRITE_HELD:
4416 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4417 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4418 		    mstate, vstate)) {
4419 			regs[rd] = 0;
4420 			break;
4421 		}
4422 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4423 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4424 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4425 		    lowner != NULL;
4426 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4427 		break;
4428 
4429 	case DIF_SUBR_RW_ISWRITER:
4430 	case DIF_SUBR_SX_ISEXCLUSIVE:
4431 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4432 		    mstate, vstate)) {
4433 			regs[rd] = 0;
4434 			break;
4435 		}
4436 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4437 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4438 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4439 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4440 		regs[rd] = (lowner == curthread);
4441 		break;
4442 #endif /* illumos */
4443 
4444 	case DIF_SUBR_BCOPY: {
4445 		/*
4446 		 * We need to be sure that the destination is in the scratch
4447 		 * region -- no other region is allowed.
4448 		 */
4449 		uintptr_t src = tupregs[0].dttk_value;
4450 		uintptr_t dest = tupregs[1].dttk_value;
4451 		size_t size = tupregs[2].dttk_value;
4452 
4453 		if (!dtrace_inscratch(dest, size, mstate)) {
4454 			*flags |= CPU_DTRACE_BADADDR;
4455 			*illval = regs[rd];
4456 			break;
4457 		}
4458 
4459 		if (!dtrace_canload(src, size, mstate, vstate)) {
4460 			regs[rd] = 0;
4461 			break;
4462 		}
4463 
4464 		dtrace_bcopy((void *)src, (void *)dest, size);
4465 		break;
4466 	}
4467 
4468 	case DIF_SUBR_ALLOCA:
4469 	case DIF_SUBR_COPYIN: {
4470 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4471 		uint64_t size =
4472 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4473 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4474 
4475 		/*
4476 		 * This action doesn't require any credential checks since
4477 		 * probes will not activate in user contexts to which the
4478 		 * enabling user does not have permissions.
4479 		 */
4480 
4481 		/*
4482 		 * Rounding up the user allocation size could have overflowed
4483 		 * a large, bogus allocation (like -1ULL) to 0.
4484 		 */
4485 		if (scratch_size < size ||
4486 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4487 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4488 			regs[rd] = 0;
4489 			break;
4490 		}
4491 
4492 		if (subr == DIF_SUBR_COPYIN) {
4493 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4494 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4495 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4496 		}
4497 
4498 		mstate->dtms_scratch_ptr += scratch_size;
4499 		regs[rd] = dest;
4500 		break;
4501 	}
4502 
4503 	case DIF_SUBR_COPYINTO: {
4504 		uint64_t size = tupregs[1].dttk_value;
4505 		uintptr_t dest = tupregs[2].dttk_value;
4506 
4507 		/*
4508 		 * This action doesn't require any credential checks since
4509 		 * probes will not activate in user contexts to which the
4510 		 * enabling user does not have permissions.
4511 		 */
4512 		if (!dtrace_inscratch(dest, size, mstate)) {
4513 			*flags |= CPU_DTRACE_BADADDR;
4514 			*illval = regs[rd];
4515 			break;
4516 		}
4517 
4518 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4519 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4520 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4521 		break;
4522 	}
4523 
4524 	case DIF_SUBR_COPYINSTR: {
4525 		uintptr_t dest = mstate->dtms_scratch_ptr;
4526 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4527 
4528 		if (nargs > 1 && tupregs[1].dttk_value < size)
4529 			size = tupregs[1].dttk_value + 1;
4530 
4531 		/*
4532 		 * This action doesn't require any credential checks since
4533 		 * probes will not activate in user contexts to which the
4534 		 * enabling user does not have permissions.
4535 		 */
4536 		if (!DTRACE_INSCRATCH(mstate, size)) {
4537 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4538 			regs[rd] = 0;
4539 			break;
4540 		}
4541 
4542 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4543 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4544 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4545 
4546 		((char *)dest)[size - 1] = '\0';
4547 		mstate->dtms_scratch_ptr += size;
4548 		regs[rd] = dest;
4549 		break;
4550 	}
4551 
4552 #ifdef illumos
4553 	case DIF_SUBR_MSGSIZE:
4554 	case DIF_SUBR_MSGDSIZE: {
4555 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4556 		uintptr_t wptr, rptr;
4557 		size_t count = 0;
4558 		int cont = 0;
4559 
4560 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4561 
4562 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4563 			    vstate)) {
4564 				regs[rd] = 0;
4565 				break;
4566 			}
4567 
4568 			wptr = dtrace_loadptr(baddr +
4569 			    offsetof(mblk_t, b_wptr));
4570 
4571 			rptr = dtrace_loadptr(baddr +
4572 			    offsetof(mblk_t, b_rptr));
4573 
4574 			if (wptr < rptr) {
4575 				*flags |= CPU_DTRACE_BADADDR;
4576 				*illval = tupregs[0].dttk_value;
4577 				break;
4578 			}
4579 
4580 			daddr = dtrace_loadptr(baddr +
4581 			    offsetof(mblk_t, b_datap));
4582 
4583 			baddr = dtrace_loadptr(baddr +
4584 			    offsetof(mblk_t, b_cont));
4585 
4586 			/*
4587 			 * We want to prevent against denial-of-service here,
4588 			 * so we're only going to search the list for
4589 			 * dtrace_msgdsize_max mblks.
4590 			 */
4591 			if (cont++ > dtrace_msgdsize_max) {
4592 				*flags |= CPU_DTRACE_ILLOP;
4593 				break;
4594 			}
4595 
4596 			if (subr == DIF_SUBR_MSGDSIZE) {
4597 				if (dtrace_load8(daddr +
4598 				    offsetof(dblk_t, db_type)) != M_DATA)
4599 					continue;
4600 			}
4601 
4602 			count += wptr - rptr;
4603 		}
4604 
4605 		if (!(*flags & CPU_DTRACE_FAULT))
4606 			regs[rd] = count;
4607 
4608 		break;
4609 	}
4610 #endif
4611 
4612 	case DIF_SUBR_PROGENYOF: {
4613 		pid_t pid = tupregs[0].dttk_value;
4614 		proc_t *p;
4615 		int rval = 0;
4616 
4617 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4618 
4619 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4620 #ifdef illumos
4621 			if (p->p_pidp->pid_id == pid) {
4622 #else
4623 			if (p->p_pid == pid) {
4624 #endif
4625 				rval = 1;
4626 				break;
4627 			}
4628 		}
4629 
4630 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4631 
4632 		regs[rd] = rval;
4633 		break;
4634 	}
4635 
4636 	case DIF_SUBR_SPECULATION:
4637 		regs[rd] = dtrace_speculation(state);
4638 		break;
4639 
4640 	case DIF_SUBR_COPYOUT: {
4641 		uintptr_t kaddr = tupregs[0].dttk_value;
4642 		uintptr_t uaddr = tupregs[1].dttk_value;
4643 		uint64_t size = tupregs[2].dttk_value;
4644 
4645 		if (!dtrace_destructive_disallow &&
4646 		    dtrace_priv_proc_control(state) &&
4647 		    !dtrace_istoxic(kaddr, size) &&
4648 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4649 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4650 			dtrace_copyout(kaddr, uaddr, size, flags);
4651 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4652 		}
4653 		break;
4654 	}
4655 
4656 	case DIF_SUBR_COPYOUTSTR: {
4657 		uintptr_t kaddr = tupregs[0].dttk_value;
4658 		uintptr_t uaddr = tupregs[1].dttk_value;
4659 		uint64_t size = tupregs[2].dttk_value;
4660 		size_t lim;
4661 
4662 		if (!dtrace_destructive_disallow &&
4663 		    dtrace_priv_proc_control(state) &&
4664 		    !dtrace_istoxic(kaddr, size) &&
4665 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4666 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4667 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4668 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4669 		}
4670 		break;
4671 	}
4672 
4673 	case DIF_SUBR_STRLEN: {
4674 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4675 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4676 		size_t lim;
4677 
4678 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4679 			regs[rd] = 0;
4680 			break;
4681 		}
4682 
4683 		regs[rd] = dtrace_strlen((char *)addr, lim);
4684 		break;
4685 	}
4686 
4687 	case DIF_SUBR_STRCHR:
4688 	case DIF_SUBR_STRRCHR: {
4689 		/*
4690 		 * We're going to iterate over the string looking for the
4691 		 * specified character.  We will iterate until we have reached
4692 		 * the string length or we have found the character.  If this
4693 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4694 		 * of the specified character instead of the first.
4695 		 */
4696 		uintptr_t addr = tupregs[0].dttk_value;
4697 		uintptr_t addr_limit;
4698 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4699 		size_t lim;
4700 		char c, target = (char)tupregs[1].dttk_value;
4701 
4702 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4703 			regs[rd] = 0;
4704 			break;
4705 		}
4706 		addr_limit = addr + lim;
4707 
4708 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4709 			if ((c = dtrace_load8(addr)) == target) {
4710 				regs[rd] = addr;
4711 
4712 				if (subr == DIF_SUBR_STRCHR)
4713 					break;
4714 			}
4715 
4716 			if (c == '\0')
4717 				break;
4718 		}
4719 		break;
4720 	}
4721 
4722 	case DIF_SUBR_STRSTR:
4723 	case DIF_SUBR_INDEX:
4724 	case DIF_SUBR_RINDEX: {
4725 		/*
4726 		 * We're going to iterate over the string looking for the
4727 		 * specified string.  We will iterate until we have reached
4728 		 * the string length or we have found the string.  (Yes, this
4729 		 * is done in the most naive way possible -- but considering
4730 		 * that the string we're searching for is likely to be
4731 		 * relatively short, the complexity of Rabin-Karp or similar
4732 		 * hardly seems merited.)
4733 		 */
4734 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4735 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4736 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4737 		size_t len = dtrace_strlen(addr, size);
4738 		size_t sublen = dtrace_strlen(substr, size);
4739 		char *limit = addr + len, *orig = addr;
4740 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4741 		int inc = 1;
4742 
4743 		regs[rd] = notfound;
4744 
4745 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4746 			regs[rd] = 0;
4747 			break;
4748 		}
4749 
4750 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4751 		    vstate)) {
4752 			regs[rd] = 0;
4753 			break;
4754 		}
4755 
4756 		/*
4757 		 * strstr() and index()/rindex() have similar semantics if
4758 		 * both strings are the empty string: strstr() returns a
4759 		 * pointer to the (empty) string, and index() and rindex()
4760 		 * both return index 0 (regardless of any position argument).
4761 		 */
4762 		if (sublen == 0 && len == 0) {
4763 			if (subr == DIF_SUBR_STRSTR)
4764 				regs[rd] = (uintptr_t)addr;
4765 			else
4766 				regs[rd] = 0;
4767 			break;
4768 		}
4769 
4770 		if (subr != DIF_SUBR_STRSTR) {
4771 			if (subr == DIF_SUBR_RINDEX) {
4772 				limit = orig - 1;
4773 				addr += len;
4774 				inc = -1;
4775 			}
4776 
4777 			/*
4778 			 * Both index() and rindex() take an optional position
4779 			 * argument that denotes the starting position.
4780 			 */
4781 			if (nargs == 3) {
4782 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4783 
4784 				/*
4785 				 * If the position argument to index() is
4786 				 * negative, Perl implicitly clamps it at
4787 				 * zero.  This semantic is a little surprising
4788 				 * given the special meaning of negative
4789 				 * positions to similar Perl functions like
4790 				 * substr(), but it appears to reflect a
4791 				 * notion that index() can start from a
4792 				 * negative index and increment its way up to
4793 				 * the string.  Given this notion, Perl's
4794 				 * rindex() is at least self-consistent in
4795 				 * that it implicitly clamps positions greater
4796 				 * than the string length to be the string
4797 				 * length.  Where Perl completely loses
4798 				 * coherence, however, is when the specified
4799 				 * substring is the empty string ("").  In
4800 				 * this case, even if the position is
4801 				 * negative, rindex() returns 0 -- and even if
4802 				 * the position is greater than the length,
4803 				 * index() returns the string length.  These
4804 				 * semantics violate the notion that index()
4805 				 * should never return a value less than the
4806 				 * specified position and that rindex() should
4807 				 * never return a value greater than the
4808 				 * specified position.  (One assumes that
4809 				 * these semantics are artifacts of Perl's
4810 				 * implementation and not the results of
4811 				 * deliberate design -- it beggars belief that
4812 				 * even Larry Wall could desire such oddness.)
4813 				 * While in the abstract one would wish for
4814 				 * consistent position semantics across
4815 				 * substr(), index() and rindex() -- or at the
4816 				 * very least self-consistent position
4817 				 * semantics for index() and rindex() -- we
4818 				 * instead opt to keep with the extant Perl
4819 				 * semantics, in all their broken glory.  (Do
4820 				 * we have more desire to maintain Perl's
4821 				 * semantics than Perl does?  Probably.)
4822 				 */
4823 				if (subr == DIF_SUBR_RINDEX) {
4824 					if (pos < 0) {
4825 						if (sublen == 0)
4826 							regs[rd] = 0;
4827 						break;
4828 					}
4829 
4830 					if (pos > len)
4831 						pos = len;
4832 				} else {
4833 					if (pos < 0)
4834 						pos = 0;
4835 
4836 					if (pos >= len) {
4837 						if (sublen == 0)
4838 							regs[rd] = len;
4839 						break;
4840 					}
4841 				}
4842 
4843 				addr = orig + pos;
4844 			}
4845 		}
4846 
4847 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4848 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4849 				if (subr != DIF_SUBR_STRSTR) {
4850 					/*
4851 					 * As D index() and rindex() are
4852 					 * modeled on Perl (and not on awk),
4853 					 * we return a zero-based (and not a
4854 					 * one-based) index.  (For you Perl
4855 					 * weenies: no, we're not going to add
4856 					 * $[ -- and shouldn't you be at a con
4857 					 * or something?)
4858 					 */
4859 					regs[rd] = (uintptr_t)(addr - orig);
4860 					break;
4861 				}
4862 
4863 				ASSERT(subr == DIF_SUBR_STRSTR);
4864 				regs[rd] = (uintptr_t)addr;
4865 				break;
4866 			}
4867 		}
4868 
4869 		break;
4870 	}
4871 
4872 	case DIF_SUBR_STRTOK: {
4873 		uintptr_t addr = tupregs[0].dttk_value;
4874 		uintptr_t tokaddr = tupregs[1].dttk_value;
4875 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4876 		uintptr_t limit, toklimit;
4877 		size_t clim;
4878 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4879 		char *dest = (char *)mstate->dtms_scratch_ptr;
4880 		int i;
4881 
4882 		/*
4883 		 * Check both the token buffer and (later) the input buffer,
4884 		 * since both could be non-scratch addresses.
4885 		 */
4886 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4887 			regs[rd] = 0;
4888 			break;
4889 		}
4890 		toklimit = tokaddr + clim;
4891 
4892 		if (!DTRACE_INSCRATCH(mstate, size)) {
4893 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4894 			regs[rd] = 0;
4895 			break;
4896 		}
4897 
4898 		if (addr == 0) {
4899 			/*
4900 			 * If the address specified is NULL, we use our saved
4901 			 * strtok pointer from the mstate.  Note that this
4902 			 * means that the saved strtok pointer is _only_
4903 			 * valid within multiple enablings of the same probe --
4904 			 * it behaves like an implicit clause-local variable.
4905 			 */
4906 			addr = mstate->dtms_strtok;
4907 			limit = mstate->dtms_strtok_limit;
4908 		} else {
4909 			/*
4910 			 * If the user-specified address is non-NULL we must
4911 			 * access check it.  This is the only time we have
4912 			 * a chance to do so, since this address may reside
4913 			 * in the string table of this clause-- future calls
4914 			 * (when we fetch addr from mstate->dtms_strtok)
4915 			 * would fail this access check.
4916 			 */
4917 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4918 			    vstate)) {
4919 				regs[rd] = 0;
4920 				break;
4921 			}
4922 			limit = addr + clim;
4923 		}
4924 
4925 		/*
4926 		 * First, zero the token map, and then process the token
4927 		 * string -- setting a bit in the map for every character
4928 		 * found in the token string.
4929 		 */
4930 		for (i = 0; i < sizeof (tokmap); i++)
4931 			tokmap[i] = 0;
4932 
4933 		for (; tokaddr < toklimit; tokaddr++) {
4934 			if ((c = dtrace_load8(tokaddr)) == '\0')
4935 				break;
4936 
4937 			ASSERT((c >> 3) < sizeof (tokmap));
4938 			tokmap[c >> 3] |= (1 << (c & 0x7));
4939 		}
4940 
4941 		for (; addr < limit; addr++) {
4942 			/*
4943 			 * We're looking for a character that is _not_
4944 			 * contained in the token string.
4945 			 */
4946 			if ((c = dtrace_load8(addr)) == '\0')
4947 				break;
4948 
4949 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4950 				break;
4951 		}
4952 
4953 		if (c == '\0') {
4954 			/*
4955 			 * We reached the end of the string without finding
4956 			 * any character that was not in the token string.
4957 			 * We return NULL in this case, and we set the saved
4958 			 * address to NULL as well.
4959 			 */
4960 			regs[rd] = 0;
4961 			mstate->dtms_strtok = 0;
4962 			mstate->dtms_strtok_limit = 0;
4963 			break;
4964 		}
4965 
4966 		/*
4967 		 * From here on, we're copying into the destination string.
4968 		 */
4969 		for (i = 0; addr < limit && i < size - 1; addr++) {
4970 			if ((c = dtrace_load8(addr)) == '\0')
4971 				break;
4972 
4973 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4974 				break;
4975 
4976 			ASSERT(i < size);
4977 			dest[i++] = c;
4978 		}
4979 
4980 		ASSERT(i < size);
4981 		dest[i] = '\0';
4982 		regs[rd] = (uintptr_t)dest;
4983 		mstate->dtms_scratch_ptr += size;
4984 		mstate->dtms_strtok = addr;
4985 		mstate->dtms_strtok_limit = limit;
4986 		break;
4987 	}
4988 
4989 	case DIF_SUBR_SUBSTR: {
4990 		uintptr_t s = tupregs[0].dttk_value;
4991 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4992 		char *d = (char *)mstate->dtms_scratch_ptr;
4993 		int64_t index = (int64_t)tupregs[1].dttk_value;
4994 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4995 		size_t len = dtrace_strlen((char *)s, size);
4996 		int64_t i;
4997 
4998 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4999 			regs[rd] = 0;
5000 			break;
5001 		}
5002 
5003 		if (!DTRACE_INSCRATCH(mstate, size)) {
5004 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5005 			regs[rd] = 0;
5006 			break;
5007 		}
5008 
5009 		if (nargs <= 2)
5010 			remaining = (int64_t)size;
5011 
5012 		if (index < 0) {
5013 			index += len;
5014 
5015 			if (index < 0 && index + remaining > 0) {
5016 				remaining += index;
5017 				index = 0;
5018 			}
5019 		}
5020 
5021 		if (index >= len || index < 0) {
5022 			remaining = 0;
5023 		} else if (remaining < 0) {
5024 			remaining += len - index;
5025 		} else if (index + remaining > size) {
5026 			remaining = size - index;
5027 		}
5028 
5029 		for (i = 0; i < remaining; i++) {
5030 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5031 				break;
5032 		}
5033 
5034 		d[i] = '\0';
5035 
5036 		mstate->dtms_scratch_ptr += size;
5037 		regs[rd] = (uintptr_t)d;
5038 		break;
5039 	}
5040 
5041 	case DIF_SUBR_JSON: {
5042 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5043 		uintptr_t json = tupregs[0].dttk_value;
5044 		size_t jsonlen = dtrace_strlen((char *)json, size);
5045 		uintptr_t elem = tupregs[1].dttk_value;
5046 		size_t elemlen = dtrace_strlen((char *)elem, size);
5047 
5048 		char *dest = (char *)mstate->dtms_scratch_ptr;
5049 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5050 		char *ee = elemlist;
5051 		int nelems = 1;
5052 		uintptr_t cur;
5053 
5054 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5055 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5056 			regs[rd] = 0;
5057 			break;
5058 		}
5059 
5060 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5061 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5062 			regs[rd] = 0;
5063 			break;
5064 		}
5065 
5066 		/*
5067 		 * Read the element selector and split it up into a packed list
5068 		 * of strings.
5069 		 */
5070 		for (cur = elem; cur < elem + elemlen; cur++) {
5071 			char cc = dtrace_load8(cur);
5072 
5073 			if (cur == elem && cc == '[') {
5074 				/*
5075 				 * If the first element selector key is
5076 				 * actually an array index then ignore the
5077 				 * bracket.
5078 				 */
5079 				continue;
5080 			}
5081 
5082 			if (cc == ']')
5083 				continue;
5084 
5085 			if (cc == '.' || cc == '[') {
5086 				nelems++;
5087 				cc = '\0';
5088 			}
5089 
5090 			*ee++ = cc;
5091 		}
5092 		*ee++ = '\0';
5093 
5094 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5095 		    nelems, dest)) != 0)
5096 			mstate->dtms_scratch_ptr += jsonlen + 1;
5097 		break;
5098 	}
5099 
5100 	case DIF_SUBR_TOUPPER:
5101 	case DIF_SUBR_TOLOWER: {
5102 		uintptr_t s = tupregs[0].dttk_value;
5103 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5104 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5105 		size_t len = dtrace_strlen((char *)s, size);
5106 		char lower, upper, convert;
5107 		int64_t i;
5108 
5109 		if (subr == DIF_SUBR_TOUPPER) {
5110 			lower = 'a';
5111 			upper = 'z';
5112 			convert = 'A';
5113 		} else {
5114 			lower = 'A';
5115 			upper = 'Z';
5116 			convert = 'a';
5117 		}
5118 
5119 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5120 			regs[rd] = 0;
5121 			break;
5122 		}
5123 
5124 		if (!DTRACE_INSCRATCH(mstate, size)) {
5125 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5126 			regs[rd] = 0;
5127 			break;
5128 		}
5129 
5130 		for (i = 0; i < size - 1; i++) {
5131 			if ((c = dtrace_load8(s + i)) == '\0')
5132 				break;
5133 
5134 			if (c >= lower && c <= upper)
5135 				c = convert + (c - lower);
5136 
5137 			dest[i] = c;
5138 		}
5139 
5140 		ASSERT(i < size);
5141 		dest[i] = '\0';
5142 		regs[rd] = (uintptr_t)dest;
5143 		mstate->dtms_scratch_ptr += size;
5144 		break;
5145 	}
5146 
5147 #ifdef illumos
5148 	case DIF_SUBR_GETMAJOR:
5149 #ifdef _LP64
5150 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5151 #else
5152 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5153 #endif
5154 		break;
5155 
5156 	case DIF_SUBR_GETMINOR:
5157 #ifdef _LP64
5158 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5159 #else
5160 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5161 #endif
5162 		break;
5163 
5164 	case DIF_SUBR_DDI_PATHNAME: {
5165 		/*
5166 		 * This one is a galactic mess.  We are going to roughly
5167 		 * emulate ddi_pathname(), but it's made more complicated
5168 		 * by the fact that we (a) want to include the minor name and
5169 		 * (b) must proceed iteratively instead of recursively.
5170 		 */
5171 		uintptr_t dest = mstate->dtms_scratch_ptr;
5172 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5173 		char *start = (char *)dest, *end = start + size - 1;
5174 		uintptr_t daddr = tupregs[0].dttk_value;
5175 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5176 		char *s;
5177 		int i, len, depth = 0;
5178 
5179 		/*
5180 		 * Due to all the pointer jumping we do and context we must
5181 		 * rely upon, we just mandate that the user must have kernel
5182 		 * read privileges to use this routine.
5183 		 */
5184 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5185 			*flags |= CPU_DTRACE_KPRIV;
5186 			*illval = daddr;
5187 			regs[rd] = 0;
5188 		}
5189 
5190 		if (!DTRACE_INSCRATCH(mstate, size)) {
5191 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5192 			regs[rd] = 0;
5193 			break;
5194 		}
5195 
5196 		*end = '\0';
5197 
5198 		/*
5199 		 * We want to have a name for the minor.  In order to do this,
5200 		 * we need to walk the minor list from the devinfo.  We want
5201 		 * to be sure that we don't infinitely walk a circular list,
5202 		 * so we check for circularity by sending a scout pointer
5203 		 * ahead two elements for every element that we iterate over;
5204 		 * if the list is circular, these will ultimately point to the
5205 		 * same element.  You may recognize this little trick as the
5206 		 * answer to a stupid interview question -- one that always
5207 		 * seems to be asked by those who had to have it laboriously
5208 		 * explained to them, and who can't even concisely describe
5209 		 * the conditions under which one would be forced to resort to
5210 		 * this technique.  Needless to say, those conditions are
5211 		 * found here -- and probably only here.  Is this the only use
5212 		 * of this infamous trick in shipping, production code?  If it
5213 		 * isn't, it probably should be...
5214 		 */
5215 		if (minor != -1) {
5216 			uintptr_t maddr = dtrace_loadptr(daddr +
5217 			    offsetof(struct dev_info, devi_minor));
5218 
5219 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5220 			uintptr_t name = offsetof(struct ddi_minor_data,
5221 			    d_minor) + offsetof(struct ddi_minor, name);
5222 			uintptr_t dev = offsetof(struct ddi_minor_data,
5223 			    d_minor) + offsetof(struct ddi_minor, dev);
5224 			uintptr_t scout;
5225 
5226 			if (maddr != NULL)
5227 				scout = dtrace_loadptr(maddr + next);
5228 
5229 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5230 				uint64_t m;
5231 #ifdef _LP64
5232 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5233 #else
5234 				m = dtrace_load32(maddr + dev) & MAXMIN;
5235 #endif
5236 				if (m != minor) {
5237 					maddr = dtrace_loadptr(maddr + next);
5238 
5239 					if (scout == NULL)
5240 						continue;
5241 
5242 					scout = dtrace_loadptr(scout + next);
5243 
5244 					if (scout == NULL)
5245 						continue;
5246 
5247 					scout = dtrace_loadptr(scout + next);
5248 
5249 					if (scout == NULL)
5250 						continue;
5251 
5252 					if (scout == maddr) {
5253 						*flags |= CPU_DTRACE_ILLOP;
5254 						break;
5255 					}
5256 
5257 					continue;
5258 				}
5259 
5260 				/*
5261 				 * We have the minor data.  Now we need to
5262 				 * copy the minor's name into the end of the
5263 				 * pathname.
5264 				 */
5265 				s = (char *)dtrace_loadptr(maddr + name);
5266 				len = dtrace_strlen(s, size);
5267 
5268 				if (*flags & CPU_DTRACE_FAULT)
5269 					break;
5270 
5271 				if (len != 0) {
5272 					if ((end -= (len + 1)) < start)
5273 						break;
5274 
5275 					*end = ':';
5276 				}
5277 
5278 				for (i = 1; i <= len; i++)
5279 					end[i] = dtrace_load8((uintptr_t)s++);
5280 				break;
5281 			}
5282 		}
5283 
5284 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5285 			ddi_node_state_t devi_state;
5286 
5287 			devi_state = dtrace_load32(daddr +
5288 			    offsetof(struct dev_info, devi_node_state));
5289 
5290 			if (*flags & CPU_DTRACE_FAULT)
5291 				break;
5292 
5293 			if (devi_state >= DS_INITIALIZED) {
5294 				s = (char *)dtrace_loadptr(daddr +
5295 				    offsetof(struct dev_info, devi_addr));
5296 				len = dtrace_strlen(s, size);
5297 
5298 				if (*flags & CPU_DTRACE_FAULT)
5299 					break;
5300 
5301 				if (len != 0) {
5302 					if ((end -= (len + 1)) < start)
5303 						break;
5304 
5305 					*end = '@';
5306 				}
5307 
5308 				for (i = 1; i <= len; i++)
5309 					end[i] = dtrace_load8((uintptr_t)s++);
5310 			}
5311 
5312 			/*
5313 			 * Now for the node name...
5314 			 */
5315 			s = (char *)dtrace_loadptr(daddr +
5316 			    offsetof(struct dev_info, devi_node_name));
5317 
5318 			daddr = dtrace_loadptr(daddr +
5319 			    offsetof(struct dev_info, devi_parent));
5320 
5321 			/*
5322 			 * If our parent is NULL (that is, if we're the root
5323 			 * node), we're going to use the special path
5324 			 * "devices".
5325 			 */
5326 			if (daddr == 0)
5327 				s = "devices";
5328 
5329 			len = dtrace_strlen(s, size);
5330 			if (*flags & CPU_DTRACE_FAULT)
5331 				break;
5332 
5333 			if ((end -= (len + 1)) < start)
5334 				break;
5335 
5336 			for (i = 1; i <= len; i++)
5337 				end[i] = dtrace_load8((uintptr_t)s++);
5338 			*end = '/';
5339 
5340 			if (depth++ > dtrace_devdepth_max) {
5341 				*flags |= CPU_DTRACE_ILLOP;
5342 				break;
5343 			}
5344 		}
5345 
5346 		if (end < start)
5347 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5348 
5349 		if (daddr == 0) {
5350 			regs[rd] = (uintptr_t)end;
5351 			mstate->dtms_scratch_ptr += size;
5352 		}
5353 
5354 		break;
5355 	}
5356 #endif
5357 
5358 	case DIF_SUBR_STRJOIN: {
5359 		char *d = (char *)mstate->dtms_scratch_ptr;
5360 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5361 		uintptr_t s1 = tupregs[0].dttk_value;
5362 		uintptr_t s2 = tupregs[1].dttk_value;
5363 		int i = 0, j = 0;
5364 		size_t lim1, lim2;
5365 		char c;
5366 
5367 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5368 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5369 			regs[rd] = 0;
5370 			break;
5371 		}
5372 
5373 		if (!DTRACE_INSCRATCH(mstate, size)) {
5374 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5375 			regs[rd] = 0;
5376 			break;
5377 		}
5378 
5379 		for (;;) {
5380 			if (i >= size) {
5381 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5382 				regs[rd] = 0;
5383 				break;
5384 			}
5385 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5386 			if ((d[i++] = c) == '\0') {
5387 				i--;
5388 				break;
5389 			}
5390 		}
5391 
5392 		for (;;) {
5393 			if (i >= size) {
5394 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5395 				regs[rd] = 0;
5396 				break;
5397 			}
5398 
5399 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5400 			if ((d[i++] = c) == '\0')
5401 				break;
5402 		}
5403 
5404 		if (i < size) {
5405 			mstate->dtms_scratch_ptr += i;
5406 			regs[rd] = (uintptr_t)d;
5407 		}
5408 
5409 		break;
5410 	}
5411 
5412 	case DIF_SUBR_STRTOLL: {
5413 		uintptr_t s = tupregs[0].dttk_value;
5414 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5415 		size_t lim;
5416 		int base = 10;
5417 
5418 		if (nargs > 1) {
5419 			if ((base = tupregs[1].dttk_value) <= 1 ||
5420 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5421 				*flags |= CPU_DTRACE_ILLOP;
5422 				break;
5423 			}
5424 		}
5425 
5426 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5427 			regs[rd] = INT64_MIN;
5428 			break;
5429 		}
5430 
5431 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5432 		break;
5433 	}
5434 
5435 	case DIF_SUBR_LLTOSTR: {
5436 		int64_t i = (int64_t)tupregs[0].dttk_value;
5437 		uint64_t val, digit;
5438 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5439 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5440 		int base = 10;
5441 
5442 		if (nargs > 1) {
5443 			if ((base = tupregs[1].dttk_value) <= 1 ||
5444 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5445 				*flags |= CPU_DTRACE_ILLOP;
5446 				break;
5447 			}
5448 		}
5449 
5450 		val = (base == 10 && i < 0) ? i * -1 : i;
5451 
5452 		if (!DTRACE_INSCRATCH(mstate, size)) {
5453 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5454 			regs[rd] = 0;
5455 			break;
5456 		}
5457 
5458 		for (*end-- = '\0'; val; val /= base) {
5459 			if ((digit = val % base) <= '9' - '0') {
5460 				*end-- = '0' + digit;
5461 			} else {
5462 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5463 			}
5464 		}
5465 
5466 		if (i == 0 && base == 16)
5467 			*end-- = '0';
5468 
5469 		if (base == 16)
5470 			*end-- = 'x';
5471 
5472 		if (i == 0 || base == 8 || base == 16)
5473 			*end-- = '0';
5474 
5475 		if (i < 0 && base == 10)
5476 			*end-- = '-';
5477 
5478 		regs[rd] = (uintptr_t)end + 1;
5479 		mstate->dtms_scratch_ptr += size;
5480 		break;
5481 	}
5482 
5483 	case DIF_SUBR_HTONS:
5484 	case DIF_SUBR_NTOHS:
5485 #if BYTE_ORDER == BIG_ENDIAN
5486 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5487 #else
5488 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5489 #endif
5490 		break;
5491 
5492 
5493 	case DIF_SUBR_HTONL:
5494 	case DIF_SUBR_NTOHL:
5495 #if BYTE_ORDER == BIG_ENDIAN
5496 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5497 #else
5498 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5499 #endif
5500 		break;
5501 
5502 
5503 	case DIF_SUBR_HTONLL:
5504 	case DIF_SUBR_NTOHLL:
5505 #if BYTE_ORDER == BIG_ENDIAN
5506 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5507 #else
5508 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5509 #endif
5510 		break;
5511 
5512 
5513 	case DIF_SUBR_DIRNAME:
5514 	case DIF_SUBR_BASENAME: {
5515 		char *dest = (char *)mstate->dtms_scratch_ptr;
5516 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5517 		uintptr_t src = tupregs[0].dttk_value;
5518 		int i, j, len = dtrace_strlen((char *)src, size);
5519 		int lastbase = -1, firstbase = -1, lastdir = -1;
5520 		int start, end;
5521 
5522 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5523 			regs[rd] = 0;
5524 			break;
5525 		}
5526 
5527 		if (!DTRACE_INSCRATCH(mstate, size)) {
5528 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5529 			regs[rd] = 0;
5530 			break;
5531 		}
5532 
5533 		/*
5534 		 * The basename and dirname for a zero-length string is
5535 		 * defined to be "."
5536 		 */
5537 		if (len == 0) {
5538 			len = 1;
5539 			src = (uintptr_t)".";
5540 		}
5541 
5542 		/*
5543 		 * Start from the back of the string, moving back toward the
5544 		 * front until we see a character that isn't a slash.  That
5545 		 * character is the last character in the basename.
5546 		 */
5547 		for (i = len - 1; i >= 0; i--) {
5548 			if (dtrace_load8(src + i) != '/')
5549 				break;
5550 		}
5551 
5552 		if (i >= 0)
5553 			lastbase = i;
5554 
5555 		/*
5556 		 * Starting from the last character in the basename, move
5557 		 * towards the front until we find a slash.  The character
5558 		 * that we processed immediately before that is the first
5559 		 * character in the basename.
5560 		 */
5561 		for (; i >= 0; i--) {
5562 			if (dtrace_load8(src + i) == '/')
5563 				break;
5564 		}
5565 
5566 		if (i >= 0)
5567 			firstbase = i + 1;
5568 
5569 		/*
5570 		 * Now keep going until we find a non-slash character.  That
5571 		 * character is the last character in the dirname.
5572 		 */
5573 		for (; i >= 0; i--) {
5574 			if (dtrace_load8(src + i) != '/')
5575 				break;
5576 		}
5577 
5578 		if (i >= 0)
5579 			lastdir = i;
5580 
5581 		ASSERT(!(lastbase == -1 && firstbase != -1));
5582 		ASSERT(!(firstbase == -1 && lastdir != -1));
5583 
5584 		if (lastbase == -1) {
5585 			/*
5586 			 * We didn't find a non-slash character.  We know that
5587 			 * the length is non-zero, so the whole string must be
5588 			 * slashes.  In either the dirname or the basename
5589 			 * case, we return '/'.
5590 			 */
5591 			ASSERT(firstbase == -1);
5592 			firstbase = lastbase = lastdir = 0;
5593 		}
5594 
5595 		if (firstbase == -1) {
5596 			/*
5597 			 * The entire string consists only of a basename
5598 			 * component.  If we're looking for dirname, we need
5599 			 * to change our string to be just "."; if we're
5600 			 * looking for a basename, we'll just set the first
5601 			 * character of the basename to be 0.
5602 			 */
5603 			if (subr == DIF_SUBR_DIRNAME) {
5604 				ASSERT(lastdir == -1);
5605 				src = (uintptr_t)".";
5606 				lastdir = 0;
5607 			} else {
5608 				firstbase = 0;
5609 			}
5610 		}
5611 
5612 		if (subr == DIF_SUBR_DIRNAME) {
5613 			if (lastdir == -1) {
5614 				/*
5615 				 * We know that we have a slash in the name --
5616 				 * or lastdir would be set to 0, above.  And
5617 				 * because lastdir is -1, we know that this
5618 				 * slash must be the first character.  (That
5619 				 * is, the full string must be of the form
5620 				 * "/basename".)  In this case, the last
5621 				 * character of the directory name is 0.
5622 				 */
5623 				lastdir = 0;
5624 			}
5625 
5626 			start = 0;
5627 			end = lastdir;
5628 		} else {
5629 			ASSERT(subr == DIF_SUBR_BASENAME);
5630 			ASSERT(firstbase != -1 && lastbase != -1);
5631 			start = firstbase;
5632 			end = lastbase;
5633 		}
5634 
5635 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5636 			dest[j] = dtrace_load8(src + i);
5637 
5638 		dest[j] = '\0';
5639 		regs[rd] = (uintptr_t)dest;
5640 		mstate->dtms_scratch_ptr += size;
5641 		break;
5642 	}
5643 
5644 	case DIF_SUBR_GETF: {
5645 		uintptr_t fd = tupregs[0].dttk_value;
5646 		struct filedesc *fdp;
5647 		file_t *fp;
5648 
5649 		if (!dtrace_priv_proc(state)) {
5650 			regs[rd] = 0;
5651 			break;
5652 		}
5653 		fdp = curproc->p_fd;
5654 		FILEDESC_SLOCK(fdp);
5655 		fp = fget_locked(fdp, fd);
5656 		mstate->dtms_getf = fp;
5657 		regs[rd] = (uintptr_t)fp;
5658 		FILEDESC_SUNLOCK(fdp);
5659 		break;
5660 	}
5661 
5662 	case DIF_SUBR_CLEANPATH: {
5663 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5664 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5665 		uintptr_t src = tupregs[0].dttk_value;
5666 		size_t lim;
5667 		int i = 0, j = 0;
5668 #ifdef illumos
5669 		zone_t *z;
5670 #endif
5671 
5672 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5673 			regs[rd] = 0;
5674 			break;
5675 		}
5676 
5677 		if (!DTRACE_INSCRATCH(mstate, size)) {
5678 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5679 			regs[rd] = 0;
5680 			break;
5681 		}
5682 
5683 		/*
5684 		 * Move forward, loading each character.
5685 		 */
5686 		do {
5687 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5688 next:
5689 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5690 				break;
5691 
5692 			if (c != '/') {
5693 				dest[j++] = c;
5694 				continue;
5695 			}
5696 
5697 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5698 
5699 			if (c == '/') {
5700 				/*
5701 				 * We have two slashes -- we can just advance
5702 				 * to the next character.
5703 				 */
5704 				goto next;
5705 			}
5706 
5707 			if (c != '.') {
5708 				/*
5709 				 * This is not "." and it's not ".." -- we can
5710 				 * just store the "/" and this character and
5711 				 * drive on.
5712 				 */
5713 				dest[j++] = '/';
5714 				dest[j++] = c;
5715 				continue;
5716 			}
5717 
5718 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5719 
5720 			if (c == '/') {
5721 				/*
5722 				 * This is a "/./" component.  We're not going
5723 				 * to store anything in the destination buffer;
5724 				 * we're just going to go to the next component.
5725 				 */
5726 				goto next;
5727 			}
5728 
5729 			if (c != '.') {
5730 				/*
5731 				 * This is not ".." -- we can just store the
5732 				 * "/." and this character and continue
5733 				 * processing.
5734 				 */
5735 				dest[j++] = '/';
5736 				dest[j++] = '.';
5737 				dest[j++] = c;
5738 				continue;
5739 			}
5740 
5741 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5742 
5743 			if (c != '/' && c != '\0') {
5744 				/*
5745 				 * This is not ".." -- it's "..[mumble]".
5746 				 * We'll store the "/.." and this character
5747 				 * and continue processing.
5748 				 */
5749 				dest[j++] = '/';
5750 				dest[j++] = '.';
5751 				dest[j++] = '.';
5752 				dest[j++] = c;
5753 				continue;
5754 			}
5755 
5756 			/*
5757 			 * This is "/../" or "/..\0".  We need to back up
5758 			 * our destination pointer until we find a "/".
5759 			 */
5760 			i--;
5761 			while (j != 0 && dest[--j] != '/')
5762 				continue;
5763 
5764 			if (c == '\0')
5765 				dest[++j] = '/';
5766 		} while (c != '\0');
5767 
5768 		dest[j] = '\0';
5769 
5770 #ifdef illumos
5771 		if (mstate->dtms_getf != NULL &&
5772 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5773 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5774 			/*
5775 			 * If we've done a getf() as a part of this ECB and we
5776 			 * don't have kernel access (and we're not in the global
5777 			 * zone), check if the path we cleaned up begins with
5778 			 * the zone's root path, and trim it off if so.  Note
5779 			 * that this is an output cleanliness issue, not a
5780 			 * security issue: knowing one's zone root path does
5781 			 * not enable privilege escalation.
5782 			 */
5783 			if (strstr(dest, z->zone_rootpath) == dest)
5784 				dest += strlen(z->zone_rootpath) - 1;
5785 		}
5786 #endif
5787 
5788 		regs[rd] = (uintptr_t)dest;
5789 		mstate->dtms_scratch_ptr += size;
5790 		break;
5791 	}
5792 
5793 	case DIF_SUBR_INET_NTOA:
5794 	case DIF_SUBR_INET_NTOA6:
5795 	case DIF_SUBR_INET_NTOP: {
5796 		size_t size;
5797 		int af, argi, i;
5798 		char *base, *end;
5799 
5800 		if (subr == DIF_SUBR_INET_NTOP) {
5801 			af = (int)tupregs[0].dttk_value;
5802 			argi = 1;
5803 		} else {
5804 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5805 			argi = 0;
5806 		}
5807 
5808 		if (af == AF_INET) {
5809 			ipaddr_t ip4;
5810 			uint8_t *ptr8, val;
5811 
5812 			if (!dtrace_canload(tupregs[argi].dttk_value,
5813 			    sizeof (ipaddr_t), mstate, vstate)) {
5814 				regs[rd] = 0;
5815 				break;
5816 			}
5817 
5818 			/*
5819 			 * Safely load the IPv4 address.
5820 			 */
5821 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5822 
5823 			/*
5824 			 * Check an IPv4 string will fit in scratch.
5825 			 */
5826 			size = INET_ADDRSTRLEN;
5827 			if (!DTRACE_INSCRATCH(mstate, size)) {
5828 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5829 				regs[rd] = 0;
5830 				break;
5831 			}
5832 			base = (char *)mstate->dtms_scratch_ptr;
5833 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5834 
5835 			/*
5836 			 * Stringify as a dotted decimal quad.
5837 			 */
5838 			*end-- = '\0';
5839 			ptr8 = (uint8_t *)&ip4;
5840 			for (i = 3; i >= 0; i--) {
5841 				val = ptr8[i];
5842 
5843 				if (val == 0) {
5844 					*end-- = '0';
5845 				} else {
5846 					for (; val; val /= 10) {
5847 						*end-- = '0' + (val % 10);
5848 					}
5849 				}
5850 
5851 				if (i > 0)
5852 					*end-- = '.';
5853 			}
5854 			ASSERT(end + 1 >= base);
5855 
5856 		} else if (af == AF_INET6) {
5857 			struct in6_addr ip6;
5858 			int firstzero, tryzero, numzero, v6end;
5859 			uint16_t val;
5860 			const char digits[] = "0123456789abcdef";
5861 
5862 			/*
5863 			 * Stringify using RFC 1884 convention 2 - 16 bit
5864 			 * hexadecimal values with a zero-run compression.
5865 			 * Lower case hexadecimal digits are used.
5866 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5867 			 * The IPv4 embedded form is returned for inet_ntop,
5868 			 * just the IPv4 string is returned for inet_ntoa6.
5869 			 */
5870 
5871 			if (!dtrace_canload(tupregs[argi].dttk_value,
5872 			    sizeof (struct in6_addr), mstate, vstate)) {
5873 				regs[rd] = 0;
5874 				break;
5875 			}
5876 
5877 			/*
5878 			 * Safely load the IPv6 address.
5879 			 */
5880 			dtrace_bcopy(
5881 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5882 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5883 
5884 			/*
5885 			 * Check an IPv6 string will fit in scratch.
5886 			 */
5887 			size = INET6_ADDRSTRLEN;
5888 			if (!DTRACE_INSCRATCH(mstate, size)) {
5889 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5890 				regs[rd] = 0;
5891 				break;
5892 			}
5893 			base = (char *)mstate->dtms_scratch_ptr;
5894 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5895 			*end-- = '\0';
5896 
5897 			/*
5898 			 * Find the longest run of 16 bit zero values
5899 			 * for the single allowed zero compression - "::".
5900 			 */
5901 			firstzero = -1;
5902 			tryzero = -1;
5903 			numzero = 1;
5904 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5905 #ifdef illumos
5906 				if (ip6._S6_un._S6_u8[i] == 0 &&
5907 #else
5908 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5909 #endif
5910 				    tryzero == -1 && i % 2 == 0) {
5911 					tryzero = i;
5912 					continue;
5913 				}
5914 
5915 				if (tryzero != -1 &&
5916 #ifdef illumos
5917 				    (ip6._S6_un._S6_u8[i] != 0 ||
5918 #else
5919 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5920 #endif
5921 				    i == sizeof (struct in6_addr) - 1)) {
5922 
5923 					if (i - tryzero <= numzero) {
5924 						tryzero = -1;
5925 						continue;
5926 					}
5927 
5928 					firstzero = tryzero;
5929 					numzero = i - i % 2 - tryzero;
5930 					tryzero = -1;
5931 
5932 #ifdef illumos
5933 					if (ip6._S6_un._S6_u8[i] == 0 &&
5934 #else
5935 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5936 #endif
5937 					    i == sizeof (struct in6_addr) - 1)
5938 						numzero += 2;
5939 				}
5940 			}
5941 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5942 
5943 			/*
5944 			 * Check for an IPv4 embedded address.
5945 			 */
5946 			v6end = sizeof (struct in6_addr) - 2;
5947 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5948 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5949 				for (i = sizeof (struct in6_addr) - 1;
5950 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5951 					ASSERT(end >= base);
5952 
5953 #ifdef illumos
5954 					val = ip6._S6_un._S6_u8[i];
5955 #else
5956 					val = ip6.__u6_addr.__u6_addr8[i];
5957 #endif
5958 
5959 					if (val == 0) {
5960 						*end-- = '0';
5961 					} else {
5962 						for (; val; val /= 10) {
5963 							*end-- = '0' + val % 10;
5964 						}
5965 					}
5966 
5967 					if (i > DTRACE_V4MAPPED_OFFSET)
5968 						*end-- = '.';
5969 				}
5970 
5971 				if (subr == DIF_SUBR_INET_NTOA6)
5972 					goto inetout;
5973 
5974 				/*
5975 				 * Set v6end to skip the IPv4 address that
5976 				 * we have already stringified.
5977 				 */
5978 				v6end = 10;
5979 			}
5980 
5981 			/*
5982 			 * Build the IPv6 string by working through the
5983 			 * address in reverse.
5984 			 */
5985 			for (i = v6end; i >= 0; i -= 2) {
5986 				ASSERT(end >= base);
5987 
5988 				if (i == firstzero + numzero - 2) {
5989 					*end-- = ':';
5990 					*end-- = ':';
5991 					i -= numzero - 2;
5992 					continue;
5993 				}
5994 
5995 				if (i < 14 && i != firstzero - 2)
5996 					*end-- = ':';
5997 
5998 #ifdef illumos
5999 				val = (ip6._S6_un._S6_u8[i] << 8) +
6000 				    ip6._S6_un._S6_u8[i + 1];
6001 #else
6002 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6003 				    ip6.__u6_addr.__u6_addr8[i + 1];
6004 #endif
6005 
6006 				if (val == 0) {
6007 					*end-- = '0';
6008 				} else {
6009 					for (; val; val /= 16) {
6010 						*end-- = digits[val % 16];
6011 					}
6012 				}
6013 			}
6014 			ASSERT(end + 1 >= base);
6015 
6016 		} else {
6017 			/*
6018 			 * The user didn't use AH_INET or AH_INET6.
6019 			 */
6020 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6021 			regs[rd] = 0;
6022 			break;
6023 		}
6024 
6025 inetout:	regs[rd] = (uintptr_t)end + 1;
6026 		mstate->dtms_scratch_ptr += size;
6027 		break;
6028 	}
6029 
6030 	case DIF_SUBR_MEMREF: {
6031 		uintptr_t size = 2 * sizeof(uintptr_t);
6032 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6033 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6034 
6035 		/* address and length */
6036 		memref[0] = tupregs[0].dttk_value;
6037 		memref[1] = tupregs[1].dttk_value;
6038 
6039 		regs[rd] = (uintptr_t) memref;
6040 		mstate->dtms_scratch_ptr += scratch_size;
6041 		break;
6042 	}
6043 
6044 #ifndef illumos
6045 	case DIF_SUBR_MEMSTR: {
6046 		char *str = (char *)mstate->dtms_scratch_ptr;
6047 		uintptr_t mem = tupregs[0].dttk_value;
6048 		char c = tupregs[1].dttk_value;
6049 		size_t size = tupregs[2].dttk_value;
6050 		uint8_t n;
6051 		int i;
6052 
6053 		regs[rd] = 0;
6054 
6055 		if (size == 0)
6056 			break;
6057 
6058 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6059 			break;
6060 
6061 		if (!DTRACE_INSCRATCH(mstate, size)) {
6062 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6063 			break;
6064 		}
6065 
6066 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6067 			*flags |= CPU_DTRACE_ILLOP;
6068 			break;
6069 		}
6070 
6071 		for (i = 0; i < size - 1; i++) {
6072 			n = dtrace_load8(mem++);
6073 			str[i] = (n == 0) ? c : n;
6074 		}
6075 		str[size - 1] = 0;
6076 
6077 		regs[rd] = (uintptr_t)str;
6078 		mstate->dtms_scratch_ptr += size;
6079 		break;
6080 	}
6081 #endif
6082 	}
6083 }
6084 
6085 /*
6086  * Emulate the execution of DTrace IR instructions specified by the given
6087  * DIF object.  This function is deliberately void of assertions as all of
6088  * the necessary checks are handled by a call to dtrace_difo_validate().
6089  */
6090 static uint64_t
6091 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6092     dtrace_vstate_t *vstate, dtrace_state_t *state)
6093 {
6094 	const dif_instr_t *text = difo->dtdo_buf;
6095 	const uint_t textlen = difo->dtdo_len;
6096 	const char *strtab = difo->dtdo_strtab;
6097 	const uint64_t *inttab = difo->dtdo_inttab;
6098 
6099 	uint64_t rval = 0;
6100 	dtrace_statvar_t *svar;
6101 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6102 	dtrace_difv_t *v;
6103 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6104 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6105 
6106 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6107 	uint64_t regs[DIF_DIR_NREGS];
6108 	uint64_t *tmp;
6109 
6110 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6111 	int64_t cc_r;
6112 	uint_t pc = 0, id, opc = 0;
6113 	uint8_t ttop = 0;
6114 	dif_instr_t instr;
6115 	uint_t r1, r2, rd;
6116 
6117 	/*
6118 	 * We stash the current DIF object into the machine state: we need it
6119 	 * for subsequent access checking.
6120 	 */
6121 	mstate->dtms_difo = difo;
6122 
6123 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6124 
6125 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6126 		opc = pc;
6127 
6128 		instr = text[pc++];
6129 		r1 = DIF_INSTR_R1(instr);
6130 		r2 = DIF_INSTR_R2(instr);
6131 		rd = DIF_INSTR_RD(instr);
6132 
6133 		switch (DIF_INSTR_OP(instr)) {
6134 		case DIF_OP_OR:
6135 			regs[rd] = regs[r1] | regs[r2];
6136 			break;
6137 		case DIF_OP_XOR:
6138 			regs[rd] = regs[r1] ^ regs[r2];
6139 			break;
6140 		case DIF_OP_AND:
6141 			regs[rd] = regs[r1] & regs[r2];
6142 			break;
6143 		case DIF_OP_SLL:
6144 			regs[rd] = regs[r1] << regs[r2];
6145 			break;
6146 		case DIF_OP_SRL:
6147 			regs[rd] = regs[r1] >> regs[r2];
6148 			break;
6149 		case DIF_OP_SUB:
6150 			regs[rd] = regs[r1] - regs[r2];
6151 			break;
6152 		case DIF_OP_ADD:
6153 			regs[rd] = regs[r1] + regs[r2];
6154 			break;
6155 		case DIF_OP_MUL:
6156 			regs[rd] = regs[r1] * regs[r2];
6157 			break;
6158 		case DIF_OP_SDIV:
6159 			if (regs[r2] == 0) {
6160 				regs[rd] = 0;
6161 				*flags |= CPU_DTRACE_DIVZERO;
6162 			} else {
6163 				regs[rd] = (int64_t)regs[r1] /
6164 				    (int64_t)regs[r2];
6165 			}
6166 			break;
6167 
6168 		case DIF_OP_UDIV:
6169 			if (regs[r2] == 0) {
6170 				regs[rd] = 0;
6171 				*flags |= CPU_DTRACE_DIVZERO;
6172 			} else {
6173 				regs[rd] = regs[r1] / regs[r2];
6174 			}
6175 			break;
6176 
6177 		case DIF_OP_SREM:
6178 			if (regs[r2] == 0) {
6179 				regs[rd] = 0;
6180 				*flags |= CPU_DTRACE_DIVZERO;
6181 			} else {
6182 				regs[rd] = (int64_t)regs[r1] %
6183 				    (int64_t)regs[r2];
6184 			}
6185 			break;
6186 
6187 		case DIF_OP_UREM:
6188 			if (regs[r2] == 0) {
6189 				regs[rd] = 0;
6190 				*flags |= CPU_DTRACE_DIVZERO;
6191 			} else {
6192 				regs[rd] = regs[r1] % regs[r2];
6193 			}
6194 			break;
6195 
6196 		case DIF_OP_NOT:
6197 			regs[rd] = ~regs[r1];
6198 			break;
6199 		case DIF_OP_MOV:
6200 			regs[rd] = regs[r1];
6201 			break;
6202 		case DIF_OP_CMP:
6203 			cc_r = regs[r1] - regs[r2];
6204 			cc_n = cc_r < 0;
6205 			cc_z = cc_r == 0;
6206 			cc_v = 0;
6207 			cc_c = regs[r1] < regs[r2];
6208 			break;
6209 		case DIF_OP_TST:
6210 			cc_n = cc_v = cc_c = 0;
6211 			cc_z = regs[r1] == 0;
6212 			break;
6213 		case DIF_OP_BA:
6214 			pc = DIF_INSTR_LABEL(instr);
6215 			break;
6216 		case DIF_OP_BE:
6217 			if (cc_z)
6218 				pc = DIF_INSTR_LABEL(instr);
6219 			break;
6220 		case DIF_OP_BNE:
6221 			if (cc_z == 0)
6222 				pc = DIF_INSTR_LABEL(instr);
6223 			break;
6224 		case DIF_OP_BG:
6225 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6226 				pc = DIF_INSTR_LABEL(instr);
6227 			break;
6228 		case DIF_OP_BGU:
6229 			if ((cc_c | cc_z) == 0)
6230 				pc = DIF_INSTR_LABEL(instr);
6231 			break;
6232 		case DIF_OP_BGE:
6233 			if ((cc_n ^ cc_v) == 0)
6234 				pc = DIF_INSTR_LABEL(instr);
6235 			break;
6236 		case DIF_OP_BGEU:
6237 			if (cc_c == 0)
6238 				pc = DIF_INSTR_LABEL(instr);
6239 			break;
6240 		case DIF_OP_BL:
6241 			if (cc_n ^ cc_v)
6242 				pc = DIF_INSTR_LABEL(instr);
6243 			break;
6244 		case DIF_OP_BLU:
6245 			if (cc_c)
6246 				pc = DIF_INSTR_LABEL(instr);
6247 			break;
6248 		case DIF_OP_BLE:
6249 			if (cc_z | (cc_n ^ cc_v))
6250 				pc = DIF_INSTR_LABEL(instr);
6251 			break;
6252 		case DIF_OP_BLEU:
6253 			if (cc_c | cc_z)
6254 				pc = DIF_INSTR_LABEL(instr);
6255 			break;
6256 		case DIF_OP_RLDSB:
6257 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6258 				break;
6259 			/*FALLTHROUGH*/
6260 		case DIF_OP_LDSB:
6261 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6262 			break;
6263 		case DIF_OP_RLDSH:
6264 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6265 				break;
6266 			/*FALLTHROUGH*/
6267 		case DIF_OP_LDSH:
6268 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6269 			break;
6270 		case DIF_OP_RLDSW:
6271 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6272 				break;
6273 			/*FALLTHROUGH*/
6274 		case DIF_OP_LDSW:
6275 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6276 			break;
6277 		case DIF_OP_RLDUB:
6278 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6279 				break;
6280 			/*FALLTHROUGH*/
6281 		case DIF_OP_LDUB:
6282 			regs[rd] = dtrace_load8(regs[r1]);
6283 			break;
6284 		case DIF_OP_RLDUH:
6285 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6286 				break;
6287 			/*FALLTHROUGH*/
6288 		case DIF_OP_LDUH:
6289 			regs[rd] = dtrace_load16(regs[r1]);
6290 			break;
6291 		case DIF_OP_RLDUW:
6292 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6293 				break;
6294 			/*FALLTHROUGH*/
6295 		case DIF_OP_LDUW:
6296 			regs[rd] = dtrace_load32(regs[r1]);
6297 			break;
6298 		case DIF_OP_RLDX:
6299 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6300 				break;
6301 			/*FALLTHROUGH*/
6302 		case DIF_OP_LDX:
6303 			regs[rd] = dtrace_load64(regs[r1]);
6304 			break;
6305 		case DIF_OP_ULDSB:
6306 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6307 			regs[rd] = (int8_t)
6308 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6309 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6310 			break;
6311 		case DIF_OP_ULDSH:
6312 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313 			regs[rd] = (int16_t)
6314 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6315 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316 			break;
6317 		case DIF_OP_ULDSW:
6318 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319 			regs[rd] = (int32_t)
6320 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6321 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322 			break;
6323 		case DIF_OP_ULDUB:
6324 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325 			regs[rd] =
6326 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6327 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328 			break;
6329 		case DIF_OP_ULDUH:
6330 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331 			regs[rd] =
6332 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6333 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334 			break;
6335 		case DIF_OP_ULDUW:
6336 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337 			regs[rd] =
6338 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6339 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340 			break;
6341 		case DIF_OP_ULDX:
6342 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343 			regs[rd] =
6344 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6345 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346 			break;
6347 		case DIF_OP_RET:
6348 			rval = regs[rd];
6349 			pc = textlen;
6350 			break;
6351 		case DIF_OP_NOP:
6352 			break;
6353 		case DIF_OP_SETX:
6354 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6355 			break;
6356 		case DIF_OP_SETS:
6357 			regs[rd] = (uint64_t)(uintptr_t)
6358 			    (strtab + DIF_INSTR_STRING(instr));
6359 			break;
6360 		case DIF_OP_SCMP: {
6361 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6362 			uintptr_t s1 = regs[r1];
6363 			uintptr_t s2 = regs[r2];
6364 			size_t lim1, lim2;
6365 
6366 			if (s1 != 0 &&
6367 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6368 				break;
6369 			if (s2 != 0 &&
6370 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6371 				break;
6372 
6373 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6374 			    MIN(lim1, lim2));
6375 
6376 			cc_n = cc_r < 0;
6377 			cc_z = cc_r == 0;
6378 			cc_v = cc_c = 0;
6379 			break;
6380 		}
6381 		case DIF_OP_LDGA:
6382 			regs[rd] = dtrace_dif_variable(mstate, state,
6383 			    r1, regs[r2]);
6384 			break;
6385 		case DIF_OP_LDGS:
6386 			id = DIF_INSTR_VAR(instr);
6387 
6388 			if (id >= DIF_VAR_OTHER_UBASE) {
6389 				uintptr_t a;
6390 
6391 				id -= DIF_VAR_OTHER_UBASE;
6392 				svar = vstate->dtvs_globals[id];
6393 				ASSERT(svar != NULL);
6394 				v = &svar->dtsv_var;
6395 
6396 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6397 					regs[rd] = svar->dtsv_data;
6398 					break;
6399 				}
6400 
6401 				a = (uintptr_t)svar->dtsv_data;
6402 
6403 				if (*(uint8_t *)a == UINT8_MAX) {
6404 					/*
6405 					 * If the 0th byte is set to UINT8_MAX
6406 					 * then this is to be treated as a
6407 					 * reference to a NULL variable.
6408 					 */
6409 					regs[rd] = 0;
6410 				} else {
6411 					regs[rd] = a + sizeof (uint64_t);
6412 				}
6413 
6414 				break;
6415 			}
6416 
6417 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6418 			break;
6419 
6420 		case DIF_OP_STGS:
6421 			id = DIF_INSTR_VAR(instr);
6422 
6423 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6424 			id -= DIF_VAR_OTHER_UBASE;
6425 
6426 			VERIFY(id < vstate->dtvs_nglobals);
6427 			svar = vstate->dtvs_globals[id];
6428 			ASSERT(svar != NULL);
6429 			v = &svar->dtsv_var;
6430 
6431 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6432 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6433 				size_t lim;
6434 
6435 				ASSERT(a != 0);
6436 				ASSERT(svar->dtsv_size != 0);
6437 
6438 				if (regs[rd] == 0) {
6439 					*(uint8_t *)a = UINT8_MAX;
6440 					break;
6441 				} else {
6442 					*(uint8_t *)a = 0;
6443 					a += sizeof (uint64_t);
6444 				}
6445 				if (!dtrace_vcanload(
6446 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6447 				    &lim, mstate, vstate))
6448 					break;
6449 
6450 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6451 				    (void *)a, &v->dtdv_type, lim);
6452 				break;
6453 			}
6454 
6455 			svar->dtsv_data = regs[rd];
6456 			break;
6457 
6458 		case DIF_OP_LDTA:
6459 			/*
6460 			 * There are no DTrace built-in thread-local arrays at
6461 			 * present.  This opcode is saved for future work.
6462 			 */
6463 			*flags |= CPU_DTRACE_ILLOP;
6464 			regs[rd] = 0;
6465 			break;
6466 
6467 		case DIF_OP_LDLS:
6468 			id = DIF_INSTR_VAR(instr);
6469 
6470 			if (id < DIF_VAR_OTHER_UBASE) {
6471 				/*
6472 				 * For now, this has no meaning.
6473 				 */
6474 				regs[rd] = 0;
6475 				break;
6476 			}
6477 
6478 			id -= DIF_VAR_OTHER_UBASE;
6479 
6480 			ASSERT(id < vstate->dtvs_nlocals);
6481 			ASSERT(vstate->dtvs_locals != NULL);
6482 
6483 			svar = vstate->dtvs_locals[id];
6484 			ASSERT(svar != NULL);
6485 			v = &svar->dtsv_var;
6486 
6487 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6488 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6489 				size_t sz = v->dtdv_type.dtdt_size;
6490 				size_t lim;
6491 
6492 				sz += sizeof (uint64_t);
6493 				ASSERT(svar->dtsv_size == NCPU * sz);
6494 				a += curcpu * sz;
6495 
6496 				if (*(uint8_t *)a == UINT8_MAX) {
6497 					/*
6498 					 * If the 0th byte is set to UINT8_MAX
6499 					 * then this is to be treated as a
6500 					 * reference to a NULL variable.
6501 					 */
6502 					regs[rd] = 0;
6503 				} else {
6504 					regs[rd] = a + sizeof (uint64_t);
6505 				}
6506 
6507 				break;
6508 			}
6509 
6510 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6511 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6512 			regs[rd] = tmp[curcpu];
6513 			break;
6514 
6515 		case DIF_OP_STLS:
6516 			id = DIF_INSTR_VAR(instr);
6517 
6518 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6519 			id -= DIF_VAR_OTHER_UBASE;
6520 			VERIFY(id < vstate->dtvs_nlocals);
6521 
6522 			ASSERT(vstate->dtvs_locals != NULL);
6523 			svar = vstate->dtvs_locals[id];
6524 			ASSERT(svar != NULL);
6525 			v = &svar->dtsv_var;
6526 
6527 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6528 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6529 				size_t sz = v->dtdv_type.dtdt_size;
6530 				size_t lim;
6531 
6532 				sz += sizeof (uint64_t);
6533 				ASSERT(svar->dtsv_size == NCPU * sz);
6534 				a += curcpu * sz;
6535 
6536 				if (regs[rd] == 0) {
6537 					*(uint8_t *)a = UINT8_MAX;
6538 					break;
6539 				} else {
6540 					*(uint8_t *)a = 0;
6541 					a += sizeof (uint64_t);
6542 				}
6543 
6544 				if (!dtrace_vcanload(
6545 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6546 				    &lim, mstate, vstate))
6547 					break;
6548 
6549 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6550 				    (void *)a, &v->dtdv_type, lim);
6551 				break;
6552 			}
6553 
6554 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6555 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6556 			tmp[curcpu] = regs[rd];
6557 			break;
6558 
6559 		case DIF_OP_LDTS: {
6560 			dtrace_dynvar_t *dvar;
6561 			dtrace_key_t *key;
6562 
6563 			id = DIF_INSTR_VAR(instr);
6564 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6565 			id -= DIF_VAR_OTHER_UBASE;
6566 			v = &vstate->dtvs_tlocals[id];
6567 
6568 			key = &tupregs[DIF_DTR_NREGS];
6569 			key[0].dttk_value = (uint64_t)id;
6570 			key[0].dttk_size = 0;
6571 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6572 			key[1].dttk_size = 0;
6573 
6574 			dvar = dtrace_dynvar(dstate, 2, key,
6575 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6576 			    mstate, vstate);
6577 
6578 			if (dvar == NULL) {
6579 				regs[rd] = 0;
6580 				break;
6581 			}
6582 
6583 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6584 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6585 			} else {
6586 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6587 			}
6588 
6589 			break;
6590 		}
6591 
6592 		case DIF_OP_STTS: {
6593 			dtrace_dynvar_t *dvar;
6594 			dtrace_key_t *key;
6595 
6596 			id = DIF_INSTR_VAR(instr);
6597 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6598 			id -= DIF_VAR_OTHER_UBASE;
6599 			VERIFY(id < vstate->dtvs_ntlocals);
6600 
6601 			key = &tupregs[DIF_DTR_NREGS];
6602 			key[0].dttk_value = (uint64_t)id;
6603 			key[0].dttk_size = 0;
6604 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6605 			key[1].dttk_size = 0;
6606 			v = &vstate->dtvs_tlocals[id];
6607 
6608 			dvar = dtrace_dynvar(dstate, 2, key,
6609 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6610 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6611 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6612 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6613 
6614 			/*
6615 			 * Given that we're storing to thread-local data,
6616 			 * we need to flush our predicate cache.
6617 			 */
6618 			curthread->t_predcache = 0;
6619 
6620 			if (dvar == NULL)
6621 				break;
6622 
6623 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6624 				size_t lim;
6625 
6626 				if (!dtrace_vcanload(
6627 				    (void *)(uintptr_t)regs[rd],
6628 				    &v->dtdv_type, &lim, mstate, vstate))
6629 					break;
6630 
6631 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6632 				    dvar->dtdv_data, &v->dtdv_type, lim);
6633 			} else {
6634 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6635 			}
6636 
6637 			break;
6638 		}
6639 
6640 		case DIF_OP_SRA:
6641 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6642 			break;
6643 
6644 		case DIF_OP_CALL:
6645 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6646 			    regs, tupregs, ttop, mstate, state);
6647 			break;
6648 
6649 		case DIF_OP_PUSHTR:
6650 			if (ttop == DIF_DTR_NREGS) {
6651 				*flags |= CPU_DTRACE_TUPOFLOW;
6652 				break;
6653 			}
6654 
6655 			if (r1 == DIF_TYPE_STRING) {
6656 				/*
6657 				 * If this is a string type and the size is 0,
6658 				 * we'll use the system-wide default string
6659 				 * size.  Note that we are _not_ looking at
6660 				 * the value of the DTRACEOPT_STRSIZE option;
6661 				 * had this been set, we would expect to have
6662 				 * a non-zero size value in the "pushtr".
6663 				 */
6664 				tupregs[ttop].dttk_size =
6665 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6666 				    regs[r2] ? regs[r2] :
6667 				    dtrace_strsize_default) + 1;
6668 			} else {
6669 				if (regs[r2] > LONG_MAX) {
6670 					*flags |= CPU_DTRACE_ILLOP;
6671 					break;
6672 				}
6673 
6674 				tupregs[ttop].dttk_size = regs[r2];
6675 			}
6676 
6677 			tupregs[ttop++].dttk_value = regs[rd];
6678 			break;
6679 
6680 		case DIF_OP_PUSHTV:
6681 			if (ttop == DIF_DTR_NREGS) {
6682 				*flags |= CPU_DTRACE_TUPOFLOW;
6683 				break;
6684 			}
6685 
6686 			tupregs[ttop].dttk_value = regs[rd];
6687 			tupregs[ttop++].dttk_size = 0;
6688 			break;
6689 
6690 		case DIF_OP_POPTS:
6691 			if (ttop != 0)
6692 				ttop--;
6693 			break;
6694 
6695 		case DIF_OP_FLUSHTS:
6696 			ttop = 0;
6697 			break;
6698 
6699 		case DIF_OP_LDGAA:
6700 		case DIF_OP_LDTAA: {
6701 			dtrace_dynvar_t *dvar;
6702 			dtrace_key_t *key = tupregs;
6703 			uint_t nkeys = ttop;
6704 
6705 			id = DIF_INSTR_VAR(instr);
6706 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6707 			id -= DIF_VAR_OTHER_UBASE;
6708 
6709 			key[nkeys].dttk_value = (uint64_t)id;
6710 			key[nkeys++].dttk_size = 0;
6711 
6712 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6713 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6714 				key[nkeys++].dttk_size = 0;
6715 				VERIFY(id < vstate->dtvs_ntlocals);
6716 				v = &vstate->dtvs_tlocals[id];
6717 			} else {
6718 				VERIFY(id < vstate->dtvs_nglobals);
6719 				v = &vstate->dtvs_globals[id]->dtsv_var;
6720 			}
6721 
6722 			dvar = dtrace_dynvar(dstate, nkeys, key,
6723 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6724 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6725 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6726 
6727 			if (dvar == NULL) {
6728 				regs[rd] = 0;
6729 				break;
6730 			}
6731 
6732 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6733 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6734 			} else {
6735 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6736 			}
6737 
6738 			break;
6739 		}
6740 
6741 		case DIF_OP_STGAA:
6742 		case DIF_OP_STTAA: {
6743 			dtrace_dynvar_t *dvar;
6744 			dtrace_key_t *key = tupregs;
6745 			uint_t nkeys = ttop;
6746 
6747 			id = DIF_INSTR_VAR(instr);
6748 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6749 			id -= DIF_VAR_OTHER_UBASE;
6750 
6751 			key[nkeys].dttk_value = (uint64_t)id;
6752 			key[nkeys++].dttk_size = 0;
6753 
6754 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6755 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6756 				key[nkeys++].dttk_size = 0;
6757 				VERIFY(id < vstate->dtvs_ntlocals);
6758 				v = &vstate->dtvs_tlocals[id];
6759 			} else {
6760 				VERIFY(id < vstate->dtvs_nglobals);
6761 				v = &vstate->dtvs_globals[id]->dtsv_var;
6762 			}
6763 
6764 			dvar = dtrace_dynvar(dstate, nkeys, key,
6765 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6766 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6767 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6768 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6769 
6770 			if (dvar == NULL)
6771 				break;
6772 
6773 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6774 				size_t lim;
6775 
6776 				if (!dtrace_vcanload(
6777 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6778 				    &lim, mstate, vstate))
6779 					break;
6780 
6781 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6782 				    dvar->dtdv_data, &v->dtdv_type, lim);
6783 			} else {
6784 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6785 			}
6786 
6787 			break;
6788 		}
6789 
6790 		case DIF_OP_ALLOCS: {
6791 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6792 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6793 
6794 			/*
6795 			 * Rounding up the user allocation size could have
6796 			 * overflowed large, bogus allocations (like -1ULL) to
6797 			 * 0.
6798 			 */
6799 			if (size < regs[r1] ||
6800 			    !DTRACE_INSCRATCH(mstate, size)) {
6801 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6802 				regs[rd] = 0;
6803 				break;
6804 			}
6805 
6806 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6807 			mstate->dtms_scratch_ptr += size;
6808 			regs[rd] = ptr;
6809 			break;
6810 		}
6811 
6812 		case DIF_OP_COPYS:
6813 			if (!dtrace_canstore(regs[rd], regs[r2],
6814 			    mstate, vstate)) {
6815 				*flags |= CPU_DTRACE_BADADDR;
6816 				*illval = regs[rd];
6817 				break;
6818 			}
6819 
6820 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6821 				break;
6822 
6823 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6824 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6825 			break;
6826 
6827 		case DIF_OP_STB:
6828 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6829 				*flags |= CPU_DTRACE_BADADDR;
6830 				*illval = regs[rd];
6831 				break;
6832 			}
6833 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6834 			break;
6835 
6836 		case DIF_OP_STH:
6837 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6838 				*flags |= CPU_DTRACE_BADADDR;
6839 				*illval = regs[rd];
6840 				break;
6841 			}
6842 			if (regs[rd] & 1) {
6843 				*flags |= CPU_DTRACE_BADALIGN;
6844 				*illval = regs[rd];
6845 				break;
6846 			}
6847 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6848 			break;
6849 
6850 		case DIF_OP_STW:
6851 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6852 				*flags |= CPU_DTRACE_BADADDR;
6853 				*illval = regs[rd];
6854 				break;
6855 			}
6856 			if (regs[rd] & 3) {
6857 				*flags |= CPU_DTRACE_BADALIGN;
6858 				*illval = regs[rd];
6859 				break;
6860 			}
6861 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6862 			break;
6863 
6864 		case DIF_OP_STX:
6865 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6866 				*flags |= CPU_DTRACE_BADADDR;
6867 				*illval = regs[rd];
6868 				break;
6869 			}
6870 			if (regs[rd] & 7) {
6871 				*flags |= CPU_DTRACE_BADALIGN;
6872 				*illval = regs[rd];
6873 				break;
6874 			}
6875 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6876 			break;
6877 		}
6878 	}
6879 
6880 	if (!(*flags & CPU_DTRACE_FAULT))
6881 		return (rval);
6882 
6883 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6884 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6885 
6886 	return (0);
6887 }
6888 
6889 static void
6890 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6891 {
6892 	dtrace_probe_t *probe = ecb->dte_probe;
6893 	dtrace_provider_t *prov = probe->dtpr_provider;
6894 	char c[DTRACE_FULLNAMELEN + 80], *str;
6895 	char *msg = "dtrace: breakpoint action at probe ";
6896 	char *ecbmsg = " (ecb ";
6897 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6898 	uintptr_t val = (uintptr_t)ecb;
6899 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6900 
6901 	if (dtrace_destructive_disallow)
6902 		return;
6903 
6904 	/*
6905 	 * It's impossible to be taking action on the NULL probe.
6906 	 */
6907 	ASSERT(probe != NULL);
6908 
6909 	/*
6910 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6911 	 * print the provider name, module name, function name and name of
6912 	 * the probe, along with the hex address of the ECB with the breakpoint
6913 	 * action -- all of which we must place in the character buffer by
6914 	 * hand.
6915 	 */
6916 	while (*msg != '\0')
6917 		c[i++] = *msg++;
6918 
6919 	for (str = prov->dtpv_name; *str != '\0'; str++)
6920 		c[i++] = *str;
6921 	c[i++] = ':';
6922 
6923 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6924 		c[i++] = *str;
6925 	c[i++] = ':';
6926 
6927 	for (str = probe->dtpr_func; *str != '\0'; str++)
6928 		c[i++] = *str;
6929 	c[i++] = ':';
6930 
6931 	for (str = probe->dtpr_name; *str != '\0'; str++)
6932 		c[i++] = *str;
6933 
6934 	while (*ecbmsg != '\0')
6935 		c[i++] = *ecbmsg++;
6936 
6937 	while (shift >= 0) {
6938 		mask = (uintptr_t)0xf << shift;
6939 
6940 		if (val >= ((uintptr_t)1 << shift))
6941 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6942 		shift -= 4;
6943 	}
6944 
6945 	c[i++] = ')';
6946 	c[i] = '\0';
6947 
6948 #ifdef illumos
6949 	debug_enter(c);
6950 #else
6951 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6952 #endif
6953 }
6954 
6955 static void
6956 dtrace_action_panic(dtrace_ecb_t *ecb)
6957 {
6958 	dtrace_probe_t *probe = ecb->dte_probe;
6959 
6960 	/*
6961 	 * It's impossible to be taking action on the NULL probe.
6962 	 */
6963 	ASSERT(probe != NULL);
6964 
6965 	if (dtrace_destructive_disallow)
6966 		return;
6967 
6968 	if (dtrace_panicked != NULL)
6969 		return;
6970 
6971 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6972 		return;
6973 
6974 	/*
6975 	 * We won the right to panic.  (We want to be sure that only one
6976 	 * thread calls panic() from dtrace_probe(), and that panic() is
6977 	 * called exactly once.)
6978 	 */
6979 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6980 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6981 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6982 }
6983 
6984 static void
6985 dtrace_action_raise(uint64_t sig)
6986 {
6987 	if (dtrace_destructive_disallow)
6988 		return;
6989 
6990 	if (sig >= NSIG) {
6991 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6992 		return;
6993 	}
6994 
6995 #ifdef illumos
6996 	/*
6997 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6998 	 * invocations of the raise() action.
6999 	 */
7000 	if (curthread->t_dtrace_sig == 0)
7001 		curthread->t_dtrace_sig = (uint8_t)sig;
7002 
7003 	curthread->t_sig_check = 1;
7004 	aston(curthread);
7005 #else
7006 	struct proc *p = curproc;
7007 	PROC_LOCK(p);
7008 	kern_psignal(p, sig);
7009 	PROC_UNLOCK(p);
7010 #endif
7011 }
7012 
7013 static void
7014 dtrace_action_stop(void)
7015 {
7016 	if (dtrace_destructive_disallow)
7017 		return;
7018 
7019 #ifdef illumos
7020 	if (!curthread->t_dtrace_stop) {
7021 		curthread->t_dtrace_stop = 1;
7022 		curthread->t_sig_check = 1;
7023 		aston(curthread);
7024 	}
7025 #else
7026 	struct proc *p = curproc;
7027 	PROC_LOCK(p);
7028 	kern_psignal(p, SIGSTOP);
7029 	PROC_UNLOCK(p);
7030 #endif
7031 }
7032 
7033 static void
7034 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7035 {
7036 	hrtime_t now;
7037 	volatile uint16_t *flags;
7038 #ifdef illumos
7039 	cpu_t *cpu = CPU;
7040 #else
7041 	cpu_t *cpu = &solaris_cpu[curcpu];
7042 #endif
7043 
7044 	if (dtrace_destructive_disallow)
7045 		return;
7046 
7047 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7048 
7049 	now = dtrace_gethrtime();
7050 
7051 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7052 		/*
7053 		 * We need to advance the mark to the current time.
7054 		 */
7055 		cpu->cpu_dtrace_chillmark = now;
7056 		cpu->cpu_dtrace_chilled = 0;
7057 	}
7058 
7059 	/*
7060 	 * Now check to see if the requested chill time would take us over
7061 	 * the maximum amount of time allowed in the chill interval.  (Or
7062 	 * worse, if the calculation itself induces overflow.)
7063 	 */
7064 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7065 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7066 		*flags |= CPU_DTRACE_ILLOP;
7067 		return;
7068 	}
7069 
7070 	while (dtrace_gethrtime() - now < val)
7071 		continue;
7072 
7073 	/*
7074 	 * Normally, we assure that the value of the variable "timestamp" does
7075 	 * not change within an ECB.  The presence of chill() represents an
7076 	 * exception to this rule, however.
7077 	 */
7078 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7079 	cpu->cpu_dtrace_chilled += val;
7080 }
7081 
7082 static void
7083 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7084     uint64_t *buf, uint64_t arg)
7085 {
7086 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7087 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7088 	uint64_t *pcs = &buf[1], *fps;
7089 	char *str = (char *)&pcs[nframes];
7090 	int size, offs = 0, i, j;
7091 	size_t rem;
7092 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7093 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7094 	char *sym;
7095 
7096 	/*
7097 	 * Should be taking a faster path if string space has not been
7098 	 * allocated.
7099 	 */
7100 	ASSERT(strsize != 0);
7101 
7102 	/*
7103 	 * We will first allocate some temporary space for the frame pointers.
7104 	 */
7105 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7106 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7107 	    (nframes * sizeof (uint64_t));
7108 
7109 	if (!DTRACE_INSCRATCH(mstate, size)) {
7110 		/*
7111 		 * Not enough room for our frame pointers -- need to indicate
7112 		 * that we ran out of scratch space.
7113 		 */
7114 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7115 		return;
7116 	}
7117 
7118 	mstate->dtms_scratch_ptr += size;
7119 	saved = mstate->dtms_scratch_ptr;
7120 
7121 	/*
7122 	 * Now get a stack with both program counters and frame pointers.
7123 	 */
7124 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7125 	dtrace_getufpstack(buf, fps, nframes + 1);
7126 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7127 
7128 	/*
7129 	 * If that faulted, we're cooked.
7130 	 */
7131 	if (*flags & CPU_DTRACE_FAULT)
7132 		goto out;
7133 
7134 	/*
7135 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7136 	 * each iteration, we restore the scratch pointer.
7137 	 */
7138 	for (i = 0; i < nframes; i++) {
7139 		mstate->dtms_scratch_ptr = saved;
7140 
7141 		if (offs >= strsize)
7142 			break;
7143 
7144 		sym = (char *)(uintptr_t)dtrace_helper(
7145 		    DTRACE_HELPER_ACTION_USTACK,
7146 		    mstate, state, pcs[i], fps[i]);
7147 
7148 		/*
7149 		 * If we faulted while running the helper, we're going to
7150 		 * clear the fault and null out the corresponding string.
7151 		 */
7152 		if (*flags & CPU_DTRACE_FAULT) {
7153 			*flags &= ~CPU_DTRACE_FAULT;
7154 			str[offs++] = '\0';
7155 			continue;
7156 		}
7157 
7158 		if (sym == NULL) {
7159 			str[offs++] = '\0';
7160 			continue;
7161 		}
7162 
7163 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7164 		    &(state->dts_vstate))) {
7165 			str[offs++] = '\0';
7166 			continue;
7167 		}
7168 
7169 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7170 
7171 		/*
7172 		 * Now copy in the string that the helper returned to us.
7173 		 */
7174 		for (j = 0; offs + j < strsize && j < rem; j++) {
7175 			if ((str[offs + j] = sym[j]) == '\0')
7176 				break;
7177 		}
7178 
7179 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7180 
7181 		offs += j + 1;
7182 	}
7183 
7184 	if (offs >= strsize) {
7185 		/*
7186 		 * If we didn't have room for all of the strings, we don't
7187 		 * abort processing -- this needn't be a fatal error -- but we
7188 		 * still want to increment a counter (dts_stkstroverflows) to
7189 		 * allow this condition to be warned about.  (If this is from
7190 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7191 		 */
7192 		dtrace_error(&state->dts_stkstroverflows);
7193 	}
7194 
7195 	while (offs < strsize)
7196 		str[offs++] = '\0';
7197 
7198 out:
7199 	mstate->dtms_scratch_ptr = old;
7200 }
7201 
7202 static void
7203 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7204     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7205 {
7206 	volatile uint16_t *flags;
7207 	uint64_t val = *valp;
7208 	size_t valoffs = *valoffsp;
7209 
7210 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7211 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7212 
7213 	/*
7214 	 * If this is a string, we're going to only load until we find the zero
7215 	 * byte -- after which we'll store zero bytes.
7216 	 */
7217 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7218 		char c = '\0' + 1;
7219 		size_t s;
7220 
7221 		for (s = 0; s < size; s++) {
7222 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7223 				c = dtrace_load8(val++);
7224 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7225 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7226 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7227 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7228 				if (*flags & CPU_DTRACE_FAULT)
7229 					break;
7230 			}
7231 
7232 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7233 
7234 			if (c == '\0' && intuple)
7235 				break;
7236 		}
7237 	} else {
7238 		uint8_t c;
7239 		while (valoffs < end) {
7240 			if (dtkind == DIF_TF_BYREF) {
7241 				c = dtrace_load8(val++);
7242 			} else if (dtkind == DIF_TF_BYUREF) {
7243 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7244 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7245 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7246 				if (*flags & CPU_DTRACE_FAULT)
7247 					break;
7248 			}
7249 
7250 			DTRACE_STORE(uint8_t, tomax,
7251 			    valoffs++, c);
7252 		}
7253 	}
7254 
7255 	*valp = val;
7256 	*valoffsp = valoffs;
7257 }
7258 
7259 /*
7260  * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7261  * defined, we also assert that we are not recursing unless the probe ID is an
7262  * error probe.
7263  */
7264 static dtrace_icookie_t
7265 dtrace_probe_enter(dtrace_id_t id)
7266 {
7267 	dtrace_icookie_t cookie;
7268 
7269 	cookie = dtrace_interrupt_disable();
7270 
7271 	/*
7272 	 * Unless this is an ERROR probe, we are not allowed to recurse in
7273 	 * dtrace_probe(). Recursing into DTrace probe usually means that a
7274 	 * function is instrumented that should not have been instrumented or
7275 	 * that the ordering guarantee of the records will be violated,
7276 	 * resulting in unexpected output. If there is an exception to this
7277 	 * assertion, a new case should be added.
7278 	 */
7279 	ASSERT(curthread->t_dtrace_inprobe == 0 ||
7280 	    id == dtrace_probeid_error);
7281 	curthread->t_dtrace_inprobe = 1;
7282 
7283 	return (cookie);
7284 }
7285 
7286 /*
7287  * Clears the per-thread inprobe flag and enables interrupts.
7288  */
7289 static void
7290 dtrace_probe_exit(dtrace_icookie_t cookie)
7291 {
7292 
7293 	curthread->t_dtrace_inprobe = 0;
7294 	dtrace_interrupt_enable(cookie);
7295 }
7296 
7297 /*
7298  * If you're looking for the epicenter of DTrace, you just found it.  This
7299  * is the function called by the provider to fire a probe -- from which all
7300  * subsequent probe-context DTrace activity emanates.
7301  */
7302 void
7303 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7304     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7305 {
7306 	processorid_t cpuid;
7307 	dtrace_icookie_t cookie;
7308 	dtrace_probe_t *probe;
7309 	dtrace_mstate_t mstate;
7310 	dtrace_ecb_t *ecb;
7311 	dtrace_action_t *act;
7312 	intptr_t offs;
7313 	size_t size;
7314 	int vtime, onintr;
7315 	volatile uint16_t *flags;
7316 	hrtime_t now;
7317 
7318 	if (panicstr != NULL)
7319 		return;
7320 
7321 #ifdef illumos
7322 	/*
7323 	 * Kick out immediately if this CPU is still being born (in which case
7324 	 * curthread will be set to -1) or the current thread can't allow
7325 	 * probes in its current context.
7326 	 */
7327 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7328 		return;
7329 #endif
7330 
7331 	cookie = dtrace_probe_enter(id);
7332 	probe = dtrace_probes[id - 1];
7333 	cpuid = curcpu;
7334 	onintr = CPU_ON_INTR(CPU);
7335 
7336 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7337 	    probe->dtpr_predcache == curthread->t_predcache) {
7338 		/*
7339 		 * We have hit in the predicate cache; we know that
7340 		 * this predicate would evaluate to be false.
7341 		 */
7342 		dtrace_probe_exit(cookie);
7343 		return;
7344 	}
7345 
7346 #ifdef illumos
7347 	if (panic_quiesce) {
7348 #else
7349 	if (panicstr != NULL) {
7350 #endif
7351 		/*
7352 		 * We don't trace anything if we're panicking.
7353 		 */
7354 		dtrace_probe_exit(cookie);
7355 		return;
7356 	}
7357 
7358 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7359 	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7360 	vtime = dtrace_vtime_references != 0;
7361 
7362 	if (vtime && curthread->t_dtrace_start)
7363 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7364 
7365 	mstate.dtms_difo = NULL;
7366 	mstate.dtms_probe = probe;
7367 	mstate.dtms_strtok = 0;
7368 	mstate.dtms_arg[0] = arg0;
7369 	mstate.dtms_arg[1] = arg1;
7370 	mstate.dtms_arg[2] = arg2;
7371 	mstate.dtms_arg[3] = arg3;
7372 	mstate.dtms_arg[4] = arg4;
7373 
7374 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7375 
7376 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7377 		dtrace_predicate_t *pred = ecb->dte_predicate;
7378 		dtrace_state_t *state = ecb->dte_state;
7379 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7380 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7381 		dtrace_vstate_t *vstate = &state->dts_vstate;
7382 		dtrace_provider_t *prov = probe->dtpr_provider;
7383 		uint64_t tracememsize = 0;
7384 		int committed = 0;
7385 		caddr_t tomax;
7386 
7387 		/*
7388 		 * A little subtlety with the following (seemingly innocuous)
7389 		 * declaration of the automatic 'val':  by looking at the
7390 		 * code, you might think that it could be declared in the
7391 		 * action processing loop, below.  (That is, it's only used in
7392 		 * the action processing loop.)  However, it must be declared
7393 		 * out of that scope because in the case of DIF expression
7394 		 * arguments to aggregating actions, one iteration of the
7395 		 * action loop will use the last iteration's value.
7396 		 */
7397 		uint64_t val = 0;
7398 
7399 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7400 		mstate.dtms_getf = NULL;
7401 
7402 		*flags &= ~CPU_DTRACE_ERROR;
7403 
7404 		if (prov == dtrace_provider) {
7405 			/*
7406 			 * If dtrace itself is the provider of this probe,
7407 			 * we're only going to continue processing the ECB if
7408 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7409 			 * creating state.  (This prevents disjoint consumers
7410 			 * from seeing one another's metaprobes.)
7411 			 */
7412 			if (arg0 != (uint64_t)(uintptr_t)state)
7413 				continue;
7414 		}
7415 
7416 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7417 			/*
7418 			 * We're not currently active.  If our provider isn't
7419 			 * the dtrace pseudo provider, we're not interested.
7420 			 */
7421 			if (prov != dtrace_provider)
7422 				continue;
7423 
7424 			/*
7425 			 * Now we must further check if we are in the BEGIN
7426 			 * probe.  If we are, we will only continue processing
7427 			 * if we're still in WARMUP -- if one BEGIN enabling
7428 			 * has invoked the exit() action, we don't want to
7429 			 * evaluate subsequent BEGIN enablings.
7430 			 */
7431 			if (probe->dtpr_id == dtrace_probeid_begin &&
7432 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7433 				ASSERT(state->dts_activity ==
7434 				    DTRACE_ACTIVITY_DRAINING);
7435 				continue;
7436 			}
7437 		}
7438 
7439 		if (ecb->dte_cond) {
7440 			/*
7441 			 * If the dte_cond bits indicate that this
7442 			 * consumer is only allowed to see user-mode firings
7443 			 * of this probe, call the provider's dtps_usermode()
7444 			 * entry point to check that the probe was fired
7445 			 * while in a user context. Skip this ECB if that's
7446 			 * not the case.
7447 			 */
7448 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7449 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7450 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7451 				continue;
7452 
7453 #ifdef illumos
7454 			/*
7455 			 * This is more subtle than it looks. We have to be
7456 			 * absolutely certain that CRED() isn't going to
7457 			 * change out from under us so it's only legit to
7458 			 * examine that structure if we're in constrained
7459 			 * situations. Currently, the only times we'll this
7460 			 * check is if a non-super-user has enabled the
7461 			 * profile or syscall providers -- providers that
7462 			 * allow visibility of all processes. For the
7463 			 * profile case, the check above will ensure that
7464 			 * we're examining a user context.
7465 			 */
7466 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7467 				cred_t *cr;
7468 				cred_t *s_cr =
7469 				    ecb->dte_state->dts_cred.dcr_cred;
7470 				proc_t *proc;
7471 
7472 				ASSERT(s_cr != NULL);
7473 
7474 				if ((cr = CRED()) == NULL ||
7475 				    s_cr->cr_uid != cr->cr_uid ||
7476 				    s_cr->cr_uid != cr->cr_ruid ||
7477 				    s_cr->cr_uid != cr->cr_suid ||
7478 				    s_cr->cr_gid != cr->cr_gid ||
7479 				    s_cr->cr_gid != cr->cr_rgid ||
7480 				    s_cr->cr_gid != cr->cr_sgid ||
7481 				    (proc = ttoproc(curthread)) == NULL ||
7482 				    (proc->p_flag & SNOCD))
7483 					continue;
7484 			}
7485 
7486 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7487 				cred_t *cr;
7488 				cred_t *s_cr =
7489 				    ecb->dte_state->dts_cred.dcr_cred;
7490 
7491 				ASSERT(s_cr != NULL);
7492 
7493 				if ((cr = CRED()) == NULL ||
7494 				    s_cr->cr_zone->zone_id !=
7495 				    cr->cr_zone->zone_id)
7496 					continue;
7497 			}
7498 #endif
7499 		}
7500 
7501 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7502 			/*
7503 			 * We seem to be dead.  Unless we (a) have kernel
7504 			 * destructive permissions (b) have explicitly enabled
7505 			 * destructive actions and (c) destructive actions have
7506 			 * not been disabled, we're going to transition into
7507 			 * the KILLED state, from which no further processing
7508 			 * on this state will be performed.
7509 			 */
7510 			if (!dtrace_priv_kernel_destructive(state) ||
7511 			    !state->dts_cred.dcr_destructive ||
7512 			    dtrace_destructive_disallow) {
7513 				void *activity = &state->dts_activity;
7514 				dtrace_activity_t current;
7515 
7516 				do {
7517 					current = state->dts_activity;
7518 				} while (dtrace_cas32(activity, current,
7519 				    DTRACE_ACTIVITY_KILLED) != current);
7520 
7521 				continue;
7522 			}
7523 		}
7524 
7525 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7526 		    ecb->dte_alignment, state, &mstate)) < 0)
7527 			continue;
7528 
7529 		tomax = buf->dtb_tomax;
7530 		ASSERT(tomax != NULL);
7531 
7532 		if (ecb->dte_size != 0) {
7533 			dtrace_rechdr_t dtrh;
7534 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7535 				mstate.dtms_timestamp = dtrace_gethrtime();
7536 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7537 			}
7538 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7539 			dtrh.dtrh_epid = ecb->dte_epid;
7540 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7541 			    mstate.dtms_timestamp);
7542 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7543 		}
7544 
7545 		mstate.dtms_epid = ecb->dte_epid;
7546 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7547 
7548 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7549 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7550 		else
7551 			mstate.dtms_access = 0;
7552 
7553 		if (pred != NULL) {
7554 			dtrace_difo_t *dp = pred->dtp_difo;
7555 			uint64_t rval;
7556 
7557 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7558 
7559 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7560 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7561 
7562 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7563 					/*
7564 					 * Update the predicate cache...
7565 					 */
7566 					ASSERT(cid == pred->dtp_cacheid);
7567 					curthread->t_predcache = cid;
7568 				}
7569 
7570 				continue;
7571 			}
7572 		}
7573 
7574 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7575 		    act != NULL; act = act->dta_next) {
7576 			size_t valoffs;
7577 			dtrace_difo_t *dp;
7578 			dtrace_recdesc_t *rec = &act->dta_rec;
7579 
7580 			size = rec->dtrd_size;
7581 			valoffs = offs + rec->dtrd_offset;
7582 
7583 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7584 				uint64_t v = 0xbad;
7585 				dtrace_aggregation_t *agg;
7586 
7587 				agg = (dtrace_aggregation_t *)act;
7588 
7589 				if ((dp = act->dta_difo) != NULL)
7590 					v = dtrace_dif_emulate(dp,
7591 					    &mstate, vstate, state);
7592 
7593 				if (*flags & CPU_DTRACE_ERROR)
7594 					continue;
7595 
7596 				/*
7597 				 * Note that we always pass the expression
7598 				 * value from the previous iteration of the
7599 				 * action loop.  This value will only be used
7600 				 * if there is an expression argument to the
7601 				 * aggregating action, denoted by the
7602 				 * dtag_hasarg field.
7603 				 */
7604 				dtrace_aggregate(agg, buf,
7605 				    offs, aggbuf, v, val);
7606 				continue;
7607 			}
7608 
7609 			switch (act->dta_kind) {
7610 			case DTRACEACT_STOP:
7611 				if (dtrace_priv_proc_destructive(state))
7612 					dtrace_action_stop();
7613 				continue;
7614 
7615 			case DTRACEACT_BREAKPOINT:
7616 				if (dtrace_priv_kernel_destructive(state))
7617 					dtrace_action_breakpoint(ecb);
7618 				continue;
7619 
7620 			case DTRACEACT_PANIC:
7621 				if (dtrace_priv_kernel_destructive(state))
7622 					dtrace_action_panic(ecb);
7623 				continue;
7624 
7625 			case DTRACEACT_STACK:
7626 				if (!dtrace_priv_kernel(state))
7627 					continue;
7628 
7629 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7630 				    size / sizeof (pc_t), probe->dtpr_aframes,
7631 				    DTRACE_ANCHORED(probe) ? NULL :
7632 				    (uint32_t *)arg0);
7633 				continue;
7634 
7635 			case DTRACEACT_JSTACK:
7636 			case DTRACEACT_USTACK:
7637 				if (!dtrace_priv_proc(state))
7638 					continue;
7639 
7640 				/*
7641 				 * See comment in DIF_VAR_PID.
7642 				 */
7643 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7644 				    CPU_ON_INTR(CPU)) {
7645 					int depth = DTRACE_USTACK_NFRAMES(
7646 					    rec->dtrd_arg) + 1;
7647 
7648 					dtrace_bzero((void *)(tomax + valoffs),
7649 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7650 					    + depth * sizeof (uint64_t));
7651 
7652 					continue;
7653 				}
7654 
7655 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7656 				    curproc->p_dtrace_helpers != NULL) {
7657 					/*
7658 					 * This is the slow path -- we have
7659 					 * allocated string space, and we're
7660 					 * getting the stack of a process that
7661 					 * has helpers.  Call into a separate
7662 					 * routine to perform this processing.
7663 					 */
7664 					dtrace_action_ustack(&mstate, state,
7665 					    (uint64_t *)(tomax + valoffs),
7666 					    rec->dtrd_arg);
7667 					continue;
7668 				}
7669 
7670 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7671 				dtrace_getupcstack((uint64_t *)
7672 				    (tomax + valoffs),
7673 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7674 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7675 				continue;
7676 
7677 			default:
7678 				break;
7679 			}
7680 
7681 			dp = act->dta_difo;
7682 			ASSERT(dp != NULL);
7683 
7684 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7685 
7686 			if (*flags & CPU_DTRACE_ERROR)
7687 				continue;
7688 
7689 			switch (act->dta_kind) {
7690 			case DTRACEACT_SPECULATE: {
7691 				dtrace_rechdr_t *dtrh;
7692 
7693 				ASSERT(buf == &state->dts_buffer[cpuid]);
7694 				buf = dtrace_speculation_buffer(state,
7695 				    cpuid, val);
7696 
7697 				if (buf == NULL) {
7698 					*flags |= CPU_DTRACE_DROP;
7699 					continue;
7700 				}
7701 
7702 				offs = dtrace_buffer_reserve(buf,
7703 				    ecb->dte_needed, ecb->dte_alignment,
7704 				    state, NULL);
7705 
7706 				if (offs < 0) {
7707 					*flags |= CPU_DTRACE_DROP;
7708 					continue;
7709 				}
7710 
7711 				tomax = buf->dtb_tomax;
7712 				ASSERT(tomax != NULL);
7713 
7714 				if (ecb->dte_size == 0)
7715 					continue;
7716 
7717 				ASSERT3U(ecb->dte_size, >=,
7718 				    sizeof (dtrace_rechdr_t));
7719 				dtrh = ((void *)(tomax + offs));
7720 				dtrh->dtrh_epid = ecb->dte_epid;
7721 				/*
7722 				 * When the speculation is committed, all of
7723 				 * the records in the speculative buffer will
7724 				 * have their timestamps set to the commit
7725 				 * time.  Until then, it is set to a sentinel
7726 				 * value, for debugability.
7727 				 */
7728 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7729 				continue;
7730 			}
7731 
7732 			case DTRACEACT_PRINTM: {
7733 				/* The DIF returns a 'memref'. */
7734 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7735 
7736 				/* Get the size from the memref. */
7737 				size = memref[1];
7738 
7739 				/*
7740 				 * Check if the size exceeds the allocated
7741 				 * buffer size.
7742 				 */
7743 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7744 					/* Flag a drop! */
7745 					*flags |= CPU_DTRACE_DROP;
7746 					continue;
7747 				}
7748 
7749 				/* Store the size in the buffer first. */
7750 				DTRACE_STORE(uintptr_t, tomax,
7751 				    valoffs, size);
7752 
7753 				/*
7754 				 * Offset the buffer address to the start
7755 				 * of the data.
7756 				 */
7757 				valoffs += sizeof(uintptr_t);
7758 
7759 				/*
7760 				 * Reset to the memory address rather than
7761 				 * the memref array, then let the BYREF
7762 				 * code below do the work to store the
7763 				 * memory data in the buffer.
7764 				 */
7765 				val = memref[0];
7766 				break;
7767 			}
7768 
7769 			case DTRACEACT_CHILL:
7770 				if (dtrace_priv_kernel_destructive(state))
7771 					dtrace_action_chill(&mstate, val);
7772 				continue;
7773 
7774 			case DTRACEACT_RAISE:
7775 				if (dtrace_priv_proc_destructive(state))
7776 					dtrace_action_raise(val);
7777 				continue;
7778 
7779 			case DTRACEACT_COMMIT:
7780 				ASSERT(!committed);
7781 
7782 				/*
7783 				 * We need to commit our buffer state.
7784 				 */
7785 				if (ecb->dte_size)
7786 					buf->dtb_offset = offs + ecb->dte_size;
7787 				buf = &state->dts_buffer[cpuid];
7788 				dtrace_speculation_commit(state, cpuid, val);
7789 				committed = 1;
7790 				continue;
7791 
7792 			case DTRACEACT_DISCARD:
7793 				dtrace_speculation_discard(state, cpuid, val);
7794 				continue;
7795 
7796 			case DTRACEACT_DIFEXPR:
7797 			case DTRACEACT_LIBACT:
7798 			case DTRACEACT_PRINTF:
7799 			case DTRACEACT_PRINTA:
7800 			case DTRACEACT_SYSTEM:
7801 			case DTRACEACT_FREOPEN:
7802 			case DTRACEACT_TRACEMEM:
7803 				break;
7804 
7805 			case DTRACEACT_TRACEMEM_DYNSIZE:
7806 				tracememsize = val;
7807 				break;
7808 
7809 			case DTRACEACT_SYM:
7810 			case DTRACEACT_MOD:
7811 				if (!dtrace_priv_kernel(state))
7812 					continue;
7813 				break;
7814 
7815 			case DTRACEACT_USYM:
7816 			case DTRACEACT_UMOD:
7817 			case DTRACEACT_UADDR: {
7818 #ifdef illumos
7819 				struct pid *pid = curthread->t_procp->p_pidp;
7820 #endif
7821 
7822 				if (!dtrace_priv_proc(state))
7823 					continue;
7824 
7825 				DTRACE_STORE(uint64_t, tomax,
7826 #ifdef illumos
7827 				    valoffs, (uint64_t)pid->pid_id);
7828 #else
7829 				    valoffs, (uint64_t) curproc->p_pid);
7830 #endif
7831 				DTRACE_STORE(uint64_t, tomax,
7832 				    valoffs + sizeof (uint64_t), val);
7833 
7834 				continue;
7835 			}
7836 
7837 			case DTRACEACT_EXIT: {
7838 				/*
7839 				 * For the exit action, we are going to attempt
7840 				 * to atomically set our activity to be
7841 				 * draining.  If this fails (either because
7842 				 * another CPU has beat us to the exit action,
7843 				 * or because our current activity is something
7844 				 * other than ACTIVE or WARMUP), we will
7845 				 * continue.  This assures that the exit action
7846 				 * can be successfully recorded at most once
7847 				 * when we're in the ACTIVE state.  If we're
7848 				 * encountering the exit() action while in
7849 				 * COOLDOWN, however, we want to honor the new
7850 				 * status code.  (We know that we're the only
7851 				 * thread in COOLDOWN, so there is no race.)
7852 				 */
7853 				void *activity = &state->dts_activity;
7854 				dtrace_activity_t current = state->dts_activity;
7855 
7856 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7857 					break;
7858 
7859 				if (current != DTRACE_ACTIVITY_WARMUP)
7860 					current = DTRACE_ACTIVITY_ACTIVE;
7861 
7862 				if (dtrace_cas32(activity, current,
7863 				    DTRACE_ACTIVITY_DRAINING) != current) {
7864 					*flags |= CPU_DTRACE_DROP;
7865 					continue;
7866 				}
7867 
7868 				break;
7869 			}
7870 
7871 			default:
7872 				ASSERT(0);
7873 			}
7874 
7875 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7876 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7877 				uintptr_t end = valoffs + size;
7878 
7879 				if (tracememsize != 0 &&
7880 				    valoffs + tracememsize < end) {
7881 					end = valoffs + tracememsize;
7882 					tracememsize = 0;
7883 				}
7884 
7885 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7886 				    !dtrace_vcanload((void *)(uintptr_t)val,
7887 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7888 					continue;
7889 
7890 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7891 				    &val, end, act->dta_intuple,
7892 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7893 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7894 				continue;
7895 			}
7896 
7897 			switch (size) {
7898 			case 0:
7899 				break;
7900 
7901 			case sizeof (uint8_t):
7902 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7903 				break;
7904 			case sizeof (uint16_t):
7905 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7906 				break;
7907 			case sizeof (uint32_t):
7908 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7909 				break;
7910 			case sizeof (uint64_t):
7911 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7912 				break;
7913 			default:
7914 				/*
7915 				 * Any other size should have been returned by
7916 				 * reference, not by value.
7917 				 */
7918 				ASSERT(0);
7919 				break;
7920 			}
7921 		}
7922 
7923 		if (*flags & CPU_DTRACE_DROP)
7924 			continue;
7925 
7926 		if (*flags & CPU_DTRACE_FAULT) {
7927 			int ndx;
7928 			dtrace_action_t *err;
7929 
7930 			buf->dtb_errors++;
7931 
7932 			if (probe->dtpr_id == dtrace_probeid_error) {
7933 				/*
7934 				 * There's nothing we can do -- we had an
7935 				 * error on the error probe.  We bump an
7936 				 * error counter to at least indicate that
7937 				 * this condition happened.
7938 				 */
7939 				dtrace_error(&state->dts_dblerrors);
7940 				continue;
7941 			}
7942 
7943 			if (vtime) {
7944 				/*
7945 				 * Before recursing on dtrace_probe(), we
7946 				 * need to explicitly clear out our start
7947 				 * time to prevent it from being accumulated
7948 				 * into t_dtrace_vtime.
7949 				 */
7950 				curthread->t_dtrace_start = 0;
7951 			}
7952 
7953 			/*
7954 			 * Iterate over the actions to figure out which action
7955 			 * we were processing when we experienced the error.
7956 			 * Note that act points _past_ the faulting action; if
7957 			 * act is ecb->dte_action, the fault was in the
7958 			 * predicate, if it's ecb->dte_action->dta_next it's
7959 			 * in action #1, and so on.
7960 			 */
7961 			for (err = ecb->dte_action, ndx = 0;
7962 			    err != act; err = err->dta_next, ndx++)
7963 				continue;
7964 
7965 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7966 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7967 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7968 			    cpu_core[cpuid].cpuc_dtrace_illval);
7969 
7970 			continue;
7971 		}
7972 
7973 		if (!committed)
7974 			buf->dtb_offset = offs + ecb->dte_size;
7975 	}
7976 
7977 	if (vtime)
7978 		curthread->t_dtrace_start = dtrace_gethrtime();
7979 
7980 	dtrace_probe_exit(cookie);
7981 }
7982 
7983 /*
7984  * DTrace Probe Hashing Functions
7985  *
7986  * The functions in this section (and indeed, the functions in remaining
7987  * sections) are not _called_ from probe context.  (Any exceptions to this are
7988  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7989  * DTrace framework to look-up probes in, add probes to and remove probes from
7990  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7991  * probe tuple -- allowing for fast lookups, regardless of what was
7992  * specified.)
7993  */
7994 static uint_t
7995 dtrace_hash_str(const char *p)
7996 {
7997 	unsigned int g;
7998 	uint_t hval = 0;
7999 
8000 	while (*p) {
8001 		hval = (hval << 4) + *p++;
8002 		if ((g = (hval & 0xf0000000)) != 0)
8003 			hval ^= g >> 24;
8004 		hval &= ~g;
8005 	}
8006 	return (hval);
8007 }
8008 
8009 static dtrace_hash_t *
8010 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8011 {
8012 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8013 
8014 	hash->dth_stroffs = stroffs;
8015 	hash->dth_nextoffs = nextoffs;
8016 	hash->dth_prevoffs = prevoffs;
8017 
8018 	hash->dth_size = 1;
8019 	hash->dth_mask = hash->dth_size - 1;
8020 
8021 	hash->dth_tab = kmem_zalloc(hash->dth_size *
8022 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8023 
8024 	return (hash);
8025 }
8026 
8027 static void
8028 dtrace_hash_destroy(dtrace_hash_t *hash)
8029 {
8030 #ifdef DEBUG
8031 	int i;
8032 
8033 	for (i = 0; i < hash->dth_size; i++)
8034 		ASSERT(hash->dth_tab[i] == NULL);
8035 #endif
8036 
8037 	kmem_free(hash->dth_tab,
8038 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8039 	kmem_free(hash, sizeof (dtrace_hash_t));
8040 }
8041 
8042 static void
8043 dtrace_hash_resize(dtrace_hash_t *hash)
8044 {
8045 	int size = hash->dth_size, i, ndx;
8046 	int new_size = hash->dth_size << 1;
8047 	int new_mask = new_size - 1;
8048 	dtrace_hashbucket_t **new_tab, *bucket, *next;
8049 
8050 	ASSERT((new_size & new_mask) == 0);
8051 
8052 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8053 
8054 	for (i = 0; i < size; i++) {
8055 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8056 			dtrace_probe_t *probe = bucket->dthb_chain;
8057 
8058 			ASSERT(probe != NULL);
8059 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8060 
8061 			next = bucket->dthb_next;
8062 			bucket->dthb_next = new_tab[ndx];
8063 			new_tab[ndx] = bucket;
8064 		}
8065 	}
8066 
8067 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8068 	hash->dth_tab = new_tab;
8069 	hash->dth_size = new_size;
8070 	hash->dth_mask = new_mask;
8071 }
8072 
8073 static void
8074 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8075 {
8076 	int hashval = DTRACE_HASHSTR(hash, new);
8077 	int ndx = hashval & hash->dth_mask;
8078 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8079 	dtrace_probe_t **nextp, **prevp;
8080 
8081 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8082 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8083 			goto add;
8084 	}
8085 
8086 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8087 		dtrace_hash_resize(hash);
8088 		dtrace_hash_add(hash, new);
8089 		return;
8090 	}
8091 
8092 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8093 	bucket->dthb_next = hash->dth_tab[ndx];
8094 	hash->dth_tab[ndx] = bucket;
8095 	hash->dth_nbuckets++;
8096 
8097 add:
8098 	nextp = DTRACE_HASHNEXT(hash, new);
8099 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8100 	*nextp = bucket->dthb_chain;
8101 
8102 	if (bucket->dthb_chain != NULL) {
8103 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8104 		ASSERT(*prevp == NULL);
8105 		*prevp = new;
8106 	}
8107 
8108 	bucket->dthb_chain = new;
8109 	bucket->dthb_len++;
8110 }
8111 
8112 static dtrace_probe_t *
8113 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8114 {
8115 	int hashval = DTRACE_HASHSTR(hash, template);
8116 	int ndx = hashval & hash->dth_mask;
8117 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8118 
8119 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8120 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8121 			return (bucket->dthb_chain);
8122 	}
8123 
8124 	return (NULL);
8125 }
8126 
8127 static int
8128 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8129 {
8130 	int hashval = DTRACE_HASHSTR(hash, template);
8131 	int ndx = hashval & hash->dth_mask;
8132 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8133 
8134 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8135 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8136 			return (bucket->dthb_len);
8137 	}
8138 
8139 	return (0);
8140 }
8141 
8142 static void
8143 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8144 {
8145 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8146 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8147 
8148 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8149 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8150 
8151 	/*
8152 	 * Find the bucket that we're removing this probe from.
8153 	 */
8154 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8155 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8156 			break;
8157 	}
8158 
8159 	ASSERT(bucket != NULL);
8160 
8161 	if (*prevp == NULL) {
8162 		if (*nextp == NULL) {
8163 			/*
8164 			 * The removed probe was the only probe on this
8165 			 * bucket; we need to remove the bucket.
8166 			 */
8167 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8168 
8169 			ASSERT(bucket->dthb_chain == probe);
8170 			ASSERT(b != NULL);
8171 
8172 			if (b == bucket) {
8173 				hash->dth_tab[ndx] = bucket->dthb_next;
8174 			} else {
8175 				while (b->dthb_next != bucket)
8176 					b = b->dthb_next;
8177 				b->dthb_next = bucket->dthb_next;
8178 			}
8179 
8180 			ASSERT(hash->dth_nbuckets > 0);
8181 			hash->dth_nbuckets--;
8182 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8183 			return;
8184 		}
8185 
8186 		bucket->dthb_chain = *nextp;
8187 	} else {
8188 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8189 	}
8190 
8191 	if (*nextp != NULL)
8192 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8193 }
8194 
8195 /*
8196  * DTrace Utility Functions
8197  *
8198  * These are random utility functions that are _not_ called from probe context.
8199  */
8200 static int
8201 dtrace_badattr(const dtrace_attribute_t *a)
8202 {
8203 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8204 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8205 	    a->dtat_class > DTRACE_CLASS_MAX);
8206 }
8207 
8208 /*
8209  * Return a duplicate copy of a string.  If the specified string is NULL,
8210  * this function returns a zero-length string.
8211  */
8212 static char *
8213 dtrace_strdup(const char *str)
8214 {
8215 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8216 
8217 	if (str != NULL)
8218 		(void) strcpy(new, str);
8219 
8220 	return (new);
8221 }
8222 
8223 #define	DTRACE_ISALPHA(c)	\
8224 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8225 
8226 static int
8227 dtrace_badname(const char *s)
8228 {
8229 	char c;
8230 
8231 	if (s == NULL || (c = *s++) == '\0')
8232 		return (0);
8233 
8234 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8235 		return (1);
8236 
8237 	while ((c = *s++) != '\0') {
8238 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8239 		    c != '-' && c != '_' && c != '.' && c != '`')
8240 			return (1);
8241 	}
8242 
8243 	return (0);
8244 }
8245 
8246 static void
8247 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8248 {
8249 	uint32_t priv;
8250 
8251 #ifdef illumos
8252 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8253 		/*
8254 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8255 		 */
8256 		priv = DTRACE_PRIV_ALL;
8257 	} else {
8258 		*uidp = crgetuid(cr);
8259 		*zoneidp = crgetzoneid(cr);
8260 
8261 		priv = 0;
8262 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8263 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8264 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8265 			priv |= DTRACE_PRIV_USER;
8266 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8267 			priv |= DTRACE_PRIV_PROC;
8268 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8269 			priv |= DTRACE_PRIV_OWNER;
8270 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8271 			priv |= DTRACE_PRIV_ZONEOWNER;
8272 	}
8273 #else
8274 	priv = DTRACE_PRIV_ALL;
8275 #endif
8276 
8277 	*privp = priv;
8278 }
8279 
8280 #ifdef DTRACE_ERRDEBUG
8281 static void
8282 dtrace_errdebug(const char *str)
8283 {
8284 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8285 	int occupied = 0;
8286 
8287 	mutex_enter(&dtrace_errlock);
8288 	dtrace_errlast = str;
8289 	dtrace_errthread = curthread;
8290 
8291 	while (occupied++ < DTRACE_ERRHASHSZ) {
8292 		if (dtrace_errhash[hval].dter_msg == str) {
8293 			dtrace_errhash[hval].dter_count++;
8294 			goto out;
8295 		}
8296 
8297 		if (dtrace_errhash[hval].dter_msg != NULL) {
8298 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8299 			continue;
8300 		}
8301 
8302 		dtrace_errhash[hval].dter_msg = str;
8303 		dtrace_errhash[hval].dter_count = 1;
8304 		goto out;
8305 	}
8306 
8307 	panic("dtrace: undersized error hash");
8308 out:
8309 	mutex_exit(&dtrace_errlock);
8310 }
8311 #endif
8312 
8313 /*
8314  * DTrace Matching Functions
8315  *
8316  * These functions are used to match groups of probes, given some elements of
8317  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8318  */
8319 static int
8320 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8321     zoneid_t zoneid)
8322 {
8323 	if (priv != DTRACE_PRIV_ALL) {
8324 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8325 		uint32_t match = priv & ppriv;
8326 
8327 		/*
8328 		 * No PRIV_DTRACE_* privileges...
8329 		 */
8330 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8331 		    DTRACE_PRIV_KERNEL)) == 0)
8332 			return (0);
8333 
8334 		/*
8335 		 * No matching bits, but there were bits to match...
8336 		 */
8337 		if (match == 0 && ppriv != 0)
8338 			return (0);
8339 
8340 		/*
8341 		 * Need to have permissions to the process, but don't...
8342 		 */
8343 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8344 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8345 			return (0);
8346 		}
8347 
8348 		/*
8349 		 * Need to be in the same zone unless we possess the
8350 		 * privilege to examine all zones.
8351 		 */
8352 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8353 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8354 			return (0);
8355 		}
8356 	}
8357 
8358 	return (1);
8359 }
8360 
8361 /*
8362  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8363  * consists of input pattern strings and an ops-vector to evaluate them.
8364  * This function returns >0 for match, 0 for no match, and <0 for error.
8365  */
8366 static int
8367 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8368     uint32_t priv, uid_t uid, zoneid_t zoneid)
8369 {
8370 	dtrace_provider_t *pvp = prp->dtpr_provider;
8371 	int rv;
8372 
8373 	if (pvp->dtpv_defunct)
8374 		return (0);
8375 
8376 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8377 		return (rv);
8378 
8379 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8380 		return (rv);
8381 
8382 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8383 		return (rv);
8384 
8385 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8386 		return (rv);
8387 
8388 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8389 		return (0);
8390 
8391 	return (rv);
8392 }
8393 
8394 /*
8395  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8396  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8397  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8398  * In addition, all of the recursion cases except for '*' matching have been
8399  * unwound.  For '*', we still implement recursive evaluation, but a depth
8400  * counter is maintained and matching is aborted if we recurse too deep.
8401  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8402  */
8403 static int
8404 dtrace_match_glob(const char *s, const char *p, int depth)
8405 {
8406 	const char *olds;
8407 	char s1, c;
8408 	int gs;
8409 
8410 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8411 		return (-1);
8412 
8413 	if (s == NULL)
8414 		s = ""; /* treat NULL as empty string */
8415 
8416 top:
8417 	olds = s;
8418 	s1 = *s++;
8419 
8420 	if (p == NULL)
8421 		return (0);
8422 
8423 	if ((c = *p++) == '\0')
8424 		return (s1 == '\0');
8425 
8426 	switch (c) {
8427 	case '[': {
8428 		int ok = 0, notflag = 0;
8429 		char lc = '\0';
8430 
8431 		if (s1 == '\0')
8432 			return (0);
8433 
8434 		if (*p == '!') {
8435 			notflag = 1;
8436 			p++;
8437 		}
8438 
8439 		if ((c = *p++) == '\0')
8440 			return (0);
8441 
8442 		do {
8443 			if (c == '-' && lc != '\0' && *p != ']') {
8444 				if ((c = *p++) == '\0')
8445 					return (0);
8446 				if (c == '\\' && (c = *p++) == '\0')
8447 					return (0);
8448 
8449 				if (notflag) {
8450 					if (s1 < lc || s1 > c)
8451 						ok++;
8452 					else
8453 						return (0);
8454 				} else if (lc <= s1 && s1 <= c)
8455 					ok++;
8456 
8457 			} else if (c == '\\' && (c = *p++) == '\0')
8458 				return (0);
8459 
8460 			lc = c; /* save left-hand 'c' for next iteration */
8461 
8462 			if (notflag) {
8463 				if (s1 != c)
8464 					ok++;
8465 				else
8466 					return (0);
8467 			} else if (s1 == c)
8468 				ok++;
8469 
8470 			if ((c = *p++) == '\0')
8471 				return (0);
8472 
8473 		} while (c != ']');
8474 
8475 		if (ok)
8476 			goto top;
8477 
8478 		return (0);
8479 	}
8480 
8481 	case '\\':
8482 		if ((c = *p++) == '\0')
8483 			return (0);
8484 		/*FALLTHRU*/
8485 
8486 	default:
8487 		if (c != s1)
8488 			return (0);
8489 		/*FALLTHRU*/
8490 
8491 	case '?':
8492 		if (s1 != '\0')
8493 			goto top;
8494 		return (0);
8495 
8496 	case '*':
8497 		while (*p == '*')
8498 			p++; /* consecutive *'s are identical to a single one */
8499 
8500 		if (*p == '\0')
8501 			return (1);
8502 
8503 		for (s = olds; *s != '\0'; s++) {
8504 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8505 				return (gs);
8506 		}
8507 
8508 		return (0);
8509 	}
8510 }
8511 
8512 /*ARGSUSED*/
8513 static int
8514 dtrace_match_string(const char *s, const char *p, int depth)
8515 {
8516 	return (s != NULL && strcmp(s, p) == 0);
8517 }
8518 
8519 /*ARGSUSED*/
8520 static int
8521 dtrace_match_nul(const char *s, const char *p, int depth)
8522 {
8523 	return (1); /* always match the empty pattern */
8524 }
8525 
8526 /*ARGSUSED*/
8527 static int
8528 dtrace_match_nonzero(const char *s, const char *p, int depth)
8529 {
8530 	return (s != NULL && s[0] != '\0');
8531 }
8532 
8533 static int
8534 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8535     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8536 {
8537 	dtrace_probe_t template, *probe;
8538 	dtrace_hash_t *hash = NULL;
8539 	int len, best = INT_MAX, nmatched = 0;
8540 	dtrace_id_t i;
8541 
8542 	ASSERT(MUTEX_HELD(&dtrace_lock));
8543 
8544 	/*
8545 	 * If the probe ID is specified in the key, just lookup by ID and
8546 	 * invoke the match callback once if a matching probe is found.
8547 	 */
8548 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8549 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8550 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8551 			(void) (*matched)(probe, arg);
8552 			nmatched++;
8553 		}
8554 		return (nmatched);
8555 	}
8556 
8557 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8558 	template.dtpr_func = (char *)pkp->dtpk_func;
8559 	template.dtpr_name = (char *)pkp->dtpk_name;
8560 
8561 	/*
8562 	 * We want to find the most distinct of the module name, function
8563 	 * name, and name.  So for each one that is not a glob pattern or
8564 	 * empty string, we perform a lookup in the corresponding hash and
8565 	 * use the hash table with the fewest collisions to do our search.
8566 	 */
8567 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8568 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8569 		best = len;
8570 		hash = dtrace_bymod;
8571 	}
8572 
8573 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8574 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8575 		best = len;
8576 		hash = dtrace_byfunc;
8577 	}
8578 
8579 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8580 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8581 		best = len;
8582 		hash = dtrace_byname;
8583 	}
8584 
8585 	/*
8586 	 * If we did not select a hash table, iterate over every probe and
8587 	 * invoke our callback for each one that matches our input probe key.
8588 	 */
8589 	if (hash == NULL) {
8590 		for (i = 0; i < dtrace_nprobes; i++) {
8591 			if ((probe = dtrace_probes[i]) == NULL ||
8592 			    dtrace_match_probe(probe, pkp, priv, uid,
8593 			    zoneid) <= 0)
8594 				continue;
8595 
8596 			nmatched++;
8597 
8598 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8599 				break;
8600 		}
8601 
8602 		return (nmatched);
8603 	}
8604 
8605 	/*
8606 	 * If we selected a hash table, iterate over each probe of the same key
8607 	 * name and invoke the callback for every probe that matches the other
8608 	 * attributes of our input probe key.
8609 	 */
8610 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8611 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8612 
8613 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8614 			continue;
8615 
8616 		nmatched++;
8617 
8618 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8619 			break;
8620 	}
8621 
8622 	return (nmatched);
8623 }
8624 
8625 /*
8626  * Return the function pointer dtrace_probecmp() should use to compare the
8627  * specified pattern with a string.  For NULL or empty patterns, we select
8628  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8629  * For non-empty non-glob strings, we use dtrace_match_string().
8630  */
8631 static dtrace_probekey_f *
8632 dtrace_probekey_func(const char *p)
8633 {
8634 	char c;
8635 
8636 	if (p == NULL || *p == '\0')
8637 		return (&dtrace_match_nul);
8638 
8639 	while ((c = *p++) != '\0') {
8640 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8641 			return (&dtrace_match_glob);
8642 	}
8643 
8644 	return (&dtrace_match_string);
8645 }
8646 
8647 /*
8648  * Build a probe comparison key for use with dtrace_match_probe() from the
8649  * given probe description.  By convention, a null key only matches anchored
8650  * probes: if each field is the empty string, reset dtpk_fmatch to
8651  * dtrace_match_nonzero().
8652  */
8653 static void
8654 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8655 {
8656 	pkp->dtpk_prov = pdp->dtpd_provider;
8657 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8658 
8659 	pkp->dtpk_mod = pdp->dtpd_mod;
8660 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8661 
8662 	pkp->dtpk_func = pdp->dtpd_func;
8663 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8664 
8665 	pkp->dtpk_name = pdp->dtpd_name;
8666 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8667 
8668 	pkp->dtpk_id = pdp->dtpd_id;
8669 
8670 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8671 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8672 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8673 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8674 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8675 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8676 }
8677 
8678 /*
8679  * DTrace Provider-to-Framework API Functions
8680  *
8681  * These functions implement much of the Provider-to-Framework API, as
8682  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8683  * the functions in the API for probe management (found below), and
8684  * dtrace_probe() itself (found above).
8685  */
8686 
8687 /*
8688  * Register the calling provider with the DTrace framework.  This should
8689  * generally be called by DTrace providers in their attach(9E) entry point.
8690  */
8691 int
8692 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8693     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8694 {
8695 	dtrace_provider_t *provider;
8696 
8697 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8698 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8699 		    "arguments", name ? name : "<NULL>");
8700 		return (EINVAL);
8701 	}
8702 
8703 	if (name[0] == '\0' || dtrace_badname(name)) {
8704 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8705 		    "provider name", name);
8706 		return (EINVAL);
8707 	}
8708 
8709 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8710 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8711 	    pops->dtps_destroy == NULL ||
8712 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8713 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8714 		    "provider ops", name);
8715 		return (EINVAL);
8716 	}
8717 
8718 	if (dtrace_badattr(&pap->dtpa_provider) ||
8719 	    dtrace_badattr(&pap->dtpa_mod) ||
8720 	    dtrace_badattr(&pap->dtpa_func) ||
8721 	    dtrace_badattr(&pap->dtpa_name) ||
8722 	    dtrace_badattr(&pap->dtpa_args)) {
8723 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8724 		    "provider attributes", name);
8725 		return (EINVAL);
8726 	}
8727 
8728 	if (priv & ~DTRACE_PRIV_ALL) {
8729 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8730 		    "privilege attributes", name);
8731 		return (EINVAL);
8732 	}
8733 
8734 	if ((priv & DTRACE_PRIV_KERNEL) &&
8735 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8736 	    pops->dtps_usermode == NULL) {
8737 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8738 		    "dtps_usermode() op for given privilege attributes", name);
8739 		return (EINVAL);
8740 	}
8741 
8742 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8743 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8744 	(void) strcpy(provider->dtpv_name, name);
8745 
8746 	provider->dtpv_attr = *pap;
8747 	provider->dtpv_priv.dtpp_flags = priv;
8748 	if (cr != NULL) {
8749 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8750 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8751 	}
8752 	provider->dtpv_pops = *pops;
8753 
8754 	if (pops->dtps_provide == NULL) {
8755 		ASSERT(pops->dtps_provide_module != NULL);
8756 		provider->dtpv_pops.dtps_provide =
8757 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8758 	}
8759 
8760 	if (pops->dtps_provide_module == NULL) {
8761 		ASSERT(pops->dtps_provide != NULL);
8762 		provider->dtpv_pops.dtps_provide_module =
8763 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8764 	}
8765 
8766 	if (pops->dtps_suspend == NULL) {
8767 		ASSERT(pops->dtps_resume == NULL);
8768 		provider->dtpv_pops.dtps_suspend =
8769 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8770 		provider->dtpv_pops.dtps_resume =
8771 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8772 	}
8773 
8774 	provider->dtpv_arg = arg;
8775 	*idp = (dtrace_provider_id_t)provider;
8776 
8777 	if (pops == &dtrace_provider_ops) {
8778 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8779 		ASSERT(MUTEX_HELD(&dtrace_lock));
8780 		ASSERT(dtrace_anon.dta_enabling == NULL);
8781 
8782 		/*
8783 		 * We make sure that the DTrace provider is at the head of
8784 		 * the provider chain.
8785 		 */
8786 		provider->dtpv_next = dtrace_provider;
8787 		dtrace_provider = provider;
8788 		return (0);
8789 	}
8790 
8791 	mutex_enter(&dtrace_provider_lock);
8792 	mutex_enter(&dtrace_lock);
8793 
8794 	/*
8795 	 * If there is at least one provider registered, we'll add this
8796 	 * provider after the first provider.
8797 	 */
8798 	if (dtrace_provider != NULL) {
8799 		provider->dtpv_next = dtrace_provider->dtpv_next;
8800 		dtrace_provider->dtpv_next = provider;
8801 	} else {
8802 		dtrace_provider = provider;
8803 	}
8804 
8805 	if (dtrace_retained != NULL) {
8806 		dtrace_enabling_provide(provider);
8807 
8808 		/*
8809 		 * Now we need to call dtrace_enabling_matchall() -- which
8810 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8811 		 * to drop all of our locks before calling into it...
8812 		 */
8813 		mutex_exit(&dtrace_lock);
8814 		mutex_exit(&dtrace_provider_lock);
8815 		dtrace_enabling_matchall();
8816 
8817 		return (0);
8818 	}
8819 
8820 	mutex_exit(&dtrace_lock);
8821 	mutex_exit(&dtrace_provider_lock);
8822 
8823 	return (0);
8824 }
8825 
8826 /*
8827  * Unregister the specified provider from the DTrace framework.  This should
8828  * generally be called by DTrace providers in their detach(9E) entry point.
8829  */
8830 int
8831 dtrace_unregister(dtrace_provider_id_t id)
8832 {
8833 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8834 	dtrace_provider_t *prev = NULL;
8835 	int i, self = 0, noreap = 0;
8836 	dtrace_probe_t *probe, *first = NULL;
8837 
8838 	if (old->dtpv_pops.dtps_enable ==
8839 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8840 		/*
8841 		 * If DTrace itself is the provider, we're called with locks
8842 		 * already held.
8843 		 */
8844 		ASSERT(old == dtrace_provider);
8845 #ifdef illumos
8846 		ASSERT(dtrace_devi != NULL);
8847 #endif
8848 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8849 		ASSERT(MUTEX_HELD(&dtrace_lock));
8850 		self = 1;
8851 
8852 		if (dtrace_provider->dtpv_next != NULL) {
8853 			/*
8854 			 * There's another provider here; return failure.
8855 			 */
8856 			return (EBUSY);
8857 		}
8858 	} else {
8859 		mutex_enter(&dtrace_provider_lock);
8860 #ifdef illumos
8861 		mutex_enter(&mod_lock);
8862 #endif
8863 		mutex_enter(&dtrace_lock);
8864 	}
8865 
8866 	/*
8867 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8868 	 * probes, we refuse to let providers slither away, unless this
8869 	 * provider has already been explicitly invalidated.
8870 	 */
8871 	if (!old->dtpv_defunct &&
8872 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8873 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8874 		if (!self) {
8875 			mutex_exit(&dtrace_lock);
8876 #ifdef illumos
8877 			mutex_exit(&mod_lock);
8878 #endif
8879 			mutex_exit(&dtrace_provider_lock);
8880 		}
8881 		return (EBUSY);
8882 	}
8883 
8884 	/*
8885 	 * Attempt to destroy the probes associated with this provider.
8886 	 */
8887 	for (i = 0; i < dtrace_nprobes; i++) {
8888 		if ((probe = dtrace_probes[i]) == NULL)
8889 			continue;
8890 
8891 		if (probe->dtpr_provider != old)
8892 			continue;
8893 
8894 		if (probe->dtpr_ecb == NULL)
8895 			continue;
8896 
8897 		/*
8898 		 * If we are trying to unregister a defunct provider, and the
8899 		 * provider was made defunct within the interval dictated by
8900 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8901 		 * attempt to reap our enablings.  To denote that the provider
8902 		 * should reattempt to unregister itself at some point in the
8903 		 * future, we will return a differentiable error code (EAGAIN
8904 		 * instead of EBUSY) in this case.
8905 		 */
8906 		if (dtrace_gethrtime() - old->dtpv_defunct >
8907 		    dtrace_unregister_defunct_reap)
8908 			noreap = 1;
8909 
8910 		if (!self) {
8911 			mutex_exit(&dtrace_lock);
8912 #ifdef illumos
8913 			mutex_exit(&mod_lock);
8914 #endif
8915 			mutex_exit(&dtrace_provider_lock);
8916 		}
8917 
8918 		if (noreap)
8919 			return (EBUSY);
8920 
8921 		(void) taskq_dispatch(dtrace_taskq,
8922 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8923 
8924 		return (EAGAIN);
8925 	}
8926 
8927 	/*
8928 	 * All of the probes for this provider are disabled; we can safely
8929 	 * remove all of them from their hash chains and from the probe array.
8930 	 */
8931 	for (i = 0; i < dtrace_nprobes; i++) {
8932 		if ((probe = dtrace_probes[i]) == NULL)
8933 			continue;
8934 
8935 		if (probe->dtpr_provider != old)
8936 			continue;
8937 
8938 		dtrace_probes[i] = NULL;
8939 
8940 		dtrace_hash_remove(dtrace_bymod, probe);
8941 		dtrace_hash_remove(dtrace_byfunc, probe);
8942 		dtrace_hash_remove(dtrace_byname, probe);
8943 
8944 		if (first == NULL) {
8945 			first = probe;
8946 			probe->dtpr_nextmod = NULL;
8947 		} else {
8948 			probe->dtpr_nextmod = first;
8949 			first = probe;
8950 		}
8951 	}
8952 
8953 	/*
8954 	 * The provider's probes have been removed from the hash chains and
8955 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8956 	 * everyone has cleared out from any probe array processing.
8957 	 */
8958 	dtrace_sync();
8959 
8960 	for (probe = first; probe != NULL; probe = first) {
8961 		first = probe->dtpr_nextmod;
8962 
8963 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8964 		    probe->dtpr_arg);
8965 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8966 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8967 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8968 #ifdef illumos
8969 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8970 #else
8971 		free_unr(dtrace_arena, probe->dtpr_id);
8972 #endif
8973 		kmem_free(probe, sizeof (dtrace_probe_t));
8974 	}
8975 
8976 	if ((prev = dtrace_provider) == old) {
8977 #ifdef illumos
8978 		ASSERT(self || dtrace_devi == NULL);
8979 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8980 #endif
8981 		dtrace_provider = old->dtpv_next;
8982 	} else {
8983 		while (prev != NULL && prev->dtpv_next != old)
8984 			prev = prev->dtpv_next;
8985 
8986 		if (prev == NULL) {
8987 			panic("attempt to unregister non-existent "
8988 			    "dtrace provider %p\n", (void *)id);
8989 		}
8990 
8991 		prev->dtpv_next = old->dtpv_next;
8992 	}
8993 
8994 	if (!self) {
8995 		mutex_exit(&dtrace_lock);
8996 #ifdef illumos
8997 		mutex_exit(&mod_lock);
8998 #endif
8999 		mutex_exit(&dtrace_provider_lock);
9000 	}
9001 
9002 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9003 	kmem_free(old, sizeof (dtrace_provider_t));
9004 
9005 	return (0);
9006 }
9007 
9008 /*
9009  * Invalidate the specified provider.  All subsequent probe lookups for the
9010  * specified provider will fail, but its probes will not be removed.
9011  */
9012 void
9013 dtrace_invalidate(dtrace_provider_id_t id)
9014 {
9015 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9016 
9017 	ASSERT(pvp->dtpv_pops.dtps_enable !=
9018 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9019 
9020 	mutex_enter(&dtrace_provider_lock);
9021 	mutex_enter(&dtrace_lock);
9022 
9023 	pvp->dtpv_defunct = dtrace_gethrtime();
9024 
9025 	mutex_exit(&dtrace_lock);
9026 	mutex_exit(&dtrace_provider_lock);
9027 }
9028 
9029 /*
9030  * Indicate whether or not DTrace has attached.
9031  */
9032 int
9033 dtrace_attached(void)
9034 {
9035 	/*
9036 	 * dtrace_provider will be non-NULL iff the DTrace driver has
9037 	 * attached.  (It's non-NULL because DTrace is always itself a
9038 	 * provider.)
9039 	 */
9040 	return (dtrace_provider != NULL);
9041 }
9042 
9043 /*
9044  * Remove all the unenabled probes for the given provider.  This function is
9045  * not unlike dtrace_unregister(), except that it doesn't remove the provider
9046  * -- just as many of its associated probes as it can.
9047  */
9048 int
9049 dtrace_condense(dtrace_provider_id_t id)
9050 {
9051 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9052 	int i;
9053 	dtrace_probe_t *probe;
9054 
9055 	/*
9056 	 * Make sure this isn't the dtrace provider itself.
9057 	 */
9058 	ASSERT(prov->dtpv_pops.dtps_enable !=
9059 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9060 
9061 	mutex_enter(&dtrace_provider_lock);
9062 	mutex_enter(&dtrace_lock);
9063 
9064 	/*
9065 	 * Attempt to destroy the probes associated with this provider.
9066 	 */
9067 	for (i = 0; i < dtrace_nprobes; i++) {
9068 		if ((probe = dtrace_probes[i]) == NULL)
9069 			continue;
9070 
9071 		if (probe->dtpr_provider != prov)
9072 			continue;
9073 
9074 		if (probe->dtpr_ecb != NULL)
9075 			continue;
9076 
9077 		dtrace_probes[i] = NULL;
9078 
9079 		dtrace_hash_remove(dtrace_bymod, probe);
9080 		dtrace_hash_remove(dtrace_byfunc, probe);
9081 		dtrace_hash_remove(dtrace_byname, probe);
9082 
9083 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9084 		    probe->dtpr_arg);
9085 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9086 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9087 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9088 		kmem_free(probe, sizeof (dtrace_probe_t));
9089 #ifdef illumos
9090 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9091 #else
9092 		free_unr(dtrace_arena, i + 1);
9093 #endif
9094 	}
9095 
9096 	mutex_exit(&dtrace_lock);
9097 	mutex_exit(&dtrace_provider_lock);
9098 
9099 	return (0);
9100 }
9101 
9102 /*
9103  * DTrace Probe Management Functions
9104  *
9105  * The functions in this section perform the DTrace probe management,
9106  * including functions to create probes, look-up probes, and call into the
9107  * providers to request that probes be provided.  Some of these functions are
9108  * in the Provider-to-Framework API; these functions can be identified by the
9109  * fact that they are not declared "static".
9110  */
9111 
9112 /*
9113  * Create a probe with the specified module name, function name, and name.
9114  */
9115 dtrace_id_t
9116 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9117     const char *func, const char *name, int aframes, void *arg)
9118 {
9119 	dtrace_probe_t *probe, **probes;
9120 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9121 	dtrace_id_t id;
9122 
9123 	if (provider == dtrace_provider) {
9124 		ASSERT(MUTEX_HELD(&dtrace_lock));
9125 	} else {
9126 		mutex_enter(&dtrace_lock);
9127 	}
9128 
9129 #ifdef illumos
9130 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9131 	    VM_BESTFIT | VM_SLEEP);
9132 #else
9133 	id = alloc_unr(dtrace_arena);
9134 #endif
9135 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9136 
9137 	probe->dtpr_id = id;
9138 	probe->dtpr_gen = dtrace_probegen++;
9139 	probe->dtpr_mod = dtrace_strdup(mod);
9140 	probe->dtpr_func = dtrace_strdup(func);
9141 	probe->dtpr_name = dtrace_strdup(name);
9142 	probe->dtpr_arg = arg;
9143 	probe->dtpr_aframes = aframes;
9144 	probe->dtpr_provider = provider;
9145 
9146 	dtrace_hash_add(dtrace_bymod, probe);
9147 	dtrace_hash_add(dtrace_byfunc, probe);
9148 	dtrace_hash_add(dtrace_byname, probe);
9149 
9150 	if (id - 1 >= dtrace_nprobes) {
9151 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9152 		size_t nsize = osize << 1;
9153 
9154 		if (nsize == 0) {
9155 			ASSERT(osize == 0);
9156 			ASSERT(dtrace_probes == NULL);
9157 			nsize = sizeof (dtrace_probe_t *);
9158 		}
9159 
9160 		probes = kmem_zalloc(nsize, KM_SLEEP);
9161 
9162 		if (dtrace_probes == NULL) {
9163 			ASSERT(osize == 0);
9164 			dtrace_probes = probes;
9165 			dtrace_nprobes = 1;
9166 		} else {
9167 			dtrace_probe_t **oprobes = dtrace_probes;
9168 
9169 			bcopy(oprobes, probes, osize);
9170 			dtrace_membar_producer();
9171 			dtrace_probes = probes;
9172 
9173 			dtrace_sync();
9174 
9175 			/*
9176 			 * All CPUs are now seeing the new probes array; we can
9177 			 * safely free the old array.
9178 			 */
9179 			kmem_free(oprobes, osize);
9180 			dtrace_nprobes <<= 1;
9181 		}
9182 
9183 		ASSERT(id - 1 < dtrace_nprobes);
9184 	}
9185 
9186 	ASSERT(dtrace_probes[id - 1] == NULL);
9187 	dtrace_probes[id - 1] = probe;
9188 
9189 	if (provider != dtrace_provider)
9190 		mutex_exit(&dtrace_lock);
9191 
9192 	return (id);
9193 }
9194 
9195 static dtrace_probe_t *
9196 dtrace_probe_lookup_id(dtrace_id_t id)
9197 {
9198 	ASSERT(MUTEX_HELD(&dtrace_lock));
9199 
9200 	if (id == 0 || id > dtrace_nprobes)
9201 		return (NULL);
9202 
9203 	return (dtrace_probes[id - 1]);
9204 }
9205 
9206 static int
9207 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9208 {
9209 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9210 
9211 	return (DTRACE_MATCH_DONE);
9212 }
9213 
9214 /*
9215  * Look up a probe based on provider and one or more of module name, function
9216  * name and probe name.
9217  */
9218 dtrace_id_t
9219 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9220     char *func, char *name)
9221 {
9222 	dtrace_probekey_t pkey;
9223 	dtrace_id_t id;
9224 	int match;
9225 
9226 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9227 	pkey.dtpk_pmatch = &dtrace_match_string;
9228 	pkey.dtpk_mod = mod;
9229 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9230 	pkey.dtpk_func = func;
9231 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9232 	pkey.dtpk_name = name;
9233 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9234 	pkey.dtpk_id = DTRACE_IDNONE;
9235 
9236 	mutex_enter(&dtrace_lock);
9237 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9238 	    dtrace_probe_lookup_match, &id);
9239 	mutex_exit(&dtrace_lock);
9240 
9241 	ASSERT(match == 1 || match == 0);
9242 	return (match ? id : 0);
9243 }
9244 
9245 /*
9246  * Returns the probe argument associated with the specified probe.
9247  */
9248 void *
9249 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9250 {
9251 	dtrace_probe_t *probe;
9252 	void *rval = NULL;
9253 
9254 	mutex_enter(&dtrace_lock);
9255 
9256 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9257 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9258 		rval = probe->dtpr_arg;
9259 
9260 	mutex_exit(&dtrace_lock);
9261 
9262 	return (rval);
9263 }
9264 
9265 /*
9266  * Copy a probe into a probe description.
9267  */
9268 static void
9269 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9270 {
9271 	bzero(pdp, sizeof (dtrace_probedesc_t));
9272 	pdp->dtpd_id = prp->dtpr_id;
9273 
9274 	(void) strncpy(pdp->dtpd_provider,
9275 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9276 
9277 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9278 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9279 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9280 }
9281 
9282 /*
9283  * Called to indicate that a probe -- or probes -- should be provided by a
9284  * specfied provider.  If the specified description is NULL, the provider will
9285  * be told to provide all of its probes.  (This is done whenever a new
9286  * consumer comes along, or whenever a retained enabling is to be matched.) If
9287  * the specified description is non-NULL, the provider is given the
9288  * opportunity to dynamically provide the specified probe, allowing providers
9289  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9290  * probes.)  If the provider is NULL, the operations will be applied to all
9291  * providers; if the provider is non-NULL the operations will only be applied
9292  * to the specified provider.  The dtrace_provider_lock must be held, and the
9293  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9294  * will need to grab the dtrace_lock when it reenters the framework through
9295  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9296  */
9297 static void
9298 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9299 {
9300 #ifdef illumos
9301 	modctl_t *ctl;
9302 #endif
9303 	int all = 0;
9304 
9305 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9306 
9307 	if (prv == NULL) {
9308 		all = 1;
9309 		prv = dtrace_provider;
9310 	}
9311 
9312 	do {
9313 		/*
9314 		 * First, call the blanket provide operation.
9315 		 */
9316 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9317 
9318 #ifdef illumos
9319 		/*
9320 		 * Now call the per-module provide operation.  We will grab
9321 		 * mod_lock to prevent the list from being modified.  Note
9322 		 * that this also prevents the mod_busy bits from changing.
9323 		 * (mod_busy can only be changed with mod_lock held.)
9324 		 */
9325 		mutex_enter(&mod_lock);
9326 
9327 		ctl = &modules;
9328 		do {
9329 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9330 				continue;
9331 
9332 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9333 
9334 		} while ((ctl = ctl->mod_next) != &modules);
9335 
9336 		mutex_exit(&mod_lock);
9337 #endif
9338 	} while (all && (prv = prv->dtpv_next) != NULL);
9339 }
9340 
9341 #ifdef illumos
9342 /*
9343  * Iterate over each probe, and call the Framework-to-Provider API function
9344  * denoted by offs.
9345  */
9346 static void
9347 dtrace_probe_foreach(uintptr_t offs)
9348 {
9349 	dtrace_provider_t *prov;
9350 	void (*func)(void *, dtrace_id_t, void *);
9351 	dtrace_probe_t *probe;
9352 	dtrace_icookie_t cookie;
9353 	int i;
9354 
9355 	/*
9356 	 * We disable interrupts to walk through the probe array.  This is
9357 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9358 	 * won't see stale data.
9359 	 */
9360 	cookie = dtrace_interrupt_disable();
9361 
9362 	for (i = 0; i < dtrace_nprobes; i++) {
9363 		if ((probe = dtrace_probes[i]) == NULL)
9364 			continue;
9365 
9366 		if (probe->dtpr_ecb == NULL) {
9367 			/*
9368 			 * This probe isn't enabled -- don't call the function.
9369 			 */
9370 			continue;
9371 		}
9372 
9373 		prov = probe->dtpr_provider;
9374 		func = *((void(**)(void *, dtrace_id_t, void *))
9375 		    ((uintptr_t)&prov->dtpv_pops + offs));
9376 
9377 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9378 	}
9379 
9380 	dtrace_interrupt_enable(cookie);
9381 }
9382 #endif
9383 
9384 static int
9385 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9386 {
9387 	dtrace_probekey_t pkey;
9388 	uint32_t priv;
9389 	uid_t uid;
9390 	zoneid_t zoneid;
9391 
9392 	ASSERT(MUTEX_HELD(&dtrace_lock));
9393 	dtrace_ecb_create_cache = NULL;
9394 
9395 	if (desc == NULL) {
9396 		/*
9397 		 * If we're passed a NULL description, we're being asked to
9398 		 * create an ECB with a NULL probe.
9399 		 */
9400 		(void) dtrace_ecb_create_enable(NULL, enab);
9401 		return (0);
9402 	}
9403 
9404 	dtrace_probekey(desc, &pkey);
9405 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9406 	    &priv, &uid, &zoneid);
9407 
9408 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9409 	    enab));
9410 }
9411 
9412 /*
9413  * DTrace Helper Provider Functions
9414  */
9415 static void
9416 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9417 {
9418 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9419 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9420 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9421 }
9422 
9423 static void
9424 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9425     const dof_provider_t *dofprov, char *strtab)
9426 {
9427 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9428 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9429 	    dofprov->dofpv_provattr);
9430 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9431 	    dofprov->dofpv_modattr);
9432 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9433 	    dofprov->dofpv_funcattr);
9434 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9435 	    dofprov->dofpv_nameattr);
9436 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9437 	    dofprov->dofpv_argsattr);
9438 }
9439 
9440 static void
9441 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9442 {
9443 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9444 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9445 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9446 	dof_provider_t *provider;
9447 	dof_probe_t *probe;
9448 	uint32_t *off, *enoff;
9449 	uint8_t *arg;
9450 	char *strtab;
9451 	uint_t i, nprobes;
9452 	dtrace_helper_provdesc_t dhpv;
9453 	dtrace_helper_probedesc_t dhpb;
9454 	dtrace_meta_t *meta = dtrace_meta_pid;
9455 	dtrace_mops_t *mops = &meta->dtm_mops;
9456 	void *parg;
9457 
9458 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9459 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9460 	    provider->dofpv_strtab * dof->dofh_secsize);
9461 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9462 	    provider->dofpv_probes * dof->dofh_secsize);
9463 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9464 	    provider->dofpv_prargs * dof->dofh_secsize);
9465 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9466 	    provider->dofpv_proffs * dof->dofh_secsize);
9467 
9468 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9469 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9470 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9471 	enoff = NULL;
9472 
9473 	/*
9474 	 * See dtrace_helper_provider_validate().
9475 	 */
9476 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9477 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9478 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9479 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9480 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9481 	}
9482 
9483 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9484 
9485 	/*
9486 	 * Create the provider.
9487 	 */
9488 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9489 
9490 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9491 		return;
9492 
9493 	meta->dtm_count++;
9494 
9495 	/*
9496 	 * Create the probes.
9497 	 */
9498 	for (i = 0; i < nprobes; i++) {
9499 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9500 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9501 
9502 		/* See the check in dtrace_helper_provider_validate(). */
9503 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9504 			continue;
9505 
9506 		dhpb.dthpb_mod = dhp->dofhp_mod;
9507 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9508 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9509 		dhpb.dthpb_base = probe->dofpr_addr;
9510 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9511 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9512 		if (enoff != NULL) {
9513 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9514 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9515 		} else {
9516 			dhpb.dthpb_enoffs = NULL;
9517 			dhpb.dthpb_nenoffs = 0;
9518 		}
9519 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9520 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9521 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9522 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9523 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9524 
9525 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9526 	}
9527 }
9528 
9529 static void
9530 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9531 {
9532 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9533 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9534 	int i;
9535 
9536 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9537 
9538 	for (i = 0; i < dof->dofh_secnum; i++) {
9539 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9540 		    dof->dofh_secoff + i * dof->dofh_secsize);
9541 
9542 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9543 			continue;
9544 
9545 		dtrace_helper_provide_one(dhp, sec, pid);
9546 	}
9547 
9548 	/*
9549 	 * We may have just created probes, so we must now rematch against
9550 	 * any retained enablings.  Note that this call will acquire both
9551 	 * cpu_lock and dtrace_lock; the fact that we are holding
9552 	 * dtrace_meta_lock now is what defines the ordering with respect to
9553 	 * these three locks.
9554 	 */
9555 	dtrace_enabling_matchall();
9556 }
9557 
9558 static void
9559 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9560 {
9561 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9562 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9563 	dof_sec_t *str_sec;
9564 	dof_provider_t *provider;
9565 	char *strtab;
9566 	dtrace_helper_provdesc_t dhpv;
9567 	dtrace_meta_t *meta = dtrace_meta_pid;
9568 	dtrace_mops_t *mops = &meta->dtm_mops;
9569 
9570 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9571 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9572 	    provider->dofpv_strtab * dof->dofh_secsize);
9573 
9574 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9575 
9576 	/*
9577 	 * Create the provider.
9578 	 */
9579 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9580 
9581 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9582 
9583 	meta->dtm_count--;
9584 }
9585 
9586 static void
9587 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9588 {
9589 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9590 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9591 	int i;
9592 
9593 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9594 
9595 	for (i = 0; i < dof->dofh_secnum; i++) {
9596 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9597 		    dof->dofh_secoff + i * dof->dofh_secsize);
9598 
9599 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9600 			continue;
9601 
9602 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9603 	}
9604 }
9605 
9606 /*
9607  * DTrace Meta Provider-to-Framework API Functions
9608  *
9609  * These functions implement the Meta Provider-to-Framework API, as described
9610  * in <sys/dtrace.h>.
9611  */
9612 int
9613 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9614     dtrace_meta_provider_id_t *idp)
9615 {
9616 	dtrace_meta_t *meta;
9617 	dtrace_helpers_t *help, *next;
9618 	int i;
9619 
9620 	*idp = DTRACE_METAPROVNONE;
9621 
9622 	/*
9623 	 * We strictly don't need the name, but we hold onto it for
9624 	 * debuggability. All hail error queues!
9625 	 */
9626 	if (name == NULL) {
9627 		cmn_err(CE_WARN, "failed to register meta-provider: "
9628 		    "invalid name");
9629 		return (EINVAL);
9630 	}
9631 
9632 	if (mops == NULL ||
9633 	    mops->dtms_create_probe == NULL ||
9634 	    mops->dtms_provide_pid == NULL ||
9635 	    mops->dtms_remove_pid == NULL) {
9636 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9637 		    "invalid ops", name);
9638 		return (EINVAL);
9639 	}
9640 
9641 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9642 	meta->dtm_mops = *mops;
9643 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9644 	(void) strcpy(meta->dtm_name, name);
9645 	meta->dtm_arg = arg;
9646 
9647 	mutex_enter(&dtrace_meta_lock);
9648 	mutex_enter(&dtrace_lock);
9649 
9650 	if (dtrace_meta_pid != NULL) {
9651 		mutex_exit(&dtrace_lock);
9652 		mutex_exit(&dtrace_meta_lock);
9653 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9654 		    "user-land meta-provider exists", name);
9655 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9656 		kmem_free(meta, sizeof (dtrace_meta_t));
9657 		return (EINVAL);
9658 	}
9659 
9660 	dtrace_meta_pid = meta;
9661 	*idp = (dtrace_meta_provider_id_t)meta;
9662 
9663 	/*
9664 	 * If there are providers and probes ready to go, pass them
9665 	 * off to the new meta provider now.
9666 	 */
9667 
9668 	help = dtrace_deferred_pid;
9669 	dtrace_deferred_pid = NULL;
9670 
9671 	mutex_exit(&dtrace_lock);
9672 
9673 	while (help != NULL) {
9674 		for (i = 0; i < help->dthps_nprovs; i++) {
9675 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9676 			    help->dthps_pid);
9677 		}
9678 
9679 		next = help->dthps_next;
9680 		help->dthps_next = NULL;
9681 		help->dthps_prev = NULL;
9682 		help->dthps_deferred = 0;
9683 		help = next;
9684 	}
9685 
9686 	mutex_exit(&dtrace_meta_lock);
9687 
9688 	return (0);
9689 }
9690 
9691 int
9692 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9693 {
9694 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9695 
9696 	mutex_enter(&dtrace_meta_lock);
9697 	mutex_enter(&dtrace_lock);
9698 
9699 	if (old == dtrace_meta_pid) {
9700 		pp = &dtrace_meta_pid;
9701 	} else {
9702 		panic("attempt to unregister non-existent "
9703 		    "dtrace meta-provider %p\n", (void *)old);
9704 	}
9705 
9706 	if (old->dtm_count != 0) {
9707 		mutex_exit(&dtrace_lock);
9708 		mutex_exit(&dtrace_meta_lock);
9709 		return (EBUSY);
9710 	}
9711 
9712 	*pp = NULL;
9713 
9714 	mutex_exit(&dtrace_lock);
9715 	mutex_exit(&dtrace_meta_lock);
9716 
9717 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9718 	kmem_free(old, sizeof (dtrace_meta_t));
9719 
9720 	return (0);
9721 }
9722 
9723 
9724 /*
9725  * DTrace DIF Object Functions
9726  */
9727 static int
9728 dtrace_difo_err(uint_t pc, const char *format, ...)
9729 {
9730 	if (dtrace_err_verbose) {
9731 		va_list alist;
9732 
9733 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9734 		va_start(alist, format);
9735 		(void) vuprintf(format, alist);
9736 		va_end(alist);
9737 	}
9738 
9739 #ifdef DTRACE_ERRDEBUG
9740 	dtrace_errdebug(format);
9741 #endif
9742 	return (1);
9743 }
9744 
9745 /*
9746  * Validate a DTrace DIF object by checking the IR instructions.  The following
9747  * rules are currently enforced by dtrace_difo_validate():
9748  *
9749  * 1. Each instruction must have a valid opcode
9750  * 2. Each register, string, variable, or subroutine reference must be valid
9751  * 3. No instruction can modify register %r0 (must be zero)
9752  * 4. All instruction reserved bits must be set to zero
9753  * 5. The last instruction must be a "ret" instruction
9754  * 6. All branch targets must reference a valid instruction _after_ the branch
9755  */
9756 static int
9757 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9758     cred_t *cr)
9759 {
9760 	int err = 0, i;
9761 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9762 	int kcheckload;
9763 	uint_t pc;
9764 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9765 
9766 	kcheckload = cr == NULL ||
9767 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9768 
9769 	dp->dtdo_destructive = 0;
9770 
9771 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9772 		dif_instr_t instr = dp->dtdo_buf[pc];
9773 
9774 		uint_t r1 = DIF_INSTR_R1(instr);
9775 		uint_t r2 = DIF_INSTR_R2(instr);
9776 		uint_t rd = DIF_INSTR_RD(instr);
9777 		uint_t rs = DIF_INSTR_RS(instr);
9778 		uint_t label = DIF_INSTR_LABEL(instr);
9779 		uint_t v = DIF_INSTR_VAR(instr);
9780 		uint_t subr = DIF_INSTR_SUBR(instr);
9781 		uint_t type = DIF_INSTR_TYPE(instr);
9782 		uint_t op = DIF_INSTR_OP(instr);
9783 
9784 		switch (op) {
9785 		case DIF_OP_OR:
9786 		case DIF_OP_XOR:
9787 		case DIF_OP_AND:
9788 		case DIF_OP_SLL:
9789 		case DIF_OP_SRL:
9790 		case DIF_OP_SRA:
9791 		case DIF_OP_SUB:
9792 		case DIF_OP_ADD:
9793 		case DIF_OP_MUL:
9794 		case DIF_OP_SDIV:
9795 		case DIF_OP_UDIV:
9796 		case DIF_OP_SREM:
9797 		case DIF_OP_UREM:
9798 		case DIF_OP_COPYS:
9799 			if (r1 >= nregs)
9800 				err += efunc(pc, "invalid register %u\n", r1);
9801 			if (r2 >= nregs)
9802 				err += efunc(pc, "invalid register %u\n", r2);
9803 			if (rd >= nregs)
9804 				err += efunc(pc, "invalid register %u\n", rd);
9805 			if (rd == 0)
9806 				err += efunc(pc, "cannot write to %r0\n");
9807 			break;
9808 		case DIF_OP_NOT:
9809 		case DIF_OP_MOV:
9810 		case DIF_OP_ALLOCS:
9811 			if (r1 >= nregs)
9812 				err += efunc(pc, "invalid register %u\n", r1);
9813 			if (r2 != 0)
9814 				err += efunc(pc, "non-zero reserved bits\n");
9815 			if (rd >= nregs)
9816 				err += efunc(pc, "invalid register %u\n", rd);
9817 			if (rd == 0)
9818 				err += efunc(pc, "cannot write to %r0\n");
9819 			break;
9820 		case DIF_OP_LDSB:
9821 		case DIF_OP_LDSH:
9822 		case DIF_OP_LDSW:
9823 		case DIF_OP_LDUB:
9824 		case DIF_OP_LDUH:
9825 		case DIF_OP_LDUW:
9826 		case DIF_OP_LDX:
9827 			if (r1 >= nregs)
9828 				err += efunc(pc, "invalid register %u\n", r1);
9829 			if (r2 != 0)
9830 				err += efunc(pc, "non-zero reserved bits\n");
9831 			if (rd >= nregs)
9832 				err += efunc(pc, "invalid register %u\n", rd);
9833 			if (rd == 0)
9834 				err += efunc(pc, "cannot write to %r0\n");
9835 			if (kcheckload)
9836 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9837 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9838 			break;
9839 		case DIF_OP_RLDSB:
9840 		case DIF_OP_RLDSH:
9841 		case DIF_OP_RLDSW:
9842 		case DIF_OP_RLDUB:
9843 		case DIF_OP_RLDUH:
9844 		case DIF_OP_RLDUW:
9845 		case DIF_OP_RLDX:
9846 			if (r1 >= nregs)
9847 				err += efunc(pc, "invalid register %u\n", r1);
9848 			if (r2 != 0)
9849 				err += efunc(pc, "non-zero reserved bits\n");
9850 			if (rd >= nregs)
9851 				err += efunc(pc, "invalid register %u\n", rd);
9852 			if (rd == 0)
9853 				err += efunc(pc, "cannot write to %r0\n");
9854 			break;
9855 		case DIF_OP_ULDSB:
9856 		case DIF_OP_ULDSH:
9857 		case DIF_OP_ULDSW:
9858 		case DIF_OP_ULDUB:
9859 		case DIF_OP_ULDUH:
9860 		case DIF_OP_ULDUW:
9861 		case DIF_OP_ULDX:
9862 			if (r1 >= nregs)
9863 				err += efunc(pc, "invalid register %u\n", r1);
9864 			if (r2 != 0)
9865 				err += efunc(pc, "non-zero reserved bits\n");
9866 			if (rd >= nregs)
9867 				err += efunc(pc, "invalid register %u\n", rd);
9868 			if (rd == 0)
9869 				err += efunc(pc, "cannot write to %r0\n");
9870 			break;
9871 		case DIF_OP_STB:
9872 		case DIF_OP_STH:
9873 		case DIF_OP_STW:
9874 		case DIF_OP_STX:
9875 			if (r1 >= nregs)
9876 				err += efunc(pc, "invalid register %u\n", r1);
9877 			if (r2 != 0)
9878 				err += efunc(pc, "non-zero reserved bits\n");
9879 			if (rd >= nregs)
9880 				err += efunc(pc, "invalid register %u\n", rd);
9881 			if (rd == 0)
9882 				err += efunc(pc, "cannot write to 0 address\n");
9883 			break;
9884 		case DIF_OP_CMP:
9885 		case DIF_OP_SCMP:
9886 			if (r1 >= nregs)
9887 				err += efunc(pc, "invalid register %u\n", r1);
9888 			if (r2 >= nregs)
9889 				err += efunc(pc, "invalid register %u\n", r2);
9890 			if (rd != 0)
9891 				err += efunc(pc, "non-zero reserved bits\n");
9892 			break;
9893 		case DIF_OP_TST:
9894 			if (r1 >= nregs)
9895 				err += efunc(pc, "invalid register %u\n", r1);
9896 			if (r2 != 0 || rd != 0)
9897 				err += efunc(pc, "non-zero reserved bits\n");
9898 			break;
9899 		case DIF_OP_BA:
9900 		case DIF_OP_BE:
9901 		case DIF_OP_BNE:
9902 		case DIF_OP_BG:
9903 		case DIF_OP_BGU:
9904 		case DIF_OP_BGE:
9905 		case DIF_OP_BGEU:
9906 		case DIF_OP_BL:
9907 		case DIF_OP_BLU:
9908 		case DIF_OP_BLE:
9909 		case DIF_OP_BLEU:
9910 			if (label >= dp->dtdo_len) {
9911 				err += efunc(pc, "invalid branch target %u\n",
9912 				    label);
9913 			}
9914 			if (label <= pc) {
9915 				err += efunc(pc, "backward branch to %u\n",
9916 				    label);
9917 			}
9918 			break;
9919 		case DIF_OP_RET:
9920 			if (r1 != 0 || r2 != 0)
9921 				err += efunc(pc, "non-zero reserved bits\n");
9922 			if (rd >= nregs)
9923 				err += efunc(pc, "invalid register %u\n", rd);
9924 			break;
9925 		case DIF_OP_NOP:
9926 		case DIF_OP_POPTS:
9927 		case DIF_OP_FLUSHTS:
9928 			if (r1 != 0 || r2 != 0 || rd != 0)
9929 				err += efunc(pc, "non-zero reserved bits\n");
9930 			break;
9931 		case DIF_OP_SETX:
9932 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9933 				err += efunc(pc, "invalid integer ref %u\n",
9934 				    DIF_INSTR_INTEGER(instr));
9935 			}
9936 			if (rd >= nregs)
9937 				err += efunc(pc, "invalid register %u\n", rd);
9938 			if (rd == 0)
9939 				err += efunc(pc, "cannot write to %r0\n");
9940 			break;
9941 		case DIF_OP_SETS:
9942 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9943 				err += efunc(pc, "invalid string ref %u\n",
9944 				    DIF_INSTR_STRING(instr));
9945 			}
9946 			if (rd >= nregs)
9947 				err += efunc(pc, "invalid register %u\n", rd);
9948 			if (rd == 0)
9949 				err += efunc(pc, "cannot write to %r0\n");
9950 			break;
9951 		case DIF_OP_LDGA:
9952 		case DIF_OP_LDTA:
9953 			if (r1 > DIF_VAR_ARRAY_MAX)
9954 				err += efunc(pc, "invalid array %u\n", r1);
9955 			if (r2 >= nregs)
9956 				err += efunc(pc, "invalid register %u\n", r2);
9957 			if (rd >= nregs)
9958 				err += efunc(pc, "invalid register %u\n", rd);
9959 			if (rd == 0)
9960 				err += efunc(pc, "cannot write to %r0\n");
9961 			break;
9962 		case DIF_OP_LDGS:
9963 		case DIF_OP_LDTS:
9964 		case DIF_OP_LDLS:
9965 		case DIF_OP_LDGAA:
9966 		case DIF_OP_LDTAA:
9967 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9968 				err += efunc(pc, "invalid variable %u\n", v);
9969 			if (rd >= nregs)
9970 				err += efunc(pc, "invalid register %u\n", rd);
9971 			if (rd == 0)
9972 				err += efunc(pc, "cannot write to %r0\n");
9973 			break;
9974 		case DIF_OP_STGS:
9975 		case DIF_OP_STTS:
9976 		case DIF_OP_STLS:
9977 		case DIF_OP_STGAA:
9978 		case DIF_OP_STTAA:
9979 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9980 				err += efunc(pc, "invalid variable %u\n", v);
9981 			if (rs >= nregs)
9982 				err += efunc(pc, "invalid register %u\n", rd);
9983 			break;
9984 		case DIF_OP_CALL:
9985 			if (subr > DIF_SUBR_MAX)
9986 				err += efunc(pc, "invalid subr %u\n", subr);
9987 			if (rd >= nregs)
9988 				err += efunc(pc, "invalid register %u\n", rd);
9989 			if (rd == 0)
9990 				err += efunc(pc, "cannot write to %r0\n");
9991 
9992 			if (subr == DIF_SUBR_COPYOUT ||
9993 			    subr == DIF_SUBR_COPYOUTSTR) {
9994 				dp->dtdo_destructive = 1;
9995 			}
9996 
9997 			if (subr == DIF_SUBR_GETF) {
9998 				/*
9999 				 * If we have a getf() we need to record that
10000 				 * in our state.  Note that our state can be
10001 				 * NULL if this is a helper -- but in that
10002 				 * case, the call to getf() is itself illegal,
10003 				 * and will be caught (slightly later) when
10004 				 * the helper is validated.
10005 				 */
10006 				if (vstate->dtvs_state != NULL)
10007 					vstate->dtvs_state->dts_getf++;
10008 			}
10009 
10010 			break;
10011 		case DIF_OP_PUSHTR:
10012 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10013 				err += efunc(pc, "invalid ref type %u\n", type);
10014 			if (r2 >= nregs)
10015 				err += efunc(pc, "invalid register %u\n", r2);
10016 			if (rs >= nregs)
10017 				err += efunc(pc, "invalid register %u\n", rs);
10018 			break;
10019 		case DIF_OP_PUSHTV:
10020 			if (type != DIF_TYPE_CTF)
10021 				err += efunc(pc, "invalid val type %u\n", type);
10022 			if (r2 >= nregs)
10023 				err += efunc(pc, "invalid register %u\n", r2);
10024 			if (rs >= nregs)
10025 				err += efunc(pc, "invalid register %u\n", rs);
10026 			break;
10027 		default:
10028 			err += efunc(pc, "invalid opcode %u\n",
10029 			    DIF_INSTR_OP(instr));
10030 		}
10031 	}
10032 
10033 	if (dp->dtdo_len != 0 &&
10034 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10035 		err += efunc(dp->dtdo_len - 1,
10036 		    "expected 'ret' as last DIF instruction\n");
10037 	}
10038 
10039 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10040 		/*
10041 		 * If we're not returning by reference, the size must be either
10042 		 * 0 or the size of one of the base types.
10043 		 */
10044 		switch (dp->dtdo_rtype.dtdt_size) {
10045 		case 0:
10046 		case sizeof (uint8_t):
10047 		case sizeof (uint16_t):
10048 		case sizeof (uint32_t):
10049 		case sizeof (uint64_t):
10050 			break;
10051 
10052 		default:
10053 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10054 		}
10055 	}
10056 
10057 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10058 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10059 		dtrace_diftype_t *vt, *et;
10060 		uint_t id, ndx;
10061 
10062 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10063 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10064 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10065 			err += efunc(i, "unrecognized variable scope %d\n",
10066 			    v->dtdv_scope);
10067 			break;
10068 		}
10069 
10070 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10071 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10072 			err += efunc(i, "unrecognized variable type %d\n",
10073 			    v->dtdv_kind);
10074 			break;
10075 		}
10076 
10077 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10078 			err += efunc(i, "%d exceeds variable id limit\n", id);
10079 			break;
10080 		}
10081 
10082 		if (id < DIF_VAR_OTHER_UBASE)
10083 			continue;
10084 
10085 		/*
10086 		 * For user-defined variables, we need to check that this
10087 		 * definition is identical to any previous definition that we
10088 		 * encountered.
10089 		 */
10090 		ndx = id - DIF_VAR_OTHER_UBASE;
10091 
10092 		switch (v->dtdv_scope) {
10093 		case DIFV_SCOPE_GLOBAL:
10094 			if (maxglobal == -1 || ndx > maxglobal)
10095 				maxglobal = ndx;
10096 
10097 			if (ndx < vstate->dtvs_nglobals) {
10098 				dtrace_statvar_t *svar;
10099 
10100 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10101 					existing = &svar->dtsv_var;
10102 			}
10103 
10104 			break;
10105 
10106 		case DIFV_SCOPE_THREAD:
10107 			if (maxtlocal == -1 || ndx > maxtlocal)
10108 				maxtlocal = ndx;
10109 
10110 			if (ndx < vstate->dtvs_ntlocals)
10111 				existing = &vstate->dtvs_tlocals[ndx];
10112 			break;
10113 
10114 		case DIFV_SCOPE_LOCAL:
10115 			if (maxlocal == -1 || ndx > maxlocal)
10116 				maxlocal = ndx;
10117 
10118 			if (ndx < vstate->dtvs_nlocals) {
10119 				dtrace_statvar_t *svar;
10120 
10121 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10122 					existing = &svar->dtsv_var;
10123 			}
10124 
10125 			break;
10126 		}
10127 
10128 		vt = &v->dtdv_type;
10129 
10130 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10131 			if (vt->dtdt_size == 0) {
10132 				err += efunc(i, "zero-sized variable\n");
10133 				break;
10134 			}
10135 
10136 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10137 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10138 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10139 				err += efunc(i, "oversized by-ref static\n");
10140 				break;
10141 			}
10142 		}
10143 
10144 		if (existing == NULL || existing->dtdv_id == 0)
10145 			continue;
10146 
10147 		ASSERT(existing->dtdv_id == v->dtdv_id);
10148 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10149 
10150 		if (existing->dtdv_kind != v->dtdv_kind)
10151 			err += efunc(i, "%d changed variable kind\n", id);
10152 
10153 		et = &existing->dtdv_type;
10154 
10155 		if (vt->dtdt_flags != et->dtdt_flags) {
10156 			err += efunc(i, "%d changed variable type flags\n", id);
10157 			break;
10158 		}
10159 
10160 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10161 			err += efunc(i, "%d changed variable type size\n", id);
10162 			break;
10163 		}
10164 	}
10165 
10166 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10167 		dif_instr_t instr = dp->dtdo_buf[pc];
10168 
10169 		uint_t v = DIF_INSTR_VAR(instr);
10170 		uint_t op = DIF_INSTR_OP(instr);
10171 
10172 		switch (op) {
10173 		case DIF_OP_LDGS:
10174 		case DIF_OP_LDGAA:
10175 		case DIF_OP_STGS:
10176 		case DIF_OP_STGAA:
10177 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10178 				err += efunc(pc, "invalid variable %u\n", v);
10179 			break;
10180 		case DIF_OP_LDTS:
10181 		case DIF_OP_LDTAA:
10182 		case DIF_OP_STTS:
10183 		case DIF_OP_STTAA:
10184 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10185 				err += efunc(pc, "invalid variable %u\n", v);
10186 			break;
10187 		case DIF_OP_LDLS:
10188 		case DIF_OP_STLS:
10189 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10190 				err += efunc(pc, "invalid variable %u\n", v);
10191 			break;
10192 		default:
10193 			break;
10194 		}
10195 	}
10196 
10197 	return (err);
10198 }
10199 
10200 /*
10201  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10202  * are much more constrained than normal DIFOs.  Specifically, they may
10203  * not:
10204  *
10205  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10206  *    miscellaneous string routines
10207  * 2. Access DTrace variables other than the args[] array, and the
10208  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10209  * 3. Have thread-local variables.
10210  * 4. Have dynamic variables.
10211  */
10212 static int
10213 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10214 {
10215 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10216 	int err = 0;
10217 	uint_t pc;
10218 
10219 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10220 		dif_instr_t instr = dp->dtdo_buf[pc];
10221 
10222 		uint_t v = DIF_INSTR_VAR(instr);
10223 		uint_t subr = DIF_INSTR_SUBR(instr);
10224 		uint_t op = DIF_INSTR_OP(instr);
10225 
10226 		switch (op) {
10227 		case DIF_OP_OR:
10228 		case DIF_OP_XOR:
10229 		case DIF_OP_AND:
10230 		case DIF_OP_SLL:
10231 		case DIF_OP_SRL:
10232 		case DIF_OP_SRA:
10233 		case DIF_OP_SUB:
10234 		case DIF_OP_ADD:
10235 		case DIF_OP_MUL:
10236 		case DIF_OP_SDIV:
10237 		case DIF_OP_UDIV:
10238 		case DIF_OP_SREM:
10239 		case DIF_OP_UREM:
10240 		case DIF_OP_COPYS:
10241 		case DIF_OP_NOT:
10242 		case DIF_OP_MOV:
10243 		case DIF_OP_RLDSB:
10244 		case DIF_OP_RLDSH:
10245 		case DIF_OP_RLDSW:
10246 		case DIF_OP_RLDUB:
10247 		case DIF_OP_RLDUH:
10248 		case DIF_OP_RLDUW:
10249 		case DIF_OP_RLDX:
10250 		case DIF_OP_ULDSB:
10251 		case DIF_OP_ULDSH:
10252 		case DIF_OP_ULDSW:
10253 		case DIF_OP_ULDUB:
10254 		case DIF_OP_ULDUH:
10255 		case DIF_OP_ULDUW:
10256 		case DIF_OP_ULDX:
10257 		case DIF_OP_STB:
10258 		case DIF_OP_STH:
10259 		case DIF_OP_STW:
10260 		case DIF_OP_STX:
10261 		case DIF_OP_ALLOCS:
10262 		case DIF_OP_CMP:
10263 		case DIF_OP_SCMP:
10264 		case DIF_OP_TST:
10265 		case DIF_OP_BA:
10266 		case DIF_OP_BE:
10267 		case DIF_OP_BNE:
10268 		case DIF_OP_BG:
10269 		case DIF_OP_BGU:
10270 		case DIF_OP_BGE:
10271 		case DIF_OP_BGEU:
10272 		case DIF_OP_BL:
10273 		case DIF_OP_BLU:
10274 		case DIF_OP_BLE:
10275 		case DIF_OP_BLEU:
10276 		case DIF_OP_RET:
10277 		case DIF_OP_NOP:
10278 		case DIF_OP_POPTS:
10279 		case DIF_OP_FLUSHTS:
10280 		case DIF_OP_SETX:
10281 		case DIF_OP_SETS:
10282 		case DIF_OP_LDGA:
10283 		case DIF_OP_LDLS:
10284 		case DIF_OP_STGS:
10285 		case DIF_OP_STLS:
10286 		case DIF_OP_PUSHTR:
10287 		case DIF_OP_PUSHTV:
10288 			break;
10289 
10290 		case DIF_OP_LDGS:
10291 			if (v >= DIF_VAR_OTHER_UBASE)
10292 				break;
10293 
10294 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10295 				break;
10296 
10297 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10298 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10299 			    v == DIF_VAR_EXECARGS ||
10300 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10301 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10302 				break;
10303 
10304 			err += efunc(pc, "illegal variable %u\n", v);
10305 			break;
10306 
10307 		case DIF_OP_LDTA:
10308 		case DIF_OP_LDTS:
10309 		case DIF_OP_LDGAA:
10310 		case DIF_OP_LDTAA:
10311 			err += efunc(pc, "illegal dynamic variable load\n");
10312 			break;
10313 
10314 		case DIF_OP_STTS:
10315 		case DIF_OP_STGAA:
10316 		case DIF_OP_STTAA:
10317 			err += efunc(pc, "illegal dynamic variable store\n");
10318 			break;
10319 
10320 		case DIF_OP_CALL:
10321 			if (subr == DIF_SUBR_ALLOCA ||
10322 			    subr == DIF_SUBR_BCOPY ||
10323 			    subr == DIF_SUBR_COPYIN ||
10324 			    subr == DIF_SUBR_COPYINTO ||
10325 			    subr == DIF_SUBR_COPYINSTR ||
10326 			    subr == DIF_SUBR_INDEX ||
10327 			    subr == DIF_SUBR_INET_NTOA ||
10328 			    subr == DIF_SUBR_INET_NTOA6 ||
10329 			    subr == DIF_SUBR_INET_NTOP ||
10330 			    subr == DIF_SUBR_JSON ||
10331 			    subr == DIF_SUBR_LLTOSTR ||
10332 			    subr == DIF_SUBR_STRTOLL ||
10333 			    subr == DIF_SUBR_RINDEX ||
10334 			    subr == DIF_SUBR_STRCHR ||
10335 			    subr == DIF_SUBR_STRJOIN ||
10336 			    subr == DIF_SUBR_STRRCHR ||
10337 			    subr == DIF_SUBR_STRSTR ||
10338 			    subr == DIF_SUBR_HTONS ||
10339 			    subr == DIF_SUBR_HTONL ||
10340 			    subr == DIF_SUBR_HTONLL ||
10341 			    subr == DIF_SUBR_NTOHS ||
10342 			    subr == DIF_SUBR_NTOHL ||
10343 			    subr == DIF_SUBR_NTOHLL ||
10344 			    subr == DIF_SUBR_MEMREF)
10345 				break;
10346 #ifdef __FreeBSD__
10347 			if (subr == DIF_SUBR_MEMSTR)
10348 				break;
10349 #endif
10350 
10351 			err += efunc(pc, "invalid subr %u\n", subr);
10352 			break;
10353 
10354 		default:
10355 			err += efunc(pc, "invalid opcode %u\n",
10356 			    DIF_INSTR_OP(instr));
10357 		}
10358 	}
10359 
10360 	return (err);
10361 }
10362 
10363 /*
10364  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10365  * basis; 0 if not.
10366  */
10367 static int
10368 dtrace_difo_cacheable(dtrace_difo_t *dp)
10369 {
10370 	int i;
10371 
10372 	if (dp == NULL)
10373 		return (0);
10374 
10375 	for (i = 0; i < dp->dtdo_varlen; i++) {
10376 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10377 
10378 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10379 			continue;
10380 
10381 		switch (v->dtdv_id) {
10382 		case DIF_VAR_CURTHREAD:
10383 		case DIF_VAR_PID:
10384 		case DIF_VAR_TID:
10385 		case DIF_VAR_EXECARGS:
10386 		case DIF_VAR_EXECNAME:
10387 		case DIF_VAR_ZONENAME:
10388 			break;
10389 
10390 		default:
10391 			return (0);
10392 		}
10393 	}
10394 
10395 	/*
10396 	 * This DIF object may be cacheable.  Now we need to look for any
10397 	 * array loading instructions, any memory loading instructions, or
10398 	 * any stores to thread-local variables.
10399 	 */
10400 	for (i = 0; i < dp->dtdo_len; i++) {
10401 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10402 
10403 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10404 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10405 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10406 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10407 			return (0);
10408 	}
10409 
10410 	return (1);
10411 }
10412 
10413 static void
10414 dtrace_difo_hold(dtrace_difo_t *dp)
10415 {
10416 	int i;
10417 
10418 	ASSERT(MUTEX_HELD(&dtrace_lock));
10419 
10420 	dp->dtdo_refcnt++;
10421 	ASSERT(dp->dtdo_refcnt != 0);
10422 
10423 	/*
10424 	 * We need to check this DIF object for references to the variable
10425 	 * DIF_VAR_VTIMESTAMP.
10426 	 */
10427 	for (i = 0; i < dp->dtdo_varlen; i++) {
10428 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10429 
10430 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10431 			continue;
10432 
10433 		if (dtrace_vtime_references++ == 0)
10434 			dtrace_vtime_enable();
10435 	}
10436 }
10437 
10438 /*
10439  * This routine calculates the dynamic variable chunksize for a given DIF
10440  * object.  The calculation is not fool-proof, and can probably be tricked by
10441  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10442  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10443  * if a dynamic variable size exceeds the chunksize.
10444  */
10445 static void
10446 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10447 {
10448 	uint64_t sval = 0;
10449 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10450 	const dif_instr_t *text = dp->dtdo_buf;
10451 	uint_t pc, srd = 0;
10452 	uint_t ttop = 0;
10453 	size_t size, ksize;
10454 	uint_t id, i;
10455 
10456 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10457 		dif_instr_t instr = text[pc];
10458 		uint_t op = DIF_INSTR_OP(instr);
10459 		uint_t rd = DIF_INSTR_RD(instr);
10460 		uint_t r1 = DIF_INSTR_R1(instr);
10461 		uint_t nkeys = 0;
10462 		uchar_t scope = 0;
10463 
10464 		dtrace_key_t *key = tupregs;
10465 
10466 		switch (op) {
10467 		case DIF_OP_SETX:
10468 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10469 			srd = rd;
10470 			continue;
10471 
10472 		case DIF_OP_STTS:
10473 			key = &tupregs[DIF_DTR_NREGS];
10474 			key[0].dttk_size = 0;
10475 			key[1].dttk_size = 0;
10476 			nkeys = 2;
10477 			scope = DIFV_SCOPE_THREAD;
10478 			break;
10479 
10480 		case DIF_OP_STGAA:
10481 		case DIF_OP_STTAA:
10482 			nkeys = ttop;
10483 
10484 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10485 				key[nkeys++].dttk_size = 0;
10486 
10487 			key[nkeys++].dttk_size = 0;
10488 
10489 			if (op == DIF_OP_STTAA) {
10490 				scope = DIFV_SCOPE_THREAD;
10491 			} else {
10492 				scope = DIFV_SCOPE_GLOBAL;
10493 			}
10494 
10495 			break;
10496 
10497 		case DIF_OP_PUSHTR:
10498 			if (ttop == DIF_DTR_NREGS)
10499 				return;
10500 
10501 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10502 				/*
10503 				 * If the register for the size of the "pushtr"
10504 				 * is %r0 (or the value is 0) and the type is
10505 				 * a string, we'll use the system-wide default
10506 				 * string size.
10507 				 */
10508 				tupregs[ttop++].dttk_size =
10509 				    dtrace_strsize_default;
10510 			} else {
10511 				if (srd == 0)
10512 					return;
10513 
10514 				if (sval > LONG_MAX)
10515 					return;
10516 
10517 				tupregs[ttop++].dttk_size = sval;
10518 			}
10519 
10520 			break;
10521 
10522 		case DIF_OP_PUSHTV:
10523 			if (ttop == DIF_DTR_NREGS)
10524 				return;
10525 
10526 			tupregs[ttop++].dttk_size = 0;
10527 			break;
10528 
10529 		case DIF_OP_FLUSHTS:
10530 			ttop = 0;
10531 			break;
10532 
10533 		case DIF_OP_POPTS:
10534 			if (ttop != 0)
10535 				ttop--;
10536 			break;
10537 		}
10538 
10539 		sval = 0;
10540 		srd = 0;
10541 
10542 		if (nkeys == 0)
10543 			continue;
10544 
10545 		/*
10546 		 * We have a dynamic variable allocation; calculate its size.
10547 		 */
10548 		for (ksize = 0, i = 0; i < nkeys; i++)
10549 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10550 
10551 		size = sizeof (dtrace_dynvar_t);
10552 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10553 		size += ksize;
10554 
10555 		/*
10556 		 * Now we need to determine the size of the stored data.
10557 		 */
10558 		id = DIF_INSTR_VAR(instr);
10559 
10560 		for (i = 0; i < dp->dtdo_varlen; i++) {
10561 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10562 
10563 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10564 				size += v->dtdv_type.dtdt_size;
10565 				break;
10566 			}
10567 		}
10568 
10569 		if (i == dp->dtdo_varlen)
10570 			return;
10571 
10572 		/*
10573 		 * We have the size.  If this is larger than the chunk size
10574 		 * for our dynamic variable state, reset the chunk size.
10575 		 */
10576 		size = P2ROUNDUP(size, sizeof (uint64_t));
10577 
10578 		/*
10579 		 * Before setting the chunk size, check that we're not going
10580 		 * to set it to a negative value...
10581 		 */
10582 		if (size > LONG_MAX)
10583 			return;
10584 
10585 		/*
10586 		 * ...and make certain that we didn't badly overflow.
10587 		 */
10588 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10589 			return;
10590 
10591 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10592 			vstate->dtvs_dynvars.dtds_chunksize = size;
10593 	}
10594 }
10595 
10596 static void
10597 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10598 {
10599 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10600 	uint_t id;
10601 
10602 	ASSERT(MUTEX_HELD(&dtrace_lock));
10603 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10604 
10605 	for (i = 0; i < dp->dtdo_varlen; i++) {
10606 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10607 		dtrace_statvar_t *svar, ***svarp = NULL;
10608 		size_t dsize = 0;
10609 		uint8_t scope = v->dtdv_scope;
10610 		int *np = NULL;
10611 
10612 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10613 			continue;
10614 
10615 		id -= DIF_VAR_OTHER_UBASE;
10616 
10617 		switch (scope) {
10618 		case DIFV_SCOPE_THREAD:
10619 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10620 				dtrace_difv_t *tlocals;
10621 
10622 				if ((ntlocals = (otlocals << 1)) == 0)
10623 					ntlocals = 1;
10624 
10625 				osz = otlocals * sizeof (dtrace_difv_t);
10626 				nsz = ntlocals * sizeof (dtrace_difv_t);
10627 
10628 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10629 
10630 				if (osz != 0) {
10631 					bcopy(vstate->dtvs_tlocals,
10632 					    tlocals, osz);
10633 					kmem_free(vstate->dtvs_tlocals, osz);
10634 				}
10635 
10636 				vstate->dtvs_tlocals = tlocals;
10637 				vstate->dtvs_ntlocals = ntlocals;
10638 			}
10639 
10640 			vstate->dtvs_tlocals[id] = *v;
10641 			continue;
10642 
10643 		case DIFV_SCOPE_LOCAL:
10644 			np = &vstate->dtvs_nlocals;
10645 			svarp = &vstate->dtvs_locals;
10646 
10647 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10648 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10649 				    sizeof (uint64_t));
10650 			else
10651 				dsize = NCPU * sizeof (uint64_t);
10652 
10653 			break;
10654 
10655 		case DIFV_SCOPE_GLOBAL:
10656 			np = &vstate->dtvs_nglobals;
10657 			svarp = &vstate->dtvs_globals;
10658 
10659 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10660 				dsize = v->dtdv_type.dtdt_size +
10661 				    sizeof (uint64_t);
10662 
10663 			break;
10664 
10665 		default:
10666 			ASSERT(0);
10667 		}
10668 
10669 		while (id >= (oldsvars = *np)) {
10670 			dtrace_statvar_t **statics;
10671 			int newsvars, oldsize, newsize;
10672 
10673 			if ((newsvars = (oldsvars << 1)) == 0)
10674 				newsvars = 1;
10675 
10676 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10677 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10678 
10679 			statics = kmem_zalloc(newsize, KM_SLEEP);
10680 
10681 			if (oldsize != 0) {
10682 				bcopy(*svarp, statics, oldsize);
10683 				kmem_free(*svarp, oldsize);
10684 			}
10685 
10686 			*svarp = statics;
10687 			*np = newsvars;
10688 		}
10689 
10690 		if ((svar = (*svarp)[id]) == NULL) {
10691 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10692 			svar->dtsv_var = *v;
10693 
10694 			if ((svar->dtsv_size = dsize) != 0) {
10695 				svar->dtsv_data = (uint64_t)(uintptr_t)
10696 				    kmem_zalloc(dsize, KM_SLEEP);
10697 			}
10698 
10699 			(*svarp)[id] = svar;
10700 		}
10701 
10702 		svar->dtsv_refcnt++;
10703 	}
10704 
10705 	dtrace_difo_chunksize(dp, vstate);
10706 	dtrace_difo_hold(dp);
10707 }
10708 
10709 static dtrace_difo_t *
10710 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10711 {
10712 	dtrace_difo_t *new;
10713 	size_t sz;
10714 
10715 	ASSERT(dp->dtdo_buf != NULL);
10716 	ASSERT(dp->dtdo_refcnt != 0);
10717 
10718 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10719 
10720 	ASSERT(dp->dtdo_buf != NULL);
10721 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10722 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10723 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10724 	new->dtdo_len = dp->dtdo_len;
10725 
10726 	if (dp->dtdo_strtab != NULL) {
10727 		ASSERT(dp->dtdo_strlen != 0);
10728 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10729 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10730 		new->dtdo_strlen = dp->dtdo_strlen;
10731 	}
10732 
10733 	if (dp->dtdo_inttab != NULL) {
10734 		ASSERT(dp->dtdo_intlen != 0);
10735 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10736 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10737 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10738 		new->dtdo_intlen = dp->dtdo_intlen;
10739 	}
10740 
10741 	if (dp->dtdo_vartab != NULL) {
10742 		ASSERT(dp->dtdo_varlen != 0);
10743 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10744 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10745 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10746 		new->dtdo_varlen = dp->dtdo_varlen;
10747 	}
10748 
10749 	dtrace_difo_init(new, vstate);
10750 	return (new);
10751 }
10752 
10753 static void
10754 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10755 {
10756 	int i;
10757 
10758 	ASSERT(dp->dtdo_refcnt == 0);
10759 
10760 	for (i = 0; i < dp->dtdo_varlen; i++) {
10761 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10762 		dtrace_statvar_t *svar, **svarp = NULL;
10763 		uint_t id;
10764 		uint8_t scope = v->dtdv_scope;
10765 		int *np = NULL;
10766 
10767 		switch (scope) {
10768 		case DIFV_SCOPE_THREAD:
10769 			continue;
10770 
10771 		case DIFV_SCOPE_LOCAL:
10772 			np = &vstate->dtvs_nlocals;
10773 			svarp = vstate->dtvs_locals;
10774 			break;
10775 
10776 		case DIFV_SCOPE_GLOBAL:
10777 			np = &vstate->dtvs_nglobals;
10778 			svarp = vstate->dtvs_globals;
10779 			break;
10780 
10781 		default:
10782 			ASSERT(0);
10783 		}
10784 
10785 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10786 			continue;
10787 
10788 		id -= DIF_VAR_OTHER_UBASE;
10789 		ASSERT(id < *np);
10790 
10791 		svar = svarp[id];
10792 		ASSERT(svar != NULL);
10793 		ASSERT(svar->dtsv_refcnt > 0);
10794 
10795 		if (--svar->dtsv_refcnt > 0)
10796 			continue;
10797 
10798 		if (svar->dtsv_size != 0) {
10799 			ASSERT(svar->dtsv_data != 0);
10800 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10801 			    svar->dtsv_size);
10802 		}
10803 
10804 		kmem_free(svar, sizeof (dtrace_statvar_t));
10805 		svarp[id] = NULL;
10806 	}
10807 
10808 	if (dp->dtdo_buf != NULL)
10809 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10810 	if (dp->dtdo_inttab != NULL)
10811 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10812 	if (dp->dtdo_strtab != NULL)
10813 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10814 	if (dp->dtdo_vartab != NULL)
10815 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10816 
10817 	kmem_free(dp, sizeof (dtrace_difo_t));
10818 }
10819 
10820 static void
10821 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10822 {
10823 	int i;
10824 
10825 	ASSERT(MUTEX_HELD(&dtrace_lock));
10826 	ASSERT(dp->dtdo_refcnt != 0);
10827 
10828 	for (i = 0; i < dp->dtdo_varlen; i++) {
10829 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10830 
10831 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10832 			continue;
10833 
10834 		ASSERT(dtrace_vtime_references > 0);
10835 		if (--dtrace_vtime_references == 0)
10836 			dtrace_vtime_disable();
10837 	}
10838 
10839 	if (--dp->dtdo_refcnt == 0)
10840 		dtrace_difo_destroy(dp, vstate);
10841 }
10842 
10843 /*
10844  * DTrace Format Functions
10845  */
10846 static uint16_t
10847 dtrace_format_add(dtrace_state_t *state, char *str)
10848 {
10849 	char *fmt, **new;
10850 	uint16_t ndx, len = strlen(str) + 1;
10851 
10852 	fmt = kmem_zalloc(len, KM_SLEEP);
10853 	bcopy(str, fmt, len);
10854 
10855 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10856 		if (state->dts_formats[ndx] == NULL) {
10857 			state->dts_formats[ndx] = fmt;
10858 			return (ndx + 1);
10859 		}
10860 	}
10861 
10862 	if (state->dts_nformats == USHRT_MAX) {
10863 		/*
10864 		 * This is only likely if a denial-of-service attack is being
10865 		 * attempted.  As such, it's okay to fail silently here.
10866 		 */
10867 		kmem_free(fmt, len);
10868 		return (0);
10869 	}
10870 
10871 	/*
10872 	 * For simplicity, we always resize the formats array to be exactly the
10873 	 * number of formats.
10874 	 */
10875 	ndx = state->dts_nformats++;
10876 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10877 
10878 	if (state->dts_formats != NULL) {
10879 		ASSERT(ndx != 0);
10880 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10881 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10882 	}
10883 
10884 	state->dts_formats = new;
10885 	state->dts_formats[ndx] = fmt;
10886 
10887 	return (ndx + 1);
10888 }
10889 
10890 static void
10891 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10892 {
10893 	char *fmt;
10894 
10895 	ASSERT(state->dts_formats != NULL);
10896 	ASSERT(format <= state->dts_nformats);
10897 	ASSERT(state->dts_formats[format - 1] != NULL);
10898 
10899 	fmt = state->dts_formats[format - 1];
10900 	kmem_free(fmt, strlen(fmt) + 1);
10901 	state->dts_formats[format - 1] = NULL;
10902 }
10903 
10904 static void
10905 dtrace_format_destroy(dtrace_state_t *state)
10906 {
10907 	int i;
10908 
10909 	if (state->dts_nformats == 0) {
10910 		ASSERT(state->dts_formats == NULL);
10911 		return;
10912 	}
10913 
10914 	ASSERT(state->dts_formats != NULL);
10915 
10916 	for (i = 0; i < state->dts_nformats; i++) {
10917 		char *fmt = state->dts_formats[i];
10918 
10919 		if (fmt == NULL)
10920 			continue;
10921 
10922 		kmem_free(fmt, strlen(fmt) + 1);
10923 	}
10924 
10925 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10926 	state->dts_nformats = 0;
10927 	state->dts_formats = NULL;
10928 }
10929 
10930 /*
10931  * DTrace Predicate Functions
10932  */
10933 static dtrace_predicate_t *
10934 dtrace_predicate_create(dtrace_difo_t *dp)
10935 {
10936 	dtrace_predicate_t *pred;
10937 
10938 	ASSERT(MUTEX_HELD(&dtrace_lock));
10939 	ASSERT(dp->dtdo_refcnt != 0);
10940 
10941 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10942 	pred->dtp_difo = dp;
10943 	pred->dtp_refcnt = 1;
10944 
10945 	if (!dtrace_difo_cacheable(dp))
10946 		return (pred);
10947 
10948 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10949 		/*
10950 		 * This is only theoretically possible -- we have had 2^32
10951 		 * cacheable predicates on this machine.  We cannot allow any
10952 		 * more predicates to become cacheable:  as unlikely as it is,
10953 		 * there may be a thread caching a (now stale) predicate cache
10954 		 * ID. (N.B.: the temptation is being successfully resisted to
10955 		 * have this cmn_err() "Holy shit -- we executed this code!")
10956 		 */
10957 		return (pred);
10958 	}
10959 
10960 	pred->dtp_cacheid = dtrace_predcache_id++;
10961 
10962 	return (pred);
10963 }
10964 
10965 static void
10966 dtrace_predicate_hold(dtrace_predicate_t *pred)
10967 {
10968 	ASSERT(MUTEX_HELD(&dtrace_lock));
10969 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10970 	ASSERT(pred->dtp_refcnt > 0);
10971 
10972 	pred->dtp_refcnt++;
10973 }
10974 
10975 static void
10976 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10977 {
10978 	dtrace_difo_t *dp = pred->dtp_difo;
10979 
10980 	ASSERT(MUTEX_HELD(&dtrace_lock));
10981 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10982 	ASSERT(pred->dtp_refcnt > 0);
10983 
10984 	if (--pred->dtp_refcnt == 0) {
10985 		dtrace_difo_release(pred->dtp_difo, vstate);
10986 		kmem_free(pred, sizeof (dtrace_predicate_t));
10987 	}
10988 }
10989 
10990 /*
10991  * DTrace Action Description Functions
10992  */
10993 static dtrace_actdesc_t *
10994 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10995     uint64_t uarg, uint64_t arg)
10996 {
10997 	dtrace_actdesc_t *act;
10998 
10999 #ifdef illumos
11000 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11001 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11002 #endif
11003 
11004 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11005 	act->dtad_kind = kind;
11006 	act->dtad_ntuple = ntuple;
11007 	act->dtad_uarg = uarg;
11008 	act->dtad_arg = arg;
11009 	act->dtad_refcnt = 1;
11010 
11011 	return (act);
11012 }
11013 
11014 static void
11015 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11016 {
11017 	ASSERT(act->dtad_refcnt >= 1);
11018 	act->dtad_refcnt++;
11019 }
11020 
11021 static void
11022 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11023 {
11024 	dtrace_actkind_t kind = act->dtad_kind;
11025 	dtrace_difo_t *dp;
11026 
11027 	ASSERT(act->dtad_refcnt >= 1);
11028 
11029 	if (--act->dtad_refcnt != 0)
11030 		return;
11031 
11032 	if ((dp = act->dtad_difo) != NULL)
11033 		dtrace_difo_release(dp, vstate);
11034 
11035 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11036 		char *str = (char *)(uintptr_t)act->dtad_arg;
11037 
11038 #ifdef illumos
11039 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11040 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11041 #endif
11042 
11043 		if (str != NULL)
11044 			kmem_free(str, strlen(str) + 1);
11045 	}
11046 
11047 	kmem_free(act, sizeof (dtrace_actdesc_t));
11048 }
11049 
11050 /*
11051  * DTrace ECB Functions
11052  */
11053 static dtrace_ecb_t *
11054 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11055 {
11056 	dtrace_ecb_t *ecb;
11057 	dtrace_epid_t epid;
11058 
11059 	ASSERT(MUTEX_HELD(&dtrace_lock));
11060 
11061 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11062 	ecb->dte_predicate = NULL;
11063 	ecb->dte_probe = probe;
11064 
11065 	/*
11066 	 * The default size is the size of the default action: recording
11067 	 * the header.
11068 	 */
11069 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11070 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11071 
11072 	epid = state->dts_epid++;
11073 
11074 	if (epid - 1 >= state->dts_necbs) {
11075 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11076 		int necbs = state->dts_necbs << 1;
11077 
11078 		ASSERT(epid == state->dts_necbs + 1);
11079 
11080 		if (necbs == 0) {
11081 			ASSERT(oecbs == NULL);
11082 			necbs = 1;
11083 		}
11084 
11085 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11086 
11087 		if (oecbs != NULL)
11088 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11089 
11090 		dtrace_membar_producer();
11091 		state->dts_ecbs = ecbs;
11092 
11093 		if (oecbs != NULL) {
11094 			/*
11095 			 * If this state is active, we must dtrace_sync()
11096 			 * before we can free the old dts_ecbs array:  we're
11097 			 * coming in hot, and there may be active ring
11098 			 * buffer processing (which indexes into the dts_ecbs
11099 			 * array) on another CPU.
11100 			 */
11101 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11102 				dtrace_sync();
11103 
11104 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11105 		}
11106 
11107 		dtrace_membar_producer();
11108 		state->dts_necbs = necbs;
11109 	}
11110 
11111 	ecb->dte_state = state;
11112 
11113 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11114 	dtrace_membar_producer();
11115 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11116 
11117 	return (ecb);
11118 }
11119 
11120 static void
11121 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11122 {
11123 	dtrace_probe_t *probe = ecb->dte_probe;
11124 
11125 	ASSERT(MUTEX_HELD(&cpu_lock));
11126 	ASSERT(MUTEX_HELD(&dtrace_lock));
11127 	ASSERT(ecb->dte_next == NULL);
11128 
11129 	if (probe == NULL) {
11130 		/*
11131 		 * This is the NULL probe -- there's nothing to do.
11132 		 */
11133 		return;
11134 	}
11135 
11136 	if (probe->dtpr_ecb == NULL) {
11137 		dtrace_provider_t *prov = probe->dtpr_provider;
11138 
11139 		/*
11140 		 * We're the first ECB on this probe.
11141 		 */
11142 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11143 
11144 		if (ecb->dte_predicate != NULL)
11145 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11146 
11147 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11148 		    probe->dtpr_id, probe->dtpr_arg);
11149 	} else {
11150 		/*
11151 		 * This probe is already active.  Swing the last pointer to
11152 		 * point to the new ECB, and issue a dtrace_sync() to assure
11153 		 * that all CPUs have seen the change.
11154 		 */
11155 		ASSERT(probe->dtpr_ecb_last != NULL);
11156 		probe->dtpr_ecb_last->dte_next = ecb;
11157 		probe->dtpr_ecb_last = ecb;
11158 		probe->dtpr_predcache = 0;
11159 
11160 		dtrace_sync();
11161 	}
11162 }
11163 
11164 static int
11165 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11166 {
11167 	dtrace_action_t *act;
11168 	uint32_t curneeded = UINT32_MAX;
11169 	uint32_t aggbase = UINT32_MAX;
11170 
11171 	/*
11172 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11173 	 * we always record it first.)
11174 	 */
11175 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11176 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11177 
11178 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11179 		dtrace_recdesc_t *rec = &act->dta_rec;
11180 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11181 
11182 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11183 		    rec->dtrd_alignment);
11184 
11185 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11186 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11187 
11188 			ASSERT(rec->dtrd_size != 0);
11189 			ASSERT(agg->dtag_first != NULL);
11190 			ASSERT(act->dta_prev->dta_intuple);
11191 			ASSERT(aggbase != UINT32_MAX);
11192 			ASSERT(curneeded != UINT32_MAX);
11193 
11194 			agg->dtag_base = aggbase;
11195 
11196 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11197 			rec->dtrd_offset = curneeded;
11198 			if (curneeded + rec->dtrd_size < curneeded)
11199 				return (EINVAL);
11200 			curneeded += rec->dtrd_size;
11201 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11202 
11203 			aggbase = UINT32_MAX;
11204 			curneeded = UINT32_MAX;
11205 		} else if (act->dta_intuple) {
11206 			if (curneeded == UINT32_MAX) {
11207 				/*
11208 				 * This is the first record in a tuple.  Align
11209 				 * curneeded to be at offset 4 in an 8-byte
11210 				 * aligned block.
11211 				 */
11212 				ASSERT(act->dta_prev == NULL ||
11213 				    !act->dta_prev->dta_intuple);
11214 				ASSERT3U(aggbase, ==, UINT32_MAX);
11215 				curneeded = P2PHASEUP(ecb->dte_size,
11216 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11217 
11218 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11219 				ASSERT(IS_P2ALIGNED(aggbase,
11220 				    sizeof (uint64_t)));
11221 			}
11222 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11223 			rec->dtrd_offset = curneeded;
11224 			if (curneeded + rec->dtrd_size < curneeded)
11225 				return (EINVAL);
11226 			curneeded += rec->dtrd_size;
11227 		} else {
11228 			/* tuples must be followed by an aggregation */
11229 			ASSERT(act->dta_prev == NULL ||
11230 			    !act->dta_prev->dta_intuple);
11231 
11232 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11233 			    rec->dtrd_alignment);
11234 			rec->dtrd_offset = ecb->dte_size;
11235 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11236 				return (EINVAL);
11237 			ecb->dte_size += rec->dtrd_size;
11238 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11239 		}
11240 	}
11241 
11242 	if ((act = ecb->dte_action) != NULL &&
11243 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11244 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11245 		/*
11246 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11247 		 * actions store no data; set the size to 0.
11248 		 */
11249 		ecb->dte_size = 0;
11250 	}
11251 
11252 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11253 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11254 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11255 	    ecb->dte_needed);
11256 	return (0);
11257 }
11258 
11259 static dtrace_action_t *
11260 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11261 {
11262 	dtrace_aggregation_t *agg;
11263 	size_t size = sizeof (uint64_t);
11264 	int ntuple = desc->dtad_ntuple;
11265 	dtrace_action_t *act;
11266 	dtrace_recdesc_t *frec;
11267 	dtrace_aggid_t aggid;
11268 	dtrace_state_t *state = ecb->dte_state;
11269 
11270 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11271 	agg->dtag_ecb = ecb;
11272 
11273 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11274 
11275 	switch (desc->dtad_kind) {
11276 	case DTRACEAGG_MIN:
11277 		agg->dtag_initial = INT64_MAX;
11278 		agg->dtag_aggregate = dtrace_aggregate_min;
11279 		break;
11280 
11281 	case DTRACEAGG_MAX:
11282 		agg->dtag_initial = INT64_MIN;
11283 		agg->dtag_aggregate = dtrace_aggregate_max;
11284 		break;
11285 
11286 	case DTRACEAGG_COUNT:
11287 		agg->dtag_aggregate = dtrace_aggregate_count;
11288 		break;
11289 
11290 	case DTRACEAGG_QUANTIZE:
11291 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11292 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11293 		    sizeof (uint64_t);
11294 		break;
11295 
11296 	case DTRACEAGG_LQUANTIZE: {
11297 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11298 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11299 
11300 		agg->dtag_initial = desc->dtad_arg;
11301 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11302 
11303 		if (step == 0 || levels == 0)
11304 			goto err;
11305 
11306 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11307 		break;
11308 	}
11309 
11310 	case DTRACEAGG_LLQUANTIZE: {
11311 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11312 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11313 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11314 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11315 		int64_t v;
11316 
11317 		agg->dtag_initial = desc->dtad_arg;
11318 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11319 
11320 		if (factor < 2 || low >= high || nsteps < factor)
11321 			goto err;
11322 
11323 		/*
11324 		 * Now check that the number of steps evenly divides a power
11325 		 * of the factor.  (This assures both integer bucket size and
11326 		 * linearity within each magnitude.)
11327 		 */
11328 		for (v = factor; v < nsteps; v *= factor)
11329 			continue;
11330 
11331 		if ((v % nsteps) || (nsteps % factor))
11332 			goto err;
11333 
11334 		size = (dtrace_aggregate_llquantize_bucket(factor,
11335 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11336 		break;
11337 	}
11338 
11339 	case DTRACEAGG_AVG:
11340 		agg->dtag_aggregate = dtrace_aggregate_avg;
11341 		size = sizeof (uint64_t) * 2;
11342 		break;
11343 
11344 	case DTRACEAGG_STDDEV:
11345 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11346 		size = sizeof (uint64_t) * 4;
11347 		break;
11348 
11349 	case DTRACEAGG_SUM:
11350 		agg->dtag_aggregate = dtrace_aggregate_sum;
11351 		break;
11352 
11353 	default:
11354 		goto err;
11355 	}
11356 
11357 	agg->dtag_action.dta_rec.dtrd_size = size;
11358 
11359 	if (ntuple == 0)
11360 		goto err;
11361 
11362 	/*
11363 	 * We must make sure that we have enough actions for the n-tuple.
11364 	 */
11365 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11366 		if (DTRACEACT_ISAGG(act->dta_kind))
11367 			break;
11368 
11369 		if (--ntuple == 0) {
11370 			/*
11371 			 * This is the action with which our n-tuple begins.
11372 			 */
11373 			agg->dtag_first = act;
11374 			goto success;
11375 		}
11376 	}
11377 
11378 	/*
11379 	 * This n-tuple is short by ntuple elements.  Return failure.
11380 	 */
11381 	ASSERT(ntuple != 0);
11382 err:
11383 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11384 	return (NULL);
11385 
11386 success:
11387 	/*
11388 	 * If the last action in the tuple has a size of zero, it's actually
11389 	 * an expression argument for the aggregating action.
11390 	 */
11391 	ASSERT(ecb->dte_action_last != NULL);
11392 	act = ecb->dte_action_last;
11393 
11394 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11395 		ASSERT(act->dta_difo != NULL);
11396 
11397 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11398 			agg->dtag_hasarg = 1;
11399 	}
11400 
11401 	/*
11402 	 * We need to allocate an id for this aggregation.
11403 	 */
11404 #ifdef illumos
11405 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11406 	    VM_BESTFIT | VM_SLEEP);
11407 #else
11408 	aggid = alloc_unr(state->dts_aggid_arena);
11409 #endif
11410 
11411 	if (aggid - 1 >= state->dts_naggregations) {
11412 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11413 		dtrace_aggregation_t **aggs;
11414 		int naggs = state->dts_naggregations << 1;
11415 		int onaggs = state->dts_naggregations;
11416 
11417 		ASSERT(aggid == state->dts_naggregations + 1);
11418 
11419 		if (naggs == 0) {
11420 			ASSERT(oaggs == NULL);
11421 			naggs = 1;
11422 		}
11423 
11424 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11425 
11426 		if (oaggs != NULL) {
11427 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11428 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11429 		}
11430 
11431 		state->dts_aggregations = aggs;
11432 		state->dts_naggregations = naggs;
11433 	}
11434 
11435 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11436 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11437 
11438 	frec = &agg->dtag_first->dta_rec;
11439 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11440 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11441 
11442 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11443 		ASSERT(!act->dta_intuple);
11444 		act->dta_intuple = 1;
11445 	}
11446 
11447 	return (&agg->dtag_action);
11448 }
11449 
11450 static void
11451 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11452 {
11453 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11454 	dtrace_state_t *state = ecb->dte_state;
11455 	dtrace_aggid_t aggid = agg->dtag_id;
11456 
11457 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11458 #ifdef illumos
11459 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11460 #else
11461 	free_unr(state->dts_aggid_arena, aggid);
11462 #endif
11463 
11464 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11465 	state->dts_aggregations[aggid - 1] = NULL;
11466 
11467 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11468 }
11469 
11470 static int
11471 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11472 {
11473 	dtrace_action_t *action, *last;
11474 	dtrace_difo_t *dp = desc->dtad_difo;
11475 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11476 	uint16_t format = 0;
11477 	dtrace_recdesc_t *rec;
11478 	dtrace_state_t *state = ecb->dte_state;
11479 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11480 	uint64_t arg = desc->dtad_arg;
11481 
11482 	ASSERT(MUTEX_HELD(&dtrace_lock));
11483 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11484 
11485 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11486 		/*
11487 		 * If this is an aggregating action, there must be neither
11488 		 * a speculate nor a commit on the action chain.
11489 		 */
11490 		dtrace_action_t *act;
11491 
11492 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11493 			if (act->dta_kind == DTRACEACT_COMMIT)
11494 				return (EINVAL);
11495 
11496 			if (act->dta_kind == DTRACEACT_SPECULATE)
11497 				return (EINVAL);
11498 		}
11499 
11500 		action = dtrace_ecb_aggregation_create(ecb, desc);
11501 
11502 		if (action == NULL)
11503 			return (EINVAL);
11504 	} else {
11505 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11506 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11507 		    dp != NULL && dp->dtdo_destructive)) {
11508 			state->dts_destructive = 1;
11509 		}
11510 
11511 		switch (desc->dtad_kind) {
11512 		case DTRACEACT_PRINTF:
11513 		case DTRACEACT_PRINTA:
11514 		case DTRACEACT_SYSTEM:
11515 		case DTRACEACT_FREOPEN:
11516 		case DTRACEACT_DIFEXPR:
11517 			/*
11518 			 * We know that our arg is a string -- turn it into a
11519 			 * format.
11520 			 */
11521 			if (arg == 0) {
11522 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11523 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11524 				format = 0;
11525 			} else {
11526 				ASSERT(arg != 0);
11527 #ifdef illumos
11528 				ASSERT(arg > KERNELBASE);
11529 #endif
11530 				format = dtrace_format_add(state,
11531 				    (char *)(uintptr_t)arg);
11532 			}
11533 
11534 			/*FALLTHROUGH*/
11535 		case DTRACEACT_LIBACT:
11536 		case DTRACEACT_TRACEMEM:
11537 		case DTRACEACT_TRACEMEM_DYNSIZE:
11538 			if (dp == NULL)
11539 				return (EINVAL);
11540 
11541 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11542 				break;
11543 
11544 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11545 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11546 					return (EINVAL);
11547 
11548 				size = opt[DTRACEOPT_STRSIZE];
11549 			}
11550 
11551 			break;
11552 
11553 		case DTRACEACT_STACK:
11554 			if ((nframes = arg) == 0) {
11555 				nframes = opt[DTRACEOPT_STACKFRAMES];
11556 				ASSERT(nframes > 0);
11557 				arg = nframes;
11558 			}
11559 
11560 			size = nframes * sizeof (pc_t);
11561 			break;
11562 
11563 		case DTRACEACT_JSTACK:
11564 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11565 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11566 
11567 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11568 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11569 
11570 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11571 
11572 			/*FALLTHROUGH*/
11573 		case DTRACEACT_USTACK:
11574 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11575 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11576 				strsize = DTRACE_USTACK_STRSIZE(arg);
11577 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11578 				ASSERT(nframes > 0);
11579 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11580 			}
11581 
11582 			/*
11583 			 * Save a slot for the pid.
11584 			 */
11585 			size = (nframes + 1) * sizeof (uint64_t);
11586 			size += DTRACE_USTACK_STRSIZE(arg);
11587 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11588 
11589 			break;
11590 
11591 		case DTRACEACT_SYM:
11592 		case DTRACEACT_MOD:
11593 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11594 			    sizeof (uint64_t)) ||
11595 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11596 				return (EINVAL);
11597 			break;
11598 
11599 		case DTRACEACT_USYM:
11600 		case DTRACEACT_UMOD:
11601 		case DTRACEACT_UADDR:
11602 			if (dp == NULL ||
11603 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11604 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11605 				return (EINVAL);
11606 
11607 			/*
11608 			 * We have a slot for the pid, plus a slot for the
11609 			 * argument.  To keep things simple (aligned with
11610 			 * bitness-neutral sizing), we store each as a 64-bit
11611 			 * quantity.
11612 			 */
11613 			size = 2 * sizeof (uint64_t);
11614 			break;
11615 
11616 		case DTRACEACT_STOP:
11617 		case DTRACEACT_BREAKPOINT:
11618 		case DTRACEACT_PANIC:
11619 			break;
11620 
11621 		case DTRACEACT_CHILL:
11622 		case DTRACEACT_DISCARD:
11623 		case DTRACEACT_RAISE:
11624 			if (dp == NULL)
11625 				return (EINVAL);
11626 			break;
11627 
11628 		case DTRACEACT_EXIT:
11629 			if (dp == NULL ||
11630 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11631 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11632 				return (EINVAL);
11633 			break;
11634 
11635 		case DTRACEACT_SPECULATE:
11636 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11637 				return (EINVAL);
11638 
11639 			if (dp == NULL)
11640 				return (EINVAL);
11641 
11642 			state->dts_speculates = 1;
11643 			break;
11644 
11645 		case DTRACEACT_PRINTM:
11646 		    	size = dp->dtdo_rtype.dtdt_size;
11647 			break;
11648 
11649 		case DTRACEACT_COMMIT: {
11650 			dtrace_action_t *act = ecb->dte_action;
11651 
11652 			for (; act != NULL; act = act->dta_next) {
11653 				if (act->dta_kind == DTRACEACT_COMMIT)
11654 					return (EINVAL);
11655 			}
11656 
11657 			if (dp == NULL)
11658 				return (EINVAL);
11659 			break;
11660 		}
11661 
11662 		default:
11663 			return (EINVAL);
11664 		}
11665 
11666 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11667 			/*
11668 			 * If this is a data-storing action or a speculate,
11669 			 * we must be sure that there isn't a commit on the
11670 			 * action chain.
11671 			 */
11672 			dtrace_action_t *act = ecb->dte_action;
11673 
11674 			for (; act != NULL; act = act->dta_next) {
11675 				if (act->dta_kind == DTRACEACT_COMMIT)
11676 					return (EINVAL);
11677 			}
11678 		}
11679 
11680 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11681 		action->dta_rec.dtrd_size = size;
11682 	}
11683 
11684 	action->dta_refcnt = 1;
11685 	rec = &action->dta_rec;
11686 	size = rec->dtrd_size;
11687 
11688 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11689 		if (!(size & mask)) {
11690 			align = mask + 1;
11691 			break;
11692 		}
11693 	}
11694 
11695 	action->dta_kind = desc->dtad_kind;
11696 
11697 	if ((action->dta_difo = dp) != NULL)
11698 		dtrace_difo_hold(dp);
11699 
11700 	rec->dtrd_action = action->dta_kind;
11701 	rec->dtrd_arg = arg;
11702 	rec->dtrd_uarg = desc->dtad_uarg;
11703 	rec->dtrd_alignment = (uint16_t)align;
11704 	rec->dtrd_format = format;
11705 
11706 	if ((last = ecb->dte_action_last) != NULL) {
11707 		ASSERT(ecb->dte_action != NULL);
11708 		action->dta_prev = last;
11709 		last->dta_next = action;
11710 	} else {
11711 		ASSERT(ecb->dte_action == NULL);
11712 		ecb->dte_action = action;
11713 	}
11714 
11715 	ecb->dte_action_last = action;
11716 
11717 	return (0);
11718 }
11719 
11720 static void
11721 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11722 {
11723 	dtrace_action_t *act = ecb->dte_action, *next;
11724 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11725 	dtrace_difo_t *dp;
11726 	uint16_t format;
11727 
11728 	if (act != NULL && act->dta_refcnt > 1) {
11729 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11730 		act->dta_refcnt--;
11731 	} else {
11732 		for (; act != NULL; act = next) {
11733 			next = act->dta_next;
11734 			ASSERT(next != NULL || act == ecb->dte_action_last);
11735 			ASSERT(act->dta_refcnt == 1);
11736 
11737 			if ((format = act->dta_rec.dtrd_format) != 0)
11738 				dtrace_format_remove(ecb->dte_state, format);
11739 
11740 			if ((dp = act->dta_difo) != NULL)
11741 				dtrace_difo_release(dp, vstate);
11742 
11743 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11744 				dtrace_ecb_aggregation_destroy(ecb, act);
11745 			} else {
11746 				kmem_free(act, sizeof (dtrace_action_t));
11747 			}
11748 		}
11749 	}
11750 
11751 	ecb->dte_action = NULL;
11752 	ecb->dte_action_last = NULL;
11753 	ecb->dte_size = 0;
11754 }
11755 
11756 static void
11757 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11758 {
11759 	/*
11760 	 * We disable the ECB by removing it from its probe.
11761 	 */
11762 	dtrace_ecb_t *pecb, *prev = NULL;
11763 	dtrace_probe_t *probe = ecb->dte_probe;
11764 
11765 	ASSERT(MUTEX_HELD(&dtrace_lock));
11766 
11767 	if (probe == NULL) {
11768 		/*
11769 		 * This is the NULL probe; there is nothing to disable.
11770 		 */
11771 		return;
11772 	}
11773 
11774 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11775 		if (pecb == ecb)
11776 			break;
11777 		prev = pecb;
11778 	}
11779 
11780 	ASSERT(pecb != NULL);
11781 
11782 	if (prev == NULL) {
11783 		probe->dtpr_ecb = ecb->dte_next;
11784 	} else {
11785 		prev->dte_next = ecb->dte_next;
11786 	}
11787 
11788 	if (ecb == probe->dtpr_ecb_last) {
11789 		ASSERT(ecb->dte_next == NULL);
11790 		probe->dtpr_ecb_last = prev;
11791 	}
11792 
11793 	/*
11794 	 * The ECB has been disconnected from the probe; now sync to assure
11795 	 * that all CPUs have seen the change before returning.
11796 	 */
11797 	dtrace_sync();
11798 
11799 	if (probe->dtpr_ecb == NULL) {
11800 		/*
11801 		 * That was the last ECB on the probe; clear the predicate
11802 		 * cache ID for the probe, disable it and sync one more time
11803 		 * to assure that we'll never hit it again.
11804 		 */
11805 		dtrace_provider_t *prov = probe->dtpr_provider;
11806 
11807 		ASSERT(ecb->dte_next == NULL);
11808 		ASSERT(probe->dtpr_ecb_last == NULL);
11809 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11810 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11811 		    probe->dtpr_id, probe->dtpr_arg);
11812 		dtrace_sync();
11813 	} else {
11814 		/*
11815 		 * There is at least one ECB remaining on the probe.  If there
11816 		 * is _exactly_ one, set the probe's predicate cache ID to be
11817 		 * the predicate cache ID of the remaining ECB.
11818 		 */
11819 		ASSERT(probe->dtpr_ecb_last != NULL);
11820 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11821 
11822 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11823 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11824 
11825 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11826 
11827 			if (p != NULL)
11828 				probe->dtpr_predcache = p->dtp_cacheid;
11829 		}
11830 
11831 		ecb->dte_next = NULL;
11832 	}
11833 }
11834 
11835 static void
11836 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11837 {
11838 	dtrace_state_t *state = ecb->dte_state;
11839 	dtrace_vstate_t *vstate = &state->dts_vstate;
11840 	dtrace_predicate_t *pred;
11841 	dtrace_epid_t epid = ecb->dte_epid;
11842 
11843 	ASSERT(MUTEX_HELD(&dtrace_lock));
11844 	ASSERT(ecb->dte_next == NULL);
11845 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11846 
11847 	if ((pred = ecb->dte_predicate) != NULL)
11848 		dtrace_predicate_release(pred, vstate);
11849 
11850 	dtrace_ecb_action_remove(ecb);
11851 
11852 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11853 	state->dts_ecbs[epid - 1] = NULL;
11854 
11855 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11856 }
11857 
11858 static dtrace_ecb_t *
11859 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11860     dtrace_enabling_t *enab)
11861 {
11862 	dtrace_ecb_t *ecb;
11863 	dtrace_predicate_t *pred;
11864 	dtrace_actdesc_t *act;
11865 	dtrace_provider_t *prov;
11866 	dtrace_ecbdesc_t *desc = enab->dten_current;
11867 
11868 	ASSERT(MUTEX_HELD(&dtrace_lock));
11869 	ASSERT(state != NULL);
11870 
11871 	ecb = dtrace_ecb_add(state, probe);
11872 	ecb->dte_uarg = desc->dted_uarg;
11873 
11874 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11875 		dtrace_predicate_hold(pred);
11876 		ecb->dte_predicate = pred;
11877 	}
11878 
11879 	if (probe != NULL) {
11880 		/*
11881 		 * If the provider shows more leg than the consumer is old
11882 		 * enough to see, we need to enable the appropriate implicit
11883 		 * predicate bits to prevent the ecb from activating at
11884 		 * revealing times.
11885 		 *
11886 		 * Providers specifying DTRACE_PRIV_USER at register time
11887 		 * are stating that they need the /proc-style privilege
11888 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11889 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11890 		 */
11891 		prov = probe->dtpr_provider;
11892 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11893 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11894 			ecb->dte_cond |= DTRACE_COND_OWNER;
11895 
11896 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11897 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11898 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11899 
11900 		/*
11901 		 * If the provider shows us kernel innards and the user
11902 		 * is lacking sufficient privilege, enable the
11903 		 * DTRACE_COND_USERMODE implicit predicate.
11904 		 */
11905 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11906 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11907 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11908 	}
11909 
11910 	if (dtrace_ecb_create_cache != NULL) {
11911 		/*
11912 		 * If we have a cached ecb, we'll use its action list instead
11913 		 * of creating our own (saving both time and space).
11914 		 */
11915 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11916 		dtrace_action_t *act = cached->dte_action;
11917 
11918 		if (act != NULL) {
11919 			ASSERT(act->dta_refcnt > 0);
11920 			act->dta_refcnt++;
11921 			ecb->dte_action = act;
11922 			ecb->dte_action_last = cached->dte_action_last;
11923 			ecb->dte_needed = cached->dte_needed;
11924 			ecb->dte_size = cached->dte_size;
11925 			ecb->dte_alignment = cached->dte_alignment;
11926 		}
11927 
11928 		return (ecb);
11929 	}
11930 
11931 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11932 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11933 			dtrace_ecb_destroy(ecb);
11934 			return (NULL);
11935 		}
11936 	}
11937 
11938 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11939 		dtrace_ecb_destroy(ecb);
11940 		return (NULL);
11941 	}
11942 
11943 	return (dtrace_ecb_create_cache = ecb);
11944 }
11945 
11946 static int
11947 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11948 {
11949 	dtrace_ecb_t *ecb;
11950 	dtrace_enabling_t *enab = arg;
11951 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11952 
11953 	ASSERT(state != NULL);
11954 
11955 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11956 		/*
11957 		 * This probe was created in a generation for which this
11958 		 * enabling has previously created ECBs; we don't want to
11959 		 * enable it again, so just kick out.
11960 		 */
11961 		return (DTRACE_MATCH_NEXT);
11962 	}
11963 
11964 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11965 		return (DTRACE_MATCH_DONE);
11966 
11967 	dtrace_ecb_enable(ecb);
11968 	return (DTRACE_MATCH_NEXT);
11969 }
11970 
11971 static dtrace_ecb_t *
11972 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11973 {
11974 	dtrace_ecb_t *ecb;
11975 
11976 	ASSERT(MUTEX_HELD(&dtrace_lock));
11977 
11978 	if (id == 0 || id > state->dts_necbs)
11979 		return (NULL);
11980 
11981 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11982 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11983 
11984 	return (state->dts_ecbs[id - 1]);
11985 }
11986 
11987 static dtrace_aggregation_t *
11988 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11989 {
11990 	dtrace_aggregation_t *agg;
11991 
11992 	ASSERT(MUTEX_HELD(&dtrace_lock));
11993 
11994 	if (id == 0 || id > state->dts_naggregations)
11995 		return (NULL);
11996 
11997 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11998 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11999 	    agg->dtag_id == id);
12000 
12001 	return (state->dts_aggregations[id - 1]);
12002 }
12003 
12004 /*
12005  * DTrace Buffer Functions
12006  *
12007  * The following functions manipulate DTrace buffers.  Most of these functions
12008  * are called in the context of establishing or processing consumer state;
12009  * exceptions are explicitly noted.
12010  */
12011 
12012 /*
12013  * Note:  called from cross call context.  This function switches the two
12014  * buffers on a given CPU.  The atomicity of this operation is assured by
12015  * disabling interrupts while the actual switch takes place; the disabling of
12016  * interrupts serializes the execution with any execution of dtrace_probe() on
12017  * the same CPU.
12018  */
12019 static void
12020 dtrace_buffer_switch(dtrace_buffer_t *buf)
12021 {
12022 	caddr_t tomax = buf->dtb_tomax;
12023 	caddr_t xamot = buf->dtb_xamot;
12024 	dtrace_icookie_t cookie;
12025 	hrtime_t now;
12026 
12027 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12028 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12029 
12030 	cookie = dtrace_interrupt_disable();
12031 	now = dtrace_gethrtime();
12032 	buf->dtb_tomax = xamot;
12033 	buf->dtb_xamot = tomax;
12034 	buf->dtb_xamot_drops = buf->dtb_drops;
12035 	buf->dtb_xamot_offset = buf->dtb_offset;
12036 	buf->dtb_xamot_errors = buf->dtb_errors;
12037 	buf->dtb_xamot_flags = buf->dtb_flags;
12038 	buf->dtb_offset = 0;
12039 	buf->dtb_drops = 0;
12040 	buf->dtb_errors = 0;
12041 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12042 	buf->dtb_interval = now - buf->dtb_switched;
12043 	buf->dtb_switched = now;
12044 	dtrace_interrupt_enable(cookie);
12045 }
12046 
12047 /*
12048  * Note:  called from cross call context.  This function activates a buffer
12049  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12050  * is guaranteed by the disabling of interrupts.
12051  */
12052 static void
12053 dtrace_buffer_activate(dtrace_state_t *state)
12054 {
12055 	dtrace_buffer_t *buf;
12056 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12057 
12058 	buf = &state->dts_buffer[curcpu];
12059 
12060 	if (buf->dtb_tomax != NULL) {
12061 		/*
12062 		 * We might like to assert that the buffer is marked inactive,
12063 		 * but this isn't necessarily true:  the buffer for the CPU
12064 		 * that processes the BEGIN probe has its buffer activated
12065 		 * manually.  In this case, we take the (harmless) action
12066 		 * re-clearing the bit INACTIVE bit.
12067 		 */
12068 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12069 	}
12070 
12071 	dtrace_interrupt_enable(cookie);
12072 }
12073 
12074 #ifdef __FreeBSD__
12075 /*
12076  * Activate the specified per-CPU buffer.  This is used instead of
12077  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12078  * activating anonymous state.
12079  */
12080 static void
12081 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12082 {
12083 
12084 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12085 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12086 }
12087 #endif
12088 
12089 static int
12090 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12091     processorid_t cpu, int *factor)
12092 {
12093 #ifdef illumos
12094 	cpu_t *cp;
12095 #endif
12096 	dtrace_buffer_t *buf;
12097 	int allocated = 0, desired = 0;
12098 
12099 #ifdef illumos
12100 	ASSERT(MUTEX_HELD(&cpu_lock));
12101 	ASSERT(MUTEX_HELD(&dtrace_lock));
12102 
12103 	*factor = 1;
12104 
12105 	if (size > dtrace_nonroot_maxsize &&
12106 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12107 		return (EFBIG);
12108 
12109 	cp = cpu_list;
12110 
12111 	do {
12112 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12113 			continue;
12114 
12115 		buf = &bufs[cp->cpu_id];
12116 
12117 		/*
12118 		 * If there is already a buffer allocated for this CPU, it
12119 		 * is only possible that this is a DR event.  In this case,
12120 		 */
12121 		if (buf->dtb_tomax != NULL) {
12122 			ASSERT(buf->dtb_size == size);
12123 			continue;
12124 		}
12125 
12126 		ASSERT(buf->dtb_xamot == NULL);
12127 
12128 		if ((buf->dtb_tomax = kmem_zalloc(size,
12129 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12130 			goto err;
12131 
12132 		buf->dtb_size = size;
12133 		buf->dtb_flags = flags;
12134 		buf->dtb_offset = 0;
12135 		buf->dtb_drops = 0;
12136 
12137 		if (flags & DTRACEBUF_NOSWITCH)
12138 			continue;
12139 
12140 		if ((buf->dtb_xamot = kmem_zalloc(size,
12141 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12142 			goto err;
12143 	} while ((cp = cp->cpu_next) != cpu_list);
12144 
12145 	return (0);
12146 
12147 err:
12148 	cp = cpu_list;
12149 
12150 	do {
12151 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12152 			continue;
12153 
12154 		buf = &bufs[cp->cpu_id];
12155 		desired += 2;
12156 
12157 		if (buf->dtb_xamot != NULL) {
12158 			ASSERT(buf->dtb_tomax != NULL);
12159 			ASSERT(buf->dtb_size == size);
12160 			kmem_free(buf->dtb_xamot, size);
12161 			allocated++;
12162 		}
12163 
12164 		if (buf->dtb_tomax != NULL) {
12165 			ASSERT(buf->dtb_size == size);
12166 			kmem_free(buf->dtb_tomax, size);
12167 			allocated++;
12168 		}
12169 
12170 		buf->dtb_tomax = NULL;
12171 		buf->dtb_xamot = NULL;
12172 		buf->dtb_size = 0;
12173 	} while ((cp = cp->cpu_next) != cpu_list);
12174 #else
12175 	int i;
12176 
12177 	*factor = 1;
12178 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12179     defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12180 	/*
12181 	 * FreeBSD isn't good at limiting the amount of memory we
12182 	 * ask to malloc, so let's place a limit here before trying
12183 	 * to do something that might well end in tears at bedtime.
12184 	 */
12185 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12186 		return (ENOMEM);
12187 #endif
12188 
12189 	ASSERT(MUTEX_HELD(&dtrace_lock));
12190 	CPU_FOREACH(i) {
12191 		if (cpu != DTRACE_CPUALL && cpu != i)
12192 			continue;
12193 
12194 		buf = &bufs[i];
12195 
12196 		/*
12197 		 * If there is already a buffer allocated for this CPU, it
12198 		 * is only possible that this is a DR event.  In this case,
12199 		 * the buffer size must match our specified size.
12200 		 */
12201 		if (buf->dtb_tomax != NULL) {
12202 			ASSERT(buf->dtb_size == size);
12203 			continue;
12204 		}
12205 
12206 		ASSERT(buf->dtb_xamot == NULL);
12207 
12208 		if ((buf->dtb_tomax = kmem_zalloc(size,
12209 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12210 			goto err;
12211 
12212 		buf->dtb_size = size;
12213 		buf->dtb_flags = flags;
12214 		buf->dtb_offset = 0;
12215 		buf->dtb_drops = 0;
12216 
12217 		if (flags & DTRACEBUF_NOSWITCH)
12218 			continue;
12219 
12220 		if ((buf->dtb_xamot = kmem_zalloc(size,
12221 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12222 			goto err;
12223 	}
12224 
12225 	return (0);
12226 
12227 err:
12228 	/*
12229 	 * Error allocating memory, so free the buffers that were
12230 	 * allocated before the failed allocation.
12231 	 */
12232 	CPU_FOREACH(i) {
12233 		if (cpu != DTRACE_CPUALL && cpu != i)
12234 			continue;
12235 
12236 		buf = &bufs[i];
12237 		desired += 2;
12238 
12239 		if (buf->dtb_xamot != NULL) {
12240 			ASSERT(buf->dtb_tomax != NULL);
12241 			ASSERT(buf->dtb_size == size);
12242 			kmem_free(buf->dtb_xamot, size);
12243 			allocated++;
12244 		}
12245 
12246 		if (buf->dtb_tomax != NULL) {
12247 			ASSERT(buf->dtb_size == size);
12248 			kmem_free(buf->dtb_tomax, size);
12249 			allocated++;
12250 		}
12251 
12252 		buf->dtb_tomax = NULL;
12253 		buf->dtb_xamot = NULL;
12254 		buf->dtb_size = 0;
12255 
12256 	}
12257 #endif
12258 	*factor = desired / (allocated > 0 ? allocated : 1);
12259 
12260 	return (ENOMEM);
12261 }
12262 
12263 /*
12264  * Note:  called from probe context.  This function just increments the drop
12265  * count on a buffer.  It has been made a function to allow for the
12266  * possibility of understanding the source of mysterious drop counts.  (A
12267  * problem for which one may be particularly disappointed that DTrace cannot
12268  * be used to understand DTrace.)
12269  */
12270 static void
12271 dtrace_buffer_drop(dtrace_buffer_t *buf)
12272 {
12273 	buf->dtb_drops++;
12274 }
12275 
12276 /*
12277  * Note:  called from probe context.  This function is called to reserve space
12278  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12279  * mstate.  Returns the new offset in the buffer, or a negative value if an
12280  * error has occurred.
12281  */
12282 static intptr_t
12283 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12284     dtrace_state_t *state, dtrace_mstate_t *mstate)
12285 {
12286 	intptr_t offs = buf->dtb_offset, soffs;
12287 	intptr_t woffs;
12288 	caddr_t tomax;
12289 	size_t total;
12290 
12291 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12292 		return (-1);
12293 
12294 	if ((tomax = buf->dtb_tomax) == NULL) {
12295 		dtrace_buffer_drop(buf);
12296 		return (-1);
12297 	}
12298 
12299 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12300 		while (offs & (align - 1)) {
12301 			/*
12302 			 * Assert that our alignment is off by a number which
12303 			 * is itself sizeof (uint32_t) aligned.
12304 			 */
12305 			ASSERT(!((align - (offs & (align - 1))) &
12306 			    (sizeof (uint32_t) - 1)));
12307 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12308 			offs += sizeof (uint32_t);
12309 		}
12310 
12311 		if ((soffs = offs + needed) > buf->dtb_size) {
12312 			dtrace_buffer_drop(buf);
12313 			return (-1);
12314 		}
12315 
12316 		if (mstate == NULL)
12317 			return (offs);
12318 
12319 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12320 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12321 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12322 
12323 		return (offs);
12324 	}
12325 
12326 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12327 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12328 		    (buf->dtb_flags & DTRACEBUF_FULL))
12329 			return (-1);
12330 		goto out;
12331 	}
12332 
12333 	total = needed + (offs & (align - 1));
12334 
12335 	/*
12336 	 * For a ring buffer, life is quite a bit more complicated.  Before
12337 	 * we can store any padding, we need to adjust our wrapping offset.
12338 	 * (If we've never before wrapped or we're not about to, no adjustment
12339 	 * is required.)
12340 	 */
12341 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12342 	    offs + total > buf->dtb_size) {
12343 		woffs = buf->dtb_xamot_offset;
12344 
12345 		if (offs + total > buf->dtb_size) {
12346 			/*
12347 			 * We can't fit in the end of the buffer.  First, a
12348 			 * sanity check that we can fit in the buffer at all.
12349 			 */
12350 			if (total > buf->dtb_size) {
12351 				dtrace_buffer_drop(buf);
12352 				return (-1);
12353 			}
12354 
12355 			/*
12356 			 * We're going to be storing at the top of the buffer,
12357 			 * so now we need to deal with the wrapped offset.  We
12358 			 * only reset our wrapped offset to 0 if it is
12359 			 * currently greater than the current offset.  If it
12360 			 * is less than the current offset, it is because a
12361 			 * previous allocation induced a wrap -- but the
12362 			 * allocation didn't subsequently take the space due
12363 			 * to an error or false predicate evaluation.  In this
12364 			 * case, we'll just leave the wrapped offset alone: if
12365 			 * the wrapped offset hasn't been advanced far enough
12366 			 * for this allocation, it will be adjusted in the
12367 			 * lower loop.
12368 			 */
12369 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12370 				if (woffs >= offs)
12371 					woffs = 0;
12372 			} else {
12373 				woffs = 0;
12374 			}
12375 
12376 			/*
12377 			 * Now we know that we're going to be storing to the
12378 			 * top of the buffer and that there is room for us
12379 			 * there.  We need to clear the buffer from the current
12380 			 * offset to the end (there may be old gunk there).
12381 			 */
12382 			while (offs < buf->dtb_size)
12383 				tomax[offs++] = 0;
12384 
12385 			/*
12386 			 * We need to set our offset to zero.  And because we
12387 			 * are wrapping, we need to set the bit indicating as
12388 			 * much.  We can also adjust our needed space back
12389 			 * down to the space required by the ECB -- we know
12390 			 * that the top of the buffer is aligned.
12391 			 */
12392 			offs = 0;
12393 			total = needed;
12394 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12395 		} else {
12396 			/*
12397 			 * There is room for us in the buffer, so we simply
12398 			 * need to check the wrapped offset.
12399 			 */
12400 			if (woffs < offs) {
12401 				/*
12402 				 * The wrapped offset is less than the offset.
12403 				 * This can happen if we allocated buffer space
12404 				 * that induced a wrap, but then we didn't
12405 				 * subsequently take the space due to an error
12406 				 * or false predicate evaluation.  This is
12407 				 * okay; we know that _this_ allocation isn't
12408 				 * going to induce a wrap.  We still can't
12409 				 * reset the wrapped offset to be zero,
12410 				 * however: the space may have been trashed in
12411 				 * the previous failed probe attempt.  But at
12412 				 * least the wrapped offset doesn't need to
12413 				 * be adjusted at all...
12414 				 */
12415 				goto out;
12416 			}
12417 		}
12418 
12419 		while (offs + total > woffs) {
12420 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12421 			size_t size;
12422 
12423 			if (epid == DTRACE_EPIDNONE) {
12424 				size = sizeof (uint32_t);
12425 			} else {
12426 				ASSERT3U(epid, <=, state->dts_necbs);
12427 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12428 
12429 				size = state->dts_ecbs[epid - 1]->dte_size;
12430 			}
12431 
12432 			ASSERT(woffs + size <= buf->dtb_size);
12433 			ASSERT(size != 0);
12434 
12435 			if (woffs + size == buf->dtb_size) {
12436 				/*
12437 				 * We've reached the end of the buffer; we want
12438 				 * to set the wrapped offset to 0 and break
12439 				 * out.  However, if the offs is 0, then we're
12440 				 * in a strange edge-condition:  the amount of
12441 				 * space that we want to reserve plus the size
12442 				 * of the record that we're overwriting is
12443 				 * greater than the size of the buffer.  This
12444 				 * is problematic because if we reserve the
12445 				 * space but subsequently don't consume it (due
12446 				 * to a failed predicate or error) the wrapped
12447 				 * offset will be 0 -- yet the EPID at offset 0
12448 				 * will not be committed.  This situation is
12449 				 * relatively easy to deal with:  if we're in
12450 				 * this case, the buffer is indistinguishable
12451 				 * from one that hasn't wrapped; we need only
12452 				 * finish the job by clearing the wrapped bit,
12453 				 * explicitly setting the offset to be 0, and
12454 				 * zero'ing out the old data in the buffer.
12455 				 */
12456 				if (offs == 0) {
12457 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12458 					buf->dtb_offset = 0;
12459 					woffs = total;
12460 
12461 					while (woffs < buf->dtb_size)
12462 						tomax[woffs++] = 0;
12463 				}
12464 
12465 				woffs = 0;
12466 				break;
12467 			}
12468 
12469 			woffs += size;
12470 		}
12471 
12472 		/*
12473 		 * We have a wrapped offset.  It may be that the wrapped offset
12474 		 * has become zero -- that's okay.
12475 		 */
12476 		buf->dtb_xamot_offset = woffs;
12477 	}
12478 
12479 out:
12480 	/*
12481 	 * Now we can plow the buffer with any necessary padding.
12482 	 */
12483 	while (offs & (align - 1)) {
12484 		/*
12485 		 * Assert that our alignment is off by a number which
12486 		 * is itself sizeof (uint32_t) aligned.
12487 		 */
12488 		ASSERT(!((align - (offs & (align - 1))) &
12489 		    (sizeof (uint32_t) - 1)));
12490 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12491 		offs += sizeof (uint32_t);
12492 	}
12493 
12494 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12495 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12496 			buf->dtb_flags |= DTRACEBUF_FULL;
12497 			return (-1);
12498 		}
12499 	}
12500 
12501 	if (mstate == NULL)
12502 		return (offs);
12503 
12504 	/*
12505 	 * For ring buffers and fill buffers, the scratch space is always
12506 	 * the inactive buffer.
12507 	 */
12508 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12509 	mstate->dtms_scratch_size = buf->dtb_size;
12510 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12511 
12512 	return (offs);
12513 }
12514 
12515 static void
12516 dtrace_buffer_polish(dtrace_buffer_t *buf)
12517 {
12518 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12519 	ASSERT(MUTEX_HELD(&dtrace_lock));
12520 
12521 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12522 		return;
12523 
12524 	/*
12525 	 * We need to polish the ring buffer.  There are three cases:
12526 	 *
12527 	 * - The first (and presumably most common) is that there is no gap
12528 	 *   between the buffer offset and the wrapped offset.  In this case,
12529 	 *   there is nothing in the buffer that isn't valid data; we can
12530 	 *   mark the buffer as polished and return.
12531 	 *
12532 	 * - The second (less common than the first but still more common
12533 	 *   than the third) is that there is a gap between the buffer offset
12534 	 *   and the wrapped offset, and the wrapped offset is larger than the
12535 	 *   buffer offset.  This can happen because of an alignment issue, or
12536 	 *   can happen because of a call to dtrace_buffer_reserve() that
12537 	 *   didn't subsequently consume the buffer space.  In this case,
12538 	 *   we need to zero the data from the buffer offset to the wrapped
12539 	 *   offset.
12540 	 *
12541 	 * - The third (and least common) is that there is a gap between the
12542 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12543 	 *   _less_ than the buffer offset.  This can only happen because a
12544 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12545 	 *   was not subsequently consumed.  In this case, we need to zero the
12546 	 *   space from the offset to the end of the buffer _and_ from the
12547 	 *   top of the buffer to the wrapped offset.
12548 	 */
12549 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12550 		bzero(buf->dtb_tomax + buf->dtb_offset,
12551 		    buf->dtb_xamot_offset - buf->dtb_offset);
12552 	}
12553 
12554 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12555 		bzero(buf->dtb_tomax + buf->dtb_offset,
12556 		    buf->dtb_size - buf->dtb_offset);
12557 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12558 	}
12559 }
12560 
12561 /*
12562  * This routine determines if data generated at the specified time has likely
12563  * been entirely consumed at user-level.  This routine is called to determine
12564  * if an ECB on a defunct probe (but for an active enabling) can be safely
12565  * disabled and destroyed.
12566  */
12567 static int
12568 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12569 {
12570 	int i;
12571 
12572 	for (i = 0; i < NCPU; i++) {
12573 		dtrace_buffer_t *buf = &bufs[i];
12574 
12575 		if (buf->dtb_size == 0)
12576 			continue;
12577 
12578 		if (buf->dtb_flags & DTRACEBUF_RING)
12579 			return (0);
12580 
12581 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12582 			return (0);
12583 
12584 		if (buf->dtb_switched - buf->dtb_interval < when)
12585 			return (0);
12586 	}
12587 
12588 	return (1);
12589 }
12590 
12591 static void
12592 dtrace_buffer_free(dtrace_buffer_t *bufs)
12593 {
12594 	int i;
12595 
12596 	for (i = 0; i < NCPU; i++) {
12597 		dtrace_buffer_t *buf = &bufs[i];
12598 
12599 		if (buf->dtb_tomax == NULL) {
12600 			ASSERT(buf->dtb_xamot == NULL);
12601 			ASSERT(buf->dtb_size == 0);
12602 			continue;
12603 		}
12604 
12605 		if (buf->dtb_xamot != NULL) {
12606 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12607 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12608 		}
12609 
12610 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12611 		buf->dtb_size = 0;
12612 		buf->dtb_tomax = NULL;
12613 		buf->dtb_xamot = NULL;
12614 	}
12615 }
12616 
12617 /*
12618  * DTrace Enabling Functions
12619  */
12620 static dtrace_enabling_t *
12621 dtrace_enabling_create(dtrace_vstate_t *vstate)
12622 {
12623 	dtrace_enabling_t *enab;
12624 
12625 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12626 	enab->dten_vstate = vstate;
12627 
12628 	return (enab);
12629 }
12630 
12631 static void
12632 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12633 {
12634 	dtrace_ecbdesc_t **ndesc;
12635 	size_t osize, nsize;
12636 
12637 	/*
12638 	 * We can't add to enablings after we've enabled them, or after we've
12639 	 * retained them.
12640 	 */
12641 	ASSERT(enab->dten_probegen == 0);
12642 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12643 
12644 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12645 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12646 		return;
12647 	}
12648 
12649 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12650 
12651 	if (enab->dten_maxdesc == 0) {
12652 		enab->dten_maxdesc = 1;
12653 	} else {
12654 		enab->dten_maxdesc <<= 1;
12655 	}
12656 
12657 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12658 
12659 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12660 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12661 	bcopy(enab->dten_desc, ndesc, osize);
12662 	if (enab->dten_desc != NULL)
12663 		kmem_free(enab->dten_desc, osize);
12664 
12665 	enab->dten_desc = ndesc;
12666 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12667 }
12668 
12669 static void
12670 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12671     dtrace_probedesc_t *pd)
12672 {
12673 	dtrace_ecbdesc_t *new;
12674 	dtrace_predicate_t *pred;
12675 	dtrace_actdesc_t *act;
12676 
12677 	/*
12678 	 * We're going to create a new ECB description that matches the
12679 	 * specified ECB in every way, but has the specified probe description.
12680 	 */
12681 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12682 
12683 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12684 		dtrace_predicate_hold(pred);
12685 
12686 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12687 		dtrace_actdesc_hold(act);
12688 
12689 	new->dted_action = ecb->dted_action;
12690 	new->dted_pred = ecb->dted_pred;
12691 	new->dted_probe = *pd;
12692 	new->dted_uarg = ecb->dted_uarg;
12693 
12694 	dtrace_enabling_add(enab, new);
12695 }
12696 
12697 static void
12698 dtrace_enabling_dump(dtrace_enabling_t *enab)
12699 {
12700 	int i;
12701 
12702 	for (i = 0; i < enab->dten_ndesc; i++) {
12703 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12704 
12705 #ifdef __FreeBSD__
12706 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12707 		    desc->dtpd_provider, desc->dtpd_mod,
12708 		    desc->dtpd_func, desc->dtpd_name);
12709 #else
12710 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12711 		    desc->dtpd_provider, desc->dtpd_mod,
12712 		    desc->dtpd_func, desc->dtpd_name);
12713 #endif
12714 	}
12715 }
12716 
12717 static void
12718 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12719 {
12720 	int i;
12721 	dtrace_ecbdesc_t *ep;
12722 	dtrace_vstate_t *vstate = enab->dten_vstate;
12723 
12724 	ASSERT(MUTEX_HELD(&dtrace_lock));
12725 
12726 	for (i = 0; i < enab->dten_ndesc; i++) {
12727 		dtrace_actdesc_t *act, *next;
12728 		dtrace_predicate_t *pred;
12729 
12730 		ep = enab->dten_desc[i];
12731 
12732 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12733 			dtrace_predicate_release(pred, vstate);
12734 
12735 		for (act = ep->dted_action; act != NULL; act = next) {
12736 			next = act->dtad_next;
12737 			dtrace_actdesc_release(act, vstate);
12738 		}
12739 
12740 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12741 	}
12742 
12743 	if (enab->dten_desc != NULL)
12744 		kmem_free(enab->dten_desc,
12745 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12746 
12747 	/*
12748 	 * If this was a retained enabling, decrement the dts_nretained count
12749 	 * and take it off of the dtrace_retained list.
12750 	 */
12751 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12752 	    dtrace_retained == enab) {
12753 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12754 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12755 		enab->dten_vstate->dtvs_state->dts_nretained--;
12756 		dtrace_retained_gen++;
12757 	}
12758 
12759 	if (enab->dten_prev == NULL) {
12760 		if (dtrace_retained == enab) {
12761 			dtrace_retained = enab->dten_next;
12762 
12763 			if (dtrace_retained != NULL)
12764 				dtrace_retained->dten_prev = NULL;
12765 		}
12766 	} else {
12767 		ASSERT(enab != dtrace_retained);
12768 		ASSERT(dtrace_retained != NULL);
12769 		enab->dten_prev->dten_next = enab->dten_next;
12770 	}
12771 
12772 	if (enab->dten_next != NULL) {
12773 		ASSERT(dtrace_retained != NULL);
12774 		enab->dten_next->dten_prev = enab->dten_prev;
12775 	}
12776 
12777 	kmem_free(enab, sizeof (dtrace_enabling_t));
12778 }
12779 
12780 static int
12781 dtrace_enabling_retain(dtrace_enabling_t *enab)
12782 {
12783 	dtrace_state_t *state;
12784 
12785 	ASSERT(MUTEX_HELD(&dtrace_lock));
12786 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12787 	ASSERT(enab->dten_vstate != NULL);
12788 
12789 	state = enab->dten_vstate->dtvs_state;
12790 	ASSERT(state != NULL);
12791 
12792 	/*
12793 	 * We only allow each state to retain dtrace_retain_max enablings.
12794 	 */
12795 	if (state->dts_nretained >= dtrace_retain_max)
12796 		return (ENOSPC);
12797 
12798 	state->dts_nretained++;
12799 	dtrace_retained_gen++;
12800 
12801 	if (dtrace_retained == NULL) {
12802 		dtrace_retained = enab;
12803 		return (0);
12804 	}
12805 
12806 	enab->dten_next = dtrace_retained;
12807 	dtrace_retained->dten_prev = enab;
12808 	dtrace_retained = enab;
12809 
12810 	return (0);
12811 }
12812 
12813 static int
12814 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12815     dtrace_probedesc_t *create)
12816 {
12817 	dtrace_enabling_t *new, *enab;
12818 	int found = 0, err = ENOENT;
12819 
12820 	ASSERT(MUTEX_HELD(&dtrace_lock));
12821 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12822 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12823 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12824 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12825 
12826 	new = dtrace_enabling_create(&state->dts_vstate);
12827 
12828 	/*
12829 	 * Iterate over all retained enablings, looking for enablings that
12830 	 * match the specified state.
12831 	 */
12832 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12833 		int i;
12834 
12835 		/*
12836 		 * dtvs_state can only be NULL for helper enablings -- and
12837 		 * helper enablings can't be retained.
12838 		 */
12839 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12840 
12841 		if (enab->dten_vstate->dtvs_state != state)
12842 			continue;
12843 
12844 		/*
12845 		 * Now iterate over each probe description; we're looking for
12846 		 * an exact match to the specified probe description.
12847 		 */
12848 		for (i = 0; i < enab->dten_ndesc; i++) {
12849 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12850 			dtrace_probedesc_t *pd = &ep->dted_probe;
12851 
12852 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12853 				continue;
12854 
12855 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12856 				continue;
12857 
12858 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12859 				continue;
12860 
12861 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12862 				continue;
12863 
12864 			/*
12865 			 * We have a winning probe!  Add it to our growing
12866 			 * enabling.
12867 			 */
12868 			found = 1;
12869 			dtrace_enabling_addlike(new, ep, create);
12870 		}
12871 	}
12872 
12873 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12874 		dtrace_enabling_destroy(new);
12875 		return (err);
12876 	}
12877 
12878 	return (0);
12879 }
12880 
12881 static void
12882 dtrace_enabling_retract(dtrace_state_t *state)
12883 {
12884 	dtrace_enabling_t *enab, *next;
12885 
12886 	ASSERT(MUTEX_HELD(&dtrace_lock));
12887 
12888 	/*
12889 	 * Iterate over all retained enablings, destroy the enablings retained
12890 	 * for the specified state.
12891 	 */
12892 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12893 		next = enab->dten_next;
12894 
12895 		/*
12896 		 * dtvs_state can only be NULL for helper enablings -- and
12897 		 * helper enablings can't be retained.
12898 		 */
12899 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12900 
12901 		if (enab->dten_vstate->dtvs_state == state) {
12902 			ASSERT(state->dts_nretained > 0);
12903 			dtrace_enabling_destroy(enab);
12904 		}
12905 	}
12906 
12907 	ASSERT(state->dts_nretained == 0);
12908 }
12909 
12910 static int
12911 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12912 {
12913 	int i = 0;
12914 	int matched = 0;
12915 
12916 	ASSERT(MUTEX_HELD(&cpu_lock));
12917 	ASSERT(MUTEX_HELD(&dtrace_lock));
12918 
12919 	for (i = 0; i < enab->dten_ndesc; i++) {
12920 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12921 
12922 		enab->dten_current = ep;
12923 		enab->dten_error = 0;
12924 
12925 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12926 
12927 		if (enab->dten_error != 0) {
12928 			/*
12929 			 * If we get an error half-way through enabling the
12930 			 * probes, we kick out -- perhaps with some number of
12931 			 * them enabled.  Leaving enabled probes enabled may
12932 			 * be slightly confusing for user-level, but we expect
12933 			 * that no one will attempt to actually drive on in
12934 			 * the face of such errors.  If this is an anonymous
12935 			 * enabling (indicated with a NULL nmatched pointer),
12936 			 * we cmn_err() a message.  We aren't expecting to
12937 			 * get such an error -- such as it can exist at all,
12938 			 * it would be a result of corrupted DOF in the driver
12939 			 * properties.
12940 			 */
12941 			if (nmatched == NULL) {
12942 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12943 				    "error on %p: %d", (void *)ep,
12944 				    enab->dten_error);
12945 			}
12946 
12947 			return (enab->dten_error);
12948 		}
12949 	}
12950 
12951 	enab->dten_probegen = dtrace_probegen;
12952 	if (nmatched != NULL)
12953 		*nmatched = matched;
12954 
12955 	return (0);
12956 }
12957 
12958 static void
12959 dtrace_enabling_matchall(void)
12960 {
12961 	dtrace_enabling_t *enab;
12962 
12963 	mutex_enter(&cpu_lock);
12964 	mutex_enter(&dtrace_lock);
12965 
12966 	/*
12967 	 * Iterate over all retained enablings to see if any probes match
12968 	 * against them.  We only perform this operation on enablings for which
12969 	 * we have sufficient permissions by virtue of being in the global zone
12970 	 * or in the same zone as the DTrace client.  Because we can be called
12971 	 * after dtrace_detach() has been called, we cannot assert that there
12972 	 * are retained enablings.  We can safely load from dtrace_retained,
12973 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12974 	 * block pending our completion.
12975 	 */
12976 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12977 #ifdef illumos
12978 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12979 
12980 		if (INGLOBALZONE(curproc) ||
12981 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12982 #endif
12983 			(void) dtrace_enabling_match(enab, NULL);
12984 	}
12985 
12986 	mutex_exit(&dtrace_lock);
12987 	mutex_exit(&cpu_lock);
12988 }
12989 
12990 /*
12991  * If an enabling is to be enabled without having matched probes (that is, if
12992  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12993  * enabling must be _primed_ by creating an ECB for every ECB description.
12994  * This must be done to assure that we know the number of speculations, the
12995  * number of aggregations, the minimum buffer size needed, etc. before we
12996  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12997  * enabling any probes, we create ECBs for every ECB decription, but with a
12998  * NULL probe -- which is exactly what this function does.
12999  */
13000 static void
13001 dtrace_enabling_prime(dtrace_state_t *state)
13002 {
13003 	dtrace_enabling_t *enab;
13004 	int i;
13005 
13006 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13007 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13008 
13009 		if (enab->dten_vstate->dtvs_state != state)
13010 			continue;
13011 
13012 		/*
13013 		 * We don't want to prime an enabling more than once, lest
13014 		 * we allow a malicious user to induce resource exhaustion.
13015 		 * (The ECBs that result from priming an enabling aren't
13016 		 * leaked -- but they also aren't deallocated until the
13017 		 * consumer state is destroyed.)
13018 		 */
13019 		if (enab->dten_primed)
13020 			continue;
13021 
13022 		for (i = 0; i < enab->dten_ndesc; i++) {
13023 			enab->dten_current = enab->dten_desc[i];
13024 			(void) dtrace_probe_enable(NULL, enab);
13025 		}
13026 
13027 		enab->dten_primed = 1;
13028 	}
13029 }
13030 
13031 /*
13032  * Called to indicate that probes should be provided due to retained
13033  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13034  * must take an initial lap through the enabling calling the dtps_provide()
13035  * entry point explicitly to allow for autocreated probes.
13036  */
13037 static void
13038 dtrace_enabling_provide(dtrace_provider_t *prv)
13039 {
13040 	int i, all = 0;
13041 	dtrace_probedesc_t desc;
13042 	dtrace_genid_t gen;
13043 
13044 	ASSERT(MUTEX_HELD(&dtrace_lock));
13045 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13046 
13047 	if (prv == NULL) {
13048 		all = 1;
13049 		prv = dtrace_provider;
13050 	}
13051 
13052 	do {
13053 		dtrace_enabling_t *enab;
13054 		void *parg = prv->dtpv_arg;
13055 
13056 retry:
13057 		gen = dtrace_retained_gen;
13058 		for (enab = dtrace_retained; enab != NULL;
13059 		    enab = enab->dten_next) {
13060 			for (i = 0; i < enab->dten_ndesc; i++) {
13061 				desc = enab->dten_desc[i]->dted_probe;
13062 				mutex_exit(&dtrace_lock);
13063 				prv->dtpv_pops.dtps_provide(parg, &desc);
13064 				mutex_enter(&dtrace_lock);
13065 				/*
13066 				 * Process the retained enablings again if
13067 				 * they have changed while we weren't holding
13068 				 * dtrace_lock.
13069 				 */
13070 				if (gen != dtrace_retained_gen)
13071 					goto retry;
13072 			}
13073 		}
13074 	} while (all && (prv = prv->dtpv_next) != NULL);
13075 
13076 	mutex_exit(&dtrace_lock);
13077 	dtrace_probe_provide(NULL, all ? NULL : prv);
13078 	mutex_enter(&dtrace_lock);
13079 }
13080 
13081 /*
13082  * Called to reap ECBs that are attached to probes from defunct providers.
13083  */
13084 static void
13085 dtrace_enabling_reap(void)
13086 {
13087 	dtrace_provider_t *prov;
13088 	dtrace_probe_t *probe;
13089 	dtrace_ecb_t *ecb;
13090 	hrtime_t when;
13091 	int i;
13092 
13093 	mutex_enter(&cpu_lock);
13094 	mutex_enter(&dtrace_lock);
13095 
13096 	for (i = 0; i < dtrace_nprobes; i++) {
13097 		if ((probe = dtrace_probes[i]) == NULL)
13098 			continue;
13099 
13100 		if (probe->dtpr_ecb == NULL)
13101 			continue;
13102 
13103 		prov = probe->dtpr_provider;
13104 
13105 		if ((when = prov->dtpv_defunct) == 0)
13106 			continue;
13107 
13108 		/*
13109 		 * We have ECBs on a defunct provider:  we want to reap these
13110 		 * ECBs to allow the provider to unregister.  The destruction
13111 		 * of these ECBs must be done carefully:  if we destroy the ECB
13112 		 * and the consumer later wishes to consume an EPID that
13113 		 * corresponds to the destroyed ECB (and if the EPID metadata
13114 		 * has not been previously consumed), the consumer will abort
13115 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13116 		 * eliminate) the possibility of this, we will only destroy an
13117 		 * ECB for a defunct provider if, for the state that
13118 		 * corresponds to the ECB:
13119 		 *
13120 		 *  (a)	There is no speculative tracing (which can effectively
13121 		 *	cache an EPID for an arbitrary amount of time).
13122 		 *
13123 		 *  (b)	The principal buffers have been switched twice since the
13124 		 *	provider became defunct.
13125 		 *
13126 		 *  (c)	The aggregation buffers are of zero size or have been
13127 		 *	switched twice since the provider became defunct.
13128 		 *
13129 		 * We use dts_speculates to determine (a) and call a function
13130 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13131 		 * that as soon as we've been unable to destroy one of the ECBs
13132 		 * associated with the probe, we quit trying -- reaping is only
13133 		 * fruitful in as much as we can destroy all ECBs associated
13134 		 * with the defunct provider's probes.
13135 		 */
13136 		while ((ecb = probe->dtpr_ecb) != NULL) {
13137 			dtrace_state_t *state = ecb->dte_state;
13138 			dtrace_buffer_t *buf = state->dts_buffer;
13139 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13140 
13141 			if (state->dts_speculates)
13142 				break;
13143 
13144 			if (!dtrace_buffer_consumed(buf, when))
13145 				break;
13146 
13147 			if (!dtrace_buffer_consumed(aggbuf, when))
13148 				break;
13149 
13150 			dtrace_ecb_disable(ecb);
13151 			ASSERT(probe->dtpr_ecb != ecb);
13152 			dtrace_ecb_destroy(ecb);
13153 		}
13154 	}
13155 
13156 	mutex_exit(&dtrace_lock);
13157 	mutex_exit(&cpu_lock);
13158 }
13159 
13160 /*
13161  * DTrace DOF Functions
13162  */
13163 /*ARGSUSED*/
13164 static void
13165 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13166 {
13167 	if (dtrace_err_verbose)
13168 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13169 
13170 #ifdef DTRACE_ERRDEBUG
13171 	dtrace_errdebug(str);
13172 #endif
13173 }
13174 
13175 /*
13176  * Create DOF out of a currently enabled state.  Right now, we only create
13177  * DOF containing the run-time options -- but this could be expanded to create
13178  * complete DOF representing the enabled state.
13179  */
13180 static dof_hdr_t *
13181 dtrace_dof_create(dtrace_state_t *state)
13182 {
13183 	dof_hdr_t *dof;
13184 	dof_sec_t *sec;
13185 	dof_optdesc_t *opt;
13186 	int i, len = sizeof (dof_hdr_t) +
13187 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13188 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13189 
13190 	ASSERT(MUTEX_HELD(&dtrace_lock));
13191 
13192 	dof = kmem_zalloc(len, KM_SLEEP);
13193 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13194 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13195 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13196 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13197 
13198 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13199 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13200 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13201 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13202 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13203 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13204 
13205 	dof->dofh_flags = 0;
13206 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13207 	dof->dofh_secsize = sizeof (dof_sec_t);
13208 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13209 	dof->dofh_secoff = sizeof (dof_hdr_t);
13210 	dof->dofh_loadsz = len;
13211 	dof->dofh_filesz = len;
13212 	dof->dofh_pad = 0;
13213 
13214 	/*
13215 	 * Fill in the option section header...
13216 	 */
13217 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13218 	sec->dofs_type = DOF_SECT_OPTDESC;
13219 	sec->dofs_align = sizeof (uint64_t);
13220 	sec->dofs_flags = DOF_SECF_LOAD;
13221 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13222 
13223 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13224 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13225 
13226 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13227 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13228 
13229 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13230 		opt[i].dofo_option = i;
13231 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13232 		opt[i].dofo_value = state->dts_options[i];
13233 	}
13234 
13235 	return (dof);
13236 }
13237 
13238 static dof_hdr_t *
13239 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13240 {
13241 	dof_hdr_t hdr, *dof;
13242 
13243 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13244 
13245 	/*
13246 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13247 	 */
13248 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13249 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13250 		*errp = EFAULT;
13251 		return (NULL);
13252 	}
13253 
13254 	/*
13255 	 * Now we'll allocate the entire DOF and copy it in -- provided
13256 	 * that the length isn't outrageous.
13257 	 */
13258 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13259 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13260 		*errp = E2BIG;
13261 		return (NULL);
13262 	}
13263 
13264 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13265 		dtrace_dof_error(&hdr, "invalid load size");
13266 		*errp = EINVAL;
13267 		return (NULL);
13268 	}
13269 
13270 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13271 
13272 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13273 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13274 		kmem_free(dof, hdr.dofh_loadsz);
13275 		*errp = EFAULT;
13276 		return (NULL);
13277 	}
13278 
13279 	return (dof);
13280 }
13281 
13282 #ifdef __FreeBSD__
13283 static dof_hdr_t *
13284 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13285 {
13286 	dof_hdr_t hdr, *dof;
13287 	struct thread *td;
13288 	size_t loadsz;
13289 
13290 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13291 
13292 	td = curthread;
13293 
13294 	/*
13295 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13296 	 */
13297 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13298 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13299 		*errp = EFAULT;
13300 		return (NULL);
13301 	}
13302 
13303 	/*
13304 	 * Now we'll allocate the entire DOF and copy it in -- provided
13305 	 * that the length isn't outrageous.
13306 	 */
13307 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13308 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13309 		*errp = E2BIG;
13310 		return (NULL);
13311 	}
13312 	loadsz = (size_t)hdr.dofh_loadsz;
13313 
13314 	if (loadsz < sizeof (hdr)) {
13315 		dtrace_dof_error(&hdr, "invalid load size");
13316 		*errp = EINVAL;
13317 		return (NULL);
13318 	}
13319 
13320 	dof = kmem_alloc(loadsz, KM_SLEEP);
13321 
13322 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13323 	    dof->dofh_loadsz != loadsz) {
13324 		kmem_free(dof, hdr.dofh_loadsz);
13325 		*errp = EFAULT;
13326 		return (NULL);
13327 	}
13328 
13329 	return (dof);
13330 }
13331 
13332 static __inline uchar_t
13333 dtrace_dof_char(char c)
13334 {
13335 
13336 	switch (c) {
13337 	case '0':
13338 	case '1':
13339 	case '2':
13340 	case '3':
13341 	case '4':
13342 	case '5':
13343 	case '6':
13344 	case '7':
13345 	case '8':
13346 	case '9':
13347 		return (c - '0');
13348 	case 'A':
13349 	case 'B':
13350 	case 'C':
13351 	case 'D':
13352 	case 'E':
13353 	case 'F':
13354 		return (c - 'A' + 10);
13355 	case 'a':
13356 	case 'b':
13357 	case 'c':
13358 	case 'd':
13359 	case 'e':
13360 	case 'f':
13361 		return (c - 'a' + 10);
13362 	}
13363 	/* Should not reach here. */
13364 	return (UCHAR_MAX);
13365 }
13366 #endif /* __FreeBSD__ */
13367 
13368 static dof_hdr_t *
13369 dtrace_dof_property(const char *name)
13370 {
13371 #ifdef __FreeBSD__
13372 	uint8_t *dofbuf;
13373 	u_char *data, *eol;
13374 	caddr_t doffile;
13375 	size_t bytes, len, i;
13376 	dof_hdr_t *dof;
13377 	u_char c1, c2;
13378 
13379 	dof = NULL;
13380 
13381 	doffile = preload_search_by_type("dtrace_dof");
13382 	if (doffile == NULL)
13383 		return (NULL);
13384 
13385 	data = preload_fetch_addr(doffile);
13386 	len = preload_fetch_size(doffile);
13387 	for (;;) {
13388 		/* Look for the end of the line. All lines end in a newline. */
13389 		eol = memchr(data, '\n', len);
13390 		if (eol == NULL)
13391 			return (NULL);
13392 
13393 		if (strncmp(name, data, strlen(name)) == 0)
13394 			break;
13395 
13396 		eol++; /* skip past the newline */
13397 		len -= eol - data;
13398 		data = eol;
13399 	}
13400 
13401 	/* We've found the data corresponding to the specified key. */
13402 
13403 	data += strlen(name) + 1; /* skip past the '=' */
13404 	len = eol - data;
13405 	if (len % 2 != 0) {
13406 		dtrace_dof_error(NULL, "invalid DOF encoding length");
13407 		goto doferr;
13408 	}
13409 	bytes = len / 2;
13410 	if (bytes < sizeof(dof_hdr_t)) {
13411 		dtrace_dof_error(NULL, "truncated header");
13412 		goto doferr;
13413 	}
13414 
13415 	/*
13416 	 * Each byte is represented by the two ASCII characters in its hex
13417 	 * representation.
13418 	 */
13419 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13420 	for (i = 0; i < bytes; i++) {
13421 		c1 = dtrace_dof_char(data[i * 2]);
13422 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13423 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13424 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13425 			goto doferr;
13426 		}
13427 		dofbuf[i] = c1 * 16 + c2;
13428 	}
13429 
13430 	dof = (dof_hdr_t *)dofbuf;
13431 	if (bytes < dof->dofh_loadsz) {
13432 		dtrace_dof_error(NULL, "truncated DOF");
13433 		goto doferr;
13434 	}
13435 
13436 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13437 		dtrace_dof_error(NULL, "oversized DOF");
13438 		goto doferr;
13439 	}
13440 
13441 	return (dof);
13442 
13443 doferr:
13444 	free(dof, M_SOLARIS);
13445 	return (NULL);
13446 #else /* __FreeBSD__ */
13447 	uchar_t *buf;
13448 	uint64_t loadsz;
13449 	unsigned int len, i;
13450 	dof_hdr_t *dof;
13451 
13452 	/*
13453 	 * Unfortunately, array of values in .conf files are always (and
13454 	 * only) interpreted to be integer arrays.  We must read our DOF
13455 	 * as an integer array, and then squeeze it into a byte array.
13456 	 */
13457 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13458 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13459 		return (NULL);
13460 
13461 	for (i = 0; i < len; i++)
13462 		buf[i] = (uchar_t)(((int *)buf)[i]);
13463 
13464 	if (len < sizeof (dof_hdr_t)) {
13465 		ddi_prop_free(buf);
13466 		dtrace_dof_error(NULL, "truncated header");
13467 		return (NULL);
13468 	}
13469 
13470 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13471 		ddi_prop_free(buf);
13472 		dtrace_dof_error(NULL, "truncated DOF");
13473 		return (NULL);
13474 	}
13475 
13476 	if (loadsz >= dtrace_dof_maxsize) {
13477 		ddi_prop_free(buf);
13478 		dtrace_dof_error(NULL, "oversized DOF");
13479 		return (NULL);
13480 	}
13481 
13482 	dof = kmem_alloc(loadsz, KM_SLEEP);
13483 	bcopy(buf, dof, loadsz);
13484 	ddi_prop_free(buf);
13485 
13486 	return (dof);
13487 #endif /* !__FreeBSD__ */
13488 }
13489 
13490 static void
13491 dtrace_dof_destroy(dof_hdr_t *dof)
13492 {
13493 	kmem_free(dof, dof->dofh_loadsz);
13494 }
13495 
13496 /*
13497  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13498  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13499  * a type other than DOF_SECT_NONE is specified, the header is checked against
13500  * this type and NULL is returned if the types do not match.
13501  */
13502 static dof_sec_t *
13503 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13504 {
13505 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13506 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13507 
13508 	if (i >= dof->dofh_secnum) {
13509 		dtrace_dof_error(dof, "referenced section index is invalid");
13510 		return (NULL);
13511 	}
13512 
13513 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13514 		dtrace_dof_error(dof, "referenced section is not loadable");
13515 		return (NULL);
13516 	}
13517 
13518 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13519 		dtrace_dof_error(dof, "referenced section is the wrong type");
13520 		return (NULL);
13521 	}
13522 
13523 	return (sec);
13524 }
13525 
13526 static dtrace_probedesc_t *
13527 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13528 {
13529 	dof_probedesc_t *probe;
13530 	dof_sec_t *strtab;
13531 	uintptr_t daddr = (uintptr_t)dof;
13532 	uintptr_t str;
13533 	size_t size;
13534 
13535 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13536 		dtrace_dof_error(dof, "invalid probe section");
13537 		return (NULL);
13538 	}
13539 
13540 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13541 		dtrace_dof_error(dof, "bad alignment in probe description");
13542 		return (NULL);
13543 	}
13544 
13545 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13546 		dtrace_dof_error(dof, "truncated probe description");
13547 		return (NULL);
13548 	}
13549 
13550 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13551 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13552 
13553 	if (strtab == NULL)
13554 		return (NULL);
13555 
13556 	str = daddr + strtab->dofs_offset;
13557 	size = strtab->dofs_size;
13558 
13559 	if (probe->dofp_provider >= strtab->dofs_size) {
13560 		dtrace_dof_error(dof, "corrupt probe provider");
13561 		return (NULL);
13562 	}
13563 
13564 	(void) strncpy(desc->dtpd_provider,
13565 	    (char *)(str + probe->dofp_provider),
13566 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13567 
13568 	if (probe->dofp_mod >= strtab->dofs_size) {
13569 		dtrace_dof_error(dof, "corrupt probe module");
13570 		return (NULL);
13571 	}
13572 
13573 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13574 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13575 
13576 	if (probe->dofp_func >= strtab->dofs_size) {
13577 		dtrace_dof_error(dof, "corrupt probe function");
13578 		return (NULL);
13579 	}
13580 
13581 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13582 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13583 
13584 	if (probe->dofp_name >= strtab->dofs_size) {
13585 		dtrace_dof_error(dof, "corrupt probe name");
13586 		return (NULL);
13587 	}
13588 
13589 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13590 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13591 
13592 	return (desc);
13593 }
13594 
13595 static dtrace_difo_t *
13596 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13597     cred_t *cr)
13598 {
13599 	dtrace_difo_t *dp;
13600 	size_t ttl = 0;
13601 	dof_difohdr_t *dofd;
13602 	uintptr_t daddr = (uintptr_t)dof;
13603 	size_t max = dtrace_difo_maxsize;
13604 	int i, l, n;
13605 
13606 	static const struct {
13607 		int section;
13608 		int bufoffs;
13609 		int lenoffs;
13610 		int entsize;
13611 		int align;
13612 		const char *msg;
13613 	} difo[] = {
13614 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13615 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13616 		sizeof (dif_instr_t), "multiple DIF sections" },
13617 
13618 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13619 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13620 		sizeof (uint64_t), "multiple integer tables" },
13621 
13622 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13623 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13624 		sizeof (char), "multiple string tables" },
13625 
13626 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13627 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13628 		sizeof (uint_t), "multiple variable tables" },
13629 
13630 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13631 	};
13632 
13633 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13634 		dtrace_dof_error(dof, "invalid DIFO header section");
13635 		return (NULL);
13636 	}
13637 
13638 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13639 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13640 		return (NULL);
13641 	}
13642 
13643 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13644 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13645 		dtrace_dof_error(dof, "bad size in DIFO header");
13646 		return (NULL);
13647 	}
13648 
13649 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13650 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13651 
13652 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13653 	dp->dtdo_rtype = dofd->dofd_rtype;
13654 
13655 	for (l = 0; l < n; l++) {
13656 		dof_sec_t *subsec;
13657 		void **bufp;
13658 		uint32_t *lenp;
13659 
13660 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13661 		    dofd->dofd_links[l])) == NULL)
13662 			goto err; /* invalid section link */
13663 
13664 		if (ttl + subsec->dofs_size > max) {
13665 			dtrace_dof_error(dof, "exceeds maximum size");
13666 			goto err;
13667 		}
13668 
13669 		ttl += subsec->dofs_size;
13670 
13671 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13672 			if (subsec->dofs_type != difo[i].section)
13673 				continue;
13674 
13675 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13676 				dtrace_dof_error(dof, "section not loaded");
13677 				goto err;
13678 			}
13679 
13680 			if (subsec->dofs_align != difo[i].align) {
13681 				dtrace_dof_error(dof, "bad alignment");
13682 				goto err;
13683 			}
13684 
13685 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13686 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13687 
13688 			if (*bufp != NULL) {
13689 				dtrace_dof_error(dof, difo[i].msg);
13690 				goto err;
13691 			}
13692 
13693 			if (difo[i].entsize != subsec->dofs_entsize) {
13694 				dtrace_dof_error(dof, "entry size mismatch");
13695 				goto err;
13696 			}
13697 
13698 			if (subsec->dofs_entsize != 0 &&
13699 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13700 				dtrace_dof_error(dof, "corrupt entry size");
13701 				goto err;
13702 			}
13703 
13704 			*lenp = subsec->dofs_size;
13705 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13706 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13707 			    *bufp, subsec->dofs_size);
13708 
13709 			if (subsec->dofs_entsize != 0)
13710 				*lenp /= subsec->dofs_entsize;
13711 
13712 			break;
13713 		}
13714 
13715 		/*
13716 		 * If we encounter a loadable DIFO sub-section that is not
13717 		 * known to us, assume this is a broken program and fail.
13718 		 */
13719 		if (difo[i].section == DOF_SECT_NONE &&
13720 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13721 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13722 			goto err;
13723 		}
13724 	}
13725 
13726 	if (dp->dtdo_buf == NULL) {
13727 		/*
13728 		 * We can't have a DIF object without DIF text.
13729 		 */
13730 		dtrace_dof_error(dof, "missing DIF text");
13731 		goto err;
13732 	}
13733 
13734 	/*
13735 	 * Before we validate the DIF object, run through the variable table
13736 	 * looking for the strings -- if any of their size are under, we'll set
13737 	 * their size to be the system-wide default string size.  Note that
13738 	 * this should _not_ happen if the "strsize" option has been set --
13739 	 * in this case, the compiler should have set the size to reflect the
13740 	 * setting of the option.
13741 	 */
13742 	for (i = 0; i < dp->dtdo_varlen; i++) {
13743 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13744 		dtrace_diftype_t *t = &v->dtdv_type;
13745 
13746 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13747 			continue;
13748 
13749 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13750 			t->dtdt_size = dtrace_strsize_default;
13751 	}
13752 
13753 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13754 		goto err;
13755 
13756 	dtrace_difo_init(dp, vstate);
13757 	return (dp);
13758 
13759 err:
13760 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13761 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13762 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13763 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13764 
13765 	kmem_free(dp, sizeof (dtrace_difo_t));
13766 	return (NULL);
13767 }
13768 
13769 static dtrace_predicate_t *
13770 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13771     cred_t *cr)
13772 {
13773 	dtrace_difo_t *dp;
13774 
13775 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13776 		return (NULL);
13777 
13778 	return (dtrace_predicate_create(dp));
13779 }
13780 
13781 static dtrace_actdesc_t *
13782 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13783     cred_t *cr)
13784 {
13785 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13786 	dof_actdesc_t *desc;
13787 	dof_sec_t *difosec;
13788 	size_t offs;
13789 	uintptr_t daddr = (uintptr_t)dof;
13790 	uint64_t arg;
13791 	dtrace_actkind_t kind;
13792 
13793 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13794 		dtrace_dof_error(dof, "invalid action section");
13795 		return (NULL);
13796 	}
13797 
13798 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13799 		dtrace_dof_error(dof, "truncated action description");
13800 		return (NULL);
13801 	}
13802 
13803 	if (sec->dofs_align != sizeof (uint64_t)) {
13804 		dtrace_dof_error(dof, "bad alignment in action description");
13805 		return (NULL);
13806 	}
13807 
13808 	if (sec->dofs_size < sec->dofs_entsize) {
13809 		dtrace_dof_error(dof, "section entry size exceeds total size");
13810 		return (NULL);
13811 	}
13812 
13813 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13814 		dtrace_dof_error(dof, "bad entry size in action description");
13815 		return (NULL);
13816 	}
13817 
13818 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13819 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13820 		return (NULL);
13821 	}
13822 
13823 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13824 		desc = (dof_actdesc_t *)(daddr +
13825 		    (uintptr_t)sec->dofs_offset + offs);
13826 		kind = (dtrace_actkind_t)desc->dofa_kind;
13827 
13828 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13829 		    (kind != DTRACEACT_PRINTA ||
13830 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13831 		    (kind == DTRACEACT_DIFEXPR &&
13832 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13833 			dof_sec_t *strtab;
13834 			char *str, *fmt;
13835 			uint64_t i;
13836 
13837 			/*
13838 			 * The argument to these actions is an index into the
13839 			 * DOF string table.  For printf()-like actions, this
13840 			 * is the format string.  For print(), this is the
13841 			 * CTF type of the expression result.
13842 			 */
13843 			if ((strtab = dtrace_dof_sect(dof,
13844 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13845 				goto err;
13846 
13847 			str = (char *)((uintptr_t)dof +
13848 			    (uintptr_t)strtab->dofs_offset);
13849 
13850 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13851 				if (str[i] == '\0')
13852 					break;
13853 			}
13854 
13855 			if (i >= strtab->dofs_size) {
13856 				dtrace_dof_error(dof, "bogus format string");
13857 				goto err;
13858 			}
13859 
13860 			if (i == desc->dofa_arg) {
13861 				dtrace_dof_error(dof, "empty format string");
13862 				goto err;
13863 			}
13864 
13865 			i -= desc->dofa_arg;
13866 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13867 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13868 			arg = (uint64_t)(uintptr_t)fmt;
13869 		} else {
13870 			if (kind == DTRACEACT_PRINTA) {
13871 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13872 				arg = 0;
13873 			} else {
13874 				arg = desc->dofa_arg;
13875 			}
13876 		}
13877 
13878 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13879 		    desc->dofa_uarg, arg);
13880 
13881 		if (last != NULL) {
13882 			last->dtad_next = act;
13883 		} else {
13884 			first = act;
13885 		}
13886 
13887 		last = act;
13888 
13889 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13890 			continue;
13891 
13892 		if ((difosec = dtrace_dof_sect(dof,
13893 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13894 			goto err;
13895 
13896 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13897 
13898 		if (act->dtad_difo == NULL)
13899 			goto err;
13900 	}
13901 
13902 	ASSERT(first != NULL);
13903 	return (first);
13904 
13905 err:
13906 	for (act = first; act != NULL; act = next) {
13907 		next = act->dtad_next;
13908 		dtrace_actdesc_release(act, vstate);
13909 	}
13910 
13911 	return (NULL);
13912 }
13913 
13914 static dtrace_ecbdesc_t *
13915 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13916     cred_t *cr)
13917 {
13918 	dtrace_ecbdesc_t *ep;
13919 	dof_ecbdesc_t *ecb;
13920 	dtrace_probedesc_t *desc;
13921 	dtrace_predicate_t *pred = NULL;
13922 
13923 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13924 		dtrace_dof_error(dof, "truncated ECB description");
13925 		return (NULL);
13926 	}
13927 
13928 	if (sec->dofs_align != sizeof (uint64_t)) {
13929 		dtrace_dof_error(dof, "bad alignment in ECB description");
13930 		return (NULL);
13931 	}
13932 
13933 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13934 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13935 
13936 	if (sec == NULL)
13937 		return (NULL);
13938 
13939 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13940 	ep->dted_uarg = ecb->dofe_uarg;
13941 	desc = &ep->dted_probe;
13942 
13943 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13944 		goto err;
13945 
13946 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13947 		if ((sec = dtrace_dof_sect(dof,
13948 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13949 			goto err;
13950 
13951 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13952 			goto err;
13953 
13954 		ep->dted_pred.dtpdd_predicate = pred;
13955 	}
13956 
13957 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13958 		if ((sec = dtrace_dof_sect(dof,
13959 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13960 			goto err;
13961 
13962 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13963 
13964 		if (ep->dted_action == NULL)
13965 			goto err;
13966 	}
13967 
13968 	return (ep);
13969 
13970 err:
13971 	if (pred != NULL)
13972 		dtrace_predicate_release(pred, vstate);
13973 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13974 	return (NULL);
13975 }
13976 
13977 /*
13978  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13979  * specified DOF.  SETX relocations are computed using 'ubase', the base load
13980  * address of the object containing the DOF, and DOFREL relocations are relative
13981  * to the relocation offset within the DOF.
13982  */
13983 static int
13984 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
13985     uint64_t udaddr)
13986 {
13987 	uintptr_t daddr = (uintptr_t)dof;
13988 	uintptr_t ts_end;
13989 	dof_relohdr_t *dofr =
13990 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13991 	dof_sec_t *ss, *rs, *ts;
13992 	dof_relodesc_t *r;
13993 	uint_t i, n;
13994 
13995 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13996 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13997 		dtrace_dof_error(dof, "invalid relocation header");
13998 		return (-1);
13999 	}
14000 
14001 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14002 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14003 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14004 	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14005 
14006 	if (ss == NULL || rs == NULL || ts == NULL)
14007 		return (-1); /* dtrace_dof_error() has been called already */
14008 
14009 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14010 	    rs->dofs_align != sizeof (uint64_t)) {
14011 		dtrace_dof_error(dof, "invalid relocation section");
14012 		return (-1);
14013 	}
14014 
14015 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14016 	n = rs->dofs_size / rs->dofs_entsize;
14017 
14018 	for (i = 0; i < n; i++) {
14019 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14020 
14021 		switch (r->dofr_type) {
14022 		case DOF_RELO_NONE:
14023 			break;
14024 		case DOF_RELO_SETX:
14025 		case DOF_RELO_DOFREL:
14026 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14027 			    sizeof (uint64_t) > ts->dofs_size) {
14028 				dtrace_dof_error(dof, "bad relocation offset");
14029 				return (-1);
14030 			}
14031 
14032 			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14033 				dtrace_dof_error(dof, "bad relocation offset");
14034 				return (-1);
14035 			}
14036 
14037 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14038 				dtrace_dof_error(dof, "misaligned setx relo");
14039 				return (-1);
14040 			}
14041 
14042 			if (r->dofr_type == DOF_RELO_SETX)
14043 				*(uint64_t *)taddr += ubase;
14044 			else
14045 				*(uint64_t *)taddr +=
14046 				    udaddr + ts->dofs_offset + r->dofr_offset;
14047 			break;
14048 		default:
14049 			dtrace_dof_error(dof, "invalid relocation type");
14050 			return (-1);
14051 		}
14052 
14053 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14054 	}
14055 
14056 	return (0);
14057 }
14058 
14059 /*
14060  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14061  * header:  it should be at the front of a memory region that is at least
14062  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14063  * size.  It need not be validated in any other way.
14064  */
14065 static int
14066 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14067     dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14068 {
14069 	uint64_t len = dof->dofh_loadsz, seclen;
14070 	uintptr_t daddr = (uintptr_t)dof;
14071 	dtrace_ecbdesc_t *ep;
14072 	dtrace_enabling_t *enab;
14073 	uint_t i;
14074 
14075 	ASSERT(MUTEX_HELD(&dtrace_lock));
14076 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14077 
14078 	/*
14079 	 * Check the DOF header identification bytes.  In addition to checking
14080 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14081 	 * we can use them later without fear of regressing existing binaries.
14082 	 */
14083 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14084 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14085 		dtrace_dof_error(dof, "DOF magic string mismatch");
14086 		return (-1);
14087 	}
14088 
14089 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14090 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14091 		dtrace_dof_error(dof, "DOF has invalid data model");
14092 		return (-1);
14093 	}
14094 
14095 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14096 		dtrace_dof_error(dof, "DOF encoding mismatch");
14097 		return (-1);
14098 	}
14099 
14100 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14101 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14102 		dtrace_dof_error(dof, "DOF version mismatch");
14103 		return (-1);
14104 	}
14105 
14106 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14107 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14108 		return (-1);
14109 	}
14110 
14111 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14112 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14113 		return (-1);
14114 	}
14115 
14116 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14117 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14118 		return (-1);
14119 	}
14120 
14121 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14122 		if (dof->dofh_ident[i] != 0) {
14123 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14124 			return (-1);
14125 		}
14126 	}
14127 
14128 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14129 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14130 		return (-1);
14131 	}
14132 
14133 	if (dof->dofh_secsize == 0) {
14134 		dtrace_dof_error(dof, "zero section header size");
14135 		return (-1);
14136 	}
14137 
14138 	/*
14139 	 * Check that the section headers don't exceed the amount of DOF
14140 	 * data.  Note that we cast the section size and number of sections
14141 	 * to uint64_t's to prevent possible overflow in the multiplication.
14142 	 */
14143 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14144 
14145 	if (dof->dofh_secoff > len || seclen > len ||
14146 	    dof->dofh_secoff + seclen > len) {
14147 		dtrace_dof_error(dof, "truncated section headers");
14148 		return (-1);
14149 	}
14150 
14151 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14152 		dtrace_dof_error(dof, "misaligned section headers");
14153 		return (-1);
14154 	}
14155 
14156 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14157 		dtrace_dof_error(dof, "misaligned section size");
14158 		return (-1);
14159 	}
14160 
14161 	/*
14162 	 * Take an initial pass through the section headers to be sure that
14163 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14164 	 * set, do not permit sections relating to providers, probes, or args.
14165 	 */
14166 	for (i = 0; i < dof->dofh_secnum; i++) {
14167 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14168 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14169 
14170 		if (noprobes) {
14171 			switch (sec->dofs_type) {
14172 			case DOF_SECT_PROVIDER:
14173 			case DOF_SECT_PROBES:
14174 			case DOF_SECT_PRARGS:
14175 			case DOF_SECT_PROFFS:
14176 				dtrace_dof_error(dof, "illegal sections "
14177 				    "for enabling");
14178 				return (-1);
14179 			}
14180 		}
14181 
14182 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14183 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14184 			dtrace_dof_error(dof, "loadable section with load "
14185 			    "flag unset");
14186 			return (-1);
14187 		}
14188 
14189 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14190 			continue; /* just ignore non-loadable sections */
14191 
14192 		if (!ISP2(sec->dofs_align)) {
14193 			dtrace_dof_error(dof, "bad section alignment");
14194 			return (-1);
14195 		}
14196 
14197 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14198 			dtrace_dof_error(dof, "misaligned section");
14199 			return (-1);
14200 		}
14201 
14202 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14203 		    sec->dofs_offset + sec->dofs_size > len) {
14204 			dtrace_dof_error(dof, "corrupt section header");
14205 			return (-1);
14206 		}
14207 
14208 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14209 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14210 			dtrace_dof_error(dof, "non-terminating string table");
14211 			return (-1);
14212 		}
14213 	}
14214 
14215 	/*
14216 	 * Take a second pass through the sections and locate and perform any
14217 	 * relocations that are present.  We do this after the first pass to
14218 	 * be sure that all sections have had their headers validated.
14219 	 */
14220 	for (i = 0; i < dof->dofh_secnum; i++) {
14221 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14222 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14223 
14224 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14225 			continue; /* skip sections that are not loadable */
14226 
14227 		switch (sec->dofs_type) {
14228 		case DOF_SECT_URELHDR:
14229 			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14230 				return (-1);
14231 			break;
14232 		}
14233 	}
14234 
14235 	if ((enab = *enabp) == NULL)
14236 		enab = *enabp = dtrace_enabling_create(vstate);
14237 
14238 	for (i = 0; i < dof->dofh_secnum; i++) {
14239 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14240 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14241 
14242 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14243 			continue;
14244 
14245 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14246 			dtrace_enabling_destroy(enab);
14247 			*enabp = NULL;
14248 			return (-1);
14249 		}
14250 
14251 		dtrace_enabling_add(enab, ep);
14252 	}
14253 
14254 	return (0);
14255 }
14256 
14257 /*
14258  * Process DOF for any options.  This routine assumes that the DOF has been
14259  * at least processed by dtrace_dof_slurp().
14260  */
14261 static int
14262 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14263 {
14264 	int i, rval;
14265 	uint32_t entsize;
14266 	size_t offs;
14267 	dof_optdesc_t *desc;
14268 
14269 	for (i = 0; i < dof->dofh_secnum; i++) {
14270 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14271 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14272 
14273 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14274 			continue;
14275 
14276 		if (sec->dofs_align != sizeof (uint64_t)) {
14277 			dtrace_dof_error(dof, "bad alignment in "
14278 			    "option description");
14279 			return (EINVAL);
14280 		}
14281 
14282 		if ((entsize = sec->dofs_entsize) == 0) {
14283 			dtrace_dof_error(dof, "zeroed option entry size");
14284 			return (EINVAL);
14285 		}
14286 
14287 		if (entsize < sizeof (dof_optdesc_t)) {
14288 			dtrace_dof_error(dof, "bad option entry size");
14289 			return (EINVAL);
14290 		}
14291 
14292 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14293 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14294 			    (uintptr_t)sec->dofs_offset + offs);
14295 
14296 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14297 				dtrace_dof_error(dof, "non-zero option string");
14298 				return (EINVAL);
14299 			}
14300 
14301 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14302 				dtrace_dof_error(dof, "unset option");
14303 				return (EINVAL);
14304 			}
14305 
14306 			if ((rval = dtrace_state_option(state,
14307 			    desc->dofo_option, desc->dofo_value)) != 0) {
14308 				dtrace_dof_error(dof, "rejected option");
14309 				return (rval);
14310 			}
14311 		}
14312 	}
14313 
14314 	return (0);
14315 }
14316 
14317 /*
14318  * DTrace Consumer State Functions
14319  */
14320 static int
14321 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14322 {
14323 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14324 	void *base;
14325 	uintptr_t limit;
14326 	dtrace_dynvar_t *dvar, *next, *start;
14327 	int i;
14328 
14329 	ASSERT(MUTEX_HELD(&dtrace_lock));
14330 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14331 
14332 	bzero(dstate, sizeof (dtrace_dstate_t));
14333 
14334 	if ((dstate->dtds_chunksize = chunksize) == 0)
14335 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14336 
14337 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14338 
14339 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14340 		size = min;
14341 
14342 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14343 		return (ENOMEM);
14344 
14345 	dstate->dtds_size = size;
14346 	dstate->dtds_base = base;
14347 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14348 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14349 
14350 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14351 
14352 	if (hashsize != 1 && (hashsize & 1))
14353 		hashsize--;
14354 
14355 	dstate->dtds_hashsize = hashsize;
14356 	dstate->dtds_hash = dstate->dtds_base;
14357 
14358 	/*
14359 	 * Set all of our hash buckets to point to the single sink, and (if
14360 	 * it hasn't already been set), set the sink's hash value to be the
14361 	 * sink sentinel value.  The sink is needed for dynamic variable
14362 	 * lookups to know that they have iterated over an entire, valid hash
14363 	 * chain.
14364 	 */
14365 	for (i = 0; i < hashsize; i++)
14366 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14367 
14368 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14369 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14370 
14371 	/*
14372 	 * Determine number of active CPUs.  Divide free list evenly among
14373 	 * active CPUs.
14374 	 */
14375 	start = (dtrace_dynvar_t *)
14376 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14377 	limit = (uintptr_t)base + size;
14378 
14379 	VERIFY((uintptr_t)start < limit);
14380 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14381 
14382 	maxper = (limit - (uintptr_t)start) / NCPU;
14383 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14384 
14385 #ifndef illumos
14386 	CPU_FOREACH(i) {
14387 #else
14388 	for (i = 0; i < NCPU; i++) {
14389 #endif
14390 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14391 
14392 		/*
14393 		 * If we don't even have enough chunks to make it once through
14394 		 * NCPUs, we're just going to allocate everything to the first
14395 		 * CPU.  And if we're on the last CPU, we're going to allocate
14396 		 * whatever is left over.  In either case, we set the limit to
14397 		 * be the limit of the dynamic variable space.
14398 		 */
14399 		if (maxper == 0 || i == NCPU - 1) {
14400 			limit = (uintptr_t)base + size;
14401 			start = NULL;
14402 		} else {
14403 			limit = (uintptr_t)start + maxper;
14404 			start = (dtrace_dynvar_t *)limit;
14405 		}
14406 
14407 		VERIFY(limit <= (uintptr_t)base + size);
14408 
14409 		for (;;) {
14410 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14411 			    dstate->dtds_chunksize);
14412 
14413 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14414 				break;
14415 
14416 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14417 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14418 			dvar->dtdv_next = next;
14419 			dvar = next;
14420 		}
14421 
14422 		if (maxper == 0)
14423 			break;
14424 	}
14425 
14426 	return (0);
14427 }
14428 
14429 static void
14430 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14431 {
14432 	ASSERT(MUTEX_HELD(&cpu_lock));
14433 
14434 	if (dstate->dtds_base == NULL)
14435 		return;
14436 
14437 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14438 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14439 }
14440 
14441 static void
14442 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14443 {
14444 	/*
14445 	 * Logical XOR, where are you?
14446 	 */
14447 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14448 
14449 	if (vstate->dtvs_nglobals > 0) {
14450 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14451 		    sizeof (dtrace_statvar_t *));
14452 	}
14453 
14454 	if (vstate->dtvs_ntlocals > 0) {
14455 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14456 		    sizeof (dtrace_difv_t));
14457 	}
14458 
14459 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14460 
14461 	if (vstate->dtvs_nlocals > 0) {
14462 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14463 		    sizeof (dtrace_statvar_t *));
14464 	}
14465 }
14466 
14467 #ifdef illumos
14468 static void
14469 dtrace_state_clean(dtrace_state_t *state)
14470 {
14471 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14472 		return;
14473 
14474 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14475 	dtrace_speculation_clean(state);
14476 }
14477 
14478 static void
14479 dtrace_state_deadman(dtrace_state_t *state)
14480 {
14481 	hrtime_t now;
14482 
14483 	dtrace_sync();
14484 
14485 	now = dtrace_gethrtime();
14486 
14487 	if (state != dtrace_anon.dta_state &&
14488 	    now - state->dts_laststatus >= dtrace_deadman_user)
14489 		return;
14490 
14491 	/*
14492 	 * We must be sure that dts_alive never appears to be less than the
14493 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14494 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14495 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14496 	 * the new value.  This assures that dts_alive never appears to be
14497 	 * less than its true value, regardless of the order in which the
14498 	 * stores to the underlying storage are issued.
14499 	 */
14500 	state->dts_alive = INT64_MAX;
14501 	dtrace_membar_producer();
14502 	state->dts_alive = now;
14503 }
14504 #else	/* !illumos */
14505 static void
14506 dtrace_state_clean(void *arg)
14507 {
14508 	dtrace_state_t *state = arg;
14509 	dtrace_optval_t *opt = state->dts_options;
14510 
14511 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14512 		return;
14513 
14514 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14515 	dtrace_speculation_clean(state);
14516 
14517 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14518 	    dtrace_state_clean, state);
14519 }
14520 
14521 static void
14522 dtrace_state_deadman(void *arg)
14523 {
14524 	dtrace_state_t *state = arg;
14525 	hrtime_t now;
14526 
14527 	dtrace_sync();
14528 
14529 	dtrace_debug_output();
14530 
14531 	now = dtrace_gethrtime();
14532 
14533 	if (state != dtrace_anon.dta_state &&
14534 	    now - state->dts_laststatus >= dtrace_deadman_user)
14535 		return;
14536 
14537 	/*
14538 	 * We must be sure that dts_alive never appears to be less than the
14539 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14540 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14541 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14542 	 * the new value.  This assures that dts_alive never appears to be
14543 	 * less than its true value, regardless of the order in which the
14544 	 * stores to the underlying storage are issued.
14545 	 */
14546 	state->dts_alive = INT64_MAX;
14547 	dtrace_membar_producer();
14548 	state->dts_alive = now;
14549 
14550 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14551 	    dtrace_state_deadman, state);
14552 }
14553 #endif	/* illumos */
14554 
14555 static dtrace_state_t *
14556 #ifdef illumos
14557 dtrace_state_create(dev_t *devp, cred_t *cr)
14558 #else
14559 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14560 #endif
14561 {
14562 #ifdef illumos
14563 	minor_t minor;
14564 	major_t major;
14565 #else
14566 	cred_t *cr = NULL;
14567 	int m = 0;
14568 #endif
14569 	char c[30];
14570 	dtrace_state_t *state;
14571 	dtrace_optval_t *opt;
14572 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14573 	int cpu_it;
14574 
14575 	ASSERT(MUTEX_HELD(&dtrace_lock));
14576 	ASSERT(MUTEX_HELD(&cpu_lock));
14577 
14578 #ifdef illumos
14579 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14580 	    VM_BESTFIT | VM_SLEEP);
14581 
14582 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14583 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14584 		return (NULL);
14585 	}
14586 
14587 	state = ddi_get_soft_state(dtrace_softstate, minor);
14588 #else
14589 	if (dev != NULL) {
14590 		cr = dev->si_cred;
14591 		m = dev2unit(dev);
14592 	}
14593 
14594 	/* Allocate memory for the state. */
14595 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14596 #endif
14597 
14598 	state->dts_epid = DTRACE_EPIDNONE + 1;
14599 
14600 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14601 #ifdef illumos
14602 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14603 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14604 
14605 	if (devp != NULL) {
14606 		major = getemajor(*devp);
14607 	} else {
14608 		major = ddi_driver_major(dtrace_devi);
14609 	}
14610 
14611 	state->dts_dev = makedevice(major, minor);
14612 
14613 	if (devp != NULL)
14614 		*devp = state->dts_dev;
14615 #else
14616 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14617 	state->dts_dev = dev;
14618 #endif
14619 
14620 	/*
14621 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14622 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14623 	 * other hand, it saves an additional memory reference in the probe
14624 	 * path.
14625 	 */
14626 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14627 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14628 
14629 	/*
14630          * Allocate and initialise the per-process per-CPU random state.
14631 	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14632          * assumed to be seeded at this point (if from Fortuna seed file).
14633 	 */
14634 	(void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14635 	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14636 		/*
14637 		 * Each CPU is assigned a 2^64 period, non-overlapping
14638 		 * subsequence.
14639 		 */
14640 		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14641 		    state->dts_rstate[cpu_it]);
14642 	}
14643 
14644 #ifdef illumos
14645 	state->dts_cleaner = CYCLIC_NONE;
14646 	state->dts_deadman = CYCLIC_NONE;
14647 #else
14648 	callout_init(&state->dts_cleaner, 1);
14649 	callout_init(&state->dts_deadman, 1);
14650 #endif
14651 	state->dts_vstate.dtvs_state = state;
14652 
14653 	for (i = 0; i < DTRACEOPT_MAX; i++)
14654 		state->dts_options[i] = DTRACEOPT_UNSET;
14655 
14656 	/*
14657 	 * Set the default options.
14658 	 */
14659 	opt = state->dts_options;
14660 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14661 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14662 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14663 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14664 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14665 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14666 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14667 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14668 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14669 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14670 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14671 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14672 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14673 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14674 
14675 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14676 
14677 	/*
14678 	 * Depending on the user credentials, we set flag bits which alter probe
14679 	 * visibility or the amount of destructiveness allowed.  In the case of
14680 	 * actual anonymous tracing, or the possession of all privileges, all of
14681 	 * the normal checks are bypassed.
14682 	 */
14683 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14684 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14685 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14686 	} else {
14687 		/*
14688 		 * Set up the credentials for this instantiation.  We take a
14689 		 * hold on the credential to prevent it from disappearing on
14690 		 * us; this in turn prevents the zone_t referenced by this
14691 		 * credential from disappearing.  This means that we can
14692 		 * examine the credential and the zone from probe context.
14693 		 */
14694 		crhold(cr);
14695 		state->dts_cred.dcr_cred = cr;
14696 
14697 		/*
14698 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14699 		 * unlocks the use of variables like pid, zonename, etc.
14700 		 */
14701 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14702 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14703 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14704 		}
14705 
14706 		/*
14707 		 * dtrace_user allows use of syscall and profile providers.
14708 		 * If the user also has proc_owner and/or proc_zone, we
14709 		 * extend the scope to include additional visibility and
14710 		 * destructive power.
14711 		 */
14712 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14713 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14714 				state->dts_cred.dcr_visible |=
14715 				    DTRACE_CRV_ALLPROC;
14716 
14717 				state->dts_cred.dcr_action |=
14718 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14719 			}
14720 
14721 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14722 				state->dts_cred.dcr_visible |=
14723 				    DTRACE_CRV_ALLZONE;
14724 
14725 				state->dts_cred.dcr_action |=
14726 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14727 			}
14728 
14729 			/*
14730 			 * If we have all privs in whatever zone this is,
14731 			 * we can do destructive things to processes which
14732 			 * have altered credentials.
14733 			 */
14734 #ifdef illumos
14735 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14736 			    cr->cr_zone->zone_privset)) {
14737 				state->dts_cred.dcr_action |=
14738 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14739 			}
14740 #endif
14741 		}
14742 
14743 		/*
14744 		 * Holding the dtrace_kernel privilege also implies that
14745 		 * the user has the dtrace_user privilege from a visibility
14746 		 * perspective.  But without further privileges, some
14747 		 * destructive actions are not available.
14748 		 */
14749 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14750 			/*
14751 			 * Make all probes in all zones visible.  However,
14752 			 * this doesn't mean that all actions become available
14753 			 * to all zones.
14754 			 */
14755 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14756 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14757 
14758 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14759 			    DTRACE_CRA_PROC;
14760 			/*
14761 			 * Holding proc_owner means that destructive actions
14762 			 * for *this* zone are allowed.
14763 			 */
14764 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14765 				state->dts_cred.dcr_action |=
14766 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14767 
14768 			/*
14769 			 * Holding proc_zone means that destructive actions
14770 			 * for this user/group ID in all zones is allowed.
14771 			 */
14772 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14773 				state->dts_cred.dcr_action |=
14774 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14775 
14776 #ifdef illumos
14777 			/*
14778 			 * If we have all privs in whatever zone this is,
14779 			 * we can do destructive things to processes which
14780 			 * have altered credentials.
14781 			 */
14782 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14783 			    cr->cr_zone->zone_privset)) {
14784 				state->dts_cred.dcr_action |=
14785 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14786 			}
14787 #endif
14788 		}
14789 
14790 		/*
14791 		 * Holding the dtrace_proc privilege gives control over fasttrap
14792 		 * and pid providers.  We need to grant wider destructive
14793 		 * privileges in the event that the user has proc_owner and/or
14794 		 * proc_zone.
14795 		 */
14796 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14797 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14798 				state->dts_cred.dcr_action |=
14799 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14800 
14801 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14802 				state->dts_cred.dcr_action |=
14803 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14804 		}
14805 	}
14806 
14807 	return (state);
14808 }
14809 
14810 static int
14811 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14812 {
14813 	dtrace_optval_t *opt = state->dts_options, size;
14814 	processorid_t cpu = 0;;
14815 	int flags = 0, rval, factor, divisor = 1;
14816 
14817 	ASSERT(MUTEX_HELD(&dtrace_lock));
14818 	ASSERT(MUTEX_HELD(&cpu_lock));
14819 	ASSERT(which < DTRACEOPT_MAX);
14820 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14821 	    (state == dtrace_anon.dta_state &&
14822 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14823 
14824 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14825 		return (0);
14826 
14827 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14828 		cpu = opt[DTRACEOPT_CPU];
14829 
14830 	if (which == DTRACEOPT_SPECSIZE)
14831 		flags |= DTRACEBUF_NOSWITCH;
14832 
14833 	if (which == DTRACEOPT_BUFSIZE) {
14834 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14835 			flags |= DTRACEBUF_RING;
14836 
14837 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14838 			flags |= DTRACEBUF_FILL;
14839 
14840 		if (state != dtrace_anon.dta_state ||
14841 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14842 			flags |= DTRACEBUF_INACTIVE;
14843 	}
14844 
14845 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14846 		/*
14847 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14848 		 * aligned, drop it down by the difference.
14849 		 */
14850 		if (size & (sizeof (uint64_t) - 1))
14851 			size -= size & (sizeof (uint64_t) - 1);
14852 
14853 		if (size < state->dts_reserve) {
14854 			/*
14855 			 * Buffers always must be large enough to accommodate
14856 			 * their prereserved space.  We return E2BIG instead
14857 			 * of ENOMEM in this case to allow for user-level
14858 			 * software to differentiate the cases.
14859 			 */
14860 			return (E2BIG);
14861 		}
14862 
14863 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14864 
14865 		if (rval != ENOMEM) {
14866 			opt[which] = size;
14867 			return (rval);
14868 		}
14869 
14870 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14871 			return (rval);
14872 
14873 		for (divisor = 2; divisor < factor; divisor <<= 1)
14874 			continue;
14875 	}
14876 
14877 	return (ENOMEM);
14878 }
14879 
14880 static int
14881 dtrace_state_buffers(dtrace_state_t *state)
14882 {
14883 	dtrace_speculation_t *spec = state->dts_speculations;
14884 	int rval, i;
14885 
14886 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14887 	    DTRACEOPT_BUFSIZE)) != 0)
14888 		return (rval);
14889 
14890 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14891 	    DTRACEOPT_AGGSIZE)) != 0)
14892 		return (rval);
14893 
14894 	for (i = 0; i < state->dts_nspeculations; i++) {
14895 		if ((rval = dtrace_state_buffer(state,
14896 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14897 			return (rval);
14898 	}
14899 
14900 	return (0);
14901 }
14902 
14903 static void
14904 dtrace_state_prereserve(dtrace_state_t *state)
14905 {
14906 	dtrace_ecb_t *ecb;
14907 	dtrace_probe_t *probe;
14908 
14909 	state->dts_reserve = 0;
14910 
14911 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14912 		return;
14913 
14914 	/*
14915 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14916 	 * prereserved space to be the space required by the END probes.
14917 	 */
14918 	probe = dtrace_probes[dtrace_probeid_end - 1];
14919 	ASSERT(probe != NULL);
14920 
14921 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14922 		if (ecb->dte_state != state)
14923 			continue;
14924 
14925 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14926 	}
14927 }
14928 
14929 static int
14930 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14931 {
14932 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14933 	dtrace_speculation_t *spec;
14934 	dtrace_buffer_t *buf;
14935 #ifdef illumos
14936 	cyc_handler_t hdlr;
14937 	cyc_time_t when;
14938 #endif
14939 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14940 	dtrace_icookie_t cookie;
14941 
14942 	mutex_enter(&cpu_lock);
14943 	mutex_enter(&dtrace_lock);
14944 
14945 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14946 		rval = EBUSY;
14947 		goto out;
14948 	}
14949 
14950 	/*
14951 	 * Before we can perform any checks, we must prime all of the
14952 	 * retained enablings that correspond to this state.
14953 	 */
14954 	dtrace_enabling_prime(state);
14955 
14956 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14957 		rval = EACCES;
14958 		goto out;
14959 	}
14960 
14961 	dtrace_state_prereserve(state);
14962 
14963 	/*
14964 	 * Now we want to do is try to allocate our speculations.
14965 	 * We do not automatically resize the number of speculations; if
14966 	 * this fails, we will fail the operation.
14967 	 */
14968 	nspec = opt[DTRACEOPT_NSPEC];
14969 	ASSERT(nspec != DTRACEOPT_UNSET);
14970 
14971 	if (nspec > INT_MAX) {
14972 		rval = ENOMEM;
14973 		goto out;
14974 	}
14975 
14976 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14977 	    KM_NOSLEEP | KM_NORMALPRI);
14978 
14979 	if (spec == NULL) {
14980 		rval = ENOMEM;
14981 		goto out;
14982 	}
14983 
14984 	state->dts_speculations = spec;
14985 	state->dts_nspeculations = (int)nspec;
14986 
14987 	for (i = 0; i < nspec; i++) {
14988 		if ((buf = kmem_zalloc(bufsize,
14989 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14990 			rval = ENOMEM;
14991 			goto err;
14992 		}
14993 
14994 		spec[i].dtsp_buffer = buf;
14995 	}
14996 
14997 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14998 		if (dtrace_anon.dta_state == NULL) {
14999 			rval = ENOENT;
15000 			goto out;
15001 		}
15002 
15003 		if (state->dts_necbs != 0) {
15004 			rval = EALREADY;
15005 			goto out;
15006 		}
15007 
15008 		state->dts_anon = dtrace_anon_grab();
15009 		ASSERT(state->dts_anon != NULL);
15010 		state = state->dts_anon;
15011 
15012 		/*
15013 		 * We want "grabanon" to be set in the grabbed state, so we'll
15014 		 * copy that option value from the grabbing state into the
15015 		 * grabbed state.
15016 		 */
15017 		state->dts_options[DTRACEOPT_GRABANON] =
15018 		    opt[DTRACEOPT_GRABANON];
15019 
15020 		*cpu = dtrace_anon.dta_beganon;
15021 
15022 		/*
15023 		 * If the anonymous state is active (as it almost certainly
15024 		 * is if the anonymous enabling ultimately matched anything),
15025 		 * we don't allow any further option processing -- but we
15026 		 * don't return failure.
15027 		 */
15028 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15029 			goto out;
15030 	}
15031 
15032 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15033 	    opt[DTRACEOPT_AGGSIZE] != 0) {
15034 		if (state->dts_aggregations == NULL) {
15035 			/*
15036 			 * We're not going to create an aggregation buffer
15037 			 * because we don't have any ECBs that contain
15038 			 * aggregations -- set this option to 0.
15039 			 */
15040 			opt[DTRACEOPT_AGGSIZE] = 0;
15041 		} else {
15042 			/*
15043 			 * If we have an aggregation buffer, we must also have
15044 			 * a buffer to use as scratch.
15045 			 */
15046 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15047 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15048 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15049 			}
15050 		}
15051 	}
15052 
15053 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15054 	    opt[DTRACEOPT_SPECSIZE] != 0) {
15055 		if (!state->dts_speculates) {
15056 			/*
15057 			 * We're not going to create speculation buffers
15058 			 * because we don't have any ECBs that actually
15059 			 * speculate -- set the speculation size to 0.
15060 			 */
15061 			opt[DTRACEOPT_SPECSIZE] = 0;
15062 		}
15063 	}
15064 
15065 	/*
15066 	 * The bare minimum size for any buffer that we're actually going to
15067 	 * do anything to is sizeof (uint64_t).
15068 	 */
15069 	sz = sizeof (uint64_t);
15070 
15071 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15072 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15073 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15074 		/*
15075 		 * A buffer size has been explicitly set to 0 (or to a size
15076 		 * that will be adjusted to 0) and we need the space -- we
15077 		 * need to return failure.  We return ENOSPC to differentiate
15078 		 * it from failing to allocate a buffer due to failure to meet
15079 		 * the reserve (for which we return E2BIG).
15080 		 */
15081 		rval = ENOSPC;
15082 		goto out;
15083 	}
15084 
15085 	if ((rval = dtrace_state_buffers(state)) != 0)
15086 		goto err;
15087 
15088 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15089 		sz = dtrace_dstate_defsize;
15090 
15091 	do {
15092 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15093 
15094 		if (rval == 0)
15095 			break;
15096 
15097 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15098 			goto err;
15099 	} while (sz >>= 1);
15100 
15101 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15102 
15103 	if (rval != 0)
15104 		goto err;
15105 
15106 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15107 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15108 
15109 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15110 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15111 
15112 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15113 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15114 
15115 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15116 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15117 
15118 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15119 #ifdef illumos
15120 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15121 	hdlr.cyh_arg = state;
15122 	hdlr.cyh_level = CY_LOW_LEVEL;
15123 
15124 	when.cyt_when = 0;
15125 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15126 
15127 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15128 
15129 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15130 	hdlr.cyh_arg = state;
15131 	hdlr.cyh_level = CY_LOW_LEVEL;
15132 
15133 	when.cyt_when = 0;
15134 	when.cyt_interval = dtrace_deadman_interval;
15135 
15136 	state->dts_deadman = cyclic_add(&hdlr, &when);
15137 #else
15138 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15139 	    dtrace_state_clean, state);
15140 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15141 	    dtrace_state_deadman, state);
15142 #endif
15143 
15144 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15145 
15146 #ifdef illumos
15147 	if (state->dts_getf != 0 &&
15148 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15149 		/*
15150 		 * We don't have kernel privs but we have at least one call
15151 		 * to getf(); we need to bump our zone's count, and (if
15152 		 * this is the first enabling to have an unprivileged call
15153 		 * to getf()) we need to hook into closef().
15154 		 */
15155 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15156 
15157 		if (dtrace_getf++ == 0) {
15158 			ASSERT(dtrace_closef == NULL);
15159 			dtrace_closef = dtrace_getf_barrier;
15160 		}
15161 	}
15162 #endif
15163 
15164 	/*
15165 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15166 	 * interrupts here both to record the CPU on which we fired the BEGIN
15167 	 * probe (the data from this CPU will be processed first at user
15168 	 * level) and to manually activate the buffer for this CPU.
15169 	 */
15170 	cookie = dtrace_interrupt_disable();
15171 	*cpu = curcpu;
15172 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15173 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15174 
15175 	dtrace_probe(dtrace_probeid_begin,
15176 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15177 	dtrace_interrupt_enable(cookie);
15178 	/*
15179 	 * We may have had an exit action from a BEGIN probe; only change our
15180 	 * state to ACTIVE if we're still in WARMUP.
15181 	 */
15182 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15183 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15184 
15185 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15186 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15187 
15188 #ifdef __FreeBSD__
15189 	/*
15190 	 * We enable anonymous tracing before APs are started, so we must
15191 	 * activate buffers using the current CPU.
15192 	 */
15193 	if (state == dtrace_anon.dta_state)
15194 		for (int i = 0; i < NCPU; i++)
15195 			dtrace_buffer_activate_cpu(state, i);
15196 	else
15197 		dtrace_xcall(DTRACE_CPUALL,
15198 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15199 #else
15200 	/*
15201 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15202 	 * want each CPU to transition its principal buffer out of the
15203 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15204 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15205 	 * atomically transition from processing none of a state's ECBs to
15206 	 * processing all of them.
15207 	 */
15208 	dtrace_xcall(DTRACE_CPUALL,
15209 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15210 #endif
15211 	goto out;
15212 
15213 err:
15214 	dtrace_buffer_free(state->dts_buffer);
15215 	dtrace_buffer_free(state->dts_aggbuffer);
15216 
15217 	if ((nspec = state->dts_nspeculations) == 0) {
15218 		ASSERT(state->dts_speculations == NULL);
15219 		goto out;
15220 	}
15221 
15222 	spec = state->dts_speculations;
15223 	ASSERT(spec != NULL);
15224 
15225 	for (i = 0; i < state->dts_nspeculations; i++) {
15226 		if ((buf = spec[i].dtsp_buffer) == NULL)
15227 			break;
15228 
15229 		dtrace_buffer_free(buf);
15230 		kmem_free(buf, bufsize);
15231 	}
15232 
15233 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15234 	state->dts_nspeculations = 0;
15235 	state->dts_speculations = NULL;
15236 
15237 out:
15238 	mutex_exit(&dtrace_lock);
15239 	mutex_exit(&cpu_lock);
15240 
15241 	return (rval);
15242 }
15243 
15244 static int
15245 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15246 {
15247 	dtrace_icookie_t cookie;
15248 
15249 	ASSERT(MUTEX_HELD(&dtrace_lock));
15250 
15251 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15252 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15253 		return (EINVAL);
15254 
15255 	/*
15256 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15257 	 * to be sure that every CPU has seen it.  See below for the details
15258 	 * on why this is done.
15259 	 */
15260 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15261 	dtrace_sync();
15262 
15263 	/*
15264 	 * By this point, it is impossible for any CPU to be still processing
15265 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15266 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15267 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15268 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15269 	 * iff we're in the END probe.
15270 	 */
15271 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15272 	dtrace_sync();
15273 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15274 
15275 	/*
15276 	 * Finally, we can release the reserve and call the END probe.  We
15277 	 * disable interrupts across calling the END probe to allow us to
15278 	 * return the CPU on which we actually called the END probe.  This
15279 	 * allows user-land to be sure that this CPU's principal buffer is
15280 	 * processed last.
15281 	 */
15282 	state->dts_reserve = 0;
15283 
15284 	cookie = dtrace_interrupt_disable();
15285 	*cpu = curcpu;
15286 	dtrace_probe(dtrace_probeid_end,
15287 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15288 	dtrace_interrupt_enable(cookie);
15289 
15290 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15291 	dtrace_sync();
15292 
15293 #ifdef illumos
15294 	if (state->dts_getf != 0 &&
15295 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15296 		/*
15297 		 * We don't have kernel privs but we have at least one call
15298 		 * to getf(); we need to lower our zone's count, and (if
15299 		 * this is the last enabling to have an unprivileged call
15300 		 * to getf()) we need to clear the closef() hook.
15301 		 */
15302 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15303 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15304 		ASSERT(dtrace_getf > 0);
15305 
15306 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15307 
15308 		if (--dtrace_getf == 0)
15309 			dtrace_closef = NULL;
15310 	}
15311 #endif
15312 
15313 	return (0);
15314 }
15315 
15316 static int
15317 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15318     dtrace_optval_t val)
15319 {
15320 	ASSERT(MUTEX_HELD(&dtrace_lock));
15321 
15322 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15323 		return (EBUSY);
15324 
15325 	if (option >= DTRACEOPT_MAX)
15326 		return (EINVAL);
15327 
15328 	if (option != DTRACEOPT_CPU && val < 0)
15329 		return (EINVAL);
15330 
15331 	switch (option) {
15332 	case DTRACEOPT_DESTRUCTIVE:
15333 		if (dtrace_destructive_disallow)
15334 			return (EACCES);
15335 
15336 		state->dts_cred.dcr_destructive = 1;
15337 		break;
15338 
15339 	case DTRACEOPT_BUFSIZE:
15340 	case DTRACEOPT_DYNVARSIZE:
15341 	case DTRACEOPT_AGGSIZE:
15342 	case DTRACEOPT_SPECSIZE:
15343 	case DTRACEOPT_STRSIZE:
15344 		if (val < 0)
15345 			return (EINVAL);
15346 
15347 		if (val >= LONG_MAX) {
15348 			/*
15349 			 * If this is an otherwise negative value, set it to
15350 			 * the highest multiple of 128m less than LONG_MAX.
15351 			 * Technically, we're adjusting the size without
15352 			 * regard to the buffer resizing policy, but in fact,
15353 			 * this has no effect -- if we set the buffer size to
15354 			 * ~LONG_MAX and the buffer policy is ultimately set to
15355 			 * be "manual", the buffer allocation is guaranteed to
15356 			 * fail, if only because the allocation requires two
15357 			 * buffers.  (We set the the size to the highest
15358 			 * multiple of 128m because it ensures that the size
15359 			 * will remain a multiple of a megabyte when
15360 			 * repeatedly halved -- all the way down to 15m.)
15361 			 */
15362 			val = LONG_MAX - (1 << 27) + 1;
15363 		}
15364 	}
15365 
15366 	state->dts_options[option] = val;
15367 
15368 	return (0);
15369 }
15370 
15371 static void
15372 dtrace_state_destroy(dtrace_state_t *state)
15373 {
15374 	dtrace_ecb_t *ecb;
15375 	dtrace_vstate_t *vstate = &state->dts_vstate;
15376 #ifdef illumos
15377 	minor_t minor = getminor(state->dts_dev);
15378 #endif
15379 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15380 	dtrace_speculation_t *spec = state->dts_speculations;
15381 	int nspec = state->dts_nspeculations;
15382 	uint32_t match;
15383 
15384 	ASSERT(MUTEX_HELD(&dtrace_lock));
15385 	ASSERT(MUTEX_HELD(&cpu_lock));
15386 
15387 	/*
15388 	 * First, retract any retained enablings for this state.
15389 	 */
15390 	dtrace_enabling_retract(state);
15391 	ASSERT(state->dts_nretained == 0);
15392 
15393 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15394 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15395 		/*
15396 		 * We have managed to come into dtrace_state_destroy() on a
15397 		 * hot enabling -- almost certainly because of a disorderly
15398 		 * shutdown of a consumer.  (That is, a consumer that is
15399 		 * exiting without having called dtrace_stop().) In this case,
15400 		 * we're going to set our activity to be KILLED, and then
15401 		 * issue a sync to be sure that everyone is out of probe
15402 		 * context before we start blowing away ECBs.
15403 		 */
15404 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15405 		dtrace_sync();
15406 	}
15407 
15408 	/*
15409 	 * Release the credential hold we took in dtrace_state_create().
15410 	 */
15411 	if (state->dts_cred.dcr_cred != NULL)
15412 		crfree(state->dts_cred.dcr_cred);
15413 
15414 	/*
15415 	 * Now we can safely disable and destroy any enabled probes.  Because
15416 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15417 	 * (especially if they're all enabled), we take two passes through the
15418 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15419 	 * in the second we disable whatever is left over.
15420 	 */
15421 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15422 		for (i = 0; i < state->dts_necbs; i++) {
15423 			if ((ecb = state->dts_ecbs[i]) == NULL)
15424 				continue;
15425 
15426 			if (match && ecb->dte_probe != NULL) {
15427 				dtrace_probe_t *probe = ecb->dte_probe;
15428 				dtrace_provider_t *prov = probe->dtpr_provider;
15429 
15430 				if (!(prov->dtpv_priv.dtpp_flags & match))
15431 					continue;
15432 			}
15433 
15434 			dtrace_ecb_disable(ecb);
15435 			dtrace_ecb_destroy(ecb);
15436 		}
15437 
15438 		if (!match)
15439 			break;
15440 	}
15441 
15442 	/*
15443 	 * Before we free the buffers, perform one more sync to assure that
15444 	 * every CPU is out of probe context.
15445 	 */
15446 	dtrace_sync();
15447 
15448 	dtrace_buffer_free(state->dts_buffer);
15449 	dtrace_buffer_free(state->dts_aggbuffer);
15450 
15451 	for (i = 0; i < nspec; i++)
15452 		dtrace_buffer_free(spec[i].dtsp_buffer);
15453 
15454 #ifdef illumos
15455 	if (state->dts_cleaner != CYCLIC_NONE)
15456 		cyclic_remove(state->dts_cleaner);
15457 
15458 	if (state->dts_deadman != CYCLIC_NONE)
15459 		cyclic_remove(state->dts_deadman);
15460 #else
15461 	callout_stop(&state->dts_cleaner);
15462 	callout_drain(&state->dts_cleaner);
15463 	callout_stop(&state->dts_deadman);
15464 	callout_drain(&state->dts_deadman);
15465 #endif
15466 
15467 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15468 	dtrace_vstate_fini(vstate);
15469 	if (state->dts_ecbs != NULL)
15470 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15471 
15472 	if (state->dts_aggregations != NULL) {
15473 #ifdef DEBUG
15474 		for (i = 0; i < state->dts_naggregations; i++)
15475 			ASSERT(state->dts_aggregations[i] == NULL);
15476 #endif
15477 		ASSERT(state->dts_naggregations > 0);
15478 		kmem_free(state->dts_aggregations,
15479 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15480 	}
15481 
15482 	kmem_free(state->dts_buffer, bufsize);
15483 	kmem_free(state->dts_aggbuffer, bufsize);
15484 
15485 	for (i = 0; i < nspec; i++)
15486 		kmem_free(spec[i].dtsp_buffer, bufsize);
15487 
15488 	if (spec != NULL)
15489 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15490 
15491 	dtrace_format_destroy(state);
15492 
15493 	if (state->dts_aggid_arena != NULL) {
15494 #ifdef illumos
15495 		vmem_destroy(state->dts_aggid_arena);
15496 #else
15497 		delete_unrhdr(state->dts_aggid_arena);
15498 #endif
15499 		state->dts_aggid_arena = NULL;
15500 	}
15501 #ifdef illumos
15502 	ddi_soft_state_free(dtrace_softstate, minor);
15503 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15504 #endif
15505 }
15506 
15507 /*
15508  * DTrace Anonymous Enabling Functions
15509  */
15510 static dtrace_state_t *
15511 dtrace_anon_grab(void)
15512 {
15513 	dtrace_state_t *state;
15514 
15515 	ASSERT(MUTEX_HELD(&dtrace_lock));
15516 
15517 	if ((state = dtrace_anon.dta_state) == NULL) {
15518 		ASSERT(dtrace_anon.dta_enabling == NULL);
15519 		return (NULL);
15520 	}
15521 
15522 	ASSERT(dtrace_anon.dta_enabling != NULL);
15523 	ASSERT(dtrace_retained != NULL);
15524 
15525 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15526 	dtrace_anon.dta_enabling = NULL;
15527 	dtrace_anon.dta_state = NULL;
15528 
15529 	return (state);
15530 }
15531 
15532 static void
15533 dtrace_anon_property(void)
15534 {
15535 	int i, rv;
15536 	dtrace_state_t *state;
15537 	dof_hdr_t *dof;
15538 	char c[32];		/* enough for "dof-data-" + digits */
15539 
15540 	ASSERT(MUTEX_HELD(&dtrace_lock));
15541 	ASSERT(MUTEX_HELD(&cpu_lock));
15542 
15543 	for (i = 0; ; i++) {
15544 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15545 
15546 		dtrace_err_verbose = 1;
15547 
15548 		if ((dof = dtrace_dof_property(c)) == NULL) {
15549 			dtrace_err_verbose = 0;
15550 			break;
15551 		}
15552 
15553 #ifdef illumos
15554 		/*
15555 		 * We want to create anonymous state, so we need to transition
15556 		 * the kernel debugger to indicate that DTrace is active.  If
15557 		 * this fails (e.g. because the debugger has modified text in
15558 		 * some way), we won't continue with the processing.
15559 		 */
15560 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15561 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15562 			    "enabling ignored.");
15563 			dtrace_dof_destroy(dof);
15564 			break;
15565 		}
15566 #endif
15567 
15568 		/*
15569 		 * If we haven't allocated an anonymous state, we'll do so now.
15570 		 */
15571 		if ((state = dtrace_anon.dta_state) == NULL) {
15572 			state = dtrace_state_create(NULL, NULL);
15573 			dtrace_anon.dta_state = state;
15574 
15575 			if (state == NULL) {
15576 				/*
15577 				 * This basically shouldn't happen:  the only
15578 				 * failure mode from dtrace_state_create() is a
15579 				 * failure of ddi_soft_state_zalloc() that
15580 				 * itself should never happen.  Still, the
15581 				 * interface allows for a failure mode, and
15582 				 * we want to fail as gracefully as possible:
15583 				 * we'll emit an error message and cease
15584 				 * processing anonymous state in this case.
15585 				 */
15586 				cmn_err(CE_WARN, "failed to create "
15587 				    "anonymous state");
15588 				dtrace_dof_destroy(dof);
15589 				break;
15590 			}
15591 		}
15592 
15593 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15594 		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15595 
15596 		if (rv == 0)
15597 			rv = dtrace_dof_options(dof, state);
15598 
15599 		dtrace_err_verbose = 0;
15600 		dtrace_dof_destroy(dof);
15601 
15602 		if (rv != 0) {
15603 			/*
15604 			 * This is malformed DOF; chuck any anonymous state
15605 			 * that we created.
15606 			 */
15607 			ASSERT(dtrace_anon.dta_enabling == NULL);
15608 			dtrace_state_destroy(state);
15609 			dtrace_anon.dta_state = NULL;
15610 			break;
15611 		}
15612 
15613 		ASSERT(dtrace_anon.dta_enabling != NULL);
15614 	}
15615 
15616 	if (dtrace_anon.dta_enabling != NULL) {
15617 		int rval;
15618 
15619 		/*
15620 		 * dtrace_enabling_retain() can only fail because we are
15621 		 * trying to retain more enablings than are allowed -- but
15622 		 * we only have one anonymous enabling, and we are guaranteed
15623 		 * to be allowed at least one retained enabling; we assert
15624 		 * that dtrace_enabling_retain() returns success.
15625 		 */
15626 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15627 		ASSERT(rval == 0);
15628 
15629 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15630 	}
15631 }
15632 
15633 /*
15634  * DTrace Helper Functions
15635  */
15636 static void
15637 dtrace_helper_trace(dtrace_helper_action_t *helper,
15638     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15639 {
15640 	uint32_t size, next, nnext, i;
15641 	dtrace_helptrace_t *ent, *buffer;
15642 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15643 
15644 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15645 		return;
15646 
15647 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15648 
15649 	/*
15650 	 * What would a tracing framework be without its own tracing
15651 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15652 	 */
15653 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15654 	    sizeof (uint64_t) - sizeof (uint64_t);
15655 
15656 	/*
15657 	 * Iterate until we can allocate a slot in the trace buffer.
15658 	 */
15659 	do {
15660 		next = dtrace_helptrace_next;
15661 
15662 		if (next + size < dtrace_helptrace_bufsize) {
15663 			nnext = next + size;
15664 		} else {
15665 			nnext = size;
15666 		}
15667 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15668 
15669 	/*
15670 	 * We have our slot; fill it in.
15671 	 */
15672 	if (nnext == size) {
15673 		dtrace_helptrace_wrapped++;
15674 		next = 0;
15675 	}
15676 
15677 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15678 	ent->dtht_helper = helper;
15679 	ent->dtht_where = where;
15680 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15681 
15682 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15683 	    mstate->dtms_fltoffs : -1;
15684 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15685 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15686 
15687 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15688 		dtrace_statvar_t *svar;
15689 
15690 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15691 			continue;
15692 
15693 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15694 		ent->dtht_locals[i] =
15695 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15696 	}
15697 }
15698 
15699 static uint64_t
15700 dtrace_helper(int which, dtrace_mstate_t *mstate,
15701     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15702 {
15703 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15704 	uint64_t sarg0 = mstate->dtms_arg[0];
15705 	uint64_t sarg1 = mstate->dtms_arg[1];
15706 	uint64_t rval = 0;
15707 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15708 	dtrace_helper_action_t *helper;
15709 	dtrace_vstate_t *vstate;
15710 	dtrace_difo_t *pred;
15711 	int i, trace = dtrace_helptrace_buffer != NULL;
15712 
15713 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15714 
15715 	if (helpers == NULL)
15716 		return (0);
15717 
15718 	if ((helper = helpers->dthps_actions[which]) == NULL)
15719 		return (0);
15720 
15721 	vstate = &helpers->dthps_vstate;
15722 	mstate->dtms_arg[0] = arg0;
15723 	mstate->dtms_arg[1] = arg1;
15724 
15725 	/*
15726 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15727 	 * we'll call the corresponding actions.  Note that the below calls
15728 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15729 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15730 	 * the stored DIF offset with its own (which is the desired behavior).
15731 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15732 	 * from machine state; this is okay, too.
15733 	 */
15734 	for (; helper != NULL; helper = helper->dtha_next) {
15735 		if ((pred = helper->dtha_predicate) != NULL) {
15736 			if (trace)
15737 				dtrace_helper_trace(helper, mstate, vstate, 0);
15738 
15739 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15740 				goto next;
15741 
15742 			if (*flags & CPU_DTRACE_FAULT)
15743 				goto err;
15744 		}
15745 
15746 		for (i = 0; i < helper->dtha_nactions; i++) {
15747 			if (trace)
15748 				dtrace_helper_trace(helper,
15749 				    mstate, vstate, i + 1);
15750 
15751 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15752 			    mstate, vstate, state);
15753 
15754 			if (*flags & CPU_DTRACE_FAULT)
15755 				goto err;
15756 		}
15757 
15758 next:
15759 		if (trace)
15760 			dtrace_helper_trace(helper, mstate, vstate,
15761 			    DTRACE_HELPTRACE_NEXT);
15762 	}
15763 
15764 	if (trace)
15765 		dtrace_helper_trace(helper, mstate, vstate,
15766 		    DTRACE_HELPTRACE_DONE);
15767 
15768 	/*
15769 	 * Restore the arg0 that we saved upon entry.
15770 	 */
15771 	mstate->dtms_arg[0] = sarg0;
15772 	mstate->dtms_arg[1] = sarg1;
15773 
15774 	return (rval);
15775 
15776 err:
15777 	if (trace)
15778 		dtrace_helper_trace(helper, mstate, vstate,
15779 		    DTRACE_HELPTRACE_ERR);
15780 
15781 	/*
15782 	 * Restore the arg0 that we saved upon entry.
15783 	 */
15784 	mstate->dtms_arg[0] = sarg0;
15785 	mstate->dtms_arg[1] = sarg1;
15786 
15787 	return (0);
15788 }
15789 
15790 static void
15791 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15792     dtrace_vstate_t *vstate)
15793 {
15794 	int i;
15795 
15796 	if (helper->dtha_predicate != NULL)
15797 		dtrace_difo_release(helper->dtha_predicate, vstate);
15798 
15799 	for (i = 0; i < helper->dtha_nactions; i++) {
15800 		ASSERT(helper->dtha_actions[i] != NULL);
15801 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15802 	}
15803 
15804 	kmem_free(helper->dtha_actions,
15805 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15806 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15807 }
15808 
15809 static int
15810 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15811 {
15812 	proc_t *p = curproc;
15813 	dtrace_vstate_t *vstate;
15814 	int i;
15815 
15816 	if (help == NULL)
15817 		help = p->p_dtrace_helpers;
15818 
15819 	ASSERT(MUTEX_HELD(&dtrace_lock));
15820 
15821 	if (help == NULL || gen > help->dthps_generation)
15822 		return (EINVAL);
15823 
15824 	vstate = &help->dthps_vstate;
15825 
15826 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15827 		dtrace_helper_action_t *last = NULL, *h, *next;
15828 
15829 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15830 			next = h->dtha_next;
15831 
15832 			if (h->dtha_generation == gen) {
15833 				if (last != NULL) {
15834 					last->dtha_next = next;
15835 				} else {
15836 					help->dthps_actions[i] = next;
15837 				}
15838 
15839 				dtrace_helper_action_destroy(h, vstate);
15840 			} else {
15841 				last = h;
15842 			}
15843 		}
15844 	}
15845 
15846 	/*
15847 	 * Interate until we've cleared out all helper providers with the
15848 	 * given generation number.
15849 	 */
15850 	for (;;) {
15851 		dtrace_helper_provider_t *prov;
15852 
15853 		/*
15854 		 * Look for a helper provider with the right generation. We
15855 		 * have to start back at the beginning of the list each time
15856 		 * because we drop dtrace_lock. It's unlikely that we'll make
15857 		 * more than two passes.
15858 		 */
15859 		for (i = 0; i < help->dthps_nprovs; i++) {
15860 			prov = help->dthps_provs[i];
15861 
15862 			if (prov->dthp_generation == gen)
15863 				break;
15864 		}
15865 
15866 		/*
15867 		 * If there were no matches, we're done.
15868 		 */
15869 		if (i == help->dthps_nprovs)
15870 			break;
15871 
15872 		/*
15873 		 * Move the last helper provider into this slot.
15874 		 */
15875 		help->dthps_nprovs--;
15876 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15877 		help->dthps_provs[help->dthps_nprovs] = NULL;
15878 
15879 		mutex_exit(&dtrace_lock);
15880 
15881 		/*
15882 		 * If we have a meta provider, remove this helper provider.
15883 		 */
15884 		mutex_enter(&dtrace_meta_lock);
15885 		if (dtrace_meta_pid != NULL) {
15886 			ASSERT(dtrace_deferred_pid == NULL);
15887 			dtrace_helper_provider_remove(&prov->dthp_prov,
15888 			    p->p_pid);
15889 		}
15890 		mutex_exit(&dtrace_meta_lock);
15891 
15892 		dtrace_helper_provider_destroy(prov);
15893 
15894 		mutex_enter(&dtrace_lock);
15895 	}
15896 
15897 	return (0);
15898 }
15899 
15900 static int
15901 dtrace_helper_validate(dtrace_helper_action_t *helper)
15902 {
15903 	int err = 0, i;
15904 	dtrace_difo_t *dp;
15905 
15906 	if ((dp = helper->dtha_predicate) != NULL)
15907 		err += dtrace_difo_validate_helper(dp);
15908 
15909 	for (i = 0; i < helper->dtha_nactions; i++)
15910 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15911 
15912 	return (err == 0);
15913 }
15914 
15915 static int
15916 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15917     dtrace_helpers_t *help)
15918 {
15919 	dtrace_helper_action_t *helper, *last;
15920 	dtrace_actdesc_t *act;
15921 	dtrace_vstate_t *vstate;
15922 	dtrace_predicate_t *pred;
15923 	int count = 0, nactions = 0, i;
15924 
15925 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15926 		return (EINVAL);
15927 
15928 	last = help->dthps_actions[which];
15929 	vstate = &help->dthps_vstate;
15930 
15931 	for (count = 0; last != NULL; last = last->dtha_next) {
15932 		count++;
15933 		if (last->dtha_next == NULL)
15934 			break;
15935 	}
15936 
15937 	/*
15938 	 * If we already have dtrace_helper_actions_max helper actions for this
15939 	 * helper action type, we'll refuse to add a new one.
15940 	 */
15941 	if (count >= dtrace_helper_actions_max)
15942 		return (ENOSPC);
15943 
15944 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15945 	helper->dtha_generation = help->dthps_generation;
15946 
15947 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15948 		ASSERT(pred->dtp_difo != NULL);
15949 		dtrace_difo_hold(pred->dtp_difo);
15950 		helper->dtha_predicate = pred->dtp_difo;
15951 	}
15952 
15953 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15954 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15955 			goto err;
15956 
15957 		if (act->dtad_difo == NULL)
15958 			goto err;
15959 
15960 		nactions++;
15961 	}
15962 
15963 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15964 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15965 
15966 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15967 		dtrace_difo_hold(act->dtad_difo);
15968 		helper->dtha_actions[i++] = act->dtad_difo;
15969 	}
15970 
15971 	if (!dtrace_helper_validate(helper))
15972 		goto err;
15973 
15974 	if (last == NULL) {
15975 		help->dthps_actions[which] = helper;
15976 	} else {
15977 		last->dtha_next = helper;
15978 	}
15979 
15980 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15981 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15982 		dtrace_helptrace_next = 0;
15983 	}
15984 
15985 	return (0);
15986 err:
15987 	dtrace_helper_action_destroy(helper, vstate);
15988 	return (EINVAL);
15989 }
15990 
15991 static void
15992 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15993     dof_helper_t *dofhp)
15994 {
15995 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15996 
15997 	mutex_enter(&dtrace_meta_lock);
15998 	mutex_enter(&dtrace_lock);
15999 
16000 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16001 		/*
16002 		 * If the dtrace module is loaded but not attached, or if
16003 		 * there aren't isn't a meta provider registered to deal with
16004 		 * these provider descriptions, we need to postpone creating
16005 		 * the actual providers until later.
16006 		 */
16007 
16008 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16009 		    dtrace_deferred_pid != help) {
16010 			help->dthps_deferred = 1;
16011 			help->dthps_pid = p->p_pid;
16012 			help->dthps_next = dtrace_deferred_pid;
16013 			help->dthps_prev = NULL;
16014 			if (dtrace_deferred_pid != NULL)
16015 				dtrace_deferred_pid->dthps_prev = help;
16016 			dtrace_deferred_pid = help;
16017 		}
16018 
16019 		mutex_exit(&dtrace_lock);
16020 
16021 	} else if (dofhp != NULL) {
16022 		/*
16023 		 * If the dtrace module is loaded and we have a particular
16024 		 * helper provider description, pass that off to the
16025 		 * meta provider.
16026 		 */
16027 
16028 		mutex_exit(&dtrace_lock);
16029 
16030 		dtrace_helper_provide(dofhp, p->p_pid);
16031 
16032 	} else {
16033 		/*
16034 		 * Otherwise, just pass all the helper provider descriptions
16035 		 * off to the meta provider.
16036 		 */
16037 
16038 		int i;
16039 		mutex_exit(&dtrace_lock);
16040 
16041 		for (i = 0; i < help->dthps_nprovs; i++) {
16042 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16043 			    p->p_pid);
16044 		}
16045 	}
16046 
16047 	mutex_exit(&dtrace_meta_lock);
16048 }
16049 
16050 static int
16051 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16052 {
16053 	dtrace_helper_provider_t *hprov, **tmp_provs;
16054 	uint_t tmp_maxprovs, i;
16055 
16056 	ASSERT(MUTEX_HELD(&dtrace_lock));
16057 	ASSERT(help != NULL);
16058 
16059 	/*
16060 	 * If we already have dtrace_helper_providers_max helper providers,
16061 	 * we're refuse to add a new one.
16062 	 */
16063 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16064 		return (ENOSPC);
16065 
16066 	/*
16067 	 * Check to make sure this isn't a duplicate.
16068 	 */
16069 	for (i = 0; i < help->dthps_nprovs; i++) {
16070 		if (dofhp->dofhp_addr ==
16071 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16072 			return (EALREADY);
16073 	}
16074 
16075 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16076 	hprov->dthp_prov = *dofhp;
16077 	hprov->dthp_ref = 1;
16078 	hprov->dthp_generation = gen;
16079 
16080 	/*
16081 	 * Allocate a bigger table for helper providers if it's already full.
16082 	 */
16083 	if (help->dthps_maxprovs == help->dthps_nprovs) {
16084 		tmp_maxprovs = help->dthps_maxprovs;
16085 		tmp_provs = help->dthps_provs;
16086 
16087 		if (help->dthps_maxprovs == 0)
16088 			help->dthps_maxprovs = 2;
16089 		else
16090 			help->dthps_maxprovs *= 2;
16091 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16092 			help->dthps_maxprovs = dtrace_helper_providers_max;
16093 
16094 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16095 
16096 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16097 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16098 
16099 		if (tmp_provs != NULL) {
16100 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16101 			    sizeof (dtrace_helper_provider_t *));
16102 			kmem_free(tmp_provs, tmp_maxprovs *
16103 			    sizeof (dtrace_helper_provider_t *));
16104 		}
16105 	}
16106 
16107 	help->dthps_provs[help->dthps_nprovs] = hprov;
16108 	help->dthps_nprovs++;
16109 
16110 	return (0);
16111 }
16112 
16113 static void
16114 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16115 {
16116 	mutex_enter(&dtrace_lock);
16117 
16118 	if (--hprov->dthp_ref == 0) {
16119 		dof_hdr_t *dof;
16120 		mutex_exit(&dtrace_lock);
16121 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16122 		dtrace_dof_destroy(dof);
16123 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16124 	} else {
16125 		mutex_exit(&dtrace_lock);
16126 	}
16127 }
16128 
16129 static int
16130 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16131 {
16132 	uintptr_t daddr = (uintptr_t)dof;
16133 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16134 	dof_provider_t *provider;
16135 	dof_probe_t *probe;
16136 	uint8_t *arg;
16137 	char *strtab, *typestr;
16138 	dof_stridx_t typeidx;
16139 	size_t typesz;
16140 	uint_t nprobes, j, k;
16141 
16142 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16143 
16144 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16145 		dtrace_dof_error(dof, "misaligned section offset");
16146 		return (-1);
16147 	}
16148 
16149 	/*
16150 	 * The section needs to be large enough to contain the DOF provider
16151 	 * structure appropriate for the given version.
16152 	 */
16153 	if (sec->dofs_size <
16154 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16155 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16156 	    sizeof (dof_provider_t))) {
16157 		dtrace_dof_error(dof, "provider section too small");
16158 		return (-1);
16159 	}
16160 
16161 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16162 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16163 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16164 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16165 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16166 
16167 	if (str_sec == NULL || prb_sec == NULL ||
16168 	    arg_sec == NULL || off_sec == NULL)
16169 		return (-1);
16170 
16171 	enoff_sec = NULL;
16172 
16173 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16174 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16175 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16176 	    provider->dofpv_prenoffs)) == NULL)
16177 		return (-1);
16178 
16179 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16180 
16181 	if (provider->dofpv_name >= str_sec->dofs_size ||
16182 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16183 		dtrace_dof_error(dof, "invalid provider name");
16184 		return (-1);
16185 	}
16186 
16187 	if (prb_sec->dofs_entsize == 0 ||
16188 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16189 		dtrace_dof_error(dof, "invalid entry size");
16190 		return (-1);
16191 	}
16192 
16193 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16194 		dtrace_dof_error(dof, "misaligned entry size");
16195 		return (-1);
16196 	}
16197 
16198 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16199 		dtrace_dof_error(dof, "invalid entry size");
16200 		return (-1);
16201 	}
16202 
16203 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16204 		dtrace_dof_error(dof, "misaligned section offset");
16205 		return (-1);
16206 	}
16207 
16208 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16209 		dtrace_dof_error(dof, "invalid entry size");
16210 		return (-1);
16211 	}
16212 
16213 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16214 
16215 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16216 
16217 	/*
16218 	 * Take a pass through the probes to check for errors.
16219 	 */
16220 	for (j = 0; j < nprobes; j++) {
16221 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16222 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16223 
16224 		if (probe->dofpr_func >= str_sec->dofs_size) {
16225 			dtrace_dof_error(dof, "invalid function name");
16226 			return (-1);
16227 		}
16228 
16229 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16230 			dtrace_dof_error(dof, "function name too long");
16231 			/*
16232 			 * Keep going if the function name is too long.
16233 			 * Unlike provider and probe names, we cannot reasonably
16234 			 * impose restrictions on function names, since they're
16235 			 * a property of the code being instrumented. We will
16236 			 * skip this probe in dtrace_helper_provide_one().
16237 			 */
16238 		}
16239 
16240 		if (probe->dofpr_name >= str_sec->dofs_size ||
16241 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16242 			dtrace_dof_error(dof, "invalid probe name");
16243 			return (-1);
16244 		}
16245 
16246 		/*
16247 		 * The offset count must not wrap the index, and the offsets
16248 		 * must also not overflow the section's data.
16249 		 */
16250 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16251 		    probe->dofpr_offidx ||
16252 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16253 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16254 			dtrace_dof_error(dof, "invalid probe offset");
16255 			return (-1);
16256 		}
16257 
16258 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16259 			/*
16260 			 * If there's no is-enabled offset section, make sure
16261 			 * there aren't any is-enabled offsets. Otherwise
16262 			 * perform the same checks as for probe offsets
16263 			 * (immediately above).
16264 			 */
16265 			if (enoff_sec == NULL) {
16266 				if (probe->dofpr_enoffidx != 0 ||
16267 				    probe->dofpr_nenoffs != 0) {
16268 					dtrace_dof_error(dof, "is-enabled "
16269 					    "offsets with null section");
16270 					return (-1);
16271 				}
16272 			} else if (probe->dofpr_enoffidx +
16273 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16274 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16275 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16276 				dtrace_dof_error(dof, "invalid is-enabled "
16277 				    "offset");
16278 				return (-1);
16279 			}
16280 
16281 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16282 				dtrace_dof_error(dof, "zero probe and "
16283 				    "is-enabled offsets");
16284 				return (-1);
16285 			}
16286 		} else if (probe->dofpr_noffs == 0) {
16287 			dtrace_dof_error(dof, "zero probe offsets");
16288 			return (-1);
16289 		}
16290 
16291 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16292 		    probe->dofpr_argidx ||
16293 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16294 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16295 			dtrace_dof_error(dof, "invalid args");
16296 			return (-1);
16297 		}
16298 
16299 		typeidx = probe->dofpr_nargv;
16300 		typestr = strtab + probe->dofpr_nargv;
16301 		for (k = 0; k < probe->dofpr_nargc; k++) {
16302 			if (typeidx >= str_sec->dofs_size) {
16303 				dtrace_dof_error(dof, "bad "
16304 				    "native argument type");
16305 				return (-1);
16306 			}
16307 
16308 			typesz = strlen(typestr) + 1;
16309 			if (typesz > DTRACE_ARGTYPELEN) {
16310 				dtrace_dof_error(dof, "native "
16311 				    "argument type too long");
16312 				return (-1);
16313 			}
16314 			typeidx += typesz;
16315 			typestr += typesz;
16316 		}
16317 
16318 		typeidx = probe->dofpr_xargv;
16319 		typestr = strtab + probe->dofpr_xargv;
16320 		for (k = 0; k < probe->dofpr_xargc; k++) {
16321 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16322 				dtrace_dof_error(dof, "bad "
16323 				    "native argument index");
16324 				return (-1);
16325 			}
16326 
16327 			if (typeidx >= str_sec->dofs_size) {
16328 				dtrace_dof_error(dof, "bad "
16329 				    "translated argument type");
16330 				return (-1);
16331 			}
16332 
16333 			typesz = strlen(typestr) + 1;
16334 			if (typesz > DTRACE_ARGTYPELEN) {
16335 				dtrace_dof_error(dof, "translated argument "
16336 				    "type too long");
16337 				return (-1);
16338 			}
16339 
16340 			typeidx += typesz;
16341 			typestr += typesz;
16342 		}
16343 	}
16344 
16345 	return (0);
16346 }
16347 
16348 static int
16349 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16350 {
16351 	dtrace_helpers_t *help;
16352 	dtrace_vstate_t *vstate;
16353 	dtrace_enabling_t *enab = NULL;
16354 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16355 	uintptr_t daddr = (uintptr_t)dof;
16356 
16357 	ASSERT(MUTEX_HELD(&dtrace_lock));
16358 
16359 	if ((help = p->p_dtrace_helpers) == NULL)
16360 		help = dtrace_helpers_create(p);
16361 
16362 	vstate = &help->dthps_vstate;
16363 
16364 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16365 	    dhp->dofhp_dof, B_FALSE)) != 0) {
16366 		dtrace_dof_destroy(dof);
16367 		return (rv);
16368 	}
16369 
16370 	/*
16371 	 * Look for helper providers and validate their descriptions.
16372 	 */
16373 	for (i = 0; i < dof->dofh_secnum; i++) {
16374 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16375 		    dof->dofh_secoff + i * dof->dofh_secsize);
16376 
16377 		if (sec->dofs_type != DOF_SECT_PROVIDER)
16378 			continue;
16379 
16380 		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16381 			dtrace_enabling_destroy(enab);
16382 			dtrace_dof_destroy(dof);
16383 			return (-1);
16384 		}
16385 
16386 		nprovs++;
16387 	}
16388 
16389 	/*
16390 	 * Now we need to walk through the ECB descriptions in the enabling.
16391 	 */
16392 	for (i = 0; i < enab->dten_ndesc; i++) {
16393 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16394 		dtrace_probedesc_t *desc = &ep->dted_probe;
16395 
16396 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16397 			continue;
16398 
16399 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16400 			continue;
16401 
16402 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16403 			continue;
16404 
16405 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16406 		    ep, help)) != 0) {
16407 			/*
16408 			 * Adding this helper action failed -- we are now going
16409 			 * to rip out the entire generation and return failure.
16410 			 */
16411 			(void) dtrace_helper_destroygen(help,
16412 			    help->dthps_generation);
16413 			dtrace_enabling_destroy(enab);
16414 			dtrace_dof_destroy(dof);
16415 			return (-1);
16416 		}
16417 
16418 		nhelpers++;
16419 	}
16420 
16421 	if (nhelpers < enab->dten_ndesc)
16422 		dtrace_dof_error(dof, "unmatched helpers");
16423 
16424 	gen = help->dthps_generation++;
16425 	dtrace_enabling_destroy(enab);
16426 
16427 	if (nprovs > 0) {
16428 		/*
16429 		 * Now that this is in-kernel, we change the sense of the
16430 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16431 		 * and dofhp_addr denotes the address at user-level.
16432 		 */
16433 		dhp->dofhp_addr = dhp->dofhp_dof;
16434 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16435 
16436 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16437 			mutex_exit(&dtrace_lock);
16438 			dtrace_helper_provider_register(p, help, dhp);
16439 			mutex_enter(&dtrace_lock);
16440 
16441 			destroy = 0;
16442 		}
16443 	}
16444 
16445 	if (destroy)
16446 		dtrace_dof_destroy(dof);
16447 
16448 	return (gen);
16449 }
16450 
16451 static dtrace_helpers_t *
16452 dtrace_helpers_create(proc_t *p)
16453 {
16454 	dtrace_helpers_t *help;
16455 
16456 	ASSERT(MUTEX_HELD(&dtrace_lock));
16457 	ASSERT(p->p_dtrace_helpers == NULL);
16458 
16459 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16460 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16461 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16462 
16463 	p->p_dtrace_helpers = help;
16464 	dtrace_helpers++;
16465 
16466 	return (help);
16467 }
16468 
16469 #ifdef illumos
16470 static
16471 #endif
16472 void
16473 dtrace_helpers_destroy(proc_t *p)
16474 {
16475 	dtrace_helpers_t *help;
16476 	dtrace_vstate_t *vstate;
16477 #ifdef illumos
16478 	proc_t *p = curproc;
16479 #endif
16480 	int i;
16481 
16482 	mutex_enter(&dtrace_lock);
16483 
16484 	ASSERT(p->p_dtrace_helpers != NULL);
16485 	ASSERT(dtrace_helpers > 0);
16486 
16487 	help = p->p_dtrace_helpers;
16488 	vstate = &help->dthps_vstate;
16489 
16490 	/*
16491 	 * We're now going to lose the help from this process.
16492 	 */
16493 	p->p_dtrace_helpers = NULL;
16494 	dtrace_sync();
16495 
16496 	/*
16497 	 * Destory the helper actions.
16498 	 */
16499 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16500 		dtrace_helper_action_t *h, *next;
16501 
16502 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16503 			next = h->dtha_next;
16504 			dtrace_helper_action_destroy(h, vstate);
16505 			h = next;
16506 		}
16507 	}
16508 
16509 	mutex_exit(&dtrace_lock);
16510 
16511 	/*
16512 	 * Destroy the helper providers.
16513 	 */
16514 	if (help->dthps_maxprovs > 0) {
16515 		mutex_enter(&dtrace_meta_lock);
16516 		if (dtrace_meta_pid != NULL) {
16517 			ASSERT(dtrace_deferred_pid == NULL);
16518 
16519 			for (i = 0; i < help->dthps_nprovs; i++) {
16520 				dtrace_helper_provider_remove(
16521 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16522 			}
16523 		} else {
16524 			mutex_enter(&dtrace_lock);
16525 			ASSERT(help->dthps_deferred == 0 ||
16526 			    help->dthps_next != NULL ||
16527 			    help->dthps_prev != NULL ||
16528 			    help == dtrace_deferred_pid);
16529 
16530 			/*
16531 			 * Remove the helper from the deferred list.
16532 			 */
16533 			if (help->dthps_next != NULL)
16534 				help->dthps_next->dthps_prev = help->dthps_prev;
16535 			if (help->dthps_prev != NULL)
16536 				help->dthps_prev->dthps_next = help->dthps_next;
16537 			if (dtrace_deferred_pid == help) {
16538 				dtrace_deferred_pid = help->dthps_next;
16539 				ASSERT(help->dthps_prev == NULL);
16540 			}
16541 
16542 			mutex_exit(&dtrace_lock);
16543 		}
16544 
16545 		mutex_exit(&dtrace_meta_lock);
16546 
16547 		for (i = 0; i < help->dthps_nprovs; i++) {
16548 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16549 		}
16550 
16551 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16552 		    sizeof (dtrace_helper_provider_t *));
16553 	}
16554 
16555 	mutex_enter(&dtrace_lock);
16556 
16557 	dtrace_vstate_fini(&help->dthps_vstate);
16558 	kmem_free(help->dthps_actions,
16559 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16560 	kmem_free(help, sizeof (dtrace_helpers_t));
16561 
16562 	--dtrace_helpers;
16563 	mutex_exit(&dtrace_lock);
16564 }
16565 
16566 #ifdef illumos
16567 static
16568 #endif
16569 void
16570 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16571 {
16572 	dtrace_helpers_t *help, *newhelp;
16573 	dtrace_helper_action_t *helper, *new, *last;
16574 	dtrace_difo_t *dp;
16575 	dtrace_vstate_t *vstate;
16576 	int i, j, sz, hasprovs = 0;
16577 
16578 	mutex_enter(&dtrace_lock);
16579 	ASSERT(from->p_dtrace_helpers != NULL);
16580 	ASSERT(dtrace_helpers > 0);
16581 
16582 	help = from->p_dtrace_helpers;
16583 	newhelp = dtrace_helpers_create(to);
16584 	ASSERT(to->p_dtrace_helpers != NULL);
16585 
16586 	newhelp->dthps_generation = help->dthps_generation;
16587 	vstate = &newhelp->dthps_vstate;
16588 
16589 	/*
16590 	 * Duplicate the helper actions.
16591 	 */
16592 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16593 		if ((helper = help->dthps_actions[i]) == NULL)
16594 			continue;
16595 
16596 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16597 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16598 			    KM_SLEEP);
16599 			new->dtha_generation = helper->dtha_generation;
16600 
16601 			if ((dp = helper->dtha_predicate) != NULL) {
16602 				dp = dtrace_difo_duplicate(dp, vstate);
16603 				new->dtha_predicate = dp;
16604 			}
16605 
16606 			new->dtha_nactions = helper->dtha_nactions;
16607 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16608 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16609 
16610 			for (j = 0; j < new->dtha_nactions; j++) {
16611 				dtrace_difo_t *dp = helper->dtha_actions[j];
16612 
16613 				ASSERT(dp != NULL);
16614 				dp = dtrace_difo_duplicate(dp, vstate);
16615 				new->dtha_actions[j] = dp;
16616 			}
16617 
16618 			if (last != NULL) {
16619 				last->dtha_next = new;
16620 			} else {
16621 				newhelp->dthps_actions[i] = new;
16622 			}
16623 
16624 			last = new;
16625 		}
16626 	}
16627 
16628 	/*
16629 	 * Duplicate the helper providers and register them with the
16630 	 * DTrace framework.
16631 	 */
16632 	if (help->dthps_nprovs > 0) {
16633 		newhelp->dthps_nprovs = help->dthps_nprovs;
16634 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16635 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16636 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16637 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16638 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16639 			newhelp->dthps_provs[i]->dthp_ref++;
16640 		}
16641 
16642 		hasprovs = 1;
16643 	}
16644 
16645 	mutex_exit(&dtrace_lock);
16646 
16647 	if (hasprovs)
16648 		dtrace_helper_provider_register(to, newhelp, NULL);
16649 }
16650 
16651 /*
16652  * DTrace Hook Functions
16653  */
16654 static void
16655 dtrace_module_loaded(modctl_t *ctl)
16656 {
16657 	dtrace_provider_t *prv;
16658 
16659 	mutex_enter(&dtrace_provider_lock);
16660 #ifdef illumos
16661 	mutex_enter(&mod_lock);
16662 #endif
16663 
16664 #ifdef illumos
16665 	ASSERT(ctl->mod_busy);
16666 #endif
16667 
16668 	/*
16669 	 * We're going to call each providers per-module provide operation
16670 	 * specifying only this module.
16671 	 */
16672 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16673 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16674 
16675 #ifdef illumos
16676 	mutex_exit(&mod_lock);
16677 #endif
16678 	mutex_exit(&dtrace_provider_lock);
16679 
16680 	/*
16681 	 * If we have any retained enablings, we need to match against them.
16682 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16683 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16684 	 * module.  (In particular, this happens when loading scheduling
16685 	 * classes.)  So if we have any retained enablings, we need to dispatch
16686 	 * our task queue to do the match for us.
16687 	 */
16688 	mutex_enter(&dtrace_lock);
16689 
16690 	if (dtrace_retained == NULL) {
16691 		mutex_exit(&dtrace_lock);
16692 		return;
16693 	}
16694 
16695 	(void) taskq_dispatch(dtrace_taskq,
16696 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16697 
16698 	mutex_exit(&dtrace_lock);
16699 
16700 	/*
16701 	 * And now, for a little heuristic sleaze:  in general, we want to
16702 	 * match modules as soon as they load.  However, we cannot guarantee
16703 	 * this, because it would lead us to the lock ordering violation
16704 	 * outlined above.  The common case, of course, is that cpu_lock is
16705 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16706 	 * long enough for the task queue to do its work.  If it's not, it's
16707 	 * not a serious problem -- it just means that the module that we
16708 	 * just loaded may not be immediately instrumentable.
16709 	 */
16710 	delay(1);
16711 }
16712 
16713 static void
16714 #ifdef illumos
16715 dtrace_module_unloaded(modctl_t *ctl)
16716 #else
16717 dtrace_module_unloaded(modctl_t *ctl, int *error)
16718 #endif
16719 {
16720 	dtrace_probe_t template, *probe, *first, *next;
16721 	dtrace_provider_t *prov;
16722 #ifndef illumos
16723 	char modname[DTRACE_MODNAMELEN];
16724 	size_t len;
16725 #endif
16726 
16727 #ifdef illumos
16728 	template.dtpr_mod = ctl->mod_modname;
16729 #else
16730 	/* Handle the fact that ctl->filename may end in ".ko". */
16731 	strlcpy(modname, ctl->filename, sizeof(modname));
16732 	len = strlen(ctl->filename);
16733 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16734 		modname[len - 3] = '\0';
16735 	template.dtpr_mod = modname;
16736 #endif
16737 
16738 	mutex_enter(&dtrace_provider_lock);
16739 #ifdef illumos
16740 	mutex_enter(&mod_lock);
16741 #endif
16742 	mutex_enter(&dtrace_lock);
16743 
16744 #ifndef illumos
16745 	if (ctl->nenabled > 0) {
16746 		/* Don't allow unloads if a probe is enabled. */
16747 		mutex_exit(&dtrace_provider_lock);
16748 		mutex_exit(&dtrace_lock);
16749 		*error = -1;
16750 		printf(
16751 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16752 		return;
16753 	}
16754 #endif
16755 
16756 	if (dtrace_bymod == NULL) {
16757 		/*
16758 		 * The DTrace module is loaded (obviously) but not attached;
16759 		 * we don't have any work to do.
16760 		 */
16761 		mutex_exit(&dtrace_provider_lock);
16762 #ifdef illumos
16763 		mutex_exit(&mod_lock);
16764 #endif
16765 		mutex_exit(&dtrace_lock);
16766 		return;
16767 	}
16768 
16769 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16770 	    probe != NULL; probe = probe->dtpr_nextmod) {
16771 		if (probe->dtpr_ecb != NULL) {
16772 			mutex_exit(&dtrace_provider_lock);
16773 #ifdef illumos
16774 			mutex_exit(&mod_lock);
16775 #endif
16776 			mutex_exit(&dtrace_lock);
16777 
16778 			/*
16779 			 * This shouldn't _actually_ be possible -- we're
16780 			 * unloading a module that has an enabled probe in it.
16781 			 * (It's normally up to the provider to make sure that
16782 			 * this can't happen.)  However, because dtps_enable()
16783 			 * doesn't have a failure mode, there can be an
16784 			 * enable/unload race.  Upshot:  we don't want to
16785 			 * assert, but we're not going to disable the
16786 			 * probe, either.
16787 			 */
16788 			if (dtrace_err_verbose) {
16789 #ifdef illumos
16790 				cmn_err(CE_WARN, "unloaded module '%s' had "
16791 				    "enabled probes", ctl->mod_modname);
16792 #else
16793 				cmn_err(CE_WARN, "unloaded module '%s' had "
16794 				    "enabled probes", modname);
16795 #endif
16796 			}
16797 
16798 			return;
16799 		}
16800 	}
16801 
16802 	probe = first;
16803 
16804 	for (first = NULL; probe != NULL; probe = next) {
16805 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16806 
16807 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16808 
16809 		next = probe->dtpr_nextmod;
16810 		dtrace_hash_remove(dtrace_bymod, probe);
16811 		dtrace_hash_remove(dtrace_byfunc, probe);
16812 		dtrace_hash_remove(dtrace_byname, probe);
16813 
16814 		if (first == NULL) {
16815 			first = probe;
16816 			probe->dtpr_nextmod = NULL;
16817 		} else {
16818 			probe->dtpr_nextmod = first;
16819 			first = probe;
16820 		}
16821 	}
16822 
16823 	/*
16824 	 * We've removed all of the module's probes from the hash chains and
16825 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16826 	 * everyone has cleared out from any probe array processing.
16827 	 */
16828 	dtrace_sync();
16829 
16830 	for (probe = first; probe != NULL; probe = first) {
16831 		first = probe->dtpr_nextmod;
16832 		prov = probe->dtpr_provider;
16833 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16834 		    probe->dtpr_arg);
16835 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16836 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16837 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16838 #ifdef illumos
16839 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16840 #else
16841 		free_unr(dtrace_arena, probe->dtpr_id);
16842 #endif
16843 		kmem_free(probe, sizeof (dtrace_probe_t));
16844 	}
16845 
16846 	mutex_exit(&dtrace_lock);
16847 #ifdef illumos
16848 	mutex_exit(&mod_lock);
16849 #endif
16850 	mutex_exit(&dtrace_provider_lock);
16851 }
16852 
16853 #ifndef illumos
16854 static void
16855 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16856 {
16857 
16858 	dtrace_module_loaded(lf);
16859 }
16860 
16861 static void
16862 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16863 {
16864 
16865 	if (*error != 0)
16866 		/* We already have an error, so don't do anything. */
16867 		return;
16868 	dtrace_module_unloaded(lf, error);
16869 }
16870 #endif
16871 
16872 #ifdef illumos
16873 static void
16874 dtrace_suspend(void)
16875 {
16876 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16877 }
16878 
16879 static void
16880 dtrace_resume(void)
16881 {
16882 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16883 }
16884 #endif
16885 
16886 static int
16887 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16888 {
16889 	ASSERT(MUTEX_HELD(&cpu_lock));
16890 	mutex_enter(&dtrace_lock);
16891 
16892 	switch (what) {
16893 	case CPU_CONFIG: {
16894 		dtrace_state_t *state;
16895 		dtrace_optval_t *opt, rs, c;
16896 
16897 		/*
16898 		 * For now, we only allocate a new buffer for anonymous state.
16899 		 */
16900 		if ((state = dtrace_anon.dta_state) == NULL)
16901 			break;
16902 
16903 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16904 			break;
16905 
16906 		opt = state->dts_options;
16907 		c = opt[DTRACEOPT_CPU];
16908 
16909 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16910 			break;
16911 
16912 		/*
16913 		 * Regardless of what the actual policy is, we're going to
16914 		 * temporarily set our resize policy to be manual.  We're
16915 		 * also going to temporarily set our CPU option to denote
16916 		 * the newly configured CPU.
16917 		 */
16918 		rs = opt[DTRACEOPT_BUFRESIZE];
16919 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16920 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16921 
16922 		(void) dtrace_state_buffers(state);
16923 
16924 		opt[DTRACEOPT_BUFRESIZE] = rs;
16925 		opt[DTRACEOPT_CPU] = c;
16926 
16927 		break;
16928 	}
16929 
16930 	case CPU_UNCONFIG:
16931 		/*
16932 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16933 		 * buffer will be freed when the consumer exits.)
16934 		 */
16935 		break;
16936 
16937 	default:
16938 		break;
16939 	}
16940 
16941 	mutex_exit(&dtrace_lock);
16942 	return (0);
16943 }
16944 
16945 #ifdef illumos
16946 static void
16947 dtrace_cpu_setup_initial(processorid_t cpu)
16948 {
16949 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16950 }
16951 #endif
16952 
16953 static void
16954 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16955 {
16956 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16957 		int osize, nsize;
16958 		dtrace_toxrange_t *range;
16959 
16960 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16961 
16962 		if (osize == 0) {
16963 			ASSERT(dtrace_toxrange == NULL);
16964 			ASSERT(dtrace_toxranges_max == 0);
16965 			dtrace_toxranges_max = 1;
16966 		} else {
16967 			dtrace_toxranges_max <<= 1;
16968 		}
16969 
16970 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16971 		range = kmem_zalloc(nsize, KM_SLEEP);
16972 
16973 		if (dtrace_toxrange != NULL) {
16974 			ASSERT(osize != 0);
16975 			bcopy(dtrace_toxrange, range, osize);
16976 			kmem_free(dtrace_toxrange, osize);
16977 		}
16978 
16979 		dtrace_toxrange = range;
16980 	}
16981 
16982 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16983 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16984 
16985 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16986 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16987 	dtrace_toxranges++;
16988 }
16989 
16990 static void
16991 dtrace_getf_barrier()
16992 {
16993 #ifdef illumos
16994 	/*
16995 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16996 	 * that contain calls to getf(), this routine will be called on every
16997 	 * closef() before either the underlying vnode is released or the
16998 	 * file_t itself is freed.  By the time we are here, it is essential
16999 	 * that the file_t can no longer be accessed from a call to getf()
17000 	 * in probe context -- that assures that a dtrace_sync() can be used
17001 	 * to clear out any enablings referring to the old structures.
17002 	 */
17003 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17004 	    kcred->cr_zone->zone_dtrace_getf != 0)
17005 		dtrace_sync();
17006 #endif
17007 }
17008 
17009 /*
17010  * DTrace Driver Cookbook Functions
17011  */
17012 #ifdef illumos
17013 /*ARGSUSED*/
17014 static int
17015 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17016 {
17017 	dtrace_provider_id_t id;
17018 	dtrace_state_t *state = NULL;
17019 	dtrace_enabling_t *enab;
17020 
17021 	mutex_enter(&cpu_lock);
17022 	mutex_enter(&dtrace_provider_lock);
17023 	mutex_enter(&dtrace_lock);
17024 
17025 	if (ddi_soft_state_init(&dtrace_softstate,
17026 	    sizeof (dtrace_state_t), 0) != 0) {
17027 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17028 		mutex_exit(&cpu_lock);
17029 		mutex_exit(&dtrace_provider_lock);
17030 		mutex_exit(&dtrace_lock);
17031 		return (DDI_FAILURE);
17032 	}
17033 
17034 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17035 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17036 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17037 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17038 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17039 		ddi_remove_minor_node(devi, NULL);
17040 		ddi_soft_state_fini(&dtrace_softstate);
17041 		mutex_exit(&cpu_lock);
17042 		mutex_exit(&dtrace_provider_lock);
17043 		mutex_exit(&dtrace_lock);
17044 		return (DDI_FAILURE);
17045 	}
17046 
17047 	ddi_report_dev(devi);
17048 	dtrace_devi = devi;
17049 
17050 	dtrace_modload = dtrace_module_loaded;
17051 	dtrace_modunload = dtrace_module_unloaded;
17052 	dtrace_cpu_init = dtrace_cpu_setup_initial;
17053 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17054 	dtrace_helpers_fork = dtrace_helpers_duplicate;
17055 	dtrace_cpustart_init = dtrace_suspend;
17056 	dtrace_cpustart_fini = dtrace_resume;
17057 	dtrace_debugger_init = dtrace_suspend;
17058 	dtrace_debugger_fini = dtrace_resume;
17059 
17060 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17061 
17062 	ASSERT(MUTEX_HELD(&cpu_lock));
17063 
17064 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17065 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17066 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17067 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17068 	    VM_SLEEP | VMC_IDENTIFIER);
17069 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17070 	    1, INT_MAX, 0);
17071 
17072 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17073 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17074 	    NULL, NULL, NULL, NULL, NULL, 0);
17075 
17076 	ASSERT(MUTEX_HELD(&cpu_lock));
17077 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17078 	    offsetof(dtrace_probe_t, dtpr_nextmod),
17079 	    offsetof(dtrace_probe_t, dtpr_prevmod));
17080 
17081 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17082 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17083 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17084 
17085 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17086 	    offsetof(dtrace_probe_t, dtpr_nextname),
17087 	    offsetof(dtrace_probe_t, dtpr_prevname));
17088 
17089 	if (dtrace_retain_max < 1) {
17090 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17091 		    "setting to 1", dtrace_retain_max);
17092 		dtrace_retain_max = 1;
17093 	}
17094 
17095 	/*
17096 	 * Now discover our toxic ranges.
17097 	 */
17098 	dtrace_toxic_ranges(dtrace_toxrange_add);
17099 
17100 	/*
17101 	 * Before we register ourselves as a provider to our own framework,
17102 	 * we would like to assert that dtrace_provider is NULL -- but that's
17103 	 * not true if we were loaded as a dependency of a DTrace provider.
17104 	 * Once we've registered, we can assert that dtrace_provider is our
17105 	 * pseudo provider.
17106 	 */
17107 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17108 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17109 
17110 	ASSERT(dtrace_provider != NULL);
17111 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17112 
17113 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17114 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17115 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17116 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17117 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17118 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17119 
17120 	dtrace_anon_property();
17121 	mutex_exit(&cpu_lock);
17122 
17123 	/*
17124 	 * If there are already providers, we must ask them to provide their
17125 	 * probes, and then match any anonymous enabling against them.  Note
17126 	 * that there should be no other retained enablings at this time:
17127 	 * the only retained enablings at this time should be the anonymous
17128 	 * enabling.
17129 	 */
17130 	if (dtrace_anon.dta_enabling != NULL) {
17131 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17132 
17133 		dtrace_enabling_provide(NULL);
17134 		state = dtrace_anon.dta_state;
17135 
17136 		/*
17137 		 * We couldn't hold cpu_lock across the above call to
17138 		 * dtrace_enabling_provide(), but we must hold it to actually
17139 		 * enable the probes.  We have to drop all of our locks, pick
17140 		 * up cpu_lock, and regain our locks before matching the
17141 		 * retained anonymous enabling.
17142 		 */
17143 		mutex_exit(&dtrace_lock);
17144 		mutex_exit(&dtrace_provider_lock);
17145 
17146 		mutex_enter(&cpu_lock);
17147 		mutex_enter(&dtrace_provider_lock);
17148 		mutex_enter(&dtrace_lock);
17149 
17150 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17151 			(void) dtrace_enabling_match(enab, NULL);
17152 
17153 		mutex_exit(&cpu_lock);
17154 	}
17155 
17156 	mutex_exit(&dtrace_lock);
17157 	mutex_exit(&dtrace_provider_lock);
17158 
17159 	if (state != NULL) {
17160 		/*
17161 		 * If we created any anonymous state, set it going now.
17162 		 */
17163 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17164 	}
17165 
17166 	return (DDI_SUCCESS);
17167 }
17168 #endif	/* illumos */
17169 
17170 #ifndef illumos
17171 static void dtrace_dtr(void *);
17172 #endif
17173 
17174 /*ARGSUSED*/
17175 static int
17176 #ifdef illumos
17177 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17178 #else
17179 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17180 #endif
17181 {
17182 	dtrace_state_t *state;
17183 	uint32_t priv;
17184 	uid_t uid;
17185 	zoneid_t zoneid;
17186 
17187 #ifdef illumos
17188 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17189 		return (0);
17190 
17191 	/*
17192 	 * If this wasn't an open with the "helper" minor, then it must be
17193 	 * the "dtrace" minor.
17194 	 */
17195 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17196 		return (ENXIO);
17197 #else
17198 	cred_t *cred_p = NULL;
17199 	cred_p = dev->si_cred;
17200 
17201 	/*
17202 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17203 	 * caller lacks sufficient permission to do anything with DTrace.
17204 	 */
17205 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17206 	if (priv == DTRACE_PRIV_NONE) {
17207 #endif
17208 
17209 		return (EACCES);
17210 	}
17211 
17212 	/*
17213 	 * Ask all providers to provide all their probes.
17214 	 */
17215 	mutex_enter(&dtrace_provider_lock);
17216 	dtrace_probe_provide(NULL, NULL);
17217 	mutex_exit(&dtrace_provider_lock);
17218 
17219 	mutex_enter(&cpu_lock);
17220 	mutex_enter(&dtrace_lock);
17221 	dtrace_opens++;
17222 	dtrace_membar_producer();
17223 
17224 #ifdef illumos
17225 	/*
17226 	 * If the kernel debugger is active (that is, if the kernel debugger
17227 	 * modified text in some way), we won't allow the open.
17228 	 */
17229 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17230 		dtrace_opens--;
17231 		mutex_exit(&cpu_lock);
17232 		mutex_exit(&dtrace_lock);
17233 		return (EBUSY);
17234 	}
17235 
17236 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17237 		/*
17238 		 * If DTrace helper tracing is enabled, we need to allocate the
17239 		 * trace buffer and initialize the values.
17240 		 */
17241 		dtrace_helptrace_buffer =
17242 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17243 		dtrace_helptrace_next = 0;
17244 		dtrace_helptrace_wrapped = 0;
17245 		dtrace_helptrace_enable = 0;
17246 	}
17247 
17248 	state = dtrace_state_create(devp, cred_p);
17249 #else
17250 	state = dtrace_state_create(dev, NULL);
17251 	devfs_set_cdevpriv(state, dtrace_dtr);
17252 #endif
17253 
17254 	mutex_exit(&cpu_lock);
17255 
17256 	if (state == NULL) {
17257 #ifdef illumos
17258 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17259 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17260 #else
17261 		--dtrace_opens;
17262 #endif
17263 		mutex_exit(&dtrace_lock);
17264 		return (EAGAIN);
17265 	}
17266 
17267 	mutex_exit(&dtrace_lock);
17268 
17269 	return (0);
17270 }
17271 
17272 /*ARGSUSED*/
17273 #ifdef illumos
17274 static int
17275 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17276 #else
17277 static void
17278 dtrace_dtr(void *data)
17279 #endif
17280 {
17281 #ifdef illumos
17282 	minor_t minor = getminor(dev);
17283 	dtrace_state_t *state;
17284 #endif
17285 	dtrace_helptrace_t *buf = NULL;
17286 
17287 #ifdef illumos
17288 	if (minor == DTRACEMNRN_HELPER)
17289 		return (0);
17290 
17291 	state = ddi_get_soft_state(dtrace_softstate, minor);
17292 #else
17293 	dtrace_state_t *state = data;
17294 #endif
17295 
17296 	mutex_enter(&cpu_lock);
17297 	mutex_enter(&dtrace_lock);
17298 
17299 #ifdef illumos
17300 	if (state->dts_anon)
17301 #else
17302 	if (state != NULL && state->dts_anon)
17303 #endif
17304 	{
17305 		/*
17306 		 * There is anonymous state. Destroy that first.
17307 		 */
17308 		ASSERT(dtrace_anon.dta_state == NULL);
17309 		dtrace_state_destroy(state->dts_anon);
17310 	}
17311 
17312 	if (dtrace_helptrace_disable) {
17313 		/*
17314 		 * If we have been told to disable helper tracing, set the
17315 		 * buffer to NULL before calling into dtrace_state_destroy();
17316 		 * we take advantage of its dtrace_sync() to know that no
17317 		 * CPU is in probe context with enabled helper tracing
17318 		 * after it returns.
17319 		 */
17320 		buf = dtrace_helptrace_buffer;
17321 		dtrace_helptrace_buffer = NULL;
17322 	}
17323 
17324 #ifdef illumos
17325 	dtrace_state_destroy(state);
17326 #else
17327 	if (state != NULL) {
17328 		dtrace_state_destroy(state);
17329 		kmem_free(state, 0);
17330 	}
17331 #endif
17332 	ASSERT(dtrace_opens > 0);
17333 
17334 #ifdef illumos
17335 	/*
17336 	 * Only relinquish control of the kernel debugger interface when there
17337 	 * are no consumers and no anonymous enablings.
17338 	 */
17339 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17340 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17341 #else
17342 	--dtrace_opens;
17343 #endif
17344 
17345 	if (buf != NULL) {
17346 		kmem_free(buf, dtrace_helptrace_bufsize);
17347 		dtrace_helptrace_disable = 0;
17348 	}
17349 
17350 	mutex_exit(&dtrace_lock);
17351 	mutex_exit(&cpu_lock);
17352 
17353 #ifdef illumos
17354 	return (0);
17355 #endif
17356 }
17357 
17358 #ifdef illumos
17359 /*ARGSUSED*/
17360 static int
17361 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17362 {
17363 	int rval;
17364 	dof_helper_t help, *dhp = NULL;
17365 
17366 	switch (cmd) {
17367 	case DTRACEHIOC_ADDDOF:
17368 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17369 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17370 			return (EFAULT);
17371 		}
17372 
17373 		dhp = &help;
17374 		arg = (intptr_t)help.dofhp_dof;
17375 		/*FALLTHROUGH*/
17376 
17377 	case DTRACEHIOC_ADD: {
17378 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17379 
17380 		if (dof == NULL)
17381 			return (rval);
17382 
17383 		mutex_enter(&dtrace_lock);
17384 
17385 		/*
17386 		 * dtrace_helper_slurp() takes responsibility for the dof --
17387 		 * it may free it now or it may save it and free it later.
17388 		 */
17389 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17390 			*rv = rval;
17391 			rval = 0;
17392 		} else {
17393 			rval = EINVAL;
17394 		}
17395 
17396 		mutex_exit(&dtrace_lock);
17397 		return (rval);
17398 	}
17399 
17400 	case DTRACEHIOC_REMOVE: {
17401 		mutex_enter(&dtrace_lock);
17402 		rval = dtrace_helper_destroygen(NULL, arg);
17403 		mutex_exit(&dtrace_lock);
17404 
17405 		return (rval);
17406 	}
17407 
17408 	default:
17409 		break;
17410 	}
17411 
17412 	return (ENOTTY);
17413 }
17414 
17415 /*ARGSUSED*/
17416 static int
17417 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17418 {
17419 	minor_t minor = getminor(dev);
17420 	dtrace_state_t *state;
17421 	int rval;
17422 
17423 	if (minor == DTRACEMNRN_HELPER)
17424 		return (dtrace_ioctl_helper(cmd, arg, rv));
17425 
17426 	state = ddi_get_soft_state(dtrace_softstate, minor);
17427 
17428 	if (state->dts_anon) {
17429 		ASSERT(dtrace_anon.dta_state == NULL);
17430 		state = state->dts_anon;
17431 	}
17432 
17433 	switch (cmd) {
17434 	case DTRACEIOC_PROVIDER: {
17435 		dtrace_providerdesc_t pvd;
17436 		dtrace_provider_t *pvp;
17437 
17438 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17439 			return (EFAULT);
17440 
17441 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17442 		mutex_enter(&dtrace_provider_lock);
17443 
17444 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17445 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17446 				break;
17447 		}
17448 
17449 		mutex_exit(&dtrace_provider_lock);
17450 
17451 		if (pvp == NULL)
17452 			return (ESRCH);
17453 
17454 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17455 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17456 
17457 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17458 			return (EFAULT);
17459 
17460 		return (0);
17461 	}
17462 
17463 	case DTRACEIOC_EPROBE: {
17464 		dtrace_eprobedesc_t epdesc;
17465 		dtrace_ecb_t *ecb;
17466 		dtrace_action_t *act;
17467 		void *buf;
17468 		size_t size;
17469 		uintptr_t dest;
17470 		int nrecs;
17471 
17472 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17473 			return (EFAULT);
17474 
17475 		mutex_enter(&dtrace_lock);
17476 
17477 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17478 			mutex_exit(&dtrace_lock);
17479 			return (EINVAL);
17480 		}
17481 
17482 		if (ecb->dte_probe == NULL) {
17483 			mutex_exit(&dtrace_lock);
17484 			return (EINVAL);
17485 		}
17486 
17487 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17488 		epdesc.dtepd_uarg = ecb->dte_uarg;
17489 		epdesc.dtepd_size = ecb->dte_size;
17490 
17491 		nrecs = epdesc.dtepd_nrecs;
17492 		epdesc.dtepd_nrecs = 0;
17493 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17494 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17495 				continue;
17496 
17497 			epdesc.dtepd_nrecs++;
17498 		}
17499 
17500 		/*
17501 		 * Now that we have the size, we need to allocate a temporary
17502 		 * buffer in which to store the complete description.  We need
17503 		 * the temporary buffer to be able to drop dtrace_lock()
17504 		 * across the copyout(), below.
17505 		 */
17506 		size = sizeof (dtrace_eprobedesc_t) +
17507 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17508 
17509 		buf = kmem_alloc(size, KM_SLEEP);
17510 		dest = (uintptr_t)buf;
17511 
17512 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17513 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17514 
17515 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17516 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17517 				continue;
17518 
17519 			if (nrecs-- == 0)
17520 				break;
17521 
17522 			bcopy(&act->dta_rec, (void *)dest,
17523 			    sizeof (dtrace_recdesc_t));
17524 			dest += sizeof (dtrace_recdesc_t);
17525 		}
17526 
17527 		mutex_exit(&dtrace_lock);
17528 
17529 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17530 			kmem_free(buf, size);
17531 			return (EFAULT);
17532 		}
17533 
17534 		kmem_free(buf, size);
17535 		return (0);
17536 	}
17537 
17538 	case DTRACEIOC_AGGDESC: {
17539 		dtrace_aggdesc_t aggdesc;
17540 		dtrace_action_t *act;
17541 		dtrace_aggregation_t *agg;
17542 		int nrecs;
17543 		uint32_t offs;
17544 		dtrace_recdesc_t *lrec;
17545 		void *buf;
17546 		size_t size;
17547 		uintptr_t dest;
17548 
17549 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17550 			return (EFAULT);
17551 
17552 		mutex_enter(&dtrace_lock);
17553 
17554 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17555 			mutex_exit(&dtrace_lock);
17556 			return (EINVAL);
17557 		}
17558 
17559 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17560 
17561 		nrecs = aggdesc.dtagd_nrecs;
17562 		aggdesc.dtagd_nrecs = 0;
17563 
17564 		offs = agg->dtag_base;
17565 		lrec = &agg->dtag_action.dta_rec;
17566 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17567 
17568 		for (act = agg->dtag_first; ; act = act->dta_next) {
17569 			ASSERT(act->dta_intuple ||
17570 			    DTRACEACT_ISAGG(act->dta_kind));
17571 
17572 			/*
17573 			 * If this action has a record size of zero, it
17574 			 * denotes an argument to the aggregating action.
17575 			 * Because the presence of this record doesn't (or
17576 			 * shouldn't) affect the way the data is interpreted,
17577 			 * we don't copy it out to save user-level the
17578 			 * confusion of dealing with a zero-length record.
17579 			 */
17580 			if (act->dta_rec.dtrd_size == 0) {
17581 				ASSERT(agg->dtag_hasarg);
17582 				continue;
17583 			}
17584 
17585 			aggdesc.dtagd_nrecs++;
17586 
17587 			if (act == &agg->dtag_action)
17588 				break;
17589 		}
17590 
17591 		/*
17592 		 * Now that we have the size, we need to allocate a temporary
17593 		 * buffer in which to store the complete description.  We need
17594 		 * the temporary buffer to be able to drop dtrace_lock()
17595 		 * across the copyout(), below.
17596 		 */
17597 		size = sizeof (dtrace_aggdesc_t) +
17598 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17599 
17600 		buf = kmem_alloc(size, KM_SLEEP);
17601 		dest = (uintptr_t)buf;
17602 
17603 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17604 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17605 
17606 		for (act = agg->dtag_first; ; act = act->dta_next) {
17607 			dtrace_recdesc_t rec = act->dta_rec;
17608 
17609 			/*
17610 			 * See the comment in the above loop for why we pass
17611 			 * over zero-length records.
17612 			 */
17613 			if (rec.dtrd_size == 0) {
17614 				ASSERT(agg->dtag_hasarg);
17615 				continue;
17616 			}
17617 
17618 			if (nrecs-- == 0)
17619 				break;
17620 
17621 			rec.dtrd_offset -= offs;
17622 			bcopy(&rec, (void *)dest, sizeof (rec));
17623 			dest += sizeof (dtrace_recdesc_t);
17624 
17625 			if (act == &agg->dtag_action)
17626 				break;
17627 		}
17628 
17629 		mutex_exit(&dtrace_lock);
17630 
17631 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17632 			kmem_free(buf, size);
17633 			return (EFAULT);
17634 		}
17635 
17636 		kmem_free(buf, size);
17637 		return (0);
17638 	}
17639 
17640 	case DTRACEIOC_ENABLE: {
17641 		dof_hdr_t *dof;
17642 		dtrace_enabling_t *enab = NULL;
17643 		dtrace_vstate_t *vstate;
17644 		int err = 0;
17645 
17646 		*rv = 0;
17647 
17648 		/*
17649 		 * If a NULL argument has been passed, we take this as our
17650 		 * cue to reevaluate our enablings.
17651 		 */
17652 		if (arg == NULL) {
17653 			dtrace_enabling_matchall();
17654 
17655 			return (0);
17656 		}
17657 
17658 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17659 			return (rval);
17660 
17661 		mutex_enter(&cpu_lock);
17662 		mutex_enter(&dtrace_lock);
17663 		vstate = &state->dts_vstate;
17664 
17665 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17666 			mutex_exit(&dtrace_lock);
17667 			mutex_exit(&cpu_lock);
17668 			dtrace_dof_destroy(dof);
17669 			return (EBUSY);
17670 		}
17671 
17672 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17673 			mutex_exit(&dtrace_lock);
17674 			mutex_exit(&cpu_lock);
17675 			dtrace_dof_destroy(dof);
17676 			return (EINVAL);
17677 		}
17678 
17679 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17680 			dtrace_enabling_destroy(enab);
17681 			mutex_exit(&dtrace_lock);
17682 			mutex_exit(&cpu_lock);
17683 			dtrace_dof_destroy(dof);
17684 			return (rval);
17685 		}
17686 
17687 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17688 			err = dtrace_enabling_retain(enab);
17689 		} else {
17690 			dtrace_enabling_destroy(enab);
17691 		}
17692 
17693 		mutex_exit(&cpu_lock);
17694 		mutex_exit(&dtrace_lock);
17695 		dtrace_dof_destroy(dof);
17696 
17697 		return (err);
17698 	}
17699 
17700 	case DTRACEIOC_REPLICATE: {
17701 		dtrace_repldesc_t desc;
17702 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17703 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17704 		int err;
17705 
17706 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17707 			return (EFAULT);
17708 
17709 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17710 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17711 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17712 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17713 
17714 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17715 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17716 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17717 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17718 
17719 		mutex_enter(&dtrace_lock);
17720 		err = dtrace_enabling_replicate(state, match, create);
17721 		mutex_exit(&dtrace_lock);
17722 
17723 		return (err);
17724 	}
17725 
17726 	case DTRACEIOC_PROBEMATCH:
17727 	case DTRACEIOC_PROBES: {
17728 		dtrace_probe_t *probe = NULL;
17729 		dtrace_probedesc_t desc;
17730 		dtrace_probekey_t pkey;
17731 		dtrace_id_t i;
17732 		int m = 0;
17733 		uint32_t priv;
17734 		uid_t uid;
17735 		zoneid_t zoneid;
17736 
17737 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17738 			return (EFAULT);
17739 
17740 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17741 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17742 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17743 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17744 
17745 		/*
17746 		 * Before we attempt to match this probe, we want to give
17747 		 * all providers the opportunity to provide it.
17748 		 */
17749 		if (desc.dtpd_id == DTRACE_IDNONE) {
17750 			mutex_enter(&dtrace_provider_lock);
17751 			dtrace_probe_provide(&desc, NULL);
17752 			mutex_exit(&dtrace_provider_lock);
17753 			desc.dtpd_id++;
17754 		}
17755 
17756 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17757 			dtrace_probekey(&desc, &pkey);
17758 			pkey.dtpk_id = DTRACE_IDNONE;
17759 		}
17760 
17761 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17762 
17763 		mutex_enter(&dtrace_lock);
17764 
17765 		if (cmd == DTRACEIOC_PROBEMATCH) {
17766 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17767 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17768 				    (m = dtrace_match_probe(probe, &pkey,
17769 				    priv, uid, zoneid)) != 0)
17770 					break;
17771 			}
17772 
17773 			if (m < 0) {
17774 				mutex_exit(&dtrace_lock);
17775 				return (EINVAL);
17776 			}
17777 
17778 		} else {
17779 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17780 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17781 				    dtrace_match_priv(probe, priv, uid, zoneid))
17782 					break;
17783 			}
17784 		}
17785 
17786 		if (probe == NULL) {
17787 			mutex_exit(&dtrace_lock);
17788 			return (ESRCH);
17789 		}
17790 
17791 		dtrace_probe_description(probe, &desc);
17792 		mutex_exit(&dtrace_lock);
17793 
17794 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17795 			return (EFAULT);
17796 
17797 		return (0);
17798 	}
17799 
17800 	case DTRACEIOC_PROBEARG: {
17801 		dtrace_argdesc_t desc;
17802 		dtrace_probe_t *probe;
17803 		dtrace_provider_t *prov;
17804 
17805 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17806 			return (EFAULT);
17807 
17808 		if (desc.dtargd_id == DTRACE_IDNONE)
17809 			return (EINVAL);
17810 
17811 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17812 			return (EINVAL);
17813 
17814 		mutex_enter(&dtrace_provider_lock);
17815 		mutex_enter(&mod_lock);
17816 		mutex_enter(&dtrace_lock);
17817 
17818 		if (desc.dtargd_id > dtrace_nprobes) {
17819 			mutex_exit(&dtrace_lock);
17820 			mutex_exit(&mod_lock);
17821 			mutex_exit(&dtrace_provider_lock);
17822 			return (EINVAL);
17823 		}
17824 
17825 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17826 			mutex_exit(&dtrace_lock);
17827 			mutex_exit(&mod_lock);
17828 			mutex_exit(&dtrace_provider_lock);
17829 			return (EINVAL);
17830 		}
17831 
17832 		mutex_exit(&dtrace_lock);
17833 
17834 		prov = probe->dtpr_provider;
17835 
17836 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17837 			/*
17838 			 * There isn't any typed information for this probe.
17839 			 * Set the argument number to DTRACE_ARGNONE.
17840 			 */
17841 			desc.dtargd_ndx = DTRACE_ARGNONE;
17842 		} else {
17843 			desc.dtargd_native[0] = '\0';
17844 			desc.dtargd_xlate[0] = '\0';
17845 			desc.dtargd_mapping = desc.dtargd_ndx;
17846 
17847 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17848 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17849 		}
17850 
17851 		mutex_exit(&mod_lock);
17852 		mutex_exit(&dtrace_provider_lock);
17853 
17854 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17855 			return (EFAULT);
17856 
17857 		return (0);
17858 	}
17859 
17860 	case DTRACEIOC_GO: {
17861 		processorid_t cpuid;
17862 		rval = dtrace_state_go(state, &cpuid);
17863 
17864 		if (rval != 0)
17865 			return (rval);
17866 
17867 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17868 			return (EFAULT);
17869 
17870 		return (0);
17871 	}
17872 
17873 	case DTRACEIOC_STOP: {
17874 		processorid_t cpuid;
17875 
17876 		mutex_enter(&dtrace_lock);
17877 		rval = dtrace_state_stop(state, &cpuid);
17878 		mutex_exit(&dtrace_lock);
17879 
17880 		if (rval != 0)
17881 			return (rval);
17882 
17883 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17884 			return (EFAULT);
17885 
17886 		return (0);
17887 	}
17888 
17889 	case DTRACEIOC_DOFGET: {
17890 		dof_hdr_t hdr, *dof;
17891 		uint64_t len;
17892 
17893 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17894 			return (EFAULT);
17895 
17896 		mutex_enter(&dtrace_lock);
17897 		dof = dtrace_dof_create(state);
17898 		mutex_exit(&dtrace_lock);
17899 
17900 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17901 		rval = copyout(dof, (void *)arg, len);
17902 		dtrace_dof_destroy(dof);
17903 
17904 		return (rval == 0 ? 0 : EFAULT);
17905 	}
17906 
17907 	case DTRACEIOC_AGGSNAP:
17908 	case DTRACEIOC_BUFSNAP: {
17909 		dtrace_bufdesc_t desc;
17910 		caddr_t cached;
17911 		dtrace_buffer_t *buf;
17912 
17913 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17914 			return (EFAULT);
17915 
17916 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17917 			return (EINVAL);
17918 
17919 		mutex_enter(&dtrace_lock);
17920 
17921 		if (cmd == DTRACEIOC_BUFSNAP) {
17922 			buf = &state->dts_buffer[desc.dtbd_cpu];
17923 		} else {
17924 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17925 		}
17926 
17927 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17928 			size_t sz = buf->dtb_offset;
17929 
17930 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17931 				mutex_exit(&dtrace_lock);
17932 				return (EBUSY);
17933 			}
17934 
17935 			/*
17936 			 * If this buffer has already been consumed, we're
17937 			 * going to indicate that there's nothing left here
17938 			 * to consume.
17939 			 */
17940 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17941 				mutex_exit(&dtrace_lock);
17942 
17943 				desc.dtbd_size = 0;
17944 				desc.dtbd_drops = 0;
17945 				desc.dtbd_errors = 0;
17946 				desc.dtbd_oldest = 0;
17947 				sz = sizeof (desc);
17948 
17949 				if (copyout(&desc, (void *)arg, sz) != 0)
17950 					return (EFAULT);
17951 
17952 				return (0);
17953 			}
17954 
17955 			/*
17956 			 * If this is a ring buffer that has wrapped, we want
17957 			 * to copy the whole thing out.
17958 			 */
17959 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17960 				dtrace_buffer_polish(buf);
17961 				sz = buf->dtb_size;
17962 			}
17963 
17964 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17965 				mutex_exit(&dtrace_lock);
17966 				return (EFAULT);
17967 			}
17968 
17969 			desc.dtbd_size = sz;
17970 			desc.dtbd_drops = buf->dtb_drops;
17971 			desc.dtbd_errors = buf->dtb_errors;
17972 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17973 			desc.dtbd_timestamp = dtrace_gethrtime();
17974 
17975 			mutex_exit(&dtrace_lock);
17976 
17977 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17978 				return (EFAULT);
17979 
17980 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17981 
17982 			return (0);
17983 		}
17984 
17985 		if (buf->dtb_tomax == NULL) {
17986 			ASSERT(buf->dtb_xamot == NULL);
17987 			mutex_exit(&dtrace_lock);
17988 			return (ENOENT);
17989 		}
17990 
17991 		cached = buf->dtb_tomax;
17992 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17993 
17994 		dtrace_xcall(desc.dtbd_cpu,
17995 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17996 
17997 		state->dts_errors += buf->dtb_xamot_errors;
17998 
17999 		/*
18000 		 * If the buffers did not actually switch, then the cross call
18001 		 * did not take place -- presumably because the given CPU is
18002 		 * not in the ready set.  If this is the case, we'll return
18003 		 * ENOENT.
18004 		 */
18005 		if (buf->dtb_tomax == cached) {
18006 			ASSERT(buf->dtb_xamot != cached);
18007 			mutex_exit(&dtrace_lock);
18008 			return (ENOENT);
18009 		}
18010 
18011 		ASSERT(cached == buf->dtb_xamot);
18012 
18013 		/*
18014 		 * We have our snapshot; now copy it out.
18015 		 */
18016 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
18017 		    buf->dtb_xamot_offset) != 0) {
18018 			mutex_exit(&dtrace_lock);
18019 			return (EFAULT);
18020 		}
18021 
18022 		desc.dtbd_size = buf->dtb_xamot_offset;
18023 		desc.dtbd_drops = buf->dtb_xamot_drops;
18024 		desc.dtbd_errors = buf->dtb_xamot_errors;
18025 		desc.dtbd_oldest = 0;
18026 		desc.dtbd_timestamp = buf->dtb_switched;
18027 
18028 		mutex_exit(&dtrace_lock);
18029 
18030 		/*
18031 		 * Finally, copy out the buffer description.
18032 		 */
18033 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18034 			return (EFAULT);
18035 
18036 		return (0);
18037 	}
18038 
18039 	case DTRACEIOC_CONF: {
18040 		dtrace_conf_t conf;
18041 
18042 		bzero(&conf, sizeof (conf));
18043 		conf.dtc_difversion = DIF_VERSION;
18044 		conf.dtc_difintregs = DIF_DIR_NREGS;
18045 		conf.dtc_diftupregs = DIF_DTR_NREGS;
18046 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18047 
18048 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18049 			return (EFAULT);
18050 
18051 		return (0);
18052 	}
18053 
18054 	case DTRACEIOC_STATUS: {
18055 		dtrace_status_t stat;
18056 		dtrace_dstate_t *dstate;
18057 		int i, j;
18058 		uint64_t nerrs;
18059 
18060 		/*
18061 		 * See the comment in dtrace_state_deadman() for the reason
18062 		 * for setting dts_laststatus to INT64_MAX before setting
18063 		 * it to the correct value.
18064 		 */
18065 		state->dts_laststatus = INT64_MAX;
18066 		dtrace_membar_producer();
18067 		state->dts_laststatus = dtrace_gethrtime();
18068 
18069 		bzero(&stat, sizeof (stat));
18070 
18071 		mutex_enter(&dtrace_lock);
18072 
18073 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18074 			mutex_exit(&dtrace_lock);
18075 			return (ENOENT);
18076 		}
18077 
18078 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18079 			stat.dtst_exiting = 1;
18080 
18081 		nerrs = state->dts_errors;
18082 		dstate = &state->dts_vstate.dtvs_dynvars;
18083 
18084 		for (i = 0; i < NCPU; i++) {
18085 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18086 
18087 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18088 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18089 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18090 
18091 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18092 				stat.dtst_filled++;
18093 
18094 			nerrs += state->dts_buffer[i].dtb_errors;
18095 
18096 			for (j = 0; j < state->dts_nspeculations; j++) {
18097 				dtrace_speculation_t *spec;
18098 				dtrace_buffer_t *buf;
18099 
18100 				spec = &state->dts_speculations[j];
18101 				buf = &spec->dtsp_buffer[i];
18102 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18103 			}
18104 		}
18105 
18106 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18107 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18108 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18109 		stat.dtst_dblerrors = state->dts_dblerrors;
18110 		stat.dtst_killed =
18111 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18112 		stat.dtst_errors = nerrs;
18113 
18114 		mutex_exit(&dtrace_lock);
18115 
18116 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18117 			return (EFAULT);
18118 
18119 		return (0);
18120 	}
18121 
18122 	case DTRACEIOC_FORMAT: {
18123 		dtrace_fmtdesc_t fmt;
18124 		char *str;
18125 		int len;
18126 
18127 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18128 			return (EFAULT);
18129 
18130 		mutex_enter(&dtrace_lock);
18131 
18132 		if (fmt.dtfd_format == 0 ||
18133 		    fmt.dtfd_format > state->dts_nformats) {
18134 			mutex_exit(&dtrace_lock);
18135 			return (EINVAL);
18136 		}
18137 
18138 		/*
18139 		 * Format strings are allocated contiguously and they are
18140 		 * never freed; if a format index is less than the number
18141 		 * of formats, we can assert that the format map is non-NULL
18142 		 * and that the format for the specified index is non-NULL.
18143 		 */
18144 		ASSERT(state->dts_formats != NULL);
18145 		str = state->dts_formats[fmt.dtfd_format - 1];
18146 		ASSERT(str != NULL);
18147 
18148 		len = strlen(str) + 1;
18149 
18150 		if (len > fmt.dtfd_length) {
18151 			fmt.dtfd_length = len;
18152 
18153 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18154 				mutex_exit(&dtrace_lock);
18155 				return (EINVAL);
18156 			}
18157 		} else {
18158 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18159 				mutex_exit(&dtrace_lock);
18160 				return (EINVAL);
18161 			}
18162 		}
18163 
18164 		mutex_exit(&dtrace_lock);
18165 		return (0);
18166 	}
18167 
18168 	default:
18169 		break;
18170 	}
18171 
18172 	return (ENOTTY);
18173 }
18174 
18175 /*ARGSUSED*/
18176 static int
18177 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18178 {
18179 	dtrace_state_t *state;
18180 
18181 	switch (cmd) {
18182 	case DDI_DETACH:
18183 		break;
18184 
18185 	case DDI_SUSPEND:
18186 		return (DDI_SUCCESS);
18187 
18188 	default:
18189 		return (DDI_FAILURE);
18190 	}
18191 
18192 	mutex_enter(&cpu_lock);
18193 	mutex_enter(&dtrace_provider_lock);
18194 	mutex_enter(&dtrace_lock);
18195 
18196 	ASSERT(dtrace_opens == 0);
18197 
18198 	if (dtrace_helpers > 0) {
18199 		mutex_exit(&dtrace_provider_lock);
18200 		mutex_exit(&dtrace_lock);
18201 		mutex_exit(&cpu_lock);
18202 		return (DDI_FAILURE);
18203 	}
18204 
18205 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18206 		mutex_exit(&dtrace_provider_lock);
18207 		mutex_exit(&dtrace_lock);
18208 		mutex_exit(&cpu_lock);
18209 		return (DDI_FAILURE);
18210 	}
18211 
18212 	dtrace_provider = NULL;
18213 
18214 	if ((state = dtrace_anon_grab()) != NULL) {
18215 		/*
18216 		 * If there were ECBs on this state, the provider should
18217 		 * have not been allowed to detach; assert that there is
18218 		 * none.
18219 		 */
18220 		ASSERT(state->dts_necbs == 0);
18221 		dtrace_state_destroy(state);
18222 
18223 		/*
18224 		 * If we're being detached with anonymous state, we need to
18225 		 * indicate to the kernel debugger that DTrace is now inactive.
18226 		 */
18227 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18228 	}
18229 
18230 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18231 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18232 	dtrace_cpu_init = NULL;
18233 	dtrace_helpers_cleanup = NULL;
18234 	dtrace_helpers_fork = NULL;
18235 	dtrace_cpustart_init = NULL;
18236 	dtrace_cpustart_fini = NULL;
18237 	dtrace_debugger_init = NULL;
18238 	dtrace_debugger_fini = NULL;
18239 	dtrace_modload = NULL;
18240 	dtrace_modunload = NULL;
18241 
18242 	ASSERT(dtrace_getf == 0);
18243 	ASSERT(dtrace_closef == NULL);
18244 
18245 	mutex_exit(&cpu_lock);
18246 
18247 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18248 	dtrace_probes = NULL;
18249 	dtrace_nprobes = 0;
18250 
18251 	dtrace_hash_destroy(dtrace_bymod);
18252 	dtrace_hash_destroy(dtrace_byfunc);
18253 	dtrace_hash_destroy(dtrace_byname);
18254 	dtrace_bymod = NULL;
18255 	dtrace_byfunc = NULL;
18256 	dtrace_byname = NULL;
18257 
18258 	kmem_cache_destroy(dtrace_state_cache);
18259 	vmem_destroy(dtrace_minor);
18260 	vmem_destroy(dtrace_arena);
18261 
18262 	if (dtrace_toxrange != NULL) {
18263 		kmem_free(dtrace_toxrange,
18264 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18265 		dtrace_toxrange = NULL;
18266 		dtrace_toxranges = 0;
18267 		dtrace_toxranges_max = 0;
18268 	}
18269 
18270 	ddi_remove_minor_node(dtrace_devi, NULL);
18271 	dtrace_devi = NULL;
18272 
18273 	ddi_soft_state_fini(&dtrace_softstate);
18274 
18275 	ASSERT(dtrace_vtime_references == 0);
18276 	ASSERT(dtrace_opens == 0);
18277 	ASSERT(dtrace_retained == NULL);
18278 
18279 	mutex_exit(&dtrace_lock);
18280 	mutex_exit(&dtrace_provider_lock);
18281 
18282 	/*
18283 	 * We don't destroy the task queue until after we have dropped our
18284 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18285 	 * attempting to do work after we have effectively detached but before
18286 	 * the task queue has been destroyed, all tasks dispatched via the
18287 	 * task queue must check that DTrace is still attached before
18288 	 * performing any operation.
18289 	 */
18290 	taskq_destroy(dtrace_taskq);
18291 	dtrace_taskq = NULL;
18292 
18293 	return (DDI_SUCCESS);
18294 }
18295 #endif
18296 
18297 #ifdef illumos
18298 /*ARGSUSED*/
18299 static int
18300 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18301 {
18302 	int error;
18303 
18304 	switch (infocmd) {
18305 	case DDI_INFO_DEVT2DEVINFO:
18306 		*result = (void *)dtrace_devi;
18307 		error = DDI_SUCCESS;
18308 		break;
18309 	case DDI_INFO_DEVT2INSTANCE:
18310 		*result = (void *)0;
18311 		error = DDI_SUCCESS;
18312 		break;
18313 	default:
18314 		error = DDI_FAILURE;
18315 	}
18316 	return (error);
18317 }
18318 #endif
18319 
18320 #ifdef illumos
18321 static struct cb_ops dtrace_cb_ops = {
18322 	dtrace_open,		/* open */
18323 	dtrace_close,		/* close */
18324 	nulldev,		/* strategy */
18325 	nulldev,		/* print */
18326 	nodev,			/* dump */
18327 	nodev,			/* read */
18328 	nodev,			/* write */
18329 	dtrace_ioctl,		/* ioctl */
18330 	nodev,			/* devmap */
18331 	nodev,			/* mmap */
18332 	nodev,			/* segmap */
18333 	nochpoll,		/* poll */
18334 	ddi_prop_op,		/* cb_prop_op */
18335 	0,			/* streamtab  */
18336 	D_NEW | D_MP		/* Driver compatibility flag */
18337 };
18338 
18339 static struct dev_ops dtrace_ops = {
18340 	DEVO_REV,		/* devo_rev */
18341 	0,			/* refcnt */
18342 	dtrace_info,		/* get_dev_info */
18343 	nulldev,		/* identify */
18344 	nulldev,		/* probe */
18345 	dtrace_attach,		/* attach */
18346 	dtrace_detach,		/* detach */
18347 	nodev,			/* reset */
18348 	&dtrace_cb_ops,		/* driver operations */
18349 	NULL,			/* bus operations */
18350 	nodev			/* dev power */
18351 };
18352 
18353 static struct modldrv modldrv = {
18354 	&mod_driverops,		/* module type (this is a pseudo driver) */
18355 	"Dynamic Tracing",	/* name of module */
18356 	&dtrace_ops,		/* driver ops */
18357 };
18358 
18359 static struct modlinkage modlinkage = {
18360 	MODREV_1,
18361 	(void *)&modldrv,
18362 	NULL
18363 };
18364 
18365 int
18366 _init(void)
18367 {
18368 	return (mod_install(&modlinkage));
18369 }
18370 
18371 int
18372 _info(struct modinfo *modinfop)
18373 {
18374 	return (mod_info(&modlinkage, modinfop));
18375 }
18376 
18377 int
18378 _fini(void)
18379 {
18380 	return (mod_remove(&modlinkage));
18381 }
18382 #else
18383 
18384 static d_ioctl_t	dtrace_ioctl;
18385 static d_ioctl_t	dtrace_ioctl_helper;
18386 static void		dtrace_load(void *);
18387 static int		dtrace_unload(void);
18388 static struct cdev	*dtrace_dev;
18389 static struct cdev	*helper_dev;
18390 
18391 void dtrace_invop_init(void);
18392 void dtrace_invop_uninit(void);
18393 
18394 static struct cdevsw dtrace_cdevsw = {
18395 	.d_version	= D_VERSION,
18396 	.d_ioctl	= dtrace_ioctl,
18397 	.d_open		= dtrace_open,
18398 	.d_name		= "dtrace",
18399 };
18400 
18401 static struct cdevsw helper_cdevsw = {
18402 	.d_version	= D_VERSION,
18403 	.d_ioctl	= dtrace_ioctl_helper,
18404 	.d_name		= "helper",
18405 };
18406 
18407 #include <dtrace_anon.c>
18408 #include <dtrace_ioctl.c>
18409 #include <dtrace_load.c>
18410 #include <dtrace_modevent.c>
18411 #include <dtrace_sysctl.c>
18412 #include <dtrace_unload.c>
18413 #include <dtrace_vtime.c>
18414 #include <dtrace_hacks.c>
18415 #include <dtrace_isa.c>
18416 
18417 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18418 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18419 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18420 
18421 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18422 MODULE_VERSION(dtrace, 1);
18423 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18424 #endif
18425