xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision c3755aa30cbddc30cbdc26707aac2606e9cd6ec5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Copyright (c) 2012 by Delphix. All rights reserved
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114 
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/sysctl.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/dtrace_bsd.h>
129 #include <netinet/in.h>
130 #include "dtrace_cddl.h"
131 #include "dtrace_debug.c"
132 #endif
133 
134 /*
135  * DTrace Tunable Variables
136  *
137  * The following variables may be tuned by adding a line to /etc/system that
138  * includes both the name of the DTrace module ("dtrace") and the name of the
139  * variable.  For example:
140  *
141  *   set dtrace:dtrace_destructive_disallow = 1
142  *
143  * In general, the only variables that one should be tuning this way are those
144  * that affect system-wide DTrace behavior, and for which the default behavior
145  * is undesirable.  Most of these variables are tunable on a per-consumer
146  * basis using DTrace options, and need not be tuned on a system-wide basis.
147  * When tuning these variables, avoid pathological values; while some attempt
148  * is made to verify the integrity of these variables, they are not considered
149  * part of the supported interface to DTrace, and they are therefore not
150  * checked comprehensively.  Further, these variables should not be tuned
151  * dynamically via "mdb -kw" or other means; they should only be tuned via
152  * /etc/system.
153  */
154 int		dtrace_destructive_disallow = 0;
155 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156 size_t		dtrace_difo_maxsize = (256 * 1024);
157 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
158 size_t		dtrace_global_maxsize = (16 * 1024);
159 size_t		dtrace_actions_max = (16 * 1024);
160 size_t		dtrace_retain_max = 1024;
161 dtrace_optval_t	dtrace_helper_actions_max = 128;
162 dtrace_optval_t	dtrace_helper_providers_max = 32;
163 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164 size_t		dtrace_strsize_default = 256;
165 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172 dtrace_optval_t	dtrace_nspec_default = 1;
173 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174 dtrace_optval_t dtrace_stackframes_default = 20;
175 dtrace_optval_t dtrace_ustackframes_default = 20;
176 dtrace_optval_t dtrace_jstackframes_default = 50;
177 dtrace_optval_t dtrace_jstackstrsize_default = 512;
178 int		dtrace_msgdsize_max = 128;
179 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
180 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181 int		dtrace_devdepth_max = 32;
182 int		dtrace_err_verbose;
183 hrtime_t	dtrace_deadman_interval = NANOSEC;
184 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187 
188 /*
189  * DTrace External Variables
190  *
191  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
192  * available to DTrace consumers via the backtick (`) syntax.  One of these,
193  * dtrace_zero, is made deliberately so:  it is provided as a source of
194  * well-known, zero-filled memory.  While this variable is not documented,
195  * it is used by some translators as an implementation detail.
196  */
197 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
198 
199 /*
200  * DTrace Internal Variables
201  */
202 #if defined(sun)
203 static dev_info_t	*dtrace_devi;		/* device info */
204 #endif
205 #if defined(sun)
206 static vmem_t		*dtrace_arena;		/* probe ID arena */
207 static vmem_t		*dtrace_minor;		/* minor number arena */
208 #else
209 static taskq_t		*dtrace_taskq;		/* task queue */
210 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
211 #endif
212 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
213 static int		dtrace_nprobes;		/* number of probes */
214 static dtrace_provider_t *dtrace_provider;	/* provider list */
215 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
216 static int		dtrace_opens;		/* number of opens */
217 static int		dtrace_helpers;		/* number of helpers */
218 #if defined(sun)
219 static void		*dtrace_softstate;	/* softstate pointer */
220 #endif
221 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
222 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
223 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
224 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
225 static int		dtrace_toxranges;	/* number of toxic ranges */
226 static int		dtrace_toxranges_max;	/* size of toxic range array */
227 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
228 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
229 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
230 static kthread_t	*dtrace_panicked;	/* panicking thread */
231 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
232 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
233 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
234 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
235 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
236 #if !defined(sun)
237 static struct mtx	dtrace_unr_mtx;
238 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
239 int		dtrace_in_probe;	/* non-zero if executing a probe */
240 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
241 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
242 #endif
243 #endif
244 
245 /*
246  * DTrace Locking
247  * DTrace is protected by three (relatively coarse-grained) locks:
248  *
249  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
250  *     including enabling state, probes, ECBs, consumer state, helper state,
251  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
252  *     probe context is lock-free -- synchronization is handled via the
253  *     dtrace_sync() cross call mechanism.
254  *
255  * (2) dtrace_provider_lock is required when manipulating provider state, or
256  *     when provider state must be held constant.
257  *
258  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
259  *     when meta provider state must be held constant.
260  *
261  * The lock ordering between these three locks is dtrace_meta_lock before
262  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
263  * several places where dtrace_provider_lock is held by the framework as it
264  * calls into the providers -- which then call back into the framework,
265  * grabbing dtrace_lock.)
266  *
267  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
268  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
269  * role as a coarse-grained lock; it is acquired before both of these locks.
270  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
271  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
272  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
273  * acquired _between_ dtrace_provider_lock and dtrace_lock.
274  */
275 static kmutex_t		dtrace_lock;		/* probe state lock */
276 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
277 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
278 
279 #if !defined(sun)
280 /* XXX FreeBSD hacks. */
281 static kmutex_t		mod_lock;
282 
283 #define cr_suid		cr_svuid
284 #define cr_sgid		cr_svgid
285 #define	ipaddr_t	in_addr_t
286 #define mod_modname	pathname
287 #define vuprintf	vprintf
288 #define ttoproc(_a)	((_a)->td_proc)
289 #define crgetzoneid(_a)	0
290 #define	NCPU		MAXCPU
291 #define SNOCD		0
292 #define CPU_ON_INTR(_a)	0
293 
294 #define PRIV_EFFECTIVE		(1 << 0)
295 #define PRIV_DTRACE_KERNEL	(1 << 1)
296 #define PRIV_DTRACE_PROC	(1 << 2)
297 #define PRIV_DTRACE_USER	(1 << 3)
298 #define PRIV_PROC_OWNER		(1 << 4)
299 #define PRIV_PROC_ZONE		(1 << 5)
300 #define PRIV_ALL		~0
301 
302 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
303 #endif
304 
305 #if defined(sun)
306 #define curcpu	CPU->cpu_id
307 #endif
308 
309 
310 /*
311  * DTrace Provider Variables
312  *
313  * These are the variables relating to DTrace as a provider (that is, the
314  * provider of the BEGIN, END, and ERROR probes).
315  */
316 static dtrace_pattr_t	dtrace_provider_attr = {
317 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
318 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
319 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
320 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
321 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
322 };
323 
324 static void
325 dtrace_nullop(void)
326 {}
327 
328 static dtrace_pops_t	dtrace_provider_ops = {
329 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
330 	(void (*)(void *, modctl_t *))dtrace_nullop,
331 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
334 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
335 	NULL,
336 	NULL,
337 	NULL,
338 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
339 };
340 
341 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
342 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
343 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
344 
345 /*
346  * DTrace Helper Tracing Variables
347  */
348 uint32_t dtrace_helptrace_next = 0;
349 uint32_t dtrace_helptrace_nlocals;
350 char	*dtrace_helptrace_buffer;
351 int	dtrace_helptrace_bufsize = 512 * 1024;
352 
353 #ifdef DEBUG
354 int	dtrace_helptrace_enabled = 1;
355 #else
356 int	dtrace_helptrace_enabled = 0;
357 #endif
358 
359 /*
360  * DTrace Error Hashing
361  *
362  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
363  * table.  This is very useful for checking coverage of tests that are
364  * expected to induce DIF or DOF processing errors, and may be useful for
365  * debugging problems in the DIF code generator or in DOF generation .  The
366  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
367  */
368 #ifdef DEBUG
369 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
370 static const char *dtrace_errlast;
371 static kthread_t *dtrace_errthread;
372 static kmutex_t dtrace_errlock;
373 #endif
374 
375 /*
376  * DTrace Macros and Constants
377  *
378  * These are various macros that are useful in various spots in the
379  * implementation, along with a few random constants that have no meaning
380  * outside of the implementation.  There is no real structure to this cpp
381  * mishmash -- but is there ever?
382  */
383 #define	DTRACE_HASHSTR(hash, probe)	\
384 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
385 
386 #define	DTRACE_HASHNEXT(hash, probe)	\
387 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
388 
389 #define	DTRACE_HASHPREV(hash, probe)	\
390 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
391 
392 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
393 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
394 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
395 
396 #define	DTRACE_AGGHASHSIZE_SLEW		17
397 
398 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
399 
400 /*
401  * The key for a thread-local variable consists of the lower 61 bits of the
402  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
403  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
404  * equal to a variable identifier.  This is necessary (but not sufficient) to
405  * assure that global associative arrays never collide with thread-local
406  * variables.  To guarantee that they cannot collide, we must also define the
407  * order for keying dynamic variables.  That order is:
408  *
409  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
410  *
411  * Because the variable-key and the tls-key are in orthogonal spaces, there is
412  * no way for a global variable key signature to match a thread-local key
413  * signature.
414  */
415 #if defined(sun)
416 #define	DTRACE_TLS_THRKEY(where) { \
417 	uint_t intr = 0; \
418 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
419 	for (; actv; actv >>= 1) \
420 		intr++; \
421 	ASSERT(intr < (1 << 3)); \
422 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
423 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
424 }
425 #else
426 #define	DTRACE_TLS_THRKEY(where) { \
427 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
428 	uint_t intr = 0; \
429 	uint_t actv = _c->cpu_intr_actv; \
430 	for (; actv; actv >>= 1) \
431 		intr++; \
432 	ASSERT(intr < (1 << 3)); \
433 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
434 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
435 }
436 #endif
437 
438 #define	DT_BSWAP_8(x)	((x) & 0xff)
439 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
440 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
441 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
442 
443 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
444 
445 #define	DTRACE_STORE(type, tomax, offset, what) \
446 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
447 
448 #ifndef __x86
449 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
450 	if (addr & (size - 1)) {					\
451 		*flags |= CPU_DTRACE_BADALIGN;				\
452 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
453 		return (0);						\
454 	}
455 #else
456 #define	DTRACE_ALIGNCHECK(addr, size, flags)
457 #endif
458 
459 /*
460  * Test whether a range of memory starting at testaddr of size testsz falls
461  * within the range of memory described by addr, sz.  We take care to avoid
462  * problems with overflow and underflow of the unsigned quantities, and
463  * disallow all negative sizes.  Ranges of size 0 are allowed.
464  */
465 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
466 	((testaddr) - (baseaddr) < (basesz) && \
467 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
468 	(testaddr) + (testsz) >= (testaddr))
469 
470 /*
471  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
472  * alloc_sz on the righthand side of the comparison in order to avoid overflow
473  * or underflow in the comparison with it.  This is simpler than the INRANGE
474  * check above, because we know that the dtms_scratch_ptr is valid in the
475  * range.  Allocations of size zero are allowed.
476  */
477 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
478 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
479 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
480 
481 #define	DTRACE_LOADFUNC(bits)						\
482 /*CSTYLED*/								\
483 uint##bits##_t								\
484 dtrace_load##bits(uintptr_t addr)					\
485 {									\
486 	size_t size = bits / NBBY;					\
487 	/*CSTYLED*/							\
488 	uint##bits##_t rval;						\
489 	int i;								\
490 	volatile uint16_t *flags = (volatile uint16_t *)		\
491 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
492 									\
493 	DTRACE_ALIGNCHECK(addr, size, flags);				\
494 									\
495 	for (i = 0; i < dtrace_toxranges; i++) {			\
496 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
497 			continue;					\
498 									\
499 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
500 			continue;					\
501 									\
502 		/*							\
503 		 * This address falls within a toxic region; return 0.	\
504 		 */							\
505 		*flags |= CPU_DTRACE_BADADDR;				\
506 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
507 		return (0);						\
508 	}								\
509 									\
510 	*flags |= CPU_DTRACE_NOFAULT;					\
511 	/*CSTYLED*/							\
512 	rval = *((volatile uint##bits##_t *)addr);			\
513 	*flags &= ~CPU_DTRACE_NOFAULT;					\
514 									\
515 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
516 }
517 
518 #ifdef _LP64
519 #define	dtrace_loadptr	dtrace_load64
520 #else
521 #define	dtrace_loadptr	dtrace_load32
522 #endif
523 
524 #define	DTRACE_DYNHASH_FREE	0
525 #define	DTRACE_DYNHASH_SINK	1
526 #define	DTRACE_DYNHASH_VALID	2
527 
528 #define	DTRACE_MATCH_NEXT	0
529 #define	DTRACE_MATCH_DONE	1
530 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
531 #define	DTRACE_STATE_ALIGN	64
532 
533 #define	DTRACE_FLAGS2FLT(flags)						\
534 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
535 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
536 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
537 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
538 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
539 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
540 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
541 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
542 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
543 	DTRACEFLT_UNKNOWN)
544 
545 #define	DTRACEACT_ISSTRING(act)						\
546 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
547 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
548 
549 /* Function prototype definitions: */
550 static size_t dtrace_strlen(const char *, size_t);
551 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
552 static void dtrace_enabling_provide(dtrace_provider_t *);
553 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
554 static void dtrace_enabling_matchall(void);
555 static void dtrace_enabling_reap(void);
556 static dtrace_state_t *dtrace_anon_grab(void);
557 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
558     dtrace_state_t *, uint64_t, uint64_t);
559 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
560 static void dtrace_buffer_drop(dtrace_buffer_t *);
561 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
562 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
563     dtrace_state_t *, dtrace_mstate_t *);
564 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
565     dtrace_optval_t);
566 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
567 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
568 uint16_t dtrace_load16(uintptr_t);
569 uint32_t dtrace_load32(uintptr_t);
570 uint64_t dtrace_load64(uintptr_t);
571 uint8_t dtrace_load8(uintptr_t);
572 void dtrace_dynvar_clean(dtrace_dstate_t *);
573 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
574     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
575 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
576 
577 /*
578  * DTrace Probe Context Functions
579  *
580  * These functions are called from probe context.  Because probe context is
581  * any context in which C may be called, arbitrarily locks may be held,
582  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
583  * As a result, functions called from probe context may only call other DTrace
584  * support functions -- they may not interact at all with the system at large.
585  * (Note that the ASSERT macro is made probe-context safe by redefining it in
586  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
587  * loads are to be performed from probe context, they _must_ be in terms of
588  * the safe dtrace_load*() variants.
589  *
590  * Some functions in this block are not actually called from probe context;
591  * for these functions, there will be a comment above the function reading
592  * "Note:  not called from probe context."
593  */
594 void
595 dtrace_panic(const char *format, ...)
596 {
597 	va_list alist;
598 
599 	va_start(alist, format);
600 	dtrace_vpanic(format, alist);
601 	va_end(alist);
602 }
603 
604 int
605 dtrace_assfail(const char *a, const char *f, int l)
606 {
607 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
608 
609 	/*
610 	 * We just need something here that even the most clever compiler
611 	 * cannot optimize away.
612 	 */
613 	return (a[(uintptr_t)f]);
614 }
615 
616 /*
617  * Atomically increment a specified error counter from probe context.
618  */
619 static void
620 dtrace_error(uint32_t *counter)
621 {
622 	/*
623 	 * Most counters stored to in probe context are per-CPU counters.
624 	 * However, there are some error conditions that are sufficiently
625 	 * arcane that they don't merit per-CPU storage.  If these counters
626 	 * are incremented concurrently on different CPUs, scalability will be
627 	 * adversely affected -- but we don't expect them to be white-hot in a
628 	 * correctly constructed enabling...
629 	 */
630 	uint32_t oval, nval;
631 
632 	do {
633 		oval = *counter;
634 
635 		if ((nval = oval + 1) == 0) {
636 			/*
637 			 * If the counter would wrap, set it to 1 -- assuring
638 			 * that the counter is never zero when we have seen
639 			 * errors.  (The counter must be 32-bits because we
640 			 * aren't guaranteed a 64-bit compare&swap operation.)
641 			 * To save this code both the infamy of being fingered
642 			 * by a priggish news story and the indignity of being
643 			 * the target of a neo-puritan witch trial, we're
644 			 * carefully avoiding any colorful description of the
645 			 * likelihood of this condition -- but suffice it to
646 			 * say that it is only slightly more likely than the
647 			 * overflow of predicate cache IDs, as discussed in
648 			 * dtrace_predicate_create().
649 			 */
650 			nval = 1;
651 		}
652 	} while (dtrace_cas32(counter, oval, nval) != oval);
653 }
654 
655 /*
656  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
657  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
658  */
659 DTRACE_LOADFUNC(8)
660 DTRACE_LOADFUNC(16)
661 DTRACE_LOADFUNC(32)
662 DTRACE_LOADFUNC(64)
663 
664 static int
665 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
666 {
667 	if (dest < mstate->dtms_scratch_base)
668 		return (0);
669 
670 	if (dest + size < dest)
671 		return (0);
672 
673 	if (dest + size > mstate->dtms_scratch_ptr)
674 		return (0);
675 
676 	return (1);
677 }
678 
679 static int
680 dtrace_canstore_statvar(uint64_t addr, size_t sz,
681     dtrace_statvar_t **svars, int nsvars)
682 {
683 	int i;
684 
685 	for (i = 0; i < nsvars; i++) {
686 		dtrace_statvar_t *svar = svars[i];
687 
688 		if (svar == NULL || svar->dtsv_size == 0)
689 			continue;
690 
691 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
692 			return (1);
693 	}
694 
695 	return (0);
696 }
697 
698 /*
699  * Check to see if the address is within a memory region to which a store may
700  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
701  * region.  The caller of dtrace_canstore() is responsible for performing any
702  * alignment checks that are needed before stores are actually executed.
703  */
704 static int
705 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
706     dtrace_vstate_t *vstate)
707 {
708 	/*
709 	 * First, check to see if the address is in scratch space...
710 	 */
711 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
712 	    mstate->dtms_scratch_size))
713 		return (1);
714 
715 	/*
716 	 * Now check to see if it's a dynamic variable.  This check will pick
717 	 * up both thread-local variables and any global dynamically-allocated
718 	 * variables.
719 	 */
720 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
721 	    vstate->dtvs_dynvars.dtds_size)) {
722 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
723 		uintptr_t base = (uintptr_t)dstate->dtds_base +
724 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
725 		uintptr_t chunkoffs;
726 
727 		/*
728 		 * Before we assume that we can store here, we need to make
729 		 * sure that it isn't in our metadata -- storing to our
730 		 * dynamic variable metadata would corrupt our state.  For
731 		 * the range to not include any dynamic variable metadata,
732 		 * it must:
733 		 *
734 		 *	(1) Start above the hash table that is at the base of
735 		 *	the dynamic variable space
736 		 *
737 		 *	(2) Have a starting chunk offset that is beyond the
738 		 *	dtrace_dynvar_t that is at the base of every chunk
739 		 *
740 		 *	(3) Not span a chunk boundary
741 		 *
742 		 */
743 		if (addr < base)
744 			return (0);
745 
746 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
747 
748 		if (chunkoffs < sizeof (dtrace_dynvar_t))
749 			return (0);
750 
751 		if (chunkoffs + sz > dstate->dtds_chunksize)
752 			return (0);
753 
754 		return (1);
755 	}
756 
757 	/*
758 	 * Finally, check the static local and global variables.  These checks
759 	 * take the longest, so we perform them last.
760 	 */
761 	if (dtrace_canstore_statvar(addr, sz,
762 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
763 		return (1);
764 
765 	if (dtrace_canstore_statvar(addr, sz,
766 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
767 		return (1);
768 
769 	return (0);
770 }
771 
772 
773 /*
774  * Convenience routine to check to see if the address is within a memory
775  * region in which a load may be issued given the user's privilege level;
776  * if not, it sets the appropriate error flags and loads 'addr' into the
777  * illegal value slot.
778  *
779  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
780  * appropriate memory access protection.
781  */
782 static int
783 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
784     dtrace_vstate_t *vstate)
785 {
786 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
787 
788 	/*
789 	 * If we hold the privilege to read from kernel memory, then
790 	 * everything is readable.
791 	 */
792 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
793 		return (1);
794 
795 	/*
796 	 * You can obviously read that which you can store.
797 	 */
798 	if (dtrace_canstore(addr, sz, mstate, vstate))
799 		return (1);
800 
801 	/*
802 	 * We're allowed to read from our own string table.
803 	 */
804 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
805 	    mstate->dtms_difo->dtdo_strlen))
806 		return (1);
807 
808 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
809 	*illval = addr;
810 	return (0);
811 }
812 
813 /*
814  * Convenience routine to check to see if a given string is within a memory
815  * region in which a load may be issued given the user's privilege level;
816  * this exists so that we don't need to issue unnecessary dtrace_strlen()
817  * calls in the event that the user has all privileges.
818  */
819 static int
820 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
821     dtrace_vstate_t *vstate)
822 {
823 	size_t strsz;
824 
825 	/*
826 	 * If we hold the privilege to read from kernel memory, then
827 	 * everything is readable.
828 	 */
829 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
830 		return (1);
831 
832 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
833 	if (dtrace_canload(addr, strsz, mstate, vstate))
834 		return (1);
835 
836 	return (0);
837 }
838 
839 /*
840  * Convenience routine to check to see if a given variable is within a memory
841  * region in which a load may be issued given the user's privilege level.
842  */
843 static int
844 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
845     dtrace_vstate_t *vstate)
846 {
847 	size_t sz;
848 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
849 
850 	/*
851 	 * If we hold the privilege to read from kernel memory, then
852 	 * everything is readable.
853 	 */
854 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
855 		return (1);
856 
857 	if (type->dtdt_kind == DIF_TYPE_STRING)
858 		sz = dtrace_strlen(src,
859 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
860 	else
861 		sz = type->dtdt_size;
862 
863 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
864 }
865 
866 /*
867  * Compare two strings using safe loads.
868  */
869 static int
870 dtrace_strncmp(char *s1, char *s2, size_t limit)
871 {
872 	uint8_t c1, c2;
873 	volatile uint16_t *flags;
874 
875 	if (s1 == s2 || limit == 0)
876 		return (0);
877 
878 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
879 
880 	do {
881 		if (s1 == NULL) {
882 			c1 = '\0';
883 		} else {
884 			c1 = dtrace_load8((uintptr_t)s1++);
885 		}
886 
887 		if (s2 == NULL) {
888 			c2 = '\0';
889 		} else {
890 			c2 = dtrace_load8((uintptr_t)s2++);
891 		}
892 
893 		if (c1 != c2)
894 			return (c1 - c2);
895 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
896 
897 	return (0);
898 }
899 
900 /*
901  * Compute strlen(s) for a string using safe memory accesses.  The additional
902  * len parameter is used to specify a maximum length to ensure completion.
903  */
904 static size_t
905 dtrace_strlen(const char *s, size_t lim)
906 {
907 	uint_t len;
908 
909 	for (len = 0; len != lim; len++) {
910 		if (dtrace_load8((uintptr_t)s++) == '\0')
911 			break;
912 	}
913 
914 	return (len);
915 }
916 
917 /*
918  * Check if an address falls within a toxic region.
919  */
920 static int
921 dtrace_istoxic(uintptr_t kaddr, size_t size)
922 {
923 	uintptr_t taddr, tsize;
924 	int i;
925 
926 	for (i = 0; i < dtrace_toxranges; i++) {
927 		taddr = dtrace_toxrange[i].dtt_base;
928 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
929 
930 		if (kaddr - taddr < tsize) {
931 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
932 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
933 			return (1);
934 		}
935 
936 		if (taddr - kaddr < size) {
937 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
938 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
939 			return (1);
940 		}
941 	}
942 
943 	return (0);
944 }
945 
946 /*
947  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
948  * memory specified by the DIF program.  The dst is assumed to be safe memory
949  * that we can store to directly because it is managed by DTrace.  As with
950  * standard bcopy, overlapping copies are handled properly.
951  */
952 static void
953 dtrace_bcopy(const void *src, void *dst, size_t len)
954 {
955 	if (len != 0) {
956 		uint8_t *s1 = dst;
957 		const uint8_t *s2 = src;
958 
959 		if (s1 <= s2) {
960 			do {
961 				*s1++ = dtrace_load8((uintptr_t)s2++);
962 			} while (--len != 0);
963 		} else {
964 			s2 += len;
965 			s1 += len;
966 
967 			do {
968 				*--s1 = dtrace_load8((uintptr_t)--s2);
969 			} while (--len != 0);
970 		}
971 	}
972 }
973 
974 /*
975  * Copy src to dst using safe memory accesses, up to either the specified
976  * length, or the point that a nul byte is encountered.  The src is assumed to
977  * be unsafe memory specified by the DIF program.  The dst is assumed to be
978  * safe memory that we can store to directly because it is managed by DTrace.
979  * Unlike dtrace_bcopy(), overlapping regions are not handled.
980  */
981 static void
982 dtrace_strcpy(const void *src, void *dst, size_t len)
983 {
984 	if (len != 0) {
985 		uint8_t *s1 = dst, c;
986 		const uint8_t *s2 = src;
987 
988 		do {
989 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
990 		} while (--len != 0 && c != '\0');
991 	}
992 }
993 
994 /*
995  * Copy src to dst, deriving the size and type from the specified (BYREF)
996  * variable type.  The src is assumed to be unsafe memory specified by the DIF
997  * program.  The dst is assumed to be DTrace variable memory that is of the
998  * specified type; we assume that we can store to directly.
999  */
1000 static void
1001 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1002 {
1003 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1004 
1005 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1006 		dtrace_strcpy(src, dst, type->dtdt_size);
1007 	} else {
1008 		dtrace_bcopy(src, dst, type->dtdt_size);
1009 	}
1010 }
1011 
1012 /*
1013  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1014  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1015  * safe memory that we can access directly because it is managed by DTrace.
1016  */
1017 static int
1018 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1019 {
1020 	volatile uint16_t *flags;
1021 
1022 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1023 
1024 	if (s1 == s2)
1025 		return (0);
1026 
1027 	if (s1 == NULL || s2 == NULL)
1028 		return (1);
1029 
1030 	if (s1 != s2 && len != 0) {
1031 		const uint8_t *ps1 = s1;
1032 		const uint8_t *ps2 = s2;
1033 
1034 		do {
1035 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1036 				return (1);
1037 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1038 	}
1039 	return (0);
1040 }
1041 
1042 /*
1043  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1044  * is for safe DTrace-managed memory only.
1045  */
1046 static void
1047 dtrace_bzero(void *dst, size_t len)
1048 {
1049 	uchar_t *cp;
1050 
1051 	for (cp = dst; len != 0; len--)
1052 		*cp++ = 0;
1053 }
1054 
1055 static void
1056 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1057 {
1058 	uint64_t result[2];
1059 
1060 	result[0] = addend1[0] + addend2[0];
1061 	result[1] = addend1[1] + addend2[1] +
1062 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1063 
1064 	sum[0] = result[0];
1065 	sum[1] = result[1];
1066 }
1067 
1068 /*
1069  * Shift the 128-bit value in a by b. If b is positive, shift left.
1070  * If b is negative, shift right.
1071  */
1072 static void
1073 dtrace_shift_128(uint64_t *a, int b)
1074 {
1075 	uint64_t mask;
1076 
1077 	if (b == 0)
1078 		return;
1079 
1080 	if (b < 0) {
1081 		b = -b;
1082 		if (b >= 64) {
1083 			a[0] = a[1] >> (b - 64);
1084 			a[1] = 0;
1085 		} else {
1086 			a[0] >>= b;
1087 			mask = 1LL << (64 - b);
1088 			mask -= 1;
1089 			a[0] |= ((a[1] & mask) << (64 - b));
1090 			a[1] >>= b;
1091 		}
1092 	} else {
1093 		if (b >= 64) {
1094 			a[1] = a[0] << (b - 64);
1095 			a[0] = 0;
1096 		} else {
1097 			a[1] <<= b;
1098 			mask = a[0] >> (64 - b);
1099 			a[1] |= mask;
1100 			a[0] <<= b;
1101 		}
1102 	}
1103 }
1104 
1105 /*
1106  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1107  * use native multiplication on those, and then re-combine into the
1108  * resulting 128-bit value.
1109  *
1110  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1111  *     hi1 * hi2 << 64 +
1112  *     hi1 * lo2 << 32 +
1113  *     hi2 * lo1 << 32 +
1114  *     lo1 * lo2
1115  */
1116 static void
1117 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1118 {
1119 	uint64_t hi1, hi2, lo1, lo2;
1120 	uint64_t tmp[2];
1121 
1122 	hi1 = factor1 >> 32;
1123 	hi2 = factor2 >> 32;
1124 
1125 	lo1 = factor1 & DT_MASK_LO;
1126 	lo2 = factor2 & DT_MASK_LO;
1127 
1128 	product[0] = lo1 * lo2;
1129 	product[1] = hi1 * hi2;
1130 
1131 	tmp[0] = hi1 * lo2;
1132 	tmp[1] = 0;
1133 	dtrace_shift_128(tmp, 32);
1134 	dtrace_add_128(product, tmp, product);
1135 
1136 	tmp[0] = hi2 * lo1;
1137 	tmp[1] = 0;
1138 	dtrace_shift_128(tmp, 32);
1139 	dtrace_add_128(product, tmp, product);
1140 }
1141 
1142 /*
1143  * This privilege check should be used by actions and subroutines to
1144  * verify that the user credentials of the process that enabled the
1145  * invoking ECB match the target credentials
1146  */
1147 static int
1148 dtrace_priv_proc_common_user(dtrace_state_t *state)
1149 {
1150 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1151 
1152 	/*
1153 	 * We should always have a non-NULL state cred here, since if cred
1154 	 * is null (anonymous tracing), we fast-path bypass this routine.
1155 	 */
1156 	ASSERT(s_cr != NULL);
1157 
1158 	if ((cr = CRED()) != NULL &&
1159 	    s_cr->cr_uid == cr->cr_uid &&
1160 	    s_cr->cr_uid == cr->cr_ruid &&
1161 	    s_cr->cr_uid == cr->cr_suid &&
1162 	    s_cr->cr_gid == cr->cr_gid &&
1163 	    s_cr->cr_gid == cr->cr_rgid &&
1164 	    s_cr->cr_gid == cr->cr_sgid)
1165 		return (1);
1166 
1167 	return (0);
1168 }
1169 
1170 /*
1171  * This privilege check should be used by actions and subroutines to
1172  * verify that the zone of the process that enabled the invoking ECB
1173  * matches the target credentials
1174  */
1175 static int
1176 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1177 {
1178 #if defined(sun)
1179 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1180 
1181 	/*
1182 	 * We should always have a non-NULL state cred here, since if cred
1183 	 * is null (anonymous tracing), we fast-path bypass this routine.
1184 	 */
1185 	ASSERT(s_cr != NULL);
1186 
1187 	if ((cr = CRED()) != NULL &&
1188 	    s_cr->cr_zone == cr->cr_zone)
1189 		return (1);
1190 
1191 	return (0);
1192 #else
1193 	return (1);
1194 #endif
1195 }
1196 
1197 /*
1198  * This privilege check should be used by actions and subroutines to
1199  * verify that the process has not setuid or changed credentials.
1200  */
1201 static int
1202 dtrace_priv_proc_common_nocd(void)
1203 {
1204 	proc_t *proc;
1205 
1206 	if ((proc = ttoproc(curthread)) != NULL &&
1207 	    !(proc->p_flag & SNOCD))
1208 		return (1);
1209 
1210 	return (0);
1211 }
1212 
1213 static int
1214 dtrace_priv_proc_destructive(dtrace_state_t *state)
1215 {
1216 	int action = state->dts_cred.dcr_action;
1217 
1218 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1219 	    dtrace_priv_proc_common_zone(state) == 0)
1220 		goto bad;
1221 
1222 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1223 	    dtrace_priv_proc_common_user(state) == 0)
1224 		goto bad;
1225 
1226 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1227 	    dtrace_priv_proc_common_nocd() == 0)
1228 		goto bad;
1229 
1230 	return (1);
1231 
1232 bad:
1233 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1234 
1235 	return (0);
1236 }
1237 
1238 static int
1239 dtrace_priv_proc_control(dtrace_state_t *state)
1240 {
1241 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1242 		return (1);
1243 
1244 	if (dtrace_priv_proc_common_zone(state) &&
1245 	    dtrace_priv_proc_common_user(state) &&
1246 	    dtrace_priv_proc_common_nocd())
1247 		return (1);
1248 
1249 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1250 
1251 	return (0);
1252 }
1253 
1254 static int
1255 dtrace_priv_proc(dtrace_state_t *state)
1256 {
1257 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1258 		return (1);
1259 
1260 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1261 
1262 	return (0);
1263 }
1264 
1265 static int
1266 dtrace_priv_kernel(dtrace_state_t *state)
1267 {
1268 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1269 		return (1);
1270 
1271 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1272 
1273 	return (0);
1274 }
1275 
1276 static int
1277 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1278 {
1279 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1280 		return (1);
1281 
1282 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1283 
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Note:  not called from probe context.  This function is called
1289  * asynchronously (and at a regular interval) from outside of probe context to
1290  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1291  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1292  */
1293 void
1294 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1295 {
1296 	dtrace_dynvar_t *dirty;
1297 	dtrace_dstate_percpu_t *dcpu;
1298 	int i, work = 0;
1299 
1300 	for (i = 0; i < NCPU; i++) {
1301 		dcpu = &dstate->dtds_percpu[i];
1302 
1303 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1304 
1305 		/*
1306 		 * If the dirty list is NULL, there is no dirty work to do.
1307 		 */
1308 		if (dcpu->dtdsc_dirty == NULL)
1309 			continue;
1310 
1311 		/*
1312 		 * If the clean list is non-NULL, then we're not going to do
1313 		 * any work for this CPU -- it means that there has not been
1314 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1315 		 * since the last time we cleaned house.
1316 		 */
1317 		if (dcpu->dtdsc_clean != NULL)
1318 			continue;
1319 
1320 		work = 1;
1321 
1322 		/*
1323 		 * Atomically move the dirty list aside.
1324 		 */
1325 		do {
1326 			dirty = dcpu->dtdsc_dirty;
1327 
1328 			/*
1329 			 * Before we zap the dirty list, set the rinsing list.
1330 			 * (This allows for a potential assertion in
1331 			 * dtrace_dynvar():  if a free dynamic variable appears
1332 			 * on a hash chain, either the dirty list or the
1333 			 * rinsing list for some CPU must be non-NULL.)
1334 			 */
1335 			dcpu->dtdsc_rinsing = dirty;
1336 			dtrace_membar_producer();
1337 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1338 		    dirty, NULL) != dirty);
1339 	}
1340 
1341 	if (!work) {
1342 		/*
1343 		 * We have no work to do; we can simply return.
1344 		 */
1345 		return;
1346 	}
1347 
1348 	dtrace_sync();
1349 
1350 	for (i = 0; i < NCPU; i++) {
1351 		dcpu = &dstate->dtds_percpu[i];
1352 
1353 		if (dcpu->dtdsc_rinsing == NULL)
1354 			continue;
1355 
1356 		/*
1357 		 * We are now guaranteed that no hash chain contains a pointer
1358 		 * into this dirty list; we can make it clean.
1359 		 */
1360 		ASSERT(dcpu->dtdsc_clean == NULL);
1361 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1362 		dcpu->dtdsc_rinsing = NULL;
1363 	}
1364 
1365 	/*
1366 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1367 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1368 	 * This prevents a race whereby a CPU incorrectly decides that
1369 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1370 	 * after dtrace_dynvar_clean() has completed.
1371 	 */
1372 	dtrace_sync();
1373 
1374 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1375 }
1376 
1377 /*
1378  * Depending on the value of the op parameter, this function looks-up,
1379  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1380  * allocation is requested, this function will return a pointer to a
1381  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1382  * variable can be allocated.  If NULL is returned, the appropriate counter
1383  * will be incremented.
1384  */
1385 dtrace_dynvar_t *
1386 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1387     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1388     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1389 {
1390 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1391 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1392 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1393 	processorid_t me = curcpu, cpu = me;
1394 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1395 	size_t bucket, ksize;
1396 	size_t chunksize = dstate->dtds_chunksize;
1397 	uintptr_t kdata, lock, nstate;
1398 	uint_t i;
1399 
1400 	ASSERT(nkeys != 0);
1401 
1402 	/*
1403 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1404 	 * algorithm.  For the by-value portions, we perform the algorithm in
1405 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1406 	 * bit, and seems to have only a minute effect on distribution.  For
1407 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1408 	 * over each referenced byte.  It's painful to do this, but it's much
1409 	 * better than pathological hash distribution.  The efficacy of the
1410 	 * hashing algorithm (and a comparison with other algorithms) may be
1411 	 * found by running the ::dtrace_dynstat MDB dcmd.
1412 	 */
1413 	for (i = 0; i < nkeys; i++) {
1414 		if (key[i].dttk_size == 0) {
1415 			uint64_t val = key[i].dttk_value;
1416 
1417 			hashval += (val >> 48) & 0xffff;
1418 			hashval += (hashval << 10);
1419 			hashval ^= (hashval >> 6);
1420 
1421 			hashval += (val >> 32) & 0xffff;
1422 			hashval += (hashval << 10);
1423 			hashval ^= (hashval >> 6);
1424 
1425 			hashval += (val >> 16) & 0xffff;
1426 			hashval += (hashval << 10);
1427 			hashval ^= (hashval >> 6);
1428 
1429 			hashval += val & 0xffff;
1430 			hashval += (hashval << 10);
1431 			hashval ^= (hashval >> 6);
1432 		} else {
1433 			/*
1434 			 * This is incredibly painful, but it beats the hell
1435 			 * out of the alternative.
1436 			 */
1437 			uint64_t j, size = key[i].dttk_size;
1438 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1439 
1440 			if (!dtrace_canload(base, size, mstate, vstate))
1441 				break;
1442 
1443 			for (j = 0; j < size; j++) {
1444 				hashval += dtrace_load8(base + j);
1445 				hashval += (hashval << 10);
1446 				hashval ^= (hashval >> 6);
1447 			}
1448 		}
1449 	}
1450 
1451 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1452 		return (NULL);
1453 
1454 	hashval += (hashval << 3);
1455 	hashval ^= (hashval >> 11);
1456 	hashval += (hashval << 15);
1457 
1458 	/*
1459 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1460 	 * comes out to be one of our two sentinel hash values.  If this
1461 	 * actually happens, we set the hashval to be a value known to be a
1462 	 * non-sentinel value.
1463 	 */
1464 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1465 		hashval = DTRACE_DYNHASH_VALID;
1466 
1467 	/*
1468 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1469 	 * important here, tricks can be pulled to reduce it.  (However, it's
1470 	 * critical that hash collisions be kept to an absolute minimum;
1471 	 * they're much more painful than a divide.)  It's better to have a
1472 	 * solution that generates few collisions and still keeps things
1473 	 * relatively simple.
1474 	 */
1475 	bucket = hashval % dstate->dtds_hashsize;
1476 
1477 	if (op == DTRACE_DYNVAR_DEALLOC) {
1478 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1479 
1480 		for (;;) {
1481 			while ((lock = *lockp) & 1)
1482 				continue;
1483 
1484 			if (dtrace_casptr((volatile void *)lockp,
1485 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1486 				break;
1487 		}
1488 
1489 		dtrace_membar_producer();
1490 	}
1491 
1492 top:
1493 	prev = NULL;
1494 	lock = hash[bucket].dtdh_lock;
1495 
1496 	dtrace_membar_consumer();
1497 
1498 	start = hash[bucket].dtdh_chain;
1499 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1500 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1501 	    op != DTRACE_DYNVAR_DEALLOC));
1502 
1503 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1504 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1505 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1506 
1507 		if (dvar->dtdv_hashval != hashval) {
1508 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1509 				/*
1510 				 * We've reached the sink, and therefore the
1511 				 * end of the hash chain; we can kick out of
1512 				 * the loop knowing that we have seen a valid
1513 				 * snapshot of state.
1514 				 */
1515 				ASSERT(dvar->dtdv_next == NULL);
1516 				ASSERT(dvar == &dtrace_dynhash_sink);
1517 				break;
1518 			}
1519 
1520 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1521 				/*
1522 				 * We've gone off the rails:  somewhere along
1523 				 * the line, one of the members of this hash
1524 				 * chain was deleted.  Note that we could also
1525 				 * detect this by simply letting this loop run
1526 				 * to completion, as we would eventually hit
1527 				 * the end of the dirty list.  However, we
1528 				 * want to avoid running the length of the
1529 				 * dirty list unnecessarily (it might be quite
1530 				 * long), so we catch this as early as
1531 				 * possible by detecting the hash marker.  In
1532 				 * this case, we simply set dvar to NULL and
1533 				 * break; the conditional after the loop will
1534 				 * send us back to top.
1535 				 */
1536 				dvar = NULL;
1537 				break;
1538 			}
1539 
1540 			goto next;
1541 		}
1542 
1543 		if (dtuple->dtt_nkeys != nkeys)
1544 			goto next;
1545 
1546 		for (i = 0; i < nkeys; i++, dkey++) {
1547 			if (dkey->dttk_size != key[i].dttk_size)
1548 				goto next; /* size or type mismatch */
1549 
1550 			if (dkey->dttk_size != 0) {
1551 				if (dtrace_bcmp(
1552 				    (void *)(uintptr_t)key[i].dttk_value,
1553 				    (void *)(uintptr_t)dkey->dttk_value,
1554 				    dkey->dttk_size))
1555 					goto next;
1556 			} else {
1557 				if (dkey->dttk_value != key[i].dttk_value)
1558 					goto next;
1559 			}
1560 		}
1561 
1562 		if (op != DTRACE_DYNVAR_DEALLOC)
1563 			return (dvar);
1564 
1565 		ASSERT(dvar->dtdv_next == NULL ||
1566 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1567 
1568 		if (prev != NULL) {
1569 			ASSERT(hash[bucket].dtdh_chain != dvar);
1570 			ASSERT(start != dvar);
1571 			ASSERT(prev->dtdv_next == dvar);
1572 			prev->dtdv_next = dvar->dtdv_next;
1573 		} else {
1574 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1575 			    start, dvar->dtdv_next) != start) {
1576 				/*
1577 				 * We have failed to atomically swing the
1578 				 * hash table head pointer, presumably because
1579 				 * of a conflicting allocation on another CPU.
1580 				 * We need to reread the hash chain and try
1581 				 * again.
1582 				 */
1583 				goto top;
1584 			}
1585 		}
1586 
1587 		dtrace_membar_producer();
1588 
1589 		/*
1590 		 * Now set the hash value to indicate that it's free.
1591 		 */
1592 		ASSERT(hash[bucket].dtdh_chain != dvar);
1593 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1594 
1595 		dtrace_membar_producer();
1596 
1597 		/*
1598 		 * Set the next pointer to point at the dirty list, and
1599 		 * atomically swing the dirty pointer to the newly freed dvar.
1600 		 */
1601 		do {
1602 			next = dcpu->dtdsc_dirty;
1603 			dvar->dtdv_next = next;
1604 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1605 
1606 		/*
1607 		 * Finally, unlock this hash bucket.
1608 		 */
1609 		ASSERT(hash[bucket].dtdh_lock == lock);
1610 		ASSERT(lock & 1);
1611 		hash[bucket].dtdh_lock++;
1612 
1613 		return (NULL);
1614 next:
1615 		prev = dvar;
1616 		continue;
1617 	}
1618 
1619 	if (dvar == NULL) {
1620 		/*
1621 		 * If dvar is NULL, it is because we went off the rails:
1622 		 * one of the elements that we traversed in the hash chain
1623 		 * was deleted while we were traversing it.  In this case,
1624 		 * we assert that we aren't doing a dealloc (deallocs lock
1625 		 * the hash bucket to prevent themselves from racing with
1626 		 * one another), and retry the hash chain traversal.
1627 		 */
1628 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1629 		goto top;
1630 	}
1631 
1632 	if (op != DTRACE_DYNVAR_ALLOC) {
1633 		/*
1634 		 * If we are not to allocate a new variable, we want to
1635 		 * return NULL now.  Before we return, check that the value
1636 		 * of the lock word hasn't changed.  If it has, we may have
1637 		 * seen an inconsistent snapshot.
1638 		 */
1639 		if (op == DTRACE_DYNVAR_NOALLOC) {
1640 			if (hash[bucket].dtdh_lock != lock)
1641 				goto top;
1642 		} else {
1643 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1644 			ASSERT(hash[bucket].dtdh_lock == lock);
1645 			ASSERT(lock & 1);
1646 			hash[bucket].dtdh_lock++;
1647 		}
1648 
1649 		return (NULL);
1650 	}
1651 
1652 	/*
1653 	 * We need to allocate a new dynamic variable.  The size we need is the
1654 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1655 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1656 	 * the size of any referred-to data (dsize).  We then round the final
1657 	 * size up to the chunksize for allocation.
1658 	 */
1659 	for (ksize = 0, i = 0; i < nkeys; i++)
1660 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1661 
1662 	/*
1663 	 * This should be pretty much impossible, but could happen if, say,
1664 	 * strange DIF specified the tuple.  Ideally, this should be an
1665 	 * assertion and not an error condition -- but that requires that the
1666 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1667 	 * bullet-proof.  (That is, it must not be able to be fooled by
1668 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1669 	 * solving this would presumably not amount to solving the Halting
1670 	 * Problem -- but it still seems awfully hard.
1671 	 */
1672 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1673 	    ksize + dsize > chunksize) {
1674 		dcpu->dtdsc_drops++;
1675 		return (NULL);
1676 	}
1677 
1678 	nstate = DTRACE_DSTATE_EMPTY;
1679 
1680 	do {
1681 retry:
1682 		free = dcpu->dtdsc_free;
1683 
1684 		if (free == NULL) {
1685 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1686 			void *rval;
1687 
1688 			if (clean == NULL) {
1689 				/*
1690 				 * We're out of dynamic variable space on
1691 				 * this CPU.  Unless we have tried all CPUs,
1692 				 * we'll try to allocate from a different
1693 				 * CPU.
1694 				 */
1695 				switch (dstate->dtds_state) {
1696 				case DTRACE_DSTATE_CLEAN: {
1697 					void *sp = &dstate->dtds_state;
1698 
1699 					if (++cpu >= NCPU)
1700 						cpu = 0;
1701 
1702 					if (dcpu->dtdsc_dirty != NULL &&
1703 					    nstate == DTRACE_DSTATE_EMPTY)
1704 						nstate = DTRACE_DSTATE_DIRTY;
1705 
1706 					if (dcpu->dtdsc_rinsing != NULL)
1707 						nstate = DTRACE_DSTATE_RINSING;
1708 
1709 					dcpu = &dstate->dtds_percpu[cpu];
1710 
1711 					if (cpu != me)
1712 						goto retry;
1713 
1714 					(void) dtrace_cas32(sp,
1715 					    DTRACE_DSTATE_CLEAN, nstate);
1716 
1717 					/*
1718 					 * To increment the correct bean
1719 					 * counter, take another lap.
1720 					 */
1721 					goto retry;
1722 				}
1723 
1724 				case DTRACE_DSTATE_DIRTY:
1725 					dcpu->dtdsc_dirty_drops++;
1726 					break;
1727 
1728 				case DTRACE_DSTATE_RINSING:
1729 					dcpu->dtdsc_rinsing_drops++;
1730 					break;
1731 
1732 				case DTRACE_DSTATE_EMPTY:
1733 					dcpu->dtdsc_drops++;
1734 					break;
1735 				}
1736 
1737 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1738 				return (NULL);
1739 			}
1740 
1741 			/*
1742 			 * The clean list appears to be non-empty.  We want to
1743 			 * move the clean list to the free list; we start by
1744 			 * moving the clean pointer aside.
1745 			 */
1746 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1747 			    clean, NULL) != clean) {
1748 				/*
1749 				 * We are in one of two situations:
1750 				 *
1751 				 *  (a)	The clean list was switched to the
1752 				 *	free list by another CPU.
1753 				 *
1754 				 *  (b)	The clean list was added to by the
1755 				 *	cleansing cyclic.
1756 				 *
1757 				 * In either of these situations, we can
1758 				 * just reattempt the free list allocation.
1759 				 */
1760 				goto retry;
1761 			}
1762 
1763 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1764 
1765 			/*
1766 			 * Now we'll move the clean list to the free list.
1767 			 * It's impossible for this to fail:  the only way
1768 			 * the free list can be updated is through this
1769 			 * code path, and only one CPU can own the clean list.
1770 			 * Thus, it would only be possible for this to fail if
1771 			 * this code were racing with dtrace_dynvar_clean().
1772 			 * (That is, if dtrace_dynvar_clean() updated the clean
1773 			 * list, and we ended up racing to update the free
1774 			 * list.)  This race is prevented by the dtrace_sync()
1775 			 * in dtrace_dynvar_clean() -- which flushes the
1776 			 * owners of the clean lists out before resetting
1777 			 * the clean lists.
1778 			 */
1779 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1780 			ASSERT(rval == NULL);
1781 			goto retry;
1782 		}
1783 
1784 		dvar = free;
1785 		new_free = dvar->dtdv_next;
1786 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1787 
1788 	/*
1789 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1790 	 * tuple array and copy any referenced key data into the data space
1791 	 * following the tuple array.  As we do this, we relocate dttk_value
1792 	 * in the final tuple to point to the key data address in the chunk.
1793 	 */
1794 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1795 	dvar->dtdv_data = (void *)(kdata + ksize);
1796 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1797 
1798 	for (i = 0; i < nkeys; i++) {
1799 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1800 		size_t kesize = key[i].dttk_size;
1801 
1802 		if (kesize != 0) {
1803 			dtrace_bcopy(
1804 			    (const void *)(uintptr_t)key[i].dttk_value,
1805 			    (void *)kdata, kesize);
1806 			dkey->dttk_value = kdata;
1807 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1808 		} else {
1809 			dkey->dttk_value = key[i].dttk_value;
1810 		}
1811 
1812 		dkey->dttk_size = kesize;
1813 	}
1814 
1815 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1816 	dvar->dtdv_hashval = hashval;
1817 	dvar->dtdv_next = start;
1818 
1819 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1820 		return (dvar);
1821 
1822 	/*
1823 	 * The cas has failed.  Either another CPU is adding an element to
1824 	 * this hash chain, or another CPU is deleting an element from this
1825 	 * hash chain.  The simplest way to deal with both of these cases
1826 	 * (though not necessarily the most efficient) is to free our
1827 	 * allocated block and tail-call ourselves.  Note that the free is
1828 	 * to the dirty list and _not_ to the free list.  This is to prevent
1829 	 * races with allocators, above.
1830 	 */
1831 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1832 
1833 	dtrace_membar_producer();
1834 
1835 	do {
1836 		free = dcpu->dtdsc_dirty;
1837 		dvar->dtdv_next = free;
1838 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1839 
1840 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1841 }
1842 
1843 /*ARGSUSED*/
1844 static void
1845 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1846 {
1847 	if ((int64_t)nval < (int64_t)*oval)
1848 		*oval = nval;
1849 }
1850 
1851 /*ARGSUSED*/
1852 static void
1853 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1854 {
1855 	if ((int64_t)nval > (int64_t)*oval)
1856 		*oval = nval;
1857 }
1858 
1859 static void
1860 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1861 {
1862 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1863 	int64_t val = (int64_t)nval;
1864 
1865 	if (val < 0) {
1866 		for (i = 0; i < zero; i++) {
1867 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1868 				quanta[i] += incr;
1869 				return;
1870 			}
1871 		}
1872 	} else {
1873 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1874 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1875 				quanta[i - 1] += incr;
1876 				return;
1877 			}
1878 		}
1879 
1880 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1881 		return;
1882 	}
1883 
1884 	ASSERT(0);
1885 }
1886 
1887 static void
1888 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1889 {
1890 	uint64_t arg = *lquanta++;
1891 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1892 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1893 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1894 	int32_t val = (int32_t)nval, level;
1895 
1896 	ASSERT(step != 0);
1897 	ASSERT(levels != 0);
1898 
1899 	if (val < base) {
1900 		/*
1901 		 * This is an underflow.
1902 		 */
1903 		lquanta[0] += incr;
1904 		return;
1905 	}
1906 
1907 	level = (val - base) / step;
1908 
1909 	if (level < levels) {
1910 		lquanta[level + 1] += incr;
1911 		return;
1912 	}
1913 
1914 	/*
1915 	 * This is an overflow.
1916 	 */
1917 	lquanta[levels + 1] += incr;
1918 }
1919 
1920 static int
1921 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1922     uint16_t high, uint16_t nsteps, int64_t value)
1923 {
1924 	int64_t this = 1, last, next;
1925 	int base = 1, order;
1926 
1927 	ASSERT(factor <= nsteps);
1928 	ASSERT(nsteps % factor == 0);
1929 
1930 	for (order = 0; order < low; order++)
1931 		this *= factor;
1932 
1933 	/*
1934 	 * If our value is less than our factor taken to the power of the
1935 	 * low order of magnitude, it goes into the zeroth bucket.
1936 	 */
1937 	if (value < (last = this))
1938 		return (0);
1939 
1940 	for (this *= factor; order <= high; order++) {
1941 		int nbuckets = this > nsteps ? nsteps : this;
1942 
1943 		if ((next = this * factor) < this) {
1944 			/*
1945 			 * We should not generally get log/linear quantizations
1946 			 * with a high magnitude that allows 64-bits to
1947 			 * overflow, but we nonetheless protect against this
1948 			 * by explicitly checking for overflow, and clamping
1949 			 * our value accordingly.
1950 			 */
1951 			value = this - 1;
1952 		}
1953 
1954 		if (value < this) {
1955 			/*
1956 			 * If our value lies within this order of magnitude,
1957 			 * determine its position by taking the offset within
1958 			 * the order of magnitude, dividing by the bucket
1959 			 * width, and adding to our (accumulated) base.
1960 			 */
1961 			return (base + (value - last) / (this / nbuckets));
1962 		}
1963 
1964 		base += nbuckets - (nbuckets / factor);
1965 		last = this;
1966 		this = next;
1967 	}
1968 
1969 	/*
1970 	 * Our value is greater than or equal to our factor taken to the
1971 	 * power of one plus the high magnitude -- return the top bucket.
1972 	 */
1973 	return (base);
1974 }
1975 
1976 static void
1977 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1978 {
1979 	uint64_t arg = *llquanta++;
1980 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1981 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1982 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1983 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1984 
1985 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1986 	    low, high, nsteps, nval)] += incr;
1987 }
1988 
1989 /*ARGSUSED*/
1990 static void
1991 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1992 {
1993 	data[0]++;
1994 	data[1] += nval;
1995 }
1996 
1997 /*ARGSUSED*/
1998 static void
1999 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2000 {
2001 	int64_t snval = (int64_t)nval;
2002 	uint64_t tmp[2];
2003 
2004 	data[0]++;
2005 	data[1] += nval;
2006 
2007 	/*
2008 	 * What we want to say here is:
2009 	 *
2010 	 * data[2] += nval * nval;
2011 	 *
2012 	 * But given that nval is 64-bit, we could easily overflow, so
2013 	 * we do this as 128-bit arithmetic.
2014 	 */
2015 	if (snval < 0)
2016 		snval = -snval;
2017 
2018 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2019 	dtrace_add_128(data + 2, tmp, data + 2);
2020 }
2021 
2022 /*ARGSUSED*/
2023 static void
2024 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2025 {
2026 	*oval = *oval + 1;
2027 }
2028 
2029 /*ARGSUSED*/
2030 static void
2031 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2032 {
2033 	*oval += nval;
2034 }
2035 
2036 /*
2037  * Aggregate given the tuple in the principal data buffer, and the aggregating
2038  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2039  * buffer is specified as the buf parameter.  This routine does not return
2040  * failure; if there is no space in the aggregation buffer, the data will be
2041  * dropped, and a corresponding counter incremented.
2042  */
2043 static void
2044 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2045     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2046 {
2047 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2048 	uint32_t i, ndx, size, fsize;
2049 	uint32_t align = sizeof (uint64_t) - 1;
2050 	dtrace_aggbuffer_t *agb;
2051 	dtrace_aggkey_t *key;
2052 	uint32_t hashval = 0, limit, isstr;
2053 	caddr_t tomax, data, kdata;
2054 	dtrace_actkind_t action;
2055 	dtrace_action_t *act;
2056 	uintptr_t offs;
2057 
2058 	if (buf == NULL)
2059 		return;
2060 
2061 	if (!agg->dtag_hasarg) {
2062 		/*
2063 		 * Currently, only quantize() and lquantize() take additional
2064 		 * arguments, and they have the same semantics:  an increment
2065 		 * value that defaults to 1 when not present.  If additional
2066 		 * aggregating actions take arguments, the setting of the
2067 		 * default argument value will presumably have to become more
2068 		 * sophisticated...
2069 		 */
2070 		arg = 1;
2071 	}
2072 
2073 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2074 	size = rec->dtrd_offset - agg->dtag_base;
2075 	fsize = size + rec->dtrd_size;
2076 
2077 	ASSERT(dbuf->dtb_tomax != NULL);
2078 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2079 
2080 	if ((tomax = buf->dtb_tomax) == NULL) {
2081 		dtrace_buffer_drop(buf);
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * The metastructure is always at the bottom of the buffer.
2087 	 */
2088 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2089 	    sizeof (dtrace_aggbuffer_t));
2090 
2091 	if (buf->dtb_offset == 0) {
2092 		/*
2093 		 * We just kludge up approximately 1/8th of the size to be
2094 		 * buckets.  If this guess ends up being routinely
2095 		 * off-the-mark, we may need to dynamically readjust this
2096 		 * based on past performance.
2097 		 */
2098 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2099 
2100 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2101 		    (uintptr_t)tomax || hashsize == 0) {
2102 			/*
2103 			 * We've been given a ludicrously small buffer;
2104 			 * increment our drop count and leave.
2105 			 */
2106 			dtrace_buffer_drop(buf);
2107 			return;
2108 		}
2109 
2110 		/*
2111 		 * And now, a pathetic attempt to try to get a an odd (or
2112 		 * perchance, a prime) hash size for better hash distribution.
2113 		 */
2114 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2115 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2116 
2117 		agb->dtagb_hashsize = hashsize;
2118 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2119 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2120 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2121 
2122 		for (i = 0; i < agb->dtagb_hashsize; i++)
2123 			agb->dtagb_hash[i] = NULL;
2124 	}
2125 
2126 	ASSERT(agg->dtag_first != NULL);
2127 	ASSERT(agg->dtag_first->dta_intuple);
2128 
2129 	/*
2130 	 * Calculate the hash value based on the key.  Note that we _don't_
2131 	 * include the aggid in the hashing (but we will store it as part of
2132 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2133 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2134 	 * gets good distribution in practice.  The efficacy of the hashing
2135 	 * algorithm (and a comparison with other algorithms) may be found by
2136 	 * running the ::dtrace_aggstat MDB dcmd.
2137 	 */
2138 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2139 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2140 		limit = i + act->dta_rec.dtrd_size;
2141 		ASSERT(limit <= size);
2142 		isstr = DTRACEACT_ISSTRING(act);
2143 
2144 		for (; i < limit; i++) {
2145 			hashval += data[i];
2146 			hashval += (hashval << 10);
2147 			hashval ^= (hashval >> 6);
2148 
2149 			if (isstr && data[i] == '\0')
2150 				break;
2151 		}
2152 	}
2153 
2154 	hashval += (hashval << 3);
2155 	hashval ^= (hashval >> 11);
2156 	hashval += (hashval << 15);
2157 
2158 	/*
2159 	 * Yes, the divide here is expensive -- but it's generally the least
2160 	 * of the performance issues given the amount of data that we iterate
2161 	 * over to compute hash values, compare data, etc.
2162 	 */
2163 	ndx = hashval % agb->dtagb_hashsize;
2164 
2165 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2166 		ASSERT((caddr_t)key >= tomax);
2167 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2168 
2169 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2170 			continue;
2171 
2172 		kdata = key->dtak_data;
2173 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2174 
2175 		for (act = agg->dtag_first; act->dta_intuple;
2176 		    act = act->dta_next) {
2177 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2178 			limit = i + act->dta_rec.dtrd_size;
2179 			ASSERT(limit <= size);
2180 			isstr = DTRACEACT_ISSTRING(act);
2181 
2182 			for (; i < limit; i++) {
2183 				if (kdata[i] != data[i])
2184 					goto next;
2185 
2186 				if (isstr && data[i] == '\0')
2187 					break;
2188 			}
2189 		}
2190 
2191 		if (action != key->dtak_action) {
2192 			/*
2193 			 * We are aggregating on the same value in the same
2194 			 * aggregation with two different aggregating actions.
2195 			 * (This should have been picked up in the compiler,
2196 			 * so we may be dealing with errant or devious DIF.)
2197 			 * This is an error condition; we indicate as much,
2198 			 * and return.
2199 			 */
2200 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2201 			return;
2202 		}
2203 
2204 		/*
2205 		 * This is a hit:  we need to apply the aggregator to
2206 		 * the value at this key.
2207 		 */
2208 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2209 		return;
2210 next:
2211 		continue;
2212 	}
2213 
2214 	/*
2215 	 * We didn't find it.  We need to allocate some zero-filled space,
2216 	 * link it into the hash table appropriately, and apply the aggregator
2217 	 * to the (zero-filled) value.
2218 	 */
2219 	offs = buf->dtb_offset;
2220 	while (offs & (align - 1))
2221 		offs += sizeof (uint32_t);
2222 
2223 	/*
2224 	 * If we don't have enough room to both allocate a new key _and_
2225 	 * its associated data, increment the drop count and return.
2226 	 */
2227 	if ((uintptr_t)tomax + offs + fsize >
2228 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2229 		dtrace_buffer_drop(buf);
2230 		return;
2231 	}
2232 
2233 	/*CONSTCOND*/
2234 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2235 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2236 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2237 
2238 	key->dtak_data = kdata = tomax + offs;
2239 	buf->dtb_offset = offs + fsize;
2240 
2241 	/*
2242 	 * Now copy the data across.
2243 	 */
2244 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2245 
2246 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2247 		kdata[i] = data[i];
2248 
2249 	/*
2250 	 * Because strings are not zeroed out by default, we need to iterate
2251 	 * looking for actions that store strings, and we need to explicitly
2252 	 * pad these strings out with zeroes.
2253 	 */
2254 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2255 		int nul;
2256 
2257 		if (!DTRACEACT_ISSTRING(act))
2258 			continue;
2259 
2260 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2261 		limit = i + act->dta_rec.dtrd_size;
2262 		ASSERT(limit <= size);
2263 
2264 		for (nul = 0; i < limit; i++) {
2265 			if (nul) {
2266 				kdata[i] = '\0';
2267 				continue;
2268 			}
2269 
2270 			if (data[i] != '\0')
2271 				continue;
2272 
2273 			nul = 1;
2274 		}
2275 	}
2276 
2277 	for (i = size; i < fsize; i++)
2278 		kdata[i] = 0;
2279 
2280 	key->dtak_hashval = hashval;
2281 	key->dtak_size = size;
2282 	key->dtak_action = action;
2283 	key->dtak_next = agb->dtagb_hash[ndx];
2284 	agb->dtagb_hash[ndx] = key;
2285 
2286 	/*
2287 	 * Finally, apply the aggregator.
2288 	 */
2289 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2290 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2291 }
2292 
2293 /*
2294  * Given consumer state, this routine finds a speculation in the INACTIVE
2295  * state and transitions it into the ACTIVE state.  If there is no speculation
2296  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2297  * incremented -- it is up to the caller to take appropriate action.
2298  */
2299 static int
2300 dtrace_speculation(dtrace_state_t *state)
2301 {
2302 	int i = 0;
2303 	dtrace_speculation_state_t current;
2304 	uint32_t *stat = &state->dts_speculations_unavail, count;
2305 
2306 	while (i < state->dts_nspeculations) {
2307 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2308 
2309 		current = spec->dtsp_state;
2310 
2311 		if (current != DTRACESPEC_INACTIVE) {
2312 			if (current == DTRACESPEC_COMMITTINGMANY ||
2313 			    current == DTRACESPEC_COMMITTING ||
2314 			    current == DTRACESPEC_DISCARDING)
2315 				stat = &state->dts_speculations_busy;
2316 			i++;
2317 			continue;
2318 		}
2319 
2320 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2321 		    current, DTRACESPEC_ACTIVE) == current)
2322 			return (i + 1);
2323 	}
2324 
2325 	/*
2326 	 * We couldn't find a speculation.  If we found as much as a single
2327 	 * busy speculation buffer, we'll attribute this failure as "busy"
2328 	 * instead of "unavail".
2329 	 */
2330 	do {
2331 		count = *stat;
2332 	} while (dtrace_cas32(stat, count, count + 1) != count);
2333 
2334 	return (0);
2335 }
2336 
2337 /*
2338  * This routine commits an active speculation.  If the specified speculation
2339  * is not in a valid state to perform a commit(), this routine will silently do
2340  * nothing.  The state of the specified speculation is transitioned according
2341  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2342  */
2343 static void
2344 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2345     dtrace_specid_t which)
2346 {
2347 	dtrace_speculation_t *spec;
2348 	dtrace_buffer_t *src, *dest;
2349 	uintptr_t daddr, saddr, dlimit, slimit;
2350 	dtrace_speculation_state_t current, new = 0;
2351 	intptr_t offs;
2352 	uint64_t timestamp;
2353 
2354 	if (which == 0)
2355 		return;
2356 
2357 	if (which > state->dts_nspeculations) {
2358 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2359 		return;
2360 	}
2361 
2362 	spec = &state->dts_speculations[which - 1];
2363 	src = &spec->dtsp_buffer[cpu];
2364 	dest = &state->dts_buffer[cpu];
2365 
2366 	do {
2367 		current = spec->dtsp_state;
2368 
2369 		if (current == DTRACESPEC_COMMITTINGMANY)
2370 			break;
2371 
2372 		switch (current) {
2373 		case DTRACESPEC_INACTIVE:
2374 		case DTRACESPEC_DISCARDING:
2375 			return;
2376 
2377 		case DTRACESPEC_COMMITTING:
2378 			/*
2379 			 * This is only possible if we are (a) commit()'ing
2380 			 * without having done a prior speculate() on this CPU
2381 			 * and (b) racing with another commit() on a different
2382 			 * CPU.  There's nothing to do -- we just assert that
2383 			 * our offset is 0.
2384 			 */
2385 			ASSERT(src->dtb_offset == 0);
2386 			return;
2387 
2388 		case DTRACESPEC_ACTIVE:
2389 			new = DTRACESPEC_COMMITTING;
2390 			break;
2391 
2392 		case DTRACESPEC_ACTIVEONE:
2393 			/*
2394 			 * This speculation is active on one CPU.  If our
2395 			 * buffer offset is non-zero, we know that the one CPU
2396 			 * must be us.  Otherwise, we are committing on a
2397 			 * different CPU from the speculate(), and we must
2398 			 * rely on being asynchronously cleaned.
2399 			 */
2400 			if (src->dtb_offset != 0) {
2401 				new = DTRACESPEC_COMMITTING;
2402 				break;
2403 			}
2404 			/*FALLTHROUGH*/
2405 
2406 		case DTRACESPEC_ACTIVEMANY:
2407 			new = DTRACESPEC_COMMITTINGMANY;
2408 			break;
2409 
2410 		default:
2411 			ASSERT(0);
2412 		}
2413 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2414 	    current, new) != current);
2415 
2416 	/*
2417 	 * We have set the state to indicate that we are committing this
2418 	 * speculation.  Now reserve the necessary space in the destination
2419 	 * buffer.
2420 	 */
2421 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2422 	    sizeof (uint64_t), state, NULL)) < 0) {
2423 		dtrace_buffer_drop(dest);
2424 		goto out;
2425 	}
2426 
2427 	/*
2428 	 * We have sufficient space to copy the speculative buffer into the
2429 	 * primary buffer.  First, modify the speculative buffer, filling
2430 	 * in the timestamp of all entries with the current time.  The data
2431 	 * must have the commit() time rather than the time it was traced,
2432 	 * so that all entries in the primary buffer are in timestamp order.
2433 	 */
2434 	timestamp = dtrace_gethrtime();
2435 	saddr = (uintptr_t)src->dtb_tomax;
2436 	slimit = saddr + src->dtb_offset;
2437 	while (saddr < slimit) {
2438 		size_t size;
2439 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2440 
2441 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2442 			saddr += sizeof (dtrace_epid_t);
2443 			continue;
2444 		}
2445 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2446 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2447 
2448 		ASSERT3U(saddr + size, <=, slimit);
2449 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2450 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2451 
2452 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2453 
2454 		saddr += size;
2455 	}
2456 
2457 	/*
2458 	 * Copy the buffer across.  (Note that this is a
2459 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2460 	 * a serious performance issue, a high-performance DTrace-specific
2461 	 * bcopy() should obviously be invented.)
2462 	 */
2463 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2464 	dlimit = daddr + src->dtb_offset;
2465 	saddr = (uintptr_t)src->dtb_tomax;
2466 
2467 	/*
2468 	 * First, the aligned portion.
2469 	 */
2470 	while (dlimit - daddr >= sizeof (uint64_t)) {
2471 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2472 
2473 		daddr += sizeof (uint64_t);
2474 		saddr += sizeof (uint64_t);
2475 	}
2476 
2477 	/*
2478 	 * Now any left-over bit...
2479 	 */
2480 	while (dlimit - daddr)
2481 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2482 
2483 	/*
2484 	 * Finally, commit the reserved space in the destination buffer.
2485 	 */
2486 	dest->dtb_offset = offs + src->dtb_offset;
2487 
2488 out:
2489 	/*
2490 	 * If we're lucky enough to be the only active CPU on this speculation
2491 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2492 	 */
2493 	if (current == DTRACESPEC_ACTIVE ||
2494 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2495 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2496 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2497 
2498 		ASSERT(rval == DTRACESPEC_COMMITTING);
2499 	}
2500 
2501 	src->dtb_offset = 0;
2502 	src->dtb_xamot_drops += src->dtb_drops;
2503 	src->dtb_drops = 0;
2504 }
2505 
2506 /*
2507  * This routine discards an active speculation.  If the specified speculation
2508  * is not in a valid state to perform a discard(), this routine will silently
2509  * do nothing.  The state of the specified speculation is transitioned
2510  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2511  */
2512 static void
2513 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2514     dtrace_specid_t which)
2515 {
2516 	dtrace_speculation_t *spec;
2517 	dtrace_speculation_state_t current, new = 0;
2518 	dtrace_buffer_t *buf;
2519 
2520 	if (which == 0)
2521 		return;
2522 
2523 	if (which > state->dts_nspeculations) {
2524 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2525 		return;
2526 	}
2527 
2528 	spec = &state->dts_speculations[which - 1];
2529 	buf = &spec->dtsp_buffer[cpu];
2530 
2531 	do {
2532 		current = spec->dtsp_state;
2533 
2534 		switch (current) {
2535 		case DTRACESPEC_INACTIVE:
2536 		case DTRACESPEC_COMMITTINGMANY:
2537 		case DTRACESPEC_COMMITTING:
2538 		case DTRACESPEC_DISCARDING:
2539 			return;
2540 
2541 		case DTRACESPEC_ACTIVE:
2542 		case DTRACESPEC_ACTIVEMANY:
2543 			new = DTRACESPEC_DISCARDING;
2544 			break;
2545 
2546 		case DTRACESPEC_ACTIVEONE:
2547 			if (buf->dtb_offset != 0) {
2548 				new = DTRACESPEC_INACTIVE;
2549 			} else {
2550 				new = DTRACESPEC_DISCARDING;
2551 			}
2552 			break;
2553 
2554 		default:
2555 			ASSERT(0);
2556 		}
2557 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2558 	    current, new) != current);
2559 
2560 	buf->dtb_offset = 0;
2561 	buf->dtb_drops = 0;
2562 }
2563 
2564 /*
2565  * Note:  not called from probe context.  This function is called
2566  * asynchronously from cross call context to clean any speculations that are
2567  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2568  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2569  * speculation.
2570  */
2571 static void
2572 dtrace_speculation_clean_here(dtrace_state_t *state)
2573 {
2574 	dtrace_icookie_t cookie;
2575 	processorid_t cpu = curcpu;
2576 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2577 	dtrace_specid_t i;
2578 
2579 	cookie = dtrace_interrupt_disable();
2580 
2581 	if (dest->dtb_tomax == NULL) {
2582 		dtrace_interrupt_enable(cookie);
2583 		return;
2584 	}
2585 
2586 	for (i = 0; i < state->dts_nspeculations; i++) {
2587 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2588 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2589 
2590 		if (src->dtb_tomax == NULL)
2591 			continue;
2592 
2593 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2594 			src->dtb_offset = 0;
2595 			continue;
2596 		}
2597 
2598 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2599 			continue;
2600 
2601 		if (src->dtb_offset == 0)
2602 			continue;
2603 
2604 		dtrace_speculation_commit(state, cpu, i + 1);
2605 	}
2606 
2607 	dtrace_interrupt_enable(cookie);
2608 }
2609 
2610 /*
2611  * Note:  not called from probe context.  This function is called
2612  * asynchronously (and at a regular interval) to clean any speculations that
2613  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2614  * is work to be done, it cross calls all CPUs to perform that work;
2615  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2616  * INACTIVE state until they have been cleaned by all CPUs.
2617  */
2618 static void
2619 dtrace_speculation_clean(dtrace_state_t *state)
2620 {
2621 	int work = 0, rv;
2622 	dtrace_specid_t i;
2623 
2624 	for (i = 0; i < state->dts_nspeculations; i++) {
2625 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2626 
2627 		ASSERT(!spec->dtsp_cleaning);
2628 
2629 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2630 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2631 			continue;
2632 
2633 		work++;
2634 		spec->dtsp_cleaning = 1;
2635 	}
2636 
2637 	if (!work)
2638 		return;
2639 
2640 	dtrace_xcall(DTRACE_CPUALL,
2641 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2642 
2643 	/*
2644 	 * We now know that all CPUs have committed or discarded their
2645 	 * speculation buffers, as appropriate.  We can now set the state
2646 	 * to inactive.
2647 	 */
2648 	for (i = 0; i < state->dts_nspeculations; i++) {
2649 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2650 		dtrace_speculation_state_t current, new;
2651 
2652 		if (!spec->dtsp_cleaning)
2653 			continue;
2654 
2655 		current = spec->dtsp_state;
2656 		ASSERT(current == DTRACESPEC_DISCARDING ||
2657 		    current == DTRACESPEC_COMMITTINGMANY);
2658 
2659 		new = DTRACESPEC_INACTIVE;
2660 
2661 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2662 		ASSERT(rv == current);
2663 		spec->dtsp_cleaning = 0;
2664 	}
2665 }
2666 
2667 /*
2668  * Called as part of a speculate() to get the speculative buffer associated
2669  * with a given speculation.  Returns NULL if the specified speculation is not
2670  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2671  * the active CPU is not the specified CPU -- the speculation will be
2672  * atomically transitioned into the ACTIVEMANY state.
2673  */
2674 static dtrace_buffer_t *
2675 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2676     dtrace_specid_t which)
2677 {
2678 	dtrace_speculation_t *spec;
2679 	dtrace_speculation_state_t current, new = 0;
2680 	dtrace_buffer_t *buf;
2681 
2682 	if (which == 0)
2683 		return (NULL);
2684 
2685 	if (which > state->dts_nspeculations) {
2686 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2687 		return (NULL);
2688 	}
2689 
2690 	spec = &state->dts_speculations[which - 1];
2691 	buf = &spec->dtsp_buffer[cpuid];
2692 
2693 	do {
2694 		current = spec->dtsp_state;
2695 
2696 		switch (current) {
2697 		case DTRACESPEC_INACTIVE:
2698 		case DTRACESPEC_COMMITTINGMANY:
2699 		case DTRACESPEC_DISCARDING:
2700 			return (NULL);
2701 
2702 		case DTRACESPEC_COMMITTING:
2703 			ASSERT(buf->dtb_offset == 0);
2704 			return (NULL);
2705 
2706 		case DTRACESPEC_ACTIVEONE:
2707 			/*
2708 			 * This speculation is currently active on one CPU.
2709 			 * Check the offset in the buffer; if it's non-zero,
2710 			 * that CPU must be us (and we leave the state alone).
2711 			 * If it's zero, assume that we're starting on a new
2712 			 * CPU -- and change the state to indicate that the
2713 			 * speculation is active on more than one CPU.
2714 			 */
2715 			if (buf->dtb_offset != 0)
2716 				return (buf);
2717 
2718 			new = DTRACESPEC_ACTIVEMANY;
2719 			break;
2720 
2721 		case DTRACESPEC_ACTIVEMANY:
2722 			return (buf);
2723 
2724 		case DTRACESPEC_ACTIVE:
2725 			new = DTRACESPEC_ACTIVEONE;
2726 			break;
2727 
2728 		default:
2729 			ASSERT(0);
2730 		}
2731 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2732 	    current, new) != current);
2733 
2734 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2735 	return (buf);
2736 }
2737 
2738 /*
2739  * Return a string.  In the event that the user lacks the privilege to access
2740  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2741  * don't fail access checking.
2742  *
2743  * dtrace_dif_variable() uses this routine as a helper for various
2744  * builtin values such as 'execname' and 'probefunc.'
2745  */
2746 uintptr_t
2747 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2748     dtrace_mstate_t *mstate)
2749 {
2750 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2751 	uintptr_t ret;
2752 	size_t strsz;
2753 
2754 	/*
2755 	 * The easy case: this probe is allowed to read all of memory, so
2756 	 * we can just return this as a vanilla pointer.
2757 	 */
2758 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2759 		return (addr);
2760 
2761 	/*
2762 	 * This is the tougher case: we copy the string in question from
2763 	 * kernel memory into scratch memory and return it that way: this
2764 	 * ensures that we won't trip up when access checking tests the
2765 	 * BYREF return value.
2766 	 */
2767 	strsz = dtrace_strlen((char *)addr, size) + 1;
2768 
2769 	if (mstate->dtms_scratch_ptr + strsz >
2770 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2771 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2772 		return (0);
2773 	}
2774 
2775 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2776 	    strsz);
2777 	ret = mstate->dtms_scratch_ptr;
2778 	mstate->dtms_scratch_ptr += strsz;
2779 	return (ret);
2780 }
2781 
2782 /*
2783  * Return a string from a memoy address which is known to have one or
2784  * more concatenated, individually zero terminated, sub-strings.
2785  * In the event that the user lacks the privilege to access
2786  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2787  * don't fail access checking.
2788  *
2789  * dtrace_dif_variable() uses this routine as a helper for various
2790  * builtin values such as 'execargs'.
2791  */
2792 static uintptr_t
2793 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2794     dtrace_mstate_t *mstate)
2795 {
2796 	char *p;
2797 	size_t i;
2798 	uintptr_t ret;
2799 
2800 	if (mstate->dtms_scratch_ptr + strsz >
2801 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2802 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2803 		return (0);
2804 	}
2805 
2806 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2807 	    strsz);
2808 
2809 	/* Replace sub-string termination characters with a space. */
2810 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2811 	    p++, i++)
2812 		if (*p == '\0')
2813 			*p = ' ';
2814 
2815 	ret = mstate->dtms_scratch_ptr;
2816 	mstate->dtms_scratch_ptr += strsz;
2817 	return (ret);
2818 }
2819 
2820 /*
2821  * This function implements the DIF emulator's variable lookups.  The emulator
2822  * passes a reserved variable identifier and optional built-in array index.
2823  */
2824 static uint64_t
2825 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2826     uint64_t ndx)
2827 {
2828 	/*
2829 	 * If we're accessing one of the uncached arguments, we'll turn this
2830 	 * into a reference in the args array.
2831 	 */
2832 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2833 		ndx = v - DIF_VAR_ARG0;
2834 		v = DIF_VAR_ARGS;
2835 	}
2836 
2837 	switch (v) {
2838 	case DIF_VAR_ARGS:
2839 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2840 		if (ndx >= sizeof (mstate->dtms_arg) /
2841 		    sizeof (mstate->dtms_arg[0])) {
2842 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2843 			dtrace_provider_t *pv;
2844 			uint64_t val;
2845 
2846 			pv = mstate->dtms_probe->dtpr_provider;
2847 			if (pv->dtpv_pops.dtps_getargval != NULL)
2848 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2849 				    mstate->dtms_probe->dtpr_id,
2850 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2851 			else
2852 				val = dtrace_getarg(ndx, aframes);
2853 
2854 			/*
2855 			 * This is regrettably required to keep the compiler
2856 			 * from tail-optimizing the call to dtrace_getarg().
2857 			 * The condition always evaluates to true, but the
2858 			 * compiler has no way of figuring that out a priori.
2859 			 * (None of this would be necessary if the compiler
2860 			 * could be relied upon to _always_ tail-optimize
2861 			 * the call to dtrace_getarg() -- but it can't.)
2862 			 */
2863 			if (mstate->dtms_probe != NULL)
2864 				return (val);
2865 
2866 			ASSERT(0);
2867 		}
2868 
2869 		return (mstate->dtms_arg[ndx]);
2870 
2871 #if defined(sun)
2872 	case DIF_VAR_UREGS: {
2873 		klwp_t *lwp;
2874 
2875 		if (!dtrace_priv_proc(state))
2876 			return (0);
2877 
2878 		if ((lwp = curthread->t_lwp) == NULL) {
2879 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2880 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2881 			return (0);
2882 		}
2883 
2884 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2885 		return (0);
2886 	}
2887 #else
2888 	case DIF_VAR_UREGS: {
2889 		struct trapframe *tframe;
2890 
2891 		if (!dtrace_priv_proc(state))
2892 			return (0);
2893 
2894 		if ((tframe = curthread->td_frame) == NULL) {
2895 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2896 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2897 			return (0);
2898 		}
2899 
2900 		return (dtrace_getreg(tframe, ndx));
2901 	}
2902 #endif
2903 
2904 	case DIF_VAR_CURTHREAD:
2905 		if (!dtrace_priv_kernel(state))
2906 			return (0);
2907 		return ((uint64_t)(uintptr_t)curthread);
2908 
2909 	case DIF_VAR_TIMESTAMP:
2910 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2911 			mstate->dtms_timestamp = dtrace_gethrtime();
2912 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2913 		}
2914 		return (mstate->dtms_timestamp);
2915 
2916 	case DIF_VAR_VTIMESTAMP:
2917 		ASSERT(dtrace_vtime_references != 0);
2918 		return (curthread->t_dtrace_vtime);
2919 
2920 	case DIF_VAR_WALLTIMESTAMP:
2921 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2922 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2923 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2924 		}
2925 		return (mstate->dtms_walltimestamp);
2926 
2927 #if defined(sun)
2928 	case DIF_VAR_IPL:
2929 		if (!dtrace_priv_kernel(state))
2930 			return (0);
2931 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2932 			mstate->dtms_ipl = dtrace_getipl();
2933 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2934 		}
2935 		return (mstate->dtms_ipl);
2936 #endif
2937 
2938 	case DIF_VAR_EPID:
2939 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2940 		return (mstate->dtms_epid);
2941 
2942 	case DIF_VAR_ID:
2943 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2944 		return (mstate->dtms_probe->dtpr_id);
2945 
2946 	case DIF_VAR_STACKDEPTH:
2947 		if (!dtrace_priv_kernel(state))
2948 			return (0);
2949 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2950 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2951 
2952 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2953 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2954 		}
2955 		return (mstate->dtms_stackdepth);
2956 
2957 	case DIF_VAR_USTACKDEPTH:
2958 		if (!dtrace_priv_proc(state))
2959 			return (0);
2960 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2961 			/*
2962 			 * See comment in DIF_VAR_PID.
2963 			 */
2964 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2965 			    CPU_ON_INTR(CPU)) {
2966 				mstate->dtms_ustackdepth = 0;
2967 			} else {
2968 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2969 				mstate->dtms_ustackdepth =
2970 				    dtrace_getustackdepth();
2971 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2972 			}
2973 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2974 		}
2975 		return (mstate->dtms_ustackdepth);
2976 
2977 	case DIF_VAR_CALLER:
2978 		if (!dtrace_priv_kernel(state))
2979 			return (0);
2980 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2981 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2982 
2983 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2984 				/*
2985 				 * If this is an unanchored probe, we are
2986 				 * required to go through the slow path:
2987 				 * dtrace_caller() only guarantees correct
2988 				 * results for anchored probes.
2989 				 */
2990 				pc_t caller[2] = {0, 0};
2991 
2992 				dtrace_getpcstack(caller, 2, aframes,
2993 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2994 				mstate->dtms_caller = caller[1];
2995 			} else if ((mstate->dtms_caller =
2996 			    dtrace_caller(aframes)) == -1) {
2997 				/*
2998 				 * We have failed to do this the quick way;
2999 				 * we must resort to the slower approach of
3000 				 * calling dtrace_getpcstack().
3001 				 */
3002 				pc_t caller = 0;
3003 
3004 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3005 				mstate->dtms_caller = caller;
3006 			}
3007 
3008 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3009 		}
3010 		return (mstate->dtms_caller);
3011 
3012 	case DIF_VAR_UCALLER:
3013 		if (!dtrace_priv_proc(state))
3014 			return (0);
3015 
3016 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3017 			uint64_t ustack[3];
3018 
3019 			/*
3020 			 * dtrace_getupcstack() fills in the first uint64_t
3021 			 * with the current PID.  The second uint64_t will
3022 			 * be the program counter at user-level.  The third
3023 			 * uint64_t will contain the caller, which is what
3024 			 * we're after.
3025 			 */
3026 			ustack[2] = 0;
3027 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3028 			dtrace_getupcstack(ustack, 3);
3029 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3030 			mstate->dtms_ucaller = ustack[2];
3031 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3032 		}
3033 
3034 		return (mstate->dtms_ucaller);
3035 
3036 	case DIF_VAR_PROBEPROV:
3037 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3038 		return (dtrace_dif_varstr(
3039 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3040 		    state, mstate));
3041 
3042 	case DIF_VAR_PROBEMOD:
3043 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3044 		return (dtrace_dif_varstr(
3045 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3046 		    state, mstate));
3047 
3048 	case DIF_VAR_PROBEFUNC:
3049 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3050 		return (dtrace_dif_varstr(
3051 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3052 		    state, mstate));
3053 
3054 	case DIF_VAR_PROBENAME:
3055 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3056 		return (dtrace_dif_varstr(
3057 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3058 		    state, mstate));
3059 
3060 	case DIF_VAR_PID:
3061 		if (!dtrace_priv_proc(state))
3062 			return (0);
3063 
3064 #if defined(sun)
3065 		/*
3066 		 * Note that we are assuming that an unanchored probe is
3067 		 * always due to a high-level interrupt.  (And we're assuming
3068 		 * that there is only a single high level interrupt.)
3069 		 */
3070 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3071 			return (pid0.pid_id);
3072 
3073 		/*
3074 		 * It is always safe to dereference one's own t_procp pointer:
3075 		 * it always points to a valid, allocated proc structure.
3076 		 * Further, it is always safe to dereference the p_pidp member
3077 		 * of one's own proc structure.  (These are truisms becuase
3078 		 * threads and processes don't clean up their own state --
3079 		 * they leave that task to whomever reaps them.)
3080 		 */
3081 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3082 #else
3083 		return ((uint64_t)curproc->p_pid);
3084 #endif
3085 
3086 	case DIF_VAR_PPID:
3087 		if (!dtrace_priv_proc(state))
3088 			return (0);
3089 
3090 #if defined(sun)
3091 		/*
3092 		 * See comment in DIF_VAR_PID.
3093 		 */
3094 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3095 			return (pid0.pid_id);
3096 
3097 		/*
3098 		 * It is always safe to dereference one's own t_procp pointer:
3099 		 * it always points to a valid, allocated proc structure.
3100 		 * (This is true because threads don't clean up their own
3101 		 * state -- they leave that task to whomever reaps them.)
3102 		 */
3103 		return ((uint64_t)curthread->t_procp->p_ppid);
3104 #else
3105 		return ((uint64_t)curproc->p_pptr->p_pid);
3106 #endif
3107 
3108 	case DIF_VAR_TID:
3109 #if defined(sun)
3110 		/*
3111 		 * See comment in DIF_VAR_PID.
3112 		 */
3113 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3114 			return (0);
3115 #endif
3116 
3117 		return ((uint64_t)curthread->t_tid);
3118 
3119 	case DIF_VAR_EXECARGS: {
3120 		struct pargs *p_args = curthread->td_proc->p_args;
3121 
3122 		if (p_args == NULL)
3123 			return(0);
3124 
3125 		return (dtrace_dif_varstrz(
3126 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3127 	}
3128 
3129 	case DIF_VAR_EXECNAME:
3130 #if defined(sun)
3131 		if (!dtrace_priv_proc(state))
3132 			return (0);
3133 
3134 		/*
3135 		 * See comment in DIF_VAR_PID.
3136 		 */
3137 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3138 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3139 
3140 		/*
3141 		 * It is always safe to dereference one's own t_procp pointer:
3142 		 * it always points to a valid, allocated proc structure.
3143 		 * (This is true because threads don't clean up their own
3144 		 * state -- they leave that task to whomever reaps them.)
3145 		 */
3146 		return (dtrace_dif_varstr(
3147 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3148 		    state, mstate));
3149 #else
3150 		return (dtrace_dif_varstr(
3151 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3152 #endif
3153 
3154 	case DIF_VAR_ZONENAME:
3155 #if defined(sun)
3156 		if (!dtrace_priv_proc(state))
3157 			return (0);
3158 
3159 		/*
3160 		 * See comment in DIF_VAR_PID.
3161 		 */
3162 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3163 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3164 
3165 		/*
3166 		 * It is always safe to dereference one's own t_procp pointer:
3167 		 * it always points to a valid, allocated proc structure.
3168 		 * (This is true because threads don't clean up their own
3169 		 * state -- they leave that task to whomever reaps them.)
3170 		 */
3171 		return (dtrace_dif_varstr(
3172 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3173 		    state, mstate));
3174 #else
3175 		return (0);
3176 #endif
3177 
3178 	case DIF_VAR_UID:
3179 		if (!dtrace_priv_proc(state))
3180 			return (0);
3181 
3182 #if defined(sun)
3183 		/*
3184 		 * See comment in DIF_VAR_PID.
3185 		 */
3186 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3187 			return ((uint64_t)p0.p_cred->cr_uid);
3188 #endif
3189 
3190 		/*
3191 		 * It is always safe to dereference one's own t_procp pointer:
3192 		 * it always points to a valid, allocated proc structure.
3193 		 * (This is true because threads don't clean up their own
3194 		 * state -- they leave that task to whomever reaps them.)
3195 		 *
3196 		 * Additionally, it is safe to dereference one's own process
3197 		 * credential, since this is never NULL after process birth.
3198 		 */
3199 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3200 
3201 	case DIF_VAR_GID:
3202 		if (!dtrace_priv_proc(state))
3203 			return (0);
3204 
3205 #if defined(sun)
3206 		/*
3207 		 * See comment in DIF_VAR_PID.
3208 		 */
3209 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3210 			return ((uint64_t)p0.p_cred->cr_gid);
3211 #endif
3212 
3213 		/*
3214 		 * It is always safe to dereference one's own t_procp pointer:
3215 		 * it always points to a valid, allocated proc structure.
3216 		 * (This is true because threads don't clean up their own
3217 		 * state -- they leave that task to whomever reaps them.)
3218 		 *
3219 		 * Additionally, it is safe to dereference one's own process
3220 		 * credential, since this is never NULL after process birth.
3221 		 */
3222 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3223 
3224 	case DIF_VAR_ERRNO: {
3225 #if defined(sun)
3226 		klwp_t *lwp;
3227 		if (!dtrace_priv_proc(state))
3228 			return (0);
3229 
3230 		/*
3231 		 * See comment in DIF_VAR_PID.
3232 		 */
3233 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3234 			return (0);
3235 
3236 		/*
3237 		 * It is always safe to dereference one's own t_lwp pointer in
3238 		 * the event that this pointer is non-NULL.  (This is true
3239 		 * because threads and lwps don't clean up their own state --
3240 		 * they leave that task to whomever reaps them.)
3241 		 */
3242 		if ((lwp = curthread->t_lwp) == NULL)
3243 			return (0);
3244 
3245 		return ((uint64_t)lwp->lwp_errno);
3246 #else
3247 		return (curthread->td_errno);
3248 #endif
3249 	}
3250 #if !defined(sun)
3251 	case DIF_VAR_CPU: {
3252 		return curcpu;
3253 	}
3254 #endif
3255 	default:
3256 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3257 		return (0);
3258 	}
3259 }
3260 
3261 /*
3262  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3263  * Notice that we don't bother validating the proper number of arguments or
3264  * their types in the tuple stack.  This isn't needed because all argument
3265  * interpretation is safe because of our load safety -- the worst that can
3266  * happen is that a bogus program can obtain bogus results.
3267  */
3268 static void
3269 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3270     dtrace_key_t *tupregs, int nargs,
3271     dtrace_mstate_t *mstate, dtrace_state_t *state)
3272 {
3273 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3274 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3275 	dtrace_vstate_t *vstate = &state->dts_vstate;
3276 
3277 #if defined(sun)
3278 	union {
3279 		mutex_impl_t mi;
3280 		uint64_t mx;
3281 	} m;
3282 
3283 	union {
3284 		krwlock_t ri;
3285 		uintptr_t rw;
3286 	} r;
3287 #else
3288 	struct thread *lowner;
3289 	union {
3290 		struct lock_object *li;
3291 		uintptr_t lx;
3292 	} l;
3293 #endif
3294 
3295 	switch (subr) {
3296 	case DIF_SUBR_RAND:
3297 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3298 		break;
3299 
3300 #if defined(sun)
3301 	case DIF_SUBR_MUTEX_OWNED:
3302 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3303 		    mstate, vstate)) {
3304 			regs[rd] = 0;
3305 			break;
3306 		}
3307 
3308 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3309 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3310 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3311 		else
3312 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3313 		break;
3314 
3315 	case DIF_SUBR_MUTEX_OWNER:
3316 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3317 		    mstate, vstate)) {
3318 			regs[rd] = 0;
3319 			break;
3320 		}
3321 
3322 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3323 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3324 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3325 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3326 		else
3327 			regs[rd] = 0;
3328 		break;
3329 
3330 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3331 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3332 		    mstate, vstate)) {
3333 			regs[rd] = 0;
3334 			break;
3335 		}
3336 
3337 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3338 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3339 		break;
3340 
3341 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3342 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3343 		    mstate, vstate)) {
3344 			regs[rd] = 0;
3345 			break;
3346 		}
3347 
3348 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3349 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3350 		break;
3351 
3352 	case DIF_SUBR_RW_READ_HELD: {
3353 		uintptr_t tmp;
3354 
3355 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3356 		    mstate, vstate)) {
3357 			regs[rd] = 0;
3358 			break;
3359 		}
3360 
3361 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3362 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3363 		break;
3364 	}
3365 
3366 	case DIF_SUBR_RW_WRITE_HELD:
3367 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3368 		    mstate, vstate)) {
3369 			regs[rd] = 0;
3370 			break;
3371 		}
3372 
3373 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3374 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3375 		break;
3376 
3377 	case DIF_SUBR_RW_ISWRITER:
3378 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3379 		    mstate, vstate)) {
3380 			regs[rd] = 0;
3381 			break;
3382 		}
3383 
3384 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3385 		regs[rd] = _RW_ISWRITER(&r.ri);
3386 		break;
3387 
3388 #else
3389 	case DIF_SUBR_MUTEX_OWNED:
3390 		if (!dtrace_canload(tupregs[0].dttk_value,
3391 			sizeof (struct lock_object), mstate, vstate)) {
3392 			regs[rd] = 0;
3393 			break;
3394 		}
3395 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3396 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3397 		break;
3398 
3399 	case DIF_SUBR_MUTEX_OWNER:
3400 		if (!dtrace_canload(tupregs[0].dttk_value,
3401 			sizeof (struct lock_object), mstate, vstate)) {
3402 			regs[rd] = 0;
3403 			break;
3404 		}
3405 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3406 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3407 		regs[rd] = (uintptr_t)lowner;
3408 		break;
3409 
3410 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3411 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3412 		    mstate, vstate)) {
3413 			regs[rd] = 0;
3414 			break;
3415 		}
3416 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3417 		/* XXX - should be only LC_SLEEPABLE? */
3418 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3419 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3420 		break;
3421 
3422 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3423 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3424 		    mstate, vstate)) {
3425 			regs[rd] = 0;
3426 			break;
3427 		}
3428 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3429 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3430 		break;
3431 
3432 	case DIF_SUBR_RW_READ_HELD:
3433 	case DIF_SUBR_SX_SHARED_HELD:
3434 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3435 		    mstate, vstate)) {
3436 			regs[rd] = 0;
3437 			break;
3438 		}
3439 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3440 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3441 		    lowner == NULL;
3442 		break;
3443 
3444 	case DIF_SUBR_RW_WRITE_HELD:
3445 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3446 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3447 		    mstate, vstate)) {
3448 			regs[rd] = 0;
3449 			break;
3450 		}
3451 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3452 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3453 		regs[rd] = (lowner == curthread);
3454 		break;
3455 
3456 	case DIF_SUBR_RW_ISWRITER:
3457 	case DIF_SUBR_SX_ISEXCLUSIVE:
3458 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3459 		    mstate, vstate)) {
3460 			regs[rd] = 0;
3461 			break;
3462 		}
3463 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3464 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3465 		    lowner != NULL;
3466 		break;
3467 #endif /* ! defined(sun) */
3468 
3469 	case DIF_SUBR_BCOPY: {
3470 		/*
3471 		 * We need to be sure that the destination is in the scratch
3472 		 * region -- no other region is allowed.
3473 		 */
3474 		uintptr_t src = tupregs[0].dttk_value;
3475 		uintptr_t dest = tupregs[1].dttk_value;
3476 		size_t size = tupregs[2].dttk_value;
3477 
3478 		if (!dtrace_inscratch(dest, size, mstate)) {
3479 			*flags |= CPU_DTRACE_BADADDR;
3480 			*illval = regs[rd];
3481 			break;
3482 		}
3483 
3484 		if (!dtrace_canload(src, size, mstate, vstate)) {
3485 			regs[rd] = 0;
3486 			break;
3487 		}
3488 
3489 		dtrace_bcopy((void *)src, (void *)dest, size);
3490 		break;
3491 	}
3492 
3493 	case DIF_SUBR_ALLOCA:
3494 	case DIF_SUBR_COPYIN: {
3495 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3496 		uint64_t size =
3497 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3498 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3499 
3500 		/*
3501 		 * This action doesn't require any credential checks since
3502 		 * probes will not activate in user contexts to which the
3503 		 * enabling user does not have permissions.
3504 		 */
3505 
3506 		/*
3507 		 * Rounding up the user allocation size could have overflowed
3508 		 * a large, bogus allocation (like -1ULL) to 0.
3509 		 */
3510 		if (scratch_size < size ||
3511 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3512 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3513 			regs[rd] = 0;
3514 			break;
3515 		}
3516 
3517 		if (subr == DIF_SUBR_COPYIN) {
3518 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3519 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3520 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3521 		}
3522 
3523 		mstate->dtms_scratch_ptr += scratch_size;
3524 		regs[rd] = dest;
3525 		break;
3526 	}
3527 
3528 	case DIF_SUBR_COPYINTO: {
3529 		uint64_t size = tupregs[1].dttk_value;
3530 		uintptr_t dest = tupregs[2].dttk_value;
3531 
3532 		/*
3533 		 * This action doesn't require any credential checks since
3534 		 * probes will not activate in user contexts to which the
3535 		 * enabling user does not have permissions.
3536 		 */
3537 		if (!dtrace_inscratch(dest, size, mstate)) {
3538 			*flags |= CPU_DTRACE_BADADDR;
3539 			*illval = regs[rd];
3540 			break;
3541 		}
3542 
3543 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3544 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3545 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3546 		break;
3547 	}
3548 
3549 	case DIF_SUBR_COPYINSTR: {
3550 		uintptr_t dest = mstate->dtms_scratch_ptr;
3551 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3552 
3553 		if (nargs > 1 && tupregs[1].dttk_value < size)
3554 			size = tupregs[1].dttk_value + 1;
3555 
3556 		/*
3557 		 * This action doesn't require any credential checks since
3558 		 * probes will not activate in user contexts to which the
3559 		 * enabling user does not have permissions.
3560 		 */
3561 		if (!DTRACE_INSCRATCH(mstate, size)) {
3562 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3563 			regs[rd] = 0;
3564 			break;
3565 		}
3566 
3567 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3568 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3569 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3570 
3571 		((char *)dest)[size - 1] = '\0';
3572 		mstate->dtms_scratch_ptr += size;
3573 		regs[rd] = dest;
3574 		break;
3575 	}
3576 
3577 #if defined(sun)
3578 	case DIF_SUBR_MSGSIZE:
3579 	case DIF_SUBR_MSGDSIZE: {
3580 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3581 		uintptr_t wptr, rptr;
3582 		size_t count = 0;
3583 		int cont = 0;
3584 
3585 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3586 
3587 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3588 			    vstate)) {
3589 				regs[rd] = 0;
3590 				break;
3591 			}
3592 
3593 			wptr = dtrace_loadptr(baddr +
3594 			    offsetof(mblk_t, b_wptr));
3595 
3596 			rptr = dtrace_loadptr(baddr +
3597 			    offsetof(mblk_t, b_rptr));
3598 
3599 			if (wptr < rptr) {
3600 				*flags |= CPU_DTRACE_BADADDR;
3601 				*illval = tupregs[0].dttk_value;
3602 				break;
3603 			}
3604 
3605 			daddr = dtrace_loadptr(baddr +
3606 			    offsetof(mblk_t, b_datap));
3607 
3608 			baddr = dtrace_loadptr(baddr +
3609 			    offsetof(mblk_t, b_cont));
3610 
3611 			/*
3612 			 * We want to prevent against denial-of-service here,
3613 			 * so we're only going to search the list for
3614 			 * dtrace_msgdsize_max mblks.
3615 			 */
3616 			if (cont++ > dtrace_msgdsize_max) {
3617 				*flags |= CPU_DTRACE_ILLOP;
3618 				break;
3619 			}
3620 
3621 			if (subr == DIF_SUBR_MSGDSIZE) {
3622 				if (dtrace_load8(daddr +
3623 				    offsetof(dblk_t, db_type)) != M_DATA)
3624 					continue;
3625 			}
3626 
3627 			count += wptr - rptr;
3628 		}
3629 
3630 		if (!(*flags & CPU_DTRACE_FAULT))
3631 			regs[rd] = count;
3632 
3633 		break;
3634 	}
3635 #endif
3636 
3637 	case DIF_SUBR_PROGENYOF: {
3638 		pid_t pid = tupregs[0].dttk_value;
3639 		proc_t *p;
3640 		int rval = 0;
3641 
3642 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3643 
3644 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3645 #if defined(sun)
3646 			if (p->p_pidp->pid_id == pid) {
3647 #else
3648 			if (p->p_pid == pid) {
3649 #endif
3650 				rval = 1;
3651 				break;
3652 			}
3653 		}
3654 
3655 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656 
3657 		regs[rd] = rval;
3658 		break;
3659 	}
3660 
3661 	case DIF_SUBR_SPECULATION:
3662 		regs[rd] = dtrace_speculation(state);
3663 		break;
3664 
3665 	case DIF_SUBR_COPYOUT: {
3666 		uintptr_t kaddr = tupregs[0].dttk_value;
3667 		uintptr_t uaddr = tupregs[1].dttk_value;
3668 		uint64_t size = tupregs[2].dttk_value;
3669 
3670 		if (!dtrace_destructive_disallow &&
3671 		    dtrace_priv_proc_control(state) &&
3672 		    !dtrace_istoxic(kaddr, size)) {
3673 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3674 			dtrace_copyout(kaddr, uaddr, size, flags);
3675 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3676 		}
3677 		break;
3678 	}
3679 
3680 	case DIF_SUBR_COPYOUTSTR: {
3681 		uintptr_t kaddr = tupregs[0].dttk_value;
3682 		uintptr_t uaddr = tupregs[1].dttk_value;
3683 		uint64_t size = tupregs[2].dttk_value;
3684 
3685 		if (!dtrace_destructive_disallow &&
3686 		    dtrace_priv_proc_control(state) &&
3687 		    !dtrace_istoxic(kaddr, size)) {
3688 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3689 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3690 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3691 		}
3692 		break;
3693 	}
3694 
3695 	case DIF_SUBR_STRLEN: {
3696 		size_t sz;
3697 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3698 		sz = dtrace_strlen((char *)addr,
3699 		    state->dts_options[DTRACEOPT_STRSIZE]);
3700 
3701 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3702 			regs[rd] = 0;
3703 			break;
3704 		}
3705 
3706 		regs[rd] = sz;
3707 
3708 		break;
3709 	}
3710 
3711 	case DIF_SUBR_STRCHR:
3712 	case DIF_SUBR_STRRCHR: {
3713 		/*
3714 		 * We're going to iterate over the string looking for the
3715 		 * specified character.  We will iterate until we have reached
3716 		 * the string length or we have found the character.  If this
3717 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3718 		 * of the specified character instead of the first.
3719 		 */
3720 		uintptr_t saddr = tupregs[0].dttk_value;
3721 		uintptr_t addr = tupregs[0].dttk_value;
3722 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3723 		char c, target = (char)tupregs[1].dttk_value;
3724 
3725 		for (regs[rd] = 0; addr < limit; addr++) {
3726 			if ((c = dtrace_load8(addr)) == target) {
3727 				regs[rd] = addr;
3728 
3729 				if (subr == DIF_SUBR_STRCHR)
3730 					break;
3731 			}
3732 
3733 			if (c == '\0')
3734 				break;
3735 		}
3736 
3737 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3738 			regs[rd] = 0;
3739 			break;
3740 		}
3741 
3742 		break;
3743 	}
3744 
3745 	case DIF_SUBR_STRSTR:
3746 	case DIF_SUBR_INDEX:
3747 	case DIF_SUBR_RINDEX: {
3748 		/*
3749 		 * We're going to iterate over the string looking for the
3750 		 * specified string.  We will iterate until we have reached
3751 		 * the string length or we have found the string.  (Yes, this
3752 		 * is done in the most naive way possible -- but considering
3753 		 * that the string we're searching for is likely to be
3754 		 * relatively short, the complexity of Rabin-Karp or similar
3755 		 * hardly seems merited.)
3756 		 */
3757 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3758 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3759 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3760 		size_t len = dtrace_strlen(addr, size);
3761 		size_t sublen = dtrace_strlen(substr, size);
3762 		char *limit = addr + len, *orig = addr;
3763 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3764 		int inc = 1;
3765 
3766 		regs[rd] = notfound;
3767 
3768 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3769 			regs[rd] = 0;
3770 			break;
3771 		}
3772 
3773 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3774 		    vstate)) {
3775 			regs[rd] = 0;
3776 			break;
3777 		}
3778 
3779 		/*
3780 		 * strstr() and index()/rindex() have similar semantics if
3781 		 * both strings are the empty string: strstr() returns a
3782 		 * pointer to the (empty) string, and index() and rindex()
3783 		 * both return index 0 (regardless of any position argument).
3784 		 */
3785 		if (sublen == 0 && len == 0) {
3786 			if (subr == DIF_SUBR_STRSTR)
3787 				regs[rd] = (uintptr_t)addr;
3788 			else
3789 				regs[rd] = 0;
3790 			break;
3791 		}
3792 
3793 		if (subr != DIF_SUBR_STRSTR) {
3794 			if (subr == DIF_SUBR_RINDEX) {
3795 				limit = orig - 1;
3796 				addr += len;
3797 				inc = -1;
3798 			}
3799 
3800 			/*
3801 			 * Both index() and rindex() take an optional position
3802 			 * argument that denotes the starting position.
3803 			 */
3804 			if (nargs == 3) {
3805 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3806 
3807 				/*
3808 				 * If the position argument to index() is
3809 				 * negative, Perl implicitly clamps it at
3810 				 * zero.  This semantic is a little surprising
3811 				 * given the special meaning of negative
3812 				 * positions to similar Perl functions like
3813 				 * substr(), but it appears to reflect a
3814 				 * notion that index() can start from a
3815 				 * negative index and increment its way up to
3816 				 * the string.  Given this notion, Perl's
3817 				 * rindex() is at least self-consistent in
3818 				 * that it implicitly clamps positions greater
3819 				 * than the string length to be the string
3820 				 * length.  Where Perl completely loses
3821 				 * coherence, however, is when the specified
3822 				 * substring is the empty string ("").  In
3823 				 * this case, even if the position is
3824 				 * negative, rindex() returns 0 -- and even if
3825 				 * the position is greater than the length,
3826 				 * index() returns the string length.  These
3827 				 * semantics violate the notion that index()
3828 				 * should never return a value less than the
3829 				 * specified position and that rindex() should
3830 				 * never return a value greater than the
3831 				 * specified position.  (One assumes that
3832 				 * these semantics are artifacts of Perl's
3833 				 * implementation and not the results of
3834 				 * deliberate design -- it beggars belief that
3835 				 * even Larry Wall could desire such oddness.)
3836 				 * While in the abstract one would wish for
3837 				 * consistent position semantics across
3838 				 * substr(), index() and rindex() -- or at the
3839 				 * very least self-consistent position
3840 				 * semantics for index() and rindex() -- we
3841 				 * instead opt to keep with the extant Perl
3842 				 * semantics, in all their broken glory.  (Do
3843 				 * we have more desire to maintain Perl's
3844 				 * semantics than Perl does?  Probably.)
3845 				 */
3846 				if (subr == DIF_SUBR_RINDEX) {
3847 					if (pos < 0) {
3848 						if (sublen == 0)
3849 							regs[rd] = 0;
3850 						break;
3851 					}
3852 
3853 					if (pos > len)
3854 						pos = len;
3855 				} else {
3856 					if (pos < 0)
3857 						pos = 0;
3858 
3859 					if (pos >= len) {
3860 						if (sublen == 0)
3861 							regs[rd] = len;
3862 						break;
3863 					}
3864 				}
3865 
3866 				addr = orig + pos;
3867 			}
3868 		}
3869 
3870 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3871 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3872 				if (subr != DIF_SUBR_STRSTR) {
3873 					/*
3874 					 * As D index() and rindex() are
3875 					 * modeled on Perl (and not on awk),
3876 					 * we return a zero-based (and not a
3877 					 * one-based) index.  (For you Perl
3878 					 * weenies: no, we're not going to add
3879 					 * $[ -- and shouldn't you be at a con
3880 					 * or something?)
3881 					 */
3882 					regs[rd] = (uintptr_t)(addr - orig);
3883 					break;
3884 				}
3885 
3886 				ASSERT(subr == DIF_SUBR_STRSTR);
3887 				regs[rd] = (uintptr_t)addr;
3888 				break;
3889 			}
3890 		}
3891 
3892 		break;
3893 	}
3894 
3895 	case DIF_SUBR_STRTOK: {
3896 		uintptr_t addr = tupregs[0].dttk_value;
3897 		uintptr_t tokaddr = tupregs[1].dttk_value;
3898 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3899 		uintptr_t limit, toklimit = tokaddr + size;
3900 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3901 		char *dest = (char *)mstate->dtms_scratch_ptr;
3902 		int i;
3903 
3904 		/*
3905 		 * Check both the token buffer and (later) the input buffer,
3906 		 * since both could be non-scratch addresses.
3907 		 */
3908 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3909 			regs[rd] = 0;
3910 			break;
3911 		}
3912 
3913 		if (!DTRACE_INSCRATCH(mstate, size)) {
3914 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3915 			regs[rd] = 0;
3916 			break;
3917 		}
3918 
3919 		if (addr == 0) {
3920 			/*
3921 			 * If the address specified is NULL, we use our saved
3922 			 * strtok pointer from the mstate.  Note that this
3923 			 * means that the saved strtok pointer is _only_
3924 			 * valid within multiple enablings of the same probe --
3925 			 * it behaves like an implicit clause-local variable.
3926 			 */
3927 			addr = mstate->dtms_strtok;
3928 		} else {
3929 			/*
3930 			 * If the user-specified address is non-NULL we must
3931 			 * access check it.  This is the only time we have
3932 			 * a chance to do so, since this address may reside
3933 			 * in the string table of this clause-- future calls
3934 			 * (when we fetch addr from mstate->dtms_strtok)
3935 			 * would fail this access check.
3936 			 */
3937 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3938 				regs[rd] = 0;
3939 				break;
3940 			}
3941 		}
3942 
3943 		/*
3944 		 * First, zero the token map, and then process the token
3945 		 * string -- setting a bit in the map for every character
3946 		 * found in the token string.
3947 		 */
3948 		for (i = 0; i < sizeof (tokmap); i++)
3949 			tokmap[i] = 0;
3950 
3951 		for (; tokaddr < toklimit; tokaddr++) {
3952 			if ((c = dtrace_load8(tokaddr)) == '\0')
3953 				break;
3954 
3955 			ASSERT((c >> 3) < sizeof (tokmap));
3956 			tokmap[c >> 3] |= (1 << (c & 0x7));
3957 		}
3958 
3959 		for (limit = addr + size; addr < limit; addr++) {
3960 			/*
3961 			 * We're looking for a character that is _not_ contained
3962 			 * in the token string.
3963 			 */
3964 			if ((c = dtrace_load8(addr)) == '\0')
3965 				break;
3966 
3967 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3968 				break;
3969 		}
3970 
3971 		if (c == '\0') {
3972 			/*
3973 			 * We reached the end of the string without finding
3974 			 * any character that was not in the token string.
3975 			 * We return NULL in this case, and we set the saved
3976 			 * address to NULL as well.
3977 			 */
3978 			regs[rd] = 0;
3979 			mstate->dtms_strtok = 0;
3980 			break;
3981 		}
3982 
3983 		/*
3984 		 * From here on, we're copying into the destination string.
3985 		 */
3986 		for (i = 0; addr < limit && i < size - 1; addr++) {
3987 			if ((c = dtrace_load8(addr)) == '\0')
3988 				break;
3989 
3990 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3991 				break;
3992 
3993 			ASSERT(i < size);
3994 			dest[i++] = c;
3995 		}
3996 
3997 		ASSERT(i < size);
3998 		dest[i] = '\0';
3999 		regs[rd] = (uintptr_t)dest;
4000 		mstate->dtms_scratch_ptr += size;
4001 		mstate->dtms_strtok = addr;
4002 		break;
4003 	}
4004 
4005 	case DIF_SUBR_SUBSTR: {
4006 		uintptr_t s = tupregs[0].dttk_value;
4007 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4008 		char *d = (char *)mstate->dtms_scratch_ptr;
4009 		int64_t index = (int64_t)tupregs[1].dttk_value;
4010 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4011 		size_t len = dtrace_strlen((char *)s, size);
4012 		int64_t i = 0;
4013 
4014 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4015 			regs[rd] = 0;
4016 			break;
4017 		}
4018 
4019 		if (!DTRACE_INSCRATCH(mstate, size)) {
4020 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4021 			regs[rd] = 0;
4022 			break;
4023 		}
4024 
4025 		if (nargs <= 2)
4026 			remaining = (int64_t)size;
4027 
4028 		if (index < 0) {
4029 			index += len;
4030 
4031 			if (index < 0 && index + remaining > 0) {
4032 				remaining += index;
4033 				index = 0;
4034 			}
4035 		}
4036 
4037 		if (index >= len || index < 0) {
4038 			remaining = 0;
4039 		} else if (remaining < 0) {
4040 			remaining += len - index;
4041 		} else if (index + remaining > size) {
4042 			remaining = size - index;
4043 		}
4044 
4045 		for (i = 0; i < remaining; i++) {
4046 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4047 				break;
4048 		}
4049 
4050 		d[i] = '\0';
4051 
4052 		mstate->dtms_scratch_ptr += size;
4053 		regs[rd] = (uintptr_t)d;
4054 		break;
4055 	}
4056 
4057 	case DIF_SUBR_TOUPPER:
4058 	case DIF_SUBR_TOLOWER: {
4059 		uintptr_t s = tupregs[0].dttk_value;
4060 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4061 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4062 		size_t len = dtrace_strlen((char *)s, size);
4063 		char lower, upper, convert;
4064 		int64_t i;
4065 
4066 		if (subr == DIF_SUBR_TOUPPER) {
4067 			lower = 'a';
4068 			upper = 'z';
4069 			convert = 'A';
4070 		} else {
4071 			lower = 'A';
4072 			upper = 'Z';
4073 			convert = 'a';
4074 		}
4075 
4076 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4077 			regs[rd] = 0;
4078 			break;
4079 		}
4080 
4081 		if (!DTRACE_INSCRATCH(mstate, size)) {
4082 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4083 			regs[rd] = 0;
4084 			break;
4085 		}
4086 
4087 		for (i = 0; i < size - 1; i++) {
4088 			if ((c = dtrace_load8(s + i)) == '\0')
4089 				break;
4090 
4091 			if (c >= lower && c <= upper)
4092 				c = convert + (c - lower);
4093 
4094 			dest[i] = c;
4095 		}
4096 
4097 		ASSERT(i < size);
4098 		dest[i] = '\0';
4099 		regs[rd] = (uintptr_t)dest;
4100 		mstate->dtms_scratch_ptr += size;
4101 		break;
4102 	}
4103 
4104 #if defined(sun)
4105 	case DIF_SUBR_GETMAJOR:
4106 #ifdef _LP64
4107 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4108 #else
4109 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4110 #endif
4111 		break;
4112 
4113 	case DIF_SUBR_GETMINOR:
4114 #ifdef _LP64
4115 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4116 #else
4117 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4118 #endif
4119 		break;
4120 
4121 	case DIF_SUBR_DDI_PATHNAME: {
4122 		/*
4123 		 * This one is a galactic mess.  We are going to roughly
4124 		 * emulate ddi_pathname(), but it's made more complicated
4125 		 * by the fact that we (a) want to include the minor name and
4126 		 * (b) must proceed iteratively instead of recursively.
4127 		 */
4128 		uintptr_t dest = mstate->dtms_scratch_ptr;
4129 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4130 		char *start = (char *)dest, *end = start + size - 1;
4131 		uintptr_t daddr = tupregs[0].dttk_value;
4132 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4133 		char *s;
4134 		int i, len, depth = 0;
4135 
4136 		/*
4137 		 * Due to all the pointer jumping we do and context we must
4138 		 * rely upon, we just mandate that the user must have kernel
4139 		 * read privileges to use this routine.
4140 		 */
4141 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4142 			*flags |= CPU_DTRACE_KPRIV;
4143 			*illval = daddr;
4144 			regs[rd] = 0;
4145 		}
4146 
4147 		if (!DTRACE_INSCRATCH(mstate, size)) {
4148 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4149 			regs[rd] = 0;
4150 			break;
4151 		}
4152 
4153 		*end = '\0';
4154 
4155 		/*
4156 		 * We want to have a name for the minor.  In order to do this,
4157 		 * we need to walk the minor list from the devinfo.  We want
4158 		 * to be sure that we don't infinitely walk a circular list,
4159 		 * so we check for circularity by sending a scout pointer
4160 		 * ahead two elements for every element that we iterate over;
4161 		 * if the list is circular, these will ultimately point to the
4162 		 * same element.  You may recognize this little trick as the
4163 		 * answer to a stupid interview question -- one that always
4164 		 * seems to be asked by those who had to have it laboriously
4165 		 * explained to them, and who can't even concisely describe
4166 		 * the conditions under which one would be forced to resort to
4167 		 * this technique.  Needless to say, those conditions are
4168 		 * found here -- and probably only here.  Is this the only use
4169 		 * of this infamous trick in shipping, production code?  If it
4170 		 * isn't, it probably should be...
4171 		 */
4172 		if (minor != -1) {
4173 			uintptr_t maddr = dtrace_loadptr(daddr +
4174 			    offsetof(struct dev_info, devi_minor));
4175 
4176 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4177 			uintptr_t name = offsetof(struct ddi_minor_data,
4178 			    d_minor) + offsetof(struct ddi_minor, name);
4179 			uintptr_t dev = offsetof(struct ddi_minor_data,
4180 			    d_minor) + offsetof(struct ddi_minor, dev);
4181 			uintptr_t scout;
4182 
4183 			if (maddr != NULL)
4184 				scout = dtrace_loadptr(maddr + next);
4185 
4186 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4187 				uint64_t m;
4188 #ifdef _LP64
4189 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4190 #else
4191 				m = dtrace_load32(maddr + dev) & MAXMIN;
4192 #endif
4193 				if (m != minor) {
4194 					maddr = dtrace_loadptr(maddr + next);
4195 
4196 					if (scout == NULL)
4197 						continue;
4198 
4199 					scout = dtrace_loadptr(scout + next);
4200 
4201 					if (scout == NULL)
4202 						continue;
4203 
4204 					scout = dtrace_loadptr(scout + next);
4205 
4206 					if (scout == NULL)
4207 						continue;
4208 
4209 					if (scout == maddr) {
4210 						*flags |= CPU_DTRACE_ILLOP;
4211 						break;
4212 					}
4213 
4214 					continue;
4215 				}
4216 
4217 				/*
4218 				 * We have the minor data.  Now we need to
4219 				 * copy the minor's name into the end of the
4220 				 * pathname.
4221 				 */
4222 				s = (char *)dtrace_loadptr(maddr + name);
4223 				len = dtrace_strlen(s, size);
4224 
4225 				if (*flags & CPU_DTRACE_FAULT)
4226 					break;
4227 
4228 				if (len != 0) {
4229 					if ((end -= (len + 1)) < start)
4230 						break;
4231 
4232 					*end = ':';
4233 				}
4234 
4235 				for (i = 1; i <= len; i++)
4236 					end[i] = dtrace_load8((uintptr_t)s++);
4237 				break;
4238 			}
4239 		}
4240 
4241 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4242 			ddi_node_state_t devi_state;
4243 
4244 			devi_state = dtrace_load32(daddr +
4245 			    offsetof(struct dev_info, devi_node_state));
4246 
4247 			if (*flags & CPU_DTRACE_FAULT)
4248 				break;
4249 
4250 			if (devi_state >= DS_INITIALIZED) {
4251 				s = (char *)dtrace_loadptr(daddr +
4252 				    offsetof(struct dev_info, devi_addr));
4253 				len = dtrace_strlen(s, size);
4254 
4255 				if (*flags & CPU_DTRACE_FAULT)
4256 					break;
4257 
4258 				if (len != 0) {
4259 					if ((end -= (len + 1)) < start)
4260 						break;
4261 
4262 					*end = '@';
4263 				}
4264 
4265 				for (i = 1; i <= len; i++)
4266 					end[i] = dtrace_load8((uintptr_t)s++);
4267 			}
4268 
4269 			/*
4270 			 * Now for the node name...
4271 			 */
4272 			s = (char *)dtrace_loadptr(daddr +
4273 			    offsetof(struct dev_info, devi_node_name));
4274 
4275 			daddr = dtrace_loadptr(daddr +
4276 			    offsetof(struct dev_info, devi_parent));
4277 
4278 			/*
4279 			 * If our parent is NULL (that is, if we're the root
4280 			 * node), we're going to use the special path
4281 			 * "devices".
4282 			 */
4283 			if (daddr == 0)
4284 				s = "devices";
4285 
4286 			len = dtrace_strlen(s, size);
4287 			if (*flags & CPU_DTRACE_FAULT)
4288 				break;
4289 
4290 			if ((end -= (len + 1)) < start)
4291 				break;
4292 
4293 			for (i = 1; i <= len; i++)
4294 				end[i] = dtrace_load8((uintptr_t)s++);
4295 			*end = '/';
4296 
4297 			if (depth++ > dtrace_devdepth_max) {
4298 				*flags |= CPU_DTRACE_ILLOP;
4299 				break;
4300 			}
4301 		}
4302 
4303 		if (end < start)
4304 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4305 
4306 		if (daddr == 0) {
4307 			regs[rd] = (uintptr_t)end;
4308 			mstate->dtms_scratch_ptr += size;
4309 		}
4310 
4311 		break;
4312 	}
4313 #endif
4314 
4315 	case DIF_SUBR_STRJOIN: {
4316 		char *d = (char *)mstate->dtms_scratch_ptr;
4317 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4318 		uintptr_t s1 = tupregs[0].dttk_value;
4319 		uintptr_t s2 = tupregs[1].dttk_value;
4320 		int i = 0;
4321 
4322 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4323 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4324 			regs[rd] = 0;
4325 			break;
4326 		}
4327 
4328 		if (!DTRACE_INSCRATCH(mstate, size)) {
4329 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4330 			regs[rd] = 0;
4331 			break;
4332 		}
4333 
4334 		for (;;) {
4335 			if (i >= size) {
4336 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4337 				regs[rd] = 0;
4338 				break;
4339 			}
4340 
4341 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4342 				i--;
4343 				break;
4344 			}
4345 		}
4346 
4347 		for (;;) {
4348 			if (i >= size) {
4349 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4350 				regs[rd] = 0;
4351 				break;
4352 			}
4353 
4354 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4355 				break;
4356 		}
4357 
4358 		if (i < size) {
4359 			mstate->dtms_scratch_ptr += i;
4360 			regs[rd] = (uintptr_t)d;
4361 		}
4362 
4363 		break;
4364 	}
4365 
4366 	case DIF_SUBR_LLTOSTR: {
4367 		int64_t i = (int64_t)tupregs[0].dttk_value;
4368 		uint64_t val, digit;
4369 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4370 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4371 		int base = 10;
4372 
4373 		if (nargs > 1) {
4374 			if ((base = tupregs[1].dttk_value) <= 1 ||
4375 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4376 				*flags |= CPU_DTRACE_ILLOP;
4377 				break;
4378 			}
4379 		}
4380 
4381 		val = (base == 10 && i < 0) ? i * -1 : i;
4382 
4383 		if (!DTRACE_INSCRATCH(mstate, size)) {
4384 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4385 			regs[rd] = 0;
4386 			break;
4387 		}
4388 
4389 		for (*end-- = '\0'; val; val /= base) {
4390 			if ((digit = val % base) <= '9' - '0') {
4391 				*end-- = '0' + digit;
4392 			} else {
4393 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4394 			}
4395 		}
4396 
4397 		if (i == 0 && base == 16)
4398 			*end-- = '0';
4399 
4400 		if (base == 16)
4401 			*end-- = 'x';
4402 
4403 		if (i == 0 || base == 8 || base == 16)
4404 			*end-- = '0';
4405 
4406 		if (i < 0 && base == 10)
4407 			*end-- = '-';
4408 
4409 		regs[rd] = (uintptr_t)end + 1;
4410 		mstate->dtms_scratch_ptr += size;
4411 		break;
4412 	}
4413 
4414 	case DIF_SUBR_HTONS:
4415 	case DIF_SUBR_NTOHS:
4416 #if BYTE_ORDER == BIG_ENDIAN
4417 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4418 #else
4419 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4420 #endif
4421 		break;
4422 
4423 
4424 	case DIF_SUBR_HTONL:
4425 	case DIF_SUBR_NTOHL:
4426 #if BYTE_ORDER == BIG_ENDIAN
4427 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4428 #else
4429 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4430 #endif
4431 		break;
4432 
4433 
4434 	case DIF_SUBR_HTONLL:
4435 	case DIF_SUBR_NTOHLL:
4436 #if BYTE_ORDER == BIG_ENDIAN
4437 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4438 #else
4439 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4440 #endif
4441 		break;
4442 
4443 
4444 	case DIF_SUBR_DIRNAME:
4445 	case DIF_SUBR_BASENAME: {
4446 		char *dest = (char *)mstate->dtms_scratch_ptr;
4447 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4448 		uintptr_t src = tupregs[0].dttk_value;
4449 		int i, j, len = dtrace_strlen((char *)src, size);
4450 		int lastbase = -1, firstbase = -1, lastdir = -1;
4451 		int start, end;
4452 
4453 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4454 			regs[rd] = 0;
4455 			break;
4456 		}
4457 
4458 		if (!DTRACE_INSCRATCH(mstate, size)) {
4459 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4460 			regs[rd] = 0;
4461 			break;
4462 		}
4463 
4464 		/*
4465 		 * The basename and dirname for a zero-length string is
4466 		 * defined to be "."
4467 		 */
4468 		if (len == 0) {
4469 			len = 1;
4470 			src = (uintptr_t)".";
4471 		}
4472 
4473 		/*
4474 		 * Start from the back of the string, moving back toward the
4475 		 * front until we see a character that isn't a slash.  That
4476 		 * character is the last character in the basename.
4477 		 */
4478 		for (i = len - 1; i >= 0; i--) {
4479 			if (dtrace_load8(src + i) != '/')
4480 				break;
4481 		}
4482 
4483 		if (i >= 0)
4484 			lastbase = i;
4485 
4486 		/*
4487 		 * Starting from the last character in the basename, move
4488 		 * towards the front until we find a slash.  The character
4489 		 * that we processed immediately before that is the first
4490 		 * character in the basename.
4491 		 */
4492 		for (; i >= 0; i--) {
4493 			if (dtrace_load8(src + i) == '/')
4494 				break;
4495 		}
4496 
4497 		if (i >= 0)
4498 			firstbase = i + 1;
4499 
4500 		/*
4501 		 * Now keep going until we find a non-slash character.  That
4502 		 * character is the last character in the dirname.
4503 		 */
4504 		for (; i >= 0; i--) {
4505 			if (dtrace_load8(src + i) != '/')
4506 				break;
4507 		}
4508 
4509 		if (i >= 0)
4510 			lastdir = i;
4511 
4512 		ASSERT(!(lastbase == -1 && firstbase != -1));
4513 		ASSERT(!(firstbase == -1 && lastdir != -1));
4514 
4515 		if (lastbase == -1) {
4516 			/*
4517 			 * We didn't find a non-slash character.  We know that
4518 			 * the length is non-zero, so the whole string must be
4519 			 * slashes.  In either the dirname or the basename
4520 			 * case, we return '/'.
4521 			 */
4522 			ASSERT(firstbase == -1);
4523 			firstbase = lastbase = lastdir = 0;
4524 		}
4525 
4526 		if (firstbase == -1) {
4527 			/*
4528 			 * The entire string consists only of a basename
4529 			 * component.  If we're looking for dirname, we need
4530 			 * to change our string to be just "."; if we're
4531 			 * looking for a basename, we'll just set the first
4532 			 * character of the basename to be 0.
4533 			 */
4534 			if (subr == DIF_SUBR_DIRNAME) {
4535 				ASSERT(lastdir == -1);
4536 				src = (uintptr_t)".";
4537 				lastdir = 0;
4538 			} else {
4539 				firstbase = 0;
4540 			}
4541 		}
4542 
4543 		if (subr == DIF_SUBR_DIRNAME) {
4544 			if (lastdir == -1) {
4545 				/*
4546 				 * We know that we have a slash in the name --
4547 				 * or lastdir would be set to 0, above.  And
4548 				 * because lastdir is -1, we know that this
4549 				 * slash must be the first character.  (That
4550 				 * is, the full string must be of the form
4551 				 * "/basename".)  In this case, the last
4552 				 * character of the directory name is 0.
4553 				 */
4554 				lastdir = 0;
4555 			}
4556 
4557 			start = 0;
4558 			end = lastdir;
4559 		} else {
4560 			ASSERT(subr == DIF_SUBR_BASENAME);
4561 			ASSERT(firstbase != -1 && lastbase != -1);
4562 			start = firstbase;
4563 			end = lastbase;
4564 		}
4565 
4566 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4567 			dest[j] = dtrace_load8(src + i);
4568 
4569 		dest[j] = '\0';
4570 		regs[rd] = (uintptr_t)dest;
4571 		mstate->dtms_scratch_ptr += size;
4572 		break;
4573 	}
4574 
4575 	case DIF_SUBR_CLEANPATH: {
4576 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4577 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4578 		uintptr_t src = tupregs[0].dttk_value;
4579 		int i = 0, j = 0;
4580 
4581 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4582 			regs[rd] = 0;
4583 			break;
4584 		}
4585 
4586 		if (!DTRACE_INSCRATCH(mstate, size)) {
4587 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4588 			regs[rd] = 0;
4589 			break;
4590 		}
4591 
4592 		/*
4593 		 * Move forward, loading each character.
4594 		 */
4595 		do {
4596 			c = dtrace_load8(src + i++);
4597 next:
4598 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4599 				break;
4600 
4601 			if (c != '/') {
4602 				dest[j++] = c;
4603 				continue;
4604 			}
4605 
4606 			c = dtrace_load8(src + i++);
4607 
4608 			if (c == '/') {
4609 				/*
4610 				 * We have two slashes -- we can just advance
4611 				 * to the next character.
4612 				 */
4613 				goto next;
4614 			}
4615 
4616 			if (c != '.') {
4617 				/*
4618 				 * This is not "." and it's not ".." -- we can
4619 				 * just store the "/" and this character and
4620 				 * drive on.
4621 				 */
4622 				dest[j++] = '/';
4623 				dest[j++] = c;
4624 				continue;
4625 			}
4626 
4627 			c = dtrace_load8(src + i++);
4628 
4629 			if (c == '/') {
4630 				/*
4631 				 * This is a "/./" component.  We're not going
4632 				 * to store anything in the destination buffer;
4633 				 * we're just going to go to the next component.
4634 				 */
4635 				goto next;
4636 			}
4637 
4638 			if (c != '.') {
4639 				/*
4640 				 * This is not ".." -- we can just store the
4641 				 * "/." and this character and continue
4642 				 * processing.
4643 				 */
4644 				dest[j++] = '/';
4645 				dest[j++] = '.';
4646 				dest[j++] = c;
4647 				continue;
4648 			}
4649 
4650 			c = dtrace_load8(src + i++);
4651 
4652 			if (c != '/' && c != '\0') {
4653 				/*
4654 				 * This is not ".." -- it's "..[mumble]".
4655 				 * We'll store the "/.." and this character
4656 				 * and continue processing.
4657 				 */
4658 				dest[j++] = '/';
4659 				dest[j++] = '.';
4660 				dest[j++] = '.';
4661 				dest[j++] = c;
4662 				continue;
4663 			}
4664 
4665 			/*
4666 			 * This is "/../" or "/..\0".  We need to back up
4667 			 * our destination pointer until we find a "/".
4668 			 */
4669 			i--;
4670 			while (j != 0 && dest[--j] != '/')
4671 				continue;
4672 
4673 			if (c == '\0')
4674 				dest[++j] = '/';
4675 		} while (c != '\0');
4676 
4677 		dest[j] = '\0';
4678 		regs[rd] = (uintptr_t)dest;
4679 		mstate->dtms_scratch_ptr += size;
4680 		break;
4681 	}
4682 
4683 	case DIF_SUBR_INET_NTOA:
4684 	case DIF_SUBR_INET_NTOA6:
4685 	case DIF_SUBR_INET_NTOP: {
4686 		size_t size;
4687 		int af, argi, i;
4688 		char *base, *end;
4689 
4690 		if (subr == DIF_SUBR_INET_NTOP) {
4691 			af = (int)tupregs[0].dttk_value;
4692 			argi = 1;
4693 		} else {
4694 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4695 			argi = 0;
4696 		}
4697 
4698 		if (af == AF_INET) {
4699 			ipaddr_t ip4;
4700 			uint8_t *ptr8, val;
4701 
4702 			/*
4703 			 * Safely load the IPv4 address.
4704 			 */
4705 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4706 
4707 			/*
4708 			 * Check an IPv4 string will fit in scratch.
4709 			 */
4710 			size = INET_ADDRSTRLEN;
4711 			if (!DTRACE_INSCRATCH(mstate, size)) {
4712 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4713 				regs[rd] = 0;
4714 				break;
4715 			}
4716 			base = (char *)mstate->dtms_scratch_ptr;
4717 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4718 
4719 			/*
4720 			 * Stringify as a dotted decimal quad.
4721 			 */
4722 			*end-- = '\0';
4723 			ptr8 = (uint8_t *)&ip4;
4724 			for (i = 3; i >= 0; i--) {
4725 				val = ptr8[i];
4726 
4727 				if (val == 0) {
4728 					*end-- = '0';
4729 				} else {
4730 					for (; val; val /= 10) {
4731 						*end-- = '0' + (val % 10);
4732 					}
4733 				}
4734 
4735 				if (i > 0)
4736 					*end-- = '.';
4737 			}
4738 			ASSERT(end + 1 >= base);
4739 
4740 		} else if (af == AF_INET6) {
4741 			struct in6_addr ip6;
4742 			int firstzero, tryzero, numzero, v6end;
4743 			uint16_t val;
4744 			const char digits[] = "0123456789abcdef";
4745 
4746 			/*
4747 			 * Stringify using RFC 1884 convention 2 - 16 bit
4748 			 * hexadecimal values with a zero-run compression.
4749 			 * Lower case hexadecimal digits are used.
4750 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4751 			 * The IPv4 embedded form is returned for inet_ntop,
4752 			 * just the IPv4 string is returned for inet_ntoa6.
4753 			 */
4754 
4755 			/*
4756 			 * Safely load the IPv6 address.
4757 			 */
4758 			dtrace_bcopy(
4759 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4760 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4761 
4762 			/*
4763 			 * Check an IPv6 string will fit in scratch.
4764 			 */
4765 			size = INET6_ADDRSTRLEN;
4766 			if (!DTRACE_INSCRATCH(mstate, size)) {
4767 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4768 				regs[rd] = 0;
4769 				break;
4770 			}
4771 			base = (char *)mstate->dtms_scratch_ptr;
4772 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4773 			*end-- = '\0';
4774 
4775 			/*
4776 			 * Find the longest run of 16 bit zero values
4777 			 * for the single allowed zero compression - "::".
4778 			 */
4779 			firstzero = -1;
4780 			tryzero = -1;
4781 			numzero = 1;
4782 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4783 #if defined(sun)
4784 				if (ip6._S6_un._S6_u8[i] == 0 &&
4785 #else
4786 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4787 #endif
4788 				    tryzero == -1 && i % 2 == 0) {
4789 					tryzero = i;
4790 					continue;
4791 				}
4792 
4793 				if (tryzero != -1 &&
4794 #if defined(sun)
4795 				    (ip6._S6_un._S6_u8[i] != 0 ||
4796 #else
4797 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4798 #endif
4799 				    i == sizeof (struct in6_addr) - 1)) {
4800 
4801 					if (i - tryzero <= numzero) {
4802 						tryzero = -1;
4803 						continue;
4804 					}
4805 
4806 					firstzero = tryzero;
4807 					numzero = i - i % 2 - tryzero;
4808 					tryzero = -1;
4809 
4810 #if defined(sun)
4811 					if (ip6._S6_un._S6_u8[i] == 0 &&
4812 #else
4813 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4814 #endif
4815 					    i == sizeof (struct in6_addr) - 1)
4816 						numzero += 2;
4817 				}
4818 			}
4819 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4820 
4821 			/*
4822 			 * Check for an IPv4 embedded address.
4823 			 */
4824 			v6end = sizeof (struct in6_addr) - 2;
4825 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4826 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4827 				for (i = sizeof (struct in6_addr) - 1;
4828 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4829 					ASSERT(end >= base);
4830 
4831 #if defined(sun)
4832 					val = ip6._S6_un._S6_u8[i];
4833 #else
4834 					val = ip6.__u6_addr.__u6_addr8[i];
4835 #endif
4836 
4837 					if (val == 0) {
4838 						*end-- = '0';
4839 					} else {
4840 						for (; val; val /= 10) {
4841 							*end-- = '0' + val % 10;
4842 						}
4843 					}
4844 
4845 					if (i > DTRACE_V4MAPPED_OFFSET)
4846 						*end-- = '.';
4847 				}
4848 
4849 				if (subr == DIF_SUBR_INET_NTOA6)
4850 					goto inetout;
4851 
4852 				/*
4853 				 * Set v6end to skip the IPv4 address that
4854 				 * we have already stringified.
4855 				 */
4856 				v6end = 10;
4857 			}
4858 
4859 			/*
4860 			 * Build the IPv6 string by working through the
4861 			 * address in reverse.
4862 			 */
4863 			for (i = v6end; i >= 0; i -= 2) {
4864 				ASSERT(end >= base);
4865 
4866 				if (i == firstzero + numzero - 2) {
4867 					*end-- = ':';
4868 					*end-- = ':';
4869 					i -= numzero - 2;
4870 					continue;
4871 				}
4872 
4873 				if (i < 14 && i != firstzero - 2)
4874 					*end-- = ':';
4875 
4876 #if defined(sun)
4877 				val = (ip6._S6_un._S6_u8[i] << 8) +
4878 				    ip6._S6_un._S6_u8[i + 1];
4879 #else
4880 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4881 				    ip6.__u6_addr.__u6_addr8[i + 1];
4882 #endif
4883 
4884 				if (val == 0) {
4885 					*end-- = '0';
4886 				} else {
4887 					for (; val; val /= 16) {
4888 						*end-- = digits[val % 16];
4889 					}
4890 				}
4891 			}
4892 			ASSERT(end + 1 >= base);
4893 
4894 		} else {
4895 			/*
4896 			 * The user didn't use AH_INET or AH_INET6.
4897 			 */
4898 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4899 			regs[rd] = 0;
4900 			break;
4901 		}
4902 
4903 inetout:	regs[rd] = (uintptr_t)end + 1;
4904 		mstate->dtms_scratch_ptr += size;
4905 		break;
4906 	}
4907 
4908 	case DIF_SUBR_MEMREF: {
4909 		uintptr_t size = 2 * sizeof(uintptr_t);
4910 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4911 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4912 
4913 		/* address and length */
4914 		memref[0] = tupregs[0].dttk_value;
4915 		memref[1] = tupregs[1].dttk_value;
4916 
4917 		regs[rd] = (uintptr_t) memref;
4918 		mstate->dtms_scratch_ptr += scratch_size;
4919 		break;
4920 	}
4921 
4922 	case DIF_SUBR_TYPEREF: {
4923 		uintptr_t size = 4 * sizeof(uintptr_t);
4924 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4925 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4926 
4927 		/* address, num_elements, type_str, type_len */
4928 		typeref[0] = tupregs[0].dttk_value;
4929 		typeref[1] = tupregs[1].dttk_value;
4930 		typeref[2] = tupregs[2].dttk_value;
4931 		typeref[3] = tupregs[3].dttk_value;
4932 
4933 		regs[rd] = (uintptr_t) typeref;
4934 		mstate->dtms_scratch_ptr += scratch_size;
4935 		break;
4936 	}
4937 	}
4938 }
4939 
4940 /*
4941  * Emulate the execution of DTrace IR instructions specified by the given
4942  * DIF object.  This function is deliberately void of assertions as all of
4943  * the necessary checks are handled by a call to dtrace_difo_validate().
4944  */
4945 static uint64_t
4946 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4947     dtrace_vstate_t *vstate, dtrace_state_t *state)
4948 {
4949 	const dif_instr_t *text = difo->dtdo_buf;
4950 	const uint_t textlen = difo->dtdo_len;
4951 	const char *strtab = difo->dtdo_strtab;
4952 	const uint64_t *inttab = difo->dtdo_inttab;
4953 
4954 	uint64_t rval = 0;
4955 	dtrace_statvar_t *svar;
4956 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4957 	dtrace_difv_t *v;
4958 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4959 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4960 
4961 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4962 	uint64_t regs[DIF_DIR_NREGS];
4963 	uint64_t *tmp;
4964 
4965 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4966 	int64_t cc_r;
4967 	uint_t pc = 0, id, opc = 0;
4968 	uint8_t ttop = 0;
4969 	dif_instr_t instr;
4970 	uint_t r1, r2, rd;
4971 
4972 	/*
4973 	 * We stash the current DIF object into the machine state: we need it
4974 	 * for subsequent access checking.
4975 	 */
4976 	mstate->dtms_difo = difo;
4977 
4978 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4979 
4980 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4981 		opc = pc;
4982 
4983 		instr = text[pc++];
4984 		r1 = DIF_INSTR_R1(instr);
4985 		r2 = DIF_INSTR_R2(instr);
4986 		rd = DIF_INSTR_RD(instr);
4987 
4988 		switch (DIF_INSTR_OP(instr)) {
4989 		case DIF_OP_OR:
4990 			regs[rd] = regs[r1] | regs[r2];
4991 			break;
4992 		case DIF_OP_XOR:
4993 			regs[rd] = regs[r1] ^ regs[r2];
4994 			break;
4995 		case DIF_OP_AND:
4996 			regs[rd] = regs[r1] & regs[r2];
4997 			break;
4998 		case DIF_OP_SLL:
4999 			regs[rd] = regs[r1] << regs[r2];
5000 			break;
5001 		case DIF_OP_SRL:
5002 			regs[rd] = regs[r1] >> regs[r2];
5003 			break;
5004 		case DIF_OP_SUB:
5005 			regs[rd] = regs[r1] - regs[r2];
5006 			break;
5007 		case DIF_OP_ADD:
5008 			regs[rd] = regs[r1] + regs[r2];
5009 			break;
5010 		case DIF_OP_MUL:
5011 			regs[rd] = regs[r1] * regs[r2];
5012 			break;
5013 		case DIF_OP_SDIV:
5014 			if (regs[r2] == 0) {
5015 				regs[rd] = 0;
5016 				*flags |= CPU_DTRACE_DIVZERO;
5017 			} else {
5018 				regs[rd] = (int64_t)regs[r1] /
5019 				    (int64_t)regs[r2];
5020 			}
5021 			break;
5022 
5023 		case DIF_OP_UDIV:
5024 			if (regs[r2] == 0) {
5025 				regs[rd] = 0;
5026 				*flags |= CPU_DTRACE_DIVZERO;
5027 			} else {
5028 				regs[rd] = regs[r1] / regs[r2];
5029 			}
5030 			break;
5031 
5032 		case DIF_OP_SREM:
5033 			if (regs[r2] == 0) {
5034 				regs[rd] = 0;
5035 				*flags |= CPU_DTRACE_DIVZERO;
5036 			} else {
5037 				regs[rd] = (int64_t)regs[r1] %
5038 				    (int64_t)regs[r2];
5039 			}
5040 			break;
5041 
5042 		case DIF_OP_UREM:
5043 			if (regs[r2] == 0) {
5044 				regs[rd] = 0;
5045 				*flags |= CPU_DTRACE_DIVZERO;
5046 			} else {
5047 				regs[rd] = regs[r1] % regs[r2];
5048 			}
5049 			break;
5050 
5051 		case DIF_OP_NOT:
5052 			regs[rd] = ~regs[r1];
5053 			break;
5054 		case DIF_OP_MOV:
5055 			regs[rd] = regs[r1];
5056 			break;
5057 		case DIF_OP_CMP:
5058 			cc_r = regs[r1] - regs[r2];
5059 			cc_n = cc_r < 0;
5060 			cc_z = cc_r == 0;
5061 			cc_v = 0;
5062 			cc_c = regs[r1] < regs[r2];
5063 			break;
5064 		case DIF_OP_TST:
5065 			cc_n = cc_v = cc_c = 0;
5066 			cc_z = regs[r1] == 0;
5067 			break;
5068 		case DIF_OP_BA:
5069 			pc = DIF_INSTR_LABEL(instr);
5070 			break;
5071 		case DIF_OP_BE:
5072 			if (cc_z)
5073 				pc = DIF_INSTR_LABEL(instr);
5074 			break;
5075 		case DIF_OP_BNE:
5076 			if (cc_z == 0)
5077 				pc = DIF_INSTR_LABEL(instr);
5078 			break;
5079 		case DIF_OP_BG:
5080 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5081 				pc = DIF_INSTR_LABEL(instr);
5082 			break;
5083 		case DIF_OP_BGU:
5084 			if ((cc_c | cc_z) == 0)
5085 				pc = DIF_INSTR_LABEL(instr);
5086 			break;
5087 		case DIF_OP_BGE:
5088 			if ((cc_n ^ cc_v) == 0)
5089 				pc = DIF_INSTR_LABEL(instr);
5090 			break;
5091 		case DIF_OP_BGEU:
5092 			if (cc_c == 0)
5093 				pc = DIF_INSTR_LABEL(instr);
5094 			break;
5095 		case DIF_OP_BL:
5096 			if (cc_n ^ cc_v)
5097 				pc = DIF_INSTR_LABEL(instr);
5098 			break;
5099 		case DIF_OP_BLU:
5100 			if (cc_c)
5101 				pc = DIF_INSTR_LABEL(instr);
5102 			break;
5103 		case DIF_OP_BLE:
5104 			if (cc_z | (cc_n ^ cc_v))
5105 				pc = DIF_INSTR_LABEL(instr);
5106 			break;
5107 		case DIF_OP_BLEU:
5108 			if (cc_c | cc_z)
5109 				pc = DIF_INSTR_LABEL(instr);
5110 			break;
5111 		case DIF_OP_RLDSB:
5112 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5113 				*flags |= CPU_DTRACE_KPRIV;
5114 				*illval = regs[r1];
5115 				break;
5116 			}
5117 			/*FALLTHROUGH*/
5118 		case DIF_OP_LDSB:
5119 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5120 			break;
5121 		case DIF_OP_RLDSH:
5122 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5123 				*flags |= CPU_DTRACE_KPRIV;
5124 				*illval = regs[r1];
5125 				break;
5126 			}
5127 			/*FALLTHROUGH*/
5128 		case DIF_OP_LDSH:
5129 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5130 			break;
5131 		case DIF_OP_RLDSW:
5132 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5133 				*flags |= CPU_DTRACE_KPRIV;
5134 				*illval = regs[r1];
5135 				break;
5136 			}
5137 			/*FALLTHROUGH*/
5138 		case DIF_OP_LDSW:
5139 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5140 			break;
5141 		case DIF_OP_RLDUB:
5142 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5143 				*flags |= CPU_DTRACE_KPRIV;
5144 				*illval = regs[r1];
5145 				break;
5146 			}
5147 			/*FALLTHROUGH*/
5148 		case DIF_OP_LDUB:
5149 			regs[rd] = dtrace_load8(regs[r1]);
5150 			break;
5151 		case DIF_OP_RLDUH:
5152 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5153 				*flags |= CPU_DTRACE_KPRIV;
5154 				*illval = regs[r1];
5155 				break;
5156 			}
5157 			/*FALLTHROUGH*/
5158 		case DIF_OP_LDUH:
5159 			regs[rd] = dtrace_load16(regs[r1]);
5160 			break;
5161 		case DIF_OP_RLDUW:
5162 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5163 				*flags |= CPU_DTRACE_KPRIV;
5164 				*illval = regs[r1];
5165 				break;
5166 			}
5167 			/*FALLTHROUGH*/
5168 		case DIF_OP_LDUW:
5169 			regs[rd] = dtrace_load32(regs[r1]);
5170 			break;
5171 		case DIF_OP_RLDX:
5172 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5173 				*flags |= CPU_DTRACE_KPRIV;
5174 				*illval = regs[r1];
5175 				break;
5176 			}
5177 			/*FALLTHROUGH*/
5178 		case DIF_OP_LDX:
5179 			regs[rd] = dtrace_load64(regs[r1]);
5180 			break;
5181 		case DIF_OP_ULDSB:
5182 			regs[rd] = (int8_t)
5183 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5184 			break;
5185 		case DIF_OP_ULDSH:
5186 			regs[rd] = (int16_t)
5187 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5188 			break;
5189 		case DIF_OP_ULDSW:
5190 			regs[rd] = (int32_t)
5191 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5192 			break;
5193 		case DIF_OP_ULDUB:
5194 			regs[rd] =
5195 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5196 			break;
5197 		case DIF_OP_ULDUH:
5198 			regs[rd] =
5199 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5200 			break;
5201 		case DIF_OP_ULDUW:
5202 			regs[rd] =
5203 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5204 			break;
5205 		case DIF_OP_ULDX:
5206 			regs[rd] =
5207 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5208 			break;
5209 		case DIF_OP_RET:
5210 			rval = regs[rd];
5211 			pc = textlen;
5212 			break;
5213 		case DIF_OP_NOP:
5214 			break;
5215 		case DIF_OP_SETX:
5216 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5217 			break;
5218 		case DIF_OP_SETS:
5219 			regs[rd] = (uint64_t)(uintptr_t)
5220 			    (strtab + DIF_INSTR_STRING(instr));
5221 			break;
5222 		case DIF_OP_SCMP: {
5223 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5224 			uintptr_t s1 = regs[r1];
5225 			uintptr_t s2 = regs[r2];
5226 
5227 			if (s1 != 0 &&
5228 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5229 				break;
5230 			if (s2 != 0 &&
5231 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5232 				break;
5233 
5234 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5235 
5236 			cc_n = cc_r < 0;
5237 			cc_z = cc_r == 0;
5238 			cc_v = cc_c = 0;
5239 			break;
5240 		}
5241 		case DIF_OP_LDGA:
5242 			regs[rd] = dtrace_dif_variable(mstate, state,
5243 			    r1, regs[r2]);
5244 			break;
5245 		case DIF_OP_LDGS:
5246 			id = DIF_INSTR_VAR(instr);
5247 
5248 			if (id >= DIF_VAR_OTHER_UBASE) {
5249 				uintptr_t a;
5250 
5251 				id -= DIF_VAR_OTHER_UBASE;
5252 				svar = vstate->dtvs_globals[id];
5253 				ASSERT(svar != NULL);
5254 				v = &svar->dtsv_var;
5255 
5256 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5257 					regs[rd] = svar->dtsv_data;
5258 					break;
5259 				}
5260 
5261 				a = (uintptr_t)svar->dtsv_data;
5262 
5263 				if (*(uint8_t *)a == UINT8_MAX) {
5264 					/*
5265 					 * If the 0th byte is set to UINT8_MAX
5266 					 * then this is to be treated as a
5267 					 * reference to a NULL variable.
5268 					 */
5269 					regs[rd] = 0;
5270 				} else {
5271 					regs[rd] = a + sizeof (uint64_t);
5272 				}
5273 
5274 				break;
5275 			}
5276 
5277 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5278 			break;
5279 
5280 		case DIF_OP_STGS:
5281 			id = DIF_INSTR_VAR(instr);
5282 
5283 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5284 			id -= DIF_VAR_OTHER_UBASE;
5285 
5286 			svar = vstate->dtvs_globals[id];
5287 			ASSERT(svar != NULL);
5288 			v = &svar->dtsv_var;
5289 
5290 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5291 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5292 
5293 				ASSERT(a != 0);
5294 				ASSERT(svar->dtsv_size != 0);
5295 
5296 				if (regs[rd] == 0) {
5297 					*(uint8_t *)a = UINT8_MAX;
5298 					break;
5299 				} else {
5300 					*(uint8_t *)a = 0;
5301 					a += sizeof (uint64_t);
5302 				}
5303 				if (!dtrace_vcanload(
5304 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5305 				    mstate, vstate))
5306 					break;
5307 
5308 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5309 				    (void *)a, &v->dtdv_type);
5310 				break;
5311 			}
5312 
5313 			svar->dtsv_data = regs[rd];
5314 			break;
5315 
5316 		case DIF_OP_LDTA:
5317 			/*
5318 			 * There are no DTrace built-in thread-local arrays at
5319 			 * present.  This opcode is saved for future work.
5320 			 */
5321 			*flags |= CPU_DTRACE_ILLOP;
5322 			regs[rd] = 0;
5323 			break;
5324 
5325 		case DIF_OP_LDLS:
5326 			id = DIF_INSTR_VAR(instr);
5327 
5328 			if (id < DIF_VAR_OTHER_UBASE) {
5329 				/*
5330 				 * For now, this has no meaning.
5331 				 */
5332 				regs[rd] = 0;
5333 				break;
5334 			}
5335 
5336 			id -= DIF_VAR_OTHER_UBASE;
5337 
5338 			ASSERT(id < vstate->dtvs_nlocals);
5339 			ASSERT(vstate->dtvs_locals != NULL);
5340 
5341 			svar = vstate->dtvs_locals[id];
5342 			ASSERT(svar != NULL);
5343 			v = &svar->dtsv_var;
5344 
5345 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5346 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5347 				size_t sz = v->dtdv_type.dtdt_size;
5348 
5349 				sz += sizeof (uint64_t);
5350 				ASSERT(svar->dtsv_size == NCPU * sz);
5351 				a += curcpu * sz;
5352 
5353 				if (*(uint8_t *)a == UINT8_MAX) {
5354 					/*
5355 					 * If the 0th byte is set to UINT8_MAX
5356 					 * then this is to be treated as a
5357 					 * reference to a NULL variable.
5358 					 */
5359 					regs[rd] = 0;
5360 				} else {
5361 					regs[rd] = a + sizeof (uint64_t);
5362 				}
5363 
5364 				break;
5365 			}
5366 
5367 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5368 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5369 			regs[rd] = tmp[curcpu];
5370 			break;
5371 
5372 		case DIF_OP_STLS:
5373 			id = DIF_INSTR_VAR(instr);
5374 
5375 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5376 			id -= DIF_VAR_OTHER_UBASE;
5377 			ASSERT(id < vstate->dtvs_nlocals);
5378 
5379 			ASSERT(vstate->dtvs_locals != NULL);
5380 			svar = vstate->dtvs_locals[id];
5381 			ASSERT(svar != NULL);
5382 			v = &svar->dtsv_var;
5383 
5384 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5385 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5386 				size_t sz = v->dtdv_type.dtdt_size;
5387 
5388 				sz += sizeof (uint64_t);
5389 				ASSERT(svar->dtsv_size == NCPU * sz);
5390 				a += curcpu * sz;
5391 
5392 				if (regs[rd] == 0) {
5393 					*(uint8_t *)a = UINT8_MAX;
5394 					break;
5395 				} else {
5396 					*(uint8_t *)a = 0;
5397 					a += sizeof (uint64_t);
5398 				}
5399 
5400 				if (!dtrace_vcanload(
5401 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5402 				    mstate, vstate))
5403 					break;
5404 
5405 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5406 				    (void *)a, &v->dtdv_type);
5407 				break;
5408 			}
5409 
5410 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5411 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5412 			tmp[curcpu] = regs[rd];
5413 			break;
5414 
5415 		case DIF_OP_LDTS: {
5416 			dtrace_dynvar_t *dvar;
5417 			dtrace_key_t *key;
5418 
5419 			id = DIF_INSTR_VAR(instr);
5420 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5421 			id -= DIF_VAR_OTHER_UBASE;
5422 			v = &vstate->dtvs_tlocals[id];
5423 
5424 			key = &tupregs[DIF_DTR_NREGS];
5425 			key[0].dttk_value = (uint64_t)id;
5426 			key[0].dttk_size = 0;
5427 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5428 			key[1].dttk_size = 0;
5429 
5430 			dvar = dtrace_dynvar(dstate, 2, key,
5431 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5432 			    mstate, vstate);
5433 
5434 			if (dvar == NULL) {
5435 				regs[rd] = 0;
5436 				break;
5437 			}
5438 
5439 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5440 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5441 			} else {
5442 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5443 			}
5444 
5445 			break;
5446 		}
5447 
5448 		case DIF_OP_STTS: {
5449 			dtrace_dynvar_t *dvar;
5450 			dtrace_key_t *key;
5451 
5452 			id = DIF_INSTR_VAR(instr);
5453 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5454 			id -= DIF_VAR_OTHER_UBASE;
5455 
5456 			key = &tupregs[DIF_DTR_NREGS];
5457 			key[0].dttk_value = (uint64_t)id;
5458 			key[0].dttk_size = 0;
5459 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5460 			key[1].dttk_size = 0;
5461 			v = &vstate->dtvs_tlocals[id];
5462 
5463 			dvar = dtrace_dynvar(dstate, 2, key,
5464 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5465 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5466 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5467 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5468 
5469 			/*
5470 			 * Given that we're storing to thread-local data,
5471 			 * we need to flush our predicate cache.
5472 			 */
5473 			curthread->t_predcache = 0;
5474 
5475 			if (dvar == NULL)
5476 				break;
5477 
5478 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5479 				if (!dtrace_vcanload(
5480 				    (void *)(uintptr_t)regs[rd],
5481 				    &v->dtdv_type, mstate, vstate))
5482 					break;
5483 
5484 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5485 				    dvar->dtdv_data, &v->dtdv_type);
5486 			} else {
5487 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5488 			}
5489 
5490 			break;
5491 		}
5492 
5493 		case DIF_OP_SRA:
5494 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5495 			break;
5496 
5497 		case DIF_OP_CALL:
5498 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5499 			    regs, tupregs, ttop, mstate, state);
5500 			break;
5501 
5502 		case DIF_OP_PUSHTR:
5503 			if (ttop == DIF_DTR_NREGS) {
5504 				*flags |= CPU_DTRACE_TUPOFLOW;
5505 				break;
5506 			}
5507 
5508 			if (r1 == DIF_TYPE_STRING) {
5509 				/*
5510 				 * If this is a string type and the size is 0,
5511 				 * we'll use the system-wide default string
5512 				 * size.  Note that we are _not_ looking at
5513 				 * the value of the DTRACEOPT_STRSIZE option;
5514 				 * had this been set, we would expect to have
5515 				 * a non-zero size value in the "pushtr".
5516 				 */
5517 				tupregs[ttop].dttk_size =
5518 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5519 				    regs[r2] ? regs[r2] :
5520 				    dtrace_strsize_default) + 1;
5521 			} else {
5522 				tupregs[ttop].dttk_size = regs[r2];
5523 			}
5524 
5525 			tupregs[ttop++].dttk_value = regs[rd];
5526 			break;
5527 
5528 		case DIF_OP_PUSHTV:
5529 			if (ttop == DIF_DTR_NREGS) {
5530 				*flags |= CPU_DTRACE_TUPOFLOW;
5531 				break;
5532 			}
5533 
5534 			tupregs[ttop].dttk_value = regs[rd];
5535 			tupregs[ttop++].dttk_size = 0;
5536 			break;
5537 
5538 		case DIF_OP_POPTS:
5539 			if (ttop != 0)
5540 				ttop--;
5541 			break;
5542 
5543 		case DIF_OP_FLUSHTS:
5544 			ttop = 0;
5545 			break;
5546 
5547 		case DIF_OP_LDGAA:
5548 		case DIF_OP_LDTAA: {
5549 			dtrace_dynvar_t *dvar;
5550 			dtrace_key_t *key = tupregs;
5551 			uint_t nkeys = ttop;
5552 
5553 			id = DIF_INSTR_VAR(instr);
5554 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5555 			id -= DIF_VAR_OTHER_UBASE;
5556 
5557 			key[nkeys].dttk_value = (uint64_t)id;
5558 			key[nkeys++].dttk_size = 0;
5559 
5560 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5561 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5562 				key[nkeys++].dttk_size = 0;
5563 				v = &vstate->dtvs_tlocals[id];
5564 			} else {
5565 				v = &vstate->dtvs_globals[id]->dtsv_var;
5566 			}
5567 
5568 			dvar = dtrace_dynvar(dstate, nkeys, key,
5569 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5570 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5571 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5572 
5573 			if (dvar == NULL) {
5574 				regs[rd] = 0;
5575 				break;
5576 			}
5577 
5578 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5579 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5580 			} else {
5581 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5582 			}
5583 
5584 			break;
5585 		}
5586 
5587 		case DIF_OP_STGAA:
5588 		case DIF_OP_STTAA: {
5589 			dtrace_dynvar_t *dvar;
5590 			dtrace_key_t *key = tupregs;
5591 			uint_t nkeys = ttop;
5592 
5593 			id = DIF_INSTR_VAR(instr);
5594 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5595 			id -= DIF_VAR_OTHER_UBASE;
5596 
5597 			key[nkeys].dttk_value = (uint64_t)id;
5598 			key[nkeys++].dttk_size = 0;
5599 
5600 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5601 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5602 				key[nkeys++].dttk_size = 0;
5603 				v = &vstate->dtvs_tlocals[id];
5604 			} else {
5605 				v = &vstate->dtvs_globals[id]->dtsv_var;
5606 			}
5607 
5608 			dvar = dtrace_dynvar(dstate, nkeys, key,
5609 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5610 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5611 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5612 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5613 
5614 			if (dvar == NULL)
5615 				break;
5616 
5617 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5618 				if (!dtrace_vcanload(
5619 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5620 				    mstate, vstate))
5621 					break;
5622 
5623 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5624 				    dvar->dtdv_data, &v->dtdv_type);
5625 			} else {
5626 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5627 			}
5628 
5629 			break;
5630 		}
5631 
5632 		case DIF_OP_ALLOCS: {
5633 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5634 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5635 
5636 			/*
5637 			 * Rounding up the user allocation size could have
5638 			 * overflowed large, bogus allocations (like -1ULL) to
5639 			 * 0.
5640 			 */
5641 			if (size < regs[r1] ||
5642 			    !DTRACE_INSCRATCH(mstate, size)) {
5643 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5644 				regs[rd] = 0;
5645 				break;
5646 			}
5647 
5648 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5649 			mstate->dtms_scratch_ptr += size;
5650 			regs[rd] = ptr;
5651 			break;
5652 		}
5653 
5654 		case DIF_OP_COPYS:
5655 			if (!dtrace_canstore(regs[rd], regs[r2],
5656 			    mstate, vstate)) {
5657 				*flags |= CPU_DTRACE_BADADDR;
5658 				*illval = regs[rd];
5659 				break;
5660 			}
5661 
5662 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5663 				break;
5664 
5665 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5666 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5667 			break;
5668 
5669 		case DIF_OP_STB:
5670 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5671 				*flags |= CPU_DTRACE_BADADDR;
5672 				*illval = regs[rd];
5673 				break;
5674 			}
5675 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5676 			break;
5677 
5678 		case DIF_OP_STH:
5679 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5680 				*flags |= CPU_DTRACE_BADADDR;
5681 				*illval = regs[rd];
5682 				break;
5683 			}
5684 			if (regs[rd] & 1) {
5685 				*flags |= CPU_DTRACE_BADALIGN;
5686 				*illval = regs[rd];
5687 				break;
5688 			}
5689 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5690 			break;
5691 
5692 		case DIF_OP_STW:
5693 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5694 				*flags |= CPU_DTRACE_BADADDR;
5695 				*illval = regs[rd];
5696 				break;
5697 			}
5698 			if (regs[rd] & 3) {
5699 				*flags |= CPU_DTRACE_BADALIGN;
5700 				*illval = regs[rd];
5701 				break;
5702 			}
5703 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5704 			break;
5705 
5706 		case DIF_OP_STX:
5707 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5708 				*flags |= CPU_DTRACE_BADADDR;
5709 				*illval = regs[rd];
5710 				break;
5711 			}
5712 			if (regs[rd] & 7) {
5713 				*flags |= CPU_DTRACE_BADALIGN;
5714 				*illval = regs[rd];
5715 				break;
5716 			}
5717 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5718 			break;
5719 		}
5720 	}
5721 
5722 	if (!(*flags & CPU_DTRACE_FAULT))
5723 		return (rval);
5724 
5725 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5726 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5727 
5728 	return (0);
5729 }
5730 
5731 static void
5732 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5733 {
5734 	dtrace_probe_t *probe = ecb->dte_probe;
5735 	dtrace_provider_t *prov = probe->dtpr_provider;
5736 	char c[DTRACE_FULLNAMELEN + 80], *str;
5737 	char *msg = "dtrace: breakpoint action at probe ";
5738 	char *ecbmsg = " (ecb ";
5739 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5740 	uintptr_t val = (uintptr_t)ecb;
5741 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5742 
5743 	if (dtrace_destructive_disallow)
5744 		return;
5745 
5746 	/*
5747 	 * It's impossible to be taking action on the NULL probe.
5748 	 */
5749 	ASSERT(probe != NULL);
5750 
5751 	/*
5752 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5753 	 * print the provider name, module name, function name and name of
5754 	 * the probe, along with the hex address of the ECB with the breakpoint
5755 	 * action -- all of which we must place in the character buffer by
5756 	 * hand.
5757 	 */
5758 	while (*msg != '\0')
5759 		c[i++] = *msg++;
5760 
5761 	for (str = prov->dtpv_name; *str != '\0'; str++)
5762 		c[i++] = *str;
5763 	c[i++] = ':';
5764 
5765 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5766 		c[i++] = *str;
5767 	c[i++] = ':';
5768 
5769 	for (str = probe->dtpr_func; *str != '\0'; str++)
5770 		c[i++] = *str;
5771 	c[i++] = ':';
5772 
5773 	for (str = probe->dtpr_name; *str != '\0'; str++)
5774 		c[i++] = *str;
5775 
5776 	while (*ecbmsg != '\0')
5777 		c[i++] = *ecbmsg++;
5778 
5779 	while (shift >= 0) {
5780 		mask = (uintptr_t)0xf << shift;
5781 
5782 		if (val >= ((uintptr_t)1 << shift))
5783 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5784 		shift -= 4;
5785 	}
5786 
5787 	c[i++] = ')';
5788 	c[i] = '\0';
5789 
5790 #if defined(sun)
5791 	debug_enter(c);
5792 #else
5793 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5794 #endif
5795 }
5796 
5797 static void
5798 dtrace_action_panic(dtrace_ecb_t *ecb)
5799 {
5800 	dtrace_probe_t *probe = ecb->dte_probe;
5801 
5802 	/*
5803 	 * It's impossible to be taking action on the NULL probe.
5804 	 */
5805 	ASSERT(probe != NULL);
5806 
5807 	if (dtrace_destructive_disallow)
5808 		return;
5809 
5810 	if (dtrace_panicked != NULL)
5811 		return;
5812 
5813 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5814 		return;
5815 
5816 	/*
5817 	 * We won the right to panic.  (We want to be sure that only one
5818 	 * thread calls panic() from dtrace_probe(), and that panic() is
5819 	 * called exactly once.)
5820 	 */
5821 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5822 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5823 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5824 }
5825 
5826 static void
5827 dtrace_action_raise(uint64_t sig)
5828 {
5829 	if (dtrace_destructive_disallow)
5830 		return;
5831 
5832 	if (sig >= NSIG) {
5833 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5834 		return;
5835 	}
5836 
5837 #if defined(sun)
5838 	/*
5839 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5840 	 * invocations of the raise() action.
5841 	 */
5842 	if (curthread->t_dtrace_sig == 0)
5843 		curthread->t_dtrace_sig = (uint8_t)sig;
5844 
5845 	curthread->t_sig_check = 1;
5846 	aston(curthread);
5847 #else
5848 	struct proc *p = curproc;
5849 	PROC_LOCK(p);
5850 	kern_psignal(p, sig);
5851 	PROC_UNLOCK(p);
5852 #endif
5853 }
5854 
5855 static void
5856 dtrace_action_stop(void)
5857 {
5858 	if (dtrace_destructive_disallow)
5859 		return;
5860 
5861 #if defined(sun)
5862 	if (!curthread->t_dtrace_stop) {
5863 		curthread->t_dtrace_stop = 1;
5864 		curthread->t_sig_check = 1;
5865 		aston(curthread);
5866 	}
5867 #else
5868 	struct proc *p = curproc;
5869 	PROC_LOCK(p);
5870 	kern_psignal(p, SIGSTOP);
5871 	PROC_UNLOCK(p);
5872 #endif
5873 }
5874 
5875 static void
5876 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5877 {
5878 	hrtime_t now;
5879 	volatile uint16_t *flags;
5880 #if defined(sun)
5881 	cpu_t *cpu = CPU;
5882 #else
5883 	cpu_t *cpu = &solaris_cpu[curcpu];
5884 #endif
5885 
5886 	if (dtrace_destructive_disallow)
5887 		return;
5888 
5889 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5890 
5891 	now = dtrace_gethrtime();
5892 
5893 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5894 		/*
5895 		 * We need to advance the mark to the current time.
5896 		 */
5897 		cpu->cpu_dtrace_chillmark = now;
5898 		cpu->cpu_dtrace_chilled = 0;
5899 	}
5900 
5901 	/*
5902 	 * Now check to see if the requested chill time would take us over
5903 	 * the maximum amount of time allowed in the chill interval.  (Or
5904 	 * worse, if the calculation itself induces overflow.)
5905 	 */
5906 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5907 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5908 		*flags |= CPU_DTRACE_ILLOP;
5909 		return;
5910 	}
5911 
5912 	while (dtrace_gethrtime() - now < val)
5913 		continue;
5914 
5915 	/*
5916 	 * Normally, we assure that the value of the variable "timestamp" does
5917 	 * not change within an ECB.  The presence of chill() represents an
5918 	 * exception to this rule, however.
5919 	 */
5920 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5921 	cpu->cpu_dtrace_chilled += val;
5922 }
5923 
5924 static void
5925 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5926     uint64_t *buf, uint64_t arg)
5927 {
5928 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5929 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5930 	uint64_t *pcs = &buf[1], *fps;
5931 	char *str = (char *)&pcs[nframes];
5932 	int size, offs = 0, i, j;
5933 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5934 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5935 	char *sym;
5936 
5937 	/*
5938 	 * Should be taking a faster path if string space has not been
5939 	 * allocated.
5940 	 */
5941 	ASSERT(strsize != 0);
5942 
5943 	/*
5944 	 * We will first allocate some temporary space for the frame pointers.
5945 	 */
5946 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5947 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5948 	    (nframes * sizeof (uint64_t));
5949 
5950 	if (!DTRACE_INSCRATCH(mstate, size)) {
5951 		/*
5952 		 * Not enough room for our frame pointers -- need to indicate
5953 		 * that we ran out of scratch space.
5954 		 */
5955 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5956 		return;
5957 	}
5958 
5959 	mstate->dtms_scratch_ptr += size;
5960 	saved = mstate->dtms_scratch_ptr;
5961 
5962 	/*
5963 	 * Now get a stack with both program counters and frame pointers.
5964 	 */
5965 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5966 	dtrace_getufpstack(buf, fps, nframes + 1);
5967 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5968 
5969 	/*
5970 	 * If that faulted, we're cooked.
5971 	 */
5972 	if (*flags & CPU_DTRACE_FAULT)
5973 		goto out;
5974 
5975 	/*
5976 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5977 	 * each iteration, we restore the scratch pointer.
5978 	 */
5979 	for (i = 0; i < nframes; i++) {
5980 		mstate->dtms_scratch_ptr = saved;
5981 
5982 		if (offs >= strsize)
5983 			break;
5984 
5985 		sym = (char *)(uintptr_t)dtrace_helper(
5986 		    DTRACE_HELPER_ACTION_USTACK,
5987 		    mstate, state, pcs[i], fps[i]);
5988 
5989 		/*
5990 		 * If we faulted while running the helper, we're going to
5991 		 * clear the fault and null out the corresponding string.
5992 		 */
5993 		if (*flags & CPU_DTRACE_FAULT) {
5994 			*flags &= ~CPU_DTRACE_FAULT;
5995 			str[offs++] = '\0';
5996 			continue;
5997 		}
5998 
5999 		if (sym == NULL) {
6000 			str[offs++] = '\0';
6001 			continue;
6002 		}
6003 
6004 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6005 
6006 		/*
6007 		 * Now copy in the string that the helper returned to us.
6008 		 */
6009 		for (j = 0; offs + j < strsize; j++) {
6010 			if ((str[offs + j] = sym[j]) == '\0')
6011 				break;
6012 		}
6013 
6014 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6015 
6016 		offs += j + 1;
6017 	}
6018 
6019 	if (offs >= strsize) {
6020 		/*
6021 		 * If we didn't have room for all of the strings, we don't
6022 		 * abort processing -- this needn't be a fatal error -- but we
6023 		 * still want to increment a counter (dts_stkstroverflows) to
6024 		 * allow this condition to be warned about.  (If this is from
6025 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6026 		 */
6027 		dtrace_error(&state->dts_stkstroverflows);
6028 	}
6029 
6030 	while (offs < strsize)
6031 		str[offs++] = '\0';
6032 
6033 out:
6034 	mstate->dtms_scratch_ptr = old;
6035 }
6036 
6037 /*
6038  * If you're looking for the epicenter of DTrace, you just found it.  This
6039  * is the function called by the provider to fire a probe -- from which all
6040  * subsequent probe-context DTrace activity emanates.
6041  */
6042 void
6043 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6044     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6045 {
6046 	processorid_t cpuid;
6047 	dtrace_icookie_t cookie;
6048 	dtrace_probe_t *probe;
6049 	dtrace_mstate_t mstate;
6050 	dtrace_ecb_t *ecb;
6051 	dtrace_action_t *act;
6052 	intptr_t offs;
6053 	size_t size;
6054 	int vtime, onintr;
6055 	volatile uint16_t *flags;
6056 	hrtime_t now;
6057 
6058 	if (panicstr != NULL)
6059 		return;
6060 
6061 #if defined(sun)
6062 	/*
6063 	 * Kick out immediately if this CPU is still being born (in which case
6064 	 * curthread will be set to -1) or the current thread can't allow
6065 	 * probes in its current context.
6066 	 */
6067 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6068 		return;
6069 #endif
6070 
6071 	cookie = dtrace_interrupt_disable();
6072 	probe = dtrace_probes[id - 1];
6073 	cpuid = curcpu;
6074 	onintr = CPU_ON_INTR(CPU);
6075 
6076 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6077 	    probe->dtpr_predcache == curthread->t_predcache) {
6078 		/*
6079 		 * We have hit in the predicate cache; we know that
6080 		 * this predicate would evaluate to be false.
6081 		 */
6082 		dtrace_interrupt_enable(cookie);
6083 		return;
6084 	}
6085 
6086 #if defined(sun)
6087 	if (panic_quiesce) {
6088 #else
6089 	if (panicstr != NULL) {
6090 #endif
6091 		/*
6092 		 * We don't trace anything if we're panicking.
6093 		 */
6094 		dtrace_interrupt_enable(cookie);
6095 		return;
6096 	}
6097 
6098 	now = dtrace_gethrtime();
6099 	vtime = dtrace_vtime_references != 0;
6100 
6101 	if (vtime && curthread->t_dtrace_start)
6102 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6103 
6104 	mstate.dtms_difo = NULL;
6105 	mstate.dtms_probe = probe;
6106 	mstate.dtms_strtok = 0;
6107 	mstate.dtms_arg[0] = arg0;
6108 	mstate.dtms_arg[1] = arg1;
6109 	mstate.dtms_arg[2] = arg2;
6110 	mstate.dtms_arg[3] = arg3;
6111 	mstate.dtms_arg[4] = arg4;
6112 
6113 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6114 
6115 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6116 		dtrace_predicate_t *pred = ecb->dte_predicate;
6117 		dtrace_state_t *state = ecb->dte_state;
6118 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6119 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6120 		dtrace_vstate_t *vstate = &state->dts_vstate;
6121 		dtrace_provider_t *prov = probe->dtpr_provider;
6122 		uint64_t tracememsize = 0;
6123 		int committed = 0;
6124 		caddr_t tomax;
6125 
6126 		/*
6127 		 * A little subtlety with the following (seemingly innocuous)
6128 		 * declaration of the automatic 'val':  by looking at the
6129 		 * code, you might think that it could be declared in the
6130 		 * action processing loop, below.  (That is, it's only used in
6131 		 * the action processing loop.)  However, it must be declared
6132 		 * out of that scope because in the case of DIF expression
6133 		 * arguments to aggregating actions, one iteration of the
6134 		 * action loop will use the last iteration's value.
6135 		 */
6136 		uint64_t val = 0;
6137 
6138 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6139 		*flags &= ~CPU_DTRACE_ERROR;
6140 
6141 		if (prov == dtrace_provider) {
6142 			/*
6143 			 * If dtrace itself is the provider of this probe,
6144 			 * we're only going to continue processing the ECB if
6145 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6146 			 * creating state.  (This prevents disjoint consumers
6147 			 * from seeing one another's metaprobes.)
6148 			 */
6149 			if (arg0 != (uint64_t)(uintptr_t)state)
6150 				continue;
6151 		}
6152 
6153 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6154 			/*
6155 			 * We're not currently active.  If our provider isn't
6156 			 * the dtrace pseudo provider, we're not interested.
6157 			 */
6158 			if (prov != dtrace_provider)
6159 				continue;
6160 
6161 			/*
6162 			 * Now we must further check if we are in the BEGIN
6163 			 * probe.  If we are, we will only continue processing
6164 			 * if we're still in WARMUP -- if one BEGIN enabling
6165 			 * has invoked the exit() action, we don't want to
6166 			 * evaluate subsequent BEGIN enablings.
6167 			 */
6168 			if (probe->dtpr_id == dtrace_probeid_begin &&
6169 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6170 				ASSERT(state->dts_activity ==
6171 				    DTRACE_ACTIVITY_DRAINING);
6172 				continue;
6173 			}
6174 		}
6175 
6176 		if (ecb->dte_cond) {
6177 			/*
6178 			 * If the dte_cond bits indicate that this
6179 			 * consumer is only allowed to see user-mode firings
6180 			 * of this probe, call the provider's dtps_usermode()
6181 			 * entry point to check that the probe was fired
6182 			 * while in a user context. Skip this ECB if that's
6183 			 * not the case.
6184 			 */
6185 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6186 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6187 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6188 				continue;
6189 
6190 #if defined(sun)
6191 			/*
6192 			 * This is more subtle than it looks. We have to be
6193 			 * absolutely certain that CRED() isn't going to
6194 			 * change out from under us so it's only legit to
6195 			 * examine that structure if we're in constrained
6196 			 * situations. Currently, the only times we'll this
6197 			 * check is if a non-super-user has enabled the
6198 			 * profile or syscall providers -- providers that
6199 			 * allow visibility of all processes. For the
6200 			 * profile case, the check above will ensure that
6201 			 * we're examining a user context.
6202 			 */
6203 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6204 				cred_t *cr;
6205 				cred_t *s_cr =
6206 				    ecb->dte_state->dts_cred.dcr_cred;
6207 				proc_t *proc;
6208 
6209 				ASSERT(s_cr != NULL);
6210 
6211 				if ((cr = CRED()) == NULL ||
6212 				    s_cr->cr_uid != cr->cr_uid ||
6213 				    s_cr->cr_uid != cr->cr_ruid ||
6214 				    s_cr->cr_uid != cr->cr_suid ||
6215 				    s_cr->cr_gid != cr->cr_gid ||
6216 				    s_cr->cr_gid != cr->cr_rgid ||
6217 				    s_cr->cr_gid != cr->cr_sgid ||
6218 				    (proc = ttoproc(curthread)) == NULL ||
6219 				    (proc->p_flag & SNOCD))
6220 					continue;
6221 			}
6222 
6223 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6224 				cred_t *cr;
6225 				cred_t *s_cr =
6226 				    ecb->dte_state->dts_cred.dcr_cred;
6227 
6228 				ASSERT(s_cr != NULL);
6229 
6230 				if ((cr = CRED()) == NULL ||
6231 				    s_cr->cr_zone->zone_id !=
6232 				    cr->cr_zone->zone_id)
6233 					continue;
6234 			}
6235 #endif
6236 		}
6237 
6238 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6239 			/*
6240 			 * We seem to be dead.  Unless we (a) have kernel
6241 			 * destructive permissions (b) have explicitly enabled
6242 			 * destructive actions and (c) destructive actions have
6243 			 * not been disabled, we're going to transition into
6244 			 * the KILLED state, from which no further processing
6245 			 * on this state will be performed.
6246 			 */
6247 			if (!dtrace_priv_kernel_destructive(state) ||
6248 			    !state->dts_cred.dcr_destructive ||
6249 			    dtrace_destructive_disallow) {
6250 				void *activity = &state->dts_activity;
6251 				dtrace_activity_t current;
6252 
6253 				do {
6254 					current = state->dts_activity;
6255 				} while (dtrace_cas32(activity, current,
6256 				    DTRACE_ACTIVITY_KILLED) != current);
6257 
6258 				continue;
6259 			}
6260 		}
6261 
6262 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6263 		    ecb->dte_alignment, state, &mstate)) < 0)
6264 			continue;
6265 
6266 		tomax = buf->dtb_tomax;
6267 		ASSERT(tomax != NULL);
6268 
6269 		if (ecb->dte_size != 0) {
6270 			dtrace_rechdr_t dtrh;
6271 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6272 				mstate.dtms_timestamp = dtrace_gethrtime();
6273 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6274 			}
6275 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6276 			dtrh.dtrh_epid = ecb->dte_epid;
6277 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6278 			    mstate.dtms_timestamp);
6279 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6280 		}
6281 
6282 		mstate.dtms_epid = ecb->dte_epid;
6283 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6284 
6285 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6286 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6287 		else
6288 			mstate.dtms_access = 0;
6289 
6290 		if (pred != NULL) {
6291 			dtrace_difo_t *dp = pred->dtp_difo;
6292 			int rval;
6293 
6294 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6295 
6296 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6297 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6298 
6299 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6300 					/*
6301 					 * Update the predicate cache...
6302 					 */
6303 					ASSERT(cid == pred->dtp_cacheid);
6304 					curthread->t_predcache = cid;
6305 				}
6306 
6307 				continue;
6308 			}
6309 		}
6310 
6311 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6312 		    act != NULL; act = act->dta_next) {
6313 			size_t valoffs;
6314 			dtrace_difo_t *dp;
6315 			dtrace_recdesc_t *rec = &act->dta_rec;
6316 
6317 			size = rec->dtrd_size;
6318 			valoffs = offs + rec->dtrd_offset;
6319 
6320 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6321 				uint64_t v = 0xbad;
6322 				dtrace_aggregation_t *agg;
6323 
6324 				agg = (dtrace_aggregation_t *)act;
6325 
6326 				if ((dp = act->dta_difo) != NULL)
6327 					v = dtrace_dif_emulate(dp,
6328 					    &mstate, vstate, state);
6329 
6330 				if (*flags & CPU_DTRACE_ERROR)
6331 					continue;
6332 
6333 				/*
6334 				 * Note that we always pass the expression
6335 				 * value from the previous iteration of the
6336 				 * action loop.  This value will only be used
6337 				 * if there is an expression argument to the
6338 				 * aggregating action, denoted by the
6339 				 * dtag_hasarg field.
6340 				 */
6341 				dtrace_aggregate(agg, buf,
6342 				    offs, aggbuf, v, val);
6343 				continue;
6344 			}
6345 
6346 			switch (act->dta_kind) {
6347 			case DTRACEACT_STOP:
6348 				if (dtrace_priv_proc_destructive(state))
6349 					dtrace_action_stop();
6350 				continue;
6351 
6352 			case DTRACEACT_BREAKPOINT:
6353 				if (dtrace_priv_kernel_destructive(state))
6354 					dtrace_action_breakpoint(ecb);
6355 				continue;
6356 
6357 			case DTRACEACT_PANIC:
6358 				if (dtrace_priv_kernel_destructive(state))
6359 					dtrace_action_panic(ecb);
6360 				continue;
6361 
6362 			case DTRACEACT_STACK:
6363 				if (!dtrace_priv_kernel(state))
6364 					continue;
6365 
6366 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6367 				    size / sizeof (pc_t), probe->dtpr_aframes,
6368 				    DTRACE_ANCHORED(probe) ? NULL :
6369 				    (uint32_t *)arg0);
6370 				continue;
6371 
6372 			case DTRACEACT_JSTACK:
6373 			case DTRACEACT_USTACK:
6374 				if (!dtrace_priv_proc(state))
6375 					continue;
6376 
6377 				/*
6378 				 * See comment in DIF_VAR_PID.
6379 				 */
6380 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6381 				    CPU_ON_INTR(CPU)) {
6382 					int depth = DTRACE_USTACK_NFRAMES(
6383 					    rec->dtrd_arg) + 1;
6384 
6385 					dtrace_bzero((void *)(tomax + valoffs),
6386 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6387 					    + depth * sizeof (uint64_t));
6388 
6389 					continue;
6390 				}
6391 
6392 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6393 				    curproc->p_dtrace_helpers != NULL) {
6394 					/*
6395 					 * This is the slow path -- we have
6396 					 * allocated string space, and we're
6397 					 * getting the stack of a process that
6398 					 * has helpers.  Call into a separate
6399 					 * routine to perform this processing.
6400 					 */
6401 					dtrace_action_ustack(&mstate, state,
6402 					    (uint64_t *)(tomax + valoffs),
6403 					    rec->dtrd_arg);
6404 					continue;
6405 				}
6406 
6407 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6408 				dtrace_getupcstack((uint64_t *)
6409 				    (tomax + valoffs),
6410 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6411 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6412 				continue;
6413 
6414 			default:
6415 				break;
6416 			}
6417 
6418 			dp = act->dta_difo;
6419 			ASSERT(dp != NULL);
6420 
6421 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6422 
6423 			if (*flags & CPU_DTRACE_ERROR)
6424 				continue;
6425 
6426 			switch (act->dta_kind) {
6427 			case DTRACEACT_SPECULATE: {
6428 				dtrace_rechdr_t *dtrh;
6429 
6430 				ASSERT(buf == &state->dts_buffer[cpuid]);
6431 				buf = dtrace_speculation_buffer(state,
6432 				    cpuid, val);
6433 
6434 				if (buf == NULL) {
6435 					*flags |= CPU_DTRACE_DROP;
6436 					continue;
6437 				}
6438 
6439 				offs = dtrace_buffer_reserve(buf,
6440 				    ecb->dte_needed, ecb->dte_alignment,
6441 				    state, NULL);
6442 
6443 				if (offs < 0) {
6444 					*flags |= CPU_DTRACE_DROP;
6445 					continue;
6446 				}
6447 
6448 				tomax = buf->dtb_tomax;
6449 				ASSERT(tomax != NULL);
6450 
6451 				if (ecb->dte_size == 0)
6452 					continue;
6453 
6454 				ASSERT3U(ecb->dte_size, >=,
6455 				    sizeof (dtrace_rechdr_t));
6456 				dtrh = ((void *)(tomax + offs));
6457 				dtrh->dtrh_epid = ecb->dte_epid;
6458 				/*
6459 				 * When the speculation is committed, all of
6460 				 * the records in the speculative buffer will
6461 				 * have their timestamps set to the commit
6462 				 * time.  Until then, it is set to a sentinel
6463 				 * value, for debugability.
6464 				 */
6465 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6466 				continue;
6467 			}
6468 
6469 			case DTRACEACT_PRINTM: {
6470 				/* The DIF returns a 'memref'. */
6471 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6472 
6473 				/* Get the size from the memref. */
6474 				size = memref[1];
6475 
6476 				/*
6477 				 * Check if the size exceeds the allocated
6478 				 * buffer size.
6479 				 */
6480 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6481 					/* Flag a drop! */
6482 					*flags |= CPU_DTRACE_DROP;
6483 					continue;
6484 				}
6485 
6486 				/* Store the size in the buffer first. */
6487 				DTRACE_STORE(uintptr_t, tomax,
6488 				    valoffs, size);
6489 
6490 				/*
6491 				 * Offset the buffer address to the start
6492 				 * of the data.
6493 				 */
6494 				valoffs += sizeof(uintptr_t);
6495 
6496 				/*
6497 				 * Reset to the memory address rather than
6498 				 * the memref array, then let the BYREF
6499 				 * code below do the work to store the
6500 				 * memory data in the buffer.
6501 				 */
6502 				val = memref[0];
6503 				break;
6504 			}
6505 
6506 			case DTRACEACT_PRINTT: {
6507 				/* The DIF returns a 'typeref'. */
6508 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6509 				char c = '\0' + 1;
6510 				size_t s;
6511 
6512 				/*
6513 				 * Get the type string length and round it
6514 				 * up so that the data that follows is
6515 				 * aligned for easy access.
6516 				 */
6517 				size_t typs = strlen((char *) typeref[2]) + 1;
6518 				typs = roundup(typs,  sizeof(uintptr_t));
6519 
6520 				/*
6521 				 *Get the size from the typeref using the
6522 				 * number of elements and the type size.
6523 				 */
6524 				size = typeref[1] * typeref[3];
6525 
6526 				/*
6527 				 * Check if the size exceeds the allocated
6528 				 * buffer size.
6529 				 */
6530 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6531 					/* Flag a drop! */
6532 					*flags |= CPU_DTRACE_DROP;
6533 
6534 				}
6535 
6536 				/* Store the size in the buffer first. */
6537 				DTRACE_STORE(uintptr_t, tomax,
6538 				    valoffs, size);
6539 				valoffs += sizeof(uintptr_t);
6540 
6541 				/* Store the type size in the buffer. */
6542 				DTRACE_STORE(uintptr_t, tomax,
6543 				    valoffs, typeref[3]);
6544 				valoffs += sizeof(uintptr_t);
6545 
6546 				val = typeref[2];
6547 
6548 				for (s = 0; s < typs; s++) {
6549 					if (c != '\0')
6550 						c = dtrace_load8(val++);
6551 
6552 					DTRACE_STORE(uint8_t, tomax,
6553 					    valoffs++, c);
6554 				}
6555 
6556 				/*
6557 				 * Reset to the memory address rather than
6558 				 * the typeref array, then let the BYREF
6559 				 * code below do the work to store the
6560 				 * memory data in the buffer.
6561 				 */
6562 				val = typeref[0];
6563 				break;
6564 			}
6565 
6566 			case DTRACEACT_CHILL:
6567 				if (dtrace_priv_kernel_destructive(state))
6568 					dtrace_action_chill(&mstate, val);
6569 				continue;
6570 
6571 			case DTRACEACT_RAISE:
6572 				if (dtrace_priv_proc_destructive(state))
6573 					dtrace_action_raise(val);
6574 				continue;
6575 
6576 			case DTRACEACT_COMMIT:
6577 				ASSERT(!committed);
6578 
6579 				/*
6580 				 * We need to commit our buffer state.
6581 				 */
6582 				if (ecb->dte_size)
6583 					buf->dtb_offset = offs + ecb->dte_size;
6584 				buf = &state->dts_buffer[cpuid];
6585 				dtrace_speculation_commit(state, cpuid, val);
6586 				committed = 1;
6587 				continue;
6588 
6589 			case DTRACEACT_DISCARD:
6590 				dtrace_speculation_discard(state, cpuid, val);
6591 				continue;
6592 
6593 			case DTRACEACT_DIFEXPR:
6594 			case DTRACEACT_LIBACT:
6595 			case DTRACEACT_PRINTF:
6596 			case DTRACEACT_PRINTA:
6597 			case DTRACEACT_SYSTEM:
6598 			case DTRACEACT_FREOPEN:
6599 			case DTRACEACT_TRACEMEM:
6600 				break;
6601 
6602 			case DTRACEACT_TRACEMEM_DYNSIZE:
6603 				tracememsize = val;
6604 				break;
6605 
6606 			case DTRACEACT_SYM:
6607 			case DTRACEACT_MOD:
6608 				if (!dtrace_priv_kernel(state))
6609 					continue;
6610 				break;
6611 
6612 			case DTRACEACT_USYM:
6613 			case DTRACEACT_UMOD:
6614 			case DTRACEACT_UADDR: {
6615 #if defined(sun)
6616 				struct pid *pid = curthread->t_procp->p_pidp;
6617 #endif
6618 
6619 				if (!dtrace_priv_proc(state))
6620 					continue;
6621 
6622 				DTRACE_STORE(uint64_t, tomax,
6623 #if defined(sun)
6624 				    valoffs, (uint64_t)pid->pid_id);
6625 #else
6626 				    valoffs, (uint64_t) curproc->p_pid);
6627 #endif
6628 				DTRACE_STORE(uint64_t, tomax,
6629 				    valoffs + sizeof (uint64_t), val);
6630 
6631 				continue;
6632 			}
6633 
6634 			case DTRACEACT_EXIT: {
6635 				/*
6636 				 * For the exit action, we are going to attempt
6637 				 * to atomically set our activity to be
6638 				 * draining.  If this fails (either because
6639 				 * another CPU has beat us to the exit action,
6640 				 * or because our current activity is something
6641 				 * other than ACTIVE or WARMUP), we will
6642 				 * continue.  This assures that the exit action
6643 				 * can be successfully recorded at most once
6644 				 * when we're in the ACTIVE state.  If we're
6645 				 * encountering the exit() action while in
6646 				 * COOLDOWN, however, we want to honor the new
6647 				 * status code.  (We know that we're the only
6648 				 * thread in COOLDOWN, so there is no race.)
6649 				 */
6650 				void *activity = &state->dts_activity;
6651 				dtrace_activity_t current = state->dts_activity;
6652 
6653 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6654 					break;
6655 
6656 				if (current != DTRACE_ACTIVITY_WARMUP)
6657 					current = DTRACE_ACTIVITY_ACTIVE;
6658 
6659 				if (dtrace_cas32(activity, current,
6660 				    DTRACE_ACTIVITY_DRAINING) != current) {
6661 					*flags |= CPU_DTRACE_DROP;
6662 					continue;
6663 				}
6664 
6665 				break;
6666 			}
6667 
6668 			default:
6669 				ASSERT(0);
6670 			}
6671 
6672 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6673 				uintptr_t end = valoffs + size;
6674 
6675 				if (tracememsize != 0 &&
6676 				    valoffs + tracememsize < end) {
6677 					end = valoffs + tracememsize;
6678 					tracememsize = 0;
6679 				}
6680 
6681 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6682 				    &dp->dtdo_rtype, &mstate, vstate))
6683 					continue;
6684 
6685 				/*
6686 				 * If this is a string, we're going to only
6687 				 * load until we find the zero byte -- after
6688 				 * which we'll store zero bytes.
6689 				 */
6690 				if (dp->dtdo_rtype.dtdt_kind ==
6691 				    DIF_TYPE_STRING) {
6692 					char c = '\0' + 1;
6693 					int intuple = act->dta_intuple;
6694 					size_t s;
6695 
6696 					for (s = 0; s < size; s++) {
6697 						if (c != '\0')
6698 							c = dtrace_load8(val++);
6699 
6700 						DTRACE_STORE(uint8_t, tomax,
6701 						    valoffs++, c);
6702 
6703 						if (c == '\0' && intuple)
6704 							break;
6705 					}
6706 
6707 					continue;
6708 				}
6709 
6710 				while (valoffs < end) {
6711 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6712 					    dtrace_load8(val++));
6713 				}
6714 
6715 				continue;
6716 			}
6717 
6718 			switch (size) {
6719 			case 0:
6720 				break;
6721 
6722 			case sizeof (uint8_t):
6723 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6724 				break;
6725 			case sizeof (uint16_t):
6726 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6727 				break;
6728 			case sizeof (uint32_t):
6729 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6730 				break;
6731 			case sizeof (uint64_t):
6732 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6733 				break;
6734 			default:
6735 				/*
6736 				 * Any other size should have been returned by
6737 				 * reference, not by value.
6738 				 */
6739 				ASSERT(0);
6740 				break;
6741 			}
6742 		}
6743 
6744 		if (*flags & CPU_DTRACE_DROP)
6745 			continue;
6746 
6747 		if (*flags & CPU_DTRACE_FAULT) {
6748 			int ndx;
6749 			dtrace_action_t *err;
6750 
6751 			buf->dtb_errors++;
6752 
6753 			if (probe->dtpr_id == dtrace_probeid_error) {
6754 				/*
6755 				 * There's nothing we can do -- we had an
6756 				 * error on the error probe.  We bump an
6757 				 * error counter to at least indicate that
6758 				 * this condition happened.
6759 				 */
6760 				dtrace_error(&state->dts_dblerrors);
6761 				continue;
6762 			}
6763 
6764 			if (vtime) {
6765 				/*
6766 				 * Before recursing on dtrace_probe(), we
6767 				 * need to explicitly clear out our start
6768 				 * time to prevent it from being accumulated
6769 				 * into t_dtrace_vtime.
6770 				 */
6771 				curthread->t_dtrace_start = 0;
6772 			}
6773 
6774 			/*
6775 			 * Iterate over the actions to figure out which action
6776 			 * we were processing when we experienced the error.
6777 			 * Note that act points _past_ the faulting action; if
6778 			 * act is ecb->dte_action, the fault was in the
6779 			 * predicate, if it's ecb->dte_action->dta_next it's
6780 			 * in action #1, and so on.
6781 			 */
6782 			for (err = ecb->dte_action, ndx = 0;
6783 			    err != act; err = err->dta_next, ndx++)
6784 				continue;
6785 
6786 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6787 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6788 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6789 			    cpu_core[cpuid].cpuc_dtrace_illval);
6790 
6791 			continue;
6792 		}
6793 
6794 		if (!committed)
6795 			buf->dtb_offset = offs + ecb->dte_size;
6796 	}
6797 
6798 	if (vtime)
6799 		curthread->t_dtrace_start = dtrace_gethrtime();
6800 
6801 	dtrace_interrupt_enable(cookie);
6802 }
6803 
6804 /*
6805  * DTrace Probe Hashing Functions
6806  *
6807  * The functions in this section (and indeed, the functions in remaining
6808  * sections) are not _called_ from probe context.  (Any exceptions to this are
6809  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6810  * DTrace framework to look-up probes in, add probes to and remove probes from
6811  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6812  * probe tuple -- allowing for fast lookups, regardless of what was
6813  * specified.)
6814  */
6815 static uint_t
6816 dtrace_hash_str(const char *p)
6817 {
6818 	unsigned int g;
6819 	uint_t hval = 0;
6820 
6821 	while (*p) {
6822 		hval = (hval << 4) + *p++;
6823 		if ((g = (hval & 0xf0000000)) != 0)
6824 			hval ^= g >> 24;
6825 		hval &= ~g;
6826 	}
6827 	return (hval);
6828 }
6829 
6830 static dtrace_hash_t *
6831 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6832 {
6833 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6834 
6835 	hash->dth_stroffs = stroffs;
6836 	hash->dth_nextoffs = nextoffs;
6837 	hash->dth_prevoffs = prevoffs;
6838 
6839 	hash->dth_size = 1;
6840 	hash->dth_mask = hash->dth_size - 1;
6841 
6842 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6843 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6844 
6845 	return (hash);
6846 }
6847 
6848 static void
6849 dtrace_hash_destroy(dtrace_hash_t *hash)
6850 {
6851 #ifdef DEBUG
6852 	int i;
6853 
6854 	for (i = 0; i < hash->dth_size; i++)
6855 		ASSERT(hash->dth_tab[i] == NULL);
6856 #endif
6857 
6858 	kmem_free(hash->dth_tab,
6859 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6860 	kmem_free(hash, sizeof (dtrace_hash_t));
6861 }
6862 
6863 static void
6864 dtrace_hash_resize(dtrace_hash_t *hash)
6865 {
6866 	int size = hash->dth_size, i, ndx;
6867 	int new_size = hash->dth_size << 1;
6868 	int new_mask = new_size - 1;
6869 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6870 
6871 	ASSERT((new_size & new_mask) == 0);
6872 
6873 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6874 
6875 	for (i = 0; i < size; i++) {
6876 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6877 			dtrace_probe_t *probe = bucket->dthb_chain;
6878 
6879 			ASSERT(probe != NULL);
6880 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6881 
6882 			next = bucket->dthb_next;
6883 			bucket->dthb_next = new_tab[ndx];
6884 			new_tab[ndx] = bucket;
6885 		}
6886 	}
6887 
6888 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6889 	hash->dth_tab = new_tab;
6890 	hash->dth_size = new_size;
6891 	hash->dth_mask = new_mask;
6892 }
6893 
6894 static void
6895 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6896 {
6897 	int hashval = DTRACE_HASHSTR(hash, new);
6898 	int ndx = hashval & hash->dth_mask;
6899 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6900 	dtrace_probe_t **nextp, **prevp;
6901 
6902 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6903 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6904 			goto add;
6905 	}
6906 
6907 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6908 		dtrace_hash_resize(hash);
6909 		dtrace_hash_add(hash, new);
6910 		return;
6911 	}
6912 
6913 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6914 	bucket->dthb_next = hash->dth_tab[ndx];
6915 	hash->dth_tab[ndx] = bucket;
6916 	hash->dth_nbuckets++;
6917 
6918 add:
6919 	nextp = DTRACE_HASHNEXT(hash, new);
6920 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6921 	*nextp = bucket->dthb_chain;
6922 
6923 	if (bucket->dthb_chain != NULL) {
6924 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6925 		ASSERT(*prevp == NULL);
6926 		*prevp = new;
6927 	}
6928 
6929 	bucket->dthb_chain = new;
6930 	bucket->dthb_len++;
6931 }
6932 
6933 static dtrace_probe_t *
6934 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6935 {
6936 	int hashval = DTRACE_HASHSTR(hash, template);
6937 	int ndx = hashval & hash->dth_mask;
6938 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6939 
6940 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6941 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6942 			return (bucket->dthb_chain);
6943 	}
6944 
6945 	return (NULL);
6946 }
6947 
6948 static int
6949 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6950 {
6951 	int hashval = DTRACE_HASHSTR(hash, template);
6952 	int ndx = hashval & hash->dth_mask;
6953 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6954 
6955 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6956 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6957 			return (bucket->dthb_len);
6958 	}
6959 
6960 	return (0);
6961 }
6962 
6963 static void
6964 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6965 {
6966 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6967 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6968 
6969 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6970 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6971 
6972 	/*
6973 	 * Find the bucket that we're removing this probe from.
6974 	 */
6975 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6976 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6977 			break;
6978 	}
6979 
6980 	ASSERT(bucket != NULL);
6981 
6982 	if (*prevp == NULL) {
6983 		if (*nextp == NULL) {
6984 			/*
6985 			 * The removed probe was the only probe on this
6986 			 * bucket; we need to remove the bucket.
6987 			 */
6988 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6989 
6990 			ASSERT(bucket->dthb_chain == probe);
6991 			ASSERT(b != NULL);
6992 
6993 			if (b == bucket) {
6994 				hash->dth_tab[ndx] = bucket->dthb_next;
6995 			} else {
6996 				while (b->dthb_next != bucket)
6997 					b = b->dthb_next;
6998 				b->dthb_next = bucket->dthb_next;
6999 			}
7000 
7001 			ASSERT(hash->dth_nbuckets > 0);
7002 			hash->dth_nbuckets--;
7003 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7004 			return;
7005 		}
7006 
7007 		bucket->dthb_chain = *nextp;
7008 	} else {
7009 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7010 	}
7011 
7012 	if (*nextp != NULL)
7013 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7014 }
7015 
7016 /*
7017  * DTrace Utility Functions
7018  *
7019  * These are random utility functions that are _not_ called from probe context.
7020  */
7021 static int
7022 dtrace_badattr(const dtrace_attribute_t *a)
7023 {
7024 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7025 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7026 	    a->dtat_class > DTRACE_CLASS_MAX);
7027 }
7028 
7029 /*
7030  * Return a duplicate copy of a string.  If the specified string is NULL,
7031  * this function returns a zero-length string.
7032  */
7033 static char *
7034 dtrace_strdup(const char *str)
7035 {
7036 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7037 
7038 	if (str != NULL)
7039 		(void) strcpy(new, str);
7040 
7041 	return (new);
7042 }
7043 
7044 #define	DTRACE_ISALPHA(c)	\
7045 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7046 
7047 static int
7048 dtrace_badname(const char *s)
7049 {
7050 	char c;
7051 
7052 	if (s == NULL || (c = *s++) == '\0')
7053 		return (0);
7054 
7055 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7056 		return (1);
7057 
7058 	while ((c = *s++) != '\0') {
7059 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7060 		    c != '-' && c != '_' && c != '.' && c != '`')
7061 			return (1);
7062 	}
7063 
7064 	return (0);
7065 }
7066 
7067 static void
7068 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7069 {
7070 	uint32_t priv;
7071 
7072 #if defined(sun)
7073 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7074 		/*
7075 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7076 		 */
7077 		priv = DTRACE_PRIV_ALL;
7078 	} else {
7079 		*uidp = crgetuid(cr);
7080 		*zoneidp = crgetzoneid(cr);
7081 
7082 		priv = 0;
7083 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7084 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7085 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7086 			priv |= DTRACE_PRIV_USER;
7087 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7088 			priv |= DTRACE_PRIV_PROC;
7089 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7090 			priv |= DTRACE_PRIV_OWNER;
7091 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7092 			priv |= DTRACE_PRIV_ZONEOWNER;
7093 	}
7094 #else
7095 	priv = DTRACE_PRIV_ALL;
7096 #endif
7097 
7098 	*privp = priv;
7099 }
7100 
7101 #ifdef DTRACE_ERRDEBUG
7102 static void
7103 dtrace_errdebug(const char *str)
7104 {
7105 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7106 	int occupied = 0;
7107 
7108 	mutex_enter(&dtrace_errlock);
7109 	dtrace_errlast = str;
7110 	dtrace_errthread = curthread;
7111 
7112 	while (occupied++ < DTRACE_ERRHASHSZ) {
7113 		if (dtrace_errhash[hval].dter_msg == str) {
7114 			dtrace_errhash[hval].dter_count++;
7115 			goto out;
7116 		}
7117 
7118 		if (dtrace_errhash[hval].dter_msg != NULL) {
7119 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7120 			continue;
7121 		}
7122 
7123 		dtrace_errhash[hval].dter_msg = str;
7124 		dtrace_errhash[hval].dter_count = 1;
7125 		goto out;
7126 	}
7127 
7128 	panic("dtrace: undersized error hash");
7129 out:
7130 	mutex_exit(&dtrace_errlock);
7131 }
7132 #endif
7133 
7134 /*
7135  * DTrace Matching Functions
7136  *
7137  * These functions are used to match groups of probes, given some elements of
7138  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7139  */
7140 static int
7141 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7142     zoneid_t zoneid)
7143 {
7144 	if (priv != DTRACE_PRIV_ALL) {
7145 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7146 		uint32_t match = priv & ppriv;
7147 
7148 		/*
7149 		 * No PRIV_DTRACE_* privileges...
7150 		 */
7151 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7152 		    DTRACE_PRIV_KERNEL)) == 0)
7153 			return (0);
7154 
7155 		/*
7156 		 * No matching bits, but there were bits to match...
7157 		 */
7158 		if (match == 0 && ppriv != 0)
7159 			return (0);
7160 
7161 		/*
7162 		 * Need to have permissions to the process, but don't...
7163 		 */
7164 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7165 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7166 			return (0);
7167 		}
7168 
7169 		/*
7170 		 * Need to be in the same zone unless we possess the
7171 		 * privilege to examine all zones.
7172 		 */
7173 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7174 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7175 			return (0);
7176 		}
7177 	}
7178 
7179 	return (1);
7180 }
7181 
7182 /*
7183  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7184  * consists of input pattern strings and an ops-vector to evaluate them.
7185  * This function returns >0 for match, 0 for no match, and <0 for error.
7186  */
7187 static int
7188 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7189     uint32_t priv, uid_t uid, zoneid_t zoneid)
7190 {
7191 	dtrace_provider_t *pvp = prp->dtpr_provider;
7192 	int rv;
7193 
7194 	if (pvp->dtpv_defunct)
7195 		return (0);
7196 
7197 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7198 		return (rv);
7199 
7200 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7201 		return (rv);
7202 
7203 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7204 		return (rv);
7205 
7206 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7207 		return (rv);
7208 
7209 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7210 		return (0);
7211 
7212 	return (rv);
7213 }
7214 
7215 /*
7216  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7217  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7218  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7219  * In addition, all of the recursion cases except for '*' matching have been
7220  * unwound.  For '*', we still implement recursive evaluation, but a depth
7221  * counter is maintained and matching is aborted if we recurse too deep.
7222  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7223  */
7224 static int
7225 dtrace_match_glob(const char *s, const char *p, int depth)
7226 {
7227 	const char *olds;
7228 	char s1, c;
7229 	int gs;
7230 
7231 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7232 		return (-1);
7233 
7234 	if (s == NULL)
7235 		s = ""; /* treat NULL as empty string */
7236 
7237 top:
7238 	olds = s;
7239 	s1 = *s++;
7240 
7241 	if (p == NULL)
7242 		return (0);
7243 
7244 	if ((c = *p++) == '\0')
7245 		return (s1 == '\0');
7246 
7247 	switch (c) {
7248 	case '[': {
7249 		int ok = 0, notflag = 0;
7250 		char lc = '\0';
7251 
7252 		if (s1 == '\0')
7253 			return (0);
7254 
7255 		if (*p == '!') {
7256 			notflag = 1;
7257 			p++;
7258 		}
7259 
7260 		if ((c = *p++) == '\0')
7261 			return (0);
7262 
7263 		do {
7264 			if (c == '-' && lc != '\0' && *p != ']') {
7265 				if ((c = *p++) == '\0')
7266 					return (0);
7267 				if (c == '\\' && (c = *p++) == '\0')
7268 					return (0);
7269 
7270 				if (notflag) {
7271 					if (s1 < lc || s1 > c)
7272 						ok++;
7273 					else
7274 						return (0);
7275 				} else if (lc <= s1 && s1 <= c)
7276 					ok++;
7277 
7278 			} else if (c == '\\' && (c = *p++) == '\0')
7279 				return (0);
7280 
7281 			lc = c; /* save left-hand 'c' for next iteration */
7282 
7283 			if (notflag) {
7284 				if (s1 != c)
7285 					ok++;
7286 				else
7287 					return (0);
7288 			} else if (s1 == c)
7289 				ok++;
7290 
7291 			if ((c = *p++) == '\0')
7292 				return (0);
7293 
7294 		} while (c != ']');
7295 
7296 		if (ok)
7297 			goto top;
7298 
7299 		return (0);
7300 	}
7301 
7302 	case '\\':
7303 		if ((c = *p++) == '\0')
7304 			return (0);
7305 		/*FALLTHRU*/
7306 
7307 	default:
7308 		if (c != s1)
7309 			return (0);
7310 		/*FALLTHRU*/
7311 
7312 	case '?':
7313 		if (s1 != '\0')
7314 			goto top;
7315 		return (0);
7316 
7317 	case '*':
7318 		while (*p == '*')
7319 			p++; /* consecutive *'s are identical to a single one */
7320 
7321 		if (*p == '\0')
7322 			return (1);
7323 
7324 		for (s = olds; *s != '\0'; s++) {
7325 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7326 				return (gs);
7327 		}
7328 
7329 		return (0);
7330 	}
7331 }
7332 
7333 /*ARGSUSED*/
7334 static int
7335 dtrace_match_string(const char *s, const char *p, int depth)
7336 {
7337 	return (s != NULL && strcmp(s, p) == 0);
7338 }
7339 
7340 /*ARGSUSED*/
7341 static int
7342 dtrace_match_nul(const char *s, const char *p, int depth)
7343 {
7344 	return (1); /* always match the empty pattern */
7345 }
7346 
7347 /*ARGSUSED*/
7348 static int
7349 dtrace_match_nonzero(const char *s, const char *p, int depth)
7350 {
7351 	return (s != NULL && s[0] != '\0');
7352 }
7353 
7354 static int
7355 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7356     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7357 {
7358 	dtrace_probe_t template, *probe;
7359 	dtrace_hash_t *hash = NULL;
7360 	int len, best = INT_MAX, nmatched = 0;
7361 	dtrace_id_t i;
7362 
7363 	ASSERT(MUTEX_HELD(&dtrace_lock));
7364 
7365 	/*
7366 	 * If the probe ID is specified in the key, just lookup by ID and
7367 	 * invoke the match callback once if a matching probe is found.
7368 	 */
7369 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7370 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7371 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7372 			(void) (*matched)(probe, arg);
7373 			nmatched++;
7374 		}
7375 		return (nmatched);
7376 	}
7377 
7378 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7379 	template.dtpr_func = (char *)pkp->dtpk_func;
7380 	template.dtpr_name = (char *)pkp->dtpk_name;
7381 
7382 	/*
7383 	 * We want to find the most distinct of the module name, function
7384 	 * name, and name.  So for each one that is not a glob pattern or
7385 	 * empty string, we perform a lookup in the corresponding hash and
7386 	 * use the hash table with the fewest collisions to do our search.
7387 	 */
7388 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7389 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7390 		best = len;
7391 		hash = dtrace_bymod;
7392 	}
7393 
7394 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7395 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7396 		best = len;
7397 		hash = dtrace_byfunc;
7398 	}
7399 
7400 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7401 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7402 		best = len;
7403 		hash = dtrace_byname;
7404 	}
7405 
7406 	/*
7407 	 * If we did not select a hash table, iterate over every probe and
7408 	 * invoke our callback for each one that matches our input probe key.
7409 	 */
7410 	if (hash == NULL) {
7411 		for (i = 0; i < dtrace_nprobes; i++) {
7412 			if ((probe = dtrace_probes[i]) == NULL ||
7413 			    dtrace_match_probe(probe, pkp, priv, uid,
7414 			    zoneid) <= 0)
7415 				continue;
7416 
7417 			nmatched++;
7418 
7419 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7420 				break;
7421 		}
7422 
7423 		return (nmatched);
7424 	}
7425 
7426 	/*
7427 	 * If we selected a hash table, iterate over each probe of the same key
7428 	 * name and invoke the callback for every probe that matches the other
7429 	 * attributes of our input probe key.
7430 	 */
7431 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7432 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7433 
7434 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7435 			continue;
7436 
7437 		nmatched++;
7438 
7439 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7440 			break;
7441 	}
7442 
7443 	return (nmatched);
7444 }
7445 
7446 /*
7447  * Return the function pointer dtrace_probecmp() should use to compare the
7448  * specified pattern with a string.  For NULL or empty patterns, we select
7449  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7450  * For non-empty non-glob strings, we use dtrace_match_string().
7451  */
7452 static dtrace_probekey_f *
7453 dtrace_probekey_func(const char *p)
7454 {
7455 	char c;
7456 
7457 	if (p == NULL || *p == '\0')
7458 		return (&dtrace_match_nul);
7459 
7460 	while ((c = *p++) != '\0') {
7461 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7462 			return (&dtrace_match_glob);
7463 	}
7464 
7465 	return (&dtrace_match_string);
7466 }
7467 
7468 /*
7469  * Build a probe comparison key for use with dtrace_match_probe() from the
7470  * given probe description.  By convention, a null key only matches anchored
7471  * probes: if each field is the empty string, reset dtpk_fmatch to
7472  * dtrace_match_nonzero().
7473  */
7474 static void
7475 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7476 {
7477 	pkp->dtpk_prov = pdp->dtpd_provider;
7478 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7479 
7480 	pkp->dtpk_mod = pdp->dtpd_mod;
7481 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7482 
7483 	pkp->dtpk_func = pdp->dtpd_func;
7484 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7485 
7486 	pkp->dtpk_name = pdp->dtpd_name;
7487 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7488 
7489 	pkp->dtpk_id = pdp->dtpd_id;
7490 
7491 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7492 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7493 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7494 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7495 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7496 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7497 }
7498 
7499 /*
7500  * DTrace Provider-to-Framework API Functions
7501  *
7502  * These functions implement much of the Provider-to-Framework API, as
7503  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7504  * the functions in the API for probe management (found below), and
7505  * dtrace_probe() itself (found above).
7506  */
7507 
7508 /*
7509  * Register the calling provider with the DTrace framework.  This should
7510  * generally be called by DTrace providers in their attach(9E) entry point.
7511  */
7512 int
7513 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7514     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7515 {
7516 	dtrace_provider_t *provider;
7517 
7518 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7519 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7520 		    "arguments", name ? name : "<NULL>");
7521 		return (EINVAL);
7522 	}
7523 
7524 	if (name[0] == '\0' || dtrace_badname(name)) {
7525 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7526 		    "provider name", name);
7527 		return (EINVAL);
7528 	}
7529 
7530 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7531 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7532 	    pops->dtps_destroy == NULL ||
7533 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7534 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7535 		    "provider ops", name);
7536 		return (EINVAL);
7537 	}
7538 
7539 	if (dtrace_badattr(&pap->dtpa_provider) ||
7540 	    dtrace_badattr(&pap->dtpa_mod) ||
7541 	    dtrace_badattr(&pap->dtpa_func) ||
7542 	    dtrace_badattr(&pap->dtpa_name) ||
7543 	    dtrace_badattr(&pap->dtpa_args)) {
7544 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7545 		    "provider attributes", name);
7546 		return (EINVAL);
7547 	}
7548 
7549 	if (priv & ~DTRACE_PRIV_ALL) {
7550 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7551 		    "privilege attributes", name);
7552 		return (EINVAL);
7553 	}
7554 
7555 	if ((priv & DTRACE_PRIV_KERNEL) &&
7556 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7557 	    pops->dtps_usermode == NULL) {
7558 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7559 		    "dtps_usermode() op for given privilege attributes", name);
7560 		return (EINVAL);
7561 	}
7562 
7563 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7564 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7565 	(void) strcpy(provider->dtpv_name, name);
7566 
7567 	provider->dtpv_attr = *pap;
7568 	provider->dtpv_priv.dtpp_flags = priv;
7569 	if (cr != NULL) {
7570 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7571 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7572 	}
7573 	provider->dtpv_pops = *pops;
7574 
7575 	if (pops->dtps_provide == NULL) {
7576 		ASSERT(pops->dtps_provide_module != NULL);
7577 		provider->dtpv_pops.dtps_provide =
7578 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7579 	}
7580 
7581 	if (pops->dtps_provide_module == NULL) {
7582 		ASSERT(pops->dtps_provide != NULL);
7583 		provider->dtpv_pops.dtps_provide_module =
7584 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7585 	}
7586 
7587 	if (pops->dtps_suspend == NULL) {
7588 		ASSERT(pops->dtps_resume == NULL);
7589 		provider->dtpv_pops.dtps_suspend =
7590 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7591 		provider->dtpv_pops.dtps_resume =
7592 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7593 	}
7594 
7595 	provider->dtpv_arg = arg;
7596 	*idp = (dtrace_provider_id_t)provider;
7597 
7598 	if (pops == &dtrace_provider_ops) {
7599 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7600 		ASSERT(MUTEX_HELD(&dtrace_lock));
7601 		ASSERT(dtrace_anon.dta_enabling == NULL);
7602 
7603 		/*
7604 		 * We make sure that the DTrace provider is at the head of
7605 		 * the provider chain.
7606 		 */
7607 		provider->dtpv_next = dtrace_provider;
7608 		dtrace_provider = provider;
7609 		return (0);
7610 	}
7611 
7612 	mutex_enter(&dtrace_provider_lock);
7613 	mutex_enter(&dtrace_lock);
7614 
7615 	/*
7616 	 * If there is at least one provider registered, we'll add this
7617 	 * provider after the first provider.
7618 	 */
7619 	if (dtrace_provider != NULL) {
7620 		provider->dtpv_next = dtrace_provider->dtpv_next;
7621 		dtrace_provider->dtpv_next = provider;
7622 	} else {
7623 		dtrace_provider = provider;
7624 	}
7625 
7626 	if (dtrace_retained != NULL) {
7627 		dtrace_enabling_provide(provider);
7628 
7629 		/*
7630 		 * Now we need to call dtrace_enabling_matchall() -- which
7631 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7632 		 * to drop all of our locks before calling into it...
7633 		 */
7634 		mutex_exit(&dtrace_lock);
7635 		mutex_exit(&dtrace_provider_lock);
7636 		dtrace_enabling_matchall();
7637 
7638 		return (0);
7639 	}
7640 
7641 	mutex_exit(&dtrace_lock);
7642 	mutex_exit(&dtrace_provider_lock);
7643 
7644 	return (0);
7645 }
7646 
7647 /*
7648  * Unregister the specified provider from the DTrace framework.  This should
7649  * generally be called by DTrace providers in their detach(9E) entry point.
7650  */
7651 int
7652 dtrace_unregister(dtrace_provider_id_t id)
7653 {
7654 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7655 	dtrace_provider_t *prev = NULL;
7656 	int i, self = 0, noreap = 0;
7657 	dtrace_probe_t *probe, *first = NULL;
7658 
7659 	if (old->dtpv_pops.dtps_enable ==
7660 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7661 		/*
7662 		 * If DTrace itself is the provider, we're called with locks
7663 		 * already held.
7664 		 */
7665 		ASSERT(old == dtrace_provider);
7666 #if defined(sun)
7667 		ASSERT(dtrace_devi != NULL);
7668 #endif
7669 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7670 		ASSERT(MUTEX_HELD(&dtrace_lock));
7671 		self = 1;
7672 
7673 		if (dtrace_provider->dtpv_next != NULL) {
7674 			/*
7675 			 * There's another provider here; return failure.
7676 			 */
7677 			return (EBUSY);
7678 		}
7679 	} else {
7680 		mutex_enter(&dtrace_provider_lock);
7681 		mutex_enter(&mod_lock);
7682 		mutex_enter(&dtrace_lock);
7683 	}
7684 
7685 	/*
7686 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7687 	 * probes, we refuse to let providers slither away, unless this
7688 	 * provider has already been explicitly invalidated.
7689 	 */
7690 	if (!old->dtpv_defunct &&
7691 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7692 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7693 		if (!self) {
7694 			mutex_exit(&dtrace_lock);
7695 			mutex_exit(&mod_lock);
7696 			mutex_exit(&dtrace_provider_lock);
7697 		}
7698 		return (EBUSY);
7699 	}
7700 
7701 	/*
7702 	 * Attempt to destroy the probes associated with this provider.
7703 	 */
7704 	for (i = 0; i < dtrace_nprobes; i++) {
7705 		if ((probe = dtrace_probes[i]) == NULL)
7706 			continue;
7707 
7708 		if (probe->dtpr_provider != old)
7709 			continue;
7710 
7711 		if (probe->dtpr_ecb == NULL)
7712 			continue;
7713 
7714 		/*
7715 		 * If we are trying to unregister a defunct provider, and the
7716 		 * provider was made defunct within the interval dictated by
7717 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7718 		 * attempt to reap our enablings.  To denote that the provider
7719 		 * should reattempt to unregister itself at some point in the
7720 		 * future, we will return a differentiable error code (EAGAIN
7721 		 * instead of EBUSY) in this case.
7722 		 */
7723 		if (dtrace_gethrtime() - old->dtpv_defunct >
7724 		    dtrace_unregister_defunct_reap)
7725 			noreap = 1;
7726 
7727 		if (!self) {
7728 			mutex_exit(&dtrace_lock);
7729 			mutex_exit(&mod_lock);
7730 			mutex_exit(&dtrace_provider_lock);
7731 		}
7732 
7733 		if (noreap)
7734 			return (EBUSY);
7735 
7736 		(void) taskq_dispatch(dtrace_taskq,
7737 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7738 
7739 		return (EAGAIN);
7740 	}
7741 
7742 	/*
7743 	 * All of the probes for this provider are disabled; we can safely
7744 	 * remove all of them from their hash chains and from the probe array.
7745 	 */
7746 	for (i = 0; i < dtrace_nprobes; i++) {
7747 		if ((probe = dtrace_probes[i]) == NULL)
7748 			continue;
7749 
7750 		if (probe->dtpr_provider != old)
7751 			continue;
7752 
7753 		dtrace_probes[i] = NULL;
7754 
7755 		dtrace_hash_remove(dtrace_bymod, probe);
7756 		dtrace_hash_remove(dtrace_byfunc, probe);
7757 		dtrace_hash_remove(dtrace_byname, probe);
7758 
7759 		if (first == NULL) {
7760 			first = probe;
7761 			probe->dtpr_nextmod = NULL;
7762 		} else {
7763 			probe->dtpr_nextmod = first;
7764 			first = probe;
7765 		}
7766 	}
7767 
7768 	/*
7769 	 * The provider's probes have been removed from the hash chains and
7770 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7771 	 * everyone has cleared out from any probe array processing.
7772 	 */
7773 	dtrace_sync();
7774 
7775 	for (probe = first; probe != NULL; probe = first) {
7776 		first = probe->dtpr_nextmod;
7777 
7778 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7779 		    probe->dtpr_arg);
7780 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7781 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7782 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7783 #if defined(sun)
7784 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7785 #else
7786 		free_unr(dtrace_arena, probe->dtpr_id);
7787 #endif
7788 		kmem_free(probe, sizeof (dtrace_probe_t));
7789 	}
7790 
7791 	if ((prev = dtrace_provider) == old) {
7792 #if defined(sun)
7793 		ASSERT(self || dtrace_devi == NULL);
7794 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7795 #endif
7796 		dtrace_provider = old->dtpv_next;
7797 	} else {
7798 		while (prev != NULL && prev->dtpv_next != old)
7799 			prev = prev->dtpv_next;
7800 
7801 		if (prev == NULL) {
7802 			panic("attempt to unregister non-existent "
7803 			    "dtrace provider %p\n", (void *)id);
7804 		}
7805 
7806 		prev->dtpv_next = old->dtpv_next;
7807 	}
7808 
7809 	if (!self) {
7810 		mutex_exit(&dtrace_lock);
7811 		mutex_exit(&mod_lock);
7812 		mutex_exit(&dtrace_provider_lock);
7813 	}
7814 
7815 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7816 	kmem_free(old, sizeof (dtrace_provider_t));
7817 
7818 	return (0);
7819 }
7820 
7821 /*
7822  * Invalidate the specified provider.  All subsequent probe lookups for the
7823  * specified provider will fail, but its probes will not be removed.
7824  */
7825 void
7826 dtrace_invalidate(dtrace_provider_id_t id)
7827 {
7828 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7829 
7830 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7831 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7832 
7833 	mutex_enter(&dtrace_provider_lock);
7834 	mutex_enter(&dtrace_lock);
7835 
7836 	pvp->dtpv_defunct = dtrace_gethrtime();
7837 
7838 	mutex_exit(&dtrace_lock);
7839 	mutex_exit(&dtrace_provider_lock);
7840 }
7841 
7842 /*
7843  * Indicate whether or not DTrace has attached.
7844  */
7845 int
7846 dtrace_attached(void)
7847 {
7848 	/*
7849 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7850 	 * attached.  (It's non-NULL because DTrace is always itself a
7851 	 * provider.)
7852 	 */
7853 	return (dtrace_provider != NULL);
7854 }
7855 
7856 /*
7857  * Remove all the unenabled probes for the given provider.  This function is
7858  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7859  * -- just as many of its associated probes as it can.
7860  */
7861 int
7862 dtrace_condense(dtrace_provider_id_t id)
7863 {
7864 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7865 	int i;
7866 	dtrace_probe_t *probe;
7867 
7868 	/*
7869 	 * Make sure this isn't the dtrace provider itself.
7870 	 */
7871 	ASSERT(prov->dtpv_pops.dtps_enable !=
7872 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7873 
7874 	mutex_enter(&dtrace_provider_lock);
7875 	mutex_enter(&dtrace_lock);
7876 
7877 	/*
7878 	 * Attempt to destroy the probes associated with this provider.
7879 	 */
7880 	for (i = 0; i < dtrace_nprobes; i++) {
7881 		if ((probe = dtrace_probes[i]) == NULL)
7882 			continue;
7883 
7884 		if (probe->dtpr_provider != prov)
7885 			continue;
7886 
7887 		if (probe->dtpr_ecb != NULL)
7888 			continue;
7889 
7890 		dtrace_probes[i] = NULL;
7891 
7892 		dtrace_hash_remove(dtrace_bymod, probe);
7893 		dtrace_hash_remove(dtrace_byfunc, probe);
7894 		dtrace_hash_remove(dtrace_byname, probe);
7895 
7896 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7897 		    probe->dtpr_arg);
7898 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7899 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7900 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7901 		kmem_free(probe, sizeof (dtrace_probe_t));
7902 #if defined(sun)
7903 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7904 #else
7905 		free_unr(dtrace_arena, i + 1);
7906 #endif
7907 	}
7908 
7909 	mutex_exit(&dtrace_lock);
7910 	mutex_exit(&dtrace_provider_lock);
7911 
7912 	return (0);
7913 }
7914 
7915 /*
7916  * DTrace Probe Management Functions
7917  *
7918  * The functions in this section perform the DTrace probe management,
7919  * including functions to create probes, look-up probes, and call into the
7920  * providers to request that probes be provided.  Some of these functions are
7921  * in the Provider-to-Framework API; these functions can be identified by the
7922  * fact that they are not declared "static".
7923  */
7924 
7925 /*
7926  * Create a probe with the specified module name, function name, and name.
7927  */
7928 dtrace_id_t
7929 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7930     const char *func, const char *name, int aframes, void *arg)
7931 {
7932 	dtrace_probe_t *probe, **probes;
7933 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7934 	dtrace_id_t id;
7935 
7936 	if (provider == dtrace_provider) {
7937 		ASSERT(MUTEX_HELD(&dtrace_lock));
7938 	} else {
7939 		mutex_enter(&dtrace_lock);
7940 	}
7941 
7942 #if defined(sun)
7943 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7944 	    VM_BESTFIT | VM_SLEEP);
7945 #else
7946 	id = alloc_unr(dtrace_arena);
7947 #endif
7948 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7949 
7950 	probe->dtpr_id = id;
7951 	probe->dtpr_gen = dtrace_probegen++;
7952 	probe->dtpr_mod = dtrace_strdup(mod);
7953 	probe->dtpr_func = dtrace_strdup(func);
7954 	probe->dtpr_name = dtrace_strdup(name);
7955 	probe->dtpr_arg = arg;
7956 	probe->dtpr_aframes = aframes;
7957 	probe->dtpr_provider = provider;
7958 
7959 	dtrace_hash_add(dtrace_bymod, probe);
7960 	dtrace_hash_add(dtrace_byfunc, probe);
7961 	dtrace_hash_add(dtrace_byname, probe);
7962 
7963 	if (id - 1 >= dtrace_nprobes) {
7964 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7965 		size_t nsize = osize << 1;
7966 
7967 		if (nsize == 0) {
7968 			ASSERT(osize == 0);
7969 			ASSERT(dtrace_probes == NULL);
7970 			nsize = sizeof (dtrace_probe_t *);
7971 		}
7972 
7973 		probes = kmem_zalloc(nsize, KM_SLEEP);
7974 
7975 		if (dtrace_probes == NULL) {
7976 			ASSERT(osize == 0);
7977 			dtrace_probes = probes;
7978 			dtrace_nprobes = 1;
7979 		} else {
7980 			dtrace_probe_t **oprobes = dtrace_probes;
7981 
7982 			bcopy(oprobes, probes, osize);
7983 			dtrace_membar_producer();
7984 			dtrace_probes = probes;
7985 
7986 			dtrace_sync();
7987 
7988 			/*
7989 			 * All CPUs are now seeing the new probes array; we can
7990 			 * safely free the old array.
7991 			 */
7992 			kmem_free(oprobes, osize);
7993 			dtrace_nprobes <<= 1;
7994 		}
7995 
7996 		ASSERT(id - 1 < dtrace_nprobes);
7997 	}
7998 
7999 	ASSERT(dtrace_probes[id - 1] == NULL);
8000 	dtrace_probes[id - 1] = probe;
8001 
8002 	if (provider != dtrace_provider)
8003 		mutex_exit(&dtrace_lock);
8004 
8005 	return (id);
8006 }
8007 
8008 static dtrace_probe_t *
8009 dtrace_probe_lookup_id(dtrace_id_t id)
8010 {
8011 	ASSERT(MUTEX_HELD(&dtrace_lock));
8012 
8013 	if (id == 0 || id > dtrace_nprobes)
8014 		return (NULL);
8015 
8016 	return (dtrace_probes[id - 1]);
8017 }
8018 
8019 static int
8020 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8021 {
8022 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8023 
8024 	return (DTRACE_MATCH_DONE);
8025 }
8026 
8027 /*
8028  * Look up a probe based on provider and one or more of module name, function
8029  * name and probe name.
8030  */
8031 dtrace_id_t
8032 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8033     char *func, char *name)
8034 {
8035 	dtrace_probekey_t pkey;
8036 	dtrace_id_t id;
8037 	int match;
8038 
8039 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8040 	pkey.dtpk_pmatch = &dtrace_match_string;
8041 	pkey.dtpk_mod = mod;
8042 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8043 	pkey.dtpk_func = func;
8044 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8045 	pkey.dtpk_name = name;
8046 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8047 	pkey.dtpk_id = DTRACE_IDNONE;
8048 
8049 	mutex_enter(&dtrace_lock);
8050 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8051 	    dtrace_probe_lookup_match, &id);
8052 	mutex_exit(&dtrace_lock);
8053 
8054 	ASSERT(match == 1 || match == 0);
8055 	return (match ? id : 0);
8056 }
8057 
8058 /*
8059  * Returns the probe argument associated with the specified probe.
8060  */
8061 void *
8062 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8063 {
8064 	dtrace_probe_t *probe;
8065 	void *rval = NULL;
8066 
8067 	mutex_enter(&dtrace_lock);
8068 
8069 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8070 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8071 		rval = probe->dtpr_arg;
8072 
8073 	mutex_exit(&dtrace_lock);
8074 
8075 	return (rval);
8076 }
8077 
8078 /*
8079  * Copy a probe into a probe description.
8080  */
8081 static void
8082 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8083 {
8084 	bzero(pdp, sizeof (dtrace_probedesc_t));
8085 	pdp->dtpd_id = prp->dtpr_id;
8086 
8087 	(void) strncpy(pdp->dtpd_provider,
8088 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8089 
8090 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8091 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8092 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8093 }
8094 
8095 #if !defined(sun)
8096 static int
8097 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8098 {
8099 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8100 
8101 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8102 
8103 	return(0);
8104 }
8105 #endif
8106 
8107 
8108 /*
8109  * Called to indicate that a probe -- or probes -- should be provided by a
8110  * specfied provider.  If the specified description is NULL, the provider will
8111  * be told to provide all of its probes.  (This is done whenever a new
8112  * consumer comes along, or whenever a retained enabling is to be matched.) If
8113  * the specified description is non-NULL, the provider is given the
8114  * opportunity to dynamically provide the specified probe, allowing providers
8115  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8116  * probes.)  If the provider is NULL, the operations will be applied to all
8117  * providers; if the provider is non-NULL the operations will only be applied
8118  * to the specified provider.  The dtrace_provider_lock must be held, and the
8119  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8120  * will need to grab the dtrace_lock when it reenters the framework through
8121  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8122  */
8123 static void
8124 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8125 {
8126 #if defined(sun)
8127 	modctl_t *ctl;
8128 #endif
8129 	int all = 0;
8130 
8131 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8132 
8133 	if (prv == NULL) {
8134 		all = 1;
8135 		prv = dtrace_provider;
8136 	}
8137 
8138 	do {
8139 		/*
8140 		 * First, call the blanket provide operation.
8141 		 */
8142 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8143 
8144 		/*
8145 		 * Now call the per-module provide operation.  We will grab
8146 		 * mod_lock to prevent the list from being modified.  Note
8147 		 * that this also prevents the mod_busy bits from changing.
8148 		 * (mod_busy can only be changed with mod_lock held.)
8149 		 */
8150 		mutex_enter(&mod_lock);
8151 
8152 #if defined(sun)
8153 		ctl = &modules;
8154 		do {
8155 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8156 				continue;
8157 
8158 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8159 
8160 		} while ((ctl = ctl->mod_next) != &modules);
8161 #else
8162 		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8163 #endif
8164 
8165 		mutex_exit(&mod_lock);
8166 	} while (all && (prv = prv->dtpv_next) != NULL);
8167 }
8168 
8169 #if defined(sun)
8170 /*
8171  * Iterate over each probe, and call the Framework-to-Provider API function
8172  * denoted by offs.
8173  */
8174 static void
8175 dtrace_probe_foreach(uintptr_t offs)
8176 {
8177 	dtrace_provider_t *prov;
8178 	void (*func)(void *, dtrace_id_t, void *);
8179 	dtrace_probe_t *probe;
8180 	dtrace_icookie_t cookie;
8181 	int i;
8182 
8183 	/*
8184 	 * We disable interrupts to walk through the probe array.  This is
8185 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8186 	 * won't see stale data.
8187 	 */
8188 	cookie = dtrace_interrupt_disable();
8189 
8190 	for (i = 0; i < dtrace_nprobes; i++) {
8191 		if ((probe = dtrace_probes[i]) == NULL)
8192 			continue;
8193 
8194 		if (probe->dtpr_ecb == NULL) {
8195 			/*
8196 			 * This probe isn't enabled -- don't call the function.
8197 			 */
8198 			continue;
8199 		}
8200 
8201 		prov = probe->dtpr_provider;
8202 		func = *((void(**)(void *, dtrace_id_t, void *))
8203 		    ((uintptr_t)&prov->dtpv_pops + offs));
8204 
8205 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8206 	}
8207 
8208 	dtrace_interrupt_enable(cookie);
8209 }
8210 #endif
8211 
8212 static int
8213 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8214 {
8215 	dtrace_probekey_t pkey;
8216 	uint32_t priv;
8217 	uid_t uid;
8218 	zoneid_t zoneid;
8219 
8220 	ASSERT(MUTEX_HELD(&dtrace_lock));
8221 	dtrace_ecb_create_cache = NULL;
8222 
8223 	if (desc == NULL) {
8224 		/*
8225 		 * If we're passed a NULL description, we're being asked to
8226 		 * create an ECB with a NULL probe.
8227 		 */
8228 		(void) dtrace_ecb_create_enable(NULL, enab);
8229 		return (0);
8230 	}
8231 
8232 	dtrace_probekey(desc, &pkey);
8233 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8234 	    &priv, &uid, &zoneid);
8235 
8236 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8237 	    enab));
8238 }
8239 
8240 /*
8241  * DTrace Helper Provider Functions
8242  */
8243 static void
8244 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8245 {
8246 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8247 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8248 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8249 }
8250 
8251 static void
8252 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8253     const dof_provider_t *dofprov, char *strtab)
8254 {
8255 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8256 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8257 	    dofprov->dofpv_provattr);
8258 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8259 	    dofprov->dofpv_modattr);
8260 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8261 	    dofprov->dofpv_funcattr);
8262 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8263 	    dofprov->dofpv_nameattr);
8264 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8265 	    dofprov->dofpv_argsattr);
8266 }
8267 
8268 static void
8269 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8270 {
8271 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8272 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8273 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8274 	dof_provider_t *provider;
8275 	dof_probe_t *probe;
8276 	uint32_t *off, *enoff;
8277 	uint8_t *arg;
8278 	char *strtab;
8279 	uint_t i, nprobes;
8280 	dtrace_helper_provdesc_t dhpv;
8281 	dtrace_helper_probedesc_t dhpb;
8282 	dtrace_meta_t *meta = dtrace_meta_pid;
8283 	dtrace_mops_t *mops = &meta->dtm_mops;
8284 	void *parg;
8285 
8286 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8287 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8288 	    provider->dofpv_strtab * dof->dofh_secsize);
8289 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8290 	    provider->dofpv_probes * dof->dofh_secsize);
8291 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8292 	    provider->dofpv_prargs * dof->dofh_secsize);
8293 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8294 	    provider->dofpv_proffs * dof->dofh_secsize);
8295 
8296 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8297 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8298 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8299 	enoff = NULL;
8300 
8301 	/*
8302 	 * See dtrace_helper_provider_validate().
8303 	 */
8304 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8305 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8306 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8307 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8308 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8309 	}
8310 
8311 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8312 
8313 	/*
8314 	 * Create the provider.
8315 	 */
8316 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8317 
8318 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8319 		return;
8320 
8321 	meta->dtm_count++;
8322 
8323 	/*
8324 	 * Create the probes.
8325 	 */
8326 	for (i = 0; i < nprobes; i++) {
8327 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8328 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8329 
8330 		dhpb.dthpb_mod = dhp->dofhp_mod;
8331 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8332 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8333 		dhpb.dthpb_base = probe->dofpr_addr;
8334 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8335 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8336 		if (enoff != NULL) {
8337 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8338 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8339 		} else {
8340 			dhpb.dthpb_enoffs = NULL;
8341 			dhpb.dthpb_nenoffs = 0;
8342 		}
8343 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8344 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8345 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8346 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8347 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8348 
8349 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8350 	}
8351 }
8352 
8353 static void
8354 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8355 {
8356 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8357 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8358 	int i;
8359 
8360 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8361 
8362 	for (i = 0; i < dof->dofh_secnum; i++) {
8363 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8364 		    dof->dofh_secoff + i * dof->dofh_secsize);
8365 
8366 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8367 			continue;
8368 
8369 		dtrace_helper_provide_one(dhp, sec, pid);
8370 	}
8371 
8372 	/*
8373 	 * We may have just created probes, so we must now rematch against
8374 	 * any retained enablings.  Note that this call will acquire both
8375 	 * cpu_lock and dtrace_lock; the fact that we are holding
8376 	 * dtrace_meta_lock now is what defines the ordering with respect to
8377 	 * these three locks.
8378 	 */
8379 	dtrace_enabling_matchall();
8380 }
8381 
8382 static void
8383 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8384 {
8385 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8386 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8387 	dof_sec_t *str_sec;
8388 	dof_provider_t *provider;
8389 	char *strtab;
8390 	dtrace_helper_provdesc_t dhpv;
8391 	dtrace_meta_t *meta = dtrace_meta_pid;
8392 	dtrace_mops_t *mops = &meta->dtm_mops;
8393 
8394 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8395 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8396 	    provider->dofpv_strtab * dof->dofh_secsize);
8397 
8398 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8399 
8400 	/*
8401 	 * Create the provider.
8402 	 */
8403 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8404 
8405 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8406 
8407 	meta->dtm_count--;
8408 }
8409 
8410 static void
8411 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8412 {
8413 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8414 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8415 	int i;
8416 
8417 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8418 
8419 	for (i = 0; i < dof->dofh_secnum; i++) {
8420 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8421 		    dof->dofh_secoff + i * dof->dofh_secsize);
8422 
8423 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8424 			continue;
8425 
8426 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8427 	}
8428 }
8429 
8430 /*
8431  * DTrace Meta Provider-to-Framework API Functions
8432  *
8433  * These functions implement the Meta Provider-to-Framework API, as described
8434  * in <sys/dtrace.h>.
8435  */
8436 int
8437 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8438     dtrace_meta_provider_id_t *idp)
8439 {
8440 	dtrace_meta_t *meta;
8441 	dtrace_helpers_t *help, *next;
8442 	int i;
8443 
8444 	*idp = DTRACE_METAPROVNONE;
8445 
8446 	/*
8447 	 * We strictly don't need the name, but we hold onto it for
8448 	 * debuggability. All hail error queues!
8449 	 */
8450 	if (name == NULL) {
8451 		cmn_err(CE_WARN, "failed to register meta-provider: "
8452 		    "invalid name");
8453 		return (EINVAL);
8454 	}
8455 
8456 	if (mops == NULL ||
8457 	    mops->dtms_create_probe == NULL ||
8458 	    mops->dtms_provide_pid == NULL ||
8459 	    mops->dtms_remove_pid == NULL) {
8460 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8461 		    "invalid ops", name);
8462 		return (EINVAL);
8463 	}
8464 
8465 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8466 	meta->dtm_mops = *mops;
8467 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8468 	(void) strcpy(meta->dtm_name, name);
8469 	meta->dtm_arg = arg;
8470 
8471 	mutex_enter(&dtrace_meta_lock);
8472 	mutex_enter(&dtrace_lock);
8473 
8474 	if (dtrace_meta_pid != NULL) {
8475 		mutex_exit(&dtrace_lock);
8476 		mutex_exit(&dtrace_meta_lock);
8477 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8478 		    "user-land meta-provider exists", name);
8479 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8480 		kmem_free(meta, sizeof (dtrace_meta_t));
8481 		return (EINVAL);
8482 	}
8483 
8484 	dtrace_meta_pid = meta;
8485 	*idp = (dtrace_meta_provider_id_t)meta;
8486 
8487 	/*
8488 	 * If there are providers and probes ready to go, pass them
8489 	 * off to the new meta provider now.
8490 	 */
8491 
8492 	help = dtrace_deferred_pid;
8493 	dtrace_deferred_pid = NULL;
8494 
8495 	mutex_exit(&dtrace_lock);
8496 
8497 	while (help != NULL) {
8498 		for (i = 0; i < help->dthps_nprovs; i++) {
8499 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8500 			    help->dthps_pid);
8501 		}
8502 
8503 		next = help->dthps_next;
8504 		help->dthps_next = NULL;
8505 		help->dthps_prev = NULL;
8506 		help->dthps_deferred = 0;
8507 		help = next;
8508 	}
8509 
8510 	mutex_exit(&dtrace_meta_lock);
8511 
8512 	return (0);
8513 }
8514 
8515 int
8516 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8517 {
8518 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8519 
8520 	mutex_enter(&dtrace_meta_lock);
8521 	mutex_enter(&dtrace_lock);
8522 
8523 	if (old == dtrace_meta_pid) {
8524 		pp = &dtrace_meta_pid;
8525 	} else {
8526 		panic("attempt to unregister non-existent "
8527 		    "dtrace meta-provider %p\n", (void *)old);
8528 	}
8529 
8530 	if (old->dtm_count != 0) {
8531 		mutex_exit(&dtrace_lock);
8532 		mutex_exit(&dtrace_meta_lock);
8533 		return (EBUSY);
8534 	}
8535 
8536 	*pp = NULL;
8537 
8538 	mutex_exit(&dtrace_lock);
8539 	mutex_exit(&dtrace_meta_lock);
8540 
8541 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8542 	kmem_free(old, sizeof (dtrace_meta_t));
8543 
8544 	return (0);
8545 }
8546 
8547 
8548 /*
8549  * DTrace DIF Object Functions
8550  */
8551 static int
8552 dtrace_difo_err(uint_t pc, const char *format, ...)
8553 {
8554 	if (dtrace_err_verbose) {
8555 		va_list alist;
8556 
8557 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8558 		va_start(alist, format);
8559 		(void) vuprintf(format, alist);
8560 		va_end(alist);
8561 	}
8562 
8563 #ifdef DTRACE_ERRDEBUG
8564 	dtrace_errdebug(format);
8565 #endif
8566 	return (1);
8567 }
8568 
8569 /*
8570  * Validate a DTrace DIF object by checking the IR instructions.  The following
8571  * rules are currently enforced by dtrace_difo_validate():
8572  *
8573  * 1. Each instruction must have a valid opcode
8574  * 2. Each register, string, variable, or subroutine reference must be valid
8575  * 3. No instruction can modify register %r0 (must be zero)
8576  * 4. All instruction reserved bits must be set to zero
8577  * 5. The last instruction must be a "ret" instruction
8578  * 6. All branch targets must reference a valid instruction _after_ the branch
8579  */
8580 static int
8581 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8582     cred_t *cr)
8583 {
8584 	int err = 0, i;
8585 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8586 	int kcheckload;
8587 	uint_t pc;
8588 
8589 	kcheckload = cr == NULL ||
8590 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8591 
8592 	dp->dtdo_destructive = 0;
8593 
8594 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8595 		dif_instr_t instr = dp->dtdo_buf[pc];
8596 
8597 		uint_t r1 = DIF_INSTR_R1(instr);
8598 		uint_t r2 = DIF_INSTR_R2(instr);
8599 		uint_t rd = DIF_INSTR_RD(instr);
8600 		uint_t rs = DIF_INSTR_RS(instr);
8601 		uint_t label = DIF_INSTR_LABEL(instr);
8602 		uint_t v = DIF_INSTR_VAR(instr);
8603 		uint_t subr = DIF_INSTR_SUBR(instr);
8604 		uint_t type = DIF_INSTR_TYPE(instr);
8605 		uint_t op = DIF_INSTR_OP(instr);
8606 
8607 		switch (op) {
8608 		case DIF_OP_OR:
8609 		case DIF_OP_XOR:
8610 		case DIF_OP_AND:
8611 		case DIF_OP_SLL:
8612 		case DIF_OP_SRL:
8613 		case DIF_OP_SRA:
8614 		case DIF_OP_SUB:
8615 		case DIF_OP_ADD:
8616 		case DIF_OP_MUL:
8617 		case DIF_OP_SDIV:
8618 		case DIF_OP_UDIV:
8619 		case DIF_OP_SREM:
8620 		case DIF_OP_UREM:
8621 		case DIF_OP_COPYS:
8622 			if (r1 >= nregs)
8623 				err += efunc(pc, "invalid register %u\n", r1);
8624 			if (r2 >= nregs)
8625 				err += efunc(pc, "invalid register %u\n", r2);
8626 			if (rd >= nregs)
8627 				err += efunc(pc, "invalid register %u\n", rd);
8628 			if (rd == 0)
8629 				err += efunc(pc, "cannot write to %r0\n");
8630 			break;
8631 		case DIF_OP_NOT:
8632 		case DIF_OP_MOV:
8633 		case DIF_OP_ALLOCS:
8634 			if (r1 >= nregs)
8635 				err += efunc(pc, "invalid register %u\n", r1);
8636 			if (r2 != 0)
8637 				err += efunc(pc, "non-zero reserved bits\n");
8638 			if (rd >= nregs)
8639 				err += efunc(pc, "invalid register %u\n", rd);
8640 			if (rd == 0)
8641 				err += efunc(pc, "cannot write to %r0\n");
8642 			break;
8643 		case DIF_OP_LDSB:
8644 		case DIF_OP_LDSH:
8645 		case DIF_OP_LDSW:
8646 		case DIF_OP_LDUB:
8647 		case DIF_OP_LDUH:
8648 		case DIF_OP_LDUW:
8649 		case DIF_OP_LDX:
8650 			if (r1 >= nregs)
8651 				err += efunc(pc, "invalid register %u\n", r1);
8652 			if (r2 != 0)
8653 				err += efunc(pc, "non-zero reserved bits\n");
8654 			if (rd >= nregs)
8655 				err += efunc(pc, "invalid register %u\n", rd);
8656 			if (rd == 0)
8657 				err += efunc(pc, "cannot write to %r0\n");
8658 			if (kcheckload)
8659 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8660 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8661 			break;
8662 		case DIF_OP_RLDSB:
8663 		case DIF_OP_RLDSH:
8664 		case DIF_OP_RLDSW:
8665 		case DIF_OP_RLDUB:
8666 		case DIF_OP_RLDUH:
8667 		case DIF_OP_RLDUW:
8668 		case DIF_OP_RLDX:
8669 			if (r1 >= nregs)
8670 				err += efunc(pc, "invalid register %u\n", r1);
8671 			if (r2 != 0)
8672 				err += efunc(pc, "non-zero reserved bits\n");
8673 			if (rd >= nregs)
8674 				err += efunc(pc, "invalid register %u\n", rd);
8675 			if (rd == 0)
8676 				err += efunc(pc, "cannot write to %r0\n");
8677 			break;
8678 		case DIF_OP_ULDSB:
8679 		case DIF_OP_ULDSH:
8680 		case DIF_OP_ULDSW:
8681 		case DIF_OP_ULDUB:
8682 		case DIF_OP_ULDUH:
8683 		case DIF_OP_ULDUW:
8684 		case DIF_OP_ULDX:
8685 			if (r1 >= nregs)
8686 				err += efunc(pc, "invalid register %u\n", r1);
8687 			if (r2 != 0)
8688 				err += efunc(pc, "non-zero reserved bits\n");
8689 			if (rd >= nregs)
8690 				err += efunc(pc, "invalid register %u\n", rd);
8691 			if (rd == 0)
8692 				err += efunc(pc, "cannot write to %r0\n");
8693 			break;
8694 		case DIF_OP_STB:
8695 		case DIF_OP_STH:
8696 		case DIF_OP_STW:
8697 		case DIF_OP_STX:
8698 			if (r1 >= nregs)
8699 				err += efunc(pc, "invalid register %u\n", r1);
8700 			if (r2 != 0)
8701 				err += efunc(pc, "non-zero reserved bits\n");
8702 			if (rd >= nregs)
8703 				err += efunc(pc, "invalid register %u\n", rd);
8704 			if (rd == 0)
8705 				err += efunc(pc, "cannot write to 0 address\n");
8706 			break;
8707 		case DIF_OP_CMP:
8708 		case DIF_OP_SCMP:
8709 			if (r1 >= nregs)
8710 				err += efunc(pc, "invalid register %u\n", r1);
8711 			if (r2 >= nregs)
8712 				err += efunc(pc, "invalid register %u\n", r2);
8713 			if (rd != 0)
8714 				err += efunc(pc, "non-zero reserved bits\n");
8715 			break;
8716 		case DIF_OP_TST:
8717 			if (r1 >= nregs)
8718 				err += efunc(pc, "invalid register %u\n", r1);
8719 			if (r2 != 0 || rd != 0)
8720 				err += efunc(pc, "non-zero reserved bits\n");
8721 			break;
8722 		case DIF_OP_BA:
8723 		case DIF_OP_BE:
8724 		case DIF_OP_BNE:
8725 		case DIF_OP_BG:
8726 		case DIF_OP_BGU:
8727 		case DIF_OP_BGE:
8728 		case DIF_OP_BGEU:
8729 		case DIF_OP_BL:
8730 		case DIF_OP_BLU:
8731 		case DIF_OP_BLE:
8732 		case DIF_OP_BLEU:
8733 			if (label >= dp->dtdo_len) {
8734 				err += efunc(pc, "invalid branch target %u\n",
8735 				    label);
8736 			}
8737 			if (label <= pc) {
8738 				err += efunc(pc, "backward branch to %u\n",
8739 				    label);
8740 			}
8741 			break;
8742 		case DIF_OP_RET:
8743 			if (r1 != 0 || r2 != 0)
8744 				err += efunc(pc, "non-zero reserved bits\n");
8745 			if (rd >= nregs)
8746 				err += efunc(pc, "invalid register %u\n", rd);
8747 			break;
8748 		case DIF_OP_NOP:
8749 		case DIF_OP_POPTS:
8750 		case DIF_OP_FLUSHTS:
8751 			if (r1 != 0 || r2 != 0 || rd != 0)
8752 				err += efunc(pc, "non-zero reserved bits\n");
8753 			break;
8754 		case DIF_OP_SETX:
8755 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8756 				err += efunc(pc, "invalid integer ref %u\n",
8757 				    DIF_INSTR_INTEGER(instr));
8758 			}
8759 			if (rd >= nregs)
8760 				err += efunc(pc, "invalid register %u\n", rd);
8761 			if (rd == 0)
8762 				err += efunc(pc, "cannot write to %r0\n");
8763 			break;
8764 		case DIF_OP_SETS:
8765 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8766 				err += efunc(pc, "invalid string ref %u\n",
8767 				    DIF_INSTR_STRING(instr));
8768 			}
8769 			if (rd >= nregs)
8770 				err += efunc(pc, "invalid register %u\n", rd);
8771 			if (rd == 0)
8772 				err += efunc(pc, "cannot write to %r0\n");
8773 			break;
8774 		case DIF_OP_LDGA:
8775 		case DIF_OP_LDTA:
8776 			if (r1 > DIF_VAR_ARRAY_MAX)
8777 				err += efunc(pc, "invalid array %u\n", r1);
8778 			if (r2 >= nregs)
8779 				err += efunc(pc, "invalid register %u\n", r2);
8780 			if (rd >= nregs)
8781 				err += efunc(pc, "invalid register %u\n", rd);
8782 			if (rd == 0)
8783 				err += efunc(pc, "cannot write to %r0\n");
8784 			break;
8785 		case DIF_OP_LDGS:
8786 		case DIF_OP_LDTS:
8787 		case DIF_OP_LDLS:
8788 		case DIF_OP_LDGAA:
8789 		case DIF_OP_LDTAA:
8790 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8791 				err += efunc(pc, "invalid variable %u\n", v);
8792 			if (rd >= nregs)
8793 				err += efunc(pc, "invalid register %u\n", rd);
8794 			if (rd == 0)
8795 				err += efunc(pc, "cannot write to %r0\n");
8796 			break;
8797 		case DIF_OP_STGS:
8798 		case DIF_OP_STTS:
8799 		case DIF_OP_STLS:
8800 		case DIF_OP_STGAA:
8801 		case DIF_OP_STTAA:
8802 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8803 				err += efunc(pc, "invalid variable %u\n", v);
8804 			if (rs >= nregs)
8805 				err += efunc(pc, "invalid register %u\n", rd);
8806 			break;
8807 		case DIF_OP_CALL:
8808 			if (subr > DIF_SUBR_MAX)
8809 				err += efunc(pc, "invalid subr %u\n", subr);
8810 			if (rd >= nregs)
8811 				err += efunc(pc, "invalid register %u\n", rd);
8812 			if (rd == 0)
8813 				err += efunc(pc, "cannot write to %r0\n");
8814 
8815 			if (subr == DIF_SUBR_COPYOUT ||
8816 			    subr == DIF_SUBR_COPYOUTSTR) {
8817 				dp->dtdo_destructive = 1;
8818 			}
8819 			break;
8820 		case DIF_OP_PUSHTR:
8821 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8822 				err += efunc(pc, "invalid ref type %u\n", type);
8823 			if (r2 >= nregs)
8824 				err += efunc(pc, "invalid register %u\n", r2);
8825 			if (rs >= nregs)
8826 				err += efunc(pc, "invalid register %u\n", rs);
8827 			break;
8828 		case DIF_OP_PUSHTV:
8829 			if (type != DIF_TYPE_CTF)
8830 				err += efunc(pc, "invalid val type %u\n", type);
8831 			if (r2 >= nregs)
8832 				err += efunc(pc, "invalid register %u\n", r2);
8833 			if (rs >= nregs)
8834 				err += efunc(pc, "invalid register %u\n", rs);
8835 			break;
8836 		default:
8837 			err += efunc(pc, "invalid opcode %u\n",
8838 			    DIF_INSTR_OP(instr));
8839 		}
8840 	}
8841 
8842 	if (dp->dtdo_len != 0 &&
8843 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8844 		err += efunc(dp->dtdo_len - 1,
8845 		    "expected 'ret' as last DIF instruction\n");
8846 	}
8847 
8848 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8849 		/*
8850 		 * If we're not returning by reference, the size must be either
8851 		 * 0 or the size of one of the base types.
8852 		 */
8853 		switch (dp->dtdo_rtype.dtdt_size) {
8854 		case 0:
8855 		case sizeof (uint8_t):
8856 		case sizeof (uint16_t):
8857 		case sizeof (uint32_t):
8858 		case sizeof (uint64_t):
8859 			break;
8860 
8861 		default:
8862 			err += efunc(dp->dtdo_len - 1, "bad return size");
8863 		}
8864 	}
8865 
8866 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8867 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8868 		dtrace_diftype_t *vt, *et;
8869 		uint_t id, ndx;
8870 
8871 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8872 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8873 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8874 			err += efunc(i, "unrecognized variable scope %d\n",
8875 			    v->dtdv_scope);
8876 			break;
8877 		}
8878 
8879 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8880 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8881 			err += efunc(i, "unrecognized variable type %d\n",
8882 			    v->dtdv_kind);
8883 			break;
8884 		}
8885 
8886 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8887 			err += efunc(i, "%d exceeds variable id limit\n", id);
8888 			break;
8889 		}
8890 
8891 		if (id < DIF_VAR_OTHER_UBASE)
8892 			continue;
8893 
8894 		/*
8895 		 * For user-defined variables, we need to check that this
8896 		 * definition is identical to any previous definition that we
8897 		 * encountered.
8898 		 */
8899 		ndx = id - DIF_VAR_OTHER_UBASE;
8900 
8901 		switch (v->dtdv_scope) {
8902 		case DIFV_SCOPE_GLOBAL:
8903 			if (ndx < vstate->dtvs_nglobals) {
8904 				dtrace_statvar_t *svar;
8905 
8906 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8907 					existing = &svar->dtsv_var;
8908 			}
8909 
8910 			break;
8911 
8912 		case DIFV_SCOPE_THREAD:
8913 			if (ndx < vstate->dtvs_ntlocals)
8914 				existing = &vstate->dtvs_tlocals[ndx];
8915 			break;
8916 
8917 		case DIFV_SCOPE_LOCAL:
8918 			if (ndx < vstate->dtvs_nlocals) {
8919 				dtrace_statvar_t *svar;
8920 
8921 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8922 					existing = &svar->dtsv_var;
8923 			}
8924 
8925 			break;
8926 		}
8927 
8928 		vt = &v->dtdv_type;
8929 
8930 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8931 			if (vt->dtdt_size == 0) {
8932 				err += efunc(i, "zero-sized variable\n");
8933 				break;
8934 			}
8935 
8936 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8937 			    vt->dtdt_size > dtrace_global_maxsize) {
8938 				err += efunc(i, "oversized by-ref global\n");
8939 				break;
8940 			}
8941 		}
8942 
8943 		if (existing == NULL || existing->dtdv_id == 0)
8944 			continue;
8945 
8946 		ASSERT(existing->dtdv_id == v->dtdv_id);
8947 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8948 
8949 		if (existing->dtdv_kind != v->dtdv_kind)
8950 			err += efunc(i, "%d changed variable kind\n", id);
8951 
8952 		et = &existing->dtdv_type;
8953 
8954 		if (vt->dtdt_flags != et->dtdt_flags) {
8955 			err += efunc(i, "%d changed variable type flags\n", id);
8956 			break;
8957 		}
8958 
8959 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8960 			err += efunc(i, "%d changed variable type size\n", id);
8961 			break;
8962 		}
8963 	}
8964 
8965 	return (err);
8966 }
8967 
8968 /*
8969  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8970  * are much more constrained than normal DIFOs.  Specifically, they may
8971  * not:
8972  *
8973  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8974  *    miscellaneous string routines
8975  * 2. Access DTrace variables other than the args[] array, and the
8976  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8977  * 3. Have thread-local variables.
8978  * 4. Have dynamic variables.
8979  */
8980 static int
8981 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8982 {
8983 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8984 	int err = 0;
8985 	uint_t pc;
8986 
8987 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8988 		dif_instr_t instr = dp->dtdo_buf[pc];
8989 
8990 		uint_t v = DIF_INSTR_VAR(instr);
8991 		uint_t subr = DIF_INSTR_SUBR(instr);
8992 		uint_t op = DIF_INSTR_OP(instr);
8993 
8994 		switch (op) {
8995 		case DIF_OP_OR:
8996 		case DIF_OP_XOR:
8997 		case DIF_OP_AND:
8998 		case DIF_OP_SLL:
8999 		case DIF_OP_SRL:
9000 		case DIF_OP_SRA:
9001 		case DIF_OP_SUB:
9002 		case DIF_OP_ADD:
9003 		case DIF_OP_MUL:
9004 		case DIF_OP_SDIV:
9005 		case DIF_OP_UDIV:
9006 		case DIF_OP_SREM:
9007 		case DIF_OP_UREM:
9008 		case DIF_OP_COPYS:
9009 		case DIF_OP_NOT:
9010 		case DIF_OP_MOV:
9011 		case DIF_OP_RLDSB:
9012 		case DIF_OP_RLDSH:
9013 		case DIF_OP_RLDSW:
9014 		case DIF_OP_RLDUB:
9015 		case DIF_OP_RLDUH:
9016 		case DIF_OP_RLDUW:
9017 		case DIF_OP_RLDX:
9018 		case DIF_OP_ULDSB:
9019 		case DIF_OP_ULDSH:
9020 		case DIF_OP_ULDSW:
9021 		case DIF_OP_ULDUB:
9022 		case DIF_OP_ULDUH:
9023 		case DIF_OP_ULDUW:
9024 		case DIF_OP_ULDX:
9025 		case DIF_OP_STB:
9026 		case DIF_OP_STH:
9027 		case DIF_OP_STW:
9028 		case DIF_OP_STX:
9029 		case DIF_OP_ALLOCS:
9030 		case DIF_OP_CMP:
9031 		case DIF_OP_SCMP:
9032 		case DIF_OP_TST:
9033 		case DIF_OP_BA:
9034 		case DIF_OP_BE:
9035 		case DIF_OP_BNE:
9036 		case DIF_OP_BG:
9037 		case DIF_OP_BGU:
9038 		case DIF_OP_BGE:
9039 		case DIF_OP_BGEU:
9040 		case DIF_OP_BL:
9041 		case DIF_OP_BLU:
9042 		case DIF_OP_BLE:
9043 		case DIF_OP_BLEU:
9044 		case DIF_OP_RET:
9045 		case DIF_OP_NOP:
9046 		case DIF_OP_POPTS:
9047 		case DIF_OP_FLUSHTS:
9048 		case DIF_OP_SETX:
9049 		case DIF_OP_SETS:
9050 		case DIF_OP_LDGA:
9051 		case DIF_OP_LDLS:
9052 		case DIF_OP_STGS:
9053 		case DIF_OP_STLS:
9054 		case DIF_OP_PUSHTR:
9055 		case DIF_OP_PUSHTV:
9056 			break;
9057 
9058 		case DIF_OP_LDGS:
9059 			if (v >= DIF_VAR_OTHER_UBASE)
9060 				break;
9061 
9062 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9063 				break;
9064 
9065 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9066 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9067 			    v == DIF_VAR_EXECARGS ||
9068 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9069 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9070 				break;
9071 
9072 			err += efunc(pc, "illegal variable %u\n", v);
9073 			break;
9074 
9075 		case DIF_OP_LDTA:
9076 		case DIF_OP_LDTS:
9077 		case DIF_OP_LDGAA:
9078 		case DIF_OP_LDTAA:
9079 			err += efunc(pc, "illegal dynamic variable load\n");
9080 			break;
9081 
9082 		case DIF_OP_STTS:
9083 		case DIF_OP_STGAA:
9084 		case DIF_OP_STTAA:
9085 			err += efunc(pc, "illegal dynamic variable store\n");
9086 			break;
9087 
9088 		case DIF_OP_CALL:
9089 			if (subr == DIF_SUBR_ALLOCA ||
9090 			    subr == DIF_SUBR_BCOPY ||
9091 			    subr == DIF_SUBR_COPYIN ||
9092 			    subr == DIF_SUBR_COPYINTO ||
9093 			    subr == DIF_SUBR_COPYINSTR ||
9094 			    subr == DIF_SUBR_INDEX ||
9095 			    subr == DIF_SUBR_INET_NTOA ||
9096 			    subr == DIF_SUBR_INET_NTOA6 ||
9097 			    subr == DIF_SUBR_INET_NTOP ||
9098 			    subr == DIF_SUBR_LLTOSTR ||
9099 			    subr == DIF_SUBR_RINDEX ||
9100 			    subr == DIF_SUBR_STRCHR ||
9101 			    subr == DIF_SUBR_STRJOIN ||
9102 			    subr == DIF_SUBR_STRRCHR ||
9103 			    subr == DIF_SUBR_STRSTR ||
9104 			    subr == DIF_SUBR_HTONS ||
9105 			    subr == DIF_SUBR_HTONL ||
9106 			    subr == DIF_SUBR_HTONLL ||
9107 			    subr == DIF_SUBR_NTOHS ||
9108 			    subr == DIF_SUBR_NTOHL ||
9109 			    subr == DIF_SUBR_NTOHLL ||
9110 			    subr == DIF_SUBR_MEMREF ||
9111 			    subr == DIF_SUBR_TYPEREF)
9112 				break;
9113 
9114 			err += efunc(pc, "invalid subr %u\n", subr);
9115 			break;
9116 
9117 		default:
9118 			err += efunc(pc, "invalid opcode %u\n",
9119 			    DIF_INSTR_OP(instr));
9120 		}
9121 	}
9122 
9123 	return (err);
9124 }
9125 
9126 /*
9127  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9128  * basis; 0 if not.
9129  */
9130 static int
9131 dtrace_difo_cacheable(dtrace_difo_t *dp)
9132 {
9133 	int i;
9134 
9135 	if (dp == NULL)
9136 		return (0);
9137 
9138 	for (i = 0; i < dp->dtdo_varlen; i++) {
9139 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9140 
9141 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9142 			continue;
9143 
9144 		switch (v->dtdv_id) {
9145 		case DIF_VAR_CURTHREAD:
9146 		case DIF_VAR_PID:
9147 		case DIF_VAR_TID:
9148 		case DIF_VAR_EXECARGS:
9149 		case DIF_VAR_EXECNAME:
9150 		case DIF_VAR_ZONENAME:
9151 			break;
9152 
9153 		default:
9154 			return (0);
9155 		}
9156 	}
9157 
9158 	/*
9159 	 * This DIF object may be cacheable.  Now we need to look for any
9160 	 * array loading instructions, any memory loading instructions, or
9161 	 * any stores to thread-local variables.
9162 	 */
9163 	for (i = 0; i < dp->dtdo_len; i++) {
9164 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9165 
9166 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9167 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9168 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9169 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9170 			return (0);
9171 	}
9172 
9173 	return (1);
9174 }
9175 
9176 static void
9177 dtrace_difo_hold(dtrace_difo_t *dp)
9178 {
9179 	int i;
9180 
9181 	ASSERT(MUTEX_HELD(&dtrace_lock));
9182 
9183 	dp->dtdo_refcnt++;
9184 	ASSERT(dp->dtdo_refcnt != 0);
9185 
9186 	/*
9187 	 * We need to check this DIF object for references to the variable
9188 	 * DIF_VAR_VTIMESTAMP.
9189 	 */
9190 	for (i = 0; i < dp->dtdo_varlen; i++) {
9191 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9192 
9193 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9194 			continue;
9195 
9196 		if (dtrace_vtime_references++ == 0)
9197 			dtrace_vtime_enable();
9198 	}
9199 }
9200 
9201 /*
9202  * This routine calculates the dynamic variable chunksize for a given DIF
9203  * object.  The calculation is not fool-proof, and can probably be tricked by
9204  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9205  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9206  * if a dynamic variable size exceeds the chunksize.
9207  */
9208 static void
9209 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9210 {
9211 	uint64_t sval = 0;
9212 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9213 	const dif_instr_t *text = dp->dtdo_buf;
9214 	uint_t pc, srd = 0;
9215 	uint_t ttop = 0;
9216 	size_t size, ksize;
9217 	uint_t id, i;
9218 
9219 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9220 		dif_instr_t instr = text[pc];
9221 		uint_t op = DIF_INSTR_OP(instr);
9222 		uint_t rd = DIF_INSTR_RD(instr);
9223 		uint_t r1 = DIF_INSTR_R1(instr);
9224 		uint_t nkeys = 0;
9225 		uchar_t scope = 0;
9226 
9227 		dtrace_key_t *key = tupregs;
9228 
9229 		switch (op) {
9230 		case DIF_OP_SETX:
9231 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9232 			srd = rd;
9233 			continue;
9234 
9235 		case DIF_OP_STTS:
9236 			key = &tupregs[DIF_DTR_NREGS];
9237 			key[0].dttk_size = 0;
9238 			key[1].dttk_size = 0;
9239 			nkeys = 2;
9240 			scope = DIFV_SCOPE_THREAD;
9241 			break;
9242 
9243 		case DIF_OP_STGAA:
9244 		case DIF_OP_STTAA:
9245 			nkeys = ttop;
9246 
9247 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9248 				key[nkeys++].dttk_size = 0;
9249 
9250 			key[nkeys++].dttk_size = 0;
9251 
9252 			if (op == DIF_OP_STTAA) {
9253 				scope = DIFV_SCOPE_THREAD;
9254 			} else {
9255 				scope = DIFV_SCOPE_GLOBAL;
9256 			}
9257 
9258 			break;
9259 
9260 		case DIF_OP_PUSHTR:
9261 			if (ttop == DIF_DTR_NREGS)
9262 				return;
9263 
9264 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9265 				/*
9266 				 * If the register for the size of the "pushtr"
9267 				 * is %r0 (or the value is 0) and the type is
9268 				 * a string, we'll use the system-wide default
9269 				 * string size.
9270 				 */
9271 				tupregs[ttop++].dttk_size =
9272 				    dtrace_strsize_default;
9273 			} else {
9274 				if (srd == 0)
9275 					return;
9276 
9277 				tupregs[ttop++].dttk_size = sval;
9278 			}
9279 
9280 			break;
9281 
9282 		case DIF_OP_PUSHTV:
9283 			if (ttop == DIF_DTR_NREGS)
9284 				return;
9285 
9286 			tupregs[ttop++].dttk_size = 0;
9287 			break;
9288 
9289 		case DIF_OP_FLUSHTS:
9290 			ttop = 0;
9291 			break;
9292 
9293 		case DIF_OP_POPTS:
9294 			if (ttop != 0)
9295 				ttop--;
9296 			break;
9297 		}
9298 
9299 		sval = 0;
9300 		srd = 0;
9301 
9302 		if (nkeys == 0)
9303 			continue;
9304 
9305 		/*
9306 		 * We have a dynamic variable allocation; calculate its size.
9307 		 */
9308 		for (ksize = 0, i = 0; i < nkeys; i++)
9309 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9310 
9311 		size = sizeof (dtrace_dynvar_t);
9312 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9313 		size += ksize;
9314 
9315 		/*
9316 		 * Now we need to determine the size of the stored data.
9317 		 */
9318 		id = DIF_INSTR_VAR(instr);
9319 
9320 		for (i = 0; i < dp->dtdo_varlen; i++) {
9321 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9322 
9323 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9324 				size += v->dtdv_type.dtdt_size;
9325 				break;
9326 			}
9327 		}
9328 
9329 		if (i == dp->dtdo_varlen)
9330 			return;
9331 
9332 		/*
9333 		 * We have the size.  If this is larger than the chunk size
9334 		 * for our dynamic variable state, reset the chunk size.
9335 		 */
9336 		size = P2ROUNDUP(size, sizeof (uint64_t));
9337 
9338 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9339 			vstate->dtvs_dynvars.dtds_chunksize = size;
9340 	}
9341 }
9342 
9343 static void
9344 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9345 {
9346 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9347 	uint_t id;
9348 
9349 	ASSERT(MUTEX_HELD(&dtrace_lock));
9350 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9351 
9352 	for (i = 0; i < dp->dtdo_varlen; i++) {
9353 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9354 		dtrace_statvar_t *svar, ***svarp = NULL;
9355 		size_t dsize = 0;
9356 		uint8_t scope = v->dtdv_scope;
9357 		int *np = NULL;
9358 
9359 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9360 			continue;
9361 
9362 		id -= DIF_VAR_OTHER_UBASE;
9363 
9364 		switch (scope) {
9365 		case DIFV_SCOPE_THREAD:
9366 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9367 				dtrace_difv_t *tlocals;
9368 
9369 				if ((ntlocals = (otlocals << 1)) == 0)
9370 					ntlocals = 1;
9371 
9372 				osz = otlocals * sizeof (dtrace_difv_t);
9373 				nsz = ntlocals * sizeof (dtrace_difv_t);
9374 
9375 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9376 
9377 				if (osz != 0) {
9378 					bcopy(vstate->dtvs_tlocals,
9379 					    tlocals, osz);
9380 					kmem_free(vstate->dtvs_tlocals, osz);
9381 				}
9382 
9383 				vstate->dtvs_tlocals = tlocals;
9384 				vstate->dtvs_ntlocals = ntlocals;
9385 			}
9386 
9387 			vstate->dtvs_tlocals[id] = *v;
9388 			continue;
9389 
9390 		case DIFV_SCOPE_LOCAL:
9391 			np = &vstate->dtvs_nlocals;
9392 			svarp = &vstate->dtvs_locals;
9393 
9394 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9395 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9396 				    sizeof (uint64_t));
9397 			else
9398 				dsize = NCPU * sizeof (uint64_t);
9399 
9400 			break;
9401 
9402 		case DIFV_SCOPE_GLOBAL:
9403 			np = &vstate->dtvs_nglobals;
9404 			svarp = &vstate->dtvs_globals;
9405 
9406 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9407 				dsize = v->dtdv_type.dtdt_size +
9408 				    sizeof (uint64_t);
9409 
9410 			break;
9411 
9412 		default:
9413 			ASSERT(0);
9414 		}
9415 
9416 		while (id >= (oldsvars = *np)) {
9417 			dtrace_statvar_t **statics;
9418 			int newsvars, oldsize, newsize;
9419 
9420 			if ((newsvars = (oldsvars << 1)) == 0)
9421 				newsvars = 1;
9422 
9423 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9424 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9425 
9426 			statics = kmem_zalloc(newsize, KM_SLEEP);
9427 
9428 			if (oldsize != 0) {
9429 				bcopy(*svarp, statics, oldsize);
9430 				kmem_free(*svarp, oldsize);
9431 			}
9432 
9433 			*svarp = statics;
9434 			*np = newsvars;
9435 		}
9436 
9437 		if ((svar = (*svarp)[id]) == NULL) {
9438 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9439 			svar->dtsv_var = *v;
9440 
9441 			if ((svar->dtsv_size = dsize) != 0) {
9442 				svar->dtsv_data = (uint64_t)(uintptr_t)
9443 				    kmem_zalloc(dsize, KM_SLEEP);
9444 			}
9445 
9446 			(*svarp)[id] = svar;
9447 		}
9448 
9449 		svar->dtsv_refcnt++;
9450 	}
9451 
9452 	dtrace_difo_chunksize(dp, vstate);
9453 	dtrace_difo_hold(dp);
9454 }
9455 
9456 static dtrace_difo_t *
9457 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9458 {
9459 	dtrace_difo_t *new;
9460 	size_t sz;
9461 
9462 	ASSERT(dp->dtdo_buf != NULL);
9463 	ASSERT(dp->dtdo_refcnt != 0);
9464 
9465 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9466 
9467 	ASSERT(dp->dtdo_buf != NULL);
9468 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9469 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9470 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9471 	new->dtdo_len = dp->dtdo_len;
9472 
9473 	if (dp->dtdo_strtab != NULL) {
9474 		ASSERT(dp->dtdo_strlen != 0);
9475 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9476 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9477 		new->dtdo_strlen = dp->dtdo_strlen;
9478 	}
9479 
9480 	if (dp->dtdo_inttab != NULL) {
9481 		ASSERT(dp->dtdo_intlen != 0);
9482 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9483 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9484 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9485 		new->dtdo_intlen = dp->dtdo_intlen;
9486 	}
9487 
9488 	if (dp->dtdo_vartab != NULL) {
9489 		ASSERT(dp->dtdo_varlen != 0);
9490 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9491 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9492 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9493 		new->dtdo_varlen = dp->dtdo_varlen;
9494 	}
9495 
9496 	dtrace_difo_init(new, vstate);
9497 	return (new);
9498 }
9499 
9500 static void
9501 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9502 {
9503 	int i;
9504 
9505 	ASSERT(dp->dtdo_refcnt == 0);
9506 
9507 	for (i = 0; i < dp->dtdo_varlen; i++) {
9508 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9509 		dtrace_statvar_t *svar, **svarp = NULL;
9510 		uint_t id;
9511 		uint8_t scope = v->dtdv_scope;
9512 		int *np = NULL;
9513 
9514 		switch (scope) {
9515 		case DIFV_SCOPE_THREAD:
9516 			continue;
9517 
9518 		case DIFV_SCOPE_LOCAL:
9519 			np = &vstate->dtvs_nlocals;
9520 			svarp = vstate->dtvs_locals;
9521 			break;
9522 
9523 		case DIFV_SCOPE_GLOBAL:
9524 			np = &vstate->dtvs_nglobals;
9525 			svarp = vstate->dtvs_globals;
9526 			break;
9527 
9528 		default:
9529 			ASSERT(0);
9530 		}
9531 
9532 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9533 			continue;
9534 
9535 		id -= DIF_VAR_OTHER_UBASE;
9536 		ASSERT(id < *np);
9537 
9538 		svar = svarp[id];
9539 		ASSERT(svar != NULL);
9540 		ASSERT(svar->dtsv_refcnt > 0);
9541 
9542 		if (--svar->dtsv_refcnt > 0)
9543 			continue;
9544 
9545 		if (svar->dtsv_size != 0) {
9546 			ASSERT(svar->dtsv_data != 0);
9547 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9548 			    svar->dtsv_size);
9549 		}
9550 
9551 		kmem_free(svar, sizeof (dtrace_statvar_t));
9552 		svarp[id] = NULL;
9553 	}
9554 
9555 	if (dp->dtdo_buf != NULL)
9556 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9557 	if (dp->dtdo_inttab != NULL)
9558 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9559 	if (dp->dtdo_strtab != NULL)
9560 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9561 	if (dp->dtdo_vartab != NULL)
9562 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9563 
9564 	kmem_free(dp, sizeof (dtrace_difo_t));
9565 }
9566 
9567 static void
9568 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9569 {
9570 	int i;
9571 
9572 	ASSERT(MUTEX_HELD(&dtrace_lock));
9573 	ASSERT(dp->dtdo_refcnt != 0);
9574 
9575 	for (i = 0; i < dp->dtdo_varlen; i++) {
9576 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9577 
9578 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9579 			continue;
9580 
9581 		ASSERT(dtrace_vtime_references > 0);
9582 		if (--dtrace_vtime_references == 0)
9583 			dtrace_vtime_disable();
9584 	}
9585 
9586 	if (--dp->dtdo_refcnt == 0)
9587 		dtrace_difo_destroy(dp, vstate);
9588 }
9589 
9590 /*
9591  * DTrace Format Functions
9592  */
9593 static uint16_t
9594 dtrace_format_add(dtrace_state_t *state, char *str)
9595 {
9596 	char *fmt, **new;
9597 	uint16_t ndx, len = strlen(str) + 1;
9598 
9599 	fmt = kmem_zalloc(len, KM_SLEEP);
9600 	bcopy(str, fmt, len);
9601 
9602 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9603 		if (state->dts_formats[ndx] == NULL) {
9604 			state->dts_formats[ndx] = fmt;
9605 			return (ndx + 1);
9606 		}
9607 	}
9608 
9609 	if (state->dts_nformats == USHRT_MAX) {
9610 		/*
9611 		 * This is only likely if a denial-of-service attack is being
9612 		 * attempted.  As such, it's okay to fail silently here.
9613 		 */
9614 		kmem_free(fmt, len);
9615 		return (0);
9616 	}
9617 
9618 	/*
9619 	 * For simplicity, we always resize the formats array to be exactly the
9620 	 * number of formats.
9621 	 */
9622 	ndx = state->dts_nformats++;
9623 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9624 
9625 	if (state->dts_formats != NULL) {
9626 		ASSERT(ndx != 0);
9627 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9628 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9629 	}
9630 
9631 	state->dts_formats = new;
9632 	state->dts_formats[ndx] = fmt;
9633 
9634 	return (ndx + 1);
9635 }
9636 
9637 static void
9638 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9639 {
9640 	char *fmt;
9641 
9642 	ASSERT(state->dts_formats != NULL);
9643 	ASSERT(format <= state->dts_nformats);
9644 	ASSERT(state->dts_formats[format - 1] != NULL);
9645 
9646 	fmt = state->dts_formats[format - 1];
9647 	kmem_free(fmt, strlen(fmt) + 1);
9648 	state->dts_formats[format - 1] = NULL;
9649 }
9650 
9651 static void
9652 dtrace_format_destroy(dtrace_state_t *state)
9653 {
9654 	int i;
9655 
9656 	if (state->dts_nformats == 0) {
9657 		ASSERT(state->dts_formats == NULL);
9658 		return;
9659 	}
9660 
9661 	ASSERT(state->dts_formats != NULL);
9662 
9663 	for (i = 0; i < state->dts_nformats; i++) {
9664 		char *fmt = state->dts_formats[i];
9665 
9666 		if (fmt == NULL)
9667 			continue;
9668 
9669 		kmem_free(fmt, strlen(fmt) + 1);
9670 	}
9671 
9672 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9673 	state->dts_nformats = 0;
9674 	state->dts_formats = NULL;
9675 }
9676 
9677 /*
9678  * DTrace Predicate Functions
9679  */
9680 static dtrace_predicate_t *
9681 dtrace_predicate_create(dtrace_difo_t *dp)
9682 {
9683 	dtrace_predicate_t *pred;
9684 
9685 	ASSERT(MUTEX_HELD(&dtrace_lock));
9686 	ASSERT(dp->dtdo_refcnt != 0);
9687 
9688 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9689 	pred->dtp_difo = dp;
9690 	pred->dtp_refcnt = 1;
9691 
9692 	if (!dtrace_difo_cacheable(dp))
9693 		return (pred);
9694 
9695 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9696 		/*
9697 		 * This is only theoretically possible -- we have had 2^32
9698 		 * cacheable predicates on this machine.  We cannot allow any
9699 		 * more predicates to become cacheable:  as unlikely as it is,
9700 		 * there may be a thread caching a (now stale) predicate cache
9701 		 * ID. (N.B.: the temptation is being successfully resisted to
9702 		 * have this cmn_err() "Holy shit -- we executed this code!")
9703 		 */
9704 		return (pred);
9705 	}
9706 
9707 	pred->dtp_cacheid = dtrace_predcache_id++;
9708 
9709 	return (pred);
9710 }
9711 
9712 static void
9713 dtrace_predicate_hold(dtrace_predicate_t *pred)
9714 {
9715 	ASSERT(MUTEX_HELD(&dtrace_lock));
9716 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9717 	ASSERT(pred->dtp_refcnt > 0);
9718 
9719 	pred->dtp_refcnt++;
9720 }
9721 
9722 static void
9723 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9724 {
9725 	dtrace_difo_t *dp = pred->dtp_difo;
9726 
9727 	ASSERT(MUTEX_HELD(&dtrace_lock));
9728 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9729 	ASSERT(pred->dtp_refcnt > 0);
9730 
9731 	if (--pred->dtp_refcnt == 0) {
9732 		dtrace_difo_release(pred->dtp_difo, vstate);
9733 		kmem_free(pred, sizeof (dtrace_predicate_t));
9734 	}
9735 }
9736 
9737 /*
9738  * DTrace Action Description Functions
9739  */
9740 static dtrace_actdesc_t *
9741 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9742     uint64_t uarg, uint64_t arg)
9743 {
9744 	dtrace_actdesc_t *act;
9745 
9746 #if defined(sun)
9747 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9748 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9749 #endif
9750 
9751 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9752 	act->dtad_kind = kind;
9753 	act->dtad_ntuple = ntuple;
9754 	act->dtad_uarg = uarg;
9755 	act->dtad_arg = arg;
9756 	act->dtad_refcnt = 1;
9757 
9758 	return (act);
9759 }
9760 
9761 static void
9762 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9763 {
9764 	ASSERT(act->dtad_refcnt >= 1);
9765 	act->dtad_refcnt++;
9766 }
9767 
9768 static void
9769 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9770 {
9771 	dtrace_actkind_t kind = act->dtad_kind;
9772 	dtrace_difo_t *dp;
9773 
9774 	ASSERT(act->dtad_refcnt >= 1);
9775 
9776 	if (--act->dtad_refcnt != 0)
9777 		return;
9778 
9779 	if ((dp = act->dtad_difo) != NULL)
9780 		dtrace_difo_release(dp, vstate);
9781 
9782 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9783 		char *str = (char *)(uintptr_t)act->dtad_arg;
9784 
9785 #if defined(sun)
9786 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9787 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9788 #endif
9789 
9790 		if (str != NULL)
9791 			kmem_free(str, strlen(str) + 1);
9792 	}
9793 
9794 	kmem_free(act, sizeof (dtrace_actdesc_t));
9795 }
9796 
9797 /*
9798  * DTrace ECB Functions
9799  */
9800 static dtrace_ecb_t *
9801 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9802 {
9803 	dtrace_ecb_t *ecb;
9804 	dtrace_epid_t epid;
9805 
9806 	ASSERT(MUTEX_HELD(&dtrace_lock));
9807 
9808 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9809 	ecb->dte_predicate = NULL;
9810 	ecb->dte_probe = probe;
9811 
9812 	/*
9813 	 * The default size is the size of the default action: recording
9814 	 * the header.
9815 	 */
9816 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9817 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9818 
9819 	epid = state->dts_epid++;
9820 
9821 	if (epid - 1 >= state->dts_necbs) {
9822 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9823 		int necbs = state->dts_necbs << 1;
9824 
9825 		ASSERT(epid == state->dts_necbs + 1);
9826 
9827 		if (necbs == 0) {
9828 			ASSERT(oecbs == NULL);
9829 			necbs = 1;
9830 		}
9831 
9832 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9833 
9834 		if (oecbs != NULL)
9835 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9836 
9837 		dtrace_membar_producer();
9838 		state->dts_ecbs = ecbs;
9839 
9840 		if (oecbs != NULL) {
9841 			/*
9842 			 * If this state is active, we must dtrace_sync()
9843 			 * before we can free the old dts_ecbs array:  we're
9844 			 * coming in hot, and there may be active ring
9845 			 * buffer processing (which indexes into the dts_ecbs
9846 			 * array) on another CPU.
9847 			 */
9848 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9849 				dtrace_sync();
9850 
9851 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9852 		}
9853 
9854 		dtrace_membar_producer();
9855 		state->dts_necbs = necbs;
9856 	}
9857 
9858 	ecb->dte_state = state;
9859 
9860 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9861 	dtrace_membar_producer();
9862 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9863 
9864 	return (ecb);
9865 }
9866 
9867 static void
9868 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9869 {
9870 	dtrace_probe_t *probe = ecb->dte_probe;
9871 
9872 	ASSERT(MUTEX_HELD(&cpu_lock));
9873 	ASSERT(MUTEX_HELD(&dtrace_lock));
9874 	ASSERT(ecb->dte_next == NULL);
9875 
9876 	if (probe == NULL) {
9877 		/*
9878 		 * This is the NULL probe -- there's nothing to do.
9879 		 */
9880 		return;
9881 	}
9882 
9883 	if (probe->dtpr_ecb == NULL) {
9884 		dtrace_provider_t *prov = probe->dtpr_provider;
9885 
9886 		/*
9887 		 * We're the first ECB on this probe.
9888 		 */
9889 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9890 
9891 		if (ecb->dte_predicate != NULL)
9892 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9893 
9894 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9895 		    probe->dtpr_id, probe->dtpr_arg);
9896 	} else {
9897 		/*
9898 		 * This probe is already active.  Swing the last pointer to
9899 		 * point to the new ECB, and issue a dtrace_sync() to assure
9900 		 * that all CPUs have seen the change.
9901 		 */
9902 		ASSERT(probe->dtpr_ecb_last != NULL);
9903 		probe->dtpr_ecb_last->dte_next = ecb;
9904 		probe->dtpr_ecb_last = ecb;
9905 		probe->dtpr_predcache = 0;
9906 
9907 		dtrace_sync();
9908 	}
9909 }
9910 
9911 static void
9912 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9913 {
9914 	dtrace_action_t *act;
9915 	uint32_t curneeded = UINT32_MAX;
9916 	uint32_t aggbase = UINT32_MAX;
9917 
9918 	/*
9919 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9920 	 * we always record it first.)
9921 	 */
9922 	ecb->dte_size = sizeof (dtrace_rechdr_t);
9923 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9924 
9925 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9926 		dtrace_recdesc_t *rec = &act->dta_rec;
9927 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9928 
9929 		ecb->dte_alignment = MAX(ecb->dte_alignment,
9930 		    rec->dtrd_alignment);
9931 
9932 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9933 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9934 
9935 			ASSERT(rec->dtrd_size != 0);
9936 			ASSERT(agg->dtag_first != NULL);
9937 			ASSERT(act->dta_prev->dta_intuple);
9938 			ASSERT(aggbase != UINT32_MAX);
9939 			ASSERT(curneeded != UINT32_MAX);
9940 
9941 			agg->dtag_base = aggbase;
9942 
9943 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9944 			rec->dtrd_offset = curneeded;
9945 			curneeded += rec->dtrd_size;
9946 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9947 
9948 			aggbase = UINT32_MAX;
9949 			curneeded = UINT32_MAX;
9950 		} else if (act->dta_intuple) {
9951 			if (curneeded == UINT32_MAX) {
9952 				/*
9953 				 * This is the first record in a tuple.  Align
9954 				 * curneeded to be at offset 4 in an 8-byte
9955 				 * aligned block.
9956 				 */
9957 				ASSERT(act->dta_prev == NULL ||
9958 				    !act->dta_prev->dta_intuple);
9959 				ASSERT3U(aggbase, ==, UINT32_MAX);
9960 				curneeded = P2PHASEUP(ecb->dte_size,
9961 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
9962 
9963 				aggbase = curneeded - sizeof (dtrace_aggid_t);
9964 				ASSERT(IS_P2ALIGNED(aggbase,
9965 				    sizeof (uint64_t)));
9966 			}
9967 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9968 			rec->dtrd_offset = curneeded;
9969 			curneeded += rec->dtrd_size;
9970 		} else {
9971 			/* tuples must be followed by an aggregation */
9972 			ASSERT(act->dta_prev == NULL ||
9973 			    !act->dta_prev->dta_intuple);
9974 
9975 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9976 			    rec->dtrd_alignment);
9977 			rec->dtrd_offset = ecb->dte_size;
9978 			ecb->dte_size += rec->dtrd_size;
9979 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9980 		}
9981 	}
9982 
9983 	if ((act = ecb->dte_action) != NULL &&
9984 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9985 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9986 		/*
9987 		 * If the size is still sizeof (dtrace_rechdr_t), then all
9988 		 * actions store no data; set the size to 0.
9989 		 */
9990 		ecb->dte_size = 0;
9991 	}
9992 
9993 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
9994 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
9995 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
9996 	    ecb->dte_needed);
9997 }
9998 
9999 static dtrace_action_t *
10000 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10001 {
10002 	dtrace_aggregation_t *agg;
10003 	size_t size = sizeof (uint64_t);
10004 	int ntuple = desc->dtad_ntuple;
10005 	dtrace_action_t *act;
10006 	dtrace_recdesc_t *frec;
10007 	dtrace_aggid_t aggid;
10008 	dtrace_state_t *state = ecb->dte_state;
10009 
10010 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10011 	agg->dtag_ecb = ecb;
10012 
10013 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10014 
10015 	switch (desc->dtad_kind) {
10016 	case DTRACEAGG_MIN:
10017 		agg->dtag_initial = INT64_MAX;
10018 		agg->dtag_aggregate = dtrace_aggregate_min;
10019 		break;
10020 
10021 	case DTRACEAGG_MAX:
10022 		agg->dtag_initial = INT64_MIN;
10023 		agg->dtag_aggregate = dtrace_aggregate_max;
10024 		break;
10025 
10026 	case DTRACEAGG_COUNT:
10027 		agg->dtag_aggregate = dtrace_aggregate_count;
10028 		break;
10029 
10030 	case DTRACEAGG_QUANTIZE:
10031 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10032 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10033 		    sizeof (uint64_t);
10034 		break;
10035 
10036 	case DTRACEAGG_LQUANTIZE: {
10037 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10038 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10039 
10040 		agg->dtag_initial = desc->dtad_arg;
10041 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10042 
10043 		if (step == 0 || levels == 0)
10044 			goto err;
10045 
10046 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10047 		break;
10048 	}
10049 
10050 	case DTRACEAGG_LLQUANTIZE: {
10051 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10052 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10053 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10054 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10055 		int64_t v;
10056 
10057 		agg->dtag_initial = desc->dtad_arg;
10058 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10059 
10060 		if (factor < 2 || low >= high || nsteps < factor)
10061 			goto err;
10062 
10063 		/*
10064 		 * Now check that the number of steps evenly divides a power
10065 		 * of the factor.  (This assures both integer bucket size and
10066 		 * linearity within each magnitude.)
10067 		 */
10068 		for (v = factor; v < nsteps; v *= factor)
10069 			continue;
10070 
10071 		if ((v % nsteps) || (nsteps % factor))
10072 			goto err;
10073 
10074 		size = (dtrace_aggregate_llquantize_bucket(factor,
10075 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10076 		break;
10077 	}
10078 
10079 	case DTRACEAGG_AVG:
10080 		agg->dtag_aggregate = dtrace_aggregate_avg;
10081 		size = sizeof (uint64_t) * 2;
10082 		break;
10083 
10084 	case DTRACEAGG_STDDEV:
10085 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10086 		size = sizeof (uint64_t) * 4;
10087 		break;
10088 
10089 	case DTRACEAGG_SUM:
10090 		agg->dtag_aggregate = dtrace_aggregate_sum;
10091 		break;
10092 
10093 	default:
10094 		goto err;
10095 	}
10096 
10097 	agg->dtag_action.dta_rec.dtrd_size = size;
10098 
10099 	if (ntuple == 0)
10100 		goto err;
10101 
10102 	/*
10103 	 * We must make sure that we have enough actions for the n-tuple.
10104 	 */
10105 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10106 		if (DTRACEACT_ISAGG(act->dta_kind))
10107 			break;
10108 
10109 		if (--ntuple == 0) {
10110 			/*
10111 			 * This is the action with which our n-tuple begins.
10112 			 */
10113 			agg->dtag_first = act;
10114 			goto success;
10115 		}
10116 	}
10117 
10118 	/*
10119 	 * This n-tuple is short by ntuple elements.  Return failure.
10120 	 */
10121 	ASSERT(ntuple != 0);
10122 err:
10123 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10124 	return (NULL);
10125 
10126 success:
10127 	/*
10128 	 * If the last action in the tuple has a size of zero, it's actually
10129 	 * an expression argument for the aggregating action.
10130 	 */
10131 	ASSERT(ecb->dte_action_last != NULL);
10132 	act = ecb->dte_action_last;
10133 
10134 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10135 		ASSERT(act->dta_difo != NULL);
10136 
10137 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10138 			agg->dtag_hasarg = 1;
10139 	}
10140 
10141 	/*
10142 	 * We need to allocate an id for this aggregation.
10143 	 */
10144 #if defined(sun)
10145 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10146 	    VM_BESTFIT | VM_SLEEP);
10147 #else
10148 	aggid = alloc_unr(state->dts_aggid_arena);
10149 #endif
10150 
10151 	if (aggid - 1 >= state->dts_naggregations) {
10152 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10153 		dtrace_aggregation_t **aggs;
10154 		int naggs = state->dts_naggregations << 1;
10155 		int onaggs = state->dts_naggregations;
10156 
10157 		ASSERT(aggid == state->dts_naggregations + 1);
10158 
10159 		if (naggs == 0) {
10160 			ASSERT(oaggs == NULL);
10161 			naggs = 1;
10162 		}
10163 
10164 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10165 
10166 		if (oaggs != NULL) {
10167 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10168 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10169 		}
10170 
10171 		state->dts_aggregations = aggs;
10172 		state->dts_naggregations = naggs;
10173 	}
10174 
10175 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10176 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10177 
10178 	frec = &agg->dtag_first->dta_rec;
10179 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10180 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10181 
10182 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10183 		ASSERT(!act->dta_intuple);
10184 		act->dta_intuple = 1;
10185 	}
10186 
10187 	return (&agg->dtag_action);
10188 }
10189 
10190 static void
10191 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10192 {
10193 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10194 	dtrace_state_t *state = ecb->dte_state;
10195 	dtrace_aggid_t aggid = agg->dtag_id;
10196 
10197 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10198 #if defined(sun)
10199 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10200 #else
10201 	free_unr(state->dts_aggid_arena, aggid);
10202 #endif
10203 
10204 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10205 	state->dts_aggregations[aggid - 1] = NULL;
10206 
10207 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10208 }
10209 
10210 static int
10211 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10212 {
10213 	dtrace_action_t *action, *last;
10214 	dtrace_difo_t *dp = desc->dtad_difo;
10215 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10216 	uint16_t format = 0;
10217 	dtrace_recdesc_t *rec;
10218 	dtrace_state_t *state = ecb->dte_state;
10219 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10220 	uint64_t arg = desc->dtad_arg;
10221 
10222 	ASSERT(MUTEX_HELD(&dtrace_lock));
10223 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10224 
10225 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10226 		/*
10227 		 * If this is an aggregating action, there must be neither
10228 		 * a speculate nor a commit on the action chain.
10229 		 */
10230 		dtrace_action_t *act;
10231 
10232 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10233 			if (act->dta_kind == DTRACEACT_COMMIT)
10234 				return (EINVAL);
10235 
10236 			if (act->dta_kind == DTRACEACT_SPECULATE)
10237 				return (EINVAL);
10238 		}
10239 
10240 		action = dtrace_ecb_aggregation_create(ecb, desc);
10241 
10242 		if (action == NULL)
10243 			return (EINVAL);
10244 	} else {
10245 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10246 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10247 		    dp != NULL && dp->dtdo_destructive)) {
10248 			state->dts_destructive = 1;
10249 		}
10250 
10251 		switch (desc->dtad_kind) {
10252 		case DTRACEACT_PRINTF:
10253 		case DTRACEACT_PRINTA:
10254 		case DTRACEACT_SYSTEM:
10255 		case DTRACEACT_FREOPEN:
10256 		case DTRACEACT_DIFEXPR:
10257 			/*
10258 			 * We know that our arg is a string -- turn it into a
10259 			 * format.
10260 			 */
10261 			if (arg == 0) {
10262 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10263 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10264 				format = 0;
10265 			} else {
10266 				ASSERT(arg != 0);
10267 #if defined(sun)
10268 				ASSERT(arg > KERNELBASE);
10269 #endif
10270 				format = dtrace_format_add(state,
10271 				    (char *)(uintptr_t)arg);
10272 			}
10273 
10274 			/*FALLTHROUGH*/
10275 		case DTRACEACT_LIBACT:
10276 		case DTRACEACT_TRACEMEM:
10277 		case DTRACEACT_TRACEMEM_DYNSIZE:
10278 			if (dp == NULL)
10279 				return (EINVAL);
10280 
10281 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10282 				break;
10283 
10284 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10285 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10286 					return (EINVAL);
10287 
10288 				size = opt[DTRACEOPT_STRSIZE];
10289 			}
10290 
10291 			break;
10292 
10293 		case DTRACEACT_STACK:
10294 			if ((nframes = arg) == 0) {
10295 				nframes = opt[DTRACEOPT_STACKFRAMES];
10296 				ASSERT(nframes > 0);
10297 				arg = nframes;
10298 			}
10299 
10300 			size = nframes * sizeof (pc_t);
10301 			break;
10302 
10303 		case DTRACEACT_JSTACK:
10304 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10305 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10306 
10307 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10308 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10309 
10310 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10311 
10312 			/*FALLTHROUGH*/
10313 		case DTRACEACT_USTACK:
10314 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10315 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10316 				strsize = DTRACE_USTACK_STRSIZE(arg);
10317 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10318 				ASSERT(nframes > 0);
10319 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10320 			}
10321 
10322 			/*
10323 			 * Save a slot for the pid.
10324 			 */
10325 			size = (nframes + 1) * sizeof (uint64_t);
10326 			size += DTRACE_USTACK_STRSIZE(arg);
10327 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10328 
10329 			break;
10330 
10331 		case DTRACEACT_SYM:
10332 		case DTRACEACT_MOD:
10333 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10334 			    sizeof (uint64_t)) ||
10335 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10336 				return (EINVAL);
10337 			break;
10338 
10339 		case DTRACEACT_USYM:
10340 		case DTRACEACT_UMOD:
10341 		case DTRACEACT_UADDR:
10342 			if (dp == NULL ||
10343 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10344 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10345 				return (EINVAL);
10346 
10347 			/*
10348 			 * We have a slot for the pid, plus a slot for the
10349 			 * argument.  To keep things simple (aligned with
10350 			 * bitness-neutral sizing), we store each as a 64-bit
10351 			 * quantity.
10352 			 */
10353 			size = 2 * sizeof (uint64_t);
10354 			break;
10355 
10356 		case DTRACEACT_STOP:
10357 		case DTRACEACT_BREAKPOINT:
10358 		case DTRACEACT_PANIC:
10359 			break;
10360 
10361 		case DTRACEACT_CHILL:
10362 		case DTRACEACT_DISCARD:
10363 		case DTRACEACT_RAISE:
10364 			if (dp == NULL)
10365 				return (EINVAL);
10366 			break;
10367 
10368 		case DTRACEACT_EXIT:
10369 			if (dp == NULL ||
10370 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10371 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10372 				return (EINVAL);
10373 			break;
10374 
10375 		case DTRACEACT_SPECULATE:
10376 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10377 				return (EINVAL);
10378 
10379 			if (dp == NULL)
10380 				return (EINVAL);
10381 
10382 			state->dts_speculates = 1;
10383 			break;
10384 
10385 		case DTRACEACT_PRINTM:
10386 		    	size = dp->dtdo_rtype.dtdt_size;
10387 			break;
10388 
10389 		case DTRACEACT_PRINTT:
10390 		    	size = dp->dtdo_rtype.dtdt_size;
10391 			break;
10392 
10393 		case DTRACEACT_COMMIT: {
10394 			dtrace_action_t *act = ecb->dte_action;
10395 
10396 			for (; act != NULL; act = act->dta_next) {
10397 				if (act->dta_kind == DTRACEACT_COMMIT)
10398 					return (EINVAL);
10399 			}
10400 
10401 			if (dp == NULL)
10402 				return (EINVAL);
10403 			break;
10404 		}
10405 
10406 		default:
10407 			return (EINVAL);
10408 		}
10409 
10410 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10411 			/*
10412 			 * If this is a data-storing action or a speculate,
10413 			 * we must be sure that there isn't a commit on the
10414 			 * action chain.
10415 			 */
10416 			dtrace_action_t *act = ecb->dte_action;
10417 
10418 			for (; act != NULL; act = act->dta_next) {
10419 				if (act->dta_kind == DTRACEACT_COMMIT)
10420 					return (EINVAL);
10421 			}
10422 		}
10423 
10424 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10425 		action->dta_rec.dtrd_size = size;
10426 	}
10427 
10428 	action->dta_refcnt = 1;
10429 	rec = &action->dta_rec;
10430 	size = rec->dtrd_size;
10431 
10432 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10433 		if (!(size & mask)) {
10434 			align = mask + 1;
10435 			break;
10436 		}
10437 	}
10438 
10439 	action->dta_kind = desc->dtad_kind;
10440 
10441 	if ((action->dta_difo = dp) != NULL)
10442 		dtrace_difo_hold(dp);
10443 
10444 	rec->dtrd_action = action->dta_kind;
10445 	rec->dtrd_arg = arg;
10446 	rec->dtrd_uarg = desc->dtad_uarg;
10447 	rec->dtrd_alignment = (uint16_t)align;
10448 	rec->dtrd_format = format;
10449 
10450 	if ((last = ecb->dte_action_last) != NULL) {
10451 		ASSERT(ecb->dte_action != NULL);
10452 		action->dta_prev = last;
10453 		last->dta_next = action;
10454 	} else {
10455 		ASSERT(ecb->dte_action == NULL);
10456 		ecb->dte_action = action;
10457 	}
10458 
10459 	ecb->dte_action_last = action;
10460 
10461 	return (0);
10462 }
10463 
10464 static void
10465 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10466 {
10467 	dtrace_action_t *act = ecb->dte_action, *next;
10468 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10469 	dtrace_difo_t *dp;
10470 	uint16_t format;
10471 
10472 	if (act != NULL && act->dta_refcnt > 1) {
10473 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10474 		act->dta_refcnt--;
10475 	} else {
10476 		for (; act != NULL; act = next) {
10477 			next = act->dta_next;
10478 			ASSERT(next != NULL || act == ecb->dte_action_last);
10479 			ASSERT(act->dta_refcnt == 1);
10480 
10481 			if ((format = act->dta_rec.dtrd_format) != 0)
10482 				dtrace_format_remove(ecb->dte_state, format);
10483 
10484 			if ((dp = act->dta_difo) != NULL)
10485 				dtrace_difo_release(dp, vstate);
10486 
10487 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10488 				dtrace_ecb_aggregation_destroy(ecb, act);
10489 			} else {
10490 				kmem_free(act, sizeof (dtrace_action_t));
10491 			}
10492 		}
10493 	}
10494 
10495 	ecb->dte_action = NULL;
10496 	ecb->dte_action_last = NULL;
10497 	ecb->dte_size = 0;
10498 }
10499 
10500 static void
10501 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10502 {
10503 	/*
10504 	 * We disable the ECB by removing it from its probe.
10505 	 */
10506 	dtrace_ecb_t *pecb, *prev = NULL;
10507 	dtrace_probe_t *probe = ecb->dte_probe;
10508 
10509 	ASSERT(MUTEX_HELD(&dtrace_lock));
10510 
10511 	if (probe == NULL) {
10512 		/*
10513 		 * This is the NULL probe; there is nothing to disable.
10514 		 */
10515 		return;
10516 	}
10517 
10518 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10519 		if (pecb == ecb)
10520 			break;
10521 		prev = pecb;
10522 	}
10523 
10524 	ASSERT(pecb != NULL);
10525 
10526 	if (prev == NULL) {
10527 		probe->dtpr_ecb = ecb->dte_next;
10528 	} else {
10529 		prev->dte_next = ecb->dte_next;
10530 	}
10531 
10532 	if (ecb == probe->dtpr_ecb_last) {
10533 		ASSERT(ecb->dte_next == NULL);
10534 		probe->dtpr_ecb_last = prev;
10535 	}
10536 
10537 	/*
10538 	 * The ECB has been disconnected from the probe; now sync to assure
10539 	 * that all CPUs have seen the change before returning.
10540 	 */
10541 	dtrace_sync();
10542 
10543 	if (probe->dtpr_ecb == NULL) {
10544 		/*
10545 		 * That was the last ECB on the probe; clear the predicate
10546 		 * cache ID for the probe, disable it and sync one more time
10547 		 * to assure that we'll never hit it again.
10548 		 */
10549 		dtrace_provider_t *prov = probe->dtpr_provider;
10550 
10551 		ASSERT(ecb->dte_next == NULL);
10552 		ASSERT(probe->dtpr_ecb_last == NULL);
10553 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10554 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10555 		    probe->dtpr_id, probe->dtpr_arg);
10556 		dtrace_sync();
10557 	} else {
10558 		/*
10559 		 * There is at least one ECB remaining on the probe.  If there
10560 		 * is _exactly_ one, set the probe's predicate cache ID to be
10561 		 * the predicate cache ID of the remaining ECB.
10562 		 */
10563 		ASSERT(probe->dtpr_ecb_last != NULL);
10564 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10565 
10566 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10567 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10568 
10569 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10570 
10571 			if (p != NULL)
10572 				probe->dtpr_predcache = p->dtp_cacheid;
10573 		}
10574 
10575 		ecb->dte_next = NULL;
10576 	}
10577 }
10578 
10579 static void
10580 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10581 {
10582 	dtrace_state_t *state = ecb->dte_state;
10583 	dtrace_vstate_t *vstate = &state->dts_vstate;
10584 	dtrace_predicate_t *pred;
10585 	dtrace_epid_t epid = ecb->dte_epid;
10586 
10587 	ASSERT(MUTEX_HELD(&dtrace_lock));
10588 	ASSERT(ecb->dte_next == NULL);
10589 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10590 
10591 	if ((pred = ecb->dte_predicate) != NULL)
10592 		dtrace_predicate_release(pred, vstate);
10593 
10594 	dtrace_ecb_action_remove(ecb);
10595 
10596 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10597 	state->dts_ecbs[epid - 1] = NULL;
10598 
10599 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10600 }
10601 
10602 static dtrace_ecb_t *
10603 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10604     dtrace_enabling_t *enab)
10605 {
10606 	dtrace_ecb_t *ecb;
10607 	dtrace_predicate_t *pred;
10608 	dtrace_actdesc_t *act;
10609 	dtrace_provider_t *prov;
10610 	dtrace_ecbdesc_t *desc = enab->dten_current;
10611 
10612 	ASSERT(MUTEX_HELD(&dtrace_lock));
10613 	ASSERT(state != NULL);
10614 
10615 	ecb = dtrace_ecb_add(state, probe);
10616 	ecb->dte_uarg = desc->dted_uarg;
10617 
10618 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10619 		dtrace_predicate_hold(pred);
10620 		ecb->dte_predicate = pred;
10621 	}
10622 
10623 	if (probe != NULL) {
10624 		/*
10625 		 * If the provider shows more leg than the consumer is old
10626 		 * enough to see, we need to enable the appropriate implicit
10627 		 * predicate bits to prevent the ecb from activating at
10628 		 * revealing times.
10629 		 *
10630 		 * Providers specifying DTRACE_PRIV_USER at register time
10631 		 * are stating that they need the /proc-style privilege
10632 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10633 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10634 		 */
10635 		prov = probe->dtpr_provider;
10636 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10637 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10638 			ecb->dte_cond |= DTRACE_COND_OWNER;
10639 
10640 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10641 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10642 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10643 
10644 		/*
10645 		 * If the provider shows us kernel innards and the user
10646 		 * is lacking sufficient privilege, enable the
10647 		 * DTRACE_COND_USERMODE implicit predicate.
10648 		 */
10649 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10650 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10651 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10652 	}
10653 
10654 	if (dtrace_ecb_create_cache != NULL) {
10655 		/*
10656 		 * If we have a cached ecb, we'll use its action list instead
10657 		 * of creating our own (saving both time and space).
10658 		 */
10659 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10660 		dtrace_action_t *act = cached->dte_action;
10661 
10662 		if (act != NULL) {
10663 			ASSERT(act->dta_refcnt > 0);
10664 			act->dta_refcnt++;
10665 			ecb->dte_action = act;
10666 			ecb->dte_action_last = cached->dte_action_last;
10667 			ecb->dte_needed = cached->dte_needed;
10668 			ecb->dte_size = cached->dte_size;
10669 			ecb->dte_alignment = cached->dte_alignment;
10670 		}
10671 
10672 		return (ecb);
10673 	}
10674 
10675 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10676 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10677 			dtrace_ecb_destroy(ecb);
10678 			return (NULL);
10679 		}
10680 	}
10681 
10682 	dtrace_ecb_resize(ecb);
10683 
10684 	return (dtrace_ecb_create_cache = ecb);
10685 }
10686 
10687 static int
10688 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10689 {
10690 	dtrace_ecb_t *ecb;
10691 	dtrace_enabling_t *enab = arg;
10692 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10693 
10694 	ASSERT(state != NULL);
10695 
10696 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10697 		/*
10698 		 * This probe was created in a generation for which this
10699 		 * enabling has previously created ECBs; we don't want to
10700 		 * enable it again, so just kick out.
10701 		 */
10702 		return (DTRACE_MATCH_NEXT);
10703 	}
10704 
10705 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10706 		return (DTRACE_MATCH_DONE);
10707 
10708 	dtrace_ecb_enable(ecb);
10709 	return (DTRACE_MATCH_NEXT);
10710 }
10711 
10712 static dtrace_ecb_t *
10713 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10714 {
10715 	dtrace_ecb_t *ecb;
10716 
10717 	ASSERT(MUTEX_HELD(&dtrace_lock));
10718 
10719 	if (id == 0 || id > state->dts_necbs)
10720 		return (NULL);
10721 
10722 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10723 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10724 
10725 	return (state->dts_ecbs[id - 1]);
10726 }
10727 
10728 static dtrace_aggregation_t *
10729 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10730 {
10731 	dtrace_aggregation_t *agg;
10732 
10733 	ASSERT(MUTEX_HELD(&dtrace_lock));
10734 
10735 	if (id == 0 || id > state->dts_naggregations)
10736 		return (NULL);
10737 
10738 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10739 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10740 	    agg->dtag_id == id);
10741 
10742 	return (state->dts_aggregations[id - 1]);
10743 }
10744 
10745 /*
10746  * DTrace Buffer Functions
10747  *
10748  * The following functions manipulate DTrace buffers.  Most of these functions
10749  * are called in the context of establishing or processing consumer state;
10750  * exceptions are explicitly noted.
10751  */
10752 
10753 /*
10754  * Note:  called from cross call context.  This function switches the two
10755  * buffers on a given CPU.  The atomicity of this operation is assured by
10756  * disabling interrupts while the actual switch takes place; the disabling of
10757  * interrupts serializes the execution with any execution of dtrace_probe() on
10758  * the same CPU.
10759  */
10760 static void
10761 dtrace_buffer_switch(dtrace_buffer_t *buf)
10762 {
10763 	caddr_t tomax = buf->dtb_tomax;
10764 	caddr_t xamot = buf->dtb_xamot;
10765 	dtrace_icookie_t cookie;
10766 	hrtime_t now;
10767 
10768 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10769 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10770 
10771 	cookie = dtrace_interrupt_disable();
10772 	now = dtrace_gethrtime();
10773 	buf->dtb_tomax = xamot;
10774 	buf->dtb_xamot = tomax;
10775 	buf->dtb_xamot_drops = buf->dtb_drops;
10776 	buf->dtb_xamot_offset = buf->dtb_offset;
10777 	buf->dtb_xamot_errors = buf->dtb_errors;
10778 	buf->dtb_xamot_flags = buf->dtb_flags;
10779 	buf->dtb_offset = 0;
10780 	buf->dtb_drops = 0;
10781 	buf->dtb_errors = 0;
10782 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10783 	buf->dtb_interval = now - buf->dtb_switched;
10784 	buf->dtb_switched = now;
10785 	dtrace_interrupt_enable(cookie);
10786 }
10787 
10788 /*
10789  * Note:  called from cross call context.  This function activates a buffer
10790  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10791  * is guaranteed by the disabling of interrupts.
10792  */
10793 static void
10794 dtrace_buffer_activate(dtrace_state_t *state)
10795 {
10796 	dtrace_buffer_t *buf;
10797 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10798 
10799 	buf = &state->dts_buffer[curcpu];
10800 
10801 	if (buf->dtb_tomax != NULL) {
10802 		/*
10803 		 * We might like to assert that the buffer is marked inactive,
10804 		 * but this isn't necessarily true:  the buffer for the CPU
10805 		 * that processes the BEGIN probe has its buffer activated
10806 		 * manually.  In this case, we take the (harmless) action
10807 		 * re-clearing the bit INACTIVE bit.
10808 		 */
10809 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10810 	}
10811 
10812 	dtrace_interrupt_enable(cookie);
10813 }
10814 
10815 static int
10816 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10817     processorid_t cpu)
10818 {
10819 #if defined(sun)
10820 	cpu_t *cp;
10821 #endif
10822 	dtrace_buffer_t *buf;
10823 
10824 #if defined(sun)
10825 	ASSERT(MUTEX_HELD(&cpu_lock));
10826 	ASSERT(MUTEX_HELD(&dtrace_lock));
10827 
10828 	if (size > dtrace_nonroot_maxsize &&
10829 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10830 		return (EFBIG);
10831 
10832 	cp = cpu_list;
10833 
10834 	do {
10835 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10836 			continue;
10837 
10838 		buf = &bufs[cp->cpu_id];
10839 
10840 		/*
10841 		 * If there is already a buffer allocated for this CPU, it
10842 		 * is only possible that this is a DR event.  In this case,
10843 		 */
10844 		if (buf->dtb_tomax != NULL) {
10845 			ASSERT(buf->dtb_size == size);
10846 			continue;
10847 		}
10848 
10849 		ASSERT(buf->dtb_xamot == NULL);
10850 
10851 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10852 			goto err;
10853 
10854 		buf->dtb_size = size;
10855 		buf->dtb_flags = flags;
10856 		buf->dtb_offset = 0;
10857 		buf->dtb_drops = 0;
10858 
10859 		if (flags & DTRACEBUF_NOSWITCH)
10860 			continue;
10861 
10862 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10863 			goto err;
10864 	} while ((cp = cp->cpu_next) != cpu_list);
10865 
10866 	return (0);
10867 
10868 err:
10869 	cp = cpu_list;
10870 
10871 	do {
10872 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10873 			continue;
10874 
10875 		buf = &bufs[cp->cpu_id];
10876 
10877 		if (buf->dtb_xamot != NULL) {
10878 			ASSERT(buf->dtb_tomax != NULL);
10879 			ASSERT(buf->dtb_size == size);
10880 			kmem_free(buf->dtb_xamot, size);
10881 		}
10882 
10883 		if (buf->dtb_tomax != NULL) {
10884 			ASSERT(buf->dtb_size == size);
10885 			kmem_free(buf->dtb_tomax, size);
10886 		}
10887 
10888 		buf->dtb_tomax = NULL;
10889 		buf->dtb_xamot = NULL;
10890 		buf->dtb_size = 0;
10891 	} while ((cp = cp->cpu_next) != cpu_list);
10892 
10893 	return (ENOMEM);
10894 #else
10895 	int i;
10896 
10897 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10898 	/*
10899 	 * FreeBSD isn't good at limiting the amount of memory we
10900 	 * ask to malloc, so let's place a limit here before trying
10901 	 * to do something that might well end in tears at bedtime.
10902 	 */
10903 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10904 		return(ENOMEM);
10905 #endif
10906 
10907 	ASSERT(MUTEX_HELD(&dtrace_lock));
10908 	CPU_FOREACH(i) {
10909 		if (cpu != DTRACE_CPUALL && cpu != i)
10910 			continue;
10911 
10912 		buf = &bufs[i];
10913 
10914 		/*
10915 		 * If there is already a buffer allocated for this CPU, it
10916 		 * is only possible that this is a DR event.  In this case,
10917 		 * the buffer size must match our specified size.
10918 		 */
10919 		if (buf->dtb_tomax != NULL) {
10920 			ASSERT(buf->dtb_size == size);
10921 			continue;
10922 		}
10923 
10924 		ASSERT(buf->dtb_xamot == NULL);
10925 
10926 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10927 			goto err;
10928 
10929 		buf->dtb_size = size;
10930 		buf->dtb_flags = flags;
10931 		buf->dtb_offset = 0;
10932 		buf->dtb_drops = 0;
10933 
10934 		if (flags & DTRACEBUF_NOSWITCH)
10935 			continue;
10936 
10937 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10938 			goto err;
10939 	}
10940 
10941 	return (0);
10942 
10943 err:
10944 	/*
10945 	 * Error allocating memory, so free the buffers that were
10946 	 * allocated before the failed allocation.
10947 	 */
10948 	CPU_FOREACH(i) {
10949 		if (cpu != DTRACE_CPUALL && cpu != i)
10950 			continue;
10951 
10952 		buf = &bufs[i];
10953 
10954 		if (buf->dtb_xamot != NULL) {
10955 			ASSERT(buf->dtb_tomax != NULL);
10956 			ASSERT(buf->dtb_size == size);
10957 			kmem_free(buf->dtb_xamot, size);
10958 		}
10959 
10960 		if (buf->dtb_tomax != NULL) {
10961 			ASSERT(buf->dtb_size == size);
10962 			kmem_free(buf->dtb_tomax, size);
10963 		}
10964 
10965 		buf->dtb_tomax = NULL;
10966 		buf->dtb_xamot = NULL;
10967 		buf->dtb_size = 0;
10968 
10969 	}
10970 
10971 	return (ENOMEM);
10972 #endif
10973 }
10974 
10975 /*
10976  * Note:  called from probe context.  This function just increments the drop
10977  * count on a buffer.  It has been made a function to allow for the
10978  * possibility of understanding the source of mysterious drop counts.  (A
10979  * problem for which one may be particularly disappointed that DTrace cannot
10980  * be used to understand DTrace.)
10981  */
10982 static void
10983 dtrace_buffer_drop(dtrace_buffer_t *buf)
10984 {
10985 	buf->dtb_drops++;
10986 }
10987 
10988 /*
10989  * Note:  called from probe context.  This function is called to reserve space
10990  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10991  * mstate.  Returns the new offset in the buffer, or a negative value if an
10992  * error has occurred.
10993  */
10994 static intptr_t
10995 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10996     dtrace_state_t *state, dtrace_mstate_t *mstate)
10997 {
10998 	intptr_t offs = buf->dtb_offset, soffs;
10999 	intptr_t woffs;
11000 	caddr_t tomax;
11001 	size_t total;
11002 
11003 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11004 		return (-1);
11005 
11006 	if ((tomax = buf->dtb_tomax) == NULL) {
11007 		dtrace_buffer_drop(buf);
11008 		return (-1);
11009 	}
11010 
11011 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11012 		while (offs & (align - 1)) {
11013 			/*
11014 			 * Assert that our alignment is off by a number which
11015 			 * is itself sizeof (uint32_t) aligned.
11016 			 */
11017 			ASSERT(!((align - (offs & (align - 1))) &
11018 			    (sizeof (uint32_t) - 1)));
11019 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11020 			offs += sizeof (uint32_t);
11021 		}
11022 
11023 		if ((soffs = offs + needed) > buf->dtb_size) {
11024 			dtrace_buffer_drop(buf);
11025 			return (-1);
11026 		}
11027 
11028 		if (mstate == NULL)
11029 			return (offs);
11030 
11031 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11032 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11033 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11034 
11035 		return (offs);
11036 	}
11037 
11038 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11039 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11040 		    (buf->dtb_flags & DTRACEBUF_FULL))
11041 			return (-1);
11042 		goto out;
11043 	}
11044 
11045 	total = needed + (offs & (align - 1));
11046 
11047 	/*
11048 	 * For a ring buffer, life is quite a bit more complicated.  Before
11049 	 * we can store any padding, we need to adjust our wrapping offset.
11050 	 * (If we've never before wrapped or we're not about to, no adjustment
11051 	 * is required.)
11052 	 */
11053 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11054 	    offs + total > buf->dtb_size) {
11055 		woffs = buf->dtb_xamot_offset;
11056 
11057 		if (offs + total > buf->dtb_size) {
11058 			/*
11059 			 * We can't fit in the end of the buffer.  First, a
11060 			 * sanity check that we can fit in the buffer at all.
11061 			 */
11062 			if (total > buf->dtb_size) {
11063 				dtrace_buffer_drop(buf);
11064 				return (-1);
11065 			}
11066 
11067 			/*
11068 			 * We're going to be storing at the top of the buffer,
11069 			 * so now we need to deal with the wrapped offset.  We
11070 			 * only reset our wrapped offset to 0 if it is
11071 			 * currently greater than the current offset.  If it
11072 			 * is less than the current offset, it is because a
11073 			 * previous allocation induced a wrap -- but the
11074 			 * allocation didn't subsequently take the space due
11075 			 * to an error or false predicate evaluation.  In this
11076 			 * case, we'll just leave the wrapped offset alone: if
11077 			 * the wrapped offset hasn't been advanced far enough
11078 			 * for this allocation, it will be adjusted in the
11079 			 * lower loop.
11080 			 */
11081 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11082 				if (woffs >= offs)
11083 					woffs = 0;
11084 			} else {
11085 				woffs = 0;
11086 			}
11087 
11088 			/*
11089 			 * Now we know that we're going to be storing to the
11090 			 * top of the buffer and that there is room for us
11091 			 * there.  We need to clear the buffer from the current
11092 			 * offset to the end (there may be old gunk there).
11093 			 */
11094 			while (offs < buf->dtb_size)
11095 				tomax[offs++] = 0;
11096 
11097 			/*
11098 			 * We need to set our offset to zero.  And because we
11099 			 * are wrapping, we need to set the bit indicating as
11100 			 * much.  We can also adjust our needed space back
11101 			 * down to the space required by the ECB -- we know
11102 			 * that the top of the buffer is aligned.
11103 			 */
11104 			offs = 0;
11105 			total = needed;
11106 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11107 		} else {
11108 			/*
11109 			 * There is room for us in the buffer, so we simply
11110 			 * need to check the wrapped offset.
11111 			 */
11112 			if (woffs < offs) {
11113 				/*
11114 				 * The wrapped offset is less than the offset.
11115 				 * This can happen if we allocated buffer space
11116 				 * that induced a wrap, but then we didn't
11117 				 * subsequently take the space due to an error
11118 				 * or false predicate evaluation.  This is
11119 				 * okay; we know that _this_ allocation isn't
11120 				 * going to induce a wrap.  We still can't
11121 				 * reset the wrapped offset to be zero,
11122 				 * however: the space may have been trashed in
11123 				 * the previous failed probe attempt.  But at
11124 				 * least the wrapped offset doesn't need to
11125 				 * be adjusted at all...
11126 				 */
11127 				goto out;
11128 			}
11129 		}
11130 
11131 		while (offs + total > woffs) {
11132 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11133 			size_t size;
11134 
11135 			if (epid == DTRACE_EPIDNONE) {
11136 				size = sizeof (uint32_t);
11137 			} else {
11138 				ASSERT3U(epid, <=, state->dts_necbs);
11139 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11140 
11141 				size = state->dts_ecbs[epid - 1]->dte_size;
11142 			}
11143 
11144 			ASSERT(woffs + size <= buf->dtb_size);
11145 			ASSERT(size != 0);
11146 
11147 			if (woffs + size == buf->dtb_size) {
11148 				/*
11149 				 * We've reached the end of the buffer; we want
11150 				 * to set the wrapped offset to 0 and break
11151 				 * out.  However, if the offs is 0, then we're
11152 				 * in a strange edge-condition:  the amount of
11153 				 * space that we want to reserve plus the size
11154 				 * of the record that we're overwriting is
11155 				 * greater than the size of the buffer.  This
11156 				 * is problematic because if we reserve the
11157 				 * space but subsequently don't consume it (due
11158 				 * to a failed predicate or error) the wrapped
11159 				 * offset will be 0 -- yet the EPID at offset 0
11160 				 * will not be committed.  This situation is
11161 				 * relatively easy to deal with:  if we're in
11162 				 * this case, the buffer is indistinguishable
11163 				 * from one that hasn't wrapped; we need only
11164 				 * finish the job by clearing the wrapped bit,
11165 				 * explicitly setting the offset to be 0, and
11166 				 * zero'ing out the old data in the buffer.
11167 				 */
11168 				if (offs == 0) {
11169 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11170 					buf->dtb_offset = 0;
11171 					woffs = total;
11172 
11173 					while (woffs < buf->dtb_size)
11174 						tomax[woffs++] = 0;
11175 				}
11176 
11177 				woffs = 0;
11178 				break;
11179 			}
11180 
11181 			woffs += size;
11182 		}
11183 
11184 		/*
11185 		 * We have a wrapped offset.  It may be that the wrapped offset
11186 		 * has become zero -- that's okay.
11187 		 */
11188 		buf->dtb_xamot_offset = woffs;
11189 	}
11190 
11191 out:
11192 	/*
11193 	 * Now we can plow the buffer with any necessary padding.
11194 	 */
11195 	while (offs & (align - 1)) {
11196 		/*
11197 		 * Assert that our alignment is off by a number which
11198 		 * is itself sizeof (uint32_t) aligned.
11199 		 */
11200 		ASSERT(!((align - (offs & (align - 1))) &
11201 		    (sizeof (uint32_t) - 1)));
11202 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11203 		offs += sizeof (uint32_t);
11204 	}
11205 
11206 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11207 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11208 			buf->dtb_flags |= DTRACEBUF_FULL;
11209 			return (-1);
11210 		}
11211 	}
11212 
11213 	if (mstate == NULL)
11214 		return (offs);
11215 
11216 	/*
11217 	 * For ring buffers and fill buffers, the scratch space is always
11218 	 * the inactive buffer.
11219 	 */
11220 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11221 	mstate->dtms_scratch_size = buf->dtb_size;
11222 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11223 
11224 	return (offs);
11225 }
11226 
11227 static void
11228 dtrace_buffer_polish(dtrace_buffer_t *buf)
11229 {
11230 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11231 	ASSERT(MUTEX_HELD(&dtrace_lock));
11232 
11233 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11234 		return;
11235 
11236 	/*
11237 	 * We need to polish the ring buffer.  There are three cases:
11238 	 *
11239 	 * - The first (and presumably most common) is that there is no gap
11240 	 *   between the buffer offset and the wrapped offset.  In this case,
11241 	 *   there is nothing in the buffer that isn't valid data; we can
11242 	 *   mark the buffer as polished and return.
11243 	 *
11244 	 * - The second (less common than the first but still more common
11245 	 *   than the third) is that there is a gap between the buffer offset
11246 	 *   and the wrapped offset, and the wrapped offset is larger than the
11247 	 *   buffer offset.  This can happen because of an alignment issue, or
11248 	 *   can happen because of a call to dtrace_buffer_reserve() that
11249 	 *   didn't subsequently consume the buffer space.  In this case,
11250 	 *   we need to zero the data from the buffer offset to the wrapped
11251 	 *   offset.
11252 	 *
11253 	 * - The third (and least common) is that there is a gap between the
11254 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11255 	 *   _less_ than the buffer offset.  This can only happen because a
11256 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11257 	 *   was not subsequently consumed.  In this case, we need to zero the
11258 	 *   space from the offset to the end of the buffer _and_ from the
11259 	 *   top of the buffer to the wrapped offset.
11260 	 */
11261 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11262 		bzero(buf->dtb_tomax + buf->dtb_offset,
11263 		    buf->dtb_xamot_offset - buf->dtb_offset);
11264 	}
11265 
11266 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11267 		bzero(buf->dtb_tomax + buf->dtb_offset,
11268 		    buf->dtb_size - buf->dtb_offset);
11269 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11270 	}
11271 }
11272 
11273 /*
11274  * This routine determines if data generated at the specified time has likely
11275  * been entirely consumed at user-level.  This routine is called to determine
11276  * if an ECB on a defunct probe (but for an active enabling) can be safely
11277  * disabled and destroyed.
11278  */
11279 static int
11280 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11281 {
11282 	int i;
11283 
11284 	for (i = 0; i < NCPU; i++) {
11285 		dtrace_buffer_t *buf = &bufs[i];
11286 
11287 		if (buf->dtb_size == 0)
11288 			continue;
11289 
11290 		if (buf->dtb_flags & DTRACEBUF_RING)
11291 			return (0);
11292 
11293 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11294 			return (0);
11295 
11296 		if (buf->dtb_switched - buf->dtb_interval < when)
11297 			return (0);
11298 	}
11299 
11300 	return (1);
11301 }
11302 
11303 static void
11304 dtrace_buffer_free(dtrace_buffer_t *bufs)
11305 {
11306 	int i;
11307 
11308 	for (i = 0; i < NCPU; i++) {
11309 		dtrace_buffer_t *buf = &bufs[i];
11310 
11311 		if (buf->dtb_tomax == NULL) {
11312 			ASSERT(buf->dtb_xamot == NULL);
11313 			ASSERT(buf->dtb_size == 0);
11314 			continue;
11315 		}
11316 
11317 		if (buf->dtb_xamot != NULL) {
11318 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11319 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11320 		}
11321 
11322 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11323 		buf->dtb_size = 0;
11324 		buf->dtb_tomax = NULL;
11325 		buf->dtb_xamot = NULL;
11326 	}
11327 }
11328 
11329 /*
11330  * DTrace Enabling Functions
11331  */
11332 static dtrace_enabling_t *
11333 dtrace_enabling_create(dtrace_vstate_t *vstate)
11334 {
11335 	dtrace_enabling_t *enab;
11336 
11337 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11338 	enab->dten_vstate = vstate;
11339 
11340 	return (enab);
11341 }
11342 
11343 static void
11344 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11345 {
11346 	dtrace_ecbdesc_t **ndesc;
11347 	size_t osize, nsize;
11348 
11349 	/*
11350 	 * We can't add to enablings after we've enabled them, or after we've
11351 	 * retained them.
11352 	 */
11353 	ASSERT(enab->dten_probegen == 0);
11354 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11355 
11356 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11357 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11358 		return;
11359 	}
11360 
11361 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11362 
11363 	if (enab->dten_maxdesc == 0) {
11364 		enab->dten_maxdesc = 1;
11365 	} else {
11366 		enab->dten_maxdesc <<= 1;
11367 	}
11368 
11369 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11370 
11371 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11372 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11373 	bcopy(enab->dten_desc, ndesc, osize);
11374 	if (enab->dten_desc != NULL)
11375 		kmem_free(enab->dten_desc, osize);
11376 
11377 	enab->dten_desc = ndesc;
11378 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11379 }
11380 
11381 static void
11382 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11383     dtrace_probedesc_t *pd)
11384 {
11385 	dtrace_ecbdesc_t *new;
11386 	dtrace_predicate_t *pred;
11387 	dtrace_actdesc_t *act;
11388 
11389 	/*
11390 	 * We're going to create a new ECB description that matches the
11391 	 * specified ECB in every way, but has the specified probe description.
11392 	 */
11393 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11394 
11395 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11396 		dtrace_predicate_hold(pred);
11397 
11398 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11399 		dtrace_actdesc_hold(act);
11400 
11401 	new->dted_action = ecb->dted_action;
11402 	new->dted_pred = ecb->dted_pred;
11403 	new->dted_probe = *pd;
11404 	new->dted_uarg = ecb->dted_uarg;
11405 
11406 	dtrace_enabling_add(enab, new);
11407 }
11408 
11409 static void
11410 dtrace_enabling_dump(dtrace_enabling_t *enab)
11411 {
11412 	int i;
11413 
11414 	for (i = 0; i < enab->dten_ndesc; i++) {
11415 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11416 
11417 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11418 		    desc->dtpd_provider, desc->dtpd_mod,
11419 		    desc->dtpd_func, desc->dtpd_name);
11420 	}
11421 }
11422 
11423 static void
11424 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11425 {
11426 	int i;
11427 	dtrace_ecbdesc_t *ep;
11428 	dtrace_vstate_t *vstate = enab->dten_vstate;
11429 
11430 	ASSERT(MUTEX_HELD(&dtrace_lock));
11431 
11432 	for (i = 0; i < enab->dten_ndesc; i++) {
11433 		dtrace_actdesc_t *act, *next;
11434 		dtrace_predicate_t *pred;
11435 
11436 		ep = enab->dten_desc[i];
11437 
11438 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11439 			dtrace_predicate_release(pred, vstate);
11440 
11441 		for (act = ep->dted_action; act != NULL; act = next) {
11442 			next = act->dtad_next;
11443 			dtrace_actdesc_release(act, vstate);
11444 		}
11445 
11446 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11447 	}
11448 
11449 	if (enab->dten_desc != NULL)
11450 		kmem_free(enab->dten_desc,
11451 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11452 
11453 	/*
11454 	 * If this was a retained enabling, decrement the dts_nretained count
11455 	 * and take it off of the dtrace_retained list.
11456 	 */
11457 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11458 	    dtrace_retained == enab) {
11459 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11460 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11461 		enab->dten_vstate->dtvs_state->dts_nretained--;
11462 	}
11463 
11464 	if (enab->dten_prev == NULL) {
11465 		if (dtrace_retained == enab) {
11466 			dtrace_retained = enab->dten_next;
11467 
11468 			if (dtrace_retained != NULL)
11469 				dtrace_retained->dten_prev = NULL;
11470 		}
11471 	} else {
11472 		ASSERT(enab != dtrace_retained);
11473 		ASSERT(dtrace_retained != NULL);
11474 		enab->dten_prev->dten_next = enab->dten_next;
11475 	}
11476 
11477 	if (enab->dten_next != NULL) {
11478 		ASSERT(dtrace_retained != NULL);
11479 		enab->dten_next->dten_prev = enab->dten_prev;
11480 	}
11481 
11482 	kmem_free(enab, sizeof (dtrace_enabling_t));
11483 }
11484 
11485 static int
11486 dtrace_enabling_retain(dtrace_enabling_t *enab)
11487 {
11488 	dtrace_state_t *state;
11489 
11490 	ASSERT(MUTEX_HELD(&dtrace_lock));
11491 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11492 	ASSERT(enab->dten_vstate != NULL);
11493 
11494 	state = enab->dten_vstate->dtvs_state;
11495 	ASSERT(state != NULL);
11496 
11497 	/*
11498 	 * We only allow each state to retain dtrace_retain_max enablings.
11499 	 */
11500 	if (state->dts_nretained >= dtrace_retain_max)
11501 		return (ENOSPC);
11502 
11503 	state->dts_nretained++;
11504 
11505 	if (dtrace_retained == NULL) {
11506 		dtrace_retained = enab;
11507 		return (0);
11508 	}
11509 
11510 	enab->dten_next = dtrace_retained;
11511 	dtrace_retained->dten_prev = enab;
11512 	dtrace_retained = enab;
11513 
11514 	return (0);
11515 }
11516 
11517 static int
11518 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11519     dtrace_probedesc_t *create)
11520 {
11521 	dtrace_enabling_t *new, *enab;
11522 	int found = 0, err = ENOENT;
11523 
11524 	ASSERT(MUTEX_HELD(&dtrace_lock));
11525 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11526 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11527 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11528 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11529 
11530 	new = dtrace_enabling_create(&state->dts_vstate);
11531 
11532 	/*
11533 	 * Iterate over all retained enablings, looking for enablings that
11534 	 * match the specified state.
11535 	 */
11536 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11537 		int i;
11538 
11539 		/*
11540 		 * dtvs_state can only be NULL for helper enablings -- and
11541 		 * helper enablings can't be retained.
11542 		 */
11543 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11544 
11545 		if (enab->dten_vstate->dtvs_state != state)
11546 			continue;
11547 
11548 		/*
11549 		 * Now iterate over each probe description; we're looking for
11550 		 * an exact match to the specified probe description.
11551 		 */
11552 		for (i = 0; i < enab->dten_ndesc; i++) {
11553 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11554 			dtrace_probedesc_t *pd = &ep->dted_probe;
11555 
11556 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11557 				continue;
11558 
11559 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11560 				continue;
11561 
11562 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11563 				continue;
11564 
11565 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11566 				continue;
11567 
11568 			/*
11569 			 * We have a winning probe!  Add it to our growing
11570 			 * enabling.
11571 			 */
11572 			found = 1;
11573 			dtrace_enabling_addlike(new, ep, create);
11574 		}
11575 	}
11576 
11577 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11578 		dtrace_enabling_destroy(new);
11579 		return (err);
11580 	}
11581 
11582 	return (0);
11583 }
11584 
11585 static void
11586 dtrace_enabling_retract(dtrace_state_t *state)
11587 {
11588 	dtrace_enabling_t *enab, *next;
11589 
11590 	ASSERT(MUTEX_HELD(&dtrace_lock));
11591 
11592 	/*
11593 	 * Iterate over all retained enablings, destroy the enablings retained
11594 	 * for the specified state.
11595 	 */
11596 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11597 		next = enab->dten_next;
11598 
11599 		/*
11600 		 * dtvs_state can only be NULL for helper enablings -- and
11601 		 * helper enablings can't be retained.
11602 		 */
11603 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11604 
11605 		if (enab->dten_vstate->dtvs_state == state) {
11606 			ASSERT(state->dts_nretained > 0);
11607 			dtrace_enabling_destroy(enab);
11608 		}
11609 	}
11610 
11611 	ASSERT(state->dts_nretained == 0);
11612 }
11613 
11614 static int
11615 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11616 {
11617 	int i = 0;
11618 	int matched = 0;
11619 
11620 	ASSERT(MUTEX_HELD(&cpu_lock));
11621 	ASSERT(MUTEX_HELD(&dtrace_lock));
11622 
11623 	for (i = 0; i < enab->dten_ndesc; i++) {
11624 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11625 
11626 		enab->dten_current = ep;
11627 		enab->dten_error = 0;
11628 
11629 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11630 
11631 		if (enab->dten_error != 0) {
11632 			/*
11633 			 * If we get an error half-way through enabling the
11634 			 * probes, we kick out -- perhaps with some number of
11635 			 * them enabled.  Leaving enabled probes enabled may
11636 			 * be slightly confusing for user-level, but we expect
11637 			 * that no one will attempt to actually drive on in
11638 			 * the face of such errors.  If this is an anonymous
11639 			 * enabling (indicated with a NULL nmatched pointer),
11640 			 * we cmn_err() a message.  We aren't expecting to
11641 			 * get such an error -- such as it can exist at all,
11642 			 * it would be a result of corrupted DOF in the driver
11643 			 * properties.
11644 			 */
11645 			if (nmatched == NULL) {
11646 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11647 				    "error on %p: %d", (void *)ep,
11648 				    enab->dten_error);
11649 			}
11650 
11651 			return (enab->dten_error);
11652 		}
11653 	}
11654 
11655 	enab->dten_probegen = dtrace_probegen;
11656 	if (nmatched != NULL)
11657 		*nmatched = matched;
11658 
11659 	return (0);
11660 }
11661 
11662 static void
11663 dtrace_enabling_matchall(void)
11664 {
11665 	dtrace_enabling_t *enab;
11666 
11667 	mutex_enter(&cpu_lock);
11668 	mutex_enter(&dtrace_lock);
11669 
11670 	/*
11671 	 * Iterate over all retained enablings to see if any probes match
11672 	 * against them.  We only perform this operation on enablings for which
11673 	 * we have sufficient permissions by virtue of being in the global zone
11674 	 * or in the same zone as the DTrace client.  Because we can be called
11675 	 * after dtrace_detach() has been called, we cannot assert that there
11676 	 * are retained enablings.  We can safely load from dtrace_retained,
11677 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11678 	 * block pending our completion.
11679 	 */
11680 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11681 #if defined(sun)
11682 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11683 
11684 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11685 #endif
11686 			(void) dtrace_enabling_match(enab, NULL);
11687 	}
11688 
11689 	mutex_exit(&dtrace_lock);
11690 	mutex_exit(&cpu_lock);
11691 }
11692 
11693 /*
11694  * If an enabling is to be enabled without having matched probes (that is, if
11695  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11696  * enabling must be _primed_ by creating an ECB for every ECB description.
11697  * This must be done to assure that we know the number of speculations, the
11698  * number of aggregations, the minimum buffer size needed, etc. before we
11699  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11700  * enabling any probes, we create ECBs for every ECB decription, but with a
11701  * NULL probe -- which is exactly what this function does.
11702  */
11703 static void
11704 dtrace_enabling_prime(dtrace_state_t *state)
11705 {
11706 	dtrace_enabling_t *enab;
11707 	int i;
11708 
11709 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11710 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11711 
11712 		if (enab->dten_vstate->dtvs_state != state)
11713 			continue;
11714 
11715 		/*
11716 		 * We don't want to prime an enabling more than once, lest
11717 		 * we allow a malicious user to induce resource exhaustion.
11718 		 * (The ECBs that result from priming an enabling aren't
11719 		 * leaked -- but they also aren't deallocated until the
11720 		 * consumer state is destroyed.)
11721 		 */
11722 		if (enab->dten_primed)
11723 			continue;
11724 
11725 		for (i = 0; i < enab->dten_ndesc; i++) {
11726 			enab->dten_current = enab->dten_desc[i];
11727 			(void) dtrace_probe_enable(NULL, enab);
11728 		}
11729 
11730 		enab->dten_primed = 1;
11731 	}
11732 }
11733 
11734 /*
11735  * Called to indicate that probes should be provided due to retained
11736  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11737  * must take an initial lap through the enabling calling the dtps_provide()
11738  * entry point explicitly to allow for autocreated probes.
11739  */
11740 static void
11741 dtrace_enabling_provide(dtrace_provider_t *prv)
11742 {
11743 	int i, all = 0;
11744 	dtrace_probedesc_t desc;
11745 
11746 	ASSERT(MUTEX_HELD(&dtrace_lock));
11747 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11748 
11749 	if (prv == NULL) {
11750 		all = 1;
11751 		prv = dtrace_provider;
11752 	}
11753 
11754 	do {
11755 		dtrace_enabling_t *enab = dtrace_retained;
11756 		void *parg = prv->dtpv_arg;
11757 
11758 		for (; enab != NULL; enab = enab->dten_next) {
11759 			for (i = 0; i < enab->dten_ndesc; i++) {
11760 				desc = enab->dten_desc[i]->dted_probe;
11761 				mutex_exit(&dtrace_lock);
11762 				prv->dtpv_pops.dtps_provide(parg, &desc);
11763 				mutex_enter(&dtrace_lock);
11764 			}
11765 		}
11766 	} while (all && (prv = prv->dtpv_next) != NULL);
11767 
11768 	mutex_exit(&dtrace_lock);
11769 	dtrace_probe_provide(NULL, all ? NULL : prv);
11770 	mutex_enter(&dtrace_lock);
11771 }
11772 
11773 /*
11774  * Called to reap ECBs that are attached to probes from defunct providers.
11775  */
11776 static void
11777 dtrace_enabling_reap(void)
11778 {
11779 	dtrace_provider_t *prov;
11780 	dtrace_probe_t *probe;
11781 	dtrace_ecb_t *ecb;
11782 	hrtime_t when;
11783 	int i;
11784 
11785 	mutex_enter(&cpu_lock);
11786 	mutex_enter(&dtrace_lock);
11787 
11788 	for (i = 0; i < dtrace_nprobes; i++) {
11789 		if ((probe = dtrace_probes[i]) == NULL)
11790 			continue;
11791 
11792 		if (probe->dtpr_ecb == NULL)
11793 			continue;
11794 
11795 		prov = probe->dtpr_provider;
11796 
11797 		if ((when = prov->dtpv_defunct) == 0)
11798 			continue;
11799 
11800 		/*
11801 		 * We have ECBs on a defunct provider:  we want to reap these
11802 		 * ECBs to allow the provider to unregister.  The destruction
11803 		 * of these ECBs must be done carefully:  if we destroy the ECB
11804 		 * and the consumer later wishes to consume an EPID that
11805 		 * corresponds to the destroyed ECB (and if the EPID metadata
11806 		 * has not been previously consumed), the consumer will abort
11807 		 * processing on the unknown EPID.  To reduce (but not, sadly,
11808 		 * eliminate) the possibility of this, we will only destroy an
11809 		 * ECB for a defunct provider if, for the state that
11810 		 * corresponds to the ECB:
11811 		 *
11812 		 *  (a)	There is no speculative tracing (which can effectively
11813 		 *	cache an EPID for an arbitrary amount of time).
11814 		 *
11815 		 *  (b)	The principal buffers have been switched twice since the
11816 		 *	provider became defunct.
11817 		 *
11818 		 *  (c)	The aggregation buffers are of zero size or have been
11819 		 *	switched twice since the provider became defunct.
11820 		 *
11821 		 * We use dts_speculates to determine (a) and call a function
11822 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11823 		 * that as soon as we've been unable to destroy one of the ECBs
11824 		 * associated with the probe, we quit trying -- reaping is only
11825 		 * fruitful in as much as we can destroy all ECBs associated
11826 		 * with the defunct provider's probes.
11827 		 */
11828 		while ((ecb = probe->dtpr_ecb) != NULL) {
11829 			dtrace_state_t *state = ecb->dte_state;
11830 			dtrace_buffer_t *buf = state->dts_buffer;
11831 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11832 
11833 			if (state->dts_speculates)
11834 				break;
11835 
11836 			if (!dtrace_buffer_consumed(buf, when))
11837 				break;
11838 
11839 			if (!dtrace_buffer_consumed(aggbuf, when))
11840 				break;
11841 
11842 			dtrace_ecb_disable(ecb);
11843 			ASSERT(probe->dtpr_ecb != ecb);
11844 			dtrace_ecb_destroy(ecb);
11845 		}
11846 	}
11847 
11848 	mutex_exit(&dtrace_lock);
11849 	mutex_exit(&cpu_lock);
11850 }
11851 
11852 /*
11853  * DTrace DOF Functions
11854  */
11855 /*ARGSUSED*/
11856 static void
11857 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11858 {
11859 	if (dtrace_err_verbose)
11860 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11861 
11862 #ifdef DTRACE_ERRDEBUG
11863 	dtrace_errdebug(str);
11864 #endif
11865 }
11866 
11867 /*
11868  * Create DOF out of a currently enabled state.  Right now, we only create
11869  * DOF containing the run-time options -- but this could be expanded to create
11870  * complete DOF representing the enabled state.
11871  */
11872 static dof_hdr_t *
11873 dtrace_dof_create(dtrace_state_t *state)
11874 {
11875 	dof_hdr_t *dof;
11876 	dof_sec_t *sec;
11877 	dof_optdesc_t *opt;
11878 	int i, len = sizeof (dof_hdr_t) +
11879 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11880 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11881 
11882 	ASSERT(MUTEX_HELD(&dtrace_lock));
11883 
11884 	dof = kmem_zalloc(len, KM_SLEEP);
11885 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11886 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11887 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11888 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11889 
11890 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11891 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11892 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11893 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11894 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11895 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11896 
11897 	dof->dofh_flags = 0;
11898 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11899 	dof->dofh_secsize = sizeof (dof_sec_t);
11900 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11901 	dof->dofh_secoff = sizeof (dof_hdr_t);
11902 	dof->dofh_loadsz = len;
11903 	dof->dofh_filesz = len;
11904 	dof->dofh_pad = 0;
11905 
11906 	/*
11907 	 * Fill in the option section header...
11908 	 */
11909 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11910 	sec->dofs_type = DOF_SECT_OPTDESC;
11911 	sec->dofs_align = sizeof (uint64_t);
11912 	sec->dofs_flags = DOF_SECF_LOAD;
11913 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11914 
11915 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11916 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11917 
11918 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11919 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11920 
11921 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11922 		opt[i].dofo_option = i;
11923 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11924 		opt[i].dofo_value = state->dts_options[i];
11925 	}
11926 
11927 	return (dof);
11928 }
11929 
11930 static dof_hdr_t *
11931 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11932 {
11933 	dof_hdr_t hdr, *dof;
11934 
11935 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11936 
11937 	/*
11938 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11939 	 */
11940 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11941 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11942 		*errp = EFAULT;
11943 		return (NULL);
11944 	}
11945 
11946 	/*
11947 	 * Now we'll allocate the entire DOF and copy it in -- provided
11948 	 * that the length isn't outrageous.
11949 	 */
11950 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11951 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11952 		*errp = E2BIG;
11953 		return (NULL);
11954 	}
11955 
11956 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11957 		dtrace_dof_error(&hdr, "invalid load size");
11958 		*errp = EINVAL;
11959 		return (NULL);
11960 	}
11961 
11962 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11963 
11964 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11965 		kmem_free(dof, hdr.dofh_loadsz);
11966 		*errp = EFAULT;
11967 		return (NULL);
11968 	}
11969 
11970 	return (dof);
11971 }
11972 
11973 #if !defined(sun)
11974 static __inline uchar_t
11975 dtrace_dof_char(char c) {
11976 	switch (c) {
11977 	case '0':
11978 	case '1':
11979 	case '2':
11980 	case '3':
11981 	case '4':
11982 	case '5':
11983 	case '6':
11984 	case '7':
11985 	case '8':
11986 	case '9':
11987 		return (c - '0');
11988 	case 'A':
11989 	case 'B':
11990 	case 'C':
11991 	case 'D':
11992 	case 'E':
11993 	case 'F':
11994 		return (c - 'A' + 10);
11995 	case 'a':
11996 	case 'b':
11997 	case 'c':
11998 	case 'd':
11999 	case 'e':
12000 	case 'f':
12001 		return (c - 'a' + 10);
12002 	}
12003 	/* Should not reach here. */
12004 	return (0);
12005 }
12006 #endif
12007 
12008 static dof_hdr_t *
12009 dtrace_dof_property(const char *name)
12010 {
12011 	uchar_t *buf;
12012 	uint64_t loadsz;
12013 	unsigned int len, i;
12014 	dof_hdr_t *dof;
12015 
12016 #if defined(sun)
12017 	/*
12018 	 * Unfortunately, array of values in .conf files are always (and
12019 	 * only) interpreted to be integer arrays.  We must read our DOF
12020 	 * as an integer array, and then squeeze it into a byte array.
12021 	 */
12022 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12023 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12024 		return (NULL);
12025 
12026 	for (i = 0; i < len; i++)
12027 		buf[i] = (uchar_t)(((int *)buf)[i]);
12028 
12029 	if (len < sizeof (dof_hdr_t)) {
12030 		ddi_prop_free(buf);
12031 		dtrace_dof_error(NULL, "truncated header");
12032 		return (NULL);
12033 	}
12034 
12035 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12036 		ddi_prop_free(buf);
12037 		dtrace_dof_error(NULL, "truncated DOF");
12038 		return (NULL);
12039 	}
12040 
12041 	if (loadsz >= dtrace_dof_maxsize) {
12042 		ddi_prop_free(buf);
12043 		dtrace_dof_error(NULL, "oversized DOF");
12044 		return (NULL);
12045 	}
12046 
12047 	dof = kmem_alloc(loadsz, KM_SLEEP);
12048 	bcopy(buf, dof, loadsz);
12049 	ddi_prop_free(buf);
12050 #else
12051 	char *p;
12052 	char *p_env;
12053 
12054 	if ((p_env = getenv(name)) == NULL)
12055 		return (NULL);
12056 
12057 	len = strlen(p_env) / 2;
12058 
12059 	buf = kmem_alloc(len, KM_SLEEP);
12060 
12061 	dof = (dof_hdr_t *) buf;
12062 
12063 	p = p_env;
12064 
12065 	for (i = 0; i < len; i++) {
12066 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12067 		     dtrace_dof_char(p[1]);
12068 		p += 2;
12069 	}
12070 
12071 	freeenv(p_env);
12072 
12073 	if (len < sizeof (dof_hdr_t)) {
12074 		kmem_free(buf, 0);
12075 		dtrace_dof_error(NULL, "truncated header");
12076 		return (NULL);
12077 	}
12078 
12079 	if (len < (loadsz = dof->dofh_loadsz)) {
12080 		kmem_free(buf, 0);
12081 		dtrace_dof_error(NULL, "truncated DOF");
12082 		return (NULL);
12083 	}
12084 
12085 	if (loadsz >= dtrace_dof_maxsize) {
12086 		kmem_free(buf, 0);
12087 		dtrace_dof_error(NULL, "oversized DOF");
12088 		return (NULL);
12089 	}
12090 #endif
12091 
12092 	return (dof);
12093 }
12094 
12095 static void
12096 dtrace_dof_destroy(dof_hdr_t *dof)
12097 {
12098 	kmem_free(dof, dof->dofh_loadsz);
12099 }
12100 
12101 /*
12102  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12103  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12104  * a type other than DOF_SECT_NONE is specified, the header is checked against
12105  * this type and NULL is returned if the types do not match.
12106  */
12107 static dof_sec_t *
12108 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12109 {
12110 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12111 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12112 
12113 	if (i >= dof->dofh_secnum) {
12114 		dtrace_dof_error(dof, "referenced section index is invalid");
12115 		return (NULL);
12116 	}
12117 
12118 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12119 		dtrace_dof_error(dof, "referenced section is not loadable");
12120 		return (NULL);
12121 	}
12122 
12123 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12124 		dtrace_dof_error(dof, "referenced section is the wrong type");
12125 		return (NULL);
12126 	}
12127 
12128 	return (sec);
12129 }
12130 
12131 static dtrace_probedesc_t *
12132 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12133 {
12134 	dof_probedesc_t *probe;
12135 	dof_sec_t *strtab;
12136 	uintptr_t daddr = (uintptr_t)dof;
12137 	uintptr_t str;
12138 	size_t size;
12139 
12140 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12141 		dtrace_dof_error(dof, "invalid probe section");
12142 		return (NULL);
12143 	}
12144 
12145 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12146 		dtrace_dof_error(dof, "bad alignment in probe description");
12147 		return (NULL);
12148 	}
12149 
12150 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12151 		dtrace_dof_error(dof, "truncated probe description");
12152 		return (NULL);
12153 	}
12154 
12155 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12156 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12157 
12158 	if (strtab == NULL)
12159 		return (NULL);
12160 
12161 	str = daddr + strtab->dofs_offset;
12162 	size = strtab->dofs_size;
12163 
12164 	if (probe->dofp_provider >= strtab->dofs_size) {
12165 		dtrace_dof_error(dof, "corrupt probe provider");
12166 		return (NULL);
12167 	}
12168 
12169 	(void) strncpy(desc->dtpd_provider,
12170 	    (char *)(str + probe->dofp_provider),
12171 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12172 
12173 	if (probe->dofp_mod >= strtab->dofs_size) {
12174 		dtrace_dof_error(dof, "corrupt probe module");
12175 		return (NULL);
12176 	}
12177 
12178 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12179 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12180 
12181 	if (probe->dofp_func >= strtab->dofs_size) {
12182 		dtrace_dof_error(dof, "corrupt probe function");
12183 		return (NULL);
12184 	}
12185 
12186 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12187 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12188 
12189 	if (probe->dofp_name >= strtab->dofs_size) {
12190 		dtrace_dof_error(dof, "corrupt probe name");
12191 		return (NULL);
12192 	}
12193 
12194 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12195 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12196 
12197 	return (desc);
12198 }
12199 
12200 static dtrace_difo_t *
12201 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12202     cred_t *cr)
12203 {
12204 	dtrace_difo_t *dp;
12205 	size_t ttl = 0;
12206 	dof_difohdr_t *dofd;
12207 	uintptr_t daddr = (uintptr_t)dof;
12208 	size_t max = dtrace_difo_maxsize;
12209 	int i, l, n;
12210 
12211 	static const struct {
12212 		int section;
12213 		int bufoffs;
12214 		int lenoffs;
12215 		int entsize;
12216 		int align;
12217 		const char *msg;
12218 	} difo[] = {
12219 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12220 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12221 		sizeof (dif_instr_t), "multiple DIF sections" },
12222 
12223 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12224 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12225 		sizeof (uint64_t), "multiple integer tables" },
12226 
12227 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12228 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12229 		sizeof (char), "multiple string tables" },
12230 
12231 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12232 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12233 		sizeof (uint_t), "multiple variable tables" },
12234 
12235 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12236 	};
12237 
12238 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12239 		dtrace_dof_error(dof, "invalid DIFO header section");
12240 		return (NULL);
12241 	}
12242 
12243 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12244 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12245 		return (NULL);
12246 	}
12247 
12248 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12249 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12250 		dtrace_dof_error(dof, "bad size in DIFO header");
12251 		return (NULL);
12252 	}
12253 
12254 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12255 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12256 
12257 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12258 	dp->dtdo_rtype = dofd->dofd_rtype;
12259 
12260 	for (l = 0; l < n; l++) {
12261 		dof_sec_t *subsec;
12262 		void **bufp;
12263 		uint32_t *lenp;
12264 
12265 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12266 		    dofd->dofd_links[l])) == NULL)
12267 			goto err; /* invalid section link */
12268 
12269 		if (ttl + subsec->dofs_size > max) {
12270 			dtrace_dof_error(dof, "exceeds maximum size");
12271 			goto err;
12272 		}
12273 
12274 		ttl += subsec->dofs_size;
12275 
12276 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12277 			if (subsec->dofs_type != difo[i].section)
12278 				continue;
12279 
12280 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12281 				dtrace_dof_error(dof, "section not loaded");
12282 				goto err;
12283 			}
12284 
12285 			if (subsec->dofs_align != difo[i].align) {
12286 				dtrace_dof_error(dof, "bad alignment");
12287 				goto err;
12288 			}
12289 
12290 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12291 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12292 
12293 			if (*bufp != NULL) {
12294 				dtrace_dof_error(dof, difo[i].msg);
12295 				goto err;
12296 			}
12297 
12298 			if (difo[i].entsize != subsec->dofs_entsize) {
12299 				dtrace_dof_error(dof, "entry size mismatch");
12300 				goto err;
12301 			}
12302 
12303 			if (subsec->dofs_entsize != 0 &&
12304 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12305 				dtrace_dof_error(dof, "corrupt entry size");
12306 				goto err;
12307 			}
12308 
12309 			*lenp = subsec->dofs_size;
12310 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12311 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12312 			    *bufp, subsec->dofs_size);
12313 
12314 			if (subsec->dofs_entsize != 0)
12315 				*lenp /= subsec->dofs_entsize;
12316 
12317 			break;
12318 		}
12319 
12320 		/*
12321 		 * If we encounter a loadable DIFO sub-section that is not
12322 		 * known to us, assume this is a broken program and fail.
12323 		 */
12324 		if (difo[i].section == DOF_SECT_NONE &&
12325 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12326 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12327 			goto err;
12328 		}
12329 	}
12330 
12331 	if (dp->dtdo_buf == NULL) {
12332 		/*
12333 		 * We can't have a DIF object without DIF text.
12334 		 */
12335 		dtrace_dof_error(dof, "missing DIF text");
12336 		goto err;
12337 	}
12338 
12339 	/*
12340 	 * Before we validate the DIF object, run through the variable table
12341 	 * looking for the strings -- if any of their size are under, we'll set
12342 	 * their size to be the system-wide default string size.  Note that
12343 	 * this should _not_ happen if the "strsize" option has been set --
12344 	 * in this case, the compiler should have set the size to reflect the
12345 	 * setting of the option.
12346 	 */
12347 	for (i = 0; i < dp->dtdo_varlen; i++) {
12348 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12349 		dtrace_diftype_t *t = &v->dtdv_type;
12350 
12351 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12352 			continue;
12353 
12354 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12355 			t->dtdt_size = dtrace_strsize_default;
12356 	}
12357 
12358 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12359 		goto err;
12360 
12361 	dtrace_difo_init(dp, vstate);
12362 	return (dp);
12363 
12364 err:
12365 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12366 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12367 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12368 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12369 
12370 	kmem_free(dp, sizeof (dtrace_difo_t));
12371 	return (NULL);
12372 }
12373 
12374 static dtrace_predicate_t *
12375 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12376     cred_t *cr)
12377 {
12378 	dtrace_difo_t *dp;
12379 
12380 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12381 		return (NULL);
12382 
12383 	return (dtrace_predicate_create(dp));
12384 }
12385 
12386 static dtrace_actdesc_t *
12387 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12388     cred_t *cr)
12389 {
12390 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12391 	dof_actdesc_t *desc;
12392 	dof_sec_t *difosec;
12393 	size_t offs;
12394 	uintptr_t daddr = (uintptr_t)dof;
12395 	uint64_t arg;
12396 	dtrace_actkind_t kind;
12397 
12398 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12399 		dtrace_dof_error(dof, "invalid action section");
12400 		return (NULL);
12401 	}
12402 
12403 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12404 		dtrace_dof_error(dof, "truncated action description");
12405 		return (NULL);
12406 	}
12407 
12408 	if (sec->dofs_align != sizeof (uint64_t)) {
12409 		dtrace_dof_error(dof, "bad alignment in action description");
12410 		return (NULL);
12411 	}
12412 
12413 	if (sec->dofs_size < sec->dofs_entsize) {
12414 		dtrace_dof_error(dof, "section entry size exceeds total size");
12415 		return (NULL);
12416 	}
12417 
12418 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12419 		dtrace_dof_error(dof, "bad entry size in action description");
12420 		return (NULL);
12421 	}
12422 
12423 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12424 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12425 		return (NULL);
12426 	}
12427 
12428 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12429 		desc = (dof_actdesc_t *)(daddr +
12430 		    (uintptr_t)sec->dofs_offset + offs);
12431 		kind = (dtrace_actkind_t)desc->dofa_kind;
12432 
12433 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12434 		    (kind != DTRACEACT_PRINTA ||
12435 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12436 		    (kind == DTRACEACT_DIFEXPR &&
12437 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12438 			dof_sec_t *strtab;
12439 			char *str, *fmt;
12440 			uint64_t i;
12441 
12442 			/*
12443 			 * The argument to these actions is an index into the
12444 			 * DOF string table.  For printf()-like actions, this
12445 			 * is the format string.  For print(), this is the
12446 			 * CTF type of the expression result.
12447 			 */
12448 			if ((strtab = dtrace_dof_sect(dof,
12449 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12450 				goto err;
12451 
12452 			str = (char *)((uintptr_t)dof +
12453 			    (uintptr_t)strtab->dofs_offset);
12454 
12455 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12456 				if (str[i] == '\0')
12457 					break;
12458 			}
12459 
12460 			if (i >= strtab->dofs_size) {
12461 				dtrace_dof_error(dof, "bogus format string");
12462 				goto err;
12463 			}
12464 
12465 			if (i == desc->dofa_arg) {
12466 				dtrace_dof_error(dof, "empty format string");
12467 				goto err;
12468 			}
12469 
12470 			i -= desc->dofa_arg;
12471 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12472 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12473 			arg = (uint64_t)(uintptr_t)fmt;
12474 		} else {
12475 			if (kind == DTRACEACT_PRINTA) {
12476 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12477 				arg = 0;
12478 			} else {
12479 				arg = desc->dofa_arg;
12480 			}
12481 		}
12482 
12483 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12484 		    desc->dofa_uarg, arg);
12485 
12486 		if (last != NULL) {
12487 			last->dtad_next = act;
12488 		} else {
12489 			first = act;
12490 		}
12491 
12492 		last = act;
12493 
12494 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12495 			continue;
12496 
12497 		if ((difosec = dtrace_dof_sect(dof,
12498 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12499 			goto err;
12500 
12501 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12502 
12503 		if (act->dtad_difo == NULL)
12504 			goto err;
12505 	}
12506 
12507 	ASSERT(first != NULL);
12508 	return (first);
12509 
12510 err:
12511 	for (act = first; act != NULL; act = next) {
12512 		next = act->dtad_next;
12513 		dtrace_actdesc_release(act, vstate);
12514 	}
12515 
12516 	return (NULL);
12517 }
12518 
12519 static dtrace_ecbdesc_t *
12520 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12521     cred_t *cr)
12522 {
12523 	dtrace_ecbdesc_t *ep;
12524 	dof_ecbdesc_t *ecb;
12525 	dtrace_probedesc_t *desc;
12526 	dtrace_predicate_t *pred = NULL;
12527 
12528 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12529 		dtrace_dof_error(dof, "truncated ECB description");
12530 		return (NULL);
12531 	}
12532 
12533 	if (sec->dofs_align != sizeof (uint64_t)) {
12534 		dtrace_dof_error(dof, "bad alignment in ECB description");
12535 		return (NULL);
12536 	}
12537 
12538 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12539 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12540 
12541 	if (sec == NULL)
12542 		return (NULL);
12543 
12544 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12545 	ep->dted_uarg = ecb->dofe_uarg;
12546 	desc = &ep->dted_probe;
12547 
12548 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12549 		goto err;
12550 
12551 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12552 		if ((sec = dtrace_dof_sect(dof,
12553 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12554 			goto err;
12555 
12556 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12557 			goto err;
12558 
12559 		ep->dted_pred.dtpdd_predicate = pred;
12560 	}
12561 
12562 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12563 		if ((sec = dtrace_dof_sect(dof,
12564 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12565 			goto err;
12566 
12567 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12568 
12569 		if (ep->dted_action == NULL)
12570 			goto err;
12571 	}
12572 
12573 	return (ep);
12574 
12575 err:
12576 	if (pred != NULL)
12577 		dtrace_predicate_release(pred, vstate);
12578 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12579 	return (NULL);
12580 }
12581 
12582 /*
12583  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12584  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12585  * site of any user SETX relocations to account for load object base address.
12586  * In the future, if we need other relocations, this function can be extended.
12587  */
12588 static int
12589 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12590 {
12591 	uintptr_t daddr = (uintptr_t)dof;
12592 	dof_relohdr_t *dofr =
12593 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12594 	dof_sec_t *ss, *rs, *ts;
12595 	dof_relodesc_t *r;
12596 	uint_t i, n;
12597 
12598 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12599 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12600 		dtrace_dof_error(dof, "invalid relocation header");
12601 		return (-1);
12602 	}
12603 
12604 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12605 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12606 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12607 
12608 	if (ss == NULL || rs == NULL || ts == NULL)
12609 		return (-1); /* dtrace_dof_error() has been called already */
12610 
12611 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12612 	    rs->dofs_align != sizeof (uint64_t)) {
12613 		dtrace_dof_error(dof, "invalid relocation section");
12614 		return (-1);
12615 	}
12616 
12617 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12618 	n = rs->dofs_size / rs->dofs_entsize;
12619 
12620 	for (i = 0; i < n; i++) {
12621 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12622 
12623 		switch (r->dofr_type) {
12624 		case DOF_RELO_NONE:
12625 			break;
12626 		case DOF_RELO_SETX:
12627 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12628 			    sizeof (uint64_t) > ts->dofs_size) {
12629 				dtrace_dof_error(dof, "bad relocation offset");
12630 				return (-1);
12631 			}
12632 
12633 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12634 				dtrace_dof_error(dof, "misaligned setx relo");
12635 				return (-1);
12636 			}
12637 
12638 			*(uint64_t *)taddr += ubase;
12639 			break;
12640 		default:
12641 			dtrace_dof_error(dof, "invalid relocation type");
12642 			return (-1);
12643 		}
12644 
12645 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12646 	}
12647 
12648 	return (0);
12649 }
12650 
12651 /*
12652  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12653  * header:  it should be at the front of a memory region that is at least
12654  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12655  * size.  It need not be validated in any other way.
12656  */
12657 static int
12658 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12659     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12660 {
12661 	uint64_t len = dof->dofh_loadsz, seclen;
12662 	uintptr_t daddr = (uintptr_t)dof;
12663 	dtrace_ecbdesc_t *ep;
12664 	dtrace_enabling_t *enab;
12665 	uint_t i;
12666 
12667 	ASSERT(MUTEX_HELD(&dtrace_lock));
12668 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12669 
12670 	/*
12671 	 * Check the DOF header identification bytes.  In addition to checking
12672 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12673 	 * we can use them later without fear of regressing existing binaries.
12674 	 */
12675 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12676 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12677 		dtrace_dof_error(dof, "DOF magic string mismatch");
12678 		return (-1);
12679 	}
12680 
12681 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12682 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12683 		dtrace_dof_error(dof, "DOF has invalid data model");
12684 		return (-1);
12685 	}
12686 
12687 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12688 		dtrace_dof_error(dof, "DOF encoding mismatch");
12689 		return (-1);
12690 	}
12691 
12692 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12693 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12694 		dtrace_dof_error(dof, "DOF version mismatch");
12695 		return (-1);
12696 	}
12697 
12698 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12699 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12700 		return (-1);
12701 	}
12702 
12703 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12704 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12705 		return (-1);
12706 	}
12707 
12708 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12709 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12710 		return (-1);
12711 	}
12712 
12713 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12714 		if (dof->dofh_ident[i] != 0) {
12715 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12716 			return (-1);
12717 		}
12718 	}
12719 
12720 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12721 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12722 		return (-1);
12723 	}
12724 
12725 	if (dof->dofh_secsize == 0) {
12726 		dtrace_dof_error(dof, "zero section header size");
12727 		return (-1);
12728 	}
12729 
12730 	/*
12731 	 * Check that the section headers don't exceed the amount of DOF
12732 	 * data.  Note that we cast the section size and number of sections
12733 	 * to uint64_t's to prevent possible overflow in the multiplication.
12734 	 */
12735 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12736 
12737 	if (dof->dofh_secoff > len || seclen > len ||
12738 	    dof->dofh_secoff + seclen > len) {
12739 		dtrace_dof_error(dof, "truncated section headers");
12740 		return (-1);
12741 	}
12742 
12743 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12744 		dtrace_dof_error(dof, "misaligned section headers");
12745 		return (-1);
12746 	}
12747 
12748 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12749 		dtrace_dof_error(dof, "misaligned section size");
12750 		return (-1);
12751 	}
12752 
12753 	/*
12754 	 * Take an initial pass through the section headers to be sure that
12755 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12756 	 * set, do not permit sections relating to providers, probes, or args.
12757 	 */
12758 	for (i = 0; i < dof->dofh_secnum; i++) {
12759 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12760 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12761 
12762 		if (noprobes) {
12763 			switch (sec->dofs_type) {
12764 			case DOF_SECT_PROVIDER:
12765 			case DOF_SECT_PROBES:
12766 			case DOF_SECT_PRARGS:
12767 			case DOF_SECT_PROFFS:
12768 				dtrace_dof_error(dof, "illegal sections "
12769 				    "for enabling");
12770 				return (-1);
12771 			}
12772 		}
12773 
12774 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12775 			continue; /* just ignore non-loadable sections */
12776 
12777 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12778 			dtrace_dof_error(dof, "bad section alignment");
12779 			return (-1);
12780 		}
12781 
12782 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12783 			dtrace_dof_error(dof, "misaligned section");
12784 			return (-1);
12785 		}
12786 
12787 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12788 		    sec->dofs_offset + sec->dofs_size > len) {
12789 			dtrace_dof_error(dof, "corrupt section header");
12790 			return (-1);
12791 		}
12792 
12793 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12794 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12795 			dtrace_dof_error(dof, "non-terminating string table");
12796 			return (-1);
12797 		}
12798 	}
12799 
12800 	/*
12801 	 * Take a second pass through the sections and locate and perform any
12802 	 * relocations that are present.  We do this after the first pass to
12803 	 * be sure that all sections have had their headers validated.
12804 	 */
12805 	for (i = 0; i < dof->dofh_secnum; i++) {
12806 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12807 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12808 
12809 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12810 			continue; /* skip sections that are not loadable */
12811 
12812 		switch (sec->dofs_type) {
12813 		case DOF_SECT_URELHDR:
12814 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12815 				return (-1);
12816 			break;
12817 		}
12818 	}
12819 
12820 	if ((enab = *enabp) == NULL)
12821 		enab = *enabp = dtrace_enabling_create(vstate);
12822 
12823 	for (i = 0; i < dof->dofh_secnum; i++) {
12824 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12825 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12826 
12827 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12828 			continue;
12829 
12830 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12831 			dtrace_enabling_destroy(enab);
12832 			*enabp = NULL;
12833 			return (-1);
12834 		}
12835 
12836 		dtrace_enabling_add(enab, ep);
12837 	}
12838 
12839 	return (0);
12840 }
12841 
12842 /*
12843  * Process DOF for any options.  This routine assumes that the DOF has been
12844  * at least processed by dtrace_dof_slurp().
12845  */
12846 static int
12847 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12848 {
12849 	int i, rval;
12850 	uint32_t entsize;
12851 	size_t offs;
12852 	dof_optdesc_t *desc;
12853 
12854 	for (i = 0; i < dof->dofh_secnum; i++) {
12855 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12856 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12857 
12858 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12859 			continue;
12860 
12861 		if (sec->dofs_align != sizeof (uint64_t)) {
12862 			dtrace_dof_error(dof, "bad alignment in "
12863 			    "option description");
12864 			return (EINVAL);
12865 		}
12866 
12867 		if ((entsize = sec->dofs_entsize) == 0) {
12868 			dtrace_dof_error(dof, "zeroed option entry size");
12869 			return (EINVAL);
12870 		}
12871 
12872 		if (entsize < sizeof (dof_optdesc_t)) {
12873 			dtrace_dof_error(dof, "bad option entry size");
12874 			return (EINVAL);
12875 		}
12876 
12877 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12878 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12879 			    (uintptr_t)sec->dofs_offset + offs);
12880 
12881 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12882 				dtrace_dof_error(dof, "non-zero option string");
12883 				return (EINVAL);
12884 			}
12885 
12886 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12887 				dtrace_dof_error(dof, "unset option");
12888 				return (EINVAL);
12889 			}
12890 
12891 			if ((rval = dtrace_state_option(state,
12892 			    desc->dofo_option, desc->dofo_value)) != 0) {
12893 				dtrace_dof_error(dof, "rejected option");
12894 				return (rval);
12895 			}
12896 		}
12897 	}
12898 
12899 	return (0);
12900 }
12901 
12902 /*
12903  * DTrace Consumer State Functions
12904  */
12905 static int
12906 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12907 {
12908 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12909 	void *base;
12910 	uintptr_t limit;
12911 	dtrace_dynvar_t *dvar, *next, *start;
12912 	int i;
12913 
12914 	ASSERT(MUTEX_HELD(&dtrace_lock));
12915 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12916 
12917 	bzero(dstate, sizeof (dtrace_dstate_t));
12918 
12919 	if ((dstate->dtds_chunksize = chunksize) == 0)
12920 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12921 
12922 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12923 		size = min;
12924 
12925 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12926 		return (ENOMEM);
12927 
12928 	dstate->dtds_size = size;
12929 	dstate->dtds_base = base;
12930 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12931 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12932 
12933 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12934 
12935 	if (hashsize != 1 && (hashsize & 1))
12936 		hashsize--;
12937 
12938 	dstate->dtds_hashsize = hashsize;
12939 	dstate->dtds_hash = dstate->dtds_base;
12940 
12941 	/*
12942 	 * Set all of our hash buckets to point to the single sink, and (if
12943 	 * it hasn't already been set), set the sink's hash value to be the
12944 	 * sink sentinel value.  The sink is needed for dynamic variable
12945 	 * lookups to know that they have iterated over an entire, valid hash
12946 	 * chain.
12947 	 */
12948 	for (i = 0; i < hashsize; i++)
12949 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12950 
12951 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12952 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12953 
12954 	/*
12955 	 * Determine number of active CPUs.  Divide free list evenly among
12956 	 * active CPUs.
12957 	 */
12958 	start = (dtrace_dynvar_t *)
12959 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12960 	limit = (uintptr_t)base + size;
12961 
12962 	maxper = (limit - (uintptr_t)start) / NCPU;
12963 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12964 
12965 #if !defined(sun)
12966 	CPU_FOREACH(i) {
12967 #else
12968 	for (i = 0; i < NCPU; i++) {
12969 #endif
12970 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12971 
12972 		/*
12973 		 * If we don't even have enough chunks to make it once through
12974 		 * NCPUs, we're just going to allocate everything to the first
12975 		 * CPU.  And if we're on the last CPU, we're going to allocate
12976 		 * whatever is left over.  In either case, we set the limit to
12977 		 * be the limit of the dynamic variable space.
12978 		 */
12979 		if (maxper == 0 || i == NCPU - 1) {
12980 			limit = (uintptr_t)base + size;
12981 			start = NULL;
12982 		} else {
12983 			limit = (uintptr_t)start + maxper;
12984 			start = (dtrace_dynvar_t *)limit;
12985 		}
12986 
12987 		ASSERT(limit <= (uintptr_t)base + size);
12988 
12989 		for (;;) {
12990 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12991 			    dstate->dtds_chunksize);
12992 
12993 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12994 				break;
12995 
12996 			dvar->dtdv_next = next;
12997 			dvar = next;
12998 		}
12999 
13000 		if (maxper == 0)
13001 			break;
13002 	}
13003 
13004 	return (0);
13005 }
13006 
13007 static void
13008 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13009 {
13010 	ASSERT(MUTEX_HELD(&cpu_lock));
13011 
13012 	if (dstate->dtds_base == NULL)
13013 		return;
13014 
13015 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13016 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13017 }
13018 
13019 static void
13020 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13021 {
13022 	/*
13023 	 * Logical XOR, where are you?
13024 	 */
13025 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13026 
13027 	if (vstate->dtvs_nglobals > 0) {
13028 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13029 		    sizeof (dtrace_statvar_t *));
13030 	}
13031 
13032 	if (vstate->dtvs_ntlocals > 0) {
13033 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13034 		    sizeof (dtrace_difv_t));
13035 	}
13036 
13037 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13038 
13039 	if (vstate->dtvs_nlocals > 0) {
13040 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13041 		    sizeof (dtrace_statvar_t *));
13042 	}
13043 }
13044 
13045 #if defined(sun)
13046 static void
13047 dtrace_state_clean(dtrace_state_t *state)
13048 {
13049 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13050 		return;
13051 
13052 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13053 	dtrace_speculation_clean(state);
13054 }
13055 
13056 static void
13057 dtrace_state_deadman(dtrace_state_t *state)
13058 {
13059 	hrtime_t now;
13060 
13061 	dtrace_sync();
13062 
13063 	now = dtrace_gethrtime();
13064 
13065 	if (state != dtrace_anon.dta_state &&
13066 	    now - state->dts_laststatus >= dtrace_deadman_user)
13067 		return;
13068 
13069 	/*
13070 	 * We must be sure that dts_alive never appears to be less than the
13071 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13072 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13073 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13074 	 * the new value.  This assures that dts_alive never appears to be
13075 	 * less than its true value, regardless of the order in which the
13076 	 * stores to the underlying storage are issued.
13077 	 */
13078 	state->dts_alive = INT64_MAX;
13079 	dtrace_membar_producer();
13080 	state->dts_alive = now;
13081 }
13082 #else
13083 static void
13084 dtrace_state_clean(void *arg)
13085 {
13086 	dtrace_state_t *state = arg;
13087 	dtrace_optval_t *opt = state->dts_options;
13088 
13089 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13090 		return;
13091 
13092 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13093 	dtrace_speculation_clean(state);
13094 
13095 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13096 	    dtrace_state_clean, state);
13097 }
13098 
13099 static void
13100 dtrace_state_deadman(void *arg)
13101 {
13102 	dtrace_state_t *state = arg;
13103 	hrtime_t now;
13104 
13105 	dtrace_sync();
13106 
13107 	dtrace_debug_output();
13108 
13109 	now = dtrace_gethrtime();
13110 
13111 	if (state != dtrace_anon.dta_state &&
13112 	    now - state->dts_laststatus >= dtrace_deadman_user)
13113 		return;
13114 
13115 	/*
13116 	 * We must be sure that dts_alive never appears to be less than the
13117 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13118 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13119 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13120 	 * the new value.  This assures that dts_alive never appears to be
13121 	 * less than its true value, regardless of the order in which the
13122 	 * stores to the underlying storage are issued.
13123 	 */
13124 	state->dts_alive = INT64_MAX;
13125 	dtrace_membar_producer();
13126 	state->dts_alive = now;
13127 
13128 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13129 	    dtrace_state_deadman, state);
13130 }
13131 #endif
13132 
13133 static dtrace_state_t *
13134 #if defined(sun)
13135 dtrace_state_create(dev_t *devp, cred_t *cr)
13136 #else
13137 dtrace_state_create(struct cdev *dev)
13138 #endif
13139 {
13140 #if defined(sun)
13141 	minor_t minor;
13142 	major_t major;
13143 #else
13144 	cred_t *cr = NULL;
13145 	int m = 0;
13146 #endif
13147 	char c[30];
13148 	dtrace_state_t *state;
13149 	dtrace_optval_t *opt;
13150 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13151 
13152 	ASSERT(MUTEX_HELD(&dtrace_lock));
13153 	ASSERT(MUTEX_HELD(&cpu_lock));
13154 
13155 #if defined(sun)
13156 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13157 	    VM_BESTFIT | VM_SLEEP);
13158 
13159 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13160 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13161 		return (NULL);
13162 	}
13163 
13164 	state = ddi_get_soft_state(dtrace_softstate, minor);
13165 #else
13166 	if (dev != NULL) {
13167 		cr = dev->si_cred;
13168 		m = dev2unit(dev);
13169 		}
13170 
13171 	/* Allocate memory for the state. */
13172 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13173 #endif
13174 
13175 	state->dts_epid = DTRACE_EPIDNONE + 1;
13176 
13177 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13178 #if defined(sun)
13179 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13180 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13181 
13182 	if (devp != NULL) {
13183 		major = getemajor(*devp);
13184 	} else {
13185 		major = ddi_driver_major(dtrace_devi);
13186 	}
13187 
13188 	state->dts_dev = makedevice(major, minor);
13189 
13190 	if (devp != NULL)
13191 		*devp = state->dts_dev;
13192 #else
13193 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13194 	state->dts_dev = dev;
13195 #endif
13196 
13197 	/*
13198 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13199 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13200 	 * other hand, it saves an additional memory reference in the probe
13201 	 * path.
13202 	 */
13203 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13204 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13205 
13206 #if defined(sun)
13207 	state->dts_cleaner = CYCLIC_NONE;
13208 	state->dts_deadman = CYCLIC_NONE;
13209 #else
13210 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13211 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13212 #endif
13213 	state->dts_vstate.dtvs_state = state;
13214 
13215 	for (i = 0; i < DTRACEOPT_MAX; i++)
13216 		state->dts_options[i] = DTRACEOPT_UNSET;
13217 
13218 	/*
13219 	 * Set the default options.
13220 	 */
13221 	opt = state->dts_options;
13222 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13223 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13224 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13225 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13226 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13227 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13228 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13229 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13230 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13231 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13232 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13233 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13234 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13235 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13236 
13237 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13238 
13239 	/*
13240 	 * Depending on the user credentials, we set flag bits which alter probe
13241 	 * visibility or the amount of destructiveness allowed.  In the case of
13242 	 * actual anonymous tracing, or the possession of all privileges, all of
13243 	 * the normal checks are bypassed.
13244 	 */
13245 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13246 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13247 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13248 	} else {
13249 		/*
13250 		 * Set up the credentials for this instantiation.  We take a
13251 		 * hold on the credential to prevent it from disappearing on
13252 		 * us; this in turn prevents the zone_t referenced by this
13253 		 * credential from disappearing.  This means that we can
13254 		 * examine the credential and the zone from probe context.
13255 		 */
13256 		crhold(cr);
13257 		state->dts_cred.dcr_cred = cr;
13258 
13259 		/*
13260 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13261 		 * unlocks the use of variables like pid, zonename, etc.
13262 		 */
13263 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13264 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13265 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13266 		}
13267 
13268 		/*
13269 		 * dtrace_user allows use of syscall and profile providers.
13270 		 * If the user also has proc_owner and/or proc_zone, we
13271 		 * extend the scope to include additional visibility and
13272 		 * destructive power.
13273 		 */
13274 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13275 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13276 				state->dts_cred.dcr_visible |=
13277 				    DTRACE_CRV_ALLPROC;
13278 
13279 				state->dts_cred.dcr_action |=
13280 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13281 			}
13282 
13283 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13284 				state->dts_cred.dcr_visible |=
13285 				    DTRACE_CRV_ALLZONE;
13286 
13287 				state->dts_cred.dcr_action |=
13288 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13289 			}
13290 
13291 			/*
13292 			 * If we have all privs in whatever zone this is,
13293 			 * we can do destructive things to processes which
13294 			 * have altered credentials.
13295 			 */
13296 #if defined(sun)
13297 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13298 			    cr->cr_zone->zone_privset)) {
13299 				state->dts_cred.dcr_action |=
13300 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13301 			}
13302 #endif
13303 		}
13304 
13305 		/*
13306 		 * Holding the dtrace_kernel privilege also implies that
13307 		 * the user has the dtrace_user privilege from a visibility
13308 		 * perspective.  But without further privileges, some
13309 		 * destructive actions are not available.
13310 		 */
13311 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13312 			/*
13313 			 * Make all probes in all zones visible.  However,
13314 			 * this doesn't mean that all actions become available
13315 			 * to all zones.
13316 			 */
13317 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13318 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13319 
13320 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13321 			    DTRACE_CRA_PROC;
13322 			/*
13323 			 * Holding proc_owner means that destructive actions
13324 			 * for *this* zone are allowed.
13325 			 */
13326 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13327 				state->dts_cred.dcr_action |=
13328 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13329 
13330 			/*
13331 			 * Holding proc_zone means that destructive actions
13332 			 * for this user/group ID in all zones is allowed.
13333 			 */
13334 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13335 				state->dts_cred.dcr_action |=
13336 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13337 
13338 #if defined(sun)
13339 			/*
13340 			 * If we have all privs in whatever zone this is,
13341 			 * we can do destructive things to processes which
13342 			 * have altered credentials.
13343 			 */
13344 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13345 			    cr->cr_zone->zone_privset)) {
13346 				state->dts_cred.dcr_action |=
13347 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13348 			}
13349 #endif
13350 		}
13351 
13352 		/*
13353 		 * Holding the dtrace_proc privilege gives control over fasttrap
13354 		 * and pid providers.  We need to grant wider destructive
13355 		 * privileges in the event that the user has proc_owner and/or
13356 		 * proc_zone.
13357 		 */
13358 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13359 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13360 				state->dts_cred.dcr_action |=
13361 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13362 
13363 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13364 				state->dts_cred.dcr_action |=
13365 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13366 		}
13367 	}
13368 
13369 	return (state);
13370 }
13371 
13372 static int
13373 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13374 {
13375 	dtrace_optval_t *opt = state->dts_options, size;
13376 	processorid_t cpu = 0;;
13377 	int flags = 0, rval;
13378 
13379 	ASSERT(MUTEX_HELD(&dtrace_lock));
13380 	ASSERT(MUTEX_HELD(&cpu_lock));
13381 	ASSERT(which < DTRACEOPT_MAX);
13382 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13383 	    (state == dtrace_anon.dta_state &&
13384 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13385 
13386 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13387 		return (0);
13388 
13389 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13390 		cpu = opt[DTRACEOPT_CPU];
13391 
13392 	if (which == DTRACEOPT_SPECSIZE)
13393 		flags |= DTRACEBUF_NOSWITCH;
13394 
13395 	if (which == DTRACEOPT_BUFSIZE) {
13396 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13397 			flags |= DTRACEBUF_RING;
13398 
13399 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13400 			flags |= DTRACEBUF_FILL;
13401 
13402 		if (state != dtrace_anon.dta_state ||
13403 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13404 			flags |= DTRACEBUF_INACTIVE;
13405 	}
13406 
13407 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13408 		/*
13409 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13410 		 * aligned, drop it down by the difference.
13411 		 */
13412 		if (size & (sizeof (uint64_t) - 1))
13413 			size -= size & (sizeof (uint64_t) - 1);
13414 
13415 		if (size < state->dts_reserve) {
13416 			/*
13417 			 * Buffers always must be large enough to accommodate
13418 			 * their prereserved space.  We return E2BIG instead
13419 			 * of ENOMEM in this case to allow for user-level
13420 			 * software to differentiate the cases.
13421 			 */
13422 			return (E2BIG);
13423 		}
13424 
13425 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13426 
13427 		if (rval != ENOMEM) {
13428 			opt[which] = size;
13429 			return (rval);
13430 		}
13431 
13432 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13433 			return (rval);
13434 	}
13435 
13436 	return (ENOMEM);
13437 }
13438 
13439 static int
13440 dtrace_state_buffers(dtrace_state_t *state)
13441 {
13442 	dtrace_speculation_t *spec = state->dts_speculations;
13443 	int rval, i;
13444 
13445 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13446 	    DTRACEOPT_BUFSIZE)) != 0)
13447 		return (rval);
13448 
13449 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13450 	    DTRACEOPT_AGGSIZE)) != 0)
13451 		return (rval);
13452 
13453 	for (i = 0; i < state->dts_nspeculations; i++) {
13454 		if ((rval = dtrace_state_buffer(state,
13455 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13456 			return (rval);
13457 	}
13458 
13459 	return (0);
13460 }
13461 
13462 static void
13463 dtrace_state_prereserve(dtrace_state_t *state)
13464 {
13465 	dtrace_ecb_t *ecb;
13466 	dtrace_probe_t *probe;
13467 
13468 	state->dts_reserve = 0;
13469 
13470 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13471 		return;
13472 
13473 	/*
13474 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13475 	 * prereserved space to be the space required by the END probes.
13476 	 */
13477 	probe = dtrace_probes[dtrace_probeid_end - 1];
13478 	ASSERT(probe != NULL);
13479 
13480 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13481 		if (ecb->dte_state != state)
13482 			continue;
13483 
13484 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13485 	}
13486 }
13487 
13488 static int
13489 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13490 {
13491 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13492 	dtrace_speculation_t *spec;
13493 	dtrace_buffer_t *buf;
13494 #if defined(sun)
13495 	cyc_handler_t hdlr;
13496 	cyc_time_t when;
13497 #endif
13498 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13499 	dtrace_icookie_t cookie;
13500 
13501 	mutex_enter(&cpu_lock);
13502 	mutex_enter(&dtrace_lock);
13503 
13504 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13505 		rval = EBUSY;
13506 		goto out;
13507 	}
13508 
13509 	/*
13510 	 * Before we can perform any checks, we must prime all of the
13511 	 * retained enablings that correspond to this state.
13512 	 */
13513 	dtrace_enabling_prime(state);
13514 
13515 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13516 		rval = EACCES;
13517 		goto out;
13518 	}
13519 
13520 	dtrace_state_prereserve(state);
13521 
13522 	/*
13523 	 * Now we want to do is try to allocate our speculations.
13524 	 * We do not automatically resize the number of speculations; if
13525 	 * this fails, we will fail the operation.
13526 	 */
13527 	nspec = opt[DTRACEOPT_NSPEC];
13528 	ASSERT(nspec != DTRACEOPT_UNSET);
13529 
13530 	if (nspec > INT_MAX) {
13531 		rval = ENOMEM;
13532 		goto out;
13533 	}
13534 
13535 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13536 
13537 	if (spec == NULL) {
13538 		rval = ENOMEM;
13539 		goto out;
13540 	}
13541 
13542 	state->dts_speculations = spec;
13543 	state->dts_nspeculations = (int)nspec;
13544 
13545 	for (i = 0; i < nspec; i++) {
13546 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13547 			rval = ENOMEM;
13548 			goto err;
13549 		}
13550 
13551 		spec[i].dtsp_buffer = buf;
13552 	}
13553 
13554 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13555 		if (dtrace_anon.dta_state == NULL) {
13556 			rval = ENOENT;
13557 			goto out;
13558 		}
13559 
13560 		if (state->dts_necbs != 0) {
13561 			rval = EALREADY;
13562 			goto out;
13563 		}
13564 
13565 		state->dts_anon = dtrace_anon_grab();
13566 		ASSERT(state->dts_anon != NULL);
13567 		state = state->dts_anon;
13568 
13569 		/*
13570 		 * We want "grabanon" to be set in the grabbed state, so we'll
13571 		 * copy that option value from the grabbing state into the
13572 		 * grabbed state.
13573 		 */
13574 		state->dts_options[DTRACEOPT_GRABANON] =
13575 		    opt[DTRACEOPT_GRABANON];
13576 
13577 		*cpu = dtrace_anon.dta_beganon;
13578 
13579 		/*
13580 		 * If the anonymous state is active (as it almost certainly
13581 		 * is if the anonymous enabling ultimately matched anything),
13582 		 * we don't allow any further option processing -- but we
13583 		 * don't return failure.
13584 		 */
13585 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13586 			goto out;
13587 	}
13588 
13589 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13590 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13591 		if (state->dts_aggregations == NULL) {
13592 			/*
13593 			 * We're not going to create an aggregation buffer
13594 			 * because we don't have any ECBs that contain
13595 			 * aggregations -- set this option to 0.
13596 			 */
13597 			opt[DTRACEOPT_AGGSIZE] = 0;
13598 		} else {
13599 			/*
13600 			 * If we have an aggregation buffer, we must also have
13601 			 * a buffer to use as scratch.
13602 			 */
13603 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13604 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13605 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13606 			}
13607 		}
13608 	}
13609 
13610 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13611 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13612 		if (!state->dts_speculates) {
13613 			/*
13614 			 * We're not going to create speculation buffers
13615 			 * because we don't have any ECBs that actually
13616 			 * speculate -- set the speculation size to 0.
13617 			 */
13618 			opt[DTRACEOPT_SPECSIZE] = 0;
13619 		}
13620 	}
13621 
13622 	/*
13623 	 * The bare minimum size for any buffer that we're actually going to
13624 	 * do anything to is sizeof (uint64_t).
13625 	 */
13626 	sz = sizeof (uint64_t);
13627 
13628 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13629 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13630 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13631 		/*
13632 		 * A buffer size has been explicitly set to 0 (or to a size
13633 		 * that will be adjusted to 0) and we need the space -- we
13634 		 * need to return failure.  We return ENOSPC to differentiate
13635 		 * it from failing to allocate a buffer due to failure to meet
13636 		 * the reserve (for which we return E2BIG).
13637 		 */
13638 		rval = ENOSPC;
13639 		goto out;
13640 	}
13641 
13642 	if ((rval = dtrace_state_buffers(state)) != 0)
13643 		goto err;
13644 
13645 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13646 		sz = dtrace_dstate_defsize;
13647 
13648 	do {
13649 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13650 
13651 		if (rval == 0)
13652 			break;
13653 
13654 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13655 			goto err;
13656 	} while (sz >>= 1);
13657 
13658 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13659 
13660 	if (rval != 0)
13661 		goto err;
13662 
13663 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13664 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13665 
13666 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13667 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13668 
13669 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13670 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13671 
13672 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13673 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13674 
13675 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13676 #if defined(sun)
13677 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13678 	hdlr.cyh_arg = state;
13679 	hdlr.cyh_level = CY_LOW_LEVEL;
13680 
13681 	when.cyt_when = 0;
13682 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13683 
13684 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13685 
13686 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13687 	hdlr.cyh_arg = state;
13688 	hdlr.cyh_level = CY_LOW_LEVEL;
13689 
13690 	when.cyt_when = 0;
13691 	when.cyt_interval = dtrace_deadman_interval;
13692 
13693 	state->dts_deadman = cyclic_add(&hdlr, &when);
13694 #else
13695 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13696 	    dtrace_state_clean, state);
13697 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13698 	    dtrace_state_deadman, state);
13699 #endif
13700 
13701 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13702 
13703 	/*
13704 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13705 	 * interrupts here both to record the CPU on which we fired the BEGIN
13706 	 * probe (the data from this CPU will be processed first at user
13707 	 * level) and to manually activate the buffer for this CPU.
13708 	 */
13709 	cookie = dtrace_interrupt_disable();
13710 	*cpu = curcpu;
13711 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13712 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13713 
13714 	dtrace_probe(dtrace_probeid_begin,
13715 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13716 	dtrace_interrupt_enable(cookie);
13717 	/*
13718 	 * We may have had an exit action from a BEGIN probe; only change our
13719 	 * state to ACTIVE if we're still in WARMUP.
13720 	 */
13721 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13722 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13723 
13724 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13725 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13726 
13727 	/*
13728 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13729 	 * want each CPU to transition its principal buffer out of the
13730 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13731 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13732 	 * atomically transition from processing none of a state's ECBs to
13733 	 * processing all of them.
13734 	 */
13735 	dtrace_xcall(DTRACE_CPUALL,
13736 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13737 	goto out;
13738 
13739 err:
13740 	dtrace_buffer_free(state->dts_buffer);
13741 	dtrace_buffer_free(state->dts_aggbuffer);
13742 
13743 	if ((nspec = state->dts_nspeculations) == 0) {
13744 		ASSERT(state->dts_speculations == NULL);
13745 		goto out;
13746 	}
13747 
13748 	spec = state->dts_speculations;
13749 	ASSERT(spec != NULL);
13750 
13751 	for (i = 0; i < state->dts_nspeculations; i++) {
13752 		if ((buf = spec[i].dtsp_buffer) == NULL)
13753 			break;
13754 
13755 		dtrace_buffer_free(buf);
13756 		kmem_free(buf, bufsize);
13757 	}
13758 
13759 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13760 	state->dts_nspeculations = 0;
13761 	state->dts_speculations = NULL;
13762 
13763 out:
13764 	mutex_exit(&dtrace_lock);
13765 	mutex_exit(&cpu_lock);
13766 
13767 	return (rval);
13768 }
13769 
13770 static int
13771 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13772 {
13773 	dtrace_icookie_t cookie;
13774 
13775 	ASSERT(MUTEX_HELD(&dtrace_lock));
13776 
13777 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13778 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13779 		return (EINVAL);
13780 
13781 	/*
13782 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13783 	 * to be sure that every CPU has seen it.  See below for the details
13784 	 * on why this is done.
13785 	 */
13786 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13787 	dtrace_sync();
13788 
13789 	/*
13790 	 * By this point, it is impossible for any CPU to be still processing
13791 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13792 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13793 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13794 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13795 	 * iff we're in the END probe.
13796 	 */
13797 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13798 	dtrace_sync();
13799 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13800 
13801 	/*
13802 	 * Finally, we can release the reserve and call the END probe.  We
13803 	 * disable interrupts across calling the END probe to allow us to
13804 	 * return the CPU on which we actually called the END probe.  This
13805 	 * allows user-land to be sure that this CPU's principal buffer is
13806 	 * processed last.
13807 	 */
13808 	state->dts_reserve = 0;
13809 
13810 	cookie = dtrace_interrupt_disable();
13811 	*cpu = curcpu;
13812 	dtrace_probe(dtrace_probeid_end,
13813 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13814 	dtrace_interrupt_enable(cookie);
13815 
13816 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13817 	dtrace_sync();
13818 
13819 	return (0);
13820 }
13821 
13822 static int
13823 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13824     dtrace_optval_t val)
13825 {
13826 	ASSERT(MUTEX_HELD(&dtrace_lock));
13827 
13828 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13829 		return (EBUSY);
13830 
13831 	if (option >= DTRACEOPT_MAX)
13832 		return (EINVAL);
13833 
13834 	if (option != DTRACEOPT_CPU && val < 0)
13835 		return (EINVAL);
13836 
13837 	switch (option) {
13838 	case DTRACEOPT_DESTRUCTIVE:
13839 		if (dtrace_destructive_disallow)
13840 			return (EACCES);
13841 
13842 		state->dts_cred.dcr_destructive = 1;
13843 		break;
13844 
13845 	case DTRACEOPT_BUFSIZE:
13846 	case DTRACEOPT_DYNVARSIZE:
13847 	case DTRACEOPT_AGGSIZE:
13848 	case DTRACEOPT_SPECSIZE:
13849 	case DTRACEOPT_STRSIZE:
13850 		if (val < 0)
13851 			return (EINVAL);
13852 
13853 		if (val >= LONG_MAX) {
13854 			/*
13855 			 * If this is an otherwise negative value, set it to
13856 			 * the highest multiple of 128m less than LONG_MAX.
13857 			 * Technically, we're adjusting the size without
13858 			 * regard to the buffer resizing policy, but in fact,
13859 			 * this has no effect -- if we set the buffer size to
13860 			 * ~LONG_MAX and the buffer policy is ultimately set to
13861 			 * be "manual", the buffer allocation is guaranteed to
13862 			 * fail, if only because the allocation requires two
13863 			 * buffers.  (We set the the size to the highest
13864 			 * multiple of 128m because it ensures that the size
13865 			 * will remain a multiple of a megabyte when
13866 			 * repeatedly halved -- all the way down to 15m.)
13867 			 */
13868 			val = LONG_MAX - (1 << 27) + 1;
13869 		}
13870 	}
13871 
13872 	state->dts_options[option] = val;
13873 
13874 	return (0);
13875 }
13876 
13877 static void
13878 dtrace_state_destroy(dtrace_state_t *state)
13879 {
13880 	dtrace_ecb_t *ecb;
13881 	dtrace_vstate_t *vstate = &state->dts_vstate;
13882 #if defined(sun)
13883 	minor_t minor = getminor(state->dts_dev);
13884 #endif
13885 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13886 	dtrace_speculation_t *spec = state->dts_speculations;
13887 	int nspec = state->dts_nspeculations;
13888 	uint32_t match;
13889 
13890 	ASSERT(MUTEX_HELD(&dtrace_lock));
13891 	ASSERT(MUTEX_HELD(&cpu_lock));
13892 
13893 	/*
13894 	 * First, retract any retained enablings for this state.
13895 	 */
13896 	dtrace_enabling_retract(state);
13897 	ASSERT(state->dts_nretained == 0);
13898 
13899 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13900 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13901 		/*
13902 		 * We have managed to come into dtrace_state_destroy() on a
13903 		 * hot enabling -- almost certainly because of a disorderly
13904 		 * shutdown of a consumer.  (That is, a consumer that is
13905 		 * exiting without having called dtrace_stop().) In this case,
13906 		 * we're going to set our activity to be KILLED, and then
13907 		 * issue a sync to be sure that everyone is out of probe
13908 		 * context before we start blowing away ECBs.
13909 		 */
13910 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13911 		dtrace_sync();
13912 	}
13913 
13914 	/*
13915 	 * Release the credential hold we took in dtrace_state_create().
13916 	 */
13917 	if (state->dts_cred.dcr_cred != NULL)
13918 		crfree(state->dts_cred.dcr_cred);
13919 
13920 	/*
13921 	 * Now we can safely disable and destroy any enabled probes.  Because
13922 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13923 	 * (especially if they're all enabled), we take two passes through the
13924 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13925 	 * in the second we disable whatever is left over.
13926 	 */
13927 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13928 		for (i = 0; i < state->dts_necbs; i++) {
13929 			if ((ecb = state->dts_ecbs[i]) == NULL)
13930 				continue;
13931 
13932 			if (match && ecb->dte_probe != NULL) {
13933 				dtrace_probe_t *probe = ecb->dte_probe;
13934 				dtrace_provider_t *prov = probe->dtpr_provider;
13935 
13936 				if (!(prov->dtpv_priv.dtpp_flags & match))
13937 					continue;
13938 			}
13939 
13940 			dtrace_ecb_disable(ecb);
13941 			dtrace_ecb_destroy(ecb);
13942 		}
13943 
13944 		if (!match)
13945 			break;
13946 	}
13947 
13948 	/*
13949 	 * Before we free the buffers, perform one more sync to assure that
13950 	 * every CPU is out of probe context.
13951 	 */
13952 	dtrace_sync();
13953 
13954 	dtrace_buffer_free(state->dts_buffer);
13955 	dtrace_buffer_free(state->dts_aggbuffer);
13956 
13957 	for (i = 0; i < nspec; i++)
13958 		dtrace_buffer_free(spec[i].dtsp_buffer);
13959 
13960 #if defined(sun)
13961 	if (state->dts_cleaner != CYCLIC_NONE)
13962 		cyclic_remove(state->dts_cleaner);
13963 
13964 	if (state->dts_deadman != CYCLIC_NONE)
13965 		cyclic_remove(state->dts_deadman);
13966 #else
13967 	callout_stop(&state->dts_cleaner);
13968 	callout_drain(&state->dts_cleaner);
13969 	callout_stop(&state->dts_deadman);
13970 	callout_drain(&state->dts_deadman);
13971 #endif
13972 
13973 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13974 	dtrace_vstate_fini(vstate);
13975 	if (state->dts_ecbs != NULL)
13976 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13977 
13978 	if (state->dts_aggregations != NULL) {
13979 #ifdef DEBUG
13980 		for (i = 0; i < state->dts_naggregations; i++)
13981 			ASSERT(state->dts_aggregations[i] == NULL);
13982 #endif
13983 		ASSERT(state->dts_naggregations > 0);
13984 		kmem_free(state->dts_aggregations,
13985 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13986 	}
13987 
13988 	kmem_free(state->dts_buffer, bufsize);
13989 	kmem_free(state->dts_aggbuffer, bufsize);
13990 
13991 	for (i = 0; i < nspec; i++)
13992 		kmem_free(spec[i].dtsp_buffer, bufsize);
13993 
13994 	if (spec != NULL)
13995 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13996 
13997 	dtrace_format_destroy(state);
13998 
13999 	if (state->dts_aggid_arena != NULL) {
14000 #if defined(sun)
14001 		vmem_destroy(state->dts_aggid_arena);
14002 #else
14003 		delete_unrhdr(state->dts_aggid_arena);
14004 #endif
14005 		state->dts_aggid_arena = NULL;
14006 	}
14007 #if defined(sun)
14008 	ddi_soft_state_free(dtrace_softstate, minor);
14009 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14010 #endif
14011 }
14012 
14013 /*
14014  * DTrace Anonymous Enabling Functions
14015  */
14016 static dtrace_state_t *
14017 dtrace_anon_grab(void)
14018 {
14019 	dtrace_state_t *state;
14020 
14021 	ASSERT(MUTEX_HELD(&dtrace_lock));
14022 
14023 	if ((state = dtrace_anon.dta_state) == NULL) {
14024 		ASSERT(dtrace_anon.dta_enabling == NULL);
14025 		return (NULL);
14026 	}
14027 
14028 	ASSERT(dtrace_anon.dta_enabling != NULL);
14029 	ASSERT(dtrace_retained != NULL);
14030 
14031 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14032 	dtrace_anon.dta_enabling = NULL;
14033 	dtrace_anon.dta_state = NULL;
14034 
14035 	return (state);
14036 }
14037 
14038 static void
14039 dtrace_anon_property(void)
14040 {
14041 	int i, rv;
14042 	dtrace_state_t *state;
14043 	dof_hdr_t *dof;
14044 	char c[32];		/* enough for "dof-data-" + digits */
14045 
14046 	ASSERT(MUTEX_HELD(&dtrace_lock));
14047 	ASSERT(MUTEX_HELD(&cpu_lock));
14048 
14049 	for (i = 0; ; i++) {
14050 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14051 
14052 		dtrace_err_verbose = 1;
14053 
14054 		if ((dof = dtrace_dof_property(c)) == NULL) {
14055 			dtrace_err_verbose = 0;
14056 			break;
14057 		}
14058 
14059 #if defined(sun)
14060 		/*
14061 		 * We want to create anonymous state, so we need to transition
14062 		 * the kernel debugger to indicate that DTrace is active.  If
14063 		 * this fails (e.g. because the debugger has modified text in
14064 		 * some way), we won't continue with the processing.
14065 		 */
14066 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14067 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14068 			    "enabling ignored.");
14069 			dtrace_dof_destroy(dof);
14070 			break;
14071 		}
14072 #endif
14073 
14074 		/*
14075 		 * If we haven't allocated an anonymous state, we'll do so now.
14076 		 */
14077 		if ((state = dtrace_anon.dta_state) == NULL) {
14078 #if defined(sun)
14079 			state = dtrace_state_create(NULL, NULL);
14080 #else
14081 			state = dtrace_state_create(NULL);
14082 #endif
14083 			dtrace_anon.dta_state = state;
14084 
14085 			if (state == NULL) {
14086 				/*
14087 				 * This basically shouldn't happen:  the only
14088 				 * failure mode from dtrace_state_create() is a
14089 				 * failure of ddi_soft_state_zalloc() that
14090 				 * itself should never happen.  Still, the
14091 				 * interface allows for a failure mode, and
14092 				 * we want to fail as gracefully as possible:
14093 				 * we'll emit an error message and cease
14094 				 * processing anonymous state in this case.
14095 				 */
14096 				cmn_err(CE_WARN, "failed to create "
14097 				    "anonymous state");
14098 				dtrace_dof_destroy(dof);
14099 				break;
14100 			}
14101 		}
14102 
14103 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14104 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14105 
14106 		if (rv == 0)
14107 			rv = dtrace_dof_options(dof, state);
14108 
14109 		dtrace_err_verbose = 0;
14110 		dtrace_dof_destroy(dof);
14111 
14112 		if (rv != 0) {
14113 			/*
14114 			 * This is malformed DOF; chuck any anonymous state
14115 			 * that we created.
14116 			 */
14117 			ASSERT(dtrace_anon.dta_enabling == NULL);
14118 			dtrace_state_destroy(state);
14119 			dtrace_anon.dta_state = NULL;
14120 			break;
14121 		}
14122 
14123 		ASSERT(dtrace_anon.dta_enabling != NULL);
14124 	}
14125 
14126 	if (dtrace_anon.dta_enabling != NULL) {
14127 		int rval;
14128 
14129 		/*
14130 		 * dtrace_enabling_retain() can only fail because we are
14131 		 * trying to retain more enablings than are allowed -- but
14132 		 * we only have one anonymous enabling, and we are guaranteed
14133 		 * to be allowed at least one retained enabling; we assert
14134 		 * that dtrace_enabling_retain() returns success.
14135 		 */
14136 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14137 		ASSERT(rval == 0);
14138 
14139 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14140 	}
14141 }
14142 
14143 /*
14144  * DTrace Helper Functions
14145  */
14146 static void
14147 dtrace_helper_trace(dtrace_helper_action_t *helper,
14148     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14149 {
14150 	uint32_t size, next, nnext, i;
14151 	dtrace_helptrace_t *ent;
14152 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14153 
14154 	if (!dtrace_helptrace_enabled)
14155 		return;
14156 
14157 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14158 
14159 	/*
14160 	 * What would a tracing framework be without its own tracing
14161 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14162 	 */
14163 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14164 	    sizeof (uint64_t) - sizeof (uint64_t);
14165 
14166 	/*
14167 	 * Iterate until we can allocate a slot in the trace buffer.
14168 	 */
14169 	do {
14170 		next = dtrace_helptrace_next;
14171 
14172 		if (next + size < dtrace_helptrace_bufsize) {
14173 			nnext = next + size;
14174 		} else {
14175 			nnext = size;
14176 		}
14177 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14178 
14179 	/*
14180 	 * We have our slot; fill it in.
14181 	 */
14182 	if (nnext == size)
14183 		next = 0;
14184 
14185 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14186 	ent->dtht_helper = helper;
14187 	ent->dtht_where = where;
14188 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14189 
14190 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14191 	    mstate->dtms_fltoffs : -1;
14192 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14193 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14194 
14195 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14196 		dtrace_statvar_t *svar;
14197 
14198 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14199 			continue;
14200 
14201 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14202 		ent->dtht_locals[i] =
14203 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14204 	}
14205 }
14206 
14207 static uint64_t
14208 dtrace_helper(int which, dtrace_mstate_t *mstate,
14209     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14210 {
14211 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14212 	uint64_t sarg0 = mstate->dtms_arg[0];
14213 	uint64_t sarg1 = mstate->dtms_arg[1];
14214 	uint64_t rval = 0;
14215 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14216 	dtrace_helper_action_t *helper;
14217 	dtrace_vstate_t *vstate;
14218 	dtrace_difo_t *pred;
14219 	int i, trace = dtrace_helptrace_enabled;
14220 
14221 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14222 
14223 	if (helpers == NULL)
14224 		return (0);
14225 
14226 	if ((helper = helpers->dthps_actions[which]) == NULL)
14227 		return (0);
14228 
14229 	vstate = &helpers->dthps_vstate;
14230 	mstate->dtms_arg[0] = arg0;
14231 	mstate->dtms_arg[1] = arg1;
14232 
14233 	/*
14234 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14235 	 * we'll call the corresponding actions.  Note that the below calls
14236 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14237 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14238 	 * the stored DIF offset with its own (which is the desired behavior).
14239 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14240 	 * from machine state; this is okay, too.
14241 	 */
14242 	for (; helper != NULL; helper = helper->dtha_next) {
14243 		if ((pred = helper->dtha_predicate) != NULL) {
14244 			if (trace)
14245 				dtrace_helper_trace(helper, mstate, vstate, 0);
14246 
14247 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14248 				goto next;
14249 
14250 			if (*flags & CPU_DTRACE_FAULT)
14251 				goto err;
14252 		}
14253 
14254 		for (i = 0; i < helper->dtha_nactions; i++) {
14255 			if (trace)
14256 				dtrace_helper_trace(helper,
14257 				    mstate, vstate, i + 1);
14258 
14259 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14260 			    mstate, vstate, state);
14261 
14262 			if (*flags & CPU_DTRACE_FAULT)
14263 				goto err;
14264 		}
14265 
14266 next:
14267 		if (trace)
14268 			dtrace_helper_trace(helper, mstate, vstate,
14269 			    DTRACE_HELPTRACE_NEXT);
14270 	}
14271 
14272 	if (trace)
14273 		dtrace_helper_trace(helper, mstate, vstate,
14274 		    DTRACE_HELPTRACE_DONE);
14275 
14276 	/*
14277 	 * Restore the arg0 that we saved upon entry.
14278 	 */
14279 	mstate->dtms_arg[0] = sarg0;
14280 	mstate->dtms_arg[1] = sarg1;
14281 
14282 	return (rval);
14283 
14284 err:
14285 	if (trace)
14286 		dtrace_helper_trace(helper, mstate, vstate,
14287 		    DTRACE_HELPTRACE_ERR);
14288 
14289 	/*
14290 	 * Restore the arg0 that we saved upon entry.
14291 	 */
14292 	mstate->dtms_arg[0] = sarg0;
14293 	mstate->dtms_arg[1] = sarg1;
14294 
14295 	return (0);
14296 }
14297 
14298 static void
14299 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14300     dtrace_vstate_t *vstate)
14301 {
14302 	int i;
14303 
14304 	if (helper->dtha_predicate != NULL)
14305 		dtrace_difo_release(helper->dtha_predicate, vstate);
14306 
14307 	for (i = 0; i < helper->dtha_nactions; i++) {
14308 		ASSERT(helper->dtha_actions[i] != NULL);
14309 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14310 	}
14311 
14312 	kmem_free(helper->dtha_actions,
14313 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14314 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14315 }
14316 
14317 static int
14318 dtrace_helper_destroygen(int gen)
14319 {
14320 	proc_t *p = curproc;
14321 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14322 	dtrace_vstate_t *vstate;
14323 	int i;
14324 
14325 	ASSERT(MUTEX_HELD(&dtrace_lock));
14326 
14327 	if (help == NULL || gen > help->dthps_generation)
14328 		return (EINVAL);
14329 
14330 	vstate = &help->dthps_vstate;
14331 
14332 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14333 		dtrace_helper_action_t *last = NULL, *h, *next;
14334 
14335 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14336 			next = h->dtha_next;
14337 
14338 			if (h->dtha_generation == gen) {
14339 				if (last != NULL) {
14340 					last->dtha_next = next;
14341 				} else {
14342 					help->dthps_actions[i] = next;
14343 				}
14344 
14345 				dtrace_helper_action_destroy(h, vstate);
14346 			} else {
14347 				last = h;
14348 			}
14349 		}
14350 	}
14351 
14352 	/*
14353 	 * Interate until we've cleared out all helper providers with the
14354 	 * given generation number.
14355 	 */
14356 	for (;;) {
14357 		dtrace_helper_provider_t *prov;
14358 
14359 		/*
14360 		 * Look for a helper provider with the right generation. We
14361 		 * have to start back at the beginning of the list each time
14362 		 * because we drop dtrace_lock. It's unlikely that we'll make
14363 		 * more than two passes.
14364 		 */
14365 		for (i = 0; i < help->dthps_nprovs; i++) {
14366 			prov = help->dthps_provs[i];
14367 
14368 			if (prov->dthp_generation == gen)
14369 				break;
14370 		}
14371 
14372 		/*
14373 		 * If there were no matches, we're done.
14374 		 */
14375 		if (i == help->dthps_nprovs)
14376 			break;
14377 
14378 		/*
14379 		 * Move the last helper provider into this slot.
14380 		 */
14381 		help->dthps_nprovs--;
14382 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14383 		help->dthps_provs[help->dthps_nprovs] = NULL;
14384 
14385 		mutex_exit(&dtrace_lock);
14386 
14387 		/*
14388 		 * If we have a meta provider, remove this helper provider.
14389 		 */
14390 		mutex_enter(&dtrace_meta_lock);
14391 		if (dtrace_meta_pid != NULL) {
14392 			ASSERT(dtrace_deferred_pid == NULL);
14393 			dtrace_helper_provider_remove(&prov->dthp_prov,
14394 			    p->p_pid);
14395 		}
14396 		mutex_exit(&dtrace_meta_lock);
14397 
14398 		dtrace_helper_provider_destroy(prov);
14399 
14400 		mutex_enter(&dtrace_lock);
14401 	}
14402 
14403 	return (0);
14404 }
14405 
14406 static int
14407 dtrace_helper_validate(dtrace_helper_action_t *helper)
14408 {
14409 	int err = 0, i;
14410 	dtrace_difo_t *dp;
14411 
14412 	if ((dp = helper->dtha_predicate) != NULL)
14413 		err += dtrace_difo_validate_helper(dp);
14414 
14415 	for (i = 0; i < helper->dtha_nactions; i++)
14416 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14417 
14418 	return (err == 0);
14419 }
14420 
14421 static int
14422 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14423 {
14424 	dtrace_helpers_t *help;
14425 	dtrace_helper_action_t *helper, *last;
14426 	dtrace_actdesc_t *act;
14427 	dtrace_vstate_t *vstate;
14428 	dtrace_predicate_t *pred;
14429 	int count = 0, nactions = 0, i;
14430 
14431 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14432 		return (EINVAL);
14433 
14434 	help = curproc->p_dtrace_helpers;
14435 	last = help->dthps_actions[which];
14436 	vstate = &help->dthps_vstate;
14437 
14438 	for (count = 0; last != NULL; last = last->dtha_next) {
14439 		count++;
14440 		if (last->dtha_next == NULL)
14441 			break;
14442 	}
14443 
14444 	/*
14445 	 * If we already have dtrace_helper_actions_max helper actions for this
14446 	 * helper action type, we'll refuse to add a new one.
14447 	 */
14448 	if (count >= dtrace_helper_actions_max)
14449 		return (ENOSPC);
14450 
14451 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14452 	helper->dtha_generation = help->dthps_generation;
14453 
14454 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14455 		ASSERT(pred->dtp_difo != NULL);
14456 		dtrace_difo_hold(pred->dtp_difo);
14457 		helper->dtha_predicate = pred->dtp_difo;
14458 	}
14459 
14460 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14461 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14462 			goto err;
14463 
14464 		if (act->dtad_difo == NULL)
14465 			goto err;
14466 
14467 		nactions++;
14468 	}
14469 
14470 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14471 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14472 
14473 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14474 		dtrace_difo_hold(act->dtad_difo);
14475 		helper->dtha_actions[i++] = act->dtad_difo;
14476 	}
14477 
14478 	if (!dtrace_helper_validate(helper))
14479 		goto err;
14480 
14481 	if (last == NULL) {
14482 		help->dthps_actions[which] = helper;
14483 	} else {
14484 		last->dtha_next = helper;
14485 	}
14486 
14487 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14488 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14489 		dtrace_helptrace_next = 0;
14490 	}
14491 
14492 	return (0);
14493 err:
14494 	dtrace_helper_action_destroy(helper, vstate);
14495 	return (EINVAL);
14496 }
14497 
14498 static void
14499 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14500     dof_helper_t *dofhp)
14501 {
14502 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14503 
14504 	mutex_enter(&dtrace_meta_lock);
14505 	mutex_enter(&dtrace_lock);
14506 
14507 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14508 		/*
14509 		 * If the dtrace module is loaded but not attached, or if
14510 		 * there aren't isn't a meta provider registered to deal with
14511 		 * these provider descriptions, we need to postpone creating
14512 		 * the actual providers until later.
14513 		 */
14514 
14515 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14516 		    dtrace_deferred_pid != help) {
14517 			help->dthps_deferred = 1;
14518 			help->dthps_pid = p->p_pid;
14519 			help->dthps_next = dtrace_deferred_pid;
14520 			help->dthps_prev = NULL;
14521 			if (dtrace_deferred_pid != NULL)
14522 				dtrace_deferred_pid->dthps_prev = help;
14523 			dtrace_deferred_pid = help;
14524 		}
14525 
14526 		mutex_exit(&dtrace_lock);
14527 
14528 	} else if (dofhp != NULL) {
14529 		/*
14530 		 * If the dtrace module is loaded and we have a particular
14531 		 * helper provider description, pass that off to the
14532 		 * meta provider.
14533 		 */
14534 
14535 		mutex_exit(&dtrace_lock);
14536 
14537 		dtrace_helper_provide(dofhp, p->p_pid);
14538 
14539 	} else {
14540 		/*
14541 		 * Otherwise, just pass all the helper provider descriptions
14542 		 * off to the meta provider.
14543 		 */
14544 
14545 		int i;
14546 		mutex_exit(&dtrace_lock);
14547 
14548 		for (i = 0; i < help->dthps_nprovs; i++) {
14549 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14550 			    p->p_pid);
14551 		}
14552 	}
14553 
14554 	mutex_exit(&dtrace_meta_lock);
14555 }
14556 
14557 static int
14558 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14559 {
14560 	dtrace_helpers_t *help;
14561 	dtrace_helper_provider_t *hprov, **tmp_provs;
14562 	uint_t tmp_maxprovs, i;
14563 
14564 	ASSERT(MUTEX_HELD(&dtrace_lock));
14565 
14566 	help = curproc->p_dtrace_helpers;
14567 	ASSERT(help != NULL);
14568 
14569 	/*
14570 	 * If we already have dtrace_helper_providers_max helper providers,
14571 	 * we're refuse to add a new one.
14572 	 */
14573 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14574 		return (ENOSPC);
14575 
14576 	/*
14577 	 * Check to make sure this isn't a duplicate.
14578 	 */
14579 	for (i = 0; i < help->dthps_nprovs; i++) {
14580 		if (dofhp->dofhp_addr ==
14581 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14582 			return (EALREADY);
14583 	}
14584 
14585 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14586 	hprov->dthp_prov = *dofhp;
14587 	hprov->dthp_ref = 1;
14588 	hprov->dthp_generation = gen;
14589 
14590 	/*
14591 	 * Allocate a bigger table for helper providers if it's already full.
14592 	 */
14593 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14594 		tmp_maxprovs = help->dthps_maxprovs;
14595 		tmp_provs = help->dthps_provs;
14596 
14597 		if (help->dthps_maxprovs == 0)
14598 			help->dthps_maxprovs = 2;
14599 		else
14600 			help->dthps_maxprovs *= 2;
14601 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14602 			help->dthps_maxprovs = dtrace_helper_providers_max;
14603 
14604 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14605 
14606 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14607 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14608 
14609 		if (tmp_provs != NULL) {
14610 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14611 			    sizeof (dtrace_helper_provider_t *));
14612 			kmem_free(tmp_provs, tmp_maxprovs *
14613 			    sizeof (dtrace_helper_provider_t *));
14614 		}
14615 	}
14616 
14617 	help->dthps_provs[help->dthps_nprovs] = hprov;
14618 	help->dthps_nprovs++;
14619 
14620 	return (0);
14621 }
14622 
14623 static void
14624 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14625 {
14626 	mutex_enter(&dtrace_lock);
14627 
14628 	if (--hprov->dthp_ref == 0) {
14629 		dof_hdr_t *dof;
14630 		mutex_exit(&dtrace_lock);
14631 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14632 		dtrace_dof_destroy(dof);
14633 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14634 	} else {
14635 		mutex_exit(&dtrace_lock);
14636 	}
14637 }
14638 
14639 static int
14640 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14641 {
14642 	uintptr_t daddr = (uintptr_t)dof;
14643 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14644 	dof_provider_t *provider;
14645 	dof_probe_t *probe;
14646 	uint8_t *arg;
14647 	char *strtab, *typestr;
14648 	dof_stridx_t typeidx;
14649 	size_t typesz;
14650 	uint_t nprobes, j, k;
14651 
14652 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14653 
14654 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14655 		dtrace_dof_error(dof, "misaligned section offset");
14656 		return (-1);
14657 	}
14658 
14659 	/*
14660 	 * The section needs to be large enough to contain the DOF provider
14661 	 * structure appropriate for the given version.
14662 	 */
14663 	if (sec->dofs_size <
14664 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14665 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14666 	    sizeof (dof_provider_t))) {
14667 		dtrace_dof_error(dof, "provider section too small");
14668 		return (-1);
14669 	}
14670 
14671 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14672 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14673 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14674 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14675 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14676 
14677 	if (str_sec == NULL || prb_sec == NULL ||
14678 	    arg_sec == NULL || off_sec == NULL)
14679 		return (-1);
14680 
14681 	enoff_sec = NULL;
14682 
14683 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14684 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14685 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14686 	    provider->dofpv_prenoffs)) == NULL)
14687 		return (-1);
14688 
14689 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14690 
14691 	if (provider->dofpv_name >= str_sec->dofs_size ||
14692 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14693 		dtrace_dof_error(dof, "invalid provider name");
14694 		return (-1);
14695 	}
14696 
14697 	if (prb_sec->dofs_entsize == 0 ||
14698 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14699 		dtrace_dof_error(dof, "invalid entry size");
14700 		return (-1);
14701 	}
14702 
14703 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14704 		dtrace_dof_error(dof, "misaligned entry size");
14705 		return (-1);
14706 	}
14707 
14708 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14709 		dtrace_dof_error(dof, "invalid entry size");
14710 		return (-1);
14711 	}
14712 
14713 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14714 		dtrace_dof_error(dof, "misaligned section offset");
14715 		return (-1);
14716 	}
14717 
14718 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14719 		dtrace_dof_error(dof, "invalid entry size");
14720 		return (-1);
14721 	}
14722 
14723 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14724 
14725 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14726 
14727 	/*
14728 	 * Take a pass through the probes to check for errors.
14729 	 */
14730 	for (j = 0; j < nprobes; j++) {
14731 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14732 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14733 
14734 		if (probe->dofpr_func >= str_sec->dofs_size) {
14735 			dtrace_dof_error(dof, "invalid function name");
14736 			return (-1);
14737 		}
14738 
14739 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14740 			dtrace_dof_error(dof, "function name too long");
14741 			return (-1);
14742 		}
14743 
14744 		if (probe->dofpr_name >= str_sec->dofs_size ||
14745 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14746 			dtrace_dof_error(dof, "invalid probe name");
14747 			return (-1);
14748 		}
14749 
14750 		/*
14751 		 * The offset count must not wrap the index, and the offsets
14752 		 * must also not overflow the section's data.
14753 		 */
14754 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14755 		    probe->dofpr_offidx ||
14756 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14757 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14758 			dtrace_dof_error(dof, "invalid probe offset");
14759 			return (-1);
14760 		}
14761 
14762 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14763 			/*
14764 			 * If there's no is-enabled offset section, make sure
14765 			 * there aren't any is-enabled offsets. Otherwise
14766 			 * perform the same checks as for probe offsets
14767 			 * (immediately above).
14768 			 */
14769 			if (enoff_sec == NULL) {
14770 				if (probe->dofpr_enoffidx != 0 ||
14771 				    probe->dofpr_nenoffs != 0) {
14772 					dtrace_dof_error(dof, "is-enabled "
14773 					    "offsets with null section");
14774 					return (-1);
14775 				}
14776 			} else if (probe->dofpr_enoffidx +
14777 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14778 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14779 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14780 				dtrace_dof_error(dof, "invalid is-enabled "
14781 				    "offset");
14782 				return (-1);
14783 			}
14784 
14785 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14786 				dtrace_dof_error(dof, "zero probe and "
14787 				    "is-enabled offsets");
14788 				return (-1);
14789 			}
14790 		} else if (probe->dofpr_noffs == 0) {
14791 			dtrace_dof_error(dof, "zero probe offsets");
14792 			return (-1);
14793 		}
14794 
14795 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14796 		    probe->dofpr_argidx ||
14797 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14798 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14799 			dtrace_dof_error(dof, "invalid args");
14800 			return (-1);
14801 		}
14802 
14803 		typeidx = probe->dofpr_nargv;
14804 		typestr = strtab + probe->dofpr_nargv;
14805 		for (k = 0; k < probe->dofpr_nargc; k++) {
14806 			if (typeidx >= str_sec->dofs_size) {
14807 				dtrace_dof_error(dof, "bad "
14808 				    "native argument type");
14809 				return (-1);
14810 			}
14811 
14812 			typesz = strlen(typestr) + 1;
14813 			if (typesz > DTRACE_ARGTYPELEN) {
14814 				dtrace_dof_error(dof, "native "
14815 				    "argument type too long");
14816 				return (-1);
14817 			}
14818 			typeidx += typesz;
14819 			typestr += typesz;
14820 		}
14821 
14822 		typeidx = probe->dofpr_xargv;
14823 		typestr = strtab + probe->dofpr_xargv;
14824 		for (k = 0; k < probe->dofpr_xargc; k++) {
14825 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14826 				dtrace_dof_error(dof, "bad "
14827 				    "native argument index");
14828 				return (-1);
14829 			}
14830 
14831 			if (typeidx >= str_sec->dofs_size) {
14832 				dtrace_dof_error(dof, "bad "
14833 				    "translated argument type");
14834 				return (-1);
14835 			}
14836 
14837 			typesz = strlen(typestr) + 1;
14838 			if (typesz > DTRACE_ARGTYPELEN) {
14839 				dtrace_dof_error(dof, "translated argument "
14840 				    "type too long");
14841 				return (-1);
14842 			}
14843 
14844 			typeidx += typesz;
14845 			typestr += typesz;
14846 		}
14847 	}
14848 
14849 	return (0);
14850 }
14851 
14852 static int
14853 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14854 {
14855 	dtrace_helpers_t *help;
14856 	dtrace_vstate_t *vstate;
14857 	dtrace_enabling_t *enab = NULL;
14858 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14859 	uintptr_t daddr = (uintptr_t)dof;
14860 
14861 	ASSERT(MUTEX_HELD(&dtrace_lock));
14862 
14863 	if ((help = curproc->p_dtrace_helpers) == NULL)
14864 		help = dtrace_helpers_create(curproc);
14865 
14866 	vstate = &help->dthps_vstate;
14867 
14868 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14869 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14870 		dtrace_dof_destroy(dof);
14871 		return (rv);
14872 	}
14873 
14874 	/*
14875 	 * Look for helper providers and validate their descriptions.
14876 	 */
14877 	if (dhp != NULL) {
14878 		for (i = 0; i < dof->dofh_secnum; i++) {
14879 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14880 			    dof->dofh_secoff + i * dof->dofh_secsize);
14881 
14882 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14883 				continue;
14884 
14885 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14886 				dtrace_enabling_destroy(enab);
14887 				dtrace_dof_destroy(dof);
14888 				return (-1);
14889 			}
14890 
14891 			nprovs++;
14892 		}
14893 	}
14894 
14895 	/*
14896 	 * Now we need to walk through the ECB descriptions in the enabling.
14897 	 */
14898 	for (i = 0; i < enab->dten_ndesc; i++) {
14899 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14900 		dtrace_probedesc_t *desc = &ep->dted_probe;
14901 
14902 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14903 			continue;
14904 
14905 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14906 			continue;
14907 
14908 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14909 			continue;
14910 
14911 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14912 		    ep)) != 0) {
14913 			/*
14914 			 * Adding this helper action failed -- we are now going
14915 			 * to rip out the entire generation and return failure.
14916 			 */
14917 			(void) dtrace_helper_destroygen(help->dthps_generation);
14918 			dtrace_enabling_destroy(enab);
14919 			dtrace_dof_destroy(dof);
14920 			return (-1);
14921 		}
14922 
14923 		nhelpers++;
14924 	}
14925 
14926 	if (nhelpers < enab->dten_ndesc)
14927 		dtrace_dof_error(dof, "unmatched helpers");
14928 
14929 	gen = help->dthps_generation++;
14930 	dtrace_enabling_destroy(enab);
14931 
14932 	if (dhp != NULL && nprovs > 0) {
14933 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14934 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14935 			mutex_exit(&dtrace_lock);
14936 			dtrace_helper_provider_register(curproc, help, dhp);
14937 			mutex_enter(&dtrace_lock);
14938 
14939 			destroy = 0;
14940 		}
14941 	}
14942 
14943 	if (destroy)
14944 		dtrace_dof_destroy(dof);
14945 
14946 	return (gen);
14947 }
14948 
14949 static dtrace_helpers_t *
14950 dtrace_helpers_create(proc_t *p)
14951 {
14952 	dtrace_helpers_t *help;
14953 
14954 	ASSERT(MUTEX_HELD(&dtrace_lock));
14955 	ASSERT(p->p_dtrace_helpers == NULL);
14956 
14957 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14958 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14959 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14960 
14961 	p->p_dtrace_helpers = help;
14962 	dtrace_helpers++;
14963 
14964 	return (help);
14965 }
14966 
14967 #if defined(sun)
14968 static
14969 #endif
14970 void
14971 dtrace_helpers_destroy(proc_t *p)
14972 {
14973 	dtrace_helpers_t *help;
14974 	dtrace_vstate_t *vstate;
14975 #if defined(sun)
14976 	proc_t *p = curproc;
14977 #endif
14978 	int i;
14979 
14980 	mutex_enter(&dtrace_lock);
14981 
14982 	ASSERT(p->p_dtrace_helpers != NULL);
14983 	ASSERT(dtrace_helpers > 0);
14984 
14985 	help = p->p_dtrace_helpers;
14986 	vstate = &help->dthps_vstate;
14987 
14988 	/*
14989 	 * We're now going to lose the help from this process.
14990 	 */
14991 	p->p_dtrace_helpers = NULL;
14992 	dtrace_sync();
14993 
14994 	/*
14995 	 * Destory the helper actions.
14996 	 */
14997 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14998 		dtrace_helper_action_t *h, *next;
14999 
15000 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15001 			next = h->dtha_next;
15002 			dtrace_helper_action_destroy(h, vstate);
15003 			h = next;
15004 		}
15005 	}
15006 
15007 	mutex_exit(&dtrace_lock);
15008 
15009 	/*
15010 	 * Destroy the helper providers.
15011 	 */
15012 	if (help->dthps_maxprovs > 0) {
15013 		mutex_enter(&dtrace_meta_lock);
15014 		if (dtrace_meta_pid != NULL) {
15015 			ASSERT(dtrace_deferred_pid == NULL);
15016 
15017 			for (i = 0; i < help->dthps_nprovs; i++) {
15018 				dtrace_helper_provider_remove(
15019 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15020 			}
15021 		} else {
15022 			mutex_enter(&dtrace_lock);
15023 			ASSERT(help->dthps_deferred == 0 ||
15024 			    help->dthps_next != NULL ||
15025 			    help->dthps_prev != NULL ||
15026 			    help == dtrace_deferred_pid);
15027 
15028 			/*
15029 			 * Remove the helper from the deferred list.
15030 			 */
15031 			if (help->dthps_next != NULL)
15032 				help->dthps_next->dthps_prev = help->dthps_prev;
15033 			if (help->dthps_prev != NULL)
15034 				help->dthps_prev->dthps_next = help->dthps_next;
15035 			if (dtrace_deferred_pid == help) {
15036 				dtrace_deferred_pid = help->dthps_next;
15037 				ASSERT(help->dthps_prev == NULL);
15038 			}
15039 
15040 			mutex_exit(&dtrace_lock);
15041 		}
15042 
15043 		mutex_exit(&dtrace_meta_lock);
15044 
15045 		for (i = 0; i < help->dthps_nprovs; i++) {
15046 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15047 		}
15048 
15049 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15050 		    sizeof (dtrace_helper_provider_t *));
15051 	}
15052 
15053 	mutex_enter(&dtrace_lock);
15054 
15055 	dtrace_vstate_fini(&help->dthps_vstate);
15056 	kmem_free(help->dthps_actions,
15057 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15058 	kmem_free(help, sizeof (dtrace_helpers_t));
15059 
15060 	--dtrace_helpers;
15061 	mutex_exit(&dtrace_lock);
15062 }
15063 
15064 #if defined(sun)
15065 static
15066 #endif
15067 void
15068 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15069 {
15070 	dtrace_helpers_t *help, *newhelp;
15071 	dtrace_helper_action_t *helper, *new, *last;
15072 	dtrace_difo_t *dp;
15073 	dtrace_vstate_t *vstate;
15074 	int i, j, sz, hasprovs = 0;
15075 
15076 	mutex_enter(&dtrace_lock);
15077 	ASSERT(from->p_dtrace_helpers != NULL);
15078 	ASSERT(dtrace_helpers > 0);
15079 
15080 	help = from->p_dtrace_helpers;
15081 	newhelp = dtrace_helpers_create(to);
15082 	ASSERT(to->p_dtrace_helpers != NULL);
15083 
15084 	newhelp->dthps_generation = help->dthps_generation;
15085 	vstate = &newhelp->dthps_vstate;
15086 
15087 	/*
15088 	 * Duplicate the helper actions.
15089 	 */
15090 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15091 		if ((helper = help->dthps_actions[i]) == NULL)
15092 			continue;
15093 
15094 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15095 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15096 			    KM_SLEEP);
15097 			new->dtha_generation = helper->dtha_generation;
15098 
15099 			if ((dp = helper->dtha_predicate) != NULL) {
15100 				dp = dtrace_difo_duplicate(dp, vstate);
15101 				new->dtha_predicate = dp;
15102 			}
15103 
15104 			new->dtha_nactions = helper->dtha_nactions;
15105 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15106 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15107 
15108 			for (j = 0; j < new->dtha_nactions; j++) {
15109 				dtrace_difo_t *dp = helper->dtha_actions[j];
15110 
15111 				ASSERT(dp != NULL);
15112 				dp = dtrace_difo_duplicate(dp, vstate);
15113 				new->dtha_actions[j] = dp;
15114 			}
15115 
15116 			if (last != NULL) {
15117 				last->dtha_next = new;
15118 			} else {
15119 				newhelp->dthps_actions[i] = new;
15120 			}
15121 
15122 			last = new;
15123 		}
15124 	}
15125 
15126 	/*
15127 	 * Duplicate the helper providers and register them with the
15128 	 * DTrace framework.
15129 	 */
15130 	if (help->dthps_nprovs > 0) {
15131 		newhelp->dthps_nprovs = help->dthps_nprovs;
15132 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15133 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15134 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15135 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15136 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15137 			newhelp->dthps_provs[i]->dthp_ref++;
15138 		}
15139 
15140 		hasprovs = 1;
15141 	}
15142 
15143 	mutex_exit(&dtrace_lock);
15144 
15145 	if (hasprovs)
15146 		dtrace_helper_provider_register(to, newhelp, NULL);
15147 }
15148 
15149 #if defined(sun)
15150 /*
15151  * DTrace Hook Functions
15152  */
15153 static void
15154 dtrace_module_loaded(modctl_t *ctl)
15155 {
15156 	dtrace_provider_t *prv;
15157 
15158 	mutex_enter(&dtrace_provider_lock);
15159 	mutex_enter(&mod_lock);
15160 
15161 	ASSERT(ctl->mod_busy);
15162 
15163 	/*
15164 	 * We're going to call each providers per-module provide operation
15165 	 * specifying only this module.
15166 	 */
15167 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15168 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15169 
15170 	mutex_exit(&mod_lock);
15171 	mutex_exit(&dtrace_provider_lock);
15172 
15173 	/*
15174 	 * If we have any retained enablings, we need to match against them.
15175 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15176 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15177 	 * module.  (In particular, this happens when loading scheduling
15178 	 * classes.)  So if we have any retained enablings, we need to dispatch
15179 	 * our task queue to do the match for us.
15180 	 */
15181 	mutex_enter(&dtrace_lock);
15182 
15183 	if (dtrace_retained == NULL) {
15184 		mutex_exit(&dtrace_lock);
15185 		return;
15186 	}
15187 
15188 	(void) taskq_dispatch(dtrace_taskq,
15189 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15190 
15191 	mutex_exit(&dtrace_lock);
15192 
15193 	/*
15194 	 * And now, for a little heuristic sleaze:  in general, we want to
15195 	 * match modules as soon as they load.  However, we cannot guarantee
15196 	 * this, because it would lead us to the lock ordering violation
15197 	 * outlined above.  The common case, of course, is that cpu_lock is
15198 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15199 	 * long enough for the task queue to do its work.  If it's not, it's
15200 	 * not a serious problem -- it just means that the module that we
15201 	 * just loaded may not be immediately instrumentable.
15202 	 */
15203 	delay(1);
15204 }
15205 
15206 static void
15207 dtrace_module_unloaded(modctl_t *ctl)
15208 {
15209 	dtrace_probe_t template, *probe, *first, *next;
15210 	dtrace_provider_t *prov;
15211 
15212 	template.dtpr_mod = ctl->mod_modname;
15213 
15214 	mutex_enter(&dtrace_provider_lock);
15215 	mutex_enter(&mod_lock);
15216 	mutex_enter(&dtrace_lock);
15217 
15218 	if (dtrace_bymod == NULL) {
15219 		/*
15220 		 * The DTrace module is loaded (obviously) but not attached;
15221 		 * we don't have any work to do.
15222 		 */
15223 		mutex_exit(&dtrace_provider_lock);
15224 		mutex_exit(&mod_lock);
15225 		mutex_exit(&dtrace_lock);
15226 		return;
15227 	}
15228 
15229 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15230 	    probe != NULL; probe = probe->dtpr_nextmod) {
15231 		if (probe->dtpr_ecb != NULL) {
15232 			mutex_exit(&dtrace_provider_lock);
15233 			mutex_exit(&mod_lock);
15234 			mutex_exit(&dtrace_lock);
15235 
15236 			/*
15237 			 * This shouldn't _actually_ be possible -- we're
15238 			 * unloading a module that has an enabled probe in it.
15239 			 * (It's normally up to the provider to make sure that
15240 			 * this can't happen.)  However, because dtps_enable()
15241 			 * doesn't have a failure mode, there can be an
15242 			 * enable/unload race.  Upshot:  we don't want to
15243 			 * assert, but we're not going to disable the
15244 			 * probe, either.
15245 			 */
15246 			if (dtrace_err_verbose) {
15247 				cmn_err(CE_WARN, "unloaded module '%s' had "
15248 				    "enabled probes", ctl->mod_modname);
15249 			}
15250 
15251 			return;
15252 		}
15253 	}
15254 
15255 	probe = first;
15256 
15257 	for (first = NULL; probe != NULL; probe = next) {
15258 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15259 
15260 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15261 
15262 		next = probe->dtpr_nextmod;
15263 		dtrace_hash_remove(dtrace_bymod, probe);
15264 		dtrace_hash_remove(dtrace_byfunc, probe);
15265 		dtrace_hash_remove(dtrace_byname, probe);
15266 
15267 		if (first == NULL) {
15268 			first = probe;
15269 			probe->dtpr_nextmod = NULL;
15270 		} else {
15271 			probe->dtpr_nextmod = first;
15272 			first = probe;
15273 		}
15274 	}
15275 
15276 	/*
15277 	 * We've removed all of the module's probes from the hash chains and
15278 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15279 	 * everyone has cleared out from any probe array processing.
15280 	 */
15281 	dtrace_sync();
15282 
15283 	for (probe = first; probe != NULL; probe = first) {
15284 		first = probe->dtpr_nextmod;
15285 		prov = probe->dtpr_provider;
15286 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15287 		    probe->dtpr_arg);
15288 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15289 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15290 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15291 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15292 		kmem_free(probe, sizeof (dtrace_probe_t));
15293 	}
15294 
15295 	mutex_exit(&dtrace_lock);
15296 	mutex_exit(&mod_lock);
15297 	mutex_exit(&dtrace_provider_lock);
15298 }
15299 
15300 static void
15301 dtrace_suspend(void)
15302 {
15303 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15304 }
15305 
15306 static void
15307 dtrace_resume(void)
15308 {
15309 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15310 }
15311 #endif
15312 
15313 static int
15314 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15315 {
15316 	ASSERT(MUTEX_HELD(&cpu_lock));
15317 	mutex_enter(&dtrace_lock);
15318 
15319 	switch (what) {
15320 	case CPU_CONFIG: {
15321 		dtrace_state_t *state;
15322 		dtrace_optval_t *opt, rs, c;
15323 
15324 		/*
15325 		 * For now, we only allocate a new buffer for anonymous state.
15326 		 */
15327 		if ((state = dtrace_anon.dta_state) == NULL)
15328 			break;
15329 
15330 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15331 			break;
15332 
15333 		opt = state->dts_options;
15334 		c = opt[DTRACEOPT_CPU];
15335 
15336 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15337 			break;
15338 
15339 		/*
15340 		 * Regardless of what the actual policy is, we're going to
15341 		 * temporarily set our resize policy to be manual.  We're
15342 		 * also going to temporarily set our CPU option to denote
15343 		 * the newly configured CPU.
15344 		 */
15345 		rs = opt[DTRACEOPT_BUFRESIZE];
15346 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15347 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15348 
15349 		(void) dtrace_state_buffers(state);
15350 
15351 		opt[DTRACEOPT_BUFRESIZE] = rs;
15352 		opt[DTRACEOPT_CPU] = c;
15353 
15354 		break;
15355 	}
15356 
15357 	case CPU_UNCONFIG:
15358 		/*
15359 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15360 		 * buffer will be freed when the consumer exits.)
15361 		 */
15362 		break;
15363 
15364 	default:
15365 		break;
15366 	}
15367 
15368 	mutex_exit(&dtrace_lock);
15369 	return (0);
15370 }
15371 
15372 #if defined(sun)
15373 static void
15374 dtrace_cpu_setup_initial(processorid_t cpu)
15375 {
15376 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15377 }
15378 #endif
15379 
15380 static void
15381 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15382 {
15383 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15384 		int osize, nsize;
15385 		dtrace_toxrange_t *range;
15386 
15387 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15388 
15389 		if (osize == 0) {
15390 			ASSERT(dtrace_toxrange == NULL);
15391 			ASSERT(dtrace_toxranges_max == 0);
15392 			dtrace_toxranges_max = 1;
15393 		} else {
15394 			dtrace_toxranges_max <<= 1;
15395 		}
15396 
15397 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15398 		range = kmem_zalloc(nsize, KM_SLEEP);
15399 
15400 		if (dtrace_toxrange != NULL) {
15401 			ASSERT(osize != 0);
15402 			bcopy(dtrace_toxrange, range, osize);
15403 			kmem_free(dtrace_toxrange, osize);
15404 		}
15405 
15406 		dtrace_toxrange = range;
15407 	}
15408 
15409 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15410 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15411 
15412 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15413 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15414 	dtrace_toxranges++;
15415 }
15416 
15417 /*
15418  * DTrace Driver Cookbook Functions
15419  */
15420 #if defined(sun)
15421 /*ARGSUSED*/
15422 static int
15423 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15424 {
15425 	dtrace_provider_id_t id;
15426 	dtrace_state_t *state = NULL;
15427 	dtrace_enabling_t *enab;
15428 
15429 	mutex_enter(&cpu_lock);
15430 	mutex_enter(&dtrace_provider_lock);
15431 	mutex_enter(&dtrace_lock);
15432 
15433 	if (ddi_soft_state_init(&dtrace_softstate,
15434 	    sizeof (dtrace_state_t), 0) != 0) {
15435 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15436 		mutex_exit(&cpu_lock);
15437 		mutex_exit(&dtrace_provider_lock);
15438 		mutex_exit(&dtrace_lock);
15439 		return (DDI_FAILURE);
15440 	}
15441 
15442 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15443 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15444 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15445 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15446 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15447 		ddi_remove_minor_node(devi, NULL);
15448 		ddi_soft_state_fini(&dtrace_softstate);
15449 		mutex_exit(&cpu_lock);
15450 		mutex_exit(&dtrace_provider_lock);
15451 		mutex_exit(&dtrace_lock);
15452 		return (DDI_FAILURE);
15453 	}
15454 
15455 	ddi_report_dev(devi);
15456 	dtrace_devi = devi;
15457 
15458 	dtrace_modload = dtrace_module_loaded;
15459 	dtrace_modunload = dtrace_module_unloaded;
15460 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15461 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15462 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15463 	dtrace_cpustart_init = dtrace_suspend;
15464 	dtrace_cpustart_fini = dtrace_resume;
15465 	dtrace_debugger_init = dtrace_suspend;
15466 	dtrace_debugger_fini = dtrace_resume;
15467 
15468 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15469 
15470 	ASSERT(MUTEX_HELD(&cpu_lock));
15471 
15472 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15473 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15474 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15475 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15476 	    VM_SLEEP | VMC_IDENTIFIER);
15477 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15478 	    1, INT_MAX, 0);
15479 
15480 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15481 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15482 	    NULL, NULL, NULL, NULL, NULL, 0);
15483 
15484 	ASSERT(MUTEX_HELD(&cpu_lock));
15485 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15486 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15487 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15488 
15489 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15490 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15491 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15492 
15493 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15494 	    offsetof(dtrace_probe_t, dtpr_nextname),
15495 	    offsetof(dtrace_probe_t, dtpr_prevname));
15496 
15497 	if (dtrace_retain_max < 1) {
15498 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15499 		    "setting to 1", dtrace_retain_max);
15500 		dtrace_retain_max = 1;
15501 	}
15502 
15503 	/*
15504 	 * Now discover our toxic ranges.
15505 	 */
15506 	dtrace_toxic_ranges(dtrace_toxrange_add);
15507 
15508 	/*
15509 	 * Before we register ourselves as a provider to our own framework,
15510 	 * we would like to assert that dtrace_provider is NULL -- but that's
15511 	 * not true if we were loaded as a dependency of a DTrace provider.
15512 	 * Once we've registered, we can assert that dtrace_provider is our
15513 	 * pseudo provider.
15514 	 */
15515 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15516 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15517 
15518 	ASSERT(dtrace_provider != NULL);
15519 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15520 
15521 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15522 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15523 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15524 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15525 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15526 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15527 
15528 	dtrace_anon_property();
15529 	mutex_exit(&cpu_lock);
15530 
15531 	/*
15532 	 * If DTrace helper tracing is enabled, we need to allocate the
15533 	 * trace buffer and initialize the values.
15534 	 */
15535 	if (dtrace_helptrace_enabled) {
15536 		ASSERT(dtrace_helptrace_buffer == NULL);
15537 		dtrace_helptrace_buffer =
15538 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15539 		dtrace_helptrace_next = 0;
15540 	}
15541 
15542 	/*
15543 	 * If there are already providers, we must ask them to provide their
15544 	 * probes, and then match any anonymous enabling against them.  Note
15545 	 * that there should be no other retained enablings at this time:
15546 	 * the only retained enablings at this time should be the anonymous
15547 	 * enabling.
15548 	 */
15549 	if (dtrace_anon.dta_enabling != NULL) {
15550 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15551 
15552 		dtrace_enabling_provide(NULL);
15553 		state = dtrace_anon.dta_state;
15554 
15555 		/*
15556 		 * We couldn't hold cpu_lock across the above call to
15557 		 * dtrace_enabling_provide(), but we must hold it to actually
15558 		 * enable the probes.  We have to drop all of our locks, pick
15559 		 * up cpu_lock, and regain our locks before matching the
15560 		 * retained anonymous enabling.
15561 		 */
15562 		mutex_exit(&dtrace_lock);
15563 		mutex_exit(&dtrace_provider_lock);
15564 
15565 		mutex_enter(&cpu_lock);
15566 		mutex_enter(&dtrace_provider_lock);
15567 		mutex_enter(&dtrace_lock);
15568 
15569 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15570 			(void) dtrace_enabling_match(enab, NULL);
15571 
15572 		mutex_exit(&cpu_lock);
15573 	}
15574 
15575 	mutex_exit(&dtrace_lock);
15576 	mutex_exit(&dtrace_provider_lock);
15577 
15578 	if (state != NULL) {
15579 		/*
15580 		 * If we created any anonymous state, set it going now.
15581 		 */
15582 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15583 	}
15584 
15585 	return (DDI_SUCCESS);
15586 }
15587 #endif
15588 
15589 #if !defined(sun)
15590 #if __FreeBSD_version >= 800039
15591 static void dtrace_dtr(void *);
15592 #endif
15593 #endif
15594 
15595 /*ARGSUSED*/
15596 static int
15597 #if defined(sun)
15598 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15599 #else
15600 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15601 #endif
15602 {
15603 	dtrace_state_t *state;
15604 	uint32_t priv;
15605 	uid_t uid;
15606 	zoneid_t zoneid;
15607 
15608 #if defined(sun)
15609 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15610 		return (0);
15611 
15612 	/*
15613 	 * If this wasn't an open with the "helper" minor, then it must be
15614 	 * the "dtrace" minor.
15615 	 */
15616 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15617 #else
15618 	cred_t *cred_p = NULL;
15619 
15620 #if __FreeBSD_version < 800039
15621 	/*
15622 	 * The first minor device is the one that is cloned so there is
15623 	 * nothing more to do here.
15624 	 */
15625 	if (dev2unit(dev) == 0)
15626 		return 0;
15627 
15628 	/*
15629 	 * Devices are cloned, so if the DTrace state has already
15630 	 * been allocated, that means this device belongs to a
15631 	 * different client. Each client should open '/dev/dtrace'
15632 	 * to get a cloned device.
15633 	 */
15634 	if (dev->si_drv1 != NULL)
15635 		return (EBUSY);
15636 #endif
15637 
15638 	cred_p = dev->si_cred;
15639 #endif
15640 
15641 	/*
15642 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15643 	 * caller lacks sufficient permission to do anything with DTrace.
15644 	 */
15645 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15646 	if (priv == DTRACE_PRIV_NONE) {
15647 #if !defined(sun)
15648 #if __FreeBSD_version < 800039
15649 		/* Destroy the cloned device. */
15650                 destroy_dev(dev);
15651 #endif
15652 #endif
15653 
15654 		return (EACCES);
15655 	}
15656 
15657 	/*
15658 	 * Ask all providers to provide all their probes.
15659 	 */
15660 	mutex_enter(&dtrace_provider_lock);
15661 	dtrace_probe_provide(NULL, NULL);
15662 	mutex_exit(&dtrace_provider_lock);
15663 
15664 	mutex_enter(&cpu_lock);
15665 	mutex_enter(&dtrace_lock);
15666 	dtrace_opens++;
15667 	dtrace_membar_producer();
15668 
15669 #if defined(sun)
15670 	/*
15671 	 * If the kernel debugger is active (that is, if the kernel debugger
15672 	 * modified text in some way), we won't allow the open.
15673 	 */
15674 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15675 		dtrace_opens--;
15676 		mutex_exit(&cpu_lock);
15677 		mutex_exit(&dtrace_lock);
15678 		return (EBUSY);
15679 	}
15680 
15681 	state = dtrace_state_create(devp, cred_p);
15682 #else
15683 	state = dtrace_state_create(dev);
15684 #if __FreeBSD_version < 800039
15685 	dev->si_drv1 = state;
15686 #else
15687 	devfs_set_cdevpriv(state, dtrace_dtr);
15688 #endif
15689 	/* This code actually belongs in dtrace_attach() */
15690 	if (dtrace_opens == 1)
15691 		dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15692 		    1, INT_MAX, 0);
15693 #endif
15694 
15695 	mutex_exit(&cpu_lock);
15696 
15697 	if (state == NULL) {
15698 #if defined(sun)
15699 		if (--dtrace_opens == 0)
15700 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15701 #else
15702 		--dtrace_opens;
15703 #endif
15704 		mutex_exit(&dtrace_lock);
15705 #if !defined(sun)
15706 #if __FreeBSD_version < 800039
15707 		/* Destroy the cloned device. */
15708                 destroy_dev(dev);
15709 #endif
15710 #endif
15711 		return (EAGAIN);
15712 	}
15713 
15714 	mutex_exit(&dtrace_lock);
15715 
15716 	return (0);
15717 }
15718 
15719 /*ARGSUSED*/
15720 #if defined(sun)
15721 static int
15722 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15723 #elif __FreeBSD_version < 800039
15724 static int
15725 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15726 #else
15727 static void
15728 dtrace_dtr(void *data)
15729 #endif
15730 {
15731 #if defined(sun)
15732 	minor_t minor = getminor(dev);
15733 	dtrace_state_t *state;
15734 
15735 	if (minor == DTRACEMNRN_HELPER)
15736 		return (0);
15737 
15738 	state = ddi_get_soft_state(dtrace_softstate, minor);
15739 #else
15740 #if __FreeBSD_version < 800039
15741 	dtrace_state_t *state = dev->si_drv1;
15742 
15743 	/* Check if this is not a cloned device. */
15744 	if (dev2unit(dev) == 0)
15745 		return (0);
15746 #else
15747 	dtrace_state_t *state = data;
15748 #endif
15749 
15750 #endif
15751 
15752 	mutex_enter(&cpu_lock);
15753 	mutex_enter(&dtrace_lock);
15754 
15755 	if (state != NULL) {
15756 		if (state->dts_anon) {
15757 			/*
15758 			 * There is anonymous state. Destroy that first.
15759 			 */
15760 			ASSERT(dtrace_anon.dta_state == NULL);
15761 			dtrace_state_destroy(state->dts_anon);
15762 		}
15763 
15764 		dtrace_state_destroy(state);
15765 
15766 #if !defined(sun)
15767 		kmem_free(state, 0);
15768 #if __FreeBSD_version < 800039
15769 		dev->si_drv1 = NULL;
15770 #endif
15771 #endif
15772 	}
15773 
15774 	ASSERT(dtrace_opens > 0);
15775 #if defined(sun)
15776 	if (--dtrace_opens == 0)
15777 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15778 #else
15779 	--dtrace_opens;
15780 	/* This code actually belongs in dtrace_detach() */
15781 	if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15782 		taskq_destroy(dtrace_taskq);
15783 		dtrace_taskq = NULL;
15784 	}
15785 #endif
15786 
15787 	mutex_exit(&dtrace_lock);
15788 	mutex_exit(&cpu_lock);
15789 
15790 #if __FreeBSD_version < 800039
15791 	/* Schedule this cloned device to be destroyed. */
15792 	destroy_dev_sched(dev);
15793 #endif
15794 
15795 #if defined(sun) || __FreeBSD_version < 800039
15796 	return (0);
15797 #endif
15798 }
15799 
15800 #if defined(sun)
15801 /*ARGSUSED*/
15802 static int
15803 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15804 {
15805 	int rval;
15806 	dof_helper_t help, *dhp = NULL;
15807 
15808 	switch (cmd) {
15809 	case DTRACEHIOC_ADDDOF:
15810 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15811 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15812 			return (EFAULT);
15813 		}
15814 
15815 		dhp = &help;
15816 		arg = (intptr_t)help.dofhp_dof;
15817 		/*FALLTHROUGH*/
15818 
15819 	case DTRACEHIOC_ADD: {
15820 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15821 
15822 		if (dof == NULL)
15823 			return (rval);
15824 
15825 		mutex_enter(&dtrace_lock);
15826 
15827 		/*
15828 		 * dtrace_helper_slurp() takes responsibility for the dof --
15829 		 * it may free it now or it may save it and free it later.
15830 		 */
15831 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15832 			*rv = rval;
15833 			rval = 0;
15834 		} else {
15835 			rval = EINVAL;
15836 		}
15837 
15838 		mutex_exit(&dtrace_lock);
15839 		return (rval);
15840 	}
15841 
15842 	case DTRACEHIOC_REMOVE: {
15843 		mutex_enter(&dtrace_lock);
15844 		rval = dtrace_helper_destroygen(arg);
15845 		mutex_exit(&dtrace_lock);
15846 
15847 		return (rval);
15848 	}
15849 
15850 	default:
15851 		break;
15852 	}
15853 
15854 	return (ENOTTY);
15855 }
15856 
15857 /*ARGSUSED*/
15858 static int
15859 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15860 {
15861 	minor_t minor = getminor(dev);
15862 	dtrace_state_t *state;
15863 	int rval;
15864 
15865 	if (minor == DTRACEMNRN_HELPER)
15866 		return (dtrace_ioctl_helper(cmd, arg, rv));
15867 
15868 	state = ddi_get_soft_state(dtrace_softstate, minor);
15869 
15870 	if (state->dts_anon) {
15871 		ASSERT(dtrace_anon.dta_state == NULL);
15872 		state = state->dts_anon;
15873 	}
15874 
15875 	switch (cmd) {
15876 	case DTRACEIOC_PROVIDER: {
15877 		dtrace_providerdesc_t pvd;
15878 		dtrace_provider_t *pvp;
15879 
15880 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15881 			return (EFAULT);
15882 
15883 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15884 		mutex_enter(&dtrace_provider_lock);
15885 
15886 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15887 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15888 				break;
15889 		}
15890 
15891 		mutex_exit(&dtrace_provider_lock);
15892 
15893 		if (pvp == NULL)
15894 			return (ESRCH);
15895 
15896 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15897 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15898 
15899 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15900 			return (EFAULT);
15901 
15902 		return (0);
15903 	}
15904 
15905 	case DTRACEIOC_EPROBE: {
15906 		dtrace_eprobedesc_t epdesc;
15907 		dtrace_ecb_t *ecb;
15908 		dtrace_action_t *act;
15909 		void *buf;
15910 		size_t size;
15911 		uintptr_t dest;
15912 		int nrecs;
15913 
15914 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15915 			return (EFAULT);
15916 
15917 		mutex_enter(&dtrace_lock);
15918 
15919 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15920 			mutex_exit(&dtrace_lock);
15921 			return (EINVAL);
15922 		}
15923 
15924 		if (ecb->dte_probe == NULL) {
15925 			mutex_exit(&dtrace_lock);
15926 			return (EINVAL);
15927 		}
15928 
15929 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15930 		epdesc.dtepd_uarg = ecb->dte_uarg;
15931 		epdesc.dtepd_size = ecb->dte_size;
15932 
15933 		nrecs = epdesc.dtepd_nrecs;
15934 		epdesc.dtepd_nrecs = 0;
15935 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15936 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15937 				continue;
15938 
15939 			epdesc.dtepd_nrecs++;
15940 		}
15941 
15942 		/*
15943 		 * Now that we have the size, we need to allocate a temporary
15944 		 * buffer in which to store the complete description.  We need
15945 		 * the temporary buffer to be able to drop dtrace_lock()
15946 		 * across the copyout(), below.
15947 		 */
15948 		size = sizeof (dtrace_eprobedesc_t) +
15949 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15950 
15951 		buf = kmem_alloc(size, KM_SLEEP);
15952 		dest = (uintptr_t)buf;
15953 
15954 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15955 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15956 
15957 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15958 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15959 				continue;
15960 
15961 			if (nrecs-- == 0)
15962 				break;
15963 
15964 			bcopy(&act->dta_rec, (void *)dest,
15965 			    sizeof (dtrace_recdesc_t));
15966 			dest += sizeof (dtrace_recdesc_t);
15967 		}
15968 
15969 		mutex_exit(&dtrace_lock);
15970 
15971 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15972 			kmem_free(buf, size);
15973 			return (EFAULT);
15974 		}
15975 
15976 		kmem_free(buf, size);
15977 		return (0);
15978 	}
15979 
15980 	case DTRACEIOC_AGGDESC: {
15981 		dtrace_aggdesc_t aggdesc;
15982 		dtrace_action_t *act;
15983 		dtrace_aggregation_t *agg;
15984 		int nrecs;
15985 		uint32_t offs;
15986 		dtrace_recdesc_t *lrec;
15987 		void *buf;
15988 		size_t size;
15989 		uintptr_t dest;
15990 
15991 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15992 			return (EFAULT);
15993 
15994 		mutex_enter(&dtrace_lock);
15995 
15996 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15997 			mutex_exit(&dtrace_lock);
15998 			return (EINVAL);
15999 		}
16000 
16001 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16002 
16003 		nrecs = aggdesc.dtagd_nrecs;
16004 		aggdesc.dtagd_nrecs = 0;
16005 
16006 		offs = agg->dtag_base;
16007 		lrec = &agg->dtag_action.dta_rec;
16008 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16009 
16010 		for (act = agg->dtag_first; ; act = act->dta_next) {
16011 			ASSERT(act->dta_intuple ||
16012 			    DTRACEACT_ISAGG(act->dta_kind));
16013 
16014 			/*
16015 			 * If this action has a record size of zero, it
16016 			 * denotes an argument to the aggregating action.
16017 			 * Because the presence of this record doesn't (or
16018 			 * shouldn't) affect the way the data is interpreted,
16019 			 * we don't copy it out to save user-level the
16020 			 * confusion of dealing with a zero-length record.
16021 			 */
16022 			if (act->dta_rec.dtrd_size == 0) {
16023 				ASSERT(agg->dtag_hasarg);
16024 				continue;
16025 			}
16026 
16027 			aggdesc.dtagd_nrecs++;
16028 
16029 			if (act == &agg->dtag_action)
16030 				break;
16031 		}
16032 
16033 		/*
16034 		 * Now that we have the size, we need to allocate a temporary
16035 		 * buffer in which to store the complete description.  We need
16036 		 * the temporary buffer to be able to drop dtrace_lock()
16037 		 * across the copyout(), below.
16038 		 */
16039 		size = sizeof (dtrace_aggdesc_t) +
16040 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16041 
16042 		buf = kmem_alloc(size, KM_SLEEP);
16043 		dest = (uintptr_t)buf;
16044 
16045 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16046 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16047 
16048 		for (act = agg->dtag_first; ; act = act->dta_next) {
16049 			dtrace_recdesc_t rec = act->dta_rec;
16050 
16051 			/*
16052 			 * See the comment in the above loop for why we pass
16053 			 * over zero-length records.
16054 			 */
16055 			if (rec.dtrd_size == 0) {
16056 				ASSERT(agg->dtag_hasarg);
16057 				continue;
16058 			}
16059 
16060 			if (nrecs-- == 0)
16061 				break;
16062 
16063 			rec.dtrd_offset -= offs;
16064 			bcopy(&rec, (void *)dest, sizeof (rec));
16065 			dest += sizeof (dtrace_recdesc_t);
16066 
16067 			if (act == &agg->dtag_action)
16068 				break;
16069 		}
16070 
16071 		mutex_exit(&dtrace_lock);
16072 
16073 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16074 			kmem_free(buf, size);
16075 			return (EFAULT);
16076 		}
16077 
16078 		kmem_free(buf, size);
16079 		return (0);
16080 	}
16081 
16082 	case DTRACEIOC_ENABLE: {
16083 		dof_hdr_t *dof;
16084 		dtrace_enabling_t *enab = NULL;
16085 		dtrace_vstate_t *vstate;
16086 		int err = 0;
16087 
16088 		*rv = 0;
16089 
16090 		/*
16091 		 * If a NULL argument has been passed, we take this as our
16092 		 * cue to reevaluate our enablings.
16093 		 */
16094 		if (arg == NULL) {
16095 			dtrace_enabling_matchall();
16096 
16097 			return (0);
16098 		}
16099 
16100 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16101 			return (rval);
16102 
16103 		mutex_enter(&cpu_lock);
16104 		mutex_enter(&dtrace_lock);
16105 		vstate = &state->dts_vstate;
16106 
16107 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16108 			mutex_exit(&dtrace_lock);
16109 			mutex_exit(&cpu_lock);
16110 			dtrace_dof_destroy(dof);
16111 			return (EBUSY);
16112 		}
16113 
16114 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16115 			mutex_exit(&dtrace_lock);
16116 			mutex_exit(&cpu_lock);
16117 			dtrace_dof_destroy(dof);
16118 			return (EINVAL);
16119 		}
16120 
16121 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16122 			dtrace_enabling_destroy(enab);
16123 			mutex_exit(&dtrace_lock);
16124 			mutex_exit(&cpu_lock);
16125 			dtrace_dof_destroy(dof);
16126 			return (rval);
16127 		}
16128 
16129 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16130 			err = dtrace_enabling_retain(enab);
16131 		} else {
16132 			dtrace_enabling_destroy(enab);
16133 		}
16134 
16135 		mutex_exit(&cpu_lock);
16136 		mutex_exit(&dtrace_lock);
16137 		dtrace_dof_destroy(dof);
16138 
16139 		return (err);
16140 	}
16141 
16142 	case DTRACEIOC_REPLICATE: {
16143 		dtrace_repldesc_t desc;
16144 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16145 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16146 		int err;
16147 
16148 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16149 			return (EFAULT);
16150 
16151 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16152 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16153 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16154 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16155 
16156 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16157 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16158 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16159 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16160 
16161 		mutex_enter(&dtrace_lock);
16162 		err = dtrace_enabling_replicate(state, match, create);
16163 		mutex_exit(&dtrace_lock);
16164 
16165 		return (err);
16166 	}
16167 
16168 	case DTRACEIOC_PROBEMATCH:
16169 	case DTRACEIOC_PROBES: {
16170 		dtrace_probe_t *probe = NULL;
16171 		dtrace_probedesc_t desc;
16172 		dtrace_probekey_t pkey;
16173 		dtrace_id_t i;
16174 		int m = 0;
16175 		uint32_t priv;
16176 		uid_t uid;
16177 		zoneid_t zoneid;
16178 
16179 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16180 			return (EFAULT);
16181 
16182 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16183 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16184 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16185 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16186 
16187 		/*
16188 		 * Before we attempt to match this probe, we want to give
16189 		 * all providers the opportunity to provide it.
16190 		 */
16191 		if (desc.dtpd_id == DTRACE_IDNONE) {
16192 			mutex_enter(&dtrace_provider_lock);
16193 			dtrace_probe_provide(&desc, NULL);
16194 			mutex_exit(&dtrace_provider_lock);
16195 			desc.dtpd_id++;
16196 		}
16197 
16198 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16199 			dtrace_probekey(&desc, &pkey);
16200 			pkey.dtpk_id = DTRACE_IDNONE;
16201 		}
16202 
16203 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16204 
16205 		mutex_enter(&dtrace_lock);
16206 
16207 		if (cmd == DTRACEIOC_PROBEMATCH) {
16208 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16209 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16210 				    (m = dtrace_match_probe(probe, &pkey,
16211 				    priv, uid, zoneid)) != 0)
16212 					break;
16213 			}
16214 
16215 			if (m < 0) {
16216 				mutex_exit(&dtrace_lock);
16217 				return (EINVAL);
16218 			}
16219 
16220 		} else {
16221 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16222 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16223 				    dtrace_match_priv(probe, priv, uid, zoneid))
16224 					break;
16225 			}
16226 		}
16227 
16228 		if (probe == NULL) {
16229 			mutex_exit(&dtrace_lock);
16230 			return (ESRCH);
16231 		}
16232 
16233 		dtrace_probe_description(probe, &desc);
16234 		mutex_exit(&dtrace_lock);
16235 
16236 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16237 			return (EFAULT);
16238 
16239 		return (0);
16240 	}
16241 
16242 	case DTRACEIOC_PROBEARG: {
16243 		dtrace_argdesc_t desc;
16244 		dtrace_probe_t *probe;
16245 		dtrace_provider_t *prov;
16246 
16247 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16248 			return (EFAULT);
16249 
16250 		if (desc.dtargd_id == DTRACE_IDNONE)
16251 			return (EINVAL);
16252 
16253 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16254 			return (EINVAL);
16255 
16256 		mutex_enter(&dtrace_provider_lock);
16257 		mutex_enter(&mod_lock);
16258 		mutex_enter(&dtrace_lock);
16259 
16260 		if (desc.dtargd_id > dtrace_nprobes) {
16261 			mutex_exit(&dtrace_lock);
16262 			mutex_exit(&mod_lock);
16263 			mutex_exit(&dtrace_provider_lock);
16264 			return (EINVAL);
16265 		}
16266 
16267 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16268 			mutex_exit(&dtrace_lock);
16269 			mutex_exit(&mod_lock);
16270 			mutex_exit(&dtrace_provider_lock);
16271 			return (EINVAL);
16272 		}
16273 
16274 		mutex_exit(&dtrace_lock);
16275 
16276 		prov = probe->dtpr_provider;
16277 
16278 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16279 			/*
16280 			 * There isn't any typed information for this probe.
16281 			 * Set the argument number to DTRACE_ARGNONE.
16282 			 */
16283 			desc.dtargd_ndx = DTRACE_ARGNONE;
16284 		} else {
16285 			desc.dtargd_native[0] = '\0';
16286 			desc.dtargd_xlate[0] = '\0';
16287 			desc.dtargd_mapping = desc.dtargd_ndx;
16288 
16289 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16290 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16291 		}
16292 
16293 		mutex_exit(&mod_lock);
16294 		mutex_exit(&dtrace_provider_lock);
16295 
16296 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16297 			return (EFAULT);
16298 
16299 		return (0);
16300 	}
16301 
16302 	case DTRACEIOC_GO: {
16303 		processorid_t cpuid;
16304 		rval = dtrace_state_go(state, &cpuid);
16305 
16306 		if (rval != 0)
16307 			return (rval);
16308 
16309 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16310 			return (EFAULT);
16311 
16312 		return (0);
16313 	}
16314 
16315 	case DTRACEIOC_STOP: {
16316 		processorid_t cpuid;
16317 
16318 		mutex_enter(&dtrace_lock);
16319 		rval = dtrace_state_stop(state, &cpuid);
16320 		mutex_exit(&dtrace_lock);
16321 
16322 		if (rval != 0)
16323 			return (rval);
16324 
16325 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16326 			return (EFAULT);
16327 
16328 		return (0);
16329 	}
16330 
16331 	case DTRACEIOC_DOFGET: {
16332 		dof_hdr_t hdr, *dof;
16333 		uint64_t len;
16334 
16335 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16336 			return (EFAULT);
16337 
16338 		mutex_enter(&dtrace_lock);
16339 		dof = dtrace_dof_create(state);
16340 		mutex_exit(&dtrace_lock);
16341 
16342 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16343 		rval = copyout(dof, (void *)arg, len);
16344 		dtrace_dof_destroy(dof);
16345 
16346 		return (rval == 0 ? 0 : EFAULT);
16347 	}
16348 
16349 	case DTRACEIOC_AGGSNAP:
16350 	case DTRACEIOC_BUFSNAP: {
16351 		dtrace_bufdesc_t desc;
16352 		caddr_t cached;
16353 		dtrace_buffer_t *buf;
16354 
16355 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16356 			return (EFAULT);
16357 
16358 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16359 			return (EINVAL);
16360 
16361 		mutex_enter(&dtrace_lock);
16362 
16363 		if (cmd == DTRACEIOC_BUFSNAP) {
16364 			buf = &state->dts_buffer[desc.dtbd_cpu];
16365 		} else {
16366 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16367 		}
16368 
16369 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16370 			size_t sz = buf->dtb_offset;
16371 
16372 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16373 				mutex_exit(&dtrace_lock);
16374 				return (EBUSY);
16375 			}
16376 
16377 			/*
16378 			 * If this buffer has already been consumed, we're
16379 			 * going to indicate that there's nothing left here
16380 			 * to consume.
16381 			 */
16382 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16383 				mutex_exit(&dtrace_lock);
16384 
16385 				desc.dtbd_size = 0;
16386 				desc.dtbd_drops = 0;
16387 				desc.dtbd_errors = 0;
16388 				desc.dtbd_oldest = 0;
16389 				sz = sizeof (desc);
16390 
16391 				if (copyout(&desc, (void *)arg, sz) != 0)
16392 					return (EFAULT);
16393 
16394 				return (0);
16395 			}
16396 
16397 			/*
16398 			 * If this is a ring buffer that has wrapped, we want
16399 			 * to copy the whole thing out.
16400 			 */
16401 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16402 				dtrace_buffer_polish(buf);
16403 				sz = buf->dtb_size;
16404 			}
16405 
16406 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16407 				mutex_exit(&dtrace_lock);
16408 				return (EFAULT);
16409 			}
16410 
16411 			desc.dtbd_size = sz;
16412 			desc.dtbd_drops = buf->dtb_drops;
16413 			desc.dtbd_errors = buf->dtb_errors;
16414 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16415 			desc.dtbd_timestamp = dtrace_gethrtime();
16416 
16417 			mutex_exit(&dtrace_lock);
16418 
16419 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16420 				return (EFAULT);
16421 
16422 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16423 
16424 			return (0);
16425 		}
16426 
16427 		if (buf->dtb_tomax == NULL) {
16428 			ASSERT(buf->dtb_xamot == NULL);
16429 			mutex_exit(&dtrace_lock);
16430 			return (ENOENT);
16431 		}
16432 
16433 		cached = buf->dtb_tomax;
16434 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16435 
16436 		dtrace_xcall(desc.dtbd_cpu,
16437 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16438 
16439 		state->dts_errors += buf->dtb_xamot_errors;
16440 
16441 		/*
16442 		 * If the buffers did not actually switch, then the cross call
16443 		 * did not take place -- presumably because the given CPU is
16444 		 * not in the ready set.  If this is the case, we'll return
16445 		 * ENOENT.
16446 		 */
16447 		if (buf->dtb_tomax == cached) {
16448 			ASSERT(buf->dtb_xamot != cached);
16449 			mutex_exit(&dtrace_lock);
16450 			return (ENOENT);
16451 		}
16452 
16453 		ASSERT(cached == buf->dtb_xamot);
16454 
16455 		/*
16456 		 * We have our snapshot; now copy it out.
16457 		 */
16458 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16459 		    buf->dtb_xamot_offset) != 0) {
16460 			mutex_exit(&dtrace_lock);
16461 			return (EFAULT);
16462 		}
16463 
16464 		desc.dtbd_size = buf->dtb_xamot_offset;
16465 		desc.dtbd_drops = buf->dtb_xamot_drops;
16466 		desc.dtbd_errors = buf->dtb_xamot_errors;
16467 		desc.dtbd_oldest = 0;
16468 		desc.dtbd_timestamp = buf->dtb_switched;
16469 
16470 		mutex_exit(&dtrace_lock);
16471 
16472 		/*
16473 		 * Finally, copy out the buffer description.
16474 		 */
16475 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16476 			return (EFAULT);
16477 
16478 		return (0);
16479 	}
16480 
16481 	case DTRACEIOC_CONF: {
16482 		dtrace_conf_t conf;
16483 
16484 		bzero(&conf, sizeof (conf));
16485 		conf.dtc_difversion = DIF_VERSION;
16486 		conf.dtc_difintregs = DIF_DIR_NREGS;
16487 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16488 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16489 
16490 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16491 			return (EFAULT);
16492 
16493 		return (0);
16494 	}
16495 
16496 	case DTRACEIOC_STATUS: {
16497 		dtrace_status_t stat;
16498 		dtrace_dstate_t *dstate;
16499 		int i, j;
16500 		uint64_t nerrs;
16501 
16502 		/*
16503 		 * See the comment in dtrace_state_deadman() for the reason
16504 		 * for setting dts_laststatus to INT64_MAX before setting
16505 		 * it to the correct value.
16506 		 */
16507 		state->dts_laststatus = INT64_MAX;
16508 		dtrace_membar_producer();
16509 		state->dts_laststatus = dtrace_gethrtime();
16510 
16511 		bzero(&stat, sizeof (stat));
16512 
16513 		mutex_enter(&dtrace_lock);
16514 
16515 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16516 			mutex_exit(&dtrace_lock);
16517 			return (ENOENT);
16518 		}
16519 
16520 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16521 			stat.dtst_exiting = 1;
16522 
16523 		nerrs = state->dts_errors;
16524 		dstate = &state->dts_vstate.dtvs_dynvars;
16525 
16526 		for (i = 0; i < NCPU; i++) {
16527 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16528 
16529 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16530 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16531 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16532 
16533 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16534 				stat.dtst_filled++;
16535 
16536 			nerrs += state->dts_buffer[i].dtb_errors;
16537 
16538 			for (j = 0; j < state->dts_nspeculations; j++) {
16539 				dtrace_speculation_t *spec;
16540 				dtrace_buffer_t *buf;
16541 
16542 				spec = &state->dts_speculations[j];
16543 				buf = &spec->dtsp_buffer[i];
16544 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16545 			}
16546 		}
16547 
16548 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16549 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16550 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16551 		stat.dtst_dblerrors = state->dts_dblerrors;
16552 		stat.dtst_killed =
16553 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16554 		stat.dtst_errors = nerrs;
16555 
16556 		mutex_exit(&dtrace_lock);
16557 
16558 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16559 			return (EFAULT);
16560 
16561 		return (0);
16562 	}
16563 
16564 	case DTRACEIOC_FORMAT: {
16565 		dtrace_fmtdesc_t fmt;
16566 		char *str;
16567 		int len;
16568 
16569 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16570 			return (EFAULT);
16571 
16572 		mutex_enter(&dtrace_lock);
16573 
16574 		if (fmt.dtfd_format == 0 ||
16575 		    fmt.dtfd_format > state->dts_nformats) {
16576 			mutex_exit(&dtrace_lock);
16577 			return (EINVAL);
16578 		}
16579 
16580 		/*
16581 		 * Format strings are allocated contiguously and they are
16582 		 * never freed; if a format index is less than the number
16583 		 * of formats, we can assert that the format map is non-NULL
16584 		 * and that the format for the specified index is non-NULL.
16585 		 */
16586 		ASSERT(state->dts_formats != NULL);
16587 		str = state->dts_formats[fmt.dtfd_format - 1];
16588 		ASSERT(str != NULL);
16589 
16590 		len = strlen(str) + 1;
16591 
16592 		if (len > fmt.dtfd_length) {
16593 			fmt.dtfd_length = len;
16594 
16595 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16596 				mutex_exit(&dtrace_lock);
16597 				return (EINVAL);
16598 			}
16599 		} else {
16600 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16601 				mutex_exit(&dtrace_lock);
16602 				return (EINVAL);
16603 			}
16604 		}
16605 
16606 		mutex_exit(&dtrace_lock);
16607 		return (0);
16608 	}
16609 
16610 	default:
16611 		break;
16612 	}
16613 
16614 	return (ENOTTY);
16615 }
16616 
16617 /*ARGSUSED*/
16618 static int
16619 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16620 {
16621 	dtrace_state_t *state;
16622 
16623 	switch (cmd) {
16624 	case DDI_DETACH:
16625 		break;
16626 
16627 	case DDI_SUSPEND:
16628 		return (DDI_SUCCESS);
16629 
16630 	default:
16631 		return (DDI_FAILURE);
16632 	}
16633 
16634 	mutex_enter(&cpu_lock);
16635 	mutex_enter(&dtrace_provider_lock);
16636 	mutex_enter(&dtrace_lock);
16637 
16638 	ASSERT(dtrace_opens == 0);
16639 
16640 	if (dtrace_helpers > 0) {
16641 		mutex_exit(&dtrace_provider_lock);
16642 		mutex_exit(&dtrace_lock);
16643 		mutex_exit(&cpu_lock);
16644 		return (DDI_FAILURE);
16645 	}
16646 
16647 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16648 		mutex_exit(&dtrace_provider_lock);
16649 		mutex_exit(&dtrace_lock);
16650 		mutex_exit(&cpu_lock);
16651 		return (DDI_FAILURE);
16652 	}
16653 
16654 	dtrace_provider = NULL;
16655 
16656 	if ((state = dtrace_anon_grab()) != NULL) {
16657 		/*
16658 		 * If there were ECBs on this state, the provider should
16659 		 * have not been allowed to detach; assert that there is
16660 		 * none.
16661 		 */
16662 		ASSERT(state->dts_necbs == 0);
16663 		dtrace_state_destroy(state);
16664 
16665 		/*
16666 		 * If we're being detached with anonymous state, we need to
16667 		 * indicate to the kernel debugger that DTrace is now inactive.
16668 		 */
16669 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16670 	}
16671 
16672 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16673 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16674 	dtrace_cpu_init = NULL;
16675 	dtrace_helpers_cleanup = NULL;
16676 	dtrace_helpers_fork = NULL;
16677 	dtrace_cpustart_init = NULL;
16678 	dtrace_cpustart_fini = NULL;
16679 	dtrace_debugger_init = NULL;
16680 	dtrace_debugger_fini = NULL;
16681 	dtrace_modload = NULL;
16682 	dtrace_modunload = NULL;
16683 
16684 	mutex_exit(&cpu_lock);
16685 
16686 	if (dtrace_helptrace_enabled) {
16687 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16688 		dtrace_helptrace_buffer = NULL;
16689 	}
16690 
16691 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16692 	dtrace_probes = NULL;
16693 	dtrace_nprobes = 0;
16694 
16695 	dtrace_hash_destroy(dtrace_bymod);
16696 	dtrace_hash_destroy(dtrace_byfunc);
16697 	dtrace_hash_destroy(dtrace_byname);
16698 	dtrace_bymod = NULL;
16699 	dtrace_byfunc = NULL;
16700 	dtrace_byname = NULL;
16701 
16702 	kmem_cache_destroy(dtrace_state_cache);
16703 	vmem_destroy(dtrace_minor);
16704 	vmem_destroy(dtrace_arena);
16705 
16706 	if (dtrace_toxrange != NULL) {
16707 		kmem_free(dtrace_toxrange,
16708 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16709 		dtrace_toxrange = NULL;
16710 		dtrace_toxranges = 0;
16711 		dtrace_toxranges_max = 0;
16712 	}
16713 
16714 	ddi_remove_minor_node(dtrace_devi, NULL);
16715 	dtrace_devi = NULL;
16716 
16717 	ddi_soft_state_fini(&dtrace_softstate);
16718 
16719 	ASSERT(dtrace_vtime_references == 0);
16720 	ASSERT(dtrace_opens == 0);
16721 	ASSERT(dtrace_retained == NULL);
16722 
16723 	mutex_exit(&dtrace_lock);
16724 	mutex_exit(&dtrace_provider_lock);
16725 
16726 	/*
16727 	 * We don't destroy the task queue until after we have dropped our
16728 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16729 	 * attempting to do work after we have effectively detached but before
16730 	 * the task queue has been destroyed, all tasks dispatched via the
16731 	 * task queue must check that DTrace is still attached before
16732 	 * performing any operation.
16733 	 */
16734 	taskq_destroy(dtrace_taskq);
16735 	dtrace_taskq = NULL;
16736 
16737 	return (DDI_SUCCESS);
16738 }
16739 #endif
16740 
16741 #if defined(sun)
16742 /*ARGSUSED*/
16743 static int
16744 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16745 {
16746 	int error;
16747 
16748 	switch (infocmd) {
16749 	case DDI_INFO_DEVT2DEVINFO:
16750 		*result = (void *)dtrace_devi;
16751 		error = DDI_SUCCESS;
16752 		break;
16753 	case DDI_INFO_DEVT2INSTANCE:
16754 		*result = (void *)0;
16755 		error = DDI_SUCCESS;
16756 		break;
16757 	default:
16758 		error = DDI_FAILURE;
16759 	}
16760 	return (error);
16761 }
16762 #endif
16763 
16764 #if defined(sun)
16765 static struct cb_ops dtrace_cb_ops = {
16766 	dtrace_open,		/* open */
16767 	dtrace_close,		/* close */
16768 	nulldev,		/* strategy */
16769 	nulldev,		/* print */
16770 	nodev,			/* dump */
16771 	nodev,			/* read */
16772 	nodev,			/* write */
16773 	dtrace_ioctl,		/* ioctl */
16774 	nodev,			/* devmap */
16775 	nodev,			/* mmap */
16776 	nodev,			/* segmap */
16777 	nochpoll,		/* poll */
16778 	ddi_prop_op,		/* cb_prop_op */
16779 	0,			/* streamtab  */
16780 	D_NEW | D_MP		/* Driver compatibility flag */
16781 };
16782 
16783 static struct dev_ops dtrace_ops = {
16784 	DEVO_REV,		/* devo_rev */
16785 	0,			/* refcnt */
16786 	dtrace_info,		/* get_dev_info */
16787 	nulldev,		/* identify */
16788 	nulldev,		/* probe */
16789 	dtrace_attach,		/* attach */
16790 	dtrace_detach,		/* detach */
16791 	nodev,			/* reset */
16792 	&dtrace_cb_ops,		/* driver operations */
16793 	NULL,			/* bus operations */
16794 	nodev			/* dev power */
16795 };
16796 
16797 static struct modldrv modldrv = {
16798 	&mod_driverops,		/* module type (this is a pseudo driver) */
16799 	"Dynamic Tracing",	/* name of module */
16800 	&dtrace_ops,		/* driver ops */
16801 };
16802 
16803 static struct modlinkage modlinkage = {
16804 	MODREV_1,
16805 	(void *)&modldrv,
16806 	NULL
16807 };
16808 
16809 int
16810 _init(void)
16811 {
16812 	return (mod_install(&modlinkage));
16813 }
16814 
16815 int
16816 _info(struct modinfo *modinfop)
16817 {
16818 	return (mod_info(&modlinkage, modinfop));
16819 }
16820 
16821 int
16822 _fini(void)
16823 {
16824 	return (mod_remove(&modlinkage));
16825 }
16826 #else
16827 
16828 static d_ioctl_t	dtrace_ioctl;
16829 static d_ioctl_t	dtrace_ioctl_helper;
16830 static void		dtrace_load(void *);
16831 static int		dtrace_unload(void);
16832 #if __FreeBSD_version < 800039
16833 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16834 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16835 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16836 #else
16837 static struct cdev	*dtrace_dev;
16838 static struct cdev	*helper_dev;
16839 #endif
16840 
16841 void dtrace_invop_init(void);
16842 void dtrace_invop_uninit(void);
16843 
16844 static struct cdevsw dtrace_cdevsw = {
16845 	.d_version	= D_VERSION,
16846 #if __FreeBSD_version < 800039
16847 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16848 	.d_close	= dtrace_close,
16849 #endif
16850 	.d_ioctl	= dtrace_ioctl,
16851 	.d_open		= dtrace_open,
16852 	.d_name		= "dtrace",
16853 };
16854 
16855 static struct cdevsw helper_cdevsw = {
16856 	.d_version	= D_VERSION,
16857 	.d_ioctl	= dtrace_ioctl_helper,
16858 	.d_name		= "helper",
16859 };
16860 
16861 #include <dtrace_anon.c>
16862 #if __FreeBSD_version < 800039
16863 #include <dtrace_clone.c>
16864 #endif
16865 #include <dtrace_ioctl.c>
16866 #include <dtrace_load.c>
16867 #include <dtrace_modevent.c>
16868 #include <dtrace_sysctl.c>
16869 #include <dtrace_unload.c>
16870 #include <dtrace_vtime.c>
16871 #include <dtrace_hacks.c>
16872 #include <dtrace_isa.c>
16873 
16874 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16875 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16876 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16877 
16878 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16879 MODULE_VERSION(dtrace, 1);
16880 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16881 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16882 #endif
16883