1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #include <sys/errno.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/modctl.h> 75 #include <sys/conf.h> 76 #include <sys/systm.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #include <sys/policy.h> 100 #ifdef illumos 101 #include <sys/cred_impl.h> 102 #include <sys/procfs_isa.h> 103 #endif 104 #include <sys/taskq.h> 105 #ifdef illumos 106 #include <sys/mkdev.h> 107 #include <sys/kdi.h> 108 #endif 109 #include <sys/zone.h> 110 #include <sys/socket.h> 111 #include <netinet/in.h> 112 #include "strtolctype.h" 113 114 /* FreeBSD includes: */ 115 #ifndef illumos 116 #include <sys/callout.h> 117 #include <sys/ctype.h> 118 #include <sys/eventhandler.h> 119 #include <sys/limits.h> 120 #include <sys/kdb.h> 121 #include <sys/kernel.h> 122 #include <sys/malloc.h> 123 #include <sys/sysctl.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/rwlock.h> 127 #include <sys/sx.h> 128 #include <sys/dtrace_bsd.h> 129 #include <netinet/in.h> 130 #include "dtrace_cddl.h" 131 #include "dtrace_debug.c" 132 #endif 133 134 /* 135 * DTrace Tunable Variables 136 * 137 * The following variables may be tuned by adding a line to /etc/system that 138 * includes both the name of the DTrace module ("dtrace") and the name of the 139 * variable. For example: 140 * 141 * set dtrace:dtrace_destructive_disallow = 1 142 * 143 * In general, the only variables that one should be tuning this way are those 144 * that affect system-wide DTrace behavior, and for which the default behavior 145 * is undesirable. Most of these variables are tunable on a per-consumer 146 * basis using DTrace options, and need not be tuned on a system-wide basis. 147 * When tuning these variables, avoid pathological values; while some attempt 148 * is made to verify the integrity of these variables, they are not considered 149 * part of the supported interface to DTrace, and they are therefore not 150 * checked comprehensively. Further, these variables should not be tuned 151 * dynamically via "mdb -kw" or other means; they should only be tuned via 152 * /etc/system. 153 */ 154 int dtrace_destructive_disallow = 0; 155 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 156 size_t dtrace_difo_maxsize = (256 * 1024); 157 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 158 size_t dtrace_global_maxsize = (16 * 1024); 159 size_t dtrace_actions_max = (16 * 1024); 160 size_t dtrace_retain_max = 1024; 161 dtrace_optval_t dtrace_helper_actions_max = 128; 162 dtrace_optval_t dtrace_helper_providers_max = 32; 163 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 164 size_t dtrace_strsize_default = 256; 165 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 166 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 167 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 168 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 169 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 171 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 172 dtrace_optval_t dtrace_nspec_default = 1; 173 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 174 dtrace_optval_t dtrace_stackframes_default = 20; 175 dtrace_optval_t dtrace_ustackframes_default = 20; 176 dtrace_optval_t dtrace_jstackframes_default = 50; 177 dtrace_optval_t dtrace_jstackstrsize_default = 512; 178 int dtrace_msgdsize_max = 128; 179 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 180 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 181 int dtrace_devdepth_max = 32; 182 int dtrace_err_verbose; 183 hrtime_t dtrace_deadman_interval = NANOSEC; 184 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 185 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 186 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 187 #ifndef illumos 188 int dtrace_memstr_max = 4096; 189 #endif 190 191 /* 192 * DTrace External Variables 193 * 194 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 195 * available to DTrace consumers via the backtick (`) syntax. One of these, 196 * dtrace_zero, is made deliberately so: it is provided as a source of 197 * well-known, zero-filled memory. While this variable is not documented, 198 * it is used by some translators as an implementation detail. 199 */ 200 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 201 202 /* 203 * DTrace Internal Variables 204 */ 205 #ifdef illumos 206 static dev_info_t *dtrace_devi; /* device info */ 207 #endif 208 #ifdef illumos 209 static vmem_t *dtrace_arena; /* probe ID arena */ 210 static vmem_t *dtrace_minor; /* minor number arena */ 211 #else 212 static taskq_t *dtrace_taskq; /* task queue */ 213 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 214 #endif 215 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 216 static int dtrace_nprobes; /* number of probes */ 217 static dtrace_provider_t *dtrace_provider; /* provider list */ 218 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 219 static int dtrace_opens; /* number of opens */ 220 static int dtrace_helpers; /* number of helpers */ 221 static int dtrace_getf; /* number of unpriv getf()s */ 222 #ifdef illumos 223 static void *dtrace_softstate; /* softstate pointer */ 224 #endif 225 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 226 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 227 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 228 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 229 static int dtrace_toxranges; /* number of toxic ranges */ 230 static int dtrace_toxranges_max; /* size of toxic range array */ 231 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 232 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 233 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 234 static kthread_t *dtrace_panicked; /* panicking thread */ 235 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 236 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 237 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 238 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 239 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 240 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 241 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 242 #ifndef illumos 243 static struct mtx dtrace_unr_mtx; 244 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 245 int dtrace_in_probe; /* non-zero if executing a probe */ 246 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__) 247 uintptr_t dtrace_in_probe_addr; /* Address of invop when already in probe */ 248 #endif 249 static eventhandler_tag dtrace_kld_load_tag; 250 static eventhandler_tag dtrace_kld_unload_try_tag; 251 #endif 252 253 /* 254 * DTrace Locking 255 * DTrace is protected by three (relatively coarse-grained) locks: 256 * 257 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 258 * including enabling state, probes, ECBs, consumer state, helper state, 259 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 260 * probe context is lock-free -- synchronization is handled via the 261 * dtrace_sync() cross call mechanism. 262 * 263 * (2) dtrace_provider_lock is required when manipulating provider state, or 264 * when provider state must be held constant. 265 * 266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 267 * when meta provider state must be held constant. 268 * 269 * The lock ordering between these three locks is dtrace_meta_lock before 270 * dtrace_provider_lock before dtrace_lock. (In particular, there are 271 * several places where dtrace_provider_lock is held by the framework as it 272 * calls into the providers -- which then call back into the framework, 273 * grabbing dtrace_lock.) 274 * 275 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 277 * role as a coarse-grained lock; it is acquired before both of these locks. 278 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 281 * acquired _between_ dtrace_provider_lock and dtrace_lock. 282 */ 283 static kmutex_t dtrace_lock; /* probe state lock */ 284 static kmutex_t dtrace_provider_lock; /* provider state lock */ 285 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 286 287 #ifndef illumos 288 /* XXX FreeBSD hacks. */ 289 #define cr_suid cr_svuid 290 #define cr_sgid cr_svgid 291 #define ipaddr_t in_addr_t 292 #define mod_modname pathname 293 #define vuprintf vprintf 294 #define ttoproc(_a) ((_a)->td_proc) 295 #define crgetzoneid(_a) 0 296 #define NCPU MAXCPU 297 #define SNOCD 0 298 #define CPU_ON_INTR(_a) 0 299 300 #define PRIV_EFFECTIVE (1 << 0) 301 #define PRIV_DTRACE_KERNEL (1 << 1) 302 #define PRIV_DTRACE_PROC (1 << 2) 303 #define PRIV_DTRACE_USER (1 << 3) 304 #define PRIV_PROC_OWNER (1 << 4) 305 #define PRIV_PROC_ZONE (1 << 5) 306 #define PRIV_ALL ~0 307 308 SYSCTL_DECL(_debug_dtrace); 309 SYSCTL_DECL(_kern_dtrace); 310 #endif 311 312 #ifdef illumos 313 #define curcpu CPU->cpu_id 314 #endif 315 316 317 /* 318 * DTrace Provider Variables 319 * 320 * These are the variables relating to DTrace as a provider (that is, the 321 * provider of the BEGIN, END, and ERROR probes). 322 */ 323 static dtrace_pattr_t dtrace_provider_attr = { 324 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 325 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 326 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 327 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 329 }; 330 331 static void 332 dtrace_nullop(void) 333 {} 334 335 static dtrace_pops_t dtrace_provider_ops = { 336 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 337 (void (*)(void *, modctl_t *))dtrace_nullop, 338 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 339 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 340 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 341 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 342 NULL, 343 NULL, 344 NULL, 345 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 346 }; 347 348 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 349 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 350 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 351 352 /* 353 * DTrace Helper Tracing Variables 354 * 355 * These variables should be set dynamically to enable helper tracing. The 356 * only variables that should be set are dtrace_helptrace_enable (which should 357 * be set to a non-zero value to allocate helper tracing buffers on the next 358 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 359 * non-zero value to deallocate helper tracing buffers on the next close of 360 * /dev/dtrace). When (and only when) helper tracing is disabled, the 361 * buffer size may also be set via dtrace_helptrace_bufsize. 362 */ 363 int dtrace_helptrace_enable = 0; 364 int dtrace_helptrace_disable = 0; 365 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 366 uint32_t dtrace_helptrace_nlocals; 367 static dtrace_helptrace_t *dtrace_helptrace_buffer; 368 static uint32_t dtrace_helptrace_next = 0; 369 static int dtrace_helptrace_wrapped = 0; 370 371 /* 372 * DTrace Error Hashing 373 * 374 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 375 * table. This is very useful for checking coverage of tests that are 376 * expected to induce DIF or DOF processing errors, and may be useful for 377 * debugging problems in the DIF code generator or in DOF generation . The 378 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 379 */ 380 #ifdef DEBUG 381 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 382 static const char *dtrace_errlast; 383 static kthread_t *dtrace_errthread; 384 static kmutex_t dtrace_errlock; 385 #endif 386 387 /* 388 * DTrace Macros and Constants 389 * 390 * These are various macros that are useful in various spots in the 391 * implementation, along with a few random constants that have no meaning 392 * outside of the implementation. There is no real structure to this cpp 393 * mishmash -- but is there ever? 394 */ 395 #define DTRACE_HASHSTR(hash, probe) \ 396 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 397 398 #define DTRACE_HASHNEXT(hash, probe) \ 399 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 400 401 #define DTRACE_HASHPREV(hash, probe) \ 402 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 403 404 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 405 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 406 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 407 408 #define DTRACE_AGGHASHSIZE_SLEW 17 409 410 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 411 412 /* 413 * The key for a thread-local variable consists of the lower 61 bits of the 414 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 415 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 416 * equal to a variable identifier. This is necessary (but not sufficient) to 417 * assure that global associative arrays never collide with thread-local 418 * variables. To guarantee that they cannot collide, we must also define the 419 * order for keying dynamic variables. That order is: 420 * 421 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 422 * 423 * Because the variable-key and the tls-key are in orthogonal spaces, there is 424 * no way for a global variable key signature to match a thread-local key 425 * signature. 426 */ 427 #ifdef illumos 428 #define DTRACE_TLS_THRKEY(where) { \ 429 uint_t intr = 0; \ 430 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 431 for (; actv; actv >>= 1) \ 432 intr++; \ 433 ASSERT(intr < (1 << 3)); \ 434 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 435 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 436 } 437 #else 438 #define DTRACE_TLS_THRKEY(where) { \ 439 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 440 uint_t intr = 0; \ 441 uint_t actv = _c->cpu_intr_actv; \ 442 for (; actv; actv >>= 1) \ 443 intr++; \ 444 ASSERT(intr < (1 << 3)); \ 445 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 446 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 447 } 448 #endif 449 450 #define DT_BSWAP_8(x) ((x) & 0xff) 451 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 452 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 453 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 454 455 #define DT_MASK_LO 0x00000000FFFFFFFFULL 456 457 #define DTRACE_STORE(type, tomax, offset, what) \ 458 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 459 460 #ifndef __x86 461 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 462 if (addr & (size - 1)) { \ 463 *flags |= CPU_DTRACE_BADALIGN; \ 464 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 465 return (0); \ 466 } 467 #else 468 #define DTRACE_ALIGNCHECK(addr, size, flags) 469 #endif 470 471 /* 472 * Test whether a range of memory starting at testaddr of size testsz falls 473 * within the range of memory described by addr, sz. We take care to avoid 474 * problems with overflow and underflow of the unsigned quantities, and 475 * disallow all negative sizes. Ranges of size 0 are allowed. 476 */ 477 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 478 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 479 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 480 (testaddr) + (testsz) >= (testaddr)) 481 482 /* 483 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 484 * alloc_sz on the righthand side of the comparison in order to avoid overflow 485 * or underflow in the comparison with it. This is simpler than the INRANGE 486 * check above, because we know that the dtms_scratch_ptr is valid in the 487 * range. Allocations of size zero are allowed. 488 */ 489 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 490 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 491 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 492 493 #define DTRACE_LOADFUNC(bits) \ 494 /*CSTYLED*/ \ 495 uint##bits##_t \ 496 dtrace_load##bits(uintptr_t addr) \ 497 { \ 498 size_t size = bits / NBBY; \ 499 /*CSTYLED*/ \ 500 uint##bits##_t rval; \ 501 int i; \ 502 volatile uint16_t *flags = (volatile uint16_t *) \ 503 &cpu_core[curcpu].cpuc_dtrace_flags; \ 504 \ 505 DTRACE_ALIGNCHECK(addr, size, flags); \ 506 \ 507 for (i = 0; i < dtrace_toxranges; i++) { \ 508 if (addr >= dtrace_toxrange[i].dtt_limit) \ 509 continue; \ 510 \ 511 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 512 continue; \ 513 \ 514 /* \ 515 * This address falls within a toxic region; return 0. \ 516 */ \ 517 *flags |= CPU_DTRACE_BADADDR; \ 518 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 519 return (0); \ 520 } \ 521 \ 522 *flags |= CPU_DTRACE_NOFAULT; \ 523 /*CSTYLED*/ \ 524 rval = *((volatile uint##bits##_t *)addr); \ 525 *flags &= ~CPU_DTRACE_NOFAULT; \ 526 \ 527 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 528 } 529 530 #ifdef _LP64 531 #define dtrace_loadptr dtrace_load64 532 #else 533 #define dtrace_loadptr dtrace_load32 534 #endif 535 536 #define DTRACE_DYNHASH_FREE 0 537 #define DTRACE_DYNHASH_SINK 1 538 #define DTRACE_DYNHASH_VALID 2 539 540 #define DTRACE_MATCH_NEXT 0 541 #define DTRACE_MATCH_DONE 1 542 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 543 #define DTRACE_STATE_ALIGN 64 544 545 #define DTRACE_FLAGS2FLT(flags) \ 546 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 547 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 548 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 549 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 550 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 551 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 552 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 553 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 554 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 555 DTRACEFLT_UNKNOWN) 556 557 #define DTRACEACT_ISSTRING(act) \ 558 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 559 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 560 561 /* Function prototype definitions: */ 562 static size_t dtrace_strlen(const char *, size_t); 563 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 564 static void dtrace_enabling_provide(dtrace_provider_t *); 565 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 566 static void dtrace_enabling_matchall(void); 567 static void dtrace_enabling_reap(void); 568 static dtrace_state_t *dtrace_anon_grab(void); 569 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 570 dtrace_state_t *, uint64_t, uint64_t); 571 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 572 static void dtrace_buffer_drop(dtrace_buffer_t *); 573 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 574 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 575 dtrace_state_t *, dtrace_mstate_t *); 576 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 577 dtrace_optval_t); 578 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 579 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 580 uint16_t dtrace_load16(uintptr_t); 581 uint32_t dtrace_load32(uintptr_t); 582 uint64_t dtrace_load64(uintptr_t); 583 uint8_t dtrace_load8(uintptr_t); 584 void dtrace_dynvar_clean(dtrace_dstate_t *); 585 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 586 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 587 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 588 static int dtrace_priv_proc(dtrace_state_t *); 589 static void dtrace_getf_barrier(void); 590 591 /* 592 * DTrace Probe Context Functions 593 * 594 * These functions are called from probe context. Because probe context is 595 * any context in which C may be called, arbitrarily locks may be held, 596 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 597 * As a result, functions called from probe context may only call other DTrace 598 * support functions -- they may not interact at all with the system at large. 599 * (Note that the ASSERT macro is made probe-context safe by redefining it in 600 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 601 * loads are to be performed from probe context, they _must_ be in terms of 602 * the safe dtrace_load*() variants. 603 * 604 * Some functions in this block are not actually called from probe context; 605 * for these functions, there will be a comment above the function reading 606 * "Note: not called from probe context." 607 */ 608 void 609 dtrace_panic(const char *format, ...) 610 { 611 va_list alist; 612 613 va_start(alist, format); 614 #ifdef __FreeBSD__ 615 vpanic(format, alist); 616 #else 617 dtrace_vpanic(format, alist); 618 #endif 619 va_end(alist); 620 } 621 622 int 623 dtrace_assfail(const char *a, const char *f, int l) 624 { 625 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 626 627 /* 628 * We just need something here that even the most clever compiler 629 * cannot optimize away. 630 */ 631 return (a[(uintptr_t)f]); 632 } 633 634 /* 635 * Atomically increment a specified error counter from probe context. 636 */ 637 static void 638 dtrace_error(uint32_t *counter) 639 { 640 /* 641 * Most counters stored to in probe context are per-CPU counters. 642 * However, there are some error conditions that are sufficiently 643 * arcane that they don't merit per-CPU storage. If these counters 644 * are incremented concurrently on different CPUs, scalability will be 645 * adversely affected -- but we don't expect them to be white-hot in a 646 * correctly constructed enabling... 647 */ 648 uint32_t oval, nval; 649 650 do { 651 oval = *counter; 652 653 if ((nval = oval + 1) == 0) { 654 /* 655 * If the counter would wrap, set it to 1 -- assuring 656 * that the counter is never zero when we have seen 657 * errors. (The counter must be 32-bits because we 658 * aren't guaranteed a 64-bit compare&swap operation.) 659 * To save this code both the infamy of being fingered 660 * by a priggish news story and the indignity of being 661 * the target of a neo-puritan witch trial, we're 662 * carefully avoiding any colorful description of the 663 * likelihood of this condition -- but suffice it to 664 * say that it is only slightly more likely than the 665 * overflow of predicate cache IDs, as discussed in 666 * dtrace_predicate_create(). 667 */ 668 nval = 1; 669 } 670 } while (dtrace_cas32(counter, oval, nval) != oval); 671 } 672 673 /* 674 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 675 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 676 */ 677 DTRACE_LOADFUNC(8) 678 DTRACE_LOADFUNC(16) 679 DTRACE_LOADFUNC(32) 680 DTRACE_LOADFUNC(64) 681 682 static int 683 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 684 { 685 if (dest < mstate->dtms_scratch_base) 686 return (0); 687 688 if (dest + size < dest) 689 return (0); 690 691 if (dest + size > mstate->dtms_scratch_ptr) 692 return (0); 693 694 return (1); 695 } 696 697 static int 698 dtrace_canstore_statvar(uint64_t addr, size_t sz, 699 dtrace_statvar_t **svars, int nsvars) 700 { 701 int i; 702 703 for (i = 0; i < nsvars; i++) { 704 dtrace_statvar_t *svar = svars[i]; 705 706 if (svar == NULL || svar->dtsv_size == 0) 707 continue; 708 709 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 710 return (1); 711 } 712 713 return (0); 714 } 715 716 /* 717 * Check to see if the address is within a memory region to which a store may 718 * be issued. This includes the DTrace scratch areas, and any DTrace variable 719 * region. The caller of dtrace_canstore() is responsible for performing any 720 * alignment checks that are needed before stores are actually executed. 721 */ 722 static int 723 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 724 dtrace_vstate_t *vstate) 725 { 726 /* 727 * First, check to see if the address is in scratch space... 728 */ 729 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 730 mstate->dtms_scratch_size)) 731 return (1); 732 733 /* 734 * Now check to see if it's a dynamic variable. This check will pick 735 * up both thread-local variables and any global dynamically-allocated 736 * variables. 737 */ 738 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 739 vstate->dtvs_dynvars.dtds_size)) { 740 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 741 uintptr_t base = (uintptr_t)dstate->dtds_base + 742 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 743 uintptr_t chunkoffs; 744 745 /* 746 * Before we assume that we can store here, we need to make 747 * sure that it isn't in our metadata -- storing to our 748 * dynamic variable metadata would corrupt our state. For 749 * the range to not include any dynamic variable metadata, 750 * it must: 751 * 752 * (1) Start above the hash table that is at the base of 753 * the dynamic variable space 754 * 755 * (2) Have a starting chunk offset that is beyond the 756 * dtrace_dynvar_t that is at the base of every chunk 757 * 758 * (3) Not span a chunk boundary 759 * 760 */ 761 if (addr < base) 762 return (0); 763 764 chunkoffs = (addr - base) % dstate->dtds_chunksize; 765 766 if (chunkoffs < sizeof (dtrace_dynvar_t)) 767 return (0); 768 769 if (chunkoffs + sz > dstate->dtds_chunksize) 770 return (0); 771 772 return (1); 773 } 774 775 /* 776 * Finally, check the static local and global variables. These checks 777 * take the longest, so we perform them last. 778 */ 779 if (dtrace_canstore_statvar(addr, sz, 780 vstate->dtvs_locals, vstate->dtvs_nlocals)) 781 return (1); 782 783 if (dtrace_canstore_statvar(addr, sz, 784 vstate->dtvs_globals, vstate->dtvs_nglobals)) 785 return (1); 786 787 return (0); 788 } 789 790 791 /* 792 * Convenience routine to check to see if the address is within a memory 793 * region in which a load may be issued given the user's privilege level; 794 * if not, it sets the appropriate error flags and loads 'addr' into the 795 * illegal value slot. 796 * 797 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 798 * appropriate memory access protection. 799 */ 800 static int 801 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 802 dtrace_vstate_t *vstate) 803 { 804 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 805 file_t *fp; 806 807 /* 808 * If we hold the privilege to read from kernel memory, then 809 * everything is readable. 810 */ 811 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 812 return (1); 813 814 /* 815 * You can obviously read that which you can store. 816 */ 817 if (dtrace_canstore(addr, sz, mstate, vstate)) 818 return (1); 819 820 /* 821 * We're allowed to read from our own string table. 822 */ 823 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 824 mstate->dtms_difo->dtdo_strlen)) 825 return (1); 826 827 if (vstate->dtvs_state != NULL && 828 dtrace_priv_proc(vstate->dtvs_state)) { 829 proc_t *p; 830 831 /* 832 * When we have privileges to the current process, there are 833 * several context-related kernel structures that are safe to 834 * read, even absent the privilege to read from kernel memory. 835 * These reads are safe because these structures contain only 836 * state that (1) we're permitted to read, (2) is harmless or 837 * (3) contains pointers to additional kernel state that we're 838 * not permitted to read (and as such, do not present an 839 * opportunity for privilege escalation). Finally (and 840 * critically), because of the nature of their relation with 841 * the current thread context, the memory associated with these 842 * structures cannot change over the duration of probe context, 843 * and it is therefore impossible for this memory to be 844 * deallocated and reallocated as something else while it's 845 * being operated upon. 846 */ 847 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 848 return (1); 849 850 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 851 sz, curthread->t_procp, sizeof (proc_t))) { 852 return (1); 853 } 854 855 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 856 curthread->t_cred, sizeof (cred_t))) { 857 return (1); 858 } 859 860 #ifdef illumos 861 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 862 &(p->p_pidp->pid_id), sizeof (pid_t))) { 863 return (1); 864 } 865 866 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 867 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 868 return (1); 869 } 870 #endif 871 } 872 873 if ((fp = mstate->dtms_getf) != NULL) { 874 uintptr_t psz = sizeof (void *); 875 vnode_t *vp; 876 vnodeops_t *op; 877 878 /* 879 * When getf() returns a file_t, the enabling is implicitly 880 * granted the (transient) right to read the returned file_t 881 * as well as the v_path and v_op->vnop_name of the underlying 882 * vnode. These accesses are allowed after a successful 883 * getf() because the members that they refer to cannot change 884 * once set -- and the barrier logic in the kernel's closef() 885 * path assures that the file_t and its referenced vode_t 886 * cannot themselves be stale (that is, it impossible for 887 * either dtms_getf itself or its f_vnode member to reference 888 * freed memory). 889 */ 890 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 891 return (1); 892 893 if ((vp = fp->f_vnode) != NULL) { 894 #ifdef illumos 895 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 896 return (1); 897 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 898 vp->v_path, strlen(vp->v_path) + 1)) { 899 return (1); 900 } 901 #endif 902 903 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 904 return (1); 905 906 #ifdef illumos 907 if ((op = vp->v_op) != NULL && 908 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 909 return (1); 910 } 911 912 if (op != NULL && op->vnop_name != NULL && 913 DTRACE_INRANGE(addr, sz, op->vnop_name, 914 strlen(op->vnop_name) + 1)) { 915 return (1); 916 } 917 #endif 918 } 919 } 920 921 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 922 *illval = addr; 923 return (0); 924 } 925 926 /* 927 * Convenience routine to check to see if a given string is within a memory 928 * region in which a load may be issued given the user's privilege level; 929 * this exists so that we don't need to issue unnecessary dtrace_strlen() 930 * calls in the event that the user has all privileges. 931 */ 932 static int 933 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 934 dtrace_vstate_t *vstate) 935 { 936 size_t strsz; 937 938 /* 939 * If we hold the privilege to read from kernel memory, then 940 * everything is readable. 941 */ 942 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 943 return (1); 944 945 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 946 if (dtrace_canload(addr, strsz, mstate, vstate)) 947 return (1); 948 949 return (0); 950 } 951 952 /* 953 * Convenience routine to check to see if a given variable is within a memory 954 * region in which a load may be issued given the user's privilege level. 955 */ 956 static int 957 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 958 dtrace_vstate_t *vstate) 959 { 960 size_t sz; 961 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 962 963 /* 964 * If we hold the privilege to read from kernel memory, then 965 * everything is readable. 966 */ 967 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 968 return (1); 969 970 if (type->dtdt_kind == DIF_TYPE_STRING) 971 sz = dtrace_strlen(src, 972 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 973 else 974 sz = type->dtdt_size; 975 976 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 977 } 978 979 /* 980 * Convert a string to a signed integer using safe loads. 981 * 982 * NOTE: This function uses various macros from strtolctype.h to manipulate 983 * digit values, etc -- these have all been checked to ensure they make 984 * no additional function calls. 985 */ 986 static int64_t 987 dtrace_strtoll(char *input, int base, size_t limit) 988 { 989 uintptr_t pos = (uintptr_t)input; 990 int64_t val = 0; 991 int x; 992 boolean_t neg = B_FALSE; 993 char c, cc, ccc; 994 uintptr_t end = pos + limit; 995 996 /* 997 * Consume any whitespace preceding digits. 998 */ 999 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1000 pos++; 1001 1002 /* 1003 * Handle an explicit sign if one is present. 1004 */ 1005 if (c == '-' || c == '+') { 1006 if (c == '-') 1007 neg = B_TRUE; 1008 c = dtrace_load8(++pos); 1009 } 1010 1011 /* 1012 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1013 * if present. 1014 */ 1015 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1016 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1017 pos += 2; 1018 c = ccc; 1019 } 1020 1021 /* 1022 * Read in contiguous digits until the first non-digit character. 1023 */ 1024 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1025 c = dtrace_load8(++pos)) 1026 val = val * base + x; 1027 1028 return (neg ? -val : val); 1029 } 1030 1031 /* 1032 * Compare two strings using safe loads. 1033 */ 1034 static int 1035 dtrace_strncmp(char *s1, char *s2, size_t limit) 1036 { 1037 uint8_t c1, c2; 1038 volatile uint16_t *flags; 1039 1040 if (s1 == s2 || limit == 0) 1041 return (0); 1042 1043 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1044 1045 do { 1046 if (s1 == NULL) { 1047 c1 = '\0'; 1048 } else { 1049 c1 = dtrace_load8((uintptr_t)s1++); 1050 } 1051 1052 if (s2 == NULL) { 1053 c2 = '\0'; 1054 } else { 1055 c2 = dtrace_load8((uintptr_t)s2++); 1056 } 1057 1058 if (c1 != c2) 1059 return (c1 - c2); 1060 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1061 1062 return (0); 1063 } 1064 1065 /* 1066 * Compute strlen(s) for a string using safe memory accesses. The additional 1067 * len parameter is used to specify a maximum length to ensure completion. 1068 */ 1069 static size_t 1070 dtrace_strlen(const char *s, size_t lim) 1071 { 1072 uint_t len; 1073 1074 for (len = 0; len != lim; len++) { 1075 if (dtrace_load8((uintptr_t)s++) == '\0') 1076 break; 1077 } 1078 1079 return (len); 1080 } 1081 1082 /* 1083 * Check if an address falls within a toxic region. 1084 */ 1085 static int 1086 dtrace_istoxic(uintptr_t kaddr, size_t size) 1087 { 1088 uintptr_t taddr, tsize; 1089 int i; 1090 1091 for (i = 0; i < dtrace_toxranges; i++) { 1092 taddr = dtrace_toxrange[i].dtt_base; 1093 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1094 1095 if (kaddr - taddr < tsize) { 1096 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1097 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1098 return (1); 1099 } 1100 1101 if (taddr - kaddr < size) { 1102 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1103 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1104 return (1); 1105 } 1106 } 1107 1108 return (0); 1109 } 1110 1111 /* 1112 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1113 * memory specified by the DIF program. The dst is assumed to be safe memory 1114 * that we can store to directly because it is managed by DTrace. As with 1115 * standard bcopy, overlapping copies are handled properly. 1116 */ 1117 static void 1118 dtrace_bcopy(const void *src, void *dst, size_t len) 1119 { 1120 if (len != 0) { 1121 uint8_t *s1 = dst; 1122 const uint8_t *s2 = src; 1123 1124 if (s1 <= s2) { 1125 do { 1126 *s1++ = dtrace_load8((uintptr_t)s2++); 1127 } while (--len != 0); 1128 } else { 1129 s2 += len; 1130 s1 += len; 1131 1132 do { 1133 *--s1 = dtrace_load8((uintptr_t)--s2); 1134 } while (--len != 0); 1135 } 1136 } 1137 } 1138 1139 /* 1140 * Copy src to dst using safe memory accesses, up to either the specified 1141 * length, or the point that a nul byte is encountered. The src is assumed to 1142 * be unsafe memory specified by the DIF program. The dst is assumed to be 1143 * safe memory that we can store to directly because it is managed by DTrace. 1144 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1145 */ 1146 static void 1147 dtrace_strcpy(const void *src, void *dst, size_t len) 1148 { 1149 if (len != 0) { 1150 uint8_t *s1 = dst, c; 1151 const uint8_t *s2 = src; 1152 1153 do { 1154 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1155 } while (--len != 0 && c != '\0'); 1156 } 1157 } 1158 1159 /* 1160 * Copy src to dst, deriving the size and type from the specified (BYREF) 1161 * variable type. The src is assumed to be unsafe memory specified by the DIF 1162 * program. The dst is assumed to be DTrace variable memory that is of the 1163 * specified type; we assume that we can store to directly. 1164 */ 1165 static void 1166 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1167 { 1168 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1169 1170 if (type->dtdt_kind == DIF_TYPE_STRING) { 1171 dtrace_strcpy(src, dst, type->dtdt_size); 1172 } else { 1173 dtrace_bcopy(src, dst, type->dtdt_size); 1174 } 1175 } 1176 1177 /* 1178 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1179 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1180 * safe memory that we can access directly because it is managed by DTrace. 1181 */ 1182 static int 1183 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1184 { 1185 volatile uint16_t *flags; 1186 1187 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1188 1189 if (s1 == s2) 1190 return (0); 1191 1192 if (s1 == NULL || s2 == NULL) 1193 return (1); 1194 1195 if (s1 != s2 && len != 0) { 1196 const uint8_t *ps1 = s1; 1197 const uint8_t *ps2 = s2; 1198 1199 do { 1200 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1201 return (1); 1202 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1203 } 1204 return (0); 1205 } 1206 1207 /* 1208 * Zero the specified region using a simple byte-by-byte loop. Note that this 1209 * is for safe DTrace-managed memory only. 1210 */ 1211 static void 1212 dtrace_bzero(void *dst, size_t len) 1213 { 1214 uchar_t *cp; 1215 1216 for (cp = dst; len != 0; len--) 1217 *cp++ = 0; 1218 } 1219 1220 static void 1221 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1222 { 1223 uint64_t result[2]; 1224 1225 result[0] = addend1[0] + addend2[0]; 1226 result[1] = addend1[1] + addend2[1] + 1227 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1228 1229 sum[0] = result[0]; 1230 sum[1] = result[1]; 1231 } 1232 1233 /* 1234 * Shift the 128-bit value in a by b. If b is positive, shift left. 1235 * If b is negative, shift right. 1236 */ 1237 static void 1238 dtrace_shift_128(uint64_t *a, int b) 1239 { 1240 uint64_t mask; 1241 1242 if (b == 0) 1243 return; 1244 1245 if (b < 0) { 1246 b = -b; 1247 if (b >= 64) { 1248 a[0] = a[1] >> (b - 64); 1249 a[1] = 0; 1250 } else { 1251 a[0] >>= b; 1252 mask = 1LL << (64 - b); 1253 mask -= 1; 1254 a[0] |= ((a[1] & mask) << (64 - b)); 1255 a[1] >>= b; 1256 } 1257 } else { 1258 if (b >= 64) { 1259 a[1] = a[0] << (b - 64); 1260 a[0] = 0; 1261 } else { 1262 a[1] <<= b; 1263 mask = a[0] >> (64 - b); 1264 a[1] |= mask; 1265 a[0] <<= b; 1266 } 1267 } 1268 } 1269 1270 /* 1271 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1272 * use native multiplication on those, and then re-combine into the 1273 * resulting 128-bit value. 1274 * 1275 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1276 * hi1 * hi2 << 64 + 1277 * hi1 * lo2 << 32 + 1278 * hi2 * lo1 << 32 + 1279 * lo1 * lo2 1280 */ 1281 static void 1282 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1283 { 1284 uint64_t hi1, hi2, lo1, lo2; 1285 uint64_t tmp[2]; 1286 1287 hi1 = factor1 >> 32; 1288 hi2 = factor2 >> 32; 1289 1290 lo1 = factor1 & DT_MASK_LO; 1291 lo2 = factor2 & DT_MASK_LO; 1292 1293 product[0] = lo1 * lo2; 1294 product[1] = hi1 * hi2; 1295 1296 tmp[0] = hi1 * lo2; 1297 tmp[1] = 0; 1298 dtrace_shift_128(tmp, 32); 1299 dtrace_add_128(product, tmp, product); 1300 1301 tmp[0] = hi2 * lo1; 1302 tmp[1] = 0; 1303 dtrace_shift_128(tmp, 32); 1304 dtrace_add_128(product, tmp, product); 1305 } 1306 1307 /* 1308 * This privilege check should be used by actions and subroutines to 1309 * verify that the user credentials of the process that enabled the 1310 * invoking ECB match the target credentials 1311 */ 1312 static int 1313 dtrace_priv_proc_common_user(dtrace_state_t *state) 1314 { 1315 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1316 1317 /* 1318 * We should always have a non-NULL state cred here, since if cred 1319 * is null (anonymous tracing), we fast-path bypass this routine. 1320 */ 1321 ASSERT(s_cr != NULL); 1322 1323 if ((cr = CRED()) != NULL && 1324 s_cr->cr_uid == cr->cr_uid && 1325 s_cr->cr_uid == cr->cr_ruid && 1326 s_cr->cr_uid == cr->cr_suid && 1327 s_cr->cr_gid == cr->cr_gid && 1328 s_cr->cr_gid == cr->cr_rgid && 1329 s_cr->cr_gid == cr->cr_sgid) 1330 return (1); 1331 1332 return (0); 1333 } 1334 1335 /* 1336 * This privilege check should be used by actions and subroutines to 1337 * verify that the zone of the process that enabled the invoking ECB 1338 * matches the target credentials 1339 */ 1340 static int 1341 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1342 { 1343 #ifdef illumos 1344 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1345 1346 /* 1347 * We should always have a non-NULL state cred here, since if cred 1348 * is null (anonymous tracing), we fast-path bypass this routine. 1349 */ 1350 ASSERT(s_cr != NULL); 1351 1352 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1353 return (1); 1354 1355 return (0); 1356 #else 1357 return (1); 1358 #endif 1359 } 1360 1361 /* 1362 * This privilege check should be used by actions and subroutines to 1363 * verify that the process has not setuid or changed credentials. 1364 */ 1365 static int 1366 dtrace_priv_proc_common_nocd(void) 1367 { 1368 proc_t *proc; 1369 1370 if ((proc = ttoproc(curthread)) != NULL && 1371 !(proc->p_flag & SNOCD)) 1372 return (1); 1373 1374 return (0); 1375 } 1376 1377 static int 1378 dtrace_priv_proc_destructive(dtrace_state_t *state) 1379 { 1380 int action = state->dts_cred.dcr_action; 1381 1382 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1383 dtrace_priv_proc_common_zone(state) == 0) 1384 goto bad; 1385 1386 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1387 dtrace_priv_proc_common_user(state) == 0) 1388 goto bad; 1389 1390 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1391 dtrace_priv_proc_common_nocd() == 0) 1392 goto bad; 1393 1394 return (1); 1395 1396 bad: 1397 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1398 1399 return (0); 1400 } 1401 1402 static int 1403 dtrace_priv_proc_control(dtrace_state_t *state) 1404 { 1405 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1406 return (1); 1407 1408 if (dtrace_priv_proc_common_zone(state) && 1409 dtrace_priv_proc_common_user(state) && 1410 dtrace_priv_proc_common_nocd()) 1411 return (1); 1412 1413 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1414 1415 return (0); 1416 } 1417 1418 static int 1419 dtrace_priv_proc(dtrace_state_t *state) 1420 { 1421 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1422 return (1); 1423 1424 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1425 1426 return (0); 1427 } 1428 1429 static int 1430 dtrace_priv_kernel(dtrace_state_t *state) 1431 { 1432 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1433 return (1); 1434 1435 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1436 1437 return (0); 1438 } 1439 1440 static int 1441 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1442 { 1443 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1444 return (1); 1445 1446 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1447 1448 return (0); 1449 } 1450 1451 /* 1452 * Determine if the dte_cond of the specified ECB allows for processing of 1453 * the current probe to continue. Note that this routine may allow continued 1454 * processing, but with access(es) stripped from the mstate's dtms_access 1455 * field. 1456 */ 1457 static int 1458 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1459 dtrace_ecb_t *ecb) 1460 { 1461 dtrace_probe_t *probe = ecb->dte_probe; 1462 dtrace_provider_t *prov = probe->dtpr_provider; 1463 dtrace_pops_t *pops = &prov->dtpv_pops; 1464 int mode = DTRACE_MODE_NOPRIV_DROP; 1465 1466 ASSERT(ecb->dte_cond); 1467 1468 #ifdef illumos 1469 if (pops->dtps_mode != NULL) { 1470 mode = pops->dtps_mode(prov->dtpv_arg, 1471 probe->dtpr_id, probe->dtpr_arg); 1472 1473 ASSERT((mode & DTRACE_MODE_USER) || 1474 (mode & DTRACE_MODE_KERNEL)); 1475 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1476 (mode & DTRACE_MODE_NOPRIV_DROP)); 1477 } 1478 1479 /* 1480 * If the dte_cond bits indicate that this consumer is only allowed to 1481 * see user-mode firings of this probe, call the provider's dtps_mode() 1482 * entry point to check that the probe was fired while in a user 1483 * context. If that's not the case, use the policy specified by the 1484 * provider to determine if we drop the probe or merely restrict 1485 * operation. 1486 */ 1487 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1488 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1489 1490 if (!(mode & DTRACE_MODE_USER)) { 1491 if (mode & DTRACE_MODE_NOPRIV_DROP) 1492 return (0); 1493 1494 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1495 } 1496 } 1497 #endif 1498 1499 /* 1500 * This is more subtle than it looks. We have to be absolutely certain 1501 * that CRED() isn't going to change out from under us so it's only 1502 * legit to examine that structure if we're in constrained situations. 1503 * Currently, the only times we'll this check is if a non-super-user 1504 * has enabled the profile or syscall providers -- providers that 1505 * allow visibility of all processes. For the profile case, the check 1506 * above will ensure that we're examining a user context. 1507 */ 1508 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1509 cred_t *cr; 1510 cred_t *s_cr = state->dts_cred.dcr_cred; 1511 proc_t *proc; 1512 1513 ASSERT(s_cr != NULL); 1514 1515 if ((cr = CRED()) == NULL || 1516 s_cr->cr_uid != cr->cr_uid || 1517 s_cr->cr_uid != cr->cr_ruid || 1518 s_cr->cr_uid != cr->cr_suid || 1519 s_cr->cr_gid != cr->cr_gid || 1520 s_cr->cr_gid != cr->cr_rgid || 1521 s_cr->cr_gid != cr->cr_sgid || 1522 (proc = ttoproc(curthread)) == NULL || 1523 (proc->p_flag & SNOCD)) { 1524 if (mode & DTRACE_MODE_NOPRIV_DROP) 1525 return (0); 1526 1527 #ifdef illumos 1528 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1529 #endif 1530 } 1531 } 1532 1533 #ifdef illumos 1534 /* 1535 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1536 * in our zone, check to see if our mode policy is to restrict rather 1537 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1538 * and DTRACE_ACCESS_ARGS 1539 */ 1540 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1541 cred_t *cr; 1542 cred_t *s_cr = state->dts_cred.dcr_cred; 1543 1544 ASSERT(s_cr != NULL); 1545 1546 if ((cr = CRED()) == NULL || 1547 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1548 if (mode & DTRACE_MODE_NOPRIV_DROP) 1549 return (0); 1550 1551 mstate->dtms_access &= 1552 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1553 } 1554 } 1555 #endif 1556 1557 return (1); 1558 } 1559 1560 /* 1561 * Note: not called from probe context. This function is called 1562 * asynchronously (and at a regular interval) from outside of probe context to 1563 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1564 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1565 */ 1566 void 1567 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1568 { 1569 dtrace_dynvar_t *dirty; 1570 dtrace_dstate_percpu_t *dcpu; 1571 dtrace_dynvar_t **rinsep; 1572 int i, j, work = 0; 1573 1574 for (i = 0; i < NCPU; i++) { 1575 dcpu = &dstate->dtds_percpu[i]; 1576 rinsep = &dcpu->dtdsc_rinsing; 1577 1578 /* 1579 * If the dirty list is NULL, there is no dirty work to do. 1580 */ 1581 if (dcpu->dtdsc_dirty == NULL) 1582 continue; 1583 1584 if (dcpu->dtdsc_rinsing != NULL) { 1585 /* 1586 * If the rinsing list is non-NULL, then it is because 1587 * this CPU was selected to accept another CPU's 1588 * dirty list -- and since that time, dirty buffers 1589 * have accumulated. This is a highly unlikely 1590 * condition, but we choose to ignore the dirty 1591 * buffers -- they'll be picked up a future cleanse. 1592 */ 1593 continue; 1594 } 1595 1596 if (dcpu->dtdsc_clean != NULL) { 1597 /* 1598 * If the clean list is non-NULL, then we're in a 1599 * situation where a CPU has done deallocations (we 1600 * have a non-NULL dirty list) but no allocations (we 1601 * also have a non-NULL clean list). We can't simply 1602 * move the dirty list into the clean list on this 1603 * CPU, yet we also don't want to allow this condition 1604 * to persist, lest a short clean list prevent a 1605 * massive dirty list from being cleaned (which in 1606 * turn could lead to otherwise avoidable dynamic 1607 * drops). To deal with this, we look for some CPU 1608 * with a NULL clean list, NULL dirty list, and NULL 1609 * rinsing list -- and then we borrow this CPU to 1610 * rinse our dirty list. 1611 */ 1612 for (j = 0; j < NCPU; j++) { 1613 dtrace_dstate_percpu_t *rinser; 1614 1615 rinser = &dstate->dtds_percpu[j]; 1616 1617 if (rinser->dtdsc_rinsing != NULL) 1618 continue; 1619 1620 if (rinser->dtdsc_dirty != NULL) 1621 continue; 1622 1623 if (rinser->dtdsc_clean != NULL) 1624 continue; 1625 1626 rinsep = &rinser->dtdsc_rinsing; 1627 break; 1628 } 1629 1630 if (j == NCPU) { 1631 /* 1632 * We were unable to find another CPU that 1633 * could accept this dirty list -- we are 1634 * therefore unable to clean it now. 1635 */ 1636 dtrace_dynvar_failclean++; 1637 continue; 1638 } 1639 } 1640 1641 work = 1; 1642 1643 /* 1644 * Atomically move the dirty list aside. 1645 */ 1646 do { 1647 dirty = dcpu->dtdsc_dirty; 1648 1649 /* 1650 * Before we zap the dirty list, set the rinsing list. 1651 * (This allows for a potential assertion in 1652 * dtrace_dynvar(): if a free dynamic variable appears 1653 * on a hash chain, either the dirty list or the 1654 * rinsing list for some CPU must be non-NULL.) 1655 */ 1656 *rinsep = dirty; 1657 dtrace_membar_producer(); 1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1659 dirty, NULL) != dirty); 1660 } 1661 1662 if (!work) { 1663 /* 1664 * We have no work to do; we can simply return. 1665 */ 1666 return; 1667 } 1668 1669 dtrace_sync(); 1670 1671 for (i = 0; i < NCPU; i++) { 1672 dcpu = &dstate->dtds_percpu[i]; 1673 1674 if (dcpu->dtdsc_rinsing == NULL) 1675 continue; 1676 1677 /* 1678 * We are now guaranteed that no hash chain contains a pointer 1679 * into this dirty list; we can make it clean. 1680 */ 1681 ASSERT(dcpu->dtdsc_clean == NULL); 1682 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1683 dcpu->dtdsc_rinsing = NULL; 1684 } 1685 1686 /* 1687 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1688 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1689 * This prevents a race whereby a CPU incorrectly decides that 1690 * the state should be something other than DTRACE_DSTATE_CLEAN 1691 * after dtrace_dynvar_clean() has completed. 1692 */ 1693 dtrace_sync(); 1694 1695 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1696 } 1697 1698 /* 1699 * Depending on the value of the op parameter, this function looks-up, 1700 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1701 * allocation is requested, this function will return a pointer to a 1702 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1703 * variable can be allocated. If NULL is returned, the appropriate counter 1704 * will be incremented. 1705 */ 1706 dtrace_dynvar_t * 1707 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1708 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1709 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1710 { 1711 uint64_t hashval = DTRACE_DYNHASH_VALID; 1712 dtrace_dynhash_t *hash = dstate->dtds_hash; 1713 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1714 processorid_t me = curcpu, cpu = me; 1715 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1716 size_t bucket, ksize; 1717 size_t chunksize = dstate->dtds_chunksize; 1718 uintptr_t kdata, lock, nstate; 1719 uint_t i; 1720 1721 ASSERT(nkeys != 0); 1722 1723 /* 1724 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1725 * algorithm. For the by-value portions, we perform the algorithm in 1726 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1727 * bit, and seems to have only a minute effect on distribution. For 1728 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1729 * over each referenced byte. It's painful to do this, but it's much 1730 * better than pathological hash distribution. The efficacy of the 1731 * hashing algorithm (and a comparison with other algorithms) may be 1732 * found by running the ::dtrace_dynstat MDB dcmd. 1733 */ 1734 for (i = 0; i < nkeys; i++) { 1735 if (key[i].dttk_size == 0) { 1736 uint64_t val = key[i].dttk_value; 1737 1738 hashval += (val >> 48) & 0xffff; 1739 hashval += (hashval << 10); 1740 hashval ^= (hashval >> 6); 1741 1742 hashval += (val >> 32) & 0xffff; 1743 hashval += (hashval << 10); 1744 hashval ^= (hashval >> 6); 1745 1746 hashval += (val >> 16) & 0xffff; 1747 hashval += (hashval << 10); 1748 hashval ^= (hashval >> 6); 1749 1750 hashval += val & 0xffff; 1751 hashval += (hashval << 10); 1752 hashval ^= (hashval >> 6); 1753 } else { 1754 /* 1755 * This is incredibly painful, but it beats the hell 1756 * out of the alternative. 1757 */ 1758 uint64_t j, size = key[i].dttk_size; 1759 uintptr_t base = (uintptr_t)key[i].dttk_value; 1760 1761 if (!dtrace_canload(base, size, mstate, vstate)) 1762 break; 1763 1764 for (j = 0; j < size; j++) { 1765 hashval += dtrace_load8(base + j); 1766 hashval += (hashval << 10); 1767 hashval ^= (hashval >> 6); 1768 } 1769 } 1770 } 1771 1772 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1773 return (NULL); 1774 1775 hashval += (hashval << 3); 1776 hashval ^= (hashval >> 11); 1777 hashval += (hashval << 15); 1778 1779 /* 1780 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1781 * comes out to be one of our two sentinel hash values. If this 1782 * actually happens, we set the hashval to be a value known to be a 1783 * non-sentinel value. 1784 */ 1785 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1786 hashval = DTRACE_DYNHASH_VALID; 1787 1788 /* 1789 * Yes, it's painful to do a divide here. If the cycle count becomes 1790 * important here, tricks can be pulled to reduce it. (However, it's 1791 * critical that hash collisions be kept to an absolute minimum; 1792 * they're much more painful than a divide.) It's better to have a 1793 * solution that generates few collisions and still keeps things 1794 * relatively simple. 1795 */ 1796 bucket = hashval % dstate->dtds_hashsize; 1797 1798 if (op == DTRACE_DYNVAR_DEALLOC) { 1799 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1800 1801 for (;;) { 1802 while ((lock = *lockp) & 1) 1803 continue; 1804 1805 if (dtrace_casptr((volatile void *)lockp, 1806 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1807 break; 1808 } 1809 1810 dtrace_membar_producer(); 1811 } 1812 1813 top: 1814 prev = NULL; 1815 lock = hash[bucket].dtdh_lock; 1816 1817 dtrace_membar_consumer(); 1818 1819 start = hash[bucket].dtdh_chain; 1820 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1821 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1822 op != DTRACE_DYNVAR_DEALLOC)); 1823 1824 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1825 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1826 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1827 1828 if (dvar->dtdv_hashval != hashval) { 1829 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1830 /* 1831 * We've reached the sink, and therefore the 1832 * end of the hash chain; we can kick out of 1833 * the loop knowing that we have seen a valid 1834 * snapshot of state. 1835 */ 1836 ASSERT(dvar->dtdv_next == NULL); 1837 ASSERT(dvar == &dtrace_dynhash_sink); 1838 break; 1839 } 1840 1841 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1842 /* 1843 * We've gone off the rails: somewhere along 1844 * the line, one of the members of this hash 1845 * chain was deleted. Note that we could also 1846 * detect this by simply letting this loop run 1847 * to completion, as we would eventually hit 1848 * the end of the dirty list. However, we 1849 * want to avoid running the length of the 1850 * dirty list unnecessarily (it might be quite 1851 * long), so we catch this as early as 1852 * possible by detecting the hash marker. In 1853 * this case, we simply set dvar to NULL and 1854 * break; the conditional after the loop will 1855 * send us back to top. 1856 */ 1857 dvar = NULL; 1858 break; 1859 } 1860 1861 goto next; 1862 } 1863 1864 if (dtuple->dtt_nkeys != nkeys) 1865 goto next; 1866 1867 for (i = 0; i < nkeys; i++, dkey++) { 1868 if (dkey->dttk_size != key[i].dttk_size) 1869 goto next; /* size or type mismatch */ 1870 1871 if (dkey->dttk_size != 0) { 1872 if (dtrace_bcmp( 1873 (void *)(uintptr_t)key[i].dttk_value, 1874 (void *)(uintptr_t)dkey->dttk_value, 1875 dkey->dttk_size)) 1876 goto next; 1877 } else { 1878 if (dkey->dttk_value != key[i].dttk_value) 1879 goto next; 1880 } 1881 } 1882 1883 if (op != DTRACE_DYNVAR_DEALLOC) 1884 return (dvar); 1885 1886 ASSERT(dvar->dtdv_next == NULL || 1887 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1888 1889 if (prev != NULL) { 1890 ASSERT(hash[bucket].dtdh_chain != dvar); 1891 ASSERT(start != dvar); 1892 ASSERT(prev->dtdv_next == dvar); 1893 prev->dtdv_next = dvar->dtdv_next; 1894 } else { 1895 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1896 start, dvar->dtdv_next) != start) { 1897 /* 1898 * We have failed to atomically swing the 1899 * hash table head pointer, presumably because 1900 * of a conflicting allocation on another CPU. 1901 * We need to reread the hash chain and try 1902 * again. 1903 */ 1904 goto top; 1905 } 1906 } 1907 1908 dtrace_membar_producer(); 1909 1910 /* 1911 * Now set the hash value to indicate that it's free. 1912 */ 1913 ASSERT(hash[bucket].dtdh_chain != dvar); 1914 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1915 1916 dtrace_membar_producer(); 1917 1918 /* 1919 * Set the next pointer to point at the dirty list, and 1920 * atomically swing the dirty pointer to the newly freed dvar. 1921 */ 1922 do { 1923 next = dcpu->dtdsc_dirty; 1924 dvar->dtdv_next = next; 1925 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1926 1927 /* 1928 * Finally, unlock this hash bucket. 1929 */ 1930 ASSERT(hash[bucket].dtdh_lock == lock); 1931 ASSERT(lock & 1); 1932 hash[bucket].dtdh_lock++; 1933 1934 return (NULL); 1935 next: 1936 prev = dvar; 1937 continue; 1938 } 1939 1940 if (dvar == NULL) { 1941 /* 1942 * If dvar is NULL, it is because we went off the rails: 1943 * one of the elements that we traversed in the hash chain 1944 * was deleted while we were traversing it. In this case, 1945 * we assert that we aren't doing a dealloc (deallocs lock 1946 * the hash bucket to prevent themselves from racing with 1947 * one another), and retry the hash chain traversal. 1948 */ 1949 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1950 goto top; 1951 } 1952 1953 if (op != DTRACE_DYNVAR_ALLOC) { 1954 /* 1955 * If we are not to allocate a new variable, we want to 1956 * return NULL now. Before we return, check that the value 1957 * of the lock word hasn't changed. If it has, we may have 1958 * seen an inconsistent snapshot. 1959 */ 1960 if (op == DTRACE_DYNVAR_NOALLOC) { 1961 if (hash[bucket].dtdh_lock != lock) 1962 goto top; 1963 } else { 1964 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1965 ASSERT(hash[bucket].dtdh_lock == lock); 1966 ASSERT(lock & 1); 1967 hash[bucket].dtdh_lock++; 1968 } 1969 1970 return (NULL); 1971 } 1972 1973 /* 1974 * We need to allocate a new dynamic variable. The size we need is the 1975 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1976 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1977 * the size of any referred-to data (dsize). We then round the final 1978 * size up to the chunksize for allocation. 1979 */ 1980 for (ksize = 0, i = 0; i < nkeys; i++) 1981 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1982 1983 /* 1984 * This should be pretty much impossible, but could happen if, say, 1985 * strange DIF specified the tuple. Ideally, this should be an 1986 * assertion and not an error condition -- but that requires that the 1987 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1988 * bullet-proof. (That is, it must not be able to be fooled by 1989 * malicious DIF.) Given the lack of backwards branches in DIF, 1990 * solving this would presumably not amount to solving the Halting 1991 * Problem -- but it still seems awfully hard. 1992 */ 1993 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1994 ksize + dsize > chunksize) { 1995 dcpu->dtdsc_drops++; 1996 return (NULL); 1997 } 1998 1999 nstate = DTRACE_DSTATE_EMPTY; 2000 2001 do { 2002 retry: 2003 free = dcpu->dtdsc_free; 2004 2005 if (free == NULL) { 2006 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2007 void *rval; 2008 2009 if (clean == NULL) { 2010 /* 2011 * We're out of dynamic variable space on 2012 * this CPU. Unless we have tried all CPUs, 2013 * we'll try to allocate from a different 2014 * CPU. 2015 */ 2016 switch (dstate->dtds_state) { 2017 case DTRACE_DSTATE_CLEAN: { 2018 void *sp = &dstate->dtds_state; 2019 2020 if (++cpu >= NCPU) 2021 cpu = 0; 2022 2023 if (dcpu->dtdsc_dirty != NULL && 2024 nstate == DTRACE_DSTATE_EMPTY) 2025 nstate = DTRACE_DSTATE_DIRTY; 2026 2027 if (dcpu->dtdsc_rinsing != NULL) 2028 nstate = DTRACE_DSTATE_RINSING; 2029 2030 dcpu = &dstate->dtds_percpu[cpu]; 2031 2032 if (cpu != me) 2033 goto retry; 2034 2035 (void) dtrace_cas32(sp, 2036 DTRACE_DSTATE_CLEAN, nstate); 2037 2038 /* 2039 * To increment the correct bean 2040 * counter, take another lap. 2041 */ 2042 goto retry; 2043 } 2044 2045 case DTRACE_DSTATE_DIRTY: 2046 dcpu->dtdsc_dirty_drops++; 2047 break; 2048 2049 case DTRACE_DSTATE_RINSING: 2050 dcpu->dtdsc_rinsing_drops++; 2051 break; 2052 2053 case DTRACE_DSTATE_EMPTY: 2054 dcpu->dtdsc_drops++; 2055 break; 2056 } 2057 2058 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2059 return (NULL); 2060 } 2061 2062 /* 2063 * The clean list appears to be non-empty. We want to 2064 * move the clean list to the free list; we start by 2065 * moving the clean pointer aside. 2066 */ 2067 if (dtrace_casptr(&dcpu->dtdsc_clean, 2068 clean, NULL) != clean) { 2069 /* 2070 * We are in one of two situations: 2071 * 2072 * (a) The clean list was switched to the 2073 * free list by another CPU. 2074 * 2075 * (b) The clean list was added to by the 2076 * cleansing cyclic. 2077 * 2078 * In either of these situations, we can 2079 * just reattempt the free list allocation. 2080 */ 2081 goto retry; 2082 } 2083 2084 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2085 2086 /* 2087 * Now we'll move the clean list to our free list. 2088 * It's impossible for this to fail: the only way 2089 * the free list can be updated is through this 2090 * code path, and only one CPU can own the clean list. 2091 * Thus, it would only be possible for this to fail if 2092 * this code were racing with dtrace_dynvar_clean(). 2093 * (That is, if dtrace_dynvar_clean() updated the clean 2094 * list, and we ended up racing to update the free 2095 * list.) This race is prevented by the dtrace_sync() 2096 * in dtrace_dynvar_clean() -- which flushes the 2097 * owners of the clean lists out before resetting 2098 * the clean lists. 2099 */ 2100 dcpu = &dstate->dtds_percpu[me]; 2101 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2102 ASSERT(rval == NULL); 2103 goto retry; 2104 } 2105 2106 dvar = free; 2107 new_free = dvar->dtdv_next; 2108 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2109 2110 /* 2111 * We have now allocated a new chunk. We copy the tuple keys into the 2112 * tuple array and copy any referenced key data into the data space 2113 * following the tuple array. As we do this, we relocate dttk_value 2114 * in the final tuple to point to the key data address in the chunk. 2115 */ 2116 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2117 dvar->dtdv_data = (void *)(kdata + ksize); 2118 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2119 2120 for (i = 0; i < nkeys; i++) { 2121 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2122 size_t kesize = key[i].dttk_size; 2123 2124 if (kesize != 0) { 2125 dtrace_bcopy( 2126 (const void *)(uintptr_t)key[i].dttk_value, 2127 (void *)kdata, kesize); 2128 dkey->dttk_value = kdata; 2129 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2130 } else { 2131 dkey->dttk_value = key[i].dttk_value; 2132 } 2133 2134 dkey->dttk_size = kesize; 2135 } 2136 2137 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2138 dvar->dtdv_hashval = hashval; 2139 dvar->dtdv_next = start; 2140 2141 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2142 return (dvar); 2143 2144 /* 2145 * The cas has failed. Either another CPU is adding an element to 2146 * this hash chain, or another CPU is deleting an element from this 2147 * hash chain. The simplest way to deal with both of these cases 2148 * (though not necessarily the most efficient) is to free our 2149 * allocated block and tail-call ourselves. Note that the free is 2150 * to the dirty list and _not_ to the free list. This is to prevent 2151 * races with allocators, above. 2152 */ 2153 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2154 2155 dtrace_membar_producer(); 2156 2157 do { 2158 free = dcpu->dtdsc_dirty; 2159 dvar->dtdv_next = free; 2160 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2161 2162 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2163 } 2164 2165 /*ARGSUSED*/ 2166 static void 2167 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2168 { 2169 if ((int64_t)nval < (int64_t)*oval) 2170 *oval = nval; 2171 } 2172 2173 /*ARGSUSED*/ 2174 static void 2175 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2176 { 2177 if ((int64_t)nval > (int64_t)*oval) 2178 *oval = nval; 2179 } 2180 2181 static void 2182 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2183 { 2184 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2185 int64_t val = (int64_t)nval; 2186 2187 if (val < 0) { 2188 for (i = 0; i < zero; i++) { 2189 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2190 quanta[i] += incr; 2191 return; 2192 } 2193 } 2194 } else { 2195 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2196 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2197 quanta[i - 1] += incr; 2198 return; 2199 } 2200 } 2201 2202 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2203 return; 2204 } 2205 2206 ASSERT(0); 2207 } 2208 2209 static void 2210 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2211 { 2212 uint64_t arg = *lquanta++; 2213 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2214 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2215 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2216 int32_t val = (int32_t)nval, level; 2217 2218 ASSERT(step != 0); 2219 ASSERT(levels != 0); 2220 2221 if (val < base) { 2222 /* 2223 * This is an underflow. 2224 */ 2225 lquanta[0] += incr; 2226 return; 2227 } 2228 2229 level = (val - base) / step; 2230 2231 if (level < levels) { 2232 lquanta[level + 1] += incr; 2233 return; 2234 } 2235 2236 /* 2237 * This is an overflow. 2238 */ 2239 lquanta[levels + 1] += incr; 2240 } 2241 2242 static int 2243 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2244 uint16_t high, uint16_t nsteps, int64_t value) 2245 { 2246 int64_t this = 1, last, next; 2247 int base = 1, order; 2248 2249 ASSERT(factor <= nsteps); 2250 ASSERT(nsteps % factor == 0); 2251 2252 for (order = 0; order < low; order++) 2253 this *= factor; 2254 2255 /* 2256 * If our value is less than our factor taken to the power of the 2257 * low order of magnitude, it goes into the zeroth bucket. 2258 */ 2259 if (value < (last = this)) 2260 return (0); 2261 2262 for (this *= factor; order <= high; order++) { 2263 int nbuckets = this > nsteps ? nsteps : this; 2264 2265 if ((next = this * factor) < this) { 2266 /* 2267 * We should not generally get log/linear quantizations 2268 * with a high magnitude that allows 64-bits to 2269 * overflow, but we nonetheless protect against this 2270 * by explicitly checking for overflow, and clamping 2271 * our value accordingly. 2272 */ 2273 value = this - 1; 2274 } 2275 2276 if (value < this) { 2277 /* 2278 * If our value lies within this order of magnitude, 2279 * determine its position by taking the offset within 2280 * the order of magnitude, dividing by the bucket 2281 * width, and adding to our (accumulated) base. 2282 */ 2283 return (base + (value - last) / (this / nbuckets)); 2284 } 2285 2286 base += nbuckets - (nbuckets / factor); 2287 last = this; 2288 this = next; 2289 } 2290 2291 /* 2292 * Our value is greater than or equal to our factor taken to the 2293 * power of one plus the high magnitude -- return the top bucket. 2294 */ 2295 return (base); 2296 } 2297 2298 static void 2299 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2300 { 2301 uint64_t arg = *llquanta++; 2302 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2303 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2304 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2305 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2306 2307 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2308 low, high, nsteps, nval)] += incr; 2309 } 2310 2311 /*ARGSUSED*/ 2312 static void 2313 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2314 { 2315 data[0]++; 2316 data[1] += nval; 2317 } 2318 2319 /*ARGSUSED*/ 2320 static void 2321 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2322 { 2323 int64_t snval = (int64_t)nval; 2324 uint64_t tmp[2]; 2325 2326 data[0]++; 2327 data[1] += nval; 2328 2329 /* 2330 * What we want to say here is: 2331 * 2332 * data[2] += nval * nval; 2333 * 2334 * But given that nval is 64-bit, we could easily overflow, so 2335 * we do this as 128-bit arithmetic. 2336 */ 2337 if (snval < 0) 2338 snval = -snval; 2339 2340 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2341 dtrace_add_128(data + 2, tmp, data + 2); 2342 } 2343 2344 /*ARGSUSED*/ 2345 static void 2346 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2347 { 2348 *oval = *oval + 1; 2349 } 2350 2351 /*ARGSUSED*/ 2352 static void 2353 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2354 { 2355 *oval += nval; 2356 } 2357 2358 /* 2359 * Aggregate given the tuple in the principal data buffer, and the aggregating 2360 * action denoted by the specified dtrace_aggregation_t. The aggregation 2361 * buffer is specified as the buf parameter. This routine does not return 2362 * failure; if there is no space in the aggregation buffer, the data will be 2363 * dropped, and a corresponding counter incremented. 2364 */ 2365 static void 2366 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2367 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2368 { 2369 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2370 uint32_t i, ndx, size, fsize; 2371 uint32_t align = sizeof (uint64_t) - 1; 2372 dtrace_aggbuffer_t *agb; 2373 dtrace_aggkey_t *key; 2374 uint32_t hashval = 0, limit, isstr; 2375 caddr_t tomax, data, kdata; 2376 dtrace_actkind_t action; 2377 dtrace_action_t *act; 2378 uintptr_t offs; 2379 2380 if (buf == NULL) 2381 return; 2382 2383 if (!agg->dtag_hasarg) { 2384 /* 2385 * Currently, only quantize() and lquantize() take additional 2386 * arguments, and they have the same semantics: an increment 2387 * value that defaults to 1 when not present. If additional 2388 * aggregating actions take arguments, the setting of the 2389 * default argument value will presumably have to become more 2390 * sophisticated... 2391 */ 2392 arg = 1; 2393 } 2394 2395 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2396 size = rec->dtrd_offset - agg->dtag_base; 2397 fsize = size + rec->dtrd_size; 2398 2399 ASSERT(dbuf->dtb_tomax != NULL); 2400 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2401 2402 if ((tomax = buf->dtb_tomax) == NULL) { 2403 dtrace_buffer_drop(buf); 2404 return; 2405 } 2406 2407 /* 2408 * The metastructure is always at the bottom of the buffer. 2409 */ 2410 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2411 sizeof (dtrace_aggbuffer_t)); 2412 2413 if (buf->dtb_offset == 0) { 2414 /* 2415 * We just kludge up approximately 1/8th of the size to be 2416 * buckets. If this guess ends up being routinely 2417 * off-the-mark, we may need to dynamically readjust this 2418 * based on past performance. 2419 */ 2420 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2421 2422 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2423 (uintptr_t)tomax || hashsize == 0) { 2424 /* 2425 * We've been given a ludicrously small buffer; 2426 * increment our drop count and leave. 2427 */ 2428 dtrace_buffer_drop(buf); 2429 return; 2430 } 2431 2432 /* 2433 * And now, a pathetic attempt to try to get a an odd (or 2434 * perchance, a prime) hash size for better hash distribution. 2435 */ 2436 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2437 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2438 2439 agb->dtagb_hashsize = hashsize; 2440 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2441 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2442 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2443 2444 for (i = 0; i < agb->dtagb_hashsize; i++) 2445 agb->dtagb_hash[i] = NULL; 2446 } 2447 2448 ASSERT(agg->dtag_first != NULL); 2449 ASSERT(agg->dtag_first->dta_intuple); 2450 2451 /* 2452 * Calculate the hash value based on the key. Note that we _don't_ 2453 * include the aggid in the hashing (but we will store it as part of 2454 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2455 * algorithm: a simple, quick algorithm that has no known funnels, and 2456 * gets good distribution in practice. The efficacy of the hashing 2457 * algorithm (and a comparison with other algorithms) may be found by 2458 * running the ::dtrace_aggstat MDB dcmd. 2459 */ 2460 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2461 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2462 limit = i + act->dta_rec.dtrd_size; 2463 ASSERT(limit <= size); 2464 isstr = DTRACEACT_ISSTRING(act); 2465 2466 for (; i < limit; i++) { 2467 hashval += data[i]; 2468 hashval += (hashval << 10); 2469 hashval ^= (hashval >> 6); 2470 2471 if (isstr && data[i] == '\0') 2472 break; 2473 } 2474 } 2475 2476 hashval += (hashval << 3); 2477 hashval ^= (hashval >> 11); 2478 hashval += (hashval << 15); 2479 2480 /* 2481 * Yes, the divide here is expensive -- but it's generally the least 2482 * of the performance issues given the amount of data that we iterate 2483 * over to compute hash values, compare data, etc. 2484 */ 2485 ndx = hashval % agb->dtagb_hashsize; 2486 2487 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2488 ASSERT((caddr_t)key >= tomax); 2489 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2490 2491 if (hashval != key->dtak_hashval || key->dtak_size != size) 2492 continue; 2493 2494 kdata = key->dtak_data; 2495 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2496 2497 for (act = agg->dtag_first; act->dta_intuple; 2498 act = act->dta_next) { 2499 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2500 limit = i + act->dta_rec.dtrd_size; 2501 ASSERT(limit <= size); 2502 isstr = DTRACEACT_ISSTRING(act); 2503 2504 for (; i < limit; i++) { 2505 if (kdata[i] != data[i]) 2506 goto next; 2507 2508 if (isstr && data[i] == '\0') 2509 break; 2510 } 2511 } 2512 2513 if (action != key->dtak_action) { 2514 /* 2515 * We are aggregating on the same value in the same 2516 * aggregation with two different aggregating actions. 2517 * (This should have been picked up in the compiler, 2518 * so we may be dealing with errant or devious DIF.) 2519 * This is an error condition; we indicate as much, 2520 * and return. 2521 */ 2522 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2523 return; 2524 } 2525 2526 /* 2527 * This is a hit: we need to apply the aggregator to 2528 * the value at this key. 2529 */ 2530 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2531 return; 2532 next: 2533 continue; 2534 } 2535 2536 /* 2537 * We didn't find it. We need to allocate some zero-filled space, 2538 * link it into the hash table appropriately, and apply the aggregator 2539 * to the (zero-filled) value. 2540 */ 2541 offs = buf->dtb_offset; 2542 while (offs & (align - 1)) 2543 offs += sizeof (uint32_t); 2544 2545 /* 2546 * If we don't have enough room to both allocate a new key _and_ 2547 * its associated data, increment the drop count and return. 2548 */ 2549 if ((uintptr_t)tomax + offs + fsize > 2550 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2551 dtrace_buffer_drop(buf); 2552 return; 2553 } 2554 2555 /*CONSTCOND*/ 2556 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2557 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2558 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2559 2560 key->dtak_data = kdata = tomax + offs; 2561 buf->dtb_offset = offs + fsize; 2562 2563 /* 2564 * Now copy the data across. 2565 */ 2566 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2567 2568 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2569 kdata[i] = data[i]; 2570 2571 /* 2572 * Because strings are not zeroed out by default, we need to iterate 2573 * looking for actions that store strings, and we need to explicitly 2574 * pad these strings out with zeroes. 2575 */ 2576 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2577 int nul; 2578 2579 if (!DTRACEACT_ISSTRING(act)) 2580 continue; 2581 2582 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2583 limit = i + act->dta_rec.dtrd_size; 2584 ASSERT(limit <= size); 2585 2586 for (nul = 0; i < limit; i++) { 2587 if (nul) { 2588 kdata[i] = '\0'; 2589 continue; 2590 } 2591 2592 if (data[i] != '\0') 2593 continue; 2594 2595 nul = 1; 2596 } 2597 } 2598 2599 for (i = size; i < fsize; i++) 2600 kdata[i] = 0; 2601 2602 key->dtak_hashval = hashval; 2603 key->dtak_size = size; 2604 key->dtak_action = action; 2605 key->dtak_next = agb->dtagb_hash[ndx]; 2606 agb->dtagb_hash[ndx] = key; 2607 2608 /* 2609 * Finally, apply the aggregator. 2610 */ 2611 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2612 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2613 } 2614 2615 /* 2616 * Given consumer state, this routine finds a speculation in the INACTIVE 2617 * state and transitions it into the ACTIVE state. If there is no speculation 2618 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2619 * incremented -- it is up to the caller to take appropriate action. 2620 */ 2621 static int 2622 dtrace_speculation(dtrace_state_t *state) 2623 { 2624 int i = 0; 2625 dtrace_speculation_state_t current; 2626 uint32_t *stat = &state->dts_speculations_unavail, count; 2627 2628 while (i < state->dts_nspeculations) { 2629 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2630 2631 current = spec->dtsp_state; 2632 2633 if (current != DTRACESPEC_INACTIVE) { 2634 if (current == DTRACESPEC_COMMITTINGMANY || 2635 current == DTRACESPEC_COMMITTING || 2636 current == DTRACESPEC_DISCARDING) 2637 stat = &state->dts_speculations_busy; 2638 i++; 2639 continue; 2640 } 2641 2642 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2643 current, DTRACESPEC_ACTIVE) == current) 2644 return (i + 1); 2645 } 2646 2647 /* 2648 * We couldn't find a speculation. If we found as much as a single 2649 * busy speculation buffer, we'll attribute this failure as "busy" 2650 * instead of "unavail". 2651 */ 2652 do { 2653 count = *stat; 2654 } while (dtrace_cas32(stat, count, count + 1) != count); 2655 2656 return (0); 2657 } 2658 2659 /* 2660 * This routine commits an active speculation. If the specified speculation 2661 * is not in a valid state to perform a commit(), this routine will silently do 2662 * nothing. The state of the specified speculation is transitioned according 2663 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2664 */ 2665 static void 2666 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2667 dtrace_specid_t which) 2668 { 2669 dtrace_speculation_t *spec; 2670 dtrace_buffer_t *src, *dest; 2671 uintptr_t daddr, saddr, dlimit, slimit; 2672 dtrace_speculation_state_t current, new = 0; 2673 intptr_t offs; 2674 uint64_t timestamp; 2675 2676 if (which == 0) 2677 return; 2678 2679 if (which > state->dts_nspeculations) { 2680 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2681 return; 2682 } 2683 2684 spec = &state->dts_speculations[which - 1]; 2685 src = &spec->dtsp_buffer[cpu]; 2686 dest = &state->dts_buffer[cpu]; 2687 2688 do { 2689 current = spec->dtsp_state; 2690 2691 if (current == DTRACESPEC_COMMITTINGMANY) 2692 break; 2693 2694 switch (current) { 2695 case DTRACESPEC_INACTIVE: 2696 case DTRACESPEC_DISCARDING: 2697 return; 2698 2699 case DTRACESPEC_COMMITTING: 2700 /* 2701 * This is only possible if we are (a) commit()'ing 2702 * without having done a prior speculate() on this CPU 2703 * and (b) racing with another commit() on a different 2704 * CPU. There's nothing to do -- we just assert that 2705 * our offset is 0. 2706 */ 2707 ASSERT(src->dtb_offset == 0); 2708 return; 2709 2710 case DTRACESPEC_ACTIVE: 2711 new = DTRACESPEC_COMMITTING; 2712 break; 2713 2714 case DTRACESPEC_ACTIVEONE: 2715 /* 2716 * This speculation is active on one CPU. If our 2717 * buffer offset is non-zero, we know that the one CPU 2718 * must be us. Otherwise, we are committing on a 2719 * different CPU from the speculate(), and we must 2720 * rely on being asynchronously cleaned. 2721 */ 2722 if (src->dtb_offset != 0) { 2723 new = DTRACESPEC_COMMITTING; 2724 break; 2725 } 2726 /*FALLTHROUGH*/ 2727 2728 case DTRACESPEC_ACTIVEMANY: 2729 new = DTRACESPEC_COMMITTINGMANY; 2730 break; 2731 2732 default: 2733 ASSERT(0); 2734 } 2735 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2736 current, new) != current); 2737 2738 /* 2739 * We have set the state to indicate that we are committing this 2740 * speculation. Now reserve the necessary space in the destination 2741 * buffer. 2742 */ 2743 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2744 sizeof (uint64_t), state, NULL)) < 0) { 2745 dtrace_buffer_drop(dest); 2746 goto out; 2747 } 2748 2749 /* 2750 * We have sufficient space to copy the speculative buffer into the 2751 * primary buffer. First, modify the speculative buffer, filling 2752 * in the timestamp of all entries with the current time. The data 2753 * must have the commit() time rather than the time it was traced, 2754 * so that all entries in the primary buffer are in timestamp order. 2755 */ 2756 timestamp = dtrace_gethrtime(); 2757 saddr = (uintptr_t)src->dtb_tomax; 2758 slimit = saddr + src->dtb_offset; 2759 while (saddr < slimit) { 2760 size_t size; 2761 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2762 2763 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2764 saddr += sizeof (dtrace_epid_t); 2765 continue; 2766 } 2767 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2768 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2769 2770 ASSERT3U(saddr + size, <=, slimit); 2771 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2772 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2773 2774 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2775 2776 saddr += size; 2777 } 2778 2779 /* 2780 * Copy the buffer across. (Note that this is a 2781 * highly subobtimal bcopy(); in the unlikely event that this becomes 2782 * a serious performance issue, a high-performance DTrace-specific 2783 * bcopy() should obviously be invented.) 2784 */ 2785 daddr = (uintptr_t)dest->dtb_tomax + offs; 2786 dlimit = daddr + src->dtb_offset; 2787 saddr = (uintptr_t)src->dtb_tomax; 2788 2789 /* 2790 * First, the aligned portion. 2791 */ 2792 while (dlimit - daddr >= sizeof (uint64_t)) { 2793 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2794 2795 daddr += sizeof (uint64_t); 2796 saddr += sizeof (uint64_t); 2797 } 2798 2799 /* 2800 * Now any left-over bit... 2801 */ 2802 while (dlimit - daddr) 2803 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2804 2805 /* 2806 * Finally, commit the reserved space in the destination buffer. 2807 */ 2808 dest->dtb_offset = offs + src->dtb_offset; 2809 2810 out: 2811 /* 2812 * If we're lucky enough to be the only active CPU on this speculation 2813 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2814 */ 2815 if (current == DTRACESPEC_ACTIVE || 2816 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2817 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2818 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2819 2820 ASSERT(rval == DTRACESPEC_COMMITTING); 2821 } 2822 2823 src->dtb_offset = 0; 2824 src->dtb_xamot_drops += src->dtb_drops; 2825 src->dtb_drops = 0; 2826 } 2827 2828 /* 2829 * This routine discards an active speculation. If the specified speculation 2830 * is not in a valid state to perform a discard(), this routine will silently 2831 * do nothing. The state of the specified speculation is transitioned 2832 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2833 */ 2834 static void 2835 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2836 dtrace_specid_t which) 2837 { 2838 dtrace_speculation_t *spec; 2839 dtrace_speculation_state_t current, new = 0; 2840 dtrace_buffer_t *buf; 2841 2842 if (which == 0) 2843 return; 2844 2845 if (which > state->dts_nspeculations) { 2846 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2847 return; 2848 } 2849 2850 spec = &state->dts_speculations[which - 1]; 2851 buf = &spec->dtsp_buffer[cpu]; 2852 2853 do { 2854 current = spec->dtsp_state; 2855 2856 switch (current) { 2857 case DTRACESPEC_INACTIVE: 2858 case DTRACESPEC_COMMITTINGMANY: 2859 case DTRACESPEC_COMMITTING: 2860 case DTRACESPEC_DISCARDING: 2861 return; 2862 2863 case DTRACESPEC_ACTIVE: 2864 case DTRACESPEC_ACTIVEMANY: 2865 new = DTRACESPEC_DISCARDING; 2866 break; 2867 2868 case DTRACESPEC_ACTIVEONE: 2869 if (buf->dtb_offset != 0) { 2870 new = DTRACESPEC_INACTIVE; 2871 } else { 2872 new = DTRACESPEC_DISCARDING; 2873 } 2874 break; 2875 2876 default: 2877 ASSERT(0); 2878 } 2879 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2880 current, new) != current); 2881 2882 buf->dtb_offset = 0; 2883 buf->dtb_drops = 0; 2884 } 2885 2886 /* 2887 * Note: not called from probe context. This function is called 2888 * asynchronously from cross call context to clean any speculations that are 2889 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2890 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2891 * speculation. 2892 */ 2893 static void 2894 dtrace_speculation_clean_here(dtrace_state_t *state) 2895 { 2896 dtrace_icookie_t cookie; 2897 processorid_t cpu = curcpu; 2898 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2899 dtrace_specid_t i; 2900 2901 cookie = dtrace_interrupt_disable(); 2902 2903 if (dest->dtb_tomax == NULL) { 2904 dtrace_interrupt_enable(cookie); 2905 return; 2906 } 2907 2908 for (i = 0; i < state->dts_nspeculations; i++) { 2909 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2910 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2911 2912 if (src->dtb_tomax == NULL) 2913 continue; 2914 2915 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2916 src->dtb_offset = 0; 2917 continue; 2918 } 2919 2920 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2921 continue; 2922 2923 if (src->dtb_offset == 0) 2924 continue; 2925 2926 dtrace_speculation_commit(state, cpu, i + 1); 2927 } 2928 2929 dtrace_interrupt_enable(cookie); 2930 } 2931 2932 /* 2933 * Note: not called from probe context. This function is called 2934 * asynchronously (and at a regular interval) to clean any speculations that 2935 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2936 * is work to be done, it cross calls all CPUs to perform that work; 2937 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2938 * INACTIVE state until they have been cleaned by all CPUs. 2939 */ 2940 static void 2941 dtrace_speculation_clean(dtrace_state_t *state) 2942 { 2943 int work = 0, rv; 2944 dtrace_specid_t i; 2945 2946 for (i = 0; i < state->dts_nspeculations; i++) { 2947 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2948 2949 ASSERT(!spec->dtsp_cleaning); 2950 2951 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2952 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2953 continue; 2954 2955 work++; 2956 spec->dtsp_cleaning = 1; 2957 } 2958 2959 if (!work) 2960 return; 2961 2962 dtrace_xcall(DTRACE_CPUALL, 2963 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2964 2965 /* 2966 * We now know that all CPUs have committed or discarded their 2967 * speculation buffers, as appropriate. We can now set the state 2968 * to inactive. 2969 */ 2970 for (i = 0; i < state->dts_nspeculations; i++) { 2971 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2972 dtrace_speculation_state_t current, new; 2973 2974 if (!spec->dtsp_cleaning) 2975 continue; 2976 2977 current = spec->dtsp_state; 2978 ASSERT(current == DTRACESPEC_DISCARDING || 2979 current == DTRACESPEC_COMMITTINGMANY); 2980 2981 new = DTRACESPEC_INACTIVE; 2982 2983 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2984 ASSERT(rv == current); 2985 spec->dtsp_cleaning = 0; 2986 } 2987 } 2988 2989 /* 2990 * Called as part of a speculate() to get the speculative buffer associated 2991 * with a given speculation. Returns NULL if the specified speculation is not 2992 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2993 * the active CPU is not the specified CPU -- the speculation will be 2994 * atomically transitioned into the ACTIVEMANY state. 2995 */ 2996 static dtrace_buffer_t * 2997 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2998 dtrace_specid_t which) 2999 { 3000 dtrace_speculation_t *spec; 3001 dtrace_speculation_state_t current, new = 0; 3002 dtrace_buffer_t *buf; 3003 3004 if (which == 0) 3005 return (NULL); 3006 3007 if (which > state->dts_nspeculations) { 3008 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3009 return (NULL); 3010 } 3011 3012 spec = &state->dts_speculations[which - 1]; 3013 buf = &spec->dtsp_buffer[cpuid]; 3014 3015 do { 3016 current = spec->dtsp_state; 3017 3018 switch (current) { 3019 case DTRACESPEC_INACTIVE: 3020 case DTRACESPEC_COMMITTINGMANY: 3021 case DTRACESPEC_DISCARDING: 3022 return (NULL); 3023 3024 case DTRACESPEC_COMMITTING: 3025 ASSERT(buf->dtb_offset == 0); 3026 return (NULL); 3027 3028 case DTRACESPEC_ACTIVEONE: 3029 /* 3030 * This speculation is currently active on one CPU. 3031 * Check the offset in the buffer; if it's non-zero, 3032 * that CPU must be us (and we leave the state alone). 3033 * If it's zero, assume that we're starting on a new 3034 * CPU -- and change the state to indicate that the 3035 * speculation is active on more than one CPU. 3036 */ 3037 if (buf->dtb_offset != 0) 3038 return (buf); 3039 3040 new = DTRACESPEC_ACTIVEMANY; 3041 break; 3042 3043 case DTRACESPEC_ACTIVEMANY: 3044 return (buf); 3045 3046 case DTRACESPEC_ACTIVE: 3047 new = DTRACESPEC_ACTIVEONE; 3048 break; 3049 3050 default: 3051 ASSERT(0); 3052 } 3053 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3054 current, new) != current); 3055 3056 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3057 return (buf); 3058 } 3059 3060 /* 3061 * Return a string. In the event that the user lacks the privilege to access 3062 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3063 * don't fail access checking. 3064 * 3065 * dtrace_dif_variable() uses this routine as a helper for various 3066 * builtin values such as 'execname' and 'probefunc.' 3067 */ 3068 uintptr_t 3069 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3070 dtrace_mstate_t *mstate) 3071 { 3072 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3073 uintptr_t ret; 3074 size_t strsz; 3075 3076 /* 3077 * The easy case: this probe is allowed to read all of memory, so 3078 * we can just return this as a vanilla pointer. 3079 */ 3080 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3081 return (addr); 3082 3083 /* 3084 * This is the tougher case: we copy the string in question from 3085 * kernel memory into scratch memory and return it that way: this 3086 * ensures that we won't trip up when access checking tests the 3087 * BYREF return value. 3088 */ 3089 strsz = dtrace_strlen((char *)addr, size) + 1; 3090 3091 if (mstate->dtms_scratch_ptr + strsz > 3092 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3093 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3094 return (0); 3095 } 3096 3097 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3098 strsz); 3099 ret = mstate->dtms_scratch_ptr; 3100 mstate->dtms_scratch_ptr += strsz; 3101 return (ret); 3102 } 3103 3104 /* 3105 * Return a string from a memoy address which is known to have one or 3106 * more concatenated, individually zero terminated, sub-strings. 3107 * In the event that the user lacks the privilege to access 3108 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3109 * don't fail access checking. 3110 * 3111 * dtrace_dif_variable() uses this routine as a helper for various 3112 * builtin values such as 'execargs'. 3113 */ 3114 static uintptr_t 3115 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3116 dtrace_mstate_t *mstate) 3117 { 3118 char *p; 3119 size_t i; 3120 uintptr_t ret; 3121 3122 if (mstate->dtms_scratch_ptr + strsz > 3123 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3124 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3125 return (0); 3126 } 3127 3128 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3129 strsz); 3130 3131 /* Replace sub-string termination characters with a space. */ 3132 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3133 p++, i++) 3134 if (*p == '\0') 3135 *p = ' '; 3136 3137 ret = mstate->dtms_scratch_ptr; 3138 mstate->dtms_scratch_ptr += strsz; 3139 return (ret); 3140 } 3141 3142 /* 3143 * This function implements the DIF emulator's variable lookups. The emulator 3144 * passes a reserved variable identifier and optional built-in array index. 3145 */ 3146 static uint64_t 3147 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3148 uint64_t ndx) 3149 { 3150 /* 3151 * If we're accessing one of the uncached arguments, we'll turn this 3152 * into a reference in the args array. 3153 */ 3154 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3155 ndx = v - DIF_VAR_ARG0; 3156 v = DIF_VAR_ARGS; 3157 } 3158 3159 switch (v) { 3160 case DIF_VAR_ARGS: 3161 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3162 if (ndx >= sizeof (mstate->dtms_arg) / 3163 sizeof (mstate->dtms_arg[0])) { 3164 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3165 dtrace_provider_t *pv; 3166 uint64_t val; 3167 3168 pv = mstate->dtms_probe->dtpr_provider; 3169 if (pv->dtpv_pops.dtps_getargval != NULL) 3170 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3171 mstate->dtms_probe->dtpr_id, 3172 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3173 else 3174 val = dtrace_getarg(ndx, aframes); 3175 3176 /* 3177 * This is regrettably required to keep the compiler 3178 * from tail-optimizing the call to dtrace_getarg(). 3179 * The condition always evaluates to true, but the 3180 * compiler has no way of figuring that out a priori. 3181 * (None of this would be necessary if the compiler 3182 * could be relied upon to _always_ tail-optimize 3183 * the call to dtrace_getarg() -- but it can't.) 3184 */ 3185 if (mstate->dtms_probe != NULL) 3186 return (val); 3187 3188 ASSERT(0); 3189 } 3190 3191 return (mstate->dtms_arg[ndx]); 3192 3193 #ifdef illumos 3194 case DIF_VAR_UREGS: { 3195 klwp_t *lwp; 3196 3197 if (!dtrace_priv_proc(state)) 3198 return (0); 3199 3200 if ((lwp = curthread->t_lwp) == NULL) { 3201 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3202 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 3203 return (0); 3204 } 3205 3206 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3207 return (0); 3208 } 3209 #else 3210 case DIF_VAR_UREGS: { 3211 struct trapframe *tframe; 3212 3213 if (!dtrace_priv_proc(state)) 3214 return (0); 3215 3216 if ((tframe = curthread->td_frame) == NULL) { 3217 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3218 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3219 return (0); 3220 } 3221 3222 return (dtrace_getreg(tframe, ndx)); 3223 } 3224 #endif 3225 3226 case DIF_VAR_CURTHREAD: 3227 if (!dtrace_priv_proc(state)) 3228 return (0); 3229 return ((uint64_t)(uintptr_t)curthread); 3230 3231 case DIF_VAR_TIMESTAMP: 3232 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3233 mstate->dtms_timestamp = dtrace_gethrtime(); 3234 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3235 } 3236 return (mstate->dtms_timestamp); 3237 3238 case DIF_VAR_VTIMESTAMP: 3239 ASSERT(dtrace_vtime_references != 0); 3240 return (curthread->t_dtrace_vtime); 3241 3242 case DIF_VAR_WALLTIMESTAMP: 3243 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3244 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3245 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3246 } 3247 return (mstate->dtms_walltimestamp); 3248 3249 #ifdef illumos 3250 case DIF_VAR_IPL: 3251 if (!dtrace_priv_kernel(state)) 3252 return (0); 3253 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3254 mstate->dtms_ipl = dtrace_getipl(); 3255 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3256 } 3257 return (mstate->dtms_ipl); 3258 #endif 3259 3260 case DIF_VAR_EPID: 3261 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3262 return (mstate->dtms_epid); 3263 3264 case DIF_VAR_ID: 3265 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3266 return (mstate->dtms_probe->dtpr_id); 3267 3268 case DIF_VAR_STACKDEPTH: 3269 if (!dtrace_priv_kernel(state)) 3270 return (0); 3271 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3272 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3273 3274 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3275 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3276 } 3277 return (mstate->dtms_stackdepth); 3278 3279 case DIF_VAR_USTACKDEPTH: 3280 if (!dtrace_priv_proc(state)) 3281 return (0); 3282 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3283 /* 3284 * See comment in DIF_VAR_PID. 3285 */ 3286 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3287 CPU_ON_INTR(CPU)) { 3288 mstate->dtms_ustackdepth = 0; 3289 } else { 3290 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3291 mstate->dtms_ustackdepth = 3292 dtrace_getustackdepth(); 3293 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3294 } 3295 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3296 } 3297 return (mstate->dtms_ustackdepth); 3298 3299 case DIF_VAR_CALLER: 3300 if (!dtrace_priv_kernel(state)) 3301 return (0); 3302 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3303 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3304 3305 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3306 /* 3307 * If this is an unanchored probe, we are 3308 * required to go through the slow path: 3309 * dtrace_caller() only guarantees correct 3310 * results for anchored probes. 3311 */ 3312 pc_t caller[2] = {0, 0}; 3313 3314 dtrace_getpcstack(caller, 2, aframes, 3315 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3316 mstate->dtms_caller = caller[1]; 3317 } else if ((mstate->dtms_caller = 3318 dtrace_caller(aframes)) == -1) { 3319 /* 3320 * We have failed to do this the quick way; 3321 * we must resort to the slower approach of 3322 * calling dtrace_getpcstack(). 3323 */ 3324 pc_t caller = 0; 3325 3326 dtrace_getpcstack(&caller, 1, aframes, NULL); 3327 mstate->dtms_caller = caller; 3328 } 3329 3330 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3331 } 3332 return (mstate->dtms_caller); 3333 3334 case DIF_VAR_UCALLER: 3335 if (!dtrace_priv_proc(state)) 3336 return (0); 3337 3338 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3339 uint64_t ustack[3]; 3340 3341 /* 3342 * dtrace_getupcstack() fills in the first uint64_t 3343 * with the current PID. The second uint64_t will 3344 * be the program counter at user-level. The third 3345 * uint64_t will contain the caller, which is what 3346 * we're after. 3347 */ 3348 ustack[2] = 0; 3349 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3350 dtrace_getupcstack(ustack, 3); 3351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3352 mstate->dtms_ucaller = ustack[2]; 3353 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3354 } 3355 3356 return (mstate->dtms_ucaller); 3357 3358 case DIF_VAR_PROBEPROV: 3359 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3360 return (dtrace_dif_varstr( 3361 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3362 state, mstate)); 3363 3364 case DIF_VAR_PROBEMOD: 3365 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3366 return (dtrace_dif_varstr( 3367 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3368 state, mstate)); 3369 3370 case DIF_VAR_PROBEFUNC: 3371 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3372 return (dtrace_dif_varstr( 3373 (uintptr_t)mstate->dtms_probe->dtpr_func, 3374 state, mstate)); 3375 3376 case DIF_VAR_PROBENAME: 3377 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3378 return (dtrace_dif_varstr( 3379 (uintptr_t)mstate->dtms_probe->dtpr_name, 3380 state, mstate)); 3381 3382 case DIF_VAR_PID: 3383 if (!dtrace_priv_proc(state)) 3384 return (0); 3385 3386 #ifdef illumos 3387 /* 3388 * Note that we are assuming that an unanchored probe is 3389 * always due to a high-level interrupt. (And we're assuming 3390 * that there is only a single high level interrupt.) 3391 */ 3392 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3393 return (pid0.pid_id); 3394 3395 /* 3396 * It is always safe to dereference one's own t_procp pointer: 3397 * it always points to a valid, allocated proc structure. 3398 * Further, it is always safe to dereference the p_pidp member 3399 * of one's own proc structure. (These are truisms becuase 3400 * threads and processes don't clean up their own state -- 3401 * they leave that task to whomever reaps them.) 3402 */ 3403 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3404 #else 3405 return ((uint64_t)curproc->p_pid); 3406 #endif 3407 3408 case DIF_VAR_PPID: 3409 if (!dtrace_priv_proc(state)) 3410 return (0); 3411 3412 #ifdef illumos 3413 /* 3414 * See comment in DIF_VAR_PID. 3415 */ 3416 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3417 return (pid0.pid_id); 3418 3419 /* 3420 * It is always safe to dereference one's own t_procp pointer: 3421 * it always points to a valid, allocated proc structure. 3422 * (This is true because threads don't clean up their own 3423 * state -- they leave that task to whomever reaps them.) 3424 */ 3425 return ((uint64_t)curthread->t_procp->p_ppid); 3426 #else 3427 if (curproc->p_pid == proc0.p_pid) 3428 return (curproc->p_pid); 3429 else 3430 return (curproc->p_pptr->p_pid); 3431 #endif 3432 3433 case DIF_VAR_TID: 3434 #ifdef illumos 3435 /* 3436 * See comment in DIF_VAR_PID. 3437 */ 3438 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3439 return (0); 3440 #endif 3441 3442 return ((uint64_t)curthread->t_tid); 3443 3444 case DIF_VAR_EXECARGS: { 3445 struct pargs *p_args = curthread->td_proc->p_args; 3446 3447 if (p_args == NULL) 3448 return(0); 3449 3450 return (dtrace_dif_varstrz( 3451 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3452 } 3453 3454 case DIF_VAR_EXECNAME: 3455 #ifdef illumos 3456 if (!dtrace_priv_proc(state)) 3457 return (0); 3458 3459 /* 3460 * See comment in DIF_VAR_PID. 3461 */ 3462 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3463 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3464 3465 /* 3466 * It is always safe to dereference one's own t_procp pointer: 3467 * it always points to a valid, allocated proc structure. 3468 * (This is true because threads don't clean up their own 3469 * state -- they leave that task to whomever reaps them.) 3470 */ 3471 return (dtrace_dif_varstr( 3472 (uintptr_t)curthread->t_procp->p_user.u_comm, 3473 state, mstate)); 3474 #else 3475 return (dtrace_dif_varstr( 3476 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3477 #endif 3478 3479 case DIF_VAR_ZONENAME: 3480 #ifdef illumos 3481 if (!dtrace_priv_proc(state)) 3482 return (0); 3483 3484 /* 3485 * See comment in DIF_VAR_PID. 3486 */ 3487 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3488 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3489 3490 /* 3491 * It is always safe to dereference one's own t_procp pointer: 3492 * it always points to a valid, allocated proc structure. 3493 * (This is true because threads don't clean up their own 3494 * state -- they leave that task to whomever reaps them.) 3495 */ 3496 return (dtrace_dif_varstr( 3497 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3498 state, mstate)); 3499 #else 3500 return (0); 3501 #endif 3502 3503 case DIF_VAR_UID: 3504 if (!dtrace_priv_proc(state)) 3505 return (0); 3506 3507 #ifdef illumos 3508 /* 3509 * See comment in DIF_VAR_PID. 3510 */ 3511 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3512 return ((uint64_t)p0.p_cred->cr_uid); 3513 3514 /* 3515 * It is always safe to dereference one's own t_procp pointer: 3516 * it always points to a valid, allocated proc structure. 3517 * (This is true because threads don't clean up their own 3518 * state -- they leave that task to whomever reaps them.) 3519 * 3520 * Additionally, it is safe to dereference one's own process 3521 * credential, since this is never NULL after process birth. 3522 */ 3523 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3524 #else 3525 return ((uint64_t)curthread->td_ucred->cr_uid); 3526 #endif 3527 3528 case DIF_VAR_GID: 3529 if (!dtrace_priv_proc(state)) 3530 return (0); 3531 3532 #ifdef illumos 3533 /* 3534 * See comment in DIF_VAR_PID. 3535 */ 3536 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3537 return ((uint64_t)p0.p_cred->cr_gid); 3538 3539 /* 3540 * It is always safe to dereference one's own t_procp pointer: 3541 * it always points to a valid, allocated proc structure. 3542 * (This is true because threads don't clean up their own 3543 * state -- they leave that task to whomever reaps them.) 3544 * 3545 * Additionally, it is safe to dereference one's own process 3546 * credential, since this is never NULL after process birth. 3547 */ 3548 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3549 #else 3550 return ((uint64_t)curthread->td_ucred->cr_gid); 3551 #endif 3552 3553 case DIF_VAR_ERRNO: { 3554 #ifdef illumos 3555 klwp_t *lwp; 3556 if (!dtrace_priv_proc(state)) 3557 return (0); 3558 3559 /* 3560 * See comment in DIF_VAR_PID. 3561 */ 3562 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3563 return (0); 3564 3565 /* 3566 * It is always safe to dereference one's own t_lwp pointer in 3567 * the event that this pointer is non-NULL. (This is true 3568 * because threads and lwps don't clean up their own state -- 3569 * they leave that task to whomever reaps them.) 3570 */ 3571 if ((lwp = curthread->t_lwp) == NULL) 3572 return (0); 3573 3574 return ((uint64_t)lwp->lwp_errno); 3575 #else 3576 return (curthread->td_errno); 3577 #endif 3578 } 3579 #ifndef illumos 3580 case DIF_VAR_CPU: { 3581 return curcpu; 3582 } 3583 #endif 3584 default: 3585 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3586 return (0); 3587 } 3588 } 3589 3590 3591 typedef enum dtrace_json_state { 3592 DTRACE_JSON_REST = 1, 3593 DTRACE_JSON_OBJECT, 3594 DTRACE_JSON_STRING, 3595 DTRACE_JSON_STRING_ESCAPE, 3596 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3597 DTRACE_JSON_COLON, 3598 DTRACE_JSON_COMMA, 3599 DTRACE_JSON_VALUE, 3600 DTRACE_JSON_IDENTIFIER, 3601 DTRACE_JSON_NUMBER, 3602 DTRACE_JSON_NUMBER_FRAC, 3603 DTRACE_JSON_NUMBER_EXP, 3604 DTRACE_JSON_COLLECT_OBJECT 3605 } dtrace_json_state_t; 3606 3607 /* 3608 * This function possesses just enough knowledge about JSON to extract a single 3609 * value from a JSON string and store it in the scratch buffer. It is able 3610 * to extract nested object values, and members of arrays by index. 3611 * 3612 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3613 * be looked up as we descend into the object tree. e.g. 3614 * 3615 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3616 * with nelems = 5. 3617 * 3618 * The run time of this function must be bounded above by strsize to limit the 3619 * amount of work done in probe context. As such, it is implemented as a 3620 * simple state machine, reading one character at a time using safe loads 3621 * until we find the requested element, hit a parsing error or run off the 3622 * end of the object or string. 3623 * 3624 * As there is no way for a subroutine to return an error without interrupting 3625 * clause execution, we simply return NULL in the event of a missing key or any 3626 * other error condition. Each NULL return in this function is commented with 3627 * the error condition it represents -- parsing or otherwise. 3628 * 3629 * The set of states for the state machine closely matches the JSON 3630 * specification (http://json.org/). Briefly: 3631 * 3632 * DTRACE_JSON_REST: 3633 * Skip whitespace until we find either a top-level Object, moving 3634 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3635 * 3636 * DTRACE_JSON_OBJECT: 3637 * Locate the next key String in an Object. Sets a flag to denote 3638 * the next String as a key string and moves to DTRACE_JSON_STRING. 3639 * 3640 * DTRACE_JSON_COLON: 3641 * Skip whitespace until we find the colon that separates key Strings 3642 * from their values. Once found, move to DTRACE_JSON_VALUE. 3643 * 3644 * DTRACE_JSON_VALUE: 3645 * Detects the type of the next value (String, Number, Identifier, Object 3646 * or Array) and routes to the states that process that type. Here we also 3647 * deal with the element selector list if we are requested to traverse down 3648 * into the object tree. 3649 * 3650 * DTRACE_JSON_COMMA: 3651 * Skip whitespace until we find the comma that separates key-value pairs 3652 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3653 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3654 * states return to this state at the end of their value, unless otherwise 3655 * noted. 3656 * 3657 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3658 * Processes a Number literal from the JSON, including any exponent 3659 * component that may be present. Numbers are returned as strings, which 3660 * may be passed to strtoll() if an integer is required. 3661 * 3662 * DTRACE_JSON_IDENTIFIER: 3663 * Processes a "true", "false" or "null" literal in the JSON. 3664 * 3665 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3666 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3667 * Processes a String literal from the JSON, whether the String denotes 3668 * a key, a value or part of a larger Object. Handles all escape sequences 3669 * present in the specification, including four-digit unicode characters, 3670 * but merely includes the escape sequence without converting it to the 3671 * actual escaped character. If the String is flagged as a key, we 3672 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3673 * 3674 * DTRACE_JSON_COLLECT_OBJECT: 3675 * This state collects an entire Object (or Array), correctly handling 3676 * embedded strings. If the full element selector list matches this nested 3677 * object, we return the Object in full as a string. If not, we use this 3678 * state to skip to the next value at this level and continue processing. 3679 * 3680 * NOTE: This function uses various macros from strtolctype.h to manipulate 3681 * digit values, etc -- these have all been checked to ensure they make 3682 * no additional function calls. 3683 */ 3684 static char * 3685 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3686 char *dest) 3687 { 3688 dtrace_json_state_t state = DTRACE_JSON_REST; 3689 int64_t array_elem = INT64_MIN; 3690 int64_t array_pos = 0; 3691 uint8_t escape_unicount = 0; 3692 boolean_t string_is_key = B_FALSE; 3693 boolean_t collect_object = B_FALSE; 3694 boolean_t found_key = B_FALSE; 3695 boolean_t in_array = B_FALSE; 3696 uint32_t braces = 0, brackets = 0; 3697 char *elem = elemlist; 3698 char *dd = dest; 3699 uintptr_t cur; 3700 3701 for (cur = json; cur < json + size; cur++) { 3702 char cc = dtrace_load8(cur); 3703 if (cc == '\0') 3704 return (NULL); 3705 3706 switch (state) { 3707 case DTRACE_JSON_REST: 3708 if (isspace(cc)) 3709 break; 3710 3711 if (cc == '{') { 3712 state = DTRACE_JSON_OBJECT; 3713 break; 3714 } 3715 3716 if (cc == '[') { 3717 in_array = B_TRUE; 3718 array_pos = 0; 3719 array_elem = dtrace_strtoll(elem, 10, size); 3720 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3721 state = DTRACE_JSON_VALUE; 3722 break; 3723 } 3724 3725 /* 3726 * ERROR: expected to find a top-level object or array. 3727 */ 3728 return (NULL); 3729 case DTRACE_JSON_OBJECT: 3730 if (isspace(cc)) 3731 break; 3732 3733 if (cc == '"') { 3734 state = DTRACE_JSON_STRING; 3735 string_is_key = B_TRUE; 3736 break; 3737 } 3738 3739 /* 3740 * ERROR: either the object did not start with a key 3741 * string, or we've run off the end of the object 3742 * without finding the requested key. 3743 */ 3744 return (NULL); 3745 case DTRACE_JSON_STRING: 3746 if (cc == '\\') { 3747 *dd++ = '\\'; 3748 state = DTRACE_JSON_STRING_ESCAPE; 3749 break; 3750 } 3751 3752 if (cc == '"') { 3753 if (collect_object) { 3754 /* 3755 * We don't reset the dest here, as 3756 * the string is part of a larger 3757 * object being collected. 3758 */ 3759 *dd++ = cc; 3760 collect_object = B_FALSE; 3761 state = DTRACE_JSON_COLLECT_OBJECT; 3762 break; 3763 } 3764 *dd = '\0'; 3765 dd = dest; /* reset string buffer */ 3766 if (string_is_key) { 3767 if (dtrace_strncmp(dest, elem, 3768 size) == 0) 3769 found_key = B_TRUE; 3770 } else if (found_key) { 3771 if (nelems > 1) { 3772 /* 3773 * We expected an object, not 3774 * this string. 3775 */ 3776 return (NULL); 3777 } 3778 return (dest); 3779 } 3780 state = string_is_key ? DTRACE_JSON_COLON : 3781 DTRACE_JSON_COMMA; 3782 string_is_key = B_FALSE; 3783 break; 3784 } 3785 3786 *dd++ = cc; 3787 break; 3788 case DTRACE_JSON_STRING_ESCAPE: 3789 *dd++ = cc; 3790 if (cc == 'u') { 3791 escape_unicount = 0; 3792 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3793 } else { 3794 state = DTRACE_JSON_STRING; 3795 } 3796 break; 3797 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3798 if (!isxdigit(cc)) { 3799 /* 3800 * ERROR: invalid unicode escape, expected 3801 * four valid hexidecimal digits. 3802 */ 3803 return (NULL); 3804 } 3805 3806 *dd++ = cc; 3807 if (++escape_unicount == 4) 3808 state = DTRACE_JSON_STRING; 3809 break; 3810 case DTRACE_JSON_COLON: 3811 if (isspace(cc)) 3812 break; 3813 3814 if (cc == ':') { 3815 state = DTRACE_JSON_VALUE; 3816 break; 3817 } 3818 3819 /* 3820 * ERROR: expected a colon. 3821 */ 3822 return (NULL); 3823 case DTRACE_JSON_COMMA: 3824 if (isspace(cc)) 3825 break; 3826 3827 if (cc == ',') { 3828 if (in_array) { 3829 state = DTRACE_JSON_VALUE; 3830 if (++array_pos == array_elem) 3831 found_key = B_TRUE; 3832 } else { 3833 state = DTRACE_JSON_OBJECT; 3834 } 3835 break; 3836 } 3837 3838 /* 3839 * ERROR: either we hit an unexpected character, or 3840 * we reached the end of the object or array without 3841 * finding the requested key. 3842 */ 3843 return (NULL); 3844 case DTRACE_JSON_IDENTIFIER: 3845 if (islower(cc)) { 3846 *dd++ = cc; 3847 break; 3848 } 3849 3850 *dd = '\0'; 3851 dd = dest; /* reset string buffer */ 3852 3853 if (dtrace_strncmp(dest, "true", 5) == 0 || 3854 dtrace_strncmp(dest, "false", 6) == 0 || 3855 dtrace_strncmp(dest, "null", 5) == 0) { 3856 if (found_key) { 3857 if (nelems > 1) { 3858 /* 3859 * ERROR: We expected an object, 3860 * not this identifier. 3861 */ 3862 return (NULL); 3863 } 3864 return (dest); 3865 } else { 3866 cur--; 3867 state = DTRACE_JSON_COMMA; 3868 break; 3869 } 3870 } 3871 3872 /* 3873 * ERROR: we did not recognise the identifier as one 3874 * of those in the JSON specification. 3875 */ 3876 return (NULL); 3877 case DTRACE_JSON_NUMBER: 3878 if (cc == '.') { 3879 *dd++ = cc; 3880 state = DTRACE_JSON_NUMBER_FRAC; 3881 break; 3882 } 3883 3884 if (cc == 'x' || cc == 'X') { 3885 /* 3886 * ERROR: specification explicitly excludes 3887 * hexidecimal or octal numbers. 3888 */ 3889 return (NULL); 3890 } 3891 3892 /* FALLTHRU */ 3893 case DTRACE_JSON_NUMBER_FRAC: 3894 if (cc == 'e' || cc == 'E') { 3895 *dd++ = cc; 3896 state = DTRACE_JSON_NUMBER_EXP; 3897 break; 3898 } 3899 3900 if (cc == '+' || cc == '-') { 3901 /* 3902 * ERROR: expect sign as part of exponent only. 3903 */ 3904 return (NULL); 3905 } 3906 /* FALLTHRU */ 3907 case DTRACE_JSON_NUMBER_EXP: 3908 if (isdigit(cc) || cc == '+' || cc == '-') { 3909 *dd++ = cc; 3910 break; 3911 } 3912 3913 *dd = '\0'; 3914 dd = dest; /* reset string buffer */ 3915 if (found_key) { 3916 if (nelems > 1) { 3917 /* 3918 * ERROR: We expected an object, not 3919 * this number. 3920 */ 3921 return (NULL); 3922 } 3923 return (dest); 3924 } 3925 3926 cur--; 3927 state = DTRACE_JSON_COMMA; 3928 break; 3929 case DTRACE_JSON_VALUE: 3930 if (isspace(cc)) 3931 break; 3932 3933 if (cc == '{' || cc == '[') { 3934 if (nelems > 1 && found_key) { 3935 in_array = cc == '[' ? B_TRUE : B_FALSE; 3936 /* 3937 * If our element selector directs us 3938 * to descend into this nested object, 3939 * then move to the next selector 3940 * element in the list and restart the 3941 * state machine. 3942 */ 3943 while (*elem != '\0') 3944 elem++; 3945 elem++; /* skip the inter-element NUL */ 3946 nelems--; 3947 dd = dest; 3948 if (in_array) { 3949 state = DTRACE_JSON_VALUE; 3950 array_pos = 0; 3951 array_elem = dtrace_strtoll( 3952 elem, 10, size); 3953 found_key = array_elem == 0 ? 3954 B_TRUE : B_FALSE; 3955 } else { 3956 found_key = B_FALSE; 3957 state = DTRACE_JSON_OBJECT; 3958 } 3959 break; 3960 } 3961 3962 /* 3963 * Otherwise, we wish to either skip this 3964 * nested object or return it in full. 3965 */ 3966 if (cc == '[') 3967 brackets = 1; 3968 else 3969 braces = 1; 3970 *dd++ = cc; 3971 state = DTRACE_JSON_COLLECT_OBJECT; 3972 break; 3973 } 3974 3975 if (cc == '"') { 3976 state = DTRACE_JSON_STRING; 3977 break; 3978 } 3979 3980 if (islower(cc)) { 3981 /* 3982 * Here we deal with true, false and null. 3983 */ 3984 *dd++ = cc; 3985 state = DTRACE_JSON_IDENTIFIER; 3986 break; 3987 } 3988 3989 if (cc == '-' || isdigit(cc)) { 3990 *dd++ = cc; 3991 state = DTRACE_JSON_NUMBER; 3992 break; 3993 } 3994 3995 /* 3996 * ERROR: unexpected character at start of value. 3997 */ 3998 return (NULL); 3999 case DTRACE_JSON_COLLECT_OBJECT: 4000 if (cc == '\0') 4001 /* 4002 * ERROR: unexpected end of input. 4003 */ 4004 return (NULL); 4005 4006 *dd++ = cc; 4007 if (cc == '"') { 4008 collect_object = B_TRUE; 4009 state = DTRACE_JSON_STRING; 4010 break; 4011 } 4012 4013 if (cc == ']') { 4014 if (brackets-- == 0) { 4015 /* 4016 * ERROR: unbalanced brackets. 4017 */ 4018 return (NULL); 4019 } 4020 } else if (cc == '}') { 4021 if (braces-- == 0) { 4022 /* 4023 * ERROR: unbalanced braces. 4024 */ 4025 return (NULL); 4026 } 4027 } else if (cc == '{') { 4028 braces++; 4029 } else if (cc == '[') { 4030 brackets++; 4031 } 4032 4033 if (brackets == 0 && braces == 0) { 4034 if (found_key) { 4035 *dd = '\0'; 4036 return (dest); 4037 } 4038 dd = dest; /* reset string buffer */ 4039 state = DTRACE_JSON_COMMA; 4040 } 4041 break; 4042 } 4043 } 4044 return (NULL); 4045 } 4046 4047 /* 4048 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4049 * Notice that we don't bother validating the proper number of arguments or 4050 * their types in the tuple stack. This isn't needed because all argument 4051 * interpretation is safe because of our load safety -- the worst that can 4052 * happen is that a bogus program can obtain bogus results. 4053 */ 4054 static void 4055 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4056 dtrace_key_t *tupregs, int nargs, 4057 dtrace_mstate_t *mstate, dtrace_state_t *state) 4058 { 4059 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4060 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4061 dtrace_vstate_t *vstate = &state->dts_vstate; 4062 4063 #ifdef illumos 4064 union { 4065 mutex_impl_t mi; 4066 uint64_t mx; 4067 } m; 4068 4069 union { 4070 krwlock_t ri; 4071 uintptr_t rw; 4072 } r; 4073 #else 4074 struct thread *lowner; 4075 union { 4076 struct lock_object *li; 4077 uintptr_t lx; 4078 } l; 4079 #endif 4080 4081 switch (subr) { 4082 case DIF_SUBR_RAND: 4083 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4084 break; 4085 4086 #ifdef illumos 4087 case DIF_SUBR_MUTEX_OWNED: 4088 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4089 mstate, vstate)) { 4090 regs[rd] = 0; 4091 break; 4092 } 4093 4094 m.mx = dtrace_load64(tupregs[0].dttk_value); 4095 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4096 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4097 else 4098 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4099 break; 4100 4101 case DIF_SUBR_MUTEX_OWNER: 4102 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4103 mstate, vstate)) { 4104 regs[rd] = 0; 4105 break; 4106 } 4107 4108 m.mx = dtrace_load64(tupregs[0].dttk_value); 4109 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4110 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4111 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4112 else 4113 regs[rd] = 0; 4114 break; 4115 4116 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4117 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4118 mstate, vstate)) { 4119 regs[rd] = 0; 4120 break; 4121 } 4122 4123 m.mx = dtrace_load64(tupregs[0].dttk_value); 4124 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4125 break; 4126 4127 case DIF_SUBR_MUTEX_TYPE_SPIN: 4128 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4129 mstate, vstate)) { 4130 regs[rd] = 0; 4131 break; 4132 } 4133 4134 m.mx = dtrace_load64(tupregs[0].dttk_value); 4135 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4136 break; 4137 4138 case DIF_SUBR_RW_READ_HELD: { 4139 uintptr_t tmp; 4140 4141 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4142 mstate, vstate)) { 4143 regs[rd] = 0; 4144 break; 4145 } 4146 4147 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4148 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4149 break; 4150 } 4151 4152 case DIF_SUBR_RW_WRITE_HELD: 4153 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4154 mstate, vstate)) { 4155 regs[rd] = 0; 4156 break; 4157 } 4158 4159 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4160 regs[rd] = _RW_WRITE_HELD(&r.ri); 4161 break; 4162 4163 case DIF_SUBR_RW_ISWRITER: 4164 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4165 mstate, vstate)) { 4166 regs[rd] = 0; 4167 break; 4168 } 4169 4170 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4171 regs[rd] = _RW_ISWRITER(&r.ri); 4172 break; 4173 4174 #else /* !illumos */ 4175 case DIF_SUBR_MUTEX_OWNED: 4176 if (!dtrace_canload(tupregs[0].dttk_value, 4177 sizeof (struct lock_object), mstate, vstate)) { 4178 regs[rd] = 0; 4179 break; 4180 } 4181 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4182 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4183 break; 4184 4185 case DIF_SUBR_MUTEX_OWNER: 4186 if (!dtrace_canload(tupregs[0].dttk_value, 4187 sizeof (struct lock_object), mstate, vstate)) { 4188 regs[rd] = 0; 4189 break; 4190 } 4191 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4192 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4193 regs[rd] = (uintptr_t)lowner; 4194 break; 4195 4196 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4197 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4198 mstate, vstate)) { 4199 regs[rd] = 0; 4200 break; 4201 } 4202 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4203 /* XXX - should be only LC_SLEEPABLE? */ 4204 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & 4205 (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0; 4206 break; 4207 4208 case DIF_SUBR_MUTEX_TYPE_SPIN: 4209 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4210 mstate, vstate)) { 4211 regs[rd] = 0; 4212 break; 4213 } 4214 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4215 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4216 break; 4217 4218 case DIF_SUBR_RW_READ_HELD: 4219 case DIF_SUBR_SX_SHARED_HELD: 4220 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4221 mstate, vstate)) { 4222 regs[rd] = 0; 4223 break; 4224 } 4225 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4226 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4227 lowner == NULL; 4228 break; 4229 4230 case DIF_SUBR_RW_WRITE_HELD: 4231 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4232 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4233 mstate, vstate)) { 4234 regs[rd] = 0; 4235 break; 4236 } 4237 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4238 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4239 regs[rd] = (lowner == curthread); 4240 break; 4241 4242 case DIF_SUBR_RW_ISWRITER: 4243 case DIF_SUBR_SX_ISEXCLUSIVE: 4244 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4245 mstate, vstate)) { 4246 regs[rd] = 0; 4247 break; 4248 } 4249 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4250 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4251 lowner != NULL; 4252 break; 4253 #endif /* illumos */ 4254 4255 case DIF_SUBR_BCOPY: { 4256 /* 4257 * We need to be sure that the destination is in the scratch 4258 * region -- no other region is allowed. 4259 */ 4260 uintptr_t src = tupregs[0].dttk_value; 4261 uintptr_t dest = tupregs[1].dttk_value; 4262 size_t size = tupregs[2].dttk_value; 4263 4264 if (!dtrace_inscratch(dest, size, mstate)) { 4265 *flags |= CPU_DTRACE_BADADDR; 4266 *illval = regs[rd]; 4267 break; 4268 } 4269 4270 if (!dtrace_canload(src, size, mstate, vstate)) { 4271 regs[rd] = 0; 4272 break; 4273 } 4274 4275 dtrace_bcopy((void *)src, (void *)dest, size); 4276 break; 4277 } 4278 4279 case DIF_SUBR_ALLOCA: 4280 case DIF_SUBR_COPYIN: { 4281 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4282 uint64_t size = 4283 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4284 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4285 4286 /* 4287 * This action doesn't require any credential checks since 4288 * probes will not activate in user contexts to which the 4289 * enabling user does not have permissions. 4290 */ 4291 4292 /* 4293 * Rounding up the user allocation size could have overflowed 4294 * a large, bogus allocation (like -1ULL) to 0. 4295 */ 4296 if (scratch_size < size || 4297 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4298 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4299 regs[rd] = 0; 4300 break; 4301 } 4302 4303 if (subr == DIF_SUBR_COPYIN) { 4304 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4305 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4306 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4307 } 4308 4309 mstate->dtms_scratch_ptr += scratch_size; 4310 regs[rd] = dest; 4311 break; 4312 } 4313 4314 case DIF_SUBR_COPYINTO: { 4315 uint64_t size = tupregs[1].dttk_value; 4316 uintptr_t dest = tupregs[2].dttk_value; 4317 4318 /* 4319 * This action doesn't require any credential checks since 4320 * probes will not activate in user contexts to which the 4321 * enabling user does not have permissions. 4322 */ 4323 if (!dtrace_inscratch(dest, size, mstate)) { 4324 *flags |= CPU_DTRACE_BADADDR; 4325 *illval = regs[rd]; 4326 break; 4327 } 4328 4329 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4330 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4331 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4332 break; 4333 } 4334 4335 case DIF_SUBR_COPYINSTR: { 4336 uintptr_t dest = mstate->dtms_scratch_ptr; 4337 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4338 4339 if (nargs > 1 && tupregs[1].dttk_value < size) 4340 size = tupregs[1].dttk_value + 1; 4341 4342 /* 4343 * This action doesn't require any credential checks since 4344 * probes will not activate in user contexts to which the 4345 * enabling user does not have permissions. 4346 */ 4347 if (!DTRACE_INSCRATCH(mstate, size)) { 4348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4349 regs[rd] = 0; 4350 break; 4351 } 4352 4353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4354 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4355 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4356 4357 ((char *)dest)[size - 1] = '\0'; 4358 mstate->dtms_scratch_ptr += size; 4359 regs[rd] = dest; 4360 break; 4361 } 4362 4363 #ifdef illumos 4364 case DIF_SUBR_MSGSIZE: 4365 case DIF_SUBR_MSGDSIZE: { 4366 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4367 uintptr_t wptr, rptr; 4368 size_t count = 0; 4369 int cont = 0; 4370 4371 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4372 4373 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4374 vstate)) { 4375 regs[rd] = 0; 4376 break; 4377 } 4378 4379 wptr = dtrace_loadptr(baddr + 4380 offsetof(mblk_t, b_wptr)); 4381 4382 rptr = dtrace_loadptr(baddr + 4383 offsetof(mblk_t, b_rptr)); 4384 4385 if (wptr < rptr) { 4386 *flags |= CPU_DTRACE_BADADDR; 4387 *illval = tupregs[0].dttk_value; 4388 break; 4389 } 4390 4391 daddr = dtrace_loadptr(baddr + 4392 offsetof(mblk_t, b_datap)); 4393 4394 baddr = dtrace_loadptr(baddr + 4395 offsetof(mblk_t, b_cont)); 4396 4397 /* 4398 * We want to prevent against denial-of-service here, 4399 * so we're only going to search the list for 4400 * dtrace_msgdsize_max mblks. 4401 */ 4402 if (cont++ > dtrace_msgdsize_max) { 4403 *flags |= CPU_DTRACE_ILLOP; 4404 break; 4405 } 4406 4407 if (subr == DIF_SUBR_MSGDSIZE) { 4408 if (dtrace_load8(daddr + 4409 offsetof(dblk_t, db_type)) != M_DATA) 4410 continue; 4411 } 4412 4413 count += wptr - rptr; 4414 } 4415 4416 if (!(*flags & CPU_DTRACE_FAULT)) 4417 regs[rd] = count; 4418 4419 break; 4420 } 4421 #endif 4422 4423 case DIF_SUBR_PROGENYOF: { 4424 pid_t pid = tupregs[0].dttk_value; 4425 proc_t *p; 4426 int rval = 0; 4427 4428 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4429 4430 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4431 #ifdef illumos 4432 if (p->p_pidp->pid_id == pid) { 4433 #else 4434 if (p->p_pid == pid) { 4435 #endif 4436 rval = 1; 4437 break; 4438 } 4439 } 4440 4441 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4442 4443 regs[rd] = rval; 4444 break; 4445 } 4446 4447 case DIF_SUBR_SPECULATION: 4448 regs[rd] = dtrace_speculation(state); 4449 break; 4450 4451 case DIF_SUBR_COPYOUT: { 4452 uintptr_t kaddr = tupregs[0].dttk_value; 4453 uintptr_t uaddr = tupregs[1].dttk_value; 4454 uint64_t size = tupregs[2].dttk_value; 4455 4456 if (!dtrace_destructive_disallow && 4457 dtrace_priv_proc_control(state) && 4458 !dtrace_istoxic(kaddr, size)) { 4459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4460 dtrace_copyout(kaddr, uaddr, size, flags); 4461 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4462 } 4463 break; 4464 } 4465 4466 case DIF_SUBR_COPYOUTSTR: { 4467 uintptr_t kaddr = tupregs[0].dttk_value; 4468 uintptr_t uaddr = tupregs[1].dttk_value; 4469 uint64_t size = tupregs[2].dttk_value; 4470 4471 if (!dtrace_destructive_disallow && 4472 dtrace_priv_proc_control(state) && 4473 !dtrace_istoxic(kaddr, size)) { 4474 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4475 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4476 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4477 } 4478 break; 4479 } 4480 4481 case DIF_SUBR_STRLEN: { 4482 size_t sz; 4483 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4484 sz = dtrace_strlen((char *)addr, 4485 state->dts_options[DTRACEOPT_STRSIZE]); 4486 4487 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4488 regs[rd] = 0; 4489 break; 4490 } 4491 4492 regs[rd] = sz; 4493 4494 break; 4495 } 4496 4497 case DIF_SUBR_STRCHR: 4498 case DIF_SUBR_STRRCHR: { 4499 /* 4500 * We're going to iterate over the string looking for the 4501 * specified character. We will iterate until we have reached 4502 * the string length or we have found the character. If this 4503 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4504 * of the specified character instead of the first. 4505 */ 4506 uintptr_t saddr = tupregs[0].dttk_value; 4507 uintptr_t addr = tupregs[0].dttk_value; 4508 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4509 char c, target = (char)tupregs[1].dttk_value; 4510 4511 for (regs[rd] = 0; addr < limit; addr++) { 4512 if ((c = dtrace_load8(addr)) == target) { 4513 regs[rd] = addr; 4514 4515 if (subr == DIF_SUBR_STRCHR) 4516 break; 4517 } 4518 4519 if (c == '\0') 4520 break; 4521 } 4522 4523 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4524 regs[rd] = 0; 4525 break; 4526 } 4527 4528 break; 4529 } 4530 4531 case DIF_SUBR_STRSTR: 4532 case DIF_SUBR_INDEX: 4533 case DIF_SUBR_RINDEX: { 4534 /* 4535 * We're going to iterate over the string looking for the 4536 * specified string. We will iterate until we have reached 4537 * the string length or we have found the string. (Yes, this 4538 * is done in the most naive way possible -- but considering 4539 * that the string we're searching for is likely to be 4540 * relatively short, the complexity of Rabin-Karp or similar 4541 * hardly seems merited.) 4542 */ 4543 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4544 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4545 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4546 size_t len = dtrace_strlen(addr, size); 4547 size_t sublen = dtrace_strlen(substr, size); 4548 char *limit = addr + len, *orig = addr; 4549 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4550 int inc = 1; 4551 4552 regs[rd] = notfound; 4553 4554 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4555 regs[rd] = 0; 4556 break; 4557 } 4558 4559 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4560 vstate)) { 4561 regs[rd] = 0; 4562 break; 4563 } 4564 4565 /* 4566 * strstr() and index()/rindex() have similar semantics if 4567 * both strings are the empty string: strstr() returns a 4568 * pointer to the (empty) string, and index() and rindex() 4569 * both return index 0 (regardless of any position argument). 4570 */ 4571 if (sublen == 0 && len == 0) { 4572 if (subr == DIF_SUBR_STRSTR) 4573 regs[rd] = (uintptr_t)addr; 4574 else 4575 regs[rd] = 0; 4576 break; 4577 } 4578 4579 if (subr != DIF_SUBR_STRSTR) { 4580 if (subr == DIF_SUBR_RINDEX) { 4581 limit = orig - 1; 4582 addr += len; 4583 inc = -1; 4584 } 4585 4586 /* 4587 * Both index() and rindex() take an optional position 4588 * argument that denotes the starting position. 4589 */ 4590 if (nargs == 3) { 4591 int64_t pos = (int64_t)tupregs[2].dttk_value; 4592 4593 /* 4594 * If the position argument to index() is 4595 * negative, Perl implicitly clamps it at 4596 * zero. This semantic is a little surprising 4597 * given the special meaning of negative 4598 * positions to similar Perl functions like 4599 * substr(), but it appears to reflect a 4600 * notion that index() can start from a 4601 * negative index and increment its way up to 4602 * the string. Given this notion, Perl's 4603 * rindex() is at least self-consistent in 4604 * that it implicitly clamps positions greater 4605 * than the string length to be the string 4606 * length. Where Perl completely loses 4607 * coherence, however, is when the specified 4608 * substring is the empty string (""). In 4609 * this case, even if the position is 4610 * negative, rindex() returns 0 -- and even if 4611 * the position is greater than the length, 4612 * index() returns the string length. These 4613 * semantics violate the notion that index() 4614 * should never return a value less than the 4615 * specified position and that rindex() should 4616 * never return a value greater than the 4617 * specified position. (One assumes that 4618 * these semantics are artifacts of Perl's 4619 * implementation and not the results of 4620 * deliberate design -- it beggars belief that 4621 * even Larry Wall could desire such oddness.) 4622 * While in the abstract one would wish for 4623 * consistent position semantics across 4624 * substr(), index() and rindex() -- or at the 4625 * very least self-consistent position 4626 * semantics for index() and rindex() -- we 4627 * instead opt to keep with the extant Perl 4628 * semantics, in all their broken glory. (Do 4629 * we have more desire to maintain Perl's 4630 * semantics than Perl does? Probably.) 4631 */ 4632 if (subr == DIF_SUBR_RINDEX) { 4633 if (pos < 0) { 4634 if (sublen == 0) 4635 regs[rd] = 0; 4636 break; 4637 } 4638 4639 if (pos > len) 4640 pos = len; 4641 } else { 4642 if (pos < 0) 4643 pos = 0; 4644 4645 if (pos >= len) { 4646 if (sublen == 0) 4647 regs[rd] = len; 4648 break; 4649 } 4650 } 4651 4652 addr = orig + pos; 4653 } 4654 } 4655 4656 for (regs[rd] = notfound; addr != limit; addr += inc) { 4657 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4658 if (subr != DIF_SUBR_STRSTR) { 4659 /* 4660 * As D index() and rindex() are 4661 * modeled on Perl (and not on awk), 4662 * we return a zero-based (and not a 4663 * one-based) index. (For you Perl 4664 * weenies: no, we're not going to add 4665 * $[ -- and shouldn't you be at a con 4666 * or something?) 4667 */ 4668 regs[rd] = (uintptr_t)(addr - orig); 4669 break; 4670 } 4671 4672 ASSERT(subr == DIF_SUBR_STRSTR); 4673 regs[rd] = (uintptr_t)addr; 4674 break; 4675 } 4676 } 4677 4678 break; 4679 } 4680 4681 case DIF_SUBR_STRTOK: { 4682 uintptr_t addr = tupregs[0].dttk_value; 4683 uintptr_t tokaddr = tupregs[1].dttk_value; 4684 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4685 uintptr_t limit, toklimit = tokaddr + size; 4686 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4687 char *dest = (char *)mstate->dtms_scratch_ptr; 4688 int i; 4689 4690 /* 4691 * Check both the token buffer and (later) the input buffer, 4692 * since both could be non-scratch addresses. 4693 */ 4694 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4695 regs[rd] = 0; 4696 break; 4697 } 4698 4699 if (!DTRACE_INSCRATCH(mstate, size)) { 4700 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4701 regs[rd] = 0; 4702 break; 4703 } 4704 4705 if (addr == 0) { 4706 /* 4707 * If the address specified is NULL, we use our saved 4708 * strtok pointer from the mstate. Note that this 4709 * means that the saved strtok pointer is _only_ 4710 * valid within multiple enablings of the same probe -- 4711 * it behaves like an implicit clause-local variable. 4712 */ 4713 addr = mstate->dtms_strtok; 4714 } else { 4715 /* 4716 * If the user-specified address is non-NULL we must 4717 * access check it. This is the only time we have 4718 * a chance to do so, since this address may reside 4719 * in the string table of this clause-- future calls 4720 * (when we fetch addr from mstate->dtms_strtok) 4721 * would fail this access check. 4722 */ 4723 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4724 regs[rd] = 0; 4725 break; 4726 } 4727 } 4728 4729 /* 4730 * First, zero the token map, and then process the token 4731 * string -- setting a bit in the map for every character 4732 * found in the token string. 4733 */ 4734 for (i = 0; i < sizeof (tokmap); i++) 4735 tokmap[i] = 0; 4736 4737 for (; tokaddr < toklimit; tokaddr++) { 4738 if ((c = dtrace_load8(tokaddr)) == '\0') 4739 break; 4740 4741 ASSERT((c >> 3) < sizeof (tokmap)); 4742 tokmap[c >> 3] |= (1 << (c & 0x7)); 4743 } 4744 4745 for (limit = addr + size; addr < limit; addr++) { 4746 /* 4747 * We're looking for a character that is _not_ contained 4748 * in the token string. 4749 */ 4750 if ((c = dtrace_load8(addr)) == '\0') 4751 break; 4752 4753 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4754 break; 4755 } 4756 4757 if (c == '\0') { 4758 /* 4759 * We reached the end of the string without finding 4760 * any character that was not in the token string. 4761 * We return NULL in this case, and we set the saved 4762 * address to NULL as well. 4763 */ 4764 regs[rd] = 0; 4765 mstate->dtms_strtok = 0; 4766 break; 4767 } 4768 4769 /* 4770 * From here on, we're copying into the destination string. 4771 */ 4772 for (i = 0; addr < limit && i < size - 1; addr++) { 4773 if ((c = dtrace_load8(addr)) == '\0') 4774 break; 4775 4776 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4777 break; 4778 4779 ASSERT(i < size); 4780 dest[i++] = c; 4781 } 4782 4783 ASSERT(i < size); 4784 dest[i] = '\0'; 4785 regs[rd] = (uintptr_t)dest; 4786 mstate->dtms_scratch_ptr += size; 4787 mstate->dtms_strtok = addr; 4788 break; 4789 } 4790 4791 case DIF_SUBR_SUBSTR: { 4792 uintptr_t s = tupregs[0].dttk_value; 4793 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4794 char *d = (char *)mstate->dtms_scratch_ptr; 4795 int64_t index = (int64_t)tupregs[1].dttk_value; 4796 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4797 size_t len = dtrace_strlen((char *)s, size); 4798 int64_t i; 4799 4800 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4801 regs[rd] = 0; 4802 break; 4803 } 4804 4805 if (!DTRACE_INSCRATCH(mstate, size)) { 4806 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4807 regs[rd] = 0; 4808 break; 4809 } 4810 4811 if (nargs <= 2) 4812 remaining = (int64_t)size; 4813 4814 if (index < 0) { 4815 index += len; 4816 4817 if (index < 0 && index + remaining > 0) { 4818 remaining += index; 4819 index = 0; 4820 } 4821 } 4822 4823 if (index >= len || index < 0) { 4824 remaining = 0; 4825 } else if (remaining < 0) { 4826 remaining += len - index; 4827 } else if (index + remaining > size) { 4828 remaining = size - index; 4829 } 4830 4831 for (i = 0; i < remaining; i++) { 4832 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4833 break; 4834 } 4835 4836 d[i] = '\0'; 4837 4838 mstate->dtms_scratch_ptr += size; 4839 regs[rd] = (uintptr_t)d; 4840 break; 4841 } 4842 4843 case DIF_SUBR_JSON: { 4844 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4845 uintptr_t json = tupregs[0].dttk_value; 4846 size_t jsonlen = dtrace_strlen((char *)json, size); 4847 uintptr_t elem = tupregs[1].dttk_value; 4848 size_t elemlen = dtrace_strlen((char *)elem, size); 4849 4850 char *dest = (char *)mstate->dtms_scratch_ptr; 4851 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4852 char *ee = elemlist; 4853 int nelems = 1; 4854 uintptr_t cur; 4855 4856 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4857 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4858 regs[rd] = 0; 4859 break; 4860 } 4861 4862 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4863 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4864 regs[rd] = 0; 4865 break; 4866 } 4867 4868 /* 4869 * Read the element selector and split it up into a packed list 4870 * of strings. 4871 */ 4872 for (cur = elem; cur < elem + elemlen; cur++) { 4873 char cc = dtrace_load8(cur); 4874 4875 if (cur == elem && cc == '[') { 4876 /* 4877 * If the first element selector key is 4878 * actually an array index then ignore the 4879 * bracket. 4880 */ 4881 continue; 4882 } 4883 4884 if (cc == ']') 4885 continue; 4886 4887 if (cc == '.' || cc == '[') { 4888 nelems++; 4889 cc = '\0'; 4890 } 4891 4892 *ee++ = cc; 4893 } 4894 *ee++ = '\0'; 4895 4896 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4897 nelems, dest)) != 0) 4898 mstate->dtms_scratch_ptr += jsonlen + 1; 4899 break; 4900 } 4901 4902 case DIF_SUBR_TOUPPER: 4903 case DIF_SUBR_TOLOWER: { 4904 uintptr_t s = tupregs[0].dttk_value; 4905 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4906 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4907 size_t len = dtrace_strlen((char *)s, size); 4908 char lower, upper, convert; 4909 int64_t i; 4910 4911 if (subr == DIF_SUBR_TOUPPER) { 4912 lower = 'a'; 4913 upper = 'z'; 4914 convert = 'A'; 4915 } else { 4916 lower = 'A'; 4917 upper = 'Z'; 4918 convert = 'a'; 4919 } 4920 4921 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4922 regs[rd] = 0; 4923 break; 4924 } 4925 4926 if (!DTRACE_INSCRATCH(mstate, size)) { 4927 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4928 regs[rd] = 0; 4929 break; 4930 } 4931 4932 for (i = 0; i < size - 1; i++) { 4933 if ((c = dtrace_load8(s + i)) == '\0') 4934 break; 4935 4936 if (c >= lower && c <= upper) 4937 c = convert + (c - lower); 4938 4939 dest[i] = c; 4940 } 4941 4942 ASSERT(i < size); 4943 dest[i] = '\0'; 4944 regs[rd] = (uintptr_t)dest; 4945 mstate->dtms_scratch_ptr += size; 4946 break; 4947 } 4948 4949 #ifdef illumos 4950 case DIF_SUBR_GETMAJOR: 4951 #ifdef _LP64 4952 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4953 #else 4954 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4955 #endif 4956 break; 4957 4958 case DIF_SUBR_GETMINOR: 4959 #ifdef _LP64 4960 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4961 #else 4962 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4963 #endif 4964 break; 4965 4966 case DIF_SUBR_DDI_PATHNAME: { 4967 /* 4968 * This one is a galactic mess. We are going to roughly 4969 * emulate ddi_pathname(), but it's made more complicated 4970 * by the fact that we (a) want to include the minor name and 4971 * (b) must proceed iteratively instead of recursively. 4972 */ 4973 uintptr_t dest = mstate->dtms_scratch_ptr; 4974 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4975 char *start = (char *)dest, *end = start + size - 1; 4976 uintptr_t daddr = tupregs[0].dttk_value; 4977 int64_t minor = (int64_t)tupregs[1].dttk_value; 4978 char *s; 4979 int i, len, depth = 0; 4980 4981 /* 4982 * Due to all the pointer jumping we do and context we must 4983 * rely upon, we just mandate that the user must have kernel 4984 * read privileges to use this routine. 4985 */ 4986 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4987 *flags |= CPU_DTRACE_KPRIV; 4988 *illval = daddr; 4989 regs[rd] = 0; 4990 } 4991 4992 if (!DTRACE_INSCRATCH(mstate, size)) { 4993 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4994 regs[rd] = 0; 4995 break; 4996 } 4997 4998 *end = '\0'; 4999 5000 /* 5001 * We want to have a name for the minor. In order to do this, 5002 * we need to walk the minor list from the devinfo. We want 5003 * to be sure that we don't infinitely walk a circular list, 5004 * so we check for circularity by sending a scout pointer 5005 * ahead two elements for every element that we iterate over; 5006 * if the list is circular, these will ultimately point to the 5007 * same element. You may recognize this little trick as the 5008 * answer to a stupid interview question -- one that always 5009 * seems to be asked by those who had to have it laboriously 5010 * explained to them, and who can't even concisely describe 5011 * the conditions under which one would be forced to resort to 5012 * this technique. Needless to say, those conditions are 5013 * found here -- and probably only here. Is this the only use 5014 * of this infamous trick in shipping, production code? If it 5015 * isn't, it probably should be... 5016 */ 5017 if (minor != -1) { 5018 uintptr_t maddr = dtrace_loadptr(daddr + 5019 offsetof(struct dev_info, devi_minor)); 5020 5021 uintptr_t next = offsetof(struct ddi_minor_data, next); 5022 uintptr_t name = offsetof(struct ddi_minor_data, 5023 d_minor) + offsetof(struct ddi_minor, name); 5024 uintptr_t dev = offsetof(struct ddi_minor_data, 5025 d_minor) + offsetof(struct ddi_minor, dev); 5026 uintptr_t scout; 5027 5028 if (maddr != NULL) 5029 scout = dtrace_loadptr(maddr + next); 5030 5031 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5032 uint64_t m; 5033 #ifdef _LP64 5034 m = dtrace_load64(maddr + dev) & MAXMIN64; 5035 #else 5036 m = dtrace_load32(maddr + dev) & MAXMIN; 5037 #endif 5038 if (m != minor) { 5039 maddr = dtrace_loadptr(maddr + next); 5040 5041 if (scout == NULL) 5042 continue; 5043 5044 scout = dtrace_loadptr(scout + next); 5045 5046 if (scout == NULL) 5047 continue; 5048 5049 scout = dtrace_loadptr(scout + next); 5050 5051 if (scout == NULL) 5052 continue; 5053 5054 if (scout == maddr) { 5055 *flags |= CPU_DTRACE_ILLOP; 5056 break; 5057 } 5058 5059 continue; 5060 } 5061 5062 /* 5063 * We have the minor data. Now we need to 5064 * copy the minor's name into the end of the 5065 * pathname. 5066 */ 5067 s = (char *)dtrace_loadptr(maddr + name); 5068 len = dtrace_strlen(s, size); 5069 5070 if (*flags & CPU_DTRACE_FAULT) 5071 break; 5072 5073 if (len != 0) { 5074 if ((end -= (len + 1)) < start) 5075 break; 5076 5077 *end = ':'; 5078 } 5079 5080 for (i = 1; i <= len; i++) 5081 end[i] = dtrace_load8((uintptr_t)s++); 5082 break; 5083 } 5084 } 5085 5086 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5087 ddi_node_state_t devi_state; 5088 5089 devi_state = dtrace_load32(daddr + 5090 offsetof(struct dev_info, devi_node_state)); 5091 5092 if (*flags & CPU_DTRACE_FAULT) 5093 break; 5094 5095 if (devi_state >= DS_INITIALIZED) { 5096 s = (char *)dtrace_loadptr(daddr + 5097 offsetof(struct dev_info, devi_addr)); 5098 len = dtrace_strlen(s, size); 5099 5100 if (*flags & CPU_DTRACE_FAULT) 5101 break; 5102 5103 if (len != 0) { 5104 if ((end -= (len + 1)) < start) 5105 break; 5106 5107 *end = '@'; 5108 } 5109 5110 for (i = 1; i <= len; i++) 5111 end[i] = dtrace_load8((uintptr_t)s++); 5112 } 5113 5114 /* 5115 * Now for the node name... 5116 */ 5117 s = (char *)dtrace_loadptr(daddr + 5118 offsetof(struct dev_info, devi_node_name)); 5119 5120 daddr = dtrace_loadptr(daddr + 5121 offsetof(struct dev_info, devi_parent)); 5122 5123 /* 5124 * If our parent is NULL (that is, if we're the root 5125 * node), we're going to use the special path 5126 * "devices". 5127 */ 5128 if (daddr == 0) 5129 s = "devices"; 5130 5131 len = dtrace_strlen(s, size); 5132 if (*flags & CPU_DTRACE_FAULT) 5133 break; 5134 5135 if ((end -= (len + 1)) < start) 5136 break; 5137 5138 for (i = 1; i <= len; i++) 5139 end[i] = dtrace_load8((uintptr_t)s++); 5140 *end = '/'; 5141 5142 if (depth++ > dtrace_devdepth_max) { 5143 *flags |= CPU_DTRACE_ILLOP; 5144 break; 5145 } 5146 } 5147 5148 if (end < start) 5149 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5150 5151 if (daddr == 0) { 5152 regs[rd] = (uintptr_t)end; 5153 mstate->dtms_scratch_ptr += size; 5154 } 5155 5156 break; 5157 } 5158 #endif 5159 5160 case DIF_SUBR_STRJOIN: { 5161 char *d = (char *)mstate->dtms_scratch_ptr; 5162 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5163 uintptr_t s1 = tupregs[0].dttk_value; 5164 uintptr_t s2 = tupregs[1].dttk_value; 5165 int i = 0; 5166 5167 if (!dtrace_strcanload(s1, size, mstate, vstate) || 5168 !dtrace_strcanload(s2, size, mstate, vstate)) { 5169 regs[rd] = 0; 5170 break; 5171 } 5172 5173 if (!DTRACE_INSCRATCH(mstate, size)) { 5174 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5175 regs[rd] = 0; 5176 break; 5177 } 5178 5179 for (;;) { 5180 if (i >= size) { 5181 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5182 regs[rd] = 0; 5183 break; 5184 } 5185 5186 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 5187 i--; 5188 break; 5189 } 5190 } 5191 5192 for (;;) { 5193 if (i >= size) { 5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5195 regs[rd] = 0; 5196 break; 5197 } 5198 5199 if ((d[i++] = dtrace_load8(s2++)) == '\0') 5200 break; 5201 } 5202 5203 if (i < size) { 5204 mstate->dtms_scratch_ptr += i; 5205 regs[rd] = (uintptr_t)d; 5206 } 5207 5208 break; 5209 } 5210 5211 case DIF_SUBR_STRTOLL: { 5212 uintptr_t s = tupregs[0].dttk_value; 5213 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5214 int base = 10; 5215 5216 if (nargs > 1) { 5217 if ((base = tupregs[1].dttk_value) <= 1 || 5218 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5219 *flags |= CPU_DTRACE_ILLOP; 5220 break; 5221 } 5222 } 5223 5224 if (!dtrace_strcanload(s, size, mstate, vstate)) { 5225 regs[rd] = INT64_MIN; 5226 break; 5227 } 5228 5229 regs[rd] = dtrace_strtoll((char *)s, base, size); 5230 break; 5231 } 5232 5233 case DIF_SUBR_LLTOSTR: { 5234 int64_t i = (int64_t)tupregs[0].dttk_value; 5235 uint64_t val, digit; 5236 uint64_t size = 65; /* enough room for 2^64 in binary */ 5237 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5238 int base = 10; 5239 5240 if (nargs > 1) { 5241 if ((base = tupregs[1].dttk_value) <= 1 || 5242 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5243 *flags |= CPU_DTRACE_ILLOP; 5244 break; 5245 } 5246 } 5247 5248 val = (base == 10 && i < 0) ? i * -1 : i; 5249 5250 if (!DTRACE_INSCRATCH(mstate, size)) { 5251 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5252 regs[rd] = 0; 5253 break; 5254 } 5255 5256 for (*end-- = '\0'; val; val /= base) { 5257 if ((digit = val % base) <= '9' - '0') { 5258 *end-- = '0' + digit; 5259 } else { 5260 *end-- = 'a' + (digit - ('9' - '0') - 1); 5261 } 5262 } 5263 5264 if (i == 0 && base == 16) 5265 *end-- = '0'; 5266 5267 if (base == 16) 5268 *end-- = 'x'; 5269 5270 if (i == 0 || base == 8 || base == 16) 5271 *end-- = '0'; 5272 5273 if (i < 0 && base == 10) 5274 *end-- = '-'; 5275 5276 regs[rd] = (uintptr_t)end + 1; 5277 mstate->dtms_scratch_ptr += size; 5278 break; 5279 } 5280 5281 case DIF_SUBR_HTONS: 5282 case DIF_SUBR_NTOHS: 5283 #if BYTE_ORDER == BIG_ENDIAN 5284 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5285 #else 5286 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5287 #endif 5288 break; 5289 5290 5291 case DIF_SUBR_HTONL: 5292 case DIF_SUBR_NTOHL: 5293 #if BYTE_ORDER == BIG_ENDIAN 5294 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5295 #else 5296 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5297 #endif 5298 break; 5299 5300 5301 case DIF_SUBR_HTONLL: 5302 case DIF_SUBR_NTOHLL: 5303 #if BYTE_ORDER == BIG_ENDIAN 5304 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5305 #else 5306 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5307 #endif 5308 break; 5309 5310 5311 case DIF_SUBR_DIRNAME: 5312 case DIF_SUBR_BASENAME: { 5313 char *dest = (char *)mstate->dtms_scratch_ptr; 5314 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5315 uintptr_t src = tupregs[0].dttk_value; 5316 int i, j, len = dtrace_strlen((char *)src, size); 5317 int lastbase = -1, firstbase = -1, lastdir = -1; 5318 int start, end; 5319 5320 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5321 regs[rd] = 0; 5322 break; 5323 } 5324 5325 if (!DTRACE_INSCRATCH(mstate, size)) { 5326 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5327 regs[rd] = 0; 5328 break; 5329 } 5330 5331 /* 5332 * The basename and dirname for a zero-length string is 5333 * defined to be "." 5334 */ 5335 if (len == 0) { 5336 len = 1; 5337 src = (uintptr_t)"."; 5338 } 5339 5340 /* 5341 * Start from the back of the string, moving back toward the 5342 * front until we see a character that isn't a slash. That 5343 * character is the last character in the basename. 5344 */ 5345 for (i = len - 1; i >= 0; i--) { 5346 if (dtrace_load8(src + i) != '/') 5347 break; 5348 } 5349 5350 if (i >= 0) 5351 lastbase = i; 5352 5353 /* 5354 * Starting from the last character in the basename, move 5355 * towards the front until we find a slash. The character 5356 * that we processed immediately before that is the first 5357 * character in the basename. 5358 */ 5359 for (; i >= 0; i--) { 5360 if (dtrace_load8(src + i) == '/') 5361 break; 5362 } 5363 5364 if (i >= 0) 5365 firstbase = i + 1; 5366 5367 /* 5368 * Now keep going until we find a non-slash character. That 5369 * character is the last character in the dirname. 5370 */ 5371 for (; i >= 0; i--) { 5372 if (dtrace_load8(src + i) != '/') 5373 break; 5374 } 5375 5376 if (i >= 0) 5377 lastdir = i; 5378 5379 ASSERT(!(lastbase == -1 && firstbase != -1)); 5380 ASSERT(!(firstbase == -1 && lastdir != -1)); 5381 5382 if (lastbase == -1) { 5383 /* 5384 * We didn't find a non-slash character. We know that 5385 * the length is non-zero, so the whole string must be 5386 * slashes. In either the dirname or the basename 5387 * case, we return '/'. 5388 */ 5389 ASSERT(firstbase == -1); 5390 firstbase = lastbase = lastdir = 0; 5391 } 5392 5393 if (firstbase == -1) { 5394 /* 5395 * The entire string consists only of a basename 5396 * component. If we're looking for dirname, we need 5397 * to change our string to be just "."; if we're 5398 * looking for a basename, we'll just set the first 5399 * character of the basename to be 0. 5400 */ 5401 if (subr == DIF_SUBR_DIRNAME) { 5402 ASSERT(lastdir == -1); 5403 src = (uintptr_t)"."; 5404 lastdir = 0; 5405 } else { 5406 firstbase = 0; 5407 } 5408 } 5409 5410 if (subr == DIF_SUBR_DIRNAME) { 5411 if (lastdir == -1) { 5412 /* 5413 * We know that we have a slash in the name -- 5414 * or lastdir would be set to 0, above. And 5415 * because lastdir is -1, we know that this 5416 * slash must be the first character. (That 5417 * is, the full string must be of the form 5418 * "/basename".) In this case, the last 5419 * character of the directory name is 0. 5420 */ 5421 lastdir = 0; 5422 } 5423 5424 start = 0; 5425 end = lastdir; 5426 } else { 5427 ASSERT(subr == DIF_SUBR_BASENAME); 5428 ASSERT(firstbase != -1 && lastbase != -1); 5429 start = firstbase; 5430 end = lastbase; 5431 } 5432 5433 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5434 dest[j] = dtrace_load8(src + i); 5435 5436 dest[j] = '\0'; 5437 regs[rd] = (uintptr_t)dest; 5438 mstate->dtms_scratch_ptr += size; 5439 break; 5440 } 5441 5442 case DIF_SUBR_GETF: { 5443 uintptr_t fd = tupregs[0].dttk_value; 5444 struct filedesc *fdp; 5445 file_t *fp; 5446 5447 if (!dtrace_priv_proc(state)) { 5448 regs[rd] = 0; 5449 break; 5450 } 5451 fdp = curproc->p_fd; 5452 FILEDESC_SLOCK(fdp); 5453 fp = fget_locked(fdp, fd); 5454 mstate->dtms_getf = fp; 5455 regs[rd] = (uintptr_t)fp; 5456 FILEDESC_SUNLOCK(fdp); 5457 break; 5458 } 5459 5460 case DIF_SUBR_CLEANPATH: { 5461 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5462 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5463 uintptr_t src = tupregs[0].dttk_value; 5464 int i = 0, j = 0; 5465 #ifdef illumos 5466 zone_t *z; 5467 #endif 5468 5469 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5470 regs[rd] = 0; 5471 break; 5472 } 5473 5474 if (!DTRACE_INSCRATCH(mstate, size)) { 5475 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5476 regs[rd] = 0; 5477 break; 5478 } 5479 5480 /* 5481 * Move forward, loading each character. 5482 */ 5483 do { 5484 c = dtrace_load8(src + i++); 5485 next: 5486 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5487 break; 5488 5489 if (c != '/') { 5490 dest[j++] = c; 5491 continue; 5492 } 5493 5494 c = dtrace_load8(src + i++); 5495 5496 if (c == '/') { 5497 /* 5498 * We have two slashes -- we can just advance 5499 * to the next character. 5500 */ 5501 goto next; 5502 } 5503 5504 if (c != '.') { 5505 /* 5506 * This is not "." and it's not ".." -- we can 5507 * just store the "/" and this character and 5508 * drive on. 5509 */ 5510 dest[j++] = '/'; 5511 dest[j++] = c; 5512 continue; 5513 } 5514 5515 c = dtrace_load8(src + i++); 5516 5517 if (c == '/') { 5518 /* 5519 * This is a "/./" component. We're not going 5520 * to store anything in the destination buffer; 5521 * we're just going to go to the next component. 5522 */ 5523 goto next; 5524 } 5525 5526 if (c != '.') { 5527 /* 5528 * This is not ".." -- we can just store the 5529 * "/." and this character and continue 5530 * processing. 5531 */ 5532 dest[j++] = '/'; 5533 dest[j++] = '.'; 5534 dest[j++] = c; 5535 continue; 5536 } 5537 5538 c = dtrace_load8(src + i++); 5539 5540 if (c != '/' && c != '\0') { 5541 /* 5542 * This is not ".." -- it's "..[mumble]". 5543 * We'll store the "/.." and this character 5544 * and continue processing. 5545 */ 5546 dest[j++] = '/'; 5547 dest[j++] = '.'; 5548 dest[j++] = '.'; 5549 dest[j++] = c; 5550 continue; 5551 } 5552 5553 /* 5554 * This is "/../" or "/..\0". We need to back up 5555 * our destination pointer until we find a "/". 5556 */ 5557 i--; 5558 while (j != 0 && dest[--j] != '/') 5559 continue; 5560 5561 if (c == '\0') 5562 dest[++j] = '/'; 5563 } while (c != '\0'); 5564 5565 dest[j] = '\0'; 5566 5567 #ifdef illumos 5568 if (mstate->dtms_getf != NULL && 5569 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5570 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5571 /* 5572 * If we've done a getf() as a part of this ECB and we 5573 * don't have kernel access (and we're not in the global 5574 * zone), check if the path we cleaned up begins with 5575 * the zone's root path, and trim it off if so. Note 5576 * that this is an output cleanliness issue, not a 5577 * security issue: knowing one's zone root path does 5578 * not enable privilege escalation. 5579 */ 5580 if (strstr(dest, z->zone_rootpath) == dest) 5581 dest += strlen(z->zone_rootpath) - 1; 5582 } 5583 #endif 5584 5585 regs[rd] = (uintptr_t)dest; 5586 mstate->dtms_scratch_ptr += size; 5587 break; 5588 } 5589 5590 case DIF_SUBR_INET_NTOA: 5591 case DIF_SUBR_INET_NTOA6: 5592 case DIF_SUBR_INET_NTOP: { 5593 size_t size; 5594 int af, argi, i; 5595 char *base, *end; 5596 5597 if (subr == DIF_SUBR_INET_NTOP) { 5598 af = (int)tupregs[0].dttk_value; 5599 argi = 1; 5600 } else { 5601 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5602 argi = 0; 5603 } 5604 5605 if (af == AF_INET) { 5606 ipaddr_t ip4; 5607 uint8_t *ptr8, val; 5608 5609 /* 5610 * Safely load the IPv4 address. 5611 */ 5612 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5613 5614 /* 5615 * Check an IPv4 string will fit in scratch. 5616 */ 5617 size = INET_ADDRSTRLEN; 5618 if (!DTRACE_INSCRATCH(mstate, size)) { 5619 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5620 regs[rd] = 0; 5621 break; 5622 } 5623 base = (char *)mstate->dtms_scratch_ptr; 5624 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5625 5626 /* 5627 * Stringify as a dotted decimal quad. 5628 */ 5629 *end-- = '\0'; 5630 ptr8 = (uint8_t *)&ip4; 5631 for (i = 3; i >= 0; i--) { 5632 val = ptr8[i]; 5633 5634 if (val == 0) { 5635 *end-- = '0'; 5636 } else { 5637 for (; val; val /= 10) { 5638 *end-- = '0' + (val % 10); 5639 } 5640 } 5641 5642 if (i > 0) 5643 *end-- = '.'; 5644 } 5645 ASSERT(end + 1 >= base); 5646 5647 } else if (af == AF_INET6) { 5648 struct in6_addr ip6; 5649 int firstzero, tryzero, numzero, v6end; 5650 uint16_t val; 5651 const char digits[] = "0123456789abcdef"; 5652 5653 /* 5654 * Stringify using RFC 1884 convention 2 - 16 bit 5655 * hexadecimal values with a zero-run compression. 5656 * Lower case hexadecimal digits are used. 5657 * eg, fe80::214:4fff:fe0b:76c8. 5658 * The IPv4 embedded form is returned for inet_ntop, 5659 * just the IPv4 string is returned for inet_ntoa6. 5660 */ 5661 5662 /* 5663 * Safely load the IPv6 address. 5664 */ 5665 dtrace_bcopy( 5666 (void *)(uintptr_t)tupregs[argi].dttk_value, 5667 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5668 5669 /* 5670 * Check an IPv6 string will fit in scratch. 5671 */ 5672 size = INET6_ADDRSTRLEN; 5673 if (!DTRACE_INSCRATCH(mstate, size)) { 5674 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5675 regs[rd] = 0; 5676 break; 5677 } 5678 base = (char *)mstate->dtms_scratch_ptr; 5679 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5680 *end-- = '\0'; 5681 5682 /* 5683 * Find the longest run of 16 bit zero values 5684 * for the single allowed zero compression - "::". 5685 */ 5686 firstzero = -1; 5687 tryzero = -1; 5688 numzero = 1; 5689 for (i = 0; i < sizeof (struct in6_addr); i++) { 5690 #ifdef illumos 5691 if (ip6._S6_un._S6_u8[i] == 0 && 5692 #else 5693 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5694 #endif 5695 tryzero == -1 && i % 2 == 0) { 5696 tryzero = i; 5697 continue; 5698 } 5699 5700 if (tryzero != -1 && 5701 #ifdef illumos 5702 (ip6._S6_un._S6_u8[i] != 0 || 5703 #else 5704 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5705 #endif 5706 i == sizeof (struct in6_addr) - 1)) { 5707 5708 if (i - tryzero <= numzero) { 5709 tryzero = -1; 5710 continue; 5711 } 5712 5713 firstzero = tryzero; 5714 numzero = i - i % 2 - tryzero; 5715 tryzero = -1; 5716 5717 #ifdef illumos 5718 if (ip6._S6_un._S6_u8[i] == 0 && 5719 #else 5720 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5721 #endif 5722 i == sizeof (struct in6_addr) - 1) 5723 numzero += 2; 5724 } 5725 } 5726 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5727 5728 /* 5729 * Check for an IPv4 embedded address. 5730 */ 5731 v6end = sizeof (struct in6_addr) - 2; 5732 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5733 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5734 for (i = sizeof (struct in6_addr) - 1; 5735 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5736 ASSERT(end >= base); 5737 5738 #ifdef illumos 5739 val = ip6._S6_un._S6_u8[i]; 5740 #else 5741 val = ip6.__u6_addr.__u6_addr8[i]; 5742 #endif 5743 5744 if (val == 0) { 5745 *end-- = '0'; 5746 } else { 5747 for (; val; val /= 10) { 5748 *end-- = '0' + val % 10; 5749 } 5750 } 5751 5752 if (i > DTRACE_V4MAPPED_OFFSET) 5753 *end-- = '.'; 5754 } 5755 5756 if (subr == DIF_SUBR_INET_NTOA6) 5757 goto inetout; 5758 5759 /* 5760 * Set v6end to skip the IPv4 address that 5761 * we have already stringified. 5762 */ 5763 v6end = 10; 5764 } 5765 5766 /* 5767 * Build the IPv6 string by working through the 5768 * address in reverse. 5769 */ 5770 for (i = v6end; i >= 0; i -= 2) { 5771 ASSERT(end >= base); 5772 5773 if (i == firstzero + numzero - 2) { 5774 *end-- = ':'; 5775 *end-- = ':'; 5776 i -= numzero - 2; 5777 continue; 5778 } 5779 5780 if (i < 14 && i != firstzero - 2) 5781 *end-- = ':'; 5782 5783 #ifdef illumos 5784 val = (ip6._S6_un._S6_u8[i] << 8) + 5785 ip6._S6_un._S6_u8[i + 1]; 5786 #else 5787 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 5788 ip6.__u6_addr.__u6_addr8[i + 1]; 5789 #endif 5790 5791 if (val == 0) { 5792 *end-- = '0'; 5793 } else { 5794 for (; val; val /= 16) { 5795 *end-- = digits[val % 16]; 5796 } 5797 } 5798 } 5799 ASSERT(end + 1 >= base); 5800 5801 } else { 5802 /* 5803 * The user didn't use AH_INET or AH_INET6. 5804 */ 5805 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5806 regs[rd] = 0; 5807 break; 5808 } 5809 5810 inetout: regs[rd] = (uintptr_t)end + 1; 5811 mstate->dtms_scratch_ptr += size; 5812 break; 5813 } 5814 5815 case DIF_SUBR_MEMREF: { 5816 uintptr_t size = 2 * sizeof(uintptr_t); 5817 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 5818 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 5819 5820 /* address and length */ 5821 memref[0] = tupregs[0].dttk_value; 5822 memref[1] = tupregs[1].dttk_value; 5823 5824 regs[rd] = (uintptr_t) memref; 5825 mstate->dtms_scratch_ptr += scratch_size; 5826 break; 5827 } 5828 5829 #ifndef illumos 5830 case DIF_SUBR_MEMSTR: { 5831 char *str = (char *)mstate->dtms_scratch_ptr; 5832 uintptr_t mem = tupregs[0].dttk_value; 5833 char c = tupregs[1].dttk_value; 5834 size_t size = tupregs[2].dttk_value; 5835 uint8_t n; 5836 int i; 5837 5838 regs[rd] = 0; 5839 5840 if (size == 0) 5841 break; 5842 5843 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 5844 break; 5845 5846 if (!DTRACE_INSCRATCH(mstate, size)) { 5847 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5848 break; 5849 } 5850 5851 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 5852 *flags |= CPU_DTRACE_ILLOP; 5853 break; 5854 } 5855 5856 for (i = 0; i < size - 1; i++) { 5857 n = dtrace_load8(mem++); 5858 str[i] = (n == 0) ? c : n; 5859 } 5860 str[size - 1] = 0; 5861 5862 regs[rd] = (uintptr_t)str; 5863 mstate->dtms_scratch_ptr += size; 5864 break; 5865 } 5866 #endif 5867 5868 case DIF_SUBR_TYPEREF: { 5869 uintptr_t size = 4 * sizeof(uintptr_t); 5870 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 5871 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size; 5872 5873 /* address, num_elements, type_str, type_len */ 5874 typeref[0] = tupregs[0].dttk_value; 5875 typeref[1] = tupregs[1].dttk_value; 5876 typeref[2] = tupregs[2].dttk_value; 5877 typeref[3] = tupregs[3].dttk_value; 5878 5879 regs[rd] = (uintptr_t) typeref; 5880 mstate->dtms_scratch_ptr += scratch_size; 5881 break; 5882 } 5883 } 5884 } 5885 5886 /* 5887 * Emulate the execution of DTrace IR instructions specified by the given 5888 * DIF object. This function is deliberately void of assertions as all of 5889 * the necessary checks are handled by a call to dtrace_difo_validate(). 5890 */ 5891 static uint64_t 5892 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5893 dtrace_vstate_t *vstate, dtrace_state_t *state) 5894 { 5895 const dif_instr_t *text = difo->dtdo_buf; 5896 const uint_t textlen = difo->dtdo_len; 5897 const char *strtab = difo->dtdo_strtab; 5898 const uint64_t *inttab = difo->dtdo_inttab; 5899 5900 uint64_t rval = 0; 5901 dtrace_statvar_t *svar; 5902 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5903 dtrace_difv_t *v; 5904 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 5905 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 5906 5907 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5908 uint64_t regs[DIF_DIR_NREGS]; 5909 uint64_t *tmp; 5910 5911 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5912 int64_t cc_r; 5913 uint_t pc = 0, id, opc = 0; 5914 uint8_t ttop = 0; 5915 dif_instr_t instr; 5916 uint_t r1, r2, rd; 5917 5918 /* 5919 * We stash the current DIF object into the machine state: we need it 5920 * for subsequent access checking. 5921 */ 5922 mstate->dtms_difo = difo; 5923 5924 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5925 5926 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5927 opc = pc; 5928 5929 instr = text[pc++]; 5930 r1 = DIF_INSTR_R1(instr); 5931 r2 = DIF_INSTR_R2(instr); 5932 rd = DIF_INSTR_RD(instr); 5933 5934 switch (DIF_INSTR_OP(instr)) { 5935 case DIF_OP_OR: 5936 regs[rd] = regs[r1] | regs[r2]; 5937 break; 5938 case DIF_OP_XOR: 5939 regs[rd] = regs[r1] ^ regs[r2]; 5940 break; 5941 case DIF_OP_AND: 5942 regs[rd] = regs[r1] & regs[r2]; 5943 break; 5944 case DIF_OP_SLL: 5945 regs[rd] = regs[r1] << regs[r2]; 5946 break; 5947 case DIF_OP_SRL: 5948 regs[rd] = regs[r1] >> regs[r2]; 5949 break; 5950 case DIF_OP_SUB: 5951 regs[rd] = regs[r1] - regs[r2]; 5952 break; 5953 case DIF_OP_ADD: 5954 regs[rd] = regs[r1] + regs[r2]; 5955 break; 5956 case DIF_OP_MUL: 5957 regs[rd] = regs[r1] * regs[r2]; 5958 break; 5959 case DIF_OP_SDIV: 5960 if (regs[r2] == 0) { 5961 regs[rd] = 0; 5962 *flags |= CPU_DTRACE_DIVZERO; 5963 } else { 5964 regs[rd] = (int64_t)regs[r1] / 5965 (int64_t)regs[r2]; 5966 } 5967 break; 5968 5969 case DIF_OP_UDIV: 5970 if (regs[r2] == 0) { 5971 regs[rd] = 0; 5972 *flags |= CPU_DTRACE_DIVZERO; 5973 } else { 5974 regs[rd] = regs[r1] / regs[r2]; 5975 } 5976 break; 5977 5978 case DIF_OP_SREM: 5979 if (regs[r2] == 0) { 5980 regs[rd] = 0; 5981 *flags |= CPU_DTRACE_DIVZERO; 5982 } else { 5983 regs[rd] = (int64_t)regs[r1] % 5984 (int64_t)regs[r2]; 5985 } 5986 break; 5987 5988 case DIF_OP_UREM: 5989 if (regs[r2] == 0) { 5990 regs[rd] = 0; 5991 *flags |= CPU_DTRACE_DIVZERO; 5992 } else { 5993 regs[rd] = regs[r1] % regs[r2]; 5994 } 5995 break; 5996 5997 case DIF_OP_NOT: 5998 regs[rd] = ~regs[r1]; 5999 break; 6000 case DIF_OP_MOV: 6001 regs[rd] = regs[r1]; 6002 break; 6003 case DIF_OP_CMP: 6004 cc_r = regs[r1] - regs[r2]; 6005 cc_n = cc_r < 0; 6006 cc_z = cc_r == 0; 6007 cc_v = 0; 6008 cc_c = regs[r1] < regs[r2]; 6009 break; 6010 case DIF_OP_TST: 6011 cc_n = cc_v = cc_c = 0; 6012 cc_z = regs[r1] == 0; 6013 break; 6014 case DIF_OP_BA: 6015 pc = DIF_INSTR_LABEL(instr); 6016 break; 6017 case DIF_OP_BE: 6018 if (cc_z) 6019 pc = DIF_INSTR_LABEL(instr); 6020 break; 6021 case DIF_OP_BNE: 6022 if (cc_z == 0) 6023 pc = DIF_INSTR_LABEL(instr); 6024 break; 6025 case DIF_OP_BG: 6026 if ((cc_z | (cc_n ^ cc_v)) == 0) 6027 pc = DIF_INSTR_LABEL(instr); 6028 break; 6029 case DIF_OP_BGU: 6030 if ((cc_c | cc_z) == 0) 6031 pc = DIF_INSTR_LABEL(instr); 6032 break; 6033 case DIF_OP_BGE: 6034 if ((cc_n ^ cc_v) == 0) 6035 pc = DIF_INSTR_LABEL(instr); 6036 break; 6037 case DIF_OP_BGEU: 6038 if (cc_c == 0) 6039 pc = DIF_INSTR_LABEL(instr); 6040 break; 6041 case DIF_OP_BL: 6042 if (cc_n ^ cc_v) 6043 pc = DIF_INSTR_LABEL(instr); 6044 break; 6045 case DIF_OP_BLU: 6046 if (cc_c) 6047 pc = DIF_INSTR_LABEL(instr); 6048 break; 6049 case DIF_OP_BLE: 6050 if (cc_z | (cc_n ^ cc_v)) 6051 pc = DIF_INSTR_LABEL(instr); 6052 break; 6053 case DIF_OP_BLEU: 6054 if (cc_c | cc_z) 6055 pc = DIF_INSTR_LABEL(instr); 6056 break; 6057 case DIF_OP_RLDSB: 6058 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6059 break; 6060 /*FALLTHROUGH*/ 6061 case DIF_OP_LDSB: 6062 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6063 break; 6064 case DIF_OP_RLDSH: 6065 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6066 break; 6067 /*FALLTHROUGH*/ 6068 case DIF_OP_LDSH: 6069 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6070 break; 6071 case DIF_OP_RLDSW: 6072 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6073 break; 6074 /*FALLTHROUGH*/ 6075 case DIF_OP_LDSW: 6076 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6077 break; 6078 case DIF_OP_RLDUB: 6079 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6080 break; 6081 /*FALLTHROUGH*/ 6082 case DIF_OP_LDUB: 6083 regs[rd] = dtrace_load8(regs[r1]); 6084 break; 6085 case DIF_OP_RLDUH: 6086 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6087 break; 6088 /*FALLTHROUGH*/ 6089 case DIF_OP_LDUH: 6090 regs[rd] = dtrace_load16(regs[r1]); 6091 break; 6092 case DIF_OP_RLDUW: 6093 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6094 break; 6095 /*FALLTHROUGH*/ 6096 case DIF_OP_LDUW: 6097 regs[rd] = dtrace_load32(regs[r1]); 6098 break; 6099 case DIF_OP_RLDX: 6100 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6101 break; 6102 /*FALLTHROUGH*/ 6103 case DIF_OP_LDX: 6104 regs[rd] = dtrace_load64(regs[r1]); 6105 break; 6106 case DIF_OP_ULDSB: 6107 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6108 regs[rd] = (int8_t) 6109 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6110 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6111 break; 6112 case DIF_OP_ULDSH: 6113 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6114 regs[rd] = (int16_t) 6115 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6116 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6117 break; 6118 case DIF_OP_ULDSW: 6119 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6120 regs[rd] = (int32_t) 6121 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6122 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6123 break; 6124 case DIF_OP_ULDUB: 6125 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6126 regs[rd] = 6127 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6128 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6129 break; 6130 case DIF_OP_ULDUH: 6131 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6132 regs[rd] = 6133 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6134 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6135 break; 6136 case DIF_OP_ULDUW: 6137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6138 regs[rd] = 6139 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6140 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6141 break; 6142 case DIF_OP_ULDX: 6143 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6144 regs[rd] = 6145 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6146 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6147 break; 6148 case DIF_OP_RET: 6149 rval = regs[rd]; 6150 pc = textlen; 6151 break; 6152 case DIF_OP_NOP: 6153 break; 6154 case DIF_OP_SETX: 6155 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6156 break; 6157 case DIF_OP_SETS: 6158 regs[rd] = (uint64_t)(uintptr_t) 6159 (strtab + DIF_INSTR_STRING(instr)); 6160 break; 6161 case DIF_OP_SCMP: { 6162 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6163 uintptr_t s1 = regs[r1]; 6164 uintptr_t s2 = regs[r2]; 6165 6166 if (s1 != 0 && 6167 !dtrace_strcanload(s1, sz, mstate, vstate)) 6168 break; 6169 if (s2 != 0 && 6170 !dtrace_strcanload(s2, sz, mstate, vstate)) 6171 break; 6172 6173 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 6174 6175 cc_n = cc_r < 0; 6176 cc_z = cc_r == 0; 6177 cc_v = cc_c = 0; 6178 break; 6179 } 6180 case DIF_OP_LDGA: 6181 regs[rd] = dtrace_dif_variable(mstate, state, 6182 r1, regs[r2]); 6183 break; 6184 case DIF_OP_LDGS: 6185 id = DIF_INSTR_VAR(instr); 6186 6187 if (id >= DIF_VAR_OTHER_UBASE) { 6188 uintptr_t a; 6189 6190 id -= DIF_VAR_OTHER_UBASE; 6191 svar = vstate->dtvs_globals[id]; 6192 ASSERT(svar != NULL); 6193 v = &svar->dtsv_var; 6194 6195 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6196 regs[rd] = svar->dtsv_data; 6197 break; 6198 } 6199 6200 a = (uintptr_t)svar->dtsv_data; 6201 6202 if (*(uint8_t *)a == UINT8_MAX) { 6203 /* 6204 * If the 0th byte is set to UINT8_MAX 6205 * then this is to be treated as a 6206 * reference to a NULL variable. 6207 */ 6208 regs[rd] = 0; 6209 } else { 6210 regs[rd] = a + sizeof (uint64_t); 6211 } 6212 6213 break; 6214 } 6215 6216 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6217 break; 6218 6219 case DIF_OP_STGS: 6220 id = DIF_INSTR_VAR(instr); 6221 6222 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6223 id -= DIF_VAR_OTHER_UBASE; 6224 6225 svar = vstate->dtvs_globals[id]; 6226 ASSERT(svar != NULL); 6227 v = &svar->dtsv_var; 6228 6229 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6230 uintptr_t a = (uintptr_t)svar->dtsv_data; 6231 6232 ASSERT(a != 0); 6233 ASSERT(svar->dtsv_size != 0); 6234 6235 if (regs[rd] == 0) { 6236 *(uint8_t *)a = UINT8_MAX; 6237 break; 6238 } else { 6239 *(uint8_t *)a = 0; 6240 a += sizeof (uint64_t); 6241 } 6242 if (!dtrace_vcanload( 6243 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6244 mstate, vstate)) 6245 break; 6246 6247 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6248 (void *)a, &v->dtdv_type); 6249 break; 6250 } 6251 6252 svar->dtsv_data = regs[rd]; 6253 break; 6254 6255 case DIF_OP_LDTA: 6256 /* 6257 * There are no DTrace built-in thread-local arrays at 6258 * present. This opcode is saved for future work. 6259 */ 6260 *flags |= CPU_DTRACE_ILLOP; 6261 regs[rd] = 0; 6262 break; 6263 6264 case DIF_OP_LDLS: 6265 id = DIF_INSTR_VAR(instr); 6266 6267 if (id < DIF_VAR_OTHER_UBASE) { 6268 /* 6269 * For now, this has no meaning. 6270 */ 6271 regs[rd] = 0; 6272 break; 6273 } 6274 6275 id -= DIF_VAR_OTHER_UBASE; 6276 6277 ASSERT(id < vstate->dtvs_nlocals); 6278 ASSERT(vstate->dtvs_locals != NULL); 6279 6280 svar = vstate->dtvs_locals[id]; 6281 ASSERT(svar != NULL); 6282 v = &svar->dtsv_var; 6283 6284 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6285 uintptr_t a = (uintptr_t)svar->dtsv_data; 6286 size_t sz = v->dtdv_type.dtdt_size; 6287 6288 sz += sizeof (uint64_t); 6289 ASSERT(svar->dtsv_size == NCPU * sz); 6290 a += curcpu * sz; 6291 6292 if (*(uint8_t *)a == UINT8_MAX) { 6293 /* 6294 * If the 0th byte is set to UINT8_MAX 6295 * then this is to be treated as a 6296 * reference to a NULL variable. 6297 */ 6298 regs[rd] = 0; 6299 } else { 6300 regs[rd] = a + sizeof (uint64_t); 6301 } 6302 6303 break; 6304 } 6305 6306 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6307 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6308 regs[rd] = tmp[curcpu]; 6309 break; 6310 6311 case DIF_OP_STLS: 6312 id = DIF_INSTR_VAR(instr); 6313 6314 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6315 id -= DIF_VAR_OTHER_UBASE; 6316 ASSERT(id < vstate->dtvs_nlocals); 6317 6318 ASSERT(vstate->dtvs_locals != NULL); 6319 svar = vstate->dtvs_locals[id]; 6320 ASSERT(svar != NULL); 6321 v = &svar->dtsv_var; 6322 6323 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6324 uintptr_t a = (uintptr_t)svar->dtsv_data; 6325 size_t sz = v->dtdv_type.dtdt_size; 6326 6327 sz += sizeof (uint64_t); 6328 ASSERT(svar->dtsv_size == NCPU * sz); 6329 a += curcpu * sz; 6330 6331 if (regs[rd] == 0) { 6332 *(uint8_t *)a = UINT8_MAX; 6333 break; 6334 } else { 6335 *(uint8_t *)a = 0; 6336 a += sizeof (uint64_t); 6337 } 6338 6339 if (!dtrace_vcanload( 6340 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6341 mstate, vstate)) 6342 break; 6343 6344 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6345 (void *)a, &v->dtdv_type); 6346 break; 6347 } 6348 6349 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6350 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6351 tmp[curcpu] = regs[rd]; 6352 break; 6353 6354 case DIF_OP_LDTS: { 6355 dtrace_dynvar_t *dvar; 6356 dtrace_key_t *key; 6357 6358 id = DIF_INSTR_VAR(instr); 6359 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6360 id -= DIF_VAR_OTHER_UBASE; 6361 v = &vstate->dtvs_tlocals[id]; 6362 6363 key = &tupregs[DIF_DTR_NREGS]; 6364 key[0].dttk_value = (uint64_t)id; 6365 key[0].dttk_size = 0; 6366 DTRACE_TLS_THRKEY(key[1].dttk_value); 6367 key[1].dttk_size = 0; 6368 6369 dvar = dtrace_dynvar(dstate, 2, key, 6370 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6371 mstate, vstate); 6372 6373 if (dvar == NULL) { 6374 regs[rd] = 0; 6375 break; 6376 } 6377 6378 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6379 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6380 } else { 6381 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6382 } 6383 6384 break; 6385 } 6386 6387 case DIF_OP_STTS: { 6388 dtrace_dynvar_t *dvar; 6389 dtrace_key_t *key; 6390 6391 id = DIF_INSTR_VAR(instr); 6392 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6393 id -= DIF_VAR_OTHER_UBASE; 6394 6395 key = &tupregs[DIF_DTR_NREGS]; 6396 key[0].dttk_value = (uint64_t)id; 6397 key[0].dttk_size = 0; 6398 DTRACE_TLS_THRKEY(key[1].dttk_value); 6399 key[1].dttk_size = 0; 6400 v = &vstate->dtvs_tlocals[id]; 6401 6402 dvar = dtrace_dynvar(dstate, 2, key, 6403 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6404 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6405 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6406 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6407 6408 /* 6409 * Given that we're storing to thread-local data, 6410 * we need to flush our predicate cache. 6411 */ 6412 curthread->t_predcache = 0; 6413 6414 if (dvar == NULL) 6415 break; 6416 6417 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6418 if (!dtrace_vcanload( 6419 (void *)(uintptr_t)regs[rd], 6420 &v->dtdv_type, mstate, vstate)) 6421 break; 6422 6423 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6424 dvar->dtdv_data, &v->dtdv_type); 6425 } else { 6426 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6427 } 6428 6429 break; 6430 } 6431 6432 case DIF_OP_SRA: 6433 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6434 break; 6435 6436 case DIF_OP_CALL: 6437 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6438 regs, tupregs, ttop, mstate, state); 6439 break; 6440 6441 case DIF_OP_PUSHTR: 6442 if (ttop == DIF_DTR_NREGS) { 6443 *flags |= CPU_DTRACE_TUPOFLOW; 6444 break; 6445 } 6446 6447 if (r1 == DIF_TYPE_STRING) { 6448 /* 6449 * If this is a string type and the size is 0, 6450 * we'll use the system-wide default string 6451 * size. Note that we are _not_ looking at 6452 * the value of the DTRACEOPT_STRSIZE option; 6453 * had this been set, we would expect to have 6454 * a non-zero size value in the "pushtr". 6455 */ 6456 tupregs[ttop].dttk_size = 6457 dtrace_strlen((char *)(uintptr_t)regs[rd], 6458 regs[r2] ? regs[r2] : 6459 dtrace_strsize_default) + 1; 6460 } else { 6461 tupregs[ttop].dttk_size = regs[r2]; 6462 } 6463 6464 tupregs[ttop++].dttk_value = regs[rd]; 6465 break; 6466 6467 case DIF_OP_PUSHTV: 6468 if (ttop == DIF_DTR_NREGS) { 6469 *flags |= CPU_DTRACE_TUPOFLOW; 6470 break; 6471 } 6472 6473 tupregs[ttop].dttk_value = regs[rd]; 6474 tupregs[ttop++].dttk_size = 0; 6475 break; 6476 6477 case DIF_OP_POPTS: 6478 if (ttop != 0) 6479 ttop--; 6480 break; 6481 6482 case DIF_OP_FLUSHTS: 6483 ttop = 0; 6484 break; 6485 6486 case DIF_OP_LDGAA: 6487 case DIF_OP_LDTAA: { 6488 dtrace_dynvar_t *dvar; 6489 dtrace_key_t *key = tupregs; 6490 uint_t nkeys = ttop; 6491 6492 id = DIF_INSTR_VAR(instr); 6493 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6494 id -= DIF_VAR_OTHER_UBASE; 6495 6496 key[nkeys].dttk_value = (uint64_t)id; 6497 key[nkeys++].dttk_size = 0; 6498 6499 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6500 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6501 key[nkeys++].dttk_size = 0; 6502 v = &vstate->dtvs_tlocals[id]; 6503 } else { 6504 v = &vstate->dtvs_globals[id]->dtsv_var; 6505 } 6506 6507 dvar = dtrace_dynvar(dstate, nkeys, key, 6508 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6509 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6510 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6511 6512 if (dvar == NULL) { 6513 regs[rd] = 0; 6514 break; 6515 } 6516 6517 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6518 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6519 } else { 6520 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6521 } 6522 6523 break; 6524 } 6525 6526 case DIF_OP_STGAA: 6527 case DIF_OP_STTAA: { 6528 dtrace_dynvar_t *dvar; 6529 dtrace_key_t *key = tupregs; 6530 uint_t nkeys = ttop; 6531 6532 id = DIF_INSTR_VAR(instr); 6533 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6534 id -= DIF_VAR_OTHER_UBASE; 6535 6536 key[nkeys].dttk_value = (uint64_t)id; 6537 key[nkeys++].dttk_size = 0; 6538 6539 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6540 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6541 key[nkeys++].dttk_size = 0; 6542 v = &vstate->dtvs_tlocals[id]; 6543 } else { 6544 v = &vstate->dtvs_globals[id]->dtsv_var; 6545 } 6546 6547 dvar = dtrace_dynvar(dstate, nkeys, key, 6548 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6549 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6550 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6551 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6552 6553 if (dvar == NULL) 6554 break; 6555 6556 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6557 if (!dtrace_vcanload( 6558 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6559 mstate, vstate)) 6560 break; 6561 6562 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6563 dvar->dtdv_data, &v->dtdv_type); 6564 } else { 6565 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6566 } 6567 6568 break; 6569 } 6570 6571 case DIF_OP_ALLOCS: { 6572 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6573 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6574 6575 /* 6576 * Rounding up the user allocation size could have 6577 * overflowed large, bogus allocations (like -1ULL) to 6578 * 0. 6579 */ 6580 if (size < regs[r1] || 6581 !DTRACE_INSCRATCH(mstate, size)) { 6582 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6583 regs[rd] = 0; 6584 break; 6585 } 6586 6587 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6588 mstate->dtms_scratch_ptr += size; 6589 regs[rd] = ptr; 6590 break; 6591 } 6592 6593 case DIF_OP_COPYS: 6594 if (!dtrace_canstore(regs[rd], regs[r2], 6595 mstate, vstate)) { 6596 *flags |= CPU_DTRACE_BADADDR; 6597 *illval = regs[rd]; 6598 break; 6599 } 6600 6601 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6602 break; 6603 6604 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6605 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6606 break; 6607 6608 case DIF_OP_STB: 6609 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6610 *flags |= CPU_DTRACE_BADADDR; 6611 *illval = regs[rd]; 6612 break; 6613 } 6614 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6615 break; 6616 6617 case DIF_OP_STH: 6618 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6619 *flags |= CPU_DTRACE_BADADDR; 6620 *illval = regs[rd]; 6621 break; 6622 } 6623 if (regs[rd] & 1) { 6624 *flags |= CPU_DTRACE_BADALIGN; 6625 *illval = regs[rd]; 6626 break; 6627 } 6628 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6629 break; 6630 6631 case DIF_OP_STW: 6632 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6633 *flags |= CPU_DTRACE_BADADDR; 6634 *illval = regs[rd]; 6635 break; 6636 } 6637 if (regs[rd] & 3) { 6638 *flags |= CPU_DTRACE_BADALIGN; 6639 *illval = regs[rd]; 6640 break; 6641 } 6642 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6643 break; 6644 6645 case DIF_OP_STX: 6646 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6647 *flags |= CPU_DTRACE_BADADDR; 6648 *illval = regs[rd]; 6649 break; 6650 } 6651 if (regs[rd] & 7) { 6652 *flags |= CPU_DTRACE_BADALIGN; 6653 *illval = regs[rd]; 6654 break; 6655 } 6656 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6657 break; 6658 } 6659 } 6660 6661 if (!(*flags & CPU_DTRACE_FAULT)) 6662 return (rval); 6663 6664 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6665 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6666 6667 return (0); 6668 } 6669 6670 static void 6671 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6672 { 6673 dtrace_probe_t *probe = ecb->dte_probe; 6674 dtrace_provider_t *prov = probe->dtpr_provider; 6675 char c[DTRACE_FULLNAMELEN + 80], *str; 6676 char *msg = "dtrace: breakpoint action at probe "; 6677 char *ecbmsg = " (ecb "; 6678 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6679 uintptr_t val = (uintptr_t)ecb; 6680 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6681 6682 if (dtrace_destructive_disallow) 6683 return; 6684 6685 /* 6686 * It's impossible to be taking action on the NULL probe. 6687 */ 6688 ASSERT(probe != NULL); 6689 6690 /* 6691 * This is a poor man's (destitute man's?) sprintf(): we want to 6692 * print the provider name, module name, function name and name of 6693 * the probe, along with the hex address of the ECB with the breakpoint 6694 * action -- all of which we must place in the character buffer by 6695 * hand. 6696 */ 6697 while (*msg != '\0') 6698 c[i++] = *msg++; 6699 6700 for (str = prov->dtpv_name; *str != '\0'; str++) 6701 c[i++] = *str; 6702 c[i++] = ':'; 6703 6704 for (str = probe->dtpr_mod; *str != '\0'; str++) 6705 c[i++] = *str; 6706 c[i++] = ':'; 6707 6708 for (str = probe->dtpr_func; *str != '\0'; str++) 6709 c[i++] = *str; 6710 c[i++] = ':'; 6711 6712 for (str = probe->dtpr_name; *str != '\0'; str++) 6713 c[i++] = *str; 6714 6715 while (*ecbmsg != '\0') 6716 c[i++] = *ecbmsg++; 6717 6718 while (shift >= 0) { 6719 mask = (uintptr_t)0xf << shift; 6720 6721 if (val >= ((uintptr_t)1 << shift)) 6722 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6723 shift -= 4; 6724 } 6725 6726 c[i++] = ')'; 6727 c[i] = '\0'; 6728 6729 #ifdef illumos 6730 debug_enter(c); 6731 #else 6732 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6733 #endif 6734 } 6735 6736 static void 6737 dtrace_action_panic(dtrace_ecb_t *ecb) 6738 { 6739 dtrace_probe_t *probe = ecb->dte_probe; 6740 6741 /* 6742 * It's impossible to be taking action on the NULL probe. 6743 */ 6744 ASSERT(probe != NULL); 6745 6746 if (dtrace_destructive_disallow) 6747 return; 6748 6749 if (dtrace_panicked != NULL) 6750 return; 6751 6752 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6753 return; 6754 6755 /* 6756 * We won the right to panic. (We want to be sure that only one 6757 * thread calls panic() from dtrace_probe(), and that panic() is 6758 * called exactly once.) 6759 */ 6760 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6761 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6762 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6763 } 6764 6765 static void 6766 dtrace_action_raise(uint64_t sig) 6767 { 6768 if (dtrace_destructive_disallow) 6769 return; 6770 6771 if (sig >= NSIG) { 6772 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6773 return; 6774 } 6775 6776 #ifdef illumos 6777 /* 6778 * raise() has a queue depth of 1 -- we ignore all subsequent 6779 * invocations of the raise() action. 6780 */ 6781 if (curthread->t_dtrace_sig == 0) 6782 curthread->t_dtrace_sig = (uint8_t)sig; 6783 6784 curthread->t_sig_check = 1; 6785 aston(curthread); 6786 #else 6787 struct proc *p = curproc; 6788 PROC_LOCK(p); 6789 kern_psignal(p, sig); 6790 PROC_UNLOCK(p); 6791 #endif 6792 } 6793 6794 static void 6795 dtrace_action_stop(void) 6796 { 6797 if (dtrace_destructive_disallow) 6798 return; 6799 6800 #ifdef illumos 6801 if (!curthread->t_dtrace_stop) { 6802 curthread->t_dtrace_stop = 1; 6803 curthread->t_sig_check = 1; 6804 aston(curthread); 6805 } 6806 #else 6807 struct proc *p = curproc; 6808 PROC_LOCK(p); 6809 kern_psignal(p, SIGSTOP); 6810 PROC_UNLOCK(p); 6811 #endif 6812 } 6813 6814 static void 6815 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6816 { 6817 hrtime_t now; 6818 volatile uint16_t *flags; 6819 #ifdef illumos 6820 cpu_t *cpu = CPU; 6821 #else 6822 cpu_t *cpu = &solaris_cpu[curcpu]; 6823 #endif 6824 6825 if (dtrace_destructive_disallow) 6826 return; 6827 6828 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 6829 6830 now = dtrace_gethrtime(); 6831 6832 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6833 /* 6834 * We need to advance the mark to the current time. 6835 */ 6836 cpu->cpu_dtrace_chillmark = now; 6837 cpu->cpu_dtrace_chilled = 0; 6838 } 6839 6840 /* 6841 * Now check to see if the requested chill time would take us over 6842 * the maximum amount of time allowed in the chill interval. (Or 6843 * worse, if the calculation itself induces overflow.) 6844 */ 6845 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6846 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6847 *flags |= CPU_DTRACE_ILLOP; 6848 return; 6849 } 6850 6851 while (dtrace_gethrtime() - now < val) 6852 continue; 6853 6854 /* 6855 * Normally, we assure that the value of the variable "timestamp" does 6856 * not change within an ECB. The presence of chill() represents an 6857 * exception to this rule, however. 6858 */ 6859 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6860 cpu->cpu_dtrace_chilled += val; 6861 } 6862 6863 static void 6864 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6865 uint64_t *buf, uint64_t arg) 6866 { 6867 int nframes = DTRACE_USTACK_NFRAMES(arg); 6868 int strsize = DTRACE_USTACK_STRSIZE(arg); 6869 uint64_t *pcs = &buf[1], *fps; 6870 char *str = (char *)&pcs[nframes]; 6871 int size, offs = 0, i, j; 6872 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6873 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6874 char *sym; 6875 6876 /* 6877 * Should be taking a faster path if string space has not been 6878 * allocated. 6879 */ 6880 ASSERT(strsize != 0); 6881 6882 /* 6883 * We will first allocate some temporary space for the frame pointers. 6884 */ 6885 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6886 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6887 (nframes * sizeof (uint64_t)); 6888 6889 if (!DTRACE_INSCRATCH(mstate, size)) { 6890 /* 6891 * Not enough room for our frame pointers -- need to indicate 6892 * that we ran out of scratch space. 6893 */ 6894 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6895 return; 6896 } 6897 6898 mstate->dtms_scratch_ptr += size; 6899 saved = mstate->dtms_scratch_ptr; 6900 6901 /* 6902 * Now get a stack with both program counters and frame pointers. 6903 */ 6904 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6905 dtrace_getufpstack(buf, fps, nframes + 1); 6906 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6907 6908 /* 6909 * If that faulted, we're cooked. 6910 */ 6911 if (*flags & CPU_DTRACE_FAULT) 6912 goto out; 6913 6914 /* 6915 * Now we want to walk up the stack, calling the USTACK helper. For 6916 * each iteration, we restore the scratch pointer. 6917 */ 6918 for (i = 0; i < nframes; i++) { 6919 mstate->dtms_scratch_ptr = saved; 6920 6921 if (offs >= strsize) 6922 break; 6923 6924 sym = (char *)(uintptr_t)dtrace_helper( 6925 DTRACE_HELPER_ACTION_USTACK, 6926 mstate, state, pcs[i], fps[i]); 6927 6928 /* 6929 * If we faulted while running the helper, we're going to 6930 * clear the fault and null out the corresponding string. 6931 */ 6932 if (*flags & CPU_DTRACE_FAULT) { 6933 *flags &= ~CPU_DTRACE_FAULT; 6934 str[offs++] = '\0'; 6935 continue; 6936 } 6937 6938 if (sym == NULL) { 6939 str[offs++] = '\0'; 6940 continue; 6941 } 6942 6943 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6944 6945 /* 6946 * Now copy in the string that the helper returned to us. 6947 */ 6948 for (j = 0; offs + j < strsize; j++) { 6949 if ((str[offs + j] = sym[j]) == '\0') 6950 break; 6951 } 6952 6953 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6954 6955 offs += j + 1; 6956 } 6957 6958 if (offs >= strsize) { 6959 /* 6960 * If we didn't have room for all of the strings, we don't 6961 * abort processing -- this needn't be a fatal error -- but we 6962 * still want to increment a counter (dts_stkstroverflows) to 6963 * allow this condition to be warned about. (If this is from 6964 * a jstack() action, it is easily tuned via jstackstrsize.) 6965 */ 6966 dtrace_error(&state->dts_stkstroverflows); 6967 } 6968 6969 while (offs < strsize) 6970 str[offs++] = '\0'; 6971 6972 out: 6973 mstate->dtms_scratch_ptr = old; 6974 } 6975 6976 static void 6977 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6978 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6979 { 6980 volatile uint16_t *flags; 6981 uint64_t val = *valp; 6982 size_t valoffs = *valoffsp; 6983 6984 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 6985 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6986 6987 /* 6988 * If this is a string, we're going to only load until we find the zero 6989 * byte -- after which we'll store zero bytes. 6990 */ 6991 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6992 char c = '\0' + 1; 6993 size_t s; 6994 6995 for (s = 0; s < size; s++) { 6996 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6997 c = dtrace_load8(val++); 6998 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6999 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7000 c = dtrace_fuword8((void *)(uintptr_t)val++); 7001 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7002 if (*flags & CPU_DTRACE_FAULT) 7003 break; 7004 } 7005 7006 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7007 7008 if (c == '\0' && intuple) 7009 break; 7010 } 7011 } else { 7012 uint8_t c; 7013 while (valoffs < end) { 7014 if (dtkind == DIF_TF_BYREF) { 7015 c = dtrace_load8(val++); 7016 } else if (dtkind == DIF_TF_BYUREF) { 7017 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7018 c = dtrace_fuword8((void *)(uintptr_t)val++); 7019 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7020 if (*flags & CPU_DTRACE_FAULT) 7021 break; 7022 } 7023 7024 DTRACE_STORE(uint8_t, tomax, 7025 valoffs++, c); 7026 } 7027 } 7028 7029 *valp = val; 7030 *valoffsp = valoffs; 7031 } 7032 7033 /* 7034 * If you're looking for the epicenter of DTrace, you just found it. This 7035 * is the function called by the provider to fire a probe -- from which all 7036 * subsequent probe-context DTrace activity emanates. 7037 */ 7038 void 7039 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7040 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7041 { 7042 processorid_t cpuid; 7043 dtrace_icookie_t cookie; 7044 dtrace_probe_t *probe; 7045 dtrace_mstate_t mstate; 7046 dtrace_ecb_t *ecb; 7047 dtrace_action_t *act; 7048 intptr_t offs; 7049 size_t size; 7050 int vtime, onintr; 7051 volatile uint16_t *flags; 7052 hrtime_t now; 7053 7054 if (panicstr != NULL) 7055 return; 7056 7057 #ifdef illumos 7058 /* 7059 * Kick out immediately if this CPU is still being born (in which case 7060 * curthread will be set to -1) or the current thread can't allow 7061 * probes in its current context. 7062 */ 7063 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7064 return; 7065 #endif 7066 7067 cookie = dtrace_interrupt_disable(); 7068 probe = dtrace_probes[id - 1]; 7069 cpuid = curcpu; 7070 onintr = CPU_ON_INTR(CPU); 7071 7072 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7073 probe->dtpr_predcache == curthread->t_predcache) { 7074 /* 7075 * We have hit in the predicate cache; we know that 7076 * this predicate would evaluate to be false. 7077 */ 7078 dtrace_interrupt_enable(cookie); 7079 return; 7080 } 7081 7082 #ifdef illumos 7083 if (panic_quiesce) { 7084 #else 7085 if (panicstr != NULL) { 7086 #endif 7087 /* 7088 * We don't trace anything if we're panicking. 7089 */ 7090 dtrace_interrupt_enable(cookie); 7091 return; 7092 } 7093 7094 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7095 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7096 vtime = dtrace_vtime_references != 0; 7097 7098 if (vtime && curthread->t_dtrace_start) 7099 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7100 7101 mstate.dtms_difo = NULL; 7102 mstate.dtms_probe = probe; 7103 mstate.dtms_strtok = 0; 7104 mstate.dtms_arg[0] = arg0; 7105 mstate.dtms_arg[1] = arg1; 7106 mstate.dtms_arg[2] = arg2; 7107 mstate.dtms_arg[3] = arg3; 7108 mstate.dtms_arg[4] = arg4; 7109 7110 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7111 7112 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7113 dtrace_predicate_t *pred = ecb->dte_predicate; 7114 dtrace_state_t *state = ecb->dte_state; 7115 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7116 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7117 dtrace_vstate_t *vstate = &state->dts_vstate; 7118 dtrace_provider_t *prov = probe->dtpr_provider; 7119 uint64_t tracememsize = 0; 7120 int committed = 0; 7121 caddr_t tomax; 7122 7123 /* 7124 * A little subtlety with the following (seemingly innocuous) 7125 * declaration of the automatic 'val': by looking at the 7126 * code, you might think that it could be declared in the 7127 * action processing loop, below. (That is, it's only used in 7128 * the action processing loop.) However, it must be declared 7129 * out of that scope because in the case of DIF expression 7130 * arguments to aggregating actions, one iteration of the 7131 * action loop will use the last iteration's value. 7132 */ 7133 uint64_t val = 0; 7134 7135 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7136 mstate.dtms_getf = NULL; 7137 7138 *flags &= ~CPU_DTRACE_ERROR; 7139 7140 if (prov == dtrace_provider) { 7141 /* 7142 * If dtrace itself is the provider of this probe, 7143 * we're only going to continue processing the ECB if 7144 * arg0 (the dtrace_state_t) is equal to the ECB's 7145 * creating state. (This prevents disjoint consumers 7146 * from seeing one another's metaprobes.) 7147 */ 7148 if (arg0 != (uint64_t)(uintptr_t)state) 7149 continue; 7150 } 7151 7152 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7153 /* 7154 * We're not currently active. If our provider isn't 7155 * the dtrace pseudo provider, we're not interested. 7156 */ 7157 if (prov != dtrace_provider) 7158 continue; 7159 7160 /* 7161 * Now we must further check if we are in the BEGIN 7162 * probe. If we are, we will only continue processing 7163 * if we're still in WARMUP -- if one BEGIN enabling 7164 * has invoked the exit() action, we don't want to 7165 * evaluate subsequent BEGIN enablings. 7166 */ 7167 if (probe->dtpr_id == dtrace_probeid_begin && 7168 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7169 ASSERT(state->dts_activity == 7170 DTRACE_ACTIVITY_DRAINING); 7171 continue; 7172 } 7173 } 7174 7175 if (ecb->dte_cond) { 7176 /* 7177 * If the dte_cond bits indicate that this 7178 * consumer is only allowed to see user-mode firings 7179 * of this probe, call the provider's dtps_usermode() 7180 * entry point to check that the probe was fired 7181 * while in a user context. Skip this ECB if that's 7182 * not the case. 7183 */ 7184 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7185 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7186 probe->dtpr_id, probe->dtpr_arg) == 0) 7187 continue; 7188 7189 #ifdef illumos 7190 /* 7191 * This is more subtle than it looks. We have to be 7192 * absolutely certain that CRED() isn't going to 7193 * change out from under us so it's only legit to 7194 * examine that structure if we're in constrained 7195 * situations. Currently, the only times we'll this 7196 * check is if a non-super-user has enabled the 7197 * profile or syscall providers -- providers that 7198 * allow visibility of all processes. For the 7199 * profile case, the check above will ensure that 7200 * we're examining a user context. 7201 */ 7202 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7203 cred_t *cr; 7204 cred_t *s_cr = 7205 ecb->dte_state->dts_cred.dcr_cred; 7206 proc_t *proc; 7207 7208 ASSERT(s_cr != NULL); 7209 7210 if ((cr = CRED()) == NULL || 7211 s_cr->cr_uid != cr->cr_uid || 7212 s_cr->cr_uid != cr->cr_ruid || 7213 s_cr->cr_uid != cr->cr_suid || 7214 s_cr->cr_gid != cr->cr_gid || 7215 s_cr->cr_gid != cr->cr_rgid || 7216 s_cr->cr_gid != cr->cr_sgid || 7217 (proc = ttoproc(curthread)) == NULL || 7218 (proc->p_flag & SNOCD)) 7219 continue; 7220 } 7221 7222 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7223 cred_t *cr; 7224 cred_t *s_cr = 7225 ecb->dte_state->dts_cred.dcr_cred; 7226 7227 ASSERT(s_cr != NULL); 7228 7229 if ((cr = CRED()) == NULL || 7230 s_cr->cr_zone->zone_id != 7231 cr->cr_zone->zone_id) 7232 continue; 7233 } 7234 #endif 7235 } 7236 7237 if (now - state->dts_alive > dtrace_deadman_timeout) { 7238 /* 7239 * We seem to be dead. Unless we (a) have kernel 7240 * destructive permissions (b) have explicitly enabled 7241 * destructive actions and (c) destructive actions have 7242 * not been disabled, we're going to transition into 7243 * the KILLED state, from which no further processing 7244 * on this state will be performed. 7245 */ 7246 if (!dtrace_priv_kernel_destructive(state) || 7247 !state->dts_cred.dcr_destructive || 7248 dtrace_destructive_disallow) { 7249 void *activity = &state->dts_activity; 7250 dtrace_activity_t current; 7251 7252 do { 7253 current = state->dts_activity; 7254 } while (dtrace_cas32(activity, current, 7255 DTRACE_ACTIVITY_KILLED) != current); 7256 7257 continue; 7258 } 7259 } 7260 7261 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7262 ecb->dte_alignment, state, &mstate)) < 0) 7263 continue; 7264 7265 tomax = buf->dtb_tomax; 7266 ASSERT(tomax != NULL); 7267 7268 if (ecb->dte_size != 0) { 7269 dtrace_rechdr_t dtrh; 7270 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7271 mstate.dtms_timestamp = dtrace_gethrtime(); 7272 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7273 } 7274 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7275 dtrh.dtrh_epid = ecb->dte_epid; 7276 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7277 mstate.dtms_timestamp); 7278 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7279 } 7280 7281 mstate.dtms_epid = ecb->dte_epid; 7282 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7283 7284 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7285 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7286 else 7287 mstate.dtms_access = 0; 7288 7289 if (pred != NULL) { 7290 dtrace_difo_t *dp = pred->dtp_difo; 7291 int rval; 7292 7293 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7294 7295 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7296 dtrace_cacheid_t cid = probe->dtpr_predcache; 7297 7298 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7299 /* 7300 * Update the predicate cache... 7301 */ 7302 ASSERT(cid == pred->dtp_cacheid); 7303 curthread->t_predcache = cid; 7304 } 7305 7306 continue; 7307 } 7308 } 7309 7310 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7311 act != NULL; act = act->dta_next) { 7312 size_t valoffs; 7313 dtrace_difo_t *dp; 7314 dtrace_recdesc_t *rec = &act->dta_rec; 7315 7316 size = rec->dtrd_size; 7317 valoffs = offs + rec->dtrd_offset; 7318 7319 if (DTRACEACT_ISAGG(act->dta_kind)) { 7320 uint64_t v = 0xbad; 7321 dtrace_aggregation_t *agg; 7322 7323 agg = (dtrace_aggregation_t *)act; 7324 7325 if ((dp = act->dta_difo) != NULL) 7326 v = dtrace_dif_emulate(dp, 7327 &mstate, vstate, state); 7328 7329 if (*flags & CPU_DTRACE_ERROR) 7330 continue; 7331 7332 /* 7333 * Note that we always pass the expression 7334 * value from the previous iteration of the 7335 * action loop. This value will only be used 7336 * if there is an expression argument to the 7337 * aggregating action, denoted by the 7338 * dtag_hasarg field. 7339 */ 7340 dtrace_aggregate(agg, buf, 7341 offs, aggbuf, v, val); 7342 continue; 7343 } 7344 7345 switch (act->dta_kind) { 7346 case DTRACEACT_STOP: 7347 if (dtrace_priv_proc_destructive(state)) 7348 dtrace_action_stop(); 7349 continue; 7350 7351 case DTRACEACT_BREAKPOINT: 7352 if (dtrace_priv_kernel_destructive(state)) 7353 dtrace_action_breakpoint(ecb); 7354 continue; 7355 7356 case DTRACEACT_PANIC: 7357 if (dtrace_priv_kernel_destructive(state)) 7358 dtrace_action_panic(ecb); 7359 continue; 7360 7361 case DTRACEACT_STACK: 7362 if (!dtrace_priv_kernel(state)) 7363 continue; 7364 7365 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7366 size / sizeof (pc_t), probe->dtpr_aframes, 7367 DTRACE_ANCHORED(probe) ? NULL : 7368 (uint32_t *)arg0); 7369 continue; 7370 7371 case DTRACEACT_JSTACK: 7372 case DTRACEACT_USTACK: 7373 if (!dtrace_priv_proc(state)) 7374 continue; 7375 7376 /* 7377 * See comment in DIF_VAR_PID. 7378 */ 7379 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7380 CPU_ON_INTR(CPU)) { 7381 int depth = DTRACE_USTACK_NFRAMES( 7382 rec->dtrd_arg) + 1; 7383 7384 dtrace_bzero((void *)(tomax + valoffs), 7385 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7386 + depth * sizeof (uint64_t)); 7387 7388 continue; 7389 } 7390 7391 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7392 curproc->p_dtrace_helpers != NULL) { 7393 /* 7394 * This is the slow path -- we have 7395 * allocated string space, and we're 7396 * getting the stack of a process that 7397 * has helpers. Call into a separate 7398 * routine to perform this processing. 7399 */ 7400 dtrace_action_ustack(&mstate, state, 7401 (uint64_t *)(tomax + valoffs), 7402 rec->dtrd_arg); 7403 continue; 7404 } 7405 7406 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7407 dtrace_getupcstack((uint64_t *) 7408 (tomax + valoffs), 7409 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7410 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7411 continue; 7412 7413 default: 7414 break; 7415 } 7416 7417 dp = act->dta_difo; 7418 ASSERT(dp != NULL); 7419 7420 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7421 7422 if (*flags & CPU_DTRACE_ERROR) 7423 continue; 7424 7425 switch (act->dta_kind) { 7426 case DTRACEACT_SPECULATE: { 7427 dtrace_rechdr_t *dtrh; 7428 7429 ASSERT(buf == &state->dts_buffer[cpuid]); 7430 buf = dtrace_speculation_buffer(state, 7431 cpuid, val); 7432 7433 if (buf == NULL) { 7434 *flags |= CPU_DTRACE_DROP; 7435 continue; 7436 } 7437 7438 offs = dtrace_buffer_reserve(buf, 7439 ecb->dte_needed, ecb->dte_alignment, 7440 state, NULL); 7441 7442 if (offs < 0) { 7443 *flags |= CPU_DTRACE_DROP; 7444 continue; 7445 } 7446 7447 tomax = buf->dtb_tomax; 7448 ASSERT(tomax != NULL); 7449 7450 if (ecb->dte_size == 0) 7451 continue; 7452 7453 ASSERT3U(ecb->dte_size, >=, 7454 sizeof (dtrace_rechdr_t)); 7455 dtrh = ((void *)(tomax + offs)); 7456 dtrh->dtrh_epid = ecb->dte_epid; 7457 /* 7458 * When the speculation is committed, all of 7459 * the records in the speculative buffer will 7460 * have their timestamps set to the commit 7461 * time. Until then, it is set to a sentinel 7462 * value, for debugability. 7463 */ 7464 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7465 continue; 7466 } 7467 7468 case DTRACEACT_PRINTM: { 7469 /* The DIF returns a 'memref'. */ 7470 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7471 7472 /* Get the size from the memref. */ 7473 size = memref[1]; 7474 7475 /* 7476 * Check if the size exceeds the allocated 7477 * buffer size. 7478 */ 7479 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7480 /* Flag a drop! */ 7481 *flags |= CPU_DTRACE_DROP; 7482 continue; 7483 } 7484 7485 /* Store the size in the buffer first. */ 7486 DTRACE_STORE(uintptr_t, tomax, 7487 valoffs, size); 7488 7489 /* 7490 * Offset the buffer address to the start 7491 * of the data. 7492 */ 7493 valoffs += sizeof(uintptr_t); 7494 7495 /* 7496 * Reset to the memory address rather than 7497 * the memref array, then let the BYREF 7498 * code below do the work to store the 7499 * memory data in the buffer. 7500 */ 7501 val = memref[0]; 7502 break; 7503 } 7504 7505 case DTRACEACT_PRINTT: { 7506 /* The DIF returns a 'typeref'. */ 7507 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val; 7508 char c = '\0' + 1; 7509 size_t s; 7510 7511 /* 7512 * Get the type string length and round it 7513 * up so that the data that follows is 7514 * aligned for easy access. 7515 */ 7516 size_t typs = strlen((char *) typeref[2]) + 1; 7517 typs = roundup(typs, sizeof(uintptr_t)); 7518 7519 /* 7520 *Get the size from the typeref using the 7521 * number of elements and the type size. 7522 */ 7523 size = typeref[1] * typeref[3]; 7524 7525 /* 7526 * Check if the size exceeds the allocated 7527 * buffer size. 7528 */ 7529 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7530 /* Flag a drop! */ 7531 *flags |= CPU_DTRACE_DROP; 7532 7533 } 7534 7535 /* Store the size in the buffer first. */ 7536 DTRACE_STORE(uintptr_t, tomax, 7537 valoffs, size); 7538 valoffs += sizeof(uintptr_t); 7539 7540 /* Store the type size in the buffer. */ 7541 DTRACE_STORE(uintptr_t, tomax, 7542 valoffs, typeref[3]); 7543 valoffs += sizeof(uintptr_t); 7544 7545 val = typeref[2]; 7546 7547 for (s = 0; s < typs; s++) { 7548 if (c != '\0') 7549 c = dtrace_load8(val++); 7550 7551 DTRACE_STORE(uint8_t, tomax, 7552 valoffs++, c); 7553 } 7554 7555 /* 7556 * Reset to the memory address rather than 7557 * the typeref array, then let the BYREF 7558 * code below do the work to store the 7559 * memory data in the buffer. 7560 */ 7561 val = typeref[0]; 7562 break; 7563 } 7564 7565 case DTRACEACT_CHILL: 7566 if (dtrace_priv_kernel_destructive(state)) 7567 dtrace_action_chill(&mstate, val); 7568 continue; 7569 7570 case DTRACEACT_RAISE: 7571 if (dtrace_priv_proc_destructive(state)) 7572 dtrace_action_raise(val); 7573 continue; 7574 7575 case DTRACEACT_COMMIT: 7576 ASSERT(!committed); 7577 7578 /* 7579 * We need to commit our buffer state. 7580 */ 7581 if (ecb->dte_size) 7582 buf->dtb_offset = offs + ecb->dte_size; 7583 buf = &state->dts_buffer[cpuid]; 7584 dtrace_speculation_commit(state, cpuid, val); 7585 committed = 1; 7586 continue; 7587 7588 case DTRACEACT_DISCARD: 7589 dtrace_speculation_discard(state, cpuid, val); 7590 continue; 7591 7592 case DTRACEACT_DIFEXPR: 7593 case DTRACEACT_LIBACT: 7594 case DTRACEACT_PRINTF: 7595 case DTRACEACT_PRINTA: 7596 case DTRACEACT_SYSTEM: 7597 case DTRACEACT_FREOPEN: 7598 case DTRACEACT_TRACEMEM: 7599 break; 7600 7601 case DTRACEACT_TRACEMEM_DYNSIZE: 7602 tracememsize = val; 7603 break; 7604 7605 case DTRACEACT_SYM: 7606 case DTRACEACT_MOD: 7607 if (!dtrace_priv_kernel(state)) 7608 continue; 7609 break; 7610 7611 case DTRACEACT_USYM: 7612 case DTRACEACT_UMOD: 7613 case DTRACEACT_UADDR: { 7614 #ifdef illumos 7615 struct pid *pid = curthread->t_procp->p_pidp; 7616 #endif 7617 7618 if (!dtrace_priv_proc(state)) 7619 continue; 7620 7621 DTRACE_STORE(uint64_t, tomax, 7622 #ifdef illumos 7623 valoffs, (uint64_t)pid->pid_id); 7624 #else 7625 valoffs, (uint64_t) curproc->p_pid); 7626 #endif 7627 DTRACE_STORE(uint64_t, tomax, 7628 valoffs + sizeof (uint64_t), val); 7629 7630 continue; 7631 } 7632 7633 case DTRACEACT_EXIT: { 7634 /* 7635 * For the exit action, we are going to attempt 7636 * to atomically set our activity to be 7637 * draining. If this fails (either because 7638 * another CPU has beat us to the exit action, 7639 * or because our current activity is something 7640 * other than ACTIVE or WARMUP), we will 7641 * continue. This assures that the exit action 7642 * can be successfully recorded at most once 7643 * when we're in the ACTIVE state. If we're 7644 * encountering the exit() action while in 7645 * COOLDOWN, however, we want to honor the new 7646 * status code. (We know that we're the only 7647 * thread in COOLDOWN, so there is no race.) 7648 */ 7649 void *activity = &state->dts_activity; 7650 dtrace_activity_t current = state->dts_activity; 7651 7652 if (current == DTRACE_ACTIVITY_COOLDOWN) 7653 break; 7654 7655 if (current != DTRACE_ACTIVITY_WARMUP) 7656 current = DTRACE_ACTIVITY_ACTIVE; 7657 7658 if (dtrace_cas32(activity, current, 7659 DTRACE_ACTIVITY_DRAINING) != current) { 7660 *flags |= CPU_DTRACE_DROP; 7661 continue; 7662 } 7663 7664 break; 7665 } 7666 7667 default: 7668 ASSERT(0); 7669 } 7670 7671 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7672 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7673 uintptr_t end = valoffs + size; 7674 7675 if (tracememsize != 0 && 7676 valoffs + tracememsize < end) { 7677 end = valoffs + tracememsize; 7678 tracememsize = 0; 7679 } 7680 7681 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7682 !dtrace_vcanload((void *)(uintptr_t)val, 7683 &dp->dtdo_rtype, &mstate, vstate)) 7684 continue; 7685 7686 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7687 &val, end, act->dta_intuple, 7688 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7689 DIF_TF_BYREF: DIF_TF_BYUREF); 7690 continue; 7691 } 7692 7693 switch (size) { 7694 case 0: 7695 break; 7696 7697 case sizeof (uint8_t): 7698 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7699 break; 7700 case sizeof (uint16_t): 7701 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7702 break; 7703 case sizeof (uint32_t): 7704 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7705 break; 7706 case sizeof (uint64_t): 7707 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7708 break; 7709 default: 7710 /* 7711 * Any other size should have been returned by 7712 * reference, not by value. 7713 */ 7714 ASSERT(0); 7715 break; 7716 } 7717 } 7718 7719 if (*flags & CPU_DTRACE_DROP) 7720 continue; 7721 7722 if (*flags & CPU_DTRACE_FAULT) { 7723 int ndx; 7724 dtrace_action_t *err; 7725 7726 buf->dtb_errors++; 7727 7728 if (probe->dtpr_id == dtrace_probeid_error) { 7729 /* 7730 * There's nothing we can do -- we had an 7731 * error on the error probe. We bump an 7732 * error counter to at least indicate that 7733 * this condition happened. 7734 */ 7735 dtrace_error(&state->dts_dblerrors); 7736 continue; 7737 } 7738 7739 if (vtime) { 7740 /* 7741 * Before recursing on dtrace_probe(), we 7742 * need to explicitly clear out our start 7743 * time to prevent it from being accumulated 7744 * into t_dtrace_vtime. 7745 */ 7746 curthread->t_dtrace_start = 0; 7747 } 7748 7749 /* 7750 * Iterate over the actions to figure out which action 7751 * we were processing when we experienced the error. 7752 * Note that act points _past_ the faulting action; if 7753 * act is ecb->dte_action, the fault was in the 7754 * predicate, if it's ecb->dte_action->dta_next it's 7755 * in action #1, and so on. 7756 */ 7757 for (err = ecb->dte_action, ndx = 0; 7758 err != act; err = err->dta_next, ndx++) 7759 continue; 7760 7761 dtrace_probe_error(state, ecb->dte_epid, ndx, 7762 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7763 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7764 cpu_core[cpuid].cpuc_dtrace_illval); 7765 7766 continue; 7767 } 7768 7769 if (!committed) 7770 buf->dtb_offset = offs + ecb->dte_size; 7771 } 7772 7773 if (vtime) 7774 curthread->t_dtrace_start = dtrace_gethrtime(); 7775 7776 dtrace_interrupt_enable(cookie); 7777 } 7778 7779 /* 7780 * DTrace Probe Hashing Functions 7781 * 7782 * The functions in this section (and indeed, the functions in remaining 7783 * sections) are not _called_ from probe context. (Any exceptions to this are 7784 * marked with a "Note:".) Rather, they are called from elsewhere in the 7785 * DTrace framework to look-up probes in, add probes to and remove probes from 7786 * the DTrace probe hashes. (Each probe is hashed by each element of the 7787 * probe tuple -- allowing for fast lookups, regardless of what was 7788 * specified.) 7789 */ 7790 static uint_t 7791 dtrace_hash_str(const char *p) 7792 { 7793 unsigned int g; 7794 uint_t hval = 0; 7795 7796 while (*p) { 7797 hval = (hval << 4) + *p++; 7798 if ((g = (hval & 0xf0000000)) != 0) 7799 hval ^= g >> 24; 7800 hval &= ~g; 7801 } 7802 return (hval); 7803 } 7804 7805 static dtrace_hash_t * 7806 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7807 { 7808 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7809 7810 hash->dth_stroffs = stroffs; 7811 hash->dth_nextoffs = nextoffs; 7812 hash->dth_prevoffs = prevoffs; 7813 7814 hash->dth_size = 1; 7815 hash->dth_mask = hash->dth_size - 1; 7816 7817 hash->dth_tab = kmem_zalloc(hash->dth_size * 7818 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7819 7820 return (hash); 7821 } 7822 7823 static void 7824 dtrace_hash_destroy(dtrace_hash_t *hash) 7825 { 7826 #ifdef DEBUG 7827 int i; 7828 7829 for (i = 0; i < hash->dth_size; i++) 7830 ASSERT(hash->dth_tab[i] == NULL); 7831 #endif 7832 7833 kmem_free(hash->dth_tab, 7834 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7835 kmem_free(hash, sizeof (dtrace_hash_t)); 7836 } 7837 7838 static void 7839 dtrace_hash_resize(dtrace_hash_t *hash) 7840 { 7841 int size = hash->dth_size, i, ndx; 7842 int new_size = hash->dth_size << 1; 7843 int new_mask = new_size - 1; 7844 dtrace_hashbucket_t **new_tab, *bucket, *next; 7845 7846 ASSERT((new_size & new_mask) == 0); 7847 7848 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7849 7850 for (i = 0; i < size; i++) { 7851 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7852 dtrace_probe_t *probe = bucket->dthb_chain; 7853 7854 ASSERT(probe != NULL); 7855 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7856 7857 next = bucket->dthb_next; 7858 bucket->dthb_next = new_tab[ndx]; 7859 new_tab[ndx] = bucket; 7860 } 7861 } 7862 7863 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7864 hash->dth_tab = new_tab; 7865 hash->dth_size = new_size; 7866 hash->dth_mask = new_mask; 7867 } 7868 7869 static void 7870 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7871 { 7872 int hashval = DTRACE_HASHSTR(hash, new); 7873 int ndx = hashval & hash->dth_mask; 7874 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7875 dtrace_probe_t **nextp, **prevp; 7876 7877 for (; bucket != NULL; bucket = bucket->dthb_next) { 7878 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7879 goto add; 7880 } 7881 7882 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7883 dtrace_hash_resize(hash); 7884 dtrace_hash_add(hash, new); 7885 return; 7886 } 7887 7888 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7889 bucket->dthb_next = hash->dth_tab[ndx]; 7890 hash->dth_tab[ndx] = bucket; 7891 hash->dth_nbuckets++; 7892 7893 add: 7894 nextp = DTRACE_HASHNEXT(hash, new); 7895 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7896 *nextp = bucket->dthb_chain; 7897 7898 if (bucket->dthb_chain != NULL) { 7899 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7900 ASSERT(*prevp == NULL); 7901 *prevp = new; 7902 } 7903 7904 bucket->dthb_chain = new; 7905 bucket->dthb_len++; 7906 } 7907 7908 static dtrace_probe_t * 7909 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7910 { 7911 int hashval = DTRACE_HASHSTR(hash, template); 7912 int ndx = hashval & hash->dth_mask; 7913 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7914 7915 for (; bucket != NULL; bucket = bucket->dthb_next) { 7916 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7917 return (bucket->dthb_chain); 7918 } 7919 7920 return (NULL); 7921 } 7922 7923 static int 7924 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7925 { 7926 int hashval = DTRACE_HASHSTR(hash, template); 7927 int ndx = hashval & hash->dth_mask; 7928 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7929 7930 for (; bucket != NULL; bucket = bucket->dthb_next) { 7931 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7932 return (bucket->dthb_len); 7933 } 7934 7935 return (0); 7936 } 7937 7938 static void 7939 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7940 { 7941 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7942 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7943 7944 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7945 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7946 7947 /* 7948 * Find the bucket that we're removing this probe from. 7949 */ 7950 for (; bucket != NULL; bucket = bucket->dthb_next) { 7951 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7952 break; 7953 } 7954 7955 ASSERT(bucket != NULL); 7956 7957 if (*prevp == NULL) { 7958 if (*nextp == NULL) { 7959 /* 7960 * The removed probe was the only probe on this 7961 * bucket; we need to remove the bucket. 7962 */ 7963 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7964 7965 ASSERT(bucket->dthb_chain == probe); 7966 ASSERT(b != NULL); 7967 7968 if (b == bucket) { 7969 hash->dth_tab[ndx] = bucket->dthb_next; 7970 } else { 7971 while (b->dthb_next != bucket) 7972 b = b->dthb_next; 7973 b->dthb_next = bucket->dthb_next; 7974 } 7975 7976 ASSERT(hash->dth_nbuckets > 0); 7977 hash->dth_nbuckets--; 7978 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7979 return; 7980 } 7981 7982 bucket->dthb_chain = *nextp; 7983 } else { 7984 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7985 } 7986 7987 if (*nextp != NULL) 7988 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7989 } 7990 7991 /* 7992 * DTrace Utility Functions 7993 * 7994 * These are random utility functions that are _not_ called from probe context. 7995 */ 7996 static int 7997 dtrace_badattr(const dtrace_attribute_t *a) 7998 { 7999 return (a->dtat_name > DTRACE_STABILITY_MAX || 8000 a->dtat_data > DTRACE_STABILITY_MAX || 8001 a->dtat_class > DTRACE_CLASS_MAX); 8002 } 8003 8004 /* 8005 * Return a duplicate copy of a string. If the specified string is NULL, 8006 * this function returns a zero-length string. 8007 */ 8008 static char * 8009 dtrace_strdup(const char *str) 8010 { 8011 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8012 8013 if (str != NULL) 8014 (void) strcpy(new, str); 8015 8016 return (new); 8017 } 8018 8019 #define DTRACE_ISALPHA(c) \ 8020 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8021 8022 static int 8023 dtrace_badname(const char *s) 8024 { 8025 char c; 8026 8027 if (s == NULL || (c = *s++) == '\0') 8028 return (0); 8029 8030 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8031 return (1); 8032 8033 while ((c = *s++) != '\0') { 8034 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8035 c != '-' && c != '_' && c != '.' && c != '`') 8036 return (1); 8037 } 8038 8039 return (0); 8040 } 8041 8042 static void 8043 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8044 { 8045 uint32_t priv; 8046 8047 #ifdef illumos 8048 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8049 /* 8050 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8051 */ 8052 priv = DTRACE_PRIV_ALL; 8053 } else { 8054 *uidp = crgetuid(cr); 8055 *zoneidp = crgetzoneid(cr); 8056 8057 priv = 0; 8058 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8059 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8060 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8061 priv |= DTRACE_PRIV_USER; 8062 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8063 priv |= DTRACE_PRIV_PROC; 8064 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8065 priv |= DTRACE_PRIV_OWNER; 8066 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8067 priv |= DTRACE_PRIV_ZONEOWNER; 8068 } 8069 #else 8070 priv = DTRACE_PRIV_ALL; 8071 #endif 8072 8073 *privp = priv; 8074 } 8075 8076 #ifdef DTRACE_ERRDEBUG 8077 static void 8078 dtrace_errdebug(const char *str) 8079 { 8080 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8081 int occupied = 0; 8082 8083 mutex_enter(&dtrace_errlock); 8084 dtrace_errlast = str; 8085 dtrace_errthread = curthread; 8086 8087 while (occupied++ < DTRACE_ERRHASHSZ) { 8088 if (dtrace_errhash[hval].dter_msg == str) { 8089 dtrace_errhash[hval].dter_count++; 8090 goto out; 8091 } 8092 8093 if (dtrace_errhash[hval].dter_msg != NULL) { 8094 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8095 continue; 8096 } 8097 8098 dtrace_errhash[hval].dter_msg = str; 8099 dtrace_errhash[hval].dter_count = 1; 8100 goto out; 8101 } 8102 8103 panic("dtrace: undersized error hash"); 8104 out: 8105 mutex_exit(&dtrace_errlock); 8106 } 8107 #endif 8108 8109 /* 8110 * DTrace Matching Functions 8111 * 8112 * These functions are used to match groups of probes, given some elements of 8113 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8114 */ 8115 static int 8116 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8117 zoneid_t zoneid) 8118 { 8119 if (priv != DTRACE_PRIV_ALL) { 8120 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8121 uint32_t match = priv & ppriv; 8122 8123 /* 8124 * No PRIV_DTRACE_* privileges... 8125 */ 8126 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8127 DTRACE_PRIV_KERNEL)) == 0) 8128 return (0); 8129 8130 /* 8131 * No matching bits, but there were bits to match... 8132 */ 8133 if (match == 0 && ppriv != 0) 8134 return (0); 8135 8136 /* 8137 * Need to have permissions to the process, but don't... 8138 */ 8139 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8140 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8141 return (0); 8142 } 8143 8144 /* 8145 * Need to be in the same zone unless we possess the 8146 * privilege to examine all zones. 8147 */ 8148 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8149 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8150 return (0); 8151 } 8152 } 8153 8154 return (1); 8155 } 8156 8157 /* 8158 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8159 * consists of input pattern strings and an ops-vector to evaluate them. 8160 * This function returns >0 for match, 0 for no match, and <0 for error. 8161 */ 8162 static int 8163 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8164 uint32_t priv, uid_t uid, zoneid_t zoneid) 8165 { 8166 dtrace_provider_t *pvp = prp->dtpr_provider; 8167 int rv; 8168 8169 if (pvp->dtpv_defunct) 8170 return (0); 8171 8172 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8173 return (rv); 8174 8175 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8176 return (rv); 8177 8178 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8179 return (rv); 8180 8181 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8182 return (rv); 8183 8184 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8185 return (0); 8186 8187 return (rv); 8188 } 8189 8190 /* 8191 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8192 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8193 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8194 * In addition, all of the recursion cases except for '*' matching have been 8195 * unwound. For '*', we still implement recursive evaluation, but a depth 8196 * counter is maintained and matching is aborted if we recurse too deep. 8197 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8198 */ 8199 static int 8200 dtrace_match_glob(const char *s, const char *p, int depth) 8201 { 8202 const char *olds; 8203 char s1, c; 8204 int gs; 8205 8206 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8207 return (-1); 8208 8209 if (s == NULL) 8210 s = ""; /* treat NULL as empty string */ 8211 8212 top: 8213 olds = s; 8214 s1 = *s++; 8215 8216 if (p == NULL) 8217 return (0); 8218 8219 if ((c = *p++) == '\0') 8220 return (s1 == '\0'); 8221 8222 switch (c) { 8223 case '[': { 8224 int ok = 0, notflag = 0; 8225 char lc = '\0'; 8226 8227 if (s1 == '\0') 8228 return (0); 8229 8230 if (*p == '!') { 8231 notflag = 1; 8232 p++; 8233 } 8234 8235 if ((c = *p++) == '\0') 8236 return (0); 8237 8238 do { 8239 if (c == '-' && lc != '\0' && *p != ']') { 8240 if ((c = *p++) == '\0') 8241 return (0); 8242 if (c == '\\' && (c = *p++) == '\0') 8243 return (0); 8244 8245 if (notflag) { 8246 if (s1 < lc || s1 > c) 8247 ok++; 8248 else 8249 return (0); 8250 } else if (lc <= s1 && s1 <= c) 8251 ok++; 8252 8253 } else if (c == '\\' && (c = *p++) == '\0') 8254 return (0); 8255 8256 lc = c; /* save left-hand 'c' for next iteration */ 8257 8258 if (notflag) { 8259 if (s1 != c) 8260 ok++; 8261 else 8262 return (0); 8263 } else if (s1 == c) 8264 ok++; 8265 8266 if ((c = *p++) == '\0') 8267 return (0); 8268 8269 } while (c != ']'); 8270 8271 if (ok) 8272 goto top; 8273 8274 return (0); 8275 } 8276 8277 case '\\': 8278 if ((c = *p++) == '\0') 8279 return (0); 8280 /*FALLTHRU*/ 8281 8282 default: 8283 if (c != s1) 8284 return (0); 8285 /*FALLTHRU*/ 8286 8287 case '?': 8288 if (s1 != '\0') 8289 goto top; 8290 return (0); 8291 8292 case '*': 8293 while (*p == '*') 8294 p++; /* consecutive *'s are identical to a single one */ 8295 8296 if (*p == '\0') 8297 return (1); 8298 8299 for (s = olds; *s != '\0'; s++) { 8300 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8301 return (gs); 8302 } 8303 8304 return (0); 8305 } 8306 } 8307 8308 /*ARGSUSED*/ 8309 static int 8310 dtrace_match_string(const char *s, const char *p, int depth) 8311 { 8312 return (s != NULL && strcmp(s, p) == 0); 8313 } 8314 8315 /*ARGSUSED*/ 8316 static int 8317 dtrace_match_nul(const char *s, const char *p, int depth) 8318 { 8319 return (1); /* always match the empty pattern */ 8320 } 8321 8322 /*ARGSUSED*/ 8323 static int 8324 dtrace_match_nonzero(const char *s, const char *p, int depth) 8325 { 8326 return (s != NULL && s[0] != '\0'); 8327 } 8328 8329 static int 8330 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8331 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8332 { 8333 dtrace_probe_t template, *probe; 8334 dtrace_hash_t *hash = NULL; 8335 int len, best = INT_MAX, nmatched = 0; 8336 dtrace_id_t i; 8337 8338 ASSERT(MUTEX_HELD(&dtrace_lock)); 8339 8340 /* 8341 * If the probe ID is specified in the key, just lookup by ID and 8342 * invoke the match callback once if a matching probe is found. 8343 */ 8344 if (pkp->dtpk_id != DTRACE_IDNONE) { 8345 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8346 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8347 (void) (*matched)(probe, arg); 8348 nmatched++; 8349 } 8350 return (nmatched); 8351 } 8352 8353 template.dtpr_mod = (char *)pkp->dtpk_mod; 8354 template.dtpr_func = (char *)pkp->dtpk_func; 8355 template.dtpr_name = (char *)pkp->dtpk_name; 8356 8357 /* 8358 * We want to find the most distinct of the module name, function 8359 * name, and name. So for each one that is not a glob pattern or 8360 * empty string, we perform a lookup in the corresponding hash and 8361 * use the hash table with the fewest collisions to do our search. 8362 */ 8363 if (pkp->dtpk_mmatch == &dtrace_match_string && 8364 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8365 best = len; 8366 hash = dtrace_bymod; 8367 } 8368 8369 if (pkp->dtpk_fmatch == &dtrace_match_string && 8370 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8371 best = len; 8372 hash = dtrace_byfunc; 8373 } 8374 8375 if (pkp->dtpk_nmatch == &dtrace_match_string && 8376 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8377 best = len; 8378 hash = dtrace_byname; 8379 } 8380 8381 /* 8382 * If we did not select a hash table, iterate over every probe and 8383 * invoke our callback for each one that matches our input probe key. 8384 */ 8385 if (hash == NULL) { 8386 for (i = 0; i < dtrace_nprobes; i++) { 8387 if ((probe = dtrace_probes[i]) == NULL || 8388 dtrace_match_probe(probe, pkp, priv, uid, 8389 zoneid) <= 0) 8390 continue; 8391 8392 nmatched++; 8393 8394 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8395 break; 8396 } 8397 8398 return (nmatched); 8399 } 8400 8401 /* 8402 * If we selected a hash table, iterate over each probe of the same key 8403 * name and invoke the callback for every probe that matches the other 8404 * attributes of our input probe key. 8405 */ 8406 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8407 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8408 8409 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8410 continue; 8411 8412 nmatched++; 8413 8414 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8415 break; 8416 } 8417 8418 return (nmatched); 8419 } 8420 8421 /* 8422 * Return the function pointer dtrace_probecmp() should use to compare the 8423 * specified pattern with a string. For NULL or empty patterns, we select 8424 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8425 * For non-empty non-glob strings, we use dtrace_match_string(). 8426 */ 8427 static dtrace_probekey_f * 8428 dtrace_probekey_func(const char *p) 8429 { 8430 char c; 8431 8432 if (p == NULL || *p == '\0') 8433 return (&dtrace_match_nul); 8434 8435 while ((c = *p++) != '\0') { 8436 if (c == '[' || c == '?' || c == '*' || c == '\\') 8437 return (&dtrace_match_glob); 8438 } 8439 8440 return (&dtrace_match_string); 8441 } 8442 8443 /* 8444 * Build a probe comparison key for use with dtrace_match_probe() from the 8445 * given probe description. By convention, a null key only matches anchored 8446 * probes: if each field is the empty string, reset dtpk_fmatch to 8447 * dtrace_match_nonzero(). 8448 */ 8449 static void 8450 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8451 { 8452 pkp->dtpk_prov = pdp->dtpd_provider; 8453 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8454 8455 pkp->dtpk_mod = pdp->dtpd_mod; 8456 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8457 8458 pkp->dtpk_func = pdp->dtpd_func; 8459 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8460 8461 pkp->dtpk_name = pdp->dtpd_name; 8462 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8463 8464 pkp->dtpk_id = pdp->dtpd_id; 8465 8466 if (pkp->dtpk_id == DTRACE_IDNONE && 8467 pkp->dtpk_pmatch == &dtrace_match_nul && 8468 pkp->dtpk_mmatch == &dtrace_match_nul && 8469 pkp->dtpk_fmatch == &dtrace_match_nul && 8470 pkp->dtpk_nmatch == &dtrace_match_nul) 8471 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8472 } 8473 8474 /* 8475 * DTrace Provider-to-Framework API Functions 8476 * 8477 * These functions implement much of the Provider-to-Framework API, as 8478 * described in <sys/dtrace.h>. The parts of the API not in this section are 8479 * the functions in the API for probe management (found below), and 8480 * dtrace_probe() itself (found above). 8481 */ 8482 8483 /* 8484 * Register the calling provider with the DTrace framework. This should 8485 * generally be called by DTrace providers in their attach(9E) entry point. 8486 */ 8487 int 8488 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8489 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8490 { 8491 dtrace_provider_t *provider; 8492 8493 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8494 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8495 "arguments", name ? name : "<NULL>"); 8496 return (EINVAL); 8497 } 8498 8499 if (name[0] == '\0' || dtrace_badname(name)) { 8500 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8501 "provider name", name); 8502 return (EINVAL); 8503 } 8504 8505 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8506 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8507 pops->dtps_destroy == NULL || 8508 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8509 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8510 "provider ops", name); 8511 return (EINVAL); 8512 } 8513 8514 if (dtrace_badattr(&pap->dtpa_provider) || 8515 dtrace_badattr(&pap->dtpa_mod) || 8516 dtrace_badattr(&pap->dtpa_func) || 8517 dtrace_badattr(&pap->dtpa_name) || 8518 dtrace_badattr(&pap->dtpa_args)) { 8519 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8520 "provider attributes", name); 8521 return (EINVAL); 8522 } 8523 8524 if (priv & ~DTRACE_PRIV_ALL) { 8525 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8526 "privilege attributes", name); 8527 return (EINVAL); 8528 } 8529 8530 if ((priv & DTRACE_PRIV_KERNEL) && 8531 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8532 pops->dtps_usermode == NULL) { 8533 cmn_err(CE_WARN, "failed to register provider '%s': need " 8534 "dtps_usermode() op for given privilege attributes", name); 8535 return (EINVAL); 8536 } 8537 8538 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8539 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8540 (void) strcpy(provider->dtpv_name, name); 8541 8542 provider->dtpv_attr = *pap; 8543 provider->dtpv_priv.dtpp_flags = priv; 8544 if (cr != NULL) { 8545 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8546 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8547 } 8548 provider->dtpv_pops = *pops; 8549 8550 if (pops->dtps_provide == NULL) { 8551 ASSERT(pops->dtps_provide_module != NULL); 8552 provider->dtpv_pops.dtps_provide = 8553 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8554 } 8555 8556 if (pops->dtps_provide_module == NULL) { 8557 ASSERT(pops->dtps_provide != NULL); 8558 provider->dtpv_pops.dtps_provide_module = 8559 (void (*)(void *, modctl_t *))dtrace_nullop; 8560 } 8561 8562 if (pops->dtps_suspend == NULL) { 8563 ASSERT(pops->dtps_resume == NULL); 8564 provider->dtpv_pops.dtps_suspend = 8565 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8566 provider->dtpv_pops.dtps_resume = 8567 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8568 } 8569 8570 provider->dtpv_arg = arg; 8571 *idp = (dtrace_provider_id_t)provider; 8572 8573 if (pops == &dtrace_provider_ops) { 8574 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8575 ASSERT(MUTEX_HELD(&dtrace_lock)); 8576 ASSERT(dtrace_anon.dta_enabling == NULL); 8577 8578 /* 8579 * We make sure that the DTrace provider is at the head of 8580 * the provider chain. 8581 */ 8582 provider->dtpv_next = dtrace_provider; 8583 dtrace_provider = provider; 8584 return (0); 8585 } 8586 8587 mutex_enter(&dtrace_provider_lock); 8588 mutex_enter(&dtrace_lock); 8589 8590 /* 8591 * If there is at least one provider registered, we'll add this 8592 * provider after the first provider. 8593 */ 8594 if (dtrace_provider != NULL) { 8595 provider->dtpv_next = dtrace_provider->dtpv_next; 8596 dtrace_provider->dtpv_next = provider; 8597 } else { 8598 dtrace_provider = provider; 8599 } 8600 8601 if (dtrace_retained != NULL) { 8602 dtrace_enabling_provide(provider); 8603 8604 /* 8605 * Now we need to call dtrace_enabling_matchall() -- which 8606 * will acquire cpu_lock and dtrace_lock. We therefore need 8607 * to drop all of our locks before calling into it... 8608 */ 8609 mutex_exit(&dtrace_lock); 8610 mutex_exit(&dtrace_provider_lock); 8611 dtrace_enabling_matchall(); 8612 8613 return (0); 8614 } 8615 8616 mutex_exit(&dtrace_lock); 8617 mutex_exit(&dtrace_provider_lock); 8618 8619 return (0); 8620 } 8621 8622 /* 8623 * Unregister the specified provider from the DTrace framework. This should 8624 * generally be called by DTrace providers in their detach(9E) entry point. 8625 */ 8626 int 8627 dtrace_unregister(dtrace_provider_id_t id) 8628 { 8629 dtrace_provider_t *old = (dtrace_provider_t *)id; 8630 dtrace_provider_t *prev = NULL; 8631 int i, self = 0, noreap = 0; 8632 dtrace_probe_t *probe, *first = NULL; 8633 8634 if (old->dtpv_pops.dtps_enable == 8635 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8636 /* 8637 * If DTrace itself is the provider, we're called with locks 8638 * already held. 8639 */ 8640 ASSERT(old == dtrace_provider); 8641 #ifdef illumos 8642 ASSERT(dtrace_devi != NULL); 8643 #endif 8644 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8645 ASSERT(MUTEX_HELD(&dtrace_lock)); 8646 self = 1; 8647 8648 if (dtrace_provider->dtpv_next != NULL) { 8649 /* 8650 * There's another provider here; return failure. 8651 */ 8652 return (EBUSY); 8653 } 8654 } else { 8655 mutex_enter(&dtrace_provider_lock); 8656 #ifdef illumos 8657 mutex_enter(&mod_lock); 8658 #endif 8659 mutex_enter(&dtrace_lock); 8660 } 8661 8662 /* 8663 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8664 * probes, we refuse to let providers slither away, unless this 8665 * provider has already been explicitly invalidated. 8666 */ 8667 if (!old->dtpv_defunct && 8668 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8669 dtrace_anon.dta_state->dts_necbs > 0))) { 8670 if (!self) { 8671 mutex_exit(&dtrace_lock); 8672 #ifdef illumos 8673 mutex_exit(&mod_lock); 8674 #endif 8675 mutex_exit(&dtrace_provider_lock); 8676 } 8677 return (EBUSY); 8678 } 8679 8680 /* 8681 * Attempt to destroy the probes associated with this provider. 8682 */ 8683 for (i = 0; i < dtrace_nprobes; i++) { 8684 if ((probe = dtrace_probes[i]) == NULL) 8685 continue; 8686 8687 if (probe->dtpr_provider != old) 8688 continue; 8689 8690 if (probe->dtpr_ecb == NULL) 8691 continue; 8692 8693 /* 8694 * If we are trying to unregister a defunct provider, and the 8695 * provider was made defunct within the interval dictated by 8696 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8697 * attempt to reap our enablings. To denote that the provider 8698 * should reattempt to unregister itself at some point in the 8699 * future, we will return a differentiable error code (EAGAIN 8700 * instead of EBUSY) in this case. 8701 */ 8702 if (dtrace_gethrtime() - old->dtpv_defunct > 8703 dtrace_unregister_defunct_reap) 8704 noreap = 1; 8705 8706 if (!self) { 8707 mutex_exit(&dtrace_lock); 8708 #ifdef illumos 8709 mutex_exit(&mod_lock); 8710 #endif 8711 mutex_exit(&dtrace_provider_lock); 8712 } 8713 8714 if (noreap) 8715 return (EBUSY); 8716 8717 (void) taskq_dispatch(dtrace_taskq, 8718 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8719 8720 return (EAGAIN); 8721 } 8722 8723 /* 8724 * All of the probes for this provider are disabled; we can safely 8725 * remove all of them from their hash chains and from the probe array. 8726 */ 8727 for (i = 0; i < dtrace_nprobes; i++) { 8728 if ((probe = dtrace_probes[i]) == NULL) 8729 continue; 8730 8731 if (probe->dtpr_provider != old) 8732 continue; 8733 8734 dtrace_probes[i] = NULL; 8735 8736 dtrace_hash_remove(dtrace_bymod, probe); 8737 dtrace_hash_remove(dtrace_byfunc, probe); 8738 dtrace_hash_remove(dtrace_byname, probe); 8739 8740 if (first == NULL) { 8741 first = probe; 8742 probe->dtpr_nextmod = NULL; 8743 } else { 8744 probe->dtpr_nextmod = first; 8745 first = probe; 8746 } 8747 } 8748 8749 /* 8750 * The provider's probes have been removed from the hash chains and 8751 * from the probe array. Now issue a dtrace_sync() to be sure that 8752 * everyone has cleared out from any probe array processing. 8753 */ 8754 dtrace_sync(); 8755 8756 for (probe = first; probe != NULL; probe = first) { 8757 first = probe->dtpr_nextmod; 8758 8759 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8760 probe->dtpr_arg); 8761 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8762 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8763 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8764 #ifdef illumos 8765 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8766 #else 8767 free_unr(dtrace_arena, probe->dtpr_id); 8768 #endif 8769 kmem_free(probe, sizeof (dtrace_probe_t)); 8770 } 8771 8772 if ((prev = dtrace_provider) == old) { 8773 #ifdef illumos 8774 ASSERT(self || dtrace_devi == NULL); 8775 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8776 #endif 8777 dtrace_provider = old->dtpv_next; 8778 } else { 8779 while (prev != NULL && prev->dtpv_next != old) 8780 prev = prev->dtpv_next; 8781 8782 if (prev == NULL) { 8783 panic("attempt to unregister non-existent " 8784 "dtrace provider %p\n", (void *)id); 8785 } 8786 8787 prev->dtpv_next = old->dtpv_next; 8788 } 8789 8790 if (!self) { 8791 mutex_exit(&dtrace_lock); 8792 #ifdef illumos 8793 mutex_exit(&mod_lock); 8794 #endif 8795 mutex_exit(&dtrace_provider_lock); 8796 } 8797 8798 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8799 kmem_free(old, sizeof (dtrace_provider_t)); 8800 8801 return (0); 8802 } 8803 8804 /* 8805 * Invalidate the specified provider. All subsequent probe lookups for the 8806 * specified provider will fail, but its probes will not be removed. 8807 */ 8808 void 8809 dtrace_invalidate(dtrace_provider_id_t id) 8810 { 8811 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8812 8813 ASSERT(pvp->dtpv_pops.dtps_enable != 8814 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 8815 8816 mutex_enter(&dtrace_provider_lock); 8817 mutex_enter(&dtrace_lock); 8818 8819 pvp->dtpv_defunct = dtrace_gethrtime(); 8820 8821 mutex_exit(&dtrace_lock); 8822 mutex_exit(&dtrace_provider_lock); 8823 } 8824 8825 /* 8826 * Indicate whether or not DTrace has attached. 8827 */ 8828 int 8829 dtrace_attached(void) 8830 { 8831 /* 8832 * dtrace_provider will be non-NULL iff the DTrace driver has 8833 * attached. (It's non-NULL because DTrace is always itself a 8834 * provider.) 8835 */ 8836 return (dtrace_provider != NULL); 8837 } 8838 8839 /* 8840 * Remove all the unenabled probes for the given provider. This function is 8841 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8842 * -- just as many of its associated probes as it can. 8843 */ 8844 int 8845 dtrace_condense(dtrace_provider_id_t id) 8846 { 8847 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8848 int i; 8849 dtrace_probe_t *probe; 8850 8851 /* 8852 * Make sure this isn't the dtrace provider itself. 8853 */ 8854 ASSERT(prov->dtpv_pops.dtps_enable != 8855 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 8856 8857 mutex_enter(&dtrace_provider_lock); 8858 mutex_enter(&dtrace_lock); 8859 8860 /* 8861 * Attempt to destroy the probes associated with this provider. 8862 */ 8863 for (i = 0; i < dtrace_nprobes; i++) { 8864 if ((probe = dtrace_probes[i]) == NULL) 8865 continue; 8866 8867 if (probe->dtpr_provider != prov) 8868 continue; 8869 8870 if (probe->dtpr_ecb != NULL) 8871 continue; 8872 8873 dtrace_probes[i] = NULL; 8874 8875 dtrace_hash_remove(dtrace_bymod, probe); 8876 dtrace_hash_remove(dtrace_byfunc, probe); 8877 dtrace_hash_remove(dtrace_byname, probe); 8878 8879 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8880 probe->dtpr_arg); 8881 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8882 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8883 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8884 kmem_free(probe, sizeof (dtrace_probe_t)); 8885 #ifdef illumos 8886 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8887 #else 8888 free_unr(dtrace_arena, i + 1); 8889 #endif 8890 } 8891 8892 mutex_exit(&dtrace_lock); 8893 mutex_exit(&dtrace_provider_lock); 8894 8895 return (0); 8896 } 8897 8898 /* 8899 * DTrace Probe Management Functions 8900 * 8901 * The functions in this section perform the DTrace probe management, 8902 * including functions to create probes, look-up probes, and call into the 8903 * providers to request that probes be provided. Some of these functions are 8904 * in the Provider-to-Framework API; these functions can be identified by the 8905 * fact that they are not declared "static". 8906 */ 8907 8908 /* 8909 * Create a probe with the specified module name, function name, and name. 8910 */ 8911 dtrace_id_t 8912 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8913 const char *func, const char *name, int aframes, void *arg) 8914 { 8915 dtrace_probe_t *probe, **probes; 8916 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8917 dtrace_id_t id; 8918 8919 if (provider == dtrace_provider) { 8920 ASSERT(MUTEX_HELD(&dtrace_lock)); 8921 } else { 8922 mutex_enter(&dtrace_lock); 8923 } 8924 8925 #ifdef illumos 8926 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8927 VM_BESTFIT | VM_SLEEP); 8928 #else 8929 id = alloc_unr(dtrace_arena); 8930 #endif 8931 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8932 8933 probe->dtpr_id = id; 8934 probe->dtpr_gen = dtrace_probegen++; 8935 probe->dtpr_mod = dtrace_strdup(mod); 8936 probe->dtpr_func = dtrace_strdup(func); 8937 probe->dtpr_name = dtrace_strdup(name); 8938 probe->dtpr_arg = arg; 8939 probe->dtpr_aframes = aframes; 8940 probe->dtpr_provider = provider; 8941 8942 dtrace_hash_add(dtrace_bymod, probe); 8943 dtrace_hash_add(dtrace_byfunc, probe); 8944 dtrace_hash_add(dtrace_byname, probe); 8945 8946 if (id - 1 >= dtrace_nprobes) { 8947 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8948 size_t nsize = osize << 1; 8949 8950 if (nsize == 0) { 8951 ASSERT(osize == 0); 8952 ASSERT(dtrace_probes == NULL); 8953 nsize = sizeof (dtrace_probe_t *); 8954 } 8955 8956 probes = kmem_zalloc(nsize, KM_SLEEP); 8957 8958 if (dtrace_probes == NULL) { 8959 ASSERT(osize == 0); 8960 dtrace_probes = probes; 8961 dtrace_nprobes = 1; 8962 } else { 8963 dtrace_probe_t **oprobes = dtrace_probes; 8964 8965 bcopy(oprobes, probes, osize); 8966 dtrace_membar_producer(); 8967 dtrace_probes = probes; 8968 8969 dtrace_sync(); 8970 8971 /* 8972 * All CPUs are now seeing the new probes array; we can 8973 * safely free the old array. 8974 */ 8975 kmem_free(oprobes, osize); 8976 dtrace_nprobes <<= 1; 8977 } 8978 8979 ASSERT(id - 1 < dtrace_nprobes); 8980 } 8981 8982 ASSERT(dtrace_probes[id - 1] == NULL); 8983 dtrace_probes[id - 1] = probe; 8984 8985 if (provider != dtrace_provider) 8986 mutex_exit(&dtrace_lock); 8987 8988 return (id); 8989 } 8990 8991 static dtrace_probe_t * 8992 dtrace_probe_lookup_id(dtrace_id_t id) 8993 { 8994 ASSERT(MUTEX_HELD(&dtrace_lock)); 8995 8996 if (id == 0 || id > dtrace_nprobes) 8997 return (NULL); 8998 8999 return (dtrace_probes[id - 1]); 9000 } 9001 9002 static int 9003 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9004 { 9005 *((dtrace_id_t *)arg) = probe->dtpr_id; 9006 9007 return (DTRACE_MATCH_DONE); 9008 } 9009 9010 /* 9011 * Look up a probe based on provider and one or more of module name, function 9012 * name and probe name. 9013 */ 9014 dtrace_id_t 9015 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9016 char *func, char *name) 9017 { 9018 dtrace_probekey_t pkey; 9019 dtrace_id_t id; 9020 int match; 9021 9022 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9023 pkey.dtpk_pmatch = &dtrace_match_string; 9024 pkey.dtpk_mod = mod; 9025 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9026 pkey.dtpk_func = func; 9027 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9028 pkey.dtpk_name = name; 9029 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9030 pkey.dtpk_id = DTRACE_IDNONE; 9031 9032 mutex_enter(&dtrace_lock); 9033 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9034 dtrace_probe_lookup_match, &id); 9035 mutex_exit(&dtrace_lock); 9036 9037 ASSERT(match == 1 || match == 0); 9038 return (match ? id : 0); 9039 } 9040 9041 /* 9042 * Returns the probe argument associated with the specified probe. 9043 */ 9044 void * 9045 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9046 { 9047 dtrace_probe_t *probe; 9048 void *rval = NULL; 9049 9050 mutex_enter(&dtrace_lock); 9051 9052 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9053 probe->dtpr_provider == (dtrace_provider_t *)id) 9054 rval = probe->dtpr_arg; 9055 9056 mutex_exit(&dtrace_lock); 9057 9058 return (rval); 9059 } 9060 9061 /* 9062 * Copy a probe into a probe description. 9063 */ 9064 static void 9065 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9066 { 9067 bzero(pdp, sizeof (dtrace_probedesc_t)); 9068 pdp->dtpd_id = prp->dtpr_id; 9069 9070 (void) strncpy(pdp->dtpd_provider, 9071 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9072 9073 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9074 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9075 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9076 } 9077 9078 /* 9079 * Called to indicate that a probe -- or probes -- should be provided by a 9080 * specfied provider. If the specified description is NULL, the provider will 9081 * be told to provide all of its probes. (This is done whenever a new 9082 * consumer comes along, or whenever a retained enabling is to be matched.) If 9083 * the specified description is non-NULL, the provider is given the 9084 * opportunity to dynamically provide the specified probe, allowing providers 9085 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9086 * probes.) If the provider is NULL, the operations will be applied to all 9087 * providers; if the provider is non-NULL the operations will only be applied 9088 * to the specified provider. The dtrace_provider_lock must be held, and the 9089 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9090 * will need to grab the dtrace_lock when it reenters the framework through 9091 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9092 */ 9093 static void 9094 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9095 { 9096 #ifdef illumos 9097 modctl_t *ctl; 9098 #endif 9099 int all = 0; 9100 9101 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9102 9103 if (prv == NULL) { 9104 all = 1; 9105 prv = dtrace_provider; 9106 } 9107 9108 do { 9109 /* 9110 * First, call the blanket provide operation. 9111 */ 9112 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9113 9114 #ifdef illumos 9115 /* 9116 * Now call the per-module provide operation. We will grab 9117 * mod_lock to prevent the list from being modified. Note 9118 * that this also prevents the mod_busy bits from changing. 9119 * (mod_busy can only be changed with mod_lock held.) 9120 */ 9121 mutex_enter(&mod_lock); 9122 9123 ctl = &modules; 9124 do { 9125 if (ctl->mod_busy || ctl->mod_mp == NULL) 9126 continue; 9127 9128 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9129 9130 } while ((ctl = ctl->mod_next) != &modules); 9131 9132 mutex_exit(&mod_lock); 9133 #endif 9134 } while (all && (prv = prv->dtpv_next) != NULL); 9135 } 9136 9137 #ifdef illumos 9138 /* 9139 * Iterate over each probe, and call the Framework-to-Provider API function 9140 * denoted by offs. 9141 */ 9142 static void 9143 dtrace_probe_foreach(uintptr_t offs) 9144 { 9145 dtrace_provider_t *prov; 9146 void (*func)(void *, dtrace_id_t, void *); 9147 dtrace_probe_t *probe; 9148 dtrace_icookie_t cookie; 9149 int i; 9150 9151 /* 9152 * We disable interrupts to walk through the probe array. This is 9153 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9154 * won't see stale data. 9155 */ 9156 cookie = dtrace_interrupt_disable(); 9157 9158 for (i = 0; i < dtrace_nprobes; i++) { 9159 if ((probe = dtrace_probes[i]) == NULL) 9160 continue; 9161 9162 if (probe->dtpr_ecb == NULL) { 9163 /* 9164 * This probe isn't enabled -- don't call the function. 9165 */ 9166 continue; 9167 } 9168 9169 prov = probe->dtpr_provider; 9170 func = *((void(**)(void *, dtrace_id_t, void *)) 9171 ((uintptr_t)&prov->dtpv_pops + offs)); 9172 9173 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9174 } 9175 9176 dtrace_interrupt_enable(cookie); 9177 } 9178 #endif 9179 9180 static int 9181 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9182 { 9183 dtrace_probekey_t pkey; 9184 uint32_t priv; 9185 uid_t uid; 9186 zoneid_t zoneid; 9187 9188 ASSERT(MUTEX_HELD(&dtrace_lock)); 9189 dtrace_ecb_create_cache = NULL; 9190 9191 if (desc == NULL) { 9192 /* 9193 * If we're passed a NULL description, we're being asked to 9194 * create an ECB with a NULL probe. 9195 */ 9196 (void) dtrace_ecb_create_enable(NULL, enab); 9197 return (0); 9198 } 9199 9200 dtrace_probekey(desc, &pkey); 9201 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9202 &priv, &uid, &zoneid); 9203 9204 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9205 enab)); 9206 } 9207 9208 /* 9209 * DTrace Helper Provider Functions 9210 */ 9211 static void 9212 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9213 { 9214 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9215 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9216 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9217 } 9218 9219 static void 9220 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9221 const dof_provider_t *dofprov, char *strtab) 9222 { 9223 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9224 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9225 dofprov->dofpv_provattr); 9226 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9227 dofprov->dofpv_modattr); 9228 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9229 dofprov->dofpv_funcattr); 9230 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9231 dofprov->dofpv_nameattr); 9232 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9233 dofprov->dofpv_argsattr); 9234 } 9235 9236 static void 9237 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9238 { 9239 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9240 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9241 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9242 dof_provider_t *provider; 9243 dof_probe_t *probe; 9244 uint32_t *off, *enoff; 9245 uint8_t *arg; 9246 char *strtab; 9247 uint_t i, nprobes; 9248 dtrace_helper_provdesc_t dhpv; 9249 dtrace_helper_probedesc_t dhpb; 9250 dtrace_meta_t *meta = dtrace_meta_pid; 9251 dtrace_mops_t *mops = &meta->dtm_mops; 9252 void *parg; 9253 9254 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9255 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9256 provider->dofpv_strtab * dof->dofh_secsize); 9257 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9258 provider->dofpv_probes * dof->dofh_secsize); 9259 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9260 provider->dofpv_prargs * dof->dofh_secsize); 9261 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9262 provider->dofpv_proffs * dof->dofh_secsize); 9263 9264 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9265 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9266 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9267 enoff = NULL; 9268 9269 /* 9270 * See dtrace_helper_provider_validate(). 9271 */ 9272 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9273 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9274 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9275 provider->dofpv_prenoffs * dof->dofh_secsize); 9276 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9277 } 9278 9279 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9280 9281 /* 9282 * Create the provider. 9283 */ 9284 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9285 9286 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9287 return; 9288 9289 meta->dtm_count++; 9290 9291 /* 9292 * Create the probes. 9293 */ 9294 for (i = 0; i < nprobes; i++) { 9295 probe = (dof_probe_t *)(uintptr_t)(daddr + 9296 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9297 9298 dhpb.dthpb_mod = dhp->dofhp_mod; 9299 dhpb.dthpb_func = strtab + probe->dofpr_func; 9300 dhpb.dthpb_name = strtab + probe->dofpr_name; 9301 dhpb.dthpb_base = probe->dofpr_addr; 9302 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9303 dhpb.dthpb_noffs = probe->dofpr_noffs; 9304 if (enoff != NULL) { 9305 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9306 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9307 } else { 9308 dhpb.dthpb_enoffs = NULL; 9309 dhpb.dthpb_nenoffs = 0; 9310 } 9311 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9312 dhpb.dthpb_nargc = probe->dofpr_nargc; 9313 dhpb.dthpb_xargc = probe->dofpr_xargc; 9314 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9315 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9316 9317 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9318 } 9319 } 9320 9321 static void 9322 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9323 { 9324 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9325 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9326 int i; 9327 9328 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9329 9330 for (i = 0; i < dof->dofh_secnum; i++) { 9331 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9332 dof->dofh_secoff + i * dof->dofh_secsize); 9333 9334 if (sec->dofs_type != DOF_SECT_PROVIDER) 9335 continue; 9336 9337 dtrace_helper_provide_one(dhp, sec, pid); 9338 } 9339 9340 /* 9341 * We may have just created probes, so we must now rematch against 9342 * any retained enablings. Note that this call will acquire both 9343 * cpu_lock and dtrace_lock; the fact that we are holding 9344 * dtrace_meta_lock now is what defines the ordering with respect to 9345 * these three locks. 9346 */ 9347 dtrace_enabling_matchall(); 9348 } 9349 9350 static void 9351 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9352 { 9353 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9354 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9355 dof_sec_t *str_sec; 9356 dof_provider_t *provider; 9357 char *strtab; 9358 dtrace_helper_provdesc_t dhpv; 9359 dtrace_meta_t *meta = dtrace_meta_pid; 9360 dtrace_mops_t *mops = &meta->dtm_mops; 9361 9362 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9363 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9364 provider->dofpv_strtab * dof->dofh_secsize); 9365 9366 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9367 9368 /* 9369 * Create the provider. 9370 */ 9371 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9372 9373 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9374 9375 meta->dtm_count--; 9376 } 9377 9378 static void 9379 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9380 { 9381 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9382 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9383 int i; 9384 9385 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9386 9387 for (i = 0; i < dof->dofh_secnum; i++) { 9388 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9389 dof->dofh_secoff + i * dof->dofh_secsize); 9390 9391 if (sec->dofs_type != DOF_SECT_PROVIDER) 9392 continue; 9393 9394 dtrace_helper_provider_remove_one(dhp, sec, pid); 9395 } 9396 } 9397 9398 /* 9399 * DTrace Meta Provider-to-Framework API Functions 9400 * 9401 * These functions implement the Meta Provider-to-Framework API, as described 9402 * in <sys/dtrace.h>. 9403 */ 9404 int 9405 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9406 dtrace_meta_provider_id_t *idp) 9407 { 9408 dtrace_meta_t *meta; 9409 dtrace_helpers_t *help, *next; 9410 int i; 9411 9412 *idp = DTRACE_METAPROVNONE; 9413 9414 /* 9415 * We strictly don't need the name, but we hold onto it for 9416 * debuggability. All hail error queues! 9417 */ 9418 if (name == NULL) { 9419 cmn_err(CE_WARN, "failed to register meta-provider: " 9420 "invalid name"); 9421 return (EINVAL); 9422 } 9423 9424 if (mops == NULL || 9425 mops->dtms_create_probe == NULL || 9426 mops->dtms_provide_pid == NULL || 9427 mops->dtms_remove_pid == NULL) { 9428 cmn_err(CE_WARN, "failed to register meta-register %s: " 9429 "invalid ops", name); 9430 return (EINVAL); 9431 } 9432 9433 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9434 meta->dtm_mops = *mops; 9435 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9436 (void) strcpy(meta->dtm_name, name); 9437 meta->dtm_arg = arg; 9438 9439 mutex_enter(&dtrace_meta_lock); 9440 mutex_enter(&dtrace_lock); 9441 9442 if (dtrace_meta_pid != NULL) { 9443 mutex_exit(&dtrace_lock); 9444 mutex_exit(&dtrace_meta_lock); 9445 cmn_err(CE_WARN, "failed to register meta-register %s: " 9446 "user-land meta-provider exists", name); 9447 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9448 kmem_free(meta, sizeof (dtrace_meta_t)); 9449 return (EINVAL); 9450 } 9451 9452 dtrace_meta_pid = meta; 9453 *idp = (dtrace_meta_provider_id_t)meta; 9454 9455 /* 9456 * If there are providers and probes ready to go, pass them 9457 * off to the new meta provider now. 9458 */ 9459 9460 help = dtrace_deferred_pid; 9461 dtrace_deferred_pid = NULL; 9462 9463 mutex_exit(&dtrace_lock); 9464 9465 while (help != NULL) { 9466 for (i = 0; i < help->dthps_nprovs; i++) { 9467 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9468 help->dthps_pid); 9469 } 9470 9471 next = help->dthps_next; 9472 help->dthps_next = NULL; 9473 help->dthps_prev = NULL; 9474 help->dthps_deferred = 0; 9475 help = next; 9476 } 9477 9478 mutex_exit(&dtrace_meta_lock); 9479 9480 return (0); 9481 } 9482 9483 int 9484 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9485 { 9486 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9487 9488 mutex_enter(&dtrace_meta_lock); 9489 mutex_enter(&dtrace_lock); 9490 9491 if (old == dtrace_meta_pid) { 9492 pp = &dtrace_meta_pid; 9493 } else { 9494 panic("attempt to unregister non-existent " 9495 "dtrace meta-provider %p\n", (void *)old); 9496 } 9497 9498 if (old->dtm_count != 0) { 9499 mutex_exit(&dtrace_lock); 9500 mutex_exit(&dtrace_meta_lock); 9501 return (EBUSY); 9502 } 9503 9504 *pp = NULL; 9505 9506 mutex_exit(&dtrace_lock); 9507 mutex_exit(&dtrace_meta_lock); 9508 9509 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9510 kmem_free(old, sizeof (dtrace_meta_t)); 9511 9512 return (0); 9513 } 9514 9515 9516 /* 9517 * DTrace DIF Object Functions 9518 */ 9519 static int 9520 dtrace_difo_err(uint_t pc, const char *format, ...) 9521 { 9522 if (dtrace_err_verbose) { 9523 va_list alist; 9524 9525 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9526 va_start(alist, format); 9527 (void) vuprintf(format, alist); 9528 va_end(alist); 9529 } 9530 9531 #ifdef DTRACE_ERRDEBUG 9532 dtrace_errdebug(format); 9533 #endif 9534 return (1); 9535 } 9536 9537 /* 9538 * Validate a DTrace DIF object by checking the IR instructions. The following 9539 * rules are currently enforced by dtrace_difo_validate(): 9540 * 9541 * 1. Each instruction must have a valid opcode 9542 * 2. Each register, string, variable, or subroutine reference must be valid 9543 * 3. No instruction can modify register %r0 (must be zero) 9544 * 4. All instruction reserved bits must be set to zero 9545 * 5. The last instruction must be a "ret" instruction 9546 * 6. All branch targets must reference a valid instruction _after_ the branch 9547 */ 9548 static int 9549 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9550 cred_t *cr) 9551 { 9552 int err = 0, i; 9553 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9554 int kcheckload; 9555 uint_t pc; 9556 9557 kcheckload = cr == NULL || 9558 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9559 9560 dp->dtdo_destructive = 0; 9561 9562 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9563 dif_instr_t instr = dp->dtdo_buf[pc]; 9564 9565 uint_t r1 = DIF_INSTR_R1(instr); 9566 uint_t r2 = DIF_INSTR_R2(instr); 9567 uint_t rd = DIF_INSTR_RD(instr); 9568 uint_t rs = DIF_INSTR_RS(instr); 9569 uint_t label = DIF_INSTR_LABEL(instr); 9570 uint_t v = DIF_INSTR_VAR(instr); 9571 uint_t subr = DIF_INSTR_SUBR(instr); 9572 uint_t type = DIF_INSTR_TYPE(instr); 9573 uint_t op = DIF_INSTR_OP(instr); 9574 9575 switch (op) { 9576 case DIF_OP_OR: 9577 case DIF_OP_XOR: 9578 case DIF_OP_AND: 9579 case DIF_OP_SLL: 9580 case DIF_OP_SRL: 9581 case DIF_OP_SRA: 9582 case DIF_OP_SUB: 9583 case DIF_OP_ADD: 9584 case DIF_OP_MUL: 9585 case DIF_OP_SDIV: 9586 case DIF_OP_UDIV: 9587 case DIF_OP_SREM: 9588 case DIF_OP_UREM: 9589 case DIF_OP_COPYS: 9590 if (r1 >= nregs) 9591 err += efunc(pc, "invalid register %u\n", r1); 9592 if (r2 >= nregs) 9593 err += efunc(pc, "invalid register %u\n", r2); 9594 if (rd >= nregs) 9595 err += efunc(pc, "invalid register %u\n", rd); 9596 if (rd == 0) 9597 err += efunc(pc, "cannot write to %r0\n"); 9598 break; 9599 case DIF_OP_NOT: 9600 case DIF_OP_MOV: 9601 case DIF_OP_ALLOCS: 9602 if (r1 >= nregs) 9603 err += efunc(pc, "invalid register %u\n", r1); 9604 if (r2 != 0) 9605 err += efunc(pc, "non-zero reserved bits\n"); 9606 if (rd >= nregs) 9607 err += efunc(pc, "invalid register %u\n", rd); 9608 if (rd == 0) 9609 err += efunc(pc, "cannot write to %r0\n"); 9610 break; 9611 case DIF_OP_LDSB: 9612 case DIF_OP_LDSH: 9613 case DIF_OP_LDSW: 9614 case DIF_OP_LDUB: 9615 case DIF_OP_LDUH: 9616 case DIF_OP_LDUW: 9617 case DIF_OP_LDX: 9618 if (r1 >= nregs) 9619 err += efunc(pc, "invalid register %u\n", r1); 9620 if (r2 != 0) 9621 err += efunc(pc, "non-zero reserved bits\n"); 9622 if (rd >= nregs) 9623 err += efunc(pc, "invalid register %u\n", rd); 9624 if (rd == 0) 9625 err += efunc(pc, "cannot write to %r0\n"); 9626 if (kcheckload) 9627 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9628 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9629 break; 9630 case DIF_OP_RLDSB: 9631 case DIF_OP_RLDSH: 9632 case DIF_OP_RLDSW: 9633 case DIF_OP_RLDUB: 9634 case DIF_OP_RLDUH: 9635 case DIF_OP_RLDUW: 9636 case DIF_OP_RLDX: 9637 if (r1 >= nregs) 9638 err += efunc(pc, "invalid register %u\n", r1); 9639 if (r2 != 0) 9640 err += efunc(pc, "non-zero reserved bits\n"); 9641 if (rd >= nregs) 9642 err += efunc(pc, "invalid register %u\n", rd); 9643 if (rd == 0) 9644 err += efunc(pc, "cannot write to %r0\n"); 9645 break; 9646 case DIF_OP_ULDSB: 9647 case DIF_OP_ULDSH: 9648 case DIF_OP_ULDSW: 9649 case DIF_OP_ULDUB: 9650 case DIF_OP_ULDUH: 9651 case DIF_OP_ULDUW: 9652 case DIF_OP_ULDX: 9653 if (r1 >= nregs) 9654 err += efunc(pc, "invalid register %u\n", r1); 9655 if (r2 != 0) 9656 err += efunc(pc, "non-zero reserved bits\n"); 9657 if (rd >= nregs) 9658 err += efunc(pc, "invalid register %u\n", rd); 9659 if (rd == 0) 9660 err += efunc(pc, "cannot write to %r0\n"); 9661 break; 9662 case DIF_OP_STB: 9663 case DIF_OP_STH: 9664 case DIF_OP_STW: 9665 case DIF_OP_STX: 9666 if (r1 >= nregs) 9667 err += efunc(pc, "invalid register %u\n", r1); 9668 if (r2 != 0) 9669 err += efunc(pc, "non-zero reserved bits\n"); 9670 if (rd >= nregs) 9671 err += efunc(pc, "invalid register %u\n", rd); 9672 if (rd == 0) 9673 err += efunc(pc, "cannot write to 0 address\n"); 9674 break; 9675 case DIF_OP_CMP: 9676 case DIF_OP_SCMP: 9677 if (r1 >= nregs) 9678 err += efunc(pc, "invalid register %u\n", r1); 9679 if (r2 >= nregs) 9680 err += efunc(pc, "invalid register %u\n", r2); 9681 if (rd != 0) 9682 err += efunc(pc, "non-zero reserved bits\n"); 9683 break; 9684 case DIF_OP_TST: 9685 if (r1 >= nregs) 9686 err += efunc(pc, "invalid register %u\n", r1); 9687 if (r2 != 0 || rd != 0) 9688 err += efunc(pc, "non-zero reserved bits\n"); 9689 break; 9690 case DIF_OP_BA: 9691 case DIF_OP_BE: 9692 case DIF_OP_BNE: 9693 case DIF_OP_BG: 9694 case DIF_OP_BGU: 9695 case DIF_OP_BGE: 9696 case DIF_OP_BGEU: 9697 case DIF_OP_BL: 9698 case DIF_OP_BLU: 9699 case DIF_OP_BLE: 9700 case DIF_OP_BLEU: 9701 if (label >= dp->dtdo_len) { 9702 err += efunc(pc, "invalid branch target %u\n", 9703 label); 9704 } 9705 if (label <= pc) { 9706 err += efunc(pc, "backward branch to %u\n", 9707 label); 9708 } 9709 break; 9710 case DIF_OP_RET: 9711 if (r1 != 0 || r2 != 0) 9712 err += efunc(pc, "non-zero reserved bits\n"); 9713 if (rd >= nregs) 9714 err += efunc(pc, "invalid register %u\n", rd); 9715 break; 9716 case DIF_OP_NOP: 9717 case DIF_OP_POPTS: 9718 case DIF_OP_FLUSHTS: 9719 if (r1 != 0 || r2 != 0 || rd != 0) 9720 err += efunc(pc, "non-zero reserved bits\n"); 9721 break; 9722 case DIF_OP_SETX: 9723 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9724 err += efunc(pc, "invalid integer ref %u\n", 9725 DIF_INSTR_INTEGER(instr)); 9726 } 9727 if (rd >= nregs) 9728 err += efunc(pc, "invalid register %u\n", rd); 9729 if (rd == 0) 9730 err += efunc(pc, "cannot write to %r0\n"); 9731 break; 9732 case DIF_OP_SETS: 9733 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9734 err += efunc(pc, "invalid string ref %u\n", 9735 DIF_INSTR_STRING(instr)); 9736 } 9737 if (rd >= nregs) 9738 err += efunc(pc, "invalid register %u\n", rd); 9739 if (rd == 0) 9740 err += efunc(pc, "cannot write to %r0\n"); 9741 break; 9742 case DIF_OP_LDGA: 9743 case DIF_OP_LDTA: 9744 if (r1 > DIF_VAR_ARRAY_MAX) 9745 err += efunc(pc, "invalid array %u\n", r1); 9746 if (r2 >= nregs) 9747 err += efunc(pc, "invalid register %u\n", r2); 9748 if (rd >= nregs) 9749 err += efunc(pc, "invalid register %u\n", rd); 9750 if (rd == 0) 9751 err += efunc(pc, "cannot write to %r0\n"); 9752 break; 9753 case DIF_OP_LDGS: 9754 case DIF_OP_LDTS: 9755 case DIF_OP_LDLS: 9756 case DIF_OP_LDGAA: 9757 case DIF_OP_LDTAA: 9758 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9759 err += efunc(pc, "invalid variable %u\n", v); 9760 if (rd >= nregs) 9761 err += efunc(pc, "invalid register %u\n", rd); 9762 if (rd == 0) 9763 err += efunc(pc, "cannot write to %r0\n"); 9764 break; 9765 case DIF_OP_STGS: 9766 case DIF_OP_STTS: 9767 case DIF_OP_STLS: 9768 case DIF_OP_STGAA: 9769 case DIF_OP_STTAA: 9770 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9771 err += efunc(pc, "invalid variable %u\n", v); 9772 if (rs >= nregs) 9773 err += efunc(pc, "invalid register %u\n", rd); 9774 break; 9775 case DIF_OP_CALL: 9776 if (subr > DIF_SUBR_MAX) 9777 err += efunc(pc, "invalid subr %u\n", subr); 9778 if (rd >= nregs) 9779 err += efunc(pc, "invalid register %u\n", rd); 9780 if (rd == 0) 9781 err += efunc(pc, "cannot write to %r0\n"); 9782 9783 if (subr == DIF_SUBR_COPYOUT || 9784 subr == DIF_SUBR_COPYOUTSTR) { 9785 dp->dtdo_destructive = 1; 9786 } 9787 9788 if (subr == DIF_SUBR_GETF) { 9789 /* 9790 * If we have a getf() we need to record that 9791 * in our state. Note that our state can be 9792 * NULL if this is a helper -- but in that 9793 * case, the call to getf() is itself illegal, 9794 * and will be caught (slightly later) when 9795 * the helper is validated. 9796 */ 9797 if (vstate->dtvs_state != NULL) 9798 vstate->dtvs_state->dts_getf++; 9799 } 9800 9801 break; 9802 case DIF_OP_PUSHTR: 9803 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9804 err += efunc(pc, "invalid ref type %u\n", type); 9805 if (r2 >= nregs) 9806 err += efunc(pc, "invalid register %u\n", r2); 9807 if (rs >= nregs) 9808 err += efunc(pc, "invalid register %u\n", rs); 9809 break; 9810 case DIF_OP_PUSHTV: 9811 if (type != DIF_TYPE_CTF) 9812 err += efunc(pc, "invalid val type %u\n", type); 9813 if (r2 >= nregs) 9814 err += efunc(pc, "invalid register %u\n", r2); 9815 if (rs >= nregs) 9816 err += efunc(pc, "invalid register %u\n", rs); 9817 break; 9818 default: 9819 err += efunc(pc, "invalid opcode %u\n", 9820 DIF_INSTR_OP(instr)); 9821 } 9822 } 9823 9824 if (dp->dtdo_len != 0 && 9825 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9826 err += efunc(dp->dtdo_len - 1, 9827 "expected 'ret' as last DIF instruction\n"); 9828 } 9829 9830 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9831 /* 9832 * If we're not returning by reference, the size must be either 9833 * 0 or the size of one of the base types. 9834 */ 9835 switch (dp->dtdo_rtype.dtdt_size) { 9836 case 0: 9837 case sizeof (uint8_t): 9838 case sizeof (uint16_t): 9839 case sizeof (uint32_t): 9840 case sizeof (uint64_t): 9841 break; 9842 9843 default: 9844 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9845 } 9846 } 9847 9848 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9849 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9850 dtrace_diftype_t *vt, *et; 9851 uint_t id, ndx; 9852 9853 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9854 v->dtdv_scope != DIFV_SCOPE_THREAD && 9855 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9856 err += efunc(i, "unrecognized variable scope %d\n", 9857 v->dtdv_scope); 9858 break; 9859 } 9860 9861 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9862 v->dtdv_kind != DIFV_KIND_SCALAR) { 9863 err += efunc(i, "unrecognized variable type %d\n", 9864 v->dtdv_kind); 9865 break; 9866 } 9867 9868 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9869 err += efunc(i, "%d exceeds variable id limit\n", id); 9870 break; 9871 } 9872 9873 if (id < DIF_VAR_OTHER_UBASE) 9874 continue; 9875 9876 /* 9877 * For user-defined variables, we need to check that this 9878 * definition is identical to any previous definition that we 9879 * encountered. 9880 */ 9881 ndx = id - DIF_VAR_OTHER_UBASE; 9882 9883 switch (v->dtdv_scope) { 9884 case DIFV_SCOPE_GLOBAL: 9885 if (ndx < vstate->dtvs_nglobals) { 9886 dtrace_statvar_t *svar; 9887 9888 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9889 existing = &svar->dtsv_var; 9890 } 9891 9892 break; 9893 9894 case DIFV_SCOPE_THREAD: 9895 if (ndx < vstate->dtvs_ntlocals) 9896 existing = &vstate->dtvs_tlocals[ndx]; 9897 break; 9898 9899 case DIFV_SCOPE_LOCAL: 9900 if (ndx < vstate->dtvs_nlocals) { 9901 dtrace_statvar_t *svar; 9902 9903 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9904 existing = &svar->dtsv_var; 9905 } 9906 9907 break; 9908 } 9909 9910 vt = &v->dtdv_type; 9911 9912 if (vt->dtdt_flags & DIF_TF_BYREF) { 9913 if (vt->dtdt_size == 0) { 9914 err += efunc(i, "zero-sized variable\n"); 9915 break; 9916 } 9917 9918 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9919 vt->dtdt_size > dtrace_global_maxsize) { 9920 err += efunc(i, "oversized by-ref global\n"); 9921 break; 9922 } 9923 } 9924 9925 if (existing == NULL || existing->dtdv_id == 0) 9926 continue; 9927 9928 ASSERT(existing->dtdv_id == v->dtdv_id); 9929 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9930 9931 if (existing->dtdv_kind != v->dtdv_kind) 9932 err += efunc(i, "%d changed variable kind\n", id); 9933 9934 et = &existing->dtdv_type; 9935 9936 if (vt->dtdt_flags != et->dtdt_flags) { 9937 err += efunc(i, "%d changed variable type flags\n", id); 9938 break; 9939 } 9940 9941 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9942 err += efunc(i, "%d changed variable type size\n", id); 9943 break; 9944 } 9945 } 9946 9947 return (err); 9948 } 9949 9950 /* 9951 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9952 * are much more constrained than normal DIFOs. Specifically, they may 9953 * not: 9954 * 9955 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9956 * miscellaneous string routines 9957 * 2. Access DTrace variables other than the args[] array, and the 9958 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9959 * 3. Have thread-local variables. 9960 * 4. Have dynamic variables. 9961 */ 9962 static int 9963 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9964 { 9965 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9966 int err = 0; 9967 uint_t pc; 9968 9969 for (pc = 0; pc < dp->dtdo_len; pc++) { 9970 dif_instr_t instr = dp->dtdo_buf[pc]; 9971 9972 uint_t v = DIF_INSTR_VAR(instr); 9973 uint_t subr = DIF_INSTR_SUBR(instr); 9974 uint_t op = DIF_INSTR_OP(instr); 9975 9976 switch (op) { 9977 case DIF_OP_OR: 9978 case DIF_OP_XOR: 9979 case DIF_OP_AND: 9980 case DIF_OP_SLL: 9981 case DIF_OP_SRL: 9982 case DIF_OP_SRA: 9983 case DIF_OP_SUB: 9984 case DIF_OP_ADD: 9985 case DIF_OP_MUL: 9986 case DIF_OP_SDIV: 9987 case DIF_OP_UDIV: 9988 case DIF_OP_SREM: 9989 case DIF_OP_UREM: 9990 case DIF_OP_COPYS: 9991 case DIF_OP_NOT: 9992 case DIF_OP_MOV: 9993 case DIF_OP_RLDSB: 9994 case DIF_OP_RLDSH: 9995 case DIF_OP_RLDSW: 9996 case DIF_OP_RLDUB: 9997 case DIF_OP_RLDUH: 9998 case DIF_OP_RLDUW: 9999 case DIF_OP_RLDX: 10000 case DIF_OP_ULDSB: 10001 case DIF_OP_ULDSH: 10002 case DIF_OP_ULDSW: 10003 case DIF_OP_ULDUB: 10004 case DIF_OP_ULDUH: 10005 case DIF_OP_ULDUW: 10006 case DIF_OP_ULDX: 10007 case DIF_OP_STB: 10008 case DIF_OP_STH: 10009 case DIF_OP_STW: 10010 case DIF_OP_STX: 10011 case DIF_OP_ALLOCS: 10012 case DIF_OP_CMP: 10013 case DIF_OP_SCMP: 10014 case DIF_OP_TST: 10015 case DIF_OP_BA: 10016 case DIF_OP_BE: 10017 case DIF_OP_BNE: 10018 case DIF_OP_BG: 10019 case DIF_OP_BGU: 10020 case DIF_OP_BGE: 10021 case DIF_OP_BGEU: 10022 case DIF_OP_BL: 10023 case DIF_OP_BLU: 10024 case DIF_OP_BLE: 10025 case DIF_OP_BLEU: 10026 case DIF_OP_RET: 10027 case DIF_OP_NOP: 10028 case DIF_OP_POPTS: 10029 case DIF_OP_FLUSHTS: 10030 case DIF_OP_SETX: 10031 case DIF_OP_SETS: 10032 case DIF_OP_LDGA: 10033 case DIF_OP_LDLS: 10034 case DIF_OP_STGS: 10035 case DIF_OP_STLS: 10036 case DIF_OP_PUSHTR: 10037 case DIF_OP_PUSHTV: 10038 break; 10039 10040 case DIF_OP_LDGS: 10041 if (v >= DIF_VAR_OTHER_UBASE) 10042 break; 10043 10044 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10045 break; 10046 10047 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10048 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10049 v == DIF_VAR_EXECARGS || 10050 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10051 v == DIF_VAR_UID || v == DIF_VAR_GID) 10052 break; 10053 10054 err += efunc(pc, "illegal variable %u\n", v); 10055 break; 10056 10057 case DIF_OP_LDTA: 10058 case DIF_OP_LDTS: 10059 case DIF_OP_LDGAA: 10060 case DIF_OP_LDTAA: 10061 err += efunc(pc, "illegal dynamic variable load\n"); 10062 break; 10063 10064 case DIF_OP_STTS: 10065 case DIF_OP_STGAA: 10066 case DIF_OP_STTAA: 10067 err += efunc(pc, "illegal dynamic variable store\n"); 10068 break; 10069 10070 case DIF_OP_CALL: 10071 if (subr == DIF_SUBR_ALLOCA || 10072 subr == DIF_SUBR_BCOPY || 10073 subr == DIF_SUBR_COPYIN || 10074 subr == DIF_SUBR_COPYINTO || 10075 subr == DIF_SUBR_COPYINSTR || 10076 subr == DIF_SUBR_INDEX || 10077 subr == DIF_SUBR_INET_NTOA || 10078 subr == DIF_SUBR_INET_NTOA6 || 10079 subr == DIF_SUBR_INET_NTOP || 10080 subr == DIF_SUBR_JSON || 10081 subr == DIF_SUBR_LLTOSTR || 10082 subr == DIF_SUBR_STRTOLL || 10083 subr == DIF_SUBR_RINDEX || 10084 subr == DIF_SUBR_STRCHR || 10085 subr == DIF_SUBR_STRJOIN || 10086 subr == DIF_SUBR_STRRCHR || 10087 subr == DIF_SUBR_STRSTR || 10088 subr == DIF_SUBR_HTONS || 10089 subr == DIF_SUBR_HTONL || 10090 subr == DIF_SUBR_HTONLL || 10091 subr == DIF_SUBR_NTOHS || 10092 subr == DIF_SUBR_NTOHL || 10093 subr == DIF_SUBR_NTOHLL || 10094 subr == DIF_SUBR_MEMREF || 10095 #ifndef illumos 10096 subr == DIF_SUBR_MEMSTR || 10097 #endif 10098 subr == DIF_SUBR_TYPEREF) 10099 break; 10100 10101 err += efunc(pc, "invalid subr %u\n", subr); 10102 break; 10103 10104 default: 10105 err += efunc(pc, "invalid opcode %u\n", 10106 DIF_INSTR_OP(instr)); 10107 } 10108 } 10109 10110 return (err); 10111 } 10112 10113 /* 10114 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10115 * basis; 0 if not. 10116 */ 10117 static int 10118 dtrace_difo_cacheable(dtrace_difo_t *dp) 10119 { 10120 int i; 10121 10122 if (dp == NULL) 10123 return (0); 10124 10125 for (i = 0; i < dp->dtdo_varlen; i++) { 10126 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10127 10128 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10129 continue; 10130 10131 switch (v->dtdv_id) { 10132 case DIF_VAR_CURTHREAD: 10133 case DIF_VAR_PID: 10134 case DIF_VAR_TID: 10135 case DIF_VAR_EXECARGS: 10136 case DIF_VAR_EXECNAME: 10137 case DIF_VAR_ZONENAME: 10138 break; 10139 10140 default: 10141 return (0); 10142 } 10143 } 10144 10145 /* 10146 * This DIF object may be cacheable. Now we need to look for any 10147 * array loading instructions, any memory loading instructions, or 10148 * any stores to thread-local variables. 10149 */ 10150 for (i = 0; i < dp->dtdo_len; i++) { 10151 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10152 10153 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10154 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10155 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10156 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10157 return (0); 10158 } 10159 10160 return (1); 10161 } 10162 10163 static void 10164 dtrace_difo_hold(dtrace_difo_t *dp) 10165 { 10166 int i; 10167 10168 ASSERT(MUTEX_HELD(&dtrace_lock)); 10169 10170 dp->dtdo_refcnt++; 10171 ASSERT(dp->dtdo_refcnt != 0); 10172 10173 /* 10174 * We need to check this DIF object for references to the variable 10175 * DIF_VAR_VTIMESTAMP. 10176 */ 10177 for (i = 0; i < dp->dtdo_varlen; i++) { 10178 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10179 10180 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10181 continue; 10182 10183 if (dtrace_vtime_references++ == 0) 10184 dtrace_vtime_enable(); 10185 } 10186 } 10187 10188 /* 10189 * This routine calculates the dynamic variable chunksize for a given DIF 10190 * object. The calculation is not fool-proof, and can probably be tricked by 10191 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10192 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10193 * if a dynamic variable size exceeds the chunksize. 10194 */ 10195 static void 10196 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10197 { 10198 uint64_t sval = 0; 10199 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10200 const dif_instr_t *text = dp->dtdo_buf; 10201 uint_t pc, srd = 0; 10202 uint_t ttop = 0; 10203 size_t size, ksize; 10204 uint_t id, i; 10205 10206 for (pc = 0; pc < dp->dtdo_len; pc++) { 10207 dif_instr_t instr = text[pc]; 10208 uint_t op = DIF_INSTR_OP(instr); 10209 uint_t rd = DIF_INSTR_RD(instr); 10210 uint_t r1 = DIF_INSTR_R1(instr); 10211 uint_t nkeys = 0; 10212 uchar_t scope = 0; 10213 10214 dtrace_key_t *key = tupregs; 10215 10216 switch (op) { 10217 case DIF_OP_SETX: 10218 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10219 srd = rd; 10220 continue; 10221 10222 case DIF_OP_STTS: 10223 key = &tupregs[DIF_DTR_NREGS]; 10224 key[0].dttk_size = 0; 10225 key[1].dttk_size = 0; 10226 nkeys = 2; 10227 scope = DIFV_SCOPE_THREAD; 10228 break; 10229 10230 case DIF_OP_STGAA: 10231 case DIF_OP_STTAA: 10232 nkeys = ttop; 10233 10234 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10235 key[nkeys++].dttk_size = 0; 10236 10237 key[nkeys++].dttk_size = 0; 10238 10239 if (op == DIF_OP_STTAA) { 10240 scope = DIFV_SCOPE_THREAD; 10241 } else { 10242 scope = DIFV_SCOPE_GLOBAL; 10243 } 10244 10245 break; 10246 10247 case DIF_OP_PUSHTR: 10248 if (ttop == DIF_DTR_NREGS) 10249 return; 10250 10251 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10252 /* 10253 * If the register for the size of the "pushtr" 10254 * is %r0 (or the value is 0) and the type is 10255 * a string, we'll use the system-wide default 10256 * string size. 10257 */ 10258 tupregs[ttop++].dttk_size = 10259 dtrace_strsize_default; 10260 } else { 10261 if (srd == 0) 10262 return; 10263 10264 tupregs[ttop++].dttk_size = sval; 10265 } 10266 10267 break; 10268 10269 case DIF_OP_PUSHTV: 10270 if (ttop == DIF_DTR_NREGS) 10271 return; 10272 10273 tupregs[ttop++].dttk_size = 0; 10274 break; 10275 10276 case DIF_OP_FLUSHTS: 10277 ttop = 0; 10278 break; 10279 10280 case DIF_OP_POPTS: 10281 if (ttop != 0) 10282 ttop--; 10283 break; 10284 } 10285 10286 sval = 0; 10287 srd = 0; 10288 10289 if (nkeys == 0) 10290 continue; 10291 10292 /* 10293 * We have a dynamic variable allocation; calculate its size. 10294 */ 10295 for (ksize = 0, i = 0; i < nkeys; i++) 10296 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10297 10298 size = sizeof (dtrace_dynvar_t); 10299 size += sizeof (dtrace_key_t) * (nkeys - 1); 10300 size += ksize; 10301 10302 /* 10303 * Now we need to determine the size of the stored data. 10304 */ 10305 id = DIF_INSTR_VAR(instr); 10306 10307 for (i = 0; i < dp->dtdo_varlen; i++) { 10308 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10309 10310 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10311 size += v->dtdv_type.dtdt_size; 10312 break; 10313 } 10314 } 10315 10316 if (i == dp->dtdo_varlen) 10317 return; 10318 10319 /* 10320 * We have the size. If this is larger than the chunk size 10321 * for our dynamic variable state, reset the chunk size. 10322 */ 10323 size = P2ROUNDUP(size, sizeof (uint64_t)); 10324 10325 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10326 vstate->dtvs_dynvars.dtds_chunksize = size; 10327 } 10328 } 10329 10330 static void 10331 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10332 { 10333 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10334 uint_t id; 10335 10336 ASSERT(MUTEX_HELD(&dtrace_lock)); 10337 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10338 10339 for (i = 0; i < dp->dtdo_varlen; i++) { 10340 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10341 dtrace_statvar_t *svar, ***svarp = NULL; 10342 size_t dsize = 0; 10343 uint8_t scope = v->dtdv_scope; 10344 int *np = NULL; 10345 10346 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10347 continue; 10348 10349 id -= DIF_VAR_OTHER_UBASE; 10350 10351 switch (scope) { 10352 case DIFV_SCOPE_THREAD: 10353 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10354 dtrace_difv_t *tlocals; 10355 10356 if ((ntlocals = (otlocals << 1)) == 0) 10357 ntlocals = 1; 10358 10359 osz = otlocals * sizeof (dtrace_difv_t); 10360 nsz = ntlocals * sizeof (dtrace_difv_t); 10361 10362 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10363 10364 if (osz != 0) { 10365 bcopy(vstate->dtvs_tlocals, 10366 tlocals, osz); 10367 kmem_free(vstate->dtvs_tlocals, osz); 10368 } 10369 10370 vstate->dtvs_tlocals = tlocals; 10371 vstate->dtvs_ntlocals = ntlocals; 10372 } 10373 10374 vstate->dtvs_tlocals[id] = *v; 10375 continue; 10376 10377 case DIFV_SCOPE_LOCAL: 10378 np = &vstate->dtvs_nlocals; 10379 svarp = &vstate->dtvs_locals; 10380 10381 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10382 dsize = NCPU * (v->dtdv_type.dtdt_size + 10383 sizeof (uint64_t)); 10384 else 10385 dsize = NCPU * sizeof (uint64_t); 10386 10387 break; 10388 10389 case DIFV_SCOPE_GLOBAL: 10390 np = &vstate->dtvs_nglobals; 10391 svarp = &vstate->dtvs_globals; 10392 10393 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10394 dsize = v->dtdv_type.dtdt_size + 10395 sizeof (uint64_t); 10396 10397 break; 10398 10399 default: 10400 ASSERT(0); 10401 } 10402 10403 while (id >= (oldsvars = *np)) { 10404 dtrace_statvar_t **statics; 10405 int newsvars, oldsize, newsize; 10406 10407 if ((newsvars = (oldsvars << 1)) == 0) 10408 newsvars = 1; 10409 10410 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10411 newsize = newsvars * sizeof (dtrace_statvar_t *); 10412 10413 statics = kmem_zalloc(newsize, KM_SLEEP); 10414 10415 if (oldsize != 0) { 10416 bcopy(*svarp, statics, oldsize); 10417 kmem_free(*svarp, oldsize); 10418 } 10419 10420 *svarp = statics; 10421 *np = newsvars; 10422 } 10423 10424 if ((svar = (*svarp)[id]) == NULL) { 10425 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10426 svar->dtsv_var = *v; 10427 10428 if ((svar->dtsv_size = dsize) != 0) { 10429 svar->dtsv_data = (uint64_t)(uintptr_t) 10430 kmem_zalloc(dsize, KM_SLEEP); 10431 } 10432 10433 (*svarp)[id] = svar; 10434 } 10435 10436 svar->dtsv_refcnt++; 10437 } 10438 10439 dtrace_difo_chunksize(dp, vstate); 10440 dtrace_difo_hold(dp); 10441 } 10442 10443 static dtrace_difo_t * 10444 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10445 { 10446 dtrace_difo_t *new; 10447 size_t sz; 10448 10449 ASSERT(dp->dtdo_buf != NULL); 10450 ASSERT(dp->dtdo_refcnt != 0); 10451 10452 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10453 10454 ASSERT(dp->dtdo_buf != NULL); 10455 sz = dp->dtdo_len * sizeof (dif_instr_t); 10456 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10457 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10458 new->dtdo_len = dp->dtdo_len; 10459 10460 if (dp->dtdo_strtab != NULL) { 10461 ASSERT(dp->dtdo_strlen != 0); 10462 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10463 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10464 new->dtdo_strlen = dp->dtdo_strlen; 10465 } 10466 10467 if (dp->dtdo_inttab != NULL) { 10468 ASSERT(dp->dtdo_intlen != 0); 10469 sz = dp->dtdo_intlen * sizeof (uint64_t); 10470 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10471 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10472 new->dtdo_intlen = dp->dtdo_intlen; 10473 } 10474 10475 if (dp->dtdo_vartab != NULL) { 10476 ASSERT(dp->dtdo_varlen != 0); 10477 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10478 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10479 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10480 new->dtdo_varlen = dp->dtdo_varlen; 10481 } 10482 10483 dtrace_difo_init(new, vstate); 10484 return (new); 10485 } 10486 10487 static void 10488 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10489 { 10490 int i; 10491 10492 ASSERT(dp->dtdo_refcnt == 0); 10493 10494 for (i = 0; i < dp->dtdo_varlen; i++) { 10495 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10496 dtrace_statvar_t *svar, **svarp = NULL; 10497 uint_t id; 10498 uint8_t scope = v->dtdv_scope; 10499 int *np = NULL; 10500 10501 switch (scope) { 10502 case DIFV_SCOPE_THREAD: 10503 continue; 10504 10505 case DIFV_SCOPE_LOCAL: 10506 np = &vstate->dtvs_nlocals; 10507 svarp = vstate->dtvs_locals; 10508 break; 10509 10510 case DIFV_SCOPE_GLOBAL: 10511 np = &vstate->dtvs_nglobals; 10512 svarp = vstate->dtvs_globals; 10513 break; 10514 10515 default: 10516 ASSERT(0); 10517 } 10518 10519 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10520 continue; 10521 10522 id -= DIF_VAR_OTHER_UBASE; 10523 ASSERT(id < *np); 10524 10525 svar = svarp[id]; 10526 ASSERT(svar != NULL); 10527 ASSERT(svar->dtsv_refcnt > 0); 10528 10529 if (--svar->dtsv_refcnt > 0) 10530 continue; 10531 10532 if (svar->dtsv_size != 0) { 10533 ASSERT(svar->dtsv_data != 0); 10534 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10535 svar->dtsv_size); 10536 } 10537 10538 kmem_free(svar, sizeof (dtrace_statvar_t)); 10539 svarp[id] = NULL; 10540 } 10541 10542 if (dp->dtdo_buf != NULL) 10543 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10544 if (dp->dtdo_inttab != NULL) 10545 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10546 if (dp->dtdo_strtab != NULL) 10547 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10548 if (dp->dtdo_vartab != NULL) 10549 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10550 10551 kmem_free(dp, sizeof (dtrace_difo_t)); 10552 } 10553 10554 static void 10555 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10556 { 10557 int i; 10558 10559 ASSERT(MUTEX_HELD(&dtrace_lock)); 10560 ASSERT(dp->dtdo_refcnt != 0); 10561 10562 for (i = 0; i < dp->dtdo_varlen; i++) { 10563 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10564 10565 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10566 continue; 10567 10568 ASSERT(dtrace_vtime_references > 0); 10569 if (--dtrace_vtime_references == 0) 10570 dtrace_vtime_disable(); 10571 } 10572 10573 if (--dp->dtdo_refcnt == 0) 10574 dtrace_difo_destroy(dp, vstate); 10575 } 10576 10577 /* 10578 * DTrace Format Functions 10579 */ 10580 static uint16_t 10581 dtrace_format_add(dtrace_state_t *state, char *str) 10582 { 10583 char *fmt, **new; 10584 uint16_t ndx, len = strlen(str) + 1; 10585 10586 fmt = kmem_zalloc(len, KM_SLEEP); 10587 bcopy(str, fmt, len); 10588 10589 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10590 if (state->dts_formats[ndx] == NULL) { 10591 state->dts_formats[ndx] = fmt; 10592 return (ndx + 1); 10593 } 10594 } 10595 10596 if (state->dts_nformats == USHRT_MAX) { 10597 /* 10598 * This is only likely if a denial-of-service attack is being 10599 * attempted. As such, it's okay to fail silently here. 10600 */ 10601 kmem_free(fmt, len); 10602 return (0); 10603 } 10604 10605 /* 10606 * For simplicity, we always resize the formats array to be exactly the 10607 * number of formats. 10608 */ 10609 ndx = state->dts_nformats++; 10610 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10611 10612 if (state->dts_formats != NULL) { 10613 ASSERT(ndx != 0); 10614 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10615 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10616 } 10617 10618 state->dts_formats = new; 10619 state->dts_formats[ndx] = fmt; 10620 10621 return (ndx + 1); 10622 } 10623 10624 static void 10625 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10626 { 10627 char *fmt; 10628 10629 ASSERT(state->dts_formats != NULL); 10630 ASSERT(format <= state->dts_nformats); 10631 ASSERT(state->dts_formats[format - 1] != NULL); 10632 10633 fmt = state->dts_formats[format - 1]; 10634 kmem_free(fmt, strlen(fmt) + 1); 10635 state->dts_formats[format - 1] = NULL; 10636 } 10637 10638 static void 10639 dtrace_format_destroy(dtrace_state_t *state) 10640 { 10641 int i; 10642 10643 if (state->dts_nformats == 0) { 10644 ASSERT(state->dts_formats == NULL); 10645 return; 10646 } 10647 10648 ASSERT(state->dts_formats != NULL); 10649 10650 for (i = 0; i < state->dts_nformats; i++) { 10651 char *fmt = state->dts_formats[i]; 10652 10653 if (fmt == NULL) 10654 continue; 10655 10656 kmem_free(fmt, strlen(fmt) + 1); 10657 } 10658 10659 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10660 state->dts_nformats = 0; 10661 state->dts_formats = NULL; 10662 } 10663 10664 /* 10665 * DTrace Predicate Functions 10666 */ 10667 static dtrace_predicate_t * 10668 dtrace_predicate_create(dtrace_difo_t *dp) 10669 { 10670 dtrace_predicate_t *pred; 10671 10672 ASSERT(MUTEX_HELD(&dtrace_lock)); 10673 ASSERT(dp->dtdo_refcnt != 0); 10674 10675 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10676 pred->dtp_difo = dp; 10677 pred->dtp_refcnt = 1; 10678 10679 if (!dtrace_difo_cacheable(dp)) 10680 return (pred); 10681 10682 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10683 /* 10684 * This is only theoretically possible -- we have had 2^32 10685 * cacheable predicates on this machine. We cannot allow any 10686 * more predicates to become cacheable: as unlikely as it is, 10687 * there may be a thread caching a (now stale) predicate cache 10688 * ID. (N.B.: the temptation is being successfully resisted to 10689 * have this cmn_err() "Holy shit -- we executed this code!") 10690 */ 10691 return (pred); 10692 } 10693 10694 pred->dtp_cacheid = dtrace_predcache_id++; 10695 10696 return (pred); 10697 } 10698 10699 static void 10700 dtrace_predicate_hold(dtrace_predicate_t *pred) 10701 { 10702 ASSERT(MUTEX_HELD(&dtrace_lock)); 10703 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10704 ASSERT(pred->dtp_refcnt > 0); 10705 10706 pred->dtp_refcnt++; 10707 } 10708 10709 static void 10710 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10711 { 10712 dtrace_difo_t *dp = pred->dtp_difo; 10713 10714 ASSERT(MUTEX_HELD(&dtrace_lock)); 10715 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10716 ASSERT(pred->dtp_refcnt > 0); 10717 10718 if (--pred->dtp_refcnt == 0) { 10719 dtrace_difo_release(pred->dtp_difo, vstate); 10720 kmem_free(pred, sizeof (dtrace_predicate_t)); 10721 } 10722 } 10723 10724 /* 10725 * DTrace Action Description Functions 10726 */ 10727 static dtrace_actdesc_t * 10728 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10729 uint64_t uarg, uint64_t arg) 10730 { 10731 dtrace_actdesc_t *act; 10732 10733 #ifdef illumos 10734 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10735 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10736 #endif 10737 10738 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10739 act->dtad_kind = kind; 10740 act->dtad_ntuple = ntuple; 10741 act->dtad_uarg = uarg; 10742 act->dtad_arg = arg; 10743 act->dtad_refcnt = 1; 10744 10745 return (act); 10746 } 10747 10748 static void 10749 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10750 { 10751 ASSERT(act->dtad_refcnt >= 1); 10752 act->dtad_refcnt++; 10753 } 10754 10755 static void 10756 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10757 { 10758 dtrace_actkind_t kind = act->dtad_kind; 10759 dtrace_difo_t *dp; 10760 10761 ASSERT(act->dtad_refcnt >= 1); 10762 10763 if (--act->dtad_refcnt != 0) 10764 return; 10765 10766 if ((dp = act->dtad_difo) != NULL) 10767 dtrace_difo_release(dp, vstate); 10768 10769 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10770 char *str = (char *)(uintptr_t)act->dtad_arg; 10771 10772 #ifdef illumos 10773 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10774 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10775 #endif 10776 10777 if (str != NULL) 10778 kmem_free(str, strlen(str) + 1); 10779 } 10780 10781 kmem_free(act, sizeof (dtrace_actdesc_t)); 10782 } 10783 10784 /* 10785 * DTrace ECB Functions 10786 */ 10787 static dtrace_ecb_t * 10788 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10789 { 10790 dtrace_ecb_t *ecb; 10791 dtrace_epid_t epid; 10792 10793 ASSERT(MUTEX_HELD(&dtrace_lock)); 10794 10795 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10796 ecb->dte_predicate = NULL; 10797 ecb->dte_probe = probe; 10798 10799 /* 10800 * The default size is the size of the default action: recording 10801 * the header. 10802 */ 10803 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10804 ecb->dte_alignment = sizeof (dtrace_epid_t); 10805 10806 epid = state->dts_epid++; 10807 10808 if (epid - 1 >= state->dts_necbs) { 10809 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10810 int necbs = state->dts_necbs << 1; 10811 10812 ASSERT(epid == state->dts_necbs + 1); 10813 10814 if (necbs == 0) { 10815 ASSERT(oecbs == NULL); 10816 necbs = 1; 10817 } 10818 10819 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10820 10821 if (oecbs != NULL) 10822 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10823 10824 dtrace_membar_producer(); 10825 state->dts_ecbs = ecbs; 10826 10827 if (oecbs != NULL) { 10828 /* 10829 * If this state is active, we must dtrace_sync() 10830 * before we can free the old dts_ecbs array: we're 10831 * coming in hot, and there may be active ring 10832 * buffer processing (which indexes into the dts_ecbs 10833 * array) on another CPU. 10834 */ 10835 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10836 dtrace_sync(); 10837 10838 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10839 } 10840 10841 dtrace_membar_producer(); 10842 state->dts_necbs = necbs; 10843 } 10844 10845 ecb->dte_state = state; 10846 10847 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10848 dtrace_membar_producer(); 10849 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10850 10851 return (ecb); 10852 } 10853 10854 static void 10855 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10856 { 10857 dtrace_probe_t *probe = ecb->dte_probe; 10858 10859 ASSERT(MUTEX_HELD(&cpu_lock)); 10860 ASSERT(MUTEX_HELD(&dtrace_lock)); 10861 ASSERT(ecb->dte_next == NULL); 10862 10863 if (probe == NULL) { 10864 /* 10865 * This is the NULL probe -- there's nothing to do. 10866 */ 10867 return; 10868 } 10869 10870 if (probe->dtpr_ecb == NULL) { 10871 dtrace_provider_t *prov = probe->dtpr_provider; 10872 10873 /* 10874 * We're the first ECB on this probe. 10875 */ 10876 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10877 10878 if (ecb->dte_predicate != NULL) 10879 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10880 10881 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10882 probe->dtpr_id, probe->dtpr_arg); 10883 } else { 10884 /* 10885 * This probe is already active. Swing the last pointer to 10886 * point to the new ECB, and issue a dtrace_sync() to assure 10887 * that all CPUs have seen the change. 10888 */ 10889 ASSERT(probe->dtpr_ecb_last != NULL); 10890 probe->dtpr_ecb_last->dte_next = ecb; 10891 probe->dtpr_ecb_last = ecb; 10892 probe->dtpr_predcache = 0; 10893 10894 dtrace_sync(); 10895 } 10896 } 10897 10898 static void 10899 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10900 { 10901 dtrace_action_t *act; 10902 uint32_t curneeded = UINT32_MAX; 10903 uint32_t aggbase = UINT32_MAX; 10904 10905 /* 10906 * If we record anything, we always record the dtrace_rechdr_t. (And 10907 * we always record it first.) 10908 */ 10909 ecb->dte_size = sizeof (dtrace_rechdr_t); 10910 ecb->dte_alignment = sizeof (dtrace_epid_t); 10911 10912 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10913 dtrace_recdesc_t *rec = &act->dta_rec; 10914 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10915 10916 ecb->dte_alignment = MAX(ecb->dte_alignment, 10917 rec->dtrd_alignment); 10918 10919 if (DTRACEACT_ISAGG(act->dta_kind)) { 10920 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10921 10922 ASSERT(rec->dtrd_size != 0); 10923 ASSERT(agg->dtag_first != NULL); 10924 ASSERT(act->dta_prev->dta_intuple); 10925 ASSERT(aggbase != UINT32_MAX); 10926 ASSERT(curneeded != UINT32_MAX); 10927 10928 agg->dtag_base = aggbase; 10929 10930 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10931 rec->dtrd_offset = curneeded; 10932 curneeded += rec->dtrd_size; 10933 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10934 10935 aggbase = UINT32_MAX; 10936 curneeded = UINT32_MAX; 10937 } else if (act->dta_intuple) { 10938 if (curneeded == UINT32_MAX) { 10939 /* 10940 * This is the first record in a tuple. Align 10941 * curneeded to be at offset 4 in an 8-byte 10942 * aligned block. 10943 */ 10944 ASSERT(act->dta_prev == NULL || 10945 !act->dta_prev->dta_intuple); 10946 ASSERT3U(aggbase, ==, UINT32_MAX); 10947 curneeded = P2PHASEUP(ecb->dte_size, 10948 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10949 10950 aggbase = curneeded - sizeof (dtrace_aggid_t); 10951 ASSERT(IS_P2ALIGNED(aggbase, 10952 sizeof (uint64_t))); 10953 } 10954 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10955 rec->dtrd_offset = curneeded; 10956 curneeded += rec->dtrd_size; 10957 } else { 10958 /* tuples must be followed by an aggregation */ 10959 ASSERT(act->dta_prev == NULL || 10960 !act->dta_prev->dta_intuple); 10961 10962 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10963 rec->dtrd_alignment); 10964 rec->dtrd_offset = ecb->dte_size; 10965 ecb->dte_size += rec->dtrd_size; 10966 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10967 } 10968 } 10969 10970 if ((act = ecb->dte_action) != NULL && 10971 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10972 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10973 /* 10974 * If the size is still sizeof (dtrace_rechdr_t), then all 10975 * actions store no data; set the size to 0. 10976 */ 10977 ecb->dte_size = 0; 10978 } 10979 10980 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10981 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10982 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10983 ecb->dte_needed); 10984 } 10985 10986 static dtrace_action_t * 10987 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10988 { 10989 dtrace_aggregation_t *agg; 10990 size_t size = sizeof (uint64_t); 10991 int ntuple = desc->dtad_ntuple; 10992 dtrace_action_t *act; 10993 dtrace_recdesc_t *frec; 10994 dtrace_aggid_t aggid; 10995 dtrace_state_t *state = ecb->dte_state; 10996 10997 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10998 agg->dtag_ecb = ecb; 10999 11000 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11001 11002 switch (desc->dtad_kind) { 11003 case DTRACEAGG_MIN: 11004 agg->dtag_initial = INT64_MAX; 11005 agg->dtag_aggregate = dtrace_aggregate_min; 11006 break; 11007 11008 case DTRACEAGG_MAX: 11009 agg->dtag_initial = INT64_MIN; 11010 agg->dtag_aggregate = dtrace_aggregate_max; 11011 break; 11012 11013 case DTRACEAGG_COUNT: 11014 agg->dtag_aggregate = dtrace_aggregate_count; 11015 break; 11016 11017 case DTRACEAGG_QUANTIZE: 11018 agg->dtag_aggregate = dtrace_aggregate_quantize; 11019 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11020 sizeof (uint64_t); 11021 break; 11022 11023 case DTRACEAGG_LQUANTIZE: { 11024 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11025 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11026 11027 agg->dtag_initial = desc->dtad_arg; 11028 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11029 11030 if (step == 0 || levels == 0) 11031 goto err; 11032 11033 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11034 break; 11035 } 11036 11037 case DTRACEAGG_LLQUANTIZE: { 11038 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11039 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11040 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11041 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11042 int64_t v; 11043 11044 agg->dtag_initial = desc->dtad_arg; 11045 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11046 11047 if (factor < 2 || low >= high || nsteps < factor) 11048 goto err; 11049 11050 /* 11051 * Now check that the number of steps evenly divides a power 11052 * of the factor. (This assures both integer bucket size and 11053 * linearity within each magnitude.) 11054 */ 11055 for (v = factor; v < nsteps; v *= factor) 11056 continue; 11057 11058 if ((v % nsteps) || (nsteps % factor)) 11059 goto err; 11060 11061 size = (dtrace_aggregate_llquantize_bucket(factor, 11062 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11063 break; 11064 } 11065 11066 case DTRACEAGG_AVG: 11067 agg->dtag_aggregate = dtrace_aggregate_avg; 11068 size = sizeof (uint64_t) * 2; 11069 break; 11070 11071 case DTRACEAGG_STDDEV: 11072 agg->dtag_aggregate = dtrace_aggregate_stddev; 11073 size = sizeof (uint64_t) * 4; 11074 break; 11075 11076 case DTRACEAGG_SUM: 11077 agg->dtag_aggregate = dtrace_aggregate_sum; 11078 break; 11079 11080 default: 11081 goto err; 11082 } 11083 11084 agg->dtag_action.dta_rec.dtrd_size = size; 11085 11086 if (ntuple == 0) 11087 goto err; 11088 11089 /* 11090 * We must make sure that we have enough actions for the n-tuple. 11091 */ 11092 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11093 if (DTRACEACT_ISAGG(act->dta_kind)) 11094 break; 11095 11096 if (--ntuple == 0) { 11097 /* 11098 * This is the action with which our n-tuple begins. 11099 */ 11100 agg->dtag_first = act; 11101 goto success; 11102 } 11103 } 11104 11105 /* 11106 * This n-tuple is short by ntuple elements. Return failure. 11107 */ 11108 ASSERT(ntuple != 0); 11109 err: 11110 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11111 return (NULL); 11112 11113 success: 11114 /* 11115 * If the last action in the tuple has a size of zero, it's actually 11116 * an expression argument for the aggregating action. 11117 */ 11118 ASSERT(ecb->dte_action_last != NULL); 11119 act = ecb->dte_action_last; 11120 11121 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11122 ASSERT(act->dta_difo != NULL); 11123 11124 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11125 agg->dtag_hasarg = 1; 11126 } 11127 11128 /* 11129 * We need to allocate an id for this aggregation. 11130 */ 11131 #ifdef illumos 11132 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11133 VM_BESTFIT | VM_SLEEP); 11134 #else 11135 aggid = alloc_unr(state->dts_aggid_arena); 11136 #endif 11137 11138 if (aggid - 1 >= state->dts_naggregations) { 11139 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11140 dtrace_aggregation_t **aggs; 11141 int naggs = state->dts_naggregations << 1; 11142 int onaggs = state->dts_naggregations; 11143 11144 ASSERT(aggid == state->dts_naggregations + 1); 11145 11146 if (naggs == 0) { 11147 ASSERT(oaggs == NULL); 11148 naggs = 1; 11149 } 11150 11151 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11152 11153 if (oaggs != NULL) { 11154 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11155 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11156 } 11157 11158 state->dts_aggregations = aggs; 11159 state->dts_naggregations = naggs; 11160 } 11161 11162 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11163 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11164 11165 frec = &agg->dtag_first->dta_rec; 11166 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11167 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11168 11169 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11170 ASSERT(!act->dta_intuple); 11171 act->dta_intuple = 1; 11172 } 11173 11174 return (&agg->dtag_action); 11175 } 11176 11177 static void 11178 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11179 { 11180 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11181 dtrace_state_t *state = ecb->dte_state; 11182 dtrace_aggid_t aggid = agg->dtag_id; 11183 11184 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11185 #ifdef illumos 11186 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11187 #else 11188 free_unr(state->dts_aggid_arena, aggid); 11189 #endif 11190 11191 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11192 state->dts_aggregations[aggid - 1] = NULL; 11193 11194 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11195 } 11196 11197 static int 11198 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11199 { 11200 dtrace_action_t *action, *last; 11201 dtrace_difo_t *dp = desc->dtad_difo; 11202 uint32_t size = 0, align = sizeof (uint8_t), mask; 11203 uint16_t format = 0; 11204 dtrace_recdesc_t *rec; 11205 dtrace_state_t *state = ecb->dte_state; 11206 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11207 uint64_t arg = desc->dtad_arg; 11208 11209 ASSERT(MUTEX_HELD(&dtrace_lock)); 11210 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11211 11212 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11213 /* 11214 * If this is an aggregating action, there must be neither 11215 * a speculate nor a commit on the action chain. 11216 */ 11217 dtrace_action_t *act; 11218 11219 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11220 if (act->dta_kind == DTRACEACT_COMMIT) 11221 return (EINVAL); 11222 11223 if (act->dta_kind == DTRACEACT_SPECULATE) 11224 return (EINVAL); 11225 } 11226 11227 action = dtrace_ecb_aggregation_create(ecb, desc); 11228 11229 if (action == NULL) 11230 return (EINVAL); 11231 } else { 11232 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11233 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11234 dp != NULL && dp->dtdo_destructive)) { 11235 state->dts_destructive = 1; 11236 } 11237 11238 switch (desc->dtad_kind) { 11239 case DTRACEACT_PRINTF: 11240 case DTRACEACT_PRINTA: 11241 case DTRACEACT_SYSTEM: 11242 case DTRACEACT_FREOPEN: 11243 case DTRACEACT_DIFEXPR: 11244 /* 11245 * We know that our arg is a string -- turn it into a 11246 * format. 11247 */ 11248 if (arg == 0) { 11249 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11250 desc->dtad_kind == DTRACEACT_DIFEXPR); 11251 format = 0; 11252 } else { 11253 ASSERT(arg != 0); 11254 #ifdef illumos 11255 ASSERT(arg > KERNELBASE); 11256 #endif 11257 format = dtrace_format_add(state, 11258 (char *)(uintptr_t)arg); 11259 } 11260 11261 /*FALLTHROUGH*/ 11262 case DTRACEACT_LIBACT: 11263 case DTRACEACT_TRACEMEM: 11264 case DTRACEACT_TRACEMEM_DYNSIZE: 11265 if (dp == NULL) 11266 return (EINVAL); 11267 11268 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11269 break; 11270 11271 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11272 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11273 return (EINVAL); 11274 11275 size = opt[DTRACEOPT_STRSIZE]; 11276 } 11277 11278 break; 11279 11280 case DTRACEACT_STACK: 11281 if ((nframes = arg) == 0) { 11282 nframes = opt[DTRACEOPT_STACKFRAMES]; 11283 ASSERT(nframes > 0); 11284 arg = nframes; 11285 } 11286 11287 size = nframes * sizeof (pc_t); 11288 break; 11289 11290 case DTRACEACT_JSTACK: 11291 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11292 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11293 11294 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11295 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11296 11297 arg = DTRACE_USTACK_ARG(nframes, strsize); 11298 11299 /*FALLTHROUGH*/ 11300 case DTRACEACT_USTACK: 11301 if (desc->dtad_kind != DTRACEACT_JSTACK && 11302 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11303 strsize = DTRACE_USTACK_STRSIZE(arg); 11304 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11305 ASSERT(nframes > 0); 11306 arg = DTRACE_USTACK_ARG(nframes, strsize); 11307 } 11308 11309 /* 11310 * Save a slot for the pid. 11311 */ 11312 size = (nframes + 1) * sizeof (uint64_t); 11313 size += DTRACE_USTACK_STRSIZE(arg); 11314 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11315 11316 break; 11317 11318 case DTRACEACT_SYM: 11319 case DTRACEACT_MOD: 11320 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11321 sizeof (uint64_t)) || 11322 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11323 return (EINVAL); 11324 break; 11325 11326 case DTRACEACT_USYM: 11327 case DTRACEACT_UMOD: 11328 case DTRACEACT_UADDR: 11329 if (dp == NULL || 11330 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11331 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11332 return (EINVAL); 11333 11334 /* 11335 * We have a slot for the pid, plus a slot for the 11336 * argument. To keep things simple (aligned with 11337 * bitness-neutral sizing), we store each as a 64-bit 11338 * quantity. 11339 */ 11340 size = 2 * sizeof (uint64_t); 11341 break; 11342 11343 case DTRACEACT_STOP: 11344 case DTRACEACT_BREAKPOINT: 11345 case DTRACEACT_PANIC: 11346 break; 11347 11348 case DTRACEACT_CHILL: 11349 case DTRACEACT_DISCARD: 11350 case DTRACEACT_RAISE: 11351 if (dp == NULL) 11352 return (EINVAL); 11353 break; 11354 11355 case DTRACEACT_EXIT: 11356 if (dp == NULL || 11357 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11358 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11359 return (EINVAL); 11360 break; 11361 11362 case DTRACEACT_SPECULATE: 11363 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11364 return (EINVAL); 11365 11366 if (dp == NULL) 11367 return (EINVAL); 11368 11369 state->dts_speculates = 1; 11370 break; 11371 11372 case DTRACEACT_PRINTM: 11373 size = dp->dtdo_rtype.dtdt_size; 11374 break; 11375 11376 case DTRACEACT_PRINTT: 11377 size = dp->dtdo_rtype.dtdt_size; 11378 break; 11379 11380 case DTRACEACT_COMMIT: { 11381 dtrace_action_t *act = ecb->dte_action; 11382 11383 for (; act != NULL; act = act->dta_next) { 11384 if (act->dta_kind == DTRACEACT_COMMIT) 11385 return (EINVAL); 11386 } 11387 11388 if (dp == NULL) 11389 return (EINVAL); 11390 break; 11391 } 11392 11393 default: 11394 return (EINVAL); 11395 } 11396 11397 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11398 /* 11399 * If this is a data-storing action or a speculate, 11400 * we must be sure that there isn't a commit on the 11401 * action chain. 11402 */ 11403 dtrace_action_t *act = ecb->dte_action; 11404 11405 for (; act != NULL; act = act->dta_next) { 11406 if (act->dta_kind == DTRACEACT_COMMIT) 11407 return (EINVAL); 11408 } 11409 } 11410 11411 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11412 action->dta_rec.dtrd_size = size; 11413 } 11414 11415 action->dta_refcnt = 1; 11416 rec = &action->dta_rec; 11417 size = rec->dtrd_size; 11418 11419 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11420 if (!(size & mask)) { 11421 align = mask + 1; 11422 break; 11423 } 11424 } 11425 11426 action->dta_kind = desc->dtad_kind; 11427 11428 if ((action->dta_difo = dp) != NULL) 11429 dtrace_difo_hold(dp); 11430 11431 rec->dtrd_action = action->dta_kind; 11432 rec->dtrd_arg = arg; 11433 rec->dtrd_uarg = desc->dtad_uarg; 11434 rec->dtrd_alignment = (uint16_t)align; 11435 rec->dtrd_format = format; 11436 11437 if ((last = ecb->dte_action_last) != NULL) { 11438 ASSERT(ecb->dte_action != NULL); 11439 action->dta_prev = last; 11440 last->dta_next = action; 11441 } else { 11442 ASSERT(ecb->dte_action == NULL); 11443 ecb->dte_action = action; 11444 } 11445 11446 ecb->dte_action_last = action; 11447 11448 return (0); 11449 } 11450 11451 static void 11452 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11453 { 11454 dtrace_action_t *act = ecb->dte_action, *next; 11455 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11456 dtrace_difo_t *dp; 11457 uint16_t format; 11458 11459 if (act != NULL && act->dta_refcnt > 1) { 11460 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11461 act->dta_refcnt--; 11462 } else { 11463 for (; act != NULL; act = next) { 11464 next = act->dta_next; 11465 ASSERT(next != NULL || act == ecb->dte_action_last); 11466 ASSERT(act->dta_refcnt == 1); 11467 11468 if ((format = act->dta_rec.dtrd_format) != 0) 11469 dtrace_format_remove(ecb->dte_state, format); 11470 11471 if ((dp = act->dta_difo) != NULL) 11472 dtrace_difo_release(dp, vstate); 11473 11474 if (DTRACEACT_ISAGG(act->dta_kind)) { 11475 dtrace_ecb_aggregation_destroy(ecb, act); 11476 } else { 11477 kmem_free(act, sizeof (dtrace_action_t)); 11478 } 11479 } 11480 } 11481 11482 ecb->dte_action = NULL; 11483 ecb->dte_action_last = NULL; 11484 ecb->dte_size = 0; 11485 } 11486 11487 static void 11488 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11489 { 11490 /* 11491 * We disable the ECB by removing it from its probe. 11492 */ 11493 dtrace_ecb_t *pecb, *prev = NULL; 11494 dtrace_probe_t *probe = ecb->dte_probe; 11495 11496 ASSERT(MUTEX_HELD(&dtrace_lock)); 11497 11498 if (probe == NULL) { 11499 /* 11500 * This is the NULL probe; there is nothing to disable. 11501 */ 11502 return; 11503 } 11504 11505 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11506 if (pecb == ecb) 11507 break; 11508 prev = pecb; 11509 } 11510 11511 ASSERT(pecb != NULL); 11512 11513 if (prev == NULL) { 11514 probe->dtpr_ecb = ecb->dte_next; 11515 } else { 11516 prev->dte_next = ecb->dte_next; 11517 } 11518 11519 if (ecb == probe->dtpr_ecb_last) { 11520 ASSERT(ecb->dte_next == NULL); 11521 probe->dtpr_ecb_last = prev; 11522 } 11523 11524 /* 11525 * The ECB has been disconnected from the probe; now sync to assure 11526 * that all CPUs have seen the change before returning. 11527 */ 11528 dtrace_sync(); 11529 11530 if (probe->dtpr_ecb == NULL) { 11531 /* 11532 * That was the last ECB on the probe; clear the predicate 11533 * cache ID for the probe, disable it and sync one more time 11534 * to assure that we'll never hit it again. 11535 */ 11536 dtrace_provider_t *prov = probe->dtpr_provider; 11537 11538 ASSERT(ecb->dte_next == NULL); 11539 ASSERT(probe->dtpr_ecb_last == NULL); 11540 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11541 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11542 probe->dtpr_id, probe->dtpr_arg); 11543 dtrace_sync(); 11544 } else { 11545 /* 11546 * There is at least one ECB remaining on the probe. If there 11547 * is _exactly_ one, set the probe's predicate cache ID to be 11548 * the predicate cache ID of the remaining ECB. 11549 */ 11550 ASSERT(probe->dtpr_ecb_last != NULL); 11551 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11552 11553 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11554 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11555 11556 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11557 11558 if (p != NULL) 11559 probe->dtpr_predcache = p->dtp_cacheid; 11560 } 11561 11562 ecb->dte_next = NULL; 11563 } 11564 } 11565 11566 static void 11567 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11568 { 11569 dtrace_state_t *state = ecb->dte_state; 11570 dtrace_vstate_t *vstate = &state->dts_vstate; 11571 dtrace_predicate_t *pred; 11572 dtrace_epid_t epid = ecb->dte_epid; 11573 11574 ASSERT(MUTEX_HELD(&dtrace_lock)); 11575 ASSERT(ecb->dte_next == NULL); 11576 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11577 11578 if ((pred = ecb->dte_predicate) != NULL) 11579 dtrace_predicate_release(pred, vstate); 11580 11581 dtrace_ecb_action_remove(ecb); 11582 11583 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11584 state->dts_ecbs[epid - 1] = NULL; 11585 11586 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11587 } 11588 11589 static dtrace_ecb_t * 11590 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11591 dtrace_enabling_t *enab) 11592 { 11593 dtrace_ecb_t *ecb; 11594 dtrace_predicate_t *pred; 11595 dtrace_actdesc_t *act; 11596 dtrace_provider_t *prov; 11597 dtrace_ecbdesc_t *desc = enab->dten_current; 11598 11599 ASSERT(MUTEX_HELD(&dtrace_lock)); 11600 ASSERT(state != NULL); 11601 11602 ecb = dtrace_ecb_add(state, probe); 11603 ecb->dte_uarg = desc->dted_uarg; 11604 11605 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11606 dtrace_predicate_hold(pred); 11607 ecb->dte_predicate = pred; 11608 } 11609 11610 if (probe != NULL) { 11611 /* 11612 * If the provider shows more leg than the consumer is old 11613 * enough to see, we need to enable the appropriate implicit 11614 * predicate bits to prevent the ecb from activating at 11615 * revealing times. 11616 * 11617 * Providers specifying DTRACE_PRIV_USER at register time 11618 * are stating that they need the /proc-style privilege 11619 * model to be enforced, and this is what DTRACE_COND_OWNER 11620 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11621 */ 11622 prov = probe->dtpr_provider; 11623 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11624 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11625 ecb->dte_cond |= DTRACE_COND_OWNER; 11626 11627 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11628 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11629 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11630 11631 /* 11632 * If the provider shows us kernel innards and the user 11633 * is lacking sufficient privilege, enable the 11634 * DTRACE_COND_USERMODE implicit predicate. 11635 */ 11636 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11637 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11638 ecb->dte_cond |= DTRACE_COND_USERMODE; 11639 } 11640 11641 if (dtrace_ecb_create_cache != NULL) { 11642 /* 11643 * If we have a cached ecb, we'll use its action list instead 11644 * of creating our own (saving both time and space). 11645 */ 11646 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11647 dtrace_action_t *act = cached->dte_action; 11648 11649 if (act != NULL) { 11650 ASSERT(act->dta_refcnt > 0); 11651 act->dta_refcnt++; 11652 ecb->dte_action = act; 11653 ecb->dte_action_last = cached->dte_action_last; 11654 ecb->dte_needed = cached->dte_needed; 11655 ecb->dte_size = cached->dte_size; 11656 ecb->dte_alignment = cached->dte_alignment; 11657 } 11658 11659 return (ecb); 11660 } 11661 11662 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11663 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11664 dtrace_ecb_destroy(ecb); 11665 return (NULL); 11666 } 11667 } 11668 11669 dtrace_ecb_resize(ecb); 11670 11671 return (dtrace_ecb_create_cache = ecb); 11672 } 11673 11674 static int 11675 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11676 { 11677 dtrace_ecb_t *ecb; 11678 dtrace_enabling_t *enab = arg; 11679 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11680 11681 ASSERT(state != NULL); 11682 11683 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11684 /* 11685 * This probe was created in a generation for which this 11686 * enabling has previously created ECBs; we don't want to 11687 * enable it again, so just kick out. 11688 */ 11689 return (DTRACE_MATCH_NEXT); 11690 } 11691 11692 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11693 return (DTRACE_MATCH_DONE); 11694 11695 dtrace_ecb_enable(ecb); 11696 return (DTRACE_MATCH_NEXT); 11697 } 11698 11699 static dtrace_ecb_t * 11700 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11701 { 11702 dtrace_ecb_t *ecb; 11703 11704 ASSERT(MUTEX_HELD(&dtrace_lock)); 11705 11706 if (id == 0 || id > state->dts_necbs) 11707 return (NULL); 11708 11709 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11710 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11711 11712 return (state->dts_ecbs[id - 1]); 11713 } 11714 11715 static dtrace_aggregation_t * 11716 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11717 { 11718 dtrace_aggregation_t *agg; 11719 11720 ASSERT(MUTEX_HELD(&dtrace_lock)); 11721 11722 if (id == 0 || id > state->dts_naggregations) 11723 return (NULL); 11724 11725 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11726 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11727 agg->dtag_id == id); 11728 11729 return (state->dts_aggregations[id - 1]); 11730 } 11731 11732 /* 11733 * DTrace Buffer Functions 11734 * 11735 * The following functions manipulate DTrace buffers. Most of these functions 11736 * are called in the context of establishing or processing consumer state; 11737 * exceptions are explicitly noted. 11738 */ 11739 11740 /* 11741 * Note: called from cross call context. This function switches the two 11742 * buffers on a given CPU. The atomicity of this operation is assured by 11743 * disabling interrupts while the actual switch takes place; the disabling of 11744 * interrupts serializes the execution with any execution of dtrace_probe() on 11745 * the same CPU. 11746 */ 11747 static void 11748 dtrace_buffer_switch(dtrace_buffer_t *buf) 11749 { 11750 caddr_t tomax = buf->dtb_tomax; 11751 caddr_t xamot = buf->dtb_xamot; 11752 dtrace_icookie_t cookie; 11753 hrtime_t now; 11754 11755 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11756 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11757 11758 cookie = dtrace_interrupt_disable(); 11759 now = dtrace_gethrtime(); 11760 buf->dtb_tomax = xamot; 11761 buf->dtb_xamot = tomax; 11762 buf->dtb_xamot_drops = buf->dtb_drops; 11763 buf->dtb_xamot_offset = buf->dtb_offset; 11764 buf->dtb_xamot_errors = buf->dtb_errors; 11765 buf->dtb_xamot_flags = buf->dtb_flags; 11766 buf->dtb_offset = 0; 11767 buf->dtb_drops = 0; 11768 buf->dtb_errors = 0; 11769 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11770 buf->dtb_interval = now - buf->dtb_switched; 11771 buf->dtb_switched = now; 11772 dtrace_interrupt_enable(cookie); 11773 } 11774 11775 /* 11776 * Note: called from cross call context. This function activates a buffer 11777 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11778 * is guaranteed by the disabling of interrupts. 11779 */ 11780 static void 11781 dtrace_buffer_activate(dtrace_state_t *state) 11782 { 11783 dtrace_buffer_t *buf; 11784 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11785 11786 buf = &state->dts_buffer[curcpu]; 11787 11788 if (buf->dtb_tomax != NULL) { 11789 /* 11790 * We might like to assert that the buffer is marked inactive, 11791 * but this isn't necessarily true: the buffer for the CPU 11792 * that processes the BEGIN probe has its buffer activated 11793 * manually. In this case, we take the (harmless) action 11794 * re-clearing the bit INACTIVE bit. 11795 */ 11796 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11797 } 11798 11799 dtrace_interrupt_enable(cookie); 11800 } 11801 11802 static int 11803 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11804 processorid_t cpu, int *factor) 11805 { 11806 #ifdef illumos 11807 cpu_t *cp; 11808 #endif 11809 dtrace_buffer_t *buf; 11810 int allocated = 0, desired = 0; 11811 11812 #ifdef illumos 11813 ASSERT(MUTEX_HELD(&cpu_lock)); 11814 ASSERT(MUTEX_HELD(&dtrace_lock)); 11815 11816 *factor = 1; 11817 11818 if (size > dtrace_nonroot_maxsize && 11819 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11820 return (EFBIG); 11821 11822 cp = cpu_list; 11823 11824 do { 11825 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11826 continue; 11827 11828 buf = &bufs[cp->cpu_id]; 11829 11830 /* 11831 * If there is already a buffer allocated for this CPU, it 11832 * is only possible that this is a DR event. In this case, 11833 */ 11834 if (buf->dtb_tomax != NULL) { 11835 ASSERT(buf->dtb_size == size); 11836 continue; 11837 } 11838 11839 ASSERT(buf->dtb_xamot == NULL); 11840 11841 if ((buf->dtb_tomax = kmem_zalloc(size, 11842 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11843 goto err; 11844 11845 buf->dtb_size = size; 11846 buf->dtb_flags = flags; 11847 buf->dtb_offset = 0; 11848 buf->dtb_drops = 0; 11849 11850 if (flags & DTRACEBUF_NOSWITCH) 11851 continue; 11852 11853 if ((buf->dtb_xamot = kmem_zalloc(size, 11854 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11855 goto err; 11856 } while ((cp = cp->cpu_next) != cpu_list); 11857 11858 return (0); 11859 11860 err: 11861 cp = cpu_list; 11862 11863 do { 11864 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11865 continue; 11866 11867 buf = &bufs[cp->cpu_id]; 11868 desired += 2; 11869 11870 if (buf->dtb_xamot != NULL) { 11871 ASSERT(buf->dtb_tomax != NULL); 11872 ASSERT(buf->dtb_size == size); 11873 kmem_free(buf->dtb_xamot, size); 11874 allocated++; 11875 } 11876 11877 if (buf->dtb_tomax != NULL) { 11878 ASSERT(buf->dtb_size == size); 11879 kmem_free(buf->dtb_tomax, size); 11880 allocated++; 11881 } 11882 11883 buf->dtb_tomax = NULL; 11884 buf->dtb_xamot = NULL; 11885 buf->dtb_size = 0; 11886 } while ((cp = cp->cpu_next) != cpu_list); 11887 #else 11888 int i; 11889 11890 *factor = 1; 11891 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 11892 defined(__mips__) || defined(__powerpc__) 11893 /* 11894 * FreeBSD isn't good at limiting the amount of memory we 11895 * ask to malloc, so let's place a limit here before trying 11896 * to do something that might well end in tears at bedtime. 11897 */ 11898 if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) 11899 return (ENOMEM); 11900 #endif 11901 11902 ASSERT(MUTEX_HELD(&dtrace_lock)); 11903 CPU_FOREACH(i) { 11904 if (cpu != DTRACE_CPUALL && cpu != i) 11905 continue; 11906 11907 buf = &bufs[i]; 11908 11909 /* 11910 * If there is already a buffer allocated for this CPU, it 11911 * is only possible that this is a DR event. In this case, 11912 * the buffer size must match our specified size. 11913 */ 11914 if (buf->dtb_tomax != NULL) { 11915 ASSERT(buf->dtb_size == size); 11916 continue; 11917 } 11918 11919 ASSERT(buf->dtb_xamot == NULL); 11920 11921 if ((buf->dtb_tomax = kmem_zalloc(size, 11922 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11923 goto err; 11924 11925 buf->dtb_size = size; 11926 buf->dtb_flags = flags; 11927 buf->dtb_offset = 0; 11928 buf->dtb_drops = 0; 11929 11930 if (flags & DTRACEBUF_NOSWITCH) 11931 continue; 11932 11933 if ((buf->dtb_xamot = kmem_zalloc(size, 11934 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11935 goto err; 11936 } 11937 11938 return (0); 11939 11940 err: 11941 /* 11942 * Error allocating memory, so free the buffers that were 11943 * allocated before the failed allocation. 11944 */ 11945 CPU_FOREACH(i) { 11946 if (cpu != DTRACE_CPUALL && cpu != i) 11947 continue; 11948 11949 buf = &bufs[i]; 11950 desired += 2; 11951 11952 if (buf->dtb_xamot != NULL) { 11953 ASSERT(buf->dtb_tomax != NULL); 11954 ASSERT(buf->dtb_size == size); 11955 kmem_free(buf->dtb_xamot, size); 11956 allocated++; 11957 } 11958 11959 if (buf->dtb_tomax != NULL) { 11960 ASSERT(buf->dtb_size == size); 11961 kmem_free(buf->dtb_tomax, size); 11962 allocated++; 11963 } 11964 11965 buf->dtb_tomax = NULL; 11966 buf->dtb_xamot = NULL; 11967 buf->dtb_size = 0; 11968 11969 } 11970 #endif 11971 *factor = desired / (allocated > 0 ? allocated : 1); 11972 11973 return (ENOMEM); 11974 } 11975 11976 /* 11977 * Note: called from probe context. This function just increments the drop 11978 * count on a buffer. It has been made a function to allow for the 11979 * possibility of understanding the source of mysterious drop counts. (A 11980 * problem for which one may be particularly disappointed that DTrace cannot 11981 * be used to understand DTrace.) 11982 */ 11983 static void 11984 dtrace_buffer_drop(dtrace_buffer_t *buf) 11985 { 11986 buf->dtb_drops++; 11987 } 11988 11989 /* 11990 * Note: called from probe context. This function is called to reserve space 11991 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11992 * mstate. Returns the new offset in the buffer, or a negative value if an 11993 * error has occurred. 11994 */ 11995 static intptr_t 11996 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11997 dtrace_state_t *state, dtrace_mstate_t *mstate) 11998 { 11999 intptr_t offs = buf->dtb_offset, soffs; 12000 intptr_t woffs; 12001 caddr_t tomax; 12002 size_t total; 12003 12004 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12005 return (-1); 12006 12007 if ((tomax = buf->dtb_tomax) == NULL) { 12008 dtrace_buffer_drop(buf); 12009 return (-1); 12010 } 12011 12012 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12013 while (offs & (align - 1)) { 12014 /* 12015 * Assert that our alignment is off by a number which 12016 * is itself sizeof (uint32_t) aligned. 12017 */ 12018 ASSERT(!((align - (offs & (align - 1))) & 12019 (sizeof (uint32_t) - 1))); 12020 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12021 offs += sizeof (uint32_t); 12022 } 12023 12024 if ((soffs = offs + needed) > buf->dtb_size) { 12025 dtrace_buffer_drop(buf); 12026 return (-1); 12027 } 12028 12029 if (mstate == NULL) 12030 return (offs); 12031 12032 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12033 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12034 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12035 12036 return (offs); 12037 } 12038 12039 if (buf->dtb_flags & DTRACEBUF_FILL) { 12040 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12041 (buf->dtb_flags & DTRACEBUF_FULL)) 12042 return (-1); 12043 goto out; 12044 } 12045 12046 total = needed + (offs & (align - 1)); 12047 12048 /* 12049 * For a ring buffer, life is quite a bit more complicated. Before 12050 * we can store any padding, we need to adjust our wrapping offset. 12051 * (If we've never before wrapped or we're not about to, no adjustment 12052 * is required.) 12053 */ 12054 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12055 offs + total > buf->dtb_size) { 12056 woffs = buf->dtb_xamot_offset; 12057 12058 if (offs + total > buf->dtb_size) { 12059 /* 12060 * We can't fit in the end of the buffer. First, a 12061 * sanity check that we can fit in the buffer at all. 12062 */ 12063 if (total > buf->dtb_size) { 12064 dtrace_buffer_drop(buf); 12065 return (-1); 12066 } 12067 12068 /* 12069 * We're going to be storing at the top of the buffer, 12070 * so now we need to deal with the wrapped offset. We 12071 * only reset our wrapped offset to 0 if it is 12072 * currently greater than the current offset. If it 12073 * is less than the current offset, it is because a 12074 * previous allocation induced a wrap -- but the 12075 * allocation didn't subsequently take the space due 12076 * to an error or false predicate evaluation. In this 12077 * case, we'll just leave the wrapped offset alone: if 12078 * the wrapped offset hasn't been advanced far enough 12079 * for this allocation, it will be adjusted in the 12080 * lower loop. 12081 */ 12082 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12083 if (woffs >= offs) 12084 woffs = 0; 12085 } else { 12086 woffs = 0; 12087 } 12088 12089 /* 12090 * Now we know that we're going to be storing to the 12091 * top of the buffer and that there is room for us 12092 * there. We need to clear the buffer from the current 12093 * offset to the end (there may be old gunk there). 12094 */ 12095 while (offs < buf->dtb_size) 12096 tomax[offs++] = 0; 12097 12098 /* 12099 * We need to set our offset to zero. And because we 12100 * are wrapping, we need to set the bit indicating as 12101 * much. We can also adjust our needed space back 12102 * down to the space required by the ECB -- we know 12103 * that the top of the buffer is aligned. 12104 */ 12105 offs = 0; 12106 total = needed; 12107 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12108 } else { 12109 /* 12110 * There is room for us in the buffer, so we simply 12111 * need to check the wrapped offset. 12112 */ 12113 if (woffs < offs) { 12114 /* 12115 * The wrapped offset is less than the offset. 12116 * This can happen if we allocated buffer space 12117 * that induced a wrap, but then we didn't 12118 * subsequently take the space due to an error 12119 * or false predicate evaluation. This is 12120 * okay; we know that _this_ allocation isn't 12121 * going to induce a wrap. We still can't 12122 * reset the wrapped offset to be zero, 12123 * however: the space may have been trashed in 12124 * the previous failed probe attempt. But at 12125 * least the wrapped offset doesn't need to 12126 * be adjusted at all... 12127 */ 12128 goto out; 12129 } 12130 } 12131 12132 while (offs + total > woffs) { 12133 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12134 size_t size; 12135 12136 if (epid == DTRACE_EPIDNONE) { 12137 size = sizeof (uint32_t); 12138 } else { 12139 ASSERT3U(epid, <=, state->dts_necbs); 12140 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12141 12142 size = state->dts_ecbs[epid - 1]->dte_size; 12143 } 12144 12145 ASSERT(woffs + size <= buf->dtb_size); 12146 ASSERT(size != 0); 12147 12148 if (woffs + size == buf->dtb_size) { 12149 /* 12150 * We've reached the end of the buffer; we want 12151 * to set the wrapped offset to 0 and break 12152 * out. However, if the offs is 0, then we're 12153 * in a strange edge-condition: the amount of 12154 * space that we want to reserve plus the size 12155 * of the record that we're overwriting is 12156 * greater than the size of the buffer. This 12157 * is problematic because if we reserve the 12158 * space but subsequently don't consume it (due 12159 * to a failed predicate or error) the wrapped 12160 * offset will be 0 -- yet the EPID at offset 0 12161 * will not be committed. This situation is 12162 * relatively easy to deal with: if we're in 12163 * this case, the buffer is indistinguishable 12164 * from one that hasn't wrapped; we need only 12165 * finish the job by clearing the wrapped bit, 12166 * explicitly setting the offset to be 0, and 12167 * zero'ing out the old data in the buffer. 12168 */ 12169 if (offs == 0) { 12170 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12171 buf->dtb_offset = 0; 12172 woffs = total; 12173 12174 while (woffs < buf->dtb_size) 12175 tomax[woffs++] = 0; 12176 } 12177 12178 woffs = 0; 12179 break; 12180 } 12181 12182 woffs += size; 12183 } 12184 12185 /* 12186 * We have a wrapped offset. It may be that the wrapped offset 12187 * has become zero -- that's okay. 12188 */ 12189 buf->dtb_xamot_offset = woffs; 12190 } 12191 12192 out: 12193 /* 12194 * Now we can plow the buffer with any necessary padding. 12195 */ 12196 while (offs & (align - 1)) { 12197 /* 12198 * Assert that our alignment is off by a number which 12199 * is itself sizeof (uint32_t) aligned. 12200 */ 12201 ASSERT(!((align - (offs & (align - 1))) & 12202 (sizeof (uint32_t) - 1))); 12203 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12204 offs += sizeof (uint32_t); 12205 } 12206 12207 if (buf->dtb_flags & DTRACEBUF_FILL) { 12208 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12209 buf->dtb_flags |= DTRACEBUF_FULL; 12210 return (-1); 12211 } 12212 } 12213 12214 if (mstate == NULL) 12215 return (offs); 12216 12217 /* 12218 * For ring buffers and fill buffers, the scratch space is always 12219 * the inactive buffer. 12220 */ 12221 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12222 mstate->dtms_scratch_size = buf->dtb_size; 12223 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12224 12225 return (offs); 12226 } 12227 12228 static void 12229 dtrace_buffer_polish(dtrace_buffer_t *buf) 12230 { 12231 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12232 ASSERT(MUTEX_HELD(&dtrace_lock)); 12233 12234 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12235 return; 12236 12237 /* 12238 * We need to polish the ring buffer. There are three cases: 12239 * 12240 * - The first (and presumably most common) is that there is no gap 12241 * between the buffer offset and the wrapped offset. In this case, 12242 * there is nothing in the buffer that isn't valid data; we can 12243 * mark the buffer as polished and return. 12244 * 12245 * - The second (less common than the first but still more common 12246 * than the third) is that there is a gap between the buffer offset 12247 * and the wrapped offset, and the wrapped offset is larger than the 12248 * buffer offset. This can happen because of an alignment issue, or 12249 * can happen because of a call to dtrace_buffer_reserve() that 12250 * didn't subsequently consume the buffer space. In this case, 12251 * we need to zero the data from the buffer offset to the wrapped 12252 * offset. 12253 * 12254 * - The third (and least common) is that there is a gap between the 12255 * buffer offset and the wrapped offset, but the wrapped offset is 12256 * _less_ than the buffer offset. This can only happen because a 12257 * call to dtrace_buffer_reserve() induced a wrap, but the space 12258 * was not subsequently consumed. In this case, we need to zero the 12259 * space from the offset to the end of the buffer _and_ from the 12260 * top of the buffer to the wrapped offset. 12261 */ 12262 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12263 bzero(buf->dtb_tomax + buf->dtb_offset, 12264 buf->dtb_xamot_offset - buf->dtb_offset); 12265 } 12266 12267 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12268 bzero(buf->dtb_tomax + buf->dtb_offset, 12269 buf->dtb_size - buf->dtb_offset); 12270 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12271 } 12272 } 12273 12274 /* 12275 * This routine determines if data generated at the specified time has likely 12276 * been entirely consumed at user-level. This routine is called to determine 12277 * if an ECB on a defunct probe (but for an active enabling) can be safely 12278 * disabled and destroyed. 12279 */ 12280 static int 12281 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12282 { 12283 int i; 12284 12285 for (i = 0; i < NCPU; i++) { 12286 dtrace_buffer_t *buf = &bufs[i]; 12287 12288 if (buf->dtb_size == 0) 12289 continue; 12290 12291 if (buf->dtb_flags & DTRACEBUF_RING) 12292 return (0); 12293 12294 if (!buf->dtb_switched && buf->dtb_offset != 0) 12295 return (0); 12296 12297 if (buf->dtb_switched - buf->dtb_interval < when) 12298 return (0); 12299 } 12300 12301 return (1); 12302 } 12303 12304 static void 12305 dtrace_buffer_free(dtrace_buffer_t *bufs) 12306 { 12307 int i; 12308 12309 for (i = 0; i < NCPU; i++) { 12310 dtrace_buffer_t *buf = &bufs[i]; 12311 12312 if (buf->dtb_tomax == NULL) { 12313 ASSERT(buf->dtb_xamot == NULL); 12314 ASSERT(buf->dtb_size == 0); 12315 continue; 12316 } 12317 12318 if (buf->dtb_xamot != NULL) { 12319 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12320 kmem_free(buf->dtb_xamot, buf->dtb_size); 12321 } 12322 12323 kmem_free(buf->dtb_tomax, buf->dtb_size); 12324 buf->dtb_size = 0; 12325 buf->dtb_tomax = NULL; 12326 buf->dtb_xamot = NULL; 12327 } 12328 } 12329 12330 /* 12331 * DTrace Enabling Functions 12332 */ 12333 static dtrace_enabling_t * 12334 dtrace_enabling_create(dtrace_vstate_t *vstate) 12335 { 12336 dtrace_enabling_t *enab; 12337 12338 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12339 enab->dten_vstate = vstate; 12340 12341 return (enab); 12342 } 12343 12344 static void 12345 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12346 { 12347 dtrace_ecbdesc_t **ndesc; 12348 size_t osize, nsize; 12349 12350 /* 12351 * We can't add to enablings after we've enabled them, or after we've 12352 * retained them. 12353 */ 12354 ASSERT(enab->dten_probegen == 0); 12355 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12356 12357 if (enab->dten_ndesc < enab->dten_maxdesc) { 12358 enab->dten_desc[enab->dten_ndesc++] = ecb; 12359 return; 12360 } 12361 12362 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12363 12364 if (enab->dten_maxdesc == 0) { 12365 enab->dten_maxdesc = 1; 12366 } else { 12367 enab->dten_maxdesc <<= 1; 12368 } 12369 12370 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12371 12372 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12373 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12374 bcopy(enab->dten_desc, ndesc, osize); 12375 if (enab->dten_desc != NULL) 12376 kmem_free(enab->dten_desc, osize); 12377 12378 enab->dten_desc = ndesc; 12379 enab->dten_desc[enab->dten_ndesc++] = ecb; 12380 } 12381 12382 static void 12383 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12384 dtrace_probedesc_t *pd) 12385 { 12386 dtrace_ecbdesc_t *new; 12387 dtrace_predicate_t *pred; 12388 dtrace_actdesc_t *act; 12389 12390 /* 12391 * We're going to create a new ECB description that matches the 12392 * specified ECB in every way, but has the specified probe description. 12393 */ 12394 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12395 12396 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12397 dtrace_predicate_hold(pred); 12398 12399 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12400 dtrace_actdesc_hold(act); 12401 12402 new->dted_action = ecb->dted_action; 12403 new->dted_pred = ecb->dted_pred; 12404 new->dted_probe = *pd; 12405 new->dted_uarg = ecb->dted_uarg; 12406 12407 dtrace_enabling_add(enab, new); 12408 } 12409 12410 static void 12411 dtrace_enabling_dump(dtrace_enabling_t *enab) 12412 { 12413 int i; 12414 12415 for (i = 0; i < enab->dten_ndesc; i++) { 12416 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12417 12418 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12419 desc->dtpd_provider, desc->dtpd_mod, 12420 desc->dtpd_func, desc->dtpd_name); 12421 } 12422 } 12423 12424 static void 12425 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12426 { 12427 int i; 12428 dtrace_ecbdesc_t *ep; 12429 dtrace_vstate_t *vstate = enab->dten_vstate; 12430 12431 ASSERT(MUTEX_HELD(&dtrace_lock)); 12432 12433 for (i = 0; i < enab->dten_ndesc; i++) { 12434 dtrace_actdesc_t *act, *next; 12435 dtrace_predicate_t *pred; 12436 12437 ep = enab->dten_desc[i]; 12438 12439 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12440 dtrace_predicate_release(pred, vstate); 12441 12442 for (act = ep->dted_action; act != NULL; act = next) { 12443 next = act->dtad_next; 12444 dtrace_actdesc_release(act, vstate); 12445 } 12446 12447 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12448 } 12449 12450 if (enab->dten_desc != NULL) 12451 kmem_free(enab->dten_desc, 12452 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12453 12454 /* 12455 * If this was a retained enabling, decrement the dts_nretained count 12456 * and take it off of the dtrace_retained list. 12457 */ 12458 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12459 dtrace_retained == enab) { 12460 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12461 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12462 enab->dten_vstate->dtvs_state->dts_nretained--; 12463 dtrace_retained_gen++; 12464 } 12465 12466 if (enab->dten_prev == NULL) { 12467 if (dtrace_retained == enab) { 12468 dtrace_retained = enab->dten_next; 12469 12470 if (dtrace_retained != NULL) 12471 dtrace_retained->dten_prev = NULL; 12472 } 12473 } else { 12474 ASSERT(enab != dtrace_retained); 12475 ASSERT(dtrace_retained != NULL); 12476 enab->dten_prev->dten_next = enab->dten_next; 12477 } 12478 12479 if (enab->dten_next != NULL) { 12480 ASSERT(dtrace_retained != NULL); 12481 enab->dten_next->dten_prev = enab->dten_prev; 12482 } 12483 12484 kmem_free(enab, sizeof (dtrace_enabling_t)); 12485 } 12486 12487 static int 12488 dtrace_enabling_retain(dtrace_enabling_t *enab) 12489 { 12490 dtrace_state_t *state; 12491 12492 ASSERT(MUTEX_HELD(&dtrace_lock)); 12493 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12494 ASSERT(enab->dten_vstate != NULL); 12495 12496 state = enab->dten_vstate->dtvs_state; 12497 ASSERT(state != NULL); 12498 12499 /* 12500 * We only allow each state to retain dtrace_retain_max enablings. 12501 */ 12502 if (state->dts_nretained >= dtrace_retain_max) 12503 return (ENOSPC); 12504 12505 state->dts_nretained++; 12506 dtrace_retained_gen++; 12507 12508 if (dtrace_retained == NULL) { 12509 dtrace_retained = enab; 12510 return (0); 12511 } 12512 12513 enab->dten_next = dtrace_retained; 12514 dtrace_retained->dten_prev = enab; 12515 dtrace_retained = enab; 12516 12517 return (0); 12518 } 12519 12520 static int 12521 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12522 dtrace_probedesc_t *create) 12523 { 12524 dtrace_enabling_t *new, *enab; 12525 int found = 0, err = ENOENT; 12526 12527 ASSERT(MUTEX_HELD(&dtrace_lock)); 12528 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12529 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12530 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12531 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12532 12533 new = dtrace_enabling_create(&state->dts_vstate); 12534 12535 /* 12536 * Iterate over all retained enablings, looking for enablings that 12537 * match the specified state. 12538 */ 12539 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12540 int i; 12541 12542 /* 12543 * dtvs_state can only be NULL for helper enablings -- and 12544 * helper enablings can't be retained. 12545 */ 12546 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12547 12548 if (enab->dten_vstate->dtvs_state != state) 12549 continue; 12550 12551 /* 12552 * Now iterate over each probe description; we're looking for 12553 * an exact match to the specified probe description. 12554 */ 12555 for (i = 0; i < enab->dten_ndesc; i++) { 12556 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12557 dtrace_probedesc_t *pd = &ep->dted_probe; 12558 12559 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12560 continue; 12561 12562 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12563 continue; 12564 12565 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12566 continue; 12567 12568 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12569 continue; 12570 12571 /* 12572 * We have a winning probe! Add it to our growing 12573 * enabling. 12574 */ 12575 found = 1; 12576 dtrace_enabling_addlike(new, ep, create); 12577 } 12578 } 12579 12580 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12581 dtrace_enabling_destroy(new); 12582 return (err); 12583 } 12584 12585 return (0); 12586 } 12587 12588 static void 12589 dtrace_enabling_retract(dtrace_state_t *state) 12590 { 12591 dtrace_enabling_t *enab, *next; 12592 12593 ASSERT(MUTEX_HELD(&dtrace_lock)); 12594 12595 /* 12596 * Iterate over all retained enablings, destroy the enablings retained 12597 * for the specified state. 12598 */ 12599 for (enab = dtrace_retained; enab != NULL; enab = next) { 12600 next = enab->dten_next; 12601 12602 /* 12603 * dtvs_state can only be NULL for helper enablings -- and 12604 * helper enablings can't be retained. 12605 */ 12606 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12607 12608 if (enab->dten_vstate->dtvs_state == state) { 12609 ASSERT(state->dts_nretained > 0); 12610 dtrace_enabling_destroy(enab); 12611 } 12612 } 12613 12614 ASSERT(state->dts_nretained == 0); 12615 } 12616 12617 static int 12618 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12619 { 12620 int i = 0; 12621 int matched = 0; 12622 12623 ASSERT(MUTEX_HELD(&cpu_lock)); 12624 ASSERT(MUTEX_HELD(&dtrace_lock)); 12625 12626 for (i = 0; i < enab->dten_ndesc; i++) { 12627 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12628 12629 enab->dten_current = ep; 12630 enab->dten_error = 0; 12631 12632 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12633 12634 if (enab->dten_error != 0) { 12635 /* 12636 * If we get an error half-way through enabling the 12637 * probes, we kick out -- perhaps with some number of 12638 * them enabled. Leaving enabled probes enabled may 12639 * be slightly confusing for user-level, but we expect 12640 * that no one will attempt to actually drive on in 12641 * the face of such errors. If this is an anonymous 12642 * enabling (indicated with a NULL nmatched pointer), 12643 * we cmn_err() a message. We aren't expecting to 12644 * get such an error -- such as it can exist at all, 12645 * it would be a result of corrupted DOF in the driver 12646 * properties. 12647 */ 12648 if (nmatched == NULL) { 12649 cmn_err(CE_WARN, "dtrace_enabling_match() " 12650 "error on %p: %d", (void *)ep, 12651 enab->dten_error); 12652 } 12653 12654 return (enab->dten_error); 12655 } 12656 } 12657 12658 enab->dten_probegen = dtrace_probegen; 12659 if (nmatched != NULL) 12660 *nmatched = matched; 12661 12662 return (0); 12663 } 12664 12665 static void 12666 dtrace_enabling_matchall(void) 12667 { 12668 dtrace_enabling_t *enab; 12669 12670 mutex_enter(&cpu_lock); 12671 mutex_enter(&dtrace_lock); 12672 12673 /* 12674 * Iterate over all retained enablings to see if any probes match 12675 * against them. We only perform this operation on enablings for which 12676 * we have sufficient permissions by virtue of being in the global zone 12677 * or in the same zone as the DTrace client. Because we can be called 12678 * after dtrace_detach() has been called, we cannot assert that there 12679 * are retained enablings. We can safely load from dtrace_retained, 12680 * however: the taskq_destroy() at the end of dtrace_detach() will 12681 * block pending our completion. 12682 */ 12683 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12684 #ifdef illumos 12685 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 12686 12687 if (INGLOBALZONE(curproc) || 12688 cr != NULL && getzoneid() == crgetzoneid(cr)) 12689 #endif 12690 (void) dtrace_enabling_match(enab, NULL); 12691 } 12692 12693 mutex_exit(&dtrace_lock); 12694 mutex_exit(&cpu_lock); 12695 } 12696 12697 /* 12698 * If an enabling is to be enabled without having matched probes (that is, if 12699 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12700 * enabling must be _primed_ by creating an ECB for every ECB description. 12701 * This must be done to assure that we know the number of speculations, the 12702 * number of aggregations, the minimum buffer size needed, etc. before we 12703 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12704 * enabling any probes, we create ECBs for every ECB decription, but with a 12705 * NULL probe -- which is exactly what this function does. 12706 */ 12707 static void 12708 dtrace_enabling_prime(dtrace_state_t *state) 12709 { 12710 dtrace_enabling_t *enab; 12711 int i; 12712 12713 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12714 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12715 12716 if (enab->dten_vstate->dtvs_state != state) 12717 continue; 12718 12719 /* 12720 * We don't want to prime an enabling more than once, lest 12721 * we allow a malicious user to induce resource exhaustion. 12722 * (The ECBs that result from priming an enabling aren't 12723 * leaked -- but they also aren't deallocated until the 12724 * consumer state is destroyed.) 12725 */ 12726 if (enab->dten_primed) 12727 continue; 12728 12729 for (i = 0; i < enab->dten_ndesc; i++) { 12730 enab->dten_current = enab->dten_desc[i]; 12731 (void) dtrace_probe_enable(NULL, enab); 12732 } 12733 12734 enab->dten_primed = 1; 12735 } 12736 } 12737 12738 /* 12739 * Called to indicate that probes should be provided due to retained 12740 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12741 * must take an initial lap through the enabling calling the dtps_provide() 12742 * entry point explicitly to allow for autocreated probes. 12743 */ 12744 static void 12745 dtrace_enabling_provide(dtrace_provider_t *prv) 12746 { 12747 int i, all = 0; 12748 dtrace_probedesc_t desc; 12749 dtrace_genid_t gen; 12750 12751 ASSERT(MUTEX_HELD(&dtrace_lock)); 12752 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12753 12754 if (prv == NULL) { 12755 all = 1; 12756 prv = dtrace_provider; 12757 } 12758 12759 do { 12760 dtrace_enabling_t *enab; 12761 void *parg = prv->dtpv_arg; 12762 12763 retry: 12764 gen = dtrace_retained_gen; 12765 for (enab = dtrace_retained; enab != NULL; 12766 enab = enab->dten_next) { 12767 for (i = 0; i < enab->dten_ndesc; i++) { 12768 desc = enab->dten_desc[i]->dted_probe; 12769 mutex_exit(&dtrace_lock); 12770 prv->dtpv_pops.dtps_provide(parg, &desc); 12771 mutex_enter(&dtrace_lock); 12772 /* 12773 * Process the retained enablings again if 12774 * they have changed while we weren't holding 12775 * dtrace_lock. 12776 */ 12777 if (gen != dtrace_retained_gen) 12778 goto retry; 12779 } 12780 } 12781 } while (all && (prv = prv->dtpv_next) != NULL); 12782 12783 mutex_exit(&dtrace_lock); 12784 dtrace_probe_provide(NULL, all ? NULL : prv); 12785 mutex_enter(&dtrace_lock); 12786 } 12787 12788 /* 12789 * Called to reap ECBs that are attached to probes from defunct providers. 12790 */ 12791 static void 12792 dtrace_enabling_reap(void) 12793 { 12794 dtrace_provider_t *prov; 12795 dtrace_probe_t *probe; 12796 dtrace_ecb_t *ecb; 12797 hrtime_t when; 12798 int i; 12799 12800 mutex_enter(&cpu_lock); 12801 mutex_enter(&dtrace_lock); 12802 12803 for (i = 0; i < dtrace_nprobes; i++) { 12804 if ((probe = dtrace_probes[i]) == NULL) 12805 continue; 12806 12807 if (probe->dtpr_ecb == NULL) 12808 continue; 12809 12810 prov = probe->dtpr_provider; 12811 12812 if ((when = prov->dtpv_defunct) == 0) 12813 continue; 12814 12815 /* 12816 * We have ECBs on a defunct provider: we want to reap these 12817 * ECBs to allow the provider to unregister. The destruction 12818 * of these ECBs must be done carefully: if we destroy the ECB 12819 * and the consumer later wishes to consume an EPID that 12820 * corresponds to the destroyed ECB (and if the EPID metadata 12821 * has not been previously consumed), the consumer will abort 12822 * processing on the unknown EPID. To reduce (but not, sadly, 12823 * eliminate) the possibility of this, we will only destroy an 12824 * ECB for a defunct provider if, for the state that 12825 * corresponds to the ECB: 12826 * 12827 * (a) There is no speculative tracing (which can effectively 12828 * cache an EPID for an arbitrary amount of time). 12829 * 12830 * (b) The principal buffers have been switched twice since the 12831 * provider became defunct. 12832 * 12833 * (c) The aggregation buffers are of zero size or have been 12834 * switched twice since the provider became defunct. 12835 * 12836 * We use dts_speculates to determine (a) and call a function 12837 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12838 * that as soon as we've been unable to destroy one of the ECBs 12839 * associated with the probe, we quit trying -- reaping is only 12840 * fruitful in as much as we can destroy all ECBs associated 12841 * with the defunct provider's probes. 12842 */ 12843 while ((ecb = probe->dtpr_ecb) != NULL) { 12844 dtrace_state_t *state = ecb->dte_state; 12845 dtrace_buffer_t *buf = state->dts_buffer; 12846 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12847 12848 if (state->dts_speculates) 12849 break; 12850 12851 if (!dtrace_buffer_consumed(buf, when)) 12852 break; 12853 12854 if (!dtrace_buffer_consumed(aggbuf, when)) 12855 break; 12856 12857 dtrace_ecb_disable(ecb); 12858 ASSERT(probe->dtpr_ecb != ecb); 12859 dtrace_ecb_destroy(ecb); 12860 } 12861 } 12862 12863 mutex_exit(&dtrace_lock); 12864 mutex_exit(&cpu_lock); 12865 } 12866 12867 /* 12868 * DTrace DOF Functions 12869 */ 12870 /*ARGSUSED*/ 12871 static void 12872 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12873 { 12874 if (dtrace_err_verbose) 12875 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12876 12877 #ifdef DTRACE_ERRDEBUG 12878 dtrace_errdebug(str); 12879 #endif 12880 } 12881 12882 /* 12883 * Create DOF out of a currently enabled state. Right now, we only create 12884 * DOF containing the run-time options -- but this could be expanded to create 12885 * complete DOF representing the enabled state. 12886 */ 12887 static dof_hdr_t * 12888 dtrace_dof_create(dtrace_state_t *state) 12889 { 12890 dof_hdr_t *dof; 12891 dof_sec_t *sec; 12892 dof_optdesc_t *opt; 12893 int i, len = sizeof (dof_hdr_t) + 12894 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12895 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12896 12897 ASSERT(MUTEX_HELD(&dtrace_lock)); 12898 12899 dof = kmem_zalloc(len, KM_SLEEP); 12900 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12901 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12902 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12903 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12904 12905 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12906 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12907 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12908 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12909 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12910 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12911 12912 dof->dofh_flags = 0; 12913 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12914 dof->dofh_secsize = sizeof (dof_sec_t); 12915 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12916 dof->dofh_secoff = sizeof (dof_hdr_t); 12917 dof->dofh_loadsz = len; 12918 dof->dofh_filesz = len; 12919 dof->dofh_pad = 0; 12920 12921 /* 12922 * Fill in the option section header... 12923 */ 12924 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12925 sec->dofs_type = DOF_SECT_OPTDESC; 12926 sec->dofs_align = sizeof (uint64_t); 12927 sec->dofs_flags = DOF_SECF_LOAD; 12928 sec->dofs_entsize = sizeof (dof_optdesc_t); 12929 12930 opt = (dof_optdesc_t *)((uintptr_t)sec + 12931 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12932 12933 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12934 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12935 12936 for (i = 0; i < DTRACEOPT_MAX; i++) { 12937 opt[i].dofo_option = i; 12938 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12939 opt[i].dofo_value = state->dts_options[i]; 12940 } 12941 12942 return (dof); 12943 } 12944 12945 static dof_hdr_t * 12946 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12947 { 12948 dof_hdr_t hdr, *dof; 12949 12950 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12951 12952 /* 12953 * First, we're going to copyin() the sizeof (dof_hdr_t). 12954 */ 12955 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12956 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12957 *errp = EFAULT; 12958 return (NULL); 12959 } 12960 12961 /* 12962 * Now we'll allocate the entire DOF and copy it in -- provided 12963 * that the length isn't outrageous. 12964 */ 12965 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12966 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12967 *errp = E2BIG; 12968 return (NULL); 12969 } 12970 12971 if (hdr.dofh_loadsz < sizeof (hdr)) { 12972 dtrace_dof_error(&hdr, "invalid load size"); 12973 *errp = EINVAL; 12974 return (NULL); 12975 } 12976 12977 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12978 12979 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12980 dof->dofh_loadsz != hdr.dofh_loadsz) { 12981 kmem_free(dof, hdr.dofh_loadsz); 12982 *errp = EFAULT; 12983 return (NULL); 12984 } 12985 12986 return (dof); 12987 } 12988 12989 #ifndef illumos 12990 static __inline uchar_t 12991 dtrace_dof_char(char c) { 12992 switch (c) { 12993 case '0': 12994 case '1': 12995 case '2': 12996 case '3': 12997 case '4': 12998 case '5': 12999 case '6': 13000 case '7': 13001 case '8': 13002 case '9': 13003 return (c - '0'); 13004 case 'A': 13005 case 'B': 13006 case 'C': 13007 case 'D': 13008 case 'E': 13009 case 'F': 13010 return (c - 'A' + 10); 13011 case 'a': 13012 case 'b': 13013 case 'c': 13014 case 'd': 13015 case 'e': 13016 case 'f': 13017 return (c - 'a' + 10); 13018 } 13019 /* Should not reach here. */ 13020 return (0); 13021 } 13022 #endif 13023 13024 static dof_hdr_t * 13025 dtrace_dof_property(const char *name) 13026 { 13027 uchar_t *buf; 13028 uint64_t loadsz; 13029 unsigned int len, i; 13030 dof_hdr_t *dof; 13031 13032 #ifdef illumos 13033 /* 13034 * Unfortunately, array of values in .conf files are always (and 13035 * only) interpreted to be integer arrays. We must read our DOF 13036 * as an integer array, and then squeeze it into a byte array. 13037 */ 13038 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13039 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13040 return (NULL); 13041 13042 for (i = 0; i < len; i++) 13043 buf[i] = (uchar_t)(((int *)buf)[i]); 13044 13045 if (len < sizeof (dof_hdr_t)) { 13046 ddi_prop_free(buf); 13047 dtrace_dof_error(NULL, "truncated header"); 13048 return (NULL); 13049 } 13050 13051 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13052 ddi_prop_free(buf); 13053 dtrace_dof_error(NULL, "truncated DOF"); 13054 return (NULL); 13055 } 13056 13057 if (loadsz >= dtrace_dof_maxsize) { 13058 ddi_prop_free(buf); 13059 dtrace_dof_error(NULL, "oversized DOF"); 13060 return (NULL); 13061 } 13062 13063 dof = kmem_alloc(loadsz, KM_SLEEP); 13064 bcopy(buf, dof, loadsz); 13065 ddi_prop_free(buf); 13066 #else 13067 char *p; 13068 char *p_env; 13069 13070 if ((p_env = kern_getenv(name)) == NULL) 13071 return (NULL); 13072 13073 len = strlen(p_env) / 2; 13074 13075 buf = kmem_alloc(len, KM_SLEEP); 13076 13077 dof = (dof_hdr_t *) buf; 13078 13079 p = p_env; 13080 13081 for (i = 0; i < len; i++) { 13082 buf[i] = (dtrace_dof_char(p[0]) << 4) | 13083 dtrace_dof_char(p[1]); 13084 p += 2; 13085 } 13086 13087 freeenv(p_env); 13088 13089 if (len < sizeof (dof_hdr_t)) { 13090 kmem_free(buf, 0); 13091 dtrace_dof_error(NULL, "truncated header"); 13092 return (NULL); 13093 } 13094 13095 if (len < (loadsz = dof->dofh_loadsz)) { 13096 kmem_free(buf, 0); 13097 dtrace_dof_error(NULL, "truncated DOF"); 13098 return (NULL); 13099 } 13100 13101 if (loadsz >= dtrace_dof_maxsize) { 13102 kmem_free(buf, 0); 13103 dtrace_dof_error(NULL, "oversized DOF"); 13104 return (NULL); 13105 } 13106 #endif 13107 13108 return (dof); 13109 } 13110 13111 static void 13112 dtrace_dof_destroy(dof_hdr_t *dof) 13113 { 13114 kmem_free(dof, dof->dofh_loadsz); 13115 } 13116 13117 /* 13118 * Return the dof_sec_t pointer corresponding to a given section index. If the 13119 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13120 * a type other than DOF_SECT_NONE is specified, the header is checked against 13121 * this type and NULL is returned if the types do not match. 13122 */ 13123 static dof_sec_t * 13124 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13125 { 13126 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13127 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13128 13129 if (i >= dof->dofh_secnum) { 13130 dtrace_dof_error(dof, "referenced section index is invalid"); 13131 return (NULL); 13132 } 13133 13134 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13135 dtrace_dof_error(dof, "referenced section is not loadable"); 13136 return (NULL); 13137 } 13138 13139 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13140 dtrace_dof_error(dof, "referenced section is the wrong type"); 13141 return (NULL); 13142 } 13143 13144 return (sec); 13145 } 13146 13147 static dtrace_probedesc_t * 13148 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13149 { 13150 dof_probedesc_t *probe; 13151 dof_sec_t *strtab; 13152 uintptr_t daddr = (uintptr_t)dof; 13153 uintptr_t str; 13154 size_t size; 13155 13156 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13157 dtrace_dof_error(dof, "invalid probe section"); 13158 return (NULL); 13159 } 13160 13161 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13162 dtrace_dof_error(dof, "bad alignment in probe description"); 13163 return (NULL); 13164 } 13165 13166 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13167 dtrace_dof_error(dof, "truncated probe description"); 13168 return (NULL); 13169 } 13170 13171 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13172 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13173 13174 if (strtab == NULL) 13175 return (NULL); 13176 13177 str = daddr + strtab->dofs_offset; 13178 size = strtab->dofs_size; 13179 13180 if (probe->dofp_provider >= strtab->dofs_size) { 13181 dtrace_dof_error(dof, "corrupt probe provider"); 13182 return (NULL); 13183 } 13184 13185 (void) strncpy(desc->dtpd_provider, 13186 (char *)(str + probe->dofp_provider), 13187 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13188 13189 if (probe->dofp_mod >= strtab->dofs_size) { 13190 dtrace_dof_error(dof, "corrupt probe module"); 13191 return (NULL); 13192 } 13193 13194 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13195 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13196 13197 if (probe->dofp_func >= strtab->dofs_size) { 13198 dtrace_dof_error(dof, "corrupt probe function"); 13199 return (NULL); 13200 } 13201 13202 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13203 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13204 13205 if (probe->dofp_name >= strtab->dofs_size) { 13206 dtrace_dof_error(dof, "corrupt probe name"); 13207 return (NULL); 13208 } 13209 13210 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13211 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13212 13213 return (desc); 13214 } 13215 13216 static dtrace_difo_t * 13217 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13218 cred_t *cr) 13219 { 13220 dtrace_difo_t *dp; 13221 size_t ttl = 0; 13222 dof_difohdr_t *dofd; 13223 uintptr_t daddr = (uintptr_t)dof; 13224 size_t max = dtrace_difo_maxsize; 13225 int i, l, n; 13226 13227 static const struct { 13228 int section; 13229 int bufoffs; 13230 int lenoffs; 13231 int entsize; 13232 int align; 13233 const char *msg; 13234 } difo[] = { 13235 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13236 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13237 sizeof (dif_instr_t), "multiple DIF sections" }, 13238 13239 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13240 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13241 sizeof (uint64_t), "multiple integer tables" }, 13242 13243 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13244 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13245 sizeof (char), "multiple string tables" }, 13246 13247 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13248 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13249 sizeof (uint_t), "multiple variable tables" }, 13250 13251 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13252 }; 13253 13254 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13255 dtrace_dof_error(dof, "invalid DIFO header section"); 13256 return (NULL); 13257 } 13258 13259 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13260 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13261 return (NULL); 13262 } 13263 13264 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13265 sec->dofs_size % sizeof (dof_secidx_t)) { 13266 dtrace_dof_error(dof, "bad size in DIFO header"); 13267 return (NULL); 13268 } 13269 13270 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13271 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13272 13273 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13274 dp->dtdo_rtype = dofd->dofd_rtype; 13275 13276 for (l = 0; l < n; l++) { 13277 dof_sec_t *subsec; 13278 void **bufp; 13279 uint32_t *lenp; 13280 13281 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13282 dofd->dofd_links[l])) == NULL) 13283 goto err; /* invalid section link */ 13284 13285 if (ttl + subsec->dofs_size > max) { 13286 dtrace_dof_error(dof, "exceeds maximum size"); 13287 goto err; 13288 } 13289 13290 ttl += subsec->dofs_size; 13291 13292 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13293 if (subsec->dofs_type != difo[i].section) 13294 continue; 13295 13296 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13297 dtrace_dof_error(dof, "section not loaded"); 13298 goto err; 13299 } 13300 13301 if (subsec->dofs_align != difo[i].align) { 13302 dtrace_dof_error(dof, "bad alignment"); 13303 goto err; 13304 } 13305 13306 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13307 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13308 13309 if (*bufp != NULL) { 13310 dtrace_dof_error(dof, difo[i].msg); 13311 goto err; 13312 } 13313 13314 if (difo[i].entsize != subsec->dofs_entsize) { 13315 dtrace_dof_error(dof, "entry size mismatch"); 13316 goto err; 13317 } 13318 13319 if (subsec->dofs_entsize != 0 && 13320 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13321 dtrace_dof_error(dof, "corrupt entry size"); 13322 goto err; 13323 } 13324 13325 *lenp = subsec->dofs_size; 13326 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13327 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13328 *bufp, subsec->dofs_size); 13329 13330 if (subsec->dofs_entsize != 0) 13331 *lenp /= subsec->dofs_entsize; 13332 13333 break; 13334 } 13335 13336 /* 13337 * If we encounter a loadable DIFO sub-section that is not 13338 * known to us, assume this is a broken program and fail. 13339 */ 13340 if (difo[i].section == DOF_SECT_NONE && 13341 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13342 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13343 goto err; 13344 } 13345 } 13346 13347 if (dp->dtdo_buf == NULL) { 13348 /* 13349 * We can't have a DIF object without DIF text. 13350 */ 13351 dtrace_dof_error(dof, "missing DIF text"); 13352 goto err; 13353 } 13354 13355 /* 13356 * Before we validate the DIF object, run through the variable table 13357 * looking for the strings -- if any of their size are under, we'll set 13358 * their size to be the system-wide default string size. Note that 13359 * this should _not_ happen if the "strsize" option has been set -- 13360 * in this case, the compiler should have set the size to reflect the 13361 * setting of the option. 13362 */ 13363 for (i = 0; i < dp->dtdo_varlen; i++) { 13364 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13365 dtrace_diftype_t *t = &v->dtdv_type; 13366 13367 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13368 continue; 13369 13370 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13371 t->dtdt_size = dtrace_strsize_default; 13372 } 13373 13374 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13375 goto err; 13376 13377 dtrace_difo_init(dp, vstate); 13378 return (dp); 13379 13380 err: 13381 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13382 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13383 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13384 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13385 13386 kmem_free(dp, sizeof (dtrace_difo_t)); 13387 return (NULL); 13388 } 13389 13390 static dtrace_predicate_t * 13391 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13392 cred_t *cr) 13393 { 13394 dtrace_difo_t *dp; 13395 13396 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13397 return (NULL); 13398 13399 return (dtrace_predicate_create(dp)); 13400 } 13401 13402 static dtrace_actdesc_t * 13403 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13404 cred_t *cr) 13405 { 13406 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13407 dof_actdesc_t *desc; 13408 dof_sec_t *difosec; 13409 size_t offs; 13410 uintptr_t daddr = (uintptr_t)dof; 13411 uint64_t arg; 13412 dtrace_actkind_t kind; 13413 13414 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13415 dtrace_dof_error(dof, "invalid action section"); 13416 return (NULL); 13417 } 13418 13419 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13420 dtrace_dof_error(dof, "truncated action description"); 13421 return (NULL); 13422 } 13423 13424 if (sec->dofs_align != sizeof (uint64_t)) { 13425 dtrace_dof_error(dof, "bad alignment in action description"); 13426 return (NULL); 13427 } 13428 13429 if (sec->dofs_size < sec->dofs_entsize) { 13430 dtrace_dof_error(dof, "section entry size exceeds total size"); 13431 return (NULL); 13432 } 13433 13434 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13435 dtrace_dof_error(dof, "bad entry size in action description"); 13436 return (NULL); 13437 } 13438 13439 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13440 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13441 return (NULL); 13442 } 13443 13444 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13445 desc = (dof_actdesc_t *)(daddr + 13446 (uintptr_t)sec->dofs_offset + offs); 13447 kind = (dtrace_actkind_t)desc->dofa_kind; 13448 13449 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13450 (kind != DTRACEACT_PRINTA || 13451 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13452 (kind == DTRACEACT_DIFEXPR && 13453 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13454 dof_sec_t *strtab; 13455 char *str, *fmt; 13456 uint64_t i; 13457 13458 /* 13459 * The argument to these actions is an index into the 13460 * DOF string table. For printf()-like actions, this 13461 * is the format string. For print(), this is the 13462 * CTF type of the expression result. 13463 */ 13464 if ((strtab = dtrace_dof_sect(dof, 13465 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13466 goto err; 13467 13468 str = (char *)((uintptr_t)dof + 13469 (uintptr_t)strtab->dofs_offset); 13470 13471 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13472 if (str[i] == '\0') 13473 break; 13474 } 13475 13476 if (i >= strtab->dofs_size) { 13477 dtrace_dof_error(dof, "bogus format string"); 13478 goto err; 13479 } 13480 13481 if (i == desc->dofa_arg) { 13482 dtrace_dof_error(dof, "empty format string"); 13483 goto err; 13484 } 13485 13486 i -= desc->dofa_arg; 13487 fmt = kmem_alloc(i + 1, KM_SLEEP); 13488 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13489 arg = (uint64_t)(uintptr_t)fmt; 13490 } else { 13491 if (kind == DTRACEACT_PRINTA) { 13492 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13493 arg = 0; 13494 } else { 13495 arg = desc->dofa_arg; 13496 } 13497 } 13498 13499 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13500 desc->dofa_uarg, arg); 13501 13502 if (last != NULL) { 13503 last->dtad_next = act; 13504 } else { 13505 first = act; 13506 } 13507 13508 last = act; 13509 13510 if (desc->dofa_difo == DOF_SECIDX_NONE) 13511 continue; 13512 13513 if ((difosec = dtrace_dof_sect(dof, 13514 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13515 goto err; 13516 13517 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13518 13519 if (act->dtad_difo == NULL) 13520 goto err; 13521 } 13522 13523 ASSERT(first != NULL); 13524 return (first); 13525 13526 err: 13527 for (act = first; act != NULL; act = next) { 13528 next = act->dtad_next; 13529 dtrace_actdesc_release(act, vstate); 13530 } 13531 13532 return (NULL); 13533 } 13534 13535 static dtrace_ecbdesc_t * 13536 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13537 cred_t *cr) 13538 { 13539 dtrace_ecbdesc_t *ep; 13540 dof_ecbdesc_t *ecb; 13541 dtrace_probedesc_t *desc; 13542 dtrace_predicate_t *pred = NULL; 13543 13544 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13545 dtrace_dof_error(dof, "truncated ECB description"); 13546 return (NULL); 13547 } 13548 13549 if (sec->dofs_align != sizeof (uint64_t)) { 13550 dtrace_dof_error(dof, "bad alignment in ECB description"); 13551 return (NULL); 13552 } 13553 13554 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13555 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13556 13557 if (sec == NULL) 13558 return (NULL); 13559 13560 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13561 ep->dted_uarg = ecb->dofe_uarg; 13562 desc = &ep->dted_probe; 13563 13564 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13565 goto err; 13566 13567 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13568 if ((sec = dtrace_dof_sect(dof, 13569 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13570 goto err; 13571 13572 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13573 goto err; 13574 13575 ep->dted_pred.dtpdd_predicate = pred; 13576 } 13577 13578 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13579 if ((sec = dtrace_dof_sect(dof, 13580 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13581 goto err; 13582 13583 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13584 13585 if (ep->dted_action == NULL) 13586 goto err; 13587 } 13588 13589 return (ep); 13590 13591 err: 13592 if (pred != NULL) 13593 dtrace_predicate_release(pred, vstate); 13594 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13595 return (NULL); 13596 } 13597 13598 /* 13599 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13600 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13601 * site of any user SETX relocations to account for load object base address. 13602 * In the future, if we need other relocations, this function can be extended. 13603 */ 13604 static int 13605 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13606 { 13607 uintptr_t daddr = (uintptr_t)dof; 13608 dof_relohdr_t *dofr = 13609 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13610 dof_sec_t *ss, *rs, *ts; 13611 dof_relodesc_t *r; 13612 uint_t i, n; 13613 13614 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13615 sec->dofs_align != sizeof (dof_secidx_t)) { 13616 dtrace_dof_error(dof, "invalid relocation header"); 13617 return (-1); 13618 } 13619 13620 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13621 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13622 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13623 13624 if (ss == NULL || rs == NULL || ts == NULL) 13625 return (-1); /* dtrace_dof_error() has been called already */ 13626 13627 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13628 rs->dofs_align != sizeof (uint64_t)) { 13629 dtrace_dof_error(dof, "invalid relocation section"); 13630 return (-1); 13631 } 13632 13633 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13634 n = rs->dofs_size / rs->dofs_entsize; 13635 13636 for (i = 0; i < n; i++) { 13637 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13638 13639 switch (r->dofr_type) { 13640 case DOF_RELO_NONE: 13641 break; 13642 case DOF_RELO_SETX: 13643 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13644 sizeof (uint64_t) > ts->dofs_size) { 13645 dtrace_dof_error(dof, "bad relocation offset"); 13646 return (-1); 13647 } 13648 13649 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13650 dtrace_dof_error(dof, "misaligned setx relo"); 13651 return (-1); 13652 } 13653 13654 *(uint64_t *)taddr += ubase; 13655 break; 13656 default: 13657 dtrace_dof_error(dof, "invalid relocation type"); 13658 return (-1); 13659 } 13660 13661 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13662 } 13663 13664 return (0); 13665 } 13666 13667 /* 13668 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13669 * header: it should be at the front of a memory region that is at least 13670 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13671 * size. It need not be validated in any other way. 13672 */ 13673 static int 13674 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13675 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13676 { 13677 uint64_t len = dof->dofh_loadsz, seclen; 13678 uintptr_t daddr = (uintptr_t)dof; 13679 dtrace_ecbdesc_t *ep; 13680 dtrace_enabling_t *enab; 13681 uint_t i; 13682 13683 ASSERT(MUTEX_HELD(&dtrace_lock)); 13684 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13685 13686 /* 13687 * Check the DOF header identification bytes. In addition to checking 13688 * valid settings, we also verify that unused bits/bytes are zeroed so 13689 * we can use them later without fear of regressing existing binaries. 13690 */ 13691 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13692 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13693 dtrace_dof_error(dof, "DOF magic string mismatch"); 13694 return (-1); 13695 } 13696 13697 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13698 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13699 dtrace_dof_error(dof, "DOF has invalid data model"); 13700 return (-1); 13701 } 13702 13703 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13704 dtrace_dof_error(dof, "DOF encoding mismatch"); 13705 return (-1); 13706 } 13707 13708 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13709 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13710 dtrace_dof_error(dof, "DOF version mismatch"); 13711 return (-1); 13712 } 13713 13714 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13715 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13716 return (-1); 13717 } 13718 13719 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13720 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13721 return (-1); 13722 } 13723 13724 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13725 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13726 return (-1); 13727 } 13728 13729 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13730 if (dof->dofh_ident[i] != 0) { 13731 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13732 return (-1); 13733 } 13734 } 13735 13736 if (dof->dofh_flags & ~DOF_FL_VALID) { 13737 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13738 return (-1); 13739 } 13740 13741 if (dof->dofh_secsize == 0) { 13742 dtrace_dof_error(dof, "zero section header size"); 13743 return (-1); 13744 } 13745 13746 /* 13747 * Check that the section headers don't exceed the amount of DOF 13748 * data. Note that we cast the section size and number of sections 13749 * to uint64_t's to prevent possible overflow in the multiplication. 13750 */ 13751 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13752 13753 if (dof->dofh_secoff > len || seclen > len || 13754 dof->dofh_secoff + seclen > len) { 13755 dtrace_dof_error(dof, "truncated section headers"); 13756 return (-1); 13757 } 13758 13759 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13760 dtrace_dof_error(dof, "misaligned section headers"); 13761 return (-1); 13762 } 13763 13764 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13765 dtrace_dof_error(dof, "misaligned section size"); 13766 return (-1); 13767 } 13768 13769 /* 13770 * Take an initial pass through the section headers to be sure that 13771 * the headers don't have stray offsets. If the 'noprobes' flag is 13772 * set, do not permit sections relating to providers, probes, or args. 13773 */ 13774 for (i = 0; i < dof->dofh_secnum; i++) { 13775 dof_sec_t *sec = (dof_sec_t *)(daddr + 13776 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13777 13778 if (noprobes) { 13779 switch (sec->dofs_type) { 13780 case DOF_SECT_PROVIDER: 13781 case DOF_SECT_PROBES: 13782 case DOF_SECT_PRARGS: 13783 case DOF_SECT_PROFFS: 13784 dtrace_dof_error(dof, "illegal sections " 13785 "for enabling"); 13786 return (-1); 13787 } 13788 } 13789 13790 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13791 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13792 dtrace_dof_error(dof, "loadable section with load " 13793 "flag unset"); 13794 return (-1); 13795 } 13796 13797 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13798 continue; /* just ignore non-loadable sections */ 13799 13800 if (!ISP2(sec->dofs_align)) { 13801 dtrace_dof_error(dof, "bad section alignment"); 13802 return (-1); 13803 } 13804 13805 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13806 dtrace_dof_error(dof, "misaligned section"); 13807 return (-1); 13808 } 13809 13810 if (sec->dofs_offset > len || sec->dofs_size > len || 13811 sec->dofs_offset + sec->dofs_size > len) { 13812 dtrace_dof_error(dof, "corrupt section header"); 13813 return (-1); 13814 } 13815 13816 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13817 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13818 dtrace_dof_error(dof, "non-terminating string table"); 13819 return (-1); 13820 } 13821 } 13822 13823 /* 13824 * Take a second pass through the sections and locate and perform any 13825 * relocations that are present. We do this after the first pass to 13826 * be sure that all sections have had their headers validated. 13827 */ 13828 for (i = 0; i < dof->dofh_secnum; i++) { 13829 dof_sec_t *sec = (dof_sec_t *)(daddr + 13830 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13831 13832 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13833 continue; /* skip sections that are not loadable */ 13834 13835 switch (sec->dofs_type) { 13836 case DOF_SECT_URELHDR: 13837 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13838 return (-1); 13839 break; 13840 } 13841 } 13842 13843 if ((enab = *enabp) == NULL) 13844 enab = *enabp = dtrace_enabling_create(vstate); 13845 13846 for (i = 0; i < dof->dofh_secnum; i++) { 13847 dof_sec_t *sec = (dof_sec_t *)(daddr + 13848 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13849 13850 if (sec->dofs_type != DOF_SECT_ECBDESC) 13851 continue; 13852 13853 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13854 dtrace_enabling_destroy(enab); 13855 *enabp = NULL; 13856 return (-1); 13857 } 13858 13859 dtrace_enabling_add(enab, ep); 13860 } 13861 13862 return (0); 13863 } 13864 13865 /* 13866 * Process DOF for any options. This routine assumes that the DOF has been 13867 * at least processed by dtrace_dof_slurp(). 13868 */ 13869 static int 13870 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13871 { 13872 int i, rval; 13873 uint32_t entsize; 13874 size_t offs; 13875 dof_optdesc_t *desc; 13876 13877 for (i = 0; i < dof->dofh_secnum; i++) { 13878 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13879 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13880 13881 if (sec->dofs_type != DOF_SECT_OPTDESC) 13882 continue; 13883 13884 if (sec->dofs_align != sizeof (uint64_t)) { 13885 dtrace_dof_error(dof, "bad alignment in " 13886 "option description"); 13887 return (EINVAL); 13888 } 13889 13890 if ((entsize = sec->dofs_entsize) == 0) { 13891 dtrace_dof_error(dof, "zeroed option entry size"); 13892 return (EINVAL); 13893 } 13894 13895 if (entsize < sizeof (dof_optdesc_t)) { 13896 dtrace_dof_error(dof, "bad option entry size"); 13897 return (EINVAL); 13898 } 13899 13900 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13901 desc = (dof_optdesc_t *)((uintptr_t)dof + 13902 (uintptr_t)sec->dofs_offset + offs); 13903 13904 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13905 dtrace_dof_error(dof, "non-zero option string"); 13906 return (EINVAL); 13907 } 13908 13909 if (desc->dofo_value == DTRACEOPT_UNSET) { 13910 dtrace_dof_error(dof, "unset option"); 13911 return (EINVAL); 13912 } 13913 13914 if ((rval = dtrace_state_option(state, 13915 desc->dofo_option, desc->dofo_value)) != 0) { 13916 dtrace_dof_error(dof, "rejected option"); 13917 return (rval); 13918 } 13919 } 13920 } 13921 13922 return (0); 13923 } 13924 13925 /* 13926 * DTrace Consumer State Functions 13927 */ 13928 static int 13929 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13930 { 13931 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13932 void *base; 13933 uintptr_t limit; 13934 dtrace_dynvar_t *dvar, *next, *start; 13935 int i; 13936 13937 ASSERT(MUTEX_HELD(&dtrace_lock)); 13938 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13939 13940 bzero(dstate, sizeof (dtrace_dstate_t)); 13941 13942 if ((dstate->dtds_chunksize = chunksize) == 0) 13943 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13944 13945 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13946 size = min; 13947 13948 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13949 return (ENOMEM); 13950 13951 dstate->dtds_size = size; 13952 dstate->dtds_base = base; 13953 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13954 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13955 13956 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13957 13958 if (hashsize != 1 && (hashsize & 1)) 13959 hashsize--; 13960 13961 dstate->dtds_hashsize = hashsize; 13962 dstate->dtds_hash = dstate->dtds_base; 13963 13964 /* 13965 * Set all of our hash buckets to point to the single sink, and (if 13966 * it hasn't already been set), set the sink's hash value to be the 13967 * sink sentinel value. The sink is needed for dynamic variable 13968 * lookups to know that they have iterated over an entire, valid hash 13969 * chain. 13970 */ 13971 for (i = 0; i < hashsize; i++) 13972 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13973 13974 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13975 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13976 13977 /* 13978 * Determine number of active CPUs. Divide free list evenly among 13979 * active CPUs. 13980 */ 13981 start = (dtrace_dynvar_t *) 13982 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13983 limit = (uintptr_t)base + size; 13984 13985 maxper = (limit - (uintptr_t)start) / NCPU; 13986 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13987 13988 #ifndef illumos 13989 CPU_FOREACH(i) { 13990 #else 13991 for (i = 0; i < NCPU; i++) { 13992 #endif 13993 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13994 13995 /* 13996 * If we don't even have enough chunks to make it once through 13997 * NCPUs, we're just going to allocate everything to the first 13998 * CPU. And if we're on the last CPU, we're going to allocate 13999 * whatever is left over. In either case, we set the limit to 14000 * be the limit of the dynamic variable space. 14001 */ 14002 if (maxper == 0 || i == NCPU - 1) { 14003 limit = (uintptr_t)base + size; 14004 start = NULL; 14005 } else { 14006 limit = (uintptr_t)start + maxper; 14007 start = (dtrace_dynvar_t *)limit; 14008 } 14009 14010 ASSERT(limit <= (uintptr_t)base + size); 14011 14012 for (;;) { 14013 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14014 dstate->dtds_chunksize); 14015 14016 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14017 break; 14018 14019 dvar->dtdv_next = next; 14020 dvar = next; 14021 } 14022 14023 if (maxper == 0) 14024 break; 14025 } 14026 14027 return (0); 14028 } 14029 14030 static void 14031 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14032 { 14033 ASSERT(MUTEX_HELD(&cpu_lock)); 14034 14035 if (dstate->dtds_base == NULL) 14036 return; 14037 14038 kmem_free(dstate->dtds_base, dstate->dtds_size); 14039 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14040 } 14041 14042 static void 14043 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14044 { 14045 /* 14046 * Logical XOR, where are you? 14047 */ 14048 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14049 14050 if (vstate->dtvs_nglobals > 0) { 14051 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14052 sizeof (dtrace_statvar_t *)); 14053 } 14054 14055 if (vstate->dtvs_ntlocals > 0) { 14056 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14057 sizeof (dtrace_difv_t)); 14058 } 14059 14060 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14061 14062 if (vstate->dtvs_nlocals > 0) { 14063 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14064 sizeof (dtrace_statvar_t *)); 14065 } 14066 } 14067 14068 #ifdef illumos 14069 static void 14070 dtrace_state_clean(dtrace_state_t *state) 14071 { 14072 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14073 return; 14074 14075 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14076 dtrace_speculation_clean(state); 14077 } 14078 14079 static void 14080 dtrace_state_deadman(dtrace_state_t *state) 14081 { 14082 hrtime_t now; 14083 14084 dtrace_sync(); 14085 14086 now = dtrace_gethrtime(); 14087 14088 if (state != dtrace_anon.dta_state && 14089 now - state->dts_laststatus >= dtrace_deadman_user) 14090 return; 14091 14092 /* 14093 * We must be sure that dts_alive never appears to be less than the 14094 * value upon entry to dtrace_state_deadman(), and because we lack a 14095 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14096 * store INT64_MAX to it, followed by a memory barrier, followed by 14097 * the new value. This assures that dts_alive never appears to be 14098 * less than its true value, regardless of the order in which the 14099 * stores to the underlying storage are issued. 14100 */ 14101 state->dts_alive = INT64_MAX; 14102 dtrace_membar_producer(); 14103 state->dts_alive = now; 14104 } 14105 #else /* !illumos */ 14106 static void 14107 dtrace_state_clean(void *arg) 14108 { 14109 dtrace_state_t *state = arg; 14110 dtrace_optval_t *opt = state->dts_options; 14111 14112 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14113 return; 14114 14115 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14116 dtrace_speculation_clean(state); 14117 14118 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14119 dtrace_state_clean, state); 14120 } 14121 14122 static void 14123 dtrace_state_deadman(void *arg) 14124 { 14125 dtrace_state_t *state = arg; 14126 hrtime_t now; 14127 14128 dtrace_sync(); 14129 14130 dtrace_debug_output(); 14131 14132 now = dtrace_gethrtime(); 14133 14134 if (state != dtrace_anon.dta_state && 14135 now - state->dts_laststatus >= dtrace_deadman_user) 14136 return; 14137 14138 /* 14139 * We must be sure that dts_alive never appears to be less than the 14140 * value upon entry to dtrace_state_deadman(), and because we lack a 14141 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14142 * store INT64_MAX to it, followed by a memory barrier, followed by 14143 * the new value. This assures that dts_alive never appears to be 14144 * less than its true value, regardless of the order in which the 14145 * stores to the underlying storage are issued. 14146 */ 14147 state->dts_alive = INT64_MAX; 14148 dtrace_membar_producer(); 14149 state->dts_alive = now; 14150 14151 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14152 dtrace_state_deadman, state); 14153 } 14154 #endif /* illumos */ 14155 14156 static dtrace_state_t * 14157 #ifdef illumos 14158 dtrace_state_create(dev_t *devp, cred_t *cr) 14159 #else 14160 dtrace_state_create(struct cdev *dev) 14161 #endif 14162 { 14163 #ifdef illumos 14164 minor_t minor; 14165 major_t major; 14166 #else 14167 cred_t *cr = NULL; 14168 int m = 0; 14169 #endif 14170 char c[30]; 14171 dtrace_state_t *state; 14172 dtrace_optval_t *opt; 14173 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14174 14175 ASSERT(MUTEX_HELD(&dtrace_lock)); 14176 ASSERT(MUTEX_HELD(&cpu_lock)); 14177 14178 #ifdef illumos 14179 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14180 VM_BESTFIT | VM_SLEEP); 14181 14182 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14183 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14184 return (NULL); 14185 } 14186 14187 state = ddi_get_soft_state(dtrace_softstate, minor); 14188 #else 14189 if (dev != NULL) { 14190 cr = dev->si_cred; 14191 m = dev2unit(dev); 14192 } 14193 14194 /* Allocate memory for the state. */ 14195 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14196 #endif 14197 14198 state->dts_epid = DTRACE_EPIDNONE + 1; 14199 14200 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14201 #ifdef illumos 14202 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14203 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14204 14205 if (devp != NULL) { 14206 major = getemajor(*devp); 14207 } else { 14208 major = ddi_driver_major(dtrace_devi); 14209 } 14210 14211 state->dts_dev = makedevice(major, minor); 14212 14213 if (devp != NULL) 14214 *devp = state->dts_dev; 14215 #else 14216 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14217 state->dts_dev = dev; 14218 #endif 14219 14220 /* 14221 * We allocate NCPU buffers. On the one hand, this can be quite 14222 * a bit of memory per instance (nearly 36K on a Starcat). On the 14223 * other hand, it saves an additional memory reference in the probe 14224 * path. 14225 */ 14226 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14227 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14228 14229 #ifdef illumos 14230 state->dts_cleaner = CYCLIC_NONE; 14231 state->dts_deadman = CYCLIC_NONE; 14232 #else 14233 callout_init(&state->dts_cleaner, 1); 14234 callout_init(&state->dts_deadman, 1); 14235 #endif 14236 state->dts_vstate.dtvs_state = state; 14237 14238 for (i = 0; i < DTRACEOPT_MAX; i++) 14239 state->dts_options[i] = DTRACEOPT_UNSET; 14240 14241 /* 14242 * Set the default options. 14243 */ 14244 opt = state->dts_options; 14245 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14246 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14247 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14248 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14249 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14250 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14251 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14252 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14253 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14254 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14255 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14256 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14257 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14258 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14259 14260 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14261 14262 /* 14263 * Depending on the user credentials, we set flag bits which alter probe 14264 * visibility or the amount of destructiveness allowed. In the case of 14265 * actual anonymous tracing, or the possession of all privileges, all of 14266 * the normal checks are bypassed. 14267 */ 14268 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14269 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14270 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14271 } else { 14272 /* 14273 * Set up the credentials for this instantiation. We take a 14274 * hold on the credential to prevent it from disappearing on 14275 * us; this in turn prevents the zone_t referenced by this 14276 * credential from disappearing. This means that we can 14277 * examine the credential and the zone from probe context. 14278 */ 14279 crhold(cr); 14280 state->dts_cred.dcr_cred = cr; 14281 14282 /* 14283 * CRA_PROC means "we have *some* privilege for dtrace" and 14284 * unlocks the use of variables like pid, zonename, etc. 14285 */ 14286 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14287 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14288 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14289 } 14290 14291 /* 14292 * dtrace_user allows use of syscall and profile providers. 14293 * If the user also has proc_owner and/or proc_zone, we 14294 * extend the scope to include additional visibility and 14295 * destructive power. 14296 */ 14297 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14298 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14299 state->dts_cred.dcr_visible |= 14300 DTRACE_CRV_ALLPROC; 14301 14302 state->dts_cred.dcr_action |= 14303 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14304 } 14305 14306 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14307 state->dts_cred.dcr_visible |= 14308 DTRACE_CRV_ALLZONE; 14309 14310 state->dts_cred.dcr_action |= 14311 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14312 } 14313 14314 /* 14315 * If we have all privs in whatever zone this is, 14316 * we can do destructive things to processes which 14317 * have altered credentials. 14318 */ 14319 #ifdef illumos 14320 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14321 cr->cr_zone->zone_privset)) { 14322 state->dts_cred.dcr_action |= 14323 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14324 } 14325 #endif 14326 } 14327 14328 /* 14329 * Holding the dtrace_kernel privilege also implies that 14330 * the user has the dtrace_user privilege from a visibility 14331 * perspective. But without further privileges, some 14332 * destructive actions are not available. 14333 */ 14334 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14335 /* 14336 * Make all probes in all zones visible. However, 14337 * this doesn't mean that all actions become available 14338 * to all zones. 14339 */ 14340 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14341 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14342 14343 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14344 DTRACE_CRA_PROC; 14345 /* 14346 * Holding proc_owner means that destructive actions 14347 * for *this* zone are allowed. 14348 */ 14349 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14350 state->dts_cred.dcr_action |= 14351 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14352 14353 /* 14354 * Holding proc_zone means that destructive actions 14355 * for this user/group ID in all zones is allowed. 14356 */ 14357 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14358 state->dts_cred.dcr_action |= 14359 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14360 14361 #ifdef illumos 14362 /* 14363 * If we have all privs in whatever zone this is, 14364 * we can do destructive things to processes which 14365 * have altered credentials. 14366 */ 14367 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14368 cr->cr_zone->zone_privset)) { 14369 state->dts_cred.dcr_action |= 14370 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14371 } 14372 #endif 14373 } 14374 14375 /* 14376 * Holding the dtrace_proc privilege gives control over fasttrap 14377 * and pid providers. We need to grant wider destructive 14378 * privileges in the event that the user has proc_owner and/or 14379 * proc_zone. 14380 */ 14381 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14382 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14383 state->dts_cred.dcr_action |= 14384 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14385 14386 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14387 state->dts_cred.dcr_action |= 14388 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14389 } 14390 } 14391 14392 return (state); 14393 } 14394 14395 static int 14396 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14397 { 14398 dtrace_optval_t *opt = state->dts_options, size; 14399 processorid_t cpu = 0;; 14400 int flags = 0, rval, factor, divisor = 1; 14401 14402 ASSERT(MUTEX_HELD(&dtrace_lock)); 14403 ASSERT(MUTEX_HELD(&cpu_lock)); 14404 ASSERT(which < DTRACEOPT_MAX); 14405 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14406 (state == dtrace_anon.dta_state && 14407 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14408 14409 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14410 return (0); 14411 14412 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14413 cpu = opt[DTRACEOPT_CPU]; 14414 14415 if (which == DTRACEOPT_SPECSIZE) 14416 flags |= DTRACEBUF_NOSWITCH; 14417 14418 if (which == DTRACEOPT_BUFSIZE) { 14419 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14420 flags |= DTRACEBUF_RING; 14421 14422 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14423 flags |= DTRACEBUF_FILL; 14424 14425 if (state != dtrace_anon.dta_state || 14426 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14427 flags |= DTRACEBUF_INACTIVE; 14428 } 14429 14430 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14431 /* 14432 * The size must be 8-byte aligned. If the size is not 8-byte 14433 * aligned, drop it down by the difference. 14434 */ 14435 if (size & (sizeof (uint64_t) - 1)) 14436 size -= size & (sizeof (uint64_t) - 1); 14437 14438 if (size < state->dts_reserve) { 14439 /* 14440 * Buffers always must be large enough to accommodate 14441 * their prereserved space. We return E2BIG instead 14442 * of ENOMEM in this case to allow for user-level 14443 * software to differentiate the cases. 14444 */ 14445 return (E2BIG); 14446 } 14447 14448 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14449 14450 if (rval != ENOMEM) { 14451 opt[which] = size; 14452 return (rval); 14453 } 14454 14455 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14456 return (rval); 14457 14458 for (divisor = 2; divisor < factor; divisor <<= 1) 14459 continue; 14460 } 14461 14462 return (ENOMEM); 14463 } 14464 14465 static int 14466 dtrace_state_buffers(dtrace_state_t *state) 14467 { 14468 dtrace_speculation_t *spec = state->dts_speculations; 14469 int rval, i; 14470 14471 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14472 DTRACEOPT_BUFSIZE)) != 0) 14473 return (rval); 14474 14475 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14476 DTRACEOPT_AGGSIZE)) != 0) 14477 return (rval); 14478 14479 for (i = 0; i < state->dts_nspeculations; i++) { 14480 if ((rval = dtrace_state_buffer(state, 14481 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14482 return (rval); 14483 } 14484 14485 return (0); 14486 } 14487 14488 static void 14489 dtrace_state_prereserve(dtrace_state_t *state) 14490 { 14491 dtrace_ecb_t *ecb; 14492 dtrace_probe_t *probe; 14493 14494 state->dts_reserve = 0; 14495 14496 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14497 return; 14498 14499 /* 14500 * If our buffer policy is a "fill" buffer policy, we need to set the 14501 * prereserved space to be the space required by the END probes. 14502 */ 14503 probe = dtrace_probes[dtrace_probeid_end - 1]; 14504 ASSERT(probe != NULL); 14505 14506 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14507 if (ecb->dte_state != state) 14508 continue; 14509 14510 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14511 } 14512 } 14513 14514 static int 14515 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14516 { 14517 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14518 dtrace_speculation_t *spec; 14519 dtrace_buffer_t *buf; 14520 #ifdef illumos 14521 cyc_handler_t hdlr; 14522 cyc_time_t when; 14523 #endif 14524 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14525 dtrace_icookie_t cookie; 14526 14527 mutex_enter(&cpu_lock); 14528 mutex_enter(&dtrace_lock); 14529 14530 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14531 rval = EBUSY; 14532 goto out; 14533 } 14534 14535 /* 14536 * Before we can perform any checks, we must prime all of the 14537 * retained enablings that correspond to this state. 14538 */ 14539 dtrace_enabling_prime(state); 14540 14541 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14542 rval = EACCES; 14543 goto out; 14544 } 14545 14546 dtrace_state_prereserve(state); 14547 14548 /* 14549 * Now we want to do is try to allocate our speculations. 14550 * We do not automatically resize the number of speculations; if 14551 * this fails, we will fail the operation. 14552 */ 14553 nspec = opt[DTRACEOPT_NSPEC]; 14554 ASSERT(nspec != DTRACEOPT_UNSET); 14555 14556 if (nspec > INT_MAX) { 14557 rval = ENOMEM; 14558 goto out; 14559 } 14560 14561 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14562 KM_NOSLEEP | KM_NORMALPRI); 14563 14564 if (spec == NULL) { 14565 rval = ENOMEM; 14566 goto out; 14567 } 14568 14569 state->dts_speculations = spec; 14570 state->dts_nspeculations = (int)nspec; 14571 14572 for (i = 0; i < nspec; i++) { 14573 if ((buf = kmem_zalloc(bufsize, 14574 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14575 rval = ENOMEM; 14576 goto err; 14577 } 14578 14579 spec[i].dtsp_buffer = buf; 14580 } 14581 14582 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14583 if (dtrace_anon.dta_state == NULL) { 14584 rval = ENOENT; 14585 goto out; 14586 } 14587 14588 if (state->dts_necbs != 0) { 14589 rval = EALREADY; 14590 goto out; 14591 } 14592 14593 state->dts_anon = dtrace_anon_grab(); 14594 ASSERT(state->dts_anon != NULL); 14595 state = state->dts_anon; 14596 14597 /* 14598 * We want "grabanon" to be set in the grabbed state, so we'll 14599 * copy that option value from the grabbing state into the 14600 * grabbed state. 14601 */ 14602 state->dts_options[DTRACEOPT_GRABANON] = 14603 opt[DTRACEOPT_GRABANON]; 14604 14605 *cpu = dtrace_anon.dta_beganon; 14606 14607 /* 14608 * If the anonymous state is active (as it almost certainly 14609 * is if the anonymous enabling ultimately matched anything), 14610 * we don't allow any further option processing -- but we 14611 * don't return failure. 14612 */ 14613 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14614 goto out; 14615 } 14616 14617 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14618 opt[DTRACEOPT_AGGSIZE] != 0) { 14619 if (state->dts_aggregations == NULL) { 14620 /* 14621 * We're not going to create an aggregation buffer 14622 * because we don't have any ECBs that contain 14623 * aggregations -- set this option to 0. 14624 */ 14625 opt[DTRACEOPT_AGGSIZE] = 0; 14626 } else { 14627 /* 14628 * If we have an aggregation buffer, we must also have 14629 * a buffer to use as scratch. 14630 */ 14631 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14632 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14633 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14634 } 14635 } 14636 } 14637 14638 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14639 opt[DTRACEOPT_SPECSIZE] != 0) { 14640 if (!state->dts_speculates) { 14641 /* 14642 * We're not going to create speculation buffers 14643 * because we don't have any ECBs that actually 14644 * speculate -- set the speculation size to 0. 14645 */ 14646 opt[DTRACEOPT_SPECSIZE] = 0; 14647 } 14648 } 14649 14650 /* 14651 * The bare minimum size for any buffer that we're actually going to 14652 * do anything to is sizeof (uint64_t). 14653 */ 14654 sz = sizeof (uint64_t); 14655 14656 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14657 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14658 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14659 /* 14660 * A buffer size has been explicitly set to 0 (or to a size 14661 * that will be adjusted to 0) and we need the space -- we 14662 * need to return failure. We return ENOSPC to differentiate 14663 * it from failing to allocate a buffer due to failure to meet 14664 * the reserve (for which we return E2BIG). 14665 */ 14666 rval = ENOSPC; 14667 goto out; 14668 } 14669 14670 if ((rval = dtrace_state_buffers(state)) != 0) 14671 goto err; 14672 14673 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14674 sz = dtrace_dstate_defsize; 14675 14676 do { 14677 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14678 14679 if (rval == 0) 14680 break; 14681 14682 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14683 goto err; 14684 } while (sz >>= 1); 14685 14686 opt[DTRACEOPT_DYNVARSIZE] = sz; 14687 14688 if (rval != 0) 14689 goto err; 14690 14691 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14692 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14693 14694 if (opt[DTRACEOPT_CLEANRATE] == 0) 14695 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14696 14697 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14698 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14699 14700 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14701 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14702 14703 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14704 #ifdef illumos 14705 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14706 hdlr.cyh_arg = state; 14707 hdlr.cyh_level = CY_LOW_LEVEL; 14708 14709 when.cyt_when = 0; 14710 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14711 14712 state->dts_cleaner = cyclic_add(&hdlr, &when); 14713 14714 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14715 hdlr.cyh_arg = state; 14716 hdlr.cyh_level = CY_LOW_LEVEL; 14717 14718 when.cyt_when = 0; 14719 when.cyt_interval = dtrace_deadman_interval; 14720 14721 state->dts_deadman = cyclic_add(&hdlr, &when); 14722 #else 14723 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14724 dtrace_state_clean, state); 14725 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14726 dtrace_state_deadman, state); 14727 #endif 14728 14729 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14730 14731 #ifdef illumos 14732 if (state->dts_getf != 0 && 14733 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14734 /* 14735 * We don't have kernel privs but we have at least one call 14736 * to getf(); we need to bump our zone's count, and (if 14737 * this is the first enabling to have an unprivileged call 14738 * to getf()) we need to hook into closef(). 14739 */ 14740 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14741 14742 if (dtrace_getf++ == 0) { 14743 ASSERT(dtrace_closef == NULL); 14744 dtrace_closef = dtrace_getf_barrier; 14745 } 14746 } 14747 #endif 14748 14749 /* 14750 * Now it's time to actually fire the BEGIN probe. We need to disable 14751 * interrupts here both to record the CPU on which we fired the BEGIN 14752 * probe (the data from this CPU will be processed first at user 14753 * level) and to manually activate the buffer for this CPU. 14754 */ 14755 cookie = dtrace_interrupt_disable(); 14756 *cpu = curcpu; 14757 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14758 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14759 14760 dtrace_probe(dtrace_probeid_begin, 14761 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14762 dtrace_interrupt_enable(cookie); 14763 /* 14764 * We may have had an exit action from a BEGIN probe; only change our 14765 * state to ACTIVE if we're still in WARMUP. 14766 */ 14767 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14768 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14769 14770 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14771 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14772 14773 /* 14774 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14775 * want each CPU to transition its principal buffer out of the 14776 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14777 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14778 * atomically transition from processing none of a state's ECBs to 14779 * processing all of them. 14780 */ 14781 dtrace_xcall(DTRACE_CPUALL, 14782 (dtrace_xcall_t)dtrace_buffer_activate, state); 14783 goto out; 14784 14785 err: 14786 dtrace_buffer_free(state->dts_buffer); 14787 dtrace_buffer_free(state->dts_aggbuffer); 14788 14789 if ((nspec = state->dts_nspeculations) == 0) { 14790 ASSERT(state->dts_speculations == NULL); 14791 goto out; 14792 } 14793 14794 spec = state->dts_speculations; 14795 ASSERT(spec != NULL); 14796 14797 for (i = 0; i < state->dts_nspeculations; i++) { 14798 if ((buf = spec[i].dtsp_buffer) == NULL) 14799 break; 14800 14801 dtrace_buffer_free(buf); 14802 kmem_free(buf, bufsize); 14803 } 14804 14805 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14806 state->dts_nspeculations = 0; 14807 state->dts_speculations = NULL; 14808 14809 out: 14810 mutex_exit(&dtrace_lock); 14811 mutex_exit(&cpu_lock); 14812 14813 return (rval); 14814 } 14815 14816 static int 14817 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14818 { 14819 dtrace_icookie_t cookie; 14820 14821 ASSERT(MUTEX_HELD(&dtrace_lock)); 14822 14823 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14824 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14825 return (EINVAL); 14826 14827 /* 14828 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14829 * to be sure that every CPU has seen it. See below for the details 14830 * on why this is done. 14831 */ 14832 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14833 dtrace_sync(); 14834 14835 /* 14836 * By this point, it is impossible for any CPU to be still processing 14837 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14838 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14839 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14840 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14841 * iff we're in the END probe. 14842 */ 14843 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14844 dtrace_sync(); 14845 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14846 14847 /* 14848 * Finally, we can release the reserve and call the END probe. We 14849 * disable interrupts across calling the END probe to allow us to 14850 * return the CPU on which we actually called the END probe. This 14851 * allows user-land to be sure that this CPU's principal buffer is 14852 * processed last. 14853 */ 14854 state->dts_reserve = 0; 14855 14856 cookie = dtrace_interrupt_disable(); 14857 *cpu = curcpu; 14858 dtrace_probe(dtrace_probeid_end, 14859 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14860 dtrace_interrupt_enable(cookie); 14861 14862 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14863 dtrace_sync(); 14864 14865 #ifdef illumos 14866 if (state->dts_getf != 0 && 14867 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14868 /* 14869 * We don't have kernel privs but we have at least one call 14870 * to getf(); we need to lower our zone's count, and (if 14871 * this is the last enabling to have an unprivileged call 14872 * to getf()) we need to clear the closef() hook. 14873 */ 14874 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14875 ASSERT(dtrace_closef == dtrace_getf_barrier); 14876 ASSERT(dtrace_getf > 0); 14877 14878 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14879 14880 if (--dtrace_getf == 0) 14881 dtrace_closef = NULL; 14882 } 14883 #endif 14884 14885 return (0); 14886 } 14887 14888 static int 14889 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14890 dtrace_optval_t val) 14891 { 14892 ASSERT(MUTEX_HELD(&dtrace_lock)); 14893 14894 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14895 return (EBUSY); 14896 14897 if (option >= DTRACEOPT_MAX) 14898 return (EINVAL); 14899 14900 if (option != DTRACEOPT_CPU && val < 0) 14901 return (EINVAL); 14902 14903 switch (option) { 14904 case DTRACEOPT_DESTRUCTIVE: 14905 if (dtrace_destructive_disallow) 14906 return (EACCES); 14907 14908 state->dts_cred.dcr_destructive = 1; 14909 break; 14910 14911 case DTRACEOPT_BUFSIZE: 14912 case DTRACEOPT_DYNVARSIZE: 14913 case DTRACEOPT_AGGSIZE: 14914 case DTRACEOPT_SPECSIZE: 14915 case DTRACEOPT_STRSIZE: 14916 if (val < 0) 14917 return (EINVAL); 14918 14919 if (val >= LONG_MAX) { 14920 /* 14921 * If this is an otherwise negative value, set it to 14922 * the highest multiple of 128m less than LONG_MAX. 14923 * Technically, we're adjusting the size without 14924 * regard to the buffer resizing policy, but in fact, 14925 * this has no effect -- if we set the buffer size to 14926 * ~LONG_MAX and the buffer policy is ultimately set to 14927 * be "manual", the buffer allocation is guaranteed to 14928 * fail, if only because the allocation requires two 14929 * buffers. (We set the the size to the highest 14930 * multiple of 128m because it ensures that the size 14931 * will remain a multiple of a megabyte when 14932 * repeatedly halved -- all the way down to 15m.) 14933 */ 14934 val = LONG_MAX - (1 << 27) + 1; 14935 } 14936 } 14937 14938 state->dts_options[option] = val; 14939 14940 return (0); 14941 } 14942 14943 static void 14944 dtrace_state_destroy(dtrace_state_t *state) 14945 { 14946 dtrace_ecb_t *ecb; 14947 dtrace_vstate_t *vstate = &state->dts_vstate; 14948 #ifdef illumos 14949 minor_t minor = getminor(state->dts_dev); 14950 #endif 14951 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14952 dtrace_speculation_t *spec = state->dts_speculations; 14953 int nspec = state->dts_nspeculations; 14954 uint32_t match; 14955 14956 ASSERT(MUTEX_HELD(&dtrace_lock)); 14957 ASSERT(MUTEX_HELD(&cpu_lock)); 14958 14959 /* 14960 * First, retract any retained enablings for this state. 14961 */ 14962 dtrace_enabling_retract(state); 14963 ASSERT(state->dts_nretained == 0); 14964 14965 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14966 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14967 /* 14968 * We have managed to come into dtrace_state_destroy() on a 14969 * hot enabling -- almost certainly because of a disorderly 14970 * shutdown of a consumer. (That is, a consumer that is 14971 * exiting without having called dtrace_stop().) In this case, 14972 * we're going to set our activity to be KILLED, and then 14973 * issue a sync to be sure that everyone is out of probe 14974 * context before we start blowing away ECBs. 14975 */ 14976 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14977 dtrace_sync(); 14978 } 14979 14980 /* 14981 * Release the credential hold we took in dtrace_state_create(). 14982 */ 14983 if (state->dts_cred.dcr_cred != NULL) 14984 crfree(state->dts_cred.dcr_cred); 14985 14986 /* 14987 * Now we can safely disable and destroy any enabled probes. Because 14988 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14989 * (especially if they're all enabled), we take two passes through the 14990 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14991 * in the second we disable whatever is left over. 14992 */ 14993 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14994 for (i = 0; i < state->dts_necbs; i++) { 14995 if ((ecb = state->dts_ecbs[i]) == NULL) 14996 continue; 14997 14998 if (match && ecb->dte_probe != NULL) { 14999 dtrace_probe_t *probe = ecb->dte_probe; 15000 dtrace_provider_t *prov = probe->dtpr_provider; 15001 15002 if (!(prov->dtpv_priv.dtpp_flags & match)) 15003 continue; 15004 } 15005 15006 dtrace_ecb_disable(ecb); 15007 dtrace_ecb_destroy(ecb); 15008 } 15009 15010 if (!match) 15011 break; 15012 } 15013 15014 /* 15015 * Before we free the buffers, perform one more sync to assure that 15016 * every CPU is out of probe context. 15017 */ 15018 dtrace_sync(); 15019 15020 dtrace_buffer_free(state->dts_buffer); 15021 dtrace_buffer_free(state->dts_aggbuffer); 15022 15023 for (i = 0; i < nspec; i++) 15024 dtrace_buffer_free(spec[i].dtsp_buffer); 15025 15026 #ifdef illumos 15027 if (state->dts_cleaner != CYCLIC_NONE) 15028 cyclic_remove(state->dts_cleaner); 15029 15030 if (state->dts_deadman != CYCLIC_NONE) 15031 cyclic_remove(state->dts_deadman); 15032 #else 15033 callout_stop(&state->dts_cleaner); 15034 callout_drain(&state->dts_cleaner); 15035 callout_stop(&state->dts_deadman); 15036 callout_drain(&state->dts_deadman); 15037 #endif 15038 15039 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15040 dtrace_vstate_fini(vstate); 15041 if (state->dts_ecbs != NULL) 15042 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15043 15044 if (state->dts_aggregations != NULL) { 15045 #ifdef DEBUG 15046 for (i = 0; i < state->dts_naggregations; i++) 15047 ASSERT(state->dts_aggregations[i] == NULL); 15048 #endif 15049 ASSERT(state->dts_naggregations > 0); 15050 kmem_free(state->dts_aggregations, 15051 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15052 } 15053 15054 kmem_free(state->dts_buffer, bufsize); 15055 kmem_free(state->dts_aggbuffer, bufsize); 15056 15057 for (i = 0; i < nspec; i++) 15058 kmem_free(spec[i].dtsp_buffer, bufsize); 15059 15060 if (spec != NULL) 15061 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15062 15063 dtrace_format_destroy(state); 15064 15065 if (state->dts_aggid_arena != NULL) { 15066 #ifdef illumos 15067 vmem_destroy(state->dts_aggid_arena); 15068 #else 15069 delete_unrhdr(state->dts_aggid_arena); 15070 #endif 15071 state->dts_aggid_arena = NULL; 15072 } 15073 #ifdef illumos 15074 ddi_soft_state_free(dtrace_softstate, minor); 15075 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15076 #endif 15077 } 15078 15079 /* 15080 * DTrace Anonymous Enabling Functions 15081 */ 15082 static dtrace_state_t * 15083 dtrace_anon_grab(void) 15084 { 15085 dtrace_state_t *state; 15086 15087 ASSERT(MUTEX_HELD(&dtrace_lock)); 15088 15089 if ((state = dtrace_anon.dta_state) == NULL) { 15090 ASSERT(dtrace_anon.dta_enabling == NULL); 15091 return (NULL); 15092 } 15093 15094 ASSERT(dtrace_anon.dta_enabling != NULL); 15095 ASSERT(dtrace_retained != NULL); 15096 15097 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15098 dtrace_anon.dta_enabling = NULL; 15099 dtrace_anon.dta_state = NULL; 15100 15101 return (state); 15102 } 15103 15104 static void 15105 dtrace_anon_property(void) 15106 { 15107 int i, rv; 15108 dtrace_state_t *state; 15109 dof_hdr_t *dof; 15110 char c[32]; /* enough for "dof-data-" + digits */ 15111 15112 ASSERT(MUTEX_HELD(&dtrace_lock)); 15113 ASSERT(MUTEX_HELD(&cpu_lock)); 15114 15115 for (i = 0; ; i++) { 15116 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15117 15118 dtrace_err_verbose = 1; 15119 15120 if ((dof = dtrace_dof_property(c)) == NULL) { 15121 dtrace_err_verbose = 0; 15122 break; 15123 } 15124 15125 #ifdef illumos 15126 /* 15127 * We want to create anonymous state, so we need to transition 15128 * the kernel debugger to indicate that DTrace is active. If 15129 * this fails (e.g. because the debugger has modified text in 15130 * some way), we won't continue with the processing. 15131 */ 15132 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15133 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15134 "enabling ignored."); 15135 dtrace_dof_destroy(dof); 15136 break; 15137 } 15138 #endif 15139 15140 /* 15141 * If we haven't allocated an anonymous state, we'll do so now. 15142 */ 15143 if ((state = dtrace_anon.dta_state) == NULL) { 15144 #ifdef illumos 15145 state = dtrace_state_create(NULL, NULL); 15146 #else 15147 state = dtrace_state_create(NULL); 15148 #endif 15149 dtrace_anon.dta_state = state; 15150 15151 if (state == NULL) { 15152 /* 15153 * This basically shouldn't happen: the only 15154 * failure mode from dtrace_state_create() is a 15155 * failure of ddi_soft_state_zalloc() that 15156 * itself should never happen. Still, the 15157 * interface allows for a failure mode, and 15158 * we want to fail as gracefully as possible: 15159 * we'll emit an error message and cease 15160 * processing anonymous state in this case. 15161 */ 15162 cmn_err(CE_WARN, "failed to create " 15163 "anonymous state"); 15164 dtrace_dof_destroy(dof); 15165 break; 15166 } 15167 } 15168 15169 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15170 &dtrace_anon.dta_enabling, 0, B_TRUE); 15171 15172 if (rv == 0) 15173 rv = dtrace_dof_options(dof, state); 15174 15175 dtrace_err_verbose = 0; 15176 dtrace_dof_destroy(dof); 15177 15178 if (rv != 0) { 15179 /* 15180 * This is malformed DOF; chuck any anonymous state 15181 * that we created. 15182 */ 15183 ASSERT(dtrace_anon.dta_enabling == NULL); 15184 dtrace_state_destroy(state); 15185 dtrace_anon.dta_state = NULL; 15186 break; 15187 } 15188 15189 ASSERT(dtrace_anon.dta_enabling != NULL); 15190 } 15191 15192 if (dtrace_anon.dta_enabling != NULL) { 15193 int rval; 15194 15195 /* 15196 * dtrace_enabling_retain() can only fail because we are 15197 * trying to retain more enablings than are allowed -- but 15198 * we only have one anonymous enabling, and we are guaranteed 15199 * to be allowed at least one retained enabling; we assert 15200 * that dtrace_enabling_retain() returns success. 15201 */ 15202 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15203 ASSERT(rval == 0); 15204 15205 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15206 } 15207 } 15208 15209 /* 15210 * DTrace Helper Functions 15211 */ 15212 static void 15213 dtrace_helper_trace(dtrace_helper_action_t *helper, 15214 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15215 { 15216 uint32_t size, next, nnext, i; 15217 dtrace_helptrace_t *ent, *buffer; 15218 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15219 15220 if ((buffer = dtrace_helptrace_buffer) == NULL) 15221 return; 15222 15223 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15224 15225 /* 15226 * What would a tracing framework be without its own tracing 15227 * framework? (Well, a hell of a lot simpler, for starters...) 15228 */ 15229 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15230 sizeof (uint64_t) - sizeof (uint64_t); 15231 15232 /* 15233 * Iterate until we can allocate a slot in the trace buffer. 15234 */ 15235 do { 15236 next = dtrace_helptrace_next; 15237 15238 if (next + size < dtrace_helptrace_bufsize) { 15239 nnext = next + size; 15240 } else { 15241 nnext = size; 15242 } 15243 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15244 15245 /* 15246 * We have our slot; fill it in. 15247 */ 15248 if (nnext == size) { 15249 dtrace_helptrace_wrapped++; 15250 next = 0; 15251 } 15252 15253 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15254 ent->dtht_helper = helper; 15255 ent->dtht_where = where; 15256 ent->dtht_nlocals = vstate->dtvs_nlocals; 15257 15258 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15259 mstate->dtms_fltoffs : -1; 15260 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15261 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15262 15263 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15264 dtrace_statvar_t *svar; 15265 15266 if ((svar = vstate->dtvs_locals[i]) == NULL) 15267 continue; 15268 15269 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15270 ent->dtht_locals[i] = 15271 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15272 } 15273 } 15274 15275 static uint64_t 15276 dtrace_helper(int which, dtrace_mstate_t *mstate, 15277 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15278 { 15279 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15280 uint64_t sarg0 = mstate->dtms_arg[0]; 15281 uint64_t sarg1 = mstate->dtms_arg[1]; 15282 uint64_t rval = 0; 15283 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15284 dtrace_helper_action_t *helper; 15285 dtrace_vstate_t *vstate; 15286 dtrace_difo_t *pred; 15287 int i, trace = dtrace_helptrace_buffer != NULL; 15288 15289 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15290 15291 if (helpers == NULL) 15292 return (0); 15293 15294 if ((helper = helpers->dthps_actions[which]) == NULL) 15295 return (0); 15296 15297 vstate = &helpers->dthps_vstate; 15298 mstate->dtms_arg[0] = arg0; 15299 mstate->dtms_arg[1] = arg1; 15300 15301 /* 15302 * Now iterate over each helper. If its predicate evaluates to 'true', 15303 * we'll call the corresponding actions. Note that the below calls 15304 * to dtrace_dif_emulate() may set faults in machine state. This is 15305 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15306 * the stored DIF offset with its own (which is the desired behavior). 15307 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15308 * from machine state; this is okay, too. 15309 */ 15310 for (; helper != NULL; helper = helper->dtha_next) { 15311 if ((pred = helper->dtha_predicate) != NULL) { 15312 if (trace) 15313 dtrace_helper_trace(helper, mstate, vstate, 0); 15314 15315 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15316 goto next; 15317 15318 if (*flags & CPU_DTRACE_FAULT) 15319 goto err; 15320 } 15321 15322 for (i = 0; i < helper->dtha_nactions; i++) { 15323 if (trace) 15324 dtrace_helper_trace(helper, 15325 mstate, vstate, i + 1); 15326 15327 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15328 mstate, vstate, state); 15329 15330 if (*flags & CPU_DTRACE_FAULT) 15331 goto err; 15332 } 15333 15334 next: 15335 if (trace) 15336 dtrace_helper_trace(helper, mstate, vstate, 15337 DTRACE_HELPTRACE_NEXT); 15338 } 15339 15340 if (trace) 15341 dtrace_helper_trace(helper, mstate, vstate, 15342 DTRACE_HELPTRACE_DONE); 15343 15344 /* 15345 * Restore the arg0 that we saved upon entry. 15346 */ 15347 mstate->dtms_arg[0] = sarg0; 15348 mstate->dtms_arg[1] = sarg1; 15349 15350 return (rval); 15351 15352 err: 15353 if (trace) 15354 dtrace_helper_trace(helper, mstate, vstate, 15355 DTRACE_HELPTRACE_ERR); 15356 15357 /* 15358 * Restore the arg0 that we saved upon entry. 15359 */ 15360 mstate->dtms_arg[0] = sarg0; 15361 mstate->dtms_arg[1] = sarg1; 15362 15363 return (0); 15364 } 15365 15366 static void 15367 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15368 dtrace_vstate_t *vstate) 15369 { 15370 int i; 15371 15372 if (helper->dtha_predicate != NULL) 15373 dtrace_difo_release(helper->dtha_predicate, vstate); 15374 15375 for (i = 0; i < helper->dtha_nactions; i++) { 15376 ASSERT(helper->dtha_actions[i] != NULL); 15377 dtrace_difo_release(helper->dtha_actions[i], vstate); 15378 } 15379 15380 kmem_free(helper->dtha_actions, 15381 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15382 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15383 } 15384 15385 static int 15386 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15387 { 15388 proc_t *p = curproc; 15389 dtrace_vstate_t *vstate; 15390 int i; 15391 15392 if (help == NULL) 15393 help = p->p_dtrace_helpers; 15394 15395 ASSERT(MUTEX_HELD(&dtrace_lock)); 15396 15397 if (help == NULL || gen > help->dthps_generation) 15398 return (EINVAL); 15399 15400 vstate = &help->dthps_vstate; 15401 15402 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15403 dtrace_helper_action_t *last = NULL, *h, *next; 15404 15405 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15406 next = h->dtha_next; 15407 15408 if (h->dtha_generation == gen) { 15409 if (last != NULL) { 15410 last->dtha_next = next; 15411 } else { 15412 help->dthps_actions[i] = next; 15413 } 15414 15415 dtrace_helper_action_destroy(h, vstate); 15416 } else { 15417 last = h; 15418 } 15419 } 15420 } 15421 15422 /* 15423 * Interate until we've cleared out all helper providers with the 15424 * given generation number. 15425 */ 15426 for (;;) { 15427 dtrace_helper_provider_t *prov; 15428 15429 /* 15430 * Look for a helper provider with the right generation. We 15431 * have to start back at the beginning of the list each time 15432 * because we drop dtrace_lock. It's unlikely that we'll make 15433 * more than two passes. 15434 */ 15435 for (i = 0; i < help->dthps_nprovs; i++) { 15436 prov = help->dthps_provs[i]; 15437 15438 if (prov->dthp_generation == gen) 15439 break; 15440 } 15441 15442 /* 15443 * If there were no matches, we're done. 15444 */ 15445 if (i == help->dthps_nprovs) 15446 break; 15447 15448 /* 15449 * Move the last helper provider into this slot. 15450 */ 15451 help->dthps_nprovs--; 15452 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15453 help->dthps_provs[help->dthps_nprovs] = NULL; 15454 15455 mutex_exit(&dtrace_lock); 15456 15457 /* 15458 * If we have a meta provider, remove this helper provider. 15459 */ 15460 mutex_enter(&dtrace_meta_lock); 15461 if (dtrace_meta_pid != NULL) { 15462 ASSERT(dtrace_deferred_pid == NULL); 15463 dtrace_helper_provider_remove(&prov->dthp_prov, 15464 p->p_pid); 15465 } 15466 mutex_exit(&dtrace_meta_lock); 15467 15468 dtrace_helper_provider_destroy(prov); 15469 15470 mutex_enter(&dtrace_lock); 15471 } 15472 15473 return (0); 15474 } 15475 15476 static int 15477 dtrace_helper_validate(dtrace_helper_action_t *helper) 15478 { 15479 int err = 0, i; 15480 dtrace_difo_t *dp; 15481 15482 if ((dp = helper->dtha_predicate) != NULL) 15483 err += dtrace_difo_validate_helper(dp); 15484 15485 for (i = 0; i < helper->dtha_nactions; i++) 15486 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15487 15488 return (err == 0); 15489 } 15490 15491 static int 15492 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15493 dtrace_helpers_t *help) 15494 { 15495 dtrace_helper_action_t *helper, *last; 15496 dtrace_actdesc_t *act; 15497 dtrace_vstate_t *vstate; 15498 dtrace_predicate_t *pred; 15499 int count = 0, nactions = 0, i; 15500 15501 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15502 return (EINVAL); 15503 15504 last = help->dthps_actions[which]; 15505 vstate = &help->dthps_vstate; 15506 15507 for (count = 0; last != NULL; last = last->dtha_next) { 15508 count++; 15509 if (last->dtha_next == NULL) 15510 break; 15511 } 15512 15513 /* 15514 * If we already have dtrace_helper_actions_max helper actions for this 15515 * helper action type, we'll refuse to add a new one. 15516 */ 15517 if (count >= dtrace_helper_actions_max) 15518 return (ENOSPC); 15519 15520 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15521 helper->dtha_generation = help->dthps_generation; 15522 15523 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15524 ASSERT(pred->dtp_difo != NULL); 15525 dtrace_difo_hold(pred->dtp_difo); 15526 helper->dtha_predicate = pred->dtp_difo; 15527 } 15528 15529 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15530 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15531 goto err; 15532 15533 if (act->dtad_difo == NULL) 15534 goto err; 15535 15536 nactions++; 15537 } 15538 15539 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15540 (helper->dtha_nactions = nactions), KM_SLEEP); 15541 15542 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15543 dtrace_difo_hold(act->dtad_difo); 15544 helper->dtha_actions[i++] = act->dtad_difo; 15545 } 15546 15547 if (!dtrace_helper_validate(helper)) 15548 goto err; 15549 15550 if (last == NULL) { 15551 help->dthps_actions[which] = helper; 15552 } else { 15553 last->dtha_next = helper; 15554 } 15555 15556 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15557 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15558 dtrace_helptrace_next = 0; 15559 } 15560 15561 return (0); 15562 err: 15563 dtrace_helper_action_destroy(helper, vstate); 15564 return (EINVAL); 15565 } 15566 15567 static void 15568 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15569 dof_helper_t *dofhp) 15570 { 15571 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15572 15573 mutex_enter(&dtrace_meta_lock); 15574 mutex_enter(&dtrace_lock); 15575 15576 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15577 /* 15578 * If the dtrace module is loaded but not attached, or if 15579 * there aren't isn't a meta provider registered to deal with 15580 * these provider descriptions, we need to postpone creating 15581 * the actual providers until later. 15582 */ 15583 15584 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15585 dtrace_deferred_pid != help) { 15586 help->dthps_deferred = 1; 15587 help->dthps_pid = p->p_pid; 15588 help->dthps_next = dtrace_deferred_pid; 15589 help->dthps_prev = NULL; 15590 if (dtrace_deferred_pid != NULL) 15591 dtrace_deferred_pid->dthps_prev = help; 15592 dtrace_deferred_pid = help; 15593 } 15594 15595 mutex_exit(&dtrace_lock); 15596 15597 } else if (dofhp != NULL) { 15598 /* 15599 * If the dtrace module is loaded and we have a particular 15600 * helper provider description, pass that off to the 15601 * meta provider. 15602 */ 15603 15604 mutex_exit(&dtrace_lock); 15605 15606 dtrace_helper_provide(dofhp, p->p_pid); 15607 15608 } else { 15609 /* 15610 * Otherwise, just pass all the helper provider descriptions 15611 * off to the meta provider. 15612 */ 15613 15614 int i; 15615 mutex_exit(&dtrace_lock); 15616 15617 for (i = 0; i < help->dthps_nprovs; i++) { 15618 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15619 p->p_pid); 15620 } 15621 } 15622 15623 mutex_exit(&dtrace_meta_lock); 15624 } 15625 15626 static int 15627 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 15628 { 15629 dtrace_helper_provider_t *hprov, **tmp_provs; 15630 uint_t tmp_maxprovs, i; 15631 15632 ASSERT(MUTEX_HELD(&dtrace_lock)); 15633 ASSERT(help != NULL); 15634 15635 /* 15636 * If we already have dtrace_helper_providers_max helper providers, 15637 * we're refuse to add a new one. 15638 */ 15639 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15640 return (ENOSPC); 15641 15642 /* 15643 * Check to make sure this isn't a duplicate. 15644 */ 15645 for (i = 0; i < help->dthps_nprovs; i++) { 15646 if (dofhp->dofhp_dof == 15647 help->dthps_provs[i]->dthp_prov.dofhp_dof) 15648 return (EALREADY); 15649 } 15650 15651 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15652 hprov->dthp_prov = *dofhp; 15653 hprov->dthp_ref = 1; 15654 hprov->dthp_generation = gen; 15655 15656 /* 15657 * Allocate a bigger table for helper providers if it's already full. 15658 */ 15659 if (help->dthps_maxprovs == help->dthps_nprovs) { 15660 tmp_maxprovs = help->dthps_maxprovs; 15661 tmp_provs = help->dthps_provs; 15662 15663 if (help->dthps_maxprovs == 0) 15664 help->dthps_maxprovs = 2; 15665 else 15666 help->dthps_maxprovs *= 2; 15667 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15668 help->dthps_maxprovs = dtrace_helper_providers_max; 15669 15670 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15671 15672 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15673 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15674 15675 if (tmp_provs != NULL) { 15676 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15677 sizeof (dtrace_helper_provider_t *)); 15678 kmem_free(tmp_provs, tmp_maxprovs * 15679 sizeof (dtrace_helper_provider_t *)); 15680 } 15681 } 15682 15683 help->dthps_provs[help->dthps_nprovs] = hprov; 15684 help->dthps_nprovs++; 15685 15686 return (0); 15687 } 15688 15689 static void 15690 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15691 { 15692 mutex_enter(&dtrace_lock); 15693 15694 if (--hprov->dthp_ref == 0) { 15695 dof_hdr_t *dof; 15696 mutex_exit(&dtrace_lock); 15697 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15698 dtrace_dof_destroy(dof); 15699 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15700 } else { 15701 mutex_exit(&dtrace_lock); 15702 } 15703 } 15704 15705 static int 15706 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15707 { 15708 uintptr_t daddr = (uintptr_t)dof; 15709 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15710 dof_provider_t *provider; 15711 dof_probe_t *probe; 15712 uint8_t *arg; 15713 char *strtab, *typestr; 15714 dof_stridx_t typeidx; 15715 size_t typesz; 15716 uint_t nprobes, j, k; 15717 15718 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15719 15720 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15721 dtrace_dof_error(dof, "misaligned section offset"); 15722 return (-1); 15723 } 15724 15725 /* 15726 * The section needs to be large enough to contain the DOF provider 15727 * structure appropriate for the given version. 15728 */ 15729 if (sec->dofs_size < 15730 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15731 offsetof(dof_provider_t, dofpv_prenoffs) : 15732 sizeof (dof_provider_t))) { 15733 dtrace_dof_error(dof, "provider section too small"); 15734 return (-1); 15735 } 15736 15737 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15738 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15739 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15740 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15741 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15742 15743 if (str_sec == NULL || prb_sec == NULL || 15744 arg_sec == NULL || off_sec == NULL) 15745 return (-1); 15746 15747 enoff_sec = NULL; 15748 15749 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15750 provider->dofpv_prenoffs != DOF_SECT_NONE && 15751 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15752 provider->dofpv_prenoffs)) == NULL) 15753 return (-1); 15754 15755 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15756 15757 if (provider->dofpv_name >= str_sec->dofs_size || 15758 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15759 dtrace_dof_error(dof, "invalid provider name"); 15760 return (-1); 15761 } 15762 15763 if (prb_sec->dofs_entsize == 0 || 15764 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15765 dtrace_dof_error(dof, "invalid entry size"); 15766 return (-1); 15767 } 15768 15769 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15770 dtrace_dof_error(dof, "misaligned entry size"); 15771 return (-1); 15772 } 15773 15774 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15775 dtrace_dof_error(dof, "invalid entry size"); 15776 return (-1); 15777 } 15778 15779 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15780 dtrace_dof_error(dof, "misaligned section offset"); 15781 return (-1); 15782 } 15783 15784 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15785 dtrace_dof_error(dof, "invalid entry size"); 15786 return (-1); 15787 } 15788 15789 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15790 15791 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15792 15793 /* 15794 * Take a pass through the probes to check for errors. 15795 */ 15796 for (j = 0; j < nprobes; j++) { 15797 probe = (dof_probe_t *)(uintptr_t)(daddr + 15798 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15799 15800 if (probe->dofpr_func >= str_sec->dofs_size) { 15801 dtrace_dof_error(dof, "invalid function name"); 15802 return (-1); 15803 } 15804 15805 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15806 dtrace_dof_error(dof, "function name too long"); 15807 return (-1); 15808 } 15809 15810 if (probe->dofpr_name >= str_sec->dofs_size || 15811 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15812 dtrace_dof_error(dof, "invalid probe name"); 15813 return (-1); 15814 } 15815 15816 /* 15817 * The offset count must not wrap the index, and the offsets 15818 * must also not overflow the section's data. 15819 */ 15820 if (probe->dofpr_offidx + probe->dofpr_noffs < 15821 probe->dofpr_offidx || 15822 (probe->dofpr_offidx + probe->dofpr_noffs) * 15823 off_sec->dofs_entsize > off_sec->dofs_size) { 15824 dtrace_dof_error(dof, "invalid probe offset"); 15825 return (-1); 15826 } 15827 15828 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15829 /* 15830 * If there's no is-enabled offset section, make sure 15831 * there aren't any is-enabled offsets. Otherwise 15832 * perform the same checks as for probe offsets 15833 * (immediately above). 15834 */ 15835 if (enoff_sec == NULL) { 15836 if (probe->dofpr_enoffidx != 0 || 15837 probe->dofpr_nenoffs != 0) { 15838 dtrace_dof_error(dof, "is-enabled " 15839 "offsets with null section"); 15840 return (-1); 15841 } 15842 } else if (probe->dofpr_enoffidx + 15843 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15844 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15845 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15846 dtrace_dof_error(dof, "invalid is-enabled " 15847 "offset"); 15848 return (-1); 15849 } 15850 15851 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15852 dtrace_dof_error(dof, "zero probe and " 15853 "is-enabled offsets"); 15854 return (-1); 15855 } 15856 } else if (probe->dofpr_noffs == 0) { 15857 dtrace_dof_error(dof, "zero probe offsets"); 15858 return (-1); 15859 } 15860 15861 if (probe->dofpr_argidx + probe->dofpr_xargc < 15862 probe->dofpr_argidx || 15863 (probe->dofpr_argidx + probe->dofpr_xargc) * 15864 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15865 dtrace_dof_error(dof, "invalid args"); 15866 return (-1); 15867 } 15868 15869 typeidx = probe->dofpr_nargv; 15870 typestr = strtab + probe->dofpr_nargv; 15871 for (k = 0; k < probe->dofpr_nargc; k++) { 15872 if (typeidx >= str_sec->dofs_size) { 15873 dtrace_dof_error(dof, "bad " 15874 "native argument type"); 15875 return (-1); 15876 } 15877 15878 typesz = strlen(typestr) + 1; 15879 if (typesz > DTRACE_ARGTYPELEN) { 15880 dtrace_dof_error(dof, "native " 15881 "argument type too long"); 15882 return (-1); 15883 } 15884 typeidx += typesz; 15885 typestr += typesz; 15886 } 15887 15888 typeidx = probe->dofpr_xargv; 15889 typestr = strtab + probe->dofpr_xargv; 15890 for (k = 0; k < probe->dofpr_xargc; k++) { 15891 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15892 dtrace_dof_error(dof, "bad " 15893 "native argument index"); 15894 return (-1); 15895 } 15896 15897 if (typeidx >= str_sec->dofs_size) { 15898 dtrace_dof_error(dof, "bad " 15899 "translated argument type"); 15900 return (-1); 15901 } 15902 15903 typesz = strlen(typestr) + 1; 15904 if (typesz > DTRACE_ARGTYPELEN) { 15905 dtrace_dof_error(dof, "translated argument " 15906 "type too long"); 15907 return (-1); 15908 } 15909 15910 typeidx += typesz; 15911 typestr += typesz; 15912 } 15913 } 15914 15915 return (0); 15916 } 15917 15918 static int 15919 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15920 { 15921 dtrace_helpers_t *help; 15922 dtrace_vstate_t *vstate; 15923 dtrace_enabling_t *enab = NULL; 15924 proc_t *p = curproc; 15925 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15926 uintptr_t daddr = (uintptr_t)dof; 15927 15928 ASSERT(MUTEX_HELD(&dtrace_lock)); 15929 15930 #ifdef __FreeBSD__ 15931 if (dhp->dofhp_pid != p->p_pid) { 15932 if ((p = pfind(dhp->dofhp_pid)) == NULL) 15933 return (-1); 15934 if (!P_SHOULDSTOP(p) || 15935 (p->p_flag & P_TRACED) == 0 || 15936 p->p_pptr->p_pid != curproc->p_pid) { 15937 PROC_UNLOCK(p); 15938 return (-1); 15939 } 15940 PROC_UNLOCK(p); 15941 } 15942 #endif 15943 15944 if ((help = p->p_dtrace_helpers) == NULL) 15945 help = dtrace_helpers_create(p); 15946 15947 vstate = &help->dthps_vstate; 15948 15949 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15950 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15951 dtrace_dof_destroy(dof); 15952 return (rv); 15953 } 15954 15955 /* 15956 * Look for helper providers and validate their descriptions. 15957 */ 15958 if (dhp != NULL) { 15959 for (i = 0; i < dof->dofh_secnum; i++) { 15960 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15961 dof->dofh_secoff + i * dof->dofh_secsize); 15962 15963 if (sec->dofs_type != DOF_SECT_PROVIDER) 15964 continue; 15965 15966 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15967 dtrace_enabling_destroy(enab); 15968 dtrace_dof_destroy(dof); 15969 return (-1); 15970 } 15971 15972 nprovs++; 15973 } 15974 } 15975 15976 /* 15977 * Now we need to walk through the ECB descriptions in the enabling. 15978 */ 15979 for (i = 0; i < enab->dten_ndesc; i++) { 15980 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15981 dtrace_probedesc_t *desc = &ep->dted_probe; 15982 15983 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15984 continue; 15985 15986 if (strcmp(desc->dtpd_mod, "helper") != 0) 15987 continue; 15988 15989 if (strcmp(desc->dtpd_func, "ustack") != 0) 15990 continue; 15991 15992 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15993 ep, help)) != 0) { 15994 /* 15995 * Adding this helper action failed -- we are now going 15996 * to rip out the entire generation and return failure. 15997 */ 15998 (void) dtrace_helper_destroygen(help, 15999 help->dthps_generation); 16000 dtrace_enabling_destroy(enab); 16001 dtrace_dof_destroy(dof); 16002 return (-1); 16003 } 16004 16005 nhelpers++; 16006 } 16007 16008 if (nhelpers < enab->dten_ndesc) 16009 dtrace_dof_error(dof, "unmatched helpers"); 16010 16011 gen = help->dthps_generation++; 16012 dtrace_enabling_destroy(enab); 16013 16014 if (dhp != NULL && nprovs > 0) { 16015 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16016 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16017 mutex_exit(&dtrace_lock); 16018 dtrace_helper_provider_register(p, help, dhp); 16019 mutex_enter(&dtrace_lock); 16020 16021 destroy = 0; 16022 } 16023 } 16024 16025 if (destroy) 16026 dtrace_dof_destroy(dof); 16027 16028 return (gen); 16029 } 16030 16031 static dtrace_helpers_t * 16032 dtrace_helpers_create(proc_t *p) 16033 { 16034 dtrace_helpers_t *help; 16035 16036 ASSERT(MUTEX_HELD(&dtrace_lock)); 16037 ASSERT(p->p_dtrace_helpers == NULL); 16038 16039 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16040 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16041 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16042 16043 p->p_dtrace_helpers = help; 16044 dtrace_helpers++; 16045 16046 return (help); 16047 } 16048 16049 #ifdef illumos 16050 static 16051 #endif 16052 void 16053 dtrace_helpers_destroy(proc_t *p) 16054 { 16055 dtrace_helpers_t *help; 16056 dtrace_vstate_t *vstate; 16057 #ifdef illumos 16058 proc_t *p = curproc; 16059 #endif 16060 int i; 16061 16062 mutex_enter(&dtrace_lock); 16063 16064 ASSERT(p->p_dtrace_helpers != NULL); 16065 ASSERT(dtrace_helpers > 0); 16066 16067 help = p->p_dtrace_helpers; 16068 vstate = &help->dthps_vstate; 16069 16070 /* 16071 * We're now going to lose the help from this process. 16072 */ 16073 p->p_dtrace_helpers = NULL; 16074 dtrace_sync(); 16075 16076 /* 16077 * Destory the helper actions. 16078 */ 16079 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16080 dtrace_helper_action_t *h, *next; 16081 16082 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16083 next = h->dtha_next; 16084 dtrace_helper_action_destroy(h, vstate); 16085 h = next; 16086 } 16087 } 16088 16089 mutex_exit(&dtrace_lock); 16090 16091 /* 16092 * Destroy the helper providers. 16093 */ 16094 if (help->dthps_maxprovs > 0) { 16095 mutex_enter(&dtrace_meta_lock); 16096 if (dtrace_meta_pid != NULL) { 16097 ASSERT(dtrace_deferred_pid == NULL); 16098 16099 for (i = 0; i < help->dthps_nprovs; i++) { 16100 dtrace_helper_provider_remove( 16101 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16102 } 16103 } else { 16104 mutex_enter(&dtrace_lock); 16105 ASSERT(help->dthps_deferred == 0 || 16106 help->dthps_next != NULL || 16107 help->dthps_prev != NULL || 16108 help == dtrace_deferred_pid); 16109 16110 /* 16111 * Remove the helper from the deferred list. 16112 */ 16113 if (help->dthps_next != NULL) 16114 help->dthps_next->dthps_prev = help->dthps_prev; 16115 if (help->dthps_prev != NULL) 16116 help->dthps_prev->dthps_next = help->dthps_next; 16117 if (dtrace_deferred_pid == help) { 16118 dtrace_deferred_pid = help->dthps_next; 16119 ASSERT(help->dthps_prev == NULL); 16120 } 16121 16122 mutex_exit(&dtrace_lock); 16123 } 16124 16125 mutex_exit(&dtrace_meta_lock); 16126 16127 for (i = 0; i < help->dthps_nprovs; i++) { 16128 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16129 } 16130 16131 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16132 sizeof (dtrace_helper_provider_t *)); 16133 } 16134 16135 mutex_enter(&dtrace_lock); 16136 16137 dtrace_vstate_fini(&help->dthps_vstate); 16138 kmem_free(help->dthps_actions, 16139 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16140 kmem_free(help, sizeof (dtrace_helpers_t)); 16141 16142 --dtrace_helpers; 16143 mutex_exit(&dtrace_lock); 16144 } 16145 16146 #ifdef illumos 16147 static 16148 #endif 16149 void 16150 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16151 { 16152 dtrace_helpers_t *help, *newhelp; 16153 dtrace_helper_action_t *helper, *new, *last; 16154 dtrace_difo_t *dp; 16155 dtrace_vstate_t *vstate; 16156 int i, j, sz, hasprovs = 0; 16157 16158 mutex_enter(&dtrace_lock); 16159 ASSERT(from->p_dtrace_helpers != NULL); 16160 ASSERT(dtrace_helpers > 0); 16161 16162 help = from->p_dtrace_helpers; 16163 newhelp = dtrace_helpers_create(to); 16164 ASSERT(to->p_dtrace_helpers != NULL); 16165 16166 newhelp->dthps_generation = help->dthps_generation; 16167 vstate = &newhelp->dthps_vstate; 16168 16169 /* 16170 * Duplicate the helper actions. 16171 */ 16172 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16173 if ((helper = help->dthps_actions[i]) == NULL) 16174 continue; 16175 16176 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16177 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16178 KM_SLEEP); 16179 new->dtha_generation = helper->dtha_generation; 16180 16181 if ((dp = helper->dtha_predicate) != NULL) { 16182 dp = dtrace_difo_duplicate(dp, vstate); 16183 new->dtha_predicate = dp; 16184 } 16185 16186 new->dtha_nactions = helper->dtha_nactions; 16187 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16188 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16189 16190 for (j = 0; j < new->dtha_nactions; j++) { 16191 dtrace_difo_t *dp = helper->dtha_actions[j]; 16192 16193 ASSERT(dp != NULL); 16194 dp = dtrace_difo_duplicate(dp, vstate); 16195 new->dtha_actions[j] = dp; 16196 } 16197 16198 if (last != NULL) { 16199 last->dtha_next = new; 16200 } else { 16201 newhelp->dthps_actions[i] = new; 16202 } 16203 16204 last = new; 16205 } 16206 } 16207 16208 /* 16209 * Duplicate the helper providers and register them with the 16210 * DTrace framework. 16211 */ 16212 if (help->dthps_nprovs > 0) { 16213 newhelp->dthps_nprovs = help->dthps_nprovs; 16214 newhelp->dthps_maxprovs = help->dthps_nprovs; 16215 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16216 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16217 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16218 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16219 newhelp->dthps_provs[i]->dthp_ref++; 16220 } 16221 16222 hasprovs = 1; 16223 } 16224 16225 mutex_exit(&dtrace_lock); 16226 16227 if (hasprovs) 16228 dtrace_helper_provider_register(to, newhelp, NULL); 16229 } 16230 16231 /* 16232 * DTrace Hook Functions 16233 */ 16234 static void 16235 dtrace_module_loaded(modctl_t *ctl) 16236 { 16237 dtrace_provider_t *prv; 16238 16239 mutex_enter(&dtrace_provider_lock); 16240 #ifdef illumos 16241 mutex_enter(&mod_lock); 16242 #endif 16243 16244 #ifdef illumos 16245 ASSERT(ctl->mod_busy); 16246 #endif 16247 16248 /* 16249 * We're going to call each providers per-module provide operation 16250 * specifying only this module. 16251 */ 16252 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16253 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16254 16255 #ifdef illumos 16256 mutex_exit(&mod_lock); 16257 #endif 16258 mutex_exit(&dtrace_provider_lock); 16259 16260 /* 16261 * If we have any retained enablings, we need to match against them. 16262 * Enabling probes requires that cpu_lock be held, and we cannot hold 16263 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16264 * module. (In particular, this happens when loading scheduling 16265 * classes.) So if we have any retained enablings, we need to dispatch 16266 * our task queue to do the match for us. 16267 */ 16268 mutex_enter(&dtrace_lock); 16269 16270 if (dtrace_retained == NULL) { 16271 mutex_exit(&dtrace_lock); 16272 return; 16273 } 16274 16275 (void) taskq_dispatch(dtrace_taskq, 16276 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16277 16278 mutex_exit(&dtrace_lock); 16279 16280 /* 16281 * And now, for a little heuristic sleaze: in general, we want to 16282 * match modules as soon as they load. However, we cannot guarantee 16283 * this, because it would lead us to the lock ordering violation 16284 * outlined above. The common case, of course, is that cpu_lock is 16285 * _not_ held -- so we delay here for a clock tick, hoping that that's 16286 * long enough for the task queue to do its work. If it's not, it's 16287 * not a serious problem -- it just means that the module that we 16288 * just loaded may not be immediately instrumentable. 16289 */ 16290 delay(1); 16291 } 16292 16293 static void 16294 #ifdef illumos 16295 dtrace_module_unloaded(modctl_t *ctl) 16296 #else 16297 dtrace_module_unloaded(modctl_t *ctl, int *error) 16298 #endif 16299 { 16300 dtrace_probe_t template, *probe, *first, *next; 16301 dtrace_provider_t *prov; 16302 #ifndef illumos 16303 char modname[DTRACE_MODNAMELEN]; 16304 size_t len; 16305 #endif 16306 16307 #ifdef illumos 16308 template.dtpr_mod = ctl->mod_modname; 16309 #else 16310 /* Handle the fact that ctl->filename may end in ".ko". */ 16311 strlcpy(modname, ctl->filename, sizeof(modname)); 16312 len = strlen(ctl->filename); 16313 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16314 modname[len - 3] = '\0'; 16315 template.dtpr_mod = modname; 16316 #endif 16317 16318 mutex_enter(&dtrace_provider_lock); 16319 #ifdef illumos 16320 mutex_enter(&mod_lock); 16321 #endif 16322 mutex_enter(&dtrace_lock); 16323 16324 #ifndef illumos 16325 if (ctl->nenabled > 0) { 16326 /* Don't allow unloads if a probe is enabled. */ 16327 mutex_exit(&dtrace_provider_lock); 16328 mutex_exit(&dtrace_lock); 16329 *error = -1; 16330 printf( 16331 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16332 return; 16333 } 16334 #endif 16335 16336 if (dtrace_bymod == NULL) { 16337 /* 16338 * The DTrace module is loaded (obviously) but not attached; 16339 * we don't have any work to do. 16340 */ 16341 mutex_exit(&dtrace_provider_lock); 16342 #ifdef illumos 16343 mutex_exit(&mod_lock); 16344 #endif 16345 mutex_exit(&dtrace_lock); 16346 return; 16347 } 16348 16349 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16350 probe != NULL; probe = probe->dtpr_nextmod) { 16351 if (probe->dtpr_ecb != NULL) { 16352 mutex_exit(&dtrace_provider_lock); 16353 #ifdef illumos 16354 mutex_exit(&mod_lock); 16355 #endif 16356 mutex_exit(&dtrace_lock); 16357 16358 /* 16359 * This shouldn't _actually_ be possible -- we're 16360 * unloading a module that has an enabled probe in it. 16361 * (It's normally up to the provider to make sure that 16362 * this can't happen.) However, because dtps_enable() 16363 * doesn't have a failure mode, there can be an 16364 * enable/unload race. Upshot: we don't want to 16365 * assert, but we're not going to disable the 16366 * probe, either. 16367 */ 16368 if (dtrace_err_verbose) { 16369 #ifdef illumos 16370 cmn_err(CE_WARN, "unloaded module '%s' had " 16371 "enabled probes", ctl->mod_modname); 16372 #else 16373 cmn_err(CE_WARN, "unloaded module '%s' had " 16374 "enabled probes", modname); 16375 #endif 16376 } 16377 16378 return; 16379 } 16380 } 16381 16382 probe = first; 16383 16384 for (first = NULL; probe != NULL; probe = next) { 16385 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16386 16387 dtrace_probes[probe->dtpr_id - 1] = NULL; 16388 16389 next = probe->dtpr_nextmod; 16390 dtrace_hash_remove(dtrace_bymod, probe); 16391 dtrace_hash_remove(dtrace_byfunc, probe); 16392 dtrace_hash_remove(dtrace_byname, probe); 16393 16394 if (first == NULL) { 16395 first = probe; 16396 probe->dtpr_nextmod = NULL; 16397 } else { 16398 probe->dtpr_nextmod = first; 16399 first = probe; 16400 } 16401 } 16402 16403 /* 16404 * We've removed all of the module's probes from the hash chains and 16405 * from the probe array. Now issue a dtrace_sync() to be sure that 16406 * everyone has cleared out from any probe array processing. 16407 */ 16408 dtrace_sync(); 16409 16410 for (probe = first; probe != NULL; probe = first) { 16411 first = probe->dtpr_nextmod; 16412 prov = probe->dtpr_provider; 16413 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16414 probe->dtpr_arg); 16415 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16416 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16417 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16418 #ifdef illumos 16419 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16420 #else 16421 free_unr(dtrace_arena, probe->dtpr_id); 16422 #endif 16423 kmem_free(probe, sizeof (dtrace_probe_t)); 16424 } 16425 16426 mutex_exit(&dtrace_lock); 16427 #ifdef illumos 16428 mutex_exit(&mod_lock); 16429 #endif 16430 mutex_exit(&dtrace_provider_lock); 16431 } 16432 16433 #ifndef illumos 16434 static void 16435 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16436 { 16437 16438 dtrace_module_loaded(lf); 16439 } 16440 16441 static void 16442 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16443 { 16444 16445 if (*error != 0) 16446 /* We already have an error, so don't do anything. */ 16447 return; 16448 dtrace_module_unloaded(lf, error); 16449 } 16450 #endif 16451 16452 #ifdef illumos 16453 static void 16454 dtrace_suspend(void) 16455 { 16456 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16457 } 16458 16459 static void 16460 dtrace_resume(void) 16461 { 16462 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16463 } 16464 #endif 16465 16466 static int 16467 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16468 { 16469 ASSERT(MUTEX_HELD(&cpu_lock)); 16470 mutex_enter(&dtrace_lock); 16471 16472 switch (what) { 16473 case CPU_CONFIG: { 16474 dtrace_state_t *state; 16475 dtrace_optval_t *opt, rs, c; 16476 16477 /* 16478 * For now, we only allocate a new buffer for anonymous state. 16479 */ 16480 if ((state = dtrace_anon.dta_state) == NULL) 16481 break; 16482 16483 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16484 break; 16485 16486 opt = state->dts_options; 16487 c = opt[DTRACEOPT_CPU]; 16488 16489 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16490 break; 16491 16492 /* 16493 * Regardless of what the actual policy is, we're going to 16494 * temporarily set our resize policy to be manual. We're 16495 * also going to temporarily set our CPU option to denote 16496 * the newly configured CPU. 16497 */ 16498 rs = opt[DTRACEOPT_BUFRESIZE]; 16499 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16500 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16501 16502 (void) dtrace_state_buffers(state); 16503 16504 opt[DTRACEOPT_BUFRESIZE] = rs; 16505 opt[DTRACEOPT_CPU] = c; 16506 16507 break; 16508 } 16509 16510 case CPU_UNCONFIG: 16511 /* 16512 * We don't free the buffer in the CPU_UNCONFIG case. (The 16513 * buffer will be freed when the consumer exits.) 16514 */ 16515 break; 16516 16517 default: 16518 break; 16519 } 16520 16521 mutex_exit(&dtrace_lock); 16522 return (0); 16523 } 16524 16525 #ifdef illumos 16526 static void 16527 dtrace_cpu_setup_initial(processorid_t cpu) 16528 { 16529 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16530 } 16531 #endif 16532 16533 static void 16534 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16535 { 16536 if (dtrace_toxranges >= dtrace_toxranges_max) { 16537 int osize, nsize; 16538 dtrace_toxrange_t *range; 16539 16540 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16541 16542 if (osize == 0) { 16543 ASSERT(dtrace_toxrange == NULL); 16544 ASSERT(dtrace_toxranges_max == 0); 16545 dtrace_toxranges_max = 1; 16546 } else { 16547 dtrace_toxranges_max <<= 1; 16548 } 16549 16550 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16551 range = kmem_zalloc(nsize, KM_SLEEP); 16552 16553 if (dtrace_toxrange != NULL) { 16554 ASSERT(osize != 0); 16555 bcopy(dtrace_toxrange, range, osize); 16556 kmem_free(dtrace_toxrange, osize); 16557 } 16558 16559 dtrace_toxrange = range; 16560 } 16561 16562 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 16563 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 16564 16565 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 16566 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 16567 dtrace_toxranges++; 16568 } 16569 16570 static void 16571 dtrace_getf_barrier() 16572 { 16573 #ifdef illumos 16574 /* 16575 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 16576 * that contain calls to getf(), this routine will be called on every 16577 * closef() before either the underlying vnode is released or the 16578 * file_t itself is freed. By the time we are here, it is essential 16579 * that the file_t can no longer be accessed from a call to getf() 16580 * in probe context -- that assures that a dtrace_sync() can be used 16581 * to clear out any enablings referring to the old structures. 16582 */ 16583 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 16584 kcred->cr_zone->zone_dtrace_getf != 0) 16585 dtrace_sync(); 16586 #endif 16587 } 16588 16589 /* 16590 * DTrace Driver Cookbook Functions 16591 */ 16592 #ifdef illumos 16593 /*ARGSUSED*/ 16594 static int 16595 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 16596 { 16597 dtrace_provider_id_t id; 16598 dtrace_state_t *state = NULL; 16599 dtrace_enabling_t *enab; 16600 16601 mutex_enter(&cpu_lock); 16602 mutex_enter(&dtrace_provider_lock); 16603 mutex_enter(&dtrace_lock); 16604 16605 if (ddi_soft_state_init(&dtrace_softstate, 16606 sizeof (dtrace_state_t), 0) != 0) { 16607 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16608 mutex_exit(&cpu_lock); 16609 mutex_exit(&dtrace_provider_lock); 16610 mutex_exit(&dtrace_lock); 16611 return (DDI_FAILURE); 16612 } 16613 16614 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16615 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 16616 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16617 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 16618 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16619 ddi_remove_minor_node(devi, NULL); 16620 ddi_soft_state_fini(&dtrace_softstate); 16621 mutex_exit(&cpu_lock); 16622 mutex_exit(&dtrace_provider_lock); 16623 mutex_exit(&dtrace_lock); 16624 return (DDI_FAILURE); 16625 } 16626 16627 ddi_report_dev(devi); 16628 dtrace_devi = devi; 16629 16630 dtrace_modload = dtrace_module_loaded; 16631 dtrace_modunload = dtrace_module_unloaded; 16632 dtrace_cpu_init = dtrace_cpu_setup_initial; 16633 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16634 dtrace_helpers_fork = dtrace_helpers_duplicate; 16635 dtrace_cpustart_init = dtrace_suspend; 16636 dtrace_cpustart_fini = dtrace_resume; 16637 dtrace_debugger_init = dtrace_suspend; 16638 dtrace_debugger_fini = dtrace_resume; 16639 16640 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16641 16642 ASSERT(MUTEX_HELD(&cpu_lock)); 16643 16644 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16645 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16646 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16647 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16648 VM_SLEEP | VMC_IDENTIFIER); 16649 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16650 1, INT_MAX, 0); 16651 16652 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16653 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16654 NULL, NULL, NULL, NULL, NULL, 0); 16655 16656 ASSERT(MUTEX_HELD(&cpu_lock)); 16657 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16658 offsetof(dtrace_probe_t, dtpr_nextmod), 16659 offsetof(dtrace_probe_t, dtpr_prevmod)); 16660 16661 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16662 offsetof(dtrace_probe_t, dtpr_nextfunc), 16663 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16664 16665 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16666 offsetof(dtrace_probe_t, dtpr_nextname), 16667 offsetof(dtrace_probe_t, dtpr_prevname)); 16668 16669 if (dtrace_retain_max < 1) { 16670 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16671 "setting to 1", dtrace_retain_max); 16672 dtrace_retain_max = 1; 16673 } 16674 16675 /* 16676 * Now discover our toxic ranges. 16677 */ 16678 dtrace_toxic_ranges(dtrace_toxrange_add); 16679 16680 /* 16681 * Before we register ourselves as a provider to our own framework, 16682 * we would like to assert that dtrace_provider is NULL -- but that's 16683 * not true if we were loaded as a dependency of a DTrace provider. 16684 * Once we've registered, we can assert that dtrace_provider is our 16685 * pseudo provider. 16686 */ 16687 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16688 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16689 16690 ASSERT(dtrace_provider != NULL); 16691 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16692 16693 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16694 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16695 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16696 dtrace_provider, NULL, NULL, "END", 0, NULL); 16697 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16698 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16699 16700 dtrace_anon_property(); 16701 mutex_exit(&cpu_lock); 16702 16703 /* 16704 * If there are already providers, we must ask them to provide their 16705 * probes, and then match any anonymous enabling against them. Note 16706 * that there should be no other retained enablings at this time: 16707 * the only retained enablings at this time should be the anonymous 16708 * enabling. 16709 */ 16710 if (dtrace_anon.dta_enabling != NULL) { 16711 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16712 16713 dtrace_enabling_provide(NULL); 16714 state = dtrace_anon.dta_state; 16715 16716 /* 16717 * We couldn't hold cpu_lock across the above call to 16718 * dtrace_enabling_provide(), but we must hold it to actually 16719 * enable the probes. We have to drop all of our locks, pick 16720 * up cpu_lock, and regain our locks before matching the 16721 * retained anonymous enabling. 16722 */ 16723 mutex_exit(&dtrace_lock); 16724 mutex_exit(&dtrace_provider_lock); 16725 16726 mutex_enter(&cpu_lock); 16727 mutex_enter(&dtrace_provider_lock); 16728 mutex_enter(&dtrace_lock); 16729 16730 if ((enab = dtrace_anon.dta_enabling) != NULL) 16731 (void) dtrace_enabling_match(enab, NULL); 16732 16733 mutex_exit(&cpu_lock); 16734 } 16735 16736 mutex_exit(&dtrace_lock); 16737 mutex_exit(&dtrace_provider_lock); 16738 16739 if (state != NULL) { 16740 /* 16741 * If we created any anonymous state, set it going now. 16742 */ 16743 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16744 } 16745 16746 return (DDI_SUCCESS); 16747 } 16748 #endif /* illumos */ 16749 16750 #ifndef illumos 16751 static void dtrace_dtr(void *); 16752 #endif 16753 16754 /*ARGSUSED*/ 16755 static int 16756 #ifdef illumos 16757 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16758 #else 16759 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 16760 #endif 16761 { 16762 dtrace_state_t *state; 16763 uint32_t priv; 16764 uid_t uid; 16765 zoneid_t zoneid; 16766 16767 #ifdef illumos 16768 if (getminor(*devp) == DTRACEMNRN_HELPER) 16769 return (0); 16770 16771 /* 16772 * If this wasn't an open with the "helper" minor, then it must be 16773 * the "dtrace" minor. 16774 */ 16775 if (getminor(*devp) == DTRACEMNRN_DTRACE) 16776 return (ENXIO); 16777 #else 16778 cred_t *cred_p = NULL; 16779 cred_p = dev->si_cred; 16780 16781 /* 16782 * If no DTRACE_PRIV_* bits are set in the credential, then the 16783 * caller lacks sufficient permission to do anything with DTrace. 16784 */ 16785 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16786 if (priv == DTRACE_PRIV_NONE) { 16787 #endif 16788 16789 return (EACCES); 16790 } 16791 16792 /* 16793 * Ask all providers to provide all their probes. 16794 */ 16795 mutex_enter(&dtrace_provider_lock); 16796 dtrace_probe_provide(NULL, NULL); 16797 mutex_exit(&dtrace_provider_lock); 16798 16799 mutex_enter(&cpu_lock); 16800 mutex_enter(&dtrace_lock); 16801 dtrace_opens++; 16802 dtrace_membar_producer(); 16803 16804 #ifdef illumos 16805 /* 16806 * If the kernel debugger is active (that is, if the kernel debugger 16807 * modified text in some way), we won't allow the open. 16808 */ 16809 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16810 dtrace_opens--; 16811 mutex_exit(&cpu_lock); 16812 mutex_exit(&dtrace_lock); 16813 return (EBUSY); 16814 } 16815 16816 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16817 /* 16818 * If DTrace helper tracing is enabled, we need to allocate the 16819 * trace buffer and initialize the values. 16820 */ 16821 dtrace_helptrace_buffer = 16822 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16823 dtrace_helptrace_next = 0; 16824 dtrace_helptrace_wrapped = 0; 16825 dtrace_helptrace_enable = 0; 16826 } 16827 16828 state = dtrace_state_create(devp, cred_p); 16829 #else 16830 state = dtrace_state_create(dev); 16831 devfs_set_cdevpriv(state, dtrace_dtr); 16832 #endif 16833 16834 mutex_exit(&cpu_lock); 16835 16836 if (state == NULL) { 16837 #ifdef illumos 16838 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16839 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16840 #else 16841 --dtrace_opens; 16842 #endif 16843 mutex_exit(&dtrace_lock); 16844 return (EAGAIN); 16845 } 16846 16847 mutex_exit(&dtrace_lock); 16848 16849 return (0); 16850 } 16851 16852 /*ARGSUSED*/ 16853 #ifdef illumos 16854 static int 16855 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16856 #else 16857 static void 16858 dtrace_dtr(void *data) 16859 #endif 16860 { 16861 #ifdef illumos 16862 minor_t minor = getminor(dev); 16863 dtrace_state_t *state; 16864 #endif 16865 dtrace_helptrace_t *buf = NULL; 16866 16867 #ifdef illumos 16868 if (minor == DTRACEMNRN_HELPER) 16869 return (0); 16870 16871 state = ddi_get_soft_state(dtrace_softstate, minor); 16872 #else 16873 dtrace_state_t *state = data; 16874 #endif 16875 16876 mutex_enter(&cpu_lock); 16877 mutex_enter(&dtrace_lock); 16878 16879 #ifdef illumos 16880 if (state->dts_anon) 16881 #else 16882 if (state != NULL && state->dts_anon) 16883 #endif 16884 { 16885 /* 16886 * There is anonymous state. Destroy that first. 16887 */ 16888 ASSERT(dtrace_anon.dta_state == NULL); 16889 dtrace_state_destroy(state->dts_anon); 16890 } 16891 16892 if (dtrace_helptrace_disable) { 16893 /* 16894 * If we have been told to disable helper tracing, set the 16895 * buffer to NULL before calling into dtrace_state_destroy(); 16896 * we take advantage of its dtrace_sync() to know that no 16897 * CPU is in probe context with enabled helper tracing 16898 * after it returns. 16899 */ 16900 buf = dtrace_helptrace_buffer; 16901 dtrace_helptrace_buffer = NULL; 16902 } 16903 16904 #ifdef illumos 16905 dtrace_state_destroy(state); 16906 #else 16907 if (state != NULL) { 16908 dtrace_state_destroy(state); 16909 kmem_free(state, 0); 16910 } 16911 #endif 16912 ASSERT(dtrace_opens > 0); 16913 16914 #ifdef illumos 16915 /* 16916 * Only relinquish control of the kernel debugger interface when there 16917 * are no consumers and no anonymous enablings. 16918 */ 16919 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16920 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16921 #else 16922 --dtrace_opens; 16923 #endif 16924 16925 if (buf != NULL) { 16926 kmem_free(buf, dtrace_helptrace_bufsize); 16927 dtrace_helptrace_disable = 0; 16928 } 16929 16930 mutex_exit(&dtrace_lock); 16931 mutex_exit(&cpu_lock); 16932 16933 #ifdef illumos 16934 return (0); 16935 #endif 16936 } 16937 16938 #ifdef illumos 16939 /*ARGSUSED*/ 16940 static int 16941 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16942 { 16943 int rval; 16944 dof_helper_t help, *dhp = NULL; 16945 16946 switch (cmd) { 16947 case DTRACEHIOC_ADDDOF: 16948 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16949 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16950 return (EFAULT); 16951 } 16952 16953 dhp = &help; 16954 arg = (intptr_t)help.dofhp_dof; 16955 /*FALLTHROUGH*/ 16956 16957 case DTRACEHIOC_ADD: { 16958 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16959 16960 if (dof == NULL) 16961 return (rval); 16962 16963 mutex_enter(&dtrace_lock); 16964 16965 /* 16966 * dtrace_helper_slurp() takes responsibility for the dof -- 16967 * it may free it now or it may save it and free it later. 16968 */ 16969 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16970 *rv = rval; 16971 rval = 0; 16972 } else { 16973 rval = EINVAL; 16974 } 16975 16976 mutex_exit(&dtrace_lock); 16977 return (rval); 16978 } 16979 16980 case DTRACEHIOC_REMOVE: { 16981 mutex_enter(&dtrace_lock); 16982 rval = dtrace_helper_destroygen(NULL, arg); 16983 mutex_exit(&dtrace_lock); 16984 16985 return (rval); 16986 } 16987 16988 default: 16989 break; 16990 } 16991 16992 return (ENOTTY); 16993 } 16994 16995 /*ARGSUSED*/ 16996 static int 16997 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16998 { 16999 minor_t minor = getminor(dev); 17000 dtrace_state_t *state; 17001 int rval; 17002 17003 if (minor == DTRACEMNRN_HELPER) 17004 return (dtrace_ioctl_helper(cmd, arg, rv)); 17005 17006 state = ddi_get_soft_state(dtrace_softstate, minor); 17007 17008 if (state->dts_anon) { 17009 ASSERT(dtrace_anon.dta_state == NULL); 17010 state = state->dts_anon; 17011 } 17012 17013 switch (cmd) { 17014 case DTRACEIOC_PROVIDER: { 17015 dtrace_providerdesc_t pvd; 17016 dtrace_provider_t *pvp; 17017 17018 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17019 return (EFAULT); 17020 17021 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17022 mutex_enter(&dtrace_provider_lock); 17023 17024 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17025 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17026 break; 17027 } 17028 17029 mutex_exit(&dtrace_provider_lock); 17030 17031 if (pvp == NULL) 17032 return (ESRCH); 17033 17034 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17035 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17036 17037 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17038 return (EFAULT); 17039 17040 return (0); 17041 } 17042 17043 case DTRACEIOC_EPROBE: { 17044 dtrace_eprobedesc_t epdesc; 17045 dtrace_ecb_t *ecb; 17046 dtrace_action_t *act; 17047 void *buf; 17048 size_t size; 17049 uintptr_t dest; 17050 int nrecs; 17051 17052 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17053 return (EFAULT); 17054 17055 mutex_enter(&dtrace_lock); 17056 17057 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17058 mutex_exit(&dtrace_lock); 17059 return (EINVAL); 17060 } 17061 17062 if (ecb->dte_probe == NULL) { 17063 mutex_exit(&dtrace_lock); 17064 return (EINVAL); 17065 } 17066 17067 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17068 epdesc.dtepd_uarg = ecb->dte_uarg; 17069 epdesc.dtepd_size = ecb->dte_size; 17070 17071 nrecs = epdesc.dtepd_nrecs; 17072 epdesc.dtepd_nrecs = 0; 17073 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17074 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17075 continue; 17076 17077 epdesc.dtepd_nrecs++; 17078 } 17079 17080 /* 17081 * Now that we have the size, we need to allocate a temporary 17082 * buffer in which to store the complete description. We need 17083 * the temporary buffer to be able to drop dtrace_lock() 17084 * across the copyout(), below. 17085 */ 17086 size = sizeof (dtrace_eprobedesc_t) + 17087 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17088 17089 buf = kmem_alloc(size, KM_SLEEP); 17090 dest = (uintptr_t)buf; 17091 17092 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17093 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17094 17095 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17096 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17097 continue; 17098 17099 if (nrecs-- == 0) 17100 break; 17101 17102 bcopy(&act->dta_rec, (void *)dest, 17103 sizeof (dtrace_recdesc_t)); 17104 dest += sizeof (dtrace_recdesc_t); 17105 } 17106 17107 mutex_exit(&dtrace_lock); 17108 17109 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17110 kmem_free(buf, size); 17111 return (EFAULT); 17112 } 17113 17114 kmem_free(buf, size); 17115 return (0); 17116 } 17117 17118 case DTRACEIOC_AGGDESC: { 17119 dtrace_aggdesc_t aggdesc; 17120 dtrace_action_t *act; 17121 dtrace_aggregation_t *agg; 17122 int nrecs; 17123 uint32_t offs; 17124 dtrace_recdesc_t *lrec; 17125 void *buf; 17126 size_t size; 17127 uintptr_t dest; 17128 17129 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17130 return (EFAULT); 17131 17132 mutex_enter(&dtrace_lock); 17133 17134 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17135 mutex_exit(&dtrace_lock); 17136 return (EINVAL); 17137 } 17138 17139 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17140 17141 nrecs = aggdesc.dtagd_nrecs; 17142 aggdesc.dtagd_nrecs = 0; 17143 17144 offs = agg->dtag_base; 17145 lrec = &agg->dtag_action.dta_rec; 17146 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17147 17148 for (act = agg->dtag_first; ; act = act->dta_next) { 17149 ASSERT(act->dta_intuple || 17150 DTRACEACT_ISAGG(act->dta_kind)); 17151 17152 /* 17153 * If this action has a record size of zero, it 17154 * denotes an argument to the aggregating action. 17155 * Because the presence of this record doesn't (or 17156 * shouldn't) affect the way the data is interpreted, 17157 * we don't copy it out to save user-level the 17158 * confusion of dealing with a zero-length record. 17159 */ 17160 if (act->dta_rec.dtrd_size == 0) { 17161 ASSERT(agg->dtag_hasarg); 17162 continue; 17163 } 17164 17165 aggdesc.dtagd_nrecs++; 17166 17167 if (act == &agg->dtag_action) 17168 break; 17169 } 17170 17171 /* 17172 * Now that we have the size, we need to allocate a temporary 17173 * buffer in which to store the complete description. We need 17174 * the temporary buffer to be able to drop dtrace_lock() 17175 * across the copyout(), below. 17176 */ 17177 size = sizeof (dtrace_aggdesc_t) + 17178 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17179 17180 buf = kmem_alloc(size, KM_SLEEP); 17181 dest = (uintptr_t)buf; 17182 17183 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17184 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17185 17186 for (act = agg->dtag_first; ; act = act->dta_next) { 17187 dtrace_recdesc_t rec = act->dta_rec; 17188 17189 /* 17190 * See the comment in the above loop for why we pass 17191 * over zero-length records. 17192 */ 17193 if (rec.dtrd_size == 0) { 17194 ASSERT(agg->dtag_hasarg); 17195 continue; 17196 } 17197 17198 if (nrecs-- == 0) 17199 break; 17200 17201 rec.dtrd_offset -= offs; 17202 bcopy(&rec, (void *)dest, sizeof (rec)); 17203 dest += sizeof (dtrace_recdesc_t); 17204 17205 if (act == &agg->dtag_action) 17206 break; 17207 } 17208 17209 mutex_exit(&dtrace_lock); 17210 17211 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17212 kmem_free(buf, size); 17213 return (EFAULT); 17214 } 17215 17216 kmem_free(buf, size); 17217 return (0); 17218 } 17219 17220 case DTRACEIOC_ENABLE: { 17221 dof_hdr_t *dof; 17222 dtrace_enabling_t *enab = NULL; 17223 dtrace_vstate_t *vstate; 17224 int err = 0; 17225 17226 *rv = 0; 17227 17228 /* 17229 * If a NULL argument has been passed, we take this as our 17230 * cue to reevaluate our enablings. 17231 */ 17232 if (arg == NULL) { 17233 dtrace_enabling_matchall(); 17234 17235 return (0); 17236 } 17237 17238 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17239 return (rval); 17240 17241 mutex_enter(&cpu_lock); 17242 mutex_enter(&dtrace_lock); 17243 vstate = &state->dts_vstate; 17244 17245 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17246 mutex_exit(&dtrace_lock); 17247 mutex_exit(&cpu_lock); 17248 dtrace_dof_destroy(dof); 17249 return (EBUSY); 17250 } 17251 17252 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17253 mutex_exit(&dtrace_lock); 17254 mutex_exit(&cpu_lock); 17255 dtrace_dof_destroy(dof); 17256 return (EINVAL); 17257 } 17258 17259 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17260 dtrace_enabling_destroy(enab); 17261 mutex_exit(&dtrace_lock); 17262 mutex_exit(&cpu_lock); 17263 dtrace_dof_destroy(dof); 17264 return (rval); 17265 } 17266 17267 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17268 err = dtrace_enabling_retain(enab); 17269 } else { 17270 dtrace_enabling_destroy(enab); 17271 } 17272 17273 mutex_exit(&cpu_lock); 17274 mutex_exit(&dtrace_lock); 17275 dtrace_dof_destroy(dof); 17276 17277 return (err); 17278 } 17279 17280 case DTRACEIOC_REPLICATE: { 17281 dtrace_repldesc_t desc; 17282 dtrace_probedesc_t *match = &desc.dtrpd_match; 17283 dtrace_probedesc_t *create = &desc.dtrpd_create; 17284 int err; 17285 17286 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17287 return (EFAULT); 17288 17289 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17290 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17291 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17292 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17293 17294 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17295 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17296 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17297 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17298 17299 mutex_enter(&dtrace_lock); 17300 err = dtrace_enabling_replicate(state, match, create); 17301 mutex_exit(&dtrace_lock); 17302 17303 return (err); 17304 } 17305 17306 case DTRACEIOC_PROBEMATCH: 17307 case DTRACEIOC_PROBES: { 17308 dtrace_probe_t *probe = NULL; 17309 dtrace_probedesc_t desc; 17310 dtrace_probekey_t pkey; 17311 dtrace_id_t i; 17312 int m = 0; 17313 uint32_t priv; 17314 uid_t uid; 17315 zoneid_t zoneid; 17316 17317 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17318 return (EFAULT); 17319 17320 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17321 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17322 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17323 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17324 17325 /* 17326 * Before we attempt to match this probe, we want to give 17327 * all providers the opportunity to provide it. 17328 */ 17329 if (desc.dtpd_id == DTRACE_IDNONE) { 17330 mutex_enter(&dtrace_provider_lock); 17331 dtrace_probe_provide(&desc, NULL); 17332 mutex_exit(&dtrace_provider_lock); 17333 desc.dtpd_id++; 17334 } 17335 17336 if (cmd == DTRACEIOC_PROBEMATCH) { 17337 dtrace_probekey(&desc, &pkey); 17338 pkey.dtpk_id = DTRACE_IDNONE; 17339 } 17340 17341 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17342 17343 mutex_enter(&dtrace_lock); 17344 17345 if (cmd == DTRACEIOC_PROBEMATCH) { 17346 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17347 if ((probe = dtrace_probes[i - 1]) != NULL && 17348 (m = dtrace_match_probe(probe, &pkey, 17349 priv, uid, zoneid)) != 0) 17350 break; 17351 } 17352 17353 if (m < 0) { 17354 mutex_exit(&dtrace_lock); 17355 return (EINVAL); 17356 } 17357 17358 } else { 17359 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17360 if ((probe = dtrace_probes[i - 1]) != NULL && 17361 dtrace_match_priv(probe, priv, uid, zoneid)) 17362 break; 17363 } 17364 } 17365 17366 if (probe == NULL) { 17367 mutex_exit(&dtrace_lock); 17368 return (ESRCH); 17369 } 17370 17371 dtrace_probe_description(probe, &desc); 17372 mutex_exit(&dtrace_lock); 17373 17374 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17375 return (EFAULT); 17376 17377 return (0); 17378 } 17379 17380 case DTRACEIOC_PROBEARG: { 17381 dtrace_argdesc_t desc; 17382 dtrace_probe_t *probe; 17383 dtrace_provider_t *prov; 17384 17385 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17386 return (EFAULT); 17387 17388 if (desc.dtargd_id == DTRACE_IDNONE) 17389 return (EINVAL); 17390 17391 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17392 return (EINVAL); 17393 17394 mutex_enter(&dtrace_provider_lock); 17395 mutex_enter(&mod_lock); 17396 mutex_enter(&dtrace_lock); 17397 17398 if (desc.dtargd_id > dtrace_nprobes) { 17399 mutex_exit(&dtrace_lock); 17400 mutex_exit(&mod_lock); 17401 mutex_exit(&dtrace_provider_lock); 17402 return (EINVAL); 17403 } 17404 17405 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17406 mutex_exit(&dtrace_lock); 17407 mutex_exit(&mod_lock); 17408 mutex_exit(&dtrace_provider_lock); 17409 return (EINVAL); 17410 } 17411 17412 mutex_exit(&dtrace_lock); 17413 17414 prov = probe->dtpr_provider; 17415 17416 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17417 /* 17418 * There isn't any typed information for this probe. 17419 * Set the argument number to DTRACE_ARGNONE. 17420 */ 17421 desc.dtargd_ndx = DTRACE_ARGNONE; 17422 } else { 17423 desc.dtargd_native[0] = '\0'; 17424 desc.dtargd_xlate[0] = '\0'; 17425 desc.dtargd_mapping = desc.dtargd_ndx; 17426 17427 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17428 probe->dtpr_id, probe->dtpr_arg, &desc); 17429 } 17430 17431 mutex_exit(&mod_lock); 17432 mutex_exit(&dtrace_provider_lock); 17433 17434 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17435 return (EFAULT); 17436 17437 return (0); 17438 } 17439 17440 case DTRACEIOC_GO: { 17441 processorid_t cpuid; 17442 rval = dtrace_state_go(state, &cpuid); 17443 17444 if (rval != 0) 17445 return (rval); 17446 17447 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17448 return (EFAULT); 17449 17450 return (0); 17451 } 17452 17453 case DTRACEIOC_STOP: { 17454 processorid_t cpuid; 17455 17456 mutex_enter(&dtrace_lock); 17457 rval = dtrace_state_stop(state, &cpuid); 17458 mutex_exit(&dtrace_lock); 17459 17460 if (rval != 0) 17461 return (rval); 17462 17463 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17464 return (EFAULT); 17465 17466 return (0); 17467 } 17468 17469 case DTRACEIOC_DOFGET: { 17470 dof_hdr_t hdr, *dof; 17471 uint64_t len; 17472 17473 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17474 return (EFAULT); 17475 17476 mutex_enter(&dtrace_lock); 17477 dof = dtrace_dof_create(state); 17478 mutex_exit(&dtrace_lock); 17479 17480 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17481 rval = copyout(dof, (void *)arg, len); 17482 dtrace_dof_destroy(dof); 17483 17484 return (rval == 0 ? 0 : EFAULT); 17485 } 17486 17487 case DTRACEIOC_AGGSNAP: 17488 case DTRACEIOC_BUFSNAP: { 17489 dtrace_bufdesc_t desc; 17490 caddr_t cached; 17491 dtrace_buffer_t *buf; 17492 17493 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17494 return (EFAULT); 17495 17496 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17497 return (EINVAL); 17498 17499 mutex_enter(&dtrace_lock); 17500 17501 if (cmd == DTRACEIOC_BUFSNAP) { 17502 buf = &state->dts_buffer[desc.dtbd_cpu]; 17503 } else { 17504 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17505 } 17506 17507 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17508 size_t sz = buf->dtb_offset; 17509 17510 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17511 mutex_exit(&dtrace_lock); 17512 return (EBUSY); 17513 } 17514 17515 /* 17516 * If this buffer has already been consumed, we're 17517 * going to indicate that there's nothing left here 17518 * to consume. 17519 */ 17520 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17521 mutex_exit(&dtrace_lock); 17522 17523 desc.dtbd_size = 0; 17524 desc.dtbd_drops = 0; 17525 desc.dtbd_errors = 0; 17526 desc.dtbd_oldest = 0; 17527 sz = sizeof (desc); 17528 17529 if (copyout(&desc, (void *)arg, sz) != 0) 17530 return (EFAULT); 17531 17532 return (0); 17533 } 17534 17535 /* 17536 * If this is a ring buffer that has wrapped, we want 17537 * to copy the whole thing out. 17538 */ 17539 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17540 dtrace_buffer_polish(buf); 17541 sz = buf->dtb_size; 17542 } 17543 17544 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17545 mutex_exit(&dtrace_lock); 17546 return (EFAULT); 17547 } 17548 17549 desc.dtbd_size = sz; 17550 desc.dtbd_drops = buf->dtb_drops; 17551 desc.dtbd_errors = buf->dtb_errors; 17552 desc.dtbd_oldest = buf->dtb_xamot_offset; 17553 desc.dtbd_timestamp = dtrace_gethrtime(); 17554 17555 mutex_exit(&dtrace_lock); 17556 17557 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17558 return (EFAULT); 17559 17560 buf->dtb_flags |= DTRACEBUF_CONSUMED; 17561 17562 return (0); 17563 } 17564 17565 if (buf->dtb_tomax == NULL) { 17566 ASSERT(buf->dtb_xamot == NULL); 17567 mutex_exit(&dtrace_lock); 17568 return (ENOENT); 17569 } 17570 17571 cached = buf->dtb_tomax; 17572 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 17573 17574 dtrace_xcall(desc.dtbd_cpu, 17575 (dtrace_xcall_t)dtrace_buffer_switch, buf); 17576 17577 state->dts_errors += buf->dtb_xamot_errors; 17578 17579 /* 17580 * If the buffers did not actually switch, then the cross call 17581 * did not take place -- presumably because the given CPU is 17582 * not in the ready set. If this is the case, we'll return 17583 * ENOENT. 17584 */ 17585 if (buf->dtb_tomax == cached) { 17586 ASSERT(buf->dtb_xamot != cached); 17587 mutex_exit(&dtrace_lock); 17588 return (ENOENT); 17589 } 17590 17591 ASSERT(cached == buf->dtb_xamot); 17592 17593 /* 17594 * We have our snapshot; now copy it out. 17595 */ 17596 if (copyout(buf->dtb_xamot, desc.dtbd_data, 17597 buf->dtb_xamot_offset) != 0) { 17598 mutex_exit(&dtrace_lock); 17599 return (EFAULT); 17600 } 17601 17602 desc.dtbd_size = buf->dtb_xamot_offset; 17603 desc.dtbd_drops = buf->dtb_xamot_drops; 17604 desc.dtbd_errors = buf->dtb_xamot_errors; 17605 desc.dtbd_oldest = 0; 17606 desc.dtbd_timestamp = buf->dtb_switched; 17607 17608 mutex_exit(&dtrace_lock); 17609 17610 /* 17611 * Finally, copy out the buffer description. 17612 */ 17613 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17614 return (EFAULT); 17615 17616 return (0); 17617 } 17618 17619 case DTRACEIOC_CONF: { 17620 dtrace_conf_t conf; 17621 17622 bzero(&conf, sizeof (conf)); 17623 conf.dtc_difversion = DIF_VERSION; 17624 conf.dtc_difintregs = DIF_DIR_NREGS; 17625 conf.dtc_diftupregs = DIF_DTR_NREGS; 17626 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 17627 17628 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 17629 return (EFAULT); 17630 17631 return (0); 17632 } 17633 17634 case DTRACEIOC_STATUS: { 17635 dtrace_status_t stat; 17636 dtrace_dstate_t *dstate; 17637 int i, j; 17638 uint64_t nerrs; 17639 17640 /* 17641 * See the comment in dtrace_state_deadman() for the reason 17642 * for setting dts_laststatus to INT64_MAX before setting 17643 * it to the correct value. 17644 */ 17645 state->dts_laststatus = INT64_MAX; 17646 dtrace_membar_producer(); 17647 state->dts_laststatus = dtrace_gethrtime(); 17648 17649 bzero(&stat, sizeof (stat)); 17650 17651 mutex_enter(&dtrace_lock); 17652 17653 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 17654 mutex_exit(&dtrace_lock); 17655 return (ENOENT); 17656 } 17657 17658 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 17659 stat.dtst_exiting = 1; 17660 17661 nerrs = state->dts_errors; 17662 dstate = &state->dts_vstate.dtvs_dynvars; 17663 17664 for (i = 0; i < NCPU; i++) { 17665 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17666 17667 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17668 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17669 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17670 17671 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17672 stat.dtst_filled++; 17673 17674 nerrs += state->dts_buffer[i].dtb_errors; 17675 17676 for (j = 0; j < state->dts_nspeculations; j++) { 17677 dtrace_speculation_t *spec; 17678 dtrace_buffer_t *buf; 17679 17680 spec = &state->dts_speculations[j]; 17681 buf = &spec->dtsp_buffer[i]; 17682 stat.dtst_specdrops += buf->dtb_xamot_drops; 17683 } 17684 } 17685 17686 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17687 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17688 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17689 stat.dtst_dblerrors = state->dts_dblerrors; 17690 stat.dtst_killed = 17691 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17692 stat.dtst_errors = nerrs; 17693 17694 mutex_exit(&dtrace_lock); 17695 17696 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17697 return (EFAULT); 17698 17699 return (0); 17700 } 17701 17702 case DTRACEIOC_FORMAT: { 17703 dtrace_fmtdesc_t fmt; 17704 char *str; 17705 int len; 17706 17707 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17708 return (EFAULT); 17709 17710 mutex_enter(&dtrace_lock); 17711 17712 if (fmt.dtfd_format == 0 || 17713 fmt.dtfd_format > state->dts_nformats) { 17714 mutex_exit(&dtrace_lock); 17715 return (EINVAL); 17716 } 17717 17718 /* 17719 * Format strings are allocated contiguously and they are 17720 * never freed; if a format index is less than the number 17721 * of formats, we can assert that the format map is non-NULL 17722 * and that the format for the specified index is non-NULL. 17723 */ 17724 ASSERT(state->dts_formats != NULL); 17725 str = state->dts_formats[fmt.dtfd_format - 1]; 17726 ASSERT(str != NULL); 17727 17728 len = strlen(str) + 1; 17729 17730 if (len > fmt.dtfd_length) { 17731 fmt.dtfd_length = len; 17732 17733 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17734 mutex_exit(&dtrace_lock); 17735 return (EINVAL); 17736 } 17737 } else { 17738 if (copyout(str, fmt.dtfd_string, len) != 0) { 17739 mutex_exit(&dtrace_lock); 17740 return (EINVAL); 17741 } 17742 } 17743 17744 mutex_exit(&dtrace_lock); 17745 return (0); 17746 } 17747 17748 default: 17749 break; 17750 } 17751 17752 return (ENOTTY); 17753 } 17754 17755 /*ARGSUSED*/ 17756 static int 17757 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17758 { 17759 dtrace_state_t *state; 17760 17761 switch (cmd) { 17762 case DDI_DETACH: 17763 break; 17764 17765 case DDI_SUSPEND: 17766 return (DDI_SUCCESS); 17767 17768 default: 17769 return (DDI_FAILURE); 17770 } 17771 17772 mutex_enter(&cpu_lock); 17773 mutex_enter(&dtrace_provider_lock); 17774 mutex_enter(&dtrace_lock); 17775 17776 ASSERT(dtrace_opens == 0); 17777 17778 if (dtrace_helpers > 0) { 17779 mutex_exit(&dtrace_provider_lock); 17780 mutex_exit(&dtrace_lock); 17781 mutex_exit(&cpu_lock); 17782 return (DDI_FAILURE); 17783 } 17784 17785 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17786 mutex_exit(&dtrace_provider_lock); 17787 mutex_exit(&dtrace_lock); 17788 mutex_exit(&cpu_lock); 17789 return (DDI_FAILURE); 17790 } 17791 17792 dtrace_provider = NULL; 17793 17794 if ((state = dtrace_anon_grab()) != NULL) { 17795 /* 17796 * If there were ECBs on this state, the provider should 17797 * have not been allowed to detach; assert that there is 17798 * none. 17799 */ 17800 ASSERT(state->dts_necbs == 0); 17801 dtrace_state_destroy(state); 17802 17803 /* 17804 * If we're being detached with anonymous state, we need to 17805 * indicate to the kernel debugger that DTrace is now inactive. 17806 */ 17807 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17808 } 17809 17810 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17811 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17812 dtrace_cpu_init = NULL; 17813 dtrace_helpers_cleanup = NULL; 17814 dtrace_helpers_fork = NULL; 17815 dtrace_cpustart_init = NULL; 17816 dtrace_cpustart_fini = NULL; 17817 dtrace_debugger_init = NULL; 17818 dtrace_debugger_fini = NULL; 17819 dtrace_modload = NULL; 17820 dtrace_modunload = NULL; 17821 17822 ASSERT(dtrace_getf == 0); 17823 ASSERT(dtrace_closef == NULL); 17824 17825 mutex_exit(&cpu_lock); 17826 17827 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17828 dtrace_probes = NULL; 17829 dtrace_nprobes = 0; 17830 17831 dtrace_hash_destroy(dtrace_bymod); 17832 dtrace_hash_destroy(dtrace_byfunc); 17833 dtrace_hash_destroy(dtrace_byname); 17834 dtrace_bymod = NULL; 17835 dtrace_byfunc = NULL; 17836 dtrace_byname = NULL; 17837 17838 kmem_cache_destroy(dtrace_state_cache); 17839 vmem_destroy(dtrace_minor); 17840 vmem_destroy(dtrace_arena); 17841 17842 if (dtrace_toxrange != NULL) { 17843 kmem_free(dtrace_toxrange, 17844 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17845 dtrace_toxrange = NULL; 17846 dtrace_toxranges = 0; 17847 dtrace_toxranges_max = 0; 17848 } 17849 17850 ddi_remove_minor_node(dtrace_devi, NULL); 17851 dtrace_devi = NULL; 17852 17853 ddi_soft_state_fini(&dtrace_softstate); 17854 17855 ASSERT(dtrace_vtime_references == 0); 17856 ASSERT(dtrace_opens == 0); 17857 ASSERT(dtrace_retained == NULL); 17858 17859 mutex_exit(&dtrace_lock); 17860 mutex_exit(&dtrace_provider_lock); 17861 17862 /* 17863 * We don't destroy the task queue until after we have dropped our 17864 * locks (taskq_destroy() may block on running tasks). To prevent 17865 * attempting to do work after we have effectively detached but before 17866 * the task queue has been destroyed, all tasks dispatched via the 17867 * task queue must check that DTrace is still attached before 17868 * performing any operation. 17869 */ 17870 taskq_destroy(dtrace_taskq); 17871 dtrace_taskq = NULL; 17872 17873 return (DDI_SUCCESS); 17874 } 17875 #endif 17876 17877 #ifdef illumos 17878 /*ARGSUSED*/ 17879 static int 17880 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17881 { 17882 int error; 17883 17884 switch (infocmd) { 17885 case DDI_INFO_DEVT2DEVINFO: 17886 *result = (void *)dtrace_devi; 17887 error = DDI_SUCCESS; 17888 break; 17889 case DDI_INFO_DEVT2INSTANCE: 17890 *result = (void *)0; 17891 error = DDI_SUCCESS; 17892 break; 17893 default: 17894 error = DDI_FAILURE; 17895 } 17896 return (error); 17897 } 17898 #endif 17899 17900 #ifdef illumos 17901 static struct cb_ops dtrace_cb_ops = { 17902 dtrace_open, /* open */ 17903 dtrace_close, /* close */ 17904 nulldev, /* strategy */ 17905 nulldev, /* print */ 17906 nodev, /* dump */ 17907 nodev, /* read */ 17908 nodev, /* write */ 17909 dtrace_ioctl, /* ioctl */ 17910 nodev, /* devmap */ 17911 nodev, /* mmap */ 17912 nodev, /* segmap */ 17913 nochpoll, /* poll */ 17914 ddi_prop_op, /* cb_prop_op */ 17915 0, /* streamtab */ 17916 D_NEW | D_MP /* Driver compatibility flag */ 17917 }; 17918 17919 static struct dev_ops dtrace_ops = { 17920 DEVO_REV, /* devo_rev */ 17921 0, /* refcnt */ 17922 dtrace_info, /* get_dev_info */ 17923 nulldev, /* identify */ 17924 nulldev, /* probe */ 17925 dtrace_attach, /* attach */ 17926 dtrace_detach, /* detach */ 17927 nodev, /* reset */ 17928 &dtrace_cb_ops, /* driver operations */ 17929 NULL, /* bus operations */ 17930 nodev /* dev power */ 17931 }; 17932 17933 static struct modldrv modldrv = { 17934 &mod_driverops, /* module type (this is a pseudo driver) */ 17935 "Dynamic Tracing", /* name of module */ 17936 &dtrace_ops, /* driver ops */ 17937 }; 17938 17939 static struct modlinkage modlinkage = { 17940 MODREV_1, 17941 (void *)&modldrv, 17942 NULL 17943 }; 17944 17945 int 17946 _init(void) 17947 { 17948 return (mod_install(&modlinkage)); 17949 } 17950 17951 int 17952 _info(struct modinfo *modinfop) 17953 { 17954 return (mod_info(&modlinkage, modinfop)); 17955 } 17956 17957 int 17958 _fini(void) 17959 { 17960 return (mod_remove(&modlinkage)); 17961 } 17962 #else 17963 17964 static d_ioctl_t dtrace_ioctl; 17965 static d_ioctl_t dtrace_ioctl_helper; 17966 static void dtrace_load(void *); 17967 static int dtrace_unload(void); 17968 static struct cdev *dtrace_dev; 17969 static struct cdev *helper_dev; 17970 17971 void dtrace_invop_init(void); 17972 void dtrace_invop_uninit(void); 17973 17974 static struct cdevsw dtrace_cdevsw = { 17975 .d_version = D_VERSION, 17976 .d_ioctl = dtrace_ioctl, 17977 .d_open = dtrace_open, 17978 .d_name = "dtrace", 17979 }; 17980 17981 static struct cdevsw helper_cdevsw = { 17982 .d_version = D_VERSION, 17983 .d_ioctl = dtrace_ioctl_helper, 17984 .d_name = "helper", 17985 }; 17986 17987 #include <dtrace_anon.c> 17988 #include <dtrace_ioctl.c> 17989 #include <dtrace_load.c> 17990 #include <dtrace_modevent.c> 17991 #include <dtrace_sysctl.c> 17992 #include <dtrace_unload.c> 17993 #include <dtrace_vtime.c> 17994 #include <dtrace_hacks.c> 17995 #include <dtrace_isa.c> 17996 17997 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 17998 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 17999 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18000 18001 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18002 MODULE_VERSION(dtrace, 1); 18003 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18004 #endif 18005