xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/sysctl.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/dtrace_bsd.h>
129 #include <netinet/in.h>
130 #include "dtrace_cddl.h"
131 #include "dtrace_debug.c"
132 #endif
133 
134 /*
135  * DTrace Tunable Variables
136  *
137  * The following variables may be tuned by adding a line to /etc/system that
138  * includes both the name of the DTrace module ("dtrace") and the name of the
139  * variable.  For example:
140  *
141  *   set dtrace:dtrace_destructive_disallow = 1
142  *
143  * In general, the only variables that one should be tuning this way are those
144  * that affect system-wide DTrace behavior, and for which the default behavior
145  * is undesirable.  Most of these variables are tunable on a per-consumer
146  * basis using DTrace options, and need not be tuned on a system-wide basis.
147  * When tuning these variables, avoid pathological values; while some attempt
148  * is made to verify the integrity of these variables, they are not considered
149  * part of the supported interface to DTrace, and they are therefore not
150  * checked comprehensively.  Further, these variables should not be tuned
151  * dynamically via "mdb -kw" or other means; they should only be tuned via
152  * /etc/system.
153  */
154 int		dtrace_destructive_disallow = 0;
155 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156 size_t		dtrace_difo_maxsize = (256 * 1024);
157 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
158 size_t		dtrace_global_maxsize = (16 * 1024);
159 size_t		dtrace_actions_max = (16 * 1024);
160 size_t		dtrace_retain_max = 1024;
161 dtrace_optval_t	dtrace_helper_actions_max = 128;
162 dtrace_optval_t	dtrace_helper_providers_max = 32;
163 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164 size_t		dtrace_strsize_default = 256;
165 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172 dtrace_optval_t	dtrace_nspec_default = 1;
173 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174 dtrace_optval_t dtrace_stackframes_default = 20;
175 dtrace_optval_t dtrace_ustackframes_default = 20;
176 dtrace_optval_t dtrace_jstackframes_default = 50;
177 dtrace_optval_t dtrace_jstackstrsize_default = 512;
178 int		dtrace_msgdsize_max = 128;
179 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
180 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181 int		dtrace_devdepth_max = 32;
182 int		dtrace_err_verbose;
183 hrtime_t	dtrace_deadman_interval = NANOSEC;
184 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187 #ifndef illumos
188 int		dtrace_memstr_max = 4096;
189 #endif
190 
191 /*
192  * DTrace External Variables
193  *
194  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
195  * available to DTrace consumers via the backtick (`) syntax.  One of these,
196  * dtrace_zero, is made deliberately so:  it is provided as a source of
197  * well-known, zero-filled memory.  While this variable is not documented,
198  * it is used by some translators as an implementation detail.
199  */
200 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
201 
202 /*
203  * DTrace Internal Variables
204  */
205 #ifdef illumos
206 static dev_info_t	*dtrace_devi;		/* device info */
207 #endif
208 #ifdef illumos
209 static vmem_t		*dtrace_arena;		/* probe ID arena */
210 static vmem_t		*dtrace_minor;		/* minor number arena */
211 #else
212 static taskq_t		*dtrace_taskq;		/* task queue */
213 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
214 #endif
215 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
216 static int		dtrace_nprobes;		/* number of probes */
217 static dtrace_provider_t *dtrace_provider;	/* provider list */
218 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
219 static int		dtrace_opens;		/* number of opens */
220 static int		dtrace_helpers;		/* number of helpers */
221 static int		dtrace_getf;		/* number of unpriv getf()s */
222 #ifdef illumos
223 static void		*dtrace_softstate;	/* softstate pointer */
224 #endif
225 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229 static int		dtrace_toxranges;	/* number of toxic ranges */
230 static int		dtrace_toxranges_max;	/* size of toxic range array */
231 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234 static kthread_t	*dtrace_panicked;	/* panicking thread */
235 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
240 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
241 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
242 #ifndef illumos
243 static struct mtx	dtrace_unr_mtx;
244 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
245 int		dtrace_in_probe;	/* non-zero if executing a probe */
246 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
247 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
248 #endif
249 static eventhandler_tag	dtrace_kld_load_tag;
250 static eventhandler_tag	dtrace_kld_unload_try_tag;
251 #endif
252 
253 /*
254  * DTrace Locking
255  * DTrace is protected by three (relatively coarse-grained) locks:
256  *
257  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258  *     including enabling state, probes, ECBs, consumer state, helper state,
259  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
260  *     probe context is lock-free -- synchronization is handled via the
261  *     dtrace_sync() cross call mechanism.
262  *
263  * (2) dtrace_provider_lock is required when manipulating provider state, or
264  *     when provider state must be held constant.
265  *
266  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267  *     when meta provider state must be held constant.
268  *
269  * The lock ordering between these three locks is dtrace_meta_lock before
270  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
271  * several places where dtrace_provider_lock is held by the framework as it
272  * calls into the providers -- which then call back into the framework,
273  * grabbing dtrace_lock.)
274  *
275  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
276  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277  * role as a coarse-grained lock; it is acquired before both of these locks.
278  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
279  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281  * acquired _between_ dtrace_provider_lock and dtrace_lock.
282  */
283 static kmutex_t		dtrace_lock;		/* probe state lock */
284 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
285 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
286 
287 #ifndef illumos
288 /* XXX FreeBSD hacks. */
289 #define cr_suid		cr_svuid
290 #define cr_sgid		cr_svgid
291 #define	ipaddr_t	in_addr_t
292 #define mod_modname	pathname
293 #define vuprintf	vprintf
294 #define ttoproc(_a)	((_a)->td_proc)
295 #define crgetzoneid(_a)	0
296 #define	NCPU		MAXCPU
297 #define SNOCD		0
298 #define CPU_ON_INTR(_a)	0
299 
300 #define PRIV_EFFECTIVE		(1 << 0)
301 #define PRIV_DTRACE_KERNEL	(1 << 1)
302 #define PRIV_DTRACE_PROC	(1 << 2)
303 #define PRIV_DTRACE_USER	(1 << 3)
304 #define PRIV_PROC_OWNER		(1 << 4)
305 #define PRIV_PROC_ZONE		(1 << 5)
306 #define PRIV_ALL		~0
307 
308 SYSCTL_DECL(_debug_dtrace);
309 SYSCTL_DECL(_kern_dtrace);
310 #endif
311 
312 #ifdef illumos
313 #define curcpu	CPU->cpu_id
314 #endif
315 
316 
317 /*
318  * DTrace Provider Variables
319  *
320  * These are the variables relating to DTrace as a provider (that is, the
321  * provider of the BEGIN, END, and ERROR probes).
322  */
323 static dtrace_pattr_t	dtrace_provider_attr = {
324 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
325 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
326 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329 };
330 
331 static void
332 dtrace_nullop(void)
333 {}
334 
335 static dtrace_pops_t	dtrace_provider_ops = {
336 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
337 	(void (*)(void *, modctl_t *))dtrace_nullop,
338 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342 	NULL,
343 	NULL,
344 	NULL,
345 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
346 };
347 
348 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
349 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
350 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
351 
352 /*
353  * DTrace Helper Tracing Variables
354  *
355  * These variables should be set dynamically to enable helper tracing.  The
356  * only variables that should be set are dtrace_helptrace_enable (which should
357  * be set to a non-zero value to allocate helper tracing buffers on the next
358  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
359  * non-zero value to deallocate helper tracing buffers on the next close of
360  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
361  * buffer size may also be set via dtrace_helptrace_bufsize.
362  */
363 int			dtrace_helptrace_enable = 0;
364 int			dtrace_helptrace_disable = 0;
365 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
366 uint32_t		dtrace_helptrace_nlocals;
367 static dtrace_helptrace_t *dtrace_helptrace_buffer;
368 static uint32_t		dtrace_helptrace_next = 0;
369 static int		dtrace_helptrace_wrapped = 0;
370 
371 /*
372  * DTrace Error Hashing
373  *
374  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
375  * table.  This is very useful for checking coverage of tests that are
376  * expected to induce DIF or DOF processing errors, and may be useful for
377  * debugging problems in the DIF code generator or in DOF generation .  The
378  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
379  */
380 #ifdef DEBUG
381 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
382 static const char *dtrace_errlast;
383 static kthread_t *dtrace_errthread;
384 static kmutex_t dtrace_errlock;
385 #endif
386 
387 /*
388  * DTrace Macros and Constants
389  *
390  * These are various macros that are useful in various spots in the
391  * implementation, along with a few random constants that have no meaning
392  * outside of the implementation.  There is no real structure to this cpp
393  * mishmash -- but is there ever?
394  */
395 #define	DTRACE_HASHSTR(hash, probe)	\
396 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
397 
398 #define	DTRACE_HASHNEXT(hash, probe)	\
399 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
400 
401 #define	DTRACE_HASHPREV(hash, probe)	\
402 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
403 
404 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
405 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
406 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
407 
408 #define	DTRACE_AGGHASHSIZE_SLEW		17
409 
410 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
411 
412 /*
413  * The key for a thread-local variable consists of the lower 61 bits of the
414  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
415  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
416  * equal to a variable identifier.  This is necessary (but not sufficient) to
417  * assure that global associative arrays never collide with thread-local
418  * variables.  To guarantee that they cannot collide, we must also define the
419  * order for keying dynamic variables.  That order is:
420  *
421  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
422  *
423  * Because the variable-key and the tls-key are in orthogonal spaces, there is
424  * no way for a global variable key signature to match a thread-local key
425  * signature.
426  */
427 #ifdef illumos
428 #define	DTRACE_TLS_THRKEY(where) { \
429 	uint_t intr = 0; \
430 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
431 	for (; actv; actv >>= 1) \
432 		intr++; \
433 	ASSERT(intr < (1 << 3)); \
434 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
435 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
436 }
437 #else
438 #define	DTRACE_TLS_THRKEY(where) { \
439 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
440 	uint_t intr = 0; \
441 	uint_t actv = _c->cpu_intr_actv; \
442 	for (; actv; actv >>= 1) \
443 		intr++; \
444 	ASSERT(intr < (1 << 3)); \
445 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
446 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
447 }
448 #endif
449 
450 #define	DT_BSWAP_8(x)	((x) & 0xff)
451 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
452 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
453 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
454 
455 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
456 
457 #define	DTRACE_STORE(type, tomax, offset, what) \
458 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
459 
460 #ifndef __x86
461 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
462 	if (addr & (size - 1)) {					\
463 		*flags |= CPU_DTRACE_BADALIGN;				\
464 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
465 		return (0);						\
466 	}
467 #else
468 #define	DTRACE_ALIGNCHECK(addr, size, flags)
469 #endif
470 
471 /*
472  * Test whether a range of memory starting at testaddr of size testsz falls
473  * within the range of memory described by addr, sz.  We take care to avoid
474  * problems with overflow and underflow of the unsigned quantities, and
475  * disallow all negative sizes.  Ranges of size 0 are allowed.
476  */
477 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
478 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
479 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
480 	(testaddr) + (testsz) >= (testaddr))
481 
482 /*
483  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
484  * alloc_sz on the righthand side of the comparison in order to avoid overflow
485  * or underflow in the comparison with it.  This is simpler than the INRANGE
486  * check above, because we know that the dtms_scratch_ptr is valid in the
487  * range.  Allocations of size zero are allowed.
488  */
489 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
490 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
491 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
492 
493 #define	DTRACE_LOADFUNC(bits)						\
494 /*CSTYLED*/								\
495 uint##bits##_t								\
496 dtrace_load##bits(uintptr_t addr)					\
497 {									\
498 	size_t size = bits / NBBY;					\
499 	/*CSTYLED*/							\
500 	uint##bits##_t rval;						\
501 	int i;								\
502 	volatile uint16_t *flags = (volatile uint16_t *)		\
503 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
504 									\
505 	DTRACE_ALIGNCHECK(addr, size, flags);				\
506 									\
507 	for (i = 0; i < dtrace_toxranges; i++) {			\
508 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
509 			continue;					\
510 									\
511 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
512 			continue;					\
513 									\
514 		/*							\
515 		 * This address falls within a toxic region; return 0.	\
516 		 */							\
517 		*flags |= CPU_DTRACE_BADADDR;				\
518 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
519 		return (0);						\
520 	}								\
521 									\
522 	*flags |= CPU_DTRACE_NOFAULT;					\
523 	/*CSTYLED*/							\
524 	rval = *((volatile uint##bits##_t *)addr);			\
525 	*flags &= ~CPU_DTRACE_NOFAULT;					\
526 									\
527 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
528 }
529 
530 #ifdef _LP64
531 #define	dtrace_loadptr	dtrace_load64
532 #else
533 #define	dtrace_loadptr	dtrace_load32
534 #endif
535 
536 #define	DTRACE_DYNHASH_FREE	0
537 #define	DTRACE_DYNHASH_SINK	1
538 #define	DTRACE_DYNHASH_VALID	2
539 
540 #define	DTRACE_MATCH_NEXT	0
541 #define	DTRACE_MATCH_DONE	1
542 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
543 #define	DTRACE_STATE_ALIGN	64
544 
545 #define	DTRACE_FLAGS2FLT(flags)						\
546 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
547 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
548 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
549 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
550 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
551 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
552 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
553 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
554 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
555 	DTRACEFLT_UNKNOWN)
556 
557 #define	DTRACEACT_ISSTRING(act)						\
558 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
559 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
560 
561 /* Function prototype definitions: */
562 static size_t dtrace_strlen(const char *, size_t);
563 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
564 static void dtrace_enabling_provide(dtrace_provider_t *);
565 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
566 static void dtrace_enabling_matchall(void);
567 static void dtrace_enabling_reap(void);
568 static dtrace_state_t *dtrace_anon_grab(void);
569 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
570     dtrace_state_t *, uint64_t, uint64_t);
571 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
572 static void dtrace_buffer_drop(dtrace_buffer_t *);
573 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
574 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
575     dtrace_state_t *, dtrace_mstate_t *);
576 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
577     dtrace_optval_t);
578 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
579 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
580 uint16_t dtrace_load16(uintptr_t);
581 uint32_t dtrace_load32(uintptr_t);
582 uint64_t dtrace_load64(uintptr_t);
583 uint8_t dtrace_load8(uintptr_t);
584 void dtrace_dynvar_clean(dtrace_dstate_t *);
585 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
586     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
587 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
588 static int dtrace_priv_proc(dtrace_state_t *);
589 static void dtrace_getf_barrier(void);
590 
591 /*
592  * DTrace Probe Context Functions
593  *
594  * These functions are called from probe context.  Because probe context is
595  * any context in which C may be called, arbitrarily locks may be held,
596  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
597  * As a result, functions called from probe context may only call other DTrace
598  * support functions -- they may not interact at all with the system at large.
599  * (Note that the ASSERT macro is made probe-context safe by redefining it in
600  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
601  * loads are to be performed from probe context, they _must_ be in terms of
602  * the safe dtrace_load*() variants.
603  *
604  * Some functions in this block are not actually called from probe context;
605  * for these functions, there will be a comment above the function reading
606  * "Note:  not called from probe context."
607  */
608 void
609 dtrace_panic(const char *format, ...)
610 {
611 	va_list alist;
612 
613 	va_start(alist, format);
614 #ifdef __FreeBSD__
615 	vpanic(format, alist);
616 #else
617 	dtrace_vpanic(format, alist);
618 #endif
619 	va_end(alist);
620 }
621 
622 int
623 dtrace_assfail(const char *a, const char *f, int l)
624 {
625 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
626 
627 	/*
628 	 * We just need something here that even the most clever compiler
629 	 * cannot optimize away.
630 	 */
631 	return (a[(uintptr_t)f]);
632 }
633 
634 /*
635  * Atomically increment a specified error counter from probe context.
636  */
637 static void
638 dtrace_error(uint32_t *counter)
639 {
640 	/*
641 	 * Most counters stored to in probe context are per-CPU counters.
642 	 * However, there are some error conditions that are sufficiently
643 	 * arcane that they don't merit per-CPU storage.  If these counters
644 	 * are incremented concurrently on different CPUs, scalability will be
645 	 * adversely affected -- but we don't expect them to be white-hot in a
646 	 * correctly constructed enabling...
647 	 */
648 	uint32_t oval, nval;
649 
650 	do {
651 		oval = *counter;
652 
653 		if ((nval = oval + 1) == 0) {
654 			/*
655 			 * If the counter would wrap, set it to 1 -- assuring
656 			 * that the counter is never zero when we have seen
657 			 * errors.  (The counter must be 32-bits because we
658 			 * aren't guaranteed a 64-bit compare&swap operation.)
659 			 * To save this code both the infamy of being fingered
660 			 * by a priggish news story and the indignity of being
661 			 * the target of a neo-puritan witch trial, we're
662 			 * carefully avoiding any colorful description of the
663 			 * likelihood of this condition -- but suffice it to
664 			 * say that it is only slightly more likely than the
665 			 * overflow of predicate cache IDs, as discussed in
666 			 * dtrace_predicate_create().
667 			 */
668 			nval = 1;
669 		}
670 	} while (dtrace_cas32(counter, oval, nval) != oval);
671 }
672 
673 /*
674  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
675  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
676  */
677 DTRACE_LOADFUNC(8)
678 DTRACE_LOADFUNC(16)
679 DTRACE_LOADFUNC(32)
680 DTRACE_LOADFUNC(64)
681 
682 static int
683 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
684 {
685 	if (dest < mstate->dtms_scratch_base)
686 		return (0);
687 
688 	if (dest + size < dest)
689 		return (0);
690 
691 	if (dest + size > mstate->dtms_scratch_ptr)
692 		return (0);
693 
694 	return (1);
695 }
696 
697 static int
698 dtrace_canstore_statvar(uint64_t addr, size_t sz,
699     dtrace_statvar_t **svars, int nsvars)
700 {
701 	int i;
702 
703 	for (i = 0; i < nsvars; i++) {
704 		dtrace_statvar_t *svar = svars[i];
705 
706 		if (svar == NULL || svar->dtsv_size == 0)
707 			continue;
708 
709 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
710 			return (1);
711 	}
712 
713 	return (0);
714 }
715 
716 /*
717  * Check to see if the address is within a memory region to which a store may
718  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
719  * region.  The caller of dtrace_canstore() is responsible for performing any
720  * alignment checks that are needed before stores are actually executed.
721  */
722 static int
723 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
724     dtrace_vstate_t *vstate)
725 {
726 	/*
727 	 * First, check to see if the address is in scratch space...
728 	 */
729 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
730 	    mstate->dtms_scratch_size))
731 		return (1);
732 
733 	/*
734 	 * Now check to see if it's a dynamic variable.  This check will pick
735 	 * up both thread-local variables and any global dynamically-allocated
736 	 * variables.
737 	 */
738 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
739 	    vstate->dtvs_dynvars.dtds_size)) {
740 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
741 		uintptr_t base = (uintptr_t)dstate->dtds_base +
742 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
743 		uintptr_t chunkoffs;
744 
745 		/*
746 		 * Before we assume that we can store here, we need to make
747 		 * sure that it isn't in our metadata -- storing to our
748 		 * dynamic variable metadata would corrupt our state.  For
749 		 * the range to not include any dynamic variable metadata,
750 		 * it must:
751 		 *
752 		 *	(1) Start above the hash table that is at the base of
753 		 *	the dynamic variable space
754 		 *
755 		 *	(2) Have a starting chunk offset that is beyond the
756 		 *	dtrace_dynvar_t that is at the base of every chunk
757 		 *
758 		 *	(3) Not span a chunk boundary
759 		 *
760 		 */
761 		if (addr < base)
762 			return (0);
763 
764 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
765 
766 		if (chunkoffs < sizeof (dtrace_dynvar_t))
767 			return (0);
768 
769 		if (chunkoffs + sz > dstate->dtds_chunksize)
770 			return (0);
771 
772 		return (1);
773 	}
774 
775 	/*
776 	 * Finally, check the static local and global variables.  These checks
777 	 * take the longest, so we perform them last.
778 	 */
779 	if (dtrace_canstore_statvar(addr, sz,
780 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
781 		return (1);
782 
783 	if (dtrace_canstore_statvar(addr, sz,
784 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
785 		return (1);
786 
787 	return (0);
788 }
789 
790 
791 /*
792  * Convenience routine to check to see if the address is within a memory
793  * region in which a load may be issued given the user's privilege level;
794  * if not, it sets the appropriate error flags and loads 'addr' into the
795  * illegal value slot.
796  *
797  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
798  * appropriate memory access protection.
799  */
800 static int
801 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
802     dtrace_vstate_t *vstate)
803 {
804 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
805 	file_t *fp;
806 
807 	/*
808 	 * If we hold the privilege to read from kernel memory, then
809 	 * everything is readable.
810 	 */
811 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
812 		return (1);
813 
814 	/*
815 	 * You can obviously read that which you can store.
816 	 */
817 	if (dtrace_canstore(addr, sz, mstate, vstate))
818 		return (1);
819 
820 	/*
821 	 * We're allowed to read from our own string table.
822 	 */
823 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
824 	    mstate->dtms_difo->dtdo_strlen))
825 		return (1);
826 
827 	if (vstate->dtvs_state != NULL &&
828 	    dtrace_priv_proc(vstate->dtvs_state)) {
829 		proc_t *p;
830 
831 		/*
832 		 * When we have privileges to the current process, there are
833 		 * several context-related kernel structures that are safe to
834 		 * read, even absent the privilege to read from kernel memory.
835 		 * These reads are safe because these structures contain only
836 		 * state that (1) we're permitted to read, (2) is harmless or
837 		 * (3) contains pointers to additional kernel state that we're
838 		 * not permitted to read (and as such, do not present an
839 		 * opportunity for privilege escalation).  Finally (and
840 		 * critically), because of the nature of their relation with
841 		 * the current thread context, the memory associated with these
842 		 * structures cannot change over the duration of probe context,
843 		 * and it is therefore impossible for this memory to be
844 		 * deallocated and reallocated as something else while it's
845 		 * being operated upon.
846 		 */
847 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
848 			return (1);
849 
850 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
851 		    sz, curthread->t_procp, sizeof (proc_t))) {
852 			return (1);
853 		}
854 
855 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
856 		    curthread->t_cred, sizeof (cred_t))) {
857 			return (1);
858 		}
859 
860 #ifdef illumos
861 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
862 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
863 			return (1);
864 		}
865 
866 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
867 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
868 			return (1);
869 		}
870 #endif
871 	}
872 
873 	if ((fp = mstate->dtms_getf) != NULL) {
874 		uintptr_t psz = sizeof (void *);
875 		vnode_t *vp;
876 		vnodeops_t *op;
877 
878 		/*
879 		 * When getf() returns a file_t, the enabling is implicitly
880 		 * granted the (transient) right to read the returned file_t
881 		 * as well as the v_path and v_op->vnop_name of the underlying
882 		 * vnode.  These accesses are allowed after a successful
883 		 * getf() because the members that they refer to cannot change
884 		 * once set -- and the barrier logic in the kernel's closef()
885 		 * path assures that the file_t and its referenced vode_t
886 		 * cannot themselves be stale (that is, it impossible for
887 		 * either dtms_getf itself or its f_vnode member to reference
888 		 * freed memory).
889 		 */
890 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
891 			return (1);
892 
893 		if ((vp = fp->f_vnode) != NULL) {
894 #ifdef illumos
895 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
896 				return (1);
897 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
898 			    vp->v_path, strlen(vp->v_path) + 1)) {
899 				return (1);
900 			}
901 #endif
902 
903 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
904 				return (1);
905 
906 #ifdef illumos
907 			if ((op = vp->v_op) != NULL &&
908 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
909 				return (1);
910 			}
911 
912 			if (op != NULL && op->vnop_name != NULL &&
913 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
914 			    strlen(op->vnop_name) + 1)) {
915 				return (1);
916 			}
917 #endif
918 		}
919 	}
920 
921 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
922 	*illval = addr;
923 	return (0);
924 }
925 
926 /*
927  * Convenience routine to check to see if a given string is within a memory
928  * region in which a load may be issued given the user's privilege level;
929  * this exists so that we don't need to issue unnecessary dtrace_strlen()
930  * calls in the event that the user has all privileges.
931  */
932 static int
933 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
934     dtrace_vstate_t *vstate)
935 {
936 	size_t strsz;
937 
938 	/*
939 	 * If we hold the privilege to read from kernel memory, then
940 	 * everything is readable.
941 	 */
942 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
943 		return (1);
944 
945 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
946 	if (dtrace_canload(addr, strsz, mstate, vstate))
947 		return (1);
948 
949 	return (0);
950 }
951 
952 /*
953  * Convenience routine to check to see if a given variable is within a memory
954  * region in which a load may be issued given the user's privilege level.
955  */
956 static int
957 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
958     dtrace_vstate_t *vstate)
959 {
960 	size_t sz;
961 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
962 
963 	/*
964 	 * If we hold the privilege to read from kernel memory, then
965 	 * everything is readable.
966 	 */
967 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
968 		return (1);
969 
970 	if (type->dtdt_kind == DIF_TYPE_STRING)
971 		sz = dtrace_strlen(src,
972 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
973 	else
974 		sz = type->dtdt_size;
975 
976 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
977 }
978 
979 /*
980  * Convert a string to a signed integer using safe loads.
981  *
982  * NOTE: This function uses various macros from strtolctype.h to manipulate
983  * digit values, etc -- these have all been checked to ensure they make
984  * no additional function calls.
985  */
986 static int64_t
987 dtrace_strtoll(char *input, int base, size_t limit)
988 {
989 	uintptr_t pos = (uintptr_t)input;
990 	int64_t val = 0;
991 	int x;
992 	boolean_t neg = B_FALSE;
993 	char c, cc, ccc;
994 	uintptr_t end = pos + limit;
995 
996 	/*
997 	 * Consume any whitespace preceding digits.
998 	 */
999 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1000 		pos++;
1001 
1002 	/*
1003 	 * Handle an explicit sign if one is present.
1004 	 */
1005 	if (c == '-' || c == '+') {
1006 		if (c == '-')
1007 			neg = B_TRUE;
1008 		c = dtrace_load8(++pos);
1009 	}
1010 
1011 	/*
1012 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1013 	 * if present.
1014 	 */
1015 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1016 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1017 		pos += 2;
1018 		c = ccc;
1019 	}
1020 
1021 	/*
1022 	 * Read in contiguous digits until the first non-digit character.
1023 	 */
1024 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1025 	    c = dtrace_load8(++pos))
1026 		val = val * base + x;
1027 
1028 	return (neg ? -val : val);
1029 }
1030 
1031 /*
1032  * Compare two strings using safe loads.
1033  */
1034 static int
1035 dtrace_strncmp(char *s1, char *s2, size_t limit)
1036 {
1037 	uint8_t c1, c2;
1038 	volatile uint16_t *flags;
1039 
1040 	if (s1 == s2 || limit == 0)
1041 		return (0);
1042 
1043 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1044 
1045 	do {
1046 		if (s1 == NULL) {
1047 			c1 = '\0';
1048 		} else {
1049 			c1 = dtrace_load8((uintptr_t)s1++);
1050 		}
1051 
1052 		if (s2 == NULL) {
1053 			c2 = '\0';
1054 		} else {
1055 			c2 = dtrace_load8((uintptr_t)s2++);
1056 		}
1057 
1058 		if (c1 != c2)
1059 			return (c1 - c2);
1060 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1061 
1062 	return (0);
1063 }
1064 
1065 /*
1066  * Compute strlen(s) for a string using safe memory accesses.  The additional
1067  * len parameter is used to specify a maximum length to ensure completion.
1068  */
1069 static size_t
1070 dtrace_strlen(const char *s, size_t lim)
1071 {
1072 	uint_t len;
1073 
1074 	for (len = 0; len != lim; len++) {
1075 		if (dtrace_load8((uintptr_t)s++) == '\0')
1076 			break;
1077 	}
1078 
1079 	return (len);
1080 }
1081 
1082 /*
1083  * Check if an address falls within a toxic region.
1084  */
1085 static int
1086 dtrace_istoxic(uintptr_t kaddr, size_t size)
1087 {
1088 	uintptr_t taddr, tsize;
1089 	int i;
1090 
1091 	for (i = 0; i < dtrace_toxranges; i++) {
1092 		taddr = dtrace_toxrange[i].dtt_base;
1093 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1094 
1095 		if (kaddr - taddr < tsize) {
1096 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1097 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1098 			return (1);
1099 		}
1100 
1101 		if (taddr - kaddr < size) {
1102 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1103 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1104 			return (1);
1105 		}
1106 	}
1107 
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1113  * memory specified by the DIF program.  The dst is assumed to be safe memory
1114  * that we can store to directly because it is managed by DTrace.  As with
1115  * standard bcopy, overlapping copies are handled properly.
1116  */
1117 static void
1118 dtrace_bcopy(const void *src, void *dst, size_t len)
1119 {
1120 	if (len != 0) {
1121 		uint8_t *s1 = dst;
1122 		const uint8_t *s2 = src;
1123 
1124 		if (s1 <= s2) {
1125 			do {
1126 				*s1++ = dtrace_load8((uintptr_t)s2++);
1127 			} while (--len != 0);
1128 		} else {
1129 			s2 += len;
1130 			s1 += len;
1131 
1132 			do {
1133 				*--s1 = dtrace_load8((uintptr_t)--s2);
1134 			} while (--len != 0);
1135 		}
1136 	}
1137 }
1138 
1139 /*
1140  * Copy src to dst using safe memory accesses, up to either the specified
1141  * length, or the point that a nul byte is encountered.  The src is assumed to
1142  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1143  * safe memory that we can store to directly because it is managed by DTrace.
1144  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1145  */
1146 static void
1147 dtrace_strcpy(const void *src, void *dst, size_t len)
1148 {
1149 	if (len != 0) {
1150 		uint8_t *s1 = dst, c;
1151 		const uint8_t *s2 = src;
1152 
1153 		do {
1154 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1155 		} while (--len != 0 && c != '\0');
1156 	}
1157 }
1158 
1159 /*
1160  * Copy src to dst, deriving the size and type from the specified (BYREF)
1161  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1162  * program.  The dst is assumed to be DTrace variable memory that is of the
1163  * specified type; we assume that we can store to directly.
1164  */
1165 static void
1166 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1167 {
1168 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1169 
1170 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1171 		dtrace_strcpy(src, dst, type->dtdt_size);
1172 	} else {
1173 		dtrace_bcopy(src, dst, type->dtdt_size);
1174 	}
1175 }
1176 
1177 /*
1178  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1179  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1180  * safe memory that we can access directly because it is managed by DTrace.
1181  */
1182 static int
1183 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1184 {
1185 	volatile uint16_t *flags;
1186 
1187 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1188 
1189 	if (s1 == s2)
1190 		return (0);
1191 
1192 	if (s1 == NULL || s2 == NULL)
1193 		return (1);
1194 
1195 	if (s1 != s2 && len != 0) {
1196 		const uint8_t *ps1 = s1;
1197 		const uint8_t *ps2 = s2;
1198 
1199 		do {
1200 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1201 				return (1);
1202 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1203 	}
1204 	return (0);
1205 }
1206 
1207 /*
1208  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1209  * is for safe DTrace-managed memory only.
1210  */
1211 static void
1212 dtrace_bzero(void *dst, size_t len)
1213 {
1214 	uchar_t *cp;
1215 
1216 	for (cp = dst; len != 0; len--)
1217 		*cp++ = 0;
1218 }
1219 
1220 static void
1221 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1222 {
1223 	uint64_t result[2];
1224 
1225 	result[0] = addend1[0] + addend2[0];
1226 	result[1] = addend1[1] + addend2[1] +
1227 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1228 
1229 	sum[0] = result[0];
1230 	sum[1] = result[1];
1231 }
1232 
1233 /*
1234  * Shift the 128-bit value in a by b. If b is positive, shift left.
1235  * If b is negative, shift right.
1236  */
1237 static void
1238 dtrace_shift_128(uint64_t *a, int b)
1239 {
1240 	uint64_t mask;
1241 
1242 	if (b == 0)
1243 		return;
1244 
1245 	if (b < 0) {
1246 		b = -b;
1247 		if (b >= 64) {
1248 			a[0] = a[1] >> (b - 64);
1249 			a[1] = 0;
1250 		} else {
1251 			a[0] >>= b;
1252 			mask = 1LL << (64 - b);
1253 			mask -= 1;
1254 			a[0] |= ((a[1] & mask) << (64 - b));
1255 			a[1] >>= b;
1256 		}
1257 	} else {
1258 		if (b >= 64) {
1259 			a[1] = a[0] << (b - 64);
1260 			a[0] = 0;
1261 		} else {
1262 			a[1] <<= b;
1263 			mask = a[0] >> (64 - b);
1264 			a[1] |= mask;
1265 			a[0] <<= b;
1266 		}
1267 	}
1268 }
1269 
1270 /*
1271  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1272  * use native multiplication on those, and then re-combine into the
1273  * resulting 128-bit value.
1274  *
1275  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1276  *     hi1 * hi2 << 64 +
1277  *     hi1 * lo2 << 32 +
1278  *     hi2 * lo1 << 32 +
1279  *     lo1 * lo2
1280  */
1281 static void
1282 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1283 {
1284 	uint64_t hi1, hi2, lo1, lo2;
1285 	uint64_t tmp[2];
1286 
1287 	hi1 = factor1 >> 32;
1288 	hi2 = factor2 >> 32;
1289 
1290 	lo1 = factor1 & DT_MASK_LO;
1291 	lo2 = factor2 & DT_MASK_LO;
1292 
1293 	product[0] = lo1 * lo2;
1294 	product[1] = hi1 * hi2;
1295 
1296 	tmp[0] = hi1 * lo2;
1297 	tmp[1] = 0;
1298 	dtrace_shift_128(tmp, 32);
1299 	dtrace_add_128(product, tmp, product);
1300 
1301 	tmp[0] = hi2 * lo1;
1302 	tmp[1] = 0;
1303 	dtrace_shift_128(tmp, 32);
1304 	dtrace_add_128(product, tmp, product);
1305 }
1306 
1307 /*
1308  * This privilege check should be used by actions and subroutines to
1309  * verify that the user credentials of the process that enabled the
1310  * invoking ECB match the target credentials
1311  */
1312 static int
1313 dtrace_priv_proc_common_user(dtrace_state_t *state)
1314 {
1315 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1316 
1317 	/*
1318 	 * We should always have a non-NULL state cred here, since if cred
1319 	 * is null (anonymous tracing), we fast-path bypass this routine.
1320 	 */
1321 	ASSERT(s_cr != NULL);
1322 
1323 	if ((cr = CRED()) != NULL &&
1324 	    s_cr->cr_uid == cr->cr_uid &&
1325 	    s_cr->cr_uid == cr->cr_ruid &&
1326 	    s_cr->cr_uid == cr->cr_suid &&
1327 	    s_cr->cr_gid == cr->cr_gid &&
1328 	    s_cr->cr_gid == cr->cr_rgid &&
1329 	    s_cr->cr_gid == cr->cr_sgid)
1330 		return (1);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * This privilege check should be used by actions and subroutines to
1337  * verify that the zone of the process that enabled the invoking ECB
1338  * matches the target credentials
1339  */
1340 static int
1341 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1342 {
1343 #ifdef illumos
1344 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1345 
1346 	/*
1347 	 * We should always have a non-NULL state cred here, since if cred
1348 	 * is null (anonymous tracing), we fast-path bypass this routine.
1349 	 */
1350 	ASSERT(s_cr != NULL);
1351 
1352 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1353 		return (1);
1354 
1355 	return (0);
1356 #else
1357 	return (1);
1358 #endif
1359 }
1360 
1361 /*
1362  * This privilege check should be used by actions and subroutines to
1363  * verify that the process has not setuid or changed credentials.
1364  */
1365 static int
1366 dtrace_priv_proc_common_nocd(void)
1367 {
1368 	proc_t *proc;
1369 
1370 	if ((proc = ttoproc(curthread)) != NULL &&
1371 	    !(proc->p_flag & SNOCD))
1372 		return (1);
1373 
1374 	return (0);
1375 }
1376 
1377 static int
1378 dtrace_priv_proc_destructive(dtrace_state_t *state)
1379 {
1380 	int action = state->dts_cred.dcr_action;
1381 
1382 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1383 	    dtrace_priv_proc_common_zone(state) == 0)
1384 		goto bad;
1385 
1386 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1387 	    dtrace_priv_proc_common_user(state) == 0)
1388 		goto bad;
1389 
1390 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1391 	    dtrace_priv_proc_common_nocd() == 0)
1392 		goto bad;
1393 
1394 	return (1);
1395 
1396 bad:
1397 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1398 
1399 	return (0);
1400 }
1401 
1402 static int
1403 dtrace_priv_proc_control(dtrace_state_t *state)
1404 {
1405 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1406 		return (1);
1407 
1408 	if (dtrace_priv_proc_common_zone(state) &&
1409 	    dtrace_priv_proc_common_user(state) &&
1410 	    dtrace_priv_proc_common_nocd())
1411 		return (1);
1412 
1413 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1414 
1415 	return (0);
1416 }
1417 
1418 static int
1419 dtrace_priv_proc(dtrace_state_t *state)
1420 {
1421 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1422 		return (1);
1423 
1424 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1425 
1426 	return (0);
1427 }
1428 
1429 static int
1430 dtrace_priv_kernel(dtrace_state_t *state)
1431 {
1432 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1433 		return (1);
1434 
1435 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1436 
1437 	return (0);
1438 }
1439 
1440 static int
1441 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1442 {
1443 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1444 		return (1);
1445 
1446 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1447 
1448 	return (0);
1449 }
1450 
1451 /*
1452  * Determine if the dte_cond of the specified ECB allows for processing of
1453  * the current probe to continue.  Note that this routine may allow continued
1454  * processing, but with access(es) stripped from the mstate's dtms_access
1455  * field.
1456  */
1457 static int
1458 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1459     dtrace_ecb_t *ecb)
1460 {
1461 	dtrace_probe_t *probe = ecb->dte_probe;
1462 	dtrace_provider_t *prov = probe->dtpr_provider;
1463 	dtrace_pops_t *pops = &prov->dtpv_pops;
1464 	int mode = DTRACE_MODE_NOPRIV_DROP;
1465 
1466 	ASSERT(ecb->dte_cond);
1467 
1468 #ifdef illumos
1469 	if (pops->dtps_mode != NULL) {
1470 		mode = pops->dtps_mode(prov->dtpv_arg,
1471 		    probe->dtpr_id, probe->dtpr_arg);
1472 
1473 		ASSERT((mode & DTRACE_MODE_USER) ||
1474 		    (mode & DTRACE_MODE_KERNEL));
1475 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1476 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1477 	}
1478 
1479 	/*
1480 	 * If the dte_cond bits indicate that this consumer is only allowed to
1481 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1482 	 * entry point to check that the probe was fired while in a user
1483 	 * context.  If that's not the case, use the policy specified by the
1484 	 * provider to determine if we drop the probe or merely restrict
1485 	 * operation.
1486 	 */
1487 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1488 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1489 
1490 		if (!(mode & DTRACE_MODE_USER)) {
1491 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1492 				return (0);
1493 
1494 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1495 		}
1496 	}
1497 #endif
1498 
1499 	/*
1500 	 * This is more subtle than it looks. We have to be absolutely certain
1501 	 * that CRED() isn't going to change out from under us so it's only
1502 	 * legit to examine that structure if we're in constrained situations.
1503 	 * Currently, the only times we'll this check is if a non-super-user
1504 	 * has enabled the profile or syscall providers -- providers that
1505 	 * allow visibility of all processes. For the profile case, the check
1506 	 * above will ensure that we're examining a user context.
1507 	 */
1508 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1509 		cred_t *cr;
1510 		cred_t *s_cr = state->dts_cred.dcr_cred;
1511 		proc_t *proc;
1512 
1513 		ASSERT(s_cr != NULL);
1514 
1515 		if ((cr = CRED()) == NULL ||
1516 		    s_cr->cr_uid != cr->cr_uid ||
1517 		    s_cr->cr_uid != cr->cr_ruid ||
1518 		    s_cr->cr_uid != cr->cr_suid ||
1519 		    s_cr->cr_gid != cr->cr_gid ||
1520 		    s_cr->cr_gid != cr->cr_rgid ||
1521 		    s_cr->cr_gid != cr->cr_sgid ||
1522 		    (proc = ttoproc(curthread)) == NULL ||
1523 		    (proc->p_flag & SNOCD)) {
1524 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1525 				return (0);
1526 
1527 #ifdef illumos
1528 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1529 #endif
1530 		}
1531 	}
1532 
1533 #ifdef illumos
1534 	/*
1535 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1536 	 * in our zone, check to see if our mode policy is to restrict rather
1537 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1538 	 * and DTRACE_ACCESS_ARGS
1539 	 */
1540 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1541 		cred_t *cr;
1542 		cred_t *s_cr = state->dts_cred.dcr_cred;
1543 
1544 		ASSERT(s_cr != NULL);
1545 
1546 		if ((cr = CRED()) == NULL ||
1547 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1548 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1549 				return (0);
1550 
1551 			mstate->dtms_access &=
1552 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1553 		}
1554 	}
1555 #endif
1556 
1557 	return (1);
1558 }
1559 
1560 /*
1561  * Note:  not called from probe context.  This function is called
1562  * asynchronously (and at a regular interval) from outside of probe context to
1563  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1564  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1565  */
1566 void
1567 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1568 {
1569 	dtrace_dynvar_t *dirty;
1570 	dtrace_dstate_percpu_t *dcpu;
1571 	dtrace_dynvar_t **rinsep;
1572 	int i, j, work = 0;
1573 
1574 	for (i = 0; i < NCPU; i++) {
1575 		dcpu = &dstate->dtds_percpu[i];
1576 		rinsep = &dcpu->dtdsc_rinsing;
1577 
1578 		/*
1579 		 * If the dirty list is NULL, there is no dirty work to do.
1580 		 */
1581 		if (dcpu->dtdsc_dirty == NULL)
1582 			continue;
1583 
1584 		if (dcpu->dtdsc_rinsing != NULL) {
1585 			/*
1586 			 * If the rinsing list is non-NULL, then it is because
1587 			 * this CPU was selected to accept another CPU's
1588 			 * dirty list -- and since that time, dirty buffers
1589 			 * have accumulated.  This is a highly unlikely
1590 			 * condition, but we choose to ignore the dirty
1591 			 * buffers -- they'll be picked up a future cleanse.
1592 			 */
1593 			continue;
1594 		}
1595 
1596 		if (dcpu->dtdsc_clean != NULL) {
1597 			/*
1598 			 * If the clean list is non-NULL, then we're in a
1599 			 * situation where a CPU has done deallocations (we
1600 			 * have a non-NULL dirty list) but no allocations (we
1601 			 * also have a non-NULL clean list).  We can't simply
1602 			 * move the dirty list into the clean list on this
1603 			 * CPU, yet we also don't want to allow this condition
1604 			 * to persist, lest a short clean list prevent a
1605 			 * massive dirty list from being cleaned (which in
1606 			 * turn could lead to otherwise avoidable dynamic
1607 			 * drops).  To deal with this, we look for some CPU
1608 			 * with a NULL clean list, NULL dirty list, and NULL
1609 			 * rinsing list -- and then we borrow this CPU to
1610 			 * rinse our dirty list.
1611 			 */
1612 			for (j = 0; j < NCPU; j++) {
1613 				dtrace_dstate_percpu_t *rinser;
1614 
1615 				rinser = &dstate->dtds_percpu[j];
1616 
1617 				if (rinser->dtdsc_rinsing != NULL)
1618 					continue;
1619 
1620 				if (rinser->dtdsc_dirty != NULL)
1621 					continue;
1622 
1623 				if (rinser->dtdsc_clean != NULL)
1624 					continue;
1625 
1626 				rinsep = &rinser->dtdsc_rinsing;
1627 				break;
1628 			}
1629 
1630 			if (j == NCPU) {
1631 				/*
1632 				 * We were unable to find another CPU that
1633 				 * could accept this dirty list -- we are
1634 				 * therefore unable to clean it now.
1635 				 */
1636 				dtrace_dynvar_failclean++;
1637 				continue;
1638 			}
1639 		}
1640 
1641 		work = 1;
1642 
1643 		/*
1644 		 * Atomically move the dirty list aside.
1645 		 */
1646 		do {
1647 			dirty = dcpu->dtdsc_dirty;
1648 
1649 			/*
1650 			 * Before we zap the dirty list, set the rinsing list.
1651 			 * (This allows for a potential assertion in
1652 			 * dtrace_dynvar():  if a free dynamic variable appears
1653 			 * on a hash chain, either the dirty list or the
1654 			 * rinsing list for some CPU must be non-NULL.)
1655 			 */
1656 			*rinsep = dirty;
1657 			dtrace_membar_producer();
1658 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1659 		    dirty, NULL) != dirty);
1660 	}
1661 
1662 	if (!work) {
1663 		/*
1664 		 * We have no work to do; we can simply return.
1665 		 */
1666 		return;
1667 	}
1668 
1669 	dtrace_sync();
1670 
1671 	for (i = 0; i < NCPU; i++) {
1672 		dcpu = &dstate->dtds_percpu[i];
1673 
1674 		if (dcpu->dtdsc_rinsing == NULL)
1675 			continue;
1676 
1677 		/*
1678 		 * We are now guaranteed that no hash chain contains a pointer
1679 		 * into this dirty list; we can make it clean.
1680 		 */
1681 		ASSERT(dcpu->dtdsc_clean == NULL);
1682 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1683 		dcpu->dtdsc_rinsing = NULL;
1684 	}
1685 
1686 	/*
1687 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1688 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1689 	 * This prevents a race whereby a CPU incorrectly decides that
1690 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1691 	 * after dtrace_dynvar_clean() has completed.
1692 	 */
1693 	dtrace_sync();
1694 
1695 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1696 }
1697 
1698 /*
1699  * Depending on the value of the op parameter, this function looks-up,
1700  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1701  * allocation is requested, this function will return a pointer to a
1702  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1703  * variable can be allocated.  If NULL is returned, the appropriate counter
1704  * will be incremented.
1705  */
1706 dtrace_dynvar_t *
1707 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1708     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1709     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1710 {
1711 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1712 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1713 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1714 	processorid_t me = curcpu, cpu = me;
1715 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1716 	size_t bucket, ksize;
1717 	size_t chunksize = dstate->dtds_chunksize;
1718 	uintptr_t kdata, lock, nstate;
1719 	uint_t i;
1720 
1721 	ASSERT(nkeys != 0);
1722 
1723 	/*
1724 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1725 	 * algorithm.  For the by-value portions, we perform the algorithm in
1726 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1727 	 * bit, and seems to have only a minute effect on distribution.  For
1728 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1729 	 * over each referenced byte.  It's painful to do this, but it's much
1730 	 * better than pathological hash distribution.  The efficacy of the
1731 	 * hashing algorithm (and a comparison with other algorithms) may be
1732 	 * found by running the ::dtrace_dynstat MDB dcmd.
1733 	 */
1734 	for (i = 0; i < nkeys; i++) {
1735 		if (key[i].dttk_size == 0) {
1736 			uint64_t val = key[i].dttk_value;
1737 
1738 			hashval += (val >> 48) & 0xffff;
1739 			hashval += (hashval << 10);
1740 			hashval ^= (hashval >> 6);
1741 
1742 			hashval += (val >> 32) & 0xffff;
1743 			hashval += (hashval << 10);
1744 			hashval ^= (hashval >> 6);
1745 
1746 			hashval += (val >> 16) & 0xffff;
1747 			hashval += (hashval << 10);
1748 			hashval ^= (hashval >> 6);
1749 
1750 			hashval += val & 0xffff;
1751 			hashval += (hashval << 10);
1752 			hashval ^= (hashval >> 6);
1753 		} else {
1754 			/*
1755 			 * This is incredibly painful, but it beats the hell
1756 			 * out of the alternative.
1757 			 */
1758 			uint64_t j, size = key[i].dttk_size;
1759 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1760 
1761 			if (!dtrace_canload(base, size, mstate, vstate))
1762 				break;
1763 
1764 			for (j = 0; j < size; j++) {
1765 				hashval += dtrace_load8(base + j);
1766 				hashval += (hashval << 10);
1767 				hashval ^= (hashval >> 6);
1768 			}
1769 		}
1770 	}
1771 
1772 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1773 		return (NULL);
1774 
1775 	hashval += (hashval << 3);
1776 	hashval ^= (hashval >> 11);
1777 	hashval += (hashval << 15);
1778 
1779 	/*
1780 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1781 	 * comes out to be one of our two sentinel hash values.  If this
1782 	 * actually happens, we set the hashval to be a value known to be a
1783 	 * non-sentinel value.
1784 	 */
1785 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1786 		hashval = DTRACE_DYNHASH_VALID;
1787 
1788 	/*
1789 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1790 	 * important here, tricks can be pulled to reduce it.  (However, it's
1791 	 * critical that hash collisions be kept to an absolute minimum;
1792 	 * they're much more painful than a divide.)  It's better to have a
1793 	 * solution that generates few collisions and still keeps things
1794 	 * relatively simple.
1795 	 */
1796 	bucket = hashval % dstate->dtds_hashsize;
1797 
1798 	if (op == DTRACE_DYNVAR_DEALLOC) {
1799 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1800 
1801 		for (;;) {
1802 			while ((lock = *lockp) & 1)
1803 				continue;
1804 
1805 			if (dtrace_casptr((volatile void *)lockp,
1806 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1807 				break;
1808 		}
1809 
1810 		dtrace_membar_producer();
1811 	}
1812 
1813 top:
1814 	prev = NULL;
1815 	lock = hash[bucket].dtdh_lock;
1816 
1817 	dtrace_membar_consumer();
1818 
1819 	start = hash[bucket].dtdh_chain;
1820 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1821 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1822 	    op != DTRACE_DYNVAR_DEALLOC));
1823 
1824 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1825 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1826 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1827 
1828 		if (dvar->dtdv_hashval != hashval) {
1829 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1830 				/*
1831 				 * We've reached the sink, and therefore the
1832 				 * end of the hash chain; we can kick out of
1833 				 * the loop knowing that we have seen a valid
1834 				 * snapshot of state.
1835 				 */
1836 				ASSERT(dvar->dtdv_next == NULL);
1837 				ASSERT(dvar == &dtrace_dynhash_sink);
1838 				break;
1839 			}
1840 
1841 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1842 				/*
1843 				 * We've gone off the rails:  somewhere along
1844 				 * the line, one of the members of this hash
1845 				 * chain was deleted.  Note that we could also
1846 				 * detect this by simply letting this loop run
1847 				 * to completion, as we would eventually hit
1848 				 * the end of the dirty list.  However, we
1849 				 * want to avoid running the length of the
1850 				 * dirty list unnecessarily (it might be quite
1851 				 * long), so we catch this as early as
1852 				 * possible by detecting the hash marker.  In
1853 				 * this case, we simply set dvar to NULL and
1854 				 * break; the conditional after the loop will
1855 				 * send us back to top.
1856 				 */
1857 				dvar = NULL;
1858 				break;
1859 			}
1860 
1861 			goto next;
1862 		}
1863 
1864 		if (dtuple->dtt_nkeys != nkeys)
1865 			goto next;
1866 
1867 		for (i = 0; i < nkeys; i++, dkey++) {
1868 			if (dkey->dttk_size != key[i].dttk_size)
1869 				goto next; /* size or type mismatch */
1870 
1871 			if (dkey->dttk_size != 0) {
1872 				if (dtrace_bcmp(
1873 				    (void *)(uintptr_t)key[i].dttk_value,
1874 				    (void *)(uintptr_t)dkey->dttk_value,
1875 				    dkey->dttk_size))
1876 					goto next;
1877 			} else {
1878 				if (dkey->dttk_value != key[i].dttk_value)
1879 					goto next;
1880 			}
1881 		}
1882 
1883 		if (op != DTRACE_DYNVAR_DEALLOC)
1884 			return (dvar);
1885 
1886 		ASSERT(dvar->dtdv_next == NULL ||
1887 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1888 
1889 		if (prev != NULL) {
1890 			ASSERT(hash[bucket].dtdh_chain != dvar);
1891 			ASSERT(start != dvar);
1892 			ASSERT(prev->dtdv_next == dvar);
1893 			prev->dtdv_next = dvar->dtdv_next;
1894 		} else {
1895 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1896 			    start, dvar->dtdv_next) != start) {
1897 				/*
1898 				 * We have failed to atomically swing the
1899 				 * hash table head pointer, presumably because
1900 				 * of a conflicting allocation on another CPU.
1901 				 * We need to reread the hash chain and try
1902 				 * again.
1903 				 */
1904 				goto top;
1905 			}
1906 		}
1907 
1908 		dtrace_membar_producer();
1909 
1910 		/*
1911 		 * Now set the hash value to indicate that it's free.
1912 		 */
1913 		ASSERT(hash[bucket].dtdh_chain != dvar);
1914 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1915 
1916 		dtrace_membar_producer();
1917 
1918 		/*
1919 		 * Set the next pointer to point at the dirty list, and
1920 		 * atomically swing the dirty pointer to the newly freed dvar.
1921 		 */
1922 		do {
1923 			next = dcpu->dtdsc_dirty;
1924 			dvar->dtdv_next = next;
1925 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1926 
1927 		/*
1928 		 * Finally, unlock this hash bucket.
1929 		 */
1930 		ASSERT(hash[bucket].dtdh_lock == lock);
1931 		ASSERT(lock & 1);
1932 		hash[bucket].dtdh_lock++;
1933 
1934 		return (NULL);
1935 next:
1936 		prev = dvar;
1937 		continue;
1938 	}
1939 
1940 	if (dvar == NULL) {
1941 		/*
1942 		 * If dvar is NULL, it is because we went off the rails:
1943 		 * one of the elements that we traversed in the hash chain
1944 		 * was deleted while we were traversing it.  In this case,
1945 		 * we assert that we aren't doing a dealloc (deallocs lock
1946 		 * the hash bucket to prevent themselves from racing with
1947 		 * one another), and retry the hash chain traversal.
1948 		 */
1949 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1950 		goto top;
1951 	}
1952 
1953 	if (op != DTRACE_DYNVAR_ALLOC) {
1954 		/*
1955 		 * If we are not to allocate a new variable, we want to
1956 		 * return NULL now.  Before we return, check that the value
1957 		 * of the lock word hasn't changed.  If it has, we may have
1958 		 * seen an inconsistent snapshot.
1959 		 */
1960 		if (op == DTRACE_DYNVAR_NOALLOC) {
1961 			if (hash[bucket].dtdh_lock != lock)
1962 				goto top;
1963 		} else {
1964 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1965 			ASSERT(hash[bucket].dtdh_lock == lock);
1966 			ASSERT(lock & 1);
1967 			hash[bucket].dtdh_lock++;
1968 		}
1969 
1970 		return (NULL);
1971 	}
1972 
1973 	/*
1974 	 * We need to allocate a new dynamic variable.  The size we need is the
1975 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1976 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1977 	 * the size of any referred-to data (dsize).  We then round the final
1978 	 * size up to the chunksize for allocation.
1979 	 */
1980 	for (ksize = 0, i = 0; i < nkeys; i++)
1981 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1982 
1983 	/*
1984 	 * This should be pretty much impossible, but could happen if, say,
1985 	 * strange DIF specified the tuple.  Ideally, this should be an
1986 	 * assertion and not an error condition -- but that requires that the
1987 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1988 	 * bullet-proof.  (That is, it must not be able to be fooled by
1989 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1990 	 * solving this would presumably not amount to solving the Halting
1991 	 * Problem -- but it still seems awfully hard.
1992 	 */
1993 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1994 	    ksize + dsize > chunksize) {
1995 		dcpu->dtdsc_drops++;
1996 		return (NULL);
1997 	}
1998 
1999 	nstate = DTRACE_DSTATE_EMPTY;
2000 
2001 	do {
2002 retry:
2003 		free = dcpu->dtdsc_free;
2004 
2005 		if (free == NULL) {
2006 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2007 			void *rval;
2008 
2009 			if (clean == NULL) {
2010 				/*
2011 				 * We're out of dynamic variable space on
2012 				 * this CPU.  Unless we have tried all CPUs,
2013 				 * we'll try to allocate from a different
2014 				 * CPU.
2015 				 */
2016 				switch (dstate->dtds_state) {
2017 				case DTRACE_DSTATE_CLEAN: {
2018 					void *sp = &dstate->dtds_state;
2019 
2020 					if (++cpu >= NCPU)
2021 						cpu = 0;
2022 
2023 					if (dcpu->dtdsc_dirty != NULL &&
2024 					    nstate == DTRACE_DSTATE_EMPTY)
2025 						nstate = DTRACE_DSTATE_DIRTY;
2026 
2027 					if (dcpu->dtdsc_rinsing != NULL)
2028 						nstate = DTRACE_DSTATE_RINSING;
2029 
2030 					dcpu = &dstate->dtds_percpu[cpu];
2031 
2032 					if (cpu != me)
2033 						goto retry;
2034 
2035 					(void) dtrace_cas32(sp,
2036 					    DTRACE_DSTATE_CLEAN, nstate);
2037 
2038 					/*
2039 					 * To increment the correct bean
2040 					 * counter, take another lap.
2041 					 */
2042 					goto retry;
2043 				}
2044 
2045 				case DTRACE_DSTATE_DIRTY:
2046 					dcpu->dtdsc_dirty_drops++;
2047 					break;
2048 
2049 				case DTRACE_DSTATE_RINSING:
2050 					dcpu->dtdsc_rinsing_drops++;
2051 					break;
2052 
2053 				case DTRACE_DSTATE_EMPTY:
2054 					dcpu->dtdsc_drops++;
2055 					break;
2056 				}
2057 
2058 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2059 				return (NULL);
2060 			}
2061 
2062 			/*
2063 			 * The clean list appears to be non-empty.  We want to
2064 			 * move the clean list to the free list; we start by
2065 			 * moving the clean pointer aside.
2066 			 */
2067 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2068 			    clean, NULL) != clean) {
2069 				/*
2070 				 * We are in one of two situations:
2071 				 *
2072 				 *  (a)	The clean list was switched to the
2073 				 *	free list by another CPU.
2074 				 *
2075 				 *  (b)	The clean list was added to by the
2076 				 *	cleansing cyclic.
2077 				 *
2078 				 * In either of these situations, we can
2079 				 * just reattempt the free list allocation.
2080 				 */
2081 				goto retry;
2082 			}
2083 
2084 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2085 
2086 			/*
2087 			 * Now we'll move the clean list to our free list.
2088 			 * It's impossible for this to fail:  the only way
2089 			 * the free list can be updated is through this
2090 			 * code path, and only one CPU can own the clean list.
2091 			 * Thus, it would only be possible for this to fail if
2092 			 * this code were racing with dtrace_dynvar_clean().
2093 			 * (That is, if dtrace_dynvar_clean() updated the clean
2094 			 * list, and we ended up racing to update the free
2095 			 * list.)  This race is prevented by the dtrace_sync()
2096 			 * in dtrace_dynvar_clean() -- which flushes the
2097 			 * owners of the clean lists out before resetting
2098 			 * the clean lists.
2099 			 */
2100 			dcpu = &dstate->dtds_percpu[me];
2101 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2102 			ASSERT(rval == NULL);
2103 			goto retry;
2104 		}
2105 
2106 		dvar = free;
2107 		new_free = dvar->dtdv_next;
2108 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2109 
2110 	/*
2111 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2112 	 * tuple array and copy any referenced key data into the data space
2113 	 * following the tuple array.  As we do this, we relocate dttk_value
2114 	 * in the final tuple to point to the key data address in the chunk.
2115 	 */
2116 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2117 	dvar->dtdv_data = (void *)(kdata + ksize);
2118 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2119 
2120 	for (i = 0; i < nkeys; i++) {
2121 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2122 		size_t kesize = key[i].dttk_size;
2123 
2124 		if (kesize != 0) {
2125 			dtrace_bcopy(
2126 			    (const void *)(uintptr_t)key[i].dttk_value,
2127 			    (void *)kdata, kesize);
2128 			dkey->dttk_value = kdata;
2129 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2130 		} else {
2131 			dkey->dttk_value = key[i].dttk_value;
2132 		}
2133 
2134 		dkey->dttk_size = kesize;
2135 	}
2136 
2137 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2138 	dvar->dtdv_hashval = hashval;
2139 	dvar->dtdv_next = start;
2140 
2141 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2142 		return (dvar);
2143 
2144 	/*
2145 	 * The cas has failed.  Either another CPU is adding an element to
2146 	 * this hash chain, or another CPU is deleting an element from this
2147 	 * hash chain.  The simplest way to deal with both of these cases
2148 	 * (though not necessarily the most efficient) is to free our
2149 	 * allocated block and tail-call ourselves.  Note that the free is
2150 	 * to the dirty list and _not_ to the free list.  This is to prevent
2151 	 * races with allocators, above.
2152 	 */
2153 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2154 
2155 	dtrace_membar_producer();
2156 
2157 	do {
2158 		free = dcpu->dtdsc_dirty;
2159 		dvar->dtdv_next = free;
2160 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2161 
2162 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
2163 }
2164 
2165 /*ARGSUSED*/
2166 static void
2167 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2168 {
2169 	if ((int64_t)nval < (int64_t)*oval)
2170 		*oval = nval;
2171 }
2172 
2173 /*ARGSUSED*/
2174 static void
2175 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2176 {
2177 	if ((int64_t)nval > (int64_t)*oval)
2178 		*oval = nval;
2179 }
2180 
2181 static void
2182 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2183 {
2184 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2185 	int64_t val = (int64_t)nval;
2186 
2187 	if (val < 0) {
2188 		for (i = 0; i < zero; i++) {
2189 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2190 				quanta[i] += incr;
2191 				return;
2192 			}
2193 		}
2194 	} else {
2195 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2196 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2197 				quanta[i - 1] += incr;
2198 				return;
2199 			}
2200 		}
2201 
2202 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2203 		return;
2204 	}
2205 
2206 	ASSERT(0);
2207 }
2208 
2209 static void
2210 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2211 {
2212 	uint64_t arg = *lquanta++;
2213 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2214 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2215 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2216 	int32_t val = (int32_t)nval, level;
2217 
2218 	ASSERT(step != 0);
2219 	ASSERT(levels != 0);
2220 
2221 	if (val < base) {
2222 		/*
2223 		 * This is an underflow.
2224 		 */
2225 		lquanta[0] += incr;
2226 		return;
2227 	}
2228 
2229 	level = (val - base) / step;
2230 
2231 	if (level < levels) {
2232 		lquanta[level + 1] += incr;
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * This is an overflow.
2238 	 */
2239 	lquanta[levels + 1] += incr;
2240 }
2241 
2242 static int
2243 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2244     uint16_t high, uint16_t nsteps, int64_t value)
2245 {
2246 	int64_t this = 1, last, next;
2247 	int base = 1, order;
2248 
2249 	ASSERT(factor <= nsteps);
2250 	ASSERT(nsteps % factor == 0);
2251 
2252 	for (order = 0; order < low; order++)
2253 		this *= factor;
2254 
2255 	/*
2256 	 * If our value is less than our factor taken to the power of the
2257 	 * low order of magnitude, it goes into the zeroth bucket.
2258 	 */
2259 	if (value < (last = this))
2260 		return (0);
2261 
2262 	for (this *= factor; order <= high; order++) {
2263 		int nbuckets = this > nsteps ? nsteps : this;
2264 
2265 		if ((next = this * factor) < this) {
2266 			/*
2267 			 * We should not generally get log/linear quantizations
2268 			 * with a high magnitude that allows 64-bits to
2269 			 * overflow, but we nonetheless protect against this
2270 			 * by explicitly checking for overflow, and clamping
2271 			 * our value accordingly.
2272 			 */
2273 			value = this - 1;
2274 		}
2275 
2276 		if (value < this) {
2277 			/*
2278 			 * If our value lies within this order of magnitude,
2279 			 * determine its position by taking the offset within
2280 			 * the order of magnitude, dividing by the bucket
2281 			 * width, and adding to our (accumulated) base.
2282 			 */
2283 			return (base + (value - last) / (this / nbuckets));
2284 		}
2285 
2286 		base += nbuckets - (nbuckets / factor);
2287 		last = this;
2288 		this = next;
2289 	}
2290 
2291 	/*
2292 	 * Our value is greater than or equal to our factor taken to the
2293 	 * power of one plus the high magnitude -- return the top bucket.
2294 	 */
2295 	return (base);
2296 }
2297 
2298 static void
2299 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2300 {
2301 	uint64_t arg = *llquanta++;
2302 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2303 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2304 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2305 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2306 
2307 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2308 	    low, high, nsteps, nval)] += incr;
2309 }
2310 
2311 /*ARGSUSED*/
2312 static void
2313 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2314 {
2315 	data[0]++;
2316 	data[1] += nval;
2317 }
2318 
2319 /*ARGSUSED*/
2320 static void
2321 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2322 {
2323 	int64_t snval = (int64_t)nval;
2324 	uint64_t tmp[2];
2325 
2326 	data[0]++;
2327 	data[1] += nval;
2328 
2329 	/*
2330 	 * What we want to say here is:
2331 	 *
2332 	 * data[2] += nval * nval;
2333 	 *
2334 	 * But given that nval is 64-bit, we could easily overflow, so
2335 	 * we do this as 128-bit arithmetic.
2336 	 */
2337 	if (snval < 0)
2338 		snval = -snval;
2339 
2340 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2341 	dtrace_add_128(data + 2, tmp, data + 2);
2342 }
2343 
2344 /*ARGSUSED*/
2345 static void
2346 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2347 {
2348 	*oval = *oval + 1;
2349 }
2350 
2351 /*ARGSUSED*/
2352 static void
2353 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2354 {
2355 	*oval += nval;
2356 }
2357 
2358 /*
2359  * Aggregate given the tuple in the principal data buffer, and the aggregating
2360  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2361  * buffer is specified as the buf parameter.  This routine does not return
2362  * failure; if there is no space in the aggregation buffer, the data will be
2363  * dropped, and a corresponding counter incremented.
2364  */
2365 static void
2366 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2367     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2368 {
2369 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2370 	uint32_t i, ndx, size, fsize;
2371 	uint32_t align = sizeof (uint64_t) - 1;
2372 	dtrace_aggbuffer_t *agb;
2373 	dtrace_aggkey_t *key;
2374 	uint32_t hashval = 0, limit, isstr;
2375 	caddr_t tomax, data, kdata;
2376 	dtrace_actkind_t action;
2377 	dtrace_action_t *act;
2378 	uintptr_t offs;
2379 
2380 	if (buf == NULL)
2381 		return;
2382 
2383 	if (!agg->dtag_hasarg) {
2384 		/*
2385 		 * Currently, only quantize() and lquantize() take additional
2386 		 * arguments, and they have the same semantics:  an increment
2387 		 * value that defaults to 1 when not present.  If additional
2388 		 * aggregating actions take arguments, the setting of the
2389 		 * default argument value will presumably have to become more
2390 		 * sophisticated...
2391 		 */
2392 		arg = 1;
2393 	}
2394 
2395 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2396 	size = rec->dtrd_offset - agg->dtag_base;
2397 	fsize = size + rec->dtrd_size;
2398 
2399 	ASSERT(dbuf->dtb_tomax != NULL);
2400 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2401 
2402 	if ((tomax = buf->dtb_tomax) == NULL) {
2403 		dtrace_buffer_drop(buf);
2404 		return;
2405 	}
2406 
2407 	/*
2408 	 * The metastructure is always at the bottom of the buffer.
2409 	 */
2410 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2411 	    sizeof (dtrace_aggbuffer_t));
2412 
2413 	if (buf->dtb_offset == 0) {
2414 		/*
2415 		 * We just kludge up approximately 1/8th of the size to be
2416 		 * buckets.  If this guess ends up being routinely
2417 		 * off-the-mark, we may need to dynamically readjust this
2418 		 * based on past performance.
2419 		 */
2420 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2421 
2422 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2423 		    (uintptr_t)tomax || hashsize == 0) {
2424 			/*
2425 			 * We've been given a ludicrously small buffer;
2426 			 * increment our drop count and leave.
2427 			 */
2428 			dtrace_buffer_drop(buf);
2429 			return;
2430 		}
2431 
2432 		/*
2433 		 * And now, a pathetic attempt to try to get a an odd (or
2434 		 * perchance, a prime) hash size for better hash distribution.
2435 		 */
2436 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2437 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2438 
2439 		agb->dtagb_hashsize = hashsize;
2440 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2441 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2442 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2443 
2444 		for (i = 0; i < agb->dtagb_hashsize; i++)
2445 			agb->dtagb_hash[i] = NULL;
2446 	}
2447 
2448 	ASSERT(agg->dtag_first != NULL);
2449 	ASSERT(agg->dtag_first->dta_intuple);
2450 
2451 	/*
2452 	 * Calculate the hash value based on the key.  Note that we _don't_
2453 	 * include the aggid in the hashing (but we will store it as part of
2454 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2455 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2456 	 * gets good distribution in practice.  The efficacy of the hashing
2457 	 * algorithm (and a comparison with other algorithms) may be found by
2458 	 * running the ::dtrace_aggstat MDB dcmd.
2459 	 */
2460 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2461 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2462 		limit = i + act->dta_rec.dtrd_size;
2463 		ASSERT(limit <= size);
2464 		isstr = DTRACEACT_ISSTRING(act);
2465 
2466 		for (; i < limit; i++) {
2467 			hashval += data[i];
2468 			hashval += (hashval << 10);
2469 			hashval ^= (hashval >> 6);
2470 
2471 			if (isstr && data[i] == '\0')
2472 				break;
2473 		}
2474 	}
2475 
2476 	hashval += (hashval << 3);
2477 	hashval ^= (hashval >> 11);
2478 	hashval += (hashval << 15);
2479 
2480 	/*
2481 	 * Yes, the divide here is expensive -- but it's generally the least
2482 	 * of the performance issues given the amount of data that we iterate
2483 	 * over to compute hash values, compare data, etc.
2484 	 */
2485 	ndx = hashval % agb->dtagb_hashsize;
2486 
2487 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2488 		ASSERT((caddr_t)key >= tomax);
2489 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2490 
2491 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2492 			continue;
2493 
2494 		kdata = key->dtak_data;
2495 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2496 
2497 		for (act = agg->dtag_first; act->dta_intuple;
2498 		    act = act->dta_next) {
2499 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2500 			limit = i + act->dta_rec.dtrd_size;
2501 			ASSERT(limit <= size);
2502 			isstr = DTRACEACT_ISSTRING(act);
2503 
2504 			for (; i < limit; i++) {
2505 				if (kdata[i] != data[i])
2506 					goto next;
2507 
2508 				if (isstr && data[i] == '\0')
2509 					break;
2510 			}
2511 		}
2512 
2513 		if (action != key->dtak_action) {
2514 			/*
2515 			 * We are aggregating on the same value in the same
2516 			 * aggregation with two different aggregating actions.
2517 			 * (This should have been picked up in the compiler,
2518 			 * so we may be dealing with errant or devious DIF.)
2519 			 * This is an error condition; we indicate as much,
2520 			 * and return.
2521 			 */
2522 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2523 			return;
2524 		}
2525 
2526 		/*
2527 		 * This is a hit:  we need to apply the aggregator to
2528 		 * the value at this key.
2529 		 */
2530 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2531 		return;
2532 next:
2533 		continue;
2534 	}
2535 
2536 	/*
2537 	 * We didn't find it.  We need to allocate some zero-filled space,
2538 	 * link it into the hash table appropriately, and apply the aggregator
2539 	 * to the (zero-filled) value.
2540 	 */
2541 	offs = buf->dtb_offset;
2542 	while (offs & (align - 1))
2543 		offs += sizeof (uint32_t);
2544 
2545 	/*
2546 	 * If we don't have enough room to both allocate a new key _and_
2547 	 * its associated data, increment the drop count and return.
2548 	 */
2549 	if ((uintptr_t)tomax + offs + fsize >
2550 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2551 		dtrace_buffer_drop(buf);
2552 		return;
2553 	}
2554 
2555 	/*CONSTCOND*/
2556 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2557 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2558 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2559 
2560 	key->dtak_data = kdata = tomax + offs;
2561 	buf->dtb_offset = offs + fsize;
2562 
2563 	/*
2564 	 * Now copy the data across.
2565 	 */
2566 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2567 
2568 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2569 		kdata[i] = data[i];
2570 
2571 	/*
2572 	 * Because strings are not zeroed out by default, we need to iterate
2573 	 * looking for actions that store strings, and we need to explicitly
2574 	 * pad these strings out with zeroes.
2575 	 */
2576 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2577 		int nul;
2578 
2579 		if (!DTRACEACT_ISSTRING(act))
2580 			continue;
2581 
2582 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2583 		limit = i + act->dta_rec.dtrd_size;
2584 		ASSERT(limit <= size);
2585 
2586 		for (nul = 0; i < limit; i++) {
2587 			if (nul) {
2588 				kdata[i] = '\0';
2589 				continue;
2590 			}
2591 
2592 			if (data[i] != '\0')
2593 				continue;
2594 
2595 			nul = 1;
2596 		}
2597 	}
2598 
2599 	for (i = size; i < fsize; i++)
2600 		kdata[i] = 0;
2601 
2602 	key->dtak_hashval = hashval;
2603 	key->dtak_size = size;
2604 	key->dtak_action = action;
2605 	key->dtak_next = agb->dtagb_hash[ndx];
2606 	agb->dtagb_hash[ndx] = key;
2607 
2608 	/*
2609 	 * Finally, apply the aggregator.
2610 	 */
2611 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2612 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2613 }
2614 
2615 /*
2616  * Given consumer state, this routine finds a speculation in the INACTIVE
2617  * state and transitions it into the ACTIVE state.  If there is no speculation
2618  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2619  * incremented -- it is up to the caller to take appropriate action.
2620  */
2621 static int
2622 dtrace_speculation(dtrace_state_t *state)
2623 {
2624 	int i = 0;
2625 	dtrace_speculation_state_t current;
2626 	uint32_t *stat = &state->dts_speculations_unavail, count;
2627 
2628 	while (i < state->dts_nspeculations) {
2629 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2630 
2631 		current = spec->dtsp_state;
2632 
2633 		if (current != DTRACESPEC_INACTIVE) {
2634 			if (current == DTRACESPEC_COMMITTINGMANY ||
2635 			    current == DTRACESPEC_COMMITTING ||
2636 			    current == DTRACESPEC_DISCARDING)
2637 				stat = &state->dts_speculations_busy;
2638 			i++;
2639 			continue;
2640 		}
2641 
2642 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2643 		    current, DTRACESPEC_ACTIVE) == current)
2644 			return (i + 1);
2645 	}
2646 
2647 	/*
2648 	 * We couldn't find a speculation.  If we found as much as a single
2649 	 * busy speculation buffer, we'll attribute this failure as "busy"
2650 	 * instead of "unavail".
2651 	 */
2652 	do {
2653 		count = *stat;
2654 	} while (dtrace_cas32(stat, count, count + 1) != count);
2655 
2656 	return (0);
2657 }
2658 
2659 /*
2660  * This routine commits an active speculation.  If the specified speculation
2661  * is not in a valid state to perform a commit(), this routine will silently do
2662  * nothing.  The state of the specified speculation is transitioned according
2663  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2664  */
2665 static void
2666 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2667     dtrace_specid_t which)
2668 {
2669 	dtrace_speculation_t *spec;
2670 	dtrace_buffer_t *src, *dest;
2671 	uintptr_t daddr, saddr, dlimit, slimit;
2672 	dtrace_speculation_state_t current, new = 0;
2673 	intptr_t offs;
2674 	uint64_t timestamp;
2675 
2676 	if (which == 0)
2677 		return;
2678 
2679 	if (which > state->dts_nspeculations) {
2680 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2681 		return;
2682 	}
2683 
2684 	spec = &state->dts_speculations[which - 1];
2685 	src = &spec->dtsp_buffer[cpu];
2686 	dest = &state->dts_buffer[cpu];
2687 
2688 	do {
2689 		current = spec->dtsp_state;
2690 
2691 		if (current == DTRACESPEC_COMMITTINGMANY)
2692 			break;
2693 
2694 		switch (current) {
2695 		case DTRACESPEC_INACTIVE:
2696 		case DTRACESPEC_DISCARDING:
2697 			return;
2698 
2699 		case DTRACESPEC_COMMITTING:
2700 			/*
2701 			 * This is only possible if we are (a) commit()'ing
2702 			 * without having done a prior speculate() on this CPU
2703 			 * and (b) racing with another commit() on a different
2704 			 * CPU.  There's nothing to do -- we just assert that
2705 			 * our offset is 0.
2706 			 */
2707 			ASSERT(src->dtb_offset == 0);
2708 			return;
2709 
2710 		case DTRACESPEC_ACTIVE:
2711 			new = DTRACESPEC_COMMITTING;
2712 			break;
2713 
2714 		case DTRACESPEC_ACTIVEONE:
2715 			/*
2716 			 * This speculation is active on one CPU.  If our
2717 			 * buffer offset is non-zero, we know that the one CPU
2718 			 * must be us.  Otherwise, we are committing on a
2719 			 * different CPU from the speculate(), and we must
2720 			 * rely on being asynchronously cleaned.
2721 			 */
2722 			if (src->dtb_offset != 0) {
2723 				new = DTRACESPEC_COMMITTING;
2724 				break;
2725 			}
2726 			/*FALLTHROUGH*/
2727 
2728 		case DTRACESPEC_ACTIVEMANY:
2729 			new = DTRACESPEC_COMMITTINGMANY;
2730 			break;
2731 
2732 		default:
2733 			ASSERT(0);
2734 		}
2735 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2736 	    current, new) != current);
2737 
2738 	/*
2739 	 * We have set the state to indicate that we are committing this
2740 	 * speculation.  Now reserve the necessary space in the destination
2741 	 * buffer.
2742 	 */
2743 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2744 	    sizeof (uint64_t), state, NULL)) < 0) {
2745 		dtrace_buffer_drop(dest);
2746 		goto out;
2747 	}
2748 
2749 	/*
2750 	 * We have sufficient space to copy the speculative buffer into the
2751 	 * primary buffer.  First, modify the speculative buffer, filling
2752 	 * in the timestamp of all entries with the current time.  The data
2753 	 * must have the commit() time rather than the time it was traced,
2754 	 * so that all entries in the primary buffer are in timestamp order.
2755 	 */
2756 	timestamp = dtrace_gethrtime();
2757 	saddr = (uintptr_t)src->dtb_tomax;
2758 	slimit = saddr + src->dtb_offset;
2759 	while (saddr < slimit) {
2760 		size_t size;
2761 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2762 
2763 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2764 			saddr += sizeof (dtrace_epid_t);
2765 			continue;
2766 		}
2767 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2768 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2769 
2770 		ASSERT3U(saddr + size, <=, slimit);
2771 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2772 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2773 
2774 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2775 
2776 		saddr += size;
2777 	}
2778 
2779 	/*
2780 	 * Copy the buffer across.  (Note that this is a
2781 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2782 	 * a serious performance issue, a high-performance DTrace-specific
2783 	 * bcopy() should obviously be invented.)
2784 	 */
2785 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2786 	dlimit = daddr + src->dtb_offset;
2787 	saddr = (uintptr_t)src->dtb_tomax;
2788 
2789 	/*
2790 	 * First, the aligned portion.
2791 	 */
2792 	while (dlimit - daddr >= sizeof (uint64_t)) {
2793 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2794 
2795 		daddr += sizeof (uint64_t);
2796 		saddr += sizeof (uint64_t);
2797 	}
2798 
2799 	/*
2800 	 * Now any left-over bit...
2801 	 */
2802 	while (dlimit - daddr)
2803 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2804 
2805 	/*
2806 	 * Finally, commit the reserved space in the destination buffer.
2807 	 */
2808 	dest->dtb_offset = offs + src->dtb_offset;
2809 
2810 out:
2811 	/*
2812 	 * If we're lucky enough to be the only active CPU on this speculation
2813 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2814 	 */
2815 	if (current == DTRACESPEC_ACTIVE ||
2816 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2817 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2818 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2819 
2820 		ASSERT(rval == DTRACESPEC_COMMITTING);
2821 	}
2822 
2823 	src->dtb_offset = 0;
2824 	src->dtb_xamot_drops += src->dtb_drops;
2825 	src->dtb_drops = 0;
2826 }
2827 
2828 /*
2829  * This routine discards an active speculation.  If the specified speculation
2830  * is not in a valid state to perform a discard(), this routine will silently
2831  * do nothing.  The state of the specified speculation is transitioned
2832  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2833  */
2834 static void
2835 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2836     dtrace_specid_t which)
2837 {
2838 	dtrace_speculation_t *spec;
2839 	dtrace_speculation_state_t current, new = 0;
2840 	dtrace_buffer_t *buf;
2841 
2842 	if (which == 0)
2843 		return;
2844 
2845 	if (which > state->dts_nspeculations) {
2846 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2847 		return;
2848 	}
2849 
2850 	spec = &state->dts_speculations[which - 1];
2851 	buf = &spec->dtsp_buffer[cpu];
2852 
2853 	do {
2854 		current = spec->dtsp_state;
2855 
2856 		switch (current) {
2857 		case DTRACESPEC_INACTIVE:
2858 		case DTRACESPEC_COMMITTINGMANY:
2859 		case DTRACESPEC_COMMITTING:
2860 		case DTRACESPEC_DISCARDING:
2861 			return;
2862 
2863 		case DTRACESPEC_ACTIVE:
2864 		case DTRACESPEC_ACTIVEMANY:
2865 			new = DTRACESPEC_DISCARDING;
2866 			break;
2867 
2868 		case DTRACESPEC_ACTIVEONE:
2869 			if (buf->dtb_offset != 0) {
2870 				new = DTRACESPEC_INACTIVE;
2871 			} else {
2872 				new = DTRACESPEC_DISCARDING;
2873 			}
2874 			break;
2875 
2876 		default:
2877 			ASSERT(0);
2878 		}
2879 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2880 	    current, new) != current);
2881 
2882 	buf->dtb_offset = 0;
2883 	buf->dtb_drops = 0;
2884 }
2885 
2886 /*
2887  * Note:  not called from probe context.  This function is called
2888  * asynchronously from cross call context to clean any speculations that are
2889  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2890  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2891  * speculation.
2892  */
2893 static void
2894 dtrace_speculation_clean_here(dtrace_state_t *state)
2895 {
2896 	dtrace_icookie_t cookie;
2897 	processorid_t cpu = curcpu;
2898 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2899 	dtrace_specid_t i;
2900 
2901 	cookie = dtrace_interrupt_disable();
2902 
2903 	if (dest->dtb_tomax == NULL) {
2904 		dtrace_interrupt_enable(cookie);
2905 		return;
2906 	}
2907 
2908 	for (i = 0; i < state->dts_nspeculations; i++) {
2909 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2910 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2911 
2912 		if (src->dtb_tomax == NULL)
2913 			continue;
2914 
2915 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2916 			src->dtb_offset = 0;
2917 			continue;
2918 		}
2919 
2920 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2921 			continue;
2922 
2923 		if (src->dtb_offset == 0)
2924 			continue;
2925 
2926 		dtrace_speculation_commit(state, cpu, i + 1);
2927 	}
2928 
2929 	dtrace_interrupt_enable(cookie);
2930 }
2931 
2932 /*
2933  * Note:  not called from probe context.  This function is called
2934  * asynchronously (and at a regular interval) to clean any speculations that
2935  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2936  * is work to be done, it cross calls all CPUs to perform that work;
2937  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2938  * INACTIVE state until they have been cleaned by all CPUs.
2939  */
2940 static void
2941 dtrace_speculation_clean(dtrace_state_t *state)
2942 {
2943 	int work = 0, rv;
2944 	dtrace_specid_t i;
2945 
2946 	for (i = 0; i < state->dts_nspeculations; i++) {
2947 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2948 
2949 		ASSERT(!spec->dtsp_cleaning);
2950 
2951 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2952 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2953 			continue;
2954 
2955 		work++;
2956 		spec->dtsp_cleaning = 1;
2957 	}
2958 
2959 	if (!work)
2960 		return;
2961 
2962 	dtrace_xcall(DTRACE_CPUALL,
2963 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2964 
2965 	/*
2966 	 * We now know that all CPUs have committed or discarded their
2967 	 * speculation buffers, as appropriate.  We can now set the state
2968 	 * to inactive.
2969 	 */
2970 	for (i = 0; i < state->dts_nspeculations; i++) {
2971 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2972 		dtrace_speculation_state_t current, new;
2973 
2974 		if (!spec->dtsp_cleaning)
2975 			continue;
2976 
2977 		current = spec->dtsp_state;
2978 		ASSERT(current == DTRACESPEC_DISCARDING ||
2979 		    current == DTRACESPEC_COMMITTINGMANY);
2980 
2981 		new = DTRACESPEC_INACTIVE;
2982 
2983 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2984 		ASSERT(rv == current);
2985 		spec->dtsp_cleaning = 0;
2986 	}
2987 }
2988 
2989 /*
2990  * Called as part of a speculate() to get the speculative buffer associated
2991  * with a given speculation.  Returns NULL if the specified speculation is not
2992  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2993  * the active CPU is not the specified CPU -- the speculation will be
2994  * atomically transitioned into the ACTIVEMANY state.
2995  */
2996 static dtrace_buffer_t *
2997 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2998     dtrace_specid_t which)
2999 {
3000 	dtrace_speculation_t *spec;
3001 	dtrace_speculation_state_t current, new = 0;
3002 	dtrace_buffer_t *buf;
3003 
3004 	if (which == 0)
3005 		return (NULL);
3006 
3007 	if (which > state->dts_nspeculations) {
3008 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3009 		return (NULL);
3010 	}
3011 
3012 	spec = &state->dts_speculations[which - 1];
3013 	buf = &spec->dtsp_buffer[cpuid];
3014 
3015 	do {
3016 		current = spec->dtsp_state;
3017 
3018 		switch (current) {
3019 		case DTRACESPEC_INACTIVE:
3020 		case DTRACESPEC_COMMITTINGMANY:
3021 		case DTRACESPEC_DISCARDING:
3022 			return (NULL);
3023 
3024 		case DTRACESPEC_COMMITTING:
3025 			ASSERT(buf->dtb_offset == 0);
3026 			return (NULL);
3027 
3028 		case DTRACESPEC_ACTIVEONE:
3029 			/*
3030 			 * This speculation is currently active on one CPU.
3031 			 * Check the offset in the buffer; if it's non-zero,
3032 			 * that CPU must be us (and we leave the state alone).
3033 			 * If it's zero, assume that we're starting on a new
3034 			 * CPU -- and change the state to indicate that the
3035 			 * speculation is active on more than one CPU.
3036 			 */
3037 			if (buf->dtb_offset != 0)
3038 				return (buf);
3039 
3040 			new = DTRACESPEC_ACTIVEMANY;
3041 			break;
3042 
3043 		case DTRACESPEC_ACTIVEMANY:
3044 			return (buf);
3045 
3046 		case DTRACESPEC_ACTIVE:
3047 			new = DTRACESPEC_ACTIVEONE;
3048 			break;
3049 
3050 		default:
3051 			ASSERT(0);
3052 		}
3053 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3054 	    current, new) != current);
3055 
3056 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3057 	return (buf);
3058 }
3059 
3060 /*
3061  * Return a string.  In the event that the user lacks the privilege to access
3062  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3063  * don't fail access checking.
3064  *
3065  * dtrace_dif_variable() uses this routine as a helper for various
3066  * builtin values such as 'execname' and 'probefunc.'
3067  */
3068 uintptr_t
3069 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3070     dtrace_mstate_t *mstate)
3071 {
3072 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3073 	uintptr_t ret;
3074 	size_t strsz;
3075 
3076 	/*
3077 	 * The easy case: this probe is allowed to read all of memory, so
3078 	 * we can just return this as a vanilla pointer.
3079 	 */
3080 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3081 		return (addr);
3082 
3083 	/*
3084 	 * This is the tougher case: we copy the string in question from
3085 	 * kernel memory into scratch memory and return it that way: this
3086 	 * ensures that we won't trip up when access checking tests the
3087 	 * BYREF return value.
3088 	 */
3089 	strsz = dtrace_strlen((char *)addr, size) + 1;
3090 
3091 	if (mstate->dtms_scratch_ptr + strsz >
3092 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3093 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3094 		return (0);
3095 	}
3096 
3097 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3098 	    strsz);
3099 	ret = mstate->dtms_scratch_ptr;
3100 	mstate->dtms_scratch_ptr += strsz;
3101 	return (ret);
3102 }
3103 
3104 /*
3105  * Return a string from a memoy address which is known to have one or
3106  * more concatenated, individually zero terminated, sub-strings.
3107  * In the event that the user lacks the privilege to access
3108  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3109  * don't fail access checking.
3110  *
3111  * dtrace_dif_variable() uses this routine as a helper for various
3112  * builtin values such as 'execargs'.
3113  */
3114 static uintptr_t
3115 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3116     dtrace_mstate_t *mstate)
3117 {
3118 	char *p;
3119 	size_t i;
3120 	uintptr_t ret;
3121 
3122 	if (mstate->dtms_scratch_ptr + strsz >
3123 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3124 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3125 		return (0);
3126 	}
3127 
3128 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3129 	    strsz);
3130 
3131 	/* Replace sub-string termination characters with a space. */
3132 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3133 	    p++, i++)
3134 		if (*p == '\0')
3135 			*p = ' ';
3136 
3137 	ret = mstate->dtms_scratch_ptr;
3138 	mstate->dtms_scratch_ptr += strsz;
3139 	return (ret);
3140 }
3141 
3142 /*
3143  * This function implements the DIF emulator's variable lookups.  The emulator
3144  * passes a reserved variable identifier and optional built-in array index.
3145  */
3146 static uint64_t
3147 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3148     uint64_t ndx)
3149 {
3150 	/*
3151 	 * If we're accessing one of the uncached arguments, we'll turn this
3152 	 * into a reference in the args array.
3153 	 */
3154 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3155 		ndx = v - DIF_VAR_ARG0;
3156 		v = DIF_VAR_ARGS;
3157 	}
3158 
3159 	switch (v) {
3160 	case DIF_VAR_ARGS:
3161 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3162 		if (ndx >= sizeof (mstate->dtms_arg) /
3163 		    sizeof (mstate->dtms_arg[0])) {
3164 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3165 			dtrace_provider_t *pv;
3166 			uint64_t val;
3167 
3168 			pv = mstate->dtms_probe->dtpr_provider;
3169 			if (pv->dtpv_pops.dtps_getargval != NULL)
3170 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3171 				    mstate->dtms_probe->dtpr_id,
3172 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3173 			else
3174 				val = dtrace_getarg(ndx, aframes);
3175 
3176 			/*
3177 			 * This is regrettably required to keep the compiler
3178 			 * from tail-optimizing the call to dtrace_getarg().
3179 			 * The condition always evaluates to true, but the
3180 			 * compiler has no way of figuring that out a priori.
3181 			 * (None of this would be necessary if the compiler
3182 			 * could be relied upon to _always_ tail-optimize
3183 			 * the call to dtrace_getarg() -- but it can't.)
3184 			 */
3185 			if (mstate->dtms_probe != NULL)
3186 				return (val);
3187 
3188 			ASSERT(0);
3189 		}
3190 
3191 		return (mstate->dtms_arg[ndx]);
3192 
3193 #ifdef illumos
3194 	case DIF_VAR_UREGS: {
3195 		klwp_t *lwp;
3196 
3197 		if (!dtrace_priv_proc(state))
3198 			return (0);
3199 
3200 		if ((lwp = curthread->t_lwp) == NULL) {
3201 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3202 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3203 			return (0);
3204 		}
3205 
3206 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3207 		return (0);
3208 	}
3209 #else
3210 	case DIF_VAR_UREGS: {
3211 		struct trapframe *tframe;
3212 
3213 		if (!dtrace_priv_proc(state))
3214 			return (0);
3215 
3216 		if ((tframe = curthread->td_frame) == NULL) {
3217 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3218 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3219 			return (0);
3220 		}
3221 
3222 		return (dtrace_getreg(tframe, ndx));
3223 	}
3224 #endif
3225 
3226 	case DIF_VAR_CURTHREAD:
3227 		if (!dtrace_priv_proc(state))
3228 			return (0);
3229 		return ((uint64_t)(uintptr_t)curthread);
3230 
3231 	case DIF_VAR_TIMESTAMP:
3232 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3233 			mstate->dtms_timestamp = dtrace_gethrtime();
3234 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3235 		}
3236 		return (mstate->dtms_timestamp);
3237 
3238 	case DIF_VAR_VTIMESTAMP:
3239 		ASSERT(dtrace_vtime_references != 0);
3240 		return (curthread->t_dtrace_vtime);
3241 
3242 	case DIF_VAR_WALLTIMESTAMP:
3243 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3244 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3245 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3246 		}
3247 		return (mstate->dtms_walltimestamp);
3248 
3249 #ifdef illumos
3250 	case DIF_VAR_IPL:
3251 		if (!dtrace_priv_kernel(state))
3252 			return (0);
3253 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3254 			mstate->dtms_ipl = dtrace_getipl();
3255 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3256 		}
3257 		return (mstate->dtms_ipl);
3258 #endif
3259 
3260 	case DIF_VAR_EPID:
3261 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3262 		return (mstate->dtms_epid);
3263 
3264 	case DIF_VAR_ID:
3265 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3266 		return (mstate->dtms_probe->dtpr_id);
3267 
3268 	case DIF_VAR_STACKDEPTH:
3269 		if (!dtrace_priv_kernel(state))
3270 			return (0);
3271 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3272 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3273 
3274 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3275 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3276 		}
3277 		return (mstate->dtms_stackdepth);
3278 
3279 	case DIF_VAR_USTACKDEPTH:
3280 		if (!dtrace_priv_proc(state))
3281 			return (0);
3282 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3283 			/*
3284 			 * See comment in DIF_VAR_PID.
3285 			 */
3286 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3287 			    CPU_ON_INTR(CPU)) {
3288 				mstate->dtms_ustackdepth = 0;
3289 			} else {
3290 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3291 				mstate->dtms_ustackdepth =
3292 				    dtrace_getustackdepth();
3293 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3294 			}
3295 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3296 		}
3297 		return (mstate->dtms_ustackdepth);
3298 
3299 	case DIF_VAR_CALLER:
3300 		if (!dtrace_priv_kernel(state))
3301 			return (0);
3302 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3303 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3304 
3305 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3306 				/*
3307 				 * If this is an unanchored probe, we are
3308 				 * required to go through the slow path:
3309 				 * dtrace_caller() only guarantees correct
3310 				 * results for anchored probes.
3311 				 */
3312 				pc_t caller[2] = {0, 0};
3313 
3314 				dtrace_getpcstack(caller, 2, aframes,
3315 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3316 				mstate->dtms_caller = caller[1];
3317 			} else if ((mstate->dtms_caller =
3318 			    dtrace_caller(aframes)) == -1) {
3319 				/*
3320 				 * We have failed to do this the quick way;
3321 				 * we must resort to the slower approach of
3322 				 * calling dtrace_getpcstack().
3323 				 */
3324 				pc_t caller = 0;
3325 
3326 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3327 				mstate->dtms_caller = caller;
3328 			}
3329 
3330 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3331 		}
3332 		return (mstate->dtms_caller);
3333 
3334 	case DIF_VAR_UCALLER:
3335 		if (!dtrace_priv_proc(state))
3336 			return (0);
3337 
3338 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3339 			uint64_t ustack[3];
3340 
3341 			/*
3342 			 * dtrace_getupcstack() fills in the first uint64_t
3343 			 * with the current PID.  The second uint64_t will
3344 			 * be the program counter at user-level.  The third
3345 			 * uint64_t will contain the caller, which is what
3346 			 * we're after.
3347 			 */
3348 			ustack[2] = 0;
3349 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3350 			dtrace_getupcstack(ustack, 3);
3351 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3352 			mstate->dtms_ucaller = ustack[2];
3353 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3354 		}
3355 
3356 		return (mstate->dtms_ucaller);
3357 
3358 	case DIF_VAR_PROBEPROV:
3359 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3360 		return (dtrace_dif_varstr(
3361 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3362 		    state, mstate));
3363 
3364 	case DIF_VAR_PROBEMOD:
3365 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3366 		return (dtrace_dif_varstr(
3367 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3368 		    state, mstate));
3369 
3370 	case DIF_VAR_PROBEFUNC:
3371 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3372 		return (dtrace_dif_varstr(
3373 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3374 		    state, mstate));
3375 
3376 	case DIF_VAR_PROBENAME:
3377 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3378 		return (dtrace_dif_varstr(
3379 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3380 		    state, mstate));
3381 
3382 	case DIF_VAR_PID:
3383 		if (!dtrace_priv_proc(state))
3384 			return (0);
3385 
3386 #ifdef illumos
3387 		/*
3388 		 * Note that we are assuming that an unanchored probe is
3389 		 * always due to a high-level interrupt.  (And we're assuming
3390 		 * that there is only a single high level interrupt.)
3391 		 */
3392 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3393 			return (pid0.pid_id);
3394 
3395 		/*
3396 		 * It is always safe to dereference one's own t_procp pointer:
3397 		 * it always points to a valid, allocated proc structure.
3398 		 * Further, it is always safe to dereference the p_pidp member
3399 		 * of one's own proc structure.  (These are truisms becuase
3400 		 * threads and processes don't clean up their own state --
3401 		 * they leave that task to whomever reaps them.)
3402 		 */
3403 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3404 #else
3405 		return ((uint64_t)curproc->p_pid);
3406 #endif
3407 
3408 	case DIF_VAR_PPID:
3409 		if (!dtrace_priv_proc(state))
3410 			return (0);
3411 
3412 #ifdef illumos
3413 		/*
3414 		 * See comment in DIF_VAR_PID.
3415 		 */
3416 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3417 			return (pid0.pid_id);
3418 
3419 		/*
3420 		 * It is always safe to dereference one's own t_procp pointer:
3421 		 * it always points to a valid, allocated proc structure.
3422 		 * (This is true because threads don't clean up their own
3423 		 * state -- they leave that task to whomever reaps them.)
3424 		 */
3425 		return ((uint64_t)curthread->t_procp->p_ppid);
3426 #else
3427 		if (curproc->p_pid == proc0.p_pid)
3428 			return (curproc->p_pid);
3429 		else
3430 			return (curproc->p_pptr->p_pid);
3431 #endif
3432 
3433 	case DIF_VAR_TID:
3434 #ifdef illumos
3435 		/*
3436 		 * See comment in DIF_VAR_PID.
3437 		 */
3438 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3439 			return (0);
3440 #endif
3441 
3442 		return ((uint64_t)curthread->t_tid);
3443 
3444 	case DIF_VAR_EXECARGS: {
3445 		struct pargs *p_args = curthread->td_proc->p_args;
3446 
3447 		if (p_args == NULL)
3448 			return(0);
3449 
3450 		return (dtrace_dif_varstrz(
3451 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3452 	}
3453 
3454 	case DIF_VAR_EXECNAME:
3455 #ifdef illumos
3456 		if (!dtrace_priv_proc(state))
3457 			return (0);
3458 
3459 		/*
3460 		 * See comment in DIF_VAR_PID.
3461 		 */
3462 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3463 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3464 
3465 		/*
3466 		 * It is always safe to dereference one's own t_procp pointer:
3467 		 * it always points to a valid, allocated proc structure.
3468 		 * (This is true because threads don't clean up their own
3469 		 * state -- they leave that task to whomever reaps them.)
3470 		 */
3471 		return (dtrace_dif_varstr(
3472 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3473 		    state, mstate));
3474 #else
3475 		return (dtrace_dif_varstr(
3476 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3477 #endif
3478 
3479 	case DIF_VAR_ZONENAME:
3480 #ifdef illumos
3481 		if (!dtrace_priv_proc(state))
3482 			return (0);
3483 
3484 		/*
3485 		 * See comment in DIF_VAR_PID.
3486 		 */
3487 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3488 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3489 
3490 		/*
3491 		 * It is always safe to dereference one's own t_procp pointer:
3492 		 * it always points to a valid, allocated proc structure.
3493 		 * (This is true because threads don't clean up their own
3494 		 * state -- they leave that task to whomever reaps them.)
3495 		 */
3496 		return (dtrace_dif_varstr(
3497 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3498 		    state, mstate));
3499 #else
3500 		return (0);
3501 #endif
3502 
3503 	case DIF_VAR_UID:
3504 		if (!dtrace_priv_proc(state))
3505 			return (0);
3506 
3507 #ifdef illumos
3508 		/*
3509 		 * See comment in DIF_VAR_PID.
3510 		 */
3511 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3512 			return ((uint64_t)p0.p_cred->cr_uid);
3513 
3514 		/*
3515 		 * It is always safe to dereference one's own t_procp pointer:
3516 		 * it always points to a valid, allocated proc structure.
3517 		 * (This is true because threads don't clean up their own
3518 		 * state -- they leave that task to whomever reaps them.)
3519 		 *
3520 		 * Additionally, it is safe to dereference one's own process
3521 		 * credential, since this is never NULL after process birth.
3522 		 */
3523 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3524 #else
3525 		return ((uint64_t)curthread->td_ucred->cr_uid);
3526 #endif
3527 
3528 	case DIF_VAR_GID:
3529 		if (!dtrace_priv_proc(state))
3530 			return (0);
3531 
3532 #ifdef illumos
3533 		/*
3534 		 * See comment in DIF_VAR_PID.
3535 		 */
3536 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3537 			return ((uint64_t)p0.p_cred->cr_gid);
3538 
3539 		/*
3540 		 * It is always safe to dereference one's own t_procp pointer:
3541 		 * it always points to a valid, allocated proc structure.
3542 		 * (This is true because threads don't clean up their own
3543 		 * state -- they leave that task to whomever reaps them.)
3544 		 *
3545 		 * Additionally, it is safe to dereference one's own process
3546 		 * credential, since this is never NULL after process birth.
3547 		 */
3548 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3549 #else
3550 		return ((uint64_t)curthread->td_ucred->cr_gid);
3551 #endif
3552 
3553 	case DIF_VAR_ERRNO: {
3554 #ifdef illumos
3555 		klwp_t *lwp;
3556 		if (!dtrace_priv_proc(state))
3557 			return (0);
3558 
3559 		/*
3560 		 * See comment in DIF_VAR_PID.
3561 		 */
3562 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3563 			return (0);
3564 
3565 		/*
3566 		 * It is always safe to dereference one's own t_lwp pointer in
3567 		 * the event that this pointer is non-NULL.  (This is true
3568 		 * because threads and lwps don't clean up their own state --
3569 		 * they leave that task to whomever reaps them.)
3570 		 */
3571 		if ((lwp = curthread->t_lwp) == NULL)
3572 			return (0);
3573 
3574 		return ((uint64_t)lwp->lwp_errno);
3575 #else
3576 		return (curthread->td_errno);
3577 #endif
3578 	}
3579 #ifndef illumos
3580 	case DIF_VAR_CPU: {
3581 		return curcpu;
3582 	}
3583 #endif
3584 	default:
3585 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3586 		return (0);
3587 	}
3588 }
3589 
3590 
3591 typedef enum dtrace_json_state {
3592 	DTRACE_JSON_REST = 1,
3593 	DTRACE_JSON_OBJECT,
3594 	DTRACE_JSON_STRING,
3595 	DTRACE_JSON_STRING_ESCAPE,
3596 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3597 	DTRACE_JSON_COLON,
3598 	DTRACE_JSON_COMMA,
3599 	DTRACE_JSON_VALUE,
3600 	DTRACE_JSON_IDENTIFIER,
3601 	DTRACE_JSON_NUMBER,
3602 	DTRACE_JSON_NUMBER_FRAC,
3603 	DTRACE_JSON_NUMBER_EXP,
3604 	DTRACE_JSON_COLLECT_OBJECT
3605 } dtrace_json_state_t;
3606 
3607 /*
3608  * This function possesses just enough knowledge about JSON to extract a single
3609  * value from a JSON string and store it in the scratch buffer.  It is able
3610  * to extract nested object values, and members of arrays by index.
3611  *
3612  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3613  * be looked up as we descend into the object tree.  e.g.
3614  *
3615  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3616  *       with nelems = 5.
3617  *
3618  * The run time of this function must be bounded above by strsize to limit the
3619  * amount of work done in probe context.  As such, it is implemented as a
3620  * simple state machine, reading one character at a time using safe loads
3621  * until we find the requested element, hit a parsing error or run off the
3622  * end of the object or string.
3623  *
3624  * As there is no way for a subroutine to return an error without interrupting
3625  * clause execution, we simply return NULL in the event of a missing key or any
3626  * other error condition.  Each NULL return in this function is commented with
3627  * the error condition it represents -- parsing or otherwise.
3628  *
3629  * The set of states for the state machine closely matches the JSON
3630  * specification (http://json.org/).  Briefly:
3631  *
3632  *   DTRACE_JSON_REST:
3633  *     Skip whitespace until we find either a top-level Object, moving
3634  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3635  *
3636  *   DTRACE_JSON_OBJECT:
3637  *     Locate the next key String in an Object.  Sets a flag to denote
3638  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3639  *
3640  *   DTRACE_JSON_COLON:
3641  *     Skip whitespace until we find the colon that separates key Strings
3642  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3643  *
3644  *   DTRACE_JSON_VALUE:
3645  *     Detects the type of the next value (String, Number, Identifier, Object
3646  *     or Array) and routes to the states that process that type.  Here we also
3647  *     deal with the element selector list if we are requested to traverse down
3648  *     into the object tree.
3649  *
3650  *   DTRACE_JSON_COMMA:
3651  *     Skip whitespace until we find the comma that separates key-value pairs
3652  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3653  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3654  *     states return to this state at the end of their value, unless otherwise
3655  *     noted.
3656  *
3657  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3658  *     Processes a Number literal from the JSON, including any exponent
3659  *     component that may be present.  Numbers are returned as strings, which
3660  *     may be passed to strtoll() if an integer is required.
3661  *
3662  *   DTRACE_JSON_IDENTIFIER:
3663  *     Processes a "true", "false" or "null" literal in the JSON.
3664  *
3665  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3666  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3667  *     Processes a String literal from the JSON, whether the String denotes
3668  *     a key, a value or part of a larger Object.  Handles all escape sequences
3669  *     present in the specification, including four-digit unicode characters,
3670  *     but merely includes the escape sequence without converting it to the
3671  *     actual escaped character.  If the String is flagged as a key, we
3672  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3673  *
3674  *   DTRACE_JSON_COLLECT_OBJECT:
3675  *     This state collects an entire Object (or Array), correctly handling
3676  *     embedded strings.  If the full element selector list matches this nested
3677  *     object, we return the Object in full as a string.  If not, we use this
3678  *     state to skip to the next value at this level and continue processing.
3679  *
3680  * NOTE: This function uses various macros from strtolctype.h to manipulate
3681  * digit values, etc -- these have all been checked to ensure they make
3682  * no additional function calls.
3683  */
3684 static char *
3685 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3686     char *dest)
3687 {
3688 	dtrace_json_state_t state = DTRACE_JSON_REST;
3689 	int64_t array_elem = INT64_MIN;
3690 	int64_t array_pos = 0;
3691 	uint8_t escape_unicount = 0;
3692 	boolean_t string_is_key = B_FALSE;
3693 	boolean_t collect_object = B_FALSE;
3694 	boolean_t found_key = B_FALSE;
3695 	boolean_t in_array = B_FALSE;
3696 	uint32_t braces = 0, brackets = 0;
3697 	char *elem = elemlist;
3698 	char *dd = dest;
3699 	uintptr_t cur;
3700 
3701 	for (cur = json; cur < json + size; cur++) {
3702 		char cc = dtrace_load8(cur);
3703 		if (cc == '\0')
3704 			return (NULL);
3705 
3706 		switch (state) {
3707 		case DTRACE_JSON_REST:
3708 			if (isspace(cc))
3709 				break;
3710 
3711 			if (cc == '{') {
3712 				state = DTRACE_JSON_OBJECT;
3713 				break;
3714 			}
3715 
3716 			if (cc == '[') {
3717 				in_array = B_TRUE;
3718 				array_pos = 0;
3719 				array_elem = dtrace_strtoll(elem, 10, size);
3720 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3721 				state = DTRACE_JSON_VALUE;
3722 				break;
3723 			}
3724 
3725 			/*
3726 			 * ERROR: expected to find a top-level object or array.
3727 			 */
3728 			return (NULL);
3729 		case DTRACE_JSON_OBJECT:
3730 			if (isspace(cc))
3731 				break;
3732 
3733 			if (cc == '"') {
3734 				state = DTRACE_JSON_STRING;
3735 				string_is_key = B_TRUE;
3736 				break;
3737 			}
3738 
3739 			/*
3740 			 * ERROR: either the object did not start with a key
3741 			 * string, or we've run off the end of the object
3742 			 * without finding the requested key.
3743 			 */
3744 			return (NULL);
3745 		case DTRACE_JSON_STRING:
3746 			if (cc == '\\') {
3747 				*dd++ = '\\';
3748 				state = DTRACE_JSON_STRING_ESCAPE;
3749 				break;
3750 			}
3751 
3752 			if (cc == '"') {
3753 				if (collect_object) {
3754 					/*
3755 					 * We don't reset the dest here, as
3756 					 * the string is part of a larger
3757 					 * object being collected.
3758 					 */
3759 					*dd++ = cc;
3760 					collect_object = B_FALSE;
3761 					state = DTRACE_JSON_COLLECT_OBJECT;
3762 					break;
3763 				}
3764 				*dd = '\0';
3765 				dd = dest; /* reset string buffer */
3766 				if (string_is_key) {
3767 					if (dtrace_strncmp(dest, elem,
3768 					    size) == 0)
3769 						found_key = B_TRUE;
3770 				} else if (found_key) {
3771 					if (nelems > 1) {
3772 						/*
3773 						 * We expected an object, not
3774 						 * this string.
3775 						 */
3776 						return (NULL);
3777 					}
3778 					return (dest);
3779 				}
3780 				state = string_is_key ? DTRACE_JSON_COLON :
3781 				    DTRACE_JSON_COMMA;
3782 				string_is_key = B_FALSE;
3783 				break;
3784 			}
3785 
3786 			*dd++ = cc;
3787 			break;
3788 		case DTRACE_JSON_STRING_ESCAPE:
3789 			*dd++ = cc;
3790 			if (cc == 'u') {
3791 				escape_unicount = 0;
3792 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3793 			} else {
3794 				state = DTRACE_JSON_STRING;
3795 			}
3796 			break;
3797 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3798 			if (!isxdigit(cc)) {
3799 				/*
3800 				 * ERROR: invalid unicode escape, expected
3801 				 * four valid hexidecimal digits.
3802 				 */
3803 				return (NULL);
3804 			}
3805 
3806 			*dd++ = cc;
3807 			if (++escape_unicount == 4)
3808 				state = DTRACE_JSON_STRING;
3809 			break;
3810 		case DTRACE_JSON_COLON:
3811 			if (isspace(cc))
3812 				break;
3813 
3814 			if (cc == ':') {
3815 				state = DTRACE_JSON_VALUE;
3816 				break;
3817 			}
3818 
3819 			/*
3820 			 * ERROR: expected a colon.
3821 			 */
3822 			return (NULL);
3823 		case DTRACE_JSON_COMMA:
3824 			if (isspace(cc))
3825 				break;
3826 
3827 			if (cc == ',') {
3828 				if (in_array) {
3829 					state = DTRACE_JSON_VALUE;
3830 					if (++array_pos == array_elem)
3831 						found_key = B_TRUE;
3832 				} else {
3833 					state = DTRACE_JSON_OBJECT;
3834 				}
3835 				break;
3836 			}
3837 
3838 			/*
3839 			 * ERROR: either we hit an unexpected character, or
3840 			 * we reached the end of the object or array without
3841 			 * finding the requested key.
3842 			 */
3843 			return (NULL);
3844 		case DTRACE_JSON_IDENTIFIER:
3845 			if (islower(cc)) {
3846 				*dd++ = cc;
3847 				break;
3848 			}
3849 
3850 			*dd = '\0';
3851 			dd = dest; /* reset string buffer */
3852 
3853 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3854 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3855 			    dtrace_strncmp(dest, "null", 5) == 0) {
3856 				if (found_key) {
3857 					if (nelems > 1) {
3858 						/*
3859 						 * ERROR: We expected an object,
3860 						 * not this identifier.
3861 						 */
3862 						return (NULL);
3863 					}
3864 					return (dest);
3865 				} else {
3866 					cur--;
3867 					state = DTRACE_JSON_COMMA;
3868 					break;
3869 				}
3870 			}
3871 
3872 			/*
3873 			 * ERROR: we did not recognise the identifier as one
3874 			 * of those in the JSON specification.
3875 			 */
3876 			return (NULL);
3877 		case DTRACE_JSON_NUMBER:
3878 			if (cc == '.') {
3879 				*dd++ = cc;
3880 				state = DTRACE_JSON_NUMBER_FRAC;
3881 				break;
3882 			}
3883 
3884 			if (cc == 'x' || cc == 'X') {
3885 				/*
3886 				 * ERROR: specification explicitly excludes
3887 				 * hexidecimal or octal numbers.
3888 				 */
3889 				return (NULL);
3890 			}
3891 
3892 			/* FALLTHRU */
3893 		case DTRACE_JSON_NUMBER_FRAC:
3894 			if (cc == 'e' || cc == 'E') {
3895 				*dd++ = cc;
3896 				state = DTRACE_JSON_NUMBER_EXP;
3897 				break;
3898 			}
3899 
3900 			if (cc == '+' || cc == '-') {
3901 				/*
3902 				 * ERROR: expect sign as part of exponent only.
3903 				 */
3904 				return (NULL);
3905 			}
3906 			/* FALLTHRU */
3907 		case DTRACE_JSON_NUMBER_EXP:
3908 			if (isdigit(cc) || cc == '+' || cc == '-') {
3909 				*dd++ = cc;
3910 				break;
3911 			}
3912 
3913 			*dd = '\0';
3914 			dd = dest; /* reset string buffer */
3915 			if (found_key) {
3916 				if (nelems > 1) {
3917 					/*
3918 					 * ERROR: We expected an object, not
3919 					 * this number.
3920 					 */
3921 					return (NULL);
3922 				}
3923 				return (dest);
3924 			}
3925 
3926 			cur--;
3927 			state = DTRACE_JSON_COMMA;
3928 			break;
3929 		case DTRACE_JSON_VALUE:
3930 			if (isspace(cc))
3931 				break;
3932 
3933 			if (cc == '{' || cc == '[') {
3934 				if (nelems > 1 && found_key) {
3935 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3936 					/*
3937 					 * If our element selector directs us
3938 					 * to descend into this nested object,
3939 					 * then move to the next selector
3940 					 * element in the list and restart the
3941 					 * state machine.
3942 					 */
3943 					while (*elem != '\0')
3944 						elem++;
3945 					elem++; /* skip the inter-element NUL */
3946 					nelems--;
3947 					dd = dest;
3948 					if (in_array) {
3949 						state = DTRACE_JSON_VALUE;
3950 						array_pos = 0;
3951 						array_elem = dtrace_strtoll(
3952 						    elem, 10, size);
3953 						found_key = array_elem == 0 ?
3954 						    B_TRUE : B_FALSE;
3955 					} else {
3956 						found_key = B_FALSE;
3957 						state = DTRACE_JSON_OBJECT;
3958 					}
3959 					break;
3960 				}
3961 
3962 				/*
3963 				 * Otherwise, we wish to either skip this
3964 				 * nested object or return it in full.
3965 				 */
3966 				if (cc == '[')
3967 					brackets = 1;
3968 				else
3969 					braces = 1;
3970 				*dd++ = cc;
3971 				state = DTRACE_JSON_COLLECT_OBJECT;
3972 				break;
3973 			}
3974 
3975 			if (cc == '"') {
3976 				state = DTRACE_JSON_STRING;
3977 				break;
3978 			}
3979 
3980 			if (islower(cc)) {
3981 				/*
3982 				 * Here we deal with true, false and null.
3983 				 */
3984 				*dd++ = cc;
3985 				state = DTRACE_JSON_IDENTIFIER;
3986 				break;
3987 			}
3988 
3989 			if (cc == '-' || isdigit(cc)) {
3990 				*dd++ = cc;
3991 				state = DTRACE_JSON_NUMBER;
3992 				break;
3993 			}
3994 
3995 			/*
3996 			 * ERROR: unexpected character at start of value.
3997 			 */
3998 			return (NULL);
3999 		case DTRACE_JSON_COLLECT_OBJECT:
4000 			if (cc == '\0')
4001 				/*
4002 				 * ERROR: unexpected end of input.
4003 				 */
4004 				return (NULL);
4005 
4006 			*dd++ = cc;
4007 			if (cc == '"') {
4008 				collect_object = B_TRUE;
4009 				state = DTRACE_JSON_STRING;
4010 				break;
4011 			}
4012 
4013 			if (cc == ']') {
4014 				if (brackets-- == 0) {
4015 					/*
4016 					 * ERROR: unbalanced brackets.
4017 					 */
4018 					return (NULL);
4019 				}
4020 			} else if (cc == '}') {
4021 				if (braces-- == 0) {
4022 					/*
4023 					 * ERROR: unbalanced braces.
4024 					 */
4025 					return (NULL);
4026 				}
4027 			} else if (cc == '{') {
4028 				braces++;
4029 			} else if (cc == '[') {
4030 				brackets++;
4031 			}
4032 
4033 			if (brackets == 0 && braces == 0) {
4034 				if (found_key) {
4035 					*dd = '\0';
4036 					return (dest);
4037 				}
4038 				dd = dest; /* reset string buffer */
4039 				state = DTRACE_JSON_COMMA;
4040 			}
4041 			break;
4042 		}
4043 	}
4044 	return (NULL);
4045 }
4046 
4047 /*
4048  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4049  * Notice that we don't bother validating the proper number of arguments or
4050  * their types in the tuple stack.  This isn't needed because all argument
4051  * interpretation is safe because of our load safety -- the worst that can
4052  * happen is that a bogus program can obtain bogus results.
4053  */
4054 static void
4055 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4056     dtrace_key_t *tupregs, int nargs,
4057     dtrace_mstate_t *mstate, dtrace_state_t *state)
4058 {
4059 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4060 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4061 	dtrace_vstate_t *vstate = &state->dts_vstate;
4062 
4063 #ifdef illumos
4064 	union {
4065 		mutex_impl_t mi;
4066 		uint64_t mx;
4067 	} m;
4068 
4069 	union {
4070 		krwlock_t ri;
4071 		uintptr_t rw;
4072 	} r;
4073 #else
4074 	struct thread *lowner;
4075 	union {
4076 		struct lock_object *li;
4077 		uintptr_t lx;
4078 	} l;
4079 #endif
4080 
4081 	switch (subr) {
4082 	case DIF_SUBR_RAND:
4083 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4084 		break;
4085 
4086 #ifdef illumos
4087 	case DIF_SUBR_MUTEX_OWNED:
4088 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4089 		    mstate, vstate)) {
4090 			regs[rd] = 0;
4091 			break;
4092 		}
4093 
4094 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4095 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4096 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4097 		else
4098 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4099 		break;
4100 
4101 	case DIF_SUBR_MUTEX_OWNER:
4102 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4103 		    mstate, vstate)) {
4104 			regs[rd] = 0;
4105 			break;
4106 		}
4107 
4108 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4109 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4110 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4111 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4112 		else
4113 			regs[rd] = 0;
4114 		break;
4115 
4116 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4117 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4118 		    mstate, vstate)) {
4119 			regs[rd] = 0;
4120 			break;
4121 		}
4122 
4123 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4124 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4125 		break;
4126 
4127 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4128 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4129 		    mstate, vstate)) {
4130 			regs[rd] = 0;
4131 			break;
4132 		}
4133 
4134 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4135 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4136 		break;
4137 
4138 	case DIF_SUBR_RW_READ_HELD: {
4139 		uintptr_t tmp;
4140 
4141 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4142 		    mstate, vstate)) {
4143 			regs[rd] = 0;
4144 			break;
4145 		}
4146 
4147 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4148 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4149 		break;
4150 	}
4151 
4152 	case DIF_SUBR_RW_WRITE_HELD:
4153 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4154 		    mstate, vstate)) {
4155 			regs[rd] = 0;
4156 			break;
4157 		}
4158 
4159 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4160 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4161 		break;
4162 
4163 	case DIF_SUBR_RW_ISWRITER:
4164 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4165 		    mstate, vstate)) {
4166 			regs[rd] = 0;
4167 			break;
4168 		}
4169 
4170 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4171 		regs[rd] = _RW_ISWRITER(&r.ri);
4172 		break;
4173 
4174 #else /* !illumos */
4175 	case DIF_SUBR_MUTEX_OWNED:
4176 		if (!dtrace_canload(tupregs[0].dttk_value,
4177 			sizeof (struct lock_object), mstate, vstate)) {
4178 			regs[rd] = 0;
4179 			break;
4180 		}
4181 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4182 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4183 		break;
4184 
4185 	case DIF_SUBR_MUTEX_OWNER:
4186 		if (!dtrace_canload(tupregs[0].dttk_value,
4187 			sizeof (struct lock_object), mstate, vstate)) {
4188 			regs[rd] = 0;
4189 			break;
4190 		}
4191 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4192 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4193 		regs[rd] = (uintptr_t)lowner;
4194 		break;
4195 
4196 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4197 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4198 		    mstate, vstate)) {
4199 			regs[rd] = 0;
4200 			break;
4201 		}
4202 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4203 		/* XXX - should be only LC_SLEEPABLE? */
4204 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4205 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4206 		break;
4207 
4208 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4209 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4210 		    mstate, vstate)) {
4211 			regs[rd] = 0;
4212 			break;
4213 		}
4214 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4215 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4216 		break;
4217 
4218 	case DIF_SUBR_RW_READ_HELD:
4219 	case DIF_SUBR_SX_SHARED_HELD:
4220 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4221 		    mstate, vstate)) {
4222 			regs[rd] = 0;
4223 			break;
4224 		}
4225 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4226 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4227 		    lowner == NULL;
4228 		break;
4229 
4230 	case DIF_SUBR_RW_WRITE_HELD:
4231 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4232 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4233 		    mstate, vstate)) {
4234 			regs[rd] = 0;
4235 			break;
4236 		}
4237 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4238 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4239 		regs[rd] = (lowner == curthread);
4240 		break;
4241 
4242 	case DIF_SUBR_RW_ISWRITER:
4243 	case DIF_SUBR_SX_ISEXCLUSIVE:
4244 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4245 		    mstate, vstate)) {
4246 			regs[rd] = 0;
4247 			break;
4248 		}
4249 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4250 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4251 		    lowner != NULL;
4252 		break;
4253 #endif /* illumos */
4254 
4255 	case DIF_SUBR_BCOPY: {
4256 		/*
4257 		 * We need to be sure that the destination is in the scratch
4258 		 * region -- no other region is allowed.
4259 		 */
4260 		uintptr_t src = tupregs[0].dttk_value;
4261 		uintptr_t dest = tupregs[1].dttk_value;
4262 		size_t size = tupregs[2].dttk_value;
4263 
4264 		if (!dtrace_inscratch(dest, size, mstate)) {
4265 			*flags |= CPU_DTRACE_BADADDR;
4266 			*illval = regs[rd];
4267 			break;
4268 		}
4269 
4270 		if (!dtrace_canload(src, size, mstate, vstate)) {
4271 			regs[rd] = 0;
4272 			break;
4273 		}
4274 
4275 		dtrace_bcopy((void *)src, (void *)dest, size);
4276 		break;
4277 	}
4278 
4279 	case DIF_SUBR_ALLOCA:
4280 	case DIF_SUBR_COPYIN: {
4281 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4282 		uint64_t size =
4283 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4284 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4285 
4286 		/*
4287 		 * This action doesn't require any credential checks since
4288 		 * probes will not activate in user contexts to which the
4289 		 * enabling user does not have permissions.
4290 		 */
4291 
4292 		/*
4293 		 * Rounding up the user allocation size could have overflowed
4294 		 * a large, bogus allocation (like -1ULL) to 0.
4295 		 */
4296 		if (scratch_size < size ||
4297 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4298 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4299 			regs[rd] = 0;
4300 			break;
4301 		}
4302 
4303 		if (subr == DIF_SUBR_COPYIN) {
4304 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4305 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4306 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4307 		}
4308 
4309 		mstate->dtms_scratch_ptr += scratch_size;
4310 		regs[rd] = dest;
4311 		break;
4312 	}
4313 
4314 	case DIF_SUBR_COPYINTO: {
4315 		uint64_t size = tupregs[1].dttk_value;
4316 		uintptr_t dest = tupregs[2].dttk_value;
4317 
4318 		/*
4319 		 * This action doesn't require any credential checks since
4320 		 * probes will not activate in user contexts to which the
4321 		 * enabling user does not have permissions.
4322 		 */
4323 		if (!dtrace_inscratch(dest, size, mstate)) {
4324 			*flags |= CPU_DTRACE_BADADDR;
4325 			*illval = regs[rd];
4326 			break;
4327 		}
4328 
4329 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4330 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4331 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4332 		break;
4333 	}
4334 
4335 	case DIF_SUBR_COPYINSTR: {
4336 		uintptr_t dest = mstate->dtms_scratch_ptr;
4337 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4338 
4339 		if (nargs > 1 && tupregs[1].dttk_value < size)
4340 			size = tupregs[1].dttk_value + 1;
4341 
4342 		/*
4343 		 * This action doesn't require any credential checks since
4344 		 * probes will not activate in user contexts to which the
4345 		 * enabling user does not have permissions.
4346 		 */
4347 		if (!DTRACE_INSCRATCH(mstate, size)) {
4348 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4349 			regs[rd] = 0;
4350 			break;
4351 		}
4352 
4353 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4354 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4355 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4356 
4357 		((char *)dest)[size - 1] = '\0';
4358 		mstate->dtms_scratch_ptr += size;
4359 		regs[rd] = dest;
4360 		break;
4361 	}
4362 
4363 #ifdef illumos
4364 	case DIF_SUBR_MSGSIZE:
4365 	case DIF_SUBR_MSGDSIZE: {
4366 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4367 		uintptr_t wptr, rptr;
4368 		size_t count = 0;
4369 		int cont = 0;
4370 
4371 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4372 
4373 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4374 			    vstate)) {
4375 				regs[rd] = 0;
4376 				break;
4377 			}
4378 
4379 			wptr = dtrace_loadptr(baddr +
4380 			    offsetof(mblk_t, b_wptr));
4381 
4382 			rptr = dtrace_loadptr(baddr +
4383 			    offsetof(mblk_t, b_rptr));
4384 
4385 			if (wptr < rptr) {
4386 				*flags |= CPU_DTRACE_BADADDR;
4387 				*illval = tupregs[0].dttk_value;
4388 				break;
4389 			}
4390 
4391 			daddr = dtrace_loadptr(baddr +
4392 			    offsetof(mblk_t, b_datap));
4393 
4394 			baddr = dtrace_loadptr(baddr +
4395 			    offsetof(mblk_t, b_cont));
4396 
4397 			/*
4398 			 * We want to prevent against denial-of-service here,
4399 			 * so we're only going to search the list for
4400 			 * dtrace_msgdsize_max mblks.
4401 			 */
4402 			if (cont++ > dtrace_msgdsize_max) {
4403 				*flags |= CPU_DTRACE_ILLOP;
4404 				break;
4405 			}
4406 
4407 			if (subr == DIF_SUBR_MSGDSIZE) {
4408 				if (dtrace_load8(daddr +
4409 				    offsetof(dblk_t, db_type)) != M_DATA)
4410 					continue;
4411 			}
4412 
4413 			count += wptr - rptr;
4414 		}
4415 
4416 		if (!(*flags & CPU_DTRACE_FAULT))
4417 			regs[rd] = count;
4418 
4419 		break;
4420 	}
4421 #endif
4422 
4423 	case DIF_SUBR_PROGENYOF: {
4424 		pid_t pid = tupregs[0].dttk_value;
4425 		proc_t *p;
4426 		int rval = 0;
4427 
4428 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4429 
4430 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4431 #ifdef illumos
4432 			if (p->p_pidp->pid_id == pid) {
4433 #else
4434 			if (p->p_pid == pid) {
4435 #endif
4436 				rval = 1;
4437 				break;
4438 			}
4439 		}
4440 
4441 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4442 
4443 		regs[rd] = rval;
4444 		break;
4445 	}
4446 
4447 	case DIF_SUBR_SPECULATION:
4448 		regs[rd] = dtrace_speculation(state);
4449 		break;
4450 
4451 	case DIF_SUBR_COPYOUT: {
4452 		uintptr_t kaddr = tupregs[0].dttk_value;
4453 		uintptr_t uaddr = tupregs[1].dttk_value;
4454 		uint64_t size = tupregs[2].dttk_value;
4455 
4456 		if (!dtrace_destructive_disallow &&
4457 		    dtrace_priv_proc_control(state) &&
4458 		    !dtrace_istoxic(kaddr, size)) {
4459 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4460 			dtrace_copyout(kaddr, uaddr, size, flags);
4461 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4462 		}
4463 		break;
4464 	}
4465 
4466 	case DIF_SUBR_COPYOUTSTR: {
4467 		uintptr_t kaddr = tupregs[0].dttk_value;
4468 		uintptr_t uaddr = tupregs[1].dttk_value;
4469 		uint64_t size = tupregs[2].dttk_value;
4470 
4471 		if (!dtrace_destructive_disallow &&
4472 		    dtrace_priv_proc_control(state) &&
4473 		    !dtrace_istoxic(kaddr, size)) {
4474 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4475 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4476 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4477 		}
4478 		break;
4479 	}
4480 
4481 	case DIF_SUBR_STRLEN: {
4482 		size_t sz;
4483 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4484 		sz = dtrace_strlen((char *)addr,
4485 		    state->dts_options[DTRACEOPT_STRSIZE]);
4486 
4487 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4488 			regs[rd] = 0;
4489 			break;
4490 		}
4491 
4492 		regs[rd] = sz;
4493 
4494 		break;
4495 	}
4496 
4497 	case DIF_SUBR_STRCHR:
4498 	case DIF_SUBR_STRRCHR: {
4499 		/*
4500 		 * We're going to iterate over the string looking for the
4501 		 * specified character.  We will iterate until we have reached
4502 		 * the string length or we have found the character.  If this
4503 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4504 		 * of the specified character instead of the first.
4505 		 */
4506 		uintptr_t saddr = tupregs[0].dttk_value;
4507 		uintptr_t addr = tupregs[0].dttk_value;
4508 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4509 		char c, target = (char)tupregs[1].dttk_value;
4510 
4511 		for (regs[rd] = 0; addr < limit; addr++) {
4512 			if ((c = dtrace_load8(addr)) == target) {
4513 				regs[rd] = addr;
4514 
4515 				if (subr == DIF_SUBR_STRCHR)
4516 					break;
4517 			}
4518 
4519 			if (c == '\0')
4520 				break;
4521 		}
4522 
4523 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4524 			regs[rd] = 0;
4525 			break;
4526 		}
4527 
4528 		break;
4529 	}
4530 
4531 	case DIF_SUBR_STRSTR:
4532 	case DIF_SUBR_INDEX:
4533 	case DIF_SUBR_RINDEX: {
4534 		/*
4535 		 * We're going to iterate over the string looking for the
4536 		 * specified string.  We will iterate until we have reached
4537 		 * the string length or we have found the string.  (Yes, this
4538 		 * is done in the most naive way possible -- but considering
4539 		 * that the string we're searching for is likely to be
4540 		 * relatively short, the complexity of Rabin-Karp or similar
4541 		 * hardly seems merited.)
4542 		 */
4543 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4544 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4545 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4546 		size_t len = dtrace_strlen(addr, size);
4547 		size_t sublen = dtrace_strlen(substr, size);
4548 		char *limit = addr + len, *orig = addr;
4549 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4550 		int inc = 1;
4551 
4552 		regs[rd] = notfound;
4553 
4554 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4555 			regs[rd] = 0;
4556 			break;
4557 		}
4558 
4559 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4560 		    vstate)) {
4561 			regs[rd] = 0;
4562 			break;
4563 		}
4564 
4565 		/*
4566 		 * strstr() and index()/rindex() have similar semantics if
4567 		 * both strings are the empty string: strstr() returns a
4568 		 * pointer to the (empty) string, and index() and rindex()
4569 		 * both return index 0 (regardless of any position argument).
4570 		 */
4571 		if (sublen == 0 && len == 0) {
4572 			if (subr == DIF_SUBR_STRSTR)
4573 				regs[rd] = (uintptr_t)addr;
4574 			else
4575 				regs[rd] = 0;
4576 			break;
4577 		}
4578 
4579 		if (subr != DIF_SUBR_STRSTR) {
4580 			if (subr == DIF_SUBR_RINDEX) {
4581 				limit = orig - 1;
4582 				addr += len;
4583 				inc = -1;
4584 			}
4585 
4586 			/*
4587 			 * Both index() and rindex() take an optional position
4588 			 * argument that denotes the starting position.
4589 			 */
4590 			if (nargs == 3) {
4591 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4592 
4593 				/*
4594 				 * If the position argument to index() is
4595 				 * negative, Perl implicitly clamps it at
4596 				 * zero.  This semantic is a little surprising
4597 				 * given the special meaning of negative
4598 				 * positions to similar Perl functions like
4599 				 * substr(), but it appears to reflect a
4600 				 * notion that index() can start from a
4601 				 * negative index and increment its way up to
4602 				 * the string.  Given this notion, Perl's
4603 				 * rindex() is at least self-consistent in
4604 				 * that it implicitly clamps positions greater
4605 				 * than the string length to be the string
4606 				 * length.  Where Perl completely loses
4607 				 * coherence, however, is when the specified
4608 				 * substring is the empty string ("").  In
4609 				 * this case, even if the position is
4610 				 * negative, rindex() returns 0 -- and even if
4611 				 * the position is greater than the length,
4612 				 * index() returns the string length.  These
4613 				 * semantics violate the notion that index()
4614 				 * should never return a value less than the
4615 				 * specified position and that rindex() should
4616 				 * never return a value greater than the
4617 				 * specified position.  (One assumes that
4618 				 * these semantics are artifacts of Perl's
4619 				 * implementation and not the results of
4620 				 * deliberate design -- it beggars belief that
4621 				 * even Larry Wall could desire such oddness.)
4622 				 * While in the abstract one would wish for
4623 				 * consistent position semantics across
4624 				 * substr(), index() and rindex() -- or at the
4625 				 * very least self-consistent position
4626 				 * semantics for index() and rindex() -- we
4627 				 * instead opt to keep with the extant Perl
4628 				 * semantics, in all their broken glory.  (Do
4629 				 * we have more desire to maintain Perl's
4630 				 * semantics than Perl does?  Probably.)
4631 				 */
4632 				if (subr == DIF_SUBR_RINDEX) {
4633 					if (pos < 0) {
4634 						if (sublen == 0)
4635 							regs[rd] = 0;
4636 						break;
4637 					}
4638 
4639 					if (pos > len)
4640 						pos = len;
4641 				} else {
4642 					if (pos < 0)
4643 						pos = 0;
4644 
4645 					if (pos >= len) {
4646 						if (sublen == 0)
4647 							regs[rd] = len;
4648 						break;
4649 					}
4650 				}
4651 
4652 				addr = orig + pos;
4653 			}
4654 		}
4655 
4656 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4657 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4658 				if (subr != DIF_SUBR_STRSTR) {
4659 					/*
4660 					 * As D index() and rindex() are
4661 					 * modeled on Perl (and not on awk),
4662 					 * we return a zero-based (and not a
4663 					 * one-based) index.  (For you Perl
4664 					 * weenies: no, we're not going to add
4665 					 * $[ -- and shouldn't you be at a con
4666 					 * or something?)
4667 					 */
4668 					regs[rd] = (uintptr_t)(addr - orig);
4669 					break;
4670 				}
4671 
4672 				ASSERT(subr == DIF_SUBR_STRSTR);
4673 				regs[rd] = (uintptr_t)addr;
4674 				break;
4675 			}
4676 		}
4677 
4678 		break;
4679 	}
4680 
4681 	case DIF_SUBR_STRTOK: {
4682 		uintptr_t addr = tupregs[0].dttk_value;
4683 		uintptr_t tokaddr = tupregs[1].dttk_value;
4684 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4685 		uintptr_t limit, toklimit = tokaddr + size;
4686 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4687 		char *dest = (char *)mstate->dtms_scratch_ptr;
4688 		int i;
4689 
4690 		/*
4691 		 * Check both the token buffer and (later) the input buffer,
4692 		 * since both could be non-scratch addresses.
4693 		 */
4694 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4695 			regs[rd] = 0;
4696 			break;
4697 		}
4698 
4699 		if (!DTRACE_INSCRATCH(mstate, size)) {
4700 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4701 			regs[rd] = 0;
4702 			break;
4703 		}
4704 
4705 		if (addr == 0) {
4706 			/*
4707 			 * If the address specified is NULL, we use our saved
4708 			 * strtok pointer from the mstate.  Note that this
4709 			 * means that the saved strtok pointer is _only_
4710 			 * valid within multiple enablings of the same probe --
4711 			 * it behaves like an implicit clause-local variable.
4712 			 */
4713 			addr = mstate->dtms_strtok;
4714 		} else {
4715 			/*
4716 			 * If the user-specified address is non-NULL we must
4717 			 * access check it.  This is the only time we have
4718 			 * a chance to do so, since this address may reside
4719 			 * in the string table of this clause-- future calls
4720 			 * (when we fetch addr from mstate->dtms_strtok)
4721 			 * would fail this access check.
4722 			 */
4723 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4724 				regs[rd] = 0;
4725 				break;
4726 			}
4727 		}
4728 
4729 		/*
4730 		 * First, zero the token map, and then process the token
4731 		 * string -- setting a bit in the map for every character
4732 		 * found in the token string.
4733 		 */
4734 		for (i = 0; i < sizeof (tokmap); i++)
4735 			tokmap[i] = 0;
4736 
4737 		for (; tokaddr < toklimit; tokaddr++) {
4738 			if ((c = dtrace_load8(tokaddr)) == '\0')
4739 				break;
4740 
4741 			ASSERT((c >> 3) < sizeof (tokmap));
4742 			tokmap[c >> 3] |= (1 << (c & 0x7));
4743 		}
4744 
4745 		for (limit = addr + size; addr < limit; addr++) {
4746 			/*
4747 			 * We're looking for a character that is _not_ contained
4748 			 * in the token string.
4749 			 */
4750 			if ((c = dtrace_load8(addr)) == '\0')
4751 				break;
4752 
4753 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4754 				break;
4755 		}
4756 
4757 		if (c == '\0') {
4758 			/*
4759 			 * We reached the end of the string without finding
4760 			 * any character that was not in the token string.
4761 			 * We return NULL in this case, and we set the saved
4762 			 * address to NULL as well.
4763 			 */
4764 			regs[rd] = 0;
4765 			mstate->dtms_strtok = 0;
4766 			break;
4767 		}
4768 
4769 		/*
4770 		 * From here on, we're copying into the destination string.
4771 		 */
4772 		for (i = 0; addr < limit && i < size - 1; addr++) {
4773 			if ((c = dtrace_load8(addr)) == '\0')
4774 				break;
4775 
4776 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4777 				break;
4778 
4779 			ASSERT(i < size);
4780 			dest[i++] = c;
4781 		}
4782 
4783 		ASSERT(i < size);
4784 		dest[i] = '\0';
4785 		regs[rd] = (uintptr_t)dest;
4786 		mstate->dtms_scratch_ptr += size;
4787 		mstate->dtms_strtok = addr;
4788 		break;
4789 	}
4790 
4791 	case DIF_SUBR_SUBSTR: {
4792 		uintptr_t s = tupregs[0].dttk_value;
4793 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4794 		char *d = (char *)mstate->dtms_scratch_ptr;
4795 		int64_t index = (int64_t)tupregs[1].dttk_value;
4796 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4797 		size_t len = dtrace_strlen((char *)s, size);
4798 		int64_t i;
4799 
4800 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4801 			regs[rd] = 0;
4802 			break;
4803 		}
4804 
4805 		if (!DTRACE_INSCRATCH(mstate, size)) {
4806 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4807 			regs[rd] = 0;
4808 			break;
4809 		}
4810 
4811 		if (nargs <= 2)
4812 			remaining = (int64_t)size;
4813 
4814 		if (index < 0) {
4815 			index += len;
4816 
4817 			if (index < 0 && index + remaining > 0) {
4818 				remaining += index;
4819 				index = 0;
4820 			}
4821 		}
4822 
4823 		if (index >= len || index < 0) {
4824 			remaining = 0;
4825 		} else if (remaining < 0) {
4826 			remaining += len - index;
4827 		} else if (index + remaining > size) {
4828 			remaining = size - index;
4829 		}
4830 
4831 		for (i = 0; i < remaining; i++) {
4832 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4833 				break;
4834 		}
4835 
4836 		d[i] = '\0';
4837 
4838 		mstate->dtms_scratch_ptr += size;
4839 		regs[rd] = (uintptr_t)d;
4840 		break;
4841 	}
4842 
4843 	case DIF_SUBR_JSON: {
4844 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4845 		uintptr_t json = tupregs[0].dttk_value;
4846 		size_t jsonlen = dtrace_strlen((char *)json, size);
4847 		uintptr_t elem = tupregs[1].dttk_value;
4848 		size_t elemlen = dtrace_strlen((char *)elem, size);
4849 
4850 		char *dest = (char *)mstate->dtms_scratch_ptr;
4851 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4852 		char *ee = elemlist;
4853 		int nelems = 1;
4854 		uintptr_t cur;
4855 
4856 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4857 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4858 			regs[rd] = 0;
4859 			break;
4860 		}
4861 
4862 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4863 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4864 			regs[rd] = 0;
4865 			break;
4866 		}
4867 
4868 		/*
4869 		 * Read the element selector and split it up into a packed list
4870 		 * of strings.
4871 		 */
4872 		for (cur = elem; cur < elem + elemlen; cur++) {
4873 			char cc = dtrace_load8(cur);
4874 
4875 			if (cur == elem && cc == '[') {
4876 				/*
4877 				 * If the first element selector key is
4878 				 * actually an array index then ignore the
4879 				 * bracket.
4880 				 */
4881 				continue;
4882 			}
4883 
4884 			if (cc == ']')
4885 				continue;
4886 
4887 			if (cc == '.' || cc == '[') {
4888 				nelems++;
4889 				cc = '\0';
4890 			}
4891 
4892 			*ee++ = cc;
4893 		}
4894 		*ee++ = '\0';
4895 
4896 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4897 		    nelems, dest)) != 0)
4898 			mstate->dtms_scratch_ptr += jsonlen + 1;
4899 		break;
4900 	}
4901 
4902 	case DIF_SUBR_TOUPPER:
4903 	case DIF_SUBR_TOLOWER: {
4904 		uintptr_t s = tupregs[0].dttk_value;
4905 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4906 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4907 		size_t len = dtrace_strlen((char *)s, size);
4908 		char lower, upper, convert;
4909 		int64_t i;
4910 
4911 		if (subr == DIF_SUBR_TOUPPER) {
4912 			lower = 'a';
4913 			upper = 'z';
4914 			convert = 'A';
4915 		} else {
4916 			lower = 'A';
4917 			upper = 'Z';
4918 			convert = 'a';
4919 		}
4920 
4921 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4922 			regs[rd] = 0;
4923 			break;
4924 		}
4925 
4926 		if (!DTRACE_INSCRATCH(mstate, size)) {
4927 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4928 			regs[rd] = 0;
4929 			break;
4930 		}
4931 
4932 		for (i = 0; i < size - 1; i++) {
4933 			if ((c = dtrace_load8(s + i)) == '\0')
4934 				break;
4935 
4936 			if (c >= lower && c <= upper)
4937 				c = convert + (c - lower);
4938 
4939 			dest[i] = c;
4940 		}
4941 
4942 		ASSERT(i < size);
4943 		dest[i] = '\0';
4944 		regs[rd] = (uintptr_t)dest;
4945 		mstate->dtms_scratch_ptr += size;
4946 		break;
4947 	}
4948 
4949 #ifdef illumos
4950 	case DIF_SUBR_GETMAJOR:
4951 #ifdef _LP64
4952 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4953 #else
4954 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4955 #endif
4956 		break;
4957 
4958 	case DIF_SUBR_GETMINOR:
4959 #ifdef _LP64
4960 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4961 #else
4962 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4963 #endif
4964 		break;
4965 
4966 	case DIF_SUBR_DDI_PATHNAME: {
4967 		/*
4968 		 * This one is a galactic mess.  We are going to roughly
4969 		 * emulate ddi_pathname(), but it's made more complicated
4970 		 * by the fact that we (a) want to include the minor name and
4971 		 * (b) must proceed iteratively instead of recursively.
4972 		 */
4973 		uintptr_t dest = mstate->dtms_scratch_ptr;
4974 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4975 		char *start = (char *)dest, *end = start + size - 1;
4976 		uintptr_t daddr = tupregs[0].dttk_value;
4977 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4978 		char *s;
4979 		int i, len, depth = 0;
4980 
4981 		/*
4982 		 * Due to all the pointer jumping we do and context we must
4983 		 * rely upon, we just mandate that the user must have kernel
4984 		 * read privileges to use this routine.
4985 		 */
4986 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4987 			*flags |= CPU_DTRACE_KPRIV;
4988 			*illval = daddr;
4989 			regs[rd] = 0;
4990 		}
4991 
4992 		if (!DTRACE_INSCRATCH(mstate, size)) {
4993 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4994 			regs[rd] = 0;
4995 			break;
4996 		}
4997 
4998 		*end = '\0';
4999 
5000 		/*
5001 		 * We want to have a name for the minor.  In order to do this,
5002 		 * we need to walk the minor list from the devinfo.  We want
5003 		 * to be sure that we don't infinitely walk a circular list,
5004 		 * so we check for circularity by sending a scout pointer
5005 		 * ahead two elements for every element that we iterate over;
5006 		 * if the list is circular, these will ultimately point to the
5007 		 * same element.  You may recognize this little trick as the
5008 		 * answer to a stupid interview question -- one that always
5009 		 * seems to be asked by those who had to have it laboriously
5010 		 * explained to them, and who can't even concisely describe
5011 		 * the conditions under which one would be forced to resort to
5012 		 * this technique.  Needless to say, those conditions are
5013 		 * found here -- and probably only here.  Is this the only use
5014 		 * of this infamous trick in shipping, production code?  If it
5015 		 * isn't, it probably should be...
5016 		 */
5017 		if (minor != -1) {
5018 			uintptr_t maddr = dtrace_loadptr(daddr +
5019 			    offsetof(struct dev_info, devi_minor));
5020 
5021 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5022 			uintptr_t name = offsetof(struct ddi_minor_data,
5023 			    d_minor) + offsetof(struct ddi_minor, name);
5024 			uintptr_t dev = offsetof(struct ddi_minor_data,
5025 			    d_minor) + offsetof(struct ddi_minor, dev);
5026 			uintptr_t scout;
5027 
5028 			if (maddr != NULL)
5029 				scout = dtrace_loadptr(maddr + next);
5030 
5031 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5032 				uint64_t m;
5033 #ifdef _LP64
5034 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5035 #else
5036 				m = dtrace_load32(maddr + dev) & MAXMIN;
5037 #endif
5038 				if (m != minor) {
5039 					maddr = dtrace_loadptr(maddr + next);
5040 
5041 					if (scout == NULL)
5042 						continue;
5043 
5044 					scout = dtrace_loadptr(scout + next);
5045 
5046 					if (scout == NULL)
5047 						continue;
5048 
5049 					scout = dtrace_loadptr(scout + next);
5050 
5051 					if (scout == NULL)
5052 						continue;
5053 
5054 					if (scout == maddr) {
5055 						*flags |= CPU_DTRACE_ILLOP;
5056 						break;
5057 					}
5058 
5059 					continue;
5060 				}
5061 
5062 				/*
5063 				 * We have the minor data.  Now we need to
5064 				 * copy the minor's name into the end of the
5065 				 * pathname.
5066 				 */
5067 				s = (char *)dtrace_loadptr(maddr + name);
5068 				len = dtrace_strlen(s, size);
5069 
5070 				if (*flags & CPU_DTRACE_FAULT)
5071 					break;
5072 
5073 				if (len != 0) {
5074 					if ((end -= (len + 1)) < start)
5075 						break;
5076 
5077 					*end = ':';
5078 				}
5079 
5080 				for (i = 1; i <= len; i++)
5081 					end[i] = dtrace_load8((uintptr_t)s++);
5082 				break;
5083 			}
5084 		}
5085 
5086 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5087 			ddi_node_state_t devi_state;
5088 
5089 			devi_state = dtrace_load32(daddr +
5090 			    offsetof(struct dev_info, devi_node_state));
5091 
5092 			if (*flags & CPU_DTRACE_FAULT)
5093 				break;
5094 
5095 			if (devi_state >= DS_INITIALIZED) {
5096 				s = (char *)dtrace_loadptr(daddr +
5097 				    offsetof(struct dev_info, devi_addr));
5098 				len = dtrace_strlen(s, size);
5099 
5100 				if (*flags & CPU_DTRACE_FAULT)
5101 					break;
5102 
5103 				if (len != 0) {
5104 					if ((end -= (len + 1)) < start)
5105 						break;
5106 
5107 					*end = '@';
5108 				}
5109 
5110 				for (i = 1; i <= len; i++)
5111 					end[i] = dtrace_load8((uintptr_t)s++);
5112 			}
5113 
5114 			/*
5115 			 * Now for the node name...
5116 			 */
5117 			s = (char *)dtrace_loadptr(daddr +
5118 			    offsetof(struct dev_info, devi_node_name));
5119 
5120 			daddr = dtrace_loadptr(daddr +
5121 			    offsetof(struct dev_info, devi_parent));
5122 
5123 			/*
5124 			 * If our parent is NULL (that is, if we're the root
5125 			 * node), we're going to use the special path
5126 			 * "devices".
5127 			 */
5128 			if (daddr == 0)
5129 				s = "devices";
5130 
5131 			len = dtrace_strlen(s, size);
5132 			if (*flags & CPU_DTRACE_FAULT)
5133 				break;
5134 
5135 			if ((end -= (len + 1)) < start)
5136 				break;
5137 
5138 			for (i = 1; i <= len; i++)
5139 				end[i] = dtrace_load8((uintptr_t)s++);
5140 			*end = '/';
5141 
5142 			if (depth++ > dtrace_devdepth_max) {
5143 				*flags |= CPU_DTRACE_ILLOP;
5144 				break;
5145 			}
5146 		}
5147 
5148 		if (end < start)
5149 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5150 
5151 		if (daddr == 0) {
5152 			regs[rd] = (uintptr_t)end;
5153 			mstate->dtms_scratch_ptr += size;
5154 		}
5155 
5156 		break;
5157 	}
5158 #endif
5159 
5160 	case DIF_SUBR_STRJOIN: {
5161 		char *d = (char *)mstate->dtms_scratch_ptr;
5162 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5163 		uintptr_t s1 = tupregs[0].dttk_value;
5164 		uintptr_t s2 = tupregs[1].dttk_value;
5165 		int i = 0;
5166 
5167 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5168 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5169 			regs[rd] = 0;
5170 			break;
5171 		}
5172 
5173 		if (!DTRACE_INSCRATCH(mstate, size)) {
5174 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5175 			regs[rd] = 0;
5176 			break;
5177 		}
5178 
5179 		for (;;) {
5180 			if (i >= size) {
5181 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5182 				regs[rd] = 0;
5183 				break;
5184 			}
5185 
5186 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5187 				i--;
5188 				break;
5189 			}
5190 		}
5191 
5192 		for (;;) {
5193 			if (i >= size) {
5194 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5195 				regs[rd] = 0;
5196 				break;
5197 			}
5198 
5199 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5200 				break;
5201 		}
5202 
5203 		if (i < size) {
5204 			mstate->dtms_scratch_ptr += i;
5205 			regs[rd] = (uintptr_t)d;
5206 		}
5207 
5208 		break;
5209 	}
5210 
5211 	case DIF_SUBR_STRTOLL: {
5212 		uintptr_t s = tupregs[0].dttk_value;
5213 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5214 		int base = 10;
5215 
5216 		if (nargs > 1) {
5217 			if ((base = tupregs[1].dttk_value) <= 1 ||
5218 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5219 				*flags |= CPU_DTRACE_ILLOP;
5220 				break;
5221 			}
5222 		}
5223 
5224 		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5225 			regs[rd] = INT64_MIN;
5226 			break;
5227 		}
5228 
5229 		regs[rd] = dtrace_strtoll((char *)s, base, size);
5230 		break;
5231 	}
5232 
5233 	case DIF_SUBR_LLTOSTR: {
5234 		int64_t i = (int64_t)tupregs[0].dttk_value;
5235 		uint64_t val, digit;
5236 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5237 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5238 		int base = 10;
5239 
5240 		if (nargs > 1) {
5241 			if ((base = tupregs[1].dttk_value) <= 1 ||
5242 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5243 				*flags |= CPU_DTRACE_ILLOP;
5244 				break;
5245 			}
5246 		}
5247 
5248 		val = (base == 10 && i < 0) ? i * -1 : i;
5249 
5250 		if (!DTRACE_INSCRATCH(mstate, size)) {
5251 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5252 			regs[rd] = 0;
5253 			break;
5254 		}
5255 
5256 		for (*end-- = '\0'; val; val /= base) {
5257 			if ((digit = val % base) <= '9' - '0') {
5258 				*end-- = '0' + digit;
5259 			} else {
5260 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5261 			}
5262 		}
5263 
5264 		if (i == 0 && base == 16)
5265 			*end-- = '0';
5266 
5267 		if (base == 16)
5268 			*end-- = 'x';
5269 
5270 		if (i == 0 || base == 8 || base == 16)
5271 			*end-- = '0';
5272 
5273 		if (i < 0 && base == 10)
5274 			*end-- = '-';
5275 
5276 		regs[rd] = (uintptr_t)end + 1;
5277 		mstate->dtms_scratch_ptr += size;
5278 		break;
5279 	}
5280 
5281 	case DIF_SUBR_HTONS:
5282 	case DIF_SUBR_NTOHS:
5283 #if BYTE_ORDER == BIG_ENDIAN
5284 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5285 #else
5286 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5287 #endif
5288 		break;
5289 
5290 
5291 	case DIF_SUBR_HTONL:
5292 	case DIF_SUBR_NTOHL:
5293 #if BYTE_ORDER == BIG_ENDIAN
5294 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5295 #else
5296 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5297 #endif
5298 		break;
5299 
5300 
5301 	case DIF_SUBR_HTONLL:
5302 	case DIF_SUBR_NTOHLL:
5303 #if BYTE_ORDER == BIG_ENDIAN
5304 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5305 #else
5306 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5307 #endif
5308 		break;
5309 
5310 
5311 	case DIF_SUBR_DIRNAME:
5312 	case DIF_SUBR_BASENAME: {
5313 		char *dest = (char *)mstate->dtms_scratch_ptr;
5314 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5315 		uintptr_t src = tupregs[0].dttk_value;
5316 		int i, j, len = dtrace_strlen((char *)src, size);
5317 		int lastbase = -1, firstbase = -1, lastdir = -1;
5318 		int start, end;
5319 
5320 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5321 			regs[rd] = 0;
5322 			break;
5323 		}
5324 
5325 		if (!DTRACE_INSCRATCH(mstate, size)) {
5326 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5327 			regs[rd] = 0;
5328 			break;
5329 		}
5330 
5331 		/*
5332 		 * The basename and dirname for a zero-length string is
5333 		 * defined to be "."
5334 		 */
5335 		if (len == 0) {
5336 			len = 1;
5337 			src = (uintptr_t)".";
5338 		}
5339 
5340 		/*
5341 		 * Start from the back of the string, moving back toward the
5342 		 * front until we see a character that isn't a slash.  That
5343 		 * character is the last character in the basename.
5344 		 */
5345 		for (i = len - 1; i >= 0; i--) {
5346 			if (dtrace_load8(src + i) != '/')
5347 				break;
5348 		}
5349 
5350 		if (i >= 0)
5351 			lastbase = i;
5352 
5353 		/*
5354 		 * Starting from the last character in the basename, move
5355 		 * towards the front until we find a slash.  The character
5356 		 * that we processed immediately before that is the first
5357 		 * character in the basename.
5358 		 */
5359 		for (; i >= 0; i--) {
5360 			if (dtrace_load8(src + i) == '/')
5361 				break;
5362 		}
5363 
5364 		if (i >= 0)
5365 			firstbase = i + 1;
5366 
5367 		/*
5368 		 * Now keep going until we find a non-slash character.  That
5369 		 * character is the last character in the dirname.
5370 		 */
5371 		for (; i >= 0; i--) {
5372 			if (dtrace_load8(src + i) != '/')
5373 				break;
5374 		}
5375 
5376 		if (i >= 0)
5377 			lastdir = i;
5378 
5379 		ASSERT(!(lastbase == -1 && firstbase != -1));
5380 		ASSERT(!(firstbase == -1 && lastdir != -1));
5381 
5382 		if (lastbase == -1) {
5383 			/*
5384 			 * We didn't find a non-slash character.  We know that
5385 			 * the length is non-zero, so the whole string must be
5386 			 * slashes.  In either the dirname or the basename
5387 			 * case, we return '/'.
5388 			 */
5389 			ASSERT(firstbase == -1);
5390 			firstbase = lastbase = lastdir = 0;
5391 		}
5392 
5393 		if (firstbase == -1) {
5394 			/*
5395 			 * The entire string consists only of a basename
5396 			 * component.  If we're looking for dirname, we need
5397 			 * to change our string to be just "."; if we're
5398 			 * looking for a basename, we'll just set the first
5399 			 * character of the basename to be 0.
5400 			 */
5401 			if (subr == DIF_SUBR_DIRNAME) {
5402 				ASSERT(lastdir == -1);
5403 				src = (uintptr_t)".";
5404 				lastdir = 0;
5405 			} else {
5406 				firstbase = 0;
5407 			}
5408 		}
5409 
5410 		if (subr == DIF_SUBR_DIRNAME) {
5411 			if (lastdir == -1) {
5412 				/*
5413 				 * We know that we have a slash in the name --
5414 				 * or lastdir would be set to 0, above.  And
5415 				 * because lastdir is -1, we know that this
5416 				 * slash must be the first character.  (That
5417 				 * is, the full string must be of the form
5418 				 * "/basename".)  In this case, the last
5419 				 * character of the directory name is 0.
5420 				 */
5421 				lastdir = 0;
5422 			}
5423 
5424 			start = 0;
5425 			end = lastdir;
5426 		} else {
5427 			ASSERT(subr == DIF_SUBR_BASENAME);
5428 			ASSERT(firstbase != -1 && lastbase != -1);
5429 			start = firstbase;
5430 			end = lastbase;
5431 		}
5432 
5433 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5434 			dest[j] = dtrace_load8(src + i);
5435 
5436 		dest[j] = '\0';
5437 		regs[rd] = (uintptr_t)dest;
5438 		mstate->dtms_scratch_ptr += size;
5439 		break;
5440 	}
5441 
5442 	case DIF_SUBR_GETF: {
5443 		uintptr_t fd = tupregs[0].dttk_value;
5444 		struct filedesc *fdp;
5445 		file_t *fp;
5446 
5447 		if (!dtrace_priv_proc(state)) {
5448 			regs[rd] = 0;
5449 			break;
5450 		}
5451 		fdp = curproc->p_fd;
5452 		FILEDESC_SLOCK(fdp);
5453 		fp = fget_locked(fdp, fd);
5454 		mstate->dtms_getf = fp;
5455 		regs[rd] = (uintptr_t)fp;
5456 		FILEDESC_SUNLOCK(fdp);
5457 		break;
5458 	}
5459 
5460 	case DIF_SUBR_CLEANPATH: {
5461 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5462 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5463 		uintptr_t src = tupregs[0].dttk_value;
5464 		int i = 0, j = 0;
5465 #ifdef illumos
5466 		zone_t *z;
5467 #endif
5468 
5469 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5470 			regs[rd] = 0;
5471 			break;
5472 		}
5473 
5474 		if (!DTRACE_INSCRATCH(mstate, size)) {
5475 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5476 			regs[rd] = 0;
5477 			break;
5478 		}
5479 
5480 		/*
5481 		 * Move forward, loading each character.
5482 		 */
5483 		do {
5484 			c = dtrace_load8(src + i++);
5485 next:
5486 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5487 				break;
5488 
5489 			if (c != '/') {
5490 				dest[j++] = c;
5491 				continue;
5492 			}
5493 
5494 			c = dtrace_load8(src + i++);
5495 
5496 			if (c == '/') {
5497 				/*
5498 				 * We have two slashes -- we can just advance
5499 				 * to the next character.
5500 				 */
5501 				goto next;
5502 			}
5503 
5504 			if (c != '.') {
5505 				/*
5506 				 * This is not "." and it's not ".." -- we can
5507 				 * just store the "/" and this character and
5508 				 * drive on.
5509 				 */
5510 				dest[j++] = '/';
5511 				dest[j++] = c;
5512 				continue;
5513 			}
5514 
5515 			c = dtrace_load8(src + i++);
5516 
5517 			if (c == '/') {
5518 				/*
5519 				 * This is a "/./" component.  We're not going
5520 				 * to store anything in the destination buffer;
5521 				 * we're just going to go to the next component.
5522 				 */
5523 				goto next;
5524 			}
5525 
5526 			if (c != '.') {
5527 				/*
5528 				 * This is not ".." -- we can just store the
5529 				 * "/." and this character and continue
5530 				 * processing.
5531 				 */
5532 				dest[j++] = '/';
5533 				dest[j++] = '.';
5534 				dest[j++] = c;
5535 				continue;
5536 			}
5537 
5538 			c = dtrace_load8(src + i++);
5539 
5540 			if (c != '/' && c != '\0') {
5541 				/*
5542 				 * This is not ".." -- it's "..[mumble]".
5543 				 * We'll store the "/.." and this character
5544 				 * and continue processing.
5545 				 */
5546 				dest[j++] = '/';
5547 				dest[j++] = '.';
5548 				dest[j++] = '.';
5549 				dest[j++] = c;
5550 				continue;
5551 			}
5552 
5553 			/*
5554 			 * This is "/../" or "/..\0".  We need to back up
5555 			 * our destination pointer until we find a "/".
5556 			 */
5557 			i--;
5558 			while (j != 0 && dest[--j] != '/')
5559 				continue;
5560 
5561 			if (c == '\0')
5562 				dest[++j] = '/';
5563 		} while (c != '\0');
5564 
5565 		dest[j] = '\0';
5566 
5567 #ifdef illumos
5568 		if (mstate->dtms_getf != NULL &&
5569 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5570 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5571 			/*
5572 			 * If we've done a getf() as a part of this ECB and we
5573 			 * don't have kernel access (and we're not in the global
5574 			 * zone), check if the path we cleaned up begins with
5575 			 * the zone's root path, and trim it off if so.  Note
5576 			 * that this is an output cleanliness issue, not a
5577 			 * security issue: knowing one's zone root path does
5578 			 * not enable privilege escalation.
5579 			 */
5580 			if (strstr(dest, z->zone_rootpath) == dest)
5581 				dest += strlen(z->zone_rootpath) - 1;
5582 		}
5583 #endif
5584 
5585 		regs[rd] = (uintptr_t)dest;
5586 		mstate->dtms_scratch_ptr += size;
5587 		break;
5588 	}
5589 
5590 	case DIF_SUBR_INET_NTOA:
5591 	case DIF_SUBR_INET_NTOA6:
5592 	case DIF_SUBR_INET_NTOP: {
5593 		size_t size;
5594 		int af, argi, i;
5595 		char *base, *end;
5596 
5597 		if (subr == DIF_SUBR_INET_NTOP) {
5598 			af = (int)tupregs[0].dttk_value;
5599 			argi = 1;
5600 		} else {
5601 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5602 			argi = 0;
5603 		}
5604 
5605 		if (af == AF_INET) {
5606 			ipaddr_t ip4;
5607 			uint8_t *ptr8, val;
5608 
5609 			/*
5610 			 * Safely load the IPv4 address.
5611 			 */
5612 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5613 
5614 			/*
5615 			 * Check an IPv4 string will fit in scratch.
5616 			 */
5617 			size = INET_ADDRSTRLEN;
5618 			if (!DTRACE_INSCRATCH(mstate, size)) {
5619 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5620 				regs[rd] = 0;
5621 				break;
5622 			}
5623 			base = (char *)mstate->dtms_scratch_ptr;
5624 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5625 
5626 			/*
5627 			 * Stringify as a dotted decimal quad.
5628 			 */
5629 			*end-- = '\0';
5630 			ptr8 = (uint8_t *)&ip4;
5631 			for (i = 3; i >= 0; i--) {
5632 				val = ptr8[i];
5633 
5634 				if (val == 0) {
5635 					*end-- = '0';
5636 				} else {
5637 					for (; val; val /= 10) {
5638 						*end-- = '0' + (val % 10);
5639 					}
5640 				}
5641 
5642 				if (i > 0)
5643 					*end-- = '.';
5644 			}
5645 			ASSERT(end + 1 >= base);
5646 
5647 		} else if (af == AF_INET6) {
5648 			struct in6_addr ip6;
5649 			int firstzero, tryzero, numzero, v6end;
5650 			uint16_t val;
5651 			const char digits[] = "0123456789abcdef";
5652 
5653 			/*
5654 			 * Stringify using RFC 1884 convention 2 - 16 bit
5655 			 * hexadecimal values with a zero-run compression.
5656 			 * Lower case hexadecimal digits are used.
5657 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5658 			 * The IPv4 embedded form is returned for inet_ntop,
5659 			 * just the IPv4 string is returned for inet_ntoa6.
5660 			 */
5661 
5662 			/*
5663 			 * Safely load the IPv6 address.
5664 			 */
5665 			dtrace_bcopy(
5666 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5667 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5668 
5669 			/*
5670 			 * Check an IPv6 string will fit in scratch.
5671 			 */
5672 			size = INET6_ADDRSTRLEN;
5673 			if (!DTRACE_INSCRATCH(mstate, size)) {
5674 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5675 				regs[rd] = 0;
5676 				break;
5677 			}
5678 			base = (char *)mstate->dtms_scratch_ptr;
5679 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5680 			*end-- = '\0';
5681 
5682 			/*
5683 			 * Find the longest run of 16 bit zero values
5684 			 * for the single allowed zero compression - "::".
5685 			 */
5686 			firstzero = -1;
5687 			tryzero = -1;
5688 			numzero = 1;
5689 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5690 #ifdef illumos
5691 				if (ip6._S6_un._S6_u8[i] == 0 &&
5692 #else
5693 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5694 #endif
5695 				    tryzero == -1 && i % 2 == 0) {
5696 					tryzero = i;
5697 					continue;
5698 				}
5699 
5700 				if (tryzero != -1 &&
5701 #ifdef illumos
5702 				    (ip6._S6_un._S6_u8[i] != 0 ||
5703 #else
5704 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5705 #endif
5706 				    i == sizeof (struct in6_addr) - 1)) {
5707 
5708 					if (i - tryzero <= numzero) {
5709 						tryzero = -1;
5710 						continue;
5711 					}
5712 
5713 					firstzero = tryzero;
5714 					numzero = i - i % 2 - tryzero;
5715 					tryzero = -1;
5716 
5717 #ifdef illumos
5718 					if (ip6._S6_un._S6_u8[i] == 0 &&
5719 #else
5720 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5721 #endif
5722 					    i == sizeof (struct in6_addr) - 1)
5723 						numzero += 2;
5724 				}
5725 			}
5726 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5727 
5728 			/*
5729 			 * Check for an IPv4 embedded address.
5730 			 */
5731 			v6end = sizeof (struct in6_addr) - 2;
5732 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5733 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5734 				for (i = sizeof (struct in6_addr) - 1;
5735 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5736 					ASSERT(end >= base);
5737 
5738 #ifdef illumos
5739 					val = ip6._S6_un._S6_u8[i];
5740 #else
5741 					val = ip6.__u6_addr.__u6_addr8[i];
5742 #endif
5743 
5744 					if (val == 0) {
5745 						*end-- = '0';
5746 					} else {
5747 						for (; val; val /= 10) {
5748 							*end-- = '0' + val % 10;
5749 						}
5750 					}
5751 
5752 					if (i > DTRACE_V4MAPPED_OFFSET)
5753 						*end-- = '.';
5754 				}
5755 
5756 				if (subr == DIF_SUBR_INET_NTOA6)
5757 					goto inetout;
5758 
5759 				/*
5760 				 * Set v6end to skip the IPv4 address that
5761 				 * we have already stringified.
5762 				 */
5763 				v6end = 10;
5764 			}
5765 
5766 			/*
5767 			 * Build the IPv6 string by working through the
5768 			 * address in reverse.
5769 			 */
5770 			for (i = v6end; i >= 0; i -= 2) {
5771 				ASSERT(end >= base);
5772 
5773 				if (i == firstzero + numzero - 2) {
5774 					*end-- = ':';
5775 					*end-- = ':';
5776 					i -= numzero - 2;
5777 					continue;
5778 				}
5779 
5780 				if (i < 14 && i != firstzero - 2)
5781 					*end-- = ':';
5782 
5783 #ifdef illumos
5784 				val = (ip6._S6_un._S6_u8[i] << 8) +
5785 				    ip6._S6_un._S6_u8[i + 1];
5786 #else
5787 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5788 				    ip6.__u6_addr.__u6_addr8[i + 1];
5789 #endif
5790 
5791 				if (val == 0) {
5792 					*end-- = '0';
5793 				} else {
5794 					for (; val; val /= 16) {
5795 						*end-- = digits[val % 16];
5796 					}
5797 				}
5798 			}
5799 			ASSERT(end + 1 >= base);
5800 
5801 		} else {
5802 			/*
5803 			 * The user didn't use AH_INET or AH_INET6.
5804 			 */
5805 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5806 			regs[rd] = 0;
5807 			break;
5808 		}
5809 
5810 inetout:	regs[rd] = (uintptr_t)end + 1;
5811 		mstate->dtms_scratch_ptr += size;
5812 		break;
5813 	}
5814 
5815 	case DIF_SUBR_MEMREF: {
5816 		uintptr_t size = 2 * sizeof(uintptr_t);
5817 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5818 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5819 
5820 		/* address and length */
5821 		memref[0] = tupregs[0].dttk_value;
5822 		memref[1] = tupregs[1].dttk_value;
5823 
5824 		regs[rd] = (uintptr_t) memref;
5825 		mstate->dtms_scratch_ptr += scratch_size;
5826 		break;
5827 	}
5828 
5829 #ifndef illumos
5830 	case DIF_SUBR_MEMSTR: {
5831 		char *str = (char *)mstate->dtms_scratch_ptr;
5832 		uintptr_t mem = tupregs[0].dttk_value;
5833 		char c = tupregs[1].dttk_value;
5834 		size_t size = tupregs[2].dttk_value;
5835 		uint8_t n;
5836 		int i;
5837 
5838 		regs[rd] = 0;
5839 
5840 		if (size == 0)
5841 			break;
5842 
5843 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5844 			break;
5845 
5846 		if (!DTRACE_INSCRATCH(mstate, size)) {
5847 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5848 			break;
5849 		}
5850 
5851 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5852 			*flags |= CPU_DTRACE_ILLOP;
5853 			break;
5854 		}
5855 
5856 		for (i = 0; i < size - 1; i++) {
5857 			n = dtrace_load8(mem++);
5858 			str[i] = (n == 0) ? c : n;
5859 		}
5860 		str[size - 1] = 0;
5861 
5862 		regs[rd] = (uintptr_t)str;
5863 		mstate->dtms_scratch_ptr += size;
5864 		break;
5865 	}
5866 #endif
5867 
5868 	case DIF_SUBR_TYPEREF: {
5869 		uintptr_t size = 4 * sizeof(uintptr_t);
5870 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5871 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5872 
5873 		/* address, num_elements, type_str, type_len */
5874 		typeref[0] = tupregs[0].dttk_value;
5875 		typeref[1] = tupregs[1].dttk_value;
5876 		typeref[2] = tupregs[2].dttk_value;
5877 		typeref[3] = tupregs[3].dttk_value;
5878 
5879 		regs[rd] = (uintptr_t) typeref;
5880 		mstate->dtms_scratch_ptr += scratch_size;
5881 		break;
5882 	}
5883 	}
5884 }
5885 
5886 /*
5887  * Emulate the execution of DTrace IR instructions specified by the given
5888  * DIF object.  This function is deliberately void of assertions as all of
5889  * the necessary checks are handled by a call to dtrace_difo_validate().
5890  */
5891 static uint64_t
5892 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5893     dtrace_vstate_t *vstate, dtrace_state_t *state)
5894 {
5895 	const dif_instr_t *text = difo->dtdo_buf;
5896 	const uint_t textlen = difo->dtdo_len;
5897 	const char *strtab = difo->dtdo_strtab;
5898 	const uint64_t *inttab = difo->dtdo_inttab;
5899 
5900 	uint64_t rval = 0;
5901 	dtrace_statvar_t *svar;
5902 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5903 	dtrace_difv_t *v;
5904 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5905 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5906 
5907 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5908 	uint64_t regs[DIF_DIR_NREGS];
5909 	uint64_t *tmp;
5910 
5911 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5912 	int64_t cc_r;
5913 	uint_t pc = 0, id, opc = 0;
5914 	uint8_t ttop = 0;
5915 	dif_instr_t instr;
5916 	uint_t r1, r2, rd;
5917 
5918 	/*
5919 	 * We stash the current DIF object into the machine state: we need it
5920 	 * for subsequent access checking.
5921 	 */
5922 	mstate->dtms_difo = difo;
5923 
5924 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5925 
5926 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5927 		opc = pc;
5928 
5929 		instr = text[pc++];
5930 		r1 = DIF_INSTR_R1(instr);
5931 		r2 = DIF_INSTR_R2(instr);
5932 		rd = DIF_INSTR_RD(instr);
5933 
5934 		switch (DIF_INSTR_OP(instr)) {
5935 		case DIF_OP_OR:
5936 			regs[rd] = regs[r1] | regs[r2];
5937 			break;
5938 		case DIF_OP_XOR:
5939 			regs[rd] = regs[r1] ^ regs[r2];
5940 			break;
5941 		case DIF_OP_AND:
5942 			regs[rd] = regs[r1] & regs[r2];
5943 			break;
5944 		case DIF_OP_SLL:
5945 			regs[rd] = regs[r1] << regs[r2];
5946 			break;
5947 		case DIF_OP_SRL:
5948 			regs[rd] = regs[r1] >> regs[r2];
5949 			break;
5950 		case DIF_OP_SUB:
5951 			regs[rd] = regs[r1] - regs[r2];
5952 			break;
5953 		case DIF_OP_ADD:
5954 			regs[rd] = regs[r1] + regs[r2];
5955 			break;
5956 		case DIF_OP_MUL:
5957 			regs[rd] = regs[r1] * regs[r2];
5958 			break;
5959 		case DIF_OP_SDIV:
5960 			if (regs[r2] == 0) {
5961 				regs[rd] = 0;
5962 				*flags |= CPU_DTRACE_DIVZERO;
5963 			} else {
5964 				regs[rd] = (int64_t)regs[r1] /
5965 				    (int64_t)regs[r2];
5966 			}
5967 			break;
5968 
5969 		case DIF_OP_UDIV:
5970 			if (regs[r2] == 0) {
5971 				regs[rd] = 0;
5972 				*flags |= CPU_DTRACE_DIVZERO;
5973 			} else {
5974 				regs[rd] = regs[r1] / regs[r2];
5975 			}
5976 			break;
5977 
5978 		case DIF_OP_SREM:
5979 			if (regs[r2] == 0) {
5980 				regs[rd] = 0;
5981 				*flags |= CPU_DTRACE_DIVZERO;
5982 			} else {
5983 				regs[rd] = (int64_t)regs[r1] %
5984 				    (int64_t)regs[r2];
5985 			}
5986 			break;
5987 
5988 		case DIF_OP_UREM:
5989 			if (regs[r2] == 0) {
5990 				regs[rd] = 0;
5991 				*flags |= CPU_DTRACE_DIVZERO;
5992 			} else {
5993 				regs[rd] = regs[r1] % regs[r2];
5994 			}
5995 			break;
5996 
5997 		case DIF_OP_NOT:
5998 			regs[rd] = ~regs[r1];
5999 			break;
6000 		case DIF_OP_MOV:
6001 			regs[rd] = regs[r1];
6002 			break;
6003 		case DIF_OP_CMP:
6004 			cc_r = regs[r1] - regs[r2];
6005 			cc_n = cc_r < 0;
6006 			cc_z = cc_r == 0;
6007 			cc_v = 0;
6008 			cc_c = regs[r1] < regs[r2];
6009 			break;
6010 		case DIF_OP_TST:
6011 			cc_n = cc_v = cc_c = 0;
6012 			cc_z = regs[r1] == 0;
6013 			break;
6014 		case DIF_OP_BA:
6015 			pc = DIF_INSTR_LABEL(instr);
6016 			break;
6017 		case DIF_OP_BE:
6018 			if (cc_z)
6019 				pc = DIF_INSTR_LABEL(instr);
6020 			break;
6021 		case DIF_OP_BNE:
6022 			if (cc_z == 0)
6023 				pc = DIF_INSTR_LABEL(instr);
6024 			break;
6025 		case DIF_OP_BG:
6026 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6027 				pc = DIF_INSTR_LABEL(instr);
6028 			break;
6029 		case DIF_OP_BGU:
6030 			if ((cc_c | cc_z) == 0)
6031 				pc = DIF_INSTR_LABEL(instr);
6032 			break;
6033 		case DIF_OP_BGE:
6034 			if ((cc_n ^ cc_v) == 0)
6035 				pc = DIF_INSTR_LABEL(instr);
6036 			break;
6037 		case DIF_OP_BGEU:
6038 			if (cc_c == 0)
6039 				pc = DIF_INSTR_LABEL(instr);
6040 			break;
6041 		case DIF_OP_BL:
6042 			if (cc_n ^ cc_v)
6043 				pc = DIF_INSTR_LABEL(instr);
6044 			break;
6045 		case DIF_OP_BLU:
6046 			if (cc_c)
6047 				pc = DIF_INSTR_LABEL(instr);
6048 			break;
6049 		case DIF_OP_BLE:
6050 			if (cc_z | (cc_n ^ cc_v))
6051 				pc = DIF_INSTR_LABEL(instr);
6052 			break;
6053 		case DIF_OP_BLEU:
6054 			if (cc_c | cc_z)
6055 				pc = DIF_INSTR_LABEL(instr);
6056 			break;
6057 		case DIF_OP_RLDSB:
6058 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6059 				break;
6060 			/*FALLTHROUGH*/
6061 		case DIF_OP_LDSB:
6062 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6063 			break;
6064 		case DIF_OP_RLDSH:
6065 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6066 				break;
6067 			/*FALLTHROUGH*/
6068 		case DIF_OP_LDSH:
6069 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6070 			break;
6071 		case DIF_OP_RLDSW:
6072 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6073 				break;
6074 			/*FALLTHROUGH*/
6075 		case DIF_OP_LDSW:
6076 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6077 			break;
6078 		case DIF_OP_RLDUB:
6079 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6080 				break;
6081 			/*FALLTHROUGH*/
6082 		case DIF_OP_LDUB:
6083 			regs[rd] = dtrace_load8(regs[r1]);
6084 			break;
6085 		case DIF_OP_RLDUH:
6086 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6087 				break;
6088 			/*FALLTHROUGH*/
6089 		case DIF_OP_LDUH:
6090 			regs[rd] = dtrace_load16(regs[r1]);
6091 			break;
6092 		case DIF_OP_RLDUW:
6093 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6094 				break;
6095 			/*FALLTHROUGH*/
6096 		case DIF_OP_LDUW:
6097 			regs[rd] = dtrace_load32(regs[r1]);
6098 			break;
6099 		case DIF_OP_RLDX:
6100 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6101 				break;
6102 			/*FALLTHROUGH*/
6103 		case DIF_OP_LDX:
6104 			regs[rd] = dtrace_load64(regs[r1]);
6105 			break;
6106 		case DIF_OP_ULDSB:
6107 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6108 			regs[rd] = (int8_t)
6109 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6110 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6111 			break;
6112 		case DIF_OP_ULDSH:
6113 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6114 			regs[rd] = (int16_t)
6115 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6116 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6117 			break;
6118 		case DIF_OP_ULDSW:
6119 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6120 			regs[rd] = (int32_t)
6121 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6122 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6123 			break;
6124 		case DIF_OP_ULDUB:
6125 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6126 			regs[rd] =
6127 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6128 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6129 			break;
6130 		case DIF_OP_ULDUH:
6131 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6132 			regs[rd] =
6133 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6134 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6135 			break;
6136 		case DIF_OP_ULDUW:
6137 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6138 			regs[rd] =
6139 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6140 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6141 			break;
6142 		case DIF_OP_ULDX:
6143 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6144 			regs[rd] =
6145 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6146 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6147 			break;
6148 		case DIF_OP_RET:
6149 			rval = regs[rd];
6150 			pc = textlen;
6151 			break;
6152 		case DIF_OP_NOP:
6153 			break;
6154 		case DIF_OP_SETX:
6155 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6156 			break;
6157 		case DIF_OP_SETS:
6158 			regs[rd] = (uint64_t)(uintptr_t)
6159 			    (strtab + DIF_INSTR_STRING(instr));
6160 			break;
6161 		case DIF_OP_SCMP: {
6162 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6163 			uintptr_t s1 = regs[r1];
6164 			uintptr_t s2 = regs[r2];
6165 
6166 			if (s1 != 0 &&
6167 			    !dtrace_strcanload(s1, sz, mstate, vstate))
6168 				break;
6169 			if (s2 != 0 &&
6170 			    !dtrace_strcanload(s2, sz, mstate, vstate))
6171 				break;
6172 
6173 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6174 
6175 			cc_n = cc_r < 0;
6176 			cc_z = cc_r == 0;
6177 			cc_v = cc_c = 0;
6178 			break;
6179 		}
6180 		case DIF_OP_LDGA:
6181 			regs[rd] = dtrace_dif_variable(mstate, state,
6182 			    r1, regs[r2]);
6183 			break;
6184 		case DIF_OP_LDGS:
6185 			id = DIF_INSTR_VAR(instr);
6186 
6187 			if (id >= DIF_VAR_OTHER_UBASE) {
6188 				uintptr_t a;
6189 
6190 				id -= DIF_VAR_OTHER_UBASE;
6191 				svar = vstate->dtvs_globals[id];
6192 				ASSERT(svar != NULL);
6193 				v = &svar->dtsv_var;
6194 
6195 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6196 					regs[rd] = svar->dtsv_data;
6197 					break;
6198 				}
6199 
6200 				a = (uintptr_t)svar->dtsv_data;
6201 
6202 				if (*(uint8_t *)a == UINT8_MAX) {
6203 					/*
6204 					 * If the 0th byte is set to UINT8_MAX
6205 					 * then this is to be treated as a
6206 					 * reference to a NULL variable.
6207 					 */
6208 					regs[rd] = 0;
6209 				} else {
6210 					regs[rd] = a + sizeof (uint64_t);
6211 				}
6212 
6213 				break;
6214 			}
6215 
6216 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6217 			break;
6218 
6219 		case DIF_OP_STGS:
6220 			id = DIF_INSTR_VAR(instr);
6221 
6222 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6223 			id -= DIF_VAR_OTHER_UBASE;
6224 
6225 			svar = vstate->dtvs_globals[id];
6226 			ASSERT(svar != NULL);
6227 			v = &svar->dtsv_var;
6228 
6229 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6230 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6231 
6232 				ASSERT(a != 0);
6233 				ASSERT(svar->dtsv_size != 0);
6234 
6235 				if (regs[rd] == 0) {
6236 					*(uint8_t *)a = UINT8_MAX;
6237 					break;
6238 				} else {
6239 					*(uint8_t *)a = 0;
6240 					a += sizeof (uint64_t);
6241 				}
6242 				if (!dtrace_vcanload(
6243 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6244 				    mstate, vstate))
6245 					break;
6246 
6247 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6248 				    (void *)a, &v->dtdv_type);
6249 				break;
6250 			}
6251 
6252 			svar->dtsv_data = regs[rd];
6253 			break;
6254 
6255 		case DIF_OP_LDTA:
6256 			/*
6257 			 * There are no DTrace built-in thread-local arrays at
6258 			 * present.  This opcode is saved for future work.
6259 			 */
6260 			*flags |= CPU_DTRACE_ILLOP;
6261 			regs[rd] = 0;
6262 			break;
6263 
6264 		case DIF_OP_LDLS:
6265 			id = DIF_INSTR_VAR(instr);
6266 
6267 			if (id < DIF_VAR_OTHER_UBASE) {
6268 				/*
6269 				 * For now, this has no meaning.
6270 				 */
6271 				regs[rd] = 0;
6272 				break;
6273 			}
6274 
6275 			id -= DIF_VAR_OTHER_UBASE;
6276 
6277 			ASSERT(id < vstate->dtvs_nlocals);
6278 			ASSERT(vstate->dtvs_locals != NULL);
6279 
6280 			svar = vstate->dtvs_locals[id];
6281 			ASSERT(svar != NULL);
6282 			v = &svar->dtsv_var;
6283 
6284 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6285 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6286 				size_t sz = v->dtdv_type.dtdt_size;
6287 
6288 				sz += sizeof (uint64_t);
6289 				ASSERT(svar->dtsv_size == NCPU * sz);
6290 				a += curcpu * sz;
6291 
6292 				if (*(uint8_t *)a == UINT8_MAX) {
6293 					/*
6294 					 * If the 0th byte is set to UINT8_MAX
6295 					 * then this is to be treated as a
6296 					 * reference to a NULL variable.
6297 					 */
6298 					regs[rd] = 0;
6299 				} else {
6300 					regs[rd] = a + sizeof (uint64_t);
6301 				}
6302 
6303 				break;
6304 			}
6305 
6306 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6307 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6308 			regs[rd] = tmp[curcpu];
6309 			break;
6310 
6311 		case DIF_OP_STLS:
6312 			id = DIF_INSTR_VAR(instr);
6313 
6314 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6315 			id -= DIF_VAR_OTHER_UBASE;
6316 			ASSERT(id < vstate->dtvs_nlocals);
6317 
6318 			ASSERT(vstate->dtvs_locals != NULL);
6319 			svar = vstate->dtvs_locals[id];
6320 			ASSERT(svar != NULL);
6321 			v = &svar->dtsv_var;
6322 
6323 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6324 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6325 				size_t sz = v->dtdv_type.dtdt_size;
6326 
6327 				sz += sizeof (uint64_t);
6328 				ASSERT(svar->dtsv_size == NCPU * sz);
6329 				a += curcpu * sz;
6330 
6331 				if (regs[rd] == 0) {
6332 					*(uint8_t *)a = UINT8_MAX;
6333 					break;
6334 				} else {
6335 					*(uint8_t *)a = 0;
6336 					a += sizeof (uint64_t);
6337 				}
6338 
6339 				if (!dtrace_vcanload(
6340 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6341 				    mstate, vstate))
6342 					break;
6343 
6344 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6345 				    (void *)a, &v->dtdv_type);
6346 				break;
6347 			}
6348 
6349 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6350 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6351 			tmp[curcpu] = regs[rd];
6352 			break;
6353 
6354 		case DIF_OP_LDTS: {
6355 			dtrace_dynvar_t *dvar;
6356 			dtrace_key_t *key;
6357 
6358 			id = DIF_INSTR_VAR(instr);
6359 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6360 			id -= DIF_VAR_OTHER_UBASE;
6361 			v = &vstate->dtvs_tlocals[id];
6362 
6363 			key = &tupregs[DIF_DTR_NREGS];
6364 			key[0].dttk_value = (uint64_t)id;
6365 			key[0].dttk_size = 0;
6366 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6367 			key[1].dttk_size = 0;
6368 
6369 			dvar = dtrace_dynvar(dstate, 2, key,
6370 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6371 			    mstate, vstate);
6372 
6373 			if (dvar == NULL) {
6374 				regs[rd] = 0;
6375 				break;
6376 			}
6377 
6378 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6379 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6380 			} else {
6381 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6382 			}
6383 
6384 			break;
6385 		}
6386 
6387 		case DIF_OP_STTS: {
6388 			dtrace_dynvar_t *dvar;
6389 			dtrace_key_t *key;
6390 
6391 			id = DIF_INSTR_VAR(instr);
6392 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6393 			id -= DIF_VAR_OTHER_UBASE;
6394 
6395 			key = &tupregs[DIF_DTR_NREGS];
6396 			key[0].dttk_value = (uint64_t)id;
6397 			key[0].dttk_size = 0;
6398 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6399 			key[1].dttk_size = 0;
6400 			v = &vstate->dtvs_tlocals[id];
6401 
6402 			dvar = dtrace_dynvar(dstate, 2, key,
6403 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6404 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6405 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6406 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6407 
6408 			/*
6409 			 * Given that we're storing to thread-local data,
6410 			 * we need to flush our predicate cache.
6411 			 */
6412 			curthread->t_predcache = 0;
6413 
6414 			if (dvar == NULL)
6415 				break;
6416 
6417 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6418 				if (!dtrace_vcanload(
6419 				    (void *)(uintptr_t)regs[rd],
6420 				    &v->dtdv_type, mstate, vstate))
6421 					break;
6422 
6423 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6424 				    dvar->dtdv_data, &v->dtdv_type);
6425 			} else {
6426 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6427 			}
6428 
6429 			break;
6430 		}
6431 
6432 		case DIF_OP_SRA:
6433 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6434 			break;
6435 
6436 		case DIF_OP_CALL:
6437 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6438 			    regs, tupregs, ttop, mstate, state);
6439 			break;
6440 
6441 		case DIF_OP_PUSHTR:
6442 			if (ttop == DIF_DTR_NREGS) {
6443 				*flags |= CPU_DTRACE_TUPOFLOW;
6444 				break;
6445 			}
6446 
6447 			if (r1 == DIF_TYPE_STRING) {
6448 				/*
6449 				 * If this is a string type and the size is 0,
6450 				 * we'll use the system-wide default string
6451 				 * size.  Note that we are _not_ looking at
6452 				 * the value of the DTRACEOPT_STRSIZE option;
6453 				 * had this been set, we would expect to have
6454 				 * a non-zero size value in the "pushtr".
6455 				 */
6456 				tupregs[ttop].dttk_size =
6457 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6458 				    regs[r2] ? regs[r2] :
6459 				    dtrace_strsize_default) + 1;
6460 			} else {
6461 				tupregs[ttop].dttk_size = regs[r2];
6462 			}
6463 
6464 			tupregs[ttop++].dttk_value = regs[rd];
6465 			break;
6466 
6467 		case DIF_OP_PUSHTV:
6468 			if (ttop == DIF_DTR_NREGS) {
6469 				*flags |= CPU_DTRACE_TUPOFLOW;
6470 				break;
6471 			}
6472 
6473 			tupregs[ttop].dttk_value = regs[rd];
6474 			tupregs[ttop++].dttk_size = 0;
6475 			break;
6476 
6477 		case DIF_OP_POPTS:
6478 			if (ttop != 0)
6479 				ttop--;
6480 			break;
6481 
6482 		case DIF_OP_FLUSHTS:
6483 			ttop = 0;
6484 			break;
6485 
6486 		case DIF_OP_LDGAA:
6487 		case DIF_OP_LDTAA: {
6488 			dtrace_dynvar_t *dvar;
6489 			dtrace_key_t *key = tupregs;
6490 			uint_t nkeys = ttop;
6491 
6492 			id = DIF_INSTR_VAR(instr);
6493 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6494 			id -= DIF_VAR_OTHER_UBASE;
6495 
6496 			key[nkeys].dttk_value = (uint64_t)id;
6497 			key[nkeys++].dttk_size = 0;
6498 
6499 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6500 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6501 				key[nkeys++].dttk_size = 0;
6502 				v = &vstate->dtvs_tlocals[id];
6503 			} else {
6504 				v = &vstate->dtvs_globals[id]->dtsv_var;
6505 			}
6506 
6507 			dvar = dtrace_dynvar(dstate, nkeys, key,
6508 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6509 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6510 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6511 
6512 			if (dvar == NULL) {
6513 				regs[rd] = 0;
6514 				break;
6515 			}
6516 
6517 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6518 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6519 			} else {
6520 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6521 			}
6522 
6523 			break;
6524 		}
6525 
6526 		case DIF_OP_STGAA:
6527 		case DIF_OP_STTAA: {
6528 			dtrace_dynvar_t *dvar;
6529 			dtrace_key_t *key = tupregs;
6530 			uint_t nkeys = ttop;
6531 
6532 			id = DIF_INSTR_VAR(instr);
6533 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6534 			id -= DIF_VAR_OTHER_UBASE;
6535 
6536 			key[nkeys].dttk_value = (uint64_t)id;
6537 			key[nkeys++].dttk_size = 0;
6538 
6539 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6540 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6541 				key[nkeys++].dttk_size = 0;
6542 				v = &vstate->dtvs_tlocals[id];
6543 			} else {
6544 				v = &vstate->dtvs_globals[id]->dtsv_var;
6545 			}
6546 
6547 			dvar = dtrace_dynvar(dstate, nkeys, key,
6548 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6549 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6550 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6551 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6552 
6553 			if (dvar == NULL)
6554 				break;
6555 
6556 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6557 				if (!dtrace_vcanload(
6558 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6559 				    mstate, vstate))
6560 					break;
6561 
6562 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6563 				    dvar->dtdv_data, &v->dtdv_type);
6564 			} else {
6565 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6566 			}
6567 
6568 			break;
6569 		}
6570 
6571 		case DIF_OP_ALLOCS: {
6572 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6573 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6574 
6575 			/*
6576 			 * Rounding up the user allocation size could have
6577 			 * overflowed large, bogus allocations (like -1ULL) to
6578 			 * 0.
6579 			 */
6580 			if (size < regs[r1] ||
6581 			    !DTRACE_INSCRATCH(mstate, size)) {
6582 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6583 				regs[rd] = 0;
6584 				break;
6585 			}
6586 
6587 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6588 			mstate->dtms_scratch_ptr += size;
6589 			regs[rd] = ptr;
6590 			break;
6591 		}
6592 
6593 		case DIF_OP_COPYS:
6594 			if (!dtrace_canstore(regs[rd], regs[r2],
6595 			    mstate, vstate)) {
6596 				*flags |= CPU_DTRACE_BADADDR;
6597 				*illval = regs[rd];
6598 				break;
6599 			}
6600 
6601 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6602 				break;
6603 
6604 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6605 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6606 			break;
6607 
6608 		case DIF_OP_STB:
6609 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6610 				*flags |= CPU_DTRACE_BADADDR;
6611 				*illval = regs[rd];
6612 				break;
6613 			}
6614 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6615 			break;
6616 
6617 		case DIF_OP_STH:
6618 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6619 				*flags |= CPU_DTRACE_BADADDR;
6620 				*illval = regs[rd];
6621 				break;
6622 			}
6623 			if (regs[rd] & 1) {
6624 				*flags |= CPU_DTRACE_BADALIGN;
6625 				*illval = regs[rd];
6626 				break;
6627 			}
6628 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6629 			break;
6630 
6631 		case DIF_OP_STW:
6632 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6633 				*flags |= CPU_DTRACE_BADADDR;
6634 				*illval = regs[rd];
6635 				break;
6636 			}
6637 			if (regs[rd] & 3) {
6638 				*flags |= CPU_DTRACE_BADALIGN;
6639 				*illval = regs[rd];
6640 				break;
6641 			}
6642 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6643 			break;
6644 
6645 		case DIF_OP_STX:
6646 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6647 				*flags |= CPU_DTRACE_BADADDR;
6648 				*illval = regs[rd];
6649 				break;
6650 			}
6651 			if (regs[rd] & 7) {
6652 				*flags |= CPU_DTRACE_BADALIGN;
6653 				*illval = regs[rd];
6654 				break;
6655 			}
6656 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6657 			break;
6658 		}
6659 	}
6660 
6661 	if (!(*flags & CPU_DTRACE_FAULT))
6662 		return (rval);
6663 
6664 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6665 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6666 
6667 	return (0);
6668 }
6669 
6670 static void
6671 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6672 {
6673 	dtrace_probe_t *probe = ecb->dte_probe;
6674 	dtrace_provider_t *prov = probe->dtpr_provider;
6675 	char c[DTRACE_FULLNAMELEN + 80], *str;
6676 	char *msg = "dtrace: breakpoint action at probe ";
6677 	char *ecbmsg = " (ecb ";
6678 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6679 	uintptr_t val = (uintptr_t)ecb;
6680 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6681 
6682 	if (dtrace_destructive_disallow)
6683 		return;
6684 
6685 	/*
6686 	 * It's impossible to be taking action on the NULL probe.
6687 	 */
6688 	ASSERT(probe != NULL);
6689 
6690 	/*
6691 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6692 	 * print the provider name, module name, function name and name of
6693 	 * the probe, along with the hex address of the ECB with the breakpoint
6694 	 * action -- all of which we must place in the character buffer by
6695 	 * hand.
6696 	 */
6697 	while (*msg != '\0')
6698 		c[i++] = *msg++;
6699 
6700 	for (str = prov->dtpv_name; *str != '\0'; str++)
6701 		c[i++] = *str;
6702 	c[i++] = ':';
6703 
6704 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6705 		c[i++] = *str;
6706 	c[i++] = ':';
6707 
6708 	for (str = probe->dtpr_func; *str != '\0'; str++)
6709 		c[i++] = *str;
6710 	c[i++] = ':';
6711 
6712 	for (str = probe->dtpr_name; *str != '\0'; str++)
6713 		c[i++] = *str;
6714 
6715 	while (*ecbmsg != '\0')
6716 		c[i++] = *ecbmsg++;
6717 
6718 	while (shift >= 0) {
6719 		mask = (uintptr_t)0xf << shift;
6720 
6721 		if (val >= ((uintptr_t)1 << shift))
6722 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6723 		shift -= 4;
6724 	}
6725 
6726 	c[i++] = ')';
6727 	c[i] = '\0';
6728 
6729 #ifdef illumos
6730 	debug_enter(c);
6731 #else
6732 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6733 #endif
6734 }
6735 
6736 static void
6737 dtrace_action_panic(dtrace_ecb_t *ecb)
6738 {
6739 	dtrace_probe_t *probe = ecb->dte_probe;
6740 
6741 	/*
6742 	 * It's impossible to be taking action on the NULL probe.
6743 	 */
6744 	ASSERT(probe != NULL);
6745 
6746 	if (dtrace_destructive_disallow)
6747 		return;
6748 
6749 	if (dtrace_panicked != NULL)
6750 		return;
6751 
6752 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6753 		return;
6754 
6755 	/*
6756 	 * We won the right to panic.  (We want to be sure that only one
6757 	 * thread calls panic() from dtrace_probe(), and that panic() is
6758 	 * called exactly once.)
6759 	 */
6760 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6761 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6762 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6763 }
6764 
6765 static void
6766 dtrace_action_raise(uint64_t sig)
6767 {
6768 	if (dtrace_destructive_disallow)
6769 		return;
6770 
6771 	if (sig >= NSIG) {
6772 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6773 		return;
6774 	}
6775 
6776 #ifdef illumos
6777 	/*
6778 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6779 	 * invocations of the raise() action.
6780 	 */
6781 	if (curthread->t_dtrace_sig == 0)
6782 		curthread->t_dtrace_sig = (uint8_t)sig;
6783 
6784 	curthread->t_sig_check = 1;
6785 	aston(curthread);
6786 #else
6787 	struct proc *p = curproc;
6788 	PROC_LOCK(p);
6789 	kern_psignal(p, sig);
6790 	PROC_UNLOCK(p);
6791 #endif
6792 }
6793 
6794 static void
6795 dtrace_action_stop(void)
6796 {
6797 	if (dtrace_destructive_disallow)
6798 		return;
6799 
6800 #ifdef illumos
6801 	if (!curthread->t_dtrace_stop) {
6802 		curthread->t_dtrace_stop = 1;
6803 		curthread->t_sig_check = 1;
6804 		aston(curthread);
6805 	}
6806 #else
6807 	struct proc *p = curproc;
6808 	PROC_LOCK(p);
6809 	kern_psignal(p, SIGSTOP);
6810 	PROC_UNLOCK(p);
6811 #endif
6812 }
6813 
6814 static void
6815 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6816 {
6817 	hrtime_t now;
6818 	volatile uint16_t *flags;
6819 #ifdef illumos
6820 	cpu_t *cpu = CPU;
6821 #else
6822 	cpu_t *cpu = &solaris_cpu[curcpu];
6823 #endif
6824 
6825 	if (dtrace_destructive_disallow)
6826 		return;
6827 
6828 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6829 
6830 	now = dtrace_gethrtime();
6831 
6832 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6833 		/*
6834 		 * We need to advance the mark to the current time.
6835 		 */
6836 		cpu->cpu_dtrace_chillmark = now;
6837 		cpu->cpu_dtrace_chilled = 0;
6838 	}
6839 
6840 	/*
6841 	 * Now check to see if the requested chill time would take us over
6842 	 * the maximum amount of time allowed in the chill interval.  (Or
6843 	 * worse, if the calculation itself induces overflow.)
6844 	 */
6845 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6846 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6847 		*flags |= CPU_DTRACE_ILLOP;
6848 		return;
6849 	}
6850 
6851 	while (dtrace_gethrtime() - now < val)
6852 		continue;
6853 
6854 	/*
6855 	 * Normally, we assure that the value of the variable "timestamp" does
6856 	 * not change within an ECB.  The presence of chill() represents an
6857 	 * exception to this rule, however.
6858 	 */
6859 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6860 	cpu->cpu_dtrace_chilled += val;
6861 }
6862 
6863 static void
6864 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6865     uint64_t *buf, uint64_t arg)
6866 {
6867 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6868 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6869 	uint64_t *pcs = &buf[1], *fps;
6870 	char *str = (char *)&pcs[nframes];
6871 	int size, offs = 0, i, j;
6872 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6873 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6874 	char *sym;
6875 
6876 	/*
6877 	 * Should be taking a faster path if string space has not been
6878 	 * allocated.
6879 	 */
6880 	ASSERT(strsize != 0);
6881 
6882 	/*
6883 	 * We will first allocate some temporary space for the frame pointers.
6884 	 */
6885 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6886 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6887 	    (nframes * sizeof (uint64_t));
6888 
6889 	if (!DTRACE_INSCRATCH(mstate, size)) {
6890 		/*
6891 		 * Not enough room for our frame pointers -- need to indicate
6892 		 * that we ran out of scratch space.
6893 		 */
6894 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6895 		return;
6896 	}
6897 
6898 	mstate->dtms_scratch_ptr += size;
6899 	saved = mstate->dtms_scratch_ptr;
6900 
6901 	/*
6902 	 * Now get a stack with both program counters and frame pointers.
6903 	 */
6904 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6905 	dtrace_getufpstack(buf, fps, nframes + 1);
6906 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6907 
6908 	/*
6909 	 * If that faulted, we're cooked.
6910 	 */
6911 	if (*flags & CPU_DTRACE_FAULT)
6912 		goto out;
6913 
6914 	/*
6915 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6916 	 * each iteration, we restore the scratch pointer.
6917 	 */
6918 	for (i = 0; i < nframes; i++) {
6919 		mstate->dtms_scratch_ptr = saved;
6920 
6921 		if (offs >= strsize)
6922 			break;
6923 
6924 		sym = (char *)(uintptr_t)dtrace_helper(
6925 		    DTRACE_HELPER_ACTION_USTACK,
6926 		    mstate, state, pcs[i], fps[i]);
6927 
6928 		/*
6929 		 * If we faulted while running the helper, we're going to
6930 		 * clear the fault and null out the corresponding string.
6931 		 */
6932 		if (*flags & CPU_DTRACE_FAULT) {
6933 			*flags &= ~CPU_DTRACE_FAULT;
6934 			str[offs++] = '\0';
6935 			continue;
6936 		}
6937 
6938 		if (sym == NULL) {
6939 			str[offs++] = '\0';
6940 			continue;
6941 		}
6942 
6943 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6944 
6945 		/*
6946 		 * Now copy in the string that the helper returned to us.
6947 		 */
6948 		for (j = 0; offs + j < strsize; j++) {
6949 			if ((str[offs + j] = sym[j]) == '\0')
6950 				break;
6951 		}
6952 
6953 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6954 
6955 		offs += j + 1;
6956 	}
6957 
6958 	if (offs >= strsize) {
6959 		/*
6960 		 * If we didn't have room for all of the strings, we don't
6961 		 * abort processing -- this needn't be a fatal error -- but we
6962 		 * still want to increment a counter (dts_stkstroverflows) to
6963 		 * allow this condition to be warned about.  (If this is from
6964 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6965 		 */
6966 		dtrace_error(&state->dts_stkstroverflows);
6967 	}
6968 
6969 	while (offs < strsize)
6970 		str[offs++] = '\0';
6971 
6972 out:
6973 	mstate->dtms_scratch_ptr = old;
6974 }
6975 
6976 static void
6977 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6978     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6979 {
6980 	volatile uint16_t *flags;
6981 	uint64_t val = *valp;
6982 	size_t valoffs = *valoffsp;
6983 
6984 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6985 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6986 
6987 	/*
6988 	 * If this is a string, we're going to only load until we find the zero
6989 	 * byte -- after which we'll store zero bytes.
6990 	 */
6991 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6992 		char c = '\0' + 1;
6993 		size_t s;
6994 
6995 		for (s = 0; s < size; s++) {
6996 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6997 				c = dtrace_load8(val++);
6998 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6999 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7000 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7001 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7002 				if (*flags & CPU_DTRACE_FAULT)
7003 					break;
7004 			}
7005 
7006 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7007 
7008 			if (c == '\0' && intuple)
7009 				break;
7010 		}
7011 	} else {
7012 		uint8_t c;
7013 		while (valoffs < end) {
7014 			if (dtkind == DIF_TF_BYREF) {
7015 				c = dtrace_load8(val++);
7016 			} else if (dtkind == DIF_TF_BYUREF) {
7017 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7018 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7019 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7020 				if (*flags & CPU_DTRACE_FAULT)
7021 					break;
7022 			}
7023 
7024 			DTRACE_STORE(uint8_t, tomax,
7025 			    valoffs++, c);
7026 		}
7027 	}
7028 
7029 	*valp = val;
7030 	*valoffsp = valoffs;
7031 }
7032 
7033 /*
7034  * If you're looking for the epicenter of DTrace, you just found it.  This
7035  * is the function called by the provider to fire a probe -- from which all
7036  * subsequent probe-context DTrace activity emanates.
7037  */
7038 void
7039 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7040     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7041 {
7042 	processorid_t cpuid;
7043 	dtrace_icookie_t cookie;
7044 	dtrace_probe_t *probe;
7045 	dtrace_mstate_t mstate;
7046 	dtrace_ecb_t *ecb;
7047 	dtrace_action_t *act;
7048 	intptr_t offs;
7049 	size_t size;
7050 	int vtime, onintr;
7051 	volatile uint16_t *flags;
7052 	hrtime_t now;
7053 
7054 	if (panicstr != NULL)
7055 		return;
7056 
7057 #ifdef illumos
7058 	/*
7059 	 * Kick out immediately if this CPU is still being born (in which case
7060 	 * curthread will be set to -1) or the current thread can't allow
7061 	 * probes in its current context.
7062 	 */
7063 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7064 		return;
7065 #endif
7066 
7067 	cookie = dtrace_interrupt_disable();
7068 	probe = dtrace_probes[id - 1];
7069 	cpuid = curcpu;
7070 	onintr = CPU_ON_INTR(CPU);
7071 
7072 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7073 	    probe->dtpr_predcache == curthread->t_predcache) {
7074 		/*
7075 		 * We have hit in the predicate cache; we know that
7076 		 * this predicate would evaluate to be false.
7077 		 */
7078 		dtrace_interrupt_enable(cookie);
7079 		return;
7080 	}
7081 
7082 #ifdef illumos
7083 	if (panic_quiesce) {
7084 #else
7085 	if (panicstr != NULL) {
7086 #endif
7087 		/*
7088 		 * We don't trace anything if we're panicking.
7089 		 */
7090 		dtrace_interrupt_enable(cookie);
7091 		return;
7092 	}
7093 
7094 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7095 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7096 	vtime = dtrace_vtime_references != 0;
7097 
7098 	if (vtime && curthread->t_dtrace_start)
7099 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7100 
7101 	mstate.dtms_difo = NULL;
7102 	mstate.dtms_probe = probe;
7103 	mstate.dtms_strtok = 0;
7104 	mstate.dtms_arg[0] = arg0;
7105 	mstate.dtms_arg[1] = arg1;
7106 	mstate.dtms_arg[2] = arg2;
7107 	mstate.dtms_arg[3] = arg3;
7108 	mstate.dtms_arg[4] = arg4;
7109 
7110 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7111 
7112 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7113 		dtrace_predicate_t *pred = ecb->dte_predicate;
7114 		dtrace_state_t *state = ecb->dte_state;
7115 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7116 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7117 		dtrace_vstate_t *vstate = &state->dts_vstate;
7118 		dtrace_provider_t *prov = probe->dtpr_provider;
7119 		uint64_t tracememsize = 0;
7120 		int committed = 0;
7121 		caddr_t tomax;
7122 
7123 		/*
7124 		 * A little subtlety with the following (seemingly innocuous)
7125 		 * declaration of the automatic 'val':  by looking at the
7126 		 * code, you might think that it could be declared in the
7127 		 * action processing loop, below.  (That is, it's only used in
7128 		 * the action processing loop.)  However, it must be declared
7129 		 * out of that scope because in the case of DIF expression
7130 		 * arguments to aggregating actions, one iteration of the
7131 		 * action loop will use the last iteration's value.
7132 		 */
7133 		uint64_t val = 0;
7134 
7135 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7136 		mstate.dtms_getf = NULL;
7137 
7138 		*flags &= ~CPU_DTRACE_ERROR;
7139 
7140 		if (prov == dtrace_provider) {
7141 			/*
7142 			 * If dtrace itself is the provider of this probe,
7143 			 * we're only going to continue processing the ECB if
7144 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7145 			 * creating state.  (This prevents disjoint consumers
7146 			 * from seeing one another's metaprobes.)
7147 			 */
7148 			if (arg0 != (uint64_t)(uintptr_t)state)
7149 				continue;
7150 		}
7151 
7152 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7153 			/*
7154 			 * We're not currently active.  If our provider isn't
7155 			 * the dtrace pseudo provider, we're not interested.
7156 			 */
7157 			if (prov != dtrace_provider)
7158 				continue;
7159 
7160 			/*
7161 			 * Now we must further check if we are in the BEGIN
7162 			 * probe.  If we are, we will only continue processing
7163 			 * if we're still in WARMUP -- if one BEGIN enabling
7164 			 * has invoked the exit() action, we don't want to
7165 			 * evaluate subsequent BEGIN enablings.
7166 			 */
7167 			if (probe->dtpr_id == dtrace_probeid_begin &&
7168 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7169 				ASSERT(state->dts_activity ==
7170 				    DTRACE_ACTIVITY_DRAINING);
7171 				continue;
7172 			}
7173 		}
7174 
7175 		if (ecb->dte_cond) {
7176 			/*
7177 			 * If the dte_cond bits indicate that this
7178 			 * consumer is only allowed to see user-mode firings
7179 			 * of this probe, call the provider's dtps_usermode()
7180 			 * entry point to check that the probe was fired
7181 			 * while in a user context. Skip this ECB if that's
7182 			 * not the case.
7183 			 */
7184 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7185 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7186 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7187 				continue;
7188 
7189 #ifdef illumos
7190 			/*
7191 			 * This is more subtle than it looks. We have to be
7192 			 * absolutely certain that CRED() isn't going to
7193 			 * change out from under us so it's only legit to
7194 			 * examine that structure if we're in constrained
7195 			 * situations. Currently, the only times we'll this
7196 			 * check is if a non-super-user has enabled the
7197 			 * profile or syscall providers -- providers that
7198 			 * allow visibility of all processes. For the
7199 			 * profile case, the check above will ensure that
7200 			 * we're examining a user context.
7201 			 */
7202 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7203 				cred_t *cr;
7204 				cred_t *s_cr =
7205 				    ecb->dte_state->dts_cred.dcr_cred;
7206 				proc_t *proc;
7207 
7208 				ASSERT(s_cr != NULL);
7209 
7210 				if ((cr = CRED()) == NULL ||
7211 				    s_cr->cr_uid != cr->cr_uid ||
7212 				    s_cr->cr_uid != cr->cr_ruid ||
7213 				    s_cr->cr_uid != cr->cr_suid ||
7214 				    s_cr->cr_gid != cr->cr_gid ||
7215 				    s_cr->cr_gid != cr->cr_rgid ||
7216 				    s_cr->cr_gid != cr->cr_sgid ||
7217 				    (proc = ttoproc(curthread)) == NULL ||
7218 				    (proc->p_flag & SNOCD))
7219 					continue;
7220 			}
7221 
7222 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7223 				cred_t *cr;
7224 				cred_t *s_cr =
7225 				    ecb->dte_state->dts_cred.dcr_cred;
7226 
7227 				ASSERT(s_cr != NULL);
7228 
7229 				if ((cr = CRED()) == NULL ||
7230 				    s_cr->cr_zone->zone_id !=
7231 				    cr->cr_zone->zone_id)
7232 					continue;
7233 			}
7234 #endif
7235 		}
7236 
7237 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7238 			/*
7239 			 * We seem to be dead.  Unless we (a) have kernel
7240 			 * destructive permissions (b) have explicitly enabled
7241 			 * destructive actions and (c) destructive actions have
7242 			 * not been disabled, we're going to transition into
7243 			 * the KILLED state, from which no further processing
7244 			 * on this state will be performed.
7245 			 */
7246 			if (!dtrace_priv_kernel_destructive(state) ||
7247 			    !state->dts_cred.dcr_destructive ||
7248 			    dtrace_destructive_disallow) {
7249 				void *activity = &state->dts_activity;
7250 				dtrace_activity_t current;
7251 
7252 				do {
7253 					current = state->dts_activity;
7254 				} while (dtrace_cas32(activity, current,
7255 				    DTRACE_ACTIVITY_KILLED) != current);
7256 
7257 				continue;
7258 			}
7259 		}
7260 
7261 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7262 		    ecb->dte_alignment, state, &mstate)) < 0)
7263 			continue;
7264 
7265 		tomax = buf->dtb_tomax;
7266 		ASSERT(tomax != NULL);
7267 
7268 		if (ecb->dte_size != 0) {
7269 			dtrace_rechdr_t dtrh;
7270 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7271 				mstate.dtms_timestamp = dtrace_gethrtime();
7272 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7273 			}
7274 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7275 			dtrh.dtrh_epid = ecb->dte_epid;
7276 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7277 			    mstate.dtms_timestamp);
7278 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7279 		}
7280 
7281 		mstate.dtms_epid = ecb->dte_epid;
7282 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7283 
7284 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7285 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7286 		else
7287 			mstate.dtms_access = 0;
7288 
7289 		if (pred != NULL) {
7290 			dtrace_difo_t *dp = pred->dtp_difo;
7291 			int rval;
7292 
7293 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7294 
7295 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7296 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7297 
7298 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7299 					/*
7300 					 * Update the predicate cache...
7301 					 */
7302 					ASSERT(cid == pred->dtp_cacheid);
7303 					curthread->t_predcache = cid;
7304 				}
7305 
7306 				continue;
7307 			}
7308 		}
7309 
7310 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7311 		    act != NULL; act = act->dta_next) {
7312 			size_t valoffs;
7313 			dtrace_difo_t *dp;
7314 			dtrace_recdesc_t *rec = &act->dta_rec;
7315 
7316 			size = rec->dtrd_size;
7317 			valoffs = offs + rec->dtrd_offset;
7318 
7319 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7320 				uint64_t v = 0xbad;
7321 				dtrace_aggregation_t *agg;
7322 
7323 				agg = (dtrace_aggregation_t *)act;
7324 
7325 				if ((dp = act->dta_difo) != NULL)
7326 					v = dtrace_dif_emulate(dp,
7327 					    &mstate, vstate, state);
7328 
7329 				if (*flags & CPU_DTRACE_ERROR)
7330 					continue;
7331 
7332 				/*
7333 				 * Note that we always pass the expression
7334 				 * value from the previous iteration of the
7335 				 * action loop.  This value will only be used
7336 				 * if there is an expression argument to the
7337 				 * aggregating action, denoted by the
7338 				 * dtag_hasarg field.
7339 				 */
7340 				dtrace_aggregate(agg, buf,
7341 				    offs, aggbuf, v, val);
7342 				continue;
7343 			}
7344 
7345 			switch (act->dta_kind) {
7346 			case DTRACEACT_STOP:
7347 				if (dtrace_priv_proc_destructive(state))
7348 					dtrace_action_stop();
7349 				continue;
7350 
7351 			case DTRACEACT_BREAKPOINT:
7352 				if (dtrace_priv_kernel_destructive(state))
7353 					dtrace_action_breakpoint(ecb);
7354 				continue;
7355 
7356 			case DTRACEACT_PANIC:
7357 				if (dtrace_priv_kernel_destructive(state))
7358 					dtrace_action_panic(ecb);
7359 				continue;
7360 
7361 			case DTRACEACT_STACK:
7362 				if (!dtrace_priv_kernel(state))
7363 					continue;
7364 
7365 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7366 				    size / sizeof (pc_t), probe->dtpr_aframes,
7367 				    DTRACE_ANCHORED(probe) ? NULL :
7368 				    (uint32_t *)arg0);
7369 				continue;
7370 
7371 			case DTRACEACT_JSTACK:
7372 			case DTRACEACT_USTACK:
7373 				if (!dtrace_priv_proc(state))
7374 					continue;
7375 
7376 				/*
7377 				 * See comment in DIF_VAR_PID.
7378 				 */
7379 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7380 				    CPU_ON_INTR(CPU)) {
7381 					int depth = DTRACE_USTACK_NFRAMES(
7382 					    rec->dtrd_arg) + 1;
7383 
7384 					dtrace_bzero((void *)(tomax + valoffs),
7385 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7386 					    + depth * sizeof (uint64_t));
7387 
7388 					continue;
7389 				}
7390 
7391 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7392 				    curproc->p_dtrace_helpers != NULL) {
7393 					/*
7394 					 * This is the slow path -- we have
7395 					 * allocated string space, and we're
7396 					 * getting the stack of a process that
7397 					 * has helpers.  Call into a separate
7398 					 * routine to perform this processing.
7399 					 */
7400 					dtrace_action_ustack(&mstate, state,
7401 					    (uint64_t *)(tomax + valoffs),
7402 					    rec->dtrd_arg);
7403 					continue;
7404 				}
7405 
7406 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7407 				dtrace_getupcstack((uint64_t *)
7408 				    (tomax + valoffs),
7409 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7410 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7411 				continue;
7412 
7413 			default:
7414 				break;
7415 			}
7416 
7417 			dp = act->dta_difo;
7418 			ASSERT(dp != NULL);
7419 
7420 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7421 
7422 			if (*flags & CPU_DTRACE_ERROR)
7423 				continue;
7424 
7425 			switch (act->dta_kind) {
7426 			case DTRACEACT_SPECULATE: {
7427 				dtrace_rechdr_t *dtrh;
7428 
7429 				ASSERT(buf == &state->dts_buffer[cpuid]);
7430 				buf = dtrace_speculation_buffer(state,
7431 				    cpuid, val);
7432 
7433 				if (buf == NULL) {
7434 					*flags |= CPU_DTRACE_DROP;
7435 					continue;
7436 				}
7437 
7438 				offs = dtrace_buffer_reserve(buf,
7439 				    ecb->dte_needed, ecb->dte_alignment,
7440 				    state, NULL);
7441 
7442 				if (offs < 0) {
7443 					*flags |= CPU_DTRACE_DROP;
7444 					continue;
7445 				}
7446 
7447 				tomax = buf->dtb_tomax;
7448 				ASSERT(tomax != NULL);
7449 
7450 				if (ecb->dte_size == 0)
7451 					continue;
7452 
7453 				ASSERT3U(ecb->dte_size, >=,
7454 				    sizeof (dtrace_rechdr_t));
7455 				dtrh = ((void *)(tomax + offs));
7456 				dtrh->dtrh_epid = ecb->dte_epid;
7457 				/*
7458 				 * When the speculation is committed, all of
7459 				 * the records in the speculative buffer will
7460 				 * have their timestamps set to the commit
7461 				 * time.  Until then, it is set to a sentinel
7462 				 * value, for debugability.
7463 				 */
7464 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7465 				continue;
7466 			}
7467 
7468 			case DTRACEACT_PRINTM: {
7469 				/* The DIF returns a 'memref'. */
7470 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7471 
7472 				/* Get the size from the memref. */
7473 				size = memref[1];
7474 
7475 				/*
7476 				 * Check if the size exceeds the allocated
7477 				 * buffer size.
7478 				 */
7479 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7480 					/* Flag a drop! */
7481 					*flags |= CPU_DTRACE_DROP;
7482 					continue;
7483 				}
7484 
7485 				/* Store the size in the buffer first. */
7486 				DTRACE_STORE(uintptr_t, tomax,
7487 				    valoffs, size);
7488 
7489 				/*
7490 				 * Offset the buffer address to the start
7491 				 * of the data.
7492 				 */
7493 				valoffs += sizeof(uintptr_t);
7494 
7495 				/*
7496 				 * Reset to the memory address rather than
7497 				 * the memref array, then let the BYREF
7498 				 * code below do the work to store the
7499 				 * memory data in the buffer.
7500 				 */
7501 				val = memref[0];
7502 				break;
7503 			}
7504 
7505 			case DTRACEACT_PRINTT: {
7506 				/* The DIF returns a 'typeref'. */
7507 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7508 				char c = '\0' + 1;
7509 				size_t s;
7510 
7511 				/*
7512 				 * Get the type string length and round it
7513 				 * up so that the data that follows is
7514 				 * aligned for easy access.
7515 				 */
7516 				size_t typs = strlen((char *) typeref[2]) + 1;
7517 				typs = roundup(typs,  sizeof(uintptr_t));
7518 
7519 				/*
7520 				 *Get the size from the typeref using the
7521 				 * number of elements and the type size.
7522 				 */
7523 				size = typeref[1] * typeref[3];
7524 
7525 				/*
7526 				 * Check if the size exceeds the allocated
7527 				 * buffer size.
7528 				 */
7529 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7530 					/* Flag a drop! */
7531 					*flags |= CPU_DTRACE_DROP;
7532 
7533 				}
7534 
7535 				/* Store the size in the buffer first. */
7536 				DTRACE_STORE(uintptr_t, tomax,
7537 				    valoffs, size);
7538 				valoffs += sizeof(uintptr_t);
7539 
7540 				/* Store the type size in the buffer. */
7541 				DTRACE_STORE(uintptr_t, tomax,
7542 				    valoffs, typeref[3]);
7543 				valoffs += sizeof(uintptr_t);
7544 
7545 				val = typeref[2];
7546 
7547 				for (s = 0; s < typs; s++) {
7548 					if (c != '\0')
7549 						c = dtrace_load8(val++);
7550 
7551 					DTRACE_STORE(uint8_t, tomax,
7552 					    valoffs++, c);
7553 				}
7554 
7555 				/*
7556 				 * Reset to the memory address rather than
7557 				 * the typeref array, then let the BYREF
7558 				 * code below do the work to store the
7559 				 * memory data in the buffer.
7560 				 */
7561 				val = typeref[0];
7562 				break;
7563 			}
7564 
7565 			case DTRACEACT_CHILL:
7566 				if (dtrace_priv_kernel_destructive(state))
7567 					dtrace_action_chill(&mstate, val);
7568 				continue;
7569 
7570 			case DTRACEACT_RAISE:
7571 				if (dtrace_priv_proc_destructive(state))
7572 					dtrace_action_raise(val);
7573 				continue;
7574 
7575 			case DTRACEACT_COMMIT:
7576 				ASSERT(!committed);
7577 
7578 				/*
7579 				 * We need to commit our buffer state.
7580 				 */
7581 				if (ecb->dte_size)
7582 					buf->dtb_offset = offs + ecb->dte_size;
7583 				buf = &state->dts_buffer[cpuid];
7584 				dtrace_speculation_commit(state, cpuid, val);
7585 				committed = 1;
7586 				continue;
7587 
7588 			case DTRACEACT_DISCARD:
7589 				dtrace_speculation_discard(state, cpuid, val);
7590 				continue;
7591 
7592 			case DTRACEACT_DIFEXPR:
7593 			case DTRACEACT_LIBACT:
7594 			case DTRACEACT_PRINTF:
7595 			case DTRACEACT_PRINTA:
7596 			case DTRACEACT_SYSTEM:
7597 			case DTRACEACT_FREOPEN:
7598 			case DTRACEACT_TRACEMEM:
7599 				break;
7600 
7601 			case DTRACEACT_TRACEMEM_DYNSIZE:
7602 				tracememsize = val;
7603 				break;
7604 
7605 			case DTRACEACT_SYM:
7606 			case DTRACEACT_MOD:
7607 				if (!dtrace_priv_kernel(state))
7608 					continue;
7609 				break;
7610 
7611 			case DTRACEACT_USYM:
7612 			case DTRACEACT_UMOD:
7613 			case DTRACEACT_UADDR: {
7614 #ifdef illumos
7615 				struct pid *pid = curthread->t_procp->p_pidp;
7616 #endif
7617 
7618 				if (!dtrace_priv_proc(state))
7619 					continue;
7620 
7621 				DTRACE_STORE(uint64_t, tomax,
7622 #ifdef illumos
7623 				    valoffs, (uint64_t)pid->pid_id);
7624 #else
7625 				    valoffs, (uint64_t) curproc->p_pid);
7626 #endif
7627 				DTRACE_STORE(uint64_t, tomax,
7628 				    valoffs + sizeof (uint64_t), val);
7629 
7630 				continue;
7631 			}
7632 
7633 			case DTRACEACT_EXIT: {
7634 				/*
7635 				 * For the exit action, we are going to attempt
7636 				 * to atomically set our activity to be
7637 				 * draining.  If this fails (either because
7638 				 * another CPU has beat us to the exit action,
7639 				 * or because our current activity is something
7640 				 * other than ACTIVE or WARMUP), we will
7641 				 * continue.  This assures that the exit action
7642 				 * can be successfully recorded at most once
7643 				 * when we're in the ACTIVE state.  If we're
7644 				 * encountering the exit() action while in
7645 				 * COOLDOWN, however, we want to honor the new
7646 				 * status code.  (We know that we're the only
7647 				 * thread in COOLDOWN, so there is no race.)
7648 				 */
7649 				void *activity = &state->dts_activity;
7650 				dtrace_activity_t current = state->dts_activity;
7651 
7652 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7653 					break;
7654 
7655 				if (current != DTRACE_ACTIVITY_WARMUP)
7656 					current = DTRACE_ACTIVITY_ACTIVE;
7657 
7658 				if (dtrace_cas32(activity, current,
7659 				    DTRACE_ACTIVITY_DRAINING) != current) {
7660 					*flags |= CPU_DTRACE_DROP;
7661 					continue;
7662 				}
7663 
7664 				break;
7665 			}
7666 
7667 			default:
7668 				ASSERT(0);
7669 			}
7670 
7671 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7672 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7673 				uintptr_t end = valoffs + size;
7674 
7675 				if (tracememsize != 0 &&
7676 				    valoffs + tracememsize < end) {
7677 					end = valoffs + tracememsize;
7678 					tracememsize = 0;
7679 				}
7680 
7681 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7682 				    !dtrace_vcanload((void *)(uintptr_t)val,
7683 				    &dp->dtdo_rtype, &mstate, vstate))
7684 					continue;
7685 
7686 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7687 				    &val, end, act->dta_intuple,
7688 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7689 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7690 				continue;
7691 			}
7692 
7693 			switch (size) {
7694 			case 0:
7695 				break;
7696 
7697 			case sizeof (uint8_t):
7698 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7699 				break;
7700 			case sizeof (uint16_t):
7701 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7702 				break;
7703 			case sizeof (uint32_t):
7704 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7705 				break;
7706 			case sizeof (uint64_t):
7707 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7708 				break;
7709 			default:
7710 				/*
7711 				 * Any other size should have been returned by
7712 				 * reference, not by value.
7713 				 */
7714 				ASSERT(0);
7715 				break;
7716 			}
7717 		}
7718 
7719 		if (*flags & CPU_DTRACE_DROP)
7720 			continue;
7721 
7722 		if (*flags & CPU_DTRACE_FAULT) {
7723 			int ndx;
7724 			dtrace_action_t *err;
7725 
7726 			buf->dtb_errors++;
7727 
7728 			if (probe->dtpr_id == dtrace_probeid_error) {
7729 				/*
7730 				 * There's nothing we can do -- we had an
7731 				 * error on the error probe.  We bump an
7732 				 * error counter to at least indicate that
7733 				 * this condition happened.
7734 				 */
7735 				dtrace_error(&state->dts_dblerrors);
7736 				continue;
7737 			}
7738 
7739 			if (vtime) {
7740 				/*
7741 				 * Before recursing on dtrace_probe(), we
7742 				 * need to explicitly clear out our start
7743 				 * time to prevent it from being accumulated
7744 				 * into t_dtrace_vtime.
7745 				 */
7746 				curthread->t_dtrace_start = 0;
7747 			}
7748 
7749 			/*
7750 			 * Iterate over the actions to figure out which action
7751 			 * we were processing when we experienced the error.
7752 			 * Note that act points _past_ the faulting action; if
7753 			 * act is ecb->dte_action, the fault was in the
7754 			 * predicate, if it's ecb->dte_action->dta_next it's
7755 			 * in action #1, and so on.
7756 			 */
7757 			for (err = ecb->dte_action, ndx = 0;
7758 			    err != act; err = err->dta_next, ndx++)
7759 				continue;
7760 
7761 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7762 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7763 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7764 			    cpu_core[cpuid].cpuc_dtrace_illval);
7765 
7766 			continue;
7767 		}
7768 
7769 		if (!committed)
7770 			buf->dtb_offset = offs + ecb->dte_size;
7771 	}
7772 
7773 	if (vtime)
7774 		curthread->t_dtrace_start = dtrace_gethrtime();
7775 
7776 	dtrace_interrupt_enable(cookie);
7777 }
7778 
7779 /*
7780  * DTrace Probe Hashing Functions
7781  *
7782  * The functions in this section (and indeed, the functions in remaining
7783  * sections) are not _called_ from probe context.  (Any exceptions to this are
7784  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7785  * DTrace framework to look-up probes in, add probes to and remove probes from
7786  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7787  * probe tuple -- allowing for fast lookups, regardless of what was
7788  * specified.)
7789  */
7790 static uint_t
7791 dtrace_hash_str(const char *p)
7792 {
7793 	unsigned int g;
7794 	uint_t hval = 0;
7795 
7796 	while (*p) {
7797 		hval = (hval << 4) + *p++;
7798 		if ((g = (hval & 0xf0000000)) != 0)
7799 			hval ^= g >> 24;
7800 		hval &= ~g;
7801 	}
7802 	return (hval);
7803 }
7804 
7805 static dtrace_hash_t *
7806 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7807 {
7808 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7809 
7810 	hash->dth_stroffs = stroffs;
7811 	hash->dth_nextoffs = nextoffs;
7812 	hash->dth_prevoffs = prevoffs;
7813 
7814 	hash->dth_size = 1;
7815 	hash->dth_mask = hash->dth_size - 1;
7816 
7817 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7818 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7819 
7820 	return (hash);
7821 }
7822 
7823 static void
7824 dtrace_hash_destroy(dtrace_hash_t *hash)
7825 {
7826 #ifdef DEBUG
7827 	int i;
7828 
7829 	for (i = 0; i < hash->dth_size; i++)
7830 		ASSERT(hash->dth_tab[i] == NULL);
7831 #endif
7832 
7833 	kmem_free(hash->dth_tab,
7834 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7835 	kmem_free(hash, sizeof (dtrace_hash_t));
7836 }
7837 
7838 static void
7839 dtrace_hash_resize(dtrace_hash_t *hash)
7840 {
7841 	int size = hash->dth_size, i, ndx;
7842 	int new_size = hash->dth_size << 1;
7843 	int new_mask = new_size - 1;
7844 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7845 
7846 	ASSERT((new_size & new_mask) == 0);
7847 
7848 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7849 
7850 	for (i = 0; i < size; i++) {
7851 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7852 			dtrace_probe_t *probe = bucket->dthb_chain;
7853 
7854 			ASSERT(probe != NULL);
7855 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7856 
7857 			next = bucket->dthb_next;
7858 			bucket->dthb_next = new_tab[ndx];
7859 			new_tab[ndx] = bucket;
7860 		}
7861 	}
7862 
7863 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7864 	hash->dth_tab = new_tab;
7865 	hash->dth_size = new_size;
7866 	hash->dth_mask = new_mask;
7867 }
7868 
7869 static void
7870 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7871 {
7872 	int hashval = DTRACE_HASHSTR(hash, new);
7873 	int ndx = hashval & hash->dth_mask;
7874 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7875 	dtrace_probe_t **nextp, **prevp;
7876 
7877 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7878 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7879 			goto add;
7880 	}
7881 
7882 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7883 		dtrace_hash_resize(hash);
7884 		dtrace_hash_add(hash, new);
7885 		return;
7886 	}
7887 
7888 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7889 	bucket->dthb_next = hash->dth_tab[ndx];
7890 	hash->dth_tab[ndx] = bucket;
7891 	hash->dth_nbuckets++;
7892 
7893 add:
7894 	nextp = DTRACE_HASHNEXT(hash, new);
7895 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7896 	*nextp = bucket->dthb_chain;
7897 
7898 	if (bucket->dthb_chain != NULL) {
7899 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7900 		ASSERT(*prevp == NULL);
7901 		*prevp = new;
7902 	}
7903 
7904 	bucket->dthb_chain = new;
7905 	bucket->dthb_len++;
7906 }
7907 
7908 static dtrace_probe_t *
7909 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7910 {
7911 	int hashval = DTRACE_HASHSTR(hash, template);
7912 	int ndx = hashval & hash->dth_mask;
7913 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7914 
7915 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7916 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7917 			return (bucket->dthb_chain);
7918 	}
7919 
7920 	return (NULL);
7921 }
7922 
7923 static int
7924 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7925 {
7926 	int hashval = DTRACE_HASHSTR(hash, template);
7927 	int ndx = hashval & hash->dth_mask;
7928 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7929 
7930 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7931 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7932 			return (bucket->dthb_len);
7933 	}
7934 
7935 	return (0);
7936 }
7937 
7938 static void
7939 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7940 {
7941 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7942 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7943 
7944 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7945 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7946 
7947 	/*
7948 	 * Find the bucket that we're removing this probe from.
7949 	 */
7950 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7951 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7952 			break;
7953 	}
7954 
7955 	ASSERT(bucket != NULL);
7956 
7957 	if (*prevp == NULL) {
7958 		if (*nextp == NULL) {
7959 			/*
7960 			 * The removed probe was the only probe on this
7961 			 * bucket; we need to remove the bucket.
7962 			 */
7963 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7964 
7965 			ASSERT(bucket->dthb_chain == probe);
7966 			ASSERT(b != NULL);
7967 
7968 			if (b == bucket) {
7969 				hash->dth_tab[ndx] = bucket->dthb_next;
7970 			} else {
7971 				while (b->dthb_next != bucket)
7972 					b = b->dthb_next;
7973 				b->dthb_next = bucket->dthb_next;
7974 			}
7975 
7976 			ASSERT(hash->dth_nbuckets > 0);
7977 			hash->dth_nbuckets--;
7978 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7979 			return;
7980 		}
7981 
7982 		bucket->dthb_chain = *nextp;
7983 	} else {
7984 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7985 	}
7986 
7987 	if (*nextp != NULL)
7988 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7989 }
7990 
7991 /*
7992  * DTrace Utility Functions
7993  *
7994  * These are random utility functions that are _not_ called from probe context.
7995  */
7996 static int
7997 dtrace_badattr(const dtrace_attribute_t *a)
7998 {
7999 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8000 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8001 	    a->dtat_class > DTRACE_CLASS_MAX);
8002 }
8003 
8004 /*
8005  * Return a duplicate copy of a string.  If the specified string is NULL,
8006  * this function returns a zero-length string.
8007  */
8008 static char *
8009 dtrace_strdup(const char *str)
8010 {
8011 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8012 
8013 	if (str != NULL)
8014 		(void) strcpy(new, str);
8015 
8016 	return (new);
8017 }
8018 
8019 #define	DTRACE_ISALPHA(c)	\
8020 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8021 
8022 static int
8023 dtrace_badname(const char *s)
8024 {
8025 	char c;
8026 
8027 	if (s == NULL || (c = *s++) == '\0')
8028 		return (0);
8029 
8030 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8031 		return (1);
8032 
8033 	while ((c = *s++) != '\0') {
8034 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8035 		    c != '-' && c != '_' && c != '.' && c != '`')
8036 			return (1);
8037 	}
8038 
8039 	return (0);
8040 }
8041 
8042 static void
8043 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8044 {
8045 	uint32_t priv;
8046 
8047 #ifdef illumos
8048 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8049 		/*
8050 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8051 		 */
8052 		priv = DTRACE_PRIV_ALL;
8053 	} else {
8054 		*uidp = crgetuid(cr);
8055 		*zoneidp = crgetzoneid(cr);
8056 
8057 		priv = 0;
8058 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8059 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8060 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8061 			priv |= DTRACE_PRIV_USER;
8062 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8063 			priv |= DTRACE_PRIV_PROC;
8064 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8065 			priv |= DTRACE_PRIV_OWNER;
8066 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8067 			priv |= DTRACE_PRIV_ZONEOWNER;
8068 	}
8069 #else
8070 	priv = DTRACE_PRIV_ALL;
8071 #endif
8072 
8073 	*privp = priv;
8074 }
8075 
8076 #ifdef DTRACE_ERRDEBUG
8077 static void
8078 dtrace_errdebug(const char *str)
8079 {
8080 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8081 	int occupied = 0;
8082 
8083 	mutex_enter(&dtrace_errlock);
8084 	dtrace_errlast = str;
8085 	dtrace_errthread = curthread;
8086 
8087 	while (occupied++ < DTRACE_ERRHASHSZ) {
8088 		if (dtrace_errhash[hval].dter_msg == str) {
8089 			dtrace_errhash[hval].dter_count++;
8090 			goto out;
8091 		}
8092 
8093 		if (dtrace_errhash[hval].dter_msg != NULL) {
8094 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8095 			continue;
8096 		}
8097 
8098 		dtrace_errhash[hval].dter_msg = str;
8099 		dtrace_errhash[hval].dter_count = 1;
8100 		goto out;
8101 	}
8102 
8103 	panic("dtrace: undersized error hash");
8104 out:
8105 	mutex_exit(&dtrace_errlock);
8106 }
8107 #endif
8108 
8109 /*
8110  * DTrace Matching Functions
8111  *
8112  * These functions are used to match groups of probes, given some elements of
8113  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8114  */
8115 static int
8116 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8117     zoneid_t zoneid)
8118 {
8119 	if (priv != DTRACE_PRIV_ALL) {
8120 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8121 		uint32_t match = priv & ppriv;
8122 
8123 		/*
8124 		 * No PRIV_DTRACE_* privileges...
8125 		 */
8126 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8127 		    DTRACE_PRIV_KERNEL)) == 0)
8128 			return (0);
8129 
8130 		/*
8131 		 * No matching bits, but there were bits to match...
8132 		 */
8133 		if (match == 0 && ppriv != 0)
8134 			return (0);
8135 
8136 		/*
8137 		 * Need to have permissions to the process, but don't...
8138 		 */
8139 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8140 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8141 			return (0);
8142 		}
8143 
8144 		/*
8145 		 * Need to be in the same zone unless we possess the
8146 		 * privilege to examine all zones.
8147 		 */
8148 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8149 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8150 			return (0);
8151 		}
8152 	}
8153 
8154 	return (1);
8155 }
8156 
8157 /*
8158  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8159  * consists of input pattern strings and an ops-vector to evaluate them.
8160  * This function returns >0 for match, 0 for no match, and <0 for error.
8161  */
8162 static int
8163 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8164     uint32_t priv, uid_t uid, zoneid_t zoneid)
8165 {
8166 	dtrace_provider_t *pvp = prp->dtpr_provider;
8167 	int rv;
8168 
8169 	if (pvp->dtpv_defunct)
8170 		return (0);
8171 
8172 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8173 		return (rv);
8174 
8175 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8176 		return (rv);
8177 
8178 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8179 		return (rv);
8180 
8181 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8182 		return (rv);
8183 
8184 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8185 		return (0);
8186 
8187 	return (rv);
8188 }
8189 
8190 /*
8191  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8192  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8193  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8194  * In addition, all of the recursion cases except for '*' matching have been
8195  * unwound.  For '*', we still implement recursive evaluation, but a depth
8196  * counter is maintained and matching is aborted if we recurse too deep.
8197  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8198  */
8199 static int
8200 dtrace_match_glob(const char *s, const char *p, int depth)
8201 {
8202 	const char *olds;
8203 	char s1, c;
8204 	int gs;
8205 
8206 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8207 		return (-1);
8208 
8209 	if (s == NULL)
8210 		s = ""; /* treat NULL as empty string */
8211 
8212 top:
8213 	olds = s;
8214 	s1 = *s++;
8215 
8216 	if (p == NULL)
8217 		return (0);
8218 
8219 	if ((c = *p++) == '\0')
8220 		return (s1 == '\0');
8221 
8222 	switch (c) {
8223 	case '[': {
8224 		int ok = 0, notflag = 0;
8225 		char lc = '\0';
8226 
8227 		if (s1 == '\0')
8228 			return (0);
8229 
8230 		if (*p == '!') {
8231 			notflag = 1;
8232 			p++;
8233 		}
8234 
8235 		if ((c = *p++) == '\0')
8236 			return (0);
8237 
8238 		do {
8239 			if (c == '-' && lc != '\0' && *p != ']') {
8240 				if ((c = *p++) == '\0')
8241 					return (0);
8242 				if (c == '\\' && (c = *p++) == '\0')
8243 					return (0);
8244 
8245 				if (notflag) {
8246 					if (s1 < lc || s1 > c)
8247 						ok++;
8248 					else
8249 						return (0);
8250 				} else if (lc <= s1 && s1 <= c)
8251 					ok++;
8252 
8253 			} else if (c == '\\' && (c = *p++) == '\0')
8254 				return (0);
8255 
8256 			lc = c; /* save left-hand 'c' for next iteration */
8257 
8258 			if (notflag) {
8259 				if (s1 != c)
8260 					ok++;
8261 				else
8262 					return (0);
8263 			} else if (s1 == c)
8264 				ok++;
8265 
8266 			if ((c = *p++) == '\0')
8267 				return (0);
8268 
8269 		} while (c != ']');
8270 
8271 		if (ok)
8272 			goto top;
8273 
8274 		return (0);
8275 	}
8276 
8277 	case '\\':
8278 		if ((c = *p++) == '\0')
8279 			return (0);
8280 		/*FALLTHRU*/
8281 
8282 	default:
8283 		if (c != s1)
8284 			return (0);
8285 		/*FALLTHRU*/
8286 
8287 	case '?':
8288 		if (s1 != '\0')
8289 			goto top;
8290 		return (0);
8291 
8292 	case '*':
8293 		while (*p == '*')
8294 			p++; /* consecutive *'s are identical to a single one */
8295 
8296 		if (*p == '\0')
8297 			return (1);
8298 
8299 		for (s = olds; *s != '\0'; s++) {
8300 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8301 				return (gs);
8302 		}
8303 
8304 		return (0);
8305 	}
8306 }
8307 
8308 /*ARGSUSED*/
8309 static int
8310 dtrace_match_string(const char *s, const char *p, int depth)
8311 {
8312 	return (s != NULL && strcmp(s, p) == 0);
8313 }
8314 
8315 /*ARGSUSED*/
8316 static int
8317 dtrace_match_nul(const char *s, const char *p, int depth)
8318 {
8319 	return (1); /* always match the empty pattern */
8320 }
8321 
8322 /*ARGSUSED*/
8323 static int
8324 dtrace_match_nonzero(const char *s, const char *p, int depth)
8325 {
8326 	return (s != NULL && s[0] != '\0');
8327 }
8328 
8329 static int
8330 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8331     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8332 {
8333 	dtrace_probe_t template, *probe;
8334 	dtrace_hash_t *hash = NULL;
8335 	int len, best = INT_MAX, nmatched = 0;
8336 	dtrace_id_t i;
8337 
8338 	ASSERT(MUTEX_HELD(&dtrace_lock));
8339 
8340 	/*
8341 	 * If the probe ID is specified in the key, just lookup by ID and
8342 	 * invoke the match callback once if a matching probe is found.
8343 	 */
8344 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8345 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8346 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8347 			(void) (*matched)(probe, arg);
8348 			nmatched++;
8349 		}
8350 		return (nmatched);
8351 	}
8352 
8353 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8354 	template.dtpr_func = (char *)pkp->dtpk_func;
8355 	template.dtpr_name = (char *)pkp->dtpk_name;
8356 
8357 	/*
8358 	 * We want to find the most distinct of the module name, function
8359 	 * name, and name.  So for each one that is not a glob pattern or
8360 	 * empty string, we perform a lookup in the corresponding hash and
8361 	 * use the hash table with the fewest collisions to do our search.
8362 	 */
8363 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8364 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8365 		best = len;
8366 		hash = dtrace_bymod;
8367 	}
8368 
8369 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8370 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8371 		best = len;
8372 		hash = dtrace_byfunc;
8373 	}
8374 
8375 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8376 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8377 		best = len;
8378 		hash = dtrace_byname;
8379 	}
8380 
8381 	/*
8382 	 * If we did not select a hash table, iterate over every probe and
8383 	 * invoke our callback for each one that matches our input probe key.
8384 	 */
8385 	if (hash == NULL) {
8386 		for (i = 0; i < dtrace_nprobes; i++) {
8387 			if ((probe = dtrace_probes[i]) == NULL ||
8388 			    dtrace_match_probe(probe, pkp, priv, uid,
8389 			    zoneid) <= 0)
8390 				continue;
8391 
8392 			nmatched++;
8393 
8394 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8395 				break;
8396 		}
8397 
8398 		return (nmatched);
8399 	}
8400 
8401 	/*
8402 	 * If we selected a hash table, iterate over each probe of the same key
8403 	 * name and invoke the callback for every probe that matches the other
8404 	 * attributes of our input probe key.
8405 	 */
8406 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8407 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8408 
8409 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8410 			continue;
8411 
8412 		nmatched++;
8413 
8414 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8415 			break;
8416 	}
8417 
8418 	return (nmatched);
8419 }
8420 
8421 /*
8422  * Return the function pointer dtrace_probecmp() should use to compare the
8423  * specified pattern with a string.  For NULL or empty patterns, we select
8424  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8425  * For non-empty non-glob strings, we use dtrace_match_string().
8426  */
8427 static dtrace_probekey_f *
8428 dtrace_probekey_func(const char *p)
8429 {
8430 	char c;
8431 
8432 	if (p == NULL || *p == '\0')
8433 		return (&dtrace_match_nul);
8434 
8435 	while ((c = *p++) != '\0') {
8436 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8437 			return (&dtrace_match_glob);
8438 	}
8439 
8440 	return (&dtrace_match_string);
8441 }
8442 
8443 /*
8444  * Build a probe comparison key for use with dtrace_match_probe() from the
8445  * given probe description.  By convention, a null key only matches anchored
8446  * probes: if each field is the empty string, reset dtpk_fmatch to
8447  * dtrace_match_nonzero().
8448  */
8449 static void
8450 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8451 {
8452 	pkp->dtpk_prov = pdp->dtpd_provider;
8453 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8454 
8455 	pkp->dtpk_mod = pdp->dtpd_mod;
8456 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8457 
8458 	pkp->dtpk_func = pdp->dtpd_func;
8459 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8460 
8461 	pkp->dtpk_name = pdp->dtpd_name;
8462 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8463 
8464 	pkp->dtpk_id = pdp->dtpd_id;
8465 
8466 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8467 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8468 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8469 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8470 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8471 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8472 }
8473 
8474 /*
8475  * DTrace Provider-to-Framework API Functions
8476  *
8477  * These functions implement much of the Provider-to-Framework API, as
8478  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8479  * the functions in the API for probe management (found below), and
8480  * dtrace_probe() itself (found above).
8481  */
8482 
8483 /*
8484  * Register the calling provider with the DTrace framework.  This should
8485  * generally be called by DTrace providers in their attach(9E) entry point.
8486  */
8487 int
8488 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8489     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8490 {
8491 	dtrace_provider_t *provider;
8492 
8493 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8494 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8495 		    "arguments", name ? name : "<NULL>");
8496 		return (EINVAL);
8497 	}
8498 
8499 	if (name[0] == '\0' || dtrace_badname(name)) {
8500 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8501 		    "provider name", name);
8502 		return (EINVAL);
8503 	}
8504 
8505 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8506 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8507 	    pops->dtps_destroy == NULL ||
8508 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8509 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8510 		    "provider ops", name);
8511 		return (EINVAL);
8512 	}
8513 
8514 	if (dtrace_badattr(&pap->dtpa_provider) ||
8515 	    dtrace_badattr(&pap->dtpa_mod) ||
8516 	    dtrace_badattr(&pap->dtpa_func) ||
8517 	    dtrace_badattr(&pap->dtpa_name) ||
8518 	    dtrace_badattr(&pap->dtpa_args)) {
8519 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8520 		    "provider attributes", name);
8521 		return (EINVAL);
8522 	}
8523 
8524 	if (priv & ~DTRACE_PRIV_ALL) {
8525 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8526 		    "privilege attributes", name);
8527 		return (EINVAL);
8528 	}
8529 
8530 	if ((priv & DTRACE_PRIV_KERNEL) &&
8531 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8532 	    pops->dtps_usermode == NULL) {
8533 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8534 		    "dtps_usermode() op for given privilege attributes", name);
8535 		return (EINVAL);
8536 	}
8537 
8538 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8539 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8540 	(void) strcpy(provider->dtpv_name, name);
8541 
8542 	provider->dtpv_attr = *pap;
8543 	provider->dtpv_priv.dtpp_flags = priv;
8544 	if (cr != NULL) {
8545 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8546 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8547 	}
8548 	provider->dtpv_pops = *pops;
8549 
8550 	if (pops->dtps_provide == NULL) {
8551 		ASSERT(pops->dtps_provide_module != NULL);
8552 		provider->dtpv_pops.dtps_provide =
8553 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8554 	}
8555 
8556 	if (pops->dtps_provide_module == NULL) {
8557 		ASSERT(pops->dtps_provide != NULL);
8558 		provider->dtpv_pops.dtps_provide_module =
8559 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8560 	}
8561 
8562 	if (pops->dtps_suspend == NULL) {
8563 		ASSERT(pops->dtps_resume == NULL);
8564 		provider->dtpv_pops.dtps_suspend =
8565 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8566 		provider->dtpv_pops.dtps_resume =
8567 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8568 	}
8569 
8570 	provider->dtpv_arg = arg;
8571 	*idp = (dtrace_provider_id_t)provider;
8572 
8573 	if (pops == &dtrace_provider_ops) {
8574 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8575 		ASSERT(MUTEX_HELD(&dtrace_lock));
8576 		ASSERT(dtrace_anon.dta_enabling == NULL);
8577 
8578 		/*
8579 		 * We make sure that the DTrace provider is at the head of
8580 		 * the provider chain.
8581 		 */
8582 		provider->dtpv_next = dtrace_provider;
8583 		dtrace_provider = provider;
8584 		return (0);
8585 	}
8586 
8587 	mutex_enter(&dtrace_provider_lock);
8588 	mutex_enter(&dtrace_lock);
8589 
8590 	/*
8591 	 * If there is at least one provider registered, we'll add this
8592 	 * provider after the first provider.
8593 	 */
8594 	if (dtrace_provider != NULL) {
8595 		provider->dtpv_next = dtrace_provider->dtpv_next;
8596 		dtrace_provider->dtpv_next = provider;
8597 	} else {
8598 		dtrace_provider = provider;
8599 	}
8600 
8601 	if (dtrace_retained != NULL) {
8602 		dtrace_enabling_provide(provider);
8603 
8604 		/*
8605 		 * Now we need to call dtrace_enabling_matchall() -- which
8606 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8607 		 * to drop all of our locks before calling into it...
8608 		 */
8609 		mutex_exit(&dtrace_lock);
8610 		mutex_exit(&dtrace_provider_lock);
8611 		dtrace_enabling_matchall();
8612 
8613 		return (0);
8614 	}
8615 
8616 	mutex_exit(&dtrace_lock);
8617 	mutex_exit(&dtrace_provider_lock);
8618 
8619 	return (0);
8620 }
8621 
8622 /*
8623  * Unregister the specified provider from the DTrace framework.  This should
8624  * generally be called by DTrace providers in their detach(9E) entry point.
8625  */
8626 int
8627 dtrace_unregister(dtrace_provider_id_t id)
8628 {
8629 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8630 	dtrace_provider_t *prev = NULL;
8631 	int i, self = 0, noreap = 0;
8632 	dtrace_probe_t *probe, *first = NULL;
8633 
8634 	if (old->dtpv_pops.dtps_enable ==
8635 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8636 		/*
8637 		 * If DTrace itself is the provider, we're called with locks
8638 		 * already held.
8639 		 */
8640 		ASSERT(old == dtrace_provider);
8641 #ifdef illumos
8642 		ASSERT(dtrace_devi != NULL);
8643 #endif
8644 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8645 		ASSERT(MUTEX_HELD(&dtrace_lock));
8646 		self = 1;
8647 
8648 		if (dtrace_provider->dtpv_next != NULL) {
8649 			/*
8650 			 * There's another provider here; return failure.
8651 			 */
8652 			return (EBUSY);
8653 		}
8654 	} else {
8655 		mutex_enter(&dtrace_provider_lock);
8656 #ifdef illumos
8657 		mutex_enter(&mod_lock);
8658 #endif
8659 		mutex_enter(&dtrace_lock);
8660 	}
8661 
8662 	/*
8663 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8664 	 * probes, we refuse to let providers slither away, unless this
8665 	 * provider has already been explicitly invalidated.
8666 	 */
8667 	if (!old->dtpv_defunct &&
8668 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8669 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8670 		if (!self) {
8671 			mutex_exit(&dtrace_lock);
8672 #ifdef illumos
8673 			mutex_exit(&mod_lock);
8674 #endif
8675 			mutex_exit(&dtrace_provider_lock);
8676 		}
8677 		return (EBUSY);
8678 	}
8679 
8680 	/*
8681 	 * Attempt to destroy the probes associated with this provider.
8682 	 */
8683 	for (i = 0; i < dtrace_nprobes; i++) {
8684 		if ((probe = dtrace_probes[i]) == NULL)
8685 			continue;
8686 
8687 		if (probe->dtpr_provider != old)
8688 			continue;
8689 
8690 		if (probe->dtpr_ecb == NULL)
8691 			continue;
8692 
8693 		/*
8694 		 * If we are trying to unregister a defunct provider, and the
8695 		 * provider was made defunct within the interval dictated by
8696 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8697 		 * attempt to reap our enablings.  To denote that the provider
8698 		 * should reattempt to unregister itself at some point in the
8699 		 * future, we will return a differentiable error code (EAGAIN
8700 		 * instead of EBUSY) in this case.
8701 		 */
8702 		if (dtrace_gethrtime() - old->dtpv_defunct >
8703 		    dtrace_unregister_defunct_reap)
8704 			noreap = 1;
8705 
8706 		if (!self) {
8707 			mutex_exit(&dtrace_lock);
8708 #ifdef illumos
8709 			mutex_exit(&mod_lock);
8710 #endif
8711 			mutex_exit(&dtrace_provider_lock);
8712 		}
8713 
8714 		if (noreap)
8715 			return (EBUSY);
8716 
8717 		(void) taskq_dispatch(dtrace_taskq,
8718 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8719 
8720 		return (EAGAIN);
8721 	}
8722 
8723 	/*
8724 	 * All of the probes for this provider are disabled; we can safely
8725 	 * remove all of them from their hash chains and from the probe array.
8726 	 */
8727 	for (i = 0; i < dtrace_nprobes; i++) {
8728 		if ((probe = dtrace_probes[i]) == NULL)
8729 			continue;
8730 
8731 		if (probe->dtpr_provider != old)
8732 			continue;
8733 
8734 		dtrace_probes[i] = NULL;
8735 
8736 		dtrace_hash_remove(dtrace_bymod, probe);
8737 		dtrace_hash_remove(dtrace_byfunc, probe);
8738 		dtrace_hash_remove(dtrace_byname, probe);
8739 
8740 		if (first == NULL) {
8741 			first = probe;
8742 			probe->dtpr_nextmod = NULL;
8743 		} else {
8744 			probe->dtpr_nextmod = first;
8745 			first = probe;
8746 		}
8747 	}
8748 
8749 	/*
8750 	 * The provider's probes have been removed from the hash chains and
8751 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8752 	 * everyone has cleared out from any probe array processing.
8753 	 */
8754 	dtrace_sync();
8755 
8756 	for (probe = first; probe != NULL; probe = first) {
8757 		first = probe->dtpr_nextmod;
8758 
8759 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8760 		    probe->dtpr_arg);
8761 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8762 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8763 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8764 #ifdef illumos
8765 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8766 #else
8767 		free_unr(dtrace_arena, probe->dtpr_id);
8768 #endif
8769 		kmem_free(probe, sizeof (dtrace_probe_t));
8770 	}
8771 
8772 	if ((prev = dtrace_provider) == old) {
8773 #ifdef illumos
8774 		ASSERT(self || dtrace_devi == NULL);
8775 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8776 #endif
8777 		dtrace_provider = old->dtpv_next;
8778 	} else {
8779 		while (prev != NULL && prev->dtpv_next != old)
8780 			prev = prev->dtpv_next;
8781 
8782 		if (prev == NULL) {
8783 			panic("attempt to unregister non-existent "
8784 			    "dtrace provider %p\n", (void *)id);
8785 		}
8786 
8787 		prev->dtpv_next = old->dtpv_next;
8788 	}
8789 
8790 	if (!self) {
8791 		mutex_exit(&dtrace_lock);
8792 #ifdef illumos
8793 		mutex_exit(&mod_lock);
8794 #endif
8795 		mutex_exit(&dtrace_provider_lock);
8796 	}
8797 
8798 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8799 	kmem_free(old, sizeof (dtrace_provider_t));
8800 
8801 	return (0);
8802 }
8803 
8804 /*
8805  * Invalidate the specified provider.  All subsequent probe lookups for the
8806  * specified provider will fail, but its probes will not be removed.
8807  */
8808 void
8809 dtrace_invalidate(dtrace_provider_id_t id)
8810 {
8811 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8812 
8813 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8814 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8815 
8816 	mutex_enter(&dtrace_provider_lock);
8817 	mutex_enter(&dtrace_lock);
8818 
8819 	pvp->dtpv_defunct = dtrace_gethrtime();
8820 
8821 	mutex_exit(&dtrace_lock);
8822 	mutex_exit(&dtrace_provider_lock);
8823 }
8824 
8825 /*
8826  * Indicate whether or not DTrace has attached.
8827  */
8828 int
8829 dtrace_attached(void)
8830 {
8831 	/*
8832 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8833 	 * attached.  (It's non-NULL because DTrace is always itself a
8834 	 * provider.)
8835 	 */
8836 	return (dtrace_provider != NULL);
8837 }
8838 
8839 /*
8840  * Remove all the unenabled probes for the given provider.  This function is
8841  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8842  * -- just as many of its associated probes as it can.
8843  */
8844 int
8845 dtrace_condense(dtrace_provider_id_t id)
8846 {
8847 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8848 	int i;
8849 	dtrace_probe_t *probe;
8850 
8851 	/*
8852 	 * Make sure this isn't the dtrace provider itself.
8853 	 */
8854 	ASSERT(prov->dtpv_pops.dtps_enable !=
8855 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8856 
8857 	mutex_enter(&dtrace_provider_lock);
8858 	mutex_enter(&dtrace_lock);
8859 
8860 	/*
8861 	 * Attempt to destroy the probes associated with this provider.
8862 	 */
8863 	for (i = 0; i < dtrace_nprobes; i++) {
8864 		if ((probe = dtrace_probes[i]) == NULL)
8865 			continue;
8866 
8867 		if (probe->dtpr_provider != prov)
8868 			continue;
8869 
8870 		if (probe->dtpr_ecb != NULL)
8871 			continue;
8872 
8873 		dtrace_probes[i] = NULL;
8874 
8875 		dtrace_hash_remove(dtrace_bymod, probe);
8876 		dtrace_hash_remove(dtrace_byfunc, probe);
8877 		dtrace_hash_remove(dtrace_byname, probe);
8878 
8879 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8880 		    probe->dtpr_arg);
8881 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8882 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8883 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8884 		kmem_free(probe, sizeof (dtrace_probe_t));
8885 #ifdef illumos
8886 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8887 #else
8888 		free_unr(dtrace_arena, i + 1);
8889 #endif
8890 	}
8891 
8892 	mutex_exit(&dtrace_lock);
8893 	mutex_exit(&dtrace_provider_lock);
8894 
8895 	return (0);
8896 }
8897 
8898 /*
8899  * DTrace Probe Management Functions
8900  *
8901  * The functions in this section perform the DTrace probe management,
8902  * including functions to create probes, look-up probes, and call into the
8903  * providers to request that probes be provided.  Some of these functions are
8904  * in the Provider-to-Framework API; these functions can be identified by the
8905  * fact that they are not declared "static".
8906  */
8907 
8908 /*
8909  * Create a probe with the specified module name, function name, and name.
8910  */
8911 dtrace_id_t
8912 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8913     const char *func, const char *name, int aframes, void *arg)
8914 {
8915 	dtrace_probe_t *probe, **probes;
8916 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8917 	dtrace_id_t id;
8918 
8919 	if (provider == dtrace_provider) {
8920 		ASSERT(MUTEX_HELD(&dtrace_lock));
8921 	} else {
8922 		mutex_enter(&dtrace_lock);
8923 	}
8924 
8925 #ifdef illumos
8926 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8927 	    VM_BESTFIT | VM_SLEEP);
8928 #else
8929 	id = alloc_unr(dtrace_arena);
8930 #endif
8931 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8932 
8933 	probe->dtpr_id = id;
8934 	probe->dtpr_gen = dtrace_probegen++;
8935 	probe->dtpr_mod = dtrace_strdup(mod);
8936 	probe->dtpr_func = dtrace_strdup(func);
8937 	probe->dtpr_name = dtrace_strdup(name);
8938 	probe->dtpr_arg = arg;
8939 	probe->dtpr_aframes = aframes;
8940 	probe->dtpr_provider = provider;
8941 
8942 	dtrace_hash_add(dtrace_bymod, probe);
8943 	dtrace_hash_add(dtrace_byfunc, probe);
8944 	dtrace_hash_add(dtrace_byname, probe);
8945 
8946 	if (id - 1 >= dtrace_nprobes) {
8947 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8948 		size_t nsize = osize << 1;
8949 
8950 		if (nsize == 0) {
8951 			ASSERT(osize == 0);
8952 			ASSERT(dtrace_probes == NULL);
8953 			nsize = sizeof (dtrace_probe_t *);
8954 		}
8955 
8956 		probes = kmem_zalloc(nsize, KM_SLEEP);
8957 
8958 		if (dtrace_probes == NULL) {
8959 			ASSERT(osize == 0);
8960 			dtrace_probes = probes;
8961 			dtrace_nprobes = 1;
8962 		} else {
8963 			dtrace_probe_t **oprobes = dtrace_probes;
8964 
8965 			bcopy(oprobes, probes, osize);
8966 			dtrace_membar_producer();
8967 			dtrace_probes = probes;
8968 
8969 			dtrace_sync();
8970 
8971 			/*
8972 			 * All CPUs are now seeing the new probes array; we can
8973 			 * safely free the old array.
8974 			 */
8975 			kmem_free(oprobes, osize);
8976 			dtrace_nprobes <<= 1;
8977 		}
8978 
8979 		ASSERT(id - 1 < dtrace_nprobes);
8980 	}
8981 
8982 	ASSERT(dtrace_probes[id - 1] == NULL);
8983 	dtrace_probes[id - 1] = probe;
8984 
8985 	if (provider != dtrace_provider)
8986 		mutex_exit(&dtrace_lock);
8987 
8988 	return (id);
8989 }
8990 
8991 static dtrace_probe_t *
8992 dtrace_probe_lookup_id(dtrace_id_t id)
8993 {
8994 	ASSERT(MUTEX_HELD(&dtrace_lock));
8995 
8996 	if (id == 0 || id > dtrace_nprobes)
8997 		return (NULL);
8998 
8999 	return (dtrace_probes[id - 1]);
9000 }
9001 
9002 static int
9003 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9004 {
9005 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9006 
9007 	return (DTRACE_MATCH_DONE);
9008 }
9009 
9010 /*
9011  * Look up a probe based on provider and one or more of module name, function
9012  * name and probe name.
9013  */
9014 dtrace_id_t
9015 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9016     char *func, char *name)
9017 {
9018 	dtrace_probekey_t pkey;
9019 	dtrace_id_t id;
9020 	int match;
9021 
9022 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9023 	pkey.dtpk_pmatch = &dtrace_match_string;
9024 	pkey.dtpk_mod = mod;
9025 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9026 	pkey.dtpk_func = func;
9027 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9028 	pkey.dtpk_name = name;
9029 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9030 	pkey.dtpk_id = DTRACE_IDNONE;
9031 
9032 	mutex_enter(&dtrace_lock);
9033 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9034 	    dtrace_probe_lookup_match, &id);
9035 	mutex_exit(&dtrace_lock);
9036 
9037 	ASSERT(match == 1 || match == 0);
9038 	return (match ? id : 0);
9039 }
9040 
9041 /*
9042  * Returns the probe argument associated with the specified probe.
9043  */
9044 void *
9045 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9046 {
9047 	dtrace_probe_t *probe;
9048 	void *rval = NULL;
9049 
9050 	mutex_enter(&dtrace_lock);
9051 
9052 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9053 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9054 		rval = probe->dtpr_arg;
9055 
9056 	mutex_exit(&dtrace_lock);
9057 
9058 	return (rval);
9059 }
9060 
9061 /*
9062  * Copy a probe into a probe description.
9063  */
9064 static void
9065 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9066 {
9067 	bzero(pdp, sizeof (dtrace_probedesc_t));
9068 	pdp->dtpd_id = prp->dtpr_id;
9069 
9070 	(void) strncpy(pdp->dtpd_provider,
9071 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9072 
9073 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9074 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9075 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9076 }
9077 
9078 /*
9079  * Called to indicate that a probe -- or probes -- should be provided by a
9080  * specfied provider.  If the specified description is NULL, the provider will
9081  * be told to provide all of its probes.  (This is done whenever a new
9082  * consumer comes along, or whenever a retained enabling is to be matched.) If
9083  * the specified description is non-NULL, the provider is given the
9084  * opportunity to dynamically provide the specified probe, allowing providers
9085  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9086  * probes.)  If the provider is NULL, the operations will be applied to all
9087  * providers; if the provider is non-NULL the operations will only be applied
9088  * to the specified provider.  The dtrace_provider_lock must be held, and the
9089  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9090  * will need to grab the dtrace_lock when it reenters the framework through
9091  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9092  */
9093 static void
9094 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9095 {
9096 #ifdef illumos
9097 	modctl_t *ctl;
9098 #endif
9099 	int all = 0;
9100 
9101 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9102 
9103 	if (prv == NULL) {
9104 		all = 1;
9105 		prv = dtrace_provider;
9106 	}
9107 
9108 	do {
9109 		/*
9110 		 * First, call the blanket provide operation.
9111 		 */
9112 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9113 
9114 #ifdef illumos
9115 		/*
9116 		 * Now call the per-module provide operation.  We will grab
9117 		 * mod_lock to prevent the list from being modified.  Note
9118 		 * that this also prevents the mod_busy bits from changing.
9119 		 * (mod_busy can only be changed with mod_lock held.)
9120 		 */
9121 		mutex_enter(&mod_lock);
9122 
9123 		ctl = &modules;
9124 		do {
9125 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9126 				continue;
9127 
9128 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9129 
9130 		} while ((ctl = ctl->mod_next) != &modules);
9131 
9132 		mutex_exit(&mod_lock);
9133 #endif
9134 	} while (all && (prv = prv->dtpv_next) != NULL);
9135 }
9136 
9137 #ifdef illumos
9138 /*
9139  * Iterate over each probe, and call the Framework-to-Provider API function
9140  * denoted by offs.
9141  */
9142 static void
9143 dtrace_probe_foreach(uintptr_t offs)
9144 {
9145 	dtrace_provider_t *prov;
9146 	void (*func)(void *, dtrace_id_t, void *);
9147 	dtrace_probe_t *probe;
9148 	dtrace_icookie_t cookie;
9149 	int i;
9150 
9151 	/*
9152 	 * We disable interrupts to walk through the probe array.  This is
9153 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9154 	 * won't see stale data.
9155 	 */
9156 	cookie = dtrace_interrupt_disable();
9157 
9158 	for (i = 0; i < dtrace_nprobes; i++) {
9159 		if ((probe = dtrace_probes[i]) == NULL)
9160 			continue;
9161 
9162 		if (probe->dtpr_ecb == NULL) {
9163 			/*
9164 			 * This probe isn't enabled -- don't call the function.
9165 			 */
9166 			continue;
9167 		}
9168 
9169 		prov = probe->dtpr_provider;
9170 		func = *((void(**)(void *, dtrace_id_t, void *))
9171 		    ((uintptr_t)&prov->dtpv_pops + offs));
9172 
9173 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9174 	}
9175 
9176 	dtrace_interrupt_enable(cookie);
9177 }
9178 #endif
9179 
9180 static int
9181 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9182 {
9183 	dtrace_probekey_t pkey;
9184 	uint32_t priv;
9185 	uid_t uid;
9186 	zoneid_t zoneid;
9187 
9188 	ASSERT(MUTEX_HELD(&dtrace_lock));
9189 	dtrace_ecb_create_cache = NULL;
9190 
9191 	if (desc == NULL) {
9192 		/*
9193 		 * If we're passed a NULL description, we're being asked to
9194 		 * create an ECB with a NULL probe.
9195 		 */
9196 		(void) dtrace_ecb_create_enable(NULL, enab);
9197 		return (0);
9198 	}
9199 
9200 	dtrace_probekey(desc, &pkey);
9201 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9202 	    &priv, &uid, &zoneid);
9203 
9204 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9205 	    enab));
9206 }
9207 
9208 /*
9209  * DTrace Helper Provider Functions
9210  */
9211 static void
9212 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9213 {
9214 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9215 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9216 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9217 }
9218 
9219 static void
9220 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9221     const dof_provider_t *dofprov, char *strtab)
9222 {
9223 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9224 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9225 	    dofprov->dofpv_provattr);
9226 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9227 	    dofprov->dofpv_modattr);
9228 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9229 	    dofprov->dofpv_funcattr);
9230 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9231 	    dofprov->dofpv_nameattr);
9232 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9233 	    dofprov->dofpv_argsattr);
9234 }
9235 
9236 static void
9237 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9238 {
9239 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9240 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9241 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9242 	dof_provider_t *provider;
9243 	dof_probe_t *probe;
9244 	uint32_t *off, *enoff;
9245 	uint8_t *arg;
9246 	char *strtab;
9247 	uint_t i, nprobes;
9248 	dtrace_helper_provdesc_t dhpv;
9249 	dtrace_helper_probedesc_t dhpb;
9250 	dtrace_meta_t *meta = dtrace_meta_pid;
9251 	dtrace_mops_t *mops = &meta->dtm_mops;
9252 	void *parg;
9253 
9254 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9255 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9256 	    provider->dofpv_strtab * dof->dofh_secsize);
9257 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9258 	    provider->dofpv_probes * dof->dofh_secsize);
9259 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9260 	    provider->dofpv_prargs * dof->dofh_secsize);
9261 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9262 	    provider->dofpv_proffs * dof->dofh_secsize);
9263 
9264 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9265 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9266 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9267 	enoff = NULL;
9268 
9269 	/*
9270 	 * See dtrace_helper_provider_validate().
9271 	 */
9272 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9273 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9274 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9275 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9276 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9277 	}
9278 
9279 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9280 
9281 	/*
9282 	 * Create the provider.
9283 	 */
9284 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9285 
9286 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9287 		return;
9288 
9289 	meta->dtm_count++;
9290 
9291 	/*
9292 	 * Create the probes.
9293 	 */
9294 	for (i = 0; i < nprobes; i++) {
9295 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9296 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9297 
9298 		dhpb.dthpb_mod = dhp->dofhp_mod;
9299 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9300 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9301 		dhpb.dthpb_base = probe->dofpr_addr;
9302 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9303 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9304 		if (enoff != NULL) {
9305 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9306 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9307 		} else {
9308 			dhpb.dthpb_enoffs = NULL;
9309 			dhpb.dthpb_nenoffs = 0;
9310 		}
9311 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9312 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9313 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9314 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9315 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9316 
9317 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9318 	}
9319 }
9320 
9321 static void
9322 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9323 {
9324 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9325 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9326 	int i;
9327 
9328 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9329 
9330 	for (i = 0; i < dof->dofh_secnum; i++) {
9331 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9332 		    dof->dofh_secoff + i * dof->dofh_secsize);
9333 
9334 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9335 			continue;
9336 
9337 		dtrace_helper_provide_one(dhp, sec, pid);
9338 	}
9339 
9340 	/*
9341 	 * We may have just created probes, so we must now rematch against
9342 	 * any retained enablings.  Note that this call will acquire both
9343 	 * cpu_lock and dtrace_lock; the fact that we are holding
9344 	 * dtrace_meta_lock now is what defines the ordering with respect to
9345 	 * these three locks.
9346 	 */
9347 	dtrace_enabling_matchall();
9348 }
9349 
9350 static void
9351 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9352 {
9353 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9354 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9355 	dof_sec_t *str_sec;
9356 	dof_provider_t *provider;
9357 	char *strtab;
9358 	dtrace_helper_provdesc_t dhpv;
9359 	dtrace_meta_t *meta = dtrace_meta_pid;
9360 	dtrace_mops_t *mops = &meta->dtm_mops;
9361 
9362 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9363 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9364 	    provider->dofpv_strtab * dof->dofh_secsize);
9365 
9366 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9367 
9368 	/*
9369 	 * Create the provider.
9370 	 */
9371 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9372 
9373 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9374 
9375 	meta->dtm_count--;
9376 }
9377 
9378 static void
9379 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9380 {
9381 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9382 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9383 	int i;
9384 
9385 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9386 
9387 	for (i = 0; i < dof->dofh_secnum; i++) {
9388 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9389 		    dof->dofh_secoff + i * dof->dofh_secsize);
9390 
9391 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9392 			continue;
9393 
9394 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9395 	}
9396 }
9397 
9398 /*
9399  * DTrace Meta Provider-to-Framework API Functions
9400  *
9401  * These functions implement the Meta Provider-to-Framework API, as described
9402  * in <sys/dtrace.h>.
9403  */
9404 int
9405 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9406     dtrace_meta_provider_id_t *idp)
9407 {
9408 	dtrace_meta_t *meta;
9409 	dtrace_helpers_t *help, *next;
9410 	int i;
9411 
9412 	*idp = DTRACE_METAPROVNONE;
9413 
9414 	/*
9415 	 * We strictly don't need the name, but we hold onto it for
9416 	 * debuggability. All hail error queues!
9417 	 */
9418 	if (name == NULL) {
9419 		cmn_err(CE_WARN, "failed to register meta-provider: "
9420 		    "invalid name");
9421 		return (EINVAL);
9422 	}
9423 
9424 	if (mops == NULL ||
9425 	    mops->dtms_create_probe == NULL ||
9426 	    mops->dtms_provide_pid == NULL ||
9427 	    mops->dtms_remove_pid == NULL) {
9428 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9429 		    "invalid ops", name);
9430 		return (EINVAL);
9431 	}
9432 
9433 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9434 	meta->dtm_mops = *mops;
9435 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9436 	(void) strcpy(meta->dtm_name, name);
9437 	meta->dtm_arg = arg;
9438 
9439 	mutex_enter(&dtrace_meta_lock);
9440 	mutex_enter(&dtrace_lock);
9441 
9442 	if (dtrace_meta_pid != NULL) {
9443 		mutex_exit(&dtrace_lock);
9444 		mutex_exit(&dtrace_meta_lock);
9445 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9446 		    "user-land meta-provider exists", name);
9447 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9448 		kmem_free(meta, sizeof (dtrace_meta_t));
9449 		return (EINVAL);
9450 	}
9451 
9452 	dtrace_meta_pid = meta;
9453 	*idp = (dtrace_meta_provider_id_t)meta;
9454 
9455 	/*
9456 	 * If there are providers and probes ready to go, pass them
9457 	 * off to the new meta provider now.
9458 	 */
9459 
9460 	help = dtrace_deferred_pid;
9461 	dtrace_deferred_pid = NULL;
9462 
9463 	mutex_exit(&dtrace_lock);
9464 
9465 	while (help != NULL) {
9466 		for (i = 0; i < help->dthps_nprovs; i++) {
9467 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9468 			    help->dthps_pid);
9469 		}
9470 
9471 		next = help->dthps_next;
9472 		help->dthps_next = NULL;
9473 		help->dthps_prev = NULL;
9474 		help->dthps_deferred = 0;
9475 		help = next;
9476 	}
9477 
9478 	mutex_exit(&dtrace_meta_lock);
9479 
9480 	return (0);
9481 }
9482 
9483 int
9484 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9485 {
9486 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9487 
9488 	mutex_enter(&dtrace_meta_lock);
9489 	mutex_enter(&dtrace_lock);
9490 
9491 	if (old == dtrace_meta_pid) {
9492 		pp = &dtrace_meta_pid;
9493 	} else {
9494 		panic("attempt to unregister non-existent "
9495 		    "dtrace meta-provider %p\n", (void *)old);
9496 	}
9497 
9498 	if (old->dtm_count != 0) {
9499 		mutex_exit(&dtrace_lock);
9500 		mutex_exit(&dtrace_meta_lock);
9501 		return (EBUSY);
9502 	}
9503 
9504 	*pp = NULL;
9505 
9506 	mutex_exit(&dtrace_lock);
9507 	mutex_exit(&dtrace_meta_lock);
9508 
9509 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9510 	kmem_free(old, sizeof (dtrace_meta_t));
9511 
9512 	return (0);
9513 }
9514 
9515 
9516 /*
9517  * DTrace DIF Object Functions
9518  */
9519 static int
9520 dtrace_difo_err(uint_t pc, const char *format, ...)
9521 {
9522 	if (dtrace_err_verbose) {
9523 		va_list alist;
9524 
9525 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9526 		va_start(alist, format);
9527 		(void) vuprintf(format, alist);
9528 		va_end(alist);
9529 	}
9530 
9531 #ifdef DTRACE_ERRDEBUG
9532 	dtrace_errdebug(format);
9533 #endif
9534 	return (1);
9535 }
9536 
9537 /*
9538  * Validate a DTrace DIF object by checking the IR instructions.  The following
9539  * rules are currently enforced by dtrace_difo_validate():
9540  *
9541  * 1. Each instruction must have a valid opcode
9542  * 2. Each register, string, variable, or subroutine reference must be valid
9543  * 3. No instruction can modify register %r0 (must be zero)
9544  * 4. All instruction reserved bits must be set to zero
9545  * 5. The last instruction must be a "ret" instruction
9546  * 6. All branch targets must reference a valid instruction _after_ the branch
9547  */
9548 static int
9549 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9550     cred_t *cr)
9551 {
9552 	int err = 0, i;
9553 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9554 	int kcheckload;
9555 	uint_t pc;
9556 
9557 	kcheckload = cr == NULL ||
9558 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9559 
9560 	dp->dtdo_destructive = 0;
9561 
9562 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9563 		dif_instr_t instr = dp->dtdo_buf[pc];
9564 
9565 		uint_t r1 = DIF_INSTR_R1(instr);
9566 		uint_t r2 = DIF_INSTR_R2(instr);
9567 		uint_t rd = DIF_INSTR_RD(instr);
9568 		uint_t rs = DIF_INSTR_RS(instr);
9569 		uint_t label = DIF_INSTR_LABEL(instr);
9570 		uint_t v = DIF_INSTR_VAR(instr);
9571 		uint_t subr = DIF_INSTR_SUBR(instr);
9572 		uint_t type = DIF_INSTR_TYPE(instr);
9573 		uint_t op = DIF_INSTR_OP(instr);
9574 
9575 		switch (op) {
9576 		case DIF_OP_OR:
9577 		case DIF_OP_XOR:
9578 		case DIF_OP_AND:
9579 		case DIF_OP_SLL:
9580 		case DIF_OP_SRL:
9581 		case DIF_OP_SRA:
9582 		case DIF_OP_SUB:
9583 		case DIF_OP_ADD:
9584 		case DIF_OP_MUL:
9585 		case DIF_OP_SDIV:
9586 		case DIF_OP_UDIV:
9587 		case DIF_OP_SREM:
9588 		case DIF_OP_UREM:
9589 		case DIF_OP_COPYS:
9590 			if (r1 >= nregs)
9591 				err += efunc(pc, "invalid register %u\n", r1);
9592 			if (r2 >= nregs)
9593 				err += efunc(pc, "invalid register %u\n", r2);
9594 			if (rd >= nregs)
9595 				err += efunc(pc, "invalid register %u\n", rd);
9596 			if (rd == 0)
9597 				err += efunc(pc, "cannot write to %r0\n");
9598 			break;
9599 		case DIF_OP_NOT:
9600 		case DIF_OP_MOV:
9601 		case DIF_OP_ALLOCS:
9602 			if (r1 >= nregs)
9603 				err += efunc(pc, "invalid register %u\n", r1);
9604 			if (r2 != 0)
9605 				err += efunc(pc, "non-zero reserved bits\n");
9606 			if (rd >= nregs)
9607 				err += efunc(pc, "invalid register %u\n", rd);
9608 			if (rd == 0)
9609 				err += efunc(pc, "cannot write to %r0\n");
9610 			break;
9611 		case DIF_OP_LDSB:
9612 		case DIF_OP_LDSH:
9613 		case DIF_OP_LDSW:
9614 		case DIF_OP_LDUB:
9615 		case DIF_OP_LDUH:
9616 		case DIF_OP_LDUW:
9617 		case DIF_OP_LDX:
9618 			if (r1 >= nregs)
9619 				err += efunc(pc, "invalid register %u\n", r1);
9620 			if (r2 != 0)
9621 				err += efunc(pc, "non-zero reserved bits\n");
9622 			if (rd >= nregs)
9623 				err += efunc(pc, "invalid register %u\n", rd);
9624 			if (rd == 0)
9625 				err += efunc(pc, "cannot write to %r0\n");
9626 			if (kcheckload)
9627 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9628 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9629 			break;
9630 		case DIF_OP_RLDSB:
9631 		case DIF_OP_RLDSH:
9632 		case DIF_OP_RLDSW:
9633 		case DIF_OP_RLDUB:
9634 		case DIF_OP_RLDUH:
9635 		case DIF_OP_RLDUW:
9636 		case DIF_OP_RLDX:
9637 			if (r1 >= nregs)
9638 				err += efunc(pc, "invalid register %u\n", r1);
9639 			if (r2 != 0)
9640 				err += efunc(pc, "non-zero reserved bits\n");
9641 			if (rd >= nregs)
9642 				err += efunc(pc, "invalid register %u\n", rd);
9643 			if (rd == 0)
9644 				err += efunc(pc, "cannot write to %r0\n");
9645 			break;
9646 		case DIF_OP_ULDSB:
9647 		case DIF_OP_ULDSH:
9648 		case DIF_OP_ULDSW:
9649 		case DIF_OP_ULDUB:
9650 		case DIF_OP_ULDUH:
9651 		case DIF_OP_ULDUW:
9652 		case DIF_OP_ULDX:
9653 			if (r1 >= nregs)
9654 				err += efunc(pc, "invalid register %u\n", r1);
9655 			if (r2 != 0)
9656 				err += efunc(pc, "non-zero reserved bits\n");
9657 			if (rd >= nregs)
9658 				err += efunc(pc, "invalid register %u\n", rd);
9659 			if (rd == 0)
9660 				err += efunc(pc, "cannot write to %r0\n");
9661 			break;
9662 		case DIF_OP_STB:
9663 		case DIF_OP_STH:
9664 		case DIF_OP_STW:
9665 		case DIF_OP_STX:
9666 			if (r1 >= nregs)
9667 				err += efunc(pc, "invalid register %u\n", r1);
9668 			if (r2 != 0)
9669 				err += efunc(pc, "non-zero reserved bits\n");
9670 			if (rd >= nregs)
9671 				err += efunc(pc, "invalid register %u\n", rd);
9672 			if (rd == 0)
9673 				err += efunc(pc, "cannot write to 0 address\n");
9674 			break;
9675 		case DIF_OP_CMP:
9676 		case DIF_OP_SCMP:
9677 			if (r1 >= nregs)
9678 				err += efunc(pc, "invalid register %u\n", r1);
9679 			if (r2 >= nregs)
9680 				err += efunc(pc, "invalid register %u\n", r2);
9681 			if (rd != 0)
9682 				err += efunc(pc, "non-zero reserved bits\n");
9683 			break;
9684 		case DIF_OP_TST:
9685 			if (r1 >= nregs)
9686 				err += efunc(pc, "invalid register %u\n", r1);
9687 			if (r2 != 0 || rd != 0)
9688 				err += efunc(pc, "non-zero reserved bits\n");
9689 			break;
9690 		case DIF_OP_BA:
9691 		case DIF_OP_BE:
9692 		case DIF_OP_BNE:
9693 		case DIF_OP_BG:
9694 		case DIF_OP_BGU:
9695 		case DIF_OP_BGE:
9696 		case DIF_OP_BGEU:
9697 		case DIF_OP_BL:
9698 		case DIF_OP_BLU:
9699 		case DIF_OP_BLE:
9700 		case DIF_OP_BLEU:
9701 			if (label >= dp->dtdo_len) {
9702 				err += efunc(pc, "invalid branch target %u\n",
9703 				    label);
9704 			}
9705 			if (label <= pc) {
9706 				err += efunc(pc, "backward branch to %u\n",
9707 				    label);
9708 			}
9709 			break;
9710 		case DIF_OP_RET:
9711 			if (r1 != 0 || r2 != 0)
9712 				err += efunc(pc, "non-zero reserved bits\n");
9713 			if (rd >= nregs)
9714 				err += efunc(pc, "invalid register %u\n", rd);
9715 			break;
9716 		case DIF_OP_NOP:
9717 		case DIF_OP_POPTS:
9718 		case DIF_OP_FLUSHTS:
9719 			if (r1 != 0 || r2 != 0 || rd != 0)
9720 				err += efunc(pc, "non-zero reserved bits\n");
9721 			break;
9722 		case DIF_OP_SETX:
9723 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9724 				err += efunc(pc, "invalid integer ref %u\n",
9725 				    DIF_INSTR_INTEGER(instr));
9726 			}
9727 			if (rd >= nregs)
9728 				err += efunc(pc, "invalid register %u\n", rd);
9729 			if (rd == 0)
9730 				err += efunc(pc, "cannot write to %r0\n");
9731 			break;
9732 		case DIF_OP_SETS:
9733 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9734 				err += efunc(pc, "invalid string ref %u\n",
9735 				    DIF_INSTR_STRING(instr));
9736 			}
9737 			if (rd >= nregs)
9738 				err += efunc(pc, "invalid register %u\n", rd);
9739 			if (rd == 0)
9740 				err += efunc(pc, "cannot write to %r0\n");
9741 			break;
9742 		case DIF_OP_LDGA:
9743 		case DIF_OP_LDTA:
9744 			if (r1 > DIF_VAR_ARRAY_MAX)
9745 				err += efunc(pc, "invalid array %u\n", r1);
9746 			if (r2 >= nregs)
9747 				err += efunc(pc, "invalid register %u\n", r2);
9748 			if (rd >= nregs)
9749 				err += efunc(pc, "invalid register %u\n", rd);
9750 			if (rd == 0)
9751 				err += efunc(pc, "cannot write to %r0\n");
9752 			break;
9753 		case DIF_OP_LDGS:
9754 		case DIF_OP_LDTS:
9755 		case DIF_OP_LDLS:
9756 		case DIF_OP_LDGAA:
9757 		case DIF_OP_LDTAA:
9758 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9759 				err += efunc(pc, "invalid variable %u\n", v);
9760 			if (rd >= nregs)
9761 				err += efunc(pc, "invalid register %u\n", rd);
9762 			if (rd == 0)
9763 				err += efunc(pc, "cannot write to %r0\n");
9764 			break;
9765 		case DIF_OP_STGS:
9766 		case DIF_OP_STTS:
9767 		case DIF_OP_STLS:
9768 		case DIF_OP_STGAA:
9769 		case DIF_OP_STTAA:
9770 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9771 				err += efunc(pc, "invalid variable %u\n", v);
9772 			if (rs >= nregs)
9773 				err += efunc(pc, "invalid register %u\n", rd);
9774 			break;
9775 		case DIF_OP_CALL:
9776 			if (subr > DIF_SUBR_MAX)
9777 				err += efunc(pc, "invalid subr %u\n", subr);
9778 			if (rd >= nregs)
9779 				err += efunc(pc, "invalid register %u\n", rd);
9780 			if (rd == 0)
9781 				err += efunc(pc, "cannot write to %r0\n");
9782 
9783 			if (subr == DIF_SUBR_COPYOUT ||
9784 			    subr == DIF_SUBR_COPYOUTSTR) {
9785 				dp->dtdo_destructive = 1;
9786 			}
9787 
9788 			if (subr == DIF_SUBR_GETF) {
9789 				/*
9790 				 * If we have a getf() we need to record that
9791 				 * in our state.  Note that our state can be
9792 				 * NULL if this is a helper -- but in that
9793 				 * case, the call to getf() is itself illegal,
9794 				 * and will be caught (slightly later) when
9795 				 * the helper is validated.
9796 				 */
9797 				if (vstate->dtvs_state != NULL)
9798 					vstate->dtvs_state->dts_getf++;
9799 			}
9800 
9801 			break;
9802 		case DIF_OP_PUSHTR:
9803 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9804 				err += efunc(pc, "invalid ref type %u\n", type);
9805 			if (r2 >= nregs)
9806 				err += efunc(pc, "invalid register %u\n", r2);
9807 			if (rs >= nregs)
9808 				err += efunc(pc, "invalid register %u\n", rs);
9809 			break;
9810 		case DIF_OP_PUSHTV:
9811 			if (type != DIF_TYPE_CTF)
9812 				err += efunc(pc, "invalid val type %u\n", type);
9813 			if (r2 >= nregs)
9814 				err += efunc(pc, "invalid register %u\n", r2);
9815 			if (rs >= nregs)
9816 				err += efunc(pc, "invalid register %u\n", rs);
9817 			break;
9818 		default:
9819 			err += efunc(pc, "invalid opcode %u\n",
9820 			    DIF_INSTR_OP(instr));
9821 		}
9822 	}
9823 
9824 	if (dp->dtdo_len != 0 &&
9825 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9826 		err += efunc(dp->dtdo_len - 1,
9827 		    "expected 'ret' as last DIF instruction\n");
9828 	}
9829 
9830 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9831 		/*
9832 		 * If we're not returning by reference, the size must be either
9833 		 * 0 or the size of one of the base types.
9834 		 */
9835 		switch (dp->dtdo_rtype.dtdt_size) {
9836 		case 0:
9837 		case sizeof (uint8_t):
9838 		case sizeof (uint16_t):
9839 		case sizeof (uint32_t):
9840 		case sizeof (uint64_t):
9841 			break;
9842 
9843 		default:
9844 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9845 		}
9846 	}
9847 
9848 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9849 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9850 		dtrace_diftype_t *vt, *et;
9851 		uint_t id, ndx;
9852 
9853 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9854 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9855 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9856 			err += efunc(i, "unrecognized variable scope %d\n",
9857 			    v->dtdv_scope);
9858 			break;
9859 		}
9860 
9861 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9862 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9863 			err += efunc(i, "unrecognized variable type %d\n",
9864 			    v->dtdv_kind);
9865 			break;
9866 		}
9867 
9868 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9869 			err += efunc(i, "%d exceeds variable id limit\n", id);
9870 			break;
9871 		}
9872 
9873 		if (id < DIF_VAR_OTHER_UBASE)
9874 			continue;
9875 
9876 		/*
9877 		 * For user-defined variables, we need to check that this
9878 		 * definition is identical to any previous definition that we
9879 		 * encountered.
9880 		 */
9881 		ndx = id - DIF_VAR_OTHER_UBASE;
9882 
9883 		switch (v->dtdv_scope) {
9884 		case DIFV_SCOPE_GLOBAL:
9885 			if (ndx < vstate->dtvs_nglobals) {
9886 				dtrace_statvar_t *svar;
9887 
9888 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9889 					existing = &svar->dtsv_var;
9890 			}
9891 
9892 			break;
9893 
9894 		case DIFV_SCOPE_THREAD:
9895 			if (ndx < vstate->dtvs_ntlocals)
9896 				existing = &vstate->dtvs_tlocals[ndx];
9897 			break;
9898 
9899 		case DIFV_SCOPE_LOCAL:
9900 			if (ndx < vstate->dtvs_nlocals) {
9901 				dtrace_statvar_t *svar;
9902 
9903 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9904 					existing = &svar->dtsv_var;
9905 			}
9906 
9907 			break;
9908 		}
9909 
9910 		vt = &v->dtdv_type;
9911 
9912 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9913 			if (vt->dtdt_size == 0) {
9914 				err += efunc(i, "zero-sized variable\n");
9915 				break;
9916 			}
9917 
9918 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
9919 			    vt->dtdt_size > dtrace_global_maxsize) {
9920 				err += efunc(i, "oversized by-ref global\n");
9921 				break;
9922 			}
9923 		}
9924 
9925 		if (existing == NULL || existing->dtdv_id == 0)
9926 			continue;
9927 
9928 		ASSERT(existing->dtdv_id == v->dtdv_id);
9929 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9930 
9931 		if (existing->dtdv_kind != v->dtdv_kind)
9932 			err += efunc(i, "%d changed variable kind\n", id);
9933 
9934 		et = &existing->dtdv_type;
9935 
9936 		if (vt->dtdt_flags != et->dtdt_flags) {
9937 			err += efunc(i, "%d changed variable type flags\n", id);
9938 			break;
9939 		}
9940 
9941 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9942 			err += efunc(i, "%d changed variable type size\n", id);
9943 			break;
9944 		}
9945 	}
9946 
9947 	return (err);
9948 }
9949 
9950 /*
9951  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9952  * are much more constrained than normal DIFOs.  Specifically, they may
9953  * not:
9954  *
9955  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9956  *    miscellaneous string routines
9957  * 2. Access DTrace variables other than the args[] array, and the
9958  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9959  * 3. Have thread-local variables.
9960  * 4. Have dynamic variables.
9961  */
9962 static int
9963 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9964 {
9965 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9966 	int err = 0;
9967 	uint_t pc;
9968 
9969 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9970 		dif_instr_t instr = dp->dtdo_buf[pc];
9971 
9972 		uint_t v = DIF_INSTR_VAR(instr);
9973 		uint_t subr = DIF_INSTR_SUBR(instr);
9974 		uint_t op = DIF_INSTR_OP(instr);
9975 
9976 		switch (op) {
9977 		case DIF_OP_OR:
9978 		case DIF_OP_XOR:
9979 		case DIF_OP_AND:
9980 		case DIF_OP_SLL:
9981 		case DIF_OP_SRL:
9982 		case DIF_OP_SRA:
9983 		case DIF_OP_SUB:
9984 		case DIF_OP_ADD:
9985 		case DIF_OP_MUL:
9986 		case DIF_OP_SDIV:
9987 		case DIF_OP_UDIV:
9988 		case DIF_OP_SREM:
9989 		case DIF_OP_UREM:
9990 		case DIF_OP_COPYS:
9991 		case DIF_OP_NOT:
9992 		case DIF_OP_MOV:
9993 		case DIF_OP_RLDSB:
9994 		case DIF_OP_RLDSH:
9995 		case DIF_OP_RLDSW:
9996 		case DIF_OP_RLDUB:
9997 		case DIF_OP_RLDUH:
9998 		case DIF_OP_RLDUW:
9999 		case DIF_OP_RLDX:
10000 		case DIF_OP_ULDSB:
10001 		case DIF_OP_ULDSH:
10002 		case DIF_OP_ULDSW:
10003 		case DIF_OP_ULDUB:
10004 		case DIF_OP_ULDUH:
10005 		case DIF_OP_ULDUW:
10006 		case DIF_OP_ULDX:
10007 		case DIF_OP_STB:
10008 		case DIF_OP_STH:
10009 		case DIF_OP_STW:
10010 		case DIF_OP_STX:
10011 		case DIF_OP_ALLOCS:
10012 		case DIF_OP_CMP:
10013 		case DIF_OP_SCMP:
10014 		case DIF_OP_TST:
10015 		case DIF_OP_BA:
10016 		case DIF_OP_BE:
10017 		case DIF_OP_BNE:
10018 		case DIF_OP_BG:
10019 		case DIF_OP_BGU:
10020 		case DIF_OP_BGE:
10021 		case DIF_OP_BGEU:
10022 		case DIF_OP_BL:
10023 		case DIF_OP_BLU:
10024 		case DIF_OP_BLE:
10025 		case DIF_OP_BLEU:
10026 		case DIF_OP_RET:
10027 		case DIF_OP_NOP:
10028 		case DIF_OP_POPTS:
10029 		case DIF_OP_FLUSHTS:
10030 		case DIF_OP_SETX:
10031 		case DIF_OP_SETS:
10032 		case DIF_OP_LDGA:
10033 		case DIF_OP_LDLS:
10034 		case DIF_OP_STGS:
10035 		case DIF_OP_STLS:
10036 		case DIF_OP_PUSHTR:
10037 		case DIF_OP_PUSHTV:
10038 			break;
10039 
10040 		case DIF_OP_LDGS:
10041 			if (v >= DIF_VAR_OTHER_UBASE)
10042 				break;
10043 
10044 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10045 				break;
10046 
10047 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10048 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10049 			    v == DIF_VAR_EXECARGS ||
10050 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10051 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10052 				break;
10053 
10054 			err += efunc(pc, "illegal variable %u\n", v);
10055 			break;
10056 
10057 		case DIF_OP_LDTA:
10058 		case DIF_OP_LDTS:
10059 		case DIF_OP_LDGAA:
10060 		case DIF_OP_LDTAA:
10061 			err += efunc(pc, "illegal dynamic variable load\n");
10062 			break;
10063 
10064 		case DIF_OP_STTS:
10065 		case DIF_OP_STGAA:
10066 		case DIF_OP_STTAA:
10067 			err += efunc(pc, "illegal dynamic variable store\n");
10068 			break;
10069 
10070 		case DIF_OP_CALL:
10071 			if (subr == DIF_SUBR_ALLOCA ||
10072 			    subr == DIF_SUBR_BCOPY ||
10073 			    subr == DIF_SUBR_COPYIN ||
10074 			    subr == DIF_SUBR_COPYINTO ||
10075 			    subr == DIF_SUBR_COPYINSTR ||
10076 			    subr == DIF_SUBR_INDEX ||
10077 			    subr == DIF_SUBR_INET_NTOA ||
10078 			    subr == DIF_SUBR_INET_NTOA6 ||
10079 			    subr == DIF_SUBR_INET_NTOP ||
10080 			    subr == DIF_SUBR_JSON ||
10081 			    subr == DIF_SUBR_LLTOSTR ||
10082 			    subr == DIF_SUBR_STRTOLL ||
10083 			    subr == DIF_SUBR_RINDEX ||
10084 			    subr == DIF_SUBR_STRCHR ||
10085 			    subr == DIF_SUBR_STRJOIN ||
10086 			    subr == DIF_SUBR_STRRCHR ||
10087 			    subr == DIF_SUBR_STRSTR ||
10088 			    subr == DIF_SUBR_HTONS ||
10089 			    subr == DIF_SUBR_HTONL ||
10090 			    subr == DIF_SUBR_HTONLL ||
10091 			    subr == DIF_SUBR_NTOHS ||
10092 			    subr == DIF_SUBR_NTOHL ||
10093 			    subr == DIF_SUBR_NTOHLL ||
10094 			    subr == DIF_SUBR_MEMREF ||
10095 #ifndef illumos
10096 			    subr == DIF_SUBR_MEMSTR ||
10097 #endif
10098 			    subr == DIF_SUBR_TYPEREF)
10099 				break;
10100 
10101 			err += efunc(pc, "invalid subr %u\n", subr);
10102 			break;
10103 
10104 		default:
10105 			err += efunc(pc, "invalid opcode %u\n",
10106 			    DIF_INSTR_OP(instr));
10107 		}
10108 	}
10109 
10110 	return (err);
10111 }
10112 
10113 /*
10114  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10115  * basis; 0 if not.
10116  */
10117 static int
10118 dtrace_difo_cacheable(dtrace_difo_t *dp)
10119 {
10120 	int i;
10121 
10122 	if (dp == NULL)
10123 		return (0);
10124 
10125 	for (i = 0; i < dp->dtdo_varlen; i++) {
10126 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10127 
10128 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10129 			continue;
10130 
10131 		switch (v->dtdv_id) {
10132 		case DIF_VAR_CURTHREAD:
10133 		case DIF_VAR_PID:
10134 		case DIF_VAR_TID:
10135 		case DIF_VAR_EXECARGS:
10136 		case DIF_VAR_EXECNAME:
10137 		case DIF_VAR_ZONENAME:
10138 			break;
10139 
10140 		default:
10141 			return (0);
10142 		}
10143 	}
10144 
10145 	/*
10146 	 * This DIF object may be cacheable.  Now we need to look for any
10147 	 * array loading instructions, any memory loading instructions, or
10148 	 * any stores to thread-local variables.
10149 	 */
10150 	for (i = 0; i < dp->dtdo_len; i++) {
10151 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10152 
10153 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10154 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10155 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10156 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10157 			return (0);
10158 	}
10159 
10160 	return (1);
10161 }
10162 
10163 static void
10164 dtrace_difo_hold(dtrace_difo_t *dp)
10165 {
10166 	int i;
10167 
10168 	ASSERT(MUTEX_HELD(&dtrace_lock));
10169 
10170 	dp->dtdo_refcnt++;
10171 	ASSERT(dp->dtdo_refcnt != 0);
10172 
10173 	/*
10174 	 * We need to check this DIF object for references to the variable
10175 	 * DIF_VAR_VTIMESTAMP.
10176 	 */
10177 	for (i = 0; i < dp->dtdo_varlen; i++) {
10178 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10179 
10180 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10181 			continue;
10182 
10183 		if (dtrace_vtime_references++ == 0)
10184 			dtrace_vtime_enable();
10185 	}
10186 }
10187 
10188 /*
10189  * This routine calculates the dynamic variable chunksize for a given DIF
10190  * object.  The calculation is not fool-proof, and can probably be tricked by
10191  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10192  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10193  * if a dynamic variable size exceeds the chunksize.
10194  */
10195 static void
10196 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10197 {
10198 	uint64_t sval = 0;
10199 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10200 	const dif_instr_t *text = dp->dtdo_buf;
10201 	uint_t pc, srd = 0;
10202 	uint_t ttop = 0;
10203 	size_t size, ksize;
10204 	uint_t id, i;
10205 
10206 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10207 		dif_instr_t instr = text[pc];
10208 		uint_t op = DIF_INSTR_OP(instr);
10209 		uint_t rd = DIF_INSTR_RD(instr);
10210 		uint_t r1 = DIF_INSTR_R1(instr);
10211 		uint_t nkeys = 0;
10212 		uchar_t scope = 0;
10213 
10214 		dtrace_key_t *key = tupregs;
10215 
10216 		switch (op) {
10217 		case DIF_OP_SETX:
10218 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10219 			srd = rd;
10220 			continue;
10221 
10222 		case DIF_OP_STTS:
10223 			key = &tupregs[DIF_DTR_NREGS];
10224 			key[0].dttk_size = 0;
10225 			key[1].dttk_size = 0;
10226 			nkeys = 2;
10227 			scope = DIFV_SCOPE_THREAD;
10228 			break;
10229 
10230 		case DIF_OP_STGAA:
10231 		case DIF_OP_STTAA:
10232 			nkeys = ttop;
10233 
10234 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10235 				key[nkeys++].dttk_size = 0;
10236 
10237 			key[nkeys++].dttk_size = 0;
10238 
10239 			if (op == DIF_OP_STTAA) {
10240 				scope = DIFV_SCOPE_THREAD;
10241 			} else {
10242 				scope = DIFV_SCOPE_GLOBAL;
10243 			}
10244 
10245 			break;
10246 
10247 		case DIF_OP_PUSHTR:
10248 			if (ttop == DIF_DTR_NREGS)
10249 				return;
10250 
10251 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10252 				/*
10253 				 * If the register for the size of the "pushtr"
10254 				 * is %r0 (or the value is 0) and the type is
10255 				 * a string, we'll use the system-wide default
10256 				 * string size.
10257 				 */
10258 				tupregs[ttop++].dttk_size =
10259 				    dtrace_strsize_default;
10260 			} else {
10261 				if (srd == 0)
10262 					return;
10263 
10264 				tupregs[ttop++].dttk_size = sval;
10265 			}
10266 
10267 			break;
10268 
10269 		case DIF_OP_PUSHTV:
10270 			if (ttop == DIF_DTR_NREGS)
10271 				return;
10272 
10273 			tupregs[ttop++].dttk_size = 0;
10274 			break;
10275 
10276 		case DIF_OP_FLUSHTS:
10277 			ttop = 0;
10278 			break;
10279 
10280 		case DIF_OP_POPTS:
10281 			if (ttop != 0)
10282 				ttop--;
10283 			break;
10284 		}
10285 
10286 		sval = 0;
10287 		srd = 0;
10288 
10289 		if (nkeys == 0)
10290 			continue;
10291 
10292 		/*
10293 		 * We have a dynamic variable allocation; calculate its size.
10294 		 */
10295 		for (ksize = 0, i = 0; i < nkeys; i++)
10296 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10297 
10298 		size = sizeof (dtrace_dynvar_t);
10299 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10300 		size += ksize;
10301 
10302 		/*
10303 		 * Now we need to determine the size of the stored data.
10304 		 */
10305 		id = DIF_INSTR_VAR(instr);
10306 
10307 		for (i = 0; i < dp->dtdo_varlen; i++) {
10308 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10309 
10310 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10311 				size += v->dtdv_type.dtdt_size;
10312 				break;
10313 			}
10314 		}
10315 
10316 		if (i == dp->dtdo_varlen)
10317 			return;
10318 
10319 		/*
10320 		 * We have the size.  If this is larger than the chunk size
10321 		 * for our dynamic variable state, reset the chunk size.
10322 		 */
10323 		size = P2ROUNDUP(size, sizeof (uint64_t));
10324 
10325 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10326 			vstate->dtvs_dynvars.dtds_chunksize = size;
10327 	}
10328 }
10329 
10330 static void
10331 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10332 {
10333 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10334 	uint_t id;
10335 
10336 	ASSERT(MUTEX_HELD(&dtrace_lock));
10337 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10338 
10339 	for (i = 0; i < dp->dtdo_varlen; i++) {
10340 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10341 		dtrace_statvar_t *svar, ***svarp = NULL;
10342 		size_t dsize = 0;
10343 		uint8_t scope = v->dtdv_scope;
10344 		int *np = NULL;
10345 
10346 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10347 			continue;
10348 
10349 		id -= DIF_VAR_OTHER_UBASE;
10350 
10351 		switch (scope) {
10352 		case DIFV_SCOPE_THREAD:
10353 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10354 				dtrace_difv_t *tlocals;
10355 
10356 				if ((ntlocals = (otlocals << 1)) == 0)
10357 					ntlocals = 1;
10358 
10359 				osz = otlocals * sizeof (dtrace_difv_t);
10360 				nsz = ntlocals * sizeof (dtrace_difv_t);
10361 
10362 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10363 
10364 				if (osz != 0) {
10365 					bcopy(vstate->dtvs_tlocals,
10366 					    tlocals, osz);
10367 					kmem_free(vstate->dtvs_tlocals, osz);
10368 				}
10369 
10370 				vstate->dtvs_tlocals = tlocals;
10371 				vstate->dtvs_ntlocals = ntlocals;
10372 			}
10373 
10374 			vstate->dtvs_tlocals[id] = *v;
10375 			continue;
10376 
10377 		case DIFV_SCOPE_LOCAL:
10378 			np = &vstate->dtvs_nlocals;
10379 			svarp = &vstate->dtvs_locals;
10380 
10381 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10382 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10383 				    sizeof (uint64_t));
10384 			else
10385 				dsize = NCPU * sizeof (uint64_t);
10386 
10387 			break;
10388 
10389 		case DIFV_SCOPE_GLOBAL:
10390 			np = &vstate->dtvs_nglobals;
10391 			svarp = &vstate->dtvs_globals;
10392 
10393 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10394 				dsize = v->dtdv_type.dtdt_size +
10395 				    sizeof (uint64_t);
10396 
10397 			break;
10398 
10399 		default:
10400 			ASSERT(0);
10401 		}
10402 
10403 		while (id >= (oldsvars = *np)) {
10404 			dtrace_statvar_t **statics;
10405 			int newsvars, oldsize, newsize;
10406 
10407 			if ((newsvars = (oldsvars << 1)) == 0)
10408 				newsvars = 1;
10409 
10410 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10411 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10412 
10413 			statics = kmem_zalloc(newsize, KM_SLEEP);
10414 
10415 			if (oldsize != 0) {
10416 				bcopy(*svarp, statics, oldsize);
10417 				kmem_free(*svarp, oldsize);
10418 			}
10419 
10420 			*svarp = statics;
10421 			*np = newsvars;
10422 		}
10423 
10424 		if ((svar = (*svarp)[id]) == NULL) {
10425 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10426 			svar->dtsv_var = *v;
10427 
10428 			if ((svar->dtsv_size = dsize) != 0) {
10429 				svar->dtsv_data = (uint64_t)(uintptr_t)
10430 				    kmem_zalloc(dsize, KM_SLEEP);
10431 			}
10432 
10433 			(*svarp)[id] = svar;
10434 		}
10435 
10436 		svar->dtsv_refcnt++;
10437 	}
10438 
10439 	dtrace_difo_chunksize(dp, vstate);
10440 	dtrace_difo_hold(dp);
10441 }
10442 
10443 static dtrace_difo_t *
10444 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10445 {
10446 	dtrace_difo_t *new;
10447 	size_t sz;
10448 
10449 	ASSERT(dp->dtdo_buf != NULL);
10450 	ASSERT(dp->dtdo_refcnt != 0);
10451 
10452 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10453 
10454 	ASSERT(dp->dtdo_buf != NULL);
10455 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10456 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10457 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10458 	new->dtdo_len = dp->dtdo_len;
10459 
10460 	if (dp->dtdo_strtab != NULL) {
10461 		ASSERT(dp->dtdo_strlen != 0);
10462 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10463 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10464 		new->dtdo_strlen = dp->dtdo_strlen;
10465 	}
10466 
10467 	if (dp->dtdo_inttab != NULL) {
10468 		ASSERT(dp->dtdo_intlen != 0);
10469 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10470 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10471 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10472 		new->dtdo_intlen = dp->dtdo_intlen;
10473 	}
10474 
10475 	if (dp->dtdo_vartab != NULL) {
10476 		ASSERT(dp->dtdo_varlen != 0);
10477 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10478 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10479 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10480 		new->dtdo_varlen = dp->dtdo_varlen;
10481 	}
10482 
10483 	dtrace_difo_init(new, vstate);
10484 	return (new);
10485 }
10486 
10487 static void
10488 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10489 {
10490 	int i;
10491 
10492 	ASSERT(dp->dtdo_refcnt == 0);
10493 
10494 	for (i = 0; i < dp->dtdo_varlen; i++) {
10495 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10496 		dtrace_statvar_t *svar, **svarp = NULL;
10497 		uint_t id;
10498 		uint8_t scope = v->dtdv_scope;
10499 		int *np = NULL;
10500 
10501 		switch (scope) {
10502 		case DIFV_SCOPE_THREAD:
10503 			continue;
10504 
10505 		case DIFV_SCOPE_LOCAL:
10506 			np = &vstate->dtvs_nlocals;
10507 			svarp = vstate->dtvs_locals;
10508 			break;
10509 
10510 		case DIFV_SCOPE_GLOBAL:
10511 			np = &vstate->dtvs_nglobals;
10512 			svarp = vstate->dtvs_globals;
10513 			break;
10514 
10515 		default:
10516 			ASSERT(0);
10517 		}
10518 
10519 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10520 			continue;
10521 
10522 		id -= DIF_VAR_OTHER_UBASE;
10523 		ASSERT(id < *np);
10524 
10525 		svar = svarp[id];
10526 		ASSERT(svar != NULL);
10527 		ASSERT(svar->dtsv_refcnt > 0);
10528 
10529 		if (--svar->dtsv_refcnt > 0)
10530 			continue;
10531 
10532 		if (svar->dtsv_size != 0) {
10533 			ASSERT(svar->dtsv_data != 0);
10534 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10535 			    svar->dtsv_size);
10536 		}
10537 
10538 		kmem_free(svar, sizeof (dtrace_statvar_t));
10539 		svarp[id] = NULL;
10540 	}
10541 
10542 	if (dp->dtdo_buf != NULL)
10543 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10544 	if (dp->dtdo_inttab != NULL)
10545 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10546 	if (dp->dtdo_strtab != NULL)
10547 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10548 	if (dp->dtdo_vartab != NULL)
10549 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10550 
10551 	kmem_free(dp, sizeof (dtrace_difo_t));
10552 }
10553 
10554 static void
10555 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10556 {
10557 	int i;
10558 
10559 	ASSERT(MUTEX_HELD(&dtrace_lock));
10560 	ASSERT(dp->dtdo_refcnt != 0);
10561 
10562 	for (i = 0; i < dp->dtdo_varlen; i++) {
10563 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10564 
10565 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10566 			continue;
10567 
10568 		ASSERT(dtrace_vtime_references > 0);
10569 		if (--dtrace_vtime_references == 0)
10570 			dtrace_vtime_disable();
10571 	}
10572 
10573 	if (--dp->dtdo_refcnt == 0)
10574 		dtrace_difo_destroy(dp, vstate);
10575 }
10576 
10577 /*
10578  * DTrace Format Functions
10579  */
10580 static uint16_t
10581 dtrace_format_add(dtrace_state_t *state, char *str)
10582 {
10583 	char *fmt, **new;
10584 	uint16_t ndx, len = strlen(str) + 1;
10585 
10586 	fmt = kmem_zalloc(len, KM_SLEEP);
10587 	bcopy(str, fmt, len);
10588 
10589 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10590 		if (state->dts_formats[ndx] == NULL) {
10591 			state->dts_formats[ndx] = fmt;
10592 			return (ndx + 1);
10593 		}
10594 	}
10595 
10596 	if (state->dts_nformats == USHRT_MAX) {
10597 		/*
10598 		 * This is only likely if a denial-of-service attack is being
10599 		 * attempted.  As such, it's okay to fail silently here.
10600 		 */
10601 		kmem_free(fmt, len);
10602 		return (0);
10603 	}
10604 
10605 	/*
10606 	 * For simplicity, we always resize the formats array to be exactly the
10607 	 * number of formats.
10608 	 */
10609 	ndx = state->dts_nformats++;
10610 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10611 
10612 	if (state->dts_formats != NULL) {
10613 		ASSERT(ndx != 0);
10614 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10615 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10616 	}
10617 
10618 	state->dts_formats = new;
10619 	state->dts_formats[ndx] = fmt;
10620 
10621 	return (ndx + 1);
10622 }
10623 
10624 static void
10625 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10626 {
10627 	char *fmt;
10628 
10629 	ASSERT(state->dts_formats != NULL);
10630 	ASSERT(format <= state->dts_nformats);
10631 	ASSERT(state->dts_formats[format - 1] != NULL);
10632 
10633 	fmt = state->dts_formats[format - 1];
10634 	kmem_free(fmt, strlen(fmt) + 1);
10635 	state->dts_formats[format - 1] = NULL;
10636 }
10637 
10638 static void
10639 dtrace_format_destroy(dtrace_state_t *state)
10640 {
10641 	int i;
10642 
10643 	if (state->dts_nformats == 0) {
10644 		ASSERT(state->dts_formats == NULL);
10645 		return;
10646 	}
10647 
10648 	ASSERT(state->dts_formats != NULL);
10649 
10650 	for (i = 0; i < state->dts_nformats; i++) {
10651 		char *fmt = state->dts_formats[i];
10652 
10653 		if (fmt == NULL)
10654 			continue;
10655 
10656 		kmem_free(fmt, strlen(fmt) + 1);
10657 	}
10658 
10659 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10660 	state->dts_nformats = 0;
10661 	state->dts_formats = NULL;
10662 }
10663 
10664 /*
10665  * DTrace Predicate Functions
10666  */
10667 static dtrace_predicate_t *
10668 dtrace_predicate_create(dtrace_difo_t *dp)
10669 {
10670 	dtrace_predicate_t *pred;
10671 
10672 	ASSERT(MUTEX_HELD(&dtrace_lock));
10673 	ASSERT(dp->dtdo_refcnt != 0);
10674 
10675 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10676 	pred->dtp_difo = dp;
10677 	pred->dtp_refcnt = 1;
10678 
10679 	if (!dtrace_difo_cacheable(dp))
10680 		return (pred);
10681 
10682 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10683 		/*
10684 		 * This is only theoretically possible -- we have had 2^32
10685 		 * cacheable predicates on this machine.  We cannot allow any
10686 		 * more predicates to become cacheable:  as unlikely as it is,
10687 		 * there may be a thread caching a (now stale) predicate cache
10688 		 * ID. (N.B.: the temptation is being successfully resisted to
10689 		 * have this cmn_err() "Holy shit -- we executed this code!")
10690 		 */
10691 		return (pred);
10692 	}
10693 
10694 	pred->dtp_cacheid = dtrace_predcache_id++;
10695 
10696 	return (pred);
10697 }
10698 
10699 static void
10700 dtrace_predicate_hold(dtrace_predicate_t *pred)
10701 {
10702 	ASSERT(MUTEX_HELD(&dtrace_lock));
10703 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10704 	ASSERT(pred->dtp_refcnt > 0);
10705 
10706 	pred->dtp_refcnt++;
10707 }
10708 
10709 static void
10710 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10711 {
10712 	dtrace_difo_t *dp = pred->dtp_difo;
10713 
10714 	ASSERT(MUTEX_HELD(&dtrace_lock));
10715 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10716 	ASSERT(pred->dtp_refcnt > 0);
10717 
10718 	if (--pred->dtp_refcnt == 0) {
10719 		dtrace_difo_release(pred->dtp_difo, vstate);
10720 		kmem_free(pred, sizeof (dtrace_predicate_t));
10721 	}
10722 }
10723 
10724 /*
10725  * DTrace Action Description Functions
10726  */
10727 static dtrace_actdesc_t *
10728 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10729     uint64_t uarg, uint64_t arg)
10730 {
10731 	dtrace_actdesc_t *act;
10732 
10733 #ifdef illumos
10734 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10735 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10736 #endif
10737 
10738 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10739 	act->dtad_kind = kind;
10740 	act->dtad_ntuple = ntuple;
10741 	act->dtad_uarg = uarg;
10742 	act->dtad_arg = arg;
10743 	act->dtad_refcnt = 1;
10744 
10745 	return (act);
10746 }
10747 
10748 static void
10749 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10750 {
10751 	ASSERT(act->dtad_refcnt >= 1);
10752 	act->dtad_refcnt++;
10753 }
10754 
10755 static void
10756 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10757 {
10758 	dtrace_actkind_t kind = act->dtad_kind;
10759 	dtrace_difo_t *dp;
10760 
10761 	ASSERT(act->dtad_refcnt >= 1);
10762 
10763 	if (--act->dtad_refcnt != 0)
10764 		return;
10765 
10766 	if ((dp = act->dtad_difo) != NULL)
10767 		dtrace_difo_release(dp, vstate);
10768 
10769 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10770 		char *str = (char *)(uintptr_t)act->dtad_arg;
10771 
10772 #ifdef illumos
10773 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10774 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10775 #endif
10776 
10777 		if (str != NULL)
10778 			kmem_free(str, strlen(str) + 1);
10779 	}
10780 
10781 	kmem_free(act, sizeof (dtrace_actdesc_t));
10782 }
10783 
10784 /*
10785  * DTrace ECB Functions
10786  */
10787 static dtrace_ecb_t *
10788 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10789 {
10790 	dtrace_ecb_t *ecb;
10791 	dtrace_epid_t epid;
10792 
10793 	ASSERT(MUTEX_HELD(&dtrace_lock));
10794 
10795 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10796 	ecb->dte_predicate = NULL;
10797 	ecb->dte_probe = probe;
10798 
10799 	/*
10800 	 * The default size is the size of the default action: recording
10801 	 * the header.
10802 	 */
10803 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10804 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10805 
10806 	epid = state->dts_epid++;
10807 
10808 	if (epid - 1 >= state->dts_necbs) {
10809 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10810 		int necbs = state->dts_necbs << 1;
10811 
10812 		ASSERT(epid == state->dts_necbs + 1);
10813 
10814 		if (necbs == 0) {
10815 			ASSERT(oecbs == NULL);
10816 			necbs = 1;
10817 		}
10818 
10819 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10820 
10821 		if (oecbs != NULL)
10822 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10823 
10824 		dtrace_membar_producer();
10825 		state->dts_ecbs = ecbs;
10826 
10827 		if (oecbs != NULL) {
10828 			/*
10829 			 * If this state is active, we must dtrace_sync()
10830 			 * before we can free the old dts_ecbs array:  we're
10831 			 * coming in hot, and there may be active ring
10832 			 * buffer processing (which indexes into the dts_ecbs
10833 			 * array) on another CPU.
10834 			 */
10835 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10836 				dtrace_sync();
10837 
10838 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10839 		}
10840 
10841 		dtrace_membar_producer();
10842 		state->dts_necbs = necbs;
10843 	}
10844 
10845 	ecb->dte_state = state;
10846 
10847 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10848 	dtrace_membar_producer();
10849 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10850 
10851 	return (ecb);
10852 }
10853 
10854 static void
10855 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10856 {
10857 	dtrace_probe_t *probe = ecb->dte_probe;
10858 
10859 	ASSERT(MUTEX_HELD(&cpu_lock));
10860 	ASSERT(MUTEX_HELD(&dtrace_lock));
10861 	ASSERT(ecb->dte_next == NULL);
10862 
10863 	if (probe == NULL) {
10864 		/*
10865 		 * This is the NULL probe -- there's nothing to do.
10866 		 */
10867 		return;
10868 	}
10869 
10870 	if (probe->dtpr_ecb == NULL) {
10871 		dtrace_provider_t *prov = probe->dtpr_provider;
10872 
10873 		/*
10874 		 * We're the first ECB on this probe.
10875 		 */
10876 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10877 
10878 		if (ecb->dte_predicate != NULL)
10879 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10880 
10881 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10882 		    probe->dtpr_id, probe->dtpr_arg);
10883 	} else {
10884 		/*
10885 		 * This probe is already active.  Swing the last pointer to
10886 		 * point to the new ECB, and issue a dtrace_sync() to assure
10887 		 * that all CPUs have seen the change.
10888 		 */
10889 		ASSERT(probe->dtpr_ecb_last != NULL);
10890 		probe->dtpr_ecb_last->dte_next = ecb;
10891 		probe->dtpr_ecb_last = ecb;
10892 		probe->dtpr_predcache = 0;
10893 
10894 		dtrace_sync();
10895 	}
10896 }
10897 
10898 static void
10899 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10900 {
10901 	dtrace_action_t *act;
10902 	uint32_t curneeded = UINT32_MAX;
10903 	uint32_t aggbase = UINT32_MAX;
10904 
10905 	/*
10906 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10907 	 * we always record it first.)
10908 	 */
10909 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10910 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10911 
10912 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10913 		dtrace_recdesc_t *rec = &act->dta_rec;
10914 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10915 
10916 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10917 		    rec->dtrd_alignment);
10918 
10919 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10920 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10921 
10922 			ASSERT(rec->dtrd_size != 0);
10923 			ASSERT(agg->dtag_first != NULL);
10924 			ASSERT(act->dta_prev->dta_intuple);
10925 			ASSERT(aggbase != UINT32_MAX);
10926 			ASSERT(curneeded != UINT32_MAX);
10927 
10928 			agg->dtag_base = aggbase;
10929 
10930 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10931 			rec->dtrd_offset = curneeded;
10932 			curneeded += rec->dtrd_size;
10933 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10934 
10935 			aggbase = UINT32_MAX;
10936 			curneeded = UINT32_MAX;
10937 		} else if (act->dta_intuple) {
10938 			if (curneeded == UINT32_MAX) {
10939 				/*
10940 				 * This is the first record in a tuple.  Align
10941 				 * curneeded to be at offset 4 in an 8-byte
10942 				 * aligned block.
10943 				 */
10944 				ASSERT(act->dta_prev == NULL ||
10945 				    !act->dta_prev->dta_intuple);
10946 				ASSERT3U(aggbase, ==, UINT32_MAX);
10947 				curneeded = P2PHASEUP(ecb->dte_size,
10948 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10949 
10950 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10951 				ASSERT(IS_P2ALIGNED(aggbase,
10952 				    sizeof (uint64_t)));
10953 			}
10954 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10955 			rec->dtrd_offset = curneeded;
10956 			curneeded += rec->dtrd_size;
10957 		} else {
10958 			/* tuples must be followed by an aggregation */
10959 			ASSERT(act->dta_prev == NULL ||
10960 			    !act->dta_prev->dta_intuple);
10961 
10962 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10963 			    rec->dtrd_alignment);
10964 			rec->dtrd_offset = ecb->dte_size;
10965 			ecb->dte_size += rec->dtrd_size;
10966 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10967 		}
10968 	}
10969 
10970 	if ((act = ecb->dte_action) != NULL &&
10971 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10972 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10973 		/*
10974 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10975 		 * actions store no data; set the size to 0.
10976 		 */
10977 		ecb->dte_size = 0;
10978 	}
10979 
10980 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10981 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10982 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10983 	    ecb->dte_needed);
10984 }
10985 
10986 static dtrace_action_t *
10987 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10988 {
10989 	dtrace_aggregation_t *agg;
10990 	size_t size = sizeof (uint64_t);
10991 	int ntuple = desc->dtad_ntuple;
10992 	dtrace_action_t *act;
10993 	dtrace_recdesc_t *frec;
10994 	dtrace_aggid_t aggid;
10995 	dtrace_state_t *state = ecb->dte_state;
10996 
10997 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10998 	agg->dtag_ecb = ecb;
10999 
11000 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11001 
11002 	switch (desc->dtad_kind) {
11003 	case DTRACEAGG_MIN:
11004 		agg->dtag_initial = INT64_MAX;
11005 		agg->dtag_aggregate = dtrace_aggregate_min;
11006 		break;
11007 
11008 	case DTRACEAGG_MAX:
11009 		agg->dtag_initial = INT64_MIN;
11010 		agg->dtag_aggregate = dtrace_aggregate_max;
11011 		break;
11012 
11013 	case DTRACEAGG_COUNT:
11014 		agg->dtag_aggregate = dtrace_aggregate_count;
11015 		break;
11016 
11017 	case DTRACEAGG_QUANTIZE:
11018 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11019 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11020 		    sizeof (uint64_t);
11021 		break;
11022 
11023 	case DTRACEAGG_LQUANTIZE: {
11024 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11025 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11026 
11027 		agg->dtag_initial = desc->dtad_arg;
11028 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11029 
11030 		if (step == 0 || levels == 0)
11031 			goto err;
11032 
11033 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11034 		break;
11035 	}
11036 
11037 	case DTRACEAGG_LLQUANTIZE: {
11038 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11039 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11040 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11041 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11042 		int64_t v;
11043 
11044 		agg->dtag_initial = desc->dtad_arg;
11045 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11046 
11047 		if (factor < 2 || low >= high || nsteps < factor)
11048 			goto err;
11049 
11050 		/*
11051 		 * Now check that the number of steps evenly divides a power
11052 		 * of the factor.  (This assures both integer bucket size and
11053 		 * linearity within each magnitude.)
11054 		 */
11055 		for (v = factor; v < nsteps; v *= factor)
11056 			continue;
11057 
11058 		if ((v % nsteps) || (nsteps % factor))
11059 			goto err;
11060 
11061 		size = (dtrace_aggregate_llquantize_bucket(factor,
11062 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11063 		break;
11064 	}
11065 
11066 	case DTRACEAGG_AVG:
11067 		agg->dtag_aggregate = dtrace_aggregate_avg;
11068 		size = sizeof (uint64_t) * 2;
11069 		break;
11070 
11071 	case DTRACEAGG_STDDEV:
11072 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11073 		size = sizeof (uint64_t) * 4;
11074 		break;
11075 
11076 	case DTRACEAGG_SUM:
11077 		agg->dtag_aggregate = dtrace_aggregate_sum;
11078 		break;
11079 
11080 	default:
11081 		goto err;
11082 	}
11083 
11084 	agg->dtag_action.dta_rec.dtrd_size = size;
11085 
11086 	if (ntuple == 0)
11087 		goto err;
11088 
11089 	/*
11090 	 * We must make sure that we have enough actions for the n-tuple.
11091 	 */
11092 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11093 		if (DTRACEACT_ISAGG(act->dta_kind))
11094 			break;
11095 
11096 		if (--ntuple == 0) {
11097 			/*
11098 			 * This is the action with which our n-tuple begins.
11099 			 */
11100 			agg->dtag_first = act;
11101 			goto success;
11102 		}
11103 	}
11104 
11105 	/*
11106 	 * This n-tuple is short by ntuple elements.  Return failure.
11107 	 */
11108 	ASSERT(ntuple != 0);
11109 err:
11110 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11111 	return (NULL);
11112 
11113 success:
11114 	/*
11115 	 * If the last action in the tuple has a size of zero, it's actually
11116 	 * an expression argument for the aggregating action.
11117 	 */
11118 	ASSERT(ecb->dte_action_last != NULL);
11119 	act = ecb->dte_action_last;
11120 
11121 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11122 		ASSERT(act->dta_difo != NULL);
11123 
11124 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11125 			agg->dtag_hasarg = 1;
11126 	}
11127 
11128 	/*
11129 	 * We need to allocate an id for this aggregation.
11130 	 */
11131 #ifdef illumos
11132 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11133 	    VM_BESTFIT | VM_SLEEP);
11134 #else
11135 	aggid = alloc_unr(state->dts_aggid_arena);
11136 #endif
11137 
11138 	if (aggid - 1 >= state->dts_naggregations) {
11139 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11140 		dtrace_aggregation_t **aggs;
11141 		int naggs = state->dts_naggregations << 1;
11142 		int onaggs = state->dts_naggregations;
11143 
11144 		ASSERT(aggid == state->dts_naggregations + 1);
11145 
11146 		if (naggs == 0) {
11147 			ASSERT(oaggs == NULL);
11148 			naggs = 1;
11149 		}
11150 
11151 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11152 
11153 		if (oaggs != NULL) {
11154 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11155 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11156 		}
11157 
11158 		state->dts_aggregations = aggs;
11159 		state->dts_naggregations = naggs;
11160 	}
11161 
11162 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11163 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11164 
11165 	frec = &agg->dtag_first->dta_rec;
11166 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11167 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11168 
11169 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11170 		ASSERT(!act->dta_intuple);
11171 		act->dta_intuple = 1;
11172 	}
11173 
11174 	return (&agg->dtag_action);
11175 }
11176 
11177 static void
11178 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11179 {
11180 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11181 	dtrace_state_t *state = ecb->dte_state;
11182 	dtrace_aggid_t aggid = agg->dtag_id;
11183 
11184 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11185 #ifdef illumos
11186 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11187 #else
11188 	free_unr(state->dts_aggid_arena, aggid);
11189 #endif
11190 
11191 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11192 	state->dts_aggregations[aggid - 1] = NULL;
11193 
11194 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11195 }
11196 
11197 static int
11198 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11199 {
11200 	dtrace_action_t *action, *last;
11201 	dtrace_difo_t *dp = desc->dtad_difo;
11202 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11203 	uint16_t format = 0;
11204 	dtrace_recdesc_t *rec;
11205 	dtrace_state_t *state = ecb->dte_state;
11206 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11207 	uint64_t arg = desc->dtad_arg;
11208 
11209 	ASSERT(MUTEX_HELD(&dtrace_lock));
11210 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11211 
11212 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11213 		/*
11214 		 * If this is an aggregating action, there must be neither
11215 		 * a speculate nor a commit on the action chain.
11216 		 */
11217 		dtrace_action_t *act;
11218 
11219 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11220 			if (act->dta_kind == DTRACEACT_COMMIT)
11221 				return (EINVAL);
11222 
11223 			if (act->dta_kind == DTRACEACT_SPECULATE)
11224 				return (EINVAL);
11225 		}
11226 
11227 		action = dtrace_ecb_aggregation_create(ecb, desc);
11228 
11229 		if (action == NULL)
11230 			return (EINVAL);
11231 	} else {
11232 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11233 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11234 		    dp != NULL && dp->dtdo_destructive)) {
11235 			state->dts_destructive = 1;
11236 		}
11237 
11238 		switch (desc->dtad_kind) {
11239 		case DTRACEACT_PRINTF:
11240 		case DTRACEACT_PRINTA:
11241 		case DTRACEACT_SYSTEM:
11242 		case DTRACEACT_FREOPEN:
11243 		case DTRACEACT_DIFEXPR:
11244 			/*
11245 			 * We know that our arg is a string -- turn it into a
11246 			 * format.
11247 			 */
11248 			if (arg == 0) {
11249 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11250 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11251 				format = 0;
11252 			} else {
11253 				ASSERT(arg != 0);
11254 #ifdef illumos
11255 				ASSERT(arg > KERNELBASE);
11256 #endif
11257 				format = dtrace_format_add(state,
11258 				    (char *)(uintptr_t)arg);
11259 			}
11260 
11261 			/*FALLTHROUGH*/
11262 		case DTRACEACT_LIBACT:
11263 		case DTRACEACT_TRACEMEM:
11264 		case DTRACEACT_TRACEMEM_DYNSIZE:
11265 			if (dp == NULL)
11266 				return (EINVAL);
11267 
11268 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11269 				break;
11270 
11271 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11272 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11273 					return (EINVAL);
11274 
11275 				size = opt[DTRACEOPT_STRSIZE];
11276 			}
11277 
11278 			break;
11279 
11280 		case DTRACEACT_STACK:
11281 			if ((nframes = arg) == 0) {
11282 				nframes = opt[DTRACEOPT_STACKFRAMES];
11283 				ASSERT(nframes > 0);
11284 				arg = nframes;
11285 			}
11286 
11287 			size = nframes * sizeof (pc_t);
11288 			break;
11289 
11290 		case DTRACEACT_JSTACK:
11291 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11292 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11293 
11294 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11295 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11296 
11297 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11298 
11299 			/*FALLTHROUGH*/
11300 		case DTRACEACT_USTACK:
11301 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11302 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11303 				strsize = DTRACE_USTACK_STRSIZE(arg);
11304 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11305 				ASSERT(nframes > 0);
11306 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11307 			}
11308 
11309 			/*
11310 			 * Save a slot for the pid.
11311 			 */
11312 			size = (nframes + 1) * sizeof (uint64_t);
11313 			size += DTRACE_USTACK_STRSIZE(arg);
11314 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11315 
11316 			break;
11317 
11318 		case DTRACEACT_SYM:
11319 		case DTRACEACT_MOD:
11320 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11321 			    sizeof (uint64_t)) ||
11322 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11323 				return (EINVAL);
11324 			break;
11325 
11326 		case DTRACEACT_USYM:
11327 		case DTRACEACT_UMOD:
11328 		case DTRACEACT_UADDR:
11329 			if (dp == NULL ||
11330 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11331 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11332 				return (EINVAL);
11333 
11334 			/*
11335 			 * We have a slot for the pid, plus a slot for the
11336 			 * argument.  To keep things simple (aligned with
11337 			 * bitness-neutral sizing), we store each as a 64-bit
11338 			 * quantity.
11339 			 */
11340 			size = 2 * sizeof (uint64_t);
11341 			break;
11342 
11343 		case DTRACEACT_STOP:
11344 		case DTRACEACT_BREAKPOINT:
11345 		case DTRACEACT_PANIC:
11346 			break;
11347 
11348 		case DTRACEACT_CHILL:
11349 		case DTRACEACT_DISCARD:
11350 		case DTRACEACT_RAISE:
11351 			if (dp == NULL)
11352 				return (EINVAL);
11353 			break;
11354 
11355 		case DTRACEACT_EXIT:
11356 			if (dp == NULL ||
11357 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11358 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11359 				return (EINVAL);
11360 			break;
11361 
11362 		case DTRACEACT_SPECULATE:
11363 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11364 				return (EINVAL);
11365 
11366 			if (dp == NULL)
11367 				return (EINVAL);
11368 
11369 			state->dts_speculates = 1;
11370 			break;
11371 
11372 		case DTRACEACT_PRINTM:
11373 		    	size = dp->dtdo_rtype.dtdt_size;
11374 			break;
11375 
11376 		case DTRACEACT_PRINTT:
11377 		    	size = dp->dtdo_rtype.dtdt_size;
11378 			break;
11379 
11380 		case DTRACEACT_COMMIT: {
11381 			dtrace_action_t *act = ecb->dte_action;
11382 
11383 			for (; act != NULL; act = act->dta_next) {
11384 				if (act->dta_kind == DTRACEACT_COMMIT)
11385 					return (EINVAL);
11386 			}
11387 
11388 			if (dp == NULL)
11389 				return (EINVAL);
11390 			break;
11391 		}
11392 
11393 		default:
11394 			return (EINVAL);
11395 		}
11396 
11397 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11398 			/*
11399 			 * If this is a data-storing action or a speculate,
11400 			 * we must be sure that there isn't a commit on the
11401 			 * action chain.
11402 			 */
11403 			dtrace_action_t *act = ecb->dte_action;
11404 
11405 			for (; act != NULL; act = act->dta_next) {
11406 				if (act->dta_kind == DTRACEACT_COMMIT)
11407 					return (EINVAL);
11408 			}
11409 		}
11410 
11411 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11412 		action->dta_rec.dtrd_size = size;
11413 	}
11414 
11415 	action->dta_refcnt = 1;
11416 	rec = &action->dta_rec;
11417 	size = rec->dtrd_size;
11418 
11419 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11420 		if (!(size & mask)) {
11421 			align = mask + 1;
11422 			break;
11423 		}
11424 	}
11425 
11426 	action->dta_kind = desc->dtad_kind;
11427 
11428 	if ((action->dta_difo = dp) != NULL)
11429 		dtrace_difo_hold(dp);
11430 
11431 	rec->dtrd_action = action->dta_kind;
11432 	rec->dtrd_arg = arg;
11433 	rec->dtrd_uarg = desc->dtad_uarg;
11434 	rec->dtrd_alignment = (uint16_t)align;
11435 	rec->dtrd_format = format;
11436 
11437 	if ((last = ecb->dte_action_last) != NULL) {
11438 		ASSERT(ecb->dte_action != NULL);
11439 		action->dta_prev = last;
11440 		last->dta_next = action;
11441 	} else {
11442 		ASSERT(ecb->dte_action == NULL);
11443 		ecb->dte_action = action;
11444 	}
11445 
11446 	ecb->dte_action_last = action;
11447 
11448 	return (0);
11449 }
11450 
11451 static void
11452 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11453 {
11454 	dtrace_action_t *act = ecb->dte_action, *next;
11455 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11456 	dtrace_difo_t *dp;
11457 	uint16_t format;
11458 
11459 	if (act != NULL && act->dta_refcnt > 1) {
11460 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11461 		act->dta_refcnt--;
11462 	} else {
11463 		for (; act != NULL; act = next) {
11464 			next = act->dta_next;
11465 			ASSERT(next != NULL || act == ecb->dte_action_last);
11466 			ASSERT(act->dta_refcnt == 1);
11467 
11468 			if ((format = act->dta_rec.dtrd_format) != 0)
11469 				dtrace_format_remove(ecb->dte_state, format);
11470 
11471 			if ((dp = act->dta_difo) != NULL)
11472 				dtrace_difo_release(dp, vstate);
11473 
11474 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11475 				dtrace_ecb_aggregation_destroy(ecb, act);
11476 			} else {
11477 				kmem_free(act, sizeof (dtrace_action_t));
11478 			}
11479 		}
11480 	}
11481 
11482 	ecb->dte_action = NULL;
11483 	ecb->dte_action_last = NULL;
11484 	ecb->dte_size = 0;
11485 }
11486 
11487 static void
11488 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11489 {
11490 	/*
11491 	 * We disable the ECB by removing it from its probe.
11492 	 */
11493 	dtrace_ecb_t *pecb, *prev = NULL;
11494 	dtrace_probe_t *probe = ecb->dte_probe;
11495 
11496 	ASSERT(MUTEX_HELD(&dtrace_lock));
11497 
11498 	if (probe == NULL) {
11499 		/*
11500 		 * This is the NULL probe; there is nothing to disable.
11501 		 */
11502 		return;
11503 	}
11504 
11505 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11506 		if (pecb == ecb)
11507 			break;
11508 		prev = pecb;
11509 	}
11510 
11511 	ASSERT(pecb != NULL);
11512 
11513 	if (prev == NULL) {
11514 		probe->dtpr_ecb = ecb->dte_next;
11515 	} else {
11516 		prev->dte_next = ecb->dte_next;
11517 	}
11518 
11519 	if (ecb == probe->dtpr_ecb_last) {
11520 		ASSERT(ecb->dte_next == NULL);
11521 		probe->dtpr_ecb_last = prev;
11522 	}
11523 
11524 	/*
11525 	 * The ECB has been disconnected from the probe; now sync to assure
11526 	 * that all CPUs have seen the change before returning.
11527 	 */
11528 	dtrace_sync();
11529 
11530 	if (probe->dtpr_ecb == NULL) {
11531 		/*
11532 		 * That was the last ECB on the probe; clear the predicate
11533 		 * cache ID for the probe, disable it and sync one more time
11534 		 * to assure that we'll never hit it again.
11535 		 */
11536 		dtrace_provider_t *prov = probe->dtpr_provider;
11537 
11538 		ASSERT(ecb->dte_next == NULL);
11539 		ASSERT(probe->dtpr_ecb_last == NULL);
11540 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11541 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11542 		    probe->dtpr_id, probe->dtpr_arg);
11543 		dtrace_sync();
11544 	} else {
11545 		/*
11546 		 * There is at least one ECB remaining on the probe.  If there
11547 		 * is _exactly_ one, set the probe's predicate cache ID to be
11548 		 * the predicate cache ID of the remaining ECB.
11549 		 */
11550 		ASSERT(probe->dtpr_ecb_last != NULL);
11551 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11552 
11553 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11554 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11555 
11556 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11557 
11558 			if (p != NULL)
11559 				probe->dtpr_predcache = p->dtp_cacheid;
11560 		}
11561 
11562 		ecb->dte_next = NULL;
11563 	}
11564 }
11565 
11566 static void
11567 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11568 {
11569 	dtrace_state_t *state = ecb->dte_state;
11570 	dtrace_vstate_t *vstate = &state->dts_vstate;
11571 	dtrace_predicate_t *pred;
11572 	dtrace_epid_t epid = ecb->dte_epid;
11573 
11574 	ASSERT(MUTEX_HELD(&dtrace_lock));
11575 	ASSERT(ecb->dte_next == NULL);
11576 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11577 
11578 	if ((pred = ecb->dte_predicate) != NULL)
11579 		dtrace_predicate_release(pred, vstate);
11580 
11581 	dtrace_ecb_action_remove(ecb);
11582 
11583 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11584 	state->dts_ecbs[epid - 1] = NULL;
11585 
11586 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11587 }
11588 
11589 static dtrace_ecb_t *
11590 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11591     dtrace_enabling_t *enab)
11592 {
11593 	dtrace_ecb_t *ecb;
11594 	dtrace_predicate_t *pred;
11595 	dtrace_actdesc_t *act;
11596 	dtrace_provider_t *prov;
11597 	dtrace_ecbdesc_t *desc = enab->dten_current;
11598 
11599 	ASSERT(MUTEX_HELD(&dtrace_lock));
11600 	ASSERT(state != NULL);
11601 
11602 	ecb = dtrace_ecb_add(state, probe);
11603 	ecb->dte_uarg = desc->dted_uarg;
11604 
11605 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11606 		dtrace_predicate_hold(pred);
11607 		ecb->dte_predicate = pred;
11608 	}
11609 
11610 	if (probe != NULL) {
11611 		/*
11612 		 * If the provider shows more leg than the consumer is old
11613 		 * enough to see, we need to enable the appropriate implicit
11614 		 * predicate bits to prevent the ecb from activating at
11615 		 * revealing times.
11616 		 *
11617 		 * Providers specifying DTRACE_PRIV_USER at register time
11618 		 * are stating that they need the /proc-style privilege
11619 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11620 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11621 		 */
11622 		prov = probe->dtpr_provider;
11623 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11624 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11625 			ecb->dte_cond |= DTRACE_COND_OWNER;
11626 
11627 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11628 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11629 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11630 
11631 		/*
11632 		 * If the provider shows us kernel innards and the user
11633 		 * is lacking sufficient privilege, enable the
11634 		 * DTRACE_COND_USERMODE implicit predicate.
11635 		 */
11636 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11637 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11638 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11639 	}
11640 
11641 	if (dtrace_ecb_create_cache != NULL) {
11642 		/*
11643 		 * If we have a cached ecb, we'll use its action list instead
11644 		 * of creating our own (saving both time and space).
11645 		 */
11646 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11647 		dtrace_action_t *act = cached->dte_action;
11648 
11649 		if (act != NULL) {
11650 			ASSERT(act->dta_refcnt > 0);
11651 			act->dta_refcnt++;
11652 			ecb->dte_action = act;
11653 			ecb->dte_action_last = cached->dte_action_last;
11654 			ecb->dte_needed = cached->dte_needed;
11655 			ecb->dte_size = cached->dte_size;
11656 			ecb->dte_alignment = cached->dte_alignment;
11657 		}
11658 
11659 		return (ecb);
11660 	}
11661 
11662 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11663 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11664 			dtrace_ecb_destroy(ecb);
11665 			return (NULL);
11666 		}
11667 	}
11668 
11669 	dtrace_ecb_resize(ecb);
11670 
11671 	return (dtrace_ecb_create_cache = ecb);
11672 }
11673 
11674 static int
11675 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11676 {
11677 	dtrace_ecb_t *ecb;
11678 	dtrace_enabling_t *enab = arg;
11679 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11680 
11681 	ASSERT(state != NULL);
11682 
11683 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11684 		/*
11685 		 * This probe was created in a generation for which this
11686 		 * enabling has previously created ECBs; we don't want to
11687 		 * enable it again, so just kick out.
11688 		 */
11689 		return (DTRACE_MATCH_NEXT);
11690 	}
11691 
11692 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11693 		return (DTRACE_MATCH_DONE);
11694 
11695 	dtrace_ecb_enable(ecb);
11696 	return (DTRACE_MATCH_NEXT);
11697 }
11698 
11699 static dtrace_ecb_t *
11700 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11701 {
11702 	dtrace_ecb_t *ecb;
11703 
11704 	ASSERT(MUTEX_HELD(&dtrace_lock));
11705 
11706 	if (id == 0 || id > state->dts_necbs)
11707 		return (NULL);
11708 
11709 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11710 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11711 
11712 	return (state->dts_ecbs[id - 1]);
11713 }
11714 
11715 static dtrace_aggregation_t *
11716 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11717 {
11718 	dtrace_aggregation_t *agg;
11719 
11720 	ASSERT(MUTEX_HELD(&dtrace_lock));
11721 
11722 	if (id == 0 || id > state->dts_naggregations)
11723 		return (NULL);
11724 
11725 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11726 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11727 	    agg->dtag_id == id);
11728 
11729 	return (state->dts_aggregations[id - 1]);
11730 }
11731 
11732 /*
11733  * DTrace Buffer Functions
11734  *
11735  * The following functions manipulate DTrace buffers.  Most of these functions
11736  * are called in the context of establishing or processing consumer state;
11737  * exceptions are explicitly noted.
11738  */
11739 
11740 /*
11741  * Note:  called from cross call context.  This function switches the two
11742  * buffers on a given CPU.  The atomicity of this operation is assured by
11743  * disabling interrupts while the actual switch takes place; the disabling of
11744  * interrupts serializes the execution with any execution of dtrace_probe() on
11745  * the same CPU.
11746  */
11747 static void
11748 dtrace_buffer_switch(dtrace_buffer_t *buf)
11749 {
11750 	caddr_t tomax = buf->dtb_tomax;
11751 	caddr_t xamot = buf->dtb_xamot;
11752 	dtrace_icookie_t cookie;
11753 	hrtime_t now;
11754 
11755 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11756 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11757 
11758 	cookie = dtrace_interrupt_disable();
11759 	now = dtrace_gethrtime();
11760 	buf->dtb_tomax = xamot;
11761 	buf->dtb_xamot = tomax;
11762 	buf->dtb_xamot_drops = buf->dtb_drops;
11763 	buf->dtb_xamot_offset = buf->dtb_offset;
11764 	buf->dtb_xamot_errors = buf->dtb_errors;
11765 	buf->dtb_xamot_flags = buf->dtb_flags;
11766 	buf->dtb_offset = 0;
11767 	buf->dtb_drops = 0;
11768 	buf->dtb_errors = 0;
11769 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11770 	buf->dtb_interval = now - buf->dtb_switched;
11771 	buf->dtb_switched = now;
11772 	dtrace_interrupt_enable(cookie);
11773 }
11774 
11775 /*
11776  * Note:  called from cross call context.  This function activates a buffer
11777  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11778  * is guaranteed by the disabling of interrupts.
11779  */
11780 static void
11781 dtrace_buffer_activate(dtrace_state_t *state)
11782 {
11783 	dtrace_buffer_t *buf;
11784 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11785 
11786 	buf = &state->dts_buffer[curcpu];
11787 
11788 	if (buf->dtb_tomax != NULL) {
11789 		/*
11790 		 * We might like to assert that the buffer is marked inactive,
11791 		 * but this isn't necessarily true:  the buffer for the CPU
11792 		 * that processes the BEGIN probe has its buffer activated
11793 		 * manually.  In this case, we take the (harmless) action
11794 		 * re-clearing the bit INACTIVE bit.
11795 		 */
11796 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11797 	}
11798 
11799 	dtrace_interrupt_enable(cookie);
11800 }
11801 
11802 static int
11803 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11804     processorid_t cpu, int *factor)
11805 {
11806 #ifdef illumos
11807 	cpu_t *cp;
11808 #endif
11809 	dtrace_buffer_t *buf;
11810 	int allocated = 0, desired = 0;
11811 
11812 #ifdef illumos
11813 	ASSERT(MUTEX_HELD(&cpu_lock));
11814 	ASSERT(MUTEX_HELD(&dtrace_lock));
11815 
11816 	*factor = 1;
11817 
11818 	if (size > dtrace_nonroot_maxsize &&
11819 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11820 		return (EFBIG);
11821 
11822 	cp = cpu_list;
11823 
11824 	do {
11825 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11826 			continue;
11827 
11828 		buf = &bufs[cp->cpu_id];
11829 
11830 		/*
11831 		 * If there is already a buffer allocated for this CPU, it
11832 		 * is only possible that this is a DR event.  In this case,
11833 		 */
11834 		if (buf->dtb_tomax != NULL) {
11835 			ASSERT(buf->dtb_size == size);
11836 			continue;
11837 		}
11838 
11839 		ASSERT(buf->dtb_xamot == NULL);
11840 
11841 		if ((buf->dtb_tomax = kmem_zalloc(size,
11842 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11843 			goto err;
11844 
11845 		buf->dtb_size = size;
11846 		buf->dtb_flags = flags;
11847 		buf->dtb_offset = 0;
11848 		buf->dtb_drops = 0;
11849 
11850 		if (flags & DTRACEBUF_NOSWITCH)
11851 			continue;
11852 
11853 		if ((buf->dtb_xamot = kmem_zalloc(size,
11854 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11855 			goto err;
11856 	} while ((cp = cp->cpu_next) != cpu_list);
11857 
11858 	return (0);
11859 
11860 err:
11861 	cp = cpu_list;
11862 
11863 	do {
11864 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11865 			continue;
11866 
11867 		buf = &bufs[cp->cpu_id];
11868 		desired += 2;
11869 
11870 		if (buf->dtb_xamot != NULL) {
11871 			ASSERT(buf->dtb_tomax != NULL);
11872 			ASSERT(buf->dtb_size == size);
11873 			kmem_free(buf->dtb_xamot, size);
11874 			allocated++;
11875 		}
11876 
11877 		if (buf->dtb_tomax != NULL) {
11878 			ASSERT(buf->dtb_size == size);
11879 			kmem_free(buf->dtb_tomax, size);
11880 			allocated++;
11881 		}
11882 
11883 		buf->dtb_tomax = NULL;
11884 		buf->dtb_xamot = NULL;
11885 		buf->dtb_size = 0;
11886 	} while ((cp = cp->cpu_next) != cpu_list);
11887 #else
11888 	int i;
11889 
11890 	*factor = 1;
11891 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
11892     defined(__mips__) || defined(__powerpc__)
11893 	/*
11894 	 * FreeBSD isn't good at limiting the amount of memory we
11895 	 * ask to malloc, so let's place a limit here before trying
11896 	 * to do something that might well end in tears at bedtime.
11897 	 */
11898 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11899 		return (ENOMEM);
11900 #endif
11901 
11902 	ASSERT(MUTEX_HELD(&dtrace_lock));
11903 	CPU_FOREACH(i) {
11904 		if (cpu != DTRACE_CPUALL && cpu != i)
11905 			continue;
11906 
11907 		buf = &bufs[i];
11908 
11909 		/*
11910 		 * If there is already a buffer allocated for this CPU, it
11911 		 * is only possible that this is a DR event.  In this case,
11912 		 * the buffer size must match our specified size.
11913 		 */
11914 		if (buf->dtb_tomax != NULL) {
11915 			ASSERT(buf->dtb_size == size);
11916 			continue;
11917 		}
11918 
11919 		ASSERT(buf->dtb_xamot == NULL);
11920 
11921 		if ((buf->dtb_tomax = kmem_zalloc(size,
11922 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11923 			goto err;
11924 
11925 		buf->dtb_size = size;
11926 		buf->dtb_flags = flags;
11927 		buf->dtb_offset = 0;
11928 		buf->dtb_drops = 0;
11929 
11930 		if (flags & DTRACEBUF_NOSWITCH)
11931 			continue;
11932 
11933 		if ((buf->dtb_xamot = kmem_zalloc(size,
11934 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11935 			goto err;
11936 	}
11937 
11938 	return (0);
11939 
11940 err:
11941 	/*
11942 	 * Error allocating memory, so free the buffers that were
11943 	 * allocated before the failed allocation.
11944 	 */
11945 	CPU_FOREACH(i) {
11946 		if (cpu != DTRACE_CPUALL && cpu != i)
11947 			continue;
11948 
11949 		buf = &bufs[i];
11950 		desired += 2;
11951 
11952 		if (buf->dtb_xamot != NULL) {
11953 			ASSERT(buf->dtb_tomax != NULL);
11954 			ASSERT(buf->dtb_size == size);
11955 			kmem_free(buf->dtb_xamot, size);
11956 			allocated++;
11957 		}
11958 
11959 		if (buf->dtb_tomax != NULL) {
11960 			ASSERT(buf->dtb_size == size);
11961 			kmem_free(buf->dtb_tomax, size);
11962 			allocated++;
11963 		}
11964 
11965 		buf->dtb_tomax = NULL;
11966 		buf->dtb_xamot = NULL;
11967 		buf->dtb_size = 0;
11968 
11969 	}
11970 #endif
11971 	*factor = desired / (allocated > 0 ? allocated : 1);
11972 
11973 	return (ENOMEM);
11974 }
11975 
11976 /*
11977  * Note:  called from probe context.  This function just increments the drop
11978  * count on a buffer.  It has been made a function to allow for the
11979  * possibility of understanding the source of mysterious drop counts.  (A
11980  * problem for which one may be particularly disappointed that DTrace cannot
11981  * be used to understand DTrace.)
11982  */
11983 static void
11984 dtrace_buffer_drop(dtrace_buffer_t *buf)
11985 {
11986 	buf->dtb_drops++;
11987 }
11988 
11989 /*
11990  * Note:  called from probe context.  This function is called to reserve space
11991  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11992  * mstate.  Returns the new offset in the buffer, or a negative value if an
11993  * error has occurred.
11994  */
11995 static intptr_t
11996 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11997     dtrace_state_t *state, dtrace_mstate_t *mstate)
11998 {
11999 	intptr_t offs = buf->dtb_offset, soffs;
12000 	intptr_t woffs;
12001 	caddr_t tomax;
12002 	size_t total;
12003 
12004 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12005 		return (-1);
12006 
12007 	if ((tomax = buf->dtb_tomax) == NULL) {
12008 		dtrace_buffer_drop(buf);
12009 		return (-1);
12010 	}
12011 
12012 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12013 		while (offs & (align - 1)) {
12014 			/*
12015 			 * Assert that our alignment is off by a number which
12016 			 * is itself sizeof (uint32_t) aligned.
12017 			 */
12018 			ASSERT(!((align - (offs & (align - 1))) &
12019 			    (sizeof (uint32_t) - 1)));
12020 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12021 			offs += sizeof (uint32_t);
12022 		}
12023 
12024 		if ((soffs = offs + needed) > buf->dtb_size) {
12025 			dtrace_buffer_drop(buf);
12026 			return (-1);
12027 		}
12028 
12029 		if (mstate == NULL)
12030 			return (offs);
12031 
12032 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12033 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12034 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12035 
12036 		return (offs);
12037 	}
12038 
12039 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12040 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12041 		    (buf->dtb_flags & DTRACEBUF_FULL))
12042 			return (-1);
12043 		goto out;
12044 	}
12045 
12046 	total = needed + (offs & (align - 1));
12047 
12048 	/*
12049 	 * For a ring buffer, life is quite a bit more complicated.  Before
12050 	 * we can store any padding, we need to adjust our wrapping offset.
12051 	 * (If we've never before wrapped or we're not about to, no adjustment
12052 	 * is required.)
12053 	 */
12054 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12055 	    offs + total > buf->dtb_size) {
12056 		woffs = buf->dtb_xamot_offset;
12057 
12058 		if (offs + total > buf->dtb_size) {
12059 			/*
12060 			 * We can't fit in the end of the buffer.  First, a
12061 			 * sanity check that we can fit in the buffer at all.
12062 			 */
12063 			if (total > buf->dtb_size) {
12064 				dtrace_buffer_drop(buf);
12065 				return (-1);
12066 			}
12067 
12068 			/*
12069 			 * We're going to be storing at the top of the buffer,
12070 			 * so now we need to deal with the wrapped offset.  We
12071 			 * only reset our wrapped offset to 0 if it is
12072 			 * currently greater than the current offset.  If it
12073 			 * is less than the current offset, it is because a
12074 			 * previous allocation induced a wrap -- but the
12075 			 * allocation didn't subsequently take the space due
12076 			 * to an error or false predicate evaluation.  In this
12077 			 * case, we'll just leave the wrapped offset alone: if
12078 			 * the wrapped offset hasn't been advanced far enough
12079 			 * for this allocation, it will be adjusted in the
12080 			 * lower loop.
12081 			 */
12082 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12083 				if (woffs >= offs)
12084 					woffs = 0;
12085 			} else {
12086 				woffs = 0;
12087 			}
12088 
12089 			/*
12090 			 * Now we know that we're going to be storing to the
12091 			 * top of the buffer and that there is room for us
12092 			 * there.  We need to clear the buffer from the current
12093 			 * offset to the end (there may be old gunk there).
12094 			 */
12095 			while (offs < buf->dtb_size)
12096 				tomax[offs++] = 0;
12097 
12098 			/*
12099 			 * We need to set our offset to zero.  And because we
12100 			 * are wrapping, we need to set the bit indicating as
12101 			 * much.  We can also adjust our needed space back
12102 			 * down to the space required by the ECB -- we know
12103 			 * that the top of the buffer is aligned.
12104 			 */
12105 			offs = 0;
12106 			total = needed;
12107 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12108 		} else {
12109 			/*
12110 			 * There is room for us in the buffer, so we simply
12111 			 * need to check the wrapped offset.
12112 			 */
12113 			if (woffs < offs) {
12114 				/*
12115 				 * The wrapped offset is less than the offset.
12116 				 * This can happen if we allocated buffer space
12117 				 * that induced a wrap, but then we didn't
12118 				 * subsequently take the space due to an error
12119 				 * or false predicate evaluation.  This is
12120 				 * okay; we know that _this_ allocation isn't
12121 				 * going to induce a wrap.  We still can't
12122 				 * reset the wrapped offset to be zero,
12123 				 * however: the space may have been trashed in
12124 				 * the previous failed probe attempt.  But at
12125 				 * least the wrapped offset doesn't need to
12126 				 * be adjusted at all...
12127 				 */
12128 				goto out;
12129 			}
12130 		}
12131 
12132 		while (offs + total > woffs) {
12133 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12134 			size_t size;
12135 
12136 			if (epid == DTRACE_EPIDNONE) {
12137 				size = sizeof (uint32_t);
12138 			} else {
12139 				ASSERT3U(epid, <=, state->dts_necbs);
12140 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12141 
12142 				size = state->dts_ecbs[epid - 1]->dte_size;
12143 			}
12144 
12145 			ASSERT(woffs + size <= buf->dtb_size);
12146 			ASSERT(size != 0);
12147 
12148 			if (woffs + size == buf->dtb_size) {
12149 				/*
12150 				 * We've reached the end of the buffer; we want
12151 				 * to set the wrapped offset to 0 and break
12152 				 * out.  However, if the offs is 0, then we're
12153 				 * in a strange edge-condition:  the amount of
12154 				 * space that we want to reserve plus the size
12155 				 * of the record that we're overwriting is
12156 				 * greater than the size of the buffer.  This
12157 				 * is problematic because if we reserve the
12158 				 * space but subsequently don't consume it (due
12159 				 * to a failed predicate or error) the wrapped
12160 				 * offset will be 0 -- yet the EPID at offset 0
12161 				 * will not be committed.  This situation is
12162 				 * relatively easy to deal with:  if we're in
12163 				 * this case, the buffer is indistinguishable
12164 				 * from one that hasn't wrapped; we need only
12165 				 * finish the job by clearing the wrapped bit,
12166 				 * explicitly setting the offset to be 0, and
12167 				 * zero'ing out the old data in the buffer.
12168 				 */
12169 				if (offs == 0) {
12170 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12171 					buf->dtb_offset = 0;
12172 					woffs = total;
12173 
12174 					while (woffs < buf->dtb_size)
12175 						tomax[woffs++] = 0;
12176 				}
12177 
12178 				woffs = 0;
12179 				break;
12180 			}
12181 
12182 			woffs += size;
12183 		}
12184 
12185 		/*
12186 		 * We have a wrapped offset.  It may be that the wrapped offset
12187 		 * has become zero -- that's okay.
12188 		 */
12189 		buf->dtb_xamot_offset = woffs;
12190 	}
12191 
12192 out:
12193 	/*
12194 	 * Now we can plow the buffer with any necessary padding.
12195 	 */
12196 	while (offs & (align - 1)) {
12197 		/*
12198 		 * Assert that our alignment is off by a number which
12199 		 * is itself sizeof (uint32_t) aligned.
12200 		 */
12201 		ASSERT(!((align - (offs & (align - 1))) &
12202 		    (sizeof (uint32_t) - 1)));
12203 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12204 		offs += sizeof (uint32_t);
12205 	}
12206 
12207 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12208 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12209 			buf->dtb_flags |= DTRACEBUF_FULL;
12210 			return (-1);
12211 		}
12212 	}
12213 
12214 	if (mstate == NULL)
12215 		return (offs);
12216 
12217 	/*
12218 	 * For ring buffers and fill buffers, the scratch space is always
12219 	 * the inactive buffer.
12220 	 */
12221 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12222 	mstate->dtms_scratch_size = buf->dtb_size;
12223 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12224 
12225 	return (offs);
12226 }
12227 
12228 static void
12229 dtrace_buffer_polish(dtrace_buffer_t *buf)
12230 {
12231 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12232 	ASSERT(MUTEX_HELD(&dtrace_lock));
12233 
12234 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12235 		return;
12236 
12237 	/*
12238 	 * We need to polish the ring buffer.  There are three cases:
12239 	 *
12240 	 * - The first (and presumably most common) is that there is no gap
12241 	 *   between the buffer offset and the wrapped offset.  In this case,
12242 	 *   there is nothing in the buffer that isn't valid data; we can
12243 	 *   mark the buffer as polished and return.
12244 	 *
12245 	 * - The second (less common than the first but still more common
12246 	 *   than the third) is that there is a gap between the buffer offset
12247 	 *   and the wrapped offset, and the wrapped offset is larger than the
12248 	 *   buffer offset.  This can happen because of an alignment issue, or
12249 	 *   can happen because of a call to dtrace_buffer_reserve() that
12250 	 *   didn't subsequently consume the buffer space.  In this case,
12251 	 *   we need to zero the data from the buffer offset to the wrapped
12252 	 *   offset.
12253 	 *
12254 	 * - The third (and least common) is that there is a gap between the
12255 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12256 	 *   _less_ than the buffer offset.  This can only happen because a
12257 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12258 	 *   was not subsequently consumed.  In this case, we need to zero the
12259 	 *   space from the offset to the end of the buffer _and_ from the
12260 	 *   top of the buffer to the wrapped offset.
12261 	 */
12262 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12263 		bzero(buf->dtb_tomax + buf->dtb_offset,
12264 		    buf->dtb_xamot_offset - buf->dtb_offset);
12265 	}
12266 
12267 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12268 		bzero(buf->dtb_tomax + buf->dtb_offset,
12269 		    buf->dtb_size - buf->dtb_offset);
12270 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12271 	}
12272 }
12273 
12274 /*
12275  * This routine determines if data generated at the specified time has likely
12276  * been entirely consumed at user-level.  This routine is called to determine
12277  * if an ECB on a defunct probe (but for an active enabling) can be safely
12278  * disabled and destroyed.
12279  */
12280 static int
12281 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12282 {
12283 	int i;
12284 
12285 	for (i = 0; i < NCPU; i++) {
12286 		dtrace_buffer_t *buf = &bufs[i];
12287 
12288 		if (buf->dtb_size == 0)
12289 			continue;
12290 
12291 		if (buf->dtb_flags & DTRACEBUF_RING)
12292 			return (0);
12293 
12294 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12295 			return (0);
12296 
12297 		if (buf->dtb_switched - buf->dtb_interval < when)
12298 			return (0);
12299 	}
12300 
12301 	return (1);
12302 }
12303 
12304 static void
12305 dtrace_buffer_free(dtrace_buffer_t *bufs)
12306 {
12307 	int i;
12308 
12309 	for (i = 0; i < NCPU; i++) {
12310 		dtrace_buffer_t *buf = &bufs[i];
12311 
12312 		if (buf->dtb_tomax == NULL) {
12313 			ASSERT(buf->dtb_xamot == NULL);
12314 			ASSERT(buf->dtb_size == 0);
12315 			continue;
12316 		}
12317 
12318 		if (buf->dtb_xamot != NULL) {
12319 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12320 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12321 		}
12322 
12323 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12324 		buf->dtb_size = 0;
12325 		buf->dtb_tomax = NULL;
12326 		buf->dtb_xamot = NULL;
12327 	}
12328 }
12329 
12330 /*
12331  * DTrace Enabling Functions
12332  */
12333 static dtrace_enabling_t *
12334 dtrace_enabling_create(dtrace_vstate_t *vstate)
12335 {
12336 	dtrace_enabling_t *enab;
12337 
12338 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12339 	enab->dten_vstate = vstate;
12340 
12341 	return (enab);
12342 }
12343 
12344 static void
12345 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12346 {
12347 	dtrace_ecbdesc_t **ndesc;
12348 	size_t osize, nsize;
12349 
12350 	/*
12351 	 * We can't add to enablings after we've enabled them, or after we've
12352 	 * retained them.
12353 	 */
12354 	ASSERT(enab->dten_probegen == 0);
12355 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12356 
12357 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12358 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12359 		return;
12360 	}
12361 
12362 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12363 
12364 	if (enab->dten_maxdesc == 0) {
12365 		enab->dten_maxdesc = 1;
12366 	} else {
12367 		enab->dten_maxdesc <<= 1;
12368 	}
12369 
12370 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12371 
12372 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12373 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12374 	bcopy(enab->dten_desc, ndesc, osize);
12375 	if (enab->dten_desc != NULL)
12376 		kmem_free(enab->dten_desc, osize);
12377 
12378 	enab->dten_desc = ndesc;
12379 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12380 }
12381 
12382 static void
12383 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12384     dtrace_probedesc_t *pd)
12385 {
12386 	dtrace_ecbdesc_t *new;
12387 	dtrace_predicate_t *pred;
12388 	dtrace_actdesc_t *act;
12389 
12390 	/*
12391 	 * We're going to create a new ECB description that matches the
12392 	 * specified ECB in every way, but has the specified probe description.
12393 	 */
12394 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12395 
12396 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12397 		dtrace_predicate_hold(pred);
12398 
12399 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12400 		dtrace_actdesc_hold(act);
12401 
12402 	new->dted_action = ecb->dted_action;
12403 	new->dted_pred = ecb->dted_pred;
12404 	new->dted_probe = *pd;
12405 	new->dted_uarg = ecb->dted_uarg;
12406 
12407 	dtrace_enabling_add(enab, new);
12408 }
12409 
12410 static void
12411 dtrace_enabling_dump(dtrace_enabling_t *enab)
12412 {
12413 	int i;
12414 
12415 	for (i = 0; i < enab->dten_ndesc; i++) {
12416 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12417 
12418 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12419 		    desc->dtpd_provider, desc->dtpd_mod,
12420 		    desc->dtpd_func, desc->dtpd_name);
12421 	}
12422 }
12423 
12424 static void
12425 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12426 {
12427 	int i;
12428 	dtrace_ecbdesc_t *ep;
12429 	dtrace_vstate_t *vstate = enab->dten_vstate;
12430 
12431 	ASSERT(MUTEX_HELD(&dtrace_lock));
12432 
12433 	for (i = 0; i < enab->dten_ndesc; i++) {
12434 		dtrace_actdesc_t *act, *next;
12435 		dtrace_predicate_t *pred;
12436 
12437 		ep = enab->dten_desc[i];
12438 
12439 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12440 			dtrace_predicate_release(pred, vstate);
12441 
12442 		for (act = ep->dted_action; act != NULL; act = next) {
12443 			next = act->dtad_next;
12444 			dtrace_actdesc_release(act, vstate);
12445 		}
12446 
12447 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12448 	}
12449 
12450 	if (enab->dten_desc != NULL)
12451 		kmem_free(enab->dten_desc,
12452 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12453 
12454 	/*
12455 	 * If this was a retained enabling, decrement the dts_nretained count
12456 	 * and take it off of the dtrace_retained list.
12457 	 */
12458 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12459 	    dtrace_retained == enab) {
12460 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12461 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12462 		enab->dten_vstate->dtvs_state->dts_nretained--;
12463 		dtrace_retained_gen++;
12464 	}
12465 
12466 	if (enab->dten_prev == NULL) {
12467 		if (dtrace_retained == enab) {
12468 			dtrace_retained = enab->dten_next;
12469 
12470 			if (dtrace_retained != NULL)
12471 				dtrace_retained->dten_prev = NULL;
12472 		}
12473 	} else {
12474 		ASSERT(enab != dtrace_retained);
12475 		ASSERT(dtrace_retained != NULL);
12476 		enab->dten_prev->dten_next = enab->dten_next;
12477 	}
12478 
12479 	if (enab->dten_next != NULL) {
12480 		ASSERT(dtrace_retained != NULL);
12481 		enab->dten_next->dten_prev = enab->dten_prev;
12482 	}
12483 
12484 	kmem_free(enab, sizeof (dtrace_enabling_t));
12485 }
12486 
12487 static int
12488 dtrace_enabling_retain(dtrace_enabling_t *enab)
12489 {
12490 	dtrace_state_t *state;
12491 
12492 	ASSERT(MUTEX_HELD(&dtrace_lock));
12493 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12494 	ASSERT(enab->dten_vstate != NULL);
12495 
12496 	state = enab->dten_vstate->dtvs_state;
12497 	ASSERT(state != NULL);
12498 
12499 	/*
12500 	 * We only allow each state to retain dtrace_retain_max enablings.
12501 	 */
12502 	if (state->dts_nretained >= dtrace_retain_max)
12503 		return (ENOSPC);
12504 
12505 	state->dts_nretained++;
12506 	dtrace_retained_gen++;
12507 
12508 	if (dtrace_retained == NULL) {
12509 		dtrace_retained = enab;
12510 		return (0);
12511 	}
12512 
12513 	enab->dten_next = dtrace_retained;
12514 	dtrace_retained->dten_prev = enab;
12515 	dtrace_retained = enab;
12516 
12517 	return (0);
12518 }
12519 
12520 static int
12521 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12522     dtrace_probedesc_t *create)
12523 {
12524 	dtrace_enabling_t *new, *enab;
12525 	int found = 0, err = ENOENT;
12526 
12527 	ASSERT(MUTEX_HELD(&dtrace_lock));
12528 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12529 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12530 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12531 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12532 
12533 	new = dtrace_enabling_create(&state->dts_vstate);
12534 
12535 	/*
12536 	 * Iterate over all retained enablings, looking for enablings that
12537 	 * match the specified state.
12538 	 */
12539 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12540 		int i;
12541 
12542 		/*
12543 		 * dtvs_state can only be NULL for helper enablings -- and
12544 		 * helper enablings can't be retained.
12545 		 */
12546 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12547 
12548 		if (enab->dten_vstate->dtvs_state != state)
12549 			continue;
12550 
12551 		/*
12552 		 * Now iterate over each probe description; we're looking for
12553 		 * an exact match to the specified probe description.
12554 		 */
12555 		for (i = 0; i < enab->dten_ndesc; i++) {
12556 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12557 			dtrace_probedesc_t *pd = &ep->dted_probe;
12558 
12559 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12560 				continue;
12561 
12562 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12563 				continue;
12564 
12565 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12566 				continue;
12567 
12568 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12569 				continue;
12570 
12571 			/*
12572 			 * We have a winning probe!  Add it to our growing
12573 			 * enabling.
12574 			 */
12575 			found = 1;
12576 			dtrace_enabling_addlike(new, ep, create);
12577 		}
12578 	}
12579 
12580 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12581 		dtrace_enabling_destroy(new);
12582 		return (err);
12583 	}
12584 
12585 	return (0);
12586 }
12587 
12588 static void
12589 dtrace_enabling_retract(dtrace_state_t *state)
12590 {
12591 	dtrace_enabling_t *enab, *next;
12592 
12593 	ASSERT(MUTEX_HELD(&dtrace_lock));
12594 
12595 	/*
12596 	 * Iterate over all retained enablings, destroy the enablings retained
12597 	 * for the specified state.
12598 	 */
12599 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12600 		next = enab->dten_next;
12601 
12602 		/*
12603 		 * dtvs_state can only be NULL for helper enablings -- and
12604 		 * helper enablings can't be retained.
12605 		 */
12606 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12607 
12608 		if (enab->dten_vstate->dtvs_state == state) {
12609 			ASSERT(state->dts_nretained > 0);
12610 			dtrace_enabling_destroy(enab);
12611 		}
12612 	}
12613 
12614 	ASSERT(state->dts_nretained == 0);
12615 }
12616 
12617 static int
12618 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12619 {
12620 	int i = 0;
12621 	int matched = 0;
12622 
12623 	ASSERT(MUTEX_HELD(&cpu_lock));
12624 	ASSERT(MUTEX_HELD(&dtrace_lock));
12625 
12626 	for (i = 0; i < enab->dten_ndesc; i++) {
12627 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12628 
12629 		enab->dten_current = ep;
12630 		enab->dten_error = 0;
12631 
12632 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12633 
12634 		if (enab->dten_error != 0) {
12635 			/*
12636 			 * If we get an error half-way through enabling the
12637 			 * probes, we kick out -- perhaps with some number of
12638 			 * them enabled.  Leaving enabled probes enabled may
12639 			 * be slightly confusing for user-level, but we expect
12640 			 * that no one will attempt to actually drive on in
12641 			 * the face of such errors.  If this is an anonymous
12642 			 * enabling (indicated with a NULL nmatched pointer),
12643 			 * we cmn_err() a message.  We aren't expecting to
12644 			 * get such an error -- such as it can exist at all,
12645 			 * it would be a result of corrupted DOF in the driver
12646 			 * properties.
12647 			 */
12648 			if (nmatched == NULL) {
12649 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12650 				    "error on %p: %d", (void *)ep,
12651 				    enab->dten_error);
12652 			}
12653 
12654 			return (enab->dten_error);
12655 		}
12656 	}
12657 
12658 	enab->dten_probegen = dtrace_probegen;
12659 	if (nmatched != NULL)
12660 		*nmatched = matched;
12661 
12662 	return (0);
12663 }
12664 
12665 static void
12666 dtrace_enabling_matchall(void)
12667 {
12668 	dtrace_enabling_t *enab;
12669 
12670 	mutex_enter(&cpu_lock);
12671 	mutex_enter(&dtrace_lock);
12672 
12673 	/*
12674 	 * Iterate over all retained enablings to see if any probes match
12675 	 * against them.  We only perform this operation on enablings for which
12676 	 * we have sufficient permissions by virtue of being in the global zone
12677 	 * or in the same zone as the DTrace client.  Because we can be called
12678 	 * after dtrace_detach() has been called, we cannot assert that there
12679 	 * are retained enablings.  We can safely load from dtrace_retained,
12680 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12681 	 * block pending our completion.
12682 	 */
12683 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12684 #ifdef illumos
12685 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12686 
12687 		if (INGLOBALZONE(curproc) ||
12688 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12689 #endif
12690 			(void) dtrace_enabling_match(enab, NULL);
12691 	}
12692 
12693 	mutex_exit(&dtrace_lock);
12694 	mutex_exit(&cpu_lock);
12695 }
12696 
12697 /*
12698  * If an enabling is to be enabled without having matched probes (that is, if
12699  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12700  * enabling must be _primed_ by creating an ECB for every ECB description.
12701  * This must be done to assure that we know the number of speculations, the
12702  * number of aggregations, the minimum buffer size needed, etc. before we
12703  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12704  * enabling any probes, we create ECBs for every ECB decription, but with a
12705  * NULL probe -- which is exactly what this function does.
12706  */
12707 static void
12708 dtrace_enabling_prime(dtrace_state_t *state)
12709 {
12710 	dtrace_enabling_t *enab;
12711 	int i;
12712 
12713 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12714 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12715 
12716 		if (enab->dten_vstate->dtvs_state != state)
12717 			continue;
12718 
12719 		/*
12720 		 * We don't want to prime an enabling more than once, lest
12721 		 * we allow a malicious user to induce resource exhaustion.
12722 		 * (The ECBs that result from priming an enabling aren't
12723 		 * leaked -- but they also aren't deallocated until the
12724 		 * consumer state is destroyed.)
12725 		 */
12726 		if (enab->dten_primed)
12727 			continue;
12728 
12729 		for (i = 0; i < enab->dten_ndesc; i++) {
12730 			enab->dten_current = enab->dten_desc[i];
12731 			(void) dtrace_probe_enable(NULL, enab);
12732 		}
12733 
12734 		enab->dten_primed = 1;
12735 	}
12736 }
12737 
12738 /*
12739  * Called to indicate that probes should be provided due to retained
12740  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12741  * must take an initial lap through the enabling calling the dtps_provide()
12742  * entry point explicitly to allow for autocreated probes.
12743  */
12744 static void
12745 dtrace_enabling_provide(dtrace_provider_t *prv)
12746 {
12747 	int i, all = 0;
12748 	dtrace_probedesc_t desc;
12749 	dtrace_genid_t gen;
12750 
12751 	ASSERT(MUTEX_HELD(&dtrace_lock));
12752 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12753 
12754 	if (prv == NULL) {
12755 		all = 1;
12756 		prv = dtrace_provider;
12757 	}
12758 
12759 	do {
12760 		dtrace_enabling_t *enab;
12761 		void *parg = prv->dtpv_arg;
12762 
12763 retry:
12764 		gen = dtrace_retained_gen;
12765 		for (enab = dtrace_retained; enab != NULL;
12766 		    enab = enab->dten_next) {
12767 			for (i = 0; i < enab->dten_ndesc; i++) {
12768 				desc = enab->dten_desc[i]->dted_probe;
12769 				mutex_exit(&dtrace_lock);
12770 				prv->dtpv_pops.dtps_provide(parg, &desc);
12771 				mutex_enter(&dtrace_lock);
12772 				/*
12773 				 * Process the retained enablings again if
12774 				 * they have changed while we weren't holding
12775 				 * dtrace_lock.
12776 				 */
12777 				if (gen != dtrace_retained_gen)
12778 					goto retry;
12779 			}
12780 		}
12781 	} while (all && (prv = prv->dtpv_next) != NULL);
12782 
12783 	mutex_exit(&dtrace_lock);
12784 	dtrace_probe_provide(NULL, all ? NULL : prv);
12785 	mutex_enter(&dtrace_lock);
12786 }
12787 
12788 /*
12789  * Called to reap ECBs that are attached to probes from defunct providers.
12790  */
12791 static void
12792 dtrace_enabling_reap(void)
12793 {
12794 	dtrace_provider_t *prov;
12795 	dtrace_probe_t *probe;
12796 	dtrace_ecb_t *ecb;
12797 	hrtime_t when;
12798 	int i;
12799 
12800 	mutex_enter(&cpu_lock);
12801 	mutex_enter(&dtrace_lock);
12802 
12803 	for (i = 0; i < dtrace_nprobes; i++) {
12804 		if ((probe = dtrace_probes[i]) == NULL)
12805 			continue;
12806 
12807 		if (probe->dtpr_ecb == NULL)
12808 			continue;
12809 
12810 		prov = probe->dtpr_provider;
12811 
12812 		if ((when = prov->dtpv_defunct) == 0)
12813 			continue;
12814 
12815 		/*
12816 		 * We have ECBs on a defunct provider:  we want to reap these
12817 		 * ECBs to allow the provider to unregister.  The destruction
12818 		 * of these ECBs must be done carefully:  if we destroy the ECB
12819 		 * and the consumer later wishes to consume an EPID that
12820 		 * corresponds to the destroyed ECB (and if the EPID metadata
12821 		 * has not been previously consumed), the consumer will abort
12822 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12823 		 * eliminate) the possibility of this, we will only destroy an
12824 		 * ECB for a defunct provider if, for the state that
12825 		 * corresponds to the ECB:
12826 		 *
12827 		 *  (a)	There is no speculative tracing (which can effectively
12828 		 *	cache an EPID for an arbitrary amount of time).
12829 		 *
12830 		 *  (b)	The principal buffers have been switched twice since the
12831 		 *	provider became defunct.
12832 		 *
12833 		 *  (c)	The aggregation buffers are of zero size or have been
12834 		 *	switched twice since the provider became defunct.
12835 		 *
12836 		 * We use dts_speculates to determine (a) and call a function
12837 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12838 		 * that as soon as we've been unable to destroy one of the ECBs
12839 		 * associated with the probe, we quit trying -- reaping is only
12840 		 * fruitful in as much as we can destroy all ECBs associated
12841 		 * with the defunct provider's probes.
12842 		 */
12843 		while ((ecb = probe->dtpr_ecb) != NULL) {
12844 			dtrace_state_t *state = ecb->dte_state;
12845 			dtrace_buffer_t *buf = state->dts_buffer;
12846 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12847 
12848 			if (state->dts_speculates)
12849 				break;
12850 
12851 			if (!dtrace_buffer_consumed(buf, when))
12852 				break;
12853 
12854 			if (!dtrace_buffer_consumed(aggbuf, when))
12855 				break;
12856 
12857 			dtrace_ecb_disable(ecb);
12858 			ASSERT(probe->dtpr_ecb != ecb);
12859 			dtrace_ecb_destroy(ecb);
12860 		}
12861 	}
12862 
12863 	mutex_exit(&dtrace_lock);
12864 	mutex_exit(&cpu_lock);
12865 }
12866 
12867 /*
12868  * DTrace DOF Functions
12869  */
12870 /*ARGSUSED*/
12871 static void
12872 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12873 {
12874 	if (dtrace_err_verbose)
12875 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12876 
12877 #ifdef DTRACE_ERRDEBUG
12878 	dtrace_errdebug(str);
12879 #endif
12880 }
12881 
12882 /*
12883  * Create DOF out of a currently enabled state.  Right now, we only create
12884  * DOF containing the run-time options -- but this could be expanded to create
12885  * complete DOF representing the enabled state.
12886  */
12887 static dof_hdr_t *
12888 dtrace_dof_create(dtrace_state_t *state)
12889 {
12890 	dof_hdr_t *dof;
12891 	dof_sec_t *sec;
12892 	dof_optdesc_t *opt;
12893 	int i, len = sizeof (dof_hdr_t) +
12894 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12895 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12896 
12897 	ASSERT(MUTEX_HELD(&dtrace_lock));
12898 
12899 	dof = kmem_zalloc(len, KM_SLEEP);
12900 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12901 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12902 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12903 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12904 
12905 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12906 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12907 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12908 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12909 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12910 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12911 
12912 	dof->dofh_flags = 0;
12913 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12914 	dof->dofh_secsize = sizeof (dof_sec_t);
12915 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12916 	dof->dofh_secoff = sizeof (dof_hdr_t);
12917 	dof->dofh_loadsz = len;
12918 	dof->dofh_filesz = len;
12919 	dof->dofh_pad = 0;
12920 
12921 	/*
12922 	 * Fill in the option section header...
12923 	 */
12924 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12925 	sec->dofs_type = DOF_SECT_OPTDESC;
12926 	sec->dofs_align = sizeof (uint64_t);
12927 	sec->dofs_flags = DOF_SECF_LOAD;
12928 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12929 
12930 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12931 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12932 
12933 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12934 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12935 
12936 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12937 		opt[i].dofo_option = i;
12938 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12939 		opt[i].dofo_value = state->dts_options[i];
12940 	}
12941 
12942 	return (dof);
12943 }
12944 
12945 static dof_hdr_t *
12946 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12947 {
12948 	dof_hdr_t hdr, *dof;
12949 
12950 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12951 
12952 	/*
12953 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12954 	 */
12955 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12956 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12957 		*errp = EFAULT;
12958 		return (NULL);
12959 	}
12960 
12961 	/*
12962 	 * Now we'll allocate the entire DOF and copy it in -- provided
12963 	 * that the length isn't outrageous.
12964 	 */
12965 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12966 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12967 		*errp = E2BIG;
12968 		return (NULL);
12969 	}
12970 
12971 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12972 		dtrace_dof_error(&hdr, "invalid load size");
12973 		*errp = EINVAL;
12974 		return (NULL);
12975 	}
12976 
12977 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12978 
12979 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12980 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12981 		kmem_free(dof, hdr.dofh_loadsz);
12982 		*errp = EFAULT;
12983 		return (NULL);
12984 	}
12985 
12986 	return (dof);
12987 }
12988 
12989 #ifndef illumos
12990 static __inline uchar_t
12991 dtrace_dof_char(char c) {
12992 	switch (c) {
12993 	case '0':
12994 	case '1':
12995 	case '2':
12996 	case '3':
12997 	case '4':
12998 	case '5':
12999 	case '6':
13000 	case '7':
13001 	case '8':
13002 	case '9':
13003 		return (c - '0');
13004 	case 'A':
13005 	case 'B':
13006 	case 'C':
13007 	case 'D':
13008 	case 'E':
13009 	case 'F':
13010 		return (c - 'A' + 10);
13011 	case 'a':
13012 	case 'b':
13013 	case 'c':
13014 	case 'd':
13015 	case 'e':
13016 	case 'f':
13017 		return (c - 'a' + 10);
13018 	}
13019 	/* Should not reach here. */
13020 	return (0);
13021 }
13022 #endif
13023 
13024 static dof_hdr_t *
13025 dtrace_dof_property(const char *name)
13026 {
13027 	uchar_t *buf;
13028 	uint64_t loadsz;
13029 	unsigned int len, i;
13030 	dof_hdr_t *dof;
13031 
13032 #ifdef illumos
13033 	/*
13034 	 * Unfortunately, array of values in .conf files are always (and
13035 	 * only) interpreted to be integer arrays.  We must read our DOF
13036 	 * as an integer array, and then squeeze it into a byte array.
13037 	 */
13038 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13039 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13040 		return (NULL);
13041 
13042 	for (i = 0; i < len; i++)
13043 		buf[i] = (uchar_t)(((int *)buf)[i]);
13044 
13045 	if (len < sizeof (dof_hdr_t)) {
13046 		ddi_prop_free(buf);
13047 		dtrace_dof_error(NULL, "truncated header");
13048 		return (NULL);
13049 	}
13050 
13051 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13052 		ddi_prop_free(buf);
13053 		dtrace_dof_error(NULL, "truncated DOF");
13054 		return (NULL);
13055 	}
13056 
13057 	if (loadsz >= dtrace_dof_maxsize) {
13058 		ddi_prop_free(buf);
13059 		dtrace_dof_error(NULL, "oversized DOF");
13060 		return (NULL);
13061 	}
13062 
13063 	dof = kmem_alloc(loadsz, KM_SLEEP);
13064 	bcopy(buf, dof, loadsz);
13065 	ddi_prop_free(buf);
13066 #else
13067 	char *p;
13068 	char *p_env;
13069 
13070 	if ((p_env = kern_getenv(name)) == NULL)
13071 		return (NULL);
13072 
13073 	len = strlen(p_env) / 2;
13074 
13075 	buf = kmem_alloc(len, KM_SLEEP);
13076 
13077 	dof = (dof_hdr_t *) buf;
13078 
13079 	p = p_env;
13080 
13081 	for (i = 0; i < len; i++) {
13082 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13083 		     dtrace_dof_char(p[1]);
13084 		p += 2;
13085 	}
13086 
13087 	freeenv(p_env);
13088 
13089 	if (len < sizeof (dof_hdr_t)) {
13090 		kmem_free(buf, 0);
13091 		dtrace_dof_error(NULL, "truncated header");
13092 		return (NULL);
13093 	}
13094 
13095 	if (len < (loadsz = dof->dofh_loadsz)) {
13096 		kmem_free(buf, 0);
13097 		dtrace_dof_error(NULL, "truncated DOF");
13098 		return (NULL);
13099 	}
13100 
13101 	if (loadsz >= dtrace_dof_maxsize) {
13102 		kmem_free(buf, 0);
13103 		dtrace_dof_error(NULL, "oversized DOF");
13104 		return (NULL);
13105 	}
13106 #endif
13107 
13108 	return (dof);
13109 }
13110 
13111 static void
13112 dtrace_dof_destroy(dof_hdr_t *dof)
13113 {
13114 	kmem_free(dof, dof->dofh_loadsz);
13115 }
13116 
13117 /*
13118  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13119  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13120  * a type other than DOF_SECT_NONE is specified, the header is checked against
13121  * this type and NULL is returned if the types do not match.
13122  */
13123 static dof_sec_t *
13124 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13125 {
13126 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13127 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13128 
13129 	if (i >= dof->dofh_secnum) {
13130 		dtrace_dof_error(dof, "referenced section index is invalid");
13131 		return (NULL);
13132 	}
13133 
13134 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13135 		dtrace_dof_error(dof, "referenced section is not loadable");
13136 		return (NULL);
13137 	}
13138 
13139 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13140 		dtrace_dof_error(dof, "referenced section is the wrong type");
13141 		return (NULL);
13142 	}
13143 
13144 	return (sec);
13145 }
13146 
13147 static dtrace_probedesc_t *
13148 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13149 {
13150 	dof_probedesc_t *probe;
13151 	dof_sec_t *strtab;
13152 	uintptr_t daddr = (uintptr_t)dof;
13153 	uintptr_t str;
13154 	size_t size;
13155 
13156 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13157 		dtrace_dof_error(dof, "invalid probe section");
13158 		return (NULL);
13159 	}
13160 
13161 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13162 		dtrace_dof_error(dof, "bad alignment in probe description");
13163 		return (NULL);
13164 	}
13165 
13166 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13167 		dtrace_dof_error(dof, "truncated probe description");
13168 		return (NULL);
13169 	}
13170 
13171 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13172 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13173 
13174 	if (strtab == NULL)
13175 		return (NULL);
13176 
13177 	str = daddr + strtab->dofs_offset;
13178 	size = strtab->dofs_size;
13179 
13180 	if (probe->dofp_provider >= strtab->dofs_size) {
13181 		dtrace_dof_error(dof, "corrupt probe provider");
13182 		return (NULL);
13183 	}
13184 
13185 	(void) strncpy(desc->dtpd_provider,
13186 	    (char *)(str + probe->dofp_provider),
13187 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13188 
13189 	if (probe->dofp_mod >= strtab->dofs_size) {
13190 		dtrace_dof_error(dof, "corrupt probe module");
13191 		return (NULL);
13192 	}
13193 
13194 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13195 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13196 
13197 	if (probe->dofp_func >= strtab->dofs_size) {
13198 		dtrace_dof_error(dof, "corrupt probe function");
13199 		return (NULL);
13200 	}
13201 
13202 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13203 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13204 
13205 	if (probe->dofp_name >= strtab->dofs_size) {
13206 		dtrace_dof_error(dof, "corrupt probe name");
13207 		return (NULL);
13208 	}
13209 
13210 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13211 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13212 
13213 	return (desc);
13214 }
13215 
13216 static dtrace_difo_t *
13217 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13218     cred_t *cr)
13219 {
13220 	dtrace_difo_t *dp;
13221 	size_t ttl = 0;
13222 	dof_difohdr_t *dofd;
13223 	uintptr_t daddr = (uintptr_t)dof;
13224 	size_t max = dtrace_difo_maxsize;
13225 	int i, l, n;
13226 
13227 	static const struct {
13228 		int section;
13229 		int bufoffs;
13230 		int lenoffs;
13231 		int entsize;
13232 		int align;
13233 		const char *msg;
13234 	} difo[] = {
13235 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13236 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13237 		sizeof (dif_instr_t), "multiple DIF sections" },
13238 
13239 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13240 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13241 		sizeof (uint64_t), "multiple integer tables" },
13242 
13243 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13244 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13245 		sizeof (char), "multiple string tables" },
13246 
13247 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13248 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13249 		sizeof (uint_t), "multiple variable tables" },
13250 
13251 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13252 	};
13253 
13254 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13255 		dtrace_dof_error(dof, "invalid DIFO header section");
13256 		return (NULL);
13257 	}
13258 
13259 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13260 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13261 		return (NULL);
13262 	}
13263 
13264 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13265 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13266 		dtrace_dof_error(dof, "bad size in DIFO header");
13267 		return (NULL);
13268 	}
13269 
13270 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13271 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13272 
13273 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13274 	dp->dtdo_rtype = dofd->dofd_rtype;
13275 
13276 	for (l = 0; l < n; l++) {
13277 		dof_sec_t *subsec;
13278 		void **bufp;
13279 		uint32_t *lenp;
13280 
13281 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13282 		    dofd->dofd_links[l])) == NULL)
13283 			goto err; /* invalid section link */
13284 
13285 		if (ttl + subsec->dofs_size > max) {
13286 			dtrace_dof_error(dof, "exceeds maximum size");
13287 			goto err;
13288 		}
13289 
13290 		ttl += subsec->dofs_size;
13291 
13292 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13293 			if (subsec->dofs_type != difo[i].section)
13294 				continue;
13295 
13296 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13297 				dtrace_dof_error(dof, "section not loaded");
13298 				goto err;
13299 			}
13300 
13301 			if (subsec->dofs_align != difo[i].align) {
13302 				dtrace_dof_error(dof, "bad alignment");
13303 				goto err;
13304 			}
13305 
13306 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13307 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13308 
13309 			if (*bufp != NULL) {
13310 				dtrace_dof_error(dof, difo[i].msg);
13311 				goto err;
13312 			}
13313 
13314 			if (difo[i].entsize != subsec->dofs_entsize) {
13315 				dtrace_dof_error(dof, "entry size mismatch");
13316 				goto err;
13317 			}
13318 
13319 			if (subsec->dofs_entsize != 0 &&
13320 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13321 				dtrace_dof_error(dof, "corrupt entry size");
13322 				goto err;
13323 			}
13324 
13325 			*lenp = subsec->dofs_size;
13326 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13327 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13328 			    *bufp, subsec->dofs_size);
13329 
13330 			if (subsec->dofs_entsize != 0)
13331 				*lenp /= subsec->dofs_entsize;
13332 
13333 			break;
13334 		}
13335 
13336 		/*
13337 		 * If we encounter a loadable DIFO sub-section that is not
13338 		 * known to us, assume this is a broken program and fail.
13339 		 */
13340 		if (difo[i].section == DOF_SECT_NONE &&
13341 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13342 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13343 			goto err;
13344 		}
13345 	}
13346 
13347 	if (dp->dtdo_buf == NULL) {
13348 		/*
13349 		 * We can't have a DIF object without DIF text.
13350 		 */
13351 		dtrace_dof_error(dof, "missing DIF text");
13352 		goto err;
13353 	}
13354 
13355 	/*
13356 	 * Before we validate the DIF object, run through the variable table
13357 	 * looking for the strings -- if any of their size are under, we'll set
13358 	 * their size to be the system-wide default string size.  Note that
13359 	 * this should _not_ happen if the "strsize" option has been set --
13360 	 * in this case, the compiler should have set the size to reflect the
13361 	 * setting of the option.
13362 	 */
13363 	for (i = 0; i < dp->dtdo_varlen; i++) {
13364 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13365 		dtrace_diftype_t *t = &v->dtdv_type;
13366 
13367 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13368 			continue;
13369 
13370 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13371 			t->dtdt_size = dtrace_strsize_default;
13372 	}
13373 
13374 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13375 		goto err;
13376 
13377 	dtrace_difo_init(dp, vstate);
13378 	return (dp);
13379 
13380 err:
13381 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13382 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13383 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13384 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13385 
13386 	kmem_free(dp, sizeof (dtrace_difo_t));
13387 	return (NULL);
13388 }
13389 
13390 static dtrace_predicate_t *
13391 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13392     cred_t *cr)
13393 {
13394 	dtrace_difo_t *dp;
13395 
13396 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13397 		return (NULL);
13398 
13399 	return (dtrace_predicate_create(dp));
13400 }
13401 
13402 static dtrace_actdesc_t *
13403 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13404     cred_t *cr)
13405 {
13406 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13407 	dof_actdesc_t *desc;
13408 	dof_sec_t *difosec;
13409 	size_t offs;
13410 	uintptr_t daddr = (uintptr_t)dof;
13411 	uint64_t arg;
13412 	dtrace_actkind_t kind;
13413 
13414 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13415 		dtrace_dof_error(dof, "invalid action section");
13416 		return (NULL);
13417 	}
13418 
13419 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13420 		dtrace_dof_error(dof, "truncated action description");
13421 		return (NULL);
13422 	}
13423 
13424 	if (sec->dofs_align != sizeof (uint64_t)) {
13425 		dtrace_dof_error(dof, "bad alignment in action description");
13426 		return (NULL);
13427 	}
13428 
13429 	if (sec->dofs_size < sec->dofs_entsize) {
13430 		dtrace_dof_error(dof, "section entry size exceeds total size");
13431 		return (NULL);
13432 	}
13433 
13434 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13435 		dtrace_dof_error(dof, "bad entry size in action description");
13436 		return (NULL);
13437 	}
13438 
13439 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13440 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13441 		return (NULL);
13442 	}
13443 
13444 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13445 		desc = (dof_actdesc_t *)(daddr +
13446 		    (uintptr_t)sec->dofs_offset + offs);
13447 		kind = (dtrace_actkind_t)desc->dofa_kind;
13448 
13449 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13450 		    (kind != DTRACEACT_PRINTA ||
13451 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13452 		    (kind == DTRACEACT_DIFEXPR &&
13453 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13454 			dof_sec_t *strtab;
13455 			char *str, *fmt;
13456 			uint64_t i;
13457 
13458 			/*
13459 			 * The argument to these actions is an index into the
13460 			 * DOF string table.  For printf()-like actions, this
13461 			 * is the format string.  For print(), this is the
13462 			 * CTF type of the expression result.
13463 			 */
13464 			if ((strtab = dtrace_dof_sect(dof,
13465 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13466 				goto err;
13467 
13468 			str = (char *)((uintptr_t)dof +
13469 			    (uintptr_t)strtab->dofs_offset);
13470 
13471 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13472 				if (str[i] == '\0')
13473 					break;
13474 			}
13475 
13476 			if (i >= strtab->dofs_size) {
13477 				dtrace_dof_error(dof, "bogus format string");
13478 				goto err;
13479 			}
13480 
13481 			if (i == desc->dofa_arg) {
13482 				dtrace_dof_error(dof, "empty format string");
13483 				goto err;
13484 			}
13485 
13486 			i -= desc->dofa_arg;
13487 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13488 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13489 			arg = (uint64_t)(uintptr_t)fmt;
13490 		} else {
13491 			if (kind == DTRACEACT_PRINTA) {
13492 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13493 				arg = 0;
13494 			} else {
13495 				arg = desc->dofa_arg;
13496 			}
13497 		}
13498 
13499 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13500 		    desc->dofa_uarg, arg);
13501 
13502 		if (last != NULL) {
13503 			last->dtad_next = act;
13504 		} else {
13505 			first = act;
13506 		}
13507 
13508 		last = act;
13509 
13510 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13511 			continue;
13512 
13513 		if ((difosec = dtrace_dof_sect(dof,
13514 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13515 			goto err;
13516 
13517 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13518 
13519 		if (act->dtad_difo == NULL)
13520 			goto err;
13521 	}
13522 
13523 	ASSERT(first != NULL);
13524 	return (first);
13525 
13526 err:
13527 	for (act = first; act != NULL; act = next) {
13528 		next = act->dtad_next;
13529 		dtrace_actdesc_release(act, vstate);
13530 	}
13531 
13532 	return (NULL);
13533 }
13534 
13535 static dtrace_ecbdesc_t *
13536 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13537     cred_t *cr)
13538 {
13539 	dtrace_ecbdesc_t *ep;
13540 	dof_ecbdesc_t *ecb;
13541 	dtrace_probedesc_t *desc;
13542 	dtrace_predicate_t *pred = NULL;
13543 
13544 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13545 		dtrace_dof_error(dof, "truncated ECB description");
13546 		return (NULL);
13547 	}
13548 
13549 	if (sec->dofs_align != sizeof (uint64_t)) {
13550 		dtrace_dof_error(dof, "bad alignment in ECB description");
13551 		return (NULL);
13552 	}
13553 
13554 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13555 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13556 
13557 	if (sec == NULL)
13558 		return (NULL);
13559 
13560 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13561 	ep->dted_uarg = ecb->dofe_uarg;
13562 	desc = &ep->dted_probe;
13563 
13564 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13565 		goto err;
13566 
13567 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13568 		if ((sec = dtrace_dof_sect(dof,
13569 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13570 			goto err;
13571 
13572 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13573 			goto err;
13574 
13575 		ep->dted_pred.dtpdd_predicate = pred;
13576 	}
13577 
13578 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13579 		if ((sec = dtrace_dof_sect(dof,
13580 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13581 			goto err;
13582 
13583 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13584 
13585 		if (ep->dted_action == NULL)
13586 			goto err;
13587 	}
13588 
13589 	return (ep);
13590 
13591 err:
13592 	if (pred != NULL)
13593 		dtrace_predicate_release(pred, vstate);
13594 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13595 	return (NULL);
13596 }
13597 
13598 /*
13599  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13600  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13601  * site of any user SETX relocations to account for load object base address.
13602  * In the future, if we need other relocations, this function can be extended.
13603  */
13604 static int
13605 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13606 {
13607 	uintptr_t daddr = (uintptr_t)dof;
13608 	dof_relohdr_t *dofr =
13609 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13610 	dof_sec_t *ss, *rs, *ts;
13611 	dof_relodesc_t *r;
13612 	uint_t i, n;
13613 
13614 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13615 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13616 		dtrace_dof_error(dof, "invalid relocation header");
13617 		return (-1);
13618 	}
13619 
13620 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13621 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13622 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13623 
13624 	if (ss == NULL || rs == NULL || ts == NULL)
13625 		return (-1); /* dtrace_dof_error() has been called already */
13626 
13627 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13628 	    rs->dofs_align != sizeof (uint64_t)) {
13629 		dtrace_dof_error(dof, "invalid relocation section");
13630 		return (-1);
13631 	}
13632 
13633 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13634 	n = rs->dofs_size / rs->dofs_entsize;
13635 
13636 	for (i = 0; i < n; i++) {
13637 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13638 
13639 		switch (r->dofr_type) {
13640 		case DOF_RELO_NONE:
13641 			break;
13642 		case DOF_RELO_SETX:
13643 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13644 			    sizeof (uint64_t) > ts->dofs_size) {
13645 				dtrace_dof_error(dof, "bad relocation offset");
13646 				return (-1);
13647 			}
13648 
13649 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13650 				dtrace_dof_error(dof, "misaligned setx relo");
13651 				return (-1);
13652 			}
13653 
13654 			*(uint64_t *)taddr += ubase;
13655 			break;
13656 		default:
13657 			dtrace_dof_error(dof, "invalid relocation type");
13658 			return (-1);
13659 		}
13660 
13661 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13662 	}
13663 
13664 	return (0);
13665 }
13666 
13667 /*
13668  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13669  * header:  it should be at the front of a memory region that is at least
13670  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13671  * size.  It need not be validated in any other way.
13672  */
13673 static int
13674 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13675     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13676 {
13677 	uint64_t len = dof->dofh_loadsz, seclen;
13678 	uintptr_t daddr = (uintptr_t)dof;
13679 	dtrace_ecbdesc_t *ep;
13680 	dtrace_enabling_t *enab;
13681 	uint_t i;
13682 
13683 	ASSERT(MUTEX_HELD(&dtrace_lock));
13684 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13685 
13686 	/*
13687 	 * Check the DOF header identification bytes.  In addition to checking
13688 	 * valid settings, we also verify that unused bits/bytes are zeroed so
13689 	 * we can use them later without fear of regressing existing binaries.
13690 	 */
13691 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13692 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13693 		dtrace_dof_error(dof, "DOF magic string mismatch");
13694 		return (-1);
13695 	}
13696 
13697 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13698 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13699 		dtrace_dof_error(dof, "DOF has invalid data model");
13700 		return (-1);
13701 	}
13702 
13703 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13704 		dtrace_dof_error(dof, "DOF encoding mismatch");
13705 		return (-1);
13706 	}
13707 
13708 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13709 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13710 		dtrace_dof_error(dof, "DOF version mismatch");
13711 		return (-1);
13712 	}
13713 
13714 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13715 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13716 		return (-1);
13717 	}
13718 
13719 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13720 		dtrace_dof_error(dof, "DOF uses too many integer registers");
13721 		return (-1);
13722 	}
13723 
13724 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13725 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13726 		return (-1);
13727 	}
13728 
13729 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13730 		if (dof->dofh_ident[i] != 0) {
13731 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13732 			return (-1);
13733 		}
13734 	}
13735 
13736 	if (dof->dofh_flags & ~DOF_FL_VALID) {
13737 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13738 		return (-1);
13739 	}
13740 
13741 	if (dof->dofh_secsize == 0) {
13742 		dtrace_dof_error(dof, "zero section header size");
13743 		return (-1);
13744 	}
13745 
13746 	/*
13747 	 * Check that the section headers don't exceed the amount of DOF
13748 	 * data.  Note that we cast the section size and number of sections
13749 	 * to uint64_t's to prevent possible overflow in the multiplication.
13750 	 */
13751 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13752 
13753 	if (dof->dofh_secoff > len || seclen > len ||
13754 	    dof->dofh_secoff + seclen > len) {
13755 		dtrace_dof_error(dof, "truncated section headers");
13756 		return (-1);
13757 	}
13758 
13759 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13760 		dtrace_dof_error(dof, "misaligned section headers");
13761 		return (-1);
13762 	}
13763 
13764 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13765 		dtrace_dof_error(dof, "misaligned section size");
13766 		return (-1);
13767 	}
13768 
13769 	/*
13770 	 * Take an initial pass through the section headers to be sure that
13771 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13772 	 * set, do not permit sections relating to providers, probes, or args.
13773 	 */
13774 	for (i = 0; i < dof->dofh_secnum; i++) {
13775 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13776 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13777 
13778 		if (noprobes) {
13779 			switch (sec->dofs_type) {
13780 			case DOF_SECT_PROVIDER:
13781 			case DOF_SECT_PROBES:
13782 			case DOF_SECT_PRARGS:
13783 			case DOF_SECT_PROFFS:
13784 				dtrace_dof_error(dof, "illegal sections "
13785 				    "for enabling");
13786 				return (-1);
13787 			}
13788 		}
13789 
13790 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13791 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13792 			dtrace_dof_error(dof, "loadable section with load "
13793 			    "flag unset");
13794 			return (-1);
13795 		}
13796 
13797 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13798 			continue; /* just ignore non-loadable sections */
13799 
13800 		if (!ISP2(sec->dofs_align)) {
13801 			dtrace_dof_error(dof, "bad section alignment");
13802 			return (-1);
13803 		}
13804 
13805 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13806 			dtrace_dof_error(dof, "misaligned section");
13807 			return (-1);
13808 		}
13809 
13810 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13811 		    sec->dofs_offset + sec->dofs_size > len) {
13812 			dtrace_dof_error(dof, "corrupt section header");
13813 			return (-1);
13814 		}
13815 
13816 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13817 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13818 			dtrace_dof_error(dof, "non-terminating string table");
13819 			return (-1);
13820 		}
13821 	}
13822 
13823 	/*
13824 	 * Take a second pass through the sections and locate and perform any
13825 	 * relocations that are present.  We do this after the first pass to
13826 	 * be sure that all sections have had their headers validated.
13827 	 */
13828 	for (i = 0; i < dof->dofh_secnum; i++) {
13829 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13830 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13831 
13832 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13833 			continue; /* skip sections that are not loadable */
13834 
13835 		switch (sec->dofs_type) {
13836 		case DOF_SECT_URELHDR:
13837 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13838 				return (-1);
13839 			break;
13840 		}
13841 	}
13842 
13843 	if ((enab = *enabp) == NULL)
13844 		enab = *enabp = dtrace_enabling_create(vstate);
13845 
13846 	for (i = 0; i < dof->dofh_secnum; i++) {
13847 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13848 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13849 
13850 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13851 			continue;
13852 
13853 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13854 			dtrace_enabling_destroy(enab);
13855 			*enabp = NULL;
13856 			return (-1);
13857 		}
13858 
13859 		dtrace_enabling_add(enab, ep);
13860 	}
13861 
13862 	return (0);
13863 }
13864 
13865 /*
13866  * Process DOF for any options.  This routine assumes that the DOF has been
13867  * at least processed by dtrace_dof_slurp().
13868  */
13869 static int
13870 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13871 {
13872 	int i, rval;
13873 	uint32_t entsize;
13874 	size_t offs;
13875 	dof_optdesc_t *desc;
13876 
13877 	for (i = 0; i < dof->dofh_secnum; i++) {
13878 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13879 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13880 
13881 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13882 			continue;
13883 
13884 		if (sec->dofs_align != sizeof (uint64_t)) {
13885 			dtrace_dof_error(dof, "bad alignment in "
13886 			    "option description");
13887 			return (EINVAL);
13888 		}
13889 
13890 		if ((entsize = sec->dofs_entsize) == 0) {
13891 			dtrace_dof_error(dof, "zeroed option entry size");
13892 			return (EINVAL);
13893 		}
13894 
13895 		if (entsize < sizeof (dof_optdesc_t)) {
13896 			dtrace_dof_error(dof, "bad option entry size");
13897 			return (EINVAL);
13898 		}
13899 
13900 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13901 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13902 			    (uintptr_t)sec->dofs_offset + offs);
13903 
13904 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13905 				dtrace_dof_error(dof, "non-zero option string");
13906 				return (EINVAL);
13907 			}
13908 
13909 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13910 				dtrace_dof_error(dof, "unset option");
13911 				return (EINVAL);
13912 			}
13913 
13914 			if ((rval = dtrace_state_option(state,
13915 			    desc->dofo_option, desc->dofo_value)) != 0) {
13916 				dtrace_dof_error(dof, "rejected option");
13917 				return (rval);
13918 			}
13919 		}
13920 	}
13921 
13922 	return (0);
13923 }
13924 
13925 /*
13926  * DTrace Consumer State Functions
13927  */
13928 static int
13929 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13930 {
13931 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13932 	void *base;
13933 	uintptr_t limit;
13934 	dtrace_dynvar_t *dvar, *next, *start;
13935 	int i;
13936 
13937 	ASSERT(MUTEX_HELD(&dtrace_lock));
13938 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13939 
13940 	bzero(dstate, sizeof (dtrace_dstate_t));
13941 
13942 	if ((dstate->dtds_chunksize = chunksize) == 0)
13943 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13944 
13945 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13946 		size = min;
13947 
13948 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13949 		return (ENOMEM);
13950 
13951 	dstate->dtds_size = size;
13952 	dstate->dtds_base = base;
13953 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13954 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13955 
13956 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13957 
13958 	if (hashsize != 1 && (hashsize & 1))
13959 		hashsize--;
13960 
13961 	dstate->dtds_hashsize = hashsize;
13962 	dstate->dtds_hash = dstate->dtds_base;
13963 
13964 	/*
13965 	 * Set all of our hash buckets to point to the single sink, and (if
13966 	 * it hasn't already been set), set the sink's hash value to be the
13967 	 * sink sentinel value.  The sink is needed for dynamic variable
13968 	 * lookups to know that they have iterated over an entire, valid hash
13969 	 * chain.
13970 	 */
13971 	for (i = 0; i < hashsize; i++)
13972 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13973 
13974 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13975 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13976 
13977 	/*
13978 	 * Determine number of active CPUs.  Divide free list evenly among
13979 	 * active CPUs.
13980 	 */
13981 	start = (dtrace_dynvar_t *)
13982 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13983 	limit = (uintptr_t)base + size;
13984 
13985 	maxper = (limit - (uintptr_t)start) / NCPU;
13986 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13987 
13988 #ifndef illumos
13989 	CPU_FOREACH(i) {
13990 #else
13991 	for (i = 0; i < NCPU; i++) {
13992 #endif
13993 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13994 
13995 		/*
13996 		 * If we don't even have enough chunks to make it once through
13997 		 * NCPUs, we're just going to allocate everything to the first
13998 		 * CPU.  And if we're on the last CPU, we're going to allocate
13999 		 * whatever is left over.  In either case, we set the limit to
14000 		 * be the limit of the dynamic variable space.
14001 		 */
14002 		if (maxper == 0 || i == NCPU - 1) {
14003 			limit = (uintptr_t)base + size;
14004 			start = NULL;
14005 		} else {
14006 			limit = (uintptr_t)start + maxper;
14007 			start = (dtrace_dynvar_t *)limit;
14008 		}
14009 
14010 		ASSERT(limit <= (uintptr_t)base + size);
14011 
14012 		for (;;) {
14013 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14014 			    dstate->dtds_chunksize);
14015 
14016 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14017 				break;
14018 
14019 			dvar->dtdv_next = next;
14020 			dvar = next;
14021 		}
14022 
14023 		if (maxper == 0)
14024 			break;
14025 	}
14026 
14027 	return (0);
14028 }
14029 
14030 static void
14031 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14032 {
14033 	ASSERT(MUTEX_HELD(&cpu_lock));
14034 
14035 	if (dstate->dtds_base == NULL)
14036 		return;
14037 
14038 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14039 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14040 }
14041 
14042 static void
14043 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14044 {
14045 	/*
14046 	 * Logical XOR, where are you?
14047 	 */
14048 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14049 
14050 	if (vstate->dtvs_nglobals > 0) {
14051 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14052 		    sizeof (dtrace_statvar_t *));
14053 	}
14054 
14055 	if (vstate->dtvs_ntlocals > 0) {
14056 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14057 		    sizeof (dtrace_difv_t));
14058 	}
14059 
14060 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14061 
14062 	if (vstate->dtvs_nlocals > 0) {
14063 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14064 		    sizeof (dtrace_statvar_t *));
14065 	}
14066 }
14067 
14068 #ifdef illumos
14069 static void
14070 dtrace_state_clean(dtrace_state_t *state)
14071 {
14072 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14073 		return;
14074 
14075 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14076 	dtrace_speculation_clean(state);
14077 }
14078 
14079 static void
14080 dtrace_state_deadman(dtrace_state_t *state)
14081 {
14082 	hrtime_t now;
14083 
14084 	dtrace_sync();
14085 
14086 	now = dtrace_gethrtime();
14087 
14088 	if (state != dtrace_anon.dta_state &&
14089 	    now - state->dts_laststatus >= dtrace_deadman_user)
14090 		return;
14091 
14092 	/*
14093 	 * We must be sure that dts_alive never appears to be less than the
14094 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14095 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14096 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14097 	 * the new value.  This assures that dts_alive never appears to be
14098 	 * less than its true value, regardless of the order in which the
14099 	 * stores to the underlying storage are issued.
14100 	 */
14101 	state->dts_alive = INT64_MAX;
14102 	dtrace_membar_producer();
14103 	state->dts_alive = now;
14104 }
14105 #else	/* !illumos */
14106 static void
14107 dtrace_state_clean(void *arg)
14108 {
14109 	dtrace_state_t *state = arg;
14110 	dtrace_optval_t *opt = state->dts_options;
14111 
14112 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14113 		return;
14114 
14115 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14116 	dtrace_speculation_clean(state);
14117 
14118 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14119 	    dtrace_state_clean, state);
14120 }
14121 
14122 static void
14123 dtrace_state_deadman(void *arg)
14124 {
14125 	dtrace_state_t *state = arg;
14126 	hrtime_t now;
14127 
14128 	dtrace_sync();
14129 
14130 	dtrace_debug_output();
14131 
14132 	now = dtrace_gethrtime();
14133 
14134 	if (state != dtrace_anon.dta_state &&
14135 	    now - state->dts_laststatus >= dtrace_deadman_user)
14136 		return;
14137 
14138 	/*
14139 	 * We must be sure that dts_alive never appears to be less than the
14140 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14141 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14142 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14143 	 * the new value.  This assures that dts_alive never appears to be
14144 	 * less than its true value, regardless of the order in which the
14145 	 * stores to the underlying storage are issued.
14146 	 */
14147 	state->dts_alive = INT64_MAX;
14148 	dtrace_membar_producer();
14149 	state->dts_alive = now;
14150 
14151 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14152 	    dtrace_state_deadman, state);
14153 }
14154 #endif	/* illumos */
14155 
14156 static dtrace_state_t *
14157 #ifdef illumos
14158 dtrace_state_create(dev_t *devp, cred_t *cr)
14159 #else
14160 dtrace_state_create(struct cdev *dev)
14161 #endif
14162 {
14163 #ifdef illumos
14164 	minor_t minor;
14165 	major_t major;
14166 #else
14167 	cred_t *cr = NULL;
14168 	int m = 0;
14169 #endif
14170 	char c[30];
14171 	dtrace_state_t *state;
14172 	dtrace_optval_t *opt;
14173 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14174 
14175 	ASSERT(MUTEX_HELD(&dtrace_lock));
14176 	ASSERT(MUTEX_HELD(&cpu_lock));
14177 
14178 #ifdef illumos
14179 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14180 	    VM_BESTFIT | VM_SLEEP);
14181 
14182 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14183 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14184 		return (NULL);
14185 	}
14186 
14187 	state = ddi_get_soft_state(dtrace_softstate, minor);
14188 #else
14189 	if (dev != NULL) {
14190 		cr = dev->si_cred;
14191 		m = dev2unit(dev);
14192 	}
14193 
14194 	/* Allocate memory for the state. */
14195 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14196 #endif
14197 
14198 	state->dts_epid = DTRACE_EPIDNONE + 1;
14199 
14200 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14201 #ifdef illumos
14202 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14203 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14204 
14205 	if (devp != NULL) {
14206 		major = getemajor(*devp);
14207 	} else {
14208 		major = ddi_driver_major(dtrace_devi);
14209 	}
14210 
14211 	state->dts_dev = makedevice(major, minor);
14212 
14213 	if (devp != NULL)
14214 		*devp = state->dts_dev;
14215 #else
14216 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14217 	state->dts_dev = dev;
14218 #endif
14219 
14220 	/*
14221 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14222 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14223 	 * other hand, it saves an additional memory reference in the probe
14224 	 * path.
14225 	 */
14226 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14227 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14228 
14229 #ifdef illumos
14230 	state->dts_cleaner = CYCLIC_NONE;
14231 	state->dts_deadman = CYCLIC_NONE;
14232 #else
14233 	callout_init(&state->dts_cleaner, 1);
14234 	callout_init(&state->dts_deadman, 1);
14235 #endif
14236 	state->dts_vstate.dtvs_state = state;
14237 
14238 	for (i = 0; i < DTRACEOPT_MAX; i++)
14239 		state->dts_options[i] = DTRACEOPT_UNSET;
14240 
14241 	/*
14242 	 * Set the default options.
14243 	 */
14244 	opt = state->dts_options;
14245 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14246 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14247 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14248 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14249 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14250 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14251 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14252 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14253 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14254 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14255 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14256 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14257 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14258 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14259 
14260 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14261 
14262 	/*
14263 	 * Depending on the user credentials, we set flag bits which alter probe
14264 	 * visibility or the amount of destructiveness allowed.  In the case of
14265 	 * actual anonymous tracing, or the possession of all privileges, all of
14266 	 * the normal checks are bypassed.
14267 	 */
14268 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14269 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14270 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14271 	} else {
14272 		/*
14273 		 * Set up the credentials for this instantiation.  We take a
14274 		 * hold on the credential to prevent it from disappearing on
14275 		 * us; this in turn prevents the zone_t referenced by this
14276 		 * credential from disappearing.  This means that we can
14277 		 * examine the credential and the zone from probe context.
14278 		 */
14279 		crhold(cr);
14280 		state->dts_cred.dcr_cred = cr;
14281 
14282 		/*
14283 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14284 		 * unlocks the use of variables like pid, zonename, etc.
14285 		 */
14286 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14287 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14288 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14289 		}
14290 
14291 		/*
14292 		 * dtrace_user allows use of syscall and profile providers.
14293 		 * If the user also has proc_owner and/or proc_zone, we
14294 		 * extend the scope to include additional visibility and
14295 		 * destructive power.
14296 		 */
14297 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14298 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14299 				state->dts_cred.dcr_visible |=
14300 				    DTRACE_CRV_ALLPROC;
14301 
14302 				state->dts_cred.dcr_action |=
14303 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14304 			}
14305 
14306 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14307 				state->dts_cred.dcr_visible |=
14308 				    DTRACE_CRV_ALLZONE;
14309 
14310 				state->dts_cred.dcr_action |=
14311 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14312 			}
14313 
14314 			/*
14315 			 * If we have all privs in whatever zone this is,
14316 			 * we can do destructive things to processes which
14317 			 * have altered credentials.
14318 			 */
14319 #ifdef illumos
14320 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14321 			    cr->cr_zone->zone_privset)) {
14322 				state->dts_cred.dcr_action |=
14323 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14324 			}
14325 #endif
14326 		}
14327 
14328 		/*
14329 		 * Holding the dtrace_kernel privilege also implies that
14330 		 * the user has the dtrace_user privilege from a visibility
14331 		 * perspective.  But without further privileges, some
14332 		 * destructive actions are not available.
14333 		 */
14334 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14335 			/*
14336 			 * Make all probes in all zones visible.  However,
14337 			 * this doesn't mean that all actions become available
14338 			 * to all zones.
14339 			 */
14340 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14341 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14342 
14343 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14344 			    DTRACE_CRA_PROC;
14345 			/*
14346 			 * Holding proc_owner means that destructive actions
14347 			 * for *this* zone are allowed.
14348 			 */
14349 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14350 				state->dts_cred.dcr_action |=
14351 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14352 
14353 			/*
14354 			 * Holding proc_zone means that destructive actions
14355 			 * for this user/group ID in all zones is allowed.
14356 			 */
14357 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14358 				state->dts_cred.dcr_action |=
14359 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14360 
14361 #ifdef illumos
14362 			/*
14363 			 * If we have all privs in whatever zone this is,
14364 			 * we can do destructive things to processes which
14365 			 * have altered credentials.
14366 			 */
14367 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14368 			    cr->cr_zone->zone_privset)) {
14369 				state->dts_cred.dcr_action |=
14370 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14371 			}
14372 #endif
14373 		}
14374 
14375 		/*
14376 		 * Holding the dtrace_proc privilege gives control over fasttrap
14377 		 * and pid providers.  We need to grant wider destructive
14378 		 * privileges in the event that the user has proc_owner and/or
14379 		 * proc_zone.
14380 		 */
14381 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14382 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14383 				state->dts_cred.dcr_action |=
14384 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14385 
14386 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14387 				state->dts_cred.dcr_action |=
14388 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14389 		}
14390 	}
14391 
14392 	return (state);
14393 }
14394 
14395 static int
14396 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14397 {
14398 	dtrace_optval_t *opt = state->dts_options, size;
14399 	processorid_t cpu = 0;;
14400 	int flags = 0, rval, factor, divisor = 1;
14401 
14402 	ASSERT(MUTEX_HELD(&dtrace_lock));
14403 	ASSERT(MUTEX_HELD(&cpu_lock));
14404 	ASSERT(which < DTRACEOPT_MAX);
14405 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14406 	    (state == dtrace_anon.dta_state &&
14407 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14408 
14409 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14410 		return (0);
14411 
14412 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14413 		cpu = opt[DTRACEOPT_CPU];
14414 
14415 	if (which == DTRACEOPT_SPECSIZE)
14416 		flags |= DTRACEBUF_NOSWITCH;
14417 
14418 	if (which == DTRACEOPT_BUFSIZE) {
14419 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14420 			flags |= DTRACEBUF_RING;
14421 
14422 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14423 			flags |= DTRACEBUF_FILL;
14424 
14425 		if (state != dtrace_anon.dta_state ||
14426 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14427 			flags |= DTRACEBUF_INACTIVE;
14428 	}
14429 
14430 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14431 		/*
14432 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14433 		 * aligned, drop it down by the difference.
14434 		 */
14435 		if (size & (sizeof (uint64_t) - 1))
14436 			size -= size & (sizeof (uint64_t) - 1);
14437 
14438 		if (size < state->dts_reserve) {
14439 			/*
14440 			 * Buffers always must be large enough to accommodate
14441 			 * their prereserved space.  We return E2BIG instead
14442 			 * of ENOMEM in this case to allow for user-level
14443 			 * software to differentiate the cases.
14444 			 */
14445 			return (E2BIG);
14446 		}
14447 
14448 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14449 
14450 		if (rval != ENOMEM) {
14451 			opt[which] = size;
14452 			return (rval);
14453 		}
14454 
14455 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14456 			return (rval);
14457 
14458 		for (divisor = 2; divisor < factor; divisor <<= 1)
14459 			continue;
14460 	}
14461 
14462 	return (ENOMEM);
14463 }
14464 
14465 static int
14466 dtrace_state_buffers(dtrace_state_t *state)
14467 {
14468 	dtrace_speculation_t *spec = state->dts_speculations;
14469 	int rval, i;
14470 
14471 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14472 	    DTRACEOPT_BUFSIZE)) != 0)
14473 		return (rval);
14474 
14475 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14476 	    DTRACEOPT_AGGSIZE)) != 0)
14477 		return (rval);
14478 
14479 	for (i = 0; i < state->dts_nspeculations; i++) {
14480 		if ((rval = dtrace_state_buffer(state,
14481 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14482 			return (rval);
14483 	}
14484 
14485 	return (0);
14486 }
14487 
14488 static void
14489 dtrace_state_prereserve(dtrace_state_t *state)
14490 {
14491 	dtrace_ecb_t *ecb;
14492 	dtrace_probe_t *probe;
14493 
14494 	state->dts_reserve = 0;
14495 
14496 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14497 		return;
14498 
14499 	/*
14500 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14501 	 * prereserved space to be the space required by the END probes.
14502 	 */
14503 	probe = dtrace_probes[dtrace_probeid_end - 1];
14504 	ASSERT(probe != NULL);
14505 
14506 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14507 		if (ecb->dte_state != state)
14508 			continue;
14509 
14510 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14511 	}
14512 }
14513 
14514 static int
14515 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14516 {
14517 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14518 	dtrace_speculation_t *spec;
14519 	dtrace_buffer_t *buf;
14520 #ifdef illumos
14521 	cyc_handler_t hdlr;
14522 	cyc_time_t when;
14523 #endif
14524 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14525 	dtrace_icookie_t cookie;
14526 
14527 	mutex_enter(&cpu_lock);
14528 	mutex_enter(&dtrace_lock);
14529 
14530 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14531 		rval = EBUSY;
14532 		goto out;
14533 	}
14534 
14535 	/*
14536 	 * Before we can perform any checks, we must prime all of the
14537 	 * retained enablings that correspond to this state.
14538 	 */
14539 	dtrace_enabling_prime(state);
14540 
14541 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14542 		rval = EACCES;
14543 		goto out;
14544 	}
14545 
14546 	dtrace_state_prereserve(state);
14547 
14548 	/*
14549 	 * Now we want to do is try to allocate our speculations.
14550 	 * We do not automatically resize the number of speculations; if
14551 	 * this fails, we will fail the operation.
14552 	 */
14553 	nspec = opt[DTRACEOPT_NSPEC];
14554 	ASSERT(nspec != DTRACEOPT_UNSET);
14555 
14556 	if (nspec > INT_MAX) {
14557 		rval = ENOMEM;
14558 		goto out;
14559 	}
14560 
14561 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14562 	    KM_NOSLEEP | KM_NORMALPRI);
14563 
14564 	if (spec == NULL) {
14565 		rval = ENOMEM;
14566 		goto out;
14567 	}
14568 
14569 	state->dts_speculations = spec;
14570 	state->dts_nspeculations = (int)nspec;
14571 
14572 	for (i = 0; i < nspec; i++) {
14573 		if ((buf = kmem_zalloc(bufsize,
14574 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14575 			rval = ENOMEM;
14576 			goto err;
14577 		}
14578 
14579 		spec[i].dtsp_buffer = buf;
14580 	}
14581 
14582 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14583 		if (dtrace_anon.dta_state == NULL) {
14584 			rval = ENOENT;
14585 			goto out;
14586 		}
14587 
14588 		if (state->dts_necbs != 0) {
14589 			rval = EALREADY;
14590 			goto out;
14591 		}
14592 
14593 		state->dts_anon = dtrace_anon_grab();
14594 		ASSERT(state->dts_anon != NULL);
14595 		state = state->dts_anon;
14596 
14597 		/*
14598 		 * We want "grabanon" to be set in the grabbed state, so we'll
14599 		 * copy that option value from the grabbing state into the
14600 		 * grabbed state.
14601 		 */
14602 		state->dts_options[DTRACEOPT_GRABANON] =
14603 		    opt[DTRACEOPT_GRABANON];
14604 
14605 		*cpu = dtrace_anon.dta_beganon;
14606 
14607 		/*
14608 		 * If the anonymous state is active (as it almost certainly
14609 		 * is if the anonymous enabling ultimately matched anything),
14610 		 * we don't allow any further option processing -- but we
14611 		 * don't return failure.
14612 		 */
14613 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14614 			goto out;
14615 	}
14616 
14617 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14618 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14619 		if (state->dts_aggregations == NULL) {
14620 			/*
14621 			 * We're not going to create an aggregation buffer
14622 			 * because we don't have any ECBs that contain
14623 			 * aggregations -- set this option to 0.
14624 			 */
14625 			opt[DTRACEOPT_AGGSIZE] = 0;
14626 		} else {
14627 			/*
14628 			 * If we have an aggregation buffer, we must also have
14629 			 * a buffer to use as scratch.
14630 			 */
14631 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14632 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14633 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14634 			}
14635 		}
14636 	}
14637 
14638 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14639 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14640 		if (!state->dts_speculates) {
14641 			/*
14642 			 * We're not going to create speculation buffers
14643 			 * because we don't have any ECBs that actually
14644 			 * speculate -- set the speculation size to 0.
14645 			 */
14646 			opt[DTRACEOPT_SPECSIZE] = 0;
14647 		}
14648 	}
14649 
14650 	/*
14651 	 * The bare minimum size for any buffer that we're actually going to
14652 	 * do anything to is sizeof (uint64_t).
14653 	 */
14654 	sz = sizeof (uint64_t);
14655 
14656 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14657 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14658 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14659 		/*
14660 		 * A buffer size has been explicitly set to 0 (or to a size
14661 		 * that will be adjusted to 0) and we need the space -- we
14662 		 * need to return failure.  We return ENOSPC to differentiate
14663 		 * it from failing to allocate a buffer due to failure to meet
14664 		 * the reserve (for which we return E2BIG).
14665 		 */
14666 		rval = ENOSPC;
14667 		goto out;
14668 	}
14669 
14670 	if ((rval = dtrace_state_buffers(state)) != 0)
14671 		goto err;
14672 
14673 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14674 		sz = dtrace_dstate_defsize;
14675 
14676 	do {
14677 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14678 
14679 		if (rval == 0)
14680 			break;
14681 
14682 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14683 			goto err;
14684 	} while (sz >>= 1);
14685 
14686 	opt[DTRACEOPT_DYNVARSIZE] = sz;
14687 
14688 	if (rval != 0)
14689 		goto err;
14690 
14691 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14692 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14693 
14694 	if (opt[DTRACEOPT_CLEANRATE] == 0)
14695 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14696 
14697 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14698 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14699 
14700 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14701 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14702 
14703 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14704 #ifdef illumos
14705 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14706 	hdlr.cyh_arg = state;
14707 	hdlr.cyh_level = CY_LOW_LEVEL;
14708 
14709 	when.cyt_when = 0;
14710 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14711 
14712 	state->dts_cleaner = cyclic_add(&hdlr, &when);
14713 
14714 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14715 	hdlr.cyh_arg = state;
14716 	hdlr.cyh_level = CY_LOW_LEVEL;
14717 
14718 	when.cyt_when = 0;
14719 	when.cyt_interval = dtrace_deadman_interval;
14720 
14721 	state->dts_deadman = cyclic_add(&hdlr, &when);
14722 #else
14723 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14724 	    dtrace_state_clean, state);
14725 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14726 	    dtrace_state_deadman, state);
14727 #endif
14728 
14729 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14730 
14731 #ifdef illumos
14732 	if (state->dts_getf != 0 &&
14733 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14734 		/*
14735 		 * We don't have kernel privs but we have at least one call
14736 		 * to getf(); we need to bump our zone's count, and (if
14737 		 * this is the first enabling to have an unprivileged call
14738 		 * to getf()) we need to hook into closef().
14739 		 */
14740 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14741 
14742 		if (dtrace_getf++ == 0) {
14743 			ASSERT(dtrace_closef == NULL);
14744 			dtrace_closef = dtrace_getf_barrier;
14745 		}
14746 	}
14747 #endif
14748 
14749 	/*
14750 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14751 	 * interrupts here both to record the CPU on which we fired the BEGIN
14752 	 * probe (the data from this CPU will be processed first at user
14753 	 * level) and to manually activate the buffer for this CPU.
14754 	 */
14755 	cookie = dtrace_interrupt_disable();
14756 	*cpu = curcpu;
14757 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14758 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14759 
14760 	dtrace_probe(dtrace_probeid_begin,
14761 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14762 	dtrace_interrupt_enable(cookie);
14763 	/*
14764 	 * We may have had an exit action from a BEGIN probe; only change our
14765 	 * state to ACTIVE if we're still in WARMUP.
14766 	 */
14767 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14768 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14769 
14770 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14771 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14772 
14773 	/*
14774 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14775 	 * want each CPU to transition its principal buffer out of the
14776 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14777 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14778 	 * atomically transition from processing none of a state's ECBs to
14779 	 * processing all of them.
14780 	 */
14781 	dtrace_xcall(DTRACE_CPUALL,
14782 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14783 	goto out;
14784 
14785 err:
14786 	dtrace_buffer_free(state->dts_buffer);
14787 	dtrace_buffer_free(state->dts_aggbuffer);
14788 
14789 	if ((nspec = state->dts_nspeculations) == 0) {
14790 		ASSERT(state->dts_speculations == NULL);
14791 		goto out;
14792 	}
14793 
14794 	spec = state->dts_speculations;
14795 	ASSERT(spec != NULL);
14796 
14797 	for (i = 0; i < state->dts_nspeculations; i++) {
14798 		if ((buf = spec[i].dtsp_buffer) == NULL)
14799 			break;
14800 
14801 		dtrace_buffer_free(buf);
14802 		kmem_free(buf, bufsize);
14803 	}
14804 
14805 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14806 	state->dts_nspeculations = 0;
14807 	state->dts_speculations = NULL;
14808 
14809 out:
14810 	mutex_exit(&dtrace_lock);
14811 	mutex_exit(&cpu_lock);
14812 
14813 	return (rval);
14814 }
14815 
14816 static int
14817 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14818 {
14819 	dtrace_icookie_t cookie;
14820 
14821 	ASSERT(MUTEX_HELD(&dtrace_lock));
14822 
14823 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14824 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14825 		return (EINVAL);
14826 
14827 	/*
14828 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14829 	 * to be sure that every CPU has seen it.  See below for the details
14830 	 * on why this is done.
14831 	 */
14832 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14833 	dtrace_sync();
14834 
14835 	/*
14836 	 * By this point, it is impossible for any CPU to be still processing
14837 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14838 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14839 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14840 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14841 	 * iff we're in the END probe.
14842 	 */
14843 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14844 	dtrace_sync();
14845 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14846 
14847 	/*
14848 	 * Finally, we can release the reserve and call the END probe.  We
14849 	 * disable interrupts across calling the END probe to allow us to
14850 	 * return the CPU on which we actually called the END probe.  This
14851 	 * allows user-land to be sure that this CPU's principal buffer is
14852 	 * processed last.
14853 	 */
14854 	state->dts_reserve = 0;
14855 
14856 	cookie = dtrace_interrupt_disable();
14857 	*cpu = curcpu;
14858 	dtrace_probe(dtrace_probeid_end,
14859 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14860 	dtrace_interrupt_enable(cookie);
14861 
14862 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14863 	dtrace_sync();
14864 
14865 #ifdef illumos
14866 	if (state->dts_getf != 0 &&
14867 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14868 		/*
14869 		 * We don't have kernel privs but we have at least one call
14870 		 * to getf(); we need to lower our zone's count, and (if
14871 		 * this is the last enabling to have an unprivileged call
14872 		 * to getf()) we need to clear the closef() hook.
14873 		 */
14874 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14875 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14876 		ASSERT(dtrace_getf > 0);
14877 
14878 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14879 
14880 		if (--dtrace_getf == 0)
14881 			dtrace_closef = NULL;
14882 	}
14883 #endif
14884 
14885 	return (0);
14886 }
14887 
14888 static int
14889 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14890     dtrace_optval_t val)
14891 {
14892 	ASSERT(MUTEX_HELD(&dtrace_lock));
14893 
14894 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14895 		return (EBUSY);
14896 
14897 	if (option >= DTRACEOPT_MAX)
14898 		return (EINVAL);
14899 
14900 	if (option != DTRACEOPT_CPU && val < 0)
14901 		return (EINVAL);
14902 
14903 	switch (option) {
14904 	case DTRACEOPT_DESTRUCTIVE:
14905 		if (dtrace_destructive_disallow)
14906 			return (EACCES);
14907 
14908 		state->dts_cred.dcr_destructive = 1;
14909 		break;
14910 
14911 	case DTRACEOPT_BUFSIZE:
14912 	case DTRACEOPT_DYNVARSIZE:
14913 	case DTRACEOPT_AGGSIZE:
14914 	case DTRACEOPT_SPECSIZE:
14915 	case DTRACEOPT_STRSIZE:
14916 		if (val < 0)
14917 			return (EINVAL);
14918 
14919 		if (val >= LONG_MAX) {
14920 			/*
14921 			 * If this is an otherwise negative value, set it to
14922 			 * the highest multiple of 128m less than LONG_MAX.
14923 			 * Technically, we're adjusting the size without
14924 			 * regard to the buffer resizing policy, but in fact,
14925 			 * this has no effect -- if we set the buffer size to
14926 			 * ~LONG_MAX and the buffer policy is ultimately set to
14927 			 * be "manual", the buffer allocation is guaranteed to
14928 			 * fail, if only because the allocation requires two
14929 			 * buffers.  (We set the the size to the highest
14930 			 * multiple of 128m because it ensures that the size
14931 			 * will remain a multiple of a megabyte when
14932 			 * repeatedly halved -- all the way down to 15m.)
14933 			 */
14934 			val = LONG_MAX - (1 << 27) + 1;
14935 		}
14936 	}
14937 
14938 	state->dts_options[option] = val;
14939 
14940 	return (0);
14941 }
14942 
14943 static void
14944 dtrace_state_destroy(dtrace_state_t *state)
14945 {
14946 	dtrace_ecb_t *ecb;
14947 	dtrace_vstate_t *vstate = &state->dts_vstate;
14948 #ifdef illumos
14949 	minor_t minor = getminor(state->dts_dev);
14950 #endif
14951 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14952 	dtrace_speculation_t *spec = state->dts_speculations;
14953 	int nspec = state->dts_nspeculations;
14954 	uint32_t match;
14955 
14956 	ASSERT(MUTEX_HELD(&dtrace_lock));
14957 	ASSERT(MUTEX_HELD(&cpu_lock));
14958 
14959 	/*
14960 	 * First, retract any retained enablings for this state.
14961 	 */
14962 	dtrace_enabling_retract(state);
14963 	ASSERT(state->dts_nretained == 0);
14964 
14965 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14966 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14967 		/*
14968 		 * We have managed to come into dtrace_state_destroy() on a
14969 		 * hot enabling -- almost certainly because of a disorderly
14970 		 * shutdown of a consumer.  (That is, a consumer that is
14971 		 * exiting without having called dtrace_stop().) In this case,
14972 		 * we're going to set our activity to be KILLED, and then
14973 		 * issue a sync to be sure that everyone is out of probe
14974 		 * context before we start blowing away ECBs.
14975 		 */
14976 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14977 		dtrace_sync();
14978 	}
14979 
14980 	/*
14981 	 * Release the credential hold we took in dtrace_state_create().
14982 	 */
14983 	if (state->dts_cred.dcr_cred != NULL)
14984 		crfree(state->dts_cred.dcr_cred);
14985 
14986 	/*
14987 	 * Now we can safely disable and destroy any enabled probes.  Because
14988 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14989 	 * (especially if they're all enabled), we take two passes through the
14990 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14991 	 * in the second we disable whatever is left over.
14992 	 */
14993 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14994 		for (i = 0; i < state->dts_necbs; i++) {
14995 			if ((ecb = state->dts_ecbs[i]) == NULL)
14996 				continue;
14997 
14998 			if (match && ecb->dte_probe != NULL) {
14999 				dtrace_probe_t *probe = ecb->dte_probe;
15000 				dtrace_provider_t *prov = probe->dtpr_provider;
15001 
15002 				if (!(prov->dtpv_priv.dtpp_flags & match))
15003 					continue;
15004 			}
15005 
15006 			dtrace_ecb_disable(ecb);
15007 			dtrace_ecb_destroy(ecb);
15008 		}
15009 
15010 		if (!match)
15011 			break;
15012 	}
15013 
15014 	/*
15015 	 * Before we free the buffers, perform one more sync to assure that
15016 	 * every CPU is out of probe context.
15017 	 */
15018 	dtrace_sync();
15019 
15020 	dtrace_buffer_free(state->dts_buffer);
15021 	dtrace_buffer_free(state->dts_aggbuffer);
15022 
15023 	for (i = 0; i < nspec; i++)
15024 		dtrace_buffer_free(spec[i].dtsp_buffer);
15025 
15026 #ifdef illumos
15027 	if (state->dts_cleaner != CYCLIC_NONE)
15028 		cyclic_remove(state->dts_cleaner);
15029 
15030 	if (state->dts_deadman != CYCLIC_NONE)
15031 		cyclic_remove(state->dts_deadman);
15032 #else
15033 	callout_stop(&state->dts_cleaner);
15034 	callout_drain(&state->dts_cleaner);
15035 	callout_stop(&state->dts_deadman);
15036 	callout_drain(&state->dts_deadman);
15037 #endif
15038 
15039 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15040 	dtrace_vstate_fini(vstate);
15041 	if (state->dts_ecbs != NULL)
15042 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15043 
15044 	if (state->dts_aggregations != NULL) {
15045 #ifdef DEBUG
15046 		for (i = 0; i < state->dts_naggregations; i++)
15047 			ASSERT(state->dts_aggregations[i] == NULL);
15048 #endif
15049 		ASSERT(state->dts_naggregations > 0);
15050 		kmem_free(state->dts_aggregations,
15051 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15052 	}
15053 
15054 	kmem_free(state->dts_buffer, bufsize);
15055 	kmem_free(state->dts_aggbuffer, bufsize);
15056 
15057 	for (i = 0; i < nspec; i++)
15058 		kmem_free(spec[i].dtsp_buffer, bufsize);
15059 
15060 	if (spec != NULL)
15061 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15062 
15063 	dtrace_format_destroy(state);
15064 
15065 	if (state->dts_aggid_arena != NULL) {
15066 #ifdef illumos
15067 		vmem_destroy(state->dts_aggid_arena);
15068 #else
15069 		delete_unrhdr(state->dts_aggid_arena);
15070 #endif
15071 		state->dts_aggid_arena = NULL;
15072 	}
15073 #ifdef illumos
15074 	ddi_soft_state_free(dtrace_softstate, minor);
15075 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15076 #endif
15077 }
15078 
15079 /*
15080  * DTrace Anonymous Enabling Functions
15081  */
15082 static dtrace_state_t *
15083 dtrace_anon_grab(void)
15084 {
15085 	dtrace_state_t *state;
15086 
15087 	ASSERT(MUTEX_HELD(&dtrace_lock));
15088 
15089 	if ((state = dtrace_anon.dta_state) == NULL) {
15090 		ASSERT(dtrace_anon.dta_enabling == NULL);
15091 		return (NULL);
15092 	}
15093 
15094 	ASSERT(dtrace_anon.dta_enabling != NULL);
15095 	ASSERT(dtrace_retained != NULL);
15096 
15097 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15098 	dtrace_anon.dta_enabling = NULL;
15099 	dtrace_anon.dta_state = NULL;
15100 
15101 	return (state);
15102 }
15103 
15104 static void
15105 dtrace_anon_property(void)
15106 {
15107 	int i, rv;
15108 	dtrace_state_t *state;
15109 	dof_hdr_t *dof;
15110 	char c[32];		/* enough for "dof-data-" + digits */
15111 
15112 	ASSERT(MUTEX_HELD(&dtrace_lock));
15113 	ASSERT(MUTEX_HELD(&cpu_lock));
15114 
15115 	for (i = 0; ; i++) {
15116 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15117 
15118 		dtrace_err_verbose = 1;
15119 
15120 		if ((dof = dtrace_dof_property(c)) == NULL) {
15121 			dtrace_err_verbose = 0;
15122 			break;
15123 		}
15124 
15125 #ifdef illumos
15126 		/*
15127 		 * We want to create anonymous state, so we need to transition
15128 		 * the kernel debugger to indicate that DTrace is active.  If
15129 		 * this fails (e.g. because the debugger has modified text in
15130 		 * some way), we won't continue with the processing.
15131 		 */
15132 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15133 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15134 			    "enabling ignored.");
15135 			dtrace_dof_destroy(dof);
15136 			break;
15137 		}
15138 #endif
15139 
15140 		/*
15141 		 * If we haven't allocated an anonymous state, we'll do so now.
15142 		 */
15143 		if ((state = dtrace_anon.dta_state) == NULL) {
15144 #ifdef illumos
15145 			state = dtrace_state_create(NULL, NULL);
15146 #else
15147 			state = dtrace_state_create(NULL);
15148 #endif
15149 			dtrace_anon.dta_state = state;
15150 
15151 			if (state == NULL) {
15152 				/*
15153 				 * This basically shouldn't happen:  the only
15154 				 * failure mode from dtrace_state_create() is a
15155 				 * failure of ddi_soft_state_zalloc() that
15156 				 * itself should never happen.  Still, the
15157 				 * interface allows for a failure mode, and
15158 				 * we want to fail as gracefully as possible:
15159 				 * we'll emit an error message and cease
15160 				 * processing anonymous state in this case.
15161 				 */
15162 				cmn_err(CE_WARN, "failed to create "
15163 				    "anonymous state");
15164 				dtrace_dof_destroy(dof);
15165 				break;
15166 			}
15167 		}
15168 
15169 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15170 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15171 
15172 		if (rv == 0)
15173 			rv = dtrace_dof_options(dof, state);
15174 
15175 		dtrace_err_verbose = 0;
15176 		dtrace_dof_destroy(dof);
15177 
15178 		if (rv != 0) {
15179 			/*
15180 			 * This is malformed DOF; chuck any anonymous state
15181 			 * that we created.
15182 			 */
15183 			ASSERT(dtrace_anon.dta_enabling == NULL);
15184 			dtrace_state_destroy(state);
15185 			dtrace_anon.dta_state = NULL;
15186 			break;
15187 		}
15188 
15189 		ASSERT(dtrace_anon.dta_enabling != NULL);
15190 	}
15191 
15192 	if (dtrace_anon.dta_enabling != NULL) {
15193 		int rval;
15194 
15195 		/*
15196 		 * dtrace_enabling_retain() can only fail because we are
15197 		 * trying to retain more enablings than are allowed -- but
15198 		 * we only have one anonymous enabling, and we are guaranteed
15199 		 * to be allowed at least one retained enabling; we assert
15200 		 * that dtrace_enabling_retain() returns success.
15201 		 */
15202 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15203 		ASSERT(rval == 0);
15204 
15205 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15206 	}
15207 }
15208 
15209 /*
15210  * DTrace Helper Functions
15211  */
15212 static void
15213 dtrace_helper_trace(dtrace_helper_action_t *helper,
15214     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15215 {
15216 	uint32_t size, next, nnext, i;
15217 	dtrace_helptrace_t *ent, *buffer;
15218 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15219 
15220 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15221 		return;
15222 
15223 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15224 
15225 	/*
15226 	 * What would a tracing framework be without its own tracing
15227 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15228 	 */
15229 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15230 	    sizeof (uint64_t) - sizeof (uint64_t);
15231 
15232 	/*
15233 	 * Iterate until we can allocate a slot in the trace buffer.
15234 	 */
15235 	do {
15236 		next = dtrace_helptrace_next;
15237 
15238 		if (next + size < dtrace_helptrace_bufsize) {
15239 			nnext = next + size;
15240 		} else {
15241 			nnext = size;
15242 		}
15243 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15244 
15245 	/*
15246 	 * We have our slot; fill it in.
15247 	 */
15248 	if (nnext == size) {
15249 		dtrace_helptrace_wrapped++;
15250 		next = 0;
15251 	}
15252 
15253 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15254 	ent->dtht_helper = helper;
15255 	ent->dtht_where = where;
15256 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15257 
15258 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15259 	    mstate->dtms_fltoffs : -1;
15260 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15261 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15262 
15263 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15264 		dtrace_statvar_t *svar;
15265 
15266 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15267 			continue;
15268 
15269 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15270 		ent->dtht_locals[i] =
15271 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15272 	}
15273 }
15274 
15275 static uint64_t
15276 dtrace_helper(int which, dtrace_mstate_t *mstate,
15277     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15278 {
15279 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15280 	uint64_t sarg0 = mstate->dtms_arg[0];
15281 	uint64_t sarg1 = mstate->dtms_arg[1];
15282 	uint64_t rval = 0;
15283 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15284 	dtrace_helper_action_t *helper;
15285 	dtrace_vstate_t *vstate;
15286 	dtrace_difo_t *pred;
15287 	int i, trace = dtrace_helptrace_buffer != NULL;
15288 
15289 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15290 
15291 	if (helpers == NULL)
15292 		return (0);
15293 
15294 	if ((helper = helpers->dthps_actions[which]) == NULL)
15295 		return (0);
15296 
15297 	vstate = &helpers->dthps_vstate;
15298 	mstate->dtms_arg[0] = arg0;
15299 	mstate->dtms_arg[1] = arg1;
15300 
15301 	/*
15302 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15303 	 * we'll call the corresponding actions.  Note that the below calls
15304 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15305 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15306 	 * the stored DIF offset with its own (which is the desired behavior).
15307 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15308 	 * from machine state; this is okay, too.
15309 	 */
15310 	for (; helper != NULL; helper = helper->dtha_next) {
15311 		if ((pred = helper->dtha_predicate) != NULL) {
15312 			if (trace)
15313 				dtrace_helper_trace(helper, mstate, vstate, 0);
15314 
15315 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15316 				goto next;
15317 
15318 			if (*flags & CPU_DTRACE_FAULT)
15319 				goto err;
15320 		}
15321 
15322 		for (i = 0; i < helper->dtha_nactions; i++) {
15323 			if (trace)
15324 				dtrace_helper_trace(helper,
15325 				    mstate, vstate, i + 1);
15326 
15327 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15328 			    mstate, vstate, state);
15329 
15330 			if (*flags & CPU_DTRACE_FAULT)
15331 				goto err;
15332 		}
15333 
15334 next:
15335 		if (trace)
15336 			dtrace_helper_trace(helper, mstate, vstate,
15337 			    DTRACE_HELPTRACE_NEXT);
15338 	}
15339 
15340 	if (trace)
15341 		dtrace_helper_trace(helper, mstate, vstate,
15342 		    DTRACE_HELPTRACE_DONE);
15343 
15344 	/*
15345 	 * Restore the arg0 that we saved upon entry.
15346 	 */
15347 	mstate->dtms_arg[0] = sarg0;
15348 	mstate->dtms_arg[1] = sarg1;
15349 
15350 	return (rval);
15351 
15352 err:
15353 	if (trace)
15354 		dtrace_helper_trace(helper, mstate, vstate,
15355 		    DTRACE_HELPTRACE_ERR);
15356 
15357 	/*
15358 	 * Restore the arg0 that we saved upon entry.
15359 	 */
15360 	mstate->dtms_arg[0] = sarg0;
15361 	mstate->dtms_arg[1] = sarg1;
15362 
15363 	return (0);
15364 }
15365 
15366 static void
15367 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15368     dtrace_vstate_t *vstate)
15369 {
15370 	int i;
15371 
15372 	if (helper->dtha_predicate != NULL)
15373 		dtrace_difo_release(helper->dtha_predicate, vstate);
15374 
15375 	for (i = 0; i < helper->dtha_nactions; i++) {
15376 		ASSERT(helper->dtha_actions[i] != NULL);
15377 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15378 	}
15379 
15380 	kmem_free(helper->dtha_actions,
15381 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15382 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15383 }
15384 
15385 static int
15386 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15387 {
15388 	proc_t *p = curproc;
15389 	dtrace_vstate_t *vstate;
15390 	int i;
15391 
15392 	if (help == NULL)
15393 		help = p->p_dtrace_helpers;
15394 
15395 	ASSERT(MUTEX_HELD(&dtrace_lock));
15396 
15397 	if (help == NULL || gen > help->dthps_generation)
15398 		return (EINVAL);
15399 
15400 	vstate = &help->dthps_vstate;
15401 
15402 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15403 		dtrace_helper_action_t *last = NULL, *h, *next;
15404 
15405 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15406 			next = h->dtha_next;
15407 
15408 			if (h->dtha_generation == gen) {
15409 				if (last != NULL) {
15410 					last->dtha_next = next;
15411 				} else {
15412 					help->dthps_actions[i] = next;
15413 				}
15414 
15415 				dtrace_helper_action_destroy(h, vstate);
15416 			} else {
15417 				last = h;
15418 			}
15419 		}
15420 	}
15421 
15422 	/*
15423 	 * Interate until we've cleared out all helper providers with the
15424 	 * given generation number.
15425 	 */
15426 	for (;;) {
15427 		dtrace_helper_provider_t *prov;
15428 
15429 		/*
15430 		 * Look for a helper provider with the right generation. We
15431 		 * have to start back at the beginning of the list each time
15432 		 * because we drop dtrace_lock. It's unlikely that we'll make
15433 		 * more than two passes.
15434 		 */
15435 		for (i = 0; i < help->dthps_nprovs; i++) {
15436 			prov = help->dthps_provs[i];
15437 
15438 			if (prov->dthp_generation == gen)
15439 				break;
15440 		}
15441 
15442 		/*
15443 		 * If there were no matches, we're done.
15444 		 */
15445 		if (i == help->dthps_nprovs)
15446 			break;
15447 
15448 		/*
15449 		 * Move the last helper provider into this slot.
15450 		 */
15451 		help->dthps_nprovs--;
15452 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15453 		help->dthps_provs[help->dthps_nprovs] = NULL;
15454 
15455 		mutex_exit(&dtrace_lock);
15456 
15457 		/*
15458 		 * If we have a meta provider, remove this helper provider.
15459 		 */
15460 		mutex_enter(&dtrace_meta_lock);
15461 		if (dtrace_meta_pid != NULL) {
15462 			ASSERT(dtrace_deferred_pid == NULL);
15463 			dtrace_helper_provider_remove(&prov->dthp_prov,
15464 			    p->p_pid);
15465 		}
15466 		mutex_exit(&dtrace_meta_lock);
15467 
15468 		dtrace_helper_provider_destroy(prov);
15469 
15470 		mutex_enter(&dtrace_lock);
15471 	}
15472 
15473 	return (0);
15474 }
15475 
15476 static int
15477 dtrace_helper_validate(dtrace_helper_action_t *helper)
15478 {
15479 	int err = 0, i;
15480 	dtrace_difo_t *dp;
15481 
15482 	if ((dp = helper->dtha_predicate) != NULL)
15483 		err += dtrace_difo_validate_helper(dp);
15484 
15485 	for (i = 0; i < helper->dtha_nactions; i++)
15486 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15487 
15488 	return (err == 0);
15489 }
15490 
15491 static int
15492 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15493     dtrace_helpers_t *help)
15494 {
15495 	dtrace_helper_action_t *helper, *last;
15496 	dtrace_actdesc_t *act;
15497 	dtrace_vstate_t *vstate;
15498 	dtrace_predicate_t *pred;
15499 	int count = 0, nactions = 0, i;
15500 
15501 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15502 		return (EINVAL);
15503 
15504 	last = help->dthps_actions[which];
15505 	vstate = &help->dthps_vstate;
15506 
15507 	for (count = 0; last != NULL; last = last->dtha_next) {
15508 		count++;
15509 		if (last->dtha_next == NULL)
15510 			break;
15511 	}
15512 
15513 	/*
15514 	 * If we already have dtrace_helper_actions_max helper actions for this
15515 	 * helper action type, we'll refuse to add a new one.
15516 	 */
15517 	if (count >= dtrace_helper_actions_max)
15518 		return (ENOSPC);
15519 
15520 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15521 	helper->dtha_generation = help->dthps_generation;
15522 
15523 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15524 		ASSERT(pred->dtp_difo != NULL);
15525 		dtrace_difo_hold(pred->dtp_difo);
15526 		helper->dtha_predicate = pred->dtp_difo;
15527 	}
15528 
15529 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15530 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15531 			goto err;
15532 
15533 		if (act->dtad_difo == NULL)
15534 			goto err;
15535 
15536 		nactions++;
15537 	}
15538 
15539 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15540 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15541 
15542 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15543 		dtrace_difo_hold(act->dtad_difo);
15544 		helper->dtha_actions[i++] = act->dtad_difo;
15545 	}
15546 
15547 	if (!dtrace_helper_validate(helper))
15548 		goto err;
15549 
15550 	if (last == NULL) {
15551 		help->dthps_actions[which] = helper;
15552 	} else {
15553 		last->dtha_next = helper;
15554 	}
15555 
15556 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15557 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15558 		dtrace_helptrace_next = 0;
15559 	}
15560 
15561 	return (0);
15562 err:
15563 	dtrace_helper_action_destroy(helper, vstate);
15564 	return (EINVAL);
15565 }
15566 
15567 static void
15568 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15569     dof_helper_t *dofhp)
15570 {
15571 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15572 
15573 	mutex_enter(&dtrace_meta_lock);
15574 	mutex_enter(&dtrace_lock);
15575 
15576 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15577 		/*
15578 		 * If the dtrace module is loaded but not attached, or if
15579 		 * there aren't isn't a meta provider registered to deal with
15580 		 * these provider descriptions, we need to postpone creating
15581 		 * the actual providers until later.
15582 		 */
15583 
15584 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15585 		    dtrace_deferred_pid != help) {
15586 			help->dthps_deferred = 1;
15587 			help->dthps_pid = p->p_pid;
15588 			help->dthps_next = dtrace_deferred_pid;
15589 			help->dthps_prev = NULL;
15590 			if (dtrace_deferred_pid != NULL)
15591 				dtrace_deferred_pid->dthps_prev = help;
15592 			dtrace_deferred_pid = help;
15593 		}
15594 
15595 		mutex_exit(&dtrace_lock);
15596 
15597 	} else if (dofhp != NULL) {
15598 		/*
15599 		 * If the dtrace module is loaded and we have a particular
15600 		 * helper provider description, pass that off to the
15601 		 * meta provider.
15602 		 */
15603 
15604 		mutex_exit(&dtrace_lock);
15605 
15606 		dtrace_helper_provide(dofhp, p->p_pid);
15607 
15608 	} else {
15609 		/*
15610 		 * Otherwise, just pass all the helper provider descriptions
15611 		 * off to the meta provider.
15612 		 */
15613 
15614 		int i;
15615 		mutex_exit(&dtrace_lock);
15616 
15617 		for (i = 0; i < help->dthps_nprovs; i++) {
15618 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15619 			    p->p_pid);
15620 		}
15621 	}
15622 
15623 	mutex_exit(&dtrace_meta_lock);
15624 }
15625 
15626 static int
15627 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
15628 {
15629 	dtrace_helper_provider_t *hprov, **tmp_provs;
15630 	uint_t tmp_maxprovs, i;
15631 
15632 	ASSERT(MUTEX_HELD(&dtrace_lock));
15633 	ASSERT(help != NULL);
15634 
15635 	/*
15636 	 * If we already have dtrace_helper_providers_max helper providers,
15637 	 * we're refuse to add a new one.
15638 	 */
15639 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15640 		return (ENOSPC);
15641 
15642 	/*
15643 	 * Check to make sure this isn't a duplicate.
15644 	 */
15645 	for (i = 0; i < help->dthps_nprovs; i++) {
15646 		if (dofhp->dofhp_dof ==
15647 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
15648 			return (EALREADY);
15649 	}
15650 
15651 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15652 	hprov->dthp_prov = *dofhp;
15653 	hprov->dthp_ref = 1;
15654 	hprov->dthp_generation = gen;
15655 
15656 	/*
15657 	 * Allocate a bigger table for helper providers if it's already full.
15658 	 */
15659 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15660 		tmp_maxprovs = help->dthps_maxprovs;
15661 		tmp_provs = help->dthps_provs;
15662 
15663 		if (help->dthps_maxprovs == 0)
15664 			help->dthps_maxprovs = 2;
15665 		else
15666 			help->dthps_maxprovs *= 2;
15667 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15668 			help->dthps_maxprovs = dtrace_helper_providers_max;
15669 
15670 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15671 
15672 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15673 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15674 
15675 		if (tmp_provs != NULL) {
15676 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15677 			    sizeof (dtrace_helper_provider_t *));
15678 			kmem_free(tmp_provs, tmp_maxprovs *
15679 			    sizeof (dtrace_helper_provider_t *));
15680 		}
15681 	}
15682 
15683 	help->dthps_provs[help->dthps_nprovs] = hprov;
15684 	help->dthps_nprovs++;
15685 
15686 	return (0);
15687 }
15688 
15689 static void
15690 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15691 {
15692 	mutex_enter(&dtrace_lock);
15693 
15694 	if (--hprov->dthp_ref == 0) {
15695 		dof_hdr_t *dof;
15696 		mutex_exit(&dtrace_lock);
15697 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15698 		dtrace_dof_destroy(dof);
15699 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15700 	} else {
15701 		mutex_exit(&dtrace_lock);
15702 	}
15703 }
15704 
15705 static int
15706 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15707 {
15708 	uintptr_t daddr = (uintptr_t)dof;
15709 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15710 	dof_provider_t *provider;
15711 	dof_probe_t *probe;
15712 	uint8_t *arg;
15713 	char *strtab, *typestr;
15714 	dof_stridx_t typeidx;
15715 	size_t typesz;
15716 	uint_t nprobes, j, k;
15717 
15718 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15719 
15720 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15721 		dtrace_dof_error(dof, "misaligned section offset");
15722 		return (-1);
15723 	}
15724 
15725 	/*
15726 	 * The section needs to be large enough to contain the DOF provider
15727 	 * structure appropriate for the given version.
15728 	 */
15729 	if (sec->dofs_size <
15730 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15731 	    offsetof(dof_provider_t, dofpv_prenoffs) :
15732 	    sizeof (dof_provider_t))) {
15733 		dtrace_dof_error(dof, "provider section too small");
15734 		return (-1);
15735 	}
15736 
15737 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15738 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15739 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15740 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15741 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15742 
15743 	if (str_sec == NULL || prb_sec == NULL ||
15744 	    arg_sec == NULL || off_sec == NULL)
15745 		return (-1);
15746 
15747 	enoff_sec = NULL;
15748 
15749 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15750 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15751 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15752 	    provider->dofpv_prenoffs)) == NULL)
15753 		return (-1);
15754 
15755 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15756 
15757 	if (provider->dofpv_name >= str_sec->dofs_size ||
15758 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15759 		dtrace_dof_error(dof, "invalid provider name");
15760 		return (-1);
15761 	}
15762 
15763 	if (prb_sec->dofs_entsize == 0 ||
15764 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15765 		dtrace_dof_error(dof, "invalid entry size");
15766 		return (-1);
15767 	}
15768 
15769 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15770 		dtrace_dof_error(dof, "misaligned entry size");
15771 		return (-1);
15772 	}
15773 
15774 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15775 		dtrace_dof_error(dof, "invalid entry size");
15776 		return (-1);
15777 	}
15778 
15779 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15780 		dtrace_dof_error(dof, "misaligned section offset");
15781 		return (-1);
15782 	}
15783 
15784 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15785 		dtrace_dof_error(dof, "invalid entry size");
15786 		return (-1);
15787 	}
15788 
15789 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15790 
15791 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15792 
15793 	/*
15794 	 * Take a pass through the probes to check for errors.
15795 	 */
15796 	for (j = 0; j < nprobes; j++) {
15797 		probe = (dof_probe_t *)(uintptr_t)(daddr +
15798 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15799 
15800 		if (probe->dofpr_func >= str_sec->dofs_size) {
15801 			dtrace_dof_error(dof, "invalid function name");
15802 			return (-1);
15803 		}
15804 
15805 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15806 			dtrace_dof_error(dof, "function name too long");
15807 			return (-1);
15808 		}
15809 
15810 		if (probe->dofpr_name >= str_sec->dofs_size ||
15811 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15812 			dtrace_dof_error(dof, "invalid probe name");
15813 			return (-1);
15814 		}
15815 
15816 		/*
15817 		 * The offset count must not wrap the index, and the offsets
15818 		 * must also not overflow the section's data.
15819 		 */
15820 		if (probe->dofpr_offidx + probe->dofpr_noffs <
15821 		    probe->dofpr_offidx ||
15822 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15823 		    off_sec->dofs_entsize > off_sec->dofs_size) {
15824 			dtrace_dof_error(dof, "invalid probe offset");
15825 			return (-1);
15826 		}
15827 
15828 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15829 			/*
15830 			 * If there's no is-enabled offset section, make sure
15831 			 * there aren't any is-enabled offsets. Otherwise
15832 			 * perform the same checks as for probe offsets
15833 			 * (immediately above).
15834 			 */
15835 			if (enoff_sec == NULL) {
15836 				if (probe->dofpr_enoffidx != 0 ||
15837 				    probe->dofpr_nenoffs != 0) {
15838 					dtrace_dof_error(dof, "is-enabled "
15839 					    "offsets with null section");
15840 					return (-1);
15841 				}
15842 			} else if (probe->dofpr_enoffidx +
15843 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15844 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15845 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15846 				dtrace_dof_error(dof, "invalid is-enabled "
15847 				    "offset");
15848 				return (-1);
15849 			}
15850 
15851 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15852 				dtrace_dof_error(dof, "zero probe and "
15853 				    "is-enabled offsets");
15854 				return (-1);
15855 			}
15856 		} else if (probe->dofpr_noffs == 0) {
15857 			dtrace_dof_error(dof, "zero probe offsets");
15858 			return (-1);
15859 		}
15860 
15861 		if (probe->dofpr_argidx + probe->dofpr_xargc <
15862 		    probe->dofpr_argidx ||
15863 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15864 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15865 			dtrace_dof_error(dof, "invalid args");
15866 			return (-1);
15867 		}
15868 
15869 		typeidx = probe->dofpr_nargv;
15870 		typestr = strtab + probe->dofpr_nargv;
15871 		for (k = 0; k < probe->dofpr_nargc; k++) {
15872 			if (typeidx >= str_sec->dofs_size) {
15873 				dtrace_dof_error(dof, "bad "
15874 				    "native argument type");
15875 				return (-1);
15876 			}
15877 
15878 			typesz = strlen(typestr) + 1;
15879 			if (typesz > DTRACE_ARGTYPELEN) {
15880 				dtrace_dof_error(dof, "native "
15881 				    "argument type too long");
15882 				return (-1);
15883 			}
15884 			typeidx += typesz;
15885 			typestr += typesz;
15886 		}
15887 
15888 		typeidx = probe->dofpr_xargv;
15889 		typestr = strtab + probe->dofpr_xargv;
15890 		for (k = 0; k < probe->dofpr_xargc; k++) {
15891 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15892 				dtrace_dof_error(dof, "bad "
15893 				    "native argument index");
15894 				return (-1);
15895 			}
15896 
15897 			if (typeidx >= str_sec->dofs_size) {
15898 				dtrace_dof_error(dof, "bad "
15899 				    "translated argument type");
15900 				return (-1);
15901 			}
15902 
15903 			typesz = strlen(typestr) + 1;
15904 			if (typesz > DTRACE_ARGTYPELEN) {
15905 				dtrace_dof_error(dof, "translated argument "
15906 				    "type too long");
15907 				return (-1);
15908 			}
15909 
15910 			typeidx += typesz;
15911 			typestr += typesz;
15912 		}
15913 	}
15914 
15915 	return (0);
15916 }
15917 
15918 static int
15919 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15920 {
15921 	dtrace_helpers_t *help;
15922 	dtrace_vstate_t *vstate;
15923 	dtrace_enabling_t *enab = NULL;
15924 	proc_t *p = curproc;
15925 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15926 	uintptr_t daddr = (uintptr_t)dof;
15927 
15928 	ASSERT(MUTEX_HELD(&dtrace_lock));
15929 
15930 #ifdef __FreeBSD__
15931 	if (dhp->dofhp_pid != p->p_pid) {
15932 		if ((p = pfind(dhp->dofhp_pid)) == NULL)
15933 			return (-1);
15934 		if (!P_SHOULDSTOP(p) ||
15935 		    (p->p_flag & P_TRACED) == 0 ||
15936 		    p->p_pptr->p_pid != curproc->p_pid) {
15937 			PROC_UNLOCK(p);
15938 			return (-1);
15939 		}
15940 		PROC_UNLOCK(p);
15941 	}
15942 #endif
15943 
15944 	if ((help = p->p_dtrace_helpers) == NULL)
15945 		help = dtrace_helpers_create(p);
15946 
15947 	vstate = &help->dthps_vstate;
15948 
15949 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15950 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15951 		dtrace_dof_destroy(dof);
15952 		return (rv);
15953 	}
15954 
15955 	/*
15956 	 * Look for helper providers and validate their descriptions.
15957 	 */
15958 	if (dhp != NULL) {
15959 		for (i = 0; i < dof->dofh_secnum; i++) {
15960 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15961 			    dof->dofh_secoff + i * dof->dofh_secsize);
15962 
15963 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15964 				continue;
15965 
15966 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15967 				dtrace_enabling_destroy(enab);
15968 				dtrace_dof_destroy(dof);
15969 				return (-1);
15970 			}
15971 
15972 			nprovs++;
15973 		}
15974 	}
15975 
15976 	/*
15977 	 * Now we need to walk through the ECB descriptions in the enabling.
15978 	 */
15979 	for (i = 0; i < enab->dten_ndesc; i++) {
15980 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15981 		dtrace_probedesc_t *desc = &ep->dted_probe;
15982 
15983 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15984 			continue;
15985 
15986 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15987 			continue;
15988 
15989 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15990 			continue;
15991 
15992 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15993 		    ep, help)) != 0) {
15994 			/*
15995 			 * Adding this helper action failed -- we are now going
15996 			 * to rip out the entire generation and return failure.
15997 			 */
15998 			(void) dtrace_helper_destroygen(help,
15999 			    help->dthps_generation);
16000 			dtrace_enabling_destroy(enab);
16001 			dtrace_dof_destroy(dof);
16002 			return (-1);
16003 		}
16004 
16005 		nhelpers++;
16006 	}
16007 
16008 	if (nhelpers < enab->dten_ndesc)
16009 		dtrace_dof_error(dof, "unmatched helpers");
16010 
16011 	gen = help->dthps_generation++;
16012 	dtrace_enabling_destroy(enab);
16013 
16014 	if (dhp != NULL && nprovs > 0) {
16015 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16016 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16017 			mutex_exit(&dtrace_lock);
16018 			dtrace_helper_provider_register(p, help, dhp);
16019 			mutex_enter(&dtrace_lock);
16020 
16021 			destroy = 0;
16022 		}
16023 	}
16024 
16025 	if (destroy)
16026 		dtrace_dof_destroy(dof);
16027 
16028 	return (gen);
16029 }
16030 
16031 static dtrace_helpers_t *
16032 dtrace_helpers_create(proc_t *p)
16033 {
16034 	dtrace_helpers_t *help;
16035 
16036 	ASSERT(MUTEX_HELD(&dtrace_lock));
16037 	ASSERT(p->p_dtrace_helpers == NULL);
16038 
16039 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16040 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16041 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16042 
16043 	p->p_dtrace_helpers = help;
16044 	dtrace_helpers++;
16045 
16046 	return (help);
16047 }
16048 
16049 #ifdef illumos
16050 static
16051 #endif
16052 void
16053 dtrace_helpers_destroy(proc_t *p)
16054 {
16055 	dtrace_helpers_t *help;
16056 	dtrace_vstate_t *vstate;
16057 #ifdef illumos
16058 	proc_t *p = curproc;
16059 #endif
16060 	int i;
16061 
16062 	mutex_enter(&dtrace_lock);
16063 
16064 	ASSERT(p->p_dtrace_helpers != NULL);
16065 	ASSERT(dtrace_helpers > 0);
16066 
16067 	help = p->p_dtrace_helpers;
16068 	vstate = &help->dthps_vstate;
16069 
16070 	/*
16071 	 * We're now going to lose the help from this process.
16072 	 */
16073 	p->p_dtrace_helpers = NULL;
16074 	dtrace_sync();
16075 
16076 	/*
16077 	 * Destory the helper actions.
16078 	 */
16079 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16080 		dtrace_helper_action_t *h, *next;
16081 
16082 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16083 			next = h->dtha_next;
16084 			dtrace_helper_action_destroy(h, vstate);
16085 			h = next;
16086 		}
16087 	}
16088 
16089 	mutex_exit(&dtrace_lock);
16090 
16091 	/*
16092 	 * Destroy the helper providers.
16093 	 */
16094 	if (help->dthps_maxprovs > 0) {
16095 		mutex_enter(&dtrace_meta_lock);
16096 		if (dtrace_meta_pid != NULL) {
16097 			ASSERT(dtrace_deferred_pid == NULL);
16098 
16099 			for (i = 0; i < help->dthps_nprovs; i++) {
16100 				dtrace_helper_provider_remove(
16101 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16102 			}
16103 		} else {
16104 			mutex_enter(&dtrace_lock);
16105 			ASSERT(help->dthps_deferred == 0 ||
16106 			    help->dthps_next != NULL ||
16107 			    help->dthps_prev != NULL ||
16108 			    help == dtrace_deferred_pid);
16109 
16110 			/*
16111 			 * Remove the helper from the deferred list.
16112 			 */
16113 			if (help->dthps_next != NULL)
16114 				help->dthps_next->dthps_prev = help->dthps_prev;
16115 			if (help->dthps_prev != NULL)
16116 				help->dthps_prev->dthps_next = help->dthps_next;
16117 			if (dtrace_deferred_pid == help) {
16118 				dtrace_deferred_pid = help->dthps_next;
16119 				ASSERT(help->dthps_prev == NULL);
16120 			}
16121 
16122 			mutex_exit(&dtrace_lock);
16123 		}
16124 
16125 		mutex_exit(&dtrace_meta_lock);
16126 
16127 		for (i = 0; i < help->dthps_nprovs; i++) {
16128 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16129 		}
16130 
16131 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16132 		    sizeof (dtrace_helper_provider_t *));
16133 	}
16134 
16135 	mutex_enter(&dtrace_lock);
16136 
16137 	dtrace_vstate_fini(&help->dthps_vstate);
16138 	kmem_free(help->dthps_actions,
16139 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16140 	kmem_free(help, sizeof (dtrace_helpers_t));
16141 
16142 	--dtrace_helpers;
16143 	mutex_exit(&dtrace_lock);
16144 }
16145 
16146 #ifdef illumos
16147 static
16148 #endif
16149 void
16150 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16151 {
16152 	dtrace_helpers_t *help, *newhelp;
16153 	dtrace_helper_action_t *helper, *new, *last;
16154 	dtrace_difo_t *dp;
16155 	dtrace_vstate_t *vstate;
16156 	int i, j, sz, hasprovs = 0;
16157 
16158 	mutex_enter(&dtrace_lock);
16159 	ASSERT(from->p_dtrace_helpers != NULL);
16160 	ASSERT(dtrace_helpers > 0);
16161 
16162 	help = from->p_dtrace_helpers;
16163 	newhelp = dtrace_helpers_create(to);
16164 	ASSERT(to->p_dtrace_helpers != NULL);
16165 
16166 	newhelp->dthps_generation = help->dthps_generation;
16167 	vstate = &newhelp->dthps_vstate;
16168 
16169 	/*
16170 	 * Duplicate the helper actions.
16171 	 */
16172 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16173 		if ((helper = help->dthps_actions[i]) == NULL)
16174 			continue;
16175 
16176 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16177 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16178 			    KM_SLEEP);
16179 			new->dtha_generation = helper->dtha_generation;
16180 
16181 			if ((dp = helper->dtha_predicate) != NULL) {
16182 				dp = dtrace_difo_duplicate(dp, vstate);
16183 				new->dtha_predicate = dp;
16184 			}
16185 
16186 			new->dtha_nactions = helper->dtha_nactions;
16187 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16188 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16189 
16190 			for (j = 0; j < new->dtha_nactions; j++) {
16191 				dtrace_difo_t *dp = helper->dtha_actions[j];
16192 
16193 				ASSERT(dp != NULL);
16194 				dp = dtrace_difo_duplicate(dp, vstate);
16195 				new->dtha_actions[j] = dp;
16196 			}
16197 
16198 			if (last != NULL) {
16199 				last->dtha_next = new;
16200 			} else {
16201 				newhelp->dthps_actions[i] = new;
16202 			}
16203 
16204 			last = new;
16205 		}
16206 	}
16207 
16208 	/*
16209 	 * Duplicate the helper providers and register them with the
16210 	 * DTrace framework.
16211 	 */
16212 	if (help->dthps_nprovs > 0) {
16213 		newhelp->dthps_nprovs = help->dthps_nprovs;
16214 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16215 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16216 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16217 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16218 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16219 			newhelp->dthps_provs[i]->dthp_ref++;
16220 		}
16221 
16222 		hasprovs = 1;
16223 	}
16224 
16225 	mutex_exit(&dtrace_lock);
16226 
16227 	if (hasprovs)
16228 		dtrace_helper_provider_register(to, newhelp, NULL);
16229 }
16230 
16231 /*
16232  * DTrace Hook Functions
16233  */
16234 static void
16235 dtrace_module_loaded(modctl_t *ctl)
16236 {
16237 	dtrace_provider_t *prv;
16238 
16239 	mutex_enter(&dtrace_provider_lock);
16240 #ifdef illumos
16241 	mutex_enter(&mod_lock);
16242 #endif
16243 
16244 #ifdef illumos
16245 	ASSERT(ctl->mod_busy);
16246 #endif
16247 
16248 	/*
16249 	 * We're going to call each providers per-module provide operation
16250 	 * specifying only this module.
16251 	 */
16252 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16253 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16254 
16255 #ifdef illumos
16256 	mutex_exit(&mod_lock);
16257 #endif
16258 	mutex_exit(&dtrace_provider_lock);
16259 
16260 	/*
16261 	 * If we have any retained enablings, we need to match against them.
16262 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16263 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16264 	 * module.  (In particular, this happens when loading scheduling
16265 	 * classes.)  So if we have any retained enablings, we need to dispatch
16266 	 * our task queue to do the match for us.
16267 	 */
16268 	mutex_enter(&dtrace_lock);
16269 
16270 	if (dtrace_retained == NULL) {
16271 		mutex_exit(&dtrace_lock);
16272 		return;
16273 	}
16274 
16275 	(void) taskq_dispatch(dtrace_taskq,
16276 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16277 
16278 	mutex_exit(&dtrace_lock);
16279 
16280 	/*
16281 	 * And now, for a little heuristic sleaze:  in general, we want to
16282 	 * match modules as soon as they load.  However, we cannot guarantee
16283 	 * this, because it would lead us to the lock ordering violation
16284 	 * outlined above.  The common case, of course, is that cpu_lock is
16285 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16286 	 * long enough for the task queue to do its work.  If it's not, it's
16287 	 * not a serious problem -- it just means that the module that we
16288 	 * just loaded may not be immediately instrumentable.
16289 	 */
16290 	delay(1);
16291 }
16292 
16293 static void
16294 #ifdef illumos
16295 dtrace_module_unloaded(modctl_t *ctl)
16296 #else
16297 dtrace_module_unloaded(modctl_t *ctl, int *error)
16298 #endif
16299 {
16300 	dtrace_probe_t template, *probe, *first, *next;
16301 	dtrace_provider_t *prov;
16302 #ifndef illumos
16303 	char modname[DTRACE_MODNAMELEN];
16304 	size_t len;
16305 #endif
16306 
16307 #ifdef illumos
16308 	template.dtpr_mod = ctl->mod_modname;
16309 #else
16310 	/* Handle the fact that ctl->filename may end in ".ko". */
16311 	strlcpy(modname, ctl->filename, sizeof(modname));
16312 	len = strlen(ctl->filename);
16313 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16314 		modname[len - 3] = '\0';
16315 	template.dtpr_mod = modname;
16316 #endif
16317 
16318 	mutex_enter(&dtrace_provider_lock);
16319 #ifdef illumos
16320 	mutex_enter(&mod_lock);
16321 #endif
16322 	mutex_enter(&dtrace_lock);
16323 
16324 #ifndef illumos
16325 	if (ctl->nenabled > 0) {
16326 		/* Don't allow unloads if a probe is enabled. */
16327 		mutex_exit(&dtrace_provider_lock);
16328 		mutex_exit(&dtrace_lock);
16329 		*error = -1;
16330 		printf(
16331 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16332 		return;
16333 	}
16334 #endif
16335 
16336 	if (dtrace_bymod == NULL) {
16337 		/*
16338 		 * The DTrace module is loaded (obviously) but not attached;
16339 		 * we don't have any work to do.
16340 		 */
16341 		mutex_exit(&dtrace_provider_lock);
16342 #ifdef illumos
16343 		mutex_exit(&mod_lock);
16344 #endif
16345 		mutex_exit(&dtrace_lock);
16346 		return;
16347 	}
16348 
16349 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16350 	    probe != NULL; probe = probe->dtpr_nextmod) {
16351 		if (probe->dtpr_ecb != NULL) {
16352 			mutex_exit(&dtrace_provider_lock);
16353 #ifdef illumos
16354 			mutex_exit(&mod_lock);
16355 #endif
16356 			mutex_exit(&dtrace_lock);
16357 
16358 			/*
16359 			 * This shouldn't _actually_ be possible -- we're
16360 			 * unloading a module that has an enabled probe in it.
16361 			 * (It's normally up to the provider to make sure that
16362 			 * this can't happen.)  However, because dtps_enable()
16363 			 * doesn't have a failure mode, there can be an
16364 			 * enable/unload race.  Upshot:  we don't want to
16365 			 * assert, but we're not going to disable the
16366 			 * probe, either.
16367 			 */
16368 			if (dtrace_err_verbose) {
16369 #ifdef illumos
16370 				cmn_err(CE_WARN, "unloaded module '%s' had "
16371 				    "enabled probes", ctl->mod_modname);
16372 #else
16373 				cmn_err(CE_WARN, "unloaded module '%s' had "
16374 				    "enabled probes", modname);
16375 #endif
16376 			}
16377 
16378 			return;
16379 		}
16380 	}
16381 
16382 	probe = first;
16383 
16384 	for (first = NULL; probe != NULL; probe = next) {
16385 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16386 
16387 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16388 
16389 		next = probe->dtpr_nextmod;
16390 		dtrace_hash_remove(dtrace_bymod, probe);
16391 		dtrace_hash_remove(dtrace_byfunc, probe);
16392 		dtrace_hash_remove(dtrace_byname, probe);
16393 
16394 		if (first == NULL) {
16395 			first = probe;
16396 			probe->dtpr_nextmod = NULL;
16397 		} else {
16398 			probe->dtpr_nextmod = first;
16399 			first = probe;
16400 		}
16401 	}
16402 
16403 	/*
16404 	 * We've removed all of the module's probes from the hash chains and
16405 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16406 	 * everyone has cleared out from any probe array processing.
16407 	 */
16408 	dtrace_sync();
16409 
16410 	for (probe = first; probe != NULL; probe = first) {
16411 		first = probe->dtpr_nextmod;
16412 		prov = probe->dtpr_provider;
16413 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16414 		    probe->dtpr_arg);
16415 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16416 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16417 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16418 #ifdef illumos
16419 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16420 #else
16421 		free_unr(dtrace_arena, probe->dtpr_id);
16422 #endif
16423 		kmem_free(probe, sizeof (dtrace_probe_t));
16424 	}
16425 
16426 	mutex_exit(&dtrace_lock);
16427 #ifdef illumos
16428 	mutex_exit(&mod_lock);
16429 #endif
16430 	mutex_exit(&dtrace_provider_lock);
16431 }
16432 
16433 #ifndef illumos
16434 static void
16435 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16436 {
16437 
16438 	dtrace_module_loaded(lf);
16439 }
16440 
16441 static void
16442 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16443 {
16444 
16445 	if (*error != 0)
16446 		/* We already have an error, so don't do anything. */
16447 		return;
16448 	dtrace_module_unloaded(lf, error);
16449 }
16450 #endif
16451 
16452 #ifdef illumos
16453 static void
16454 dtrace_suspend(void)
16455 {
16456 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16457 }
16458 
16459 static void
16460 dtrace_resume(void)
16461 {
16462 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16463 }
16464 #endif
16465 
16466 static int
16467 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16468 {
16469 	ASSERT(MUTEX_HELD(&cpu_lock));
16470 	mutex_enter(&dtrace_lock);
16471 
16472 	switch (what) {
16473 	case CPU_CONFIG: {
16474 		dtrace_state_t *state;
16475 		dtrace_optval_t *opt, rs, c;
16476 
16477 		/*
16478 		 * For now, we only allocate a new buffer for anonymous state.
16479 		 */
16480 		if ((state = dtrace_anon.dta_state) == NULL)
16481 			break;
16482 
16483 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16484 			break;
16485 
16486 		opt = state->dts_options;
16487 		c = opt[DTRACEOPT_CPU];
16488 
16489 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16490 			break;
16491 
16492 		/*
16493 		 * Regardless of what the actual policy is, we're going to
16494 		 * temporarily set our resize policy to be manual.  We're
16495 		 * also going to temporarily set our CPU option to denote
16496 		 * the newly configured CPU.
16497 		 */
16498 		rs = opt[DTRACEOPT_BUFRESIZE];
16499 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16500 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16501 
16502 		(void) dtrace_state_buffers(state);
16503 
16504 		opt[DTRACEOPT_BUFRESIZE] = rs;
16505 		opt[DTRACEOPT_CPU] = c;
16506 
16507 		break;
16508 	}
16509 
16510 	case CPU_UNCONFIG:
16511 		/*
16512 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16513 		 * buffer will be freed when the consumer exits.)
16514 		 */
16515 		break;
16516 
16517 	default:
16518 		break;
16519 	}
16520 
16521 	mutex_exit(&dtrace_lock);
16522 	return (0);
16523 }
16524 
16525 #ifdef illumos
16526 static void
16527 dtrace_cpu_setup_initial(processorid_t cpu)
16528 {
16529 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16530 }
16531 #endif
16532 
16533 static void
16534 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16535 {
16536 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16537 		int osize, nsize;
16538 		dtrace_toxrange_t *range;
16539 
16540 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16541 
16542 		if (osize == 0) {
16543 			ASSERT(dtrace_toxrange == NULL);
16544 			ASSERT(dtrace_toxranges_max == 0);
16545 			dtrace_toxranges_max = 1;
16546 		} else {
16547 			dtrace_toxranges_max <<= 1;
16548 		}
16549 
16550 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16551 		range = kmem_zalloc(nsize, KM_SLEEP);
16552 
16553 		if (dtrace_toxrange != NULL) {
16554 			ASSERT(osize != 0);
16555 			bcopy(dtrace_toxrange, range, osize);
16556 			kmem_free(dtrace_toxrange, osize);
16557 		}
16558 
16559 		dtrace_toxrange = range;
16560 	}
16561 
16562 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16563 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16564 
16565 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16566 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16567 	dtrace_toxranges++;
16568 }
16569 
16570 static void
16571 dtrace_getf_barrier()
16572 {
16573 #ifdef illumos
16574 	/*
16575 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16576 	 * that contain calls to getf(), this routine will be called on every
16577 	 * closef() before either the underlying vnode is released or the
16578 	 * file_t itself is freed.  By the time we are here, it is essential
16579 	 * that the file_t can no longer be accessed from a call to getf()
16580 	 * in probe context -- that assures that a dtrace_sync() can be used
16581 	 * to clear out any enablings referring to the old structures.
16582 	 */
16583 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16584 	    kcred->cr_zone->zone_dtrace_getf != 0)
16585 		dtrace_sync();
16586 #endif
16587 }
16588 
16589 /*
16590  * DTrace Driver Cookbook Functions
16591  */
16592 #ifdef illumos
16593 /*ARGSUSED*/
16594 static int
16595 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16596 {
16597 	dtrace_provider_id_t id;
16598 	dtrace_state_t *state = NULL;
16599 	dtrace_enabling_t *enab;
16600 
16601 	mutex_enter(&cpu_lock);
16602 	mutex_enter(&dtrace_provider_lock);
16603 	mutex_enter(&dtrace_lock);
16604 
16605 	if (ddi_soft_state_init(&dtrace_softstate,
16606 	    sizeof (dtrace_state_t), 0) != 0) {
16607 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16608 		mutex_exit(&cpu_lock);
16609 		mutex_exit(&dtrace_provider_lock);
16610 		mutex_exit(&dtrace_lock);
16611 		return (DDI_FAILURE);
16612 	}
16613 
16614 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16615 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16616 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16617 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16618 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16619 		ddi_remove_minor_node(devi, NULL);
16620 		ddi_soft_state_fini(&dtrace_softstate);
16621 		mutex_exit(&cpu_lock);
16622 		mutex_exit(&dtrace_provider_lock);
16623 		mutex_exit(&dtrace_lock);
16624 		return (DDI_FAILURE);
16625 	}
16626 
16627 	ddi_report_dev(devi);
16628 	dtrace_devi = devi;
16629 
16630 	dtrace_modload = dtrace_module_loaded;
16631 	dtrace_modunload = dtrace_module_unloaded;
16632 	dtrace_cpu_init = dtrace_cpu_setup_initial;
16633 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16634 	dtrace_helpers_fork = dtrace_helpers_duplicate;
16635 	dtrace_cpustart_init = dtrace_suspend;
16636 	dtrace_cpustart_fini = dtrace_resume;
16637 	dtrace_debugger_init = dtrace_suspend;
16638 	dtrace_debugger_fini = dtrace_resume;
16639 
16640 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16641 
16642 	ASSERT(MUTEX_HELD(&cpu_lock));
16643 
16644 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16645 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16646 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16647 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16648 	    VM_SLEEP | VMC_IDENTIFIER);
16649 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16650 	    1, INT_MAX, 0);
16651 
16652 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16653 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16654 	    NULL, NULL, NULL, NULL, NULL, 0);
16655 
16656 	ASSERT(MUTEX_HELD(&cpu_lock));
16657 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16658 	    offsetof(dtrace_probe_t, dtpr_nextmod),
16659 	    offsetof(dtrace_probe_t, dtpr_prevmod));
16660 
16661 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16662 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16663 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16664 
16665 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16666 	    offsetof(dtrace_probe_t, dtpr_nextname),
16667 	    offsetof(dtrace_probe_t, dtpr_prevname));
16668 
16669 	if (dtrace_retain_max < 1) {
16670 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16671 		    "setting to 1", dtrace_retain_max);
16672 		dtrace_retain_max = 1;
16673 	}
16674 
16675 	/*
16676 	 * Now discover our toxic ranges.
16677 	 */
16678 	dtrace_toxic_ranges(dtrace_toxrange_add);
16679 
16680 	/*
16681 	 * Before we register ourselves as a provider to our own framework,
16682 	 * we would like to assert that dtrace_provider is NULL -- but that's
16683 	 * not true if we were loaded as a dependency of a DTrace provider.
16684 	 * Once we've registered, we can assert that dtrace_provider is our
16685 	 * pseudo provider.
16686 	 */
16687 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16688 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16689 
16690 	ASSERT(dtrace_provider != NULL);
16691 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16692 
16693 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16694 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16695 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16696 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16697 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16698 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16699 
16700 	dtrace_anon_property();
16701 	mutex_exit(&cpu_lock);
16702 
16703 	/*
16704 	 * If there are already providers, we must ask them to provide their
16705 	 * probes, and then match any anonymous enabling against them.  Note
16706 	 * that there should be no other retained enablings at this time:
16707 	 * the only retained enablings at this time should be the anonymous
16708 	 * enabling.
16709 	 */
16710 	if (dtrace_anon.dta_enabling != NULL) {
16711 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16712 
16713 		dtrace_enabling_provide(NULL);
16714 		state = dtrace_anon.dta_state;
16715 
16716 		/*
16717 		 * We couldn't hold cpu_lock across the above call to
16718 		 * dtrace_enabling_provide(), but we must hold it to actually
16719 		 * enable the probes.  We have to drop all of our locks, pick
16720 		 * up cpu_lock, and regain our locks before matching the
16721 		 * retained anonymous enabling.
16722 		 */
16723 		mutex_exit(&dtrace_lock);
16724 		mutex_exit(&dtrace_provider_lock);
16725 
16726 		mutex_enter(&cpu_lock);
16727 		mutex_enter(&dtrace_provider_lock);
16728 		mutex_enter(&dtrace_lock);
16729 
16730 		if ((enab = dtrace_anon.dta_enabling) != NULL)
16731 			(void) dtrace_enabling_match(enab, NULL);
16732 
16733 		mutex_exit(&cpu_lock);
16734 	}
16735 
16736 	mutex_exit(&dtrace_lock);
16737 	mutex_exit(&dtrace_provider_lock);
16738 
16739 	if (state != NULL) {
16740 		/*
16741 		 * If we created any anonymous state, set it going now.
16742 		 */
16743 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16744 	}
16745 
16746 	return (DDI_SUCCESS);
16747 }
16748 #endif	/* illumos */
16749 
16750 #ifndef illumos
16751 static void dtrace_dtr(void *);
16752 #endif
16753 
16754 /*ARGSUSED*/
16755 static int
16756 #ifdef illumos
16757 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16758 #else
16759 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16760 #endif
16761 {
16762 	dtrace_state_t *state;
16763 	uint32_t priv;
16764 	uid_t uid;
16765 	zoneid_t zoneid;
16766 
16767 #ifdef illumos
16768 	if (getminor(*devp) == DTRACEMNRN_HELPER)
16769 		return (0);
16770 
16771 	/*
16772 	 * If this wasn't an open with the "helper" minor, then it must be
16773 	 * the "dtrace" minor.
16774 	 */
16775 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16776 		return (ENXIO);
16777 #else
16778 	cred_t *cred_p = NULL;
16779 	cred_p = dev->si_cred;
16780 
16781 	/*
16782 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16783 	 * caller lacks sufficient permission to do anything with DTrace.
16784 	 */
16785 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16786 	if (priv == DTRACE_PRIV_NONE) {
16787 #endif
16788 
16789 		return (EACCES);
16790 	}
16791 
16792 	/*
16793 	 * Ask all providers to provide all their probes.
16794 	 */
16795 	mutex_enter(&dtrace_provider_lock);
16796 	dtrace_probe_provide(NULL, NULL);
16797 	mutex_exit(&dtrace_provider_lock);
16798 
16799 	mutex_enter(&cpu_lock);
16800 	mutex_enter(&dtrace_lock);
16801 	dtrace_opens++;
16802 	dtrace_membar_producer();
16803 
16804 #ifdef illumos
16805 	/*
16806 	 * If the kernel debugger is active (that is, if the kernel debugger
16807 	 * modified text in some way), we won't allow the open.
16808 	 */
16809 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16810 		dtrace_opens--;
16811 		mutex_exit(&cpu_lock);
16812 		mutex_exit(&dtrace_lock);
16813 		return (EBUSY);
16814 	}
16815 
16816 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16817 		/*
16818 		 * If DTrace helper tracing is enabled, we need to allocate the
16819 		 * trace buffer and initialize the values.
16820 		 */
16821 		dtrace_helptrace_buffer =
16822 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16823 		dtrace_helptrace_next = 0;
16824 		dtrace_helptrace_wrapped = 0;
16825 		dtrace_helptrace_enable = 0;
16826 	}
16827 
16828 	state = dtrace_state_create(devp, cred_p);
16829 #else
16830 	state = dtrace_state_create(dev);
16831 	devfs_set_cdevpriv(state, dtrace_dtr);
16832 #endif
16833 
16834 	mutex_exit(&cpu_lock);
16835 
16836 	if (state == NULL) {
16837 #ifdef illumos
16838 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16839 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16840 #else
16841 		--dtrace_opens;
16842 #endif
16843 		mutex_exit(&dtrace_lock);
16844 		return (EAGAIN);
16845 	}
16846 
16847 	mutex_exit(&dtrace_lock);
16848 
16849 	return (0);
16850 }
16851 
16852 /*ARGSUSED*/
16853 #ifdef illumos
16854 static int
16855 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16856 #else
16857 static void
16858 dtrace_dtr(void *data)
16859 #endif
16860 {
16861 #ifdef illumos
16862 	minor_t minor = getminor(dev);
16863 	dtrace_state_t *state;
16864 #endif
16865 	dtrace_helptrace_t *buf = NULL;
16866 
16867 #ifdef illumos
16868 	if (minor == DTRACEMNRN_HELPER)
16869 		return (0);
16870 
16871 	state = ddi_get_soft_state(dtrace_softstate, minor);
16872 #else
16873 	dtrace_state_t *state = data;
16874 #endif
16875 
16876 	mutex_enter(&cpu_lock);
16877 	mutex_enter(&dtrace_lock);
16878 
16879 #ifdef illumos
16880 	if (state->dts_anon)
16881 #else
16882 	if (state != NULL && state->dts_anon)
16883 #endif
16884 	{
16885 		/*
16886 		 * There is anonymous state. Destroy that first.
16887 		 */
16888 		ASSERT(dtrace_anon.dta_state == NULL);
16889 		dtrace_state_destroy(state->dts_anon);
16890 	}
16891 
16892 	if (dtrace_helptrace_disable) {
16893 		/*
16894 		 * If we have been told to disable helper tracing, set the
16895 		 * buffer to NULL before calling into dtrace_state_destroy();
16896 		 * we take advantage of its dtrace_sync() to know that no
16897 		 * CPU is in probe context with enabled helper tracing
16898 		 * after it returns.
16899 		 */
16900 		buf = dtrace_helptrace_buffer;
16901 		dtrace_helptrace_buffer = NULL;
16902 	}
16903 
16904 #ifdef illumos
16905 	dtrace_state_destroy(state);
16906 #else
16907 	if (state != NULL) {
16908 		dtrace_state_destroy(state);
16909 		kmem_free(state, 0);
16910 	}
16911 #endif
16912 	ASSERT(dtrace_opens > 0);
16913 
16914 #ifdef illumos
16915 	/*
16916 	 * Only relinquish control of the kernel debugger interface when there
16917 	 * are no consumers and no anonymous enablings.
16918 	 */
16919 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16920 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16921 #else
16922 	--dtrace_opens;
16923 #endif
16924 
16925 	if (buf != NULL) {
16926 		kmem_free(buf, dtrace_helptrace_bufsize);
16927 		dtrace_helptrace_disable = 0;
16928 	}
16929 
16930 	mutex_exit(&dtrace_lock);
16931 	mutex_exit(&cpu_lock);
16932 
16933 #ifdef illumos
16934 	return (0);
16935 #endif
16936 }
16937 
16938 #ifdef illumos
16939 /*ARGSUSED*/
16940 static int
16941 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16942 {
16943 	int rval;
16944 	dof_helper_t help, *dhp = NULL;
16945 
16946 	switch (cmd) {
16947 	case DTRACEHIOC_ADDDOF:
16948 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16949 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16950 			return (EFAULT);
16951 		}
16952 
16953 		dhp = &help;
16954 		arg = (intptr_t)help.dofhp_dof;
16955 		/*FALLTHROUGH*/
16956 
16957 	case DTRACEHIOC_ADD: {
16958 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16959 
16960 		if (dof == NULL)
16961 			return (rval);
16962 
16963 		mutex_enter(&dtrace_lock);
16964 
16965 		/*
16966 		 * dtrace_helper_slurp() takes responsibility for the dof --
16967 		 * it may free it now or it may save it and free it later.
16968 		 */
16969 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16970 			*rv = rval;
16971 			rval = 0;
16972 		} else {
16973 			rval = EINVAL;
16974 		}
16975 
16976 		mutex_exit(&dtrace_lock);
16977 		return (rval);
16978 	}
16979 
16980 	case DTRACEHIOC_REMOVE: {
16981 		mutex_enter(&dtrace_lock);
16982 		rval = dtrace_helper_destroygen(NULL, arg);
16983 		mutex_exit(&dtrace_lock);
16984 
16985 		return (rval);
16986 	}
16987 
16988 	default:
16989 		break;
16990 	}
16991 
16992 	return (ENOTTY);
16993 }
16994 
16995 /*ARGSUSED*/
16996 static int
16997 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16998 {
16999 	minor_t minor = getminor(dev);
17000 	dtrace_state_t *state;
17001 	int rval;
17002 
17003 	if (minor == DTRACEMNRN_HELPER)
17004 		return (dtrace_ioctl_helper(cmd, arg, rv));
17005 
17006 	state = ddi_get_soft_state(dtrace_softstate, minor);
17007 
17008 	if (state->dts_anon) {
17009 		ASSERT(dtrace_anon.dta_state == NULL);
17010 		state = state->dts_anon;
17011 	}
17012 
17013 	switch (cmd) {
17014 	case DTRACEIOC_PROVIDER: {
17015 		dtrace_providerdesc_t pvd;
17016 		dtrace_provider_t *pvp;
17017 
17018 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17019 			return (EFAULT);
17020 
17021 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17022 		mutex_enter(&dtrace_provider_lock);
17023 
17024 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17025 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17026 				break;
17027 		}
17028 
17029 		mutex_exit(&dtrace_provider_lock);
17030 
17031 		if (pvp == NULL)
17032 			return (ESRCH);
17033 
17034 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17035 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17036 
17037 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17038 			return (EFAULT);
17039 
17040 		return (0);
17041 	}
17042 
17043 	case DTRACEIOC_EPROBE: {
17044 		dtrace_eprobedesc_t epdesc;
17045 		dtrace_ecb_t *ecb;
17046 		dtrace_action_t *act;
17047 		void *buf;
17048 		size_t size;
17049 		uintptr_t dest;
17050 		int nrecs;
17051 
17052 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17053 			return (EFAULT);
17054 
17055 		mutex_enter(&dtrace_lock);
17056 
17057 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17058 			mutex_exit(&dtrace_lock);
17059 			return (EINVAL);
17060 		}
17061 
17062 		if (ecb->dte_probe == NULL) {
17063 			mutex_exit(&dtrace_lock);
17064 			return (EINVAL);
17065 		}
17066 
17067 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17068 		epdesc.dtepd_uarg = ecb->dte_uarg;
17069 		epdesc.dtepd_size = ecb->dte_size;
17070 
17071 		nrecs = epdesc.dtepd_nrecs;
17072 		epdesc.dtepd_nrecs = 0;
17073 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17074 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17075 				continue;
17076 
17077 			epdesc.dtepd_nrecs++;
17078 		}
17079 
17080 		/*
17081 		 * Now that we have the size, we need to allocate a temporary
17082 		 * buffer in which to store the complete description.  We need
17083 		 * the temporary buffer to be able to drop dtrace_lock()
17084 		 * across the copyout(), below.
17085 		 */
17086 		size = sizeof (dtrace_eprobedesc_t) +
17087 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17088 
17089 		buf = kmem_alloc(size, KM_SLEEP);
17090 		dest = (uintptr_t)buf;
17091 
17092 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17093 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17094 
17095 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17096 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17097 				continue;
17098 
17099 			if (nrecs-- == 0)
17100 				break;
17101 
17102 			bcopy(&act->dta_rec, (void *)dest,
17103 			    sizeof (dtrace_recdesc_t));
17104 			dest += sizeof (dtrace_recdesc_t);
17105 		}
17106 
17107 		mutex_exit(&dtrace_lock);
17108 
17109 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17110 			kmem_free(buf, size);
17111 			return (EFAULT);
17112 		}
17113 
17114 		kmem_free(buf, size);
17115 		return (0);
17116 	}
17117 
17118 	case DTRACEIOC_AGGDESC: {
17119 		dtrace_aggdesc_t aggdesc;
17120 		dtrace_action_t *act;
17121 		dtrace_aggregation_t *agg;
17122 		int nrecs;
17123 		uint32_t offs;
17124 		dtrace_recdesc_t *lrec;
17125 		void *buf;
17126 		size_t size;
17127 		uintptr_t dest;
17128 
17129 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17130 			return (EFAULT);
17131 
17132 		mutex_enter(&dtrace_lock);
17133 
17134 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17135 			mutex_exit(&dtrace_lock);
17136 			return (EINVAL);
17137 		}
17138 
17139 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17140 
17141 		nrecs = aggdesc.dtagd_nrecs;
17142 		aggdesc.dtagd_nrecs = 0;
17143 
17144 		offs = agg->dtag_base;
17145 		lrec = &agg->dtag_action.dta_rec;
17146 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17147 
17148 		for (act = agg->dtag_first; ; act = act->dta_next) {
17149 			ASSERT(act->dta_intuple ||
17150 			    DTRACEACT_ISAGG(act->dta_kind));
17151 
17152 			/*
17153 			 * If this action has a record size of zero, it
17154 			 * denotes an argument to the aggregating action.
17155 			 * Because the presence of this record doesn't (or
17156 			 * shouldn't) affect the way the data is interpreted,
17157 			 * we don't copy it out to save user-level the
17158 			 * confusion of dealing with a zero-length record.
17159 			 */
17160 			if (act->dta_rec.dtrd_size == 0) {
17161 				ASSERT(agg->dtag_hasarg);
17162 				continue;
17163 			}
17164 
17165 			aggdesc.dtagd_nrecs++;
17166 
17167 			if (act == &agg->dtag_action)
17168 				break;
17169 		}
17170 
17171 		/*
17172 		 * Now that we have the size, we need to allocate a temporary
17173 		 * buffer in which to store the complete description.  We need
17174 		 * the temporary buffer to be able to drop dtrace_lock()
17175 		 * across the copyout(), below.
17176 		 */
17177 		size = sizeof (dtrace_aggdesc_t) +
17178 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17179 
17180 		buf = kmem_alloc(size, KM_SLEEP);
17181 		dest = (uintptr_t)buf;
17182 
17183 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17184 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17185 
17186 		for (act = agg->dtag_first; ; act = act->dta_next) {
17187 			dtrace_recdesc_t rec = act->dta_rec;
17188 
17189 			/*
17190 			 * See the comment in the above loop for why we pass
17191 			 * over zero-length records.
17192 			 */
17193 			if (rec.dtrd_size == 0) {
17194 				ASSERT(agg->dtag_hasarg);
17195 				continue;
17196 			}
17197 
17198 			if (nrecs-- == 0)
17199 				break;
17200 
17201 			rec.dtrd_offset -= offs;
17202 			bcopy(&rec, (void *)dest, sizeof (rec));
17203 			dest += sizeof (dtrace_recdesc_t);
17204 
17205 			if (act == &agg->dtag_action)
17206 				break;
17207 		}
17208 
17209 		mutex_exit(&dtrace_lock);
17210 
17211 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17212 			kmem_free(buf, size);
17213 			return (EFAULT);
17214 		}
17215 
17216 		kmem_free(buf, size);
17217 		return (0);
17218 	}
17219 
17220 	case DTRACEIOC_ENABLE: {
17221 		dof_hdr_t *dof;
17222 		dtrace_enabling_t *enab = NULL;
17223 		dtrace_vstate_t *vstate;
17224 		int err = 0;
17225 
17226 		*rv = 0;
17227 
17228 		/*
17229 		 * If a NULL argument has been passed, we take this as our
17230 		 * cue to reevaluate our enablings.
17231 		 */
17232 		if (arg == NULL) {
17233 			dtrace_enabling_matchall();
17234 
17235 			return (0);
17236 		}
17237 
17238 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17239 			return (rval);
17240 
17241 		mutex_enter(&cpu_lock);
17242 		mutex_enter(&dtrace_lock);
17243 		vstate = &state->dts_vstate;
17244 
17245 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17246 			mutex_exit(&dtrace_lock);
17247 			mutex_exit(&cpu_lock);
17248 			dtrace_dof_destroy(dof);
17249 			return (EBUSY);
17250 		}
17251 
17252 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17253 			mutex_exit(&dtrace_lock);
17254 			mutex_exit(&cpu_lock);
17255 			dtrace_dof_destroy(dof);
17256 			return (EINVAL);
17257 		}
17258 
17259 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17260 			dtrace_enabling_destroy(enab);
17261 			mutex_exit(&dtrace_lock);
17262 			mutex_exit(&cpu_lock);
17263 			dtrace_dof_destroy(dof);
17264 			return (rval);
17265 		}
17266 
17267 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17268 			err = dtrace_enabling_retain(enab);
17269 		} else {
17270 			dtrace_enabling_destroy(enab);
17271 		}
17272 
17273 		mutex_exit(&cpu_lock);
17274 		mutex_exit(&dtrace_lock);
17275 		dtrace_dof_destroy(dof);
17276 
17277 		return (err);
17278 	}
17279 
17280 	case DTRACEIOC_REPLICATE: {
17281 		dtrace_repldesc_t desc;
17282 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17283 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17284 		int err;
17285 
17286 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17287 			return (EFAULT);
17288 
17289 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17290 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17291 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17292 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17293 
17294 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17295 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17296 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17297 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17298 
17299 		mutex_enter(&dtrace_lock);
17300 		err = dtrace_enabling_replicate(state, match, create);
17301 		mutex_exit(&dtrace_lock);
17302 
17303 		return (err);
17304 	}
17305 
17306 	case DTRACEIOC_PROBEMATCH:
17307 	case DTRACEIOC_PROBES: {
17308 		dtrace_probe_t *probe = NULL;
17309 		dtrace_probedesc_t desc;
17310 		dtrace_probekey_t pkey;
17311 		dtrace_id_t i;
17312 		int m = 0;
17313 		uint32_t priv;
17314 		uid_t uid;
17315 		zoneid_t zoneid;
17316 
17317 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17318 			return (EFAULT);
17319 
17320 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17321 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17322 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17323 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17324 
17325 		/*
17326 		 * Before we attempt to match this probe, we want to give
17327 		 * all providers the opportunity to provide it.
17328 		 */
17329 		if (desc.dtpd_id == DTRACE_IDNONE) {
17330 			mutex_enter(&dtrace_provider_lock);
17331 			dtrace_probe_provide(&desc, NULL);
17332 			mutex_exit(&dtrace_provider_lock);
17333 			desc.dtpd_id++;
17334 		}
17335 
17336 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17337 			dtrace_probekey(&desc, &pkey);
17338 			pkey.dtpk_id = DTRACE_IDNONE;
17339 		}
17340 
17341 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17342 
17343 		mutex_enter(&dtrace_lock);
17344 
17345 		if (cmd == DTRACEIOC_PROBEMATCH) {
17346 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17347 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17348 				    (m = dtrace_match_probe(probe, &pkey,
17349 				    priv, uid, zoneid)) != 0)
17350 					break;
17351 			}
17352 
17353 			if (m < 0) {
17354 				mutex_exit(&dtrace_lock);
17355 				return (EINVAL);
17356 			}
17357 
17358 		} else {
17359 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17360 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17361 				    dtrace_match_priv(probe, priv, uid, zoneid))
17362 					break;
17363 			}
17364 		}
17365 
17366 		if (probe == NULL) {
17367 			mutex_exit(&dtrace_lock);
17368 			return (ESRCH);
17369 		}
17370 
17371 		dtrace_probe_description(probe, &desc);
17372 		mutex_exit(&dtrace_lock);
17373 
17374 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17375 			return (EFAULT);
17376 
17377 		return (0);
17378 	}
17379 
17380 	case DTRACEIOC_PROBEARG: {
17381 		dtrace_argdesc_t desc;
17382 		dtrace_probe_t *probe;
17383 		dtrace_provider_t *prov;
17384 
17385 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17386 			return (EFAULT);
17387 
17388 		if (desc.dtargd_id == DTRACE_IDNONE)
17389 			return (EINVAL);
17390 
17391 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17392 			return (EINVAL);
17393 
17394 		mutex_enter(&dtrace_provider_lock);
17395 		mutex_enter(&mod_lock);
17396 		mutex_enter(&dtrace_lock);
17397 
17398 		if (desc.dtargd_id > dtrace_nprobes) {
17399 			mutex_exit(&dtrace_lock);
17400 			mutex_exit(&mod_lock);
17401 			mutex_exit(&dtrace_provider_lock);
17402 			return (EINVAL);
17403 		}
17404 
17405 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17406 			mutex_exit(&dtrace_lock);
17407 			mutex_exit(&mod_lock);
17408 			mutex_exit(&dtrace_provider_lock);
17409 			return (EINVAL);
17410 		}
17411 
17412 		mutex_exit(&dtrace_lock);
17413 
17414 		prov = probe->dtpr_provider;
17415 
17416 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17417 			/*
17418 			 * There isn't any typed information for this probe.
17419 			 * Set the argument number to DTRACE_ARGNONE.
17420 			 */
17421 			desc.dtargd_ndx = DTRACE_ARGNONE;
17422 		} else {
17423 			desc.dtargd_native[0] = '\0';
17424 			desc.dtargd_xlate[0] = '\0';
17425 			desc.dtargd_mapping = desc.dtargd_ndx;
17426 
17427 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17428 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17429 		}
17430 
17431 		mutex_exit(&mod_lock);
17432 		mutex_exit(&dtrace_provider_lock);
17433 
17434 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17435 			return (EFAULT);
17436 
17437 		return (0);
17438 	}
17439 
17440 	case DTRACEIOC_GO: {
17441 		processorid_t cpuid;
17442 		rval = dtrace_state_go(state, &cpuid);
17443 
17444 		if (rval != 0)
17445 			return (rval);
17446 
17447 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17448 			return (EFAULT);
17449 
17450 		return (0);
17451 	}
17452 
17453 	case DTRACEIOC_STOP: {
17454 		processorid_t cpuid;
17455 
17456 		mutex_enter(&dtrace_lock);
17457 		rval = dtrace_state_stop(state, &cpuid);
17458 		mutex_exit(&dtrace_lock);
17459 
17460 		if (rval != 0)
17461 			return (rval);
17462 
17463 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17464 			return (EFAULT);
17465 
17466 		return (0);
17467 	}
17468 
17469 	case DTRACEIOC_DOFGET: {
17470 		dof_hdr_t hdr, *dof;
17471 		uint64_t len;
17472 
17473 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17474 			return (EFAULT);
17475 
17476 		mutex_enter(&dtrace_lock);
17477 		dof = dtrace_dof_create(state);
17478 		mutex_exit(&dtrace_lock);
17479 
17480 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17481 		rval = copyout(dof, (void *)arg, len);
17482 		dtrace_dof_destroy(dof);
17483 
17484 		return (rval == 0 ? 0 : EFAULT);
17485 	}
17486 
17487 	case DTRACEIOC_AGGSNAP:
17488 	case DTRACEIOC_BUFSNAP: {
17489 		dtrace_bufdesc_t desc;
17490 		caddr_t cached;
17491 		dtrace_buffer_t *buf;
17492 
17493 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17494 			return (EFAULT);
17495 
17496 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17497 			return (EINVAL);
17498 
17499 		mutex_enter(&dtrace_lock);
17500 
17501 		if (cmd == DTRACEIOC_BUFSNAP) {
17502 			buf = &state->dts_buffer[desc.dtbd_cpu];
17503 		} else {
17504 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17505 		}
17506 
17507 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17508 			size_t sz = buf->dtb_offset;
17509 
17510 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17511 				mutex_exit(&dtrace_lock);
17512 				return (EBUSY);
17513 			}
17514 
17515 			/*
17516 			 * If this buffer has already been consumed, we're
17517 			 * going to indicate that there's nothing left here
17518 			 * to consume.
17519 			 */
17520 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17521 				mutex_exit(&dtrace_lock);
17522 
17523 				desc.dtbd_size = 0;
17524 				desc.dtbd_drops = 0;
17525 				desc.dtbd_errors = 0;
17526 				desc.dtbd_oldest = 0;
17527 				sz = sizeof (desc);
17528 
17529 				if (copyout(&desc, (void *)arg, sz) != 0)
17530 					return (EFAULT);
17531 
17532 				return (0);
17533 			}
17534 
17535 			/*
17536 			 * If this is a ring buffer that has wrapped, we want
17537 			 * to copy the whole thing out.
17538 			 */
17539 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17540 				dtrace_buffer_polish(buf);
17541 				sz = buf->dtb_size;
17542 			}
17543 
17544 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17545 				mutex_exit(&dtrace_lock);
17546 				return (EFAULT);
17547 			}
17548 
17549 			desc.dtbd_size = sz;
17550 			desc.dtbd_drops = buf->dtb_drops;
17551 			desc.dtbd_errors = buf->dtb_errors;
17552 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17553 			desc.dtbd_timestamp = dtrace_gethrtime();
17554 
17555 			mutex_exit(&dtrace_lock);
17556 
17557 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17558 				return (EFAULT);
17559 
17560 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17561 
17562 			return (0);
17563 		}
17564 
17565 		if (buf->dtb_tomax == NULL) {
17566 			ASSERT(buf->dtb_xamot == NULL);
17567 			mutex_exit(&dtrace_lock);
17568 			return (ENOENT);
17569 		}
17570 
17571 		cached = buf->dtb_tomax;
17572 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17573 
17574 		dtrace_xcall(desc.dtbd_cpu,
17575 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17576 
17577 		state->dts_errors += buf->dtb_xamot_errors;
17578 
17579 		/*
17580 		 * If the buffers did not actually switch, then the cross call
17581 		 * did not take place -- presumably because the given CPU is
17582 		 * not in the ready set.  If this is the case, we'll return
17583 		 * ENOENT.
17584 		 */
17585 		if (buf->dtb_tomax == cached) {
17586 			ASSERT(buf->dtb_xamot != cached);
17587 			mutex_exit(&dtrace_lock);
17588 			return (ENOENT);
17589 		}
17590 
17591 		ASSERT(cached == buf->dtb_xamot);
17592 
17593 		/*
17594 		 * We have our snapshot; now copy it out.
17595 		 */
17596 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17597 		    buf->dtb_xamot_offset) != 0) {
17598 			mutex_exit(&dtrace_lock);
17599 			return (EFAULT);
17600 		}
17601 
17602 		desc.dtbd_size = buf->dtb_xamot_offset;
17603 		desc.dtbd_drops = buf->dtb_xamot_drops;
17604 		desc.dtbd_errors = buf->dtb_xamot_errors;
17605 		desc.dtbd_oldest = 0;
17606 		desc.dtbd_timestamp = buf->dtb_switched;
17607 
17608 		mutex_exit(&dtrace_lock);
17609 
17610 		/*
17611 		 * Finally, copy out the buffer description.
17612 		 */
17613 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17614 			return (EFAULT);
17615 
17616 		return (0);
17617 	}
17618 
17619 	case DTRACEIOC_CONF: {
17620 		dtrace_conf_t conf;
17621 
17622 		bzero(&conf, sizeof (conf));
17623 		conf.dtc_difversion = DIF_VERSION;
17624 		conf.dtc_difintregs = DIF_DIR_NREGS;
17625 		conf.dtc_diftupregs = DIF_DTR_NREGS;
17626 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17627 
17628 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17629 			return (EFAULT);
17630 
17631 		return (0);
17632 	}
17633 
17634 	case DTRACEIOC_STATUS: {
17635 		dtrace_status_t stat;
17636 		dtrace_dstate_t *dstate;
17637 		int i, j;
17638 		uint64_t nerrs;
17639 
17640 		/*
17641 		 * See the comment in dtrace_state_deadman() for the reason
17642 		 * for setting dts_laststatus to INT64_MAX before setting
17643 		 * it to the correct value.
17644 		 */
17645 		state->dts_laststatus = INT64_MAX;
17646 		dtrace_membar_producer();
17647 		state->dts_laststatus = dtrace_gethrtime();
17648 
17649 		bzero(&stat, sizeof (stat));
17650 
17651 		mutex_enter(&dtrace_lock);
17652 
17653 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17654 			mutex_exit(&dtrace_lock);
17655 			return (ENOENT);
17656 		}
17657 
17658 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17659 			stat.dtst_exiting = 1;
17660 
17661 		nerrs = state->dts_errors;
17662 		dstate = &state->dts_vstate.dtvs_dynvars;
17663 
17664 		for (i = 0; i < NCPU; i++) {
17665 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17666 
17667 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17668 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17669 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17670 
17671 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17672 				stat.dtst_filled++;
17673 
17674 			nerrs += state->dts_buffer[i].dtb_errors;
17675 
17676 			for (j = 0; j < state->dts_nspeculations; j++) {
17677 				dtrace_speculation_t *spec;
17678 				dtrace_buffer_t *buf;
17679 
17680 				spec = &state->dts_speculations[j];
17681 				buf = &spec->dtsp_buffer[i];
17682 				stat.dtst_specdrops += buf->dtb_xamot_drops;
17683 			}
17684 		}
17685 
17686 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17687 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17688 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17689 		stat.dtst_dblerrors = state->dts_dblerrors;
17690 		stat.dtst_killed =
17691 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17692 		stat.dtst_errors = nerrs;
17693 
17694 		mutex_exit(&dtrace_lock);
17695 
17696 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17697 			return (EFAULT);
17698 
17699 		return (0);
17700 	}
17701 
17702 	case DTRACEIOC_FORMAT: {
17703 		dtrace_fmtdesc_t fmt;
17704 		char *str;
17705 		int len;
17706 
17707 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17708 			return (EFAULT);
17709 
17710 		mutex_enter(&dtrace_lock);
17711 
17712 		if (fmt.dtfd_format == 0 ||
17713 		    fmt.dtfd_format > state->dts_nformats) {
17714 			mutex_exit(&dtrace_lock);
17715 			return (EINVAL);
17716 		}
17717 
17718 		/*
17719 		 * Format strings are allocated contiguously and they are
17720 		 * never freed; if a format index is less than the number
17721 		 * of formats, we can assert that the format map is non-NULL
17722 		 * and that the format for the specified index is non-NULL.
17723 		 */
17724 		ASSERT(state->dts_formats != NULL);
17725 		str = state->dts_formats[fmt.dtfd_format - 1];
17726 		ASSERT(str != NULL);
17727 
17728 		len = strlen(str) + 1;
17729 
17730 		if (len > fmt.dtfd_length) {
17731 			fmt.dtfd_length = len;
17732 
17733 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17734 				mutex_exit(&dtrace_lock);
17735 				return (EINVAL);
17736 			}
17737 		} else {
17738 			if (copyout(str, fmt.dtfd_string, len) != 0) {
17739 				mutex_exit(&dtrace_lock);
17740 				return (EINVAL);
17741 			}
17742 		}
17743 
17744 		mutex_exit(&dtrace_lock);
17745 		return (0);
17746 	}
17747 
17748 	default:
17749 		break;
17750 	}
17751 
17752 	return (ENOTTY);
17753 }
17754 
17755 /*ARGSUSED*/
17756 static int
17757 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17758 {
17759 	dtrace_state_t *state;
17760 
17761 	switch (cmd) {
17762 	case DDI_DETACH:
17763 		break;
17764 
17765 	case DDI_SUSPEND:
17766 		return (DDI_SUCCESS);
17767 
17768 	default:
17769 		return (DDI_FAILURE);
17770 	}
17771 
17772 	mutex_enter(&cpu_lock);
17773 	mutex_enter(&dtrace_provider_lock);
17774 	mutex_enter(&dtrace_lock);
17775 
17776 	ASSERT(dtrace_opens == 0);
17777 
17778 	if (dtrace_helpers > 0) {
17779 		mutex_exit(&dtrace_provider_lock);
17780 		mutex_exit(&dtrace_lock);
17781 		mutex_exit(&cpu_lock);
17782 		return (DDI_FAILURE);
17783 	}
17784 
17785 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17786 		mutex_exit(&dtrace_provider_lock);
17787 		mutex_exit(&dtrace_lock);
17788 		mutex_exit(&cpu_lock);
17789 		return (DDI_FAILURE);
17790 	}
17791 
17792 	dtrace_provider = NULL;
17793 
17794 	if ((state = dtrace_anon_grab()) != NULL) {
17795 		/*
17796 		 * If there were ECBs on this state, the provider should
17797 		 * have not been allowed to detach; assert that there is
17798 		 * none.
17799 		 */
17800 		ASSERT(state->dts_necbs == 0);
17801 		dtrace_state_destroy(state);
17802 
17803 		/*
17804 		 * If we're being detached with anonymous state, we need to
17805 		 * indicate to the kernel debugger that DTrace is now inactive.
17806 		 */
17807 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17808 	}
17809 
17810 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17811 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17812 	dtrace_cpu_init = NULL;
17813 	dtrace_helpers_cleanup = NULL;
17814 	dtrace_helpers_fork = NULL;
17815 	dtrace_cpustart_init = NULL;
17816 	dtrace_cpustart_fini = NULL;
17817 	dtrace_debugger_init = NULL;
17818 	dtrace_debugger_fini = NULL;
17819 	dtrace_modload = NULL;
17820 	dtrace_modunload = NULL;
17821 
17822 	ASSERT(dtrace_getf == 0);
17823 	ASSERT(dtrace_closef == NULL);
17824 
17825 	mutex_exit(&cpu_lock);
17826 
17827 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17828 	dtrace_probes = NULL;
17829 	dtrace_nprobes = 0;
17830 
17831 	dtrace_hash_destroy(dtrace_bymod);
17832 	dtrace_hash_destroy(dtrace_byfunc);
17833 	dtrace_hash_destroy(dtrace_byname);
17834 	dtrace_bymod = NULL;
17835 	dtrace_byfunc = NULL;
17836 	dtrace_byname = NULL;
17837 
17838 	kmem_cache_destroy(dtrace_state_cache);
17839 	vmem_destroy(dtrace_minor);
17840 	vmem_destroy(dtrace_arena);
17841 
17842 	if (dtrace_toxrange != NULL) {
17843 		kmem_free(dtrace_toxrange,
17844 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17845 		dtrace_toxrange = NULL;
17846 		dtrace_toxranges = 0;
17847 		dtrace_toxranges_max = 0;
17848 	}
17849 
17850 	ddi_remove_minor_node(dtrace_devi, NULL);
17851 	dtrace_devi = NULL;
17852 
17853 	ddi_soft_state_fini(&dtrace_softstate);
17854 
17855 	ASSERT(dtrace_vtime_references == 0);
17856 	ASSERT(dtrace_opens == 0);
17857 	ASSERT(dtrace_retained == NULL);
17858 
17859 	mutex_exit(&dtrace_lock);
17860 	mutex_exit(&dtrace_provider_lock);
17861 
17862 	/*
17863 	 * We don't destroy the task queue until after we have dropped our
17864 	 * locks (taskq_destroy() may block on running tasks).  To prevent
17865 	 * attempting to do work after we have effectively detached but before
17866 	 * the task queue has been destroyed, all tasks dispatched via the
17867 	 * task queue must check that DTrace is still attached before
17868 	 * performing any operation.
17869 	 */
17870 	taskq_destroy(dtrace_taskq);
17871 	dtrace_taskq = NULL;
17872 
17873 	return (DDI_SUCCESS);
17874 }
17875 #endif
17876 
17877 #ifdef illumos
17878 /*ARGSUSED*/
17879 static int
17880 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17881 {
17882 	int error;
17883 
17884 	switch (infocmd) {
17885 	case DDI_INFO_DEVT2DEVINFO:
17886 		*result = (void *)dtrace_devi;
17887 		error = DDI_SUCCESS;
17888 		break;
17889 	case DDI_INFO_DEVT2INSTANCE:
17890 		*result = (void *)0;
17891 		error = DDI_SUCCESS;
17892 		break;
17893 	default:
17894 		error = DDI_FAILURE;
17895 	}
17896 	return (error);
17897 }
17898 #endif
17899 
17900 #ifdef illumos
17901 static struct cb_ops dtrace_cb_ops = {
17902 	dtrace_open,		/* open */
17903 	dtrace_close,		/* close */
17904 	nulldev,		/* strategy */
17905 	nulldev,		/* print */
17906 	nodev,			/* dump */
17907 	nodev,			/* read */
17908 	nodev,			/* write */
17909 	dtrace_ioctl,		/* ioctl */
17910 	nodev,			/* devmap */
17911 	nodev,			/* mmap */
17912 	nodev,			/* segmap */
17913 	nochpoll,		/* poll */
17914 	ddi_prop_op,		/* cb_prop_op */
17915 	0,			/* streamtab  */
17916 	D_NEW | D_MP		/* Driver compatibility flag */
17917 };
17918 
17919 static struct dev_ops dtrace_ops = {
17920 	DEVO_REV,		/* devo_rev */
17921 	0,			/* refcnt */
17922 	dtrace_info,		/* get_dev_info */
17923 	nulldev,		/* identify */
17924 	nulldev,		/* probe */
17925 	dtrace_attach,		/* attach */
17926 	dtrace_detach,		/* detach */
17927 	nodev,			/* reset */
17928 	&dtrace_cb_ops,		/* driver operations */
17929 	NULL,			/* bus operations */
17930 	nodev			/* dev power */
17931 };
17932 
17933 static struct modldrv modldrv = {
17934 	&mod_driverops,		/* module type (this is a pseudo driver) */
17935 	"Dynamic Tracing",	/* name of module */
17936 	&dtrace_ops,		/* driver ops */
17937 };
17938 
17939 static struct modlinkage modlinkage = {
17940 	MODREV_1,
17941 	(void *)&modldrv,
17942 	NULL
17943 };
17944 
17945 int
17946 _init(void)
17947 {
17948 	return (mod_install(&modlinkage));
17949 }
17950 
17951 int
17952 _info(struct modinfo *modinfop)
17953 {
17954 	return (mod_info(&modlinkage, modinfop));
17955 }
17956 
17957 int
17958 _fini(void)
17959 {
17960 	return (mod_remove(&modlinkage));
17961 }
17962 #else
17963 
17964 static d_ioctl_t	dtrace_ioctl;
17965 static d_ioctl_t	dtrace_ioctl_helper;
17966 static void		dtrace_load(void *);
17967 static int		dtrace_unload(void);
17968 static struct cdev	*dtrace_dev;
17969 static struct cdev	*helper_dev;
17970 
17971 void dtrace_invop_init(void);
17972 void dtrace_invop_uninit(void);
17973 
17974 static struct cdevsw dtrace_cdevsw = {
17975 	.d_version	= D_VERSION,
17976 	.d_ioctl	= dtrace_ioctl,
17977 	.d_open		= dtrace_open,
17978 	.d_name		= "dtrace",
17979 };
17980 
17981 static struct cdevsw helper_cdevsw = {
17982 	.d_version	= D_VERSION,
17983 	.d_ioctl	= dtrace_ioctl_helper,
17984 	.d_name		= "helper",
17985 };
17986 
17987 #include <dtrace_anon.c>
17988 #include <dtrace_ioctl.c>
17989 #include <dtrace_load.c>
17990 #include <dtrace_modevent.c>
17991 #include <dtrace_sysctl.c>
17992 #include <dtrace_unload.c>
17993 #include <dtrace_vtime.c>
17994 #include <dtrace_hacks.c>
17995 #include <dtrace_isa.c>
17996 
17997 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
17998 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
17999 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18000 
18001 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18002 MODULE_VERSION(dtrace, 1);
18003 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18004 #endif
18005