1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 *flags |= CPU_DTRACE_NOFAULT; \ 553 /*CSTYLED*/ \ 554 rval = *((volatile uint##bits##_t *)addr); \ 555 *flags &= ~CPU_DTRACE_NOFAULT; \ 556 \ 557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 558 } 559 560 #ifdef _LP64 561 #define dtrace_loadptr dtrace_load64 562 #else 563 #define dtrace_loadptr dtrace_load32 564 #endif 565 566 #define DTRACE_DYNHASH_FREE 0 567 #define DTRACE_DYNHASH_SINK 1 568 #define DTRACE_DYNHASH_VALID 2 569 570 #define DTRACE_MATCH_NEXT 0 571 #define DTRACE_MATCH_DONE 1 572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 573 #define DTRACE_STATE_ALIGN 64 574 575 #define DTRACE_FLAGS2FLT(flags) \ 576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 585 DTRACEFLT_UNKNOWN) 586 587 #define DTRACEACT_ISSTRING(act) \ 588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 590 591 /* Function prototype definitions: */ 592 static size_t dtrace_strlen(const char *, size_t); 593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 594 static void dtrace_enabling_provide(dtrace_provider_t *); 595 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 596 static void dtrace_enabling_matchall(void); 597 static void dtrace_enabling_reap(void); 598 static dtrace_state_t *dtrace_anon_grab(void); 599 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 600 dtrace_state_t *, uint64_t, uint64_t); 601 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 602 static void dtrace_buffer_drop(dtrace_buffer_t *); 603 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 604 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 605 dtrace_state_t *, dtrace_mstate_t *); 606 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 607 dtrace_optval_t); 608 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 609 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 610 uint16_t dtrace_load16(uintptr_t); 611 uint32_t dtrace_load32(uintptr_t); 612 uint64_t dtrace_load64(uintptr_t); 613 uint8_t dtrace_load8(uintptr_t); 614 void dtrace_dynvar_clean(dtrace_dstate_t *); 615 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 616 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 617 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 618 static int dtrace_priv_proc(dtrace_state_t *); 619 static void dtrace_getf_barrier(void); 620 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 621 dtrace_mstate_t *, dtrace_vstate_t *); 622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 623 dtrace_mstate_t *, dtrace_vstate_t *); 624 625 /* 626 * DTrace Probe Context Functions 627 * 628 * These functions are called from probe context. Because probe context is 629 * any context in which C may be called, arbitrarily locks may be held, 630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 631 * As a result, functions called from probe context may only call other DTrace 632 * support functions -- they may not interact at all with the system at large. 633 * (Note that the ASSERT macro is made probe-context safe by redefining it in 634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 635 * loads are to be performed from probe context, they _must_ be in terms of 636 * the safe dtrace_load*() variants. 637 * 638 * Some functions in this block are not actually called from probe context; 639 * for these functions, there will be a comment above the function reading 640 * "Note: not called from probe context." 641 */ 642 void 643 dtrace_panic(const char *format, ...) 644 { 645 va_list alist; 646 647 va_start(alist, format); 648 #ifdef __FreeBSD__ 649 vpanic(format, alist); 650 #else 651 dtrace_vpanic(format, alist); 652 #endif 653 va_end(alist); 654 } 655 656 int 657 dtrace_assfail(const char *a, const char *f, int l) 658 { 659 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 660 661 /* 662 * We just need something here that even the most clever compiler 663 * cannot optimize away. 664 */ 665 return (a[(uintptr_t)f]); 666 } 667 668 /* 669 * Atomically increment a specified error counter from probe context. 670 */ 671 static void 672 dtrace_error(uint32_t *counter) 673 { 674 /* 675 * Most counters stored to in probe context are per-CPU counters. 676 * However, there are some error conditions that are sufficiently 677 * arcane that they don't merit per-CPU storage. If these counters 678 * are incremented concurrently on different CPUs, scalability will be 679 * adversely affected -- but we don't expect them to be white-hot in a 680 * correctly constructed enabling... 681 */ 682 uint32_t oval, nval; 683 684 do { 685 oval = *counter; 686 687 if ((nval = oval + 1) == 0) { 688 /* 689 * If the counter would wrap, set it to 1 -- assuring 690 * that the counter is never zero when we have seen 691 * errors. (The counter must be 32-bits because we 692 * aren't guaranteed a 64-bit compare&swap operation.) 693 * To save this code both the infamy of being fingered 694 * by a priggish news story and the indignity of being 695 * the target of a neo-puritan witch trial, we're 696 * carefully avoiding any colorful description of the 697 * likelihood of this condition -- but suffice it to 698 * say that it is only slightly more likely than the 699 * overflow of predicate cache IDs, as discussed in 700 * dtrace_predicate_create(). 701 */ 702 nval = 1; 703 } 704 } while (dtrace_cas32(counter, oval, nval) != oval); 705 } 706 707 /* 708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 709 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 710 */ 711 /* BEGIN CSTYLED */ 712 DTRACE_LOADFUNC(8) 713 DTRACE_LOADFUNC(16) 714 DTRACE_LOADFUNC(32) 715 DTRACE_LOADFUNC(64) 716 /* END CSTYLED */ 717 718 static int 719 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 720 { 721 if (dest < mstate->dtms_scratch_base) 722 return (0); 723 724 if (dest + size < dest) 725 return (0); 726 727 if (dest + size > mstate->dtms_scratch_ptr) 728 return (0); 729 730 return (1); 731 } 732 733 static int 734 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 735 dtrace_statvar_t **svars, int nsvars) 736 { 737 int i; 738 size_t maxglobalsize, maxlocalsize; 739 740 if (nsvars == 0) 741 return (0); 742 743 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 744 maxlocalsize = maxglobalsize * (mp_maxid + 1); 745 746 for (i = 0; i < nsvars; i++) { 747 dtrace_statvar_t *svar = svars[i]; 748 uint8_t scope; 749 size_t size; 750 751 if (svar == NULL || (size = svar->dtsv_size) == 0) 752 continue; 753 754 scope = svar->dtsv_var.dtdv_scope; 755 756 /* 757 * We verify that our size is valid in the spirit of providing 758 * defense in depth: we want to prevent attackers from using 759 * DTrace to escalate an orthogonal kernel heap corruption bug 760 * into the ability to store to arbitrary locations in memory. 761 */ 762 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 763 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 764 765 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 766 svar->dtsv_size)) { 767 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 768 svar->dtsv_size); 769 return (1); 770 } 771 } 772 773 return (0); 774 } 775 776 /* 777 * Check to see if the address is within a memory region to which a store may 778 * be issued. This includes the DTrace scratch areas, and any DTrace variable 779 * region. The caller of dtrace_canstore() is responsible for performing any 780 * alignment checks that are needed before stores are actually executed. 781 */ 782 static int 783 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 784 dtrace_vstate_t *vstate) 785 { 786 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 787 } 788 789 /* 790 * Implementation of dtrace_canstore which communicates the upper bound of the 791 * allowed memory region. 792 */ 793 static int 794 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 795 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 796 { 797 /* 798 * First, check to see if the address is in scratch space... 799 */ 800 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 801 mstate->dtms_scratch_size)) { 802 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 803 mstate->dtms_scratch_size); 804 return (1); 805 } 806 807 /* 808 * Now check to see if it's a dynamic variable. This check will pick 809 * up both thread-local variables and any global dynamically-allocated 810 * variables. 811 */ 812 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 813 vstate->dtvs_dynvars.dtds_size)) { 814 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 815 uintptr_t base = (uintptr_t)dstate->dtds_base + 816 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 817 uintptr_t chunkoffs; 818 dtrace_dynvar_t *dvar; 819 820 /* 821 * Before we assume that we can store here, we need to make 822 * sure that it isn't in our metadata -- storing to our 823 * dynamic variable metadata would corrupt our state. For 824 * the range to not include any dynamic variable metadata, 825 * it must: 826 * 827 * (1) Start above the hash table that is at the base of 828 * the dynamic variable space 829 * 830 * (2) Have a starting chunk offset that is beyond the 831 * dtrace_dynvar_t that is at the base of every chunk 832 * 833 * (3) Not span a chunk boundary 834 * 835 * (4) Not be in the tuple space of a dynamic variable 836 * 837 */ 838 if (addr < base) 839 return (0); 840 841 chunkoffs = (addr - base) % dstate->dtds_chunksize; 842 843 if (chunkoffs < sizeof (dtrace_dynvar_t)) 844 return (0); 845 846 if (chunkoffs + sz > dstate->dtds_chunksize) 847 return (0); 848 849 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 850 851 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 852 return (0); 853 854 if (chunkoffs < sizeof (dtrace_dynvar_t) + 855 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 856 return (0); 857 858 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 859 return (1); 860 } 861 862 /* 863 * Finally, check the static local and global variables. These checks 864 * take the longest, so we perform them last. 865 */ 866 if (dtrace_canstore_statvar(addr, sz, remain, 867 vstate->dtvs_locals, vstate->dtvs_nlocals)) 868 return (1); 869 870 if (dtrace_canstore_statvar(addr, sz, remain, 871 vstate->dtvs_globals, vstate->dtvs_nglobals)) 872 return (1); 873 874 return (0); 875 } 876 877 878 /* 879 * Convenience routine to check to see if the address is within a memory 880 * region in which a load may be issued given the user's privilege level; 881 * if not, it sets the appropriate error flags and loads 'addr' into the 882 * illegal value slot. 883 * 884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 885 * appropriate memory access protection. 886 */ 887 static int 888 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 889 dtrace_vstate_t *vstate) 890 { 891 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 892 } 893 894 /* 895 * Implementation of dtrace_canload which communicates the uppoer bound of the 896 * allowed memory region. 897 */ 898 static int 899 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 900 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 901 { 902 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 903 file_t *fp; 904 905 /* 906 * If we hold the privilege to read from kernel memory, then 907 * everything is readable. 908 */ 909 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 910 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 911 return (1); 912 } 913 914 /* 915 * You can obviously read that which you can store. 916 */ 917 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 918 return (1); 919 920 /* 921 * We're allowed to read from our own string table. 922 */ 923 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 924 mstate->dtms_difo->dtdo_strlen)) { 925 DTRACE_RANGE_REMAIN(remain, addr, 926 mstate->dtms_difo->dtdo_strtab, 927 mstate->dtms_difo->dtdo_strlen); 928 return (1); 929 } 930 931 if (vstate->dtvs_state != NULL && 932 dtrace_priv_proc(vstate->dtvs_state)) { 933 proc_t *p; 934 935 /* 936 * When we have privileges to the current process, there are 937 * several context-related kernel structures that are safe to 938 * read, even absent the privilege to read from kernel memory. 939 * These reads are safe because these structures contain only 940 * state that (1) we're permitted to read, (2) is harmless or 941 * (3) contains pointers to additional kernel state that we're 942 * not permitted to read (and as such, do not present an 943 * opportunity for privilege escalation). Finally (and 944 * critically), because of the nature of their relation with 945 * the current thread context, the memory associated with these 946 * structures cannot change over the duration of probe context, 947 * and it is therefore impossible for this memory to be 948 * deallocated and reallocated as something else while it's 949 * being operated upon. 950 */ 951 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 952 DTRACE_RANGE_REMAIN(remain, addr, curthread, 953 sizeof (kthread_t)); 954 return (1); 955 } 956 957 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 958 sz, curthread->t_procp, sizeof (proc_t))) { 959 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 960 sizeof (proc_t)); 961 return (1); 962 } 963 964 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 965 curthread->t_cred, sizeof (cred_t))) { 966 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 967 sizeof (cred_t)); 968 return (1); 969 } 970 971 #ifdef illumos 972 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 973 &(p->p_pidp->pid_id), sizeof (pid_t))) { 974 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 975 sizeof (pid_t)); 976 return (1); 977 } 978 979 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 980 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 981 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 982 offsetof(cpu_t, cpu_pause_thread)); 983 return (1); 984 } 985 #endif 986 } 987 988 if ((fp = mstate->dtms_getf) != NULL) { 989 uintptr_t psz = sizeof (void *); 990 vnode_t *vp; 991 vnodeops_t *op; 992 993 /* 994 * When getf() returns a file_t, the enabling is implicitly 995 * granted the (transient) right to read the returned file_t 996 * as well as the v_path and v_op->vnop_name of the underlying 997 * vnode. These accesses are allowed after a successful 998 * getf() because the members that they refer to cannot change 999 * once set -- and the barrier logic in the kernel's closef() 1000 * path assures that the file_t and its referenced vode_t 1001 * cannot themselves be stale (that is, it impossible for 1002 * either dtms_getf itself or its f_vnode member to reference 1003 * freed memory). 1004 */ 1005 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1006 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1007 return (1); 1008 } 1009 1010 if ((vp = fp->f_vnode) != NULL) { 1011 size_t slen; 1012 #ifdef illumos 1013 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1014 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1015 psz); 1016 return (1); 1017 } 1018 slen = strlen(vp->v_path) + 1; 1019 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1020 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1021 slen); 1022 return (1); 1023 } 1024 #endif 1025 1026 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1027 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1028 psz); 1029 return (1); 1030 } 1031 1032 #ifdef illumos 1033 if ((op = vp->v_op) != NULL && 1034 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1035 DTRACE_RANGE_REMAIN(remain, addr, 1036 &op->vnop_name, psz); 1037 return (1); 1038 } 1039 1040 if (op != NULL && op->vnop_name != NULL && 1041 DTRACE_INRANGE(addr, sz, op->vnop_name, 1042 (slen = strlen(op->vnop_name) + 1))) { 1043 DTRACE_RANGE_REMAIN(remain, addr, 1044 op->vnop_name, slen); 1045 return (1); 1046 } 1047 #endif 1048 } 1049 } 1050 1051 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1052 *illval = addr; 1053 return (0); 1054 } 1055 1056 /* 1057 * Convenience routine to check to see if a given string is within a memory 1058 * region in which a load may be issued given the user's privilege level; 1059 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1060 * calls in the event that the user has all privileges. 1061 */ 1062 static int 1063 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1064 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1065 { 1066 size_t rsize; 1067 1068 /* 1069 * If we hold the privilege to read from kernel memory, then 1070 * everything is readable. 1071 */ 1072 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1073 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1074 return (1); 1075 } 1076 1077 /* 1078 * Even if the caller is uninterested in querying the remaining valid 1079 * range, it is required to ensure that the access is allowed. 1080 */ 1081 if (remain == NULL) { 1082 remain = &rsize; 1083 } 1084 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1085 size_t strsz; 1086 /* 1087 * Perform the strlen after determining the length of the 1088 * memory region which is accessible. This prevents timing 1089 * information from being used to find NULs in memory which is 1090 * not accessible to the caller. 1091 */ 1092 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1093 MIN(sz, *remain)); 1094 if (strsz <= *remain) { 1095 return (1); 1096 } 1097 } 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Convenience routine to check to see if a given variable is within a memory 1104 * region in which a load may be issued given the user's privilege level. 1105 */ 1106 static int 1107 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1108 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1109 { 1110 size_t sz; 1111 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1112 1113 /* 1114 * Calculate the max size before performing any checks since even 1115 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1116 * return the max length via 'remain'. 1117 */ 1118 if (type->dtdt_kind == DIF_TYPE_STRING) { 1119 dtrace_state_t *state = vstate->dtvs_state; 1120 1121 if (state != NULL) { 1122 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1123 } else { 1124 /* 1125 * In helper context, we have a NULL state; fall back 1126 * to using the system-wide default for the string size 1127 * in this case. 1128 */ 1129 sz = dtrace_strsize_default; 1130 } 1131 } else { 1132 sz = type->dtdt_size; 1133 } 1134 1135 /* 1136 * If we hold the privilege to read from kernel memory, then 1137 * everything is readable. 1138 */ 1139 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1140 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1141 return (1); 1142 } 1143 1144 if (type->dtdt_kind == DIF_TYPE_STRING) { 1145 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1146 vstate)); 1147 } 1148 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1149 vstate)); 1150 } 1151 1152 /* 1153 * Convert a string to a signed integer using safe loads. 1154 * 1155 * NOTE: This function uses various macros from strtolctype.h to manipulate 1156 * digit values, etc -- these have all been checked to ensure they make 1157 * no additional function calls. 1158 */ 1159 static int64_t 1160 dtrace_strtoll(char *input, int base, size_t limit) 1161 { 1162 uintptr_t pos = (uintptr_t)input; 1163 int64_t val = 0; 1164 int x; 1165 boolean_t neg = B_FALSE; 1166 char c, cc, ccc; 1167 uintptr_t end = pos + limit; 1168 1169 /* 1170 * Consume any whitespace preceding digits. 1171 */ 1172 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1173 pos++; 1174 1175 /* 1176 * Handle an explicit sign if one is present. 1177 */ 1178 if (c == '-' || c == '+') { 1179 if (c == '-') 1180 neg = B_TRUE; 1181 c = dtrace_load8(++pos); 1182 } 1183 1184 /* 1185 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1186 * if present. 1187 */ 1188 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1189 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1190 pos += 2; 1191 c = ccc; 1192 } 1193 1194 /* 1195 * Read in contiguous digits until the first non-digit character. 1196 */ 1197 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1198 c = dtrace_load8(++pos)) 1199 val = val * base + x; 1200 1201 return (neg ? -val : val); 1202 } 1203 1204 /* 1205 * Compare two strings using safe loads. 1206 */ 1207 static int 1208 dtrace_strncmp(char *s1, char *s2, size_t limit) 1209 { 1210 uint8_t c1, c2; 1211 volatile uint16_t *flags; 1212 1213 if (s1 == s2 || limit == 0) 1214 return (0); 1215 1216 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1217 1218 do { 1219 if (s1 == NULL) { 1220 c1 = '\0'; 1221 } else { 1222 c1 = dtrace_load8((uintptr_t)s1++); 1223 } 1224 1225 if (s2 == NULL) { 1226 c2 = '\0'; 1227 } else { 1228 c2 = dtrace_load8((uintptr_t)s2++); 1229 } 1230 1231 if (c1 != c2) 1232 return (c1 - c2); 1233 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1234 1235 return (0); 1236 } 1237 1238 /* 1239 * Compute strlen(s) for a string using safe memory accesses. The additional 1240 * len parameter is used to specify a maximum length to ensure completion. 1241 */ 1242 static size_t 1243 dtrace_strlen(const char *s, size_t lim) 1244 { 1245 uint_t len; 1246 1247 for (len = 0; len != lim; len++) { 1248 if (dtrace_load8((uintptr_t)s++) == '\0') 1249 break; 1250 } 1251 1252 return (len); 1253 } 1254 1255 /* 1256 * Check if an address falls within a toxic region. 1257 */ 1258 static int 1259 dtrace_istoxic(uintptr_t kaddr, size_t size) 1260 { 1261 uintptr_t taddr, tsize; 1262 int i; 1263 1264 for (i = 0; i < dtrace_toxranges; i++) { 1265 taddr = dtrace_toxrange[i].dtt_base; 1266 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1267 1268 if (kaddr - taddr < tsize) { 1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1270 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1271 return (1); 1272 } 1273 1274 if (taddr - kaddr < size) { 1275 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1276 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1277 return (1); 1278 } 1279 } 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1286 * memory specified by the DIF program. The dst is assumed to be safe memory 1287 * that we can store to directly because it is managed by DTrace. As with 1288 * standard bcopy, overlapping copies are handled properly. 1289 */ 1290 static void 1291 dtrace_bcopy(const void *src, void *dst, size_t len) 1292 { 1293 if (len != 0) { 1294 uint8_t *s1 = dst; 1295 const uint8_t *s2 = src; 1296 1297 if (s1 <= s2) { 1298 do { 1299 *s1++ = dtrace_load8((uintptr_t)s2++); 1300 } while (--len != 0); 1301 } else { 1302 s2 += len; 1303 s1 += len; 1304 1305 do { 1306 *--s1 = dtrace_load8((uintptr_t)--s2); 1307 } while (--len != 0); 1308 } 1309 } 1310 } 1311 1312 /* 1313 * Copy src to dst using safe memory accesses, up to either the specified 1314 * length, or the point that a nul byte is encountered. The src is assumed to 1315 * be unsafe memory specified by the DIF program. The dst is assumed to be 1316 * safe memory that we can store to directly because it is managed by DTrace. 1317 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1318 */ 1319 static void 1320 dtrace_strcpy(const void *src, void *dst, size_t len) 1321 { 1322 if (len != 0) { 1323 uint8_t *s1 = dst, c; 1324 const uint8_t *s2 = src; 1325 1326 do { 1327 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1328 } while (--len != 0 && c != '\0'); 1329 } 1330 } 1331 1332 /* 1333 * Copy src to dst, deriving the size and type from the specified (BYREF) 1334 * variable type. The src is assumed to be unsafe memory specified by the DIF 1335 * program. The dst is assumed to be DTrace variable memory that is of the 1336 * specified type; we assume that we can store to directly. 1337 */ 1338 static void 1339 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1340 { 1341 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1342 1343 if (type->dtdt_kind == DIF_TYPE_STRING) { 1344 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1345 } else { 1346 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1347 } 1348 } 1349 1350 /* 1351 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1352 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1353 * safe memory that we can access directly because it is managed by DTrace. 1354 */ 1355 static int 1356 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1357 { 1358 volatile uint16_t *flags; 1359 1360 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1361 1362 if (s1 == s2) 1363 return (0); 1364 1365 if (s1 == NULL || s2 == NULL) 1366 return (1); 1367 1368 if (s1 != s2 && len != 0) { 1369 const uint8_t *ps1 = s1; 1370 const uint8_t *ps2 = s2; 1371 1372 do { 1373 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1374 return (1); 1375 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1376 } 1377 return (0); 1378 } 1379 1380 /* 1381 * Zero the specified region using a simple byte-by-byte loop. Note that this 1382 * is for safe DTrace-managed memory only. 1383 */ 1384 static void 1385 dtrace_bzero(void *dst, size_t len) 1386 { 1387 uchar_t *cp; 1388 1389 for (cp = dst; len != 0; len--) 1390 *cp++ = 0; 1391 } 1392 1393 static void 1394 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1395 { 1396 uint64_t result[2]; 1397 1398 result[0] = addend1[0] + addend2[0]; 1399 result[1] = addend1[1] + addend2[1] + 1400 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1401 1402 sum[0] = result[0]; 1403 sum[1] = result[1]; 1404 } 1405 1406 /* 1407 * Shift the 128-bit value in a by b. If b is positive, shift left. 1408 * If b is negative, shift right. 1409 */ 1410 static void 1411 dtrace_shift_128(uint64_t *a, int b) 1412 { 1413 uint64_t mask; 1414 1415 if (b == 0) 1416 return; 1417 1418 if (b < 0) { 1419 b = -b; 1420 if (b >= 64) { 1421 a[0] = a[1] >> (b - 64); 1422 a[1] = 0; 1423 } else { 1424 a[0] >>= b; 1425 mask = 1LL << (64 - b); 1426 mask -= 1; 1427 a[0] |= ((a[1] & mask) << (64 - b)); 1428 a[1] >>= b; 1429 } 1430 } else { 1431 if (b >= 64) { 1432 a[1] = a[0] << (b - 64); 1433 a[0] = 0; 1434 } else { 1435 a[1] <<= b; 1436 mask = a[0] >> (64 - b); 1437 a[1] |= mask; 1438 a[0] <<= b; 1439 } 1440 } 1441 } 1442 1443 /* 1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1445 * use native multiplication on those, and then re-combine into the 1446 * resulting 128-bit value. 1447 * 1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1449 * hi1 * hi2 << 64 + 1450 * hi1 * lo2 << 32 + 1451 * hi2 * lo1 << 32 + 1452 * lo1 * lo2 1453 */ 1454 static void 1455 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1456 { 1457 uint64_t hi1, hi2, lo1, lo2; 1458 uint64_t tmp[2]; 1459 1460 hi1 = factor1 >> 32; 1461 hi2 = factor2 >> 32; 1462 1463 lo1 = factor1 & DT_MASK_LO; 1464 lo2 = factor2 & DT_MASK_LO; 1465 1466 product[0] = lo1 * lo2; 1467 product[1] = hi1 * hi2; 1468 1469 tmp[0] = hi1 * lo2; 1470 tmp[1] = 0; 1471 dtrace_shift_128(tmp, 32); 1472 dtrace_add_128(product, tmp, product); 1473 1474 tmp[0] = hi2 * lo1; 1475 tmp[1] = 0; 1476 dtrace_shift_128(tmp, 32); 1477 dtrace_add_128(product, tmp, product); 1478 } 1479 1480 /* 1481 * This privilege check should be used by actions and subroutines to 1482 * verify that the user credentials of the process that enabled the 1483 * invoking ECB match the target credentials 1484 */ 1485 static int 1486 dtrace_priv_proc_common_user(dtrace_state_t *state) 1487 { 1488 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1489 1490 /* 1491 * We should always have a non-NULL state cred here, since if cred 1492 * is null (anonymous tracing), we fast-path bypass this routine. 1493 */ 1494 ASSERT(s_cr != NULL); 1495 1496 if ((cr = CRED()) != NULL && 1497 s_cr->cr_uid == cr->cr_uid && 1498 s_cr->cr_uid == cr->cr_ruid && 1499 s_cr->cr_uid == cr->cr_suid && 1500 s_cr->cr_gid == cr->cr_gid && 1501 s_cr->cr_gid == cr->cr_rgid && 1502 s_cr->cr_gid == cr->cr_sgid) 1503 return (1); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * This privilege check should be used by actions and subroutines to 1510 * verify that the zone of the process that enabled the invoking ECB 1511 * matches the target credentials 1512 */ 1513 static int 1514 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1515 { 1516 #ifdef illumos 1517 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1518 1519 /* 1520 * We should always have a non-NULL state cred here, since if cred 1521 * is null (anonymous tracing), we fast-path bypass this routine. 1522 */ 1523 ASSERT(s_cr != NULL); 1524 1525 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1526 return (1); 1527 1528 return (0); 1529 #else 1530 return (1); 1531 #endif 1532 } 1533 1534 /* 1535 * This privilege check should be used by actions and subroutines to 1536 * verify that the process has not setuid or changed credentials. 1537 */ 1538 static int 1539 dtrace_priv_proc_common_nocd(void) 1540 { 1541 proc_t *proc; 1542 1543 if ((proc = ttoproc(curthread)) != NULL && 1544 !(proc->p_flag & SNOCD)) 1545 return (1); 1546 1547 return (0); 1548 } 1549 1550 static int 1551 dtrace_priv_proc_destructive(dtrace_state_t *state) 1552 { 1553 int action = state->dts_cred.dcr_action; 1554 1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1556 dtrace_priv_proc_common_zone(state) == 0) 1557 goto bad; 1558 1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1560 dtrace_priv_proc_common_user(state) == 0) 1561 goto bad; 1562 1563 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1564 dtrace_priv_proc_common_nocd() == 0) 1565 goto bad; 1566 1567 return (1); 1568 1569 bad: 1570 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1571 1572 return (0); 1573 } 1574 1575 static int 1576 dtrace_priv_proc_control(dtrace_state_t *state) 1577 { 1578 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1579 return (1); 1580 1581 if (dtrace_priv_proc_common_zone(state) && 1582 dtrace_priv_proc_common_user(state) && 1583 dtrace_priv_proc_common_nocd()) 1584 return (1); 1585 1586 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1587 1588 return (0); 1589 } 1590 1591 static int 1592 dtrace_priv_proc(dtrace_state_t *state) 1593 { 1594 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1595 return (1); 1596 1597 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1598 1599 return (0); 1600 } 1601 1602 static int 1603 dtrace_priv_kernel(dtrace_state_t *state) 1604 { 1605 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1606 return (1); 1607 1608 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1609 1610 return (0); 1611 } 1612 1613 static int 1614 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1615 { 1616 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1617 return (1); 1618 1619 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1620 1621 return (0); 1622 } 1623 1624 /* 1625 * Determine if the dte_cond of the specified ECB allows for processing of 1626 * the current probe to continue. Note that this routine may allow continued 1627 * processing, but with access(es) stripped from the mstate's dtms_access 1628 * field. 1629 */ 1630 static int 1631 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1632 dtrace_ecb_t *ecb) 1633 { 1634 dtrace_probe_t *probe = ecb->dte_probe; 1635 dtrace_provider_t *prov = probe->dtpr_provider; 1636 dtrace_pops_t *pops = &prov->dtpv_pops; 1637 int mode = DTRACE_MODE_NOPRIV_DROP; 1638 1639 ASSERT(ecb->dte_cond); 1640 1641 #ifdef illumos 1642 if (pops->dtps_mode != NULL) { 1643 mode = pops->dtps_mode(prov->dtpv_arg, 1644 probe->dtpr_id, probe->dtpr_arg); 1645 1646 ASSERT((mode & DTRACE_MODE_USER) || 1647 (mode & DTRACE_MODE_KERNEL)); 1648 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1649 (mode & DTRACE_MODE_NOPRIV_DROP)); 1650 } 1651 1652 /* 1653 * If the dte_cond bits indicate that this consumer is only allowed to 1654 * see user-mode firings of this probe, call the provider's dtps_mode() 1655 * entry point to check that the probe was fired while in a user 1656 * context. If that's not the case, use the policy specified by the 1657 * provider to determine if we drop the probe or merely restrict 1658 * operation. 1659 */ 1660 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1661 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1662 1663 if (!(mode & DTRACE_MODE_USER)) { 1664 if (mode & DTRACE_MODE_NOPRIV_DROP) 1665 return (0); 1666 1667 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1668 } 1669 } 1670 #endif 1671 1672 /* 1673 * This is more subtle than it looks. We have to be absolutely certain 1674 * that CRED() isn't going to change out from under us so it's only 1675 * legit to examine that structure if we're in constrained situations. 1676 * Currently, the only times we'll this check is if a non-super-user 1677 * has enabled the profile or syscall providers -- providers that 1678 * allow visibility of all processes. For the profile case, the check 1679 * above will ensure that we're examining a user context. 1680 */ 1681 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1682 cred_t *cr; 1683 cred_t *s_cr = state->dts_cred.dcr_cred; 1684 proc_t *proc; 1685 1686 ASSERT(s_cr != NULL); 1687 1688 if ((cr = CRED()) == NULL || 1689 s_cr->cr_uid != cr->cr_uid || 1690 s_cr->cr_uid != cr->cr_ruid || 1691 s_cr->cr_uid != cr->cr_suid || 1692 s_cr->cr_gid != cr->cr_gid || 1693 s_cr->cr_gid != cr->cr_rgid || 1694 s_cr->cr_gid != cr->cr_sgid || 1695 (proc = ttoproc(curthread)) == NULL || 1696 (proc->p_flag & SNOCD)) { 1697 if (mode & DTRACE_MODE_NOPRIV_DROP) 1698 return (0); 1699 1700 #ifdef illumos 1701 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1702 #endif 1703 } 1704 } 1705 1706 #ifdef illumos 1707 /* 1708 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1709 * in our zone, check to see if our mode policy is to restrict rather 1710 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1711 * and DTRACE_ACCESS_ARGS 1712 */ 1713 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1714 cred_t *cr; 1715 cred_t *s_cr = state->dts_cred.dcr_cred; 1716 1717 ASSERT(s_cr != NULL); 1718 1719 if ((cr = CRED()) == NULL || 1720 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1721 if (mode & DTRACE_MODE_NOPRIV_DROP) 1722 return (0); 1723 1724 mstate->dtms_access &= 1725 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1726 } 1727 } 1728 #endif 1729 1730 return (1); 1731 } 1732 1733 /* 1734 * Note: not called from probe context. This function is called 1735 * asynchronously (and at a regular interval) from outside of probe context to 1736 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1737 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1738 */ 1739 void 1740 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1741 { 1742 dtrace_dynvar_t *dirty; 1743 dtrace_dstate_percpu_t *dcpu; 1744 dtrace_dynvar_t **rinsep; 1745 int i, j, work = 0; 1746 1747 CPU_FOREACH(i) { 1748 dcpu = &dstate->dtds_percpu[i]; 1749 rinsep = &dcpu->dtdsc_rinsing; 1750 1751 /* 1752 * If the dirty list is NULL, there is no dirty work to do. 1753 */ 1754 if (dcpu->dtdsc_dirty == NULL) 1755 continue; 1756 1757 if (dcpu->dtdsc_rinsing != NULL) { 1758 /* 1759 * If the rinsing list is non-NULL, then it is because 1760 * this CPU was selected to accept another CPU's 1761 * dirty list -- and since that time, dirty buffers 1762 * have accumulated. This is a highly unlikely 1763 * condition, but we choose to ignore the dirty 1764 * buffers -- they'll be picked up a future cleanse. 1765 */ 1766 continue; 1767 } 1768 1769 if (dcpu->dtdsc_clean != NULL) { 1770 /* 1771 * If the clean list is non-NULL, then we're in a 1772 * situation where a CPU has done deallocations (we 1773 * have a non-NULL dirty list) but no allocations (we 1774 * also have a non-NULL clean list). We can't simply 1775 * move the dirty list into the clean list on this 1776 * CPU, yet we also don't want to allow this condition 1777 * to persist, lest a short clean list prevent a 1778 * massive dirty list from being cleaned (which in 1779 * turn could lead to otherwise avoidable dynamic 1780 * drops). To deal with this, we look for some CPU 1781 * with a NULL clean list, NULL dirty list, and NULL 1782 * rinsing list -- and then we borrow this CPU to 1783 * rinse our dirty list. 1784 */ 1785 CPU_FOREACH(j) { 1786 dtrace_dstate_percpu_t *rinser; 1787 1788 rinser = &dstate->dtds_percpu[j]; 1789 1790 if (rinser->dtdsc_rinsing != NULL) 1791 continue; 1792 1793 if (rinser->dtdsc_dirty != NULL) 1794 continue; 1795 1796 if (rinser->dtdsc_clean != NULL) 1797 continue; 1798 1799 rinsep = &rinser->dtdsc_rinsing; 1800 break; 1801 } 1802 1803 if (j > mp_maxid) { 1804 /* 1805 * We were unable to find another CPU that 1806 * could accept this dirty list -- we are 1807 * therefore unable to clean it now. 1808 */ 1809 dtrace_dynvar_failclean++; 1810 continue; 1811 } 1812 } 1813 1814 work = 1; 1815 1816 /* 1817 * Atomically move the dirty list aside. 1818 */ 1819 do { 1820 dirty = dcpu->dtdsc_dirty; 1821 1822 /* 1823 * Before we zap the dirty list, set the rinsing list. 1824 * (This allows for a potential assertion in 1825 * dtrace_dynvar(): if a free dynamic variable appears 1826 * on a hash chain, either the dirty list or the 1827 * rinsing list for some CPU must be non-NULL.) 1828 */ 1829 *rinsep = dirty; 1830 dtrace_membar_producer(); 1831 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1832 dirty, NULL) != dirty); 1833 } 1834 1835 if (!work) { 1836 /* 1837 * We have no work to do; we can simply return. 1838 */ 1839 return; 1840 } 1841 1842 dtrace_sync(); 1843 1844 CPU_FOREACH(i) { 1845 dcpu = &dstate->dtds_percpu[i]; 1846 1847 if (dcpu->dtdsc_rinsing == NULL) 1848 continue; 1849 1850 /* 1851 * We are now guaranteed that no hash chain contains a pointer 1852 * into this dirty list; we can make it clean. 1853 */ 1854 ASSERT(dcpu->dtdsc_clean == NULL); 1855 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1856 dcpu->dtdsc_rinsing = NULL; 1857 } 1858 1859 /* 1860 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1861 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1862 * This prevents a race whereby a CPU incorrectly decides that 1863 * the state should be something other than DTRACE_DSTATE_CLEAN 1864 * after dtrace_dynvar_clean() has completed. 1865 */ 1866 dtrace_sync(); 1867 1868 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1869 } 1870 1871 /* 1872 * Depending on the value of the op parameter, this function looks-up, 1873 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1874 * allocation is requested, this function will return a pointer to a 1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1876 * variable can be allocated. If NULL is returned, the appropriate counter 1877 * will be incremented. 1878 */ 1879 dtrace_dynvar_t * 1880 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1881 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1882 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1883 { 1884 uint64_t hashval = DTRACE_DYNHASH_VALID; 1885 dtrace_dynhash_t *hash = dstate->dtds_hash; 1886 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1887 processorid_t me = curcpu, cpu = me; 1888 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1889 size_t bucket, ksize; 1890 size_t chunksize = dstate->dtds_chunksize; 1891 uintptr_t kdata, lock, nstate; 1892 uint_t i; 1893 1894 ASSERT(nkeys != 0); 1895 1896 /* 1897 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1898 * algorithm. For the by-value portions, we perform the algorithm in 1899 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1900 * bit, and seems to have only a minute effect on distribution. For 1901 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1902 * over each referenced byte. It's painful to do this, but it's much 1903 * better than pathological hash distribution. The efficacy of the 1904 * hashing algorithm (and a comparison with other algorithms) may be 1905 * found by running the ::dtrace_dynstat MDB dcmd. 1906 */ 1907 for (i = 0; i < nkeys; i++) { 1908 if (key[i].dttk_size == 0) { 1909 uint64_t val = key[i].dttk_value; 1910 1911 hashval += (val >> 48) & 0xffff; 1912 hashval += (hashval << 10); 1913 hashval ^= (hashval >> 6); 1914 1915 hashval += (val >> 32) & 0xffff; 1916 hashval += (hashval << 10); 1917 hashval ^= (hashval >> 6); 1918 1919 hashval += (val >> 16) & 0xffff; 1920 hashval += (hashval << 10); 1921 hashval ^= (hashval >> 6); 1922 1923 hashval += val & 0xffff; 1924 hashval += (hashval << 10); 1925 hashval ^= (hashval >> 6); 1926 } else { 1927 /* 1928 * This is incredibly painful, but it beats the hell 1929 * out of the alternative. 1930 */ 1931 uint64_t j, size = key[i].dttk_size; 1932 uintptr_t base = (uintptr_t)key[i].dttk_value; 1933 1934 if (!dtrace_canload(base, size, mstate, vstate)) 1935 break; 1936 1937 for (j = 0; j < size; j++) { 1938 hashval += dtrace_load8(base + j); 1939 hashval += (hashval << 10); 1940 hashval ^= (hashval >> 6); 1941 } 1942 } 1943 } 1944 1945 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1946 return (NULL); 1947 1948 hashval += (hashval << 3); 1949 hashval ^= (hashval >> 11); 1950 hashval += (hashval << 15); 1951 1952 /* 1953 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1954 * comes out to be one of our two sentinel hash values. If this 1955 * actually happens, we set the hashval to be a value known to be a 1956 * non-sentinel value. 1957 */ 1958 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1959 hashval = DTRACE_DYNHASH_VALID; 1960 1961 /* 1962 * Yes, it's painful to do a divide here. If the cycle count becomes 1963 * important here, tricks can be pulled to reduce it. (However, it's 1964 * critical that hash collisions be kept to an absolute minimum; 1965 * they're much more painful than a divide.) It's better to have a 1966 * solution that generates few collisions and still keeps things 1967 * relatively simple. 1968 */ 1969 bucket = hashval % dstate->dtds_hashsize; 1970 1971 if (op == DTRACE_DYNVAR_DEALLOC) { 1972 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1973 1974 for (;;) { 1975 while ((lock = *lockp) & 1) 1976 continue; 1977 1978 if (dtrace_casptr((volatile void *)lockp, 1979 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1980 break; 1981 } 1982 1983 dtrace_membar_producer(); 1984 } 1985 1986 top: 1987 prev = NULL; 1988 lock = hash[bucket].dtdh_lock; 1989 1990 dtrace_membar_consumer(); 1991 1992 start = hash[bucket].dtdh_chain; 1993 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1994 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1995 op != DTRACE_DYNVAR_DEALLOC)); 1996 1997 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1998 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1999 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2000 2001 if (dvar->dtdv_hashval != hashval) { 2002 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2003 /* 2004 * We've reached the sink, and therefore the 2005 * end of the hash chain; we can kick out of 2006 * the loop knowing that we have seen a valid 2007 * snapshot of state. 2008 */ 2009 ASSERT(dvar->dtdv_next == NULL); 2010 ASSERT(dvar == &dtrace_dynhash_sink); 2011 break; 2012 } 2013 2014 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2015 /* 2016 * We've gone off the rails: somewhere along 2017 * the line, one of the members of this hash 2018 * chain was deleted. Note that we could also 2019 * detect this by simply letting this loop run 2020 * to completion, as we would eventually hit 2021 * the end of the dirty list. However, we 2022 * want to avoid running the length of the 2023 * dirty list unnecessarily (it might be quite 2024 * long), so we catch this as early as 2025 * possible by detecting the hash marker. In 2026 * this case, we simply set dvar to NULL and 2027 * break; the conditional after the loop will 2028 * send us back to top. 2029 */ 2030 dvar = NULL; 2031 break; 2032 } 2033 2034 goto next; 2035 } 2036 2037 if (dtuple->dtt_nkeys != nkeys) 2038 goto next; 2039 2040 for (i = 0; i < nkeys; i++, dkey++) { 2041 if (dkey->dttk_size != key[i].dttk_size) 2042 goto next; /* size or type mismatch */ 2043 2044 if (dkey->dttk_size != 0) { 2045 if (dtrace_bcmp( 2046 (void *)(uintptr_t)key[i].dttk_value, 2047 (void *)(uintptr_t)dkey->dttk_value, 2048 dkey->dttk_size)) 2049 goto next; 2050 } else { 2051 if (dkey->dttk_value != key[i].dttk_value) 2052 goto next; 2053 } 2054 } 2055 2056 if (op != DTRACE_DYNVAR_DEALLOC) 2057 return (dvar); 2058 2059 ASSERT(dvar->dtdv_next == NULL || 2060 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2061 2062 if (prev != NULL) { 2063 ASSERT(hash[bucket].dtdh_chain != dvar); 2064 ASSERT(start != dvar); 2065 ASSERT(prev->dtdv_next == dvar); 2066 prev->dtdv_next = dvar->dtdv_next; 2067 } else { 2068 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2069 start, dvar->dtdv_next) != start) { 2070 /* 2071 * We have failed to atomically swing the 2072 * hash table head pointer, presumably because 2073 * of a conflicting allocation on another CPU. 2074 * We need to reread the hash chain and try 2075 * again. 2076 */ 2077 goto top; 2078 } 2079 } 2080 2081 dtrace_membar_producer(); 2082 2083 /* 2084 * Now set the hash value to indicate that it's free. 2085 */ 2086 ASSERT(hash[bucket].dtdh_chain != dvar); 2087 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2088 2089 dtrace_membar_producer(); 2090 2091 /* 2092 * Set the next pointer to point at the dirty list, and 2093 * atomically swing the dirty pointer to the newly freed dvar. 2094 */ 2095 do { 2096 next = dcpu->dtdsc_dirty; 2097 dvar->dtdv_next = next; 2098 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2099 2100 /* 2101 * Finally, unlock this hash bucket. 2102 */ 2103 ASSERT(hash[bucket].dtdh_lock == lock); 2104 ASSERT(lock & 1); 2105 hash[bucket].dtdh_lock++; 2106 2107 return (NULL); 2108 next: 2109 prev = dvar; 2110 continue; 2111 } 2112 2113 if (dvar == NULL) { 2114 /* 2115 * If dvar is NULL, it is because we went off the rails: 2116 * one of the elements that we traversed in the hash chain 2117 * was deleted while we were traversing it. In this case, 2118 * we assert that we aren't doing a dealloc (deallocs lock 2119 * the hash bucket to prevent themselves from racing with 2120 * one another), and retry the hash chain traversal. 2121 */ 2122 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2123 goto top; 2124 } 2125 2126 if (op != DTRACE_DYNVAR_ALLOC) { 2127 /* 2128 * If we are not to allocate a new variable, we want to 2129 * return NULL now. Before we return, check that the value 2130 * of the lock word hasn't changed. If it has, we may have 2131 * seen an inconsistent snapshot. 2132 */ 2133 if (op == DTRACE_DYNVAR_NOALLOC) { 2134 if (hash[bucket].dtdh_lock != lock) 2135 goto top; 2136 } else { 2137 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2138 ASSERT(hash[bucket].dtdh_lock == lock); 2139 ASSERT(lock & 1); 2140 hash[bucket].dtdh_lock++; 2141 } 2142 2143 return (NULL); 2144 } 2145 2146 /* 2147 * We need to allocate a new dynamic variable. The size we need is the 2148 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2149 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2150 * the size of any referred-to data (dsize). We then round the final 2151 * size up to the chunksize for allocation. 2152 */ 2153 for (ksize = 0, i = 0; i < nkeys; i++) 2154 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2155 2156 /* 2157 * This should be pretty much impossible, but could happen if, say, 2158 * strange DIF specified the tuple. Ideally, this should be an 2159 * assertion and not an error condition -- but that requires that the 2160 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2161 * bullet-proof. (That is, it must not be able to be fooled by 2162 * malicious DIF.) Given the lack of backwards branches in DIF, 2163 * solving this would presumably not amount to solving the Halting 2164 * Problem -- but it still seems awfully hard. 2165 */ 2166 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2167 ksize + dsize > chunksize) { 2168 dcpu->dtdsc_drops++; 2169 return (NULL); 2170 } 2171 2172 nstate = DTRACE_DSTATE_EMPTY; 2173 2174 do { 2175 retry: 2176 free = dcpu->dtdsc_free; 2177 2178 if (free == NULL) { 2179 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2180 void *rval; 2181 2182 if (clean == NULL) { 2183 /* 2184 * We're out of dynamic variable space on 2185 * this CPU. Unless we have tried all CPUs, 2186 * we'll try to allocate from a different 2187 * CPU. 2188 */ 2189 switch (dstate->dtds_state) { 2190 case DTRACE_DSTATE_CLEAN: { 2191 void *sp = &dstate->dtds_state; 2192 2193 if (++cpu > mp_maxid) 2194 cpu = 0; 2195 2196 if (dcpu->dtdsc_dirty != NULL && 2197 nstate == DTRACE_DSTATE_EMPTY) 2198 nstate = DTRACE_DSTATE_DIRTY; 2199 2200 if (dcpu->dtdsc_rinsing != NULL) 2201 nstate = DTRACE_DSTATE_RINSING; 2202 2203 dcpu = &dstate->dtds_percpu[cpu]; 2204 2205 if (cpu != me) 2206 goto retry; 2207 2208 (void) dtrace_cas32(sp, 2209 DTRACE_DSTATE_CLEAN, nstate); 2210 2211 /* 2212 * To increment the correct bean 2213 * counter, take another lap. 2214 */ 2215 goto retry; 2216 } 2217 2218 case DTRACE_DSTATE_DIRTY: 2219 dcpu->dtdsc_dirty_drops++; 2220 break; 2221 2222 case DTRACE_DSTATE_RINSING: 2223 dcpu->dtdsc_rinsing_drops++; 2224 break; 2225 2226 case DTRACE_DSTATE_EMPTY: 2227 dcpu->dtdsc_drops++; 2228 break; 2229 } 2230 2231 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2232 return (NULL); 2233 } 2234 2235 /* 2236 * The clean list appears to be non-empty. We want to 2237 * move the clean list to the free list; we start by 2238 * moving the clean pointer aside. 2239 */ 2240 if (dtrace_casptr(&dcpu->dtdsc_clean, 2241 clean, NULL) != clean) { 2242 /* 2243 * We are in one of two situations: 2244 * 2245 * (a) The clean list was switched to the 2246 * free list by another CPU. 2247 * 2248 * (b) The clean list was added to by the 2249 * cleansing cyclic. 2250 * 2251 * In either of these situations, we can 2252 * just reattempt the free list allocation. 2253 */ 2254 goto retry; 2255 } 2256 2257 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2258 2259 /* 2260 * Now we'll move the clean list to our free list. 2261 * It's impossible for this to fail: the only way 2262 * the free list can be updated is through this 2263 * code path, and only one CPU can own the clean list. 2264 * Thus, it would only be possible for this to fail if 2265 * this code were racing with dtrace_dynvar_clean(). 2266 * (That is, if dtrace_dynvar_clean() updated the clean 2267 * list, and we ended up racing to update the free 2268 * list.) This race is prevented by the dtrace_sync() 2269 * in dtrace_dynvar_clean() -- which flushes the 2270 * owners of the clean lists out before resetting 2271 * the clean lists. 2272 */ 2273 dcpu = &dstate->dtds_percpu[me]; 2274 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2275 ASSERT(rval == NULL); 2276 goto retry; 2277 } 2278 2279 dvar = free; 2280 new_free = dvar->dtdv_next; 2281 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2282 2283 /* 2284 * We have now allocated a new chunk. We copy the tuple keys into the 2285 * tuple array and copy any referenced key data into the data space 2286 * following the tuple array. As we do this, we relocate dttk_value 2287 * in the final tuple to point to the key data address in the chunk. 2288 */ 2289 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2290 dvar->dtdv_data = (void *)(kdata + ksize); 2291 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2292 2293 for (i = 0; i < nkeys; i++) { 2294 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2295 size_t kesize = key[i].dttk_size; 2296 2297 if (kesize != 0) { 2298 dtrace_bcopy( 2299 (const void *)(uintptr_t)key[i].dttk_value, 2300 (void *)kdata, kesize); 2301 dkey->dttk_value = kdata; 2302 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2303 } else { 2304 dkey->dttk_value = key[i].dttk_value; 2305 } 2306 2307 dkey->dttk_size = kesize; 2308 } 2309 2310 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2311 dvar->dtdv_hashval = hashval; 2312 dvar->dtdv_next = start; 2313 2314 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2315 return (dvar); 2316 2317 /* 2318 * The cas has failed. Either another CPU is adding an element to 2319 * this hash chain, or another CPU is deleting an element from this 2320 * hash chain. The simplest way to deal with both of these cases 2321 * (though not necessarily the most efficient) is to free our 2322 * allocated block and re-attempt it all. Note that the free is 2323 * to the dirty list and _not_ to the free list. This is to prevent 2324 * races with allocators, above. 2325 */ 2326 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2327 2328 dtrace_membar_producer(); 2329 2330 do { 2331 free = dcpu->dtdsc_dirty; 2332 dvar->dtdv_next = free; 2333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2334 2335 goto top; 2336 } 2337 2338 /*ARGSUSED*/ 2339 static void 2340 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2341 { 2342 if ((int64_t)nval < (int64_t)*oval) 2343 *oval = nval; 2344 } 2345 2346 /*ARGSUSED*/ 2347 static void 2348 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2349 { 2350 if ((int64_t)nval > (int64_t)*oval) 2351 *oval = nval; 2352 } 2353 2354 static void 2355 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2356 { 2357 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2358 int64_t val = (int64_t)nval; 2359 2360 if (val < 0) { 2361 for (i = 0; i < zero; i++) { 2362 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2363 quanta[i] += incr; 2364 return; 2365 } 2366 } 2367 } else { 2368 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2369 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2370 quanta[i - 1] += incr; 2371 return; 2372 } 2373 } 2374 2375 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2376 return; 2377 } 2378 2379 ASSERT(0); 2380 } 2381 2382 static void 2383 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2384 { 2385 uint64_t arg = *lquanta++; 2386 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2387 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2388 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2389 int32_t val = (int32_t)nval, level; 2390 2391 ASSERT(step != 0); 2392 ASSERT(levels != 0); 2393 2394 if (val < base) { 2395 /* 2396 * This is an underflow. 2397 */ 2398 lquanta[0] += incr; 2399 return; 2400 } 2401 2402 level = (val - base) / step; 2403 2404 if (level < levels) { 2405 lquanta[level + 1] += incr; 2406 return; 2407 } 2408 2409 /* 2410 * This is an overflow. 2411 */ 2412 lquanta[levels + 1] += incr; 2413 } 2414 2415 static int 2416 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2417 uint16_t high, uint16_t nsteps, int64_t value) 2418 { 2419 int64_t this = 1, last, next; 2420 int base = 1, order; 2421 2422 ASSERT(factor <= nsteps); 2423 ASSERT(nsteps % factor == 0); 2424 2425 for (order = 0; order < low; order++) 2426 this *= factor; 2427 2428 /* 2429 * If our value is less than our factor taken to the power of the 2430 * low order of magnitude, it goes into the zeroth bucket. 2431 */ 2432 if (value < (last = this)) 2433 return (0); 2434 2435 for (this *= factor; order <= high; order++) { 2436 int nbuckets = this > nsteps ? nsteps : this; 2437 2438 if ((next = this * factor) < this) { 2439 /* 2440 * We should not generally get log/linear quantizations 2441 * with a high magnitude that allows 64-bits to 2442 * overflow, but we nonetheless protect against this 2443 * by explicitly checking for overflow, and clamping 2444 * our value accordingly. 2445 */ 2446 value = this - 1; 2447 } 2448 2449 if (value < this) { 2450 /* 2451 * If our value lies within this order of magnitude, 2452 * determine its position by taking the offset within 2453 * the order of magnitude, dividing by the bucket 2454 * width, and adding to our (accumulated) base. 2455 */ 2456 return (base + (value - last) / (this / nbuckets)); 2457 } 2458 2459 base += nbuckets - (nbuckets / factor); 2460 last = this; 2461 this = next; 2462 } 2463 2464 /* 2465 * Our value is greater than or equal to our factor taken to the 2466 * power of one plus the high magnitude -- return the top bucket. 2467 */ 2468 return (base); 2469 } 2470 2471 static void 2472 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2473 { 2474 uint64_t arg = *llquanta++; 2475 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2476 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2477 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2478 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2479 2480 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2481 low, high, nsteps, nval)] += incr; 2482 } 2483 2484 /*ARGSUSED*/ 2485 static void 2486 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2487 { 2488 data[0]++; 2489 data[1] += nval; 2490 } 2491 2492 /*ARGSUSED*/ 2493 static void 2494 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2495 { 2496 int64_t snval = (int64_t)nval; 2497 uint64_t tmp[2]; 2498 2499 data[0]++; 2500 data[1] += nval; 2501 2502 /* 2503 * What we want to say here is: 2504 * 2505 * data[2] += nval * nval; 2506 * 2507 * But given that nval is 64-bit, we could easily overflow, so 2508 * we do this as 128-bit arithmetic. 2509 */ 2510 if (snval < 0) 2511 snval = -snval; 2512 2513 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2514 dtrace_add_128(data + 2, tmp, data + 2); 2515 } 2516 2517 /*ARGSUSED*/ 2518 static void 2519 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2520 { 2521 *oval = *oval + 1; 2522 } 2523 2524 /*ARGSUSED*/ 2525 static void 2526 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2527 { 2528 *oval += nval; 2529 } 2530 2531 /* 2532 * Aggregate given the tuple in the principal data buffer, and the aggregating 2533 * action denoted by the specified dtrace_aggregation_t. The aggregation 2534 * buffer is specified as the buf parameter. This routine does not return 2535 * failure; if there is no space in the aggregation buffer, the data will be 2536 * dropped, and a corresponding counter incremented. 2537 */ 2538 static void 2539 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2540 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2541 { 2542 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2543 uint32_t i, ndx, size, fsize; 2544 uint32_t align = sizeof (uint64_t) - 1; 2545 dtrace_aggbuffer_t *agb; 2546 dtrace_aggkey_t *key; 2547 uint32_t hashval = 0, limit, isstr; 2548 caddr_t tomax, data, kdata; 2549 dtrace_actkind_t action; 2550 dtrace_action_t *act; 2551 uintptr_t offs; 2552 2553 if (buf == NULL) 2554 return; 2555 2556 if (!agg->dtag_hasarg) { 2557 /* 2558 * Currently, only quantize() and lquantize() take additional 2559 * arguments, and they have the same semantics: an increment 2560 * value that defaults to 1 when not present. If additional 2561 * aggregating actions take arguments, the setting of the 2562 * default argument value will presumably have to become more 2563 * sophisticated... 2564 */ 2565 arg = 1; 2566 } 2567 2568 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2569 size = rec->dtrd_offset - agg->dtag_base; 2570 fsize = size + rec->dtrd_size; 2571 2572 ASSERT(dbuf->dtb_tomax != NULL); 2573 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2574 2575 if ((tomax = buf->dtb_tomax) == NULL) { 2576 dtrace_buffer_drop(buf); 2577 return; 2578 } 2579 2580 /* 2581 * The metastructure is always at the bottom of the buffer. 2582 */ 2583 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2584 sizeof (dtrace_aggbuffer_t)); 2585 2586 if (buf->dtb_offset == 0) { 2587 /* 2588 * We just kludge up approximately 1/8th of the size to be 2589 * buckets. If this guess ends up being routinely 2590 * off-the-mark, we may need to dynamically readjust this 2591 * based on past performance. 2592 */ 2593 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2594 2595 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2596 (uintptr_t)tomax || hashsize == 0) { 2597 /* 2598 * We've been given a ludicrously small buffer; 2599 * increment our drop count and leave. 2600 */ 2601 dtrace_buffer_drop(buf); 2602 return; 2603 } 2604 2605 /* 2606 * And now, a pathetic attempt to try to get a an odd (or 2607 * perchance, a prime) hash size for better hash distribution. 2608 */ 2609 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2610 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2611 2612 agb->dtagb_hashsize = hashsize; 2613 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2614 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2615 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2616 2617 for (i = 0; i < agb->dtagb_hashsize; i++) 2618 agb->dtagb_hash[i] = NULL; 2619 } 2620 2621 ASSERT(agg->dtag_first != NULL); 2622 ASSERT(agg->dtag_first->dta_intuple); 2623 2624 /* 2625 * Calculate the hash value based on the key. Note that we _don't_ 2626 * include the aggid in the hashing (but we will store it as part of 2627 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2628 * algorithm: a simple, quick algorithm that has no known funnels, and 2629 * gets good distribution in practice. The efficacy of the hashing 2630 * algorithm (and a comparison with other algorithms) may be found by 2631 * running the ::dtrace_aggstat MDB dcmd. 2632 */ 2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2634 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2635 limit = i + act->dta_rec.dtrd_size; 2636 ASSERT(limit <= size); 2637 isstr = DTRACEACT_ISSTRING(act); 2638 2639 for (; i < limit; i++) { 2640 hashval += data[i]; 2641 hashval += (hashval << 10); 2642 hashval ^= (hashval >> 6); 2643 2644 if (isstr && data[i] == '\0') 2645 break; 2646 } 2647 } 2648 2649 hashval += (hashval << 3); 2650 hashval ^= (hashval >> 11); 2651 hashval += (hashval << 15); 2652 2653 /* 2654 * Yes, the divide here is expensive -- but it's generally the least 2655 * of the performance issues given the amount of data that we iterate 2656 * over to compute hash values, compare data, etc. 2657 */ 2658 ndx = hashval % agb->dtagb_hashsize; 2659 2660 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2661 ASSERT((caddr_t)key >= tomax); 2662 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2663 2664 if (hashval != key->dtak_hashval || key->dtak_size != size) 2665 continue; 2666 2667 kdata = key->dtak_data; 2668 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2669 2670 for (act = agg->dtag_first; act->dta_intuple; 2671 act = act->dta_next) { 2672 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2673 limit = i + act->dta_rec.dtrd_size; 2674 ASSERT(limit <= size); 2675 isstr = DTRACEACT_ISSTRING(act); 2676 2677 for (; i < limit; i++) { 2678 if (kdata[i] != data[i]) 2679 goto next; 2680 2681 if (isstr && data[i] == '\0') 2682 break; 2683 } 2684 } 2685 2686 if (action != key->dtak_action) { 2687 /* 2688 * We are aggregating on the same value in the same 2689 * aggregation with two different aggregating actions. 2690 * (This should have been picked up in the compiler, 2691 * so we may be dealing with errant or devious DIF.) 2692 * This is an error condition; we indicate as much, 2693 * and return. 2694 */ 2695 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2696 return; 2697 } 2698 2699 /* 2700 * This is a hit: we need to apply the aggregator to 2701 * the value at this key. 2702 */ 2703 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2704 return; 2705 next: 2706 continue; 2707 } 2708 2709 /* 2710 * We didn't find it. We need to allocate some zero-filled space, 2711 * link it into the hash table appropriately, and apply the aggregator 2712 * to the (zero-filled) value. 2713 */ 2714 offs = buf->dtb_offset; 2715 while (offs & (align - 1)) 2716 offs += sizeof (uint32_t); 2717 2718 /* 2719 * If we don't have enough room to both allocate a new key _and_ 2720 * its associated data, increment the drop count and return. 2721 */ 2722 if ((uintptr_t)tomax + offs + fsize > 2723 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2724 dtrace_buffer_drop(buf); 2725 return; 2726 } 2727 2728 /*CONSTCOND*/ 2729 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2730 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2731 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2732 2733 key->dtak_data = kdata = tomax + offs; 2734 buf->dtb_offset = offs + fsize; 2735 2736 /* 2737 * Now copy the data across. 2738 */ 2739 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2740 2741 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2742 kdata[i] = data[i]; 2743 2744 /* 2745 * Because strings are not zeroed out by default, we need to iterate 2746 * looking for actions that store strings, and we need to explicitly 2747 * pad these strings out with zeroes. 2748 */ 2749 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2750 int nul; 2751 2752 if (!DTRACEACT_ISSTRING(act)) 2753 continue; 2754 2755 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2756 limit = i + act->dta_rec.dtrd_size; 2757 ASSERT(limit <= size); 2758 2759 for (nul = 0; i < limit; i++) { 2760 if (nul) { 2761 kdata[i] = '\0'; 2762 continue; 2763 } 2764 2765 if (data[i] != '\0') 2766 continue; 2767 2768 nul = 1; 2769 } 2770 } 2771 2772 for (i = size; i < fsize; i++) 2773 kdata[i] = 0; 2774 2775 key->dtak_hashval = hashval; 2776 key->dtak_size = size; 2777 key->dtak_action = action; 2778 key->dtak_next = agb->dtagb_hash[ndx]; 2779 agb->dtagb_hash[ndx] = key; 2780 2781 /* 2782 * Finally, apply the aggregator. 2783 */ 2784 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2785 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2786 } 2787 2788 /* 2789 * Given consumer state, this routine finds a speculation in the INACTIVE 2790 * state and transitions it into the ACTIVE state. If there is no speculation 2791 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2792 * incremented -- it is up to the caller to take appropriate action. 2793 */ 2794 static int 2795 dtrace_speculation(dtrace_state_t *state) 2796 { 2797 int i = 0; 2798 dtrace_speculation_state_t curstate; 2799 uint32_t *stat = &state->dts_speculations_unavail, count; 2800 2801 while (i < state->dts_nspeculations) { 2802 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2803 2804 curstate = spec->dtsp_state; 2805 2806 if (curstate != DTRACESPEC_INACTIVE) { 2807 if (curstate == DTRACESPEC_COMMITTINGMANY || 2808 curstate == DTRACESPEC_COMMITTING || 2809 curstate == DTRACESPEC_DISCARDING) 2810 stat = &state->dts_speculations_busy; 2811 i++; 2812 continue; 2813 } 2814 2815 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2816 curstate, DTRACESPEC_ACTIVE) == curstate) 2817 return (i + 1); 2818 } 2819 2820 /* 2821 * We couldn't find a speculation. If we found as much as a single 2822 * busy speculation buffer, we'll attribute this failure as "busy" 2823 * instead of "unavail". 2824 */ 2825 do { 2826 count = *stat; 2827 } while (dtrace_cas32(stat, count, count + 1) != count); 2828 2829 return (0); 2830 } 2831 2832 /* 2833 * This routine commits an active speculation. If the specified speculation 2834 * is not in a valid state to perform a commit(), this routine will silently do 2835 * nothing. The state of the specified speculation is transitioned according 2836 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2837 */ 2838 static void 2839 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2840 dtrace_specid_t which) 2841 { 2842 dtrace_speculation_t *spec; 2843 dtrace_buffer_t *src, *dest; 2844 uintptr_t daddr, saddr, dlimit, slimit; 2845 dtrace_speculation_state_t curstate, new = 0; 2846 intptr_t offs; 2847 uint64_t timestamp; 2848 2849 if (which == 0) 2850 return; 2851 2852 if (which > state->dts_nspeculations) { 2853 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2854 return; 2855 } 2856 2857 spec = &state->dts_speculations[which - 1]; 2858 src = &spec->dtsp_buffer[cpu]; 2859 dest = &state->dts_buffer[cpu]; 2860 2861 do { 2862 curstate = spec->dtsp_state; 2863 2864 if (curstate == DTRACESPEC_COMMITTINGMANY) 2865 break; 2866 2867 switch (curstate) { 2868 case DTRACESPEC_INACTIVE: 2869 case DTRACESPEC_DISCARDING: 2870 return; 2871 2872 case DTRACESPEC_COMMITTING: 2873 /* 2874 * This is only possible if we are (a) commit()'ing 2875 * without having done a prior speculate() on this CPU 2876 * and (b) racing with another commit() on a different 2877 * CPU. There's nothing to do -- we just assert that 2878 * our offset is 0. 2879 */ 2880 ASSERT(src->dtb_offset == 0); 2881 return; 2882 2883 case DTRACESPEC_ACTIVE: 2884 new = DTRACESPEC_COMMITTING; 2885 break; 2886 2887 case DTRACESPEC_ACTIVEONE: 2888 /* 2889 * This speculation is active on one CPU. If our 2890 * buffer offset is non-zero, we know that the one CPU 2891 * must be us. Otherwise, we are committing on a 2892 * different CPU from the speculate(), and we must 2893 * rely on being asynchronously cleaned. 2894 */ 2895 if (src->dtb_offset != 0) { 2896 new = DTRACESPEC_COMMITTING; 2897 break; 2898 } 2899 /*FALLTHROUGH*/ 2900 2901 case DTRACESPEC_ACTIVEMANY: 2902 new = DTRACESPEC_COMMITTINGMANY; 2903 break; 2904 2905 default: 2906 ASSERT(0); 2907 } 2908 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2909 curstate, new) != curstate); 2910 2911 /* 2912 * We have set the state to indicate that we are committing this 2913 * speculation. Now reserve the necessary space in the destination 2914 * buffer. 2915 */ 2916 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2917 sizeof (uint64_t), state, NULL)) < 0) { 2918 dtrace_buffer_drop(dest); 2919 goto out; 2920 } 2921 2922 /* 2923 * We have sufficient space to copy the speculative buffer into the 2924 * primary buffer. First, modify the speculative buffer, filling 2925 * in the timestamp of all entries with the curstate time. The data 2926 * must have the commit() time rather than the time it was traced, 2927 * so that all entries in the primary buffer are in timestamp order. 2928 */ 2929 timestamp = dtrace_gethrtime(); 2930 saddr = (uintptr_t)src->dtb_tomax; 2931 slimit = saddr + src->dtb_offset; 2932 while (saddr < slimit) { 2933 size_t size; 2934 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2935 2936 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2937 saddr += sizeof (dtrace_epid_t); 2938 continue; 2939 } 2940 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2941 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2942 2943 ASSERT3U(saddr + size, <=, slimit); 2944 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2945 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2946 2947 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2948 2949 saddr += size; 2950 } 2951 2952 /* 2953 * Copy the buffer across. (Note that this is a 2954 * highly subobtimal bcopy(); in the unlikely event that this becomes 2955 * a serious performance issue, a high-performance DTrace-specific 2956 * bcopy() should obviously be invented.) 2957 */ 2958 daddr = (uintptr_t)dest->dtb_tomax + offs; 2959 dlimit = daddr + src->dtb_offset; 2960 saddr = (uintptr_t)src->dtb_tomax; 2961 2962 /* 2963 * First, the aligned portion. 2964 */ 2965 while (dlimit - daddr >= sizeof (uint64_t)) { 2966 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2967 2968 daddr += sizeof (uint64_t); 2969 saddr += sizeof (uint64_t); 2970 } 2971 2972 /* 2973 * Now any left-over bit... 2974 */ 2975 while (dlimit - daddr) 2976 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2977 2978 /* 2979 * Finally, commit the reserved space in the destination buffer. 2980 */ 2981 dest->dtb_offset = offs + src->dtb_offset; 2982 2983 out: 2984 /* 2985 * If we're lucky enough to be the only active CPU on this speculation 2986 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2987 */ 2988 if (curstate == DTRACESPEC_ACTIVE || 2989 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2990 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2991 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2992 2993 ASSERT(rval == DTRACESPEC_COMMITTING); 2994 } 2995 2996 src->dtb_offset = 0; 2997 src->dtb_xamot_drops += src->dtb_drops; 2998 src->dtb_drops = 0; 2999 } 3000 3001 /* 3002 * This routine discards an active speculation. If the specified speculation 3003 * is not in a valid state to perform a discard(), this routine will silently 3004 * do nothing. The state of the specified speculation is transitioned 3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3006 */ 3007 static void 3008 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3009 dtrace_specid_t which) 3010 { 3011 dtrace_speculation_t *spec; 3012 dtrace_speculation_state_t curstate, new = 0; 3013 dtrace_buffer_t *buf; 3014 3015 if (which == 0) 3016 return; 3017 3018 if (which > state->dts_nspeculations) { 3019 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3020 return; 3021 } 3022 3023 spec = &state->dts_speculations[which - 1]; 3024 buf = &spec->dtsp_buffer[cpu]; 3025 3026 do { 3027 curstate = spec->dtsp_state; 3028 3029 switch (curstate) { 3030 case DTRACESPEC_INACTIVE: 3031 case DTRACESPEC_COMMITTINGMANY: 3032 case DTRACESPEC_COMMITTING: 3033 case DTRACESPEC_DISCARDING: 3034 return; 3035 3036 case DTRACESPEC_ACTIVE: 3037 case DTRACESPEC_ACTIVEMANY: 3038 new = DTRACESPEC_DISCARDING; 3039 break; 3040 3041 case DTRACESPEC_ACTIVEONE: 3042 if (buf->dtb_offset != 0) { 3043 new = DTRACESPEC_INACTIVE; 3044 } else { 3045 new = DTRACESPEC_DISCARDING; 3046 } 3047 break; 3048 3049 default: 3050 ASSERT(0); 3051 } 3052 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3053 curstate, new) != curstate); 3054 3055 buf->dtb_offset = 0; 3056 buf->dtb_drops = 0; 3057 } 3058 3059 /* 3060 * Note: not called from probe context. This function is called 3061 * asynchronously from cross call context to clean any speculations that are 3062 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3064 * speculation. 3065 */ 3066 static void 3067 dtrace_speculation_clean_here(dtrace_state_t *state) 3068 { 3069 dtrace_icookie_t cookie; 3070 processorid_t cpu = curcpu; 3071 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3072 dtrace_specid_t i; 3073 3074 cookie = dtrace_interrupt_disable(); 3075 3076 if (dest->dtb_tomax == NULL) { 3077 dtrace_interrupt_enable(cookie); 3078 return; 3079 } 3080 3081 for (i = 0; i < state->dts_nspeculations; i++) { 3082 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3083 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3084 3085 if (src->dtb_tomax == NULL) 3086 continue; 3087 3088 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3089 src->dtb_offset = 0; 3090 continue; 3091 } 3092 3093 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3094 continue; 3095 3096 if (src->dtb_offset == 0) 3097 continue; 3098 3099 dtrace_speculation_commit(state, cpu, i + 1); 3100 } 3101 3102 dtrace_interrupt_enable(cookie); 3103 } 3104 3105 /* 3106 * Note: not called from probe context. This function is called 3107 * asynchronously (and at a regular interval) to clean any speculations that 3108 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3109 * is work to be done, it cross calls all CPUs to perform that work; 3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3111 * INACTIVE state until they have been cleaned by all CPUs. 3112 */ 3113 static void 3114 dtrace_speculation_clean(dtrace_state_t *state) 3115 { 3116 int work = 0, rv; 3117 dtrace_specid_t i; 3118 3119 for (i = 0; i < state->dts_nspeculations; i++) { 3120 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3121 3122 ASSERT(!spec->dtsp_cleaning); 3123 3124 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3125 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3126 continue; 3127 3128 work++; 3129 spec->dtsp_cleaning = 1; 3130 } 3131 3132 if (!work) 3133 return; 3134 3135 dtrace_xcall(DTRACE_CPUALL, 3136 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3137 3138 /* 3139 * We now know that all CPUs have committed or discarded their 3140 * speculation buffers, as appropriate. We can now set the state 3141 * to inactive. 3142 */ 3143 for (i = 0; i < state->dts_nspeculations; i++) { 3144 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3145 dtrace_speculation_state_t curstate, new; 3146 3147 if (!spec->dtsp_cleaning) 3148 continue; 3149 3150 curstate = spec->dtsp_state; 3151 ASSERT(curstate == DTRACESPEC_DISCARDING || 3152 curstate == DTRACESPEC_COMMITTINGMANY); 3153 3154 new = DTRACESPEC_INACTIVE; 3155 3156 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3157 ASSERT(rv == curstate); 3158 spec->dtsp_cleaning = 0; 3159 } 3160 } 3161 3162 /* 3163 * Called as part of a speculate() to get the speculative buffer associated 3164 * with a given speculation. Returns NULL if the specified speculation is not 3165 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3166 * the active CPU is not the specified CPU -- the speculation will be 3167 * atomically transitioned into the ACTIVEMANY state. 3168 */ 3169 static dtrace_buffer_t * 3170 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3171 dtrace_specid_t which) 3172 { 3173 dtrace_speculation_t *spec; 3174 dtrace_speculation_state_t curstate, new = 0; 3175 dtrace_buffer_t *buf; 3176 3177 if (which == 0) 3178 return (NULL); 3179 3180 if (which > state->dts_nspeculations) { 3181 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3182 return (NULL); 3183 } 3184 3185 spec = &state->dts_speculations[which - 1]; 3186 buf = &spec->dtsp_buffer[cpuid]; 3187 3188 do { 3189 curstate = spec->dtsp_state; 3190 3191 switch (curstate) { 3192 case DTRACESPEC_INACTIVE: 3193 case DTRACESPEC_COMMITTINGMANY: 3194 case DTRACESPEC_DISCARDING: 3195 return (NULL); 3196 3197 case DTRACESPEC_COMMITTING: 3198 ASSERT(buf->dtb_offset == 0); 3199 return (NULL); 3200 3201 case DTRACESPEC_ACTIVEONE: 3202 /* 3203 * This speculation is currently active on one CPU. 3204 * Check the offset in the buffer; if it's non-zero, 3205 * that CPU must be us (and we leave the state alone). 3206 * If it's zero, assume that we're starting on a new 3207 * CPU -- and change the state to indicate that the 3208 * speculation is active on more than one CPU. 3209 */ 3210 if (buf->dtb_offset != 0) 3211 return (buf); 3212 3213 new = DTRACESPEC_ACTIVEMANY; 3214 break; 3215 3216 case DTRACESPEC_ACTIVEMANY: 3217 return (buf); 3218 3219 case DTRACESPEC_ACTIVE: 3220 new = DTRACESPEC_ACTIVEONE; 3221 break; 3222 3223 default: 3224 ASSERT(0); 3225 } 3226 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3227 curstate, new) != curstate); 3228 3229 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3230 return (buf); 3231 } 3232 3233 /* 3234 * Return a string. In the event that the user lacks the privilege to access 3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3236 * don't fail access checking. 3237 * 3238 * dtrace_dif_variable() uses this routine as a helper for various 3239 * builtin values such as 'execname' and 'probefunc.' 3240 */ 3241 uintptr_t 3242 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3243 dtrace_mstate_t *mstate) 3244 { 3245 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3246 uintptr_t ret; 3247 size_t strsz; 3248 3249 /* 3250 * The easy case: this probe is allowed to read all of memory, so 3251 * we can just return this as a vanilla pointer. 3252 */ 3253 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3254 return (addr); 3255 3256 /* 3257 * This is the tougher case: we copy the string in question from 3258 * kernel memory into scratch memory and return it that way: this 3259 * ensures that we won't trip up when access checking tests the 3260 * BYREF return value. 3261 */ 3262 strsz = dtrace_strlen((char *)addr, size) + 1; 3263 3264 if (mstate->dtms_scratch_ptr + strsz > 3265 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3267 return (0); 3268 } 3269 3270 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3271 strsz); 3272 ret = mstate->dtms_scratch_ptr; 3273 mstate->dtms_scratch_ptr += strsz; 3274 return (ret); 3275 } 3276 3277 /* 3278 * Return a string from a memoy address which is known to have one or 3279 * more concatenated, individually zero terminated, sub-strings. 3280 * In the event that the user lacks the privilege to access 3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3282 * don't fail access checking. 3283 * 3284 * dtrace_dif_variable() uses this routine as a helper for various 3285 * builtin values such as 'execargs'. 3286 */ 3287 static uintptr_t 3288 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3289 dtrace_mstate_t *mstate) 3290 { 3291 char *p; 3292 size_t i; 3293 uintptr_t ret; 3294 3295 if (mstate->dtms_scratch_ptr + strsz > 3296 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3298 return (0); 3299 } 3300 3301 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3302 strsz); 3303 3304 /* Replace sub-string termination characters with a space. */ 3305 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3306 p++, i++) 3307 if (*p == '\0') 3308 *p = ' '; 3309 3310 ret = mstate->dtms_scratch_ptr; 3311 mstate->dtms_scratch_ptr += strsz; 3312 return (ret); 3313 } 3314 3315 /* 3316 * This function implements the DIF emulator's variable lookups. The emulator 3317 * passes a reserved variable identifier and optional built-in array index. 3318 */ 3319 static uint64_t 3320 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3321 uint64_t ndx) 3322 { 3323 /* 3324 * If we're accessing one of the uncached arguments, we'll turn this 3325 * into a reference in the args array. 3326 */ 3327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3328 ndx = v - DIF_VAR_ARG0; 3329 v = DIF_VAR_ARGS; 3330 } 3331 3332 switch (v) { 3333 case DIF_VAR_ARGS: 3334 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3335 if (ndx >= sizeof (mstate->dtms_arg) / 3336 sizeof (mstate->dtms_arg[0])) { 3337 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3338 dtrace_provider_t *pv; 3339 uint64_t val; 3340 3341 pv = mstate->dtms_probe->dtpr_provider; 3342 if (pv->dtpv_pops.dtps_getargval != NULL) 3343 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3344 mstate->dtms_probe->dtpr_id, 3345 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3346 else 3347 val = dtrace_getarg(ndx, aframes); 3348 3349 /* 3350 * This is regrettably required to keep the compiler 3351 * from tail-optimizing the call to dtrace_getarg(). 3352 * The condition always evaluates to true, but the 3353 * compiler has no way of figuring that out a priori. 3354 * (None of this would be necessary if the compiler 3355 * could be relied upon to _always_ tail-optimize 3356 * the call to dtrace_getarg() -- but it can't.) 3357 */ 3358 if (mstate->dtms_probe != NULL) 3359 return (val); 3360 3361 ASSERT(0); 3362 } 3363 3364 return (mstate->dtms_arg[ndx]); 3365 3366 case DIF_VAR_REGS: 3367 case DIF_VAR_UREGS: { 3368 struct trapframe *tframe; 3369 3370 if (!dtrace_priv_proc(state)) 3371 return (0); 3372 3373 if (v == DIF_VAR_REGS) 3374 tframe = curthread->t_dtrace_trapframe; 3375 else 3376 tframe = curthread->td_frame; 3377 3378 if (tframe == NULL) { 3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3380 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3381 return (0); 3382 } 3383 3384 return (dtrace_getreg(tframe, ndx)); 3385 } 3386 3387 case DIF_VAR_CURTHREAD: 3388 if (!dtrace_priv_proc(state)) 3389 return (0); 3390 return ((uint64_t)(uintptr_t)curthread); 3391 3392 case DIF_VAR_TIMESTAMP: 3393 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3394 mstate->dtms_timestamp = dtrace_gethrtime(); 3395 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3396 } 3397 return (mstate->dtms_timestamp); 3398 3399 case DIF_VAR_VTIMESTAMP: 3400 ASSERT(dtrace_vtime_references != 0); 3401 return (curthread->t_dtrace_vtime); 3402 3403 case DIF_VAR_WALLTIMESTAMP: 3404 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3405 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3406 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3407 } 3408 return (mstate->dtms_walltimestamp); 3409 3410 #ifdef illumos 3411 case DIF_VAR_IPL: 3412 if (!dtrace_priv_kernel(state)) 3413 return (0); 3414 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3415 mstate->dtms_ipl = dtrace_getipl(); 3416 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3417 } 3418 return (mstate->dtms_ipl); 3419 #endif 3420 3421 case DIF_VAR_EPID: 3422 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3423 return (mstate->dtms_epid); 3424 3425 case DIF_VAR_ID: 3426 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3427 return (mstate->dtms_probe->dtpr_id); 3428 3429 case DIF_VAR_STACKDEPTH: 3430 if (!dtrace_priv_kernel(state)) 3431 return (0); 3432 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3433 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3434 3435 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3436 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3437 } 3438 return (mstate->dtms_stackdepth); 3439 3440 case DIF_VAR_USTACKDEPTH: 3441 if (!dtrace_priv_proc(state)) 3442 return (0); 3443 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3444 /* 3445 * See comment in DIF_VAR_PID. 3446 */ 3447 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3448 CPU_ON_INTR(CPU)) { 3449 mstate->dtms_ustackdepth = 0; 3450 } else { 3451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3452 mstate->dtms_ustackdepth = 3453 dtrace_getustackdepth(); 3454 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3455 } 3456 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3457 } 3458 return (mstate->dtms_ustackdepth); 3459 3460 case DIF_VAR_CALLER: 3461 if (!dtrace_priv_kernel(state)) 3462 return (0); 3463 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3464 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3465 3466 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3467 /* 3468 * If this is an unanchored probe, we are 3469 * required to go through the slow path: 3470 * dtrace_caller() only guarantees correct 3471 * results for anchored probes. 3472 */ 3473 pc_t caller[2] = {0, 0}; 3474 3475 dtrace_getpcstack(caller, 2, aframes, 3476 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3477 mstate->dtms_caller = caller[1]; 3478 } else if ((mstate->dtms_caller = 3479 dtrace_caller(aframes)) == -1) { 3480 /* 3481 * We have failed to do this the quick way; 3482 * we must resort to the slower approach of 3483 * calling dtrace_getpcstack(). 3484 */ 3485 pc_t caller = 0; 3486 3487 dtrace_getpcstack(&caller, 1, aframes, NULL); 3488 mstate->dtms_caller = caller; 3489 } 3490 3491 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3492 } 3493 return (mstate->dtms_caller); 3494 3495 case DIF_VAR_UCALLER: 3496 if (!dtrace_priv_proc(state)) 3497 return (0); 3498 3499 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3500 uint64_t ustack[3]; 3501 3502 /* 3503 * dtrace_getupcstack() fills in the first uint64_t 3504 * with the current PID. The second uint64_t will 3505 * be the program counter at user-level. The third 3506 * uint64_t will contain the caller, which is what 3507 * we're after. 3508 */ 3509 ustack[2] = 0; 3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3511 dtrace_getupcstack(ustack, 3); 3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3513 mstate->dtms_ucaller = ustack[2]; 3514 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3515 } 3516 3517 return (mstate->dtms_ucaller); 3518 3519 case DIF_VAR_PROBEPROV: 3520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3521 return (dtrace_dif_varstr( 3522 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3523 state, mstate)); 3524 3525 case DIF_VAR_PROBEMOD: 3526 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3527 return (dtrace_dif_varstr( 3528 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3529 state, mstate)); 3530 3531 case DIF_VAR_PROBEFUNC: 3532 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3533 return (dtrace_dif_varstr( 3534 (uintptr_t)mstate->dtms_probe->dtpr_func, 3535 state, mstate)); 3536 3537 case DIF_VAR_PROBENAME: 3538 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3539 return (dtrace_dif_varstr( 3540 (uintptr_t)mstate->dtms_probe->dtpr_name, 3541 state, mstate)); 3542 3543 case DIF_VAR_PID: 3544 if (!dtrace_priv_proc(state)) 3545 return (0); 3546 3547 #ifdef illumos 3548 /* 3549 * Note that we are assuming that an unanchored probe is 3550 * always due to a high-level interrupt. (And we're assuming 3551 * that there is only a single high level interrupt.) 3552 */ 3553 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3554 return (pid0.pid_id); 3555 3556 /* 3557 * It is always safe to dereference one's own t_procp pointer: 3558 * it always points to a valid, allocated proc structure. 3559 * Further, it is always safe to dereference the p_pidp member 3560 * of one's own proc structure. (These are truisms becuase 3561 * threads and processes don't clean up their own state -- 3562 * they leave that task to whomever reaps them.) 3563 */ 3564 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3565 #else 3566 return ((uint64_t)curproc->p_pid); 3567 #endif 3568 3569 case DIF_VAR_PPID: 3570 if (!dtrace_priv_proc(state)) 3571 return (0); 3572 3573 #ifdef illumos 3574 /* 3575 * See comment in DIF_VAR_PID. 3576 */ 3577 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3578 return (pid0.pid_id); 3579 3580 /* 3581 * It is always safe to dereference one's own t_procp pointer: 3582 * it always points to a valid, allocated proc structure. 3583 * (This is true because threads don't clean up their own 3584 * state -- they leave that task to whomever reaps them.) 3585 */ 3586 return ((uint64_t)curthread->t_procp->p_ppid); 3587 #else 3588 if (curproc->p_pid == proc0.p_pid) 3589 return (curproc->p_pid); 3590 else 3591 return (curproc->p_pptr->p_pid); 3592 #endif 3593 3594 case DIF_VAR_TID: 3595 #ifdef illumos 3596 /* 3597 * See comment in DIF_VAR_PID. 3598 */ 3599 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3600 return (0); 3601 #endif 3602 3603 return ((uint64_t)curthread->t_tid); 3604 3605 case DIF_VAR_EXECARGS: { 3606 struct pargs *p_args = curthread->td_proc->p_args; 3607 3608 if (p_args == NULL) 3609 return(0); 3610 3611 return (dtrace_dif_varstrz( 3612 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3613 } 3614 3615 case DIF_VAR_EXECNAME: 3616 #ifdef illumos 3617 if (!dtrace_priv_proc(state)) 3618 return (0); 3619 3620 /* 3621 * See comment in DIF_VAR_PID. 3622 */ 3623 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3624 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3625 3626 /* 3627 * It is always safe to dereference one's own t_procp pointer: 3628 * it always points to a valid, allocated proc structure. 3629 * (This is true because threads don't clean up their own 3630 * state -- they leave that task to whomever reaps them.) 3631 */ 3632 return (dtrace_dif_varstr( 3633 (uintptr_t)curthread->t_procp->p_user.u_comm, 3634 state, mstate)); 3635 #else 3636 return (dtrace_dif_varstr( 3637 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3638 #endif 3639 3640 case DIF_VAR_ZONENAME: 3641 #ifdef illumos 3642 if (!dtrace_priv_proc(state)) 3643 return (0); 3644 3645 /* 3646 * See comment in DIF_VAR_PID. 3647 */ 3648 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3649 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3650 3651 /* 3652 * It is always safe to dereference one's own t_procp pointer: 3653 * it always points to a valid, allocated proc structure. 3654 * (This is true because threads don't clean up their own 3655 * state -- they leave that task to whomever reaps them.) 3656 */ 3657 return (dtrace_dif_varstr( 3658 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3659 state, mstate)); 3660 #elif defined(__FreeBSD__) 3661 /* 3662 * On FreeBSD, we introduce compatibility to zonename by falling through 3663 * into jailname. 3664 */ 3665 case DIF_VAR_JAILNAME: 3666 if (!dtrace_priv_kernel(state)) 3667 return (0); 3668 3669 return (dtrace_dif_varstr( 3670 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3671 state, mstate)); 3672 3673 case DIF_VAR_JID: 3674 if (!dtrace_priv_kernel(state)) 3675 return (0); 3676 3677 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3678 #else 3679 return (0); 3680 #endif 3681 3682 case DIF_VAR_UID: 3683 if (!dtrace_priv_proc(state)) 3684 return (0); 3685 3686 #ifdef illumos 3687 /* 3688 * See comment in DIF_VAR_PID. 3689 */ 3690 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3691 return ((uint64_t)p0.p_cred->cr_uid); 3692 3693 /* 3694 * It is always safe to dereference one's own t_procp pointer: 3695 * it always points to a valid, allocated proc structure. 3696 * (This is true because threads don't clean up their own 3697 * state -- they leave that task to whomever reaps them.) 3698 * 3699 * Additionally, it is safe to dereference one's own process 3700 * credential, since this is never NULL after process birth. 3701 */ 3702 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3703 #else 3704 return ((uint64_t)curthread->td_ucred->cr_uid); 3705 #endif 3706 3707 case DIF_VAR_GID: 3708 if (!dtrace_priv_proc(state)) 3709 return (0); 3710 3711 #ifdef illumos 3712 /* 3713 * See comment in DIF_VAR_PID. 3714 */ 3715 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3716 return ((uint64_t)p0.p_cred->cr_gid); 3717 3718 /* 3719 * It is always safe to dereference one's own t_procp pointer: 3720 * it always points to a valid, allocated proc structure. 3721 * (This is true because threads don't clean up their own 3722 * state -- they leave that task to whomever reaps them.) 3723 * 3724 * Additionally, it is safe to dereference one's own process 3725 * credential, since this is never NULL after process birth. 3726 */ 3727 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3728 #else 3729 return ((uint64_t)curthread->td_ucred->cr_gid); 3730 #endif 3731 3732 case DIF_VAR_ERRNO: { 3733 #ifdef illumos 3734 klwp_t *lwp; 3735 if (!dtrace_priv_proc(state)) 3736 return (0); 3737 3738 /* 3739 * See comment in DIF_VAR_PID. 3740 */ 3741 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3742 return (0); 3743 3744 /* 3745 * It is always safe to dereference one's own t_lwp pointer in 3746 * the event that this pointer is non-NULL. (This is true 3747 * because threads and lwps don't clean up their own state -- 3748 * they leave that task to whomever reaps them.) 3749 */ 3750 if ((lwp = curthread->t_lwp) == NULL) 3751 return (0); 3752 3753 return ((uint64_t)lwp->lwp_errno); 3754 #else 3755 return (curthread->td_errno); 3756 #endif 3757 } 3758 #ifndef illumos 3759 case DIF_VAR_CPU: { 3760 return curcpu; 3761 } 3762 #endif 3763 default: 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3765 return (0); 3766 } 3767 } 3768 3769 3770 typedef enum dtrace_json_state { 3771 DTRACE_JSON_REST = 1, 3772 DTRACE_JSON_OBJECT, 3773 DTRACE_JSON_STRING, 3774 DTRACE_JSON_STRING_ESCAPE, 3775 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3776 DTRACE_JSON_COLON, 3777 DTRACE_JSON_COMMA, 3778 DTRACE_JSON_VALUE, 3779 DTRACE_JSON_IDENTIFIER, 3780 DTRACE_JSON_NUMBER, 3781 DTRACE_JSON_NUMBER_FRAC, 3782 DTRACE_JSON_NUMBER_EXP, 3783 DTRACE_JSON_COLLECT_OBJECT 3784 } dtrace_json_state_t; 3785 3786 /* 3787 * This function possesses just enough knowledge about JSON to extract a single 3788 * value from a JSON string and store it in the scratch buffer. It is able 3789 * to extract nested object values, and members of arrays by index. 3790 * 3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3792 * be looked up as we descend into the object tree. e.g. 3793 * 3794 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3795 * with nelems = 5. 3796 * 3797 * The run time of this function must be bounded above by strsize to limit the 3798 * amount of work done in probe context. As such, it is implemented as a 3799 * simple state machine, reading one character at a time using safe loads 3800 * until we find the requested element, hit a parsing error or run off the 3801 * end of the object or string. 3802 * 3803 * As there is no way for a subroutine to return an error without interrupting 3804 * clause execution, we simply return NULL in the event of a missing key or any 3805 * other error condition. Each NULL return in this function is commented with 3806 * the error condition it represents -- parsing or otherwise. 3807 * 3808 * The set of states for the state machine closely matches the JSON 3809 * specification (http://json.org/). Briefly: 3810 * 3811 * DTRACE_JSON_REST: 3812 * Skip whitespace until we find either a top-level Object, moving 3813 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3814 * 3815 * DTRACE_JSON_OBJECT: 3816 * Locate the next key String in an Object. Sets a flag to denote 3817 * the next String as a key string and moves to DTRACE_JSON_STRING. 3818 * 3819 * DTRACE_JSON_COLON: 3820 * Skip whitespace until we find the colon that separates key Strings 3821 * from their values. Once found, move to DTRACE_JSON_VALUE. 3822 * 3823 * DTRACE_JSON_VALUE: 3824 * Detects the type of the next value (String, Number, Identifier, Object 3825 * or Array) and routes to the states that process that type. Here we also 3826 * deal with the element selector list if we are requested to traverse down 3827 * into the object tree. 3828 * 3829 * DTRACE_JSON_COMMA: 3830 * Skip whitespace until we find the comma that separates key-value pairs 3831 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3832 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3833 * states return to this state at the end of their value, unless otherwise 3834 * noted. 3835 * 3836 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3837 * Processes a Number literal from the JSON, including any exponent 3838 * component that may be present. Numbers are returned as strings, which 3839 * may be passed to strtoll() if an integer is required. 3840 * 3841 * DTRACE_JSON_IDENTIFIER: 3842 * Processes a "true", "false" or "null" literal in the JSON. 3843 * 3844 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3845 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3846 * Processes a String literal from the JSON, whether the String denotes 3847 * a key, a value or part of a larger Object. Handles all escape sequences 3848 * present in the specification, including four-digit unicode characters, 3849 * but merely includes the escape sequence without converting it to the 3850 * actual escaped character. If the String is flagged as a key, we 3851 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3852 * 3853 * DTRACE_JSON_COLLECT_OBJECT: 3854 * This state collects an entire Object (or Array), correctly handling 3855 * embedded strings. If the full element selector list matches this nested 3856 * object, we return the Object in full as a string. If not, we use this 3857 * state to skip to the next value at this level and continue processing. 3858 * 3859 * NOTE: This function uses various macros from strtolctype.h to manipulate 3860 * digit values, etc -- these have all been checked to ensure they make 3861 * no additional function calls. 3862 */ 3863 static char * 3864 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3865 char *dest) 3866 { 3867 dtrace_json_state_t state = DTRACE_JSON_REST; 3868 int64_t array_elem = INT64_MIN; 3869 int64_t array_pos = 0; 3870 uint8_t escape_unicount = 0; 3871 boolean_t string_is_key = B_FALSE; 3872 boolean_t collect_object = B_FALSE; 3873 boolean_t found_key = B_FALSE; 3874 boolean_t in_array = B_FALSE; 3875 uint32_t braces = 0, brackets = 0; 3876 char *elem = elemlist; 3877 char *dd = dest; 3878 uintptr_t cur; 3879 3880 for (cur = json; cur < json + size; cur++) { 3881 char cc = dtrace_load8(cur); 3882 if (cc == '\0') 3883 return (NULL); 3884 3885 switch (state) { 3886 case DTRACE_JSON_REST: 3887 if (isspace(cc)) 3888 break; 3889 3890 if (cc == '{') { 3891 state = DTRACE_JSON_OBJECT; 3892 break; 3893 } 3894 3895 if (cc == '[') { 3896 in_array = B_TRUE; 3897 array_pos = 0; 3898 array_elem = dtrace_strtoll(elem, 10, size); 3899 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3900 state = DTRACE_JSON_VALUE; 3901 break; 3902 } 3903 3904 /* 3905 * ERROR: expected to find a top-level object or array. 3906 */ 3907 return (NULL); 3908 case DTRACE_JSON_OBJECT: 3909 if (isspace(cc)) 3910 break; 3911 3912 if (cc == '"') { 3913 state = DTRACE_JSON_STRING; 3914 string_is_key = B_TRUE; 3915 break; 3916 } 3917 3918 /* 3919 * ERROR: either the object did not start with a key 3920 * string, or we've run off the end of the object 3921 * without finding the requested key. 3922 */ 3923 return (NULL); 3924 case DTRACE_JSON_STRING: 3925 if (cc == '\\') { 3926 *dd++ = '\\'; 3927 state = DTRACE_JSON_STRING_ESCAPE; 3928 break; 3929 } 3930 3931 if (cc == '"') { 3932 if (collect_object) { 3933 /* 3934 * We don't reset the dest here, as 3935 * the string is part of a larger 3936 * object being collected. 3937 */ 3938 *dd++ = cc; 3939 collect_object = B_FALSE; 3940 state = DTRACE_JSON_COLLECT_OBJECT; 3941 break; 3942 } 3943 *dd = '\0'; 3944 dd = dest; /* reset string buffer */ 3945 if (string_is_key) { 3946 if (dtrace_strncmp(dest, elem, 3947 size) == 0) 3948 found_key = B_TRUE; 3949 } else if (found_key) { 3950 if (nelems > 1) { 3951 /* 3952 * We expected an object, not 3953 * this string. 3954 */ 3955 return (NULL); 3956 } 3957 return (dest); 3958 } 3959 state = string_is_key ? DTRACE_JSON_COLON : 3960 DTRACE_JSON_COMMA; 3961 string_is_key = B_FALSE; 3962 break; 3963 } 3964 3965 *dd++ = cc; 3966 break; 3967 case DTRACE_JSON_STRING_ESCAPE: 3968 *dd++ = cc; 3969 if (cc == 'u') { 3970 escape_unicount = 0; 3971 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3972 } else { 3973 state = DTRACE_JSON_STRING; 3974 } 3975 break; 3976 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3977 if (!isxdigit(cc)) { 3978 /* 3979 * ERROR: invalid unicode escape, expected 3980 * four valid hexidecimal digits. 3981 */ 3982 return (NULL); 3983 } 3984 3985 *dd++ = cc; 3986 if (++escape_unicount == 4) 3987 state = DTRACE_JSON_STRING; 3988 break; 3989 case DTRACE_JSON_COLON: 3990 if (isspace(cc)) 3991 break; 3992 3993 if (cc == ':') { 3994 state = DTRACE_JSON_VALUE; 3995 break; 3996 } 3997 3998 /* 3999 * ERROR: expected a colon. 4000 */ 4001 return (NULL); 4002 case DTRACE_JSON_COMMA: 4003 if (isspace(cc)) 4004 break; 4005 4006 if (cc == ',') { 4007 if (in_array) { 4008 state = DTRACE_JSON_VALUE; 4009 if (++array_pos == array_elem) 4010 found_key = B_TRUE; 4011 } else { 4012 state = DTRACE_JSON_OBJECT; 4013 } 4014 break; 4015 } 4016 4017 /* 4018 * ERROR: either we hit an unexpected character, or 4019 * we reached the end of the object or array without 4020 * finding the requested key. 4021 */ 4022 return (NULL); 4023 case DTRACE_JSON_IDENTIFIER: 4024 if (islower(cc)) { 4025 *dd++ = cc; 4026 break; 4027 } 4028 4029 *dd = '\0'; 4030 dd = dest; /* reset string buffer */ 4031 4032 if (dtrace_strncmp(dest, "true", 5) == 0 || 4033 dtrace_strncmp(dest, "false", 6) == 0 || 4034 dtrace_strncmp(dest, "null", 5) == 0) { 4035 if (found_key) { 4036 if (nelems > 1) { 4037 /* 4038 * ERROR: We expected an object, 4039 * not this identifier. 4040 */ 4041 return (NULL); 4042 } 4043 return (dest); 4044 } else { 4045 cur--; 4046 state = DTRACE_JSON_COMMA; 4047 break; 4048 } 4049 } 4050 4051 /* 4052 * ERROR: we did not recognise the identifier as one 4053 * of those in the JSON specification. 4054 */ 4055 return (NULL); 4056 case DTRACE_JSON_NUMBER: 4057 if (cc == '.') { 4058 *dd++ = cc; 4059 state = DTRACE_JSON_NUMBER_FRAC; 4060 break; 4061 } 4062 4063 if (cc == 'x' || cc == 'X') { 4064 /* 4065 * ERROR: specification explicitly excludes 4066 * hexidecimal or octal numbers. 4067 */ 4068 return (NULL); 4069 } 4070 4071 /* FALLTHRU */ 4072 case DTRACE_JSON_NUMBER_FRAC: 4073 if (cc == 'e' || cc == 'E') { 4074 *dd++ = cc; 4075 state = DTRACE_JSON_NUMBER_EXP; 4076 break; 4077 } 4078 4079 if (cc == '+' || cc == '-') { 4080 /* 4081 * ERROR: expect sign as part of exponent only. 4082 */ 4083 return (NULL); 4084 } 4085 /* FALLTHRU */ 4086 case DTRACE_JSON_NUMBER_EXP: 4087 if (isdigit(cc) || cc == '+' || cc == '-') { 4088 *dd++ = cc; 4089 break; 4090 } 4091 4092 *dd = '\0'; 4093 dd = dest; /* reset string buffer */ 4094 if (found_key) { 4095 if (nelems > 1) { 4096 /* 4097 * ERROR: We expected an object, not 4098 * this number. 4099 */ 4100 return (NULL); 4101 } 4102 return (dest); 4103 } 4104 4105 cur--; 4106 state = DTRACE_JSON_COMMA; 4107 break; 4108 case DTRACE_JSON_VALUE: 4109 if (isspace(cc)) 4110 break; 4111 4112 if (cc == '{' || cc == '[') { 4113 if (nelems > 1 && found_key) { 4114 in_array = cc == '[' ? B_TRUE : B_FALSE; 4115 /* 4116 * If our element selector directs us 4117 * to descend into this nested object, 4118 * then move to the next selector 4119 * element in the list and restart the 4120 * state machine. 4121 */ 4122 while (*elem != '\0') 4123 elem++; 4124 elem++; /* skip the inter-element NUL */ 4125 nelems--; 4126 dd = dest; 4127 if (in_array) { 4128 state = DTRACE_JSON_VALUE; 4129 array_pos = 0; 4130 array_elem = dtrace_strtoll( 4131 elem, 10, size); 4132 found_key = array_elem == 0 ? 4133 B_TRUE : B_FALSE; 4134 } else { 4135 found_key = B_FALSE; 4136 state = DTRACE_JSON_OBJECT; 4137 } 4138 break; 4139 } 4140 4141 /* 4142 * Otherwise, we wish to either skip this 4143 * nested object or return it in full. 4144 */ 4145 if (cc == '[') 4146 brackets = 1; 4147 else 4148 braces = 1; 4149 *dd++ = cc; 4150 state = DTRACE_JSON_COLLECT_OBJECT; 4151 break; 4152 } 4153 4154 if (cc == '"') { 4155 state = DTRACE_JSON_STRING; 4156 break; 4157 } 4158 4159 if (islower(cc)) { 4160 /* 4161 * Here we deal with true, false and null. 4162 */ 4163 *dd++ = cc; 4164 state = DTRACE_JSON_IDENTIFIER; 4165 break; 4166 } 4167 4168 if (cc == '-' || isdigit(cc)) { 4169 *dd++ = cc; 4170 state = DTRACE_JSON_NUMBER; 4171 break; 4172 } 4173 4174 /* 4175 * ERROR: unexpected character at start of value. 4176 */ 4177 return (NULL); 4178 case DTRACE_JSON_COLLECT_OBJECT: 4179 if (cc == '\0') 4180 /* 4181 * ERROR: unexpected end of input. 4182 */ 4183 return (NULL); 4184 4185 *dd++ = cc; 4186 if (cc == '"') { 4187 collect_object = B_TRUE; 4188 state = DTRACE_JSON_STRING; 4189 break; 4190 } 4191 4192 if (cc == ']') { 4193 if (brackets-- == 0) { 4194 /* 4195 * ERROR: unbalanced brackets. 4196 */ 4197 return (NULL); 4198 } 4199 } else if (cc == '}') { 4200 if (braces-- == 0) { 4201 /* 4202 * ERROR: unbalanced braces. 4203 */ 4204 return (NULL); 4205 } 4206 } else if (cc == '{') { 4207 braces++; 4208 } else if (cc == '[') { 4209 brackets++; 4210 } 4211 4212 if (brackets == 0 && braces == 0) { 4213 if (found_key) { 4214 *dd = '\0'; 4215 return (dest); 4216 } 4217 dd = dest; /* reset string buffer */ 4218 state = DTRACE_JSON_COMMA; 4219 } 4220 break; 4221 } 4222 } 4223 return (NULL); 4224 } 4225 4226 /* 4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4228 * Notice that we don't bother validating the proper number of arguments or 4229 * their types in the tuple stack. This isn't needed because all argument 4230 * interpretation is safe because of our load safety -- the worst that can 4231 * happen is that a bogus program can obtain bogus results. 4232 */ 4233 static void 4234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4235 dtrace_key_t *tupregs, int nargs, 4236 dtrace_mstate_t *mstate, dtrace_state_t *state) 4237 { 4238 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4239 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4240 dtrace_vstate_t *vstate = &state->dts_vstate; 4241 4242 #ifdef illumos 4243 union { 4244 mutex_impl_t mi; 4245 uint64_t mx; 4246 } m; 4247 4248 union { 4249 krwlock_t ri; 4250 uintptr_t rw; 4251 } r; 4252 #else 4253 struct thread *lowner; 4254 union { 4255 struct lock_object *li; 4256 uintptr_t lx; 4257 } l; 4258 #endif 4259 4260 switch (subr) { 4261 case DIF_SUBR_RAND: 4262 regs[rd] = dtrace_xoroshiro128_plus_next( 4263 state->dts_rstate[curcpu]); 4264 break; 4265 4266 #ifdef illumos 4267 case DIF_SUBR_MUTEX_OWNED: 4268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4269 mstate, vstate)) { 4270 regs[rd] = 0; 4271 break; 4272 } 4273 4274 m.mx = dtrace_load64(tupregs[0].dttk_value); 4275 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4276 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4277 else 4278 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4279 break; 4280 4281 case DIF_SUBR_MUTEX_OWNER: 4282 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4283 mstate, vstate)) { 4284 regs[rd] = 0; 4285 break; 4286 } 4287 4288 m.mx = dtrace_load64(tupregs[0].dttk_value); 4289 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4290 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4291 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4292 else 4293 regs[rd] = 0; 4294 break; 4295 4296 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4297 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4298 mstate, vstate)) { 4299 regs[rd] = 0; 4300 break; 4301 } 4302 4303 m.mx = dtrace_load64(tupregs[0].dttk_value); 4304 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4305 break; 4306 4307 case DIF_SUBR_MUTEX_TYPE_SPIN: 4308 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4309 mstate, vstate)) { 4310 regs[rd] = 0; 4311 break; 4312 } 4313 4314 m.mx = dtrace_load64(tupregs[0].dttk_value); 4315 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4316 break; 4317 4318 case DIF_SUBR_RW_READ_HELD: { 4319 uintptr_t tmp; 4320 4321 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4322 mstate, vstate)) { 4323 regs[rd] = 0; 4324 break; 4325 } 4326 4327 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4328 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4329 break; 4330 } 4331 4332 case DIF_SUBR_RW_WRITE_HELD: 4333 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4334 mstate, vstate)) { 4335 regs[rd] = 0; 4336 break; 4337 } 4338 4339 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4340 regs[rd] = _RW_WRITE_HELD(&r.ri); 4341 break; 4342 4343 case DIF_SUBR_RW_ISWRITER: 4344 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4345 mstate, vstate)) { 4346 regs[rd] = 0; 4347 break; 4348 } 4349 4350 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4351 regs[rd] = _RW_ISWRITER(&r.ri); 4352 break; 4353 4354 #else /* !illumos */ 4355 case DIF_SUBR_MUTEX_OWNED: 4356 if (!dtrace_canload(tupregs[0].dttk_value, 4357 sizeof (struct lock_object), mstate, vstate)) { 4358 regs[rd] = 0; 4359 break; 4360 } 4361 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4362 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4363 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4365 break; 4366 4367 case DIF_SUBR_MUTEX_OWNER: 4368 if (!dtrace_canload(tupregs[0].dttk_value, 4369 sizeof (struct lock_object), mstate, vstate)) { 4370 regs[rd] = 0; 4371 break; 4372 } 4373 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4375 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4377 regs[rd] = (uintptr_t)lowner; 4378 break; 4379 4380 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4381 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4382 mstate, vstate)) { 4383 regs[rd] = 0; 4384 break; 4385 } 4386 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4388 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4389 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4390 break; 4391 4392 case DIF_SUBR_MUTEX_TYPE_SPIN: 4393 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4394 mstate, vstate)) { 4395 regs[rd] = 0; 4396 break; 4397 } 4398 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4400 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4402 break; 4403 4404 case DIF_SUBR_RW_READ_HELD: 4405 case DIF_SUBR_SX_SHARED_HELD: 4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4407 mstate, vstate)) { 4408 regs[rd] = 0; 4409 break; 4410 } 4411 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4413 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4414 lowner == NULL; 4415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4416 break; 4417 4418 case DIF_SUBR_RW_WRITE_HELD: 4419 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4421 mstate, vstate)) { 4422 regs[rd] = 0; 4423 break; 4424 } 4425 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4426 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4427 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4428 lowner != NULL; 4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4430 break; 4431 4432 case DIF_SUBR_RW_ISWRITER: 4433 case DIF_SUBR_SX_ISEXCLUSIVE: 4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4435 mstate, vstate)) { 4436 regs[rd] = 0; 4437 break; 4438 } 4439 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4441 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4442 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4443 regs[rd] = (lowner == curthread); 4444 break; 4445 #endif /* illumos */ 4446 4447 case DIF_SUBR_BCOPY: { 4448 /* 4449 * We need to be sure that the destination is in the scratch 4450 * region -- no other region is allowed. 4451 */ 4452 uintptr_t src = tupregs[0].dttk_value; 4453 uintptr_t dest = tupregs[1].dttk_value; 4454 size_t size = tupregs[2].dttk_value; 4455 4456 if (!dtrace_inscratch(dest, size, mstate)) { 4457 *flags |= CPU_DTRACE_BADADDR; 4458 *illval = regs[rd]; 4459 break; 4460 } 4461 4462 if (!dtrace_canload(src, size, mstate, vstate)) { 4463 regs[rd] = 0; 4464 break; 4465 } 4466 4467 dtrace_bcopy((void *)src, (void *)dest, size); 4468 break; 4469 } 4470 4471 case DIF_SUBR_ALLOCA: 4472 case DIF_SUBR_COPYIN: { 4473 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4474 uint64_t size = 4475 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4476 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4477 4478 /* 4479 * This action doesn't require any credential checks since 4480 * probes will not activate in user contexts to which the 4481 * enabling user does not have permissions. 4482 */ 4483 4484 /* 4485 * Rounding up the user allocation size could have overflowed 4486 * a large, bogus allocation (like -1ULL) to 0. 4487 */ 4488 if (scratch_size < size || 4489 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4490 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4491 regs[rd] = 0; 4492 break; 4493 } 4494 4495 if (subr == DIF_SUBR_COPYIN) { 4496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4497 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4498 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4499 } 4500 4501 mstate->dtms_scratch_ptr += scratch_size; 4502 regs[rd] = dest; 4503 break; 4504 } 4505 4506 case DIF_SUBR_COPYINTO: { 4507 uint64_t size = tupregs[1].dttk_value; 4508 uintptr_t dest = tupregs[2].dttk_value; 4509 4510 /* 4511 * This action doesn't require any credential checks since 4512 * probes will not activate in user contexts to which the 4513 * enabling user does not have permissions. 4514 */ 4515 if (!dtrace_inscratch(dest, size, mstate)) { 4516 *flags |= CPU_DTRACE_BADADDR; 4517 *illval = regs[rd]; 4518 break; 4519 } 4520 4521 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4522 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4523 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4524 break; 4525 } 4526 4527 case DIF_SUBR_COPYINSTR: { 4528 uintptr_t dest = mstate->dtms_scratch_ptr; 4529 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4530 4531 if (nargs > 1 && tupregs[1].dttk_value < size) 4532 size = tupregs[1].dttk_value + 1; 4533 4534 /* 4535 * This action doesn't require any credential checks since 4536 * probes will not activate in user contexts to which the 4537 * enabling user does not have permissions. 4538 */ 4539 if (!DTRACE_INSCRATCH(mstate, size)) { 4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4541 regs[rd] = 0; 4542 break; 4543 } 4544 4545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4546 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4547 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4548 4549 ((char *)dest)[size - 1] = '\0'; 4550 mstate->dtms_scratch_ptr += size; 4551 regs[rd] = dest; 4552 break; 4553 } 4554 4555 #ifdef illumos 4556 case DIF_SUBR_MSGSIZE: 4557 case DIF_SUBR_MSGDSIZE: { 4558 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4559 uintptr_t wptr, rptr; 4560 size_t count = 0; 4561 int cont = 0; 4562 4563 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4564 4565 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4566 vstate)) { 4567 regs[rd] = 0; 4568 break; 4569 } 4570 4571 wptr = dtrace_loadptr(baddr + 4572 offsetof(mblk_t, b_wptr)); 4573 4574 rptr = dtrace_loadptr(baddr + 4575 offsetof(mblk_t, b_rptr)); 4576 4577 if (wptr < rptr) { 4578 *flags |= CPU_DTRACE_BADADDR; 4579 *illval = tupregs[0].dttk_value; 4580 break; 4581 } 4582 4583 daddr = dtrace_loadptr(baddr + 4584 offsetof(mblk_t, b_datap)); 4585 4586 baddr = dtrace_loadptr(baddr + 4587 offsetof(mblk_t, b_cont)); 4588 4589 /* 4590 * We want to prevent against denial-of-service here, 4591 * so we're only going to search the list for 4592 * dtrace_msgdsize_max mblks. 4593 */ 4594 if (cont++ > dtrace_msgdsize_max) { 4595 *flags |= CPU_DTRACE_ILLOP; 4596 break; 4597 } 4598 4599 if (subr == DIF_SUBR_MSGDSIZE) { 4600 if (dtrace_load8(daddr + 4601 offsetof(dblk_t, db_type)) != M_DATA) 4602 continue; 4603 } 4604 4605 count += wptr - rptr; 4606 } 4607 4608 if (!(*flags & CPU_DTRACE_FAULT)) 4609 regs[rd] = count; 4610 4611 break; 4612 } 4613 #endif 4614 4615 case DIF_SUBR_PROGENYOF: { 4616 pid_t pid = tupregs[0].dttk_value; 4617 proc_t *p; 4618 int rval = 0; 4619 4620 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4621 4622 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4623 #ifdef illumos 4624 if (p->p_pidp->pid_id == pid) { 4625 #else 4626 if (p->p_pid == pid) { 4627 #endif 4628 rval = 1; 4629 break; 4630 } 4631 } 4632 4633 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4634 4635 regs[rd] = rval; 4636 break; 4637 } 4638 4639 case DIF_SUBR_SPECULATION: 4640 regs[rd] = dtrace_speculation(state); 4641 break; 4642 4643 case DIF_SUBR_COPYOUT: { 4644 uintptr_t kaddr = tupregs[0].dttk_value; 4645 uintptr_t uaddr = tupregs[1].dttk_value; 4646 uint64_t size = tupregs[2].dttk_value; 4647 4648 if (!dtrace_destructive_disallow && 4649 dtrace_priv_proc_control(state) && 4650 !dtrace_istoxic(kaddr, size) && 4651 dtrace_canload(kaddr, size, mstate, vstate)) { 4652 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4653 dtrace_copyout(kaddr, uaddr, size, flags); 4654 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4655 } 4656 break; 4657 } 4658 4659 case DIF_SUBR_COPYOUTSTR: { 4660 uintptr_t kaddr = tupregs[0].dttk_value; 4661 uintptr_t uaddr = tupregs[1].dttk_value; 4662 uint64_t size = tupregs[2].dttk_value; 4663 size_t lim; 4664 4665 if (!dtrace_destructive_disallow && 4666 dtrace_priv_proc_control(state) && 4667 !dtrace_istoxic(kaddr, size) && 4668 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4670 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4672 } 4673 break; 4674 } 4675 4676 case DIF_SUBR_STRLEN: { 4677 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4679 size_t lim; 4680 4681 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4682 regs[rd] = 0; 4683 break; 4684 } 4685 4686 regs[rd] = dtrace_strlen((char *)addr, lim); 4687 break; 4688 } 4689 4690 case DIF_SUBR_STRCHR: 4691 case DIF_SUBR_STRRCHR: { 4692 /* 4693 * We're going to iterate over the string looking for the 4694 * specified character. We will iterate until we have reached 4695 * the string length or we have found the character. If this 4696 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4697 * of the specified character instead of the first. 4698 */ 4699 uintptr_t addr = tupregs[0].dttk_value; 4700 uintptr_t addr_limit; 4701 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4702 size_t lim; 4703 char c, target = (char)tupregs[1].dttk_value; 4704 4705 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4706 regs[rd] = 0; 4707 break; 4708 } 4709 addr_limit = addr + lim; 4710 4711 for (regs[rd] = 0; addr < addr_limit; addr++) { 4712 if ((c = dtrace_load8(addr)) == target) { 4713 regs[rd] = addr; 4714 4715 if (subr == DIF_SUBR_STRCHR) 4716 break; 4717 } 4718 4719 if (c == '\0') 4720 break; 4721 } 4722 break; 4723 } 4724 4725 case DIF_SUBR_STRSTR: 4726 case DIF_SUBR_INDEX: 4727 case DIF_SUBR_RINDEX: { 4728 /* 4729 * We're going to iterate over the string looking for the 4730 * specified string. We will iterate until we have reached 4731 * the string length or we have found the string. (Yes, this 4732 * is done in the most naive way possible -- but considering 4733 * that the string we're searching for is likely to be 4734 * relatively short, the complexity of Rabin-Karp or similar 4735 * hardly seems merited.) 4736 */ 4737 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4738 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4739 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4740 size_t len = dtrace_strlen(addr, size); 4741 size_t sublen = dtrace_strlen(substr, size); 4742 char *limit = addr + len, *orig = addr; 4743 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4744 int inc = 1; 4745 4746 regs[rd] = notfound; 4747 4748 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4749 regs[rd] = 0; 4750 break; 4751 } 4752 4753 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4754 vstate)) { 4755 regs[rd] = 0; 4756 break; 4757 } 4758 4759 /* 4760 * strstr() and index()/rindex() have similar semantics if 4761 * both strings are the empty string: strstr() returns a 4762 * pointer to the (empty) string, and index() and rindex() 4763 * both return index 0 (regardless of any position argument). 4764 */ 4765 if (sublen == 0 && len == 0) { 4766 if (subr == DIF_SUBR_STRSTR) 4767 regs[rd] = (uintptr_t)addr; 4768 else 4769 regs[rd] = 0; 4770 break; 4771 } 4772 4773 if (subr != DIF_SUBR_STRSTR) { 4774 if (subr == DIF_SUBR_RINDEX) { 4775 limit = orig - 1; 4776 addr += len; 4777 inc = -1; 4778 } 4779 4780 /* 4781 * Both index() and rindex() take an optional position 4782 * argument that denotes the starting position. 4783 */ 4784 if (nargs == 3) { 4785 int64_t pos = (int64_t)tupregs[2].dttk_value; 4786 4787 /* 4788 * If the position argument to index() is 4789 * negative, Perl implicitly clamps it at 4790 * zero. This semantic is a little surprising 4791 * given the special meaning of negative 4792 * positions to similar Perl functions like 4793 * substr(), but it appears to reflect a 4794 * notion that index() can start from a 4795 * negative index and increment its way up to 4796 * the string. Given this notion, Perl's 4797 * rindex() is at least self-consistent in 4798 * that it implicitly clamps positions greater 4799 * than the string length to be the string 4800 * length. Where Perl completely loses 4801 * coherence, however, is when the specified 4802 * substring is the empty string (""). In 4803 * this case, even if the position is 4804 * negative, rindex() returns 0 -- and even if 4805 * the position is greater than the length, 4806 * index() returns the string length. These 4807 * semantics violate the notion that index() 4808 * should never return a value less than the 4809 * specified position and that rindex() should 4810 * never return a value greater than the 4811 * specified position. (One assumes that 4812 * these semantics are artifacts of Perl's 4813 * implementation and not the results of 4814 * deliberate design -- it beggars belief that 4815 * even Larry Wall could desire such oddness.) 4816 * While in the abstract one would wish for 4817 * consistent position semantics across 4818 * substr(), index() and rindex() -- or at the 4819 * very least self-consistent position 4820 * semantics for index() and rindex() -- we 4821 * instead opt to keep with the extant Perl 4822 * semantics, in all their broken glory. (Do 4823 * we have more desire to maintain Perl's 4824 * semantics than Perl does? Probably.) 4825 */ 4826 if (subr == DIF_SUBR_RINDEX) { 4827 if (pos < 0) { 4828 if (sublen == 0) 4829 regs[rd] = 0; 4830 break; 4831 } 4832 4833 if (pos > len) 4834 pos = len; 4835 } else { 4836 if (pos < 0) 4837 pos = 0; 4838 4839 if (pos >= len) { 4840 if (sublen == 0) 4841 regs[rd] = len; 4842 break; 4843 } 4844 } 4845 4846 addr = orig + pos; 4847 } 4848 } 4849 4850 for (regs[rd] = notfound; addr != limit; addr += inc) { 4851 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4852 if (subr != DIF_SUBR_STRSTR) { 4853 /* 4854 * As D index() and rindex() are 4855 * modeled on Perl (and not on awk), 4856 * we return a zero-based (and not a 4857 * one-based) index. (For you Perl 4858 * weenies: no, we're not going to add 4859 * $[ -- and shouldn't you be at a con 4860 * or something?) 4861 */ 4862 regs[rd] = (uintptr_t)(addr - orig); 4863 break; 4864 } 4865 4866 ASSERT(subr == DIF_SUBR_STRSTR); 4867 regs[rd] = (uintptr_t)addr; 4868 break; 4869 } 4870 } 4871 4872 break; 4873 } 4874 4875 case DIF_SUBR_STRTOK: { 4876 uintptr_t addr = tupregs[0].dttk_value; 4877 uintptr_t tokaddr = tupregs[1].dttk_value; 4878 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4879 uintptr_t limit, toklimit; 4880 size_t clim; 4881 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4882 char *dest = (char *)mstate->dtms_scratch_ptr; 4883 int i; 4884 4885 /* 4886 * Check both the token buffer and (later) the input buffer, 4887 * since both could be non-scratch addresses. 4888 */ 4889 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4890 regs[rd] = 0; 4891 break; 4892 } 4893 toklimit = tokaddr + clim; 4894 4895 if (!DTRACE_INSCRATCH(mstate, size)) { 4896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4897 regs[rd] = 0; 4898 break; 4899 } 4900 4901 if (addr == 0) { 4902 /* 4903 * If the address specified is NULL, we use our saved 4904 * strtok pointer from the mstate. Note that this 4905 * means that the saved strtok pointer is _only_ 4906 * valid within multiple enablings of the same probe -- 4907 * it behaves like an implicit clause-local variable. 4908 */ 4909 addr = mstate->dtms_strtok; 4910 limit = mstate->dtms_strtok_limit; 4911 } else { 4912 /* 4913 * If the user-specified address is non-NULL we must 4914 * access check it. This is the only time we have 4915 * a chance to do so, since this address may reside 4916 * in the string table of this clause-- future calls 4917 * (when we fetch addr from mstate->dtms_strtok) 4918 * would fail this access check. 4919 */ 4920 if (!dtrace_strcanload(addr, size, &clim, mstate, 4921 vstate)) { 4922 regs[rd] = 0; 4923 break; 4924 } 4925 limit = addr + clim; 4926 } 4927 4928 /* 4929 * First, zero the token map, and then process the token 4930 * string -- setting a bit in the map for every character 4931 * found in the token string. 4932 */ 4933 for (i = 0; i < sizeof (tokmap); i++) 4934 tokmap[i] = 0; 4935 4936 for (; tokaddr < toklimit; tokaddr++) { 4937 if ((c = dtrace_load8(tokaddr)) == '\0') 4938 break; 4939 4940 ASSERT((c >> 3) < sizeof (tokmap)); 4941 tokmap[c >> 3] |= (1 << (c & 0x7)); 4942 } 4943 4944 for (; addr < limit; addr++) { 4945 /* 4946 * We're looking for a character that is _not_ 4947 * contained in the token string. 4948 */ 4949 if ((c = dtrace_load8(addr)) == '\0') 4950 break; 4951 4952 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4953 break; 4954 } 4955 4956 if (c == '\0') { 4957 /* 4958 * We reached the end of the string without finding 4959 * any character that was not in the token string. 4960 * We return NULL in this case, and we set the saved 4961 * address to NULL as well. 4962 */ 4963 regs[rd] = 0; 4964 mstate->dtms_strtok = 0; 4965 mstate->dtms_strtok_limit = 0; 4966 break; 4967 } 4968 4969 /* 4970 * From here on, we're copying into the destination string. 4971 */ 4972 for (i = 0; addr < limit && i < size - 1; addr++) { 4973 if ((c = dtrace_load8(addr)) == '\0') 4974 break; 4975 4976 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4977 break; 4978 4979 ASSERT(i < size); 4980 dest[i++] = c; 4981 } 4982 4983 ASSERT(i < size); 4984 dest[i] = '\0'; 4985 regs[rd] = (uintptr_t)dest; 4986 mstate->dtms_scratch_ptr += size; 4987 mstate->dtms_strtok = addr; 4988 mstate->dtms_strtok_limit = limit; 4989 break; 4990 } 4991 4992 case DIF_SUBR_SUBSTR: { 4993 uintptr_t s = tupregs[0].dttk_value; 4994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4995 char *d = (char *)mstate->dtms_scratch_ptr; 4996 int64_t index = (int64_t)tupregs[1].dttk_value; 4997 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4998 size_t len = dtrace_strlen((char *)s, size); 4999 int64_t i; 5000 5001 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5002 regs[rd] = 0; 5003 break; 5004 } 5005 5006 if (!DTRACE_INSCRATCH(mstate, size)) { 5007 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5008 regs[rd] = 0; 5009 break; 5010 } 5011 5012 if (nargs <= 2) 5013 remaining = (int64_t)size; 5014 5015 if (index < 0) { 5016 index += len; 5017 5018 if (index < 0 && index + remaining > 0) { 5019 remaining += index; 5020 index = 0; 5021 } 5022 } 5023 5024 if (index >= len || index < 0) { 5025 remaining = 0; 5026 } else if (remaining < 0) { 5027 remaining += len - index; 5028 } else if (index + remaining > size) { 5029 remaining = size - index; 5030 } 5031 5032 for (i = 0; i < remaining; i++) { 5033 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5034 break; 5035 } 5036 5037 d[i] = '\0'; 5038 5039 mstate->dtms_scratch_ptr += size; 5040 regs[rd] = (uintptr_t)d; 5041 break; 5042 } 5043 5044 case DIF_SUBR_JSON: { 5045 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5046 uintptr_t json = tupregs[0].dttk_value; 5047 size_t jsonlen = dtrace_strlen((char *)json, size); 5048 uintptr_t elem = tupregs[1].dttk_value; 5049 size_t elemlen = dtrace_strlen((char *)elem, size); 5050 5051 char *dest = (char *)mstate->dtms_scratch_ptr; 5052 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5053 char *ee = elemlist; 5054 int nelems = 1; 5055 uintptr_t cur; 5056 5057 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5058 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5059 regs[rd] = 0; 5060 break; 5061 } 5062 5063 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5065 regs[rd] = 0; 5066 break; 5067 } 5068 5069 /* 5070 * Read the element selector and split it up into a packed list 5071 * of strings. 5072 */ 5073 for (cur = elem; cur < elem + elemlen; cur++) { 5074 char cc = dtrace_load8(cur); 5075 5076 if (cur == elem && cc == '[') { 5077 /* 5078 * If the first element selector key is 5079 * actually an array index then ignore the 5080 * bracket. 5081 */ 5082 continue; 5083 } 5084 5085 if (cc == ']') 5086 continue; 5087 5088 if (cc == '.' || cc == '[') { 5089 nelems++; 5090 cc = '\0'; 5091 } 5092 5093 *ee++ = cc; 5094 } 5095 *ee++ = '\0'; 5096 5097 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5098 nelems, dest)) != 0) 5099 mstate->dtms_scratch_ptr += jsonlen + 1; 5100 break; 5101 } 5102 5103 case DIF_SUBR_TOUPPER: 5104 case DIF_SUBR_TOLOWER: { 5105 uintptr_t s = tupregs[0].dttk_value; 5106 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5107 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5108 size_t len = dtrace_strlen((char *)s, size); 5109 char lower, upper, convert; 5110 int64_t i; 5111 5112 if (subr == DIF_SUBR_TOUPPER) { 5113 lower = 'a'; 5114 upper = 'z'; 5115 convert = 'A'; 5116 } else { 5117 lower = 'A'; 5118 upper = 'Z'; 5119 convert = 'a'; 5120 } 5121 5122 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5123 regs[rd] = 0; 5124 break; 5125 } 5126 5127 if (!DTRACE_INSCRATCH(mstate, size)) { 5128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5129 regs[rd] = 0; 5130 break; 5131 } 5132 5133 for (i = 0; i < size - 1; i++) { 5134 if ((c = dtrace_load8(s + i)) == '\0') 5135 break; 5136 5137 if (c >= lower && c <= upper) 5138 c = convert + (c - lower); 5139 5140 dest[i] = c; 5141 } 5142 5143 ASSERT(i < size); 5144 dest[i] = '\0'; 5145 regs[rd] = (uintptr_t)dest; 5146 mstate->dtms_scratch_ptr += size; 5147 break; 5148 } 5149 5150 #ifdef illumos 5151 case DIF_SUBR_GETMAJOR: 5152 #ifdef _LP64 5153 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5154 #else 5155 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5156 #endif 5157 break; 5158 5159 case DIF_SUBR_GETMINOR: 5160 #ifdef _LP64 5161 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5162 #else 5163 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5164 #endif 5165 break; 5166 5167 case DIF_SUBR_DDI_PATHNAME: { 5168 /* 5169 * This one is a galactic mess. We are going to roughly 5170 * emulate ddi_pathname(), but it's made more complicated 5171 * by the fact that we (a) want to include the minor name and 5172 * (b) must proceed iteratively instead of recursively. 5173 */ 5174 uintptr_t dest = mstate->dtms_scratch_ptr; 5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5176 char *start = (char *)dest, *end = start + size - 1; 5177 uintptr_t daddr = tupregs[0].dttk_value; 5178 int64_t minor = (int64_t)tupregs[1].dttk_value; 5179 char *s; 5180 int i, len, depth = 0; 5181 5182 /* 5183 * Due to all the pointer jumping we do and context we must 5184 * rely upon, we just mandate that the user must have kernel 5185 * read privileges to use this routine. 5186 */ 5187 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5188 *flags |= CPU_DTRACE_KPRIV; 5189 *illval = daddr; 5190 regs[rd] = 0; 5191 } 5192 5193 if (!DTRACE_INSCRATCH(mstate, size)) { 5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5195 regs[rd] = 0; 5196 break; 5197 } 5198 5199 *end = '\0'; 5200 5201 /* 5202 * We want to have a name for the minor. In order to do this, 5203 * we need to walk the minor list from the devinfo. We want 5204 * to be sure that we don't infinitely walk a circular list, 5205 * so we check for circularity by sending a scout pointer 5206 * ahead two elements for every element that we iterate over; 5207 * if the list is circular, these will ultimately point to the 5208 * same element. You may recognize this little trick as the 5209 * answer to a stupid interview question -- one that always 5210 * seems to be asked by those who had to have it laboriously 5211 * explained to them, and who can't even concisely describe 5212 * the conditions under which one would be forced to resort to 5213 * this technique. Needless to say, those conditions are 5214 * found here -- and probably only here. Is this the only use 5215 * of this infamous trick in shipping, production code? If it 5216 * isn't, it probably should be... 5217 */ 5218 if (minor != -1) { 5219 uintptr_t maddr = dtrace_loadptr(daddr + 5220 offsetof(struct dev_info, devi_minor)); 5221 5222 uintptr_t next = offsetof(struct ddi_minor_data, next); 5223 uintptr_t name = offsetof(struct ddi_minor_data, 5224 d_minor) + offsetof(struct ddi_minor, name); 5225 uintptr_t dev = offsetof(struct ddi_minor_data, 5226 d_minor) + offsetof(struct ddi_minor, dev); 5227 uintptr_t scout; 5228 5229 if (maddr != NULL) 5230 scout = dtrace_loadptr(maddr + next); 5231 5232 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5233 uint64_t m; 5234 #ifdef _LP64 5235 m = dtrace_load64(maddr + dev) & MAXMIN64; 5236 #else 5237 m = dtrace_load32(maddr + dev) & MAXMIN; 5238 #endif 5239 if (m != minor) { 5240 maddr = dtrace_loadptr(maddr + next); 5241 5242 if (scout == NULL) 5243 continue; 5244 5245 scout = dtrace_loadptr(scout + next); 5246 5247 if (scout == NULL) 5248 continue; 5249 5250 scout = dtrace_loadptr(scout + next); 5251 5252 if (scout == NULL) 5253 continue; 5254 5255 if (scout == maddr) { 5256 *flags |= CPU_DTRACE_ILLOP; 5257 break; 5258 } 5259 5260 continue; 5261 } 5262 5263 /* 5264 * We have the minor data. Now we need to 5265 * copy the minor's name into the end of the 5266 * pathname. 5267 */ 5268 s = (char *)dtrace_loadptr(maddr + name); 5269 len = dtrace_strlen(s, size); 5270 5271 if (*flags & CPU_DTRACE_FAULT) 5272 break; 5273 5274 if (len != 0) { 5275 if ((end -= (len + 1)) < start) 5276 break; 5277 5278 *end = ':'; 5279 } 5280 5281 for (i = 1; i <= len; i++) 5282 end[i] = dtrace_load8((uintptr_t)s++); 5283 break; 5284 } 5285 } 5286 5287 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5288 ddi_node_state_t devi_state; 5289 5290 devi_state = dtrace_load32(daddr + 5291 offsetof(struct dev_info, devi_node_state)); 5292 5293 if (*flags & CPU_DTRACE_FAULT) 5294 break; 5295 5296 if (devi_state >= DS_INITIALIZED) { 5297 s = (char *)dtrace_loadptr(daddr + 5298 offsetof(struct dev_info, devi_addr)); 5299 len = dtrace_strlen(s, size); 5300 5301 if (*flags & CPU_DTRACE_FAULT) 5302 break; 5303 5304 if (len != 0) { 5305 if ((end -= (len + 1)) < start) 5306 break; 5307 5308 *end = '@'; 5309 } 5310 5311 for (i = 1; i <= len; i++) 5312 end[i] = dtrace_load8((uintptr_t)s++); 5313 } 5314 5315 /* 5316 * Now for the node name... 5317 */ 5318 s = (char *)dtrace_loadptr(daddr + 5319 offsetof(struct dev_info, devi_node_name)); 5320 5321 daddr = dtrace_loadptr(daddr + 5322 offsetof(struct dev_info, devi_parent)); 5323 5324 /* 5325 * If our parent is NULL (that is, if we're the root 5326 * node), we're going to use the special path 5327 * "devices". 5328 */ 5329 if (daddr == 0) 5330 s = "devices"; 5331 5332 len = dtrace_strlen(s, size); 5333 if (*flags & CPU_DTRACE_FAULT) 5334 break; 5335 5336 if ((end -= (len + 1)) < start) 5337 break; 5338 5339 for (i = 1; i <= len; i++) 5340 end[i] = dtrace_load8((uintptr_t)s++); 5341 *end = '/'; 5342 5343 if (depth++ > dtrace_devdepth_max) { 5344 *flags |= CPU_DTRACE_ILLOP; 5345 break; 5346 } 5347 } 5348 5349 if (end < start) 5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5351 5352 if (daddr == 0) { 5353 regs[rd] = (uintptr_t)end; 5354 mstate->dtms_scratch_ptr += size; 5355 } 5356 5357 break; 5358 } 5359 #endif 5360 5361 case DIF_SUBR_STRJOIN: { 5362 char *d = (char *)mstate->dtms_scratch_ptr; 5363 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5364 uintptr_t s1 = tupregs[0].dttk_value; 5365 uintptr_t s2 = tupregs[1].dttk_value; 5366 int i = 0, j = 0; 5367 size_t lim1, lim2; 5368 char c; 5369 5370 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5371 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5372 regs[rd] = 0; 5373 break; 5374 } 5375 5376 if (!DTRACE_INSCRATCH(mstate, size)) { 5377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5378 regs[rd] = 0; 5379 break; 5380 } 5381 5382 for (;;) { 5383 if (i >= size) { 5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5385 regs[rd] = 0; 5386 break; 5387 } 5388 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5389 if ((d[i++] = c) == '\0') { 5390 i--; 5391 break; 5392 } 5393 } 5394 5395 for (;;) { 5396 if (i >= size) { 5397 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5398 regs[rd] = 0; 5399 break; 5400 } 5401 5402 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5403 if ((d[i++] = c) == '\0') 5404 break; 5405 } 5406 5407 if (i < size) { 5408 mstate->dtms_scratch_ptr += i; 5409 regs[rd] = (uintptr_t)d; 5410 } 5411 5412 break; 5413 } 5414 5415 case DIF_SUBR_STRTOLL: { 5416 uintptr_t s = tupregs[0].dttk_value; 5417 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5418 size_t lim; 5419 int base = 10; 5420 5421 if (nargs > 1) { 5422 if ((base = tupregs[1].dttk_value) <= 1 || 5423 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5424 *flags |= CPU_DTRACE_ILLOP; 5425 break; 5426 } 5427 } 5428 5429 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5430 regs[rd] = INT64_MIN; 5431 break; 5432 } 5433 5434 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5435 break; 5436 } 5437 5438 case DIF_SUBR_LLTOSTR: { 5439 int64_t i = (int64_t)tupregs[0].dttk_value; 5440 uint64_t val, digit; 5441 uint64_t size = 65; /* enough room for 2^64 in binary */ 5442 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5443 int base = 10; 5444 5445 if (nargs > 1) { 5446 if ((base = tupregs[1].dttk_value) <= 1 || 5447 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5448 *flags |= CPU_DTRACE_ILLOP; 5449 break; 5450 } 5451 } 5452 5453 val = (base == 10 && i < 0) ? i * -1 : i; 5454 5455 if (!DTRACE_INSCRATCH(mstate, size)) { 5456 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5457 regs[rd] = 0; 5458 break; 5459 } 5460 5461 for (*end-- = '\0'; val; val /= base) { 5462 if ((digit = val % base) <= '9' - '0') { 5463 *end-- = '0' + digit; 5464 } else { 5465 *end-- = 'a' + (digit - ('9' - '0') - 1); 5466 } 5467 } 5468 5469 if (i == 0 && base == 16) 5470 *end-- = '0'; 5471 5472 if (base == 16) 5473 *end-- = 'x'; 5474 5475 if (i == 0 || base == 8 || base == 16) 5476 *end-- = '0'; 5477 5478 if (i < 0 && base == 10) 5479 *end-- = '-'; 5480 5481 regs[rd] = (uintptr_t)end + 1; 5482 mstate->dtms_scratch_ptr += size; 5483 break; 5484 } 5485 5486 case DIF_SUBR_HTONS: 5487 case DIF_SUBR_NTOHS: 5488 #if BYTE_ORDER == BIG_ENDIAN 5489 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5490 #else 5491 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5492 #endif 5493 break; 5494 5495 5496 case DIF_SUBR_HTONL: 5497 case DIF_SUBR_NTOHL: 5498 #if BYTE_ORDER == BIG_ENDIAN 5499 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5500 #else 5501 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5502 #endif 5503 break; 5504 5505 5506 case DIF_SUBR_HTONLL: 5507 case DIF_SUBR_NTOHLL: 5508 #if BYTE_ORDER == BIG_ENDIAN 5509 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5510 #else 5511 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5512 #endif 5513 break; 5514 5515 5516 case DIF_SUBR_DIRNAME: 5517 case DIF_SUBR_BASENAME: { 5518 char *dest = (char *)mstate->dtms_scratch_ptr; 5519 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5520 uintptr_t src = tupregs[0].dttk_value; 5521 int i, j, len = dtrace_strlen((char *)src, size); 5522 int lastbase = -1, firstbase = -1, lastdir = -1; 5523 int start, end; 5524 5525 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5526 regs[rd] = 0; 5527 break; 5528 } 5529 5530 if (!DTRACE_INSCRATCH(mstate, size)) { 5531 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5532 regs[rd] = 0; 5533 break; 5534 } 5535 5536 /* 5537 * The basename and dirname for a zero-length string is 5538 * defined to be "." 5539 */ 5540 if (len == 0) { 5541 len = 1; 5542 src = (uintptr_t)"."; 5543 } 5544 5545 /* 5546 * Start from the back of the string, moving back toward the 5547 * front until we see a character that isn't a slash. That 5548 * character is the last character in the basename. 5549 */ 5550 for (i = len - 1; i >= 0; i--) { 5551 if (dtrace_load8(src + i) != '/') 5552 break; 5553 } 5554 5555 if (i >= 0) 5556 lastbase = i; 5557 5558 /* 5559 * Starting from the last character in the basename, move 5560 * towards the front until we find a slash. The character 5561 * that we processed immediately before that is the first 5562 * character in the basename. 5563 */ 5564 for (; i >= 0; i--) { 5565 if (dtrace_load8(src + i) == '/') 5566 break; 5567 } 5568 5569 if (i >= 0) 5570 firstbase = i + 1; 5571 5572 /* 5573 * Now keep going until we find a non-slash character. That 5574 * character is the last character in the dirname. 5575 */ 5576 for (; i >= 0; i--) { 5577 if (dtrace_load8(src + i) != '/') 5578 break; 5579 } 5580 5581 if (i >= 0) 5582 lastdir = i; 5583 5584 ASSERT(!(lastbase == -1 && firstbase != -1)); 5585 ASSERT(!(firstbase == -1 && lastdir != -1)); 5586 5587 if (lastbase == -1) { 5588 /* 5589 * We didn't find a non-slash character. We know that 5590 * the length is non-zero, so the whole string must be 5591 * slashes. In either the dirname or the basename 5592 * case, we return '/'. 5593 */ 5594 ASSERT(firstbase == -1); 5595 firstbase = lastbase = lastdir = 0; 5596 } 5597 5598 if (firstbase == -1) { 5599 /* 5600 * The entire string consists only of a basename 5601 * component. If we're looking for dirname, we need 5602 * to change our string to be just "."; if we're 5603 * looking for a basename, we'll just set the first 5604 * character of the basename to be 0. 5605 */ 5606 if (subr == DIF_SUBR_DIRNAME) { 5607 ASSERT(lastdir == -1); 5608 src = (uintptr_t)"."; 5609 lastdir = 0; 5610 } else { 5611 firstbase = 0; 5612 } 5613 } 5614 5615 if (subr == DIF_SUBR_DIRNAME) { 5616 if (lastdir == -1) { 5617 /* 5618 * We know that we have a slash in the name -- 5619 * or lastdir would be set to 0, above. And 5620 * because lastdir is -1, we know that this 5621 * slash must be the first character. (That 5622 * is, the full string must be of the form 5623 * "/basename".) In this case, the last 5624 * character of the directory name is 0. 5625 */ 5626 lastdir = 0; 5627 } 5628 5629 start = 0; 5630 end = lastdir; 5631 } else { 5632 ASSERT(subr == DIF_SUBR_BASENAME); 5633 ASSERT(firstbase != -1 && lastbase != -1); 5634 start = firstbase; 5635 end = lastbase; 5636 } 5637 5638 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5639 dest[j] = dtrace_load8(src + i); 5640 5641 dest[j] = '\0'; 5642 regs[rd] = (uintptr_t)dest; 5643 mstate->dtms_scratch_ptr += size; 5644 break; 5645 } 5646 5647 case DIF_SUBR_GETF: { 5648 uintptr_t fd = tupregs[0].dttk_value; 5649 struct filedesc *fdp; 5650 file_t *fp; 5651 5652 if (!dtrace_priv_proc(state)) { 5653 regs[rd] = 0; 5654 break; 5655 } 5656 fdp = curproc->p_fd; 5657 FILEDESC_SLOCK(fdp); 5658 /* 5659 * XXXMJG this looks broken as no ref is taken. 5660 */ 5661 fp = fget_noref(fdp, fd); 5662 mstate->dtms_getf = fp; 5663 regs[rd] = (uintptr_t)fp; 5664 FILEDESC_SUNLOCK(fdp); 5665 break; 5666 } 5667 5668 case DIF_SUBR_CLEANPATH: { 5669 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5671 uintptr_t src = tupregs[0].dttk_value; 5672 size_t lim; 5673 int i = 0, j = 0; 5674 #ifdef illumos 5675 zone_t *z; 5676 #endif 5677 5678 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5679 regs[rd] = 0; 5680 break; 5681 } 5682 5683 if (!DTRACE_INSCRATCH(mstate, size)) { 5684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5685 regs[rd] = 0; 5686 break; 5687 } 5688 5689 /* 5690 * Move forward, loading each character. 5691 */ 5692 do { 5693 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5694 next: 5695 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5696 break; 5697 5698 if (c != '/') { 5699 dest[j++] = c; 5700 continue; 5701 } 5702 5703 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5704 5705 if (c == '/') { 5706 /* 5707 * We have two slashes -- we can just advance 5708 * to the next character. 5709 */ 5710 goto next; 5711 } 5712 5713 if (c != '.') { 5714 /* 5715 * This is not "." and it's not ".." -- we can 5716 * just store the "/" and this character and 5717 * drive on. 5718 */ 5719 dest[j++] = '/'; 5720 dest[j++] = c; 5721 continue; 5722 } 5723 5724 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5725 5726 if (c == '/') { 5727 /* 5728 * This is a "/./" component. We're not going 5729 * to store anything in the destination buffer; 5730 * we're just going to go to the next component. 5731 */ 5732 goto next; 5733 } 5734 5735 if (c != '.') { 5736 /* 5737 * This is not ".." -- we can just store the 5738 * "/." and this character and continue 5739 * processing. 5740 */ 5741 dest[j++] = '/'; 5742 dest[j++] = '.'; 5743 dest[j++] = c; 5744 continue; 5745 } 5746 5747 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5748 5749 if (c != '/' && c != '\0') { 5750 /* 5751 * This is not ".." -- it's "..[mumble]". 5752 * We'll store the "/.." and this character 5753 * and continue processing. 5754 */ 5755 dest[j++] = '/'; 5756 dest[j++] = '.'; 5757 dest[j++] = '.'; 5758 dest[j++] = c; 5759 continue; 5760 } 5761 5762 /* 5763 * This is "/../" or "/..\0". We need to back up 5764 * our destination pointer until we find a "/". 5765 */ 5766 i--; 5767 while (j != 0 && dest[--j] != '/') 5768 continue; 5769 5770 if (c == '\0') 5771 dest[++j] = '/'; 5772 } while (c != '\0'); 5773 5774 dest[j] = '\0'; 5775 5776 #ifdef illumos 5777 if (mstate->dtms_getf != NULL && 5778 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5779 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5780 /* 5781 * If we've done a getf() as a part of this ECB and we 5782 * don't have kernel access (and we're not in the global 5783 * zone), check if the path we cleaned up begins with 5784 * the zone's root path, and trim it off if so. Note 5785 * that this is an output cleanliness issue, not a 5786 * security issue: knowing one's zone root path does 5787 * not enable privilege escalation. 5788 */ 5789 if (strstr(dest, z->zone_rootpath) == dest) 5790 dest += strlen(z->zone_rootpath) - 1; 5791 } 5792 #endif 5793 5794 regs[rd] = (uintptr_t)dest; 5795 mstate->dtms_scratch_ptr += size; 5796 break; 5797 } 5798 5799 case DIF_SUBR_INET_NTOA: 5800 case DIF_SUBR_INET_NTOA6: 5801 case DIF_SUBR_INET_NTOP: { 5802 size_t size; 5803 int af, argi, i; 5804 char *base, *end; 5805 5806 if (subr == DIF_SUBR_INET_NTOP) { 5807 af = (int)tupregs[0].dttk_value; 5808 argi = 1; 5809 } else { 5810 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5811 argi = 0; 5812 } 5813 5814 if (af == AF_INET) { 5815 ipaddr_t ip4; 5816 uint8_t *ptr8, val; 5817 5818 if (!dtrace_canload(tupregs[argi].dttk_value, 5819 sizeof (ipaddr_t), mstate, vstate)) { 5820 regs[rd] = 0; 5821 break; 5822 } 5823 5824 /* 5825 * Safely load the IPv4 address. 5826 */ 5827 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5828 5829 /* 5830 * Check an IPv4 string will fit in scratch. 5831 */ 5832 size = INET_ADDRSTRLEN; 5833 if (!DTRACE_INSCRATCH(mstate, size)) { 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5835 regs[rd] = 0; 5836 break; 5837 } 5838 base = (char *)mstate->dtms_scratch_ptr; 5839 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5840 5841 /* 5842 * Stringify as a dotted decimal quad. 5843 */ 5844 *end-- = '\0'; 5845 ptr8 = (uint8_t *)&ip4; 5846 for (i = 3; i >= 0; i--) { 5847 val = ptr8[i]; 5848 5849 if (val == 0) { 5850 *end-- = '0'; 5851 } else { 5852 for (; val; val /= 10) { 5853 *end-- = '0' + (val % 10); 5854 } 5855 } 5856 5857 if (i > 0) 5858 *end-- = '.'; 5859 } 5860 ASSERT(end + 1 >= base); 5861 5862 } else if (af == AF_INET6) { 5863 struct in6_addr ip6; 5864 int firstzero, tryzero, numzero, v6end; 5865 uint16_t val; 5866 const char digits[] = "0123456789abcdef"; 5867 5868 /* 5869 * Stringify using RFC 1884 convention 2 - 16 bit 5870 * hexadecimal values with a zero-run compression. 5871 * Lower case hexadecimal digits are used. 5872 * eg, fe80::214:4fff:fe0b:76c8. 5873 * The IPv4 embedded form is returned for inet_ntop, 5874 * just the IPv4 string is returned for inet_ntoa6. 5875 */ 5876 5877 if (!dtrace_canload(tupregs[argi].dttk_value, 5878 sizeof (struct in6_addr), mstate, vstate)) { 5879 regs[rd] = 0; 5880 break; 5881 } 5882 5883 /* 5884 * Safely load the IPv6 address. 5885 */ 5886 dtrace_bcopy( 5887 (void *)(uintptr_t)tupregs[argi].dttk_value, 5888 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5889 5890 /* 5891 * Check an IPv6 string will fit in scratch. 5892 */ 5893 size = INET6_ADDRSTRLEN; 5894 if (!DTRACE_INSCRATCH(mstate, size)) { 5895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5896 regs[rd] = 0; 5897 break; 5898 } 5899 base = (char *)mstate->dtms_scratch_ptr; 5900 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5901 *end-- = '\0'; 5902 5903 /* 5904 * Find the longest run of 16 bit zero values 5905 * for the single allowed zero compression - "::". 5906 */ 5907 firstzero = -1; 5908 tryzero = -1; 5909 numzero = 1; 5910 for (i = 0; i < sizeof (struct in6_addr); i++) { 5911 #ifdef illumos 5912 if (ip6._S6_un._S6_u8[i] == 0 && 5913 #else 5914 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5915 #endif 5916 tryzero == -1 && i % 2 == 0) { 5917 tryzero = i; 5918 continue; 5919 } 5920 5921 if (tryzero != -1 && 5922 #ifdef illumos 5923 (ip6._S6_un._S6_u8[i] != 0 || 5924 #else 5925 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5926 #endif 5927 i == sizeof (struct in6_addr) - 1)) { 5928 5929 if (i - tryzero <= numzero) { 5930 tryzero = -1; 5931 continue; 5932 } 5933 5934 firstzero = tryzero; 5935 numzero = i - i % 2 - tryzero; 5936 tryzero = -1; 5937 5938 #ifdef illumos 5939 if (ip6._S6_un._S6_u8[i] == 0 && 5940 #else 5941 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5942 #endif 5943 i == sizeof (struct in6_addr) - 1) 5944 numzero += 2; 5945 } 5946 } 5947 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5948 5949 /* 5950 * Check for an IPv4 embedded address. 5951 */ 5952 v6end = sizeof (struct in6_addr) - 2; 5953 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5954 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5955 for (i = sizeof (struct in6_addr) - 1; 5956 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5957 ASSERT(end >= base); 5958 5959 #ifdef illumos 5960 val = ip6._S6_un._S6_u8[i]; 5961 #else 5962 val = ip6.__u6_addr.__u6_addr8[i]; 5963 #endif 5964 5965 if (val == 0) { 5966 *end-- = '0'; 5967 } else { 5968 for (; val; val /= 10) { 5969 *end-- = '0' + val % 10; 5970 } 5971 } 5972 5973 if (i > DTRACE_V4MAPPED_OFFSET) 5974 *end-- = '.'; 5975 } 5976 5977 if (subr == DIF_SUBR_INET_NTOA6) 5978 goto inetout; 5979 5980 /* 5981 * Set v6end to skip the IPv4 address that 5982 * we have already stringified. 5983 */ 5984 v6end = 10; 5985 } 5986 5987 /* 5988 * Build the IPv6 string by working through the 5989 * address in reverse. 5990 */ 5991 for (i = v6end; i >= 0; i -= 2) { 5992 ASSERT(end >= base); 5993 5994 if (i == firstzero + numzero - 2) { 5995 *end-- = ':'; 5996 *end-- = ':'; 5997 i -= numzero - 2; 5998 continue; 5999 } 6000 6001 if (i < 14 && i != firstzero - 2) 6002 *end-- = ':'; 6003 6004 #ifdef illumos 6005 val = (ip6._S6_un._S6_u8[i] << 8) + 6006 ip6._S6_un._S6_u8[i + 1]; 6007 #else 6008 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6009 ip6.__u6_addr.__u6_addr8[i + 1]; 6010 #endif 6011 6012 if (val == 0) { 6013 *end-- = '0'; 6014 } else { 6015 for (; val; val /= 16) { 6016 *end-- = digits[val % 16]; 6017 } 6018 } 6019 } 6020 ASSERT(end + 1 >= base); 6021 6022 } else { 6023 /* 6024 * The user didn't use AH_INET or AH_INET6. 6025 */ 6026 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6027 regs[rd] = 0; 6028 break; 6029 } 6030 6031 inetout: regs[rd] = (uintptr_t)end + 1; 6032 mstate->dtms_scratch_ptr += size; 6033 break; 6034 } 6035 6036 case DIF_SUBR_MEMREF: { 6037 uintptr_t size = 2 * sizeof(uintptr_t); 6038 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6039 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6040 6041 /* address and length */ 6042 memref[0] = tupregs[0].dttk_value; 6043 memref[1] = tupregs[1].dttk_value; 6044 6045 regs[rd] = (uintptr_t) memref; 6046 mstate->dtms_scratch_ptr += scratch_size; 6047 break; 6048 } 6049 6050 #ifndef illumos 6051 case DIF_SUBR_MEMSTR: { 6052 char *str = (char *)mstate->dtms_scratch_ptr; 6053 uintptr_t mem = tupregs[0].dttk_value; 6054 char c = tupregs[1].dttk_value; 6055 size_t size = tupregs[2].dttk_value; 6056 uint8_t n; 6057 int i; 6058 6059 regs[rd] = 0; 6060 6061 if (size == 0) 6062 break; 6063 6064 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6065 break; 6066 6067 if (!DTRACE_INSCRATCH(mstate, size)) { 6068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6069 break; 6070 } 6071 6072 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6073 *flags |= CPU_DTRACE_ILLOP; 6074 break; 6075 } 6076 6077 for (i = 0; i < size - 1; i++) { 6078 n = dtrace_load8(mem++); 6079 str[i] = (n == 0) ? c : n; 6080 } 6081 str[size - 1] = 0; 6082 6083 regs[rd] = (uintptr_t)str; 6084 mstate->dtms_scratch_ptr += size; 6085 break; 6086 } 6087 #endif 6088 } 6089 } 6090 6091 /* 6092 * Emulate the execution of DTrace IR instructions specified by the given 6093 * DIF object. This function is deliberately void of assertions as all of 6094 * the necessary checks are handled by a call to dtrace_difo_validate(). 6095 */ 6096 static uint64_t 6097 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6098 dtrace_vstate_t *vstate, dtrace_state_t *state) 6099 { 6100 const dif_instr_t *text = difo->dtdo_buf; 6101 const uint_t textlen = difo->dtdo_len; 6102 const char *strtab = difo->dtdo_strtab; 6103 const uint64_t *inttab = difo->dtdo_inttab; 6104 6105 uint64_t rval = 0; 6106 dtrace_statvar_t *svar; 6107 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6108 dtrace_difv_t *v; 6109 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6110 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6111 6112 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6113 uint64_t regs[DIF_DIR_NREGS]; 6114 uint64_t *tmp; 6115 6116 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6117 int64_t cc_r; 6118 uint_t pc = 0, id, opc = 0; 6119 uint8_t ttop = 0; 6120 dif_instr_t instr; 6121 uint_t r1, r2, rd; 6122 6123 /* 6124 * We stash the current DIF object into the machine state: we need it 6125 * for subsequent access checking. 6126 */ 6127 mstate->dtms_difo = difo; 6128 6129 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6130 6131 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6132 opc = pc; 6133 6134 instr = text[pc++]; 6135 r1 = DIF_INSTR_R1(instr); 6136 r2 = DIF_INSTR_R2(instr); 6137 rd = DIF_INSTR_RD(instr); 6138 6139 switch (DIF_INSTR_OP(instr)) { 6140 case DIF_OP_OR: 6141 regs[rd] = regs[r1] | regs[r2]; 6142 break; 6143 case DIF_OP_XOR: 6144 regs[rd] = regs[r1] ^ regs[r2]; 6145 break; 6146 case DIF_OP_AND: 6147 regs[rd] = regs[r1] & regs[r2]; 6148 break; 6149 case DIF_OP_SLL: 6150 regs[rd] = regs[r1] << regs[r2]; 6151 break; 6152 case DIF_OP_SRL: 6153 regs[rd] = regs[r1] >> regs[r2]; 6154 break; 6155 case DIF_OP_SUB: 6156 regs[rd] = regs[r1] - regs[r2]; 6157 break; 6158 case DIF_OP_ADD: 6159 regs[rd] = regs[r1] + regs[r2]; 6160 break; 6161 case DIF_OP_MUL: 6162 regs[rd] = regs[r1] * regs[r2]; 6163 break; 6164 case DIF_OP_SDIV: 6165 if (regs[r2] == 0) { 6166 regs[rd] = 0; 6167 *flags |= CPU_DTRACE_DIVZERO; 6168 } else { 6169 regs[rd] = (int64_t)regs[r1] / 6170 (int64_t)regs[r2]; 6171 } 6172 break; 6173 6174 case DIF_OP_UDIV: 6175 if (regs[r2] == 0) { 6176 regs[rd] = 0; 6177 *flags |= CPU_DTRACE_DIVZERO; 6178 } else { 6179 regs[rd] = regs[r1] / regs[r2]; 6180 } 6181 break; 6182 6183 case DIF_OP_SREM: 6184 if (regs[r2] == 0) { 6185 regs[rd] = 0; 6186 *flags |= CPU_DTRACE_DIVZERO; 6187 } else { 6188 regs[rd] = (int64_t)regs[r1] % 6189 (int64_t)regs[r2]; 6190 } 6191 break; 6192 6193 case DIF_OP_UREM: 6194 if (regs[r2] == 0) { 6195 regs[rd] = 0; 6196 *flags |= CPU_DTRACE_DIVZERO; 6197 } else { 6198 regs[rd] = regs[r1] % regs[r2]; 6199 } 6200 break; 6201 6202 case DIF_OP_NOT: 6203 regs[rd] = ~regs[r1]; 6204 break; 6205 case DIF_OP_MOV: 6206 regs[rd] = regs[r1]; 6207 break; 6208 case DIF_OP_CMP: 6209 cc_r = regs[r1] - regs[r2]; 6210 cc_n = cc_r < 0; 6211 cc_z = cc_r == 0; 6212 cc_v = 0; 6213 cc_c = regs[r1] < regs[r2]; 6214 break; 6215 case DIF_OP_TST: 6216 cc_n = cc_v = cc_c = 0; 6217 cc_z = regs[r1] == 0; 6218 break; 6219 case DIF_OP_BA: 6220 pc = DIF_INSTR_LABEL(instr); 6221 break; 6222 case DIF_OP_BE: 6223 if (cc_z) 6224 pc = DIF_INSTR_LABEL(instr); 6225 break; 6226 case DIF_OP_BNE: 6227 if (cc_z == 0) 6228 pc = DIF_INSTR_LABEL(instr); 6229 break; 6230 case DIF_OP_BG: 6231 if ((cc_z | (cc_n ^ cc_v)) == 0) 6232 pc = DIF_INSTR_LABEL(instr); 6233 break; 6234 case DIF_OP_BGU: 6235 if ((cc_c | cc_z) == 0) 6236 pc = DIF_INSTR_LABEL(instr); 6237 break; 6238 case DIF_OP_BGE: 6239 if ((cc_n ^ cc_v) == 0) 6240 pc = DIF_INSTR_LABEL(instr); 6241 break; 6242 case DIF_OP_BGEU: 6243 if (cc_c == 0) 6244 pc = DIF_INSTR_LABEL(instr); 6245 break; 6246 case DIF_OP_BL: 6247 if (cc_n ^ cc_v) 6248 pc = DIF_INSTR_LABEL(instr); 6249 break; 6250 case DIF_OP_BLU: 6251 if (cc_c) 6252 pc = DIF_INSTR_LABEL(instr); 6253 break; 6254 case DIF_OP_BLE: 6255 if (cc_z | (cc_n ^ cc_v)) 6256 pc = DIF_INSTR_LABEL(instr); 6257 break; 6258 case DIF_OP_BLEU: 6259 if (cc_c | cc_z) 6260 pc = DIF_INSTR_LABEL(instr); 6261 break; 6262 case DIF_OP_RLDSB: 6263 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6264 break; 6265 /*FALLTHROUGH*/ 6266 case DIF_OP_LDSB: 6267 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6268 break; 6269 case DIF_OP_RLDSH: 6270 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6271 break; 6272 /*FALLTHROUGH*/ 6273 case DIF_OP_LDSH: 6274 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6275 break; 6276 case DIF_OP_RLDSW: 6277 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6278 break; 6279 /*FALLTHROUGH*/ 6280 case DIF_OP_LDSW: 6281 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6282 break; 6283 case DIF_OP_RLDUB: 6284 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6285 break; 6286 /*FALLTHROUGH*/ 6287 case DIF_OP_LDUB: 6288 regs[rd] = dtrace_load8(regs[r1]); 6289 break; 6290 case DIF_OP_RLDUH: 6291 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6292 break; 6293 /*FALLTHROUGH*/ 6294 case DIF_OP_LDUH: 6295 regs[rd] = dtrace_load16(regs[r1]); 6296 break; 6297 case DIF_OP_RLDUW: 6298 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6299 break; 6300 /*FALLTHROUGH*/ 6301 case DIF_OP_LDUW: 6302 regs[rd] = dtrace_load32(regs[r1]); 6303 break; 6304 case DIF_OP_RLDX: 6305 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6306 break; 6307 /*FALLTHROUGH*/ 6308 case DIF_OP_LDX: 6309 regs[rd] = dtrace_load64(regs[r1]); 6310 break; 6311 case DIF_OP_ULDSB: 6312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6313 regs[rd] = (int8_t) 6314 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6315 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6316 break; 6317 case DIF_OP_ULDSH: 6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6319 regs[rd] = (int16_t) 6320 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6322 break; 6323 case DIF_OP_ULDSW: 6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6325 regs[rd] = (int32_t) 6326 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6328 break; 6329 case DIF_OP_ULDUB: 6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6331 regs[rd] = 6332 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6334 break; 6335 case DIF_OP_ULDUH: 6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6337 regs[rd] = 6338 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6340 break; 6341 case DIF_OP_ULDUW: 6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6343 regs[rd] = 6344 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6346 break; 6347 case DIF_OP_ULDX: 6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6349 regs[rd] = 6350 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6352 break; 6353 case DIF_OP_RET: 6354 rval = regs[rd]; 6355 pc = textlen; 6356 break; 6357 case DIF_OP_NOP: 6358 break; 6359 case DIF_OP_SETX: 6360 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6361 break; 6362 case DIF_OP_SETS: 6363 regs[rd] = (uint64_t)(uintptr_t) 6364 (strtab + DIF_INSTR_STRING(instr)); 6365 break; 6366 case DIF_OP_SCMP: { 6367 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6368 uintptr_t s1 = regs[r1]; 6369 uintptr_t s2 = regs[r2]; 6370 size_t lim1, lim2; 6371 6372 /* 6373 * If one of the strings is NULL then the limit becomes 6374 * 0 which compares 0 characters in dtrace_strncmp() 6375 * resulting in a false positive. dtrace_strncmp() 6376 * treats a NULL as an empty 1-char string. 6377 */ 6378 lim1 = lim2 = 1; 6379 6380 if (s1 != 0 && 6381 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6382 break; 6383 if (s2 != 0 && 6384 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6385 break; 6386 6387 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6388 MIN(lim1, lim2)); 6389 6390 cc_n = cc_r < 0; 6391 cc_z = cc_r == 0; 6392 cc_v = cc_c = 0; 6393 break; 6394 } 6395 case DIF_OP_LDGA: 6396 regs[rd] = dtrace_dif_variable(mstate, state, 6397 r1, regs[r2]); 6398 break; 6399 case DIF_OP_LDGS: 6400 id = DIF_INSTR_VAR(instr); 6401 6402 if (id >= DIF_VAR_OTHER_UBASE) { 6403 uintptr_t a; 6404 6405 id -= DIF_VAR_OTHER_UBASE; 6406 svar = vstate->dtvs_globals[id]; 6407 ASSERT(svar != NULL); 6408 v = &svar->dtsv_var; 6409 6410 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6411 regs[rd] = svar->dtsv_data; 6412 break; 6413 } 6414 6415 a = (uintptr_t)svar->dtsv_data; 6416 6417 if (*(uint8_t *)a == UINT8_MAX) { 6418 /* 6419 * If the 0th byte is set to UINT8_MAX 6420 * then this is to be treated as a 6421 * reference to a NULL variable. 6422 */ 6423 regs[rd] = 0; 6424 } else { 6425 regs[rd] = a + sizeof (uint64_t); 6426 } 6427 6428 break; 6429 } 6430 6431 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6432 break; 6433 6434 case DIF_OP_STGS: 6435 id = DIF_INSTR_VAR(instr); 6436 6437 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6438 id -= DIF_VAR_OTHER_UBASE; 6439 6440 VERIFY(id < vstate->dtvs_nglobals); 6441 svar = vstate->dtvs_globals[id]; 6442 ASSERT(svar != NULL); 6443 v = &svar->dtsv_var; 6444 6445 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6446 uintptr_t a = (uintptr_t)svar->dtsv_data; 6447 size_t lim; 6448 6449 ASSERT(a != 0); 6450 ASSERT(svar->dtsv_size != 0); 6451 6452 if (regs[rd] == 0) { 6453 *(uint8_t *)a = UINT8_MAX; 6454 break; 6455 } else { 6456 *(uint8_t *)a = 0; 6457 a += sizeof (uint64_t); 6458 } 6459 if (!dtrace_vcanload( 6460 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6461 &lim, mstate, vstate)) 6462 break; 6463 6464 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6465 (void *)a, &v->dtdv_type, lim); 6466 break; 6467 } 6468 6469 svar->dtsv_data = regs[rd]; 6470 break; 6471 6472 case DIF_OP_LDTA: 6473 /* 6474 * There are no DTrace built-in thread-local arrays at 6475 * present. This opcode is saved for future work. 6476 */ 6477 *flags |= CPU_DTRACE_ILLOP; 6478 regs[rd] = 0; 6479 break; 6480 6481 case DIF_OP_LDLS: 6482 id = DIF_INSTR_VAR(instr); 6483 6484 if (id < DIF_VAR_OTHER_UBASE) { 6485 /* 6486 * For now, this has no meaning. 6487 */ 6488 regs[rd] = 0; 6489 break; 6490 } 6491 6492 id -= DIF_VAR_OTHER_UBASE; 6493 6494 ASSERT(id < vstate->dtvs_nlocals); 6495 ASSERT(vstate->dtvs_locals != NULL); 6496 6497 svar = vstate->dtvs_locals[id]; 6498 ASSERT(svar != NULL); 6499 v = &svar->dtsv_var; 6500 6501 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6502 uintptr_t a = (uintptr_t)svar->dtsv_data; 6503 size_t sz = v->dtdv_type.dtdt_size; 6504 size_t lim; 6505 6506 sz += sizeof (uint64_t); 6507 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6508 a += curcpu * sz; 6509 6510 if (*(uint8_t *)a == UINT8_MAX) { 6511 /* 6512 * If the 0th byte is set to UINT8_MAX 6513 * then this is to be treated as a 6514 * reference to a NULL variable. 6515 */ 6516 regs[rd] = 0; 6517 } else { 6518 regs[rd] = a + sizeof (uint64_t); 6519 } 6520 6521 break; 6522 } 6523 6524 ASSERT(svar->dtsv_size == 6525 (mp_maxid + 1) * sizeof (uint64_t)); 6526 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6527 regs[rd] = tmp[curcpu]; 6528 break; 6529 6530 case DIF_OP_STLS: 6531 id = DIF_INSTR_VAR(instr); 6532 6533 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6534 id -= DIF_VAR_OTHER_UBASE; 6535 VERIFY(id < vstate->dtvs_nlocals); 6536 6537 ASSERT(vstate->dtvs_locals != NULL); 6538 svar = vstate->dtvs_locals[id]; 6539 ASSERT(svar != NULL); 6540 v = &svar->dtsv_var; 6541 6542 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6543 uintptr_t a = (uintptr_t)svar->dtsv_data; 6544 size_t sz = v->dtdv_type.dtdt_size; 6545 size_t lim; 6546 6547 sz += sizeof (uint64_t); 6548 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6549 a += curcpu * sz; 6550 6551 if (regs[rd] == 0) { 6552 *(uint8_t *)a = UINT8_MAX; 6553 break; 6554 } else { 6555 *(uint8_t *)a = 0; 6556 a += sizeof (uint64_t); 6557 } 6558 6559 if (!dtrace_vcanload( 6560 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6561 &lim, mstate, vstate)) 6562 break; 6563 6564 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6565 (void *)a, &v->dtdv_type, lim); 6566 break; 6567 } 6568 6569 ASSERT(svar->dtsv_size == 6570 (mp_maxid + 1) * sizeof (uint64_t)); 6571 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6572 tmp[curcpu] = regs[rd]; 6573 break; 6574 6575 case DIF_OP_LDTS: { 6576 dtrace_dynvar_t *dvar; 6577 dtrace_key_t *key; 6578 6579 id = DIF_INSTR_VAR(instr); 6580 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6581 id -= DIF_VAR_OTHER_UBASE; 6582 v = &vstate->dtvs_tlocals[id]; 6583 6584 key = &tupregs[DIF_DTR_NREGS]; 6585 key[0].dttk_value = (uint64_t)id; 6586 key[0].dttk_size = 0; 6587 DTRACE_TLS_THRKEY(key[1].dttk_value); 6588 key[1].dttk_size = 0; 6589 6590 dvar = dtrace_dynvar(dstate, 2, key, 6591 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6592 mstate, vstate); 6593 6594 if (dvar == NULL) { 6595 regs[rd] = 0; 6596 break; 6597 } 6598 6599 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6600 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6601 } else { 6602 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6603 } 6604 6605 break; 6606 } 6607 6608 case DIF_OP_STTS: { 6609 dtrace_dynvar_t *dvar; 6610 dtrace_key_t *key; 6611 6612 id = DIF_INSTR_VAR(instr); 6613 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6614 id -= DIF_VAR_OTHER_UBASE; 6615 VERIFY(id < vstate->dtvs_ntlocals); 6616 6617 key = &tupregs[DIF_DTR_NREGS]; 6618 key[0].dttk_value = (uint64_t)id; 6619 key[0].dttk_size = 0; 6620 DTRACE_TLS_THRKEY(key[1].dttk_value); 6621 key[1].dttk_size = 0; 6622 v = &vstate->dtvs_tlocals[id]; 6623 6624 dvar = dtrace_dynvar(dstate, 2, key, 6625 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6626 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6627 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6628 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6629 6630 /* 6631 * Given that we're storing to thread-local data, 6632 * we need to flush our predicate cache. 6633 */ 6634 curthread->t_predcache = 0; 6635 6636 if (dvar == NULL) 6637 break; 6638 6639 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6640 size_t lim; 6641 6642 if (!dtrace_vcanload( 6643 (void *)(uintptr_t)regs[rd], 6644 &v->dtdv_type, &lim, mstate, vstate)) 6645 break; 6646 6647 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6648 dvar->dtdv_data, &v->dtdv_type, lim); 6649 } else { 6650 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6651 } 6652 6653 break; 6654 } 6655 6656 case DIF_OP_SRA: 6657 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6658 break; 6659 6660 case DIF_OP_CALL: 6661 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6662 regs, tupregs, ttop, mstate, state); 6663 break; 6664 6665 case DIF_OP_PUSHTR: 6666 if (ttop == DIF_DTR_NREGS) { 6667 *flags |= CPU_DTRACE_TUPOFLOW; 6668 break; 6669 } 6670 6671 if (r1 == DIF_TYPE_STRING) { 6672 /* 6673 * If this is a string type and the size is 0, 6674 * we'll use the system-wide default string 6675 * size. Note that we are _not_ looking at 6676 * the value of the DTRACEOPT_STRSIZE option; 6677 * had this been set, we would expect to have 6678 * a non-zero size value in the "pushtr". 6679 */ 6680 tupregs[ttop].dttk_size = 6681 dtrace_strlen((char *)(uintptr_t)regs[rd], 6682 regs[r2] ? regs[r2] : 6683 dtrace_strsize_default) + 1; 6684 } else { 6685 if (regs[r2] > LONG_MAX) { 6686 *flags |= CPU_DTRACE_ILLOP; 6687 break; 6688 } 6689 6690 tupregs[ttop].dttk_size = regs[r2]; 6691 } 6692 6693 tupregs[ttop++].dttk_value = regs[rd]; 6694 break; 6695 6696 case DIF_OP_PUSHTV: 6697 if (ttop == DIF_DTR_NREGS) { 6698 *flags |= CPU_DTRACE_TUPOFLOW; 6699 break; 6700 } 6701 6702 tupregs[ttop].dttk_value = regs[rd]; 6703 tupregs[ttop++].dttk_size = 0; 6704 break; 6705 6706 case DIF_OP_POPTS: 6707 if (ttop != 0) 6708 ttop--; 6709 break; 6710 6711 case DIF_OP_FLUSHTS: 6712 ttop = 0; 6713 break; 6714 6715 case DIF_OP_LDGAA: 6716 case DIF_OP_LDTAA: { 6717 dtrace_dynvar_t *dvar; 6718 dtrace_key_t *key = tupregs; 6719 uint_t nkeys = ttop; 6720 6721 id = DIF_INSTR_VAR(instr); 6722 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6723 id -= DIF_VAR_OTHER_UBASE; 6724 6725 key[nkeys].dttk_value = (uint64_t)id; 6726 key[nkeys++].dttk_size = 0; 6727 6728 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6729 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6730 key[nkeys++].dttk_size = 0; 6731 VERIFY(id < vstate->dtvs_ntlocals); 6732 v = &vstate->dtvs_tlocals[id]; 6733 } else { 6734 VERIFY(id < vstate->dtvs_nglobals); 6735 v = &vstate->dtvs_globals[id]->dtsv_var; 6736 } 6737 6738 dvar = dtrace_dynvar(dstate, nkeys, key, 6739 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6740 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6741 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6742 6743 if (dvar == NULL) { 6744 regs[rd] = 0; 6745 break; 6746 } 6747 6748 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6749 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6750 } else { 6751 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6752 } 6753 6754 break; 6755 } 6756 6757 case DIF_OP_STGAA: 6758 case DIF_OP_STTAA: { 6759 dtrace_dynvar_t *dvar; 6760 dtrace_key_t *key = tupregs; 6761 uint_t nkeys = ttop; 6762 6763 id = DIF_INSTR_VAR(instr); 6764 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6765 id -= DIF_VAR_OTHER_UBASE; 6766 6767 key[nkeys].dttk_value = (uint64_t)id; 6768 key[nkeys++].dttk_size = 0; 6769 6770 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6771 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6772 key[nkeys++].dttk_size = 0; 6773 VERIFY(id < vstate->dtvs_ntlocals); 6774 v = &vstate->dtvs_tlocals[id]; 6775 } else { 6776 VERIFY(id < vstate->dtvs_nglobals); 6777 v = &vstate->dtvs_globals[id]->dtsv_var; 6778 } 6779 6780 dvar = dtrace_dynvar(dstate, nkeys, key, 6781 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6782 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6783 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6784 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6785 6786 if (dvar == NULL) 6787 break; 6788 6789 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6790 size_t lim; 6791 6792 if (!dtrace_vcanload( 6793 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6794 &lim, mstate, vstate)) 6795 break; 6796 6797 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6798 dvar->dtdv_data, &v->dtdv_type, lim); 6799 } else { 6800 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6801 } 6802 6803 break; 6804 } 6805 6806 case DIF_OP_ALLOCS: { 6807 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6808 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6809 6810 /* 6811 * Rounding up the user allocation size could have 6812 * overflowed large, bogus allocations (like -1ULL) to 6813 * 0. 6814 */ 6815 if (size < regs[r1] || 6816 !DTRACE_INSCRATCH(mstate, size)) { 6817 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6818 regs[rd] = 0; 6819 break; 6820 } 6821 6822 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6823 mstate->dtms_scratch_ptr += size; 6824 regs[rd] = ptr; 6825 break; 6826 } 6827 6828 case DIF_OP_COPYS: 6829 if (!dtrace_canstore(regs[rd], regs[r2], 6830 mstate, vstate)) { 6831 *flags |= CPU_DTRACE_BADADDR; 6832 *illval = regs[rd]; 6833 break; 6834 } 6835 6836 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6837 break; 6838 6839 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6840 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6841 break; 6842 6843 case DIF_OP_STB: 6844 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6845 *flags |= CPU_DTRACE_BADADDR; 6846 *illval = regs[rd]; 6847 break; 6848 } 6849 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6850 break; 6851 6852 case DIF_OP_STH: 6853 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6854 *flags |= CPU_DTRACE_BADADDR; 6855 *illval = regs[rd]; 6856 break; 6857 } 6858 if (regs[rd] & 1) { 6859 *flags |= CPU_DTRACE_BADALIGN; 6860 *illval = regs[rd]; 6861 break; 6862 } 6863 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6864 break; 6865 6866 case DIF_OP_STW: 6867 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6868 *flags |= CPU_DTRACE_BADADDR; 6869 *illval = regs[rd]; 6870 break; 6871 } 6872 if (regs[rd] & 3) { 6873 *flags |= CPU_DTRACE_BADALIGN; 6874 *illval = regs[rd]; 6875 break; 6876 } 6877 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6878 break; 6879 6880 case DIF_OP_STX: 6881 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6882 *flags |= CPU_DTRACE_BADADDR; 6883 *illval = regs[rd]; 6884 break; 6885 } 6886 if (regs[rd] & 7) { 6887 *flags |= CPU_DTRACE_BADALIGN; 6888 *illval = regs[rd]; 6889 break; 6890 } 6891 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6892 break; 6893 } 6894 } 6895 6896 if (!(*flags & CPU_DTRACE_FAULT)) 6897 return (rval); 6898 6899 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6900 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6901 6902 return (0); 6903 } 6904 6905 static void 6906 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6907 { 6908 dtrace_probe_t *probe = ecb->dte_probe; 6909 dtrace_provider_t *prov = probe->dtpr_provider; 6910 char c[DTRACE_FULLNAMELEN + 80], *str; 6911 char *msg = "dtrace: breakpoint action at probe "; 6912 char *ecbmsg = " (ecb "; 6913 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6914 uintptr_t val = (uintptr_t)ecb; 6915 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6916 6917 if (dtrace_destructive_disallow) 6918 return; 6919 6920 /* 6921 * It's impossible to be taking action on the NULL probe. 6922 */ 6923 ASSERT(probe != NULL); 6924 6925 /* 6926 * This is a poor man's (destitute man's?) sprintf(): we want to 6927 * print the provider name, module name, function name and name of 6928 * the probe, along with the hex address of the ECB with the breakpoint 6929 * action -- all of which we must place in the character buffer by 6930 * hand. 6931 */ 6932 while (*msg != '\0') 6933 c[i++] = *msg++; 6934 6935 for (str = prov->dtpv_name; *str != '\0'; str++) 6936 c[i++] = *str; 6937 c[i++] = ':'; 6938 6939 for (str = probe->dtpr_mod; *str != '\0'; str++) 6940 c[i++] = *str; 6941 c[i++] = ':'; 6942 6943 for (str = probe->dtpr_func; *str != '\0'; str++) 6944 c[i++] = *str; 6945 c[i++] = ':'; 6946 6947 for (str = probe->dtpr_name; *str != '\0'; str++) 6948 c[i++] = *str; 6949 6950 while (*ecbmsg != '\0') 6951 c[i++] = *ecbmsg++; 6952 6953 while (shift >= 0) { 6954 mask = (uintptr_t)0xf << shift; 6955 6956 if (val >= ((uintptr_t)1 << shift)) 6957 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6958 shift -= 4; 6959 } 6960 6961 c[i++] = ')'; 6962 c[i] = '\0'; 6963 6964 #ifdef illumos 6965 debug_enter(c); 6966 #else 6967 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6968 #endif 6969 } 6970 6971 static void 6972 dtrace_action_panic(dtrace_ecb_t *ecb) 6973 { 6974 dtrace_probe_t *probe = ecb->dte_probe; 6975 6976 /* 6977 * It's impossible to be taking action on the NULL probe. 6978 */ 6979 ASSERT(probe != NULL); 6980 6981 if (dtrace_destructive_disallow) 6982 return; 6983 6984 if (dtrace_panicked != NULL) 6985 return; 6986 6987 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6988 return; 6989 6990 /* 6991 * We won the right to panic. (We want to be sure that only one 6992 * thread calls panic() from dtrace_probe(), and that panic() is 6993 * called exactly once.) 6994 */ 6995 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6996 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6997 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6998 } 6999 7000 static void 7001 dtrace_action_raise(uint64_t sig) 7002 { 7003 if (dtrace_destructive_disallow) 7004 return; 7005 7006 if (sig >= NSIG) { 7007 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7008 return; 7009 } 7010 7011 #ifdef illumos 7012 /* 7013 * raise() has a queue depth of 1 -- we ignore all subsequent 7014 * invocations of the raise() action. 7015 */ 7016 if (curthread->t_dtrace_sig == 0) 7017 curthread->t_dtrace_sig = (uint8_t)sig; 7018 7019 curthread->t_sig_check = 1; 7020 aston(curthread); 7021 #else 7022 struct proc *p = curproc; 7023 PROC_LOCK(p); 7024 kern_psignal(p, sig); 7025 PROC_UNLOCK(p); 7026 #endif 7027 } 7028 7029 static void 7030 dtrace_action_stop(void) 7031 { 7032 if (dtrace_destructive_disallow) 7033 return; 7034 7035 #ifdef illumos 7036 if (!curthread->t_dtrace_stop) { 7037 curthread->t_dtrace_stop = 1; 7038 curthread->t_sig_check = 1; 7039 aston(curthread); 7040 } 7041 #else 7042 struct proc *p = curproc; 7043 PROC_LOCK(p); 7044 kern_psignal(p, SIGSTOP); 7045 PROC_UNLOCK(p); 7046 #endif 7047 } 7048 7049 static void 7050 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7051 { 7052 hrtime_t now; 7053 volatile uint16_t *flags; 7054 #ifdef illumos 7055 cpu_t *cpu = CPU; 7056 #else 7057 cpu_t *cpu = &solaris_cpu[curcpu]; 7058 #endif 7059 7060 if (dtrace_destructive_disallow) 7061 return; 7062 7063 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7064 7065 now = dtrace_gethrtime(); 7066 7067 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7068 /* 7069 * We need to advance the mark to the current time. 7070 */ 7071 cpu->cpu_dtrace_chillmark = now; 7072 cpu->cpu_dtrace_chilled = 0; 7073 } 7074 7075 /* 7076 * Now check to see if the requested chill time would take us over 7077 * the maximum amount of time allowed in the chill interval. (Or 7078 * worse, if the calculation itself induces overflow.) 7079 */ 7080 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7081 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7082 *flags |= CPU_DTRACE_ILLOP; 7083 return; 7084 } 7085 7086 while (dtrace_gethrtime() - now < val) 7087 continue; 7088 7089 /* 7090 * Normally, we assure that the value of the variable "timestamp" does 7091 * not change within an ECB. The presence of chill() represents an 7092 * exception to this rule, however. 7093 */ 7094 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7095 cpu->cpu_dtrace_chilled += val; 7096 } 7097 7098 static void 7099 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7100 uint64_t *buf, uint64_t arg) 7101 { 7102 int nframes = DTRACE_USTACK_NFRAMES(arg); 7103 int strsize = DTRACE_USTACK_STRSIZE(arg); 7104 uint64_t *pcs = &buf[1], *fps; 7105 char *str = (char *)&pcs[nframes]; 7106 int size, offs = 0, i, j; 7107 size_t rem; 7108 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7109 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7110 char *sym; 7111 7112 /* 7113 * Should be taking a faster path if string space has not been 7114 * allocated. 7115 */ 7116 ASSERT(strsize != 0); 7117 7118 /* 7119 * We will first allocate some temporary space for the frame pointers. 7120 */ 7121 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7122 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7123 (nframes * sizeof (uint64_t)); 7124 7125 if (!DTRACE_INSCRATCH(mstate, size)) { 7126 /* 7127 * Not enough room for our frame pointers -- need to indicate 7128 * that we ran out of scratch space. 7129 */ 7130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7131 return; 7132 } 7133 7134 mstate->dtms_scratch_ptr += size; 7135 saved = mstate->dtms_scratch_ptr; 7136 7137 /* 7138 * Now get a stack with both program counters and frame pointers. 7139 */ 7140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7141 dtrace_getufpstack(buf, fps, nframes + 1); 7142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7143 7144 /* 7145 * If that faulted, we're cooked. 7146 */ 7147 if (*flags & CPU_DTRACE_FAULT) 7148 goto out; 7149 7150 /* 7151 * Now we want to walk up the stack, calling the USTACK helper. For 7152 * each iteration, we restore the scratch pointer. 7153 */ 7154 for (i = 0; i < nframes; i++) { 7155 mstate->dtms_scratch_ptr = saved; 7156 7157 if (offs >= strsize) 7158 break; 7159 7160 sym = (char *)(uintptr_t)dtrace_helper( 7161 DTRACE_HELPER_ACTION_USTACK, 7162 mstate, state, pcs[i], fps[i]); 7163 7164 /* 7165 * If we faulted while running the helper, we're going to 7166 * clear the fault and null out the corresponding string. 7167 */ 7168 if (*flags & CPU_DTRACE_FAULT) { 7169 *flags &= ~CPU_DTRACE_FAULT; 7170 str[offs++] = '\0'; 7171 continue; 7172 } 7173 7174 if (sym == NULL) { 7175 str[offs++] = '\0'; 7176 continue; 7177 } 7178 7179 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7180 &(state->dts_vstate))) { 7181 str[offs++] = '\0'; 7182 continue; 7183 } 7184 7185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7186 7187 /* 7188 * Now copy in the string that the helper returned to us. 7189 */ 7190 for (j = 0; offs + j < strsize && j < rem; j++) { 7191 if ((str[offs + j] = sym[j]) == '\0') 7192 break; 7193 } 7194 7195 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7196 7197 offs += j + 1; 7198 } 7199 7200 if (offs >= strsize) { 7201 /* 7202 * If we didn't have room for all of the strings, we don't 7203 * abort processing -- this needn't be a fatal error -- but we 7204 * still want to increment a counter (dts_stkstroverflows) to 7205 * allow this condition to be warned about. (If this is from 7206 * a jstack() action, it is easily tuned via jstackstrsize.) 7207 */ 7208 dtrace_error(&state->dts_stkstroverflows); 7209 } 7210 7211 while (offs < strsize) 7212 str[offs++] = '\0'; 7213 7214 out: 7215 mstate->dtms_scratch_ptr = old; 7216 } 7217 7218 static void 7219 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7220 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7221 { 7222 volatile uint16_t *flags; 7223 uint64_t val = *valp; 7224 size_t valoffs = *valoffsp; 7225 7226 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7227 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7228 7229 /* 7230 * If this is a string, we're going to only load until we find the zero 7231 * byte -- after which we'll store zero bytes. 7232 */ 7233 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7234 char c = '\0' + 1; 7235 size_t s; 7236 7237 for (s = 0; s < size; s++) { 7238 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7239 c = dtrace_load8(val++); 7240 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7241 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7242 c = dtrace_fuword8((void *)(uintptr_t)val++); 7243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7244 if (*flags & CPU_DTRACE_FAULT) 7245 break; 7246 } 7247 7248 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7249 7250 if (c == '\0' && intuple) 7251 break; 7252 } 7253 } else { 7254 uint8_t c; 7255 while (valoffs < end) { 7256 if (dtkind == DIF_TF_BYREF) { 7257 c = dtrace_load8(val++); 7258 } else if (dtkind == DIF_TF_BYUREF) { 7259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7260 c = dtrace_fuword8((void *)(uintptr_t)val++); 7261 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7262 if (*flags & CPU_DTRACE_FAULT) 7263 break; 7264 } 7265 7266 DTRACE_STORE(uint8_t, tomax, 7267 valoffs++, c); 7268 } 7269 } 7270 7271 *valp = val; 7272 *valoffsp = valoffs; 7273 } 7274 7275 /* 7276 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7277 * defined, we also assert that we are not recursing unless the probe ID is an 7278 * error probe. 7279 */ 7280 static dtrace_icookie_t 7281 dtrace_probe_enter(dtrace_id_t id) 7282 { 7283 dtrace_icookie_t cookie; 7284 7285 cookie = dtrace_interrupt_disable(); 7286 7287 /* 7288 * Unless this is an ERROR probe, we are not allowed to recurse in 7289 * dtrace_probe(). Recursing into DTrace probe usually means that a 7290 * function is instrumented that should not have been instrumented or 7291 * that the ordering guarantee of the records will be violated, 7292 * resulting in unexpected output. If there is an exception to this 7293 * assertion, a new case should be added. 7294 */ 7295 ASSERT(curthread->t_dtrace_inprobe == 0 || 7296 id == dtrace_probeid_error); 7297 curthread->t_dtrace_inprobe = 1; 7298 7299 return (cookie); 7300 } 7301 7302 /* 7303 * Clears the per-thread inprobe flag and enables interrupts. 7304 */ 7305 static void 7306 dtrace_probe_exit(dtrace_icookie_t cookie) 7307 { 7308 7309 curthread->t_dtrace_inprobe = 0; 7310 dtrace_interrupt_enable(cookie); 7311 } 7312 7313 /* 7314 * If you're looking for the epicenter of DTrace, you just found it. This 7315 * is the function called by the provider to fire a probe -- from which all 7316 * subsequent probe-context DTrace activity emanates. 7317 */ 7318 void 7319 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7320 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7321 { 7322 processorid_t cpuid; 7323 dtrace_icookie_t cookie; 7324 dtrace_probe_t *probe; 7325 dtrace_mstate_t mstate; 7326 dtrace_ecb_t *ecb; 7327 dtrace_action_t *act; 7328 intptr_t offs; 7329 size_t size; 7330 int vtime, onintr; 7331 volatile uint16_t *flags; 7332 hrtime_t now; 7333 7334 if (KERNEL_PANICKED()) 7335 return; 7336 7337 #ifdef illumos 7338 /* 7339 * Kick out immediately if this CPU is still being born (in which case 7340 * curthread will be set to -1) or the current thread can't allow 7341 * probes in its current context. 7342 */ 7343 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7344 return; 7345 #endif 7346 7347 cookie = dtrace_probe_enter(id); 7348 probe = dtrace_probes[id - 1]; 7349 cpuid = curcpu; 7350 onintr = CPU_ON_INTR(CPU); 7351 7352 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7353 probe->dtpr_predcache == curthread->t_predcache) { 7354 /* 7355 * We have hit in the predicate cache; we know that 7356 * this predicate would evaluate to be false. 7357 */ 7358 dtrace_probe_exit(cookie); 7359 return; 7360 } 7361 7362 #ifdef illumos 7363 if (panic_quiesce) { 7364 #else 7365 if (KERNEL_PANICKED()) { 7366 #endif 7367 /* 7368 * We don't trace anything if we're panicking. 7369 */ 7370 dtrace_probe_exit(cookie); 7371 return; 7372 } 7373 7374 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7375 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7376 vtime = dtrace_vtime_references != 0; 7377 7378 if (vtime && curthread->t_dtrace_start) 7379 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7380 7381 mstate.dtms_difo = NULL; 7382 mstate.dtms_probe = probe; 7383 mstate.dtms_strtok = 0; 7384 mstate.dtms_arg[0] = arg0; 7385 mstate.dtms_arg[1] = arg1; 7386 mstate.dtms_arg[2] = arg2; 7387 mstate.dtms_arg[3] = arg3; 7388 mstate.dtms_arg[4] = arg4; 7389 7390 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7391 7392 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7393 dtrace_predicate_t *pred = ecb->dte_predicate; 7394 dtrace_state_t *state = ecb->dte_state; 7395 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7396 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7397 dtrace_vstate_t *vstate = &state->dts_vstate; 7398 dtrace_provider_t *prov = probe->dtpr_provider; 7399 uint64_t tracememsize = 0; 7400 int committed = 0; 7401 caddr_t tomax; 7402 7403 /* 7404 * A little subtlety with the following (seemingly innocuous) 7405 * declaration of the automatic 'val': by looking at the 7406 * code, you might think that it could be declared in the 7407 * action processing loop, below. (That is, it's only used in 7408 * the action processing loop.) However, it must be declared 7409 * out of that scope because in the case of DIF expression 7410 * arguments to aggregating actions, one iteration of the 7411 * action loop will use the last iteration's value. 7412 */ 7413 uint64_t val = 0; 7414 7415 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7416 mstate.dtms_getf = NULL; 7417 7418 *flags &= ~CPU_DTRACE_ERROR; 7419 7420 if (prov == dtrace_provider) { 7421 /* 7422 * If dtrace itself is the provider of this probe, 7423 * we're only going to continue processing the ECB if 7424 * arg0 (the dtrace_state_t) is equal to the ECB's 7425 * creating state. (This prevents disjoint consumers 7426 * from seeing one another's metaprobes.) 7427 */ 7428 if (arg0 != (uint64_t)(uintptr_t)state) 7429 continue; 7430 } 7431 7432 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7433 /* 7434 * We're not currently active. If our provider isn't 7435 * the dtrace pseudo provider, we're not interested. 7436 */ 7437 if (prov != dtrace_provider) 7438 continue; 7439 7440 /* 7441 * Now we must further check if we are in the BEGIN 7442 * probe. If we are, we will only continue processing 7443 * if we're still in WARMUP -- if one BEGIN enabling 7444 * has invoked the exit() action, we don't want to 7445 * evaluate subsequent BEGIN enablings. 7446 */ 7447 if (probe->dtpr_id == dtrace_probeid_begin && 7448 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7449 ASSERT(state->dts_activity == 7450 DTRACE_ACTIVITY_DRAINING); 7451 continue; 7452 } 7453 } 7454 7455 if (ecb->dte_cond) { 7456 /* 7457 * If the dte_cond bits indicate that this 7458 * consumer is only allowed to see user-mode firings 7459 * of this probe, call the provider's dtps_usermode() 7460 * entry point to check that the probe was fired 7461 * while in a user context. Skip this ECB if that's 7462 * not the case. 7463 */ 7464 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7465 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7466 probe->dtpr_id, probe->dtpr_arg) == 0) 7467 continue; 7468 7469 #ifdef illumos 7470 /* 7471 * This is more subtle than it looks. We have to be 7472 * absolutely certain that CRED() isn't going to 7473 * change out from under us so it's only legit to 7474 * examine that structure if we're in constrained 7475 * situations. Currently, the only times we'll this 7476 * check is if a non-super-user has enabled the 7477 * profile or syscall providers -- providers that 7478 * allow visibility of all processes. For the 7479 * profile case, the check above will ensure that 7480 * we're examining a user context. 7481 */ 7482 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7483 cred_t *cr; 7484 cred_t *s_cr = 7485 ecb->dte_state->dts_cred.dcr_cred; 7486 proc_t *proc; 7487 7488 ASSERT(s_cr != NULL); 7489 7490 if ((cr = CRED()) == NULL || 7491 s_cr->cr_uid != cr->cr_uid || 7492 s_cr->cr_uid != cr->cr_ruid || 7493 s_cr->cr_uid != cr->cr_suid || 7494 s_cr->cr_gid != cr->cr_gid || 7495 s_cr->cr_gid != cr->cr_rgid || 7496 s_cr->cr_gid != cr->cr_sgid || 7497 (proc = ttoproc(curthread)) == NULL || 7498 (proc->p_flag & SNOCD)) 7499 continue; 7500 } 7501 7502 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7503 cred_t *cr; 7504 cred_t *s_cr = 7505 ecb->dte_state->dts_cred.dcr_cred; 7506 7507 ASSERT(s_cr != NULL); 7508 7509 if ((cr = CRED()) == NULL || 7510 s_cr->cr_zone->zone_id != 7511 cr->cr_zone->zone_id) 7512 continue; 7513 } 7514 #endif 7515 } 7516 7517 if (now - state->dts_alive > dtrace_deadman_timeout) { 7518 /* 7519 * We seem to be dead. Unless we (a) have kernel 7520 * destructive permissions (b) have explicitly enabled 7521 * destructive actions and (c) destructive actions have 7522 * not been disabled, we're going to transition into 7523 * the KILLED state, from which no further processing 7524 * on this state will be performed. 7525 */ 7526 if (!dtrace_priv_kernel_destructive(state) || 7527 !state->dts_cred.dcr_destructive || 7528 dtrace_destructive_disallow) { 7529 void *activity = &state->dts_activity; 7530 dtrace_activity_t curstate; 7531 7532 do { 7533 curstate = state->dts_activity; 7534 } while (dtrace_cas32(activity, curstate, 7535 DTRACE_ACTIVITY_KILLED) != curstate); 7536 7537 continue; 7538 } 7539 } 7540 7541 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7542 ecb->dte_alignment, state, &mstate)) < 0) 7543 continue; 7544 7545 tomax = buf->dtb_tomax; 7546 ASSERT(tomax != NULL); 7547 7548 if (ecb->dte_size != 0) { 7549 dtrace_rechdr_t dtrh; 7550 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7551 mstate.dtms_timestamp = dtrace_gethrtime(); 7552 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7553 } 7554 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7555 dtrh.dtrh_epid = ecb->dte_epid; 7556 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7557 mstate.dtms_timestamp); 7558 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7559 } 7560 7561 mstate.dtms_epid = ecb->dte_epid; 7562 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7563 7564 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7565 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7566 else 7567 mstate.dtms_access = 0; 7568 7569 if (pred != NULL) { 7570 dtrace_difo_t *dp = pred->dtp_difo; 7571 uint64_t rval; 7572 7573 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7574 7575 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7576 dtrace_cacheid_t cid = probe->dtpr_predcache; 7577 7578 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7579 /* 7580 * Update the predicate cache... 7581 */ 7582 ASSERT(cid == pred->dtp_cacheid); 7583 curthread->t_predcache = cid; 7584 } 7585 7586 continue; 7587 } 7588 } 7589 7590 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7591 act != NULL; act = act->dta_next) { 7592 size_t valoffs; 7593 dtrace_difo_t *dp; 7594 dtrace_recdesc_t *rec = &act->dta_rec; 7595 7596 size = rec->dtrd_size; 7597 valoffs = offs + rec->dtrd_offset; 7598 7599 if (DTRACEACT_ISAGG(act->dta_kind)) { 7600 uint64_t v = 0xbad; 7601 dtrace_aggregation_t *agg; 7602 7603 agg = (dtrace_aggregation_t *)act; 7604 7605 if ((dp = act->dta_difo) != NULL) 7606 v = dtrace_dif_emulate(dp, 7607 &mstate, vstate, state); 7608 7609 if (*flags & CPU_DTRACE_ERROR) 7610 continue; 7611 7612 /* 7613 * Note that we always pass the expression 7614 * value from the previous iteration of the 7615 * action loop. This value will only be used 7616 * if there is an expression argument to the 7617 * aggregating action, denoted by the 7618 * dtag_hasarg field. 7619 */ 7620 dtrace_aggregate(agg, buf, 7621 offs, aggbuf, v, val); 7622 continue; 7623 } 7624 7625 switch (act->dta_kind) { 7626 case DTRACEACT_STOP: 7627 if (dtrace_priv_proc_destructive(state)) 7628 dtrace_action_stop(); 7629 continue; 7630 7631 case DTRACEACT_BREAKPOINT: 7632 if (dtrace_priv_kernel_destructive(state)) 7633 dtrace_action_breakpoint(ecb); 7634 continue; 7635 7636 case DTRACEACT_PANIC: 7637 if (dtrace_priv_kernel_destructive(state)) 7638 dtrace_action_panic(ecb); 7639 continue; 7640 7641 case DTRACEACT_STACK: 7642 if (!dtrace_priv_kernel(state)) 7643 continue; 7644 7645 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7646 size / sizeof (pc_t), probe->dtpr_aframes, 7647 DTRACE_ANCHORED(probe) ? NULL : 7648 (uint32_t *)arg0); 7649 continue; 7650 7651 case DTRACEACT_JSTACK: 7652 case DTRACEACT_USTACK: 7653 if (!dtrace_priv_proc(state)) 7654 continue; 7655 7656 /* 7657 * See comment in DIF_VAR_PID. 7658 */ 7659 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7660 CPU_ON_INTR(CPU)) { 7661 int depth = DTRACE_USTACK_NFRAMES( 7662 rec->dtrd_arg) + 1; 7663 7664 dtrace_bzero((void *)(tomax + valoffs), 7665 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7666 + depth * sizeof (uint64_t)); 7667 7668 continue; 7669 } 7670 7671 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7672 curproc->p_dtrace_helpers != NULL) { 7673 /* 7674 * This is the slow path -- we have 7675 * allocated string space, and we're 7676 * getting the stack of a process that 7677 * has helpers. Call into a separate 7678 * routine to perform this processing. 7679 */ 7680 dtrace_action_ustack(&mstate, state, 7681 (uint64_t *)(tomax + valoffs), 7682 rec->dtrd_arg); 7683 continue; 7684 } 7685 7686 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7687 dtrace_getupcstack((uint64_t *) 7688 (tomax + valoffs), 7689 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7690 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7691 continue; 7692 7693 default: 7694 break; 7695 } 7696 7697 dp = act->dta_difo; 7698 ASSERT(dp != NULL); 7699 7700 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7701 7702 if (*flags & CPU_DTRACE_ERROR) 7703 continue; 7704 7705 switch (act->dta_kind) { 7706 case DTRACEACT_SPECULATE: { 7707 dtrace_rechdr_t *dtrh; 7708 7709 ASSERT(buf == &state->dts_buffer[cpuid]); 7710 buf = dtrace_speculation_buffer(state, 7711 cpuid, val); 7712 7713 if (buf == NULL) { 7714 *flags |= CPU_DTRACE_DROP; 7715 continue; 7716 } 7717 7718 offs = dtrace_buffer_reserve(buf, 7719 ecb->dte_needed, ecb->dte_alignment, 7720 state, NULL); 7721 7722 if (offs < 0) { 7723 *flags |= CPU_DTRACE_DROP; 7724 continue; 7725 } 7726 7727 tomax = buf->dtb_tomax; 7728 ASSERT(tomax != NULL); 7729 7730 if (ecb->dte_size == 0) 7731 continue; 7732 7733 ASSERT3U(ecb->dte_size, >=, 7734 sizeof (dtrace_rechdr_t)); 7735 dtrh = ((void *)(tomax + offs)); 7736 dtrh->dtrh_epid = ecb->dte_epid; 7737 /* 7738 * When the speculation is committed, all of 7739 * the records in the speculative buffer will 7740 * have their timestamps set to the commit 7741 * time. Until then, it is set to a sentinel 7742 * value, for debugability. 7743 */ 7744 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7745 continue; 7746 } 7747 7748 case DTRACEACT_PRINTM: { 7749 /* 7750 * printm() assumes that the DIF returns a 7751 * pointer returned by memref(). memref() is a 7752 * subroutine that is used to get around the 7753 * single-valued returns of DIF and is assumed 7754 * to always be allocated in the scratch space. 7755 * Therefore, we need to validate that the 7756 * pointer given to printm() is in the scratch 7757 * space in order to avoid a potential panic. 7758 */ 7759 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7760 7761 if (!DTRACE_INSCRATCHPTR(&mstate, 7762 (uintptr_t)memref, 2 * sizeof(uintptr_t))) { 7763 *flags |= CPU_DTRACE_BADADDR; 7764 continue; 7765 } 7766 7767 /* Get the size from the memref. */ 7768 size = memref[1]; 7769 7770 /* 7771 * Check if the size exceeds the allocated 7772 * buffer size. 7773 */ 7774 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7775 /* Flag a drop! */ 7776 *flags |= CPU_DTRACE_DROP; 7777 continue; 7778 } 7779 7780 /* Store the size in the buffer first. */ 7781 DTRACE_STORE(uintptr_t, tomax, 7782 valoffs, size); 7783 7784 /* 7785 * Offset the buffer address to the start 7786 * of the data. 7787 */ 7788 valoffs += sizeof(uintptr_t); 7789 7790 /* 7791 * Reset to the memory address rather than 7792 * the memref array, then let the BYREF 7793 * code below do the work to store the 7794 * memory data in the buffer. 7795 */ 7796 val = memref[0]; 7797 break; 7798 } 7799 7800 case DTRACEACT_CHILL: 7801 if (dtrace_priv_kernel_destructive(state)) 7802 dtrace_action_chill(&mstate, val); 7803 continue; 7804 7805 case DTRACEACT_RAISE: 7806 if (dtrace_priv_proc_destructive(state)) 7807 dtrace_action_raise(val); 7808 continue; 7809 7810 case DTRACEACT_COMMIT: 7811 ASSERT(!committed); 7812 7813 /* 7814 * We need to commit our buffer state. 7815 */ 7816 if (ecb->dte_size) 7817 buf->dtb_offset = offs + ecb->dte_size; 7818 buf = &state->dts_buffer[cpuid]; 7819 dtrace_speculation_commit(state, cpuid, val); 7820 committed = 1; 7821 continue; 7822 7823 case DTRACEACT_DISCARD: 7824 dtrace_speculation_discard(state, cpuid, val); 7825 continue; 7826 7827 case DTRACEACT_DIFEXPR: 7828 case DTRACEACT_LIBACT: 7829 case DTRACEACT_PRINTF: 7830 case DTRACEACT_PRINTA: 7831 case DTRACEACT_SYSTEM: 7832 case DTRACEACT_FREOPEN: 7833 case DTRACEACT_TRACEMEM: 7834 break; 7835 7836 case DTRACEACT_TRACEMEM_DYNSIZE: 7837 tracememsize = val; 7838 break; 7839 7840 case DTRACEACT_SYM: 7841 case DTRACEACT_MOD: 7842 if (!dtrace_priv_kernel(state)) 7843 continue; 7844 break; 7845 7846 case DTRACEACT_USYM: 7847 case DTRACEACT_UMOD: 7848 case DTRACEACT_UADDR: { 7849 #ifdef illumos 7850 struct pid *pid = curthread->t_procp->p_pidp; 7851 #endif 7852 7853 if (!dtrace_priv_proc(state)) 7854 continue; 7855 7856 DTRACE_STORE(uint64_t, tomax, 7857 #ifdef illumos 7858 valoffs, (uint64_t)pid->pid_id); 7859 #else 7860 valoffs, (uint64_t) curproc->p_pid); 7861 #endif 7862 DTRACE_STORE(uint64_t, tomax, 7863 valoffs + sizeof (uint64_t), val); 7864 7865 continue; 7866 } 7867 7868 case DTRACEACT_EXIT: { 7869 /* 7870 * For the exit action, we are going to attempt 7871 * to atomically set our activity to be 7872 * draining. If this fails (either because 7873 * another CPU has beat us to the exit action, 7874 * or because our current activity is something 7875 * other than ACTIVE or WARMUP), we will 7876 * continue. This assures that the exit action 7877 * can be successfully recorded at most once 7878 * when we're in the ACTIVE state. If we're 7879 * encountering the exit() action while in 7880 * COOLDOWN, however, we want to honor the new 7881 * status code. (We know that we're the only 7882 * thread in COOLDOWN, so there is no race.) 7883 */ 7884 void *activity = &state->dts_activity; 7885 dtrace_activity_t curstate = state->dts_activity; 7886 7887 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7888 break; 7889 7890 if (curstate != DTRACE_ACTIVITY_WARMUP) 7891 curstate = DTRACE_ACTIVITY_ACTIVE; 7892 7893 if (dtrace_cas32(activity, curstate, 7894 DTRACE_ACTIVITY_DRAINING) != curstate) { 7895 *flags |= CPU_DTRACE_DROP; 7896 continue; 7897 } 7898 7899 break; 7900 } 7901 7902 default: 7903 ASSERT(0); 7904 } 7905 7906 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7907 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7908 uintptr_t end = valoffs + size; 7909 7910 if (tracememsize != 0 && 7911 valoffs + tracememsize < end) { 7912 end = valoffs + tracememsize; 7913 tracememsize = 0; 7914 } 7915 7916 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7917 !dtrace_vcanload((void *)(uintptr_t)val, 7918 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7919 continue; 7920 7921 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7922 &val, end, act->dta_intuple, 7923 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7924 DIF_TF_BYREF: DIF_TF_BYUREF); 7925 continue; 7926 } 7927 7928 switch (size) { 7929 case 0: 7930 break; 7931 7932 case sizeof (uint8_t): 7933 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7934 break; 7935 case sizeof (uint16_t): 7936 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7937 break; 7938 case sizeof (uint32_t): 7939 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7940 break; 7941 case sizeof (uint64_t): 7942 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7943 break; 7944 default: 7945 /* 7946 * Any other size should have been returned by 7947 * reference, not by value. 7948 */ 7949 ASSERT(0); 7950 break; 7951 } 7952 } 7953 7954 if (*flags & CPU_DTRACE_DROP) 7955 continue; 7956 7957 if (*flags & CPU_DTRACE_FAULT) { 7958 int ndx; 7959 dtrace_action_t *err; 7960 7961 buf->dtb_errors++; 7962 7963 if (probe->dtpr_id == dtrace_probeid_error) { 7964 /* 7965 * There's nothing we can do -- we had an 7966 * error on the error probe. We bump an 7967 * error counter to at least indicate that 7968 * this condition happened. 7969 */ 7970 dtrace_error(&state->dts_dblerrors); 7971 continue; 7972 } 7973 7974 if (vtime) { 7975 /* 7976 * Before recursing on dtrace_probe(), we 7977 * need to explicitly clear out our start 7978 * time to prevent it from being accumulated 7979 * into t_dtrace_vtime. 7980 */ 7981 curthread->t_dtrace_start = 0; 7982 } 7983 7984 /* 7985 * Iterate over the actions to figure out which action 7986 * we were processing when we experienced the error. 7987 * Note that act points _past_ the faulting action; if 7988 * act is ecb->dte_action, the fault was in the 7989 * predicate, if it's ecb->dte_action->dta_next it's 7990 * in action #1, and so on. 7991 */ 7992 for (err = ecb->dte_action, ndx = 0; 7993 err != act; err = err->dta_next, ndx++) 7994 continue; 7995 7996 dtrace_probe_error(state, ecb->dte_epid, ndx, 7997 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7998 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7999 cpu_core[cpuid].cpuc_dtrace_illval); 8000 8001 continue; 8002 } 8003 8004 if (!committed) 8005 buf->dtb_offset = offs + ecb->dte_size; 8006 } 8007 8008 if (vtime) 8009 curthread->t_dtrace_start = dtrace_gethrtime(); 8010 8011 dtrace_probe_exit(cookie); 8012 } 8013 8014 /* 8015 * DTrace Probe Hashing Functions 8016 * 8017 * The functions in this section (and indeed, the functions in remaining 8018 * sections) are not _called_ from probe context. (Any exceptions to this are 8019 * marked with a "Note:".) Rather, they are called from elsewhere in the 8020 * DTrace framework to look-up probes in, add probes to and remove probes from 8021 * the DTrace probe hashes. (Each probe is hashed by each element of the 8022 * probe tuple -- allowing for fast lookups, regardless of what was 8023 * specified.) 8024 */ 8025 static uint_t 8026 dtrace_hash_str(const char *p) 8027 { 8028 unsigned int g; 8029 uint_t hval = 0; 8030 8031 while (*p) { 8032 hval = (hval << 4) + *p++; 8033 if ((g = (hval & 0xf0000000)) != 0) 8034 hval ^= g >> 24; 8035 hval &= ~g; 8036 } 8037 return (hval); 8038 } 8039 8040 static dtrace_hash_t * 8041 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8042 { 8043 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8044 8045 hash->dth_stroffs = stroffs; 8046 hash->dth_nextoffs = nextoffs; 8047 hash->dth_prevoffs = prevoffs; 8048 8049 hash->dth_size = 1; 8050 hash->dth_mask = hash->dth_size - 1; 8051 8052 hash->dth_tab = kmem_zalloc(hash->dth_size * 8053 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8054 8055 return (hash); 8056 } 8057 8058 static void 8059 dtrace_hash_destroy(dtrace_hash_t *hash) 8060 { 8061 #ifdef DEBUG 8062 int i; 8063 8064 for (i = 0; i < hash->dth_size; i++) 8065 ASSERT(hash->dth_tab[i] == NULL); 8066 #endif 8067 8068 kmem_free(hash->dth_tab, 8069 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8070 kmem_free(hash, sizeof (dtrace_hash_t)); 8071 } 8072 8073 static void 8074 dtrace_hash_resize(dtrace_hash_t *hash) 8075 { 8076 int size = hash->dth_size, i, ndx; 8077 int new_size = hash->dth_size << 1; 8078 int new_mask = new_size - 1; 8079 dtrace_hashbucket_t **new_tab, *bucket, *next; 8080 8081 ASSERT((new_size & new_mask) == 0); 8082 8083 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8084 8085 for (i = 0; i < size; i++) { 8086 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8087 dtrace_probe_t *probe = bucket->dthb_chain; 8088 8089 ASSERT(probe != NULL); 8090 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8091 8092 next = bucket->dthb_next; 8093 bucket->dthb_next = new_tab[ndx]; 8094 new_tab[ndx] = bucket; 8095 } 8096 } 8097 8098 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8099 hash->dth_tab = new_tab; 8100 hash->dth_size = new_size; 8101 hash->dth_mask = new_mask; 8102 } 8103 8104 static void 8105 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8106 { 8107 int hashval = DTRACE_HASHSTR(hash, new); 8108 int ndx = hashval & hash->dth_mask; 8109 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8110 dtrace_probe_t **nextp, **prevp; 8111 8112 for (; bucket != NULL; bucket = bucket->dthb_next) { 8113 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8114 goto add; 8115 } 8116 8117 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8118 dtrace_hash_resize(hash); 8119 dtrace_hash_add(hash, new); 8120 return; 8121 } 8122 8123 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8124 bucket->dthb_next = hash->dth_tab[ndx]; 8125 hash->dth_tab[ndx] = bucket; 8126 hash->dth_nbuckets++; 8127 8128 add: 8129 nextp = DTRACE_HASHNEXT(hash, new); 8130 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8131 *nextp = bucket->dthb_chain; 8132 8133 if (bucket->dthb_chain != NULL) { 8134 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8135 ASSERT(*prevp == NULL); 8136 *prevp = new; 8137 } 8138 8139 bucket->dthb_chain = new; 8140 bucket->dthb_len++; 8141 } 8142 8143 static dtrace_probe_t * 8144 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8145 { 8146 int hashval = DTRACE_HASHSTR(hash, template); 8147 int ndx = hashval & hash->dth_mask; 8148 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8149 8150 for (; bucket != NULL; bucket = bucket->dthb_next) { 8151 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8152 return (bucket->dthb_chain); 8153 } 8154 8155 return (NULL); 8156 } 8157 8158 static int 8159 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8160 { 8161 int hashval = DTRACE_HASHSTR(hash, template); 8162 int ndx = hashval & hash->dth_mask; 8163 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8164 8165 for (; bucket != NULL; bucket = bucket->dthb_next) { 8166 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8167 return (bucket->dthb_len); 8168 } 8169 8170 return (0); 8171 } 8172 8173 static void 8174 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8175 { 8176 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8177 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8178 8179 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8180 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8181 8182 /* 8183 * Find the bucket that we're removing this probe from. 8184 */ 8185 for (; bucket != NULL; bucket = bucket->dthb_next) { 8186 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8187 break; 8188 } 8189 8190 ASSERT(bucket != NULL); 8191 8192 if (*prevp == NULL) { 8193 if (*nextp == NULL) { 8194 /* 8195 * The removed probe was the only probe on this 8196 * bucket; we need to remove the bucket. 8197 */ 8198 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8199 8200 ASSERT(bucket->dthb_chain == probe); 8201 ASSERT(b != NULL); 8202 8203 if (b == bucket) { 8204 hash->dth_tab[ndx] = bucket->dthb_next; 8205 } else { 8206 while (b->dthb_next != bucket) 8207 b = b->dthb_next; 8208 b->dthb_next = bucket->dthb_next; 8209 } 8210 8211 ASSERT(hash->dth_nbuckets > 0); 8212 hash->dth_nbuckets--; 8213 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8214 return; 8215 } 8216 8217 bucket->dthb_chain = *nextp; 8218 } else { 8219 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8220 } 8221 8222 if (*nextp != NULL) 8223 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8224 } 8225 8226 /* 8227 * DTrace Utility Functions 8228 * 8229 * These are random utility functions that are _not_ called from probe context. 8230 */ 8231 static int 8232 dtrace_badattr(const dtrace_attribute_t *a) 8233 { 8234 return (a->dtat_name > DTRACE_STABILITY_MAX || 8235 a->dtat_data > DTRACE_STABILITY_MAX || 8236 a->dtat_class > DTRACE_CLASS_MAX); 8237 } 8238 8239 /* 8240 * Return a duplicate copy of a string. If the specified string is NULL, 8241 * this function returns a zero-length string. 8242 */ 8243 static char * 8244 dtrace_strdup(const char *str) 8245 { 8246 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8247 8248 if (str != NULL) 8249 (void) strcpy(new, str); 8250 8251 return (new); 8252 } 8253 8254 #define DTRACE_ISALPHA(c) \ 8255 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8256 8257 static int 8258 dtrace_badname(const char *s) 8259 { 8260 char c; 8261 8262 if (s == NULL || (c = *s++) == '\0') 8263 return (0); 8264 8265 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8266 return (1); 8267 8268 while ((c = *s++) != '\0') { 8269 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8270 c != '-' && c != '_' && c != '.' && c != '`') 8271 return (1); 8272 } 8273 8274 return (0); 8275 } 8276 8277 static void 8278 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8279 { 8280 uint32_t priv; 8281 8282 #ifdef illumos 8283 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8284 /* 8285 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8286 */ 8287 priv = DTRACE_PRIV_ALL; 8288 } else { 8289 *uidp = crgetuid(cr); 8290 *zoneidp = crgetzoneid(cr); 8291 8292 priv = 0; 8293 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8294 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8295 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8296 priv |= DTRACE_PRIV_USER; 8297 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8298 priv |= DTRACE_PRIV_PROC; 8299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8300 priv |= DTRACE_PRIV_OWNER; 8301 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8302 priv |= DTRACE_PRIV_ZONEOWNER; 8303 } 8304 #else 8305 priv = DTRACE_PRIV_ALL; 8306 #endif 8307 8308 *privp = priv; 8309 } 8310 8311 #ifdef DTRACE_ERRDEBUG 8312 static void 8313 dtrace_errdebug(const char *str) 8314 { 8315 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8316 int occupied = 0; 8317 8318 mutex_enter(&dtrace_errlock); 8319 dtrace_errlast = str; 8320 dtrace_errthread = curthread; 8321 8322 while (occupied++ < DTRACE_ERRHASHSZ) { 8323 if (dtrace_errhash[hval].dter_msg == str) { 8324 dtrace_errhash[hval].dter_count++; 8325 goto out; 8326 } 8327 8328 if (dtrace_errhash[hval].dter_msg != NULL) { 8329 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8330 continue; 8331 } 8332 8333 dtrace_errhash[hval].dter_msg = str; 8334 dtrace_errhash[hval].dter_count = 1; 8335 goto out; 8336 } 8337 8338 panic("dtrace: undersized error hash"); 8339 out: 8340 mutex_exit(&dtrace_errlock); 8341 } 8342 #endif 8343 8344 /* 8345 * DTrace Matching Functions 8346 * 8347 * These functions are used to match groups of probes, given some elements of 8348 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8349 */ 8350 static int 8351 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8352 zoneid_t zoneid) 8353 { 8354 if (priv != DTRACE_PRIV_ALL) { 8355 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8356 uint32_t match = priv & ppriv; 8357 8358 /* 8359 * No PRIV_DTRACE_* privileges... 8360 */ 8361 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8362 DTRACE_PRIV_KERNEL)) == 0) 8363 return (0); 8364 8365 /* 8366 * No matching bits, but there were bits to match... 8367 */ 8368 if (match == 0 && ppriv != 0) 8369 return (0); 8370 8371 /* 8372 * Need to have permissions to the process, but don't... 8373 */ 8374 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8375 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8376 return (0); 8377 } 8378 8379 /* 8380 * Need to be in the same zone unless we possess the 8381 * privilege to examine all zones. 8382 */ 8383 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8384 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8385 return (0); 8386 } 8387 } 8388 8389 return (1); 8390 } 8391 8392 /* 8393 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8394 * consists of input pattern strings and an ops-vector to evaluate them. 8395 * This function returns >0 for match, 0 for no match, and <0 for error. 8396 */ 8397 static int 8398 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8399 uint32_t priv, uid_t uid, zoneid_t zoneid) 8400 { 8401 dtrace_provider_t *pvp = prp->dtpr_provider; 8402 int rv; 8403 8404 if (pvp->dtpv_defunct) 8405 return (0); 8406 8407 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8408 return (rv); 8409 8410 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8411 return (rv); 8412 8413 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8414 return (rv); 8415 8416 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8417 return (rv); 8418 8419 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8420 return (0); 8421 8422 return (rv); 8423 } 8424 8425 /* 8426 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8427 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8428 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8429 * In addition, all of the recursion cases except for '*' matching have been 8430 * unwound. For '*', we still implement recursive evaluation, but a depth 8431 * counter is maintained and matching is aborted if we recurse too deep. 8432 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8433 */ 8434 static int 8435 dtrace_match_glob(const char *s, const char *p, int depth) 8436 { 8437 const char *olds; 8438 char s1, c; 8439 int gs; 8440 8441 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8442 return (-1); 8443 8444 if (s == NULL) 8445 s = ""; /* treat NULL as empty string */ 8446 8447 top: 8448 olds = s; 8449 s1 = *s++; 8450 8451 if (p == NULL) 8452 return (0); 8453 8454 if ((c = *p++) == '\0') 8455 return (s1 == '\0'); 8456 8457 switch (c) { 8458 case '[': { 8459 int ok = 0, notflag = 0; 8460 char lc = '\0'; 8461 8462 if (s1 == '\0') 8463 return (0); 8464 8465 if (*p == '!') { 8466 notflag = 1; 8467 p++; 8468 } 8469 8470 if ((c = *p++) == '\0') 8471 return (0); 8472 8473 do { 8474 if (c == '-' && lc != '\0' && *p != ']') { 8475 if ((c = *p++) == '\0') 8476 return (0); 8477 if (c == '\\' && (c = *p++) == '\0') 8478 return (0); 8479 8480 if (notflag) { 8481 if (s1 < lc || s1 > c) 8482 ok++; 8483 else 8484 return (0); 8485 } else if (lc <= s1 && s1 <= c) 8486 ok++; 8487 8488 } else if (c == '\\' && (c = *p++) == '\0') 8489 return (0); 8490 8491 lc = c; /* save left-hand 'c' for next iteration */ 8492 8493 if (notflag) { 8494 if (s1 != c) 8495 ok++; 8496 else 8497 return (0); 8498 } else if (s1 == c) 8499 ok++; 8500 8501 if ((c = *p++) == '\0') 8502 return (0); 8503 8504 } while (c != ']'); 8505 8506 if (ok) 8507 goto top; 8508 8509 return (0); 8510 } 8511 8512 case '\\': 8513 if ((c = *p++) == '\0') 8514 return (0); 8515 /*FALLTHRU*/ 8516 8517 default: 8518 if (c != s1) 8519 return (0); 8520 /*FALLTHRU*/ 8521 8522 case '?': 8523 if (s1 != '\0') 8524 goto top; 8525 return (0); 8526 8527 case '*': 8528 while (*p == '*') 8529 p++; /* consecutive *'s are identical to a single one */ 8530 8531 if (*p == '\0') 8532 return (1); 8533 8534 for (s = olds; *s != '\0'; s++) { 8535 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8536 return (gs); 8537 } 8538 8539 return (0); 8540 } 8541 } 8542 8543 /*ARGSUSED*/ 8544 static int 8545 dtrace_match_string(const char *s, const char *p, int depth) 8546 { 8547 return (s != NULL && strcmp(s, p) == 0); 8548 } 8549 8550 /*ARGSUSED*/ 8551 static int 8552 dtrace_match_nul(const char *s, const char *p, int depth) 8553 { 8554 return (1); /* always match the empty pattern */ 8555 } 8556 8557 /*ARGSUSED*/ 8558 static int 8559 dtrace_match_nonzero(const char *s, const char *p, int depth) 8560 { 8561 return (s != NULL && s[0] != '\0'); 8562 } 8563 8564 static int 8565 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8566 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8567 { 8568 dtrace_probe_t template, *probe; 8569 dtrace_hash_t *hash = NULL; 8570 int len, best = INT_MAX, nmatched = 0; 8571 dtrace_id_t i; 8572 8573 ASSERT(MUTEX_HELD(&dtrace_lock)); 8574 8575 /* 8576 * If the probe ID is specified in the key, just lookup by ID and 8577 * invoke the match callback once if a matching probe is found. 8578 */ 8579 if (pkp->dtpk_id != DTRACE_IDNONE) { 8580 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8581 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8582 (void) (*matched)(probe, arg); 8583 nmatched++; 8584 } 8585 return (nmatched); 8586 } 8587 8588 template.dtpr_mod = (char *)pkp->dtpk_mod; 8589 template.dtpr_func = (char *)pkp->dtpk_func; 8590 template.dtpr_name = (char *)pkp->dtpk_name; 8591 8592 /* 8593 * We want to find the most distinct of the module name, function 8594 * name, and name. So for each one that is not a glob pattern or 8595 * empty string, we perform a lookup in the corresponding hash and 8596 * use the hash table with the fewest collisions to do our search. 8597 */ 8598 if (pkp->dtpk_mmatch == &dtrace_match_string && 8599 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8600 best = len; 8601 hash = dtrace_bymod; 8602 } 8603 8604 if (pkp->dtpk_fmatch == &dtrace_match_string && 8605 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8606 best = len; 8607 hash = dtrace_byfunc; 8608 } 8609 8610 if (pkp->dtpk_nmatch == &dtrace_match_string && 8611 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8612 best = len; 8613 hash = dtrace_byname; 8614 } 8615 8616 /* 8617 * If we did not select a hash table, iterate over every probe and 8618 * invoke our callback for each one that matches our input probe key. 8619 */ 8620 if (hash == NULL) { 8621 for (i = 0; i < dtrace_nprobes; i++) { 8622 if ((probe = dtrace_probes[i]) == NULL || 8623 dtrace_match_probe(probe, pkp, priv, uid, 8624 zoneid) <= 0) 8625 continue; 8626 8627 nmatched++; 8628 8629 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8630 break; 8631 } 8632 8633 return (nmatched); 8634 } 8635 8636 /* 8637 * If we selected a hash table, iterate over each probe of the same key 8638 * name and invoke the callback for every probe that matches the other 8639 * attributes of our input probe key. 8640 */ 8641 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8642 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8643 8644 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8645 continue; 8646 8647 nmatched++; 8648 8649 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8650 break; 8651 } 8652 8653 return (nmatched); 8654 } 8655 8656 /* 8657 * Return the function pointer dtrace_probecmp() should use to compare the 8658 * specified pattern with a string. For NULL or empty patterns, we select 8659 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8660 * For non-empty non-glob strings, we use dtrace_match_string(). 8661 */ 8662 static dtrace_probekey_f * 8663 dtrace_probekey_func(const char *p) 8664 { 8665 char c; 8666 8667 if (p == NULL || *p == '\0') 8668 return (&dtrace_match_nul); 8669 8670 while ((c = *p++) != '\0') { 8671 if (c == '[' || c == '?' || c == '*' || c == '\\') 8672 return (&dtrace_match_glob); 8673 } 8674 8675 return (&dtrace_match_string); 8676 } 8677 8678 /* 8679 * Build a probe comparison key for use with dtrace_match_probe() from the 8680 * given probe description. By convention, a null key only matches anchored 8681 * probes: if each field is the empty string, reset dtpk_fmatch to 8682 * dtrace_match_nonzero(). 8683 */ 8684 static void 8685 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8686 { 8687 pkp->dtpk_prov = pdp->dtpd_provider; 8688 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8689 8690 pkp->dtpk_mod = pdp->dtpd_mod; 8691 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8692 8693 pkp->dtpk_func = pdp->dtpd_func; 8694 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8695 8696 pkp->dtpk_name = pdp->dtpd_name; 8697 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8698 8699 pkp->dtpk_id = pdp->dtpd_id; 8700 8701 if (pkp->dtpk_id == DTRACE_IDNONE && 8702 pkp->dtpk_pmatch == &dtrace_match_nul && 8703 pkp->dtpk_mmatch == &dtrace_match_nul && 8704 pkp->dtpk_fmatch == &dtrace_match_nul && 8705 pkp->dtpk_nmatch == &dtrace_match_nul) 8706 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8707 } 8708 8709 /* 8710 * DTrace Provider-to-Framework API Functions 8711 * 8712 * These functions implement much of the Provider-to-Framework API, as 8713 * described in <sys/dtrace.h>. The parts of the API not in this section are 8714 * the functions in the API for probe management (found below), and 8715 * dtrace_probe() itself (found above). 8716 */ 8717 8718 /* 8719 * Register the calling provider with the DTrace framework. This should 8720 * generally be called by DTrace providers in their attach(9E) entry point. 8721 */ 8722 int 8723 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8724 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8725 { 8726 dtrace_provider_t *provider; 8727 8728 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8729 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8730 "arguments", name ? name : "<NULL>"); 8731 return (EINVAL); 8732 } 8733 8734 if (name[0] == '\0' || dtrace_badname(name)) { 8735 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8736 "provider name", name); 8737 return (EINVAL); 8738 } 8739 8740 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8741 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8742 pops->dtps_destroy == NULL || 8743 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8744 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8745 "provider ops", name); 8746 return (EINVAL); 8747 } 8748 8749 if (dtrace_badattr(&pap->dtpa_provider) || 8750 dtrace_badattr(&pap->dtpa_mod) || 8751 dtrace_badattr(&pap->dtpa_func) || 8752 dtrace_badattr(&pap->dtpa_name) || 8753 dtrace_badattr(&pap->dtpa_args)) { 8754 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8755 "provider attributes", name); 8756 return (EINVAL); 8757 } 8758 8759 if (priv & ~DTRACE_PRIV_ALL) { 8760 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8761 "privilege attributes", name); 8762 return (EINVAL); 8763 } 8764 8765 if ((priv & DTRACE_PRIV_KERNEL) && 8766 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8767 pops->dtps_usermode == NULL) { 8768 cmn_err(CE_WARN, "failed to register provider '%s': need " 8769 "dtps_usermode() op for given privilege attributes", name); 8770 return (EINVAL); 8771 } 8772 8773 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8774 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8775 (void) strcpy(provider->dtpv_name, name); 8776 8777 provider->dtpv_attr = *pap; 8778 provider->dtpv_priv.dtpp_flags = priv; 8779 if (cr != NULL) { 8780 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8781 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8782 } 8783 provider->dtpv_pops = *pops; 8784 8785 if (pops->dtps_provide == NULL) { 8786 ASSERT(pops->dtps_provide_module != NULL); 8787 provider->dtpv_pops.dtps_provide = 8788 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8789 } 8790 8791 if (pops->dtps_provide_module == NULL) { 8792 ASSERT(pops->dtps_provide != NULL); 8793 provider->dtpv_pops.dtps_provide_module = 8794 (void (*)(void *, modctl_t *))dtrace_nullop; 8795 } 8796 8797 if (pops->dtps_suspend == NULL) { 8798 ASSERT(pops->dtps_resume == NULL); 8799 provider->dtpv_pops.dtps_suspend = 8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8801 provider->dtpv_pops.dtps_resume = 8802 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8803 } 8804 8805 provider->dtpv_arg = arg; 8806 *idp = (dtrace_provider_id_t)provider; 8807 8808 if (pops == &dtrace_provider_ops) { 8809 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8810 ASSERT(MUTEX_HELD(&dtrace_lock)); 8811 ASSERT(dtrace_anon.dta_enabling == NULL); 8812 8813 /* 8814 * We make sure that the DTrace provider is at the head of 8815 * the provider chain. 8816 */ 8817 provider->dtpv_next = dtrace_provider; 8818 dtrace_provider = provider; 8819 return (0); 8820 } 8821 8822 mutex_enter(&dtrace_provider_lock); 8823 mutex_enter(&dtrace_lock); 8824 8825 /* 8826 * If there is at least one provider registered, we'll add this 8827 * provider after the first provider. 8828 */ 8829 if (dtrace_provider != NULL) { 8830 provider->dtpv_next = dtrace_provider->dtpv_next; 8831 dtrace_provider->dtpv_next = provider; 8832 } else { 8833 dtrace_provider = provider; 8834 } 8835 8836 if (dtrace_retained != NULL) { 8837 dtrace_enabling_provide(provider); 8838 8839 /* 8840 * Now we need to call dtrace_enabling_matchall() -- which 8841 * will acquire cpu_lock and dtrace_lock. We therefore need 8842 * to drop all of our locks before calling into it... 8843 */ 8844 mutex_exit(&dtrace_lock); 8845 mutex_exit(&dtrace_provider_lock); 8846 dtrace_enabling_matchall(); 8847 8848 return (0); 8849 } 8850 8851 mutex_exit(&dtrace_lock); 8852 mutex_exit(&dtrace_provider_lock); 8853 8854 return (0); 8855 } 8856 8857 /* 8858 * Unregister the specified provider from the DTrace framework. This should 8859 * generally be called by DTrace providers in their detach(9E) entry point. 8860 */ 8861 int 8862 dtrace_unregister(dtrace_provider_id_t id) 8863 { 8864 dtrace_provider_t *old = (dtrace_provider_t *)id; 8865 dtrace_provider_t *prev = NULL; 8866 int i, self = 0, noreap = 0; 8867 dtrace_probe_t *probe, *first = NULL; 8868 8869 if (old->dtpv_pops.dtps_enable == 8870 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8871 /* 8872 * If DTrace itself is the provider, we're called with locks 8873 * already held. 8874 */ 8875 ASSERT(old == dtrace_provider); 8876 #ifdef illumos 8877 ASSERT(dtrace_devi != NULL); 8878 #endif 8879 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8880 ASSERT(MUTEX_HELD(&dtrace_lock)); 8881 self = 1; 8882 8883 if (dtrace_provider->dtpv_next != NULL) { 8884 /* 8885 * There's another provider here; return failure. 8886 */ 8887 return (EBUSY); 8888 } 8889 } else { 8890 mutex_enter(&dtrace_provider_lock); 8891 #ifdef illumos 8892 mutex_enter(&mod_lock); 8893 #endif 8894 mutex_enter(&dtrace_lock); 8895 } 8896 8897 /* 8898 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8899 * probes, we refuse to let providers slither away, unless this 8900 * provider has already been explicitly invalidated. 8901 */ 8902 if (!old->dtpv_defunct && 8903 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8904 dtrace_anon.dta_state->dts_necbs > 0))) { 8905 if (!self) { 8906 mutex_exit(&dtrace_lock); 8907 #ifdef illumos 8908 mutex_exit(&mod_lock); 8909 #endif 8910 mutex_exit(&dtrace_provider_lock); 8911 } 8912 return (EBUSY); 8913 } 8914 8915 /* 8916 * Attempt to destroy the probes associated with this provider. 8917 */ 8918 for (i = 0; i < dtrace_nprobes; i++) { 8919 if ((probe = dtrace_probes[i]) == NULL) 8920 continue; 8921 8922 if (probe->dtpr_provider != old) 8923 continue; 8924 8925 if (probe->dtpr_ecb == NULL) 8926 continue; 8927 8928 /* 8929 * If we are trying to unregister a defunct provider, and the 8930 * provider was made defunct within the interval dictated by 8931 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8932 * attempt to reap our enablings. To denote that the provider 8933 * should reattempt to unregister itself at some point in the 8934 * future, we will return a differentiable error code (EAGAIN 8935 * instead of EBUSY) in this case. 8936 */ 8937 if (dtrace_gethrtime() - old->dtpv_defunct > 8938 dtrace_unregister_defunct_reap) 8939 noreap = 1; 8940 8941 if (!self) { 8942 mutex_exit(&dtrace_lock); 8943 #ifdef illumos 8944 mutex_exit(&mod_lock); 8945 #endif 8946 mutex_exit(&dtrace_provider_lock); 8947 } 8948 8949 if (noreap) 8950 return (EBUSY); 8951 8952 (void) taskq_dispatch(dtrace_taskq, 8953 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8954 8955 return (EAGAIN); 8956 } 8957 8958 /* 8959 * All of the probes for this provider are disabled; we can safely 8960 * remove all of them from their hash chains and from the probe array. 8961 */ 8962 for (i = 0; i < dtrace_nprobes; i++) { 8963 if ((probe = dtrace_probes[i]) == NULL) 8964 continue; 8965 8966 if (probe->dtpr_provider != old) 8967 continue; 8968 8969 dtrace_probes[i] = NULL; 8970 8971 dtrace_hash_remove(dtrace_bymod, probe); 8972 dtrace_hash_remove(dtrace_byfunc, probe); 8973 dtrace_hash_remove(dtrace_byname, probe); 8974 8975 if (first == NULL) { 8976 first = probe; 8977 probe->dtpr_nextmod = NULL; 8978 } else { 8979 probe->dtpr_nextmod = first; 8980 first = probe; 8981 } 8982 } 8983 8984 /* 8985 * The provider's probes have been removed from the hash chains and 8986 * from the probe array. Now issue a dtrace_sync() to be sure that 8987 * everyone has cleared out from any probe array processing. 8988 */ 8989 dtrace_sync(); 8990 8991 for (probe = first; probe != NULL; probe = first) { 8992 first = probe->dtpr_nextmod; 8993 8994 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8995 probe->dtpr_arg); 8996 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8997 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8998 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8999 #ifdef illumos 9000 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9001 #else 9002 free_unr(dtrace_arena, probe->dtpr_id); 9003 #endif 9004 kmem_free(probe, sizeof (dtrace_probe_t)); 9005 } 9006 9007 if ((prev = dtrace_provider) == old) { 9008 #ifdef illumos 9009 ASSERT(self || dtrace_devi == NULL); 9010 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9011 #endif 9012 dtrace_provider = old->dtpv_next; 9013 } else { 9014 while (prev != NULL && prev->dtpv_next != old) 9015 prev = prev->dtpv_next; 9016 9017 if (prev == NULL) { 9018 panic("attempt to unregister non-existent " 9019 "dtrace provider %p\n", (void *)id); 9020 } 9021 9022 prev->dtpv_next = old->dtpv_next; 9023 } 9024 9025 if (!self) { 9026 mutex_exit(&dtrace_lock); 9027 #ifdef illumos 9028 mutex_exit(&mod_lock); 9029 #endif 9030 mutex_exit(&dtrace_provider_lock); 9031 } 9032 9033 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9034 kmem_free(old, sizeof (dtrace_provider_t)); 9035 9036 return (0); 9037 } 9038 9039 /* 9040 * Invalidate the specified provider. All subsequent probe lookups for the 9041 * specified provider will fail, but its probes will not be removed. 9042 */ 9043 void 9044 dtrace_invalidate(dtrace_provider_id_t id) 9045 { 9046 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9047 9048 ASSERT(pvp->dtpv_pops.dtps_enable != 9049 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9050 9051 mutex_enter(&dtrace_provider_lock); 9052 mutex_enter(&dtrace_lock); 9053 9054 pvp->dtpv_defunct = dtrace_gethrtime(); 9055 9056 mutex_exit(&dtrace_lock); 9057 mutex_exit(&dtrace_provider_lock); 9058 } 9059 9060 /* 9061 * Indicate whether or not DTrace has attached. 9062 */ 9063 int 9064 dtrace_attached(void) 9065 { 9066 /* 9067 * dtrace_provider will be non-NULL iff the DTrace driver has 9068 * attached. (It's non-NULL because DTrace is always itself a 9069 * provider.) 9070 */ 9071 return (dtrace_provider != NULL); 9072 } 9073 9074 /* 9075 * Remove all the unenabled probes for the given provider. This function is 9076 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9077 * -- just as many of its associated probes as it can. 9078 */ 9079 int 9080 dtrace_condense(dtrace_provider_id_t id) 9081 { 9082 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9083 int i; 9084 dtrace_probe_t *probe; 9085 9086 /* 9087 * Make sure this isn't the dtrace provider itself. 9088 */ 9089 ASSERT(prov->dtpv_pops.dtps_enable != 9090 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9091 9092 mutex_enter(&dtrace_provider_lock); 9093 mutex_enter(&dtrace_lock); 9094 9095 /* 9096 * Attempt to destroy the probes associated with this provider. 9097 */ 9098 for (i = 0; i < dtrace_nprobes; i++) { 9099 if ((probe = dtrace_probes[i]) == NULL) 9100 continue; 9101 9102 if (probe->dtpr_provider != prov) 9103 continue; 9104 9105 if (probe->dtpr_ecb != NULL) 9106 continue; 9107 9108 dtrace_probes[i] = NULL; 9109 9110 dtrace_hash_remove(dtrace_bymod, probe); 9111 dtrace_hash_remove(dtrace_byfunc, probe); 9112 dtrace_hash_remove(dtrace_byname, probe); 9113 9114 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9115 probe->dtpr_arg); 9116 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9117 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9118 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9119 kmem_free(probe, sizeof (dtrace_probe_t)); 9120 #ifdef illumos 9121 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9122 #else 9123 free_unr(dtrace_arena, i + 1); 9124 #endif 9125 } 9126 9127 mutex_exit(&dtrace_lock); 9128 mutex_exit(&dtrace_provider_lock); 9129 9130 return (0); 9131 } 9132 9133 /* 9134 * DTrace Probe Management Functions 9135 * 9136 * The functions in this section perform the DTrace probe management, 9137 * including functions to create probes, look-up probes, and call into the 9138 * providers to request that probes be provided. Some of these functions are 9139 * in the Provider-to-Framework API; these functions can be identified by the 9140 * fact that they are not declared "static". 9141 */ 9142 9143 /* 9144 * Create a probe with the specified module name, function name, and name. 9145 */ 9146 dtrace_id_t 9147 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9148 const char *func, const char *name, int aframes, void *arg) 9149 { 9150 dtrace_probe_t *probe, **probes; 9151 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9152 dtrace_id_t id; 9153 9154 if (provider == dtrace_provider) { 9155 ASSERT(MUTEX_HELD(&dtrace_lock)); 9156 } else { 9157 mutex_enter(&dtrace_lock); 9158 } 9159 9160 #ifdef illumos 9161 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9162 VM_BESTFIT | VM_SLEEP); 9163 #else 9164 id = alloc_unr(dtrace_arena); 9165 #endif 9166 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9167 9168 probe->dtpr_id = id; 9169 probe->dtpr_gen = dtrace_probegen++; 9170 probe->dtpr_mod = dtrace_strdup(mod); 9171 probe->dtpr_func = dtrace_strdup(func); 9172 probe->dtpr_name = dtrace_strdup(name); 9173 probe->dtpr_arg = arg; 9174 probe->dtpr_aframes = aframes; 9175 probe->dtpr_provider = provider; 9176 9177 dtrace_hash_add(dtrace_bymod, probe); 9178 dtrace_hash_add(dtrace_byfunc, probe); 9179 dtrace_hash_add(dtrace_byname, probe); 9180 9181 if (id - 1 >= dtrace_nprobes) { 9182 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9183 size_t nsize = osize << 1; 9184 9185 if (nsize == 0) { 9186 ASSERT(osize == 0); 9187 ASSERT(dtrace_probes == NULL); 9188 nsize = sizeof (dtrace_probe_t *); 9189 } 9190 9191 probes = kmem_zalloc(nsize, KM_SLEEP); 9192 9193 if (dtrace_probes == NULL) { 9194 ASSERT(osize == 0); 9195 dtrace_probes = probes; 9196 dtrace_nprobes = 1; 9197 } else { 9198 dtrace_probe_t **oprobes = dtrace_probes; 9199 9200 bcopy(oprobes, probes, osize); 9201 dtrace_membar_producer(); 9202 dtrace_probes = probes; 9203 9204 dtrace_sync(); 9205 9206 /* 9207 * All CPUs are now seeing the new probes array; we can 9208 * safely free the old array. 9209 */ 9210 kmem_free(oprobes, osize); 9211 dtrace_nprobes <<= 1; 9212 } 9213 9214 ASSERT(id - 1 < dtrace_nprobes); 9215 } 9216 9217 ASSERT(dtrace_probes[id - 1] == NULL); 9218 dtrace_probes[id - 1] = probe; 9219 9220 if (provider != dtrace_provider) 9221 mutex_exit(&dtrace_lock); 9222 9223 return (id); 9224 } 9225 9226 static dtrace_probe_t * 9227 dtrace_probe_lookup_id(dtrace_id_t id) 9228 { 9229 ASSERT(MUTEX_HELD(&dtrace_lock)); 9230 9231 if (id == 0 || id > dtrace_nprobes) 9232 return (NULL); 9233 9234 return (dtrace_probes[id - 1]); 9235 } 9236 9237 static int 9238 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9239 { 9240 *((dtrace_id_t *)arg) = probe->dtpr_id; 9241 9242 return (DTRACE_MATCH_DONE); 9243 } 9244 9245 /* 9246 * Look up a probe based on provider and one or more of module name, function 9247 * name and probe name. 9248 */ 9249 dtrace_id_t 9250 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9251 char *func, char *name) 9252 { 9253 dtrace_probekey_t pkey; 9254 dtrace_id_t id; 9255 int match; 9256 9257 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9258 pkey.dtpk_pmatch = &dtrace_match_string; 9259 pkey.dtpk_mod = mod; 9260 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9261 pkey.dtpk_func = func; 9262 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9263 pkey.dtpk_name = name; 9264 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9265 pkey.dtpk_id = DTRACE_IDNONE; 9266 9267 mutex_enter(&dtrace_lock); 9268 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9269 dtrace_probe_lookup_match, &id); 9270 mutex_exit(&dtrace_lock); 9271 9272 ASSERT(match == 1 || match == 0); 9273 return (match ? id : 0); 9274 } 9275 9276 /* 9277 * Returns the probe argument associated with the specified probe. 9278 */ 9279 void * 9280 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9281 { 9282 dtrace_probe_t *probe; 9283 void *rval = NULL; 9284 9285 mutex_enter(&dtrace_lock); 9286 9287 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9288 probe->dtpr_provider == (dtrace_provider_t *)id) 9289 rval = probe->dtpr_arg; 9290 9291 mutex_exit(&dtrace_lock); 9292 9293 return (rval); 9294 } 9295 9296 /* 9297 * Copy a probe into a probe description. 9298 */ 9299 static void 9300 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9301 { 9302 bzero(pdp, sizeof (dtrace_probedesc_t)); 9303 pdp->dtpd_id = prp->dtpr_id; 9304 9305 (void) strncpy(pdp->dtpd_provider, 9306 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9307 9308 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9309 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9310 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9311 } 9312 9313 /* 9314 * Called to indicate that a probe -- or probes -- should be provided by a 9315 * specfied provider. If the specified description is NULL, the provider will 9316 * be told to provide all of its probes. (This is done whenever a new 9317 * consumer comes along, or whenever a retained enabling is to be matched.) If 9318 * the specified description is non-NULL, the provider is given the 9319 * opportunity to dynamically provide the specified probe, allowing providers 9320 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9321 * probes.) If the provider is NULL, the operations will be applied to all 9322 * providers; if the provider is non-NULL the operations will only be applied 9323 * to the specified provider. The dtrace_provider_lock must be held, and the 9324 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9325 * will need to grab the dtrace_lock when it reenters the framework through 9326 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9327 */ 9328 static void 9329 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9330 { 9331 #ifdef illumos 9332 modctl_t *ctl; 9333 #endif 9334 int all = 0; 9335 9336 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9337 9338 if (prv == NULL) { 9339 all = 1; 9340 prv = dtrace_provider; 9341 } 9342 9343 do { 9344 /* 9345 * First, call the blanket provide operation. 9346 */ 9347 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9348 9349 #ifdef illumos 9350 /* 9351 * Now call the per-module provide operation. We will grab 9352 * mod_lock to prevent the list from being modified. Note 9353 * that this also prevents the mod_busy bits from changing. 9354 * (mod_busy can only be changed with mod_lock held.) 9355 */ 9356 mutex_enter(&mod_lock); 9357 9358 ctl = &modules; 9359 do { 9360 if (ctl->mod_busy || ctl->mod_mp == NULL) 9361 continue; 9362 9363 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9364 9365 } while ((ctl = ctl->mod_next) != &modules); 9366 9367 mutex_exit(&mod_lock); 9368 #endif 9369 } while (all && (prv = prv->dtpv_next) != NULL); 9370 } 9371 9372 #ifdef illumos 9373 /* 9374 * Iterate over each probe, and call the Framework-to-Provider API function 9375 * denoted by offs. 9376 */ 9377 static void 9378 dtrace_probe_foreach(uintptr_t offs) 9379 { 9380 dtrace_provider_t *prov; 9381 void (*func)(void *, dtrace_id_t, void *); 9382 dtrace_probe_t *probe; 9383 dtrace_icookie_t cookie; 9384 int i; 9385 9386 /* 9387 * We disable interrupts to walk through the probe array. This is 9388 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9389 * won't see stale data. 9390 */ 9391 cookie = dtrace_interrupt_disable(); 9392 9393 for (i = 0; i < dtrace_nprobes; i++) { 9394 if ((probe = dtrace_probes[i]) == NULL) 9395 continue; 9396 9397 if (probe->dtpr_ecb == NULL) { 9398 /* 9399 * This probe isn't enabled -- don't call the function. 9400 */ 9401 continue; 9402 } 9403 9404 prov = probe->dtpr_provider; 9405 func = *((void(**)(void *, dtrace_id_t, void *)) 9406 ((uintptr_t)&prov->dtpv_pops + offs)); 9407 9408 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9409 } 9410 9411 dtrace_interrupt_enable(cookie); 9412 } 9413 #endif 9414 9415 static int 9416 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9417 { 9418 dtrace_probekey_t pkey; 9419 uint32_t priv; 9420 uid_t uid; 9421 zoneid_t zoneid; 9422 9423 ASSERT(MUTEX_HELD(&dtrace_lock)); 9424 dtrace_ecb_create_cache = NULL; 9425 9426 if (desc == NULL) { 9427 /* 9428 * If we're passed a NULL description, we're being asked to 9429 * create an ECB with a NULL probe. 9430 */ 9431 (void) dtrace_ecb_create_enable(NULL, enab); 9432 return (0); 9433 } 9434 9435 dtrace_probekey(desc, &pkey); 9436 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9437 &priv, &uid, &zoneid); 9438 9439 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9440 enab)); 9441 } 9442 9443 /* 9444 * DTrace Helper Provider Functions 9445 */ 9446 static void 9447 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9448 { 9449 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9450 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9451 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9452 } 9453 9454 static void 9455 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9456 const dof_provider_t *dofprov, char *strtab) 9457 { 9458 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9460 dofprov->dofpv_provattr); 9461 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9462 dofprov->dofpv_modattr); 9463 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9464 dofprov->dofpv_funcattr); 9465 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9466 dofprov->dofpv_nameattr); 9467 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9468 dofprov->dofpv_argsattr); 9469 } 9470 9471 static void 9472 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9473 { 9474 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9475 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9476 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9477 dof_provider_t *provider; 9478 dof_probe_t *probe; 9479 uint32_t *off, *enoff; 9480 uint8_t *arg; 9481 char *strtab; 9482 uint_t i, nprobes; 9483 dtrace_helper_provdesc_t dhpv; 9484 dtrace_helper_probedesc_t dhpb; 9485 dtrace_meta_t *meta = dtrace_meta_pid; 9486 dtrace_mops_t *mops = &meta->dtm_mops; 9487 void *parg; 9488 9489 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9490 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9491 provider->dofpv_strtab * dof->dofh_secsize); 9492 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9493 provider->dofpv_probes * dof->dofh_secsize); 9494 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9495 provider->dofpv_prargs * dof->dofh_secsize); 9496 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9497 provider->dofpv_proffs * dof->dofh_secsize); 9498 9499 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9500 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9501 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9502 enoff = NULL; 9503 9504 /* 9505 * See dtrace_helper_provider_validate(). 9506 */ 9507 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9508 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9509 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9510 provider->dofpv_prenoffs * dof->dofh_secsize); 9511 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9512 } 9513 9514 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9515 9516 /* 9517 * Create the provider. 9518 */ 9519 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9520 9521 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9522 return; 9523 9524 meta->dtm_count++; 9525 9526 /* 9527 * Create the probes. 9528 */ 9529 for (i = 0; i < nprobes; i++) { 9530 probe = (dof_probe_t *)(uintptr_t)(daddr + 9531 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9532 9533 /* See the check in dtrace_helper_provider_validate(). */ 9534 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9535 continue; 9536 9537 dhpb.dthpb_mod = dhp->dofhp_mod; 9538 dhpb.dthpb_func = strtab + probe->dofpr_func; 9539 dhpb.dthpb_name = strtab + probe->dofpr_name; 9540 dhpb.dthpb_base = probe->dofpr_addr; 9541 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9542 dhpb.dthpb_noffs = probe->dofpr_noffs; 9543 if (enoff != NULL) { 9544 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9545 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9546 } else { 9547 dhpb.dthpb_enoffs = NULL; 9548 dhpb.dthpb_nenoffs = 0; 9549 } 9550 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9551 dhpb.dthpb_nargc = probe->dofpr_nargc; 9552 dhpb.dthpb_xargc = probe->dofpr_xargc; 9553 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9554 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9555 9556 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9557 } 9558 } 9559 9560 static void 9561 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9562 { 9563 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9564 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9565 int i; 9566 9567 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9568 9569 for (i = 0; i < dof->dofh_secnum; i++) { 9570 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9571 dof->dofh_secoff + i * dof->dofh_secsize); 9572 9573 if (sec->dofs_type != DOF_SECT_PROVIDER) 9574 continue; 9575 9576 dtrace_helper_provide_one(dhp, sec, pid); 9577 } 9578 9579 /* 9580 * We may have just created probes, so we must now rematch against 9581 * any retained enablings. Note that this call will acquire both 9582 * cpu_lock and dtrace_lock; the fact that we are holding 9583 * dtrace_meta_lock now is what defines the ordering with respect to 9584 * these three locks. 9585 */ 9586 dtrace_enabling_matchall(); 9587 } 9588 9589 static void 9590 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9591 { 9592 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9593 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9594 dof_sec_t *str_sec; 9595 dof_provider_t *provider; 9596 char *strtab; 9597 dtrace_helper_provdesc_t dhpv; 9598 dtrace_meta_t *meta = dtrace_meta_pid; 9599 dtrace_mops_t *mops = &meta->dtm_mops; 9600 9601 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9602 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9603 provider->dofpv_strtab * dof->dofh_secsize); 9604 9605 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9606 9607 /* 9608 * Create the provider. 9609 */ 9610 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9611 9612 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9613 9614 meta->dtm_count--; 9615 } 9616 9617 static void 9618 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9619 { 9620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9621 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9622 int i; 9623 9624 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9625 9626 for (i = 0; i < dof->dofh_secnum; i++) { 9627 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9628 dof->dofh_secoff + i * dof->dofh_secsize); 9629 9630 if (sec->dofs_type != DOF_SECT_PROVIDER) 9631 continue; 9632 9633 dtrace_helper_provider_remove_one(dhp, sec, pid); 9634 } 9635 } 9636 9637 /* 9638 * DTrace Meta Provider-to-Framework API Functions 9639 * 9640 * These functions implement the Meta Provider-to-Framework API, as described 9641 * in <sys/dtrace.h>. 9642 */ 9643 int 9644 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9645 dtrace_meta_provider_id_t *idp) 9646 { 9647 dtrace_meta_t *meta; 9648 dtrace_helpers_t *help, *next; 9649 int i; 9650 9651 *idp = DTRACE_METAPROVNONE; 9652 9653 /* 9654 * We strictly don't need the name, but we hold onto it for 9655 * debuggability. All hail error queues! 9656 */ 9657 if (name == NULL) { 9658 cmn_err(CE_WARN, "failed to register meta-provider: " 9659 "invalid name"); 9660 return (EINVAL); 9661 } 9662 9663 if (mops == NULL || 9664 mops->dtms_create_probe == NULL || 9665 mops->dtms_provide_pid == NULL || 9666 mops->dtms_remove_pid == NULL) { 9667 cmn_err(CE_WARN, "failed to register meta-register %s: " 9668 "invalid ops", name); 9669 return (EINVAL); 9670 } 9671 9672 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9673 meta->dtm_mops = *mops; 9674 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9675 (void) strcpy(meta->dtm_name, name); 9676 meta->dtm_arg = arg; 9677 9678 mutex_enter(&dtrace_meta_lock); 9679 mutex_enter(&dtrace_lock); 9680 9681 if (dtrace_meta_pid != NULL) { 9682 mutex_exit(&dtrace_lock); 9683 mutex_exit(&dtrace_meta_lock); 9684 cmn_err(CE_WARN, "failed to register meta-register %s: " 9685 "user-land meta-provider exists", name); 9686 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9687 kmem_free(meta, sizeof (dtrace_meta_t)); 9688 return (EINVAL); 9689 } 9690 9691 dtrace_meta_pid = meta; 9692 *idp = (dtrace_meta_provider_id_t)meta; 9693 9694 /* 9695 * If there are providers and probes ready to go, pass them 9696 * off to the new meta provider now. 9697 */ 9698 9699 help = dtrace_deferred_pid; 9700 dtrace_deferred_pid = NULL; 9701 9702 mutex_exit(&dtrace_lock); 9703 9704 while (help != NULL) { 9705 for (i = 0; i < help->dthps_nprovs; i++) { 9706 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9707 help->dthps_pid); 9708 } 9709 9710 next = help->dthps_next; 9711 help->dthps_next = NULL; 9712 help->dthps_prev = NULL; 9713 help->dthps_deferred = 0; 9714 help = next; 9715 } 9716 9717 mutex_exit(&dtrace_meta_lock); 9718 9719 return (0); 9720 } 9721 9722 int 9723 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9724 { 9725 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9726 9727 mutex_enter(&dtrace_meta_lock); 9728 mutex_enter(&dtrace_lock); 9729 9730 if (old == dtrace_meta_pid) { 9731 pp = &dtrace_meta_pid; 9732 } else { 9733 panic("attempt to unregister non-existent " 9734 "dtrace meta-provider %p\n", (void *)old); 9735 } 9736 9737 if (old->dtm_count != 0) { 9738 mutex_exit(&dtrace_lock); 9739 mutex_exit(&dtrace_meta_lock); 9740 return (EBUSY); 9741 } 9742 9743 *pp = NULL; 9744 9745 mutex_exit(&dtrace_lock); 9746 mutex_exit(&dtrace_meta_lock); 9747 9748 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9749 kmem_free(old, sizeof (dtrace_meta_t)); 9750 9751 return (0); 9752 } 9753 9754 9755 /* 9756 * DTrace DIF Object Functions 9757 */ 9758 static int 9759 dtrace_difo_err(uint_t pc, const char *format, ...) 9760 { 9761 if (dtrace_err_verbose) { 9762 va_list alist; 9763 9764 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9765 va_start(alist, format); 9766 (void) vuprintf(format, alist); 9767 va_end(alist); 9768 } 9769 9770 #ifdef DTRACE_ERRDEBUG 9771 dtrace_errdebug(format); 9772 #endif 9773 return (1); 9774 } 9775 9776 /* 9777 * Validate a DTrace DIF object by checking the IR instructions. The following 9778 * rules are currently enforced by dtrace_difo_validate(): 9779 * 9780 * 1. Each instruction must have a valid opcode 9781 * 2. Each register, string, variable, or subroutine reference must be valid 9782 * 3. No instruction can modify register %r0 (must be zero) 9783 * 4. All instruction reserved bits must be set to zero 9784 * 5. The last instruction must be a "ret" instruction 9785 * 6. All branch targets must reference a valid instruction _after_ the branch 9786 */ 9787 static int 9788 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9789 cred_t *cr) 9790 { 9791 int err = 0, i; 9792 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9793 int kcheckload; 9794 uint_t pc; 9795 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9796 9797 kcheckload = cr == NULL || 9798 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9799 9800 dp->dtdo_destructive = 0; 9801 9802 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9803 dif_instr_t instr = dp->dtdo_buf[pc]; 9804 9805 uint_t r1 = DIF_INSTR_R1(instr); 9806 uint_t r2 = DIF_INSTR_R2(instr); 9807 uint_t rd = DIF_INSTR_RD(instr); 9808 uint_t rs = DIF_INSTR_RS(instr); 9809 uint_t label = DIF_INSTR_LABEL(instr); 9810 uint_t v = DIF_INSTR_VAR(instr); 9811 uint_t subr = DIF_INSTR_SUBR(instr); 9812 uint_t type = DIF_INSTR_TYPE(instr); 9813 uint_t op = DIF_INSTR_OP(instr); 9814 9815 switch (op) { 9816 case DIF_OP_OR: 9817 case DIF_OP_XOR: 9818 case DIF_OP_AND: 9819 case DIF_OP_SLL: 9820 case DIF_OP_SRL: 9821 case DIF_OP_SRA: 9822 case DIF_OP_SUB: 9823 case DIF_OP_ADD: 9824 case DIF_OP_MUL: 9825 case DIF_OP_SDIV: 9826 case DIF_OP_UDIV: 9827 case DIF_OP_SREM: 9828 case DIF_OP_UREM: 9829 case DIF_OP_COPYS: 9830 if (r1 >= nregs) 9831 err += efunc(pc, "invalid register %u\n", r1); 9832 if (r2 >= nregs) 9833 err += efunc(pc, "invalid register %u\n", r2); 9834 if (rd >= nregs) 9835 err += efunc(pc, "invalid register %u\n", rd); 9836 if (rd == 0) 9837 err += efunc(pc, "cannot write to %%r0\n"); 9838 break; 9839 case DIF_OP_NOT: 9840 case DIF_OP_MOV: 9841 case DIF_OP_ALLOCS: 9842 if (r1 >= nregs) 9843 err += efunc(pc, "invalid register %u\n", r1); 9844 if (r2 != 0) 9845 err += efunc(pc, "non-zero reserved bits\n"); 9846 if (rd >= nregs) 9847 err += efunc(pc, "invalid register %u\n", rd); 9848 if (rd == 0) 9849 err += efunc(pc, "cannot write to %%r0\n"); 9850 break; 9851 case DIF_OP_LDSB: 9852 case DIF_OP_LDSH: 9853 case DIF_OP_LDSW: 9854 case DIF_OP_LDUB: 9855 case DIF_OP_LDUH: 9856 case DIF_OP_LDUW: 9857 case DIF_OP_LDX: 9858 if (r1 >= nregs) 9859 err += efunc(pc, "invalid register %u\n", r1); 9860 if (r2 != 0) 9861 err += efunc(pc, "non-zero reserved bits\n"); 9862 if (rd >= nregs) 9863 err += efunc(pc, "invalid register %u\n", rd); 9864 if (rd == 0) 9865 err += efunc(pc, "cannot write to %%r0\n"); 9866 if (kcheckload) 9867 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9868 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9869 break; 9870 case DIF_OP_RLDSB: 9871 case DIF_OP_RLDSH: 9872 case DIF_OP_RLDSW: 9873 case DIF_OP_RLDUB: 9874 case DIF_OP_RLDUH: 9875 case DIF_OP_RLDUW: 9876 case DIF_OP_RLDX: 9877 if (r1 >= nregs) 9878 err += efunc(pc, "invalid register %u\n", r1); 9879 if (r2 != 0) 9880 err += efunc(pc, "non-zero reserved bits\n"); 9881 if (rd >= nregs) 9882 err += efunc(pc, "invalid register %u\n", rd); 9883 if (rd == 0) 9884 err += efunc(pc, "cannot write to %%r0\n"); 9885 break; 9886 case DIF_OP_ULDSB: 9887 case DIF_OP_ULDSH: 9888 case DIF_OP_ULDSW: 9889 case DIF_OP_ULDUB: 9890 case DIF_OP_ULDUH: 9891 case DIF_OP_ULDUW: 9892 case DIF_OP_ULDX: 9893 if (r1 >= nregs) 9894 err += efunc(pc, "invalid register %u\n", r1); 9895 if (r2 != 0) 9896 err += efunc(pc, "non-zero reserved bits\n"); 9897 if (rd >= nregs) 9898 err += efunc(pc, "invalid register %u\n", rd); 9899 if (rd == 0) 9900 err += efunc(pc, "cannot write to %%r0\n"); 9901 break; 9902 case DIF_OP_STB: 9903 case DIF_OP_STH: 9904 case DIF_OP_STW: 9905 case DIF_OP_STX: 9906 if (r1 >= nregs) 9907 err += efunc(pc, "invalid register %u\n", r1); 9908 if (r2 != 0) 9909 err += efunc(pc, "non-zero reserved bits\n"); 9910 if (rd >= nregs) 9911 err += efunc(pc, "invalid register %u\n", rd); 9912 if (rd == 0) 9913 err += efunc(pc, "cannot write to 0 address\n"); 9914 break; 9915 case DIF_OP_CMP: 9916 case DIF_OP_SCMP: 9917 if (r1 >= nregs) 9918 err += efunc(pc, "invalid register %u\n", r1); 9919 if (r2 >= nregs) 9920 err += efunc(pc, "invalid register %u\n", r2); 9921 if (rd != 0) 9922 err += efunc(pc, "non-zero reserved bits\n"); 9923 break; 9924 case DIF_OP_TST: 9925 if (r1 >= nregs) 9926 err += efunc(pc, "invalid register %u\n", r1); 9927 if (r2 != 0 || rd != 0) 9928 err += efunc(pc, "non-zero reserved bits\n"); 9929 break; 9930 case DIF_OP_BA: 9931 case DIF_OP_BE: 9932 case DIF_OP_BNE: 9933 case DIF_OP_BG: 9934 case DIF_OP_BGU: 9935 case DIF_OP_BGE: 9936 case DIF_OP_BGEU: 9937 case DIF_OP_BL: 9938 case DIF_OP_BLU: 9939 case DIF_OP_BLE: 9940 case DIF_OP_BLEU: 9941 if (label >= dp->dtdo_len) { 9942 err += efunc(pc, "invalid branch target %u\n", 9943 label); 9944 } 9945 if (label <= pc) { 9946 err += efunc(pc, "backward branch to %u\n", 9947 label); 9948 } 9949 break; 9950 case DIF_OP_RET: 9951 if (r1 != 0 || r2 != 0) 9952 err += efunc(pc, "non-zero reserved bits\n"); 9953 if (rd >= nregs) 9954 err += efunc(pc, "invalid register %u\n", rd); 9955 break; 9956 case DIF_OP_NOP: 9957 case DIF_OP_POPTS: 9958 case DIF_OP_FLUSHTS: 9959 if (r1 != 0 || r2 != 0 || rd != 0) 9960 err += efunc(pc, "non-zero reserved bits\n"); 9961 break; 9962 case DIF_OP_SETX: 9963 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9964 err += efunc(pc, "invalid integer ref %u\n", 9965 DIF_INSTR_INTEGER(instr)); 9966 } 9967 if (rd >= nregs) 9968 err += efunc(pc, "invalid register %u\n", rd); 9969 if (rd == 0) 9970 err += efunc(pc, "cannot write to %%r0\n"); 9971 break; 9972 case DIF_OP_SETS: 9973 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9974 err += efunc(pc, "invalid string ref %u\n", 9975 DIF_INSTR_STRING(instr)); 9976 } 9977 if (rd >= nregs) 9978 err += efunc(pc, "invalid register %u\n", rd); 9979 if (rd == 0) 9980 err += efunc(pc, "cannot write to %%r0\n"); 9981 break; 9982 case DIF_OP_LDGA: 9983 case DIF_OP_LDTA: 9984 if (r1 > DIF_VAR_ARRAY_MAX) 9985 err += efunc(pc, "invalid array %u\n", r1); 9986 if (r2 >= nregs) 9987 err += efunc(pc, "invalid register %u\n", r2); 9988 if (rd >= nregs) 9989 err += efunc(pc, "invalid register %u\n", rd); 9990 if (rd == 0) 9991 err += efunc(pc, "cannot write to %%r0\n"); 9992 break; 9993 case DIF_OP_LDGS: 9994 case DIF_OP_LDTS: 9995 case DIF_OP_LDLS: 9996 case DIF_OP_LDGAA: 9997 case DIF_OP_LDTAA: 9998 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9999 err += efunc(pc, "invalid variable %u\n", v); 10000 if (rd >= nregs) 10001 err += efunc(pc, "invalid register %u\n", rd); 10002 if (rd == 0) 10003 err += efunc(pc, "cannot write to %%r0\n"); 10004 break; 10005 case DIF_OP_STGS: 10006 case DIF_OP_STTS: 10007 case DIF_OP_STLS: 10008 case DIF_OP_STGAA: 10009 case DIF_OP_STTAA: 10010 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10011 err += efunc(pc, "invalid variable %u\n", v); 10012 if (rs >= nregs) 10013 err += efunc(pc, "invalid register %u\n", rd); 10014 break; 10015 case DIF_OP_CALL: 10016 if (subr > DIF_SUBR_MAX) 10017 err += efunc(pc, "invalid subr %u\n", subr); 10018 if (rd >= nregs) 10019 err += efunc(pc, "invalid register %u\n", rd); 10020 if (rd == 0) 10021 err += efunc(pc, "cannot write to %%r0\n"); 10022 10023 if (subr == DIF_SUBR_COPYOUT || 10024 subr == DIF_SUBR_COPYOUTSTR) { 10025 dp->dtdo_destructive = 1; 10026 } 10027 10028 if (subr == DIF_SUBR_GETF) { 10029 #ifdef __FreeBSD__ 10030 err += efunc(pc, "getf() not supported"); 10031 #else 10032 /* 10033 * If we have a getf() we need to record that 10034 * in our state. Note that our state can be 10035 * NULL if this is a helper -- but in that 10036 * case, the call to getf() is itself illegal, 10037 * and will be caught (slightly later) when 10038 * the helper is validated. 10039 */ 10040 if (vstate->dtvs_state != NULL) 10041 vstate->dtvs_state->dts_getf++; 10042 #endif 10043 } 10044 10045 break; 10046 case DIF_OP_PUSHTR: 10047 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10048 err += efunc(pc, "invalid ref type %u\n", type); 10049 if (r2 >= nregs) 10050 err += efunc(pc, "invalid register %u\n", r2); 10051 if (rs >= nregs) 10052 err += efunc(pc, "invalid register %u\n", rs); 10053 break; 10054 case DIF_OP_PUSHTV: 10055 if (type != DIF_TYPE_CTF) 10056 err += efunc(pc, "invalid val type %u\n", type); 10057 if (r2 >= nregs) 10058 err += efunc(pc, "invalid register %u\n", r2); 10059 if (rs >= nregs) 10060 err += efunc(pc, "invalid register %u\n", rs); 10061 break; 10062 default: 10063 err += efunc(pc, "invalid opcode %u\n", 10064 DIF_INSTR_OP(instr)); 10065 } 10066 } 10067 10068 if (dp->dtdo_len != 0 && 10069 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10070 err += efunc(dp->dtdo_len - 1, 10071 "expected 'ret' as last DIF instruction\n"); 10072 } 10073 10074 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10075 /* 10076 * If we're not returning by reference, the size must be either 10077 * 0 or the size of one of the base types. 10078 */ 10079 switch (dp->dtdo_rtype.dtdt_size) { 10080 case 0: 10081 case sizeof (uint8_t): 10082 case sizeof (uint16_t): 10083 case sizeof (uint32_t): 10084 case sizeof (uint64_t): 10085 break; 10086 10087 default: 10088 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10089 } 10090 } 10091 10092 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10093 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10094 dtrace_diftype_t *vt, *et; 10095 uint_t id, ndx; 10096 10097 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10098 v->dtdv_scope != DIFV_SCOPE_THREAD && 10099 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10100 err += efunc(i, "unrecognized variable scope %d\n", 10101 v->dtdv_scope); 10102 break; 10103 } 10104 10105 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10106 v->dtdv_kind != DIFV_KIND_SCALAR) { 10107 err += efunc(i, "unrecognized variable type %d\n", 10108 v->dtdv_kind); 10109 break; 10110 } 10111 10112 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10113 err += efunc(i, "%d exceeds variable id limit\n", id); 10114 break; 10115 } 10116 10117 if (id < DIF_VAR_OTHER_UBASE) 10118 continue; 10119 10120 /* 10121 * For user-defined variables, we need to check that this 10122 * definition is identical to any previous definition that we 10123 * encountered. 10124 */ 10125 ndx = id - DIF_VAR_OTHER_UBASE; 10126 10127 switch (v->dtdv_scope) { 10128 case DIFV_SCOPE_GLOBAL: 10129 if (maxglobal == -1 || ndx > maxglobal) 10130 maxglobal = ndx; 10131 10132 if (ndx < vstate->dtvs_nglobals) { 10133 dtrace_statvar_t *svar; 10134 10135 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10136 existing = &svar->dtsv_var; 10137 } 10138 10139 break; 10140 10141 case DIFV_SCOPE_THREAD: 10142 if (maxtlocal == -1 || ndx > maxtlocal) 10143 maxtlocal = ndx; 10144 10145 if (ndx < vstate->dtvs_ntlocals) 10146 existing = &vstate->dtvs_tlocals[ndx]; 10147 break; 10148 10149 case DIFV_SCOPE_LOCAL: 10150 if (maxlocal == -1 || ndx > maxlocal) 10151 maxlocal = ndx; 10152 10153 if (ndx < vstate->dtvs_nlocals) { 10154 dtrace_statvar_t *svar; 10155 10156 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10157 existing = &svar->dtsv_var; 10158 } 10159 10160 break; 10161 } 10162 10163 vt = &v->dtdv_type; 10164 10165 if (vt->dtdt_flags & DIF_TF_BYREF) { 10166 if (vt->dtdt_size == 0) { 10167 err += efunc(i, "zero-sized variable\n"); 10168 break; 10169 } 10170 10171 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10172 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10173 vt->dtdt_size > dtrace_statvar_maxsize) { 10174 err += efunc(i, "oversized by-ref static\n"); 10175 break; 10176 } 10177 } 10178 10179 if (existing == NULL || existing->dtdv_id == 0) 10180 continue; 10181 10182 ASSERT(existing->dtdv_id == v->dtdv_id); 10183 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10184 10185 if (existing->dtdv_kind != v->dtdv_kind) 10186 err += efunc(i, "%d changed variable kind\n", id); 10187 10188 et = &existing->dtdv_type; 10189 10190 if (vt->dtdt_flags != et->dtdt_flags) { 10191 err += efunc(i, "%d changed variable type flags\n", id); 10192 break; 10193 } 10194 10195 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10196 err += efunc(i, "%d changed variable type size\n", id); 10197 break; 10198 } 10199 } 10200 10201 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10202 dif_instr_t instr = dp->dtdo_buf[pc]; 10203 10204 uint_t v = DIF_INSTR_VAR(instr); 10205 uint_t op = DIF_INSTR_OP(instr); 10206 10207 switch (op) { 10208 case DIF_OP_LDGS: 10209 case DIF_OP_LDGAA: 10210 case DIF_OP_STGS: 10211 case DIF_OP_STGAA: 10212 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10213 err += efunc(pc, "invalid variable %u\n", v); 10214 break; 10215 case DIF_OP_LDTS: 10216 case DIF_OP_LDTAA: 10217 case DIF_OP_STTS: 10218 case DIF_OP_STTAA: 10219 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10220 err += efunc(pc, "invalid variable %u\n", v); 10221 break; 10222 case DIF_OP_LDLS: 10223 case DIF_OP_STLS: 10224 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10225 err += efunc(pc, "invalid variable %u\n", v); 10226 break; 10227 default: 10228 break; 10229 } 10230 } 10231 10232 return (err); 10233 } 10234 10235 /* 10236 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10237 * are much more constrained than normal DIFOs. Specifically, they may 10238 * not: 10239 * 10240 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10241 * miscellaneous string routines 10242 * 2. Access DTrace variables other than the args[] array, and the 10243 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10244 * 3. Have thread-local variables. 10245 * 4. Have dynamic variables. 10246 */ 10247 static int 10248 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10249 { 10250 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10251 int err = 0; 10252 uint_t pc; 10253 10254 for (pc = 0; pc < dp->dtdo_len; pc++) { 10255 dif_instr_t instr = dp->dtdo_buf[pc]; 10256 10257 uint_t v = DIF_INSTR_VAR(instr); 10258 uint_t subr = DIF_INSTR_SUBR(instr); 10259 uint_t op = DIF_INSTR_OP(instr); 10260 10261 switch (op) { 10262 case DIF_OP_OR: 10263 case DIF_OP_XOR: 10264 case DIF_OP_AND: 10265 case DIF_OP_SLL: 10266 case DIF_OP_SRL: 10267 case DIF_OP_SRA: 10268 case DIF_OP_SUB: 10269 case DIF_OP_ADD: 10270 case DIF_OP_MUL: 10271 case DIF_OP_SDIV: 10272 case DIF_OP_UDIV: 10273 case DIF_OP_SREM: 10274 case DIF_OP_UREM: 10275 case DIF_OP_COPYS: 10276 case DIF_OP_NOT: 10277 case DIF_OP_MOV: 10278 case DIF_OP_RLDSB: 10279 case DIF_OP_RLDSH: 10280 case DIF_OP_RLDSW: 10281 case DIF_OP_RLDUB: 10282 case DIF_OP_RLDUH: 10283 case DIF_OP_RLDUW: 10284 case DIF_OP_RLDX: 10285 case DIF_OP_ULDSB: 10286 case DIF_OP_ULDSH: 10287 case DIF_OP_ULDSW: 10288 case DIF_OP_ULDUB: 10289 case DIF_OP_ULDUH: 10290 case DIF_OP_ULDUW: 10291 case DIF_OP_ULDX: 10292 case DIF_OP_STB: 10293 case DIF_OP_STH: 10294 case DIF_OP_STW: 10295 case DIF_OP_STX: 10296 case DIF_OP_ALLOCS: 10297 case DIF_OP_CMP: 10298 case DIF_OP_SCMP: 10299 case DIF_OP_TST: 10300 case DIF_OP_BA: 10301 case DIF_OP_BE: 10302 case DIF_OP_BNE: 10303 case DIF_OP_BG: 10304 case DIF_OP_BGU: 10305 case DIF_OP_BGE: 10306 case DIF_OP_BGEU: 10307 case DIF_OP_BL: 10308 case DIF_OP_BLU: 10309 case DIF_OP_BLE: 10310 case DIF_OP_BLEU: 10311 case DIF_OP_RET: 10312 case DIF_OP_NOP: 10313 case DIF_OP_POPTS: 10314 case DIF_OP_FLUSHTS: 10315 case DIF_OP_SETX: 10316 case DIF_OP_SETS: 10317 case DIF_OP_LDGA: 10318 case DIF_OP_LDLS: 10319 case DIF_OP_STGS: 10320 case DIF_OP_STLS: 10321 case DIF_OP_PUSHTR: 10322 case DIF_OP_PUSHTV: 10323 break; 10324 10325 case DIF_OP_LDGS: 10326 if (v >= DIF_VAR_OTHER_UBASE) 10327 break; 10328 10329 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10330 break; 10331 10332 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10333 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10334 v == DIF_VAR_EXECARGS || 10335 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10336 v == DIF_VAR_UID || v == DIF_VAR_GID) 10337 break; 10338 10339 err += efunc(pc, "illegal variable %u\n", v); 10340 break; 10341 10342 case DIF_OP_LDTA: 10343 case DIF_OP_LDTS: 10344 case DIF_OP_LDGAA: 10345 case DIF_OP_LDTAA: 10346 err += efunc(pc, "illegal dynamic variable load\n"); 10347 break; 10348 10349 case DIF_OP_STTS: 10350 case DIF_OP_STGAA: 10351 case DIF_OP_STTAA: 10352 err += efunc(pc, "illegal dynamic variable store\n"); 10353 break; 10354 10355 case DIF_OP_CALL: 10356 if (subr == DIF_SUBR_ALLOCA || 10357 subr == DIF_SUBR_BCOPY || 10358 subr == DIF_SUBR_COPYIN || 10359 subr == DIF_SUBR_COPYINTO || 10360 subr == DIF_SUBR_COPYINSTR || 10361 subr == DIF_SUBR_INDEX || 10362 subr == DIF_SUBR_INET_NTOA || 10363 subr == DIF_SUBR_INET_NTOA6 || 10364 subr == DIF_SUBR_INET_NTOP || 10365 subr == DIF_SUBR_JSON || 10366 subr == DIF_SUBR_LLTOSTR || 10367 subr == DIF_SUBR_STRTOLL || 10368 subr == DIF_SUBR_RINDEX || 10369 subr == DIF_SUBR_STRCHR || 10370 subr == DIF_SUBR_STRJOIN || 10371 subr == DIF_SUBR_STRRCHR || 10372 subr == DIF_SUBR_STRSTR || 10373 subr == DIF_SUBR_HTONS || 10374 subr == DIF_SUBR_HTONL || 10375 subr == DIF_SUBR_HTONLL || 10376 subr == DIF_SUBR_NTOHS || 10377 subr == DIF_SUBR_NTOHL || 10378 subr == DIF_SUBR_NTOHLL || 10379 subr == DIF_SUBR_MEMREF) 10380 break; 10381 #ifdef __FreeBSD__ 10382 if (subr == DIF_SUBR_MEMSTR) 10383 break; 10384 #endif 10385 10386 err += efunc(pc, "invalid subr %u\n", subr); 10387 break; 10388 10389 default: 10390 err += efunc(pc, "invalid opcode %u\n", 10391 DIF_INSTR_OP(instr)); 10392 } 10393 } 10394 10395 return (err); 10396 } 10397 10398 /* 10399 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10400 * basis; 0 if not. 10401 */ 10402 static int 10403 dtrace_difo_cacheable(dtrace_difo_t *dp) 10404 { 10405 int i; 10406 10407 if (dp == NULL) 10408 return (0); 10409 10410 for (i = 0; i < dp->dtdo_varlen; i++) { 10411 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10412 10413 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10414 continue; 10415 10416 switch (v->dtdv_id) { 10417 case DIF_VAR_CURTHREAD: 10418 case DIF_VAR_PID: 10419 case DIF_VAR_TID: 10420 case DIF_VAR_EXECARGS: 10421 case DIF_VAR_EXECNAME: 10422 case DIF_VAR_ZONENAME: 10423 break; 10424 10425 default: 10426 return (0); 10427 } 10428 } 10429 10430 /* 10431 * This DIF object may be cacheable. Now we need to look for any 10432 * array loading instructions, any memory loading instructions, or 10433 * any stores to thread-local variables. 10434 */ 10435 for (i = 0; i < dp->dtdo_len; i++) { 10436 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10437 10438 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10439 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10440 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10441 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10442 return (0); 10443 } 10444 10445 return (1); 10446 } 10447 10448 static void 10449 dtrace_difo_hold(dtrace_difo_t *dp) 10450 { 10451 int i; 10452 10453 ASSERT(MUTEX_HELD(&dtrace_lock)); 10454 10455 dp->dtdo_refcnt++; 10456 ASSERT(dp->dtdo_refcnt != 0); 10457 10458 /* 10459 * We need to check this DIF object for references to the variable 10460 * DIF_VAR_VTIMESTAMP. 10461 */ 10462 for (i = 0; i < dp->dtdo_varlen; i++) { 10463 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10464 10465 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10466 continue; 10467 10468 if (dtrace_vtime_references++ == 0) 10469 dtrace_vtime_enable(); 10470 } 10471 } 10472 10473 /* 10474 * This routine calculates the dynamic variable chunksize for a given DIF 10475 * object. The calculation is not fool-proof, and can probably be tricked by 10476 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10477 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10478 * if a dynamic variable size exceeds the chunksize. 10479 */ 10480 static void 10481 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10482 { 10483 uint64_t sval = 0; 10484 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10485 const dif_instr_t *text = dp->dtdo_buf; 10486 uint_t pc, srd = 0; 10487 uint_t ttop = 0; 10488 size_t size, ksize; 10489 uint_t id, i; 10490 10491 for (pc = 0; pc < dp->dtdo_len; pc++) { 10492 dif_instr_t instr = text[pc]; 10493 uint_t op = DIF_INSTR_OP(instr); 10494 uint_t rd = DIF_INSTR_RD(instr); 10495 uint_t r1 = DIF_INSTR_R1(instr); 10496 uint_t nkeys = 0; 10497 uchar_t scope = 0; 10498 10499 dtrace_key_t *key = tupregs; 10500 10501 switch (op) { 10502 case DIF_OP_SETX: 10503 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10504 srd = rd; 10505 continue; 10506 10507 case DIF_OP_STTS: 10508 key = &tupregs[DIF_DTR_NREGS]; 10509 key[0].dttk_size = 0; 10510 key[1].dttk_size = 0; 10511 nkeys = 2; 10512 scope = DIFV_SCOPE_THREAD; 10513 break; 10514 10515 case DIF_OP_STGAA: 10516 case DIF_OP_STTAA: 10517 nkeys = ttop; 10518 10519 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10520 key[nkeys++].dttk_size = 0; 10521 10522 key[nkeys++].dttk_size = 0; 10523 10524 if (op == DIF_OP_STTAA) { 10525 scope = DIFV_SCOPE_THREAD; 10526 } else { 10527 scope = DIFV_SCOPE_GLOBAL; 10528 } 10529 10530 break; 10531 10532 case DIF_OP_PUSHTR: 10533 if (ttop == DIF_DTR_NREGS) 10534 return; 10535 10536 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10537 /* 10538 * If the register for the size of the "pushtr" 10539 * is %r0 (or the value is 0) and the type is 10540 * a string, we'll use the system-wide default 10541 * string size. 10542 */ 10543 tupregs[ttop++].dttk_size = 10544 dtrace_strsize_default; 10545 } else { 10546 if (srd == 0) 10547 return; 10548 10549 if (sval > LONG_MAX) 10550 return; 10551 10552 tupregs[ttop++].dttk_size = sval; 10553 } 10554 10555 break; 10556 10557 case DIF_OP_PUSHTV: 10558 if (ttop == DIF_DTR_NREGS) 10559 return; 10560 10561 tupregs[ttop++].dttk_size = 0; 10562 break; 10563 10564 case DIF_OP_FLUSHTS: 10565 ttop = 0; 10566 break; 10567 10568 case DIF_OP_POPTS: 10569 if (ttop != 0) 10570 ttop--; 10571 break; 10572 } 10573 10574 sval = 0; 10575 srd = 0; 10576 10577 if (nkeys == 0) 10578 continue; 10579 10580 /* 10581 * We have a dynamic variable allocation; calculate its size. 10582 */ 10583 for (ksize = 0, i = 0; i < nkeys; i++) 10584 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10585 10586 size = sizeof (dtrace_dynvar_t); 10587 size += sizeof (dtrace_key_t) * (nkeys - 1); 10588 size += ksize; 10589 10590 /* 10591 * Now we need to determine the size of the stored data. 10592 */ 10593 id = DIF_INSTR_VAR(instr); 10594 10595 for (i = 0; i < dp->dtdo_varlen; i++) { 10596 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10597 10598 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10599 size += v->dtdv_type.dtdt_size; 10600 break; 10601 } 10602 } 10603 10604 if (i == dp->dtdo_varlen) 10605 return; 10606 10607 /* 10608 * We have the size. If this is larger than the chunk size 10609 * for our dynamic variable state, reset the chunk size. 10610 */ 10611 size = P2ROUNDUP(size, sizeof (uint64_t)); 10612 10613 /* 10614 * Before setting the chunk size, check that we're not going 10615 * to set it to a negative value... 10616 */ 10617 if (size > LONG_MAX) 10618 return; 10619 10620 /* 10621 * ...and make certain that we didn't badly overflow. 10622 */ 10623 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10624 return; 10625 10626 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10627 vstate->dtvs_dynvars.dtds_chunksize = size; 10628 } 10629 } 10630 10631 static void 10632 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10633 { 10634 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10635 uint_t id; 10636 10637 ASSERT(MUTEX_HELD(&dtrace_lock)); 10638 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10639 10640 for (i = 0; i < dp->dtdo_varlen; i++) { 10641 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10642 dtrace_statvar_t *svar, ***svarp = NULL; 10643 size_t dsize = 0; 10644 uint8_t scope = v->dtdv_scope; 10645 int *np = NULL; 10646 10647 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10648 continue; 10649 10650 id -= DIF_VAR_OTHER_UBASE; 10651 10652 switch (scope) { 10653 case DIFV_SCOPE_THREAD: 10654 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10655 dtrace_difv_t *tlocals; 10656 10657 if ((ntlocals = (otlocals << 1)) == 0) 10658 ntlocals = 1; 10659 10660 osz = otlocals * sizeof (dtrace_difv_t); 10661 nsz = ntlocals * sizeof (dtrace_difv_t); 10662 10663 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10664 10665 if (osz != 0) { 10666 bcopy(vstate->dtvs_tlocals, 10667 tlocals, osz); 10668 kmem_free(vstate->dtvs_tlocals, osz); 10669 } 10670 10671 vstate->dtvs_tlocals = tlocals; 10672 vstate->dtvs_ntlocals = ntlocals; 10673 } 10674 10675 vstate->dtvs_tlocals[id] = *v; 10676 continue; 10677 10678 case DIFV_SCOPE_LOCAL: 10679 np = &vstate->dtvs_nlocals; 10680 svarp = &vstate->dtvs_locals; 10681 10682 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10683 dsize = (mp_maxid + 1) * 10684 (v->dtdv_type.dtdt_size + 10685 sizeof (uint64_t)); 10686 else 10687 dsize = (mp_maxid + 1) * sizeof (uint64_t); 10688 10689 break; 10690 10691 case DIFV_SCOPE_GLOBAL: 10692 np = &vstate->dtvs_nglobals; 10693 svarp = &vstate->dtvs_globals; 10694 10695 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10696 dsize = v->dtdv_type.dtdt_size + 10697 sizeof (uint64_t); 10698 10699 break; 10700 10701 default: 10702 ASSERT(0); 10703 } 10704 10705 while (id >= (oldsvars = *np)) { 10706 dtrace_statvar_t **statics; 10707 int newsvars, oldsize, newsize; 10708 10709 if ((newsvars = (oldsvars << 1)) == 0) 10710 newsvars = 1; 10711 10712 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10713 newsize = newsvars * sizeof (dtrace_statvar_t *); 10714 10715 statics = kmem_zalloc(newsize, KM_SLEEP); 10716 10717 if (oldsize != 0) { 10718 bcopy(*svarp, statics, oldsize); 10719 kmem_free(*svarp, oldsize); 10720 } 10721 10722 *svarp = statics; 10723 *np = newsvars; 10724 } 10725 10726 if ((svar = (*svarp)[id]) == NULL) { 10727 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10728 svar->dtsv_var = *v; 10729 10730 if ((svar->dtsv_size = dsize) != 0) { 10731 svar->dtsv_data = (uint64_t)(uintptr_t) 10732 kmem_zalloc(dsize, KM_SLEEP); 10733 } 10734 10735 (*svarp)[id] = svar; 10736 } 10737 10738 svar->dtsv_refcnt++; 10739 } 10740 10741 dtrace_difo_chunksize(dp, vstate); 10742 dtrace_difo_hold(dp); 10743 } 10744 10745 static dtrace_difo_t * 10746 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10747 { 10748 dtrace_difo_t *new; 10749 size_t sz; 10750 10751 ASSERT(dp->dtdo_buf != NULL); 10752 ASSERT(dp->dtdo_refcnt != 0); 10753 10754 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10755 10756 ASSERT(dp->dtdo_buf != NULL); 10757 sz = dp->dtdo_len * sizeof (dif_instr_t); 10758 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10759 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10760 new->dtdo_len = dp->dtdo_len; 10761 10762 if (dp->dtdo_strtab != NULL) { 10763 ASSERT(dp->dtdo_strlen != 0); 10764 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10765 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10766 new->dtdo_strlen = dp->dtdo_strlen; 10767 } 10768 10769 if (dp->dtdo_inttab != NULL) { 10770 ASSERT(dp->dtdo_intlen != 0); 10771 sz = dp->dtdo_intlen * sizeof (uint64_t); 10772 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10773 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10774 new->dtdo_intlen = dp->dtdo_intlen; 10775 } 10776 10777 if (dp->dtdo_vartab != NULL) { 10778 ASSERT(dp->dtdo_varlen != 0); 10779 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10780 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10781 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10782 new->dtdo_varlen = dp->dtdo_varlen; 10783 } 10784 10785 dtrace_difo_init(new, vstate); 10786 return (new); 10787 } 10788 10789 static void 10790 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10791 { 10792 int i; 10793 10794 ASSERT(dp->dtdo_refcnt == 0); 10795 10796 for (i = 0; i < dp->dtdo_varlen; i++) { 10797 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10798 dtrace_statvar_t *svar, **svarp = NULL; 10799 uint_t id; 10800 uint8_t scope = v->dtdv_scope; 10801 int *np = NULL; 10802 10803 switch (scope) { 10804 case DIFV_SCOPE_THREAD: 10805 continue; 10806 10807 case DIFV_SCOPE_LOCAL: 10808 np = &vstate->dtvs_nlocals; 10809 svarp = vstate->dtvs_locals; 10810 break; 10811 10812 case DIFV_SCOPE_GLOBAL: 10813 np = &vstate->dtvs_nglobals; 10814 svarp = vstate->dtvs_globals; 10815 break; 10816 10817 default: 10818 ASSERT(0); 10819 } 10820 10821 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10822 continue; 10823 10824 id -= DIF_VAR_OTHER_UBASE; 10825 ASSERT(id < *np); 10826 10827 svar = svarp[id]; 10828 ASSERT(svar != NULL); 10829 ASSERT(svar->dtsv_refcnt > 0); 10830 10831 if (--svar->dtsv_refcnt > 0) 10832 continue; 10833 10834 if (svar->dtsv_size != 0) { 10835 ASSERT(svar->dtsv_data != 0); 10836 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10837 svar->dtsv_size); 10838 } 10839 10840 kmem_free(svar, sizeof (dtrace_statvar_t)); 10841 svarp[id] = NULL; 10842 } 10843 10844 if (dp->dtdo_buf != NULL) 10845 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10846 if (dp->dtdo_inttab != NULL) 10847 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10848 if (dp->dtdo_strtab != NULL) 10849 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10850 if (dp->dtdo_vartab != NULL) 10851 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10852 10853 kmem_free(dp, sizeof (dtrace_difo_t)); 10854 } 10855 10856 static void 10857 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10858 { 10859 int i; 10860 10861 ASSERT(MUTEX_HELD(&dtrace_lock)); 10862 ASSERT(dp->dtdo_refcnt != 0); 10863 10864 for (i = 0; i < dp->dtdo_varlen; i++) { 10865 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10866 10867 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10868 continue; 10869 10870 ASSERT(dtrace_vtime_references > 0); 10871 if (--dtrace_vtime_references == 0) 10872 dtrace_vtime_disable(); 10873 } 10874 10875 if (--dp->dtdo_refcnt == 0) 10876 dtrace_difo_destroy(dp, vstate); 10877 } 10878 10879 /* 10880 * DTrace Format Functions 10881 */ 10882 static uint16_t 10883 dtrace_format_add(dtrace_state_t *state, char *str) 10884 { 10885 char *fmt, **new; 10886 uint16_t ndx, len = strlen(str) + 1; 10887 10888 fmt = kmem_zalloc(len, KM_SLEEP); 10889 bcopy(str, fmt, len); 10890 10891 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10892 if (state->dts_formats[ndx] == NULL) { 10893 state->dts_formats[ndx] = fmt; 10894 return (ndx + 1); 10895 } 10896 } 10897 10898 if (state->dts_nformats == USHRT_MAX) { 10899 /* 10900 * This is only likely if a denial-of-service attack is being 10901 * attempted. As such, it's okay to fail silently here. 10902 */ 10903 kmem_free(fmt, len); 10904 return (0); 10905 } 10906 10907 /* 10908 * For simplicity, we always resize the formats array to be exactly the 10909 * number of formats. 10910 */ 10911 ndx = state->dts_nformats++; 10912 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10913 10914 if (state->dts_formats != NULL) { 10915 ASSERT(ndx != 0); 10916 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10917 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10918 } 10919 10920 state->dts_formats = new; 10921 state->dts_formats[ndx] = fmt; 10922 10923 return (ndx + 1); 10924 } 10925 10926 static void 10927 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10928 { 10929 char *fmt; 10930 10931 ASSERT(state->dts_formats != NULL); 10932 ASSERT(format <= state->dts_nformats); 10933 ASSERT(state->dts_formats[format - 1] != NULL); 10934 10935 fmt = state->dts_formats[format - 1]; 10936 kmem_free(fmt, strlen(fmt) + 1); 10937 state->dts_formats[format - 1] = NULL; 10938 } 10939 10940 static void 10941 dtrace_format_destroy(dtrace_state_t *state) 10942 { 10943 int i; 10944 10945 if (state->dts_nformats == 0) { 10946 ASSERT(state->dts_formats == NULL); 10947 return; 10948 } 10949 10950 ASSERT(state->dts_formats != NULL); 10951 10952 for (i = 0; i < state->dts_nformats; i++) { 10953 char *fmt = state->dts_formats[i]; 10954 10955 if (fmt == NULL) 10956 continue; 10957 10958 kmem_free(fmt, strlen(fmt) + 1); 10959 } 10960 10961 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10962 state->dts_nformats = 0; 10963 state->dts_formats = NULL; 10964 } 10965 10966 /* 10967 * DTrace Predicate Functions 10968 */ 10969 static dtrace_predicate_t * 10970 dtrace_predicate_create(dtrace_difo_t *dp) 10971 { 10972 dtrace_predicate_t *pred; 10973 10974 ASSERT(MUTEX_HELD(&dtrace_lock)); 10975 ASSERT(dp->dtdo_refcnt != 0); 10976 10977 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10978 pred->dtp_difo = dp; 10979 pred->dtp_refcnt = 1; 10980 10981 if (!dtrace_difo_cacheable(dp)) 10982 return (pred); 10983 10984 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10985 /* 10986 * This is only theoretically possible -- we have had 2^32 10987 * cacheable predicates on this machine. We cannot allow any 10988 * more predicates to become cacheable: as unlikely as it is, 10989 * there may be a thread caching a (now stale) predicate cache 10990 * ID. (N.B.: the temptation is being successfully resisted to 10991 * have this cmn_err() "Holy shit -- we executed this code!") 10992 */ 10993 return (pred); 10994 } 10995 10996 pred->dtp_cacheid = dtrace_predcache_id++; 10997 10998 return (pred); 10999 } 11000 11001 static void 11002 dtrace_predicate_hold(dtrace_predicate_t *pred) 11003 { 11004 ASSERT(MUTEX_HELD(&dtrace_lock)); 11005 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11006 ASSERT(pred->dtp_refcnt > 0); 11007 11008 pred->dtp_refcnt++; 11009 } 11010 11011 static void 11012 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11013 { 11014 dtrace_difo_t *dp = pred->dtp_difo; 11015 11016 ASSERT(MUTEX_HELD(&dtrace_lock)); 11017 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11018 ASSERT(pred->dtp_refcnt > 0); 11019 11020 if (--pred->dtp_refcnt == 0) { 11021 dtrace_difo_release(pred->dtp_difo, vstate); 11022 kmem_free(pred, sizeof (dtrace_predicate_t)); 11023 } 11024 } 11025 11026 /* 11027 * DTrace Action Description Functions 11028 */ 11029 static dtrace_actdesc_t * 11030 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11031 uint64_t uarg, uint64_t arg) 11032 { 11033 dtrace_actdesc_t *act; 11034 11035 #ifdef illumos 11036 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11037 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11038 #endif 11039 11040 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11041 act->dtad_kind = kind; 11042 act->dtad_ntuple = ntuple; 11043 act->dtad_uarg = uarg; 11044 act->dtad_arg = arg; 11045 act->dtad_refcnt = 1; 11046 11047 return (act); 11048 } 11049 11050 static void 11051 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11052 { 11053 ASSERT(act->dtad_refcnt >= 1); 11054 act->dtad_refcnt++; 11055 } 11056 11057 static void 11058 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11059 { 11060 dtrace_actkind_t kind = act->dtad_kind; 11061 dtrace_difo_t *dp; 11062 11063 ASSERT(act->dtad_refcnt >= 1); 11064 11065 if (--act->dtad_refcnt != 0) 11066 return; 11067 11068 if ((dp = act->dtad_difo) != NULL) 11069 dtrace_difo_release(dp, vstate); 11070 11071 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11072 char *str = (char *)(uintptr_t)act->dtad_arg; 11073 11074 #ifdef illumos 11075 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11076 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11077 #endif 11078 11079 if (str != NULL) 11080 kmem_free(str, strlen(str) + 1); 11081 } 11082 11083 kmem_free(act, sizeof (dtrace_actdesc_t)); 11084 } 11085 11086 /* 11087 * DTrace ECB Functions 11088 */ 11089 static dtrace_ecb_t * 11090 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11091 { 11092 dtrace_ecb_t *ecb; 11093 dtrace_epid_t epid; 11094 11095 ASSERT(MUTEX_HELD(&dtrace_lock)); 11096 11097 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11098 ecb->dte_predicate = NULL; 11099 ecb->dte_probe = probe; 11100 11101 /* 11102 * The default size is the size of the default action: recording 11103 * the header. 11104 */ 11105 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11106 ecb->dte_alignment = sizeof (dtrace_epid_t); 11107 11108 epid = state->dts_epid++; 11109 11110 if (epid - 1 >= state->dts_necbs) { 11111 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11112 int necbs = state->dts_necbs << 1; 11113 11114 ASSERT(epid == state->dts_necbs + 1); 11115 11116 if (necbs == 0) { 11117 ASSERT(oecbs == NULL); 11118 necbs = 1; 11119 } 11120 11121 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11122 11123 if (oecbs != NULL) 11124 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11125 11126 dtrace_membar_producer(); 11127 state->dts_ecbs = ecbs; 11128 11129 if (oecbs != NULL) { 11130 /* 11131 * If this state is active, we must dtrace_sync() 11132 * before we can free the old dts_ecbs array: we're 11133 * coming in hot, and there may be active ring 11134 * buffer processing (which indexes into the dts_ecbs 11135 * array) on another CPU. 11136 */ 11137 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11138 dtrace_sync(); 11139 11140 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11141 } 11142 11143 dtrace_membar_producer(); 11144 state->dts_necbs = necbs; 11145 } 11146 11147 ecb->dte_state = state; 11148 11149 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11150 dtrace_membar_producer(); 11151 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11152 11153 return (ecb); 11154 } 11155 11156 static void 11157 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11158 { 11159 dtrace_probe_t *probe = ecb->dte_probe; 11160 11161 ASSERT(MUTEX_HELD(&cpu_lock)); 11162 ASSERT(MUTEX_HELD(&dtrace_lock)); 11163 ASSERT(ecb->dte_next == NULL); 11164 11165 if (probe == NULL) { 11166 /* 11167 * This is the NULL probe -- there's nothing to do. 11168 */ 11169 return; 11170 } 11171 11172 if (probe->dtpr_ecb == NULL) { 11173 dtrace_provider_t *prov = probe->dtpr_provider; 11174 11175 /* 11176 * We're the first ECB on this probe. 11177 */ 11178 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11179 11180 if (ecb->dte_predicate != NULL) 11181 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11182 11183 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11184 probe->dtpr_id, probe->dtpr_arg); 11185 } else { 11186 /* 11187 * This probe is already active. Swing the last pointer to 11188 * point to the new ECB, and issue a dtrace_sync() to assure 11189 * that all CPUs have seen the change. 11190 */ 11191 ASSERT(probe->dtpr_ecb_last != NULL); 11192 probe->dtpr_ecb_last->dte_next = ecb; 11193 probe->dtpr_ecb_last = ecb; 11194 probe->dtpr_predcache = 0; 11195 11196 dtrace_sync(); 11197 } 11198 } 11199 11200 static int 11201 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11202 { 11203 dtrace_action_t *act; 11204 uint32_t curneeded = UINT32_MAX; 11205 uint32_t aggbase = UINT32_MAX; 11206 11207 /* 11208 * If we record anything, we always record the dtrace_rechdr_t. (And 11209 * we always record it first.) 11210 */ 11211 ecb->dte_size = sizeof (dtrace_rechdr_t); 11212 ecb->dte_alignment = sizeof (dtrace_epid_t); 11213 11214 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11215 dtrace_recdesc_t *rec = &act->dta_rec; 11216 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11217 11218 ecb->dte_alignment = MAX(ecb->dte_alignment, 11219 rec->dtrd_alignment); 11220 11221 if (DTRACEACT_ISAGG(act->dta_kind)) { 11222 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11223 11224 ASSERT(rec->dtrd_size != 0); 11225 ASSERT(agg->dtag_first != NULL); 11226 ASSERT(act->dta_prev->dta_intuple); 11227 ASSERT(aggbase != UINT32_MAX); 11228 ASSERT(curneeded != UINT32_MAX); 11229 11230 agg->dtag_base = aggbase; 11231 11232 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11233 rec->dtrd_offset = curneeded; 11234 if (curneeded + rec->dtrd_size < curneeded) 11235 return (EINVAL); 11236 curneeded += rec->dtrd_size; 11237 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11238 11239 aggbase = UINT32_MAX; 11240 curneeded = UINT32_MAX; 11241 } else if (act->dta_intuple) { 11242 if (curneeded == UINT32_MAX) { 11243 /* 11244 * This is the first record in a tuple. Align 11245 * curneeded to be at offset 4 in an 8-byte 11246 * aligned block. 11247 */ 11248 ASSERT(act->dta_prev == NULL || 11249 !act->dta_prev->dta_intuple); 11250 ASSERT3U(aggbase, ==, UINT32_MAX); 11251 curneeded = P2PHASEUP(ecb->dte_size, 11252 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11253 11254 aggbase = curneeded - sizeof (dtrace_aggid_t); 11255 ASSERT(IS_P2ALIGNED(aggbase, 11256 sizeof (uint64_t))); 11257 } 11258 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11259 rec->dtrd_offset = curneeded; 11260 if (curneeded + rec->dtrd_size < curneeded) 11261 return (EINVAL); 11262 curneeded += rec->dtrd_size; 11263 } else { 11264 /* tuples must be followed by an aggregation */ 11265 ASSERT(act->dta_prev == NULL || 11266 !act->dta_prev->dta_intuple); 11267 11268 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11269 rec->dtrd_alignment); 11270 rec->dtrd_offset = ecb->dte_size; 11271 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11272 return (EINVAL); 11273 ecb->dte_size += rec->dtrd_size; 11274 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11275 } 11276 } 11277 11278 if ((act = ecb->dte_action) != NULL && 11279 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11280 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11281 /* 11282 * If the size is still sizeof (dtrace_rechdr_t), then all 11283 * actions store no data; set the size to 0. 11284 */ 11285 ecb->dte_size = 0; 11286 } 11287 11288 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11289 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11290 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11291 ecb->dte_needed); 11292 return (0); 11293 } 11294 11295 static dtrace_action_t * 11296 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11297 { 11298 dtrace_aggregation_t *agg; 11299 size_t size = sizeof (uint64_t); 11300 int ntuple = desc->dtad_ntuple; 11301 dtrace_action_t *act; 11302 dtrace_recdesc_t *frec; 11303 dtrace_aggid_t aggid; 11304 dtrace_state_t *state = ecb->dte_state; 11305 11306 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11307 agg->dtag_ecb = ecb; 11308 11309 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11310 11311 switch (desc->dtad_kind) { 11312 case DTRACEAGG_MIN: 11313 agg->dtag_initial = INT64_MAX; 11314 agg->dtag_aggregate = dtrace_aggregate_min; 11315 break; 11316 11317 case DTRACEAGG_MAX: 11318 agg->dtag_initial = INT64_MIN; 11319 agg->dtag_aggregate = dtrace_aggregate_max; 11320 break; 11321 11322 case DTRACEAGG_COUNT: 11323 agg->dtag_aggregate = dtrace_aggregate_count; 11324 break; 11325 11326 case DTRACEAGG_QUANTIZE: 11327 agg->dtag_aggregate = dtrace_aggregate_quantize; 11328 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11329 sizeof (uint64_t); 11330 break; 11331 11332 case DTRACEAGG_LQUANTIZE: { 11333 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11334 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11335 11336 agg->dtag_initial = desc->dtad_arg; 11337 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11338 11339 if (step == 0 || levels == 0) 11340 goto err; 11341 11342 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11343 break; 11344 } 11345 11346 case DTRACEAGG_LLQUANTIZE: { 11347 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11348 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11349 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11350 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11351 int64_t v; 11352 11353 agg->dtag_initial = desc->dtad_arg; 11354 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11355 11356 if (factor < 2 || low >= high || nsteps < factor) 11357 goto err; 11358 11359 /* 11360 * Now check that the number of steps evenly divides a power 11361 * of the factor. (This assures both integer bucket size and 11362 * linearity within each magnitude.) 11363 */ 11364 for (v = factor; v < nsteps; v *= factor) 11365 continue; 11366 11367 if ((v % nsteps) || (nsteps % factor)) 11368 goto err; 11369 11370 size = (dtrace_aggregate_llquantize_bucket(factor, 11371 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11372 break; 11373 } 11374 11375 case DTRACEAGG_AVG: 11376 agg->dtag_aggregate = dtrace_aggregate_avg; 11377 size = sizeof (uint64_t) * 2; 11378 break; 11379 11380 case DTRACEAGG_STDDEV: 11381 agg->dtag_aggregate = dtrace_aggregate_stddev; 11382 size = sizeof (uint64_t) * 4; 11383 break; 11384 11385 case DTRACEAGG_SUM: 11386 agg->dtag_aggregate = dtrace_aggregate_sum; 11387 break; 11388 11389 default: 11390 goto err; 11391 } 11392 11393 agg->dtag_action.dta_rec.dtrd_size = size; 11394 11395 if (ntuple == 0) 11396 goto err; 11397 11398 /* 11399 * We must make sure that we have enough actions for the n-tuple. 11400 */ 11401 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11402 if (DTRACEACT_ISAGG(act->dta_kind)) 11403 break; 11404 11405 if (--ntuple == 0) { 11406 /* 11407 * This is the action with which our n-tuple begins. 11408 */ 11409 agg->dtag_first = act; 11410 goto success; 11411 } 11412 } 11413 11414 /* 11415 * This n-tuple is short by ntuple elements. Return failure. 11416 */ 11417 ASSERT(ntuple != 0); 11418 err: 11419 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11420 return (NULL); 11421 11422 success: 11423 /* 11424 * If the last action in the tuple has a size of zero, it's actually 11425 * an expression argument for the aggregating action. 11426 */ 11427 ASSERT(ecb->dte_action_last != NULL); 11428 act = ecb->dte_action_last; 11429 11430 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11431 ASSERT(act->dta_difo != NULL); 11432 11433 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11434 agg->dtag_hasarg = 1; 11435 } 11436 11437 /* 11438 * We need to allocate an id for this aggregation. 11439 */ 11440 #ifdef illumos 11441 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11442 VM_BESTFIT | VM_SLEEP); 11443 #else 11444 aggid = alloc_unr(state->dts_aggid_arena); 11445 #endif 11446 11447 if (aggid - 1 >= state->dts_naggregations) { 11448 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11449 dtrace_aggregation_t **aggs; 11450 int naggs = state->dts_naggregations << 1; 11451 int onaggs = state->dts_naggregations; 11452 11453 ASSERT(aggid == state->dts_naggregations + 1); 11454 11455 if (naggs == 0) { 11456 ASSERT(oaggs == NULL); 11457 naggs = 1; 11458 } 11459 11460 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11461 11462 if (oaggs != NULL) { 11463 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11464 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11465 } 11466 11467 state->dts_aggregations = aggs; 11468 state->dts_naggregations = naggs; 11469 } 11470 11471 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11472 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11473 11474 frec = &agg->dtag_first->dta_rec; 11475 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11476 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11477 11478 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11479 ASSERT(!act->dta_intuple); 11480 act->dta_intuple = 1; 11481 } 11482 11483 return (&agg->dtag_action); 11484 } 11485 11486 static void 11487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11488 { 11489 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11490 dtrace_state_t *state = ecb->dte_state; 11491 dtrace_aggid_t aggid = agg->dtag_id; 11492 11493 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11494 #ifdef illumos 11495 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11496 #else 11497 free_unr(state->dts_aggid_arena, aggid); 11498 #endif 11499 11500 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11501 state->dts_aggregations[aggid - 1] = NULL; 11502 11503 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11504 } 11505 11506 static int 11507 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11508 { 11509 dtrace_action_t *action, *last; 11510 dtrace_difo_t *dp = desc->dtad_difo; 11511 uint32_t size = 0, align = sizeof (uint8_t), mask; 11512 uint16_t format = 0; 11513 dtrace_recdesc_t *rec; 11514 dtrace_state_t *state = ecb->dte_state; 11515 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11516 uint64_t arg = desc->dtad_arg; 11517 11518 ASSERT(MUTEX_HELD(&dtrace_lock)); 11519 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11520 11521 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11522 /* 11523 * If this is an aggregating action, there must be neither 11524 * a speculate nor a commit on the action chain. 11525 */ 11526 dtrace_action_t *act; 11527 11528 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11529 if (act->dta_kind == DTRACEACT_COMMIT) 11530 return (EINVAL); 11531 11532 if (act->dta_kind == DTRACEACT_SPECULATE) 11533 return (EINVAL); 11534 } 11535 11536 action = dtrace_ecb_aggregation_create(ecb, desc); 11537 11538 if (action == NULL) 11539 return (EINVAL); 11540 } else { 11541 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11542 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11543 dp != NULL && dp->dtdo_destructive)) { 11544 state->dts_destructive = 1; 11545 } 11546 11547 switch (desc->dtad_kind) { 11548 case DTRACEACT_PRINTF: 11549 case DTRACEACT_PRINTA: 11550 case DTRACEACT_SYSTEM: 11551 case DTRACEACT_FREOPEN: 11552 case DTRACEACT_DIFEXPR: 11553 /* 11554 * We know that our arg is a string -- turn it into a 11555 * format. 11556 */ 11557 if (arg == 0) { 11558 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11559 desc->dtad_kind == DTRACEACT_DIFEXPR); 11560 format = 0; 11561 } else { 11562 ASSERT(arg != 0); 11563 #ifdef illumos 11564 ASSERT(arg > KERNELBASE); 11565 #endif 11566 format = dtrace_format_add(state, 11567 (char *)(uintptr_t)arg); 11568 } 11569 11570 /*FALLTHROUGH*/ 11571 case DTRACEACT_LIBACT: 11572 case DTRACEACT_TRACEMEM: 11573 case DTRACEACT_TRACEMEM_DYNSIZE: 11574 if (dp == NULL) 11575 return (EINVAL); 11576 11577 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11578 break; 11579 11580 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11581 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11582 return (EINVAL); 11583 11584 size = opt[DTRACEOPT_STRSIZE]; 11585 } 11586 11587 break; 11588 11589 case DTRACEACT_STACK: 11590 if ((nframes = arg) == 0) { 11591 nframes = opt[DTRACEOPT_STACKFRAMES]; 11592 ASSERT(nframes > 0); 11593 arg = nframes; 11594 } 11595 11596 size = nframes * sizeof (pc_t); 11597 break; 11598 11599 case DTRACEACT_JSTACK: 11600 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11601 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11602 11603 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11604 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11605 11606 arg = DTRACE_USTACK_ARG(nframes, strsize); 11607 11608 /*FALLTHROUGH*/ 11609 case DTRACEACT_USTACK: 11610 if (desc->dtad_kind != DTRACEACT_JSTACK && 11611 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11612 strsize = DTRACE_USTACK_STRSIZE(arg); 11613 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11614 ASSERT(nframes > 0); 11615 arg = DTRACE_USTACK_ARG(nframes, strsize); 11616 } 11617 11618 /* 11619 * Save a slot for the pid. 11620 */ 11621 size = (nframes + 1) * sizeof (uint64_t); 11622 size += DTRACE_USTACK_STRSIZE(arg); 11623 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11624 11625 break; 11626 11627 case DTRACEACT_SYM: 11628 case DTRACEACT_MOD: 11629 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11630 sizeof (uint64_t)) || 11631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11632 return (EINVAL); 11633 break; 11634 11635 case DTRACEACT_USYM: 11636 case DTRACEACT_UMOD: 11637 case DTRACEACT_UADDR: 11638 if (dp == NULL || 11639 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11640 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11641 return (EINVAL); 11642 11643 /* 11644 * We have a slot for the pid, plus a slot for the 11645 * argument. To keep things simple (aligned with 11646 * bitness-neutral sizing), we store each as a 64-bit 11647 * quantity. 11648 */ 11649 size = 2 * sizeof (uint64_t); 11650 break; 11651 11652 case DTRACEACT_STOP: 11653 case DTRACEACT_BREAKPOINT: 11654 case DTRACEACT_PANIC: 11655 break; 11656 11657 case DTRACEACT_CHILL: 11658 case DTRACEACT_DISCARD: 11659 case DTRACEACT_RAISE: 11660 if (dp == NULL) 11661 return (EINVAL); 11662 break; 11663 11664 case DTRACEACT_EXIT: 11665 if (dp == NULL || 11666 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11667 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11668 return (EINVAL); 11669 break; 11670 11671 case DTRACEACT_SPECULATE: 11672 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11673 return (EINVAL); 11674 11675 if (dp == NULL) 11676 return (EINVAL); 11677 11678 state->dts_speculates = 1; 11679 break; 11680 11681 case DTRACEACT_PRINTM: 11682 size = dp->dtdo_rtype.dtdt_size; 11683 break; 11684 11685 case DTRACEACT_COMMIT: { 11686 dtrace_action_t *act = ecb->dte_action; 11687 11688 for (; act != NULL; act = act->dta_next) { 11689 if (act->dta_kind == DTRACEACT_COMMIT) 11690 return (EINVAL); 11691 } 11692 11693 if (dp == NULL) 11694 return (EINVAL); 11695 break; 11696 } 11697 11698 default: 11699 return (EINVAL); 11700 } 11701 11702 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11703 /* 11704 * If this is a data-storing action or a speculate, 11705 * we must be sure that there isn't a commit on the 11706 * action chain. 11707 */ 11708 dtrace_action_t *act = ecb->dte_action; 11709 11710 for (; act != NULL; act = act->dta_next) { 11711 if (act->dta_kind == DTRACEACT_COMMIT) 11712 return (EINVAL); 11713 } 11714 } 11715 11716 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11717 action->dta_rec.dtrd_size = size; 11718 } 11719 11720 action->dta_refcnt = 1; 11721 rec = &action->dta_rec; 11722 size = rec->dtrd_size; 11723 11724 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11725 if (!(size & mask)) { 11726 align = mask + 1; 11727 break; 11728 } 11729 } 11730 11731 action->dta_kind = desc->dtad_kind; 11732 11733 if ((action->dta_difo = dp) != NULL) 11734 dtrace_difo_hold(dp); 11735 11736 rec->dtrd_action = action->dta_kind; 11737 rec->dtrd_arg = arg; 11738 rec->dtrd_uarg = desc->dtad_uarg; 11739 rec->dtrd_alignment = (uint16_t)align; 11740 rec->dtrd_format = format; 11741 11742 if ((last = ecb->dte_action_last) != NULL) { 11743 ASSERT(ecb->dte_action != NULL); 11744 action->dta_prev = last; 11745 last->dta_next = action; 11746 } else { 11747 ASSERT(ecb->dte_action == NULL); 11748 ecb->dte_action = action; 11749 } 11750 11751 ecb->dte_action_last = action; 11752 11753 return (0); 11754 } 11755 11756 static void 11757 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11758 { 11759 dtrace_action_t *act = ecb->dte_action, *next; 11760 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11761 dtrace_difo_t *dp; 11762 uint16_t format; 11763 11764 if (act != NULL && act->dta_refcnt > 1) { 11765 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11766 act->dta_refcnt--; 11767 } else { 11768 for (; act != NULL; act = next) { 11769 next = act->dta_next; 11770 ASSERT(next != NULL || act == ecb->dte_action_last); 11771 ASSERT(act->dta_refcnt == 1); 11772 11773 if ((format = act->dta_rec.dtrd_format) != 0) 11774 dtrace_format_remove(ecb->dte_state, format); 11775 11776 if ((dp = act->dta_difo) != NULL) 11777 dtrace_difo_release(dp, vstate); 11778 11779 if (DTRACEACT_ISAGG(act->dta_kind)) { 11780 dtrace_ecb_aggregation_destroy(ecb, act); 11781 } else { 11782 kmem_free(act, sizeof (dtrace_action_t)); 11783 } 11784 } 11785 } 11786 11787 ecb->dte_action = NULL; 11788 ecb->dte_action_last = NULL; 11789 ecb->dte_size = 0; 11790 } 11791 11792 static void 11793 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11794 { 11795 /* 11796 * We disable the ECB by removing it from its probe. 11797 */ 11798 dtrace_ecb_t *pecb, *prev = NULL; 11799 dtrace_probe_t *probe = ecb->dte_probe; 11800 11801 ASSERT(MUTEX_HELD(&dtrace_lock)); 11802 11803 if (probe == NULL) { 11804 /* 11805 * This is the NULL probe; there is nothing to disable. 11806 */ 11807 return; 11808 } 11809 11810 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11811 if (pecb == ecb) 11812 break; 11813 prev = pecb; 11814 } 11815 11816 ASSERT(pecb != NULL); 11817 11818 if (prev == NULL) { 11819 probe->dtpr_ecb = ecb->dte_next; 11820 } else { 11821 prev->dte_next = ecb->dte_next; 11822 } 11823 11824 if (ecb == probe->dtpr_ecb_last) { 11825 ASSERT(ecb->dte_next == NULL); 11826 probe->dtpr_ecb_last = prev; 11827 } 11828 11829 /* 11830 * The ECB has been disconnected from the probe; now sync to assure 11831 * that all CPUs have seen the change before returning. 11832 */ 11833 dtrace_sync(); 11834 11835 if (probe->dtpr_ecb == NULL) { 11836 /* 11837 * That was the last ECB on the probe; clear the predicate 11838 * cache ID for the probe, disable it and sync one more time 11839 * to assure that we'll never hit it again. 11840 */ 11841 dtrace_provider_t *prov = probe->dtpr_provider; 11842 11843 ASSERT(ecb->dte_next == NULL); 11844 ASSERT(probe->dtpr_ecb_last == NULL); 11845 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11846 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11847 probe->dtpr_id, probe->dtpr_arg); 11848 dtrace_sync(); 11849 } else { 11850 /* 11851 * There is at least one ECB remaining on the probe. If there 11852 * is _exactly_ one, set the probe's predicate cache ID to be 11853 * the predicate cache ID of the remaining ECB. 11854 */ 11855 ASSERT(probe->dtpr_ecb_last != NULL); 11856 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11857 11858 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11859 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11860 11861 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11862 11863 if (p != NULL) 11864 probe->dtpr_predcache = p->dtp_cacheid; 11865 } 11866 11867 ecb->dte_next = NULL; 11868 } 11869 } 11870 11871 static void 11872 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11873 { 11874 dtrace_state_t *state = ecb->dte_state; 11875 dtrace_vstate_t *vstate = &state->dts_vstate; 11876 dtrace_predicate_t *pred; 11877 dtrace_epid_t epid = ecb->dte_epid; 11878 11879 ASSERT(MUTEX_HELD(&dtrace_lock)); 11880 ASSERT(ecb->dte_next == NULL); 11881 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11882 11883 if ((pred = ecb->dte_predicate) != NULL) 11884 dtrace_predicate_release(pred, vstate); 11885 11886 dtrace_ecb_action_remove(ecb); 11887 11888 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11889 state->dts_ecbs[epid - 1] = NULL; 11890 11891 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11892 } 11893 11894 static dtrace_ecb_t * 11895 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11896 dtrace_enabling_t *enab) 11897 { 11898 dtrace_ecb_t *ecb; 11899 dtrace_predicate_t *pred; 11900 dtrace_actdesc_t *act; 11901 dtrace_provider_t *prov; 11902 dtrace_ecbdesc_t *desc = enab->dten_current; 11903 11904 ASSERT(MUTEX_HELD(&dtrace_lock)); 11905 ASSERT(state != NULL); 11906 11907 ecb = dtrace_ecb_add(state, probe); 11908 ecb->dte_uarg = desc->dted_uarg; 11909 11910 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11911 dtrace_predicate_hold(pred); 11912 ecb->dte_predicate = pred; 11913 } 11914 11915 if (probe != NULL) { 11916 /* 11917 * If the provider shows more leg than the consumer is old 11918 * enough to see, we need to enable the appropriate implicit 11919 * predicate bits to prevent the ecb from activating at 11920 * revealing times. 11921 * 11922 * Providers specifying DTRACE_PRIV_USER at register time 11923 * are stating that they need the /proc-style privilege 11924 * model to be enforced, and this is what DTRACE_COND_OWNER 11925 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11926 */ 11927 prov = probe->dtpr_provider; 11928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11930 ecb->dte_cond |= DTRACE_COND_OWNER; 11931 11932 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11933 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11934 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11935 11936 /* 11937 * If the provider shows us kernel innards and the user 11938 * is lacking sufficient privilege, enable the 11939 * DTRACE_COND_USERMODE implicit predicate. 11940 */ 11941 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11942 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11943 ecb->dte_cond |= DTRACE_COND_USERMODE; 11944 } 11945 11946 if (dtrace_ecb_create_cache != NULL) { 11947 /* 11948 * If we have a cached ecb, we'll use its action list instead 11949 * of creating our own (saving both time and space). 11950 */ 11951 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11952 dtrace_action_t *act = cached->dte_action; 11953 11954 if (act != NULL) { 11955 ASSERT(act->dta_refcnt > 0); 11956 act->dta_refcnt++; 11957 ecb->dte_action = act; 11958 ecb->dte_action_last = cached->dte_action_last; 11959 ecb->dte_needed = cached->dte_needed; 11960 ecb->dte_size = cached->dte_size; 11961 ecb->dte_alignment = cached->dte_alignment; 11962 } 11963 11964 return (ecb); 11965 } 11966 11967 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11968 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11969 dtrace_ecb_destroy(ecb); 11970 return (NULL); 11971 } 11972 } 11973 11974 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11975 dtrace_ecb_destroy(ecb); 11976 return (NULL); 11977 } 11978 11979 return (dtrace_ecb_create_cache = ecb); 11980 } 11981 11982 static int 11983 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11984 { 11985 dtrace_ecb_t *ecb; 11986 dtrace_enabling_t *enab = arg; 11987 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11988 11989 ASSERT(state != NULL); 11990 11991 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11992 /* 11993 * This probe was created in a generation for which this 11994 * enabling has previously created ECBs; we don't want to 11995 * enable it again, so just kick out. 11996 */ 11997 return (DTRACE_MATCH_NEXT); 11998 } 11999 12000 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12001 return (DTRACE_MATCH_DONE); 12002 12003 dtrace_ecb_enable(ecb); 12004 return (DTRACE_MATCH_NEXT); 12005 } 12006 12007 static dtrace_ecb_t * 12008 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12009 { 12010 dtrace_ecb_t *ecb; 12011 12012 ASSERT(MUTEX_HELD(&dtrace_lock)); 12013 12014 if (id == 0 || id > state->dts_necbs) 12015 return (NULL); 12016 12017 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12018 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12019 12020 return (state->dts_ecbs[id - 1]); 12021 } 12022 12023 static dtrace_aggregation_t * 12024 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12025 { 12026 dtrace_aggregation_t *agg; 12027 12028 ASSERT(MUTEX_HELD(&dtrace_lock)); 12029 12030 if (id == 0 || id > state->dts_naggregations) 12031 return (NULL); 12032 12033 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12034 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12035 agg->dtag_id == id); 12036 12037 return (state->dts_aggregations[id - 1]); 12038 } 12039 12040 /* 12041 * DTrace Buffer Functions 12042 * 12043 * The following functions manipulate DTrace buffers. Most of these functions 12044 * are called in the context of establishing or processing consumer state; 12045 * exceptions are explicitly noted. 12046 */ 12047 12048 /* 12049 * Note: called from cross call context. This function switches the two 12050 * buffers on a given CPU. The atomicity of this operation is assured by 12051 * disabling interrupts while the actual switch takes place; the disabling of 12052 * interrupts serializes the execution with any execution of dtrace_probe() on 12053 * the same CPU. 12054 */ 12055 static void 12056 dtrace_buffer_switch(dtrace_buffer_t *buf) 12057 { 12058 caddr_t tomax = buf->dtb_tomax; 12059 caddr_t xamot = buf->dtb_xamot; 12060 dtrace_icookie_t cookie; 12061 hrtime_t now; 12062 12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12064 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12065 12066 cookie = dtrace_interrupt_disable(); 12067 now = dtrace_gethrtime(); 12068 buf->dtb_tomax = xamot; 12069 buf->dtb_xamot = tomax; 12070 buf->dtb_xamot_drops = buf->dtb_drops; 12071 buf->dtb_xamot_offset = buf->dtb_offset; 12072 buf->dtb_xamot_errors = buf->dtb_errors; 12073 buf->dtb_xamot_flags = buf->dtb_flags; 12074 buf->dtb_offset = 0; 12075 buf->dtb_drops = 0; 12076 buf->dtb_errors = 0; 12077 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12078 buf->dtb_interval = now - buf->dtb_switched; 12079 buf->dtb_switched = now; 12080 dtrace_interrupt_enable(cookie); 12081 } 12082 12083 /* 12084 * Note: called from cross call context. This function activates a buffer 12085 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12086 * is guaranteed by the disabling of interrupts. 12087 */ 12088 static void 12089 dtrace_buffer_activate(dtrace_state_t *state) 12090 { 12091 dtrace_buffer_t *buf; 12092 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12093 12094 buf = &state->dts_buffer[curcpu]; 12095 12096 if (buf->dtb_tomax != NULL) { 12097 /* 12098 * We might like to assert that the buffer is marked inactive, 12099 * but this isn't necessarily true: the buffer for the CPU 12100 * that processes the BEGIN probe has its buffer activated 12101 * manually. In this case, we take the (harmless) action 12102 * re-clearing the bit INACTIVE bit. 12103 */ 12104 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12105 } 12106 12107 dtrace_interrupt_enable(cookie); 12108 } 12109 12110 #ifdef __FreeBSD__ 12111 /* 12112 * Activate the specified per-CPU buffer. This is used instead of 12113 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12114 * activating anonymous state. 12115 */ 12116 static void 12117 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12118 { 12119 12120 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12121 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12122 } 12123 #endif 12124 12125 static int 12126 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12127 processorid_t cpu, int *factor) 12128 { 12129 #ifdef illumos 12130 cpu_t *cp; 12131 #endif 12132 dtrace_buffer_t *buf; 12133 int allocated = 0, desired = 0; 12134 12135 #ifdef illumos 12136 ASSERT(MUTEX_HELD(&cpu_lock)); 12137 ASSERT(MUTEX_HELD(&dtrace_lock)); 12138 12139 *factor = 1; 12140 12141 if (size > dtrace_nonroot_maxsize && 12142 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12143 return (EFBIG); 12144 12145 cp = cpu_list; 12146 12147 do { 12148 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12149 continue; 12150 12151 buf = &bufs[cp->cpu_id]; 12152 12153 /* 12154 * If there is already a buffer allocated for this CPU, it 12155 * is only possible that this is a DR event. In this case, 12156 */ 12157 if (buf->dtb_tomax != NULL) { 12158 ASSERT(buf->dtb_size == size); 12159 continue; 12160 } 12161 12162 ASSERT(buf->dtb_xamot == NULL); 12163 12164 if ((buf->dtb_tomax = kmem_zalloc(size, 12165 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12166 goto err; 12167 12168 buf->dtb_size = size; 12169 buf->dtb_flags = flags; 12170 buf->dtb_offset = 0; 12171 buf->dtb_drops = 0; 12172 12173 if (flags & DTRACEBUF_NOSWITCH) 12174 continue; 12175 12176 if ((buf->dtb_xamot = kmem_zalloc(size, 12177 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12178 goto err; 12179 } while ((cp = cp->cpu_next) != cpu_list); 12180 12181 return (0); 12182 12183 err: 12184 cp = cpu_list; 12185 12186 do { 12187 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12188 continue; 12189 12190 buf = &bufs[cp->cpu_id]; 12191 desired += 2; 12192 12193 if (buf->dtb_xamot != NULL) { 12194 ASSERT(buf->dtb_tomax != NULL); 12195 ASSERT(buf->dtb_size == size); 12196 kmem_free(buf->dtb_xamot, size); 12197 allocated++; 12198 } 12199 12200 if (buf->dtb_tomax != NULL) { 12201 ASSERT(buf->dtb_size == size); 12202 kmem_free(buf->dtb_tomax, size); 12203 allocated++; 12204 } 12205 12206 buf->dtb_tomax = NULL; 12207 buf->dtb_xamot = NULL; 12208 buf->dtb_size = 0; 12209 } while ((cp = cp->cpu_next) != cpu_list); 12210 #else 12211 int i; 12212 12213 *factor = 1; 12214 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12215 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12216 /* 12217 * FreeBSD isn't good at limiting the amount of memory we 12218 * ask to malloc, so let's place a limit here before trying 12219 * to do something that might well end in tears at bedtime. 12220 */ 12221 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12222 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12223 return (ENOMEM); 12224 #endif 12225 12226 ASSERT(MUTEX_HELD(&dtrace_lock)); 12227 CPU_FOREACH(i) { 12228 if (cpu != DTRACE_CPUALL && cpu != i) 12229 continue; 12230 12231 buf = &bufs[i]; 12232 12233 /* 12234 * If there is already a buffer allocated for this CPU, it 12235 * is only possible that this is a DR event. In this case, 12236 * the buffer size must match our specified size. 12237 */ 12238 if (buf->dtb_tomax != NULL) { 12239 ASSERT(buf->dtb_size == size); 12240 continue; 12241 } 12242 12243 ASSERT(buf->dtb_xamot == NULL); 12244 12245 if ((buf->dtb_tomax = kmem_zalloc(size, 12246 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12247 goto err; 12248 12249 buf->dtb_size = size; 12250 buf->dtb_flags = flags; 12251 buf->dtb_offset = 0; 12252 buf->dtb_drops = 0; 12253 12254 if (flags & DTRACEBUF_NOSWITCH) 12255 continue; 12256 12257 if ((buf->dtb_xamot = kmem_zalloc(size, 12258 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12259 goto err; 12260 } 12261 12262 return (0); 12263 12264 err: 12265 /* 12266 * Error allocating memory, so free the buffers that were 12267 * allocated before the failed allocation. 12268 */ 12269 CPU_FOREACH(i) { 12270 if (cpu != DTRACE_CPUALL && cpu != i) 12271 continue; 12272 12273 buf = &bufs[i]; 12274 desired += 2; 12275 12276 if (buf->dtb_xamot != NULL) { 12277 ASSERT(buf->dtb_tomax != NULL); 12278 ASSERT(buf->dtb_size == size); 12279 kmem_free(buf->dtb_xamot, size); 12280 allocated++; 12281 } 12282 12283 if (buf->dtb_tomax != NULL) { 12284 ASSERT(buf->dtb_size == size); 12285 kmem_free(buf->dtb_tomax, size); 12286 allocated++; 12287 } 12288 12289 buf->dtb_tomax = NULL; 12290 buf->dtb_xamot = NULL; 12291 buf->dtb_size = 0; 12292 12293 } 12294 #endif 12295 *factor = desired / (allocated > 0 ? allocated : 1); 12296 12297 return (ENOMEM); 12298 } 12299 12300 /* 12301 * Note: called from probe context. This function just increments the drop 12302 * count on a buffer. It has been made a function to allow for the 12303 * possibility of understanding the source of mysterious drop counts. (A 12304 * problem for which one may be particularly disappointed that DTrace cannot 12305 * be used to understand DTrace.) 12306 */ 12307 static void 12308 dtrace_buffer_drop(dtrace_buffer_t *buf) 12309 { 12310 buf->dtb_drops++; 12311 } 12312 12313 /* 12314 * Note: called from probe context. This function is called to reserve space 12315 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12316 * mstate. Returns the new offset in the buffer, or a negative value if an 12317 * error has occurred. 12318 */ 12319 static intptr_t 12320 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12321 dtrace_state_t *state, dtrace_mstate_t *mstate) 12322 { 12323 intptr_t offs = buf->dtb_offset, soffs; 12324 intptr_t woffs; 12325 caddr_t tomax; 12326 size_t total; 12327 12328 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12329 return (-1); 12330 12331 if ((tomax = buf->dtb_tomax) == NULL) { 12332 dtrace_buffer_drop(buf); 12333 return (-1); 12334 } 12335 12336 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12337 while (offs & (align - 1)) { 12338 /* 12339 * Assert that our alignment is off by a number which 12340 * is itself sizeof (uint32_t) aligned. 12341 */ 12342 ASSERT(!((align - (offs & (align - 1))) & 12343 (sizeof (uint32_t) - 1))); 12344 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12345 offs += sizeof (uint32_t); 12346 } 12347 12348 if ((soffs = offs + needed) > buf->dtb_size) { 12349 dtrace_buffer_drop(buf); 12350 return (-1); 12351 } 12352 12353 if (mstate == NULL) 12354 return (offs); 12355 12356 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12357 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12358 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12359 12360 return (offs); 12361 } 12362 12363 if (buf->dtb_flags & DTRACEBUF_FILL) { 12364 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12365 (buf->dtb_flags & DTRACEBUF_FULL)) 12366 return (-1); 12367 goto out; 12368 } 12369 12370 total = needed + (offs & (align - 1)); 12371 12372 /* 12373 * For a ring buffer, life is quite a bit more complicated. Before 12374 * we can store any padding, we need to adjust our wrapping offset. 12375 * (If we've never before wrapped or we're not about to, no adjustment 12376 * is required.) 12377 */ 12378 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12379 offs + total > buf->dtb_size) { 12380 woffs = buf->dtb_xamot_offset; 12381 12382 if (offs + total > buf->dtb_size) { 12383 /* 12384 * We can't fit in the end of the buffer. First, a 12385 * sanity check that we can fit in the buffer at all. 12386 */ 12387 if (total > buf->dtb_size) { 12388 dtrace_buffer_drop(buf); 12389 return (-1); 12390 } 12391 12392 /* 12393 * We're going to be storing at the top of the buffer, 12394 * so now we need to deal with the wrapped offset. We 12395 * only reset our wrapped offset to 0 if it is 12396 * currently greater than the current offset. If it 12397 * is less than the current offset, it is because a 12398 * previous allocation induced a wrap -- but the 12399 * allocation didn't subsequently take the space due 12400 * to an error or false predicate evaluation. In this 12401 * case, we'll just leave the wrapped offset alone: if 12402 * the wrapped offset hasn't been advanced far enough 12403 * for this allocation, it will be adjusted in the 12404 * lower loop. 12405 */ 12406 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12407 if (woffs >= offs) 12408 woffs = 0; 12409 } else { 12410 woffs = 0; 12411 } 12412 12413 /* 12414 * Now we know that we're going to be storing to the 12415 * top of the buffer and that there is room for us 12416 * there. We need to clear the buffer from the current 12417 * offset to the end (there may be old gunk there). 12418 */ 12419 while (offs < buf->dtb_size) 12420 tomax[offs++] = 0; 12421 12422 /* 12423 * We need to set our offset to zero. And because we 12424 * are wrapping, we need to set the bit indicating as 12425 * much. We can also adjust our needed space back 12426 * down to the space required by the ECB -- we know 12427 * that the top of the buffer is aligned. 12428 */ 12429 offs = 0; 12430 total = needed; 12431 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12432 } else { 12433 /* 12434 * There is room for us in the buffer, so we simply 12435 * need to check the wrapped offset. 12436 */ 12437 if (woffs < offs) { 12438 /* 12439 * The wrapped offset is less than the offset. 12440 * This can happen if we allocated buffer space 12441 * that induced a wrap, but then we didn't 12442 * subsequently take the space due to an error 12443 * or false predicate evaluation. This is 12444 * okay; we know that _this_ allocation isn't 12445 * going to induce a wrap. We still can't 12446 * reset the wrapped offset to be zero, 12447 * however: the space may have been trashed in 12448 * the previous failed probe attempt. But at 12449 * least the wrapped offset doesn't need to 12450 * be adjusted at all... 12451 */ 12452 goto out; 12453 } 12454 } 12455 12456 while (offs + total > woffs) { 12457 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12458 size_t size; 12459 12460 if (epid == DTRACE_EPIDNONE) { 12461 size = sizeof (uint32_t); 12462 } else { 12463 ASSERT3U(epid, <=, state->dts_necbs); 12464 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12465 12466 size = state->dts_ecbs[epid - 1]->dte_size; 12467 } 12468 12469 ASSERT(woffs + size <= buf->dtb_size); 12470 ASSERT(size != 0); 12471 12472 if (woffs + size == buf->dtb_size) { 12473 /* 12474 * We've reached the end of the buffer; we want 12475 * to set the wrapped offset to 0 and break 12476 * out. However, if the offs is 0, then we're 12477 * in a strange edge-condition: the amount of 12478 * space that we want to reserve plus the size 12479 * of the record that we're overwriting is 12480 * greater than the size of the buffer. This 12481 * is problematic because if we reserve the 12482 * space but subsequently don't consume it (due 12483 * to a failed predicate or error) the wrapped 12484 * offset will be 0 -- yet the EPID at offset 0 12485 * will not be committed. This situation is 12486 * relatively easy to deal with: if we're in 12487 * this case, the buffer is indistinguishable 12488 * from one that hasn't wrapped; we need only 12489 * finish the job by clearing the wrapped bit, 12490 * explicitly setting the offset to be 0, and 12491 * zero'ing out the old data in the buffer. 12492 */ 12493 if (offs == 0) { 12494 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12495 buf->dtb_offset = 0; 12496 woffs = total; 12497 12498 while (woffs < buf->dtb_size) 12499 tomax[woffs++] = 0; 12500 } 12501 12502 woffs = 0; 12503 break; 12504 } 12505 12506 woffs += size; 12507 } 12508 12509 /* 12510 * We have a wrapped offset. It may be that the wrapped offset 12511 * has become zero -- that's okay. 12512 */ 12513 buf->dtb_xamot_offset = woffs; 12514 } 12515 12516 out: 12517 /* 12518 * Now we can plow the buffer with any necessary padding. 12519 */ 12520 while (offs & (align - 1)) { 12521 /* 12522 * Assert that our alignment is off by a number which 12523 * is itself sizeof (uint32_t) aligned. 12524 */ 12525 ASSERT(!((align - (offs & (align - 1))) & 12526 (sizeof (uint32_t) - 1))); 12527 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12528 offs += sizeof (uint32_t); 12529 } 12530 12531 if (buf->dtb_flags & DTRACEBUF_FILL) { 12532 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12533 buf->dtb_flags |= DTRACEBUF_FULL; 12534 return (-1); 12535 } 12536 } 12537 12538 if (mstate == NULL) 12539 return (offs); 12540 12541 /* 12542 * For ring buffers and fill buffers, the scratch space is always 12543 * the inactive buffer. 12544 */ 12545 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12546 mstate->dtms_scratch_size = buf->dtb_size; 12547 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12548 12549 return (offs); 12550 } 12551 12552 static void 12553 dtrace_buffer_polish(dtrace_buffer_t *buf) 12554 { 12555 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12556 ASSERT(MUTEX_HELD(&dtrace_lock)); 12557 12558 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12559 return; 12560 12561 /* 12562 * We need to polish the ring buffer. There are three cases: 12563 * 12564 * - The first (and presumably most common) is that there is no gap 12565 * between the buffer offset and the wrapped offset. In this case, 12566 * there is nothing in the buffer that isn't valid data; we can 12567 * mark the buffer as polished and return. 12568 * 12569 * - The second (less common than the first but still more common 12570 * than the third) is that there is a gap between the buffer offset 12571 * and the wrapped offset, and the wrapped offset is larger than the 12572 * buffer offset. This can happen because of an alignment issue, or 12573 * can happen because of a call to dtrace_buffer_reserve() that 12574 * didn't subsequently consume the buffer space. In this case, 12575 * we need to zero the data from the buffer offset to the wrapped 12576 * offset. 12577 * 12578 * - The third (and least common) is that there is a gap between the 12579 * buffer offset and the wrapped offset, but the wrapped offset is 12580 * _less_ than the buffer offset. This can only happen because a 12581 * call to dtrace_buffer_reserve() induced a wrap, but the space 12582 * was not subsequently consumed. In this case, we need to zero the 12583 * space from the offset to the end of the buffer _and_ from the 12584 * top of the buffer to the wrapped offset. 12585 */ 12586 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12587 bzero(buf->dtb_tomax + buf->dtb_offset, 12588 buf->dtb_xamot_offset - buf->dtb_offset); 12589 } 12590 12591 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12592 bzero(buf->dtb_tomax + buf->dtb_offset, 12593 buf->dtb_size - buf->dtb_offset); 12594 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12595 } 12596 } 12597 12598 /* 12599 * This routine determines if data generated at the specified time has likely 12600 * been entirely consumed at user-level. This routine is called to determine 12601 * if an ECB on a defunct probe (but for an active enabling) can be safely 12602 * disabled and destroyed. 12603 */ 12604 static int 12605 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12606 { 12607 int i; 12608 12609 CPU_FOREACH(i) { 12610 dtrace_buffer_t *buf = &bufs[i]; 12611 12612 if (buf->dtb_size == 0) 12613 continue; 12614 12615 if (buf->dtb_flags & DTRACEBUF_RING) 12616 return (0); 12617 12618 if (!buf->dtb_switched && buf->dtb_offset != 0) 12619 return (0); 12620 12621 if (buf->dtb_switched - buf->dtb_interval < when) 12622 return (0); 12623 } 12624 12625 return (1); 12626 } 12627 12628 static void 12629 dtrace_buffer_free(dtrace_buffer_t *bufs) 12630 { 12631 int i; 12632 12633 CPU_FOREACH(i) { 12634 dtrace_buffer_t *buf = &bufs[i]; 12635 12636 if (buf->dtb_tomax == NULL) { 12637 ASSERT(buf->dtb_xamot == NULL); 12638 ASSERT(buf->dtb_size == 0); 12639 continue; 12640 } 12641 12642 if (buf->dtb_xamot != NULL) { 12643 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12644 kmem_free(buf->dtb_xamot, buf->dtb_size); 12645 } 12646 12647 kmem_free(buf->dtb_tomax, buf->dtb_size); 12648 buf->dtb_size = 0; 12649 buf->dtb_tomax = NULL; 12650 buf->dtb_xamot = NULL; 12651 } 12652 } 12653 12654 /* 12655 * DTrace Enabling Functions 12656 */ 12657 static dtrace_enabling_t * 12658 dtrace_enabling_create(dtrace_vstate_t *vstate) 12659 { 12660 dtrace_enabling_t *enab; 12661 12662 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12663 enab->dten_vstate = vstate; 12664 12665 return (enab); 12666 } 12667 12668 static void 12669 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12670 { 12671 dtrace_ecbdesc_t **ndesc; 12672 size_t osize, nsize; 12673 12674 /* 12675 * We can't add to enablings after we've enabled them, or after we've 12676 * retained them. 12677 */ 12678 ASSERT(enab->dten_probegen == 0); 12679 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12680 12681 if (enab->dten_ndesc < enab->dten_maxdesc) { 12682 enab->dten_desc[enab->dten_ndesc++] = ecb; 12683 return; 12684 } 12685 12686 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12687 12688 if (enab->dten_maxdesc == 0) { 12689 enab->dten_maxdesc = 1; 12690 } else { 12691 enab->dten_maxdesc <<= 1; 12692 } 12693 12694 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12695 12696 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12697 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12698 bcopy(enab->dten_desc, ndesc, osize); 12699 if (enab->dten_desc != NULL) 12700 kmem_free(enab->dten_desc, osize); 12701 12702 enab->dten_desc = ndesc; 12703 enab->dten_desc[enab->dten_ndesc++] = ecb; 12704 } 12705 12706 static void 12707 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12708 dtrace_probedesc_t *pd) 12709 { 12710 dtrace_ecbdesc_t *new; 12711 dtrace_predicate_t *pred; 12712 dtrace_actdesc_t *act; 12713 12714 /* 12715 * We're going to create a new ECB description that matches the 12716 * specified ECB in every way, but has the specified probe description. 12717 */ 12718 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12719 12720 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12721 dtrace_predicate_hold(pred); 12722 12723 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12724 dtrace_actdesc_hold(act); 12725 12726 new->dted_action = ecb->dted_action; 12727 new->dted_pred = ecb->dted_pred; 12728 new->dted_probe = *pd; 12729 new->dted_uarg = ecb->dted_uarg; 12730 12731 dtrace_enabling_add(enab, new); 12732 } 12733 12734 static void 12735 dtrace_enabling_dump(dtrace_enabling_t *enab) 12736 { 12737 int i; 12738 12739 for (i = 0; i < enab->dten_ndesc; i++) { 12740 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12741 12742 #ifdef __FreeBSD__ 12743 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12744 desc->dtpd_provider, desc->dtpd_mod, 12745 desc->dtpd_func, desc->dtpd_name); 12746 #else 12747 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12748 desc->dtpd_provider, desc->dtpd_mod, 12749 desc->dtpd_func, desc->dtpd_name); 12750 #endif 12751 } 12752 } 12753 12754 static void 12755 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12756 { 12757 int i; 12758 dtrace_ecbdesc_t *ep; 12759 dtrace_vstate_t *vstate = enab->dten_vstate; 12760 12761 ASSERT(MUTEX_HELD(&dtrace_lock)); 12762 12763 for (i = 0; i < enab->dten_ndesc; i++) { 12764 dtrace_actdesc_t *act, *next; 12765 dtrace_predicate_t *pred; 12766 12767 ep = enab->dten_desc[i]; 12768 12769 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12770 dtrace_predicate_release(pred, vstate); 12771 12772 for (act = ep->dted_action; act != NULL; act = next) { 12773 next = act->dtad_next; 12774 dtrace_actdesc_release(act, vstate); 12775 } 12776 12777 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12778 } 12779 12780 if (enab->dten_desc != NULL) 12781 kmem_free(enab->dten_desc, 12782 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12783 12784 /* 12785 * If this was a retained enabling, decrement the dts_nretained count 12786 * and take it off of the dtrace_retained list. 12787 */ 12788 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12789 dtrace_retained == enab) { 12790 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12791 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12792 enab->dten_vstate->dtvs_state->dts_nretained--; 12793 dtrace_retained_gen++; 12794 } 12795 12796 if (enab->dten_prev == NULL) { 12797 if (dtrace_retained == enab) { 12798 dtrace_retained = enab->dten_next; 12799 12800 if (dtrace_retained != NULL) 12801 dtrace_retained->dten_prev = NULL; 12802 } 12803 } else { 12804 ASSERT(enab != dtrace_retained); 12805 ASSERT(dtrace_retained != NULL); 12806 enab->dten_prev->dten_next = enab->dten_next; 12807 } 12808 12809 if (enab->dten_next != NULL) { 12810 ASSERT(dtrace_retained != NULL); 12811 enab->dten_next->dten_prev = enab->dten_prev; 12812 } 12813 12814 kmem_free(enab, sizeof (dtrace_enabling_t)); 12815 } 12816 12817 static int 12818 dtrace_enabling_retain(dtrace_enabling_t *enab) 12819 { 12820 dtrace_state_t *state; 12821 12822 ASSERT(MUTEX_HELD(&dtrace_lock)); 12823 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12824 ASSERT(enab->dten_vstate != NULL); 12825 12826 state = enab->dten_vstate->dtvs_state; 12827 ASSERT(state != NULL); 12828 12829 /* 12830 * We only allow each state to retain dtrace_retain_max enablings. 12831 */ 12832 if (state->dts_nretained >= dtrace_retain_max) 12833 return (ENOSPC); 12834 12835 state->dts_nretained++; 12836 dtrace_retained_gen++; 12837 12838 if (dtrace_retained == NULL) { 12839 dtrace_retained = enab; 12840 return (0); 12841 } 12842 12843 enab->dten_next = dtrace_retained; 12844 dtrace_retained->dten_prev = enab; 12845 dtrace_retained = enab; 12846 12847 return (0); 12848 } 12849 12850 static int 12851 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12852 dtrace_probedesc_t *create) 12853 { 12854 dtrace_enabling_t *new, *enab; 12855 int found = 0, err = ENOENT; 12856 12857 ASSERT(MUTEX_HELD(&dtrace_lock)); 12858 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12859 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12860 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12861 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12862 12863 new = dtrace_enabling_create(&state->dts_vstate); 12864 12865 /* 12866 * Iterate over all retained enablings, looking for enablings that 12867 * match the specified state. 12868 */ 12869 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12870 int i; 12871 12872 /* 12873 * dtvs_state can only be NULL for helper enablings -- and 12874 * helper enablings can't be retained. 12875 */ 12876 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12877 12878 if (enab->dten_vstate->dtvs_state != state) 12879 continue; 12880 12881 /* 12882 * Now iterate over each probe description; we're looking for 12883 * an exact match to the specified probe description. 12884 */ 12885 for (i = 0; i < enab->dten_ndesc; i++) { 12886 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12887 dtrace_probedesc_t *pd = &ep->dted_probe; 12888 12889 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12890 continue; 12891 12892 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12893 continue; 12894 12895 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12896 continue; 12897 12898 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12899 continue; 12900 12901 /* 12902 * We have a winning probe! Add it to our growing 12903 * enabling. 12904 */ 12905 found = 1; 12906 dtrace_enabling_addlike(new, ep, create); 12907 } 12908 } 12909 12910 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12911 dtrace_enabling_destroy(new); 12912 return (err); 12913 } 12914 12915 return (0); 12916 } 12917 12918 static void 12919 dtrace_enabling_retract(dtrace_state_t *state) 12920 { 12921 dtrace_enabling_t *enab, *next; 12922 12923 ASSERT(MUTEX_HELD(&dtrace_lock)); 12924 12925 /* 12926 * Iterate over all retained enablings, destroy the enablings retained 12927 * for the specified state. 12928 */ 12929 for (enab = dtrace_retained; enab != NULL; enab = next) { 12930 next = enab->dten_next; 12931 12932 /* 12933 * dtvs_state can only be NULL for helper enablings -- and 12934 * helper enablings can't be retained. 12935 */ 12936 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12937 12938 if (enab->dten_vstate->dtvs_state == state) { 12939 ASSERT(state->dts_nretained > 0); 12940 dtrace_enabling_destroy(enab); 12941 } 12942 } 12943 12944 ASSERT(state->dts_nretained == 0); 12945 } 12946 12947 static int 12948 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12949 { 12950 int i = 0; 12951 int matched = 0; 12952 12953 ASSERT(MUTEX_HELD(&cpu_lock)); 12954 ASSERT(MUTEX_HELD(&dtrace_lock)); 12955 12956 for (i = 0; i < enab->dten_ndesc; i++) { 12957 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12958 12959 enab->dten_current = ep; 12960 enab->dten_error = 0; 12961 12962 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12963 12964 if (enab->dten_error != 0) { 12965 /* 12966 * If we get an error half-way through enabling the 12967 * probes, we kick out -- perhaps with some number of 12968 * them enabled. Leaving enabled probes enabled may 12969 * be slightly confusing for user-level, but we expect 12970 * that no one will attempt to actually drive on in 12971 * the face of such errors. If this is an anonymous 12972 * enabling (indicated with a NULL nmatched pointer), 12973 * we cmn_err() a message. We aren't expecting to 12974 * get such an error -- such as it can exist at all, 12975 * it would be a result of corrupted DOF in the driver 12976 * properties. 12977 */ 12978 if (nmatched == NULL) { 12979 cmn_err(CE_WARN, "dtrace_enabling_match() " 12980 "error on %p: %d", (void *)ep, 12981 enab->dten_error); 12982 } 12983 12984 return (enab->dten_error); 12985 } 12986 } 12987 12988 enab->dten_probegen = dtrace_probegen; 12989 if (nmatched != NULL) 12990 *nmatched = matched; 12991 12992 return (0); 12993 } 12994 12995 static void 12996 dtrace_enabling_matchall(void) 12997 { 12998 dtrace_enabling_t *enab; 12999 13000 mutex_enter(&cpu_lock); 13001 mutex_enter(&dtrace_lock); 13002 13003 /* 13004 * Iterate over all retained enablings to see if any probes match 13005 * against them. We only perform this operation on enablings for which 13006 * we have sufficient permissions by virtue of being in the global zone 13007 * or in the same zone as the DTrace client. Because we can be called 13008 * after dtrace_detach() has been called, we cannot assert that there 13009 * are retained enablings. We can safely load from dtrace_retained, 13010 * however: the taskq_destroy() at the end of dtrace_detach() will 13011 * block pending our completion. 13012 */ 13013 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13014 #ifdef illumos 13015 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13016 13017 if (INGLOBALZONE(curproc) || 13018 cr != NULL && getzoneid() == crgetzoneid(cr)) 13019 #endif 13020 (void) dtrace_enabling_match(enab, NULL); 13021 } 13022 13023 mutex_exit(&dtrace_lock); 13024 mutex_exit(&cpu_lock); 13025 } 13026 13027 /* 13028 * If an enabling is to be enabled without having matched probes (that is, if 13029 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13030 * enabling must be _primed_ by creating an ECB for every ECB description. 13031 * This must be done to assure that we know the number of speculations, the 13032 * number of aggregations, the minimum buffer size needed, etc. before we 13033 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13034 * enabling any probes, we create ECBs for every ECB decription, but with a 13035 * NULL probe -- which is exactly what this function does. 13036 */ 13037 static void 13038 dtrace_enabling_prime(dtrace_state_t *state) 13039 { 13040 dtrace_enabling_t *enab; 13041 int i; 13042 13043 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13044 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13045 13046 if (enab->dten_vstate->dtvs_state != state) 13047 continue; 13048 13049 /* 13050 * We don't want to prime an enabling more than once, lest 13051 * we allow a malicious user to induce resource exhaustion. 13052 * (The ECBs that result from priming an enabling aren't 13053 * leaked -- but they also aren't deallocated until the 13054 * consumer state is destroyed.) 13055 */ 13056 if (enab->dten_primed) 13057 continue; 13058 13059 for (i = 0; i < enab->dten_ndesc; i++) { 13060 enab->dten_current = enab->dten_desc[i]; 13061 (void) dtrace_probe_enable(NULL, enab); 13062 } 13063 13064 enab->dten_primed = 1; 13065 } 13066 } 13067 13068 /* 13069 * Called to indicate that probes should be provided due to retained 13070 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13071 * must take an initial lap through the enabling calling the dtps_provide() 13072 * entry point explicitly to allow for autocreated probes. 13073 */ 13074 static void 13075 dtrace_enabling_provide(dtrace_provider_t *prv) 13076 { 13077 int i, all = 0; 13078 dtrace_probedesc_t desc; 13079 dtrace_genid_t gen; 13080 13081 ASSERT(MUTEX_HELD(&dtrace_lock)); 13082 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13083 13084 if (prv == NULL) { 13085 all = 1; 13086 prv = dtrace_provider; 13087 } 13088 13089 do { 13090 dtrace_enabling_t *enab; 13091 void *parg = prv->dtpv_arg; 13092 13093 retry: 13094 gen = dtrace_retained_gen; 13095 for (enab = dtrace_retained; enab != NULL; 13096 enab = enab->dten_next) { 13097 for (i = 0; i < enab->dten_ndesc; i++) { 13098 desc = enab->dten_desc[i]->dted_probe; 13099 mutex_exit(&dtrace_lock); 13100 prv->dtpv_pops.dtps_provide(parg, &desc); 13101 mutex_enter(&dtrace_lock); 13102 /* 13103 * Process the retained enablings again if 13104 * they have changed while we weren't holding 13105 * dtrace_lock. 13106 */ 13107 if (gen != dtrace_retained_gen) 13108 goto retry; 13109 } 13110 } 13111 } while (all && (prv = prv->dtpv_next) != NULL); 13112 13113 mutex_exit(&dtrace_lock); 13114 dtrace_probe_provide(NULL, all ? NULL : prv); 13115 mutex_enter(&dtrace_lock); 13116 } 13117 13118 /* 13119 * Called to reap ECBs that are attached to probes from defunct providers. 13120 */ 13121 static void 13122 dtrace_enabling_reap(void) 13123 { 13124 dtrace_provider_t *prov; 13125 dtrace_probe_t *probe; 13126 dtrace_ecb_t *ecb; 13127 hrtime_t when; 13128 int i; 13129 13130 mutex_enter(&cpu_lock); 13131 mutex_enter(&dtrace_lock); 13132 13133 for (i = 0; i < dtrace_nprobes; i++) { 13134 if ((probe = dtrace_probes[i]) == NULL) 13135 continue; 13136 13137 if (probe->dtpr_ecb == NULL) 13138 continue; 13139 13140 prov = probe->dtpr_provider; 13141 13142 if ((when = prov->dtpv_defunct) == 0) 13143 continue; 13144 13145 /* 13146 * We have ECBs on a defunct provider: we want to reap these 13147 * ECBs to allow the provider to unregister. The destruction 13148 * of these ECBs must be done carefully: if we destroy the ECB 13149 * and the consumer later wishes to consume an EPID that 13150 * corresponds to the destroyed ECB (and if the EPID metadata 13151 * has not been previously consumed), the consumer will abort 13152 * processing on the unknown EPID. To reduce (but not, sadly, 13153 * eliminate) the possibility of this, we will only destroy an 13154 * ECB for a defunct provider if, for the state that 13155 * corresponds to the ECB: 13156 * 13157 * (a) There is no speculative tracing (which can effectively 13158 * cache an EPID for an arbitrary amount of time). 13159 * 13160 * (b) The principal buffers have been switched twice since the 13161 * provider became defunct. 13162 * 13163 * (c) The aggregation buffers are of zero size or have been 13164 * switched twice since the provider became defunct. 13165 * 13166 * We use dts_speculates to determine (a) and call a function 13167 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13168 * that as soon as we've been unable to destroy one of the ECBs 13169 * associated with the probe, we quit trying -- reaping is only 13170 * fruitful in as much as we can destroy all ECBs associated 13171 * with the defunct provider's probes. 13172 */ 13173 while ((ecb = probe->dtpr_ecb) != NULL) { 13174 dtrace_state_t *state = ecb->dte_state; 13175 dtrace_buffer_t *buf = state->dts_buffer; 13176 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13177 13178 if (state->dts_speculates) 13179 break; 13180 13181 if (!dtrace_buffer_consumed(buf, when)) 13182 break; 13183 13184 if (!dtrace_buffer_consumed(aggbuf, when)) 13185 break; 13186 13187 dtrace_ecb_disable(ecb); 13188 ASSERT(probe->dtpr_ecb != ecb); 13189 dtrace_ecb_destroy(ecb); 13190 } 13191 } 13192 13193 mutex_exit(&dtrace_lock); 13194 mutex_exit(&cpu_lock); 13195 } 13196 13197 /* 13198 * DTrace DOF Functions 13199 */ 13200 /*ARGSUSED*/ 13201 static void 13202 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13203 { 13204 if (dtrace_err_verbose) 13205 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13206 13207 #ifdef DTRACE_ERRDEBUG 13208 dtrace_errdebug(str); 13209 #endif 13210 } 13211 13212 /* 13213 * Create DOF out of a currently enabled state. Right now, we only create 13214 * DOF containing the run-time options -- but this could be expanded to create 13215 * complete DOF representing the enabled state. 13216 */ 13217 static dof_hdr_t * 13218 dtrace_dof_create(dtrace_state_t *state) 13219 { 13220 dof_hdr_t *dof; 13221 dof_sec_t *sec; 13222 dof_optdesc_t *opt; 13223 int i, len = sizeof (dof_hdr_t) + 13224 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13225 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13226 13227 ASSERT(MUTEX_HELD(&dtrace_lock)); 13228 13229 dof = kmem_zalloc(len, KM_SLEEP); 13230 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13231 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13232 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13233 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13234 13235 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13236 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13237 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13238 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13239 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13240 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13241 13242 dof->dofh_flags = 0; 13243 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13244 dof->dofh_secsize = sizeof (dof_sec_t); 13245 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13246 dof->dofh_secoff = sizeof (dof_hdr_t); 13247 dof->dofh_loadsz = len; 13248 dof->dofh_filesz = len; 13249 dof->dofh_pad = 0; 13250 13251 /* 13252 * Fill in the option section header... 13253 */ 13254 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13255 sec->dofs_type = DOF_SECT_OPTDESC; 13256 sec->dofs_align = sizeof (uint64_t); 13257 sec->dofs_flags = DOF_SECF_LOAD; 13258 sec->dofs_entsize = sizeof (dof_optdesc_t); 13259 13260 opt = (dof_optdesc_t *)((uintptr_t)sec + 13261 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13262 13263 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13264 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13265 13266 for (i = 0; i < DTRACEOPT_MAX; i++) { 13267 opt[i].dofo_option = i; 13268 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13269 opt[i].dofo_value = state->dts_options[i]; 13270 } 13271 13272 return (dof); 13273 } 13274 13275 static dof_hdr_t * 13276 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13277 { 13278 dof_hdr_t hdr, *dof; 13279 13280 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13281 13282 /* 13283 * First, we're going to copyin() the sizeof (dof_hdr_t). 13284 */ 13285 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13286 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13287 *errp = EFAULT; 13288 return (NULL); 13289 } 13290 13291 /* 13292 * Now we'll allocate the entire DOF and copy it in -- provided 13293 * that the length isn't outrageous. 13294 */ 13295 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13296 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13297 *errp = E2BIG; 13298 return (NULL); 13299 } 13300 13301 if (hdr.dofh_loadsz < sizeof (hdr)) { 13302 dtrace_dof_error(&hdr, "invalid load size"); 13303 *errp = EINVAL; 13304 return (NULL); 13305 } 13306 13307 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13308 13309 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13310 dof->dofh_loadsz != hdr.dofh_loadsz) { 13311 kmem_free(dof, hdr.dofh_loadsz); 13312 *errp = EFAULT; 13313 return (NULL); 13314 } 13315 13316 return (dof); 13317 } 13318 13319 #ifdef __FreeBSD__ 13320 static dof_hdr_t * 13321 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13322 { 13323 dof_hdr_t hdr, *dof; 13324 struct thread *td; 13325 size_t loadsz; 13326 13327 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13328 13329 td = curthread; 13330 13331 /* 13332 * First, we're going to copyin() the sizeof (dof_hdr_t). 13333 */ 13334 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13335 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13336 *errp = EFAULT; 13337 return (NULL); 13338 } 13339 13340 /* 13341 * Now we'll allocate the entire DOF and copy it in -- provided 13342 * that the length isn't outrageous. 13343 */ 13344 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13345 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13346 *errp = E2BIG; 13347 return (NULL); 13348 } 13349 loadsz = (size_t)hdr.dofh_loadsz; 13350 13351 if (loadsz < sizeof (hdr)) { 13352 dtrace_dof_error(&hdr, "invalid load size"); 13353 *errp = EINVAL; 13354 return (NULL); 13355 } 13356 13357 dof = kmem_alloc(loadsz, KM_SLEEP); 13358 13359 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13360 dof->dofh_loadsz != loadsz) { 13361 kmem_free(dof, hdr.dofh_loadsz); 13362 *errp = EFAULT; 13363 return (NULL); 13364 } 13365 13366 return (dof); 13367 } 13368 13369 static __inline uchar_t 13370 dtrace_dof_char(char c) 13371 { 13372 13373 switch (c) { 13374 case '0': 13375 case '1': 13376 case '2': 13377 case '3': 13378 case '4': 13379 case '5': 13380 case '6': 13381 case '7': 13382 case '8': 13383 case '9': 13384 return (c - '0'); 13385 case 'A': 13386 case 'B': 13387 case 'C': 13388 case 'D': 13389 case 'E': 13390 case 'F': 13391 return (c - 'A' + 10); 13392 case 'a': 13393 case 'b': 13394 case 'c': 13395 case 'd': 13396 case 'e': 13397 case 'f': 13398 return (c - 'a' + 10); 13399 } 13400 /* Should not reach here. */ 13401 return (UCHAR_MAX); 13402 } 13403 #endif /* __FreeBSD__ */ 13404 13405 static dof_hdr_t * 13406 dtrace_dof_property(const char *name) 13407 { 13408 #ifdef __FreeBSD__ 13409 uint8_t *dofbuf; 13410 u_char *data, *eol; 13411 caddr_t doffile; 13412 size_t bytes, len, i; 13413 dof_hdr_t *dof; 13414 u_char c1, c2; 13415 13416 dof = NULL; 13417 13418 doffile = preload_search_by_type("dtrace_dof"); 13419 if (doffile == NULL) 13420 return (NULL); 13421 13422 data = preload_fetch_addr(doffile); 13423 len = preload_fetch_size(doffile); 13424 for (;;) { 13425 /* Look for the end of the line. All lines end in a newline. */ 13426 eol = memchr(data, '\n', len); 13427 if (eol == NULL) 13428 return (NULL); 13429 13430 if (strncmp(name, data, strlen(name)) == 0) 13431 break; 13432 13433 eol++; /* skip past the newline */ 13434 len -= eol - data; 13435 data = eol; 13436 } 13437 13438 /* We've found the data corresponding to the specified key. */ 13439 13440 data += strlen(name) + 1; /* skip past the '=' */ 13441 len = eol - data; 13442 if (len % 2 != 0) { 13443 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13444 goto doferr; 13445 } 13446 bytes = len / 2; 13447 if (bytes < sizeof(dof_hdr_t)) { 13448 dtrace_dof_error(NULL, "truncated header"); 13449 goto doferr; 13450 } 13451 13452 /* 13453 * Each byte is represented by the two ASCII characters in its hex 13454 * representation. 13455 */ 13456 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13457 for (i = 0; i < bytes; i++) { 13458 c1 = dtrace_dof_char(data[i * 2]); 13459 c2 = dtrace_dof_char(data[i * 2 + 1]); 13460 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13461 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13462 goto doferr; 13463 } 13464 dofbuf[i] = c1 * 16 + c2; 13465 } 13466 13467 dof = (dof_hdr_t *)dofbuf; 13468 if (bytes < dof->dofh_loadsz) { 13469 dtrace_dof_error(NULL, "truncated DOF"); 13470 goto doferr; 13471 } 13472 13473 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13474 dtrace_dof_error(NULL, "oversized DOF"); 13475 goto doferr; 13476 } 13477 13478 return (dof); 13479 13480 doferr: 13481 free(dof, M_SOLARIS); 13482 return (NULL); 13483 #else /* __FreeBSD__ */ 13484 uchar_t *buf; 13485 uint64_t loadsz; 13486 unsigned int len, i; 13487 dof_hdr_t *dof; 13488 13489 /* 13490 * Unfortunately, array of values in .conf files are always (and 13491 * only) interpreted to be integer arrays. We must read our DOF 13492 * as an integer array, and then squeeze it into a byte array. 13493 */ 13494 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13495 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13496 return (NULL); 13497 13498 for (i = 0; i < len; i++) 13499 buf[i] = (uchar_t)(((int *)buf)[i]); 13500 13501 if (len < sizeof (dof_hdr_t)) { 13502 ddi_prop_free(buf); 13503 dtrace_dof_error(NULL, "truncated header"); 13504 return (NULL); 13505 } 13506 13507 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13508 ddi_prop_free(buf); 13509 dtrace_dof_error(NULL, "truncated DOF"); 13510 return (NULL); 13511 } 13512 13513 if (loadsz >= dtrace_dof_maxsize) { 13514 ddi_prop_free(buf); 13515 dtrace_dof_error(NULL, "oversized DOF"); 13516 return (NULL); 13517 } 13518 13519 dof = kmem_alloc(loadsz, KM_SLEEP); 13520 bcopy(buf, dof, loadsz); 13521 ddi_prop_free(buf); 13522 13523 return (dof); 13524 #endif /* !__FreeBSD__ */ 13525 } 13526 13527 static void 13528 dtrace_dof_destroy(dof_hdr_t *dof) 13529 { 13530 kmem_free(dof, dof->dofh_loadsz); 13531 } 13532 13533 /* 13534 * Return the dof_sec_t pointer corresponding to a given section index. If the 13535 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13536 * a type other than DOF_SECT_NONE is specified, the header is checked against 13537 * this type and NULL is returned if the types do not match. 13538 */ 13539 static dof_sec_t * 13540 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13541 { 13542 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13543 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13544 13545 if (i >= dof->dofh_secnum) { 13546 dtrace_dof_error(dof, "referenced section index is invalid"); 13547 return (NULL); 13548 } 13549 13550 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13551 dtrace_dof_error(dof, "referenced section is not loadable"); 13552 return (NULL); 13553 } 13554 13555 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13556 dtrace_dof_error(dof, "referenced section is the wrong type"); 13557 return (NULL); 13558 } 13559 13560 return (sec); 13561 } 13562 13563 static dtrace_probedesc_t * 13564 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13565 { 13566 dof_probedesc_t *probe; 13567 dof_sec_t *strtab; 13568 uintptr_t daddr = (uintptr_t)dof; 13569 uintptr_t str; 13570 size_t size; 13571 13572 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13573 dtrace_dof_error(dof, "invalid probe section"); 13574 return (NULL); 13575 } 13576 13577 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13578 dtrace_dof_error(dof, "bad alignment in probe description"); 13579 return (NULL); 13580 } 13581 13582 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13583 dtrace_dof_error(dof, "truncated probe description"); 13584 return (NULL); 13585 } 13586 13587 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13588 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13589 13590 if (strtab == NULL) 13591 return (NULL); 13592 13593 str = daddr + strtab->dofs_offset; 13594 size = strtab->dofs_size; 13595 13596 if (probe->dofp_provider >= strtab->dofs_size) { 13597 dtrace_dof_error(dof, "corrupt probe provider"); 13598 return (NULL); 13599 } 13600 13601 (void) strncpy(desc->dtpd_provider, 13602 (char *)(str + probe->dofp_provider), 13603 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13604 13605 if (probe->dofp_mod >= strtab->dofs_size) { 13606 dtrace_dof_error(dof, "corrupt probe module"); 13607 return (NULL); 13608 } 13609 13610 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13611 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13612 13613 if (probe->dofp_func >= strtab->dofs_size) { 13614 dtrace_dof_error(dof, "corrupt probe function"); 13615 return (NULL); 13616 } 13617 13618 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13619 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13620 13621 if (probe->dofp_name >= strtab->dofs_size) { 13622 dtrace_dof_error(dof, "corrupt probe name"); 13623 return (NULL); 13624 } 13625 13626 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13627 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13628 13629 return (desc); 13630 } 13631 13632 static dtrace_difo_t * 13633 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13634 cred_t *cr) 13635 { 13636 dtrace_difo_t *dp; 13637 size_t ttl = 0; 13638 dof_difohdr_t *dofd; 13639 uintptr_t daddr = (uintptr_t)dof; 13640 size_t max = dtrace_difo_maxsize; 13641 int i, l, n; 13642 13643 static const struct { 13644 int section; 13645 int bufoffs; 13646 int lenoffs; 13647 int entsize; 13648 int align; 13649 const char *msg; 13650 } difo[] = { 13651 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13652 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13653 sizeof (dif_instr_t), "multiple DIF sections" }, 13654 13655 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13656 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13657 sizeof (uint64_t), "multiple integer tables" }, 13658 13659 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13660 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13661 sizeof (char), "multiple string tables" }, 13662 13663 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13664 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13665 sizeof (uint_t), "multiple variable tables" }, 13666 13667 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13668 }; 13669 13670 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13671 dtrace_dof_error(dof, "invalid DIFO header section"); 13672 return (NULL); 13673 } 13674 13675 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13676 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13677 return (NULL); 13678 } 13679 13680 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13681 sec->dofs_size % sizeof (dof_secidx_t)) { 13682 dtrace_dof_error(dof, "bad size in DIFO header"); 13683 return (NULL); 13684 } 13685 13686 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13687 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13688 13689 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13690 dp->dtdo_rtype = dofd->dofd_rtype; 13691 13692 for (l = 0; l < n; l++) { 13693 dof_sec_t *subsec; 13694 void **bufp; 13695 uint32_t *lenp; 13696 13697 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13698 dofd->dofd_links[l])) == NULL) 13699 goto err; /* invalid section link */ 13700 13701 if (ttl + subsec->dofs_size > max) { 13702 dtrace_dof_error(dof, "exceeds maximum size"); 13703 goto err; 13704 } 13705 13706 ttl += subsec->dofs_size; 13707 13708 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13709 if (subsec->dofs_type != difo[i].section) 13710 continue; 13711 13712 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13713 dtrace_dof_error(dof, "section not loaded"); 13714 goto err; 13715 } 13716 13717 if (subsec->dofs_align != difo[i].align) { 13718 dtrace_dof_error(dof, "bad alignment"); 13719 goto err; 13720 } 13721 13722 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13723 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13724 13725 if (*bufp != NULL) { 13726 dtrace_dof_error(dof, difo[i].msg); 13727 goto err; 13728 } 13729 13730 if (difo[i].entsize != subsec->dofs_entsize) { 13731 dtrace_dof_error(dof, "entry size mismatch"); 13732 goto err; 13733 } 13734 13735 if (subsec->dofs_entsize != 0 && 13736 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13737 dtrace_dof_error(dof, "corrupt entry size"); 13738 goto err; 13739 } 13740 13741 *lenp = subsec->dofs_size; 13742 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13743 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13744 *bufp, subsec->dofs_size); 13745 13746 if (subsec->dofs_entsize != 0) 13747 *lenp /= subsec->dofs_entsize; 13748 13749 break; 13750 } 13751 13752 /* 13753 * If we encounter a loadable DIFO sub-section that is not 13754 * known to us, assume this is a broken program and fail. 13755 */ 13756 if (difo[i].section == DOF_SECT_NONE && 13757 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13758 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13759 goto err; 13760 } 13761 } 13762 13763 if (dp->dtdo_buf == NULL) { 13764 /* 13765 * We can't have a DIF object without DIF text. 13766 */ 13767 dtrace_dof_error(dof, "missing DIF text"); 13768 goto err; 13769 } 13770 13771 /* 13772 * Before we validate the DIF object, run through the variable table 13773 * looking for the strings -- if any of their size are under, we'll set 13774 * their size to be the system-wide default string size. Note that 13775 * this should _not_ happen if the "strsize" option has been set -- 13776 * in this case, the compiler should have set the size to reflect the 13777 * setting of the option. 13778 */ 13779 for (i = 0; i < dp->dtdo_varlen; i++) { 13780 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13781 dtrace_diftype_t *t = &v->dtdv_type; 13782 13783 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13784 continue; 13785 13786 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13787 t->dtdt_size = dtrace_strsize_default; 13788 } 13789 13790 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13791 goto err; 13792 13793 dtrace_difo_init(dp, vstate); 13794 return (dp); 13795 13796 err: 13797 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13798 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13799 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13800 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13801 13802 kmem_free(dp, sizeof (dtrace_difo_t)); 13803 return (NULL); 13804 } 13805 13806 static dtrace_predicate_t * 13807 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13808 cred_t *cr) 13809 { 13810 dtrace_difo_t *dp; 13811 13812 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13813 return (NULL); 13814 13815 return (dtrace_predicate_create(dp)); 13816 } 13817 13818 static dtrace_actdesc_t * 13819 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13820 cred_t *cr) 13821 { 13822 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13823 dof_actdesc_t *desc; 13824 dof_sec_t *difosec; 13825 size_t offs; 13826 uintptr_t daddr = (uintptr_t)dof; 13827 uint64_t arg; 13828 dtrace_actkind_t kind; 13829 13830 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13831 dtrace_dof_error(dof, "invalid action section"); 13832 return (NULL); 13833 } 13834 13835 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13836 dtrace_dof_error(dof, "truncated action description"); 13837 return (NULL); 13838 } 13839 13840 if (sec->dofs_align != sizeof (uint64_t)) { 13841 dtrace_dof_error(dof, "bad alignment in action description"); 13842 return (NULL); 13843 } 13844 13845 if (sec->dofs_size < sec->dofs_entsize) { 13846 dtrace_dof_error(dof, "section entry size exceeds total size"); 13847 return (NULL); 13848 } 13849 13850 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13851 dtrace_dof_error(dof, "bad entry size in action description"); 13852 return (NULL); 13853 } 13854 13855 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13856 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13857 return (NULL); 13858 } 13859 13860 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13861 desc = (dof_actdesc_t *)(daddr + 13862 (uintptr_t)sec->dofs_offset + offs); 13863 kind = (dtrace_actkind_t)desc->dofa_kind; 13864 13865 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13866 (kind != DTRACEACT_PRINTA || 13867 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13868 (kind == DTRACEACT_DIFEXPR && 13869 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13870 dof_sec_t *strtab; 13871 char *str, *fmt; 13872 uint64_t i; 13873 13874 /* 13875 * The argument to these actions is an index into the 13876 * DOF string table. For printf()-like actions, this 13877 * is the format string. For print(), this is the 13878 * CTF type of the expression result. 13879 */ 13880 if ((strtab = dtrace_dof_sect(dof, 13881 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13882 goto err; 13883 13884 str = (char *)((uintptr_t)dof + 13885 (uintptr_t)strtab->dofs_offset); 13886 13887 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13888 if (str[i] == '\0') 13889 break; 13890 } 13891 13892 if (i >= strtab->dofs_size) { 13893 dtrace_dof_error(dof, "bogus format string"); 13894 goto err; 13895 } 13896 13897 if (i == desc->dofa_arg) { 13898 dtrace_dof_error(dof, "empty format string"); 13899 goto err; 13900 } 13901 13902 i -= desc->dofa_arg; 13903 fmt = kmem_alloc(i + 1, KM_SLEEP); 13904 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13905 arg = (uint64_t)(uintptr_t)fmt; 13906 } else { 13907 if (kind == DTRACEACT_PRINTA) { 13908 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13909 arg = 0; 13910 } else { 13911 arg = desc->dofa_arg; 13912 } 13913 } 13914 13915 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13916 desc->dofa_uarg, arg); 13917 13918 if (last != NULL) { 13919 last->dtad_next = act; 13920 } else { 13921 first = act; 13922 } 13923 13924 last = act; 13925 13926 if (desc->dofa_difo == DOF_SECIDX_NONE) 13927 continue; 13928 13929 if ((difosec = dtrace_dof_sect(dof, 13930 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13931 goto err; 13932 13933 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13934 13935 if (act->dtad_difo == NULL) 13936 goto err; 13937 } 13938 13939 ASSERT(first != NULL); 13940 return (first); 13941 13942 err: 13943 for (act = first; act != NULL; act = next) { 13944 next = act->dtad_next; 13945 dtrace_actdesc_release(act, vstate); 13946 } 13947 13948 return (NULL); 13949 } 13950 13951 static dtrace_ecbdesc_t * 13952 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13953 cred_t *cr) 13954 { 13955 dtrace_ecbdesc_t *ep; 13956 dof_ecbdesc_t *ecb; 13957 dtrace_probedesc_t *desc; 13958 dtrace_predicate_t *pred = NULL; 13959 13960 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13961 dtrace_dof_error(dof, "truncated ECB description"); 13962 return (NULL); 13963 } 13964 13965 if (sec->dofs_align != sizeof (uint64_t)) { 13966 dtrace_dof_error(dof, "bad alignment in ECB description"); 13967 return (NULL); 13968 } 13969 13970 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13971 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13972 13973 if (sec == NULL) 13974 return (NULL); 13975 13976 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13977 ep->dted_uarg = ecb->dofe_uarg; 13978 desc = &ep->dted_probe; 13979 13980 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13981 goto err; 13982 13983 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13984 if ((sec = dtrace_dof_sect(dof, 13985 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13986 goto err; 13987 13988 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13989 goto err; 13990 13991 ep->dted_pred.dtpdd_predicate = pred; 13992 } 13993 13994 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13995 if ((sec = dtrace_dof_sect(dof, 13996 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13997 goto err; 13998 13999 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 14000 14001 if (ep->dted_action == NULL) 14002 goto err; 14003 } 14004 14005 return (ep); 14006 14007 err: 14008 if (pred != NULL) 14009 dtrace_predicate_release(pred, vstate); 14010 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14011 return (NULL); 14012 } 14013 14014 /* 14015 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14016 * specified DOF. SETX relocations are computed using 'ubase', the base load 14017 * address of the object containing the DOF, and DOFREL relocations are relative 14018 * to the relocation offset within the DOF. 14019 */ 14020 static int 14021 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14022 uint64_t udaddr) 14023 { 14024 uintptr_t daddr = (uintptr_t)dof; 14025 uintptr_t ts_end; 14026 dof_relohdr_t *dofr = 14027 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14028 dof_sec_t *ss, *rs, *ts; 14029 dof_relodesc_t *r; 14030 uint_t i, n; 14031 14032 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14033 sec->dofs_align != sizeof (dof_secidx_t)) { 14034 dtrace_dof_error(dof, "invalid relocation header"); 14035 return (-1); 14036 } 14037 14038 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14039 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14040 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14041 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14042 14043 if (ss == NULL || rs == NULL || ts == NULL) 14044 return (-1); /* dtrace_dof_error() has been called already */ 14045 14046 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14047 rs->dofs_align != sizeof (uint64_t)) { 14048 dtrace_dof_error(dof, "invalid relocation section"); 14049 return (-1); 14050 } 14051 14052 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14053 n = rs->dofs_size / rs->dofs_entsize; 14054 14055 for (i = 0; i < n; i++) { 14056 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14057 14058 switch (r->dofr_type) { 14059 case DOF_RELO_NONE: 14060 break; 14061 case DOF_RELO_SETX: 14062 case DOF_RELO_DOFREL: 14063 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14064 sizeof (uint64_t) > ts->dofs_size) { 14065 dtrace_dof_error(dof, "bad relocation offset"); 14066 return (-1); 14067 } 14068 14069 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14070 dtrace_dof_error(dof, "bad relocation offset"); 14071 return (-1); 14072 } 14073 14074 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14075 dtrace_dof_error(dof, "misaligned setx relo"); 14076 return (-1); 14077 } 14078 14079 if (r->dofr_type == DOF_RELO_SETX) 14080 *(uint64_t *)taddr += ubase; 14081 else 14082 *(uint64_t *)taddr += 14083 udaddr + ts->dofs_offset + r->dofr_offset; 14084 break; 14085 default: 14086 dtrace_dof_error(dof, "invalid relocation type"); 14087 return (-1); 14088 } 14089 14090 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14091 } 14092 14093 return (0); 14094 } 14095 14096 /* 14097 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14098 * header: it should be at the front of a memory region that is at least 14099 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14100 * size. It need not be validated in any other way. 14101 */ 14102 static int 14103 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14104 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14105 { 14106 uint64_t len = dof->dofh_loadsz, seclen; 14107 uintptr_t daddr = (uintptr_t)dof; 14108 dtrace_ecbdesc_t *ep; 14109 dtrace_enabling_t *enab; 14110 uint_t i; 14111 14112 ASSERT(MUTEX_HELD(&dtrace_lock)); 14113 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14114 14115 /* 14116 * Check the DOF header identification bytes. In addition to checking 14117 * valid settings, we also verify that unused bits/bytes are zeroed so 14118 * we can use them later without fear of regressing existing binaries. 14119 */ 14120 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14121 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14122 dtrace_dof_error(dof, "DOF magic string mismatch"); 14123 return (-1); 14124 } 14125 14126 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14127 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14128 dtrace_dof_error(dof, "DOF has invalid data model"); 14129 return (-1); 14130 } 14131 14132 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14133 dtrace_dof_error(dof, "DOF encoding mismatch"); 14134 return (-1); 14135 } 14136 14137 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14138 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14139 dtrace_dof_error(dof, "DOF version mismatch"); 14140 return (-1); 14141 } 14142 14143 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14144 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14145 return (-1); 14146 } 14147 14148 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14149 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14150 return (-1); 14151 } 14152 14153 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14154 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14155 return (-1); 14156 } 14157 14158 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14159 if (dof->dofh_ident[i] != 0) { 14160 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14161 return (-1); 14162 } 14163 } 14164 14165 if (dof->dofh_flags & ~DOF_FL_VALID) { 14166 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14167 return (-1); 14168 } 14169 14170 if (dof->dofh_secsize == 0) { 14171 dtrace_dof_error(dof, "zero section header size"); 14172 return (-1); 14173 } 14174 14175 /* 14176 * Check that the section headers don't exceed the amount of DOF 14177 * data. Note that we cast the section size and number of sections 14178 * to uint64_t's to prevent possible overflow in the multiplication. 14179 */ 14180 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14181 14182 if (dof->dofh_secoff > len || seclen > len || 14183 dof->dofh_secoff + seclen > len) { 14184 dtrace_dof_error(dof, "truncated section headers"); 14185 return (-1); 14186 } 14187 14188 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14189 dtrace_dof_error(dof, "misaligned section headers"); 14190 return (-1); 14191 } 14192 14193 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14194 dtrace_dof_error(dof, "misaligned section size"); 14195 return (-1); 14196 } 14197 14198 /* 14199 * Take an initial pass through the section headers to be sure that 14200 * the headers don't have stray offsets. If the 'noprobes' flag is 14201 * set, do not permit sections relating to providers, probes, or args. 14202 */ 14203 for (i = 0; i < dof->dofh_secnum; i++) { 14204 dof_sec_t *sec = (dof_sec_t *)(daddr + 14205 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14206 14207 if (noprobes) { 14208 switch (sec->dofs_type) { 14209 case DOF_SECT_PROVIDER: 14210 case DOF_SECT_PROBES: 14211 case DOF_SECT_PRARGS: 14212 case DOF_SECT_PROFFS: 14213 dtrace_dof_error(dof, "illegal sections " 14214 "for enabling"); 14215 return (-1); 14216 } 14217 } 14218 14219 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14220 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14221 dtrace_dof_error(dof, "loadable section with load " 14222 "flag unset"); 14223 return (-1); 14224 } 14225 14226 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14227 continue; /* just ignore non-loadable sections */ 14228 14229 if (!ISP2(sec->dofs_align)) { 14230 dtrace_dof_error(dof, "bad section alignment"); 14231 return (-1); 14232 } 14233 14234 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14235 dtrace_dof_error(dof, "misaligned section"); 14236 return (-1); 14237 } 14238 14239 if (sec->dofs_offset > len || sec->dofs_size > len || 14240 sec->dofs_offset + sec->dofs_size > len) { 14241 dtrace_dof_error(dof, "corrupt section header"); 14242 return (-1); 14243 } 14244 14245 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14246 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14247 dtrace_dof_error(dof, "non-terminating string table"); 14248 return (-1); 14249 } 14250 } 14251 14252 /* 14253 * Take a second pass through the sections and locate and perform any 14254 * relocations that are present. We do this after the first pass to 14255 * be sure that all sections have had their headers validated. 14256 */ 14257 for (i = 0; i < dof->dofh_secnum; i++) { 14258 dof_sec_t *sec = (dof_sec_t *)(daddr + 14259 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14260 14261 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14262 continue; /* skip sections that are not loadable */ 14263 14264 switch (sec->dofs_type) { 14265 case DOF_SECT_URELHDR: 14266 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14267 return (-1); 14268 break; 14269 } 14270 } 14271 14272 if ((enab = *enabp) == NULL) 14273 enab = *enabp = dtrace_enabling_create(vstate); 14274 14275 for (i = 0; i < dof->dofh_secnum; i++) { 14276 dof_sec_t *sec = (dof_sec_t *)(daddr + 14277 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14278 14279 if (sec->dofs_type != DOF_SECT_ECBDESC) 14280 continue; 14281 14282 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14283 dtrace_enabling_destroy(enab); 14284 *enabp = NULL; 14285 return (-1); 14286 } 14287 14288 dtrace_enabling_add(enab, ep); 14289 } 14290 14291 return (0); 14292 } 14293 14294 /* 14295 * Process DOF for any options. This routine assumes that the DOF has been 14296 * at least processed by dtrace_dof_slurp(). 14297 */ 14298 static int 14299 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14300 { 14301 int i, rval; 14302 uint32_t entsize; 14303 size_t offs; 14304 dof_optdesc_t *desc; 14305 14306 for (i = 0; i < dof->dofh_secnum; i++) { 14307 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14308 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14309 14310 if (sec->dofs_type != DOF_SECT_OPTDESC) 14311 continue; 14312 14313 if (sec->dofs_align != sizeof (uint64_t)) { 14314 dtrace_dof_error(dof, "bad alignment in " 14315 "option description"); 14316 return (EINVAL); 14317 } 14318 14319 if ((entsize = sec->dofs_entsize) == 0) { 14320 dtrace_dof_error(dof, "zeroed option entry size"); 14321 return (EINVAL); 14322 } 14323 14324 if (entsize < sizeof (dof_optdesc_t)) { 14325 dtrace_dof_error(dof, "bad option entry size"); 14326 return (EINVAL); 14327 } 14328 14329 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14330 desc = (dof_optdesc_t *)((uintptr_t)dof + 14331 (uintptr_t)sec->dofs_offset + offs); 14332 14333 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14334 dtrace_dof_error(dof, "non-zero option string"); 14335 return (EINVAL); 14336 } 14337 14338 if (desc->dofo_value == DTRACEOPT_UNSET) { 14339 dtrace_dof_error(dof, "unset option"); 14340 return (EINVAL); 14341 } 14342 14343 if ((rval = dtrace_state_option(state, 14344 desc->dofo_option, desc->dofo_value)) != 0) { 14345 dtrace_dof_error(dof, "rejected option"); 14346 return (rval); 14347 } 14348 } 14349 } 14350 14351 return (0); 14352 } 14353 14354 /* 14355 * DTrace Consumer State Functions 14356 */ 14357 static int 14358 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14359 { 14360 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14361 void *base; 14362 uintptr_t limit; 14363 dtrace_dynvar_t *dvar, *next, *start; 14364 int i; 14365 14366 ASSERT(MUTEX_HELD(&dtrace_lock)); 14367 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14368 14369 bzero(dstate, sizeof (dtrace_dstate_t)); 14370 14371 if ((dstate->dtds_chunksize = chunksize) == 0) 14372 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14373 14374 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14375 14376 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14377 size = min; 14378 14379 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14380 return (ENOMEM); 14381 14382 dstate->dtds_size = size; 14383 dstate->dtds_base = base; 14384 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14385 bzero(dstate->dtds_percpu, 14386 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t)); 14387 14388 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14389 14390 if (hashsize != 1 && (hashsize & 1)) 14391 hashsize--; 14392 14393 dstate->dtds_hashsize = hashsize; 14394 dstate->dtds_hash = dstate->dtds_base; 14395 14396 /* 14397 * Set all of our hash buckets to point to the single sink, and (if 14398 * it hasn't already been set), set the sink's hash value to be the 14399 * sink sentinel value. The sink is needed for dynamic variable 14400 * lookups to know that they have iterated over an entire, valid hash 14401 * chain. 14402 */ 14403 for (i = 0; i < hashsize; i++) 14404 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14405 14406 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14407 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14408 14409 /* 14410 * Determine number of active CPUs. Divide free list evenly among 14411 * active CPUs. 14412 */ 14413 start = (dtrace_dynvar_t *) 14414 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14415 limit = (uintptr_t)base + size; 14416 14417 VERIFY((uintptr_t)start < limit); 14418 VERIFY((uintptr_t)start >= (uintptr_t)base); 14419 14420 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1); 14421 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14422 14423 CPU_FOREACH(i) { 14424 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14425 14426 /* 14427 * If we don't even have enough chunks to make it once through 14428 * NCPUs, we're just going to allocate everything to the first 14429 * CPU. And if we're on the last CPU, we're going to allocate 14430 * whatever is left over. In either case, we set the limit to 14431 * be the limit of the dynamic variable space. 14432 */ 14433 if (maxper == 0 || i == mp_maxid) { 14434 limit = (uintptr_t)base + size; 14435 start = NULL; 14436 } else { 14437 limit = (uintptr_t)start + maxper; 14438 start = (dtrace_dynvar_t *)limit; 14439 } 14440 14441 VERIFY(limit <= (uintptr_t)base + size); 14442 14443 for (;;) { 14444 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14445 dstate->dtds_chunksize); 14446 14447 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14448 break; 14449 14450 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14451 (uintptr_t)dvar <= (uintptr_t)base + size); 14452 dvar->dtdv_next = next; 14453 dvar = next; 14454 } 14455 14456 if (maxper == 0) 14457 break; 14458 } 14459 14460 return (0); 14461 } 14462 14463 static void 14464 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14465 { 14466 ASSERT(MUTEX_HELD(&cpu_lock)); 14467 14468 if (dstate->dtds_base == NULL) 14469 return; 14470 14471 kmem_free(dstate->dtds_base, dstate->dtds_size); 14472 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14473 } 14474 14475 static void 14476 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14477 { 14478 /* 14479 * Logical XOR, where are you? 14480 */ 14481 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14482 14483 if (vstate->dtvs_nglobals > 0) { 14484 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14485 sizeof (dtrace_statvar_t *)); 14486 } 14487 14488 if (vstate->dtvs_ntlocals > 0) { 14489 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14490 sizeof (dtrace_difv_t)); 14491 } 14492 14493 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14494 14495 if (vstate->dtvs_nlocals > 0) { 14496 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14497 sizeof (dtrace_statvar_t *)); 14498 } 14499 } 14500 14501 #ifdef illumos 14502 static void 14503 dtrace_state_clean(dtrace_state_t *state) 14504 { 14505 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14506 return; 14507 14508 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14509 dtrace_speculation_clean(state); 14510 } 14511 14512 static void 14513 dtrace_state_deadman(dtrace_state_t *state) 14514 { 14515 hrtime_t now; 14516 14517 dtrace_sync(); 14518 14519 now = dtrace_gethrtime(); 14520 14521 if (state != dtrace_anon.dta_state && 14522 now - state->dts_laststatus >= dtrace_deadman_user) 14523 return; 14524 14525 /* 14526 * We must be sure that dts_alive never appears to be less than the 14527 * value upon entry to dtrace_state_deadman(), and because we lack a 14528 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14529 * store INT64_MAX to it, followed by a memory barrier, followed by 14530 * the new value. This assures that dts_alive never appears to be 14531 * less than its true value, regardless of the order in which the 14532 * stores to the underlying storage are issued. 14533 */ 14534 state->dts_alive = INT64_MAX; 14535 dtrace_membar_producer(); 14536 state->dts_alive = now; 14537 } 14538 #else /* !illumos */ 14539 static void 14540 dtrace_state_clean(void *arg) 14541 { 14542 dtrace_state_t *state = arg; 14543 dtrace_optval_t *opt = state->dts_options; 14544 14545 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14546 return; 14547 14548 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14549 dtrace_speculation_clean(state); 14550 14551 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14552 dtrace_state_clean, state); 14553 } 14554 14555 static void 14556 dtrace_state_deadman(void *arg) 14557 { 14558 dtrace_state_t *state = arg; 14559 hrtime_t now; 14560 14561 dtrace_sync(); 14562 14563 dtrace_debug_output(); 14564 14565 now = dtrace_gethrtime(); 14566 14567 if (state != dtrace_anon.dta_state && 14568 now - state->dts_laststatus >= dtrace_deadman_user) 14569 return; 14570 14571 /* 14572 * We must be sure that dts_alive never appears to be less than the 14573 * value upon entry to dtrace_state_deadman(), and because we lack a 14574 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14575 * store INT64_MAX to it, followed by a memory barrier, followed by 14576 * the new value. This assures that dts_alive never appears to be 14577 * less than its true value, regardless of the order in which the 14578 * stores to the underlying storage are issued. 14579 */ 14580 state->dts_alive = INT64_MAX; 14581 dtrace_membar_producer(); 14582 state->dts_alive = now; 14583 14584 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14585 dtrace_state_deadman, state); 14586 } 14587 #endif /* illumos */ 14588 14589 static dtrace_state_t * 14590 #ifdef illumos 14591 dtrace_state_create(dev_t *devp, cred_t *cr) 14592 #else 14593 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14594 #endif 14595 { 14596 #ifdef illumos 14597 minor_t minor; 14598 major_t major; 14599 #else 14600 cred_t *cr = NULL; 14601 int m = 0; 14602 #endif 14603 char c[30]; 14604 dtrace_state_t *state; 14605 dtrace_optval_t *opt; 14606 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i; 14607 int cpu_it; 14608 14609 ASSERT(MUTEX_HELD(&dtrace_lock)); 14610 ASSERT(MUTEX_HELD(&cpu_lock)); 14611 14612 #ifdef illumos 14613 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14614 VM_BESTFIT | VM_SLEEP); 14615 14616 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14617 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14618 return (NULL); 14619 } 14620 14621 state = ddi_get_soft_state(dtrace_softstate, minor); 14622 #else 14623 if (dev != NULL) { 14624 cr = dev->si_cred; 14625 m = dev2unit(dev); 14626 } 14627 14628 /* Allocate memory for the state. */ 14629 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14630 #endif 14631 14632 state->dts_epid = DTRACE_EPIDNONE + 1; 14633 14634 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14635 #ifdef illumos 14636 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14637 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14638 14639 if (devp != NULL) { 14640 major = getemajor(*devp); 14641 } else { 14642 major = ddi_driver_major(dtrace_devi); 14643 } 14644 14645 state->dts_dev = makedevice(major, minor); 14646 14647 if (devp != NULL) 14648 *devp = state->dts_dev; 14649 #else 14650 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14651 state->dts_dev = dev; 14652 #endif 14653 14654 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14655 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14656 14657 /* 14658 * Allocate and initialise the per-process per-CPU random state. 14659 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14660 * assumed to be seeded at this point (if from Fortuna seed file). 14661 */ 14662 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14663 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) { 14664 /* 14665 * Each CPU is assigned a 2^64 period, non-overlapping 14666 * subsequence. 14667 */ 14668 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1], 14669 state->dts_rstate[cpu_it]); 14670 } 14671 14672 #ifdef illumos 14673 state->dts_cleaner = CYCLIC_NONE; 14674 state->dts_deadman = CYCLIC_NONE; 14675 #else 14676 callout_init(&state->dts_cleaner, 1); 14677 callout_init(&state->dts_deadman, 1); 14678 #endif 14679 state->dts_vstate.dtvs_state = state; 14680 14681 for (i = 0; i < DTRACEOPT_MAX; i++) 14682 state->dts_options[i] = DTRACEOPT_UNSET; 14683 14684 /* 14685 * Set the default options. 14686 */ 14687 opt = state->dts_options; 14688 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14689 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14690 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14691 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14692 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14693 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14694 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14695 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14696 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14697 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14698 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14699 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14700 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14701 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14702 14703 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14704 14705 /* 14706 * Depending on the user credentials, we set flag bits which alter probe 14707 * visibility or the amount of destructiveness allowed. In the case of 14708 * actual anonymous tracing, or the possession of all privileges, all of 14709 * the normal checks are bypassed. 14710 */ 14711 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14712 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14713 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14714 } else { 14715 /* 14716 * Set up the credentials for this instantiation. We take a 14717 * hold on the credential to prevent it from disappearing on 14718 * us; this in turn prevents the zone_t referenced by this 14719 * credential from disappearing. This means that we can 14720 * examine the credential and the zone from probe context. 14721 */ 14722 crhold(cr); 14723 state->dts_cred.dcr_cred = cr; 14724 14725 /* 14726 * CRA_PROC means "we have *some* privilege for dtrace" and 14727 * unlocks the use of variables like pid, zonename, etc. 14728 */ 14729 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14730 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14731 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14732 } 14733 14734 /* 14735 * dtrace_user allows use of syscall and profile providers. 14736 * If the user also has proc_owner and/or proc_zone, we 14737 * extend the scope to include additional visibility and 14738 * destructive power. 14739 */ 14740 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14741 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14742 state->dts_cred.dcr_visible |= 14743 DTRACE_CRV_ALLPROC; 14744 14745 state->dts_cred.dcr_action |= 14746 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14747 } 14748 14749 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14750 state->dts_cred.dcr_visible |= 14751 DTRACE_CRV_ALLZONE; 14752 14753 state->dts_cred.dcr_action |= 14754 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14755 } 14756 14757 /* 14758 * If we have all privs in whatever zone this is, 14759 * we can do destructive things to processes which 14760 * have altered credentials. 14761 */ 14762 #ifdef illumos 14763 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14764 cr->cr_zone->zone_privset)) { 14765 state->dts_cred.dcr_action |= 14766 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14767 } 14768 #endif 14769 } 14770 14771 /* 14772 * Holding the dtrace_kernel privilege also implies that 14773 * the user has the dtrace_user privilege from a visibility 14774 * perspective. But without further privileges, some 14775 * destructive actions are not available. 14776 */ 14777 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14778 /* 14779 * Make all probes in all zones visible. However, 14780 * this doesn't mean that all actions become available 14781 * to all zones. 14782 */ 14783 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14784 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14785 14786 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14787 DTRACE_CRA_PROC; 14788 /* 14789 * Holding proc_owner means that destructive actions 14790 * for *this* zone are allowed. 14791 */ 14792 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14793 state->dts_cred.dcr_action |= 14794 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14795 14796 /* 14797 * Holding proc_zone means that destructive actions 14798 * for this user/group ID in all zones is allowed. 14799 */ 14800 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14801 state->dts_cred.dcr_action |= 14802 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14803 14804 #ifdef illumos 14805 /* 14806 * If we have all privs in whatever zone this is, 14807 * we can do destructive things to processes which 14808 * have altered credentials. 14809 */ 14810 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14811 cr->cr_zone->zone_privset)) { 14812 state->dts_cred.dcr_action |= 14813 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14814 } 14815 #endif 14816 } 14817 14818 /* 14819 * Holding the dtrace_proc privilege gives control over fasttrap 14820 * and pid providers. We need to grant wider destructive 14821 * privileges in the event that the user has proc_owner and/or 14822 * proc_zone. 14823 */ 14824 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14825 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14826 state->dts_cred.dcr_action |= 14827 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14828 14829 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14830 state->dts_cred.dcr_action |= 14831 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14832 } 14833 } 14834 14835 return (state); 14836 } 14837 14838 static int 14839 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14840 { 14841 dtrace_optval_t *opt = state->dts_options, size; 14842 processorid_t cpu = 0; 14843 int flags = 0, rval, factor, divisor = 1; 14844 14845 ASSERT(MUTEX_HELD(&dtrace_lock)); 14846 ASSERT(MUTEX_HELD(&cpu_lock)); 14847 ASSERT(which < DTRACEOPT_MAX); 14848 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14849 (state == dtrace_anon.dta_state && 14850 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14851 14852 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14853 return (0); 14854 14855 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14856 cpu = opt[DTRACEOPT_CPU]; 14857 14858 if (which == DTRACEOPT_SPECSIZE) 14859 flags |= DTRACEBUF_NOSWITCH; 14860 14861 if (which == DTRACEOPT_BUFSIZE) { 14862 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14863 flags |= DTRACEBUF_RING; 14864 14865 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14866 flags |= DTRACEBUF_FILL; 14867 14868 if (state != dtrace_anon.dta_state || 14869 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14870 flags |= DTRACEBUF_INACTIVE; 14871 } 14872 14873 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14874 /* 14875 * The size must be 8-byte aligned. If the size is not 8-byte 14876 * aligned, drop it down by the difference. 14877 */ 14878 if (size & (sizeof (uint64_t) - 1)) 14879 size -= size & (sizeof (uint64_t) - 1); 14880 14881 if (size < state->dts_reserve) { 14882 /* 14883 * Buffers always must be large enough to accommodate 14884 * their prereserved space. We return E2BIG instead 14885 * of ENOMEM in this case to allow for user-level 14886 * software to differentiate the cases. 14887 */ 14888 return (E2BIG); 14889 } 14890 14891 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14892 14893 if (rval != ENOMEM) { 14894 opt[which] = size; 14895 return (rval); 14896 } 14897 14898 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14899 return (rval); 14900 14901 for (divisor = 2; divisor < factor; divisor <<= 1) 14902 continue; 14903 } 14904 14905 return (ENOMEM); 14906 } 14907 14908 static int 14909 dtrace_state_buffers(dtrace_state_t *state) 14910 { 14911 dtrace_speculation_t *spec = state->dts_speculations; 14912 int rval, i; 14913 14914 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14915 DTRACEOPT_BUFSIZE)) != 0) 14916 return (rval); 14917 14918 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14919 DTRACEOPT_AGGSIZE)) != 0) 14920 return (rval); 14921 14922 for (i = 0; i < state->dts_nspeculations; i++) { 14923 if ((rval = dtrace_state_buffer(state, 14924 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14925 return (rval); 14926 } 14927 14928 return (0); 14929 } 14930 14931 static void 14932 dtrace_state_prereserve(dtrace_state_t *state) 14933 { 14934 dtrace_ecb_t *ecb; 14935 dtrace_probe_t *probe; 14936 14937 state->dts_reserve = 0; 14938 14939 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14940 return; 14941 14942 /* 14943 * If our buffer policy is a "fill" buffer policy, we need to set the 14944 * prereserved space to be the space required by the END probes. 14945 */ 14946 probe = dtrace_probes[dtrace_probeid_end - 1]; 14947 ASSERT(probe != NULL); 14948 14949 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14950 if (ecb->dte_state != state) 14951 continue; 14952 14953 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14954 } 14955 } 14956 14957 static int 14958 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14959 { 14960 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14961 dtrace_speculation_t *spec; 14962 dtrace_buffer_t *buf; 14963 #ifdef illumos 14964 cyc_handler_t hdlr; 14965 cyc_time_t when; 14966 #endif 14967 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 14968 dtrace_icookie_t cookie; 14969 14970 mutex_enter(&cpu_lock); 14971 mutex_enter(&dtrace_lock); 14972 14973 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14974 rval = EBUSY; 14975 goto out; 14976 } 14977 14978 /* 14979 * Before we can perform any checks, we must prime all of the 14980 * retained enablings that correspond to this state. 14981 */ 14982 dtrace_enabling_prime(state); 14983 14984 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14985 rval = EACCES; 14986 goto out; 14987 } 14988 14989 dtrace_state_prereserve(state); 14990 14991 /* 14992 * Now we want to do is try to allocate our speculations. 14993 * We do not automatically resize the number of speculations; if 14994 * this fails, we will fail the operation. 14995 */ 14996 nspec = opt[DTRACEOPT_NSPEC]; 14997 ASSERT(nspec != DTRACEOPT_UNSET); 14998 14999 if (nspec > INT_MAX) { 15000 rval = ENOMEM; 15001 goto out; 15002 } 15003 15004 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15005 KM_NOSLEEP | KM_NORMALPRI); 15006 15007 if (spec == NULL) { 15008 rval = ENOMEM; 15009 goto out; 15010 } 15011 15012 state->dts_speculations = spec; 15013 state->dts_nspeculations = (int)nspec; 15014 15015 for (i = 0; i < nspec; i++) { 15016 if ((buf = kmem_zalloc(bufsize, 15017 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15018 rval = ENOMEM; 15019 goto err; 15020 } 15021 15022 spec[i].dtsp_buffer = buf; 15023 } 15024 15025 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15026 if (dtrace_anon.dta_state == NULL) { 15027 rval = ENOENT; 15028 goto out; 15029 } 15030 15031 if (state->dts_necbs != 0) { 15032 rval = EALREADY; 15033 goto out; 15034 } 15035 15036 state->dts_anon = dtrace_anon_grab(); 15037 ASSERT(state->dts_anon != NULL); 15038 state = state->dts_anon; 15039 15040 /* 15041 * We want "grabanon" to be set in the grabbed state, so we'll 15042 * copy that option value from the grabbing state into the 15043 * grabbed state. 15044 */ 15045 state->dts_options[DTRACEOPT_GRABANON] = 15046 opt[DTRACEOPT_GRABANON]; 15047 15048 *cpu = dtrace_anon.dta_beganon; 15049 15050 /* 15051 * If the anonymous state is active (as it almost certainly 15052 * is if the anonymous enabling ultimately matched anything), 15053 * we don't allow any further option processing -- but we 15054 * don't return failure. 15055 */ 15056 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15057 goto out; 15058 } 15059 15060 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15061 opt[DTRACEOPT_AGGSIZE] != 0) { 15062 if (state->dts_aggregations == NULL) { 15063 /* 15064 * We're not going to create an aggregation buffer 15065 * because we don't have any ECBs that contain 15066 * aggregations -- set this option to 0. 15067 */ 15068 opt[DTRACEOPT_AGGSIZE] = 0; 15069 } else { 15070 /* 15071 * If we have an aggregation buffer, we must also have 15072 * a buffer to use as scratch. 15073 */ 15074 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15075 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15076 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15077 } 15078 } 15079 } 15080 15081 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15082 opt[DTRACEOPT_SPECSIZE] != 0) { 15083 if (!state->dts_speculates) { 15084 /* 15085 * We're not going to create speculation buffers 15086 * because we don't have any ECBs that actually 15087 * speculate -- set the speculation size to 0. 15088 */ 15089 opt[DTRACEOPT_SPECSIZE] = 0; 15090 } 15091 } 15092 15093 /* 15094 * The bare minimum size for any buffer that we're actually going to 15095 * do anything to is sizeof (uint64_t). 15096 */ 15097 sz = sizeof (uint64_t); 15098 15099 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15100 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15101 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15102 /* 15103 * A buffer size has been explicitly set to 0 (or to a size 15104 * that will be adjusted to 0) and we need the space -- we 15105 * need to return failure. We return ENOSPC to differentiate 15106 * it from failing to allocate a buffer due to failure to meet 15107 * the reserve (for which we return E2BIG). 15108 */ 15109 rval = ENOSPC; 15110 goto out; 15111 } 15112 15113 if ((rval = dtrace_state_buffers(state)) != 0) 15114 goto err; 15115 15116 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15117 sz = dtrace_dstate_defsize; 15118 15119 do { 15120 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15121 15122 if (rval == 0) 15123 break; 15124 15125 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15126 goto err; 15127 } while (sz >>= 1); 15128 15129 opt[DTRACEOPT_DYNVARSIZE] = sz; 15130 15131 if (rval != 0) 15132 goto err; 15133 15134 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15135 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15136 15137 if (opt[DTRACEOPT_CLEANRATE] == 0) 15138 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15139 15140 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15141 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15142 15143 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15145 15146 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15147 #ifdef illumos 15148 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15149 hdlr.cyh_arg = state; 15150 hdlr.cyh_level = CY_LOW_LEVEL; 15151 15152 when.cyt_when = 0; 15153 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15154 15155 state->dts_cleaner = cyclic_add(&hdlr, &when); 15156 15157 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15158 hdlr.cyh_arg = state; 15159 hdlr.cyh_level = CY_LOW_LEVEL; 15160 15161 when.cyt_when = 0; 15162 when.cyt_interval = dtrace_deadman_interval; 15163 15164 state->dts_deadman = cyclic_add(&hdlr, &when); 15165 #else 15166 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15167 dtrace_state_clean, state); 15168 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15169 dtrace_state_deadman, state); 15170 #endif 15171 15172 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15173 15174 #ifdef illumos 15175 if (state->dts_getf != 0 && 15176 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15177 /* 15178 * We don't have kernel privs but we have at least one call 15179 * to getf(); we need to bump our zone's count, and (if 15180 * this is the first enabling to have an unprivileged call 15181 * to getf()) we need to hook into closef(). 15182 */ 15183 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15184 15185 if (dtrace_getf++ == 0) { 15186 ASSERT(dtrace_closef == NULL); 15187 dtrace_closef = dtrace_getf_barrier; 15188 } 15189 } 15190 #endif 15191 15192 /* 15193 * Now it's time to actually fire the BEGIN probe. We need to disable 15194 * interrupts here both to record the CPU on which we fired the BEGIN 15195 * probe (the data from this CPU will be processed first at user 15196 * level) and to manually activate the buffer for this CPU. 15197 */ 15198 cookie = dtrace_interrupt_disable(); 15199 *cpu = curcpu; 15200 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15201 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15202 15203 dtrace_probe(dtrace_probeid_begin, 15204 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15205 dtrace_interrupt_enable(cookie); 15206 /* 15207 * We may have had an exit action from a BEGIN probe; only change our 15208 * state to ACTIVE if we're still in WARMUP. 15209 */ 15210 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15211 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15212 15213 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15214 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15215 15216 #ifdef __FreeBSD__ 15217 /* 15218 * We enable anonymous tracing before APs are started, so we must 15219 * activate buffers using the current CPU. 15220 */ 15221 if (state == dtrace_anon.dta_state) { 15222 CPU_FOREACH(i) 15223 dtrace_buffer_activate_cpu(state, i); 15224 } else 15225 dtrace_xcall(DTRACE_CPUALL, 15226 (dtrace_xcall_t)dtrace_buffer_activate, state); 15227 #else 15228 /* 15229 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15230 * want each CPU to transition its principal buffer out of the 15231 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15232 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15233 * atomically transition from processing none of a state's ECBs to 15234 * processing all of them. 15235 */ 15236 dtrace_xcall(DTRACE_CPUALL, 15237 (dtrace_xcall_t)dtrace_buffer_activate, state); 15238 #endif 15239 goto out; 15240 15241 err: 15242 dtrace_buffer_free(state->dts_buffer); 15243 dtrace_buffer_free(state->dts_aggbuffer); 15244 15245 if ((nspec = state->dts_nspeculations) == 0) { 15246 ASSERT(state->dts_speculations == NULL); 15247 goto out; 15248 } 15249 15250 spec = state->dts_speculations; 15251 ASSERT(spec != NULL); 15252 15253 for (i = 0; i < state->dts_nspeculations; i++) { 15254 if ((buf = spec[i].dtsp_buffer) == NULL) 15255 break; 15256 15257 dtrace_buffer_free(buf); 15258 kmem_free(buf, bufsize); 15259 } 15260 15261 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15262 state->dts_nspeculations = 0; 15263 state->dts_speculations = NULL; 15264 15265 out: 15266 mutex_exit(&dtrace_lock); 15267 mutex_exit(&cpu_lock); 15268 15269 return (rval); 15270 } 15271 15272 static int 15273 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15274 { 15275 dtrace_icookie_t cookie; 15276 15277 ASSERT(MUTEX_HELD(&dtrace_lock)); 15278 15279 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15280 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15281 return (EINVAL); 15282 15283 /* 15284 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15285 * to be sure that every CPU has seen it. See below for the details 15286 * on why this is done. 15287 */ 15288 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15289 dtrace_sync(); 15290 15291 /* 15292 * By this point, it is impossible for any CPU to be still processing 15293 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15294 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15295 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15296 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15297 * iff we're in the END probe. 15298 */ 15299 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15300 dtrace_sync(); 15301 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15302 15303 /* 15304 * Finally, we can release the reserve and call the END probe. We 15305 * disable interrupts across calling the END probe to allow us to 15306 * return the CPU on which we actually called the END probe. This 15307 * allows user-land to be sure that this CPU's principal buffer is 15308 * processed last. 15309 */ 15310 state->dts_reserve = 0; 15311 15312 cookie = dtrace_interrupt_disable(); 15313 *cpu = curcpu; 15314 dtrace_probe(dtrace_probeid_end, 15315 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15316 dtrace_interrupt_enable(cookie); 15317 15318 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15319 dtrace_sync(); 15320 15321 #ifdef illumos 15322 if (state->dts_getf != 0 && 15323 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15324 /* 15325 * We don't have kernel privs but we have at least one call 15326 * to getf(); we need to lower our zone's count, and (if 15327 * this is the last enabling to have an unprivileged call 15328 * to getf()) we need to clear the closef() hook. 15329 */ 15330 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15331 ASSERT(dtrace_closef == dtrace_getf_barrier); 15332 ASSERT(dtrace_getf > 0); 15333 15334 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15335 15336 if (--dtrace_getf == 0) 15337 dtrace_closef = NULL; 15338 } 15339 #endif 15340 15341 return (0); 15342 } 15343 15344 static int 15345 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15346 dtrace_optval_t val) 15347 { 15348 ASSERT(MUTEX_HELD(&dtrace_lock)); 15349 15350 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15351 return (EBUSY); 15352 15353 if (option >= DTRACEOPT_MAX) 15354 return (EINVAL); 15355 15356 if (option != DTRACEOPT_CPU && val < 0) 15357 return (EINVAL); 15358 15359 switch (option) { 15360 case DTRACEOPT_DESTRUCTIVE: 15361 if (dtrace_destructive_disallow) 15362 return (EACCES); 15363 15364 state->dts_cred.dcr_destructive = 1; 15365 break; 15366 15367 case DTRACEOPT_BUFSIZE: 15368 case DTRACEOPT_DYNVARSIZE: 15369 case DTRACEOPT_AGGSIZE: 15370 case DTRACEOPT_SPECSIZE: 15371 case DTRACEOPT_STRSIZE: 15372 if (val < 0) 15373 return (EINVAL); 15374 15375 if (val >= LONG_MAX) { 15376 /* 15377 * If this is an otherwise negative value, set it to 15378 * the highest multiple of 128m less than LONG_MAX. 15379 * Technically, we're adjusting the size without 15380 * regard to the buffer resizing policy, but in fact, 15381 * this has no effect -- if we set the buffer size to 15382 * ~LONG_MAX and the buffer policy is ultimately set to 15383 * be "manual", the buffer allocation is guaranteed to 15384 * fail, if only because the allocation requires two 15385 * buffers. (We set the the size to the highest 15386 * multiple of 128m because it ensures that the size 15387 * will remain a multiple of a megabyte when 15388 * repeatedly halved -- all the way down to 15m.) 15389 */ 15390 val = LONG_MAX - (1 << 27) + 1; 15391 } 15392 } 15393 15394 state->dts_options[option] = val; 15395 15396 return (0); 15397 } 15398 15399 static void 15400 dtrace_state_destroy(dtrace_state_t *state) 15401 { 15402 dtrace_ecb_t *ecb; 15403 dtrace_vstate_t *vstate = &state->dts_vstate; 15404 #ifdef illumos 15405 minor_t minor = getminor(state->dts_dev); 15406 #endif 15407 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15408 dtrace_speculation_t *spec = state->dts_speculations; 15409 int nspec = state->dts_nspeculations; 15410 uint32_t match; 15411 15412 ASSERT(MUTEX_HELD(&dtrace_lock)); 15413 ASSERT(MUTEX_HELD(&cpu_lock)); 15414 15415 /* 15416 * First, retract any retained enablings for this state. 15417 */ 15418 dtrace_enabling_retract(state); 15419 ASSERT(state->dts_nretained == 0); 15420 15421 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15422 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15423 /* 15424 * We have managed to come into dtrace_state_destroy() on a 15425 * hot enabling -- almost certainly because of a disorderly 15426 * shutdown of a consumer. (That is, a consumer that is 15427 * exiting without having called dtrace_stop().) In this case, 15428 * we're going to set our activity to be KILLED, and then 15429 * issue a sync to be sure that everyone is out of probe 15430 * context before we start blowing away ECBs. 15431 */ 15432 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15433 dtrace_sync(); 15434 } 15435 15436 /* 15437 * Release the credential hold we took in dtrace_state_create(). 15438 */ 15439 if (state->dts_cred.dcr_cred != NULL) 15440 crfree(state->dts_cred.dcr_cred); 15441 15442 /* 15443 * Now we can safely disable and destroy any enabled probes. Because 15444 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15445 * (especially if they're all enabled), we take two passes through the 15446 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15447 * in the second we disable whatever is left over. 15448 */ 15449 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15450 for (i = 0; i < state->dts_necbs; i++) { 15451 if ((ecb = state->dts_ecbs[i]) == NULL) 15452 continue; 15453 15454 if (match && ecb->dte_probe != NULL) { 15455 dtrace_probe_t *probe = ecb->dte_probe; 15456 dtrace_provider_t *prov = probe->dtpr_provider; 15457 15458 if (!(prov->dtpv_priv.dtpp_flags & match)) 15459 continue; 15460 } 15461 15462 dtrace_ecb_disable(ecb); 15463 dtrace_ecb_destroy(ecb); 15464 } 15465 15466 if (!match) 15467 break; 15468 } 15469 15470 /* 15471 * Before we free the buffers, perform one more sync to assure that 15472 * every CPU is out of probe context. 15473 */ 15474 dtrace_sync(); 15475 15476 dtrace_buffer_free(state->dts_buffer); 15477 dtrace_buffer_free(state->dts_aggbuffer); 15478 15479 for (i = 0; i < nspec; i++) 15480 dtrace_buffer_free(spec[i].dtsp_buffer); 15481 15482 #ifdef illumos 15483 if (state->dts_cleaner != CYCLIC_NONE) 15484 cyclic_remove(state->dts_cleaner); 15485 15486 if (state->dts_deadman != CYCLIC_NONE) 15487 cyclic_remove(state->dts_deadman); 15488 #else 15489 callout_stop(&state->dts_cleaner); 15490 callout_drain(&state->dts_cleaner); 15491 callout_stop(&state->dts_deadman); 15492 callout_drain(&state->dts_deadman); 15493 #endif 15494 15495 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15496 dtrace_vstate_fini(vstate); 15497 if (state->dts_ecbs != NULL) 15498 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15499 15500 if (state->dts_aggregations != NULL) { 15501 #ifdef DEBUG 15502 for (i = 0; i < state->dts_naggregations; i++) 15503 ASSERT(state->dts_aggregations[i] == NULL); 15504 #endif 15505 ASSERT(state->dts_naggregations > 0); 15506 kmem_free(state->dts_aggregations, 15507 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15508 } 15509 15510 kmem_free(state->dts_buffer, bufsize); 15511 kmem_free(state->dts_aggbuffer, bufsize); 15512 15513 for (i = 0; i < nspec; i++) 15514 kmem_free(spec[i].dtsp_buffer, bufsize); 15515 15516 if (spec != NULL) 15517 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15518 15519 dtrace_format_destroy(state); 15520 15521 if (state->dts_aggid_arena != NULL) { 15522 #ifdef illumos 15523 vmem_destroy(state->dts_aggid_arena); 15524 #else 15525 delete_unrhdr(state->dts_aggid_arena); 15526 #endif 15527 state->dts_aggid_arena = NULL; 15528 } 15529 #ifdef illumos 15530 ddi_soft_state_free(dtrace_softstate, minor); 15531 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15532 #endif 15533 } 15534 15535 /* 15536 * DTrace Anonymous Enabling Functions 15537 */ 15538 static dtrace_state_t * 15539 dtrace_anon_grab(void) 15540 { 15541 dtrace_state_t *state; 15542 15543 ASSERT(MUTEX_HELD(&dtrace_lock)); 15544 15545 if ((state = dtrace_anon.dta_state) == NULL) { 15546 ASSERT(dtrace_anon.dta_enabling == NULL); 15547 return (NULL); 15548 } 15549 15550 ASSERT(dtrace_anon.dta_enabling != NULL); 15551 ASSERT(dtrace_retained != NULL); 15552 15553 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15554 dtrace_anon.dta_enabling = NULL; 15555 dtrace_anon.dta_state = NULL; 15556 15557 return (state); 15558 } 15559 15560 static void 15561 dtrace_anon_property(void) 15562 { 15563 int i, rv; 15564 dtrace_state_t *state; 15565 dof_hdr_t *dof; 15566 char c[32]; /* enough for "dof-data-" + digits */ 15567 15568 ASSERT(MUTEX_HELD(&dtrace_lock)); 15569 ASSERT(MUTEX_HELD(&cpu_lock)); 15570 15571 for (i = 0; ; i++) { 15572 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15573 15574 dtrace_err_verbose = 1; 15575 15576 if ((dof = dtrace_dof_property(c)) == NULL) { 15577 dtrace_err_verbose = 0; 15578 break; 15579 } 15580 15581 #ifdef illumos 15582 /* 15583 * We want to create anonymous state, so we need to transition 15584 * the kernel debugger to indicate that DTrace is active. If 15585 * this fails (e.g. because the debugger has modified text in 15586 * some way), we won't continue with the processing. 15587 */ 15588 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15589 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15590 "enabling ignored."); 15591 dtrace_dof_destroy(dof); 15592 break; 15593 } 15594 #endif 15595 15596 /* 15597 * If we haven't allocated an anonymous state, we'll do so now. 15598 */ 15599 if ((state = dtrace_anon.dta_state) == NULL) { 15600 state = dtrace_state_create(NULL, NULL); 15601 dtrace_anon.dta_state = state; 15602 15603 if (state == NULL) { 15604 /* 15605 * This basically shouldn't happen: the only 15606 * failure mode from dtrace_state_create() is a 15607 * failure of ddi_soft_state_zalloc() that 15608 * itself should never happen. Still, the 15609 * interface allows for a failure mode, and 15610 * we want to fail as gracefully as possible: 15611 * we'll emit an error message and cease 15612 * processing anonymous state in this case. 15613 */ 15614 cmn_err(CE_WARN, "failed to create " 15615 "anonymous state"); 15616 dtrace_dof_destroy(dof); 15617 break; 15618 } 15619 } 15620 15621 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15622 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15623 15624 if (rv == 0) 15625 rv = dtrace_dof_options(dof, state); 15626 15627 dtrace_err_verbose = 0; 15628 dtrace_dof_destroy(dof); 15629 15630 if (rv != 0) { 15631 /* 15632 * This is malformed DOF; chuck any anonymous state 15633 * that we created. 15634 */ 15635 ASSERT(dtrace_anon.dta_enabling == NULL); 15636 dtrace_state_destroy(state); 15637 dtrace_anon.dta_state = NULL; 15638 break; 15639 } 15640 15641 ASSERT(dtrace_anon.dta_enabling != NULL); 15642 } 15643 15644 if (dtrace_anon.dta_enabling != NULL) { 15645 int rval; 15646 15647 /* 15648 * dtrace_enabling_retain() can only fail because we are 15649 * trying to retain more enablings than are allowed -- but 15650 * we only have one anonymous enabling, and we are guaranteed 15651 * to be allowed at least one retained enabling; we assert 15652 * that dtrace_enabling_retain() returns success. 15653 */ 15654 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15655 ASSERT(rval == 0); 15656 15657 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15658 } 15659 } 15660 15661 /* 15662 * DTrace Helper Functions 15663 */ 15664 static void 15665 dtrace_helper_trace(dtrace_helper_action_t *helper, 15666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15667 { 15668 uint32_t size, next, nnext, i; 15669 dtrace_helptrace_t *ent, *buffer; 15670 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15671 15672 if ((buffer = dtrace_helptrace_buffer) == NULL) 15673 return; 15674 15675 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15676 15677 /* 15678 * What would a tracing framework be without its own tracing 15679 * framework? (Well, a hell of a lot simpler, for starters...) 15680 */ 15681 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15682 sizeof (uint64_t) - sizeof (uint64_t); 15683 15684 /* 15685 * Iterate until we can allocate a slot in the trace buffer. 15686 */ 15687 do { 15688 next = dtrace_helptrace_next; 15689 15690 if (next + size < dtrace_helptrace_bufsize) { 15691 nnext = next + size; 15692 } else { 15693 nnext = size; 15694 } 15695 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15696 15697 /* 15698 * We have our slot; fill it in. 15699 */ 15700 if (nnext == size) { 15701 dtrace_helptrace_wrapped++; 15702 next = 0; 15703 } 15704 15705 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15706 ent->dtht_helper = helper; 15707 ent->dtht_where = where; 15708 ent->dtht_nlocals = vstate->dtvs_nlocals; 15709 15710 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15711 mstate->dtms_fltoffs : -1; 15712 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15713 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15714 15715 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15716 dtrace_statvar_t *svar; 15717 15718 if ((svar = vstate->dtvs_locals[i]) == NULL) 15719 continue; 15720 15721 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t)); 15722 ent->dtht_locals[i] = 15723 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15724 } 15725 } 15726 15727 static uint64_t 15728 dtrace_helper(int which, dtrace_mstate_t *mstate, 15729 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15730 { 15731 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15732 uint64_t sarg0 = mstate->dtms_arg[0]; 15733 uint64_t sarg1 = mstate->dtms_arg[1]; 15734 uint64_t rval = 0; 15735 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15736 dtrace_helper_action_t *helper; 15737 dtrace_vstate_t *vstate; 15738 dtrace_difo_t *pred; 15739 int i, trace = dtrace_helptrace_buffer != NULL; 15740 15741 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15742 15743 if (helpers == NULL) 15744 return (0); 15745 15746 if ((helper = helpers->dthps_actions[which]) == NULL) 15747 return (0); 15748 15749 vstate = &helpers->dthps_vstate; 15750 mstate->dtms_arg[0] = arg0; 15751 mstate->dtms_arg[1] = arg1; 15752 15753 /* 15754 * Now iterate over each helper. If its predicate evaluates to 'true', 15755 * we'll call the corresponding actions. Note that the below calls 15756 * to dtrace_dif_emulate() may set faults in machine state. This is 15757 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15758 * the stored DIF offset with its own (which is the desired behavior). 15759 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15760 * from machine state; this is okay, too. 15761 */ 15762 for (; helper != NULL; helper = helper->dtha_next) { 15763 if ((pred = helper->dtha_predicate) != NULL) { 15764 if (trace) 15765 dtrace_helper_trace(helper, mstate, vstate, 0); 15766 15767 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15768 goto next; 15769 15770 if (*flags & CPU_DTRACE_FAULT) 15771 goto err; 15772 } 15773 15774 for (i = 0; i < helper->dtha_nactions; i++) { 15775 if (trace) 15776 dtrace_helper_trace(helper, 15777 mstate, vstate, i + 1); 15778 15779 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15780 mstate, vstate, state); 15781 15782 if (*flags & CPU_DTRACE_FAULT) 15783 goto err; 15784 } 15785 15786 next: 15787 if (trace) 15788 dtrace_helper_trace(helper, mstate, vstate, 15789 DTRACE_HELPTRACE_NEXT); 15790 } 15791 15792 if (trace) 15793 dtrace_helper_trace(helper, mstate, vstate, 15794 DTRACE_HELPTRACE_DONE); 15795 15796 /* 15797 * Restore the arg0 that we saved upon entry. 15798 */ 15799 mstate->dtms_arg[0] = sarg0; 15800 mstate->dtms_arg[1] = sarg1; 15801 15802 return (rval); 15803 15804 err: 15805 if (trace) 15806 dtrace_helper_trace(helper, mstate, vstate, 15807 DTRACE_HELPTRACE_ERR); 15808 15809 /* 15810 * Restore the arg0 that we saved upon entry. 15811 */ 15812 mstate->dtms_arg[0] = sarg0; 15813 mstate->dtms_arg[1] = sarg1; 15814 15815 return (0); 15816 } 15817 15818 static void 15819 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15820 dtrace_vstate_t *vstate) 15821 { 15822 int i; 15823 15824 if (helper->dtha_predicate != NULL) 15825 dtrace_difo_release(helper->dtha_predicate, vstate); 15826 15827 for (i = 0; i < helper->dtha_nactions; i++) { 15828 ASSERT(helper->dtha_actions[i] != NULL); 15829 dtrace_difo_release(helper->dtha_actions[i], vstate); 15830 } 15831 15832 kmem_free(helper->dtha_actions, 15833 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15834 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15835 } 15836 15837 static int 15838 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15839 { 15840 proc_t *p = curproc; 15841 dtrace_vstate_t *vstate; 15842 int i; 15843 15844 if (help == NULL) 15845 help = p->p_dtrace_helpers; 15846 15847 ASSERT(MUTEX_HELD(&dtrace_lock)); 15848 15849 if (help == NULL || gen > help->dthps_generation) 15850 return (EINVAL); 15851 15852 vstate = &help->dthps_vstate; 15853 15854 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15855 dtrace_helper_action_t *last = NULL, *h, *next; 15856 15857 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15858 next = h->dtha_next; 15859 15860 if (h->dtha_generation == gen) { 15861 if (last != NULL) { 15862 last->dtha_next = next; 15863 } else { 15864 help->dthps_actions[i] = next; 15865 } 15866 15867 dtrace_helper_action_destroy(h, vstate); 15868 } else { 15869 last = h; 15870 } 15871 } 15872 } 15873 15874 /* 15875 * Interate until we've cleared out all helper providers with the 15876 * given generation number. 15877 */ 15878 for (;;) { 15879 dtrace_helper_provider_t *prov; 15880 15881 /* 15882 * Look for a helper provider with the right generation. We 15883 * have to start back at the beginning of the list each time 15884 * because we drop dtrace_lock. It's unlikely that we'll make 15885 * more than two passes. 15886 */ 15887 for (i = 0; i < help->dthps_nprovs; i++) { 15888 prov = help->dthps_provs[i]; 15889 15890 if (prov->dthp_generation == gen) 15891 break; 15892 } 15893 15894 /* 15895 * If there were no matches, we're done. 15896 */ 15897 if (i == help->dthps_nprovs) 15898 break; 15899 15900 /* 15901 * Move the last helper provider into this slot. 15902 */ 15903 help->dthps_nprovs--; 15904 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15905 help->dthps_provs[help->dthps_nprovs] = NULL; 15906 15907 mutex_exit(&dtrace_lock); 15908 15909 /* 15910 * If we have a meta provider, remove this helper provider. 15911 */ 15912 mutex_enter(&dtrace_meta_lock); 15913 if (dtrace_meta_pid != NULL) { 15914 ASSERT(dtrace_deferred_pid == NULL); 15915 dtrace_helper_provider_remove(&prov->dthp_prov, 15916 p->p_pid); 15917 } 15918 mutex_exit(&dtrace_meta_lock); 15919 15920 dtrace_helper_provider_destroy(prov); 15921 15922 mutex_enter(&dtrace_lock); 15923 } 15924 15925 return (0); 15926 } 15927 15928 static int 15929 dtrace_helper_validate(dtrace_helper_action_t *helper) 15930 { 15931 int err = 0, i; 15932 dtrace_difo_t *dp; 15933 15934 if ((dp = helper->dtha_predicate) != NULL) 15935 err += dtrace_difo_validate_helper(dp); 15936 15937 for (i = 0; i < helper->dtha_nactions; i++) 15938 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15939 15940 return (err == 0); 15941 } 15942 15943 static int 15944 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15945 dtrace_helpers_t *help) 15946 { 15947 dtrace_helper_action_t *helper, *last; 15948 dtrace_actdesc_t *act; 15949 dtrace_vstate_t *vstate; 15950 dtrace_predicate_t *pred; 15951 int count = 0, nactions = 0, i; 15952 15953 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15954 return (EINVAL); 15955 15956 last = help->dthps_actions[which]; 15957 vstate = &help->dthps_vstate; 15958 15959 for (count = 0; last != NULL; last = last->dtha_next) { 15960 count++; 15961 if (last->dtha_next == NULL) 15962 break; 15963 } 15964 15965 /* 15966 * If we already have dtrace_helper_actions_max helper actions for this 15967 * helper action type, we'll refuse to add a new one. 15968 */ 15969 if (count >= dtrace_helper_actions_max) 15970 return (ENOSPC); 15971 15972 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15973 helper->dtha_generation = help->dthps_generation; 15974 15975 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15976 ASSERT(pred->dtp_difo != NULL); 15977 dtrace_difo_hold(pred->dtp_difo); 15978 helper->dtha_predicate = pred->dtp_difo; 15979 } 15980 15981 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15982 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15983 goto err; 15984 15985 if (act->dtad_difo == NULL) 15986 goto err; 15987 15988 nactions++; 15989 } 15990 15991 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15992 (helper->dtha_nactions = nactions), KM_SLEEP); 15993 15994 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15995 dtrace_difo_hold(act->dtad_difo); 15996 helper->dtha_actions[i++] = act->dtad_difo; 15997 } 15998 15999 if (!dtrace_helper_validate(helper)) 16000 goto err; 16001 16002 if (last == NULL) { 16003 help->dthps_actions[which] = helper; 16004 } else { 16005 last->dtha_next = helper; 16006 } 16007 16008 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16009 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16010 dtrace_helptrace_next = 0; 16011 } 16012 16013 return (0); 16014 err: 16015 dtrace_helper_action_destroy(helper, vstate); 16016 return (EINVAL); 16017 } 16018 16019 static void 16020 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16021 dof_helper_t *dofhp) 16022 { 16023 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16024 16025 mutex_enter(&dtrace_meta_lock); 16026 mutex_enter(&dtrace_lock); 16027 16028 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16029 /* 16030 * If the dtrace module is loaded but not attached, or if 16031 * there aren't isn't a meta provider registered to deal with 16032 * these provider descriptions, we need to postpone creating 16033 * the actual providers until later. 16034 */ 16035 16036 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16037 dtrace_deferred_pid != help) { 16038 help->dthps_deferred = 1; 16039 help->dthps_pid = p->p_pid; 16040 help->dthps_next = dtrace_deferred_pid; 16041 help->dthps_prev = NULL; 16042 if (dtrace_deferred_pid != NULL) 16043 dtrace_deferred_pid->dthps_prev = help; 16044 dtrace_deferred_pid = help; 16045 } 16046 16047 mutex_exit(&dtrace_lock); 16048 16049 } else if (dofhp != NULL) { 16050 /* 16051 * If the dtrace module is loaded and we have a particular 16052 * helper provider description, pass that off to the 16053 * meta provider. 16054 */ 16055 16056 mutex_exit(&dtrace_lock); 16057 16058 dtrace_helper_provide(dofhp, p->p_pid); 16059 16060 } else { 16061 /* 16062 * Otherwise, just pass all the helper provider descriptions 16063 * off to the meta provider. 16064 */ 16065 16066 int i; 16067 mutex_exit(&dtrace_lock); 16068 16069 for (i = 0; i < help->dthps_nprovs; i++) { 16070 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16071 p->p_pid); 16072 } 16073 } 16074 16075 mutex_exit(&dtrace_meta_lock); 16076 } 16077 16078 static int 16079 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16080 { 16081 dtrace_helper_provider_t *hprov, **tmp_provs; 16082 uint_t tmp_maxprovs, i; 16083 16084 ASSERT(MUTEX_HELD(&dtrace_lock)); 16085 ASSERT(help != NULL); 16086 16087 /* 16088 * If we already have dtrace_helper_providers_max helper providers, 16089 * we're refuse to add a new one. 16090 */ 16091 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16092 return (ENOSPC); 16093 16094 /* 16095 * Check to make sure this isn't a duplicate. 16096 */ 16097 for (i = 0; i < help->dthps_nprovs; i++) { 16098 if (dofhp->dofhp_addr == 16099 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16100 return (EALREADY); 16101 } 16102 16103 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16104 hprov->dthp_prov = *dofhp; 16105 hprov->dthp_ref = 1; 16106 hprov->dthp_generation = gen; 16107 16108 /* 16109 * Allocate a bigger table for helper providers if it's already full. 16110 */ 16111 if (help->dthps_maxprovs == help->dthps_nprovs) { 16112 tmp_maxprovs = help->dthps_maxprovs; 16113 tmp_provs = help->dthps_provs; 16114 16115 if (help->dthps_maxprovs == 0) 16116 help->dthps_maxprovs = 2; 16117 else 16118 help->dthps_maxprovs *= 2; 16119 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16120 help->dthps_maxprovs = dtrace_helper_providers_max; 16121 16122 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16123 16124 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16125 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16126 16127 if (tmp_provs != NULL) { 16128 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16129 sizeof (dtrace_helper_provider_t *)); 16130 kmem_free(tmp_provs, tmp_maxprovs * 16131 sizeof (dtrace_helper_provider_t *)); 16132 } 16133 } 16134 16135 help->dthps_provs[help->dthps_nprovs] = hprov; 16136 help->dthps_nprovs++; 16137 16138 return (0); 16139 } 16140 16141 static void 16142 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16143 { 16144 mutex_enter(&dtrace_lock); 16145 16146 if (--hprov->dthp_ref == 0) { 16147 dof_hdr_t *dof; 16148 mutex_exit(&dtrace_lock); 16149 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16150 dtrace_dof_destroy(dof); 16151 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16152 } else { 16153 mutex_exit(&dtrace_lock); 16154 } 16155 } 16156 16157 static int 16158 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16159 { 16160 uintptr_t daddr = (uintptr_t)dof; 16161 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16162 dof_provider_t *provider; 16163 dof_probe_t *probe; 16164 uint8_t *arg; 16165 char *strtab, *typestr; 16166 dof_stridx_t typeidx; 16167 size_t typesz; 16168 uint_t nprobes, j, k; 16169 16170 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16171 16172 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16173 dtrace_dof_error(dof, "misaligned section offset"); 16174 return (-1); 16175 } 16176 16177 /* 16178 * The section needs to be large enough to contain the DOF provider 16179 * structure appropriate for the given version. 16180 */ 16181 if (sec->dofs_size < 16182 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16183 offsetof(dof_provider_t, dofpv_prenoffs) : 16184 sizeof (dof_provider_t))) { 16185 dtrace_dof_error(dof, "provider section too small"); 16186 return (-1); 16187 } 16188 16189 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16190 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16191 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16192 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16193 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16194 16195 if (str_sec == NULL || prb_sec == NULL || 16196 arg_sec == NULL || off_sec == NULL) 16197 return (-1); 16198 16199 enoff_sec = NULL; 16200 16201 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16202 provider->dofpv_prenoffs != DOF_SECT_NONE && 16203 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16204 provider->dofpv_prenoffs)) == NULL) 16205 return (-1); 16206 16207 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16208 16209 if (provider->dofpv_name >= str_sec->dofs_size || 16210 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16211 dtrace_dof_error(dof, "invalid provider name"); 16212 return (-1); 16213 } 16214 16215 if (prb_sec->dofs_entsize == 0 || 16216 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16217 dtrace_dof_error(dof, "invalid entry size"); 16218 return (-1); 16219 } 16220 16221 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16222 dtrace_dof_error(dof, "misaligned entry size"); 16223 return (-1); 16224 } 16225 16226 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16227 dtrace_dof_error(dof, "invalid entry size"); 16228 return (-1); 16229 } 16230 16231 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16232 dtrace_dof_error(dof, "misaligned section offset"); 16233 return (-1); 16234 } 16235 16236 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16237 dtrace_dof_error(dof, "invalid entry size"); 16238 return (-1); 16239 } 16240 16241 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16242 16243 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16244 16245 /* 16246 * Take a pass through the probes to check for errors. 16247 */ 16248 for (j = 0; j < nprobes; j++) { 16249 probe = (dof_probe_t *)(uintptr_t)(daddr + 16250 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16251 16252 if (probe->dofpr_func >= str_sec->dofs_size) { 16253 dtrace_dof_error(dof, "invalid function name"); 16254 return (-1); 16255 } 16256 16257 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16258 dtrace_dof_error(dof, "function name too long"); 16259 /* 16260 * Keep going if the function name is too long. 16261 * Unlike provider and probe names, we cannot reasonably 16262 * impose restrictions on function names, since they're 16263 * a property of the code being instrumented. We will 16264 * skip this probe in dtrace_helper_provide_one(). 16265 */ 16266 } 16267 16268 if (probe->dofpr_name >= str_sec->dofs_size || 16269 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16270 dtrace_dof_error(dof, "invalid probe name"); 16271 return (-1); 16272 } 16273 16274 /* 16275 * The offset count must not wrap the index, and the offsets 16276 * must also not overflow the section's data. 16277 */ 16278 if (probe->dofpr_offidx + probe->dofpr_noffs < 16279 probe->dofpr_offidx || 16280 (probe->dofpr_offidx + probe->dofpr_noffs) * 16281 off_sec->dofs_entsize > off_sec->dofs_size) { 16282 dtrace_dof_error(dof, "invalid probe offset"); 16283 return (-1); 16284 } 16285 16286 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16287 /* 16288 * If there's no is-enabled offset section, make sure 16289 * there aren't any is-enabled offsets. Otherwise 16290 * perform the same checks as for probe offsets 16291 * (immediately above). 16292 */ 16293 if (enoff_sec == NULL) { 16294 if (probe->dofpr_enoffidx != 0 || 16295 probe->dofpr_nenoffs != 0) { 16296 dtrace_dof_error(dof, "is-enabled " 16297 "offsets with null section"); 16298 return (-1); 16299 } 16300 } else if (probe->dofpr_enoffidx + 16301 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16302 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16303 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16304 dtrace_dof_error(dof, "invalid is-enabled " 16305 "offset"); 16306 return (-1); 16307 } 16308 16309 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16310 dtrace_dof_error(dof, "zero probe and " 16311 "is-enabled offsets"); 16312 return (-1); 16313 } 16314 } else if (probe->dofpr_noffs == 0) { 16315 dtrace_dof_error(dof, "zero probe offsets"); 16316 return (-1); 16317 } 16318 16319 if (probe->dofpr_argidx + probe->dofpr_xargc < 16320 probe->dofpr_argidx || 16321 (probe->dofpr_argidx + probe->dofpr_xargc) * 16322 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16323 dtrace_dof_error(dof, "invalid args"); 16324 return (-1); 16325 } 16326 16327 typeidx = probe->dofpr_nargv; 16328 typestr = strtab + probe->dofpr_nargv; 16329 for (k = 0; k < probe->dofpr_nargc; k++) { 16330 if (typeidx >= str_sec->dofs_size) { 16331 dtrace_dof_error(dof, "bad " 16332 "native argument type"); 16333 return (-1); 16334 } 16335 16336 typesz = strlen(typestr) + 1; 16337 if (typesz > DTRACE_ARGTYPELEN) { 16338 dtrace_dof_error(dof, "native " 16339 "argument type too long"); 16340 return (-1); 16341 } 16342 typeidx += typesz; 16343 typestr += typesz; 16344 } 16345 16346 typeidx = probe->dofpr_xargv; 16347 typestr = strtab + probe->dofpr_xargv; 16348 for (k = 0; k < probe->dofpr_xargc; k++) { 16349 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16350 dtrace_dof_error(dof, "bad " 16351 "native argument index"); 16352 return (-1); 16353 } 16354 16355 if (typeidx >= str_sec->dofs_size) { 16356 dtrace_dof_error(dof, "bad " 16357 "translated argument type"); 16358 return (-1); 16359 } 16360 16361 typesz = strlen(typestr) + 1; 16362 if (typesz > DTRACE_ARGTYPELEN) { 16363 dtrace_dof_error(dof, "translated argument " 16364 "type too long"); 16365 return (-1); 16366 } 16367 16368 typeidx += typesz; 16369 typestr += typesz; 16370 } 16371 } 16372 16373 return (0); 16374 } 16375 16376 static int 16377 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16378 { 16379 dtrace_helpers_t *help; 16380 dtrace_vstate_t *vstate; 16381 dtrace_enabling_t *enab = NULL; 16382 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16383 uintptr_t daddr = (uintptr_t)dof; 16384 16385 ASSERT(MUTEX_HELD(&dtrace_lock)); 16386 16387 if ((help = p->p_dtrace_helpers) == NULL) 16388 help = dtrace_helpers_create(p); 16389 16390 vstate = &help->dthps_vstate; 16391 16392 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16393 dhp->dofhp_dof, B_FALSE)) != 0) { 16394 dtrace_dof_destroy(dof); 16395 return (rv); 16396 } 16397 16398 /* 16399 * Look for helper providers and validate their descriptions. 16400 */ 16401 for (i = 0; i < dof->dofh_secnum; i++) { 16402 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16403 dof->dofh_secoff + i * dof->dofh_secsize); 16404 16405 if (sec->dofs_type != DOF_SECT_PROVIDER) 16406 continue; 16407 16408 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16409 dtrace_enabling_destroy(enab); 16410 dtrace_dof_destroy(dof); 16411 return (-1); 16412 } 16413 16414 nprovs++; 16415 } 16416 16417 /* 16418 * Now we need to walk through the ECB descriptions in the enabling. 16419 */ 16420 for (i = 0; i < enab->dten_ndesc; i++) { 16421 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16422 dtrace_probedesc_t *desc = &ep->dted_probe; 16423 16424 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16425 continue; 16426 16427 if (strcmp(desc->dtpd_mod, "helper") != 0) 16428 continue; 16429 16430 if (strcmp(desc->dtpd_func, "ustack") != 0) 16431 continue; 16432 16433 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16434 ep, help)) != 0) { 16435 /* 16436 * Adding this helper action failed -- we are now going 16437 * to rip out the entire generation and return failure. 16438 */ 16439 (void) dtrace_helper_destroygen(help, 16440 help->dthps_generation); 16441 dtrace_enabling_destroy(enab); 16442 dtrace_dof_destroy(dof); 16443 return (-1); 16444 } 16445 16446 nhelpers++; 16447 } 16448 16449 if (nhelpers < enab->dten_ndesc) 16450 dtrace_dof_error(dof, "unmatched helpers"); 16451 16452 gen = help->dthps_generation++; 16453 dtrace_enabling_destroy(enab); 16454 16455 if (nprovs > 0) { 16456 /* 16457 * Now that this is in-kernel, we change the sense of the 16458 * members: dofhp_dof denotes the in-kernel copy of the DOF 16459 * and dofhp_addr denotes the address at user-level. 16460 */ 16461 dhp->dofhp_addr = dhp->dofhp_dof; 16462 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16463 16464 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16465 mutex_exit(&dtrace_lock); 16466 dtrace_helper_provider_register(p, help, dhp); 16467 mutex_enter(&dtrace_lock); 16468 16469 destroy = 0; 16470 } 16471 } 16472 16473 if (destroy) 16474 dtrace_dof_destroy(dof); 16475 16476 return (gen); 16477 } 16478 16479 static dtrace_helpers_t * 16480 dtrace_helpers_create(proc_t *p) 16481 { 16482 dtrace_helpers_t *help; 16483 16484 ASSERT(MUTEX_HELD(&dtrace_lock)); 16485 ASSERT(p->p_dtrace_helpers == NULL); 16486 16487 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16488 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16489 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16490 16491 p->p_dtrace_helpers = help; 16492 dtrace_helpers++; 16493 16494 return (help); 16495 } 16496 16497 #ifdef illumos 16498 static 16499 #endif 16500 void 16501 dtrace_helpers_destroy(proc_t *p) 16502 { 16503 dtrace_helpers_t *help; 16504 dtrace_vstate_t *vstate; 16505 #ifdef illumos 16506 proc_t *p = curproc; 16507 #endif 16508 int i; 16509 16510 mutex_enter(&dtrace_lock); 16511 16512 ASSERT(p->p_dtrace_helpers != NULL); 16513 ASSERT(dtrace_helpers > 0); 16514 16515 help = p->p_dtrace_helpers; 16516 vstate = &help->dthps_vstate; 16517 16518 /* 16519 * We're now going to lose the help from this process. 16520 */ 16521 p->p_dtrace_helpers = NULL; 16522 dtrace_sync(); 16523 16524 /* 16525 * Destory the helper actions. 16526 */ 16527 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16528 dtrace_helper_action_t *h, *next; 16529 16530 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16531 next = h->dtha_next; 16532 dtrace_helper_action_destroy(h, vstate); 16533 h = next; 16534 } 16535 } 16536 16537 mutex_exit(&dtrace_lock); 16538 16539 /* 16540 * Destroy the helper providers. 16541 */ 16542 if (help->dthps_maxprovs > 0) { 16543 mutex_enter(&dtrace_meta_lock); 16544 if (dtrace_meta_pid != NULL) { 16545 ASSERT(dtrace_deferred_pid == NULL); 16546 16547 for (i = 0; i < help->dthps_nprovs; i++) { 16548 dtrace_helper_provider_remove( 16549 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16550 } 16551 } else { 16552 mutex_enter(&dtrace_lock); 16553 ASSERT(help->dthps_deferred == 0 || 16554 help->dthps_next != NULL || 16555 help->dthps_prev != NULL || 16556 help == dtrace_deferred_pid); 16557 16558 /* 16559 * Remove the helper from the deferred list. 16560 */ 16561 if (help->dthps_next != NULL) 16562 help->dthps_next->dthps_prev = help->dthps_prev; 16563 if (help->dthps_prev != NULL) 16564 help->dthps_prev->dthps_next = help->dthps_next; 16565 if (dtrace_deferred_pid == help) { 16566 dtrace_deferred_pid = help->dthps_next; 16567 ASSERT(help->dthps_prev == NULL); 16568 } 16569 16570 mutex_exit(&dtrace_lock); 16571 } 16572 16573 mutex_exit(&dtrace_meta_lock); 16574 16575 for (i = 0; i < help->dthps_nprovs; i++) { 16576 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16577 } 16578 16579 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16580 sizeof (dtrace_helper_provider_t *)); 16581 } 16582 16583 mutex_enter(&dtrace_lock); 16584 16585 dtrace_vstate_fini(&help->dthps_vstate); 16586 kmem_free(help->dthps_actions, 16587 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16588 kmem_free(help, sizeof (dtrace_helpers_t)); 16589 16590 --dtrace_helpers; 16591 mutex_exit(&dtrace_lock); 16592 } 16593 16594 #ifdef illumos 16595 static 16596 #endif 16597 void 16598 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16599 { 16600 dtrace_helpers_t *help, *newhelp; 16601 dtrace_helper_action_t *helper, *new, *last; 16602 dtrace_difo_t *dp; 16603 dtrace_vstate_t *vstate; 16604 int i, j, sz, hasprovs = 0; 16605 16606 mutex_enter(&dtrace_lock); 16607 ASSERT(from->p_dtrace_helpers != NULL); 16608 ASSERT(dtrace_helpers > 0); 16609 16610 help = from->p_dtrace_helpers; 16611 newhelp = dtrace_helpers_create(to); 16612 ASSERT(to->p_dtrace_helpers != NULL); 16613 16614 newhelp->dthps_generation = help->dthps_generation; 16615 vstate = &newhelp->dthps_vstate; 16616 16617 /* 16618 * Duplicate the helper actions. 16619 */ 16620 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16621 if ((helper = help->dthps_actions[i]) == NULL) 16622 continue; 16623 16624 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16625 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16626 KM_SLEEP); 16627 new->dtha_generation = helper->dtha_generation; 16628 16629 if ((dp = helper->dtha_predicate) != NULL) { 16630 dp = dtrace_difo_duplicate(dp, vstate); 16631 new->dtha_predicate = dp; 16632 } 16633 16634 new->dtha_nactions = helper->dtha_nactions; 16635 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16636 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16637 16638 for (j = 0; j < new->dtha_nactions; j++) { 16639 dtrace_difo_t *dp = helper->dtha_actions[j]; 16640 16641 ASSERT(dp != NULL); 16642 dp = dtrace_difo_duplicate(dp, vstate); 16643 new->dtha_actions[j] = dp; 16644 } 16645 16646 if (last != NULL) { 16647 last->dtha_next = new; 16648 } else { 16649 newhelp->dthps_actions[i] = new; 16650 } 16651 16652 last = new; 16653 } 16654 } 16655 16656 /* 16657 * Duplicate the helper providers and register them with the 16658 * DTrace framework. 16659 */ 16660 if (help->dthps_nprovs > 0) { 16661 newhelp->dthps_nprovs = help->dthps_nprovs; 16662 newhelp->dthps_maxprovs = help->dthps_nprovs; 16663 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16664 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16665 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16666 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16667 newhelp->dthps_provs[i]->dthp_ref++; 16668 } 16669 16670 hasprovs = 1; 16671 } 16672 16673 mutex_exit(&dtrace_lock); 16674 16675 if (hasprovs) 16676 dtrace_helper_provider_register(to, newhelp, NULL); 16677 } 16678 16679 /* 16680 * DTrace Hook Functions 16681 */ 16682 static void 16683 dtrace_module_loaded(modctl_t *ctl) 16684 { 16685 dtrace_provider_t *prv; 16686 16687 mutex_enter(&dtrace_provider_lock); 16688 #ifdef illumos 16689 mutex_enter(&mod_lock); 16690 #endif 16691 16692 #ifdef illumos 16693 ASSERT(ctl->mod_busy); 16694 #endif 16695 16696 /* 16697 * We're going to call each providers per-module provide operation 16698 * specifying only this module. 16699 */ 16700 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16701 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16702 16703 #ifdef illumos 16704 mutex_exit(&mod_lock); 16705 #endif 16706 mutex_exit(&dtrace_provider_lock); 16707 16708 /* 16709 * If we have any retained enablings, we need to match against them. 16710 * Enabling probes requires that cpu_lock be held, and we cannot hold 16711 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16712 * module. (In particular, this happens when loading scheduling 16713 * classes.) So if we have any retained enablings, we need to dispatch 16714 * our task queue to do the match for us. 16715 */ 16716 mutex_enter(&dtrace_lock); 16717 16718 if (dtrace_retained == NULL) { 16719 mutex_exit(&dtrace_lock); 16720 return; 16721 } 16722 16723 (void) taskq_dispatch(dtrace_taskq, 16724 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16725 16726 mutex_exit(&dtrace_lock); 16727 16728 /* 16729 * And now, for a little heuristic sleaze: in general, we want to 16730 * match modules as soon as they load. However, we cannot guarantee 16731 * this, because it would lead us to the lock ordering violation 16732 * outlined above. The common case, of course, is that cpu_lock is 16733 * _not_ held -- so we delay here for a clock tick, hoping that that's 16734 * long enough for the task queue to do its work. If it's not, it's 16735 * not a serious problem -- it just means that the module that we 16736 * just loaded may not be immediately instrumentable. 16737 */ 16738 delay(1); 16739 } 16740 16741 static void 16742 #ifdef illumos 16743 dtrace_module_unloaded(modctl_t *ctl) 16744 #else 16745 dtrace_module_unloaded(modctl_t *ctl, int *error) 16746 #endif 16747 { 16748 dtrace_probe_t template, *probe, *first, *next; 16749 dtrace_provider_t *prov; 16750 #ifndef illumos 16751 char modname[DTRACE_MODNAMELEN]; 16752 size_t len; 16753 #endif 16754 16755 #ifdef illumos 16756 template.dtpr_mod = ctl->mod_modname; 16757 #else 16758 /* Handle the fact that ctl->filename may end in ".ko". */ 16759 strlcpy(modname, ctl->filename, sizeof(modname)); 16760 len = strlen(ctl->filename); 16761 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16762 modname[len - 3] = '\0'; 16763 template.dtpr_mod = modname; 16764 #endif 16765 16766 mutex_enter(&dtrace_provider_lock); 16767 #ifdef illumos 16768 mutex_enter(&mod_lock); 16769 #endif 16770 mutex_enter(&dtrace_lock); 16771 16772 #ifndef illumos 16773 if (ctl->nenabled > 0) { 16774 /* Don't allow unloads if a probe is enabled. */ 16775 mutex_exit(&dtrace_provider_lock); 16776 mutex_exit(&dtrace_lock); 16777 *error = -1; 16778 printf( 16779 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16780 return; 16781 } 16782 #endif 16783 16784 if (dtrace_bymod == NULL) { 16785 /* 16786 * The DTrace module is loaded (obviously) but not attached; 16787 * we don't have any work to do. 16788 */ 16789 mutex_exit(&dtrace_provider_lock); 16790 #ifdef illumos 16791 mutex_exit(&mod_lock); 16792 #endif 16793 mutex_exit(&dtrace_lock); 16794 return; 16795 } 16796 16797 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16798 probe != NULL; probe = probe->dtpr_nextmod) { 16799 if (probe->dtpr_ecb != NULL) { 16800 mutex_exit(&dtrace_provider_lock); 16801 #ifdef illumos 16802 mutex_exit(&mod_lock); 16803 #endif 16804 mutex_exit(&dtrace_lock); 16805 16806 /* 16807 * This shouldn't _actually_ be possible -- we're 16808 * unloading a module that has an enabled probe in it. 16809 * (It's normally up to the provider to make sure that 16810 * this can't happen.) However, because dtps_enable() 16811 * doesn't have a failure mode, there can be an 16812 * enable/unload race. Upshot: we don't want to 16813 * assert, but we're not going to disable the 16814 * probe, either. 16815 */ 16816 if (dtrace_err_verbose) { 16817 #ifdef illumos 16818 cmn_err(CE_WARN, "unloaded module '%s' had " 16819 "enabled probes", ctl->mod_modname); 16820 #else 16821 cmn_err(CE_WARN, "unloaded module '%s' had " 16822 "enabled probes", modname); 16823 #endif 16824 } 16825 16826 return; 16827 } 16828 } 16829 16830 probe = first; 16831 16832 for (first = NULL; probe != NULL; probe = next) { 16833 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16834 16835 dtrace_probes[probe->dtpr_id - 1] = NULL; 16836 16837 next = probe->dtpr_nextmod; 16838 dtrace_hash_remove(dtrace_bymod, probe); 16839 dtrace_hash_remove(dtrace_byfunc, probe); 16840 dtrace_hash_remove(dtrace_byname, probe); 16841 16842 if (first == NULL) { 16843 first = probe; 16844 probe->dtpr_nextmod = NULL; 16845 } else { 16846 probe->dtpr_nextmod = first; 16847 first = probe; 16848 } 16849 } 16850 16851 /* 16852 * We've removed all of the module's probes from the hash chains and 16853 * from the probe array. Now issue a dtrace_sync() to be sure that 16854 * everyone has cleared out from any probe array processing. 16855 */ 16856 dtrace_sync(); 16857 16858 for (probe = first; probe != NULL; probe = first) { 16859 first = probe->dtpr_nextmod; 16860 prov = probe->dtpr_provider; 16861 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16862 probe->dtpr_arg); 16863 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16864 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16865 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16866 #ifdef illumos 16867 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16868 #else 16869 free_unr(dtrace_arena, probe->dtpr_id); 16870 #endif 16871 kmem_free(probe, sizeof (dtrace_probe_t)); 16872 } 16873 16874 mutex_exit(&dtrace_lock); 16875 #ifdef illumos 16876 mutex_exit(&mod_lock); 16877 #endif 16878 mutex_exit(&dtrace_provider_lock); 16879 } 16880 16881 #ifndef illumos 16882 static void 16883 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16884 { 16885 16886 dtrace_module_loaded(lf); 16887 } 16888 16889 static void 16890 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16891 { 16892 16893 if (*error != 0) 16894 /* We already have an error, so don't do anything. */ 16895 return; 16896 dtrace_module_unloaded(lf, error); 16897 } 16898 #endif 16899 16900 #ifdef illumos 16901 static void 16902 dtrace_suspend(void) 16903 { 16904 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16905 } 16906 16907 static void 16908 dtrace_resume(void) 16909 { 16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16911 } 16912 #endif 16913 16914 static int 16915 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16916 { 16917 ASSERT(MUTEX_HELD(&cpu_lock)); 16918 mutex_enter(&dtrace_lock); 16919 16920 switch (what) { 16921 case CPU_CONFIG: { 16922 dtrace_state_t *state; 16923 dtrace_optval_t *opt, rs, c; 16924 16925 /* 16926 * For now, we only allocate a new buffer for anonymous state. 16927 */ 16928 if ((state = dtrace_anon.dta_state) == NULL) 16929 break; 16930 16931 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16932 break; 16933 16934 opt = state->dts_options; 16935 c = opt[DTRACEOPT_CPU]; 16936 16937 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16938 break; 16939 16940 /* 16941 * Regardless of what the actual policy is, we're going to 16942 * temporarily set our resize policy to be manual. We're 16943 * also going to temporarily set our CPU option to denote 16944 * the newly configured CPU. 16945 */ 16946 rs = opt[DTRACEOPT_BUFRESIZE]; 16947 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16948 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16949 16950 (void) dtrace_state_buffers(state); 16951 16952 opt[DTRACEOPT_BUFRESIZE] = rs; 16953 opt[DTRACEOPT_CPU] = c; 16954 16955 break; 16956 } 16957 16958 case CPU_UNCONFIG: 16959 /* 16960 * We don't free the buffer in the CPU_UNCONFIG case. (The 16961 * buffer will be freed when the consumer exits.) 16962 */ 16963 break; 16964 16965 default: 16966 break; 16967 } 16968 16969 mutex_exit(&dtrace_lock); 16970 return (0); 16971 } 16972 16973 #ifdef illumos 16974 static void 16975 dtrace_cpu_setup_initial(processorid_t cpu) 16976 { 16977 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16978 } 16979 #endif 16980 16981 static void 16982 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16983 { 16984 if (dtrace_toxranges >= dtrace_toxranges_max) { 16985 int osize, nsize; 16986 dtrace_toxrange_t *range; 16987 16988 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16989 16990 if (osize == 0) { 16991 ASSERT(dtrace_toxrange == NULL); 16992 ASSERT(dtrace_toxranges_max == 0); 16993 dtrace_toxranges_max = 1; 16994 } else { 16995 dtrace_toxranges_max <<= 1; 16996 } 16997 16998 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16999 range = kmem_zalloc(nsize, KM_SLEEP); 17000 17001 if (dtrace_toxrange != NULL) { 17002 ASSERT(osize != 0); 17003 bcopy(dtrace_toxrange, range, osize); 17004 kmem_free(dtrace_toxrange, osize); 17005 } 17006 17007 dtrace_toxrange = range; 17008 } 17009 17010 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17011 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17012 17013 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17014 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17015 dtrace_toxranges++; 17016 } 17017 17018 static void 17019 dtrace_getf_barrier(void) 17020 { 17021 #ifdef illumos 17022 /* 17023 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17024 * that contain calls to getf(), this routine will be called on every 17025 * closef() before either the underlying vnode is released or the 17026 * file_t itself is freed. By the time we are here, it is essential 17027 * that the file_t can no longer be accessed from a call to getf() 17028 * in probe context -- that assures that a dtrace_sync() can be used 17029 * to clear out any enablings referring to the old structures. 17030 */ 17031 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17032 kcred->cr_zone->zone_dtrace_getf != 0) 17033 dtrace_sync(); 17034 #endif 17035 } 17036 17037 /* 17038 * DTrace Driver Cookbook Functions 17039 */ 17040 #ifdef illumos 17041 /*ARGSUSED*/ 17042 static int 17043 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17044 { 17045 dtrace_provider_id_t id; 17046 dtrace_state_t *state = NULL; 17047 dtrace_enabling_t *enab; 17048 17049 mutex_enter(&cpu_lock); 17050 mutex_enter(&dtrace_provider_lock); 17051 mutex_enter(&dtrace_lock); 17052 17053 if (ddi_soft_state_init(&dtrace_softstate, 17054 sizeof (dtrace_state_t), 0) != 0) { 17055 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17056 mutex_exit(&cpu_lock); 17057 mutex_exit(&dtrace_provider_lock); 17058 mutex_exit(&dtrace_lock); 17059 return (DDI_FAILURE); 17060 } 17061 17062 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17063 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17064 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17065 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17066 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17067 ddi_remove_minor_node(devi, NULL); 17068 ddi_soft_state_fini(&dtrace_softstate); 17069 mutex_exit(&cpu_lock); 17070 mutex_exit(&dtrace_provider_lock); 17071 mutex_exit(&dtrace_lock); 17072 return (DDI_FAILURE); 17073 } 17074 17075 ddi_report_dev(devi); 17076 dtrace_devi = devi; 17077 17078 dtrace_modload = dtrace_module_loaded; 17079 dtrace_modunload = dtrace_module_unloaded; 17080 dtrace_cpu_init = dtrace_cpu_setup_initial; 17081 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17082 dtrace_helpers_fork = dtrace_helpers_duplicate; 17083 dtrace_cpustart_init = dtrace_suspend; 17084 dtrace_cpustart_fini = dtrace_resume; 17085 dtrace_debugger_init = dtrace_suspend; 17086 dtrace_debugger_fini = dtrace_resume; 17087 17088 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17089 17090 ASSERT(MUTEX_HELD(&cpu_lock)); 17091 17092 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17093 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17094 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17095 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17096 VM_SLEEP | VMC_IDENTIFIER); 17097 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17098 1, INT_MAX, 0); 17099 17100 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17101 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17102 NULL, NULL, NULL, NULL, NULL, 0); 17103 17104 ASSERT(MUTEX_HELD(&cpu_lock)); 17105 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17106 offsetof(dtrace_probe_t, dtpr_nextmod), 17107 offsetof(dtrace_probe_t, dtpr_prevmod)); 17108 17109 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17110 offsetof(dtrace_probe_t, dtpr_nextfunc), 17111 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17112 17113 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17114 offsetof(dtrace_probe_t, dtpr_nextname), 17115 offsetof(dtrace_probe_t, dtpr_prevname)); 17116 17117 if (dtrace_retain_max < 1) { 17118 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17119 "setting to 1", dtrace_retain_max); 17120 dtrace_retain_max = 1; 17121 } 17122 17123 /* 17124 * Now discover our toxic ranges. 17125 */ 17126 dtrace_toxic_ranges(dtrace_toxrange_add); 17127 17128 /* 17129 * Before we register ourselves as a provider to our own framework, 17130 * we would like to assert that dtrace_provider is NULL -- but that's 17131 * not true if we were loaded as a dependency of a DTrace provider. 17132 * Once we've registered, we can assert that dtrace_provider is our 17133 * pseudo provider. 17134 */ 17135 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17136 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17137 17138 ASSERT(dtrace_provider != NULL); 17139 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17140 17141 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17142 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17143 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17144 dtrace_provider, NULL, NULL, "END", 0, NULL); 17145 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17146 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17147 17148 dtrace_anon_property(); 17149 mutex_exit(&cpu_lock); 17150 17151 /* 17152 * If there are already providers, we must ask them to provide their 17153 * probes, and then match any anonymous enabling against them. Note 17154 * that there should be no other retained enablings at this time: 17155 * the only retained enablings at this time should be the anonymous 17156 * enabling. 17157 */ 17158 if (dtrace_anon.dta_enabling != NULL) { 17159 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17160 17161 dtrace_enabling_provide(NULL); 17162 state = dtrace_anon.dta_state; 17163 17164 /* 17165 * We couldn't hold cpu_lock across the above call to 17166 * dtrace_enabling_provide(), but we must hold it to actually 17167 * enable the probes. We have to drop all of our locks, pick 17168 * up cpu_lock, and regain our locks before matching the 17169 * retained anonymous enabling. 17170 */ 17171 mutex_exit(&dtrace_lock); 17172 mutex_exit(&dtrace_provider_lock); 17173 17174 mutex_enter(&cpu_lock); 17175 mutex_enter(&dtrace_provider_lock); 17176 mutex_enter(&dtrace_lock); 17177 17178 if ((enab = dtrace_anon.dta_enabling) != NULL) 17179 (void) dtrace_enabling_match(enab, NULL); 17180 17181 mutex_exit(&cpu_lock); 17182 } 17183 17184 mutex_exit(&dtrace_lock); 17185 mutex_exit(&dtrace_provider_lock); 17186 17187 if (state != NULL) { 17188 /* 17189 * If we created any anonymous state, set it going now. 17190 */ 17191 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17192 } 17193 17194 return (DDI_SUCCESS); 17195 } 17196 #endif /* illumos */ 17197 17198 #ifndef illumos 17199 static void dtrace_dtr(void *); 17200 #endif 17201 17202 /*ARGSUSED*/ 17203 static int 17204 #ifdef illumos 17205 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17206 #else 17207 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17208 #endif 17209 { 17210 dtrace_state_t *state; 17211 uint32_t priv; 17212 uid_t uid; 17213 zoneid_t zoneid; 17214 17215 #ifdef illumos 17216 if (getminor(*devp) == DTRACEMNRN_HELPER) 17217 return (0); 17218 17219 /* 17220 * If this wasn't an open with the "helper" minor, then it must be 17221 * the "dtrace" minor. 17222 */ 17223 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17224 return (ENXIO); 17225 #else 17226 cred_t *cred_p = NULL; 17227 cred_p = dev->si_cred; 17228 17229 /* 17230 * If no DTRACE_PRIV_* bits are set in the credential, then the 17231 * caller lacks sufficient permission to do anything with DTrace. 17232 */ 17233 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17234 if (priv == DTRACE_PRIV_NONE) { 17235 #endif 17236 17237 return (EACCES); 17238 } 17239 17240 /* 17241 * Ask all providers to provide all their probes. 17242 */ 17243 mutex_enter(&dtrace_provider_lock); 17244 dtrace_probe_provide(NULL, NULL); 17245 mutex_exit(&dtrace_provider_lock); 17246 17247 mutex_enter(&cpu_lock); 17248 mutex_enter(&dtrace_lock); 17249 dtrace_opens++; 17250 dtrace_membar_producer(); 17251 17252 #ifdef illumos 17253 /* 17254 * If the kernel debugger is active (that is, if the kernel debugger 17255 * modified text in some way), we won't allow the open. 17256 */ 17257 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17258 dtrace_opens--; 17259 mutex_exit(&cpu_lock); 17260 mutex_exit(&dtrace_lock); 17261 return (EBUSY); 17262 } 17263 17264 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17265 /* 17266 * If DTrace helper tracing is enabled, we need to allocate the 17267 * trace buffer and initialize the values. 17268 */ 17269 dtrace_helptrace_buffer = 17270 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17271 dtrace_helptrace_next = 0; 17272 dtrace_helptrace_wrapped = 0; 17273 dtrace_helptrace_enable = 0; 17274 } 17275 17276 state = dtrace_state_create(devp, cred_p); 17277 #else 17278 state = dtrace_state_create(dev, NULL); 17279 devfs_set_cdevpriv(state, dtrace_dtr); 17280 #endif 17281 17282 mutex_exit(&cpu_lock); 17283 17284 if (state == NULL) { 17285 #ifdef illumos 17286 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17287 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17288 #else 17289 --dtrace_opens; 17290 #endif 17291 mutex_exit(&dtrace_lock); 17292 return (EAGAIN); 17293 } 17294 17295 mutex_exit(&dtrace_lock); 17296 17297 return (0); 17298 } 17299 17300 /*ARGSUSED*/ 17301 #ifdef illumos 17302 static int 17303 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17304 #else 17305 static void 17306 dtrace_dtr(void *data) 17307 #endif 17308 { 17309 #ifdef illumos 17310 minor_t minor = getminor(dev); 17311 dtrace_state_t *state; 17312 #endif 17313 dtrace_helptrace_t *buf = NULL; 17314 17315 #ifdef illumos 17316 if (minor == DTRACEMNRN_HELPER) 17317 return (0); 17318 17319 state = ddi_get_soft_state(dtrace_softstate, minor); 17320 #else 17321 dtrace_state_t *state = data; 17322 #endif 17323 17324 mutex_enter(&cpu_lock); 17325 mutex_enter(&dtrace_lock); 17326 17327 #ifdef illumos 17328 if (state->dts_anon) 17329 #else 17330 if (state != NULL && state->dts_anon) 17331 #endif 17332 { 17333 /* 17334 * There is anonymous state. Destroy that first. 17335 */ 17336 ASSERT(dtrace_anon.dta_state == NULL); 17337 dtrace_state_destroy(state->dts_anon); 17338 } 17339 17340 if (dtrace_helptrace_disable) { 17341 /* 17342 * If we have been told to disable helper tracing, set the 17343 * buffer to NULL before calling into dtrace_state_destroy(); 17344 * we take advantage of its dtrace_sync() to know that no 17345 * CPU is in probe context with enabled helper tracing 17346 * after it returns. 17347 */ 17348 buf = dtrace_helptrace_buffer; 17349 dtrace_helptrace_buffer = NULL; 17350 } 17351 17352 #ifdef illumos 17353 dtrace_state_destroy(state); 17354 #else 17355 if (state != NULL) { 17356 dtrace_state_destroy(state); 17357 kmem_free(state, 0); 17358 } 17359 #endif 17360 ASSERT(dtrace_opens > 0); 17361 17362 #ifdef illumos 17363 /* 17364 * Only relinquish control of the kernel debugger interface when there 17365 * are no consumers and no anonymous enablings. 17366 */ 17367 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17368 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17369 #else 17370 --dtrace_opens; 17371 #endif 17372 17373 if (buf != NULL) { 17374 kmem_free(buf, dtrace_helptrace_bufsize); 17375 dtrace_helptrace_disable = 0; 17376 } 17377 17378 mutex_exit(&dtrace_lock); 17379 mutex_exit(&cpu_lock); 17380 17381 #ifdef illumos 17382 return (0); 17383 #endif 17384 } 17385 17386 #ifdef illumos 17387 /*ARGSUSED*/ 17388 static int 17389 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17390 { 17391 int rval; 17392 dof_helper_t help, *dhp = NULL; 17393 17394 switch (cmd) { 17395 case DTRACEHIOC_ADDDOF: 17396 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17397 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17398 return (EFAULT); 17399 } 17400 17401 dhp = &help; 17402 arg = (intptr_t)help.dofhp_dof; 17403 /*FALLTHROUGH*/ 17404 17405 case DTRACEHIOC_ADD: { 17406 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17407 17408 if (dof == NULL) 17409 return (rval); 17410 17411 mutex_enter(&dtrace_lock); 17412 17413 /* 17414 * dtrace_helper_slurp() takes responsibility for the dof -- 17415 * it may free it now or it may save it and free it later. 17416 */ 17417 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17418 *rv = rval; 17419 rval = 0; 17420 } else { 17421 rval = EINVAL; 17422 } 17423 17424 mutex_exit(&dtrace_lock); 17425 return (rval); 17426 } 17427 17428 case DTRACEHIOC_REMOVE: { 17429 mutex_enter(&dtrace_lock); 17430 rval = dtrace_helper_destroygen(NULL, arg); 17431 mutex_exit(&dtrace_lock); 17432 17433 return (rval); 17434 } 17435 17436 default: 17437 break; 17438 } 17439 17440 return (ENOTTY); 17441 } 17442 17443 /*ARGSUSED*/ 17444 static int 17445 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17446 { 17447 minor_t minor = getminor(dev); 17448 dtrace_state_t *state; 17449 int rval; 17450 17451 if (minor == DTRACEMNRN_HELPER) 17452 return (dtrace_ioctl_helper(cmd, arg, rv)); 17453 17454 state = ddi_get_soft_state(dtrace_softstate, minor); 17455 17456 if (state->dts_anon) { 17457 ASSERT(dtrace_anon.dta_state == NULL); 17458 state = state->dts_anon; 17459 } 17460 17461 switch (cmd) { 17462 case DTRACEIOC_PROVIDER: { 17463 dtrace_providerdesc_t pvd; 17464 dtrace_provider_t *pvp; 17465 17466 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17467 return (EFAULT); 17468 17469 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17470 mutex_enter(&dtrace_provider_lock); 17471 17472 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17473 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17474 break; 17475 } 17476 17477 mutex_exit(&dtrace_provider_lock); 17478 17479 if (pvp == NULL) 17480 return (ESRCH); 17481 17482 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17483 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17484 17485 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17486 return (EFAULT); 17487 17488 return (0); 17489 } 17490 17491 case DTRACEIOC_EPROBE: { 17492 dtrace_eprobedesc_t epdesc; 17493 dtrace_ecb_t *ecb; 17494 dtrace_action_t *act; 17495 void *buf; 17496 size_t size; 17497 uintptr_t dest; 17498 int nrecs; 17499 17500 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17501 return (EFAULT); 17502 17503 mutex_enter(&dtrace_lock); 17504 17505 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17506 mutex_exit(&dtrace_lock); 17507 return (EINVAL); 17508 } 17509 17510 if (ecb->dte_probe == NULL) { 17511 mutex_exit(&dtrace_lock); 17512 return (EINVAL); 17513 } 17514 17515 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17516 epdesc.dtepd_uarg = ecb->dte_uarg; 17517 epdesc.dtepd_size = ecb->dte_size; 17518 17519 nrecs = epdesc.dtepd_nrecs; 17520 epdesc.dtepd_nrecs = 0; 17521 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17522 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17523 continue; 17524 17525 epdesc.dtepd_nrecs++; 17526 } 17527 17528 /* 17529 * Now that we have the size, we need to allocate a temporary 17530 * buffer in which to store the complete description. We need 17531 * the temporary buffer to be able to drop dtrace_lock() 17532 * across the copyout(), below. 17533 */ 17534 size = sizeof (dtrace_eprobedesc_t) + 17535 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17536 17537 buf = kmem_alloc(size, KM_SLEEP); 17538 dest = (uintptr_t)buf; 17539 17540 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17541 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17542 17543 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17544 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17545 continue; 17546 17547 if (nrecs-- == 0) 17548 break; 17549 17550 bcopy(&act->dta_rec, (void *)dest, 17551 sizeof (dtrace_recdesc_t)); 17552 dest += sizeof (dtrace_recdesc_t); 17553 } 17554 17555 mutex_exit(&dtrace_lock); 17556 17557 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17558 kmem_free(buf, size); 17559 return (EFAULT); 17560 } 17561 17562 kmem_free(buf, size); 17563 return (0); 17564 } 17565 17566 case DTRACEIOC_AGGDESC: { 17567 dtrace_aggdesc_t aggdesc; 17568 dtrace_action_t *act; 17569 dtrace_aggregation_t *agg; 17570 int nrecs; 17571 uint32_t offs; 17572 dtrace_recdesc_t *lrec; 17573 void *buf; 17574 size_t size; 17575 uintptr_t dest; 17576 17577 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17578 return (EFAULT); 17579 17580 mutex_enter(&dtrace_lock); 17581 17582 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17583 mutex_exit(&dtrace_lock); 17584 return (EINVAL); 17585 } 17586 17587 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17588 17589 nrecs = aggdesc.dtagd_nrecs; 17590 aggdesc.dtagd_nrecs = 0; 17591 17592 offs = agg->dtag_base; 17593 lrec = &agg->dtag_action.dta_rec; 17594 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17595 17596 for (act = agg->dtag_first; ; act = act->dta_next) { 17597 ASSERT(act->dta_intuple || 17598 DTRACEACT_ISAGG(act->dta_kind)); 17599 17600 /* 17601 * If this action has a record size of zero, it 17602 * denotes an argument to the aggregating action. 17603 * Because the presence of this record doesn't (or 17604 * shouldn't) affect the way the data is interpreted, 17605 * we don't copy it out to save user-level the 17606 * confusion of dealing with a zero-length record. 17607 */ 17608 if (act->dta_rec.dtrd_size == 0) { 17609 ASSERT(agg->dtag_hasarg); 17610 continue; 17611 } 17612 17613 aggdesc.dtagd_nrecs++; 17614 17615 if (act == &agg->dtag_action) 17616 break; 17617 } 17618 17619 /* 17620 * Now that we have the size, we need to allocate a temporary 17621 * buffer in which to store the complete description. We need 17622 * the temporary buffer to be able to drop dtrace_lock() 17623 * across the copyout(), below. 17624 */ 17625 size = sizeof (dtrace_aggdesc_t) + 17626 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17627 17628 buf = kmem_alloc(size, KM_SLEEP); 17629 dest = (uintptr_t)buf; 17630 17631 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17632 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17633 17634 for (act = agg->dtag_first; ; act = act->dta_next) { 17635 dtrace_recdesc_t rec = act->dta_rec; 17636 17637 /* 17638 * See the comment in the above loop for why we pass 17639 * over zero-length records. 17640 */ 17641 if (rec.dtrd_size == 0) { 17642 ASSERT(agg->dtag_hasarg); 17643 continue; 17644 } 17645 17646 if (nrecs-- == 0) 17647 break; 17648 17649 rec.dtrd_offset -= offs; 17650 bcopy(&rec, (void *)dest, sizeof (rec)); 17651 dest += sizeof (dtrace_recdesc_t); 17652 17653 if (act == &agg->dtag_action) 17654 break; 17655 } 17656 17657 mutex_exit(&dtrace_lock); 17658 17659 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17660 kmem_free(buf, size); 17661 return (EFAULT); 17662 } 17663 17664 kmem_free(buf, size); 17665 return (0); 17666 } 17667 17668 case DTRACEIOC_ENABLE: { 17669 dof_hdr_t *dof; 17670 dtrace_enabling_t *enab = NULL; 17671 dtrace_vstate_t *vstate; 17672 int err = 0; 17673 17674 *rv = 0; 17675 17676 /* 17677 * If a NULL argument has been passed, we take this as our 17678 * cue to reevaluate our enablings. 17679 */ 17680 if (arg == NULL) { 17681 dtrace_enabling_matchall(); 17682 17683 return (0); 17684 } 17685 17686 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17687 return (rval); 17688 17689 mutex_enter(&cpu_lock); 17690 mutex_enter(&dtrace_lock); 17691 vstate = &state->dts_vstate; 17692 17693 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17694 mutex_exit(&dtrace_lock); 17695 mutex_exit(&cpu_lock); 17696 dtrace_dof_destroy(dof); 17697 return (EBUSY); 17698 } 17699 17700 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17701 mutex_exit(&dtrace_lock); 17702 mutex_exit(&cpu_lock); 17703 dtrace_dof_destroy(dof); 17704 return (EINVAL); 17705 } 17706 17707 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17708 dtrace_enabling_destroy(enab); 17709 mutex_exit(&dtrace_lock); 17710 mutex_exit(&cpu_lock); 17711 dtrace_dof_destroy(dof); 17712 return (rval); 17713 } 17714 17715 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17716 err = dtrace_enabling_retain(enab); 17717 } else { 17718 dtrace_enabling_destroy(enab); 17719 } 17720 17721 mutex_exit(&cpu_lock); 17722 mutex_exit(&dtrace_lock); 17723 dtrace_dof_destroy(dof); 17724 17725 return (err); 17726 } 17727 17728 case DTRACEIOC_REPLICATE: { 17729 dtrace_repldesc_t desc; 17730 dtrace_probedesc_t *match = &desc.dtrpd_match; 17731 dtrace_probedesc_t *create = &desc.dtrpd_create; 17732 int err; 17733 17734 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17735 return (EFAULT); 17736 17737 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17738 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17739 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17740 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17741 17742 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17743 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17744 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17745 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17746 17747 mutex_enter(&dtrace_lock); 17748 err = dtrace_enabling_replicate(state, match, create); 17749 mutex_exit(&dtrace_lock); 17750 17751 return (err); 17752 } 17753 17754 case DTRACEIOC_PROBEMATCH: 17755 case DTRACEIOC_PROBES: { 17756 dtrace_probe_t *probe = NULL; 17757 dtrace_probedesc_t desc; 17758 dtrace_probekey_t pkey; 17759 dtrace_id_t i; 17760 int m = 0; 17761 uint32_t priv; 17762 uid_t uid; 17763 zoneid_t zoneid; 17764 17765 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17766 return (EFAULT); 17767 17768 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17769 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17770 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17771 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17772 17773 /* 17774 * Before we attempt to match this probe, we want to give 17775 * all providers the opportunity to provide it. 17776 */ 17777 if (desc.dtpd_id == DTRACE_IDNONE) { 17778 mutex_enter(&dtrace_provider_lock); 17779 dtrace_probe_provide(&desc, NULL); 17780 mutex_exit(&dtrace_provider_lock); 17781 desc.dtpd_id++; 17782 } 17783 17784 if (cmd == DTRACEIOC_PROBEMATCH) { 17785 dtrace_probekey(&desc, &pkey); 17786 pkey.dtpk_id = DTRACE_IDNONE; 17787 } 17788 17789 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17790 17791 mutex_enter(&dtrace_lock); 17792 17793 if (cmd == DTRACEIOC_PROBEMATCH) { 17794 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17795 if ((probe = dtrace_probes[i - 1]) != NULL && 17796 (m = dtrace_match_probe(probe, &pkey, 17797 priv, uid, zoneid)) != 0) 17798 break; 17799 } 17800 17801 if (m < 0) { 17802 mutex_exit(&dtrace_lock); 17803 return (EINVAL); 17804 } 17805 17806 } else { 17807 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17808 if ((probe = dtrace_probes[i - 1]) != NULL && 17809 dtrace_match_priv(probe, priv, uid, zoneid)) 17810 break; 17811 } 17812 } 17813 17814 if (probe == NULL) { 17815 mutex_exit(&dtrace_lock); 17816 return (ESRCH); 17817 } 17818 17819 dtrace_probe_description(probe, &desc); 17820 mutex_exit(&dtrace_lock); 17821 17822 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17823 return (EFAULT); 17824 17825 return (0); 17826 } 17827 17828 case DTRACEIOC_PROBEARG: { 17829 dtrace_argdesc_t desc; 17830 dtrace_probe_t *probe; 17831 dtrace_provider_t *prov; 17832 17833 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17834 return (EFAULT); 17835 17836 if (desc.dtargd_id == DTRACE_IDNONE) 17837 return (EINVAL); 17838 17839 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17840 return (EINVAL); 17841 17842 mutex_enter(&dtrace_provider_lock); 17843 mutex_enter(&mod_lock); 17844 mutex_enter(&dtrace_lock); 17845 17846 if (desc.dtargd_id > dtrace_nprobes) { 17847 mutex_exit(&dtrace_lock); 17848 mutex_exit(&mod_lock); 17849 mutex_exit(&dtrace_provider_lock); 17850 return (EINVAL); 17851 } 17852 17853 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17854 mutex_exit(&dtrace_lock); 17855 mutex_exit(&mod_lock); 17856 mutex_exit(&dtrace_provider_lock); 17857 return (EINVAL); 17858 } 17859 17860 mutex_exit(&dtrace_lock); 17861 17862 prov = probe->dtpr_provider; 17863 17864 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17865 /* 17866 * There isn't any typed information for this probe. 17867 * Set the argument number to DTRACE_ARGNONE. 17868 */ 17869 desc.dtargd_ndx = DTRACE_ARGNONE; 17870 } else { 17871 desc.dtargd_native[0] = '\0'; 17872 desc.dtargd_xlate[0] = '\0'; 17873 desc.dtargd_mapping = desc.dtargd_ndx; 17874 17875 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17876 probe->dtpr_id, probe->dtpr_arg, &desc); 17877 } 17878 17879 mutex_exit(&mod_lock); 17880 mutex_exit(&dtrace_provider_lock); 17881 17882 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17883 return (EFAULT); 17884 17885 return (0); 17886 } 17887 17888 case DTRACEIOC_GO: { 17889 processorid_t cpuid; 17890 rval = dtrace_state_go(state, &cpuid); 17891 17892 if (rval != 0) 17893 return (rval); 17894 17895 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17896 return (EFAULT); 17897 17898 return (0); 17899 } 17900 17901 case DTRACEIOC_STOP: { 17902 processorid_t cpuid; 17903 17904 mutex_enter(&dtrace_lock); 17905 rval = dtrace_state_stop(state, &cpuid); 17906 mutex_exit(&dtrace_lock); 17907 17908 if (rval != 0) 17909 return (rval); 17910 17911 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17912 return (EFAULT); 17913 17914 return (0); 17915 } 17916 17917 case DTRACEIOC_DOFGET: { 17918 dof_hdr_t hdr, *dof; 17919 uint64_t len; 17920 17921 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17922 return (EFAULT); 17923 17924 mutex_enter(&dtrace_lock); 17925 dof = dtrace_dof_create(state); 17926 mutex_exit(&dtrace_lock); 17927 17928 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17929 rval = copyout(dof, (void *)arg, len); 17930 dtrace_dof_destroy(dof); 17931 17932 return (rval == 0 ? 0 : EFAULT); 17933 } 17934 17935 case DTRACEIOC_AGGSNAP: 17936 case DTRACEIOC_BUFSNAP: { 17937 dtrace_bufdesc_t desc; 17938 caddr_t cached; 17939 dtrace_buffer_t *buf; 17940 17941 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17942 return (EFAULT); 17943 17944 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17945 return (EINVAL); 17946 17947 mutex_enter(&dtrace_lock); 17948 17949 if (cmd == DTRACEIOC_BUFSNAP) { 17950 buf = &state->dts_buffer[desc.dtbd_cpu]; 17951 } else { 17952 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17953 } 17954 17955 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17956 size_t sz = buf->dtb_offset; 17957 17958 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17959 mutex_exit(&dtrace_lock); 17960 return (EBUSY); 17961 } 17962 17963 /* 17964 * If this buffer has already been consumed, we're 17965 * going to indicate that there's nothing left here 17966 * to consume. 17967 */ 17968 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17969 mutex_exit(&dtrace_lock); 17970 17971 desc.dtbd_size = 0; 17972 desc.dtbd_drops = 0; 17973 desc.dtbd_errors = 0; 17974 desc.dtbd_oldest = 0; 17975 sz = sizeof (desc); 17976 17977 if (copyout(&desc, (void *)arg, sz) != 0) 17978 return (EFAULT); 17979 17980 return (0); 17981 } 17982 17983 /* 17984 * If this is a ring buffer that has wrapped, we want 17985 * to copy the whole thing out. 17986 */ 17987 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17988 dtrace_buffer_polish(buf); 17989 sz = buf->dtb_size; 17990 } 17991 17992 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17993 mutex_exit(&dtrace_lock); 17994 return (EFAULT); 17995 } 17996 17997 desc.dtbd_size = sz; 17998 desc.dtbd_drops = buf->dtb_drops; 17999 desc.dtbd_errors = buf->dtb_errors; 18000 desc.dtbd_oldest = buf->dtb_xamot_offset; 18001 desc.dtbd_timestamp = dtrace_gethrtime(); 18002 18003 mutex_exit(&dtrace_lock); 18004 18005 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18006 return (EFAULT); 18007 18008 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18009 18010 return (0); 18011 } 18012 18013 if (buf->dtb_tomax == NULL) { 18014 ASSERT(buf->dtb_xamot == NULL); 18015 mutex_exit(&dtrace_lock); 18016 return (ENOENT); 18017 } 18018 18019 cached = buf->dtb_tomax; 18020 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18021 18022 dtrace_xcall(desc.dtbd_cpu, 18023 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18024 18025 state->dts_errors += buf->dtb_xamot_errors; 18026 18027 /* 18028 * If the buffers did not actually switch, then the cross call 18029 * did not take place -- presumably because the given CPU is 18030 * not in the ready set. If this is the case, we'll return 18031 * ENOENT. 18032 */ 18033 if (buf->dtb_tomax == cached) { 18034 ASSERT(buf->dtb_xamot != cached); 18035 mutex_exit(&dtrace_lock); 18036 return (ENOENT); 18037 } 18038 18039 ASSERT(cached == buf->dtb_xamot); 18040 18041 /* 18042 * We have our snapshot; now copy it out. 18043 */ 18044 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18045 buf->dtb_xamot_offset) != 0) { 18046 mutex_exit(&dtrace_lock); 18047 return (EFAULT); 18048 } 18049 18050 desc.dtbd_size = buf->dtb_xamot_offset; 18051 desc.dtbd_drops = buf->dtb_xamot_drops; 18052 desc.dtbd_errors = buf->dtb_xamot_errors; 18053 desc.dtbd_oldest = 0; 18054 desc.dtbd_timestamp = buf->dtb_switched; 18055 18056 mutex_exit(&dtrace_lock); 18057 18058 /* 18059 * Finally, copy out the buffer description. 18060 */ 18061 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18062 return (EFAULT); 18063 18064 return (0); 18065 } 18066 18067 case DTRACEIOC_CONF: { 18068 dtrace_conf_t conf; 18069 18070 bzero(&conf, sizeof (conf)); 18071 conf.dtc_difversion = DIF_VERSION; 18072 conf.dtc_difintregs = DIF_DIR_NREGS; 18073 conf.dtc_diftupregs = DIF_DTR_NREGS; 18074 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18075 18076 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18077 return (EFAULT); 18078 18079 return (0); 18080 } 18081 18082 case DTRACEIOC_STATUS: { 18083 dtrace_status_t stat; 18084 dtrace_dstate_t *dstate; 18085 int i, j; 18086 uint64_t nerrs; 18087 18088 /* 18089 * See the comment in dtrace_state_deadman() for the reason 18090 * for setting dts_laststatus to INT64_MAX before setting 18091 * it to the correct value. 18092 */ 18093 state->dts_laststatus = INT64_MAX; 18094 dtrace_membar_producer(); 18095 state->dts_laststatus = dtrace_gethrtime(); 18096 18097 bzero(&stat, sizeof (stat)); 18098 18099 mutex_enter(&dtrace_lock); 18100 18101 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18102 mutex_exit(&dtrace_lock); 18103 return (ENOENT); 18104 } 18105 18106 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18107 stat.dtst_exiting = 1; 18108 18109 nerrs = state->dts_errors; 18110 dstate = &state->dts_vstate.dtvs_dynvars; 18111 18112 for (i = 0; i < NCPU; i++) { 18113 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18114 18115 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18116 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18117 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18118 18119 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18120 stat.dtst_filled++; 18121 18122 nerrs += state->dts_buffer[i].dtb_errors; 18123 18124 for (j = 0; j < state->dts_nspeculations; j++) { 18125 dtrace_speculation_t *spec; 18126 dtrace_buffer_t *buf; 18127 18128 spec = &state->dts_speculations[j]; 18129 buf = &spec->dtsp_buffer[i]; 18130 stat.dtst_specdrops += buf->dtb_xamot_drops; 18131 } 18132 } 18133 18134 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18135 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18136 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18137 stat.dtst_dblerrors = state->dts_dblerrors; 18138 stat.dtst_killed = 18139 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18140 stat.dtst_errors = nerrs; 18141 18142 mutex_exit(&dtrace_lock); 18143 18144 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18145 return (EFAULT); 18146 18147 return (0); 18148 } 18149 18150 case DTRACEIOC_FORMAT: { 18151 dtrace_fmtdesc_t fmt; 18152 char *str; 18153 int len; 18154 18155 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18156 return (EFAULT); 18157 18158 mutex_enter(&dtrace_lock); 18159 18160 if (fmt.dtfd_format == 0 || 18161 fmt.dtfd_format > state->dts_nformats) { 18162 mutex_exit(&dtrace_lock); 18163 return (EINVAL); 18164 } 18165 18166 /* 18167 * Format strings are allocated contiguously and they are 18168 * never freed; if a format index is less than the number 18169 * of formats, we can assert that the format map is non-NULL 18170 * and that the format for the specified index is non-NULL. 18171 */ 18172 ASSERT(state->dts_formats != NULL); 18173 str = state->dts_formats[fmt.dtfd_format - 1]; 18174 ASSERT(str != NULL); 18175 18176 len = strlen(str) + 1; 18177 18178 if (len > fmt.dtfd_length) { 18179 fmt.dtfd_length = len; 18180 18181 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18182 mutex_exit(&dtrace_lock); 18183 return (EINVAL); 18184 } 18185 } else { 18186 if (copyout(str, fmt.dtfd_string, len) != 0) { 18187 mutex_exit(&dtrace_lock); 18188 return (EINVAL); 18189 } 18190 } 18191 18192 mutex_exit(&dtrace_lock); 18193 return (0); 18194 } 18195 18196 default: 18197 break; 18198 } 18199 18200 return (ENOTTY); 18201 } 18202 18203 /*ARGSUSED*/ 18204 static int 18205 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18206 { 18207 dtrace_state_t *state; 18208 18209 switch (cmd) { 18210 case DDI_DETACH: 18211 break; 18212 18213 case DDI_SUSPEND: 18214 return (DDI_SUCCESS); 18215 18216 default: 18217 return (DDI_FAILURE); 18218 } 18219 18220 mutex_enter(&cpu_lock); 18221 mutex_enter(&dtrace_provider_lock); 18222 mutex_enter(&dtrace_lock); 18223 18224 ASSERT(dtrace_opens == 0); 18225 18226 if (dtrace_helpers > 0) { 18227 mutex_exit(&dtrace_provider_lock); 18228 mutex_exit(&dtrace_lock); 18229 mutex_exit(&cpu_lock); 18230 return (DDI_FAILURE); 18231 } 18232 18233 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18234 mutex_exit(&dtrace_provider_lock); 18235 mutex_exit(&dtrace_lock); 18236 mutex_exit(&cpu_lock); 18237 return (DDI_FAILURE); 18238 } 18239 18240 dtrace_provider = NULL; 18241 18242 if ((state = dtrace_anon_grab()) != NULL) { 18243 /* 18244 * If there were ECBs on this state, the provider should 18245 * have not been allowed to detach; assert that there is 18246 * none. 18247 */ 18248 ASSERT(state->dts_necbs == 0); 18249 dtrace_state_destroy(state); 18250 18251 /* 18252 * If we're being detached with anonymous state, we need to 18253 * indicate to the kernel debugger that DTrace is now inactive. 18254 */ 18255 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18256 } 18257 18258 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18259 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18260 dtrace_cpu_init = NULL; 18261 dtrace_helpers_cleanup = NULL; 18262 dtrace_helpers_fork = NULL; 18263 dtrace_cpustart_init = NULL; 18264 dtrace_cpustart_fini = NULL; 18265 dtrace_debugger_init = NULL; 18266 dtrace_debugger_fini = NULL; 18267 dtrace_modload = NULL; 18268 dtrace_modunload = NULL; 18269 18270 ASSERT(dtrace_getf == 0); 18271 ASSERT(dtrace_closef == NULL); 18272 18273 mutex_exit(&cpu_lock); 18274 18275 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18276 dtrace_probes = NULL; 18277 dtrace_nprobes = 0; 18278 18279 dtrace_hash_destroy(dtrace_bymod); 18280 dtrace_hash_destroy(dtrace_byfunc); 18281 dtrace_hash_destroy(dtrace_byname); 18282 dtrace_bymod = NULL; 18283 dtrace_byfunc = NULL; 18284 dtrace_byname = NULL; 18285 18286 kmem_cache_destroy(dtrace_state_cache); 18287 vmem_destroy(dtrace_minor); 18288 vmem_destroy(dtrace_arena); 18289 18290 if (dtrace_toxrange != NULL) { 18291 kmem_free(dtrace_toxrange, 18292 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18293 dtrace_toxrange = NULL; 18294 dtrace_toxranges = 0; 18295 dtrace_toxranges_max = 0; 18296 } 18297 18298 ddi_remove_minor_node(dtrace_devi, NULL); 18299 dtrace_devi = NULL; 18300 18301 ddi_soft_state_fini(&dtrace_softstate); 18302 18303 ASSERT(dtrace_vtime_references == 0); 18304 ASSERT(dtrace_opens == 0); 18305 ASSERT(dtrace_retained == NULL); 18306 18307 mutex_exit(&dtrace_lock); 18308 mutex_exit(&dtrace_provider_lock); 18309 18310 /* 18311 * We don't destroy the task queue until after we have dropped our 18312 * locks (taskq_destroy() may block on running tasks). To prevent 18313 * attempting to do work after we have effectively detached but before 18314 * the task queue has been destroyed, all tasks dispatched via the 18315 * task queue must check that DTrace is still attached before 18316 * performing any operation. 18317 */ 18318 taskq_destroy(dtrace_taskq); 18319 dtrace_taskq = NULL; 18320 18321 return (DDI_SUCCESS); 18322 } 18323 #endif 18324 18325 #ifdef illumos 18326 /*ARGSUSED*/ 18327 static int 18328 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18329 { 18330 int error; 18331 18332 switch (infocmd) { 18333 case DDI_INFO_DEVT2DEVINFO: 18334 *result = (void *)dtrace_devi; 18335 error = DDI_SUCCESS; 18336 break; 18337 case DDI_INFO_DEVT2INSTANCE: 18338 *result = (void *)0; 18339 error = DDI_SUCCESS; 18340 break; 18341 default: 18342 error = DDI_FAILURE; 18343 } 18344 return (error); 18345 } 18346 #endif 18347 18348 #ifdef illumos 18349 static struct cb_ops dtrace_cb_ops = { 18350 dtrace_open, /* open */ 18351 dtrace_close, /* close */ 18352 nulldev, /* strategy */ 18353 nulldev, /* print */ 18354 nodev, /* dump */ 18355 nodev, /* read */ 18356 nodev, /* write */ 18357 dtrace_ioctl, /* ioctl */ 18358 nodev, /* devmap */ 18359 nodev, /* mmap */ 18360 nodev, /* segmap */ 18361 nochpoll, /* poll */ 18362 ddi_prop_op, /* cb_prop_op */ 18363 0, /* streamtab */ 18364 D_NEW | D_MP /* Driver compatibility flag */ 18365 }; 18366 18367 static struct dev_ops dtrace_ops = { 18368 DEVO_REV, /* devo_rev */ 18369 0, /* refcnt */ 18370 dtrace_info, /* get_dev_info */ 18371 nulldev, /* identify */ 18372 nulldev, /* probe */ 18373 dtrace_attach, /* attach */ 18374 dtrace_detach, /* detach */ 18375 nodev, /* reset */ 18376 &dtrace_cb_ops, /* driver operations */ 18377 NULL, /* bus operations */ 18378 nodev /* dev power */ 18379 }; 18380 18381 static struct modldrv modldrv = { 18382 &mod_driverops, /* module type (this is a pseudo driver) */ 18383 "Dynamic Tracing", /* name of module */ 18384 &dtrace_ops, /* driver ops */ 18385 }; 18386 18387 static struct modlinkage modlinkage = { 18388 MODREV_1, 18389 (void *)&modldrv, 18390 NULL 18391 }; 18392 18393 int 18394 _init(void) 18395 { 18396 return (mod_install(&modlinkage)); 18397 } 18398 18399 int 18400 _info(struct modinfo *modinfop) 18401 { 18402 return (mod_info(&modlinkage, modinfop)); 18403 } 18404 18405 int 18406 _fini(void) 18407 { 18408 return (mod_remove(&modlinkage)); 18409 } 18410 #else 18411 18412 static d_ioctl_t dtrace_ioctl; 18413 static d_ioctl_t dtrace_ioctl_helper; 18414 static void dtrace_load(void *); 18415 static int dtrace_unload(void); 18416 static struct cdev *dtrace_dev; 18417 static struct cdev *helper_dev; 18418 18419 void dtrace_invop_init(void); 18420 void dtrace_invop_uninit(void); 18421 18422 static struct cdevsw dtrace_cdevsw = { 18423 .d_version = D_VERSION, 18424 .d_ioctl = dtrace_ioctl, 18425 .d_open = dtrace_open, 18426 .d_name = "dtrace", 18427 }; 18428 18429 static struct cdevsw helper_cdevsw = { 18430 .d_version = D_VERSION, 18431 .d_ioctl = dtrace_ioctl_helper, 18432 .d_name = "helper", 18433 }; 18434 18435 #include <dtrace_anon.c> 18436 #include <dtrace_ioctl.c> 18437 #include <dtrace_load.c> 18438 #include <dtrace_modevent.c> 18439 #include <dtrace_sysctl.c> 18440 #include <dtrace_unload.c> 18441 #include <dtrace_vtime.c> 18442 #include <dtrace_hacks.c> 18443 18444 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18445 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18446 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18447 18448 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18449 MODULE_VERSION(dtrace, 1); 18450 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18451 #endif 18452