1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 __compiler_membar(); \ 553 *flags |= CPU_DTRACE_NOFAULT; \ 554 /*CSTYLED*/ \ 555 rval = *((volatile uint##bits##_t *)addr); \ 556 *flags &= ~CPU_DTRACE_NOFAULT; \ 557 __compiler_membar(); \ 558 \ 559 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 560 } 561 562 #ifdef _LP64 563 #define dtrace_loadptr dtrace_load64 564 #else 565 #define dtrace_loadptr dtrace_load32 566 #endif 567 568 #define DTRACE_DYNHASH_FREE 0 569 #define DTRACE_DYNHASH_SINK 1 570 #define DTRACE_DYNHASH_VALID 2 571 572 #define DTRACE_MATCH_NEXT 0 573 #define DTRACE_MATCH_DONE 1 574 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 575 #define DTRACE_STATE_ALIGN 64 576 577 #define DTRACE_FLAGS2FLT(flags) \ 578 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 579 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 580 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 581 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 582 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 583 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 584 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 585 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 586 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 587 DTRACEFLT_UNKNOWN) 588 589 #define DTRACEACT_ISSTRING(act) \ 590 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 591 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 592 593 /* Function prototype definitions: */ 594 static size_t dtrace_strlen(const char *, size_t); 595 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 596 static void dtrace_enabling_provide(dtrace_provider_t *); 597 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 598 static void dtrace_enabling_matchall(void); 599 static void dtrace_enabling_matchall_task(void *); 600 static void dtrace_enabling_reap(void *); 601 static dtrace_state_t *dtrace_anon_grab(void); 602 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 603 dtrace_state_t *, uint64_t, uint64_t); 604 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 605 static void dtrace_buffer_drop(dtrace_buffer_t *); 606 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 607 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 608 dtrace_state_t *, dtrace_mstate_t *); 609 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 610 dtrace_optval_t); 611 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 612 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 613 uint16_t dtrace_load16(uintptr_t); 614 uint32_t dtrace_load32(uintptr_t); 615 uint64_t dtrace_load64(uintptr_t); 616 uint8_t dtrace_load8(uintptr_t); 617 void dtrace_dynvar_clean(dtrace_dstate_t *); 618 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 619 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 620 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 621 static int dtrace_priv_proc(dtrace_state_t *); 622 static void dtrace_getf_barrier(void); 623 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 624 dtrace_mstate_t *, dtrace_vstate_t *); 625 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 626 dtrace_mstate_t *, dtrace_vstate_t *); 627 628 /* 629 * DTrace Probe Context Functions 630 * 631 * These functions are called from probe context. Because probe context is 632 * any context in which C may be called, arbitrarily locks may be held, 633 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 634 * As a result, functions called from probe context may only call other DTrace 635 * support functions -- they may not interact at all with the system at large. 636 * (Note that the ASSERT macro is made probe-context safe by redefining it in 637 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 638 * loads are to be performed from probe context, they _must_ be in terms of 639 * the safe dtrace_load*() variants. 640 * 641 * Some functions in this block are not actually called from probe context; 642 * for these functions, there will be a comment above the function reading 643 * "Note: not called from probe context." 644 */ 645 void 646 dtrace_panic(const char *format, ...) 647 { 648 va_list alist; 649 650 va_start(alist, format); 651 #ifdef __FreeBSD__ 652 vpanic(format, alist); 653 #else 654 dtrace_vpanic(format, alist); 655 #endif 656 va_end(alist); 657 } 658 659 int 660 dtrace_assfail(const char *a, const char *f, int l) 661 { 662 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 663 664 /* 665 * We just need something here that even the most clever compiler 666 * cannot optimize away. 667 */ 668 return (a[(uintptr_t)f]); 669 } 670 671 /* 672 * Atomically increment a specified error counter from probe context. 673 */ 674 static void 675 dtrace_error(uint32_t *counter) 676 { 677 /* 678 * Most counters stored to in probe context are per-CPU counters. 679 * However, there are some error conditions that are sufficiently 680 * arcane that they don't merit per-CPU storage. If these counters 681 * are incremented concurrently on different CPUs, scalability will be 682 * adversely affected -- but we don't expect them to be white-hot in a 683 * correctly constructed enabling... 684 */ 685 uint32_t oval, nval; 686 687 do { 688 oval = *counter; 689 690 if ((nval = oval + 1) == 0) { 691 /* 692 * If the counter would wrap, set it to 1 -- assuring 693 * that the counter is never zero when we have seen 694 * errors. (The counter must be 32-bits because we 695 * aren't guaranteed a 64-bit compare&swap operation.) 696 * To save this code both the infamy of being fingered 697 * by a priggish news story and the indignity of being 698 * the target of a neo-puritan witch trial, we're 699 * carefully avoiding any colorful description of the 700 * likelihood of this condition -- but suffice it to 701 * say that it is only slightly more likely than the 702 * overflow of predicate cache IDs, as discussed in 703 * dtrace_predicate_create(). 704 */ 705 nval = 1; 706 } 707 } while (dtrace_cas32(counter, oval, nval) != oval); 708 } 709 710 void 711 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) 712 { 713 cpuset_t cpus; 714 715 if (cpu == DTRACE_CPUALL) 716 cpus = all_cpus; 717 else 718 CPU_SETOF(cpu, &cpus); 719 720 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, 721 smp_no_rendezvous_barrier, arg); 722 } 723 724 static void 725 dtrace_sync_func(void) 726 { 727 } 728 729 void 730 dtrace_sync(void) 731 { 732 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); 733 } 734 735 /* 736 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 737 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 738 */ 739 /* BEGIN CSTYLED */ 740 DTRACE_LOADFUNC(8) 741 DTRACE_LOADFUNC(16) 742 DTRACE_LOADFUNC(32) 743 DTRACE_LOADFUNC(64) 744 /* END CSTYLED */ 745 746 static int 747 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 748 { 749 if (dest < mstate->dtms_scratch_base) 750 return (0); 751 752 if (dest + size < dest) 753 return (0); 754 755 if (dest + size > mstate->dtms_scratch_ptr) 756 return (0); 757 758 return (1); 759 } 760 761 static int 762 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 763 dtrace_statvar_t **svars, int nsvars) 764 { 765 int i; 766 size_t maxglobalsize, maxlocalsize; 767 768 if (nsvars == 0) 769 return (0); 770 771 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 772 maxlocalsize = maxglobalsize * (mp_maxid + 1); 773 774 for (i = 0; i < nsvars; i++) { 775 dtrace_statvar_t *svar = svars[i]; 776 uint8_t scope; 777 size_t size; 778 779 if (svar == NULL || (size = svar->dtsv_size) == 0) 780 continue; 781 782 scope = svar->dtsv_var.dtdv_scope; 783 784 /* 785 * We verify that our size is valid in the spirit of providing 786 * defense in depth: we want to prevent attackers from using 787 * DTrace to escalate an orthogonal kernel heap corruption bug 788 * into the ability to store to arbitrary locations in memory. 789 */ 790 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 791 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 792 793 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 794 svar->dtsv_size)) { 795 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 796 svar->dtsv_size); 797 return (1); 798 } 799 } 800 801 return (0); 802 } 803 804 /* 805 * Check to see if the address is within a memory region to which a store may 806 * be issued. This includes the DTrace scratch areas, and any DTrace variable 807 * region. The caller of dtrace_canstore() is responsible for performing any 808 * alignment checks that are needed before stores are actually executed. 809 */ 810 static int 811 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 812 dtrace_vstate_t *vstate) 813 { 814 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 815 } 816 817 /* 818 * Implementation of dtrace_canstore which communicates the upper bound of the 819 * allowed memory region. 820 */ 821 static int 822 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 823 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 824 { 825 /* 826 * First, check to see if the address is in scratch space... 827 */ 828 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 829 mstate->dtms_scratch_size)) { 830 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 831 mstate->dtms_scratch_size); 832 return (1); 833 } 834 835 /* 836 * Now check to see if it's a dynamic variable. This check will pick 837 * up both thread-local variables and any global dynamically-allocated 838 * variables. 839 */ 840 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 841 vstate->dtvs_dynvars.dtds_size)) { 842 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 843 uintptr_t base = (uintptr_t)dstate->dtds_base + 844 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 845 uintptr_t chunkoffs; 846 dtrace_dynvar_t *dvar; 847 848 /* 849 * Before we assume that we can store here, we need to make 850 * sure that it isn't in our metadata -- storing to our 851 * dynamic variable metadata would corrupt our state. For 852 * the range to not include any dynamic variable metadata, 853 * it must: 854 * 855 * (1) Start above the hash table that is at the base of 856 * the dynamic variable space 857 * 858 * (2) Have a starting chunk offset that is beyond the 859 * dtrace_dynvar_t that is at the base of every chunk 860 * 861 * (3) Not span a chunk boundary 862 * 863 * (4) Not be in the tuple space of a dynamic variable 864 * 865 */ 866 if (addr < base) 867 return (0); 868 869 chunkoffs = (addr - base) % dstate->dtds_chunksize; 870 871 if (chunkoffs < sizeof (dtrace_dynvar_t)) 872 return (0); 873 874 if (chunkoffs + sz > dstate->dtds_chunksize) 875 return (0); 876 877 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 878 879 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 880 return (0); 881 882 if (chunkoffs < sizeof (dtrace_dynvar_t) + 883 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 884 return (0); 885 886 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 887 return (1); 888 } 889 890 /* 891 * Finally, check the static local and global variables. These checks 892 * take the longest, so we perform them last. 893 */ 894 if (dtrace_canstore_statvar(addr, sz, remain, 895 vstate->dtvs_locals, vstate->dtvs_nlocals)) 896 return (1); 897 898 if (dtrace_canstore_statvar(addr, sz, remain, 899 vstate->dtvs_globals, vstate->dtvs_nglobals)) 900 return (1); 901 902 return (0); 903 } 904 905 906 /* 907 * Convenience routine to check to see if the address is within a memory 908 * region in which a load may be issued given the user's privilege level; 909 * if not, it sets the appropriate error flags and loads 'addr' into the 910 * illegal value slot. 911 * 912 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 913 * appropriate memory access protection. 914 */ 915 static int 916 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 917 dtrace_vstate_t *vstate) 918 { 919 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 920 } 921 922 /* 923 * Implementation of dtrace_canload which communicates the uppoer bound of the 924 * allowed memory region. 925 */ 926 static int 927 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 928 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 929 { 930 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 931 file_t *fp; 932 933 /* 934 * If we hold the privilege to read from kernel memory, then 935 * everything is readable. 936 */ 937 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 938 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 939 return (1); 940 } 941 942 /* 943 * You can obviously read that which you can store. 944 */ 945 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 946 return (1); 947 948 /* 949 * We're allowed to read from our own string table. 950 */ 951 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 952 mstate->dtms_difo->dtdo_strlen)) { 953 DTRACE_RANGE_REMAIN(remain, addr, 954 mstate->dtms_difo->dtdo_strtab, 955 mstate->dtms_difo->dtdo_strlen); 956 return (1); 957 } 958 959 if (vstate->dtvs_state != NULL && 960 dtrace_priv_proc(vstate->dtvs_state)) { 961 proc_t *p; 962 963 /* 964 * When we have privileges to the current process, there are 965 * several context-related kernel structures that are safe to 966 * read, even absent the privilege to read from kernel memory. 967 * These reads are safe because these structures contain only 968 * state that (1) we're permitted to read, (2) is harmless or 969 * (3) contains pointers to additional kernel state that we're 970 * not permitted to read (and as such, do not present an 971 * opportunity for privilege escalation). Finally (and 972 * critically), because of the nature of their relation with 973 * the current thread context, the memory associated with these 974 * structures cannot change over the duration of probe context, 975 * and it is therefore impossible for this memory to be 976 * deallocated and reallocated as something else while it's 977 * being operated upon. 978 */ 979 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 980 DTRACE_RANGE_REMAIN(remain, addr, curthread, 981 sizeof (kthread_t)); 982 return (1); 983 } 984 985 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 986 sz, curthread->t_procp, sizeof (proc_t))) { 987 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 988 sizeof (proc_t)); 989 return (1); 990 } 991 992 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 993 curthread->t_cred, sizeof (cred_t))) { 994 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 995 sizeof (cred_t)); 996 return (1); 997 } 998 999 #ifdef illumos 1000 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 1001 &(p->p_pidp->pid_id), sizeof (pid_t))) { 1002 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 1003 sizeof (pid_t)); 1004 return (1); 1005 } 1006 1007 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 1008 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 1009 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 1010 offsetof(cpu_t, cpu_pause_thread)); 1011 return (1); 1012 } 1013 #endif 1014 } 1015 1016 if ((fp = mstate->dtms_getf) != NULL) { 1017 uintptr_t psz = sizeof (void *); 1018 vnode_t *vp; 1019 vnodeops_t *op; 1020 1021 /* 1022 * When getf() returns a file_t, the enabling is implicitly 1023 * granted the (transient) right to read the returned file_t 1024 * as well as the v_path and v_op->vnop_name of the underlying 1025 * vnode. These accesses are allowed after a successful 1026 * getf() because the members that they refer to cannot change 1027 * once set -- and the barrier logic in the kernel's closef() 1028 * path assures that the file_t and its referenced vode_t 1029 * cannot themselves be stale (that is, it impossible for 1030 * either dtms_getf itself or its f_vnode member to reference 1031 * freed memory). 1032 */ 1033 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1034 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1035 return (1); 1036 } 1037 1038 if ((vp = fp->f_vnode) != NULL) { 1039 size_t slen; 1040 #ifdef illumos 1041 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1042 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1043 psz); 1044 return (1); 1045 } 1046 slen = strlen(vp->v_path) + 1; 1047 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1048 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1049 slen); 1050 return (1); 1051 } 1052 #endif 1053 1054 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1055 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1056 psz); 1057 return (1); 1058 } 1059 1060 #ifdef illumos 1061 if ((op = vp->v_op) != NULL && 1062 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1063 DTRACE_RANGE_REMAIN(remain, addr, 1064 &op->vnop_name, psz); 1065 return (1); 1066 } 1067 1068 if (op != NULL && op->vnop_name != NULL && 1069 DTRACE_INRANGE(addr, sz, op->vnop_name, 1070 (slen = strlen(op->vnop_name) + 1))) { 1071 DTRACE_RANGE_REMAIN(remain, addr, 1072 op->vnop_name, slen); 1073 return (1); 1074 } 1075 #endif 1076 } 1077 } 1078 1079 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1080 *illval = addr; 1081 return (0); 1082 } 1083 1084 /* 1085 * Convenience routine to check to see if a given string is within a memory 1086 * region in which a load may be issued given the user's privilege level; 1087 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1088 * calls in the event that the user has all privileges. 1089 */ 1090 static int 1091 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1092 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1093 { 1094 size_t rsize; 1095 1096 /* 1097 * If we hold the privilege to read from kernel memory, then 1098 * everything is readable. 1099 */ 1100 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1101 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1102 return (1); 1103 } 1104 1105 /* 1106 * Even if the caller is uninterested in querying the remaining valid 1107 * range, it is required to ensure that the access is allowed. 1108 */ 1109 if (remain == NULL) { 1110 remain = &rsize; 1111 } 1112 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1113 size_t strsz; 1114 /* 1115 * Perform the strlen after determining the length of the 1116 * memory region which is accessible. This prevents timing 1117 * information from being used to find NULs in memory which is 1118 * not accessible to the caller. 1119 */ 1120 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1121 MIN(sz, *remain)); 1122 if (strsz <= *remain) { 1123 return (1); 1124 } 1125 } 1126 1127 return (0); 1128 } 1129 1130 /* 1131 * Convenience routine to check to see if a given variable is within a memory 1132 * region in which a load may be issued given the user's privilege level. 1133 */ 1134 static int 1135 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1136 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1137 { 1138 size_t sz; 1139 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1140 1141 /* 1142 * Calculate the max size before performing any checks since even 1143 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1144 * return the max length via 'remain'. 1145 */ 1146 if (type->dtdt_kind == DIF_TYPE_STRING) { 1147 dtrace_state_t *state = vstate->dtvs_state; 1148 1149 if (state != NULL) { 1150 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1151 } else { 1152 /* 1153 * In helper context, we have a NULL state; fall back 1154 * to using the system-wide default for the string size 1155 * in this case. 1156 */ 1157 sz = dtrace_strsize_default; 1158 } 1159 } else { 1160 sz = type->dtdt_size; 1161 } 1162 1163 /* 1164 * If we hold the privilege to read from kernel memory, then 1165 * everything is readable. 1166 */ 1167 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1168 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1169 return (1); 1170 } 1171 1172 if (type->dtdt_kind == DIF_TYPE_STRING) { 1173 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1174 vstate)); 1175 } 1176 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1177 vstate)); 1178 } 1179 1180 /* 1181 * Convert a string to a signed integer using safe loads. 1182 * 1183 * NOTE: This function uses various macros from strtolctype.h to manipulate 1184 * digit values, etc -- these have all been checked to ensure they make 1185 * no additional function calls. 1186 */ 1187 static int64_t 1188 dtrace_strtoll(char *input, int base, size_t limit) 1189 { 1190 uintptr_t pos = (uintptr_t)input; 1191 int64_t val = 0; 1192 int x; 1193 boolean_t neg = B_FALSE; 1194 char c, cc, ccc; 1195 uintptr_t end = pos + limit; 1196 1197 /* 1198 * Consume any whitespace preceding digits. 1199 */ 1200 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1201 pos++; 1202 1203 /* 1204 * Handle an explicit sign if one is present. 1205 */ 1206 if (c == '-' || c == '+') { 1207 if (c == '-') 1208 neg = B_TRUE; 1209 c = dtrace_load8(++pos); 1210 } 1211 1212 /* 1213 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1214 * if present. 1215 */ 1216 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1217 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1218 pos += 2; 1219 c = ccc; 1220 } 1221 1222 /* 1223 * Read in contiguous digits until the first non-digit character. 1224 */ 1225 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1226 c = dtrace_load8(++pos)) 1227 val = val * base + x; 1228 1229 return (neg ? -val : val); 1230 } 1231 1232 /* 1233 * Compare two strings using safe loads. 1234 */ 1235 static int 1236 dtrace_strncmp(char *s1, char *s2, size_t limit) 1237 { 1238 uint8_t c1, c2; 1239 volatile uint16_t *flags; 1240 1241 if (s1 == s2 || limit == 0) 1242 return (0); 1243 1244 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1245 1246 do { 1247 if (s1 == NULL) { 1248 c1 = '\0'; 1249 } else { 1250 c1 = dtrace_load8((uintptr_t)s1++); 1251 } 1252 1253 if (s2 == NULL) { 1254 c2 = '\0'; 1255 } else { 1256 c2 = dtrace_load8((uintptr_t)s2++); 1257 } 1258 1259 if (c1 != c2) 1260 return (c1 - c2); 1261 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1262 1263 return (0); 1264 } 1265 1266 /* 1267 * Compute strlen(s) for a string using safe memory accesses. The additional 1268 * len parameter is used to specify a maximum length to ensure completion. 1269 */ 1270 static size_t 1271 dtrace_strlen(const char *s, size_t lim) 1272 { 1273 uint_t len; 1274 1275 for (len = 0; len != lim; len++) { 1276 if (dtrace_load8((uintptr_t)s++) == '\0') 1277 break; 1278 } 1279 1280 return (len); 1281 } 1282 1283 /* 1284 * Check if an address falls within a toxic region. 1285 */ 1286 static int 1287 dtrace_istoxic(uintptr_t kaddr, size_t size) 1288 { 1289 uintptr_t taddr, tsize; 1290 int i; 1291 1292 for (i = 0; i < dtrace_toxranges; i++) { 1293 taddr = dtrace_toxrange[i].dtt_base; 1294 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1295 1296 if (kaddr - taddr < tsize) { 1297 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1298 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1299 return (1); 1300 } 1301 1302 if (taddr - kaddr < size) { 1303 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1304 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1305 return (1); 1306 } 1307 } 1308 1309 return (0); 1310 } 1311 1312 /* 1313 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1314 * memory specified by the DIF program. The dst is assumed to be safe memory 1315 * that we can store to directly because it is managed by DTrace. As with 1316 * standard bcopy, overlapping copies are handled properly. 1317 */ 1318 static void 1319 dtrace_bcopy(const void *src, void *dst, size_t len) 1320 { 1321 if (len != 0) { 1322 uint8_t *s1 = dst; 1323 const uint8_t *s2 = src; 1324 1325 if (s1 <= s2) { 1326 do { 1327 *s1++ = dtrace_load8((uintptr_t)s2++); 1328 } while (--len != 0); 1329 } else { 1330 s2 += len; 1331 s1 += len; 1332 1333 do { 1334 *--s1 = dtrace_load8((uintptr_t)--s2); 1335 } while (--len != 0); 1336 } 1337 } 1338 } 1339 1340 /* 1341 * Copy src to dst using safe memory accesses, up to either the specified 1342 * length, or the point that a nul byte is encountered. The src is assumed to 1343 * be unsafe memory specified by the DIF program. The dst is assumed to be 1344 * safe memory that we can store to directly because it is managed by DTrace. 1345 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1346 */ 1347 static void 1348 dtrace_strcpy(const void *src, void *dst, size_t len) 1349 { 1350 if (len != 0) { 1351 uint8_t *s1 = dst, c; 1352 const uint8_t *s2 = src; 1353 1354 do { 1355 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1356 } while (--len != 0 && c != '\0'); 1357 } 1358 } 1359 1360 /* 1361 * Copy src to dst, deriving the size and type from the specified (BYREF) 1362 * variable type. The src is assumed to be unsafe memory specified by the DIF 1363 * program. The dst is assumed to be DTrace variable memory that is of the 1364 * specified type; we assume that we can store to directly. 1365 */ 1366 static void 1367 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1368 { 1369 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1370 1371 if (type->dtdt_kind == DIF_TYPE_STRING) { 1372 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1373 } else { 1374 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1375 } 1376 } 1377 1378 /* 1379 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1380 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1381 * safe memory that we can access directly because it is managed by DTrace. 1382 */ 1383 static int 1384 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1385 { 1386 volatile uint16_t *flags; 1387 1388 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1389 1390 if (s1 == s2) 1391 return (0); 1392 1393 if (s1 == NULL || s2 == NULL) 1394 return (1); 1395 1396 if (s1 != s2 && len != 0) { 1397 const uint8_t *ps1 = s1; 1398 const uint8_t *ps2 = s2; 1399 1400 do { 1401 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1402 return (1); 1403 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1404 } 1405 return (0); 1406 } 1407 1408 /* 1409 * Zero the specified region using a simple byte-by-byte loop. Note that this 1410 * is for safe DTrace-managed memory only. 1411 */ 1412 static void 1413 dtrace_bzero(void *dst, size_t len) 1414 { 1415 uchar_t *cp; 1416 1417 for (cp = dst; len != 0; len--) 1418 *cp++ = 0; 1419 } 1420 1421 static void 1422 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1423 { 1424 uint64_t result[2]; 1425 1426 result[0] = addend1[0] + addend2[0]; 1427 result[1] = addend1[1] + addend2[1] + 1428 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1429 1430 sum[0] = result[0]; 1431 sum[1] = result[1]; 1432 } 1433 1434 /* 1435 * Shift the 128-bit value in a by b. If b is positive, shift left. 1436 * If b is negative, shift right. 1437 */ 1438 static void 1439 dtrace_shift_128(uint64_t *a, int b) 1440 { 1441 uint64_t mask; 1442 1443 if (b == 0) 1444 return; 1445 1446 if (b < 0) { 1447 b = -b; 1448 if (b >= 64) { 1449 a[0] = a[1] >> (b - 64); 1450 a[1] = 0; 1451 } else { 1452 a[0] >>= b; 1453 mask = 1LL << (64 - b); 1454 mask -= 1; 1455 a[0] |= ((a[1] & mask) << (64 - b)); 1456 a[1] >>= b; 1457 } 1458 } else { 1459 if (b >= 64) { 1460 a[1] = a[0] << (b - 64); 1461 a[0] = 0; 1462 } else { 1463 a[1] <<= b; 1464 mask = a[0] >> (64 - b); 1465 a[1] |= mask; 1466 a[0] <<= b; 1467 } 1468 } 1469 } 1470 1471 /* 1472 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1473 * use native multiplication on those, and then re-combine into the 1474 * resulting 128-bit value. 1475 * 1476 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1477 * hi1 * hi2 << 64 + 1478 * hi1 * lo2 << 32 + 1479 * hi2 * lo1 << 32 + 1480 * lo1 * lo2 1481 */ 1482 static void 1483 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1484 { 1485 uint64_t hi1, hi2, lo1, lo2; 1486 uint64_t tmp[2]; 1487 1488 hi1 = factor1 >> 32; 1489 hi2 = factor2 >> 32; 1490 1491 lo1 = factor1 & DT_MASK_LO; 1492 lo2 = factor2 & DT_MASK_LO; 1493 1494 product[0] = lo1 * lo2; 1495 product[1] = hi1 * hi2; 1496 1497 tmp[0] = hi1 * lo2; 1498 tmp[1] = 0; 1499 dtrace_shift_128(tmp, 32); 1500 dtrace_add_128(product, tmp, product); 1501 1502 tmp[0] = hi2 * lo1; 1503 tmp[1] = 0; 1504 dtrace_shift_128(tmp, 32); 1505 dtrace_add_128(product, tmp, product); 1506 } 1507 1508 /* 1509 * This privilege check should be used by actions and subroutines to 1510 * verify that the user credentials of the process that enabled the 1511 * invoking ECB match the target credentials 1512 */ 1513 static int 1514 dtrace_priv_proc_common_user(dtrace_state_t *state) 1515 { 1516 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1517 1518 /* 1519 * We should always have a non-NULL state cred here, since if cred 1520 * is null (anonymous tracing), we fast-path bypass this routine. 1521 */ 1522 ASSERT(s_cr != NULL); 1523 1524 if ((cr = CRED()) != NULL && 1525 s_cr->cr_uid == cr->cr_uid && 1526 s_cr->cr_uid == cr->cr_ruid && 1527 s_cr->cr_uid == cr->cr_suid && 1528 s_cr->cr_gid == cr->cr_gid && 1529 s_cr->cr_gid == cr->cr_rgid && 1530 s_cr->cr_gid == cr->cr_sgid) 1531 return (1); 1532 1533 return (0); 1534 } 1535 1536 /* 1537 * This privilege check should be used by actions and subroutines to 1538 * verify that the zone of the process that enabled the invoking ECB 1539 * matches the target credentials 1540 */ 1541 static int 1542 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1543 { 1544 #ifdef illumos 1545 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1546 1547 /* 1548 * We should always have a non-NULL state cred here, since if cred 1549 * is null (anonymous tracing), we fast-path bypass this routine. 1550 */ 1551 ASSERT(s_cr != NULL); 1552 1553 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1554 return (1); 1555 1556 return (0); 1557 #else 1558 return (1); 1559 #endif 1560 } 1561 1562 /* 1563 * This privilege check should be used by actions and subroutines to 1564 * verify that the process has not setuid or changed credentials. 1565 */ 1566 static int 1567 dtrace_priv_proc_common_nocd(void) 1568 { 1569 proc_t *proc; 1570 1571 if ((proc = ttoproc(curthread)) != NULL && 1572 !(proc->p_flag & SNOCD)) 1573 return (1); 1574 1575 return (0); 1576 } 1577 1578 static int 1579 dtrace_priv_proc_destructive(dtrace_state_t *state) 1580 { 1581 int action = state->dts_cred.dcr_action; 1582 1583 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1584 dtrace_priv_proc_common_zone(state) == 0) 1585 goto bad; 1586 1587 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1588 dtrace_priv_proc_common_user(state) == 0) 1589 goto bad; 1590 1591 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1592 dtrace_priv_proc_common_nocd() == 0) 1593 goto bad; 1594 1595 return (1); 1596 1597 bad: 1598 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1599 1600 return (0); 1601 } 1602 1603 static int 1604 dtrace_priv_proc_control(dtrace_state_t *state) 1605 { 1606 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1607 return (1); 1608 1609 if (dtrace_priv_proc_common_zone(state) && 1610 dtrace_priv_proc_common_user(state) && 1611 dtrace_priv_proc_common_nocd()) 1612 return (1); 1613 1614 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1615 1616 return (0); 1617 } 1618 1619 static int 1620 dtrace_priv_proc(dtrace_state_t *state) 1621 { 1622 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1623 return (1); 1624 1625 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1626 1627 return (0); 1628 } 1629 1630 static int 1631 dtrace_priv_kernel(dtrace_state_t *state) 1632 { 1633 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1634 return (1); 1635 1636 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1637 1638 return (0); 1639 } 1640 1641 static int 1642 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1643 { 1644 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1645 return (1); 1646 1647 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1648 1649 return (0); 1650 } 1651 1652 /* 1653 * Determine if the dte_cond of the specified ECB allows for processing of 1654 * the current probe to continue. Note that this routine may allow continued 1655 * processing, but with access(es) stripped from the mstate's dtms_access 1656 * field. 1657 */ 1658 static int 1659 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1660 dtrace_ecb_t *ecb) 1661 { 1662 dtrace_probe_t *probe = ecb->dte_probe; 1663 dtrace_provider_t *prov = probe->dtpr_provider; 1664 dtrace_pops_t *pops = &prov->dtpv_pops; 1665 int mode = DTRACE_MODE_NOPRIV_DROP; 1666 1667 ASSERT(ecb->dte_cond); 1668 1669 #ifdef illumos 1670 if (pops->dtps_mode != NULL) { 1671 mode = pops->dtps_mode(prov->dtpv_arg, 1672 probe->dtpr_id, probe->dtpr_arg); 1673 1674 ASSERT((mode & DTRACE_MODE_USER) || 1675 (mode & DTRACE_MODE_KERNEL)); 1676 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1677 (mode & DTRACE_MODE_NOPRIV_DROP)); 1678 } 1679 1680 /* 1681 * If the dte_cond bits indicate that this consumer is only allowed to 1682 * see user-mode firings of this probe, call the provider's dtps_mode() 1683 * entry point to check that the probe was fired while in a user 1684 * context. If that's not the case, use the policy specified by the 1685 * provider to determine if we drop the probe or merely restrict 1686 * operation. 1687 */ 1688 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1689 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1690 1691 if (!(mode & DTRACE_MODE_USER)) { 1692 if (mode & DTRACE_MODE_NOPRIV_DROP) 1693 return (0); 1694 1695 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1696 } 1697 } 1698 #endif 1699 1700 /* 1701 * This is more subtle than it looks. We have to be absolutely certain 1702 * that CRED() isn't going to change out from under us so it's only 1703 * legit to examine that structure if we're in constrained situations. 1704 * Currently, the only times we'll this check is if a non-super-user 1705 * has enabled the profile or syscall providers -- providers that 1706 * allow visibility of all processes. For the profile case, the check 1707 * above will ensure that we're examining a user context. 1708 */ 1709 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1710 cred_t *cr; 1711 cred_t *s_cr = state->dts_cred.dcr_cred; 1712 proc_t *proc; 1713 1714 ASSERT(s_cr != NULL); 1715 1716 if ((cr = CRED()) == NULL || 1717 s_cr->cr_uid != cr->cr_uid || 1718 s_cr->cr_uid != cr->cr_ruid || 1719 s_cr->cr_uid != cr->cr_suid || 1720 s_cr->cr_gid != cr->cr_gid || 1721 s_cr->cr_gid != cr->cr_rgid || 1722 s_cr->cr_gid != cr->cr_sgid || 1723 (proc = ttoproc(curthread)) == NULL || 1724 (proc->p_flag & SNOCD)) { 1725 if (mode & DTRACE_MODE_NOPRIV_DROP) 1726 return (0); 1727 1728 #ifdef illumos 1729 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1730 #endif 1731 } 1732 } 1733 1734 #ifdef illumos 1735 /* 1736 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1737 * in our zone, check to see if our mode policy is to restrict rather 1738 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1739 * and DTRACE_ACCESS_ARGS 1740 */ 1741 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1742 cred_t *cr; 1743 cred_t *s_cr = state->dts_cred.dcr_cred; 1744 1745 ASSERT(s_cr != NULL); 1746 1747 if ((cr = CRED()) == NULL || 1748 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1749 if (mode & DTRACE_MODE_NOPRIV_DROP) 1750 return (0); 1751 1752 mstate->dtms_access &= 1753 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1754 } 1755 } 1756 #endif 1757 1758 return (1); 1759 } 1760 1761 /* 1762 * Note: not called from probe context. This function is called 1763 * asynchronously (and at a regular interval) from outside of probe context to 1764 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1765 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1766 */ 1767 void 1768 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1769 { 1770 dtrace_dynvar_t *dirty; 1771 dtrace_dstate_percpu_t *dcpu; 1772 dtrace_dynvar_t **rinsep; 1773 int i, j, work = 0; 1774 1775 CPU_FOREACH(i) { 1776 dcpu = &dstate->dtds_percpu[i]; 1777 rinsep = &dcpu->dtdsc_rinsing; 1778 1779 /* 1780 * If the dirty list is NULL, there is no dirty work to do. 1781 */ 1782 if (dcpu->dtdsc_dirty == NULL) 1783 continue; 1784 1785 if (dcpu->dtdsc_rinsing != NULL) { 1786 /* 1787 * If the rinsing list is non-NULL, then it is because 1788 * this CPU was selected to accept another CPU's 1789 * dirty list -- and since that time, dirty buffers 1790 * have accumulated. This is a highly unlikely 1791 * condition, but we choose to ignore the dirty 1792 * buffers -- they'll be picked up a future cleanse. 1793 */ 1794 continue; 1795 } 1796 1797 if (dcpu->dtdsc_clean != NULL) { 1798 /* 1799 * If the clean list is non-NULL, then we're in a 1800 * situation where a CPU has done deallocations (we 1801 * have a non-NULL dirty list) but no allocations (we 1802 * also have a non-NULL clean list). We can't simply 1803 * move the dirty list into the clean list on this 1804 * CPU, yet we also don't want to allow this condition 1805 * to persist, lest a short clean list prevent a 1806 * massive dirty list from being cleaned (which in 1807 * turn could lead to otherwise avoidable dynamic 1808 * drops). To deal with this, we look for some CPU 1809 * with a NULL clean list, NULL dirty list, and NULL 1810 * rinsing list -- and then we borrow this CPU to 1811 * rinse our dirty list. 1812 */ 1813 CPU_FOREACH(j) { 1814 dtrace_dstate_percpu_t *rinser; 1815 1816 rinser = &dstate->dtds_percpu[j]; 1817 1818 if (rinser->dtdsc_rinsing != NULL) 1819 continue; 1820 1821 if (rinser->dtdsc_dirty != NULL) 1822 continue; 1823 1824 if (rinser->dtdsc_clean != NULL) 1825 continue; 1826 1827 rinsep = &rinser->dtdsc_rinsing; 1828 break; 1829 } 1830 1831 if (j > mp_maxid) { 1832 /* 1833 * We were unable to find another CPU that 1834 * could accept this dirty list -- we are 1835 * therefore unable to clean it now. 1836 */ 1837 dtrace_dynvar_failclean++; 1838 continue; 1839 } 1840 } 1841 1842 work = 1; 1843 1844 /* 1845 * Atomically move the dirty list aside. 1846 */ 1847 do { 1848 dirty = dcpu->dtdsc_dirty; 1849 1850 /* 1851 * Before we zap the dirty list, set the rinsing list. 1852 * (This allows for a potential assertion in 1853 * dtrace_dynvar(): if a free dynamic variable appears 1854 * on a hash chain, either the dirty list or the 1855 * rinsing list for some CPU must be non-NULL.) 1856 */ 1857 *rinsep = dirty; 1858 dtrace_membar_producer(); 1859 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1860 dirty, NULL) != dirty); 1861 } 1862 1863 if (!work) { 1864 /* 1865 * We have no work to do; we can simply return. 1866 */ 1867 return; 1868 } 1869 1870 dtrace_sync(); 1871 1872 CPU_FOREACH(i) { 1873 dcpu = &dstate->dtds_percpu[i]; 1874 1875 if (dcpu->dtdsc_rinsing == NULL) 1876 continue; 1877 1878 /* 1879 * We are now guaranteed that no hash chain contains a pointer 1880 * into this dirty list; we can make it clean. 1881 */ 1882 ASSERT(dcpu->dtdsc_clean == NULL); 1883 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1884 dcpu->dtdsc_rinsing = NULL; 1885 } 1886 1887 /* 1888 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1889 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1890 * This prevents a race whereby a CPU incorrectly decides that 1891 * the state should be something other than DTRACE_DSTATE_CLEAN 1892 * after dtrace_dynvar_clean() has completed. 1893 */ 1894 dtrace_sync(); 1895 1896 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1897 } 1898 1899 /* 1900 * Depending on the value of the op parameter, this function looks-up, 1901 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1902 * allocation is requested, this function will return a pointer to a 1903 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1904 * variable can be allocated. If NULL is returned, the appropriate counter 1905 * will be incremented. 1906 */ 1907 dtrace_dynvar_t * 1908 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1909 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1910 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1911 { 1912 uint64_t hashval = DTRACE_DYNHASH_VALID; 1913 dtrace_dynhash_t *hash = dstate->dtds_hash; 1914 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1915 processorid_t me = curcpu, cpu = me; 1916 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1917 size_t bucket, ksize; 1918 size_t chunksize = dstate->dtds_chunksize; 1919 uintptr_t kdata, lock, nstate; 1920 uint_t i; 1921 1922 ASSERT(nkeys != 0); 1923 1924 /* 1925 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1926 * algorithm. For the by-value portions, we perform the algorithm in 1927 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1928 * bit, and seems to have only a minute effect on distribution. For 1929 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1930 * over each referenced byte. It's painful to do this, but it's much 1931 * better than pathological hash distribution. The efficacy of the 1932 * hashing algorithm (and a comparison with other algorithms) may be 1933 * found by running the ::dtrace_dynstat MDB dcmd. 1934 */ 1935 for (i = 0; i < nkeys; i++) { 1936 if (key[i].dttk_size == 0) { 1937 uint64_t val = key[i].dttk_value; 1938 1939 hashval += (val >> 48) & 0xffff; 1940 hashval += (hashval << 10); 1941 hashval ^= (hashval >> 6); 1942 1943 hashval += (val >> 32) & 0xffff; 1944 hashval += (hashval << 10); 1945 hashval ^= (hashval >> 6); 1946 1947 hashval += (val >> 16) & 0xffff; 1948 hashval += (hashval << 10); 1949 hashval ^= (hashval >> 6); 1950 1951 hashval += val & 0xffff; 1952 hashval += (hashval << 10); 1953 hashval ^= (hashval >> 6); 1954 } else { 1955 /* 1956 * This is incredibly painful, but it beats the hell 1957 * out of the alternative. 1958 */ 1959 uint64_t j, size = key[i].dttk_size; 1960 uintptr_t base = (uintptr_t)key[i].dttk_value; 1961 1962 if (!dtrace_canload(base, size, mstate, vstate)) 1963 break; 1964 1965 for (j = 0; j < size; j++) { 1966 hashval += dtrace_load8(base + j); 1967 hashval += (hashval << 10); 1968 hashval ^= (hashval >> 6); 1969 } 1970 } 1971 } 1972 1973 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1974 return (NULL); 1975 1976 hashval += (hashval << 3); 1977 hashval ^= (hashval >> 11); 1978 hashval += (hashval << 15); 1979 1980 /* 1981 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1982 * comes out to be one of our two sentinel hash values. If this 1983 * actually happens, we set the hashval to be a value known to be a 1984 * non-sentinel value. 1985 */ 1986 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1987 hashval = DTRACE_DYNHASH_VALID; 1988 1989 /* 1990 * Yes, it's painful to do a divide here. If the cycle count becomes 1991 * important here, tricks can be pulled to reduce it. (However, it's 1992 * critical that hash collisions be kept to an absolute minimum; 1993 * they're much more painful than a divide.) It's better to have a 1994 * solution that generates few collisions and still keeps things 1995 * relatively simple. 1996 */ 1997 bucket = hashval % dstate->dtds_hashsize; 1998 1999 if (op == DTRACE_DYNVAR_DEALLOC) { 2000 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 2001 2002 for (;;) { 2003 while ((lock = *lockp) & 1) 2004 continue; 2005 2006 if (dtrace_casptr((volatile void *)lockp, 2007 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 2008 break; 2009 } 2010 2011 dtrace_membar_producer(); 2012 } 2013 2014 top: 2015 prev = NULL; 2016 lock = hash[bucket].dtdh_lock; 2017 2018 dtrace_membar_consumer(); 2019 2020 start = hash[bucket].dtdh_chain; 2021 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 2022 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 2023 op != DTRACE_DYNVAR_DEALLOC)); 2024 2025 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 2026 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 2027 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2028 2029 if (dvar->dtdv_hashval != hashval) { 2030 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2031 /* 2032 * We've reached the sink, and therefore the 2033 * end of the hash chain; we can kick out of 2034 * the loop knowing that we have seen a valid 2035 * snapshot of state. 2036 */ 2037 ASSERT(dvar->dtdv_next == NULL); 2038 ASSERT(dvar == &dtrace_dynhash_sink); 2039 break; 2040 } 2041 2042 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2043 /* 2044 * We've gone off the rails: somewhere along 2045 * the line, one of the members of this hash 2046 * chain was deleted. Note that we could also 2047 * detect this by simply letting this loop run 2048 * to completion, as we would eventually hit 2049 * the end of the dirty list. However, we 2050 * want to avoid running the length of the 2051 * dirty list unnecessarily (it might be quite 2052 * long), so we catch this as early as 2053 * possible by detecting the hash marker. In 2054 * this case, we simply set dvar to NULL and 2055 * break; the conditional after the loop will 2056 * send us back to top. 2057 */ 2058 dvar = NULL; 2059 break; 2060 } 2061 2062 goto next; 2063 } 2064 2065 if (dtuple->dtt_nkeys != nkeys) 2066 goto next; 2067 2068 for (i = 0; i < nkeys; i++, dkey++) { 2069 if (dkey->dttk_size != key[i].dttk_size) 2070 goto next; /* size or type mismatch */ 2071 2072 if (dkey->dttk_size != 0) { 2073 if (dtrace_bcmp( 2074 (void *)(uintptr_t)key[i].dttk_value, 2075 (void *)(uintptr_t)dkey->dttk_value, 2076 dkey->dttk_size)) 2077 goto next; 2078 } else { 2079 if (dkey->dttk_value != key[i].dttk_value) 2080 goto next; 2081 } 2082 } 2083 2084 if (op != DTRACE_DYNVAR_DEALLOC) 2085 return (dvar); 2086 2087 ASSERT(dvar->dtdv_next == NULL || 2088 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2089 2090 if (prev != NULL) { 2091 ASSERT(hash[bucket].dtdh_chain != dvar); 2092 ASSERT(start != dvar); 2093 ASSERT(prev->dtdv_next == dvar); 2094 prev->dtdv_next = dvar->dtdv_next; 2095 } else { 2096 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2097 start, dvar->dtdv_next) != start) { 2098 /* 2099 * We have failed to atomically swing the 2100 * hash table head pointer, presumably because 2101 * of a conflicting allocation on another CPU. 2102 * We need to reread the hash chain and try 2103 * again. 2104 */ 2105 goto top; 2106 } 2107 } 2108 2109 dtrace_membar_producer(); 2110 2111 /* 2112 * Now set the hash value to indicate that it's free. 2113 */ 2114 ASSERT(hash[bucket].dtdh_chain != dvar); 2115 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2116 2117 dtrace_membar_producer(); 2118 2119 /* 2120 * Set the next pointer to point at the dirty list, and 2121 * atomically swing the dirty pointer to the newly freed dvar. 2122 */ 2123 do { 2124 next = dcpu->dtdsc_dirty; 2125 dvar->dtdv_next = next; 2126 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2127 2128 /* 2129 * Finally, unlock this hash bucket. 2130 */ 2131 ASSERT(hash[bucket].dtdh_lock == lock); 2132 ASSERT(lock & 1); 2133 hash[bucket].dtdh_lock++; 2134 2135 return (NULL); 2136 next: 2137 prev = dvar; 2138 continue; 2139 } 2140 2141 if (dvar == NULL) { 2142 /* 2143 * If dvar is NULL, it is because we went off the rails: 2144 * one of the elements that we traversed in the hash chain 2145 * was deleted while we were traversing it. In this case, 2146 * we assert that we aren't doing a dealloc (deallocs lock 2147 * the hash bucket to prevent themselves from racing with 2148 * one another), and retry the hash chain traversal. 2149 */ 2150 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2151 goto top; 2152 } 2153 2154 if (op != DTRACE_DYNVAR_ALLOC) { 2155 /* 2156 * If we are not to allocate a new variable, we want to 2157 * return NULL now. Before we return, check that the value 2158 * of the lock word hasn't changed. If it has, we may have 2159 * seen an inconsistent snapshot. 2160 */ 2161 if (op == DTRACE_DYNVAR_NOALLOC) { 2162 if (hash[bucket].dtdh_lock != lock) 2163 goto top; 2164 } else { 2165 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2166 ASSERT(hash[bucket].dtdh_lock == lock); 2167 ASSERT(lock & 1); 2168 hash[bucket].dtdh_lock++; 2169 } 2170 2171 return (NULL); 2172 } 2173 2174 /* 2175 * We need to allocate a new dynamic variable. The size we need is the 2176 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2177 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2178 * the size of any referred-to data (dsize). We then round the final 2179 * size up to the chunksize for allocation. 2180 */ 2181 for (ksize = 0, i = 0; i < nkeys; i++) 2182 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2183 2184 /* 2185 * This should be pretty much impossible, but could happen if, say, 2186 * strange DIF specified the tuple. Ideally, this should be an 2187 * assertion and not an error condition -- but that requires that the 2188 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2189 * bullet-proof. (That is, it must not be able to be fooled by 2190 * malicious DIF.) Given the lack of backwards branches in DIF, 2191 * solving this would presumably not amount to solving the Halting 2192 * Problem -- but it still seems awfully hard. 2193 */ 2194 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2195 ksize + dsize > chunksize) { 2196 dcpu->dtdsc_drops++; 2197 return (NULL); 2198 } 2199 2200 nstate = DTRACE_DSTATE_EMPTY; 2201 2202 do { 2203 retry: 2204 free = dcpu->dtdsc_free; 2205 2206 if (free == NULL) { 2207 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2208 void *rval; 2209 2210 if (clean == NULL) { 2211 /* 2212 * We're out of dynamic variable space on 2213 * this CPU. Unless we have tried all CPUs, 2214 * we'll try to allocate from a different 2215 * CPU. 2216 */ 2217 switch (dstate->dtds_state) { 2218 case DTRACE_DSTATE_CLEAN: { 2219 void *sp = &dstate->dtds_state; 2220 2221 if (++cpu > mp_maxid) 2222 cpu = 0; 2223 2224 if (dcpu->dtdsc_dirty != NULL && 2225 nstate == DTRACE_DSTATE_EMPTY) 2226 nstate = DTRACE_DSTATE_DIRTY; 2227 2228 if (dcpu->dtdsc_rinsing != NULL) 2229 nstate = DTRACE_DSTATE_RINSING; 2230 2231 dcpu = &dstate->dtds_percpu[cpu]; 2232 2233 if (cpu != me) 2234 goto retry; 2235 2236 (void) dtrace_cas32(sp, 2237 DTRACE_DSTATE_CLEAN, nstate); 2238 2239 /* 2240 * To increment the correct bean 2241 * counter, take another lap. 2242 */ 2243 goto retry; 2244 } 2245 2246 case DTRACE_DSTATE_DIRTY: 2247 dcpu->dtdsc_dirty_drops++; 2248 break; 2249 2250 case DTRACE_DSTATE_RINSING: 2251 dcpu->dtdsc_rinsing_drops++; 2252 break; 2253 2254 case DTRACE_DSTATE_EMPTY: 2255 dcpu->dtdsc_drops++; 2256 break; 2257 } 2258 2259 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2260 return (NULL); 2261 } 2262 2263 /* 2264 * The clean list appears to be non-empty. We want to 2265 * move the clean list to the free list; we start by 2266 * moving the clean pointer aside. 2267 */ 2268 if (dtrace_casptr(&dcpu->dtdsc_clean, 2269 clean, NULL) != clean) { 2270 /* 2271 * We are in one of two situations: 2272 * 2273 * (a) The clean list was switched to the 2274 * free list by another CPU. 2275 * 2276 * (b) The clean list was added to by the 2277 * cleansing cyclic. 2278 * 2279 * In either of these situations, we can 2280 * just reattempt the free list allocation. 2281 */ 2282 goto retry; 2283 } 2284 2285 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2286 2287 /* 2288 * Now we'll move the clean list to our free list. 2289 * It's impossible for this to fail: the only way 2290 * the free list can be updated is through this 2291 * code path, and only one CPU can own the clean list. 2292 * Thus, it would only be possible for this to fail if 2293 * this code were racing with dtrace_dynvar_clean(). 2294 * (That is, if dtrace_dynvar_clean() updated the clean 2295 * list, and we ended up racing to update the free 2296 * list.) This race is prevented by the dtrace_sync() 2297 * in dtrace_dynvar_clean() -- which flushes the 2298 * owners of the clean lists out before resetting 2299 * the clean lists. 2300 */ 2301 dcpu = &dstate->dtds_percpu[me]; 2302 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2303 ASSERT(rval == NULL); 2304 goto retry; 2305 } 2306 2307 dvar = free; 2308 new_free = dvar->dtdv_next; 2309 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2310 2311 /* 2312 * We have now allocated a new chunk. We copy the tuple keys into the 2313 * tuple array and copy any referenced key data into the data space 2314 * following the tuple array. As we do this, we relocate dttk_value 2315 * in the final tuple to point to the key data address in the chunk. 2316 */ 2317 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2318 dvar->dtdv_data = (void *)(kdata + ksize); 2319 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2320 2321 for (i = 0; i < nkeys; i++) { 2322 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2323 size_t kesize = key[i].dttk_size; 2324 2325 if (kesize != 0) { 2326 dtrace_bcopy( 2327 (const void *)(uintptr_t)key[i].dttk_value, 2328 (void *)kdata, kesize); 2329 dkey->dttk_value = kdata; 2330 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2331 } else { 2332 dkey->dttk_value = key[i].dttk_value; 2333 } 2334 2335 dkey->dttk_size = kesize; 2336 } 2337 2338 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2339 dvar->dtdv_hashval = hashval; 2340 dvar->dtdv_next = start; 2341 2342 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2343 return (dvar); 2344 2345 /* 2346 * The cas has failed. Either another CPU is adding an element to 2347 * this hash chain, or another CPU is deleting an element from this 2348 * hash chain. The simplest way to deal with both of these cases 2349 * (though not necessarily the most efficient) is to free our 2350 * allocated block and re-attempt it all. Note that the free is 2351 * to the dirty list and _not_ to the free list. This is to prevent 2352 * races with allocators, above. 2353 */ 2354 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2355 2356 dtrace_membar_producer(); 2357 2358 do { 2359 free = dcpu->dtdsc_dirty; 2360 dvar->dtdv_next = free; 2361 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2362 2363 goto top; 2364 } 2365 2366 /*ARGSUSED*/ 2367 static void 2368 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2369 { 2370 if ((int64_t)nval < (int64_t)*oval) 2371 *oval = nval; 2372 } 2373 2374 /*ARGSUSED*/ 2375 static void 2376 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2377 { 2378 if ((int64_t)nval > (int64_t)*oval) 2379 *oval = nval; 2380 } 2381 2382 static void 2383 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2384 { 2385 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2386 int64_t val = (int64_t)nval; 2387 2388 if (val < 0) { 2389 for (i = 0; i < zero; i++) { 2390 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2391 quanta[i] += incr; 2392 return; 2393 } 2394 } 2395 } else { 2396 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2397 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2398 quanta[i - 1] += incr; 2399 return; 2400 } 2401 } 2402 2403 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2404 return; 2405 } 2406 2407 ASSERT(0); 2408 } 2409 2410 static void 2411 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2412 { 2413 uint64_t arg = *lquanta++; 2414 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2415 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2416 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2417 int32_t val = (int32_t)nval, level; 2418 2419 ASSERT(step != 0); 2420 ASSERT(levels != 0); 2421 2422 if (val < base) { 2423 /* 2424 * This is an underflow. 2425 */ 2426 lquanta[0] += incr; 2427 return; 2428 } 2429 2430 level = (val - base) / step; 2431 2432 if (level < levels) { 2433 lquanta[level + 1] += incr; 2434 return; 2435 } 2436 2437 /* 2438 * This is an overflow. 2439 */ 2440 lquanta[levels + 1] += incr; 2441 } 2442 2443 static int 2444 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2445 uint16_t high, uint16_t nsteps, int64_t value) 2446 { 2447 int64_t this = 1, last, next; 2448 int base = 1, order; 2449 2450 ASSERT(factor <= nsteps); 2451 ASSERT(nsteps % factor == 0); 2452 2453 for (order = 0; order < low; order++) 2454 this *= factor; 2455 2456 /* 2457 * If our value is less than our factor taken to the power of the 2458 * low order of magnitude, it goes into the zeroth bucket. 2459 */ 2460 if (value < (last = this)) 2461 return (0); 2462 2463 for (this *= factor; order <= high; order++) { 2464 int nbuckets = this > nsteps ? nsteps : this; 2465 2466 if ((next = this * factor) < this) { 2467 /* 2468 * We should not generally get log/linear quantizations 2469 * with a high magnitude that allows 64-bits to 2470 * overflow, but we nonetheless protect against this 2471 * by explicitly checking for overflow, and clamping 2472 * our value accordingly. 2473 */ 2474 value = this - 1; 2475 } 2476 2477 if (value < this) { 2478 /* 2479 * If our value lies within this order of magnitude, 2480 * determine its position by taking the offset within 2481 * the order of magnitude, dividing by the bucket 2482 * width, and adding to our (accumulated) base. 2483 */ 2484 return (base + (value - last) / (this / nbuckets)); 2485 } 2486 2487 base += nbuckets - (nbuckets / factor); 2488 last = this; 2489 this = next; 2490 } 2491 2492 /* 2493 * Our value is greater than or equal to our factor taken to the 2494 * power of one plus the high magnitude -- return the top bucket. 2495 */ 2496 return (base); 2497 } 2498 2499 static void 2500 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2501 { 2502 uint64_t arg = *llquanta++; 2503 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2504 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2505 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2506 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2507 2508 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2509 low, high, nsteps, nval)] += incr; 2510 } 2511 2512 /*ARGSUSED*/ 2513 static void 2514 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2515 { 2516 data[0]++; 2517 data[1] += nval; 2518 } 2519 2520 /*ARGSUSED*/ 2521 static void 2522 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2523 { 2524 int64_t snval = (int64_t)nval; 2525 uint64_t tmp[2]; 2526 2527 data[0]++; 2528 data[1] += nval; 2529 2530 /* 2531 * What we want to say here is: 2532 * 2533 * data[2] += nval * nval; 2534 * 2535 * But given that nval is 64-bit, we could easily overflow, so 2536 * we do this as 128-bit arithmetic. 2537 */ 2538 if (snval < 0) 2539 snval = -snval; 2540 2541 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2542 dtrace_add_128(data + 2, tmp, data + 2); 2543 } 2544 2545 /*ARGSUSED*/ 2546 static void 2547 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2548 { 2549 *oval = *oval + 1; 2550 } 2551 2552 /*ARGSUSED*/ 2553 static void 2554 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2555 { 2556 *oval += nval; 2557 } 2558 2559 /* 2560 * Aggregate given the tuple in the principal data buffer, and the aggregating 2561 * action denoted by the specified dtrace_aggregation_t. The aggregation 2562 * buffer is specified as the buf parameter. This routine does not return 2563 * failure; if there is no space in the aggregation buffer, the data will be 2564 * dropped, and a corresponding counter incremented. 2565 */ 2566 static void 2567 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2568 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2569 { 2570 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2571 uint32_t i, ndx, size, fsize; 2572 uint32_t align = sizeof (uint64_t) - 1; 2573 dtrace_aggbuffer_t *agb; 2574 dtrace_aggkey_t *key; 2575 uint32_t hashval = 0, limit, isstr; 2576 caddr_t tomax, data, kdata; 2577 dtrace_actkind_t action; 2578 dtrace_action_t *act; 2579 size_t offs; 2580 2581 if (buf == NULL) 2582 return; 2583 2584 if (!agg->dtag_hasarg) { 2585 /* 2586 * Currently, only quantize() and lquantize() take additional 2587 * arguments, and they have the same semantics: an increment 2588 * value that defaults to 1 when not present. If additional 2589 * aggregating actions take arguments, the setting of the 2590 * default argument value will presumably have to become more 2591 * sophisticated... 2592 */ 2593 arg = 1; 2594 } 2595 2596 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2597 size = rec->dtrd_offset - agg->dtag_base; 2598 fsize = size + rec->dtrd_size; 2599 2600 ASSERT(dbuf->dtb_tomax != NULL); 2601 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2602 2603 if ((tomax = buf->dtb_tomax) == NULL) { 2604 dtrace_buffer_drop(buf); 2605 return; 2606 } 2607 2608 /* 2609 * The metastructure is always at the bottom of the buffer. 2610 */ 2611 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2612 sizeof (dtrace_aggbuffer_t)); 2613 2614 if (buf->dtb_offset == 0) { 2615 /* 2616 * We just kludge up approximately 1/8th of the size to be 2617 * buckets. If this guess ends up being routinely 2618 * off-the-mark, we may need to dynamically readjust this 2619 * based on past performance. 2620 */ 2621 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2622 2623 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2624 (uintptr_t)tomax || hashsize == 0) { 2625 /* 2626 * We've been given a ludicrously small buffer; 2627 * increment our drop count and leave. 2628 */ 2629 dtrace_buffer_drop(buf); 2630 return; 2631 } 2632 2633 /* 2634 * And now, a pathetic attempt to try to get a an odd (or 2635 * perchance, a prime) hash size for better hash distribution. 2636 */ 2637 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2638 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2639 2640 agb->dtagb_hashsize = hashsize; 2641 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2642 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2643 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2644 2645 for (i = 0; i < agb->dtagb_hashsize; i++) 2646 agb->dtagb_hash[i] = NULL; 2647 } 2648 2649 ASSERT(agg->dtag_first != NULL); 2650 ASSERT(agg->dtag_first->dta_intuple); 2651 2652 /* 2653 * Calculate the hash value based on the key. Note that we _don't_ 2654 * include the aggid in the hashing (but we will store it as part of 2655 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2656 * algorithm: a simple, quick algorithm that has no known funnels, and 2657 * gets good distribution in practice. The efficacy of the hashing 2658 * algorithm (and a comparison with other algorithms) may be found by 2659 * running the ::dtrace_aggstat MDB dcmd. 2660 */ 2661 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2662 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2663 limit = i + act->dta_rec.dtrd_size; 2664 ASSERT(limit <= size); 2665 isstr = DTRACEACT_ISSTRING(act); 2666 2667 for (; i < limit; i++) { 2668 hashval += data[i]; 2669 hashval += (hashval << 10); 2670 hashval ^= (hashval >> 6); 2671 2672 if (isstr && data[i] == '\0') 2673 break; 2674 } 2675 } 2676 2677 hashval += (hashval << 3); 2678 hashval ^= (hashval >> 11); 2679 hashval += (hashval << 15); 2680 2681 /* 2682 * Yes, the divide here is expensive -- but it's generally the least 2683 * of the performance issues given the amount of data that we iterate 2684 * over to compute hash values, compare data, etc. 2685 */ 2686 ndx = hashval % agb->dtagb_hashsize; 2687 2688 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2689 ASSERT((caddr_t)key >= tomax); 2690 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2691 2692 if (hashval != key->dtak_hashval || key->dtak_size != size) 2693 continue; 2694 2695 kdata = key->dtak_data; 2696 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2697 2698 for (act = agg->dtag_first; act->dta_intuple; 2699 act = act->dta_next) { 2700 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2701 limit = i + act->dta_rec.dtrd_size; 2702 ASSERT(limit <= size); 2703 isstr = DTRACEACT_ISSTRING(act); 2704 2705 for (; i < limit; i++) { 2706 if (kdata[i] != data[i]) 2707 goto next; 2708 2709 if (isstr && data[i] == '\0') 2710 break; 2711 } 2712 } 2713 2714 if (action != key->dtak_action) { 2715 /* 2716 * We are aggregating on the same value in the same 2717 * aggregation with two different aggregating actions. 2718 * (This should have been picked up in the compiler, 2719 * so we may be dealing with errant or devious DIF.) 2720 * This is an error condition; we indicate as much, 2721 * and return. 2722 */ 2723 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2724 return; 2725 } 2726 2727 /* 2728 * This is a hit: we need to apply the aggregator to 2729 * the value at this key. 2730 */ 2731 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2732 return; 2733 next: 2734 continue; 2735 } 2736 2737 /* 2738 * We didn't find it. We need to allocate some zero-filled space, 2739 * link it into the hash table appropriately, and apply the aggregator 2740 * to the (zero-filled) value. 2741 */ 2742 offs = buf->dtb_offset; 2743 while (offs & (align - 1)) 2744 offs += sizeof (uint32_t); 2745 2746 /* 2747 * If we don't have enough room to both allocate a new key _and_ 2748 * its associated data, increment the drop count and return. 2749 */ 2750 if ((uintptr_t)tomax + offs + fsize > 2751 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2752 dtrace_buffer_drop(buf); 2753 return; 2754 } 2755 2756 /*CONSTCOND*/ 2757 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2758 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2759 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2760 2761 key->dtak_data = kdata = tomax + offs; 2762 buf->dtb_offset = offs + fsize; 2763 2764 /* 2765 * Now copy the data across. 2766 */ 2767 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2768 2769 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2770 kdata[i] = data[i]; 2771 2772 /* 2773 * Because strings are not zeroed out by default, we need to iterate 2774 * looking for actions that store strings, and we need to explicitly 2775 * pad these strings out with zeroes. 2776 */ 2777 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2778 int nul; 2779 2780 if (!DTRACEACT_ISSTRING(act)) 2781 continue; 2782 2783 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2784 limit = i + act->dta_rec.dtrd_size; 2785 ASSERT(limit <= size); 2786 2787 for (nul = 0; i < limit; i++) { 2788 if (nul) { 2789 kdata[i] = '\0'; 2790 continue; 2791 } 2792 2793 if (data[i] != '\0') 2794 continue; 2795 2796 nul = 1; 2797 } 2798 } 2799 2800 for (i = size; i < fsize; i++) 2801 kdata[i] = 0; 2802 2803 key->dtak_hashval = hashval; 2804 key->dtak_size = size; 2805 key->dtak_action = action; 2806 key->dtak_next = agb->dtagb_hash[ndx]; 2807 agb->dtagb_hash[ndx] = key; 2808 2809 /* 2810 * Finally, apply the aggregator. 2811 */ 2812 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2813 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2814 } 2815 2816 /* 2817 * Given consumer state, this routine finds a speculation in the INACTIVE 2818 * state and transitions it into the ACTIVE state. If there is no speculation 2819 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2820 * incremented -- it is up to the caller to take appropriate action. 2821 */ 2822 static int 2823 dtrace_speculation(dtrace_state_t *state) 2824 { 2825 int i = 0; 2826 dtrace_speculation_state_t curstate; 2827 uint32_t *stat = &state->dts_speculations_unavail, count; 2828 2829 while (i < state->dts_nspeculations) { 2830 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2831 2832 curstate = spec->dtsp_state; 2833 2834 if (curstate != DTRACESPEC_INACTIVE) { 2835 if (curstate == DTRACESPEC_COMMITTINGMANY || 2836 curstate == DTRACESPEC_COMMITTING || 2837 curstate == DTRACESPEC_DISCARDING) 2838 stat = &state->dts_speculations_busy; 2839 i++; 2840 continue; 2841 } 2842 2843 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2844 curstate, DTRACESPEC_ACTIVE) == curstate) 2845 return (i + 1); 2846 } 2847 2848 /* 2849 * We couldn't find a speculation. If we found as much as a single 2850 * busy speculation buffer, we'll attribute this failure as "busy" 2851 * instead of "unavail". 2852 */ 2853 do { 2854 count = *stat; 2855 } while (dtrace_cas32(stat, count, count + 1) != count); 2856 2857 return (0); 2858 } 2859 2860 /* 2861 * This routine commits an active speculation. If the specified speculation 2862 * is not in a valid state to perform a commit(), this routine will silently do 2863 * nothing. The state of the specified speculation is transitioned according 2864 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2865 */ 2866 static void 2867 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2868 dtrace_specid_t which) 2869 { 2870 dtrace_speculation_t *spec; 2871 dtrace_buffer_t *src, *dest; 2872 uintptr_t daddr, saddr, dlimit, slimit; 2873 dtrace_speculation_state_t curstate, new = 0; 2874 ssize_t offs; 2875 uint64_t timestamp; 2876 2877 if (which == 0) 2878 return; 2879 2880 if (which > state->dts_nspeculations) { 2881 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2882 return; 2883 } 2884 2885 spec = &state->dts_speculations[which - 1]; 2886 src = &spec->dtsp_buffer[cpu]; 2887 dest = &state->dts_buffer[cpu]; 2888 2889 do { 2890 curstate = spec->dtsp_state; 2891 2892 if (curstate == DTRACESPEC_COMMITTINGMANY) 2893 break; 2894 2895 switch (curstate) { 2896 case DTRACESPEC_INACTIVE: 2897 case DTRACESPEC_DISCARDING: 2898 return; 2899 2900 case DTRACESPEC_COMMITTING: 2901 /* 2902 * This is only possible if we are (a) commit()'ing 2903 * without having done a prior speculate() on this CPU 2904 * and (b) racing with another commit() on a different 2905 * CPU. There's nothing to do -- we just assert that 2906 * our offset is 0. 2907 */ 2908 ASSERT(src->dtb_offset == 0); 2909 return; 2910 2911 case DTRACESPEC_ACTIVE: 2912 new = DTRACESPEC_COMMITTING; 2913 break; 2914 2915 case DTRACESPEC_ACTIVEONE: 2916 /* 2917 * This speculation is active on one CPU. If our 2918 * buffer offset is non-zero, we know that the one CPU 2919 * must be us. Otherwise, we are committing on a 2920 * different CPU from the speculate(), and we must 2921 * rely on being asynchronously cleaned. 2922 */ 2923 if (src->dtb_offset != 0) { 2924 new = DTRACESPEC_COMMITTING; 2925 break; 2926 } 2927 /*FALLTHROUGH*/ 2928 2929 case DTRACESPEC_ACTIVEMANY: 2930 new = DTRACESPEC_COMMITTINGMANY; 2931 break; 2932 2933 default: 2934 ASSERT(0); 2935 } 2936 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2937 curstate, new) != curstate); 2938 2939 /* 2940 * We have set the state to indicate that we are committing this 2941 * speculation. Now reserve the necessary space in the destination 2942 * buffer. 2943 */ 2944 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2945 sizeof (uint64_t), state, NULL)) < 0) { 2946 dtrace_buffer_drop(dest); 2947 goto out; 2948 } 2949 2950 /* 2951 * We have sufficient space to copy the speculative buffer into the 2952 * primary buffer. First, modify the speculative buffer, filling 2953 * in the timestamp of all entries with the curstate time. The data 2954 * must have the commit() time rather than the time it was traced, 2955 * so that all entries in the primary buffer are in timestamp order. 2956 */ 2957 timestamp = dtrace_gethrtime(); 2958 saddr = (uintptr_t)src->dtb_tomax; 2959 slimit = saddr + src->dtb_offset; 2960 while (saddr < slimit) { 2961 size_t size; 2962 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2963 2964 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2965 saddr += sizeof (dtrace_epid_t); 2966 continue; 2967 } 2968 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2969 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2970 2971 ASSERT3U(saddr + size, <=, slimit); 2972 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2973 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2974 2975 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2976 2977 saddr += size; 2978 } 2979 2980 /* 2981 * Copy the buffer across. (Note that this is a 2982 * highly subobtimal bcopy(); in the unlikely event that this becomes 2983 * a serious performance issue, a high-performance DTrace-specific 2984 * bcopy() should obviously be invented.) 2985 */ 2986 daddr = (uintptr_t)dest->dtb_tomax + offs; 2987 dlimit = daddr + src->dtb_offset; 2988 saddr = (uintptr_t)src->dtb_tomax; 2989 2990 /* 2991 * First, the aligned portion. 2992 */ 2993 while (dlimit - daddr >= sizeof (uint64_t)) { 2994 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2995 2996 daddr += sizeof (uint64_t); 2997 saddr += sizeof (uint64_t); 2998 } 2999 3000 /* 3001 * Now any left-over bit... 3002 */ 3003 while (dlimit - daddr) 3004 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 3005 3006 /* 3007 * Finally, commit the reserved space in the destination buffer. 3008 */ 3009 dest->dtb_offset = offs + src->dtb_offset; 3010 3011 out: 3012 /* 3013 * If we're lucky enough to be the only active CPU on this speculation 3014 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 3015 */ 3016 if (curstate == DTRACESPEC_ACTIVE || 3017 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 3018 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 3019 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 3020 3021 ASSERT(rval == DTRACESPEC_COMMITTING); 3022 } 3023 3024 src->dtb_offset = 0; 3025 src->dtb_xamot_drops += src->dtb_drops; 3026 src->dtb_drops = 0; 3027 } 3028 3029 /* 3030 * This routine discards an active speculation. If the specified speculation 3031 * is not in a valid state to perform a discard(), this routine will silently 3032 * do nothing. The state of the specified speculation is transitioned 3033 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3034 */ 3035 static void 3036 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3037 dtrace_specid_t which) 3038 { 3039 dtrace_speculation_t *spec; 3040 dtrace_speculation_state_t curstate, new = 0; 3041 dtrace_buffer_t *buf; 3042 3043 if (which == 0) 3044 return; 3045 3046 if (which > state->dts_nspeculations) { 3047 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3048 return; 3049 } 3050 3051 spec = &state->dts_speculations[which - 1]; 3052 buf = &spec->dtsp_buffer[cpu]; 3053 3054 do { 3055 curstate = spec->dtsp_state; 3056 3057 switch (curstate) { 3058 case DTRACESPEC_INACTIVE: 3059 case DTRACESPEC_COMMITTINGMANY: 3060 case DTRACESPEC_COMMITTING: 3061 case DTRACESPEC_DISCARDING: 3062 return; 3063 3064 case DTRACESPEC_ACTIVE: 3065 case DTRACESPEC_ACTIVEMANY: 3066 new = DTRACESPEC_DISCARDING; 3067 break; 3068 3069 case DTRACESPEC_ACTIVEONE: 3070 if (buf->dtb_offset != 0) { 3071 new = DTRACESPEC_INACTIVE; 3072 } else { 3073 new = DTRACESPEC_DISCARDING; 3074 } 3075 break; 3076 3077 default: 3078 ASSERT(0); 3079 } 3080 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3081 curstate, new) != curstate); 3082 3083 buf->dtb_offset = 0; 3084 buf->dtb_drops = 0; 3085 } 3086 3087 /* 3088 * Note: not called from probe context. This function is called 3089 * asynchronously from cross call context to clean any speculations that are 3090 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3091 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3092 * speculation. 3093 */ 3094 static void 3095 dtrace_speculation_clean_here(dtrace_state_t *state) 3096 { 3097 dtrace_icookie_t cookie; 3098 processorid_t cpu = curcpu; 3099 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3100 dtrace_specid_t i; 3101 3102 cookie = dtrace_interrupt_disable(); 3103 3104 if (dest->dtb_tomax == NULL) { 3105 dtrace_interrupt_enable(cookie); 3106 return; 3107 } 3108 3109 for (i = 0; i < state->dts_nspeculations; i++) { 3110 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3111 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3112 3113 if (src->dtb_tomax == NULL) 3114 continue; 3115 3116 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3117 src->dtb_offset = 0; 3118 continue; 3119 } 3120 3121 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3122 continue; 3123 3124 if (src->dtb_offset == 0) 3125 continue; 3126 3127 dtrace_speculation_commit(state, cpu, i + 1); 3128 } 3129 3130 dtrace_interrupt_enable(cookie); 3131 } 3132 3133 /* 3134 * Note: not called from probe context. This function is called 3135 * asynchronously (and at a regular interval) to clean any speculations that 3136 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3137 * is work to be done, it cross calls all CPUs to perform that work; 3138 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3139 * INACTIVE state until they have been cleaned by all CPUs. 3140 */ 3141 static void 3142 dtrace_speculation_clean(dtrace_state_t *state) 3143 { 3144 int work = 0, rv; 3145 dtrace_specid_t i; 3146 3147 for (i = 0; i < state->dts_nspeculations; i++) { 3148 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3149 3150 ASSERT(!spec->dtsp_cleaning); 3151 3152 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3153 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3154 continue; 3155 3156 work++; 3157 spec->dtsp_cleaning = 1; 3158 } 3159 3160 if (!work) 3161 return; 3162 3163 dtrace_xcall(DTRACE_CPUALL, 3164 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3165 3166 /* 3167 * We now know that all CPUs have committed or discarded their 3168 * speculation buffers, as appropriate. We can now set the state 3169 * to inactive. 3170 */ 3171 for (i = 0; i < state->dts_nspeculations; i++) { 3172 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3173 dtrace_speculation_state_t curstate, new; 3174 3175 if (!spec->dtsp_cleaning) 3176 continue; 3177 3178 curstate = spec->dtsp_state; 3179 ASSERT(curstate == DTRACESPEC_DISCARDING || 3180 curstate == DTRACESPEC_COMMITTINGMANY); 3181 3182 new = DTRACESPEC_INACTIVE; 3183 3184 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3185 ASSERT(rv == curstate); 3186 spec->dtsp_cleaning = 0; 3187 } 3188 } 3189 3190 /* 3191 * Called as part of a speculate() to get the speculative buffer associated 3192 * with a given speculation. Returns NULL if the specified speculation is not 3193 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3194 * the active CPU is not the specified CPU -- the speculation will be 3195 * atomically transitioned into the ACTIVEMANY state. 3196 */ 3197 static dtrace_buffer_t * 3198 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3199 dtrace_specid_t which) 3200 { 3201 dtrace_speculation_t *spec; 3202 dtrace_speculation_state_t curstate, new = 0; 3203 dtrace_buffer_t *buf; 3204 3205 if (which == 0) 3206 return (NULL); 3207 3208 if (which > state->dts_nspeculations) { 3209 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3210 return (NULL); 3211 } 3212 3213 spec = &state->dts_speculations[which - 1]; 3214 buf = &spec->dtsp_buffer[cpuid]; 3215 3216 do { 3217 curstate = spec->dtsp_state; 3218 3219 switch (curstate) { 3220 case DTRACESPEC_INACTIVE: 3221 case DTRACESPEC_COMMITTINGMANY: 3222 case DTRACESPEC_DISCARDING: 3223 return (NULL); 3224 3225 case DTRACESPEC_COMMITTING: 3226 ASSERT(buf->dtb_offset == 0); 3227 return (NULL); 3228 3229 case DTRACESPEC_ACTIVEONE: 3230 /* 3231 * This speculation is currently active on one CPU. 3232 * Check the offset in the buffer; if it's non-zero, 3233 * that CPU must be us (and we leave the state alone). 3234 * If it's zero, assume that we're starting on a new 3235 * CPU -- and change the state to indicate that the 3236 * speculation is active on more than one CPU. 3237 */ 3238 if (buf->dtb_offset != 0) 3239 return (buf); 3240 3241 new = DTRACESPEC_ACTIVEMANY; 3242 break; 3243 3244 case DTRACESPEC_ACTIVEMANY: 3245 return (buf); 3246 3247 case DTRACESPEC_ACTIVE: 3248 new = DTRACESPEC_ACTIVEONE; 3249 break; 3250 3251 default: 3252 ASSERT(0); 3253 } 3254 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3255 curstate, new) != curstate); 3256 3257 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3258 return (buf); 3259 } 3260 3261 /* 3262 * Return a string. In the event that the user lacks the privilege to access 3263 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3264 * don't fail access checking. 3265 * 3266 * dtrace_dif_variable() uses this routine as a helper for various 3267 * builtin values such as 'execname' and 'probefunc.' 3268 */ 3269 uintptr_t 3270 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3271 dtrace_mstate_t *mstate) 3272 { 3273 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3274 uintptr_t ret; 3275 size_t strsz; 3276 3277 /* 3278 * The easy case: this probe is allowed to read all of memory, so 3279 * we can just return this as a vanilla pointer. 3280 */ 3281 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3282 return (addr); 3283 3284 /* 3285 * This is the tougher case: we copy the string in question from 3286 * kernel memory into scratch memory and return it that way: this 3287 * ensures that we won't trip up when access checking tests the 3288 * BYREF return value. 3289 */ 3290 strsz = dtrace_strlen((char *)addr, size) + 1; 3291 3292 if (mstate->dtms_scratch_ptr + strsz > 3293 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3295 return (0); 3296 } 3297 3298 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3299 strsz); 3300 ret = mstate->dtms_scratch_ptr; 3301 mstate->dtms_scratch_ptr += strsz; 3302 return (ret); 3303 } 3304 3305 /* 3306 * Return a string from a memoy address which is known to have one or 3307 * more concatenated, individually zero terminated, sub-strings. 3308 * In the event that the user lacks the privilege to access 3309 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3310 * don't fail access checking. 3311 * 3312 * dtrace_dif_variable() uses this routine as a helper for various 3313 * builtin values such as 'execargs'. 3314 */ 3315 static uintptr_t 3316 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3317 dtrace_mstate_t *mstate) 3318 { 3319 char *p; 3320 size_t i; 3321 uintptr_t ret; 3322 3323 if (mstate->dtms_scratch_ptr + strsz > 3324 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3325 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3326 return (0); 3327 } 3328 3329 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3330 strsz); 3331 3332 /* Replace sub-string termination characters with a space. */ 3333 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3334 p++, i++) 3335 if (*p == '\0') 3336 *p = ' '; 3337 3338 ret = mstate->dtms_scratch_ptr; 3339 mstate->dtms_scratch_ptr += strsz; 3340 return (ret); 3341 } 3342 3343 /* 3344 * This function implements the DIF emulator's variable lookups. The emulator 3345 * passes a reserved variable identifier and optional built-in array index. 3346 */ 3347 static uint64_t 3348 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3349 uint64_t ndx) 3350 { 3351 /* 3352 * If we're accessing one of the uncached arguments, we'll turn this 3353 * into a reference in the args array. 3354 */ 3355 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3356 ndx = v - DIF_VAR_ARG0; 3357 v = DIF_VAR_ARGS; 3358 } 3359 3360 switch (v) { 3361 case DIF_VAR_ARGS: 3362 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3363 if (ndx >= sizeof (mstate->dtms_arg) / 3364 sizeof (mstate->dtms_arg[0])) { 3365 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3366 dtrace_provider_t *pv; 3367 uint64_t val; 3368 3369 pv = mstate->dtms_probe->dtpr_provider; 3370 if (pv->dtpv_pops.dtps_getargval != NULL) 3371 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3372 mstate->dtms_probe->dtpr_id, 3373 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3374 else 3375 val = dtrace_getarg(ndx, aframes); 3376 3377 /* 3378 * This is regrettably required to keep the compiler 3379 * from tail-optimizing the call to dtrace_getarg(). 3380 * The condition always evaluates to true, but the 3381 * compiler has no way of figuring that out a priori. 3382 * (None of this would be necessary if the compiler 3383 * could be relied upon to _always_ tail-optimize 3384 * the call to dtrace_getarg() -- but it can't.) 3385 */ 3386 if (mstate->dtms_probe != NULL) 3387 return (val); 3388 3389 ASSERT(0); 3390 } 3391 3392 return (mstate->dtms_arg[ndx]); 3393 3394 case DIF_VAR_REGS: 3395 case DIF_VAR_UREGS: { 3396 struct trapframe *tframe; 3397 3398 if (!dtrace_priv_proc(state)) 3399 return (0); 3400 3401 if (v == DIF_VAR_REGS) 3402 tframe = curthread->t_dtrace_trapframe; 3403 else 3404 tframe = curthread->td_frame; 3405 3406 if (tframe == NULL) { 3407 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3408 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3409 return (0); 3410 } 3411 3412 return (dtrace_getreg(tframe, ndx)); 3413 } 3414 3415 case DIF_VAR_CURTHREAD: 3416 if (!dtrace_priv_proc(state)) 3417 return (0); 3418 return ((uint64_t)(uintptr_t)curthread); 3419 3420 case DIF_VAR_TIMESTAMP: 3421 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3422 mstate->dtms_timestamp = dtrace_gethrtime(); 3423 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3424 } 3425 return (mstate->dtms_timestamp); 3426 3427 case DIF_VAR_VTIMESTAMP: 3428 ASSERT(dtrace_vtime_references != 0); 3429 return (curthread->t_dtrace_vtime); 3430 3431 case DIF_VAR_WALLTIMESTAMP: 3432 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3433 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3434 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3435 } 3436 return (mstate->dtms_walltimestamp); 3437 3438 #ifdef illumos 3439 case DIF_VAR_IPL: 3440 if (!dtrace_priv_kernel(state)) 3441 return (0); 3442 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3443 mstate->dtms_ipl = dtrace_getipl(); 3444 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3445 } 3446 return (mstate->dtms_ipl); 3447 #endif 3448 3449 case DIF_VAR_EPID: 3450 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3451 return (mstate->dtms_epid); 3452 3453 case DIF_VAR_ID: 3454 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3455 return (mstate->dtms_probe->dtpr_id); 3456 3457 case DIF_VAR_STACKDEPTH: 3458 if (!dtrace_priv_kernel(state)) 3459 return (0); 3460 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3461 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3462 3463 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3464 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3465 } 3466 return (mstate->dtms_stackdepth); 3467 3468 case DIF_VAR_USTACKDEPTH: 3469 if (!dtrace_priv_proc(state)) 3470 return (0); 3471 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3472 /* 3473 * See comment in DIF_VAR_PID. 3474 */ 3475 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3476 CPU_ON_INTR(CPU)) { 3477 mstate->dtms_ustackdepth = 0; 3478 } else { 3479 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3480 mstate->dtms_ustackdepth = 3481 dtrace_getustackdepth(); 3482 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3483 } 3484 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3485 } 3486 return (mstate->dtms_ustackdepth); 3487 3488 case DIF_VAR_CALLER: 3489 if (!dtrace_priv_kernel(state)) 3490 return (0); 3491 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3492 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3493 3494 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3495 /* 3496 * If this is an unanchored probe, we are 3497 * required to go through the slow path: 3498 * dtrace_caller() only guarantees correct 3499 * results for anchored probes. 3500 */ 3501 pc_t caller[2] = {0, 0}; 3502 3503 dtrace_getpcstack(caller, 2, aframes, 3504 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3505 mstate->dtms_caller = caller[1]; 3506 } else if ((mstate->dtms_caller = 3507 dtrace_caller(aframes)) == -1) { 3508 /* 3509 * We have failed to do this the quick way; 3510 * we must resort to the slower approach of 3511 * calling dtrace_getpcstack(). 3512 */ 3513 pc_t caller = 0; 3514 3515 dtrace_getpcstack(&caller, 1, aframes, NULL); 3516 mstate->dtms_caller = caller; 3517 } 3518 3519 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3520 } 3521 return (mstate->dtms_caller); 3522 3523 case DIF_VAR_UCALLER: 3524 if (!dtrace_priv_proc(state)) 3525 return (0); 3526 3527 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3528 uint64_t ustack[3]; 3529 3530 /* 3531 * dtrace_getupcstack() fills in the first uint64_t 3532 * with the current PID. The second uint64_t will 3533 * be the program counter at user-level. The third 3534 * uint64_t will contain the caller, which is what 3535 * we're after. 3536 */ 3537 ustack[2] = 0; 3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3539 dtrace_getupcstack(ustack, 3); 3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3541 mstate->dtms_ucaller = ustack[2]; 3542 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3543 } 3544 3545 return (mstate->dtms_ucaller); 3546 3547 case DIF_VAR_PROBEPROV: 3548 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3549 return (dtrace_dif_varstr( 3550 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3551 state, mstate)); 3552 3553 case DIF_VAR_PROBEMOD: 3554 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3555 return (dtrace_dif_varstr( 3556 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3557 state, mstate)); 3558 3559 case DIF_VAR_PROBEFUNC: 3560 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3561 return (dtrace_dif_varstr( 3562 (uintptr_t)mstate->dtms_probe->dtpr_func, 3563 state, mstate)); 3564 3565 case DIF_VAR_PROBENAME: 3566 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3567 return (dtrace_dif_varstr( 3568 (uintptr_t)mstate->dtms_probe->dtpr_name, 3569 state, mstate)); 3570 3571 case DIF_VAR_PID: 3572 if (!dtrace_priv_proc(state)) 3573 return (0); 3574 3575 #ifdef illumos 3576 /* 3577 * Note that we are assuming that an unanchored probe is 3578 * always due to a high-level interrupt. (And we're assuming 3579 * that there is only a single high level interrupt.) 3580 */ 3581 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3582 return (pid0.pid_id); 3583 3584 /* 3585 * It is always safe to dereference one's own t_procp pointer: 3586 * it always points to a valid, allocated proc structure. 3587 * Further, it is always safe to dereference the p_pidp member 3588 * of one's own proc structure. (These are truisms becuase 3589 * threads and processes don't clean up their own state -- 3590 * they leave that task to whomever reaps them.) 3591 */ 3592 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3593 #else 3594 return ((uint64_t)curproc->p_pid); 3595 #endif 3596 3597 case DIF_VAR_PPID: 3598 if (!dtrace_priv_proc(state)) 3599 return (0); 3600 3601 #ifdef illumos 3602 /* 3603 * See comment in DIF_VAR_PID. 3604 */ 3605 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3606 return (pid0.pid_id); 3607 3608 /* 3609 * It is always safe to dereference one's own t_procp pointer: 3610 * it always points to a valid, allocated proc structure. 3611 * (This is true because threads don't clean up their own 3612 * state -- they leave that task to whomever reaps them.) 3613 */ 3614 return ((uint64_t)curthread->t_procp->p_ppid); 3615 #else 3616 if (curproc->p_pid == proc0.p_pid) 3617 return (curproc->p_pid); 3618 else 3619 return (curproc->p_pptr->p_pid); 3620 #endif 3621 3622 case DIF_VAR_TID: 3623 #ifdef illumos 3624 /* 3625 * See comment in DIF_VAR_PID. 3626 */ 3627 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3628 return (0); 3629 #endif 3630 3631 return ((uint64_t)curthread->t_tid); 3632 3633 case DIF_VAR_EXECARGS: { 3634 struct pargs *p_args = curthread->td_proc->p_args; 3635 3636 if (p_args == NULL) 3637 return(0); 3638 3639 return (dtrace_dif_varstrz( 3640 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3641 } 3642 3643 case DIF_VAR_EXECNAME: 3644 #ifdef illumos 3645 if (!dtrace_priv_proc(state)) 3646 return (0); 3647 3648 /* 3649 * See comment in DIF_VAR_PID. 3650 */ 3651 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3652 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3653 3654 /* 3655 * It is always safe to dereference one's own t_procp pointer: 3656 * it always points to a valid, allocated proc structure. 3657 * (This is true because threads don't clean up their own 3658 * state -- they leave that task to whomever reaps them.) 3659 */ 3660 return (dtrace_dif_varstr( 3661 (uintptr_t)curthread->t_procp->p_user.u_comm, 3662 state, mstate)); 3663 #else 3664 return (dtrace_dif_varstr( 3665 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3666 #endif 3667 3668 case DIF_VAR_ZONENAME: 3669 #ifdef illumos 3670 if (!dtrace_priv_proc(state)) 3671 return (0); 3672 3673 /* 3674 * See comment in DIF_VAR_PID. 3675 */ 3676 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3677 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3678 3679 /* 3680 * It is always safe to dereference one's own t_procp pointer: 3681 * it always points to a valid, allocated proc structure. 3682 * (This is true because threads don't clean up their own 3683 * state -- they leave that task to whomever reaps them.) 3684 */ 3685 return (dtrace_dif_varstr( 3686 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3687 state, mstate)); 3688 #elif defined(__FreeBSD__) 3689 /* 3690 * On FreeBSD, we introduce compatibility to zonename by falling through 3691 * into jailname. 3692 */ 3693 case DIF_VAR_JAILNAME: 3694 if (!dtrace_priv_kernel(state)) 3695 return (0); 3696 3697 return (dtrace_dif_varstr( 3698 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3699 state, mstate)); 3700 3701 case DIF_VAR_JID: 3702 if (!dtrace_priv_kernel(state)) 3703 return (0); 3704 3705 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3706 #else 3707 return (0); 3708 #endif 3709 3710 case DIF_VAR_UID: 3711 if (!dtrace_priv_proc(state)) 3712 return (0); 3713 3714 #ifdef illumos 3715 /* 3716 * See comment in DIF_VAR_PID. 3717 */ 3718 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3719 return ((uint64_t)p0.p_cred->cr_uid); 3720 3721 /* 3722 * It is always safe to dereference one's own t_procp pointer: 3723 * it always points to a valid, allocated proc structure. 3724 * (This is true because threads don't clean up their own 3725 * state -- they leave that task to whomever reaps them.) 3726 * 3727 * Additionally, it is safe to dereference one's own process 3728 * credential, since this is never NULL after process birth. 3729 */ 3730 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3731 #else 3732 return ((uint64_t)curthread->td_ucred->cr_uid); 3733 #endif 3734 3735 case DIF_VAR_GID: 3736 if (!dtrace_priv_proc(state)) 3737 return (0); 3738 3739 #ifdef illumos 3740 /* 3741 * See comment in DIF_VAR_PID. 3742 */ 3743 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3744 return ((uint64_t)p0.p_cred->cr_gid); 3745 3746 /* 3747 * It is always safe to dereference one's own t_procp pointer: 3748 * it always points to a valid, allocated proc structure. 3749 * (This is true because threads don't clean up their own 3750 * state -- they leave that task to whomever reaps them.) 3751 * 3752 * Additionally, it is safe to dereference one's own process 3753 * credential, since this is never NULL after process birth. 3754 */ 3755 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3756 #else 3757 return ((uint64_t)curthread->td_ucred->cr_gid); 3758 #endif 3759 3760 case DIF_VAR_ERRNO: { 3761 #ifdef illumos 3762 klwp_t *lwp; 3763 if (!dtrace_priv_proc(state)) 3764 return (0); 3765 3766 /* 3767 * See comment in DIF_VAR_PID. 3768 */ 3769 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3770 return (0); 3771 3772 /* 3773 * It is always safe to dereference one's own t_lwp pointer in 3774 * the event that this pointer is non-NULL. (This is true 3775 * because threads and lwps don't clean up their own state -- 3776 * they leave that task to whomever reaps them.) 3777 */ 3778 if ((lwp = curthread->t_lwp) == NULL) 3779 return (0); 3780 3781 return ((uint64_t)lwp->lwp_errno); 3782 #else 3783 return (curthread->td_errno); 3784 #endif 3785 } 3786 #ifndef illumos 3787 case DIF_VAR_CPU: { 3788 return curcpu; 3789 } 3790 #endif 3791 default: 3792 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3793 return (0); 3794 } 3795 } 3796 3797 3798 typedef enum dtrace_json_state { 3799 DTRACE_JSON_REST = 1, 3800 DTRACE_JSON_OBJECT, 3801 DTRACE_JSON_STRING, 3802 DTRACE_JSON_STRING_ESCAPE, 3803 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3804 DTRACE_JSON_COLON, 3805 DTRACE_JSON_COMMA, 3806 DTRACE_JSON_VALUE, 3807 DTRACE_JSON_IDENTIFIER, 3808 DTRACE_JSON_NUMBER, 3809 DTRACE_JSON_NUMBER_FRAC, 3810 DTRACE_JSON_NUMBER_EXP, 3811 DTRACE_JSON_COLLECT_OBJECT 3812 } dtrace_json_state_t; 3813 3814 /* 3815 * This function possesses just enough knowledge about JSON to extract a single 3816 * value from a JSON string and store it in the scratch buffer. It is able 3817 * to extract nested object values, and members of arrays by index. 3818 * 3819 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3820 * be looked up as we descend into the object tree. e.g. 3821 * 3822 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3823 * with nelems = 5. 3824 * 3825 * The run time of this function must be bounded above by strsize to limit the 3826 * amount of work done in probe context. As such, it is implemented as a 3827 * simple state machine, reading one character at a time using safe loads 3828 * until we find the requested element, hit a parsing error or run off the 3829 * end of the object or string. 3830 * 3831 * As there is no way for a subroutine to return an error without interrupting 3832 * clause execution, we simply return NULL in the event of a missing key or any 3833 * other error condition. Each NULL return in this function is commented with 3834 * the error condition it represents -- parsing or otherwise. 3835 * 3836 * The set of states for the state machine closely matches the JSON 3837 * specification (http://json.org/). Briefly: 3838 * 3839 * DTRACE_JSON_REST: 3840 * Skip whitespace until we find either a top-level Object, moving 3841 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3842 * 3843 * DTRACE_JSON_OBJECT: 3844 * Locate the next key String in an Object. Sets a flag to denote 3845 * the next String as a key string and moves to DTRACE_JSON_STRING. 3846 * 3847 * DTRACE_JSON_COLON: 3848 * Skip whitespace until we find the colon that separates key Strings 3849 * from their values. Once found, move to DTRACE_JSON_VALUE. 3850 * 3851 * DTRACE_JSON_VALUE: 3852 * Detects the type of the next value (String, Number, Identifier, Object 3853 * or Array) and routes to the states that process that type. Here we also 3854 * deal with the element selector list if we are requested to traverse down 3855 * into the object tree. 3856 * 3857 * DTRACE_JSON_COMMA: 3858 * Skip whitespace until we find the comma that separates key-value pairs 3859 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3860 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3861 * states return to this state at the end of their value, unless otherwise 3862 * noted. 3863 * 3864 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3865 * Processes a Number literal from the JSON, including any exponent 3866 * component that may be present. Numbers are returned as strings, which 3867 * may be passed to strtoll() if an integer is required. 3868 * 3869 * DTRACE_JSON_IDENTIFIER: 3870 * Processes a "true", "false" or "null" literal in the JSON. 3871 * 3872 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3873 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3874 * Processes a String literal from the JSON, whether the String denotes 3875 * a key, a value or part of a larger Object. Handles all escape sequences 3876 * present in the specification, including four-digit unicode characters, 3877 * but merely includes the escape sequence without converting it to the 3878 * actual escaped character. If the String is flagged as a key, we 3879 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3880 * 3881 * DTRACE_JSON_COLLECT_OBJECT: 3882 * This state collects an entire Object (or Array), correctly handling 3883 * embedded strings. If the full element selector list matches this nested 3884 * object, we return the Object in full as a string. If not, we use this 3885 * state to skip to the next value at this level and continue processing. 3886 * 3887 * NOTE: This function uses various macros from strtolctype.h to manipulate 3888 * digit values, etc -- these have all been checked to ensure they make 3889 * no additional function calls. 3890 */ 3891 static char * 3892 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3893 char *dest) 3894 { 3895 dtrace_json_state_t state = DTRACE_JSON_REST; 3896 int64_t array_elem = INT64_MIN; 3897 int64_t array_pos = 0; 3898 uint8_t escape_unicount = 0; 3899 boolean_t string_is_key = B_FALSE; 3900 boolean_t collect_object = B_FALSE; 3901 boolean_t found_key = B_FALSE; 3902 boolean_t in_array = B_FALSE; 3903 uint32_t braces = 0, brackets = 0; 3904 char *elem = elemlist; 3905 char *dd = dest; 3906 uintptr_t cur; 3907 3908 for (cur = json; cur < json + size; cur++) { 3909 char cc = dtrace_load8(cur); 3910 if (cc == '\0') 3911 return (NULL); 3912 3913 switch (state) { 3914 case DTRACE_JSON_REST: 3915 if (isspace(cc)) 3916 break; 3917 3918 if (cc == '{') { 3919 state = DTRACE_JSON_OBJECT; 3920 break; 3921 } 3922 3923 if (cc == '[') { 3924 in_array = B_TRUE; 3925 array_pos = 0; 3926 array_elem = dtrace_strtoll(elem, 10, size); 3927 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3928 state = DTRACE_JSON_VALUE; 3929 break; 3930 } 3931 3932 /* 3933 * ERROR: expected to find a top-level object or array. 3934 */ 3935 return (NULL); 3936 case DTRACE_JSON_OBJECT: 3937 if (isspace(cc)) 3938 break; 3939 3940 if (cc == '"') { 3941 state = DTRACE_JSON_STRING; 3942 string_is_key = B_TRUE; 3943 break; 3944 } 3945 3946 /* 3947 * ERROR: either the object did not start with a key 3948 * string, or we've run off the end of the object 3949 * without finding the requested key. 3950 */ 3951 return (NULL); 3952 case DTRACE_JSON_STRING: 3953 if (cc == '\\') { 3954 *dd++ = '\\'; 3955 state = DTRACE_JSON_STRING_ESCAPE; 3956 break; 3957 } 3958 3959 if (cc == '"') { 3960 if (collect_object) { 3961 /* 3962 * We don't reset the dest here, as 3963 * the string is part of a larger 3964 * object being collected. 3965 */ 3966 *dd++ = cc; 3967 collect_object = B_FALSE; 3968 state = DTRACE_JSON_COLLECT_OBJECT; 3969 break; 3970 } 3971 *dd = '\0'; 3972 dd = dest; /* reset string buffer */ 3973 if (string_is_key) { 3974 if (dtrace_strncmp(dest, elem, 3975 size) == 0) 3976 found_key = B_TRUE; 3977 } else if (found_key) { 3978 if (nelems > 1) { 3979 /* 3980 * We expected an object, not 3981 * this string. 3982 */ 3983 return (NULL); 3984 } 3985 return (dest); 3986 } 3987 state = string_is_key ? DTRACE_JSON_COLON : 3988 DTRACE_JSON_COMMA; 3989 string_is_key = B_FALSE; 3990 break; 3991 } 3992 3993 *dd++ = cc; 3994 break; 3995 case DTRACE_JSON_STRING_ESCAPE: 3996 *dd++ = cc; 3997 if (cc == 'u') { 3998 escape_unicount = 0; 3999 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 4000 } else { 4001 state = DTRACE_JSON_STRING; 4002 } 4003 break; 4004 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 4005 if (!isxdigit(cc)) { 4006 /* 4007 * ERROR: invalid unicode escape, expected 4008 * four valid hexidecimal digits. 4009 */ 4010 return (NULL); 4011 } 4012 4013 *dd++ = cc; 4014 if (++escape_unicount == 4) 4015 state = DTRACE_JSON_STRING; 4016 break; 4017 case DTRACE_JSON_COLON: 4018 if (isspace(cc)) 4019 break; 4020 4021 if (cc == ':') { 4022 state = DTRACE_JSON_VALUE; 4023 break; 4024 } 4025 4026 /* 4027 * ERROR: expected a colon. 4028 */ 4029 return (NULL); 4030 case DTRACE_JSON_COMMA: 4031 if (isspace(cc)) 4032 break; 4033 4034 if (cc == ',') { 4035 if (in_array) { 4036 state = DTRACE_JSON_VALUE; 4037 if (++array_pos == array_elem) 4038 found_key = B_TRUE; 4039 } else { 4040 state = DTRACE_JSON_OBJECT; 4041 } 4042 break; 4043 } 4044 4045 /* 4046 * ERROR: either we hit an unexpected character, or 4047 * we reached the end of the object or array without 4048 * finding the requested key. 4049 */ 4050 return (NULL); 4051 case DTRACE_JSON_IDENTIFIER: 4052 if (islower(cc)) { 4053 *dd++ = cc; 4054 break; 4055 } 4056 4057 *dd = '\0'; 4058 dd = dest; /* reset string buffer */ 4059 4060 if (dtrace_strncmp(dest, "true", 5) == 0 || 4061 dtrace_strncmp(dest, "false", 6) == 0 || 4062 dtrace_strncmp(dest, "null", 5) == 0) { 4063 if (found_key) { 4064 if (nelems > 1) { 4065 /* 4066 * ERROR: We expected an object, 4067 * not this identifier. 4068 */ 4069 return (NULL); 4070 } 4071 return (dest); 4072 } else { 4073 cur--; 4074 state = DTRACE_JSON_COMMA; 4075 break; 4076 } 4077 } 4078 4079 /* 4080 * ERROR: we did not recognise the identifier as one 4081 * of those in the JSON specification. 4082 */ 4083 return (NULL); 4084 case DTRACE_JSON_NUMBER: 4085 if (cc == '.') { 4086 *dd++ = cc; 4087 state = DTRACE_JSON_NUMBER_FRAC; 4088 break; 4089 } 4090 4091 if (cc == 'x' || cc == 'X') { 4092 /* 4093 * ERROR: specification explicitly excludes 4094 * hexidecimal or octal numbers. 4095 */ 4096 return (NULL); 4097 } 4098 4099 /* FALLTHRU */ 4100 case DTRACE_JSON_NUMBER_FRAC: 4101 if (cc == 'e' || cc == 'E') { 4102 *dd++ = cc; 4103 state = DTRACE_JSON_NUMBER_EXP; 4104 break; 4105 } 4106 4107 if (cc == '+' || cc == '-') { 4108 /* 4109 * ERROR: expect sign as part of exponent only. 4110 */ 4111 return (NULL); 4112 } 4113 /* FALLTHRU */ 4114 case DTRACE_JSON_NUMBER_EXP: 4115 if (isdigit(cc) || cc == '+' || cc == '-') { 4116 *dd++ = cc; 4117 break; 4118 } 4119 4120 *dd = '\0'; 4121 dd = dest; /* reset string buffer */ 4122 if (found_key) { 4123 if (nelems > 1) { 4124 /* 4125 * ERROR: We expected an object, not 4126 * this number. 4127 */ 4128 return (NULL); 4129 } 4130 return (dest); 4131 } 4132 4133 cur--; 4134 state = DTRACE_JSON_COMMA; 4135 break; 4136 case DTRACE_JSON_VALUE: 4137 if (isspace(cc)) 4138 break; 4139 4140 if (cc == '{' || cc == '[') { 4141 if (nelems > 1 && found_key) { 4142 in_array = cc == '[' ? B_TRUE : B_FALSE; 4143 /* 4144 * If our element selector directs us 4145 * to descend into this nested object, 4146 * then move to the next selector 4147 * element in the list and restart the 4148 * state machine. 4149 */ 4150 while (*elem != '\0') 4151 elem++; 4152 elem++; /* skip the inter-element NUL */ 4153 nelems--; 4154 dd = dest; 4155 if (in_array) { 4156 state = DTRACE_JSON_VALUE; 4157 array_pos = 0; 4158 array_elem = dtrace_strtoll( 4159 elem, 10, size); 4160 found_key = array_elem == 0 ? 4161 B_TRUE : B_FALSE; 4162 } else { 4163 found_key = B_FALSE; 4164 state = DTRACE_JSON_OBJECT; 4165 } 4166 break; 4167 } 4168 4169 /* 4170 * Otherwise, we wish to either skip this 4171 * nested object or return it in full. 4172 */ 4173 if (cc == '[') 4174 brackets = 1; 4175 else 4176 braces = 1; 4177 *dd++ = cc; 4178 state = DTRACE_JSON_COLLECT_OBJECT; 4179 break; 4180 } 4181 4182 if (cc == '"') { 4183 state = DTRACE_JSON_STRING; 4184 break; 4185 } 4186 4187 if (islower(cc)) { 4188 /* 4189 * Here we deal with true, false and null. 4190 */ 4191 *dd++ = cc; 4192 state = DTRACE_JSON_IDENTIFIER; 4193 break; 4194 } 4195 4196 if (cc == '-' || isdigit(cc)) { 4197 *dd++ = cc; 4198 state = DTRACE_JSON_NUMBER; 4199 break; 4200 } 4201 4202 /* 4203 * ERROR: unexpected character at start of value. 4204 */ 4205 return (NULL); 4206 case DTRACE_JSON_COLLECT_OBJECT: 4207 if (cc == '\0') 4208 /* 4209 * ERROR: unexpected end of input. 4210 */ 4211 return (NULL); 4212 4213 *dd++ = cc; 4214 if (cc == '"') { 4215 collect_object = B_TRUE; 4216 state = DTRACE_JSON_STRING; 4217 break; 4218 } 4219 4220 if (cc == ']') { 4221 if (brackets-- == 0) { 4222 /* 4223 * ERROR: unbalanced brackets. 4224 */ 4225 return (NULL); 4226 } 4227 } else if (cc == '}') { 4228 if (braces-- == 0) { 4229 /* 4230 * ERROR: unbalanced braces. 4231 */ 4232 return (NULL); 4233 } 4234 } else if (cc == '{') { 4235 braces++; 4236 } else if (cc == '[') { 4237 brackets++; 4238 } 4239 4240 if (brackets == 0 && braces == 0) { 4241 if (found_key) { 4242 *dd = '\0'; 4243 return (dest); 4244 } 4245 dd = dest; /* reset string buffer */ 4246 state = DTRACE_JSON_COMMA; 4247 } 4248 break; 4249 } 4250 } 4251 return (NULL); 4252 } 4253 4254 /* 4255 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4256 * Notice that we don't bother validating the proper number of arguments or 4257 * their types in the tuple stack. This isn't needed because all argument 4258 * interpretation is safe because of our load safety -- the worst that can 4259 * happen is that a bogus program can obtain bogus results. 4260 */ 4261 static void 4262 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4263 dtrace_key_t *tupregs, int nargs, 4264 dtrace_mstate_t *mstate, dtrace_state_t *state) 4265 { 4266 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4267 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4268 dtrace_vstate_t *vstate = &state->dts_vstate; 4269 4270 #ifdef illumos 4271 union { 4272 mutex_impl_t mi; 4273 uint64_t mx; 4274 } m; 4275 4276 union { 4277 krwlock_t ri; 4278 uintptr_t rw; 4279 } r; 4280 #else 4281 struct thread *lowner; 4282 union { 4283 struct lock_object *li; 4284 uintptr_t lx; 4285 } l; 4286 #endif 4287 4288 switch (subr) { 4289 case DIF_SUBR_RAND: 4290 regs[rd] = dtrace_xoroshiro128_plus_next( 4291 state->dts_rstate[curcpu]); 4292 break; 4293 4294 #ifdef illumos 4295 case DIF_SUBR_MUTEX_OWNED: 4296 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4297 mstate, vstate)) { 4298 regs[rd] = 0; 4299 break; 4300 } 4301 4302 m.mx = dtrace_load64(tupregs[0].dttk_value); 4303 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4304 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4305 else 4306 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4307 break; 4308 4309 case DIF_SUBR_MUTEX_OWNER: 4310 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4311 mstate, vstate)) { 4312 regs[rd] = 0; 4313 break; 4314 } 4315 4316 m.mx = dtrace_load64(tupregs[0].dttk_value); 4317 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4318 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4319 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4320 else 4321 regs[rd] = 0; 4322 break; 4323 4324 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4325 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4326 mstate, vstate)) { 4327 regs[rd] = 0; 4328 break; 4329 } 4330 4331 m.mx = dtrace_load64(tupregs[0].dttk_value); 4332 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4333 break; 4334 4335 case DIF_SUBR_MUTEX_TYPE_SPIN: 4336 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4337 mstate, vstate)) { 4338 regs[rd] = 0; 4339 break; 4340 } 4341 4342 m.mx = dtrace_load64(tupregs[0].dttk_value); 4343 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4344 break; 4345 4346 case DIF_SUBR_RW_READ_HELD: { 4347 uintptr_t tmp; 4348 4349 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4350 mstate, vstate)) { 4351 regs[rd] = 0; 4352 break; 4353 } 4354 4355 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4356 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4357 break; 4358 } 4359 4360 case DIF_SUBR_RW_WRITE_HELD: 4361 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4362 mstate, vstate)) { 4363 regs[rd] = 0; 4364 break; 4365 } 4366 4367 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4368 regs[rd] = _RW_WRITE_HELD(&r.ri); 4369 break; 4370 4371 case DIF_SUBR_RW_ISWRITER: 4372 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4373 mstate, vstate)) { 4374 regs[rd] = 0; 4375 break; 4376 } 4377 4378 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4379 regs[rd] = _RW_ISWRITER(&r.ri); 4380 break; 4381 4382 #else /* !illumos */ 4383 case DIF_SUBR_MUTEX_OWNED: 4384 if (!dtrace_canload(tupregs[0].dttk_value, 4385 sizeof (struct lock_object), mstate, vstate)) { 4386 regs[rd] = 0; 4387 break; 4388 } 4389 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4390 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4391 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4392 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4393 break; 4394 4395 case DIF_SUBR_MUTEX_OWNER: 4396 if (!dtrace_canload(tupregs[0].dttk_value, 4397 sizeof (struct lock_object), mstate, vstate)) { 4398 regs[rd] = 0; 4399 break; 4400 } 4401 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4402 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4403 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4404 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4405 regs[rd] = (uintptr_t)lowner; 4406 break; 4407 4408 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4409 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4410 mstate, vstate)) { 4411 regs[rd] = 0; 4412 break; 4413 } 4414 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4415 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4416 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4417 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4418 break; 4419 4420 case DIF_SUBR_MUTEX_TYPE_SPIN: 4421 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4422 mstate, vstate)) { 4423 regs[rd] = 0; 4424 break; 4425 } 4426 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4427 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4428 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4430 break; 4431 4432 case DIF_SUBR_RW_READ_HELD: 4433 case DIF_SUBR_SX_SHARED_HELD: 4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4435 mstate, vstate)) { 4436 regs[rd] = 0; 4437 break; 4438 } 4439 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4441 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4442 lowner == NULL; 4443 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4444 break; 4445 4446 case DIF_SUBR_RW_WRITE_HELD: 4447 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4448 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4449 mstate, vstate)) { 4450 regs[rd] = 0; 4451 break; 4452 } 4453 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4454 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4455 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4456 lowner != NULL; 4457 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4458 break; 4459 4460 case DIF_SUBR_RW_ISWRITER: 4461 case DIF_SUBR_SX_ISEXCLUSIVE: 4462 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4463 mstate, vstate)) { 4464 regs[rd] = 0; 4465 break; 4466 } 4467 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4468 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4469 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4470 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4471 regs[rd] = (lowner == curthread); 4472 break; 4473 #endif /* illumos */ 4474 4475 case DIF_SUBR_BCOPY: { 4476 /* 4477 * We need to be sure that the destination is in the scratch 4478 * region -- no other region is allowed. 4479 */ 4480 uintptr_t src = tupregs[0].dttk_value; 4481 uintptr_t dest = tupregs[1].dttk_value; 4482 size_t size = tupregs[2].dttk_value; 4483 4484 if (!dtrace_inscratch(dest, size, mstate)) { 4485 *flags |= CPU_DTRACE_BADADDR; 4486 *illval = regs[rd]; 4487 break; 4488 } 4489 4490 if (!dtrace_canload(src, size, mstate, vstate)) { 4491 regs[rd] = 0; 4492 break; 4493 } 4494 4495 dtrace_bcopy((void *)src, (void *)dest, size); 4496 break; 4497 } 4498 4499 case DIF_SUBR_ALLOCA: 4500 case DIF_SUBR_COPYIN: { 4501 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4502 uint64_t size = 4503 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4504 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4505 4506 /* 4507 * This action doesn't require any credential checks since 4508 * probes will not activate in user contexts to which the 4509 * enabling user does not have permissions. 4510 */ 4511 4512 /* 4513 * Rounding up the user allocation size could have overflowed 4514 * a large, bogus allocation (like -1ULL) to 0. 4515 */ 4516 if (scratch_size < size || 4517 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4518 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4519 regs[rd] = 0; 4520 break; 4521 } 4522 4523 if (subr == DIF_SUBR_COPYIN) { 4524 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4525 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4526 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4527 } 4528 4529 mstate->dtms_scratch_ptr += scratch_size; 4530 regs[rd] = dest; 4531 break; 4532 } 4533 4534 case DIF_SUBR_COPYINTO: { 4535 uint64_t size = tupregs[1].dttk_value; 4536 uintptr_t dest = tupregs[2].dttk_value; 4537 4538 /* 4539 * This action doesn't require any credential checks since 4540 * probes will not activate in user contexts to which the 4541 * enabling user does not have permissions. 4542 */ 4543 if (!dtrace_inscratch(dest, size, mstate)) { 4544 *flags |= CPU_DTRACE_BADADDR; 4545 *illval = regs[rd]; 4546 break; 4547 } 4548 4549 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4550 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4551 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4552 break; 4553 } 4554 4555 case DIF_SUBR_COPYINSTR: { 4556 uintptr_t dest = mstate->dtms_scratch_ptr; 4557 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4558 4559 if (nargs > 1 && tupregs[1].dttk_value < size) 4560 size = tupregs[1].dttk_value + 1; 4561 4562 /* 4563 * This action doesn't require any credential checks since 4564 * probes will not activate in user contexts to which the 4565 * enabling user does not have permissions. 4566 */ 4567 if (!DTRACE_INSCRATCH(mstate, size)) { 4568 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4569 regs[rd] = 0; 4570 break; 4571 } 4572 4573 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4574 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4575 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4576 4577 ((char *)dest)[size - 1] = '\0'; 4578 mstate->dtms_scratch_ptr += size; 4579 regs[rd] = dest; 4580 break; 4581 } 4582 4583 #ifdef illumos 4584 case DIF_SUBR_MSGSIZE: 4585 case DIF_SUBR_MSGDSIZE: { 4586 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4587 uintptr_t wptr, rptr; 4588 size_t count = 0; 4589 int cont = 0; 4590 4591 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4592 4593 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4594 vstate)) { 4595 regs[rd] = 0; 4596 break; 4597 } 4598 4599 wptr = dtrace_loadptr(baddr + 4600 offsetof(mblk_t, b_wptr)); 4601 4602 rptr = dtrace_loadptr(baddr + 4603 offsetof(mblk_t, b_rptr)); 4604 4605 if (wptr < rptr) { 4606 *flags |= CPU_DTRACE_BADADDR; 4607 *illval = tupregs[0].dttk_value; 4608 break; 4609 } 4610 4611 daddr = dtrace_loadptr(baddr + 4612 offsetof(mblk_t, b_datap)); 4613 4614 baddr = dtrace_loadptr(baddr + 4615 offsetof(mblk_t, b_cont)); 4616 4617 /* 4618 * We want to prevent against denial-of-service here, 4619 * so we're only going to search the list for 4620 * dtrace_msgdsize_max mblks. 4621 */ 4622 if (cont++ > dtrace_msgdsize_max) { 4623 *flags |= CPU_DTRACE_ILLOP; 4624 break; 4625 } 4626 4627 if (subr == DIF_SUBR_MSGDSIZE) { 4628 if (dtrace_load8(daddr + 4629 offsetof(dblk_t, db_type)) != M_DATA) 4630 continue; 4631 } 4632 4633 count += wptr - rptr; 4634 } 4635 4636 if (!(*flags & CPU_DTRACE_FAULT)) 4637 regs[rd] = count; 4638 4639 break; 4640 } 4641 #endif 4642 4643 case DIF_SUBR_PROGENYOF: { 4644 pid_t pid = tupregs[0].dttk_value; 4645 proc_t *p; 4646 int rval = 0; 4647 4648 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4649 4650 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4651 #ifdef illumos 4652 if (p->p_pidp->pid_id == pid) { 4653 #else 4654 if (p->p_pid == pid) { 4655 #endif 4656 rval = 1; 4657 break; 4658 } 4659 } 4660 4661 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4662 4663 regs[rd] = rval; 4664 break; 4665 } 4666 4667 case DIF_SUBR_SPECULATION: 4668 regs[rd] = dtrace_speculation(state); 4669 break; 4670 4671 case DIF_SUBR_COPYOUT: { 4672 uintptr_t kaddr = tupregs[0].dttk_value; 4673 uintptr_t uaddr = tupregs[1].dttk_value; 4674 uint64_t size = tupregs[2].dttk_value; 4675 4676 if (!dtrace_destructive_disallow && 4677 dtrace_priv_proc_control(state) && 4678 !dtrace_istoxic(kaddr, size) && 4679 dtrace_canload(kaddr, size, mstate, vstate)) { 4680 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4681 dtrace_copyout(kaddr, uaddr, size, flags); 4682 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4683 } 4684 break; 4685 } 4686 4687 case DIF_SUBR_COPYOUTSTR: { 4688 uintptr_t kaddr = tupregs[0].dttk_value; 4689 uintptr_t uaddr = tupregs[1].dttk_value; 4690 uint64_t size = tupregs[2].dttk_value; 4691 size_t lim; 4692 4693 if (!dtrace_destructive_disallow && 4694 dtrace_priv_proc_control(state) && 4695 !dtrace_istoxic(kaddr, size) && 4696 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4698 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4699 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4700 } 4701 break; 4702 } 4703 4704 case DIF_SUBR_STRLEN: { 4705 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4706 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4707 size_t lim; 4708 4709 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4710 regs[rd] = 0; 4711 break; 4712 } 4713 4714 regs[rd] = dtrace_strlen((char *)addr, lim); 4715 break; 4716 } 4717 4718 case DIF_SUBR_STRCHR: 4719 case DIF_SUBR_STRRCHR: { 4720 /* 4721 * We're going to iterate over the string looking for the 4722 * specified character. We will iterate until we have reached 4723 * the string length or we have found the character. If this 4724 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4725 * of the specified character instead of the first. 4726 */ 4727 uintptr_t addr = tupregs[0].dttk_value; 4728 uintptr_t addr_limit; 4729 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4730 size_t lim; 4731 char c, target = (char)tupregs[1].dttk_value; 4732 4733 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4734 regs[rd] = 0; 4735 break; 4736 } 4737 addr_limit = addr + lim; 4738 4739 for (regs[rd] = 0; addr < addr_limit; addr++) { 4740 if ((c = dtrace_load8(addr)) == target) { 4741 regs[rd] = addr; 4742 4743 if (subr == DIF_SUBR_STRCHR) 4744 break; 4745 } 4746 4747 if (c == '\0') 4748 break; 4749 } 4750 break; 4751 } 4752 4753 case DIF_SUBR_STRSTR: 4754 case DIF_SUBR_INDEX: 4755 case DIF_SUBR_RINDEX: { 4756 /* 4757 * We're going to iterate over the string looking for the 4758 * specified string. We will iterate until we have reached 4759 * the string length or we have found the string. (Yes, this 4760 * is done in the most naive way possible -- but considering 4761 * that the string we're searching for is likely to be 4762 * relatively short, the complexity of Rabin-Karp or similar 4763 * hardly seems merited.) 4764 */ 4765 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4766 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4767 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4768 size_t len = dtrace_strlen(addr, size); 4769 size_t sublen = dtrace_strlen(substr, size); 4770 char *limit = addr + len, *orig = addr; 4771 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4772 int inc = 1; 4773 4774 regs[rd] = notfound; 4775 4776 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4777 regs[rd] = 0; 4778 break; 4779 } 4780 4781 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4782 vstate)) { 4783 regs[rd] = 0; 4784 break; 4785 } 4786 4787 /* 4788 * strstr() and index()/rindex() have similar semantics if 4789 * both strings are the empty string: strstr() returns a 4790 * pointer to the (empty) string, and index() and rindex() 4791 * both return index 0 (regardless of any position argument). 4792 */ 4793 if (sublen == 0 && len == 0) { 4794 if (subr == DIF_SUBR_STRSTR) 4795 regs[rd] = (uintptr_t)addr; 4796 else 4797 regs[rd] = 0; 4798 break; 4799 } 4800 4801 if (subr != DIF_SUBR_STRSTR) { 4802 if (subr == DIF_SUBR_RINDEX) { 4803 limit = orig - 1; 4804 addr += len; 4805 inc = -1; 4806 } 4807 4808 /* 4809 * Both index() and rindex() take an optional position 4810 * argument that denotes the starting position. 4811 */ 4812 if (nargs == 3) { 4813 int64_t pos = (int64_t)tupregs[2].dttk_value; 4814 4815 /* 4816 * If the position argument to index() is 4817 * negative, Perl implicitly clamps it at 4818 * zero. This semantic is a little surprising 4819 * given the special meaning of negative 4820 * positions to similar Perl functions like 4821 * substr(), but it appears to reflect a 4822 * notion that index() can start from a 4823 * negative index and increment its way up to 4824 * the string. Given this notion, Perl's 4825 * rindex() is at least self-consistent in 4826 * that it implicitly clamps positions greater 4827 * than the string length to be the string 4828 * length. Where Perl completely loses 4829 * coherence, however, is when the specified 4830 * substring is the empty string (""). In 4831 * this case, even if the position is 4832 * negative, rindex() returns 0 -- and even if 4833 * the position is greater than the length, 4834 * index() returns the string length. These 4835 * semantics violate the notion that index() 4836 * should never return a value less than the 4837 * specified position and that rindex() should 4838 * never return a value greater than the 4839 * specified position. (One assumes that 4840 * these semantics are artifacts of Perl's 4841 * implementation and not the results of 4842 * deliberate design -- it beggars belief that 4843 * even Larry Wall could desire such oddness.) 4844 * While in the abstract one would wish for 4845 * consistent position semantics across 4846 * substr(), index() and rindex() -- or at the 4847 * very least self-consistent position 4848 * semantics for index() and rindex() -- we 4849 * instead opt to keep with the extant Perl 4850 * semantics, in all their broken glory. (Do 4851 * we have more desire to maintain Perl's 4852 * semantics than Perl does? Probably.) 4853 */ 4854 if (subr == DIF_SUBR_RINDEX) { 4855 if (pos < 0) { 4856 if (sublen == 0) 4857 regs[rd] = 0; 4858 break; 4859 } 4860 4861 if (pos > len) 4862 pos = len; 4863 } else { 4864 if (pos < 0) 4865 pos = 0; 4866 4867 if (pos >= len) { 4868 if (sublen == 0) 4869 regs[rd] = len; 4870 break; 4871 } 4872 } 4873 4874 addr = orig + pos; 4875 } 4876 } 4877 4878 for (regs[rd] = notfound; addr != limit; addr += inc) { 4879 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4880 if (subr != DIF_SUBR_STRSTR) { 4881 /* 4882 * As D index() and rindex() are 4883 * modeled on Perl (and not on awk), 4884 * we return a zero-based (and not a 4885 * one-based) index. (For you Perl 4886 * weenies: no, we're not going to add 4887 * $[ -- and shouldn't you be at a con 4888 * or something?) 4889 */ 4890 regs[rd] = (uintptr_t)(addr - orig); 4891 break; 4892 } 4893 4894 ASSERT(subr == DIF_SUBR_STRSTR); 4895 regs[rd] = (uintptr_t)addr; 4896 break; 4897 } 4898 } 4899 4900 break; 4901 } 4902 4903 case DIF_SUBR_STRTOK: { 4904 uintptr_t addr = tupregs[0].dttk_value; 4905 uintptr_t tokaddr = tupregs[1].dttk_value; 4906 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4907 uintptr_t limit, toklimit; 4908 size_t clim; 4909 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4910 char *dest = (char *)mstate->dtms_scratch_ptr; 4911 int i; 4912 4913 /* 4914 * Check both the token buffer and (later) the input buffer, 4915 * since both could be non-scratch addresses. 4916 */ 4917 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4918 regs[rd] = 0; 4919 break; 4920 } 4921 toklimit = tokaddr + clim; 4922 4923 if (!DTRACE_INSCRATCH(mstate, size)) { 4924 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4925 regs[rd] = 0; 4926 break; 4927 } 4928 4929 if (addr == 0) { 4930 /* 4931 * If the address specified is NULL, we use our saved 4932 * strtok pointer from the mstate. Note that this 4933 * means that the saved strtok pointer is _only_ 4934 * valid within multiple enablings of the same probe -- 4935 * it behaves like an implicit clause-local variable. 4936 */ 4937 addr = mstate->dtms_strtok; 4938 limit = mstate->dtms_strtok_limit; 4939 } else { 4940 /* 4941 * If the user-specified address is non-NULL we must 4942 * access check it. This is the only time we have 4943 * a chance to do so, since this address may reside 4944 * in the string table of this clause-- future calls 4945 * (when we fetch addr from mstate->dtms_strtok) 4946 * would fail this access check. 4947 */ 4948 if (!dtrace_strcanload(addr, size, &clim, mstate, 4949 vstate)) { 4950 regs[rd] = 0; 4951 break; 4952 } 4953 limit = addr + clim; 4954 } 4955 4956 /* 4957 * First, zero the token map, and then process the token 4958 * string -- setting a bit in the map for every character 4959 * found in the token string. 4960 */ 4961 for (i = 0; i < sizeof (tokmap); i++) 4962 tokmap[i] = 0; 4963 4964 for (; tokaddr < toklimit; tokaddr++) { 4965 if ((c = dtrace_load8(tokaddr)) == '\0') 4966 break; 4967 4968 ASSERT((c >> 3) < sizeof (tokmap)); 4969 tokmap[c >> 3] |= (1 << (c & 0x7)); 4970 } 4971 4972 for (; addr < limit; addr++) { 4973 /* 4974 * We're looking for a character that is _not_ 4975 * contained in the token string. 4976 */ 4977 if ((c = dtrace_load8(addr)) == '\0') 4978 break; 4979 4980 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4981 break; 4982 } 4983 4984 if (c == '\0') { 4985 /* 4986 * We reached the end of the string without finding 4987 * any character that was not in the token string. 4988 * We return NULL in this case, and we set the saved 4989 * address to NULL as well. 4990 */ 4991 regs[rd] = 0; 4992 mstate->dtms_strtok = 0; 4993 mstate->dtms_strtok_limit = 0; 4994 break; 4995 } 4996 4997 /* 4998 * From here on, we're copying into the destination string. 4999 */ 5000 for (i = 0; addr < limit && i < size - 1; addr++) { 5001 if ((c = dtrace_load8(addr)) == '\0') 5002 break; 5003 5004 if (tokmap[c >> 3] & (1 << (c & 0x7))) 5005 break; 5006 5007 ASSERT(i < size); 5008 dest[i++] = c; 5009 } 5010 5011 ASSERT(i < size); 5012 dest[i] = '\0'; 5013 regs[rd] = (uintptr_t)dest; 5014 mstate->dtms_scratch_ptr += size; 5015 mstate->dtms_strtok = addr; 5016 mstate->dtms_strtok_limit = limit; 5017 break; 5018 } 5019 5020 case DIF_SUBR_SUBSTR: { 5021 uintptr_t s = tupregs[0].dttk_value; 5022 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5023 char *d = (char *)mstate->dtms_scratch_ptr; 5024 int64_t index = (int64_t)tupregs[1].dttk_value; 5025 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5026 size_t len = dtrace_strlen((char *)s, size); 5027 int64_t i; 5028 5029 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5030 regs[rd] = 0; 5031 break; 5032 } 5033 5034 if (!DTRACE_INSCRATCH(mstate, size)) { 5035 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5036 regs[rd] = 0; 5037 break; 5038 } 5039 5040 if (nargs <= 2) 5041 remaining = (int64_t)size; 5042 5043 if (index < 0) { 5044 index += len; 5045 5046 if (index < 0 && index + remaining > 0) { 5047 remaining += index; 5048 index = 0; 5049 } 5050 } 5051 5052 if (index >= len || index < 0) { 5053 remaining = 0; 5054 } else if (remaining < 0) { 5055 remaining += len - index; 5056 } else if (index + remaining > size) { 5057 remaining = size - index; 5058 } 5059 5060 for (i = 0; i < remaining; i++) { 5061 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5062 break; 5063 } 5064 5065 d[i] = '\0'; 5066 5067 mstate->dtms_scratch_ptr += size; 5068 regs[rd] = (uintptr_t)d; 5069 break; 5070 } 5071 5072 case DIF_SUBR_JSON: { 5073 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5074 uintptr_t json = tupregs[0].dttk_value; 5075 size_t jsonlen = dtrace_strlen((char *)json, size); 5076 uintptr_t elem = tupregs[1].dttk_value; 5077 size_t elemlen = dtrace_strlen((char *)elem, size); 5078 5079 char *dest = (char *)mstate->dtms_scratch_ptr; 5080 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5081 char *ee = elemlist; 5082 int nelems = 1; 5083 uintptr_t cur; 5084 5085 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5086 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5087 regs[rd] = 0; 5088 break; 5089 } 5090 5091 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5092 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5093 regs[rd] = 0; 5094 break; 5095 } 5096 5097 /* 5098 * Read the element selector and split it up into a packed list 5099 * of strings. 5100 */ 5101 for (cur = elem; cur < elem + elemlen; cur++) { 5102 char cc = dtrace_load8(cur); 5103 5104 if (cur == elem && cc == '[') { 5105 /* 5106 * If the first element selector key is 5107 * actually an array index then ignore the 5108 * bracket. 5109 */ 5110 continue; 5111 } 5112 5113 if (cc == ']') 5114 continue; 5115 5116 if (cc == '.' || cc == '[') { 5117 nelems++; 5118 cc = '\0'; 5119 } 5120 5121 *ee++ = cc; 5122 } 5123 *ee++ = '\0'; 5124 5125 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5126 nelems, dest)) != 0) 5127 mstate->dtms_scratch_ptr += jsonlen + 1; 5128 break; 5129 } 5130 5131 case DIF_SUBR_TOUPPER: 5132 case DIF_SUBR_TOLOWER: { 5133 uintptr_t s = tupregs[0].dttk_value; 5134 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5135 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5136 size_t len = dtrace_strlen((char *)s, size); 5137 char lower, upper, convert; 5138 int64_t i; 5139 5140 if (subr == DIF_SUBR_TOUPPER) { 5141 lower = 'a'; 5142 upper = 'z'; 5143 convert = 'A'; 5144 } else { 5145 lower = 'A'; 5146 upper = 'Z'; 5147 convert = 'a'; 5148 } 5149 5150 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5151 regs[rd] = 0; 5152 break; 5153 } 5154 5155 if (!DTRACE_INSCRATCH(mstate, size)) { 5156 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5157 regs[rd] = 0; 5158 break; 5159 } 5160 5161 for (i = 0; i < size - 1; i++) { 5162 if ((c = dtrace_load8(s + i)) == '\0') 5163 break; 5164 5165 if (c >= lower && c <= upper) 5166 c = convert + (c - lower); 5167 5168 dest[i] = c; 5169 } 5170 5171 ASSERT(i < size); 5172 dest[i] = '\0'; 5173 regs[rd] = (uintptr_t)dest; 5174 mstate->dtms_scratch_ptr += size; 5175 break; 5176 } 5177 5178 #ifdef illumos 5179 case DIF_SUBR_GETMAJOR: 5180 #ifdef _LP64 5181 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5182 #else 5183 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5184 #endif 5185 break; 5186 5187 case DIF_SUBR_GETMINOR: 5188 #ifdef _LP64 5189 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5190 #else 5191 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5192 #endif 5193 break; 5194 5195 case DIF_SUBR_DDI_PATHNAME: { 5196 /* 5197 * This one is a galactic mess. We are going to roughly 5198 * emulate ddi_pathname(), but it's made more complicated 5199 * by the fact that we (a) want to include the minor name and 5200 * (b) must proceed iteratively instead of recursively. 5201 */ 5202 uintptr_t dest = mstate->dtms_scratch_ptr; 5203 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5204 char *start = (char *)dest, *end = start + size - 1; 5205 uintptr_t daddr = tupregs[0].dttk_value; 5206 int64_t minor = (int64_t)tupregs[1].dttk_value; 5207 char *s; 5208 int i, len, depth = 0; 5209 5210 /* 5211 * Due to all the pointer jumping we do and context we must 5212 * rely upon, we just mandate that the user must have kernel 5213 * read privileges to use this routine. 5214 */ 5215 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5216 *flags |= CPU_DTRACE_KPRIV; 5217 *illval = daddr; 5218 regs[rd] = 0; 5219 } 5220 5221 if (!DTRACE_INSCRATCH(mstate, size)) { 5222 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5223 regs[rd] = 0; 5224 break; 5225 } 5226 5227 *end = '\0'; 5228 5229 /* 5230 * We want to have a name for the minor. In order to do this, 5231 * we need to walk the minor list from the devinfo. We want 5232 * to be sure that we don't infinitely walk a circular list, 5233 * so we check for circularity by sending a scout pointer 5234 * ahead two elements for every element that we iterate over; 5235 * if the list is circular, these will ultimately point to the 5236 * same element. You may recognize this little trick as the 5237 * answer to a stupid interview question -- one that always 5238 * seems to be asked by those who had to have it laboriously 5239 * explained to them, and who can't even concisely describe 5240 * the conditions under which one would be forced to resort to 5241 * this technique. Needless to say, those conditions are 5242 * found here -- and probably only here. Is this the only use 5243 * of this infamous trick in shipping, production code? If it 5244 * isn't, it probably should be... 5245 */ 5246 if (minor != -1) { 5247 uintptr_t maddr = dtrace_loadptr(daddr + 5248 offsetof(struct dev_info, devi_minor)); 5249 5250 uintptr_t next = offsetof(struct ddi_minor_data, next); 5251 uintptr_t name = offsetof(struct ddi_minor_data, 5252 d_minor) + offsetof(struct ddi_minor, name); 5253 uintptr_t dev = offsetof(struct ddi_minor_data, 5254 d_minor) + offsetof(struct ddi_minor, dev); 5255 uintptr_t scout; 5256 5257 if (maddr != NULL) 5258 scout = dtrace_loadptr(maddr + next); 5259 5260 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5261 uint64_t m; 5262 #ifdef _LP64 5263 m = dtrace_load64(maddr + dev) & MAXMIN64; 5264 #else 5265 m = dtrace_load32(maddr + dev) & MAXMIN; 5266 #endif 5267 if (m != minor) { 5268 maddr = dtrace_loadptr(maddr + next); 5269 5270 if (scout == NULL) 5271 continue; 5272 5273 scout = dtrace_loadptr(scout + next); 5274 5275 if (scout == NULL) 5276 continue; 5277 5278 scout = dtrace_loadptr(scout + next); 5279 5280 if (scout == NULL) 5281 continue; 5282 5283 if (scout == maddr) { 5284 *flags |= CPU_DTRACE_ILLOP; 5285 break; 5286 } 5287 5288 continue; 5289 } 5290 5291 /* 5292 * We have the minor data. Now we need to 5293 * copy the minor's name into the end of the 5294 * pathname. 5295 */ 5296 s = (char *)dtrace_loadptr(maddr + name); 5297 len = dtrace_strlen(s, size); 5298 5299 if (*flags & CPU_DTRACE_FAULT) 5300 break; 5301 5302 if (len != 0) { 5303 if ((end -= (len + 1)) < start) 5304 break; 5305 5306 *end = ':'; 5307 } 5308 5309 for (i = 1; i <= len; i++) 5310 end[i] = dtrace_load8((uintptr_t)s++); 5311 break; 5312 } 5313 } 5314 5315 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5316 ddi_node_state_t devi_state; 5317 5318 devi_state = dtrace_load32(daddr + 5319 offsetof(struct dev_info, devi_node_state)); 5320 5321 if (*flags & CPU_DTRACE_FAULT) 5322 break; 5323 5324 if (devi_state >= DS_INITIALIZED) { 5325 s = (char *)dtrace_loadptr(daddr + 5326 offsetof(struct dev_info, devi_addr)); 5327 len = dtrace_strlen(s, size); 5328 5329 if (*flags & CPU_DTRACE_FAULT) 5330 break; 5331 5332 if (len != 0) { 5333 if ((end -= (len + 1)) < start) 5334 break; 5335 5336 *end = '@'; 5337 } 5338 5339 for (i = 1; i <= len; i++) 5340 end[i] = dtrace_load8((uintptr_t)s++); 5341 } 5342 5343 /* 5344 * Now for the node name... 5345 */ 5346 s = (char *)dtrace_loadptr(daddr + 5347 offsetof(struct dev_info, devi_node_name)); 5348 5349 daddr = dtrace_loadptr(daddr + 5350 offsetof(struct dev_info, devi_parent)); 5351 5352 /* 5353 * If our parent is NULL (that is, if we're the root 5354 * node), we're going to use the special path 5355 * "devices". 5356 */ 5357 if (daddr == 0) 5358 s = "devices"; 5359 5360 len = dtrace_strlen(s, size); 5361 if (*flags & CPU_DTRACE_FAULT) 5362 break; 5363 5364 if ((end -= (len + 1)) < start) 5365 break; 5366 5367 for (i = 1; i <= len; i++) 5368 end[i] = dtrace_load8((uintptr_t)s++); 5369 *end = '/'; 5370 5371 if (depth++ > dtrace_devdepth_max) { 5372 *flags |= CPU_DTRACE_ILLOP; 5373 break; 5374 } 5375 } 5376 5377 if (end < start) 5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5379 5380 if (daddr == 0) { 5381 regs[rd] = (uintptr_t)end; 5382 mstate->dtms_scratch_ptr += size; 5383 } 5384 5385 break; 5386 } 5387 #endif 5388 5389 case DIF_SUBR_STRJOIN: { 5390 char *d = (char *)mstate->dtms_scratch_ptr; 5391 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5392 uintptr_t s1 = tupregs[0].dttk_value; 5393 uintptr_t s2 = tupregs[1].dttk_value; 5394 int i = 0, j = 0; 5395 size_t lim1, lim2; 5396 char c; 5397 5398 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5399 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5400 regs[rd] = 0; 5401 break; 5402 } 5403 5404 if (!DTRACE_INSCRATCH(mstate, size)) { 5405 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5406 regs[rd] = 0; 5407 break; 5408 } 5409 5410 for (;;) { 5411 if (i >= size) { 5412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5413 regs[rd] = 0; 5414 break; 5415 } 5416 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5417 if ((d[i++] = c) == '\0') { 5418 i--; 5419 break; 5420 } 5421 } 5422 5423 for (;;) { 5424 if (i >= size) { 5425 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5426 regs[rd] = 0; 5427 break; 5428 } 5429 5430 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5431 if ((d[i++] = c) == '\0') 5432 break; 5433 } 5434 5435 if (i < size) { 5436 mstate->dtms_scratch_ptr += i; 5437 regs[rd] = (uintptr_t)d; 5438 } 5439 5440 break; 5441 } 5442 5443 case DIF_SUBR_STRTOLL: { 5444 uintptr_t s = tupregs[0].dttk_value; 5445 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5446 size_t lim; 5447 int base = 10; 5448 5449 if (nargs > 1) { 5450 if ((base = tupregs[1].dttk_value) <= 1 || 5451 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5452 *flags |= CPU_DTRACE_ILLOP; 5453 break; 5454 } 5455 } 5456 5457 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5458 regs[rd] = INT64_MIN; 5459 break; 5460 } 5461 5462 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5463 break; 5464 } 5465 5466 case DIF_SUBR_LLTOSTR: { 5467 int64_t i = (int64_t)tupregs[0].dttk_value; 5468 uint64_t val, digit; 5469 uint64_t size = 65; /* enough room for 2^64 in binary */ 5470 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5471 int base = 10; 5472 5473 if (nargs > 1) { 5474 if ((base = tupregs[1].dttk_value) <= 1 || 5475 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5476 *flags |= CPU_DTRACE_ILLOP; 5477 break; 5478 } 5479 } 5480 5481 val = (base == 10 && i < 0) ? i * -1 : i; 5482 5483 if (!DTRACE_INSCRATCH(mstate, size)) { 5484 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5485 regs[rd] = 0; 5486 break; 5487 } 5488 5489 for (*end-- = '\0'; val; val /= base) { 5490 if ((digit = val % base) <= '9' - '0') { 5491 *end-- = '0' + digit; 5492 } else { 5493 *end-- = 'a' + (digit - ('9' - '0') - 1); 5494 } 5495 } 5496 5497 if (i == 0 && base == 16) 5498 *end-- = '0'; 5499 5500 if (base == 16) 5501 *end-- = 'x'; 5502 5503 if (i == 0 || base == 8 || base == 16) 5504 *end-- = '0'; 5505 5506 if (i < 0 && base == 10) 5507 *end-- = '-'; 5508 5509 regs[rd] = (uintptr_t)end + 1; 5510 mstate->dtms_scratch_ptr += size; 5511 break; 5512 } 5513 5514 case DIF_SUBR_HTONS: 5515 case DIF_SUBR_NTOHS: 5516 #if BYTE_ORDER == BIG_ENDIAN 5517 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5518 #else 5519 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5520 #endif 5521 break; 5522 5523 5524 case DIF_SUBR_HTONL: 5525 case DIF_SUBR_NTOHL: 5526 #if BYTE_ORDER == BIG_ENDIAN 5527 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5528 #else 5529 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5530 #endif 5531 break; 5532 5533 5534 case DIF_SUBR_HTONLL: 5535 case DIF_SUBR_NTOHLL: 5536 #if BYTE_ORDER == BIG_ENDIAN 5537 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5538 #else 5539 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5540 #endif 5541 break; 5542 5543 5544 case DIF_SUBR_DIRNAME: 5545 case DIF_SUBR_BASENAME: { 5546 char *dest = (char *)mstate->dtms_scratch_ptr; 5547 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5548 uintptr_t src = tupregs[0].dttk_value; 5549 int i, j, len = dtrace_strlen((char *)src, size); 5550 int lastbase = -1, firstbase = -1, lastdir = -1; 5551 int start, end; 5552 5553 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5554 regs[rd] = 0; 5555 break; 5556 } 5557 5558 if (!DTRACE_INSCRATCH(mstate, size)) { 5559 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5560 regs[rd] = 0; 5561 break; 5562 } 5563 5564 /* 5565 * The basename and dirname for a zero-length string is 5566 * defined to be "." 5567 */ 5568 if (len == 0) { 5569 len = 1; 5570 src = (uintptr_t)"."; 5571 } 5572 5573 /* 5574 * Start from the back of the string, moving back toward the 5575 * front until we see a character that isn't a slash. That 5576 * character is the last character in the basename. 5577 */ 5578 for (i = len - 1; i >= 0; i--) { 5579 if (dtrace_load8(src + i) != '/') 5580 break; 5581 } 5582 5583 if (i >= 0) 5584 lastbase = i; 5585 5586 /* 5587 * Starting from the last character in the basename, move 5588 * towards the front until we find a slash. The character 5589 * that we processed immediately before that is the first 5590 * character in the basename. 5591 */ 5592 for (; i >= 0; i--) { 5593 if (dtrace_load8(src + i) == '/') 5594 break; 5595 } 5596 5597 if (i >= 0) 5598 firstbase = i + 1; 5599 5600 /* 5601 * Now keep going until we find a non-slash character. That 5602 * character is the last character in the dirname. 5603 */ 5604 for (; i >= 0; i--) { 5605 if (dtrace_load8(src + i) != '/') 5606 break; 5607 } 5608 5609 if (i >= 0) 5610 lastdir = i; 5611 5612 ASSERT(!(lastbase == -1 && firstbase != -1)); 5613 ASSERT(!(firstbase == -1 && lastdir != -1)); 5614 5615 if (lastbase == -1) { 5616 /* 5617 * We didn't find a non-slash character. We know that 5618 * the length is non-zero, so the whole string must be 5619 * slashes. In either the dirname or the basename 5620 * case, we return '/'. 5621 */ 5622 ASSERT(firstbase == -1); 5623 firstbase = lastbase = lastdir = 0; 5624 } 5625 5626 if (firstbase == -1) { 5627 /* 5628 * The entire string consists only of a basename 5629 * component. If we're looking for dirname, we need 5630 * to change our string to be just "."; if we're 5631 * looking for a basename, we'll just set the first 5632 * character of the basename to be 0. 5633 */ 5634 if (subr == DIF_SUBR_DIRNAME) { 5635 ASSERT(lastdir == -1); 5636 src = (uintptr_t)"."; 5637 lastdir = 0; 5638 } else { 5639 firstbase = 0; 5640 } 5641 } 5642 5643 if (subr == DIF_SUBR_DIRNAME) { 5644 if (lastdir == -1) { 5645 /* 5646 * We know that we have a slash in the name -- 5647 * or lastdir would be set to 0, above. And 5648 * because lastdir is -1, we know that this 5649 * slash must be the first character. (That 5650 * is, the full string must be of the form 5651 * "/basename".) In this case, the last 5652 * character of the directory name is 0. 5653 */ 5654 lastdir = 0; 5655 } 5656 5657 start = 0; 5658 end = lastdir; 5659 } else { 5660 ASSERT(subr == DIF_SUBR_BASENAME); 5661 ASSERT(firstbase != -1 && lastbase != -1); 5662 start = firstbase; 5663 end = lastbase; 5664 } 5665 5666 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5667 dest[j] = dtrace_load8(src + i); 5668 5669 dest[j] = '\0'; 5670 regs[rd] = (uintptr_t)dest; 5671 mstate->dtms_scratch_ptr += size; 5672 break; 5673 } 5674 5675 case DIF_SUBR_GETF: { 5676 uintptr_t fd = tupregs[0].dttk_value; 5677 struct filedesc *fdp; 5678 file_t *fp; 5679 5680 if (!dtrace_priv_proc(state)) { 5681 regs[rd] = 0; 5682 break; 5683 } 5684 fdp = curproc->p_fd; 5685 FILEDESC_SLOCK(fdp); 5686 /* 5687 * XXXMJG this looks broken as no ref is taken. 5688 */ 5689 fp = fget_noref(fdp, fd); 5690 mstate->dtms_getf = fp; 5691 regs[rd] = (uintptr_t)fp; 5692 FILEDESC_SUNLOCK(fdp); 5693 break; 5694 } 5695 5696 case DIF_SUBR_CLEANPATH: { 5697 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5698 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5699 uintptr_t src = tupregs[0].dttk_value; 5700 size_t lim; 5701 int i = 0, j = 0; 5702 #ifdef illumos 5703 zone_t *z; 5704 #endif 5705 5706 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5707 regs[rd] = 0; 5708 break; 5709 } 5710 5711 if (!DTRACE_INSCRATCH(mstate, size)) { 5712 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5713 regs[rd] = 0; 5714 break; 5715 } 5716 5717 /* 5718 * Move forward, loading each character. 5719 */ 5720 do { 5721 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5722 next: 5723 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5724 break; 5725 5726 if (c != '/') { 5727 dest[j++] = c; 5728 continue; 5729 } 5730 5731 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5732 5733 if (c == '/') { 5734 /* 5735 * We have two slashes -- we can just advance 5736 * to the next character. 5737 */ 5738 goto next; 5739 } 5740 5741 if (c != '.') { 5742 /* 5743 * This is not "." and it's not ".." -- we can 5744 * just store the "/" and this character and 5745 * drive on. 5746 */ 5747 dest[j++] = '/'; 5748 dest[j++] = c; 5749 continue; 5750 } 5751 5752 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5753 5754 if (c == '/') { 5755 /* 5756 * This is a "/./" component. We're not going 5757 * to store anything in the destination buffer; 5758 * we're just going to go to the next component. 5759 */ 5760 goto next; 5761 } 5762 5763 if (c != '.') { 5764 /* 5765 * This is not ".." -- we can just store the 5766 * "/." and this character and continue 5767 * processing. 5768 */ 5769 dest[j++] = '/'; 5770 dest[j++] = '.'; 5771 dest[j++] = c; 5772 continue; 5773 } 5774 5775 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5776 5777 if (c != '/' && c != '\0') { 5778 /* 5779 * This is not ".." -- it's "..[mumble]". 5780 * We'll store the "/.." and this character 5781 * and continue processing. 5782 */ 5783 dest[j++] = '/'; 5784 dest[j++] = '.'; 5785 dest[j++] = '.'; 5786 dest[j++] = c; 5787 continue; 5788 } 5789 5790 /* 5791 * This is "/../" or "/..\0". We need to back up 5792 * our destination pointer until we find a "/". 5793 */ 5794 i--; 5795 while (j != 0 && dest[--j] != '/') 5796 continue; 5797 5798 if (c == '\0') 5799 dest[++j] = '/'; 5800 } while (c != '\0'); 5801 5802 dest[j] = '\0'; 5803 5804 #ifdef illumos 5805 if (mstate->dtms_getf != NULL && 5806 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5807 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5808 /* 5809 * If we've done a getf() as a part of this ECB and we 5810 * don't have kernel access (and we're not in the global 5811 * zone), check if the path we cleaned up begins with 5812 * the zone's root path, and trim it off if so. Note 5813 * that this is an output cleanliness issue, not a 5814 * security issue: knowing one's zone root path does 5815 * not enable privilege escalation. 5816 */ 5817 if (strstr(dest, z->zone_rootpath) == dest) 5818 dest += strlen(z->zone_rootpath) - 1; 5819 } 5820 #endif 5821 5822 regs[rd] = (uintptr_t)dest; 5823 mstate->dtms_scratch_ptr += size; 5824 break; 5825 } 5826 5827 case DIF_SUBR_INET_NTOA: 5828 case DIF_SUBR_INET_NTOA6: 5829 case DIF_SUBR_INET_NTOP: { 5830 size_t size; 5831 int af, argi, i; 5832 char *base, *end; 5833 5834 if (subr == DIF_SUBR_INET_NTOP) { 5835 af = (int)tupregs[0].dttk_value; 5836 argi = 1; 5837 } else { 5838 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5839 argi = 0; 5840 } 5841 5842 if (af == AF_INET) { 5843 ipaddr_t ip4; 5844 uint8_t *ptr8, val; 5845 5846 if (!dtrace_canload(tupregs[argi].dttk_value, 5847 sizeof (ipaddr_t), mstate, vstate)) { 5848 regs[rd] = 0; 5849 break; 5850 } 5851 5852 /* 5853 * Safely load the IPv4 address. 5854 */ 5855 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5856 5857 /* 5858 * Check an IPv4 string will fit in scratch. 5859 */ 5860 size = INET_ADDRSTRLEN; 5861 if (!DTRACE_INSCRATCH(mstate, size)) { 5862 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5863 regs[rd] = 0; 5864 break; 5865 } 5866 base = (char *)mstate->dtms_scratch_ptr; 5867 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5868 5869 /* 5870 * Stringify as a dotted decimal quad. 5871 */ 5872 *end-- = '\0'; 5873 ptr8 = (uint8_t *)&ip4; 5874 for (i = 3; i >= 0; i--) { 5875 val = ptr8[i]; 5876 5877 if (val == 0) { 5878 *end-- = '0'; 5879 } else { 5880 for (; val; val /= 10) { 5881 *end-- = '0' + (val % 10); 5882 } 5883 } 5884 5885 if (i > 0) 5886 *end-- = '.'; 5887 } 5888 ASSERT(end + 1 >= base); 5889 5890 } else if (af == AF_INET6) { 5891 struct in6_addr ip6; 5892 int firstzero, tryzero, numzero, v6end; 5893 uint16_t val; 5894 const char digits[] = "0123456789abcdef"; 5895 5896 /* 5897 * Stringify using RFC 1884 convention 2 - 16 bit 5898 * hexadecimal values with a zero-run compression. 5899 * Lower case hexadecimal digits are used. 5900 * eg, fe80::214:4fff:fe0b:76c8. 5901 * The IPv4 embedded form is returned for inet_ntop, 5902 * just the IPv4 string is returned for inet_ntoa6. 5903 */ 5904 5905 if (!dtrace_canload(tupregs[argi].dttk_value, 5906 sizeof (struct in6_addr), mstate, vstate)) { 5907 regs[rd] = 0; 5908 break; 5909 } 5910 5911 /* 5912 * Safely load the IPv6 address. 5913 */ 5914 dtrace_bcopy( 5915 (void *)(uintptr_t)tupregs[argi].dttk_value, 5916 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5917 5918 /* 5919 * Check an IPv6 string will fit in scratch. 5920 */ 5921 size = INET6_ADDRSTRLEN; 5922 if (!DTRACE_INSCRATCH(mstate, size)) { 5923 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5924 regs[rd] = 0; 5925 break; 5926 } 5927 base = (char *)mstate->dtms_scratch_ptr; 5928 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5929 *end-- = '\0'; 5930 5931 /* 5932 * Find the longest run of 16 bit zero values 5933 * for the single allowed zero compression - "::". 5934 */ 5935 firstzero = -1; 5936 tryzero = -1; 5937 numzero = 1; 5938 for (i = 0; i < sizeof (struct in6_addr); i++) { 5939 #ifdef illumos 5940 if (ip6._S6_un._S6_u8[i] == 0 && 5941 #else 5942 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5943 #endif 5944 tryzero == -1 && i % 2 == 0) { 5945 tryzero = i; 5946 continue; 5947 } 5948 5949 if (tryzero != -1 && 5950 #ifdef illumos 5951 (ip6._S6_un._S6_u8[i] != 0 || 5952 #else 5953 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5954 #endif 5955 i == sizeof (struct in6_addr) - 1)) { 5956 5957 if (i - tryzero <= numzero) { 5958 tryzero = -1; 5959 continue; 5960 } 5961 5962 firstzero = tryzero; 5963 numzero = i - i % 2 - tryzero; 5964 tryzero = -1; 5965 5966 #ifdef illumos 5967 if (ip6._S6_un._S6_u8[i] == 0 && 5968 #else 5969 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5970 #endif 5971 i == sizeof (struct in6_addr) - 1) 5972 numzero += 2; 5973 } 5974 } 5975 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5976 5977 /* 5978 * Check for an IPv4 embedded address. 5979 */ 5980 v6end = sizeof (struct in6_addr) - 2; 5981 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5982 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5983 for (i = sizeof (struct in6_addr) - 1; 5984 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5985 ASSERT(end >= base); 5986 5987 #ifdef illumos 5988 val = ip6._S6_un._S6_u8[i]; 5989 #else 5990 val = ip6.__u6_addr.__u6_addr8[i]; 5991 #endif 5992 5993 if (val == 0) { 5994 *end-- = '0'; 5995 } else { 5996 for (; val; val /= 10) { 5997 *end-- = '0' + val % 10; 5998 } 5999 } 6000 6001 if (i > DTRACE_V4MAPPED_OFFSET) 6002 *end-- = '.'; 6003 } 6004 6005 if (subr == DIF_SUBR_INET_NTOA6) 6006 goto inetout; 6007 6008 /* 6009 * Set v6end to skip the IPv4 address that 6010 * we have already stringified. 6011 */ 6012 v6end = 10; 6013 } 6014 6015 /* 6016 * Build the IPv6 string by working through the 6017 * address in reverse. 6018 */ 6019 for (i = v6end; i >= 0; i -= 2) { 6020 ASSERT(end >= base); 6021 6022 if (i == firstzero + numzero - 2) { 6023 *end-- = ':'; 6024 *end-- = ':'; 6025 i -= numzero - 2; 6026 continue; 6027 } 6028 6029 if (i < 14 && i != firstzero - 2) 6030 *end-- = ':'; 6031 6032 #ifdef illumos 6033 val = (ip6._S6_un._S6_u8[i] << 8) + 6034 ip6._S6_un._S6_u8[i + 1]; 6035 #else 6036 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6037 ip6.__u6_addr.__u6_addr8[i + 1]; 6038 #endif 6039 6040 if (val == 0) { 6041 *end-- = '0'; 6042 } else { 6043 for (; val; val /= 16) { 6044 *end-- = digits[val % 16]; 6045 } 6046 } 6047 } 6048 ASSERT(end + 1 >= base); 6049 6050 } else { 6051 /* 6052 * The user didn't use AH_INET or AH_INET6. 6053 */ 6054 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6055 regs[rd] = 0; 6056 break; 6057 } 6058 6059 inetout: regs[rd] = (uintptr_t)end + 1; 6060 mstate->dtms_scratch_ptr += size; 6061 break; 6062 } 6063 6064 case DIF_SUBR_MEMREF: { 6065 uintptr_t size = 2 * sizeof(uintptr_t); 6066 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6067 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6068 6069 /* address and length */ 6070 memref[0] = tupregs[0].dttk_value; 6071 memref[1] = tupregs[1].dttk_value; 6072 6073 regs[rd] = (uintptr_t) memref; 6074 mstate->dtms_scratch_ptr += scratch_size; 6075 break; 6076 } 6077 6078 #ifndef illumos 6079 case DIF_SUBR_MEMSTR: { 6080 char *str = (char *)mstate->dtms_scratch_ptr; 6081 uintptr_t mem = tupregs[0].dttk_value; 6082 char c = tupregs[1].dttk_value; 6083 size_t size = tupregs[2].dttk_value; 6084 uint8_t n; 6085 int i; 6086 6087 regs[rd] = 0; 6088 6089 if (size == 0) 6090 break; 6091 6092 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6093 break; 6094 6095 if (!DTRACE_INSCRATCH(mstate, size)) { 6096 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6097 break; 6098 } 6099 6100 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6101 *flags |= CPU_DTRACE_ILLOP; 6102 break; 6103 } 6104 6105 for (i = 0; i < size - 1; i++) { 6106 n = dtrace_load8(mem++); 6107 str[i] = (n == 0) ? c : n; 6108 } 6109 str[size - 1] = 0; 6110 6111 regs[rd] = (uintptr_t)str; 6112 mstate->dtms_scratch_ptr += size; 6113 break; 6114 } 6115 #endif 6116 } 6117 } 6118 6119 /* 6120 * Emulate the execution of DTrace IR instructions specified by the given 6121 * DIF object. This function is deliberately void of assertions as all of 6122 * the necessary checks are handled by a call to dtrace_difo_validate(). 6123 */ 6124 static uint64_t 6125 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6126 dtrace_vstate_t *vstate, dtrace_state_t *state) 6127 { 6128 const dif_instr_t *text = difo->dtdo_buf; 6129 const uint_t textlen = difo->dtdo_len; 6130 const char *strtab = difo->dtdo_strtab; 6131 const uint64_t *inttab = difo->dtdo_inttab; 6132 6133 uint64_t rval = 0; 6134 dtrace_statvar_t *svar; 6135 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6136 dtrace_difv_t *v; 6137 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6138 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6139 6140 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6141 uint64_t regs[DIF_DIR_NREGS]; 6142 uint64_t *tmp; 6143 6144 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6145 int64_t cc_r; 6146 uint_t pc = 0, id, opc = 0; 6147 uint8_t ttop = 0; 6148 dif_instr_t instr; 6149 uint_t r1, r2, rd; 6150 6151 /* 6152 * We stash the current DIF object into the machine state: we need it 6153 * for subsequent access checking. 6154 */ 6155 mstate->dtms_difo = difo; 6156 6157 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6158 6159 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6160 opc = pc; 6161 6162 instr = text[pc++]; 6163 r1 = DIF_INSTR_R1(instr); 6164 r2 = DIF_INSTR_R2(instr); 6165 rd = DIF_INSTR_RD(instr); 6166 6167 switch (DIF_INSTR_OP(instr)) { 6168 case DIF_OP_OR: 6169 regs[rd] = regs[r1] | regs[r2]; 6170 break; 6171 case DIF_OP_XOR: 6172 regs[rd] = regs[r1] ^ regs[r2]; 6173 break; 6174 case DIF_OP_AND: 6175 regs[rd] = regs[r1] & regs[r2]; 6176 break; 6177 case DIF_OP_SLL: 6178 regs[rd] = regs[r1] << regs[r2]; 6179 break; 6180 case DIF_OP_SRL: 6181 regs[rd] = regs[r1] >> regs[r2]; 6182 break; 6183 case DIF_OP_SUB: 6184 regs[rd] = regs[r1] - regs[r2]; 6185 break; 6186 case DIF_OP_ADD: 6187 regs[rd] = regs[r1] + regs[r2]; 6188 break; 6189 case DIF_OP_MUL: 6190 regs[rd] = regs[r1] * regs[r2]; 6191 break; 6192 case DIF_OP_SDIV: 6193 if (regs[r2] == 0) { 6194 regs[rd] = 0; 6195 *flags |= CPU_DTRACE_DIVZERO; 6196 } else { 6197 regs[rd] = (int64_t)regs[r1] / 6198 (int64_t)regs[r2]; 6199 } 6200 break; 6201 6202 case DIF_OP_UDIV: 6203 if (regs[r2] == 0) { 6204 regs[rd] = 0; 6205 *flags |= CPU_DTRACE_DIVZERO; 6206 } else { 6207 regs[rd] = regs[r1] / regs[r2]; 6208 } 6209 break; 6210 6211 case DIF_OP_SREM: 6212 if (regs[r2] == 0) { 6213 regs[rd] = 0; 6214 *flags |= CPU_DTRACE_DIVZERO; 6215 } else { 6216 regs[rd] = (int64_t)regs[r1] % 6217 (int64_t)regs[r2]; 6218 } 6219 break; 6220 6221 case DIF_OP_UREM: 6222 if (regs[r2] == 0) { 6223 regs[rd] = 0; 6224 *flags |= CPU_DTRACE_DIVZERO; 6225 } else { 6226 regs[rd] = regs[r1] % regs[r2]; 6227 } 6228 break; 6229 6230 case DIF_OP_NOT: 6231 regs[rd] = ~regs[r1]; 6232 break; 6233 case DIF_OP_MOV: 6234 regs[rd] = regs[r1]; 6235 break; 6236 case DIF_OP_CMP: 6237 cc_r = regs[r1] - regs[r2]; 6238 cc_n = cc_r < 0; 6239 cc_z = cc_r == 0; 6240 cc_v = 0; 6241 cc_c = regs[r1] < regs[r2]; 6242 break; 6243 case DIF_OP_TST: 6244 cc_n = cc_v = cc_c = 0; 6245 cc_z = regs[r1] == 0; 6246 break; 6247 case DIF_OP_BA: 6248 pc = DIF_INSTR_LABEL(instr); 6249 break; 6250 case DIF_OP_BE: 6251 if (cc_z) 6252 pc = DIF_INSTR_LABEL(instr); 6253 break; 6254 case DIF_OP_BNE: 6255 if (cc_z == 0) 6256 pc = DIF_INSTR_LABEL(instr); 6257 break; 6258 case DIF_OP_BG: 6259 if ((cc_z | (cc_n ^ cc_v)) == 0) 6260 pc = DIF_INSTR_LABEL(instr); 6261 break; 6262 case DIF_OP_BGU: 6263 if ((cc_c | cc_z) == 0) 6264 pc = DIF_INSTR_LABEL(instr); 6265 break; 6266 case DIF_OP_BGE: 6267 if ((cc_n ^ cc_v) == 0) 6268 pc = DIF_INSTR_LABEL(instr); 6269 break; 6270 case DIF_OP_BGEU: 6271 if (cc_c == 0) 6272 pc = DIF_INSTR_LABEL(instr); 6273 break; 6274 case DIF_OP_BL: 6275 if (cc_n ^ cc_v) 6276 pc = DIF_INSTR_LABEL(instr); 6277 break; 6278 case DIF_OP_BLU: 6279 if (cc_c) 6280 pc = DIF_INSTR_LABEL(instr); 6281 break; 6282 case DIF_OP_BLE: 6283 if (cc_z | (cc_n ^ cc_v)) 6284 pc = DIF_INSTR_LABEL(instr); 6285 break; 6286 case DIF_OP_BLEU: 6287 if (cc_c | cc_z) 6288 pc = DIF_INSTR_LABEL(instr); 6289 break; 6290 case DIF_OP_RLDSB: 6291 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6292 break; 6293 /*FALLTHROUGH*/ 6294 case DIF_OP_LDSB: 6295 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6296 break; 6297 case DIF_OP_RLDSH: 6298 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6299 break; 6300 /*FALLTHROUGH*/ 6301 case DIF_OP_LDSH: 6302 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6303 break; 6304 case DIF_OP_RLDSW: 6305 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6306 break; 6307 /*FALLTHROUGH*/ 6308 case DIF_OP_LDSW: 6309 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6310 break; 6311 case DIF_OP_RLDUB: 6312 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6313 break; 6314 /*FALLTHROUGH*/ 6315 case DIF_OP_LDUB: 6316 regs[rd] = dtrace_load8(regs[r1]); 6317 break; 6318 case DIF_OP_RLDUH: 6319 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6320 break; 6321 /*FALLTHROUGH*/ 6322 case DIF_OP_LDUH: 6323 regs[rd] = dtrace_load16(regs[r1]); 6324 break; 6325 case DIF_OP_RLDUW: 6326 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6327 break; 6328 /*FALLTHROUGH*/ 6329 case DIF_OP_LDUW: 6330 regs[rd] = dtrace_load32(regs[r1]); 6331 break; 6332 case DIF_OP_RLDX: 6333 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6334 break; 6335 /*FALLTHROUGH*/ 6336 case DIF_OP_LDX: 6337 regs[rd] = dtrace_load64(regs[r1]); 6338 break; 6339 case DIF_OP_ULDSB: 6340 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6341 regs[rd] = (int8_t) 6342 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6343 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6344 break; 6345 case DIF_OP_ULDSH: 6346 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6347 regs[rd] = (int16_t) 6348 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6349 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6350 break; 6351 case DIF_OP_ULDSW: 6352 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6353 regs[rd] = (int32_t) 6354 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6355 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6356 break; 6357 case DIF_OP_ULDUB: 6358 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6359 regs[rd] = 6360 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6361 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6362 break; 6363 case DIF_OP_ULDUH: 6364 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6365 regs[rd] = 6366 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6367 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6368 break; 6369 case DIF_OP_ULDUW: 6370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6371 regs[rd] = 6372 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6373 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6374 break; 6375 case DIF_OP_ULDX: 6376 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6377 regs[rd] = 6378 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6379 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6380 break; 6381 case DIF_OP_RET: 6382 rval = regs[rd]; 6383 pc = textlen; 6384 break; 6385 case DIF_OP_NOP: 6386 break; 6387 case DIF_OP_SETX: 6388 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6389 break; 6390 case DIF_OP_SETS: 6391 regs[rd] = (uint64_t)(uintptr_t) 6392 (strtab + DIF_INSTR_STRING(instr)); 6393 break; 6394 case DIF_OP_SCMP: { 6395 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6396 uintptr_t s1 = regs[r1]; 6397 uintptr_t s2 = regs[r2]; 6398 size_t lim1, lim2; 6399 6400 /* 6401 * If one of the strings is NULL then the limit becomes 6402 * 0 which compares 0 characters in dtrace_strncmp() 6403 * resulting in a false positive. dtrace_strncmp() 6404 * treats a NULL as an empty 1-char string. 6405 */ 6406 lim1 = lim2 = 1; 6407 6408 if (s1 != 0 && 6409 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6410 break; 6411 if (s2 != 0 && 6412 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6413 break; 6414 6415 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6416 MIN(lim1, lim2)); 6417 6418 cc_n = cc_r < 0; 6419 cc_z = cc_r == 0; 6420 cc_v = cc_c = 0; 6421 break; 6422 } 6423 case DIF_OP_LDGA: 6424 regs[rd] = dtrace_dif_variable(mstate, state, 6425 r1, regs[r2]); 6426 break; 6427 case DIF_OP_LDGS: 6428 id = DIF_INSTR_VAR(instr); 6429 6430 if (id >= DIF_VAR_OTHER_UBASE) { 6431 uintptr_t a; 6432 6433 id -= DIF_VAR_OTHER_UBASE; 6434 svar = vstate->dtvs_globals[id]; 6435 ASSERT(svar != NULL); 6436 v = &svar->dtsv_var; 6437 6438 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6439 regs[rd] = svar->dtsv_data; 6440 break; 6441 } 6442 6443 a = (uintptr_t)svar->dtsv_data; 6444 6445 if (*(uint8_t *)a == UINT8_MAX) { 6446 /* 6447 * If the 0th byte is set to UINT8_MAX 6448 * then this is to be treated as a 6449 * reference to a NULL variable. 6450 */ 6451 regs[rd] = 0; 6452 } else { 6453 regs[rd] = a + sizeof (uint64_t); 6454 } 6455 6456 break; 6457 } 6458 6459 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6460 break; 6461 6462 case DIF_OP_STGS: 6463 id = DIF_INSTR_VAR(instr); 6464 6465 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6466 id -= DIF_VAR_OTHER_UBASE; 6467 6468 VERIFY(id < vstate->dtvs_nglobals); 6469 svar = vstate->dtvs_globals[id]; 6470 ASSERT(svar != NULL); 6471 v = &svar->dtsv_var; 6472 6473 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6474 uintptr_t a = (uintptr_t)svar->dtsv_data; 6475 size_t lim; 6476 6477 ASSERT(a != 0); 6478 ASSERT(svar->dtsv_size != 0); 6479 6480 if (regs[rd] == 0) { 6481 *(uint8_t *)a = UINT8_MAX; 6482 break; 6483 } else { 6484 *(uint8_t *)a = 0; 6485 a += sizeof (uint64_t); 6486 } 6487 if (!dtrace_vcanload( 6488 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6489 &lim, mstate, vstate)) 6490 break; 6491 6492 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6493 (void *)a, &v->dtdv_type, lim); 6494 break; 6495 } 6496 6497 svar->dtsv_data = regs[rd]; 6498 break; 6499 6500 case DIF_OP_LDTA: 6501 /* 6502 * There are no DTrace built-in thread-local arrays at 6503 * present. This opcode is saved for future work. 6504 */ 6505 *flags |= CPU_DTRACE_ILLOP; 6506 regs[rd] = 0; 6507 break; 6508 6509 case DIF_OP_LDLS: 6510 id = DIF_INSTR_VAR(instr); 6511 6512 if (id < DIF_VAR_OTHER_UBASE) { 6513 /* 6514 * For now, this has no meaning. 6515 */ 6516 regs[rd] = 0; 6517 break; 6518 } 6519 6520 id -= DIF_VAR_OTHER_UBASE; 6521 6522 ASSERT(id < vstate->dtvs_nlocals); 6523 ASSERT(vstate->dtvs_locals != NULL); 6524 6525 svar = vstate->dtvs_locals[id]; 6526 ASSERT(svar != NULL); 6527 v = &svar->dtsv_var; 6528 6529 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6530 uintptr_t a = (uintptr_t)svar->dtsv_data; 6531 size_t sz = v->dtdv_type.dtdt_size; 6532 size_t lim; 6533 6534 sz += sizeof (uint64_t); 6535 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6536 a += curcpu * sz; 6537 6538 if (*(uint8_t *)a == UINT8_MAX) { 6539 /* 6540 * If the 0th byte is set to UINT8_MAX 6541 * then this is to be treated as a 6542 * reference to a NULL variable. 6543 */ 6544 regs[rd] = 0; 6545 } else { 6546 regs[rd] = a + sizeof (uint64_t); 6547 } 6548 6549 break; 6550 } 6551 6552 ASSERT(svar->dtsv_size == 6553 (mp_maxid + 1) * sizeof (uint64_t)); 6554 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6555 regs[rd] = tmp[curcpu]; 6556 break; 6557 6558 case DIF_OP_STLS: 6559 id = DIF_INSTR_VAR(instr); 6560 6561 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6562 id -= DIF_VAR_OTHER_UBASE; 6563 VERIFY(id < vstate->dtvs_nlocals); 6564 6565 ASSERT(vstate->dtvs_locals != NULL); 6566 svar = vstate->dtvs_locals[id]; 6567 ASSERT(svar != NULL); 6568 v = &svar->dtsv_var; 6569 6570 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6571 uintptr_t a = (uintptr_t)svar->dtsv_data; 6572 size_t sz = v->dtdv_type.dtdt_size; 6573 size_t lim; 6574 6575 sz += sizeof (uint64_t); 6576 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6577 a += curcpu * sz; 6578 6579 if (regs[rd] == 0) { 6580 *(uint8_t *)a = UINT8_MAX; 6581 break; 6582 } else { 6583 *(uint8_t *)a = 0; 6584 a += sizeof (uint64_t); 6585 } 6586 6587 if (!dtrace_vcanload( 6588 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6589 &lim, mstate, vstate)) 6590 break; 6591 6592 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6593 (void *)a, &v->dtdv_type, lim); 6594 break; 6595 } 6596 6597 ASSERT(svar->dtsv_size == 6598 (mp_maxid + 1) * sizeof (uint64_t)); 6599 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6600 tmp[curcpu] = regs[rd]; 6601 break; 6602 6603 case DIF_OP_LDTS: { 6604 dtrace_dynvar_t *dvar; 6605 dtrace_key_t *key; 6606 6607 id = DIF_INSTR_VAR(instr); 6608 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6609 id -= DIF_VAR_OTHER_UBASE; 6610 v = &vstate->dtvs_tlocals[id]; 6611 6612 key = &tupregs[DIF_DTR_NREGS]; 6613 key[0].dttk_value = (uint64_t)id; 6614 key[0].dttk_size = 0; 6615 DTRACE_TLS_THRKEY(key[1].dttk_value); 6616 key[1].dttk_size = 0; 6617 6618 dvar = dtrace_dynvar(dstate, 2, key, 6619 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6620 mstate, vstate); 6621 6622 if (dvar == NULL) { 6623 regs[rd] = 0; 6624 break; 6625 } 6626 6627 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6628 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6629 } else { 6630 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6631 } 6632 6633 break; 6634 } 6635 6636 case DIF_OP_STTS: { 6637 dtrace_dynvar_t *dvar; 6638 dtrace_key_t *key; 6639 6640 id = DIF_INSTR_VAR(instr); 6641 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6642 id -= DIF_VAR_OTHER_UBASE; 6643 VERIFY(id < vstate->dtvs_ntlocals); 6644 6645 key = &tupregs[DIF_DTR_NREGS]; 6646 key[0].dttk_value = (uint64_t)id; 6647 key[0].dttk_size = 0; 6648 DTRACE_TLS_THRKEY(key[1].dttk_value); 6649 key[1].dttk_size = 0; 6650 v = &vstate->dtvs_tlocals[id]; 6651 6652 dvar = dtrace_dynvar(dstate, 2, key, 6653 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6654 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6655 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6656 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6657 6658 /* 6659 * Given that we're storing to thread-local data, 6660 * we need to flush our predicate cache. 6661 */ 6662 curthread->t_predcache = 0; 6663 6664 if (dvar == NULL) 6665 break; 6666 6667 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6668 size_t lim; 6669 6670 if (!dtrace_vcanload( 6671 (void *)(uintptr_t)regs[rd], 6672 &v->dtdv_type, &lim, mstate, vstate)) 6673 break; 6674 6675 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6676 dvar->dtdv_data, &v->dtdv_type, lim); 6677 } else { 6678 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6679 } 6680 6681 break; 6682 } 6683 6684 case DIF_OP_SRA: 6685 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6686 break; 6687 6688 case DIF_OP_CALL: 6689 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6690 regs, tupregs, ttop, mstate, state); 6691 break; 6692 6693 case DIF_OP_PUSHTR: 6694 if (ttop == DIF_DTR_NREGS) { 6695 *flags |= CPU_DTRACE_TUPOFLOW; 6696 break; 6697 } 6698 6699 if (r1 == DIF_TYPE_STRING) { 6700 /* 6701 * If this is a string type and the size is 0, 6702 * we'll use the system-wide default string 6703 * size. Note that we are _not_ looking at 6704 * the value of the DTRACEOPT_STRSIZE option; 6705 * had this been set, we would expect to have 6706 * a non-zero size value in the "pushtr". 6707 */ 6708 tupregs[ttop].dttk_size = 6709 dtrace_strlen((char *)(uintptr_t)regs[rd], 6710 regs[r2] ? regs[r2] : 6711 dtrace_strsize_default) + 1; 6712 } else { 6713 if (regs[r2] > LONG_MAX) { 6714 *flags |= CPU_DTRACE_ILLOP; 6715 break; 6716 } 6717 6718 tupregs[ttop].dttk_size = regs[r2]; 6719 } 6720 6721 tupregs[ttop++].dttk_value = regs[rd]; 6722 break; 6723 6724 case DIF_OP_PUSHTV: 6725 if (ttop == DIF_DTR_NREGS) { 6726 *flags |= CPU_DTRACE_TUPOFLOW; 6727 break; 6728 } 6729 6730 tupregs[ttop].dttk_value = regs[rd]; 6731 tupregs[ttop++].dttk_size = 0; 6732 break; 6733 6734 case DIF_OP_POPTS: 6735 if (ttop != 0) 6736 ttop--; 6737 break; 6738 6739 case DIF_OP_FLUSHTS: 6740 ttop = 0; 6741 break; 6742 6743 case DIF_OP_LDGAA: 6744 case DIF_OP_LDTAA: { 6745 dtrace_dynvar_t *dvar; 6746 dtrace_key_t *key = tupregs; 6747 uint_t nkeys = ttop; 6748 6749 id = DIF_INSTR_VAR(instr); 6750 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6751 id -= DIF_VAR_OTHER_UBASE; 6752 6753 key[nkeys].dttk_value = (uint64_t)id; 6754 key[nkeys++].dttk_size = 0; 6755 6756 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6757 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6758 key[nkeys++].dttk_size = 0; 6759 VERIFY(id < vstate->dtvs_ntlocals); 6760 v = &vstate->dtvs_tlocals[id]; 6761 } else { 6762 VERIFY(id < vstate->dtvs_nglobals); 6763 v = &vstate->dtvs_globals[id]->dtsv_var; 6764 } 6765 6766 dvar = dtrace_dynvar(dstate, nkeys, key, 6767 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6768 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6769 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6770 6771 if (dvar == NULL) { 6772 regs[rd] = 0; 6773 break; 6774 } 6775 6776 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6777 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6778 } else { 6779 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6780 } 6781 6782 break; 6783 } 6784 6785 case DIF_OP_STGAA: 6786 case DIF_OP_STTAA: { 6787 dtrace_dynvar_t *dvar; 6788 dtrace_key_t *key = tupregs; 6789 uint_t nkeys = ttop; 6790 6791 id = DIF_INSTR_VAR(instr); 6792 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6793 id -= DIF_VAR_OTHER_UBASE; 6794 6795 key[nkeys].dttk_value = (uint64_t)id; 6796 key[nkeys++].dttk_size = 0; 6797 6798 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6799 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6800 key[nkeys++].dttk_size = 0; 6801 VERIFY(id < vstate->dtvs_ntlocals); 6802 v = &vstate->dtvs_tlocals[id]; 6803 } else { 6804 VERIFY(id < vstate->dtvs_nglobals); 6805 v = &vstate->dtvs_globals[id]->dtsv_var; 6806 } 6807 6808 dvar = dtrace_dynvar(dstate, nkeys, key, 6809 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6810 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6811 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6812 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6813 6814 if (dvar == NULL) 6815 break; 6816 6817 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6818 size_t lim; 6819 6820 if (!dtrace_vcanload( 6821 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6822 &lim, mstate, vstate)) 6823 break; 6824 6825 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6826 dvar->dtdv_data, &v->dtdv_type, lim); 6827 } else { 6828 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6829 } 6830 6831 break; 6832 } 6833 6834 case DIF_OP_ALLOCS: { 6835 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6836 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6837 6838 /* 6839 * Rounding up the user allocation size could have 6840 * overflowed large, bogus allocations (like -1ULL) to 6841 * 0. 6842 */ 6843 if (size < regs[r1] || 6844 !DTRACE_INSCRATCH(mstate, size)) { 6845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6846 regs[rd] = 0; 6847 break; 6848 } 6849 6850 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6851 mstate->dtms_scratch_ptr += size; 6852 regs[rd] = ptr; 6853 break; 6854 } 6855 6856 case DIF_OP_COPYS: 6857 if (!dtrace_canstore(regs[rd], regs[r2], 6858 mstate, vstate)) { 6859 *flags |= CPU_DTRACE_BADADDR; 6860 *illval = regs[rd]; 6861 break; 6862 } 6863 6864 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6865 break; 6866 6867 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6868 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6869 break; 6870 6871 case DIF_OP_STB: 6872 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6873 *flags |= CPU_DTRACE_BADADDR; 6874 *illval = regs[rd]; 6875 break; 6876 } 6877 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6878 break; 6879 6880 case DIF_OP_STH: 6881 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6882 *flags |= CPU_DTRACE_BADADDR; 6883 *illval = regs[rd]; 6884 break; 6885 } 6886 if (regs[rd] & 1) { 6887 *flags |= CPU_DTRACE_BADALIGN; 6888 *illval = regs[rd]; 6889 break; 6890 } 6891 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6892 break; 6893 6894 case DIF_OP_STW: 6895 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6896 *flags |= CPU_DTRACE_BADADDR; 6897 *illval = regs[rd]; 6898 break; 6899 } 6900 if (regs[rd] & 3) { 6901 *flags |= CPU_DTRACE_BADALIGN; 6902 *illval = regs[rd]; 6903 break; 6904 } 6905 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6906 break; 6907 6908 case DIF_OP_STX: 6909 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6910 *flags |= CPU_DTRACE_BADADDR; 6911 *illval = regs[rd]; 6912 break; 6913 } 6914 if (regs[rd] & 7) { 6915 *flags |= CPU_DTRACE_BADALIGN; 6916 *illval = regs[rd]; 6917 break; 6918 } 6919 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6920 break; 6921 } 6922 } 6923 6924 if (!(*flags & CPU_DTRACE_FAULT)) 6925 return (rval); 6926 6927 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6928 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6929 6930 return (0); 6931 } 6932 6933 static void 6934 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6935 { 6936 dtrace_probe_t *probe = ecb->dte_probe; 6937 dtrace_provider_t *prov = probe->dtpr_provider; 6938 char c[DTRACE_FULLNAMELEN + 80], *str; 6939 char *msg = "dtrace: breakpoint action at probe "; 6940 char *ecbmsg = " (ecb "; 6941 uintptr_t val = (uintptr_t)ecb; 6942 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6943 6944 if (dtrace_destructive_disallow) 6945 return; 6946 6947 /* 6948 * It's impossible to be taking action on the NULL probe. 6949 */ 6950 ASSERT(probe != NULL); 6951 6952 /* 6953 * This is a poor man's (destitute man's?) sprintf(): we want to 6954 * print the provider name, module name, function name and name of 6955 * the probe, along with the hex address of the ECB with the breakpoint 6956 * action -- all of which we must place in the character buffer by 6957 * hand. 6958 */ 6959 while (*msg != '\0') 6960 c[i++] = *msg++; 6961 6962 for (str = prov->dtpv_name; *str != '\0'; str++) 6963 c[i++] = *str; 6964 c[i++] = ':'; 6965 6966 for (str = probe->dtpr_mod; *str != '\0'; str++) 6967 c[i++] = *str; 6968 c[i++] = ':'; 6969 6970 for (str = probe->dtpr_func; *str != '\0'; str++) 6971 c[i++] = *str; 6972 c[i++] = ':'; 6973 6974 for (str = probe->dtpr_name; *str != '\0'; str++) 6975 c[i++] = *str; 6976 6977 while (*ecbmsg != '\0') 6978 c[i++] = *ecbmsg++; 6979 6980 while (shift >= 0) { 6981 size_t mask = (size_t)0xf << shift; 6982 6983 if (val >= ((size_t)1 << shift)) 6984 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6985 shift -= 4; 6986 } 6987 6988 c[i++] = ')'; 6989 c[i] = '\0'; 6990 6991 #ifdef illumos 6992 debug_enter(c); 6993 #else 6994 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6995 #endif 6996 } 6997 6998 static void 6999 dtrace_action_panic(dtrace_ecb_t *ecb) 7000 { 7001 dtrace_probe_t *probe = ecb->dte_probe; 7002 7003 /* 7004 * It's impossible to be taking action on the NULL probe. 7005 */ 7006 ASSERT(probe != NULL); 7007 7008 if (dtrace_destructive_disallow) 7009 return; 7010 7011 if (dtrace_panicked != NULL) 7012 return; 7013 7014 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 7015 return; 7016 7017 /* 7018 * We won the right to panic. (We want to be sure that only one 7019 * thread calls panic() from dtrace_probe(), and that panic() is 7020 * called exactly once.) 7021 */ 7022 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 7023 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 7024 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7025 } 7026 7027 static void 7028 dtrace_action_raise(uint64_t sig) 7029 { 7030 if (dtrace_destructive_disallow) 7031 return; 7032 7033 if (sig >= NSIG) { 7034 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7035 return; 7036 } 7037 7038 #ifdef illumos 7039 /* 7040 * raise() has a queue depth of 1 -- we ignore all subsequent 7041 * invocations of the raise() action. 7042 */ 7043 if (curthread->t_dtrace_sig == 0) 7044 curthread->t_dtrace_sig = (uint8_t)sig; 7045 7046 curthread->t_sig_check = 1; 7047 aston(curthread); 7048 #else 7049 struct proc *p = curproc; 7050 PROC_LOCK(p); 7051 kern_psignal(p, sig); 7052 PROC_UNLOCK(p); 7053 #endif 7054 } 7055 7056 static void 7057 dtrace_action_stop(void) 7058 { 7059 if (dtrace_destructive_disallow) 7060 return; 7061 7062 #ifdef illumos 7063 if (!curthread->t_dtrace_stop) { 7064 curthread->t_dtrace_stop = 1; 7065 curthread->t_sig_check = 1; 7066 aston(curthread); 7067 } 7068 #else 7069 struct proc *p = curproc; 7070 PROC_LOCK(p); 7071 kern_psignal(p, SIGSTOP); 7072 PROC_UNLOCK(p); 7073 #endif 7074 } 7075 7076 static void 7077 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7078 { 7079 hrtime_t now; 7080 volatile uint16_t *flags; 7081 #ifdef illumos 7082 cpu_t *cpu = CPU; 7083 #else 7084 cpu_t *cpu = &solaris_cpu[curcpu]; 7085 #endif 7086 7087 if (dtrace_destructive_disallow) 7088 return; 7089 7090 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7091 7092 now = dtrace_gethrtime(); 7093 7094 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7095 /* 7096 * We need to advance the mark to the current time. 7097 */ 7098 cpu->cpu_dtrace_chillmark = now; 7099 cpu->cpu_dtrace_chilled = 0; 7100 } 7101 7102 /* 7103 * Now check to see if the requested chill time would take us over 7104 * the maximum amount of time allowed in the chill interval. (Or 7105 * worse, if the calculation itself induces overflow.) 7106 */ 7107 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7108 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7109 *flags |= CPU_DTRACE_ILLOP; 7110 return; 7111 } 7112 7113 while (dtrace_gethrtime() - now < val) 7114 continue; 7115 7116 /* 7117 * Normally, we assure that the value of the variable "timestamp" does 7118 * not change within an ECB. The presence of chill() represents an 7119 * exception to this rule, however. 7120 */ 7121 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7122 cpu->cpu_dtrace_chilled += val; 7123 } 7124 7125 static void 7126 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7127 uint64_t *buf, uint64_t arg) 7128 { 7129 int nframes = DTRACE_USTACK_NFRAMES(arg); 7130 int strsize = DTRACE_USTACK_STRSIZE(arg); 7131 uint64_t *pcs = &buf[1], *fps; 7132 char *str = (char *)&pcs[nframes]; 7133 int size, offs = 0, i, j; 7134 size_t rem; 7135 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7136 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7137 char *sym; 7138 7139 /* 7140 * Should be taking a faster path if string space has not been 7141 * allocated. 7142 */ 7143 ASSERT(strsize != 0); 7144 7145 /* 7146 * We will first allocate some temporary space for the frame pointers. 7147 */ 7148 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7149 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7150 (nframes * sizeof (uint64_t)); 7151 7152 if (!DTRACE_INSCRATCH(mstate, size)) { 7153 /* 7154 * Not enough room for our frame pointers -- need to indicate 7155 * that we ran out of scratch space. 7156 */ 7157 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7158 return; 7159 } 7160 7161 mstate->dtms_scratch_ptr += size; 7162 saved = mstate->dtms_scratch_ptr; 7163 7164 /* 7165 * Now get a stack with both program counters and frame pointers. 7166 */ 7167 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7168 dtrace_getufpstack(buf, fps, nframes + 1); 7169 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7170 7171 /* 7172 * If that faulted, we're cooked. 7173 */ 7174 if (*flags & CPU_DTRACE_FAULT) 7175 goto out; 7176 7177 /* 7178 * Now we want to walk up the stack, calling the USTACK helper. For 7179 * each iteration, we restore the scratch pointer. 7180 */ 7181 for (i = 0; i < nframes; i++) { 7182 mstate->dtms_scratch_ptr = saved; 7183 7184 if (offs >= strsize) 7185 break; 7186 7187 sym = (char *)(uintptr_t)dtrace_helper( 7188 DTRACE_HELPER_ACTION_USTACK, 7189 mstate, state, pcs[i], fps[i]); 7190 7191 /* 7192 * If we faulted while running the helper, we're going to 7193 * clear the fault and null out the corresponding string. 7194 */ 7195 if (*flags & CPU_DTRACE_FAULT) { 7196 *flags &= ~CPU_DTRACE_FAULT; 7197 str[offs++] = '\0'; 7198 continue; 7199 } 7200 7201 if (sym == NULL) { 7202 str[offs++] = '\0'; 7203 continue; 7204 } 7205 7206 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7207 &(state->dts_vstate))) { 7208 str[offs++] = '\0'; 7209 continue; 7210 } 7211 7212 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7213 7214 /* 7215 * Now copy in the string that the helper returned to us. 7216 */ 7217 for (j = 0; offs + j < strsize && j < rem; j++) { 7218 if ((str[offs + j] = sym[j]) == '\0') 7219 break; 7220 } 7221 7222 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7223 7224 offs += j + 1; 7225 } 7226 7227 if (offs >= strsize) { 7228 /* 7229 * If we didn't have room for all of the strings, we don't 7230 * abort processing -- this needn't be a fatal error -- but we 7231 * still want to increment a counter (dts_stkstroverflows) to 7232 * allow this condition to be warned about. (If this is from 7233 * a jstack() action, it is easily tuned via jstackstrsize.) 7234 */ 7235 dtrace_error(&state->dts_stkstroverflows); 7236 } 7237 7238 while (offs < strsize) 7239 str[offs++] = '\0'; 7240 7241 out: 7242 mstate->dtms_scratch_ptr = old; 7243 } 7244 7245 static void 7246 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7247 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7248 { 7249 volatile uint16_t *flags; 7250 uint64_t val = *valp; 7251 size_t valoffs = *valoffsp; 7252 7253 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7254 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7255 7256 /* 7257 * If this is a string, we're going to only load until we find the zero 7258 * byte -- after which we'll store zero bytes. 7259 */ 7260 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7261 char c = '\0' + 1; 7262 size_t s; 7263 7264 for (s = 0; s < size; s++) { 7265 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7266 c = dtrace_load8(val++); 7267 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7268 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7269 c = dtrace_fuword8((void *)(uintptr_t)val++); 7270 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7271 if (*flags & CPU_DTRACE_FAULT) 7272 break; 7273 } 7274 7275 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7276 7277 if (c == '\0' && intuple) 7278 break; 7279 } 7280 } else { 7281 uint8_t c; 7282 while (valoffs < end) { 7283 if (dtkind == DIF_TF_BYREF) { 7284 c = dtrace_load8(val++); 7285 } else if (dtkind == DIF_TF_BYUREF) { 7286 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7287 c = dtrace_fuword8((void *)(uintptr_t)val++); 7288 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7289 if (*flags & CPU_DTRACE_FAULT) 7290 break; 7291 } 7292 7293 DTRACE_STORE(uint8_t, tomax, 7294 valoffs++, c); 7295 } 7296 } 7297 7298 *valp = val; 7299 *valoffsp = valoffs; 7300 } 7301 7302 /* 7303 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7304 * defined, we also assert that we are not recursing unless the probe ID is an 7305 * error probe. 7306 */ 7307 static dtrace_icookie_t 7308 dtrace_probe_enter(dtrace_id_t id) 7309 { 7310 dtrace_icookie_t cookie; 7311 7312 cookie = dtrace_interrupt_disable(); 7313 7314 /* 7315 * Unless this is an ERROR probe, we are not allowed to recurse in 7316 * dtrace_probe(). Recursing into DTrace probe usually means that a 7317 * function is instrumented that should not have been instrumented or 7318 * that the ordering guarantee of the records will be violated, 7319 * resulting in unexpected output. If there is an exception to this 7320 * assertion, a new case should be added. 7321 */ 7322 ASSERT(curthread->t_dtrace_inprobe == 0 || 7323 id == dtrace_probeid_error); 7324 curthread->t_dtrace_inprobe = 1; 7325 7326 return (cookie); 7327 } 7328 7329 /* 7330 * Clears the per-thread inprobe flag and enables interrupts. 7331 */ 7332 static void 7333 dtrace_probe_exit(dtrace_icookie_t cookie) 7334 { 7335 7336 curthread->t_dtrace_inprobe = 0; 7337 dtrace_interrupt_enable(cookie); 7338 } 7339 7340 /* 7341 * If you're looking for the epicenter of DTrace, you just found it. This 7342 * is the function called by the provider to fire a probe -- from which all 7343 * subsequent probe-context DTrace activity emanates. 7344 */ 7345 void 7346 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7347 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7348 { 7349 processorid_t cpuid; 7350 dtrace_icookie_t cookie; 7351 dtrace_probe_t *probe; 7352 dtrace_mstate_t mstate; 7353 dtrace_ecb_t *ecb; 7354 dtrace_action_t *act; 7355 intptr_t offs; 7356 size_t size; 7357 int vtime, onintr; 7358 volatile uint16_t *flags; 7359 hrtime_t now; 7360 7361 if (KERNEL_PANICKED()) 7362 return; 7363 7364 #ifdef illumos 7365 /* 7366 * Kick out immediately if this CPU is still being born (in which case 7367 * curthread will be set to -1) or the current thread can't allow 7368 * probes in its current context. 7369 */ 7370 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7371 return; 7372 #endif 7373 7374 cookie = dtrace_probe_enter(id); 7375 probe = dtrace_probes[id - 1]; 7376 cpuid = curcpu; 7377 onintr = CPU_ON_INTR(CPU); 7378 7379 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7380 probe->dtpr_predcache == curthread->t_predcache) { 7381 /* 7382 * We have hit in the predicate cache; we know that 7383 * this predicate would evaluate to be false. 7384 */ 7385 dtrace_probe_exit(cookie); 7386 return; 7387 } 7388 7389 #ifdef illumos 7390 if (panic_quiesce) { 7391 #else 7392 if (KERNEL_PANICKED()) { 7393 #endif 7394 /* 7395 * We don't trace anything if we're panicking. 7396 */ 7397 dtrace_probe_exit(cookie); 7398 return; 7399 } 7400 7401 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7402 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7403 vtime = dtrace_vtime_references != 0; 7404 7405 if (vtime && curthread->t_dtrace_start) 7406 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7407 7408 mstate.dtms_difo = NULL; 7409 mstate.dtms_probe = probe; 7410 mstate.dtms_strtok = 0; 7411 mstate.dtms_arg[0] = arg0; 7412 mstate.dtms_arg[1] = arg1; 7413 mstate.dtms_arg[2] = arg2; 7414 mstate.dtms_arg[3] = arg3; 7415 mstate.dtms_arg[4] = arg4; 7416 7417 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7418 7419 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7420 dtrace_predicate_t *pred = ecb->dte_predicate; 7421 dtrace_state_t *state = ecb->dte_state; 7422 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7423 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7424 dtrace_vstate_t *vstate = &state->dts_vstate; 7425 dtrace_provider_t *prov = probe->dtpr_provider; 7426 uint64_t tracememsize = 0; 7427 int committed = 0; 7428 caddr_t tomax; 7429 7430 /* 7431 * A little subtlety with the following (seemingly innocuous) 7432 * declaration of the automatic 'val': by looking at the 7433 * code, you might think that it could be declared in the 7434 * action processing loop, below. (That is, it's only used in 7435 * the action processing loop.) However, it must be declared 7436 * out of that scope because in the case of DIF expression 7437 * arguments to aggregating actions, one iteration of the 7438 * action loop will use the last iteration's value. 7439 */ 7440 uint64_t val = 0; 7441 7442 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7443 mstate.dtms_getf = NULL; 7444 7445 *flags &= ~CPU_DTRACE_ERROR; 7446 7447 if (prov == dtrace_provider) { 7448 /* 7449 * If dtrace itself is the provider of this probe, 7450 * we're only going to continue processing the ECB if 7451 * arg0 (the dtrace_state_t) is equal to the ECB's 7452 * creating state. (This prevents disjoint consumers 7453 * from seeing one another's metaprobes.) 7454 */ 7455 if (arg0 != (uint64_t)(uintptr_t)state) 7456 continue; 7457 } 7458 7459 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7460 /* 7461 * We're not currently active. If our provider isn't 7462 * the dtrace pseudo provider, we're not interested. 7463 */ 7464 if (prov != dtrace_provider) 7465 continue; 7466 7467 /* 7468 * Now we must further check if we are in the BEGIN 7469 * probe. If we are, we will only continue processing 7470 * if we're still in WARMUP -- if one BEGIN enabling 7471 * has invoked the exit() action, we don't want to 7472 * evaluate subsequent BEGIN enablings. 7473 */ 7474 if (probe->dtpr_id == dtrace_probeid_begin && 7475 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7476 ASSERT(state->dts_activity == 7477 DTRACE_ACTIVITY_DRAINING); 7478 continue; 7479 } 7480 } 7481 7482 if (ecb->dte_cond) { 7483 /* 7484 * If the dte_cond bits indicate that this 7485 * consumer is only allowed to see user-mode firings 7486 * of this probe, call the provider's dtps_usermode() 7487 * entry point to check that the probe was fired 7488 * while in a user context. Skip this ECB if that's 7489 * not the case. 7490 */ 7491 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7492 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7493 probe->dtpr_id, probe->dtpr_arg) == 0) 7494 continue; 7495 7496 #ifdef illumos 7497 /* 7498 * This is more subtle than it looks. We have to be 7499 * absolutely certain that CRED() isn't going to 7500 * change out from under us so it's only legit to 7501 * examine that structure if we're in constrained 7502 * situations. Currently, the only times we'll this 7503 * check is if a non-super-user has enabled the 7504 * profile or syscall providers -- providers that 7505 * allow visibility of all processes. For the 7506 * profile case, the check above will ensure that 7507 * we're examining a user context. 7508 */ 7509 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7510 cred_t *cr; 7511 cred_t *s_cr = 7512 ecb->dte_state->dts_cred.dcr_cred; 7513 proc_t *proc; 7514 7515 ASSERT(s_cr != NULL); 7516 7517 if ((cr = CRED()) == NULL || 7518 s_cr->cr_uid != cr->cr_uid || 7519 s_cr->cr_uid != cr->cr_ruid || 7520 s_cr->cr_uid != cr->cr_suid || 7521 s_cr->cr_gid != cr->cr_gid || 7522 s_cr->cr_gid != cr->cr_rgid || 7523 s_cr->cr_gid != cr->cr_sgid || 7524 (proc = ttoproc(curthread)) == NULL || 7525 (proc->p_flag & SNOCD)) 7526 continue; 7527 } 7528 7529 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7530 cred_t *cr; 7531 cred_t *s_cr = 7532 ecb->dte_state->dts_cred.dcr_cred; 7533 7534 ASSERT(s_cr != NULL); 7535 7536 if ((cr = CRED()) == NULL || 7537 s_cr->cr_zone->zone_id != 7538 cr->cr_zone->zone_id) 7539 continue; 7540 } 7541 #endif 7542 } 7543 7544 if (now - state->dts_alive > dtrace_deadman_timeout) { 7545 /* 7546 * We seem to be dead. Unless we (a) have kernel 7547 * destructive permissions (b) have explicitly enabled 7548 * destructive actions and (c) destructive actions have 7549 * not been disabled, we're going to transition into 7550 * the KILLED state, from which no further processing 7551 * on this state will be performed. 7552 */ 7553 if (!dtrace_priv_kernel_destructive(state) || 7554 !state->dts_cred.dcr_destructive || 7555 dtrace_destructive_disallow) { 7556 void *activity = &state->dts_activity; 7557 dtrace_activity_t curstate; 7558 7559 do { 7560 curstate = state->dts_activity; 7561 } while (dtrace_cas32(activity, curstate, 7562 DTRACE_ACTIVITY_KILLED) != curstate); 7563 7564 continue; 7565 } 7566 } 7567 7568 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7569 ecb->dte_alignment, state, &mstate)) < 0) 7570 continue; 7571 7572 tomax = buf->dtb_tomax; 7573 ASSERT(tomax != NULL); 7574 7575 if (ecb->dte_size != 0) { 7576 dtrace_rechdr_t dtrh; 7577 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7578 mstate.dtms_timestamp = dtrace_gethrtime(); 7579 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7580 } 7581 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7582 dtrh.dtrh_epid = ecb->dte_epid; 7583 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7584 mstate.dtms_timestamp); 7585 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7586 } 7587 7588 mstate.dtms_epid = ecb->dte_epid; 7589 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7590 7591 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7592 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7593 else 7594 mstate.dtms_access = 0; 7595 7596 if (pred != NULL) { 7597 dtrace_difo_t *dp = pred->dtp_difo; 7598 uint64_t rval; 7599 7600 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7601 7602 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7603 dtrace_cacheid_t cid = probe->dtpr_predcache; 7604 7605 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7606 /* 7607 * Update the predicate cache... 7608 */ 7609 ASSERT(cid == pred->dtp_cacheid); 7610 curthread->t_predcache = cid; 7611 } 7612 7613 continue; 7614 } 7615 } 7616 7617 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7618 act != NULL; act = act->dta_next) { 7619 size_t valoffs; 7620 dtrace_difo_t *dp; 7621 dtrace_recdesc_t *rec = &act->dta_rec; 7622 7623 size = rec->dtrd_size; 7624 valoffs = offs + rec->dtrd_offset; 7625 7626 if (DTRACEACT_ISAGG(act->dta_kind)) { 7627 uint64_t v = 0xbad; 7628 dtrace_aggregation_t *agg; 7629 7630 agg = (dtrace_aggregation_t *)act; 7631 7632 if ((dp = act->dta_difo) != NULL) 7633 v = dtrace_dif_emulate(dp, 7634 &mstate, vstate, state); 7635 7636 if (*flags & CPU_DTRACE_ERROR) 7637 continue; 7638 7639 /* 7640 * Note that we always pass the expression 7641 * value from the previous iteration of the 7642 * action loop. This value will only be used 7643 * if there is an expression argument to the 7644 * aggregating action, denoted by the 7645 * dtag_hasarg field. 7646 */ 7647 dtrace_aggregate(agg, buf, 7648 offs, aggbuf, v, val); 7649 continue; 7650 } 7651 7652 switch (act->dta_kind) { 7653 case DTRACEACT_STOP: 7654 if (dtrace_priv_proc_destructive(state)) 7655 dtrace_action_stop(); 7656 continue; 7657 7658 case DTRACEACT_BREAKPOINT: 7659 if (dtrace_priv_kernel_destructive(state)) 7660 dtrace_action_breakpoint(ecb); 7661 continue; 7662 7663 case DTRACEACT_PANIC: 7664 if (dtrace_priv_kernel_destructive(state)) 7665 dtrace_action_panic(ecb); 7666 continue; 7667 7668 case DTRACEACT_STACK: 7669 if (!dtrace_priv_kernel(state)) 7670 continue; 7671 7672 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7673 size / sizeof (pc_t), probe->dtpr_aframes, 7674 DTRACE_ANCHORED(probe) ? NULL : 7675 (uint32_t *)arg0); 7676 continue; 7677 7678 case DTRACEACT_JSTACK: 7679 case DTRACEACT_USTACK: 7680 if (!dtrace_priv_proc(state)) 7681 continue; 7682 7683 /* 7684 * See comment in DIF_VAR_PID. 7685 */ 7686 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7687 CPU_ON_INTR(CPU)) { 7688 int depth = DTRACE_USTACK_NFRAMES( 7689 rec->dtrd_arg) + 1; 7690 7691 dtrace_bzero((void *)(tomax + valoffs), 7692 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7693 + depth * sizeof (uint64_t)); 7694 7695 continue; 7696 } 7697 7698 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7699 curproc->p_dtrace_helpers != NULL) { 7700 /* 7701 * This is the slow path -- we have 7702 * allocated string space, and we're 7703 * getting the stack of a process that 7704 * has helpers. Call into a separate 7705 * routine to perform this processing. 7706 */ 7707 dtrace_action_ustack(&mstate, state, 7708 (uint64_t *)(tomax + valoffs), 7709 rec->dtrd_arg); 7710 continue; 7711 } 7712 7713 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7714 dtrace_getupcstack((uint64_t *) 7715 (tomax + valoffs), 7716 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7717 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7718 continue; 7719 7720 default: 7721 break; 7722 } 7723 7724 dp = act->dta_difo; 7725 ASSERT(dp != NULL); 7726 7727 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7728 7729 if (*flags & CPU_DTRACE_ERROR) 7730 continue; 7731 7732 switch (act->dta_kind) { 7733 case DTRACEACT_SPECULATE: { 7734 dtrace_rechdr_t *dtrh; 7735 7736 ASSERT(buf == &state->dts_buffer[cpuid]); 7737 buf = dtrace_speculation_buffer(state, 7738 cpuid, val); 7739 7740 if (buf == NULL) { 7741 *flags |= CPU_DTRACE_DROP; 7742 continue; 7743 } 7744 7745 offs = dtrace_buffer_reserve(buf, 7746 ecb->dte_needed, ecb->dte_alignment, 7747 state, NULL); 7748 7749 if (offs < 0) { 7750 *flags |= CPU_DTRACE_DROP; 7751 continue; 7752 } 7753 7754 tomax = buf->dtb_tomax; 7755 ASSERT(tomax != NULL); 7756 7757 if (ecb->dte_size == 0) 7758 continue; 7759 7760 ASSERT3U(ecb->dte_size, >=, 7761 sizeof (dtrace_rechdr_t)); 7762 dtrh = ((void *)(tomax + offs)); 7763 dtrh->dtrh_epid = ecb->dte_epid; 7764 /* 7765 * When the speculation is committed, all of 7766 * the records in the speculative buffer will 7767 * have their timestamps set to the commit 7768 * time. Until then, it is set to a sentinel 7769 * value, for debugability. 7770 */ 7771 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7772 continue; 7773 } 7774 7775 case DTRACEACT_PRINTM: { 7776 /* 7777 * printm() assumes that the DIF returns a 7778 * pointer returned by memref(). memref() is a 7779 * subroutine that is used to get around the 7780 * single-valued returns of DIF and is assumed 7781 * to always be allocated in the scratch space. 7782 * Therefore, we need to validate that the 7783 * pointer given to printm() is in the scratch 7784 * space in order to avoid a potential panic. 7785 */ 7786 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7787 7788 if (!DTRACE_INSCRATCHPTR(&mstate, 7789 (uintptr_t) memref, 7790 sizeof (uintptr_t) + sizeof (size_t))) { 7791 *flags |= CPU_DTRACE_BADADDR; 7792 continue; 7793 } 7794 7795 /* Get the size from the memref. */ 7796 size = memref[1]; 7797 7798 /* 7799 * Check if the size exceeds the allocated 7800 * buffer size. 7801 */ 7802 if (size + sizeof (size_t) > 7803 dp->dtdo_rtype.dtdt_size) { 7804 /* Flag a drop! */ 7805 *flags |= CPU_DTRACE_DROP; 7806 continue; 7807 } 7808 7809 /* Store the size in the buffer first. */ 7810 DTRACE_STORE(size_t, tomax, valoffs, size); 7811 7812 /* 7813 * Offset the buffer address to the start 7814 * of the data. 7815 */ 7816 valoffs += sizeof(size_t); 7817 7818 /* 7819 * Reset to the memory address rather than 7820 * the memref array, then let the BYREF 7821 * code below do the work to store the 7822 * memory data in the buffer. 7823 */ 7824 val = memref[0]; 7825 break; 7826 } 7827 7828 case DTRACEACT_CHILL: 7829 if (dtrace_priv_kernel_destructive(state)) 7830 dtrace_action_chill(&mstate, val); 7831 continue; 7832 7833 case DTRACEACT_RAISE: 7834 if (dtrace_priv_proc_destructive(state)) 7835 dtrace_action_raise(val); 7836 continue; 7837 7838 case DTRACEACT_COMMIT: 7839 ASSERT(!committed); 7840 7841 /* 7842 * We need to commit our buffer state. 7843 */ 7844 if (ecb->dte_size) 7845 buf->dtb_offset = offs + ecb->dte_size; 7846 buf = &state->dts_buffer[cpuid]; 7847 dtrace_speculation_commit(state, cpuid, val); 7848 committed = 1; 7849 continue; 7850 7851 case DTRACEACT_DISCARD: 7852 dtrace_speculation_discard(state, cpuid, val); 7853 continue; 7854 7855 case DTRACEACT_DIFEXPR: 7856 case DTRACEACT_LIBACT: 7857 case DTRACEACT_PRINTF: 7858 case DTRACEACT_PRINTA: 7859 case DTRACEACT_SYSTEM: 7860 case DTRACEACT_FREOPEN: 7861 case DTRACEACT_TRACEMEM: 7862 break; 7863 7864 case DTRACEACT_TRACEMEM_DYNSIZE: 7865 tracememsize = val; 7866 break; 7867 7868 case DTRACEACT_SYM: 7869 case DTRACEACT_MOD: 7870 if (!dtrace_priv_kernel(state)) 7871 continue; 7872 break; 7873 7874 case DTRACEACT_USYM: 7875 case DTRACEACT_UMOD: 7876 case DTRACEACT_UADDR: { 7877 #ifdef illumos 7878 struct pid *pid = curthread->t_procp->p_pidp; 7879 #endif 7880 7881 if (!dtrace_priv_proc(state)) 7882 continue; 7883 7884 DTRACE_STORE(uint64_t, tomax, 7885 #ifdef illumos 7886 valoffs, (uint64_t)pid->pid_id); 7887 #else 7888 valoffs, (uint64_t) curproc->p_pid); 7889 #endif 7890 DTRACE_STORE(uint64_t, tomax, 7891 valoffs + sizeof (uint64_t), val); 7892 7893 continue; 7894 } 7895 7896 case DTRACEACT_EXIT: { 7897 /* 7898 * For the exit action, we are going to attempt 7899 * to atomically set our activity to be 7900 * draining. If this fails (either because 7901 * another CPU has beat us to the exit action, 7902 * or because our current activity is something 7903 * other than ACTIVE or WARMUP), we will 7904 * continue. This assures that the exit action 7905 * can be successfully recorded at most once 7906 * when we're in the ACTIVE state. If we're 7907 * encountering the exit() action while in 7908 * COOLDOWN, however, we want to honor the new 7909 * status code. (We know that we're the only 7910 * thread in COOLDOWN, so there is no race.) 7911 */ 7912 void *activity = &state->dts_activity; 7913 dtrace_activity_t curstate = state->dts_activity; 7914 7915 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7916 break; 7917 7918 if (curstate != DTRACE_ACTIVITY_WARMUP) 7919 curstate = DTRACE_ACTIVITY_ACTIVE; 7920 7921 if (dtrace_cas32(activity, curstate, 7922 DTRACE_ACTIVITY_DRAINING) != curstate) { 7923 *flags |= CPU_DTRACE_DROP; 7924 continue; 7925 } 7926 7927 break; 7928 } 7929 7930 default: 7931 ASSERT(0); 7932 } 7933 7934 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7935 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7936 uintptr_t end = valoffs + size; 7937 7938 if (tracememsize != 0 && 7939 valoffs + tracememsize < end) { 7940 end = valoffs + tracememsize; 7941 tracememsize = 0; 7942 } 7943 7944 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7945 !dtrace_vcanload((void *)(uintptr_t)val, 7946 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7947 continue; 7948 7949 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7950 &val, end, act->dta_intuple, 7951 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7952 DIF_TF_BYREF: DIF_TF_BYUREF); 7953 continue; 7954 } 7955 7956 switch (size) { 7957 case 0: 7958 break; 7959 7960 case sizeof (uint8_t): 7961 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7962 break; 7963 case sizeof (uint16_t): 7964 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7965 break; 7966 case sizeof (uint32_t): 7967 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7968 break; 7969 case sizeof (uint64_t): 7970 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7971 break; 7972 default: 7973 /* 7974 * Any other size should have been returned by 7975 * reference, not by value. 7976 */ 7977 ASSERT(0); 7978 break; 7979 } 7980 } 7981 7982 if (*flags & CPU_DTRACE_DROP) 7983 continue; 7984 7985 if (*flags & CPU_DTRACE_FAULT) { 7986 int ndx; 7987 dtrace_action_t *err; 7988 7989 buf->dtb_errors++; 7990 7991 if (probe->dtpr_id == dtrace_probeid_error) { 7992 /* 7993 * There's nothing we can do -- we had an 7994 * error on the error probe. We bump an 7995 * error counter to at least indicate that 7996 * this condition happened. 7997 */ 7998 dtrace_error(&state->dts_dblerrors); 7999 continue; 8000 } 8001 8002 if (vtime) { 8003 /* 8004 * Before recursing on dtrace_probe(), we 8005 * need to explicitly clear out our start 8006 * time to prevent it from being accumulated 8007 * into t_dtrace_vtime. 8008 */ 8009 curthread->t_dtrace_start = 0; 8010 } 8011 8012 /* 8013 * Iterate over the actions to figure out which action 8014 * we were processing when we experienced the error. 8015 * Note that act points _past_ the faulting action; if 8016 * act is ecb->dte_action, the fault was in the 8017 * predicate, if it's ecb->dte_action->dta_next it's 8018 * in action #1, and so on. 8019 */ 8020 for (err = ecb->dte_action, ndx = 0; 8021 err != act; err = err->dta_next, ndx++) 8022 continue; 8023 8024 dtrace_probe_error(state, ecb->dte_epid, ndx, 8025 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 8026 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 8027 cpu_core[cpuid].cpuc_dtrace_illval); 8028 8029 continue; 8030 } 8031 8032 if (!committed) 8033 buf->dtb_offset = offs + ecb->dte_size; 8034 } 8035 8036 if (vtime) 8037 curthread->t_dtrace_start = dtrace_gethrtime(); 8038 8039 dtrace_probe_exit(cookie); 8040 } 8041 8042 /* 8043 * DTrace Probe Hashing Functions 8044 * 8045 * The functions in this section (and indeed, the functions in remaining 8046 * sections) are not _called_ from probe context. (Any exceptions to this are 8047 * marked with a "Note:".) Rather, they are called from elsewhere in the 8048 * DTrace framework to look-up probes in, add probes to and remove probes from 8049 * the DTrace probe hashes. (Each probe is hashed by each element of the 8050 * probe tuple -- allowing for fast lookups, regardless of what was 8051 * specified.) 8052 */ 8053 static uint_t 8054 dtrace_hash_str(const char *p) 8055 { 8056 unsigned int g; 8057 uint_t hval = 0; 8058 8059 while (*p) { 8060 hval = (hval << 4) + *p++; 8061 if ((g = (hval & 0xf0000000)) != 0) 8062 hval ^= g >> 24; 8063 hval &= ~g; 8064 } 8065 return (hval); 8066 } 8067 8068 static dtrace_hash_t * 8069 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs) 8070 { 8071 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8072 8073 hash->dth_stroffs = stroffs; 8074 hash->dth_nextoffs = nextoffs; 8075 hash->dth_prevoffs = prevoffs; 8076 8077 hash->dth_size = 1; 8078 hash->dth_mask = hash->dth_size - 1; 8079 8080 hash->dth_tab = kmem_zalloc(hash->dth_size * 8081 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8082 8083 return (hash); 8084 } 8085 8086 static void 8087 dtrace_hash_destroy(dtrace_hash_t *hash) 8088 { 8089 #ifdef DEBUG 8090 int i; 8091 8092 for (i = 0; i < hash->dth_size; i++) 8093 ASSERT(hash->dth_tab[i] == NULL); 8094 #endif 8095 8096 kmem_free(hash->dth_tab, 8097 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8098 kmem_free(hash, sizeof (dtrace_hash_t)); 8099 } 8100 8101 static void 8102 dtrace_hash_resize(dtrace_hash_t *hash) 8103 { 8104 int size = hash->dth_size, i, ndx; 8105 int new_size = hash->dth_size << 1; 8106 int new_mask = new_size - 1; 8107 dtrace_hashbucket_t **new_tab, *bucket, *next; 8108 8109 ASSERT((new_size & new_mask) == 0); 8110 8111 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8112 8113 for (i = 0; i < size; i++) { 8114 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8115 dtrace_probe_t *probe = bucket->dthb_chain; 8116 8117 ASSERT(probe != NULL); 8118 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8119 8120 next = bucket->dthb_next; 8121 bucket->dthb_next = new_tab[ndx]; 8122 new_tab[ndx] = bucket; 8123 } 8124 } 8125 8126 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8127 hash->dth_tab = new_tab; 8128 hash->dth_size = new_size; 8129 hash->dth_mask = new_mask; 8130 } 8131 8132 static void 8133 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8134 { 8135 int hashval = DTRACE_HASHSTR(hash, new); 8136 int ndx = hashval & hash->dth_mask; 8137 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8138 dtrace_probe_t **nextp, **prevp; 8139 8140 for (; bucket != NULL; bucket = bucket->dthb_next) { 8141 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8142 goto add; 8143 } 8144 8145 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8146 dtrace_hash_resize(hash); 8147 dtrace_hash_add(hash, new); 8148 return; 8149 } 8150 8151 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8152 bucket->dthb_next = hash->dth_tab[ndx]; 8153 hash->dth_tab[ndx] = bucket; 8154 hash->dth_nbuckets++; 8155 8156 add: 8157 nextp = DTRACE_HASHNEXT(hash, new); 8158 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8159 *nextp = bucket->dthb_chain; 8160 8161 if (bucket->dthb_chain != NULL) { 8162 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8163 ASSERT(*prevp == NULL); 8164 *prevp = new; 8165 } 8166 8167 bucket->dthb_chain = new; 8168 bucket->dthb_len++; 8169 } 8170 8171 static dtrace_probe_t * 8172 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8173 { 8174 int hashval = DTRACE_HASHSTR(hash, template); 8175 int ndx = hashval & hash->dth_mask; 8176 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8177 8178 for (; bucket != NULL; bucket = bucket->dthb_next) { 8179 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8180 return (bucket->dthb_chain); 8181 } 8182 8183 return (NULL); 8184 } 8185 8186 static int 8187 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8188 { 8189 int hashval = DTRACE_HASHSTR(hash, template); 8190 int ndx = hashval & hash->dth_mask; 8191 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8192 8193 for (; bucket != NULL; bucket = bucket->dthb_next) { 8194 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8195 return (bucket->dthb_len); 8196 } 8197 8198 return (0); 8199 } 8200 8201 static void 8202 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8203 { 8204 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8205 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8206 8207 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8208 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8209 8210 /* 8211 * Find the bucket that we're removing this probe from. 8212 */ 8213 for (; bucket != NULL; bucket = bucket->dthb_next) { 8214 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8215 break; 8216 } 8217 8218 ASSERT(bucket != NULL); 8219 8220 if (*prevp == NULL) { 8221 if (*nextp == NULL) { 8222 /* 8223 * The removed probe was the only probe on this 8224 * bucket; we need to remove the bucket. 8225 */ 8226 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8227 8228 ASSERT(bucket->dthb_chain == probe); 8229 ASSERT(b != NULL); 8230 8231 if (b == bucket) { 8232 hash->dth_tab[ndx] = bucket->dthb_next; 8233 } else { 8234 while (b->dthb_next != bucket) 8235 b = b->dthb_next; 8236 b->dthb_next = bucket->dthb_next; 8237 } 8238 8239 ASSERT(hash->dth_nbuckets > 0); 8240 hash->dth_nbuckets--; 8241 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8242 return; 8243 } 8244 8245 bucket->dthb_chain = *nextp; 8246 } else { 8247 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8248 } 8249 8250 if (*nextp != NULL) 8251 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8252 } 8253 8254 /* 8255 * DTrace Utility Functions 8256 * 8257 * These are random utility functions that are _not_ called from probe context. 8258 */ 8259 static int 8260 dtrace_badattr(const dtrace_attribute_t *a) 8261 { 8262 return (a->dtat_name > DTRACE_STABILITY_MAX || 8263 a->dtat_data > DTRACE_STABILITY_MAX || 8264 a->dtat_class > DTRACE_CLASS_MAX); 8265 } 8266 8267 /* 8268 * Return a duplicate copy of a string. If the specified string is NULL, 8269 * this function returns a zero-length string. 8270 */ 8271 static char * 8272 dtrace_strdup(const char *str) 8273 { 8274 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8275 8276 if (str != NULL) 8277 (void) strcpy(new, str); 8278 8279 return (new); 8280 } 8281 8282 #define DTRACE_ISALPHA(c) \ 8283 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8284 8285 static int 8286 dtrace_badname(const char *s) 8287 { 8288 char c; 8289 8290 if (s == NULL || (c = *s++) == '\0') 8291 return (0); 8292 8293 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8294 return (1); 8295 8296 while ((c = *s++) != '\0') { 8297 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8298 c != '-' && c != '_' && c != '.' && c != '`') 8299 return (1); 8300 } 8301 8302 return (0); 8303 } 8304 8305 static void 8306 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8307 { 8308 uint32_t priv; 8309 8310 #ifdef illumos 8311 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8312 /* 8313 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8314 */ 8315 priv = DTRACE_PRIV_ALL; 8316 } else { 8317 *uidp = crgetuid(cr); 8318 *zoneidp = crgetzoneid(cr); 8319 8320 priv = 0; 8321 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8322 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8323 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8324 priv |= DTRACE_PRIV_USER; 8325 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8326 priv |= DTRACE_PRIV_PROC; 8327 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8328 priv |= DTRACE_PRIV_OWNER; 8329 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8330 priv |= DTRACE_PRIV_ZONEOWNER; 8331 } 8332 #else 8333 priv = DTRACE_PRIV_ALL; 8334 #endif 8335 8336 *privp = priv; 8337 } 8338 8339 #ifdef DTRACE_ERRDEBUG 8340 static void 8341 dtrace_errdebug(const char *str) 8342 { 8343 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8344 int occupied = 0; 8345 8346 mutex_enter(&dtrace_errlock); 8347 dtrace_errlast = str; 8348 dtrace_errthread = curthread; 8349 8350 while (occupied++ < DTRACE_ERRHASHSZ) { 8351 if (dtrace_errhash[hval].dter_msg == str) { 8352 dtrace_errhash[hval].dter_count++; 8353 goto out; 8354 } 8355 8356 if (dtrace_errhash[hval].dter_msg != NULL) { 8357 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8358 continue; 8359 } 8360 8361 dtrace_errhash[hval].dter_msg = str; 8362 dtrace_errhash[hval].dter_count = 1; 8363 goto out; 8364 } 8365 8366 panic("dtrace: undersized error hash"); 8367 out: 8368 mutex_exit(&dtrace_errlock); 8369 } 8370 #endif 8371 8372 /* 8373 * DTrace Matching Functions 8374 * 8375 * These functions are used to match groups of probes, given some elements of 8376 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8377 */ 8378 static int 8379 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8380 zoneid_t zoneid) 8381 { 8382 if (priv != DTRACE_PRIV_ALL) { 8383 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8384 uint32_t match = priv & ppriv; 8385 8386 /* 8387 * No PRIV_DTRACE_* privileges... 8388 */ 8389 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8390 DTRACE_PRIV_KERNEL)) == 0) 8391 return (0); 8392 8393 /* 8394 * No matching bits, but there were bits to match... 8395 */ 8396 if (match == 0 && ppriv != 0) 8397 return (0); 8398 8399 /* 8400 * Need to have permissions to the process, but don't... 8401 */ 8402 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8403 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8404 return (0); 8405 } 8406 8407 /* 8408 * Need to be in the same zone unless we possess the 8409 * privilege to examine all zones. 8410 */ 8411 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8412 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8413 return (0); 8414 } 8415 } 8416 8417 return (1); 8418 } 8419 8420 /* 8421 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8422 * consists of input pattern strings and an ops-vector to evaluate them. 8423 * This function returns >0 for match, 0 for no match, and <0 for error. 8424 */ 8425 static int 8426 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8427 uint32_t priv, uid_t uid, zoneid_t zoneid) 8428 { 8429 dtrace_provider_t *pvp = prp->dtpr_provider; 8430 int rv; 8431 8432 if (pvp->dtpv_defunct) 8433 return (0); 8434 8435 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8436 return (rv); 8437 8438 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8439 return (rv); 8440 8441 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8442 return (rv); 8443 8444 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8445 return (rv); 8446 8447 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8448 return (0); 8449 8450 return (rv); 8451 } 8452 8453 /* 8454 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8455 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8456 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8457 * In addition, all of the recursion cases except for '*' matching have been 8458 * unwound. For '*', we still implement recursive evaluation, but a depth 8459 * counter is maintained and matching is aborted if we recurse too deep. 8460 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8461 */ 8462 static int 8463 dtrace_match_glob(const char *s, const char *p, int depth) 8464 { 8465 const char *olds; 8466 char s1, c; 8467 int gs; 8468 8469 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8470 return (-1); 8471 8472 if (s == NULL) 8473 s = ""; /* treat NULL as empty string */ 8474 8475 top: 8476 olds = s; 8477 s1 = *s++; 8478 8479 if (p == NULL) 8480 return (0); 8481 8482 if ((c = *p++) == '\0') 8483 return (s1 == '\0'); 8484 8485 switch (c) { 8486 case '[': { 8487 int ok = 0, notflag = 0; 8488 char lc = '\0'; 8489 8490 if (s1 == '\0') 8491 return (0); 8492 8493 if (*p == '!') { 8494 notflag = 1; 8495 p++; 8496 } 8497 8498 if ((c = *p++) == '\0') 8499 return (0); 8500 8501 do { 8502 if (c == '-' && lc != '\0' && *p != ']') { 8503 if ((c = *p++) == '\0') 8504 return (0); 8505 if (c == '\\' && (c = *p++) == '\0') 8506 return (0); 8507 8508 if (notflag) { 8509 if (s1 < lc || s1 > c) 8510 ok++; 8511 else 8512 return (0); 8513 } else if (lc <= s1 && s1 <= c) 8514 ok++; 8515 8516 } else if (c == '\\' && (c = *p++) == '\0') 8517 return (0); 8518 8519 lc = c; /* save left-hand 'c' for next iteration */ 8520 8521 if (notflag) { 8522 if (s1 != c) 8523 ok++; 8524 else 8525 return (0); 8526 } else if (s1 == c) 8527 ok++; 8528 8529 if ((c = *p++) == '\0') 8530 return (0); 8531 8532 } while (c != ']'); 8533 8534 if (ok) 8535 goto top; 8536 8537 return (0); 8538 } 8539 8540 case '\\': 8541 if ((c = *p++) == '\0') 8542 return (0); 8543 /*FALLTHRU*/ 8544 8545 default: 8546 if (c != s1) 8547 return (0); 8548 /*FALLTHRU*/ 8549 8550 case '?': 8551 if (s1 != '\0') 8552 goto top; 8553 return (0); 8554 8555 case '*': 8556 while (*p == '*') 8557 p++; /* consecutive *'s are identical to a single one */ 8558 8559 if (*p == '\0') 8560 return (1); 8561 8562 for (s = olds; *s != '\0'; s++) { 8563 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8564 return (gs); 8565 } 8566 8567 return (0); 8568 } 8569 } 8570 8571 /*ARGSUSED*/ 8572 static int 8573 dtrace_match_string(const char *s, const char *p, int depth) 8574 { 8575 return (s != NULL && strcmp(s, p) == 0); 8576 } 8577 8578 /*ARGSUSED*/ 8579 static int 8580 dtrace_match_nul(const char *s, const char *p, int depth) 8581 { 8582 return (1); /* always match the empty pattern */ 8583 } 8584 8585 /*ARGSUSED*/ 8586 static int 8587 dtrace_match_nonzero(const char *s, const char *p, int depth) 8588 { 8589 return (s != NULL && s[0] != '\0'); 8590 } 8591 8592 static int 8593 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8594 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8595 { 8596 dtrace_probe_t template, *probe; 8597 dtrace_hash_t *hash = NULL; 8598 int len, best = INT_MAX, nmatched = 0; 8599 dtrace_id_t i; 8600 8601 ASSERT(MUTEX_HELD(&dtrace_lock)); 8602 8603 /* 8604 * If the probe ID is specified in the key, just lookup by ID and 8605 * invoke the match callback once if a matching probe is found. 8606 */ 8607 if (pkp->dtpk_id != DTRACE_IDNONE) { 8608 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8609 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8610 (void) (*matched)(probe, arg); 8611 nmatched++; 8612 } 8613 return (nmatched); 8614 } 8615 8616 template.dtpr_mod = (char *)pkp->dtpk_mod; 8617 template.dtpr_func = (char *)pkp->dtpk_func; 8618 template.dtpr_name = (char *)pkp->dtpk_name; 8619 8620 /* 8621 * We want to find the most distinct of the module name, function 8622 * name, and name. So for each one that is not a glob pattern or 8623 * empty string, we perform a lookup in the corresponding hash and 8624 * use the hash table with the fewest collisions to do our search. 8625 */ 8626 if (pkp->dtpk_mmatch == &dtrace_match_string && 8627 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8628 best = len; 8629 hash = dtrace_bymod; 8630 } 8631 8632 if (pkp->dtpk_fmatch == &dtrace_match_string && 8633 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8634 best = len; 8635 hash = dtrace_byfunc; 8636 } 8637 8638 if (pkp->dtpk_nmatch == &dtrace_match_string && 8639 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8640 best = len; 8641 hash = dtrace_byname; 8642 } 8643 8644 /* 8645 * If we did not select a hash table, iterate over every probe and 8646 * invoke our callback for each one that matches our input probe key. 8647 */ 8648 if (hash == NULL) { 8649 for (i = 0; i < dtrace_nprobes; i++) { 8650 if ((probe = dtrace_probes[i]) == NULL || 8651 dtrace_match_probe(probe, pkp, priv, uid, 8652 zoneid) <= 0) 8653 continue; 8654 8655 nmatched++; 8656 8657 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8658 break; 8659 } 8660 8661 return (nmatched); 8662 } 8663 8664 /* 8665 * If we selected a hash table, iterate over each probe of the same key 8666 * name and invoke the callback for every probe that matches the other 8667 * attributes of our input probe key. 8668 */ 8669 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8670 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8671 8672 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8673 continue; 8674 8675 nmatched++; 8676 8677 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8678 break; 8679 } 8680 8681 return (nmatched); 8682 } 8683 8684 /* 8685 * Return the function pointer dtrace_probecmp() should use to compare the 8686 * specified pattern with a string. For NULL or empty patterns, we select 8687 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8688 * For non-empty non-glob strings, we use dtrace_match_string(). 8689 */ 8690 static dtrace_probekey_f * 8691 dtrace_probekey_func(const char *p) 8692 { 8693 char c; 8694 8695 if (p == NULL || *p == '\0') 8696 return (&dtrace_match_nul); 8697 8698 while ((c = *p++) != '\0') { 8699 if (c == '[' || c == '?' || c == '*' || c == '\\') 8700 return (&dtrace_match_glob); 8701 } 8702 8703 return (&dtrace_match_string); 8704 } 8705 8706 /* 8707 * Build a probe comparison key for use with dtrace_match_probe() from the 8708 * given probe description. By convention, a null key only matches anchored 8709 * probes: if each field is the empty string, reset dtpk_fmatch to 8710 * dtrace_match_nonzero(). 8711 */ 8712 static void 8713 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8714 { 8715 pkp->dtpk_prov = pdp->dtpd_provider; 8716 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8717 8718 pkp->dtpk_mod = pdp->dtpd_mod; 8719 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8720 8721 pkp->dtpk_func = pdp->dtpd_func; 8722 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8723 8724 pkp->dtpk_name = pdp->dtpd_name; 8725 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8726 8727 pkp->dtpk_id = pdp->dtpd_id; 8728 8729 if (pkp->dtpk_id == DTRACE_IDNONE && 8730 pkp->dtpk_pmatch == &dtrace_match_nul && 8731 pkp->dtpk_mmatch == &dtrace_match_nul && 8732 pkp->dtpk_fmatch == &dtrace_match_nul && 8733 pkp->dtpk_nmatch == &dtrace_match_nul) 8734 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8735 } 8736 8737 /* 8738 * DTrace Provider-to-Framework API Functions 8739 * 8740 * These functions implement much of the Provider-to-Framework API, as 8741 * described in <sys/dtrace.h>. The parts of the API not in this section are 8742 * the functions in the API for probe management (found below), and 8743 * dtrace_probe() itself (found above). 8744 */ 8745 8746 /* 8747 * Register the calling provider with the DTrace framework. This should 8748 * generally be called by DTrace providers in their attach(9E) entry point. 8749 */ 8750 int 8751 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8752 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8753 { 8754 dtrace_provider_t *provider; 8755 8756 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8757 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8758 "arguments", name ? name : "<NULL>"); 8759 return (EINVAL); 8760 } 8761 8762 if (name[0] == '\0' || dtrace_badname(name)) { 8763 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8764 "provider name", name); 8765 return (EINVAL); 8766 } 8767 8768 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8769 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8770 pops->dtps_destroy == NULL || 8771 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8772 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8773 "provider ops", name); 8774 return (EINVAL); 8775 } 8776 8777 if (dtrace_badattr(&pap->dtpa_provider) || 8778 dtrace_badattr(&pap->dtpa_mod) || 8779 dtrace_badattr(&pap->dtpa_func) || 8780 dtrace_badattr(&pap->dtpa_name) || 8781 dtrace_badattr(&pap->dtpa_args)) { 8782 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8783 "provider attributes", name); 8784 return (EINVAL); 8785 } 8786 8787 if (priv & ~DTRACE_PRIV_ALL) { 8788 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8789 "privilege attributes", name); 8790 return (EINVAL); 8791 } 8792 8793 if ((priv & DTRACE_PRIV_KERNEL) && 8794 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8795 pops->dtps_usermode == NULL) { 8796 cmn_err(CE_WARN, "failed to register provider '%s': need " 8797 "dtps_usermode() op for given privilege attributes", name); 8798 return (EINVAL); 8799 } 8800 8801 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8802 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8803 (void) strcpy(provider->dtpv_name, name); 8804 8805 provider->dtpv_attr = *pap; 8806 provider->dtpv_priv.dtpp_flags = priv; 8807 if (cr != NULL) { 8808 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8809 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8810 } 8811 provider->dtpv_pops = *pops; 8812 8813 if (pops->dtps_provide == NULL) { 8814 ASSERT(pops->dtps_provide_module != NULL); 8815 provider->dtpv_pops.dtps_provide = 8816 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8817 } 8818 8819 if (pops->dtps_provide_module == NULL) { 8820 ASSERT(pops->dtps_provide != NULL); 8821 provider->dtpv_pops.dtps_provide_module = 8822 (void (*)(void *, modctl_t *))dtrace_nullop; 8823 } 8824 8825 if (pops->dtps_suspend == NULL) { 8826 ASSERT(pops->dtps_resume == NULL); 8827 provider->dtpv_pops.dtps_suspend = 8828 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8829 provider->dtpv_pops.dtps_resume = 8830 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8831 } 8832 8833 provider->dtpv_arg = arg; 8834 *idp = (dtrace_provider_id_t)provider; 8835 8836 if (pops == &dtrace_provider_ops) { 8837 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8838 ASSERT(MUTEX_HELD(&dtrace_lock)); 8839 ASSERT(dtrace_anon.dta_enabling == NULL); 8840 8841 /* 8842 * We make sure that the DTrace provider is at the head of 8843 * the provider chain. 8844 */ 8845 provider->dtpv_next = dtrace_provider; 8846 dtrace_provider = provider; 8847 return (0); 8848 } 8849 8850 mutex_enter(&dtrace_provider_lock); 8851 mutex_enter(&dtrace_lock); 8852 8853 /* 8854 * If there is at least one provider registered, we'll add this 8855 * provider after the first provider. 8856 */ 8857 if (dtrace_provider != NULL) { 8858 provider->dtpv_next = dtrace_provider->dtpv_next; 8859 dtrace_provider->dtpv_next = provider; 8860 } else { 8861 dtrace_provider = provider; 8862 } 8863 8864 if (dtrace_retained != NULL) { 8865 dtrace_enabling_provide(provider); 8866 8867 /* 8868 * Now we need to call dtrace_enabling_matchall() -- which 8869 * will acquire cpu_lock and dtrace_lock. We therefore need 8870 * to drop all of our locks before calling into it... 8871 */ 8872 mutex_exit(&dtrace_lock); 8873 mutex_exit(&dtrace_provider_lock); 8874 dtrace_enabling_matchall(); 8875 8876 return (0); 8877 } 8878 8879 mutex_exit(&dtrace_lock); 8880 mutex_exit(&dtrace_provider_lock); 8881 8882 return (0); 8883 } 8884 8885 /* 8886 * Unregister the specified provider from the DTrace framework. This should 8887 * generally be called by DTrace providers in their detach(9E) entry point. 8888 */ 8889 int 8890 dtrace_unregister(dtrace_provider_id_t id) 8891 { 8892 dtrace_provider_t *old = (dtrace_provider_t *)id; 8893 dtrace_provider_t *prev = NULL; 8894 int i, self = 0, noreap = 0; 8895 dtrace_probe_t *probe, *first = NULL; 8896 8897 if (old->dtpv_pops.dtps_enable == 8898 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8899 /* 8900 * If DTrace itself is the provider, we're called with locks 8901 * already held. 8902 */ 8903 ASSERT(old == dtrace_provider); 8904 #ifdef illumos 8905 ASSERT(dtrace_devi != NULL); 8906 #endif 8907 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8908 ASSERT(MUTEX_HELD(&dtrace_lock)); 8909 self = 1; 8910 8911 if (dtrace_provider->dtpv_next != NULL) { 8912 /* 8913 * There's another provider here; return failure. 8914 */ 8915 return (EBUSY); 8916 } 8917 } else { 8918 mutex_enter(&dtrace_provider_lock); 8919 #ifdef illumos 8920 mutex_enter(&mod_lock); 8921 #endif 8922 mutex_enter(&dtrace_lock); 8923 } 8924 8925 /* 8926 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8927 * probes, we refuse to let providers slither away, unless this 8928 * provider has already been explicitly invalidated. 8929 */ 8930 if (!old->dtpv_defunct && 8931 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8932 dtrace_anon.dta_state->dts_necbs > 0))) { 8933 if (!self) { 8934 mutex_exit(&dtrace_lock); 8935 #ifdef illumos 8936 mutex_exit(&mod_lock); 8937 #endif 8938 mutex_exit(&dtrace_provider_lock); 8939 } 8940 return (EBUSY); 8941 } 8942 8943 /* 8944 * Attempt to destroy the probes associated with this provider. 8945 */ 8946 for (i = 0; i < dtrace_nprobes; i++) { 8947 if ((probe = dtrace_probes[i]) == NULL) 8948 continue; 8949 8950 if (probe->dtpr_provider != old) 8951 continue; 8952 8953 if (probe->dtpr_ecb == NULL) 8954 continue; 8955 8956 /* 8957 * If we are trying to unregister a defunct provider, and the 8958 * provider was made defunct within the interval dictated by 8959 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8960 * attempt to reap our enablings. To denote that the provider 8961 * should reattempt to unregister itself at some point in the 8962 * future, we will return a differentiable error code (EAGAIN 8963 * instead of EBUSY) in this case. 8964 */ 8965 if (dtrace_gethrtime() - old->dtpv_defunct > 8966 dtrace_unregister_defunct_reap) 8967 noreap = 1; 8968 8969 if (!self) { 8970 mutex_exit(&dtrace_lock); 8971 #ifdef illumos 8972 mutex_exit(&mod_lock); 8973 #endif 8974 mutex_exit(&dtrace_provider_lock); 8975 } 8976 8977 if (noreap) 8978 return (EBUSY); 8979 8980 (void) taskq_dispatch(dtrace_taskq, 8981 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8982 8983 return (EAGAIN); 8984 } 8985 8986 /* 8987 * All of the probes for this provider are disabled; we can safely 8988 * remove all of them from their hash chains and from the probe array. 8989 */ 8990 for (i = 0; i < dtrace_nprobes; i++) { 8991 if ((probe = dtrace_probes[i]) == NULL) 8992 continue; 8993 8994 if (probe->dtpr_provider != old) 8995 continue; 8996 8997 dtrace_probes[i] = NULL; 8998 8999 dtrace_hash_remove(dtrace_bymod, probe); 9000 dtrace_hash_remove(dtrace_byfunc, probe); 9001 dtrace_hash_remove(dtrace_byname, probe); 9002 9003 if (first == NULL) { 9004 first = probe; 9005 probe->dtpr_nextmod = NULL; 9006 } else { 9007 probe->dtpr_nextmod = first; 9008 first = probe; 9009 } 9010 } 9011 9012 /* 9013 * The provider's probes have been removed from the hash chains and 9014 * from the probe array. Now issue a dtrace_sync() to be sure that 9015 * everyone has cleared out from any probe array processing. 9016 */ 9017 dtrace_sync(); 9018 9019 for (probe = first; probe != NULL; probe = first) { 9020 first = probe->dtpr_nextmod; 9021 9022 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 9023 probe->dtpr_arg); 9024 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9025 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9026 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9027 #ifdef illumos 9028 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9029 #else 9030 free_unr(dtrace_arena, probe->dtpr_id); 9031 #endif 9032 kmem_free(probe, sizeof (dtrace_probe_t)); 9033 } 9034 9035 if ((prev = dtrace_provider) == old) { 9036 #ifdef illumos 9037 ASSERT(self || dtrace_devi == NULL); 9038 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9039 #endif 9040 dtrace_provider = old->dtpv_next; 9041 } else { 9042 while (prev != NULL && prev->dtpv_next != old) 9043 prev = prev->dtpv_next; 9044 9045 if (prev == NULL) { 9046 panic("attempt to unregister non-existent " 9047 "dtrace provider %p\n", (void *)id); 9048 } 9049 9050 prev->dtpv_next = old->dtpv_next; 9051 } 9052 9053 if (!self) { 9054 mutex_exit(&dtrace_lock); 9055 #ifdef illumos 9056 mutex_exit(&mod_lock); 9057 #endif 9058 mutex_exit(&dtrace_provider_lock); 9059 } 9060 9061 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9062 kmem_free(old, sizeof (dtrace_provider_t)); 9063 9064 return (0); 9065 } 9066 9067 /* 9068 * Invalidate the specified provider. All subsequent probe lookups for the 9069 * specified provider will fail, but its probes will not be removed. 9070 */ 9071 void 9072 dtrace_invalidate(dtrace_provider_id_t id) 9073 { 9074 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9075 9076 ASSERT(pvp->dtpv_pops.dtps_enable != 9077 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9078 9079 mutex_enter(&dtrace_provider_lock); 9080 mutex_enter(&dtrace_lock); 9081 9082 pvp->dtpv_defunct = dtrace_gethrtime(); 9083 9084 mutex_exit(&dtrace_lock); 9085 mutex_exit(&dtrace_provider_lock); 9086 } 9087 9088 /* 9089 * Indicate whether or not DTrace has attached. 9090 */ 9091 int 9092 dtrace_attached(void) 9093 { 9094 /* 9095 * dtrace_provider will be non-NULL iff the DTrace driver has 9096 * attached. (It's non-NULL because DTrace is always itself a 9097 * provider.) 9098 */ 9099 return (dtrace_provider != NULL); 9100 } 9101 9102 /* 9103 * Remove all the unenabled probes for the given provider. This function is 9104 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9105 * -- just as many of its associated probes as it can. 9106 */ 9107 int 9108 dtrace_condense(dtrace_provider_id_t id) 9109 { 9110 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9111 int i; 9112 dtrace_probe_t *probe; 9113 9114 /* 9115 * Make sure this isn't the dtrace provider itself. 9116 */ 9117 ASSERT(prov->dtpv_pops.dtps_enable != 9118 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9119 9120 mutex_enter(&dtrace_provider_lock); 9121 mutex_enter(&dtrace_lock); 9122 9123 /* 9124 * Attempt to destroy the probes associated with this provider. 9125 */ 9126 for (i = 0; i < dtrace_nprobes; i++) { 9127 if ((probe = dtrace_probes[i]) == NULL) 9128 continue; 9129 9130 if (probe->dtpr_provider != prov) 9131 continue; 9132 9133 if (probe->dtpr_ecb != NULL) 9134 continue; 9135 9136 dtrace_probes[i] = NULL; 9137 9138 dtrace_hash_remove(dtrace_bymod, probe); 9139 dtrace_hash_remove(dtrace_byfunc, probe); 9140 dtrace_hash_remove(dtrace_byname, probe); 9141 9142 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9143 probe->dtpr_arg); 9144 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9145 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9146 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9147 kmem_free(probe, sizeof (dtrace_probe_t)); 9148 #ifdef illumos 9149 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9150 #else 9151 free_unr(dtrace_arena, i + 1); 9152 #endif 9153 } 9154 9155 mutex_exit(&dtrace_lock); 9156 mutex_exit(&dtrace_provider_lock); 9157 9158 return (0); 9159 } 9160 9161 /* 9162 * DTrace Probe Management Functions 9163 * 9164 * The functions in this section perform the DTrace probe management, 9165 * including functions to create probes, look-up probes, and call into the 9166 * providers to request that probes be provided. Some of these functions are 9167 * in the Provider-to-Framework API; these functions can be identified by the 9168 * fact that they are not declared "static". 9169 */ 9170 9171 /* 9172 * Create a probe with the specified module name, function name, and name. 9173 */ 9174 dtrace_id_t 9175 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9176 const char *func, const char *name, int aframes, void *arg) 9177 { 9178 dtrace_probe_t *probe, **probes; 9179 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9180 dtrace_id_t id; 9181 9182 if (provider == dtrace_provider) { 9183 ASSERT(MUTEX_HELD(&dtrace_lock)); 9184 } else { 9185 mutex_enter(&dtrace_lock); 9186 } 9187 9188 #ifdef illumos 9189 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9190 VM_BESTFIT | VM_SLEEP); 9191 #else 9192 id = alloc_unr(dtrace_arena); 9193 #endif 9194 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9195 9196 probe->dtpr_id = id; 9197 probe->dtpr_gen = dtrace_probegen++; 9198 probe->dtpr_mod = dtrace_strdup(mod); 9199 probe->dtpr_func = dtrace_strdup(func); 9200 probe->dtpr_name = dtrace_strdup(name); 9201 probe->dtpr_arg = arg; 9202 probe->dtpr_aframes = aframes; 9203 probe->dtpr_provider = provider; 9204 9205 dtrace_hash_add(dtrace_bymod, probe); 9206 dtrace_hash_add(dtrace_byfunc, probe); 9207 dtrace_hash_add(dtrace_byname, probe); 9208 9209 if (id - 1 >= dtrace_nprobes) { 9210 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9211 size_t nsize = osize << 1; 9212 9213 if (nsize == 0) { 9214 ASSERT(osize == 0); 9215 ASSERT(dtrace_probes == NULL); 9216 nsize = sizeof (dtrace_probe_t *); 9217 } 9218 9219 probes = kmem_zalloc(nsize, KM_SLEEP); 9220 9221 if (dtrace_probes == NULL) { 9222 ASSERT(osize == 0); 9223 dtrace_probes = probes; 9224 dtrace_nprobes = 1; 9225 } else { 9226 dtrace_probe_t **oprobes = dtrace_probes; 9227 9228 bcopy(oprobes, probes, osize); 9229 dtrace_membar_producer(); 9230 dtrace_probes = probes; 9231 9232 dtrace_sync(); 9233 9234 /* 9235 * All CPUs are now seeing the new probes array; we can 9236 * safely free the old array. 9237 */ 9238 kmem_free(oprobes, osize); 9239 dtrace_nprobes <<= 1; 9240 } 9241 9242 ASSERT(id - 1 < dtrace_nprobes); 9243 } 9244 9245 ASSERT(dtrace_probes[id - 1] == NULL); 9246 dtrace_probes[id - 1] = probe; 9247 9248 if (provider != dtrace_provider) 9249 mutex_exit(&dtrace_lock); 9250 9251 return (id); 9252 } 9253 9254 static dtrace_probe_t * 9255 dtrace_probe_lookup_id(dtrace_id_t id) 9256 { 9257 ASSERT(MUTEX_HELD(&dtrace_lock)); 9258 9259 if (id == 0 || id > dtrace_nprobes) 9260 return (NULL); 9261 9262 return (dtrace_probes[id - 1]); 9263 } 9264 9265 static int 9266 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9267 { 9268 *((dtrace_id_t *)arg) = probe->dtpr_id; 9269 9270 return (DTRACE_MATCH_DONE); 9271 } 9272 9273 /* 9274 * Look up a probe based on provider and one or more of module name, function 9275 * name and probe name. 9276 */ 9277 dtrace_id_t 9278 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9279 char *func, char *name) 9280 { 9281 dtrace_probekey_t pkey; 9282 dtrace_id_t id; 9283 int match; 9284 9285 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9286 pkey.dtpk_pmatch = &dtrace_match_string; 9287 pkey.dtpk_mod = mod; 9288 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9289 pkey.dtpk_func = func; 9290 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9291 pkey.dtpk_name = name; 9292 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9293 pkey.dtpk_id = DTRACE_IDNONE; 9294 9295 mutex_enter(&dtrace_lock); 9296 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9297 dtrace_probe_lookup_match, &id); 9298 mutex_exit(&dtrace_lock); 9299 9300 ASSERT(match == 1 || match == 0); 9301 return (match ? id : 0); 9302 } 9303 9304 /* 9305 * Returns the probe argument associated with the specified probe. 9306 */ 9307 void * 9308 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9309 { 9310 dtrace_probe_t *probe; 9311 void *rval = NULL; 9312 9313 mutex_enter(&dtrace_lock); 9314 9315 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9316 probe->dtpr_provider == (dtrace_provider_t *)id) 9317 rval = probe->dtpr_arg; 9318 9319 mutex_exit(&dtrace_lock); 9320 9321 return (rval); 9322 } 9323 9324 /* 9325 * Copy a probe into a probe description. 9326 */ 9327 static void 9328 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9329 { 9330 bzero(pdp, sizeof (dtrace_probedesc_t)); 9331 pdp->dtpd_id = prp->dtpr_id; 9332 9333 (void) strncpy(pdp->dtpd_provider, 9334 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9335 9336 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9337 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9338 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9339 } 9340 9341 /* 9342 * Called to indicate that a probe -- or probes -- should be provided by a 9343 * specfied provider. If the specified description is NULL, the provider will 9344 * be told to provide all of its probes. (This is done whenever a new 9345 * consumer comes along, or whenever a retained enabling is to be matched.) If 9346 * the specified description is non-NULL, the provider is given the 9347 * opportunity to dynamically provide the specified probe, allowing providers 9348 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9349 * probes.) If the provider is NULL, the operations will be applied to all 9350 * providers; if the provider is non-NULL the operations will only be applied 9351 * to the specified provider. The dtrace_provider_lock must be held, and the 9352 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9353 * will need to grab the dtrace_lock when it reenters the framework through 9354 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9355 */ 9356 static void 9357 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9358 { 9359 #ifdef illumos 9360 modctl_t *ctl; 9361 #endif 9362 int all = 0; 9363 9364 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9365 9366 if (prv == NULL) { 9367 all = 1; 9368 prv = dtrace_provider; 9369 } 9370 9371 do { 9372 /* 9373 * First, call the blanket provide operation. 9374 */ 9375 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9376 9377 #ifdef illumos 9378 /* 9379 * Now call the per-module provide operation. We will grab 9380 * mod_lock to prevent the list from being modified. Note 9381 * that this also prevents the mod_busy bits from changing. 9382 * (mod_busy can only be changed with mod_lock held.) 9383 */ 9384 mutex_enter(&mod_lock); 9385 9386 ctl = &modules; 9387 do { 9388 if (ctl->mod_busy || ctl->mod_mp == NULL) 9389 continue; 9390 9391 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9392 9393 } while ((ctl = ctl->mod_next) != &modules); 9394 9395 mutex_exit(&mod_lock); 9396 #endif 9397 } while (all && (prv = prv->dtpv_next) != NULL); 9398 } 9399 9400 #ifdef illumos 9401 /* 9402 * Iterate over each probe, and call the Framework-to-Provider API function 9403 * denoted by offs. 9404 */ 9405 static void 9406 dtrace_probe_foreach(uintptr_t offs) 9407 { 9408 dtrace_provider_t *prov; 9409 void (*func)(void *, dtrace_id_t, void *); 9410 dtrace_probe_t *probe; 9411 dtrace_icookie_t cookie; 9412 int i; 9413 9414 /* 9415 * We disable interrupts to walk through the probe array. This is 9416 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9417 * won't see stale data. 9418 */ 9419 cookie = dtrace_interrupt_disable(); 9420 9421 for (i = 0; i < dtrace_nprobes; i++) { 9422 if ((probe = dtrace_probes[i]) == NULL) 9423 continue; 9424 9425 if (probe->dtpr_ecb == NULL) { 9426 /* 9427 * This probe isn't enabled -- don't call the function. 9428 */ 9429 continue; 9430 } 9431 9432 prov = probe->dtpr_provider; 9433 func = *((void(**)(void *, dtrace_id_t, void *)) 9434 ((uintptr_t)&prov->dtpv_pops + offs)); 9435 9436 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9437 } 9438 9439 dtrace_interrupt_enable(cookie); 9440 } 9441 #endif 9442 9443 static int 9444 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9445 { 9446 dtrace_probekey_t pkey; 9447 uint32_t priv; 9448 uid_t uid; 9449 zoneid_t zoneid; 9450 9451 ASSERT(MUTEX_HELD(&dtrace_lock)); 9452 dtrace_ecb_create_cache = NULL; 9453 9454 if (desc == NULL) { 9455 /* 9456 * If we're passed a NULL description, we're being asked to 9457 * create an ECB with a NULL probe. 9458 */ 9459 (void) dtrace_ecb_create_enable(NULL, enab); 9460 return (0); 9461 } 9462 9463 dtrace_probekey(desc, &pkey); 9464 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9465 &priv, &uid, &zoneid); 9466 9467 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9468 enab)); 9469 } 9470 9471 /* 9472 * DTrace Helper Provider Functions 9473 */ 9474 static void 9475 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9476 { 9477 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9478 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9479 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9480 } 9481 9482 static void 9483 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9484 const dof_provider_t *dofprov, char *strtab) 9485 { 9486 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9487 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9488 dofprov->dofpv_provattr); 9489 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9490 dofprov->dofpv_modattr); 9491 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9492 dofprov->dofpv_funcattr); 9493 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9494 dofprov->dofpv_nameattr); 9495 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9496 dofprov->dofpv_argsattr); 9497 } 9498 9499 static void 9500 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9501 { 9502 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9503 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9504 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9505 dof_provider_t *provider; 9506 dof_probe_t *probe; 9507 uint32_t *off, *enoff; 9508 uint8_t *arg; 9509 char *strtab; 9510 uint_t i, nprobes; 9511 dtrace_helper_provdesc_t dhpv; 9512 dtrace_helper_probedesc_t dhpb; 9513 dtrace_meta_t *meta = dtrace_meta_pid; 9514 dtrace_mops_t *mops = &meta->dtm_mops; 9515 void *parg; 9516 9517 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9518 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9519 provider->dofpv_strtab * dof->dofh_secsize); 9520 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9521 provider->dofpv_probes * dof->dofh_secsize); 9522 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9523 provider->dofpv_prargs * dof->dofh_secsize); 9524 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9525 provider->dofpv_proffs * dof->dofh_secsize); 9526 9527 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9528 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9529 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9530 enoff = NULL; 9531 9532 /* 9533 * See dtrace_helper_provider_validate(). 9534 */ 9535 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9536 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9537 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9538 provider->dofpv_prenoffs * dof->dofh_secsize); 9539 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9540 } 9541 9542 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9543 9544 /* 9545 * Create the provider. 9546 */ 9547 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9548 9549 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9550 return; 9551 9552 meta->dtm_count++; 9553 9554 /* 9555 * Create the probes. 9556 */ 9557 for (i = 0; i < nprobes; i++) { 9558 probe = (dof_probe_t *)(uintptr_t)(daddr + 9559 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9560 9561 /* See the check in dtrace_helper_provider_validate(). */ 9562 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9563 continue; 9564 9565 dhpb.dthpb_mod = dhp->dofhp_mod; 9566 dhpb.dthpb_func = strtab + probe->dofpr_func; 9567 dhpb.dthpb_name = strtab + probe->dofpr_name; 9568 dhpb.dthpb_base = probe->dofpr_addr; 9569 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9570 dhpb.dthpb_noffs = probe->dofpr_noffs; 9571 if (enoff != NULL) { 9572 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9573 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9574 } else { 9575 dhpb.dthpb_enoffs = NULL; 9576 dhpb.dthpb_nenoffs = 0; 9577 } 9578 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9579 dhpb.dthpb_nargc = probe->dofpr_nargc; 9580 dhpb.dthpb_xargc = probe->dofpr_xargc; 9581 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9582 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9583 9584 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9585 } 9586 } 9587 9588 static void 9589 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9590 { 9591 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9592 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9593 int i; 9594 9595 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9596 9597 for (i = 0; i < dof->dofh_secnum; i++) { 9598 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9599 dof->dofh_secoff + i * dof->dofh_secsize); 9600 9601 if (sec->dofs_type != DOF_SECT_PROVIDER) 9602 continue; 9603 9604 dtrace_helper_provide_one(dhp, sec, pid); 9605 } 9606 9607 /* 9608 * We may have just created probes, so we must now rematch against 9609 * any retained enablings. Note that this call will acquire both 9610 * cpu_lock and dtrace_lock; the fact that we are holding 9611 * dtrace_meta_lock now is what defines the ordering with respect to 9612 * these three locks. 9613 */ 9614 dtrace_enabling_matchall(); 9615 } 9616 9617 static void 9618 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9619 { 9620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9621 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9622 dof_sec_t *str_sec; 9623 dof_provider_t *provider; 9624 char *strtab; 9625 dtrace_helper_provdesc_t dhpv; 9626 dtrace_meta_t *meta = dtrace_meta_pid; 9627 dtrace_mops_t *mops = &meta->dtm_mops; 9628 9629 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9630 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9631 provider->dofpv_strtab * dof->dofh_secsize); 9632 9633 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9634 9635 /* 9636 * Create the provider. 9637 */ 9638 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9639 9640 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9641 9642 meta->dtm_count--; 9643 } 9644 9645 static void 9646 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9647 { 9648 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9649 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9650 int i; 9651 9652 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9653 9654 for (i = 0; i < dof->dofh_secnum; i++) { 9655 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9656 dof->dofh_secoff + i * dof->dofh_secsize); 9657 9658 if (sec->dofs_type != DOF_SECT_PROVIDER) 9659 continue; 9660 9661 dtrace_helper_provider_remove_one(dhp, sec, pid); 9662 } 9663 } 9664 9665 /* 9666 * DTrace Meta Provider-to-Framework API Functions 9667 * 9668 * These functions implement the Meta Provider-to-Framework API, as described 9669 * in <sys/dtrace.h>. 9670 */ 9671 int 9672 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9673 dtrace_meta_provider_id_t *idp) 9674 { 9675 dtrace_meta_t *meta; 9676 dtrace_helpers_t *help, *next; 9677 int i; 9678 9679 *idp = DTRACE_METAPROVNONE; 9680 9681 /* 9682 * We strictly don't need the name, but we hold onto it for 9683 * debuggability. All hail error queues! 9684 */ 9685 if (name == NULL) { 9686 cmn_err(CE_WARN, "failed to register meta-provider: " 9687 "invalid name"); 9688 return (EINVAL); 9689 } 9690 9691 if (mops == NULL || 9692 mops->dtms_create_probe == NULL || 9693 mops->dtms_provide_pid == NULL || 9694 mops->dtms_remove_pid == NULL) { 9695 cmn_err(CE_WARN, "failed to register meta-register %s: " 9696 "invalid ops", name); 9697 return (EINVAL); 9698 } 9699 9700 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9701 meta->dtm_mops = *mops; 9702 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9703 (void) strcpy(meta->dtm_name, name); 9704 meta->dtm_arg = arg; 9705 9706 mutex_enter(&dtrace_meta_lock); 9707 mutex_enter(&dtrace_lock); 9708 9709 if (dtrace_meta_pid != NULL) { 9710 mutex_exit(&dtrace_lock); 9711 mutex_exit(&dtrace_meta_lock); 9712 cmn_err(CE_WARN, "failed to register meta-register %s: " 9713 "user-land meta-provider exists", name); 9714 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9715 kmem_free(meta, sizeof (dtrace_meta_t)); 9716 return (EINVAL); 9717 } 9718 9719 dtrace_meta_pid = meta; 9720 *idp = (dtrace_meta_provider_id_t)meta; 9721 9722 /* 9723 * If there are providers and probes ready to go, pass them 9724 * off to the new meta provider now. 9725 */ 9726 9727 help = dtrace_deferred_pid; 9728 dtrace_deferred_pid = NULL; 9729 9730 mutex_exit(&dtrace_lock); 9731 9732 while (help != NULL) { 9733 for (i = 0; i < help->dthps_nprovs; i++) { 9734 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9735 help->dthps_pid); 9736 } 9737 9738 next = help->dthps_next; 9739 help->dthps_next = NULL; 9740 help->dthps_prev = NULL; 9741 help->dthps_deferred = 0; 9742 help = next; 9743 } 9744 9745 mutex_exit(&dtrace_meta_lock); 9746 9747 return (0); 9748 } 9749 9750 int 9751 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9752 { 9753 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9754 9755 mutex_enter(&dtrace_meta_lock); 9756 mutex_enter(&dtrace_lock); 9757 9758 if (old == dtrace_meta_pid) { 9759 pp = &dtrace_meta_pid; 9760 } else { 9761 panic("attempt to unregister non-existent " 9762 "dtrace meta-provider %p\n", (void *)old); 9763 } 9764 9765 if (old->dtm_count != 0) { 9766 mutex_exit(&dtrace_lock); 9767 mutex_exit(&dtrace_meta_lock); 9768 return (EBUSY); 9769 } 9770 9771 *pp = NULL; 9772 9773 mutex_exit(&dtrace_lock); 9774 mutex_exit(&dtrace_meta_lock); 9775 9776 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9777 kmem_free(old, sizeof (dtrace_meta_t)); 9778 9779 return (0); 9780 } 9781 9782 9783 /* 9784 * DTrace DIF Object Functions 9785 */ 9786 static int 9787 dtrace_difo_err(uint_t pc, const char *format, ...) 9788 { 9789 if (dtrace_err_verbose) { 9790 va_list alist; 9791 9792 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9793 va_start(alist, format); 9794 (void) vuprintf(format, alist); 9795 va_end(alist); 9796 } 9797 9798 #ifdef DTRACE_ERRDEBUG 9799 dtrace_errdebug(format); 9800 #endif 9801 return (1); 9802 } 9803 9804 /* 9805 * Validate a DTrace DIF object by checking the IR instructions. The following 9806 * rules are currently enforced by dtrace_difo_validate(): 9807 * 9808 * 1. Each instruction must have a valid opcode 9809 * 2. Each register, string, variable, or subroutine reference must be valid 9810 * 3. No instruction can modify register %r0 (must be zero) 9811 * 4. All instruction reserved bits must be set to zero 9812 * 5. The last instruction must be a "ret" instruction 9813 * 6. All branch targets must reference a valid instruction _after_ the branch 9814 */ 9815 static int 9816 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9817 cred_t *cr) 9818 { 9819 int err = 0, i; 9820 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9821 int kcheckload; 9822 uint_t pc; 9823 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9824 9825 kcheckload = cr == NULL || 9826 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9827 9828 dp->dtdo_destructive = 0; 9829 9830 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9831 dif_instr_t instr = dp->dtdo_buf[pc]; 9832 9833 uint_t r1 = DIF_INSTR_R1(instr); 9834 uint_t r2 = DIF_INSTR_R2(instr); 9835 uint_t rd = DIF_INSTR_RD(instr); 9836 uint_t rs = DIF_INSTR_RS(instr); 9837 uint_t label = DIF_INSTR_LABEL(instr); 9838 uint_t v = DIF_INSTR_VAR(instr); 9839 uint_t subr = DIF_INSTR_SUBR(instr); 9840 uint_t type = DIF_INSTR_TYPE(instr); 9841 uint_t op = DIF_INSTR_OP(instr); 9842 9843 switch (op) { 9844 case DIF_OP_OR: 9845 case DIF_OP_XOR: 9846 case DIF_OP_AND: 9847 case DIF_OP_SLL: 9848 case DIF_OP_SRL: 9849 case DIF_OP_SRA: 9850 case DIF_OP_SUB: 9851 case DIF_OP_ADD: 9852 case DIF_OP_MUL: 9853 case DIF_OP_SDIV: 9854 case DIF_OP_UDIV: 9855 case DIF_OP_SREM: 9856 case DIF_OP_UREM: 9857 case DIF_OP_COPYS: 9858 if (r1 >= nregs) 9859 err += efunc(pc, "invalid register %u\n", r1); 9860 if (r2 >= nregs) 9861 err += efunc(pc, "invalid register %u\n", r2); 9862 if (rd >= nregs) 9863 err += efunc(pc, "invalid register %u\n", rd); 9864 if (rd == 0) 9865 err += efunc(pc, "cannot write to %%r0\n"); 9866 break; 9867 case DIF_OP_NOT: 9868 case DIF_OP_MOV: 9869 case DIF_OP_ALLOCS: 9870 if (r1 >= nregs) 9871 err += efunc(pc, "invalid register %u\n", r1); 9872 if (r2 != 0) 9873 err += efunc(pc, "non-zero reserved bits\n"); 9874 if (rd >= nregs) 9875 err += efunc(pc, "invalid register %u\n", rd); 9876 if (rd == 0) 9877 err += efunc(pc, "cannot write to %%r0\n"); 9878 break; 9879 case DIF_OP_LDSB: 9880 case DIF_OP_LDSH: 9881 case DIF_OP_LDSW: 9882 case DIF_OP_LDUB: 9883 case DIF_OP_LDUH: 9884 case DIF_OP_LDUW: 9885 case DIF_OP_LDX: 9886 if (r1 >= nregs) 9887 err += efunc(pc, "invalid register %u\n", r1); 9888 if (r2 != 0) 9889 err += efunc(pc, "non-zero reserved bits\n"); 9890 if (rd >= nregs) 9891 err += efunc(pc, "invalid register %u\n", rd); 9892 if (rd == 0) 9893 err += efunc(pc, "cannot write to %%r0\n"); 9894 if (kcheckload) 9895 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9896 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9897 break; 9898 case DIF_OP_RLDSB: 9899 case DIF_OP_RLDSH: 9900 case DIF_OP_RLDSW: 9901 case DIF_OP_RLDUB: 9902 case DIF_OP_RLDUH: 9903 case DIF_OP_RLDUW: 9904 case DIF_OP_RLDX: 9905 if (r1 >= nregs) 9906 err += efunc(pc, "invalid register %u\n", r1); 9907 if (r2 != 0) 9908 err += efunc(pc, "non-zero reserved bits\n"); 9909 if (rd >= nregs) 9910 err += efunc(pc, "invalid register %u\n", rd); 9911 if (rd == 0) 9912 err += efunc(pc, "cannot write to %%r0\n"); 9913 break; 9914 case DIF_OP_ULDSB: 9915 case DIF_OP_ULDSH: 9916 case DIF_OP_ULDSW: 9917 case DIF_OP_ULDUB: 9918 case DIF_OP_ULDUH: 9919 case DIF_OP_ULDUW: 9920 case DIF_OP_ULDX: 9921 if (r1 >= nregs) 9922 err += efunc(pc, "invalid register %u\n", r1); 9923 if (r2 != 0) 9924 err += efunc(pc, "non-zero reserved bits\n"); 9925 if (rd >= nregs) 9926 err += efunc(pc, "invalid register %u\n", rd); 9927 if (rd == 0) 9928 err += efunc(pc, "cannot write to %%r0\n"); 9929 break; 9930 case DIF_OP_STB: 9931 case DIF_OP_STH: 9932 case DIF_OP_STW: 9933 case DIF_OP_STX: 9934 if (r1 >= nregs) 9935 err += efunc(pc, "invalid register %u\n", r1); 9936 if (r2 != 0) 9937 err += efunc(pc, "non-zero reserved bits\n"); 9938 if (rd >= nregs) 9939 err += efunc(pc, "invalid register %u\n", rd); 9940 if (rd == 0) 9941 err += efunc(pc, "cannot write to 0 address\n"); 9942 break; 9943 case DIF_OP_CMP: 9944 case DIF_OP_SCMP: 9945 if (r1 >= nregs) 9946 err += efunc(pc, "invalid register %u\n", r1); 9947 if (r2 >= nregs) 9948 err += efunc(pc, "invalid register %u\n", r2); 9949 if (rd != 0) 9950 err += efunc(pc, "non-zero reserved bits\n"); 9951 break; 9952 case DIF_OP_TST: 9953 if (r1 >= nregs) 9954 err += efunc(pc, "invalid register %u\n", r1); 9955 if (r2 != 0 || rd != 0) 9956 err += efunc(pc, "non-zero reserved bits\n"); 9957 break; 9958 case DIF_OP_BA: 9959 case DIF_OP_BE: 9960 case DIF_OP_BNE: 9961 case DIF_OP_BG: 9962 case DIF_OP_BGU: 9963 case DIF_OP_BGE: 9964 case DIF_OP_BGEU: 9965 case DIF_OP_BL: 9966 case DIF_OP_BLU: 9967 case DIF_OP_BLE: 9968 case DIF_OP_BLEU: 9969 if (label >= dp->dtdo_len) { 9970 err += efunc(pc, "invalid branch target %u\n", 9971 label); 9972 } 9973 if (label <= pc) { 9974 err += efunc(pc, "backward branch to %u\n", 9975 label); 9976 } 9977 break; 9978 case DIF_OP_RET: 9979 if (r1 != 0 || r2 != 0) 9980 err += efunc(pc, "non-zero reserved bits\n"); 9981 if (rd >= nregs) 9982 err += efunc(pc, "invalid register %u\n", rd); 9983 break; 9984 case DIF_OP_NOP: 9985 case DIF_OP_POPTS: 9986 case DIF_OP_FLUSHTS: 9987 if (r1 != 0 || r2 != 0 || rd != 0) 9988 err += efunc(pc, "non-zero reserved bits\n"); 9989 break; 9990 case DIF_OP_SETX: 9991 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9992 err += efunc(pc, "invalid integer ref %u\n", 9993 DIF_INSTR_INTEGER(instr)); 9994 } 9995 if (rd >= nregs) 9996 err += efunc(pc, "invalid register %u\n", rd); 9997 if (rd == 0) 9998 err += efunc(pc, "cannot write to %%r0\n"); 9999 break; 10000 case DIF_OP_SETS: 10001 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 10002 err += efunc(pc, "invalid string ref %u\n", 10003 DIF_INSTR_STRING(instr)); 10004 } 10005 if (rd >= nregs) 10006 err += efunc(pc, "invalid register %u\n", rd); 10007 if (rd == 0) 10008 err += efunc(pc, "cannot write to %%r0\n"); 10009 break; 10010 case DIF_OP_LDGA: 10011 case DIF_OP_LDTA: 10012 if (r1 > DIF_VAR_ARRAY_MAX) 10013 err += efunc(pc, "invalid array %u\n", r1); 10014 if (r2 >= nregs) 10015 err += efunc(pc, "invalid register %u\n", r2); 10016 if (rd >= nregs) 10017 err += efunc(pc, "invalid register %u\n", rd); 10018 if (rd == 0) 10019 err += efunc(pc, "cannot write to %%r0\n"); 10020 break; 10021 case DIF_OP_LDGS: 10022 case DIF_OP_LDTS: 10023 case DIF_OP_LDLS: 10024 case DIF_OP_LDGAA: 10025 case DIF_OP_LDTAA: 10026 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 10027 err += efunc(pc, "invalid variable %u\n", v); 10028 if (rd >= nregs) 10029 err += efunc(pc, "invalid register %u\n", rd); 10030 if (rd == 0) 10031 err += efunc(pc, "cannot write to %%r0\n"); 10032 break; 10033 case DIF_OP_STGS: 10034 case DIF_OP_STTS: 10035 case DIF_OP_STLS: 10036 case DIF_OP_STGAA: 10037 case DIF_OP_STTAA: 10038 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10039 err += efunc(pc, "invalid variable %u\n", v); 10040 if (rs >= nregs) 10041 err += efunc(pc, "invalid register %u\n", rd); 10042 break; 10043 case DIF_OP_CALL: 10044 if (subr > DIF_SUBR_MAX) 10045 err += efunc(pc, "invalid subr %u\n", subr); 10046 if (rd >= nregs) 10047 err += efunc(pc, "invalid register %u\n", rd); 10048 if (rd == 0) 10049 err += efunc(pc, "cannot write to %%r0\n"); 10050 10051 if (subr == DIF_SUBR_COPYOUT || 10052 subr == DIF_SUBR_COPYOUTSTR) { 10053 dp->dtdo_destructive = 1; 10054 } 10055 10056 if (subr == DIF_SUBR_GETF) { 10057 #ifdef __FreeBSD__ 10058 err += efunc(pc, "getf() not supported"); 10059 #else 10060 /* 10061 * If we have a getf() we need to record that 10062 * in our state. Note that our state can be 10063 * NULL if this is a helper -- but in that 10064 * case, the call to getf() is itself illegal, 10065 * and will be caught (slightly later) when 10066 * the helper is validated. 10067 */ 10068 if (vstate->dtvs_state != NULL) 10069 vstate->dtvs_state->dts_getf++; 10070 #endif 10071 } 10072 10073 break; 10074 case DIF_OP_PUSHTR: 10075 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10076 err += efunc(pc, "invalid ref type %u\n", type); 10077 if (r2 >= nregs) 10078 err += efunc(pc, "invalid register %u\n", r2); 10079 if (rs >= nregs) 10080 err += efunc(pc, "invalid register %u\n", rs); 10081 break; 10082 case DIF_OP_PUSHTV: 10083 if (type != DIF_TYPE_CTF) 10084 err += efunc(pc, "invalid val type %u\n", type); 10085 if (r2 >= nregs) 10086 err += efunc(pc, "invalid register %u\n", r2); 10087 if (rs >= nregs) 10088 err += efunc(pc, "invalid register %u\n", rs); 10089 break; 10090 default: 10091 err += efunc(pc, "invalid opcode %u\n", 10092 DIF_INSTR_OP(instr)); 10093 } 10094 } 10095 10096 if (dp->dtdo_len != 0 && 10097 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10098 err += efunc(dp->dtdo_len - 1, 10099 "expected 'ret' as last DIF instruction\n"); 10100 } 10101 10102 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10103 /* 10104 * If we're not returning by reference, the size must be either 10105 * 0 or the size of one of the base types. 10106 */ 10107 switch (dp->dtdo_rtype.dtdt_size) { 10108 case 0: 10109 case sizeof (uint8_t): 10110 case sizeof (uint16_t): 10111 case sizeof (uint32_t): 10112 case sizeof (uint64_t): 10113 break; 10114 10115 default: 10116 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10117 } 10118 } 10119 10120 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10121 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10122 dtrace_diftype_t *vt, *et; 10123 uint_t id, ndx; 10124 10125 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10126 v->dtdv_scope != DIFV_SCOPE_THREAD && 10127 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10128 err += efunc(i, "unrecognized variable scope %d\n", 10129 v->dtdv_scope); 10130 break; 10131 } 10132 10133 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10134 v->dtdv_kind != DIFV_KIND_SCALAR) { 10135 err += efunc(i, "unrecognized variable type %d\n", 10136 v->dtdv_kind); 10137 break; 10138 } 10139 10140 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10141 err += efunc(i, "%d exceeds variable id limit\n", id); 10142 break; 10143 } 10144 10145 if (id < DIF_VAR_OTHER_UBASE) 10146 continue; 10147 10148 /* 10149 * For user-defined variables, we need to check that this 10150 * definition is identical to any previous definition that we 10151 * encountered. 10152 */ 10153 ndx = id - DIF_VAR_OTHER_UBASE; 10154 10155 switch (v->dtdv_scope) { 10156 case DIFV_SCOPE_GLOBAL: 10157 if (maxglobal == -1 || ndx > maxglobal) 10158 maxglobal = ndx; 10159 10160 if (ndx < vstate->dtvs_nglobals) { 10161 dtrace_statvar_t *svar; 10162 10163 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10164 existing = &svar->dtsv_var; 10165 } 10166 10167 break; 10168 10169 case DIFV_SCOPE_THREAD: 10170 if (maxtlocal == -1 || ndx > maxtlocal) 10171 maxtlocal = ndx; 10172 10173 if (ndx < vstate->dtvs_ntlocals) 10174 existing = &vstate->dtvs_tlocals[ndx]; 10175 break; 10176 10177 case DIFV_SCOPE_LOCAL: 10178 if (maxlocal == -1 || ndx > maxlocal) 10179 maxlocal = ndx; 10180 10181 if (ndx < vstate->dtvs_nlocals) { 10182 dtrace_statvar_t *svar; 10183 10184 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10185 existing = &svar->dtsv_var; 10186 } 10187 10188 break; 10189 } 10190 10191 vt = &v->dtdv_type; 10192 10193 if (vt->dtdt_flags & DIF_TF_BYREF) { 10194 if (vt->dtdt_size == 0) { 10195 err += efunc(i, "zero-sized variable\n"); 10196 break; 10197 } 10198 10199 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10200 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10201 vt->dtdt_size > dtrace_statvar_maxsize) { 10202 err += efunc(i, "oversized by-ref static\n"); 10203 break; 10204 } 10205 } 10206 10207 if (existing == NULL || existing->dtdv_id == 0) 10208 continue; 10209 10210 ASSERT(existing->dtdv_id == v->dtdv_id); 10211 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10212 10213 if (existing->dtdv_kind != v->dtdv_kind) 10214 err += efunc(i, "%d changed variable kind\n", id); 10215 10216 et = &existing->dtdv_type; 10217 10218 if (vt->dtdt_flags != et->dtdt_flags) { 10219 err += efunc(i, "%d changed variable type flags\n", id); 10220 break; 10221 } 10222 10223 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10224 err += efunc(i, "%d changed variable type size\n", id); 10225 break; 10226 } 10227 } 10228 10229 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10230 dif_instr_t instr = dp->dtdo_buf[pc]; 10231 10232 uint_t v = DIF_INSTR_VAR(instr); 10233 uint_t op = DIF_INSTR_OP(instr); 10234 10235 switch (op) { 10236 case DIF_OP_LDGS: 10237 case DIF_OP_LDGAA: 10238 case DIF_OP_STGS: 10239 case DIF_OP_STGAA: 10240 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10241 err += efunc(pc, "invalid variable %u\n", v); 10242 break; 10243 case DIF_OP_LDTS: 10244 case DIF_OP_LDTAA: 10245 case DIF_OP_STTS: 10246 case DIF_OP_STTAA: 10247 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10248 err += efunc(pc, "invalid variable %u\n", v); 10249 break; 10250 case DIF_OP_LDLS: 10251 case DIF_OP_STLS: 10252 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10253 err += efunc(pc, "invalid variable %u\n", v); 10254 break; 10255 default: 10256 break; 10257 } 10258 } 10259 10260 return (err); 10261 } 10262 10263 /* 10264 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10265 * are much more constrained than normal DIFOs. Specifically, they may 10266 * not: 10267 * 10268 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10269 * miscellaneous string routines 10270 * 2. Access DTrace variables other than the args[] array, and the 10271 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10272 * 3. Have thread-local variables. 10273 * 4. Have dynamic variables. 10274 */ 10275 static int 10276 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10277 { 10278 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10279 int err = 0; 10280 uint_t pc; 10281 10282 for (pc = 0; pc < dp->dtdo_len; pc++) { 10283 dif_instr_t instr = dp->dtdo_buf[pc]; 10284 10285 uint_t v = DIF_INSTR_VAR(instr); 10286 uint_t subr = DIF_INSTR_SUBR(instr); 10287 uint_t op = DIF_INSTR_OP(instr); 10288 10289 switch (op) { 10290 case DIF_OP_OR: 10291 case DIF_OP_XOR: 10292 case DIF_OP_AND: 10293 case DIF_OP_SLL: 10294 case DIF_OP_SRL: 10295 case DIF_OP_SRA: 10296 case DIF_OP_SUB: 10297 case DIF_OP_ADD: 10298 case DIF_OP_MUL: 10299 case DIF_OP_SDIV: 10300 case DIF_OP_UDIV: 10301 case DIF_OP_SREM: 10302 case DIF_OP_UREM: 10303 case DIF_OP_COPYS: 10304 case DIF_OP_NOT: 10305 case DIF_OP_MOV: 10306 case DIF_OP_RLDSB: 10307 case DIF_OP_RLDSH: 10308 case DIF_OP_RLDSW: 10309 case DIF_OP_RLDUB: 10310 case DIF_OP_RLDUH: 10311 case DIF_OP_RLDUW: 10312 case DIF_OP_RLDX: 10313 case DIF_OP_ULDSB: 10314 case DIF_OP_ULDSH: 10315 case DIF_OP_ULDSW: 10316 case DIF_OP_ULDUB: 10317 case DIF_OP_ULDUH: 10318 case DIF_OP_ULDUW: 10319 case DIF_OP_ULDX: 10320 case DIF_OP_STB: 10321 case DIF_OP_STH: 10322 case DIF_OP_STW: 10323 case DIF_OP_STX: 10324 case DIF_OP_ALLOCS: 10325 case DIF_OP_CMP: 10326 case DIF_OP_SCMP: 10327 case DIF_OP_TST: 10328 case DIF_OP_BA: 10329 case DIF_OP_BE: 10330 case DIF_OP_BNE: 10331 case DIF_OP_BG: 10332 case DIF_OP_BGU: 10333 case DIF_OP_BGE: 10334 case DIF_OP_BGEU: 10335 case DIF_OP_BL: 10336 case DIF_OP_BLU: 10337 case DIF_OP_BLE: 10338 case DIF_OP_BLEU: 10339 case DIF_OP_RET: 10340 case DIF_OP_NOP: 10341 case DIF_OP_POPTS: 10342 case DIF_OP_FLUSHTS: 10343 case DIF_OP_SETX: 10344 case DIF_OP_SETS: 10345 case DIF_OP_LDGA: 10346 case DIF_OP_LDLS: 10347 case DIF_OP_STGS: 10348 case DIF_OP_STLS: 10349 case DIF_OP_PUSHTR: 10350 case DIF_OP_PUSHTV: 10351 break; 10352 10353 case DIF_OP_LDGS: 10354 if (v >= DIF_VAR_OTHER_UBASE) 10355 break; 10356 10357 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10358 break; 10359 10360 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10361 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10362 v == DIF_VAR_EXECARGS || 10363 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10364 v == DIF_VAR_UID || v == DIF_VAR_GID) 10365 break; 10366 10367 err += efunc(pc, "illegal variable %u\n", v); 10368 break; 10369 10370 case DIF_OP_LDTA: 10371 case DIF_OP_LDTS: 10372 case DIF_OP_LDGAA: 10373 case DIF_OP_LDTAA: 10374 err += efunc(pc, "illegal dynamic variable load\n"); 10375 break; 10376 10377 case DIF_OP_STTS: 10378 case DIF_OP_STGAA: 10379 case DIF_OP_STTAA: 10380 err += efunc(pc, "illegal dynamic variable store\n"); 10381 break; 10382 10383 case DIF_OP_CALL: 10384 if (subr == DIF_SUBR_ALLOCA || 10385 subr == DIF_SUBR_BCOPY || 10386 subr == DIF_SUBR_COPYIN || 10387 subr == DIF_SUBR_COPYINTO || 10388 subr == DIF_SUBR_COPYINSTR || 10389 subr == DIF_SUBR_INDEX || 10390 subr == DIF_SUBR_INET_NTOA || 10391 subr == DIF_SUBR_INET_NTOA6 || 10392 subr == DIF_SUBR_INET_NTOP || 10393 subr == DIF_SUBR_JSON || 10394 subr == DIF_SUBR_LLTOSTR || 10395 subr == DIF_SUBR_STRTOLL || 10396 subr == DIF_SUBR_RINDEX || 10397 subr == DIF_SUBR_STRCHR || 10398 subr == DIF_SUBR_STRJOIN || 10399 subr == DIF_SUBR_STRRCHR || 10400 subr == DIF_SUBR_STRSTR || 10401 subr == DIF_SUBR_HTONS || 10402 subr == DIF_SUBR_HTONL || 10403 subr == DIF_SUBR_HTONLL || 10404 subr == DIF_SUBR_NTOHS || 10405 subr == DIF_SUBR_NTOHL || 10406 subr == DIF_SUBR_NTOHLL || 10407 subr == DIF_SUBR_MEMREF) 10408 break; 10409 #ifdef __FreeBSD__ 10410 if (subr == DIF_SUBR_MEMSTR) 10411 break; 10412 #endif 10413 10414 err += efunc(pc, "invalid subr %u\n", subr); 10415 break; 10416 10417 default: 10418 err += efunc(pc, "invalid opcode %u\n", 10419 DIF_INSTR_OP(instr)); 10420 } 10421 } 10422 10423 return (err); 10424 } 10425 10426 /* 10427 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10428 * basis; 0 if not. 10429 */ 10430 static int 10431 dtrace_difo_cacheable(dtrace_difo_t *dp) 10432 { 10433 int i; 10434 10435 if (dp == NULL) 10436 return (0); 10437 10438 for (i = 0; i < dp->dtdo_varlen; i++) { 10439 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10440 10441 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10442 continue; 10443 10444 switch (v->dtdv_id) { 10445 case DIF_VAR_CURTHREAD: 10446 case DIF_VAR_PID: 10447 case DIF_VAR_TID: 10448 case DIF_VAR_EXECARGS: 10449 case DIF_VAR_EXECNAME: 10450 case DIF_VAR_ZONENAME: 10451 break; 10452 10453 default: 10454 return (0); 10455 } 10456 } 10457 10458 /* 10459 * This DIF object may be cacheable. Now we need to look for any 10460 * array loading instructions, any memory loading instructions, or 10461 * any stores to thread-local variables. 10462 */ 10463 for (i = 0; i < dp->dtdo_len; i++) { 10464 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10465 10466 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10467 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10468 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10469 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10470 return (0); 10471 } 10472 10473 return (1); 10474 } 10475 10476 static void 10477 dtrace_difo_hold(dtrace_difo_t *dp) 10478 { 10479 int i; 10480 10481 ASSERT(MUTEX_HELD(&dtrace_lock)); 10482 10483 dp->dtdo_refcnt++; 10484 ASSERT(dp->dtdo_refcnt != 0); 10485 10486 /* 10487 * We need to check this DIF object for references to the variable 10488 * DIF_VAR_VTIMESTAMP. 10489 */ 10490 for (i = 0; i < dp->dtdo_varlen; i++) { 10491 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10492 10493 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10494 continue; 10495 10496 if (dtrace_vtime_references++ == 0) 10497 dtrace_vtime_enable(); 10498 } 10499 } 10500 10501 /* 10502 * This routine calculates the dynamic variable chunksize for a given DIF 10503 * object. The calculation is not fool-proof, and can probably be tricked by 10504 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10505 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10506 * if a dynamic variable size exceeds the chunksize. 10507 */ 10508 static void 10509 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10510 { 10511 uint64_t sval = 0; 10512 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10513 const dif_instr_t *text = dp->dtdo_buf; 10514 uint_t pc, srd = 0; 10515 uint_t ttop = 0; 10516 size_t size, ksize; 10517 uint_t id, i; 10518 10519 for (pc = 0; pc < dp->dtdo_len; pc++) { 10520 dif_instr_t instr = text[pc]; 10521 uint_t op = DIF_INSTR_OP(instr); 10522 uint_t rd = DIF_INSTR_RD(instr); 10523 uint_t r1 = DIF_INSTR_R1(instr); 10524 uint_t nkeys = 0; 10525 uchar_t scope = 0; 10526 10527 dtrace_key_t *key = tupregs; 10528 10529 switch (op) { 10530 case DIF_OP_SETX: 10531 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10532 srd = rd; 10533 continue; 10534 10535 case DIF_OP_STTS: 10536 key = &tupregs[DIF_DTR_NREGS]; 10537 key[0].dttk_size = 0; 10538 key[1].dttk_size = 0; 10539 nkeys = 2; 10540 scope = DIFV_SCOPE_THREAD; 10541 break; 10542 10543 case DIF_OP_STGAA: 10544 case DIF_OP_STTAA: 10545 nkeys = ttop; 10546 10547 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10548 key[nkeys++].dttk_size = 0; 10549 10550 key[nkeys++].dttk_size = 0; 10551 10552 if (op == DIF_OP_STTAA) { 10553 scope = DIFV_SCOPE_THREAD; 10554 } else { 10555 scope = DIFV_SCOPE_GLOBAL; 10556 } 10557 10558 break; 10559 10560 case DIF_OP_PUSHTR: 10561 if (ttop == DIF_DTR_NREGS) 10562 return; 10563 10564 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10565 /* 10566 * If the register for the size of the "pushtr" 10567 * is %r0 (or the value is 0) and the type is 10568 * a string, we'll use the system-wide default 10569 * string size. 10570 */ 10571 tupregs[ttop++].dttk_size = 10572 dtrace_strsize_default; 10573 } else { 10574 if (srd == 0) 10575 return; 10576 10577 if (sval > LONG_MAX) 10578 return; 10579 10580 tupregs[ttop++].dttk_size = sval; 10581 } 10582 10583 break; 10584 10585 case DIF_OP_PUSHTV: 10586 if (ttop == DIF_DTR_NREGS) 10587 return; 10588 10589 tupregs[ttop++].dttk_size = 0; 10590 break; 10591 10592 case DIF_OP_FLUSHTS: 10593 ttop = 0; 10594 break; 10595 10596 case DIF_OP_POPTS: 10597 if (ttop != 0) 10598 ttop--; 10599 break; 10600 } 10601 10602 sval = 0; 10603 srd = 0; 10604 10605 if (nkeys == 0) 10606 continue; 10607 10608 /* 10609 * We have a dynamic variable allocation; calculate its size. 10610 */ 10611 for (ksize = 0, i = 0; i < nkeys; i++) 10612 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10613 10614 size = sizeof (dtrace_dynvar_t); 10615 size += sizeof (dtrace_key_t) * (nkeys - 1); 10616 size += ksize; 10617 10618 /* 10619 * Now we need to determine the size of the stored data. 10620 */ 10621 id = DIF_INSTR_VAR(instr); 10622 10623 for (i = 0; i < dp->dtdo_varlen; i++) { 10624 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10625 10626 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10627 size += v->dtdv_type.dtdt_size; 10628 break; 10629 } 10630 } 10631 10632 if (i == dp->dtdo_varlen) 10633 return; 10634 10635 /* 10636 * We have the size. If this is larger than the chunk size 10637 * for our dynamic variable state, reset the chunk size. 10638 */ 10639 size = P2ROUNDUP(size, sizeof (uint64_t)); 10640 10641 /* 10642 * Before setting the chunk size, check that we're not going 10643 * to set it to a negative value... 10644 */ 10645 if (size > LONG_MAX) 10646 return; 10647 10648 /* 10649 * ...and make certain that we didn't badly overflow. 10650 */ 10651 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10652 return; 10653 10654 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10655 vstate->dtvs_dynvars.dtds_chunksize = size; 10656 } 10657 } 10658 10659 static void 10660 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10661 { 10662 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10663 uint_t id; 10664 10665 ASSERT(MUTEX_HELD(&dtrace_lock)); 10666 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10667 10668 for (i = 0; i < dp->dtdo_varlen; i++) { 10669 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10670 dtrace_statvar_t *svar, ***svarp = NULL; 10671 size_t dsize = 0; 10672 uint8_t scope = v->dtdv_scope; 10673 int *np = NULL; 10674 10675 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10676 continue; 10677 10678 id -= DIF_VAR_OTHER_UBASE; 10679 10680 switch (scope) { 10681 case DIFV_SCOPE_THREAD: 10682 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10683 dtrace_difv_t *tlocals; 10684 10685 if ((ntlocals = (otlocals << 1)) == 0) 10686 ntlocals = 1; 10687 10688 osz = otlocals * sizeof (dtrace_difv_t); 10689 nsz = ntlocals * sizeof (dtrace_difv_t); 10690 10691 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10692 10693 if (osz != 0) { 10694 bcopy(vstate->dtvs_tlocals, 10695 tlocals, osz); 10696 kmem_free(vstate->dtvs_tlocals, osz); 10697 } 10698 10699 vstate->dtvs_tlocals = tlocals; 10700 vstate->dtvs_ntlocals = ntlocals; 10701 } 10702 10703 vstate->dtvs_tlocals[id] = *v; 10704 continue; 10705 10706 case DIFV_SCOPE_LOCAL: 10707 np = &vstate->dtvs_nlocals; 10708 svarp = &vstate->dtvs_locals; 10709 10710 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10711 dsize = (mp_maxid + 1) * 10712 (v->dtdv_type.dtdt_size + 10713 sizeof (uint64_t)); 10714 else 10715 dsize = (mp_maxid + 1) * sizeof (uint64_t); 10716 10717 break; 10718 10719 case DIFV_SCOPE_GLOBAL: 10720 np = &vstate->dtvs_nglobals; 10721 svarp = &vstate->dtvs_globals; 10722 10723 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10724 dsize = v->dtdv_type.dtdt_size + 10725 sizeof (uint64_t); 10726 10727 break; 10728 10729 default: 10730 ASSERT(0); 10731 } 10732 10733 while (id >= (oldsvars = *np)) { 10734 dtrace_statvar_t **statics; 10735 int newsvars, oldsize, newsize; 10736 10737 if ((newsvars = (oldsvars << 1)) == 0) 10738 newsvars = 1; 10739 10740 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10741 newsize = newsvars * sizeof (dtrace_statvar_t *); 10742 10743 statics = kmem_zalloc(newsize, KM_SLEEP); 10744 10745 if (oldsize != 0) { 10746 bcopy(*svarp, statics, oldsize); 10747 kmem_free(*svarp, oldsize); 10748 } 10749 10750 *svarp = statics; 10751 *np = newsvars; 10752 } 10753 10754 if ((svar = (*svarp)[id]) == NULL) { 10755 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10756 svar->dtsv_var = *v; 10757 10758 if ((svar->dtsv_size = dsize) != 0) { 10759 svar->dtsv_data = (uint64_t)(uintptr_t) 10760 kmem_zalloc(dsize, KM_SLEEP); 10761 } 10762 10763 (*svarp)[id] = svar; 10764 } 10765 10766 svar->dtsv_refcnt++; 10767 } 10768 10769 dtrace_difo_chunksize(dp, vstate); 10770 dtrace_difo_hold(dp); 10771 } 10772 10773 static dtrace_difo_t * 10774 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10775 { 10776 dtrace_difo_t *new; 10777 size_t sz; 10778 10779 ASSERT(dp->dtdo_buf != NULL); 10780 ASSERT(dp->dtdo_refcnt != 0); 10781 10782 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10783 10784 ASSERT(dp->dtdo_buf != NULL); 10785 sz = dp->dtdo_len * sizeof (dif_instr_t); 10786 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10787 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10788 new->dtdo_len = dp->dtdo_len; 10789 10790 if (dp->dtdo_strtab != NULL) { 10791 ASSERT(dp->dtdo_strlen != 0); 10792 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10793 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10794 new->dtdo_strlen = dp->dtdo_strlen; 10795 } 10796 10797 if (dp->dtdo_inttab != NULL) { 10798 ASSERT(dp->dtdo_intlen != 0); 10799 sz = dp->dtdo_intlen * sizeof (uint64_t); 10800 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10801 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10802 new->dtdo_intlen = dp->dtdo_intlen; 10803 } 10804 10805 if (dp->dtdo_vartab != NULL) { 10806 ASSERT(dp->dtdo_varlen != 0); 10807 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10808 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10809 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10810 new->dtdo_varlen = dp->dtdo_varlen; 10811 } 10812 10813 dtrace_difo_init(new, vstate); 10814 return (new); 10815 } 10816 10817 static void 10818 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10819 { 10820 int i; 10821 10822 ASSERT(dp->dtdo_refcnt == 0); 10823 10824 for (i = 0; i < dp->dtdo_varlen; i++) { 10825 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10826 dtrace_statvar_t *svar, **svarp = NULL; 10827 uint_t id; 10828 uint8_t scope = v->dtdv_scope; 10829 int *np = NULL; 10830 10831 switch (scope) { 10832 case DIFV_SCOPE_THREAD: 10833 continue; 10834 10835 case DIFV_SCOPE_LOCAL: 10836 np = &vstate->dtvs_nlocals; 10837 svarp = vstate->dtvs_locals; 10838 break; 10839 10840 case DIFV_SCOPE_GLOBAL: 10841 np = &vstate->dtvs_nglobals; 10842 svarp = vstate->dtvs_globals; 10843 break; 10844 10845 default: 10846 ASSERT(0); 10847 } 10848 10849 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10850 continue; 10851 10852 id -= DIF_VAR_OTHER_UBASE; 10853 ASSERT(id < *np); 10854 10855 svar = svarp[id]; 10856 ASSERT(svar != NULL); 10857 ASSERT(svar->dtsv_refcnt > 0); 10858 10859 if (--svar->dtsv_refcnt > 0) 10860 continue; 10861 10862 if (svar->dtsv_size != 0) { 10863 ASSERT(svar->dtsv_data != 0); 10864 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10865 svar->dtsv_size); 10866 } 10867 10868 kmem_free(svar, sizeof (dtrace_statvar_t)); 10869 svarp[id] = NULL; 10870 } 10871 10872 if (dp->dtdo_buf != NULL) 10873 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10874 if (dp->dtdo_inttab != NULL) 10875 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10876 if (dp->dtdo_strtab != NULL) 10877 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10878 if (dp->dtdo_vartab != NULL) 10879 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10880 10881 kmem_free(dp, sizeof (dtrace_difo_t)); 10882 } 10883 10884 static void 10885 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10886 { 10887 int i; 10888 10889 ASSERT(MUTEX_HELD(&dtrace_lock)); 10890 ASSERT(dp->dtdo_refcnt != 0); 10891 10892 for (i = 0; i < dp->dtdo_varlen; i++) { 10893 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10894 10895 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10896 continue; 10897 10898 ASSERT(dtrace_vtime_references > 0); 10899 if (--dtrace_vtime_references == 0) 10900 dtrace_vtime_disable(); 10901 } 10902 10903 if (--dp->dtdo_refcnt == 0) 10904 dtrace_difo_destroy(dp, vstate); 10905 } 10906 10907 /* 10908 * DTrace Format Functions 10909 */ 10910 static uint16_t 10911 dtrace_format_add(dtrace_state_t *state, char *str) 10912 { 10913 char *fmt, **new; 10914 uint16_t ndx, len = strlen(str) + 1; 10915 10916 fmt = kmem_zalloc(len, KM_SLEEP); 10917 bcopy(str, fmt, len); 10918 10919 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10920 if (state->dts_formats[ndx] == NULL) { 10921 state->dts_formats[ndx] = fmt; 10922 return (ndx + 1); 10923 } 10924 } 10925 10926 if (state->dts_nformats == USHRT_MAX) { 10927 /* 10928 * This is only likely if a denial-of-service attack is being 10929 * attempted. As such, it's okay to fail silently here. 10930 */ 10931 kmem_free(fmt, len); 10932 return (0); 10933 } 10934 10935 /* 10936 * For simplicity, we always resize the formats array to be exactly the 10937 * number of formats. 10938 */ 10939 ndx = state->dts_nformats++; 10940 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10941 10942 if (state->dts_formats != NULL) { 10943 ASSERT(ndx != 0); 10944 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10945 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10946 } 10947 10948 state->dts_formats = new; 10949 state->dts_formats[ndx] = fmt; 10950 10951 return (ndx + 1); 10952 } 10953 10954 static void 10955 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10956 { 10957 char *fmt; 10958 10959 ASSERT(state->dts_formats != NULL); 10960 ASSERT(format <= state->dts_nformats); 10961 ASSERT(state->dts_formats[format - 1] != NULL); 10962 10963 fmt = state->dts_formats[format - 1]; 10964 kmem_free(fmt, strlen(fmt) + 1); 10965 state->dts_formats[format - 1] = NULL; 10966 } 10967 10968 static void 10969 dtrace_format_destroy(dtrace_state_t *state) 10970 { 10971 int i; 10972 10973 if (state->dts_nformats == 0) { 10974 ASSERT(state->dts_formats == NULL); 10975 return; 10976 } 10977 10978 ASSERT(state->dts_formats != NULL); 10979 10980 for (i = 0; i < state->dts_nformats; i++) { 10981 char *fmt = state->dts_formats[i]; 10982 10983 if (fmt == NULL) 10984 continue; 10985 10986 kmem_free(fmt, strlen(fmt) + 1); 10987 } 10988 10989 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10990 state->dts_nformats = 0; 10991 state->dts_formats = NULL; 10992 } 10993 10994 /* 10995 * DTrace Predicate Functions 10996 */ 10997 static dtrace_predicate_t * 10998 dtrace_predicate_create(dtrace_difo_t *dp) 10999 { 11000 dtrace_predicate_t *pred; 11001 11002 ASSERT(MUTEX_HELD(&dtrace_lock)); 11003 ASSERT(dp->dtdo_refcnt != 0); 11004 11005 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 11006 pred->dtp_difo = dp; 11007 pred->dtp_refcnt = 1; 11008 11009 if (!dtrace_difo_cacheable(dp)) 11010 return (pred); 11011 11012 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 11013 /* 11014 * This is only theoretically possible -- we have had 2^32 11015 * cacheable predicates on this machine. We cannot allow any 11016 * more predicates to become cacheable: as unlikely as it is, 11017 * there may be a thread caching a (now stale) predicate cache 11018 * ID. (N.B.: the temptation is being successfully resisted to 11019 * have this cmn_err() "Holy shit -- we executed this code!") 11020 */ 11021 return (pred); 11022 } 11023 11024 pred->dtp_cacheid = dtrace_predcache_id++; 11025 11026 return (pred); 11027 } 11028 11029 static void 11030 dtrace_predicate_hold(dtrace_predicate_t *pred) 11031 { 11032 ASSERT(MUTEX_HELD(&dtrace_lock)); 11033 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11034 ASSERT(pred->dtp_refcnt > 0); 11035 11036 pred->dtp_refcnt++; 11037 } 11038 11039 static void 11040 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11041 { 11042 dtrace_difo_t *dp = pred->dtp_difo; 11043 11044 ASSERT(MUTEX_HELD(&dtrace_lock)); 11045 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11046 ASSERT(pred->dtp_refcnt > 0); 11047 11048 if (--pred->dtp_refcnt == 0) { 11049 dtrace_difo_release(pred->dtp_difo, vstate); 11050 kmem_free(pred, sizeof (dtrace_predicate_t)); 11051 } 11052 } 11053 11054 /* 11055 * DTrace Action Description Functions 11056 */ 11057 static dtrace_actdesc_t * 11058 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11059 uint64_t uarg, uint64_t arg) 11060 { 11061 dtrace_actdesc_t *act; 11062 11063 #ifdef illumos 11064 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11065 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11066 #endif 11067 11068 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11069 act->dtad_kind = kind; 11070 act->dtad_ntuple = ntuple; 11071 act->dtad_uarg = uarg; 11072 act->dtad_arg = arg; 11073 act->dtad_refcnt = 1; 11074 11075 return (act); 11076 } 11077 11078 static void 11079 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11080 { 11081 ASSERT(act->dtad_refcnt >= 1); 11082 act->dtad_refcnt++; 11083 } 11084 11085 static void 11086 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11087 { 11088 dtrace_actkind_t kind = act->dtad_kind; 11089 dtrace_difo_t *dp; 11090 11091 ASSERT(act->dtad_refcnt >= 1); 11092 11093 if (--act->dtad_refcnt != 0) 11094 return; 11095 11096 if ((dp = act->dtad_difo) != NULL) 11097 dtrace_difo_release(dp, vstate); 11098 11099 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11100 char *str = (char *)(uintptr_t)act->dtad_arg; 11101 11102 #ifdef illumos 11103 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11104 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11105 #endif 11106 11107 if (str != NULL) 11108 kmem_free(str, strlen(str) + 1); 11109 } 11110 11111 kmem_free(act, sizeof (dtrace_actdesc_t)); 11112 } 11113 11114 /* 11115 * DTrace ECB Functions 11116 */ 11117 static dtrace_ecb_t * 11118 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11119 { 11120 dtrace_ecb_t *ecb; 11121 dtrace_epid_t epid; 11122 11123 ASSERT(MUTEX_HELD(&dtrace_lock)); 11124 11125 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11126 ecb->dte_predicate = NULL; 11127 ecb->dte_probe = probe; 11128 11129 /* 11130 * The default size is the size of the default action: recording 11131 * the header. 11132 */ 11133 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11134 ecb->dte_alignment = sizeof (dtrace_epid_t); 11135 11136 epid = state->dts_epid++; 11137 11138 if (epid - 1 >= state->dts_necbs) { 11139 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11140 int necbs = state->dts_necbs << 1; 11141 11142 ASSERT(epid == state->dts_necbs + 1); 11143 11144 if (necbs == 0) { 11145 ASSERT(oecbs == NULL); 11146 necbs = 1; 11147 } 11148 11149 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11150 11151 if (oecbs != NULL) 11152 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11153 11154 dtrace_membar_producer(); 11155 state->dts_ecbs = ecbs; 11156 11157 if (oecbs != NULL) { 11158 /* 11159 * If this state is active, we must dtrace_sync() 11160 * before we can free the old dts_ecbs array: we're 11161 * coming in hot, and there may be active ring 11162 * buffer processing (which indexes into the dts_ecbs 11163 * array) on another CPU. 11164 */ 11165 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11166 dtrace_sync(); 11167 11168 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11169 } 11170 11171 dtrace_membar_producer(); 11172 state->dts_necbs = necbs; 11173 } 11174 11175 ecb->dte_state = state; 11176 11177 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11178 dtrace_membar_producer(); 11179 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11180 11181 return (ecb); 11182 } 11183 11184 static void 11185 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11186 { 11187 dtrace_probe_t *probe = ecb->dte_probe; 11188 11189 ASSERT(MUTEX_HELD(&cpu_lock)); 11190 ASSERT(MUTEX_HELD(&dtrace_lock)); 11191 ASSERT(ecb->dte_next == NULL); 11192 11193 if (probe == NULL) { 11194 /* 11195 * This is the NULL probe -- there's nothing to do. 11196 */ 11197 return; 11198 } 11199 11200 if (probe->dtpr_ecb == NULL) { 11201 dtrace_provider_t *prov = probe->dtpr_provider; 11202 11203 /* 11204 * We're the first ECB on this probe. 11205 */ 11206 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11207 11208 if (ecb->dte_predicate != NULL) 11209 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11210 11211 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11212 probe->dtpr_id, probe->dtpr_arg); 11213 } else { 11214 /* 11215 * This probe is already active. Swing the last pointer to 11216 * point to the new ECB, and issue a dtrace_sync() to assure 11217 * that all CPUs have seen the change. 11218 */ 11219 ASSERT(probe->dtpr_ecb_last != NULL); 11220 probe->dtpr_ecb_last->dte_next = ecb; 11221 probe->dtpr_ecb_last = ecb; 11222 probe->dtpr_predcache = 0; 11223 11224 dtrace_sync(); 11225 } 11226 } 11227 11228 static int 11229 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11230 { 11231 dtrace_action_t *act; 11232 uint32_t curneeded = UINT32_MAX; 11233 uint32_t aggbase = UINT32_MAX; 11234 11235 /* 11236 * If we record anything, we always record the dtrace_rechdr_t. (And 11237 * we always record it first.) 11238 */ 11239 ecb->dte_size = sizeof (dtrace_rechdr_t); 11240 ecb->dte_alignment = sizeof (dtrace_epid_t); 11241 11242 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11243 dtrace_recdesc_t *rec = &act->dta_rec; 11244 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11245 11246 ecb->dte_alignment = MAX(ecb->dte_alignment, 11247 rec->dtrd_alignment); 11248 11249 if (DTRACEACT_ISAGG(act->dta_kind)) { 11250 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11251 11252 ASSERT(rec->dtrd_size != 0); 11253 ASSERT(agg->dtag_first != NULL); 11254 ASSERT(act->dta_prev->dta_intuple); 11255 ASSERT(aggbase != UINT32_MAX); 11256 ASSERT(curneeded != UINT32_MAX); 11257 11258 agg->dtag_base = aggbase; 11259 11260 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11261 rec->dtrd_offset = curneeded; 11262 if (curneeded + rec->dtrd_size < curneeded) 11263 return (EINVAL); 11264 curneeded += rec->dtrd_size; 11265 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11266 11267 aggbase = UINT32_MAX; 11268 curneeded = UINT32_MAX; 11269 } else if (act->dta_intuple) { 11270 if (curneeded == UINT32_MAX) { 11271 /* 11272 * This is the first record in a tuple. Align 11273 * curneeded to be at offset 4 in an 8-byte 11274 * aligned block. 11275 */ 11276 ASSERT(act->dta_prev == NULL || 11277 !act->dta_prev->dta_intuple); 11278 ASSERT3U(aggbase, ==, UINT32_MAX); 11279 curneeded = P2PHASEUP(ecb->dte_size, 11280 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11281 11282 aggbase = curneeded - sizeof (dtrace_aggid_t); 11283 ASSERT(IS_P2ALIGNED(aggbase, 11284 sizeof (uint64_t))); 11285 } 11286 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11287 rec->dtrd_offset = curneeded; 11288 if (curneeded + rec->dtrd_size < curneeded) 11289 return (EINVAL); 11290 curneeded += rec->dtrd_size; 11291 } else { 11292 /* tuples must be followed by an aggregation */ 11293 ASSERT(act->dta_prev == NULL || 11294 !act->dta_prev->dta_intuple); 11295 11296 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11297 rec->dtrd_alignment); 11298 rec->dtrd_offset = ecb->dte_size; 11299 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11300 return (EINVAL); 11301 ecb->dte_size += rec->dtrd_size; 11302 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11303 } 11304 } 11305 11306 if ((act = ecb->dte_action) != NULL && 11307 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11308 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11309 /* 11310 * If the size is still sizeof (dtrace_rechdr_t), then all 11311 * actions store no data; set the size to 0. 11312 */ 11313 ecb->dte_size = 0; 11314 } 11315 11316 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11317 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11318 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11319 ecb->dte_needed); 11320 return (0); 11321 } 11322 11323 static dtrace_action_t * 11324 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11325 { 11326 dtrace_aggregation_t *agg; 11327 size_t size = sizeof (uint64_t); 11328 int ntuple = desc->dtad_ntuple; 11329 dtrace_action_t *act; 11330 dtrace_recdesc_t *frec; 11331 dtrace_aggid_t aggid; 11332 dtrace_state_t *state = ecb->dte_state; 11333 11334 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11335 agg->dtag_ecb = ecb; 11336 11337 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11338 11339 switch (desc->dtad_kind) { 11340 case DTRACEAGG_MIN: 11341 agg->dtag_initial = INT64_MAX; 11342 agg->dtag_aggregate = dtrace_aggregate_min; 11343 break; 11344 11345 case DTRACEAGG_MAX: 11346 agg->dtag_initial = INT64_MIN; 11347 agg->dtag_aggregate = dtrace_aggregate_max; 11348 break; 11349 11350 case DTRACEAGG_COUNT: 11351 agg->dtag_aggregate = dtrace_aggregate_count; 11352 break; 11353 11354 case DTRACEAGG_QUANTIZE: 11355 agg->dtag_aggregate = dtrace_aggregate_quantize; 11356 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11357 sizeof (uint64_t); 11358 break; 11359 11360 case DTRACEAGG_LQUANTIZE: { 11361 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11362 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11363 11364 agg->dtag_initial = desc->dtad_arg; 11365 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11366 11367 if (step == 0 || levels == 0) 11368 goto err; 11369 11370 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11371 break; 11372 } 11373 11374 case DTRACEAGG_LLQUANTIZE: { 11375 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11376 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11377 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11378 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11379 int64_t v; 11380 11381 agg->dtag_initial = desc->dtad_arg; 11382 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11383 11384 if (factor < 2 || low >= high || nsteps < factor) 11385 goto err; 11386 11387 /* 11388 * Now check that the number of steps evenly divides a power 11389 * of the factor. (This assures both integer bucket size and 11390 * linearity within each magnitude.) 11391 */ 11392 for (v = factor; v < nsteps; v *= factor) 11393 continue; 11394 11395 if ((v % nsteps) || (nsteps % factor)) 11396 goto err; 11397 11398 size = (dtrace_aggregate_llquantize_bucket(factor, 11399 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11400 break; 11401 } 11402 11403 case DTRACEAGG_AVG: 11404 agg->dtag_aggregate = dtrace_aggregate_avg; 11405 size = sizeof (uint64_t) * 2; 11406 break; 11407 11408 case DTRACEAGG_STDDEV: 11409 agg->dtag_aggregate = dtrace_aggregate_stddev; 11410 size = sizeof (uint64_t) * 4; 11411 break; 11412 11413 case DTRACEAGG_SUM: 11414 agg->dtag_aggregate = dtrace_aggregate_sum; 11415 break; 11416 11417 default: 11418 goto err; 11419 } 11420 11421 agg->dtag_action.dta_rec.dtrd_size = size; 11422 11423 if (ntuple == 0) 11424 goto err; 11425 11426 /* 11427 * We must make sure that we have enough actions for the n-tuple. 11428 */ 11429 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11430 if (DTRACEACT_ISAGG(act->dta_kind)) 11431 break; 11432 11433 if (--ntuple == 0) { 11434 /* 11435 * This is the action with which our n-tuple begins. 11436 */ 11437 agg->dtag_first = act; 11438 goto success; 11439 } 11440 } 11441 11442 /* 11443 * This n-tuple is short by ntuple elements. Return failure. 11444 */ 11445 ASSERT(ntuple != 0); 11446 err: 11447 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11448 return (NULL); 11449 11450 success: 11451 /* 11452 * If the last action in the tuple has a size of zero, it's actually 11453 * an expression argument for the aggregating action. 11454 */ 11455 ASSERT(ecb->dte_action_last != NULL); 11456 act = ecb->dte_action_last; 11457 11458 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11459 ASSERT(act->dta_difo != NULL); 11460 11461 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11462 agg->dtag_hasarg = 1; 11463 } 11464 11465 /* 11466 * We need to allocate an id for this aggregation. 11467 */ 11468 #ifdef illumos 11469 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11470 VM_BESTFIT | VM_SLEEP); 11471 #else 11472 aggid = alloc_unr(state->dts_aggid_arena); 11473 #endif 11474 11475 if (aggid - 1 >= state->dts_naggregations) { 11476 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11477 dtrace_aggregation_t **aggs; 11478 int naggs = state->dts_naggregations << 1; 11479 int onaggs = state->dts_naggregations; 11480 11481 ASSERT(aggid == state->dts_naggregations + 1); 11482 11483 if (naggs == 0) { 11484 ASSERT(oaggs == NULL); 11485 naggs = 1; 11486 } 11487 11488 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11489 11490 if (oaggs != NULL) { 11491 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11492 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11493 } 11494 11495 state->dts_aggregations = aggs; 11496 state->dts_naggregations = naggs; 11497 } 11498 11499 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11500 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11501 11502 frec = &agg->dtag_first->dta_rec; 11503 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11504 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11505 11506 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11507 ASSERT(!act->dta_intuple); 11508 act->dta_intuple = 1; 11509 } 11510 11511 return (&agg->dtag_action); 11512 } 11513 11514 static void 11515 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11516 { 11517 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11518 dtrace_state_t *state = ecb->dte_state; 11519 dtrace_aggid_t aggid = agg->dtag_id; 11520 11521 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11522 #ifdef illumos 11523 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11524 #else 11525 free_unr(state->dts_aggid_arena, aggid); 11526 #endif 11527 11528 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11529 state->dts_aggregations[aggid - 1] = NULL; 11530 11531 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11532 } 11533 11534 static int 11535 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11536 { 11537 dtrace_action_t *action, *last; 11538 dtrace_difo_t *dp = desc->dtad_difo; 11539 uint32_t size = 0, align = sizeof (uint8_t), mask; 11540 uint16_t format = 0; 11541 dtrace_recdesc_t *rec; 11542 dtrace_state_t *state = ecb->dte_state; 11543 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11544 uint64_t arg = desc->dtad_arg; 11545 11546 ASSERT(MUTEX_HELD(&dtrace_lock)); 11547 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11548 11549 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11550 /* 11551 * If this is an aggregating action, there must be neither 11552 * a speculate nor a commit on the action chain. 11553 */ 11554 dtrace_action_t *act; 11555 11556 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11557 if (act->dta_kind == DTRACEACT_COMMIT) 11558 return (EINVAL); 11559 11560 if (act->dta_kind == DTRACEACT_SPECULATE) 11561 return (EINVAL); 11562 } 11563 11564 action = dtrace_ecb_aggregation_create(ecb, desc); 11565 11566 if (action == NULL) 11567 return (EINVAL); 11568 } else { 11569 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11570 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11571 dp != NULL && dp->dtdo_destructive)) { 11572 state->dts_destructive = 1; 11573 } 11574 11575 switch (desc->dtad_kind) { 11576 case DTRACEACT_PRINTF: 11577 case DTRACEACT_PRINTA: 11578 case DTRACEACT_SYSTEM: 11579 case DTRACEACT_FREOPEN: 11580 case DTRACEACT_DIFEXPR: 11581 /* 11582 * We know that our arg is a string -- turn it into a 11583 * format. 11584 */ 11585 if (arg == 0) { 11586 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11587 desc->dtad_kind == DTRACEACT_DIFEXPR); 11588 format = 0; 11589 } else { 11590 ASSERT(arg != 0); 11591 #ifdef illumos 11592 ASSERT(arg > KERNELBASE); 11593 #endif 11594 format = dtrace_format_add(state, 11595 (char *)(uintptr_t)arg); 11596 } 11597 11598 /*FALLTHROUGH*/ 11599 case DTRACEACT_LIBACT: 11600 case DTRACEACT_TRACEMEM: 11601 case DTRACEACT_TRACEMEM_DYNSIZE: 11602 if (dp == NULL) 11603 return (EINVAL); 11604 11605 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11606 break; 11607 11608 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11609 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11610 return (EINVAL); 11611 11612 size = opt[DTRACEOPT_STRSIZE]; 11613 } 11614 11615 break; 11616 11617 case DTRACEACT_STACK: 11618 if ((nframes = arg) == 0) { 11619 nframes = opt[DTRACEOPT_STACKFRAMES]; 11620 ASSERT(nframes > 0); 11621 arg = nframes; 11622 } 11623 11624 size = nframes * sizeof (pc_t); 11625 break; 11626 11627 case DTRACEACT_JSTACK: 11628 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11629 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11630 11631 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11632 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11633 11634 arg = DTRACE_USTACK_ARG(nframes, strsize); 11635 11636 /*FALLTHROUGH*/ 11637 case DTRACEACT_USTACK: 11638 if (desc->dtad_kind != DTRACEACT_JSTACK && 11639 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11640 strsize = DTRACE_USTACK_STRSIZE(arg); 11641 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11642 ASSERT(nframes > 0); 11643 arg = DTRACE_USTACK_ARG(nframes, strsize); 11644 } 11645 11646 /* 11647 * Save a slot for the pid. 11648 */ 11649 size = (nframes + 1) * sizeof (uint64_t); 11650 size += DTRACE_USTACK_STRSIZE(arg); 11651 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11652 11653 break; 11654 11655 case DTRACEACT_SYM: 11656 case DTRACEACT_MOD: 11657 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11658 sizeof (uint64_t)) || 11659 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11660 return (EINVAL); 11661 break; 11662 11663 case DTRACEACT_USYM: 11664 case DTRACEACT_UMOD: 11665 case DTRACEACT_UADDR: 11666 if (dp == NULL || 11667 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11668 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11669 return (EINVAL); 11670 11671 /* 11672 * We have a slot for the pid, plus a slot for the 11673 * argument. To keep things simple (aligned with 11674 * bitness-neutral sizing), we store each as a 64-bit 11675 * quantity. 11676 */ 11677 size = 2 * sizeof (uint64_t); 11678 break; 11679 11680 case DTRACEACT_STOP: 11681 case DTRACEACT_BREAKPOINT: 11682 case DTRACEACT_PANIC: 11683 break; 11684 11685 case DTRACEACT_CHILL: 11686 case DTRACEACT_DISCARD: 11687 case DTRACEACT_RAISE: 11688 if (dp == NULL) 11689 return (EINVAL); 11690 break; 11691 11692 case DTRACEACT_EXIT: 11693 if (dp == NULL || 11694 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11695 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11696 return (EINVAL); 11697 break; 11698 11699 case DTRACEACT_SPECULATE: 11700 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11701 return (EINVAL); 11702 11703 if (dp == NULL) 11704 return (EINVAL); 11705 11706 state->dts_speculates = 1; 11707 break; 11708 11709 case DTRACEACT_PRINTM: 11710 size = dp->dtdo_rtype.dtdt_size; 11711 break; 11712 11713 case DTRACEACT_COMMIT: { 11714 dtrace_action_t *act = ecb->dte_action; 11715 11716 for (; act != NULL; act = act->dta_next) { 11717 if (act->dta_kind == DTRACEACT_COMMIT) 11718 return (EINVAL); 11719 } 11720 11721 if (dp == NULL) 11722 return (EINVAL); 11723 break; 11724 } 11725 11726 default: 11727 return (EINVAL); 11728 } 11729 11730 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11731 /* 11732 * If this is a data-storing action or a speculate, 11733 * we must be sure that there isn't a commit on the 11734 * action chain. 11735 */ 11736 dtrace_action_t *act = ecb->dte_action; 11737 11738 for (; act != NULL; act = act->dta_next) { 11739 if (act->dta_kind == DTRACEACT_COMMIT) 11740 return (EINVAL); 11741 } 11742 } 11743 11744 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11745 action->dta_rec.dtrd_size = size; 11746 } 11747 11748 action->dta_refcnt = 1; 11749 rec = &action->dta_rec; 11750 size = rec->dtrd_size; 11751 11752 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11753 if (!(size & mask)) { 11754 align = mask + 1; 11755 break; 11756 } 11757 } 11758 11759 action->dta_kind = desc->dtad_kind; 11760 11761 if ((action->dta_difo = dp) != NULL) 11762 dtrace_difo_hold(dp); 11763 11764 rec->dtrd_action = action->dta_kind; 11765 rec->dtrd_arg = arg; 11766 rec->dtrd_uarg = desc->dtad_uarg; 11767 rec->dtrd_alignment = (uint16_t)align; 11768 rec->dtrd_format = format; 11769 11770 if ((last = ecb->dte_action_last) != NULL) { 11771 ASSERT(ecb->dte_action != NULL); 11772 action->dta_prev = last; 11773 last->dta_next = action; 11774 } else { 11775 ASSERT(ecb->dte_action == NULL); 11776 ecb->dte_action = action; 11777 } 11778 11779 ecb->dte_action_last = action; 11780 11781 return (0); 11782 } 11783 11784 static void 11785 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11786 { 11787 dtrace_action_t *act = ecb->dte_action, *next; 11788 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11789 dtrace_difo_t *dp; 11790 uint16_t format; 11791 11792 if (act != NULL && act->dta_refcnt > 1) { 11793 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11794 act->dta_refcnt--; 11795 } else { 11796 for (; act != NULL; act = next) { 11797 next = act->dta_next; 11798 ASSERT(next != NULL || act == ecb->dte_action_last); 11799 ASSERT(act->dta_refcnt == 1); 11800 11801 if ((format = act->dta_rec.dtrd_format) != 0) 11802 dtrace_format_remove(ecb->dte_state, format); 11803 11804 if ((dp = act->dta_difo) != NULL) 11805 dtrace_difo_release(dp, vstate); 11806 11807 if (DTRACEACT_ISAGG(act->dta_kind)) { 11808 dtrace_ecb_aggregation_destroy(ecb, act); 11809 } else { 11810 kmem_free(act, sizeof (dtrace_action_t)); 11811 } 11812 } 11813 } 11814 11815 ecb->dte_action = NULL; 11816 ecb->dte_action_last = NULL; 11817 ecb->dte_size = 0; 11818 } 11819 11820 static void 11821 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11822 { 11823 /* 11824 * We disable the ECB by removing it from its probe. 11825 */ 11826 dtrace_ecb_t *pecb, *prev = NULL; 11827 dtrace_probe_t *probe = ecb->dte_probe; 11828 11829 ASSERT(MUTEX_HELD(&dtrace_lock)); 11830 11831 if (probe == NULL) { 11832 /* 11833 * This is the NULL probe; there is nothing to disable. 11834 */ 11835 return; 11836 } 11837 11838 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11839 if (pecb == ecb) 11840 break; 11841 prev = pecb; 11842 } 11843 11844 ASSERT(pecb != NULL); 11845 11846 if (prev == NULL) { 11847 probe->dtpr_ecb = ecb->dte_next; 11848 } else { 11849 prev->dte_next = ecb->dte_next; 11850 } 11851 11852 if (ecb == probe->dtpr_ecb_last) { 11853 ASSERT(ecb->dte_next == NULL); 11854 probe->dtpr_ecb_last = prev; 11855 } 11856 11857 /* 11858 * The ECB has been disconnected from the probe; now sync to assure 11859 * that all CPUs have seen the change before returning. 11860 */ 11861 dtrace_sync(); 11862 11863 if (probe->dtpr_ecb == NULL) { 11864 /* 11865 * That was the last ECB on the probe; clear the predicate 11866 * cache ID for the probe, disable it and sync one more time 11867 * to assure that we'll never hit it again. 11868 */ 11869 dtrace_provider_t *prov = probe->dtpr_provider; 11870 11871 ASSERT(ecb->dte_next == NULL); 11872 ASSERT(probe->dtpr_ecb_last == NULL); 11873 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11874 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11875 probe->dtpr_id, probe->dtpr_arg); 11876 dtrace_sync(); 11877 } else { 11878 /* 11879 * There is at least one ECB remaining on the probe. If there 11880 * is _exactly_ one, set the probe's predicate cache ID to be 11881 * the predicate cache ID of the remaining ECB. 11882 */ 11883 ASSERT(probe->dtpr_ecb_last != NULL); 11884 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11885 11886 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11887 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11888 11889 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11890 11891 if (p != NULL) 11892 probe->dtpr_predcache = p->dtp_cacheid; 11893 } 11894 11895 ecb->dte_next = NULL; 11896 } 11897 } 11898 11899 static void 11900 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11901 { 11902 dtrace_state_t *state = ecb->dte_state; 11903 dtrace_vstate_t *vstate = &state->dts_vstate; 11904 dtrace_predicate_t *pred; 11905 dtrace_epid_t epid = ecb->dte_epid; 11906 11907 ASSERT(MUTEX_HELD(&dtrace_lock)); 11908 ASSERT(ecb->dte_next == NULL); 11909 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11910 11911 if ((pred = ecb->dte_predicate) != NULL) 11912 dtrace_predicate_release(pred, vstate); 11913 11914 dtrace_ecb_action_remove(ecb); 11915 11916 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11917 state->dts_ecbs[epid - 1] = NULL; 11918 11919 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11920 } 11921 11922 static dtrace_ecb_t * 11923 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11924 dtrace_enabling_t *enab) 11925 { 11926 dtrace_ecb_t *ecb; 11927 dtrace_predicate_t *pred; 11928 dtrace_actdesc_t *act; 11929 dtrace_provider_t *prov; 11930 dtrace_ecbdesc_t *desc = enab->dten_current; 11931 11932 ASSERT(MUTEX_HELD(&dtrace_lock)); 11933 ASSERT(state != NULL); 11934 11935 ecb = dtrace_ecb_add(state, probe); 11936 ecb->dte_uarg = desc->dted_uarg; 11937 11938 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11939 dtrace_predicate_hold(pred); 11940 ecb->dte_predicate = pred; 11941 } 11942 11943 if (probe != NULL) { 11944 /* 11945 * If the provider shows more leg than the consumer is old 11946 * enough to see, we need to enable the appropriate implicit 11947 * predicate bits to prevent the ecb from activating at 11948 * revealing times. 11949 * 11950 * Providers specifying DTRACE_PRIV_USER at register time 11951 * are stating that they need the /proc-style privilege 11952 * model to be enforced, and this is what DTRACE_COND_OWNER 11953 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11954 */ 11955 prov = probe->dtpr_provider; 11956 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11957 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11958 ecb->dte_cond |= DTRACE_COND_OWNER; 11959 11960 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11961 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11962 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11963 11964 /* 11965 * If the provider shows us kernel innards and the user 11966 * is lacking sufficient privilege, enable the 11967 * DTRACE_COND_USERMODE implicit predicate. 11968 */ 11969 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11970 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11971 ecb->dte_cond |= DTRACE_COND_USERMODE; 11972 } 11973 11974 if (dtrace_ecb_create_cache != NULL) { 11975 /* 11976 * If we have a cached ecb, we'll use its action list instead 11977 * of creating our own (saving both time and space). 11978 */ 11979 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11980 dtrace_action_t *act = cached->dte_action; 11981 11982 if (act != NULL) { 11983 ASSERT(act->dta_refcnt > 0); 11984 act->dta_refcnt++; 11985 ecb->dte_action = act; 11986 ecb->dte_action_last = cached->dte_action_last; 11987 ecb->dte_needed = cached->dte_needed; 11988 ecb->dte_size = cached->dte_size; 11989 ecb->dte_alignment = cached->dte_alignment; 11990 } 11991 11992 return (ecb); 11993 } 11994 11995 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11996 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11997 dtrace_ecb_destroy(ecb); 11998 return (NULL); 11999 } 12000 } 12001 12002 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 12003 dtrace_ecb_destroy(ecb); 12004 return (NULL); 12005 } 12006 12007 return (dtrace_ecb_create_cache = ecb); 12008 } 12009 12010 static int 12011 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 12012 { 12013 dtrace_ecb_t *ecb; 12014 dtrace_enabling_t *enab = arg; 12015 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 12016 12017 ASSERT(state != NULL); 12018 12019 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 12020 /* 12021 * This probe was created in a generation for which this 12022 * enabling has previously created ECBs; we don't want to 12023 * enable it again, so just kick out. 12024 */ 12025 return (DTRACE_MATCH_NEXT); 12026 } 12027 12028 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12029 return (DTRACE_MATCH_DONE); 12030 12031 dtrace_ecb_enable(ecb); 12032 return (DTRACE_MATCH_NEXT); 12033 } 12034 12035 static dtrace_ecb_t * 12036 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12037 { 12038 dtrace_ecb_t *ecb; 12039 12040 ASSERT(MUTEX_HELD(&dtrace_lock)); 12041 12042 if (id == 0 || id > state->dts_necbs) 12043 return (NULL); 12044 12045 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12046 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12047 12048 return (state->dts_ecbs[id - 1]); 12049 } 12050 12051 static dtrace_aggregation_t * 12052 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12053 { 12054 dtrace_aggregation_t *agg; 12055 12056 ASSERT(MUTEX_HELD(&dtrace_lock)); 12057 12058 if (id == 0 || id > state->dts_naggregations) 12059 return (NULL); 12060 12061 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12062 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12063 agg->dtag_id == id); 12064 12065 return (state->dts_aggregations[id - 1]); 12066 } 12067 12068 /* 12069 * DTrace Buffer Functions 12070 * 12071 * The following functions manipulate DTrace buffers. Most of these functions 12072 * are called in the context of establishing or processing consumer state; 12073 * exceptions are explicitly noted. 12074 */ 12075 12076 /* 12077 * Note: called from cross call context. This function switches the two 12078 * buffers on a given CPU. The atomicity of this operation is assured by 12079 * disabling interrupts while the actual switch takes place; the disabling of 12080 * interrupts serializes the execution with any execution of dtrace_probe() on 12081 * the same CPU. 12082 */ 12083 static void 12084 dtrace_buffer_switch(dtrace_buffer_t *buf) 12085 { 12086 caddr_t tomax = buf->dtb_tomax; 12087 caddr_t xamot = buf->dtb_xamot; 12088 dtrace_icookie_t cookie; 12089 hrtime_t now; 12090 12091 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12092 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12093 12094 cookie = dtrace_interrupt_disable(); 12095 now = dtrace_gethrtime(); 12096 buf->dtb_tomax = xamot; 12097 buf->dtb_xamot = tomax; 12098 buf->dtb_xamot_drops = buf->dtb_drops; 12099 buf->dtb_xamot_offset = buf->dtb_offset; 12100 buf->dtb_xamot_errors = buf->dtb_errors; 12101 buf->dtb_xamot_flags = buf->dtb_flags; 12102 buf->dtb_offset = 0; 12103 buf->dtb_drops = 0; 12104 buf->dtb_errors = 0; 12105 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12106 buf->dtb_interval = now - buf->dtb_switched; 12107 buf->dtb_switched = now; 12108 dtrace_interrupt_enable(cookie); 12109 } 12110 12111 /* 12112 * Note: called from cross call context. This function activates a buffer 12113 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12114 * is guaranteed by the disabling of interrupts. 12115 */ 12116 static void 12117 dtrace_buffer_activate(dtrace_state_t *state) 12118 { 12119 dtrace_buffer_t *buf; 12120 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12121 12122 buf = &state->dts_buffer[curcpu]; 12123 12124 if (buf->dtb_tomax != NULL) { 12125 /* 12126 * We might like to assert that the buffer is marked inactive, 12127 * but this isn't necessarily true: the buffer for the CPU 12128 * that processes the BEGIN probe has its buffer activated 12129 * manually. In this case, we take the (harmless) action 12130 * re-clearing the bit INACTIVE bit. 12131 */ 12132 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12133 } 12134 12135 dtrace_interrupt_enable(cookie); 12136 } 12137 12138 #ifdef __FreeBSD__ 12139 /* 12140 * Activate the specified per-CPU buffer. This is used instead of 12141 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12142 * activating anonymous state. 12143 */ 12144 static void 12145 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12146 { 12147 12148 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12149 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12150 } 12151 #endif 12152 12153 static int 12154 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12155 processorid_t cpu, int *factor) 12156 { 12157 #ifdef illumos 12158 cpu_t *cp; 12159 #endif 12160 dtrace_buffer_t *buf; 12161 int allocated = 0, desired = 0; 12162 12163 #ifdef illumos 12164 ASSERT(MUTEX_HELD(&cpu_lock)); 12165 ASSERT(MUTEX_HELD(&dtrace_lock)); 12166 12167 *factor = 1; 12168 12169 if (size > dtrace_nonroot_maxsize && 12170 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12171 return (EFBIG); 12172 12173 cp = cpu_list; 12174 12175 do { 12176 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12177 continue; 12178 12179 buf = &bufs[cp->cpu_id]; 12180 12181 /* 12182 * If there is already a buffer allocated for this CPU, it 12183 * is only possible that this is a DR event. In this case, 12184 */ 12185 if (buf->dtb_tomax != NULL) { 12186 ASSERT(buf->dtb_size == size); 12187 continue; 12188 } 12189 12190 ASSERT(buf->dtb_xamot == NULL); 12191 12192 if ((buf->dtb_tomax = kmem_zalloc(size, 12193 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12194 goto err; 12195 12196 buf->dtb_size = size; 12197 buf->dtb_flags = flags; 12198 buf->dtb_offset = 0; 12199 buf->dtb_drops = 0; 12200 12201 if (flags & DTRACEBUF_NOSWITCH) 12202 continue; 12203 12204 if ((buf->dtb_xamot = kmem_zalloc(size, 12205 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12206 goto err; 12207 } while ((cp = cp->cpu_next) != cpu_list); 12208 12209 return (0); 12210 12211 err: 12212 cp = cpu_list; 12213 12214 do { 12215 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12216 continue; 12217 12218 buf = &bufs[cp->cpu_id]; 12219 desired += 2; 12220 12221 if (buf->dtb_xamot != NULL) { 12222 ASSERT(buf->dtb_tomax != NULL); 12223 ASSERT(buf->dtb_size == size); 12224 kmem_free(buf->dtb_xamot, size); 12225 allocated++; 12226 } 12227 12228 if (buf->dtb_tomax != NULL) { 12229 ASSERT(buf->dtb_size == size); 12230 kmem_free(buf->dtb_tomax, size); 12231 allocated++; 12232 } 12233 12234 buf->dtb_tomax = NULL; 12235 buf->dtb_xamot = NULL; 12236 buf->dtb_size = 0; 12237 } while ((cp = cp->cpu_next) != cpu_list); 12238 #else 12239 int i; 12240 12241 *factor = 1; 12242 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12243 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12244 /* 12245 * FreeBSD isn't good at limiting the amount of memory we 12246 * ask to malloc, so let's place a limit here before trying 12247 * to do something that might well end in tears at bedtime. 12248 */ 12249 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12250 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12251 return (ENOMEM); 12252 #endif 12253 12254 ASSERT(MUTEX_HELD(&dtrace_lock)); 12255 CPU_FOREACH(i) { 12256 if (cpu != DTRACE_CPUALL && cpu != i) 12257 continue; 12258 12259 buf = &bufs[i]; 12260 12261 /* 12262 * If there is already a buffer allocated for this CPU, it 12263 * is only possible that this is a DR event. In this case, 12264 * the buffer size must match our specified size. 12265 */ 12266 if (buf->dtb_tomax != NULL) { 12267 ASSERT(buf->dtb_size == size); 12268 continue; 12269 } 12270 12271 ASSERT(buf->dtb_xamot == NULL); 12272 12273 if ((buf->dtb_tomax = kmem_zalloc(size, 12274 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12275 goto err; 12276 12277 buf->dtb_size = size; 12278 buf->dtb_flags = flags; 12279 buf->dtb_offset = 0; 12280 buf->dtb_drops = 0; 12281 12282 if (flags & DTRACEBUF_NOSWITCH) 12283 continue; 12284 12285 if ((buf->dtb_xamot = kmem_zalloc(size, 12286 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12287 goto err; 12288 } 12289 12290 return (0); 12291 12292 err: 12293 /* 12294 * Error allocating memory, so free the buffers that were 12295 * allocated before the failed allocation. 12296 */ 12297 CPU_FOREACH(i) { 12298 if (cpu != DTRACE_CPUALL && cpu != i) 12299 continue; 12300 12301 buf = &bufs[i]; 12302 desired += 2; 12303 12304 if (buf->dtb_xamot != NULL) { 12305 ASSERT(buf->dtb_tomax != NULL); 12306 ASSERT(buf->dtb_size == size); 12307 kmem_free(buf->dtb_xamot, size); 12308 allocated++; 12309 } 12310 12311 if (buf->dtb_tomax != NULL) { 12312 ASSERT(buf->dtb_size == size); 12313 kmem_free(buf->dtb_tomax, size); 12314 allocated++; 12315 } 12316 12317 buf->dtb_tomax = NULL; 12318 buf->dtb_xamot = NULL; 12319 buf->dtb_size = 0; 12320 12321 } 12322 #endif 12323 *factor = desired / (allocated > 0 ? allocated : 1); 12324 12325 return (ENOMEM); 12326 } 12327 12328 /* 12329 * Note: called from probe context. This function just increments the drop 12330 * count on a buffer. It has been made a function to allow for the 12331 * possibility of understanding the source of mysterious drop counts. (A 12332 * problem for which one may be particularly disappointed that DTrace cannot 12333 * be used to understand DTrace.) 12334 */ 12335 static void 12336 dtrace_buffer_drop(dtrace_buffer_t *buf) 12337 { 12338 buf->dtb_drops++; 12339 } 12340 12341 /* 12342 * Note: called from probe context. This function is called to reserve space 12343 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12344 * mstate. Returns the new offset in the buffer, or a negative value if an 12345 * error has occurred. 12346 */ 12347 static ssize_t 12348 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12349 dtrace_state_t *state, dtrace_mstate_t *mstate) 12350 { 12351 ssize_t offs = buf->dtb_offset, soffs; 12352 intptr_t woffs; 12353 caddr_t tomax; 12354 size_t total; 12355 12356 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12357 return (-1); 12358 12359 if ((tomax = buf->dtb_tomax) == NULL) { 12360 dtrace_buffer_drop(buf); 12361 return (-1); 12362 } 12363 12364 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12365 while (offs & (align - 1)) { 12366 /* 12367 * Assert that our alignment is off by a number which 12368 * is itself sizeof (uint32_t) aligned. 12369 */ 12370 ASSERT(!((align - (offs & (align - 1))) & 12371 (sizeof (uint32_t) - 1))); 12372 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12373 offs += sizeof (uint32_t); 12374 } 12375 12376 if ((soffs = offs + needed) > buf->dtb_size) { 12377 dtrace_buffer_drop(buf); 12378 return (-1); 12379 } 12380 12381 if (mstate == NULL) 12382 return (offs); 12383 12384 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12385 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12386 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12387 12388 return (offs); 12389 } 12390 12391 if (buf->dtb_flags & DTRACEBUF_FILL) { 12392 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12393 (buf->dtb_flags & DTRACEBUF_FULL)) 12394 return (-1); 12395 goto out; 12396 } 12397 12398 total = needed + (offs & (align - 1)); 12399 12400 /* 12401 * For a ring buffer, life is quite a bit more complicated. Before 12402 * we can store any padding, we need to adjust our wrapping offset. 12403 * (If we've never before wrapped or we're not about to, no adjustment 12404 * is required.) 12405 */ 12406 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12407 offs + total > buf->dtb_size) { 12408 woffs = buf->dtb_xamot_offset; 12409 12410 if (offs + total > buf->dtb_size) { 12411 /* 12412 * We can't fit in the end of the buffer. First, a 12413 * sanity check that we can fit in the buffer at all. 12414 */ 12415 if (total > buf->dtb_size) { 12416 dtrace_buffer_drop(buf); 12417 return (-1); 12418 } 12419 12420 /* 12421 * We're going to be storing at the top of the buffer, 12422 * so now we need to deal with the wrapped offset. We 12423 * only reset our wrapped offset to 0 if it is 12424 * currently greater than the current offset. If it 12425 * is less than the current offset, it is because a 12426 * previous allocation induced a wrap -- but the 12427 * allocation didn't subsequently take the space due 12428 * to an error or false predicate evaluation. In this 12429 * case, we'll just leave the wrapped offset alone: if 12430 * the wrapped offset hasn't been advanced far enough 12431 * for this allocation, it will be adjusted in the 12432 * lower loop. 12433 */ 12434 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12435 if (woffs >= offs) 12436 woffs = 0; 12437 } else { 12438 woffs = 0; 12439 } 12440 12441 /* 12442 * Now we know that we're going to be storing to the 12443 * top of the buffer and that there is room for us 12444 * there. We need to clear the buffer from the current 12445 * offset to the end (there may be old gunk there). 12446 */ 12447 while (offs < buf->dtb_size) 12448 tomax[offs++] = 0; 12449 12450 /* 12451 * We need to set our offset to zero. And because we 12452 * are wrapping, we need to set the bit indicating as 12453 * much. We can also adjust our needed space back 12454 * down to the space required by the ECB -- we know 12455 * that the top of the buffer is aligned. 12456 */ 12457 offs = 0; 12458 total = needed; 12459 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12460 } else { 12461 /* 12462 * There is room for us in the buffer, so we simply 12463 * need to check the wrapped offset. 12464 */ 12465 if (woffs < offs) { 12466 /* 12467 * The wrapped offset is less than the offset. 12468 * This can happen if we allocated buffer space 12469 * that induced a wrap, but then we didn't 12470 * subsequently take the space due to an error 12471 * or false predicate evaluation. This is 12472 * okay; we know that _this_ allocation isn't 12473 * going to induce a wrap. We still can't 12474 * reset the wrapped offset to be zero, 12475 * however: the space may have been trashed in 12476 * the previous failed probe attempt. But at 12477 * least the wrapped offset doesn't need to 12478 * be adjusted at all... 12479 */ 12480 goto out; 12481 } 12482 } 12483 12484 while (offs + total > woffs) { 12485 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12486 size_t size; 12487 12488 if (epid == DTRACE_EPIDNONE) { 12489 size = sizeof (uint32_t); 12490 } else { 12491 ASSERT3U(epid, <=, state->dts_necbs); 12492 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12493 12494 size = state->dts_ecbs[epid - 1]->dte_size; 12495 } 12496 12497 ASSERT(woffs + size <= buf->dtb_size); 12498 ASSERT(size != 0); 12499 12500 if (woffs + size == buf->dtb_size) { 12501 /* 12502 * We've reached the end of the buffer; we want 12503 * to set the wrapped offset to 0 and break 12504 * out. However, if the offs is 0, then we're 12505 * in a strange edge-condition: the amount of 12506 * space that we want to reserve plus the size 12507 * of the record that we're overwriting is 12508 * greater than the size of the buffer. This 12509 * is problematic because if we reserve the 12510 * space but subsequently don't consume it (due 12511 * to a failed predicate or error) the wrapped 12512 * offset will be 0 -- yet the EPID at offset 0 12513 * will not be committed. This situation is 12514 * relatively easy to deal with: if we're in 12515 * this case, the buffer is indistinguishable 12516 * from one that hasn't wrapped; we need only 12517 * finish the job by clearing the wrapped bit, 12518 * explicitly setting the offset to be 0, and 12519 * zero'ing out the old data in the buffer. 12520 */ 12521 if (offs == 0) { 12522 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12523 buf->dtb_offset = 0; 12524 woffs = total; 12525 12526 while (woffs < buf->dtb_size) 12527 tomax[woffs++] = 0; 12528 } 12529 12530 woffs = 0; 12531 break; 12532 } 12533 12534 woffs += size; 12535 } 12536 12537 /* 12538 * We have a wrapped offset. It may be that the wrapped offset 12539 * has become zero -- that's okay. 12540 */ 12541 buf->dtb_xamot_offset = woffs; 12542 } 12543 12544 out: 12545 /* 12546 * Now we can plow the buffer with any necessary padding. 12547 */ 12548 while (offs & (align - 1)) { 12549 /* 12550 * Assert that our alignment is off by a number which 12551 * is itself sizeof (uint32_t) aligned. 12552 */ 12553 ASSERT(!((align - (offs & (align - 1))) & 12554 (sizeof (uint32_t) - 1))); 12555 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12556 offs += sizeof (uint32_t); 12557 } 12558 12559 if (buf->dtb_flags & DTRACEBUF_FILL) { 12560 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12561 buf->dtb_flags |= DTRACEBUF_FULL; 12562 return (-1); 12563 } 12564 } 12565 12566 if (mstate == NULL) 12567 return (offs); 12568 12569 /* 12570 * For ring buffers and fill buffers, the scratch space is always 12571 * the inactive buffer. 12572 */ 12573 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12574 mstate->dtms_scratch_size = buf->dtb_size; 12575 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12576 12577 return (offs); 12578 } 12579 12580 static void 12581 dtrace_buffer_polish(dtrace_buffer_t *buf) 12582 { 12583 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12584 ASSERT(MUTEX_HELD(&dtrace_lock)); 12585 12586 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12587 return; 12588 12589 /* 12590 * We need to polish the ring buffer. There are three cases: 12591 * 12592 * - The first (and presumably most common) is that there is no gap 12593 * between the buffer offset and the wrapped offset. In this case, 12594 * there is nothing in the buffer that isn't valid data; we can 12595 * mark the buffer as polished and return. 12596 * 12597 * - The second (less common than the first but still more common 12598 * than the third) is that there is a gap between the buffer offset 12599 * and the wrapped offset, and the wrapped offset is larger than the 12600 * buffer offset. This can happen because of an alignment issue, or 12601 * can happen because of a call to dtrace_buffer_reserve() that 12602 * didn't subsequently consume the buffer space. In this case, 12603 * we need to zero the data from the buffer offset to the wrapped 12604 * offset. 12605 * 12606 * - The third (and least common) is that there is a gap between the 12607 * buffer offset and the wrapped offset, but the wrapped offset is 12608 * _less_ than the buffer offset. This can only happen because a 12609 * call to dtrace_buffer_reserve() induced a wrap, but the space 12610 * was not subsequently consumed. In this case, we need to zero the 12611 * space from the offset to the end of the buffer _and_ from the 12612 * top of the buffer to the wrapped offset. 12613 */ 12614 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12615 bzero(buf->dtb_tomax + buf->dtb_offset, 12616 buf->dtb_xamot_offset - buf->dtb_offset); 12617 } 12618 12619 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12620 bzero(buf->dtb_tomax + buf->dtb_offset, 12621 buf->dtb_size - buf->dtb_offset); 12622 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12623 } 12624 } 12625 12626 /* 12627 * This routine determines if data generated at the specified time has likely 12628 * been entirely consumed at user-level. This routine is called to determine 12629 * if an ECB on a defunct probe (but for an active enabling) can be safely 12630 * disabled and destroyed. 12631 */ 12632 static int 12633 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12634 { 12635 int i; 12636 12637 CPU_FOREACH(i) { 12638 dtrace_buffer_t *buf = &bufs[i]; 12639 12640 if (buf->dtb_size == 0) 12641 continue; 12642 12643 if (buf->dtb_flags & DTRACEBUF_RING) 12644 return (0); 12645 12646 if (!buf->dtb_switched && buf->dtb_offset != 0) 12647 return (0); 12648 12649 if (buf->dtb_switched - buf->dtb_interval < when) 12650 return (0); 12651 } 12652 12653 return (1); 12654 } 12655 12656 static void 12657 dtrace_buffer_free(dtrace_buffer_t *bufs) 12658 { 12659 int i; 12660 12661 CPU_FOREACH(i) { 12662 dtrace_buffer_t *buf = &bufs[i]; 12663 12664 if (buf->dtb_tomax == NULL) { 12665 ASSERT(buf->dtb_xamot == NULL); 12666 ASSERT(buf->dtb_size == 0); 12667 continue; 12668 } 12669 12670 if (buf->dtb_xamot != NULL) { 12671 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12672 kmem_free(buf->dtb_xamot, buf->dtb_size); 12673 } 12674 12675 kmem_free(buf->dtb_tomax, buf->dtb_size); 12676 buf->dtb_size = 0; 12677 buf->dtb_tomax = NULL; 12678 buf->dtb_xamot = NULL; 12679 } 12680 } 12681 12682 /* 12683 * DTrace Enabling Functions 12684 */ 12685 static dtrace_enabling_t * 12686 dtrace_enabling_create(dtrace_vstate_t *vstate) 12687 { 12688 dtrace_enabling_t *enab; 12689 12690 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12691 enab->dten_vstate = vstate; 12692 12693 return (enab); 12694 } 12695 12696 static void 12697 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12698 { 12699 dtrace_ecbdesc_t **ndesc; 12700 size_t osize, nsize; 12701 12702 /* 12703 * We can't add to enablings after we've enabled them, or after we've 12704 * retained them. 12705 */ 12706 ASSERT(enab->dten_probegen == 0); 12707 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12708 12709 if (enab->dten_ndesc < enab->dten_maxdesc) { 12710 enab->dten_desc[enab->dten_ndesc++] = ecb; 12711 return; 12712 } 12713 12714 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12715 12716 if (enab->dten_maxdesc == 0) { 12717 enab->dten_maxdesc = 1; 12718 } else { 12719 enab->dten_maxdesc <<= 1; 12720 } 12721 12722 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12723 12724 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12725 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12726 bcopy(enab->dten_desc, ndesc, osize); 12727 if (enab->dten_desc != NULL) 12728 kmem_free(enab->dten_desc, osize); 12729 12730 enab->dten_desc = ndesc; 12731 enab->dten_desc[enab->dten_ndesc++] = ecb; 12732 } 12733 12734 static void 12735 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12736 dtrace_probedesc_t *pd) 12737 { 12738 dtrace_ecbdesc_t *new; 12739 dtrace_predicate_t *pred; 12740 dtrace_actdesc_t *act; 12741 12742 /* 12743 * We're going to create a new ECB description that matches the 12744 * specified ECB in every way, but has the specified probe description. 12745 */ 12746 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12747 12748 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12749 dtrace_predicate_hold(pred); 12750 12751 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12752 dtrace_actdesc_hold(act); 12753 12754 new->dted_action = ecb->dted_action; 12755 new->dted_pred = ecb->dted_pred; 12756 new->dted_probe = *pd; 12757 new->dted_uarg = ecb->dted_uarg; 12758 12759 dtrace_enabling_add(enab, new); 12760 } 12761 12762 static void 12763 dtrace_enabling_dump(dtrace_enabling_t *enab) 12764 { 12765 int i; 12766 12767 for (i = 0; i < enab->dten_ndesc; i++) { 12768 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12769 12770 #ifdef __FreeBSD__ 12771 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12772 desc->dtpd_provider, desc->dtpd_mod, 12773 desc->dtpd_func, desc->dtpd_name); 12774 #else 12775 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12776 desc->dtpd_provider, desc->dtpd_mod, 12777 desc->dtpd_func, desc->dtpd_name); 12778 #endif 12779 } 12780 } 12781 12782 static void 12783 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12784 { 12785 int i; 12786 dtrace_ecbdesc_t *ep; 12787 dtrace_vstate_t *vstate = enab->dten_vstate; 12788 12789 ASSERT(MUTEX_HELD(&dtrace_lock)); 12790 12791 for (i = 0; i < enab->dten_ndesc; i++) { 12792 dtrace_actdesc_t *act, *next; 12793 dtrace_predicate_t *pred; 12794 12795 ep = enab->dten_desc[i]; 12796 12797 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12798 dtrace_predicate_release(pred, vstate); 12799 12800 for (act = ep->dted_action; act != NULL; act = next) { 12801 next = act->dtad_next; 12802 dtrace_actdesc_release(act, vstate); 12803 } 12804 12805 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12806 } 12807 12808 if (enab->dten_desc != NULL) 12809 kmem_free(enab->dten_desc, 12810 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12811 12812 /* 12813 * If this was a retained enabling, decrement the dts_nretained count 12814 * and take it off of the dtrace_retained list. 12815 */ 12816 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12817 dtrace_retained == enab) { 12818 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12819 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12820 enab->dten_vstate->dtvs_state->dts_nretained--; 12821 dtrace_retained_gen++; 12822 } 12823 12824 if (enab->dten_prev == NULL) { 12825 if (dtrace_retained == enab) { 12826 dtrace_retained = enab->dten_next; 12827 12828 if (dtrace_retained != NULL) 12829 dtrace_retained->dten_prev = NULL; 12830 } 12831 } else { 12832 ASSERT(enab != dtrace_retained); 12833 ASSERT(dtrace_retained != NULL); 12834 enab->dten_prev->dten_next = enab->dten_next; 12835 } 12836 12837 if (enab->dten_next != NULL) { 12838 ASSERT(dtrace_retained != NULL); 12839 enab->dten_next->dten_prev = enab->dten_prev; 12840 } 12841 12842 kmem_free(enab, sizeof (dtrace_enabling_t)); 12843 } 12844 12845 static int 12846 dtrace_enabling_retain(dtrace_enabling_t *enab) 12847 { 12848 dtrace_state_t *state; 12849 12850 ASSERT(MUTEX_HELD(&dtrace_lock)); 12851 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12852 ASSERT(enab->dten_vstate != NULL); 12853 12854 state = enab->dten_vstate->dtvs_state; 12855 ASSERT(state != NULL); 12856 12857 /* 12858 * We only allow each state to retain dtrace_retain_max enablings. 12859 */ 12860 if (state->dts_nretained >= dtrace_retain_max) 12861 return (ENOSPC); 12862 12863 state->dts_nretained++; 12864 dtrace_retained_gen++; 12865 12866 if (dtrace_retained == NULL) { 12867 dtrace_retained = enab; 12868 return (0); 12869 } 12870 12871 enab->dten_next = dtrace_retained; 12872 dtrace_retained->dten_prev = enab; 12873 dtrace_retained = enab; 12874 12875 return (0); 12876 } 12877 12878 static int 12879 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12880 dtrace_probedesc_t *create) 12881 { 12882 dtrace_enabling_t *new, *enab; 12883 int found = 0, err = ENOENT; 12884 12885 ASSERT(MUTEX_HELD(&dtrace_lock)); 12886 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12887 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12888 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12889 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12890 12891 new = dtrace_enabling_create(&state->dts_vstate); 12892 12893 /* 12894 * Iterate over all retained enablings, looking for enablings that 12895 * match the specified state. 12896 */ 12897 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12898 int i; 12899 12900 /* 12901 * dtvs_state can only be NULL for helper enablings -- and 12902 * helper enablings can't be retained. 12903 */ 12904 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12905 12906 if (enab->dten_vstate->dtvs_state != state) 12907 continue; 12908 12909 /* 12910 * Now iterate over each probe description; we're looking for 12911 * an exact match to the specified probe description. 12912 */ 12913 for (i = 0; i < enab->dten_ndesc; i++) { 12914 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12915 dtrace_probedesc_t *pd = &ep->dted_probe; 12916 12917 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12918 continue; 12919 12920 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12921 continue; 12922 12923 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12924 continue; 12925 12926 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12927 continue; 12928 12929 /* 12930 * We have a winning probe! Add it to our growing 12931 * enabling. 12932 */ 12933 found = 1; 12934 dtrace_enabling_addlike(new, ep, create); 12935 } 12936 } 12937 12938 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12939 dtrace_enabling_destroy(new); 12940 return (err); 12941 } 12942 12943 return (0); 12944 } 12945 12946 static void 12947 dtrace_enabling_retract(dtrace_state_t *state) 12948 { 12949 dtrace_enabling_t *enab, *next; 12950 12951 ASSERT(MUTEX_HELD(&dtrace_lock)); 12952 12953 /* 12954 * Iterate over all retained enablings, destroy the enablings retained 12955 * for the specified state. 12956 */ 12957 for (enab = dtrace_retained; enab != NULL; enab = next) { 12958 next = enab->dten_next; 12959 12960 /* 12961 * dtvs_state can only be NULL for helper enablings -- and 12962 * helper enablings can't be retained. 12963 */ 12964 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12965 12966 if (enab->dten_vstate->dtvs_state == state) { 12967 ASSERT(state->dts_nretained > 0); 12968 dtrace_enabling_destroy(enab); 12969 } 12970 } 12971 12972 ASSERT(state->dts_nretained == 0); 12973 } 12974 12975 static int 12976 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12977 { 12978 int i = 0; 12979 int matched = 0; 12980 12981 ASSERT(MUTEX_HELD(&cpu_lock)); 12982 ASSERT(MUTEX_HELD(&dtrace_lock)); 12983 12984 for (i = 0; i < enab->dten_ndesc; i++) { 12985 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12986 12987 enab->dten_current = ep; 12988 enab->dten_error = 0; 12989 12990 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12991 12992 if (enab->dten_error != 0) { 12993 /* 12994 * If we get an error half-way through enabling the 12995 * probes, we kick out -- perhaps with some number of 12996 * them enabled. Leaving enabled probes enabled may 12997 * be slightly confusing for user-level, but we expect 12998 * that no one will attempt to actually drive on in 12999 * the face of such errors. If this is an anonymous 13000 * enabling (indicated with a NULL nmatched pointer), 13001 * we cmn_err() a message. We aren't expecting to 13002 * get such an error -- such as it can exist at all, 13003 * it would be a result of corrupted DOF in the driver 13004 * properties. 13005 */ 13006 if (nmatched == NULL) { 13007 cmn_err(CE_WARN, "dtrace_enabling_match() " 13008 "error on %p: %d", (void *)ep, 13009 enab->dten_error); 13010 } 13011 13012 return (enab->dten_error); 13013 } 13014 } 13015 13016 enab->dten_probegen = dtrace_probegen; 13017 if (nmatched != NULL) 13018 *nmatched = matched; 13019 13020 return (0); 13021 } 13022 13023 static void 13024 dtrace_enabling_matchall_task(void *args __unused) 13025 { 13026 dtrace_enabling_matchall(); 13027 } 13028 13029 static void 13030 dtrace_enabling_matchall(void) 13031 { 13032 dtrace_enabling_t *enab; 13033 13034 mutex_enter(&cpu_lock); 13035 mutex_enter(&dtrace_lock); 13036 13037 /* 13038 * Iterate over all retained enablings to see if any probes match 13039 * against them. We only perform this operation on enablings for which 13040 * we have sufficient permissions by virtue of being in the global zone 13041 * or in the same zone as the DTrace client. Because we can be called 13042 * after dtrace_detach() has been called, we cannot assert that there 13043 * are retained enablings. We can safely load from dtrace_retained, 13044 * however: the taskq_destroy() at the end of dtrace_detach() will 13045 * block pending our completion. 13046 */ 13047 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13048 #ifdef illumos 13049 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13050 13051 if (INGLOBALZONE(curproc) || 13052 cr != NULL && getzoneid() == crgetzoneid(cr)) 13053 #endif 13054 (void) dtrace_enabling_match(enab, NULL); 13055 } 13056 13057 mutex_exit(&dtrace_lock); 13058 mutex_exit(&cpu_lock); 13059 } 13060 13061 /* 13062 * If an enabling is to be enabled without having matched probes (that is, if 13063 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13064 * enabling must be _primed_ by creating an ECB for every ECB description. 13065 * This must be done to assure that we know the number of speculations, the 13066 * number of aggregations, the minimum buffer size needed, etc. before we 13067 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13068 * enabling any probes, we create ECBs for every ECB decription, but with a 13069 * NULL probe -- which is exactly what this function does. 13070 */ 13071 static void 13072 dtrace_enabling_prime(dtrace_state_t *state) 13073 { 13074 dtrace_enabling_t *enab; 13075 int i; 13076 13077 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13078 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13079 13080 if (enab->dten_vstate->dtvs_state != state) 13081 continue; 13082 13083 /* 13084 * We don't want to prime an enabling more than once, lest 13085 * we allow a malicious user to induce resource exhaustion. 13086 * (The ECBs that result from priming an enabling aren't 13087 * leaked -- but they also aren't deallocated until the 13088 * consumer state is destroyed.) 13089 */ 13090 if (enab->dten_primed) 13091 continue; 13092 13093 for (i = 0; i < enab->dten_ndesc; i++) { 13094 enab->dten_current = enab->dten_desc[i]; 13095 (void) dtrace_probe_enable(NULL, enab); 13096 } 13097 13098 enab->dten_primed = 1; 13099 } 13100 } 13101 13102 /* 13103 * Called to indicate that probes should be provided due to retained 13104 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13105 * must take an initial lap through the enabling calling the dtps_provide() 13106 * entry point explicitly to allow for autocreated probes. 13107 */ 13108 static void 13109 dtrace_enabling_provide(dtrace_provider_t *prv) 13110 { 13111 int i, all = 0; 13112 dtrace_probedesc_t desc; 13113 dtrace_genid_t gen; 13114 13115 ASSERT(MUTEX_HELD(&dtrace_lock)); 13116 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13117 13118 if (prv == NULL) { 13119 all = 1; 13120 prv = dtrace_provider; 13121 } 13122 13123 do { 13124 dtrace_enabling_t *enab; 13125 void *parg = prv->dtpv_arg; 13126 13127 retry: 13128 gen = dtrace_retained_gen; 13129 for (enab = dtrace_retained; enab != NULL; 13130 enab = enab->dten_next) { 13131 for (i = 0; i < enab->dten_ndesc; i++) { 13132 desc = enab->dten_desc[i]->dted_probe; 13133 mutex_exit(&dtrace_lock); 13134 prv->dtpv_pops.dtps_provide(parg, &desc); 13135 mutex_enter(&dtrace_lock); 13136 /* 13137 * Process the retained enablings again if 13138 * they have changed while we weren't holding 13139 * dtrace_lock. 13140 */ 13141 if (gen != dtrace_retained_gen) 13142 goto retry; 13143 } 13144 } 13145 } while (all && (prv = prv->dtpv_next) != NULL); 13146 13147 mutex_exit(&dtrace_lock); 13148 dtrace_probe_provide(NULL, all ? NULL : prv); 13149 mutex_enter(&dtrace_lock); 13150 } 13151 13152 /* 13153 * Called to reap ECBs that are attached to probes from defunct providers. 13154 */ 13155 static void 13156 dtrace_enabling_reap(void *args __unused) 13157 { 13158 dtrace_provider_t *prov; 13159 dtrace_probe_t *probe; 13160 dtrace_ecb_t *ecb; 13161 hrtime_t when; 13162 int i; 13163 13164 mutex_enter(&cpu_lock); 13165 mutex_enter(&dtrace_lock); 13166 13167 for (i = 0; i < dtrace_nprobes; i++) { 13168 if ((probe = dtrace_probes[i]) == NULL) 13169 continue; 13170 13171 if (probe->dtpr_ecb == NULL) 13172 continue; 13173 13174 prov = probe->dtpr_provider; 13175 13176 if ((when = prov->dtpv_defunct) == 0) 13177 continue; 13178 13179 /* 13180 * We have ECBs on a defunct provider: we want to reap these 13181 * ECBs to allow the provider to unregister. The destruction 13182 * of these ECBs must be done carefully: if we destroy the ECB 13183 * and the consumer later wishes to consume an EPID that 13184 * corresponds to the destroyed ECB (and if the EPID metadata 13185 * has not been previously consumed), the consumer will abort 13186 * processing on the unknown EPID. To reduce (but not, sadly, 13187 * eliminate) the possibility of this, we will only destroy an 13188 * ECB for a defunct provider if, for the state that 13189 * corresponds to the ECB: 13190 * 13191 * (a) There is no speculative tracing (which can effectively 13192 * cache an EPID for an arbitrary amount of time). 13193 * 13194 * (b) The principal buffers have been switched twice since the 13195 * provider became defunct. 13196 * 13197 * (c) The aggregation buffers are of zero size or have been 13198 * switched twice since the provider became defunct. 13199 * 13200 * We use dts_speculates to determine (a) and call a function 13201 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13202 * that as soon as we've been unable to destroy one of the ECBs 13203 * associated with the probe, we quit trying -- reaping is only 13204 * fruitful in as much as we can destroy all ECBs associated 13205 * with the defunct provider's probes. 13206 */ 13207 while ((ecb = probe->dtpr_ecb) != NULL) { 13208 dtrace_state_t *state = ecb->dte_state; 13209 dtrace_buffer_t *buf = state->dts_buffer; 13210 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13211 13212 if (state->dts_speculates) 13213 break; 13214 13215 if (!dtrace_buffer_consumed(buf, when)) 13216 break; 13217 13218 if (!dtrace_buffer_consumed(aggbuf, when)) 13219 break; 13220 13221 dtrace_ecb_disable(ecb); 13222 ASSERT(probe->dtpr_ecb != ecb); 13223 dtrace_ecb_destroy(ecb); 13224 } 13225 } 13226 13227 mutex_exit(&dtrace_lock); 13228 mutex_exit(&cpu_lock); 13229 } 13230 13231 /* 13232 * DTrace DOF Functions 13233 */ 13234 /*ARGSUSED*/ 13235 static void 13236 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13237 { 13238 if (dtrace_err_verbose) 13239 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13240 13241 #ifdef DTRACE_ERRDEBUG 13242 dtrace_errdebug(str); 13243 #endif 13244 } 13245 13246 /* 13247 * Create DOF out of a currently enabled state. Right now, we only create 13248 * DOF containing the run-time options -- but this could be expanded to create 13249 * complete DOF representing the enabled state. 13250 */ 13251 static dof_hdr_t * 13252 dtrace_dof_create(dtrace_state_t *state) 13253 { 13254 dof_hdr_t *dof; 13255 dof_sec_t *sec; 13256 dof_optdesc_t *opt; 13257 int i, len = sizeof (dof_hdr_t) + 13258 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13259 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13260 13261 ASSERT(MUTEX_HELD(&dtrace_lock)); 13262 13263 dof = kmem_zalloc(len, KM_SLEEP); 13264 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13265 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13266 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13267 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13268 13269 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13270 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13271 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13272 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13273 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13274 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13275 13276 dof->dofh_flags = 0; 13277 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13278 dof->dofh_secsize = sizeof (dof_sec_t); 13279 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13280 dof->dofh_secoff = sizeof (dof_hdr_t); 13281 dof->dofh_loadsz = len; 13282 dof->dofh_filesz = len; 13283 dof->dofh_pad = 0; 13284 13285 /* 13286 * Fill in the option section header... 13287 */ 13288 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13289 sec->dofs_type = DOF_SECT_OPTDESC; 13290 sec->dofs_align = sizeof (uint64_t); 13291 sec->dofs_flags = DOF_SECF_LOAD; 13292 sec->dofs_entsize = sizeof (dof_optdesc_t); 13293 13294 opt = (dof_optdesc_t *)((uintptr_t)sec + 13295 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13296 13297 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13298 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13299 13300 for (i = 0; i < DTRACEOPT_MAX; i++) { 13301 opt[i].dofo_option = i; 13302 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13303 opt[i].dofo_value = state->dts_options[i]; 13304 } 13305 13306 return (dof); 13307 } 13308 13309 static dof_hdr_t * 13310 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13311 { 13312 dof_hdr_t hdr, *dof; 13313 13314 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13315 13316 /* 13317 * First, we're going to copyin() the sizeof (dof_hdr_t). 13318 */ 13319 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13320 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13321 *errp = EFAULT; 13322 return (NULL); 13323 } 13324 13325 /* 13326 * Now we'll allocate the entire DOF and copy it in -- provided 13327 * that the length isn't outrageous. 13328 */ 13329 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13330 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13331 *errp = E2BIG; 13332 return (NULL); 13333 } 13334 13335 if (hdr.dofh_loadsz < sizeof (hdr)) { 13336 dtrace_dof_error(&hdr, "invalid load size"); 13337 *errp = EINVAL; 13338 return (NULL); 13339 } 13340 13341 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13342 13343 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13344 dof->dofh_loadsz != hdr.dofh_loadsz) { 13345 kmem_free(dof, hdr.dofh_loadsz); 13346 *errp = EFAULT; 13347 return (NULL); 13348 } 13349 13350 return (dof); 13351 } 13352 13353 #ifdef __FreeBSD__ 13354 static dof_hdr_t * 13355 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13356 { 13357 dof_hdr_t hdr, *dof; 13358 struct thread *td; 13359 size_t loadsz; 13360 13361 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13362 13363 td = curthread; 13364 13365 /* 13366 * First, we're going to copyin() the sizeof (dof_hdr_t). 13367 */ 13368 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13369 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13370 *errp = EFAULT; 13371 return (NULL); 13372 } 13373 13374 /* 13375 * Now we'll allocate the entire DOF and copy it in -- provided 13376 * that the length isn't outrageous. 13377 */ 13378 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13379 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13380 *errp = E2BIG; 13381 return (NULL); 13382 } 13383 loadsz = (size_t)hdr.dofh_loadsz; 13384 13385 if (loadsz < sizeof (hdr)) { 13386 dtrace_dof_error(&hdr, "invalid load size"); 13387 *errp = EINVAL; 13388 return (NULL); 13389 } 13390 13391 dof = kmem_alloc(loadsz, KM_SLEEP); 13392 13393 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13394 dof->dofh_loadsz != loadsz) { 13395 kmem_free(dof, hdr.dofh_loadsz); 13396 *errp = EFAULT; 13397 return (NULL); 13398 } 13399 13400 return (dof); 13401 } 13402 13403 static __inline uchar_t 13404 dtrace_dof_char(char c) 13405 { 13406 13407 switch (c) { 13408 case '0': 13409 case '1': 13410 case '2': 13411 case '3': 13412 case '4': 13413 case '5': 13414 case '6': 13415 case '7': 13416 case '8': 13417 case '9': 13418 return (c - '0'); 13419 case 'A': 13420 case 'B': 13421 case 'C': 13422 case 'D': 13423 case 'E': 13424 case 'F': 13425 return (c - 'A' + 10); 13426 case 'a': 13427 case 'b': 13428 case 'c': 13429 case 'd': 13430 case 'e': 13431 case 'f': 13432 return (c - 'a' + 10); 13433 } 13434 /* Should not reach here. */ 13435 return (UCHAR_MAX); 13436 } 13437 #endif /* __FreeBSD__ */ 13438 13439 static dof_hdr_t * 13440 dtrace_dof_property(const char *name) 13441 { 13442 #ifdef __FreeBSD__ 13443 uint8_t *dofbuf; 13444 u_char *data, *eol; 13445 caddr_t doffile; 13446 size_t bytes, len, i; 13447 dof_hdr_t *dof; 13448 u_char c1, c2; 13449 13450 dof = NULL; 13451 13452 doffile = preload_search_by_type("dtrace_dof"); 13453 if (doffile == NULL) 13454 return (NULL); 13455 13456 data = preload_fetch_addr(doffile); 13457 len = preload_fetch_size(doffile); 13458 for (;;) { 13459 /* Look for the end of the line. All lines end in a newline. */ 13460 eol = memchr(data, '\n', len); 13461 if (eol == NULL) 13462 return (NULL); 13463 13464 if (strncmp(name, data, strlen(name)) == 0) 13465 break; 13466 13467 eol++; /* skip past the newline */ 13468 len -= eol - data; 13469 data = eol; 13470 } 13471 13472 /* We've found the data corresponding to the specified key. */ 13473 13474 data += strlen(name) + 1; /* skip past the '=' */ 13475 len = eol - data; 13476 if (len % 2 != 0) { 13477 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13478 goto doferr; 13479 } 13480 bytes = len / 2; 13481 if (bytes < sizeof(dof_hdr_t)) { 13482 dtrace_dof_error(NULL, "truncated header"); 13483 goto doferr; 13484 } 13485 13486 /* 13487 * Each byte is represented by the two ASCII characters in its hex 13488 * representation. 13489 */ 13490 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13491 for (i = 0; i < bytes; i++) { 13492 c1 = dtrace_dof_char(data[i * 2]); 13493 c2 = dtrace_dof_char(data[i * 2 + 1]); 13494 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13495 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13496 goto doferr; 13497 } 13498 dofbuf[i] = c1 * 16 + c2; 13499 } 13500 13501 dof = (dof_hdr_t *)dofbuf; 13502 if (bytes < dof->dofh_loadsz) { 13503 dtrace_dof_error(NULL, "truncated DOF"); 13504 goto doferr; 13505 } 13506 13507 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13508 dtrace_dof_error(NULL, "oversized DOF"); 13509 goto doferr; 13510 } 13511 13512 return (dof); 13513 13514 doferr: 13515 free(dof, M_SOLARIS); 13516 return (NULL); 13517 #else /* __FreeBSD__ */ 13518 uchar_t *buf; 13519 uint64_t loadsz; 13520 unsigned int len, i; 13521 dof_hdr_t *dof; 13522 13523 /* 13524 * Unfortunately, array of values in .conf files are always (and 13525 * only) interpreted to be integer arrays. We must read our DOF 13526 * as an integer array, and then squeeze it into a byte array. 13527 */ 13528 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13529 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13530 return (NULL); 13531 13532 for (i = 0; i < len; i++) 13533 buf[i] = (uchar_t)(((int *)buf)[i]); 13534 13535 if (len < sizeof (dof_hdr_t)) { 13536 ddi_prop_free(buf); 13537 dtrace_dof_error(NULL, "truncated header"); 13538 return (NULL); 13539 } 13540 13541 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13542 ddi_prop_free(buf); 13543 dtrace_dof_error(NULL, "truncated DOF"); 13544 return (NULL); 13545 } 13546 13547 if (loadsz >= dtrace_dof_maxsize) { 13548 ddi_prop_free(buf); 13549 dtrace_dof_error(NULL, "oversized DOF"); 13550 return (NULL); 13551 } 13552 13553 dof = kmem_alloc(loadsz, KM_SLEEP); 13554 bcopy(buf, dof, loadsz); 13555 ddi_prop_free(buf); 13556 13557 return (dof); 13558 #endif /* !__FreeBSD__ */ 13559 } 13560 13561 static void 13562 dtrace_dof_destroy(dof_hdr_t *dof) 13563 { 13564 kmem_free(dof, dof->dofh_loadsz); 13565 } 13566 13567 /* 13568 * Return the dof_sec_t pointer corresponding to a given section index. If the 13569 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13570 * a type other than DOF_SECT_NONE is specified, the header is checked against 13571 * this type and NULL is returned if the types do not match. 13572 */ 13573 static dof_sec_t * 13574 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13575 { 13576 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13577 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13578 13579 if (i >= dof->dofh_secnum) { 13580 dtrace_dof_error(dof, "referenced section index is invalid"); 13581 return (NULL); 13582 } 13583 13584 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13585 dtrace_dof_error(dof, "referenced section is not loadable"); 13586 return (NULL); 13587 } 13588 13589 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13590 dtrace_dof_error(dof, "referenced section is the wrong type"); 13591 return (NULL); 13592 } 13593 13594 return (sec); 13595 } 13596 13597 static dtrace_probedesc_t * 13598 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13599 { 13600 dof_probedesc_t *probe; 13601 dof_sec_t *strtab; 13602 uintptr_t daddr = (uintptr_t)dof; 13603 uintptr_t str; 13604 size_t size; 13605 13606 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13607 dtrace_dof_error(dof, "invalid probe section"); 13608 return (NULL); 13609 } 13610 13611 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13612 dtrace_dof_error(dof, "bad alignment in probe description"); 13613 return (NULL); 13614 } 13615 13616 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13617 dtrace_dof_error(dof, "truncated probe description"); 13618 return (NULL); 13619 } 13620 13621 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13622 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13623 13624 if (strtab == NULL) 13625 return (NULL); 13626 13627 str = daddr + strtab->dofs_offset; 13628 size = strtab->dofs_size; 13629 13630 if (probe->dofp_provider >= strtab->dofs_size) { 13631 dtrace_dof_error(dof, "corrupt probe provider"); 13632 return (NULL); 13633 } 13634 13635 (void) strncpy(desc->dtpd_provider, 13636 (char *)(str + probe->dofp_provider), 13637 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13638 13639 if (probe->dofp_mod >= strtab->dofs_size) { 13640 dtrace_dof_error(dof, "corrupt probe module"); 13641 return (NULL); 13642 } 13643 13644 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13645 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13646 13647 if (probe->dofp_func >= strtab->dofs_size) { 13648 dtrace_dof_error(dof, "corrupt probe function"); 13649 return (NULL); 13650 } 13651 13652 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13653 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13654 13655 if (probe->dofp_name >= strtab->dofs_size) { 13656 dtrace_dof_error(dof, "corrupt probe name"); 13657 return (NULL); 13658 } 13659 13660 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13661 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13662 13663 return (desc); 13664 } 13665 13666 static dtrace_difo_t * 13667 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13668 cred_t *cr) 13669 { 13670 dtrace_difo_t *dp; 13671 size_t ttl = 0; 13672 dof_difohdr_t *dofd; 13673 uintptr_t daddr = (uintptr_t)dof; 13674 size_t max = dtrace_difo_maxsize; 13675 int i, l, n; 13676 13677 static const struct { 13678 int section; 13679 int bufoffs; 13680 int lenoffs; 13681 int entsize; 13682 int align; 13683 const char *msg; 13684 } difo[] = { 13685 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13686 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13687 sizeof (dif_instr_t), "multiple DIF sections" }, 13688 13689 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13690 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13691 sizeof (uint64_t), "multiple integer tables" }, 13692 13693 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13694 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13695 sizeof (char), "multiple string tables" }, 13696 13697 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13698 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13699 sizeof (uint_t), "multiple variable tables" }, 13700 13701 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13702 }; 13703 13704 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13705 dtrace_dof_error(dof, "invalid DIFO header section"); 13706 return (NULL); 13707 } 13708 13709 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13710 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13711 return (NULL); 13712 } 13713 13714 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13715 sec->dofs_size % sizeof (dof_secidx_t)) { 13716 dtrace_dof_error(dof, "bad size in DIFO header"); 13717 return (NULL); 13718 } 13719 13720 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13721 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13722 13723 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13724 dp->dtdo_rtype = dofd->dofd_rtype; 13725 13726 for (l = 0; l < n; l++) { 13727 dof_sec_t *subsec; 13728 void **bufp; 13729 uint32_t *lenp; 13730 13731 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13732 dofd->dofd_links[l])) == NULL) 13733 goto err; /* invalid section link */ 13734 13735 if (ttl + subsec->dofs_size > max) { 13736 dtrace_dof_error(dof, "exceeds maximum size"); 13737 goto err; 13738 } 13739 13740 ttl += subsec->dofs_size; 13741 13742 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13743 if (subsec->dofs_type != difo[i].section) 13744 continue; 13745 13746 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13747 dtrace_dof_error(dof, "section not loaded"); 13748 goto err; 13749 } 13750 13751 if (subsec->dofs_align != difo[i].align) { 13752 dtrace_dof_error(dof, "bad alignment"); 13753 goto err; 13754 } 13755 13756 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13757 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13758 13759 if (*bufp != NULL) { 13760 dtrace_dof_error(dof, difo[i].msg); 13761 goto err; 13762 } 13763 13764 if (difo[i].entsize != subsec->dofs_entsize) { 13765 dtrace_dof_error(dof, "entry size mismatch"); 13766 goto err; 13767 } 13768 13769 if (subsec->dofs_entsize != 0 && 13770 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13771 dtrace_dof_error(dof, "corrupt entry size"); 13772 goto err; 13773 } 13774 13775 *lenp = subsec->dofs_size; 13776 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13777 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13778 *bufp, subsec->dofs_size); 13779 13780 if (subsec->dofs_entsize != 0) 13781 *lenp /= subsec->dofs_entsize; 13782 13783 break; 13784 } 13785 13786 /* 13787 * If we encounter a loadable DIFO sub-section that is not 13788 * known to us, assume this is a broken program and fail. 13789 */ 13790 if (difo[i].section == DOF_SECT_NONE && 13791 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13792 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13793 goto err; 13794 } 13795 } 13796 13797 if (dp->dtdo_buf == NULL) { 13798 /* 13799 * We can't have a DIF object without DIF text. 13800 */ 13801 dtrace_dof_error(dof, "missing DIF text"); 13802 goto err; 13803 } 13804 13805 /* 13806 * Before we validate the DIF object, run through the variable table 13807 * looking for the strings -- if any of their size are under, we'll set 13808 * their size to be the system-wide default string size. Note that 13809 * this should _not_ happen if the "strsize" option has been set -- 13810 * in this case, the compiler should have set the size to reflect the 13811 * setting of the option. 13812 */ 13813 for (i = 0; i < dp->dtdo_varlen; i++) { 13814 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13815 dtrace_diftype_t *t = &v->dtdv_type; 13816 13817 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13818 continue; 13819 13820 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13821 t->dtdt_size = dtrace_strsize_default; 13822 } 13823 13824 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13825 goto err; 13826 13827 dtrace_difo_init(dp, vstate); 13828 return (dp); 13829 13830 err: 13831 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13832 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13833 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13834 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13835 13836 kmem_free(dp, sizeof (dtrace_difo_t)); 13837 return (NULL); 13838 } 13839 13840 static dtrace_predicate_t * 13841 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13842 cred_t *cr) 13843 { 13844 dtrace_difo_t *dp; 13845 13846 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13847 return (NULL); 13848 13849 return (dtrace_predicate_create(dp)); 13850 } 13851 13852 static dtrace_actdesc_t * 13853 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13854 cred_t *cr) 13855 { 13856 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13857 dof_actdesc_t *desc; 13858 dof_sec_t *difosec; 13859 size_t offs; 13860 uintptr_t daddr = (uintptr_t)dof; 13861 uint64_t arg; 13862 dtrace_actkind_t kind; 13863 13864 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13865 dtrace_dof_error(dof, "invalid action section"); 13866 return (NULL); 13867 } 13868 13869 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13870 dtrace_dof_error(dof, "truncated action description"); 13871 return (NULL); 13872 } 13873 13874 if (sec->dofs_align != sizeof (uint64_t)) { 13875 dtrace_dof_error(dof, "bad alignment in action description"); 13876 return (NULL); 13877 } 13878 13879 if (sec->dofs_size < sec->dofs_entsize) { 13880 dtrace_dof_error(dof, "section entry size exceeds total size"); 13881 return (NULL); 13882 } 13883 13884 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13885 dtrace_dof_error(dof, "bad entry size in action description"); 13886 return (NULL); 13887 } 13888 13889 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13890 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13891 return (NULL); 13892 } 13893 13894 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13895 desc = (dof_actdesc_t *)(daddr + 13896 (uintptr_t)sec->dofs_offset + offs); 13897 kind = (dtrace_actkind_t)desc->dofa_kind; 13898 13899 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13900 (kind != DTRACEACT_PRINTA || 13901 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13902 (kind == DTRACEACT_DIFEXPR && 13903 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13904 dof_sec_t *strtab; 13905 char *str, *fmt; 13906 uint64_t i; 13907 13908 /* 13909 * The argument to these actions is an index into the 13910 * DOF string table. For printf()-like actions, this 13911 * is the format string. For print(), this is the 13912 * CTF type of the expression result. 13913 */ 13914 if ((strtab = dtrace_dof_sect(dof, 13915 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13916 goto err; 13917 13918 str = (char *)((uintptr_t)dof + 13919 (uintptr_t)strtab->dofs_offset); 13920 13921 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13922 if (str[i] == '\0') 13923 break; 13924 } 13925 13926 if (i >= strtab->dofs_size) { 13927 dtrace_dof_error(dof, "bogus format string"); 13928 goto err; 13929 } 13930 13931 if (i == desc->dofa_arg) { 13932 dtrace_dof_error(dof, "empty format string"); 13933 goto err; 13934 } 13935 13936 i -= desc->dofa_arg; 13937 fmt = kmem_alloc(i + 1, KM_SLEEP); 13938 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13939 arg = (uint64_t)(uintptr_t)fmt; 13940 } else { 13941 if (kind == DTRACEACT_PRINTA) { 13942 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13943 arg = 0; 13944 } else { 13945 arg = desc->dofa_arg; 13946 } 13947 } 13948 13949 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13950 desc->dofa_uarg, arg); 13951 13952 if (last != NULL) { 13953 last->dtad_next = act; 13954 } else { 13955 first = act; 13956 } 13957 13958 last = act; 13959 13960 if (desc->dofa_difo == DOF_SECIDX_NONE) 13961 continue; 13962 13963 if ((difosec = dtrace_dof_sect(dof, 13964 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13965 goto err; 13966 13967 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13968 13969 if (act->dtad_difo == NULL) 13970 goto err; 13971 } 13972 13973 ASSERT(first != NULL); 13974 return (first); 13975 13976 err: 13977 for (act = first; act != NULL; act = next) { 13978 next = act->dtad_next; 13979 dtrace_actdesc_release(act, vstate); 13980 } 13981 13982 return (NULL); 13983 } 13984 13985 static dtrace_ecbdesc_t * 13986 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13987 cred_t *cr) 13988 { 13989 dtrace_ecbdesc_t *ep; 13990 dof_ecbdesc_t *ecb; 13991 dtrace_probedesc_t *desc; 13992 dtrace_predicate_t *pred = NULL; 13993 13994 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13995 dtrace_dof_error(dof, "truncated ECB description"); 13996 return (NULL); 13997 } 13998 13999 if (sec->dofs_align != sizeof (uint64_t)) { 14000 dtrace_dof_error(dof, "bad alignment in ECB description"); 14001 return (NULL); 14002 } 14003 14004 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 14005 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 14006 14007 if (sec == NULL) 14008 return (NULL); 14009 14010 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 14011 ep->dted_uarg = ecb->dofe_uarg; 14012 desc = &ep->dted_probe; 14013 14014 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 14015 goto err; 14016 14017 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 14018 if ((sec = dtrace_dof_sect(dof, 14019 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 14020 goto err; 14021 14022 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 14023 goto err; 14024 14025 ep->dted_pred.dtpdd_predicate = pred; 14026 } 14027 14028 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 14029 if ((sec = dtrace_dof_sect(dof, 14030 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 14031 goto err; 14032 14033 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 14034 14035 if (ep->dted_action == NULL) 14036 goto err; 14037 } 14038 14039 return (ep); 14040 14041 err: 14042 if (pred != NULL) 14043 dtrace_predicate_release(pred, vstate); 14044 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14045 return (NULL); 14046 } 14047 14048 /* 14049 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14050 * specified DOF. SETX relocations are computed using 'ubase', the base load 14051 * address of the object containing the DOF, and DOFREL relocations are relative 14052 * to the relocation offset within the DOF. 14053 */ 14054 static int 14055 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14056 uint64_t udaddr) 14057 { 14058 uintptr_t daddr = (uintptr_t)dof; 14059 uintptr_t ts_end; 14060 dof_relohdr_t *dofr = 14061 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14062 dof_sec_t *ss, *rs, *ts; 14063 dof_relodesc_t *r; 14064 uint_t i, n; 14065 14066 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14067 sec->dofs_align != sizeof (dof_secidx_t)) { 14068 dtrace_dof_error(dof, "invalid relocation header"); 14069 return (-1); 14070 } 14071 14072 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14073 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14074 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14075 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14076 14077 if (ss == NULL || rs == NULL || ts == NULL) 14078 return (-1); /* dtrace_dof_error() has been called already */ 14079 14080 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14081 rs->dofs_align != sizeof (uint64_t)) { 14082 dtrace_dof_error(dof, "invalid relocation section"); 14083 return (-1); 14084 } 14085 14086 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14087 n = rs->dofs_size / rs->dofs_entsize; 14088 14089 for (i = 0; i < n; i++) { 14090 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14091 14092 switch (r->dofr_type) { 14093 case DOF_RELO_NONE: 14094 break; 14095 case DOF_RELO_SETX: 14096 case DOF_RELO_DOFREL: 14097 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14098 sizeof (uint64_t) > ts->dofs_size) { 14099 dtrace_dof_error(dof, "bad relocation offset"); 14100 return (-1); 14101 } 14102 14103 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14104 dtrace_dof_error(dof, "bad relocation offset"); 14105 return (-1); 14106 } 14107 14108 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14109 dtrace_dof_error(dof, "misaligned setx relo"); 14110 return (-1); 14111 } 14112 14113 if (r->dofr_type == DOF_RELO_SETX) 14114 *(uint64_t *)taddr += ubase; 14115 else 14116 *(uint64_t *)taddr += 14117 udaddr + ts->dofs_offset + r->dofr_offset; 14118 break; 14119 default: 14120 dtrace_dof_error(dof, "invalid relocation type"); 14121 return (-1); 14122 } 14123 14124 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14125 } 14126 14127 return (0); 14128 } 14129 14130 /* 14131 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14132 * header: it should be at the front of a memory region that is at least 14133 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14134 * size. It need not be validated in any other way. 14135 */ 14136 static int 14137 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14138 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14139 { 14140 uint64_t len = dof->dofh_loadsz, seclen; 14141 uintptr_t daddr = (uintptr_t)dof; 14142 dtrace_ecbdesc_t *ep; 14143 dtrace_enabling_t *enab; 14144 uint_t i; 14145 14146 ASSERT(MUTEX_HELD(&dtrace_lock)); 14147 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14148 14149 /* 14150 * Check the DOF header identification bytes. In addition to checking 14151 * valid settings, we also verify that unused bits/bytes are zeroed so 14152 * we can use them later without fear of regressing existing binaries. 14153 */ 14154 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14155 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14156 dtrace_dof_error(dof, "DOF magic string mismatch"); 14157 return (-1); 14158 } 14159 14160 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14161 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14162 dtrace_dof_error(dof, "DOF has invalid data model"); 14163 return (-1); 14164 } 14165 14166 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14167 dtrace_dof_error(dof, "DOF encoding mismatch"); 14168 return (-1); 14169 } 14170 14171 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14172 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14173 dtrace_dof_error(dof, "DOF version mismatch"); 14174 return (-1); 14175 } 14176 14177 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14178 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14179 return (-1); 14180 } 14181 14182 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14183 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14184 return (-1); 14185 } 14186 14187 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14188 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14189 return (-1); 14190 } 14191 14192 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14193 if (dof->dofh_ident[i] != 0) { 14194 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14195 return (-1); 14196 } 14197 } 14198 14199 if (dof->dofh_flags & ~DOF_FL_VALID) { 14200 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14201 return (-1); 14202 } 14203 14204 if (dof->dofh_secsize == 0) { 14205 dtrace_dof_error(dof, "zero section header size"); 14206 return (-1); 14207 } 14208 14209 /* 14210 * Check that the section headers don't exceed the amount of DOF 14211 * data. Note that we cast the section size and number of sections 14212 * to uint64_t's to prevent possible overflow in the multiplication. 14213 */ 14214 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14215 14216 if (dof->dofh_secoff > len || seclen > len || 14217 dof->dofh_secoff + seclen > len) { 14218 dtrace_dof_error(dof, "truncated section headers"); 14219 return (-1); 14220 } 14221 14222 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14223 dtrace_dof_error(dof, "misaligned section headers"); 14224 return (-1); 14225 } 14226 14227 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14228 dtrace_dof_error(dof, "misaligned section size"); 14229 return (-1); 14230 } 14231 14232 /* 14233 * Take an initial pass through the section headers to be sure that 14234 * the headers don't have stray offsets. If the 'noprobes' flag is 14235 * set, do not permit sections relating to providers, probes, or args. 14236 */ 14237 for (i = 0; i < dof->dofh_secnum; i++) { 14238 dof_sec_t *sec = (dof_sec_t *)(daddr + 14239 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14240 14241 if (noprobes) { 14242 switch (sec->dofs_type) { 14243 case DOF_SECT_PROVIDER: 14244 case DOF_SECT_PROBES: 14245 case DOF_SECT_PRARGS: 14246 case DOF_SECT_PROFFS: 14247 dtrace_dof_error(dof, "illegal sections " 14248 "for enabling"); 14249 return (-1); 14250 } 14251 } 14252 14253 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14254 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14255 dtrace_dof_error(dof, "loadable section with load " 14256 "flag unset"); 14257 return (-1); 14258 } 14259 14260 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14261 continue; /* just ignore non-loadable sections */ 14262 14263 if (!ISP2(sec->dofs_align)) { 14264 dtrace_dof_error(dof, "bad section alignment"); 14265 return (-1); 14266 } 14267 14268 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14269 dtrace_dof_error(dof, "misaligned section"); 14270 return (-1); 14271 } 14272 14273 if (sec->dofs_offset > len || sec->dofs_size > len || 14274 sec->dofs_offset + sec->dofs_size > len) { 14275 dtrace_dof_error(dof, "corrupt section header"); 14276 return (-1); 14277 } 14278 14279 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14280 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14281 dtrace_dof_error(dof, "non-terminating string table"); 14282 return (-1); 14283 } 14284 } 14285 14286 /* 14287 * Take a second pass through the sections and locate and perform any 14288 * relocations that are present. We do this after the first pass to 14289 * be sure that all sections have had their headers validated. 14290 */ 14291 for (i = 0; i < dof->dofh_secnum; i++) { 14292 dof_sec_t *sec = (dof_sec_t *)(daddr + 14293 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14294 14295 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14296 continue; /* skip sections that are not loadable */ 14297 14298 switch (sec->dofs_type) { 14299 case DOF_SECT_URELHDR: 14300 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14301 return (-1); 14302 break; 14303 } 14304 } 14305 14306 if ((enab = *enabp) == NULL) 14307 enab = *enabp = dtrace_enabling_create(vstate); 14308 14309 for (i = 0; i < dof->dofh_secnum; i++) { 14310 dof_sec_t *sec = (dof_sec_t *)(daddr + 14311 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14312 14313 if (sec->dofs_type != DOF_SECT_ECBDESC) 14314 continue; 14315 14316 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14317 dtrace_enabling_destroy(enab); 14318 *enabp = NULL; 14319 return (-1); 14320 } 14321 14322 dtrace_enabling_add(enab, ep); 14323 } 14324 14325 return (0); 14326 } 14327 14328 /* 14329 * Process DOF for any options. This routine assumes that the DOF has been 14330 * at least processed by dtrace_dof_slurp(). 14331 */ 14332 static int 14333 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14334 { 14335 int i, rval; 14336 uint32_t entsize; 14337 size_t offs; 14338 dof_optdesc_t *desc; 14339 14340 for (i = 0; i < dof->dofh_secnum; i++) { 14341 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14342 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14343 14344 if (sec->dofs_type != DOF_SECT_OPTDESC) 14345 continue; 14346 14347 if (sec->dofs_align != sizeof (uint64_t)) { 14348 dtrace_dof_error(dof, "bad alignment in " 14349 "option description"); 14350 return (EINVAL); 14351 } 14352 14353 if ((entsize = sec->dofs_entsize) == 0) { 14354 dtrace_dof_error(dof, "zeroed option entry size"); 14355 return (EINVAL); 14356 } 14357 14358 if (entsize < sizeof (dof_optdesc_t)) { 14359 dtrace_dof_error(dof, "bad option entry size"); 14360 return (EINVAL); 14361 } 14362 14363 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14364 desc = (dof_optdesc_t *)((uintptr_t)dof + 14365 (uintptr_t)sec->dofs_offset + offs); 14366 14367 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14368 dtrace_dof_error(dof, "non-zero option string"); 14369 return (EINVAL); 14370 } 14371 14372 if (desc->dofo_value == DTRACEOPT_UNSET) { 14373 dtrace_dof_error(dof, "unset option"); 14374 return (EINVAL); 14375 } 14376 14377 if ((rval = dtrace_state_option(state, 14378 desc->dofo_option, desc->dofo_value)) != 0) { 14379 dtrace_dof_error(dof, "rejected option"); 14380 return (rval); 14381 } 14382 } 14383 } 14384 14385 return (0); 14386 } 14387 14388 /* 14389 * DTrace Consumer State Functions 14390 */ 14391 static int 14392 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14393 { 14394 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14395 void *base; 14396 uintptr_t limit; 14397 dtrace_dynvar_t *dvar, *next, *start; 14398 int i; 14399 14400 ASSERT(MUTEX_HELD(&dtrace_lock)); 14401 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14402 14403 bzero(dstate, sizeof (dtrace_dstate_t)); 14404 14405 if ((dstate->dtds_chunksize = chunksize) == 0) 14406 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14407 14408 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14409 14410 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14411 size = min; 14412 14413 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14414 return (ENOMEM); 14415 14416 dstate->dtds_size = size; 14417 dstate->dtds_base = base; 14418 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14419 bzero(dstate->dtds_percpu, 14420 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t)); 14421 14422 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14423 14424 if (hashsize != 1 && (hashsize & 1)) 14425 hashsize--; 14426 14427 dstate->dtds_hashsize = hashsize; 14428 dstate->dtds_hash = dstate->dtds_base; 14429 14430 /* 14431 * Set all of our hash buckets to point to the single sink, and (if 14432 * it hasn't already been set), set the sink's hash value to be the 14433 * sink sentinel value. The sink is needed for dynamic variable 14434 * lookups to know that they have iterated over an entire, valid hash 14435 * chain. 14436 */ 14437 for (i = 0; i < hashsize; i++) 14438 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14439 14440 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14441 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14442 14443 /* 14444 * Determine number of active CPUs. Divide free list evenly among 14445 * active CPUs. 14446 */ 14447 start = (dtrace_dynvar_t *) 14448 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14449 limit = (uintptr_t)base + size; 14450 14451 VERIFY((uintptr_t)start < limit); 14452 VERIFY((uintptr_t)start >= (uintptr_t)base); 14453 14454 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1); 14455 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14456 14457 CPU_FOREACH(i) { 14458 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14459 14460 /* 14461 * If we don't even have enough chunks to make it once through 14462 * NCPUs, we're just going to allocate everything to the first 14463 * CPU. And if we're on the last CPU, we're going to allocate 14464 * whatever is left over. In either case, we set the limit to 14465 * be the limit of the dynamic variable space. 14466 */ 14467 if (maxper == 0 || i == mp_maxid) { 14468 limit = (uintptr_t)base + size; 14469 start = NULL; 14470 } else { 14471 limit = (uintptr_t)start + maxper; 14472 start = (dtrace_dynvar_t *)limit; 14473 } 14474 14475 VERIFY(limit <= (uintptr_t)base + size); 14476 14477 for (;;) { 14478 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14479 dstate->dtds_chunksize); 14480 14481 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14482 break; 14483 14484 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14485 (uintptr_t)dvar <= (uintptr_t)base + size); 14486 dvar->dtdv_next = next; 14487 dvar = next; 14488 } 14489 14490 if (maxper == 0) 14491 break; 14492 } 14493 14494 return (0); 14495 } 14496 14497 static void 14498 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14499 { 14500 ASSERT(MUTEX_HELD(&cpu_lock)); 14501 14502 if (dstate->dtds_base == NULL) 14503 return; 14504 14505 kmem_free(dstate->dtds_base, dstate->dtds_size); 14506 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14507 } 14508 14509 static void 14510 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14511 { 14512 /* 14513 * Logical XOR, where are you? 14514 */ 14515 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14516 14517 if (vstate->dtvs_nglobals > 0) { 14518 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14519 sizeof (dtrace_statvar_t *)); 14520 } 14521 14522 if (vstate->dtvs_ntlocals > 0) { 14523 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14524 sizeof (dtrace_difv_t)); 14525 } 14526 14527 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14528 14529 if (vstate->dtvs_nlocals > 0) { 14530 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14531 sizeof (dtrace_statvar_t *)); 14532 } 14533 } 14534 14535 #ifdef illumos 14536 static void 14537 dtrace_state_clean(dtrace_state_t *state) 14538 { 14539 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14540 return; 14541 14542 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14543 dtrace_speculation_clean(state); 14544 } 14545 14546 static void 14547 dtrace_state_deadman(dtrace_state_t *state) 14548 { 14549 hrtime_t now; 14550 14551 dtrace_sync(); 14552 14553 now = dtrace_gethrtime(); 14554 14555 if (state != dtrace_anon.dta_state && 14556 now - state->dts_laststatus >= dtrace_deadman_user) 14557 return; 14558 14559 /* 14560 * We must be sure that dts_alive never appears to be less than the 14561 * value upon entry to dtrace_state_deadman(), and because we lack a 14562 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14563 * store INT64_MAX to it, followed by a memory barrier, followed by 14564 * the new value. This assures that dts_alive never appears to be 14565 * less than its true value, regardless of the order in which the 14566 * stores to the underlying storage are issued. 14567 */ 14568 state->dts_alive = INT64_MAX; 14569 dtrace_membar_producer(); 14570 state->dts_alive = now; 14571 } 14572 #else /* !illumos */ 14573 static void 14574 dtrace_state_clean(void *arg) 14575 { 14576 dtrace_state_t *state = arg; 14577 dtrace_optval_t *opt = state->dts_options; 14578 14579 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14580 return; 14581 14582 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14583 dtrace_speculation_clean(state); 14584 14585 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14586 dtrace_state_clean, state); 14587 } 14588 14589 static void 14590 dtrace_state_deadman(void *arg) 14591 { 14592 dtrace_state_t *state = arg; 14593 hrtime_t now; 14594 14595 dtrace_sync(); 14596 14597 dtrace_debug_output(); 14598 14599 now = dtrace_gethrtime(); 14600 14601 if (state != dtrace_anon.dta_state && 14602 now - state->dts_laststatus >= dtrace_deadman_user) 14603 return; 14604 14605 /* 14606 * We must be sure that dts_alive never appears to be less than the 14607 * value upon entry to dtrace_state_deadman(), and because we lack a 14608 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14609 * store INT64_MAX to it, followed by a memory barrier, followed by 14610 * the new value. This assures that dts_alive never appears to be 14611 * less than its true value, regardless of the order in which the 14612 * stores to the underlying storage are issued. 14613 */ 14614 state->dts_alive = INT64_MAX; 14615 dtrace_membar_producer(); 14616 state->dts_alive = now; 14617 14618 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14619 dtrace_state_deadman, state); 14620 } 14621 #endif /* illumos */ 14622 14623 static dtrace_state_t * 14624 #ifdef illumos 14625 dtrace_state_create(dev_t *devp, cred_t *cr) 14626 #else 14627 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14628 #endif 14629 { 14630 #ifdef illumos 14631 minor_t minor; 14632 major_t major; 14633 #else 14634 cred_t *cr = NULL; 14635 int m = 0; 14636 #endif 14637 char c[30]; 14638 dtrace_state_t *state; 14639 dtrace_optval_t *opt; 14640 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i; 14641 int cpu_it; 14642 14643 ASSERT(MUTEX_HELD(&dtrace_lock)); 14644 ASSERT(MUTEX_HELD(&cpu_lock)); 14645 14646 #ifdef illumos 14647 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14648 VM_BESTFIT | VM_SLEEP); 14649 14650 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14651 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14652 return (NULL); 14653 } 14654 14655 state = ddi_get_soft_state(dtrace_softstate, minor); 14656 #else 14657 if (dev != NULL) { 14658 cr = dev->si_cred; 14659 m = dev2unit(dev); 14660 } 14661 14662 /* Allocate memory for the state. */ 14663 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14664 #endif 14665 14666 state->dts_epid = DTRACE_EPIDNONE + 1; 14667 14668 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14669 #ifdef illumos 14670 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14671 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14672 14673 if (devp != NULL) { 14674 major = getemajor(*devp); 14675 } else { 14676 major = ddi_driver_major(dtrace_devi); 14677 } 14678 14679 state->dts_dev = makedevice(major, minor); 14680 14681 if (devp != NULL) 14682 *devp = state->dts_dev; 14683 #else 14684 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14685 state->dts_dev = dev; 14686 #endif 14687 14688 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14689 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14690 14691 /* 14692 * Allocate and initialise the per-process per-CPU random state. 14693 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14694 * assumed to be seeded at this point (if from Fortuna seed file). 14695 */ 14696 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14697 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) { 14698 /* 14699 * Each CPU is assigned a 2^64 period, non-overlapping 14700 * subsequence. 14701 */ 14702 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1], 14703 state->dts_rstate[cpu_it]); 14704 } 14705 14706 #ifdef illumos 14707 state->dts_cleaner = CYCLIC_NONE; 14708 state->dts_deadman = CYCLIC_NONE; 14709 #else 14710 callout_init(&state->dts_cleaner, 1); 14711 callout_init(&state->dts_deadman, 1); 14712 #endif 14713 state->dts_vstate.dtvs_state = state; 14714 14715 for (i = 0; i < DTRACEOPT_MAX; i++) 14716 state->dts_options[i] = DTRACEOPT_UNSET; 14717 14718 /* 14719 * Set the default options. 14720 */ 14721 opt = state->dts_options; 14722 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14723 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14724 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14725 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14726 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14727 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14728 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14729 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14730 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14731 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14732 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14733 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14734 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14735 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14736 14737 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14738 14739 /* 14740 * Depending on the user credentials, we set flag bits which alter probe 14741 * visibility or the amount of destructiveness allowed. In the case of 14742 * actual anonymous tracing, or the possession of all privileges, all of 14743 * the normal checks are bypassed. 14744 */ 14745 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14746 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14747 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14748 } else { 14749 /* 14750 * Set up the credentials for this instantiation. We take a 14751 * hold on the credential to prevent it from disappearing on 14752 * us; this in turn prevents the zone_t referenced by this 14753 * credential from disappearing. This means that we can 14754 * examine the credential and the zone from probe context. 14755 */ 14756 crhold(cr); 14757 state->dts_cred.dcr_cred = cr; 14758 14759 /* 14760 * CRA_PROC means "we have *some* privilege for dtrace" and 14761 * unlocks the use of variables like pid, zonename, etc. 14762 */ 14763 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14764 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14765 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14766 } 14767 14768 /* 14769 * dtrace_user allows use of syscall and profile providers. 14770 * If the user also has proc_owner and/or proc_zone, we 14771 * extend the scope to include additional visibility and 14772 * destructive power. 14773 */ 14774 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14775 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14776 state->dts_cred.dcr_visible |= 14777 DTRACE_CRV_ALLPROC; 14778 14779 state->dts_cred.dcr_action |= 14780 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14781 } 14782 14783 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14784 state->dts_cred.dcr_visible |= 14785 DTRACE_CRV_ALLZONE; 14786 14787 state->dts_cred.dcr_action |= 14788 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14789 } 14790 14791 /* 14792 * If we have all privs in whatever zone this is, 14793 * we can do destructive things to processes which 14794 * have altered credentials. 14795 */ 14796 #ifdef illumos 14797 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14798 cr->cr_zone->zone_privset)) { 14799 state->dts_cred.dcr_action |= 14800 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14801 } 14802 #endif 14803 } 14804 14805 /* 14806 * Holding the dtrace_kernel privilege also implies that 14807 * the user has the dtrace_user privilege from a visibility 14808 * perspective. But without further privileges, some 14809 * destructive actions are not available. 14810 */ 14811 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14812 /* 14813 * Make all probes in all zones visible. However, 14814 * this doesn't mean that all actions become available 14815 * to all zones. 14816 */ 14817 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14818 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14819 14820 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14821 DTRACE_CRA_PROC; 14822 /* 14823 * Holding proc_owner means that destructive actions 14824 * for *this* zone are allowed. 14825 */ 14826 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14827 state->dts_cred.dcr_action |= 14828 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14829 14830 /* 14831 * Holding proc_zone means that destructive actions 14832 * for this user/group ID in all zones is allowed. 14833 */ 14834 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14835 state->dts_cred.dcr_action |= 14836 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14837 14838 #ifdef illumos 14839 /* 14840 * If we have all privs in whatever zone this is, 14841 * we can do destructive things to processes which 14842 * have altered credentials. 14843 */ 14844 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14845 cr->cr_zone->zone_privset)) { 14846 state->dts_cred.dcr_action |= 14847 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14848 } 14849 #endif 14850 } 14851 14852 /* 14853 * Holding the dtrace_proc privilege gives control over fasttrap 14854 * and pid providers. We need to grant wider destructive 14855 * privileges in the event that the user has proc_owner and/or 14856 * proc_zone. 14857 */ 14858 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14859 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14860 state->dts_cred.dcr_action |= 14861 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14862 14863 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14864 state->dts_cred.dcr_action |= 14865 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14866 } 14867 } 14868 14869 return (state); 14870 } 14871 14872 static int 14873 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14874 { 14875 dtrace_optval_t *opt = state->dts_options, size; 14876 processorid_t cpu = 0; 14877 int flags = 0, rval, factor, divisor = 1; 14878 14879 ASSERT(MUTEX_HELD(&dtrace_lock)); 14880 ASSERT(MUTEX_HELD(&cpu_lock)); 14881 ASSERT(which < DTRACEOPT_MAX); 14882 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14883 (state == dtrace_anon.dta_state && 14884 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14885 14886 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14887 return (0); 14888 14889 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14890 cpu = opt[DTRACEOPT_CPU]; 14891 14892 if (which == DTRACEOPT_SPECSIZE) 14893 flags |= DTRACEBUF_NOSWITCH; 14894 14895 if (which == DTRACEOPT_BUFSIZE) { 14896 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14897 flags |= DTRACEBUF_RING; 14898 14899 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14900 flags |= DTRACEBUF_FILL; 14901 14902 if (state != dtrace_anon.dta_state || 14903 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14904 flags |= DTRACEBUF_INACTIVE; 14905 } 14906 14907 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14908 /* 14909 * The size must be 8-byte aligned. If the size is not 8-byte 14910 * aligned, drop it down by the difference. 14911 */ 14912 if (size & (sizeof (uint64_t) - 1)) 14913 size -= size & (sizeof (uint64_t) - 1); 14914 14915 if (size < state->dts_reserve) { 14916 /* 14917 * Buffers always must be large enough to accommodate 14918 * their prereserved space. We return E2BIG instead 14919 * of ENOMEM in this case to allow for user-level 14920 * software to differentiate the cases. 14921 */ 14922 return (E2BIG); 14923 } 14924 14925 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14926 14927 if (rval != ENOMEM) { 14928 opt[which] = size; 14929 return (rval); 14930 } 14931 14932 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14933 return (rval); 14934 14935 for (divisor = 2; divisor < factor; divisor <<= 1) 14936 continue; 14937 } 14938 14939 return (ENOMEM); 14940 } 14941 14942 static int 14943 dtrace_state_buffers(dtrace_state_t *state) 14944 { 14945 dtrace_speculation_t *spec = state->dts_speculations; 14946 int rval, i; 14947 14948 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14949 DTRACEOPT_BUFSIZE)) != 0) 14950 return (rval); 14951 14952 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14953 DTRACEOPT_AGGSIZE)) != 0) 14954 return (rval); 14955 14956 for (i = 0; i < state->dts_nspeculations; i++) { 14957 if ((rval = dtrace_state_buffer(state, 14958 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14959 return (rval); 14960 } 14961 14962 return (0); 14963 } 14964 14965 static void 14966 dtrace_state_prereserve(dtrace_state_t *state) 14967 { 14968 dtrace_ecb_t *ecb; 14969 dtrace_probe_t *probe; 14970 14971 state->dts_reserve = 0; 14972 14973 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14974 return; 14975 14976 /* 14977 * If our buffer policy is a "fill" buffer policy, we need to set the 14978 * prereserved space to be the space required by the END probes. 14979 */ 14980 probe = dtrace_probes[dtrace_probeid_end - 1]; 14981 ASSERT(probe != NULL); 14982 14983 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14984 if (ecb->dte_state != state) 14985 continue; 14986 14987 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14988 } 14989 } 14990 14991 static int 14992 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14993 { 14994 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14995 dtrace_speculation_t *spec; 14996 dtrace_buffer_t *buf; 14997 #ifdef illumos 14998 cyc_handler_t hdlr; 14999 cyc_time_t when; 15000 #endif 15001 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15002 dtrace_icookie_t cookie; 15003 15004 mutex_enter(&cpu_lock); 15005 mutex_enter(&dtrace_lock); 15006 15007 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15008 rval = EBUSY; 15009 goto out; 15010 } 15011 15012 /* 15013 * Before we can perform any checks, we must prime all of the 15014 * retained enablings that correspond to this state. 15015 */ 15016 dtrace_enabling_prime(state); 15017 15018 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 15019 rval = EACCES; 15020 goto out; 15021 } 15022 15023 dtrace_state_prereserve(state); 15024 15025 /* 15026 * Now we want to do is try to allocate our speculations. 15027 * We do not automatically resize the number of speculations; if 15028 * this fails, we will fail the operation. 15029 */ 15030 nspec = opt[DTRACEOPT_NSPEC]; 15031 ASSERT(nspec != DTRACEOPT_UNSET); 15032 15033 if (nspec > INT_MAX) { 15034 rval = ENOMEM; 15035 goto out; 15036 } 15037 15038 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15039 KM_NOSLEEP | KM_NORMALPRI); 15040 15041 if (spec == NULL) { 15042 rval = ENOMEM; 15043 goto out; 15044 } 15045 15046 state->dts_speculations = spec; 15047 state->dts_nspeculations = (int)nspec; 15048 15049 for (i = 0; i < nspec; i++) { 15050 if ((buf = kmem_zalloc(bufsize, 15051 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15052 rval = ENOMEM; 15053 goto err; 15054 } 15055 15056 spec[i].dtsp_buffer = buf; 15057 } 15058 15059 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15060 if (dtrace_anon.dta_state == NULL) { 15061 rval = ENOENT; 15062 goto out; 15063 } 15064 15065 if (state->dts_necbs != 0) { 15066 rval = EALREADY; 15067 goto out; 15068 } 15069 15070 state->dts_anon = dtrace_anon_grab(); 15071 ASSERT(state->dts_anon != NULL); 15072 state = state->dts_anon; 15073 15074 /* 15075 * We want "grabanon" to be set in the grabbed state, so we'll 15076 * copy that option value from the grabbing state into the 15077 * grabbed state. 15078 */ 15079 state->dts_options[DTRACEOPT_GRABANON] = 15080 opt[DTRACEOPT_GRABANON]; 15081 15082 *cpu = dtrace_anon.dta_beganon; 15083 15084 /* 15085 * If the anonymous state is active (as it almost certainly 15086 * is if the anonymous enabling ultimately matched anything), 15087 * we don't allow any further option processing -- but we 15088 * don't return failure. 15089 */ 15090 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15091 goto out; 15092 } 15093 15094 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15095 opt[DTRACEOPT_AGGSIZE] != 0) { 15096 if (state->dts_aggregations == NULL) { 15097 /* 15098 * We're not going to create an aggregation buffer 15099 * because we don't have any ECBs that contain 15100 * aggregations -- set this option to 0. 15101 */ 15102 opt[DTRACEOPT_AGGSIZE] = 0; 15103 } else { 15104 /* 15105 * If we have an aggregation buffer, we must also have 15106 * a buffer to use as scratch. 15107 */ 15108 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15109 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15110 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15111 } 15112 } 15113 } 15114 15115 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15116 opt[DTRACEOPT_SPECSIZE] != 0) { 15117 if (!state->dts_speculates) { 15118 /* 15119 * We're not going to create speculation buffers 15120 * because we don't have any ECBs that actually 15121 * speculate -- set the speculation size to 0. 15122 */ 15123 opt[DTRACEOPT_SPECSIZE] = 0; 15124 } 15125 } 15126 15127 /* 15128 * The bare minimum size for any buffer that we're actually going to 15129 * do anything to is sizeof (uint64_t). 15130 */ 15131 sz = sizeof (uint64_t); 15132 15133 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15134 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15135 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15136 /* 15137 * A buffer size has been explicitly set to 0 (or to a size 15138 * that will be adjusted to 0) and we need the space -- we 15139 * need to return failure. We return ENOSPC to differentiate 15140 * it from failing to allocate a buffer due to failure to meet 15141 * the reserve (for which we return E2BIG). 15142 */ 15143 rval = ENOSPC; 15144 goto out; 15145 } 15146 15147 if ((rval = dtrace_state_buffers(state)) != 0) 15148 goto err; 15149 15150 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15151 sz = dtrace_dstate_defsize; 15152 15153 do { 15154 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15155 15156 if (rval == 0) 15157 break; 15158 15159 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15160 goto err; 15161 } while (sz >>= 1); 15162 15163 opt[DTRACEOPT_DYNVARSIZE] = sz; 15164 15165 if (rval != 0) 15166 goto err; 15167 15168 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15169 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15170 15171 if (opt[DTRACEOPT_CLEANRATE] == 0) 15172 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15173 15174 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15175 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15176 15177 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15178 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15179 15180 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15181 #ifdef illumos 15182 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15183 hdlr.cyh_arg = state; 15184 hdlr.cyh_level = CY_LOW_LEVEL; 15185 15186 when.cyt_when = 0; 15187 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15188 15189 state->dts_cleaner = cyclic_add(&hdlr, &when); 15190 15191 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15192 hdlr.cyh_arg = state; 15193 hdlr.cyh_level = CY_LOW_LEVEL; 15194 15195 when.cyt_when = 0; 15196 when.cyt_interval = dtrace_deadman_interval; 15197 15198 state->dts_deadman = cyclic_add(&hdlr, &when); 15199 #else 15200 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15201 dtrace_state_clean, state); 15202 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15203 dtrace_state_deadman, state); 15204 #endif 15205 15206 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15207 15208 #ifdef illumos 15209 if (state->dts_getf != 0 && 15210 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15211 /* 15212 * We don't have kernel privs but we have at least one call 15213 * to getf(); we need to bump our zone's count, and (if 15214 * this is the first enabling to have an unprivileged call 15215 * to getf()) we need to hook into closef(). 15216 */ 15217 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15218 15219 if (dtrace_getf++ == 0) { 15220 ASSERT(dtrace_closef == NULL); 15221 dtrace_closef = dtrace_getf_barrier; 15222 } 15223 } 15224 #endif 15225 15226 /* 15227 * Now it's time to actually fire the BEGIN probe. We need to disable 15228 * interrupts here both to record the CPU on which we fired the BEGIN 15229 * probe (the data from this CPU will be processed first at user 15230 * level) and to manually activate the buffer for this CPU. 15231 */ 15232 cookie = dtrace_interrupt_disable(); 15233 *cpu = curcpu; 15234 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15235 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15236 15237 dtrace_probe(dtrace_probeid_begin, 15238 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15239 dtrace_interrupt_enable(cookie); 15240 /* 15241 * We may have had an exit action from a BEGIN probe; only change our 15242 * state to ACTIVE if we're still in WARMUP. 15243 */ 15244 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15245 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15246 15247 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15248 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15249 15250 #ifdef __FreeBSD__ 15251 /* 15252 * We enable anonymous tracing before APs are started, so we must 15253 * activate buffers using the current CPU. 15254 */ 15255 if (state == dtrace_anon.dta_state) { 15256 CPU_FOREACH(i) 15257 dtrace_buffer_activate_cpu(state, i); 15258 } else 15259 dtrace_xcall(DTRACE_CPUALL, 15260 (dtrace_xcall_t)dtrace_buffer_activate, state); 15261 #else 15262 /* 15263 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15264 * want each CPU to transition its principal buffer out of the 15265 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15266 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15267 * atomically transition from processing none of a state's ECBs to 15268 * processing all of them. 15269 */ 15270 dtrace_xcall(DTRACE_CPUALL, 15271 (dtrace_xcall_t)dtrace_buffer_activate, state); 15272 #endif 15273 goto out; 15274 15275 err: 15276 dtrace_buffer_free(state->dts_buffer); 15277 dtrace_buffer_free(state->dts_aggbuffer); 15278 15279 if ((nspec = state->dts_nspeculations) == 0) { 15280 ASSERT(state->dts_speculations == NULL); 15281 goto out; 15282 } 15283 15284 spec = state->dts_speculations; 15285 ASSERT(spec != NULL); 15286 15287 for (i = 0; i < state->dts_nspeculations; i++) { 15288 if ((buf = spec[i].dtsp_buffer) == NULL) 15289 break; 15290 15291 dtrace_buffer_free(buf); 15292 kmem_free(buf, bufsize); 15293 } 15294 15295 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15296 state->dts_nspeculations = 0; 15297 state->dts_speculations = NULL; 15298 15299 out: 15300 mutex_exit(&dtrace_lock); 15301 mutex_exit(&cpu_lock); 15302 15303 return (rval); 15304 } 15305 15306 static int 15307 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15308 { 15309 dtrace_icookie_t cookie; 15310 15311 ASSERT(MUTEX_HELD(&dtrace_lock)); 15312 15313 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15314 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15315 return (EINVAL); 15316 15317 /* 15318 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15319 * to be sure that every CPU has seen it. See below for the details 15320 * on why this is done. 15321 */ 15322 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15323 dtrace_sync(); 15324 15325 /* 15326 * By this point, it is impossible for any CPU to be still processing 15327 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15328 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15329 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15330 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15331 * iff we're in the END probe. 15332 */ 15333 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15334 dtrace_sync(); 15335 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15336 15337 /* 15338 * Finally, we can release the reserve and call the END probe. We 15339 * disable interrupts across calling the END probe to allow us to 15340 * return the CPU on which we actually called the END probe. This 15341 * allows user-land to be sure that this CPU's principal buffer is 15342 * processed last. 15343 */ 15344 state->dts_reserve = 0; 15345 15346 cookie = dtrace_interrupt_disable(); 15347 *cpu = curcpu; 15348 dtrace_probe(dtrace_probeid_end, 15349 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15350 dtrace_interrupt_enable(cookie); 15351 15352 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15353 dtrace_sync(); 15354 15355 #ifdef illumos 15356 if (state->dts_getf != 0 && 15357 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15358 /* 15359 * We don't have kernel privs but we have at least one call 15360 * to getf(); we need to lower our zone's count, and (if 15361 * this is the last enabling to have an unprivileged call 15362 * to getf()) we need to clear the closef() hook. 15363 */ 15364 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15365 ASSERT(dtrace_closef == dtrace_getf_barrier); 15366 ASSERT(dtrace_getf > 0); 15367 15368 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15369 15370 if (--dtrace_getf == 0) 15371 dtrace_closef = NULL; 15372 } 15373 #endif 15374 15375 return (0); 15376 } 15377 15378 static int 15379 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15380 dtrace_optval_t val) 15381 { 15382 ASSERT(MUTEX_HELD(&dtrace_lock)); 15383 15384 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15385 return (EBUSY); 15386 15387 if (option >= DTRACEOPT_MAX) 15388 return (EINVAL); 15389 15390 if (option != DTRACEOPT_CPU && val < 0) 15391 return (EINVAL); 15392 15393 switch (option) { 15394 case DTRACEOPT_DESTRUCTIVE: 15395 if (dtrace_destructive_disallow) 15396 return (EACCES); 15397 15398 state->dts_cred.dcr_destructive = 1; 15399 break; 15400 15401 case DTRACEOPT_BUFSIZE: 15402 case DTRACEOPT_DYNVARSIZE: 15403 case DTRACEOPT_AGGSIZE: 15404 case DTRACEOPT_SPECSIZE: 15405 case DTRACEOPT_STRSIZE: 15406 if (val < 0) 15407 return (EINVAL); 15408 15409 if (val >= LONG_MAX) { 15410 /* 15411 * If this is an otherwise negative value, set it to 15412 * the highest multiple of 128m less than LONG_MAX. 15413 * Technically, we're adjusting the size without 15414 * regard to the buffer resizing policy, but in fact, 15415 * this has no effect -- if we set the buffer size to 15416 * ~LONG_MAX and the buffer policy is ultimately set to 15417 * be "manual", the buffer allocation is guaranteed to 15418 * fail, if only because the allocation requires two 15419 * buffers. (We set the the size to the highest 15420 * multiple of 128m because it ensures that the size 15421 * will remain a multiple of a megabyte when 15422 * repeatedly halved -- all the way down to 15m.) 15423 */ 15424 val = LONG_MAX - (1 << 27) + 1; 15425 } 15426 } 15427 15428 state->dts_options[option] = val; 15429 15430 return (0); 15431 } 15432 15433 static void 15434 dtrace_state_destroy(dtrace_state_t *state) 15435 { 15436 dtrace_ecb_t *ecb; 15437 dtrace_vstate_t *vstate = &state->dts_vstate; 15438 #ifdef illumos 15439 minor_t minor = getminor(state->dts_dev); 15440 #endif 15441 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15442 dtrace_speculation_t *spec = state->dts_speculations; 15443 int nspec = state->dts_nspeculations; 15444 uint32_t match; 15445 15446 ASSERT(MUTEX_HELD(&dtrace_lock)); 15447 ASSERT(MUTEX_HELD(&cpu_lock)); 15448 15449 /* 15450 * First, retract any retained enablings for this state. 15451 */ 15452 dtrace_enabling_retract(state); 15453 ASSERT(state->dts_nretained == 0); 15454 15455 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15456 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15457 /* 15458 * We have managed to come into dtrace_state_destroy() on a 15459 * hot enabling -- almost certainly because of a disorderly 15460 * shutdown of a consumer. (That is, a consumer that is 15461 * exiting without having called dtrace_stop().) In this case, 15462 * we're going to set our activity to be KILLED, and then 15463 * issue a sync to be sure that everyone is out of probe 15464 * context before we start blowing away ECBs. 15465 */ 15466 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15467 dtrace_sync(); 15468 } 15469 15470 /* 15471 * Release the credential hold we took in dtrace_state_create(). 15472 */ 15473 if (state->dts_cred.dcr_cred != NULL) 15474 crfree(state->dts_cred.dcr_cred); 15475 15476 /* 15477 * Now we can safely disable and destroy any enabled probes. Because 15478 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15479 * (especially if they're all enabled), we take two passes through the 15480 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15481 * in the second we disable whatever is left over. 15482 */ 15483 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15484 for (i = 0; i < state->dts_necbs; i++) { 15485 if ((ecb = state->dts_ecbs[i]) == NULL) 15486 continue; 15487 15488 if (match && ecb->dte_probe != NULL) { 15489 dtrace_probe_t *probe = ecb->dte_probe; 15490 dtrace_provider_t *prov = probe->dtpr_provider; 15491 15492 if (!(prov->dtpv_priv.dtpp_flags & match)) 15493 continue; 15494 } 15495 15496 dtrace_ecb_disable(ecb); 15497 dtrace_ecb_destroy(ecb); 15498 } 15499 15500 if (!match) 15501 break; 15502 } 15503 15504 /* 15505 * Before we free the buffers, perform one more sync to assure that 15506 * every CPU is out of probe context. 15507 */ 15508 dtrace_sync(); 15509 15510 dtrace_buffer_free(state->dts_buffer); 15511 dtrace_buffer_free(state->dts_aggbuffer); 15512 15513 for (i = 0; i < nspec; i++) 15514 dtrace_buffer_free(spec[i].dtsp_buffer); 15515 15516 #ifdef illumos 15517 if (state->dts_cleaner != CYCLIC_NONE) 15518 cyclic_remove(state->dts_cleaner); 15519 15520 if (state->dts_deadman != CYCLIC_NONE) 15521 cyclic_remove(state->dts_deadman); 15522 #else 15523 callout_stop(&state->dts_cleaner); 15524 callout_drain(&state->dts_cleaner); 15525 callout_stop(&state->dts_deadman); 15526 callout_drain(&state->dts_deadman); 15527 #endif 15528 15529 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15530 dtrace_vstate_fini(vstate); 15531 if (state->dts_ecbs != NULL) 15532 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15533 15534 if (state->dts_aggregations != NULL) { 15535 #ifdef DEBUG 15536 for (i = 0; i < state->dts_naggregations; i++) 15537 ASSERT(state->dts_aggregations[i] == NULL); 15538 #endif 15539 ASSERT(state->dts_naggregations > 0); 15540 kmem_free(state->dts_aggregations, 15541 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15542 } 15543 15544 kmem_free(state->dts_buffer, bufsize); 15545 kmem_free(state->dts_aggbuffer, bufsize); 15546 15547 for (i = 0; i < nspec; i++) 15548 kmem_free(spec[i].dtsp_buffer, bufsize); 15549 15550 if (spec != NULL) 15551 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15552 15553 dtrace_format_destroy(state); 15554 15555 if (state->dts_aggid_arena != NULL) { 15556 #ifdef illumos 15557 vmem_destroy(state->dts_aggid_arena); 15558 #else 15559 delete_unrhdr(state->dts_aggid_arena); 15560 #endif 15561 state->dts_aggid_arena = NULL; 15562 } 15563 #ifdef illumos 15564 ddi_soft_state_free(dtrace_softstate, minor); 15565 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15566 #endif 15567 } 15568 15569 /* 15570 * DTrace Anonymous Enabling Functions 15571 */ 15572 static dtrace_state_t * 15573 dtrace_anon_grab(void) 15574 { 15575 dtrace_state_t *state; 15576 15577 ASSERT(MUTEX_HELD(&dtrace_lock)); 15578 15579 if ((state = dtrace_anon.dta_state) == NULL) { 15580 ASSERT(dtrace_anon.dta_enabling == NULL); 15581 return (NULL); 15582 } 15583 15584 ASSERT(dtrace_anon.dta_enabling != NULL); 15585 ASSERT(dtrace_retained != NULL); 15586 15587 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15588 dtrace_anon.dta_enabling = NULL; 15589 dtrace_anon.dta_state = NULL; 15590 15591 return (state); 15592 } 15593 15594 static void 15595 dtrace_anon_property(void) 15596 { 15597 int i, rv; 15598 dtrace_state_t *state; 15599 dof_hdr_t *dof; 15600 char c[32]; /* enough for "dof-data-" + digits */ 15601 15602 ASSERT(MUTEX_HELD(&dtrace_lock)); 15603 ASSERT(MUTEX_HELD(&cpu_lock)); 15604 15605 for (i = 0; ; i++) { 15606 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15607 15608 dtrace_err_verbose = 1; 15609 15610 if ((dof = dtrace_dof_property(c)) == NULL) { 15611 dtrace_err_verbose = 0; 15612 break; 15613 } 15614 15615 #ifdef illumos 15616 /* 15617 * We want to create anonymous state, so we need to transition 15618 * the kernel debugger to indicate that DTrace is active. If 15619 * this fails (e.g. because the debugger has modified text in 15620 * some way), we won't continue with the processing. 15621 */ 15622 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15623 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15624 "enabling ignored."); 15625 dtrace_dof_destroy(dof); 15626 break; 15627 } 15628 #endif 15629 15630 /* 15631 * If we haven't allocated an anonymous state, we'll do so now. 15632 */ 15633 if ((state = dtrace_anon.dta_state) == NULL) { 15634 state = dtrace_state_create(NULL, NULL); 15635 dtrace_anon.dta_state = state; 15636 15637 if (state == NULL) { 15638 /* 15639 * This basically shouldn't happen: the only 15640 * failure mode from dtrace_state_create() is a 15641 * failure of ddi_soft_state_zalloc() that 15642 * itself should never happen. Still, the 15643 * interface allows for a failure mode, and 15644 * we want to fail as gracefully as possible: 15645 * we'll emit an error message and cease 15646 * processing anonymous state in this case. 15647 */ 15648 cmn_err(CE_WARN, "failed to create " 15649 "anonymous state"); 15650 dtrace_dof_destroy(dof); 15651 break; 15652 } 15653 } 15654 15655 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15656 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15657 15658 if (rv == 0) 15659 rv = dtrace_dof_options(dof, state); 15660 15661 dtrace_err_verbose = 0; 15662 dtrace_dof_destroy(dof); 15663 15664 if (rv != 0) { 15665 /* 15666 * This is malformed DOF; chuck any anonymous state 15667 * that we created. 15668 */ 15669 ASSERT(dtrace_anon.dta_enabling == NULL); 15670 dtrace_state_destroy(state); 15671 dtrace_anon.dta_state = NULL; 15672 break; 15673 } 15674 15675 ASSERT(dtrace_anon.dta_enabling != NULL); 15676 } 15677 15678 if (dtrace_anon.dta_enabling != NULL) { 15679 int rval; 15680 15681 /* 15682 * dtrace_enabling_retain() can only fail because we are 15683 * trying to retain more enablings than are allowed -- but 15684 * we only have one anonymous enabling, and we are guaranteed 15685 * to be allowed at least one retained enabling; we assert 15686 * that dtrace_enabling_retain() returns success. 15687 */ 15688 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15689 ASSERT(rval == 0); 15690 15691 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15692 } 15693 } 15694 15695 /* 15696 * DTrace Helper Functions 15697 */ 15698 static void 15699 dtrace_helper_trace(dtrace_helper_action_t *helper, 15700 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15701 { 15702 uint32_t size, next, nnext, i; 15703 dtrace_helptrace_t *ent, *buffer; 15704 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15705 15706 if ((buffer = dtrace_helptrace_buffer) == NULL) 15707 return; 15708 15709 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15710 15711 /* 15712 * What would a tracing framework be without its own tracing 15713 * framework? (Well, a hell of a lot simpler, for starters...) 15714 */ 15715 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15716 sizeof (uint64_t) - sizeof (uint64_t); 15717 15718 /* 15719 * Iterate until we can allocate a slot in the trace buffer. 15720 */ 15721 do { 15722 next = dtrace_helptrace_next; 15723 15724 if (next + size < dtrace_helptrace_bufsize) { 15725 nnext = next + size; 15726 } else { 15727 nnext = size; 15728 } 15729 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15730 15731 /* 15732 * We have our slot; fill it in. 15733 */ 15734 if (nnext == size) { 15735 dtrace_helptrace_wrapped++; 15736 next = 0; 15737 } 15738 15739 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15740 ent->dtht_helper = helper; 15741 ent->dtht_where = where; 15742 ent->dtht_nlocals = vstate->dtvs_nlocals; 15743 15744 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15745 mstate->dtms_fltoffs : -1; 15746 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15747 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15748 15749 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15750 dtrace_statvar_t *svar; 15751 15752 if ((svar = vstate->dtvs_locals[i]) == NULL) 15753 continue; 15754 15755 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t)); 15756 ent->dtht_locals[i] = 15757 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15758 } 15759 } 15760 15761 static uint64_t 15762 dtrace_helper(int which, dtrace_mstate_t *mstate, 15763 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15764 { 15765 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15766 uint64_t sarg0 = mstate->dtms_arg[0]; 15767 uint64_t sarg1 = mstate->dtms_arg[1]; 15768 uint64_t rval = 0; 15769 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15770 dtrace_helper_action_t *helper; 15771 dtrace_vstate_t *vstate; 15772 dtrace_difo_t *pred; 15773 int i, trace = dtrace_helptrace_buffer != NULL; 15774 15775 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15776 15777 if (helpers == NULL) 15778 return (0); 15779 15780 if ((helper = helpers->dthps_actions[which]) == NULL) 15781 return (0); 15782 15783 vstate = &helpers->dthps_vstate; 15784 mstate->dtms_arg[0] = arg0; 15785 mstate->dtms_arg[1] = arg1; 15786 15787 /* 15788 * Now iterate over each helper. If its predicate evaluates to 'true', 15789 * we'll call the corresponding actions. Note that the below calls 15790 * to dtrace_dif_emulate() may set faults in machine state. This is 15791 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15792 * the stored DIF offset with its own (which is the desired behavior). 15793 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15794 * from machine state; this is okay, too. 15795 */ 15796 for (; helper != NULL; helper = helper->dtha_next) { 15797 if ((pred = helper->dtha_predicate) != NULL) { 15798 if (trace) 15799 dtrace_helper_trace(helper, mstate, vstate, 0); 15800 15801 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15802 goto next; 15803 15804 if (*flags & CPU_DTRACE_FAULT) 15805 goto err; 15806 } 15807 15808 for (i = 0; i < helper->dtha_nactions; i++) { 15809 if (trace) 15810 dtrace_helper_trace(helper, 15811 mstate, vstate, i + 1); 15812 15813 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15814 mstate, vstate, state); 15815 15816 if (*flags & CPU_DTRACE_FAULT) 15817 goto err; 15818 } 15819 15820 next: 15821 if (trace) 15822 dtrace_helper_trace(helper, mstate, vstate, 15823 DTRACE_HELPTRACE_NEXT); 15824 } 15825 15826 if (trace) 15827 dtrace_helper_trace(helper, mstate, vstate, 15828 DTRACE_HELPTRACE_DONE); 15829 15830 /* 15831 * Restore the arg0 that we saved upon entry. 15832 */ 15833 mstate->dtms_arg[0] = sarg0; 15834 mstate->dtms_arg[1] = sarg1; 15835 15836 return (rval); 15837 15838 err: 15839 if (trace) 15840 dtrace_helper_trace(helper, mstate, vstate, 15841 DTRACE_HELPTRACE_ERR); 15842 15843 /* 15844 * Restore the arg0 that we saved upon entry. 15845 */ 15846 mstate->dtms_arg[0] = sarg0; 15847 mstate->dtms_arg[1] = sarg1; 15848 15849 return (0); 15850 } 15851 15852 static void 15853 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15854 dtrace_vstate_t *vstate) 15855 { 15856 int i; 15857 15858 if (helper->dtha_predicate != NULL) 15859 dtrace_difo_release(helper->dtha_predicate, vstate); 15860 15861 for (i = 0; i < helper->dtha_nactions; i++) { 15862 ASSERT(helper->dtha_actions[i] != NULL); 15863 dtrace_difo_release(helper->dtha_actions[i], vstate); 15864 } 15865 15866 kmem_free(helper->dtha_actions, 15867 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15868 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15869 } 15870 15871 static int 15872 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15873 { 15874 proc_t *p = curproc; 15875 dtrace_vstate_t *vstate; 15876 int i; 15877 15878 if (help == NULL) 15879 help = p->p_dtrace_helpers; 15880 15881 ASSERT(MUTEX_HELD(&dtrace_lock)); 15882 15883 if (help == NULL || gen > help->dthps_generation) 15884 return (EINVAL); 15885 15886 vstate = &help->dthps_vstate; 15887 15888 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15889 dtrace_helper_action_t *last = NULL, *h, *next; 15890 15891 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15892 next = h->dtha_next; 15893 15894 if (h->dtha_generation == gen) { 15895 if (last != NULL) { 15896 last->dtha_next = next; 15897 } else { 15898 help->dthps_actions[i] = next; 15899 } 15900 15901 dtrace_helper_action_destroy(h, vstate); 15902 } else { 15903 last = h; 15904 } 15905 } 15906 } 15907 15908 /* 15909 * Interate until we've cleared out all helper providers with the 15910 * given generation number. 15911 */ 15912 for (;;) { 15913 dtrace_helper_provider_t *prov; 15914 15915 /* 15916 * Look for a helper provider with the right generation. We 15917 * have to start back at the beginning of the list each time 15918 * because we drop dtrace_lock. It's unlikely that we'll make 15919 * more than two passes. 15920 */ 15921 for (i = 0; i < help->dthps_nprovs; i++) { 15922 prov = help->dthps_provs[i]; 15923 15924 if (prov->dthp_generation == gen) 15925 break; 15926 } 15927 15928 /* 15929 * If there were no matches, we're done. 15930 */ 15931 if (i == help->dthps_nprovs) 15932 break; 15933 15934 /* 15935 * Move the last helper provider into this slot. 15936 */ 15937 help->dthps_nprovs--; 15938 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15939 help->dthps_provs[help->dthps_nprovs] = NULL; 15940 15941 mutex_exit(&dtrace_lock); 15942 15943 /* 15944 * If we have a meta provider, remove this helper provider. 15945 */ 15946 mutex_enter(&dtrace_meta_lock); 15947 if (dtrace_meta_pid != NULL) { 15948 ASSERT(dtrace_deferred_pid == NULL); 15949 dtrace_helper_provider_remove(&prov->dthp_prov, 15950 p->p_pid); 15951 } 15952 mutex_exit(&dtrace_meta_lock); 15953 15954 dtrace_helper_provider_destroy(prov); 15955 15956 mutex_enter(&dtrace_lock); 15957 } 15958 15959 return (0); 15960 } 15961 15962 static int 15963 dtrace_helper_validate(dtrace_helper_action_t *helper) 15964 { 15965 int err = 0, i; 15966 dtrace_difo_t *dp; 15967 15968 if ((dp = helper->dtha_predicate) != NULL) 15969 err += dtrace_difo_validate_helper(dp); 15970 15971 for (i = 0; i < helper->dtha_nactions; i++) 15972 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15973 15974 return (err == 0); 15975 } 15976 15977 static int 15978 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15979 dtrace_helpers_t *help) 15980 { 15981 dtrace_helper_action_t *helper, *last; 15982 dtrace_actdesc_t *act; 15983 dtrace_vstate_t *vstate; 15984 dtrace_predicate_t *pred; 15985 int count = 0, nactions = 0, i; 15986 15987 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15988 return (EINVAL); 15989 15990 last = help->dthps_actions[which]; 15991 vstate = &help->dthps_vstate; 15992 15993 for (count = 0; last != NULL; last = last->dtha_next) { 15994 count++; 15995 if (last->dtha_next == NULL) 15996 break; 15997 } 15998 15999 /* 16000 * If we already have dtrace_helper_actions_max helper actions for this 16001 * helper action type, we'll refuse to add a new one. 16002 */ 16003 if (count >= dtrace_helper_actions_max) 16004 return (ENOSPC); 16005 16006 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 16007 helper->dtha_generation = help->dthps_generation; 16008 16009 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 16010 ASSERT(pred->dtp_difo != NULL); 16011 dtrace_difo_hold(pred->dtp_difo); 16012 helper->dtha_predicate = pred->dtp_difo; 16013 } 16014 16015 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 16016 if (act->dtad_kind != DTRACEACT_DIFEXPR) 16017 goto err; 16018 16019 if (act->dtad_difo == NULL) 16020 goto err; 16021 16022 nactions++; 16023 } 16024 16025 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 16026 (helper->dtha_nactions = nactions), KM_SLEEP); 16027 16028 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 16029 dtrace_difo_hold(act->dtad_difo); 16030 helper->dtha_actions[i++] = act->dtad_difo; 16031 } 16032 16033 if (!dtrace_helper_validate(helper)) 16034 goto err; 16035 16036 if (last == NULL) { 16037 help->dthps_actions[which] = helper; 16038 } else { 16039 last->dtha_next = helper; 16040 } 16041 16042 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16043 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16044 dtrace_helptrace_next = 0; 16045 } 16046 16047 return (0); 16048 err: 16049 dtrace_helper_action_destroy(helper, vstate); 16050 return (EINVAL); 16051 } 16052 16053 static void 16054 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16055 dof_helper_t *dofhp) 16056 { 16057 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16058 16059 mutex_enter(&dtrace_meta_lock); 16060 mutex_enter(&dtrace_lock); 16061 16062 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16063 /* 16064 * If the dtrace module is loaded but not attached, or if 16065 * there aren't isn't a meta provider registered to deal with 16066 * these provider descriptions, we need to postpone creating 16067 * the actual providers until later. 16068 */ 16069 16070 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16071 dtrace_deferred_pid != help) { 16072 help->dthps_deferred = 1; 16073 help->dthps_pid = p->p_pid; 16074 help->dthps_next = dtrace_deferred_pid; 16075 help->dthps_prev = NULL; 16076 if (dtrace_deferred_pid != NULL) 16077 dtrace_deferred_pid->dthps_prev = help; 16078 dtrace_deferred_pid = help; 16079 } 16080 16081 mutex_exit(&dtrace_lock); 16082 16083 } else if (dofhp != NULL) { 16084 /* 16085 * If the dtrace module is loaded and we have a particular 16086 * helper provider description, pass that off to the 16087 * meta provider. 16088 */ 16089 16090 mutex_exit(&dtrace_lock); 16091 16092 dtrace_helper_provide(dofhp, p->p_pid); 16093 16094 } else { 16095 /* 16096 * Otherwise, just pass all the helper provider descriptions 16097 * off to the meta provider. 16098 */ 16099 16100 int i; 16101 mutex_exit(&dtrace_lock); 16102 16103 for (i = 0; i < help->dthps_nprovs; i++) { 16104 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16105 p->p_pid); 16106 } 16107 } 16108 16109 mutex_exit(&dtrace_meta_lock); 16110 } 16111 16112 static int 16113 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16114 { 16115 dtrace_helper_provider_t *hprov, **tmp_provs; 16116 uint_t tmp_maxprovs, i; 16117 16118 ASSERT(MUTEX_HELD(&dtrace_lock)); 16119 ASSERT(help != NULL); 16120 16121 /* 16122 * If we already have dtrace_helper_providers_max helper providers, 16123 * we're refuse to add a new one. 16124 */ 16125 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16126 return (ENOSPC); 16127 16128 /* 16129 * Check to make sure this isn't a duplicate. 16130 */ 16131 for (i = 0; i < help->dthps_nprovs; i++) { 16132 if (dofhp->dofhp_addr == 16133 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16134 return (EALREADY); 16135 } 16136 16137 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16138 hprov->dthp_prov = *dofhp; 16139 hprov->dthp_ref = 1; 16140 hprov->dthp_generation = gen; 16141 16142 /* 16143 * Allocate a bigger table for helper providers if it's already full. 16144 */ 16145 if (help->dthps_maxprovs == help->dthps_nprovs) { 16146 tmp_maxprovs = help->dthps_maxprovs; 16147 tmp_provs = help->dthps_provs; 16148 16149 if (help->dthps_maxprovs == 0) 16150 help->dthps_maxprovs = 2; 16151 else 16152 help->dthps_maxprovs *= 2; 16153 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16154 help->dthps_maxprovs = dtrace_helper_providers_max; 16155 16156 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16157 16158 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16159 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16160 16161 if (tmp_provs != NULL) { 16162 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16163 sizeof (dtrace_helper_provider_t *)); 16164 kmem_free(tmp_provs, tmp_maxprovs * 16165 sizeof (dtrace_helper_provider_t *)); 16166 } 16167 } 16168 16169 help->dthps_provs[help->dthps_nprovs] = hprov; 16170 help->dthps_nprovs++; 16171 16172 return (0); 16173 } 16174 16175 static void 16176 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16177 { 16178 mutex_enter(&dtrace_lock); 16179 16180 if (--hprov->dthp_ref == 0) { 16181 dof_hdr_t *dof; 16182 mutex_exit(&dtrace_lock); 16183 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16184 dtrace_dof_destroy(dof); 16185 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16186 } else { 16187 mutex_exit(&dtrace_lock); 16188 } 16189 } 16190 16191 static int 16192 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16193 { 16194 uintptr_t daddr = (uintptr_t)dof; 16195 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16196 dof_provider_t *provider; 16197 dof_probe_t *probe; 16198 uint8_t *arg; 16199 char *strtab, *typestr; 16200 dof_stridx_t typeidx; 16201 size_t typesz; 16202 uint_t nprobes, j, k; 16203 16204 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16205 16206 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16207 dtrace_dof_error(dof, "misaligned section offset"); 16208 return (-1); 16209 } 16210 16211 /* 16212 * The section needs to be large enough to contain the DOF provider 16213 * structure appropriate for the given version. 16214 */ 16215 if (sec->dofs_size < 16216 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16217 offsetof(dof_provider_t, dofpv_prenoffs) : 16218 sizeof (dof_provider_t))) { 16219 dtrace_dof_error(dof, "provider section too small"); 16220 return (-1); 16221 } 16222 16223 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16224 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16225 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16226 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16227 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16228 16229 if (str_sec == NULL || prb_sec == NULL || 16230 arg_sec == NULL || off_sec == NULL) 16231 return (-1); 16232 16233 enoff_sec = NULL; 16234 16235 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16236 provider->dofpv_prenoffs != DOF_SECT_NONE && 16237 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16238 provider->dofpv_prenoffs)) == NULL) 16239 return (-1); 16240 16241 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16242 16243 if (provider->dofpv_name >= str_sec->dofs_size || 16244 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16245 dtrace_dof_error(dof, "invalid provider name"); 16246 return (-1); 16247 } 16248 16249 if (prb_sec->dofs_entsize == 0 || 16250 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16251 dtrace_dof_error(dof, "invalid entry size"); 16252 return (-1); 16253 } 16254 16255 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16256 dtrace_dof_error(dof, "misaligned entry size"); 16257 return (-1); 16258 } 16259 16260 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16261 dtrace_dof_error(dof, "invalid entry size"); 16262 return (-1); 16263 } 16264 16265 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16266 dtrace_dof_error(dof, "misaligned section offset"); 16267 return (-1); 16268 } 16269 16270 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16271 dtrace_dof_error(dof, "invalid entry size"); 16272 return (-1); 16273 } 16274 16275 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16276 16277 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16278 16279 /* 16280 * Take a pass through the probes to check for errors. 16281 */ 16282 for (j = 0; j < nprobes; j++) { 16283 probe = (dof_probe_t *)(uintptr_t)(daddr + 16284 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16285 16286 if (probe->dofpr_func >= str_sec->dofs_size) { 16287 dtrace_dof_error(dof, "invalid function name"); 16288 return (-1); 16289 } 16290 16291 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16292 dtrace_dof_error(dof, "function name too long"); 16293 /* 16294 * Keep going if the function name is too long. 16295 * Unlike provider and probe names, we cannot reasonably 16296 * impose restrictions on function names, since they're 16297 * a property of the code being instrumented. We will 16298 * skip this probe in dtrace_helper_provide_one(). 16299 */ 16300 } 16301 16302 if (probe->dofpr_name >= str_sec->dofs_size || 16303 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16304 dtrace_dof_error(dof, "invalid probe name"); 16305 return (-1); 16306 } 16307 16308 /* 16309 * The offset count must not wrap the index, and the offsets 16310 * must also not overflow the section's data. 16311 */ 16312 if (probe->dofpr_offidx + probe->dofpr_noffs < 16313 probe->dofpr_offidx || 16314 (probe->dofpr_offidx + probe->dofpr_noffs) * 16315 off_sec->dofs_entsize > off_sec->dofs_size) { 16316 dtrace_dof_error(dof, "invalid probe offset"); 16317 return (-1); 16318 } 16319 16320 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16321 /* 16322 * If there's no is-enabled offset section, make sure 16323 * there aren't any is-enabled offsets. Otherwise 16324 * perform the same checks as for probe offsets 16325 * (immediately above). 16326 */ 16327 if (enoff_sec == NULL) { 16328 if (probe->dofpr_enoffidx != 0 || 16329 probe->dofpr_nenoffs != 0) { 16330 dtrace_dof_error(dof, "is-enabled " 16331 "offsets with null section"); 16332 return (-1); 16333 } 16334 } else if (probe->dofpr_enoffidx + 16335 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16336 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16337 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16338 dtrace_dof_error(dof, "invalid is-enabled " 16339 "offset"); 16340 return (-1); 16341 } 16342 16343 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16344 dtrace_dof_error(dof, "zero probe and " 16345 "is-enabled offsets"); 16346 return (-1); 16347 } 16348 } else if (probe->dofpr_noffs == 0) { 16349 dtrace_dof_error(dof, "zero probe offsets"); 16350 return (-1); 16351 } 16352 16353 if (probe->dofpr_argidx + probe->dofpr_xargc < 16354 probe->dofpr_argidx || 16355 (probe->dofpr_argidx + probe->dofpr_xargc) * 16356 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16357 dtrace_dof_error(dof, "invalid args"); 16358 return (-1); 16359 } 16360 16361 typeidx = probe->dofpr_nargv; 16362 typestr = strtab + probe->dofpr_nargv; 16363 for (k = 0; k < probe->dofpr_nargc; k++) { 16364 if (typeidx >= str_sec->dofs_size) { 16365 dtrace_dof_error(dof, "bad " 16366 "native argument type"); 16367 return (-1); 16368 } 16369 16370 typesz = strlen(typestr) + 1; 16371 if (typesz > DTRACE_ARGTYPELEN) { 16372 dtrace_dof_error(dof, "native " 16373 "argument type too long"); 16374 return (-1); 16375 } 16376 typeidx += typesz; 16377 typestr += typesz; 16378 } 16379 16380 typeidx = probe->dofpr_xargv; 16381 typestr = strtab + probe->dofpr_xargv; 16382 for (k = 0; k < probe->dofpr_xargc; k++) { 16383 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16384 dtrace_dof_error(dof, "bad " 16385 "native argument index"); 16386 return (-1); 16387 } 16388 16389 if (typeidx >= str_sec->dofs_size) { 16390 dtrace_dof_error(dof, "bad " 16391 "translated argument type"); 16392 return (-1); 16393 } 16394 16395 typesz = strlen(typestr) + 1; 16396 if (typesz > DTRACE_ARGTYPELEN) { 16397 dtrace_dof_error(dof, "translated argument " 16398 "type too long"); 16399 return (-1); 16400 } 16401 16402 typeidx += typesz; 16403 typestr += typesz; 16404 } 16405 } 16406 16407 return (0); 16408 } 16409 16410 static int 16411 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16412 { 16413 dtrace_helpers_t *help; 16414 dtrace_vstate_t *vstate; 16415 dtrace_enabling_t *enab = NULL; 16416 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16417 uintptr_t daddr = (uintptr_t)dof; 16418 16419 ASSERT(MUTEX_HELD(&dtrace_lock)); 16420 16421 if ((help = p->p_dtrace_helpers) == NULL) 16422 help = dtrace_helpers_create(p); 16423 16424 vstate = &help->dthps_vstate; 16425 16426 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16427 dhp->dofhp_dof, B_FALSE)) != 0) { 16428 dtrace_dof_destroy(dof); 16429 return (rv); 16430 } 16431 16432 /* 16433 * Look for helper providers and validate their descriptions. 16434 */ 16435 for (i = 0; i < dof->dofh_secnum; i++) { 16436 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16437 dof->dofh_secoff + i * dof->dofh_secsize); 16438 16439 if (sec->dofs_type != DOF_SECT_PROVIDER) 16440 continue; 16441 16442 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16443 dtrace_enabling_destroy(enab); 16444 dtrace_dof_destroy(dof); 16445 return (-1); 16446 } 16447 16448 nprovs++; 16449 } 16450 16451 /* 16452 * Now we need to walk through the ECB descriptions in the enabling. 16453 */ 16454 for (i = 0; i < enab->dten_ndesc; i++) { 16455 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16456 dtrace_probedesc_t *desc = &ep->dted_probe; 16457 16458 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16459 continue; 16460 16461 if (strcmp(desc->dtpd_mod, "helper") != 0) 16462 continue; 16463 16464 if (strcmp(desc->dtpd_func, "ustack") != 0) 16465 continue; 16466 16467 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16468 ep, help)) != 0) { 16469 /* 16470 * Adding this helper action failed -- we are now going 16471 * to rip out the entire generation and return failure. 16472 */ 16473 (void) dtrace_helper_destroygen(help, 16474 help->dthps_generation); 16475 dtrace_enabling_destroy(enab); 16476 dtrace_dof_destroy(dof); 16477 return (-1); 16478 } 16479 16480 nhelpers++; 16481 } 16482 16483 if (nhelpers < enab->dten_ndesc) 16484 dtrace_dof_error(dof, "unmatched helpers"); 16485 16486 gen = help->dthps_generation++; 16487 dtrace_enabling_destroy(enab); 16488 16489 if (nprovs > 0) { 16490 /* 16491 * Now that this is in-kernel, we change the sense of the 16492 * members: dofhp_dof denotes the in-kernel copy of the DOF 16493 * and dofhp_addr denotes the address at user-level. 16494 */ 16495 dhp->dofhp_addr = dhp->dofhp_dof; 16496 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16497 16498 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16499 mutex_exit(&dtrace_lock); 16500 dtrace_helper_provider_register(p, help, dhp); 16501 mutex_enter(&dtrace_lock); 16502 16503 destroy = 0; 16504 } 16505 } 16506 16507 if (destroy) 16508 dtrace_dof_destroy(dof); 16509 16510 return (gen); 16511 } 16512 16513 static dtrace_helpers_t * 16514 dtrace_helpers_create(proc_t *p) 16515 { 16516 dtrace_helpers_t *help; 16517 16518 ASSERT(MUTEX_HELD(&dtrace_lock)); 16519 ASSERT(p->p_dtrace_helpers == NULL); 16520 16521 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16522 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16523 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16524 16525 p->p_dtrace_helpers = help; 16526 dtrace_helpers++; 16527 16528 return (help); 16529 } 16530 16531 #ifdef illumos 16532 static 16533 #endif 16534 void 16535 dtrace_helpers_destroy(proc_t *p) 16536 { 16537 dtrace_helpers_t *help; 16538 dtrace_vstate_t *vstate; 16539 #ifdef illumos 16540 proc_t *p = curproc; 16541 #endif 16542 int i; 16543 16544 mutex_enter(&dtrace_lock); 16545 16546 ASSERT(p->p_dtrace_helpers != NULL); 16547 ASSERT(dtrace_helpers > 0); 16548 16549 help = p->p_dtrace_helpers; 16550 vstate = &help->dthps_vstate; 16551 16552 /* 16553 * We're now going to lose the help from this process. 16554 */ 16555 p->p_dtrace_helpers = NULL; 16556 dtrace_sync(); 16557 16558 /* 16559 * Destory the helper actions. 16560 */ 16561 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16562 dtrace_helper_action_t *h, *next; 16563 16564 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16565 next = h->dtha_next; 16566 dtrace_helper_action_destroy(h, vstate); 16567 h = next; 16568 } 16569 } 16570 16571 mutex_exit(&dtrace_lock); 16572 16573 /* 16574 * Destroy the helper providers. 16575 */ 16576 if (help->dthps_maxprovs > 0) { 16577 mutex_enter(&dtrace_meta_lock); 16578 if (dtrace_meta_pid != NULL) { 16579 ASSERT(dtrace_deferred_pid == NULL); 16580 16581 for (i = 0; i < help->dthps_nprovs; i++) { 16582 dtrace_helper_provider_remove( 16583 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16584 } 16585 } else { 16586 mutex_enter(&dtrace_lock); 16587 ASSERT(help->dthps_deferred == 0 || 16588 help->dthps_next != NULL || 16589 help->dthps_prev != NULL || 16590 help == dtrace_deferred_pid); 16591 16592 /* 16593 * Remove the helper from the deferred list. 16594 */ 16595 if (help->dthps_next != NULL) 16596 help->dthps_next->dthps_prev = help->dthps_prev; 16597 if (help->dthps_prev != NULL) 16598 help->dthps_prev->dthps_next = help->dthps_next; 16599 if (dtrace_deferred_pid == help) { 16600 dtrace_deferred_pid = help->dthps_next; 16601 ASSERT(help->dthps_prev == NULL); 16602 } 16603 16604 mutex_exit(&dtrace_lock); 16605 } 16606 16607 mutex_exit(&dtrace_meta_lock); 16608 16609 for (i = 0; i < help->dthps_nprovs; i++) { 16610 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16611 } 16612 16613 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16614 sizeof (dtrace_helper_provider_t *)); 16615 } 16616 16617 mutex_enter(&dtrace_lock); 16618 16619 dtrace_vstate_fini(&help->dthps_vstate); 16620 kmem_free(help->dthps_actions, 16621 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16622 kmem_free(help, sizeof (dtrace_helpers_t)); 16623 16624 --dtrace_helpers; 16625 mutex_exit(&dtrace_lock); 16626 } 16627 16628 #ifdef illumos 16629 static 16630 #endif 16631 void 16632 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16633 { 16634 dtrace_helpers_t *help, *newhelp; 16635 dtrace_helper_action_t *helper, *new, *last; 16636 dtrace_difo_t *dp; 16637 dtrace_vstate_t *vstate; 16638 int i, j, sz, hasprovs = 0; 16639 16640 mutex_enter(&dtrace_lock); 16641 ASSERT(from->p_dtrace_helpers != NULL); 16642 ASSERT(dtrace_helpers > 0); 16643 16644 help = from->p_dtrace_helpers; 16645 newhelp = dtrace_helpers_create(to); 16646 ASSERT(to->p_dtrace_helpers != NULL); 16647 16648 newhelp->dthps_generation = help->dthps_generation; 16649 vstate = &newhelp->dthps_vstate; 16650 16651 /* 16652 * Duplicate the helper actions. 16653 */ 16654 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16655 if ((helper = help->dthps_actions[i]) == NULL) 16656 continue; 16657 16658 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16659 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16660 KM_SLEEP); 16661 new->dtha_generation = helper->dtha_generation; 16662 16663 if ((dp = helper->dtha_predicate) != NULL) { 16664 dp = dtrace_difo_duplicate(dp, vstate); 16665 new->dtha_predicate = dp; 16666 } 16667 16668 new->dtha_nactions = helper->dtha_nactions; 16669 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16670 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16671 16672 for (j = 0; j < new->dtha_nactions; j++) { 16673 dtrace_difo_t *dp = helper->dtha_actions[j]; 16674 16675 ASSERT(dp != NULL); 16676 dp = dtrace_difo_duplicate(dp, vstate); 16677 new->dtha_actions[j] = dp; 16678 } 16679 16680 if (last != NULL) { 16681 last->dtha_next = new; 16682 } else { 16683 newhelp->dthps_actions[i] = new; 16684 } 16685 16686 last = new; 16687 } 16688 } 16689 16690 /* 16691 * Duplicate the helper providers and register them with the 16692 * DTrace framework. 16693 */ 16694 if (help->dthps_nprovs > 0) { 16695 newhelp->dthps_nprovs = help->dthps_nprovs; 16696 newhelp->dthps_maxprovs = help->dthps_nprovs; 16697 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16698 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16699 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16700 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16701 newhelp->dthps_provs[i]->dthp_ref++; 16702 } 16703 16704 hasprovs = 1; 16705 } 16706 16707 mutex_exit(&dtrace_lock); 16708 16709 if (hasprovs) 16710 dtrace_helper_provider_register(to, newhelp, NULL); 16711 } 16712 16713 /* 16714 * DTrace Hook Functions 16715 */ 16716 static void 16717 dtrace_module_loaded(modctl_t *ctl) 16718 { 16719 dtrace_provider_t *prv; 16720 16721 mutex_enter(&dtrace_provider_lock); 16722 #ifdef illumos 16723 mutex_enter(&mod_lock); 16724 #endif 16725 16726 #ifdef illumos 16727 ASSERT(ctl->mod_busy); 16728 #endif 16729 16730 /* 16731 * We're going to call each providers per-module provide operation 16732 * specifying only this module. 16733 */ 16734 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16735 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16736 16737 #ifdef illumos 16738 mutex_exit(&mod_lock); 16739 #endif 16740 mutex_exit(&dtrace_provider_lock); 16741 16742 /* 16743 * If we have any retained enablings, we need to match against them. 16744 * Enabling probes requires that cpu_lock be held, and we cannot hold 16745 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16746 * module. (In particular, this happens when loading scheduling 16747 * classes.) So if we have any retained enablings, we need to dispatch 16748 * our task queue to do the match for us. 16749 */ 16750 mutex_enter(&dtrace_lock); 16751 16752 if (dtrace_retained == NULL) { 16753 mutex_exit(&dtrace_lock); 16754 return; 16755 } 16756 16757 (void)taskq_dispatch(dtrace_taskq, 16758 (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP); 16759 16760 mutex_exit(&dtrace_lock); 16761 16762 /* 16763 * And now, for a little heuristic sleaze: in general, we want to 16764 * match modules as soon as they load. However, we cannot guarantee 16765 * this, because it would lead us to the lock ordering violation 16766 * outlined above. The common case, of course, is that cpu_lock is 16767 * _not_ held -- so we delay here for a clock tick, hoping that that's 16768 * long enough for the task queue to do its work. If it's not, it's 16769 * not a serious problem -- it just means that the module that we 16770 * just loaded may not be immediately instrumentable. 16771 */ 16772 delay(1); 16773 } 16774 16775 static void 16776 #ifdef illumos 16777 dtrace_module_unloaded(modctl_t *ctl) 16778 #else 16779 dtrace_module_unloaded(modctl_t *ctl, int *error) 16780 #endif 16781 { 16782 dtrace_probe_t template, *probe, *first, *next; 16783 dtrace_provider_t *prov; 16784 #ifndef illumos 16785 char modname[DTRACE_MODNAMELEN]; 16786 size_t len; 16787 #endif 16788 16789 #ifdef illumos 16790 template.dtpr_mod = ctl->mod_modname; 16791 #else 16792 /* Handle the fact that ctl->filename may end in ".ko". */ 16793 strlcpy(modname, ctl->filename, sizeof(modname)); 16794 len = strlen(ctl->filename); 16795 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16796 modname[len - 3] = '\0'; 16797 template.dtpr_mod = modname; 16798 #endif 16799 16800 mutex_enter(&dtrace_provider_lock); 16801 #ifdef illumos 16802 mutex_enter(&mod_lock); 16803 #endif 16804 mutex_enter(&dtrace_lock); 16805 16806 #ifndef illumos 16807 if (ctl->nenabled > 0) { 16808 /* Don't allow unloads if a probe is enabled. */ 16809 mutex_exit(&dtrace_provider_lock); 16810 mutex_exit(&dtrace_lock); 16811 *error = -1; 16812 printf( 16813 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16814 return; 16815 } 16816 #endif 16817 16818 if (dtrace_bymod == NULL) { 16819 /* 16820 * The DTrace module is loaded (obviously) but not attached; 16821 * we don't have any work to do. 16822 */ 16823 mutex_exit(&dtrace_provider_lock); 16824 #ifdef illumos 16825 mutex_exit(&mod_lock); 16826 #endif 16827 mutex_exit(&dtrace_lock); 16828 return; 16829 } 16830 16831 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16832 probe != NULL; probe = probe->dtpr_nextmod) { 16833 if (probe->dtpr_ecb != NULL) { 16834 mutex_exit(&dtrace_provider_lock); 16835 #ifdef illumos 16836 mutex_exit(&mod_lock); 16837 #endif 16838 mutex_exit(&dtrace_lock); 16839 16840 /* 16841 * This shouldn't _actually_ be possible -- we're 16842 * unloading a module that has an enabled probe in it. 16843 * (It's normally up to the provider to make sure that 16844 * this can't happen.) However, because dtps_enable() 16845 * doesn't have a failure mode, there can be an 16846 * enable/unload race. Upshot: we don't want to 16847 * assert, but we're not going to disable the 16848 * probe, either. 16849 */ 16850 if (dtrace_err_verbose) { 16851 #ifdef illumos 16852 cmn_err(CE_WARN, "unloaded module '%s' had " 16853 "enabled probes", ctl->mod_modname); 16854 #else 16855 cmn_err(CE_WARN, "unloaded module '%s' had " 16856 "enabled probes", modname); 16857 #endif 16858 } 16859 16860 return; 16861 } 16862 } 16863 16864 probe = first; 16865 16866 for (first = NULL; probe != NULL; probe = next) { 16867 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16868 16869 dtrace_probes[probe->dtpr_id - 1] = NULL; 16870 16871 next = probe->dtpr_nextmod; 16872 dtrace_hash_remove(dtrace_bymod, probe); 16873 dtrace_hash_remove(dtrace_byfunc, probe); 16874 dtrace_hash_remove(dtrace_byname, probe); 16875 16876 if (first == NULL) { 16877 first = probe; 16878 probe->dtpr_nextmod = NULL; 16879 } else { 16880 probe->dtpr_nextmod = first; 16881 first = probe; 16882 } 16883 } 16884 16885 /* 16886 * We've removed all of the module's probes from the hash chains and 16887 * from the probe array. Now issue a dtrace_sync() to be sure that 16888 * everyone has cleared out from any probe array processing. 16889 */ 16890 dtrace_sync(); 16891 16892 for (probe = first; probe != NULL; probe = first) { 16893 first = probe->dtpr_nextmod; 16894 prov = probe->dtpr_provider; 16895 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16896 probe->dtpr_arg); 16897 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16898 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16899 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16900 #ifdef illumos 16901 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16902 #else 16903 free_unr(dtrace_arena, probe->dtpr_id); 16904 #endif 16905 kmem_free(probe, sizeof (dtrace_probe_t)); 16906 } 16907 16908 mutex_exit(&dtrace_lock); 16909 #ifdef illumos 16910 mutex_exit(&mod_lock); 16911 #endif 16912 mutex_exit(&dtrace_provider_lock); 16913 } 16914 16915 #ifndef illumos 16916 static void 16917 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16918 { 16919 16920 dtrace_module_loaded(lf); 16921 } 16922 16923 static void 16924 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16925 { 16926 16927 if (*error != 0) 16928 /* We already have an error, so don't do anything. */ 16929 return; 16930 dtrace_module_unloaded(lf, error); 16931 } 16932 #endif 16933 16934 #ifdef illumos 16935 static void 16936 dtrace_suspend(void) 16937 { 16938 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16939 } 16940 16941 static void 16942 dtrace_resume(void) 16943 { 16944 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16945 } 16946 #endif 16947 16948 static int 16949 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16950 { 16951 ASSERT(MUTEX_HELD(&cpu_lock)); 16952 mutex_enter(&dtrace_lock); 16953 16954 switch (what) { 16955 case CPU_CONFIG: { 16956 dtrace_state_t *state; 16957 dtrace_optval_t *opt, rs, c; 16958 16959 /* 16960 * For now, we only allocate a new buffer for anonymous state. 16961 */ 16962 if ((state = dtrace_anon.dta_state) == NULL) 16963 break; 16964 16965 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16966 break; 16967 16968 opt = state->dts_options; 16969 c = opt[DTRACEOPT_CPU]; 16970 16971 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16972 break; 16973 16974 /* 16975 * Regardless of what the actual policy is, we're going to 16976 * temporarily set our resize policy to be manual. We're 16977 * also going to temporarily set our CPU option to denote 16978 * the newly configured CPU. 16979 */ 16980 rs = opt[DTRACEOPT_BUFRESIZE]; 16981 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16982 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16983 16984 (void) dtrace_state_buffers(state); 16985 16986 opt[DTRACEOPT_BUFRESIZE] = rs; 16987 opt[DTRACEOPT_CPU] = c; 16988 16989 break; 16990 } 16991 16992 case CPU_UNCONFIG: 16993 /* 16994 * We don't free the buffer in the CPU_UNCONFIG case. (The 16995 * buffer will be freed when the consumer exits.) 16996 */ 16997 break; 16998 16999 default: 17000 break; 17001 } 17002 17003 mutex_exit(&dtrace_lock); 17004 return (0); 17005 } 17006 17007 #ifdef illumos 17008 static void 17009 dtrace_cpu_setup_initial(processorid_t cpu) 17010 { 17011 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 17012 } 17013 #endif 17014 17015 static void 17016 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 17017 { 17018 if (dtrace_toxranges >= dtrace_toxranges_max) { 17019 int osize, nsize; 17020 dtrace_toxrange_t *range; 17021 17022 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17023 17024 if (osize == 0) { 17025 ASSERT(dtrace_toxrange == NULL); 17026 ASSERT(dtrace_toxranges_max == 0); 17027 dtrace_toxranges_max = 1; 17028 } else { 17029 dtrace_toxranges_max <<= 1; 17030 } 17031 17032 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17033 range = kmem_zalloc(nsize, KM_SLEEP); 17034 17035 if (dtrace_toxrange != NULL) { 17036 ASSERT(osize != 0); 17037 bcopy(dtrace_toxrange, range, osize); 17038 kmem_free(dtrace_toxrange, osize); 17039 } 17040 17041 dtrace_toxrange = range; 17042 } 17043 17044 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17045 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17046 17047 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17048 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17049 dtrace_toxranges++; 17050 } 17051 17052 static void 17053 dtrace_getf_barrier(void) 17054 { 17055 #ifdef illumos 17056 /* 17057 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17058 * that contain calls to getf(), this routine will be called on every 17059 * closef() before either the underlying vnode is released or the 17060 * file_t itself is freed. By the time we are here, it is essential 17061 * that the file_t can no longer be accessed from a call to getf() 17062 * in probe context -- that assures that a dtrace_sync() can be used 17063 * to clear out any enablings referring to the old structures. 17064 */ 17065 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17066 kcred->cr_zone->zone_dtrace_getf != 0) 17067 dtrace_sync(); 17068 #endif 17069 } 17070 17071 /* 17072 * DTrace Driver Cookbook Functions 17073 */ 17074 #ifdef illumos 17075 /*ARGSUSED*/ 17076 static int 17077 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17078 { 17079 dtrace_provider_id_t id; 17080 dtrace_state_t *state = NULL; 17081 dtrace_enabling_t *enab; 17082 17083 mutex_enter(&cpu_lock); 17084 mutex_enter(&dtrace_provider_lock); 17085 mutex_enter(&dtrace_lock); 17086 17087 if (ddi_soft_state_init(&dtrace_softstate, 17088 sizeof (dtrace_state_t), 0) != 0) { 17089 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17090 mutex_exit(&cpu_lock); 17091 mutex_exit(&dtrace_provider_lock); 17092 mutex_exit(&dtrace_lock); 17093 return (DDI_FAILURE); 17094 } 17095 17096 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17097 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17098 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17099 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17100 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17101 ddi_remove_minor_node(devi, NULL); 17102 ddi_soft_state_fini(&dtrace_softstate); 17103 mutex_exit(&cpu_lock); 17104 mutex_exit(&dtrace_provider_lock); 17105 mutex_exit(&dtrace_lock); 17106 return (DDI_FAILURE); 17107 } 17108 17109 ddi_report_dev(devi); 17110 dtrace_devi = devi; 17111 17112 dtrace_modload = dtrace_module_loaded; 17113 dtrace_modunload = dtrace_module_unloaded; 17114 dtrace_cpu_init = dtrace_cpu_setup_initial; 17115 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17116 dtrace_helpers_fork = dtrace_helpers_duplicate; 17117 dtrace_cpustart_init = dtrace_suspend; 17118 dtrace_cpustart_fini = dtrace_resume; 17119 dtrace_debugger_init = dtrace_suspend; 17120 dtrace_debugger_fini = dtrace_resume; 17121 17122 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17123 17124 ASSERT(MUTEX_HELD(&cpu_lock)); 17125 17126 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17127 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17128 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17129 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17130 VM_SLEEP | VMC_IDENTIFIER); 17131 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17132 1, INT_MAX, 0); 17133 17134 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17135 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17136 NULL, NULL, NULL, NULL, NULL, 0); 17137 17138 ASSERT(MUTEX_HELD(&cpu_lock)); 17139 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17140 offsetof(dtrace_probe_t, dtpr_nextmod), 17141 offsetof(dtrace_probe_t, dtpr_prevmod)); 17142 17143 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17144 offsetof(dtrace_probe_t, dtpr_nextfunc), 17145 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17146 17147 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17148 offsetof(dtrace_probe_t, dtpr_nextname), 17149 offsetof(dtrace_probe_t, dtpr_prevname)); 17150 17151 if (dtrace_retain_max < 1) { 17152 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17153 "setting to 1", dtrace_retain_max); 17154 dtrace_retain_max = 1; 17155 } 17156 17157 /* 17158 * Now discover our toxic ranges. 17159 */ 17160 dtrace_toxic_ranges(dtrace_toxrange_add); 17161 17162 /* 17163 * Before we register ourselves as a provider to our own framework, 17164 * we would like to assert that dtrace_provider is NULL -- but that's 17165 * not true if we were loaded as a dependency of a DTrace provider. 17166 * Once we've registered, we can assert that dtrace_provider is our 17167 * pseudo provider. 17168 */ 17169 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17170 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17171 17172 ASSERT(dtrace_provider != NULL); 17173 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17174 17175 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17176 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17177 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17178 dtrace_provider, NULL, NULL, "END", 0, NULL); 17179 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17180 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17181 17182 dtrace_anon_property(); 17183 mutex_exit(&cpu_lock); 17184 17185 /* 17186 * If there are already providers, we must ask them to provide their 17187 * probes, and then match any anonymous enabling against them. Note 17188 * that there should be no other retained enablings at this time: 17189 * the only retained enablings at this time should be the anonymous 17190 * enabling. 17191 */ 17192 if (dtrace_anon.dta_enabling != NULL) { 17193 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17194 17195 dtrace_enabling_provide(NULL); 17196 state = dtrace_anon.dta_state; 17197 17198 /* 17199 * We couldn't hold cpu_lock across the above call to 17200 * dtrace_enabling_provide(), but we must hold it to actually 17201 * enable the probes. We have to drop all of our locks, pick 17202 * up cpu_lock, and regain our locks before matching the 17203 * retained anonymous enabling. 17204 */ 17205 mutex_exit(&dtrace_lock); 17206 mutex_exit(&dtrace_provider_lock); 17207 17208 mutex_enter(&cpu_lock); 17209 mutex_enter(&dtrace_provider_lock); 17210 mutex_enter(&dtrace_lock); 17211 17212 if ((enab = dtrace_anon.dta_enabling) != NULL) 17213 (void) dtrace_enabling_match(enab, NULL); 17214 17215 mutex_exit(&cpu_lock); 17216 } 17217 17218 mutex_exit(&dtrace_lock); 17219 mutex_exit(&dtrace_provider_lock); 17220 17221 if (state != NULL) { 17222 /* 17223 * If we created any anonymous state, set it going now. 17224 */ 17225 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17226 } 17227 17228 return (DDI_SUCCESS); 17229 } 17230 #endif /* illumos */ 17231 17232 #ifndef illumos 17233 static void dtrace_dtr(void *); 17234 #endif 17235 17236 /*ARGSUSED*/ 17237 static int 17238 #ifdef illumos 17239 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17240 #else 17241 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17242 #endif 17243 { 17244 dtrace_state_t *state; 17245 uint32_t priv; 17246 uid_t uid; 17247 zoneid_t zoneid; 17248 17249 #ifdef illumos 17250 if (getminor(*devp) == DTRACEMNRN_HELPER) 17251 return (0); 17252 17253 /* 17254 * If this wasn't an open with the "helper" minor, then it must be 17255 * the "dtrace" minor. 17256 */ 17257 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17258 return (ENXIO); 17259 #else 17260 cred_t *cred_p = NULL; 17261 cred_p = dev->si_cred; 17262 17263 /* 17264 * If no DTRACE_PRIV_* bits are set in the credential, then the 17265 * caller lacks sufficient permission to do anything with DTrace. 17266 */ 17267 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17268 if (priv == DTRACE_PRIV_NONE) { 17269 #endif 17270 17271 return (EACCES); 17272 } 17273 17274 /* 17275 * Ask all providers to provide all their probes. 17276 */ 17277 mutex_enter(&dtrace_provider_lock); 17278 dtrace_probe_provide(NULL, NULL); 17279 mutex_exit(&dtrace_provider_lock); 17280 17281 mutex_enter(&cpu_lock); 17282 mutex_enter(&dtrace_lock); 17283 dtrace_opens++; 17284 dtrace_membar_producer(); 17285 17286 #ifdef illumos 17287 /* 17288 * If the kernel debugger is active (that is, if the kernel debugger 17289 * modified text in some way), we won't allow the open. 17290 */ 17291 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17292 dtrace_opens--; 17293 mutex_exit(&cpu_lock); 17294 mutex_exit(&dtrace_lock); 17295 return (EBUSY); 17296 } 17297 17298 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17299 /* 17300 * If DTrace helper tracing is enabled, we need to allocate the 17301 * trace buffer and initialize the values. 17302 */ 17303 dtrace_helptrace_buffer = 17304 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17305 dtrace_helptrace_next = 0; 17306 dtrace_helptrace_wrapped = 0; 17307 dtrace_helptrace_enable = 0; 17308 } 17309 17310 state = dtrace_state_create(devp, cred_p); 17311 #else 17312 state = dtrace_state_create(dev, NULL); 17313 devfs_set_cdevpriv(state, dtrace_dtr); 17314 #endif 17315 17316 mutex_exit(&cpu_lock); 17317 17318 if (state == NULL) { 17319 #ifdef illumos 17320 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17321 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17322 #else 17323 --dtrace_opens; 17324 #endif 17325 mutex_exit(&dtrace_lock); 17326 return (EAGAIN); 17327 } 17328 17329 mutex_exit(&dtrace_lock); 17330 17331 return (0); 17332 } 17333 17334 /*ARGSUSED*/ 17335 #ifdef illumos 17336 static int 17337 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17338 #else 17339 static void 17340 dtrace_dtr(void *data) 17341 #endif 17342 { 17343 #ifdef illumos 17344 minor_t minor = getminor(dev); 17345 dtrace_state_t *state; 17346 #endif 17347 dtrace_helptrace_t *buf = NULL; 17348 17349 #ifdef illumos 17350 if (minor == DTRACEMNRN_HELPER) 17351 return (0); 17352 17353 state = ddi_get_soft_state(dtrace_softstate, minor); 17354 #else 17355 dtrace_state_t *state = data; 17356 #endif 17357 17358 mutex_enter(&cpu_lock); 17359 mutex_enter(&dtrace_lock); 17360 17361 #ifdef illumos 17362 if (state->dts_anon) 17363 #else 17364 if (state != NULL && state->dts_anon) 17365 #endif 17366 { 17367 /* 17368 * There is anonymous state. Destroy that first. 17369 */ 17370 ASSERT(dtrace_anon.dta_state == NULL); 17371 dtrace_state_destroy(state->dts_anon); 17372 } 17373 17374 if (dtrace_helptrace_disable) { 17375 /* 17376 * If we have been told to disable helper tracing, set the 17377 * buffer to NULL before calling into dtrace_state_destroy(); 17378 * we take advantage of its dtrace_sync() to know that no 17379 * CPU is in probe context with enabled helper tracing 17380 * after it returns. 17381 */ 17382 buf = dtrace_helptrace_buffer; 17383 dtrace_helptrace_buffer = NULL; 17384 } 17385 17386 #ifdef illumos 17387 dtrace_state_destroy(state); 17388 #else 17389 if (state != NULL) { 17390 dtrace_state_destroy(state); 17391 kmem_free(state, 0); 17392 } 17393 #endif 17394 ASSERT(dtrace_opens > 0); 17395 17396 #ifdef illumos 17397 /* 17398 * Only relinquish control of the kernel debugger interface when there 17399 * are no consumers and no anonymous enablings. 17400 */ 17401 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17402 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17403 #else 17404 --dtrace_opens; 17405 #endif 17406 17407 if (buf != NULL) { 17408 kmem_free(buf, dtrace_helptrace_bufsize); 17409 dtrace_helptrace_disable = 0; 17410 } 17411 17412 mutex_exit(&dtrace_lock); 17413 mutex_exit(&cpu_lock); 17414 17415 #ifdef illumos 17416 return (0); 17417 #endif 17418 } 17419 17420 #ifdef illumos 17421 /*ARGSUSED*/ 17422 static int 17423 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17424 { 17425 int rval; 17426 dof_helper_t help, *dhp = NULL; 17427 17428 switch (cmd) { 17429 case DTRACEHIOC_ADDDOF: 17430 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17431 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17432 return (EFAULT); 17433 } 17434 17435 dhp = &help; 17436 arg = (intptr_t)help.dofhp_dof; 17437 /*FALLTHROUGH*/ 17438 17439 case DTRACEHIOC_ADD: { 17440 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17441 17442 if (dof == NULL) 17443 return (rval); 17444 17445 mutex_enter(&dtrace_lock); 17446 17447 /* 17448 * dtrace_helper_slurp() takes responsibility for the dof -- 17449 * it may free it now or it may save it and free it later. 17450 */ 17451 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17452 *rv = rval; 17453 rval = 0; 17454 } else { 17455 rval = EINVAL; 17456 } 17457 17458 mutex_exit(&dtrace_lock); 17459 return (rval); 17460 } 17461 17462 case DTRACEHIOC_REMOVE: { 17463 mutex_enter(&dtrace_lock); 17464 rval = dtrace_helper_destroygen(NULL, arg); 17465 mutex_exit(&dtrace_lock); 17466 17467 return (rval); 17468 } 17469 17470 default: 17471 break; 17472 } 17473 17474 return (ENOTTY); 17475 } 17476 17477 /*ARGSUSED*/ 17478 static int 17479 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17480 { 17481 minor_t minor = getminor(dev); 17482 dtrace_state_t *state; 17483 int rval; 17484 17485 if (minor == DTRACEMNRN_HELPER) 17486 return (dtrace_ioctl_helper(cmd, arg, rv)); 17487 17488 state = ddi_get_soft_state(dtrace_softstate, minor); 17489 17490 if (state->dts_anon) { 17491 ASSERT(dtrace_anon.dta_state == NULL); 17492 state = state->dts_anon; 17493 } 17494 17495 switch (cmd) { 17496 case DTRACEIOC_PROVIDER: { 17497 dtrace_providerdesc_t pvd; 17498 dtrace_provider_t *pvp; 17499 17500 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17501 return (EFAULT); 17502 17503 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17504 mutex_enter(&dtrace_provider_lock); 17505 17506 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17507 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17508 break; 17509 } 17510 17511 mutex_exit(&dtrace_provider_lock); 17512 17513 if (pvp == NULL) 17514 return (ESRCH); 17515 17516 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17517 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17518 17519 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17520 return (EFAULT); 17521 17522 return (0); 17523 } 17524 17525 case DTRACEIOC_EPROBE: { 17526 dtrace_eprobedesc_t epdesc; 17527 dtrace_ecb_t *ecb; 17528 dtrace_action_t *act; 17529 void *buf; 17530 size_t size; 17531 uintptr_t dest; 17532 int nrecs; 17533 17534 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17535 return (EFAULT); 17536 17537 mutex_enter(&dtrace_lock); 17538 17539 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17540 mutex_exit(&dtrace_lock); 17541 return (EINVAL); 17542 } 17543 17544 if (ecb->dte_probe == NULL) { 17545 mutex_exit(&dtrace_lock); 17546 return (EINVAL); 17547 } 17548 17549 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17550 epdesc.dtepd_uarg = ecb->dte_uarg; 17551 epdesc.dtepd_size = ecb->dte_size; 17552 17553 nrecs = epdesc.dtepd_nrecs; 17554 epdesc.dtepd_nrecs = 0; 17555 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17556 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17557 continue; 17558 17559 epdesc.dtepd_nrecs++; 17560 } 17561 17562 /* 17563 * Now that we have the size, we need to allocate a temporary 17564 * buffer in which to store the complete description. We need 17565 * the temporary buffer to be able to drop dtrace_lock() 17566 * across the copyout(), below. 17567 */ 17568 size = sizeof (dtrace_eprobedesc_t) + 17569 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17570 17571 buf = kmem_alloc(size, KM_SLEEP); 17572 dest = (uintptr_t)buf; 17573 17574 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17575 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17576 17577 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17578 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17579 continue; 17580 17581 if (nrecs-- == 0) 17582 break; 17583 17584 bcopy(&act->dta_rec, (void *)dest, 17585 sizeof (dtrace_recdesc_t)); 17586 dest += sizeof (dtrace_recdesc_t); 17587 } 17588 17589 mutex_exit(&dtrace_lock); 17590 17591 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17592 kmem_free(buf, size); 17593 return (EFAULT); 17594 } 17595 17596 kmem_free(buf, size); 17597 return (0); 17598 } 17599 17600 case DTRACEIOC_AGGDESC: { 17601 dtrace_aggdesc_t aggdesc; 17602 dtrace_action_t *act; 17603 dtrace_aggregation_t *agg; 17604 int nrecs; 17605 uint32_t offs; 17606 dtrace_recdesc_t *lrec; 17607 void *buf; 17608 size_t size; 17609 uintptr_t dest; 17610 17611 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17612 return (EFAULT); 17613 17614 mutex_enter(&dtrace_lock); 17615 17616 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17617 mutex_exit(&dtrace_lock); 17618 return (EINVAL); 17619 } 17620 17621 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17622 17623 nrecs = aggdesc.dtagd_nrecs; 17624 aggdesc.dtagd_nrecs = 0; 17625 17626 offs = agg->dtag_base; 17627 lrec = &agg->dtag_action.dta_rec; 17628 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17629 17630 for (act = agg->dtag_first; ; act = act->dta_next) { 17631 ASSERT(act->dta_intuple || 17632 DTRACEACT_ISAGG(act->dta_kind)); 17633 17634 /* 17635 * If this action has a record size of zero, it 17636 * denotes an argument to the aggregating action. 17637 * Because the presence of this record doesn't (or 17638 * shouldn't) affect the way the data is interpreted, 17639 * we don't copy it out to save user-level the 17640 * confusion of dealing with a zero-length record. 17641 */ 17642 if (act->dta_rec.dtrd_size == 0) { 17643 ASSERT(agg->dtag_hasarg); 17644 continue; 17645 } 17646 17647 aggdesc.dtagd_nrecs++; 17648 17649 if (act == &agg->dtag_action) 17650 break; 17651 } 17652 17653 /* 17654 * Now that we have the size, we need to allocate a temporary 17655 * buffer in which to store the complete description. We need 17656 * the temporary buffer to be able to drop dtrace_lock() 17657 * across the copyout(), below. 17658 */ 17659 size = sizeof (dtrace_aggdesc_t) + 17660 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17661 17662 buf = kmem_alloc(size, KM_SLEEP); 17663 dest = (uintptr_t)buf; 17664 17665 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17666 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17667 17668 for (act = agg->dtag_first; ; act = act->dta_next) { 17669 dtrace_recdesc_t rec = act->dta_rec; 17670 17671 /* 17672 * See the comment in the above loop for why we pass 17673 * over zero-length records. 17674 */ 17675 if (rec.dtrd_size == 0) { 17676 ASSERT(agg->dtag_hasarg); 17677 continue; 17678 } 17679 17680 if (nrecs-- == 0) 17681 break; 17682 17683 rec.dtrd_offset -= offs; 17684 bcopy(&rec, (void *)dest, sizeof (rec)); 17685 dest += sizeof (dtrace_recdesc_t); 17686 17687 if (act == &agg->dtag_action) 17688 break; 17689 } 17690 17691 mutex_exit(&dtrace_lock); 17692 17693 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17694 kmem_free(buf, size); 17695 return (EFAULT); 17696 } 17697 17698 kmem_free(buf, size); 17699 return (0); 17700 } 17701 17702 case DTRACEIOC_ENABLE: { 17703 dof_hdr_t *dof; 17704 dtrace_enabling_t *enab = NULL; 17705 dtrace_vstate_t *vstate; 17706 int err = 0; 17707 17708 *rv = 0; 17709 17710 /* 17711 * If a NULL argument has been passed, we take this as our 17712 * cue to reevaluate our enablings. 17713 */ 17714 if (arg == NULL) { 17715 dtrace_enabling_matchall(); 17716 17717 return (0); 17718 } 17719 17720 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17721 return (rval); 17722 17723 mutex_enter(&cpu_lock); 17724 mutex_enter(&dtrace_lock); 17725 vstate = &state->dts_vstate; 17726 17727 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17728 mutex_exit(&dtrace_lock); 17729 mutex_exit(&cpu_lock); 17730 dtrace_dof_destroy(dof); 17731 return (EBUSY); 17732 } 17733 17734 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17735 mutex_exit(&dtrace_lock); 17736 mutex_exit(&cpu_lock); 17737 dtrace_dof_destroy(dof); 17738 return (EINVAL); 17739 } 17740 17741 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17742 dtrace_enabling_destroy(enab); 17743 mutex_exit(&dtrace_lock); 17744 mutex_exit(&cpu_lock); 17745 dtrace_dof_destroy(dof); 17746 return (rval); 17747 } 17748 17749 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17750 err = dtrace_enabling_retain(enab); 17751 } else { 17752 dtrace_enabling_destroy(enab); 17753 } 17754 17755 mutex_exit(&cpu_lock); 17756 mutex_exit(&dtrace_lock); 17757 dtrace_dof_destroy(dof); 17758 17759 return (err); 17760 } 17761 17762 case DTRACEIOC_REPLICATE: { 17763 dtrace_repldesc_t desc; 17764 dtrace_probedesc_t *match = &desc.dtrpd_match; 17765 dtrace_probedesc_t *create = &desc.dtrpd_create; 17766 int err; 17767 17768 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17769 return (EFAULT); 17770 17771 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17772 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17773 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17774 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17775 17776 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17777 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17778 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17779 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17780 17781 mutex_enter(&dtrace_lock); 17782 err = dtrace_enabling_replicate(state, match, create); 17783 mutex_exit(&dtrace_lock); 17784 17785 return (err); 17786 } 17787 17788 case DTRACEIOC_PROBEMATCH: 17789 case DTRACEIOC_PROBES: { 17790 dtrace_probe_t *probe = NULL; 17791 dtrace_probedesc_t desc; 17792 dtrace_probekey_t pkey; 17793 dtrace_id_t i; 17794 int m = 0; 17795 uint32_t priv; 17796 uid_t uid; 17797 zoneid_t zoneid; 17798 17799 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17800 return (EFAULT); 17801 17802 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17803 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17804 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17805 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17806 17807 /* 17808 * Before we attempt to match this probe, we want to give 17809 * all providers the opportunity to provide it. 17810 */ 17811 if (desc.dtpd_id == DTRACE_IDNONE) { 17812 mutex_enter(&dtrace_provider_lock); 17813 dtrace_probe_provide(&desc, NULL); 17814 mutex_exit(&dtrace_provider_lock); 17815 desc.dtpd_id++; 17816 } 17817 17818 if (cmd == DTRACEIOC_PROBEMATCH) { 17819 dtrace_probekey(&desc, &pkey); 17820 pkey.dtpk_id = DTRACE_IDNONE; 17821 } 17822 17823 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17824 17825 mutex_enter(&dtrace_lock); 17826 17827 if (cmd == DTRACEIOC_PROBEMATCH) { 17828 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17829 if ((probe = dtrace_probes[i - 1]) != NULL && 17830 (m = dtrace_match_probe(probe, &pkey, 17831 priv, uid, zoneid)) != 0) 17832 break; 17833 } 17834 17835 if (m < 0) { 17836 mutex_exit(&dtrace_lock); 17837 return (EINVAL); 17838 } 17839 17840 } else { 17841 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17842 if ((probe = dtrace_probes[i - 1]) != NULL && 17843 dtrace_match_priv(probe, priv, uid, zoneid)) 17844 break; 17845 } 17846 } 17847 17848 if (probe == NULL) { 17849 mutex_exit(&dtrace_lock); 17850 return (ESRCH); 17851 } 17852 17853 dtrace_probe_description(probe, &desc); 17854 mutex_exit(&dtrace_lock); 17855 17856 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17857 return (EFAULT); 17858 17859 return (0); 17860 } 17861 17862 case DTRACEIOC_PROBEARG: { 17863 dtrace_argdesc_t desc; 17864 dtrace_probe_t *probe; 17865 dtrace_provider_t *prov; 17866 17867 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17868 return (EFAULT); 17869 17870 if (desc.dtargd_id == DTRACE_IDNONE) 17871 return (EINVAL); 17872 17873 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17874 return (EINVAL); 17875 17876 mutex_enter(&dtrace_provider_lock); 17877 mutex_enter(&mod_lock); 17878 mutex_enter(&dtrace_lock); 17879 17880 if (desc.dtargd_id > dtrace_nprobes) { 17881 mutex_exit(&dtrace_lock); 17882 mutex_exit(&mod_lock); 17883 mutex_exit(&dtrace_provider_lock); 17884 return (EINVAL); 17885 } 17886 17887 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17888 mutex_exit(&dtrace_lock); 17889 mutex_exit(&mod_lock); 17890 mutex_exit(&dtrace_provider_lock); 17891 return (EINVAL); 17892 } 17893 17894 mutex_exit(&dtrace_lock); 17895 17896 prov = probe->dtpr_provider; 17897 17898 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17899 /* 17900 * There isn't any typed information for this probe. 17901 * Set the argument number to DTRACE_ARGNONE. 17902 */ 17903 desc.dtargd_ndx = DTRACE_ARGNONE; 17904 } else { 17905 desc.dtargd_native[0] = '\0'; 17906 desc.dtargd_xlate[0] = '\0'; 17907 desc.dtargd_mapping = desc.dtargd_ndx; 17908 17909 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17910 probe->dtpr_id, probe->dtpr_arg, &desc); 17911 } 17912 17913 mutex_exit(&mod_lock); 17914 mutex_exit(&dtrace_provider_lock); 17915 17916 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17917 return (EFAULT); 17918 17919 return (0); 17920 } 17921 17922 case DTRACEIOC_GO: { 17923 processorid_t cpuid; 17924 rval = dtrace_state_go(state, &cpuid); 17925 17926 if (rval != 0) 17927 return (rval); 17928 17929 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17930 return (EFAULT); 17931 17932 return (0); 17933 } 17934 17935 case DTRACEIOC_STOP: { 17936 processorid_t cpuid; 17937 17938 mutex_enter(&dtrace_lock); 17939 rval = dtrace_state_stop(state, &cpuid); 17940 mutex_exit(&dtrace_lock); 17941 17942 if (rval != 0) 17943 return (rval); 17944 17945 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17946 return (EFAULT); 17947 17948 return (0); 17949 } 17950 17951 case DTRACEIOC_DOFGET: { 17952 dof_hdr_t hdr, *dof; 17953 uint64_t len; 17954 17955 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17956 return (EFAULT); 17957 17958 mutex_enter(&dtrace_lock); 17959 dof = dtrace_dof_create(state); 17960 mutex_exit(&dtrace_lock); 17961 17962 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17963 rval = copyout(dof, (void *)arg, len); 17964 dtrace_dof_destroy(dof); 17965 17966 return (rval == 0 ? 0 : EFAULT); 17967 } 17968 17969 case DTRACEIOC_AGGSNAP: 17970 case DTRACEIOC_BUFSNAP: { 17971 dtrace_bufdesc_t desc; 17972 caddr_t cached; 17973 dtrace_buffer_t *buf; 17974 17975 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17976 return (EFAULT); 17977 17978 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17979 return (EINVAL); 17980 17981 mutex_enter(&dtrace_lock); 17982 17983 if (cmd == DTRACEIOC_BUFSNAP) { 17984 buf = &state->dts_buffer[desc.dtbd_cpu]; 17985 } else { 17986 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17987 } 17988 17989 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17990 size_t sz = buf->dtb_offset; 17991 17992 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17993 mutex_exit(&dtrace_lock); 17994 return (EBUSY); 17995 } 17996 17997 /* 17998 * If this buffer has already been consumed, we're 17999 * going to indicate that there's nothing left here 18000 * to consume. 18001 */ 18002 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 18003 mutex_exit(&dtrace_lock); 18004 18005 desc.dtbd_size = 0; 18006 desc.dtbd_drops = 0; 18007 desc.dtbd_errors = 0; 18008 desc.dtbd_oldest = 0; 18009 sz = sizeof (desc); 18010 18011 if (copyout(&desc, (void *)arg, sz) != 0) 18012 return (EFAULT); 18013 18014 return (0); 18015 } 18016 18017 /* 18018 * If this is a ring buffer that has wrapped, we want 18019 * to copy the whole thing out. 18020 */ 18021 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 18022 dtrace_buffer_polish(buf); 18023 sz = buf->dtb_size; 18024 } 18025 18026 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 18027 mutex_exit(&dtrace_lock); 18028 return (EFAULT); 18029 } 18030 18031 desc.dtbd_size = sz; 18032 desc.dtbd_drops = buf->dtb_drops; 18033 desc.dtbd_errors = buf->dtb_errors; 18034 desc.dtbd_oldest = buf->dtb_xamot_offset; 18035 desc.dtbd_timestamp = dtrace_gethrtime(); 18036 18037 mutex_exit(&dtrace_lock); 18038 18039 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18040 return (EFAULT); 18041 18042 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18043 18044 return (0); 18045 } 18046 18047 if (buf->dtb_tomax == NULL) { 18048 ASSERT(buf->dtb_xamot == NULL); 18049 mutex_exit(&dtrace_lock); 18050 return (ENOENT); 18051 } 18052 18053 cached = buf->dtb_tomax; 18054 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18055 18056 dtrace_xcall(desc.dtbd_cpu, 18057 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18058 18059 state->dts_errors += buf->dtb_xamot_errors; 18060 18061 /* 18062 * If the buffers did not actually switch, then the cross call 18063 * did not take place -- presumably because the given CPU is 18064 * not in the ready set. If this is the case, we'll return 18065 * ENOENT. 18066 */ 18067 if (buf->dtb_tomax == cached) { 18068 ASSERT(buf->dtb_xamot != cached); 18069 mutex_exit(&dtrace_lock); 18070 return (ENOENT); 18071 } 18072 18073 ASSERT(cached == buf->dtb_xamot); 18074 18075 /* 18076 * We have our snapshot; now copy it out. 18077 */ 18078 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18079 buf->dtb_xamot_offset) != 0) { 18080 mutex_exit(&dtrace_lock); 18081 return (EFAULT); 18082 } 18083 18084 desc.dtbd_size = buf->dtb_xamot_offset; 18085 desc.dtbd_drops = buf->dtb_xamot_drops; 18086 desc.dtbd_errors = buf->dtb_xamot_errors; 18087 desc.dtbd_oldest = 0; 18088 desc.dtbd_timestamp = buf->dtb_switched; 18089 18090 mutex_exit(&dtrace_lock); 18091 18092 /* 18093 * Finally, copy out the buffer description. 18094 */ 18095 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18096 return (EFAULT); 18097 18098 return (0); 18099 } 18100 18101 case DTRACEIOC_CONF: { 18102 dtrace_conf_t conf; 18103 18104 bzero(&conf, sizeof (conf)); 18105 conf.dtc_difversion = DIF_VERSION; 18106 conf.dtc_difintregs = DIF_DIR_NREGS; 18107 conf.dtc_diftupregs = DIF_DTR_NREGS; 18108 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18109 18110 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18111 return (EFAULT); 18112 18113 return (0); 18114 } 18115 18116 case DTRACEIOC_STATUS: { 18117 dtrace_status_t stat; 18118 dtrace_dstate_t *dstate; 18119 int i, j; 18120 uint64_t nerrs; 18121 18122 /* 18123 * See the comment in dtrace_state_deadman() for the reason 18124 * for setting dts_laststatus to INT64_MAX before setting 18125 * it to the correct value. 18126 */ 18127 state->dts_laststatus = INT64_MAX; 18128 dtrace_membar_producer(); 18129 state->dts_laststatus = dtrace_gethrtime(); 18130 18131 bzero(&stat, sizeof (stat)); 18132 18133 mutex_enter(&dtrace_lock); 18134 18135 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18136 mutex_exit(&dtrace_lock); 18137 return (ENOENT); 18138 } 18139 18140 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18141 stat.dtst_exiting = 1; 18142 18143 nerrs = state->dts_errors; 18144 dstate = &state->dts_vstate.dtvs_dynvars; 18145 18146 for (i = 0; i < NCPU; i++) { 18147 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18148 18149 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18150 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18151 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18152 18153 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18154 stat.dtst_filled++; 18155 18156 nerrs += state->dts_buffer[i].dtb_errors; 18157 18158 for (j = 0; j < state->dts_nspeculations; j++) { 18159 dtrace_speculation_t *spec; 18160 dtrace_buffer_t *buf; 18161 18162 spec = &state->dts_speculations[j]; 18163 buf = &spec->dtsp_buffer[i]; 18164 stat.dtst_specdrops += buf->dtb_xamot_drops; 18165 } 18166 } 18167 18168 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18169 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18170 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18171 stat.dtst_dblerrors = state->dts_dblerrors; 18172 stat.dtst_killed = 18173 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18174 stat.dtst_errors = nerrs; 18175 18176 mutex_exit(&dtrace_lock); 18177 18178 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18179 return (EFAULT); 18180 18181 return (0); 18182 } 18183 18184 case DTRACEIOC_FORMAT: { 18185 dtrace_fmtdesc_t fmt; 18186 char *str; 18187 int len; 18188 18189 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18190 return (EFAULT); 18191 18192 mutex_enter(&dtrace_lock); 18193 18194 if (fmt.dtfd_format == 0 || 18195 fmt.dtfd_format > state->dts_nformats) { 18196 mutex_exit(&dtrace_lock); 18197 return (EINVAL); 18198 } 18199 18200 /* 18201 * Format strings are allocated contiguously and they are 18202 * never freed; if a format index is less than the number 18203 * of formats, we can assert that the format map is non-NULL 18204 * and that the format for the specified index is non-NULL. 18205 */ 18206 ASSERT(state->dts_formats != NULL); 18207 str = state->dts_formats[fmt.dtfd_format - 1]; 18208 ASSERT(str != NULL); 18209 18210 len = strlen(str) + 1; 18211 18212 if (len > fmt.dtfd_length) { 18213 fmt.dtfd_length = len; 18214 18215 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18216 mutex_exit(&dtrace_lock); 18217 return (EINVAL); 18218 } 18219 } else { 18220 if (copyout(str, fmt.dtfd_string, len) != 0) { 18221 mutex_exit(&dtrace_lock); 18222 return (EINVAL); 18223 } 18224 } 18225 18226 mutex_exit(&dtrace_lock); 18227 return (0); 18228 } 18229 18230 default: 18231 break; 18232 } 18233 18234 return (ENOTTY); 18235 } 18236 18237 /*ARGSUSED*/ 18238 static int 18239 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18240 { 18241 dtrace_state_t *state; 18242 18243 switch (cmd) { 18244 case DDI_DETACH: 18245 break; 18246 18247 case DDI_SUSPEND: 18248 return (DDI_SUCCESS); 18249 18250 default: 18251 return (DDI_FAILURE); 18252 } 18253 18254 mutex_enter(&cpu_lock); 18255 mutex_enter(&dtrace_provider_lock); 18256 mutex_enter(&dtrace_lock); 18257 18258 ASSERT(dtrace_opens == 0); 18259 18260 if (dtrace_helpers > 0) { 18261 mutex_exit(&dtrace_provider_lock); 18262 mutex_exit(&dtrace_lock); 18263 mutex_exit(&cpu_lock); 18264 return (DDI_FAILURE); 18265 } 18266 18267 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18268 mutex_exit(&dtrace_provider_lock); 18269 mutex_exit(&dtrace_lock); 18270 mutex_exit(&cpu_lock); 18271 return (DDI_FAILURE); 18272 } 18273 18274 dtrace_provider = NULL; 18275 18276 if ((state = dtrace_anon_grab()) != NULL) { 18277 /* 18278 * If there were ECBs on this state, the provider should 18279 * have not been allowed to detach; assert that there is 18280 * none. 18281 */ 18282 ASSERT(state->dts_necbs == 0); 18283 dtrace_state_destroy(state); 18284 18285 /* 18286 * If we're being detached with anonymous state, we need to 18287 * indicate to the kernel debugger that DTrace is now inactive. 18288 */ 18289 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18290 } 18291 18292 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18293 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18294 dtrace_cpu_init = NULL; 18295 dtrace_helpers_cleanup = NULL; 18296 dtrace_helpers_fork = NULL; 18297 dtrace_cpustart_init = NULL; 18298 dtrace_cpustart_fini = NULL; 18299 dtrace_debugger_init = NULL; 18300 dtrace_debugger_fini = NULL; 18301 dtrace_modload = NULL; 18302 dtrace_modunload = NULL; 18303 18304 ASSERT(dtrace_getf == 0); 18305 ASSERT(dtrace_closef == NULL); 18306 18307 mutex_exit(&cpu_lock); 18308 18309 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18310 dtrace_probes = NULL; 18311 dtrace_nprobes = 0; 18312 18313 dtrace_hash_destroy(dtrace_bymod); 18314 dtrace_hash_destroy(dtrace_byfunc); 18315 dtrace_hash_destroy(dtrace_byname); 18316 dtrace_bymod = NULL; 18317 dtrace_byfunc = NULL; 18318 dtrace_byname = NULL; 18319 18320 kmem_cache_destroy(dtrace_state_cache); 18321 vmem_destroy(dtrace_minor); 18322 vmem_destroy(dtrace_arena); 18323 18324 if (dtrace_toxrange != NULL) { 18325 kmem_free(dtrace_toxrange, 18326 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18327 dtrace_toxrange = NULL; 18328 dtrace_toxranges = 0; 18329 dtrace_toxranges_max = 0; 18330 } 18331 18332 ddi_remove_minor_node(dtrace_devi, NULL); 18333 dtrace_devi = NULL; 18334 18335 ddi_soft_state_fini(&dtrace_softstate); 18336 18337 ASSERT(dtrace_vtime_references == 0); 18338 ASSERT(dtrace_opens == 0); 18339 ASSERT(dtrace_retained == NULL); 18340 18341 mutex_exit(&dtrace_lock); 18342 mutex_exit(&dtrace_provider_lock); 18343 18344 /* 18345 * We don't destroy the task queue until after we have dropped our 18346 * locks (taskq_destroy() may block on running tasks). To prevent 18347 * attempting to do work after we have effectively detached but before 18348 * the task queue has been destroyed, all tasks dispatched via the 18349 * task queue must check that DTrace is still attached before 18350 * performing any operation. 18351 */ 18352 taskq_destroy(dtrace_taskq); 18353 dtrace_taskq = NULL; 18354 18355 return (DDI_SUCCESS); 18356 } 18357 #endif 18358 18359 #ifdef illumos 18360 /*ARGSUSED*/ 18361 static int 18362 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18363 { 18364 int error; 18365 18366 switch (infocmd) { 18367 case DDI_INFO_DEVT2DEVINFO: 18368 *result = (void *)dtrace_devi; 18369 error = DDI_SUCCESS; 18370 break; 18371 case DDI_INFO_DEVT2INSTANCE: 18372 *result = (void *)0; 18373 error = DDI_SUCCESS; 18374 break; 18375 default: 18376 error = DDI_FAILURE; 18377 } 18378 return (error); 18379 } 18380 #endif 18381 18382 #ifdef illumos 18383 static struct cb_ops dtrace_cb_ops = { 18384 dtrace_open, /* open */ 18385 dtrace_close, /* close */ 18386 nulldev, /* strategy */ 18387 nulldev, /* print */ 18388 nodev, /* dump */ 18389 nodev, /* read */ 18390 nodev, /* write */ 18391 dtrace_ioctl, /* ioctl */ 18392 nodev, /* devmap */ 18393 nodev, /* mmap */ 18394 nodev, /* segmap */ 18395 nochpoll, /* poll */ 18396 ddi_prop_op, /* cb_prop_op */ 18397 0, /* streamtab */ 18398 D_NEW | D_MP /* Driver compatibility flag */ 18399 }; 18400 18401 static struct dev_ops dtrace_ops = { 18402 DEVO_REV, /* devo_rev */ 18403 0, /* refcnt */ 18404 dtrace_info, /* get_dev_info */ 18405 nulldev, /* identify */ 18406 nulldev, /* probe */ 18407 dtrace_attach, /* attach */ 18408 dtrace_detach, /* detach */ 18409 nodev, /* reset */ 18410 &dtrace_cb_ops, /* driver operations */ 18411 NULL, /* bus operations */ 18412 nodev /* dev power */ 18413 }; 18414 18415 static struct modldrv modldrv = { 18416 &mod_driverops, /* module type (this is a pseudo driver) */ 18417 "Dynamic Tracing", /* name of module */ 18418 &dtrace_ops, /* driver ops */ 18419 }; 18420 18421 static struct modlinkage modlinkage = { 18422 MODREV_1, 18423 (void *)&modldrv, 18424 NULL 18425 }; 18426 18427 int 18428 _init(void) 18429 { 18430 return (mod_install(&modlinkage)); 18431 } 18432 18433 int 18434 _info(struct modinfo *modinfop) 18435 { 18436 return (mod_info(&modlinkage, modinfop)); 18437 } 18438 18439 int 18440 _fini(void) 18441 { 18442 return (mod_remove(&modlinkage)); 18443 } 18444 #else 18445 18446 static d_ioctl_t dtrace_ioctl; 18447 static d_ioctl_t dtrace_ioctl_helper; 18448 static void dtrace_load(void *); 18449 static int dtrace_unload(void); 18450 static struct cdev *dtrace_dev; 18451 static struct cdev *helper_dev; 18452 18453 void dtrace_invop_init(void); 18454 void dtrace_invop_uninit(void); 18455 18456 static struct cdevsw dtrace_cdevsw = { 18457 .d_version = D_VERSION, 18458 .d_ioctl = dtrace_ioctl, 18459 .d_open = dtrace_open, 18460 .d_name = "dtrace", 18461 }; 18462 18463 static struct cdevsw helper_cdevsw = { 18464 .d_version = D_VERSION, 18465 .d_ioctl = dtrace_ioctl_helper, 18466 .d_name = "helper", 18467 }; 18468 18469 #include <dtrace_anon.c> 18470 #include <dtrace_ioctl.c> 18471 #include <dtrace_load.c> 18472 #include <dtrace_modevent.c> 18473 #include <dtrace_sysctl.c> 18474 #include <dtrace_unload.c> 18475 #include <dtrace_vtime.c> 18476 #include <dtrace_hacks.c> 18477 18478 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18479 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18480 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18481 18482 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18483 MODULE_VERSION(dtrace, 1); 18484 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18485 #endif 18486