xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 641a6cfb86023499caafe26a4d821a0b885cf00b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113 
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/limits.h>
119 #include <sys/kdb.h>
120 #include <sys/kernel.h>
121 #include <sys/malloc.h>
122 #include <sys/sysctl.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/rwlock.h>
126 #include <sys/sx.h>
127 #include <sys/dtrace_bsd.h>
128 #include <netinet/in.h>
129 #include "dtrace_cddl.h"
130 #include "dtrace_debug.c"
131 #endif
132 
133 /*
134  * DTrace Tunable Variables
135  *
136  * The following variables may be tuned by adding a line to /etc/system that
137  * includes both the name of the DTrace module ("dtrace") and the name of the
138  * variable.  For example:
139  *
140  *   set dtrace:dtrace_destructive_disallow = 1
141  *
142  * In general, the only variables that one should be tuning this way are those
143  * that affect system-wide DTrace behavior, and for which the default behavior
144  * is undesirable.  Most of these variables are tunable on a per-consumer
145  * basis using DTrace options, and need not be tuned on a system-wide basis.
146  * When tuning these variables, avoid pathological values; while some attempt
147  * is made to verify the integrity of these variables, they are not considered
148  * part of the supported interface to DTrace, and they are therefore not
149  * checked comprehensively.  Further, these variables should not be tuned
150  * dynamically via "mdb -kw" or other means; they should only be tuned via
151  * /etc/system.
152  */
153 int		dtrace_destructive_disallow = 0;
154 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155 size_t		dtrace_difo_maxsize = (256 * 1024);
156 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157 size_t		dtrace_global_maxsize = (16 * 1024);
158 size_t		dtrace_actions_max = (16 * 1024);
159 size_t		dtrace_retain_max = 1024;
160 dtrace_optval_t	dtrace_helper_actions_max = 128;
161 dtrace_optval_t	dtrace_helper_providers_max = 32;
162 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163 size_t		dtrace_strsize_default = 256;
164 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171 dtrace_optval_t	dtrace_nspec_default = 1;
172 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default = 20;
174 dtrace_optval_t dtrace_ustackframes_default = 20;
175 dtrace_optval_t dtrace_jstackframes_default = 50;
176 dtrace_optval_t dtrace_jstackstrsize_default = 512;
177 int		dtrace_msgdsize_max = 128;
178 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180 int		dtrace_devdepth_max = 32;
181 int		dtrace_err_verbose;
182 hrtime_t	dtrace_deadman_interval = NANOSEC;
183 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185 
186 /*
187  * DTrace External Variables
188  *
189  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190  * available to DTrace consumers via the backtick (`) syntax.  One of these,
191  * dtrace_zero, is made deliberately so:  it is provided as a source of
192  * well-known, zero-filled memory.  While this variable is not documented,
193  * it is used by some translators as an implementation detail.
194  */
195 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196 
197 /*
198  * DTrace Internal Variables
199  */
200 #if defined(sun)
201 static dev_info_t	*dtrace_devi;		/* device info */
202 #endif
203 #if defined(sun)
204 static vmem_t		*dtrace_arena;		/* probe ID arena */
205 static vmem_t		*dtrace_minor;		/* minor number arena */
206 static taskq_t		*dtrace_taskq;		/* task queue */
207 #else
208 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209 #endif
210 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211 static int		dtrace_nprobes;		/* number of probes */
212 static dtrace_provider_t *dtrace_provider;	/* provider list */
213 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214 static int		dtrace_opens;		/* number of opens */
215 static int		dtrace_helpers;		/* number of helpers */
216 #if defined(sun)
217 static void		*dtrace_softstate;	/* softstate pointer */
218 #endif
219 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223 static int		dtrace_toxranges;	/* number of toxic ranges */
224 static int		dtrace_toxranges_max;	/* size of toxic range array */
225 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228 static kthread_t	*dtrace_panicked;	/* panicking thread */
229 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234 #if !defined(sun)
235 static struct mtx	dtrace_unr_mtx;
236 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237 int		dtrace_in_probe;	/* non-zero if executing a probe */
238 #if defined(__i386__) || defined(__amd64__) || defined(__mips__)
239 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240 #endif
241 #endif
242 
243 /*
244  * DTrace Locking
245  * DTrace is protected by three (relatively coarse-grained) locks:
246  *
247  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248  *     including enabling state, probes, ECBs, consumer state, helper state,
249  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250  *     probe context is lock-free -- synchronization is handled via the
251  *     dtrace_sync() cross call mechanism.
252  *
253  * (2) dtrace_provider_lock is required when manipulating provider state, or
254  *     when provider state must be held constant.
255  *
256  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257  *     when meta provider state must be held constant.
258  *
259  * The lock ordering between these three locks is dtrace_meta_lock before
260  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261  * several places where dtrace_provider_lock is held by the framework as it
262  * calls into the providers -- which then call back into the framework,
263  * grabbing dtrace_lock.)
264  *
265  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267  * role as a coarse-grained lock; it is acquired before both of these locks.
268  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271  * acquired _between_ dtrace_provider_lock and dtrace_lock.
272  */
273 static kmutex_t		dtrace_lock;		/* probe state lock */
274 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276 
277 #if !defined(sun)
278 /* XXX FreeBSD hacks. */
279 static kmutex_t		mod_lock;
280 
281 #define cr_suid		cr_svuid
282 #define cr_sgid		cr_svgid
283 #define	ipaddr_t	in_addr_t
284 #define mod_modname	pathname
285 #define vuprintf	vprintf
286 #define ttoproc(_a)	((_a)->td_proc)
287 #define crgetzoneid(_a)	0
288 #define	NCPU		MAXCPU
289 #define SNOCD		0
290 #define CPU_ON_INTR(_a)	0
291 
292 #define PRIV_EFFECTIVE		(1 << 0)
293 #define PRIV_DTRACE_KERNEL	(1 << 1)
294 #define PRIV_DTRACE_PROC	(1 << 2)
295 #define PRIV_DTRACE_USER	(1 << 3)
296 #define PRIV_PROC_OWNER		(1 << 4)
297 #define PRIV_PROC_ZONE		(1 << 5)
298 #define PRIV_ALL		~0
299 
300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301 #endif
302 
303 #if defined(sun)
304 #define curcpu	CPU->cpu_id
305 #endif
306 
307 
308 /*
309  * DTrace Provider Variables
310  *
311  * These are the variables relating to DTrace as a provider (that is, the
312  * provider of the BEGIN, END, and ERROR probes).
313  */
314 static dtrace_pattr_t	dtrace_provider_attr = {
315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 };
321 
322 static void
323 dtrace_nullop(void)
324 {}
325 
326 static dtrace_pops_t	dtrace_provider_ops = {
327 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328 	(void (*)(void *, modctl_t *))dtrace_nullop,
329 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333 	NULL,
334 	NULL,
335 	NULL,
336 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337 };
338 
339 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342 
343 /*
344  * DTrace Helper Tracing Variables
345  */
346 uint32_t dtrace_helptrace_next = 0;
347 uint32_t dtrace_helptrace_nlocals;
348 char	*dtrace_helptrace_buffer;
349 int	dtrace_helptrace_bufsize = 512 * 1024;
350 
351 #ifdef DEBUG
352 int	dtrace_helptrace_enabled = 1;
353 #else
354 int	dtrace_helptrace_enabled = 0;
355 #endif
356 
357 /*
358  * DTrace Error Hashing
359  *
360  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361  * table.  This is very useful for checking coverage of tests that are
362  * expected to induce DIF or DOF processing errors, and may be useful for
363  * debugging problems in the DIF code generator or in DOF generation .  The
364  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365  */
366 #ifdef DEBUG
367 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368 static const char *dtrace_errlast;
369 static kthread_t *dtrace_errthread;
370 static kmutex_t dtrace_errlock;
371 #endif
372 
373 /*
374  * DTrace Macros and Constants
375  *
376  * These are various macros that are useful in various spots in the
377  * implementation, along with a few random constants that have no meaning
378  * outside of the implementation.  There is no real structure to this cpp
379  * mishmash -- but is there ever?
380  */
381 #define	DTRACE_HASHSTR(hash, probe)	\
382 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383 
384 #define	DTRACE_HASHNEXT(hash, probe)	\
385 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386 
387 #define	DTRACE_HASHPREV(hash, probe)	\
388 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389 
390 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393 
394 #define	DTRACE_AGGHASHSIZE_SLEW		17
395 
396 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397 
398 /*
399  * The key for a thread-local variable consists of the lower 61 bits of the
400  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402  * equal to a variable identifier.  This is necessary (but not sufficient) to
403  * assure that global associative arrays never collide with thread-local
404  * variables.  To guarantee that they cannot collide, we must also define the
405  * order for keying dynamic variables.  That order is:
406  *
407  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408  *
409  * Because the variable-key and the tls-key are in orthogonal spaces, there is
410  * no way for a global variable key signature to match a thread-local key
411  * signature.
412  */
413 #if defined(sun)
414 #define	DTRACE_TLS_THRKEY(where) { \
415 	uint_t intr = 0; \
416 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417 	for (; actv; actv >>= 1) \
418 		intr++; \
419 	ASSERT(intr < (1 << 3)); \
420 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422 }
423 #else
424 #define	DTRACE_TLS_THRKEY(where) { \
425 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426 	uint_t intr = 0; \
427 	uint_t actv = _c->cpu_intr_actv; \
428 	for (; actv; actv >>= 1) \
429 		intr++; \
430 	ASSERT(intr < (1 << 3)); \
431 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433 }
434 #endif
435 
436 #define	DT_BSWAP_8(x)	((x) & 0xff)
437 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440 
441 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
442 
443 #define	DTRACE_STORE(type, tomax, offset, what) \
444 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445 
446 #ifndef __i386
447 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448 	if (addr & (size - 1)) {					\
449 		*flags |= CPU_DTRACE_BADALIGN;				\
450 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451 		return (0);						\
452 	}
453 #else
454 #define	DTRACE_ALIGNCHECK(addr, size, flags)
455 #endif
456 
457 /*
458  * Test whether a range of memory starting at testaddr of size testsz falls
459  * within the range of memory described by addr, sz.  We take care to avoid
460  * problems with overflow and underflow of the unsigned quantities, and
461  * disallow all negative sizes.  Ranges of size 0 are allowed.
462  */
463 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464 	((testaddr) - (baseaddr) < (basesz) && \
465 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466 	(testaddr) + (testsz) >= (testaddr))
467 
468 /*
469  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470  * alloc_sz on the righthand side of the comparison in order to avoid overflow
471  * or underflow in the comparison with it.  This is simpler than the INRANGE
472  * check above, because we know that the dtms_scratch_ptr is valid in the
473  * range.  Allocations of size zero are allowed.
474  */
475 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478 
479 #define	DTRACE_LOADFUNC(bits)						\
480 /*CSTYLED*/								\
481 uint##bits##_t								\
482 dtrace_load##bits(uintptr_t addr)					\
483 {									\
484 	size_t size = bits / NBBY;					\
485 	/*CSTYLED*/							\
486 	uint##bits##_t rval;						\
487 	int i;								\
488 	volatile uint16_t *flags = (volatile uint16_t *)		\
489 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490 									\
491 	DTRACE_ALIGNCHECK(addr, size, flags);				\
492 									\
493 	for (i = 0; i < dtrace_toxranges; i++) {			\
494 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495 			continue;					\
496 									\
497 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498 			continue;					\
499 									\
500 		/*							\
501 		 * This address falls within a toxic region; return 0.	\
502 		 */							\
503 		*flags |= CPU_DTRACE_BADADDR;				\
504 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505 		return (0);						\
506 	}								\
507 									\
508 	*flags |= CPU_DTRACE_NOFAULT;					\
509 	/*CSTYLED*/							\
510 	rval = *((volatile uint##bits##_t *)addr);			\
511 	*flags &= ~CPU_DTRACE_NOFAULT;					\
512 									\
513 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514 }
515 
516 #ifdef _LP64
517 #define	dtrace_loadptr	dtrace_load64
518 #else
519 #define	dtrace_loadptr	dtrace_load32
520 #endif
521 
522 #define	DTRACE_DYNHASH_FREE	0
523 #define	DTRACE_DYNHASH_SINK	1
524 #define	DTRACE_DYNHASH_VALID	2
525 
526 #define	DTRACE_MATCH_NEXT	0
527 #define	DTRACE_MATCH_DONE	1
528 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529 #define	DTRACE_STATE_ALIGN	64
530 
531 #define	DTRACE_FLAGS2FLT(flags)						\
532 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541 	DTRACEFLT_UNKNOWN)
542 
543 #define	DTRACEACT_ISSTRING(act)						\
544 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546 
547 /* Function prototype definitions: */
548 static size_t dtrace_strlen(const char *, size_t);
549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550 static void dtrace_enabling_provide(dtrace_provider_t *);
551 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552 static void dtrace_enabling_matchall(void);
553 static dtrace_state_t *dtrace_anon_grab(void);
554 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555     dtrace_state_t *, uint64_t, uint64_t);
556 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557 static void dtrace_buffer_drop(dtrace_buffer_t *);
558 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559     dtrace_state_t *, dtrace_mstate_t *);
560 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561     dtrace_optval_t);
562 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564 uint16_t dtrace_load16(uintptr_t);
565 uint32_t dtrace_load32(uintptr_t);
566 uint64_t dtrace_load64(uintptr_t);
567 uint8_t dtrace_load8(uintptr_t);
568 void dtrace_dynvar_clean(dtrace_dstate_t *);
569 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572 
573 /*
574  * DTrace Probe Context Functions
575  *
576  * These functions are called from probe context.  Because probe context is
577  * any context in which C may be called, arbitrarily locks may be held,
578  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579  * As a result, functions called from probe context may only call other DTrace
580  * support functions -- they may not interact at all with the system at large.
581  * (Note that the ASSERT macro is made probe-context safe by redefining it in
582  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583  * loads are to be performed from probe context, they _must_ be in terms of
584  * the safe dtrace_load*() variants.
585  *
586  * Some functions in this block are not actually called from probe context;
587  * for these functions, there will be a comment above the function reading
588  * "Note:  not called from probe context."
589  */
590 void
591 dtrace_panic(const char *format, ...)
592 {
593 	va_list alist;
594 
595 	va_start(alist, format);
596 	dtrace_vpanic(format, alist);
597 	va_end(alist);
598 }
599 
600 int
601 dtrace_assfail(const char *a, const char *f, int l)
602 {
603 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604 
605 	/*
606 	 * We just need something here that even the most clever compiler
607 	 * cannot optimize away.
608 	 */
609 	return (a[(uintptr_t)f]);
610 }
611 
612 /*
613  * Atomically increment a specified error counter from probe context.
614  */
615 static void
616 dtrace_error(uint32_t *counter)
617 {
618 	/*
619 	 * Most counters stored to in probe context are per-CPU counters.
620 	 * However, there are some error conditions that are sufficiently
621 	 * arcane that they don't merit per-CPU storage.  If these counters
622 	 * are incremented concurrently on different CPUs, scalability will be
623 	 * adversely affected -- but we don't expect them to be white-hot in a
624 	 * correctly constructed enabling...
625 	 */
626 	uint32_t oval, nval;
627 
628 	do {
629 		oval = *counter;
630 
631 		if ((nval = oval + 1) == 0) {
632 			/*
633 			 * If the counter would wrap, set it to 1 -- assuring
634 			 * that the counter is never zero when we have seen
635 			 * errors.  (The counter must be 32-bits because we
636 			 * aren't guaranteed a 64-bit compare&swap operation.)
637 			 * To save this code both the infamy of being fingered
638 			 * by a priggish news story and the indignity of being
639 			 * the target of a neo-puritan witch trial, we're
640 			 * carefully avoiding any colorful description of the
641 			 * likelihood of this condition -- but suffice it to
642 			 * say that it is only slightly more likely than the
643 			 * overflow of predicate cache IDs, as discussed in
644 			 * dtrace_predicate_create().
645 			 */
646 			nval = 1;
647 		}
648 	} while (dtrace_cas32(counter, oval, nval) != oval);
649 }
650 
651 /*
652  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654  */
655 DTRACE_LOADFUNC(8)
656 DTRACE_LOADFUNC(16)
657 DTRACE_LOADFUNC(32)
658 DTRACE_LOADFUNC(64)
659 
660 static int
661 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662 {
663 	if (dest < mstate->dtms_scratch_base)
664 		return (0);
665 
666 	if (dest + size < dest)
667 		return (0);
668 
669 	if (dest + size > mstate->dtms_scratch_ptr)
670 		return (0);
671 
672 	return (1);
673 }
674 
675 static int
676 dtrace_canstore_statvar(uint64_t addr, size_t sz,
677     dtrace_statvar_t **svars, int nsvars)
678 {
679 	int i;
680 
681 	for (i = 0; i < nsvars; i++) {
682 		dtrace_statvar_t *svar = svars[i];
683 
684 		if (svar == NULL || svar->dtsv_size == 0)
685 			continue;
686 
687 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688 			return (1);
689 	}
690 
691 	return (0);
692 }
693 
694 /*
695  * Check to see if the address is within a memory region to which a store may
696  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697  * region.  The caller of dtrace_canstore() is responsible for performing any
698  * alignment checks that are needed before stores are actually executed.
699  */
700 static int
701 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702     dtrace_vstate_t *vstate)
703 {
704 	/*
705 	 * First, check to see if the address is in scratch space...
706 	 */
707 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708 	    mstate->dtms_scratch_size))
709 		return (1);
710 
711 	/*
712 	 * Now check to see if it's a dynamic variable.  This check will pick
713 	 * up both thread-local variables and any global dynamically-allocated
714 	 * variables.
715 	 */
716 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717 	    vstate->dtvs_dynvars.dtds_size)) {
718 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719 		uintptr_t base = (uintptr_t)dstate->dtds_base +
720 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721 		uintptr_t chunkoffs;
722 
723 		/*
724 		 * Before we assume that we can store here, we need to make
725 		 * sure that it isn't in our metadata -- storing to our
726 		 * dynamic variable metadata would corrupt our state.  For
727 		 * the range to not include any dynamic variable metadata,
728 		 * it must:
729 		 *
730 		 *	(1) Start above the hash table that is at the base of
731 		 *	the dynamic variable space
732 		 *
733 		 *	(2) Have a starting chunk offset that is beyond the
734 		 *	dtrace_dynvar_t that is at the base of every chunk
735 		 *
736 		 *	(3) Not span a chunk boundary
737 		 *
738 		 */
739 		if (addr < base)
740 			return (0);
741 
742 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743 
744 		if (chunkoffs < sizeof (dtrace_dynvar_t))
745 			return (0);
746 
747 		if (chunkoffs + sz > dstate->dtds_chunksize)
748 			return (0);
749 
750 		return (1);
751 	}
752 
753 	/*
754 	 * Finally, check the static local and global variables.  These checks
755 	 * take the longest, so we perform them last.
756 	 */
757 	if (dtrace_canstore_statvar(addr, sz,
758 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759 		return (1);
760 
761 	if (dtrace_canstore_statvar(addr, sz,
762 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763 		return (1);
764 
765 	return (0);
766 }
767 
768 
769 /*
770  * Convenience routine to check to see if the address is within a memory
771  * region in which a load may be issued given the user's privilege level;
772  * if not, it sets the appropriate error flags and loads 'addr' into the
773  * illegal value slot.
774  *
775  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776  * appropriate memory access protection.
777  */
778 static int
779 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780     dtrace_vstate_t *vstate)
781 {
782 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783 
784 	/*
785 	 * If we hold the privilege to read from kernel memory, then
786 	 * everything is readable.
787 	 */
788 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789 		return (1);
790 
791 	/*
792 	 * You can obviously read that which you can store.
793 	 */
794 	if (dtrace_canstore(addr, sz, mstate, vstate))
795 		return (1);
796 
797 	/*
798 	 * We're allowed to read from our own string table.
799 	 */
800 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801 	    mstate->dtms_difo->dtdo_strlen))
802 		return (1);
803 
804 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805 	*illval = addr;
806 	return (0);
807 }
808 
809 /*
810  * Convenience routine to check to see if a given string is within a memory
811  * region in which a load may be issued given the user's privilege level;
812  * this exists so that we don't need to issue unnecessary dtrace_strlen()
813  * calls in the event that the user has all privileges.
814  */
815 static int
816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817     dtrace_vstate_t *vstate)
818 {
819 	size_t strsz;
820 
821 	/*
822 	 * If we hold the privilege to read from kernel memory, then
823 	 * everything is readable.
824 	 */
825 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826 		return (1);
827 
828 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829 	if (dtrace_canload(addr, strsz, mstate, vstate))
830 		return (1);
831 
832 	return (0);
833 }
834 
835 /*
836  * Convenience routine to check to see if a given variable is within a memory
837  * region in which a load may be issued given the user's privilege level.
838  */
839 static int
840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841     dtrace_vstate_t *vstate)
842 {
843 	size_t sz;
844 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845 
846 	/*
847 	 * If we hold the privilege to read from kernel memory, then
848 	 * everything is readable.
849 	 */
850 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851 		return (1);
852 
853 	if (type->dtdt_kind == DIF_TYPE_STRING)
854 		sz = dtrace_strlen(src,
855 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856 	else
857 		sz = type->dtdt_size;
858 
859 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 }
861 
862 /*
863  * Compare two strings using safe loads.
864  */
865 static int
866 dtrace_strncmp(char *s1, char *s2, size_t limit)
867 {
868 	uint8_t c1, c2;
869 	volatile uint16_t *flags;
870 
871 	if (s1 == s2 || limit == 0)
872 		return (0);
873 
874 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875 
876 	do {
877 		if (s1 == NULL) {
878 			c1 = '\0';
879 		} else {
880 			c1 = dtrace_load8((uintptr_t)s1++);
881 		}
882 
883 		if (s2 == NULL) {
884 			c2 = '\0';
885 		} else {
886 			c2 = dtrace_load8((uintptr_t)s2++);
887 		}
888 
889 		if (c1 != c2)
890 			return (c1 - c2);
891 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892 
893 	return (0);
894 }
895 
896 /*
897  * Compute strlen(s) for a string using safe memory accesses.  The additional
898  * len parameter is used to specify a maximum length to ensure completion.
899  */
900 static size_t
901 dtrace_strlen(const char *s, size_t lim)
902 {
903 	uint_t len;
904 
905 	for (len = 0; len != lim; len++) {
906 		if (dtrace_load8((uintptr_t)s++) == '\0')
907 			break;
908 	}
909 
910 	return (len);
911 }
912 
913 /*
914  * Check if an address falls within a toxic region.
915  */
916 static int
917 dtrace_istoxic(uintptr_t kaddr, size_t size)
918 {
919 	uintptr_t taddr, tsize;
920 	int i;
921 
922 	for (i = 0; i < dtrace_toxranges; i++) {
923 		taddr = dtrace_toxrange[i].dtt_base;
924 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925 
926 		if (kaddr - taddr < tsize) {
927 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929 			return (1);
930 		}
931 
932 		if (taddr - kaddr < size) {
933 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935 			return (1);
936 		}
937 	}
938 
939 	return (0);
940 }
941 
942 /*
943  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944  * memory specified by the DIF program.  The dst is assumed to be safe memory
945  * that we can store to directly because it is managed by DTrace.  As with
946  * standard bcopy, overlapping copies are handled properly.
947  */
948 static void
949 dtrace_bcopy(const void *src, void *dst, size_t len)
950 {
951 	if (len != 0) {
952 		uint8_t *s1 = dst;
953 		const uint8_t *s2 = src;
954 
955 		if (s1 <= s2) {
956 			do {
957 				*s1++ = dtrace_load8((uintptr_t)s2++);
958 			} while (--len != 0);
959 		} else {
960 			s2 += len;
961 			s1 += len;
962 
963 			do {
964 				*--s1 = dtrace_load8((uintptr_t)--s2);
965 			} while (--len != 0);
966 		}
967 	}
968 }
969 
970 /*
971  * Copy src to dst using safe memory accesses, up to either the specified
972  * length, or the point that a nul byte is encountered.  The src is assumed to
973  * be unsafe memory specified by the DIF program.  The dst is assumed to be
974  * safe memory that we can store to directly because it is managed by DTrace.
975  * Unlike dtrace_bcopy(), overlapping regions are not handled.
976  */
977 static void
978 dtrace_strcpy(const void *src, void *dst, size_t len)
979 {
980 	if (len != 0) {
981 		uint8_t *s1 = dst, c;
982 		const uint8_t *s2 = src;
983 
984 		do {
985 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986 		} while (--len != 0 && c != '\0');
987 	}
988 }
989 
990 /*
991  * Copy src to dst, deriving the size and type from the specified (BYREF)
992  * variable type.  The src is assumed to be unsafe memory specified by the DIF
993  * program.  The dst is assumed to be DTrace variable memory that is of the
994  * specified type; we assume that we can store to directly.
995  */
996 static void
997 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998 {
999 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000 
1001 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002 		dtrace_strcpy(src, dst, type->dtdt_size);
1003 	} else {
1004 		dtrace_bcopy(src, dst, type->dtdt_size);
1005 	}
1006 }
1007 
1008 /*
1009  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011  * safe memory that we can access directly because it is managed by DTrace.
1012  */
1013 static int
1014 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015 {
1016 	volatile uint16_t *flags;
1017 
1018 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019 
1020 	if (s1 == s2)
1021 		return (0);
1022 
1023 	if (s1 == NULL || s2 == NULL)
1024 		return (1);
1025 
1026 	if (s1 != s2 && len != 0) {
1027 		const uint8_t *ps1 = s1;
1028 		const uint8_t *ps2 = s2;
1029 
1030 		do {
1031 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032 				return (1);
1033 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034 	}
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040  * is for safe DTrace-managed memory only.
1041  */
1042 static void
1043 dtrace_bzero(void *dst, size_t len)
1044 {
1045 	uchar_t *cp;
1046 
1047 	for (cp = dst; len != 0; len--)
1048 		*cp++ = 0;
1049 }
1050 
1051 static void
1052 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053 {
1054 	uint64_t result[2];
1055 
1056 	result[0] = addend1[0] + addend2[0];
1057 	result[1] = addend1[1] + addend2[1] +
1058 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059 
1060 	sum[0] = result[0];
1061 	sum[1] = result[1];
1062 }
1063 
1064 /*
1065  * Shift the 128-bit value in a by b. If b is positive, shift left.
1066  * If b is negative, shift right.
1067  */
1068 static void
1069 dtrace_shift_128(uint64_t *a, int b)
1070 {
1071 	uint64_t mask;
1072 
1073 	if (b == 0)
1074 		return;
1075 
1076 	if (b < 0) {
1077 		b = -b;
1078 		if (b >= 64) {
1079 			a[0] = a[1] >> (b - 64);
1080 			a[1] = 0;
1081 		} else {
1082 			a[0] >>= b;
1083 			mask = 1LL << (64 - b);
1084 			mask -= 1;
1085 			a[0] |= ((a[1] & mask) << (64 - b));
1086 			a[1] >>= b;
1087 		}
1088 	} else {
1089 		if (b >= 64) {
1090 			a[1] = a[0] << (b - 64);
1091 			a[0] = 0;
1092 		} else {
1093 			a[1] <<= b;
1094 			mask = a[0] >> (64 - b);
1095 			a[1] |= mask;
1096 			a[0] <<= b;
1097 		}
1098 	}
1099 }
1100 
1101 /*
1102  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103  * use native multiplication on those, and then re-combine into the
1104  * resulting 128-bit value.
1105  *
1106  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107  *     hi1 * hi2 << 64 +
1108  *     hi1 * lo2 << 32 +
1109  *     hi2 * lo1 << 32 +
1110  *     lo1 * lo2
1111  */
1112 static void
1113 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114 {
1115 	uint64_t hi1, hi2, lo1, lo2;
1116 	uint64_t tmp[2];
1117 
1118 	hi1 = factor1 >> 32;
1119 	hi2 = factor2 >> 32;
1120 
1121 	lo1 = factor1 & DT_MASK_LO;
1122 	lo2 = factor2 & DT_MASK_LO;
1123 
1124 	product[0] = lo1 * lo2;
1125 	product[1] = hi1 * hi2;
1126 
1127 	tmp[0] = hi1 * lo2;
1128 	tmp[1] = 0;
1129 	dtrace_shift_128(tmp, 32);
1130 	dtrace_add_128(product, tmp, product);
1131 
1132 	tmp[0] = hi2 * lo1;
1133 	tmp[1] = 0;
1134 	dtrace_shift_128(tmp, 32);
1135 	dtrace_add_128(product, tmp, product);
1136 }
1137 
1138 /*
1139  * This privilege check should be used by actions and subroutines to
1140  * verify that the user credentials of the process that enabled the
1141  * invoking ECB match the target credentials
1142  */
1143 static int
1144 dtrace_priv_proc_common_user(dtrace_state_t *state)
1145 {
1146 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147 
1148 	/*
1149 	 * We should always have a non-NULL state cred here, since if cred
1150 	 * is null (anonymous tracing), we fast-path bypass this routine.
1151 	 */
1152 	ASSERT(s_cr != NULL);
1153 
1154 	if ((cr = CRED()) != NULL &&
1155 	    s_cr->cr_uid == cr->cr_uid &&
1156 	    s_cr->cr_uid == cr->cr_ruid &&
1157 	    s_cr->cr_uid == cr->cr_suid &&
1158 	    s_cr->cr_gid == cr->cr_gid &&
1159 	    s_cr->cr_gid == cr->cr_rgid &&
1160 	    s_cr->cr_gid == cr->cr_sgid)
1161 		return (1);
1162 
1163 	return (0);
1164 }
1165 
1166 /*
1167  * This privilege check should be used by actions and subroutines to
1168  * verify that the zone of the process that enabled the invoking ECB
1169  * matches the target credentials
1170  */
1171 static int
1172 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173 {
1174 #if defined(sun)
1175 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176 
1177 	/*
1178 	 * We should always have a non-NULL state cred here, since if cred
1179 	 * is null (anonymous tracing), we fast-path bypass this routine.
1180 	 */
1181 	ASSERT(s_cr != NULL);
1182 
1183 	if ((cr = CRED()) != NULL &&
1184 	    s_cr->cr_zone == cr->cr_zone)
1185 		return (1);
1186 
1187 	return (0);
1188 #else
1189 	return (1);
1190 #endif
1191 }
1192 
1193 /*
1194  * This privilege check should be used by actions and subroutines to
1195  * verify that the process has not setuid or changed credentials.
1196  */
1197 static int
1198 dtrace_priv_proc_common_nocd(void)
1199 {
1200 	proc_t *proc;
1201 
1202 	if ((proc = ttoproc(curthread)) != NULL &&
1203 	    !(proc->p_flag & SNOCD))
1204 		return (1);
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 dtrace_priv_proc_destructive(dtrace_state_t *state)
1211 {
1212 	int action = state->dts_cred.dcr_action;
1213 
1214 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215 	    dtrace_priv_proc_common_zone(state) == 0)
1216 		goto bad;
1217 
1218 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219 	    dtrace_priv_proc_common_user(state) == 0)
1220 		goto bad;
1221 
1222 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223 	    dtrace_priv_proc_common_nocd() == 0)
1224 		goto bad;
1225 
1226 	return (1);
1227 
1228 bad:
1229 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230 
1231 	return (0);
1232 }
1233 
1234 static int
1235 dtrace_priv_proc_control(dtrace_state_t *state)
1236 {
1237 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238 		return (1);
1239 
1240 	if (dtrace_priv_proc_common_zone(state) &&
1241 	    dtrace_priv_proc_common_user(state) &&
1242 	    dtrace_priv_proc_common_nocd())
1243 		return (1);
1244 
1245 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246 
1247 	return (0);
1248 }
1249 
1250 static int
1251 dtrace_priv_proc(dtrace_state_t *state)
1252 {
1253 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254 		return (1);
1255 
1256 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_kernel(dtrace_state_t *state)
1263 {
1264 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265 		return (1);
1266 
1267 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268 
1269 	return (0);
1270 }
1271 
1272 static int
1273 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274 {
1275 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276 		return (1);
1277 
1278 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279 
1280 	return (0);
1281 }
1282 
1283 /*
1284  * Note:  not called from probe context.  This function is called
1285  * asynchronously (and at a regular interval) from outside of probe context to
1286  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288  */
1289 void
1290 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291 {
1292 	dtrace_dynvar_t *dirty;
1293 	dtrace_dstate_percpu_t *dcpu;
1294 	int i, work = 0;
1295 
1296 	for (i = 0; i < NCPU; i++) {
1297 		dcpu = &dstate->dtds_percpu[i];
1298 
1299 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300 
1301 		/*
1302 		 * If the dirty list is NULL, there is no dirty work to do.
1303 		 */
1304 		if (dcpu->dtdsc_dirty == NULL)
1305 			continue;
1306 
1307 		/*
1308 		 * If the clean list is non-NULL, then we're not going to do
1309 		 * any work for this CPU -- it means that there has not been
1310 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311 		 * since the last time we cleaned house.
1312 		 */
1313 		if (dcpu->dtdsc_clean != NULL)
1314 			continue;
1315 
1316 		work = 1;
1317 
1318 		/*
1319 		 * Atomically move the dirty list aside.
1320 		 */
1321 		do {
1322 			dirty = dcpu->dtdsc_dirty;
1323 
1324 			/*
1325 			 * Before we zap the dirty list, set the rinsing list.
1326 			 * (This allows for a potential assertion in
1327 			 * dtrace_dynvar():  if a free dynamic variable appears
1328 			 * on a hash chain, either the dirty list or the
1329 			 * rinsing list for some CPU must be non-NULL.)
1330 			 */
1331 			dcpu->dtdsc_rinsing = dirty;
1332 			dtrace_membar_producer();
1333 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334 		    dirty, NULL) != dirty);
1335 	}
1336 
1337 	if (!work) {
1338 		/*
1339 		 * We have no work to do; we can simply return.
1340 		 */
1341 		return;
1342 	}
1343 
1344 	dtrace_sync();
1345 
1346 	for (i = 0; i < NCPU; i++) {
1347 		dcpu = &dstate->dtds_percpu[i];
1348 
1349 		if (dcpu->dtdsc_rinsing == NULL)
1350 			continue;
1351 
1352 		/*
1353 		 * We are now guaranteed that no hash chain contains a pointer
1354 		 * into this dirty list; we can make it clean.
1355 		 */
1356 		ASSERT(dcpu->dtdsc_clean == NULL);
1357 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358 		dcpu->dtdsc_rinsing = NULL;
1359 	}
1360 
1361 	/*
1362 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364 	 * This prevents a race whereby a CPU incorrectly decides that
1365 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366 	 * after dtrace_dynvar_clean() has completed.
1367 	 */
1368 	dtrace_sync();
1369 
1370 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371 }
1372 
1373 /*
1374  * Depending on the value of the op parameter, this function looks-up,
1375  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376  * allocation is requested, this function will return a pointer to a
1377  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378  * variable can be allocated.  If NULL is returned, the appropriate counter
1379  * will be incremented.
1380  */
1381 dtrace_dynvar_t *
1382 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385 {
1386 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389 	processorid_t me = curcpu, cpu = me;
1390 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391 	size_t bucket, ksize;
1392 	size_t chunksize = dstate->dtds_chunksize;
1393 	uintptr_t kdata, lock, nstate;
1394 	uint_t i;
1395 
1396 	ASSERT(nkeys != 0);
1397 
1398 	/*
1399 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400 	 * algorithm.  For the by-value portions, we perform the algorithm in
1401 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402 	 * bit, and seems to have only a minute effect on distribution.  For
1403 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404 	 * over each referenced byte.  It's painful to do this, but it's much
1405 	 * better than pathological hash distribution.  The efficacy of the
1406 	 * hashing algorithm (and a comparison with other algorithms) may be
1407 	 * found by running the ::dtrace_dynstat MDB dcmd.
1408 	 */
1409 	for (i = 0; i < nkeys; i++) {
1410 		if (key[i].dttk_size == 0) {
1411 			uint64_t val = key[i].dttk_value;
1412 
1413 			hashval += (val >> 48) & 0xffff;
1414 			hashval += (hashval << 10);
1415 			hashval ^= (hashval >> 6);
1416 
1417 			hashval += (val >> 32) & 0xffff;
1418 			hashval += (hashval << 10);
1419 			hashval ^= (hashval >> 6);
1420 
1421 			hashval += (val >> 16) & 0xffff;
1422 			hashval += (hashval << 10);
1423 			hashval ^= (hashval >> 6);
1424 
1425 			hashval += val & 0xffff;
1426 			hashval += (hashval << 10);
1427 			hashval ^= (hashval >> 6);
1428 		} else {
1429 			/*
1430 			 * This is incredibly painful, but it beats the hell
1431 			 * out of the alternative.
1432 			 */
1433 			uint64_t j, size = key[i].dttk_size;
1434 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435 
1436 			if (!dtrace_canload(base, size, mstate, vstate))
1437 				break;
1438 
1439 			for (j = 0; j < size; j++) {
1440 				hashval += dtrace_load8(base + j);
1441 				hashval += (hashval << 10);
1442 				hashval ^= (hashval >> 6);
1443 			}
1444 		}
1445 	}
1446 
1447 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448 		return (NULL);
1449 
1450 	hashval += (hashval << 3);
1451 	hashval ^= (hashval >> 11);
1452 	hashval += (hashval << 15);
1453 
1454 	/*
1455 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456 	 * comes out to be one of our two sentinel hash values.  If this
1457 	 * actually happens, we set the hashval to be a value known to be a
1458 	 * non-sentinel value.
1459 	 */
1460 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461 		hashval = DTRACE_DYNHASH_VALID;
1462 
1463 	/*
1464 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465 	 * important here, tricks can be pulled to reduce it.  (However, it's
1466 	 * critical that hash collisions be kept to an absolute minimum;
1467 	 * they're much more painful than a divide.)  It's better to have a
1468 	 * solution that generates few collisions and still keeps things
1469 	 * relatively simple.
1470 	 */
1471 	bucket = hashval % dstate->dtds_hashsize;
1472 
1473 	if (op == DTRACE_DYNVAR_DEALLOC) {
1474 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475 
1476 		for (;;) {
1477 			while ((lock = *lockp) & 1)
1478 				continue;
1479 
1480 			if (dtrace_casptr((volatile void *)lockp,
1481 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482 				break;
1483 		}
1484 
1485 		dtrace_membar_producer();
1486 	}
1487 
1488 top:
1489 	prev = NULL;
1490 	lock = hash[bucket].dtdh_lock;
1491 
1492 	dtrace_membar_consumer();
1493 
1494 	start = hash[bucket].dtdh_chain;
1495 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497 	    op != DTRACE_DYNVAR_DEALLOC));
1498 
1499 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502 
1503 		if (dvar->dtdv_hashval != hashval) {
1504 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505 				/*
1506 				 * We've reached the sink, and therefore the
1507 				 * end of the hash chain; we can kick out of
1508 				 * the loop knowing that we have seen a valid
1509 				 * snapshot of state.
1510 				 */
1511 				ASSERT(dvar->dtdv_next == NULL);
1512 				ASSERT(dvar == &dtrace_dynhash_sink);
1513 				break;
1514 			}
1515 
1516 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517 				/*
1518 				 * We've gone off the rails:  somewhere along
1519 				 * the line, one of the members of this hash
1520 				 * chain was deleted.  Note that we could also
1521 				 * detect this by simply letting this loop run
1522 				 * to completion, as we would eventually hit
1523 				 * the end of the dirty list.  However, we
1524 				 * want to avoid running the length of the
1525 				 * dirty list unnecessarily (it might be quite
1526 				 * long), so we catch this as early as
1527 				 * possible by detecting the hash marker.  In
1528 				 * this case, we simply set dvar to NULL and
1529 				 * break; the conditional after the loop will
1530 				 * send us back to top.
1531 				 */
1532 				dvar = NULL;
1533 				break;
1534 			}
1535 
1536 			goto next;
1537 		}
1538 
1539 		if (dtuple->dtt_nkeys != nkeys)
1540 			goto next;
1541 
1542 		for (i = 0; i < nkeys; i++, dkey++) {
1543 			if (dkey->dttk_size != key[i].dttk_size)
1544 				goto next; /* size or type mismatch */
1545 
1546 			if (dkey->dttk_size != 0) {
1547 				if (dtrace_bcmp(
1548 				    (void *)(uintptr_t)key[i].dttk_value,
1549 				    (void *)(uintptr_t)dkey->dttk_value,
1550 				    dkey->dttk_size))
1551 					goto next;
1552 			} else {
1553 				if (dkey->dttk_value != key[i].dttk_value)
1554 					goto next;
1555 			}
1556 		}
1557 
1558 		if (op != DTRACE_DYNVAR_DEALLOC)
1559 			return (dvar);
1560 
1561 		ASSERT(dvar->dtdv_next == NULL ||
1562 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563 
1564 		if (prev != NULL) {
1565 			ASSERT(hash[bucket].dtdh_chain != dvar);
1566 			ASSERT(start != dvar);
1567 			ASSERT(prev->dtdv_next == dvar);
1568 			prev->dtdv_next = dvar->dtdv_next;
1569 		} else {
1570 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571 			    start, dvar->dtdv_next) != start) {
1572 				/*
1573 				 * We have failed to atomically swing the
1574 				 * hash table head pointer, presumably because
1575 				 * of a conflicting allocation on another CPU.
1576 				 * We need to reread the hash chain and try
1577 				 * again.
1578 				 */
1579 				goto top;
1580 			}
1581 		}
1582 
1583 		dtrace_membar_producer();
1584 
1585 		/*
1586 		 * Now set the hash value to indicate that it's free.
1587 		 */
1588 		ASSERT(hash[bucket].dtdh_chain != dvar);
1589 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590 
1591 		dtrace_membar_producer();
1592 
1593 		/*
1594 		 * Set the next pointer to point at the dirty list, and
1595 		 * atomically swing the dirty pointer to the newly freed dvar.
1596 		 */
1597 		do {
1598 			next = dcpu->dtdsc_dirty;
1599 			dvar->dtdv_next = next;
1600 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601 
1602 		/*
1603 		 * Finally, unlock this hash bucket.
1604 		 */
1605 		ASSERT(hash[bucket].dtdh_lock == lock);
1606 		ASSERT(lock & 1);
1607 		hash[bucket].dtdh_lock++;
1608 
1609 		return (NULL);
1610 next:
1611 		prev = dvar;
1612 		continue;
1613 	}
1614 
1615 	if (dvar == NULL) {
1616 		/*
1617 		 * If dvar is NULL, it is because we went off the rails:
1618 		 * one of the elements that we traversed in the hash chain
1619 		 * was deleted while we were traversing it.  In this case,
1620 		 * we assert that we aren't doing a dealloc (deallocs lock
1621 		 * the hash bucket to prevent themselves from racing with
1622 		 * one another), and retry the hash chain traversal.
1623 		 */
1624 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625 		goto top;
1626 	}
1627 
1628 	if (op != DTRACE_DYNVAR_ALLOC) {
1629 		/*
1630 		 * If we are not to allocate a new variable, we want to
1631 		 * return NULL now.  Before we return, check that the value
1632 		 * of the lock word hasn't changed.  If it has, we may have
1633 		 * seen an inconsistent snapshot.
1634 		 */
1635 		if (op == DTRACE_DYNVAR_NOALLOC) {
1636 			if (hash[bucket].dtdh_lock != lock)
1637 				goto top;
1638 		} else {
1639 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640 			ASSERT(hash[bucket].dtdh_lock == lock);
1641 			ASSERT(lock & 1);
1642 			hash[bucket].dtdh_lock++;
1643 		}
1644 
1645 		return (NULL);
1646 	}
1647 
1648 	/*
1649 	 * We need to allocate a new dynamic variable.  The size we need is the
1650 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652 	 * the size of any referred-to data (dsize).  We then round the final
1653 	 * size up to the chunksize for allocation.
1654 	 */
1655 	for (ksize = 0, i = 0; i < nkeys; i++)
1656 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657 
1658 	/*
1659 	 * This should be pretty much impossible, but could happen if, say,
1660 	 * strange DIF specified the tuple.  Ideally, this should be an
1661 	 * assertion and not an error condition -- but that requires that the
1662 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663 	 * bullet-proof.  (That is, it must not be able to be fooled by
1664 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665 	 * solving this would presumably not amount to solving the Halting
1666 	 * Problem -- but it still seems awfully hard.
1667 	 */
1668 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669 	    ksize + dsize > chunksize) {
1670 		dcpu->dtdsc_drops++;
1671 		return (NULL);
1672 	}
1673 
1674 	nstate = DTRACE_DSTATE_EMPTY;
1675 
1676 	do {
1677 retry:
1678 		free = dcpu->dtdsc_free;
1679 
1680 		if (free == NULL) {
1681 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682 			void *rval;
1683 
1684 			if (clean == NULL) {
1685 				/*
1686 				 * We're out of dynamic variable space on
1687 				 * this CPU.  Unless we have tried all CPUs,
1688 				 * we'll try to allocate from a different
1689 				 * CPU.
1690 				 */
1691 				switch (dstate->dtds_state) {
1692 				case DTRACE_DSTATE_CLEAN: {
1693 					void *sp = &dstate->dtds_state;
1694 
1695 					if (++cpu >= NCPU)
1696 						cpu = 0;
1697 
1698 					if (dcpu->dtdsc_dirty != NULL &&
1699 					    nstate == DTRACE_DSTATE_EMPTY)
1700 						nstate = DTRACE_DSTATE_DIRTY;
1701 
1702 					if (dcpu->dtdsc_rinsing != NULL)
1703 						nstate = DTRACE_DSTATE_RINSING;
1704 
1705 					dcpu = &dstate->dtds_percpu[cpu];
1706 
1707 					if (cpu != me)
1708 						goto retry;
1709 
1710 					(void) dtrace_cas32(sp,
1711 					    DTRACE_DSTATE_CLEAN, nstate);
1712 
1713 					/*
1714 					 * To increment the correct bean
1715 					 * counter, take another lap.
1716 					 */
1717 					goto retry;
1718 				}
1719 
1720 				case DTRACE_DSTATE_DIRTY:
1721 					dcpu->dtdsc_dirty_drops++;
1722 					break;
1723 
1724 				case DTRACE_DSTATE_RINSING:
1725 					dcpu->dtdsc_rinsing_drops++;
1726 					break;
1727 
1728 				case DTRACE_DSTATE_EMPTY:
1729 					dcpu->dtdsc_drops++;
1730 					break;
1731 				}
1732 
1733 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734 				return (NULL);
1735 			}
1736 
1737 			/*
1738 			 * The clean list appears to be non-empty.  We want to
1739 			 * move the clean list to the free list; we start by
1740 			 * moving the clean pointer aside.
1741 			 */
1742 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743 			    clean, NULL) != clean) {
1744 				/*
1745 				 * We are in one of two situations:
1746 				 *
1747 				 *  (a)	The clean list was switched to the
1748 				 *	free list by another CPU.
1749 				 *
1750 				 *  (b)	The clean list was added to by the
1751 				 *	cleansing cyclic.
1752 				 *
1753 				 * In either of these situations, we can
1754 				 * just reattempt the free list allocation.
1755 				 */
1756 				goto retry;
1757 			}
1758 
1759 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760 
1761 			/*
1762 			 * Now we'll move the clean list to the free list.
1763 			 * It's impossible for this to fail:  the only way
1764 			 * the free list can be updated is through this
1765 			 * code path, and only one CPU can own the clean list.
1766 			 * Thus, it would only be possible for this to fail if
1767 			 * this code were racing with dtrace_dynvar_clean().
1768 			 * (That is, if dtrace_dynvar_clean() updated the clean
1769 			 * list, and we ended up racing to update the free
1770 			 * list.)  This race is prevented by the dtrace_sync()
1771 			 * in dtrace_dynvar_clean() -- which flushes the
1772 			 * owners of the clean lists out before resetting
1773 			 * the clean lists.
1774 			 */
1775 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776 			ASSERT(rval == NULL);
1777 			goto retry;
1778 		}
1779 
1780 		dvar = free;
1781 		new_free = dvar->dtdv_next;
1782 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783 
1784 	/*
1785 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786 	 * tuple array and copy any referenced key data into the data space
1787 	 * following the tuple array.  As we do this, we relocate dttk_value
1788 	 * in the final tuple to point to the key data address in the chunk.
1789 	 */
1790 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791 	dvar->dtdv_data = (void *)(kdata + ksize);
1792 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793 
1794 	for (i = 0; i < nkeys; i++) {
1795 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796 		size_t kesize = key[i].dttk_size;
1797 
1798 		if (kesize != 0) {
1799 			dtrace_bcopy(
1800 			    (const void *)(uintptr_t)key[i].dttk_value,
1801 			    (void *)kdata, kesize);
1802 			dkey->dttk_value = kdata;
1803 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804 		} else {
1805 			dkey->dttk_value = key[i].dttk_value;
1806 		}
1807 
1808 		dkey->dttk_size = kesize;
1809 	}
1810 
1811 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812 	dvar->dtdv_hashval = hashval;
1813 	dvar->dtdv_next = start;
1814 
1815 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816 		return (dvar);
1817 
1818 	/*
1819 	 * The cas has failed.  Either another CPU is adding an element to
1820 	 * this hash chain, or another CPU is deleting an element from this
1821 	 * hash chain.  The simplest way to deal with both of these cases
1822 	 * (though not necessarily the most efficient) is to free our
1823 	 * allocated block and tail-call ourselves.  Note that the free is
1824 	 * to the dirty list and _not_ to the free list.  This is to prevent
1825 	 * races with allocators, above.
1826 	 */
1827 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828 
1829 	dtrace_membar_producer();
1830 
1831 	do {
1832 		free = dcpu->dtdsc_dirty;
1833 		dvar->dtdv_next = free;
1834 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835 
1836 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837 }
1838 
1839 /*ARGSUSED*/
1840 static void
1841 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842 {
1843 	if ((int64_t)nval < (int64_t)*oval)
1844 		*oval = nval;
1845 }
1846 
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851 	if ((int64_t)nval > (int64_t)*oval)
1852 		*oval = nval;
1853 }
1854 
1855 static void
1856 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857 {
1858 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859 	int64_t val = (int64_t)nval;
1860 
1861 	if (val < 0) {
1862 		for (i = 0; i < zero; i++) {
1863 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864 				quanta[i] += incr;
1865 				return;
1866 			}
1867 		}
1868 	} else {
1869 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871 				quanta[i - 1] += incr;
1872 				return;
1873 			}
1874 		}
1875 
1876 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877 		return;
1878 	}
1879 
1880 	ASSERT(0);
1881 }
1882 
1883 static void
1884 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885 {
1886 	uint64_t arg = *lquanta++;
1887 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890 	int32_t val = (int32_t)nval, level;
1891 
1892 	ASSERT(step != 0);
1893 	ASSERT(levels != 0);
1894 
1895 	if (val < base) {
1896 		/*
1897 		 * This is an underflow.
1898 		 */
1899 		lquanta[0] += incr;
1900 		return;
1901 	}
1902 
1903 	level = (val - base) / step;
1904 
1905 	if (level < levels) {
1906 		lquanta[level + 1] += incr;
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * This is an overflow.
1912 	 */
1913 	lquanta[levels + 1] += incr;
1914 }
1915 
1916 static int
1917 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1918     uint16_t high, uint16_t nsteps, int64_t value)
1919 {
1920 	int64_t this = 1, last, next;
1921 	int base = 1, order;
1922 
1923 	ASSERT(factor <= nsteps);
1924 	ASSERT(nsteps % factor == 0);
1925 
1926 	for (order = 0; order < low; order++)
1927 		this *= factor;
1928 
1929 	/*
1930 	 * If our value is less than our factor taken to the power of the
1931 	 * low order of magnitude, it goes into the zeroth bucket.
1932 	 */
1933 	if (value < (last = this))
1934 		return (0);
1935 
1936 	for (this *= factor; order <= high; order++) {
1937 		int nbuckets = this > nsteps ? nsteps : this;
1938 
1939 		if ((next = this * factor) < this) {
1940 			/*
1941 			 * We should not generally get log/linear quantizations
1942 			 * with a high magnitude that allows 64-bits to
1943 			 * overflow, but we nonetheless protect against this
1944 			 * by explicitly checking for overflow, and clamping
1945 			 * our value accordingly.
1946 			 */
1947 			value = this - 1;
1948 		}
1949 
1950 		if (value < this) {
1951 			/*
1952 			 * If our value lies within this order of magnitude,
1953 			 * determine its position by taking the offset within
1954 			 * the order of magnitude, dividing by the bucket
1955 			 * width, and adding to our (accumulated) base.
1956 			 */
1957 			return (base + (value - last) / (this / nbuckets));
1958 		}
1959 
1960 		base += nbuckets - (nbuckets / factor);
1961 		last = this;
1962 		this = next;
1963 	}
1964 
1965 	/*
1966 	 * Our value is greater than or equal to our factor taken to the
1967 	 * power of one plus the high magnitude -- return the top bucket.
1968 	 */
1969 	return (base);
1970 }
1971 
1972 static void
1973 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1974 {
1975 	uint64_t arg = *llquanta++;
1976 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1977 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1978 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1979 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1980 
1981 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1982 	    low, high, nsteps, nval)] += incr;
1983 }
1984 
1985 /*ARGSUSED*/
1986 static void
1987 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1988 {
1989 	data[0]++;
1990 	data[1] += nval;
1991 }
1992 
1993 /*ARGSUSED*/
1994 static void
1995 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1996 {
1997 	int64_t snval = (int64_t)nval;
1998 	uint64_t tmp[2];
1999 
2000 	data[0]++;
2001 	data[1] += nval;
2002 
2003 	/*
2004 	 * What we want to say here is:
2005 	 *
2006 	 * data[2] += nval * nval;
2007 	 *
2008 	 * But given that nval is 64-bit, we could easily overflow, so
2009 	 * we do this as 128-bit arithmetic.
2010 	 */
2011 	if (snval < 0)
2012 		snval = -snval;
2013 
2014 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2015 	dtrace_add_128(data + 2, tmp, data + 2);
2016 }
2017 
2018 /*ARGSUSED*/
2019 static void
2020 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2021 {
2022 	*oval = *oval + 1;
2023 }
2024 
2025 /*ARGSUSED*/
2026 static void
2027 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2028 {
2029 	*oval += nval;
2030 }
2031 
2032 /*
2033  * Aggregate given the tuple in the principal data buffer, and the aggregating
2034  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2035  * buffer is specified as the buf parameter.  This routine does not return
2036  * failure; if there is no space in the aggregation buffer, the data will be
2037  * dropped, and a corresponding counter incremented.
2038  */
2039 static void
2040 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2041     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2042 {
2043 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2044 	uint32_t i, ndx, size, fsize;
2045 	uint32_t align = sizeof (uint64_t) - 1;
2046 	dtrace_aggbuffer_t *agb;
2047 	dtrace_aggkey_t *key;
2048 	uint32_t hashval = 0, limit, isstr;
2049 	caddr_t tomax, data, kdata;
2050 	dtrace_actkind_t action;
2051 	dtrace_action_t *act;
2052 	uintptr_t offs;
2053 
2054 	if (buf == NULL)
2055 		return;
2056 
2057 	if (!agg->dtag_hasarg) {
2058 		/*
2059 		 * Currently, only quantize() and lquantize() take additional
2060 		 * arguments, and they have the same semantics:  an increment
2061 		 * value that defaults to 1 when not present.  If additional
2062 		 * aggregating actions take arguments, the setting of the
2063 		 * default argument value will presumably have to become more
2064 		 * sophisticated...
2065 		 */
2066 		arg = 1;
2067 	}
2068 
2069 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2070 	size = rec->dtrd_offset - agg->dtag_base;
2071 	fsize = size + rec->dtrd_size;
2072 
2073 	ASSERT(dbuf->dtb_tomax != NULL);
2074 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2075 
2076 	if ((tomax = buf->dtb_tomax) == NULL) {
2077 		dtrace_buffer_drop(buf);
2078 		return;
2079 	}
2080 
2081 	/*
2082 	 * The metastructure is always at the bottom of the buffer.
2083 	 */
2084 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2085 	    sizeof (dtrace_aggbuffer_t));
2086 
2087 	if (buf->dtb_offset == 0) {
2088 		/*
2089 		 * We just kludge up approximately 1/8th of the size to be
2090 		 * buckets.  If this guess ends up being routinely
2091 		 * off-the-mark, we may need to dynamically readjust this
2092 		 * based on past performance.
2093 		 */
2094 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2095 
2096 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2097 		    (uintptr_t)tomax || hashsize == 0) {
2098 			/*
2099 			 * We've been given a ludicrously small buffer;
2100 			 * increment our drop count and leave.
2101 			 */
2102 			dtrace_buffer_drop(buf);
2103 			return;
2104 		}
2105 
2106 		/*
2107 		 * And now, a pathetic attempt to try to get a an odd (or
2108 		 * perchance, a prime) hash size for better hash distribution.
2109 		 */
2110 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2111 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2112 
2113 		agb->dtagb_hashsize = hashsize;
2114 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2115 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2116 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2117 
2118 		for (i = 0; i < agb->dtagb_hashsize; i++)
2119 			agb->dtagb_hash[i] = NULL;
2120 	}
2121 
2122 	ASSERT(agg->dtag_first != NULL);
2123 	ASSERT(agg->dtag_first->dta_intuple);
2124 
2125 	/*
2126 	 * Calculate the hash value based on the key.  Note that we _don't_
2127 	 * include the aggid in the hashing (but we will store it as part of
2128 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2129 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2130 	 * gets good distribution in practice.  The efficacy of the hashing
2131 	 * algorithm (and a comparison with other algorithms) may be found by
2132 	 * running the ::dtrace_aggstat MDB dcmd.
2133 	 */
2134 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2135 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2136 		limit = i + act->dta_rec.dtrd_size;
2137 		ASSERT(limit <= size);
2138 		isstr = DTRACEACT_ISSTRING(act);
2139 
2140 		for (; i < limit; i++) {
2141 			hashval += data[i];
2142 			hashval += (hashval << 10);
2143 			hashval ^= (hashval >> 6);
2144 
2145 			if (isstr && data[i] == '\0')
2146 				break;
2147 		}
2148 	}
2149 
2150 	hashval += (hashval << 3);
2151 	hashval ^= (hashval >> 11);
2152 	hashval += (hashval << 15);
2153 
2154 	/*
2155 	 * Yes, the divide here is expensive -- but it's generally the least
2156 	 * of the performance issues given the amount of data that we iterate
2157 	 * over to compute hash values, compare data, etc.
2158 	 */
2159 	ndx = hashval % agb->dtagb_hashsize;
2160 
2161 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2162 		ASSERT((caddr_t)key >= tomax);
2163 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2164 
2165 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2166 			continue;
2167 
2168 		kdata = key->dtak_data;
2169 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2170 
2171 		for (act = agg->dtag_first; act->dta_intuple;
2172 		    act = act->dta_next) {
2173 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2174 			limit = i + act->dta_rec.dtrd_size;
2175 			ASSERT(limit <= size);
2176 			isstr = DTRACEACT_ISSTRING(act);
2177 
2178 			for (; i < limit; i++) {
2179 				if (kdata[i] != data[i])
2180 					goto next;
2181 
2182 				if (isstr && data[i] == '\0')
2183 					break;
2184 			}
2185 		}
2186 
2187 		if (action != key->dtak_action) {
2188 			/*
2189 			 * We are aggregating on the same value in the same
2190 			 * aggregation with two different aggregating actions.
2191 			 * (This should have been picked up in the compiler,
2192 			 * so we may be dealing with errant or devious DIF.)
2193 			 * This is an error condition; we indicate as much,
2194 			 * and return.
2195 			 */
2196 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2197 			return;
2198 		}
2199 
2200 		/*
2201 		 * This is a hit:  we need to apply the aggregator to
2202 		 * the value at this key.
2203 		 */
2204 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2205 		return;
2206 next:
2207 		continue;
2208 	}
2209 
2210 	/*
2211 	 * We didn't find it.  We need to allocate some zero-filled space,
2212 	 * link it into the hash table appropriately, and apply the aggregator
2213 	 * to the (zero-filled) value.
2214 	 */
2215 	offs = buf->dtb_offset;
2216 	while (offs & (align - 1))
2217 		offs += sizeof (uint32_t);
2218 
2219 	/*
2220 	 * If we don't have enough room to both allocate a new key _and_
2221 	 * its associated data, increment the drop count and return.
2222 	 */
2223 	if ((uintptr_t)tomax + offs + fsize >
2224 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2225 		dtrace_buffer_drop(buf);
2226 		return;
2227 	}
2228 
2229 	/*CONSTCOND*/
2230 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2231 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2232 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2233 
2234 	key->dtak_data = kdata = tomax + offs;
2235 	buf->dtb_offset = offs + fsize;
2236 
2237 	/*
2238 	 * Now copy the data across.
2239 	 */
2240 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2241 
2242 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2243 		kdata[i] = data[i];
2244 
2245 	/*
2246 	 * Because strings are not zeroed out by default, we need to iterate
2247 	 * looking for actions that store strings, and we need to explicitly
2248 	 * pad these strings out with zeroes.
2249 	 */
2250 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2251 		int nul;
2252 
2253 		if (!DTRACEACT_ISSTRING(act))
2254 			continue;
2255 
2256 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2257 		limit = i + act->dta_rec.dtrd_size;
2258 		ASSERT(limit <= size);
2259 
2260 		for (nul = 0; i < limit; i++) {
2261 			if (nul) {
2262 				kdata[i] = '\0';
2263 				continue;
2264 			}
2265 
2266 			if (data[i] != '\0')
2267 				continue;
2268 
2269 			nul = 1;
2270 		}
2271 	}
2272 
2273 	for (i = size; i < fsize; i++)
2274 		kdata[i] = 0;
2275 
2276 	key->dtak_hashval = hashval;
2277 	key->dtak_size = size;
2278 	key->dtak_action = action;
2279 	key->dtak_next = agb->dtagb_hash[ndx];
2280 	agb->dtagb_hash[ndx] = key;
2281 
2282 	/*
2283 	 * Finally, apply the aggregator.
2284 	 */
2285 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2286 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2287 }
2288 
2289 /*
2290  * Given consumer state, this routine finds a speculation in the INACTIVE
2291  * state and transitions it into the ACTIVE state.  If there is no speculation
2292  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2293  * incremented -- it is up to the caller to take appropriate action.
2294  */
2295 static int
2296 dtrace_speculation(dtrace_state_t *state)
2297 {
2298 	int i = 0;
2299 	dtrace_speculation_state_t current;
2300 	uint32_t *stat = &state->dts_speculations_unavail, count;
2301 
2302 	while (i < state->dts_nspeculations) {
2303 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2304 
2305 		current = spec->dtsp_state;
2306 
2307 		if (current != DTRACESPEC_INACTIVE) {
2308 			if (current == DTRACESPEC_COMMITTINGMANY ||
2309 			    current == DTRACESPEC_COMMITTING ||
2310 			    current == DTRACESPEC_DISCARDING)
2311 				stat = &state->dts_speculations_busy;
2312 			i++;
2313 			continue;
2314 		}
2315 
2316 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2317 		    current, DTRACESPEC_ACTIVE) == current)
2318 			return (i + 1);
2319 	}
2320 
2321 	/*
2322 	 * We couldn't find a speculation.  If we found as much as a single
2323 	 * busy speculation buffer, we'll attribute this failure as "busy"
2324 	 * instead of "unavail".
2325 	 */
2326 	do {
2327 		count = *stat;
2328 	} while (dtrace_cas32(stat, count, count + 1) != count);
2329 
2330 	return (0);
2331 }
2332 
2333 /*
2334  * This routine commits an active speculation.  If the specified speculation
2335  * is not in a valid state to perform a commit(), this routine will silently do
2336  * nothing.  The state of the specified speculation is transitioned according
2337  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2338  */
2339 static void
2340 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2341     dtrace_specid_t which)
2342 {
2343 	dtrace_speculation_t *spec;
2344 	dtrace_buffer_t *src, *dest;
2345 	uintptr_t daddr, saddr, dlimit;
2346 	dtrace_speculation_state_t current, new = 0;
2347 	intptr_t offs;
2348 
2349 	if (which == 0)
2350 		return;
2351 
2352 	if (which > state->dts_nspeculations) {
2353 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2354 		return;
2355 	}
2356 
2357 	spec = &state->dts_speculations[which - 1];
2358 	src = &spec->dtsp_buffer[cpu];
2359 	dest = &state->dts_buffer[cpu];
2360 
2361 	do {
2362 		current = spec->dtsp_state;
2363 
2364 		if (current == DTRACESPEC_COMMITTINGMANY)
2365 			break;
2366 
2367 		switch (current) {
2368 		case DTRACESPEC_INACTIVE:
2369 		case DTRACESPEC_DISCARDING:
2370 			return;
2371 
2372 		case DTRACESPEC_COMMITTING:
2373 			/*
2374 			 * This is only possible if we are (a) commit()'ing
2375 			 * without having done a prior speculate() on this CPU
2376 			 * and (b) racing with another commit() on a different
2377 			 * CPU.  There's nothing to do -- we just assert that
2378 			 * our offset is 0.
2379 			 */
2380 			ASSERT(src->dtb_offset == 0);
2381 			return;
2382 
2383 		case DTRACESPEC_ACTIVE:
2384 			new = DTRACESPEC_COMMITTING;
2385 			break;
2386 
2387 		case DTRACESPEC_ACTIVEONE:
2388 			/*
2389 			 * This speculation is active on one CPU.  If our
2390 			 * buffer offset is non-zero, we know that the one CPU
2391 			 * must be us.  Otherwise, we are committing on a
2392 			 * different CPU from the speculate(), and we must
2393 			 * rely on being asynchronously cleaned.
2394 			 */
2395 			if (src->dtb_offset != 0) {
2396 				new = DTRACESPEC_COMMITTING;
2397 				break;
2398 			}
2399 			/*FALLTHROUGH*/
2400 
2401 		case DTRACESPEC_ACTIVEMANY:
2402 			new = DTRACESPEC_COMMITTINGMANY;
2403 			break;
2404 
2405 		default:
2406 			ASSERT(0);
2407 		}
2408 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2409 	    current, new) != current);
2410 
2411 	/*
2412 	 * We have set the state to indicate that we are committing this
2413 	 * speculation.  Now reserve the necessary space in the destination
2414 	 * buffer.
2415 	 */
2416 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2417 	    sizeof (uint64_t), state, NULL)) < 0) {
2418 		dtrace_buffer_drop(dest);
2419 		goto out;
2420 	}
2421 
2422 	/*
2423 	 * We have the space; copy the buffer across.  (Note that this is a
2424 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2425 	 * a serious performance issue, a high-performance DTrace-specific
2426 	 * bcopy() should obviously be invented.)
2427 	 */
2428 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2429 	dlimit = daddr + src->dtb_offset;
2430 	saddr = (uintptr_t)src->dtb_tomax;
2431 
2432 	/*
2433 	 * First, the aligned portion.
2434 	 */
2435 	while (dlimit - daddr >= sizeof (uint64_t)) {
2436 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2437 
2438 		daddr += sizeof (uint64_t);
2439 		saddr += sizeof (uint64_t);
2440 	}
2441 
2442 	/*
2443 	 * Now any left-over bit...
2444 	 */
2445 	while (dlimit - daddr)
2446 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2447 
2448 	/*
2449 	 * Finally, commit the reserved space in the destination buffer.
2450 	 */
2451 	dest->dtb_offset = offs + src->dtb_offset;
2452 
2453 out:
2454 	/*
2455 	 * If we're lucky enough to be the only active CPU on this speculation
2456 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2457 	 */
2458 	if (current == DTRACESPEC_ACTIVE ||
2459 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2460 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2461 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2462 
2463 		ASSERT(rval == DTRACESPEC_COMMITTING);
2464 	}
2465 
2466 	src->dtb_offset = 0;
2467 	src->dtb_xamot_drops += src->dtb_drops;
2468 	src->dtb_drops = 0;
2469 }
2470 
2471 /*
2472  * This routine discards an active speculation.  If the specified speculation
2473  * is not in a valid state to perform a discard(), this routine will silently
2474  * do nothing.  The state of the specified speculation is transitioned
2475  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2476  */
2477 static void
2478 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2479     dtrace_specid_t which)
2480 {
2481 	dtrace_speculation_t *spec;
2482 	dtrace_speculation_state_t current, new = 0;
2483 	dtrace_buffer_t *buf;
2484 
2485 	if (which == 0)
2486 		return;
2487 
2488 	if (which > state->dts_nspeculations) {
2489 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2490 		return;
2491 	}
2492 
2493 	spec = &state->dts_speculations[which - 1];
2494 	buf = &spec->dtsp_buffer[cpu];
2495 
2496 	do {
2497 		current = spec->dtsp_state;
2498 
2499 		switch (current) {
2500 		case DTRACESPEC_INACTIVE:
2501 		case DTRACESPEC_COMMITTINGMANY:
2502 		case DTRACESPEC_COMMITTING:
2503 		case DTRACESPEC_DISCARDING:
2504 			return;
2505 
2506 		case DTRACESPEC_ACTIVE:
2507 		case DTRACESPEC_ACTIVEMANY:
2508 			new = DTRACESPEC_DISCARDING;
2509 			break;
2510 
2511 		case DTRACESPEC_ACTIVEONE:
2512 			if (buf->dtb_offset != 0) {
2513 				new = DTRACESPEC_INACTIVE;
2514 			} else {
2515 				new = DTRACESPEC_DISCARDING;
2516 			}
2517 			break;
2518 
2519 		default:
2520 			ASSERT(0);
2521 		}
2522 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2523 	    current, new) != current);
2524 
2525 	buf->dtb_offset = 0;
2526 	buf->dtb_drops = 0;
2527 }
2528 
2529 /*
2530  * Note:  not called from probe context.  This function is called
2531  * asynchronously from cross call context to clean any speculations that are
2532  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2533  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2534  * speculation.
2535  */
2536 static void
2537 dtrace_speculation_clean_here(dtrace_state_t *state)
2538 {
2539 	dtrace_icookie_t cookie;
2540 	processorid_t cpu = curcpu;
2541 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2542 	dtrace_specid_t i;
2543 
2544 	cookie = dtrace_interrupt_disable();
2545 
2546 	if (dest->dtb_tomax == NULL) {
2547 		dtrace_interrupt_enable(cookie);
2548 		return;
2549 	}
2550 
2551 	for (i = 0; i < state->dts_nspeculations; i++) {
2552 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2553 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2554 
2555 		if (src->dtb_tomax == NULL)
2556 			continue;
2557 
2558 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2559 			src->dtb_offset = 0;
2560 			continue;
2561 		}
2562 
2563 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2564 			continue;
2565 
2566 		if (src->dtb_offset == 0)
2567 			continue;
2568 
2569 		dtrace_speculation_commit(state, cpu, i + 1);
2570 	}
2571 
2572 	dtrace_interrupt_enable(cookie);
2573 }
2574 
2575 /*
2576  * Note:  not called from probe context.  This function is called
2577  * asynchronously (and at a regular interval) to clean any speculations that
2578  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2579  * is work to be done, it cross calls all CPUs to perform that work;
2580  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2581  * INACTIVE state until they have been cleaned by all CPUs.
2582  */
2583 static void
2584 dtrace_speculation_clean(dtrace_state_t *state)
2585 {
2586 	int work = 0, rv;
2587 	dtrace_specid_t i;
2588 
2589 	for (i = 0; i < state->dts_nspeculations; i++) {
2590 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2591 
2592 		ASSERT(!spec->dtsp_cleaning);
2593 
2594 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2595 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2596 			continue;
2597 
2598 		work++;
2599 		spec->dtsp_cleaning = 1;
2600 	}
2601 
2602 	if (!work)
2603 		return;
2604 
2605 	dtrace_xcall(DTRACE_CPUALL,
2606 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2607 
2608 	/*
2609 	 * We now know that all CPUs have committed or discarded their
2610 	 * speculation buffers, as appropriate.  We can now set the state
2611 	 * to inactive.
2612 	 */
2613 	for (i = 0; i < state->dts_nspeculations; i++) {
2614 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2615 		dtrace_speculation_state_t current, new;
2616 
2617 		if (!spec->dtsp_cleaning)
2618 			continue;
2619 
2620 		current = spec->dtsp_state;
2621 		ASSERT(current == DTRACESPEC_DISCARDING ||
2622 		    current == DTRACESPEC_COMMITTINGMANY);
2623 
2624 		new = DTRACESPEC_INACTIVE;
2625 
2626 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2627 		ASSERT(rv == current);
2628 		spec->dtsp_cleaning = 0;
2629 	}
2630 }
2631 
2632 /*
2633  * Called as part of a speculate() to get the speculative buffer associated
2634  * with a given speculation.  Returns NULL if the specified speculation is not
2635  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2636  * the active CPU is not the specified CPU -- the speculation will be
2637  * atomically transitioned into the ACTIVEMANY state.
2638  */
2639 static dtrace_buffer_t *
2640 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2641     dtrace_specid_t which)
2642 {
2643 	dtrace_speculation_t *spec;
2644 	dtrace_speculation_state_t current, new = 0;
2645 	dtrace_buffer_t *buf;
2646 
2647 	if (which == 0)
2648 		return (NULL);
2649 
2650 	if (which > state->dts_nspeculations) {
2651 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2652 		return (NULL);
2653 	}
2654 
2655 	spec = &state->dts_speculations[which - 1];
2656 	buf = &spec->dtsp_buffer[cpuid];
2657 
2658 	do {
2659 		current = spec->dtsp_state;
2660 
2661 		switch (current) {
2662 		case DTRACESPEC_INACTIVE:
2663 		case DTRACESPEC_COMMITTINGMANY:
2664 		case DTRACESPEC_DISCARDING:
2665 			return (NULL);
2666 
2667 		case DTRACESPEC_COMMITTING:
2668 			ASSERT(buf->dtb_offset == 0);
2669 			return (NULL);
2670 
2671 		case DTRACESPEC_ACTIVEONE:
2672 			/*
2673 			 * This speculation is currently active on one CPU.
2674 			 * Check the offset in the buffer; if it's non-zero,
2675 			 * that CPU must be us (and we leave the state alone).
2676 			 * If it's zero, assume that we're starting on a new
2677 			 * CPU -- and change the state to indicate that the
2678 			 * speculation is active on more than one CPU.
2679 			 */
2680 			if (buf->dtb_offset != 0)
2681 				return (buf);
2682 
2683 			new = DTRACESPEC_ACTIVEMANY;
2684 			break;
2685 
2686 		case DTRACESPEC_ACTIVEMANY:
2687 			return (buf);
2688 
2689 		case DTRACESPEC_ACTIVE:
2690 			new = DTRACESPEC_ACTIVEONE;
2691 			break;
2692 
2693 		default:
2694 			ASSERT(0);
2695 		}
2696 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2697 	    current, new) != current);
2698 
2699 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2700 	return (buf);
2701 }
2702 
2703 /*
2704  * Return a string.  In the event that the user lacks the privilege to access
2705  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2706  * don't fail access checking.
2707  *
2708  * dtrace_dif_variable() uses this routine as a helper for various
2709  * builtin values such as 'execname' and 'probefunc.'
2710  */
2711 uintptr_t
2712 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2713     dtrace_mstate_t *mstate)
2714 {
2715 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2716 	uintptr_t ret;
2717 	size_t strsz;
2718 
2719 	/*
2720 	 * The easy case: this probe is allowed to read all of memory, so
2721 	 * we can just return this as a vanilla pointer.
2722 	 */
2723 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2724 		return (addr);
2725 
2726 	/*
2727 	 * This is the tougher case: we copy the string in question from
2728 	 * kernel memory into scratch memory and return it that way: this
2729 	 * ensures that we won't trip up when access checking tests the
2730 	 * BYREF return value.
2731 	 */
2732 	strsz = dtrace_strlen((char *)addr, size) + 1;
2733 
2734 	if (mstate->dtms_scratch_ptr + strsz >
2735 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2736 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2737 		return (0);
2738 	}
2739 
2740 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2741 	    strsz);
2742 	ret = mstate->dtms_scratch_ptr;
2743 	mstate->dtms_scratch_ptr += strsz;
2744 	return (ret);
2745 }
2746 
2747 /*
2748  * Return a string from a memoy address which is known to have one or
2749  * more concatenated, individually zero terminated, sub-strings.
2750  * In the event that the user lacks the privilege to access
2751  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2752  * don't fail access checking.
2753  *
2754  * dtrace_dif_variable() uses this routine as a helper for various
2755  * builtin values such as 'execargs'.
2756  */
2757 static uintptr_t
2758 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2759     dtrace_mstate_t *mstate)
2760 {
2761 	char *p;
2762 	size_t i;
2763 	uintptr_t ret;
2764 
2765 	if (mstate->dtms_scratch_ptr + strsz >
2766 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2767 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2768 		return (0);
2769 	}
2770 
2771 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2772 	    strsz);
2773 
2774 	/* Replace sub-string termination characters with a space. */
2775 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2776 	    p++, i++)
2777 		if (*p == '\0')
2778 			*p = ' ';
2779 
2780 	ret = mstate->dtms_scratch_ptr;
2781 	mstate->dtms_scratch_ptr += strsz;
2782 	return (ret);
2783 }
2784 
2785 /*
2786  * This function implements the DIF emulator's variable lookups.  The emulator
2787  * passes a reserved variable identifier and optional built-in array index.
2788  */
2789 static uint64_t
2790 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2791     uint64_t ndx)
2792 {
2793 	/*
2794 	 * If we're accessing one of the uncached arguments, we'll turn this
2795 	 * into a reference in the args array.
2796 	 */
2797 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2798 		ndx = v - DIF_VAR_ARG0;
2799 		v = DIF_VAR_ARGS;
2800 	}
2801 
2802 	switch (v) {
2803 	case DIF_VAR_ARGS:
2804 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2805 		if (ndx >= sizeof (mstate->dtms_arg) /
2806 		    sizeof (mstate->dtms_arg[0])) {
2807 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2808 			dtrace_provider_t *pv;
2809 			uint64_t val;
2810 
2811 			pv = mstate->dtms_probe->dtpr_provider;
2812 			if (pv->dtpv_pops.dtps_getargval != NULL)
2813 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2814 				    mstate->dtms_probe->dtpr_id,
2815 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2816 			else
2817 				val = dtrace_getarg(ndx, aframes);
2818 
2819 			/*
2820 			 * This is regrettably required to keep the compiler
2821 			 * from tail-optimizing the call to dtrace_getarg().
2822 			 * The condition always evaluates to true, but the
2823 			 * compiler has no way of figuring that out a priori.
2824 			 * (None of this would be necessary if the compiler
2825 			 * could be relied upon to _always_ tail-optimize
2826 			 * the call to dtrace_getarg() -- but it can't.)
2827 			 */
2828 			if (mstate->dtms_probe != NULL)
2829 				return (val);
2830 
2831 			ASSERT(0);
2832 		}
2833 
2834 		return (mstate->dtms_arg[ndx]);
2835 
2836 #if defined(sun)
2837 	case DIF_VAR_UREGS: {
2838 		klwp_t *lwp;
2839 
2840 		if (!dtrace_priv_proc(state))
2841 			return (0);
2842 
2843 		if ((lwp = curthread->t_lwp) == NULL) {
2844 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2845 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2846 			return (0);
2847 		}
2848 
2849 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2850 		return (0);
2851 	}
2852 #else
2853 	case DIF_VAR_UREGS: {
2854 		struct trapframe *tframe;
2855 
2856 		if (!dtrace_priv_proc(state))
2857 			return (0);
2858 
2859 		if ((tframe = curthread->td_frame) == NULL) {
2860 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2861 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2862 			return (0);
2863 		}
2864 
2865 		return (dtrace_getreg(tframe, ndx));
2866 	}
2867 #endif
2868 
2869 	case DIF_VAR_CURTHREAD:
2870 		if (!dtrace_priv_kernel(state))
2871 			return (0);
2872 		return ((uint64_t)(uintptr_t)curthread);
2873 
2874 	case DIF_VAR_TIMESTAMP:
2875 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2876 			mstate->dtms_timestamp = dtrace_gethrtime();
2877 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2878 		}
2879 		return (mstate->dtms_timestamp);
2880 
2881 	case DIF_VAR_VTIMESTAMP:
2882 		ASSERT(dtrace_vtime_references != 0);
2883 		return (curthread->t_dtrace_vtime);
2884 
2885 	case DIF_VAR_WALLTIMESTAMP:
2886 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2887 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2888 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2889 		}
2890 		return (mstate->dtms_walltimestamp);
2891 
2892 #if defined(sun)
2893 	case DIF_VAR_IPL:
2894 		if (!dtrace_priv_kernel(state))
2895 			return (0);
2896 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2897 			mstate->dtms_ipl = dtrace_getipl();
2898 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2899 		}
2900 		return (mstate->dtms_ipl);
2901 #endif
2902 
2903 	case DIF_VAR_EPID:
2904 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2905 		return (mstate->dtms_epid);
2906 
2907 	case DIF_VAR_ID:
2908 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2909 		return (mstate->dtms_probe->dtpr_id);
2910 
2911 	case DIF_VAR_STACKDEPTH:
2912 		if (!dtrace_priv_kernel(state))
2913 			return (0);
2914 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2915 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2916 
2917 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2918 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2919 		}
2920 		return (mstate->dtms_stackdepth);
2921 
2922 	case DIF_VAR_USTACKDEPTH:
2923 		if (!dtrace_priv_proc(state))
2924 			return (0);
2925 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2926 			/*
2927 			 * See comment in DIF_VAR_PID.
2928 			 */
2929 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2930 			    CPU_ON_INTR(CPU)) {
2931 				mstate->dtms_ustackdepth = 0;
2932 			} else {
2933 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2934 				mstate->dtms_ustackdepth =
2935 				    dtrace_getustackdepth();
2936 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2937 			}
2938 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2939 		}
2940 		return (mstate->dtms_ustackdepth);
2941 
2942 	case DIF_VAR_CALLER:
2943 		if (!dtrace_priv_kernel(state))
2944 			return (0);
2945 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2946 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2947 
2948 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2949 				/*
2950 				 * If this is an unanchored probe, we are
2951 				 * required to go through the slow path:
2952 				 * dtrace_caller() only guarantees correct
2953 				 * results for anchored probes.
2954 				 */
2955 				pc_t caller[2] = {0, 0};
2956 
2957 				dtrace_getpcstack(caller, 2, aframes,
2958 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2959 				mstate->dtms_caller = caller[1];
2960 			} else if ((mstate->dtms_caller =
2961 			    dtrace_caller(aframes)) == -1) {
2962 				/*
2963 				 * We have failed to do this the quick way;
2964 				 * we must resort to the slower approach of
2965 				 * calling dtrace_getpcstack().
2966 				 */
2967 				pc_t caller = 0;
2968 
2969 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2970 				mstate->dtms_caller = caller;
2971 			}
2972 
2973 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2974 		}
2975 		return (mstate->dtms_caller);
2976 
2977 	case DIF_VAR_UCALLER:
2978 		if (!dtrace_priv_proc(state))
2979 			return (0);
2980 
2981 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2982 			uint64_t ustack[3];
2983 
2984 			/*
2985 			 * dtrace_getupcstack() fills in the first uint64_t
2986 			 * with the current PID.  The second uint64_t will
2987 			 * be the program counter at user-level.  The third
2988 			 * uint64_t will contain the caller, which is what
2989 			 * we're after.
2990 			 */
2991 			ustack[2] = 0;
2992 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2993 			dtrace_getupcstack(ustack, 3);
2994 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2995 			mstate->dtms_ucaller = ustack[2];
2996 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2997 		}
2998 
2999 		return (mstate->dtms_ucaller);
3000 
3001 	case DIF_VAR_PROBEPROV:
3002 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3003 		return (dtrace_dif_varstr(
3004 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3005 		    state, mstate));
3006 
3007 	case DIF_VAR_PROBEMOD:
3008 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009 		return (dtrace_dif_varstr(
3010 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3011 		    state, mstate));
3012 
3013 	case DIF_VAR_PROBEFUNC:
3014 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015 		return (dtrace_dif_varstr(
3016 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3017 		    state, mstate));
3018 
3019 	case DIF_VAR_PROBENAME:
3020 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021 		return (dtrace_dif_varstr(
3022 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3023 		    state, mstate));
3024 
3025 	case DIF_VAR_PID:
3026 		if (!dtrace_priv_proc(state))
3027 			return (0);
3028 
3029 #if defined(sun)
3030 		/*
3031 		 * Note that we are assuming that an unanchored probe is
3032 		 * always due to a high-level interrupt.  (And we're assuming
3033 		 * that there is only a single high level interrupt.)
3034 		 */
3035 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3036 			return (pid0.pid_id);
3037 
3038 		/*
3039 		 * It is always safe to dereference one's own t_procp pointer:
3040 		 * it always points to a valid, allocated proc structure.
3041 		 * Further, it is always safe to dereference the p_pidp member
3042 		 * of one's own proc structure.  (These are truisms becuase
3043 		 * threads and processes don't clean up their own state --
3044 		 * they leave that task to whomever reaps them.)
3045 		 */
3046 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3047 #else
3048 		return ((uint64_t)curproc->p_pid);
3049 #endif
3050 
3051 	case DIF_VAR_PPID:
3052 		if (!dtrace_priv_proc(state))
3053 			return (0);
3054 
3055 #if defined(sun)
3056 		/*
3057 		 * See comment in DIF_VAR_PID.
3058 		 */
3059 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3060 			return (pid0.pid_id);
3061 
3062 		/*
3063 		 * It is always safe to dereference one's own t_procp pointer:
3064 		 * it always points to a valid, allocated proc structure.
3065 		 * (This is true because threads don't clean up their own
3066 		 * state -- they leave that task to whomever reaps them.)
3067 		 */
3068 		return ((uint64_t)curthread->t_procp->p_ppid);
3069 #else
3070 		return ((uint64_t)curproc->p_pptr->p_pid);
3071 #endif
3072 
3073 	case DIF_VAR_TID:
3074 #if defined(sun)
3075 		/*
3076 		 * See comment in DIF_VAR_PID.
3077 		 */
3078 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3079 			return (0);
3080 #endif
3081 
3082 		return ((uint64_t)curthread->t_tid);
3083 
3084 	case DIF_VAR_EXECARGS: {
3085 		struct pargs *p_args = curthread->td_proc->p_args;
3086 
3087 		if (p_args == NULL)
3088 			return(0);
3089 
3090 		return (dtrace_dif_varstrz(
3091 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3092 	}
3093 
3094 	case DIF_VAR_EXECNAME:
3095 #if defined(sun)
3096 		if (!dtrace_priv_proc(state))
3097 			return (0);
3098 
3099 		/*
3100 		 * See comment in DIF_VAR_PID.
3101 		 */
3102 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3103 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3104 
3105 		/*
3106 		 * It is always safe to dereference one's own t_procp pointer:
3107 		 * it always points to a valid, allocated proc structure.
3108 		 * (This is true because threads don't clean up their own
3109 		 * state -- they leave that task to whomever reaps them.)
3110 		 */
3111 		return (dtrace_dif_varstr(
3112 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3113 		    state, mstate));
3114 #else
3115 		return (dtrace_dif_varstr(
3116 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3117 #endif
3118 
3119 	case DIF_VAR_ZONENAME:
3120 #if defined(sun)
3121 		if (!dtrace_priv_proc(state))
3122 			return (0);
3123 
3124 		/*
3125 		 * See comment in DIF_VAR_PID.
3126 		 */
3127 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3128 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3129 
3130 		/*
3131 		 * It is always safe to dereference one's own t_procp pointer:
3132 		 * it always points to a valid, allocated proc structure.
3133 		 * (This is true because threads don't clean up their own
3134 		 * state -- they leave that task to whomever reaps them.)
3135 		 */
3136 		return (dtrace_dif_varstr(
3137 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3138 		    state, mstate));
3139 #else
3140 		return (0);
3141 #endif
3142 
3143 	case DIF_VAR_UID:
3144 		if (!dtrace_priv_proc(state))
3145 			return (0);
3146 
3147 #if defined(sun)
3148 		/*
3149 		 * See comment in DIF_VAR_PID.
3150 		 */
3151 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3152 			return ((uint64_t)p0.p_cred->cr_uid);
3153 #endif
3154 
3155 		/*
3156 		 * It is always safe to dereference one's own t_procp pointer:
3157 		 * it always points to a valid, allocated proc structure.
3158 		 * (This is true because threads don't clean up their own
3159 		 * state -- they leave that task to whomever reaps them.)
3160 		 *
3161 		 * Additionally, it is safe to dereference one's own process
3162 		 * credential, since this is never NULL after process birth.
3163 		 */
3164 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3165 
3166 	case DIF_VAR_GID:
3167 		if (!dtrace_priv_proc(state))
3168 			return (0);
3169 
3170 #if defined(sun)
3171 		/*
3172 		 * See comment in DIF_VAR_PID.
3173 		 */
3174 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3175 			return ((uint64_t)p0.p_cred->cr_gid);
3176 #endif
3177 
3178 		/*
3179 		 * It is always safe to dereference one's own t_procp pointer:
3180 		 * it always points to a valid, allocated proc structure.
3181 		 * (This is true because threads don't clean up their own
3182 		 * state -- they leave that task to whomever reaps them.)
3183 		 *
3184 		 * Additionally, it is safe to dereference one's own process
3185 		 * credential, since this is never NULL after process birth.
3186 		 */
3187 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3188 
3189 	case DIF_VAR_ERRNO: {
3190 #if defined(sun)
3191 		klwp_t *lwp;
3192 		if (!dtrace_priv_proc(state))
3193 			return (0);
3194 
3195 		/*
3196 		 * See comment in DIF_VAR_PID.
3197 		 */
3198 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3199 			return (0);
3200 
3201 		/*
3202 		 * It is always safe to dereference one's own t_lwp pointer in
3203 		 * the event that this pointer is non-NULL.  (This is true
3204 		 * because threads and lwps don't clean up their own state --
3205 		 * they leave that task to whomever reaps them.)
3206 		 */
3207 		if ((lwp = curthread->t_lwp) == NULL)
3208 			return (0);
3209 
3210 		return ((uint64_t)lwp->lwp_errno);
3211 #else
3212 		return (curthread->td_errno);
3213 #endif
3214 	}
3215 #if !defined(sun)
3216 	case DIF_VAR_CPU: {
3217 		return curcpu;
3218 	}
3219 #endif
3220 	default:
3221 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3222 		return (0);
3223 	}
3224 }
3225 
3226 /*
3227  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3228  * Notice that we don't bother validating the proper number of arguments or
3229  * their types in the tuple stack.  This isn't needed because all argument
3230  * interpretation is safe because of our load safety -- the worst that can
3231  * happen is that a bogus program can obtain bogus results.
3232  */
3233 static void
3234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3235     dtrace_key_t *tupregs, int nargs,
3236     dtrace_mstate_t *mstate, dtrace_state_t *state)
3237 {
3238 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3239 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3240 	dtrace_vstate_t *vstate = &state->dts_vstate;
3241 
3242 #if defined(sun)
3243 	union {
3244 		mutex_impl_t mi;
3245 		uint64_t mx;
3246 	} m;
3247 
3248 	union {
3249 		krwlock_t ri;
3250 		uintptr_t rw;
3251 	} r;
3252 #else
3253 	struct thread *lowner;
3254 	union {
3255 		struct lock_object *li;
3256 		uintptr_t lx;
3257 	} l;
3258 #endif
3259 
3260 	switch (subr) {
3261 	case DIF_SUBR_RAND:
3262 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3263 		break;
3264 
3265 #if defined(sun)
3266 	case DIF_SUBR_MUTEX_OWNED:
3267 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3268 		    mstate, vstate)) {
3269 			regs[rd] = 0;
3270 			break;
3271 		}
3272 
3273 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3274 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3275 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3276 		else
3277 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3278 		break;
3279 
3280 	case DIF_SUBR_MUTEX_OWNER:
3281 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3282 		    mstate, vstate)) {
3283 			regs[rd] = 0;
3284 			break;
3285 		}
3286 
3287 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3288 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3289 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3290 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3291 		else
3292 			regs[rd] = 0;
3293 		break;
3294 
3295 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3296 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3297 		    mstate, vstate)) {
3298 			regs[rd] = 0;
3299 			break;
3300 		}
3301 
3302 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3303 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3304 		break;
3305 
3306 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3307 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308 		    mstate, vstate)) {
3309 			regs[rd] = 0;
3310 			break;
3311 		}
3312 
3313 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3314 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3315 		break;
3316 
3317 	case DIF_SUBR_RW_READ_HELD: {
3318 		uintptr_t tmp;
3319 
3320 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3321 		    mstate, vstate)) {
3322 			regs[rd] = 0;
3323 			break;
3324 		}
3325 
3326 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3327 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3328 		break;
3329 	}
3330 
3331 	case DIF_SUBR_RW_WRITE_HELD:
3332 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3333 		    mstate, vstate)) {
3334 			regs[rd] = 0;
3335 			break;
3336 		}
3337 
3338 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3339 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3340 		break;
3341 
3342 	case DIF_SUBR_RW_ISWRITER:
3343 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3344 		    mstate, vstate)) {
3345 			regs[rd] = 0;
3346 			break;
3347 		}
3348 
3349 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3350 		regs[rd] = _RW_ISWRITER(&r.ri);
3351 		break;
3352 
3353 #else
3354 	case DIF_SUBR_MUTEX_OWNED:
3355 		if (!dtrace_canload(tupregs[0].dttk_value,
3356 			sizeof (struct lock_object), mstate, vstate)) {
3357 			regs[rd] = 0;
3358 			break;
3359 		}
3360 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3361 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3362 		break;
3363 
3364 	case DIF_SUBR_MUTEX_OWNER:
3365 		if (!dtrace_canload(tupregs[0].dttk_value,
3366 			sizeof (struct lock_object), mstate, vstate)) {
3367 			regs[rd] = 0;
3368 			break;
3369 		}
3370 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3371 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3372 		regs[rd] = (uintptr_t)lowner;
3373 		break;
3374 
3375 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3376 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3377 		    mstate, vstate)) {
3378 			regs[rd] = 0;
3379 			break;
3380 		}
3381 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3382 		/* XXX - should be only LC_SLEEPABLE? */
3383 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3384 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3385 		break;
3386 
3387 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3388 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3389 		    mstate, vstate)) {
3390 			regs[rd] = 0;
3391 			break;
3392 		}
3393 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3395 		break;
3396 
3397 	case DIF_SUBR_RW_READ_HELD:
3398 	case DIF_SUBR_SX_SHARED_HELD:
3399 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3400 		    mstate, vstate)) {
3401 			regs[rd] = 0;
3402 			break;
3403 		}
3404 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3405 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3406 		    lowner == NULL;
3407 		break;
3408 
3409 	case DIF_SUBR_RW_WRITE_HELD:
3410 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3411 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3412 		    mstate, vstate)) {
3413 			regs[rd] = 0;
3414 			break;
3415 		}
3416 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3417 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3418 		regs[rd] = (lowner == curthread);
3419 		break;
3420 
3421 	case DIF_SUBR_RW_ISWRITER:
3422 	case DIF_SUBR_SX_ISEXCLUSIVE:
3423 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424 		    mstate, vstate)) {
3425 			regs[rd] = 0;
3426 			break;
3427 		}
3428 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3429 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3430 		    lowner != NULL;
3431 		break;
3432 #endif /* ! defined(sun) */
3433 
3434 	case DIF_SUBR_BCOPY: {
3435 		/*
3436 		 * We need to be sure that the destination is in the scratch
3437 		 * region -- no other region is allowed.
3438 		 */
3439 		uintptr_t src = tupregs[0].dttk_value;
3440 		uintptr_t dest = tupregs[1].dttk_value;
3441 		size_t size = tupregs[2].dttk_value;
3442 
3443 		if (!dtrace_inscratch(dest, size, mstate)) {
3444 			*flags |= CPU_DTRACE_BADADDR;
3445 			*illval = regs[rd];
3446 			break;
3447 		}
3448 
3449 		if (!dtrace_canload(src, size, mstate, vstate)) {
3450 			regs[rd] = 0;
3451 			break;
3452 		}
3453 
3454 		dtrace_bcopy((void *)src, (void *)dest, size);
3455 		break;
3456 	}
3457 
3458 	case DIF_SUBR_ALLOCA:
3459 	case DIF_SUBR_COPYIN: {
3460 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3461 		uint64_t size =
3462 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3463 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3464 
3465 		/*
3466 		 * This action doesn't require any credential checks since
3467 		 * probes will not activate in user contexts to which the
3468 		 * enabling user does not have permissions.
3469 		 */
3470 
3471 		/*
3472 		 * Rounding up the user allocation size could have overflowed
3473 		 * a large, bogus allocation (like -1ULL) to 0.
3474 		 */
3475 		if (scratch_size < size ||
3476 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3477 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3478 			regs[rd] = 0;
3479 			break;
3480 		}
3481 
3482 		if (subr == DIF_SUBR_COPYIN) {
3483 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3484 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3485 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3486 		}
3487 
3488 		mstate->dtms_scratch_ptr += scratch_size;
3489 		regs[rd] = dest;
3490 		break;
3491 	}
3492 
3493 	case DIF_SUBR_COPYINTO: {
3494 		uint64_t size = tupregs[1].dttk_value;
3495 		uintptr_t dest = tupregs[2].dttk_value;
3496 
3497 		/*
3498 		 * This action doesn't require any credential checks since
3499 		 * probes will not activate in user contexts to which the
3500 		 * enabling user does not have permissions.
3501 		 */
3502 		if (!dtrace_inscratch(dest, size, mstate)) {
3503 			*flags |= CPU_DTRACE_BADADDR;
3504 			*illval = regs[rd];
3505 			break;
3506 		}
3507 
3508 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3509 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3510 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3511 		break;
3512 	}
3513 
3514 	case DIF_SUBR_COPYINSTR: {
3515 		uintptr_t dest = mstate->dtms_scratch_ptr;
3516 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3517 
3518 		if (nargs > 1 && tupregs[1].dttk_value < size)
3519 			size = tupregs[1].dttk_value + 1;
3520 
3521 		/*
3522 		 * This action doesn't require any credential checks since
3523 		 * probes will not activate in user contexts to which the
3524 		 * enabling user does not have permissions.
3525 		 */
3526 		if (!DTRACE_INSCRATCH(mstate, size)) {
3527 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3528 			regs[rd] = 0;
3529 			break;
3530 		}
3531 
3532 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3533 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3534 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3535 
3536 		((char *)dest)[size - 1] = '\0';
3537 		mstate->dtms_scratch_ptr += size;
3538 		regs[rd] = dest;
3539 		break;
3540 	}
3541 
3542 #if defined(sun)
3543 	case DIF_SUBR_MSGSIZE:
3544 	case DIF_SUBR_MSGDSIZE: {
3545 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3546 		uintptr_t wptr, rptr;
3547 		size_t count = 0;
3548 		int cont = 0;
3549 
3550 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3551 
3552 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3553 			    vstate)) {
3554 				regs[rd] = 0;
3555 				break;
3556 			}
3557 
3558 			wptr = dtrace_loadptr(baddr +
3559 			    offsetof(mblk_t, b_wptr));
3560 
3561 			rptr = dtrace_loadptr(baddr +
3562 			    offsetof(mblk_t, b_rptr));
3563 
3564 			if (wptr < rptr) {
3565 				*flags |= CPU_DTRACE_BADADDR;
3566 				*illval = tupregs[0].dttk_value;
3567 				break;
3568 			}
3569 
3570 			daddr = dtrace_loadptr(baddr +
3571 			    offsetof(mblk_t, b_datap));
3572 
3573 			baddr = dtrace_loadptr(baddr +
3574 			    offsetof(mblk_t, b_cont));
3575 
3576 			/*
3577 			 * We want to prevent against denial-of-service here,
3578 			 * so we're only going to search the list for
3579 			 * dtrace_msgdsize_max mblks.
3580 			 */
3581 			if (cont++ > dtrace_msgdsize_max) {
3582 				*flags |= CPU_DTRACE_ILLOP;
3583 				break;
3584 			}
3585 
3586 			if (subr == DIF_SUBR_MSGDSIZE) {
3587 				if (dtrace_load8(daddr +
3588 				    offsetof(dblk_t, db_type)) != M_DATA)
3589 					continue;
3590 			}
3591 
3592 			count += wptr - rptr;
3593 		}
3594 
3595 		if (!(*flags & CPU_DTRACE_FAULT))
3596 			regs[rd] = count;
3597 
3598 		break;
3599 	}
3600 #endif
3601 
3602 	case DIF_SUBR_PROGENYOF: {
3603 		pid_t pid = tupregs[0].dttk_value;
3604 		proc_t *p;
3605 		int rval = 0;
3606 
3607 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3608 
3609 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3610 #if defined(sun)
3611 			if (p->p_pidp->pid_id == pid) {
3612 #else
3613 			if (p->p_pid == pid) {
3614 #endif
3615 				rval = 1;
3616 				break;
3617 			}
3618 		}
3619 
3620 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3621 
3622 		regs[rd] = rval;
3623 		break;
3624 	}
3625 
3626 	case DIF_SUBR_SPECULATION:
3627 		regs[rd] = dtrace_speculation(state);
3628 		break;
3629 
3630 	case DIF_SUBR_COPYOUT: {
3631 		uintptr_t kaddr = tupregs[0].dttk_value;
3632 		uintptr_t uaddr = tupregs[1].dttk_value;
3633 		uint64_t size = tupregs[2].dttk_value;
3634 
3635 		if (!dtrace_destructive_disallow &&
3636 		    dtrace_priv_proc_control(state) &&
3637 		    !dtrace_istoxic(kaddr, size)) {
3638 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3639 			dtrace_copyout(kaddr, uaddr, size, flags);
3640 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3641 		}
3642 		break;
3643 	}
3644 
3645 	case DIF_SUBR_COPYOUTSTR: {
3646 		uintptr_t kaddr = tupregs[0].dttk_value;
3647 		uintptr_t uaddr = tupregs[1].dttk_value;
3648 		uint64_t size = tupregs[2].dttk_value;
3649 
3650 		if (!dtrace_destructive_disallow &&
3651 		    dtrace_priv_proc_control(state) &&
3652 		    !dtrace_istoxic(kaddr, size)) {
3653 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3654 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3655 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656 		}
3657 		break;
3658 	}
3659 
3660 	case DIF_SUBR_STRLEN: {
3661 		size_t sz;
3662 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3663 		sz = dtrace_strlen((char *)addr,
3664 		    state->dts_options[DTRACEOPT_STRSIZE]);
3665 
3666 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3667 			regs[rd] = 0;
3668 			break;
3669 		}
3670 
3671 		regs[rd] = sz;
3672 
3673 		break;
3674 	}
3675 
3676 	case DIF_SUBR_STRCHR:
3677 	case DIF_SUBR_STRRCHR: {
3678 		/*
3679 		 * We're going to iterate over the string looking for the
3680 		 * specified character.  We will iterate until we have reached
3681 		 * the string length or we have found the character.  If this
3682 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3683 		 * of the specified character instead of the first.
3684 		 */
3685 		uintptr_t saddr = tupregs[0].dttk_value;
3686 		uintptr_t addr = tupregs[0].dttk_value;
3687 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3688 		char c, target = (char)tupregs[1].dttk_value;
3689 
3690 		for (regs[rd] = 0; addr < limit; addr++) {
3691 			if ((c = dtrace_load8(addr)) == target) {
3692 				regs[rd] = addr;
3693 
3694 				if (subr == DIF_SUBR_STRCHR)
3695 					break;
3696 			}
3697 
3698 			if (c == '\0')
3699 				break;
3700 		}
3701 
3702 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3703 			regs[rd] = 0;
3704 			break;
3705 		}
3706 
3707 		break;
3708 	}
3709 
3710 	case DIF_SUBR_STRSTR:
3711 	case DIF_SUBR_INDEX:
3712 	case DIF_SUBR_RINDEX: {
3713 		/*
3714 		 * We're going to iterate over the string looking for the
3715 		 * specified string.  We will iterate until we have reached
3716 		 * the string length or we have found the string.  (Yes, this
3717 		 * is done in the most naive way possible -- but considering
3718 		 * that the string we're searching for is likely to be
3719 		 * relatively short, the complexity of Rabin-Karp or similar
3720 		 * hardly seems merited.)
3721 		 */
3722 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3723 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3724 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3725 		size_t len = dtrace_strlen(addr, size);
3726 		size_t sublen = dtrace_strlen(substr, size);
3727 		char *limit = addr + len, *orig = addr;
3728 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3729 		int inc = 1;
3730 
3731 		regs[rd] = notfound;
3732 
3733 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3734 			regs[rd] = 0;
3735 			break;
3736 		}
3737 
3738 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3739 		    vstate)) {
3740 			regs[rd] = 0;
3741 			break;
3742 		}
3743 
3744 		/*
3745 		 * strstr() and index()/rindex() have similar semantics if
3746 		 * both strings are the empty string: strstr() returns a
3747 		 * pointer to the (empty) string, and index() and rindex()
3748 		 * both return index 0 (regardless of any position argument).
3749 		 */
3750 		if (sublen == 0 && len == 0) {
3751 			if (subr == DIF_SUBR_STRSTR)
3752 				regs[rd] = (uintptr_t)addr;
3753 			else
3754 				regs[rd] = 0;
3755 			break;
3756 		}
3757 
3758 		if (subr != DIF_SUBR_STRSTR) {
3759 			if (subr == DIF_SUBR_RINDEX) {
3760 				limit = orig - 1;
3761 				addr += len;
3762 				inc = -1;
3763 			}
3764 
3765 			/*
3766 			 * Both index() and rindex() take an optional position
3767 			 * argument that denotes the starting position.
3768 			 */
3769 			if (nargs == 3) {
3770 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3771 
3772 				/*
3773 				 * If the position argument to index() is
3774 				 * negative, Perl implicitly clamps it at
3775 				 * zero.  This semantic is a little surprising
3776 				 * given the special meaning of negative
3777 				 * positions to similar Perl functions like
3778 				 * substr(), but it appears to reflect a
3779 				 * notion that index() can start from a
3780 				 * negative index and increment its way up to
3781 				 * the string.  Given this notion, Perl's
3782 				 * rindex() is at least self-consistent in
3783 				 * that it implicitly clamps positions greater
3784 				 * than the string length to be the string
3785 				 * length.  Where Perl completely loses
3786 				 * coherence, however, is when the specified
3787 				 * substring is the empty string ("").  In
3788 				 * this case, even if the position is
3789 				 * negative, rindex() returns 0 -- and even if
3790 				 * the position is greater than the length,
3791 				 * index() returns the string length.  These
3792 				 * semantics violate the notion that index()
3793 				 * should never return a value less than the
3794 				 * specified position and that rindex() should
3795 				 * never return a value greater than the
3796 				 * specified position.  (One assumes that
3797 				 * these semantics are artifacts of Perl's
3798 				 * implementation and not the results of
3799 				 * deliberate design -- it beggars belief that
3800 				 * even Larry Wall could desire such oddness.)
3801 				 * While in the abstract one would wish for
3802 				 * consistent position semantics across
3803 				 * substr(), index() and rindex() -- or at the
3804 				 * very least self-consistent position
3805 				 * semantics for index() and rindex() -- we
3806 				 * instead opt to keep with the extant Perl
3807 				 * semantics, in all their broken glory.  (Do
3808 				 * we have more desire to maintain Perl's
3809 				 * semantics than Perl does?  Probably.)
3810 				 */
3811 				if (subr == DIF_SUBR_RINDEX) {
3812 					if (pos < 0) {
3813 						if (sublen == 0)
3814 							regs[rd] = 0;
3815 						break;
3816 					}
3817 
3818 					if (pos > len)
3819 						pos = len;
3820 				} else {
3821 					if (pos < 0)
3822 						pos = 0;
3823 
3824 					if (pos >= len) {
3825 						if (sublen == 0)
3826 							regs[rd] = len;
3827 						break;
3828 					}
3829 				}
3830 
3831 				addr = orig + pos;
3832 			}
3833 		}
3834 
3835 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3836 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3837 				if (subr != DIF_SUBR_STRSTR) {
3838 					/*
3839 					 * As D index() and rindex() are
3840 					 * modeled on Perl (and not on awk),
3841 					 * we return a zero-based (and not a
3842 					 * one-based) index.  (For you Perl
3843 					 * weenies: no, we're not going to add
3844 					 * $[ -- and shouldn't you be at a con
3845 					 * or something?)
3846 					 */
3847 					regs[rd] = (uintptr_t)(addr - orig);
3848 					break;
3849 				}
3850 
3851 				ASSERT(subr == DIF_SUBR_STRSTR);
3852 				regs[rd] = (uintptr_t)addr;
3853 				break;
3854 			}
3855 		}
3856 
3857 		break;
3858 	}
3859 
3860 	case DIF_SUBR_STRTOK: {
3861 		uintptr_t addr = tupregs[0].dttk_value;
3862 		uintptr_t tokaddr = tupregs[1].dttk_value;
3863 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3864 		uintptr_t limit, toklimit = tokaddr + size;
3865 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3866 		char *dest = (char *)mstate->dtms_scratch_ptr;
3867 		int i;
3868 
3869 		/*
3870 		 * Check both the token buffer and (later) the input buffer,
3871 		 * since both could be non-scratch addresses.
3872 		 */
3873 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3874 			regs[rd] = 0;
3875 			break;
3876 		}
3877 
3878 		if (!DTRACE_INSCRATCH(mstate, size)) {
3879 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3880 			regs[rd] = 0;
3881 			break;
3882 		}
3883 
3884 		if (addr == 0) {
3885 			/*
3886 			 * If the address specified is NULL, we use our saved
3887 			 * strtok pointer from the mstate.  Note that this
3888 			 * means that the saved strtok pointer is _only_
3889 			 * valid within multiple enablings of the same probe --
3890 			 * it behaves like an implicit clause-local variable.
3891 			 */
3892 			addr = mstate->dtms_strtok;
3893 		} else {
3894 			/*
3895 			 * If the user-specified address is non-NULL we must
3896 			 * access check it.  This is the only time we have
3897 			 * a chance to do so, since this address may reside
3898 			 * in the string table of this clause-- future calls
3899 			 * (when we fetch addr from mstate->dtms_strtok)
3900 			 * would fail this access check.
3901 			 */
3902 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3903 				regs[rd] = 0;
3904 				break;
3905 			}
3906 		}
3907 
3908 		/*
3909 		 * First, zero the token map, and then process the token
3910 		 * string -- setting a bit in the map for every character
3911 		 * found in the token string.
3912 		 */
3913 		for (i = 0; i < sizeof (tokmap); i++)
3914 			tokmap[i] = 0;
3915 
3916 		for (; tokaddr < toklimit; tokaddr++) {
3917 			if ((c = dtrace_load8(tokaddr)) == '\0')
3918 				break;
3919 
3920 			ASSERT((c >> 3) < sizeof (tokmap));
3921 			tokmap[c >> 3] |= (1 << (c & 0x7));
3922 		}
3923 
3924 		for (limit = addr + size; addr < limit; addr++) {
3925 			/*
3926 			 * We're looking for a character that is _not_ contained
3927 			 * in the token string.
3928 			 */
3929 			if ((c = dtrace_load8(addr)) == '\0')
3930 				break;
3931 
3932 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3933 				break;
3934 		}
3935 
3936 		if (c == '\0') {
3937 			/*
3938 			 * We reached the end of the string without finding
3939 			 * any character that was not in the token string.
3940 			 * We return NULL in this case, and we set the saved
3941 			 * address to NULL as well.
3942 			 */
3943 			regs[rd] = 0;
3944 			mstate->dtms_strtok = 0;
3945 			break;
3946 		}
3947 
3948 		/*
3949 		 * From here on, we're copying into the destination string.
3950 		 */
3951 		for (i = 0; addr < limit && i < size - 1; addr++) {
3952 			if ((c = dtrace_load8(addr)) == '\0')
3953 				break;
3954 
3955 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3956 				break;
3957 
3958 			ASSERT(i < size);
3959 			dest[i++] = c;
3960 		}
3961 
3962 		ASSERT(i < size);
3963 		dest[i] = '\0';
3964 		regs[rd] = (uintptr_t)dest;
3965 		mstate->dtms_scratch_ptr += size;
3966 		mstate->dtms_strtok = addr;
3967 		break;
3968 	}
3969 
3970 	case DIF_SUBR_SUBSTR: {
3971 		uintptr_t s = tupregs[0].dttk_value;
3972 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3973 		char *d = (char *)mstate->dtms_scratch_ptr;
3974 		int64_t index = (int64_t)tupregs[1].dttk_value;
3975 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3976 		size_t len = dtrace_strlen((char *)s, size);
3977 		int64_t i = 0;
3978 
3979 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3980 			regs[rd] = 0;
3981 			break;
3982 		}
3983 
3984 		if (!DTRACE_INSCRATCH(mstate, size)) {
3985 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986 			regs[rd] = 0;
3987 			break;
3988 		}
3989 
3990 		if (nargs <= 2)
3991 			remaining = (int64_t)size;
3992 
3993 		if (index < 0) {
3994 			index += len;
3995 
3996 			if (index < 0 && index + remaining > 0) {
3997 				remaining += index;
3998 				index = 0;
3999 			}
4000 		}
4001 
4002 		if (index >= len || index < 0) {
4003 			remaining = 0;
4004 		} else if (remaining < 0) {
4005 			remaining += len - index;
4006 		} else if (index + remaining > size) {
4007 			remaining = size - index;
4008 		}
4009 
4010 		for (i = 0; i < remaining; i++) {
4011 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4012 				break;
4013 		}
4014 
4015 		d[i] = '\0';
4016 
4017 		mstate->dtms_scratch_ptr += size;
4018 		regs[rd] = (uintptr_t)d;
4019 		break;
4020 	}
4021 
4022 #if defined(sun)
4023 	case DIF_SUBR_GETMAJOR:
4024 #ifdef _LP64
4025 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4026 #else
4027 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4028 #endif
4029 		break;
4030 
4031 	case DIF_SUBR_GETMINOR:
4032 #ifdef _LP64
4033 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4034 #else
4035 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4036 #endif
4037 		break;
4038 
4039 	case DIF_SUBR_DDI_PATHNAME: {
4040 		/*
4041 		 * This one is a galactic mess.  We are going to roughly
4042 		 * emulate ddi_pathname(), but it's made more complicated
4043 		 * by the fact that we (a) want to include the minor name and
4044 		 * (b) must proceed iteratively instead of recursively.
4045 		 */
4046 		uintptr_t dest = mstate->dtms_scratch_ptr;
4047 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4048 		char *start = (char *)dest, *end = start + size - 1;
4049 		uintptr_t daddr = tupregs[0].dttk_value;
4050 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4051 		char *s;
4052 		int i, len, depth = 0;
4053 
4054 		/*
4055 		 * Due to all the pointer jumping we do and context we must
4056 		 * rely upon, we just mandate that the user must have kernel
4057 		 * read privileges to use this routine.
4058 		 */
4059 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4060 			*flags |= CPU_DTRACE_KPRIV;
4061 			*illval = daddr;
4062 			regs[rd] = 0;
4063 		}
4064 
4065 		if (!DTRACE_INSCRATCH(mstate, size)) {
4066 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4067 			regs[rd] = 0;
4068 			break;
4069 		}
4070 
4071 		*end = '\0';
4072 
4073 		/*
4074 		 * We want to have a name for the minor.  In order to do this,
4075 		 * we need to walk the minor list from the devinfo.  We want
4076 		 * to be sure that we don't infinitely walk a circular list,
4077 		 * so we check for circularity by sending a scout pointer
4078 		 * ahead two elements for every element that we iterate over;
4079 		 * if the list is circular, these will ultimately point to the
4080 		 * same element.  You may recognize this little trick as the
4081 		 * answer to a stupid interview question -- one that always
4082 		 * seems to be asked by those who had to have it laboriously
4083 		 * explained to them, and who can't even concisely describe
4084 		 * the conditions under which one would be forced to resort to
4085 		 * this technique.  Needless to say, those conditions are
4086 		 * found here -- and probably only here.  Is this the only use
4087 		 * of this infamous trick in shipping, production code?  If it
4088 		 * isn't, it probably should be...
4089 		 */
4090 		if (minor != -1) {
4091 			uintptr_t maddr = dtrace_loadptr(daddr +
4092 			    offsetof(struct dev_info, devi_minor));
4093 
4094 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4095 			uintptr_t name = offsetof(struct ddi_minor_data,
4096 			    d_minor) + offsetof(struct ddi_minor, name);
4097 			uintptr_t dev = offsetof(struct ddi_minor_data,
4098 			    d_minor) + offsetof(struct ddi_minor, dev);
4099 			uintptr_t scout;
4100 
4101 			if (maddr != NULL)
4102 				scout = dtrace_loadptr(maddr + next);
4103 
4104 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4105 				uint64_t m;
4106 #ifdef _LP64
4107 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4108 #else
4109 				m = dtrace_load32(maddr + dev) & MAXMIN;
4110 #endif
4111 				if (m != minor) {
4112 					maddr = dtrace_loadptr(maddr + next);
4113 
4114 					if (scout == NULL)
4115 						continue;
4116 
4117 					scout = dtrace_loadptr(scout + next);
4118 
4119 					if (scout == NULL)
4120 						continue;
4121 
4122 					scout = dtrace_loadptr(scout + next);
4123 
4124 					if (scout == NULL)
4125 						continue;
4126 
4127 					if (scout == maddr) {
4128 						*flags |= CPU_DTRACE_ILLOP;
4129 						break;
4130 					}
4131 
4132 					continue;
4133 				}
4134 
4135 				/*
4136 				 * We have the minor data.  Now we need to
4137 				 * copy the minor's name into the end of the
4138 				 * pathname.
4139 				 */
4140 				s = (char *)dtrace_loadptr(maddr + name);
4141 				len = dtrace_strlen(s, size);
4142 
4143 				if (*flags & CPU_DTRACE_FAULT)
4144 					break;
4145 
4146 				if (len != 0) {
4147 					if ((end -= (len + 1)) < start)
4148 						break;
4149 
4150 					*end = ':';
4151 				}
4152 
4153 				for (i = 1; i <= len; i++)
4154 					end[i] = dtrace_load8((uintptr_t)s++);
4155 				break;
4156 			}
4157 		}
4158 
4159 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4160 			ddi_node_state_t devi_state;
4161 
4162 			devi_state = dtrace_load32(daddr +
4163 			    offsetof(struct dev_info, devi_node_state));
4164 
4165 			if (*flags & CPU_DTRACE_FAULT)
4166 				break;
4167 
4168 			if (devi_state >= DS_INITIALIZED) {
4169 				s = (char *)dtrace_loadptr(daddr +
4170 				    offsetof(struct dev_info, devi_addr));
4171 				len = dtrace_strlen(s, size);
4172 
4173 				if (*flags & CPU_DTRACE_FAULT)
4174 					break;
4175 
4176 				if (len != 0) {
4177 					if ((end -= (len + 1)) < start)
4178 						break;
4179 
4180 					*end = '@';
4181 				}
4182 
4183 				for (i = 1; i <= len; i++)
4184 					end[i] = dtrace_load8((uintptr_t)s++);
4185 			}
4186 
4187 			/*
4188 			 * Now for the node name...
4189 			 */
4190 			s = (char *)dtrace_loadptr(daddr +
4191 			    offsetof(struct dev_info, devi_node_name));
4192 
4193 			daddr = dtrace_loadptr(daddr +
4194 			    offsetof(struct dev_info, devi_parent));
4195 
4196 			/*
4197 			 * If our parent is NULL (that is, if we're the root
4198 			 * node), we're going to use the special path
4199 			 * "devices".
4200 			 */
4201 			if (daddr == 0)
4202 				s = "devices";
4203 
4204 			len = dtrace_strlen(s, size);
4205 			if (*flags & CPU_DTRACE_FAULT)
4206 				break;
4207 
4208 			if ((end -= (len + 1)) < start)
4209 				break;
4210 
4211 			for (i = 1; i <= len; i++)
4212 				end[i] = dtrace_load8((uintptr_t)s++);
4213 			*end = '/';
4214 
4215 			if (depth++ > dtrace_devdepth_max) {
4216 				*flags |= CPU_DTRACE_ILLOP;
4217 				break;
4218 			}
4219 		}
4220 
4221 		if (end < start)
4222 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4223 
4224 		if (daddr == 0) {
4225 			regs[rd] = (uintptr_t)end;
4226 			mstate->dtms_scratch_ptr += size;
4227 		}
4228 
4229 		break;
4230 	}
4231 #endif
4232 
4233 	case DIF_SUBR_STRJOIN: {
4234 		char *d = (char *)mstate->dtms_scratch_ptr;
4235 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4236 		uintptr_t s1 = tupregs[0].dttk_value;
4237 		uintptr_t s2 = tupregs[1].dttk_value;
4238 		int i = 0;
4239 
4240 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4241 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4242 			regs[rd] = 0;
4243 			break;
4244 		}
4245 
4246 		if (!DTRACE_INSCRATCH(mstate, size)) {
4247 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4248 			regs[rd] = 0;
4249 			break;
4250 		}
4251 
4252 		for (;;) {
4253 			if (i >= size) {
4254 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4255 				regs[rd] = 0;
4256 				break;
4257 			}
4258 
4259 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4260 				i--;
4261 				break;
4262 			}
4263 		}
4264 
4265 		for (;;) {
4266 			if (i >= size) {
4267 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4268 				regs[rd] = 0;
4269 				break;
4270 			}
4271 
4272 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4273 				break;
4274 		}
4275 
4276 		if (i < size) {
4277 			mstate->dtms_scratch_ptr += i;
4278 			regs[rd] = (uintptr_t)d;
4279 		}
4280 
4281 		break;
4282 	}
4283 
4284 	case DIF_SUBR_LLTOSTR: {
4285 		int64_t i = (int64_t)tupregs[0].dttk_value;
4286 		int64_t val = i < 0 ? i * -1 : i;
4287 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4288 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4289 
4290 		if (!DTRACE_INSCRATCH(mstate, size)) {
4291 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4292 			regs[rd] = 0;
4293 			break;
4294 		}
4295 
4296 		for (*end-- = '\0'; val; val /= 10)
4297 			*end-- = '0' + (val % 10);
4298 
4299 		if (i == 0)
4300 			*end-- = '0';
4301 
4302 		if (i < 0)
4303 			*end-- = '-';
4304 
4305 		regs[rd] = (uintptr_t)end + 1;
4306 		mstate->dtms_scratch_ptr += size;
4307 		break;
4308 	}
4309 
4310 	case DIF_SUBR_HTONS:
4311 	case DIF_SUBR_NTOHS:
4312 #if BYTE_ORDER == BIG_ENDIAN
4313 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4314 #else
4315 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4316 #endif
4317 		break;
4318 
4319 
4320 	case DIF_SUBR_HTONL:
4321 	case DIF_SUBR_NTOHL:
4322 #if BYTE_ORDER == BIG_ENDIAN
4323 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4324 #else
4325 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4326 #endif
4327 		break;
4328 
4329 
4330 	case DIF_SUBR_HTONLL:
4331 	case DIF_SUBR_NTOHLL:
4332 #if BYTE_ORDER == BIG_ENDIAN
4333 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4334 #else
4335 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4336 #endif
4337 		break;
4338 
4339 
4340 	case DIF_SUBR_DIRNAME:
4341 	case DIF_SUBR_BASENAME: {
4342 		char *dest = (char *)mstate->dtms_scratch_ptr;
4343 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4344 		uintptr_t src = tupregs[0].dttk_value;
4345 		int i, j, len = dtrace_strlen((char *)src, size);
4346 		int lastbase = -1, firstbase = -1, lastdir = -1;
4347 		int start, end;
4348 
4349 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4350 			regs[rd] = 0;
4351 			break;
4352 		}
4353 
4354 		if (!DTRACE_INSCRATCH(mstate, size)) {
4355 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4356 			regs[rd] = 0;
4357 			break;
4358 		}
4359 
4360 		/*
4361 		 * The basename and dirname for a zero-length string is
4362 		 * defined to be "."
4363 		 */
4364 		if (len == 0) {
4365 			len = 1;
4366 			src = (uintptr_t)".";
4367 		}
4368 
4369 		/*
4370 		 * Start from the back of the string, moving back toward the
4371 		 * front until we see a character that isn't a slash.  That
4372 		 * character is the last character in the basename.
4373 		 */
4374 		for (i = len - 1; i >= 0; i--) {
4375 			if (dtrace_load8(src + i) != '/')
4376 				break;
4377 		}
4378 
4379 		if (i >= 0)
4380 			lastbase = i;
4381 
4382 		/*
4383 		 * Starting from the last character in the basename, move
4384 		 * towards the front until we find a slash.  The character
4385 		 * that we processed immediately before that is the first
4386 		 * character in the basename.
4387 		 */
4388 		for (; i >= 0; i--) {
4389 			if (dtrace_load8(src + i) == '/')
4390 				break;
4391 		}
4392 
4393 		if (i >= 0)
4394 			firstbase = i + 1;
4395 
4396 		/*
4397 		 * Now keep going until we find a non-slash character.  That
4398 		 * character is the last character in the dirname.
4399 		 */
4400 		for (; i >= 0; i--) {
4401 			if (dtrace_load8(src + i) != '/')
4402 				break;
4403 		}
4404 
4405 		if (i >= 0)
4406 			lastdir = i;
4407 
4408 		ASSERT(!(lastbase == -1 && firstbase != -1));
4409 		ASSERT(!(firstbase == -1 && lastdir != -1));
4410 
4411 		if (lastbase == -1) {
4412 			/*
4413 			 * We didn't find a non-slash character.  We know that
4414 			 * the length is non-zero, so the whole string must be
4415 			 * slashes.  In either the dirname or the basename
4416 			 * case, we return '/'.
4417 			 */
4418 			ASSERT(firstbase == -1);
4419 			firstbase = lastbase = lastdir = 0;
4420 		}
4421 
4422 		if (firstbase == -1) {
4423 			/*
4424 			 * The entire string consists only of a basename
4425 			 * component.  If we're looking for dirname, we need
4426 			 * to change our string to be just "."; if we're
4427 			 * looking for a basename, we'll just set the first
4428 			 * character of the basename to be 0.
4429 			 */
4430 			if (subr == DIF_SUBR_DIRNAME) {
4431 				ASSERT(lastdir == -1);
4432 				src = (uintptr_t)".";
4433 				lastdir = 0;
4434 			} else {
4435 				firstbase = 0;
4436 			}
4437 		}
4438 
4439 		if (subr == DIF_SUBR_DIRNAME) {
4440 			if (lastdir == -1) {
4441 				/*
4442 				 * We know that we have a slash in the name --
4443 				 * or lastdir would be set to 0, above.  And
4444 				 * because lastdir is -1, we know that this
4445 				 * slash must be the first character.  (That
4446 				 * is, the full string must be of the form
4447 				 * "/basename".)  In this case, the last
4448 				 * character of the directory name is 0.
4449 				 */
4450 				lastdir = 0;
4451 			}
4452 
4453 			start = 0;
4454 			end = lastdir;
4455 		} else {
4456 			ASSERT(subr == DIF_SUBR_BASENAME);
4457 			ASSERT(firstbase != -1 && lastbase != -1);
4458 			start = firstbase;
4459 			end = lastbase;
4460 		}
4461 
4462 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4463 			dest[j] = dtrace_load8(src + i);
4464 
4465 		dest[j] = '\0';
4466 		regs[rd] = (uintptr_t)dest;
4467 		mstate->dtms_scratch_ptr += size;
4468 		break;
4469 	}
4470 
4471 	case DIF_SUBR_CLEANPATH: {
4472 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4473 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4474 		uintptr_t src = tupregs[0].dttk_value;
4475 		int i = 0, j = 0;
4476 
4477 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4478 			regs[rd] = 0;
4479 			break;
4480 		}
4481 
4482 		if (!DTRACE_INSCRATCH(mstate, size)) {
4483 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4484 			regs[rd] = 0;
4485 			break;
4486 		}
4487 
4488 		/*
4489 		 * Move forward, loading each character.
4490 		 */
4491 		do {
4492 			c = dtrace_load8(src + i++);
4493 next:
4494 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4495 				break;
4496 
4497 			if (c != '/') {
4498 				dest[j++] = c;
4499 				continue;
4500 			}
4501 
4502 			c = dtrace_load8(src + i++);
4503 
4504 			if (c == '/') {
4505 				/*
4506 				 * We have two slashes -- we can just advance
4507 				 * to the next character.
4508 				 */
4509 				goto next;
4510 			}
4511 
4512 			if (c != '.') {
4513 				/*
4514 				 * This is not "." and it's not ".." -- we can
4515 				 * just store the "/" and this character and
4516 				 * drive on.
4517 				 */
4518 				dest[j++] = '/';
4519 				dest[j++] = c;
4520 				continue;
4521 			}
4522 
4523 			c = dtrace_load8(src + i++);
4524 
4525 			if (c == '/') {
4526 				/*
4527 				 * This is a "/./" component.  We're not going
4528 				 * to store anything in the destination buffer;
4529 				 * we're just going to go to the next component.
4530 				 */
4531 				goto next;
4532 			}
4533 
4534 			if (c != '.') {
4535 				/*
4536 				 * This is not ".." -- we can just store the
4537 				 * "/." and this character and continue
4538 				 * processing.
4539 				 */
4540 				dest[j++] = '/';
4541 				dest[j++] = '.';
4542 				dest[j++] = c;
4543 				continue;
4544 			}
4545 
4546 			c = dtrace_load8(src + i++);
4547 
4548 			if (c != '/' && c != '\0') {
4549 				/*
4550 				 * This is not ".." -- it's "..[mumble]".
4551 				 * We'll store the "/.." and this character
4552 				 * and continue processing.
4553 				 */
4554 				dest[j++] = '/';
4555 				dest[j++] = '.';
4556 				dest[j++] = '.';
4557 				dest[j++] = c;
4558 				continue;
4559 			}
4560 
4561 			/*
4562 			 * This is "/../" or "/..\0".  We need to back up
4563 			 * our destination pointer until we find a "/".
4564 			 */
4565 			i--;
4566 			while (j != 0 && dest[--j] != '/')
4567 				continue;
4568 
4569 			if (c == '\0')
4570 				dest[++j] = '/';
4571 		} while (c != '\0');
4572 
4573 		dest[j] = '\0';
4574 		regs[rd] = (uintptr_t)dest;
4575 		mstate->dtms_scratch_ptr += size;
4576 		break;
4577 	}
4578 
4579 	case DIF_SUBR_INET_NTOA:
4580 	case DIF_SUBR_INET_NTOA6:
4581 	case DIF_SUBR_INET_NTOP: {
4582 		size_t size;
4583 		int af, argi, i;
4584 		char *base, *end;
4585 
4586 		if (subr == DIF_SUBR_INET_NTOP) {
4587 			af = (int)tupregs[0].dttk_value;
4588 			argi = 1;
4589 		} else {
4590 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4591 			argi = 0;
4592 		}
4593 
4594 		if (af == AF_INET) {
4595 			ipaddr_t ip4;
4596 			uint8_t *ptr8, val;
4597 
4598 			/*
4599 			 * Safely load the IPv4 address.
4600 			 */
4601 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4602 
4603 			/*
4604 			 * Check an IPv4 string will fit in scratch.
4605 			 */
4606 			size = INET_ADDRSTRLEN;
4607 			if (!DTRACE_INSCRATCH(mstate, size)) {
4608 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4609 				regs[rd] = 0;
4610 				break;
4611 			}
4612 			base = (char *)mstate->dtms_scratch_ptr;
4613 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4614 
4615 			/*
4616 			 * Stringify as a dotted decimal quad.
4617 			 */
4618 			*end-- = '\0';
4619 			ptr8 = (uint8_t *)&ip4;
4620 			for (i = 3; i >= 0; i--) {
4621 				val = ptr8[i];
4622 
4623 				if (val == 0) {
4624 					*end-- = '0';
4625 				} else {
4626 					for (; val; val /= 10) {
4627 						*end-- = '0' + (val % 10);
4628 					}
4629 				}
4630 
4631 				if (i > 0)
4632 					*end-- = '.';
4633 			}
4634 			ASSERT(end + 1 >= base);
4635 
4636 		} else if (af == AF_INET6) {
4637 			struct in6_addr ip6;
4638 			int firstzero, tryzero, numzero, v6end;
4639 			uint16_t val;
4640 			const char digits[] = "0123456789abcdef";
4641 
4642 			/*
4643 			 * Stringify using RFC 1884 convention 2 - 16 bit
4644 			 * hexadecimal values with a zero-run compression.
4645 			 * Lower case hexadecimal digits are used.
4646 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4647 			 * The IPv4 embedded form is returned for inet_ntop,
4648 			 * just the IPv4 string is returned for inet_ntoa6.
4649 			 */
4650 
4651 			/*
4652 			 * Safely load the IPv6 address.
4653 			 */
4654 			dtrace_bcopy(
4655 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4656 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4657 
4658 			/*
4659 			 * Check an IPv6 string will fit in scratch.
4660 			 */
4661 			size = INET6_ADDRSTRLEN;
4662 			if (!DTRACE_INSCRATCH(mstate, size)) {
4663 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4664 				regs[rd] = 0;
4665 				break;
4666 			}
4667 			base = (char *)mstate->dtms_scratch_ptr;
4668 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4669 			*end-- = '\0';
4670 
4671 			/*
4672 			 * Find the longest run of 16 bit zero values
4673 			 * for the single allowed zero compression - "::".
4674 			 */
4675 			firstzero = -1;
4676 			tryzero = -1;
4677 			numzero = 1;
4678 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4679 #if defined(sun)
4680 				if (ip6._S6_un._S6_u8[i] == 0 &&
4681 #else
4682 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4683 #endif
4684 				    tryzero == -1 && i % 2 == 0) {
4685 					tryzero = i;
4686 					continue;
4687 				}
4688 
4689 				if (tryzero != -1 &&
4690 #if defined(sun)
4691 				    (ip6._S6_un._S6_u8[i] != 0 ||
4692 #else
4693 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4694 #endif
4695 				    i == sizeof (struct in6_addr) - 1)) {
4696 
4697 					if (i - tryzero <= numzero) {
4698 						tryzero = -1;
4699 						continue;
4700 					}
4701 
4702 					firstzero = tryzero;
4703 					numzero = i - i % 2 - tryzero;
4704 					tryzero = -1;
4705 
4706 #if defined(sun)
4707 					if (ip6._S6_un._S6_u8[i] == 0 &&
4708 #else
4709 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4710 #endif
4711 					    i == sizeof (struct in6_addr) - 1)
4712 						numzero += 2;
4713 				}
4714 			}
4715 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4716 
4717 			/*
4718 			 * Check for an IPv4 embedded address.
4719 			 */
4720 			v6end = sizeof (struct in6_addr) - 2;
4721 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4722 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4723 				for (i = sizeof (struct in6_addr) - 1;
4724 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4725 					ASSERT(end >= base);
4726 
4727 #if defined(sun)
4728 					val = ip6._S6_un._S6_u8[i];
4729 #else
4730 					val = ip6.__u6_addr.__u6_addr8[i];
4731 #endif
4732 
4733 					if (val == 0) {
4734 						*end-- = '0';
4735 					} else {
4736 						for (; val; val /= 10) {
4737 							*end-- = '0' + val % 10;
4738 						}
4739 					}
4740 
4741 					if (i > DTRACE_V4MAPPED_OFFSET)
4742 						*end-- = '.';
4743 				}
4744 
4745 				if (subr == DIF_SUBR_INET_NTOA6)
4746 					goto inetout;
4747 
4748 				/*
4749 				 * Set v6end to skip the IPv4 address that
4750 				 * we have already stringified.
4751 				 */
4752 				v6end = 10;
4753 			}
4754 
4755 			/*
4756 			 * Build the IPv6 string by working through the
4757 			 * address in reverse.
4758 			 */
4759 			for (i = v6end; i >= 0; i -= 2) {
4760 				ASSERT(end >= base);
4761 
4762 				if (i == firstzero + numzero - 2) {
4763 					*end-- = ':';
4764 					*end-- = ':';
4765 					i -= numzero - 2;
4766 					continue;
4767 				}
4768 
4769 				if (i < 14 && i != firstzero - 2)
4770 					*end-- = ':';
4771 
4772 #if defined(sun)
4773 				val = (ip6._S6_un._S6_u8[i] << 8) +
4774 				    ip6._S6_un._S6_u8[i + 1];
4775 #else
4776 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4777 				    ip6.__u6_addr.__u6_addr8[i + 1];
4778 #endif
4779 
4780 				if (val == 0) {
4781 					*end-- = '0';
4782 				} else {
4783 					for (; val; val /= 16) {
4784 						*end-- = digits[val % 16];
4785 					}
4786 				}
4787 			}
4788 			ASSERT(end + 1 >= base);
4789 
4790 		} else {
4791 			/*
4792 			 * The user didn't use AH_INET or AH_INET6.
4793 			 */
4794 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4795 			regs[rd] = 0;
4796 			break;
4797 		}
4798 
4799 inetout:	regs[rd] = (uintptr_t)end + 1;
4800 		mstate->dtms_scratch_ptr += size;
4801 		break;
4802 	}
4803 
4804 	case DIF_SUBR_MEMREF: {
4805 		uintptr_t size = 2 * sizeof(uintptr_t);
4806 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4807 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4808 
4809 		/* address and length */
4810 		memref[0] = tupregs[0].dttk_value;
4811 		memref[1] = tupregs[1].dttk_value;
4812 
4813 		regs[rd] = (uintptr_t) memref;
4814 		mstate->dtms_scratch_ptr += scratch_size;
4815 		break;
4816 	}
4817 
4818 	case DIF_SUBR_TYPEREF: {
4819 		uintptr_t size = 4 * sizeof(uintptr_t);
4820 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4821 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4822 
4823 		/* address, num_elements, type_str, type_len */
4824 		typeref[0] = tupregs[0].dttk_value;
4825 		typeref[1] = tupregs[1].dttk_value;
4826 		typeref[2] = tupregs[2].dttk_value;
4827 		typeref[3] = tupregs[3].dttk_value;
4828 
4829 		regs[rd] = (uintptr_t) typeref;
4830 		mstate->dtms_scratch_ptr += scratch_size;
4831 		break;
4832 	}
4833 	}
4834 }
4835 
4836 /*
4837  * Emulate the execution of DTrace IR instructions specified by the given
4838  * DIF object.  This function is deliberately void of assertions as all of
4839  * the necessary checks are handled by a call to dtrace_difo_validate().
4840  */
4841 static uint64_t
4842 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4843     dtrace_vstate_t *vstate, dtrace_state_t *state)
4844 {
4845 	const dif_instr_t *text = difo->dtdo_buf;
4846 	const uint_t textlen = difo->dtdo_len;
4847 	const char *strtab = difo->dtdo_strtab;
4848 	const uint64_t *inttab = difo->dtdo_inttab;
4849 
4850 	uint64_t rval = 0;
4851 	dtrace_statvar_t *svar;
4852 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4853 	dtrace_difv_t *v;
4854 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4855 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4856 
4857 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4858 	uint64_t regs[DIF_DIR_NREGS];
4859 	uint64_t *tmp;
4860 
4861 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4862 	int64_t cc_r;
4863 	uint_t pc = 0, id, opc = 0;
4864 	uint8_t ttop = 0;
4865 	dif_instr_t instr;
4866 	uint_t r1, r2, rd;
4867 
4868 	/*
4869 	 * We stash the current DIF object into the machine state: we need it
4870 	 * for subsequent access checking.
4871 	 */
4872 	mstate->dtms_difo = difo;
4873 
4874 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4875 
4876 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4877 		opc = pc;
4878 
4879 		instr = text[pc++];
4880 		r1 = DIF_INSTR_R1(instr);
4881 		r2 = DIF_INSTR_R2(instr);
4882 		rd = DIF_INSTR_RD(instr);
4883 
4884 		switch (DIF_INSTR_OP(instr)) {
4885 		case DIF_OP_OR:
4886 			regs[rd] = regs[r1] | regs[r2];
4887 			break;
4888 		case DIF_OP_XOR:
4889 			regs[rd] = regs[r1] ^ regs[r2];
4890 			break;
4891 		case DIF_OP_AND:
4892 			regs[rd] = regs[r1] & regs[r2];
4893 			break;
4894 		case DIF_OP_SLL:
4895 			regs[rd] = regs[r1] << regs[r2];
4896 			break;
4897 		case DIF_OP_SRL:
4898 			regs[rd] = regs[r1] >> regs[r2];
4899 			break;
4900 		case DIF_OP_SUB:
4901 			regs[rd] = regs[r1] - regs[r2];
4902 			break;
4903 		case DIF_OP_ADD:
4904 			regs[rd] = regs[r1] + regs[r2];
4905 			break;
4906 		case DIF_OP_MUL:
4907 			regs[rd] = regs[r1] * regs[r2];
4908 			break;
4909 		case DIF_OP_SDIV:
4910 			if (regs[r2] == 0) {
4911 				regs[rd] = 0;
4912 				*flags |= CPU_DTRACE_DIVZERO;
4913 			} else {
4914 				regs[rd] = (int64_t)regs[r1] /
4915 				    (int64_t)regs[r2];
4916 			}
4917 			break;
4918 
4919 		case DIF_OP_UDIV:
4920 			if (regs[r2] == 0) {
4921 				regs[rd] = 0;
4922 				*flags |= CPU_DTRACE_DIVZERO;
4923 			} else {
4924 				regs[rd] = regs[r1] / regs[r2];
4925 			}
4926 			break;
4927 
4928 		case DIF_OP_SREM:
4929 			if (regs[r2] == 0) {
4930 				regs[rd] = 0;
4931 				*flags |= CPU_DTRACE_DIVZERO;
4932 			} else {
4933 				regs[rd] = (int64_t)regs[r1] %
4934 				    (int64_t)regs[r2];
4935 			}
4936 			break;
4937 
4938 		case DIF_OP_UREM:
4939 			if (regs[r2] == 0) {
4940 				regs[rd] = 0;
4941 				*flags |= CPU_DTRACE_DIVZERO;
4942 			} else {
4943 				regs[rd] = regs[r1] % regs[r2];
4944 			}
4945 			break;
4946 
4947 		case DIF_OP_NOT:
4948 			regs[rd] = ~regs[r1];
4949 			break;
4950 		case DIF_OP_MOV:
4951 			regs[rd] = regs[r1];
4952 			break;
4953 		case DIF_OP_CMP:
4954 			cc_r = regs[r1] - regs[r2];
4955 			cc_n = cc_r < 0;
4956 			cc_z = cc_r == 0;
4957 			cc_v = 0;
4958 			cc_c = regs[r1] < regs[r2];
4959 			break;
4960 		case DIF_OP_TST:
4961 			cc_n = cc_v = cc_c = 0;
4962 			cc_z = regs[r1] == 0;
4963 			break;
4964 		case DIF_OP_BA:
4965 			pc = DIF_INSTR_LABEL(instr);
4966 			break;
4967 		case DIF_OP_BE:
4968 			if (cc_z)
4969 				pc = DIF_INSTR_LABEL(instr);
4970 			break;
4971 		case DIF_OP_BNE:
4972 			if (cc_z == 0)
4973 				pc = DIF_INSTR_LABEL(instr);
4974 			break;
4975 		case DIF_OP_BG:
4976 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4977 				pc = DIF_INSTR_LABEL(instr);
4978 			break;
4979 		case DIF_OP_BGU:
4980 			if ((cc_c | cc_z) == 0)
4981 				pc = DIF_INSTR_LABEL(instr);
4982 			break;
4983 		case DIF_OP_BGE:
4984 			if ((cc_n ^ cc_v) == 0)
4985 				pc = DIF_INSTR_LABEL(instr);
4986 			break;
4987 		case DIF_OP_BGEU:
4988 			if (cc_c == 0)
4989 				pc = DIF_INSTR_LABEL(instr);
4990 			break;
4991 		case DIF_OP_BL:
4992 			if (cc_n ^ cc_v)
4993 				pc = DIF_INSTR_LABEL(instr);
4994 			break;
4995 		case DIF_OP_BLU:
4996 			if (cc_c)
4997 				pc = DIF_INSTR_LABEL(instr);
4998 			break;
4999 		case DIF_OP_BLE:
5000 			if (cc_z | (cc_n ^ cc_v))
5001 				pc = DIF_INSTR_LABEL(instr);
5002 			break;
5003 		case DIF_OP_BLEU:
5004 			if (cc_c | cc_z)
5005 				pc = DIF_INSTR_LABEL(instr);
5006 			break;
5007 		case DIF_OP_RLDSB:
5008 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5009 				*flags |= CPU_DTRACE_KPRIV;
5010 				*illval = regs[r1];
5011 				break;
5012 			}
5013 			/*FALLTHROUGH*/
5014 		case DIF_OP_LDSB:
5015 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5016 			break;
5017 		case DIF_OP_RLDSH:
5018 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5019 				*flags |= CPU_DTRACE_KPRIV;
5020 				*illval = regs[r1];
5021 				break;
5022 			}
5023 			/*FALLTHROUGH*/
5024 		case DIF_OP_LDSH:
5025 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5026 			break;
5027 		case DIF_OP_RLDSW:
5028 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5029 				*flags |= CPU_DTRACE_KPRIV;
5030 				*illval = regs[r1];
5031 				break;
5032 			}
5033 			/*FALLTHROUGH*/
5034 		case DIF_OP_LDSW:
5035 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5036 			break;
5037 		case DIF_OP_RLDUB:
5038 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5039 				*flags |= CPU_DTRACE_KPRIV;
5040 				*illval = regs[r1];
5041 				break;
5042 			}
5043 			/*FALLTHROUGH*/
5044 		case DIF_OP_LDUB:
5045 			regs[rd] = dtrace_load8(regs[r1]);
5046 			break;
5047 		case DIF_OP_RLDUH:
5048 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5049 				*flags |= CPU_DTRACE_KPRIV;
5050 				*illval = regs[r1];
5051 				break;
5052 			}
5053 			/*FALLTHROUGH*/
5054 		case DIF_OP_LDUH:
5055 			regs[rd] = dtrace_load16(regs[r1]);
5056 			break;
5057 		case DIF_OP_RLDUW:
5058 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5059 				*flags |= CPU_DTRACE_KPRIV;
5060 				*illval = regs[r1];
5061 				break;
5062 			}
5063 			/*FALLTHROUGH*/
5064 		case DIF_OP_LDUW:
5065 			regs[rd] = dtrace_load32(regs[r1]);
5066 			break;
5067 		case DIF_OP_RLDX:
5068 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5069 				*flags |= CPU_DTRACE_KPRIV;
5070 				*illval = regs[r1];
5071 				break;
5072 			}
5073 			/*FALLTHROUGH*/
5074 		case DIF_OP_LDX:
5075 			regs[rd] = dtrace_load64(regs[r1]);
5076 			break;
5077 		case DIF_OP_ULDSB:
5078 			regs[rd] = (int8_t)
5079 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5080 			break;
5081 		case DIF_OP_ULDSH:
5082 			regs[rd] = (int16_t)
5083 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5084 			break;
5085 		case DIF_OP_ULDSW:
5086 			regs[rd] = (int32_t)
5087 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5088 			break;
5089 		case DIF_OP_ULDUB:
5090 			regs[rd] =
5091 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5092 			break;
5093 		case DIF_OP_ULDUH:
5094 			regs[rd] =
5095 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5096 			break;
5097 		case DIF_OP_ULDUW:
5098 			regs[rd] =
5099 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5100 			break;
5101 		case DIF_OP_ULDX:
5102 			regs[rd] =
5103 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5104 			break;
5105 		case DIF_OP_RET:
5106 			rval = regs[rd];
5107 			pc = textlen;
5108 			break;
5109 		case DIF_OP_NOP:
5110 			break;
5111 		case DIF_OP_SETX:
5112 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5113 			break;
5114 		case DIF_OP_SETS:
5115 			regs[rd] = (uint64_t)(uintptr_t)
5116 			    (strtab + DIF_INSTR_STRING(instr));
5117 			break;
5118 		case DIF_OP_SCMP: {
5119 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5120 			uintptr_t s1 = regs[r1];
5121 			uintptr_t s2 = regs[r2];
5122 
5123 			if (s1 != 0 &&
5124 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5125 				break;
5126 			if (s2 != 0 &&
5127 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5128 				break;
5129 
5130 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5131 
5132 			cc_n = cc_r < 0;
5133 			cc_z = cc_r == 0;
5134 			cc_v = cc_c = 0;
5135 			break;
5136 		}
5137 		case DIF_OP_LDGA:
5138 			regs[rd] = dtrace_dif_variable(mstate, state,
5139 			    r1, regs[r2]);
5140 			break;
5141 		case DIF_OP_LDGS:
5142 			id = DIF_INSTR_VAR(instr);
5143 
5144 			if (id >= DIF_VAR_OTHER_UBASE) {
5145 				uintptr_t a;
5146 
5147 				id -= DIF_VAR_OTHER_UBASE;
5148 				svar = vstate->dtvs_globals[id];
5149 				ASSERT(svar != NULL);
5150 				v = &svar->dtsv_var;
5151 
5152 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5153 					regs[rd] = svar->dtsv_data;
5154 					break;
5155 				}
5156 
5157 				a = (uintptr_t)svar->dtsv_data;
5158 
5159 				if (*(uint8_t *)a == UINT8_MAX) {
5160 					/*
5161 					 * If the 0th byte is set to UINT8_MAX
5162 					 * then this is to be treated as a
5163 					 * reference to a NULL variable.
5164 					 */
5165 					regs[rd] = 0;
5166 				} else {
5167 					regs[rd] = a + sizeof (uint64_t);
5168 				}
5169 
5170 				break;
5171 			}
5172 
5173 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5174 			break;
5175 
5176 		case DIF_OP_STGS:
5177 			id = DIF_INSTR_VAR(instr);
5178 
5179 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5180 			id -= DIF_VAR_OTHER_UBASE;
5181 
5182 			svar = vstate->dtvs_globals[id];
5183 			ASSERT(svar != NULL);
5184 			v = &svar->dtsv_var;
5185 
5186 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5187 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5188 
5189 				ASSERT(a != 0);
5190 				ASSERT(svar->dtsv_size != 0);
5191 
5192 				if (regs[rd] == 0) {
5193 					*(uint8_t *)a = UINT8_MAX;
5194 					break;
5195 				} else {
5196 					*(uint8_t *)a = 0;
5197 					a += sizeof (uint64_t);
5198 				}
5199 				if (!dtrace_vcanload(
5200 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5201 				    mstate, vstate))
5202 					break;
5203 
5204 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5205 				    (void *)a, &v->dtdv_type);
5206 				break;
5207 			}
5208 
5209 			svar->dtsv_data = regs[rd];
5210 			break;
5211 
5212 		case DIF_OP_LDTA:
5213 			/*
5214 			 * There are no DTrace built-in thread-local arrays at
5215 			 * present.  This opcode is saved for future work.
5216 			 */
5217 			*flags |= CPU_DTRACE_ILLOP;
5218 			regs[rd] = 0;
5219 			break;
5220 
5221 		case DIF_OP_LDLS:
5222 			id = DIF_INSTR_VAR(instr);
5223 
5224 			if (id < DIF_VAR_OTHER_UBASE) {
5225 				/*
5226 				 * For now, this has no meaning.
5227 				 */
5228 				regs[rd] = 0;
5229 				break;
5230 			}
5231 
5232 			id -= DIF_VAR_OTHER_UBASE;
5233 
5234 			ASSERT(id < vstate->dtvs_nlocals);
5235 			ASSERT(vstate->dtvs_locals != NULL);
5236 
5237 			svar = vstate->dtvs_locals[id];
5238 			ASSERT(svar != NULL);
5239 			v = &svar->dtsv_var;
5240 
5241 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5242 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5243 				size_t sz = v->dtdv_type.dtdt_size;
5244 
5245 				sz += sizeof (uint64_t);
5246 				ASSERT(svar->dtsv_size == NCPU * sz);
5247 				a += curcpu * sz;
5248 
5249 				if (*(uint8_t *)a == UINT8_MAX) {
5250 					/*
5251 					 * If the 0th byte is set to UINT8_MAX
5252 					 * then this is to be treated as a
5253 					 * reference to a NULL variable.
5254 					 */
5255 					regs[rd] = 0;
5256 				} else {
5257 					regs[rd] = a + sizeof (uint64_t);
5258 				}
5259 
5260 				break;
5261 			}
5262 
5263 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5264 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5265 			regs[rd] = tmp[curcpu];
5266 			break;
5267 
5268 		case DIF_OP_STLS:
5269 			id = DIF_INSTR_VAR(instr);
5270 
5271 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5272 			id -= DIF_VAR_OTHER_UBASE;
5273 			ASSERT(id < vstate->dtvs_nlocals);
5274 
5275 			ASSERT(vstate->dtvs_locals != NULL);
5276 			svar = vstate->dtvs_locals[id];
5277 			ASSERT(svar != NULL);
5278 			v = &svar->dtsv_var;
5279 
5280 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5281 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5282 				size_t sz = v->dtdv_type.dtdt_size;
5283 
5284 				sz += sizeof (uint64_t);
5285 				ASSERT(svar->dtsv_size == NCPU * sz);
5286 				a += curcpu * sz;
5287 
5288 				if (regs[rd] == 0) {
5289 					*(uint8_t *)a = UINT8_MAX;
5290 					break;
5291 				} else {
5292 					*(uint8_t *)a = 0;
5293 					a += sizeof (uint64_t);
5294 				}
5295 
5296 				if (!dtrace_vcanload(
5297 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5298 				    mstate, vstate))
5299 					break;
5300 
5301 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5302 				    (void *)a, &v->dtdv_type);
5303 				break;
5304 			}
5305 
5306 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5307 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5308 			tmp[curcpu] = regs[rd];
5309 			break;
5310 
5311 		case DIF_OP_LDTS: {
5312 			dtrace_dynvar_t *dvar;
5313 			dtrace_key_t *key;
5314 
5315 			id = DIF_INSTR_VAR(instr);
5316 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5317 			id -= DIF_VAR_OTHER_UBASE;
5318 			v = &vstate->dtvs_tlocals[id];
5319 
5320 			key = &tupregs[DIF_DTR_NREGS];
5321 			key[0].dttk_value = (uint64_t)id;
5322 			key[0].dttk_size = 0;
5323 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5324 			key[1].dttk_size = 0;
5325 
5326 			dvar = dtrace_dynvar(dstate, 2, key,
5327 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5328 			    mstate, vstate);
5329 
5330 			if (dvar == NULL) {
5331 				regs[rd] = 0;
5332 				break;
5333 			}
5334 
5335 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5336 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5337 			} else {
5338 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5339 			}
5340 
5341 			break;
5342 		}
5343 
5344 		case DIF_OP_STTS: {
5345 			dtrace_dynvar_t *dvar;
5346 			dtrace_key_t *key;
5347 
5348 			id = DIF_INSTR_VAR(instr);
5349 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5350 			id -= DIF_VAR_OTHER_UBASE;
5351 
5352 			key = &tupregs[DIF_DTR_NREGS];
5353 			key[0].dttk_value = (uint64_t)id;
5354 			key[0].dttk_size = 0;
5355 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5356 			key[1].dttk_size = 0;
5357 			v = &vstate->dtvs_tlocals[id];
5358 
5359 			dvar = dtrace_dynvar(dstate, 2, key,
5360 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5361 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5362 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5363 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5364 
5365 			/*
5366 			 * Given that we're storing to thread-local data,
5367 			 * we need to flush our predicate cache.
5368 			 */
5369 			curthread->t_predcache = 0;
5370 
5371 			if (dvar == NULL)
5372 				break;
5373 
5374 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5375 				if (!dtrace_vcanload(
5376 				    (void *)(uintptr_t)regs[rd],
5377 				    &v->dtdv_type, mstate, vstate))
5378 					break;
5379 
5380 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5381 				    dvar->dtdv_data, &v->dtdv_type);
5382 			} else {
5383 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5384 			}
5385 
5386 			break;
5387 		}
5388 
5389 		case DIF_OP_SRA:
5390 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5391 			break;
5392 
5393 		case DIF_OP_CALL:
5394 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5395 			    regs, tupregs, ttop, mstate, state);
5396 			break;
5397 
5398 		case DIF_OP_PUSHTR:
5399 			if (ttop == DIF_DTR_NREGS) {
5400 				*flags |= CPU_DTRACE_TUPOFLOW;
5401 				break;
5402 			}
5403 
5404 			if (r1 == DIF_TYPE_STRING) {
5405 				/*
5406 				 * If this is a string type and the size is 0,
5407 				 * we'll use the system-wide default string
5408 				 * size.  Note that we are _not_ looking at
5409 				 * the value of the DTRACEOPT_STRSIZE option;
5410 				 * had this been set, we would expect to have
5411 				 * a non-zero size value in the "pushtr".
5412 				 */
5413 				tupregs[ttop].dttk_size =
5414 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5415 				    regs[r2] ? regs[r2] :
5416 				    dtrace_strsize_default) + 1;
5417 			} else {
5418 				tupregs[ttop].dttk_size = regs[r2];
5419 			}
5420 
5421 			tupregs[ttop++].dttk_value = regs[rd];
5422 			break;
5423 
5424 		case DIF_OP_PUSHTV:
5425 			if (ttop == DIF_DTR_NREGS) {
5426 				*flags |= CPU_DTRACE_TUPOFLOW;
5427 				break;
5428 			}
5429 
5430 			tupregs[ttop].dttk_value = regs[rd];
5431 			tupregs[ttop++].dttk_size = 0;
5432 			break;
5433 
5434 		case DIF_OP_POPTS:
5435 			if (ttop != 0)
5436 				ttop--;
5437 			break;
5438 
5439 		case DIF_OP_FLUSHTS:
5440 			ttop = 0;
5441 			break;
5442 
5443 		case DIF_OP_LDGAA:
5444 		case DIF_OP_LDTAA: {
5445 			dtrace_dynvar_t *dvar;
5446 			dtrace_key_t *key = tupregs;
5447 			uint_t nkeys = ttop;
5448 
5449 			id = DIF_INSTR_VAR(instr);
5450 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5451 			id -= DIF_VAR_OTHER_UBASE;
5452 
5453 			key[nkeys].dttk_value = (uint64_t)id;
5454 			key[nkeys++].dttk_size = 0;
5455 
5456 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5457 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5458 				key[nkeys++].dttk_size = 0;
5459 				v = &vstate->dtvs_tlocals[id];
5460 			} else {
5461 				v = &vstate->dtvs_globals[id]->dtsv_var;
5462 			}
5463 
5464 			dvar = dtrace_dynvar(dstate, nkeys, key,
5465 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5466 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5467 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5468 
5469 			if (dvar == NULL) {
5470 				regs[rd] = 0;
5471 				break;
5472 			}
5473 
5474 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5475 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5476 			} else {
5477 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5478 			}
5479 
5480 			break;
5481 		}
5482 
5483 		case DIF_OP_STGAA:
5484 		case DIF_OP_STTAA: {
5485 			dtrace_dynvar_t *dvar;
5486 			dtrace_key_t *key = tupregs;
5487 			uint_t nkeys = ttop;
5488 
5489 			id = DIF_INSTR_VAR(instr);
5490 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5491 			id -= DIF_VAR_OTHER_UBASE;
5492 
5493 			key[nkeys].dttk_value = (uint64_t)id;
5494 			key[nkeys++].dttk_size = 0;
5495 
5496 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5497 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5498 				key[nkeys++].dttk_size = 0;
5499 				v = &vstate->dtvs_tlocals[id];
5500 			} else {
5501 				v = &vstate->dtvs_globals[id]->dtsv_var;
5502 			}
5503 
5504 			dvar = dtrace_dynvar(dstate, nkeys, key,
5505 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5506 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5507 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5508 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5509 
5510 			if (dvar == NULL)
5511 				break;
5512 
5513 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5514 				if (!dtrace_vcanload(
5515 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5516 				    mstate, vstate))
5517 					break;
5518 
5519 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5520 				    dvar->dtdv_data, &v->dtdv_type);
5521 			} else {
5522 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5523 			}
5524 
5525 			break;
5526 		}
5527 
5528 		case DIF_OP_ALLOCS: {
5529 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5530 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5531 
5532 			/*
5533 			 * Rounding up the user allocation size could have
5534 			 * overflowed large, bogus allocations (like -1ULL) to
5535 			 * 0.
5536 			 */
5537 			if (size < regs[r1] ||
5538 			    !DTRACE_INSCRATCH(mstate, size)) {
5539 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5540 				regs[rd] = 0;
5541 				break;
5542 			}
5543 
5544 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5545 			mstate->dtms_scratch_ptr += size;
5546 			regs[rd] = ptr;
5547 			break;
5548 		}
5549 
5550 		case DIF_OP_COPYS:
5551 			if (!dtrace_canstore(regs[rd], regs[r2],
5552 			    mstate, vstate)) {
5553 				*flags |= CPU_DTRACE_BADADDR;
5554 				*illval = regs[rd];
5555 				break;
5556 			}
5557 
5558 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5559 				break;
5560 
5561 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5562 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5563 			break;
5564 
5565 		case DIF_OP_STB:
5566 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5567 				*flags |= CPU_DTRACE_BADADDR;
5568 				*illval = regs[rd];
5569 				break;
5570 			}
5571 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5572 			break;
5573 
5574 		case DIF_OP_STH:
5575 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5576 				*flags |= CPU_DTRACE_BADADDR;
5577 				*illval = regs[rd];
5578 				break;
5579 			}
5580 			if (regs[rd] & 1) {
5581 				*flags |= CPU_DTRACE_BADALIGN;
5582 				*illval = regs[rd];
5583 				break;
5584 			}
5585 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5586 			break;
5587 
5588 		case DIF_OP_STW:
5589 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5590 				*flags |= CPU_DTRACE_BADADDR;
5591 				*illval = regs[rd];
5592 				break;
5593 			}
5594 			if (regs[rd] & 3) {
5595 				*flags |= CPU_DTRACE_BADALIGN;
5596 				*illval = regs[rd];
5597 				break;
5598 			}
5599 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5600 			break;
5601 
5602 		case DIF_OP_STX:
5603 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5604 				*flags |= CPU_DTRACE_BADADDR;
5605 				*illval = regs[rd];
5606 				break;
5607 			}
5608 			if (regs[rd] & 7) {
5609 				*flags |= CPU_DTRACE_BADALIGN;
5610 				*illval = regs[rd];
5611 				break;
5612 			}
5613 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5614 			break;
5615 		}
5616 	}
5617 
5618 	if (!(*flags & CPU_DTRACE_FAULT))
5619 		return (rval);
5620 
5621 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5622 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5623 
5624 	return (0);
5625 }
5626 
5627 static void
5628 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5629 {
5630 	dtrace_probe_t *probe = ecb->dte_probe;
5631 	dtrace_provider_t *prov = probe->dtpr_provider;
5632 	char c[DTRACE_FULLNAMELEN + 80], *str;
5633 	char *msg = "dtrace: breakpoint action at probe ";
5634 	char *ecbmsg = " (ecb ";
5635 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5636 	uintptr_t val = (uintptr_t)ecb;
5637 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5638 
5639 	if (dtrace_destructive_disallow)
5640 		return;
5641 
5642 	/*
5643 	 * It's impossible to be taking action on the NULL probe.
5644 	 */
5645 	ASSERT(probe != NULL);
5646 
5647 	/*
5648 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5649 	 * print the provider name, module name, function name and name of
5650 	 * the probe, along with the hex address of the ECB with the breakpoint
5651 	 * action -- all of which we must place in the character buffer by
5652 	 * hand.
5653 	 */
5654 	while (*msg != '\0')
5655 		c[i++] = *msg++;
5656 
5657 	for (str = prov->dtpv_name; *str != '\0'; str++)
5658 		c[i++] = *str;
5659 	c[i++] = ':';
5660 
5661 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5662 		c[i++] = *str;
5663 	c[i++] = ':';
5664 
5665 	for (str = probe->dtpr_func; *str != '\0'; str++)
5666 		c[i++] = *str;
5667 	c[i++] = ':';
5668 
5669 	for (str = probe->dtpr_name; *str != '\0'; str++)
5670 		c[i++] = *str;
5671 
5672 	while (*ecbmsg != '\0')
5673 		c[i++] = *ecbmsg++;
5674 
5675 	while (shift >= 0) {
5676 		mask = (uintptr_t)0xf << shift;
5677 
5678 		if (val >= ((uintptr_t)1 << shift))
5679 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5680 		shift -= 4;
5681 	}
5682 
5683 	c[i++] = ')';
5684 	c[i] = '\0';
5685 
5686 #if defined(sun)
5687 	debug_enter(c);
5688 #else
5689 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5690 #endif
5691 }
5692 
5693 static void
5694 dtrace_action_panic(dtrace_ecb_t *ecb)
5695 {
5696 	dtrace_probe_t *probe = ecb->dte_probe;
5697 
5698 	/*
5699 	 * It's impossible to be taking action on the NULL probe.
5700 	 */
5701 	ASSERT(probe != NULL);
5702 
5703 	if (dtrace_destructive_disallow)
5704 		return;
5705 
5706 	if (dtrace_panicked != NULL)
5707 		return;
5708 
5709 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5710 		return;
5711 
5712 	/*
5713 	 * We won the right to panic.  (We want to be sure that only one
5714 	 * thread calls panic() from dtrace_probe(), and that panic() is
5715 	 * called exactly once.)
5716 	 */
5717 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5718 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5719 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5720 }
5721 
5722 static void
5723 dtrace_action_raise(uint64_t sig)
5724 {
5725 	if (dtrace_destructive_disallow)
5726 		return;
5727 
5728 	if (sig >= NSIG) {
5729 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5730 		return;
5731 	}
5732 
5733 #if defined(sun)
5734 	/*
5735 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5736 	 * invocations of the raise() action.
5737 	 */
5738 	if (curthread->t_dtrace_sig == 0)
5739 		curthread->t_dtrace_sig = (uint8_t)sig;
5740 
5741 	curthread->t_sig_check = 1;
5742 	aston(curthread);
5743 #else
5744 	struct proc *p = curproc;
5745 	PROC_LOCK(p);
5746 	kern_psignal(p, sig);
5747 	PROC_UNLOCK(p);
5748 #endif
5749 }
5750 
5751 static void
5752 dtrace_action_stop(void)
5753 {
5754 	if (dtrace_destructive_disallow)
5755 		return;
5756 
5757 #if defined(sun)
5758 	if (!curthread->t_dtrace_stop) {
5759 		curthread->t_dtrace_stop = 1;
5760 		curthread->t_sig_check = 1;
5761 		aston(curthread);
5762 	}
5763 #else
5764 	struct proc *p = curproc;
5765 	PROC_LOCK(p);
5766 	kern_psignal(p, SIGSTOP);
5767 	PROC_UNLOCK(p);
5768 #endif
5769 }
5770 
5771 static void
5772 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5773 {
5774 	hrtime_t now;
5775 	volatile uint16_t *flags;
5776 #if defined(sun)
5777 	cpu_t *cpu = CPU;
5778 #else
5779 	cpu_t *cpu = &solaris_cpu[curcpu];
5780 #endif
5781 
5782 	if (dtrace_destructive_disallow)
5783 		return;
5784 
5785 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5786 
5787 	now = dtrace_gethrtime();
5788 
5789 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5790 		/*
5791 		 * We need to advance the mark to the current time.
5792 		 */
5793 		cpu->cpu_dtrace_chillmark = now;
5794 		cpu->cpu_dtrace_chilled = 0;
5795 	}
5796 
5797 	/*
5798 	 * Now check to see if the requested chill time would take us over
5799 	 * the maximum amount of time allowed in the chill interval.  (Or
5800 	 * worse, if the calculation itself induces overflow.)
5801 	 */
5802 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5803 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5804 		*flags |= CPU_DTRACE_ILLOP;
5805 		return;
5806 	}
5807 
5808 	while (dtrace_gethrtime() - now < val)
5809 		continue;
5810 
5811 	/*
5812 	 * Normally, we assure that the value of the variable "timestamp" does
5813 	 * not change within an ECB.  The presence of chill() represents an
5814 	 * exception to this rule, however.
5815 	 */
5816 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5817 	cpu->cpu_dtrace_chilled += val;
5818 }
5819 
5820 static void
5821 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5822     uint64_t *buf, uint64_t arg)
5823 {
5824 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5825 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5826 	uint64_t *pcs = &buf[1], *fps;
5827 	char *str = (char *)&pcs[nframes];
5828 	int size, offs = 0, i, j;
5829 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5830 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5831 	char *sym;
5832 
5833 	/*
5834 	 * Should be taking a faster path if string space has not been
5835 	 * allocated.
5836 	 */
5837 	ASSERT(strsize != 0);
5838 
5839 	/*
5840 	 * We will first allocate some temporary space for the frame pointers.
5841 	 */
5842 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5843 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5844 	    (nframes * sizeof (uint64_t));
5845 
5846 	if (!DTRACE_INSCRATCH(mstate, size)) {
5847 		/*
5848 		 * Not enough room for our frame pointers -- need to indicate
5849 		 * that we ran out of scratch space.
5850 		 */
5851 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5852 		return;
5853 	}
5854 
5855 	mstate->dtms_scratch_ptr += size;
5856 	saved = mstate->dtms_scratch_ptr;
5857 
5858 	/*
5859 	 * Now get a stack with both program counters and frame pointers.
5860 	 */
5861 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5862 	dtrace_getufpstack(buf, fps, nframes + 1);
5863 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5864 
5865 	/*
5866 	 * If that faulted, we're cooked.
5867 	 */
5868 	if (*flags & CPU_DTRACE_FAULT)
5869 		goto out;
5870 
5871 	/*
5872 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5873 	 * each iteration, we restore the scratch pointer.
5874 	 */
5875 	for (i = 0; i < nframes; i++) {
5876 		mstate->dtms_scratch_ptr = saved;
5877 
5878 		if (offs >= strsize)
5879 			break;
5880 
5881 		sym = (char *)(uintptr_t)dtrace_helper(
5882 		    DTRACE_HELPER_ACTION_USTACK,
5883 		    mstate, state, pcs[i], fps[i]);
5884 
5885 		/*
5886 		 * If we faulted while running the helper, we're going to
5887 		 * clear the fault and null out the corresponding string.
5888 		 */
5889 		if (*flags & CPU_DTRACE_FAULT) {
5890 			*flags &= ~CPU_DTRACE_FAULT;
5891 			str[offs++] = '\0';
5892 			continue;
5893 		}
5894 
5895 		if (sym == NULL) {
5896 			str[offs++] = '\0';
5897 			continue;
5898 		}
5899 
5900 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5901 
5902 		/*
5903 		 * Now copy in the string that the helper returned to us.
5904 		 */
5905 		for (j = 0; offs + j < strsize; j++) {
5906 			if ((str[offs + j] = sym[j]) == '\0')
5907 				break;
5908 		}
5909 
5910 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5911 
5912 		offs += j + 1;
5913 	}
5914 
5915 	if (offs >= strsize) {
5916 		/*
5917 		 * If we didn't have room for all of the strings, we don't
5918 		 * abort processing -- this needn't be a fatal error -- but we
5919 		 * still want to increment a counter (dts_stkstroverflows) to
5920 		 * allow this condition to be warned about.  (If this is from
5921 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5922 		 */
5923 		dtrace_error(&state->dts_stkstroverflows);
5924 	}
5925 
5926 	while (offs < strsize)
5927 		str[offs++] = '\0';
5928 
5929 out:
5930 	mstate->dtms_scratch_ptr = old;
5931 }
5932 
5933 /*
5934  * If you're looking for the epicenter of DTrace, you just found it.  This
5935  * is the function called by the provider to fire a probe -- from which all
5936  * subsequent probe-context DTrace activity emanates.
5937  */
5938 void
5939 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5940     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5941 {
5942 	processorid_t cpuid;
5943 	dtrace_icookie_t cookie;
5944 	dtrace_probe_t *probe;
5945 	dtrace_mstate_t mstate;
5946 	dtrace_ecb_t *ecb;
5947 	dtrace_action_t *act;
5948 	intptr_t offs;
5949 	size_t size;
5950 	int vtime, onintr;
5951 	volatile uint16_t *flags;
5952 	hrtime_t now;
5953 
5954 	if (panicstr != NULL)
5955 		return;
5956 
5957 #if defined(sun)
5958 	/*
5959 	 * Kick out immediately if this CPU is still being born (in which case
5960 	 * curthread will be set to -1) or the current thread can't allow
5961 	 * probes in its current context.
5962 	 */
5963 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5964 		return;
5965 #endif
5966 
5967 	cookie = dtrace_interrupt_disable();
5968 	probe = dtrace_probes[id - 1];
5969 	cpuid = curcpu;
5970 	onintr = CPU_ON_INTR(CPU);
5971 
5972 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5973 	    probe->dtpr_predcache == curthread->t_predcache) {
5974 		/*
5975 		 * We have hit in the predicate cache; we know that
5976 		 * this predicate would evaluate to be false.
5977 		 */
5978 		dtrace_interrupt_enable(cookie);
5979 		return;
5980 	}
5981 
5982 #if defined(sun)
5983 	if (panic_quiesce) {
5984 #else
5985 	if (panicstr != NULL) {
5986 #endif
5987 		/*
5988 		 * We don't trace anything if we're panicking.
5989 		 */
5990 		dtrace_interrupt_enable(cookie);
5991 		return;
5992 	}
5993 
5994 	now = dtrace_gethrtime();
5995 	vtime = dtrace_vtime_references != 0;
5996 
5997 	if (vtime && curthread->t_dtrace_start)
5998 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5999 
6000 	mstate.dtms_difo = NULL;
6001 	mstate.dtms_probe = probe;
6002 	mstate.dtms_strtok = 0;
6003 	mstate.dtms_arg[0] = arg0;
6004 	mstate.dtms_arg[1] = arg1;
6005 	mstate.dtms_arg[2] = arg2;
6006 	mstate.dtms_arg[3] = arg3;
6007 	mstate.dtms_arg[4] = arg4;
6008 
6009 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6010 
6011 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6012 		dtrace_predicate_t *pred = ecb->dte_predicate;
6013 		dtrace_state_t *state = ecb->dte_state;
6014 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6015 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6016 		dtrace_vstate_t *vstate = &state->dts_vstate;
6017 		dtrace_provider_t *prov = probe->dtpr_provider;
6018 		int committed = 0;
6019 		caddr_t tomax;
6020 
6021 		/*
6022 		 * A little subtlety with the following (seemingly innocuous)
6023 		 * declaration of the automatic 'val':  by looking at the
6024 		 * code, you might think that it could be declared in the
6025 		 * action processing loop, below.  (That is, it's only used in
6026 		 * the action processing loop.)  However, it must be declared
6027 		 * out of that scope because in the case of DIF expression
6028 		 * arguments to aggregating actions, one iteration of the
6029 		 * action loop will use the last iteration's value.
6030 		 */
6031 		uint64_t val = 0;
6032 
6033 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6034 		*flags &= ~CPU_DTRACE_ERROR;
6035 
6036 		if (prov == dtrace_provider) {
6037 			/*
6038 			 * If dtrace itself is the provider of this probe,
6039 			 * we're only going to continue processing the ECB if
6040 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6041 			 * creating state.  (This prevents disjoint consumers
6042 			 * from seeing one another's metaprobes.)
6043 			 */
6044 			if (arg0 != (uint64_t)(uintptr_t)state)
6045 				continue;
6046 		}
6047 
6048 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6049 			/*
6050 			 * We're not currently active.  If our provider isn't
6051 			 * the dtrace pseudo provider, we're not interested.
6052 			 */
6053 			if (prov != dtrace_provider)
6054 				continue;
6055 
6056 			/*
6057 			 * Now we must further check if we are in the BEGIN
6058 			 * probe.  If we are, we will only continue processing
6059 			 * if we're still in WARMUP -- if one BEGIN enabling
6060 			 * has invoked the exit() action, we don't want to
6061 			 * evaluate subsequent BEGIN enablings.
6062 			 */
6063 			if (probe->dtpr_id == dtrace_probeid_begin &&
6064 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6065 				ASSERT(state->dts_activity ==
6066 				    DTRACE_ACTIVITY_DRAINING);
6067 				continue;
6068 			}
6069 		}
6070 
6071 		if (ecb->dte_cond) {
6072 			/*
6073 			 * If the dte_cond bits indicate that this
6074 			 * consumer is only allowed to see user-mode firings
6075 			 * of this probe, call the provider's dtps_usermode()
6076 			 * entry point to check that the probe was fired
6077 			 * while in a user context. Skip this ECB if that's
6078 			 * not the case.
6079 			 */
6080 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6081 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6082 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6083 				continue;
6084 
6085 #if defined(sun)
6086 			/*
6087 			 * This is more subtle than it looks. We have to be
6088 			 * absolutely certain that CRED() isn't going to
6089 			 * change out from under us so it's only legit to
6090 			 * examine that structure if we're in constrained
6091 			 * situations. Currently, the only times we'll this
6092 			 * check is if a non-super-user has enabled the
6093 			 * profile or syscall providers -- providers that
6094 			 * allow visibility of all processes. For the
6095 			 * profile case, the check above will ensure that
6096 			 * we're examining a user context.
6097 			 */
6098 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6099 				cred_t *cr;
6100 				cred_t *s_cr =
6101 				    ecb->dte_state->dts_cred.dcr_cred;
6102 				proc_t *proc;
6103 
6104 				ASSERT(s_cr != NULL);
6105 
6106 				if ((cr = CRED()) == NULL ||
6107 				    s_cr->cr_uid != cr->cr_uid ||
6108 				    s_cr->cr_uid != cr->cr_ruid ||
6109 				    s_cr->cr_uid != cr->cr_suid ||
6110 				    s_cr->cr_gid != cr->cr_gid ||
6111 				    s_cr->cr_gid != cr->cr_rgid ||
6112 				    s_cr->cr_gid != cr->cr_sgid ||
6113 				    (proc = ttoproc(curthread)) == NULL ||
6114 				    (proc->p_flag & SNOCD))
6115 					continue;
6116 			}
6117 
6118 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6119 				cred_t *cr;
6120 				cred_t *s_cr =
6121 				    ecb->dte_state->dts_cred.dcr_cred;
6122 
6123 				ASSERT(s_cr != NULL);
6124 
6125 				if ((cr = CRED()) == NULL ||
6126 				    s_cr->cr_zone->zone_id !=
6127 				    cr->cr_zone->zone_id)
6128 					continue;
6129 			}
6130 #endif
6131 		}
6132 
6133 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6134 			/*
6135 			 * We seem to be dead.  Unless we (a) have kernel
6136 			 * destructive permissions (b) have expicitly enabled
6137 			 * destructive actions and (c) destructive actions have
6138 			 * not been disabled, we're going to transition into
6139 			 * the KILLED state, from which no further processing
6140 			 * on this state will be performed.
6141 			 */
6142 			if (!dtrace_priv_kernel_destructive(state) ||
6143 			    !state->dts_cred.dcr_destructive ||
6144 			    dtrace_destructive_disallow) {
6145 				void *activity = &state->dts_activity;
6146 				dtrace_activity_t current;
6147 
6148 				do {
6149 					current = state->dts_activity;
6150 				} while (dtrace_cas32(activity, current,
6151 				    DTRACE_ACTIVITY_KILLED) != current);
6152 
6153 				continue;
6154 			}
6155 		}
6156 
6157 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6158 		    ecb->dte_alignment, state, &mstate)) < 0)
6159 			continue;
6160 
6161 		tomax = buf->dtb_tomax;
6162 		ASSERT(tomax != NULL);
6163 
6164 		if (ecb->dte_size != 0)
6165 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6166 
6167 		mstate.dtms_epid = ecb->dte_epid;
6168 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6169 
6170 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6171 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6172 		else
6173 			mstate.dtms_access = 0;
6174 
6175 		if (pred != NULL) {
6176 			dtrace_difo_t *dp = pred->dtp_difo;
6177 			int rval;
6178 
6179 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6180 
6181 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6182 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6183 
6184 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6185 					/*
6186 					 * Update the predicate cache...
6187 					 */
6188 					ASSERT(cid == pred->dtp_cacheid);
6189 					curthread->t_predcache = cid;
6190 				}
6191 
6192 				continue;
6193 			}
6194 		}
6195 
6196 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6197 		    act != NULL; act = act->dta_next) {
6198 			size_t valoffs;
6199 			dtrace_difo_t *dp;
6200 			dtrace_recdesc_t *rec = &act->dta_rec;
6201 
6202 			size = rec->dtrd_size;
6203 			valoffs = offs + rec->dtrd_offset;
6204 
6205 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6206 				uint64_t v = 0xbad;
6207 				dtrace_aggregation_t *agg;
6208 
6209 				agg = (dtrace_aggregation_t *)act;
6210 
6211 				if ((dp = act->dta_difo) != NULL)
6212 					v = dtrace_dif_emulate(dp,
6213 					    &mstate, vstate, state);
6214 
6215 				if (*flags & CPU_DTRACE_ERROR)
6216 					continue;
6217 
6218 				/*
6219 				 * Note that we always pass the expression
6220 				 * value from the previous iteration of the
6221 				 * action loop.  This value will only be used
6222 				 * if there is an expression argument to the
6223 				 * aggregating action, denoted by the
6224 				 * dtag_hasarg field.
6225 				 */
6226 				dtrace_aggregate(agg, buf,
6227 				    offs, aggbuf, v, val);
6228 				continue;
6229 			}
6230 
6231 			switch (act->dta_kind) {
6232 			case DTRACEACT_STOP:
6233 				if (dtrace_priv_proc_destructive(state))
6234 					dtrace_action_stop();
6235 				continue;
6236 
6237 			case DTRACEACT_BREAKPOINT:
6238 				if (dtrace_priv_kernel_destructive(state))
6239 					dtrace_action_breakpoint(ecb);
6240 				continue;
6241 
6242 			case DTRACEACT_PANIC:
6243 				if (dtrace_priv_kernel_destructive(state))
6244 					dtrace_action_panic(ecb);
6245 				continue;
6246 
6247 			case DTRACEACT_STACK:
6248 				if (!dtrace_priv_kernel(state))
6249 					continue;
6250 
6251 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6252 				    size / sizeof (pc_t), probe->dtpr_aframes,
6253 				    DTRACE_ANCHORED(probe) ? NULL :
6254 				    (uint32_t *)arg0);
6255 				continue;
6256 
6257 			case DTRACEACT_JSTACK:
6258 			case DTRACEACT_USTACK:
6259 				if (!dtrace_priv_proc(state))
6260 					continue;
6261 
6262 				/*
6263 				 * See comment in DIF_VAR_PID.
6264 				 */
6265 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6266 				    CPU_ON_INTR(CPU)) {
6267 					int depth = DTRACE_USTACK_NFRAMES(
6268 					    rec->dtrd_arg) + 1;
6269 
6270 					dtrace_bzero((void *)(tomax + valoffs),
6271 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6272 					    + depth * sizeof (uint64_t));
6273 
6274 					continue;
6275 				}
6276 
6277 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6278 				    curproc->p_dtrace_helpers != NULL) {
6279 					/*
6280 					 * This is the slow path -- we have
6281 					 * allocated string space, and we're
6282 					 * getting the stack of a process that
6283 					 * has helpers.  Call into a separate
6284 					 * routine to perform this processing.
6285 					 */
6286 					dtrace_action_ustack(&mstate, state,
6287 					    (uint64_t *)(tomax + valoffs),
6288 					    rec->dtrd_arg);
6289 					continue;
6290 				}
6291 
6292 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6293 				dtrace_getupcstack((uint64_t *)
6294 				    (tomax + valoffs),
6295 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6296 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6297 				continue;
6298 
6299 			default:
6300 				break;
6301 			}
6302 
6303 			dp = act->dta_difo;
6304 			ASSERT(dp != NULL);
6305 
6306 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6307 
6308 			if (*flags & CPU_DTRACE_ERROR)
6309 				continue;
6310 
6311 			switch (act->dta_kind) {
6312 			case DTRACEACT_SPECULATE:
6313 				ASSERT(buf == &state->dts_buffer[cpuid]);
6314 				buf = dtrace_speculation_buffer(state,
6315 				    cpuid, val);
6316 
6317 				if (buf == NULL) {
6318 					*flags |= CPU_DTRACE_DROP;
6319 					continue;
6320 				}
6321 
6322 				offs = dtrace_buffer_reserve(buf,
6323 				    ecb->dte_needed, ecb->dte_alignment,
6324 				    state, NULL);
6325 
6326 				if (offs < 0) {
6327 					*flags |= CPU_DTRACE_DROP;
6328 					continue;
6329 				}
6330 
6331 				tomax = buf->dtb_tomax;
6332 				ASSERT(tomax != NULL);
6333 
6334 				if (ecb->dte_size != 0)
6335 					DTRACE_STORE(uint32_t, tomax, offs,
6336 					    ecb->dte_epid);
6337 				continue;
6338 
6339 			case DTRACEACT_PRINTM: {
6340 				/* The DIF returns a 'memref'. */
6341 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6342 
6343 				/* Get the size from the memref. */
6344 				size = memref[1];
6345 
6346 				/*
6347 				 * Check if the size exceeds the allocated
6348 				 * buffer size.
6349 				 */
6350 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6351 					/* Flag a drop! */
6352 					*flags |= CPU_DTRACE_DROP;
6353 					continue;
6354 				}
6355 
6356 				/* Store the size in the buffer first. */
6357 				DTRACE_STORE(uintptr_t, tomax,
6358 				    valoffs, size);
6359 
6360 				/*
6361 				 * Offset the buffer address to the start
6362 				 * of the data.
6363 				 */
6364 				valoffs += sizeof(uintptr_t);
6365 
6366 				/*
6367 				 * Reset to the memory address rather than
6368 				 * the memref array, then let the BYREF
6369 				 * code below do the work to store the
6370 				 * memory data in the buffer.
6371 				 */
6372 				val = memref[0];
6373 				break;
6374 			}
6375 
6376 			case DTRACEACT_PRINTT: {
6377 				/* The DIF returns a 'typeref'. */
6378 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6379 				char c = '\0' + 1;
6380 				size_t s;
6381 
6382 				/*
6383 				 * Get the type string length and round it
6384 				 * up so that the data that follows is
6385 				 * aligned for easy access.
6386 				 */
6387 				size_t typs = strlen((char *) typeref[2]) + 1;
6388 				typs = roundup(typs,  sizeof(uintptr_t));
6389 
6390 				/*
6391 				 *Get the size from the typeref using the
6392 				 * number of elements and the type size.
6393 				 */
6394 				size = typeref[1] * typeref[3];
6395 
6396 				/*
6397 				 * Check if the size exceeds the allocated
6398 				 * buffer size.
6399 				 */
6400 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6401 					/* Flag a drop! */
6402 					*flags |= CPU_DTRACE_DROP;
6403 
6404 				}
6405 
6406 				/* Store the size in the buffer first. */
6407 				DTRACE_STORE(uintptr_t, tomax,
6408 				    valoffs, size);
6409 				valoffs += sizeof(uintptr_t);
6410 
6411 				/* Store the type size in the buffer. */
6412 				DTRACE_STORE(uintptr_t, tomax,
6413 				    valoffs, typeref[3]);
6414 				valoffs += sizeof(uintptr_t);
6415 
6416 				val = typeref[2];
6417 
6418 				for (s = 0; s < typs; s++) {
6419 					if (c != '\0')
6420 						c = dtrace_load8(val++);
6421 
6422 					DTRACE_STORE(uint8_t, tomax,
6423 					    valoffs++, c);
6424 				}
6425 
6426 				/*
6427 				 * Reset to the memory address rather than
6428 				 * the typeref array, then let the BYREF
6429 				 * code below do the work to store the
6430 				 * memory data in the buffer.
6431 				 */
6432 				val = typeref[0];
6433 				break;
6434 			}
6435 
6436 			case DTRACEACT_CHILL:
6437 				if (dtrace_priv_kernel_destructive(state))
6438 					dtrace_action_chill(&mstate, val);
6439 				continue;
6440 
6441 			case DTRACEACT_RAISE:
6442 				if (dtrace_priv_proc_destructive(state))
6443 					dtrace_action_raise(val);
6444 				continue;
6445 
6446 			case DTRACEACT_COMMIT:
6447 				ASSERT(!committed);
6448 
6449 				/*
6450 				 * We need to commit our buffer state.
6451 				 */
6452 				if (ecb->dte_size)
6453 					buf->dtb_offset = offs + ecb->dte_size;
6454 				buf = &state->dts_buffer[cpuid];
6455 				dtrace_speculation_commit(state, cpuid, val);
6456 				committed = 1;
6457 				continue;
6458 
6459 			case DTRACEACT_DISCARD:
6460 				dtrace_speculation_discard(state, cpuid, val);
6461 				continue;
6462 
6463 			case DTRACEACT_DIFEXPR:
6464 			case DTRACEACT_LIBACT:
6465 			case DTRACEACT_PRINTF:
6466 			case DTRACEACT_PRINTA:
6467 			case DTRACEACT_SYSTEM:
6468 			case DTRACEACT_FREOPEN:
6469 				break;
6470 
6471 			case DTRACEACT_SYM:
6472 			case DTRACEACT_MOD:
6473 				if (!dtrace_priv_kernel(state))
6474 					continue;
6475 				break;
6476 
6477 			case DTRACEACT_USYM:
6478 			case DTRACEACT_UMOD:
6479 			case DTRACEACT_UADDR: {
6480 #if defined(sun)
6481 				struct pid *pid = curthread->t_procp->p_pidp;
6482 #endif
6483 
6484 				if (!dtrace_priv_proc(state))
6485 					continue;
6486 
6487 				DTRACE_STORE(uint64_t, tomax,
6488 #if defined(sun)
6489 				    valoffs, (uint64_t)pid->pid_id);
6490 #else
6491 				    valoffs, (uint64_t) curproc->p_pid);
6492 #endif
6493 				DTRACE_STORE(uint64_t, tomax,
6494 				    valoffs + sizeof (uint64_t), val);
6495 
6496 				continue;
6497 			}
6498 
6499 			case DTRACEACT_EXIT: {
6500 				/*
6501 				 * For the exit action, we are going to attempt
6502 				 * to atomically set our activity to be
6503 				 * draining.  If this fails (either because
6504 				 * another CPU has beat us to the exit action,
6505 				 * or because our current activity is something
6506 				 * other than ACTIVE or WARMUP), we will
6507 				 * continue.  This assures that the exit action
6508 				 * can be successfully recorded at most once
6509 				 * when we're in the ACTIVE state.  If we're
6510 				 * encountering the exit() action while in
6511 				 * COOLDOWN, however, we want to honor the new
6512 				 * status code.  (We know that we're the only
6513 				 * thread in COOLDOWN, so there is no race.)
6514 				 */
6515 				void *activity = &state->dts_activity;
6516 				dtrace_activity_t current = state->dts_activity;
6517 
6518 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6519 					break;
6520 
6521 				if (current != DTRACE_ACTIVITY_WARMUP)
6522 					current = DTRACE_ACTIVITY_ACTIVE;
6523 
6524 				if (dtrace_cas32(activity, current,
6525 				    DTRACE_ACTIVITY_DRAINING) != current) {
6526 					*flags |= CPU_DTRACE_DROP;
6527 					continue;
6528 				}
6529 
6530 				break;
6531 			}
6532 
6533 			default:
6534 				ASSERT(0);
6535 			}
6536 
6537 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6538 				uintptr_t end = valoffs + size;
6539 
6540 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6541 				    &dp->dtdo_rtype, &mstate, vstate))
6542 					continue;
6543 
6544 				/*
6545 				 * If this is a string, we're going to only
6546 				 * load until we find the zero byte -- after
6547 				 * which we'll store zero bytes.
6548 				 */
6549 				if (dp->dtdo_rtype.dtdt_kind ==
6550 				    DIF_TYPE_STRING) {
6551 					char c = '\0' + 1;
6552 					int intuple = act->dta_intuple;
6553 					size_t s;
6554 
6555 					for (s = 0; s < size; s++) {
6556 						if (c != '\0')
6557 							c = dtrace_load8(val++);
6558 
6559 						DTRACE_STORE(uint8_t, tomax,
6560 						    valoffs++, c);
6561 
6562 						if (c == '\0' && intuple)
6563 							break;
6564 					}
6565 
6566 					continue;
6567 				}
6568 
6569 				while (valoffs < end) {
6570 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6571 					    dtrace_load8(val++));
6572 				}
6573 
6574 				continue;
6575 			}
6576 
6577 			switch (size) {
6578 			case 0:
6579 				break;
6580 
6581 			case sizeof (uint8_t):
6582 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6583 				break;
6584 			case sizeof (uint16_t):
6585 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6586 				break;
6587 			case sizeof (uint32_t):
6588 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6589 				break;
6590 			case sizeof (uint64_t):
6591 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6592 				break;
6593 			default:
6594 				/*
6595 				 * Any other size should have been returned by
6596 				 * reference, not by value.
6597 				 */
6598 				ASSERT(0);
6599 				break;
6600 			}
6601 		}
6602 
6603 		if (*flags & CPU_DTRACE_DROP)
6604 			continue;
6605 
6606 		if (*flags & CPU_DTRACE_FAULT) {
6607 			int ndx;
6608 			dtrace_action_t *err;
6609 
6610 			buf->dtb_errors++;
6611 
6612 			if (probe->dtpr_id == dtrace_probeid_error) {
6613 				/*
6614 				 * There's nothing we can do -- we had an
6615 				 * error on the error probe.  We bump an
6616 				 * error counter to at least indicate that
6617 				 * this condition happened.
6618 				 */
6619 				dtrace_error(&state->dts_dblerrors);
6620 				continue;
6621 			}
6622 
6623 			if (vtime) {
6624 				/*
6625 				 * Before recursing on dtrace_probe(), we
6626 				 * need to explicitly clear out our start
6627 				 * time to prevent it from being accumulated
6628 				 * into t_dtrace_vtime.
6629 				 */
6630 				curthread->t_dtrace_start = 0;
6631 			}
6632 
6633 			/*
6634 			 * Iterate over the actions to figure out which action
6635 			 * we were processing when we experienced the error.
6636 			 * Note that act points _past_ the faulting action; if
6637 			 * act is ecb->dte_action, the fault was in the
6638 			 * predicate, if it's ecb->dte_action->dta_next it's
6639 			 * in action #1, and so on.
6640 			 */
6641 			for (err = ecb->dte_action, ndx = 0;
6642 			    err != act; err = err->dta_next, ndx++)
6643 				continue;
6644 
6645 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6646 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6647 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6648 			    cpu_core[cpuid].cpuc_dtrace_illval);
6649 
6650 			continue;
6651 		}
6652 
6653 		if (!committed)
6654 			buf->dtb_offset = offs + ecb->dte_size;
6655 	}
6656 
6657 	if (vtime)
6658 		curthread->t_dtrace_start = dtrace_gethrtime();
6659 
6660 	dtrace_interrupt_enable(cookie);
6661 }
6662 
6663 /*
6664  * DTrace Probe Hashing Functions
6665  *
6666  * The functions in this section (and indeed, the functions in remaining
6667  * sections) are not _called_ from probe context.  (Any exceptions to this are
6668  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6669  * DTrace framework to look-up probes in, add probes to and remove probes from
6670  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6671  * probe tuple -- allowing for fast lookups, regardless of what was
6672  * specified.)
6673  */
6674 static uint_t
6675 dtrace_hash_str(const char *p)
6676 {
6677 	unsigned int g;
6678 	uint_t hval = 0;
6679 
6680 	while (*p) {
6681 		hval = (hval << 4) + *p++;
6682 		if ((g = (hval & 0xf0000000)) != 0)
6683 			hval ^= g >> 24;
6684 		hval &= ~g;
6685 	}
6686 	return (hval);
6687 }
6688 
6689 static dtrace_hash_t *
6690 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6691 {
6692 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6693 
6694 	hash->dth_stroffs = stroffs;
6695 	hash->dth_nextoffs = nextoffs;
6696 	hash->dth_prevoffs = prevoffs;
6697 
6698 	hash->dth_size = 1;
6699 	hash->dth_mask = hash->dth_size - 1;
6700 
6701 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6702 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6703 
6704 	return (hash);
6705 }
6706 
6707 static void
6708 dtrace_hash_destroy(dtrace_hash_t *hash)
6709 {
6710 #ifdef DEBUG
6711 	int i;
6712 
6713 	for (i = 0; i < hash->dth_size; i++)
6714 		ASSERT(hash->dth_tab[i] == NULL);
6715 #endif
6716 
6717 	kmem_free(hash->dth_tab,
6718 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6719 	kmem_free(hash, sizeof (dtrace_hash_t));
6720 }
6721 
6722 static void
6723 dtrace_hash_resize(dtrace_hash_t *hash)
6724 {
6725 	int size = hash->dth_size, i, ndx;
6726 	int new_size = hash->dth_size << 1;
6727 	int new_mask = new_size - 1;
6728 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6729 
6730 	ASSERT((new_size & new_mask) == 0);
6731 
6732 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6733 
6734 	for (i = 0; i < size; i++) {
6735 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6736 			dtrace_probe_t *probe = bucket->dthb_chain;
6737 
6738 			ASSERT(probe != NULL);
6739 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6740 
6741 			next = bucket->dthb_next;
6742 			bucket->dthb_next = new_tab[ndx];
6743 			new_tab[ndx] = bucket;
6744 		}
6745 	}
6746 
6747 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6748 	hash->dth_tab = new_tab;
6749 	hash->dth_size = new_size;
6750 	hash->dth_mask = new_mask;
6751 }
6752 
6753 static void
6754 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6755 {
6756 	int hashval = DTRACE_HASHSTR(hash, new);
6757 	int ndx = hashval & hash->dth_mask;
6758 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6759 	dtrace_probe_t **nextp, **prevp;
6760 
6761 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6762 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6763 			goto add;
6764 	}
6765 
6766 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6767 		dtrace_hash_resize(hash);
6768 		dtrace_hash_add(hash, new);
6769 		return;
6770 	}
6771 
6772 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6773 	bucket->dthb_next = hash->dth_tab[ndx];
6774 	hash->dth_tab[ndx] = bucket;
6775 	hash->dth_nbuckets++;
6776 
6777 add:
6778 	nextp = DTRACE_HASHNEXT(hash, new);
6779 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6780 	*nextp = bucket->dthb_chain;
6781 
6782 	if (bucket->dthb_chain != NULL) {
6783 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6784 		ASSERT(*prevp == NULL);
6785 		*prevp = new;
6786 	}
6787 
6788 	bucket->dthb_chain = new;
6789 	bucket->dthb_len++;
6790 }
6791 
6792 static dtrace_probe_t *
6793 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6794 {
6795 	int hashval = DTRACE_HASHSTR(hash, template);
6796 	int ndx = hashval & hash->dth_mask;
6797 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6798 
6799 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6800 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6801 			return (bucket->dthb_chain);
6802 	}
6803 
6804 	return (NULL);
6805 }
6806 
6807 static int
6808 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6809 {
6810 	int hashval = DTRACE_HASHSTR(hash, template);
6811 	int ndx = hashval & hash->dth_mask;
6812 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6813 
6814 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6815 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6816 			return (bucket->dthb_len);
6817 	}
6818 
6819 	return (0);
6820 }
6821 
6822 static void
6823 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6824 {
6825 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6826 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6827 
6828 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6829 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6830 
6831 	/*
6832 	 * Find the bucket that we're removing this probe from.
6833 	 */
6834 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6835 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6836 			break;
6837 	}
6838 
6839 	ASSERT(bucket != NULL);
6840 
6841 	if (*prevp == NULL) {
6842 		if (*nextp == NULL) {
6843 			/*
6844 			 * The removed probe was the only probe on this
6845 			 * bucket; we need to remove the bucket.
6846 			 */
6847 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6848 
6849 			ASSERT(bucket->dthb_chain == probe);
6850 			ASSERT(b != NULL);
6851 
6852 			if (b == bucket) {
6853 				hash->dth_tab[ndx] = bucket->dthb_next;
6854 			} else {
6855 				while (b->dthb_next != bucket)
6856 					b = b->dthb_next;
6857 				b->dthb_next = bucket->dthb_next;
6858 			}
6859 
6860 			ASSERT(hash->dth_nbuckets > 0);
6861 			hash->dth_nbuckets--;
6862 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6863 			return;
6864 		}
6865 
6866 		bucket->dthb_chain = *nextp;
6867 	} else {
6868 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6869 	}
6870 
6871 	if (*nextp != NULL)
6872 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6873 }
6874 
6875 /*
6876  * DTrace Utility Functions
6877  *
6878  * These are random utility functions that are _not_ called from probe context.
6879  */
6880 static int
6881 dtrace_badattr(const dtrace_attribute_t *a)
6882 {
6883 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6884 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6885 	    a->dtat_class > DTRACE_CLASS_MAX);
6886 }
6887 
6888 /*
6889  * Return a duplicate copy of a string.  If the specified string is NULL,
6890  * this function returns a zero-length string.
6891  */
6892 static char *
6893 dtrace_strdup(const char *str)
6894 {
6895 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6896 
6897 	if (str != NULL)
6898 		(void) strcpy(new, str);
6899 
6900 	return (new);
6901 }
6902 
6903 #define	DTRACE_ISALPHA(c)	\
6904 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6905 
6906 static int
6907 dtrace_badname(const char *s)
6908 {
6909 	char c;
6910 
6911 	if (s == NULL || (c = *s++) == '\0')
6912 		return (0);
6913 
6914 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6915 		return (1);
6916 
6917 	while ((c = *s++) != '\0') {
6918 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6919 		    c != '-' && c != '_' && c != '.' && c != '`')
6920 			return (1);
6921 	}
6922 
6923 	return (0);
6924 }
6925 
6926 static void
6927 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6928 {
6929 	uint32_t priv;
6930 
6931 #if defined(sun)
6932 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6933 		/*
6934 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6935 		 */
6936 		priv = DTRACE_PRIV_ALL;
6937 	} else {
6938 		*uidp = crgetuid(cr);
6939 		*zoneidp = crgetzoneid(cr);
6940 
6941 		priv = 0;
6942 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6943 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6944 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6945 			priv |= DTRACE_PRIV_USER;
6946 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6947 			priv |= DTRACE_PRIV_PROC;
6948 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6949 			priv |= DTRACE_PRIV_OWNER;
6950 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6951 			priv |= DTRACE_PRIV_ZONEOWNER;
6952 	}
6953 #else
6954 	priv = DTRACE_PRIV_ALL;
6955 #endif
6956 
6957 	*privp = priv;
6958 }
6959 
6960 #ifdef DTRACE_ERRDEBUG
6961 static void
6962 dtrace_errdebug(const char *str)
6963 {
6964 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6965 	int occupied = 0;
6966 
6967 	mutex_enter(&dtrace_errlock);
6968 	dtrace_errlast = str;
6969 	dtrace_errthread = curthread;
6970 
6971 	while (occupied++ < DTRACE_ERRHASHSZ) {
6972 		if (dtrace_errhash[hval].dter_msg == str) {
6973 			dtrace_errhash[hval].dter_count++;
6974 			goto out;
6975 		}
6976 
6977 		if (dtrace_errhash[hval].dter_msg != NULL) {
6978 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6979 			continue;
6980 		}
6981 
6982 		dtrace_errhash[hval].dter_msg = str;
6983 		dtrace_errhash[hval].dter_count = 1;
6984 		goto out;
6985 	}
6986 
6987 	panic("dtrace: undersized error hash");
6988 out:
6989 	mutex_exit(&dtrace_errlock);
6990 }
6991 #endif
6992 
6993 /*
6994  * DTrace Matching Functions
6995  *
6996  * These functions are used to match groups of probes, given some elements of
6997  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6998  */
6999 static int
7000 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7001     zoneid_t zoneid)
7002 {
7003 	if (priv != DTRACE_PRIV_ALL) {
7004 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7005 		uint32_t match = priv & ppriv;
7006 
7007 		/*
7008 		 * No PRIV_DTRACE_* privileges...
7009 		 */
7010 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7011 		    DTRACE_PRIV_KERNEL)) == 0)
7012 			return (0);
7013 
7014 		/*
7015 		 * No matching bits, but there were bits to match...
7016 		 */
7017 		if (match == 0 && ppriv != 0)
7018 			return (0);
7019 
7020 		/*
7021 		 * Need to have permissions to the process, but don't...
7022 		 */
7023 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7024 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7025 			return (0);
7026 		}
7027 
7028 		/*
7029 		 * Need to be in the same zone unless we possess the
7030 		 * privilege to examine all zones.
7031 		 */
7032 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7033 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7034 			return (0);
7035 		}
7036 	}
7037 
7038 	return (1);
7039 }
7040 
7041 /*
7042  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7043  * consists of input pattern strings and an ops-vector to evaluate them.
7044  * This function returns >0 for match, 0 for no match, and <0 for error.
7045  */
7046 static int
7047 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7048     uint32_t priv, uid_t uid, zoneid_t zoneid)
7049 {
7050 	dtrace_provider_t *pvp = prp->dtpr_provider;
7051 	int rv;
7052 
7053 	if (pvp->dtpv_defunct)
7054 		return (0);
7055 
7056 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7057 		return (rv);
7058 
7059 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7060 		return (rv);
7061 
7062 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7063 		return (rv);
7064 
7065 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7066 		return (rv);
7067 
7068 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7069 		return (0);
7070 
7071 	return (rv);
7072 }
7073 
7074 /*
7075  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7076  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7077  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7078  * In addition, all of the recursion cases except for '*' matching have been
7079  * unwound.  For '*', we still implement recursive evaluation, but a depth
7080  * counter is maintained and matching is aborted if we recurse too deep.
7081  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7082  */
7083 static int
7084 dtrace_match_glob(const char *s, const char *p, int depth)
7085 {
7086 	const char *olds;
7087 	char s1, c;
7088 	int gs;
7089 
7090 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7091 		return (-1);
7092 
7093 	if (s == NULL)
7094 		s = ""; /* treat NULL as empty string */
7095 
7096 top:
7097 	olds = s;
7098 	s1 = *s++;
7099 
7100 	if (p == NULL)
7101 		return (0);
7102 
7103 	if ((c = *p++) == '\0')
7104 		return (s1 == '\0');
7105 
7106 	switch (c) {
7107 	case '[': {
7108 		int ok = 0, notflag = 0;
7109 		char lc = '\0';
7110 
7111 		if (s1 == '\0')
7112 			return (0);
7113 
7114 		if (*p == '!') {
7115 			notflag = 1;
7116 			p++;
7117 		}
7118 
7119 		if ((c = *p++) == '\0')
7120 			return (0);
7121 
7122 		do {
7123 			if (c == '-' && lc != '\0' && *p != ']') {
7124 				if ((c = *p++) == '\0')
7125 					return (0);
7126 				if (c == '\\' && (c = *p++) == '\0')
7127 					return (0);
7128 
7129 				if (notflag) {
7130 					if (s1 < lc || s1 > c)
7131 						ok++;
7132 					else
7133 						return (0);
7134 				} else if (lc <= s1 && s1 <= c)
7135 					ok++;
7136 
7137 			} else if (c == '\\' && (c = *p++) == '\0')
7138 				return (0);
7139 
7140 			lc = c; /* save left-hand 'c' for next iteration */
7141 
7142 			if (notflag) {
7143 				if (s1 != c)
7144 					ok++;
7145 				else
7146 					return (0);
7147 			} else if (s1 == c)
7148 				ok++;
7149 
7150 			if ((c = *p++) == '\0')
7151 				return (0);
7152 
7153 		} while (c != ']');
7154 
7155 		if (ok)
7156 			goto top;
7157 
7158 		return (0);
7159 	}
7160 
7161 	case '\\':
7162 		if ((c = *p++) == '\0')
7163 			return (0);
7164 		/*FALLTHRU*/
7165 
7166 	default:
7167 		if (c != s1)
7168 			return (0);
7169 		/*FALLTHRU*/
7170 
7171 	case '?':
7172 		if (s1 != '\0')
7173 			goto top;
7174 		return (0);
7175 
7176 	case '*':
7177 		while (*p == '*')
7178 			p++; /* consecutive *'s are identical to a single one */
7179 
7180 		if (*p == '\0')
7181 			return (1);
7182 
7183 		for (s = olds; *s != '\0'; s++) {
7184 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7185 				return (gs);
7186 		}
7187 
7188 		return (0);
7189 	}
7190 }
7191 
7192 /*ARGSUSED*/
7193 static int
7194 dtrace_match_string(const char *s, const char *p, int depth)
7195 {
7196 	return (s != NULL && strcmp(s, p) == 0);
7197 }
7198 
7199 /*ARGSUSED*/
7200 static int
7201 dtrace_match_nul(const char *s, const char *p, int depth)
7202 {
7203 	return (1); /* always match the empty pattern */
7204 }
7205 
7206 /*ARGSUSED*/
7207 static int
7208 dtrace_match_nonzero(const char *s, const char *p, int depth)
7209 {
7210 	return (s != NULL && s[0] != '\0');
7211 }
7212 
7213 static int
7214 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7215     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7216 {
7217 	dtrace_probe_t template, *probe;
7218 	dtrace_hash_t *hash = NULL;
7219 	int len, best = INT_MAX, nmatched = 0;
7220 	dtrace_id_t i;
7221 
7222 	ASSERT(MUTEX_HELD(&dtrace_lock));
7223 
7224 	/*
7225 	 * If the probe ID is specified in the key, just lookup by ID and
7226 	 * invoke the match callback once if a matching probe is found.
7227 	 */
7228 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7229 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7230 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7231 			(void) (*matched)(probe, arg);
7232 			nmatched++;
7233 		}
7234 		return (nmatched);
7235 	}
7236 
7237 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7238 	template.dtpr_func = (char *)pkp->dtpk_func;
7239 	template.dtpr_name = (char *)pkp->dtpk_name;
7240 
7241 	/*
7242 	 * We want to find the most distinct of the module name, function
7243 	 * name, and name.  So for each one that is not a glob pattern or
7244 	 * empty string, we perform a lookup in the corresponding hash and
7245 	 * use the hash table with the fewest collisions to do our search.
7246 	 */
7247 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7248 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7249 		best = len;
7250 		hash = dtrace_bymod;
7251 	}
7252 
7253 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7254 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7255 		best = len;
7256 		hash = dtrace_byfunc;
7257 	}
7258 
7259 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7260 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7261 		best = len;
7262 		hash = dtrace_byname;
7263 	}
7264 
7265 	/*
7266 	 * If we did not select a hash table, iterate over every probe and
7267 	 * invoke our callback for each one that matches our input probe key.
7268 	 */
7269 	if (hash == NULL) {
7270 		for (i = 0; i < dtrace_nprobes; i++) {
7271 			if ((probe = dtrace_probes[i]) == NULL ||
7272 			    dtrace_match_probe(probe, pkp, priv, uid,
7273 			    zoneid) <= 0)
7274 				continue;
7275 
7276 			nmatched++;
7277 
7278 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7279 				break;
7280 		}
7281 
7282 		return (nmatched);
7283 	}
7284 
7285 	/*
7286 	 * If we selected a hash table, iterate over each probe of the same key
7287 	 * name and invoke the callback for every probe that matches the other
7288 	 * attributes of our input probe key.
7289 	 */
7290 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7291 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7292 
7293 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7294 			continue;
7295 
7296 		nmatched++;
7297 
7298 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7299 			break;
7300 	}
7301 
7302 	return (nmatched);
7303 }
7304 
7305 /*
7306  * Return the function pointer dtrace_probecmp() should use to compare the
7307  * specified pattern with a string.  For NULL or empty patterns, we select
7308  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7309  * For non-empty non-glob strings, we use dtrace_match_string().
7310  */
7311 static dtrace_probekey_f *
7312 dtrace_probekey_func(const char *p)
7313 {
7314 	char c;
7315 
7316 	if (p == NULL || *p == '\0')
7317 		return (&dtrace_match_nul);
7318 
7319 	while ((c = *p++) != '\0') {
7320 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7321 			return (&dtrace_match_glob);
7322 	}
7323 
7324 	return (&dtrace_match_string);
7325 }
7326 
7327 /*
7328  * Build a probe comparison key for use with dtrace_match_probe() from the
7329  * given probe description.  By convention, a null key only matches anchored
7330  * probes: if each field is the empty string, reset dtpk_fmatch to
7331  * dtrace_match_nonzero().
7332  */
7333 static void
7334 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7335 {
7336 	pkp->dtpk_prov = pdp->dtpd_provider;
7337 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7338 
7339 	pkp->dtpk_mod = pdp->dtpd_mod;
7340 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7341 
7342 	pkp->dtpk_func = pdp->dtpd_func;
7343 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7344 
7345 	pkp->dtpk_name = pdp->dtpd_name;
7346 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7347 
7348 	pkp->dtpk_id = pdp->dtpd_id;
7349 
7350 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7351 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7352 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7353 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7354 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7355 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7356 }
7357 
7358 /*
7359  * DTrace Provider-to-Framework API Functions
7360  *
7361  * These functions implement much of the Provider-to-Framework API, as
7362  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7363  * the functions in the API for probe management (found below), and
7364  * dtrace_probe() itself (found above).
7365  */
7366 
7367 /*
7368  * Register the calling provider with the DTrace framework.  This should
7369  * generally be called by DTrace providers in their attach(9E) entry point.
7370  */
7371 int
7372 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7373     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7374 {
7375 	dtrace_provider_t *provider;
7376 
7377 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7378 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7379 		    "arguments", name ? name : "<NULL>");
7380 		return (EINVAL);
7381 	}
7382 
7383 	if (name[0] == '\0' || dtrace_badname(name)) {
7384 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7385 		    "provider name", name);
7386 		return (EINVAL);
7387 	}
7388 
7389 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7390 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7391 	    pops->dtps_destroy == NULL ||
7392 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7393 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7394 		    "provider ops", name);
7395 		return (EINVAL);
7396 	}
7397 
7398 	if (dtrace_badattr(&pap->dtpa_provider) ||
7399 	    dtrace_badattr(&pap->dtpa_mod) ||
7400 	    dtrace_badattr(&pap->dtpa_func) ||
7401 	    dtrace_badattr(&pap->dtpa_name) ||
7402 	    dtrace_badattr(&pap->dtpa_args)) {
7403 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7404 		    "provider attributes", name);
7405 		return (EINVAL);
7406 	}
7407 
7408 	if (priv & ~DTRACE_PRIV_ALL) {
7409 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7410 		    "privilege attributes", name);
7411 		return (EINVAL);
7412 	}
7413 
7414 	if ((priv & DTRACE_PRIV_KERNEL) &&
7415 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7416 	    pops->dtps_usermode == NULL) {
7417 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7418 		    "dtps_usermode() op for given privilege attributes", name);
7419 		return (EINVAL);
7420 	}
7421 
7422 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7423 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7424 	(void) strcpy(provider->dtpv_name, name);
7425 
7426 	provider->dtpv_attr = *pap;
7427 	provider->dtpv_priv.dtpp_flags = priv;
7428 	if (cr != NULL) {
7429 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7430 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7431 	}
7432 	provider->dtpv_pops = *pops;
7433 
7434 	if (pops->dtps_provide == NULL) {
7435 		ASSERT(pops->dtps_provide_module != NULL);
7436 		provider->dtpv_pops.dtps_provide =
7437 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7438 	}
7439 
7440 	if (pops->dtps_provide_module == NULL) {
7441 		ASSERT(pops->dtps_provide != NULL);
7442 		provider->dtpv_pops.dtps_provide_module =
7443 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7444 	}
7445 
7446 	if (pops->dtps_suspend == NULL) {
7447 		ASSERT(pops->dtps_resume == NULL);
7448 		provider->dtpv_pops.dtps_suspend =
7449 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7450 		provider->dtpv_pops.dtps_resume =
7451 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7452 	}
7453 
7454 	provider->dtpv_arg = arg;
7455 	*idp = (dtrace_provider_id_t)provider;
7456 
7457 	if (pops == &dtrace_provider_ops) {
7458 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7459 		ASSERT(MUTEX_HELD(&dtrace_lock));
7460 		ASSERT(dtrace_anon.dta_enabling == NULL);
7461 
7462 		/*
7463 		 * We make sure that the DTrace provider is at the head of
7464 		 * the provider chain.
7465 		 */
7466 		provider->dtpv_next = dtrace_provider;
7467 		dtrace_provider = provider;
7468 		return (0);
7469 	}
7470 
7471 	mutex_enter(&dtrace_provider_lock);
7472 	mutex_enter(&dtrace_lock);
7473 
7474 	/*
7475 	 * If there is at least one provider registered, we'll add this
7476 	 * provider after the first provider.
7477 	 */
7478 	if (dtrace_provider != NULL) {
7479 		provider->dtpv_next = dtrace_provider->dtpv_next;
7480 		dtrace_provider->dtpv_next = provider;
7481 	} else {
7482 		dtrace_provider = provider;
7483 	}
7484 
7485 	if (dtrace_retained != NULL) {
7486 		dtrace_enabling_provide(provider);
7487 
7488 		/*
7489 		 * Now we need to call dtrace_enabling_matchall() -- which
7490 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7491 		 * to drop all of our locks before calling into it...
7492 		 */
7493 		mutex_exit(&dtrace_lock);
7494 		mutex_exit(&dtrace_provider_lock);
7495 		dtrace_enabling_matchall();
7496 
7497 		return (0);
7498 	}
7499 
7500 	mutex_exit(&dtrace_lock);
7501 	mutex_exit(&dtrace_provider_lock);
7502 
7503 	return (0);
7504 }
7505 
7506 /*
7507  * Unregister the specified provider from the DTrace framework.  This should
7508  * generally be called by DTrace providers in their detach(9E) entry point.
7509  */
7510 int
7511 dtrace_unregister(dtrace_provider_id_t id)
7512 {
7513 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7514 	dtrace_provider_t *prev = NULL;
7515 	int i, self = 0;
7516 	dtrace_probe_t *probe, *first = NULL;
7517 
7518 	if (old->dtpv_pops.dtps_enable ==
7519 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7520 		/*
7521 		 * If DTrace itself is the provider, we're called with locks
7522 		 * already held.
7523 		 */
7524 		ASSERT(old == dtrace_provider);
7525 #if defined(sun)
7526 		ASSERT(dtrace_devi != NULL);
7527 #endif
7528 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7529 		ASSERT(MUTEX_HELD(&dtrace_lock));
7530 		self = 1;
7531 
7532 		if (dtrace_provider->dtpv_next != NULL) {
7533 			/*
7534 			 * There's another provider here; return failure.
7535 			 */
7536 			return (EBUSY);
7537 		}
7538 	} else {
7539 		mutex_enter(&dtrace_provider_lock);
7540 		mutex_enter(&mod_lock);
7541 		mutex_enter(&dtrace_lock);
7542 	}
7543 
7544 	/*
7545 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7546 	 * probes, we refuse to let providers slither away, unless this
7547 	 * provider has already been explicitly invalidated.
7548 	 */
7549 	if (!old->dtpv_defunct &&
7550 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7551 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7552 		if (!self) {
7553 			mutex_exit(&dtrace_lock);
7554 			mutex_exit(&mod_lock);
7555 			mutex_exit(&dtrace_provider_lock);
7556 		}
7557 		return (EBUSY);
7558 	}
7559 
7560 	/*
7561 	 * Attempt to destroy the probes associated with this provider.
7562 	 */
7563 	for (i = 0; i < dtrace_nprobes; i++) {
7564 		if ((probe = dtrace_probes[i]) == NULL)
7565 			continue;
7566 
7567 		if (probe->dtpr_provider != old)
7568 			continue;
7569 
7570 		if (probe->dtpr_ecb == NULL)
7571 			continue;
7572 
7573 		/*
7574 		 * We have at least one ECB; we can't remove this provider.
7575 		 */
7576 		if (!self) {
7577 			mutex_exit(&dtrace_lock);
7578 			mutex_exit(&mod_lock);
7579 			mutex_exit(&dtrace_provider_lock);
7580 		}
7581 		return (EBUSY);
7582 	}
7583 
7584 	/*
7585 	 * All of the probes for this provider are disabled; we can safely
7586 	 * remove all of them from their hash chains and from the probe array.
7587 	 */
7588 	for (i = 0; i < dtrace_nprobes; i++) {
7589 		if ((probe = dtrace_probes[i]) == NULL)
7590 			continue;
7591 
7592 		if (probe->dtpr_provider != old)
7593 			continue;
7594 
7595 		dtrace_probes[i] = NULL;
7596 
7597 		dtrace_hash_remove(dtrace_bymod, probe);
7598 		dtrace_hash_remove(dtrace_byfunc, probe);
7599 		dtrace_hash_remove(dtrace_byname, probe);
7600 
7601 		if (first == NULL) {
7602 			first = probe;
7603 			probe->dtpr_nextmod = NULL;
7604 		} else {
7605 			probe->dtpr_nextmod = first;
7606 			first = probe;
7607 		}
7608 	}
7609 
7610 	/*
7611 	 * The provider's probes have been removed from the hash chains and
7612 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7613 	 * everyone has cleared out from any probe array processing.
7614 	 */
7615 	dtrace_sync();
7616 
7617 	for (probe = first; probe != NULL; probe = first) {
7618 		first = probe->dtpr_nextmod;
7619 
7620 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7621 		    probe->dtpr_arg);
7622 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7623 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7624 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7625 #if defined(sun)
7626 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7627 #else
7628 		free_unr(dtrace_arena, probe->dtpr_id);
7629 #endif
7630 		kmem_free(probe, sizeof (dtrace_probe_t));
7631 	}
7632 
7633 	if ((prev = dtrace_provider) == old) {
7634 #if defined(sun)
7635 		ASSERT(self || dtrace_devi == NULL);
7636 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7637 #endif
7638 		dtrace_provider = old->dtpv_next;
7639 	} else {
7640 		while (prev != NULL && prev->dtpv_next != old)
7641 			prev = prev->dtpv_next;
7642 
7643 		if (prev == NULL) {
7644 			panic("attempt to unregister non-existent "
7645 			    "dtrace provider %p\n", (void *)id);
7646 		}
7647 
7648 		prev->dtpv_next = old->dtpv_next;
7649 	}
7650 
7651 	if (!self) {
7652 		mutex_exit(&dtrace_lock);
7653 		mutex_exit(&mod_lock);
7654 		mutex_exit(&dtrace_provider_lock);
7655 	}
7656 
7657 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7658 	kmem_free(old, sizeof (dtrace_provider_t));
7659 
7660 	return (0);
7661 }
7662 
7663 /*
7664  * Invalidate the specified provider.  All subsequent probe lookups for the
7665  * specified provider will fail, but its probes will not be removed.
7666  */
7667 void
7668 dtrace_invalidate(dtrace_provider_id_t id)
7669 {
7670 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7671 
7672 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7673 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7674 
7675 	mutex_enter(&dtrace_provider_lock);
7676 	mutex_enter(&dtrace_lock);
7677 
7678 	pvp->dtpv_defunct = 1;
7679 
7680 	mutex_exit(&dtrace_lock);
7681 	mutex_exit(&dtrace_provider_lock);
7682 }
7683 
7684 /*
7685  * Indicate whether or not DTrace has attached.
7686  */
7687 int
7688 dtrace_attached(void)
7689 {
7690 	/*
7691 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7692 	 * attached.  (It's non-NULL because DTrace is always itself a
7693 	 * provider.)
7694 	 */
7695 	return (dtrace_provider != NULL);
7696 }
7697 
7698 /*
7699  * Remove all the unenabled probes for the given provider.  This function is
7700  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7701  * -- just as many of its associated probes as it can.
7702  */
7703 int
7704 dtrace_condense(dtrace_provider_id_t id)
7705 {
7706 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7707 	int i;
7708 	dtrace_probe_t *probe;
7709 
7710 	/*
7711 	 * Make sure this isn't the dtrace provider itself.
7712 	 */
7713 	ASSERT(prov->dtpv_pops.dtps_enable !=
7714 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7715 
7716 	mutex_enter(&dtrace_provider_lock);
7717 	mutex_enter(&dtrace_lock);
7718 
7719 	/*
7720 	 * Attempt to destroy the probes associated with this provider.
7721 	 */
7722 	for (i = 0; i < dtrace_nprobes; i++) {
7723 		if ((probe = dtrace_probes[i]) == NULL)
7724 			continue;
7725 
7726 		if (probe->dtpr_provider != prov)
7727 			continue;
7728 
7729 		if (probe->dtpr_ecb != NULL)
7730 			continue;
7731 
7732 		dtrace_probes[i] = NULL;
7733 
7734 		dtrace_hash_remove(dtrace_bymod, probe);
7735 		dtrace_hash_remove(dtrace_byfunc, probe);
7736 		dtrace_hash_remove(dtrace_byname, probe);
7737 
7738 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7739 		    probe->dtpr_arg);
7740 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7741 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7742 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7743 		kmem_free(probe, sizeof (dtrace_probe_t));
7744 #if defined(sun)
7745 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7746 #else
7747 		free_unr(dtrace_arena, i + 1);
7748 #endif
7749 	}
7750 
7751 	mutex_exit(&dtrace_lock);
7752 	mutex_exit(&dtrace_provider_lock);
7753 
7754 	return (0);
7755 }
7756 
7757 /*
7758  * DTrace Probe Management Functions
7759  *
7760  * The functions in this section perform the DTrace probe management,
7761  * including functions to create probes, look-up probes, and call into the
7762  * providers to request that probes be provided.  Some of these functions are
7763  * in the Provider-to-Framework API; these functions can be identified by the
7764  * fact that they are not declared "static".
7765  */
7766 
7767 /*
7768  * Create a probe with the specified module name, function name, and name.
7769  */
7770 dtrace_id_t
7771 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7772     const char *func, const char *name, int aframes, void *arg)
7773 {
7774 	dtrace_probe_t *probe, **probes;
7775 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7776 	dtrace_id_t id;
7777 
7778 	if (provider == dtrace_provider) {
7779 		ASSERT(MUTEX_HELD(&dtrace_lock));
7780 	} else {
7781 		mutex_enter(&dtrace_lock);
7782 	}
7783 
7784 #if defined(sun)
7785 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7786 	    VM_BESTFIT | VM_SLEEP);
7787 #else
7788 	id = alloc_unr(dtrace_arena);
7789 #endif
7790 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7791 
7792 	probe->dtpr_id = id;
7793 	probe->dtpr_gen = dtrace_probegen++;
7794 	probe->dtpr_mod = dtrace_strdup(mod);
7795 	probe->dtpr_func = dtrace_strdup(func);
7796 	probe->dtpr_name = dtrace_strdup(name);
7797 	probe->dtpr_arg = arg;
7798 	probe->dtpr_aframes = aframes;
7799 	probe->dtpr_provider = provider;
7800 
7801 	dtrace_hash_add(dtrace_bymod, probe);
7802 	dtrace_hash_add(dtrace_byfunc, probe);
7803 	dtrace_hash_add(dtrace_byname, probe);
7804 
7805 	if (id - 1 >= dtrace_nprobes) {
7806 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7807 		size_t nsize = osize << 1;
7808 
7809 		if (nsize == 0) {
7810 			ASSERT(osize == 0);
7811 			ASSERT(dtrace_probes == NULL);
7812 			nsize = sizeof (dtrace_probe_t *);
7813 		}
7814 
7815 		probes = kmem_zalloc(nsize, KM_SLEEP);
7816 
7817 		if (dtrace_probes == NULL) {
7818 			ASSERT(osize == 0);
7819 			dtrace_probes = probes;
7820 			dtrace_nprobes = 1;
7821 		} else {
7822 			dtrace_probe_t **oprobes = dtrace_probes;
7823 
7824 			bcopy(oprobes, probes, osize);
7825 			dtrace_membar_producer();
7826 			dtrace_probes = probes;
7827 
7828 			dtrace_sync();
7829 
7830 			/*
7831 			 * All CPUs are now seeing the new probes array; we can
7832 			 * safely free the old array.
7833 			 */
7834 			kmem_free(oprobes, osize);
7835 			dtrace_nprobes <<= 1;
7836 		}
7837 
7838 		ASSERT(id - 1 < dtrace_nprobes);
7839 	}
7840 
7841 	ASSERT(dtrace_probes[id - 1] == NULL);
7842 	dtrace_probes[id - 1] = probe;
7843 
7844 	if (provider != dtrace_provider)
7845 		mutex_exit(&dtrace_lock);
7846 
7847 	return (id);
7848 }
7849 
7850 static dtrace_probe_t *
7851 dtrace_probe_lookup_id(dtrace_id_t id)
7852 {
7853 	ASSERT(MUTEX_HELD(&dtrace_lock));
7854 
7855 	if (id == 0 || id > dtrace_nprobes)
7856 		return (NULL);
7857 
7858 	return (dtrace_probes[id - 1]);
7859 }
7860 
7861 static int
7862 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7863 {
7864 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7865 
7866 	return (DTRACE_MATCH_DONE);
7867 }
7868 
7869 /*
7870  * Look up a probe based on provider and one or more of module name, function
7871  * name and probe name.
7872  */
7873 dtrace_id_t
7874 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7875     char *func, char *name)
7876 {
7877 	dtrace_probekey_t pkey;
7878 	dtrace_id_t id;
7879 	int match;
7880 
7881 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7882 	pkey.dtpk_pmatch = &dtrace_match_string;
7883 	pkey.dtpk_mod = mod;
7884 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7885 	pkey.dtpk_func = func;
7886 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7887 	pkey.dtpk_name = name;
7888 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7889 	pkey.dtpk_id = DTRACE_IDNONE;
7890 
7891 	mutex_enter(&dtrace_lock);
7892 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7893 	    dtrace_probe_lookup_match, &id);
7894 	mutex_exit(&dtrace_lock);
7895 
7896 	ASSERT(match == 1 || match == 0);
7897 	return (match ? id : 0);
7898 }
7899 
7900 /*
7901  * Returns the probe argument associated with the specified probe.
7902  */
7903 void *
7904 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7905 {
7906 	dtrace_probe_t *probe;
7907 	void *rval = NULL;
7908 
7909 	mutex_enter(&dtrace_lock);
7910 
7911 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7912 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7913 		rval = probe->dtpr_arg;
7914 
7915 	mutex_exit(&dtrace_lock);
7916 
7917 	return (rval);
7918 }
7919 
7920 /*
7921  * Copy a probe into a probe description.
7922  */
7923 static void
7924 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7925 {
7926 	bzero(pdp, sizeof (dtrace_probedesc_t));
7927 	pdp->dtpd_id = prp->dtpr_id;
7928 
7929 	(void) strncpy(pdp->dtpd_provider,
7930 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7931 
7932 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7933 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7934 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7935 }
7936 
7937 #if !defined(sun)
7938 static int
7939 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7940 {
7941 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7942 
7943 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7944 
7945 	return(0);
7946 }
7947 #endif
7948 
7949 
7950 /*
7951  * Called to indicate that a probe -- or probes -- should be provided by a
7952  * specfied provider.  If the specified description is NULL, the provider will
7953  * be told to provide all of its probes.  (This is done whenever a new
7954  * consumer comes along, or whenever a retained enabling is to be matched.) If
7955  * the specified description is non-NULL, the provider is given the
7956  * opportunity to dynamically provide the specified probe, allowing providers
7957  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7958  * probes.)  If the provider is NULL, the operations will be applied to all
7959  * providers; if the provider is non-NULL the operations will only be applied
7960  * to the specified provider.  The dtrace_provider_lock must be held, and the
7961  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7962  * will need to grab the dtrace_lock when it reenters the framework through
7963  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7964  */
7965 static void
7966 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7967 {
7968 #if defined(sun)
7969 	modctl_t *ctl;
7970 #endif
7971 	int all = 0;
7972 
7973 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7974 
7975 	if (prv == NULL) {
7976 		all = 1;
7977 		prv = dtrace_provider;
7978 	}
7979 
7980 	do {
7981 		/*
7982 		 * First, call the blanket provide operation.
7983 		 */
7984 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7985 
7986 		/*
7987 		 * Now call the per-module provide operation.  We will grab
7988 		 * mod_lock to prevent the list from being modified.  Note
7989 		 * that this also prevents the mod_busy bits from changing.
7990 		 * (mod_busy can only be changed with mod_lock held.)
7991 		 */
7992 		mutex_enter(&mod_lock);
7993 
7994 #if defined(sun)
7995 		ctl = &modules;
7996 		do {
7997 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7998 				continue;
7999 
8000 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8001 
8002 		} while ((ctl = ctl->mod_next) != &modules);
8003 #else
8004 		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8005 #endif
8006 
8007 		mutex_exit(&mod_lock);
8008 	} while (all && (prv = prv->dtpv_next) != NULL);
8009 }
8010 
8011 #if defined(sun)
8012 /*
8013  * Iterate over each probe, and call the Framework-to-Provider API function
8014  * denoted by offs.
8015  */
8016 static void
8017 dtrace_probe_foreach(uintptr_t offs)
8018 {
8019 	dtrace_provider_t *prov;
8020 	void (*func)(void *, dtrace_id_t, void *);
8021 	dtrace_probe_t *probe;
8022 	dtrace_icookie_t cookie;
8023 	int i;
8024 
8025 	/*
8026 	 * We disable interrupts to walk through the probe array.  This is
8027 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8028 	 * won't see stale data.
8029 	 */
8030 	cookie = dtrace_interrupt_disable();
8031 
8032 	for (i = 0; i < dtrace_nprobes; i++) {
8033 		if ((probe = dtrace_probes[i]) == NULL)
8034 			continue;
8035 
8036 		if (probe->dtpr_ecb == NULL) {
8037 			/*
8038 			 * This probe isn't enabled -- don't call the function.
8039 			 */
8040 			continue;
8041 		}
8042 
8043 		prov = probe->dtpr_provider;
8044 		func = *((void(**)(void *, dtrace_id_t, void *))
8045 		    ((uintptr_t)&prov->dtpv_pops + offs));
8046 
8047 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8048 	}
8049 
8050 	dtrace_interrupt_enable(cookie);
8051 }
8052 #endif
8053 
8054 static int
8055 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8056 {
8057 	dtrace_probekey_t pkey;
8058 	uint32_t priv;
8059 	uid_t uid;
8060 	zoneid_t zoneid;
8061 
8062 	ASSERT(MUTEX_HELD(&dtrace_lock));
8063 	dtrace_ecb_create_cache = NULL;
8064 
8065 	if (desc == NULL) {
8066 		/*
8067 		 * If we're passed a NULL description, we're being asked to
8068 		 * create an ECB with a NULL probe.
8069 		 */
8070 		(void) dtrace_ecb_create_enable(NULL, enab);
8071 		return (0);
8072 	}
8073 
8074 	dtrace_probekey(desc, &pkey);
8075 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8076 	    &priv, &uid, &zoneid);
8077 
8078 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8079 	    enab));
8080 }
8081 
8082 /*
8083  * DTrace Helper Provider Functions
8084  */
8085 static void
8086 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8087 {
8088 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8089 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8090 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8091 }
8092 
8093 static void
8094 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8095     const dof_provider_t *dofprov, char *strtab)
8096 {
8097 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8098 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8099 	    dofprov->dofpv_provattr);
8100 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8101 	    dofprov->dofpv_modattr);
8102 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8103 	    dofprov->dofpv_funcattr);
8104 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8105 	    dofprov->dofpv_nameattr);
8106 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8107 	    dofprov->dofpv_argsattr);
8108 }
8109 
8110 static void
8111 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8112 {
8113 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8114 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8115 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8116 	dof_provider_t *provider;
8117 	dof_probe_t *probe;
8118 	uint32_t *off, *enoff;
8119 	uint8_t *arg;
8120 	char *strtab;
8121 	uint_t i, nprobes;
8122 	dtrace_helper_provdesc_t dhpv;
8123 	dtrace_helper_probedesc_t dhpb;
8124 	dtrace_meta_t *meta = dtrace_meta_pid;
8125 	dtrace_mops_t *mops = &meta->dtm_mops;
8126 	void *parg;
8127 
8128 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8129 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8130 	    provider->dofpv_strtab * dof->dofh_secsize);
8131 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8132 	    provider->dofpv_probes * dof->dofh_secsize);
8133 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8134 	    provider->dofpv_prargs * dof->dofh_secsize);
8135 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8136 	    provider->dofpv_proffs * dof->dofh_secsize);
8137 
8138 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8139 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8140 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8141 	enoff = NULL;
8142 
8143 	/*
8144 	 * See dtrace_helper_provider_validate().
8145 	 */
8146 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8147 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8148 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8149 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8150 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8151 	}
8152 
8153 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8154 
8155 	/*
8156 	 * Create the provider.
8157 	 */
8158 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8159 
8160 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8161 		return;
8162 
8163 	meta->dtm_count++;
8164 
8165 	/*
8166 	 * Create the probes.
8167 	 */
8168 	for (i = 0; i < nprobes; i++) {
8169 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8170 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8171 
8172 		dhpb.dthpb_mod = dhp->dofhp_mod;
8173 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8174 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8175 		dhpb.dthpb_base = probe->dofpr_addr;
8176 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8177 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8178 		if (enoff != NULL) {
8179 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8180 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8181 		} else {
8182 			dhpb.dthpb_enoffs = NULL;
8183 			dhpb.dthpb_nenoffs = 0;
8184 		}
8185 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8186 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8187 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8188 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8189 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8190 
8191 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8192 	}
8193 }
8194 
8195 static void
8196 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8197 {
8198 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8199 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8200 	int i;
8201 
8202 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8203 
8204 	for (i = 0; i < dof->dofh_secnum; i++) {
8205 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8206 		    dof->dofh_secoff + i * dof->dofh_secsize);
8207 
8208 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8209 			continue;
8210 
8211 		dtrace_helper_provide_one(dhp, sec, pid);
8212 	}
8213 
8214 	/*
8215 	 * We may have just created probes, so we must now rematch against
8216 	 * any retained enablings.  Note that this call will acquire both
8217 	 * cpu_lock and dtrace_lock; the fact that we are holding
8218 	 * dtrace_meta_lock now is what defines the ordering with respect to
8219 	 * these three locks.
8220 	 */
8221 	dtrace_enabling_matchall();
8222 }
8223 
8224 static void
8225 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8226 {
8227 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8228 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8229 	dof_sec_t *str_sec;
8230 	dof_provider_t *provider;
8231 	char *strtab;
8232 	dtrace_helper_provdesc_t dhpv;
8233 	dtrace_meta_t *meta = dtrace_meta_pid;
8234 	dtrace_mops_t *mops = &meta->dtm_mops;
8235 
8236 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8237 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8238 	    provider->dofpv_strtab * dof->dofh_secsize);
8239 
8240 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8241 
8242 	/*
8243 	 * Create the provider.
8244 	 */
8245 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8246 
8247 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8248 
8249 	meta->dtm_count--;
8250 }
8251 
8252 static void
8253 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8254 {
8255 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8256 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8257 	int i;
8258 
8259 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8260 
8261 	for (i = 0; i < dof->dofh_secnum; i++) {
8262 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8263 		    dof->dofh_secoff + i * dof->dofh_secsize);
8264 
8265 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8266 			continue;
8267 
8268 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8269 	}
8270 }
8271 
8272 /*
8273  * DTrace Meta Provider-to-Framework API Functions
8274  *
8275  * These functions implement the Meta Provider-to-Framework API, as described
8276  * in <sys/dtrace.h>.
8277  */
8278 int
8279 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8280     dtrace_meta_provider_id_t *idp)
8281 {
8282 	dtrace_meta_t *meta;
8283 	dtrace_helpers_t *help, *next;
8284 	int i;
8285 
8286 	*idp = DTRACE_METAPROVNONE;
8287 
8288 	/*
8289 	 * We strictly don't need the name, but we hold onto it for
8290 	 * debuggability. All hail error queues!
8291 	 */
8292 	if (name == NULL) {
8293 		cmn_err(CE_WARN, "failed to register meta-provider: "
8294 		    "invalid name");
8295 		return (EINVAL);
8296 	}
8297 
8298 	if (mops == NULL ||
8299 	    mops->dtms_create_probe == NULL ||
8300 	    mops->dtms_provide_pid == NULL ||
8301 	    mops->dtms_remove_pid == NULL) {
8302 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8303 		    "invalid ops", name);
8304 		return (EINVAL);
8305 	}
8306 
8307 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8308 	meta->dtm_mops = *mops;
8309 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8310 	(void) strcpy(meta->dtm_name, name);
8311 	meta->dtm_arg = arg;
8312 
8313 	mutex_enter(&dtrace_meta_lock);
8314 	mutex_enter(&dtrace_lock);
8315 
8316 	if (dtrace_meta_pid != NULL) {
8317 		mutex_exit(&dtrace_lock);
8318 		mutex_exit(&dtrace_meta_lock);
8319 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8320 		    "user-land meta-provider exists", name);
8321 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8322 		kmem_free(meta, sizeof (dtrace_meta_t));
8323 		return (EINVAL);
8324 	}
8325 
8326 	dtrace_meta_pid = meta;
8327 	*idp = (dtrace_meta_provider_id_t)meta;
8328 
8329 	/*
8330 	 * If there are providers and probes ready to go, pass them
8331 	 * off to the new meta provider now.
8332 	 */
8333 
8334 	help = dtrace_deferred_pid;
8335 	dtrace_deferred_pid = NULL;
8336 
8337 	mutex_exit(&dtrace_lock);
8338 
8339 	while (help != NULL) {
8340 		for (i = 0; i < help->dthps_nprovs; i++) {
8341 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8342 			    help->dthps_pid);
8343 		}
8344 
8345 		next = help->dthps_next;
8346 		help->dthps_next = NULL;
8347 		help->dthps_prev = NULL;
8348 		help->dthps_deferred = 0;
8349 		help = next;
8350 	}
8351 
8352 	mutex_exit(&dtrace_meta_lock);
8353 
8354 	return (0);
8355 }
8356 
8357 int
8358 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8359 {
8360 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8361 
8362 	mutex_enter(&dtrace_meta_lock);
8363 	mutex_enter(&dtrace_lock);
8364 
8365 	if (old == dtrace_meta_pid) {
8366 		pp = &dtrace_meta_pid;
8367 	} else {
8368 		panic("attempt to unregister non-existent "
8369 		    "dtrace meta-provider %p\n", (void *)old);
8370 	}
8371 
8372 	if (old->dtm_count != 0) {
8373 		mutex_exit(&dtrace_lock);
8374 		mutex_exit(&dtrace_meta_lock);
8375 		return (EBUSY);
8376 	}
8377 
8378 	*pp = NULL;
8379 
8380 	mutex_exit(&dtrace_lock);
8381 	mutex_exit(&dtrace_meta_lock);
8382 
8383 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8384 	kmem_free(old, sizeof (dtrace_meta_t));
8385 
8386 	return (0);
8387 }
8388 
8389 
8390 /*
8391  * DTrace DIF Object Functions
8392  */
8393 static int
8394 dtrace_difo_err(uint_t pc, const char *format, ...)
8395 {
8396 	if (dtrace_err_verbose) {
8397 		va_list alist;
8398 
8399 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8400 		va_start(alist, format);
8401 		(void) vuprintf(format, alist);
8402 		va_end(alist);
8403 	}
8404 
8405 #ifdef DTRACE_ERRDEBUG
8406 	dtrace_errdebug(format);
8407 #endif
8408 	return (1);
8409 }
8410 
8411 /*
8412  * Validate a DTrace DIF object by checking the IR instructions.  The following
8413  * rules are currently enforced by dtrace_difo_validate():
8414  *
8415  * 1. Each instruction must have a valid opcode
8416  * 2. Each register, string, variable, or subroutine reference must be valid
8417  * 3. No instruction can modify register %r0 (must be zero)
8418  * 4. All instruction reserved bits must be set to zero
8419  * 5. The last instruction must be a "ret" instruction
8420  * 6. All branch targets must reference a valid instruction _after_ the branch
8421  */
8422 static int
8423 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8424     cred_t *cr)
8425 {
8426 	int err = 0, i;
8427 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8428 	int kcheckload;
8429 	uint_t pc;
8430 
8431 	kcheckload = cr == NULL ||
8432 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8433 
8434 	dp->dtdo_destructive = 0;
8435 
8436 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8437 		dif_instr_t instr = dp->dtdo_buf[pc];
8438 
8439 		uint_t r1 = DIF_INSTR_R1(instr);
8440 		uint_t r2 = DIF_INSTR_R2(instr);
8441 		uint_t rd = DIF_INSTR_RD(instr);
8442 		uint_t rs = DIF_INSTR_RS(instr);
8443 		uint_t label = DIF_INSTR_LABEL(instr);
8444 		uint_t v = DIF_INSTR_VAR(instr);
8445 		uint_t subr = DIF_INSTR_SUBR(instr);
8446 		uint_t type = DIF_INSTR_TYPE(instr);
8447 		uint_t op = DIF_INSTR_OP(instr);
8448 
8449 		switch (op) {
8450 		case DIF_OP_OR:
8451 		case DIF_OP_XOR:
8452 		case DIF_OP_AND:
8453 		case DIF_OP_SLL:
8454 		case DIF_OP_SRL:
8455 		case DIF_OP_SRA:
8456 		case DIF_OP_SUB:
8457 		case DIF_OP_ADD:
8458 		case DIF_OP_MUL:
8459 		case DIF_OP_SDIV:
8460 		case DIF_OP_UDIV:
8461 		case DIF_OP_SREM:
8462 		case DIF_OP_UREM:
8463 		case DIF_OP_COPYS:
8464 			if (r1 >= nregs)
8465 				err += efunc(pc, "invalid register %u\n", r1);
8466 			if (r2 >= nregs)
8467 				err += efunc(pc, "invalid register %u\n", r2);
8468 			if (rd >= nregs)
8469 				err += efunc(pc, "invalid register %u\n", rd);
8470 			if (rd == 0)
8471 				err += efunc(pc, "cannot write to %r0\n");
8472 			break;
8473 		case DIF_OP_NOT:
8474 		case DIF_OP_MOV:
8475 		case DIF_OP_ALLOCS:
8476 			if (r1 >= nregs)
8477 				err += efunc(pc, "invalid register %u\n", r1);
8478 			if (r2 != 0)
8479 				err += efunc(pc, "non-zero reserved bits\n");
8480 			if (rd >= nregs)
8481 				err += efunc(pc, "invalid register %u\n", rd);
8482 			if (rd == 0)
8483 				err += efunc(pc, "cannot write to %r0\n");
8484 			break;
8485 		case DIF_OP_LDSB:
8486 		case DIF_OP_LDSH:
8487 		case DIF_OP_LDSW:
8488 		case DIF_OP_LDUB:
8489 		case DIF_OP_LDUH:
8490 		case DIF_OP_LDUW:
8491 		case DIF_OP_LDX:
8492 			if (r1 >= nregs)
8493 				err += efunc(pc, "invalid register %u\n", r1);
8494 			if (r2 != 0)
8495 				err += efunc(pc, "non-zero reserved bits\n");
8496 			if (rd >= nregs)
8497 				err += efunc(pc, "invalid register %u\n", rd);
8498 			if (rd == 0)
8499 				err += efunc(pc, "cannot write to %r0\n");
8500 			if (kcheckload)
8501 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8502 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8503 			break;
8504 		case DIF_OP_RLDSB:
8505 		case DIF_OP_RLDSH:
8506 		case DIF_OP_RLDSW:
8507 		case DIF_OP_RLDUB:
8508 		case DIF_OP_RLDUH:
8509 		case DIF_OP_RLDUW:
8510 		case DIF_OP_RLDX:
8511 			if (r1 >= nregs)
8512 				err += efunc(pc, "invalid register %u\n", r1);
8513 			if (r2 != 0)
8514 				err += efunc(pc, "non-zero reserved bits\n");
8515 			if (rd >= nregs)
8516 				err += efunc(pc, "invalid register %u\n", rd);
8517 			if (rd == 0)
8518 				err += efunc(pc, "cannot write to %r0\n");
8519 			break;
8520 		case DIF_OP_ULDSB:
8521 		case DIF_OP_ULDSH:
8522 		case DIF_OP_ULDSW:
8523 		case DIF_OP_ULDUB:
8524 		case DIF_OP_ULDUH:
8525 		case DIF_OP_ULDUW:
8526 		case DIF_OP_ULDX:
8527 			if (r1 >= nregs)
8528 				err += efunc(pc, "invalid register %u\n", r1);
8529 			if (r2 != 0)
8530 				err += efunc(pc, "non-zero reserved bits\n");
8531 			if (rd >= nregs)
8532 				err += efunc(pc, "invalid register %u\n", rd);
8533 			if (rd == 0)
8534 				err += efunc(pc, "cannot write to %r0\n");
8535 			break;
8536 		case DIF_OP_STB:
8537 		case DIF_OP_STH:
8538 		case DIF_OP_STW:
8539 		case DIF_OP_STX:
8540 			if (r1 >= nregs)
8541 				err += efunc(pc, "invalid register %u\n", r1);
8542 			if (r2 != 0)
8543 				err += efunc(pc, "non-zero reserved bits\n");
8544 			if (rd >= nregs)
8545 				err += efunc(pc, "invalid register %u\n", rd);
8546 			if (rd == 0)
8547 				err += efunc(pc, "cannot write to 0 address\n");
8548 			break;
8549 		case DIF_OP_CMP:
8550 		case DIF_OP_SCMP:
8551 			if (r1 >= nregs)
8552 				err += efunc(pc, "invalid register %u\n", r1);
8553 			if (r2 >= nregs)
8554 				err += efunc(pc, "invalid register %u\n", r2);
8555 			if (rd != 0)
8556 				err += efunc(pc, "non-zero reserved bits\n");
8557 			break;
8558 		case DIF_OP_TST:
8559 			if (r1 >= nregs)
8560 				err += efunc(pc, "invalid register %u\n", r1);
8561 			if (r2 != 0 || rd != 0)
8562 				err += efunc(pc, "non-zero reserved bits\n");
8563 			break;
8564 		case DIF_OP_BA:
8565 		case DIF_OP_BE:
8566 		case DIF_OP_BNE:
8567 		case DIF_OP_BG:
8568 		case DIF_OP_BGU:
8569 		case DIF_OP_BGE:
8570 		case DIF_OP_BGEU:
8571 		case DIF_OP_BL:
8572 		case DIF_OP_BLU:
8573 		case DIF_OP_BLE:
8574 		case DIF_OP_BLEU:
8575 			if (label >= dp->dtdo_len) {
8576 				err += efunc(pc, "invalid branch target %u\n",
8577 				    label);
8578 			}
8579 			if (label <= pc) {
8580 				err += efunc(pc, "backward branch to %u\n",
8581 				    label);
8582 			}
8583 			break;
8584 		case DIF_OP_RET:
8585 			if (r1 != 0 || r2 != 0)
8586 				err += efunc(pc, "non-zero reserved bits\n");
8587 			if (rd >= nregs)
8588 				err += efunc(pc, "invalid register %u\n", rd);
8589 			break;
8590 		case DIF_OP_NOP:
8591 		case DIF_OP_POPTS:
8592 		case DIF_OP_FLUSHTS:
8593 			if (r1 != 0 || r2 != 0 || rd != 0)
8594 				err += efunc(pc, "non-zero reserved bits\n");
8595 			break;
8596 		case DIF_OP_SETX:
8597 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8598 				err += efunc(pc, "invalid integer ref %u\n",
8599 				    DIF_INSTR_INTEGER(instr));
8600 			}
8601 			if (rd >= nregs)
8602 				err += efunc(pc, "invalid register %u\n", rd);
8603 			if (rd == 0)
8604 				err += efunc(pc, "cannot write to %r0\n");
8605 			break;
8606 		case DIF_OP_SETS:
8607 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8608 				err += efunc(pc, "invalid string ref %u\n",
8609 				    DIF_INSTR_STRING(instr));
8610 			}
8611 			if (rd >= nregs)
8612 				err += efunc(pc, "invalid register %u\n", rd);
8613 			if (rd == 0)
8614 				err += efunc(pc, "cannot write to %r0\n");
8615 			break;
8616 		case DIF_OP_LDGA:
8617 		case DIF_OP_LDTA:
8618 			if (r1 > DIF_VAR_ARRAY_MAX)
8619 				err += efunc(pc, "invalid array %u\n", r1);
8620 			if (r2 >= nregs)
8621 				err += efunc(pc, "invalid register %u\n", r2);
8622 			if (rd >= nregs)
8623 				err += efunc(pc, "invalid register %u\n", rd);
8624 			if (rd == 0)
8625 				err += efunc(pc, "cannot write to %r0\n");
8626 			break;
8627 		case DIF_OP_LDGS:
8628 		case DIF_OP_LDTS:
8629 		case DIF_OP_LDLS:
8630 		case DIF_OP_LDGAA:
8631 		case DIF_OP_LDTAA:
8632 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8633 				err += efunc(pc, "invalid variable %u\n", v);
8634 			if (rd >= nregs)
8635 				err += efunc(pc, "invalid register %u\n", rd);
8636 			if (rd == 0)
8637 				err += efunc(pc, "cannot write to %r0\n");
8638 			break;
8639 		case DIF_OP_STGS:
8640 		case DIF_OP_STTS:
8641 		case DIF_OP_STLS:
8642 		case DIF_OP_STGAA:
8643 		case DIF_OP_STTAA:
8644 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8645 				err += efunc(pc, "invalid variable %u\n", v);
8646 			if (rs >= nregs)
8647 				err += efunc(pc, "invalid register %u\n", rd);
8648 			break;
8649 		case DIF_OP_CALL:
8650 			if (subr > DIF_SUBR_MAX)
8651 				err += efunc(pc, "invalid subr %u\n", subr);
8652 			if (rd >= nregs)
8653 				err += efunc(pc, "invalid register %u\n", rd);
8654 			if (rd == 0)
8655 				err += efunc(pc, "cannot write to %r0\n");
8656 
8657 			if (subr == DIF_SUBR_COPYOUT ||
8658 			    subr == DIF_SUBR_COPYOUTSTR) {
8659 				dp->dtdo_destructive = 1;
8660 			}
8661 			break;
8662 		case DIF_OP_PUSHTR:
8663 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8664 				err += efunc(pc, "invalid ref type %u\n", type);
8665 			if (r2 >= nregs)
8666 				err += efunc(pc, "invalid register %u\n", r2);
8667 			if (rs >= nregs)
8668 				err += efunc(pc, "invalid register %u\n", rs);
8669 			break;
8670 		case DIF_OP_PUSHTV:
8671 			if (type != DIF_TYPE_CTF)
8672 				err += efunc(pc, "invalid val type %u\n", type);
8673 			if (r2 >= nregs)
8674 				err += efunc(pc, "invalid register %u\n", r2);
8675 			if (rs >= nregs)
8676 				err += efunc(pc, "invalid register %u\n", rs);
8677 			break;
8678 		default:
8679 			err += efunc(pc, "invalid opcode %u\n",
8680 			    DIF_INSTR_OP(instr));
8681 		}
8682 	}
8683 
8684 	if (dp->dtdo_len != 0 &&
8685 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8686 		err += efunc(dp->dtdo_len - 1,
8687 		    "expected 'ret' as last DIF instruction\n");
8688 	}
8689 
8690 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8691 		/*
8692 		 * If we're not returning by reference, the size must be either
8693 		 * 0 or the size of one of the base types.
8694 		 */
8695 		switch (dp->dtdo_rtype.dtdt_size) {
8696 		case 0:
8697 		case sizeof (uint8_t):
8698 		case sizeof (uint16_t):
8699 		case sizeof (uint32_t):
8700 		case sizeof (uint64_t):
8701 			break;
8702 
8703 		default:
8704 			err += efunc(dp->dtdo_len - 1, "bad return size");
8705 		}
8706 	}
8707 
8708 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8709 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8710 		dtrace_diftype_t *vt, *et;
8711 		uint_t id, ndx;
8712 
8713 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8714 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8715 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8716 			err += efunc(i, "unrecognized variable scope %d\n",
8717 			    v->dtdv_scope);
8718 			break;
8719 		}
8720 
8721 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8722 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8723 			err += efunc(i, "unrecognized variable type %d\n",
8724 			    v->dtdv_kind);
8725 			break;
8726 		}
8727 
8728 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8729 			err += efunc(i, "%d exceeds variable id limit\n", id);
8730 			break;
8731 		}
8732 
8733 		if (id < DIF_VAR_OTHER_UBASE)
8734 			continue;
8735 
8736 		/*
8737 		 * For user-defined variables, we need to check that this
8738 		 * definition is identical to any previous definition that we
8739 		 * encountered.
8740 		 */
8741 		ndx = id - DIF_VAR_OTHER_UBASE;
8742 
8743 		switch (v->dtdv_scope) {
8744 		case DIFV_SCOPE_GLOBAL:
8745 			if (ndx < vstate->dtvs_nglobals) {
8746 				dtrace_statvar_t *svar;
8747 
8748 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8749 					existing = &svar->dtsv_var;
8750 			}
8751 
8752 			break;
8753 
8754 		case DIFV_SCOPE_THREAD:
8755 			if (ndx < vstate->dtvs_ntlocals)
8756 				existing = &vstate->dtvs_tlocals[ndx];
8757 			break;
8758 
8759 		case DIFV_SCOPE_LOCAL:
8760 			if (ndx < vstate->dtvs_nlocals) {
8761 				dtrace_statvar_t *svar;
8762 
8763 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8764 					existing = &svar->dtsv_var;
8765 			}
8766 
8767 			break;
8768 		}
8769 
8770 		vt = &v->dtdv_type;
8771 
8772 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8773 			if (vt->dtdt_size == 0) {
8774 				err += efunc(i, "zero-sized variable\n");
8775 				break;
8776 			}
8777 
8778 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8779 			    vt->dtdt_size > dtrace_global_maxsize) {
8780 				err += efunc(i, "oversized by-ref global\n");
8781 				break;
8782 			}
8783 		}
8784 
8785 		if (existing == NULL || existing->dtdv_id == 0)
8786 			continue;
8787 
8788 		ASSERT(existing->dtdv_id == v->dtdv_id);
8789 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8790 
8791 		if (existing->dtdv_kind != v->dtdv_kind)
8792 			err += efunc(i, "%d changed variable kind\n", id);
8793 
8794 		et = &existing->dtdv_type;
8795 
8796 		if (vt->dtdt_flags != et->dtdt_flags) {
8797 			err += efunc(i, "%d changed variable type flags\n", id);
8798 			break;
8799 		}
8800 
8801 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8802 			err += efunc(i, "%d changed variable type size\n", id);
8803 			break;
8804 		}
8805 	}
8806 
8807 	return (err);
8808 }
8809 
8810 /*
8811  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8812  * are much more constrained than normal DIFOs.  Specifically, they may
8813  * not:
8814  *
8815  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8816  *    miscellaneous string routines
8817  * 2. Access DTrace variables other than the args[] array, and the
8818  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8819  * 3. Have thread-local variables.
8820  * 4. Have dynamic variables.
8821  */
8822 static int
8823 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8824 {
8825 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8826 	int err = 0;
8827 	uint_t pc;
8828 
8829 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8830 		dif_instr_t instr = dp->dtdo_buf[pc];
8831 
8832 		uint_t v = DIF_INSTR_VAR(instr);
8833 		uint_t subr = DIF_INSTR_SUBR(instr);
8834 		uint_t op = DIF_INSTR_OP(instr);
8835 
8836 		switch (op) {
8837 		case DIF_OP_OR:
8838 		case DIF_OP_XOR:
8839 		case DIF_OP_AND:
8840 		case DIF_OP_SLL:
8841 		case DIF_OP_SRL:
8842 		case DIF_OP_SRA:
8843 		case DIF_OP_SUB:
8844 		case DIF_OP_ADD:
8845 		case DIF_OP_MUL:
8846 		case DIF_OP_SDIV:
8847 		case DIF_OP_UDIV:
8848 		case DIF_OP_SREM:
8849 		case DIF_OP_UREM:
8850 		case DIF_OP_COPYS:
8851 		case DIF_OP_NOT:
8852 		case DIF_OP_MOV:
8853 		case DIF_OP_RLDSB:
8854 		case DIF_OP_RLDSH:
8855 		case DIF_OP_RLDSW:
8856 		case DIF_OP_RLDUB:
8857 		case DIF_OP_RLDUH:
8858 		case DIF_OP_RLDUW:
8859 		case DIF_OP_RLDX:
8860 		case DIF_OP_ULDSB:
8861 		case DIF_OP_ULDSH:
8862 		case DIF_OP_ULDSW:
8863 		case DIF_OP_ULDUB:
8864 		case DIF_OP_ULDUH:
8865 		case DIF_OP_ULDUW:
8866 		case DIF_OP_ULDX:
8867 		case DIF_OP_STB:
8868 		case DIF_OP_STH:
8869 		case DIF_OP_STW:
8870 		case DIF_OP_STX:
8871 		case DIF_OP_ALLOCS:
8872 		case DIF_OP_CMP:
8873 		case DIF_OP_SCMP:
8874 		case DIF_OP_TST:
8875 		case DIF_OP_BA:
8876 		case DIF_OP_BE:
8877 		case DIF_OP_BNE:
8878 		case DIF_OP_BG:
8879 		case DIF_OP_BGU:
8880 		case DIF_OP_BGE:
8881 		case DIF_OP_BGEU:
8882 		case DIF_OP_BL:
8883 		case DIF_OP_BLU:
8884 		case DIF_OP_BLE:
8885 		case DIF_OP_BLEU:
8886 		case DIF_OP_RET:
8887 		case DIF_OP_NOP:
8888 		case DIF_OP_POPTS:
8889 		case DIF_OP_FLUSHTS:
8890 		case DIF_OP_SETX:
8891 		case DIF_OP_SETS:
8892 		case DIF_OP_LDGA:
8893 		case DIF_OP_LDLS:
8894 		case DIF_OP_STGS:
8895 		case DIF_OP_STLS:
8896 		case DIF_OP_PUSHTR:
8897 		case DIF_OP_PUSHTV:
8898 			break;
8899 
8900 		case DIF_OP_LDGS:
8901 			if (v >= DIF_VAR_OTHER_UBASE)
8902 				break;
8903 
8904 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8905 				break;
8906 
8907 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8908 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8909 			    v == DIF_VAR_EXECARGS ||
8910 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8911 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8912 				break;
8913 
8914 			err += efunc(pc, "illegal variable %u\n", v);
8915 			break;
8916 
8917 		case DIF_OP_LDTA:
8918 		case DIF_OP_LDTS:
8919 		case DIF_OP_LDGAA:
8920 		case DIF_OP_LDTAA:
8921 			err += efunc(pc, "illegal dynamic variable load\n");
8922 			break;
8923 
8924 		case DIF_OP_STTS:
8925 		case DIF_OP_STGAA:
8926 		case DIF_OP_STTAA:
8927 			err += efunc(pc, "illegal dynamic variable store\n");
8928 			break;
8929 
8930 		case DIF_OP_CALL:
8931 			if (subr == DIF_SUBR_ALLOCA ||
8932 			    subr == DIF_SUBR_BCOPY ||
8933 			    subr == DIF_SUBR_COPYIN ||
8934 			    subr == DIF_SUBR_COPYINTO ||
8935 			    subr == DIF_SUBR_COPYINSTR ||
8936 			    subr == DIF_SUBR_INDEX ||
8937 			    subr == DIF_SUBR_INET_NTOA ||
8938 			    subr == DIF_SUBR_INET_NTOA6 ||
8939 			    subr == DIF_SUBR_INET_NTOP ||
8940 			    subr == DIF_SUBR_LLTOSTR ||
8941 			    subr == DIF_SUBR_RINDEX ||
8942 			    subr == DIF_SUBR_STRCHR ||
8943 			    subr == DIF_SUBR_STRJOIN ||
8944 			    subr == DIF_SUBR_STRRCHR ||
8945 			    subr == DIF_SUBR_STRSTR ||
8946 			    subr == DIF_SUBR_HTONS ||
8947 			    subr == DIF_SUBR_HTONL ||
8948 			    subr == DIF_SUBR_HTONLL ||
8949 			    subr == DIF_SUBR_NTOHS ||
8950 			    subr == DIF_SUBR_NTOHL ||
8951 			    subr == DIF_SUBR_NTOHLL ||
8952 			    subr == DIF_SUBR_MEMREF ||
8953 			    subr == DIF_SUBR_TYPEREF)
8954 				break;
8955 
8956 			err += efunc(pc, "invalid subr %u\n", subr);
8957 			break;
8958 
8959 		default:
8960 			err += efunc(pc, "invalid opcode %u\n",
8961 			    DIF_INSTR_OP(instr));
8962 		}
8963 	}
8964 
8965 	return (err);
8966 }
8967 
8968 /*
8969  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8970  * basis; 0 if not.
8971  */
8972 static int
8973 dtrace_difo_cacheable(dtrace_difo_t *dp)
8974 {
8975 	int i;
8976 
8977 	if (dp == NULL)
8978 		return (0);
8979 
8980 	for (i = 0; i < dp->dtdo_varlen; i++) {
8981 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8982 
8983 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8984 			continue;
8985 
8986 		switch (v->dtdv_id) {
8987 		case DIF_VAR_CURTHREAD:
8988 		case DIF_VAR_PID:
8989 		case DIF_VAR_TID:
8990 		case DIF_VAR_EXECARGS:
8991 		case DIF_VAR_EXECNAME:
8992 		case DIF_VAR_ZONENAME:
8993 			break;
8994 
8995 		default:
8996 			return (0);
8997 		}
8998 	}
8999 
9000 	/*
9001 	 * This DIF object may be cacheable.  Now we need to look for any
9002 	 * array loading instructions, any memory loading instructions, or
9003 	 * any stores to thread-local variables.
9004 	 */
9005 	for (i = 0; i < dp->dtdo_len; i++) {
9006 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9007 
9008 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9009 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9010 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9011 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9012 			return (0);
9013 	}
9014 
9015 	return (1);
9016 }
9017 
9018 static void
9019 dtrace_difo_hold(dtrace_difo_t *dp)
9020 {
9021 	int i;
9022 
9023 	ASSERT(MUTEX_HELD(&dtrace_lock));
9024 
9025 	dp->dtdo_refcnt++;
9026 	ASSERT(dp->dtdo_refcnt != 0);
9027 
9028 	/*
9029 	 * We need to check this DIF object for references to the variable
9030 	 * DIF_VAR_VTIMESTAMP.
9031 	 */
9032 	for (i = 0; i < dp->dtdo_varlen; i++) {
9033 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9034 
9035 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9036 			continue;
9037 
9038 		if (dtrace_vtime_references++ == 0)
9039 			dtrace_vtime_enable();
9040 	}
9041 }
9042 
9043 /*
9044  * This routine calculates the dynamic variable chunksize for a given DIF
9045  * object.  The calculation is not fool-proof, and can probably be tricked by
9046  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9047  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9048  * if a dynamic variable size exceeds the chunksize.
9049  */
9050 static void
9051 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9052 {
9053 	uint64_t sval = 0;
9054 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9055 	const dif_instr_t *text = dp->dtdo_buf;
9056 	uint_t pc, srd = 0;
9057 	uint_t ttop = 0;
9058 	size_t size, ksize;
9059 	uint_t id, i;
9060 
9061 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9062 		dif_instr_t instr = text[pc];
9063 		uint_t op = DIF_INSTR_OP(instr);
9064 		uint_t rd = DIF_INSTR_RD(instr);
9065 		uint_t r1 = DIF_INSTR_R1(instr);
9066 		uint_t nkeys = 0;
9067 		uchar_t scope = 0;
9068 
9069 		dtrace_key_t *key = tupregs;
9070 
9071 		switch (op) {
9072 		case DIF_OP_SETX:
9073 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9074 			srd = rd;
9075 			continue;
9076 
9077 		case DIF_OP_STTS:
9078 			key = &tupregs[DIF_DTR_NREGS];
9079 			key[0].dttk_size = 0;
9080 			key[1].dttk_size = 0;
9081 			nkeys = 2;
9082 			scope = DIFV_SCOPE_THREAD;
9083 			break;
9084 
9085 		case DIF_OP_STGAA:
9086 		case DIF_OP_STTAA:
9087 			nkeys = ttop;
9088 
9089 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9090 				key[nkeys++].dttk_size = 0;
9091 
9092 			key[nkeys++].dttk_size = 0;
9093 
9094 			if (op == DIF_OP_STTAA) {
9095 				scope = DIFV_SCOPE_THREAD;
9096 			} else {
9097 				scope = DIFV_SCOPE_GLOBAL;
9098 			}
9099 
9100 			break;
9101 
9102 		case DIF_OP_PUSHTR:
9103 			if (ttop == DIF_DTR_NREGS)
9104 				return;
9105 
9106 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9107 				/*
9108 				 * If the register for the size of the "pushtr"
9109 				 * is %r0 (or the value is 0) and the type is
9110 				 * a string, we'll use the system-wide default
9111 				 * string size.
9112 				 */
9113 				tupregs[ttop++].dttk_size =
9114 				    dtrace_strsize_default;
9115 			} else {
9116 				if (srd == 0)
9117 					return;
9118 
9119 				tupregs[ttop++].dttk_size = sval;
9120 			}
9121 
9122 			break;
9123 
9124 		case DIF_OP_PUSHTV:
9125 			if (ttop == DIF_DTR_NREGS)
9126 				return;
9127 
9128 			tupregs[ttop++].dttk_size = 0;
9129 			break;
9130 
9131 		case DIF_OP_FLUSHTS:
9132 			ttop = 0;
9133 			break;
9134 
9135 		case DIF_OP_POPTS:
9136 			if (ttop != 0)
9137 				ttop--;
9138 			break;
9139 		}
9140 
9141 		sval = 0;
9142 		srd = 0;
9143 
9144 		if (nkeys == 0)
9145 			continue;
9146 
9147 		/*
9148 		 * We have a dynamic variable allocation; calculate its size.
9149 		 */
9150 		for (ksize = 0, i = 0; i < nkeys; i++)
9151 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9152 
9153 		size = sizeof (dtrace_dynvar_t);
9154 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9155 		size += ksize;
9156 
9157 		/*
9158 		 * Now we need to determine the size of the stored data.
9159 		 */
9160 		id = DIF_INSTR_VAR(instr);
9161 
9162 		for (i = 0; i < dp->dtdo_varlen; i++) {
9163 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9164 
9165 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9166 				size += v->dtdv_type.dtdt_size;
9167 				break;
9168 			}
9169 		}
9170 
9171 		if (i == dp->dtdo_varlen)
9172 			return;
9173 
9174 		/*
9175 		 * We have the size.  If this is larger than the chunk size
9176 		 * for our dynamic variable state, reset the chunk size.
9177 		 */
9178 		size = P2ROUNDUP(size, sizeof (uint64_t));
9179 
9180 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9181 			vstate->dtvs_dynvars.dtds_chunksize = size;
9182 	}
9183 }
9184 
9185 static void
9186 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9187 {
9188 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9189 	uint_t id;
9190 
9191 	ASSERT(MUTEX_HELD(&dtrace_lock));
9192 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9193 
9194 	for (i = 0; i < dp->dtdo_varlen; i++) {
9195 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9196 		dtrace_statvar_t *svar, ***svarp = NULL;
9197 		size_t dsize = 0;
9198 		uint8_t scope = v->dtdv_scope;
9199 		int *np = NULL;
9200 
9201 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9202 			continue;
9203 
9204 		id -= DIF_VAR_OTHER_UBASE;
9205 
9206 		switch (scope) {
9207 		case DIFV_SCOPE_THREAD:
9208 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9209 				dtrace_difv_t *tlocals;
9210 
9211 				if ((ntlocals = (otlocals << 1)) == 0)
9212 					ntlocals = 1;
9213 
9214 				osz = otlocals * sizeof (dtrace_difv_t);
9215 				nsz = ntlocals * sizeof (dtrace_difv_t);
9216 
9217 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9218 
9219 				if (osz != 0) {
9220 					bcopy(vstate->dtvs_tlocals,
9221 					    tlocals, osz);
9222 					kmem_free(vstate->dtvs_tlocals, osz);
9223 				}
9224 
9225 				vstate->dtvs_tlocals = tlocals;
9226 				vstate->dtvs_ntlocals = ntlocals;
9227 			}
9228 
9229 			vstate->dtvs_tlocals[id] = *v;
9230 			continue;
9231 
9232 		case DIFV_SCOPE_LOCAL:
9233 			np = &vstate->dtvs_nlocals;
9234 			svarp = &vstate->dtvs_locals;
9235 
9236 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9237 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9238 				    sizeof (uint64_t));
9239 			else
9240 				dsize = NCPU * sizeof (uint64_t);
9241 
9242 			break;
9243 
9244 		case DIFV_SCOPE_GLOBAL:
9245 			np = &vstate->dtvs_nglobals;
9246 			svarp = &vstate->dtvs_globals;
9247 
9248 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9249 				dsize = v->dtdv_type.dtdt_size +
9250 				    sizeof (uint64_t);
9251 
9252 			break;
9253 
9254 		default:
9255 			ASSERT(0);
9256 		}
9257 
9258 		while (id >= (oldsvars = *np)) {
9259 			dtrace_statvar_t **statics;
9260 			int newsvars, oldsize, newsize;
9261 
9262 			if ((newsvars = (oldsvars << 1)) == 0)
9263 				newsvars = 1;
9264 
9265 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9266 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9267 
9268 			statics = kmem_zalloc(newsize, KM_SLEEP);
9269 
9270 			if (oldsize != 0) {
9271 				bcopy(*svarp, statics, oldsize);
9272 				kmem_free(*svarp, oldsize);
9273 			}
9274 
9275 			*svarp = statics;
9276 			*np = newsvars;
9277 		}
9278 
9279 		if ((svar = (*svarp)[id]) == NULL) {
9280 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9281 			svar->dtsv_var = *v;
9282 
9283 			if ((svar->dtsv_size = dsize) != 0) {
9284 				svar->dtsv_data = (uint64_t)(uintptr_t)
9285 				    kmem_zalloc(dsize, KM_SLEEP);
9286 			}
9287 
9288 			(*svarp)[id] = svar;
9289 		}
9290 
9291 		svar->dtsv_refcnt++;
9292 	}
9293 
9294 	dtrace_difo_chunksize(dp, vstate);
9295 	dtrace_difo_hold(dp);
9296 }
9297 
9298 static dtrace_difo_t *
9299 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9300 {
9301 	dtrace_difo_t *new;
9302 	size_t sz;
9303 
9304 	ASSERT(dp->dtdo_buf != NULL);
9305 	ASSERT(dp->dtdo_refcnt != 0);
9306 
9307 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9308 
9309 	ASSERT(dp->dtdo_buf != NULL);
9310 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9311 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9312 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9313 	new->dtdo_len = dp->dtdo_len;
9314 
9315 	if (dp->dtdo_strtab != NULL) {
9316 		ASSERT(dp->dtdo_strlen != 0);
9317 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9318 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9319 		new->dtdo_strlen = dp->dtdo_strlen;
9320 	}
9321 
9322 	if (dp->dtdo_inttab != NULL) {
9323 		ASSERT(dp->dtdo_intlen != 0);
9324 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9325 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9326 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9327 		new->dtdo_intlen = dp->dtdo_intlen;
9328 	}
9329 
9330 	if (dp->dtdo_vartab != NULL) {
9331 		ASSERT(dp->dtdo_varlen != 0);
9332 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9333 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9334 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9335 		new->dtdo_varlen = dp->dtdo_varlen;
9336 	}
9337 
9338 	dtrace_difo_init(new, vstate);
9339 	return (new);
9340 }
9341 
9342 static void
9343 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9344 {
9345 	int i;
9346 
9347 	ASSERT(dp->dtdo_refcnt == 0);
9348 
9349 	for (i = 0; i < dp->dtdo_varlen; i++) {
9350 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9351 		dtrace_statvar_t *svar, **svarp = NULL;
9352 		uint_t id;
9353 		uint8_t scope = v->dtdv_scope;
9354 		int *np = NULL;
9355 
9356 		switch (scope) {
9357 		case DIFV_SCOPE_THREAD:
9358 			continue;
9359 
9360 		case DIFV_SCOPE_LOCAL:
9361 			np = &vstate->dtvs_nlocals;
9362 			svarp = vstate->dtvs_locals;
9363 			break;
9364 
9365 		case DIFV_SCOPE_GLOBAL:
9366 			np = &vstate->dtvs_nglobals;
9367 			svarp = vstate->dtvs_globals;
9368 			break;
9369 
9370 		default:
9371 			ASSERT(0);
9372 		}
9373 
9374 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9375 			continue;
9376 
9377 		id -= DIF_VAR_OTHER_UBASE;
9378 		ASSERT(id < *np);
9379 
9380 		svar = svarp[id];
9381 		ASSERT(svar != NULL);
9382 		ASSERT(svar->dtsv_refcnt > 0);
9383 
9384 		if (--svar->dtsv_refcnt > 0)
9385 			continue;
9386 
9387 		if (svar->dtsv_size != 0) {
9388 			ASSERT(svar->dtsv_data != 0);
9389 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9390 			    svar->dtsv_size);
9391 		}
9392 
9393 		kmem_free(svar, sizeof (dtrace_statvar_t));
9394 		svarp[id] = NULL;
9395 	}
9396 
9397 	if (dp->dtdo_buf != NULL)
9398 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9399 	if (dp->dtdo_inttab != NULL)
9400 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9401 	if (dp->dtdo_strtab != NULL)
9402 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9403 	if (dp->dtdo_vartab != NULL)
9404 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9405 
9406 	kmem_free(dp, sizeof (dtrace_difo_t));
9407 }
9408 
9409 static void
9410 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9411 {
9412 	int i;
9413 
9414 	ASSERT(MUTEX_HELD(&dtrace_lock));
9415 	ASSERT(dp->dtdo_refcnt != 0);
9416 
9417 	for (i = 0; i < dp->dtdo_varlen; i++) {
9418 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9419 
9420 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9421 			continue;
9422 
9423 		ASSERT(dtrace_vtime_references > 0);
9424 		if (--dtrace_vtime_references == 0)
9425 			dtrace_vtime_disable();
9426 	}
9427 
9428 	if (--dp->dtdo_refcnt == 0)
9429 		dtrace_difo_destroy(dp, vstate);
9430 }
9431 
9432 /*
9433  * DTrace Format Functions
9434  */
9435 static uint16_t
9436 dtrace_format_add(dtrace_state_t *state, char *str)
9437 {
9438 	char *fmt, **new;
9439 	uint16_t ndx, len = strlen(str) + 1;
9440 
9441 	fmt = kmem_zalloc(len, KM_SLEEP);
9442 	bcopy(str, fmt, len);
9443 
9444 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9445 		if (state->dts_formats[ndx] == NULL) {
9446 			state->dts_formats[ndx] = fmt;
9447 			return (ndx + 1);
9448 		}
9449 	}
9450 
9451 	if (state->dts_nformats == USHRT_MAX) {
9452 		/*
9453 		 * This is only likely if a denial-of-service attack is being
9454 		 * attempted.  As such, it's okay to fail silently here.
9455 		 */
9456 		kmem_free(fmt, len);
9457 		return (0);
9458 	}
9459 
9460 	/*
9461 	 * For simplicity, we always resize the formats array to be exactly the
9462 	 * number of formats.
9463 	 */
9464 	ndx = state->dts_nformats++;
9465 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9466 
9467 	if (state->dts_formats != NULL) {
9468 		ASSERT(ndx != 0);
9469 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9470 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9471 	}
9472 
9473 	state->dts_formats = new;
9474 	state->dts_formats[ndx] = fmt;
9475 
9476 	return (ndx + 1);
9477 }
9478 
9479 static void
9480 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9481 {
9482 	char *fmt;
9483 
9484 	ASSERT(state->dts_formats != NULL);
9485 	ASSERT(format <= state->dts_nformats);
9486 	ASSERT(state->dts_formats[format - 1] != NULL);
9487 
9488 	fmt = state->dts_formats[format - 1];
9489 	kmem_free(fmt, strlen(fmt) + 1);
9490 	state->dts_formats[format - 1] = NULL;
9491 }
9492 
9493 static void
9494 dtrace_format_destroy(dtrace_state_t *state)
9495 {
9496 	int i;
9497 
9498 	if (state->dts_nformats == 0) {
9499 		ASSERT(state->dts_formats == NULL);
9500 		return;
9501 	}
9502 
9503 	ASSERT(state->dts_formats != NULL);
9504 
9505 	for (i = 0; i < state->dts_nformats; i++) {
9506 		char *fmt = state->dts_formats[i];
9507 
9508 		if (fmt == NULL)
9509 			continue;
9510 
9511 		kmem_free(fmt, strlen(fmt) + 1);
9512 	}
9513 
9514 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9515 	state->dts_nformats = 0;
9516 	state->dts_formats = NULL;
9517 }
9518 
9519 /*
9520  * DTrace Predicate Functions
9521  */
9522 static dtrace_predicate_t *
9523 dtrace_predicate_create(dtrace_difo_t *dp)
9524 {
9525 	dtrace_predicate_t *pred;
9526 
9527 	ASSERT(MUTEX_HELD(&dtrace_lock));
9528 	ASSERT(dp->dtdo_refcnt != 0);
9529 
9530 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9531 	pred->dtp_difo = dp;
9532 	pred->dtp_refcnt = 1;
9533 
9534 	if (!dtrace_difo_cacheable(dp))
9535 		return (pred);
9536 
9537 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9538 		/*
9539 		 * This is only theoretically possible -- we have had 2^32
9540 		 * cacheable predicates on this machine.  We cannot allow any
9541 		 * more predicates to become cacheable:  as unlikely as it is,
9542 		 * there may be a thread caching a (now stale) predicate cache
9543 		 * ID. (N.B.: the temptation is being successfully resisted to
9544 		 * have this cmn_err() "Holy shit -- we executed this code!")
9545 		 */
9546 		return (pred);
9547 	}
9548 
9549 	pred->dtp_cacheid = dtrace_predcache_id++;
9550 
9551 	return (pred);
9552 }
9553 
9554 static void
9555 dtrace_predicate_hold(dtrace_predicate_t *pred)
9556 {
9557 	ASSERT(MUTEX_HELD(&dtrace_lock));
9558 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9559 	ASSERT(pred->dtp_refcnt > 0);
9560 
9561 	pred->dtp_refcnt++;
9562 }
9563 
9564 static void
9565 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9566 {
9567 	dtrace_difo_t *dp = pred->dtp_difo;
9568 
9569 	ASSERT(MUTEX_HELD(&dtrace_lock));
9570 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9571 	ASSERT(pred->dtp_refcnt > 0);
9572 
9573 	if (--pred->dtp_refcnt == 0) {
9574 		dtrace_difo_release(pred->dtp_difo, vstate);
9575 		kmem_free(pred, sizeof (dtrace_predicate_t));
9576 	}
9577 }
9578 
9579 /*
9580  * DTrace Action Description Functions
9581  */
9582 static dtrace_actdesc_t *
9583 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9584     uint64_t uarg, uint64_t arg)
9585 {
9586 	dtrace_actdesc_t *act;
9587 
9588 #if defined(sun)
9589 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9590 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9591 #endif
9592 
9593 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9594 	act->dtad_kind = kind;
9595 	act->dtad_ntuple = ntuple;
9596 	act->dtad_uarg = uarg;
9597 	act->dtad_arg = arg;
9598 	act->dtad_refcnt = 1;
9599 
9600 	return (act);
9601 }
9602 
9603 static void
9604 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9605 {
9606 	ASSERT(act->dtad_refcnt >= 1);
9607 	act->dtad_refcnt++;
9608 }
9609 
9610 static void
9611 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9612 {
9613 	dtrace_actkind_t kind = act->dtad_kind;
9614 	dtrace_difo_t *dp;
9615 
9616 	ASSERT(act->dtad_refcnt >= 1);
9617 
9618 	if (--act->dtad_refcnt != 0)
9619 		return;
9620 
9621 	if ((dp = act->dtad_difo) != NULL)
9622 		dtrace_difo_release(dp, vstate);
9623 
9624 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9625 		char *str = (char *)(uintptr_t)act->dtad_arg;
9626 
9627 #if defined(sun)
9628 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9629 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9630 #endif
9631 
9632 		if (str != NULL)
9633 			kmem_free(str, strlen(str) + 1);
9634 	}
9635 
9636 	kmem_free(act, sizeof (dtrace_actdesc_t));
9637 }
9638 
9639 /*
9640  * DTrace ECB Functions
9641  */
9642 static dtrace_ecb_t *
9643 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9644 {
9645 	dtrace_ecb_t *ecb;
9646 	dtrace_epid_t epid;
9647 
9648 	ASSERT(MUTEX_HELD(&dtrace_lock));
9649 
9650 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9651 	ecb->dte_predicate = NULL;
9652 	ecb->dte_probe = probe;
9653 
9654 	/*
9655 	 * The default size is the size of the default action: recording
9656 	 * the epid.
9657 	 */
9658 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9659 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9660 
9661 	epid = state->dts_epid++;
9662 
9663 	if (epid - 1 >= state->dts_necbs) {
9664 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9665 		int necbs = state->dts_necbs << 1;
9666 
9667 		ASSERT(epid == state->dts_necbs + 1);
9668 
9669 		if (necbs == 0) {
9670 			ASSERT(oecbs == NULL);
9671 			necbs = 1;
9672 		}
9673 
9674 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9675 
9676 		if (oecbs != NULL)
9677 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9678 
9679 		dtrace_membar_producer();
9680 		state->dts_ecbs = ecbs;
9681 
9682 		if (oecbs != NULL) {
9683 			/*
9684 			 * If this state is active, we must dtrace_sync()
9685 			 * before we can free the old dts_ecbs array:  we're
9686 			 * coming in hot, and there may be active ring
9687 			 * buffer processing (which indexes into the dts_ecbs
9688 			 * array) on another CPU.
9689 			 */
9690 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9691 				dtrace_sync();
9692 
9693 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9694 		}
9695 
9696 		dtrace_membar_producer();
9697 		state->dts_necbs = necbs;
9698 	}
9699 
9700 	ecb->dte_state = state;
9701 
9702 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9703 	dtrace_membar_producer();
9704 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9705 
9706 	return (ecb);
9707 }
9708 
9709 static void
9710 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9711 {
9712 	dtrace_probe_t *probe = ecb->dte_probe;
9713 
9714 	ASSERT(MUTEX_HELD(&cpu_lock));
9715 	ASSERT(MUTEX_HELD(&dtrace_lock));
9716 	ASSERT(ecb->dte_next == NULL);
9717 
9718 	if (probe == NULL) {
9719 		/*
9720 		 * This is the NULL probe -- there's nothing to do.
9721 		 */
9722 		return;
9723 	}
9724 
9725 	if (probe->dtpr_ecb == NULL) {
9726 		dtrace_provider_t *prov = probe->dtpr_provider;
9727 
9728 		/*
9729 		 * We're the first ECB on this probe.
9730 		 */
9731 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9732 
9733 		if (ecb->dte_predicate != NULL)
9734 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9735 
9736 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9737 		    probe->dtpr_id, probe->dtpr_arg);
9738 	} else {
9739 		/*
9740 		 * This probe is already active.  Swing the last pointer to
9741 		 * point to the new ECB, and issue a dtrace_sync() to assure
9742 		 * that all CPUs have seen the change.
9743 		 */
9744 		ASSERT(probe->dtpr_ecb_last != NULL);
9745 		probe->dtpr_ecb_last->dte_next = ecb;
9746 		probe->dtpr_ecb_last = ecb;
9747 		probe->dtpr_predcache = 0;
9748 
9749 		dtrace_sync();
9750 	}
9751 }
9752 
9753 static void
9754 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9755 {
9756 	uint32_t maxalign = sizeof (dtrace_epid_t);
9757 	uint32_t align = sizeof (uint8_t), offs, diff;
9758 	dtrace_action_t *act;
9759 	int wastuple = 0;
9760 	uint32_t aggbase = UINT32_MAX;
9761 	dtrace_state_t *state = ecb->dte_state;
9762 
9763 	/*
9764 	 * If we record anything, we always record the epid.  (And we always
9765 	 * record it first.)
9766 	 */
9767 	offs = sizeof (dtrace_epid_t);
9768 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9769 
9770 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9771 		dtrace_recdesc_t *rec = &act->dta_rec;
9772 
9773 		if ((align = rec->dtrd_alignment) > maxalign)
9774 			maxalign = align;
9775 
9776 		if (!wastuple && act->dta_intuple) {
9777 			/*
9778 			 * This is the first record in a tuple.  Align the
9779 			 * offset to be at offset 4 in an 8-byte aligned
9780 			 * block.
9781 			 */
9782 			diff = offs + sizeof (dtrace_aggid_t);
9783 
9784 			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9785 				offs += sizeof (uint64_t) - diff;
9786 
9787 			aggbase = offs - sizeof (dtrace_aggid_t);
9788 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9789 		}
9790 
9791 		/*LINTED*/
9792 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9793 			/*
9794 			 * The current offset is not properly aligned; align it.
9795 			 */
9796 			offs += align - diff;
9797 		}
9798 
9799 		rec->dtrd_offset = offs;
9800 
9801 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9802 			ecb->dte_needed = offs + rec->dtrd_size;
9803 
9804 			if (ecb->dte_needed > state->dts_needed)
9805 				state->dts_needed = ecb->dte_needed;
9806 		}
9807 
9808 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9809 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9810 			dtrace_action_t *first = agg->dtag_first, *prev;
9811 
9812 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9813 			ASSERT(wastuple);
9814 			ASSERT(aggbase != UINT32_MAX);
9815 
9816 			agg->dtag_base = aggbase;
9817 
9818 			while ((prev = first->dta_prev) != NULL &&
9819 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9820 				agg = (dtrace_aggregation_t *)prev;
9821 				first = agg->dtag_first;
9822 			}
9823 
9824 			if (prev != NULL) {
9825 				offs = prev->dta_rec.dtrd_offset +
9826 				    prev->dta_rec.dtrd_size;
9827 			} else {
9828 				offs = sizeof (dtrace_epid_t);
9829 			}
9830 			wastuple = 0;
9831 		} else {
9832 			if (!act->dta_intuple)
9833 				ecb->dte_size = offs + rec->dtrd_size;
9834 
9835 			offs += rec->dtrd_size;
9836 		}
9837 
9838 		wastuple = act->dta_intuple;
9839 	}
9840 
9841 	if ((act = ecb->dte_action) != NULL &&
9842 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9843 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9844 		/*
9845 		 * If the size is still sizeof (dtrace_epid_t), then all
9846 		 * actions store no data; set the size to 0.
9847 		 */
9848 		ecb->dte_alignment = maxalign;
9849 		ecb->dte_size = 0;
9850 
9851 		/*
9852 		 * If the needed space is still sizeof (dtrace_epid_t), then
9853 		 * all actions need no additional space; set the needed
9854 		 * size to 0.
9855 		 */
9856 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9857 			ecb->dte_needed = 0;
9858 
9859 		return;
9860 	}
9861 
9862 	/*
9863 	 * Set our alignment, and make sure that the dte_size and dte_needed
9864 	 * are aligned to the size of an EPID.
9865 	 */
9866 	ecb->dte_alignment = maxalign;
9867 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9868 	    ~(sizeof (dtrace_epid_t) - 1);
9869 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9870 	    ~(sizeof (dtrace_epid_t) - 1);
9871 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9872 }
9873 
9874 static dtrace_action_t *
9875 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9876 {
9877 	dtrace_aggregation_t *agg;
9878 	size_t size = sizeof (uint64_t);
9879 	int ntuple = desc->dtad_ntuple;
9880 	dtrace_action_t *act;
9881 	dtrace_recdesc_t *frec;
9882 	dtrace_aggid_t aggid;
9883 	dtrace_state_t *state = ecb->dte_state;
9884 
9885 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9886 	agg->dtag_ecb = ecb;
9887 
9888 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9889 
9890 	switch (desc->dtad_kind) {
9891 	case DTRACEAGG_MIN:
9892 		agg->dtag_initial = INT64_MAX;
9893 		agg->dtag_aggregate = dtrace_aggregate_min;
9894 		break;
9895 
9896 	case DTRACEAGG_MAX:
9897 		agg->dtag_initial = INT64_MIN;
9898 		agg->dtag_aggregate = dtrace_aggregate_max;
9899 		break;
9900 
9901 	case DTRACEAGG_COUNT:
9902 		agg->dtag_aggregate = dtrace_aggregate_count;
9903 		break;
9904 
9905 	case DTRACEAGG_QUANTIZE:
9906 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9907 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9908 		    sizeof (uint64_t);
9909 		break;
9910 
9911 	case DTRACEAGG_LQUANTIZE: {
9912 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9913 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9914 
9915 		agg->dtag_initial = desc->dtad_arg;
9916 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9917 
9918 		if (step == 0 || levels == 0)
9919 			goto err;
9920 
9921 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9922 		break;
9923 	}
9924 
9925 	case DTRACEAGG_LLQUANTIZE: {
9926 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
9927 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
9928 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
9929 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
9930 		int64_t v;
9931 
9932 		agg->dtag_initial = desc->dtad_arg;
9933 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
9934 
9935 		if (factor < 2 || low >= high || nsteps < factor)
9936 			goto err;
9937 
9938 		/*
9939 		 * Now check that the number of steps evenly divides a power
9940 		 * of the factor.  (This assures both integer bucket size and
9941 		 * linearity within each magnitude.)
9942 		 */
9943 		for (v = factor; v < nsteps; v *= factor)
9944 			continue;
9945 
9946 		if ((v % nsteps) || (nsteps % factor))
9947 			goto err;
9948 
9949 		size = (dtrace_aggregate_llquantize_bucket(factor,
9950 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
9951 		break;
9952 	}
9953 
9954 	case DTRACEAGG_AVG:
9955 		agg->dtag_aggregate = dtrace_aggregate_avg;
9956 		size = sizeof (uint64_t) * 2;
9957 		break;
9958 
9959 	case DTRACEAGG_STDDEV:
9960 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9961 		size = sizeof (uint64_t) * 4;
9962 		break;
9963 
9964 	case DTRACEAGG_SUM:
9965 		agg->dtag_aggregate = dtrace_aggregate_sum;
9966 		break;
9967 
9968 	default:
9969 		goto err;
9970 	}
9971 
9972 	agg->dtag_action.dta_rec.dtrd_size = size;
9973 
9974 	if (ntuple == 0)
9975 		goto err;
9976 
9977 	/*
9978 	 * We must make sure that we have enough actions for the n-tuple.
9979 	 */
9980 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9981 		if (DTRACEACT_ISAGG(act->dta_kind))
9982 			break;
9983 
9984 		if (--ntuple == 0) {
9985 			/*
9986 			 * This is the action with which our n-tuple begins.
9987 			 */
9988 			agg->dtag_first = act;
9989 			goto success;
9990 		}
9991 	}
9992 
9993 	/*
9994 	 * This n-tuple is short by ntuple elements.  Return failure.
9995 	 */
9996 	ASSERT(ntuple != 0);
9997 err:
9998 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9999 	return (NULL);
10000 
10001 success:
10002 	/*
10003 	 * If the last action in the tuple has a size of zero, it's actually
10004 	 * an expression argument for the aggregating action.
10005 	 */
10006 	ASSERT(ecb->dte_action_last != NULL);
10007 	act = ecb->dte_action_last;
10008 
10009 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10010 		ASSERT(act->dta_difo != NULL);
10011 
10012 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10013 			agg->dtag_hasarg = 1;
10014 	}
10015 
10016 	/*
10017 	 * We need to allocate an id for this aggregation.
10018 	 */
10019 #if defined(sun)
10020 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10021 	    VM_BESTFIT | VM_SLEEP);
10022 #else
10023 	aggid = alloc_unr(state->dts_aggid_arena);
10024 #endif
10025 
10026 	if (aggid - 1 >= state->dts_naggregations) {
10027 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10028 		dtrace_aggregation_t **aggs;
10029 		int naggs = state->dts_naggregations << 1;
10030 		int onaggs = state->dts_naggregations;
10031 
10032 		ASSERT(aggid == state->dts_naggregations + 1);
10033 
10034 		if (naggs == 0) {
10035 			ASSERT(oaggs == NULL);
10036 			naggs = 1;
10037 		}
10038 
10039 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10040 
10041 		if (oaggs != NULL) {
10042 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10043 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10044 		}
10045 
10046 		state->dts_aggregations = aggs;
10047 		state->dts_naggregations = naggs;
10048 	}
10049 
10050 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10051 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10052 
10053 	frec = &agg->dtag_first->dta_rec;
10054 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10055 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10056 
10057 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10058 		ASSERT(!act->dta_intuple);
10059 		act->dta_intuple = 1;
10060 	}
10061 
10062 	return (&agg->dtag_action);
10063 }
10064 
10065 static void
10066 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10067 {
10068 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10069 	dtrace_state_t *state = ecb->dte_state;
10070 	dtrace_aggid_t aggid = agg->dtag_id;
10071 
10072 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10073 #if defined(sun)
10074 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10075 #else
10076 	free_unr(state->dts_aggid_arena, aggid);
10077 #endif
10078 
10079 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10080 	state->dts_aggregations[aggid - 1] = NULL;
10081 
10082 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10083 }
10084 
10085 static int
10086 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10087 {
10088 	dtrace_action_t *action, *last;
10089 	dtrace_difo_t *dp = desc->dtad_difo;
10090 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10091 	uint16_t format = 0;
10092 	dtrace_recdesc_t *rec;
10093 	dtrace_state_t *state = ecb->dte_state;
10094 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10095 	uint64_t arg = desc->dtad_arg;
10096 
10097 	ASSERT(MUTEX_HELD(&dtrace_lock));
10098 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10099 
10100 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10101 		/*
10102 		 * If this is an aggregating action, there must be neither
10103 		 * a speculate nor a commit on the action chain.
10104 		 */
10105 		dtrace_action_t *act;
10106 
10107 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10108 			if (act->dta_kind == DTRACEACT_COMMIT)
10109 				return (EINVAL);
10110 
10111 			if (act->dta_kind == DTRACEACT_SPECULATE)
10112 				return (EINVAL);
10113 		}
10114 
10115 		action = dtrace_ecb_aggregation_create(ecb, desc);
10116 
10117 		if (action == NULL)
10118 			return (EINVAL);
10119 	} else {
10120 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10121 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10122 		    dp != NULL && dp->dtdo_destructive)) {
10123 			state->dts_destructive = 1;
10124 		}
10125 
10126 		switch (desc->dtad_kind) {
10127 		case DTRACEACT_PRINTF:
10128 		case DTRACEACT_PRINTA:
10129 		case DTRACEACT_SYSTEM:
10130 		case DTRACEACT_FREOPEN:
10131 			/*
10132 			 * We know that our arg is a string -- turn it into a
10133 			 * format.
10134 			 */
10135 			if (arg == 0) {
10136 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10137 				format = 0;
10138 			} else {
10139 				ASSERT(arg != 0);
10140 #if defined(sun)
10141 				ASSERT(arg > KERNELBASE);
10142 #endif
10143 				format = dtrace_format_add(state,
10144 				    (char *)(uintptr_t)arg);
10145 			}
10146 
10147 			/*FALLTHROUGH*/
10148 		case DTRACEACT_LIBACT:
10149 		case DTRACEACT_DIFEXPR:
10150 			if (dp == NULL)
10151 				return (EINVAL);
10152 
10153 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10154 				break;
10155 
10156 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10157 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10158 					return (EINVAL);
10159 
10160 				size = opt[DTRACEOPT_STRSIZE];
10161 			}
10162 
10163 			break;
10164 
10165 		case DTRACEACT_STACK:
10166 			if ((nframes = arg) == 0) {
10167 				nframes = opt[DTRACEOPT_STACKFRAMES];
10168 				ASSERT(nframes > 0);
10169 				arg = nframes;
10170 			}
10171 
10172 			size = nframes * sizeof (pc_t);
10173 			break;
10174 
10175 		case DTRACEACT_JSTACK:
10176 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10177 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10178 
10179 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10180 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10181 
10182 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10183 
10184 			/*FALLTHROUGH*/
10185 		case DTRACEACT_USTACK:
10186 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10187 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10188 				strsize = DTRACE_USTACK_STRSIZE(arg);
10189 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10190 				ASSERT(nframes > 0);
10191 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10192 			}
10193 
10194 			/*
10195 			 * Save a slot for the pid.
10196 			 */
10197 			size = (nframes + 1) * sizeof (uint64_t);
10198 			size += DTRACE_USTACK_STRSIZE(arg);
10199 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10200 
10201 			break;
10202 
10203 		case DTRACEACT_SYM:
10204 		case DTRACEACT_MOD:
10205 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10206 			    sizeof (uint64_t)) ||
10207 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10208 				return (EINVAL);
10209 			break;
10210 
10211 		case DTRACEACT_USYM:
10212 		case DTRACEACT_UMOD:
10213 		case DTRACEACT_UADDR:
10214 			if (dp == NULL ||
10215 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10216 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10217 				return (EINVAL);
10218 
10219 			/*
10220 			 * We have a slot for the pid, plus a slot for the
10221 			 * argument.  To keep things simple (aligned with
10222 			 * bitness-neutral sizing), we store each as a 64-bit
10223 			 * quantity.
10224 			 */
10225 			size = 2 * sizeof (uint64_t);
10226 			break;
10227 
10228 		case DTRACEACT_STOP:
10229 		case DTRACEACT_BREAKPOINT:
10230 		case DTRACEACT_PANIC:
10231 			break;
10232 
10233 		case DTRACEACT_CHILL:
10234 		case DTRACEACT_DISCARD:
10235 		case DTRACEACT_RAISE:
10236 			if (dp == NULL)
10237 				return (EINVAL);
10238 			break;
10239 
10240 		case DTRACEACT_EXIT:
10241 			if (dp == NULL ||
10242 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10243 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10244 				return (EINVAL);
10245 			break;
10246 
10247 		case DTRACEACT_SPECULATE:
10248 			if (ecb->dte_size > sizeof (dtrace_epid_t))
10249 				return (EINVAL);
10250 
10251 			if (dp == NULL)
10252 				return (EINVAL);
10253 
10254 			state->dts_speculates = 1;
10255 			break;
10256 
10257 		case DTRACEACT_PRINTM:
10258 		    	size = dp->dtdo_rtype.dtdt_size;
10259 			break;
10260 
10261 		case DTRACEACT_PRINTT:
10262 		    	size = dp->dtdo_rtype.dtdt_size;
10263 			break;
10264 
10265 		case DTRACEACT_COMMIT: {
10266 			dtrace_action_t *act = ecb->dte_action;
10267 
10268 			for (; act != NULL; act = act->dta_next) {
10269 				if (act->dta_kind == DTRACEACT_COMMIT)
10270 					return (EINVAL);
10271 			}
10272 
10273 			if (dp == NULL)
10274 				return (EINVAL);
10275 			break;
10276 		}
10277 
10278 		default:
10279 			return (EINVAL);
10280 		}
10281 
10282 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10283 			/*
10284 			 * If this is a data-storing action or a speculate,
10285 			 * we must be sure that there isn't a commit on the
10286 			 * action chain.
10287 			 */
10288 			dtrace_action_t *act = ecb->dte_action;
10289 
10290 			for (; act != NULL; act = act->dta_next) {
10291 				if (act->dta_kind == DTRACEACT_COMMIT)
10292 					return (EINVAL);
10293 			}
10294 		}
10295 
10296 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10297 		action->dta_rec.dtrd_size = size;
10298 	}
10299 
10300 	action->dta_refcnt = 1;
10301 	rec = &action->dta_rec;
10302 	size = rec->dtrd_size;
10303 
10304 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10305 		if (!(size & mask)) {
10306 			align = mask + 1;
10307 			break;
10308 		}
10309 	}
10310 
10311 	action->dta_kind = desc->dtad_kind;
10312 
10313 	if ((action->dta_difo = dp) != NULL)
10314 		dtrace_difo_hold(dp);
10315 
10316 	rec->dtrd_action = action->dta_kind;
10317 	rec->dtrd_arg = arg;
10318 	rec->dtrd_uarg = desc->dtad_uarg;
10319 	rec->dtrd_alignment = (uint16_t)align;
10320 	rec->dtrd_format = format;
10321 
10322 	if ((last = ecb->dte_action_last) != NULL) {
10323 		ASSERT(ecb->dte_action != NULL);
10324 		action->dta_prev = last;
10325 		last->dta_next = action;
10326 	} else {
10327 		ASSERT(ecb->dte_action == NULL);
10328 		ecb->dte_action = action;
10329 	}
10330 
10331 	ecb->dte_action_last = action;
10332 
10333 	return (0);
10334 }
10335 
10336 static void
10337 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10338 {
10339 	dtrace_action_t *act = ecb->dte_action, *next;
10340 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10341 	dtrace_difo_t *dp;
10342 	uint16_t format;
10343 
10344 	if (act != NULL && act->dta_refcnt > 1) {
10345 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10346 		act->dta_refcnt--;
10347 	} else {
10348 		for (; act != NULL; act = next) {
10349 			next = act->dta_next;
10350 			ASSERT(next != NULL || act == ecb->dte_action_last);
10351 			ASSERT(act->dta_refcnt == 1);
10352 
10353 			if ((format = act->dta_rec.dtrd_format) != 0)
10354 				dtrace_format_remove(ecb->dte_state, format);
10355 
10356 			if ((dp = act->dta_difo) != NULL)
10357 				dtrace_difo_release(dp, vstate);
10358 
10359 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10360 				dtrace_ecb_aggregation_destroy(ecb, act);
10361 			} else {
10362 				kmem_free(act, sizeof (dtrace_action_t));
10363 			}
10364 		}
10365 	}
10366 
10367 	ecb->dte_action = NULL;
10368 	ecb->dte_action_last = NULL;
10369 	ecb->dte_size = sizeof (dtrace_epid_t);
10370 }
10371 
10372 static void
10373 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10374 {
10375 	/*
10376 	 * We disable the ECB by removing it from its probe.
10377 	 */
10378 	dtrace_ecb_t *pecb, *prev = NULL;
10379 	dtrace_probe_t *probe = ecb->dte_probe;
10380 
10381 	ASSERT(MUTEX_HELD(&dtrace_lock));
10382 
10383 	if (probe == NULL) {
10384 		/*
10385 		 * This is the NULL probe; there is nothing to disable.
10386 		 */
10387 		return;
10388 	}
10389 
10390 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10391 		if (pecb == ecb)
10392 			break;
10393 		prev = pecb;
10394 	}
10395 
10396 	ASSERT(pecb != NULL);
10397 
10398 	if (prev == NULL) {
10399 		probe->dtpr_ecb = ecb->dte_next;
10400 	} else {
10401 		prev->dte_next = ecb->dte_next;
10402 	}
10403 
10404 	if (ecb == probe->dtpr_ecb_last) {
10405 		ASSERT(ecb->dte_next == NULL);
10406 		probe->dtpr_ecb_last = prev;
10407 	}
10408 
10409 	/*
10410 	 * The ECB has been disconnected from the probe; now sync to assure
10411 	 * that all CPUs have seen the change before returning.
10412 	 */
10413 	dtrace_sync();
10414 
10415 	if (probe->dtpr_ecb == NULL) {
10416 		/*
10417 		 * That was the last ECB on the probe; clear the predicate
10418 		 * cache ID for the probe, disable it and sync one more time
10419 		 * to assure that we'll never hit it again.
10420 		 */
10421 		dtrace_provider_t *prov = probe->dtpr_provider;
10422 
10423 		ASSERT(ecb->dte_next == NULL);
10424 		ASSERT(probe->dtpr_ecb_last == NULL);
10425 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10426 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10427 		    probe->dtpr_id, probe->dtpr_arg);
10428 		dtrace_sync();
10429 	} else {
10430 		/*
10431 		 * There is at least one ECB remaining on the probe.  If there
10432 		 * is _exactly_ one, set the probe's predicate cache ID to be
10433 		 * the predicate cache ID of the remaining ECB.
10434 		 */
10435 		ASSERT(probe->dtpr_ecb_last != NULL);
10436 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10437 
10438 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10439 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10440 
10441 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10442 
10443 			if (p != NULL)
10444 				probe->dtpr_predcache = p->dtp_cacheid;
10445 		}
10446 
10447 		ecb->dte_next = NULL;
10448 	}
10449 }
10450 
10451 static void
10452 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10453 {
10454 	dtrace_state_t *state = ecb->dte_state;
10455 	dtrace_vstate_t *vstate = &state->dts_vstate;
10456 	dtrace_predicate_t *pred;
10457 	dtrace_epid_t epid = ecb->dte_epid;
10458 
10459 	ASSERT(MUTEX_HELD(&dtrace_lock));
10460 	ASSERT(ecb->dte_next == NULL);
10461 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10462 
10463 	if ((pred = ecb->dte_predicate) != NULL)
10464 		dtrace_predicate_release(pred, vstate);
10465 
10466 	dtrace_ecb_action_remove(ecb);
10467 
10468 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10469 	state->dts_ecbs[epid - 1] = NULL;
10470 
10471 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10472 }
10473 
10474 static dtrace_ecb_t *
10475 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10476     dtrace_enabling_t *enab)
10477 {
10478 	dtrace_ecb_t *ecb;
10479 	dtrace_predicate_t *pred;
10480 	dtrace_actdesc_t *act;
10481 	dtrace_provider_t *prov;
10482 	dtrace_ecbdesc_t *desc = enab->dten_current;
10483 
10484 	ASSERT(MUTEX_HELD(&dtrace_lock));
10485 	ASSERT(state != NULL);
10486 
10487 	ecb = dtrace_ecb_add(state, probe);
10488 	ecb->dte_uarg = desc->dted_uarg;
10489 
10490 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10491 		dtrace_predicate_hold(pred);
10492 		ecb->dte_predicate = pred;
10493 	}
10494 
10495 	if (probe != NULL) {
10496 		/*
10497 		 * If the provider shows more leg than the consumer is old
10498 		 * enough to see, we need to enable the appropriate implicit
10499 		 * predicate bits to prevent the ecb from activating at
10500 		 * revealing times.
10501 		 *
10502 		 * Providers specifying DTRACE_PRIV_USER at register time
10503 		 * are stating that they need the /proc-style privilege
10504 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10505 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10506 		 */
10507 		prov = probe->dtpr_provider;
10508 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10509 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10510 			ecb->dte_cond |= DTRACE_COND_OWNER;
10511 
10512 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10513 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10514 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10515 
10516 		/*
10517 		 * If the provider shows us kernel innards and the user
10518 		 * is lacking sufficient privilege, enable the
10519 		 * DTRACE_COND_USERMODE implicit predicate.
10520 		 */
10521 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10522 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10523 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10524 	}
10525 
10526 	if (dtrace_ecb_create_cache != NULL) {
10527 		/*
10528 		 * If we have a cached ecb, we'll use its action list instead
10529 		 * of creating our own (saving both time and space).
10530 		 */
10531 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10532 		dtrace_action_t *act = cached->dte_action;
10533 
10534 		if (act != NULL) {
10535 			ASSERT(act->dta_refcnt > 0);
10536 			act->dta_refcnt++;
10537 			ecb->dte_action = act;
10538 			ecb->dte_action_last = cached->dte_action_last;
10539 			ecb->dte_needed = cached->dte_needed;
10540 			ecb->dte_size = cached->dte_size;
10541 			ecb->dte_alignment = cached->dte_alignment;
10542 		}
10543 
10544 		return (ecb);
10545 	}
10546 
10547 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10548 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10549 			dtrace_ecb_destroy(ecb);
10550 			return (NULL);
10551 		}
10552 	}
10553 
10554 	dtrace_ecb_resize(ecb);
10555 
10556 	return (dtrace_ecb_create_cache = ecb);
10557 }
10558 
10559 static int
10560 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10561 {
10562 	dtrace_ecb_t *ecb;
10563 	dtrace_enabling_t *enab = arg;
10564 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10565 
10566 	ASSERT(state != NULL);
10567 
10568 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10569 		/*
10570 		 * This probe was created in a generation for which this
10571 		 * enabling has previously created ECBs; we don't want to
10572 		 * enable it again, so just kick out.
10573 		 */
10574 		return (DTRACE_MATCH_NEXT);
10575 	}
10576 
10577 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10578 		return (DTRACE_MATCH_DONE);
10579 
10580 	dtrace_ecb_enable(ecb);
10581 	return (DTRACE_MATCH_NEXT);
10582 }
10583 
10584 static dtrace_ecb_t *
10585 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10586 {
10587 	dtrace_ecb_t *ecb;
10588 
10589 	ASSERT(MUTEX_HELD(&dtrace_lock));
10590 
10591 	if (id == 0 || id > state->dts_necbs)
10592 		return (NULL);
10593 
10594 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10595 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10596 
10597 	return (state->dts_ecbs[id - 1]);
10598 }
10599 
10600 static dtrace_aggregation_t *
10601 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10602 {
10603 	dtrace_aggregation_t *agg;
10604 
10605 	ASSERT(MUTEX_HELD(&dtrace_lock));
10606 
10607 	if (id == 0 || id > state->dts_naggregations)
10608 		return (NULL);
10609 
10610 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10611 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10612 	    agg->dtag_id == id);
10613 
10614 	return (state->dts_aggregations[id - 1]);
10615 }
10616 
10617 /*
10618  * DTrace Buffer Functions
10619  *
10620  * The following functions manipulate DTrace buffers.  Most of these functions
10621  * are called in the context of establishing or processing consumer state;
10622  * exceptions are explicitly noted.
10623  */
10624 
10625 /*
10626  * Note:  called from cross call context.  This function switches the two
10627  * buffers on a given CPU.  The atomicity of this operation is assured by
10628  * disabling interrupts while the actual switch takes place; the disabling of
10629  * interrupts serializes the execution with any execution of dtrace_probe() on
10630  * the same CPU.
10631  */
10632 static void
10633 dtrace_buffer_switch(dtrace_buffer_t *buf)
10634 {
10635 	caddr_t tomax = buf->dtb_tomax;
10636 	caddr_t xamot = buf->dtb_xamot;
10637 	dtrace_icookie_t cookie;
10638 
10639 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10640 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10641 
10642 	cookie = dtrace_interrupt_disable();
10643 	buf->dtb_tomax = xamot;
10644 	buf->dtb_xamot = tomax;
10645 	buf->dtb_xamot_drops = buf->dtb_drops;
10646 	buf->dtb_xamot_offset = buf->dtb_offset;
10647 	buf->dtb_xamot_errors = buf->dtb_errors;
10648 	buf->dtb_xamot_flags = buf->dtb_flags;
10649 	buf->dtb_offset = 0;
10650 	buf->dtb_drops = 0;
10651 	buf->dtb_errors = 0;
10652 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10653 	dtrace_interrupt_enable(cookie);
10654 }
10655 
10656 /*
10657  * Note:  called from cross call context.  This function activates a buffer
10658  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10659  * is guaranteed by the disabling of interrupts.
10660  */
10661 static void
10662 dtrace_buffer_activate(dtrace_state_t *state)
10663 {
10664 	dtrace_buffer_t *buf;
10665 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10666 
10667 	buf = &state->dts_buffer[curcpu];
10668 
10669 	if (buf->dtb_tomax != NULL) {
10670 		/*
10671 		 * We might like to assert that the buffer is marked inactive,
10672 		 * but this isn't necessarily true:  the buffer for the CPU
10673 		 * that processes the BEGIN probe has its buffer activated
10674 		 * manually.  In this case, we take the (harmless) action
10675 		 * re-clearing the bit INACTIVE bit.
10676 		 */
10677 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10678 	}
10679 
10680 	dtrace_interrupt_enable(cookie);
10681 }
10682 
10683 static int
10684 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10685     processorid_t cpu)
10686 {
10687 #if defined(sun)
10688 	cpu_t *cp;
10689 #endif
10690 	dtrace_buffer_t *buf;
10691 
10692 #if defined(sun)
10693 	ASSERT(MUTEX_HELD(&cpu_lock));
10694 	ASSERT(MUTEX_HELD(&dtrace_lock));
10695 
10696 	if (size > dtrace_nonroot_maxsize &&
10697 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10698 		return (EFBIG);
10699 
10700 	cp = cpu_list;
10701 
10702 	do {
10703 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10704 			continue;
10705 
10706 		buf = &bufs[cp->cpu_id];
10707 
10708 		/*
10709 		 * If there is already a buffer allocated for this CPU, it
10710 		 * is only possible that this is a DR event.  In this case,
10711 		 */
10712 		if (buf->dtb_tomax != NULL) {
10713 			ASSERT(buf->dtb_size == size);
10714 			continue;
10715 		}
10716 
10717 		ASSERT(buf->dtb_xamot == NULL);
10718 
10719 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10720 			goto err;
10721 
10722 		buf->dtb_size = size;
10723 		buf->dtb_flags = flags;
10724 		buf->dtb_offset = 0;
10725 		buf->dtb_drops = 0;
10726 
10727 		if (flags & DTRACEBUF_NOSWITCH)
10728 			continue;
10729 
10730 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10731 			goto err;
10732 	} while ((cp = cp->cpu_next) != cpu_list);
10733 
10734 	return (0);
10735 
10736 err:
10737 	cp = cpu_list;
10738 
10739 	do {
10740 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10741 			continue;
10742 
10743 		buf = &bufs[cp->cpu_id];
10744 
10745 		if (buf->dtb_xamot != NULL) {
10746 			ASSERT(buf->dtb_tomax != NULL);
10747 			ASSERT(buf->dtb_size == size);
10748 			kmem_free(buf->dtb_xamot, size);
10749 		}
10750 
10751 		if (buf->dtb_tomax != NULL) {
10752 			ASSERT(buf->dtb_size == size);
10753 			kmem_free(buf->dtb_tomax, size);
10754 		}
10755 
10756 		buf->dtb_tomax = NULL;
10757 		buf->dtb_xamot = NULL;
10758 		buf->dtb_size = 0;
10759 	} while ((cp = cp->cpu_next) != cpu_list);
10760 
10761 	return (ENOMEM);
10762 #else
10763 	int i;
10764 
10765 #if defined(__amd64__) || defined(__mips__)
10766 	/*
10767 	 * FreeBSD isn't good at limiting the amount of memory we
10768 	 * ask to malloc, so let's place a limit here before trying
10769 	 * to do something that might well end in tears at bedtime.
10770 	 */
10771 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10772 		return(ENOMEM);
10773 #endif
10774 
10775 	ASSERT(MUTEX_HELD(&dtrace_lock));
10776 	CPU_FOREACH(i) {
10777 		if (cpu != DTRACE_CPUALL && cpu != i)
10778 			continue;
10779 
10780 		buf = &bufs[i];
10781 
10782 		/*
10783 		 * If there is already a buffer allocated for this CPU, it
10784 		 * is only possible that this is a DR event.  In this case,
10785 		 * the buffer size must match our specified size.
10786 		 */
10787 		if (buf->dtb_tomax != NULL) {
10788 			ASSERT(buf->dtb_size == size);
10789 			continue;
10790 		}
10791 
10792 		ASSERT(buf->dtb_xamot == NULL);
10793 
10794 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10795 			goto err;
10796 
10797 		buf->dtb_size = size;
10798 		buf->dtb_flags = flags;
10799 		buf->dtb_offset = 0;
10800 		buf->dtb_drops = 0;
10801 
10802 		if (flags & DTRACEBUF_NOSWITCH)
10803 			continue;
10804 
10805 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10806 			goto err;
10807 	}
10808 
10809 	return (0);
10810 
10811 err:
10812 	/*
10813 	 * Error allocating memory, so free the buffers that were
10814 	 * allocated before the failed allocation.
10815 	 */
10816 	CPU_FOREACH(i) {
10817 		if (cpu != DTRACE_CPUALL && cpu != i)
10818 			continue;
10819 
10820 		buf = &bufs[i];
10821 
10822 		if (buf->dtb_xamot != NULL) {
10823 			ASSERT(buf->dtb_tomax != NULL);
10824 			ASSERT(buf->dtb_size == size);
10825 			kmem_free(buf->dtb_xamot, size);
10826 		}
10827 
10828 		if (buf->dtb_tomax != NULL) {
10829 			ASSERT(buf->dtb_size == size);
10830 			kmem_free(buf->dtb_tomax, size);
10831 		}
10832 
10833 		buf->dtb_tomax = NULL;
10834 		buf->dtb_xamot = NULL;
10835 		buf->dtb_size = 0;
10836 
10837 	}
10838 
10839 	return (ENOMEM);
10840 #endif
10841 }
10842 
10843 /*
10844  * Note:  called from probe context.  This function just increments the drop
10845  * count on a buffer.  It has been made a function to allow for the
10846  * possibility of understanding the source of mysterious drop counts.  (A
10847  * problem for which one may be particularly disappointed that DTrace cannot
10848  * be used to understand DTrace.)
10849  */
10850 static void
10851 dtrace_buffer_drop(dtrace_buffer_t *buf)
10852 {
10853 	buf->dtb_drops++;
10854 }
10855 
10856 /*
10857  * Note:  called from probe context.  This function is called to reserve space
10858  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10859  * mstate.  Returns the new offset in the buffer, or a negative value if an
10860  * error has occurred.
10861  */
10862 static intptr_t
10863 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10864     dtrace_state_t *state, dtrace_mstate_t *mstate)
10865 {
10866 	intptr_t offs = buf->dtb_offset, soffs;
10867 	intptr_t woffs;
10868 	caddr_t tomax;
10869 	size_t total;
10870 
10871 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10872 		return (-1);
10873 
10874 	if ((tomax = buf->dtb_tomax) == NULL) {
10875 		dtrace_buffer_drop(buf);
10876 		return (-1);
10877 	}
10878 
10879 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10880 		while (offs & (align - 1)) {
10881 			/*
10882 			 * Assert that our alignment is off by a number which
10883 			 * is itself sizeof (uint32_t) aligned.
10884 			 */
10885 			ASSERT(!((align - (offs & (align - 1))) &
10886 			    (sizeof (uint32_t) - 1)));
10887 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10888 			offs += sizeof (uint32_t);
10889 		}
10890 
10891 		if ((soffs = offs + needed) > buf->dtb_size) {
10892 			dtrace_buffer_drop(buf);
10893 			return (-1);
10894 		}
10895 
10896 		if (mstate == NULL)
10897 			return (offs);
10898 
10899 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10900 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10901 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10902 
10903 		return (offs);
10904 	}
10905 
10906 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10907 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10908 		    (buf->dtb_flags & DTRACEBUF_FULL))
10909 			return (-1);
10910 		goto out;
10911 	}
10912 
10913 	total = needed + (offs & (align - 1));
10914 
10915 	/*
10916 	 * For a ring buffer, life is quite a bit more complicated.  Before
10917 	 * we can store any padding, we need to adjust our wrapping offset.
10918 	 * (If we've never before wrapped or we're not about to, no adjustment
10919 	 * is required.)
10920 	 */
10921 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10922 	    offs + total > buf->dtb_size) {
10923 		woffs = buf->dtb_xamot_offset;
10924 
10925 		if (offs + total > buf->dtb_size) {
10926 			/*
10927 			 * We can't fit in the end of the buffer.  First, a
10928 			 * sanity check that we can fit in the buffer at all.
10929 			 */
10930 			if (total > buf->dtb_size) {
10931 				dtrace_buffer_drop(buf);
10932 				return (-1);
10933 			}
10934 
10935 			/*
10936 			 * We're going to be storing at the top of the buffer,
10937 			 * so now we need to deal with the wrapped offset.  We
10938 			 * only reset our wrapped offset to 0 if it is
10939 			 * currently greater than the current offset.  If it
10940 			 * is less than the current offset, it is because a
10941 			 * previous allocation induced a wrap -- but the
10942 			 * allocation didn't subsequently take the space due
10943 			 * to an error or false predicate evaluation.  In this
10944 			 * case, we'll just leave the wrapped offset alone: if
10945 			 * the wrapped offset hasn't been advanced far enough
10946 			 * for this allocation, it will be adjusted in the
10947 			 * lower loop.
10948 			 */
10949 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10950 				if (woffs >= offs)
10951 					woffs = 0;
10952 			} else {
10953 				woffs = 0;
10954 			}
10955 
10956 			/*
10957 			 * Now we know that we're going to be storing to the
10958 			 * top of the buffer and that there is room for us
10959 			 * there.  We need to clear the buffer from the current
10960 			 * offset to the end (there may be old gunk there).
10961 			 */
10962 			while (offs < buf->dtb_size)
10963 				tomax[offs++] = 0;
10964 
10965 			/*
10966 			 * We need to set our offset to zero.  And because we
10967 			 * are wrapping, we need to set the bit indicating as
10968 			 * much.  We can also adjust our needed space back
10969 			 * down to the space required by the ECB -- we know
10970 			 * that the top of the buffer is aligned.
10971 			 */
10972 			offs = 0;
10973 			total = needed;
10974 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10975 		} else {
10976 			/*
10977 			 * There is room for us in the buffer, so we simply
10978 			 * need to check the wrapped offset.
10979 			 */
10980 			if (woffs < offs) {
10981 				/*
10982 				 * The wrapped offset is less than the offset.
10983 				 * This can happen if we allocated buffer space
10984 				 * that induced a wrap, but then we didn't
10985 				 * subsequently take the space due to an error
10986 				 * or false predicate evaluation.  This is
10987 				 * okay; we know that _this_ allocation isn't
10988 				 * going to induce a wrap.  We still can't
10989 				 * reset the wrapped offset to be zero,
10990 				 * however: the space may have been trashed in
10991 				 * the previous failed probe attempt.  But at
10992 				 * least the wrapped offset doesn't need to
10993 				 * be adjusted at all...
10994 				 */
10995 				goto out;
10996 			}
10997 		}
10998 
10999 		while (offs + total > woffs) {
11000 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11001 			size_t size;
11002 
11003 			if (epid == DTRACE_EPIDNONE) {
11004 				size = sizeof (uint32_t);
11005 			} else {
11006 				ASSERT(epid <= state->dts_necbs);
11007 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11008 
11009 				size = state->dts_ecbs[epid - 1]->dte_size;
11010 			}
11011 
11012 			ASSERT(woffs + size <= buf->dtb_size);
11013 			ASSERT(size != 0);
11014 
11015 			if (woffs + size == buf->dtb_size) {
11016 				/*
11017 				 * We've reached the end of the buffer; we want
11018 				 * to set the wrapped offset to 0 and break
11019 				 * out.  However, if the offs is 0, then we're
11020 				 * in a strange edge-condition:  the amount of
11021 				 * space that we want to reserve plus the size
11022 				 * of the record that we're overwriting is
11023 				 * greater than the size of the buffer.  This
11024 				 * is problematic because if we reserve the
11025 				 * space but subsequently don't consume it (due
11026 				 * to a failed predicate or error) the wrapped
11027 				 * offset will be 0 -- yet the EPID at offset 0
11028 				 * will not be committed.  This situation is
11029 				 * relatively easy to deal with:  if we're in
11030 				 * this case, the buffer is indistinguishable
11031 				 * from one that hasn't wrapped; we need only
11032 				 * finish the job by clearing the wrapped bit,
11033 				 * explicitly setting the offset to be 0, and
11034 				 * zero'ing out the old data in the buffer.
11035 				 */
11036 				if (offs == 0) {
11037 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11038 					buf->dtb_offset = 0;
11039 					woffs = total;
11040 
11041 					while (woffs < buf->dtb_size)
11042 						tomax[woffs++] = 0;
11043 				}
11044 
11045 				woffs = 0;
11046 				break;
11047 			}
11048 
11049 			woffs += size;
11050 		}
11051 
11052 		/*
11053 		 * We have a wrapped offset.  It may be that the wrapped offset
11054 		 * has become zero -- that's okay.
11055 		 */
11056 		buf->dtb_xamot_offset = woffs;
11057 	}
11058 
11059 out:
11060 	/*
11061 	 * Now we can plow the buffer with any necessary padding.
11062 	 */
11063 	while (offs & (align - 1)) {
11064 		/*
11065 		 * Assert that our alignment is off by a number which
11066 		 * is itself sizeof (uint32_t) aligned.
11067 		 */
11068 		ASSERT(!((align - (offs & (align - 1))) &
11069 		    (sizeof (uint32_t) - 1)));
11070 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11071 		offs += sizeof (uint32_t);
11072 	}
11073 
11074 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11075 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11076 			buf->dtb_flags |= DTRACEBUF_FULL;
11077 			return (-1);
11078 		}
11079 	}
11080 
11081 	if (mstate == NULL)
11082 		return (offs);
11083 
11084 	/*
11085 	 * For ring buffers and fill buffers, the scratch space is always
11086 	 * the inactive buffer.
11087 	 */
11088 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11089 	mstate->dtms_scratch_size = buf->dtb_size;
11090 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11091 
11092 	return (offs);
11093 }
11094 
11095 static void
11096 dtrace_buffer_polish(dtrace_buffer_t *buf)
11097 {
11098 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11099 	ASSERT(MUTEX_HELD(&dtrace_lock));
11100 
11101 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11102 		return;
11103 
11104 	/*
11105 	 * We need to polish the ring buffer.  There are three cases:
11106 	 *
11107 	 * - The first (and presumably most common) is that there is no gap
11108 	 *   between the buffer offset and the wrapped offset.  In this case,
11109 	 *   there is nothing in the buffer that isn't valid data; we can
11110 	 *   mark the buffer as polished and return.
11111 	 *
11112 	 * - The second (less common than the first but still more common
11113 	 *   than the third) is that there is a gap between the buffer offset
11114 	 *   and the wrapped offset, and the wrapped offset is larger than the
11115 	 *   buffer offset.  This can happen because of an alignment issue, or
11116 	 *   can happen because of a call to dtrace_buffer_reserve() that
11117 	 *   didn't subsequently consume the buffer space.  In this case,
11118 	 *   we need to zero the data from the buffer offset to the wrapped
11119 	 *   offset.
11120 	 *
11121 	 * - The third (and least common) is that there is a gap between the
11122 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11123 	 *   _less_ than the buffer offset.  This can only happen because a
11124 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11125 	 *   was not subsequently consumed.  In this case, we need to zero the
11126 	 *   space from the offset to the end of the buffer _and_ from the
11127 	 *   top of the buffer to the wrapped offset.
11128 	 */
11129 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11130 		bzero(buf->dtb_tomax + buf->dtb_offset,
11131 		    buf->dtb_xamot_offset - buf->dtb_offset);
11132 	}
11133 
11134 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11135 		bzero(buf->dtb_tomax + buf->dtb_offset,
11136 		    buf->dtb_size - buf->dtb_offset);
11137 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11138 	}
11139 }
11140 
11141 static void
11142 dtrace_buffer_free(dtrace_buffer_t *bufs)
11143 {
11144 	int i;
11145 
11146 	for (i = 0; i < NCPU; i++) {
11147 		dtrace_buffer_t *buf = &bufs[i];
11148 
11149 		if (buf->dtb_tomax == NULL) {
11150 			ASSERT(buf->dtb_xamot == NULL);
11151 			ASSERT(buf->dtb_size == 0);
11152 			continue;
11153 		}
11154 
11155 		if (buf->dtb_xamot != NULL) {
11156 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11157 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11158 		}
11159 
11160 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11161 		buf->dtb_size = 0;
11162 		buf->dtb_tomax = NULL;
11163 		buf->dtb_xamot = NULL;
11164 	}
11165 }
11166 
11167 /*
11168  * DTrace Enabling Functions
11169  */
11170 static dtrace_enabling_t *
11171 dtrace_enabling_create(dtrace_vstate_t *vstate)
11172 {
11173 	dtrace_enabling_t *enab;
11174 
11175 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11176 	enab->dten_vstate = vstate;
11177 
11178 	return (enab);
11179 }
11180 
11181 static void
11182 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11183 {
11184 	dtrace_ecbdesc_t **ndesc;
11185 	size_t osize, nsize;
11186 
11187 	/*
11188 	 * We can't add to enablings after we've enabled them, or after we've
11189 	 * retained them.
11190 	 */
11191 	ASSERT(enab->dten_probegen == 0);
11192 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11193 
11194 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11195 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11196 		return;
11197 	}
11198 
11199 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11200 
11201 	if (enab->dten_maxdesc == 0) {
11202 		enab->dten_maxdesc = 1;
11203 	} else {
11204 		enab->dten_maxdesc <<= 1;
11205 	}
11206 
11207 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11208 
11209 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11210 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11211 	bcopy(enab->dten_desc, ndesc, osize);
11212 	if (enab->dten_desc != NULL)
11213 		kmem_free(enab->dten_desc, osize);
11214 
11215 	enab->dten_desc = ndesc;
11216 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11217 }
11218 
11219 static void
11220 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11221     dtrace_probedesc_t *pd)
11222 {
11223 	dtrace_ecbdesc_t *new;
11224 	dtrace_predicate_t *pred;
11225 	dtrace_actdesc_t *act;
11226 
11227 	/*
11228 	 * We're going to create a new ECB description that matches the
11229 	 * specified ECB in every way, but has the specified probe description.
11230 	 */
11231 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11232 
11233 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11234 		dtrace_predicate_hold(pred);
11235 
11236 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11237 		dtrace_actdesc_hold(act);
11238 
11239 	new->dted_action = ecb->dted_action;
11240 	new->dted_pred = ecb->dted_pred;
11241 	new->dted_probe = *pd;
11242 	new->dted_uarg = ecb->dted_uarg;
11243 
11244 	dtrace_enabling_add(enab, new);
11245 }
11246 
11247 static void
11248 dtrace_enabling_dump(dtrace_enabling_t *enab)
11249 {
11250 	int i;
11251 
11252 	for (i = 0; i < enab->dten_ndesc; i++) {
11253 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11254 
11255 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11256 		    desc->dtpd_provider, desc->dtpd_mod,
11257 		    desc->dtpd_func, desc->dtpd_name);
11258 	}
11259 }
11260 
11261 static void
11262 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11263 {
11264 	int i;
11265 	dtrace_ecbdesc_t *ep;
11266 	dtrace_vstate_t *vstate = enab->dten_vstate;
11267 
11268 	ASSERT(MUTEX_HELD(&dtrace_lock));
11269 
11270 	for (i = 0; i < enab->dten_ndesc; i++) {
11271 		dtrace_actdesc_t *act, *next;
11272 		dtrace_predicate_t *pred;
11273 
11274 		ep = enab->dten_desc[i];
11275 
11276 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11277 			dtrace_predicate_release(pred, vstate);
11278 
11279 		for (act = ep->dted_action; act != NULL; act = next) {
11280 			next = act->dtad_next;
11281 			dtrace_actdesc_release(act, vstate);
11282 		}
11283 
11284 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11285 	}
11286 
11287 	if (enab->dten_desc != NULL)
11288 		kmem_free(enab->dten_desc,
11289 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11290 
11291 	/*
11292 	 * If this was a retained enabling, decrement the dts_nretained count
11293 	 * and take it off of the dtrace_retained list.
11294 	 */
11295 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11296 	    dtrace_retained == enab) {
11297 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11298 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11299 		enab->dten_vstate->dtvs_state->dts_nretained--;
11300 	}
11301 
11302 	if (enab->dten_prev == NULL) {
11303 		if (dtrace_retained == enab) {
11304 			dtrace_retained = enab->dten_next;
11305 
11306 			if (dtrace_retained != NULL)
11307 				dtrace_retained->dten_prev = NULL;
11308 		}
11309 	} else {
11310 		ASSERT(enab != dtrace_retained);
11311 		ASSERT(dtrace_retained != NULL);
11312 		enab->dten_prev->dten_next = enab->dten_next;
11313 	}
11314 
11315 	if (enab->dten_next != NULL) {
11316 		ASSERT(dtrace_retained != NULL);
11317 		enab->dten_next->dten_prev = enab->dten_prev;
11318 	}
11319 
11320 	kmem_free(enab, sizeof (dtrace_enabling_t));
11321 }
11322 
11323 static int
11324 dtrace_enabling_retain(dtrace_enabling_t *enab)
11325 {
11326 	dtrace_state_t *state;
11327 
11328 	ASSERT(MUTEX_HELD(&dtrace_lock));
11329 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11330 	ASSERT(enab->dten_vstate != NULL);
11331 
11332 	state = enab->dten_vstate->dtvs_state;
11333 	ASSERT(state != NULL);
11334 
11335 	/*
11336 	 * We only allow each state to retain dtrace_retain_max enablings.
11337 	 */
11338 	if (state->dts_nretained >= dtrace_retain_max)
11339 		return (ENOSPC);
11340 
11341 	state->dts_nretained++;
11342 
11343 	if (dtrace_retained == NULL) {
11344 		dtrace_retained = enab;
11345 		return (0);
11346 	}
11347 
11348 	enab->dten_next = dtrace_retained;
11349 	dtrace_retained->dten_prev = enab;
11350 	dtrace_retained = enab;
11351 
11352 	return (0);
11353 }
11354 
11355 static int
11356 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11357     dtrace_probedesc_t *create)
11358 {
11359 	dtrace_enabling_t *new, *enab;
11360 	int found = 0, err = ENOENT;
11361 
11362 	ASSERT(MUTEX_HELD(&dtrace_lock));
11363 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11364 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11365 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11366 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11367 
11368 	new = dtrace_enabling_create(&state->dts_vstate);
11369 
11370 	/*
11371 	 * Iterate over all retained enablings, looking for enablings that
11372 	 * match the specified state.
11373 	 */
11374 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11375 		int i;
11376 
11377 		/*
11378 		 * dtvs_state can only be NULL for helper enablings -- and
11379 		 * helper enablings can't be retained.
11380 		 */
11381 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11382 
11383 		if (enab->dten_vstate->dtvs_state != state)
11384 			continue;
11385 
11386 		/*
11387 		 * Now iterate over each probe description; we're looking for
11388 		 * an exact match to the specified probe description.
11389 		 */
11390 		for (i = 0; i < enab->dten_ndesc; i++) {
11391 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11392 			dtrace_probedesc_t *pd = &ep->dted_probe;
11393 
11394 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11395 				continue;
11396 
11397 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11398 				continue;
11399 
11400 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11401 				continue;
11402 
11403 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11404 				continue;
11405 
11406 			/*
11407 			 * We have a winning probe!  Add it to our growing
11408 			 * enabling.
11409 			 */
11410 			found = 1;
11411 			dtrace_enabling_addlike(new, ep, create);
11412 		}
11413 	}
11414 
11415 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11416 		dtrace_enabling_destroy(new);
11417 		return (err);
11418 	}
11419 
11420 	return (0);
11421 }
11422 
11423 static void
11424 dtrace_enabling_retract(dtrace_state_t *state)
11425 {
11426 	dtrace_enabling_t *enab, *next;
11427 
11428 	ASSERT(MUTEX_HELD(&dtrace_lock));
11429 
11430 	/*
11431 	 * Iterate over all retained enablings, destroy the enablings retained
11432 	 * for the specified state.
11433 	 */
11434 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11435 		next = enab->dten_next;
11436 
11437 		/*
11438 		 * dtvs_state can only be NULL for helper enablings -- and
11439 		 * helper enablings can't be retained.
11440 		 */
11441 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11442 
11443 		if (enab->dten_vstate->dtvs_state == state) {
11444 			ASSERT(state->dts_nretained > 0);
11445 			dtrace_enabling_destroy(enab);
11446 		}
11447 	}
11448 
11449 	ASSERT(state->dts_nretained == 0);
11450 }
11451 
11452 static int
11453 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11454 {
11455 	int i = 0;
11456 	int matched = 0;
11457 
11458 	ASSERT(MUTEX_HELD(&cpu_lock));
11459 	ASSERT(MUTEX_HELD(&dtrace_lock));
11460 
11461 	for (i = 0; i < enab->dten_ndesc; i++) {
11462 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11463 
11464 		enab->dten_current = ep;
11465 		enab->dten_error = 0;
11466 
11467 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11468 
11469 		if (enab->dten_error != 0) {
11470 			/*
11471 			 * If we get an error half-way through enabling the
11472 			 * probes, we kick out -- perhaps with some number of
11473 			 * them enabled.  Leaving enabled probes enabled may
11474 			 * be slightly confusing for user-level, but we expect
11475 			 * that no one will attempt to actually drive on in
11476 			 * the face of such errors.  If this is an anonymous
11477 			 * enabling (indicated with a NULL nmatched pointer),
11478 			 * we cmn_err() a message.  We aren't expecting to
11479 			 * get such an error -- such as it can exist at all,
11480 			 * it would be a result of corrupted DOF in the driver
11481 			 * properties.
11482 			 */
11483 			if (nmatched == NULL) {
11484 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11485 				    "error on %p: %d", (void *)ep,
11486 				    enab->dten_error);
11487 			}
11488 
11489 			return (enab->dten_error);
11490 		}
11491 	}
11492 
11493 	enab->dten_probegen = dtrace_probegen;
11494 	if (nmatched != NULL)
11495 		*nmatched = matched;
11496 
11497 	return (0);
11498 }
11499 
11500 static void
11501 dtrace_enabling_matchall(void)
11502 {
11503 	dtrace_enabling_t *enab;
11504 
11505 	mutex_enter(&cpu_lock);
11506 	mutex_enter(&dtrace_lock);
11507 
11508 	/*
11509 	 * Iterate over all retained enablings to see if any probes match
11510 	 * against them.  We only perform this operation on enablings for which
11511 	 * we have sufficient permissions by virtue of being in the global zone
11512 	 * or in the same zone as the DTrace client.  Because we can be called
11513 	 * after dtrace_detach() has been called, we cannot assert that there
11514 	 * are retained enablings.  We can safely load from dtrace_retained,
11515 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11516 	 * block pending our completion.
11517 	 */
11518 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11519 #if defined(sun)
11520 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11521 
11522 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11523 #endif
11524 			(void) dtrace_enabling_match(enab, NULL);
11525 	}
11526 
11527 	mutex_exit(&dtrace_lock);
11528 	mutex_exit(&cpu_lock);
11529 }
11530 
11531 /*
11532  * If an enabling is to be enabled without having matched probes (that is, if
11533  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11534  * enabling must be _primed_ by creating an ECB for every ECB description.
11535  * This must be done to assure that we know the number of speculations, the
11536  * number of aggregations, the minimum buffer size needed, etc. before we
11537  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11538  * enabling any probes, we create ECBs for every ECB decription, but with a
11539  * NULL probe -- which is exactly what this function does.
11540  */
11541 static void
11542 dtrace_enabling_prime(dtrace_state_t *state)
11543 {
11544 	dtrace_enabling_t *enab;
11545 	int i;
11546 
11547 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11548 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11549 
11550 		if (enab->dten_vstate->dtvs_state != state)
11551 			continue;
11552 
11553 		/*
11554 		 * We don't want to prime an enabling more than once, lest
11555 		 * we allow a malicious user to induce resource exhaustion.
11556 		 * (The ECBs that result from priming an enabling aren't
11557 		 * leaked -- but they also aren't deallocated until the
11558 		 * consumer state is destroyed.)
11559 		 */
11560 		if (enab->dten_primed)
11561 			continue;
11562 
11563 		for (i = 0; i < enab->dten_ndesc; i++) {
11564 			enab->dten_current = enab->dten_desc[i];
11565 			(void) dtrace_probe_enable(NULL, enab);
11566 		}
11567 
11568 		enab->dten_primed = 1;
11569 	}
11570 }
11571 
11572 /*
11573  * Called to indicate that probes should be provided due to retained
11574  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11575  * must take an initial lap through the enabling calling the dtps_provide()
11576  * entry point explicitly to allow for autocreated probes.
11577  */
11578 static void
11579 dtrace_enabling_provide(dtrace_provider_t *prv)
11580 {
11581 	int i, all = 0;
11582 	dtrace_probedesc_t desc;
11583 
11584 	ASSERT(MUTEX_HELD(&dtrace_lock));
11585 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11586 
11587 	if (prv == NULL) {
11588 		all = 1;
11589 		prv = dtrace_provider;
11590 	}
11591 
11592 	do {
11593 		dtrace_enabling_t *enab = dtrace_retained;
11594 		void *parg = prv->dtpv_arg;
11595 
11596 		for (; enab != NULL; enab = enab->dten_next) {
11597 			for (i = 0; i < enab->dten_ndesc; i++) {
11598 				desc = enab->dten_desc[i]->dted_probe;
11599 				mutex_exit(&dtrace_lock);
11600 				prv->dtpv_pops.dtps_provide(parg, &desc);
11601 				mutex_enter(&dtrace_lock);
11602 			}
11603 		}
11604 	} while (all && (prv = prv->dtpv_next) != NULL);
11605 
11606 	mutex_exit(&dtrace_lock);
11607 	dtrace_probe_provide(NULL, all ? NULL : prv);
11608 	mutex_enter(&dtrace_lock);
11609 }
11610 
11611 /*
11612  * DTrace DOF Functions
11613  */
11614 /*ARGSUSED*/
11615 static void
11616 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11617 {
11618 	if (dtrace_err_verbose)
11619 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11620 
11621 #ifdef DTRACE_ERRDEBUG
11622 	dtrace_errdebug(str);
11623 #endif
11624 }
11625 
11626 /*
11627  * Create DOF out of a currently enabled state.  Right now, we only create
11628  * DOF containing the run-time options -- but this could be expanded to create
11629  * complete DOF representing the enabled state.
11630  */
11631 static dof_hdr_t *
11632 dtrace_dof_create(dtrace_state_t *state)
11633 {
11634 	dof_hdr_t *dof;
11635 	dof_sec_t *sec;
11636 	dof_optdesc_t *opt;
11637 	int i, len = sizeof (dof_hdr_t) +
11638 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11639 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11640 
11641 	ASSERT(MUTEX_HELD(&dtrace_lock));
11642 
11643 	dof = kmem_zalloc(len, KM_SLEEP);
11644 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11645 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11646 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11647 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11648 
11649 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11650 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11651 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11652 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11653 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11654 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11655 
11656 	dof->dofh_flags = 0;
11657 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11658 	dof->dofh_secsize = sizeof (dof_sec_t);
11659 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11660 	dof->dofh_secoff = sizeof (dof_hdr_t);
11661 	dof->dofh_loadsz = len;
11662 	dof->dofh_filesz = len;
11663 	dof->dofh_pad = 0;
11664 
11665 	/*
11666 	 * Fill in the option section header...
11667 	 */
11668 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11669 	sec->dofs_type = DOF_SECT_OPTDESC;
11670 	sec->dofs_align = sizeof (uint64_t);
11671 	sec->dofs_flags = DOF_SECF_LOAD;
11672 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11673 
11674 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11675 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11676 
11677 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11678 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11679 
11680 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11681 		opt[i].dofo_option = i;
11682 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11683 		opt[i].dofo_value = state->dts_options[i];
11684 	}
11685 
11686 	return (dof);
11687 }
11688 
11689 static dof_hdr_t *
11690 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11691 {
11692 	dof_hdr_t hdr, *dof;
11693 
11694 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11695 
11696 	/*
11697 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11698 	 */
11699 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11700 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11701 		*errp = EFAULT;
11702 		return (NULL);
11703 	}
11704 
11705 	/*
11706 	 * Now we'll allocate the entire DOF and copy it in -- provided
11707 	 * that the length isn't outrageous.
11708 	 */
11709 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11710 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11711 		*errp = E2BIG;
11712 		return (NULL);
11713 	}
11714 
11715 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11716 		dtrace_dof_error(&hdr, "invalid load size");
11717 		*errp = EINVAL;
11718 		return (NULL);
11719 	}
11720 
11721 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11722 
11723 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11724 		kmem_free(dof, hdr.dofh_loadsz);
11725 		*errp = EFAULT;
11726 		return (NULL);
11727 	}
11728 
11729 	return (dof);
11730 }
11731 
11732 #if !defined(sun)
11733 static __inline uchar_t
11734 dtrace_dof_char(char c) {
11735 	switch (c) {
11736 	case '0':
11737 	case '1':
11738 	case '2':
11739 	case '3':
11740 	case '4':
11741 	case '5':
11742 	case '6':
11743 	case '7':
11744 	case '8':
11745 	case '9':
11746 		return (c - '0');
11747 	case 'A':
11748 	case 'B':
11749 	case 'C':
11750 	case 'D':
11751 	case 'E':
11752 	case 'F':
11753 		return (c - 'A' + 10);
11754 	case 'a':
11755 	case 'b':
11756 	case 'c':
11757 	case 'd':
11758 	case 'e':
11759 	case 'f':
11760 		return (c - 'a' + 10);
11761 	}
11762 	/* Should not reach here. */
11763 	return (0);
11764 }
11765 #endif
11766 
11767 static dof_hdr_t *
11768 dtrace_dof_property(const char *name)
11769 {
11770 	uchar_t *buf;
11771 	uint64_t loadsz;
11772 	unsigned int len, i;
11773 	dof_hdr_t *dof;
11774 
11775 #if defined(sun)
11776 	/*
11777 	 * Unfortunately, array of values in .conf files are always (and
11778 	 * only) interpreted to be integer arrays.  We must read our DOF
11779 	 * as an integer array, and then squeeze it into a byte array.
11780 	 */
11781 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11782 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11783 		return (NULL);
11784 
11785 	for (i = 0; i < len; i++)
11786 		buf[i] = (uchar_t)(((int *)buf)[i]);
11787 
11788 	if (len < sizeof (dof_hdr_t)) {
11789 		ddi_prop_free(buf);
11790 		dtrace_dof_error(NULL, "truncated header");
11791 		return (NULL);
11792 	}
11793 
11794 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11795 		ddi_prop_free(buf);
11796 		dtrace_dof_error(NULL, "truncated DOF");
11797 		return (NULL);
11798 	}
11799 
11800 	if (loadsz >= dtrace_dof_maxsize) {
11801 		ddi_prop_free(buf);
11802 		dtrace_dof_error(NULL, "oversized DOF");
11803 		return (NULL);
11804 	}
11805 
11806 	dof = kmem_alloc(loadsz, KM_SLEEP);
11807 	bcopy(buf, dof, loadsz);
11808 	ddi_prop_free(buf);
11809 #else
11810 	char *p;
11811 	char *p_env;
11812 
11813 	if ((p_env = getenv(name)) == NULL)
11814 		return (NULL);
11815 
11816 	len = strlen(p_env) / 2;
11817 
11818 	buf = kmem_alloc(len, KM_SLEEP);
11819 
11820 	dof = (dof_hdr_t *) buf;
11821 
11822 	p = p_env;
11823 
11824 	for (i = 0; i < len; i++) {
11825 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11826 		     dtrace_dof_char(p[1]);
11827 		p += 2;
11828 	}
11829 
11830 	freeenv(p_env);
11831 
11832 	if (len < sizeof (dof_hdr_t)) {
11833 		kmem_free(buf, 0);
11834 		dtrace_dof_error(NULL, "truncated header");
11835 		return (NULL);
11836 	}
11837 
11838 	if (len < (loadsz = dof->dofh_loadsz)) {
11839 		kmem_free(buf, 0);
11840 		dtrace_dof_error(NULL, "truncated DOF");
11841 		return (NULL);
11842 	}
11843 
11844 	if (loadsz >= dtrace_dof_maxsize) {
11845 		kmem_free(buf, 0);
11846 		dtrace_dof_error(NULL, "oversized DOF");
11847 		return (NULL);
11848 	}
11849 #endif
11850 
11851 	return (dof);
11852 }
11853 
11854 static void
11855 dtrace_dof_destroy(dof_hdr_t *dof)
11856 {
11857 	kmem_free(dof, dof->dofh_loadsz);
11858 }
11859 
11860 /*
11861  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11862  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11863  * a type other than DOF_SECT_NONE is specified, the header is checked against
11864  * this type and NULL is returned if the types do not match.
11865  */
11866 static dof_sec_t *
11867 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11868 {
11869 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11870 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11871 
11872 	if (i >= dof->dofh_secnum) {
11873 		dtrace_dof_error(dof, "referenced section index is invalid");
11874 		return (NULL);
11875 	}
11876 
11877 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11878 		dtrace_dof_error(dof, "referenced section is not loadable");
11879 		return (NULL);
11880 	}
11881 
11882 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11883 		dtrace_dof_error(dof, "referenced section is the wrong type");
11884 		return (NULL);
11885 	}
11886 
11887 	return (sec);
11888 }
11889 
11890 static dtrace_probedesc_t *
11891 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11892 {
11893 	dof_probedesc_t *probe;
11894 	dof_sec_t *strtab;
11895 	uintptr_t daddr = (uintptr_t)dof;
11896 	uintptr_t str;
11897 	size_t size;
11898 
11899 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11900 		dtrace_dof_error(dof, "invalid probe section");
11901 		return (NULL);
11902 	}
11903 
11904 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11905 		dtrace_dof_error(dof, "bad alignment in probe description");
11906 		return (NULL);
11907 	}
11908 
11909 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11910 		dtrace_dof_error(dof, "truncated probe description");
11911 		return (NULL);
11912 	}
11913 
11914 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11915 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11916 
11917 	if (strtab == NULL)
11918 		return (NULL);
11919 
11920 	str = daddr + strtab->dofs_offset;
11921 	size = strtab->dofs_size;
11922 
11923 	if (probe->dofp_provider >= strtab->dofs_size) {
11924 		dtrace_dof_error(dof, "corrupt probe provider");
11925 		return (NULL);
11926 	}
11927 
11928 	(void) strncpy(desc->dtpd_provider,
11929 	    (char *)(str + probe->dofp_provider),
11930 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11931 
11932 	if (probe->dofp_mod >= strtab->dofs_size) {
11933 		dtrace_dof_error(dof, "corrupt probe module");
11934 		return (NULL);
11935 	}
11936 
11937 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11938 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11939 
11940 	if (probe->dofp_func >= strtab->dofs_size) {
11941 		dtrace_dof_error(dof, "corrupt probe function");
11942 		return (NULL);
11943 	}
11944 
11945 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11946 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11947 
11948 	if (probe->dofp_name >= strtab->dofs_size) {
11949 		dtrace_dof_error(dof, "corrupt probe name");
11950 		return (NULL);
11951 	}
11952 
11953 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11954 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11955 
11956 	return (desc);
11957 }
11958 
11959 static dtrace_difo_t *
11960 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11961     cred_t *cr)
11962 {
11963 	dtrace_difo_t *dp;
11964 	size_t ttl = 0;
11965 	dof_difohdr_t *dofd;
11966 	uintptr_t daddr = (uintptr_t)dof;
11967 	size_t max = dtrace_difo_maxsize;
11968 	int i, l, n;
11969 
11970 	static const struct {
11971 		int section;
11972 		int bufoffs;
11973 		int lenoffs;
11974 		int entsize;
11975 		int align;
11976 		const char *msg;
11977 	} difo[] = {
11978 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11979 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11980 		sizeof (dif_instr_t), "multiple DIF sections" },
11981 
11982 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11983 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11984 		sizeof (uint64_t), "multiple integer tables" },
11985 
11986 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11987 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11988 		sizeof (char), "multiple string tables" },
11989 
11990 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11991 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11992 		sizeof (uint_t), "multiple variable tables" },
11993 
11994 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11995 	};
11996 
11997 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11998 		dtrace_dof_error(dof, "invalid DIFO header section");
11999 		return (NULL);
12000 	}
12001 
12002 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12003 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12004 		return (NULL);
12005 	}
12006 
12007 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12008 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12009 		dtrace_dof_error(dof, "bad size in DIFO header");
12010 		return (NULL);
12011 	}
12012 
12013 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12014 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12015 
12016 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12017 	dp->dtdo_rtype = dofd->dofd_rtype;
12018 
12019 	for (l = 0; l < n; l++) {
12020 		dof_sec_t *subsec;
12021 		void **bufp;
12022 		uint32_t *lenp;
12023 
12024 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12025 		    dofd->dofd_links[l])) == NULL)
12026 			goto err; /* invalid section link */
12027 
12028 		if (ttl + subsec->dofs_size > max) {
12029 			dtrace_dof_error(dof, "exceeds maximum size");
12030 			goto err;
12031 		}
12032 
12033 		ttl += subsec->dofs_size;
12034 
12035 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12036 			if (subsec->dofs_type != difo[i].section)
12037 				continue;
12038 
12039 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12040 				dtrace_dof_error(dof, "section not loaded");
12041 				goto err;
12042 			}
12043 
12044 			if (subsec->dofs_align != difo[i].align) {
12045 				dtrace_dof_error(dof, "bad alignment");
12046 				goto err;
12047 			}
12048 
12049 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12050 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12051 
12052 			if (*bufp != NULL) {
12053 				dtrace_dof_error(dof, difo[i].msg);
12054 				goto err;
12055 			}
12056 
12057 			if (difo[i].entsize != subsec->dofs_entsize) {
12058 				dtrace_dof_error(dof, "entry size mismatch");
12059 				goto err;
12060 			}
12061 
12062 			if (subsec->dofs_entsize != 0 &&
12063 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12064 				dtrace_dof_error(dof, "corrupt entry size");
12065 				goto err;
12066 			}
12067 
12068 			*lenp = subsec->dofs_size;
12069 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12070 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12071 			    *bufp, subsec->dofs_size);
12072 
12073 			if (subsec->dofs_entsize != 0)
12074 				*lenp /= subsec->dofs_entsize;
12075 
12076 			break;
12077 		}
12078 
12079 		/*
12080 		 * If we encounter a loadable DIFO sub-section that is not
12081 		 * known to us, assume this is a broken program and fail.
12082 		 */
12083 		if (difo[i].section == DOF_SECT_NONE &&
12084 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12085 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12086 			goto err;
12087 		}
12088 	}
12089 
12090 	if (dp->dtdo_buf == NULL) {
12091 		/*
12092 		 * We can't have a DIF object without DIF text.
12093 		 */
12094 		dtrace_dof_error(dof, "missing DIF text");
12095 		goto err;
12096 	}
12097 
12098 	/*
12099 	 * Before we validate the DIF object, run through the variable table
12100 	 * looking for the strings -- if any of their size are under, we'll set
12101 	 * their size to be the system-wide default string size.  Note that
12102 	 * this should _not_ happen if the "strsize" option has been set --
12103 	 * in this case, the compiler should have set the size to reflect the
12104 	 * setting of the option.
12105 	 */
12106 	for (i = 0; i < dp->dtdo_varlen; i++) {
12107 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12108 		dtrace_diftype_t *t = &v->dtdv_type;
12109 
12110 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12111 			continue;
12112 
12113 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12114 			t->dtdt_size = dtrace_strsize_default;
12115 	}
12116 
12117 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12118 		goto err;
12119 
12120 	dtrace_difo_init(dp, vstate);
12121 	return (dp);
12122 
12123 err:
12124 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12125 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12126 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12127 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12128 
12129 	kmem_free(dp, sizeof (dtrace_difo_t));
12130 	return (NULL);
12131 }
12132 
12133 static dtrace_predicate_t *
12134 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12135     cred_t *cr)
12136 {
12137 	dtrace_difo_t *dp;
12138 
12139 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12140 		return (NULL);
12141 
12142 	return (dtrace_predicate_create(dp));
12143 }
12144 
12145 static dtrace_actdesc_t *
12146 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12147     cred_t *cr)
12148 {
12149 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12150 	dof_actdesc_t *desc;
12151 	dof_sec_t *difosec;
12152 	size_t offs;
12153 	uintptr_t daddr = (uintptr_t)dof;
12154 	uint64_t arg;
12155 	dtrace_actkind_t kind;
12156 
12157 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12158 		dtrace_dof_error(dof, "invalid action section");
12159 		return (NULL);
12160 	}
12161 
12162 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12163 		dtrace_dof_error(dof, "truncated action description");
12164 		return (NULL);
12165 	}
12166 
12167 	if (sec->dofs_align != sizeof (uint64_t)) {
12168 		dtrace_dof_error(dof, "bad alignment in action description");
12169 		return (NULL);
12170 	}
12171 
12172 	if (sec->dofs_size < sec->dofs_entsize) {
12173 		dtrace_dof_error(dof, "section entry size exceeds total size");
12174 		return (NULL);
12175 	}
12176 
12177 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12178 		dtrace_dof_error(dof, "bad entry size in action description");
12179 		return (NULL);
12180 	}
12181 
12182 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12183 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12184 		return (NULL);
12185 	}
12186 
12187 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12188 		desc = (dof_actdesc_t *)(daddr +
12189 		    (uintptr_t)sec->dofs_offset + offs);
12190 		kind = (dtrace_actkind_t)desc->dofa_kind;
12191 
12192 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12193 		    (kind != DTRACEACT_PRINTA ||
12194 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12195 			dof_sec_t *strtab;
12196 			char *str, *fmt;
12197 			uint64_t i;
12198 
12199 			/*
12200 			 * printf()-like actions must have a format string.
12201 			 */
12202 			if ((strtab = dtrace_dof_sect(dof,
12203 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12204 				goto err;
12205 
12206 			str = (char *)((uintptr_t)dof +
12207 			    (uintptr_t)strtab->dofs_offset);
12208 
12209 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12210 				if (str[i] == '\0')
12211 					break;
12212 			}
12213 
12214 			if (i >= strtab->dofs_size) {
12215 				dtrace_dof_error(dof, "bogus format string");
12216 				goto err;
12217 			}
12218 
12219 			if (i == desc->dofa_arg) {
12220 				dtrace_dof_error(dof, "empty format string");
12221 				goto err;
12222 			}
12223 
12224 			i -= desc->dofa_arg;
12225 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12226 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12227 			arg = (uint64_t)(uintptr_t)fmt;
12228 		} else {
12229 			if (kind == DTRACEACT_PRINTA) {
12230 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12231 				arg = 0;
12232 			} else {
12233 				arg = desc->dofa_arg;
12234 			}
12235 		}
12236 
12237 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12238 		    desc->dofa_uarg, arg);
12239 
12240 		if (last != NULL) {
12241 			last->dtad_next = act;
12242 		} else {
12243 			first = act;
12244 		}
12245 
12246 		last = act;
12247 
12248 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12249 			continue;
12250 
12251 		if ((difosec = dtrace_dof_sect(dof,
12252 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12253 			goto err;
12254 
12255 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12256 
12257 		if (act->dtad_difo == NULL)
12258 			goto err;
12259 	}
12260 
12261 	ASSERT(first != NULL);
12262 	return (first);
12263 
12264 err:
12265 	for (act = first; act != NULL; act = next) {
12266 		next = act->dtad_next;
12267 		dtrace_actdesc_release(act, vstate);
12268 	}
12269 
12270 	return (NULL);
12271 }
12272 
12273 static dtrace_ecbdesc_t *
12274 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12275     cred_t *cr)
12276 {
12277 	dtrace_ecbdesc_t *ep;
12278 	dof_ecbdesc_t *ecb;
12279 	dtrace_probedesc_t *desc;
12280 	dtrace_predicate_t *pred = NULL;
12281 
12282 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12283 		dtrace_dof_error(dof, "truncated ECB description");
12284 		return (NULL);
12285 	}
12286 
12287 	if (sec->dofs_align != sizeof (uint64_t)) {
12288 		dtrace_dof_error(dof, "bad alignment in ECB description");
12289 		return (NULL);
12290 	}
12291 
12292 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12293 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12294 
12295 	if (sec == NULL)
12296 		return (NULL);
12297 
12298 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12299 	ep->dted_uarg = ecb->dofe_uarg;
12300 	desc = &ep->dted_probe;
12301 
12302 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12303 		goto err;
12304 
12305 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12306 		if ((sec = dtrace_dof_sect(dof,
12307 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12308 			goto err;
12309 
12310 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12311 			goto err;
12312 
12313 		ep->dted_pred.dtpdd_predicate = pred;
12314 	}
12315 
12316 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12317 		if ((sec = dtrace_dof_sect(dof,
12318 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12319 			goto err;
12320 
12321 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12322 
12323 		if (ep->dted_action == NULL)
12324 			goto err;
12325 	}
12326 
12327 	return (ep);
12328 
12329 err:
12330 	if (pred != NULL)
12331 		dtrace_predicate_release(pred, vstate);
12332 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12333 	return (NULL);
12334 }
12335 
12336 /*
12337  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12338  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12339  * site of any user SETX relocations to account for load object base address.
12340  * In the future, if we need other relocations, this function can be extended.
12341  */
12342 static int
12343 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12344 {
12345 	uintptr_t daddr = (uintptr_t)dof;
12346 	dof_relohdr_t *dofr =
12347 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12348 	dof_sec_t *ss, *rs, *ts;
12349 	dof_relodesc_t *r;
12350 	uint_t i, n;
12351 
12352 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12353 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12354 		dtrace_dof_error(dof, "invalid relocation header");
12355 		return (-1);
12356 	}
12357 
12358 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12359 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12360 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12361 
12362 	if (ss == NULL || rs == NULL || ts == NULL)
12363 		return (-1); /* dtrace_dof_error() has been called already */
12364 
12365 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12366 	    rs->dofs_align != sizeof (uint64_t)) {
12367 		dtrace_dof_error(dof, "invalid relocation section");
12368 		return (-1);
12369 	}
12370 
12371 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12372 	n = rs->dofs_size / rs->dofs_entsize;
12373 
12374 	for (i = 0; i < n; i++) {
12375 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12376 
12377 		switch (r->dofr_type) {
12378 		case DOF_RELO_NONE:
12379 			break;
12380 		case DOF_RELO_SETX:
12381 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12382 			    sizeof (uint64_t) > ts->dofs_size) {
12383 				dtrace_dof_error(dof, "bad relocation offset");
12384 				return (-1);
12385 			}
12386 
12387 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12388 				dtrace_dof_error(dof, "misaligned setx relo");
12389 				return (-1);
12390 			}
12391 
12392 			*(uint64_t *)taddr += ubase;
12393 			break;
12394 		default:
12395 			dtrace_dof_error(dof, "invalid relocation type");
12396 			return (-1);
12397 		}
12398 
12399 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12400 	}
12401 
12402 	return (0);
12403 }
12404 
12405 /*
12406  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12407  * header:  it should be at the front of a memory region that is at least
12408  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12409  * size.  It need not be validated in any other way.
12410  */
12411 static int
12412 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12413     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12414 {
12415 	uint64_t len = dof->dofh_loadsz, seclen;
12416 	uintptr_t daddr = (uintptr_t)dof;
12417 	dtrace_ecbdesc_t *ep;
12418 	dtrace_enabling_t *enab;
12419 	uint_t i;
12420 
12421 	ASSERT(MUTEX_HELD(&dtrace_lock));
12422 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12423 
12424 	/*
12425 	 * Check the DOF header identification bytes.  In addition to checking
12426 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12427 	 * we can use them later without fear of regressing existing binaries.
12428 	 */
12429 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12430 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12431 		dtrace_dof_error(dof, "DOF magic string mismatch");
12432 		return (-1);
12433 	}
12434 
12435 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12436 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12437 		dtrace_dof_error(dof, "DOF has invalid data model");
12438 		return (-1);
12439 	}
12440 
12441 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12442 		dtrace_dof_error(dof, "DOF encoding mismatch");
12443 		return (-1);
12444 	}
12445 
12446 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12447 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12448 		dtrace_dof_error(dof, "DOF version mismatch");
12449 		return (-1);
12450 	}
12451 
12452 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12453 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12454 		return (-1);
12455 	}
12456 
12457 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12458 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12459 		return (-1);
12460 	}
12461 
12462 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12463 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12464 		return (-1);
12465 	}
12466 
12467 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12468 		if (dof->dofh_ident[i] != 0) {
12469 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12470 			return (-1);
12471 		}
12472 	}
12473 
12474 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12475 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12476 		return (-1);
12477 	}
12478 
12479 	if (dof->dofh_secsize == 0) {
12480 		dtrace_dof_error(dof, "zero section header size");
12481 		return (-1);
12482 	}
12483 
12484 	/*
12485 	 * Check that the section headers don't exceed the amount of DOF
12486 	 * data.  Note that we cast the section size and number of sections
12487 	 * to uint64_t's to prevent possible overflow in the multiplication.
12488 	 */
12489 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12490 
12491 	if (dof->dofh_secoff > len || seclen > len ||
12492 	    dof->dofh_secoff + seclen > len) {
12493 		dtrace_dof_error(dof, "truncated section headers");
12494 		return (-1);
12495 	}
12496 
12497 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12498 		dtrace_dof_error(dof, "misaligned section headers");
12499 		return (-1);
12500 	}
12501 
12502 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12503 		dtrace_dof_error(dof, "misaligned section size");
12504 		return (-1);
12505 	}
12506 
12507 	/*
12508 	 * Take an initial pass through the section headers to be sure that
12509 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12510 	 * set, do not permit sections relating to providers, probes, or args.
12511 	 */
12512 	for (i = 0; i < dof->dofh_secnum; i++) {
12513 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12514 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12515 
12516 		if (noprobes) {
12517 			switch (sec->dofs_type) {
12518 			case DOF_SECT_PROVIDER:
12519 			case DOF_SECT_PROBES:
12520 			case DOF_SECT_PRARGS:
12521 			case DOF_SECT_PROFFS:
12522 				dtrace_dof_error(dof, "illegal sections "
12523 				    "for enabling");
12524 				return (-1);
12525 			}
12526 		}
12527 
12528 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12529 			continue; /* just ignore non-loadable sections */
12530 
12531 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12532 			dtrace_dof_error(dof, "bad section alignment");
12533 			return (-1);
12534 		}
12535 
12536 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12537 			dtrace_dof_error(dof, "misaligned section");
12538 			return (-1);
12539 		}
12540 
12541 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12542 		    sec->dofs_offset + sec->dofs_size > len) {
12543 			dtrace_dof_error(dof, "corrupt section header");
12544 			return (-1);
12545 		}
12546 
12547 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12548 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12549 			dtrace_dof_error(dof, "non-terminating string table");
12550 			return (-1);
12551 		}
12552 	}
12553 
12554 	/*
12555 	 * Take a second pass through the sections and locate and perform any
12556 	 * relocations that are present.  We do this after the first pass to
12557 	 * be sure that all sections have had their headers validated.
12558 	 */
12559 	for (i = 0; i < dof->dofh_secnum; i++) {
12560 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12561 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12562 
12563 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12564 			continue; /* skip sections that are not loadable */
12565 
12566 		switch (sec->dofs_type) {
12567 		case DOF_SECT_URELHDR:
12568 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12569 				return (-1);
12570 			break;
12571 		}
12572 	}
12573 
12574 	if ((enab = *enabp) == NULL)
12575 		enab = *enabp = dtrace_enabling_create(vstate);
12576 
12577 	for (i = 0; i < dof->dofh_secnum; i++) {
12578 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12579 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12580 
12581 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12582 			continue;
12583 
12584 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12585 			dtrace_enabling_destroy(enab);
12586 			*enabp = NULL;
12587 			return (-1);
12588 		}
12589 
12590 		dtrace_enabling_add(enab, ep);
12591 	}
12592 
12593 	return (0);
12594 }
12595 
12596 /*
12597  * Process DOF for any options.  This routine assumes that the DOF has been
12598  * at least processed by dtrace_dof_slurp().
12599  */
12600 static int
12601 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12602 {
12603 	int i, rval;
12604 	uint32_t entsize;
12605 	size_t offs;
12606 	dof_optdesc_t *desc;
12607 
12608 	for (i = 0; i < dof->dofh_secnum; i++) {
12609 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12610 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12611 
12612 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12613 			continue;
12614 
12615 		if (sec->dofs_align != sizeof (uint64_t)) {
12616 			dtrace_dof_error(dof, "bad alignment in "
12617 			    "option description");
12618 			return (EINVAL);
12619 		}
12620 
12621 		if ((entsize = sec->dofs_entsize) == 0) {
12622 			dtrace_dof_error(dof, "zeroed option entry size");
12623 			return (EINVAL);
12624 		}
12625 
12626 		if (entsize < sizeof (dof_optdesc_t)) {
12627 			dtrace_dof_error(dof, "bad option entry size");
12628 			return (EINVAL);
12629 		}
12630 
12631 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12632 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12633 			    (uintptr_t)sec->dofs_offset + offs);
12634 
12635 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12636 				dtrace_dof_error(dof, "non-zero option string");
12637 				return (EINVAL);
12638 			}
12639 
12640 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12641 				dtrace_dof_error(dof, "unset option");
12642 				return (EINVAL);
12643 			}
12644 
12645 			if ((rval = dtrace_state_option(state,
12646 			    desc->dofo_option, desc->dofo_value)) != 0) {
12647 				dtrace_dof_error(dof, "rejected option");
12648 				return (rval);
12649 			}
12650 		}
12651 	}
12652 
12653 	return (0);
12654 }
12655 
12656 /*
12657  * DTrace Consumer State Functions
12658  */
12659 static int
12660 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12661 {
12662 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12663 	void *base;
12664 	uintptr_t limit;
12665 	dtrace_dynvar_t *dvar, *next, *start;
12666 	int i;
12667 
12668 	ASSERT(MUTEX_HELD(&dtrace_lock));
12669 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12670 
12671 	bzero(dstate, sizeof (dtrace_dstate_t));
12672 
12673 	if ((dstate->dtds_chunksize = chunksize) == 0)
12674 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12675 
12676 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12677 		size = min;
12678 
12679 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12680 		return (ENOMEM);
12681 
12682 	dstate->dtds_size = size;
12683 	dstate->dtds_base = base;
12684 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12685 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12686 
12687 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12688 
12689 	if (hashsize != 1 && (hashsize & 1))
12690 		hashsize--;
12691 
12692 	dstate->dtds_hashsize = hashsize;
12693 	dstate->dtds_hash = dstate->dtds_base;
12694 
12695 	/*
12696 	 * Set all of our hash buckets to point to the single sink, and (if
12697 	 * it hasn't already been set), set the sink's hash value to be the
12698 	 * sink sentinel value.  The sink is needed for dynamic variable
12699 	 * lookups to know that they have iterated over an entire, valid hash
12700 	 * chain.
12701 	 */
12702 	for (i = 0; i < hashsize; i++)
12703 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12704 
12705 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12706 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12707 
12708 	/*
12709 	 * Determine number of active CPUs.  Divide free list evenly among
12710 	 * active CPUs.
12711 	 */
12712 	start = (dtrace_dynvar_t *)
12713 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12714 	limit = (uintptr_t)base + size;
12715 
12716 	maxper = (limit - (uintptr_t)start) / NCPU;
12717 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12718 
12719 #if !defined(sun)
12720 	CPU_FOREACH(i) {
12721 #else
12722 	for (i = 0; i < NCPU; i++) {
12723 #endif
12724 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12725 
12726 		/*
12727 		 * If we don't even have enough chunks to make it once through
12728 		 * NCPUs, we're just going to allocate everything to the first
12729 		 * CPU.  And if we're on the last CPU, we're going to allocate
12730 		 * whatever is left over.  In either case, we set the limit to
12731 		 * be the limit of the dynamic variable space.
12732 		 */
12733 		if (maxper == 0 || i == NCPU - 1) {
12734 			limit = (uintptr_t)base + size;
12735 			start = NULL;
12736 		} else {
12737 			limit = (uintptr_t)start + maxper;
12738 			start = (dtrace_dynvar_t *)limit;
12739 		}
12740 
12741 		ASSERT(limit <= (uintptr_t)base + size);
12742 
12743 		for (;;) {
12744 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12745 			    dstate->dtds_chunksize);
12746 
12747 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12748 				break;
12749 
12750 			dvar->dtdv_next = next;
12751 			dvar = next;
12752 		}
12753 
12754 		if (maxper == 0)
12755 			break;
12756 	}
12757 
12758 	return (0);
12759 }
12760 
12761 static void
12762 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12763 {
12764 	ASSERT(MUTEX_HELD(&cpu_lock));
12765 
12766 	if (dstate->dtds_base == NULL)
12767 		return;
12768 
12769 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12770 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12771 }
12772 
12773 static void
12774 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12775 {
12776 	/*
12777 	 * Logical XOR, where are you?
12778 	 */
12779 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12780 
12781 	if (vstate->dtvs_nglobals > 0) {
12782 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12783 		    sizeof (dtrace_statvar_t *));
12784 	}
12785 
12786 	if (vstate->dtvs_ntlocals > 0) {
12787 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12788 		    sizeof (dtrace_difv_t));
12789 	}
12790 
12791 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12792 
12793 	if (vstate->dtvs_nlocals > 0) {
12794 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12795 		    sizeof (dtrace_statvar_t *));
12796 	}
12797 }
12798 
12799 #if defined(sun)
12800 static void
12801 dtrace_state_clean(dtrace_state_t *state)
12802 {
12803 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12804 		return;
12805 
12806 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12807 	dtrace_speculation_clean(state);
12808 }
12809 
12810 static void
12811 dtrace_state_deadman(dtrace_state_t *state)
12812 {
12813 	hrtime_t now;
12814 
12815 	dtrace_sync();
12816 
12817 	now = dtrace_gethrtime();
12818 
12819 	if (state != dtrace_anon.dta_state &&
12820 	    now - state->dts_laststatus >= dtrace_deadman_user)
12821 		return;
12822 
12823 	/*
12824 	 * We must be sure that dts_alive never appears to be less than the
12825 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12826 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12827 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12828 	 * the new value.  This assures that dts_alive never appears to be
12829 	 * less than its true value, regardless of the order in which the
12830 	 * stores to the underlying storage are issued.
12831 	 */
12832 	state->dts_alive = INT64_MAX;
12833 	dtrace_membar_producer();
12834 	state->dts_alive = now;
12835 }
12836 #else
12837 static void
12838 dtrace_state_clean(void *arg)
12839 {
12840 	dtrace_state_t *state = arg;
12841 	dtrace_optval_t *opt = state->dts_options;
12842 
12843 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12844 		return;
12845 
12846 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12847 	dtrace_speculation_clean(state);
12848 
12849 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12850 	    dtrace_state_clean, state);
12851 }
12852 
12853 static void
12854 dtrace_state_deadman(void *arg)
12855 {
12856 	dtrace_state_t *state = arg;
12857 	hrtime_t now;
12858 
12859 	dtrace_sync();
12860 
12861 	dtrace_debug_output();
12862 
12863 	now = dtrace_gethrtime();
12864 
12865 	if (state != dtrace_anon.dta_state &&
12866 	    now - state->dts_laststatus >= dtrace_deadman_user)
12867 		return;
12868 
12869 	/*
12870 	 * We must be sure that dts_alive never appears to be less than the
12871 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12872 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12873 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12874 	 * the new value.  This assures that dts_alive never appears to be
12875 	 * less than its true value, regardless of the order in which the
12876 	 * stores to the underlying storage are issued.
12877 	 */
12878 	state->dts_alive = INT64_MAX;
12879 	dtrace_membar_producer();
12880 	state->dts_alive = now;
12881 
12882 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12883 	    dtrace_state_deadman, state);
12884 }
12885 #endif
12886 
12887 static dtrace_state_t *
12888 #if defined(sun)
12889 dtrace_state_create(dev_t *devp, cred_t *cr)
12890 #else
12891 dtrace_state_create(struct cdev *dev)
12892 #endif
12893 {
12894 #if defined(sun)
12895 	minor_t minor;
12896 	major_t major;
12897 #else
12898 	cred_t *cr = NULL;
12899 	int m = 0;
12900 #endif
12901 	char c[30];
12902 	dtrace_state_t *state;
12903 	dtrace_optval_t *opt;
12904 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12905 
12906 	ASSERT(MUTEX_HELD(&dtrace_lock));
12907 	ASSERT(MUTEX_HELD(&cpu_lock));
12908 
12909 #if defined(sun)
12910 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12911 	    VM_BESTFIT | VM_SLEEP);
12912 
12913 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12914 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12915 		return (NULL);
12916 	}
12917 
12918 	state = ddi_get_soft_state(dtrace_softstate, minor);
12919 #else
12920 	if (dev != NULL) {
12921 		cr = dev->si_cred;
12922 		m = dev2unit(dev);
12923 		}
12924 
12925 	/* Allocate memory for the state. */
12926 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12927 #endif
12928 
12929 	state->dts_epid = DTRACE_EPIDNONE + 1;
12930 
12931 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12932 #if defined(sun)
12933 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12934 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12935 
12936 	if (devp != NULL) {
12937 		major = getemajor(*devp);
12938 	} else {
12939 		major = ddi_driver_major(dtrace_devi);
12940 	}
12941 
12942 	state->dts_dev = makedevice(major, minor);
12943 
12944 	if (devp != NULL)
12945 		*devp = state->dts_dev;
12946 #else
12947 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12948 	state->dts_dev = dev;
12949 #endif
12950 
12951 	/*
12952 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12953 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12954 	 * other hand, it saves an additional memory reference in the probe
12955 	 * path.
12956 	 */
12957 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12958 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12959 
12960 #if defined(sun)
12961 	state->dts_cleaner = CYCLIC_NONE;
12962 	state->dts_deadman = CYCLIC_NONE;
12963 #else
12964 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12965 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12966 #endif
12967 	state->dts_vstate.dtvs_state = state;
12968 
12969 	for (i = 0; i < DTRACEOPT_MAX; i++)
12970 		state->dts_options[i] = DTRACEOPT_UNSET;
12971 
12972 	/*
12973 	 * Set the default options.
12974 	 */
12975 	opt = state->dts_options;
12976 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12977 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12978 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12979 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12980 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12981 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12982 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12983 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12984 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12985 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12986 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12987 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12988 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12989 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12990 
12991 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12992 
12993 	/*
12994 	 * Depending on the user credentials, we set flag bits which alter probe
12995 	 * visibility or the amount of destructiveness allowed.  In the case of
12996 	 * actual anonymous tracing, or the possession of all privileges, all of
12997 	 * the normal checks are bypassed.
12998 	 */
12999 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13000 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13001 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13002 	} else {
13003 		/*
13004 		 * Set up the credentials for this instantiation.  We take a
13005 		 * hold on the credential to prevent it from disappearing on
13006 		 * us; this in turn prevents the zone_t referenced by this
13007 		 * credential from disappearing.  This means that we can
13008 		 * examine the credential and the zone from probe context.
13009 		 */
13010 		crhold(cr);
13011 		state->dts_cred.dcr_cred = cr;
13012 
13013 		/*
13014 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13015 		 * unlocks the use of variables like pid, zonename, etc.
13016 		 */
13017 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13018 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13019 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13020 		}
13021 
13022 		/*
13023 		 * dtrace_user allows use of syscall and profile providers.
13024 		 * If the user also has proc_owner and/or proc_zone, we
13025 		 * extend the scope to include additional visibility and
13026 		 * destructive power.
13027 		 */
13028 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13029 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13030 				state->dts_cred.dcr_visible |=
13031 				    DTRACE_CRV_ALLPROC;
13032 
13033 				state->dts_cred.dcr_action |=
13034 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13035 			}
13036 
13037 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13038 				state->dts_cred.dcr_visible |=
13039 				    DTRACE_CRV_ALLZONE;
13040 
13041 				state->dts_cred.dcr_action |=
13042 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13043 			}
13044 
13045 			/*
13046 			 * If we have all privs in whatever zone this is,
13047 			 * we can do destructive things to processes which
13048 			 * have altered credentials.
13049 			 */
13050 #if defined(sun)
13051 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13052 			    cr->cr_zone->zone_privset)) {
13053 				state->dts_cred.dcr_action |=
13054 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13055 			}
13056 #endif
13057 		}
13058 
13059 		/*
13060 		 * Holding the dtrace_kernel privilege also implies that
13061 		 * the user has the dtrace_user privilege from a visibility
13062 		 * perspective.  But without further privileges, some
13063 		 * destructive actions are not available.
13064 		 */
13065 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13066 			/*
13067 			 * Make all probes in all zones visible.  However,
13068 			 * this doesn't mean that all actions become available
13069 			 * to all zones.
13070 			 */
13071 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13072 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13073 
13074 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13075 			    DTRACE_CRA_PROC;
13076 			/*
13077 			 * Holding proc_owner means that destructive actions
13078 			 * for *this* zone are allowed.
13079 			 */
13080 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13081 				state->dts_cred.dcr_action |=
13082 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13083 
13084 			/*
13085 			 * Holding proc_zone means that destructive actions
13086 			 * for this user/group ID in all zones is allowed.
13087 			 */
13088 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13089 				state->dts_cred.dcr_action |=
13090 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13091 
13092 #if defined(sun)
13093 			/*
13094 			 * If we have all privs in whatever zone this is,
13095 			 * we can do destructive things to processes which
13096 			 * have altered credentials.
13097 			 */
13098 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13099 			    cr->cr_zone->zone_privset)) {
13100 				state->dts_cred.dcr_action |=
13101 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13102 			}
13103 #endif
13104 		}
13105 
13106 		/*
13107 		 * Holding the dtrace_proc privilege gives control over fasttrap
13108 		 * and pid providers.  We need to grant wider destructive
13109 		 * privileges in the event that the user has proc_owner and/or
13110 		 * proc_zone.
13111 		 */
13112 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13113 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13114 				state->dts_cred.dcr_action |=
13115 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13116 
13117 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13118 				state->dts_cred.dcr_action |=
13119 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13120 		}
13121 	}
13122 
13123 	return (state);
13124 }
13125 
13126 static int
13127 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13128 {
13129 	dtrace_optval_t *opt = state->dts_options, size;
13130 	processorid_t cpu = 0;;
13131 	int flags = 0, rval;
13132 
13133 	ASSERT(MUTEX_HELD(&dtrace_lock));
13134 	ASSERT(MUTEX_HELD(&cpu_lock));
13135 	ASSERT(which < DTRACEOPT_MAX);
13136 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13137 	    (state == dtrace_anon.dta_state &&
13138 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13139 
13140 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13141 		return (0);
13142 
13143 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13144 		cpu = opt[DTRACEOPT_CPU];
13145 
13146 	if (which == DTRACEOPT_SPECSIZE)
13147 		flags |= DTRACEBUF_NOSWITCH;
13148 
13149 	if (which == DTRACEOPT_BUFSIZE) {
13150 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13151 			flags |= DTRACEBUF_RING;
13152 
13153 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13154 			flags |= DTRACEBUF_FILL;
13155 
13156 		if (state != dtrace_anon.dta_state ||
13157 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13158 			flags |= DTRACEBUF_INACTIVE;
13159 	}
13160 
13161 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13162 		/*
13163 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13164 		 * aligned, drop it down by the difference.
13165 		 */
13166 		if (size & (sizeof (uint64_t) - 1))
13167 			size -= size & (sizeof (uint64_t) - 1);
13168 
13169 		if (size < state->dts_reserve) {
13170 			/*
13171 			 * Buffers always must be large enough to accommodate
13172 			 * their prereserved space.  We return E2BIG instead
13173 			 * of ENOMEM in this case to allow for user-level
13174 			 * software to differentiate the cases.
13175 			 */
13176 			return (E2BIG);
13177 		}
13178 
13179 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13180 
13181 		if (rval != ENOMEM) {
13182 			opt[which] = size;
13183 			return (rval);
13184 		}
13185 
13186 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13187 			return (rval);
13188 	}
13189 
13190 	return (ENOMEM);
13191 }
13192 
13193 static int
13194 dtrace_state_buffers(dtrace_state_t *state)
13195 {
13196 	dtrace_speculation_t *spec = state->dts_speculations;
13197 	int rval, i;
13198 
13199 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13200 	    DTRACEOPT_BUFSIZE)) != 0)
13201 		return (rval);
13202 
13203 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13204 	    DTRACEOPT_AGGSIZE)) != 0)
13205 		return (rval);
13206 
13207 	for (i = 0; i < state->dts_nspeculations; i++) {
13208 		if ((rval = dtrace_state_buffer(state,
13209 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13210 			return (rval);
13211 	}
13212 
13213 	return (0);
13214 }
13215 
13216 static void
13217 dtrace_state_prereserve(dtrace_state_t *state)
13218 {
13219 	dtrace_ecb_t *ecb;
13220 	dtrace_probe_t *probe;
13221 
13222 	state->dts_reserve = 0;
13223 
13224 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13225 		return;
13226 
13227 	/*
13228 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13229 	 * prereserved space to be the space required by the END probes.
13230 	 */
13231 	probe = dtrace_probes[dtrace_probeid_end - 1];
13232 	ASSERT(probe != NULL);
13233 
13234 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13235 		if (ecb->dte_state != state)
13236 			continue;
13237 
13238 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13239 	}
13240 }
13241 
13242 static int
13243 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13244 {
13245 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13246 	dtrace_speculation_t *spec;
13247 	dtrace_buffer_t *buf;
13248 #if defined(sun)
13249 	cyc_handler_t hdlr;
13250 	cyc_time_t when;
13251 #endif
13252 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13253 	dtrace_icookie_t cookie;
13254 
13255 	mutex_enter(&cpu_lock);
13256 	mutex_enter(&dtrace_lock);
13257 
13258 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13259 		rval = EBUSY;
13260 		goto out;
13261 	}
13262 
13263 	/*
13264 	 * Before we can perform any checks, we must prime all of the
13265 	 * retained enablings that correspond to this state.
13266 	 */
13267 	dtrace_enabling_prime(state);
13268 
13269 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13270 		rval = EACCES;
13271 		goto out;
13272 	}
13273 
13274 	dtrace_state_prereserve(state);
13275 
13276 	/*
13277 	 * Now we want to do is try to allocate our speculations.
13278 	 * We do not automatically resize the number of speculations; if
13279 	 * this fails, we will fail the operation.
13280 	 */
13281 	nspec = opt[DTRACEOPT_NSPEC];
13282 	ASSERT(nspec != DTRACEOPT_UNSET);
13283 
13284 	if (nspec > INT_MAX) {
13285 		rval = ENOMEM;
13286 		goto out;
13287 	}
13288 
13289 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13290 
13291 	if (spec == NULL) {
13292 		rval = ENOMEM;
13293 		goto out;
13294 	}
13295 
13296 	state->dts_speculations = spec;
13297 	state->dts_nspeculations = (int)nspec;
13298 
13299 	for (i = 0; i < nspec; i++) {
13300 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13301 			rval = ENOMEM;
13302 			goto err;
13303 		}
13304 
13305 		spec[i].dtsp_buffer = buf;
13306 	}
13307 
13308 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13309 		if (dtrace_anon.dta_state == NULL) {
13310 			rval = ENOENT;
13311 			goto out;
13312 		}
13313 
13314 		if (state->dts_necbs != 0) {
13315 			rval = EALREADY;
13316 			goto out;
13317 		}
13318 
13319 		state->dts_anon = dtrace_anon_grab();
13320 		ASSERT(state->dts_anon != NULL);
13321 		state = state->dts_anon;
13322 
13323 		/*
13324 		 * We want "grabanon" to be set in the grabbed state, so we'll
13325 		 * copy that option value from the grabbing state into the
13326 		 * grabbed state.
13327 		 */
13328 		state->dts_options[DTRACEOPT_GRABANON] =
13329 		    opt[DTRACEOPT_GRABANON];
13330 
13331 		*cpu = dtrace_anon.dta_beganon;
13332 
13333 		/*
13334 		 * If the anonymous state is active (as it almost certainly
13335 		 * is if the anonymous enabling ultimately matched anything),
13336 		 * we don't allow any further option processing -- but we
13337 		 * don't return failure.
13338 		 */
13339 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13340 			goto out;
13341 	}
13342 
13343 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13344 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13345 		if (state->dts_aggregations == NULL) {
13346 			/*
13347 			 * We're not going to create an aggregation buffer
13348 			 * because we don't have any ECBs that contain
13349 			 * aggregations -- set this option to 0.
13350 			 */
13351 			opt[DTRACEOPT_AGGSIZE] = 0;
13352 		} else {
13353 			/*
13354 			 * If we have an aggregation buffer, we must also have
13355 			 * a buffer to use as scratch.
13356 			 */
13357 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13358 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13359 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13360 			}
13361 		}
13362 	}
13363 
13364 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13365 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13366 		if (!state->dts_speculates) {
13367 			/*
13368 			 * We're not going to create speculation buffers
13369 			 * because we don't have any ECBs that actually
13370 			 * speculate -- set the speculation size to 0.
13371 			 */
13372 			opt[DTRACEOPT_SPECSIZE] = 0;
13373 		}
13374 	}
13375 
13376 	/*
13377 	 * The bare minimum size for any buffer that we're actually going to
13378 	 * do anything to is sizeof (uint64_t).
13379 	 */
13380 	sz = sizeof (uint64_t);
13381 
13382 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13383 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13384 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13385 		/*
13386 		 * A buffer size has been explicitly set to 0 (or to a size
13387 		 * that will be adjusted to 0) and we need the space -- we
13388 		 * need to return failure.  We return ENOSPC to differentiate
13389 		 * it from failing to allocate a buffer due to failure to meet
13390 		 * the reserve (for which we return E2BIG).
13391 		 */
13392 		rval = ENOSPC;
13393 		goto out;
13394 	}
13395 
13396 	if ((rval = dtrace_state_buffers(state)) != 0)
13397 		goto err;
13398 
13399 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13400 		sz = dtrace_dstate_defsize;
13401 
13402 	do {
13403 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13404 
13405 		if (rval == 0)
13406 			break;
13407 
13408 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13409 			goto err;
13410 	} while (sz >>= 1);
13411 
13412 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13413 
13414 	if (rval != 0)
13415 		goto err;
13416 
13417 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13418 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13419 
13420 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13421 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13422 
13423 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13424 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13425 
13426 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13427 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13428 
13429 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13430 #if defined(sun)
13431 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13432 	hdlr.cyh_arg = state;
13433 	hdlr.cyh_level = CY_LOW_LEVEL;
13434 
13435 	when.cyt_when = 0;
13436 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13437 
13438 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13439 
13440 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13441 	hdlr.cyh_arg = state;
13442 	hdlr.cyh_level = CY_LOW_LEVEL;
13443 
13444 	when.cyt_when = 0;
13445 	when.cyt_interval = dtrace_deadman_interval;
13446 
13447 	state->dts_deadman = cyclic_add(&hdlr, &when);
13448 #else
13449 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13450 	    dtrace_state_clean, state);
13451 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13452 	    dtrace_state_deadman, state);
13453 #endif
13454 
13455 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13456 
13457 	/*
13458 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13459 	 * interrupts here both to record the CPU on which we fired the BEGIN
13460 	 * probe (the data from this CPU will be processed first at user
13461 	 * level) and to manually activate the buffer for this CPU.
13462 	 */
13463 	cookie = dtrace_interrupt_disable();
13464 	*cpu = curcpu;
13465 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13466 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13467 
13468 	dtrace_probe(dtrace_probeid_begin,
13469 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13470 	dtrace_interrupt_enable(cookie);
13471 	/*
13472 	 * We may have had an exit action from a BEGIN probe; only change our
13473 	 * state to ACTIVE if we're still in WARMUP.
13474 	 */
13475 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13476 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13477 
13478 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13479 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13480 
13481 	/*
13482 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13483 	 * want each CPU to transition its principal buffer out of the
13484 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13485 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13486 	 * atomically transition from processing none of a state's ECBs to
13487 	 * processing all of them.
13488 	 */
13489 	dtrace_xcall(DTRACE_CPUALL,
13490 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13491 	goto out;
13492 
13493 err:
13494 	dtrace_buffer_free(state->dts_buffer);
13495 	dtrace_buffer_free(state->dts_aggbuffer);
13496 
13497 	if ((nspec = state->dts_nspeculations) == 0) {
13498 		ASSERT(state->dts_speculations == NULL);
13499 		goto out;
13500 	}
13501 
13502 	spec = state->dts_speculations;
13503 	ASSERT(spec != NULL);
13504 
13505 	for (i = 0; i < state->dts_nspeculations; i++) {
13506 		if ((buf = spec[i].dtsp_buffer) == NULL)
13507 			break;
13508 
13509 		dtrace_buffer_free(buf);
13510 		kmem_free(buf, bufsize);
13511 	}
13512 
13513 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13514 	state->dts_nspeculations = 0;
13515 	state->dts_speculations = NULL;
13516 
13517 out:
13518 	mutex_exit(&dtrace_lock);
13519 	mutex_exit(&cpu_lock);
13520 
13521 	return (rval);
13522 }
13523 
13524 static int
13525 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13526 {
13527 	dtrace_icookie_t cookie;
13528 
13529 	ASSERT(MUTEX_HELD(&dtrace_lock));
13530 
13531 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13532 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13533 		return (EINVAL);
13534 
13535 	/*
13536 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13537 	 * to be sure that every CPU has seen it.  See below for the details
13538 	 * on why this is done.
13539 	 */
13540 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13541 	dtrace_sync();
13542 
13543 	/*
13544 	 * By this point, it is impossible for any CPU to be still processing
13545 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13546 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13547 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13548 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13549 	 * iff we're in the END probe.
13550 	 */
13551 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13552 	dtrace_sync();
13553 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13554 
13555 	/*
13556 	 * Finally, we can release the reserve and call the END probe.  We
13557 	 * disable interrupts across calling the END probe to allow us to
13558 	 * return the CPU on which we actually called the END probe.  This
13559 	 * allows user-land to be sure that this CPU's principal buffer is
13560 	 * processed last.
13561 	 */
13562 	state->dts_reserve = 0;
13563 
13564 	cookie = dtrace_interrupt_disable();
13565 	*cpu = curcpu;
13566 	dtrace_probe(dtrace_probeid_end,
13567 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13568 	dtrace_interrupt_enable(cookie);
13569 
13570 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13571 	dtrace_sync();
13572 
13573 	return (0);
13574 }
13575 
13576 static int
13577 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13578     dtrace_optval_t val)
13579 {
13580 	ASSERT(MUTEX_HELD(&dtrace_lock));
13581 
13582 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13583 		return (EBUSY);
13584 
13585 	if (option >= DTRACEOPT_MAX)
13586 		return (EINVAL);
13587 
13588 	if (option != DTRACEOPT_CPU && val < 0)
13589 		return (EINVAL);
13590 
13591 	switch (option) {
13592 	case DTRACEOPT_DESTRUCTIVE:
13593 		if (dtrace_destructive_disallow)
13594 			return (EACCES);
13595 
13596 		state->dts_cred.dcr_destructive = 1;
13597 		break;
13598 
13599 	case DTRACEOPT_BUFSIZE:
13600 	case DTRACEOPT_DYNVARSIZE:
13601 	case DTRACEOPT_AGGSIZE:
13602 	case DTRACEOPT_SPECSIZE:
13603 	case DTRACEOPT_STRSIZE:
13604 		if (val < 0)
13605 			return (EINVAL);
13606 
13607 		if (val >= LONG_MAX) {
13608 			/*
13609 			 * If this is an otherwise negative value, set it to
13610 			 * the highest multiple of 128m less than LONG_MAX.
13611 			 * Technically, we're adjusting the size without
13612 			 * regard to the buffer resizing policy, but in fact,
13613 			 * this has no effect -- if we set the buffer size to
13614 			 * ~LONG_MAX and the buffer policy is ultimately set to
13615 			 * be "manual", the buffer allocation is guaranteed to
13616 			 * fail, if only because the allocation requires two
13617 			 * buffers.  (We set the the size to the highest
13618 			 * multiple of 128m because it ensures that the size
13619 			 * will remain a multiple of a megabyte when
13620 			 * repeatedly halved -- all the way down to 15m.)
13621 			 */
13622 			val = LONG_MAX - (1 << 27) + 1;
13623 		}
13624 	}
13625 
13626 	state->dts_options[option] = val;
13627 
13628 	return (0);
13629 }
13630 
13631 static void
13632 dtrace_state_destroy(dtrace_state_t *state)
13633 {
13634 	dtrace_ecb_t *ecb;
13635 	dtrace_vstate_t *vstate = &state->dts_vstate;
13636 #if defined(sun)
13637 	minor_t minor = getminor(state->dts_dev);
13638 #endif
13639 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13640 	dtrace_speculation_t *spec = state->dts_speculations;
13641 	int nspec = state->dts_nspeculations;
13642 	uint32_t match;
13643 
13644 	ASSERT(MUTEX_HELD(&dtrace_lock));
13645 	ASSERT(MUTEX_HELD(&cpu_lock));
13646 
13647 	/*
13648 	 * First, retract any retained enablings for this state.
13649 	 */
13650 	dtrace_enabling_retract(state);
13651 	ASSERT(state->dts_nretained == 0);
13652 
13653 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13654 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13655 		/*
13656 		 * We have managed to come into dtrace_state_destroy() on a
13657 		 * hot enabling -- almost certainly because of a disorderly
13658 		 * shutdown of a consumer.  (That is, a consumer that is
13659 		 * exiting without having called dtrace_stop().) In this case,
13660 		 * we're going to set our activity to be KILLED, and then
13661 		 * issue a sync to be sure that everyone is out of probe
13662 		 * context before we start blowing away ECBs.
13663 		 */
13664 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13665 		dtrace_sync();
13666 	}
13667 
13668 	/*
13669 	 * Release the credential hold we took in dtrace_state_create().
13670 	 */
13671 	if (state->dts_cred.dcr_cred != NULL)
13672 		crfree(state->dts_cred.dcr_cred);
13673 
13674 	/*
13675 	 * Now we can safely disable and destroy any enabled probes.  Because
13676 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13677 	 * (especially if they're all enabled), we take two passes through the
13678 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13679 	 * in the second we disable whatever is left over.
13680 	 */
13681 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13682 		for (i = 0; i < state->dts_necbs; i++) {
13683 			if ((ecb = state->dts_ecbs[i]) == NULL)
13684 				continue;
13685 
13686 			if (match && ecb->dte_probe != NULL) {
13687 				dtrace_probe_t *probe = ecb->dte_probe;
13688 				dtrace_provider_t *prov = probe->dtpr_provider;
13689 
13690 				if (!(prov->dtpv_priv.dtpp_flags & match))
13691 					continue;
13692 			}
13693 
13694 			dtrace_ecb_disable(ecb);
13695 			dtrace_ecb_destroy(ecb);
13696 		}
13697 
13698 		if (!match)
13699 			break;
13700 	}
13701 
13702 	/*
13703 	 * Before we free the buffers, perform one more sync to assure that
13704 	 * every CPU is out of probe context.
13705 	 */
13706 	dtrace_sync();
13707 
13708 	dtrace_buffer_free(state->dts_buffer);
13709 	dtrace_buffer_free(state->dts_aggbuffer);
13710 
13711 	for (i = 0; i < nspec; i++)
13712 		dtrace_buffer_free(spec[i].dtsp_buffer);
13713 
13714 #if defined(sun)
13715 	if (state->dts_cleaner != CYCLIC_NONE)
13716 		cyclic_remove(state->dts_cleaner);
13717 
13718 	if (state->dts_deadman != CYCLIC_NONE)
13719 		cyclic_remove(state->dts_deadman);
13720 #else
13721 	callout_stop(&state->dts_cleaner);
13722 	callout_drain(&state->dts_cleaner);
13723 	callout_stop(&state->dts_deadman);
13724 	callout_drain(&state->dts_deadman);
13725 #endif
13726 
13727 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13728 	dtrace_vstate_fini(vstate);
13729 	if (state->dts_ecbs != NULL)
13730 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13731 
13732 	if (state->dts_aggregations != NULL) {
13733 #ifdef DEBUG
13734 		for (i = 0; i < state->dts_naggregations; i++)
13735 			ASSERT(state->dts_aggregations[i] == NULL);
13736 #endif
13737 		ASSERT(state->dts_naggregations > 0);
13738 		kmem_free(state->dts_aggregations,
13739 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13740 	}
13741 
13742 	kmem_free(state->dts_buffer, bufsize);
13743 	kmem_free(state->dts_aggbuffer, bufsize);
13744 
13745 	for (i = 0; i < nspec; i++)
13746 		kmem_free(spec[i].dtsp_buffer, bufsize);
13747 
13748 	if (spec != NULL)
13749 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13750 
13751 	dtrace_format_destroy(state);
13752 
13753 	if (state->dts_aggid_arena != NULL) {
13754 #if defined(sun)
13755 		vmem_destroy(state->dts_aggid_arena);
13756 #else
13757 		delete_unrhdr(state->dts_aggid_arena);
13758 #endif
13759 		state->dts_aggid_arena = NULL;
13760 	}
13761 #if defined(sun)
13762 	ddi_soft_state_free(dtrace_softstate, minor);
13763 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13764 #endif
13765 }
13766 
13767 /*
13768  * DTrace Anonymous Enabling Functions
13769  */
13770 static dtrace_state_t *
13771 dtrace_anon_grab(void)
13772 {
13773 	dtrace_state_t *state;
13774 
13775 	ASSERT(MUTEX_HELD(&dtrace_lock));
13776 
13777 	if ((state = dtrace_anon.dta_state) == NULL) {
13778 		ASSERT(dtrace_anon.dta_enabling == NULL);
13779 		return (NULL);
13780 	}
13781 
13782 	ASSERT(dtrace_anon.dta_enabling != NULL);
13783 	ASSERT(dtrace_retained != NULL);
13784 
13785 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13786 	dtrace_anon.dta_enabling = NULL;
13787 	dtrace_anon.dta_state = NULL;
13788 
13789 	return (state);
13790 }
13791 
13792 static void
13793 dtrace_anon_property(void)
13794 {
13795 	int i, rv;
13796 	dtrace_state_t *state;
13797 	dof_hdr_t *dof;
13798 	char c[32];		/* enough for "dof-data-" + digits */
13799 
13800 	ASSERT(MUTEX_HELD(&dtrace_lock));
13801 	ASSERT(MUTEX_HELD(&cpu_lock));
13802 
13803 	for (i = 0; ; i++) {
13804 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13805 
13806 		dtrace_err_verbose = 1;
13807 
13808 		if ((dof = dtrace_dof_property(c)) == NULL) {
13809 			dtrace_err_verbose = 0;
13810 			break;
13811 		}
13812 
13813 #if defined(sun)
13814 		/*
13815 		 * We want to create anonymous state, so we need to transition
13816 		 * the kernel debugger to indicate that DTrace is active.  If
13817 		 * this fails (e.g. because the debugger has modified text in
13818 		 * some way), we won't continue with the processing.
13819 		 */
13820 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13821 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13822 			    "enabling ignored.");
13823 			dtrace_dof_destroy(dof);
13824 			break;
13825 		}
13826 #endif
13827 
13828 		/*
13829 		 * If we haven't allocated an anonymous state, we'll do so now.
13830 		 */
13831 		if ((state = dtrace_anon.dta_state) == NULL) {
13832 #if defined(sun)
13833 			state = dtrace_state_create(NULL, NULL);
13834 #else
13835 			state = dtrace_state_create(NULL);
13836 #endif
13837 			dtrace_anon.dta_state = state;
13838 
13839 			if (state == NULL) {
13840 				/*
13841 				 * This basically shouldn't happen:  the only
13842 				 * failure mode from dtrace_state_create() is a
13843 				 * failure of ddi_soft_state_zalloc() that
13844 				 * itself should never happen.  Still, the
13845 				 * interface allows for a failure mode, and
13846 				 * we want to fail as gracefully as possible:
13847 				 * we'll emit an error message and cease
13848 				 * processing anonymous state in this case.
13849 				 */
13850 				cmn_err(CE_WARN, "failed to create "
13851 				    "anonymous state");
13852 				dtrace_dof_destroy(dof);
13853 				break;
13854 			}
13855 		}
13856 
13857 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13858 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13859 
13860 		if (rv == 0)
13861 			rv = dtrace_dof_options(dof, state);
13862 
13863 		dtrace_err_verbose = 0;
13864 		dtrace_dof_destroy(dof);
13865 
13866 		if (rv != 0) {
13867 			/*
13868 			 * This is malformed DOF; chuck any anonymous state
13869 			 * that we created.
13870 			 */
13871 			ASSERT(dtrace_anon.dta_enabling == NULL);
13872 			dtrace_state_destroy(state);
13873 			dtrace_anon.dta_state = NULL;
13874 			break;
13875 		}
13876 
13877 		ASSERT(dtrace_anon.dta_enabling != NULL);
13878 	}
13879 
13880 	if (dtrace_anon.dta_enabling != NULL) {
13881 		int rval;
13882 
13883 		/*
13884 		 * dtrace_enabling_retain() can only fail because we are
13885 		 * trying to retain more enablings than are allowed -- but
13886 		 * we only have one anonymous enabling, and we are guaranteed
13887 		 * to be allowed at least one retained enabling; we assert
13888 		 * that dtrace_enabling_retain() returns success.
13889 		 */
13890 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13891 		ASSERT(rval == 0);
13892 
13893 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13894 	}
13895 }
13896 
13897 /*
13898  * DTrace Helper Functions
13899  */
13900 static void
13901 dtrace_helper_trace(dtrace_helper_action_t *helper,
13902     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13903 {
13904 	uint32_t size, next, nnext, i;
13905 	dtrace_helptrace_t *ent;
13906 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13907 
13908 	if (!dtrace_helptrace_enabled)
13909 		return;
13910 
13911 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13912 
13913 	/*
13914 	 * What would a tracing framework be without its own tracing
13915 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13916 	 */
13917 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13918 	    sizeof (uint64_t) - sizeof (uint64_t);
13919 
13920 	/*
13921 	 * Iterate until we can allocate a slot in the trace buffer.
13922 	 */
13923 	do {
13924 		next = dtrace_helptrace_next;
13925 
13926 		if (next + size < dtrace_helptrace_bufsize) {
13927 			nnext = next + size;
13928 		} else {
13929 			nnext = size;
13930 		}
13931 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13932 
13933 	/*
13934 	 * We have our slot; fill it in.
13935 	 */
13936 	if (nnext == size)
13937 		next = 0;
13938 
13939 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13940 	ent->dtht_helper = helper;
13941 	ent->dtht_where = where;
13942 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13943 
13944 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13945 	    mstate->dtms_fltoffs : -1;
13946 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13947 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13948 
13949 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13950 		dtrace_statvar_t *svar;
13951 
13952 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13953 			continue;
13954 
13955 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13956 		ent->dtht_locals[i] =
13957 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13958 	}
13959 }
13960 
13961 static uint64_t
13962 dtrace_helper(int which, dtrace_mstate_t *mstate,
13963     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13964 {
13965 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13966 	uint64_t sarg0 = mstate->dtms_arg[0];
13967 	uint64_t sarg1 = mstate->dtms_arg[1];
13968 	uint64_t rval = 0;
13969 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13970 	dtrace_helper_action_t *helper;
13971 	dtrace_vstate_t *vstate;
13972 	dtrace_difo_t *pred;
13973 	int i, trace = dtrace_helptrace_enabled;
13974 
13975 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13976 
13977 	if (helpers == NULL)
13978 		return (0);
13979 
13980 	if ((helper = helpers->dthps_actions[which]) == NULL)
13981 		return (0);
13982 
13983 	vstate = &helpers->dthps_vstate;
13984 	mstate->dtms_arg[0] = arg0;
13985 	mstate->dtms_arg[1] = arg1;
13986 
13987 	/*
13988 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13989 	 * we'll call the corresponding actions.  Note that the below calls
13990 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13991 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13992 	 * the stored DIF offset with its own (which is the desired behavior).
13993 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13994 	 * from machine state; this is okay, too.
13995 	 */
13996 	for (; helper != NULL; helper = helper->dtha_next) {
13997 		if ((pred = helper->dtha_predicate) != NULL) {
13998 			if (trace)
13999 				dtrace_helper_trace(helper, mstate, vstate, 0);
14000 
14001 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14002 				goto next;
14003 
14004 			if (*flags & CPU_DTRACE_FAULT)
14005 				goto err;
14006 		}
14007 
14008 		for (i = 0; i < helper->dtha_nactions; i++) {
14009 			if (trace)
14010 				dtrace_helper_trace(helper,
14011 				    mstate, vstate, i + 1);
14012 
14013 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14014 			    mstate, vstate, state);
14015 
14016 			if (*flags & CPU_DTRACE_FAULT)
14017 				goto err;
14018 		}
14019 
14020 next:
14021 		if (trace)
14022 			dtrace_helper_trace(helper, mstate, vstate,
14023 			    DTRACE_HELPTRACE_NEXT);
14024 	}
14025 
14026 	if (trace)
14027 		dtrace_helper_trace(helper, mstate, vstate,
14028 		    DTRACE_HELPTRACE_DONE);
14029 
14030 	/*
14031 	 * Restore the arg0 that we saved upon entry.
14032 	 */
14033 	mstate->dtms_arg[0] = sarg0;
14034 	mstate->dtms_arg[1] = sarg1;
14035 
14036 	return (rval);
14037 
14038 err:
14039 	if (trace)
14040 		dtrace_helper_trace(helper, mstate, vstate,
14041 		    DTRACE_HELPTRACE_ERR);
14042 
14043 	/*
14044 	 * Restore the arg0 that we saved upon entry.
14045 	 */
14046 	mstate->dtms_arg[0] = sarg0;
14047 	mstate->dtms_arg[1] = sarg1;
14048 
14049 	return (0);
14050 }
14051 
14052 static void
14053 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14054     dtrace_vstate_t *vstate)
14055 {
14056 	int i;
14057 
14058 	if (helper->dtha_predicate != NULL)
14059 		dtrace_difo_release(helper->dtha_predicate, vstate);
14060 
14061 	for (i = 0; i < helper->dtha_nactions; i++) {
14062 		ASSERT(helper->dtha_actions[i] != NULL);
14063 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14064 	}
14065 
14066 	kmem_free(helper->dtha_actions,
14067 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14068 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14069 }
14070 
14071 static int
14072 dtrace_helper_destroygen(int gen)
14073 {
14074 	proc_t *p = curproc;
14075 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14076 	dtrace_vstate_t *vstate;
14077 	int i;
14078 
14079 	ASSERT(MUTEX_HELD(&dtrace_lock));
14080 
14081 	if (help == NULL || gen > help->dthps_generation)
14082 		return (EINVAL);
14083 
14084 	vstate = &help->dthps_vstate;
14085 
14086 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14087 		dtrace_helper_action_t *last = NULL, *h, *next;
14088 
14089 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14090 			next = h->dtha_next;
14091 
14092 			if (h->dtha_generation == gen) {
14093 				if (last != NULL) {
14094 					last->dtha_next = next;
14095 				} else {
14096 					help->dthps_actions[i] = next;
14097 				}
14098 
14099 				dtrace_helper_action_destroy(h, vstate);
14100 			} else {
14101 				last = h;
14102 			}
14103 		}
14104 	}
14105 
14106 	/*
14107 	 * Interate until we've cleared out all helper providers with the
14108 	 * given generation number.
14109 	 */
14110 	for (;;) {
14111 		dtrace_helper_provider_t *prov;
14112 
14113 		/*
14114 		 * Look for a helper provider with the right generation. We
14115 		 * have to start back at the beginning of the list each time
14116 		 * because we drop dtrace_lock. It's unlikely that we'll make
14117 		 * more than two passes.
14118 		 */
14119 		for (i = 0; i < help->dthps_nprovs; i++) {
14120 			prov = help->dthps_provs[i];
14121 
14122 			if (prov->dthp_generation == gen)
14123 				break;
14124 		}
14125 
14126 		/*
14127 		 * If there were no matches, we're done.
14128 		 */
14129 		if (i == help->dthps_nprovs)
14130 			break;
14131 
14132 		/*
14133 		 * Move the last helper provider into this slot.
14134 		 */
14135 		help->dthps_nprovs--;
14136 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14137 		help->dthps_provs[help->dthps_nprovs] = NULL;
14138 
14139 		mutex_exit(&dtrace_lock);
14140 
14141 		/*
14142 		 * If we have a meta provider, remove this helper provider.
14143 		 */
14144 		mutex_enter(&dtrace_meta_lock);
14145 		if (dtrace_meta_pid != NULL) {
14146 			ASSERT(dtrace_deferred_pid == NULL);
14147 			dtrace_helper_provider_remove(&prov->dthp_prov,
14148 			    p->p_pid);
14149 		}
14150 		mutex_exit(&dtrace_meta_lock);
14151 
14152 		dtrace_helper_provider_destroy(prov);
14153 
14154 		mutex_enter(&dtrace_lock);
14155 	}
14156 
14157 	return (0);
14158 }
14159 
14160 static int
14161 dtrace_helper_validate(dtrace_helper_action_t *helper)
14162 {
14163 	int err = 0, i;
14164 	dtrace_difo_t *dp;
14165 
14166 	if ((dp = helper->dtha_predicate) != NULL)
14167 		err += dtrace_difo_validate_helper(dp);
14168 
14169 	for (i = 0; i < helper->dtha_nactions; i++)
14170 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14171 
14172 	return (err == 0);
14173 }
14174 
14175 static int
14176 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14177 {
14178 	dtrace_helpers_t *help;
14179 	dtrace_helper_action_t *helper, *last;
14180 	dtrace_actdesc_t *act;
14181 	dtrace_vstate_t *vstate;
14182 	dtrace_predicate_t *pred;
14183 	int count = 0, nactions = 0, i;
14184 
14185 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14186 		return (EINVAL);
14187 
14188 	help = curproc->p_dtrace_helpers;
14189 	last = help->dthps_actions[which];
14190 	vstate = &help->dthps_vstate;
14191 
14192 	for (count = 0; last != NULL; last = last->dtha_next) {
14193 		count++;
14194 		if (last->dtha_next == NULL)
14195 			break;
14196 	}
14197 
14198 	/*
14199 	 * If we already have dtrace_helper_actions_max helper actions for this
14200 	 * helper action type, we'll refuse to add a new one.
14201 	 */
14202 	if (count >= dtrace_helper_actions_max)
14203 		return (ENOSPC);
14204 
14205 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14206 	helper->dtha_generation = help->dthps_generation;
14207 
14208 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14209 		ASSERT(pred->dtp_difo != NULL);
14210 		dtrace_difo_hold(pred->dtp_difo);
14211 		helper->dtha_predicate = pred->dtp_difo;
14212 	}
14213 
14214 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14215 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14216 			goto err;
14217 
14218 		if (act->dtad_difo == NULL)
14219 			goto err;
14220 
14221 		nactions++;
14222 	}
14223 
14224 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14225 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14226 
14227 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14228 		dtrace_difo_hold(act->dtad_difo);
14229 		helper->dtha_actions[i++] = act->dtad_difo;
14230 	}
14231 
14232 	if (!dtrace_helper_validate(helper))
14233 		goto err;
14234 
14235 	if (last == NULL) {
14236 		help->dthps_actions[which] = helper;
14237 	} else {
14238 		last->dtha_next = helper;
14239 	}
14240 
14241 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14242 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14243 		dtrace_helptrace_next = 0;
14244 	}
14245 
14246 	return (0);
14247 err:
14248 	dtrace_helper_action_destroy(helper, vstate);
14249 	return (EINVAL);
14250 }
14251 
14252 static void
14253 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14254     dof_helper_t *dofhp)
14255 {
14256 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14257 
14258 	mutex_enter(&dtrace_meta_lock);
14259 	mutex_enter(&dtrace_lock);
14260 
14261 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14262 		/*
14263 		 * If the dtrace module is loaded but not attached, or if
14264 		 * there aren't isn't a meta provider registered to deal with
14265 		 * these provider descriptions, we need to postpone creating
14266 		 * the actual providers until later.
14267 		 */
14268 
14269 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14270 		    dtrace_deferred_pid != help) {
14271 			help->dthps_deferred = 1;
14272 			help->dthps_pid = p->p_pid;
14273 			help->dthps_next = dtrace_deferred_pid;
14274 			help->dthps_prev = NULL;
14275 			if (dtrace_deferred_pid != NULL)
14276 				dtrace_deferred_pid->dthps_prev = help;
14277 			dtrace_deferred_pid = help;
14278 		}
14279 
14280 		mutex_exit(&dtrace_lock);
14281 
14282 	} else if (dofhp != NULL) {
14283 		/*
14284 		 * If the dtrace module is loaded and we have a particular
14285 		 * helper provider description, pass that off to the
14286 		 * meta provider.
14287 		 */
14288 
14289 		mutex_exit(&dtrace_lock);
14290 
14291 		dtrace_helper_provide(dofhp, p->p_pid);
14292 
14293 	} else {
14294 		/*
14295 		 * Otherwise, just pass all the helper provider descriptions
14296 		 * off to the meta provider.
14297 		 */
14298 
14299 		int i;
14300 		mutex_exit(&dtrace_lock);
14301 
14302 		for (i = 0; i < help->dthps_nprovs; i++) {
14303 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14304 			    p->p_pid);
14305 		}
14306 	}
14307 
14308 	mutex_exit(&dtrace_meta_lock);
14309 }
14310 
14311 static int
14312 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14313 {
14314 	dtrace_helpers_t *help;
14315 	dtrace_helper_provider_t *hprov, **tmp_provs;
14316 	uint_t tmp_maxprovs, i;
14317 
14318 	ASSERT(MUTEX_HELD(&dtrace_lock));
14319 
14320 	help = curproc->p_dtrace_helpers;
14321 	ASSERT(help != NULL);
14322 
14323 	/*
14324 	 * If we already have dtrace_helper_providers_max helper providers,
14325 	 * we're refuse to add a new one.
14326 	 */
14327 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14328 		return (ENOSPC);
14329 
14330 	/*
14331 	 * Check to make sure this isn't a duplicate.
14332 	 */
14333 	for (i = 0; i < help->dthps_nprovs; i++) {
14334 		if (dofhp->dofhp_addr ==
14335 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14336 			return (EALREADY);
14337 	}
14338 
14339 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14340 	hprov->dthp_prov = *dofhp;
14341 	hprov->dthp_ref = 1;
14342 	hprov->dthp_generation = gen;
14343 
14344 	/*
14345 	 * Allocate a bigger table for helper providers if it's already full.
14346 	 */
14347 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14348 		tmp_maxprovs = help->dthps_maxprovs;
14349 		tmp_provs = help->dthps_provs;
14350 
14351 		if (help->dthps_maxprovs == 0)
14352 			help->dthps_maxprovs = 2;
14353 		else
14354 			help->dthps_maxprovs *= 2;
14355 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14356 			help->dthps_maxprovs = dtrace_helper_providers_max;
14357 
14358 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14359 
14360 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14361 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14362 
14363 		if (tmp_provs != NULL) {
14364 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14365 			    sizeof (dtrace_helper_provider_t *));
14366 			kmem_free(tmp_provs, tmp_maxprovs *
14367 			    sizeof (dtrace_helper_provider_t *));
14368 		}
14369 	}
14370 
14371 	help->dthps_provs[help->dthps_nprovs] = hprov;
14372 	help->dthps_nprovs++;
14373 
14374 	return (0);
14375 }
14376 
14377 static void
14378 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14379 {
14380 	mutex_enter(&dtrace_lock);
14381 
14382 	if (--hprov->dthp_ref == 0) {
14383 		dof_hdr_t *dof;
14384 		mutex_exit(&dtrace_lock);
14385 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14386 		dtrace_dof_destroy(dof);
14387 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14388 	} else {
14389 		mutex_exit(&dtrace_lock);
14390 	}
14391 }
14392 
14393 static int
14394 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14395 {
14396 	uintptr_t daddr = (uintptr_t)dof;
14397 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14398 	dof_provider_t *provider;
14399 	dof_probe_t *probe;
14400 	uint8_t *arg;
14401 	char *strtab, *typestr;
14402 	dof_stridx_t typeidx;
14403 	size_t typesz;
14404 	uint_t nprobes, j, k;
14405 
14406 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14407 
14408 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14409 		dtrace_dof_error(dof, "misaligned section offset");
14410 		return (-1);
14411 	}
14412 
14413 	/*
14414 	 * The section needs to be large enough to contain the DOF provider
14415 	 * structure appropriate for the given version.
14416 	 */
14417 	if (sec->dofs_size <
14418 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14419 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14420 	    sizeof (dof_provider_t))) {
14421 		dtrace_dof_error(dof, "provider section too small");
14422 		return (-1);
14423 	}
14424 
14425 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14426 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14427 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14428 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14429 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14430 
14431 	if (str_sec == NULL || prb_sec == NULL ||
14432 	    arg_sec == NULL || off_sec == NULL)
14433 		return (-1);
14434 
14435 	enoff_sec = NULL;
14436 
14437 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14438 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14439 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14440 	    provider->dofpv_prenoffs)) == NULL)
14441 		return (-1);
14442 
14443 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14444 
14445 	if (provider->dofpv_name >= str_sec->dofs_size ||
14446 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14447 		dtrace_dof_error(dof, "invalid provider name");
14448 		return (-1);
14449 	}
14450 
14451 	if (prb_sec->dofs_entsize == 0 ||
14452 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14453 		dtrace_dof_error(dof, "invalid entry size");
14454 		return (-1);
14455 	}
14456 
14457 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14458 		dtrace_dof_error(dof, "misaligned entry size");
14459 		return (-1);
14460 	}
14461 
14462 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14463 		dtrace_dof_error(dof, "invalid entry size");
14464 		return (-1);
14465 	}
14466 
14467 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14468 		dtrace_dof_error(dof, "misaligned section offset");
14469 		return (-1);
14470 	}
14471 
14472 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14473 		dtrace_dof_error(dof, "invalid entry size");
14474 		return (-1);
14475 	}
14476 
14477 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14478 
14479 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14480 
14481 	/*
14482 	 * Take a pass through the probes to check for errors.
14483 	 */
14484 	for (j = 0; j < nprobes; j++) {
14485 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14486 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14487 
14488 		if (probe->dofpr_func >= str_sec->dofs_size) {
14489 			dtrace_dof_error(dof, "invalid function name");
14490 			return (-1);
14491 		}
14492 
14493 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14494 			dtrace_dof_error(dof, "function name too long");
14495 			return (-1);
14496 		}
14497 
14498 		if (probe->dofpr_name >= str_sec->dofs_size ||
14499 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14500 			dtrace_dof_error(dof, "invalid probe name");
14501 			return (-1);
14502 		}
14503 
14504 		/*
14505 		 * The offset count must not wrap the index, and the offsets
14506 		 * must also not overflow the section's data.
14507 		 */
14508 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14509 		    probe->dofpr_offidx ||
14510 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14511 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14512 			dtrace_dof_error(dof, "invalid probe offset");
14513 			return (-1);
14514 		}
14515 
14516 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14517 			/*
14518 			 * If there's no is-enabled offset section, make sure
14519 			 * there aren't any is-enabled offsets. Otherwise
14520 			 * perform the same checks as for probe offsets
14521 			 * (immediately above).
14522 			 */
14523 			if (enoff_sec == NULL) {
14524 				if (probe->dofpr_enoffidx != 0 ||
14525 				    probe->dofpr_nenoffs != 0) {
14526 					dtrace_dof_error(dof, "is-enabled "
14527 					    "offsets with null section");
14528 					return (-1);
14529 				}
14530 			} else if (probe->dofpr_enoffidx +
14531 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14532 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14533 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14534 				dtrace_dof_error(dof, "invalid is-enabled "
14535 				    "offset");
14536 				return (-1);
14537 			}
14538 
14539 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14540 				dtrace_dof_error(dof, "zero probe and "
14541 				    "is-enabled offsets");
14542 				return (-1);
14543 			}
14544 		} else if (probe->dofpr_noffs == 0) {
14545 			dtrace_dof_error(dof, "zero probe offsets");
14546 			return (-1);
14547 		}
14548 
14549 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14550 		    probe->dofpr_argidx ||
14551 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14552 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14553 			dtrace_dof_error(dof, "invalid args");
14554 			return (-1);
14555 		}
14556 
14557 		typeidx = probe->dofpr_nargv;
14558 		typestr = strtab + probe->dofpr_nargv;
14559 		for (k = 0; k < probe->dofpr_nargc; k++) {
14560 			if (typeidx >= str_sec->dofs_size) {
14561 				dtrace_dof_error(dof, "bad "
14562 				    "native argument type");
14563 				return (-1);
14564 			}
14565 
14566 			typesz = strlen(typestr) + 1;
14567 			if (typesz > DTRACE_ARGTYPELEN) {
14568 				dtrace_dof_error(dof, "native "
14569 				    "argument type too long");
14570 				return (-1);
14571 			}
14572 			typeidx += typesz;
14573 			typestr += typesz;
14574 		}
14575 
14576 		typeidx = probe->dofpr_xargv;
14577 		typestr = strtab + probe->dofpr_xargv;
14578 		for (k = 0; k < probe->dofpr_xargc; k++) {
14579 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14580 				dtrace_dof_error(dof, "bad "
14581 				    "native argument index");
14582 				return (-1);
14583 			}
14584 
14585 			if (typeidx >= str_sec->dofs_size) {
14586 				dtrace_dof_error(dof, "bad "
14587 				    "translated argument type");
14588 				return (-1);
14589 			}
14590 
14591 			typesz = strlen(typestr) + 1;
14592 			if (typesz > DTRACE_ARGTYPELEN) {
14593 				dtrace_dof_error(dof, "translated argument "
14594 				    "type too long");
14595 				return (-1);
14596 			}
14597 
14598 			typeidx += typesz;
14599 			typestr += typesz;
14600 		}
14601 	}
14602 
14603 	return (0);
14604 }
14605 
14606 static int
14607 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14608 {
14609 	dtrace_helpers_t *help;
14610 	dtrace_vstate_t *vstate;
14611 	dtrace_enabling_t *enab = NULL;
14612 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14613 	uintptr_t daddr = (uintptr_t)dof;
14614 
14615 	ASSERT(MUTEX_HELD(&dtrace_lock));
14616 
14617 	if ((help = curproc->p_dtrace_helpers) == NULL)
14618 		help = dtrace_helpers_create(curproc);
14619 
14620 	vstate = &help->dthps_vstate;
14621 
14622 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14623 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14624 		dtrace_dof_destroy(dof);
14625 		return (rv);
14626 	}
14627 
14628 	/*
14629 	 * Look for helper providers and validate their descriptions.
14630 	 */
14631 	if (dhp != NULL) {
14632 		for (i = 0; i < dof->dofh_secnum; i++) {
14633 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14634 			    dof->dofh_secoff + i * dof->dofh_secsize);
14635 
14636 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14637 				continue;
14638 
14639 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14640 				dtrace_enabling_destroy(enab);
14641 				dtrace_dof_destroy(dof);
14642 				return (-1);
14643 			}
14644 
14645 			nprovs++;
14646 		}
14647 	}
14648 
14649 	/*
14650 	 * Now we need to walk through the ECB descriptions in the enabling.
14651 	 */
14652 	for (i = 0; i < enab->dten_ndesc; i++) {
14653 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14654 		dtrace_probedesc_t *desc = &ep->dted_probe;
14655 
14656 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14657 			continue;
14658 
14659 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14660 			continue;
14661 
14662 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14663 			continue;
14664 
14665 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14666 		    ep)) != 0) {
14667 			/*
14668 			 * Adding this helper action failed -- we are now going
14669 			 * to rip out the entire generation and return failure.
14670 			 */
14671 			(void) dtrace_helper_destroygen(help->dthps_generation);
14672 			dtrace_enabling_destroy(enab);
14673 			dtrace_dof_destroy(dof);
14674 			return (-1);
14675 		}
14676 
14677 		nhelpers++;
14678 	}
14679 
14680 	if (nhelpers < enab->dten_ndesc)
14681 		dtrace_dof_error(dof, "unmatched helpers");
14682 
14683 	gen = help->dthps_generation++;
14684 	dtrace_enabling_destroy(enab);
14685 
14686 	if (dhp != NULL && nprovs > 0) {
14687 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14688 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14689 			mutex_exit(&dtrace_lock);
14690 			dtrace_helper_provider_register(curproc, help, dhp);
14691 			mutex_enter(&dtrace_lock);
14692 
14693 			destroy = 0;
14694 		}
14695 	}
14696 
14697 	if (destroy)
14698 		dtrace_dof_destroy(dof);
14699 
14700 	return (gen);
14701 }
14702 
14703 static dtrace_helpers_t *
14704 dtrace_helpers_create(proc_t *p)
14705 {
14706 	dtrace_helpers_t *help;
14707 
14708 	ASSERT(MUTEX_HELD(&dtrace_lock));
14709 	ASSERT(p->p_dtrace_helpers == NULL);
14710 
14711 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14712 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14713 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14714 
14715 	p->p_dtrace_helpers = help;
14716 	dtrace_helpers++;
14717 
14718 	return (help);
14719 }
14720 
14721 #if defined(sun)
14722 static
14723 #endif
14724 void
14725 dtrace_helpers_destroy(proc_t *p)
14726 {
14727 	dtrace_helpers_t *help;
14728 	dtrace_vstate_t *vstate;
14729 #if defined(sun)
14730 	proc_t *p = curproc;
14731 #endif
14732 	int i;
14733 
14734 	mutex_enter(&dtrace_lock);
14735 
14736 	ASSERT(p->p_dtrace_helpers != NULL);
14737 	ASSERT(dtrace_helpers > 0);
14738 
14739 	help = p->p_dtrace_helpers;
14740 	vstate = &help->dthps_vstate;
14741 
14742 	/*
14743 	 * We're now going to lose the help from this process.
14744 	 */
14745 	p->p_dtrace_helpers = NULL;
14746 	dtrace_sync();
14747 
14748 	/*
14749 	 * Destory the helper actions.
14750 	 */
14751 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14752 		dtrace_helper_action_t *h, *next;
14753 
14754 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14755 			next = h->dtha_next;
14756 			dtrace_helper_action_destroy(h, vstate);
14757 			h = next;
14758 		}
14759 	}
14760 
14761 	mutex_exit(&dtrace_lock);
14762 
14763 	/*
14764 	 * Destroy the helper providers.
14765 	 */
14766 	if (help->dthps_maxprovs > 0) {
14767 		mutex_enter(&dtrace_meta_lock);
14768 		if (dtrace_meta_pid != NULL) {
14769 			ASSERT(dtrace_deferred_pid == NULL);
14770 
14771 			for (i = 0; i < help->dthps_nprovs; i++) {
14772 				dtrace_helper_provider_remove(
14773 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14774 			}
14775 		} else {
14776 			mutex_enter(&dtrace_lock);
14777 			ASSERT(help->dthps_deferred == 0 ||
14778 			    help->dthps_next != NULL ||
14779 			    help->dthps_prev != NULL ||
14780 			    help == dtrace_deferred_pid);
14781 
14782 			/*
14783 			 * Remove the helper from the deferred list.
14784 			 */
14785 			if (help->dthps_next != NULL)
14786 				help->dthps_next->dthps_prev = help->dthps_prev;
14787 			if (help->dthps_prev != NULL)
14788 				help->dthps_prev->dthps_next = help->dthps_next;
14789 			if (dtrace_deferred_pid == help) {
14790 				dtrace_deferred_pid = help->dthps_next;
14791 				ASSERT(help->dthps_prev == NULL);
14792 			}
14793 
14794 			mutex_exit(&dtrace_lock);
14795 		}
14796 
14797 		mutex_exit(&dtrace_meta_lock);
14798 
14799 		for (i = 0; i < help->dthps_nprovs; i++) {
14800 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14801 		}
14802 
14803 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14804 		    sizeof (dtrace_helper_provider_t *));
14805 	}
14806 
14807 	mutex_enter(&dtrace_lock);
14808 
14809 	dtrace_vstate_fini(&help->dthps_vstate);
14810 	kmem_free(help->dthps_actions,
14811 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14812 	kmem_free(help, sizeof (dtrace_helpers_t));
14813 
14814 	--dtrace_helpers;
14815 	mutex_exit(&dtrace_lock);
14816 }
14817 
14818 #if defined(sun)
14819 static
14820 #endif
14821 void
14822 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14823 {
14824 	dtrace_helpers_t *help, *newhelp;
14825 	dtrace_helper_action_t *helper, *new, *last;
14826 	dtrace_difo_t *dp;
14827 	dtrace_vstate_t *vstate;
14828 	int i, j, sz, hasprovs = 0;
14829 
14830 	mutex_enter(&dtrace_lock);
14831 	ASSERT(from->p_dtrace_helpers != NULL);
14832 	ASSERT(dtrace_helpers > 0);
14833 
14834 	help = from->p_dtrace_helpers;
14835 	newhelp = dtrace_helpers_create(to);
14836 	ASSERT(to->p_dtrace_helpers != NULL);
14837 
14838 	newhelp->dthps_generation = help->dthps_generation;
14839 	vstate = &newhelp->dthps_vstate;
14840 
14841 	/*
14842 	 * Duplicate the helper actions.
14843 	 */
14844 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14845 		if ((helper = help->dthps_actions[i]) == NULL)
14846 			continue;
14847 
14848 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14849 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14850 			    KM_SLEEP);
14851 			new->dtha_generation = helper->dtha_generation;
14852 
14853 			if ((dp = helper->dtha_predicate) != NULL) {
14854 				dp = dtrace_difo_duplicate(dp, vstate);
14855 				new->dtha_predicate = dp;
14856 			}
14857 
14858 			new->dtha_nactions = helper->dtha_nactions;
14859 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14860 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14861 
14862 			for (j = 0; j < new->dtha_nactions; j++) {
14863 				dtrace_difo_t *dp = helper->dtha_actions[j];
14864 
14865 				ASSERT(dp != NULL);
14866 				dp = dtrace_difo_duplicate(dp, vstate);
14867 				new->dtha_actions[j] = dp;
14868 			}
14869 
14870 			if (last != NULL) {
14871 				last->dtha_next = new;
14872 			} else {
14873 				newhelp->dthps_actions[i] = new;
14874 			}
14875 
14876 			last = new;
14877 		}
14878 	}
14879 
14880 	/*
14881 	 * Duplicate the helper providers and register them with the
14882 	 * DTrace framework.
14883 	 */
14884 	if (help->dthps_nprovs > 0) {
14885 		newhelp->dthps_nprovs = help->dthps_nprovs;
14886 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14887 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14888 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14889 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14890 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14891 			newhelp->dthps_provs[i]->dthp_ref++;
14892 		}
14893 
14894 		hasprovs = 1;
14895 	}
14896 
14897 	mutex_exit(&dtrace_lock);
14898 
14899 	if (hasprovs)
14900 		dtrace_helper_provider_register(to, newhelp, NULL);
14901 }
14902 
14903 #if defined(sun)
14904 /*
14905  * DTrace Hook Functions
14906  */
14907 static void
14908 dtrace_module_loaded(modctl_t *ctl)
14909 {
14910 	dtrace_provider_t *prv;
14911 
14912 	mutex_enter(&dtrace_provider_lock);
14913 	mutex_enter(&mod_lock);
14914 
14915 	ASSERT(ctl->mod_busy);
14916 
14917 	/*
14918 	 * We're going to call each providers per-module provide operation
14919 	 * specifying only this module.
14920 	 */
14921 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14922 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14923 
14924 	mutex_exit(&mod_lock);
14925 	mutex_exit(&dtrace_provider_lock);
14926 
14927 	/*
14928 	 * If we have any retained enablings, we need to match against them.
14929 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14930 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14931 	 * module.  (In particular, this happens when loading scheduling
14932 	 * classes.)  So if we have any retained enablings, we need to dispatch
14933 	 * our task queue to do the match for us.
14934 	 */
14935 	mutex_enter(&dtrace_lock);
14936 
14937 	if (dtrace_retained == NULL) {
14938 		mutex_exit(&dtrace_lock);
14939 		return;
14940 	}
14941 
14942 	(void) taskq_dispatch(dtrace_taskq,
14943 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14944 
14945 	mutex_exit(&dtrace_lock);
14946 
14947 	/*
14948 	 * And now, for a little heuristic sleaze:  in general, we want to
14949 	 * match modules as soon as they load.  However, we cannot guarantee
14950 	 * this, because it would lead us to the lock ordering violation
14951 	 * outlined above.  The common case, of course, is that cpu_lock is
14952 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14953 	 * long enough for the task queue to do its work.  If it's not, it's
14954 	 * not a serious problem -- it just means that the module that we
14955 	 * just loaded may not be immediately instrumentable.
14956 	 */
14957 	delay(1);
14958 }
14959 
14960 static void
14961 dtrace_module_unloaded(modctl_t *ctl)
14962 {
14963 	dtrace_probe_t template, *probe, *first, *next;
14964 	dtrace_provider_t *prov;
14965 
14966 	template.dtpr_mod = ctl->mod_modname;
14967 
14968 	mutex_enter(&dtrace_provider_lock);
14969 	mutex_enter(&mod_lock);
14970 	mutex_enter(&dtrace_lock);
14971 
14972 	if (dtrace_bymod == NULL) {
14973 		/*
14974 		 * The DTrace module is loaded (obviously) but not attached;
14975 		 * we don't have any work to do.
14976 		 */
14977 		mutex_exit(&dtrace_provider_lock);
14978 		mutex_exit(&mod_lock);
14979 		mutex_exit(&dtrace_lock);
14980 		return;
14981 	}
14982 
14983 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14984 	    probe != NULL; probe = probe->dtpr_nextmod) {
14985 		if (probe->dtpr_ecb != NULL) {
14986 			mutex_exit(&dtrace_provider_lock);
14987 			mutex_exit(&mod_lock);
14988 			mutex_exit(&dtrace_lock);
14989 
14990 			/*
14991 			 * This shouldn't _actually_ be possible -- we're
14992 			 * unloading a module that has an enabled probe in it.
14993 			 * (It's normally up to the provider to make sure that
14994 			 * this can't happen.)  However, because dtps_enable()
14995 			 * doesn't have a failure mode, there can be an
14996 			 * enable/unload race.  Upshot:  we don't want to
14997 			 * assert, but we're not going to disable the
14998 			 * probe, either.
14999 			 */
15000 			if (dtrace_err_verbose) {
15001 				cmn_err(CE_WARN, "unloaded module '%s' had "
15002 				    "enabled probes", ctl->mod_modname);
15003 			}
15004 
15005 			return;
15006 		}
15007 	}
15008 
15009 	probe = first;
15010 
15011 	for (first = NULL; probe != NULL; probe = next) {
15012 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15013 
15014 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15015 
15016 		next = probe->dtpr_nextmod;
15017 		dtrace_hash_remove(dtrace_bymod, probe);
15018 		dtrace_hash_remove(dtrace_byfunc, probe);
15019 		dtrace_hash_remove(dtrace_byname, probe);
15020 
15021 		if (first == NULL) {
15022 			first = probe;
15023 			probe->dtpr_nextmod = NULL;
15024 		} else {
15025 			probe->dtpr_nextmod = first;
15026 			first = probe;
15027 		}
15028 	}
15029 
15030 	/*
15031 	 * We've removed all of the module's probes from the hash chains and
15032 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15033 	 * everyone has cleared out from any probe array processing.
15034 	 */
15035 	dtrace_sync();
15036 
15037 	for (probe = first; probe != NULL; probe = first) {
15038 		first = probe->dtpr_nextmod;
15039 		prov = probe->dtpr_provider;
15040 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15041 		    probe->dtpr_arg);
15042 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15043 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15044 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15045 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15046 		kmem_free(probe, sizeof (dtrace_probe_t));
15047 	}
15048 
15049 	mutex_exit(&dtrace_lock);
15050 	mutex_exit(&mod_lock);
15051 	mutex_exit(&dtrace_provider_lock);
15052 }
15053 
15054 static void
15055 dtrace_suspend(void)
15056 {
15057 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15058 }
15059 
15060 static void
15061 dtrace_resume(void)
15062 {
15063 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15064 }
15065 #endif
15066 
15067 static int
15068 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15069 {
15070 	ASSERT(MUTEX_HELD(&cpu_lock));
15071 	mutex_enter(&dtrace_lock);
15072 
15073 	switch (what) {
15074 	case CPU_CONFIG: {
15075 		dtrace_state_t *state;
15076 		dtrace_optval_t *opt, rs, c;
15077 
15078 		/*
15079 		 * For now, we only allocate a new buffer for anonymous state.
15080 		 */
15081 		if ((state = dtrace_anon.dta_state) == NULL)
15082 			break;
15083 
15084 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15085 			break;
15086 
15087 		opt = state->dts_options;
15088 		c = opt[DTRACEOPT_CPU];
15089 
15090 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15091 			break;
15092 
15093 		/*
15094 		 * Regardless of what the actual policy is, we're going to
15095 		 * temporarily set our resize policy to be manual.  We're
15096 		 * also going to temporarily set our CPU option to denote
15097 		 * the newly configured CPU.
15098 		 */
15099 		rs = opt[DTRACEOPT_BUFRESIZE];
15100 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15101 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15102 
15103 		(void) dtrace_state_buffers(state);
15104 
15105 		opt[DTRACEOPT_BUFRESIZE] = rs;
15106 		opt[DTRACEOPT_CPU] = c;
15107 
15108 		break;
15109 	}
15110 
15111 	case CPU_UNCONFIG:
15112 		/*
15113 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15114 		 * buffer will be freed when the consumer exits.)
15115 		 */
15116 		break;
15117 
15118 	default:
15119 		break;
15120 	}
15121 
15122 	mutex_exit(&dtrace_lock);
15123 	return (0);
15124 }
15125 
15126 #if defined(sun)
15127 static void
15128 dtrace_cpu_setup_initial(processorid_t cpu)
15129 {
15130 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15131 }
15132 #endif
15133 
15134 static void
15135 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15136 {
15137 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15138 		int osize, nsize;
15139 		dtrace_toxrange_t *range;
15140 
15141 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15142 
15143 		if (osize == 0) {
15144 			ASSERT(dtrace_toxrange == NULL);
15145 			ASSERT(dtrace_toxranges_max == 0);
15146 			dtrace_toxranges_max = 1;
15147 		} else {
15148 			dtrace_toxranges_max <<= 1;
15149 		}
15150 
15151 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15152 		range = kmem_zalloc(nsize, KM_SLEEP);
15153 
15154 		if (dtrace_toxrange != NULL) {
15155 			ASSERT(osize != 0);
15156 			bcopy(dtrace_toxrange, range, osize);
15157 			kmem_free(dtrace_toxrange, osize);
15158 		}
15159 
15160 		dtrace_toxrange = range;
15161 	}
15162 
15163 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15164 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15165 
15166 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15167 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15168 	dtrace_toxranges++;
15169 }
15170 
15171 /*
15172  * DTrace Driver Cookbook Functions
15173  */
15174 #if defined(sun)
15175 /*ARGSUSED*/
15176 static int
15177 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15178 {
15179 	dtrace_provider_id_t id;
15180 	dtrace_state_t *state = NULL;
15181 	dtrace_enabling_t *enab;
15182 
15183 	mutex_enter(&cpu_lock);
15184 	mutex_enter(&dtrace_provider_lock);
15185 	mutex_enter(&dtrace_lock);
15186 
15187 	if (ddi_soft_state_init(&dtrace_softstate,
15188 	    sizeof (dtrace_state_t), 0) != 0) {
15189 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15190 		mutex_exit(&cpu_lock);
15191 		mutex_exit(&dtrace_provider_lock);
15192 		mutex_exit(&dtrace_lock);
15193 		return (DDI_FAILURE);
15194 	}
15195 
15196 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15197 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15198 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15199 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15200 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15201 		ddi_remove_minor_node(devi, NULL);
15202 		ddi_soft_state_fini(&dtrace_softstate);
15203 		mutex_exit(&cpu_lock);
15204 		mutex_exit(&dtrace_provider_lock);
15205 		mutex_exit(&dtrace_lock);
15206 		return (DDI_FAILURE);
15207 	}
15208 
15209 	ddi_report_dev(devi);
15210 	dtrace_devi = devi;
15211 
15212 	dtrace_modload = dtrace_module_loaded;
15213 	dtrace_modunload = dtrace_module_unloaded;
15214 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15215 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15216 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15217 	dtrace_cpustart_init = dtrace_suspend;
15218 	dtrace_cpustart_fini = dtrace_resume;
15219 	dtrace_debugger_init = dtrace_suspend;
15220 	dtrace_debugger_fini = dtrace_resume;
15221 
15222 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15223 
15224 	ASSERT(MUTEX_HELD(&cpu_lock));
15225 
15226 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15227 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15228 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15229 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15230 	    VM_SLEEP | VMC_IDENTIFIER);
15231 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15232 	    1, INT_MAX, 0);
15233 
15234 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15235 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15236 	    NULL, NULL, NULL, NULL, NULL, 0);
15237 
15238 	ASSERT(MUTEX_HELD(&cpu_lock));
15239 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15240 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15241 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15242 
15243 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15244 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15245 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15246 
15247 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15248 	    offsetof(dtrace_probe_t, dtpr_nextname),
15249 	    offsetof(dtrace_probe_t, dtpr_prevname));
15250 
15251 	if (dtrace_retain_max < 1) {
15252 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15253 		    "setting to 1", dtrace_retain_max);
15254 		dtrace_retain_max = 1;
15255 	}
15256 
15257 	/*
15258 	 * Now discover our toxic ranges.
15259 	 */
15260 	dtrace_toxic_ranges(dtrace_toxrange_add);
15261 
15262 	/*
15263 	 * Before we register ourselves as a provider to our own framework,
15264 	 * we would like to assert that dtrace_provider is NULL -- but that's
15265 	 * not true if we were loaded as a dependency of a DTrace provider.
15266 	 * Once we've registered, we can assert that dtrace_provider is our
15267 	 * pseudo provider.
15268 	 */
15269 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15270 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15271 
15272 	ASSERT(dtrace_provider != NULL);
15273 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15274 
15275 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15276 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15277 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15278 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15279 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15280 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15281 
15282 	dtrace_anon_property();
15283 	mutex_exit(&cpu_lock);
15284 
15285 	/*
15286 	 * If DTrace helper tracing is enabled, we need to allocate the
15287 	 * trace buffer and initialize the values.
15288 	 */
15289 	if (dtrace_helptrace_enabled) {
15290 		ASSERT(dtrace_helptrace_buffer == NULL);
15291 		dtrace_helptrace_buffer =
15292 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15293 		dtrace_helptrace_next = 0;
15294 	}
15295 
15296 	/*
15297 	 * If there are already providers, we must ask them to provide their
15298 	 * probes, and then match any anonymous enabling against them.  Note
15299 	 * that there should be no other retained enablings at this time:
15300 	 * the only retained enablings at this time should be the anonymous
15301 	 * enabling.
15302 	 */
15303 	if (dtrace_anon.dta_enabling != NULL) {
15304 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15305 
15306 		dtrace_enabling_provide(NULL);
15307 		state = dtrace_anon.dta_state;
15308 
15309 		/*
15310 		 * We couldn't hold cpu_lock across the above call to
15311 		 * dtrace_enabling_provide(), but we must hold it to actually
15312 		 * enable the probes.  We have to drop all of our locks, pick
15313 		 * up cpu_lock, and regain our locks before matching the
15314 		 * retained anonymous enabling.
15315 		 */
15316 		mutex_exit(&dtrace_lock);
15317 		mutex_exit(&dtrace_provider_lock);
15318 
15319 		mutex_enter(&cpu_lock);
15320 		mutex_enter(&dtrace_provider_lock);
15321 		mutex_enter(&dtrace_lock);
15322 
15323 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15324 			(void) dtrace_enabling_match(enab, NULL);
15325 
15326 		mutex_exit(&cpu_lock);
15327 	}
15328 
15329 	mutex_exit(&dtrace_lock);
15330 	mutex_exit(&dtrace_provider_lock);
15331 
15332 	if (state != NULL) {
15333 		/*
15334 		 * If we created any anonymous state, set it going now.
15335 		 */
15336 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15337 	}
15338 
15339 	return (DDI_SUCCESS);
15340 }
15341 #endif
15342 
15343 #if !defined(sun)
15344 #if __FreeBSD_version >= 800039
15345 static void
15346 dtrace_dtr(void *data __unused)
15347 {
15348 }
15349 #endif
15350 #endif
15351 
15352 /*ARGSUSED*/
15353 static int
15354 #if defined(sun)
15355 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15356 #else
15357 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15358 #endif
15359 {
15360 	dtrace_state_t *state;
15361 	uint32_t priv;
15362 	uid_t uid;
15363 	zoneid_t zoneid;
15364 
15365 #if defined(sun)
15366 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15367 		return (0);
15368 
15369 	/*
15370 	 * If this wasn't an open with the "helper" minor, then it must be
15371 	 * the "dtrace" minor.
15372 	 */
15373 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15374 #else
15375 	cred_t *cred_p = NULL;
15376 
15377 #if __FreeBSD_version < 800039
15378 	/*
15379 	 * The first minor device is the one that is cloned so there is
15380 	 * nothing more to do here.
15381 	 */
15382 	if (dev2unit(dev) == 0)
15383 		return 0;
15384 
15385 	/*
15386 	 * Devices are cloned, so if the DTrace state has already
15387 	 * been allocated, that means this device belongs to a
15388 	 * different client. Each client should open '/dev/dtrace'
15389 	 * to get a cloned device.
15390 	 */
15391 	if (dev->si_drv1 != NULL)
15392 		return (EBUSY);
15393 #endif
15394 
15395 	cred_p = dev->si_cred;
15396 #endif
15397 
15398 	/*
15399 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15400 	 * caller lacks sufficient permission to do anything with DTrace.
15401 	 */
15402 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15403 	if (priv == DTRACE_PRIV_NONE) {
15404 #if !defined(sun)
15405 #if __FreeBSD_version < 800039
15406 		/* Destroy the cloned device. */
15407                 destroy_dev(dev);
15408 #endif
15409 #endif
15410 
15411 		return (EACCES);
15412 	}
15413 
15414 	/*
15415 	 * Ask all providers to provide all their probes.
15416 	 */
15417 	mutex_enter(&dtrace_provider_lock);
15418 	dtrace_probe_provide(NULL, NULL);
15419 	mutex_exit(&dtrace_provider_lock);
15420 
15421 	mutex_enter(&cpu_lock);
15422 	mutex_enter(&dtrace_lock);
15423 	dtrace_opens++;
15424 	dtrace_membar_producer();
15425 
15426 #if defined(sun)
15427 	/*
15428 	 * If the kernel debugger is active (that is, if the kernel debugger
15429 	 * modified text in some way), we won't allow the open.
15430 	 */
15431 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15432 		dtrace_opens--;
15433 		mutex_exit(&cpu_lock);
15434 		mutex_exit(&dtrace_lock);
15435 		return (EBUSY);
15436 	}
15437 
15438 	state = dtrace_state_create(devp, cred_p);
15439 #else
15440 	state = dtrace_state_create(dev);
15441 #if __FreeBSD_version < 800039
15442 	dev->si_drv1 = state;
15443 #else
15444 	devfs_set_cdevpriv(state, dtrace_dtr);
15445 #endif
15446 #endif
15447 
15448 	mutex_exit(&cpu_lock);
15449 
15450 	if (state == NULL) {
15451 #if defined(sun)
15452 		if (--dtrace_opens == 0)
15453 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15454 #else
15455 		--dtrace_opens;
15456 #endif
15457 		mutex_exit(&dtrace_lock);
15458 #if !defined(sun)
15459 #if __FreeBSD_version < 800039
15460 		/* Destroy the cloned device. */
15461                 destroy_dev(dev);
15462 #endif
15463 #endif
15464 		return (EAGAIN);
15465 	}
15466 
15467 	mutex_exit(&dtrace_lock);
15468 
15469 	return (0);
15470 }
15471 
15472 /*ARGSUSED*/
15473 static int
15474 #if defined(sun)
15475 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15476 #else
15477 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15478 #endif
15479 {
15480 #if defined(sun)
15481 	minor_t minor = getminor(dev);
15482 	dtrace_state_t *state;
15483 
15484 	if (minor == DTRACEMNRN_HELPER)
15485 		return (0);
15486 
15487 	state = ddi_get_soft_state(dtrace_softstate, minor);
15488 #else
15489 #if __FreeBSD_version < 800039
15490 	dtrace_state_t *state = dev->si_drv1;
15491 
15492 	/* Check if this is not a cloned device. */
15493 	if (dev2unit(dev) == 0)
15494 		return (0);
15495 #else
15496 	dtrace_state_t *state;
15497 	devfs_get_cdevpriv((void **) &state);
15498 #endif
15499 
15500 #endif
15501 
15502 	mutex_enter(&cpu_lock);
15503 	mutex_enter(&dtrace_lock);
15504 
15505 	if (state != NULL) {
15506 		if (state->dts_anon) {
15507 			/*
15508 			 * There is anonymous state. Destroy that first.
15509 			 */
15510 			ASSERT(dtrace_anon.dta_state == NULL);
15511 			dtrace_state_destroy(state->dts_anon);
15512 		}
15513 
15514 		dtrace_state_destroy(state);
15515 
15516 #if !defined(sun)
15517 		kmem_free(state, 0);
15518 #if __FreeBSD_version < 800039
15519 		dev->si_drv1 = NULL;
15520 #else
15521 		devfs_clear_cdevpriv();
15522 #endif
15523 #endif
15524 	}
15525 
15526 	ASSERT(dtrace_opens > 0);
15527 #if defined(sun)
15528 	if (--dtrace_opens == 0)
15529 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15530 #else
15531 	--dtrace_opens;
15532 #endif
15533 
15534 	mutex_exit(&dtrace_lock);
15535 	mutex_exit(&cpu_lock);
15536 
15537 #if __FreeBSD_version < 800039
15538 	/* Schedule this cloned device to be destroyed. */
15539 	destroy_dev_sched(dev);
15540 #endif
15541 
15542 	return (0);
15543 }
15544 
15545 #if defined(sun)
15546 /*ARGSUSED*/
15547 static int
15548 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15549 {
15550 	int rval;
15551 	dof_helper_t help, *dhp = NULL;
15552 
15553 	switch (cmd) {
15554 	case DTRACEHIOC_ADDDOF:
15555 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15556 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15557 			return (EFAULT);
15558 		}
15559 
15560 		dhp = &help;
15561 		arg = (intptr_t)help.dofhp_dof;
15562 		/*FALLTHROUGH*/
15563 
15564 	case DTRACEHIOC_ADD: {
15565 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15566 
15567 		if (dof == NULL)
15568 			return (rval);
15569 
15570 		mutex_enter(&dtrace_lock);
15571 
15572 		/*
15573 		 * dtrace_helper_slurp() takes responsibility for the dof --
15574 		 * it may free it now or it may save it and free it later.
15575 		 */
15576 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15577 			*rv = rval;
15578 			rval = 0;
15579 		} else {
15580 			rval = EINVAL;
15581 		}
15582 
15583 		mutex_exit(&dtrace_lock);
15584 		return (rval);
15585 	}
15586 
15587 	case DTRACEHIOC_REMOVE: {
15588 		mutex_enter(&dtrace_lock);
15589 		rval = dtrace_helper_destroygen(arg);
15590 		mutex_exit(&dtrace_lock);
15591 
15592 		return (rval);
15593 	}
15594 
15595 	default:
15596 		break;
15597 	}
15598 
15599 	return (ENOTTY);
15600 }
15601 
15602 /*ARGSUSED*/
15603 static int
15604 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15605 {
15606 	minor_t minor = getminor(dev);
15607 	dtrace_state_t *state;
15608 	int rval;
15609 
15610 	if (minor == DTRACEMNRN_HELPER)
15611 		return (dtrace_ioctl_helper(cmd, arg, rv));
15612 
15613 	state = ddi_get_soft_state(dtrace_softstate, minor);
15614 
15615 	if (state->dts_anon) {
15616 		ASSERT(dtrace_anon.dta_state == NULL);
15617 		state = state->dts_anon;
15618 	}
15619 
15620 	switch (cmd) {
15621 	case DTRACEIOC_PROVIDER: {
15622 		dtrace_providerdesc_t pvd;
15623 		dtrace_provider_t *pvp;
15624 
15625 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15626 			return (EFAULT);
15627 
15628 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15629 		mutex_enter(&dtrace_provider_lock);
15630 
15631 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15632 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15633 				break;
15634 		}
15635 
15636 		mutex_exit(&dtrace_provider_lock);
15637 
15638 		if (pvp == NULL)
15639 			return (ESRCH);
15640 
15641 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15642 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15643 
15644 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15645 			return (EFAULT);
15646 
15647 		return (0);
15648 	}
15649 
15650 	case DTRACEIOC_EPROBE: {
15651 		dtrace_eprobedesc_t epdesc;
15652 		dtrace_ecb_t *ecb;
15653 		dtrace_action_t *act;
15654 		void *buf;
15655 		size_t size;
15656 		uintptr_t dest;
15657 		int nrecs;
15658 
15659 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15660 			return (EFAULT);
15661 
15662 		mutex_enter(&dtrace_lock);
15663 
15664 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15665 			mutex_exit(&dtrace_lock);
15666 			return (EINVAL);
15667 		}
15668 
15669 		if (ecb->dte_probe == NULL) {
15670 			mutex_exit(&dtrace_lock);
15671 			return (EINVAL);
15672 		}
15673 
15674 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15675 		epdesc.dtepd_uarg = ecb->dte_uarg;
15676 		epdesc.dtepd_size = ecb->dte_size;
15677 
15678 		nrecs = epdesc.dtepd_nrecs;
15679 		epdesc.dtepd_nrecs = 0;
15680 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15681 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15682 				continue;
15683 
15684 			epdesc.dtepd_nrecs++;
15685 		}
15686 
15687 		/*
15688 		 * Now that we have the size, we need to allocate a temporary
15689 		 * buffer in which to store the complete description.  We need
15690 		 * the temporary buffer to be able to drop dtrace_lock()
15691 		 * across the copyout(), below.
15692 		 */
15693 		size = sizeof (dtrace_eprobedesc_t) +
15694 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15695 
15696 		buf = kmem_alloc(size, KM_SLEEP);
15697 		dest = (uintptr_t)buf;
15698 
15699 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15700 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15701 
15702 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15703 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15704 				continue;
15705 
15706 			if (nrecs-- == 0)
15707 				break;
15708 
15709 			bcopy(&act->dta_rec, (void *)dest,
15710 			    sizeof (dtrace_recdesc_t));
15711 			dest += sizeof (dtrace_recdesc_t);
15712 		}
15713 
15714 		mutex_exit(&dtrace_lock);
15715 
15716 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15717 			kmem_free(buf, size);
15718 			return (EFAULT);
15719 		}
15720 
15721 		kmem_free(buf, size);
15722 		return (0);
15723 	}
15724 
15725 	case DTRACEIOC_AGGDESC: {
15726 		dtrace_aggdesc_t aggdesc;
15727 		dtrace_action_t *act;
15728 		dtrace_aggregation_t *agg;
15729 		int nrecs;
15730 		uint32_t offs;
15731 		dtrace_recdesc_t *lrec;
15732 		void *buf;
15733 		size_t size;
15734 		uintptr_t dest;
15735 
15736 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15737 			return (EFAULT);
15738 
15739 		mutex_enter(&dtrace_lock);
15740 
15741 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15742 			mutex_exit(&dtrace_lock);
15743 			return (EINVAL);
15744 		}
15745 
15746 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15747 
15748 		nrecs = aggdesc.dtagd_nrecs;
15749 		aggdesc.dtagd_nrecs = 0;
15750 
15751 		offs = agg->dtag_base;
15752 		lrec = &agg->dtag_action.dta_rec;
15753 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15754 
15755 		for (act = agg->dtag_first; ; act = act->dta_next) {
15756 			ASSERT(act->dta_intuple ||
15757 			    DTRACEACT_ISAGG(act->dta_kind));
15758 
15759 			/*
15760 			 * If this action has a record size of zero, it
15761 			 * denotes an argument to the aggregating action.
15762 			 * Because the presence of this record doesn't (or
15763 			 * shouldn't) affect the way the data is interpreted,
15764 			 * we don't copy it out to save user-level the
15765 			 * confusion of dealing with a zero-length record.
15766 			 */
15767 			if (act->dta_rec.dtrd_size == 0) {
15768 				ASSERT(agg->dtag_hasarg);
15769 				continue;
15770 			}
15771 
15772 			aggdesc.dtagd_nrecs++;
15773 
15774 			if (act == &agg->dtag_action)
15775 				break;
15776 		}
15777 
15778 		/*
15779 		 * Now that we have the size, we need to allocate a temporary
15780 		 * buffer in which to store the complete description.  We need
15781 		 * the temporary buffer to be able to drop dtrace_lock()
15782 		 * across the copyout(), below.
15783 		 */
15784 		size = sizeof (dtrace_aggdesc_t) +
15785 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15786 
15787 		buf = kmem_alloc(size, KM_SLEEP);
15788 		dest = (uintptr_t)buf;
15789 
15790 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15791 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15792 
15793 		for (act = agg->dtag_first; ; act = act->dta_next) {
15794 			dtrace_recdesc_t rec = act->dta_rec;
15795 
15796 			/*
15797 			 * See the comment in the above loop for why we pass
15798 			 * over zero-length records.
15799 			 */
15800 			if (rec.dtrd_size == 0) {
15801 				ASSERT(agg->dtag_hasarg);
15802 				continue;
15803 			}
15804 
15805 			if (nrecs-- == 0)
15806 				break;
15807 
15808 			rec.dtrd_offset -= offs;
15809 			bcopy(&rec, (void *)dest, sizeof (rec));
15810 			dest += sizeof (dtrace_recdesc_t);
15811 
15812 			if (act == &agg->dtag_action)
15813 				break;
15814 		}
15815 
15816 		mutex_exit(&dtrace_lock);
15817 
15818 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15819 			kmem_free(buf, size);
15820 			return (EFAULT);
15821 		}
15822 
15823 		kmem_free(buf, size);
15824 		return (0);
15825 	}
15826 
15827 	case DTRACEIOC_ENABLE: {
15828 		dof_hdr_t *dof;
15829 		dtrace_enabling_t *enab = NULL;
15830 		dtrace_vstate_t *vstate;
15831 		int err = 0;
15832 
15833 		*rv = 0;
15834 
15835 		/*
15836 		 * If a NULL argument has been passed, we take this as our
15837 		 * cue to reevaluate our enablings.
15838 		 */
15839 		if (arg == NULL) {
15840 			dtrace_enabling_matchall();
15841 
15842 			return (0);
15843 		}
15844 
15845 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15846 			return (rval);
15847 
15848 		mutex_enter(&cpu_lock);
15849 		mutex_enter(&dtrace_lock);
15850 		vstate = &state->dts_vstate;
15851 
15852 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15853 			mutex_exit(&dtrace_lock);
15854 			mutex_exit(&cpu_lock);
15855 			dtrace_dof_destroy(dof);
15856 			return (EBUSY);
15857 		}
15858 
15859 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15860 			mutex_exit(&dtrace_lock);
15861 			mutex_exit(&cpu_lock);
15862 			dtrace_dof_destroy(dof);
15863 			return (EINVAL);
15864 		}
15865 
15866 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15867 			dtrace_enabling_destroy(enab);
15868 			mutex_exit(&dtrace_lock);
15869 			mutex_exit(&cpu_lock);
15870 			dtrace_dof_destroy(dof);
15871 			return (rval);
15872 		}
15873 
15874 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15875 			err = dtrace_enabling_retain(enab);
15876 		} else {
15877 			dtrace_enabling_destroy(enab);
15878 		}
15879 
15880 		mutex_exit(&cpu_lock);
15881 		mutex_exit(&dtrace_lock);
15882 		dtrace_dof_destroy(dof);
15883 
15884 		return (err);
15885 	}
15886 
15887 	case DTRACEIOC_REPLICATE: {
15888 		dtrace_repldesc_t desc;
15889 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15890 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15891 		int err;
15892 
15893 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15894 			return (EFAULT);
15895 
15896 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15897 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15898 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15899 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15900 
15901 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15902 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15903 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15904 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15905 
15906 		mutex_enter(&dtrace_lock);
15907 		err = dtrace_enabling_replicate(state, match, create);
15908 		mutex_exit(&dtrace_lock);
15909 
15910 		return (err);
15911 	}
15912 
15913 	case DTRACEIOC_PROBEMATCH:
15914 	case DTRACEIOC_PROBES: {
15915 		dtrace_probe_t *probe = NULL;
15916 		dtrace_probedesc_t desc;
15917 		dtrace_probekey_t pkey;
15918 		dtrace_id_t i;
15919 		int m = 0;
15920 		uint32_t priv;
15921 		uid_t uid;
15922 		zoneid_t zoneid;
15923 
15924 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15925 			return (EFAULT);
15926 
15927 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15928 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15929 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15930 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15931 
15932 		/*
15933 		 * Before we attempt to match this probe, we want to give
15934 		 * all providers the opportunity to provide it.
15935 		 */
15936 		if (desc.dtpd_id == DTRACE_IDNONE) {
15937 			mutex_enter(&dtrace_provider_lock);
15938 			dtrace_probe_provide(&desc, NULL);
15939 			mutex_exit(&dtrace_provider_lock);
15940 			desc.dtpd_id++;
15941 		}
15942 
15943 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15944 			dtrace_probekey(&desc, &pkey);
15945 			pkey.dtpk_id = DTRACE_IDNONE;
15946 		}
15947 
15948 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15949 
15950 		mutex_enter(&dtrace_lock);
15951 
15952 		if (cmd == DTRACEIOC_PROBEMATCH) {
15953 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15954 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15955 				    (m = dtrace_match_probe(probe, &pkey,
15956 				    priv, uid, zoneid)) != 0)
15957 					break;
15958 			}
15959 
15960 			if (m < 0) {
15961 				mutex_exit(&dtrace_lock);
15962 				return (EINVAL);
15963 			}
15964 
15965 		} else {
15966 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15967 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15968 				    dtrace_match_priv(probe, priv, uid, zoneid))
15969 					break;
15970 			}
15971 		}
15972 
15973 		if (probe == NULL) {
15974 			mutex_exit(&dtrace_lock);
15975 			return (ESRCH);
15976 		}
15977 
15978 		dtrace_probe_description(probe, &desc);
15979 		mutex_exit(&dtrace_lock);
15980 
15981 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15982 			return (EFAULT);
15983 
15984 		return (0);
15985 	}
15986 
15987 	case DTRACEIOC_PROBEARG: {
15988 		dtrace_argdesc_t desc;
15989 		dtrace_probe_t *probe;
15990 		dtrace_provider_t *prov;
15991 
15992 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15993 			return (EFAULT);
15994 
15995 		if (desc.dtargd_id == DTRACE_IDNONE)
15996 			return (EINVAL);
15997 
15998 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15999 			return (EINVAL);
16000 
16001 		mutex_enter(&dtrace_provider_lock);
16002 		mutex_enter(&mod_lock);
16003 		mutex_enter(&dtrace_lock);
16004 
16005 		if (desc.dtargd_id > dtrace_nprobes) {
16006 			mutex_exit(&dtrace_lock);
16007 			mutex_exit(&mod_lock);
16008 			mutex_exit(&dtrace_provider_lock);
16009 			return (EINVAL);
16010 		}
16011 
16012 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16013 			mutex_exit(&dtrace_lock);
16014 			mutex_exit(&mod_lock);
16015 			mutex_exit(&dtrace_provider_lock);
16016 			return (EINVAL);
16017 		}
16018 
16019 		mutex_exit(&dtrace_lock);
16020 
16021 		prov = probe->dtpr_provider;
16022 
16023 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16024 			/*
16025 			 * There isn't any typed information for this probe.
16026 			 * Set the argument number to DTRACE_ARGNONE.
16027 			 */
16028 			desc.dtargd_ndx = DTRACE_ARGNONE;
16029 		} else {
16030 			desc.dtargd_native[0] = '\0';
16031 			desc.dtargd_xlate[0] = '\0';
16032 			desc.dtargd_mapping = desc.dtargd_ndx;
16033 
16034 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16035 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16036 		}
16037 
16038 		mutex_exit(&mod_lock);
16039 		mutex_exit(&dtrace_provider_lock);
16040 
16041 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16042 			return (EFAULT);
16043 
16044 		return (0);
16045 	}
16046 
16047 	case DTRACEIOC_GO: {
16048 		processorid_t cpuid;
16049 		rval = dtrace_state_go(state, &cpuid);
16050 
16051 		if (rval != 0)
16052 			return (rval);
16053 
16054 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16055 			return (EFAULT);
16056 
16057 		return (0);
16058 	}
16059 
16060 	case DTRACEIOC_STOP: {
16061 		processorid_t cpuid;
16062 
16063 		mutex_enter(&dtrace_lock);
16064 		rval = dtrace_state_stop(state, &cpuid);
16065 		mutex_exit(&dtrace_lock);
16066 
16067 		if (rval != 0)
16068 			return (rval);
16069 
16070 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16071 			return (EFAULT);
16072 
16073 		return (0);
16074 	}
16075 
16076 	case DTRACEIOC_DOFGET: {
16077 		dof_hdr_t hdr, *dof;
16078 		uint64_t len;
16079 
16080 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16081 			return (EFAULT);
16082 
16083 		mutex_enter(&dtrace_lock);
16084 		dof = dtrace_dof_create(state);
16085 		mutex_exit(&dtrace_lock);
16086 
16087 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16088 		rval = copyout(dof, (void *)arg, len);
16089 		dtrace_dof_destroy(dof);
16090 
16091 		return (rval == 0 ? 0 : EFAULT);
16092 	}
16093 
16094 	case DTRACEIOC_AGGSNAP:
16095 	case DTRACEIOC_BUFSNAP: {
16096 		dtrace_bufdesc_t desc;
16097 		caddr_t cached;
16098 		dtrace_buffer_t *buf;
16099 
16100 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16101 			return (EFAULT);
16102 
16103 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16104 			return (EINVAL);
16105 
16106 		mutex_enter(&dtrace_lock);
16107 
16108 		if (cmd == DTRACEIOC_BUFSNAP) {
16109 			buf = &state->dts_buffer[desc.dtbd_cpu];
16110 		} else {
16111 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16112 		}
16113 
16114 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16115 			size_t sz = buf->dtb_offset;
16116 
16117 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16118 				mutex_exit(&dtrace_lock);
16119 				return (EBUSY);
16120 			}
16121 
16122 			/*
16123 			 * If this buffer has already been consumed, we're
16124 			 * going to indicate that there's nothing left here
16125 			 * to consume.
16126 			 */
16127 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16128 				mutex_exit(&dtrace_lock);
16129 
16130 				desc.dtbd_size = 0;
16131 				desc.dtbd_drops = 0;
16132 				desc.dtbd_errors = 0;
16133 				desc.dtbd_oldest = 0;
16134 				sz = sizeof (desc);
16135 
16136 				if (copyout(&desc, (void *)arg, sz) != 0)
16137 					return (EFAULT);
16138 
16139 				return (0);
16140 			}
16141 
16142 			/*
16143 			 * If this is a ring buffer that has wrapped, we want
16144 			 * to copy the whole thing out.
16145 			 */
16146 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16147 				dtrace_buffer_polish(buf);
16148 				sz = buf->dtb_size;
16149 			}
16150 
16151 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16152 				mutex_exit(&dtrace_lock);
16153 				return (EFAULT);
16154 			}
16155 
16156 			desc.dtbd_size = sz;
16157 			desc.dtbd_drops = buf->dtb_drops;
16158 			desc.dtbd_errors = buf->dtb_errors;
16159 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16160 
16161 			mutex_exit(&dtrace_lock);
16162 
16163 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16164 				return (EFAULT);
16165 
16166 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16167 
16168 			return (0);
16169 		}
16170 
16171 		if (buf->dtb_tomax == NULL) {
16172 			ASSERT(buf->dtb_xamot == NULL);
16173 			mutex_exit(&dtrace_lock);
16174 			return (ENOENT);
16175 		}
16176 
16177 		cached = buf->dtb_tomax;
16178 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16179 
16180 		dtrace_xcall(desc.dtbd_cpu,
16181 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16182 
16183 		state->dts_errors += buf->dtb_xamot_errors;
16184 
16185 		/*
16186 		 * If the buffers did not actually switch, then the cross call
16187 		 * did not take place -- presumably because the given CPU is
16188 		 * not in the ready set.  If this is the case, we'll return
16189 		 * ENOENT.
16190 		 */
16191 		if (buf->dtb_tomax == cached) {
16192 			ASSERT(buf->dtb_xamot != cached);
16193 			mutex_exit(&dtrace_lock);
16194 			return (ENOENT);
16195 		}
16196 
16197 		ASSERT(cached == buf->dtb_xamot);
16198 
16199 		/*
16200 		 * We have our snapshot; now copy it out.
16201 		 */
16202 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16203 		    buf->dtb_xamot_offset) != 0) {
16204 			mutex_exit(&dtrace_lock);
16205 			return (EFAULT);
16206 		}
16207 
16208 		desc.dtbd_size = buf->dtb_xamot_offset;
16209 		desc.dtbd_drops = buf->dtb_xamot_drops;
16210 		desc.dtbd_errors = buf->dtb_xamot_errors;
16211 		desc.dtbd_oldest = 0;
16212 
16213 		mutex_exit(&dtrace_lock);
16214 
16215 		/*
16216 		 * Finally, copy out the buffer description.
16217 		 */
16218 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16219 			return (EFAULT);
16220 
16221 		return (0);
16222 	}
16223 
16224 	case DTRACEIOC_CONF: {
16225 		dtrace_conf_t conf;
16226 
16227 		bzero(&conf, sizeof (conf));
16228 		conf.dtc_difversion = DIF_VERSION;
16229 		conf.dtc_difintregs = DIF_DIR_NREGS;
16230 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16231 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16232 
16233 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16234 			return (EFAULT);
16235 
16236 		return (0);
16237 	}
16238 
16239 	case DTRACEIOC_STATUS: {
16240 		dtrace_status_t stat;
16241 		dtrace_dstate_t *dstate;
16242 		int i, j;
16243 		uint64_t nerrs;
16244 
16245 		/*
16246 		 * See the comment in dtrace_state_deadman() for the reason
16247 		 * for setting dts_laststatus to INT64_MAX before setting
16248 		 * it to the correct value.
16249 		 */
16250 		state->dts_laststatus = INT64_MAX;
16251 		dtrace_membar_producer();
16252 		state->dts_laststatus = dtrace_gethrtime();
16253 
16254 		bzero(&stat, sizeof (stat));
16255 
16256 		mutex_enter(&dtrace_lock);
16257 
16258 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16259 			mutex_exit(&dtrace_lock);
16260 			return (ENOENT);
16261 		}
16262 
16263 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16264 			stat.dtst_exiting = 1;
16265 
16266 		nerrs = state->dts_errors;
16267 		dstate = &state->dts_vstate.dtvs_dynvars;
16268 
16269 		for (i = 0; i < NCPU; i++) {
16270 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16271 
16272 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16273 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16274 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16275 
16276 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16277 				stat.dtst_filled++;
16278 
16279 			nerrs += state->dts_buffer[i].dtb_errors;
16280 
16281 			for (j = 0; j < state->dts_nspeculations; j++) {
16282 				dtrace_speculation_t *spec;
16283 				dtrace_buffer_t *buf;
16284 
16285 				spec = &state->dts_speculations[j];
16286 				buf = &spec->dtsp_buffer[i];
16287 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16288 			}
16289 		}
16290 
16291 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16292 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16293 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16294 		stat.dtst_dblerrors = state->dts_dblerrors;
16295 		stat.dtst_killed =
16296 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16297 		stat.dtst_errors = nerrs;
16298 
16299 		mutex_exit(&dtrace_lock);
16300 
16301 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16302 			return (EFAULT);
16303 
16304 		return (0);
16305 	}
16306 
16307 	case DTRACEIOC_FORMAT: {
16308 		dtrace_fmtdesc_t fmt;
16309 		char *str;
16310 		int len;
16311 
16312 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16313 			return (EFAULT);
16314 
16315 		mutex_enter(&dtrace_lock);
16316 
16317 		if (fmt.dtfd_format == 0 ||
16318 		    fmt.dtfd_format > state->dts_nformats) {
16319 			mutex_exit(&dtrace_lock);
16320 			return (EINVAL);
16321 		}
16322 
16323 		/*
16324 		 * Format strings are allocated contiguously and they are
16325 		 * never freed; if a format index is less than the number
16326 		 * of formats, we can assert that the format map is non-NULL
16327 		 * and that the format for the specified index is non-NULL.
16328 		 */
16329 		ASSERT(state->dts_formats != NULL);
16330 		str = state->dts_formats[fmt.dtfd_format - 1];
16331 		ASSERT(str != NULL);
16332 
16333 		len = strlen(str) + 1;
16334 
16335 		if (len > fmt.dtfd_length) {
16336 			fmt.dtfd_length = len;
16337 
16338 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16339 				mutex_exit(&dtrace_lock);
16340 				return (EINVAL);
16341 			}
16342 		} else {
16343 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16344 				mutex_exit(&dtrace_lock);
16345 				return (EINVAL);
16346 			}
16347 		}
16348 
16349 		mutex_exit(&dtrace_lock);
16350 		return (0);
16351 	}
16352 
16353 	default:
16354 		break;
16355 	}
16356 
16357 	return (ENOTTY);
16358 }
16359 
16360 /*ARGSUSED*/
16361 static int
16362 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16363 {
16364 	dtrace_state_t *state;
16365 
16366 	switch (cmd) {
16367 	case DDI_DETACH:
16368 		break;
16369 
16370 	case DDI_SUSPEND:
16371 		return (DDI_SUCCESS);
16372 
16373 	default:
16374 		return (DDI_FAILURE);
16375 	}
16376 
16377 	mutex_enter(&cpu_lock);
16378 	mutex_enter(&dtrace_provider_lock);
16379 	mutex_enter(&dtrace_lock);
16380 
16381 	ASSERT(dtrace_opens == 0);
16382 
16383 	if (dtrace_helpers > 0) {
16384 		mutex_exit(&dtrace_provider_lock);
16385 		mutex_exit(&dtrace_lock);
16386 		mutex_exit(&cpu_lock);
16387 		return (DDI_FAILURE);
16388 	}
16389 
16390 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16391 		mutex_exit(&dtrace_provider_lock);
16392 		mutex_exit(&dtrace_lock);
16393 		mutex_exit(&cpu_lock);
16394 		return (DDI_FAILURE);
16395 	}
16396 
16397 	dtrace_provider = NULL;
16398 
16399 	if ((state = dtrace_anon_grab()) != NULL) {
16400 		/*
16401 		 * If there were ECBs on this state, the provider should
16402 		 * have not been allowed to detach; assert that there is
16403 		 * none.
16404 		 */
16405 		ASSERT(state->dts_necbs == 0);
16406 		dtrace_state_destroy(state);
16407 
16408 		/*
16409 		 * If we're being detached with anonymous state, we need to
16410 		 * indicate to the kernel debugger that DTrace is now inactive.
16411 		 */
16412 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16413 	}
16414 
16415 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16416 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16417 	dtrace_cpu_init = NULL;
16418 	dtrace_helpers_cleanup = NULL;
16419 	dtrace_helpers_fork = NULL;
16420 	dtrace_cpustart_init = NULL;
16421 	dtrace_cpustart_fini = NULL;
16422 	dtrace_debugger_init = NULL;
16423 	dtrace_debugger_fini = NULL;
16424 	dtrace_modload = NULL;
16425 	dtrace_modunload = NULL;
16426 
16427 	mutex_exit(&cpu_lock);
16428 
16429 	if (dtrace_helptrace_enabled) {
16430 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16431 		dtrace_helptrace_buffer = NULL;
16432 	}
16433 
16434 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16435 	dtrace_probes = NULL;
16436 	dtrace_nprobes = 0;
16437 
16438 	dtrace_hash_destroy(dtrace_bymod);
16439 	dtrace_hash_destroy(dtrace_byfunc);
16440 	dtrace_hash_destroy(dtrace_byname);
16441 	dtrace_bymod = NULL;
16442 	dtrace_byfunc = NULL;
16443 	dtrace_byname = NULL;
16444 
16445 	kmem_cache_destroy(dtrace_state_cache);
16446 	vmem_destroy(dtrace_minor);
16447 	vmem_destroy(dtrace_arena);
16448 
16449 	if (dtrace_toxrange != NULL) {
16450 		kmem_free(dtrace_toxrange,
16451 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16452 		dtrace_toxrange = NULL;
16453 		dtrace_toxranges = 0;
16454 		dtrace_toxranges_max = 0;
16455 	}
16456 
16457 	ddi_remove_minor_node(dtrace_devi, NULL);
16458 	dtrace_devi = NULL;
16459 
16460 	ddi_soft_state_fini(&dtrace_softstate);
16461 
16462 	ASSERT(dtrace_vtime_references == 0);
16463 	ASSERT(dtrace_opens == 0);
16464 	ASSERT(dtrace_retained == NULL);
16465 
16466 	mutex_exit(&dtrace_lock);
16467 	mutex_exit(&dtrace_provider_lock);
16468 
16469 	/*
16470 	 * We don't destroy the task queue until after we have dropped our
16471 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16472 	 * attempting to do work after we have effectively detached but before
16473 	 * the task queue has been destroyed, all tasks dispatched via the
16474 	 * task queue must check that DTrace is still attached before
16475 	 * performing any operation.
16476 	 */
16477 	taskq_destroy(dtrace_taskq);
16478 	dtrace_taskq = NULL;
16479 
16480 	return (DDI_SUCCESS);
16481 }
16482 #endif
16483 
16484 #if defined(sun)
16485 /*ARGSUSED*/
16486 static int
16487 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16488 {
16489 	int error;
16490 
16491 	switch (infocmd) {
16492 	case DDI_INFO_DEVT2DEVINFO:
16493 		*result = (void *)dtrace_devi;
16494 		error = DDI_SUCCESS;
16495 		break;
16496 	case DDI_INFO_DEVT2INSTANCE:
16497 		*result = (void *)0;
16498 		error = DDI_SUCCESS;
16499 		break;
16500 	default:
16501 		error = DDI_FAILURE;
16502 	}
16503 	return (error);
16504 }
16505 #endif
16506 
16507 #if defined(sun)
16508 static struct cb_ops dtrace_cb_ops = {
16509 	dtrace_open,		/* open */
16510 	dtrace_close,		/* close */
16511 	nulldev,		/* strategy */
16512 	nulldev,		/* print */
16513 	nodev,			/* dump */
16514 	nodev,			/* read */
16515 	nodev,			/* write */
16516 	dtrace_ioctl,		/* ioctl */
16517 	nodev,			/* devmap */
16518 	nodev,			/* mmap */
16519 	nodev,			/* segmap */
16520 	nochpoll,		/* poll */
16521 	ddi_prop_op,		/* cb_prop_op */
16522 	0,			/* streamtab  */
16523 	D_NEW | D_MP		/* Driver compatibility flag */
16524 };
16525 
16526 static struct dev_ops dtrace_ops = {
16527 	DEVO_REV,		/* devo_rev */
16528 	0,			/* refcnt */
16529 	dtrace_info,		/* get_dev_info */
16530 	nulldev,		/* identify */
16531 	nulldev,		/* probe */
16532 	dtrace_attach,		/* attach */
16533 	dtrace_detach,		/* detach */
16534 	nodev,			/* reset */
16535 	&dtrace_cb_ops,		/* driver operations */
16536 	NULL,			/* bus operations */
16537 	nodev			/* dev power */
16538 };
16539 
16540 static struct modldrv modldrv = {
16541 	&mod_driverops,		/* module type (this is a pseudo driver) */
16542 	"Dynamic Tracing",	/* name of module */
16543 	&dtrace_ops,		/* driver ops */
16544 };
16545 
16546 static struct modlinkage modlinkage = {
16547 	MODREV_1,
16548 	(void *)&modldrv,
16549 	NULL
16550 };
16551 
16552 int
16553 _init(void)
16554 {
16555 	return (mod_install(&modlinkage));
16556 }
16557 
16558 int
16559 _info(struct modinfo *modinfop)
16560 {
16561 	return (mod_info(&modlinkage, modinfop));
16562 }
16563 
16564 int
16565 _fini(void)
16566 {
16567 	return (mod_remove(&modlinkage));
16568 }
16569 #else
16570 
16571 static d_ioctl_t	dtrace_ioctl;
16572 static d_ioctl_t	dtrace_ioctl_helper;
16573 static void		dtrace_load(void *);
16574 static int		dtrace_unload(void);
16575 #if __FreeBSD_version < 800039
16576 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16577 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16578 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16579 #else
16580 static struct cdev	*dtrace_dev;
16581 static struct cdev	*helper_dev;
16582 #endif
16583 
16584 void dtrace_invop_init(void);
16585 void dtrace_invop_uninit(void);
16586 
16587 static struct cdevsw dtrace_cdevsw = {
16588 	.d_version	= D_VERSION,
16589 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16590 	.d_close	= dtrace_close,
16591 	.d_ioctl	= dtrace_ioctl,
16592 	.d_open		= dtrace_open,
16593 	.d_name		= "dtrace",
16594 };
16595 
16596 static struct cdevsw helper_cdevsw = {
16597 	.d_version	= D_VERSION,
16598 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16599 	.d_ioctl	= dtrace_ioctl_helper,
16600 	.d_name		= "helper",
16601 };
16602 
16603 #include <dtrace_anon.c>
16604 #if __FreeBSD_version < 800039
16605 #include <dtrace_clone.c>
16606 #endif
16607 #include <dtrace_ioctl.c>
16608 #include <dtrace_load.c>
16609 #include <dtrace_modevent.c>
16610 #include <dtrace_sysctl.c>
16611 #include <dtrace_unload.c>
16612 #include <dtrace_vtime.c>
16613 #include <dtrace_hacks.c>
16614 #include <dtrace_isa.c>
16615 
16616 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16617 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16618 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16619 
16620 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16621 MODULE_VERSION(dtrace, 1);
16622 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16623 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16624 #endif
16625