xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/linker.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131 
132 #include <sys/dtrace_bsd.h>
133 
134 #include <netinet/in.h>
135 
136 #include "dtrace_cddl.h"
137 #include "dtrace_debug.c"
138 #endif
139 
140 #include "dtrace_xoroshiro128_plus.h"
141 
142 /*
143  * DTrace Tunable Variables
144  *
145  * The following variables may be tuned by adding a line to /etc/system that
146  * includes both the name of the DTrace module ("dtrace") and the name of the
147  * variable.  For example:
148  *
149  *   set dtrace:dtrace_destructive_disallow = 1
150  *
151  * In general, the only variables that one should be tuning this way are those
152  * that affect system-wide DTrace behavior, and for which the default behavior
153  * is undesirable.  Most of these variables are tunable on a per-consumer
154  * basis using DTrace options, and need not be tuned on a system-wide basis.
155  * When tuning these variables, avoid pathological values; while some attempt
156  * is made to verify the integrity of these variables, they are not considered
157  * part of the supported interface to DTrace, and they are therefore not
158  * checked comprehensively.  Further, these variables should not be tuned
159  * dynamically via "mdb -kw" or other means; they should only be tuned via
160  * /etc/system.
161  */
162 int		dtrace_destructive_disallow = 0;
163 #ifndef illumos
164 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
165 int		dtrace_allow_destructive = 1;
166 #endif
167 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
168 size_t		dtrace_difo_maxsize = (256 * 1024);
169 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
170 size_t		dtrace_statvar_maxsize = (16 * 1024);
171 size_t		dtrace_actions_max = (16 * 1024);
172 size_t		dtrace_retain_max = 1024;
173 dtrace_optval_t	dtrace_helper_actions_max = 128;
174 dtrace_optval_t	dtrace_helper_providers_max = 32;
175 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
176 size_t		dtrace_strsize_default = 256;
177 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
178 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
179 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
180 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
181 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
182 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
183 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
184 dtrace_optval_t	dtrace_nspec_default = 1;
185 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
186 dtrace_optval_t dtrace_stackframes_default = 20;
187 dtrace_optval_t dtrace_ustackframes_default = 20;
188 dtrace_optval_t dtrace_jstackframes_default = 50;
189 dtrace_optval_t dtrace_jstackstrsize_default = 512;
190 int		dtrace_msgdsize_max = 128;
191 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
192 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
193 int		dtrace_devdepth_max = 32;
194 int		dtrace_err_verbose;
195 hrtime_t	dtrace_deadman_interval = NANOSEC;
196 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
197 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
198 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
199 #ifndef illumos
200 int		dtrace_memstr_max = 4096;
201 #endif
202 
203 /*
204  * DTrace External Variables
205  *
206  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
207  * available to DTrace consumers via the backtick (`) syntax.  One of these,
208  * dtrace_zero, is made deliberately so:  it is provided as a source of
209  * well-known, zero-filled memory.  While this variable is not documented,
210  * it is used by some translators as an implementation detail.
211  */
212 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
213 
214 /*
215  * DTrace Internal Variables
216  */
217 #ifdef illumos
218 static dev_info_t	*dtrace_devi;		/* device info */
219 #endif
220 #ifdef illumos
221 static vmem_t		*dtrace_arena;		/* probe ID arena */
222 static vmem_t		*dtrace_minor;		/* minor number arena */
223 #else
224 static taskq_t		*dtrace_taskq;		/* task queue */
225 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
226 #endif
227 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
228 static int		dtrace_nprobes;		/* number of probes */
229 static dtrace_provider_t *dtrace_provider;	/* provider list */
230 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
231 static int		dtrace_opens;		/* number of opens */
232 static int		dtrace_helpers;		/* number of helpers */
233 static int		dtrace_getf;		/* number of unpriv getf()s */
234 #ifdef illumos
235 static void		*dtrace_softstate;	/* softstate pointer */
236 #endif
237 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
238 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
239 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
240 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
241 static int		dtrace_toxranges;	/* number of toxic ranges */
242 static int		dtrace_toxranges_max;	/* size of toxic range array */
243 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
244 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
245 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
246 static kthread_t	*dtrace_panicked;	/* panicking thread */
247 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
248 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
249 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
250 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
251 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
252 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
253 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
254 #ifndef illumos
255 static struct mtx	dtrace_unr_mtx;
256 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
257 static eventhandler_tag	dtrace_kld_load_tag;
258 static eventhandler_tag	dtrace_kld_unload_try_tag;
259 #endif
260 
261 /*
262  * DTrace Locking
263  * DTrace is protected by three (relatively coarse-grained) locks:
264  *
265  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
266  *     including enabling state, probes, ECBs, consumer state, helper state,
267  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
268  *     probe context is lock-free -- synchronization is handled via the
269  *     dtrace_sync() cross call mechanism.
270  *
271  * (2) dtrace_provider_lock is required when manipulating provider state, or
272  *     when provider state must be held constant.
273  *
274  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
275  *     when meta provider state must be held constant.
276  *
277  * The lock ordering between these three locks is dtrace_meta_lock before
278  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
279  * several places where dtrace_provider_lock is held by the framework as it
280  * calls into the providers -- which then call back into the framework,
281  * grabbing dtrace_lock.)
282  *
283  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
284  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
285  * role as a coarse-grained lock; it is acquired before both of these locks.
286  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
287  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
288  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
289  * acquired _between_ dtrace_provider_lock and dtrace_lock.
290  */
291 static kmutex_t		dtrace_lock;		/* probe state lock */
292 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
293 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
294 
295 #ifndef illumos
296 /* XXX FreeBSD hacks. */
297 #define cr_suid		cr_svuid
298 #define cr_sgid		cr_svgid
299 #define	ipaddr_t	in_addr_t
300 #define mod_modname	pathname
301 #define vuprintf	vprintf
302 #define ttoproc(_a)	((_a)->td_proc)
303 #define crgetzoneid(_a)	0
304 #define SNOCD		0
305 #define CPU_ON_INTR(_a)	0
306 
307 #define PRIV_EFFECTIVE		(1 << 0)
308 #define PRIV_DTRACE_KERNEL	(1 << 1)
309 #define PRIV_DTRACE_PROC	(1 << 2)
310 #define PRIV_DTRACE_USER	(1 << 3)
311 #define PRIV_PROC_OWNER		(1 << 4)
312 #define PRIV_PROC_ZONE		(1 << 5)
313 #define PRIV_ALL		~0
314 
315 SYSCTL_DECL(_debug_dtrace);
316 SYSCTL_DECL(_kern_dtrace);
317 #endif
318 
319 #ifdef illumos
320 #define curcpu	CPU->cpu_id
321 #endif
322 
323 
324 /*
325  * DTrace Provider Variables
326  *
327  * These are the variables relating to DTrace as a provider (that is, the
328  * provider of the BEGIN, END, and ERROR probes).
329  */
330 static dtrace_pattr_t	dtrace_provider_attr = {
331 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
332 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
333 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
334 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
335 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
336 };
337 
338 static void
339 dtrace_nullop(void)
340 {}
341 
342 static dtrace_pops_t dtrace_provider_ops = {
343 	.dtps_provide =	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
344 	.dtps_provide_module =	(void (*)(void *, modctl_t *))dtrace_nullop,
345 	.dtps_enable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346 	.dtps_disable =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
347 	.dtps_suspend =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
348 	.dtps_resume =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
349 	.dtps_getargdesc =	NULL,
350 	.dtps_getargval =	NULL,
351 	.dtps_usermode =	NULL,
352 	.dtps_destroy =	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
353 };
354 
355 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
356 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
357 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
358 
359 /*
360  * DTrace Helper Tracing Variables
361  *
362  * These variables should be set dynamically to enable helper tracing.  The
363  * only variables that should be set are dtrace_helptrace_enable (which should
364  * be set to a non-zero value to allocate helper tracing buffers on the next
365  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
366  * non-zero value to deallocate helper tracing buffers on the next close of
367  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
368  * buffer size may also be set via dtrace_helptrace_bufsize.
369  */
370 int			dtrace_helptrace_enable = 0;
371 int			dtrace_helptrace_disable = 0;
372 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
373 uint32_t		dtrace_helptrace_nlocals;
374 static dtrace_helptrace_t *dtrace_helptrace_buffer;
375 static uint32_t		dtrace_helptrace_next = 0;
376 static int		dtrace_helptrace_wrapped = 0;
377 
378 /*
379  * DTrace Error Hashing
380  *
381  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
382  * table.  This is very useful for checking coverage of tests that are
383  * expected to induce DIF or DOF processing errors, and may be useful for
384  * debugging problems in the DIF code generator or in DOF generation .  The
385  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
386  */
387 #ifdef DEBUG
388 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
389 static const char *dtrace_errlast;
390 static kthread_t *dtrace_errthread;
391 static kmutex_t dtrace_errlock;
392 #endif
393 
394 /*
395  * DTrace Macros and Constants
396  *
397  * These are various macros that are useful in various spots in the
398  * implementation, along with a few random constants that have no meaning
399  * outside of the implementation.  There is no real structure to this cpp
400  * mishmash -- but is there ever?
401  */
402 #define	DTRACE_HASHSTR(hash, probe)	\
403 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
404 
405 #define	DTRACE_HASHNEXT(hash, probe)	\
406 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
407 
408 #define	DTRACE_HASHPREV(hash, probe)	\
409 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
410 
411 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
412 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
413 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
414 
415 #define	DTRACE_AGGHASHSIZE_SLEW		17
416 
417 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
418 
419 /*
420  * The key for a thread-local variable consists of the lower 61 bits of the
421  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
422  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
423  * equal to a variable identifier.  This is necessary (but not sufficient) to
424  * assure that global associative arrays never collide with thread-local
425  * variables.  To guarantee that they cannot collide, we must also define the
426  * order for keying dynamic variables.  That order is:
427  *
428  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
429  *
430  * Because the variable-key and the tls-key are in orthogonal spaces, there is
431  * no way for a global variable key signature to match a thread-local key
432  * signature.
433  */
434 #ifdef illumos
435 #define	DTRACE_TLS_THRKEY(where) { \
436 	uint_t intr = 0; \
437 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
438 	for (; actv; actv >>= 1) \
439 		intr++; \
440 	ASSERT(intr < (1 << 3)); \
441 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
442 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
443 }
444 #else
445 #define	DTRACE_TLS_THRKEY(where) { \
446 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
447 	uint_t intr = 0; \
448 	uint_t actv = _c->cpu_intr_actv; \
449 	for (; actv; actv >>= 1) \
450 		intr++; \
451 	ASSERT(intr < (1 << 3)); \
452 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
453 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
454 }
455 #endif
456 
457 #define	DT_BSWAP_8(x)	((x) & 0xff)
458 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
459 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
460 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
461 
462 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
463 
464 #define	DTRACE_STORE(type, tomax, offset, what) \
465 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
466 
467 #ifndef __x86
468 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
469 	if (addr & (size - 1)) {					\
470 		*flags |= CPU_DTRACE_BADALIGN;				\
471 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
472 		return (0);						\
473 	}
474 #else
475 #define	DTRACE_ALIGNCHECK(addr, size, flags)
476 #endif
477 
478 /*
479  * Test whether a range of memory starting at testaddr of size testsz falls
480  * within the range of memory described by addr, sz.  We take care to avoid
481  * problems with overflow and underflow of the unsigned quantities, and
482  * disallow all negative sizes.  Ranges of size 0 are allowed.
483  */
484 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
485 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
486 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
487 	(testaddr) + (testsz) >= (testaddr))
488 
489 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
490 do {									\
491 	if ((remp) != NULL) {						\
492 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
493 	}								\
494 _NOTE(CONSTCOND) } while (0)
495 
496 
497 /*
498  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
499  * alloc_sz on the righthand side of the comparison in order to avoid overflow
500  * or underflow in the comparison with it.  This is simpler than the INRANGE
501  * check above, because we know that the dtms_scratch_ptr is valid in the
502  * range.  Allocations of size zero are allowed.
503  */
504 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
505 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
506 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
507 
508 #define	DTRACE_LOADFUNC(bits)						\
509 /*CSTYLED*/								\
510 uint##bits##_t								\
511 dtrace_load##bits(uintptr_t addr)					\
512 {									\
513 	size_t size = bits / NBBY;					\
514 	/*CSTYLED*/							\
515 	uint##bits##_t rval;						\
516 	int i;								\
517 	volatile uint16_t *flags = (volatile uint16_t *)		\
518 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
519 									\
520 	DTRACE_ALIGNCHECK(addr, size, flags);				\
521 									\
522 	for (i = 0; i < dtrace_toxranges; i++) {			\
523 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
524 			continue;					\
525 									\
526 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
527 			continue;					\
528 									\
529 		/*							\
530 		 * This address falls within a toxic region; return 0.	\
531 		 */							\
532 		*flags |= CPU_DTRACE_BADADDR;				\
533 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
534 		return (0);						\
535 	}								\
536 									\
537 	*flags |= CPU_DTRACE_NOFAULT;					\
538 	/*CSTYLED*/							\
539 	rval = *((volatile uint##bits##_t *)addr);			\
540 	*flags &= ~CPU_DTRACE_NOFAULT;					\
541 									\
542 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
543 }
544 
545 #ifdef _LP64
546 #define	dtrace_loadptr	dtrace_load64
547 #else
548 #define	dtrace_loadptr	dtrace_load32
549 #endif
550 
551 #define	DTRACE_DYNHASH_FREE	0
552 #define	DTRACE_DYNHASH_SINK	1
553 #define	DTRACE_DYNHASH_VALID	2
554 
555 #define	DTRACE_MATCH_NEXT	0
556 #define	DTRACE_MATCH_DONE	1
557 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
558 #define	DTRACE_STATE_ALIGN	64
559 
560 #define	DTRACE_FLAGS2FLT(flags)						\
561 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
562 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
563 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
564 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
565 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
566 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
567 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
568 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
569 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
570 	DTRACEFLT_UNKNOWN)
571 
572 #define	DTRACEACT_ISSTRING(act)						\
573 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
574 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
575 
576 /* Function prototype definitions: */
577 static size_t dtrace_strlen(const char *, size_t);
578 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
579 static void dtrace_enabling_provide(dtrace_provider_t *);
580 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
581 static void dtrace_enabling_matchall(void);
582 static void dtrace_enabling_reap(void);
583 static dtrace_state_t *dtrace_anon_grab(void);
584 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
585     dtrace_state_t *, uint64_t, uint64_t);
586 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
587 static void dtrace_buffer_drop(dtrace_buffer_t *);
588 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
589 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
590     dtrace_state_t *, dtrace_mstate_t *);
591 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
592     dtrace_optval_t);
593 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
594 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
595 uint16_t dtrace_load16(uintptr_t);
596 uint32_t dtrace_load32(uintptr_t);
597 uint64_t dtrace_load64(uintptr_t);
598 uint8_t dtrace_load8(uintptr_t);
599 void dtrace_dynvar_clean(dtrace_dstate_t *);
600 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
601     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
602 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
603 static int dtrace_priv_proc(dtrace_state_t *);
604 static void dtrace_getf_barrier(void);
605 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
606     dtrace_mstate_t *, dtrace_vstate_t *);
607 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
608     dtrace_mstate_t *, dtrace_vstate_t *);
609 
610 /*
611  * DTrace Probe Context Functions
612  *
613  * These functions are called from probe context.  Because probe context is
614  * any context in which C may be called, arbitrarily locks may be held,
615  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
616  * As a result, functions called from probe context may only call other DTrace
617  * support functions -- they may not interact at all with the system at large.
618  * (Note that the ASSERT macro is made probe-context safe by redefining it in
619  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
620  * loads are to be performed from probe context, they _must_ be in terms of
621  * the safe dtrace_load*() variants.
622  *
623  * Some functions in this block are not actually called from probe context;
624  * for these functions, there will be a comment above the function reading
625  * "Note:  not called from probe context."
626  */
627 void
628 dtrace_panic(const char *format, ...)
629 {
630 	va_list alist;
631 
632 	va_start(alist, format);
633 #ifdef __FreeBSD__
634 	vpanic(format, alist);
635 #else
636 	dtrace_vpanic(format, alist);
637 #endif
638 	va_end(alist);
639 }
640 
641 int
642 dtrace_assfail(const char *a, const char *f, int l)
643 {
644 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
645 
646 	/*
647 	 * We just need something here that even the most clever compiler
648 	 * cannot optimize away.
649 	 */
650 	return (a[(uintptr_t)f]);
651 }
652 
653 /*
654  * Atomically increment a specified error counter from probe context.
655  */
656 static void
657 dtrace_error(uint32_t *counter)
658 {
659 	/*
660 	 * Most counters stored to in probe context are per-CPU counters.
661 	 * However, there are some error conditions that are sufficiently
662 	 * arcane that they don't merit per-CPU storage.  If these counters
663 	 * are incremented concurrently on different CPUs, scalability will be
664 	 * adversely affected -- but we don't expect them to be white-hot in a
665 	 * correctly constructed enabling...
666 	 */
667 	uint32_t oval, nval;
668 
669 	do {
670 		oval = *counter;
671 
672 		if ((nval = oval + 1) == 0) {
673 			/*
674 			 * If the counter would wrap, set it to 1 -- assuring
675 			 * that the counter is never zero when we have seen
676 			 * errors.  (The counter must be 32-bits because we
677 			 * aren't guaranteed a 64-bit compare&swap operation.)
678 			 * To save this code both the infamy of being fingered
679 			 * by a priggish news story and the indignity of being
680 			 * the target of a neo-puritan witch trial, we're
681 			 * carefully avoiding any colorful description of the
682 			 * likelihood of this condition -- but suffice it to
683 			 * say that it is only slightly more likely than the
684 			 * overflow of predicate cache IDs, as discussed in
685 			 * dtrace_predicate_create().
686 			 */
687 			nval = 1;
688 		}
689 	} while (dtrace_cas32(counter, oval, nval) != oval);
690 }
691 
692 /*
693  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
694  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
695  */
696 /* BEGIN CSTYLED */
697 DTRACE_LOADFUNC(8)
698 DTRACE_LOADFUNC(16)
699 DTRACE_LOADFUNC(32)
700 DTRACE_LOADFUNC(64)
701 /* END CSTYLED */
702 
703 static int
704 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
705 {
706 	if (dest < mstate->dtms_scratch_base)
707 		return (0);
708 
709 	if (dest + size < dest)
710 		return (0);
711 
712 	if (dest + size > mstate->dtms_scratch_ptr)
713 		return (0);
714 
715 	return (1);
716 }
717 
718 static int
719 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
720     dtrace_statvar_t **svars, int nsvars)
721 {
722 	int i;
723 	size_t maxglobalsize, maxlocalsize;
724 
725 	if (nsvars == 0)
726 		return (0);
727 
728 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
729 	maxlocalsize = maxglobalsize * NCPU;
730 
731 	for (i = 0; i < nsvars; i++) {
732 		dtrace_statvar_t *svar = svars[i];
733 		uint8_t scope;
734 		size_t size;
735 
736 		if (svar == NULL || (size = svar->dtsv_size) == 0)
737 			continue;
738 
739 		scope = svar->dtsv_var.dtdv_scope;
740 
741 		/*
742 		 * We verify that our size is valid in the spirit of providing
743 		 * defense in depth:  we want to prevent attackers from using
744 		 * DTrace to escalate an orthogonal kernel heap corruption bug
745 		 * into the ability to store to arbitrary locations in memory.
746 		 */
747 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
748 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
749 
750 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
751 		    svar->dtsv_size)) {
752 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
753 			    svar->dtsv_size);
754 			return (1);
755 		}
756 	}
757 
758 	return (0);
759 }
760 
761 /*
762  * Check to see if the address is within a memory region to which a store may
763  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
764  * region.  The caller of dtrace_canstore() is responsible for performing any
765  * alignment checks that are needed before stores are actually executed.
766  */
767 static int
768 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
769     dtrace_vstate_t *vstate)
770 {
771 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
772 }
773 
774 /*
775  * Implementation of dtrace_canstore which communicates the upper bound of the
776  * allowed memory region.
777  */
778 static int
779 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
780     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
781 {
782 	/*
783 	 * First, check to see if the address is in scratch space...
784 	 */
785 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
786 	    mstate->dtms_scratch_size)) {
787 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
788 		    mstate->dtms_scratch_size);
789 		return (1);
790 	}
791 
792 	/*
793 	 * Now check to see if it's a dynamic variable.  This check will pick
794 	 * up both thread-local variables and any global dynamically-allocated
795 	 * variables.
796 	 */
797 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
798 	    vstate->dtvs_dynvars.dtds_size)) {
799 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
800 		uintptr_t base = (uintptr_t)dstate->dtds_base +
801 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
802 		uintptr_t chunkoffs;
803 		dtrace_dynvar_t *dvar;
804 
805 		/*
806 		 * Before we assume that we can store here, we need to make
807 		 * sure that it isn't in our metadata -- storing to our
808 		 * dynamic variable metadata would corrupt our state.  For
809 		 * the range to not include any dynamic variable metadata,
810 		 * it must:
811 		 *
812 		 *	(1) Start above the hash table that is at the base of
813 		 *	the dynamic variable space
814 		 *
815 		 *	(2) Have a starting chunk offset that is beyond the
816 		 *	dtrace_dynvar_t that is at the base of every chunk
817 		 *
818 		 *	(3) Not span a chunk boundary
819 		 *
820 		 *	(4) Not be in the tuple space of a dynamic variable
821 		 *
822 		 */
823 		if (addr < base)
824 			return (0);
825 
826 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
827 
828 		if (chunkoffs < sizeof (dtrace_dynvar_t))
829 			return (0);
830 
831 		if (chunkoffs + sz > dstate->dtds_chunksize)
832 			return (0);
833 
834 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
835 
836 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
837 			return (0);
838 
839 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
840 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
841 			return (0);
842 
843 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
844 		return (1);
845 	}
846 
847 	/*
848 	 * Finally, check the static local and global variables.  These checks
849 	 * take the longest, so we perform them last.
850 	 */
851 	if (dtrace_canstore_statvar(addr, sz, remain,
852 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
853 		return (1);
854 
855 	if (dtrace_canstore_statvar(addr, sz, remain,
856 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
857 		return (1);
858 
859 	return (0);
860 }
861 
862 
863 /*
864  * Convenience routine to check to see if the address is within a memory
865  * region in which a load may be issued given the user's privilege level;
866  * if not, it sets the appropriate error flags and loads 'addr' into the
867  * illegal value slot.
868  *
869  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
870  * appropriate memory access protection.
871  */
872 static int
873 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
874     dtrace_vstate_t *vstate)
875 {
876 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
877 }
878 
879 /*
880  * Implementation of dtrace_canload which communicates the uppoer bound of the
881  * allowed memory region.
882  */
883 static int
884 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
885     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
886 {
887 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
888 	file_t *fp;
889 
890 	/*
891 	 * If we hold the privilege to read from kernel memory, then
892 	 * everything is readable.
893 	 */
894 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
895 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
896 		return (1);
897 	}
898 
899 	/*
900 	 * You can obviously read that which you can store.
901 	 */
902 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
903 		return (1);
904 
905 	/*
906 	 * We're allowed to read from our own string table.
907 	 */
908 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
909 	    mstate->dtms_difo->dtdo_strlen)) {
910 		DTRACE_RANGE_REMAIN(remain, addr,
911 		    mstate->dtms_difo->dtdo_strtab,
912 		    mstate->dtms_difo->dtdo_strlen);
913 		return (1);
914 	}
915 
916 	if (vstate->dtvs_state != NULL &&
917 	    dtrace_priv_proc(vstate->dtvs_state)) {
918 		proc_t *p;
919 
920 		/*
921 		 * When we have privileges to the current process, there are
922 		 * several context-related kernel structures that are safe to
923 		 * read, even absent the privilege to read from kernel memory.
924 		 * These reads are safe because these structures contain only
925 		 * state that (1) we're permitted to read, (2) is harmless or
926 		 * (3) contains pointers to additional kernel state that we're
927 		 * not permitted to read (and as such, do not present an
928 		 * opportunity for privilege escalation).  Finally (and
929 		 * critically), because of the nature of their relation with
930 		 * the current thread context, the memory associated with these
931 		 * structures cannot change over the duration of probe context,
932 		 * and it is therefore impossible for this memory to be
933 		 * deallocated and reallocated as something else while it's
934 		 * being operated upon.
935 		 */
936 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
937 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
938 			    sizeof (kthread_t));
939 			return (1);
940 		}
941 
942 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
943 		    sz, curthread->t_procp, sizeof (proc_t))) {
944 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
945 			    sizeof (proc_t));
946 			return (1);
947 		}
948 
949 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
950 		    curthread->t_cred, sizeof (cred_t))) {
951 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
952 			    sizeof (cred_t));
953 			return (1);
954 		}
955 
956 #ifdef illumos
957 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
958 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
959 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
960 			    sizeof (pid_t));
961 			return (1);
962 		}
963 
964 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
965 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
966 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
967 			    offsetof(cpu_t, cpu_pause_thread));
968 			return (1);
969 		}
970 #endif
971 	}
972 
973 	if ((fp = mstate->dtms_getf) != NULL) {
974 		uintptr_t psz = sizeof (void *);
975 		vnode_t *vp;
976 		vnodeops_t *op;
977 
978 		/*
979 		 * When getf() returns a file_t, the enabling is implicitly
980 		 * granted the (transient) right to read the returned file_t
981 		 * as well as the v_path and v_op->vnop_name of the underlying
982 		 * vnode.  These accesses are allowed after a successful
983 		 * getf() because the members that they refer to cannot change
984 		 * once set -- and the barrier logic in the kernel's closef()
985 		 * path assures that the file_t and its referenced vode_t
986 		 * cannot themselves be stale (that is, it impossible for
987 		 * either dtms_getf itself or its f_vnode member to reference
988 		 * freed memory).
989 		 */
990 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
991 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
992 			return (1);
993 		}
994 
995 		if ((vp = fp->f_vnode) != NULL) {
996 			size_t slen;
997 #ifdef illumos
998 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
999 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1000 				    psz);
1001 				return (1);
1002 			}
1003 			slen = strlen(vp->v_path) + 1;
1004 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1005 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1006 				    slen);
1007 				return (1);
1008 			}
1009 #endif
1010 
1011 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1012 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1013 				    psz);
1014 				return (1);
1015 			}
1016 
1017 #ifdef illumos
1018 			if ((op = vp->v_op) != NULL &&
1019 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1020 				DTRACE_RANGE_REMAIN(remain, addr,
1021 				    &op->vnop_name, psz);
1022 				return (1);
1023 			}
1024 
1025 			if (op != NULL && op->vnop_name != NULL &&
1026 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1027 			    (slen = strlen(op->vnop_name) + 1))) {
1028 				DTRACE_RANGE_REMAIN(remain, addr,
1029 				    op->vnop_name, slen);
1030 				return (1);
1031 			}
1032 #endif
1033 		}
1034 	}
1035 
1036 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1037 	*illval = addr;
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Convenience routine to check to see if a given string is within a memory
1043  * region in which a load may be issued given the user's privilege level;
1044  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1045  * calls in the event that the user has all privileges.
1046  */
1047 static int
1048 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1049     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1050 {
1051 	size_t rsize;
1052 
1053 	/*
1054 	 * If we hold the privilege to read from kernel memory, then
1055 	 * everything is readable.
1056 	 */
1057 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1058 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1059 		return (1);
1060 	}
1061 
1062 	/*
1063 	 * Even if the caller is uninterested in querying the remaining valid
1064 	 * range, it is required to ensure that the access is allowed.
1065 	 */
1066 	if (remain == NULL) {
1067 		remain = &rsize;
1068 	}
1069 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1070 		size_t strsz;
1071 		/*
1072 		 * Perform the strlen after determining the length of the
1073 		 * memory region which is accessible.  This prevents timing
1074 		 * information from being used to find NULs in memory which is
1075 		 * not accessible to the caller.
1076 		 */
1077 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1078 		    MIN(sz, *remain));
1079 		if (strsz <= *remain) {
1080 			return (1);
1081 		}
1082 	}
1083 
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Convenience routine to check to see if a given variable is within a memory
1089  * region in which a load may be issued given the user's privilege level.
1090  */
1091 static int
1092 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1093     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1094 {
1095 	size_t sz;
1096 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1097 
1098 	/*
1099 	 * Calculate the max size before performing any checks since even
1100 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1101 	 * return the max length via 'remain'.
1102 	 */
1103 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1104 		dtrace_state_t *state = vstate->dtvs_state;
1105 
1106 		if (state != NULL) {
1107 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1108 		} else {
1109 			/*
1110 			 * In helper context, we have a NULL state; fall back
1111 			 * to using the system-wide default for the string size
1112 			 * in this case.
1113 			 */
1114 			sz = dtrace_strsize_default;
1115 		}
1116 	} else {
1117 		sz = type->dtdt_size;
1118 	}
1119 
1120 	/*
1121 	 * If we hold the privilege to read from kernel memory, then
1122 	 * everything is readable.
1123 	 */
1124 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1125 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1126 		return (1);
1127 	}
1128 
1129 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1130 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1131 		    vstate));
1132 	}
1133 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1134 	    vstate));
1135 }
1136 
1137 /*
1138  * Convert a string to a signed integer using safe loads.
1139  *
1140  * NOTE: This function uses various macros from strtolctype.h to manipulate
1141  * digit values, etc -- these have all been checked to ensure they make
1142  * no additional function calls.
1143  */
1144 static int64_t
1145 dtrace_strtoll(char *input, int base, size_t limit)
1146 {
1147 	uintptr_t pos = (uintptr_t)input;
1148 	int64_t val = 0;
1149 	int x;
1150 	boolean_t neg = B_FALSE;
1151 	char c, cc, ccc;
1152 	uintptr_t end = pos + limit;
1153 
1154 	/*
1155 	 * Consume any whitespace preceding digits.
1156 	 */
1157 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1158 		pos++;
1159 
1160 	/*
1161 	 * Handle an explicit sign if one is present.
1162 	 */
1163 	if (c == '-' || c == '+') {
1164 		if (c == '-')
1165 			neg = B_TRUE;
1166 		c = dtrace_load8(++pos);
1167 	}
1168 
1169 	/*
1170 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1171 	 * if present.
1172 	 */
1173 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1174 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1175 		pos += 2;
1176 		c = ccc;
1177 	}
1178 
1179 	/*
1180 	 * Read in contiguous digits until the first non-digit character.
1181 	 */
1182 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1183 	    c = dtrace_load8(++pos))
1184 		val = val * base + x;
1185 
1186 	return (neg ? -val : val);
1187 }
1188 
1189 /*
1190  * Compare two strings using safe loads.
1191  */
1192 static int
1193 dtrace_strncmp(char *s1, char *s2, size_t limit)
1194 {
1195 	uint8_t c1, c2;
1196 	volatile uint16_t *flags;
1197 
1198 	if (s1 == s2 || limit == 0)
1199 		return (0);
1200 
1201 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1202 
1203 	do {
1204 		if (s1 == NULL) {
1205 			c1 = '\0';
1206 		} else {
1207 			c1 = dtrace_load8((uintptr_t)s1++);
1208 		}
1209 
1210 		if (s2 == NULL) {
1211 			c2 = '\0';
1212 		} else {
1213 			c2 = dtrace_load8((uintptr_t)s2++);
1214 		}
1215 
1216 		if (c1 != c2)
1217 			return (c1 - c2);
1218 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Compute strlen(s) for a string using safe memory accesses.  The additional
1225  * len parameter is used to specify a maximum length to ensure completion.
1226  */
1227 static size_t
1228 dtrace_strlen(const char *s, size_t lim)
1229 {
1230 	uint_t len;
1231 
1232 	for (len = 0; len != lim; len++) {
1233 		if (dtrace_load8((uintptr_t)s++) == '\0')
1234 			break;
1235 	}
1236 
1237 	return (len);
1238 }
1239 
1240 /*
1241  * Check if an address falls within a toxic region.
1242  */
1243 static int
1244 dtrace_istoxic(uintptr_t kaddr, size_t size)
1245 {
1246 	uintptr_t taddr, tsize;
1247 	int i;
1248 
1249 	for (i = 0; i < dtrace_toxranges; i++) {
1250 		taddr = dtrace_toxrange[i].dtt_base;
1251 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1252 
1253 		if (kaddr - taddr < tsize) {
1254 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1255 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1256 			return (1);
1257 		}
1258 
1259 		if (taddr - kaddr < size) {
1260 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1261 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1262 			return (1);
1263 		}
1264 	}
1265 
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1271  * memory specified by the DIF program.  The dst is assumed to be safe memory
1272  * that we can store to directly because it is managed by DTrace.  As with
1273  * standard bcopy, overlapping copies are handled properly.
1274  */
1275 static void
1276 dtrace_bcopy(const void *src, void *dst, size_t len)
1277 {
1278 	if (len != 0) {
1279 		uint8_t *s1 = dst;
1280 		const uint8_t *s2 = src;
1281 
1282 		if (s1 <= s2) {
1283 			do {
1284 				*s1++ = dtrace_load8((uintptr_t)s2++);
1285 			} while (--len != 0);
1286 		} else {
1287 			s2 += len;
1288 			s1 += len;
1289 
1290 			do {
1291 				*--s1 = dtrace_load8((uintptr_t)--s2);
1292 			} while (--len != 0);
1293 		}
1294 	}
1295 }
1296 
1297 /*
1298  * Copy src to dst using safe memory accesses, up to either the specified
1299  * length, or the point that a nul byte is encountered.  The src is assumed to
1300  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1301  * safe memory that we can store to directly because it is managed by DTrace.
1302  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1303  */
1304 static void
1305 dtrace_strcpy(const void *src, void *dst, size_t len)
1306 {
1307 	if (len != 0) {
1308 		uint8_t *s1 = dst, c;
1309 		const uint8_t *s2 = src;
1310 
1311 		do {
1312 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1313 		} while (--len != 0 && c != '\0');
1314 	}
1315 }
1316 
1317 /*
1318  * Copy src to dst, deriving the size and type from the specified (BYREF)
1319  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1320  * program.  The dst is assumed to be DTrace variable memory that is of the
1321  * specified type; we assume that we can store to directly.
1322  */
1323 static void
1324 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1325 {
1326 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1327 
1328 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1329 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1330 	} else {
1331 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1332 	}
1333 }
1334 
1335 /*
1336  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1337  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1338  * safe memory that we can access directly because it is managed by DTrace.
1339  */
1340 static int
1341 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1342 {
1343 	volatile uint16_t *flags;
1344 
1345 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1346 
1347 	if (s1 == s2)
1348 		return (0);
1349 
1350 	if (s1 == NULL || s2 == NULL)
1351 		return (1);
1352 
1353 	if (s1 != s2 && len != 0) {
1354 		const uint8_t *ps1 = s1;
1355 		const uint8_t *ps2 = s2;
1356 
1357 		do {
1358 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1359 				return (1);
1360 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1361 	}
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1367  * is for safe DTrace-managed memory only.
1368  */
1369 static void
1370 dtrace_bzero(void *dst, size_t len)
1371 {
1372 	uchar_t *cp;
1373 
1374 	for (cp = dst; len != 0; len--)
1375 		*cp++ = 0;
1376 }
1377 
1378 static void
1379 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1380 {
1381 	uint64_t result[2];
1382 
1383 	result[0] = addend1[0] + addend2[0];
1384 	result[1] = addend1[1] + addend2[1] +
1385 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1386 
1387 	sum[0] = result[0];
1388 	sum[1] = result[1];
1389 }
1390 
1391 /*
1392  * Shift the 128-bit value in a by b. If b is positive, shift left.
1393  * If b is negative, shift right.
1394  */
1395 static void
1396 dtrace_shift_128(uint64_t *a, int b)
1397 {
1398 	uint64_t mask;
1399 
1400 	if (b == 0)
1401 		return;
1402 
1403 	if (b < 0) {
1404 		b = -b;
1405 		if (b >= 64) {
1406 			a[0] = a[1] >> (b - 64);
1407 			a[1] = 0;
1408 		} else {
1409 			a[0] >>= b;
1410 			mask = 1LL << (64 - b);
1411 			mask -= 1;
1412 			a[0] |= ((a[1] & mask) << (64 - b));
1413 			a[1] >>= b;
1414 		}
1415 	} else {
1416 		if (b >= 64) {
1417 			a[1] = a[0] << (b - 64);
1418 			a[0] = 0;
1419 		} else {
1420 			a[1] <<= b;
1421 			mask = a[0] >> (64 - b);
1422 			a[1] |= mask;
1423 			a[0] <<= b;
1424 		}
1425 	}
1426 }
1427 
1428 /*
1429  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1430  * use native multiplication on those, and then re-combine into the
1431  * resulting 128-bit value.
1432  *
1433  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1434  *     hi1 * hi2 << 64 +
1435  *     hi1 * lo2 << 32 +
1436  *     hi2 * lo1 << 32 +
1437  *     lo1 * lo2
1438  */
1439 static void
1440 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1441 {
1442 	uint64_t hi1, hi2, lo1, lo2;
1443 	uint64_t tmp[2];
1444 
1445 	hi1 = factor1 >> 32;
1446 	hi2 = factor2 >> 32;
1447 
1448 	lo1 = factor1 & DT_MASK_LO;
1449 	lo2 = factor2 & DT_MASK_LO;
1450 
1451 	product[0] = lo1 * lo2;
1452 	product[1] = hi1 * hi2;
1453 
1454 	tmp[0] = hi1 * lo2;
1455 	tmp[1] = 0;
1456 	dtrace_shift_128(tmp, 32);
1457 	dtrace_add_128(product, tmp, product);
1458 
1459 	tmp[0] = hi2 * lo1;
1460 	tmp[1] = 0;
1461 	dtrace_shift_128(tmp, 32);
1462 	dtrace_add_128(product, tmp, product);
1463 }
1464 
1465 /*
1466  * This privilege check should be used by actions and subroutines to
1467  * verify that the user credentials of the process that enabled the
1468  * invoking ECB match the target credentials
1469  */
1470 static int
1471 dtrace_priv_proc_common_user(dtrace_state_t *state)
1472 {
1473 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1474 
1475 	/*
1476 	 * We should always have a non-NULL state cred here, since if cred
1477 	 * is null (anonymous tracing), we fast-path bypass this routine.
1478 	 */
1479 	ASSERT(s_cr != NULL);
1480 
1481 	if ((cr = CRED()) != NULL &&
1482 	    s_cr->cr_uid == cr->cr_uid &&
1483 	    s_cr->cr_uid == cr->cr_ruid &&
1484 	    s_cr->cr_uid == cr->cr_suid &&
1485 	    s_cr->cr_gid == cr->cr_gid &&
1486 	    s_cr->cr_gid == cr->cr_rgid &&
1487 	    s_cr->cr_gid == cr->cr_sgid)
1488 		return (1);
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * This privilege check should be used by actions and subroutines to
1495  * verify that the zone of the process that enabled the invoking ECB
1496  * matches the target credentials
1497  */
1498 static int
1499 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1500 {
1501 #ifdef illumos
1502 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1503 
1504 	/*
1505 	 * We should always have a non-NULL state cred here, since if cred
1506 	 * is null (anonymous tracing), we fast-path bypass this routine.
1507 	 */
1508 	ASSERT(s_cr != NULL);
1509 
1510 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1511 		return (1);
1512 
1513 	return (0);
1514 #else
1515 	return (1);
1516 #endif
1517 }
1518 
1519 /*
1520  * This privilege check should be used by actions and subroutines to
1521  * verify that the process has not setuid or changed credentials.
1522  */
1523 static int
1524 dtrace_priv_proc_common_nocd(void)
1525 {
1526 	proc_t *proc;
1527 
1528 	if ((proc = ttoproc(curthread)) != NULL &&
1529 	    !(proc->p_flag & SNOCD))
1530 		return (1);
1531 
1532 	return (0);
1533 }
1534 
1535 static int
1536 dtrace_priv_proc_destructive(dtrace_state_t *state)
1537 {
1538 	int action = state->dts_cred.dcr_action;
1539 
1540 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1541 	    dtrace_priv_proc_common_zone(state) == 0)
1542 		goto bad;
1543 
1544 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1545 	    dtrace_priv_proc_common_user(state) == 0)
1546 		goto bad;
1547 
1548 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1549 	    dtrace_priv_proc_common_nocd() == 0)
1550 		goto bad;
1551 
1552 	return (1);
1553 
1554 bad:
1555 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1556 
1557 	return (0);
1558 }
1559 
1560 static int
1561 dtrace_priv_proc_control(dtrace_state_t *state)
1562 {
1563 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1564 		return (1);
1565 
1566 	if (dtrace_priv_proc_common_zone(state) &&
1567 	    dtrace_priv_proc_common_user(state) &&
1568 	    dtrace_priv_proc_common_nocd())
1569 		return (1);
1570 
1571 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1572 
1573 	return (0);
1574 }
1575 
1576 static int
1577 dtrace_priv_proc(dtrace_state_t *state)
1578 {
1579 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1580 		return (1);
1581 
1582 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1583 
1584 	return (0);
1585 }
1586 
1587 static int
1588 dtrace_priv_kernel(dtrace_state_t *state)
1589 {
1590 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1591 		return (1);
1592 
1593 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1594 
1595 	return (0);
1596 }
1597 
1598 static int
1599 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1600 {
1601 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1602 		return (1);
1603 
1604 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1605 
1606 	return (0);
1607 }
1608 
1609 /*
1610  * Determine if the dte_cond of the specified ECB allows for processing of
1611  * the current probe to continue.  Note that this routine may allow continued
1612  * processing, but with access(es) stripped from the mstate's dtms_access
1613  * field.
1614  */
1615 static int
1616 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1617     dtrace_ecb_t *ecb)
1618 {
1619 	dtrace_probe_t *probe = ecb->dte_probe;
1620 	dtrace_provider_t *prov = probe->dtpr_provider;
1621 	dtrace_pops_t *pops = &prov->dtpv_pops;
1622 	int mode = DTRACE_MODE_NOPRIV_DROP;
1623 
1624 	ASSERT(ecb->dte_cond);
1625 
1626 #ifdef illumos
1627 	if (pops->dtps_mode != NULL) {
1628 		mode = pops->dtps_mode(prov->dtpv_arg,
1629 		    probe->dtpr_id, probe->dtpr_arg);
1630 
1631 		ASSERT((mode & DTRACE_MODE_USER) ||
1632 		    (mode & DTRACE_MODE_KERNEL));
1633 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1634 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1635 	}
1636 
1637 	/*
1638 	 * If the dte_cond bits indicate that this consumer is only allowed to
1639 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1640 	 * entry point to check that the probe was fired while in a user
1641 	 * context.  If that's not the case, use the policy specified by the
1642 	 * provider to determine if we drop the probe or merely restrict
1643 	 * operation.
1644 	 */
1645 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1646 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1647 
1648 		if (!(mode & DTRACE_MODE_USER)) {
1649 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1650 				return (0);
1651 
1652 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1653 		}
1654 	}
1655 #endif
1656 
1657 	/*
1658 	 * This is more subtle than it looks. We have to be absolutely certain
1659 	 * that CRED() isn't going to change out from under us so it's only
1660 	 * legit to examine that structure if we're in constrained situations.
1661 	 * Currently, the only times we'll this check is if a non-super-user
1662 	 * has enabled the profile or syscall providers -- providers that
1663 	 * allow visibility of all processes. For the profile case, the check
1664 	 * above will ensure that we're examining a user context.
1665 	 */
1666 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1667 		cred_t *cr;
1668 		cred_t *s_cr = state->dts_cred.dcr_cred;
1669 		proc_t *proc;
1670 
1671 		ASSERT(s_cr != NULL);
1672 
1673 		if ((cr = CRED()) == NULL ||
1674 		    s_cr->cr_uid != cr->cr_uid ||
1675 		    s_cr->cr_uid != cr->cr_ruid ||
1676 		    s_cr->cr_uid != cr->cr_suid ||
1677 		    s_cr->cr_gid != cr->cr_gid ||
1678 		    s_cr->cr_gid != cr->cr_rgid ||
1679 		    s_cr->cr_gid != cr->cr_sgid ||
1680 		    (proc = ttoproc(curthread)) == NULL ||
1681 		    (proc->p_flag & SNOCD)) {
1682 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1683 				return (0);
1684 
1685 #ifdef illumos
1686 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1687 #endif
1688 		}
1689 	}
1690 
1691 #ifdef illumos
1692 	/*
1693 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1694 	 * in our zone, check to see if our mode policy is to restrict rather
1695 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1696 	 * and DTRACE_ACCESS_ARGS
1697 	 */
1698 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1699 		cred_t *cr;
1700 		cred_t *s_cr = state->dts_cred.dcr_cred;
1701 
1702 		ASSERT(s_cr != NULL);
1703 
1704 		if ((cr = CRED()) == NULL ||
1705 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1706 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1707 				return (0);
1708 
1709 			mstate->dtms_access &=
1710 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1711 		}
1712 	}
1713 #endif
1714 
1715 	return (1);
1716 }
1717 
1718 /*
1719  * Note:  not called from probe context.  This function is called
1720  * asynchronously (and at a regular interval) from outside of probe context to
1721  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1722  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1723  */
1724 void
1725 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1726 {
1727 	dtrace_dynvar_t *dirty;
1728 	dtrace_dstate_percpu_t *dcpu;
1729 	dtrace_dynvar_t **rinsep;
1730 	int i, j, work = 0;
1731 
1732 	for (i = 0; i < NCPU; i++) {
1733 		dcpu = &dstate->dtds_percpu[i];
1734 		rinsep = &dcpu->dtdsc_rinsing;
1735 
1736 		/*
1737 		 * If the dirty list is NULL, there is no dirty work to do.
1738 		 */
1739 		if (dcpu->dtdsc_dirty == NULL)
1740 			continue;
1741 
1742 		if (dcpu->dtdsc_rinsing != NULL) {
1743 			/*
1744 			 * If the rinsing list is non-NULL, then it is because
1745 			 * this CPU was selected to accept another CPU's
1746 			 * dirty list -- and since that time, dirty buffers
1747 			 * have accumulated.  This is a highly unlikely
1748 			 * condition, but we choose to ignore the dirty
1749 			 * buffers -- they'll be picked up a future cleanse.
1750 			 */
1751 			continue;
1752 		}
1753 
1754 		if (dcpu->dtdsc_clean != NULL) {
1755 			/*
1756 			 * If the clean list is non-NULL, then we're in a
1757 			 * situation where a CPU has done deallocations (we
1758 			 * have a non-NULL dirty list) but no allocations (we
1759 			 * also have a non-NULL clean list).  We can't simply
1760 			 * move the dirty list into the clean list on this
1761 			 * CPU, yet we also don't want to allow this condition
1762 			 * to persist, lest a short clean list prevent a
1763 			 * massive dirty list from being cleaned (which in
1764 			 * turn could lead to otherwise avoidable dynamic
1765 			 * drops).  To deal with this, we look for some CPU
1766 			 * with a NULL clean list, NULL dirty list, and NULL
1767 			 * rinsing list -- and then we borrow this CPU to
1768 			 * rinse our dirty list.
1769 			 */
1770 			for (j = 0; j < NCPU; j++) {
1771 				dtrace_dstate_percpu_t *rinser;
1772 
1773 				rinser = &dstate->dtds_percpu[j];
1774 
1775 				if (rinser->dtdsc_rinsing != NULL)
1776 					continue;
1777 
1778 				if (rinser->dtdsc_dirty != NULL)
1779 					continue;
1780 
1781 				if (rinser->dtdsc_clean != NULL)
1782 					continue;
1783 
1784 				rinsep = &rinser->dtdsc_rinsing;
1785 				break;
1786 			}
1787 
1788 			if (j == NCPU) {
1789 				/*
1790 				 * We were unable to find another CPU that
1791 				 * could accept this dirty list -- we are
1792 				 * therefore unable to clean it now.
1793 				 */
1794 				dtrace_dynvar_failclean++;
1795 				continue;
1796 			}
1797 		}
1798 
1799 		work = 1;
1800 
1801 		/*
1802 		 * Atomically move the dirty list aside.
1803 		 */
1804 		do {
1805 			dirty = dcpu->dtdsc_dirty;
1806 
1807 			/*
1808 			 * Before we zap the dirty list, set the rinsing list.
1809 			 * (This allows for a potential assertion in
1810 			 * dtrace_dynvar():  if a free dynamic variable appears
1811 			 * on a hash chain, either the dirty list or the
1812 			 * rinsing list for some CPU must be non-NULL.)
1813 			 */
1814 			*rinsep = dirty;
1815 			dtrace_membar_producer();
1816 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1817 		    dirty, NULL) != dirty);
1818 	}
1819 
1820 	if (!work) {
1821 		/*
1822 		 * We have no work to do; we can simply return.
1823 		 */
1824 		return;
1825 	}
1826 
1827 	dtrace_sync();
1828 
1829 	for (i = 0; i < NCPU; i++) {
1830 		dcpu = &dstate->dtds_percpu[i];
1831 
1832 		if (dcpu->dtdsc_rinsing == NULL)
1833 			continue;
1834 
1835 		/*
1836 		 * We are now guaranteed that no hash chain contains a pointer
1837 		 * into this dirty list; we can make it clean.
1838 		 */
1839 		ASSERT(dcpu->dtdsc_clean == NULL);
1840 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1841 		dcpu->dtdsc_rinsing = NULL;
1842 	}
1843 
1844 	/*
1845 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1846 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1847 	 * This prevents a race whereby a CPU incorrectly decides that
1848 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1849 	 * after dtrace_dynvar_clean() has completed.
1850 	 */
1851 	dtrace_sync();
1852 
1853 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1854 }
1855 
1856 /*
1857  * Depending on the value of the op parameter, this function looks-up,
1858  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1859  * allocation is requested, this function will return a pointer to a
1860  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1861  * variable can be allocated.  If NULL is returned, the appropriate counter
1862  * will be incremented.
1863  */
1864 dtrace_dynvar_t *
1865 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1866     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1867     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1868 {
1869 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1870 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1871 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1872 	processorid_t me = curcpu, cpu = me;
1873 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1874 	size_t bucket, ksize;
1875 	size_t chunksize = dstate->dtds_chunksize;
1876 	uintptr_t kdata, lock, nstate;
1877 	uint_t i;
1878 
1879 	ASSERT(nkeys != 0);
1880 
1881 	/*
1882 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1883 	 * algorithm.  For the by-value portions, we perform the algorithm in
1884 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1885 	 * bit, and seems to have only a minute effect on distribution.  For
1886 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1887 	 * over each referenced byte.  It's painful to do this, but it's much
1888 	 * better than pathological hash distribution.  The efficacy of the
1889 	 * hashing algorithm (and a comparison with other algorithms) may be
1890 	 * found by running the ::dtrace_dynstat MDB dcmd.
1891 	 */
1892 	for (i = 0; i < nkeys; i++) {
1893 		if (key[i].dttk_size == 0) {
1894 			uint64_t val = key[i].dttk_value;
1895 
1896 			hashval += (val >> 48) & 0xffff;
1897 			hashval += (hashval << 10);
1898 			hashval ^= (hashval >> 6);
1899 
1900 			hashval += (val >> 32) & 0xffff;
1901 			hashval += (hashval << 10);
1902 			hashval ^= (hashval >> 6);
1903 
1904 			hashval += (val >> 16) & 0xffff;
1905 			hashval += (hashval << 10);
1906 			hashval ^= (hashval >> 6);
1907 
1908 			hashval += val & 0xffff;
1909 			hashval += (hashval << 10);
1910 			hashval ^= (hashval >> 6);
1911 		} else {
1912 			/*
1913 			 * This is incredibly painful, but it beats the hell
1914 			 * out of the alternative.
1915 			 */
1916 			uint64_t j, size = key[i].dttk_size;
1917 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1918 
1919 			if (!dtrace_canload(base, size, mstate, vstate))
1920 				break;
1921 
1922 			for (j = 0; j < size; j++) {
1923 				hashval += dtrace_load8(base + j);
1924 				hashval += (hashval << 10);
1925 				hashval ^= (hashval >> 6);
1926 			}
1927 		}
1928 	}
1929 
1930 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1931 		return (NULL);
1932 
1933 	hashval += (hashval << 3);
1934 	hashval ^= (hashval >> 11);
1935 	hashval += (hashval << 15);
1936 
1937 	/*
1938 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1939 	 * comes out to be one of our two sentinel hash values.  If this
1940 	 * actually happens, we set the hashval to be a value known to be a
1941 	 * non-sentinel value.
1942 	 */
1943 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1944 		hashval = DTRACE_DYNHASH_VALID;
1945 
1946 	/*
1947 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1948 	 * important here, tricks can be pulled to reduce it.  (However, it's
1949 	 * critical that hash collisions be kept to an absolute minimum;
1950 	 * they're much more painful than a divide.)  It's better to have a
1951 	 * solution that generates few collisions and still keeps things
1952 	 * relatively simple.
1953 	 */
1954 	bucket = hashval % dstate->dtds_hashsize;
1955 
1956 	if (op == DTRACE_DYNVAR_DEALLOC) {
1957 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1958 
1959 		for (;;) {
1960 			while ((lock = *lockp) & 1)
1961 				continue;
1962 
1963 			if (dtrace_casptr((volatile void *)lockp,
1964 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1965 				break;
1966 		}
1967 
1968 		dtrace_membar_producer();
1969 	}
1970 
1971 top:
1972 	prev = NULL;
1973 	lock = hash[bucket].dtdh_lock;
1974 
1975 	dtrace_membar_consumer();
1976 
1977 	start = hash[bucket].dtdh_chain;
1978 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1979 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1980 	    op != DTRACE_DYNVAR_DEALLOC));
1981 
1982 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1983 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1984 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1985 
1986 		if (dvar->dtdv_hashval != hashval) {
1987 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1988 				/*
1989 				 * We've reached the sink, and therefore the
1990 				 * end of the hash chain; we can kick out of
1991 				 * the loop knowing that we have seen a valid
1992 				 * snapshot of state.
1993 				 */
1994 				ASSERT(dvar->dtdv_next == NULL);
1995 				ASSERT(dvar == &dtrace_dynhash_sink);
1996 				break;
1997 			}
1998 
1999 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2000 				/*
2001 				 * We've gone off the rails:  somewhere along
2002 				 * the line, one of the members of this hash
2003 				 * chain was deleted.  Note that we could also
2004 				 * detect this by simply letting this loop run
2005 				 * to completion, as we would eventually hit
2006 				 * the end of the dirty list.  However, we
2007 				 * want to avoid running the length of the
2008 				 * dirty list unnecessarily (it might be quite
2009 				 * long), so we catch this as early as
2010 				 * possible by detecting the hash marker.  In
2011 				 * this case, we simply set dvar to NULL and
2012 				 * break; the conditional after the loop will
2013 				 * send us back to top.
2014 				 */
2015 				dvar = NULL;
2016 				break;
2017 			}
2018 
2019 			goto next;
2020 		}
2021 
2022 		if (dtuple->dtt_nkeys != nkeys)
2023 			goto next;
2024 
2025 		for (i = 0; i < nkeys; i++, dkey++) {
2026 			if (dkey->dttk_size != key[i].dttk_size)
2027 				goto next; /* size or type mismatch */
2028 
2029 			if (dkey->dttk_size != 0) {
2030 				if (dtrace_bcmp(
2031 				    (void *)(uintptr_t)key[i].dttk_value,
2032 				    (void *)(uintptr_t)dkey->dttk_value,
2033 				    dkey->dttk_size))
2034 					goto next;
2035 			} else {
2036 				if (dkey->dttk_value != key[i].dttk_value)
2037 					goto next;
2038 			}
2039 		}
2040 
2041 		if (op != DTRACE_DYNVAR_DEALLOC)
2042 			return (dvar);
2043 
2044 		ASSERT(dvar->dtdv_next == NULL ||
2045 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2046 
2047 		if (prev != NULL) {
2048 			ASSERT(hash[bucket].dtdh_chain != dvar);
2049 			ASSERT(start != dvar);
2050 			ASSERT(prev->dtdv_next == dvar);
2051 			prev->dtdv_next = dvar->dtdv_next;
2052 		} else {
2053 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2054 			    start, dvar->dtdv_next) != start) {
2055 				/*
2056 				 * We have failed to atomically swing the
2057 				 * hash table head pointer, presumably because
2058 				 * of a conflicting allocation on another CPU.
2059 				 * We need to reread the hash chain and try
2060 				 * again.
2061 				 */
2062 				goto top;
2063 			}
2064 		}
2065 
2066 		dtrace_membar_producer();
2067 
2068 		/*
2069 		 * Now set the hash value to indicate that it's free.
2070 		 */
2071 		ASSERT(hash[bucket].dtdh_chain != dvar);
2072 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2073 
2074 		dtrace_membar_producer();
2075 
2076 		/*
2077 		 * Set the next pointer to point at the dirty list, and
2078 		 * atomically swing the dirty pointer to the newly freed dvar.
2079 		 */
2080 		do {
2081 			next = dcpu->dtdsc_dirty;
2082 			dvar->dtdv_next = next;
2083 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2084 
2085 		/*
2086 		 * Finally, unlock this hash bucket.
2087 		 */
2088 		ASSERT(hash[bucket].dtdh_lock == lock);
2089 		ASSERT(lock & 1);
2090 		hash[bucket].dtdh_lock++;
2091 
2092 		return (NULL);
2093 next:
2094 		prev = dvar;
2095 		continue;
2096 	}
2097 
2098 	if (dvar == NULL) {
2099 		/*
2100 		 * If dvar is NULL, it is because we went off the rails:
2101 		 * one of the elements that we traversed in the hash chain
2102 		 * was deleted while we were traversing it.  In this case,
2103 		 * we assert that we aren't doing a dealloc (deallocs lock
2104 		 * the hash bucket to prevent themselves from racing with
2105 		 * one another), and retry the hash chain traversal.
2106 		 */
2107 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2108 		goto top;
2109 	}
2110 
2111 	if (op != DTRACE_DYNVAR_ALLOC) {
2112 		/*
2113 		 * If we are not to allocate a new variable, we want to
2114 		 * return NULL now.  Before we return, check that the value
2115 		 * of the lock word hasn't changed.  If it has, we may have
2116 		 * seen an inconsistent snapshot.
2117 		 */
2118 		if (op == DTRACE_DYNVAR_NOALLOC) {
2119 			if (hash[bucket].dtdh_lock != lock)
2120 				goto top;
2121 		} else {
2122 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2123 			ASSERT(hash[bucket].dtdh_lock == lock);
2124 			ASSERT(lock & 1);
2125 			hash[bucket].dtdh_lock++;
2126 		}
2127 
2128 		return (NULL);
2129 	}
2130 
2131 	/*
2132 	 * We need to allocate a new dynamic variable.  The size we need is the
2133 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2134 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2135 	 * the size of any referred-to data (dsize).  We then round the final
2136 	 * size up to the chunksize for allocation.
2137 	 */
2138 	for (ksize = 0, i = 0; i < nkeys; i++)
2139 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2140 
2141 	/*
2142 	 * This should be pretty much impossible, but could happen if, say,
2143 	 * strange DIF specified the tuple.  Ideally, this should be an
2144 	 * assertion and not an error condition -- but that requires that the
2145 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2146 	 * bullet-proof.  (That is, it must not be able to be fooled by
2147 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2148 	 * solving this would presumably not amount to solving the Halting
2149 	 * Problem -- but it still seems awfully hard.
2150 	 */
2151 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2152 	    ksize + dsize > chunksize) {
2153 		dcpu->dtdsc_drops++;
2154 		return (NULL);
2155 	}
2156 
2157 	nstate = DTRACE_DSTATE_EMPTY;
2158 
2159 	do {
2160 retry:
2161 		free = dcpu->dtdsc_free;
2162 
2163 		if (free == NULL) {
2164 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2165 			void *rval;
2166 
2167 			if (clean == NULL) {
2168 				/*
2169 				 * We're out of dynamic variable space on
2170 				 * this CPU.  Unless we have tried all CPUs,
2171 				 * we'll try to allocate from a different
2172 				 * CPU.
2173 				 */
2174 				switch (dstate->dtds_state) {
2175 				case DTRACE_DSTATE_CLEAN: {
2176 					void *sp = &dstate->dtds_state;
2177 
2178 					if (++cpu >= NCPU)
2179 						cpu = 0;
2180 
2181 					if (dcpu->dtdsc_dirty != NULL &&
2182 					    nstate == DTRACE_DSTATE_EMPTY)
2183 						nstate = DTRACE_DSTATE_DIRTY;
2184 
2185 					if (dcpu->dtdsc_rinsing != NULL)
2186 						nstate = DTRACE_DSTATE_RINSING;
2187 
2188 					dcpu = &dstate->dtds_percpu[cpu];
2189 
2190 					if (cpu != me)
2191 						goto retry;
2192 
2193 					(void) dtrace_cas32(sp,
2194 					    DTRACE_DSTATE_CLEAN, nstate);
2195 
2196 					/*
2197 					 * To increment the correct bean
2198 					 * counter, take another lap.
2199 					 */
2200 					goto retry;
2201 				}
2202 
2203 				case DTRACE_DSTATE_DIRTY:
2204 					dcpu->dtdsc_dirty_drops++;
2205 					break;
2206 
2207 				case DTRACE_DSTATE_RINSING:
2208 					dcpu->dtdsc_rinsing_drops++;
2209 					break;
2210 
2211 				case DTRACE_DSTATE_EMPTY:
2212 					dcpu->dtdsc_drops++;
2213 					break;
2214 				}
2215 
2216 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2217 				return (NULL);
2218 			}
2219 
2220 			/*
2221 			 * The clean list appears to be non-empty.  We want to
2222 			 * move the clean list to the free list; we start by
2223 			 * moving the clean pointer aside.
2224 			 */
2225 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2226 			    clean, NULL) != clean) {
2227 				/*
2228 				 * We are in one of two situations:
2229 				 *
2230 				 *  (a)	The clean list was switched to the
2231 				 *	free list by another CPU.
2232 				 *
2233 				 *  (b)	The clean list was added to by the
2234 				 *	cleansing cyclic.
2235 				 *
2236 				 * In either of these situations, we can
2237 				 * just reattempt the free list allocation.
2238 				 */
2239 				goto retry;
2240 			}
2241 
2242 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2243 
2244 			/*
2245 			 * Now we'll move the clean list to our free list.
2246 			 * It's impossible for this to fail:  the only way
2247 			 * the free list can be updated is through this
2248 			 * code path, and only one CPU can own the clean list.
2249 			 * Thus, it would only be possible for this to fail if
2250 			 * this code were racing with dtrace_dynvar_clean().
2251 			 * (That is, if dtrace_dynvar_clean() updated the clean
2252 			 * list, and we ended up racing to update the free
2253 			 * list.)  This race is prevented by the dtrace_sync()
2254 			 * in dtrace_dynvar_clean() -- which flushes the
2255 			 * owners of the clean lists out before resetting
2256 			 * the clean lists.
2257 			 */
2258 			dcpu = &dstate->dtds_percpu[me];
2259 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2260 			ASSERT(rval == NULL);
2261 			goto retry;
2262 		}
2263 
2264 		dvar = free;
2265 		new_free = dvar->dtdv_next;
2266 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2267 
2268 	/*
2269 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2270 	 * tuple array and copy any referenced key data into the data space
2271 	 * following the tuple array.  As we do this, we relocate dttk_value
2272 	 * in the final tuple to point to the key data address in the chunk.
2273 	 */
2274 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2275 	dvar->dtdv_data = (void *)(kdata + ksize);
2276 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2277 
2278 	for (i = 0; i < nkeys; i++) {
2279 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2280 		size_t kesize = key[i].dttk_size;
2281 
2282 		if (kesize != 0) {
2283 			dtrace_bcopy(
2284 			    (const void *)(uintptr_t)key[i].dttk_value,
2285 			    (void *)kdata, kesize);
2286 			dkey->dttk_value = kdata;
2287 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2288 		} else {
2289 			dkey->dttk_value = key[i].dttk_value;
2290 		}
2291 
2292 		dkey->dttk_size = kesize;
2293 	}
2294 
2295 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2296 	dvar->dtdv_hashval = hashval;
2297 	dvar->dtdv_next = start;
2298 
2299 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2300 		return (dvar);
2301 
2302 	/*
2303 	 * The cas has failed.  Either another CPU is adding an element to
2304 	 * this hash chain, or another CPU is deleting an element from this
2305 	 * hash chain.  The simplest way to deal with both of these cases
2306 	 * (though not necessarily the most efficient) is to free our
2307 	 * allocated block and re-attempt it all.  Note that the free is
2308 	 * to the dirty list and _not_ to the free list.  This is to prevent
2309 	 * races with allocators, above.
2310 	 */
2311 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2312 
2313 	dtrace_membar_producer();
2314 
2315 	do {
2316 		free = dcpu->dtdsc_dirty;
2317 		dvar->dtdv_next = free;
2318 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2319 
2320 	goto top;
2321 }
2322 
2323 /*ARGSUSED*/
2324 static void
2325 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2326 {
2327 	if ((int64_t)nval < (int64_t)*oval)
2328 		*oval = nval;
2329 }
2330 
2331 /*ARGSUSED*/
2332 static void
2333 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2334 {
2335 	if ((int64_t)nval > (int64_t)*oval)
2336 		*oval = nval;
2337 }
2338 
2339 static void
2340 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2341 {
2342 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2343 	int64_t val = (int64_t)nval;
2344 
2345 	if (val < 0) {
2346 		for (i = 0; i < zero; i++) {
2347 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2348 				quanta[i] += incr;
2349 				return;
2350 			}
2351 		}
2352 	} else {
2353 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2354 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2355 				quanta[i - 1] += incr;
2356 				return;
2357 			}
2358 		}
2359 
2360 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2361 		return;
2362 	}
2363 
2364 	ASSERT(0);
2365 }
2366 
2367 static void
2368 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2369 {
2370 	uint64_t arg = *lquanta++;
2371 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2372 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2373 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2374 	int32_t val = (int32_t)nval, level;
2375 
2376 	ASSERT(step != 0);
2377 	ASSERT(levels != 0);
2378 
2379 	if (val < base) {
2380 		/*
2381 		 * This is an underflow.
2382 		 */
2383 		lquanta[0] += incr;
2384 		return;
2385 	}
2386 
2387 	level = (val - base) / step;
2388 
2389 	if (level < levels) {
2390 		lquanta[level + 1] += incr;
2391 		return;
2392 	}
2393 
2394 	/*
2395 	 * This is an overflow.
2396 	 */
2397 	lquanta[levels + 1] += incr;
2398 }
2399 
2400 static int
2401 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2402     uint16_t high, uint16_t nsteps, int64_t value)
2403 {
2404 	int64_t this = 1, last, next;
2405 	int base = 1, order;
2406 
2407 	ASSERT(factor <= nsteps);
2408 	ASSERT(nsteps % factor == 0);
2409 
2410 	for (order = 0; order < low; order++)
2411 		this *= factor;
2412 
2413 	/*
2414 	 * If our value is less than our factor taken to the power of the
2415 	 * low order of magnitude, it goes into the zeroth bucket.
2416 	 */
2417 	if (value < (last = this))
2418 		return (0);
2419 
2420 	for (this *= factor; order <= high; order++) {
2421 		int nbuckets = this > nsteps ? nsteps : this;
2422 
2423 		if ((next = this * factor) < this) {
2424 			/*
2425 			 * We should not generally get log/linear quantizations
2426 			 * with a high magnitude that allows 64-bits to
2427 			 * overflow, but we nonetheless protect against this
2428 			 * by explicitly checking for overflow, and clamping
2429 			 * our value accordingly.
2430 			 */
2431 			value = this - 1;
2432 		}
2433 
2434 		if (value < this) {
2435 			/*
2436 			 * If our value lies within this order of magnitude,
2437 			 * determine its position by taking the offset within
2438 			 * the order of magnitude, dividing by the bucket
2439 			 * width, and adding to our (accumulated) base.
2440 			 */
2441 			return (base + (value - last) / (this / nbuckets));
2442 		}
2443 
2444 		base += nbuckets - (nbuckets / factor);
2445 		last = this;
2446 		this = next;
2447 	}
2448 
2449 	/*
2450 	 * Our value is greater than or equal to our factor taken to the
2451 	 * power of one plus the high magnitude -- return the top bucket.
2452 	 */
2453 	return (base);
2454 }
2455 
2456 static void
2457 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2458 {
2459 	uint64_t arg = *llquanta++;
2460 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2461 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2462 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2463 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2464 
2465 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2466 	    low, high, nsteps, nval)] += incr;
2467 }
2468 
2469 /*ARGSUSED*/
2470 static void
2471 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2472 {
2473 	data[0]++;
2474 	data[1] += nval;
2475 }
2476 
2477 /*ARGSUSED*/
2478 static void
2479 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2480 {
2481 	int64_t snval = (int64_t)nval;
2482 	uint64_t tmp[2];
2483 
2484 	data[0]++;
2485 	data[1] += nval;
2486 
2487 	/*
2488 	 * What we want to say here is:
2489 	 *
2490 	 * data[2] += nval * nval;
2491 	 *
2492 	 * But given that nval is 64-bit, we could easily overflow, so
2493 	 * we do this as 128-bit arithmetic.
2494 	 */
2495 	if (snval < 0)
2496 		snval = -snval;
2497 
2498 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2499 	dtrace_add_128(data + 2, tmp, data + 2);
2500 }
2501 
2502 /*ARGSUSED*/
2503 static void
2504 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2505 {
2506 	*oval = *oval + 1;
2507 }
2508 
2509 /*ARGSUSED*/
2510 static void
2511 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2512 {
2513 	*oval += nval;
2514 }
2515 
2516 /*
2517  * Aggregate given the tuple in the principal data buffer, and the aggregating
2518  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2519  * buffer is specified as the buf parameter.  This routine does not return
2520  * failure; if there is no space in the aggregation buffer, the data will be
2521  * dropped, and a corresponding counter incremented.
2522  */
2523 static void
2524 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2525     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2526 {
2527 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2528 	uint32_t i, ndx, size, fsize;
2529 	uint32_t align = sizeof (uint64_t) - 1;
2530 	dtrace_aggbuffer_t *agb;
2531 	dtrace_aggkey_t *key;
2532 	uint32_t hashval = 0, limit, isstr;
2533 	caddr_t tomax, data, kdata;
2534 	dtrace_actkind_t action;
2535 	dtrace_action_t *act;
2536 	uintptr_t offs;
2537 
2538 	if (buf == NULL)
2539 		return;
2540 
2541 	if (!agg->dtag_hasarg) {
2542 		/*
2543 		 * Currently, only quantize() and lquantize() take additional
2544 		 * arguments, and they have the same semantics:  an increment
2545 		 * value that defaults to 1 when not present.  If additional
2546 		 * aggregating actions take arguments, the setting of the
2547 		 * default argument value will presumably have to become more
2548 		 * sophisticated...
2549 		 */
2550 		arg = 1;
2551 	}
2552 
2553 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2554 	size = rec->dtrd_offset - agg->dtag_base;
2555 	fsize = size + rec->dtrd_size;
2556 
2557 	ASSERT(dbuf->dtb_tomax != NULL);
2558 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2559 
2560 	if ((tomax = buf->dtb_tomax) == NULL) {
2561 		dtrace_buffer_drop(buf);
2562 		return;
2563 	}
2564 
2565 	/*
2566 	 * The metastructure is always at the bottom of the buffer.
2567 	 */
2568 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2569 	    sizeof (dtrace_aggbuffer_t));
2570 
2571 	if (buf->dtb_offset == 0) {
2572 		/*
2573 		 * We just kludge up approximately 1/8th of the size to be
2574 		 * buckets.  If this guess ends up being routinely
2575 		 * off-the-mark, we may need to dynamically readjust this
2576 		 * based on past performance.
2577 		 */
2578 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2579 
2580 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2581 		    (uintptr_t)tomax || hashsize == 0) {
2582 			/*
2583 			 * We've been given a ludicrously small buffer;
2584 			 * increment our drop count and leave.
2585 			 */
2586 			dtrace_buffer_drop(buf);
2587 			return;
2588 		}
2589 
2590 		/*
2591 		 * And now, a pathetic attempt to try to get a an odd (or
2592 		 * perchance, a prime) hash size for better hash distribution.
2593 		 */
2594 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2595 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2596 
2597 		agb->dtagb_hashsize = hashsize;
2598 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2599 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2600 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2601 
2602 		for (i = 0; i < agb->dtagb_hashsize; i++)
2603 			agb->dtagb_hash[i] = NULL;
2604 	}
2605 
2606 	ASSERT(agg->dtag_first != NULL);
2607 	ASSERT(agg->dtag_first->dta_intuple);
2608 
2609 	/*
2610 	 * Calculate the hash value based on the key.  Note that we _don't_
2611 	 * include the aggid in the hashing (but we will store it as part of
2612 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2613 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2614 	 * gets good distribution in practice.  The efficacy of the hashing
2615 	 * algorithm (and a comparison with other algorithms) may be found by
2616 	 * running the ::dtrace_aggstat MDB dcmd.
2617 	 */
2618 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2619 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2620 		limit = i + act->dta_rec.dtrd_size;
2621 		ASSERT(limit <= size);
2622 		isstr = DTRACEACT_ISSTRING(act);
2623 
2624 		for (; i < limit; i++) {
2625 			hashval += data[i];
2626 			hashval += (hashval << 10);
2627 			hashval ^= (hashval >> 6);
2628 
2629 			if (isstr && data[i] == '\0')
2630 				break;
2631 		}
2632 	}
2633 
2634 	hashval += (hashval << 3);
2635 	hashval ^= (hashval >> 11);
2636 	hashval += (hashval << 15);
2637 
2638 	/*
2639 	 * Yes, the divide here is expensive -- but it's generally the least
2640 	 * of the performance issues given the amount of data that we iterate
2641 	 * over to compute hash values, compare data, etc.
2642 	 */
2643 	ndx = hashval % agb->dtagb_hashsize;
2644 
2645 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2646 		ASSERT((caddr_t)key >= tomax);
2647 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2648 
2649 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2650 			continue;
2651 
2652 		kdata = key->dtak_data;
2653 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2654 
2655 		for (act = agg->dtag_first; act->dta_intuple;
2656 		    act = act->dta_next) {
2657 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2658 			limit = i + act->dta_rec.dtrd_size;
2659 			ASSERT(limit <= size);
2660 			isstr = DTRACEACT_ISSTRING(act);
2661 
2662 			for (; i < limit; i++) {
2663 				if (kdata[i] != data[i])
2664 					goto next;
2665 
2666 				if (isstr && data[i] == '\0')
2667 					break;
2668 			}
2669 		}
2670 
2671 		if (action != key->dtak_action) {
2672 			/*
2673 			 * We are aggregating on the same value in the same
2674 			 * aggregation with two different aggregating actions.
2675 			 * (This should have been picked up in the compiler,
2676 			 * so we may be dealing with errant or devious DIF.)
2677 			 * This is an error condition; we indicate as much,
2678 			 * and return.
2679 			 */
2680 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2681 			return;
2682 		}
2683 
2684 		/*
2685 		 * This is a hit:  we need to apply the aggregator to
2686 		 * the value at this key.
2687 		 */
2688 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2689 		return;
2690 next:
2691 		continue;
2692 	}
2693 
2694 	/*
2695 	 * We didn't find it.  We need to allocate some zero-filled space,
2696 	 * link it into the hash table appropriately, and apply the aggregator
2697 	 * to the (zero-filled) value.
2698 	 */
2699 	offs = buf->dtb_offset;
2700 	while (offs & (align - 1))
2701 		offs += sizeof (uint32_t);
2702 
2703 	/*
2704 	 * If we don't have enough room to both allocate a new key _and_
2705 	 * its associated data, increment the drop count and return.
2706 	 */
2707 	if ((uintptr_t)tomax + offs + fsize >
2708 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2709 		dtrace_buffer_drop(buf);
2710 		return;
2711 	}
2712 
2713 	/*CONSTCOND*/
2714 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2715 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2716 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2717 
2718 	key->dtak_data = kdata = tomax + offs;
2719 	buf->dtb_offset = offs + fsize;
2720 
2721 	/*
2722 	 * Now copy the data across.
2723 	 */
2724 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2725 
2726 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2727 		kdata[i] = data[i];
2728 
2729 	/*
2730 	 * Because strings are not zeroed out by default, we need to iterate
2731 	 * looking for actions that store strings, and we need to explicitly
2732 	 * pad these strings out with zeroes.
2733 	 */
2734 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2735 		int nul;
2736 
2737 		if (!DTRACEACT_ISSTRING(act))
2738 			continue;
2739 
2740 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2741 		limit = i + act->dta_rec.dtrd_size;
2742 		ASSERT(limit <= size);
2743 
2744 		for (nul = 0; i < limit; i++) {
2745 			if (nul) {
2746 				kdata[i] = '\0';
2747 				continue;
2748 			}
2749 
2750 			if (data[i] != '\0')
2751 				continue;
2752 
2753 			nul = 1;
2754 		}
2755 	}
2756 
2757 	for (i = size; i < fsize; i++)
2758 		kdata[i] = 0;
2759 
2760 	key->dtak_hashval = hashval;
2761 	key->dtak_size = size;
2762 	key->dtak_action = action;
2763 	key->dtak_next = agb->dtagb_hash[ndx];
2764 	agb->dtagb_hash[ndx] = key;
2765 
2766 	/*
2767 	 * Finally, apply the aggregator.
2768 	 */
2769 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2770 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2771 }
2772 
2773 /*
2774  * Given consumer state, this routine finds a speculation in the INACTIVE
2775  * state and transitions it into the ACTIVE state.  If there is no speculation
2776  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2777  * incremented -- it is up to the caller to take appropriate action.
2778  */
2779 static int
2780 dtrace_speculation(dtrace_state_t *state)
2781 {
2782 	int i = 0;
2783 	dtrace_speculation_state_t current;
2784 	uint32_t *stat = &state->dts_speculations_unavail, count;
2785 
2786 	while (i < state->dts_nspeculations) {
2787 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2788 
2789 		current = spec->dtsp_state;
2790 
2791 		if (current != DTRACESPEC_INACTIVE) {
2792 			if (current == DTRACESPEC_COMMITTINGMANY ||
2793 			    current == DTRACESPEC_COMMITTING ||
2794 			    current == DTRACESPEC_DISCARDING)
2795 				stat = &state->dts_speculations_busy;
2796 			i++;
2797 			continue;
2798 		}
2799 
2800 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2801 		    current, DTRACESPEC_ACTIVE) == current)
2802 			return (i + 1);
2803 	}
2804 
2805 	/*
2806 	 * We couldn't find a speculation.  If we found as much as a single
2807 	 * busy speculation buffer, we'll attribute this failure as "busy"
2808 	 * instead of "unavail".
2809 	 */
2810 	do {
2811 		count = *stat;
2812 	} while (dtrace_cas32(stat, count, count + 1) != count);
2813 
2814 	return (0);
2815 }
2816 
2817 /*
2818  * This routine commits an active speculation.  If the specified speculation
2819  * is not in a valid state to perform a commit(), this routine will silently do
2820  * nothing.  The state of the specified speculation is transitioned according
2821  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2822  */
2823 static void
2824 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2825     dtrace_specid_t which)
2826 {
2827 	dtrace_speculation_t *spec;
2828 	dtrace_buffer_t *src, *dest;
2829 	uintptr_t daddr, saddr, dlimit, slimit;
2830 	dtrace_speculation_state_t current, new = 0;
2831 	intptr_t offs;
2832 	uint64_t timestamp;
2833 
2834 	if (which == 0)
2835 		return;
2836 
2837 	if (which > state->dts_nspeculations) {
2838 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2839 		return;
2840 	}
2841 
2842 	spec = &state->dts_speculations[which - 1];
2843 	src = &spec->dtsp_buffer[cpu];
2844 	dest = &state->dts_buffer[cpu];
2845 
2846 	do {
2847 		current = spec->dtsp_state;
2848 
2849 		if (current == DTRACESPEC_COMMITTINGMANY)
2850 			break;
2851 
2852 		switch (current) {
2853 		case DTRACESPEC_INACTIVE:
2854 		case DTRACESPEC_DISCARDING:
2855 			return;
2856 
2857 		case DTRACESPEC_COMMITTING:
2858 			/*
2859 			 * This is only possible if we are (a) commit()'ing
2860 			 * without having done a prior speculate() on this CPU
2861 			 * and (b) racing with another commit() on a different
2862 			 * CPU.  There's nothing to do -- we just assert that
2863 			 * our offset is 0.
2864 			 */
2865 			ASSERT(src->dtb_offset == 0);
2866 			return;
2867 
2868 		case DTRACESPEC_ACTIVE:
2869 			new = DTRACESPEC_COMMITTING;
2870 			break;
2871 
2872 		case DTRACESPEC_ACTIVEONE:
2873 			/*
2874 			 * This speculation is active on one CPU.  If our
2875 			 * buffer offset is non-zero, we know that the one CPU
2876 			 * must be us.  Otherwise, we are committing on a
2877 			 * different CPU from the speculate(), and we must
2878 			 * rely on being asynchronously cleaned.
2879 			 */
2880 			if (src->dtb_offset != 0) {
2881 				new = DTRACESPEC_COMMITTING;
2882 				break;
2883 			}
2884 			/*FALLTHROUGH*/
2885 
2886 		case DTRACESPEC_ACTIVEMANY:
2887 			new = DTRACESPEC_COMMITTINGMANY;
2888 			break;
2889 
2890 		default:
2891 			ASSERT(0);
2892 		}
2893 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2894 	    current, new) != current);
2895 
2896 	/*
2897 	 * We have set the state to indicate that we are committing this
2898 	 * speculation.  Now reserve the necessary space in the destination
2899 	 * buffer.
2900 	 */
2901 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2902 	    sizeof (uint64_t), state, NULL)) < 0) {
2903 		dtrace_buffer_drop(dest);
2904 		goto out;
2905 	}
2906 
2907 	/*
2908 	 * We have sufficient space to copy the speculative buffer into the
2909 	 * primary buffer.  First, modify the speculative buffer, filling
2910 	 * in the timestamp of all entries with the current time.  The data
2911 	 * must have the commit() time rather than the time it was traced,
2912 	 * so that all entries in the primary buffer are in timestamp order.
2913 	 */
2914 	timestamp = dtrace_gethrtime();
2915 	saddr = (uintptr_t)src->dtb_tomax;
2916 	slimit = saddr + src->dtb_offset;
2917 	while (saddr < slimit) {
2918 		size_t size;
2919 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2920 
2921 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2922 			saddr += sizeof (dtrace_epid_t);
2923 			continue;
2924 		}
2925 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2926 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2927 
2928 		ASSERT3U(saddr + size, <=, slimit);
2929 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2930 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2931 
2932 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2933 
2934 		saddr += size;
2935 	}
2936 
2937 	/*
2938 	 * Copy the buffer across.  (Note that this is a
2939 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2940 	 * a serious performance issue, a high-performance DTrace-specific
2941 	 * bcopy() should obviously be invented.)
2942 	 */
2943 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2944 	dlimit = daddr + src->dtb_offset;
2945 	saddr = (uintptr_t)src->dtb_tomax;
2946 
2947 	/*
2948 	 * First, the aligned portion.
2949 	 */
2950 	while (dlimit - daddr >= sizeof (uint64_t)) {
2951 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2952 
2953 		daddr += sizeof (uint64_t);
2954 		saddr += sizeof (uint64_t);
2955 	}
2956 
2957 	/*
2958 	 * Now any left-over bit...
2959 	 */
2960 	while (dlimit - daddr)
2961 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2962 
2963 	/*
2964 	 * Finally, commit the reserved space in the destination buffer.
2965 	 */
2966 	dest->dtb_offset = offs + src->dtb_offset;
2967 
2968 out:
2969 	/*
2970 	 * If we're lucky enough to be the only active CPU on this speculation
2971 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2972 	 */
2973 	if (current == DTRACESPEC_ACTIVE ||
2974 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2975 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2976 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2977 
2978 		ASSERT(rval == DTRACESPEC_COMMITTING);
2979 	}
2980 
2981 	src->dtb_offset = 0;
2982 	src->dtb_xamot_drops += src->dtb_drops;
2983 	src->dtb_drops = 0;
2984 }
2985 
2986 /*
2987  * This routine discards an active speculation.  If the specified speculation
2988  * is not in a valid state to perform a discard(), this routine will silently
2989  * do nothing.  The state of the specified speculation is transitioned
2990  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2991  */
2992 static void
2993 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2994     dtrace_specid_t which)
2995 {
2996 	dtrace_speculation_t *spec;
2997 	dtrace_speculation_state_t current, new = 0;
2998 	dtrace_buffer_t *buf;
2999 
3000 	if (which == 0)
3001 		return;
3002 
3003 	if (which > state->dts_nspeculations) {
3004 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3005 		return;
3006 	}
3007 
3008 	spec = &state->dts_speculations[which - 1];
3009 	buf = &spec->dtsp_buffer[cpu];
3010 
3011 	do {
3012 		current = spec->dtsp_state;
3013 
3014 		switch (current) {
3015 		case DTRACESPEC_INACTIVE:
3016 		case DTRACESPEC_COMMITTINGMANY:
3017 		case DTRACESPEC_COMMITTING:
3018 		case DTRACESPEC_DISCARDING:
3019 			return;
3020 
3021 		case DTRACESPEC_ACTIVE:
3022 		case DTRACESPEC_ACTIVEMANY:
3023 			new = DTRACESPEC_DISCARDING;
3024 			break;
3025 
3026 		case DTRACESPEC_ACTIVEONE:
3027 			if (buf->dtb_offset != 0) {
3028 				new = DTRACESPEC_INACTIVE;
3029 			} else {
3030 				new = DTRACESPEC_DISCARDING;
3031 			}
3032 			break;
3033 
3034 		default:
3035 			ASSERT(0);
3036 		}
3037 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3038 	    current, new) != current);
3039 
3040 	buf->dtb_offset = 0;
3041 	buf->dtb_drops = 0;
3042 }
3043 
3044 /*
3045  * Note:  not called from probe context.  This function is called
3046  * asynchronously from cross call context to clean any speculations that are
3047  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3048  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3049  * speculation.
3050  */
3051 static void
3052 dtrace_speculation_clean_here(dtrace_state_t *state)
3053 {
3054 	dtrace_icookie_t cookie;
3055 	processorid_t cpu = curcpu;
3056 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3057 	dtrace_specid_t i;
3058 
3059 	cookie = dtrace_interrupt_disable();
3060 
3061 	if (dest->dtb_tomax == NULL) {
3062 		dtrace_interrupt_enable(cookie);
3063 		return;
3064 	}
3065 
3066 	for (i = 0; i < state->dts_nspeculations; i++) {
3067 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3068 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3069 
3070 		if (src->dtb_tomax == NULL)
3071 			continue;
3072 
3073 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3074 			src->dtb_offset = 0;
3075 			continue;
3076 		}
3077 
3078 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3079 			continue;
3080 
3081 		if (src->dtb_offset == 0)
3082 			continue;
3083 
3084 		dtrace_speculation_commit(state, cpu, i + 1);
3085 	}
3086 
3087 	dtrace_interrupt_enable(cookie);
3088 }
3089 
3090 /*
3091  * Note:  not called from probe context.  This function is called
3092  * asynchronously (and at a regular interval) to clean any speculations that
3093  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3094  * is work to be done, it cross calls all CPUs to perform that work;
3095  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3096  * INACTIVE state until they have been cleaned by all CPUs.
3097  */
3098 static void
3099 dtrace_speculation_clean(dtrace_state_t *state)
3100 {
3101 	int work = 0, rv;
3102 	dtrace_specid_t i;
3103 
3104 	for (i = 0; i < state->dts_nspeculations; i++) {
3105 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3106 
3107 		ASSERT(!spec->dtsp_cleaning);
3108 
3109 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3110 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3111 			continue;
3112 
3113 		work++;
3114 		spec->dtsp_cleaning = 1;
3115 	}
3116 
3117 	if (!work)
3118 		return;
3119 
3120 	dtrace_xcall(DTRACE_CPUALL,
3121 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3122 
3123 	/*
3124 	 * We now know that all CPUs have committed or discarded their
3125 	 * speculation buffers, as appropriate.  We can now set the state
3126 	 * to inactive.
3127 	 */
3128 	for (i = 0; i < state->dts_nspeculations; i++) {
3129 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3130 		dtrace_speculation_state_t current, new;
3131 
3132 		if (!spec->dtsp_cleaning)
3133 			continue;
3134 
3135 		current = spec->dtsp_state;
3136 		ASSERT(current == DTRACESPEC_DISCARDING ||
3137 		    current == DTRACESPEC_COMMITTINGMANY);
3138 
3139 		new = DTRACESPEC_INACTIVE;
3140 
3141 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3142 		ASSERT(rv == current);
3143 		spec->dtsp_cleaning = 0;
3144 	}
3145 }
3146 
3147 /*
3148  * Called as part of a speculate() to get the speculative buffer associated
3149  * with a given speculation.  Returns NULL if the specified speculation is not
3150  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3151  * the active CPU is not the specified CPU -- the speculation will be
3152  * atomically transitioned into the ACTIVEMANY state.
3153  */
3154 static dtrace_buffer_t *
3155 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3156     dtrace_specid_t which)
3157 {
3158 	dtrace_speculation_t *spec;
3159 	dtrace_speculation_state_t current, new = 0;
3160 	dtrace_buffer_t *buf;
3161 
3162 	if (which == 0)
3163 		return (NULL);
3164 
3165 	if (which > state->dts_nspeculations) {
3166 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3167 		return (NULL);
3168 	}
3169 
3170 	spec = &state->dts_speculations[which - 1];
3171 	buf = &spec->dtsp_buffer[cpuid];
3172 
3173 	do {
3174 		current = spec->dtsp_state;
3175 
3176 		switch (current) {
3177 		case DTRACESPEC_INACTIVE:
3178 		case DTRACESPEC_COMMITTINGMANY:
3179 		case DTRACESPEC_DISCARDING:
3180 			return (NULL);
3181 
3182 		case DTRACESPEC_COMMITTING:
3183 			ASSERT(buf->dtb_offset == 0);
3184 			return (NULL);
3185 
3186 		case DTRACESPEC_ACTIVEONE:
3187 			/*
3188 			 * This speculation is currently active on one CPU.
3189 			 * Check the offset in the buffer; if it's non-zero,
3190 			 * that CPU must be us (and we leave the state alone).
3191 			 * If it's zero, assume that we're starting on a new
3192 			 * CPU -- and change the state to indicate that the
3193 			 * speculation is active on more than one CPU.
3194 			 */
3195 			if (buf->dtb_offset != 0)
3196 				return (buf);
3197 
3198 			new = DTRACESPEC_ACTIVEMANY;
3199 			break;
3200 
3201 		case DTRACESPEC_ACTIVEMANY:
3202 			return (buf);
3203 
3204 		case DTRACESPEC_ACTIVE:
3205 			new = DTRACESPEC_ACTIVEONE;
3206 			break;
3207 
3208 		default:
3209 			ASSERT(0);
3210 		}
3211 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3212 	    current, new) != current);
3213 
3214 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3215 	return (buf);
3216 }
3217 
3218 /*
3219  * Return a string.  In the event that the user lacks the privilege to access
3220  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3221  * don't fail access checking.
3222  *
3223  * dtrace_dif_variable() uses this routine as a helper for various
3224  * builtin values such as 'execname' and 'probefunc.'
3225  */
3226 uintptr_t
3227 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3228     dtrace_mstate_t *mstate)
3229 {
3230 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3231 	uintptr_t ret;
3232 	size_t strsz;
3233 
3234 	/*
3235 	 * The easy case: this probe is allowed to read all of memory, so
3236 	 * we can just return this as a vanilla pointer.
3237 	 */
3238 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3239 		return (addr);
3240 
3241 	/*
3242 	 * This is the tougher case: we copy the string in question from
3243 	 * kernel memory into scratch memory and return it that way: this
3244 	 * ensures that we won't trip up when access checking tests the
3245 	 * BYREF return value.
3246 	 */
3247 	strsz = dtrace_strlen((char *)addr, size) + 1;
3248 
3249 	if (mstate->dtms_scratch_ptr + strsz >
3250 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3251 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3252 		return (0);
3253 	}
3254 
3255 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3256 	    strsz);
3257 	ret = mstate->dtms_scratch_ptr;
3258 	mstate->dtms_scratch_ptr += strsz;
3259 	return (ret);
3260 }
3261 
3262 /*
3263  * Return a string from a memoy address which is known to have one or
3264  * more concatenated, individually zero terminated, sub-strings.
3265  * In the event that the user lacks the privilege to access
3266  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3267  * don't fail access checking.
3268  *
3269  * dtrace_dif_variable() uses this routine as a helper for various
3270  * builtin values such as 'execargs'.
3271  */
3272 static uintptr_t
3273 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3274     dtrace_mstate_t *mstate)
3275 {
3276 	char *p;
3277 	size_t i;
3278 	uintptr_t ret;
3279 
3280 	if (mstate->dtms_scratch_ptr + strsz >
3281 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3282 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3283 		return (0);
3284 	}
3285 
3286 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3287 	    strsz);
3288 
3289 	/* Replace sub-string termination characters with a space. */
3290 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3291 	    p++, i++)
3292 		if (*p == '\0')
3293 			*p = ' ';
3294 
3295 	ret = mstate->dtms_scratch_ptr;
3296 	mstate->dtms_scratch_ptr += strsz;
3297 	return (ret);
3298 }
3299 
3300 /*
3301  * This function implements the DIF emulator's variable lookups.  The emulator
3302  * passes a reserved variable identifier and optional built-in array index.
3303  */
3304 static uint64_t
3305 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3306     uint64_t ndx)
3307 {
3308 	/*
3309 	 * If we're accessing one of the uncached arguments, we'll turn this
3310 	 * into a reference in the args array.
3311 	 */
3312 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3313 		ndx = v - DIF_VAR_ARG0;
3314 		v = DIF_VAR_ARGS;
3315 	}
3316 
3317 	switch (v) {
3318 	case DIF_VAR_ARGS:
3319 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3320 		if (ndx >= sizeof (mstate->dtms_arg) /
3321 		    sizeof (mstate->dtms_arg[0])) {
3322 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3323 			dtrace_provider_t *pv;
3324 			uint64_t val;
3325 
3326 			pv = mstate->dtms_probe->dtpr_provider;
3327 			if (pv->dtpv_pops.dtps_getargval != NULL)
3328 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3329 				    mstate->dtms_probe->dtpr_id,
3330 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3331 			else
3332 				val = dtrace_getarg(ndx, aframes);
3333 
3334 			/*
3335 			 * This is regrettably required to keep the compiler
3336 			 * from tail-optimizing the call to dtrace_getarg().
3337 			 * The condition always evaluates to true, but the
3338 			 * compiler has no way of figuring that out a priori.
3339 			 * (None of this would be necessary if the compiler
3340 			 * could be relied upon to _always_ tail-optimize
3341 			 * the call to dtrace_getarg() -- but it can't.)
3342 			 */
3343 			if (mstate->dtms_probe != NULL)
3344 				return (val);
3345 
3346 			ASSERT(0);
3347 		}
3348 
3349 		return (mstate->dtms_arg[ndx]);
3350 
3351 #ifdef illumos
3352 	case DIF_VAR_UREGS: {
3353 		klwp_t *lwp;
3354 
3355 		if (!dtrace_priv_proc(state))
3356 			return (0);
3357 
3358 		if ((lwp = curthread->t_lwp) == NULL) {
3359 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3360 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3361 			return (0);
3362 		}
3363 
3364 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3365 		return (0);
3366 	}
3367 #else
3368 	case DIF_VAR_UREGS: {
3369 		struct trapframe *tframe;
3370 
3371 		if (!dtrace_priv_proc(state))
3372 			return (0);
3373 
3374 		if ((tframe = curthread->td_frame) == NULL) {
3375 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3376 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3377 			return (0);
3378 		}
3379 
3380 		return (dtrace_getreg(tframe, ndx));
3381 	}
3382 #endif
3383 
3384 	case DIF_VAR_CURTHREAD:
3385 		if (!dtrace_priv_proc(state))
3386 			return (0);
3387 		return ((uint64_t)(uintptr_t)curthread);
3388 
3389 	case DIF_VAR_TIMESTAMP:
3390 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3391 			mstate->dtms_timestamp = dtrace_gethrtime();
3392 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3393 		}
3394 		return (mstate->dtms_timestamp);
3395 
3396 	case DIF_VAR_VTIMESTAMP:
3397 		ASSERT(dtrace_vtime_references != 0);
3398 		return (curthread->t_dtrace_vtime);
3399 
3400 	case DIF_VAR_WALLTIMESTAMP:
3401 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3402 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3403 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3404 		}
3405 		return (mstate->dtms_walltimestamp);
3406 
3407 #ifdef illumos
3408 	case DIF_VAR_IPL:
3409 		if (!dtrace_priv_kernel(state))
3410 			return (0);
3411 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3412 			mstate->dtms_ipl = dtrace_getipl();
3413 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3414 		}
3415 		return (mstate->dtms_ipl);
3416 #endif
3417 
3418 	case DIF_VAR_EPID:
3419 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3420 		return (mstate->dtms_epid);
3421 
3422 	case DIF_VAR_ID:
3423 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3424 		return (mstate->dtms_probe->dtpr_id);
3425 
3426 	case DIF_VAR_STACKDEPTH:
3427 		if (!dtrace_priv_kernel(state))
3428 			return (0);
3429 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3430 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3431 
3432 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3433 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3434 		}
3435 		return (mstate->dtms_stackdepth);
3436 
3437 	case DIF_VAR_USTACKDEPTH:
3438 		if (!dtrace_priv_proc(state))
3439 			return (0);
3440 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3441 			/*
3442 			 * See comment in DIF_VAR_PID.
3443 			 */
3444 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3445 			    CPU_ON_INTR(CPU)) {
3446 				mstate->dtms_ustackdepth = 0;
3447 			} else {
3448 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3449 				mstate->dtms_ustackdepth =
3450 				    dtrace_getustackdepth();
3451 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3452 			}
3453 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3454 		}
3455 		return (mstate->dtms_ustackdepth);
3456 
3457 	case DIF_VAR_CALLER:
3458 		if (!dtrace_priv_kernel(state))
3459 			return (0);
3460 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3461 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3462 
3463 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3464 				/*
3465 				 * If this is an unanchored probe, we are
3466 				 * required to go through the slow path:
3467 				 * dtrace_caller() only guarantees correct
3468 				 * results for anchored probes.
3469 				 */
3470 				pc_t caller[2] = {0, 0};
3471 
3472 				dtrace_getpcstack(caller, 2, aframes,
3473 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3474 				mstate->dtms_caller = caller[1];
3475 			} else if ((mstate->dtms_caller =
3476 			    dtrace_caller(aframes)) == -1) {
3477 				/*
3478 				 * We have failed to do this the quick way;
3479 				 * we must resort to the slower approach of
3480 				 * calling dtrace_getpcstack().
3481 				 */
3482 				pc_t caller = 0;
3483 
3484 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3485 				mstate->dtms_caller = caller;
3486 			}
3487 
3488 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3489 		}
3490 		return (mstate->dtms_caller);
3491 
3492 	case DIF_VAR_UCALLER:
3493 		if (!dtrace_priv_proc(state))
3494 			return (0);
3495 
3496 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3497 			uint64_t ustack[3];
3498 
3499 			/*
3500 			 * dtrace_getupcstack() fills in the first uint64_t
3501 			 * with the current PID.  The second uint64_t will
3502 			 * be the program counter at user-level.  The third
3503 			 * uint64_t will contain the caller, which is what
3504 			 * we're after.
3505 			 */
3506 			ustack[2] = 0;
3507 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3508 			dtrace_getupcstack(ustack, 3);
3509 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3510 			mstate->dtms_ucaller = ustack[2];
3511 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3512 		}
3513 
3514 		return (mstate->dtms_ucaller);
3515 
3516 	case DIF_VAR_PROBEPROV:
3517 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3518 		return (dtrace_dif_varstr(
3519 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3520 		    state, mstate));
3521 
3522 	case DIF_VAR_PROBEMOD:
3523 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3524 		return (dtrace_dif_varstr(
3525 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3526 		    state, mstate));
3527 
3528 	case DIF_VAR_PROBEFUNC:
3529 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3530 		return (dtrace_dif_varstr(
3531 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3532 		    state, mstate));
3533 
3534 	case DIF_VAR_PROBENAME:
3535 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3536 		return (dtrace_dif_varstr(
3537 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3538 		    state, mstate));
3539 
3540 	case DIF_VAR_PID:
3541 		if (!dtrace_priv_proc(state))
3542 			return (0);
3543 
3544 #ifdef illumos
3545 		/*
3546 		 * Note that we are assuming that an unanchored probe is
3547 		 * always due to a high-level interrupt.  (And we're assuming
3548 		 * that there is only a single high level interrupt.)
3549 		 */
3550 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3551 			return (pid0.pid_id);
3552 
3553 		/*
3554 		 * It is always safe to dereference one's own t_procp pointer:
3555 		 * it always points to a valid, allocated proc structure.
3556 		 * Further, it is always safe to dereference the p_pidp member
3557 		 * of one's own proc structure.  (These are truisms becuase
3558 		 * threads and processes don't clean up their own state --
3559 		 * they leave that task to whomever reaps them.)
3560 		 */
3561 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3562 #else
3563 		return ((uint64_t)curproc->p_pid);
3564 #endif
3565 
3566 	case DIF_VAR_PPID:
3567 		if (!dtrace_priv_proc(state))
3568 			return (0);
3569 
3570 #ifdef illumos
3571 		/*
3572 		 * See comment in DIF_VAR_PID.
3573 		 */
3574 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3575 			return (pid0.pid_id);
3576 
3577 		/*
3578 		 * It is always safe to dereference one's own t_procp pointer:
3579 		 * it always points to a valid, allocated proc structure.
3580 		 * (This is true because threads don't clean up their own
3581 		 * state -- they leave that task to whomever reaps them.)
3582 		 */
3583 		return ((uint64_t)curthread->t_procp->p_ppid);
3584 #else
3585 		if (curproc->p_pid == proc0.p_pid)
3586 			return (curproc->p_pid);
3587 		else
3588 			return (curproc->p_pptr->p_pid);
3589 #endif
3590 
3591 	case DIF_VAR_TID:
3592 #ifdef illumos
3593 		/*
3594 		 * See comment in DIF_VAR_PID.
3595 		 */
3596 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3597 			return (0);
3598 #endif
3599 
3600 		return ((uint64_t)curthread->t_tid);
3601 
3602 	case DIF_VAR_EXECARGS: {
3603 		struct pargs *p_args = curthread->td_proc->p_args;
3604 
3605 		if (p_args == NULL)
3606 			return(0);
3607 
3608 		return (dtrace_dif_varstrz(
3609 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3610 	}
3611 
3612 	case DIF_VAR_EXECNAME:
3613 #ifdef illumos
3614 		if (!dtrace_priv_proc(state))
3615 			return (0);
3616 
3617 		/*
3618 		 * See comment in DIF_VAR_PID.
3619 		 */
3620 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3621 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3622 
3623 		/*
3624 		 * It is always safe to dereference one's own t_procp pointer:
3625 		 * it always points to a valid, allocated proc structure.
3626 		 * (This is true because threads don't clean up their own
3627 		 * state -- they leave that task to whomever reaps them.)
3628 		 */
3629 		return (dtrace_dif_varstr(
3630 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3631 		    state, mstate));
3632 #else
3633 		return (dtrace_dif_varstr(
3634 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3635 #endif
3636 
3637 	case DIF_VAR_ZONENAME:
3638 #ifdef illumos
3639 		if (!dtrace_priv_proc(state))
3640 			return (0);
3641 
3642 		/*
3643 		 * See comment in DIF_VAR_PID.
3644 		 */
3645 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3646 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3647 
3648 		/*
3649 		 * It is always safe to dereference one's own t_procp pointer:
3650 		 * it always points to a valid, allocated proc structure.
3651 		 * (This is true because threads don't clean up their own
3652 		 * state -- they leave that task to whomever reaps them.)
3653 		 */
3654 		return (dtrace_dif_varstr(
3655 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3656 		    state, mstate));
3657 #elif defined(__FreeBSD__)
3658 	/*
3659 	 * On FreeBSD, we introduce compatibility to zonename by falling through
3660 	 * into jailname.
3661 	 */
3662 	case DIF_VAR_JAILNAME:
3663 		if (!dtrace_priv_kernel(state))
3664 			return (0);
3665 
3666 		return (dtrace_dif_varstr(
3667 		    (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3668 		    state, mstate));
3669 
3670 	case DIF_VAR_JID:
3671 		if (!dtrace_priv_kernel(state))
3672 			return (0);
3673 
3674 		return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3675 #else
3676 		return (0);
3677 #endif
3678 
3679 	case DIF_VAR_UID:
3680 		if (!dtrace_priv_proc(state))
3681 			return (0);
3682 
3683 #ifdef illumos
3684 		/*
3685 		 * See comment in DIF_VAR_PID.
3686 		 */
3687 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3688 			return ((uint64_t)p0.p_cred->cr_uid);
3689 
3690 		/*
3691 		 * It is always safe to dereference one's own t_procp pointer:
3692 		 * it always points to a valid, allocated proc structure.
3693 		 * (This is true because threads don't clean up their own
3694 		 * state -- they leave that task to whomever reaps them.)
3695 		 *
3696 		 * Additionally, it is safe to dereference one's own process
3697 		 * credential, since this is never NULL after process birth.
3698 		 */
3699 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3700 #else
3701 		return ((uint64_t)curthread->td_ucred->cr_uid);
3702 #endif
3703 
3704 	case DIF_VAR_GID:
3705 		if (!dtrace_priv_proc(state))
3706 			return (0);
3707 
3708 #ifdef illumos
3709 		/*
3710 		 * See comment in DIF_VAR_PID.
3711 		 */
3712 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3713 			return ((uint64_t)p0.p_cred->cr_gid);
3714 
3715 		/*
3716 		 * It is always safe to dereference one's own t_procp pointer:
3717 		 * it always points to a valid, allocated proc structure.
3718 		 * (This is true because threads don't clean up their own
3719 		 * state -- they leave that task to whomever reaps them.)
3720 		 *
3721 		 * Additionally, it is safe to dereference one's own process
3722 		 * credential, since this is never NULL after process birth.
3723 		 */
3724 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3725 #else
3726 		return ((uint64_t)curthread->td_ucred->cr_gid);
3727 #endif
3728 
3729 	case DIF_VAR_ERRNO: {
3730 #ifdef illumos
3731 		klwp_t *lwp;
3732 		if (!dtrace_priv_proc(state))
3733 			return (0);
3734 
3735 		/*
3736 		 * See comment in DIF_VAR_PID.
3737 		 */
3738 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3739 			return (0);
3740 
3741 		/*
3742 		 * It is always safe to dereference one's own t_lwp pointer in
3743 		 * the event that this pointer is non-NULL.  (This is true
3744 		 * because threads and lwps don't clean up their own state --
3745 		 * they leave that task to whomever reaps them.)
3746 		 */
3747 		if ((lwp = curthread->t_lwp) == NULL)
3748 			return (0);
3749 
3750 		return ((uint64_t)lwp->lwp_errno);
3751 #else
3752 		return (curthread->td_errno);
3753 #endif
3754 	}
3755 #ifndef illumos
3756 	case DIF_VAR_CPU: {
3757 		return curcpu;
3758 	}
3759 #endif
3760 	default:
3761 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3762 		return (0);
3763 	}
3764 }
3765 
3766 
3767 typedef enum dtrace_json_state {
3768 	DTRACE_JSON_REST = 1,
3769 	DTRACE_JSON_OBJECT,
3770 	DTRACE_JSON_STRING,
3771 	DTRACE_JSON_STRING_ESCAPE,
3772 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3773 	DTRACE_JSON_COLON,
3774 	DTRACE_JSON_COMMA,
3775 	DTRACE_JSON_VALUE,
3776 	DTRACE_JSON_IDENTIFIER,
3777 	DTRACE_JSON_NUMBER,
3778 	DTRACE_JSON_NUMBER_FRAC,
3779 	DTRACE_JSON_NUMBER_EXP,
3780 	DTRACE_JSON_COLLECT_OBJECT
3781 } dtrace_json_state_t;
3782 
3783 /*
3784  * This function possesses just enough knowledge about JSON to extract a single
3785  * value from a JSON string and store it in the scratch buffer.  It is able
3786  * to extract nested object values, and members of arrays by index.
3787  *
3788  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3789  * be looked up as we descend into the object tree.  e.g.
3790  *
3791  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3792  *       with nelems = 5.
3793  *
3794  * The run time of this function must be bounded above by strsize to limit the
3795  * amount of work done in probe context.  As such, it is implemented as a
3796  * simple state machine, reading one character at a time using safe loads
3797  * until we find the requested element, hit a parsing error or run off the
3798  * end of the object or string.
3799  *
3800  * As there is no way for a subroutine to return an error without interrupting
3801  * clause execution, we simply return NULL in the event of a missing key or any
3802  * other error condition.  Each NULL return in this function is commented with
3803  * the error condition it represents -- parsing or otherwise.
3804  *
3805  * The set of states for the state machine closely matches the JSON
3806  * specification (http://json.org/).  Briefly:
3807  *
3808  *   DTRACE_JSON_REST:
3809  *     Skip whitespace until we find either a top-level Object, moving
3810  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3811  *
3812  *   DTRACE_JSON_OBJECT:
3813  *     Locate the next key String in an Object.  Sets a flag to denote
3814  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3815  *
3816  *   DTRACE_JSON_COLON:
3817  *     Skip whitespace until we find the colon that separates key Strings
3818  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3819  *
3820  *   DTRACE_JSON_VALUE:
3821  *     Detects the type of the next value (String, Number, Identifier, Object
3822  *     or Array) and routes to the states that process that type.  Here we also
3823  *     deal with the element selector list if we are requested to traverse down
3824  *     into the object tree.
3825  *
3826  *   DTRACE_JSON_COMMA:
3827  *     Skip whitespace until we find the comma that separates key-value pairs
3828  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3829  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3830  *     states return to this state at the end of their value, unless otherwise
3831  *     noted.
3832  *
3833  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3834  *     Processes a Number literal from the JSON, including any exponent
3835  *     component that may be present.  Numbers are returned as strings, which
3836  *     may be passed to strtoll() if an integer is required.
3837  *
3838  *   DTRACE_JSON_IDENTIFIER:
3839  *     Processes a "true", "false" or "null" literal in the JSON.
3840  *
3841  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3842  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3843  *     Processes a String literal from the JSON, whether the String denotes
3844  *     a key, a value or part of a larger Object.  Handles all escape sequences
3845  *     present in the specification, including four-digit unicode characters,
3846  *     but merely includes the escape sequence without converting it to the
3847  *     actual escaped character.  If the String is flagged as a key, we
3848  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3849  *
3850  *   DTRACE_JSON_COLLECT_OBJECT:
3851  *     This state collects an entire Object (or Array), correctly handling
3852  *     embedded strings.  If the full element selector list matches this nested
3853  *     object, we return the Object in full as a string.  If not, we use this
3854  *     state to skip to the next value at this level and continue processing.
3855  *
3856  * NOTE: This function uses various macros from strtolctype.h to manipulate
3857  * digit values, etc -- these have all been checked to ensure they make
3858  * no additional function calls.
3859  */
3860 static char *
3861 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3862     char *dest)
3863 {
3864 	dtrace_json_state_t state = DTRACE_JSON_REST;
3865 	int64_t array_elem = INT64_MIN;
3866 	int64_t array_pos = 0;
3867 	uint8_t escape_unicount = 0;
3868 	boolean_t string_is_key = B_FALSE;
3869 	boolean_t collect_object = B_FALSE;
3870 	boolean_t found_key = B_FALSE;
3871 	boolean_t in_array = B_FALSE;
3872 	uint32_t braces = 0, brackets = 0;
3873 	char *elem = elemlist;
3874 	char *dd = dest;
3875 	uintptr_t cur;
3876 
3877 	for (cur = json; cur < json + size; cur++) {
3878 		char cc = dtrace_load8(cur);
3879 		if (cc == '\0')
3880 			return (NULL);
3881 
3882 		switch (state) {
3883 		case DTRACE_JSON_REST:
3884 			if (isspace(cc))
3885 				break;
3886 
3887 			if (cc == '{') {
3888 				state = DTRACE_JSON_OBJECT;
3889 				break;
3890 			}
3891 
3892 			if (cc == '[') {
3893 				in_array = B_TRUE;
3894 				array_pos = 0;
3895 				array_elem = dtrace_strtoll(elem, 10, size);
3896 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3897 				state = DTRACE_JSON_VALUE;
3898 				break;
3899 			}
3900 
3901 			/*
3902 			 * ERROR: expected to find a top-level object or array.
3903 			 */
3904 			return (NULL);
3905 		case DTRACE_JSON_OBJECT:
3906 			if (isspace(cc))
3907 				break;
3908 
3909 			if (cc == '"') {
3910 				state = DTRACE_JSON_STRING;
3911 				string_is_key = B_TRUE;
3912 				break;
3913 			}
3914 
3915 			/*
3916 			 * ERROR: either the object did not start with a key
3917 			 * string, or we've run off the end of the object
3918 			 * without finding the requested key.
3919 			 */
3920 			return (NULL);
3921 		case DTRACE_JSON_STRING:
3922 			if (cc == '\\') {
3923 				*dd++ = '\\';
3924 				state = DTRACE_JSON_STRING_ESCAPE;
3925 				break;
3926 			}
3927 
3928 			if (cc == '"') {
3929 				if (collect_object) {
3930 					/*
3931 					 * We don't reset the dest here, as
3932 					 * the string is part of a larger
3933 					 * object being collected.
3934 					 */
3935 					*dd++ = cc;
3936 					collect_object = B_FALSE;
3937 					state = DTRACE_JSON_COLLECT_OBJECT;
3938 					break;
3939 				}
3940 				*dd = '\0';
3941 				dd = dest; /* reset string buffer */
3942 				if (string_is_key) {
3943 					if (dtrace_strncmp(dest, elem,
3944 					    size) == 0)
3945 						found_key = B_TRUE;
3946 				} else if (found_key) {
3947 					if (nelems > 1) {
3948 						/*
3949 						 * We expected an object, not
3950 						 * this string.
3951 						 */
3952 						return (NULL);
3953 					}
3954 					return (dest);
3955 				}
3956 				state = string_is_key ? DTRACE_JSON_COLON :
3957 				    DTRACE_JSON_COMMA;
3958 				string_is_key = B_FALSE;
3959 				break;
3960 			}
3961 
3962 			*dd++ = cc;
3963 			break;
3964 		case DTRACE_JSON_STRING_ESCAPE:
3965 			*dd++ = cc;
3966 			if (cc == 'u') {
3967 				escape_unicount = 0;
3968 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3969 			} else {
3970 				state = DTRACE_JSON_STRING;
3971 			}
3972 			break;
3973 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3974 			if (!isxdigit(cc)) {
3975 				/*
3976 				 * ERROR: invalid unicode escape, expected
3977 				 * four valid hexidecimal digits.
3978 				 */
3979 				return (NULL);
3980 			}
3981 
3982 			*dd++ = cc;
3983 			if (++escape_unicount == 4)
3984 				state = DTRACE_JSON_STRING;
3985 			break;
3986 		case DTRACE_JSON_COLON:
3987 			if (isspace(cc))
3988 				break;
3989 
3990 			if (cc == ':') {
3991 				state = DTRACE_JSON_VALUE;
3992 				break;
3993 			}
3994 
3995 			/*
3996 			 * ERROR: expected a colon.
3997 			 */
3998 			return (NULL);
3999 		case DTRACE_JSON_COMMA:
4000 			if (isspace(cc))
4001 				break;
4002 
4003 			if (cc == ',') {
4004 				if (in_array) {
4005 					state = DTRACE_JSON_VALUE;
4006 					if (++array_pos == array_elem)
4007 						found_key = B_TRUE;
4008 				} else {
4009 					state = DTRACE_JSON_OBJECT;
4010 				}
4011 				break;
4012 			}
4013 
4014 			/*
4015 			 * ERROR: either we hit an unexpected character, or
4016 			 * we reached the end of the object or array without
4017 			 * finding the requested key.
4018 			 */
4019 			return (NULL);
4020 		case DTRACE_JSON_IDENTIFIER:
4021 			if (islower(cc)) {
4022 				*dd++ = cc;
4023 				break;
4024 			}
4025 
4026 			*dd = '\0';
4027 			dd = dest; /* reset string buffer */
4028 
4029 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4030 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4031 			    dtrace_strncmp(dest, "null", 5) == 0) {
4032 				if (found_key) {
4033 					if (nelems > 1) {
4034 						/*
4035 						 * ERROR: We expected an object,
4036 						 * not this identifier.
4037 						 */
4038 						return (NULL);
4039 					}
4040 					return (dest);
4041 				} else {
4042 					cur--;
4043 					state = DTRACE_JSON_COMMA;
4044 					break;
4045 				}
4046 			}
4047 
4048 			/*
4049 			 * ERROR: we did not recognise the identifier as one
4050 			 * of those in the JSON specification.
4051 			 */
4052 			return (NULL);
4053 		case DTRACE_JSON_NUMBER:
4054 			if (cc == '.') {
4055 				*dd++ = cc;
4056 				state = DTRACE_JSON_NUMBER_FRAC;
4057 				break;
4058 			}
4059 
4060 			if (cc == 'x' || cc == 'X') {
4061 				/*
4062 				 * ERROR: specification explicitly excludes
4063 				 * hexidecimal or octal numbers.
4064 				 */
4065 				return (NULL);
4066 			}
4067 
4068 			/* FALLTHRU */
4069 		case DTRACE_JSON_NUMBER_FRAC:
4070 			if (cc == 'e' || cc == 'E') {
4071 				*dd++ = cc;
4072 				state = DTRACE_JSON_NUMBER_EXP;
4073 				break;
4074 			}
4075 
4076 			if (cc == '+' || cc == '-') {
4077 				/*
4078 				 * ERROR: expect sign as part of exponent only.
4079 				 */
4080 				return (NULL);
4081 			}
4082 			/* FALLTHRU */
4083 		case DTRACE_JSON_NUMBER_EXP:
4084 			if (isdigit(cc) || cc == '+' || cc == '-') {
4085 				*dd++ = cc;
4086 				break;
4087 			}
4088 
4089 			*dd = '\0';
4090 			dd = dest; /* reset string buffer */
4091 			if (found_key) {
4092 				if (nelems > 1) {
4093 					/*
4094 					 * ERROR: We expected an object, not
4095 					 * this number.
4096 					 */
4097 					return (NULL);
4098 				}
4099 				return (dest);
4100 			}
4101 
4102 			cur--;
4103 			state = DTRACE_JSON_COMMA;
4104 			break;
4105 		case DTRACE_JSON_VALUE:
4106 			if (isspace(cc))
4107 				break;
4108 
4109 			if (cc == '{' || cc == '[') {
4110 				if (nelems > 1 && found_key) {
4111 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4112 					/*
4113 					 * If our element selector directs us
4114 					 * to descend into this nested object,
4115 					 * then move to the next selector
4116 					 * element in the list and restart the
4117 					 * state machine.
4118 					 */
4119 					while (*elem != '\0')
4120 						elem++;
4121 					elem++; /* skip the inter-element NUL */
4122 					nelems--;
4123 					dd = dest;
4124 					if (in_array) {
4125 						state = DTRACE_JSON_VALUE;
4126 						array_pos = 0;
4127 						array_elem = dtrace_strtoll(
4128 						    elem, 10, size);
4129 						found_key = array_elem == 0 ?
4130 						    B_TRUE : B_FALSE;
4131 					} else {
4132 						found_key = B_FALSE;
4133 						state = DTRACE_JSON_OBJECT;
4134 					}
4135 					break;
4136 				}
4137 
4138 				/*
4139 				 * Otherwise, we wish to either skip this
4140 				 * nested object or return it in full.
4141 				 */
4142 				if (cc == '[')
4143 					brackets = 1;
4144 				else
4145 					braces = 1;
4146 				*dd++ = cc;
4147 				state = DTRACE_JSON_COLLECT_OBJECT;
4148 				break;
4149 			}
4150 
4151 			if (cc == '"') {
4152 				state = DTRACE_JSON_STRING;
4153 				break;
4154 			}
4155 
4156 			if (islower(cc)) {
4157 				/*
4158 				 * Here we deal with true, false and null.
4159 				 */
4160 				*dd++ = cc;
4161 				state = DTRACE_JSON_IDENTIFIER;
4162 				break;
4163 			}
4164 
4165 			if (cc == '-' || isdigit(cc)) {
4166 				*dd++ = cc;
4167 				state = DTRACE_JSON_NUMBER;
4168 				break;
4169 			}
4170 
4171 			/*
4172 			 * ERROR: unexpected character at start of value.
4173 			 */
4174 			return (NULL);
4175 		case DTRACE_JSON_COLLECT_OBJECT:
4176 			if (cc == '\0')
4177 				/*
4178 				 * ERROR: unexpected end of input.
4179 				 */
4180 				return (NULL);
4181 
4182 			*dd++ = cc;
4183 			if (cc == '"') {
4184 				collect_object = B_TRUE;
4185 				state = DTRACE_JSON_STRING;
4186 				break;
4187 			}
4188 
4189 			if (cc == ']') {
4190 				if (brackets-- == 0) {
4191 					/*
4192 					 * ERROR: unbalanced brackets.
4193 					 */
4194 					return (NULL);
4195 				}
4196 			} else if (cc == '}') {
4197 				if (braces-- == 0) {
4198 					/*
4199 					 * ERROR: unbalanced braces.
4200 					 */
4201 					return (NULL);
4202 				}
4203 			} else if (cc == '{') {
4204 				braces++;
4205 			} else if (cc == '[') {
4206 				brackets++;
4207 			}
4208 
4209 			if (brackets == 0 && braces == 0) {
4210 				if (found_key) {
4211 					*dd = '\0';
4212 					return (dest);
4213 				}
4214 				dd = dest; /* reset string buffer */
4215 				state = DTRACE_JSON_COMMA;
4216 			}
4217 			break;
4218 		}
4219 	}
4220 	return (NULL);
4221 }
4222 
4223 /*
4224  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4225  * Notice that we don't bother validating the proper number of arguments or
4226  * their types in the tuple stack.  This isn't needed because all argument
4227  * interpretation is safe because of our load safety -- the worst that can
4228  * happen is that a bogus program can obtain bogus results.
4229  */
4230 static void
4231 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4232     dtrace_key_t *tupregs, int nargs,
4233     dtrace_mstate_t *mstate, dtrace_state_t *state)
4234 {
4235 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4236 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4237 	dtrace_vstate_t *vstate = &state->dts_vstate;
4238 
4239 #ifdef illumos
4240 	union {
4241 		mutex_impl_t mi;
4242 		uint64_t mx;
4243 	} m;
4244 
4245 	union {
4246 		krwlock_t ri;
4247 		uintptr_t rw;
4248 	} r;
4249 #else
4250 	struct thread *lowner;
4251 	union {
4252 		struct lock_object *li;
4253 		uintptr_t lx;
4254 	} l;
4255 #endif
4256 
4257 	switch (subr) {
4258 	case DIF_SUBR_RAND:
4259 		regs[rd] = dtrace_xoroshiro128_plus_next(
4260 		    state->dts_rstate[curcpu]);
4261 		break;
4262 
4263 #ifdef illumos
4264 	case DIF_SUBR_MUTEX_OWNED:
4265 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4266 		    mstate, vstate)) {
4267 			regs[rd] = 0;
4268 			break;
4269 		}
4270 
4271 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4272 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4273 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4274 		else
4275 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4276 		break;
4277 
4278 	case DIF_SUBR_MUTEX_OWNER:
4279 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4280 		    mstate, vstate)) {
4281 			regs[rd] = 0;
4282 			break;
4283 		}
4284 
4285 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4286 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4287 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4288 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4289 		else
4290 			regs[rd] = 0;
4291 		break;
4292 
4293 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4294 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4295 		    mstate, vstate)) {
4296 			regs[rd] = 0;
4297 			break;
4298 		}
4299 
4300 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4301 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4302 		break;
4303 
4304 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4305 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4306 		    mstate, vstate)) {
4307 			regs[rd] = 0;
4308 			break;
4309 		}
4310 
4311 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4312 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4313 		break;
4314 
4315 	case DIF_SUBR_RW_READ_HELD: {
4316 		uintptr_t tmp;
4317 
4318 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4319 		    mstate, vstate)) {
4320 			regs[rd] = 0;
4321 			break;
4322 		}
4323 
4324 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4325 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4326 		break;
4327 	}
4328 
4329 	case DIF_SUBR_RW_WRITE_HELD:
4330 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4331 		    mstate, vstate)) {
4332 			regs[rd] = 0;
4333 			break;
4334 		}
4335 
4336 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4337 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4338 		break;
4339 
4340 	case DIF_SUBR_RW_ISWRITER:
4341 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4342 		    mstate, vstate)) {
4343 			regs[rd] = 0;
4344 			break;
4345 		}
4346 
4347 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4348 		regs[rd] = _RW_ISWRITER(&r.ri);
4349 		break;
4350 
4351 #else /* !illumos */
4352 	case DIF_SUBR_MUTEX_OWNED:
4353 		if (!dtrace_canload(tupregs[0].dttk_value,
4354 			sizeof (struct lock_object), mstate, vstate)) {
4355 			regs[rd] = 0;
4356 			break;
4357 		}
4358 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4359 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4360 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4361 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4362 		break;
4363 
4364 	case DIF_SUBR_MUTEX_OWNER:
4365 		if (!dtrace_canload(tupregs[0].dttk_value,
4366 			sizeof (struct lock_object), mstate, vstate)) {
4367 			regs[rd] = 0;
4368 			break;
4369 		}
4370 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4371 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4372 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4373 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4374 		regs[rd] = (uintptr_t)lowner;
4375 		break;
4376 
4377 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4378 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4379 		    mstate, vstate)) {
4380 			regs[rd] = 0;
4381 			break;
4382 		}
4383 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4384 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4385 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4386 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4387 		break;
4388 
4389 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4390 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4391 		    mstate, vstate)) {
4392 			regs[rd] = 0;
4393 			break;
4394 		}
4395 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4396 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4397 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4398 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4399 		break;
4400 
4401 	case DIF_SUBR_RW_READ_HELD:
4402 	case DIF_SUBR_SX_SHARED_HELD:
4403 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4404 		    mstate, vstate)) {
4405 			regs[rd] = 0;
4406 			break;
4407 		}
4408 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4409 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4410 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4411 		    lowner == NULL;
4412 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4413 		break;
4414 
4415 	case DIF_SUBR_RW_WRITE_HELD:
4416 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4417 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4418 		    mstate, vstate)) {
4419 			regs[rd] = 0;
4420 			break;
4421 		}
4422 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4423 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4424 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4425 		    lowner != NULL;
4426 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4427 		break;
4428 
4429 	case DIF_SUBR_RW_ISWRITER:
4430 	case DIF_SUBR_SX_ISEXCLUSIVE:
4431 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4432 		    mstate, vstate)) {
4433 			regs[rd] = 0;
4434 			break;
4435 		}
4436 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4437 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4438 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4439 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4440 		regs[rd] = (lowner == curthread);
4441 		break;
4442 #endif /* illumos */
4443 
4444 	case DIF_SUBR_BCOPY: {
4445 		/*
4446 		 * We need to be sure that the destination is in the scratch
4447 		 * region -- no other region is allowed.
4448 		 */
4449 		uintptr_t src = tupregs[0].dttk_value;
4450 		uintptr_t dest = tupregs[1].dttk_value;
4451 		size_t size = tupregs[2].dttk_value;
4452 
4453 		if (!dtrace_inscratch(dest, size, mstate)) {
4454 			*flags |= CPU_DTRACE_BADADDR;
4455 			*illval = regs[rd];
4456 			break;
4457 		}
4458 
4459 		if (!dtrace_canload(src, size, mstate, vstate)) {
4460 			regs[rd] = 0;
4461 			break;
4462 		}
4463 
4464 		dtrace_bcopy((void *)src, (void *)dest, size);
4465 		break;
4466 	}
4467 
4468 	case DIF_SUBR_ALLOCA:
4469 	case DIF_SUBR_COPYIN: {
4470 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4471 		uint64_t size =
4472 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4473 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4474 
4475 		/*
4476 		 * This action doesn't require any credential checks since
4477 		 * probes will not activate in user contexts to which the
4478 		 * enabling user does not have permissions.
4479 		 */
4480 
4481 		/*
4482 		 * Rounding up the user allocation size could have overflowed
4483 		 * a large, bogus allocation (like -1ULL) to 0.
4484 		 */
4485 		if (scratch_size < size ||
4486 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4487 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4488 			regs[rd] = 0;
4489 			break;
4490 		}
4491 
4492 		if (subr == DIF_SUBR_COPYIN) {
4493 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4494 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4495 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4496 		}
4497 
4498 		mstate->dtms_scratch_ptr += scratch_size;
4499 		regs[rd] = dest;
4500 		break;
4501 	}
4502 
4503 	case DIF_SUBR_COPYINTO: {
4504 		uint64_t size = tupregs[1].dttk_value;
4505 		uintptr_t dest = tupregs[2].dttk_value;
4506 
4507 		/*
4508 		 * This action doesn't require any credential checks since
4509 		 * probes will not activate in user contexts to which the
4510 		 * enabling user does not have permissions.
4511 		 */
4512 		if (!dtrace_inscratch(dest, size, mstate)) {
4513 			*flags |= CPU_DTRACE_BADADDR;
4514 			*illval = regs[rd];
4515 			break;
4516 		}
4517 
4518 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4519 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4520 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4521 		break;
4522 	}
4523 
4524 	case DIF_SUBR_COPYINSTR: {
4525 		uintptr_t dest = mstate->dtms_scratch_ptr;
4526 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4527 
4528 		if (nargs > 1 && tupregs[1].dttk_value < size)
4529 			size = tupregs[1].dttk_value + 1;
4530 
4531 		/*
4532 		 * This action doesn't require any credential checks since
4533 		 * probes will not activate in user contexts to which the
4534 		 * enabling user does not have permissions.
4535 		 */
4536 		if (!DTRACE_INSCRATCH(mstate, size)) {
4537 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4538 			regs[rd] = 0;
4539 			break;
4540 		}
4541 
4542 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4543 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4544 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4545 
4546 		((char *)dest)[size - 1] = '\0';
4547 		mstate->dtms_scratch_ptr += size;
4548 		regs[rd] = dest;
4549 		break;
4550 	}
4551 
4552 #ifdef illumos
4553 	case DIF_SUBR_MSGSIZE:
4554 	case DIF_SUBR_MSGDSIZE: {
4555 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4556 		uintptr_t wptr, rptr;
4557 		size_t count = 0;
4558 		int cont = 0;
4559 
4560 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4561 
4562 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4563 			    vstate)) {
4564 				regs[rd] = 0;
4565 				break;
4566 			}
4567 
4568 			wptr = dtrace_loadptr(baddr +
4569 			    offsetof(mblk_t, b_wptr));
4570 
4571 			rptr = dtrace_loadptr(baddr +
4572 			    offsetof(mblk_t, b_rptr));
4573 
4574 			if (wptr < rptr) {
4575 				*flags |= CPU_DTRACE_BADADDR;
4576 				*illval = tupregs[0].dttk_value;
4577 				break;
4578 			}
4579 
4580 			daddr = dtrace_loadptr(baddr +
4581 			    offsetof(mblk_t, b_datap));
4582 
4583 			baddr = dtrace_loadptr(baddr +
4584 			    offsetof(mblk_t, b_cont));
4585 
4586 			/*
4587 			 * We want to prevent against denial-of-service here,
4588 			 * so we're only going to search the list for
4589 			 * dtrace_msgdsize_max mblks.
4590 			 */
4591 			if (cont++ > dtrace_msgdsize_max) {
4592 				*flags |= CPU_DTRACE_ILLOP;
4593 				break;
4594 			}
4595 
4596 			if (subr == DIF_SUBR_MSGDSIZE) {
4597 				if (dtrace_load8(daddr +
4598 				    offsetof(dblk_t, db_type)) != M_DATA)
4599 					continue;
4600 			}
4601 
4602 			count += wptr - rptr;
4603 		}
4604 
4605 		if (!(*flags & CPU_DTRACE_FAULT))
4606 			regs[rd] = count;
4607 
4608 		break;
4609 	}
4610 #endif
4611 
4612 	case DIF_SUBR_PROGENYOF: {
4613 		pid_t pid = tupregs[0].dttk_value;
4614 		proc_t *p;
4615 		int rval = 0;
4616 
4617 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4618 
4619 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4620 #ifdef illumos
4621 			if (p->p_pidp->pid_id == pid) {
4622 #else
4623 			if (p->p_pid == pid) {
4624 #endif
4625 				rval = 1;
4626 				break;
4627 			}
4628 		}
4629 
4630 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4631 
4632 		regs[rd] = rval;
4633 		break;
4634 	}
4635 
4636 	case DIF_SUBR_SPECULATION:
4637 		regs[rd] = dtrace_speculation(state);
4638 		break;
4639 
4640 	case DIF_SUBR_COPYOUT: {
4641 		uintptr_t kaddr = tupregs[0].dttk_value;
4642 		uintptr_t uaddr = tupregs[1].dttk_value;
4643 		uint64_t size = tupregs[2].dttk_value;
4644 
4645 		if (!dtrace_destructive_disallow &&
4646 		    dtrace_priv_proc_control(state) &&
4647 		    !dtrace_istoxic(kaddr, size) &&
4648 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4649 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4650 			dtrace_copyout(kaddr, uaddr, size, flags);
4651 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4652 		}
4653 		break;
4654 	}
4655 
4656 	case DIF_SUBR_COPYOUTSTR: {
4657 		uintptr_t kaddr = tupregs[0].dttk_value;
4658 		uintptr_t uaddr = tupregs[1].dttk_value;
4659 		uint64_t size = tupregs[2].dttk_value;
4660 		size_t lim;
4661 
4662 		if (!dtrace_destructive_disallow &&
4663 		    dtrace_priv_proc_control(state) &&
4664 		    !dtrace_istoxic(kaddr, size) &&
4665 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4666 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4667 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4668 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4669 		}
4670 		break;
4671 	}
4672 
4673 	case DIF_SUBR_STRLEN: {
4674 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4675 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4676 		size_t lim;
4677 
4678 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4679 			regs[rd] = 0;
4680 			break;
4681 		}
4682 
4683 		regs[rd] = dtrace_strlen((char *)addr, lim);
4684 		break;
4685 	}
4686 
4687 	case DIF_SUBR_STRCHR:
4688 	case DIF_SUBR_STRRCHR: {
4689 		/*
4690 		 * We're going to iterate over the string looking for the
4691 		 * specified character.  We will iterate until we have reached
4692 		 * the string length or we have found the character.  If this
4693 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4694 		 * of the specified character instead of the first.
4695 		 */
4696 		uintptr_t addr = tupregs[0].dttk_value;
4697 		uintptr_t addr_limit;
4698 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4699 		size_t lim;
4700 		char c, target = (char)tupregs[1].dttk_value;
4701 
4702 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4703 			regs[rd] = 0;
4704 			break;
4705 		}
4706 		addr_limit = addr + lim;
4707 
4708 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4709 			if ((c = dtrace_load8(addr)) == target) {
4710 				regs[rd] = addr;
4711 
4712 				if (subr == DIF_SUBR_STRCHR)
4713 					break;
4714 			}
4715 
4716 			if (c == '\0')
4717 				break;
4718 		}
4719 		break;
4720 	}
4721 
4722 	case DIF_SUBR_STRSTR:
4723 	case DIF_SUBR_INDEX:
4724 	case DIF_SUBR_RINDEX: {
4725 		/*
4726 		 * We're going to iterate over the string looking for the
4727 		 * specified string.  We will iterate until we have reached
4728 		 * the string length or we have found the string.  (Yes, this
4729 		 * is done in the most naive way possible -- but considering
4730 		 * that the string we're searching for is likely to be
4731 		 * relatively short, the complexity of Rabin-Karp or similar
4732 		 * hardly seems merited.)
4733 		 */
4734 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4735 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4736 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4737 		size_t len = dtrace_strlen(addr, size);
4738 		size_t sublen = dtrace_strlen(substr, size);
4739 		char *limit = addr + len, *orig = addr;
4740 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4741 		int inc = 1;
4742 
4743 		regs[rd] = notfound;
4744 
4745 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4746 			regs[rd] = 0;
4747 			break;
4748 		}
4749 
4750 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4751 		    vstate)) {
4752 			regs[rd] = 0;
4753 			break;
4754 		}
4755 
4756 		/*
4757 		 * strstr() and index()/rindex() have similar semantics if
4758 		 * both strings are the empty string: strstr() returns a
4759 		 * pointer to the (empty) string, and index() and rindex()
4760 		 * both return index 0 (regardless of any position argument).
4761 		 */
4762 		if (sublen == 0 && len == 0) {
4763 			if (subr == DIF_SUBR_STRSTR)
4764 				regs[rd] = (uintptr_t)addr;
4765 			else
4766 				regs[rd] = 0;
4767 			break;
4768 		}
4769 
4770 		if (subr != DIF_SUBR_STRSTR) {
4771 			if (subr == DIF_SUBR_RINDEX) {
4772 				limit = orig - 1;
4773 				addr += len;
4774 				inc = -1;
4775 			}
4776 
4777 			/*
4778 			 * Both index() and rindex() take an optional position
4779 			 * argument that denotes the starting position.
4780 			 */
4781 			if (nargs == 3) {
4782 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4783 
4784 				/*
4785 				 * If the position argument to index() is
4786 				 * negative, Perl implicitly clamps it at
4787 				 * zero.  This semantic is a little surprising
4788 				 * given the special meaning of negative
4789 				 * positions to similar Perl functions like
4790 				 * substr(), but it appears to reflect a
4791 				 * notion that index() can start from a
4792 				 * negative index and increment its way up to
4793 				 * the string.  Given this notion, Perl's
4794 				 * rindex() is at least self-consistent in
4795 				 * that it implicitly clamps positions greater
4796 				 * than the string length to be the string
4797 				 * length.  Where Perl completely loses
4798 				 * coherence, however, is when the specified
4799 				 * substring is the empty string ("").  In
4800 				 * this case, even if the position is
4801 				 * negative, rindex() returns 0 -- and even if
4802 				 * the position is greater than the length,
4803 				 * index() returns the string length.  These
4804 				 * semantics violate the notion that index()
4805 				 * should never return a value less than the
4806 				 * specified position and that rindex() should
4807 				 * never return a value greater than the
4808 				 * specified position.  (One assumes that
4809 				 * these semantics are artifacts of Perl's
4810 				 * implementation and not the results of
4811 				 * deliberate design -- it beggars belief that
4812 				 * even Larry Wall could desire such oddness.)
4813 				 * While in the abstract one would wish for
4814 				 * consistent position semantics across
4815 				 * substr(), index() and rindex() -- or at the
4816 				 * very least self-consistent position
4817 				 * semantics for index() and rindex() -- we
4818 				 * instead opt to keep with the extant Perl
4819 				 * semantics, in all their broken glory.  (Do
4820 				 * we have more desire to maintain Perl's
4821 				 * semantics than Perl does?  Probably.)
4822 				 */
4823 				if (subr == DIF_SUBR_RINDEX) {
4824 					if (pos < 0) {
4825 						if (sublen == 0)
4826 							regs[rd] = 0;
4827 						break;
4828 					}
4829 
4830 					if (pos > len)
4831 						pos = len;
4832 				} else {
4833 					if (pos < 0)
4834 						pos = 0;
4835 
4836 					if (pos >= len) {
4837 						if (sublen == 0)
4838 							regs[rd] = len;
4839 						break;
4840 					}
4841 				}
4842 
4843 				addr = orig + pos;
4844 			}
4845 		}
4846 
4847 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4848 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4849 				if (subr != DIF_SUBR_STRSTR) {
4850 					/*
4851 					 * As D index() and rindex() are
4852 					 * modeled on Perl (and not on awk),
4853 					 * we return a zero-based (and not a
4854 					 * one-based) index.  (For you Perl
4855 					 * weenies: no, we're not going to add
4856 					 * $[ -- and shouldn't you be at a con
4857 					 * or something?)
4858 					 */
4859 					regs[rd] = (uintptr_t)(addr - orig);
4860 					break;
4861 				}
4862 
4863 				ASSERT(subr == DIF_SUBR_STRSTR);
4864 				regs[rd] = (uintptr_t)addr;
4865 				break;
4866 			}
4867 		}
4868 
4869 		break;
4870 	}
4871 
4872 	case DIF_SUBR_STRTOK: {
4873 		uintptr_t addr = tupregs[0].dttk_value;
4874 		uintptr_t tokaddr = tupregs[1].dttk_value;
4875 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4876 		uintptr_t limit, toklimit;
4877 		size_t clim;
4878 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4879 		char *dest = (char *)mstate->dtms_scratch_ptr;
4880 		int i;
4881 
4882 		/*
4883 		 * Check both the token buffer and (later) the input buffer,
4884 		 * since both could be non-scratch addresses.
4885 		 */
4886 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4887 			regs[rd] = 0;
4888 			break;
4889 		}
4890 		toklimit = tokaddr + clim;
4891 
4892 		if (!DTRACE_INSCRATCH(mstate, size)) {
4893 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4894 			regs[rd] = 0;
4895 			break;
4896 		}
4897 
4898 		if (addr == 0) {
4899 			/*
4900 			 * If the address specified is NULL, we use our saved
4901 			 * strtok pointer from the mstate.  Note that this
4902 			 * means that the saved strtok pointer is _only_
4903 			 * valid within multiple enablings of the same probe --
4904 			 * it behaves like an implicit clause-local variable.
4905 			 */
4906 			addr = mstate->dtms_strtok;
4907 			limit = mstate->dtms_strtok_limit;
4908 		} else {
4909 			/*
4910 			 * If the user-specified address is non-NULL we must
4911 			 * access check it.  This is the only time we have
4912 			 * a chance to do so, since this address may reside
4913 			 * in the string table of this clause-- future calls
4914 			 * (when we fetch addr from mstate->dtms_strtok)
4915 			 * would fail this access check.
4916 			 */
4917 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4918 			    vstate)) {
4919 				regs[rd] = 0;
4920 				break;
4921 			}
4922 			limit = addr + clim;
4923 		}
4924 
4925 		/*
4926 		 * First, zero the token map, and then process the token
4927 		 * string -- setting a bit in the map for every character
4928 		 * found in the token string.
4929 		 */
4930 		for (i = 0; i < sizeof (tokmap); i++)
4931 			tokmap[i] = 0;
4932 
4933 		for (; tokaddr < toklimit; tokaddr++) {
4934 			if ((c = dtrace_load8(tokaddr)) == '\0')
4935 				break;
4936 
4937 			ASSERT((c >> 3) < sizeof (tokmap));
4938 			tokmap[c >> 3] |= (1 << (c & 0x7));
4939 		}
4940 
4941 		for (; addr < limit; addr++) {
4942 			/*
4943 			 * We're looking for a character that is _not_
4944 			 * contained in the token string.
4945 			 */
4946 			if ((c = dtrace_load8(addr)) == '\0')
4947 				break;
4948 
4949 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4950 				break;
4951 		}
4952 
4953 		if (c == '\0') {
4954 			/*
4955 			 * We reached the end of the string without finding
4956 			 * any character that was not in the token string.
4957 			 * We return NULL in this case, and we set the saved
4958 			 * address to NULL as well.
4959 			 */
4960 			regs[rd] = 0;
4961 			mstate->dtms_strtok = 0;
4962 			mstate->dtms_strtok_limit = 0;
4963 			break;
4964 		}
4965 
4966 		/*
4967 		 * From here on, we're copying into the destination string.
4968 		 */
4969 		for (i = 0; addr < limit && i < size - 1; addr++) {
4970 			if ((c = dtrace_load8(addr)) == '\0')
4971 				break;
4972 
4973 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4974 				break;
4975 
4976 			ASSERT(i < size);
4977 			dest[i++] = c;
4978 		}
4979 
4980 		ASSERT(i < size);
4981 		dest[i] = '\0';
4982 		regs[rd] = (uintptr_t)dest;
4983 		mstate->dtms_scratch_ptr += size;
4984 		mstate->dtms_strtok = addr;
4985 		mstate->dtms_strtok_limit = limit;
4986 		break;
4987 	}
4988 
4989 	case DIF_SUBR_SUBSTR: {
4990 		uintptr_t s = tupregs[0].dttk_value;
4991 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4992 		char *d = (char *)mstate->dtms_scratch_ptr;
4993 		int64_t index = (int64_t)tupregs[1].dttk_value;
4994 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4995 		size_t len = dtrace_strlen((char *)s, size);
4996 		int64_t i;
4997 
4998 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4999 			regs[rd] = 0;
5000 			break;
5001 		}
5002 
5003 		if (!DTRACE_INSCRATCH(mstate, size)) {
5004 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5005 			regs[rd] = 0;
5006 			break;
5007 		}
5008 
5009 		if (nargs <= 2)
5010 			remaining = (int64_t)size;
5011 
5012 		if (index < 0) {
5013 			index += len;
5014 
5015 			if (index < 0 && index + remaining > 0) {
5016 				remaining += index;
5017 				index = 0;
5018 			}
5019 		}
5020 
5021 		if (index >= len || index < 0) {
5022 			remaining = 0;
5023 		} else if (remaining < 0) {
5024 			remaining += len - index;
5025 		} else if (index + remaining > size) {
5026 			remaining = size - index;
5027 		}
5028 
5029 		for (i = 0; i < remaining; i++) {
5030 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5031 				break;
5032 		}
5033 
5034 		d[i] = '\0';
5035 
5036 		mstate->dtms_scratch_ptr += size;
5037 		regs[rd] = (uintptr_t)d;
5038 		break;
5039 	}
5040 
5041 	case DIF_SUBR_JSON: {
5042 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5043 		uintptr_t json = tupregs[0].dttk_value;
5044 		size_t jsonlen = dtrace_strlen((char *)json, size);
5045 		uintptr_t elem = tupregs[1].dttk_value;
5046 		size_t elemlen = dtrace_strlen((char *)elem, size);
5047 
5048 		char *dest = (char *)mstate->dtms_scratch_ptr;
5049 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5050 		char *ee = elemlist;
5051 		int nelems = 1;
5052 		uintptr_t cur;
5053 
5054 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5055 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5056 			regs[rd] = 0;
5057 			break;
5058 		}
5059 
5060 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5061 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5062 			regs[rd] = 0;
5063 			break;
5064 		}
5065 
5066 		/*
5067 		 * Read the element selector and split it up into a packed list
5068 		 * of strings.
5069 		 */
5070 		for (cur = elem; cur < elem + elemlen; cur++) {
5071 			char cc = dtrace_load8(cur);
5072 
5073 			if (cur == elem && cc == '[') {
5074 				/*
5075 				 * If the first element selector key is
5076 				 * actually an array index then ignore the
5077 				 * bracket.
5078 				 */
5079 				continue;
5080 			}
5081 
5082 			if (cc == ']')
5083 				continue;
5084 
5085 			if (cc == '.' || cc == '[') {
5086 				nelems++;
5087 				cc = '\0';
5088 			}
5089 
5090 			*ee++ = cc;
5091 		}
5092 		*ee++ = '\0';
5093 
5094 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5095 		    nelems, dest)) != 0)
5096 			mstate->dtms_scratch_ptr += jsonlen + 1;
5097 		break;
5098 	}
5099 
5100 	case DIF_SUBR_TOUPPER:
5101 	case DIF_SUBR_TOLOWER: {
5102 		uintptr_t s = tupregs[0].dttk_value;
5103 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5104 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5105 		size_t len = dtrace_strlen((char *)s, size);
5106 		char lower, upper, convert;
5107 		int64_t i;
5108 
5109 		if (subr == DIF_SUBR_TOUPPER) {
5110 			lower = 'a';
5111 			upper = 'z';
5112 			convert = 'A';
5113 		} else {
5114 			lower = 'A';
5115 			upper = 'Z';
5116 			convert = 'a';
5117 		}
5118 
5119 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5120 			regs[rd] = 0;
5121 			break;
5122 		}
5123 
5124 		if (!DTRACE_INSCRATCH(mstate, size)) {
5125 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5126 			regs[rd] = 0;
5127 			break;
5128 		}
5129 
5130 		for (i = 0; i < size - 1; i++) {
5131 			if ((c = dtrace_load8(s + i)) == '\0')
5132 				break;
5133 
5134 			if (c >= lower && c <= upper)
5135 				c = convert + (c - lower);
5136 
5137 			dest[i] = c;
5138 		}
5139 
5140 		ASSERT(i < size);
5141 		dest[i] = '\0';
5142 		regs[rd] = (uintptr_t)dest;
5143 		mstate->dtms_scratch_ptr += size;
5144 		break;
5145 	}
5146 
5147 #ifdef illumos
5148 	case DIF_SUBR_GETMAJOR:
5149 #ifdef _LP64
5150 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5151 #else
5152 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5153 #endif
5154 		break;
5155 
5156 	case DIF_SUBR_GETMINOR:
5157 #ifdef _LP64
5158 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5159 #else
5160 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5161 #endif
5162 		break;
5163 
5164 	case DIF_SUBR_DDI_PATHNAME: {
5165 		/*
5166 		 * This one is a galactic mess.  We are going to roughly
5167 		 * emulate ddi_pathname(), but it's made more complicated
5168 		 * by the fact that we (a) want to include the minor name and
5169 		 * (b) must proceed iteratively instead of recursively.
5170 		 */
5171 		uintptr_t dest = mstate->dtms_scratch_ptr;
5172 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5173 		char *start = (char *)dest, *end = start + size - 1;
5174 		uintptr_t daddr = tupregs[0].dttk_value;
5175 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5176 		char *s;
5177 		int i, len, depth = 0;
5178 
5179 		/*
5180 		 * Due to all the pointer jumping we do and context we must
5181 		 * rely upon, we just mandate that the user must have kernel
5182 		 * read privileges to use this routine.
5183 		 */
5184 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5185 			*flags |= CPU_DTRACE_KPRIV;
5186 			*illval = daddr;
5187 			regs[rd] = 0;
5188 		}
5189 
5190 		if (!DTRACE_INSCRATCH(mstate, size)) {
5191 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5192 			regs[rd] = 0;
5193 			break;
5194 		}
5195 
5196 		*end = '\0';
5197 
5198 		/*
5199 		 * We want to have a name for the minor.  In order to do this,
5200 		 * we need to walk the minor list from the devinfo.  We want
5201 		 * to be sure that we don't infinitely walk a circular list,
5202 		 * so we check for circularity by sending a scout pointer
5203 		 * ahead two elements for every element that we iterate over;
5204 		 * if the list is circular, these will ultimately point to the
5205 		 * same element.  You may recognize this little trick as the
5206 		 * answer to a stupid interview question -- one that always
5207 		 * seems to be asked by those who had to have it laboriously
5208 		 * explained to them, and who can't even concisely describe
5209 		 * the conditions under which one would be forced to resort to
5210 		 * this technique.  Needless to say, those conditions are
5211 		 * found here -- and probably only here.  Is this the only use
5212 		 * of this infamous trick in shipping, production code?  If it
5213 		 * isn't, it probably should be...
5214 		 */
5215 		if (minor != -1) {
5216 			uintptr_t maddr = dtrace_loadptr(daddr +
5217 			    offsetof(struct dev_info, devi_minor));
5218 
5219 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5220 			uintptr_t name = offsetof(struct ddi_minor_data,
5221 			    d_minor) + offsetof(struct ddi_minor, name);
5222 			uintptr_t dev = offsetof(struct ddi_minor_data,
5223 			    d_minor) + offsetof(struct ddi_minor, dev);
5224 			uintptr_t scout;
5225 
5226 			if (maddr != NULL)
5227 				scout = dtrace_loadptr(maddr + next);
5228 
5229 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5230 				uint64_t m;
5231 #ifdef _LP64
5232 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5233 #else
5234 				m = dtrace_load32(maddr + dev) & MAXMIN;
5235 #endif
5236 				if (m != minor) {
5237 					maddr = dtrace_loadptr(maddr + next);
5238 
5239 					if (scout == NULL)
5240 						continue;
5241 
5242 					scout = dtrace_loadptr(scout + next);
5243 
5244 					if (scout == NULL)
5245 						continue;
5246 
5247 					scout = dtrace_loadptr(scout + next);
5248 
5249 					if (scout == NULL)
5250 						continue;
5251 
5252 					if (scout == maddr) {
5253 						*flags |= CPU_DTRACE_ILLOP;
5254 						break;
5255 					}
5256 
5257 					continue;
5258 				}
5259 
5260 				/*
5261 				 * We have the minor data.  Now we need to
5262 				 * copy the minor's name into the end of the
5263 				 * pathname.
5264 				 */
5265 				s = (char *)dtrace_loadptr(maddr + name);
5266 				len = dtrace_strlen(s, size);
5267 
5268 				if (*flags & CPU_DTRACE_FAULT)
5269 					break;
5270 
5271 				if (len != 0) {
5272 					if ((end -= (len + 1)) < start)
5273 						break;
5274 
5275 					*end = ':';
5276 				}
5277 
5278 				for (i = 1; i <= len; i++)
5279 					end[i] = dtrace_load8((uintptr_t)s++);
5280 				break;
5281 			}
5282 		}
5283 
5284 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5285 			ddi_node_state_t devi_state;
5286 
5287 			devi_state = dtrace_load32(daddr +
5288 			    offsetof(struct dev_info, devi_node_state));
5289 
5290 			if (*flags & CPU_DTRACE_FAULT)
5291 				break;
5292 
5293 			if (devi_state >= DS_INITIALIZED) {
5294 				s = (char *)dtrace_loadptr(daddr +
5295 				    offsetof(struct dev_info, devi_addr));
5296 				len = dtrace_strlen(s, size);
5297 
5298 				if (*flags & CPU_DTRACE_FAULT)
5299 					break;
5300 
5301 				if (len != 0) {
5302 					if ((end -= (len + 1)) < start)
5303 						break;
5304 
5305 					*end = '@';
5306 				}
5307 
5308 				for (i = 1; i <= len; i++)
5309 					end[i] = dtrace_load8((uintptr_t)s++);
5310 			}
5311 
5312 			/*
5313 			 * Now for the node name...
5314 			 */
5315 			s = (char *)dtrace_loadptr(daddr +
5316 			    offsetof(struct dev_info, devi_node_name));
5317 
5318 			daddr = dtrace_loadptr(daddr +
5319 			    offsetof(struct dev_info, devi_parent));
5320 
5321 			/*
5322 			 * If our parent is NULL (that is, if we're the root
5323 			 * node), we're going to use the special path
5324 			 * "devices".
5325 			 */
5326 			if (daddr == 0)
5327 				s = "devices";
5328 
5329 			len = dtrace_strlen(s, size);
5330 			if (*flags & CPU_DTRACE_FAULT)
5331 				break;
5332 
5333 			if ((end -= (len + 1)) < start)
5334 				break;
5335 
5336 			for (i = 1; i <= len; i++)
5337 				end[i] = dtrace_load8((uintptr_t)s++);
5338 			*end = '/';
5339 
5340 			if (depth++ > dtrace_devdepth_max) {
5341 				*flags |= CPU_DTRACE_ILLOP;
5342 				break;
5343 			}
5344 		}
5345 
5346 		if (end < start)
5347 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5348 
5349 		if (daddr == 0) {
5350 			regs[rd] = (uintptr_t)end;
5351 			mstate->dtms_scratch_ptr += size;
5352 		}
5353 
5354 		break;
5355 	}
5356 #endif
5357 
5358 	case DIF_SUBR_STRJOIN: {
5359 		char *d = (char *)mstate->dtms_scratch_ptr;
5360 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5361 		uintptr_t s1 = tupregs[0].dttk_value;
5362 		uintptr_t s2 = tupregs[1].dttk_value;
5363 		int i = 0, j = 0;
5364 		size_t lim1, lim2;
5365 		char c;
5366 
5367 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5368 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5369 			regs[rd] = 0;
5370 			break;
5371 		}
5372 
5373 		if (!DTRACE_INSCRATCH(mstate, size)) {
5374 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5375 			regs[rd] = 0;
5376 			break;
5377 		}
5378 
5379 		for (;;) {
5380 			if (i >= size) {
5381 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5382 				regs[rd] = 0;
5383 				break;
5384 			}
5385 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5386 			if ((d[i++] = c) == '\0') {
5387 				i--;
5388 				break;
5389 			}
5390 		}
5391 
5392 		for (;;) {
5393 			if (i >= size) {
5394 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5395 				regs[rd] = 0;
5396 				break;
5397 			}
5398 
5399 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5400 			if ((d[i++] = c) == '\0')
5401 				break;
5402 		}
5403 
5404 		if (i < size) {
5405 			mstate->dtms_scratch_ptr += i;
5406 			regs[rd] = (uintptr_t)d;
5407 		}
5408 
5409 		break;
5410 	}
5411 
5412 	case DIF_SUBR_STRTOLL: {
5413 		uintptr_t s = tupregs[0].dttk_value;
5414 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5415 		size_t lim;
5416 		int base = 10;
5417 
5418 		if (nargs > 1) {
5419 			if ((base = tupregs[1].dttk_value) <= 1 ||
5420 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5421 				*flags |= CPU_DTRACE_ILLOP;
5422 				break;
5423 			}
5424 		}
5425 
5426 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5427 			regs[rd] = INT64_MIN;
5428 			break;
5429 		}
5430 
5431 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5432 		break;
5433 	}
5434 
5435 	case DIF_SUBR_LLTOSTR: {
5436 		int64_t i = (int64_t)tupregs[0].dttk_value;
5437 		uint64_t val, digit;
5438 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5439 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5440 		int base = 10;
5441 
5442 		if (nargs > 1) {
5443 			if ((base = tupregs[1].dttk_value) <= 1 ||
5444 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5445 				*flags |= CPU_DTRACE_ILLOP;
5446 				break;
5447 			}
5448 		}
5449 
5450 		val = (base == 10 && i < 0) ? i * -1 : i;
5451 
5452 		if (!DTRACE_INSCRATCH(mstate, size)) {
5453 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5454 			regs[rd] = 0;
5455 			break;
5456 		}
5457 
5458 		for (*end-- = '\0'; val; val /= base) {
5459 			if ((digit = val % base) <= '9' - '0') {
5460 				*end-- = '0' + digit;
5461 			} else {
5462 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5463 			}
5464 		}
5465 
5466 		if (i == 0 && base == 16)
5467 			*end-- = '0';
5468 
5469 		if (base == 16)
5470 			*end-- = 'x';
5471 
5472 		if (i == 0 || base == 8 || base == 16)
5473 			*end-- = '0';
5474 
5475 		if (i < 0 && base == 10)
5476 			*end-- = '-';
5477 
5478 		regs[rd] = (uintptr_t)end + 1;
5479 		mstate->dtms_scratch_ptr += size;
5480 		break;
5481 	}
5482 
5483 	case DIF_SUBR_HTONS:
5484 	case DIF_SUBR_NTOHS:
5485 #if BYTE_ORDER == BIG_ENDIAN
5486 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5487 #else
5488 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5489 #endif
5490 		break;
5491 
5492 
5493 	case DIF_SUBR_HTONL:
5494 	case DIF_SUBR_NTOHL:
5495 #if BYTE_ORDER == BIG_ENDIAN
5496 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5497 #else
5498 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5499 #endif
5500 		break;
5501 
5502 
5503 	case DIF_SUBR_HTONLL:
5504 	case DIF_SUBR_NTOHLL:
5505 #if BYTE_ORDER == BIG_ENDIAN
5506 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5507 #else
5508 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5509 #endif
5510 		break;
5511 
5512 
5513 	case DIF_SUBR_DIRNAME:
5514 	case DIF_SUBR_BASENAME: {
5515 		char *dest = (char *)mstate->dtms_scratch_ptr;
5516 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5517 		uintptr_t src = tupregs[0].dttk_value;
5518 		int i, j, len = dtrace_strlen((char *)src, size);
5519 		int lastbase = -1, firstbase = -1, lastdir = -1;
5520 		int start, end;
5521 
5522 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5523 			regs[rd] = 0;
5524 			break;
5525 		}
5526 
5527 		if (!DTRACE_INSCRATCH(mstate, size)) {
5528 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5529 			regs[rd] = 0;
5530 			break;
5531 		}
5532 
5533 		/*
5534 		 * The basename and dirname for a zero-length string is
5535 		 * defined to be "."
5536 		 */
5537 		if (len == 0) {
5538 			len = 1;
5539 			src = (uintptr_t)".";
5540 		}
5541 
5542 		/*
5543 		 * Start from the back of the string, moving back toward the
5544 		 * front until we see a character that isn't a slash.  That
5545 		 * character is the last character in the basename.
5546 		 */
5547 		for (i = len - 1; i >= 0; i--) {
5548 			if (dtrace_load8(src + i) != '/')
5549 				break;
5550 		}
5551 
5552 		if (i >= 0)
5553 			lastbase = i;
5554 
5555 		/*
5556 		 * Starting from the last character in the basename, move
5557 		 * towards the front until we find a slash.  The character
5558 		 * that we processed immediately before that is the first
5559 		 * character in the basename.
5560 		 */
5561 		for (; i >= 0; i--) {
5562 			if (dtrace_load8(src + i) == '/')
5563 				break;
5564 		}
5565 
5566 		if (i >= 0)
5567 			firstbase = i + 1;
5568 
5569 		/*
5570 		 * Now keep going until we find a non-slash character.  That
5571 		 * character is the last character in the dirname.
5572 		 */
5573 		for (; i >= 0; i--) {
5574 			if (dtrace_load8(src + i) != '/')
5575 				break;
5576 		}
5577 
5578 		if (i >= 0)
5579 			lastdir = i;
5580 
5581 		ASSERT(!(lastbase == -1 && firstbase != -1));
5582 		ASSERT(!(firstbase == -1 && lastdir != -1));
5583 
5584 		if (lastbase == -1) {
5585 			/*
5586 			 * We didn't find a non-slash character.  We know that
5587 			 * the length is non-zero, so the whole string must be
5588 			 * slashes.  In either the dirname or the basename
5589 			 * case, we return '/'.
5590 			 */
5591 			ASSERT(firstbase == -1);
5592 			firstbase = lastbase = lastdir = 0;
5593 		}
5594 
5595 		if (firstbase == -1) {
5596 			/*
5597 			 * The entire string consists only of a basename
5598 			 * component.  If we're looking for dirname, we need
5599 			 * to change our string to be just "."; if we're
5600 			 * looking for a basename, we'll just set the first
5601 			 * character of the basename to be 0.
5602 			 */
5603 			if (subr == DIF_SUBR_DIRNAME) {
5604 				ASSERT(lastdir == -1);
5605 				src = (uintptr_t)".";
5606 				lastdir = 0;
5607 			} else {
5608 				firstbase = 0;
5609 			}
5610 		}
5611 
5612 		if (subr == DIF_SUBR_DIRNAME) {
5613 			if (lastdir == -1) {
5614 				/*
5615 				 * We know that we have a slash in the name --
5616 				 * or lastdir would be set to 0, above.  And
5617 				 * because lastdir is -1, we know that this
5618 				 * slash must be the first character.  (That
5619 				 * is, the full string must be of the form
5620 				 * "/basename".)  In this case, the last
5621 				 * character of the directory name is 0.
5622 				 */
5623 				lastdir = 0;
5624 			}
5625 
5626 			start = 0;
5627 			end = lastdir;
5628 		} else {
5629 			ASSERT(subr == DIF_SUBR_BASENAME);
5630 			ASSERT(firstbase != -1 && lastbase != -1);
5631 			start = firstbase;
5632 			end = lastbase;
5633 		}
5634 
5635 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5636 			dest[j] = dtrace_load8(src + i);
5637 
5638 		dest[j] = '\0';
5639 		regs[rd] = (uintptr_t)dest;
5640 		mstate->dtms_scratch_ptr += size;
5641 		break;
5642 	}
5643 
5644 	case DIF_SUBR_GETF: {
5645 		uintptr_t fd = tupregs[0].dttk_value;
5646 		struct filedesc *fdp;
5647 		file_t *fp;
5648 
5649 		if (!dtrace_priv_proc(state)) {
5650 			regs[rd] = 0;
5651 			break;
5652 		}
5653 		fdp = curproc->p_fd;
5654 		FILEDESC_SLOCK(fdp);
5655 		fp = fget_locked(fdp, fd);
5656 		mstate->dtms_getf = fp;
5657 		regs[rd] = (uintptr_t)fp;
5658 		FILEDESC_SUNLOCK(fdp);
5659 		break;
5660 	}
5661 
5662 	case DIF_SUBR_CLEANPATH: {
5663 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5664 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5665 		uintptr_t src = tupregs[0].dttk_value;
5666 		size_t lim;
5667 		int i = 0, j = 0;
5668 #ifdef illumos
5669 		zone_t *z;
5670 #endif
5671 
5672 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5673 			regs[rd] = 0;
5674 			break;
5675 		}
5676 
5677 		if (!DTRACE_INSCRATCH(mstate, size)) {
5678 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5679 			regs[rd] = 0;
5680 			break;
5681 		}
5682 
5683 		/*
5684 		 * Move forward, loading each character.
5685 		 */
5686 		do {
5687 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5688 next:
5689 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5690 				break;
5691 
5692 			if (c != '/') {
5693 				dest[j++] = c;
5694 				continue;
5695 			}
5696 
5697 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5698 
5699 			if (c == '/') {
5700 				/*
5701 				 * We have two slashes -- we can just advance
5702 				 * to the next character.
5703 				 */
5704 				goto next;
5705 			}
5706 
5707 			if (c != '.') {
5708 				/*
5709 				 * This is not "." and it's not ".." -- we can
5710 				 * just store the "/" and this character and
5711 				 * drive on.
5712 				 */
5713 				dest[j++] = '/';
5714 				dest[j++] = c;
5715 				continue;
5716 			}
5717 
5718 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5719 
5720 			if (c == '/') {
5721 				/*
5722 				 * This is a "/./" component.  We're not going
5723 				 * to store anything in the destination buffer;
5724 				 * we're just going to go to the next component.
5725 				 */
5726 				goto next;
5727 			}
5728 
5729 			if (c != '.') {
5730 				/*
5731 				 * This is not ".." -- we can just store the
5732 				 * "/." and this character and continue
5733 				 * processing.
5734 				 */
5735 				dest[j++] = '/';
5736 				dest[j++] = '.';
5737 				dest[j++] = c;
5738 				continue;
5739 			}
5740 
5741 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5742 
5743 			if (c != '/' && c != '\0') {
5744 				/*
5745 				 * This is not ".." -- it's "..[mumble]".
5746 				 * We'll store the "/.." and this character
5747 				 * and continue processing.
5748 				 */
5749 				dest[j++] = '/';
5750 				dest[j++] = '.';
5751 				dest[j++] = '.';
5752 				dest[j++] = c;
5753 				continue;
5754 			}
5755 
5756 			/*
5757 			 * This is "/../" or "/..\0".  We need to back up
5758 			 * our destination pointer until we find a "/".
5759 			 */
5760 			i--;
5761 			while (j != 0 && dest[--j] != '/')
5762 				continue;
5763 
5764 			if (c == '\0')
5765 				dest[++j] = '/';
5766 		} while (c != '\0');
5767 
5768 		dest[j] = '\0';
5769 
5770 #ifdef illumos
5771 		if (mstate->dtms_getf != NULL &&
5772 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5773 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5774 			/*
5775 			 * If we've done a getf() as a part of this ECB and we
5776 			 * don't have kernel access (and we're not in the global
5777 			 * zone), check if the path we cleaned up begins with
5778 			 * the zone's root path, and trim it off if so.  Note
5779 			 * that this is an output cleanliness issue, not a
5780 			 * security issue: knowing one's zone root path does
5781 			 * not enable privilege escalation.
5782 			 */
5783 			if (strstr(dest, z->zone_rootpath) == dest)
5784 				dest += strlen(z->zone_rootpath) - 1;
5785 		}
5786 #endif
5787 
5788 		regs[rd] = (uintptr_t)dest;
5789 		mstate->dtms_scratch_ptr += size;
5790 		break;
5791 	}
5792 
5793 	case DIF_SUBR_INET_NTOA:
5794 	case DIF_SUBR_INET_NTOA6:
5795 	case DIF_SUBR_INET_NTOP: {
5796 		size_t size;
5797 		int af, argi, i;
5798 		char *base, *end;
5799 
5800 		if (subr == DIF_SUBR_INET_NTOP) {
5801 			af = (int)tupregs[0].dttk_value;
5802 			argi = 1;
5803 		} else {
5804 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5805 			argi = 0;
5806 		}
5807 
5808 		if (af == AF_INET) {
5809 			ipaddr_t ip4;
5810 			uint8_t *ptr8, val;
5811 
5812 			if (!dtrace_canload(tupregs[argi].dttk_value,
5813 			    sizeof (ipaddr_t), mstate, vstate)) {
5814 				regs[rd] = 0;
5815 				break;
5816 			}
5817 
5818 			/*
5819 			 * Safely load the IPv4 address.
5820 			 */
5821 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5822 
5823 			/*
5824 			 * Check an IPv4 string will fit in scratch.
5825 			 */
5826 			size = INET_ADDRSTRLEN;
5827 			if (!DTRACE_INSCRATCH(mstate, size)) {
5828 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5829 				regs[rd] = 0;
5830 				break;
5831 			}
5832 			base = (char *)mstate->dtms_scratch_ptr;
5833 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5834 
5835 			/*
5836 			 * Stringify as a dotted decimal quad.
5837 			 */
5838 			*end-- = '\0';
5839 			ptr8 = (uint8_t *)&ip4;
5840 			for (i = 3; i >= 0; i--) {
5841 				val = ptr8[i];
5842 
5843 				if (val == 0) {
5844 					*end-- = '0';
5845 				} else {
5846 					for (; val; val /= 10) {
5847 						*end-- = '0' + (val % 10);
5848 					}
5849 				}
5850 
5851 				if (i > 0)
5852 					*end-- = '.';
5853 			}
5854 			ASSERT(end + 1 >= base);
5855 
5856 		} else if (af == AF_INET6) {
5857 			struct in6_addr ip6;
5858 			int firstzero, tryzero, numzero, v6end;
5859 			uint16_t val;
5860 			const char digits[] = "0123456789abcdef";
5861 
5862 			/*
5863 			 * Stringify using RFC 1884 convention 2 - 16 bit
5864 			 * hexadecimal values with a zero-run compression.
5865 			 * Lower case hexadecimal digits are used.
5866 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5867 			 * The IPv4 embedded form is returned for inet_ntop,
5868 			 * just the IPv4 string is returned for inet_ntoa6.
5869 			 */
5870 
5871 			if (!dtrace_canload(tupregs[argi].dttk_value,
5872 			    sizeof (struct in6_addr), mstate, vstate)) {
5873 				regs[rd] = 0;
5874 				break;
5875 			}
5876 
5877 			/*
5878 			 * Safely load the IPv6 address.
5879 			 */
5880 			dtrace_bcopy(
5881 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5882 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5883 
5884 			/*
5885 			 * Check an IPv6 string will fit in scratch.
5886 			 */
5887 			size = INET6_ADDRSTRLEN;
5888 			if (!DTRACE_INSCRATCH(mstate, size)) {
5889 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5890 				regs[rd] = 0;
5891 				break;
5892 			}
5893 			base = (char *)mstate->dtms_scratch_ptr;
5894 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5895 			*end-- = '\0';
5896 
5897 			/*
5898 			 * Find the longest run of 16 bit zero values
5899 			 * for the single allowed zero compression - "::".
5900 			 */
5901 			firstzero = -1;
5902 			tryzero = -1;
5903 			numzero = 1;
5904 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5905 #ifdef illumos
5906 				if (ip6._S6_un._S6_u8[i] == 0 &&
5907 #else
5908 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5909 #endif
5910 				    tryzero == -1 && i % 2 == 0) {
5911 					tryzero = i;
5912 					continue;
5913 				}
5914 
5915 				if (tryzero != -1 &&
5916 #ifdef illumos
5917 				    (ip6._S6_un._S6_u8[i] != 0 ||
5918 #else
5919 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5920 #endif
5921 				    i == sizeof (struct in6_addr) - 1)) {
5922 
5923 					if (i - tryzero <= numzero) {
5924 						tryzero = -1;
5925 						continue;
5926 					}
5927 
5928 					firstzero = tryzero;
5929 					numzero = i - i % 2 - tryzero;
5930 					tryzero = -1;
5931 
5932 #ifdef illumos
5933 					if (ip6._S6_un._S6_u8[i] == 0 &&
5934 #else
5935 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5936 #endif
5937 					    i == sizeof (struct in6_addr) - 1)
5938 						numzero += 2;
5939 				}
5940 			}
5941 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5942 
5943 			/*
5944 			 * Check for an IPv4 embedded address.
5945 			 */
5946 			v6end = sizeof (struct in6_addr) - 2;
5947 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5948 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5949 				for (i = sizeof (struct in6_addr) - 1;
5950 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5951 					ASSERT(end >= base);
5952 
5953 #ifdef illumos
5954 					val = ip6._S6_un._S6_u8[i];
5955 #else
5956 					val = ip6.__u6_addr.__u6_addr8[i];
5957 #endif
5958 
5959 					if (val == 0) {
5960 						*end-- = '0';
5961 					} else {
5962 						for (; val; val /= 10) {
5963 							*end-- = '0' + val % 10;
5964 						}
5965 					}
5966 
5967 					if (i > DTRACE_V4MAPPED_OFFSET)
5968 						*end-- = '.';
5969 				}
5970 
5971 				if (subr == DIF_SUBR_INET_NTOA6)
5972 					goto inetout;
5973 
5974 				/*
5975 				 * Set v6end to skip the IPv4 address that
5976 				 * we have already stringified.
5977 				 */
5978 				v6end = 10;
5979 			}
5980 
5981 			/*
5982 			 * Build the IPv6 string by working through the
5983 			 * address in reverse.
5984 			 */
5985 			for (i = v6end; i >= 0; i -= 2) {
5986 				ASSERT(end >= base);
5987 
5988 				if (i == firstzero + numzero - 2) {
5989 					*end-- = ':';
5990 					*end-- = ':';
5991 					i -= numzero - 2;
5992 					continue;
5993 				}
5994 
5995 				if (i < 14 && i != firstzero - 2)
5996 					*end-- = ':';
5997 
5998 #ifdef illumos
5999 				val = (ip6._S6_un._S6_u8[i] << 8) +
6000 				    ip6._S6_un._S6_u8[i + 1];
6001 #else
6002 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6003 				    ip6.__u6_addr.__u6_addr8[i + 1];
6004 #endif
6005 
6006 				if (val == 0) {
6007 					*end-- = '0';
6008 				} else {
6009 					for (; val; val /= 16) {
6010 						*end-- = digits[val % 16];
6011 					}
6012 				}
6013 			}
6014 			ASSERT(end + 1 >= base);
6015 
6016 		} else {
6017 			/*
6018 			 * The user didn't use AH_INET or AH_INET6.
6019 			 */
6020 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6021 			regs[rd] = 0;
6022 			break;
6023 		}
6024 
6025 inetout:	regs[rd] = (uintptr_t)end + 1;
6026 		mstate->dtms_scratch_ptr += size;
6027 		break;
6028 	}
6029 
6030 	case DIF_SUBR_MEMREF: {
6031 		uintptr_t size = 2 * sizeof(uintptr_t);
6032 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6033 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6034 
6035 		/* address and length */
6036 		memref[0] = tupregs[0].dttk_value;
6037 		memref[1] = tupregs[1].dttk_value;
6038 
6039 		regs[rd] = (uintptr_t) memref;
6040 		mstate->dtms_scratch_ptr += scratch_size;
6041 		break;
6042 	}
6043 
6044 #ifndef illumos
6045 	case DIF_SUBR_MEMSTR: {
6046 		char *str = (char *)mstate->dtms_scratch_ptr;
6047 		uintptr_t mem = tupregs[0].dttk_value;
6048 		char c = tupregs[1].dttk_value;
6049 		size_t size = tupregs[2].dttk_value;
6050 		uint8_t n;
6051 		int i;
6052 
6053 		regs[rd] = 0;
6054 
6055 		if (size == 0)
6056 			break;
6057 
6058 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6059 			break;
6060 
6061 		if (!DTRACE_INSCRATCH(mstate, size)) {
6062 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6063 			break;
6064 		}
6065 
6066 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6067 			*flags |= CPU_DTRACE_ILLOP;
6068 			break;
6069 		}
6070 
6071 		for (i = 0; i < size - 1; i++) {
6072 			n = dtrace_load8(mem++);
6073 			str[i] = (n == 0) ? c : n;
6074 		}
6075 		str[size - 1] = 0;
6076 
6077 		regs[rd] = (uintptr_t)str;
6078 		mstate->dtms_scratch_ptr += size;
6079 		break;
6080 	}
6081 #endif
6082 	}
6083 }
6084 
6085 /*
6086  * Emulate the execution of DTrace IR instructions specified by the given
6087  * DIF object.  This function is deliberately void of assertions as all of
6088  * the necessary checks are handled by a call to dtrace_difo_validate().
6089  */
6090 static uint64_t
6091 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6092     dtrace_vstate_t *vstate, dtrace_state_t *state)
6093 {
6094 	const dif_instr_t *text = difo->dtdo_buf;
6095 	const uint_t textlen = difo->dtdo_len;
6096 	const char *strtab = difo->dtdo_strtab;
6097 	const uint64_t *inttab = difo->dtdo_inttab;
6098 
6099 	uint64_t rval = 0;
6100 	dtrace_statvar_t *svar;
6101 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6102 	dtrace_difv_t *v;
6103 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6104 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6105 
6106 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6107 	uint64_t regs[DIF_DIR_NREGS];
6108 	uint64_t *tmp;
6109 
6110 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6111 	int64_t cc_r;
6112 	uint_t pc = 0, id, opc = 0;
6113 	uint8_t ttop = 0;
6114 	dif_instr_t instr;
6115 	uint_t r1, r2, rd;
6116 
6117 	/*
6118 	 * We stash the current DIF object into the machine state: we need it
6119 	 * for subsequent access checking.
6120 	 */
6121 	mstate->dtms_difo = difo;
6122 
6123 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6124 
6125 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6126 		opc = pc;
6127 
6128 		instr = text[pc++];
6129 		r1 = DIF_INSTR_R1(instr);
6130 		r2 = DIF_INSTR_R2(instr);
6131 		rd = DIF_INSTR_RD(instr);
6132 
6133 		switch (DIF_INSTR_OP(instr)) {
6134 		case DIF_OP_OR:
6135 			regs[rd] = regs[r1] | regs[r2];
6136 			break;
6137 		case DIF_OP_XOR:
6138 			regs[rd] = regs[r1] ^ regs[r2];
6139 			break;
6140 		case DIF_OP_AND:
6141 			regs[rd] = regs[r1] & regs[r2];
6142 			break;
6143 		case DIF_OP_SLL:
6144 			regs[rd] = regs[r1] << regs[r2];
6145 			break;
6146 		case DIF_OP_SRL:
6147 			regs[rd] = regs[r1] >> regs[r2];
6148 			break;
6149 		case DIF_OP_SUB:
6150 			regs[rd] = regs[r1] - regs[r2];
6151 			break;
6152 		case DIF_OP_ADD:
6153 			regs[rd] = regs[r1] + regs[r2];
6154 			break;
6155 		case DIF_OP_MUL:
6156 			regs[rd] = regs[r1] * regs[r2];
6157 			break;
6158 		case DIF_OP_SDIV:
6159 			if (regs[r2] == 0) {
6160 				regs[rd] = 0;
6161 				*flags |= CPU_DTRACE_DIVZERO;
6162 			} else {
6163 				regs[rd] = (int64_t)regs[r1] /
6164 				    (int64_t)regs[r2];
6165 			}
6166 			break;
6167 
6168 		case DIF_OP_UDIV:
6169 			if (regs[r2] == 0) {
6170 				regs[rd] = 0;
6171 				*flags |= CPU_DTRACE_DIVZERO;
6172 			} else {
6173 				regs[rd] = regs[r1] / regs[r2];
6174 			}
6175 			break;
6176 
6177 		case DIF_OP_SREM:
6178 			if (regs[r2] == 0) {
6179 				regs[rd] = 0;
6180 				*flags |= CPU_DTRACE_DIVZERO;
6181 			} else {
6182 				regs[rd] = (int64_t)regs[r1] %
6183 				    (int64_t)regs[r2];
6184 			}
6185 			break;
6186 
6187 		case DIF_OP_UREM:
6188 			if (regs[r2] == 0) {
6189 				regs[rd] = 0;
6190 				*flags |= CPU_DTRACE_DIVZERO;
6191 			} else {
6192 				regs[rd] = regs[r1] % regs[r2];
6193 			}
6194 			break;
6195 
6196 		case DIF_OP_NOT:
6197 			regs[rd] = ~regs[r1];
6198 			break;
6199 		case DIF_OP_MOV:
6200 			regs[rd] = regs[r1];
6201 			break;
6202 		case DIF_OP_CMP:
6203 			cc_r = regs[r1] - regs[r2];
6204 			cc_n = cc_r < 0;
6205 			cc_z = cc_r == 0;
6206 			cc_v = 0;
6207 			cc_c = regs[r1] < regs[r2];
6208 			break;
6209 		case DIF_OP_TST:
6210 			cc_n = cc_v = cc_c = 0;
6211 			cc_z = regs[r1] == 0;
6212 			break;
6213 		case DIF_OP_BA:
6214 			pc = DIF_INSTR_LABEL(instr);
6215 			break;
6216 		case DIF_OP_BE:
6217 			if (cc_z)
6218 				pc = DIF_INSTR_LABEL(instr);
6219 			break;
6220 		case DIF_OP_BNE:
6221 			if (cc_z == 0)
6222 				pc = DIF_INSTR_LABEL(instr);
6223 			break;
6224 		case DIF_OP_BG:
6225 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6226 				pc = DIF_INSTR_LABEL(instr);
6227 			break;
6228 		case DIF_OP_BGU:
6229 			if ((cc_c | cc_z) == 0)
6230 				pc = DIF_INSTR_LABEL(instr);
6231 			break;
6232 		case DIF_OP_BGE:
6233 			if ((cc_n ^ cc_v) == 0)
6234 				pc = DIF_INSTR_LABEL(instr);
6235 			break;
6236 		case DIF_OP_BGEU:
6237 			if (cc_c == 0)
6238 				pc = DIF_INSTR_LABEL(instr);
6239 			break;
6240 		case DIF_OP_BL:
6241 			if (cc_n ^ cc_v)
6242 				pc = DIF_INSTR_LABEL(instr);
6243 			break;
6244 		case DIF_OP_BLU:
6245 			if (cc_c)
6246 				pc = DIF_INSTR_LABEL(instr);
6247 			break;
6248 		case DIF_OP_BLE:
6249 			if (cc_z | (cc_n ^ cc_v))
6250 				pc = DIF_INSTR_LABEL(instr);
6251 			break;
6252 		case DIF_OP_BLEU:
6253 			if (cc_c | cc_z)
6254 				pc = DIF_INSTR_LABEL(instr);
6255 			break;
6256 		case DIF_OP_RLDSB:
6257 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6258 				break;
6259 			/*FALLTHROUGH*/
6260 		case DIF_OP_LDSB:
6261 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6262 			break;
6263 		case DIF_OP_RLDSH:
6264 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6265 				break;
6266 			/*FALLTHROUGH*/
6267 		case DIF_OP_LDSH:
6268 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6269 			break;
6270 		case DIF_OP_RLDSW:
6271 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6272 				break;
6273 			/*FALLTHROUGH*/
6274 		case DIF_OP_LDSW:
6275 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6276 			break;
6277 		case DIF_OP_RLDUB:
6278 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6279 				break;
6280 			/*FALLTHROUGH*/
6281 		case DIF_OP_LDUB:
6282 			regs[rd] = dtrace_load8(regs[r1]);
6283 			break;
6284 		case DIF_OP_RLDUH:
6285 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6286 				break;
6287 			/*FALLTHROUGH*/
6288 		case DIF_OP_LDUH:
6289 			regs[rd] = dtrace_load16(regs[r1]);
6290 			break;
6291 		case DIF_OP_RLDUW:
6292 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6293 				break;
6294 			/*FALLTHROUGH*/
6295 		case DIF_OP_LDUW:
6296 			regs[rd] = dtrace_load32(regs[r1]);
6297 			break;
6298 		case DIF_OP_RLDX:
6299 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6300 				break;
6301 			/*FALLTHROUGH*/
6302 		case DIF_OP_LDX:
6303 			regs[rd] = dtrace_load64(regs[r1]);
6304 			break;
6305 		case DIF_OP_ULDSB:
6306 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6307 			regs[rd] = (int8_t)
6308 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6309 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6310 			break;
6311 		case DIF_OP_ULDSH:
6312 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6313 			regs[rd] = (int16_t)
6314 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6315 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6316 			break;
6317 		case DIF_OP_ULDSW:
6318 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6319 			regs[rd] = (int32_t)
6320 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6321 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6322 			break;
6323 		case DIF_OP_ULDUB:
6324 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6325 			regs[rd] =
6326 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6327 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6328 			break;
6329 		case DIF_OP_ULDUH:
6330 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6331 			regs[rd] =
6332 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6333 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6334 			break;
6335 		case DIF_OP_ULDUW:
6336 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6337 			regs[rd] =
6338 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6339 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6340 			break;
6341 		case DIF_OP_ULDX:
6342 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6343 			regs[rd] =
6344 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6345 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6346 			break;
6347 		case DIF_OP_RET:
6348 			rval = regs[rd];
6349 			pc = textlen;
6350 			break;
6351 		case DIF_OP_NOP:
6352 			break;
6353 		case DIF_OP_SETX:
6354 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6355 			break;
6356 		case DIF_OP_SETS:
6357 			regs[rd] = (uint64_t)(uintptr_t)
6358 			    (strtab + DIF_INSTR_STRING(instr));
6359 			break;
6360 		case DIF_OP_SCMP: {
6361 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6362 			uintptr_t s1 = regs[r1];
6363 			uintptr_t s2 = regs[r2];
6364 			size_t lim1, lim2;
6365 
6366 			if (s1 != 0 &&
6367 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6368 				break;
6369 			if (s2 != 0 &&
6370 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6371 				break;
6372 
6373 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6374 			    MIN(lim1, lim2));
6375 
6376 			cc_n = cc_r < 0;
6377 			cc_z = cc_r == 0;
6378 			cc_v = cc_c = 0;
6379 			break;
6380 		}
6381 		case DIF_OP_LDGA:
6382 			regs[rd] = dtrace_dif_variable(mstate, state,
6383 			    r1, regs[r2]);
6384 			break;
6385 		case DIF_OP_LDGS:
6386 			id = DIF_INSTR_VAR(instr);
6387 
6388 			if (id >= DIF_VAR_OTHER_UBASE) {
6389 				uintptr_t a;
6390 
6391 				id -= DIF_VAR_OTHER_UBASE;
6392 				svar = vstate->dtvs_globals[id];
6393 				ASSERT(svar != NULL);
6394 				v = &svar->dtsv_var;
6395 
6396 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6397 					regs[rd] = svar->dtsv_data;
6398 					break;
6399 				}
6400 
6401 				a = (uintptr_t)svar->dtsv_data;
6402 
6403 				if (*(uint8_t *)a == UINT8_MAX) {
6404 					/*
6405 					 * If the 0th byte is set to UINT8_MAX
6406 					 * then this is to be treated as a
6407 					 * reference to a NULL variable.
6408 					 */
6409 					regs[rd] = 0;
6410 				} else {
6411 					regs[rd] = a + sizeof (uint64_t);
6412 				}
6413 
6414 				break;
6415 			}
6416 
6417 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6418 			break;
6419 
6420 		case DIF_OP_STGS:
6421 			id = DIF_INSTR_VAR(instr);
6422 
6423 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6424 			id -= DIF_VAR_OTHER_UBASE;
6425 
6426 			VERIFY(id < vstate->dtvs_nglobals);
6427 			svar = vstate->dtvs_globals[id];
6428 			ASSERT(svar != NULL);
6429 			v = &svar->dtsv_var;
6430 
6431 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6432 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6433 				size_t lim;
6434 
6435 				ASSERT(a != 0);
6436 				ASSERT(svar->dtsv_size != 0);
6437 
6438 				if (regs[rd] == 0) {
6439 					*(uint8_t *)a = UINT8_MAX;
6440 					break;
6441 				} else {
6442 					*(uint8_t *)a = 0;
6443 					a += sizeof (uint64_t);
6444 				}
6445 				if (!dtrace_vcanload(
6446 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6447 				    &lim, mstate, vstate))
6448 					break;
6449 
6450 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6451 				    (void *)a, &v->dtdv_type, lim);
6452 				break;
6453 			}
6454 
6455 			svar->dtsv_data = regs[rd];
6456 			break;
6457 
6458 		case DIF_OP_LDTA:
6459 			/*
6460 			 * There are no DTrace built-in thread-local arrays at
6461 			 * present.  This opcode is saved for future work.
6462 			 */
6463 			*flags |= CPU_DTRACE_ILLOP;
6464 			regs[rd] = 0;
6465 			break;
6466 
6467 		case DIF_OP_LDLS:
6468 			id = DIF_INSTR_VAR(instr);
6469 
6470 			if (id < DIF_VAR_OTHER_UBASE) {
6471 				/*
6472 				 * For now, this has no meaning.
6473 				 */
6474 				regs[rd] = 0;
6475 				break;
6476 			}
6477 
6478 			id -= DIF_VAR_OTHER_UBASE;
6479 
6480 			ASSERT(id < vstate->dtvs_nlocals);
6481 			ASSERT(vstate->dtvs_locals != NULL);
6482 
6483 			svar = vstate->dtvs_locals[id];
6484 			ASSERT(svar != NULL);
6485 			v = &svar->dtsv_var;
6486 
6487 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6488 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6489 				size_t sz = v->dtdv_type.dtdt_size;
6490 				size_t lim;
6491 
6492 				sz += sizeof (uint64_t);
6493 				ASSERT(svar->dtsv_size == NCPU * sz);
6494 				a += curcpu * sz;
6495 
6496 				if (*(uint8_t *)a == UINT8_MAX) {
6497 					/*
6498 					 * If the 0th byte is set to UINT8_MAX
6499 					 * then this is to be treated as a
6500 					 * reference to a NULL variable.
6501 					 */
6502 					regs[rd] = 0;
6503 				} else {
6504 					regs[rd] = a + sizeof (uint64_t);
6505 				}
6506 
6507 				break;
6508 			}
6509 
6510 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6511 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6512 			regs[rd] = tmp[curcpu];
6513 			break;
6514 
6515 		case DIF_OP_STLS:
6516 			id = DIF_INSTR_VAR(instr);
6517 
6518 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6519 			id -= DIF_VAR_OTHER_UBASE;
6520 			VERIFY(id < vstate->dtvs_nlocals);
6521 
6522 			ASSERT(vstate->dtvs_locals != NULL);
6523 			svar = vstate->dtvs_locals[id];
6524 			ASSERT(svar != NULL);
6525 			v = &svar->dtsv_var;
6526 
6527 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6528 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6529 				size_t sz = v->dtdv_type.dtdt_size;
6530 				size_t lim;
6531 
6532 				sz += sizeof (uint64_t);
6533 				ASSERT(svar->dtsv_size == NCPU * sz);
6534 				a += curcpu * sz;
6535 
6536 				if (regs[rd] == 0) {
6537 					*(uint8_t *)a = UINT8_MAX;
6538 					break;
6539 				} else {
6540 					*(uint8_t *)a = 0;
6541 					a += sizeof (uint64_t);
6542 				}
6543 
6544 				if (!dtrace_vcanload(
6545 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6546 				    &lim, mstate, vstate))
6547 					break;
6548 
6549 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6550 				    (void *)a, &v->dtdv_type, lim);
6551 				break;
6552 			}
6553 
6554 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6555 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6556 			tmp[curcpu] = regs[rd];
6557 			break;
6558 
6559 		case DIF_OP_LDTS: {
6560 			dtrace_dynvar_t *dvar;
6561 			dtrace_key_t *key;
6562 
6563 			id = DIF_INSTR_VAR(instr);
6564 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6565 			id -= DIF_VAR_OTHER_UBASE;
6566 			v = &vstate->dtvs_tlocals[id];
6567 
6568 			key = &tupregs[DIF_DTR_NREGS];
6569 			key[0].dttk_value = (uint64_t)id;
6570 			key[0].dttk_size = 0;
6571 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6572 			key[1].dttk_size = 0;
6573 
6574 			dvar = dtrace_dynvar(dstate, 2, key,
6575 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6576 			    mstate, vstate);
6577 
6578 			if (dvar == NULL) {
6579 				regs[rd] = 0;
6580 				break;
6581 			}
6582 
6583 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6584 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6585 			} else {
6586 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6587 			}
6588 
6589 			break;
6590 		}
6591 
6592 		case DIF_OP_STTS: {
6593 			dtrace_dynvar_t *dvar;
6594 			dtrace_key_t *key;
6595 
6596 			id = DIF_INSTR_VAR(instr);
6597 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6598 			id -= DIF_VAR_OTHER_UBASE;
6599 			VERIFY(id < vstate->dtvs_ntlocals);
6600 
6601 			key = &tupregs[DIF_DTR_NREGS];
6602 			key[0].dttk_value = (uint64_t)id;
6603 			key[0].dttk_size = 0;
6604 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6605 			key[1].dttk_size = 0;
6606 			v = &vstate->dtvs_tlocals[id];
6607 
6608 			dvar = dtrace_dynvar(dstate, 2, key,
6609 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6610 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6611 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6612 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6613 
6614 			/*
6615 			 * Given that we're storing to thread-local data,
6616 			 * we need to flush our predicate cache.
6617 			 */
6618 			curthread->t_predcache = 0;
6619 
6620 			if (dvar == NULL)
6621 				break;
6622 
6623 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6624 				size_t lim;
6625 
6626 				if (!dtrace_vcanload(
6627 				    (void *)(uintptr_t)regs[rd],
6628 				    &v->dtdv_type, &lim, mstate, vstate))
6629 					break;
6630 
6631 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6632 				    dvar->dtdv_data, &v->dtdv_type, lim);
6633 			} else {
6634 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6635 			}
6636 
6637 			break;
6638 		}
6639 
6640 		case DIF_OP_SRA:
6641 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6642 			break;
6643 
6644 		case DIF_OP_CALL:
6645 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6646 			    regs, tupregs, ttop, mstate, state);
6647 			break;
6648 
6649 		case DIF_OP_PUSHTR:
6650 			if (ttop == DIF_DTR_NREGS) {
6651 				*flags |= CPU_DTRACE_TUPOFLOW;
6652 				break;
6653 			}
6654 
6655 			if (r1 == DIF_TYPE_STRING) {
6656 				/*
6657 				 * If this is a string type and the size is 0,
6658 				 * we'll use the system-wide default string
6659 				 * size.  Note that we are _not_ looking at
6660 				 * the value of the DTRACEOPT_STRSIZE option;
6661 				 * had this been set, we would expect to have
6662 				 * a non-zero size value in the "pushtr".
6663 				 */
6664 				tupregs[ttop].dttk_size =
6665 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6666 				    regs[r2] ? regs[r2] :
6667 				    dtrace_strsize_default) + 1;
6668 			} else {
6669 				if (regs[r2] > LONG_MAX) {
6670 					*flags |= CPU_DTRACE_ILLOP;
6671 					break;
6672 				}
6673 
6674 				tupregs[ttop].dttk_size = regs[r2];
6675 			}
6676 
6677 			tupregs[ttop++].dttk_value = regs[rd];
6678 			break;
6679 
6680 		case DIF_OP_PUSHTV:
6681 			if (ttop == DIF_DTR_NREGS) {
6682 				*flags |= CPU_DTRACE_TUPOFLOW;
6683 				break;
6684 			}
6685 
6686 			tupregs[ttop].dttk_value = regs[rd];
6687 			tupregs[ttop++].dttk_size = 0;
6688 			break;
6689 
6690 		case DIF_OP_POPTS:
6691 			if (ttop != 0)
6692 				ttop--;
6693 			break;
6694 
6695 		case DIF_OP_FLUSHTS:
6696 			ttop = 0;
6697 			break;
6698 
6699 		case DIF_OP_LDGAA:
6700 		case DIF_OP_LDTAA: {
6701 			dtrace_dynvar_t *dvar;
6702 			dtrace_key_t *key = tupregs;
6703 			uint_t nkeys = ttop;
6704 
6705 			id = DIF_INSTR_VAR(instr);
6706 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6707 			id -= DIF_VAR_OTHER_UBASE;
6708 
6709 			key[nkeys].dttk_value = (uint64_t)id;
6710 			key[nkeys++].dttk_size = 0;
6711 
6712 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6713 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6714 				key[nkeys++].dttk_size = 0;
6715 				VERIFY(id < vstate->dtvs_ntlocals);
6716 				v = &vstate->dtvs_tlocals[id];
6717 			} else {
6718 				VERIFY(id < vstate->dtvs_nglobals);
6719 				v = &vstate->dtvs_globals[id]->dtsv_var;
6720 			}
6721 
6722 			dvar = dtrace_dynvar(dstate, nkeys, key,
6723 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6724 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6725 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6726 
6727 			if (dvar == NULL) {
6728 				regs[rd] = 0;
6729 				break;
6730 			}
6731 
6732 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6733 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6734 			} else {
6735 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6736 			}
6737 
6738 			break;
6739 		}
6740 
6741 		case DIF_OP_STGAA:
6742 		case DIF_OP_STTAA: {
6743 			dtrace_dynvar_t *dvar;
6744 			dtrace_key_t *key = tupregs;
6745 			uint_t nkeys = ttop;
6746 
6747 			id = DIF_INSTR_VAR(instr);
6748 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6749 			id -= DIF_VAR_OTHER_UBASE;
6750 
6751 			key[nkeys].dttk_value = (uint64_t)id;
6752 			key[nkeys++].dttk_size = 0;
6753 
6754 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6755 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6756 				key[nkeys++].dttk_size = 0;
6757 				VERIFY(id < vstate->dtvs_ntlocals);
6758 				v = &vstate->dtvs_tlocals[id];
6759 			} else {
6760 				VERIFY(id < vstate->dtvs_nglobals);
6761 				v = &vstate->dtvs_globals[id]->dtsv_var;
6762 			}
6763 
6764 			dvar = dtrace_dynvar(dstate, nkeys, key,
6765 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6766 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6767 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6768 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6769 
6770 			if (dvar == NULL)
6771 				break;
6772 
6773 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6774 				size_t lim;
6775 
6776 				if (!dtrace_vcanload(
6777 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6778 				    &lim, mstate, vstate))
6779 					break;
6780 
6781 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6782 				    dvar->dtdv_data, &v->dtdv_type, lim);
6783 			} else {
6784 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6785 			}
6786 
6787 			break;
6788 		}
6789 
6790 		case DIF_OP_ALLOCS: {
6791 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6792 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6793 
6794 			/*
6795 			 * Rounding up the user allocation size could have
6796 			 * overflowed large, bogus allocations (like -1ULL) to
6797 			 * 0.
6798 			 */
6799 			if (size < regs[r1] ||
6800 			    !DTRACE_INSCRATCH(mstate, size)) {
6801 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6802 				regs[rd] = 0;
6803 				break;
6804 			}
6805 
6806 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6807 			mstate->dtms_scratch_ptr += size;
6808 			regs[rd] = ptr;
6809 			break;
6810 		}
6811 
6812 		case DIF_OP_COPYS:
6813 			if (!dtrace_canstore(regs[rd], regs[r2],
6814 			    mstate, vstate)) {
6815 				*flags |= CPU_DTRACE_BADADDR;
6816 				*illval = regs[rd];
6817 				break;
6818 			}
6819 
6820 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6821 				break;
6822 
6823 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6824 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6825 			break;
6826 
6827 		case DIF_OP_STB:
6828 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6829 				*flags |= CPU_DTRACE_BADADDR;
6830 				*illval = regs[rd];
6831 				break;
6832 			}
6833 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6834 			break;
6835 
6836 		case DIF_OP_STH:
6837 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6838 				*flags |= CPU_DTRACE_BADADDR;
6839 				*illval = regs[rd];
6840 				break;
6841 			}
6842 			if (regs[rd] & 1) {
6843 				*flags |= CPU_DTRACE_BADALIGN;
6844 				*illval = regs[rd];
6845 				break;
6846 			}
6847 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6848 			break;
6849 
6850 		case DIF_OP_STW:
6851 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6852 				*flags |= CPU_DTRACE_BADADDR;
6853 				*illval = regs[rd];
6854 				break;
6855 			}
6856 			if (regs[rd] & 3) {
6857 				*flags |= CPU_DTRACE_BADALIGN;
6858 				*illval = regs[rd];
6859 				break;
6860 			}
6861 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6862 			break;
6863 
6864 		case DIF_OP_STX:
6865 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6866 				*flags |= CPU_DTRACE_BADADDR;
6867 				*illval = regs[rd];
6868 				break;
6869 			}
6870 			if (regs[rd] & 7) {
6871 				*flags |= CPU_DTRACE_BADALIGN;
6872 				*illval = regs[rd];
6873 				break;
6874 			}
6875 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6876 			break;
6877 		}
6878 	}
6879 
6880 	if (!(*flags & CPU_DTRACE_FAULT))
6881 		return (rval);
6882 
6883 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6884 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6885 
6886 	return (0);
6887 }
6888 
6889 static void
6890 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6891 {
6892 	dtrace_probe_t *probe = ecb->dte_probe;
6893 	dtrace_provider_t *prov = probe->dtpr_provider;
6894 	char c[DTRACE_FULLNAMELEN + 80], *str;
6895 	char *msg = "dtrace: breakpoint action at probe ";
6896 	char *ecbmsg = " (ecb ";
6897 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6898 	uintptr_t val = (uintptr_t)ecb;
6899 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6900 
6901 	if (dtrace_destructive_disallow)
6902 		return;
6903 
6904 	/*
6905 	 * It's impossible to be taking action on the NULL probe.
6906 	 */
6907 	ASSERT(probe != NULL);
6908 
6909 	/*
6910 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6911 	 * print the provider name, module name, function name and name of
6912 	 * the probe, along with the hex address of the ECB with the breakpoint
6913 	 * action -- all of which we must place in the character buffer by
6914 	 * hand.
6915 	 */
6916 	while (*msg != '\0')
6917 		c[i++] = *msg++;
6918 
6919 	for (str = prov->dtpv_name; *str != '\0'; str++)
6920 		c[i++] = *str;
6921 	c[i++] = ':';
6922 
6923 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6924 		c[i++] = *str;
6925 	c[i++] = ':';
6926 
6927 	for (str = probe->dtpr_func; *str != '\0'; str++)
6928 		c[i++] = *str;
6929 	c[i++] = ':';
6930 
6931 	for (str = probe->dtpr_name; *str != '\0'; str++)
6932 		c[i++] = *str;
6933 
6934 	while (*ecbmsg != '\0')
6935 		c[i++] = *ecbmsg++;
6936 
6937 	while (shift >= 0) {
6938 		mask = (uintptr_t)0xf << shift;
6939 
6940 		if (val >= ((uintptr_t)1 << shift))
6941 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6942 		shift -= 4;
6943 	}
6944 
6945 	c[i++] = ')';
6946 	c[i] = '\0';
6947 
6948 #ifdef illumos
6949 	debug_enter(c);
6950 #else
6951 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6952 #endif
6953 }
6954 
6955 static void
6956 dtrace_action_panic(dtrace_ecb_t *ecb)
6957 {
6958 	dtrace_probe_t *probe = ecb->dte_probe;
6959 
6960 	/*
6961 	 * It's impossible to be taking action on the NULL probe.
6962 	 */
6963 	ASSERT(probe != NULL);
6964 
6965 	if (dtrace_destructive_disallow)
6966 		return;
6967 
6968 	if (dtrace_panicked != NULL)
6969 		return;
6970 
6971 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6972 		return;
6973 
6974 	/*
6975 	 * We won the right to panic.  (We want to be sure that only one
6976 	 * thread calls panic() from dtrace_probe(), and that panic() is
6977 	 * called exactly once.)
6978 	 */
6979 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6980 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6981 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6982 }
6983 
6984 static void
6985 dtrace_action_raise(uint64_t sig)
6986 {
6987 	if (dtrace_destructive_disallow)
6988 		return;
6989 
6990 	if (sig >= NSIG) {
6991 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6992 		return;
6993 	}
6994 
6995 #ifdef illumos
6996 	/*
6997 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6998 	 * invocations of the raise() action.
6999 	 */
7000 	if (curthread->t_dtrace_sig == 0)
7001 		curthread->t_dtrace_sig = (uint8_t)sig;
7002 
7003 	curthread->t_sig_check = 1;
7004 	aston(curthread);
7005 #else
7006 	struct proc *p = curproc;
7007 	PROC_LOCK(p);
7008 	kern_psignal(p, sig);
7009 	PROC_UNLOCK(p);
7010 #endif
7011 }
7012 
7013 static void
7014 dtrace_action_stop(void)
7015 {
7016 	if (dtrace_destructive_disallow)
7017 		return;
7018 
7019 #ifdef illumos
7020 	if (!curthread->t_dtrace_stop) {
7021 		curthread->t_dtrace_stop = 1;
7022 		curthread->t_sig_check = 1;
7023 		aston(curthread);
7024 	}
7025 #else
7026 	struct proc *p = curproc;
7027 	PROC_LOCK(p);
7028 	kern_psignal(p, SIGSTOP);
7029 	PROC_UNLOCK(p);
7030 #endif
7031 }
7032 
7033 static void
7034 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7035 {
7036 	hrtime_t now;
7037 	volatile uint16_t *flags;
7038 #ifdef illumos
7039 	cpu_t *cpu = CPU;
7040 #else
7041 	cpu_t *cpu = &solaris_cpu[curcpu];
7042 #endif
7043 
7044 	if (dtrace_destructive_disallow)
7045 		return;
7046 
7047 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7048 
7049 	now = dtrace_gethrtime();
7050 
7051 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7052 		/*
7053 		 * We need to advance the mark to the current time.
7054 		 */
7055 		cpu->cpu_dtrace_chillmark = now;
7056 		cpu->cpu_dtrace_chilled = 0;
7057 	}
7058 
7059 	/*
7060 	 * Now check to see if the requested chill time would take us over
7061 	 * the maximum amount of time allowed in the chill interval.  (Or
7062 	 * worse, if the calculation itself induces overflow.)
7063 	 */
7064 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7065 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7066 		*flags |= CPU_DTRACE_ILLOP;
7067 		return;
7068 	}
7069 
7070 	while (dtrace_gethrtime() - now < val)
7071 		continue;
7072 
7073 	/*
7074 	 * Normally, we assure that the value of the variable "timestamp" does
7075 	 * not change within an ECB.  The presence of chill() represents an
7076 	 * exception to this rule, however.
7077 	 */
7078 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7079 	cpu->cpu_dtrace_chilled += val;
7080 }
7081 
7082 static void
7083 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7084     uint64_t *buf, uint64_t arg)
7085 {
7086 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7087 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7088 	uint64_t *pcs = &buf[1], *fps;
7089 	char *str = (char *)&pcs[nframes];
7090 	int size, offs = 0, i, j;
7091 	size_t rem;
7092 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7093 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7094 	char *sym;
7095 
7096 	/*
7097 	 * Should be taking a faster path if string space has not been
7098 	 * allocated.
7099 	 */
7100 	ASSERT(strsize != 0);
7101 
7102 	/*
7103 	 * We will first allocate some temporary space for the frame pointers.
7104 	 */
7105 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7106 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7107 	    (nframes * sizeof (uint64_t));
7108 
7109 	if (!DTRACE_INSCRATCH(mstate, size)) {
7110 		/*
7111 		 * Not enough room for our frame pointers -- need to indicate
7112 		 * that we ran out of scratch space.
7113 		 */
7114 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7115 		return;
7116 	}
7117 
7118 	mstate->dtms_scratch_ptr += size;
7119 	saved = mstate->dtms_scratch_ptr;
7120 
7121 	/*
7122 	 * Now get a stack with both program counters and frame pointers.
7123 	 */
7124 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7125 	dtrace_getufpstack(buf, fps, nframes + 1);
7126 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7127 
7128 	/*
7129 	 * If that faulted, we're cooked.
7130 	 */
7131 	if (*flags & CPU_DTRACE_FAULT)
7132 		goto out;
7133 
7134 	/*
7135 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7136 	 * each iteration, we restore the scratch pointer.
7137 	 */
7138 	for (i = 0; i < nframes; i++) {
7139 		mstate->dtms_scratch_ptr = saved;
7140 
7141 		if (offs >= strsize)
7142 			break;
7143 
7144 		sym = (char *)(uintptr_t)dtrace_helper(
7145 		    DTRACE_HELPER_ACTION_USTACK,
7146 		    mstate, state, pcs[i], fps[i]);
7147 
7148 		/*
7149 		 * If we faulted while running the helper, we're going to
7150 		 * clear the fault and null out the corresponding string.
7151 		 */
7152 		if (*flags & CPU_DTRACE_FAULT) {
7153 			*flags &= ~CPU_DTRACE_FAULT;
7154 			str[offs++] = '\0';
7155 			continue;
7156 		}
7157 
7158 		if (sym == NULL) {
7159 			str[offs++] = '\0';
7160 			continue;
7161 		}
7162 
7163 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7164 		    &(state->dts_vstate))) {
7165 			str[offs++] = '\0';
7166 			continue;
7167 		}
7168 
7169 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7170 
7171 		/*
7172 		 * Now copy in the string that the helper returned to us.
7173 		 */
7174 		for (j = 0; offs + j < strsize && j < rem; j++) {
7175 			if ((str[offs + j] = sym[j]) == '\0')
7176 				break;
7177 		}
7178 
7179 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7180 
7181 		offs += j + 1;
7182 	}
7183 
7184 	if (offs >= strsize) {
7185 		/*
7186 		 * If we didn't have room for all of the strings, we don't
7187 		 * abort processing -- this needn't be a fatal error -- but we
7188 		 * still want to increment a counter (dts_stkstroverflows) to
7189 		 * allow this condition to be warned about.  (If this is from
7190 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7191 		 */
7192 		dtrace_error(&state->dts_stkstroverflows);
7193 	}
7194 
7195 	while (offs < strsize)
7196 		str[offs++] = '\0';
7197 
7198 out:
7199 	mstate->dtms_scratch_ptr = old;
7200 }
7201 
7202 static void
7203 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7204     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7205 {
7206 	volatile uint16_t *flags;
7207 	uint64_t val = *valp;
7208 	size_t valoffs = *valoffsp;
7209 
7210 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7211 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7212 
7213 	/*
7214 	 * If this is a string, we're going to only load until we find the zero
7215 	 * byte -- after which we'll store zero bytes.
7216 	 */
7217 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7218 		char c = '\0' + 1;
7219 		size_t s;
7220 
7221 		for (s = 0; s < size; s++) {
7222 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7223 				c = dtrace_load8(val++);
7224 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7225 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7226 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7227 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7228 				if (*flags & CPU_DTRACE_FAULT)
7229 					break;
7230 			}
7231 
7232 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7233 
7234 			if (c == '\0' && intuple)
7235 				break;
7236 		}
7237 	} else {
7238 		uint8_t c;
7239 		while (valoffs < end) {
7240 			if (dtkind == DIF_TF_BYREF) {
7241 				c = dtrace_load8(val++);
7242 			} else if (dtkind == DIF_TF_BYUREF) {
7243 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7244 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7245 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7246 				if (*flags & CPU_DTRACE_FAULT)
7247 					break;
7248 			}
7249 
7250 			DTRACE_STORE(uint8_t, tomax,
7251 			    valoffs++, c);
7252 		}
7253 	}
7254 
7255 	*valp = val;
7256 	*valoffsp = valoffs;
7257 }
7258 
7259 /*
7260  * If you're looking for the epicenter of DTrace, you just found it.  This
7261  * is the function called by the provider to fire a probe -- from which all
7262  * subsequent probe-context DTrace activity emanates.
7263  */
7264 void
7265 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7266     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7267 {
7268 	processorid_t cpuid;
7269 	dtrace_icookie_t cookie;
7270 	dtrace_probe_t *probe;
7271 	dtrace_mstate_t mstate;
7272 	dtrace_ecb_t *ecb;
7273 	dtrace_action_t *act;
7274 	intptr_t offs;
7275 	size_t size;
7276 	int vtime, onintr;
7277 	volatile uint16_t *flags;
7278 	hrtime_t now;
7279 
7280 	if (panicstr != NULL)
7281 		return;
7282 
7283 #ifdef illumos
7284 	/*
7285 	 * Kick out immediately if this CPU is still being born (in which case
7286 	 * curthread will be set to -1) or the current thread can't allow
7287 	 * probes in its current context.
7288 	 */
7289 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7290 		return;
7291 #endif
7292 
7293 	cookie = dtrace_interrupt_disable();
7294 	probe = dtrace_probes[id - 1];
7295 	cpuid = curcpu;
7296 	onintr = CPU_ON_INTR(CPU);
7297 
7298 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7299 	    probe->dtpr_predcache == curthread->t_predcache) {
7300 		/*
7301 		 * We have hit in the predicate cache; we know that
7302 		 * this predicate would evaluate to be false.
7303 		 */
7304 		dtrace_interrupt_enable(cookie);
7305 		return;
7306 	}
7307 
7308 #ifdef illumos
7309 	if (panic_quiesce) {
7310 #else
7311 	if (panicstr != NULL) {
7312 #endif
7313 		/*
7314 		 * We don't trace anything if we're panicking.
7315 		 */
7316 		dtrace_interrupt_enable(cookie);
7317 		return;
7318 	}
7319 
7320 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7321 	mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7322 	vtime = dtrace_vtime_references != 0;
7323 
7324 	if (vtime && curthread->t_dtrace_start)
7325 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7326 
7327 	mstate.dtms_difo = NULL;
7328 	mstate.dtms_probe = probe;
7329 	mstate.dtms_strtok = 0;
7330 	mstate.dtms_arg[0] = arg0;
7331 	mstate.dtms_arg[1] = arg1;
7332 	mstate.dtms_arg[2] = arg2;
7333 	mstate.dtms_arg[3] = arg3;
7334 	mstate.dtms_arg[4] = arg4;
7335 
7336 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7337 
7338 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7339 		dtrace_predicate_t *pred = ecb->dte_predicate;
7340 		dtrace_state_t *state = ecb->dte_state;
7341 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7342 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7343 		dtrace_vstate_t *vstate = &state->dts_vstate;
7344 		dtrace_provider_t *prov = probe->dtpr_provider;
7345 		uint64_t tracememsize = 0;
7346 		int committed = 0;
7347 		caddr_t tomax;
7348 
7349 		/*
7350 		 * A little subtlety with the following (seemingly innocuous)
7351 		 * declaration of the automatic 'val':  by looking at the
7352 		 * code, you might think that it could be declared in the
7353 		 * action processing loop, below.  (That is, it's only used in
7354 		 * the action processing loop.)  However, it must be declared
7355 		 * out of that scope because in the case of DIF expression
7356 		 * arguments to aggregating actions, one iteration of the
7357 		 * action loop will use the last iteration's value.
7358 		 */
7359 		uint64_t val = 0;
7360 
7361 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7362 		mstate.dtms_getf = NULL;
7363 
7364 		*flags &= ~CPU_DTRACE_ERROR;
7365 
7366 		if (prov == dtrace_provider) {
7367 			/*
7368 			 * If dtrace itself is the provider of this probe,
7369 			 * we're only going to continue processing the ECB if
7370 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7371 			 * creating state.  (This prevents disjoint consumers
7372 			 * from seeing one another's metaprobes.)
7373 			 */
7374 			if (arg0 != (uint64_t)(uintptr_t)state)
7375 				continue;
7376 		}
7377 
7378 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7379 			/*
7380 			 * We're not currently active.  If our provider isn't
7381 			 * the dtrace pseudo provider, we're not interested.
7382 			 */
7383 			if (prov != dtrace_provider)
7384 				continue;
7385 
7386 			/*
7387 			 * Now we must further check if we are in the BEGIN
7388 			 * probe.  If we are, we will only continue processing
7389 			 * if we're still in WARMUP -- if one BEGIN enabling
7390 			 * has invoked the exit() action, we don't want to
7391 			 * evaluate subsequent BEGIN enablings.
7392 			 */
7393 			if (probe->dtpr_id == dtrace_probeid_begin &&
7394 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7395 				ASSERT(state->dts_activity ==
7396 				    DTRACE_ACTIVITY_DRAINING);
7397 				continue;
7398 			}
7399 		}
7400 
7401 		if (ecb->dte_cond) {
7402 			/*
7403 			 * If the dte_cond bits indicate that this
7404 			 * consumer is only allowed to see user-mode firings
7405 			 * of this probe, call the provider's dtps_usermode()
7406 			 * entry point to check that the probe was fired
7407 			 * while in a user context. Skip this ECB if that's
7408 			 * not the case.
7409 			 */
7410 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7411 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7412 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7413 				continue;
7414 
7415 #ifdef illumos
7416 			/*
7417 			 * This is more subtle than it looks. We have to be
7418 			 * absolutely certain that CRED() isn't going to
7419 			 * change out from under us so it's only legit to
7420 			 * examine that structure if we're in constrained
7421 			 * situations. Currently, the only times we'll this
7422 			 * check is if a non-super-user has enabled the
7423 			 * profile or syscall providers -- providers that
7424 			 * allow visibility of all processes. For the
7425 			 * profile case, the check above will ensure that
7426 			 * we're examining a user context.
7427 			 */
7428 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7429 				cred_t *cr;
7430 				cred_t *s_cr =
7431 				    ecb->dte_state->dts_cred.dcr_cred;
7432 				proc_t *proc;
7433 
7434 				ASSERT(s_cr != NULL);
7435 
7436 				if ((cr = CRED()) == NULL ||
7437 				    s_cr->cr_uid != cr->cr_uid ||
7438 				    s_cr->cr_uid != cr->cr_ruid ||
7439 				    s_cr->cr_uid != cr->cr_suid ||
7440 				    s_cr->cr_gid != cr->cr_gid ||
7441 				    s_cr->cr_gid != cr->cr_rgid ||
7442 				    s_cr->cr_gid != cr->cr_sgid ||
7443 				    (proc = ttoproc(curthread)) == NULL ||
7444 				    (proc->p_flag & SNOCD))
7445 					continue;
7446 			}
7447 
7448 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7449 				cred_t *cr;
7450 				cred_t *s_cr =
7451 				    ecb->dte_state->dts_cred.dcr_cred;
7452 
7453 				ASSERT(s_cr != NULL);
7454 
7455 				if ((cr = CRED()) == NULL ||
7456 				    s_cr->cr_zone->zone_id !=
7457 				    cr->cr_zone->zone_id)
7458 					continue;
7459 			}
7460 #endif
7461 		}
7462 
7463 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7464 			/*
7465 			 * We seem to be dead.  Unless we (a) have kernel
7466 			 * destructive permissions (b) have explicitly enabled
7467 			 * destructive actions and (c) destructive actions have
7468 			 * not been disabled, we're going to transition into
7469 			 * the KILLED state, from which no further processing
7470 			 * on this state will be performed.
7471 			 */
7472 			if (!dtrace_priv_kernel_destructive(state) ||
7473 			    !state->dts_cred.dcr_destructive ||
7474 			    dtrace_destructive_disallow) {
7475 				void *activity = &state->dts_activity;
7476 				dtrace_activity_t current;
7477 
7478 				do {
7479 					current = state->dts_activity;
7480 				} while (dtrace_cas32(activity, current,
7481 				    DTRACE_ACTIVITY_KILLED) != current);
7482 
7483 				continue;
7484 			}
7485 		}
7486 
7487 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7488 		    ecb->dte_alignment, state, &mstate)) < 0)
7489 			continue;
7490 
7491 		tomax = buf->dtb_tomax;
7492 		ASSERT(tomax != NULL);
7493 
7494 		if (ecb->dte_size != 0) {
7495 			dtrace_rechdr_t dtrh;
7496 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7497 				mstate.dtms_timestamp = dtrace_gethrtime();
7498 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7499 			}
7500 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7501 			dtrh.dtrh_epid = ecb->dte_epid;
7502 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7503 			    mstate.dtms_timestamp);
7504 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7505 		}
7506 
7507 		mstate.dtms_epid = ecb->dte_epid;
7508 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7509 
7510 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7511 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7512 		else
7513 			mstate.dtms_access = 0;
7514 
7515 		if (pred != NULL) {
7516 			dtrace_difo_t *dp = pred->dtp_difo;
7517 			uint64_t rval;
7518 
7519 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7520 
7521 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7522 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7523 
7524 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7525 					/*
7526 					 * Update the predicate cache...
7527 					 */
7528 					ASSERT(cid == pred->dtp_cacheid);
7529 					curthread->t_predcache = cid;
7530 				}
7531 
7532 				continue;
7533 			}
7534 		}
7535 
7536 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7537 		    act != NULL; act = act->dta_next) {
7538 			size_t valoffs;
7539 			dtrace_difo_t *dp;
7540 			dtrace_recdesc_t *rec = &act->dta_rec;
7541 
7542 			size = rec->dtrd_size;
7543 			valoffs = offs + rec->dtrd_offset;
7544 
7545 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7546 				uint64_t v = 0xbad;
7547 				dtrace_aggregation_t *agg;
7548 
7549 				agg = (dtrace_aggregation_t *)act;
7550 
7551 				if ((dp = act->dta_difo) != NULL)
7552 					v = dtrace_dif_emulate(dp,
7553 					    &mstate, vstate, state);
7554 
7555 				if (*flags & CPU_DTRACE_ERROR)
7556 					continue;
7557 
7558 				/*
7559 				 * Note that we always pass the expression
7560 				 * value from the previous iteration of the
7561 				 * action loop.  This value will only be used
7562 				 * if there is an expression argument to the
7563 				 * aggregating action, denoted by the
7564 				 * dtag_hasarg field.
7565 				 */
7566 				dtrace_aggregate(agg, buf,
7567 				    offs, aggbuf, v, val);
7568 				continue;
7569 			}
7570 
7571 			switch (act->dta_kind) {
7572 			case DTRACEACT_STOP:
7573 				if (dtrace_priv_proc_destructive(state))
7574 					dtrace_action_stop();
7575 				continue;
7576 
7577 			case DTRACEACT_BREAKPOINT:
7578 				if (dtrace_priv_kernel_destructive(state))
7579 					dtrace_action_breakpoint(ecb);
7580 				continue;
7581 
7582 			case DTRACEACT_PANIC:
7583 				if (dtrace_priv_kernel_destructive(state))
7584 					dtrace_action_panic(ecb);
7585 				continue;
7586 
7587 			case DTRACEACT_STACK:
7588 				if (!dtrace_priv_kernel(state))
7589 					continue;
7590 
7591 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7592 				    size / sizeof (pc_t), probe->dtpr_aframes,
7593 				    DTRACE_ANCHORED(probe) ? NULL :
7594 				    (uint32_t *)arg0);
7595 				continue;
7596 
7597 			case DTRACEACT_JSTACK:
7598 			case DTRACEACT_USTACK:
7599 				if (!dtrace_priv_proc(state))
7600 					continue;
7601 
7602 				/*
7603 				 * See comment in DIF_VAR_PID.
7604 				 */
7605 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7606 				    CPU_ON_INTR(CPU)) {
7607 					int depth = DTRACE_USTACK_NFRAMES(
7608 					    rec->dtrd_arg) + 1;
7609 
7610 					dtrace_bzero((void *)(tomax + valoffs),
7611 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7612 					    + depth * sizeof (uint64_t));
7613 
7614 					continue;
7615 				}
7616 
7617 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7618 				    curproc->p_dtrace_helpers != NULL) {
7619 					/*
7620 					 * This is the slow path -- we have
7621 					 * allocated string space, and we're
7622 					 * getting the stack of a process that
7623 					 * has helpers.  Call into a separate
7624 					 * routine to perform this processing.
7625 					 */
7626 					dtrace_action_ustack(&mstate, state,
7627 					    (uint64_t *)(tomax + valoffs),
7628 					    rec->dtrd_arg);
7629 					continue;
7630 				}
7631 
7632 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7633 				dtrace_getupcstack((uint64_t *)
7634 				    (tomax + valoffs),
7635 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7636 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7637 				continue;
7638 
7639 			default:
7640 				break;
7641 			}
7642 
7643 			dp = act->dta_difo;
7644 			ASSERT(dp != NULL);
7645 
7646 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7647 
7648 			if (*flags & CPU_DTRACE_ERROR)
7649 				continue;
7650 
7651 			switch (act->dta_kind) {
7652 			case DTRACEACT_SPECULATE: {
7653 				dtrace_rechdr_t *dtrh;
7654 
7655 				ASSERT(buf == &state->dts_buffer[cpuid]);
7656 				buf = dtrace_speculation_buffer(state,
7657 				    cpuid, val);
7658 
7659 				if (buf == NULL) {
7660 					*flags |= CPU_DTRACE_DROP;
7661 					continue;
7662 				}
7663 
7664 				offs = dtrace_buffer_reserve(buf,
7665 				    ecb->dte_needed, ecb->dte_alignment,
7666 				    state, NULL);
7667 
7668 				if (offs < 0) {
7669 					*flags |= CPU_DTRACE_DROP;
7670 					continue;
7671 				}
7672 
7673 				tomax = buf->dtb_tomax;
7674 				ASSERT(tomax != NULL);
7675 
7676 				if (ecb->dte_size == 0)
7677 					continue;
7678 
7679 				ASSERT3U(ecb->dte_size, >=,
7680 				    sizeof (dtrace_rechdr_t));
7681 				dtrh = ((void *)(tomax + offs));
7682 				dtrh->dtrh_epid = ecb->dte_epid;
7683 				/*
7684 				 * When the speculation is committed, all of
7685 				 * the records in the speculative buffer will
7686 				 * have their timestamps set to the commit
7687 				 * time.  Until then, it is set to a sentinel
7688 				 * value, for debugability.
7689 				 */
7690 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7691 				continue;
7692 			}
7693 
7694 			case DTRACEACT_PRINTM: {
7695 				/* The DIF returns a 'memref'. */
7696 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7697 
7698 				/* Get the size from the memref. */
7699 				size = memref[1];
7700 
7701 				/*
7702 				 * Check if the size exceeds the allocated
7703 				 * buffer size.
7704 				 */
7705 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7706 					/* Flag a drop! */
7707 					*flags |= CPU_DTRACE_DROP;
7708 					continue;
7709 				}
7710 
7711 				/* Store the size in the buffer first. */
7712 				DTRACE_STORE(uintptr_t, tomax,
7713 				    valoffs, size);
7714 
7715 				/*
7716 				 * Offset the buffer address to the start
7717 				 * of the data.
7718 				 */
7719 				valoffs += sizeof(uintptr_t);
7720 
7721 				/*
7722 				 * Reset to the memory address rather than
7723 				 * the memref array, then let the BYREF
7724 				 * code below do the work to store the
7725 				 * memory data in the buffer.
7726 				 */
7727 				val = memref[0];
7728 				break;
7729 			}
7730 
7731 			case DTRACEACT_CHILL:
7732 				if (dtrace_priv_kernel_destructive(state))
7733 					dtrace_action_chill(&mstate, val);
7734 				continue;
7735 
7736 			case DTRACEACT_RAISE:
7737 				if (dtrace_priv_proc_destructive(state))
7738 					dtrace_action_raise(val);
7739 				continue;
7740 
7741 			case DTRACEACT_COMMIT:
7742 				ASSERT(!committed);
7743 
7744 				/*
7745 				 * We need to commit our buffer state.
7746 				 */
7747 				if (ecb->dte_size)
7748 					buf->dtb_offset = offs + ecb->dte_size;
7749 				buf = &state->dts_buffer[cpuid];
7750 				dtrace_speculation_commit(state, cpuid, val);
7751 				committed = 1;
7752 				continue;
7753 
7754 			case DTRACEACT_DISCARD:
7755 				dtrace_speculation_discard(state, cpuid, val);
7756 				continue;
7757 
7758 			case DTRACEACT_DIFEXPR:
7759 			case DTRACEACT_LIBACT:
7760 			case DTRACEACT_PRINTF:
7761 			case DTRACEACT_PRINTA:
7762 			case DTRACEACT_SYSTEM:
7763 			case DTRACEACT_FREOPEN:
7764 			case DTRACEACT_TRACEMEM:
7765 				break;
7766 
7767 			case DTRACEACT_TRACEMEM_DYNSIZE:
7768 				tracememsize = val;
7769 				break;
7770 
7771 			case DTRACEACT_SYM:
7772 			case DTRACEACT_MOD:
7773 				if (!dtrace_priv_kernel(state))
7774 					continue;
7775 				break;
7776 
7777 			case DTRACEACT_USYM:
7778 			case DTRACEACT_UMOD:
7779 			case DTRACEACT_UADDR: {
7780 #ifdef illumos
7781 				struct pid *pid = curthread->t_procp->p_pidp;
7782 #endif
7783 
7784 				if (!dtrace_priv_proc(state))
7785 					continue;
7786 
7787 				DTRACE_STORE(uint64_t, tomax,
7788 #ifdef illumos
7789 				    valoffs, (uint64_t)pid->pid_id);
7790 #else
7791 				    valoffs, (uint64_t) curproc->p_pid);
7792 #endif
7793 				DTRACE_STORE(uint64_t, tomax,
7794 				    valoffs + sizeof (uint64_t), val);
7795 
7796 				continue;
7797 			}
7798 
7799 			case DTRACEACT_EXIT: {
7800 				/*
7801 				 * For the exit action, we are going to attempt
7802 				 * to atomically set our activity to be
7803 				 * draining.  If this fails (either because
7804 				 * another CPU has beat us to the exit action,
7805 				 * or because our current activity is something
7806 				 * other than ACTIVE or WARMUP), we will
7807 				 * continue.  This assures that the exit action
7808 				 * can be successfully recorded at most once
7809 				 * when we're in the ACTIVE state.  If we're
7810 				 * encountering the exit() action while in
7811 				 * COOLDOWN, however, we want to honor the new
7812 				 * status code.  (We know that we're the only
7813 				 * thread in COOLDOWN, so there is no race.)
7814 				 */
7815 				void *activity = &state->dts_activity;
7816 				dtrace_activity_t current = state->dts_activity;
7817 
7818 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7819 					break;
7820 
7821 				if (current != DTRACE_ACTIVITY_WARMUP)
7822 					current = DTRACE_ACTIVITY_ACTIVE;
7823 
7824 				if (dtrace_cas32(activity, current,
7825 				    DTRACE_ACTIVITY_DRAINING) != current) {
7826 					*flags |= CPU_DTRACE_DROP;
7827 					continue;
7828 				}
7829 
7830 				break;
7831 			}
7832 
7833 			default:
7834 				ASSERT(0);
7835 			}
7836 
7837 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7838 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7839 				uintptr_t end = valoffs + size;
7840 
7841 				if (tracememsize != 0 &&
7842 				    valoffs + tracememsize < end) {
7843 					end = valoffs + tracememsize;
7844 					tracememsize = 0;
7845 				}
7846 
7847 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7848 				    !dtrace_vcanload((void *)(uintptr_t)val,
7849 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7850 					continue;
7851 
7852 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7853 				    &val, end, act->dta_intuple,
7854 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7855 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7856 				continue;
7857 			}
7858 
7859 			switch (size) {
7860 			case 0:
7861 				break;
7862 
7863 			case sizeof (uint8_t):
7864 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7865 				break;
7866 			case sizeof (uint16_t):
7867 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7868 				break;
7869 			case sizeof (uint32_t):
7870 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7871 				break;
7872 			case sizeof (uint64_t):
7873 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7874 				break;
7875 			default:
7876 				/*
7877 				 * Any other size should have been returned by
7878 				 * reference, not by value.
7879 				 */
7880 				ASSERT(0);
7881 				break;
7882 			}
7883 		}
7884 
7885 		if (*flags & CPU_DTRACE_DROP)
7886 			continue;
7887 
7888 		if (*flags & CPU_DTRACE_FAULT) {
7889 			int ndx;
7890 			dtrace_action_t *err;
7891 
7892 			buf->dtb_errors++;
7893 
7894 			if (probe->dtpr_id == dtrace_probeid_error) {
7895 				/*
7896 				 * There's nothing we can do -- we had an
7897 				 * error on the error probe.  We bump an
7898 				 * error counter to at least indicate that
7899 				 * this condition happened.
7900 				 */
7901 				dtrace_error(&state->dts_dblerrors);
7902 				continue;
7903 			}
7904 
7905 			if (vtime) {
7906 				/*
7907 				 * Before recursing on dtrace_probe(), we
7908 				 * need to explicitly clear out our start
7909 				 * time to prevent it from being accumulated
7910 				 * into t_dtrace_vtime.
7911 				 */
7912 				curthread->t_dtrace_start = 0;
7913 			}
7914 
7915 			/*
7916 			 * Iterate over the actions to figure out which action
7917 			 * we were processing when we experienced the error.
7918 			 * Note that act points _past_ the faulting action; if
7919 			 * act is ecb->dte_action, the fault was in the
7920 			 * predicate, if it's ecb->dte_action->dta_next it's
7921 			 * in action #1, and so on.
7922 			 */
7923 			for (err = ecb->dte_action, ndx = 0;
7924 			    err != act; err = err->dta_next, ndx++)
7925 				continue;
7926 
7927 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7928 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7929 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7930 			    cpu_core[cpuid].cpuc_dtrace_illval);
7931 
7932 			continue;
7933 		}
7934 
7935 		if (!committed)
7936 			buf->dtb_offset = offs + ecb->dte_size;
7937 	}
7938 
7939 	if (vtime)
7940 		curthread->t_dtrace_start = dtrace_gethrtime();
7941 
7942 	dtrace_interrupt_enable(cookie);
7943 }
7944 
7945 /*
7946  * DTrace Probe Hashing Functions
7947  *
7948  * The functions in this section (and indeed, the functions in remaining
7949  * sections) are not _called_ from probe context.  (Any exceptions to this are
7950  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7951  * DTrace framework to look-up probes in, add probes to and remove probes from
7952  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7953  * probe tuple -- allowing for fast lookups, regardless of what was
7954  * specified.)
7955  */
7956 static uint_t
7957 dtrace_hash_str(const char *p)
7958 {
7959 	unsigned int g;
7960 	uint_t hval = 0;
7961 
7962 	while (*p) {
7963 		hval = (hval << 4) + *p++;
7964 		if ((g = (hval & 0xf0000000)) != 0)
7965 			hval ^= g >> 24;
7966 		hval &= ~g;
7967 	}
7968 	return (hval);
7969 }
7970 
7971 static dtrace_hash_t *
7972 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7973 {
7974 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7975 
7976 	hash->dth_stroffs = stroffs;
7977 	hash->dth_nextoffs = nextoffs;
7978 	hash->dth_prevoffs = prevoffs;
7979 
7980 	hash->dth_size = 1;
7981 	hash->dth_mask = hash->dth_size - 1;
7982 
7983 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7984 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7985 
7986 	return (hash);
7987 }
7988 
7989 static void
7990 dtrace_hash_destroy(dtrace_hash_t *hash)
7991 {
7992 #ifdef DEBUG
7993 	int i;
7994 
7995 	for (i = 0; i < hash->dth_size; i++)
7996 		ASSERT(hash->dth_tab[i] == NULL);
7997 #endif
7998 
7999 	kmem_free(hash->dth_tab,
8000 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8001 	kmem_free(hash, sizeof (dtrace_hash_t));
8002 }
8003 
8004 static void
8005 dtrace_hash_resize(dtrace_hash_t *hash)
8006 {
8007 	int size = hash->dth_size, i, ndx;
8008 	int new_size = hash->dth_size << 1;
8009 	int new_mask = new_size - 1;
8010 	dtrace_hashbucket_t **new_tab, *bucket, *next;
8011 
8012 	ASSERT((new_size & new_mask) == 0);
8013 
8014 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8015 
8016 	for (i = 0; i < size; i++) {
8017 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8018 			dtrace_probe_t *probe = bucket->dthb_chain;
8019 
8020 			ASSERT(probe != NULL);
8021 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8022 
8023 			next = bucket->dthb_next;
8024 			bucket->dthb_next = new_tab[ndx];
8025 			new_tab[ndx] = bucket;
8026 		}
8027 	}
8028 
8029 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8030 	hash->dth_tab = new_tab;
8031 	hash->dth_size = new_size;
8032 	hash->dth_mask = new_mask;
8033 }
8034 
8035 static void
8036 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8037 {
8038 	int hashval = DTRACE_HASHSTR(hash, new);
8039 	int ndx = hashval & hash->dth_mask;
8040 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8041 	dtrace_probe_t **nextp, **prevp;
8042 
8043 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8044 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8045 			goto add;
8046 	}
8047 
8048 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8049 		dtrace_hash_resize(hash);
8050 		dtrace_hash_add(hash, new);
8051 		return;
8052 	}
8053 
8054 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8055 	bucket->dthb_next = hash->dth_tab[ndx];
8056 	hash->dth_tab[ndx] = bucket;
8057 	hash->dth_nbuckets++;
8058 
8059 add:
8060 	nextp = DTRACE_HASHNEXT(hash, new);
8061 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8062 	*nextp = bucket->dthb_chain;
8063 
8064 	if (bucket->dthb_chain != NULL) {
8065 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8066 		ASSERT(*prevp == NULL);
8067 		*prevp = new;
8068 	}
8069 
8070 	bucket->dthb_chain = new;
8071 	bucket->dthb_len++;
8072 }
8073 
8074 static dtrace_probe_t *
8075 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8076 {
8077 	int hashval = DTRACE_HASHSTR(hash, template);
8078 	int ndx = hashval & hash->dth_mask;
8079 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8080 
8081 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8082 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8083 			return (bucket->dthb_chain);
8084 	}
8085 
8086 	return (NULL);
8087 }
8088 
8089 static int
8090 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8091 {
8092 	int hashval = DTRACE_HASHSTR(hash, template);
8093 	int ndx = hashval & hash->dth_mask;
8094 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8095 
8096 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8097 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8098 			return (bucket->dthb_len);
8099 	}
8100 
8101 	return (0);
8102 }
8103 
8104 static void
8105 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8106 {
8107 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8108 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8109 
8110 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8111 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8112 
8113 	/*
8114 	 * Find the bucket that we're removing this probe from.
8115 	 */
8116 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8117 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8118 			break;
8119 	}
8120 
8121 	ASSERT(bucket != NULL);
8122 
8123 	if (*prevp == NULL) {
8124 		if (*nextp == NULL) {
8125 			/*
8126 			 * The removed probe was the only probe on this
8127 			 * bucket; we need to remove the bucket.
8128 			 */
8129 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8130 
8131 			ASSERT(bucket->dthb_chain == probe);
8132 			ASSERT(b != NULL);
8133 
8134 			if (b == bucket) {
8135 				hash->dth_tab[ndx] = bucket->dthb_next;
8136 			} else {
8137 				while (b->dthb_next != bucket)
8138 					b = b->dthb_next;
8139 				b->dthb_next = bucket->dthb_next;
8140 			}
8141 
8142 			ASSERT(hash->dth_nbuckets > 0);
8143 			hash->dth_nbuckets--;
8144 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8145 			return;
8146 		}
8147 
8148 		bucket->dthb_chain = *nextp;
8149 	} else {
8150 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8151 	}
8152 
8153 	if (*nextp != NULL)
8154 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8155 }
8156 
8157 /*
8158  * DTrace Utility Functions
8159  *
8160  * These are random utility functions that are _not_ called from probe context.
8161  */
8162 static int
8163 dtrace_badattr(const dtrace_attribute_t *a)
8164 {
8165 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8166 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8167 	    a->dtat_class > DTRACE_CLASS_MAX);
8168 }
8169 
8170 /*
8171  * Return a duplicate copy of a string.  If the specified string is NULL,
8172  * this function returns a zero-length string.
8173  */
8174 static char *
8175 dtrace_strdup(const char *str)
8176 {
8177 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8178 
8179 	if (str != NULL)
8180 		(void) strcpy(new, str);
8181 
8182 	return (new);
8183 }
8184 
8185 #define	DTRACE_ISALPHA(c)	\
8186 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8187 
8188 static int
8189 dtrace_badname(const char *s)
8190 {
8191 	char c;
8192 
8193 	if (s == NULL || (c = *s++) == '\0')
8194 		return (0);
8195 
8196 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8197 		return (1);
8198 
8199 	while ((c = *s++) != '\0') {
8200 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8201 		    c != '-' && c != '_' && c != '.' && c != '`')
8202 			return (1);
8203 	}
8204 
8205 	return (0);
8206 }
8207 
8208 static void
8209 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8210 {
8211 	uint32_t priv;
8212 
8213 #ifdef illumos
8214 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8215 		/*
8216 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8217 		 */
8218 		priv = DTRACE_PRIV_ALL;
8219 	} else {
8220 		*uidp = crgetuid(cr);
8221 		*zoneidp = crgetzoneid(cr);
8222 
8223 		priv = 0;
8224 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8225 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8226 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8227 			priv |= DTRACE_PRIV_USER;
8228 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8229 			priv |= DTRACE_PRIV_PROC;
8230 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8231 			priv |= DTRACE_PRIV_OWNER;
8232 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8233 			priv |= DTRACE_PRIV_ZONEOWNER;
8234 	}
8235 #else
8236 	priv = DTRACE_PRIV_ALL;
8237 #endif
8238 
8239 	*privp = priv;
8240 }
8241 
8242 #ifdef DTRACE_ERRDEBUG
8243 static void
8244 dtrace_errdebug(const char *str)
8245 {
8246 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8247 	int occupied = 0;
8248 
8249 	mutex_enter(&dtrace_errlock);
8250 	dtrace_errlast = str;
8251 	dtrace_errthread = curthread;
8252 
8253 	while (occupied++ < DTRACE_ERRHASHSZ) {
8254 		if (dtrace_errhash[hval].dter_msg == str) {
8255 			dtrace_errhash[hval].dter_count++;
8256 			goto out;
8257 		}
8258 
8259 		if (dtrace_errhash[hval].dter_msg != NULL) {
8260 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8261 			continue;
8262 		}
8263 
8264 		dtrace_errhash[hval].dter_msg = str;
8265 		dtrace_errhash[hval].dter_count = 1;
8266 		goto out;
8267 	}
8268 
8269 	panic("dtrace: undersized error hash");
8270 out:
8271 	mutex_exit(&dtrace_errlock);
8272 }
8273 #endif
8274 
8275 /*
8276  * DTrace Matching Functions
8277  *
8278  * These functions are used to match groups of probes, given some elements of
8279  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8280  */
8281 static int
8282 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8283     zoneid_t zoneid)
8284 {
8285 	if (priv != DTRACE_PRIV_ALL) {
8286 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8287 		uint32_t match = priv & ppriv;
8288 
8289 		/*
8290 		 * No PRIV_DTRACE_* privileges...
8291 		 */
8292 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8293 		    DTRACE_PRIV_KERNEL)) == 0)
8294 			return (0);
8295 
8296 		/*
8297 		 * No matching bits, but there were bits to match...
8298 		 */
8299 		if (match == 0 && ppriv != 0)
8300 			return (0);
8301 
8302 		/*
8303 		 * Need to have permissions to the process, but don't...
8304 		 */
8305 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8306 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8307 			return (0);
8308 		}
8309 
8310 		/*
8311 		 * Need to be in the same zone unless we possess the
8312 		 * privilege to examine all zones.
8313 		 */
8314 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8315 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8316 			return (0);
8317 		}
8318 	}
8319 
8320 	return (1);
8321 }
8322 
8323 /*
8324  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8325  * consists of input pattern strings and an ops-vector to evaluate them.
8326  * This function returns >0 for match, 0 for no match, and <0 for error.
8327  */
8328 static int
8329 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8330     uint32_t priv, uid_t uid, zoneid_t zoneid)
8331 {
8332 	dtrace_provider_t *pvp = prp->dtpr_provider;
8333 	int rv;
8334 
8335 	if (pvp->dtpv_defunct)
8336 		return (0);
8337 
8338 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8339 		return (rv);
8340 
8341 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8342 		return (rv);
8343 
8344 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8345 		return (rv);
8346 
8347 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8348 		return (rv);
8349 
8350 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8351 		return (0);
8352 
8353 	return (rv);
8354 }
8355 
8356 /*
8357  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8358  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8359  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8360  * In addition, all of the recursion cases except for '*' matching have been
8361  * unwound.  For '*', we still implement recursive evaluation, but a depth
8362  * counter is maintained and matching is aborted if we recurse too deep.
8363  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8364  */
8365 static int
8366 dtrace_match_glob(const char *s, const char *p, int depth)
8367 {
8368 	const char *olds;
8369 	char s1, c;
8370 	int gs;
8371 
8372 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8373 		return (-1);
8374 
8375 	if (s == NULL)
8376 		s = ""; /* treat NULL as empty string */
8377 
8378 top:
8379 	olds = s;
8380 	s1 = *s++;
8381 
8382 	if (p == NULL)
8383 		return (0);
8384 
8385 	if ((c = *p++) == '\0')
8386 		return (s1 == '\0');
8387 
8388 	switch (c) {
8389 	case '[': {
8390 		int ok = 0, notflag = 0;
8391 		char lc = '\0';
8392 
8393 		if (s1 == '\0')
8394 			return (0);
8395 
8396 		if (*p == '!') {
8397 			notflag = 1;
8398 			p++;
8399 		}
8400 
8401 		if ((c = *p++) == '\0')
8402 			return (0);
8403 
8404 		do {
8405 			if (c == '-' && lc != '\0' && *p != ']') {
8406 				if ((c = *p++) == '\0')
8407 					return (0);
8408 				if (c == '\\' && (c = *p++) == '\0')
8409 					return (0);
8410 
8411 				if (notflag) {
8412 					if (s1 < lc || s1 > c)
8413 						ok++;
8414 					else
8415 						return (0);
8416 				} else if (lc <= s1 && s1 <= c)
8417 					ok++;
8418 
8419 			} else if (c == '\\' && (c = *p++) == '\0')
8420 				return (0);
8421 
8422 			lc = c; /* save left-hand 'c' for next iteration */
8423 
8424 			if (notflag) {
8425 				if (s1 != c)
8426 					ok++;
8427 				else
8428 					return (0);
8429 			} else if (s1 == c)
8430 				ok++;
8431 
8432 			if ((c = *p++) == '\0')
8433 				return (0);
8434 
8435 		} while (c != ']');
8436 
8437 		if (ok)
8438 			goto top;
8439 
8440 		return (0);
8441 	}
8442 
8443 	case '\\':
8444 		if ((c = *p++) == '\0')
8445 			return (0);
8446 		/*FALLTHRU*/
8447 
8448 	default:
8449 		if (c != s1)
8450 			return (0);
8451 		/*FALLTHRU*/
8452 
8453 	case '?':
8454 		if (s1 != '\0')
8455 			goto top;
8456 		return (0);
8457 
8458 	case '*':
8459 		while (*p == '*')
8460 			p++; /* consecutive *'s are identical to a single one */
8461 
8462 		if (*p == '\0')
8463 			return (1);
8464 
8465 		for (s = olds; *s != '\0'; s++) {
8466 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8467 				return (gs);
8468 		}
8469 
8470 		return (0);
8471 	}
8472 }
8473 
8474 /*ARGSUSED*/
8475 static int
8476 dtrace_match_string(const char *s, const char *p, int depth)
8477 {
8478 	return (s != NULL && strcmp(s, p) == 0);
8479 }
8480 
8481 /*ARGSUSED*/
8482 static int
8483 dtrace_match_nul(const char *s, const char *p, int depth)
8484 {
8485 	return (1); /* always match the empty pattern */
8486 }
8487 
8488 /*ARGSUSED*/
8489 static int
8490 dtrace_match_nonzero(const char *s, const char *p, int depth)
8491 {
8492 	return (s != NULL && s[0] != '\0');
8493 }
8494 
8495 static int
8496 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8497     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8498 {
8499 	dtrace_probe_t template, *probe;
8500 	dtrace_hash_t *hash = NULL;
8501 	int len, best = INT_MAX, nmatched = 0;
8502 	dtrace_id_t i;
8503 
8504 	ASSERT(MUTEX_HELD(&dtrace_lock));
8505 
8506 	/*
8507 	 * If the probe ID is specified in the key, just lookup by ID and
8508 	 * invoke the match callback once if a matching probe is found.
8509 	 */
8510 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8511 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8512 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8513 			(void) (*matched)(probe, arg);
8514 			nmatched++;
8515 		}
8516 		return (nmatched);
8517 	}
8518 
8519 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8520 	template.dtpr_func = (char *)pkp->dtpk_func;
8521 	template.dtpr_name = (char *)pkp->dtpk_name;
8522 
8523 	/*
8524 	 * We want to find the most distinct of the module name, function
8525 	 * name, and name.  So for each one that is not a glob pattern or
8526 	 * empty string, we perform a lookup in the corresponding hash and
8527 	 * use the hash table with the fewest collisions to do our search.
8528 	 */
8529 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8530 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8531 		best = len;
8532 		hash = dtrace_bymod;
8533 	}
8534 
8535 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8536 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8537 		best = len;
8538 		hash = dtrace_byfunc;
8539 	}
8540 
8541 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8542 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8543 		best = len;
8544 		hash = dtrace_byname;
8545 	}
8546 
8547 	/*
8548 	 * If we did not select a hash table, iterate over every probe and
8549 	 * invoke our callback for each one that matches our input probe key.
8550 	 */
8551 	if (hash == NULL) {
8552 		for (i = 0; i < dtrace_nprobes; i++) {
8553 			if ((probe = dtrace_probes[i]) == NULL ||
8554 			    dtrace_match_probe(probe, pkp, priv, uid,
8555 			    zoneid) <= 0)
8556 				continue;
8557 
8558 			nmatched++;
8559 
8560 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8561 				break;
8562 		}
8563 
8564 		return (nmatched);
8565 	}
8566 
8567 	/*
8568 	 * If we selected a hash table, iterate over each probe of the same key
8569 	 * name and invoke the callback for every probe that matches the other
8570 	 * attributes of our input probe key.
8571 	 */
8572 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8573 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8574 
8575 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8576 			continue;
8577 
8578 		nmatched++;
8579 
8580 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8581 			break;
8582 	}
8583 
8584 	return (nmatched);
8585 }
8586 
8587 /*
8588  * Return the function pointer dtrace_probecmp() should use to compare the
8589  * specified pattern with a string.  For NULL or empty patterns, we select
8590  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8591  * For non-empty non-glob strings, we use dtrace_match_string().
8592  */
8593 static dtrace_probekey_f *
8594 dtrace_probekey_func(const char *p)
8595 {
8596 	char c;
8597 
8598 	if (p == NULL || *p == '\0')
8599 		return (&dtrace_match_nul);
8600 
8601 	while ((c = *p++) != '\0') {
8602 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8603 			return (&dtrace_match_glob);
8604 	}
8605 
8606 	return (&dtrace_match_string);
8607 }
8608 
8609 /*
8610  * Build a probe comparison key for use with dtrace_match_probe() from the
8611  * given probe description.  By convention, a null key only matches anchored
8612  * probes: if each field is the empty string, reset dtpk_fmatch to
8613  * dtrace_match_nonzero().
8614  */
8615 static void
8616 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8617 {
8618 	pkp->dtpk_prov = pdp->dtpd_provider;
8619 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8620 
8621 	pkp->dtpk_mod = pdp->dtpd_mod;
8622 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8623 
8624 	pkp->dtpk_func = pdp->dtpd_func;
8625 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8626 
8627 	pkp->dtpk_name = pdp->dtpd_name;
8628 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8629 
8630 	pkp->dtpk_id = pdp->dtpd_id;
8631 
8632 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8633 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8634 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8635 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8636 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8637 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8638 }
8639 
8640 /*
8641  * DTrace Provider-to-Framework API Functions
8642  *
8643  * These functions implement much of the Provider-to-Framework API, as
8644  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8645  * the functions in the API for probe management (found below), and
8646  * dtrace_probe() itself (found above).
8647  */
8648 
8649 /*
8650  * Register the calling provider with the DTrace framework.  This should
8651  * generally be called by DTrace providers in their attach(9E) entry point.
8652  */
8653 int
8654 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8655     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8656 {
8657 	dtrace_provider_t *provider;
8658 
8659 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8660 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8661 		    "arguments", name ? name : "<NULL>");
8662 		return (EINVAL);
8663 	}
8664 
8665 	if (name[0] == '\0' || dtrace_badname(name)) {
8666 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8667 		    "provider name", name);
8668 		return (EINVAL);
8669 	}
8670 
8671 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8672 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8673 	    pops->dtps_destroy == NULL ||
8674 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8675 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8676 		    "provider ops", name);
8677 		return (EINVAL);
8678 	}
8679 
8680 	if (dtrace_badattr(&pap->dtpa_provider) ||
8681 	    dtrace_badattr(&pap->dtpa_mod) ||
8682 	    dtrace_badattr(&pap->dtpa_func) ||
8683 	    dtrace_badattr(&pap->dtpa_name) ||
8684 	    dtrace_badattr(&pap->dtpa_args)) {
8685 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8686 		    "provider attributes", name);
8687 		return (EINVAL);
8688 	}
8689 
8690 	if (priv & ~DTRACE_PRIV_ALL) {
8691 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8692 		    "privilege attributes", name);
8693 		return (EINVAL);
8694 	}
8695 
8696 	if ((priv & DTRACE_PRIV_KERNEL) &&
8697 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8698 	    pops->dtps_usermode == NULL) {
8699 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8700 		    "dtps_usermode() op for given privilege attributes", name);
8701 		return (EINVAL);
8702 	}
8703 
8704 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8705 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8706 	(void) strcpy(provider->dtpv_name, name);
8707 
8708 	provider->dtpv_attr = *pap;
8709 	provider->dtpv_priv.dtpp_flags = priv;
8710 	if (cr != NULL) {
8711 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8712 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8713 	}
8714 	provider->dtpv_pops = *pops;
8715 
8716 	if (pops->dtps_provide == NULL) {
8717 		ASSERT(pops->dtps_provide_module != NULL);
8718 		provider->dtpv_pops.dtps_provide =
8719 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8720 	}
8721 
8722 	if (pops->dtps_provide_module == NULL) {
8723 		ASSERT(pops->dtps_provide != NULL);
8724 		provider->dtpv_pops.dtps_provide_module =
8725 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8726 	}
8727 
8728 	if (pops->dtps_suspend == NULL) {
8729 		ASSERT(pops->dtps_resume == NULL);
8730 		provider->dtpv_pops.dtps_suspend =
8731 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8732 		provider->dtpv_pops.dtps_resume =
8733 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8734 	}
8735 
8736 	provider->dtpv_arg = arg;
8737 	*idp = (dtrace_provider_id_t)provider;
8738 
8739 	if (pops == &dtrace_provider_ops) {
8740 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8741 		ASSERT(MUTEX_HELD(&dtrace_lock));
8742 		ASSERT(dtrace_anon.dta_enabling == NULL);
8743 
8744 		/*
8745 		 * We make sure that the DTrace provider is at the head of
8746 		 * the provider chain.
8747 		 */
8748 		provider->dtpv_next = dtrace_provider;
8749 		dtrace_provider = provider;
8750 		return (0);
8751 	}
8752 
8753 	mutex_enter(&dtrace_provider_lock);
8754 	mutex_enter(&dtrace_lock);
8755 
8756 	/*
8757 	 * If there is at least one provider registered, we'll add this
8758 	 * provider after the first provider.
8759 	 */
8760 	if (dtrace_provider != NULL) {
8761 		provider->dtpv_next = dtrace_provider->dtpv_next;
8762 		dtrace_provider->dtpv_next = provider;
8763 	} else {
8764 		dtrace_provider = provider;
8765 	}
8766 
8767 	if (dtrace_retained != NULL) {
8768 		dtrace_enabling_provide(provider);
8769 
8770 		/*
8771 		 * Now we need to call dtrace_enabling_matchall() -- which
8772 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8773 		 * to drop all of our locks before calling into it...
8774 		 */
8775 		mutex_exit(&dtrace_lock);
8776 		mutex_exit(&dtrace_provider_lock);
8777 		dtrace_enabling_matchall();
8778 
8779 		return (0);
8780 	}
8781 
8782 	mutex_exit(&dtrace_lock);
8783 	mutex_exit(&dtrace_provider_lock);
8784 
8785 	return (0);
8786 }
8787 
8788 /*
8789  * Unregister the specified provider from the DTrace framework.  This should
8790  * generally be called by DTrace providers in their detach(9E) entry point.
8791  */
8792 int
8793 dtrace_unregister(dtrace_provider_id_t id)
8794 {
8795 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8796 	dtrace_provider_t *prev = NULL;
8797 	int i, self = 0, noreap = 0;
8798 	dtrace_probe_t *probe, *first = NULL;
8799 
8800 	if (old->dtpv_pops.dtps_enable ==
8801 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8802 		/*
8803 		 * If DTrace itself is the provider, we're called with locks
8804 		 * already held.
8805 		 */
8806 		ASSERT(old == dtrace_provider);
8807 #ifdef illumos
8808 		ASSERT(dtrace_devi != NULL);
8809 #endif
8810 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8811 		ASSERT(MUTEX_HELD(&dtrace_lock));
8812 		self = 1;
8813 
8814 		if (dtrace_provider->dtpv_next != NULL) {
8815 			/*
8816 			 * There's another provider here; return failure.
8817 			 */
8818 			return (EBUSY);
8819 		}
8820 	} else {
8821 		mutex_enter(&dtrace_provider_lock);
8822 #ifdef illumos
8823 		mutex_enter(&mod_lock);
8824 #endif
8825 		mutex_enter(&dtrace_lock);
8826 	}
8827 
8828 	/*
8829 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8830 	 * probes, we refuse to let providers slither away, unless this
8831 	 * provider has already been explicitly invalidated.
8832 	 */
8833 	if (!old->dtpv_defunct &&
8834 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8835 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8836 		if (!self) {
8837 			mutex_exit(&dtrace_lock);
8838 #ifdef illumos
8839 			mutex_exit(&mod_lock);
8840 #endif
8841 			mutex_exit(&dtrace_provider_lock);
8842 		}
8843 		return (EBUSY);
8844 	}
8845 
8846 	/*
8847 	 * Attempt to destroy the probes associated with this provider.
8848 	 */
8849 	for (i = 0; i < dtrace_nprobes; i++) {
8850 		if ((probe = dtrace_probes[i]) == NULL)
8851 			continue;
8852 
8853 		if (probe->dtpr_provider != old)
8854 			continue;
8855 
8856 		if (probe->dtpr_ecb == NULL)
8857 			continue;
8858 
8859 		/*
8860 		 * If we are trying to unregister a defunct provider, and the
8861 		 * provider was made defunct within the interval dictated by
8862 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8863 		 * attempt to reap our enablings.  To denote that the provider
8864 		 * should reattempt to unregister itself at some point in the
8865 		 * future, we will return a differentiable error code (EAGAIN
8866 		 * instead of EBUSY) in this case.
8867 		 */
8868 		if (dtrace_gethrtime() - old->dtpv_defunct >
8869 		    dtrace_unregister_defunct_reap)
8870 			noreap = 1;
8871 
8872 		if (!self) {
8873 			mutex_exit(&dtrace_lock);
8874 #ifdef illumos
8875 			mutex_exit(&mod_lock);
8876 #endif
8877 			mutex_exit(&dtrace_provider_lock);
8878 		}
8879 
8880 		if (noreap)
8881 			return (EBUSY);
8882 
8883 		(void) taskq_dispatch(dtrace_taskq,
8884 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8885 
8886 		return (EAGAIN);
8887 	}
8888 
8889 	/*
8890 	 * All of the probes for this provider are disabled; we can safely
8891 	 * remove all of them from their hash chains and from the probe array.
8892 	 */
8893 	for (i = 0; i < dtrace_nprobes; i++) {
8894 		if ((probe = dtrace_probes[i]) == NULL)
8895 			continue;
8896 
8897 		if (probe->dtpr_provider != old)
8898 			continue;
8899 
8900 		dtrace_probes[i] = NULL;
8901 
8902 		dtrace_hash_remove(dtrace_bymod, probe);
8903 		dtrace_hash_remove(dtrace_byfunc, probe);
8904 		dtrace_hash_remove(dtrace_byname, probe);
8905 
8906 		if (first == NULL) {
8907 			first = probe;
8908 			probe->dtpr_nextmod = NULL;
8909 		} else {
8910 			probe->dtpr_nextmod = first;
8911 			first = probe;
8912 		}
8913 	}
8914 
8915 	/*
8916 	 * The provider's probes have been removed from the hash chains and
8917 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8918 	 * everyone has cleared out from any probe array processing.
8919 	 */
8920 	dtrace_sync();
8921 
8922 	for (probe = first; probe != NULL; probe = first) {
8923 		first = probe->dtpr_nextmod;
8924 
8925 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8926 		    probe->dtpr_arg);
8927 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8928 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8929 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8930 #ifdef illumos
8931 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8932 #else
8933 		free_unr(dtrace_arena, probe->dtpr_id);
8934 #endif
8935 		kmem_free(probe, sizeof (dtrace_probe_t));
8936 	}
8937 
8938 	if ((prev = dtrace_provider) == old) {
8939 #ifdef illumos
8940 		ASSERT(self || dtrace_devi == NULL);
8941 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8942 #endif
8943 		dtrace_provider = old->dtpv_next;
8944 	} else {
8945 		while (prev != NULL && prev->dtpv_next != old)
8946 			prev = prev->dtpv_next;
8947 
8948 		if (prev == NULL) {
8949 			panic("attempt to unregister non-existent "
8950 			    "dtrace provider %p\n", (void *)id);
8951 		}
8952 
8953 		prev->dtpv_next = old->dtpv_next;
8954 	}
8955 
8956 	if (!self) {
8957 		mutex_exit(&dtrace_lock);
8958 #ifdef illumos
8959 		mutex_exit(&mod_lock);
8960 #endif
8961 		mutex_exit(&dtrace_provider_lock);
8962 	}
8963 
8964 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8965 	kmem_free(old, sizeof (dtrace_provider_t));
8966 
8967 	return (0);
8968 }
8969 
8970 /*
8971  * Invalidate the specified provider.  All subsequent probe lookups for the
8972  * specified provider will fail, but its probes will not be removed.
8973  */
8974 void
8975 dtrace_invalidate(dtrace_provider_id_t id)
8976 {
8977 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8978 
8979 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8980 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8981 
8982 	mutex_enter(&dtrace_provider_lock);
8983 	mutex_enter(&dtrace_lock);
8984 
8985 	pvp->dtpv_defunct = dtrace_gethrtime();
8986 
8987 	mutex_exit(&dtrace_lock);
8988 	mutex_exit(&dtrace_provider_lock);
8989 }
8990 
8991 /*
8992  * Indicate whether or not DTrace has attached.
8993  */
8994 int
8995 dtrace_attached(void)
8996 {
8997 	/*
8998 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8999 	 * attached.  (It's non-NULL because DTrace is always itself a
9000 	 * provider.)
9001 	 */
9002 	return (dtrace_provider != NULL);
9003 }
9004 
9005 /*
9006  * Remove all the unenabled probes for the given provider.  This function is
9007  * not unlike dtrace_unregister(), except that it doesn't remove the provider
9008  * -- just as many of its associated probes as it can.
9009  */
9010 int
9011 dtrace_condense(dtrace_provider_id_t id)
9012 {
9013 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9014 	int i;
9015 	dtrace_probe_t *probe;
9016 
9017 	/*
9018 	 * Make sure this isn't the dtrace provider itself.
9019 	 */
9020 	ASSERT(prov->dtpv_pops.dtps_enable !=
9021 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9022 
9023 	mutex_enter(&dtrace_provider_lock);
9024 	mutex_enter(&dtrace_lock);
9025 
9026 	/*
9027 	 * Attempt to destroy the probes associated with this provider.
9028 	 */
9029 	for (i = 0; i < dtrace_nprobes; i++) {
9030 		if ((probe = dtrace_probes[i]) == NULL)
9031 			continue;
9032 
9033 		if (probe->dtpr_provider != prov)
9034 			continue;
9035 
9036 		if (probe->dtpr_ecb != NULL)
9037 			continue;
9038 
9039 		dtrace_probes[i] = NULL;
9040 
9041 		dtrace_hash_remove(dtrace_bymod, probe);
9042 		dtrace_hash_remove(dtrace_byfunc, probe);
9043 		dtrace_hash_remove(dtrace_byname, probe);
9044 
9045 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9046 		    probe->dtpr_arg);
9047 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9048 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9049 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9050 		kmem_free(probe, sizeof (dtrace_probe_t));
9051 #ifdef illumos
9052 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9053 #else
9054 		free_unr(dtrace_arena, i + 1);
9055 #endif
9056 	}
9057 
9058 	mutex_exit(&dtrace_lock);
9059 	mutex_exit(&dtrace_provider_lock);
9060 
9061 	return (0);
9062 }
9063 
9064 /*
9065  * DTrace Probe Management Functions
9066  *
9067  * The functions in this section perform the DTrace probe management,
9068  * including functions to create probes, look-up probes, and call into the
9069  * providers to request that probes be provided.  Some of these functions are
9070  * in the Provider-to-Framework API; these functions can be identified by the
9071  * fact that they are not declared "static".
9072  */
9073 
9074 /*
9075  * Create a probe with the specified module name, function name, and name.
9076  */
9077 dtrace_id_t
9078 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9079     const char *func, const char *name, int aframes, void *arg)
9080 {
9081 	dtrace_probe_t *probe, **probes;
9082 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9083 	dtrace_id_t id;
9084 
9085 	if (provider == dtrace_provider) {
9086 		ASSERT(MUTEX_HELD(&dtrace_lock));
9087 	} else {
9088 		mutex_enter(&dtrace_lock);
9089 	}
9090 
9091 #ifdef illumos
9092 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9093 	    VM_BESTFIT | VM_SLEEP);
9094 #else
9095 	id = alloc_unr(dtrace_arena);
9096 #endif
9097 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9098 
9099 	probe->dtpr_id = id;
9100 	probe->dtpr_gen = dtrace_probegen++;
9101 	probe->dtpr_mod = dtrace_strdup(mod);
9102 	probe->dtpr_func = dtrace_strdup(func);
9103 	probe->dtpr_name = dtrace_strdup(name);
9104 	probe->dtpr_arg = arg;
9105 	probe->dtpr_aframes = aframes;
9106 	probe->dtpr_provider = provider;
9107 
9108 	dtrace_hash_add(dtrace_bymod, probe);
9109 	dtrace_hash_add(dtrace_byfunc, probe);
9110 	dtrace_hash_add(dtrace_byname, probe);
9111 
9112 	if (id - 1 >= dtrace_nprobes) {
9113 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9114 		size_t nsize = osize << 1;
9115 
9116 		if (nsize == 0) {
9117 			ASSERT(osize == 0);
9118 			ASSERT(dtrace_probes == NULL);
9119 			nsize = sizeof (dtrace_probe_t *);
9120 		}
9121 
9122 		probes = kmem_zalloc(nsize, KM_SLEEP);
9123 
9124 		if (dtrace_probes == NULL) {
9125 			ASSERT(osize == 0);
9126 			dtrace_probes = probes;
9127 			dtrace_nprobes = 1;
9128 		} else {
9129 			dtrace_probe_t **oprobes = dtrace_probes;
9130 
9131 			bcopy(oprobes, probes, osize);
9132 			dtrace_membar_producer();
9133 			dtrace_probes = probes;
9134 
9135 			dtrace_sync();
9136 
9137 			/*
9138 			 * All CPUs are now seeing the new probes array; we can
9139 			 * safely free the old array.
9140 			 */
9141 			kmem_free(oprobes, osize);
9142 			dtrace_nprobes <<= 1;
9143 		}
9144 
9145 		ASSERT(id - 1 < dtrace_nprobes);
9146 	}
9147 
9148 	ASSERT(dtrace_probes[id - 1] == NULL);
9149 	dtrace_probes[id - 1] = probe;
9150 
9151 	if (provider != dtrace_provider)
9152 		mutex_exit(&dtrace_lock);
9153 
9154 	return (id);
9155 }
9156 
9157 static dtrace_probe_t *
9158 dtrace_probe_lookup_id(dtrace_id_t id)
9159 {
9160 	ASSERT(MUTEX_HELD(&dtrace_lock));
9161 
9162 	if (id == 0 || id > dtrace_nprobes)
9163 		return (NULL);
9164 
9165 	return (dtrace_probes[id - 1]);
9166 }
9167 
9168 static int
9169 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9170 {
9171 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9172 
9173 	return (DTRACE_MATCH_DONE);
9174 }
9175 
9176 /*
9177  * Look up a probe based on provider and one or more of module name, function
9178  * name and probe name.
9179  */
9180 dtrace_id_t
9181 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9182     char *func, char *name)
9183 {
9184 	dtrace_probekey_t pkey;
9185 	dtrace_id_t id;
9186 	int match;
9187 
9188 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9189 	pkey.dtpk_pmatch = &dtrace_match_string;
9190 	pkey.dtpk_mod = mod;
9191 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9192 	pkey.dtpk_func = func;
9193 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9194 	pkey.dtpk_name = name;
9195 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9196 	pkey.dtpk_id = DTRACE_IDNONE;
9197 
9198 	mutex_enter(&dtrace_lock);
9199 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9200 	    dtrace_probe_lookup_match, &id);
9201 	mutex_exit(&dtrace_lock);
9202 
9203 	ASSERT(match == 1 || match == 0);
9204 	return (match ? id : 0);
9205 }
9206 
9207 /*
9208  * Returns the probe argument associated with the specified probe.
9209  */
9210 void *
9211 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9212 {
9213 	dtrace_probe_t *probe;
9214 	void *rval = NULL;
9215 
9216 	mutex_enter(&dtrace_lock);
9217 
9218 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9219 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9220 		rval = probe->dtpr_arg;
9221 
9222 	mutex_exit(&dtrace_lock);
9223 
9224 	return (rval);
9225 }
9226 
9227 /*
9228  * Copy a probe into a probe description.
9229  */
9230 static void
9231 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9232 {
9233 	bzero(pdp, sizeof (dtrace_probedesc_t));
9234 	pdp->dtpd_id = prp->dtpr_id;
9235 
9236 	(void) strncpy(pdp->dtpd_provider,
9237 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9238 
9239 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9240 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9241 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9242 }
9243 
9244 /*
9245  * Called to indicate that a probe -- or probes -- should be provided by a
9246  * specfied provider.  If the specified description is NULL, the provider will
9247  * be told to provide all of its probes.  (This is done whenever a new
9248  * consumer comes along, or whenever a retained enabling is to be matched.) If
9249  * the specified description is non-NULL, the provider is given the
9250  * opportunity to dynamically provide the specified probe, allowing providers
9251  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9252  * probes.)  If the provider is NULL, the operations will be applied to all
9253  * providers; if the provider is non-NULL the operations will only be applied
9254  * to the specified provider.  The dtrace_provider_lock must be held, and the
9255  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9256  * will need to grab the dtrace_lock when it reenters the framework through
9257  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9258  */
9259 static void
9260 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9261 {
9262 #ifdef illumos
9263 	modctl_t *ctl;
9264 #endif
9265 	int all = 0;
9266 
9267 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9268 
9269 	if (prv == NULL) {
9270 		all = 1;
9271 		prv = dtrace_provider;
9272 	}
9273 
9274 	do {
9275 		/*
9276 		 * First, call the blanket provide operation.
9277 		 */
9278 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9279 
9280 #ifdef illumos
9281 		/*
9282 		 * Now call the per-module provide operation.  We will grab
9283 		 * mod_lock to prevent the list from being modified.  Note
9284 		 * that this also prevents the mod_busy bits from changing.
9285 		 * (mod_busy can only be changed with mod_lock held.)
9286 		 */
9287 		mutex_enter(&mod_lock);
9288 
9289 		ctl = &modules;
9290 		do {
9291 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9292 				continue;
9293 
9294 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9295 
9296 		} while ((ctl = ctl->mod_next) != &modules);
9297 
9298 		mutex_exit(&mod_lock);
9299 #endif
9300 	} while (all && (prv = prv->dtpv_next) != NULL);
9301 }
9302 
9303 #ifdef illumos
9304 /*
9305  * Iterate over each probe, and call the Framework-to-Provider API function
9306  * denoted by offs.
9307  */
9308 static void
9309 dtrace_probe_foreach(uintptr_t offs)
9310 {
9311 	dtrace_provider_t *prov;
9312 	void (*func)(void *, dtrace_id_t, void *);
9313 	dtrace_probe_t *probe;
9314 	dtrace_icookie_t cookie;
9315 	int i;
9316 
9317 	/*
9318 	 * We disable interrupts to walk through the probe array.  This is
9319 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9320 	 * won't see stale data.
9321 	 */
9322 	cookie = dtrace_interrupt_disable();
9323 
9324 	for (i = 0; i < dtrace_nprobes; i++) {
9325 		if ((probe = dtrace_probes[i]) == NULL)
9326 			continue;
9327 
9328 		if (probe->dtpr_ecb == NULL) {
9329 			/*
9330 			 * This probe isn't enabled -- don't call the function.
9331 			 */
9332 			continue;
9333 		}
9334 
9335 		prov = probe->dtpr_provider;
9336 		func = *((void(**)(void *, dtrace_id_t, void *))
9337 		    ((uintptr_t)&prov->dtpv_pops + offs));
9338 
9339 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9340 	}
9341 
9342 	dtrace_interrupt_enable(cookie);
9343 }
9344 #endif
9345 
9346 static int
9347 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9348 {
9349 	dtrace_probekey_t pkey;
9350 	uint32_t priv;
9351 	uid_t uid;
9352 	zoneid_t zoneid;
9353 
9354 	ASSERT(MUTEX_HELD(&dtrace_lock));
9355 	dtrace_ecb_create_cache = NULL;
9356 
9357 	if (desc == NULL) {
9358 		/*
9359 		 * If we're passed a NULL description, we're being asked to
9360 		 * create an ECB with a NULL probe.
9361 		 */
9362 		(void) dtrace_ecb_create_enable(NULL, enab);
9363 		return (0);
9364 	}
9365 
9366 	dtrace_probekey(desc, &pkey);
9367 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9368 	    &priv, &uid, &zoneid);
9369 
9370 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9371 	    enab));
9372 }
9373 
9374 /*
9375  * DTrace Helper Provider Functions
9376  */
9377 static void
9378 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9379 {
9380 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9381 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9382 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9383 }
9384 
9385 static void
9386 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9387     const dof_provider_t *dofprov, char *strtab)
9388 {
9389 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9390 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9391 	    dofprov->dofpv_provattr);
9392 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9393 	    dofprov->dofpv_modattr);
9394 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9395 	    dofprov->dofpv_funcattr);
9396 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9397 	    dofprov->dofpv_nameattr);
9398 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9399 	    dofprov->dofpv_argsattr);
9400 }
9401 
9402 static void
9403 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9404 {
9405 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9406 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9407 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9408 	dof_provider_t *provider;
9409 	dof_probe_t *probe;
9410 	uint32_t *off, *enoff;
9411 	uint8_t *arg;
9412 	char *strtab;
9413 	uint_t i, nprobes;
9414 	dtrace_helper_provdesc_t dhpv;
9415 	dtrace_helper_probedesc_t dhpb;
9416 	dtrace_meta_t *meta = dtrace_meta_pid;
9417 	dtrace_mops_t *mops = &meta->dtm_mops;
9418 	void *parg;
9419 
9420 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9421 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9422 	    provider->dofpv_strtab * dof->dofh_secsize);
9423 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9424 	    provider->dofpv_probes * dof->dofh_secsize);
9425 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9426 	    provider->dofpv_prargs * dof->dofh_secsize);
9427 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9428 	    provider->dofpv_proffs * dof->dofh_secsize);
9429 
9430 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9431 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9432 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9433 	enoff = NULL;
9434 
9435 	/*
9436 	 * See dtrace_helper_provider_validate().
9437 	 */
9438 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9439 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9440 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9441 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9442 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9443 	}
9444 
9445 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9446 
9447 	/*
9448 	 * Create the provider.
9449 	 */
9450 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9451 
9452 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9453 		return;
9454 
9455 	meta->dtm_count++;
9456 
9457 	/*
9458 	 * Create the probes.
9459 	 */
9460 	for (i = 0; i < nprobes; i++) {
9461 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9462 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9463 
9464 		/* See the check in dtrace_helper_provider_validate(). */
9465 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9466 			continue;
9467 
9468 		dhpb.dthpb_mod = dhp->dofhp_mod;
9469 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9470 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9471 		dhpb.dthpb_base = probe->dofpr_addr;
9472 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9473 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9474 		if (enoff != NULL) {
9475 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9476 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9477 		} else {
9478 			dhpb.dthpb_enoffs = NULL;
9479 			dhpb.dthpb_nenoffs = 0;
9480 		}
9481 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9482 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9483 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9484 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9485 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9486 
9487 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9488 	}
9489 }
9490 
9491 static void
9492 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9493 {
9494 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9495 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9496 	int i;
9497 
9498 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9499 
9500 	for (i = 0; i < dof->dofh_secnum; i++) {
9501 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9502 		    dof->dofh_secoff + i * dof->dofh_secsize);
9503 
9504 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9505 			continue;
9506 
9507 		dtrace_helper_provide_one(dhp, sec, pid);
9508 	}
9509 
9510 	/*
9511 	 * We may have just created probes, so we must now rematch against
9512 	 * any retained enablings.  Note that this call will acquire both
9513 	 * cpu_lock and dtrace_lock; the fact that we are holding
9514 	 * dtrace_meta_lock now is what defines the ordering with respect to
9515 	 * these three locks.
9516 	 */
9517 	dtrace_enabling_matchall();
9518 }
9519 
9520 static void
9521 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9522 {
9523 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9524 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9525 	dof_sec_t *str_sec;
9526 	dof_provider_t *provider;
9527 	char *strtab;
9528 	dtrace_helper_provdesc_t dhpv;
9529 	dtrace_meta_t *meta = dtrace_meta_pid;
9530 	dtrace_mops_t *mops = &meta->dtm_mops;
9531 
9532 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9533 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9534 	    provider->dofpv_strtab * dof->dofh_secsize);
9535 
9536 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9537 
9538 	/*
9539 	 * Create the provider.
9540 	 */
9541 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9542 
9543 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9544 
9545 	meta->dtm_count--;
9546 }
9547 
9548 static void
9549 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9550 {
9551 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9552 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9553 	int i;
9554 
9555 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9556 
9557 	for (i = 0; i < dof->dofh_secnum; i++) {
9558 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9559 		    dof->dofh_secoff + i * dof->dofh_secsize);
9560 
9561 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9562 			continue;
9563 
9564 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9565 	}
9566 }
9567 
9568 /*
9569  * DTrace Meta Provider-to-Framework API Functions
9570  *
9571  * These functions implement the Meta Provider-to-Framework API, as described
9572  * in <sys/dtrace.h>.
9573  */
9574 int
9575 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9576     dtrace_meta_provider_id_t *idp)
9577 {
9578 	dtrace_meta_t *meta;
9579 	dtrace_helpers_t *help, *next;
9580 	int i;
9581 
9582 	*idp = DTRACE_METAPROVNONE;
9583 
9584 	/*
9585 	 * We strictly don't need the name, but we hold onto it for
9586 	 * debuggability. All hail error queues!
9587 	 */
9588 	if (name == NULL) {
9589 		cmn_err(CE_WARN, "failed to register meta-provider: "
9590 		    "invalid name");
9591 		return (EINVAL);
9592 	}
9593 
9594 	if (mops == NULL ||
9595 	    mops->dtms_create_probe == NULL ||
9596 	    mops->dtms_provide_pid == NULL ||
9597 	    mops->dtms_remove_pid == NULL) {
9598 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9599 		    "invalid ops", name);
9600 		return (EINVAL);
9601 	}
9602 
9603 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9604 	meta->dtm_mops = *mops;
9605 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9606 	(void) strcpy(meta->dtm_name, name);
9607 	meta->dtm_arg = arg;
9608 
9609 	mutex_enter(&dtrace_meta_lock);
9610 	mutex_enter(&dtrace_lock);
9611 
9612 	if (dtrace_meta_pid != NULL) {
9613 		mutex_exit(&dtrace_lock);
9614 		mutex_exit(&dtrace_meta_lock);
9615 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9616 		    "user-land meta-provider exists", name);
9617 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9618 		kmem_free(meta, sizeof (dtrace_meta_t));
9619 		return (EINVAL);
9620 	}
9621 
9622 	dtrace_meta_pid = meta;
9623 	*idp = (dtrace_meta_provider_id_t)meta;
9624 
9625 	/*
9626 	 * If there are providers and probes ready to go, pass them
9627 	 * off to the new meta provider now.
9628 	 */
9629 
9630 	help = dtrace_deferred_pid;
9631 	dtrace_deferred_pid = NULL;
9632 
9633 	mutex_exit(&dtrace_lock);
9634 
9635 	while (help != NULL) {
9636 		for (i = 0; i < help->dthps_nprovs; i++) {
9637 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9638 			    help->dthps_pid);
9639 		}
9640 
9641 		next = help->dthps_next;
9642 		help->dthps_next = NULL;
9643 		help->dthps_prev = NULL;
9644 		help->dthps_deferred = 0;
9645 		help = next;
9646 	}
9647 
9648 	mutex_exit(&dtrace_meta_lock);
9649 
9650 	return (0);
9651 }
9652 
9653 int
9654 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9655 {
9656 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9657 
9658 	mutex_enter(&dtrace_meta_lock);
9659 	mutex_enter(&dtrace_lock);
9660 
9661 	if (old == dtrace_meta_pid) {
9662 		pp = &dtrace_meta_pid;
9663 	} else {
9664 		panic("attempt to unregister non-existent "
9665 		    "dtrace meta-provider %p\n", (void *)old);
9666 	}
9667 
9668 	if (old->dtm_count != 0) {
9669 		mutex_exit(&dtrace_lock);
9670 		mutex_exit(&dtrace_meta_lock);
9671 		return (EBUSY);
9672 	}
9673 
9674 	*pp = NULL;
9675 
9676 	mutex_exit(&dtrace_lock);
9677 	mutex_exit(&dtrace_meta_lock);
9678 
9679 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9680 	kmem_free(old, sizeof (dtrace_meta_t));
9681 
9682 	return (0);
9683 }
9684 
9685 
9686 /*
9687  * DTrace DIF Object Functions
9688  */
9689 static int
9690 dtrace_difo_err(uint_t pc, const char *format, ...)
9691 {
9692 	if (dtrace_err_verbose) {
9693 		va_list alist;
9694 
9695 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9696 		va_start(alist, format);
9697 		(void) vuprintf(format, alist);
9698 		va_end(alist);
9699 	}
9700 
9701 #ifdef DTRACE_ERRDEBUG
9702 	dtrace_errdebug(format);
9703 #endif
9704 	return (1);
9705 }
9706 
9707 /*
9708  * Validate a DTrace DIF object by checking the IR instructions.  The following
9709  * rules are currently enforced by dtrace_difo_validate():
9710  *
9711  * 1. Each instruction must have a valid opcode
9712  * 2. Each register, string, variable, or subroutine reference must be valid
9713  * 3. No instruction can modify register %r0 (must be zero)
9714  * 4. All instruction reserved bits must be set to zero
9715  * 5. The last instruction must be a "ret" instruction
9716  * 6. All branch targets must reference a valid instruction _after_ the branch
9717  */
9718 static int
9719 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9720     cred_t *cr)
9721 {
9722 	int err = 0, i;
9723 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9724 	int kcheckload;
9725 	uint_t pc;
9726 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9727 
9728 	kcheckload = cr == NULL ||
9729 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9730 
9731 	dp->dtdo_destructive = 0;
9732 
9733 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9734 		dif_instr_t instr = dp->dtdo_buf[pc];
9735 
9736 		uint_t r1 = DIF_INSTR_R1(instr);
9737 		uint_t r2 = DIF_INSTR_R2(instr);
9738 		uint_t rd = DIF_INSTR_RD(instr);
9739 		uint_t rs = DIF_INSTR_RS(instr);
9740 		uint_t label = DIF_INSTR_LABEL(instr);
9741 		uint_t v = DIF_INSTR_VAR(instr);
9742 		uint_t subr = DIF_INSTR_SUBR(instr);
9743 		uint_t type = DIF_INSTR_TYPE(instr);
9744 		uint_t op = DIF_INSTR_OP(instr);
9745 
9746 		switch (op) {
9747 		case DIF_OP_OR:
9748 		case DIF_OP_XOR:
9749 		case DIF_OP_AND:
9750 		case DIF_OP_SLL:
9751 		case DIF_OP_SRL:
9752 		case DIF_OP_SRA:
9753 		case DIF_OP_SUB:
9754 		case DIF_OP_ADD:
9755 		case DIF_OP_MUL:
9756 		case DIF_OP_SDIV:
9757 		case DIF_OP_UDIV:
9758 		case DIF_OP_SREM:
9759 		case DIF_OP_UREM:
9760 		case DIF_OP_COPYS:
9761 			if (r1 >= nregs)
9762 				err += efunc(pc, "invalid register %u\n", r1);
9763 			if (r2 >= nregs)
9764 				err += efunc(pc, "invalid register %u\n", r2);
9765 			if (rd >= nregs)
9766 				err += efunc(pc, "invalid register %u\n", rd);
9767 			if (rd == 0)
9768 				err += efunc(pc, "cannot write to %r0\n");
9769 			break;
9770 		case DIF_OP_NOT:
9771 		case DIF_OP_MOV:
9772 		case DIF_OP_ALLOCS:
9773 			if (r1 >= nregs)
9774 				err += efunc(pc, "invalid register %u\n", r1);
9775 			if (r2 != 0)
9776 				err += efunc(pc, "non-zero reserved bits\n");
9777 			if (rd >= nregs)
9778 				err += efunc(pc, "invalid register %u\n", rd);
9779 			if (rd == 0)
9780 				err += efunc(pc, "cannot write to %r0\n");
9781 			break;
9782 		case DIF_OP_LDSB:
9783 		case DIF_OP_LDSH:
9784 		case DIF_OP_LDSW:
9785 		case DIF_OP_LDUB:
9786 		case DIF_OP_LDUH:
9787 		case DIF_OP_LDUW:
9788 		case DIF_OP_LDX:
9789 			if (r1 >= nregs)
9790 				err += efunc(pc, "invalid register %u\n", r1);
9791 			if (r2 != 0)
9792 				err += efunc(pc, "non-zero reserved bits\n");
9793 			if (rd >= nregs)
9794 				err += efunc(pc, "invalid register %u\n", rd);
9795 			if (rd == 0)
9796 				err += efunc(pc, "cannot write to %r0\n");
9797 			if (kcheckload)
9798 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9799 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9800 			break;
9801 		case DIF_OP_RLDSB:
9802 		case DIF_OP_RLDSH:
9803 		case DIF_OP_RLDSW:
9804 		case DIF_OP_RLDUB:
9805 		case DIF_OP_RLDUH:
9806 		case DIF_OP_RLDUW:
9807 		case DIF_OP_RLDX:
9808 			if (r1 >= nregs)
9809 				err += efunc(pc, "invalid register %u\n", r1);
9810 			if (r2 != 0)
9811 				err += efunc(pc, "non-zero reserved bits\n");
9812 			if (rd >= nregs)
9813 				err += efunc(pc, "invalid register %u\n", rd);
9814 			if (rd == 0)
9815 				err += efunc(pc, "cannot write to %r0\n");
9816 			break;
9817 		case DIF_OP_ULDSB:
9818 		case DIF_OP_ULDSH:
9819 		case DIF_OP_ULDSW:
9820 		case DIF_OP_ULDUB:
9821 		case DIF_OP_ULDUH:
9822 		case DIF_OP_ULDUW:
9823 		case DIF_OP_ULDX:
9824 			if (r1 >= nregs)
9825 				err += efunc(pc, "invalid register %u\n", r1);
9826 			if (r2 != 0)
9827 				err += efunc(pc, "non-zero reserved bits\n");
9828 			if (rd >= nregs)
9829 				err += efunc(pc, "invalid register %u\n", rd);
9830 			if (rd == 0)
9831 				err += efunc(pc, "cannot write to %r0\n");
9832 			break;
9833 		case DIF_OP_STB:
9834 		case DIF_OP_STH:
9835 		case DIF_OP_STW:
9836 		case DIF_OP_STX:
9837 			if (r1 >= nregs)
9838 				err += efunc(pc, "invalid register %u\n", r1);
9839 			if (r2 != 0)
9840 				err += efunc(pc, "non-zero reserved bits\n");
9841 			if (rd >= nregs)
9842 				err += efunc(pc, "invalid register %u\n", rd);
9843 			if (rd == 0)
9844 				err += efunc(pc, "cannot write to 0 address\n");
9845 			break;
9846 		case DIF_OP_CMP:
9847 		case DIF_OP_SCMP:
9848 			if (r1 >= nregs)
9849 				err += efunc(pc, "invalid register %u\n", r1);
9850 			if (r2 >= nregs)
9851 				err += efunc(pc, "invalid register %u\n", r2);
9852 			if (rd != 0)
9853 				err += efunc(pc, "non-zero reserved bits\n");
9854 			break;
9855 		case DIF_OP_TST:
9856 			if (r1 >= nregs)
9857 				err += efunc(pc, "invalid register %u\n", r1);
9858 			if (r2 != 0 || rd != 0)
9859 				err += efunc(pc, "non-zero reserved bits\n");
9860 			break;
9861 		case DIF_OP_BA:
9862 		case DIF_OP_BE:
9863 		case DIF_OP_BNE:
9864 		case DIF_OP_BG:
9865 		case DIF_OP_BGU:
9866 		case DIF_OP_BGE:
9867 		case DIF_OP_BGEU:
9868 		case DIF_OP_BL:
9869 		case DIF_OP_BLU:
9870 		case DIF_OP_BLE:
9871 		case DIF_OP_BLEU:
9872 			if (label >= dp->dtdo_len) {
9873 				err += efunc(pc, "invalid branch target %u\n",
9874 				    label);
9875 			}
9876 			if (label <= pc) {
9877 				err += efunc(pc, "backward branch to %u\n",
9878 				    label);
9879 			}
9880 			break;
9881 		case DIF_OP_RET:
9882 			if (r1 != 0 || r2 != 0)
9883 				err += efunc(pc, "non-zero reserved bits\n");
9884 			if (rd >= nregs)
9885 				err += efunc(pc, "invalid register %u\n", rd);
9886 			break;
9887 		case DIF_OP_NOP:
9888 		case DIF_OP_POPTS:
9889 		case DIF_OP_FLUSHTS:
9890 			if (r1 != 0 || r2 != 0 || rd != 0)
9891 				err += efunc(pc, "non-zero reserved bits\n");
9892 			break;
9893 		case DIF_OP_SETX:
9894 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9895 				err += efunc(pc, "invalid integer ref %u\n",
9896 				    DIF_INSTR_INTEGER(instr));
9897 			}
9898 			if (rd >= nregs)
9899 				err += efunc(pc, "invalid register %u\n", rd);
9900 			if (rd == 0)
9901 				err += efunc(pc, "cannot write to %r0\n");
9902 			break;
9903 		case DIF_OP_SETS:
9904 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9905 				err += efunc(pc, "invalid string ref %u\n",
9906 				    DIF_INSTR_STRING(instr));
9907 			}
9908 			if (rd >= nregs)
9909 				err += efunc(pc, "invalid register %u\n", rd);
9910 			if (rd == 0)
9911 				err += efunc(pc, "cannot write to %r0\n");
9912 			break;
9913 		case DIF_OP_LDGA:
9914 		case DIF_OP_LDTA:
9915 			if (r1 > DIF_VAR_ARRAY_MAX)
9916 				err += efunc(pc, "invalid array %u\n", r1);
9917 			if (r2 >= nregs)
9918 				err += efunc(pc, "invalid register %u\n", r2);
9919 			if (rd >= nregs)
9920 				err += efunc(pc, "invalid register %u\n", rd);
9921 			if (rd == 0)
9922 				err += efunc(pc, "cannot write to %r0\n");
9923 			break;
9924 		case DIF_OP_LDGS:
9925 		case DIF_OP_LDTS:
9926 		case DIF_OP_LDLS:
9927 		case DIF_OP_LDGAA:
9928 		case DIF_OP_LDTAA:
9929 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9930 				err += efunc(pc, "invalid variable %u\n", v);
9931 			if (rd >= nregs)
9932 				err += efunc(pc, "invalid register %u\n", rd);
9933 			if (rd == 0)
9934 				err += efunc(pc, "cannot write to %r0\n");
9935 			break;
9936 		case DIF_OP_STGS:
9937 		case DIF_OP_STTS:
9938 		case DIF_OP_STLS:
9939 		case DIF_OP_STGAA:
9940 		case DIF_OP_STTAA:
9941 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9942 				err += efunc(pc, "invalid variable %u\n", v);
9943 			if (rs >= nregs)
9944 				err += efunc(pc, "invalid register %u\n", rd);
9945 			break;
9946 		case DIF_OP_CALL:
9947 			if (subr > DIF_SUBR_MAX)
9948 				err += efunc(pc, "invalid subr %u\n", subr);
9949 			if (rd >= nregs)
9950 				err += efunc(pc, "invalid register %u\n", rd);
9951 			if (rd == 0)
9952 				err += efunc(pc, "cannot write to %r0\n");
9953 
9954 			if (subr == DIF_SUBR_COPYOUT ||
9955 			    subr == DIF_SUBR_COPYOUTSTR) {
9956 				dp->dtdo_destructive = 1;
9957 			}
9958 
9959 			if (subr == DIF_SUBR_GETF) {
9960 				/*
9961 				 * If we have a getf() we need to record that
9962 				 * in our state.  Note that our state can be
9963 				 * NULL if this is a helper -- but in that
9964 				 * case, the call to getf() is itself illegal,
9965 				 * and will be caught (slightly later) when
9966 				 * the helper is validated.
9967 				 */
9968 				if (vstate->dtvs_state != NULL)
9969 					vstate->dtvs_state->dts_getf++;
9970 			}
9971 
9972 			break;
9973 		case DIF_OP_PUSHTR:
9974 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9975 				err += efunc(pc, "invalid ref type %u\n", type);
9976 			if (r2 >= nregs)
9977 				err += efunc(pc, "invalid register %u\n", r2);
9978 			if (rs >= nregs)
9979 				err += efunc(pc, "invalid register %u\n", rs);
9980 			break;
9981 		case DIF_OP_PUSHTV:
9982 			if (type != DIF_TYPE_CTF)
9983 				err += efunc(pc, "invalid val type %u\n", type);
9984 			if (r2 >= nregs)
9985 				err += efunc(pc, "invalid register %u\n", r2);
9986 			if (rs >= nregs)
9987 				err += efunc(pc, "invalid register %u\n", rs);
9988 			break;
9989 		default:
9990 			err += efunc(pc, "invalid opcode %u\n",
9991 			    DIF_INSTR_OP(instr));
9992 		}
9993 	}
9994 
9995 	if (dp->dtdo_len != 0 &&
9996 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9997 		err += efunc(dp->dtdo_len - 1,
9998 		    "expected 'ret' as last DIF instruction\n");
9999 	}
10000 
10001 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10002 		/*
10003 		 * If we're not returning by reference, the size must be either
10004 		 * 0 or the size of one of the base types.
10005 		 */
10006 		switch (dp->dtdo_rtype.dtdt_size) {
10007 		case 0:
10008 		case sizeof (uint8_t):
10009 		case sizeof (uint16_t):
10010 		case sizeof (uint32_t):
10011 		case sizeof (uint64_t):
10012 			break;
10013 
10014 		default:
10015 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10016 		}
10017 	}
10018 
10019 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10020 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10021 		dtrace_diftype_t *vt, *et;
10022 		uint_t id, ndx;
10023 
10024 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10025 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10026 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10027 			err += efunc(i, "unrecognized variable scope %d\n",
10028 			    v->dtdv_scope);
10029 			break;
10030 		}
10031 
10032 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10033 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10034 			err += efunc(i, "unrecognized variable type %d\n",
10035 			    v->dtdv_kind);
10036 			break;
10037 		}
10038 
10039 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10040 			err += efunc(i, "%d exceeds variable id limit\n", id);
10041 			break;
10042 		}
10043 
10044 		if (id < DIF_VAR_OTHER_UBASE)
10045 			continue;
10046 
10047 		/*
10048 		 * For user-defined variables, we need to check that this
10049 		 * definition is identical to any previous definition that we
10050 		 * encountered.
10051 		 */
10052 		ndx = id - DIF_VAR_OTHER_UBASE;
10053 
10054 		switch (v->dtdv_scope) {
10055 		case DIFV_SCOPE_GLOBAL:
10056 			if (maxglobal == -1 || ndx > maxglobal)
10057 				maxglobal = ndx;
10058 
10059 			if (ndx < vstate->dtvs_nglobals) {
10060 				dtrace_statvar_t *svar;
10061 
10062 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10063 					existing = &svar->dtsv_var;
10064 			}
10065 
10066 			break;
10067 
10068 		case DIFV_SCOPE_THREAD:
10069 			if (maxtlocal == -1 || ndx > maxtlocal)
10070 				maxtlocal = ndx;
10071 
10072 			if (ndx < vstate->dtvs_ntlocals)
10073 				existing = &vstate->dtvs_tlocals[ndx];
10074 			break;
10075 
10076 		case DIFV_SCOPE_LOCAL:
10077 			if (maxlocal == -1 || ndx > maxlocal)
10078 				maxlocal = ndx;
10079 
10080 			if (ndx < vstate->dtvs_nlocals) {
10081 				dtrace_statvar_t *svar;
10082 
10083 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10084 					existing = &svar->dtsv_var;
10085 			}
10086 
10087 			break;
10088 		}
10089 
10090 		vt = &v->dtdv_type;
10091 
10092 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10093 			if (vt->dtdt_size == 0) {
10094 				err += efunc(i, "zero-sized variable\n");
10095 				break;
10096 			}
10097 
10098 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10099 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10100 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10101 				err += efunc(i, "oversized by-ref static\n");
10102 				break;
10103 			}
10104 		}
10105 
10106 		if (existing == NULL || existing->dtdv_id == 0)
10107 			continue;
10108 
10109 		ASSERT(existing->dtdv_id == v->dtdv_id);
10110 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10111 
10112 		if (existing->dtdv_kind != v->dtdv_kind)
10113 			err += efunc(i, "%d changed variable kind\n", id);
10114 
10115 		et = &existing->dtdv_type;
10116 
10117 		if (vt->dtdt_flags != et->dtdt_flags) {
10118 			err += efunc(i, "%d changed variable type flags\n", id);
10119 			break;
10120 		}
10121 
10122 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10123 			err += efunc(i, "%d changed variable type size\n", id);
10124 			break;
10125 		}
10126 	}
10127 
10128 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10129 		dif_instr_t instr = dp->dtdo_buf[pc];
10130 
10131 		uint_t v = DIF_INSTR_VAR(instr);
10132 		uint_t op = DIF_INSTR_OP(instr);
10133 
10134 		switch (op) {
10135 		case DIF_OP_LDGS:
10136 		case DIF_OP_LDGAA:
10137 		case DIF_OP_STGS:
10138 		case DIF_OP_STGAA:
10139 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10140 				err += efunc(pc, "invalid variable %u\n", v);
10141 			break;
10142 		case DIF_OP_LDTS:
10143 		case DIF_OP_LDTAA:
10144 		case DIF_OP_STTS:
10145 		case DIF_OP_STTAA:
10146 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10147 				err += efunc(pc, "invalid variable %u\n", v);
10148 			break;
10149 		case DIF_OP_LDLS:
10150 		case DIF_OP_STLS:
10151 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10152 				err += efunc(pc, "invalid variable %u\n", v);
10153 			break;
10154 		default:
10155 			break;
10156 		}
10157 	}
10158 
10159 	return (err);
10160 }
10161 
10162 /*
10163  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10164  * are much more constrained than normal DIFOs.  Specifically, they may
10165  * not:
10166  *
10167  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10168  *    miscellaneous string routines
10169  * 2. Access DTrace variables other than the args[] array, and the
10170  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10171  * 3. Have thread-local variables.
10172  * 4. Have dynamic variables.
10173  */
10174 static int
10175 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10176 {
10177 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10178 	int err = 0;
10179 	uint_t pc;
10180 
10181 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10182 		dif_instr_t instr = dp->dtdo_buf[pc];
10183 
10184 		uint_t v = DIF_INSTR_VAR(instr);
10185 		uint_t subr = DIF_INSTR_SUBR(instr);
10186 		uint_t op = DIF_INSTR_OP(instr);
10187 
10188 		switch (op) {
10189 		case DIF_OP_OR:
10190 		case DIF_OP_XOR:
10191 		case DIF_OP_AND:
10192 		case DIF_OP_SLL:
10193 		case DIF_OP_SRL:
10194 		case DIF_OP_SRA:
10195 		case DIF_OP_SUB:
10196 		case DIF_OP_ADD:
10197 		case DIF_OP_MUL:
10198 		case DIF_OP_SDIV:
10199 		case DIF_OP_UDIV:
10200 		case DIF_OP_SREM:
10201 		case DIF_OP_UREM:
10202 		case DIF_OP_COPYS:
10203 		case DIF_OP_NOT:
10204 		case DIF_OP_MOV:
10205 		case DIF_OP_RLDSB:
10206 		case DIF_OP_RLDSH:
10207 		case DIF_OP_RLDSW:
10208 		case DIF_OP_RLDUB:
10209 		case DIF_OP_RLDUH:
10210 		case DIF_OP_RLDUW:
10211 		case DIF_OP_RLDX:
10212 		case DIF_OP_ULDSB:
10213 		case DIF_OP_ULDSH:
10214 		case DIF_OP_ULDSW:
10215 		case DIF_OP_ULDUB:
10216 		case DIF_OP_ULDUH:
10217 		case DIF_OP_ULDUW:
10218 		case DIF_OP_ULDX:
10219 		case DIF_OP_STB:
10220 		case DIF_OP_STH:
10221 		case DIF_OP_STW:
10222 		case DIF_OP_STX:
10223 		case DIF_OP_ALLOCS:
10224 		case DIF_OP_CMP:
10225 		case DIF_OP_SCMP:
10226 		case DIF_OP_TST:
10227 		case DIF_OP_BA:
10228 		case DIF_OP_BE:
10229 		case DIF_OP_BNE:
10230 		case DIF_OP_BG:
10231 		case DIF_OP_BGU:
10232 		case DIF_OP_BGE:
10233 		case DIF_OP_BGEU:
10234 		case DIF_OP_BL:
10235 		case DIF_OP_BLU:
10236 		case DIF_OP_BLE:
10237 		case DIF_OP_BLEU:
10238 		case DIF_OP_RET:
10239 		case DIF_OP_NOP:
10240 		case DIF_OP_POPTS:
10241 		case DIF_OP_FLUSHTS:
10242 		case DIF_OP_SETX:
10243 		case DIF_OP_SETS:
10244 		case DIF_OP_LDGA:
10245 		case DIF_OP_LDLS:
10246 		case DIF_OP_STGS:
10247 		case DIF_OP_STLS:
10248 		case DIF_OP_PUSHTR:
10249 		case DIF_OP_PUSHTV:
10250 			break;
10251 
10252 		case DIF_OP_LDGS:
10253 			if (v >= DIF_VAR_OTHER_UBASE)
10254 				break;
10255 
10256 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10257 				break;
10258 
10259 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10260 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10261 			    v == DIF_VAR_EXECARGS ||
10262 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10263 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10264 				break;
10265 
10266 			err += efunc(pc, "illegal variable %u\n", v);
10267 			break;
10268 
10269 		case DIF_OP_LDTA:
10270 		case DIF_OP_LDTS:
10271 		case DIF_OP_LDGAA:
10272 		case DIF_OP_LDTAA:
10273 			err += efunc(pc, "illegal dynamic variable load\n");
10274 			break;
10275 
10276 		case DIF_OP_STTS:
10277 		case DIF_OP_STGAA:
10278 		case DIF_OP_STTAA:
10279 			err += efunc(pc, "illegal dynamic variable store\n");
10280 			break;
10281 
10282 		case DIF_OP_CALL:
10283 			if (subr == DIF_SUBR_ALLOCA ||
10284 			    subr == DIF_SUBR_BCOPY ||
10285 			    subr == DIF_SUBR_COPYIN ||
10286 			    subr == DIF_SUBR_COPYINTO ||
10287 			    subr == DIF_SUBR_COPYINSTR ||
10288 			    subr == DIF_SUBR_INDEX ||
10289 			    subr == DIF_SUBR_INET_NTOA ||
10290 			    subr == DIF_SUBR_INET_NTOA6 ||
10291 			    subr == DIF_SUBR_INET_NTOP ||
10292 			    subr == DIF_SUBR_JSON ||
10293 			    subr == DIF_SUBR_LLTOSTR ||
10294 			    subr == DIF_SUBR_STRTOLL ||
10295 			    subr == DIF_SUBR_RINDEX ||
10296 			    subr == DIF_SUBR_STRCHR ||
10297 			    subr == DIF_SUBR_STRJOIN ||
10298 			    subr == DIF_SUBR_STRRCHR ||
10299 			    subr == DIF_SUBR_STRSTR ||
10300 			    subr == DIF_SUBR_HTONS ||
10301 			    subr == DIF_SUBR_HTONL ||
10302 			    subr == DIF_SUBR_HTONLL ||
10303 			    subr == DIF_SUBR_NTOHS ||
10304 			    subr == DIF_SUBR_NTOHL ||
10305 			    subr == DIF_SUBR_NTOHLL ||
10306 			    subr == DIF_SUBR_MEMREF)
10307 				break;
10308 #ifdef __FreeBSD__
10309 			if (subr == DIF_SUBR_MEMSTR)
10310 				break;
10311 #endif
10312 
10313 			err += efunc(pc, "invalid subr %u\n", subr);
10314 			break;
10315 
10316 		default:
10317 			err += efunc(pc, "invalid opcode %u\n",
10318 			    DIF_INSTR_OP(instr));
10319 		}
10320 	}
10321 
10322 	return (err);
10323 }
10324 
10325 /*
10326  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10327  * basis; 0 if not.
10328  */
10329 static int
10330 dtrace_difo_cacheable(dtrace_difo_t *dp)
10331 {
10332 	int i;
10333 
10334 	if (dp == NULL)
10335 		return (0);
10336 
10337 	for (i = 0; i < dp->dtdo_varlen; i++) {
10338 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10339 
10340 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10341 			continue;
10342 
10343 		switch (v->dtdv_id) {
10344 		case DIF_VAR_CURTHREAD:
10345 		case DIF_VAR_PID:
10346 		case DIF_VAR_TID:
10347 		case DIF_VAR_EXECARGS:
10348 		case DIF_VAR_EXECNAME:
10349 		case DIF_VAR_ZONENAME:
10350 			break;
10351 
10352 		default:
10353 			return (0);
10354 		}
10355 	}
10356 
10357 	/*
10358 	 * This DIF object may be cacheable.  Now we need to look for any
10359 	 * array loading instructions, any memory loading instructions, or
10360 	 * any stores to thread-local variables.
10361 	 */
10362 	for (i = 0; i < dp->dtdo_len; i++) {
10363 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10364 
10365 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10366 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10367 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10368 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10369 			return (0);
10370 	}
10371 
10372 	return (1);
10373 }
10374 
10375 static void
10376 dtrace_difo_hold(dtrace_difo_t *dp)
10377 {
10378 	int i;
10379 
10380 	ASSERT(MUTEX_HELD(&dtrace_lock));
10381 
10382 	dp->dtdo_refcnt++;
10383 	ASSERT(dp->dtdo_refcnt != 0);
10384 
10385 	/*
10386 	 * We need to check this DIF object for references to the variable
10387 	 * DIF_VAR_VTIMESTAMP.
10388 	 */
10389 	for (i = 0; i < dp->dtdo_varlen; i++) {
10390 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10391 
10392 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10393 			continue;
10394 
10395 		if (dtrace_vtime_references++ == 0)
10396 			dtrace_vtime_enable();
10397 	}
10398 }
10399 
10400 /*
10401  * This routine calculates the dynamic variable chunksize for a given DIF
10402  * object.  The calculation is not fool-proof, and can probably be tricked by
10403  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10404  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10405  * if a dynamic variable size exceeds the chunksize.
10406  */
10407 static void
10408 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10409 {
10410 	uint64_t sval = 0;
10411 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10412 	const dif_instr_t *text = dp->dtdo_buf;
10413 	uint_t pc, srd = 0;
10414 	uint_t ttop = 0;
10415 	size_t size, ksize;
10416 	uint_t id, i;
10417 
10418 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10419 		dif_instr_t instr = text[pc];
10420 		uint_t op = DIF_INSTR_OP(instr);
10421 		uint_t rd = DIF_INSTR_RD(instr);
10422 		uint_t r1 = DIF_INSTR_R1(instr);
10423 		uint_t nkeys = 0;
10424 		uchar_t scope = 0;
10425 
10426 		dtrace_key_t *key = tupregs;
10427 
10428 		switch (op) {
10429 		case DIF_OP_SETX:
10430 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10431 			srd = rd;
10432 			continue;
10433 
10434 		case DIF_OP_STTS:
10435 			key = &tupregs[DIF_DTR_NREGS];
10436 			key[0].dttk_size = 0;
10437 			key[1].dttk_size = 0;
10438 			nkeys = 2;
10439 			scope = DIFV_SCOPE_THREAD;
10440 			break;
10441 
10442 		case DIF_OP_STGAA:
10443 		case DIF_OP_STTAA:
10444 			nkeys = ttop;
10445 
10446 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10447 				key[nkeys++].dttk_size = 0;
10448 
10449 			key[nkeys++].dttk_size = 0;
10450 
10451 			if (op == DIF_OP_STTAA) {
10452 				scope = DIFV_SCOPE_THREAD;
10453 			} else {
10454 				scope = DIFV_SCOPE_GLOBAL;
10455 			}
10456 
10457 			break;
10458 
10459 		case DIF_OP_PUSHTR:
10460 			if (ttop == DIF_DTR_NREGS)
10461 				return;
10462 
10463 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10464 				/*
10465 				 * If the register for the size of the "pushtr"
10466 				 * is %r0 (or the value is 0) and the type is
10467 				 * a string, we'll use the system-wide default
10468 				 * string size.
10469 				 */
10470 				tupregs[ttop++].dttk_size =
10471 				    dtrace_strsize_default;
10472 			} else {
10473 				if (srd == 0)
10474 					return;
10475 
10476 				if (sval > LONG_MAX)
10477 					return;
10478 
10479 				tupregs[ttop++].dttk_size = sval;
10480 			}
10481 
10482 			break;
10483 
10484 		case DIF_OP_PUSHTV:
10485 			if (ttop == DIF_DTR_NREGS)
10486 				return;
10487 
10488 			tupregs[ttop++].dttk_size = 0;
10489 			break;
10490 
10491 		case DIF_OP_FLUSHTS:
10492 			ttop = 0;
10493 			break;
10494 
10495 		case DIF_OP_POPTS:
10496 			if (ttop != 0)
10497 				ttop--;
10498 			break;
10499 		}
10500 
10501 		sval = 0;
10502 		srd = 0;
10503 
10504 		if (nkeys == 0)
10505 			continue;
10506 
10507 		/*
10508 		 * We have a dynamic variable allocation; calculate its size.
10509 		 */
10510 		for (ksize = 0, i = 0; i < nkeys; i++)
10511 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10512 
10513 		size = sizeof (dtrace_dynvar_t);
10514 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10515 		size += ksize;
10516 
10517 		/*
10518 		 * Now we need to determine the size of the stored data.
10519 		 */
10520 		id = DIF_INSTR_VAR(instr);
10521 
10522 		for (i = 0; i < dp->dtdo_varlen; i++) {
10523 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10524 
10525 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10526 				size += v->dtdv_type.dtdt_size;
10527 				break;
10528 			}
10529 		}
10530 
10531 		if (i == dp->dtdo_varlen)
10532 			return;
10533 
10534 		/*
10535 		 * We have the size.  If this is larger than the chunk size
10536 		 * for our dynamic variable state, reset the chunk size.
10537 		 */
10538 		size = P2ROUNDUP(size, sizeof (uint64_t));
10539 
10540 		/*
10541 		 * Before setting the chunk size, check that we're not going
10542 		 * to set it to a negative value...
10543 		 */
10544 		if (size > LONG_MAX)
10545 			return;
10546 
10547 		/*
10548 		 * ...and make certain that we didn't badly overflow.
10549 		 */
10550 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10551 			return;
10552 
10553 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10554 			vstate->dtvs_dynvars.dtds_chunksize = size;
10555 	}
10556 }
10557 
10558 static void
10559 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10560 {
10561 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10562 	uint_t id;
10563 
10564 	ASSERT(MUTEX_HELD(&dtrace_lock));
10565 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10566 
10567 	for (i = 0; i < dp->dtdo_varlen; i++) {
10568 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10569 		dtrace_statvar_t *svar, ***svarp = NULL;
10570 		size_t dsize = 0;
10571 		uint8_t scope = v->dtdv_scope;
10572 		int *np = NULL;
10573 
10574 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10575 			continue;
10576 
10577 		id -= DIF_VAR_OTHER_UBASE;
10578 
10579 		switch (scope) {
10580 		case DIFV_SCOPE_THREAD:
10581 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10582 				dtrace_difv_t *tlocals;
10583 
10584 				if ((ntlocals = (otlocals << 1)) == 0)
10585 					ntlocals = 1;
10586 
10587 				osz = otlocals * sizeof (dtrace_difv_t);
10588 				nsz = ntlocals * sizeof (dtrace_difv_t);
10589 
10590 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10591 
10592 				if (osz != 0) {
10593 					bcopy(vstate->dtvs_tlocals,
10594 					    tlocals, osz);
10595 					kmem_free(vstate->dtvs_tlocals, osz);
10596 				}
10597 
10598 				vstate->dtvs_tlocals = tlocals;
10599 				vstate->dtvs_ntlocals = ntlocals;
10600 			}
10601 
10602 			vstate->dtvs_tlocals[id] = *v;
10603 			continue;
10604 
10605 		case DIFV_SCOPE_LOCAL:
10606 			np = &vstate->dtvs_nlocals;
10607 			svarp = &vstate->dtvs_locals;
10608 
10609 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10610 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10611 				    sizeof (uint64_t));
10612 			else
10613 				dsize = NCPU * sizeof (uint64_t);
10614 
10615 			break;
10616 
10617 		case DIFV_SCOPE_GLOBAL:
10618 			np = &vstate->dtvs_nglobals;
10619 			svarp = &vstate->dtvs_globals;
10620 
10621 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10622 				dsize = v->dtdv_type.dtdt_size +
10623 				    sizeof (uint64_t);
10624 
10625 			break;
10626 
10627 		default:
10628 			ASSERT(0);
10629 		}
10630 
10631 		while (id >= (oldsvars = *np)) {
10632 			dtrace_statvar_t **statics;
10633 			int newsvars, oldsize, newsize;
10634 
10635 			if ((newsvars = (oldsvars << 1)) == 0)
10636 				newsvars = 1;
10637 
10638 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10639 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10640 
10641 			statics = kmem_zalloc(newsize, KM_SLEEP);
10642 
10643 			if (oldsize != 0) {
10644 				bcopy(*svarp, statics, oldsize);
10645 				kmem_free(*svarp, oldsize);
10646 			}
10647 
10648 			*svarp = statics;
10649 			*np = newsvars;
10650 		}
10651 
10652 		if ((svar = (*svarp)[id]) == NULL) {
10653 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10654 			svar->dtsv_var = *v;
10655 
10656 			if ((svar->dtsv_size = dsize) != 0) {
10657 				svar->dtsv_data = (uint64_t)(uintptr_t)
10658 				    kmem_zalloc(dsize, KM_SLEEP);
10659 			}
10660 
10661 			(*svarp)[id] = svar;
10662 		}
10663 
10664 		svar->dtsv_refcnt++;
10665 	}
10666 
10667 	dtrace_difo_chunksize(dp, vstate);
10668 	dtrace_difo_hold(dp);
10669 }
10670 
10671 static dtrace_difo_t *
10672 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10673 {
10674 	dtrace_difo_t *new;
10675 	size_t sz;
10676 
10677 	ASSERT(dp->dtdo_buf != NULL);
10678 	ASSERT(dp->dtdo_refcnt != 0);
10679 
10680 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10681 
10682 	ASSERT(dp->dtdo_buf != NULL);
10683 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10684 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10685 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10686 	new->dtdo_len = dp->dtdo_len;
10687 
10688 	if (dp->dtdo_strtab != NULL) {
10689 		ASSERT(dp->dtdo_strlen != 0);
10690 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10691 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10692 		new->dtdo_strlen = dp->dtdo_strlen;
10693 	}
10694 
10695 	if (dp->dtdo_inttab != NULL) {
10696 		ASSERT(dp->dtdo_intlen != 0);
10697 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10698 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10699 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10700 		new->dtdo_intlen = dp->dtdo_intlen;
10701 	}
10702 
10703 	if (dp->dtdo_vartab != NULL) {
10704 		ASSERT(dp->dtdo_varlen != 0);
10705 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10706 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10707 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10708 		new->dtdo_varlen = dp->dtdo_varlen;
10709 	}
10710 
10711 	dtrace_difo_init(new, vstate);
10712 	return (new);
10713 }
10714 
10715 static void
10716 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10717 {
10718 	int i;
10719 
10720 	ASSERT(dp->dtdo_refcnt == 0);
10721 
10722 	for (i = 0; i < dp->dtdo_varlen; i++) {
10723 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10724 		dtrace_statvar_t *svar, **svarp = NULL;
10725 		uint_t id;
10726 		uint8_t scope = v->dtdv_scope;
10727 		int *np = NULL;
10728 
10729 		switch (scope) {
10730 		case DIFV_SCOPE_THREAD:
10731 			continue;
10732 
10733 		case DIFV_SCOPE_LOCAL:
10734 			np = &vstate->dtvs_nlocals;
10735 			svarp = vstate->dtvs_locals;
10736 			break;
10737 
10738 		case DIFV_SCOPE_GLOBAL:
10739 			np = &vstate->dtvs_nglobals;
10740 			svarp = vstate->dtvs_globals;
10741 			break;
10742 
10743 		default:
10744 			ASSERT(0);
10745 		}
10746 
10747 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10748 			continue;
10749 
10750 		id -= DIF_VAR_OTHER_UBASE;
10751 		ASSERT(id < *np);
10752 
10753 		svar = svarp[id];
10754 		ASSERT(svar != NULL);
10755 		ASSERT(svar->dtsv_refcnt > 0);
10756 
10757 		if (--svar->dtsv_refcnt > 0)
10758 			continue;
10759 
10760 		if (svar->dtsv_size != 0) {
10761 			ASSERT(svar->dtsv_data != 0);
10762 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10763 			    svar->dtsv_size);
10764 		}
10765 
10766 		kmem_free(svar, sizeof (dtrace_statvar_t));
10767 		svarp[id] = NULL;
10768 	}
10769 
10770 	if (dp->dtdo_buf != NULL)
10771 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10772 	if (dp->dtdo_inttab != NULL)
10773 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10774 	if (dp->dtdo_strtab != NULL)
10775 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10776 	if (dp->dtdo_vartab != NULL)
10777 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10778 
10779 	kmem_free(dp, sizeof (dtrace_difo_t));
10780 }
10781 
10782 static void
10783 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10784 {
10785 	int i;
10786 
10787 	ASSERT(MUTEX_HELD(&dtrace_lock));
10788 	ASSERT(dp->dtdo_refcnt != 0);
10789 
10790 	for (i = 0; i < dp->dtdo_varlen; i++) {
10791 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10792 
10793 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10794 			continue;
10795 
10796 		ASSERT(dtrace_vtime_references > 0);
10797 		if (--dtrace_vtime_references == 0)
10798 			dtrace_vtime_disable();
10799 	}
10800 
10801 	if (--dp->dtdo_refcnt == 0)
10802 		dtrace_difo_destroy(dp, vstate);
10803 }
10804 
10805 /*
10806  * DTrace Format Functions
10807  */
10808 static uint16_t
10809 dtrace_format_add(dtrace_state_t *state, char *str)
10810 {
10811 	char *fmt, **new;
10812 	uint16_t ndx, len = strlen(str) + 1;
10813 
10814 	fmt = kmem_zalloc(len, KM_SLEEP);
10815 	bcopy(str, fmt, len);
10816 
10817 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10818 		if (state->dts_formats[ndx] == NULL) {
10819 			state->dts_formats[ndx] = fmt;
10820 			return (ndx + 1);
10821 		}
10822 	}
10823 
10824 	if (state->dts_nformats == USHRT_MAX) {
10825 		/*
10826 		 * This is only likely if a denial-of-service attack is being
10827 		 * attempted.  As such, it's okay to fail silently here.
10828 		 */
10829 		kmem_free(fmt, len);
10830 		return (0);
10831 	}
10832 
10833 	/*
10834 	 * For simplicity, we always resize the formats array to be exactly the
10835 	 * number of formats.
10836 	 */
10837 	ndx = state->dts_nformats++;
10838 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10839 
10840 	if (state->dts_formats != NULL) {
10841 		ASSERT(ndx != 0);
10842 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10843 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10844 	}
10845 
10846 	state->dts_formats = new;
10847 	state->dts_formats[ndx] = fmt;
10848 
10849 	return (ndx + 1);
10850 }
10851 
10852 static void
10853 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10854 {
10855 	char *fmt;
10856 
10857 	ASSERT(state->dts_formats != NULL);
10858 	ASSERT(format <= state->dts_nformats);
10859 	ASSERT(state->dts_formats[format - 1] != NULL);
10860 
10861 	fmt = state->dts_formats[format - 1];
10862 	kmem_free(fmt, strlen(fmt) + 1);
10863 	state->dts_formats[format - 1] = NULL;
10864 }
10865 
10866 static void
10867 dtrace_format_destroy(dtrace_state_t *state)
10868 {
10869 	int i;
10870 
10871 	if (state->dts_nformats == 0) {
10872 		ASSERT(state->dts_formats == NULL);
10873 		return;
10874 	}
10875 
10876 	ASSERT(state->dts_formats != NULL);
10877 
10878 	for (i = 0; i < state->dts_nformats; i++) {
10879 		char *fmt = state->dts_formats[i];
10880 
10881 		if (fmt == NULL)
10882 			continue;
10883 
10884 		kmem_free(fmt, strlen(fmt) + 1);
10885 	}
10886 
10887 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10888 	state->dts_nformats = 0;
10889 	state->dts_formats = NULL;
10890 }
10891 
10892 /*
10893  * DTrace Predicate Functions
10894  */
10895 static dtrace_predicate_t *
10896 dtrace_predicate_create(dtrace_difo_t *dp)
10897 {
10898 	dtrace_predicate_t *pred;
10899 
10900 	ASSERT(MUTEX_HELD(&dtrace_lock));
10901 	ASSERT(dp->dtdo_refcnt != 0);
10902 
10903 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10904 	pred->dtp_difo = dp;
10905 	pred->dtp_refcnt = 1;
10906 
10907 	if (!dtrace_difo_cacheable(dp))
10908 		return (pred);
10909 
10910 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10911 		/*
10912 		 * This is only theoretically possible -- we have had 2^32
10913 		 * cacheable predicates on this machine.  We cannot allow any
10914 		 * more predicates to become cacheable:  as unlikely as it is,
10915 		 * there may be a thread caching a (now stale) predicate cache
10916 		 * ID. (N.B.: the temptation is being successfully resisted to
10917 		 * have this cmn_err() "Holy shit -- we executed this code!")
10918 		 */
10919 		return (pred);
10920 	}
10921 
10922 	pred->dtp_cacheid = dtrace_predcache_id++;
10923 
10924 	return (pred);
10925 }
10926 
10927 static void
10928 dtrace_predicate_hold(dtrace_predicate_t *pred)
10929 {
10930 	ASSERT(MUTEX_HELD(&dtrace_lock));
10931 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10932 	ASSERT(pred->dtp_refcnt > 0);
10933 
10934 	pred->dtp_refcnt++;
10935 }
10936 
10937 static void
10938 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10939 {
10940 	dtrace_difo_t *dp = pred->dtp_difo;
10941 
10942 	ASSERT(MUTEX_HELD(&dtrace_lock));
10943 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10944 	ASSERT(pred->dtp_refcnt > 0);
10945 
10946 	if (--pred->dtp_refcnt == 0) {
10947 		dtrace_difo_release(pred->dtp_difo, vstate);
10948 		kmem_free(pred, sizeof (dtrace_predicate_t));
10949 	}
10950 }
10951 
10952 /*
10953  * DTrace Action Description Functions
10954  */
10955 static dtrace_actdesc_t *
10956 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10957     uint64_t uarg, uint64_t arg)
10958 {
10959 	dtrace_actdesc_t *act;
10960 
10961 #ifdef illumos
10962 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10963 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10964 #endif
10965 
10966 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10967 	act->dtad_kind = kind;
10968 	act->dtad_ntuple = ntuple;
10969 	act->dtad_uarg = uarg;
10970 	act->dtad_arg = arg;
10971 	act->dtad_refcnt = 1;
10972 
10973 	return (act);
10974 }
10975 
10976 static void
10977 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10978 {
10979 	ASSERT(act->dtad_refcnt >= 1);
10980 	act->dtad_refcnt++;
10981 }
10982 
10983 static void
10984 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10985 {
10986 	dtrace_actkind_t kind = act->dtad_kind;
10987 	dtrace_difo_t *dp;
10988 
10989 	ASSERT(act->dtad_refcnt >= 1);
10990 
10991 	if (--act->dtad_refcnt != 0)
10992 		return;
10993 
10994 	if ((dp = act->dtad_difo) != NULL)
10995 		dtrace_difo_release(dp, vstate);
10996 
10997 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10998 		char *str = (char *)(uintptr_t)act->dtad_arg;
10999 
11000 #ifdef illumos
11001 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11002 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11003 #endif
11004 
11005 		if (str != NULL)
11006 			kmem_free(str, strlen(str) + 1);
11007 	}
11008 
11009 	kmem_free(act, sizeof (dtrace_actdesc_t));
11010 }
11011 
11012 /*
11013  * DTrace ECB Functions
11014  */
11015 static dtrace_ecb_t *
11016 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11017 {
11018 	dtrace_ecb_t *ecb;
11019 	dtrace_epid_t epid;
11020 
11021 	ASSERT(MUTEX_HELD(&dtrace_lock));
11022 
11023 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11024 	ecb->dte_predicate = NULL;
11025 	ecb->dte_probe = probe;
11026 
11027 	/*
11028 	 * The default size is the size of the default action: recording
11029 	 * the header.
11030 	 */
11031 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11032 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11033 
11034 	epid = state->dts_epid++;
11035 
11036 	if (epid - 1 >= state->dts_necbs) {
11037 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11038 		int necbs = state->dts_necbs << 1;
11039 
11040 		ASSERT(epid == state->dts_necbs + 1);
11041 
11042 		if (necbs == 0) {
11043 			ASSERT(oecbs == NULL);
11044 			necbs = 1;
11045 		}
11046 
11047 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11048 
11049 		if (oecbs != NULL)
11050 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11051 
11052 		dtrace_membar_producer();
11053 		state->dts_ecbs = ecbs;
11054 
11055 		if (oecbs != NULL) {
11056 			/*
11057 			 * If this state is active, we must dtrace_sync()
11058 			 * before we can free the old dts_ecbs array:  we're
11059 			 * coming in hot, and there may be active ring
11060 			 * buffer processing (which indexes into the dts_ecbs
11061 			 * array) on another CPU.
11062 			 */
11063 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11064 				dtrace_sync();
11065 
11066 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11067 		}
11068 
11069 		dtrace_membar_producer();
11070 		state->dts_necbs = necbs;
11071 	}
11072 
11073 	ecb->dte_state = state;
11074 
11075 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11076 	dtrace_membar_producer();
11077 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11078 
11079 	return (ecb);
11080 }
11081 
11082 static void
11083 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11084 {
11085 	dtrace_probe_t *probe = ecb->dte_probe;
11086 
11087 	ASSERT(MUTEX_HELD(&cpu_lock));
11088 	ASSERT(MUTEX_HELD(&dtrace_lock));
11089 	ASSERT(ecb->dte_next == NULL);
11090 
11091 	if (probe == NULL) {
11092 		/*
11093 		 * This is the NULL probe -- there's nothing to do.
11094 		 */
11095 		return;
11096 	}
11097 
11098 	if (probe->dtpr_ecb == NULL) {
11099 		dtrace_provider_t *prov = probe->dtpr_provider;
11100 
11101 		/*
11102 		 * We're the first ECB on this probe.
11103 		 */
11104 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11105 
11106 		if (ecb->dte_predicate != NULL)
11107 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11108 
11109 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11110 		    probe->dtpr_id, probe->dtpr_arg);
11111 	} else {
11112 		/*
11113 		 * This probe is already active.  Swing the last pointer to
11114 		 * point to the new ECB, and issue a dtrace_sync() to assure
11115 		 * that all CPUs have seen the change.
11116 		 */
11117 		ASSERT(probe->dtpr_ecb_last != NULL);
11118 		probe->dtpr_ecb_last->dte_next = ecb;
11119 		probe->dtpr_ecb_last = ecb;
11120 		probe->dtpr_predcache = 0;
11121 
11122 		dtrace_sync();
11123 	}
11124 }
11125 
11126 static int
11127 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11128 {
11129 	dtrace_action_t *act;
11130 	uint32_t curneeded = UINT32_MAX;
11131 	uint32_t aggbase = UINT32_MAX;
11132 
11133 	/*
11134 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11135 	 * we always record it first.)
11136 	 */
11137 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11138 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11139 
11140 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11141 		dtrace_recdesc_t *rec = &act->dta_rec;
11142 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11143 
11144 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11145 		    rec->dtrd_alignment);
11146 
11147 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11148 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11149 
11150 			ASSERT(rec->dtrd_size != 0);
11151 			ASSERT(agg->dtag_first != NULL);
11152 			ASSERT(act->dta_prev->dta_intuple);
11153 			ASSERT(aggbase != UINT32_MAX);
11154 			ASSERT(curneeded != UINT32_MAX);
11155 
11156 			agg->dtag_base = aggbase;
11157 
11158 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11159 			rec->dtrd_offset = curneeded;
11160 			if (curneeded + rec->dtrd_size < curneeded)
11161 				return (EINVAL);
11162 			curneeded += rec->dtrd_size;
11163 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11164 
11165 			aggbase = UINT32_MAX;
11166 			curneeded = UINT32_MAX;
11167 		} else if (act->dta_intuple) {
11168 			if (curneeded == UINT32_MAX) {
11169 				/*
11170 				 * This is the first record in a tuple.  Align
11171 				 * curneeded to be at offset 4 in an 8-byte
11172 				 * aligned block.
11173 				 */
11174 				ASSERT(act->dta_prev == NULL ||
11175 				    !act->dta_prev->dta_intuple);
11176 				ASSERT3U(aggbase, ==, UINT32_MAX);
11177 				curneeded = P2PHASEUP(ecb->dte_size,
11178 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11179 
11180 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11181 				ASSERT(IS_P2ALIGNED(aggbase,
11182 				    sizeof (uint64_t)));
11183 			}
11184 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11185 			rec->dtrd_offset = curneeded;
11186 			if (curneeded + rec->dtrd_size < curneeded)
11187 				return (EINVAL);
11188 			curneeded += rec->dtrd_size;
11189 		} else {
11190 			/* tuples must be followed by an aggregation */
11191 			ASSERT(act->dta_prev == NULL ||
11192 			    !act->dta_prev->dta_intuple);
11193 
11194 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11195 			    rec->dtrd_alignment);
11196 			rec->dtrd_offset = ecb->dte_size;
11197 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11198 				return (EINVAL);
11199 			ecb->dte_size += rec->dtrd_size;
11200 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11201 		}
11202 	}
11203 
11204 	if ((act = ecb->dte_action) != NULL &&
11205 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11206 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11207 		/*
11208 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11209 		 * actions store no data; set the size to 0.
11210 		 */
11211 		ecb->dte_size = 0;
11212 	}
11213 
11214 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11215 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11216 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11217 	    ecb->dte_needed);
11218 	return (0);
11219 }
11220 
11221 static dtrace_action_t *
11222 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11223 {
11224 	dtrace_aggregation_t *agg;
11225 	size_t size = sizeof (uint64_t);
11226 	int ntuple = desc->dtad_ntuple;
11227 	dtrace_action_t *act;
11228 	dtrace_recdesc_t *frec;
11229 	dtrace_aggid_t aggid;
11230 	dtrace_state_t *state = ecb->dte_state;
11231 
11232 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11233 	agg->dtag_ecb = ecb;
11234 
11235 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11236 
11237 	switch (desc->dtad_kind) {
11238 	case DTRACEAGG_MIN:
11239 		agg->dtag_initial = INT64_MAX;
11240 		agg->dtag_aggregate = dtrace_aggregate_min;
11241 		break;
11242 
11243 	case DTRACEAGG_MAX:
11244 		agg->dtag_initial = INT64_MIN;
11245 		agg->dtag_aggregate = dtrace_aggregate_max;
11246 		break;
11247 
11248 	case DTRACEAGG_COUNT:
11249 		agg->dtag_aggregate = dtrace_aggregate_count;
11250 		break;
11251 
11252 	case DTRACEAGG_QUANTIZE:
11253 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11254 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11255 		    sizeof (uint64_t);
11256 		break;
11257 
11258 	case DTRACEAGG_LQUANTIZE: {
11259 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11260 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11261 
11262 		agg->dtag_initial = desc->dtad_arg;
11263 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11264 
11265 		if (step == 0 || levels == 0)
11266 			goto err;
11267 
11268 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11269 		break;
11270 	}
11271 
11272 	case DTRACEAGG_LLQUANTIZE: {
11273 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11274 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11275 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11276 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11277 		int64_t v;
11278 
11279 		agg->dtag_initial = desc->dtad_arg;
11280 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11281 
11282 		if (factor < 2 || low >= high || nsteps < factor)
11283 			goto err;
11284 
11285 		/*
11286 		 * Now check that the number of steps evenly divides a power
11287 		 * of the factor.  (This assures both integer bucket size and
11288 		 * linearity within each magnitude.)
11289 		 */
11290 		for (v = factor; v < nsteps; v *= factor)
11291 			continue;
11292 
11293 		if ((v % nsteps) || (nsteps % factor))
11294 			goto err;
11295 
11296 		size = (dtrace_aggregate_llquantize_bucket(factor,
11297 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11298 		break;
11299 	}
11300 
11301 	case DTRACEAGG_AVG:
11302 		agg->dtag_aggregate = dtrace_aggregate_avg;
11303 		size = sizeof (uint64_t) * 2;
11304 		break;
11305 
11306 	case DTRACEAGG_STDDEV:
11307 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11308 		size = sizeof (uint64_t) * 4;
11309 		break;
11310 
11311 	case DTRACEAGG_SUM:
11312 		agg->dtag_aggregate = dtrace_aggregate_sum;
11313 		break;
11314 
11315 	default:
11316 		goto err;
11317 	}
11318 
11319 	agg->dtag_action.dta_rec.dtrd_size = size;
11320 
11321 	if (ntuple == 0)
11322 		goto err;
11323 
11324 	/*
11325 	 * We must make sure that we have enough actions for the n-tuple.
11326 	 */
11327 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11328 		if (DTRACEACT_ISAGG(act->dta_kind))
11329 			break;
11330 
11331 		if (--ntuple == 0) {
11332 			/*
11333 			 * This is the action with which our n-tuple begins.
11334 			 */
11335 			agg->dtag_first = act;
11336 			goto success;
11337 		}
11338 	}
11339 
11340 	/*
11341 	 * This n-tuple is short by ntuple elements.  Return failure.
11342 	 */
11343 	ASSERT(ntuple != 0);
11344 err:
11345 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11346 	return (NULL);
11347 
11348 success:
11349 	/*
11350 	 * If the last action in the tuple has a size of zero, it's actually
11351 	 * an expression argument for the aggregating action.
11352 	 */
11353 	ASSERT(ecb->dte_action_last != NULL);
11354 	act = ecb->dte_action_last;
11355 
11356 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11357 		ASSERT(act->dta_difo != NULL);
11358 
11359 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11360 			agg->dtag_hasarg = 1;
11361 	}
11362 
11363 	/*
11364 	 * We need to allocate an id for this aggregation.
11365 	 */
11366 #ifdef illumos
11367 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11368 	    VM_BESTFIT | VM_SLEEP);
11369 #else
11370 	aggid = alloc_unr(state->dts_aggid_arena);
11371 #endif
11372 
11373 	if (aggid - 1 >= state->dts_naggregations) {
11374 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11375 		dtrace_aggregation_t **aggs;
11376 		int naggs = state->dts_naggregations << 1;
11377 		int onaggs = state->dts_naggregations;
11378 
11379 		ASSERT(aggid == state->dts_naggregations + 1);
11380 
11381 		if (naggs == 0) {
11382 			ASSERT(oaggs == NULL);
11383 			naggs = 1;
11384 		}
11385 
11386 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11387 
11388 		if (oaggs != NULL) {
11389 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11390 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11391 		}
11392 
11393 		state->dts_aggregations = aggs;
11394 		state->dts_naggregations = naggs;
11395 	}
11396 
11397 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11398 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11399 
11400 	frec = &agg->dtag_first->dta_rec;
11401 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11402 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11403 
11404 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11405 		ASSERT(!act->dta_intuple);
11406 		act->dta_intuple = 1;
11407 	}
11408 
11409 	return (&agg->dtag_action);
11410 }
11411 
11412 static void
11413 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11414 {
11415 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11416 	dtrace_state_t *state = ecb->dte_state;
11417 	dtrace_aggid_t aggid = agg->dtag_id;
11418 
11419 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11420 #ifdef illumos
11421 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11422 #else
11423 	free_unr(state->dts_aggid_arena, aggid);
11424 #endif
11425 
11426 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11427 	state->dts_aggregations[aggid - 1] = NULL;
11428 
11429 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11430 }
11431 
11432 static int
11433 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11434 {
11435 	dtrace_action_t *action, *last;
11436 	dtrace_difo_t *dp = desc->dtad_difo;
11437 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11438 	uint16_t format = 0;
11439 	dtrace_recdesc_t *rec;
11440 	dtrace_state_t *state = ecb->dte_state;
11441 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11442 	uint64_t arg = desc->dtad_arg;
11443 
11444 	ASSERT(MUTEX_HELD(&dtrace_lock));
11445 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11446 
11447 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11448 		/*
11449 		 * If this is an aggregating action, there must be neither
11450 		 * a speculate nor a commit on the action chain.
11451 		 */
11452 		dtrace_action_t *act;
11453 
11454 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11455 			if (act->dta_kind == DTRACEACT_COMMIT)
11456 				return (EINVAL);
11457 
11458 			if (act->dta_kind == DTRACEACT_SPECULATE)
11459 				return (EINVAL);
11460 		}
11461 
11462 		action = dtrace_ecb_aggregation_create(ecb, desc);
11463 
11464 		if (action == NULL)
11465 			return (EINVAL);
11466 	} else {
11467 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11468 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11469 		    dp != NULL && dp->dtdo_destructive)) {
11470 			state->dts_destructive = 1;
11471 		}
11472 
11473 		switch (desc->dtad_kind) {
11474 		case DTRACEACT_PRINTF:
11475 		case DTRACEACT_PRINTA:
11476 		case DTRACEACT_SYSTEM:
11477 		case DTRACEACT_FREOPEN:
11478 		case DTRACEACT_DIFEXPR:
11479 			/*
11480 			 * We know that our arg is a string -- turn it into a
11481 			 * format.
11482 			 */
11483 			if (arg == 0) {
11484 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11485 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11486 				format = 0;
11487 			} else {
11488 				ASSERT(arg != 0);
11489 #ifdef illumos
11490 				ASSERT(arg > KERNELBASE);
11491 #endif
11492 				format = dtrace_format_add(state,
11493 				    (char *)(uintptr_t)arg);
11494 			}
11495 
11496 			/*FALLTHROUGH*/
11497 		case DTRACEACT_LIBACT:
11498 		case DTRACEACT_TRACEMEM:
11499 		case DTRACEACT_TRACEMEM_DYNSIZE:
11500 			if (dp == NULL)
11501 				return (EINVAL);
11502 
11503 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11504 				break;
11505 
11506 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11507 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11508 					return (EINVAL);
11509 
11510 				size = opt[DTRACEOPT_STRSIZE];
11511 			}
11512 
11513 			break;
11514 
11515 		case DTRACEACT_STACK:
11516 			if ((nframes = arg) == 0) {
11517 				nframes = opt[DTRACEOPT_STACKFRAMES];
11518 				ASSERT(nframes > 0);
11519 				arg = nframes;
11520 			}
11521 
11522 			size = nframes * sizeof (pc_t);
11523 			break;
11524 
11525 		case DTRACEACT_JSTACK:
11526 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11527 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11528 
11529 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11530 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11531 
11532 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11533 
11534 			/*FALLTHROUGH*/
11535 		case DTRACEACT_USTACK:
11536 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11537 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11538 				strsize = DTRACE_USTACK_STRSIZE(arg);
11539 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11540 				ASSERT(nframes > 0);
11541 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11542 			}
11543 
11544 			/*
11545 			 * Save a slot for the pid.
11546 			 */
11547 			size = (nframes + 1) * sizeof (uint64_t);
11548 			size += DTRACE_USTACK_STRSIZE(arg);
11549 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11550 
11551 			break;
11552 
11553 		case DTRACEACT_SYM:
11554 		case DTRACEACT_MOD:
11555 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11556 			    sizeof (uint64_t)) ||
11557 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11558 				return (EINVAL);
11559 			break;
11560 
11561 		case DTRACEACT_USYM:
11562 		case DTRACEACT_UMOD:
11563 		case DTRACEACT_UADDR:
11564 			if (dp == NULL ||
11565 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11566 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11567 				return (EINVAL);
11568 
11569 			/*
11570 			 * We have a slot for the pid, plus a slot for the
11571 			 * argument.  To keep things simple (aligned with
11572 			 * bitness-neutral sizing), we store each as a 64-bit
11573 			 * quantity.
11574 			 */
11575 			size = 2 * sizeof (uint64_t);
11576 			break;
11577 
11578 		case DTRACEACT_STOP:
11579 		case DTRACEACT_BREAKPOINT:
11580 		case DTRACEACT_PANIC:
11581 			break;
11582 
11583 		case DTRACEACT_CHILL:
11584 		case DTRACEACT_DISCARD:
11585 		case DTRACEACT_RAISE:
11586 			if (dp == NULL)
11587 				return (EINVAL);
11588 			break;
11589 
11590 		case DTRACEACT_EXIT:
11591 			if (dp == NULL ||
11592 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11593 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11594 				return (EINVAL);
11595 			break;
11596 
11597 		case DTRACEACT_SPECULATE:
11598 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11599 				return (EINVAL);
11600 
11601 			if (dp == NULL)
11602 				return (EINVAL);
11603 
11604 			state->dts_speculates = 1;
11605 			break;
11606 
11607 		case DTRACEACT_PRINTM:
11608 		    	size = dp->dtdo_rtype.dtdt_size;
11609 			break;
11610 
11611 		case DTRACEACT_COMMIT: {
11612 			dtrace_action_t *act = ecb->dte_action;
11613 
11614 			for (; act != NULL; act = act->dta_next) {
11615 				if (act->dta_kind == DTRACEACT_COMMIT)
11616 					return (EINVAL);
11617 			}
11618 
11619 			if (dp == NULL)
11620 				return (EINVAL);
11621 			break;
11622 		}
11623 
11624 		default:
11625 			return (EINVAL);
11626 		}
11627 
11628 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11629 			/*
11630 			 * If this is a data-storing action or a speculate,
11631 			 * we must be sure that there isn't a commit on the
11632 			 * action chain.
11633 			 */
11634 			dtrace_action_t *act = ecb->dte_action;
11635 
11636 			for (; act != NULL; act = act->dta_next) {
11637 				if (act->dta_kind == DTRACEACT_COMMIT)
11638 					return (EINVAL);
11639 			}
11640 		}
11641 
11642 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11643 		action->dta_rec.dtrd_size = size;
11644 	}
11645 
11646 	action->dta_refcnt = 1;
11647 	rec = &action->dta_rec;
11648 	size = rec->dtrd_size;
11649 
11650 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11651 		if (!(size & mask)) {
11652 			align = mask + 1;
11653 			break;
11654 		}
11655 	}
11656 
11657 	action->dta_kind = desc->dtad_kind;
11658 
11659 	if ((action->dta_difo = dp) != NULL)
11660 		dtrace_difo_hold(dp);
11661 
11662 	rec->dtrd_action = action->dta_kind;
11663 	rec->dtrd_arg = arg;
11664 	rec->dtrd_uarg = desc->dtad_uarg;
11665 	rec->dtrd_alignment = (uint16_t)align;
11666 	rec->dtrd_format = format;
11667 
11668 	if ((last = ecb->dte_action_last) != NULL) {
11669 		ASSERT(ecb->dte_action != NULL);
11670 		action->dta_prev = last;
11671 		last->dta_next = action;
11672 	} else {
11673 		ASSERT(ecb->dte_action == NULL);
11674 		ecb->dte_action = action;
11675 	}
11676 
11677 	ecb->dte_action_last = action;
11678 
11679 	return (0);
11680 }
11681 
11682 static void
11683 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11684 {
11685 	dtrace_action_t *act = ecb->dte_action, *next;
11686 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11687 	dtrace_difo_t *dp;
11688 	uint16_t format;
11689 
11690 	if (act != NULL && act->dta_refcnt > 1) {
11691 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11692 		act->dta_refcnt--;
11693 	} else {
11694 		for (; act != NULL; act = next) {
11695 			next = act->dta_next;
11696 			ASSERT(next != NULL || act == ecb->dte_action_last);
11697 			ASSERT(act->dta_refcnt == 1);
11698 
11699 			if ((format = act->dta_rec.dtrd_format) != 0)
11700 				dtrace_format_remove(ecb->dte_state, format);
11701 
11702 			if ((dp = act->dta_difo) != NULL)
11703 				dtrace_difo_release(dp, vstate);
11704 
11705 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11706 				dtrace_ecb_aggregation_destroy(ecb, act);
11707 			} else {
11708 				kmem_free(act, sizeof (dtrace_action_t));
11709 			}
11710 		}
11711 	}
11712 
11713 	ecb->dte_action = NULL;
11714 	ecb->dte_action_last = NULL;
11715 	ecb->dte_size = 0;
11716 }
11717 
11718 static void
11719 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11720 {
11721 	/*
11722 	 * We disable the ECB by removing it from its probe.
11723 	 */
11724 	dtrace_ecb_t *pecb, *prev = NULL;
11725 	dtrace_probe_t *probe = ecb->dte_probe;
11726 
11727 	ASSERT(MUTEX_HELD(&dtrace_lock));
11728 
11729 	if (probe == NULL) {
11730 		/*
11731 		 * This is the NULL probe; there is nothing to disable.
11732 		 */
11733 		return;
11734 	}
11735 
11736 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11737 		if (pecb == ecb)
11738 			break;
11739 		prev = pecb;
11740 	}
11741 
11742 	ASSERT(pecb != NULL);
11743 
11744 	if (prev == NULL) {
11745 		probe->dtpr_ecb = ecb->dte_next;
11746 	} else {
11747 		prev->dte_next = ecb->dte_next;
11748 	}
11749 
11750 	if (ecb == probe->dtpr_ecb_last) {
11751 		ASSERT(ecb->dte_next == NULL);
11752 		probe->dtpr_ecb_last = prev;
11753 	}
11754 
11755 	/*
11756 	 * The ECB has been disconnected from the probe; now sync to assure
11757 	 * that all CPUs have seen the change before returning.
11758 	 */
11759 	dtrace_sync();
11760 
11761 	if (probe->dtpr_ecb == NULL) {
11762 		/*
11763 		 * That was the last ECB on the probe; clear the predicate
11764 		 * cache ID for the probe, disable it and sync one more time
11765 		 * to assure that we'll never hit it again.
11766 		 */
11767 		dtrace_provider_t *prov = probe->dtpr_provider;
11768 
11769 		ASSERT(ecb->dte_next == NULL);
11770 		ASSERT(probe->dtpr_ecb_last == NULL);
11771 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11772 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11773 		    probe->dtpr_id, probe->dtpr_arg);
11774 		dtrace_sync();
11775 	} else {
11776 		/*
11777 		 * There is at least one ECB remaining on the probe.  If there
11778 		 * is _exactly_ one, set the probe's predicate cache ID to be
11779 		 * the predicate cache ID of the remaining ECB.
11780 		 */
11781 		ASSERT(probe->dtpr_ecb_last != NULL);
11782 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11783 
11784 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11785 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11786 
11787 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11788 
11789 			if (p != NULL)
11790 				probe->dtpr_predcache = p->dtp_cacheid;
11791 		}
11792 
11793 		ecb->dte_next = NULL;
11794 	}
11795 }
11796 
11797 static void
11798 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11799 {
11800 	dtrace_state_t *state = ecb->dte_state;
11801 	dtrace_vstate_t *vstate = &state->dts_vstate;
11802 	dtrace_predicate_t *pred;
11803 	dtrace_epid_t epid = ecb->dte_epid;
11804 
11805 	ASSERT(MUTEX_HELD(&dtrace_lock));
11806 	ASSERT(ecb->dte_next == NULL);
11807 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11808 
11809 	if ((pred = ecb->dte_predicate) != NULL)
11810 		dtrace_predicate_release(pred, vstate);
11811 
11812 	dtrace_ecb_action_remove(ecb);
11813 
11814 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11815 	state->dts_ecbs[epid - 1] = NULL;
11816 
11817 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11818 }
11819 
11820 static dtrace_ecb_t *
11821 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11822     dtrace_enabling_t *enab)
11823 {
11824 	dtrace_ecb_t *ecb;
11825 	dtrace_predicate_t *pred;
11826 	dtrace_actdesc_t *act;
11827 	dtrace_provider_t *prov;
11828 	dtrace_ecbdesc_t *desc = enab->dten_current;
11829 
11830 	ASSERT(MUTEX_HELD(&dtrace_lock));
11831 	ASSERT(state != NULL);
11832 
11833 	ecb = dtrace_ecb_add(state, probe);
11834 	ecb->dte_uarg = desc->dted_uarg;
11835 
11836 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11837 		dtrace_predicate_hold(pred);
11838 		ecb->dte_predicate = pred;
11839 	}
11840 
11841 	if (probe != NULL) {
11842 		/*
11843 		 * If the provider shows more leg than the consumer is old
11844 		 * enough to see, we need to enable the appropriate implicit
11845 		 * predicate bits to prevent the ecb from activating at
11846 		 * revealing times.
11847 		 *
11848 		 * Providers specifying DTRACE_PRIV_USER at register time
11849 		 * are stating that they need the /proc-style privilege
11850 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11851 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11852 		 */
11853 		prov = probe->dtpr_provider;
11854 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11855 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11856 			ecb->dte_cond |= DTRACE_COND_OWNER;
11857 
11858 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11859 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11860 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11861 
11862 		/*
11863 		 * If the provider shows us kernel innards and the user
11864 		 * is lacking sufficient privilege, enable the
11865 		 * DTRACE_COND_USERMODE implicit predicate.
11866 		 */
11867 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11868 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11869 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11870 	}
11871 
11872 	if (dtrace_ecb_create_cache != NULL) {
11873 		/*
11874 		 * If we have a cached ecb, we'll use its action list instead
11875 		 * of creating our own (saving both time and space).
11876 		 */
11877 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11878 		dtrace_action_t *act = cached->dte_action;
11879 
11880 		if (act != NULL) {
11881 			ASSERT(act->dta_refcnt > 0);
11882 			act->dta_refcnt++;
11883 			ecb->dte_action = act;
11884 			ecb->dte_action_last = cached->dte_action_last;
11885 			ecb->dte_needed = cached->dte_needed;
11886 			ecb->dte_size = cached->dte_size;
11887 			ecb->dte_alignment = cached->dte_alignment;
11888 		}
11889 
11890 		return (ecb);
11891 	}
11892 
11893 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11894 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11895 			dtrace_ecb_destroy(ecb);
11896 			return (NULL);
11897 		}
11898 	}
11899 
11900 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11901 		dtrace_ecb_destroy(ecb);
11902 		return (NULL);
11903 	}
11904 
11905 	return (dtrace_ecb_create_cache = ecb);
11906 }
11907 
11908 static int
11909 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11910 {
11911 	dtrace_ecb_t *ecb;
11912 	dtrace_enabling_t *enab = arg;
11913 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11914 
11915 	ASSERT(state != NULL);
11916 
11917 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11918 		/*
11919 		 * This probe was created in a generation for which this
11920 		 * enabling has previously created ECBs; we don't want to
11921 		 * enable it again, so just kick out.
11922 		 */
11923 		return (DTRACE_MATCH_NEXT);
11924 	}
11925 
11926 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11927 		return (DTRACE_MATCH_DONE);
11928 
11929 	dtrace_ecb_enable(ecb);
11930 	return (DTRACE_MATCH_NEXT);
11931 }
11932 
11933 static dtrace_ecb_t *
11934 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11935 {
11936 	dtrace_ecb_t *ecb;
11937 
11938 	ASSERT(MUTEX_HELD(&dtrace_lock));
11939 
11940 	if (id == 0 || id > state->dts_necbs)
11941 		return (NULL);
11942 
11943 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11944 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11945 
11946 	return (state->dts_ecbs[id - 1]);
11947 }
11948 
11949 static dtrace_aggregation_t *
11950 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11951 {
11952 	dtrace_aggregation_t *agg;
11953 
11954 	ASSERT(MUTEX_HELD(&dtrace_lock));
11955 
11956 	if (id == 0 || id > state->dts_naggregations)
11957 		return (NULL);
11958 
11959 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11960 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11961 	    agg->dtag_id == id);
11962 
11963 	return (state->dts_aggregations[id - 1]);
11964 }
11965 
11966 /*
11967  * DTrace Buffer Functions
11968  *
11969  * The following functions manipulate DTrace buffers.  Most of these functions
11970  * are called in the context of establishing or processing consumer state;
11971  * exceptions are explicitly noted.
11972  */
11973 
11974 /*
11975  * Note:  called from cross call context.  This function switches the two
11976  * buffers on a given CPU.  The atomicity of this operation is assured by
11977  * disabling interrupts while the actual switch takes place; the disabling of
11978  * interrupts serializes the execution with any execution of dtrace_probe() on
11979  * the same CPU.
11980  */
11981 static void
11982 dtrace_buffer_switch(dtrace_buffer_t *buf)
11983 {
11984 	caddr_t tomax = buf->dtb_tomax;
11985 	caddr_t xamot = buf->dtb_xamot;
11986 	dtrace_icookie_t cookie;
11987 	hrtime_t now;
11988 
11989 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11990 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11991 
11992 	cookie = dtrace_interrupt_disable();
11993 	now = dtrace_gethrtime();
11994 	buf->dtb_tomax = xamot;
11995 	buf->dtb_xamot = tomax;
11996 	buf->dtb_xamot_drops = buf->dtb_drops;
11997 	buf->dtb_xamot_offset = buf->dtb_offset;
11998 	buf->dtb_xamot_errors = buf->dtb_errors;
11999 	buf->dtb_xamot_flags = buf->dtb_flags;
12000 	buf->dtb_offset = 0;
12001 	buf->dtb_drops = 0;
12002 	buf->dtb_errors = 0;
12003 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12004 	buf->dtb_interval = now - buf->dtb_switched;
12005 	buf->dtb_switched = now;
12006 	dtrace_interrupt_enable(cookie);
12007 }
12008 
12009 /*
12010  * Note:  called from cross call context.  This function activates a buffer
12011  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12012  * is guaranteed by the disabling of interrupts.
12013  */
12014 static void
12015 dtrace_buffer_activate(dtrace_state_t *state)
12016 {
12017 	dtrace_buffer_t *buf;
12018 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12019 
12020 	buf = &state->dts_buffer[curcpu];
12021 
12022 	if (buf->dtb_tomax != NULL) {
12023 		/*
12024 		 * We might like to assert that the buffer is marked inactive,
12025 		 * but this isn't necessarily true:  the buffer for the CPU
12026 		 * that processes the BEGIN probe has its buffer activated
12027 		 * manually.  In this case, we take the (harmless) action
12028 		 * re-clearing the bit INACTIVE bit.
12029 		 */
12030 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12031 	}
12032 
12033 	dtrace_interrupt_enable(cookie);
12034 }
12035 
12036 #ifdef __FreeBSD__
12037 /*
12038  * Activate the specified per-CPU buffer.  This is used instead of
12039  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12040  * activating anonymous state.
12041  */
12042 static void
12043 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12044 {
12045 
12046 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12047 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12048 }
12049 #endif
12050 
12051 static int
12052 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12053     processorid_t cpu, int *factor)
12054 {
12055 #ifdef illumos
12056 	cpu_t *cp;
12057 #endif
12058 	dtrace_buffer_t *buf;
12059 	int allocated = 0, desired = 0;
12060 
12061 #ifdef illumos
12062 	ASSERT(MUTEX_HELD(&cpu_lock));
12063 	ASSERT(MUTEX_HELD(&dtrace_lock));
12064 
12065 	*factor = 1;
12066 
12067 	if (size > dtrace_nonroot_maxsize &&
12068 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12069 		return (EFBIG);
12070 
12071 	cp = cpu_list;
12072 
12073 	do {
12074 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12075 			continue;
12076 
12077 		buf = &bufs[cp->cpu_id];
12078 
12079 		/*
12080 		 * If there is already a buffer allocated for this CPU, it
12081 		 * is only possible that this is a DR event.  In this case,
12082 		 */
12083 		if (buf->dtb_tomax != NULL) {
12084 			ASSERT(buf->dtb_size == size);
12085 			continue;
12086 		}
12087 
12088 		ASSERT(buf->dtb_xamot == NULL);
12089 
12090 		if ((buf->dtb_tomax = kmem_zalloc(size,
12091 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12092 			goto err;
12093 
12094 		buf->dtb_size = size;
12095 		buf->dtb_flags = flags;
12096 		buf->dtb_offset = 0;
12097 		buf->dtb_drops = 0;
12098 
12099 		if (flags & DTRACEBUF_NOSWITCH)
12100 			continue;
12101 
12102 		if ((buf->dtb_xamot = kmem_zalloc(size,
12103 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12104 			goto err;
12105 	} while ((cp = cp->cpu_next) != cpu_list);
12106 
12107 	return (0);
12108 
12109 err:
12110 	cp = cpu_list;
12111 
12112 	do {
12113 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12114 			continue;
12115 
12116 		buf = &bufs[cp->cpu_id];
12117 		desired += 2;
12118 
12119 		if (buf->dtb_xamot != NULL) {
12120 			ASSERT(buf->dtb_tomax != NULL);
12121 			ASSERT(buf->dtb_size == size);
12122 			kmem_free(buf->dtb_xamot, size);
12123 			allocated++;
12124 		}
12125 
12126 		if (buf->dtb_tomax != NULL) {
12127 			ASSERT(buf->dtb_size == size);
12128 			kmem_free(buf->dtb_tomax, size);
12129 			allocated++;
12130 		}
12131 
12132 		buf->dtb_tomax = NULL;
12133 		buf->dtb_xamot = NULL;
12134 		buf->dtb_size = 0;
12135 	} while ((cp = cp->cpu_next) != cpu_list);
12136 #else
12137 	int i;
12138 
12139 	*factor = 1;
12140 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12141     defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12142 	/*
12143 	 * FreeBSD isn't good at limiting the amount of memory we
12144 	 * ask to malloc, so let's place a limit here before trying
12145 	 * to do something that might well end in tears at bedtime.
12146 	 */
12147 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12148 		return (ENOMEM);
12149 #endif
12150 
12151 	ASSERT(MUTEX_HELD(&dtrace_lock));
12152 	CPU_FOREACH(i) {
12153 		if (cpu != DTRACE_CPUALL && cpu != i)
12154 			continue;
12155 
12156 		buf = &bufs[i];
12157 
12158 		/*
12159 		 * If there is already a buffer allocated for this CPU, it
12160 		 * is only possible that this is a DR event.  In this case,
12161 		 * the buffer size must match our specified size.
12162 		 */
12163 		if (buf->dtb_tomax != NULL) {
12164 			ASSERT(buf->dtb_size == size);
12165 			continue;
12166 		}
12167 
12168 		ASSERT(buf->dtb_xamot == NULL);
12169 
12170 		if ((buf->dtb_tomax = kmem_zalloc(size,
12171 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12172 			goto err;
12173 
12174 		buf->dtb_size = size;
12175 		buf->dtb_flags = flags;
12176 		buf->dtb_offset = 0;
12177 		buf->dtb_drops = 0;
12178 
12179 		if (flags & DTRACEBUF_NOSWITCH)
12180 			continue;
12181 
12182 		if ((buf->dtb_xamot = kmem_zalloc(size,
12183 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12184 			goto err;
12185 	}
12186 
12187 	return (0);
12188 
12189 err:
12190 	/*
12191 	 * Error allocating memory, so free the buffers that were
12192 	 * allocated before the failed allocation.
12193 	 */
12194 	CPU_FOREACH(i) {
12195 		if (cpu != DTRACE_CPUALL && cpu != i)
12196 			continue;
12197 
12198 		buf = &bufs[i];
12199 		desired += 2;
12200 
12201 		if (buf->dtb_xamot != NULL) {
12202 			ASSERT(buf->dtb_tomax != NULL);
12203 			ASSERT(buf->dtb_size == size);
12204 			kmem_free(buf->dtb_xamot, size);
12205 			allocated++;
12206 		}
12207 
12208 		if (buf->dtb_tomax != NULL) {
12209 			ASSERT(buf->dtb_size == size);
12210 			kmem_free(buf->dtb_tomax, size);
12211 			allocated++;
12212 		}
12213 
12214 		buf->dtb_tomax = NULL;
12215 		buf->dtb_xamot = NULL;
12216 		buf->dtb_size = 0;
12217 
12218 	}
12219 #endif
12220 	*factor = desired / (allocated > 0 ? allocated : 1);
12221 
12222 	return (ENOMEM);
12223 }
12224 
12225 /*
12226  * Note:  called from probe context.  This function just increments the drop
12227  * count on a buffer.  It has been made a function to allow for the
12228  * possibility of understanding the source of mysterious drop counts.  (A
12229  * problem for which one may be particularly disappointed that DTrace cannot
12230  * be used to understand DTrace.)
12231  */
12232 static void
12233 dtrace_buffer_drop(dtrace_buffer_t *buf)
12234 {
12235 	buf->dtb_drops++;
12236 }
12237 
12238 /*
12239  * Note:  called from probe context.  This function is called to reserve space
12240  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12241  * mstate.  Returns the new offset in the buffer, or a negative value if an
12242  * error has occurred.
12243  */
12244 static intptr_t
12245 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12246     dtrace_state_t *state, dtrace_mstate_t *mstate)
12247 {
12248 	intptr_t offs = buf->dtb_offset, soffs;
12249 	intptr_t woffs;
12250 	caddr_t tomax;
12251 	size_t total;
12252 
12253 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12254 		return (-1);
12255 
12256 	if ((tomax = buf->dtb_tomax) == NULL) {
12257 		dtrace_buffer_drop(buf);
12258 		return (-1);
12259 	}
12260 
12261 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12262 		while (offs & (align - 1)) {
12263 			/*
12264 			 * Assert that our alignment is off by a number which
12265 			 * is itself sizeof (uint32_t) aligned.
12266 			 */
12267 			ASSERT(!((align - (offs & (align - 1))) &
12268 			    (sizeof (uint32_t) - 1)));
12269 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12270 			offs += sizeof (uint32_t);
12271 		}
12272 
12273 		if ((soffs = offs + needed) > buf->dtb_size) {
12274 			dtrace_buffer_drop(buf);
12275 			return (-1);
12276 		}
12277 
12278 		if (mstate == NULL)
12279 			return (offs);
12280 
12281 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12282 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12283 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12284 
12285 		return (offs);
12286 	}
12287 
12288 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12289 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12290 		    (buf->dtb_flags & DTRACEBUF_FULL))
12291 			return (-1);
12292 		goto out;
12293 	}
12294 
12295 	total = needed + (offs & (align - 1));
12296 
12297 	/*
12298 	 * For a ring buffer, life is quite a bit more complicated.  Before
12299 	 * we can store any padding, we need to adjust our wrapping offset.
12300 	 * (If we've never before wrapped or we're not about to, no adjustment
12301 	 * is required.)
12302 	 */
12303 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12304 	    offs + total > buf->dtb_size) {
12305 		woffs = buf->dtb_xamot_offset;
12306 
12307 		if (offs + total > buf->dtb_size) {
12308 			/*
12309 			 * We can't fit in the end of the buffer.  First, a
12310 			 * sanity check that we can fit in the buffer at all.
12311 			 */
12312 			if (total > buf->dtb_size) {
12313 				dtrace_buffer_drop(buf);
12314 				return (-1);
12315 			}
12316 
12317 			/*
12318 			 * We're going to be storing at the top of the buffer,
12319 			 * so now we need to deal with the wrapped offset.  We
12320 			 * only reset our wrapped offset to 0 if it is
12321 			 * currently greater than the current offset.  If it
12322 			 * is less than the current offset, it is because a
12323 			 * previous allocation induced a wrap -- but the
12324 			 * allocation didn't subsequently take the space due
12325 			 * to an error or false predicate evaluation.  In this
12326 			 * case, we'll just leave the wrapped offset alone: if
12327 			 * the wrapped offset hasn't been advanced far enough
12328 			 * for this allocation, it will be adjusted in the
12329 			 * lower loop.
12330 			 */
12331 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12332 				if (woffs >= offs)
12333 					woffs = 0;
12334 			} else {
12335 				woffs = 0;
12336 			}
12337 
12338 			/*
12339 			 * Now we know that we're going to be storing to the
12340 			 * top of the buffer and that there is room for us
12341 			 * there.  We need to clear the buffer from the current
12342 			 * offset to the end (there may be old gunk there).
12343 			 */
12344 			while (offs < buf->dtb_size)
12345 				tomax[offs++] = 0;
12346 
12347 			/*
12348 			 * We need to set our offset to zero.  And because we
12349 			 * are wrapping, we need to set the bit indicating as
12350 			 * much.  We can also adjust our needed space back
12351 			 * down to the space required by the ECB -- we know
12352 			 * that the top of the buffer is aligned.
12353 			 */
12354 			offs = 0;
12355 			total = needed;
12356 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12357 		} else {
12358 			/*
12359 			 * There is room for us in the buffer, so we simply
12360 			 * need to check the wrapped offset.
12361 			 */
12362 			if (woffs < offs) {
12363 				/*
12364 				 * The wrapped offset is less than the offset.
12365 				 * This can happen if we allocated buffer space
12366 				 * that induced a wrap, but then we didn't
12367 				 * subsequently take the space due to an error
12368 				 * or false predicate evaluation.  This is
12369 				 * okay; we know that _this_ allocation isn't
12370 				 * going to induce a wrap.  We still can't
12371 				 * reset the wrapped offset to be zero,
12372 				 * however: the space may have been trashed in
12373 				 * the previous failed probe attempt.  But at
12374 				 * least the wrapped offset doesn't need to
12375 				 * be adjusted at all...
12376 				 */
12377 				goto out;
12378 			}
12379 		}
12380 
12381 		while (offs + total > woffs) {
12382 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12383 			size_t size;
12384 
12385 			if (epid == DTRACE_EPIDNONE) {
12386 				size = sizeof (uint32_t);
12387 			} else {
12388 				ASSERT3U(epid, <=, state->dts_necbs);
12389 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12390 
12391 				size = state->dts_ecbs[epid - 1]->dte_size;
12392 			}
12393 
12394 			ASSERT(woffs + size <= buf->dtb_size);
12395 			ASSERT(size != 0);
12396 
12397 			if (woffs + size == buf->dtb_size) {
12398 				/*
12399 				 * We've reached the end of the buffer; we want
12400 				 * to set the wrapped offset to 0 and break
12401 				 * out.  However, if the offs is 0, then we're
12402 				 * in a strange edge-condition:  the amount of
12403 				 * space that we want to reserve plus the size
12404 				 * of the record that we're overwriting is
12405 				 * greater than the size of the buffer.  This
12406 				 * is problematic because if we reserve the
12407 				 * space but subsequently don't consume it (due
12408 				 * to a failed predicate or error) the wrapped
12409 				 * offset will be 0 -- yet the EPID at offset 0
12410 				 * will not be committed.  This situation is
12411 				 * relatively easy to deal with:  if we're in
12412 				 * this case, the buffer is indistinguishable
12413 				 * from one that hasn't wrapped; we need only
12414 				 * finish the job by clearing the wrapped bit,
12415 				 * explicitly setting the offset to be 0, and
12416 				 * zero'ing out the old data in the buffer.
12417 				 */
12418 				if (offs == 0) {
12419 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12420 					buf->dtb_offset = 0;
12421 					woffs = total;
12422 
12423 					while (woffs < buf->dtb_size)
12424 						tomax[woffs++] = 0;
12425 				}
12426 
12427 				woffs = 0;
12428 				break;
12429 			}
12430 
12431 			woffs += size;
12432 		}
12433 
12434 		/*
12435 		 * We have a wrapped offset.  It may be that the wrapped offset
12436 		 * has become zero -- that's okay.
12437 		 */
12438 		buf->dtb_xamot_offset = woffs;
12439 	}
12440 
12441 out:
12442 	/*
12443 	 * Now we can plow the buffer with any necessary padding.
12444 	 */
12445 	while (offs & (align - 1)) {
12446 		/*
12447 		 * Assert that our alignment is off by a number which
12448 		 * is itself sizeof (uint32_t) aligned.
12449 		 */
12450 		ASSERT(!((align - (offs & (align - 1))) &
12451 		    (sizeof (uint32_t) - 1)));
12452 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12453 		offs += sizeof (uint32_t);
12454 	}
12455 
12456 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12457 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12458 			buf->dtb_flags |= DTRACEBUF_FULL;
12459 			return (-1);
12460 		}
12461 	}
12462 
12463 	if (mstate == NULL)
12464 		return (offs);
12465 
12466 	/*
12467 	 * For ring buffers and fill buffers, the scratch space is always
12468 	 * the inactive buffer.
12469 	 */
12470 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12471 	mstate->dtms_scratch_size = buf->dtb_size;
12472 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12473 
12474 	return (offs);
12475 }
12476 
12477 static void
12478 dtrace_buffer_polish(dtrace_buffer_t *buf)
12479 {
12480 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12481 	ASSERT(MUTEX_HELD(&dtrace_lock));
12482 
12483 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12484 		return;
12485 
12486 	/*
12487 	 * We need to polish the ring buffer.  There are three cases:
12488 	 *
12489 	 * - The first (and presumably most common) is that there is no gap
12490 	 *   between the buffer offset and the wrapped offset.  In this case,
12491 	 *   there is nothing in the buffer that isn't valid data; we can
12492 	 *   mark the buffer as polished and return.
12493 	 *
12494 	 * - The second (less common than the first but still more common
12495 	 *   than the third) is that there is a gap between the buffer offset
12496 	 *   and the wrapped offset, and the wrapped offset is larger than the
12497 	 *   buffer offset.  This can happen because of an alignment issue, or
12498 	 *   can happen because of a call to dtrace_buffer_reserve() that
12499 	 *   didn't subsequently consume the buffer space.  In this case,
12500 	 *   we need to zero the data from the buffer offset to the wrapped
12501 	 *   offset.
12502 	 *
12503 	 * - The third (and least common) is that there is a gap between the
12504 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12505 	 *   _less_ than the buffer offset.  This can only happen because a
12506 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12507 	 *   was not subsequently consumed.  In this case, we need to zero the
12508 	 *   space from the offset to the end of the buffer _and_ from the
12509 	 *   top of the buffer to the wrapped offset.
12510 	 */
12511 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12512 		bzero(buf->dtb_tomax + buf->dtb_offset,
12513 		    buf->dtb_xamot_offset - buf->dtb_offset);
12514 	}
12515 
12516 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12517 		bzero(buf->dtb_tomax + buf->dtb_offset,
12518 		    buf->dtb_size - buf->dtb_offset);
12519 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12520 	}
12521 }
12522 
12523 /*
12524  * This routine determines if data generated at the specified time has likely
12525  * been entirely consumed at user-level.  This routine is called to determine
12526  * if an ECB on a defunct probe (but for an active enabling) can be safely
12527  * disabled and destroyed.
12528  */
12529 static int
12530 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12531 {
12532 	int i;
12533 
12534 	for (i = 0; i < NCPU; i++) {
12535 		dtrace_buffer_t *buf = &bufs[i];
12536 
12537 		if (buf->dtb_size == 0)
12538 			continue;
12539 
12540 		if (buf->dtb_flags & DTRACEBUF_RING)
12541 			return (0);
12542 
12543 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12544 			return (0);
12545 
12546 		if (buf->dtb_switched - buf->dtb_interval < when)
12547 			return (0);
12548 	}
12549 
12550 	return (1);
12551 }
12552 
12553 static void
12554 dtrace_buffer_free(dtrace_buffer_t *bufs)
12555 {
12556 	int i;
12557 
12558 	for (i = 0; i < NCPU; i++) {
12559 		dtrace_buffer_t *buf = &bufs[i];
12560 
12561 		if (buf->dtb_tomax == NULL) {
12562 			ASSERT(buf->dtb_xamot == NULL);
12563 			ASSERT(buf->dtb_size == 0);
12564 			continue;
12565 		}
12566 
12567 		if (buf->dtb_xamot != NULL) {
12568 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12569 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12570 		}
12571 
12572 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12573 		buf->dtb_size = 0;
12574 		buf->dtb_tomax = NULL;
12575 		buf->dtb_xamot = NULL;
12576 	}
12577 }
12578 
12579 /*
12580  * DTrace Enabling Functions
12581  */
12582 static dtrace_enabling_t *
12583 dtrace_enabling_create(dtrace_vstate_t *vstate)
12584 {
12585 	dtrace_enabling_t *enab;
12586 
12587 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12588 	enab->dten_vstate = vstate;
12589 
12590 	return (enab);
12591 }
12592 
12593 static void
12594 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12595 {
12596 	dtrace_ecbdesc_t **ndesc;
12597 	size_t osize, nsize;
12598 
12599 	/*
12600 	 * We can't add to enablings after we've enabled them, or after we've
12601 	 * retained them.
12602 	 */
12603 	ASSERT(enab->dten_probegen == 0);
12604 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12605 
12606 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12607 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12608 		return;
12609 	}
12610 
12611 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12612 
12613 	if (enab->dten_maxdesc == 0) {
12614 		enab->dten_maxdesc = 1;
12615 	} else {
12616 		enab->dten_maxdesc <<= 1;
12617 	}
12618 
12619 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12620 
12621 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12622 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12623 	bcopy(enab->dten_desc, ndesc, osize);
12624 	if (enab->dten_desc != NULL)
12625 		kmem_free(enab->dten_desc, osize);
12626 
12627 	enab->dten_desc = ndesc;
12628 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12629 }
12630 
12631 static void
12632 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12633     dtrace_probedesc_t *pd)
12634 {
12635 	dtrace_ecbdesc_t *new;
12636 	dtrace_predicate_t *pred;
12637 	dtrace_actdesc_t *act;
12638 
12639 	/*
12640 	 * We're going to create a new ECB description that matches the
12641 	 * specified ECB in every way, but has the specified probe description.
12642 	 */
12643 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12644 
12645 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12646 		dtrace_predicate_hold(pred);
12647 
12648 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12649 		dtrace_actdesc_hold(act);
12650 
12651 	new->dted_action = ecb->dted_action;
12652 	new->dted_pred = ecb->dted_pred;
12653 	new->dted_probe = *pd;
12654 	new->dted_uarg = ecb->dted_uarg;
12655 
12656 	dtrace_enabling_add(enab, new);
12657 }
12658 
12659 static void
12660 dtrace_enabling_dump(dtrace_enabling_t *enab)
12661 {
12662 	int i;
12663 
12664 	for (i = 0; i < enab->dten_ndesc; i++) {
12665 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12666 
12667 #ifdef __FreeBSD__
12668 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12669 		    desc->dtpd_provider, desc->dtpd_mod,
12670 		    desc->dtpd_func, desc->dtpd_name);
12671 #else
12672 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12673 		    desc->dtpd_provider, desc->dtpd_mod,
12674 		    desc->dtpd_func, desc->dtpd_name);
12675 #endif
12676 	}
12677 }
12678 
12679 static void
12680 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12681 {
12682 	int i;
12683 	dtrace_ecbdesc_t *ep;
12684 	dtrace_vstate_t *vstate = enab->dten_vstate;
12685 
12686 	ASSERT(MUTEX_HELD(&dtrace_lock));
12687 
12688 	for (i = 0; i < enab->dten_ndesc; i++) {
12689 		dtrace_actdesc_t *act, *next;
12690 		dtrace_predicate_t *pred;
12691 
12692 		ep = enab->dten_desc[i];
12693 
12694 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12695 			dtrace_predicate_release(pred, vstate);
12696 
12697 		for (act = ep->dted_action; act != NULL; act = next) {
12698 			next = act->dtad_next;
12699 			dtrace_actdesc_release(act, vstate);
12700 		}
12701 
12702 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12703 	}
12704 
12705 	if (enab->dten_desc != NULL)
12706 		kmem_free(enab->dten_desc,
12707 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12708 
12709 	/*
12710 	 * If this was a retained enabling, decrement the dts_nretained count
12711 	 * and take it off of the dtrace_retained list.
12712 	 */
12713 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12714 	    dtrace_retained == enab) {
12715 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12716 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12717 		enab->dten_vstate->dtvs_state->dts_nretained--;
12718 		dtrace_retained_gen++;
12719 	}
12720 
12721 	if (enab->dten_prev == NULL) {
12722 		if (dtrace_retained == enab) {
12723 			dtrace_retained = enab->dten_next;
12724 
12725 			if (dtrace_retained != NULL)
12726 				dtrace_retained->dten_prev = NULL;
12727 		}
12728 	} else {
12729 		ASSERT(enab != dtrace_retained);
12730 		ASSERT(dtrace_retained != NULL);
12731 		enab->dten_prev->dten_next = enab->dten_next;
12732 	}
12733 
12734 	if (enab->dten_next != NULL) {
12735 		ASSERT(dtrace_retained != NULL);
12736 		enab->dten_next->dten_prev = enab->dten_prev;
12737 	}
12738 
12739 	kmem_free(enab, sizeof (dtrace_enabling_t));
12740 }
12741 
12742 static int
12743 dtrace_enabling_retain(dtrace_enabling_t *enab)
12744 {
12745 	dtrace_state_t *state;
12746 
12747 	ASSERT(MUTEX_HELD(&dtrace_lock));
12748 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12749 	ASSERT(enab->dten_vstate != NULL);
12750 
12751 	state = enab->dten_vstate->dtvs_state;
12752 	ASSERT(state != NULL);
12753 
12754 	/*
12755 	 * We only allow each state to retain dtrace_retain_max enablings.
12756 	 */
12757 	if (state->dts_nretained >= dtrace_retain_max)
12758 		return (ENOSPC);
12759 
12760 	state->dts_nretained++;
12761 	dtrace_retained_gen++;
12762 
12763 	if (dtrace_retained == NULL) {
12764 		dtrace_retained = enab;
12765 		return (0);
12766 	}
12767 
12768 	enab->dten_next = dtrace_retained;
12769 	dtrace_retained->dten_prev = enab;
12770 	dtrace_retained = enab;
12771 
12772 	return (0);
12773 }
12774 
12775 static int
12776 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12777     dtrace_probedesc_t *create)
12778 {
12779 	dtrace_enabling_t *new, *enab;
12780 	int found = 0, err = ENOENT;
12781 
12782 	ASSERT(MUTEX_HELD(&dtrace_lock));
12783 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12784 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12785 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12786 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12787 
12788 	new = dtrace_enabling_create(&state->dts_vstate);
12789 
12790 	/*
12791 	 * Iterate over all retained enablings, looking for enablings that
12792 	 * match the specified state.
12793 	 */
12794 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12795 		int i;
12796 
12797 		/*
12798 		 * dtvs_state can only be NULL for helper enablings -- and
12799 		 * helper enablings can't be retained.
12800 		 */
12801 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12802 
12803 		if (enab->dten_vstate->dtvs_state != state)
12804 			continue;
12805 
12806 		/*
12807 		 * Now iterate over each probe description; we're looking for
12808 		 * an exact match to the specified probe description.
12809 		 */
12810 		for (i = 0; i < enab->dten_ndesc; i++) {
12811 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12812 			dtrace_probedesc_t *pd = &ep->dted_probe;
12813 
12814 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12815 				continue;
12816 
12817 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12818 				continue;
12819 
12820 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12821 				continue;
12822 
12823 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12824 				continue;
12825 
12826 			/*
12827 			 * We have a winning probe!  Add it to our growing
12828 			 * enabling.
12829 			 */
12830 			found = 1;
12831 			dtrace_enabling_addlike(new, ep, create);
12832 		}
12833 	}
12834 
12835 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12836 		dtrace_enabling_destroy(new);
12837 		return (err);
12838 	}
12839 
12840 	return (0);
12841 }
12842 
12843 static void
12844 dtrace_enabling_retract(dtrace_state_t *state)
12845 {
12846 	dtrace_enabling_t *enab, *next;
12847 
12848 	ASSERT(MUTEX_HELD(&dtrace_lock));
12849 
12850 	/*
12851 	 * Iterate over all retained enablings, destroy the enablings retained
12852 	 * for the specified state.
12853 	 */
12854 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12855 		next = enab->dten_next;
12856 
12857 		/*
12858 		 * dtvs_state can only be NULL for helper enablings -- and
12859 		 * helper enablings can't be retained.
12860 		 */
12861 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12862 
12863 		if (enab->dten_vstate->dtvs_state == state) {
12864 			ASSERT(state->dts_nretained > 0);
12865 			dtrace_enabling_destroy(enab);
12866 		}
12867 	}
12868 
12869 	ASSERT(state->dts_nretained == 0);
12870 }
12871 
12872 static int
12873 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12874 {
12875 	int i = 0;
12876 	int matched = 0;
12877 
12878 	ASSERT(MUTEX_HELD(&cpu_lock));
12879 	ASSERT(MUTEX_HELD(&dtrace_lock));
12880 
12881 	for (i = 0; i < enab->dten_ndesc; i++) {
12882 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12883 
12884 		enab->dten_current = ep;
12885 		enab->dten_error = 0;
12886 
12887 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12888 
12889 		if (enab->dten_error != 0) {
12890 			/*
12891 			 * If we get an error half-way through enabling the
12892 			 * probes, we kick out -- perhaps with some number of
12893 			 * them enabled.  Leaving enabled probes enabled may
12894 			 * be slightly confusing for user-level, but we expect
12895 			 * that no one will attempt to actually drive on in
12896 			 * the face of such errors.  If this is an anonymous
12897 			 * enabling (indicated with a NULL nmatched pointer),
12898 			 * we cmn_err() a message.  We aren't expecting to
12899 			 * get such an error -- such as it can exist at all,
12900 			 * it would be a result of corrupted DOF in the driver
12901 			 * properties.
12902 			 */
12903 			if (nmatched == NULL) {
12904 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12905 				    "error on %p: %d", (void *)ep,
12906 				    enab->dten_error);
12907 			}
12908 
12909 			return (enab->dten_error);
12910 		}
12911 	}
12912 
12913 	enab->dten_probegen = dtrace_probegen;
12914 	if (nmatched != NULL)
12915 		*nmatched = matched;
12916 
12917 	return (0);
12918 }
12919 
12920 static void
12921 dtrace_enabling_matchall(void)
12922 {
12923 	dtrace_enabling_t *enab;
12924 
12925 	mutex_enter(&cpu_lock);
12926 	mutex_enter(&dtrace_lock);
12927 
12928 	/*
12929 	 * Iterate over all retained enablings to see if any probes match
12930 	 * against them.  We only perform this operation on enablings for which
12931 	 * we have sufficient permissions by virtue of being in the global zone
12932 	 * or in the same zone as the DTrace client.  Because we can be called
12933 	 * after dtrace_detach() has been called, we cannot assert that there
12934 	 * are retained enablings.  We can safely load from dtrace_retained,
12935 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12936 	 * block pending our completion.
12937 	 */
12938 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12939 #ifdef illumos
12940 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12941 
12942 		if (INGLOBALZONE(curproc) ||
12943 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12944 #endif
12945 			(void) dtrace_enabling_match(enab, NULL);
12946 	}
12947 
12948 	mutex_exit(&dtrace_lock);
12949 	mutex_exit(&cpu_lock);
12950 }
12951 
12952 /*
12953  * If an enabling is to be enabled without having matched probes (that is, if
12954  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12955  * enabling must be _primed_ by creating an ECB for every ECB description.
12956  * This must be done to assure that we know the number of speculations, the
12957  * number of aggregations, the minimum buffer size needed, etc. before we
12958  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12959  * enabling any probes, we create ECBs for every ECB decription, but with a
12960  * NULL probe -- which is exactly what this function does.
12961  */
12962 static void
12963 dtrace_enabling_prime(dtrace_state_t *state)
12964 {
12965 	dtrace_enabling_t *enab;
12966 	int i;
12967 
12968 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12969 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12970 
12971 		if (enab->dten_vstate->dtvs_state != state)
12972 			continue;
12973 
12974 		/*
12975 		 * We don't want to prime an enabling more than once, lest
12976 		 * we allow a malicious user to induce resource exhaustion.
12977 		 * (The ECBs that result from priming an enabling aren't
12978 		 * leaked -- but they also aren't deallocated until the
12979 		 * consumer state is destroyed.)
12980 		 */
12981 		if (enab->dten_primed)
12982 			continue;
12983 
12984 		for (i = 0; i < enab->dten_ndesc; i++) {
12985 			enab->dten_current = enab->dten_desc[i];
12986 			(void) dtrace_probe_enable(NULL, enab);
12987 		}
12988 
12989 		enab->dten_primed = 1;
12990 	}
12991 }
12992 
12993 /*
12994  * Called to indicate that probes should be provided due to retained
12995  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12996  * must take an initial lap through the enabling calling the dtps_provide()
12997  * entry point explicitly to allow for autocreated probes.
12998  */
12999 static void
13000 dtrace_enabling_provide(dtrace_provider_t *prv)
13001 {
13002 	int i, all = 0;
13003 	dtrace_probedesc_t desc;
13004 	dtrace_genid_t gen;
13005 
13006 	ASSERT(MUTEX_HELD(&dtrace_lock));
13007 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13008 
13009 	if (prv == NULL) {
13010 		all = 1;
13011 		prv = dtrace_provider;
13012 	}
13013 
13014 	do {
13015 		dtrace_enabling_t *enab;
13016 		void *parg = prv->dtpv_arg;
13017 
13018 retry:
13019 		gen = dtrace_retained_gen;
13020 		for (enab = dtrace_retained; enab != NULL;
13021 		    enab = enab->dten_next) {
13022 			for (i = 0; i < enab->dten_ndesc; i++) {
13023 				desc = enab->dten_desc[i]->dted_probe;
13024 				mutex_exit(&dtrace_lock);
13025 				prv->dtpv_pops.dtps_provide(parg, &desc);
13026 				mutex_enter(&dtrace_lock);
13027 				/*
13028 				 * Process the retained enablings again if
13029 				 * they have changed while we weren't holding
13030 				 * dtrace_lock.
13031 				 */
13032 				if (gen != dtrace_retained_gen)
13033 					goto retry;
13034 			}
13035 		}
13036 	} while (all && (prv = prv->dtpv_next) != NULL);
13037 
13038 	mutex_exit(&dtrace_lock);
13039 	dtrace_probe_provide(NULL, all ? NULL : prv);
13040 	mutex_enter(&dtrace_lock);
13041 }
13042 
13043 /*
13044  * Called to reap ECBs that are attached to probes from defunct providers.
13045  */
13046 static void
13047 dtrace_enabling_reap(void)
13048 {
13049 	dtrace_provider_t *prov;
13050 	dtrace_probe_t *probe;
13051 	dtrace_ecb_t *ecb;
13052 	hrtime_t when;
13053 	int i;
13054 
13055 	mutex_enter(&cpu_lock);
13056 	mutex_enter(&dtrace_lock);
13057 
13058 	for (i = 0; i < dtrace_nprobes; i++) {
13059 		if ((probe = dtrace_probes[i]) == NULL)
13060 			continue;
13061 
13062 		if (probe->dtpr_ecb == NULL)
13063 			continue;
13064 
13065 		prov = probe->dtpr_provider;
13066 
13067 		if ((when = prov->dtpv_defunct) == 0)
13068 			continue;
13069 
13070 		/*
13071 		 * We have ECBs on a defunct provider:  we want to reap these
13072 		 * ECBs to allow the provider to unregister.  The destruction
13073 		 * of these ECBs must be done carefully:  if we destroy the ECB
13074 		 * and the consumer later wishes to consume an EPID that
13075 		 * corresponds to the destroyed ECB (and if the EPID metadata
13076 		 * has not been previously consumed), the consumer will abort
13077 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13078 		 * eliminate) the possibility of this, we will only destroy an
13079 		 * ECB for a defunct provider if, for the state that
13080 		 * corresponds to the ECB:
13081 		 *
13082 		 *  (a)	There is no speculative tracing (which can effectively
13083 		 *	cache an EPID for an arbitrary amount of time).
13084 		 *
13085 		 *  (b)	The principal buffers have been switched twice since the
13086 		 *	provider became defunct.
13087 		 *
13088 		 *  (c)	The aggregation buffers are of zero size or have been
13089 		 *	switched twice since the provider became defunct.
13090 		 *
13091 		 * We use dts_speculates to determine (a) and call a function
13092 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13093 		 * that as soon as we've been unable to destroy one of the ECBs
13094 		 * associated with the probe, we quit trying -- reaping is only
13095 		 * fruitful in as much as we can destroy all ECBs associated
13096 		 * with the defunct provider's probes.
13097 		 */
13098 		while ((ecb = probe->dtpr_ecb) != NULL) {
13099 			dtrace_state_t *state = ecb->dte_state;
13100 			dtrace_buffer_t *buf = state->dts_buffer;
13101 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13102 
13103 			if (state->dts_speculates)
13104 				break;
13105 
13106 			if (!dtrace_buffer_consumed(buf, when))
13107 				break;
13108 
13109 			if (!dtrace_buffer_consumed(aggbuf, when))
13110 				break;
13111 
13112 			dtrace_ecb_disable(ecb);
13113 			ASSERT(probe->dtpr_ecb != ecb);
13114 			dtrace_ecb_destroy(ecb);
13115 		}
13116 	}
13117 
13118 	mutex_exit(&dtrace_lock);
13119 	mutex_exit(&cpu_lock);
13120 }
13121 
13122 /*
13123  * DTrace DOF Functions
13124  */
13125 /*ARGSUSED*/
13126 static void
13127 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13128 {
13129 	if (dtrace_err_verbose)
13130 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13131 
13132 #ifdef DTRACE_ERRDEBUG
13133 	dtrace_errdebug(str);
13134 #endif
13135 }
13136 
13137 /*
13138  * Create DOF out of a currently enabled state.  Right now, we only create
13139  * DOF containing the run-time options -- but this could be expanded to create
13140  * complete DOF representing the enabled state.
13141  */
13142 static dof_hdr_t *
13143 dtrace_dof_create(dtrace_state_t *state)
13144 {
13145 	dof_hdr_t *dof;
13146 	dof_sec_t *sec;
13147 	dof_optdesc_t *opt;
13148 	int i, len = sizeof (dof_hdr_t) +
13149 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13150 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13151 
13152 	ASSERT(MUTEX_HELD(&dtrace_lock));
13153 
13154 	dof = kmem_zalloc(len, KM_SLEEP);
13155 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13156 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13157 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13158 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13159 
13160 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13161 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13162 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13163 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13164 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13165 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13166 
13167 	dof->dofh_flags = 0;
13168 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13169 	dof->dofh_secsize = sizeof (dof_sec_t);
13170 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13171 	dof->dofh_secoff = sizeof (dof_hdr_t);
13172 	dof->dofh_loadsz = len;
13173 	dof->dofh_filesz = len;
13174 	dof->dofh_pad = 0;
13175 
13176 	/*
13177 	 * Fill in the option section header...
13178 	 */
13179 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13180 	sec->dofs_type = DOF_SECT_OPTDESC;
13181 	sec->dofs_align = sizeof (uint64_t);
13182 	sec->dofs_flags = DOF_SECF_LOAD;
13183 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13184 
13185 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13186 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13187 
13188 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13189 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13190 
13191 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13192 		opt[i].dofo_option = i;
13193 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13194 		opt[i].dofo_value = state->dts_options[i];
13195 	}
13196 
13197 	return (dof);
13198 }
13199 
13200 static dof_hdr_t *
13201 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13202 {
13203 	dof_hdr_t hdr, *dof;
13204 
13205 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13206 
13207 	/*
13208 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13209 	 */
13210 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13211 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13212 		*errp = EFAULT;
13213 		return (NULL);
13214 	}
13215 
13216 	/*
13217 	 * Now we'll allocate the entire DOF and copy it in -- provided
13218 	 * that the length isn't outrageous.
13219 	 */
13220 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13221 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13222 		*errp = E2BIG;
13223 		return (NULL);
13224 	}
13225 
13226 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13227 		dtrace_dof_error(&hdr, "invalid load size");
13228 		*errp = EINVAL;
13229 		return (NULL);
13230 	}
13231 
13232 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13233 
13234 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13235 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13236 		kmem_free(dof, hdr.dofh_loadsz);
13237 		*errp = EFAULT;
13238 		return (NULL);
13239 	}
13240 
13241 	return (dof);
13242 }
13243 
13244 #ifdef __FreeBSD__
13245 static dof_hdr_t *
13246 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13247 {
13248 	dof_hdr_t hdr, *dof;
13249 	struct thread *td;
13250 	size_t loadsz;
13251 
13252 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13253 
13254 	td = curthread;
13255 
13256 	/*
13257 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13258 	 */
13259 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13260 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13261 		*errp = EFAULT;
13262 		return (NULL);
13263 	}
13264 
13265 	/*
13266 	 * Now we'll allocate the entire DOF and copy it in -- provided
13267 	 * that the length isn't outrageous.
13268 	 */
13269 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13270 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13271 		*errp = E2BIG;
13272 		return (NULL);
13273 	}
13274 	loadsz = (size_t)hdr.dofh_loadsz;
13275 
13276 	if (loadsz < sizeof (hdr)) {
13277 		dtrace_dof_error(&hdr, "invalid load size");
13278 		*errp = EINVAL;
13279 		return (NULL);
13280 	}
13281 
13282 	dof = kmem_alloc(loadsz, KM_SLEEP);
13283 
13284 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13285 	    dof->dofh_loadsz != loadsz) {
13286 		kmem_free(dof, hdr.dofh_loadsz);
13287 		*errp = EFAULT;
13288 		return (NULL);
13289 	}
13290 
13291 	return (dof);
13292 }
13293 
13294 static __inline uchar_t
13295 dtrace_dof_char(char c)
13296 {
13297 
13298 	switch (c) {
13299 	case '0':
13300 	case '1':
13301 	case '2':
13302 	case '3':
13303 	case '4':
13304 	case '5':
13305 	case '6':
13306 	case '7':
13307 	case '8':
13308 	case '9':
13309 		return (c - '0');
13310 	case 'A':
13311 	case 'B':
13312 	case 'C':
13313 	case 'D':
13314 	case 'E':
13315 	case 'F':
13316 		return (c - 'A' + 10);
13317 	case 'a':
13318 	case 'b':
13319 	case 'c':
13320 	case 'd':
13321 	case 'e':
13322 	case 'f':
13323 		return (c - 'a' + 10);
13324 	}
13325 	/* Should not reach here. */
13326 	return (UCHAR_MAX);
13327 }
13328 #endif /* __FreeBSD__ */
13329 
13330 static dof_hdr_t *
13331 dtrace_dof_property(const char *name)
13332 {
13333 #ifdef __FreeBSD__
13334 	uint8_t *dofbuf;
13335 	u_char *data, *eol;
13336 	caddr_t doffile;
13337 	size_t bytes, len, i;
13338 	dof_hdr_t *dof;
13339 	u_char c1, c2;
13340 
13341 	dof = NULL;
13342 
13343 	doffile = preload_search_by_type("dtrace_dof");
13344 	if (doffile == NULL)
13345 		return (NULL);
13346 
13347 	data = preload_fetch_addr(doffile);
13348 	len = preload_fetch_size(doffile);
13349 	for (;;) {
13350 		/* Look for the end of the line. All lines end in a newline. */
13351 		eol = memchr(data, '\n', len);
13352 		if (eol == NULL)
13353 			return (NULL);
13354 
13355 		if (strncmp(name, data, strlen(name)) == 0)
13356 			break;
13357 
13358 		eol++; /* skip past the newline */
13359 		len -= eol - data;
13360 		data = eol;
13361 	}
13362 
13363 	/* We've found the data corresponding to the specified key. */
13364 
13365 	data += strlen(name) + 1; /* skip past the '=' */
13366 	len = eol - data;
13367 	if (len % 2 != 0) {
13368 		dtrace_dof_error(NULL, "invalid DOF encoding length");
13369 		goto doferr;
13370 	}
13371 	bytes = len / 2;
13372 	if (bytes < sizeof(dof_hdr_t)) {
13373 		dtrace_dof_error(NULL, "truncated header");
13374 		goto doferr;
13375 	}
13376 
13377 	/*
13378 	 * Each byte is represented by the two ASCII characters in its hex
13379 	 * representation.
13380 	 */
13381 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13382 	for (i = 0; i < bytes; i++) {
13383 		c1 = dtrace_dof_char(data[i * 2]);
13384 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13385 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13386 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13387 			goto doferr;
13388 		}
13389 		dofbuf[i] = c1 * 16 + c2;
13390 	}
13391 
13392 	dof = (dof_hdr_t *)dofbuf;
13393 	if (bytes < dof->dofh_loadsz) {
13394 		dtrace_dof_error(NULL, "truncated DOF");
13395 		goto doferr;
13396 	}
13397 
13398 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13399 		dtrace_dof_error(NULL, "oversized DOF");
13400 		goto doferr;
13401 	}
13402 
13403 	return (dof);
13404 
13405 doferr:
13406 	free(dof, M_SOLARIS);
13407 	return (NULL);
13408 #else /* __FreeBSD__ */
13409 	uchar_t *buf;
13410 	uint64_t loadsz;
13411 	unsigned int len, i;
13412 	dof_hdr_t *dof;
13413 
13414 	/*
13415 	 * Unfortunately, array of values in .conf files are always (and
13416 	 * only) interpreted to be integer arrays.  We must read our DOF
13417 	 * as an integer array, and then squeeze it into a byte array.
13418 	 */
13419 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13420 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13421 		return (NULL);
13422 
13423 	for (i = 0; i < len; i++)
13424 		buf[i] = (uchar_t)(((int *)buf)[i]);
13425 
13426 	if (len < sizeof (dof_hdr_t)) {
13427 		ddi_prop_free(buf);
13428 		dtrace_dof_error(NULL, "truncated header");
13429 		return (NULL);
13430 	}
13431 
13432 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13433 		ddi_prop_free(buf);
13434 		dtrace_dof_error(NULL, "truncated DOF");
13435 		return (NULL);
13436 	}
13437 
13438 	if (loadsz >= dtrace_dof_maxsize) {
13439 		ddi_prop_free(buf);
13440 		dtrace_dof_error(NULL, "oversized DOF");
13441 		return (NULL);
13442 	}
13443 
13444 	dof = kmem_alloc(loadsz, KM_SLEEP);
13445 	bcopy(buf, dof, loadsz);
13446 	ddi_prop_free(buf);
13447 
13448 	return (dof);
13449 #endif /* !__FreeBSD__ */
13450 }
13451 
13452 static void
13453 dtrace_dof_destroy(dof_hdr_t *dof)
13454 {
13455 	kmem_free(dof, dof->dofh_loadsz);
13456 }
13457 
13458 /*
13459  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13460  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13461  * a type other than DOF_SECT_NONE is specified, the header is checked against
13462  * this type and NULL is returned if the types do not match.
13463  */
13464 static dof_sec_t *
13465 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13466 {
13467 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13468 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13469 
13470 	if (i >= dof->dofh_secnum) {
13471 		dtrace_dof_error(dof, "referenced section index is invalid");
13472 		return (NULL);
13473 	}
13474 
13475 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13476 		dtrace_dof_error(dof, "referenced section is not loadable");
13477 		return (NULL);
13478 	}
13479 
13480 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13481 		dtrace_dof_error(dof, "referenced section is the wrong type");
13482 		return (NULL);
13483 	}
13484 
13485 	return (sec);
13486 }
13487 
13488 static dtrace_probedesc_t *
13489 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13490 {
13491 	dof_probedesc_t *probe;
13492 	dof_sec_t *strtab;
13493 	uintptr_t daddr = (uintptr_t)dof;
13494 	uintptr_t str;
13495 	size_t size;
13496 
13497 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13498 		dtrace_dof_error(dof, "invalid probe section");
13499 		return (NULL);
13500 	}
13501 
13502 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13503 		dtrace_dof_error(dof, "bad alignment in probe description");
13504 		return (NULL);
13505 	}
13506 
13507 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13508 		dtrace_dof_error(dof, "truncated probe description");
13509 		return (NULL);
13510 	}
13511 
13512 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13513 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13514 
13515 	if (strtab == NULL)
13516 		return (NULL);
13517 
13518 	str = daddr + strtab->dofs_offset;
13519 	size = strtab->dofs_size;
13520 
13521 	if (probe->dofp_provider >= strtab->dofs_size) {
13522 		dtrace_dof_error(dof, "corrupt probe provider");
13523 		return (NULL);
13524 	}
13525 
13526 	(void) strncpy(desc->dtpd_provider,
13527 	    (char *)(str + probe->dofp_provider),
13528 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13529 
13530 	if (probe->dofp_mod >= strtab->dofs_size) {
13531 		dtrace_dof_error(dof, "corrupt probe module");
13532 		return (NULL);
13533 	}
13534 
13535 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13536 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13537 
13538 	if (probe->dofp_func >= strtab->dofs_size) {
13539 		dtrace_dof_error(dof, "corrupt probe function");
13540 		return (NULL);
13541 	}
13542 
13543 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13544 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13545 
13546 	if (probe->dofp_name >= strtab->dofs_size) {
13547 		dtrace_dof_error(dof, "corrupt probe name");
13548 		return (NULL);
13549 	}
13550 
13551 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13552 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13553 
13554 	return (desc);
13555 }
13556 
13557 static dtrace_difo_t *
13558 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13559     cred_t *cr)
13560 {
13561 	dtrace_difo_t *dp;
13562 	size_t ttl = 0;
13563 	dof_difohdr_t *dofd;
13564 	uintptr_t daddr = (uintptr_t)dof;
13565 	size_t max = dtrace_difo_maxsize;
13566 	int i, l, n;
13567 
13568 	static const struct {
13569 		int section;
13570 		int bufoffs;
13571 		int lenoffs;
13572 		int entsize;
13573 		int align;
13574 		const char *msg;
13575 	} difo[] = {
13576 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13577 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13578 		sizeof (dif_instr_t), "multiple DIF sections" },
13579 
13580 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13581 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13582 		sizeof (uint64_t), "multiple integer tables" },
13583 
13584 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13585 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13586 		sizeof (char), "multiple string tables" },
13587 
13588 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13589 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13590 		sizeof (uint_t), "multiple variable tables" },
13591 
13592 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13593 	};
13594 
13595 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13596 		dtrace_dof_error(dof, "invalid DIFO header section");
13597 		return (NULL);
13598 	}
13599 
13600 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13601 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13602 		return (NULL);
13603 	}
13604 
13605 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13606 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13607 		dtrace_dof_error(dof, "bad size in DIFO header");
13608 		return (NULL);
13609 	}
13610 
13611 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13612 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13613 
13614 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13615 	dp->dtdo_rtype = dofd->dofd_rtype;
13616 
13617 	for (l = 0; l < n; l++) {
13618 		dof_sec_t *subsec;
13619 		void **bufp;
13620 		uint32_t *lenp;
13621 
13622 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13623 		    dofd->dofd_links[l])) == NULL)
13624 			goto err; /* invalid section link */
13625 
13626 		if (ttl + subsec->dofs_size > max) {
13627 			dtrace_dof_error(dof, "exceeds maximum size");
13628 			goto err;
13629 		}
13630 
13631 		ttl += subsec->dofs_size;
13632 
13633 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13634 			if (subsec->dofs_type != difo[i].section)
13635 				continue;
13636 
13637 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13638 				dtrace_dof_error(dof, "section not loaded");
13639 				goto err;
13640 			}
13641 
13642 			if (subsec->dofs_align != difo[i].align) {
13643 				dtrace_dof_error(dof, "bad alignment");
13644 				goto err;
13645 			}
13646 
13647 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13648 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13649 
13650 			if (*bufp != NULL) {
13651 				dtrace_dof_error(dof, difo[i].msg);
13652 				goto err;
13653 			}
13654 
13655 			if (difo[i].entsize != subsec->dofs_entsize) {
13656 				dtrace_dof_error(dof, "entry size mismatch");
13657 				goto err;
13658 			}
13659 
13660 			if (subsec->dofs_entsize != 0 &&
13661 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13662 				dtrace_dof_error(dof, "corrupt entry size");
13663 				goto err;
13664 			}
13665 
13666 			*lenp = subsec->dofs_size;
13667 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13668 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13669 			    *bufp, subsec->dofs_size);
13670 
13671 			if (subsec->dofs_entsize != 0)
13672 				*lenp /= subsec->dofs_entsize;
13673 
13674 			break;
13675 		}
13676 
13677 		/*
13678 		 * If we encounter a loadable DIFO sub-section that is not
13679 		 * known to us, assume this is a broken program and fail.
13680 		 */
13681 		if (difo[i].section == DOF_SECT_NONE &&
13682 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13683 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13684 			goto err;
13685 		}
13686 	}
13687 
13688 	if (dp->dtdo_buf == NULL) {
13689 		/*
13690 		 * We can't have a DIF object without DIF text.
13691 		 */
13692 		dtrace_dof_error(dof, "missing DIF text");
13693 		goto err;
13694 	}
13695 
13696 	/*
13697 	 * Before we validate the DIF object, run through the variable table
13698 	 * looking for the strings -- if any of their size are under, we'll set
13699 	 * their size to be the system-wide default string size.  Note that
13700 	 * this should _not_ happen if the "strsize" option has been set --
13701 	 * in this case, the compiler should have set the size to reflect the
13702 	 * setting of the option.
13703 	 */
13704 	for (i = 0; i < dp->dtdo_varlen; i++) {
13705 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13706 		dtrace_diftype_t *t = &v->dtdv_type;
13707 
13708 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13709 			continue;
13710 
13711 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13712 			t->dtdt_size = dtrace_strsize_default;
13713 	}
13714 
13715 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13716 		goto err;
13717 
13718 	dtrace_difo_init(dp, vstate);
13719 	return (dp);
13720 
13721 err:
13722 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13723 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13724 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13725 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13726 
13727 	kmem_free(dp, sizeof (dtrace_difo_t));
13728 	return (NULL);
13729 }
13730 
13731 static dtrace_predicate_t *
13732 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13733     cred_t *cr)
13734 {
13735 	dtrace_difo_t *dp;
13736 
13737 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13738 		return (NULL);
13739 
13740 	return (dtrace_predicate_create(dp));
13741 }
13742 
13743 static dtrace_actdesc_t *
13744 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13745     cred_t *cr)
13746 {
13747 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13748 	dof_actdesc_t *desc;
13749 	dof_sec_t *difosec;
13750 	size_t offs;
13751 	uintptr_t daddr = (uintptr_t)dof;
13752 	uint64_t arg;
13753 	dtrace_actkind_t kind;
13754 
13755 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13756 		dtrace_dof_error(dof, "invalid action section");
13757 		return (NULL);
13758 	}
13759 
13760 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13761 		dtrace_dof_error(dof, "truncated action description");
13762 		return (NULL);
13763 	}
13764 
13765 	if (sec->dofs_align != sizeof (uint64_t)) {
13766 		dtrace_dof_error(dof, "bad alignment in action description");
13767 		return (NULL);
13768 	}
13769 
13770 	if (sec->dofs_size < sec->dofs_entsize) {
13771 		dtrace_dof_error(dof, "section entry size exceeds total size");
13772 		return (NULL);
13773 	}
13774 
13775 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13776 		dtrace_dof_error(dof, "bad entry size in action description");
13777 		return (NULL);
13778 	}
13779 
13780 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13781 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13782 		return (NULL);
13783 	}
13784 
13785 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13786 		desc = (dof_actdesc_t *)(daddr +
13787 		    (uintptr_t)sec->dofs_offset + offs);
13788 		kind = (dtrace_actkind_t)desc->dofa_kind;
13789 
13790 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13791 		    (kind != DTRACEACT_PRINTA ||
13792 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13793 		    (kind == DTRACEACT_DIFEXPR &&
13794 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13795 			dof_sec_t *strtab;
13796 			char *str, *fmt;
13797 			uint64_t i;
13798 
13799 			/*
13800 			 * The argument to these actions is an index into the
13801 			 * DOF string table.  For printf()-like actions, this
13802 			 * is the format string.  For print(), this is the
13803 			 * CTF type of the expression result.
13804 			 */
13805 			if ((strtab = dtrace_dof_sect(dof,
13806 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13807 				goto err;
13808 
13809 			str = (char *)((uintptr_t)dof +
13810 			    (uintptr_t)strtab->dofs_offset);
13811 
13812 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13813 				if (str[i] == '\0')
13814 					break;
13815 			}
13816 
13817 			if (i >= strtab->dofs_size) {
13818 				dtrace_dof_error(dof, "bogus format string");
13819 				goto err;
13820 			}
13821 
13822 			if (i == desc->dofa_arg) {
13823 				dtrace_dof_error(dof, "empty format string");
13824 				goto err;
13825 			}
13826 
13827 			i -= desc->dofa_arg;
13828 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13829 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13830 			arg = (uint64_t)(uintptr_t)fmt;
13831 		} else {
13832 			if (kind == DTRACEACT_PRINTA) {
13833 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13834 				arg = 0;
13835 			} else {
13836 				arg = desc->dofa_arg;
13837 			}
13838 		}
13839 
13840 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13841 		    desc->dofa_uarg, arg);
13842 
13843 		if (last != NULL) {
13844 			last->dtad_next = act;
13845 		} else {
13846 			first = act;
13847 		}
13848 
13849 		last = act;
13850 
13851 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13852 			continue;
13853 
13854 		if ((difosec = dtrace_dof_sect(dof,
13855 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13856 			goto err;
13857 
13858 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13859 
13860 		if (act->dtad_difo == NULL)
13861 			goto err;
13862 	}
13863 
13864 	ASSERT(first != NULL);
13865 	return (first);
13866 
13867 err:
13868 	for (act = first; act != NULL; act = next) {
13869 		next = act->dtad_next;
13870 		dtrace_actdesc_release(act, vstate);
13871 	}
13872 
13873 	return (NULL);
13874 }
13875 
13876 static dtrace_ecbdesc_t *
13877 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13878     cred_t *cr)
13879 {
13880 	dtrace_ecbdesc_t *ep;
13881 	dof_ecbdesc_t *ecb;
13882 	dtrace_probedesc_t *desc;
13883 	dtrace_predicate_t *pred = NULL;
13884 
13885 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13886 		dtrace_dof_error(dof, "truncated ECB description");
13887 		return (NULL);
13888 	}
13889 
13890 	if (sec->dofs_align != sizeof (uint64_t)) {
13891 		dtrace_dof_error(dof, "bad alignment in ECB description");
13892 		return (NULL);
13893 	}
13894 
13895 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13896 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13897 
13898 	if (sec == NULL)
13899 		return (NULL);
13900 
13901 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13902 	ep->dted_uarg = ecb->dofe_uarg;
13903 	desc = &ep->dted_probe;
13904 
13905 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13906 		goto err;
13907 
13908 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13909 		if ((sec = dtrace_dof_sect(dof,
13910 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13911 			goto err;
13912 
13913 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13914 			goto err;
13915 
13916 		ep->dted_pred.dtpdd_predicate = pred;
13917 	}
13918 
13919 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13920 		if ((sec = dtrace_dof_sect(dof,
13921 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13922 			goto err;
13923 
13924 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13925 
13926 		if (ep->dted_action == NULL)
13927 			goto err;
13928 	}
13929 
13930 	return (ep);
13931 
13932 err:
13933 	if (pred != NULL)
13934 		dtrace_predicate_release(pred, vstate);
13935 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13936 	return (NULL);
13937 }
13938 
13939 /*
13940  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13941  * specified DOF.  SETX relocations are computed using 'ubase', the base load
13942  * address of the object containing the DOF, and DOFREL relocations are relative
13943  * to the relocation offset within the DOF.
13944  */
13945 static int
13946 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
13947     uint64_t udaddr)
13948 {
13949 	uintptr_t daddr = (uintptr_t)dof;
13950 	uintptr_t ts_end;
13951 	dof_relohdr_t *dofr =
13952 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13953 	dof_sec_t *ss, *rs, *ts;
13954 	dof_relodesc_t *r;
13955 	uint_t i, n;
13956 
13957 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13958 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13959 		dtrace_dof_error(dof, "invalid relocation header");
13960 		return (-1);
13961 	}
13962 
13963 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13964 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13965 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13966 	ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13967 
13968 	if (ss == NULL || rs == NULL || ts == NULL)
13969 		return (-1); /* dtrace_dof_error() has been called already */
13970 
13971 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13972 	    rs->dofs_align != sizeof (uint64_t)) {
13973 		dtrace_dof_error(dof, "invalid relocation section");
13974 		return (-1);
13975 	}
13976 
13977 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13978 	n = rs->dofs_size / rs->dofs_entsize;
13979 
13980 	for (i = 0; i < n; i++) {
13981 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13982 
13983 		switch (r->dofr_type) {
13984 		case DOF_RELO_NONE:
13985 			break;
13986 		case DOF_RELO_SETX:
13987 		case DOF_RELO_DOFREL:
13988 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13989 			    sizeof (uint64_t) > ts->dofs_size) {
13990 				dtrace_dof_error(dof, "bad relocation offset");
13991 				return (-1);
13992 			}
13993 
13994 			if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13995 				dtrace_dof_error(dof, "bad relocation offset");
13996 				return (-1);
13997 			}
13998 
13999 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14000 				dtrace_dof_error(dof, "misaligned setx relo");
14001 				return (-1);
14002 			}
14003 
14004 			if (r->dofr_type == DOF_RELO_SETX)
14005 				*(uint64_t *)taddr += ubase;
14006 			else
14007 				*(uint64_t *)taddr +=
14008 				    udaddr + ts->dofs_offset + r->dofr_offset;
14009 			break;
14010 		default:
14011 			dtrace_dof_error(dof, "invalid relocation type");
14012 			return (-1);
14013 		}
14014 
14015 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14016 	}
14017 
14018 	return (0);
14019 }
14020 
14021 /*
14022  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14023  * header:  it should be at the front of a memory region that is at least
14024  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14025  * size.  It need not be validated in any other way.
14026  */
14027 static int
14028 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14029     dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14030 {
14031 	uint64_t len = dof->dofh_loadsz, seclen;
14032 	uintptr_t daddr = (uintptr_t)dof;
14033 	dtrace_ecbdesc_t *ep;
14034 	dtrace_enabling_t *enab;
14035 	uint_t i;
14036 
14037 	ASSERT(MUTEX_HELD(&dtrace_lock));
14038 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14039 
14040 	/*
14041 	 * Check the DOF header identification bytes.  In addition to checking
14042 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14043 	 * we can use them later without fear of regressing existing binaries.
14044 	 */
14045 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14046 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14047 		dtrace_dof_error(dof, "DOF magic string mismatch");
14048 		return (-1);
14049 	}
14050 
14051 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14052 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14053 		dtrace_dof_error(dof, "DOF has invalid data model");
14054 		return (-1);
14055 	}
14056 
14057 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14058 		dtrace_dof_error(dof, "DOF encoding mismatch");
14059 		return (-1);
14060 	}
14061 
14062 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14063 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14064 		dtrace_dof_error(dof, "DOF version mismatch");
14065 		return (-1);
14066 	}
14067 
14068 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14069 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14070 		return (-1);
14071 	}
14072 
14073 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14074 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14075 		return (-1);
14076 	}
14077 
14078 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14079 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14080 		return (-1);
14081 	}
14082 
14083 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14084 		if (dof->dofh_ident[i] != 0) {
14085 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14086 			return (-1);
14087 		}
14088 	}
14089 
14090 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14091 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14092 		return (-1);
14093 	}
14094 
14095 	if (dof->dofh_secsize == 0) {
14096 		dtrace_dof_error(dof, "zero section header size");
14097 		return (-1);
14098 	}
14099 
14100 	/*
14101 	 * Check that the section headers don't exceed the amount of DOF
14102 	 * data.  Note that we cast the section size and number of sections
14103 	 * to uint64_t's to prevent possible overflow in the multiplication.
14104 	 */
14105 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14106 
14107 	if (dof->dofh_secoff > len || seclen > len ||
14108 	    dof->dofh_secoff + seclen > len) {
14109 		dtrace_dof_error(dof, "truncated section headers");
14110 		return (-1);
14111 	}
14112 
14113 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14114 		dtrace_dof_error(dof, "misaligned section headers");
14115 		return (-1);
14116 	}
14117 
14118 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14119 		dtrace_dof_error(dof, "misaligned section size");
14120 		return (-1);
14121 	}
14122 
14123 	/*
14124 	 * Take an initial pass through the section headers to be sure that
14125 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14126 	 * set, do not permit sections relating to providers, probes, or args.
14127 	 */
14128 	for (i = 0; i < dof->dofh_secnum; i++) {
14129 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14130 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14131 
14132 		if (noprobes) {
14133 			switch (sec->dofs_type) {
14134 			case DOF_SECT_PROVIDER:
14135 			case DOF_SECT_PROBES:
14136 			case DOF_SECT_PRARGS:
14137 			case DOF_SECT_PROFFS:
14138 				dtrace_dof_error(dof, "illegal sections "
14139 				    "for enabling");
14140 				return (-1);
14141 			}
14142 		}
14143 
14144 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14145 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14146 			dtrace_dof_error(dof, "loadable section with load "
14147 			    "flag unset");
14148 			return (-1);
14149 		}
14150 
14151 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14152 			continue; /* just ignore non-loadable sections */
14153 
14154 		if (!ISP2(sec->dofs_align)) {
14155 			dtrace_dof_error(dof, "bad section alignment");
14156 			return (-1);
14157 		}
14158 
14159 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14160 			dtrace_dof_error(dof, "misaligned section");
14161 			return (-1);
14162 		}
14163 
14164 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14165 		    sec->dofs_offset + sec->dofs_size > len) {
14166 			dtrace_dof_error(dof, "corrupt section header");
14167 			return (-1);
14168 		}
14169 
14170 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14171 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14172 			dtrace_dof_error(dof, "non-terminating string table");
14173 			return (-1);
14174 		}
14175 	}
14176 
14177 	/*
14178 	 * Take a second pass through the sections and locate and perform any
14179 	 * relocations that are present.  We do this after the first pass to
14180 	 * be sure that all sections have had their headers validated.
14181 	 */
14182 	for (i = 0; i < dof->dofh_secnum; i++) {
14183 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14184 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14185 
14186 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14187 			continue; /* skip sections that are not loadable */
14188 
14189 		switch (sec->dofs_type) {
14190 		case DOF_SECT_URELHDR:
14191 			if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14192 				return (-1);
14193 			break;
14194 		}
14195 	}
14196 
14197 	if ((enab = *enabp) == NULL)
14198 		enab = *enabp = dtrace_enabling_create(vstate);
14199 
14200 	for (i = 0; i < dof->dofh_secnum; i++) {
14201 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14202 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14203 
14204 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14205 			continue;
14206 
14207 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14208 			dtrace_enabling_destroy(enab);
14209 			*enabp = NULL;
14210 			return (-1);
14211 		}
14212 
14213 		dtrace_enabling_add(enab, ep);
14214 	}
14215 
14216 	return (0);
14217 }
14218 
14219 /*
14220  * Process DOF for any options.  This routine assumes that the DOF has been
14221  * at least processed by dtrace_dof_slurp().
14222  */
14223 static int
14224 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14225 {
14226 	int i, rval;
14227 	uint32_t entsize;
14228 	size_t offs;
14229 	dof_optdesc_t *desc;
14230 
14231 	for (i = 0; i < dof->dofh_secnum; i++) {
14232 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14233 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14234 
14235 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14236 			continue;
14237 
14238 		if (sec->dofs_align != sizeof (uint64_t)) {
14239 			dtrace_dof_error(dof, "bad alignment in "
14240 			    "option description");
14241 			return (EINVAL);
14242 		}
14243 
14244 		if ((entsize = sec->dofs_entsize) == 0) {
14245 			dtrace_dof_error(dof, "zeroed option entry size");
14246 			return (EINVAL);
14247 		}
14248 
14249 		if (entsize < sizeof (dof_optdesc_t)) {
14250 			dtrace_dof_error(dof, "bad option entry size");
14251 			return (EINVAL);
14252 		}
14253 
14254 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14255 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14256 			    (uintptr_t)sec->dofs_offset + offs);
14257 
14258 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14259 				dtrace_dof_error(dof, "non-zero option string");
14260 				return (EINVAL);
14261 			}
14262 
14263 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14264 				dtrace_dof_error(dof, "unset option");
14265 				return (EINVAL);
14266 			}
14267 
14268 			if ((rval = dtrace_state_option(state,
14269 			    desc->dofo_option, desc->dofo_value)) != 0) {
14270 				dtrace_dof_error(dof, "rejected option");
14271 				return (rval);
14272 			}
14273 		}
14274 	}
14275 
14276 	return (0);
14277 }
14278 
14279 /*
14280  * DTrace Consumer State Functions
14281  */
14282 static int
14283 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14284 {
14285 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14286 	void *base;
14287 	uintptr_t limit;
14288 	dtrace_dynvar_t *dvar, *next, *start;
14289 	int i;
14290 
14291 	ASSERT(MUTEX_HELD(&dtrace_lock));
14292 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14293 
14294 	bzero(dstate, sizeof (dtrace_dstate_t));
14295 
14296 	if ((dstate->dtds_chunksize = chunksize) == 0)
14297 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14298 
14299 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14300 
14301 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14302 		size = min;
14303 
14304 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14305 		return (ENOMEM);
14306 
14307 	dstate->dtds_size = size;
14308 	dstate->dtds_base = base;
14309 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14310 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14311 
14312 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14313 
14314 	if (hashsize != 1 && (hashsize & 1))
14315 		hashsize--;
14316 
14317 	dstate->dtds_hashsize = hashsize;
14318 	dstate->dtds_hash = dstate->dtds_base;
14319 
14320 	/*
14321 	 * Set all of our hash buckets to point to the single sink, and (if
14322 	 * it hasn't already been set), set the sink's hash value to be the
14323 	 * sink sentinel value.  The sink is needed for dynamic variable
14324 	 * lookups to know that they have iterated over an entire, valid hash
14325 	 * chain.
14326 	 */
14327 	for (i = 0; i < hashsize; i++)
14328 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14329 
14330 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14331 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14332 
14333 	/*
14334 	 * Determine number of active CPUs.  Divide free list evenly among
14335 	 * active CPUs.
14336 	 */
14337 	start = (dtrace_dynvar_t *)
14338 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14339 	limit = (uintptr_t)base + size;
14340 
14341 	VERIFY((uintptr_t)start < limit);
14342 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14343 
14344 	maxper = (limit - (uintptr_t)start) / NCPU;
14345 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14346 
14347 #ifndef illumos
14348 	CPU_FOREACH(i) {
14349 #else
14350 	for (i = 0; i < NCPU; i++) {
14351 #endif
14352 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14353 
14354 		/*
14355 		 * If we don't even have enough chunks to make it once through
14356 		 * NCPUs, we're just going to allocate everything to the first
14357 		 * CPU.  And if we're on the last CPU, we're going to allocate
14358 		 * whatever is left over.  In either case, we set the limit to
14359 		 * be the limit of the dynamic variable space.
14360 		 */
14361 		if (maxper == 0 || i == NCPU - 1) {
14362 			limit = (uintptr_t)base + size;
14363 			start = NULL;
14364 		} else {
14365 			limit = (uintptr_t)start + maxper;
14366 			start = (dtrace_dynvar_t *)limit;
14367 		}
14368 
14369 		VERIFY(limit <= (uintptr_t)base + size);
14370 
14371 		for (;;) {
14372 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14373 			    dstate->dtds_chunksize);
14374 
14375 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14376 				break;
14377 
14378 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14379 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14380 			dvar->dtdv_next = next;
14381 			dvar = next;
14382 		}
14383 
14384 		if (maxper == 0)
14385 			break;
14386 	}
14387 
14388 	return (0);
14389 }
14390 
14391 static void
14392 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14393 {
14394 	ASSERT(MUTEX_HELD(&cpu_lock));
14395 
14396 	if (dstate->dtds_base == NULL)
14397 		return;
14398 
14399 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14400 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14401 }
14402 
14403 static void
14404 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14405 {
14406 	/*
14407 	 * Logical XOR, where are you?
14408 	 */
14409 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14410 
14411 	if (vstate->dtvs_nglobals > 0) {
14412 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14413 		    sizeof (dtrace_statvar_t *));
14414 	}
14415 
14416 	if (vstate->dtvs_ntlocals > 0) {
14417 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14418 		    sizeof (dtrace_difv_t));
14419 	}
14420 
14421 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14422 
14423 	if (vstate->dtvs_nlocals > 0) {
14424 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14425 		    sizeof (dtrace_statvar_t *));
14426 	}
14427 }
14428 
14429 #ifdef illumos
14430 static void
14431 dtrace_state_clean(dtrace_state_t *state)
14432 {
14433 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14434 		return;
14435 
14436 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14437 	dtrace_speculation_clean(state);
14438 }
14439 
14440 static void
14441 dtrace_state_deadman(dtrace_state_t *state)
14442 {
14443 	hrtime_t now;
14444 
14445 	dtrace_sync();
14446 
14447 	now = dtrace_gethrtime();
14448 
14449 	if (state != dtrace_anon.dta_state &&
14450 	    now - state->dts_laststatus >= dtrace_deadman_user)
14451 		return;
14452 
14453 	/*
14454 	 * We must be sure that dts_alive never appears to be less than the
14455 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14456 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14457 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14458 	 * the new value.  This assures that dts_alive never appears to be
14459 	 * less than its true value, regardless of the order in which the
14460 	 * stores to the underlying storage are issued.
14461 	 */
14462 	state->dts_alive = INT64_MAX;
14463 	dtrace_membar_producer();
14464 	state->dts_alive = now;
14465 }
14466 #else	/* !illumos */
14467 static void
14468 dtrace_state_clean(void *arg)
14469 {
14470 	dtrace_state_t *state = arg;
14471 	dtrace_optval_t *opt = state->dts_options;
14472 
14473 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14474 		return;
14475 
14476 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14477 	dtrace_speculation_clean(state);
14478 
14479 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14480 	    dtrace_state_clean, state);
14481 }
14482 
14483 static void
14484 dtrace_state_deadman(void *arg)
14485 {
14486 	dtrace_state_t *state = arg;
14487 	hrtime_t now;
14488 
14489 	dtrace_sync();
14490 
14491 	dtrace_debug_output();
14492 
14493 	now = dtrace_gethrtime();
14494 
14495 	if (state != dtrace_anon.dta_state &&
14496 	    now - state->dts_laststatus >= dtrace_deadman_user)
14497 		return;
14498 
14499 	/*
14500 	 * We must be sure that dts_alive never appears to be less than the
14501 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14502 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14503 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14504 	 * the new value.  This assures that dts_alive never appears to be
14505 	 * less than its true value, regardless of the order in which the
14506 	 * stores to the underlying storage are issued.
14507 	 */
14508 	state->dts_alive = INT64_MAX;
14509 	dtrace_membar_producer();
14510 	state->dts_alive = now;
14511 
14512 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14513 	    dtrace_state_deadman, state);
14514 }
14515 #endif	/* illumos */
14516 
14517 static dtrace_state_t *
14518 #ifdef illumos
14519 dtrace_state_create(dev_t *devp, cred_t *cr)
14520 #else
14521 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14522 #endif
14523 {
14524 #ifdef illumos
14525 	minor_t minor;
14526 	major_t major;
14527 #else
14528 	cred_t *cr = NULL;
14529 	int m = 0;
14530 #endif
14531 	char c[30];
14532 	dtrace_state_t *state;
14533 	dtrace_optval_t *opt;
14534 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14535 	int cpu_it;
14536 
14537 	ASSERT(MUTEX_HELD(&dtrace_lock));
14538 	ASSERT(MUTEX_HELD(&cpu_lock));
14539 
14540 #ifdef illumos
14541 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14542 	    VM_BESTFIT | VM_SLEEP);
14543 
14544 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14545 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14546 		return (NULL);
14547 	}
14548 
14549 	state = ddi_get_soft_state(dtrace_softstate, minor);
14550 #else
14551 	if (dev != NULL) {
14552 		cr = dev->si_cred;
14553 		m = dev2unit(dev);
14554 	}
14555 
14556 	/* Allocate memory for the state. */
14557 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14558 #endif
14559 
14560 	state->dts_epid = DTRACE_EPIDNONE + 1;
14561 
14562 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14563 #ifdef illumos
14564 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14565 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14566 
14567 	if (devp != NULL) {
14568 		major = getemajor(*devp);
14569 	} else {
14570 		major = ddi_driver_major(dtrace_devi);
14571 	}
14572 
14573 	state->dts_dev = makedevice(major, minor);
14574 
14575 	if (devp != NULL)
14576 		*devp = state->dts_dev;
14577 #else
14578 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14579 	state->dts_dev = dev;
14580 #endif
14581 
14582 	/*
14583 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14584 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14585 	 * other hand, it saves an additional memory reference in the probe
14586 	 * path.
14587 	 */
14588 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14589 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14590 
14591 	/*
14592          * Allocate and initialise the per-process per-CPU random state.
14593 	 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14594          * assumed to be seeded at this point (if from Fortuna seed file).
14595 	 */
14596 	(void) read_random(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14597 	for (cpu_it = 1; cpu_it < NCPU; cpu_it++) {
14598 		/*
14599 		 * Each CPU is assigned a 2^64 period, non-overlapping
14600 		 * subsequence.
14601 		 */
14602 		dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1],
14603 		    state->dts_rstate[cpu_it]);
14604 	}
14605 
14606 #ifdef illumos
14607 	state->dts_cleaner = CYCLIC_NONE;
14608 	state->dts_deadman = CYCLIC_NONE;
14609 #else
14610 	callout_init(&state->dts_cleaner, 1);
14611 	callout_init(&state->dts_deadman, 1);
14612 #endif
14613 	state->dts_vstate.dtvs_state = state;
14614 
14615 	for (i = 0; i < DTRACEOPT_MAX; i++)
14616 		state->dts_options[i] = DTRACEOPT_UNSET;
14617 
14618 	/*
14619 	 * Set the default options.
14620 	 */
14621 	opt = state->dts_options;
14622 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14623 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14624 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14625 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14626 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14627 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14628 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14629 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14630 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14631 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14632 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14633 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14634 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14635 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14636 
14637 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14638 
14639 	/*
14640 	 * Depending on the user credentials, we set flag bits which alter probe
14641 	 * visibility or the amount of destructiveness allowed.  In the case of
14642 	 * actual anonymous tracing, or the possession of all privileges, all of
14643 	 * the normal checks are bypassed.
14644 	 */
14645 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14646 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14647 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14648 	} else {
14649 		/*
14650 		 * Set up the credentials for this instantiation.  We take a
14651 		 * hold on the credential to prevent it from disappearing on
14652 		 * us; this in turn prevents the zone_t referenced by this
14653 		 * credential from disappearing.  This means that we can
14654 		 * examine the credential and the zone from probe context.
14655 		 */
14656 		crhold(cr);
14657 		state->dts_cred.dcr_cred = cr;
14658 
14659 		/*
14660 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14661 		 * unlocks the use of variables like pid, zonename, etc.
14662 		 */
14663 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14664 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14665 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14666 		}
14667 
14668 		/*
14669 		 * dtrace_user allows use of syscall and profile providers.
14670 		 * If the user also has proc_owner and/or proc_zone, we
14671 		 * extend the scope to include additional visibility and
14672 		 * destructive power.
14673 		 */
14674 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14675 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14676 				state->dts_cred.dcr_visible |=
14677 				    DTRACE_CRV_ALLPROC;
14678 
14679 				state->dts_cred.dcr_action |=
14680 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14681 			}
14682 
14683 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14684 				state->dts_cred.dcr_visible |=
14685 				    DTRACE_CRV_ALLZONE;
14686 
14687 				state->dts_cred.dcr_action |=
14688 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14689 			}
14690 
14691 			/*
14692 			 * If we have all privs in whatever zone this is,
14693 			 * we can do destructive things to processes which
14694 			 * have altered credentials.
14695 			 */
14696 #ifdef illumos
14697 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14698 			    cr->cr_zone->zone_privset)) {
14699 				state->dts_cred.dcr_action |=
14700 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14701 			}
14702 #endif
14703 		}
14704 
14705 		/*
14706 		 * Holding the dtrace_kernel privilege also implies that
14707 		 * the user has the dtrace_user privilege from a visibility
14708 		 * perspective.  But without further privileges, some
14709 		 * destructive actions are not available.
14710 		 */
14711 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14712 			/*
14713 			 * Make all probes in all zones visible.  However,
14714 			 * this doesn't mean that all actions become available
14715 			 * to all zones.
14716 			 */
14717 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14718 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14719 
14720 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14721 			    DTRACE_CRA_PROC;
14722 			/*
14723 			 * Holding proc_owner means that destructive actions
14724 			 * for *this* zone are allowed.
14725 			 */
14726 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14727 				state->dts_cred.dcr_action |=
14728 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14729 
14730 			/*
14731 			 * Holding proc_zone means that destructive actions
14732 			 * for this user/group ID in all zones is allowed.
14733 			 */
14734 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14735 				state->dts_cred.dcr_action |=
14736 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14737 
14738 #ifdef illumos
14739 			/*
14740 			 * If we have all privs in whatever zone this is,
14741 			 * we can do destructive things to processes which
14742 			 * have altered credentials.
14743 			 */
14744 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14745 			    cr->cr_zone->zone_privset)) {
14746 				state->dts_cred.dcr_action |=
14747 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14748 			}
14749 #endif
14750 		}
14751 
14752 		/*
14753 		 * Holding the dtrace_proc privilege gives control over fasttrap
14754 		 * and pid providers.  We need to grant wider destructive
14755 		 * privileges in the event that the user has proc_owner and/or
14756 		 * proc_zone.
14757 		 */
14758 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14759 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14760 				state->dts_cred.dcr_action |=
14761 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14762 
14763 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14764 				state->dts_cred.dcr_action |=
14765 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14766 		}
14767 	}
14768 
14769 	return (state);
14770 }
14771 
14772 static int
14773 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14774 {
14775 	dtrace_optval_t *opt = state->dts_options, size;
14776 	processorid_t cpu = 0;;
14777 	int flags = 0, rval, factor, divisor = 1;
14778 
14779 	ASSERT(MUTEX_HELD(&dtrace_lock));
14780 	ASSERT(MUTEX_HELD(&cpu_lock));
14781 	ASSERT(which < DTRACEOPT_MAX);
14782 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14783 	    (state == dtrace_anon.dta_state &&
14784 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14785 
14786 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14787 		return (0);
14788 
14789 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14790 		cpu = opt[DTRACEOPT_CPU];
14791 
14792 	if (which == DTRACEOPT_SPECSIZE)
14793 		flags |= DTRACEBUF_NOSWITCH;
14794 
14795 	if (which == DTRACEOPT_BUFSIZE) {
14796 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14797 			flags |= DTRACEBUF_RING;
14798 
14799 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14800 			flags |= DTRACEBUF_FILL;
14801 
14802 		if (state != dtrace_anon.dta_state ||
14803 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14804 			flags |= DTRACEBUF_INACTIVE;
14805 	}
14806 
14807 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14808 		/*
14809 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14810 		 * aligned, drop it down by the difference.
14811 		 */
14812 		if (size & (sizeof (uint64_t) - 1))
14813 			size -= size & (sizeof (uint64_t) - 1);
14814 
14815 		if (size < state->dts_reserve) {
14816 			/*
14817 			 * Buffers always must be large enough to accommodate
14818 			 * their prereserved space.  We return E2BIG instead
14819 			 * of ENOMEM in this case to allow for user-level
14820 			 * software to differentiate the cases.
14821 			 */
14822 			return (E2BIG);
14823 		}
14824 
14825 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14826 
14827 		if (rval != ENOMEM) {
14828 			opt[which] = size;
14829 			return (rval);
14830 		}
14831 
14832 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14833 			return (rval);
14834 
14835 		for (divisor = 2; divisor < factor; divisor <<= 1)
14836 			continue;
14837 	}
14838 
14839 	return (ENOMEM);
14840 }
14841 
14842 static int
14843 dtrace_state_buffers(dtrace_state_t *state)
14844 {
14845 	dtrace_speculation_t *spec = state->dts_speculations;
14846 	int rval, i;
14847 
14848 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14849 	    DTRACEOPT_BUFSIZE)) != 0)
14850 		return (rval);
14851 
14852 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14853 	    DTRACEOPT_AGGSIZE)) != 0)
14854 		return (rval);
14855 
14856 	for (i = 0; i < state->dts_nspeculations; i++) {
14857 		if ((rval = dtrace_state_buffer(state,
14858 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14859 			return (rval);
14860 	}
14861 
14862 	return (0);
14863 }
14864 
14865 static void
14866 dtrace_state_prereserve(dtrace_state_t *state)
14867 {
14868 	dtrace_ecb_t *ecb;
14869 	dtrace_probe_t *probe;
14870 
14871 	state->dts_reserve = 0;
14872 
14873 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14874 		return;
14875 
14876 	/*
14877 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14878 	 * prereserved space to be the space required by the END probes.
14879 	 */
14880 	probe = dtrace_probes[dtrace_probeid_end - 1];
14881 	ASSERT(probe != NULL);
14882 
14883 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14884 		if (ecb->dte_state != state)
14885 			continue;
14886 
14887 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14888 	}
14889 }
14890 
14891 static int
14892 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14893 {
14894 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14895 	dtrace_speculation_t *spec;
14896 	dtrace_buffer_t *buf;
14897 #ifdef illumos
14898 	cyc_handler_t hdlr;
14899 	cyc_time_t when;
14900 #endif
14901 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14902 	dtrace_icookie_t cookie;
14903 
14904 	mutex_enter(&cpu_lock);
14905 	mutex_enter(&dtrace_lock);
14906 
14907 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14908 		rval = EBUSY;
14909 		goto out;
14910 	}
14911 
14912 	/*
14913 	 * Before we can perform any checks, we must prime all of the
14914 	 * retained enablings that correspond to this state.
14915 	 */
14916 	dtrace_enabling_prime(state);
14917 
14918 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14919 		rval = EACCES;
14920 		goto out;
14921 	}
14922 
14923 	dtrace_state_prereserve(state);
14924 
14925 	/*
14926 	 * Now we want to do is try to allocate our speculations.
14927 	 * We do not automatically resize the number of speculations; if
14928 	 * this fails, we will fail the operation.
14929 	 */
14930 	nspec = opt[DTRACEOPT_NSPEC];
14931 	ASSERT(nspec != DTRACEOPT_UNSET);
14932 
14933 	if (nspec > INT_MAX) {
14934 		rval = ENOMEM;
14935 		goto out;
14936 	}
14937 
14938 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14939 	    KM_NOSLEEP | KM_NORMALPRI);
14940 
14941 	if (spec == NULL) {
14942 		rval = ENOMEM;
14943 		goto out;
14944 	}
14945 
14946 	state->dts_speculations = spec;
14947 	state->dts_nspeculations = (int)nspec;
14948 
14949 	for (i = 0; i < nspec; i++) {
14950 		if ((buf = kmem_zalloc(bufsize,
14951 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14952 			rval = ENOMEM;
14953 			goto err;
14954 		}
14955 
14956 		spec[i].dtsp_buffer = buf;
14957 	}
14958 
14959 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14960 		if (dtrace_anon.dta_state == NULL) {
14961 			rval = ENOENT;
14962 			goto out;
14963 		}
14964 
14965 		if (state->dts_necbs != 0) {
14966 			rval = EALREADY;
14967 			goto out;
14968 		}
14969 
14970 		state->dts_anon = dtrace_anon_grab();
14971 		ASSERT(state->dts_anon != NULL);
14972 		state = state->dts_anon;
14973 
14974 		/*
14975 		 * We want "grabanon" to be set in the grabbed state, so we'll
14976 		 * copy that option value from the grabbing state into the
14977 		 * grabbed state.
14978 		 */
14979 		state->dts_options[DTRACEOPT_GRABANON] =
14980 		    opt[DTRACEOPT_GRABANON];
14981 
14982 		*cpu = dtrace_anon.dta_beganon;
14983 
14984 		/*
14985 		 * If the anonymous state is active (as it almost certainly
14986 		 * is if the anonymous enabling ultimately matched anything),
14987 		 * we don't allow any further option processing -- but we
14988 		 * don't return failure.
14989 		 */
14990 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14991 			goto out;
14992 	}
14993 
14994 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14995 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14996 		if (state->dts_aggregations == NULL) {
14997 			/*
14998 			 * We're not going to create an aggregation buffer
14999 			 * because we don't have any ECBs that contain
15000 			 * aggregations -- set this option to 0.
15001 			 */
15002 			opt[DTRACEOPT_AGGSIZE] = 0;
15003 		} else {
15004 			/*
15005 			 * If we have an aggregation buffer, we must also have
15006 			 * a buffer to use as scratch.
15007 			 */
15008 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15009 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15010 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15011 			}
15012 		}
15013 	}
15014 
15015 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15016 	    opt[DTRACEOPT_SPECSIZE] != 0) {
15017 		if (!state->dts_speculates) {
15018 			/*
15019 			 * We're not going to create speculation buffers
15020 			 * because we don't have any ECBs that actually
15021 			 * speculate -- set the speculation size to 0.
15022 			 */
15023 			opt[DTRACEOPT_SPECSIZE] = 0;
15024 		}
15025 	}
15026 
15027 	/*
15028 	 * The bare minimum size for any buffer that we're actually going to
15029 	 * do anything to is sizeof (uint64_t).
15030 	 */
15031 	sz = sizeof (uint64_t);
15032 
15033 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15034 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15035 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15036 		/*
15037 		 * A buffer size has been explicitly set to 0 (or to a size
15038 		 * that will be adjusted to 0) and we need the space -- we
15039 		 * need to return failure.  We return ENOSPC to differentiate
15040 		 * it from failing to allocate a buffer due to failure to meet
15041 		 * the reserve (for which we return E2BIG).
15042 		 */
15043 		rval = ENOSPC;
15044 		goto out;
15045 	}
15046 
15047 	if ((rval = dtrace_state_buffers(state)) != 0)
15048 		goto err;
15049 
15050 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15051 		sz = dtrace_dstate_defsize;
15052 
15053 	do {
15054 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15055 
15056 		if (rval == 0)
15057 			break;
15058 
15059 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15060 			goto err;
15061 	} while (sz >>= 1);
15062 
15063 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15064 
15065 	if (rval != 0)
15066 		goto err;
15067 
15068 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15069 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15070 
15071 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15072 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15073 
15074 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15075 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15076 
15077 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15078 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15079 
15080 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15081 #ifdef illumos
15082 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15083 	hdlr.cyh_arg = state;
15084 	hdlr.cyh_level = CY_LOW_LEVEL;
15085 
15086 	when.cyt_when = 0;
15087 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15088 
15089 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15090 
15091 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15092 	hdlr.cyh_arg = state;
15093 	hdlr.cyh_level = CY_LOW_LEVEL;
15094 
15095 	when.cyt_when = 0;
15096 	when.cyt_interval = dtrace_deadman_interval;
15097 
15098 	state->dts_deadman = cyclic_add(&hdlr, &when);
15099 #else
15100 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15101 	    dtrace_state_clean, state);
15102 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15103 	    dtrace_state_deadman, state);
15104 #endif
15105 
15106 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15107 
15108 #ifdef illumos
15109 	if (state->dts_getf != 0 &&
15110 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15111 		/*
15112 		 * We don't have kernel privs but we have at least one call
15113 		 * to getf(); we need to bump our zone's count, and (if
15114 		 * this is the first enabling to have an unprivileged call
15115 		 * to getf()) we need to hook into closef().
15116 		 */
15117 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15118 
15119 		if (dtrace_getf++ == 0) {
15120 			ASSERT(dtrace_closef == NULL);
15121 			dtrace_closef = dtrace_getf_barrier;
15122 		}
15123 	}
15124 #endif
15125 
15126 	/*
15127 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15128 	 * interrupts here both to record the CPU on which we fired the BEGIN
15129 	 * probe (the data from this CPU will be processed first at user
15130 	 * level) and to manually activate the buffer for this CPU.
15131 	 */
15132 	cookie = dtrace_interrupt_disable();
15133 	*cpu = curcpu;
15134 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15135 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15136 
15137 	dtrace_probe(dtrace_probeid_begin,
15138 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15139 	dtrace_interrupt_enable(cookie);
15140 	/*
15141 	 * We may have had an exit action from a BEGIN probe; only change our
15142 	 * state to ACTIVE if we're still in WARMUP.
15143 	 */
15144 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15145 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15146 
15147 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15148 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15149 
15150 #ifdef __FreeBSD__
15151 	/*
15152 	 * We enable anonymous tracing before APs are started, so we must
15153 	 * activate buffers using the current CPU.
15154 	 */
15155 	if (state == dtrace_anon.dta_state)
15156 		for (int i = 0; i < NCPU; i++)
15157 			dtrace_buffer_activate_cpu(state, i);
15158 	else
15159 		dtrace_xcall(DTRACE_CPUALL,
15160 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15161 #else
15162 	/*
15163 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15164 	 * want each CPU to transition its principal buffer out of the
15165 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15166 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15167 	 * atomically transition from processing none of a state's ECBs to
15168 	 * processing all of them.
15169 	 */
15170 	dtrace_xcall(DTRACE_CPUALL,
15171 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15172 #endif
15173 	goto out;
15174 
15175 err:
15176 	dtrace_buffer_free(state->dts_buffer);
15177 	dtrace_buffer_free(state->dts_aggbuffer);
15178 
15179 	if ((nspec = state->dts_nspeculations) == 0) {
15180 		ASSERT(state->dts_speculations == NULL);
15181 		goto out;
15182 	}
15183 
15184 	spec = state->dts_speculations;
15185 	ASSERT(spec != NULL);
15186 
15187 	for (i = 0; i < state->dts_nspeculations; i++) {
15188 		if ((buf = spec[i].dtsp_buffer) == NULL)
15189 			break;
15190 
15191 		dtrace_buffer_free(buf);
15192 		kmem_free(buf, bufsize);
15193 	}
15194 
15195 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15196 	state->dts_nspeculations = 0;
15197 	state->dts_speculations = NULL;
15198 
15199 out:
15200 	mutex_exit(&dtrace_lock);
15201 	mutex_exit(&cpu_lock);
15202 
15203 	return (rval);
15204 }
15205 
15206 static int
15207 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15208 {
15209 	dtrace_icookie_t cookie;
15210 
15211 	ASSERT(MUTEX_HELD(&dtrace_lock));
15212 
15213 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15214 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15215 		return (EINVAL);
15216 
15217 	/*
15218 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15219 	 * to be sure that every CPU has seen it.  See below for the details
15220 	 * on why this is done.
15221 	 */
15222 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15223 	dtrace_sync();
15224 
15225 	/*
15226 	 * By this point, it is impossible for any CPU to be still processing
15227 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15228 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15229 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15230 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15231 	 * iff we're in the END probe.
15232 	 */
15233 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15234 	dtrace_sync();
15235 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15236 
15237 	/*
15238 	 * Finally, we can release the reserve and call the END probe.  We
15239 	 * disable interrupts across calling the END probe to allow us to
15240 	 * return the CPU on which we actually called the END probe.  This
15241 	 * allows user-land to be sure that this CPU's principal buffer is
15242 	 * processed last.
15243 	 */
15244 	state->dts_reserve = 0;
15245 
15246 	cookie = dtrace_interrupt_disable();
15247 	*cpu = curcpu;
15248 	dtrace_probe(dtrace_probeid_end,
15249 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15250 	dtrace_interrupt_enable(cookie);
15251 
15252 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15253 	dtrace_sync();
15254 
15255 #ifdef illumos
15256 	if (state->dts_getf != 0 &&
15257 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15258 		/*
15259 		 * We don't have kernel privs but we have at least one call
15260 		 * to getf(); we need to lower our zone's count, and (if
15261 		 * this is the last enabling to have an unprivileged call
15262 		 * to getf()) we need to clear the closef() hook.
15263 		 */
15264 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15265 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15266 		ASSERT(dtrace_getf > 0);
15267 
15268 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15269 
15270 		if (--dtrace_getf == 0)
15271 			dtrace_closef = NULL;
15272 	}
15273 #endif
15274 
15275 	return (0);
15276 }
15277 
15278 static int
15279 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15280     dtrace_optval_t val)
15281 {
15282 	ASSERT(MUTEX_HELD(&dtrace_lock));
15283 
15284 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15285 		return (EBUSY);
15286 
15287 	if (option >= DTRACEOPT_MAX)
15288 		return (EINVAL);
15289 
15290 	if (option != DTRACEOPT_CPU && val < 0)
15291 		return (EINVAL);
15292 
15293 	switch (option) {
15294 	case DTRACEOPT_DESTRUCTIVE:
15295 		if (dtrace_destructive_disallow)
15296 			return (EACCES);
15297 
15298 		state->dts_cred.dcr_destructive = 1;
15299 		break;
15300 
15301 	case DTRACEOPT_BUFSIZE:
15302 	case DTRACEOPT_DYNVARSIZE:
15303 	case DTRACEOPT_AGGSIZE:
15304 	case DTRACEOPT_SPECSIZE:
15305 	case DTRACEOPT_STRSIZE:
15306 		if (val < 0)
15307 			return (EINVAL);
15308 
15309 		if (val >= LONG_MAX) {
15310 			/*
15311 			 * If this is an otherwise negative value, set it to
15312 			 * the highest multiple of 128m less than LONG_MAX.
15313 			 * Technically, we're adjusting the size without
15314 			 * regard to the buffer resizing policy, but in fact,
15315 			 * this has no effect -- if we set the buffer size to
15316 			 * ~LONG_MAX and the buffer policy is ultimately set to
15317 			 * be "manual", the buffer allocation is guaranteed to
15318 			 * fail, if only because the allocation requires two
15319 			 * buffers.  (We set the the size to the highest
15320 			 * multiple of 128m because it ensures that the size
15321 			 * will remain a multiple of a megabyte when
15322 			 * repeatedly halved -- all the way down to 15m.)
15323 			 */
15324 			val = LONG_MAX - (1 << 27) + 1;
15325 		}
15326 	}
15327 
15328 	state->dts_options[option] = val;
15329 
15330 	return (0);
15331 }
15332 
15333 static void
15334 dtrace_state_destroy(dtrace_state_t *state)
15335 {
15336 	dtrace_ecb_t *ecb;
15337 	dtrace_vstate_t *vstate = &state->dts_vstate;
15338 #ifdef illumos
15339 	minor_t minor = getminor(state->dts_dev);
15340 #endif
15341 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15342 	dtrace_speculation_t *spec = state->dts_speculations;
15343 	int nspec = state->dts_nspeculations;
15344 	uint32_t match;
15345 
15346 	ASSERT(MUTEX_HELD(&dtrace_lock));
15347 	ASSERT(MUTEX_HELD(&cpu_lock));
15348 
15349 	/*
15350 	 * First, retract any retained enablings for this state.
15351 	 */
15352 	dtrace_enabling_retract(state);
15353 	ASSERT(state->dts_nretained == 0);
15354 
15355 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15356 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15357 		/*
15358 		 * We have managed to come into dtrace_state_destroy() on a
15359 		 * hot enabling -- almost certainly because of a disorderly
15360 		 * shutdown of a consumer.  (That is, a consumer that is
15361 		 * exiting without having called dtrace_stop().) In this case,
15362 		 * we're going to set our activity to be KILLED, and then
15363 		 * issue a sync to be sure that everyone is out of probe
15364 		 * context before we start blowing away ECBs.
15365 		 */
15366 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15367 		dtrace_sync();
15368 	}
15369 
15370 	/*
15371 	 * Release the credential hold we took in dtrace_state_create().
15372 	 */
15373 	if (state->dts_cred.dcr_cred != NULL)
15374 		crfree(state->dts_cred.dcr_cred);
15375 
15376 	/*
15377 	 * Now we can safely disable and destroy any enabled probes.  Because
15378 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15379 	 * (especially if they're all enabled), we take two passes through the
15380 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15381 	 * in the second we disable whatever is left over.
15382 	 */
15383 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15384 		for (i = 0; i < state->dts_necbs; i++) {
15385 			if ((ecb = state->dts_ecbs[i]) == NULL)
15386 				continue;
15387 
15388 			if (match && ecb->dte_probe != NULL) {
15389 				dtrace_probe_t *probe = ecb->dte_probe;
15390 				dtrace_provider_t *prov = probe->dtpr_provider;
15391 
15392 				if (!(prov->dtpv_priv.dtpp_flags & match))
15393 					continue;
15394 			}
15395 
15396 			dtrace_ecb_disable(ecb);
15397 			dtrace_ecb_destroy(ecb);
15398 		}
15399 
15400 		if (!match)
15401 			break;
15402 	}
15403 
15404 	/*
15405 	 * Before we free the buffers, perform one more sync to assure that
15406 	 * every CPU is out of probe context.
15407 	 */
15408 	dtrace_sync();
15409 
15410 	dtrace_buffer_free(state->dts_buffer);
15411 	dtrace_buffer_free(state->dts_aggbuffer);
15412 
15413 	for (i = 0; i < nspec; i++)
15414 		dtrace_buffer_free(spec[i].dtsp_buffer);
15415 
15416 #ifdef illumos
15417 	if (state->dts_cleaner != CYCLIC_NONE)
15418 		cyclic_remove(state->dts_cleaner);
15419 
15420 	if (state->dts_deadman != CYCLIC_NONE)
15421 		cyclic_remove(state->dts_deadman);
15422 #else
15423 	callout_stop(&state->dts_cleaner);
15424 	callout_drain(&state->dts_cleaner);
15425 	callout_stop(&state->dts_deadman);
15426 	callout_drain(&state->dts_deadman);
15427 #endif
15428 
15429 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15430 	dtrace_vstate_fini(vstate);
15431 	if (state->dts_ecbs != NULL)
15432 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15433 
15434 	if (state->dts_aggregations != NULL) {
15435 #ifdef DEBUG
15436 		for (i = 0; i < state->dts_naggregations; i++)
15437 			ASSERT(state->dts_aggregations[i] == NULL);
15438 #endif
15439 		ASSERT(state->dts_naggregations > 0);
15440 		kmem_free(state->dts_aggregations,
15441 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15442 	}
15443 
15444 	kmem_free(state->dts_buffer, bufsize);
15445 	kmem_free(state->dts_aggbuffer, bufsize);
15446 
15447 	for (i = 0; i < nspec; i++)
15448 		kmem_free(spec[i].dtsp_buffer, bufsize);
15449 
15450 	if (spec != NULL)
15451 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15452 
15453 	dtrace_format_destroy(state);
15454 
15455 	if (state->dts_aggid_arena != NULL) {
15456 #ifdef illumos
15457 		vmem_destroy(state->dts_aggid_arena);
15458 #else
15459 		delete_unrhdr(state->dts_aggid_arena);
15460 #endif
15461 		state->dts_aggid_arena = NULL;
15462 	}
15463 #ifdef illumos
15464 	ddi_soft_state_free(dtrace_softstate, minor);
15465 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15466 #endif
15467 }
15468 
15469 /*
15470  * DTrace Anonymous Enabling Functions
15471  */
15472 static dtrace_state_t *
15473 dtrace_anon_grab(void)
15474 {
15475 	dtrace_state_t *state;
15476 
15477 	ASSERT(MUTEX_HELD(&dtrace_lock));
15478 
15479 	if ((state = dtrace_anon.dta_state) == NULL) {
15480 		ASSERT(dtrace_anon.dta_enabling == NULL);
15481 		return (NULL);
15482 	}
15483 
15484 	ASSERT(dtrace_anon.dta_enabling != NULL);
15485 	ASSERT(dtrace_retained != NULL);
15486 
15487 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15488 	dtrace_anon.dta_enabling = NULL;
15489 	dtrace_anon.dta_state = NULL;
15490 
15491 	return (state);
15492 }
15493 
15494 static void
15495 dtrace_anon_property(void)
15496 {
15497 	int i, rv;
15498 	dtrace_state_t *state;
15499 	dof_hdr_t *dof;
15500 	char c[32];		/* enough for "dof-data-" + digits */
15501 
15502 	ASSERT(MUTEX_HELD(&dtrace_lock));
15503 	ASSERT(MUTEX_HELD(&cpu_lock));
15504 
15505 	for (i = 0; ; i++) {
15506 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15507 
15508 		dtrace_err_verbose = 1;
15509 
15510 		if ((dof = dtrace_dof_property(c)) == NULL) {
15511 			dtrace_err_verbose = 0;
15512 			break;
15513 		}
15514 
15515 #ifdef illumos
15516 		/*
15517 		 * We want to create anonymous state, so we need to transition
15518 		 * the kernel debugger to indicate that DTrace is active.  If
15519 		 * this fails (e.g. because the debugger has modified text in
15520 		 * some way), we won't continue with the processing.
15521 		 */
15522 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15523 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15524 			    "enabling ignored.");
15525 			dtrace_dof_destroy(dof);
15526 			break;
15527 		}
15528 #endif
15529 
15530 		/*
15531 		 * If we haven't allocated an anonymous state, we'll do so now.
15532 		 */
15533 		if ((state = dtrace_anon.dta_state) == NULL) {
15534 			state = dtrace_state_create(NULL, NULL);
15535 			dtrace_anon.dta_state = state;
15536 
15537 			if (state == NULL) {
15538 				/*
15539 				 * This basically shouldn't happen:  the only
15540 				 * failure mode from dtrace_state_create() is a
15541 				 * failure of ddi_soft_state_zalloc() that
15542 				 * itself should never happen.  Still, the
15543 				 * interface allows for a failure mode, and
15544 				 * we want to fail as gracefully as possible:
15545 				 * we'll emit an error message and cease
15546 				 * processing anonymous state in this case.
15547 				 */
15548 				cmn_err(CE_WARN, "failed to create "
15549 				    "anonymous state");
15550 				dtrace_dof_destroy(dof);
15551 				break;
15552 			}
15553 		}
15554 
15555 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15556 		    &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15557 
15558 		if (rv == 0)
15559 			rv = dtrace_dof_options(dof, state);
15560 
15561 		dtrace_err_verbose = 0;
15562 		dtrace_dof_destroy(dof);
15563 
15564 		if (rv != 0) {
15565 			/*
15566 			 * This is malformed DOF; chuck any anonymous state
15567 			 * that we created.
15568 			 */
15569 			ASSERT(dtrace_anon.dta_enabling == NULL);
15570 			dtrace_state_destroy(state);
15571 			dtrace_anon.dta_state = NULL;
15572 			break;
15573 		}
15574 
15575 		ASSERT(dtrace_anon.dta_enabling != NULL);
15576 	}
15577 
15578 	if (dtrace_anon.dta_enabling != NULL) {
15579 		int rval;
15580 
15581 		/*
15582 		 * dtrace_enabling_retain() can only fail because we are
15583 		 * trying to retain more enablings than are allowed -- but
15584 		 * we only have one anonymous enabling, and we are guaranteed
15585 		 * to be allowed at least one retained enabling; we assert
15586 		 * that dtrace_enabling_retain() returns success.
15587 		 */
15588 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15589 		ASSERT(rval == 0);
15590 
15591 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15592 	}
15593 }
15594 
15595 /*
15596  * DTrace Helper Functions
15597  */
15598 static void
15599 dtrace_helper_trace(dtrace_helper_action_t *helper,
15600     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15601 {
15602 	uint32_t size, next, nnext, i;
15603 	dtrace_helptrace_t *ent, *buffer;
15604 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15605 
15606 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15607 		return;
15608 
15609 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15610 
15611 	/*
15612 	 * What would a tracing framework be without its own tracing
15613 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15614 	 */
15615 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15616 	    sizeof (uint64_t) - sizeof (uint64_t);
15617 
15618 	/*
15619 	 * Iterate until we can allocate a slot in the trace buffer.
15620 	 */
15621 	do {
15622 		next = dtrace_helptrace_next;
15623 
15624 		if (next + size < dtrace_helptrace_bufsize) {
15625 			nnext = next + size;
15626 		} else {
15627 			nnext = size;
15628 		}
15629 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15630 
15631 	/*
15632 	 * We have our slot; fill it in.
15633 	 */
15634 	if (nnext == size) {
15635 		dtrace_helptrace_wrapped++;
15636 		next = 0;
15637 	}
15638 
15639 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15640 	ent->dtht_helper = helper;
15641 	ent->dtht_where = where;
15642 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15643 
15644 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15645 	    mstate->dtms_fltoffs : -1;
15646 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15647 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15648 
15649 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15650 		dtrace_statvar_t *svar;
15651 
15652 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15653 			continue;
15654 
15655 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15656 		ent->dtht_locals[i] =
15657 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15658 	}
15659 }
15660 
15661 static uint64_t
15662 dtrace_helper(int which, dtrace_mstate_t *mstate,
15663     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15664 {
15665 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15666 	uint64_t sarg0 = mstate->dtms_arg[0];
15667 	uint64_t sarg1 = mstate->dtms_arg[1];
15668 	uint64_t rval = 0;
15669 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15670 	dtrace_helper_action_t *helper;
15671 	dtrace_vstate_t *vstate;
15672 	dtrace_difo_t *pred;
15673 	int i, trace = dtrace_helptrace_buffer != NULL;
15674 
15675 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15676 
15677 	if (helpers == NULL)
15678 		return (0);
15679 
15680 	if ((helper = helpers->dthps_actions[which]) == NULL)
15681 		return (0);
15682 
15683 	vstate = &helpers->dthps_vstate;
15684 	mstate->dtms_arg[0] = arg0;
15685 	mstate->dtms_arg[1] = arg1;
15686 
15687 	/*
15688 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15689 	 * we'll call the corresponding actions.  Note that the below calls
15690 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15691 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15692 	 * the stored DIF offset with its own (which is the desired behavior).
15693 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15694 	 * from machine state; this is okay, too.
15695 	 */
15696 	for (; helper != NULL; helper = helper->dtha_next) {
15697 		if ((pred = helper->dtha_predicate) != NULL) {
15698 			if (trace)
15699 				dtrace_helper_trace(helper, mstate, vstate, 0);
15700 
15701 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15702 				goto next;
15703 
15704 			if (*flags & CPU_DTRACE_FAULT)
15705 				goto err;
15706 		}
15707 
15708 		for (i = 0; i < helper->dtha_nactions; i++) {
15709 			if (trace)
15710 				dtrace_helper_trace(helper,
15711 				    mstate, vstate, i + 1);
15712 
15713 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15714 			    mstate, vstate, state);
15715 
15716 			if (*flags & CPU_DTRACE_FAULT)
15717 				goto err;
15718 		}
15719 
15720 next:
15721 		if (trace)
15722 			dtrace_helper_trace(helper, mstate, vstate,
15723 			    DTRACE_HELPTRACE_NEXT);
15724 	}
15725 
15726 	if (trace)
15727 		dtrace_helper_trace(helper, mstate, vstate,
15728 		    DTRACE_HELPTRACE_DONE);
15729 
15730 	/*
15731 	 * Restore the arg0 that we saved upon entry.
15732 	 */
15733 	mstate->dtms_arg[0] = sarg0;
15734 	mstate->dtms_arg[1] = sarg1;
15735 
15736 	return (rval);
15737 
15738 err:
15739 	if (trace)
15740 		dtrace_helper_trace(helper, mstate, vstate,
15741 		    DTRACE_HELPTRACE_ERR);
15742 
15743 	/*
15744 	 * Restore the arg0 that we saved upon entry.
15745 	 */
15746 	mstate->dtms_arg[0] = sarg0;
15747 	mstate->dtms_arg[1] = sarg1;
15748 
15749 	return (0);
15750 }
15751 
15752 static void
15753 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15754     dtrace_vstate_t *vstate)
15755 {
15756 	int i;
15757 
15758 	if (helper->dtha_predicate != NULL)
15759 		dtrace_difo_release(helper->dtha_predicate, vstate);
15760 
15761 	for (i = 0; i < helper->dtha_nactions; i++) {
15762 		ASSERT(helper->dtha_actions[i] != NULL);
15763 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15764 	}
15765 
15766 	kmem_free(helper->dtha_actions,
15767 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15768 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15769 }
15770 
15771 static int
15772 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15773 {
15774 	proc_t *p = curproc;
15775 	dtrace_vstate_t *vstate;
15776 	int i;
15777 
15778 	if (help == NULL)
15779 		help = p->p_dtrace_helpers;
15780 
15781 	ASSERT(MUTEX_HELD(&dtrace_lock));
15782 
15783 	if (help == NULL || gen > help->dthps_generation)
15784 		return (EINVAL);
15785 
15786 	vstate = &help->dthps_vstate;
15787 
15788 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15789 		dtrace_helper_action_t *last = NULL, *h, *next;
15790 
15791 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15792 			next = h->dtha_next;
15793 
15794 			if (h->dtha_generation == gen) {
15795 				if (last != NULL) {
15796 					last->dtha_next = next;
15797 				} else {
15798 					help->dthps_actions[i] = next;
15799 				}
15800 
15801 				dtrace_helper_action_destroy(h, vstate);
15802 			} else {
15803 				last = h;
15804 			}
15805 		}
15806 	}
15807 
15808 	/*
15809 	 * Interate until we've cleared out all helper providers with the
15810 	 * given generation number.
15811 	 */
15812 	for (;;) {
15813 		dtrace_helper_provider_t *prov;
15814 
15815 		/*
15816 		 * Look for a helper provider with the right generation. We
15817 		 * have to start back at the beginning of the list each time
15818 		 * because we drop dtrace_lock. It's unlikely that we'll make
15819 		 * more than two passes.
15820 		 */
15821 		for (i = 0; i < help->dthps_nprovs; i++) {
15822 			prov = help->dthps_provs[i];
15823 
15824 			if (prov->dthp_generation == gen)
15825 				break;
15826 		}
15827 
15828 		/*
15829 		 * If there were no matches, we're done.
15830 		 */
15831 		if (i == help->dthps_nprovs)
15832 			break;
15833 
15834 		/*
15835 		 * Move the last helper provider into this slot.
15836 		 */
15837 		help->dthps_nprovs--;
15838 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15839 		help->dthps_provs[help->dthps_nprovs] = NULL;
15840 
15841 		mutex_exit(&dtrace_lock);
15842 
15843 		/*
15844 		 * If we have a meta provider, remove this helper provider.
15845 		 */
15846 		mutex_enter(&dtrace_meta_lock);
15847 		if (dtrace_meta_pid != NULL) {
15848 			ASSERT(dtrace_deferred_pid == NULL);
15849 			dtrace_helper_provider_remove(&prov->dthp_prov,
15850 			    p->p_pid);
15851 		}
15852 		mutex_exit(&dtrace_meta_lock);
15853 
15854 		dtrace_helper_provider_destroy(prov);
15855 
15856 		mutex_enter(&dtrace_lock);
15857 	}
15858 
15859 	return (0);
15860 }
15861 
15862 static int
15863 dtrace_helper_validate(dtrace_helper_action_t *helper)
15864 {
15865 	int err = 0, i;
15866 	dtrace_difo_t *dp;
15867 
15868 	if ((dp = helper->dtha_predicate) != NULL)
15869 		err += dtrace_difo_validate_helper(dp);
15870 
15871 	for (i = 0; i < helper->dtha_nactions; i++)
15872 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15873 
15874 	return (err == 0);
15875 }
15876 
15877 static int
15878 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15879     dtrace_helpers_t *help)
15880 {
15881 	dtrace_helper_action_t *helper, *last;
15882 	dtrace_actdesc_t *act;
15883 	dtrace_vstate_t *vstate;
15884 	dtrace_predicate_t *pred;
15885 	int count = 0, nactions = 0, i;
15886 
15887 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15888 		return (EINVAL);
15889 
15890 	last = help->dthps_actions[which];
15891 	vstate = &help->dthps_vstate;
15892 
15893 	for (count = 0; last != NULL; last = last->dtha_next) {
15894 		count++;
15895 		if (last->dtha_next == NULL)
15896 			break;
15897 	}
15898 
15899 	/*
15900 	 * If we already have dtrace_helper_actions_max helper actions for this
15901 	 * helper action type, we'll refuse to add a new one.
15902 	 */
15903 	if (count >= dtrace_helper_actions_max)
15904 		return (ENOSPC);
15905 
15906 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15907 	helper->dtha_generation = help->dthps_generation;
15908 
15909 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15910 		ASSERT(pred->dtp_difo != NULL);
15911 		dtrace_difo_hold(pred->dtp_difo);
15912 		helper->dtha_predicate = pred->dtp_difo;
15913 	}
15914 
15915 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15916 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15917 			goto err;
15918 
15919 		if (act->dtad_difo == NULL)
15920 			goto err;
15921 
15922 		nactions++;
15923 	}
15924 
15925 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15926 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15927 
15928 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15929 		dtrace_difo_hold(act->dtad_difo);
15930 		helper->dtha_actions[i++] = act->dtad_difo;
15931 	}
15932 
15933 	if (!dtrace_helper_validate(helper))
15934 		goto err;
15935 
15936 	if (last == NULL) {
15937 		help->dthps_actions[which] = helper;
15938 	} else {
15939 		last->dtha_next = helper;
15940 	}
15941 
15942 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15943 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15944 		dtrace_helptrace_next = 0;
15945 	}
15946 
15947 	return (0);
15948 err:
15949 	dtrace_helper_action_destroy(helper, vstate);
15950 	return (EINVAL);
15951 }
15952 
15953 static void
15954 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15955     dof_helper_t *dofhp)
15956 {
15957 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15958 
15959 	mutex_enter(&dtrace_meta_lock);
15960 	mutex_enter(&dtrace_lock);
15961 
15962 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15963 		/*
15964 		 * If the dtrace module is loaded but not attached, or if
15965 		 * there aren't isn't a meta provider registered to deal with
15966 		 * these provider descriptions, we need to postpone creating
15967 		 * the actual providers until later.
15968 		 */
15969 
15970 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15971 		    dtrace_deferred_pid != help) {
15972 			help->dthps_deferred = 1;
15973 			help->dthps_pid = p->p_pid;
15974 			help->dthps_next = dtrace_deferred_pid;
15975 			help->dthps_prev = NULL;
15976 			if (dtrace_deferred_pid != NULL)
15977 				dtrace_deferred_pid->dthps_prev = help;
15978 			dtrace_deferred_pid = help;
15979 		}
15980 
15981 		mutex_exit(&dtrace_lock);
15982 
15983 	} else if (dofhp != NULL) {
15984 		/*
15985 		 * If the dtrace module is loaded and we have a particular
15986 		 * helper provider description, pass that off to the
15987 		 * meta provider.
15988 		 */
15989 
15990 		mutex_exit(&dtrace_lock);
15991 
15992 		dtrace_helper_provide(dofhp, p->p_pid);
15993 
15994 	} else {
15995 		/*
15996 		 * Otherwise, just pass all the helper provider descriptions
15997 		 * off to the meta provider.
15998 		 */
15999 
16000 		int i;
16001 		mutex_exit(&dtrace_lock);
16002 
16003 		for (i = 0; i < help->dthps_nprovs; i++) {
16004 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16005 			    p->p_pid);
16006 		}
16007 	}
16008 
16009 	mutex_exit(&dtrace_meta_lock);
16010 }
16011 
16012 static int
16013 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16014 {
16015 	dtrace_helper_provider_t *hprov, **tmp_provs;
16016 	uint_t tmp_maxprovs, i;
16017 
16018 	ASSERT(MUTEX_HELD(&dtrace_lock));
16019 	ASSERT(help != NULL);
16020 
16021 	/*
16022 	 * If we already have dtrace_helper_providers_max helper providers,
16023 	 * we're refuse to add a new one.
16024 	 */
16025 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16026 		return (ENOSPC);
16027 
16028 	/*
16029 	 * Check to make sure this isn't a duplicate.
16030 	 */
16031 	for (i = 0; i < help->dthps_nprovs; i++) {
16032 		if (dofhp->dofhp_addr ==
16033 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16034 			return (EALREADY);
16035 	}
16036 
16037 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16038 	hprov->dthp_prov = *dofhp;
16039 	hprov->dthp_ref = 1;
16040 	hprov->dthp_generation = gen;
16041 
16042 	/*
16043 	 * Allocate a bigger table for helper providers if it's already full.
16044 	 */
16045 	if (help->dthps_maxprovs == help->dthps_nprovs) {
16046 		tmp_maxprovs = help->dthps_maxprovs;
16047 		tmp_provs = help->dthps_provs;
16048 
16049 		if (help->dthps_maxprovs == 0)
16050 			help->dthps_maxprovs = 2;
16051 		else
16052 			help->dthps_maxprovs *= 2;
16053 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16054 			help->dthps_maxprovs = dtrace_helper_providers_max;
16055 
16056 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16057 
16058 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16059 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16060 
16061 		if (tmp_provs != NULL) {
16062 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16063 			    sizeof (dtrace_helper_provider_t *));
16064 			kmem_free(tmp_provs, tmp_maxprovs *
16065 			    sizeof (dtrace_helper_provider_t *));
16066 		}
16067 	}
16068 
16069 	help->dthps_provs[help->dthps_nprovs] = hprov;
16070 	help->dthps_nprovs++;
16071 
16072 	return (0);
16073 }
16074 
16075 static void
16076 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16077 {
16078 	mutex_enter(&dtrace_lock);
16079 
16080 	if (--hprov->dthp_ref == 0) {
16081 		dof_hdr_t *dof;
16082 		mutex_exit(&dtrace_lock);
16083 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16084 		dtrace_dof_destroy(dof);
16085 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16086 	} else {
16087 		mutex_exit(&dtrace_lock);
16088 	}
16089 }
16090 
16091 static int
16092 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16093 {
16094 	uintptr_t daddr = (uintptr_t)dof;
16095 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16096 	dof_provider_t *provider;
16097 	dof_probe_t *probe;
16098 	uint8_t *arg;
16099 	char *strtab, *typestr;
16100 	dof_stridx_t typeidx;
16101 	size_t typesz;
16102 	uint_t nprobes, j, k;
16103 
16104 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16105 
16106 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16107 		dtrace_dof_error(dof, "misaligned section offset");
16108 		return (-1);
16109 	}
16110 
16111 	/*
16112 	 * The section needs to be large enough to contain the DOF provider
16113 	 * structure appropriate for the given version.
16114 	 */
16115 	if (sec->dofs_size <
16116 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16117 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16118 	    sizeof (dof_provider_t))) {
16119 		dtrace_dof_error(dof, "provider section too small");
16120 		return (-1);
16121 	}
16122 
16123 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16124 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16125 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16126 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16127 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16128 
16129 	if (str_sec == NULL || prb_sec == NULL ||
16130 	    arg_sec == NULL || off_sec == NULL)
16131 		return (-1);
16132 
16133 	enoff_sec = NULL;
16134 
16135 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16136 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16137 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16138 	    provider->dofpv_prenoffs)) == NULL)
16139 		return (-1);
16140 
16141 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16142 
16143 	if (provider->dofpv_name >= str_sec->dofs_size ||
16144 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16145 		dtrace_dof_error(dof, "invalid provider name");
16146 		return (-1);
16147 	}
16148 
16149 	if (prb_sec->dofs_entsize == 0 ||
16150 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16151 		dtrace_dof_error(dof, "invalid entry size");
16152 		return (-1);
16153 	}
16154 
16155 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16156 		dtrace_dof_error(dof, "misaligned entry size");
16157 		return (-1);
16158 	}
16159 
16160 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16161 		dtrace_dof_error(dof, "invalid entry size");
16162 		return (-1);
16163 	}
16164 
16165 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16166 		dtrace_dof_error(dof, "misaligned section offset");
16167 		return (-1);
16168 	}
16169 
16170 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16171 		dtrace_dof_error(dof, "invalid entry size");
16172 		return (-1);
16173 	}
16174 
16175 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16176 
16177 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16178 
16179 	/*
16180 	 * Take a pass through the probes to check for errors.
16181 	 */
16182 	for (j = 0; j < nprobes; j++) {
16183 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16184 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16185 
16186 		if (probe->dofpr_func >= str_sec->dofs_size) {
16187 			dtrace_dof_error(dof, "invalid function name");
16188 			return (-1);
16189 		}
16190 
16191 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16192 			dtrace_dof_error(dof, "function name too long");
16193 			/*
16194 			 * Keep going if the function name is too long.
16195 			 * Unlike provider and probe names, we cannot reasonably
16196 			 * impose restrictions on function names, since they're
16197 			 * a property of the code being instrumented. We will
16198 			 * skip this probe in dtrace_helper_provide_one().
16199 			 */
16200 		}
16201 
16202 		if (probe->dofpr_name >= str_sec->dofs_size ||
16203 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16204 			dtrace_dof_error(dof, "invalid probe name");
16205 			return (-1);
16206 		}
16207 
16208 		/*
16209 		 * The offset count must not wrap the index, and the offsets
16210 		 * must also not overflow the section's data.
16211 		 */
16212 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16213 		    probe->dofpr_offidx ||
16214 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16215 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16216 			dtrace_dof_error(dof, "invalid probe offset");
16217 			return (-1);
16218 		}
16219 
16220 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16221 			/*
16222 			 * If there's no is-enabled offset section, make sure
16223 			 * there aren't any is-enabled offsets. Otherwise
16224 			 * perform the same checks as for probe offsets
16225 			 * (immediately above).
16226 			 */
16227 			if (enoff_sec == NULL) {
16228 				if (probe->dofpr_enoffidx != 0 ||
16229 				    probe->dofpr_nenoffs != 0) {
16230 					dtrace_dof_error(dof, "is-enabled "
16231 					    "offsets with null section");
16232 					return (-1);
16233 				}
16234 			} else if (probe->dofpr_enoffidx +
16235 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16236 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16237 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16238 				dtrace_dof_error(dof, "invalid is-enabled "
16239 				    "offset");
16240 				return (-1);
16241 			}
16242 
16243 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16244 				dtrace_dof_error(dof, "zero probe and "
16245 				    "is-enabled offsets");
16246 				return (-1);
16247 			}
16248 		} else if (probe->dofpr_noffs == 0) {
16249 			dtrace_dof_error(dof, "zero probe offsets");
16250 			return (-1);
16251 		}
16252 
16253 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16254 		    probe->dofpr_argidx ||
16255 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16256 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16257 			dtrace_dof_error(dof, "invalid args");
16258 			return (-1);
16259 		}
16260 
16261 		typeidx = probe->dofpr_nargv;
16262 		typestr = strtab + probe->dofpr_nargv;
16263 		for (k = 0; k < probe->dofpr_nargc; k++) {
16264 			if (typeidx >= str_sec->dofs_size) {
16265 				dtrace_dof_error(dof, "bad "
16266 				    "native argument type");
16267 				return (-1);
16268 			}
16269 
16270 			typesz = strlen(typestr) + 1;
16271 			if (typesz > DTRACE_ARGTYPELEN) {
16272 				dtrace_dof_error(dof, "native "
16273 				    "argument type too long");
16274 				return (-1);
16275 			}
16276 			typeidx += typesz;
16277 			typestr += typesz;
16278 		}
16279 
16280 		typeidx = probe->dofpr_xargv;
16281 		typestr = strtab + probe->dofpr_xargv;
16282 		for (k = 0; k < probe->dofpr_xargc; k++) {
16283 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16284 				dtrace_dof_error(dof, "bad "
16285 				    "native argument index");
16286 				return (-1);
16287 			}
16288 
16289 			if (typeidx >= str_sec->dofs_size) {
16290 				dtrace_dof_error(dof, "bad "
16291 				    "translated argument type");
16292 				return (-1);
16293 			}
16294 
16295 			typesz = strlen(typestr) + 1;
16296 			if (typesz > DTRACE_ARGTYPELEN) {
16297 				dtrace_dof_error(dof, "translated argument "
16298 				    "type too long");
16299 				return (-1);
16300 			}
16301 
16302 			typeidx += typesz;
16303 			typestr += typesz;
16304 		}
16305 	}
16306 
16307 	return (0);
16308 }
16309 
16310 static int
16311 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16312 {
16313 	dtrace_helpers_t *help;
16314 	dtrace_vstate_t *vstate;
16315 	dtrace_enabling_t *enab = NULL;
16316 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16317 	uintptr_t daddr = (uintptr_t)dof;
16318 
16319 	ASSERT(MUTEX_HELD(&dtrace_lock));
16320 
16321 	if ((help = p->p_dtrace_helpers) == NULL)
16322 		help = dtrace_helpers_create(p);
16323 
16324 	vstate = &help->dthps_vstate;
16325 
16326 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16327 	    dhp->dofhp_dof, B_FALSE)) != 0) {
16328 		dtrace_dof_destroy(dof);
16329 		return (rv);
16330 	}
16331 
16332 	/*
16333 	 * Look for helper providers and validate their descriptions.
16334 	 */
16335 	for (i = 0; i < dof->dofh_secnum; i++) {
16336 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16337 		    dof->dofh_secoff + i * dof->dofh_secsize);
16338 
16339 		if (sec->dofs_type != DOF_SECT_PROVIDER)
16340 			continue;
16341 
16342 		if (dtrace_helper_provider_validate(dof, sec) != 0) {
16343 			dtrace_enabling_destroy(enab);
16344 			dtrace_dof_destroy(dof);
16345 			return (-1);
16346 		}
16347 
16348 		nprovs++;
16349 	}
16350 
16351 	/*
16352 	 * Now we need to walk through the ECB descriptions in the enabling.
16353 	 */
16354 	for (i = 0; i < enab->dten_ndesc; i++) {
16355 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16356 		dtrace_probedesc_t *desc = &ep->dted_probe;
16357 
16358 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16359 			continue;
16360 
16361 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16362 			continue;
16363 
16364 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16365 			continue;
16366 
16367 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16368 		    ep, help)) != 0) {
16369 			/*
16370 			 * Adding this helper action failed -- we are now going
16371 			 * to rip out the entire generation and return failure.
16372 			 */
16373 			(void) dtrace_helper_destroygen(help,
16374 			    help->dthps_generation);
16375 			dtrace_enabling_destroy(enab);
16376 			dtrace_dof_destroy(dof);
16377 			return (-1);
16378 		}
16379 
16380 		nhelpers++;
16381 	}
16382 
16383 	if (nhelpers < enab->dten_ndesc)
16384 		dtrace_dof_error(dof, "unmatched helpers");
16385 
16386 	gen = help->dthps_generation++;
16387 	dtrace_enabling_destroy(enab);
16388 
16389 	if (nprovs > 0) {
16390 		/*
16391 		 * Now that this is in-kernel, we change the sense of the
16392 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16393 		 * and dofhp_addr denotes the address at user-level.
16394 		 */
16395 		dhp->dofhp_addr = dhp->dofhp_dof;
16396 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16397 
16398 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16399 			mutex_exit(&dtrace_lock);
16400 			dtrace_helper_provider_register(p, help, dhp);
16401 			mutex_enter(&dtrace_lock);
16402 
16403 			destroy = 0;
16404 		}
16405 	}
16406 
16407 	if (destroy)
16408 		dtrace_dof_destroy(dof);
16409 
16410 	return (gen);
16411 }
16412 
16413 static dtrace_helpers_t *
16414 dtrace_helpers_create(proc_t *p)
16415 {
16416 	dtrace_helpers_t *help;
16417 
16418 	ASSERT(MUTEX_HELD(&dtrace_lock));
16419 	ASSERT(p->p_dtrace_helpers == NULL);
16420 
16421 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16422 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16423 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16424 
16425 	p->p_dtrace_helpers = help;
16426 	dtrace_helpers++;
16427 
16428 	return (help);
16429 }
16430 
16431 #ifdef illumos
16432 static
16433 #endif
16434 void
16435 dtrace_helpers_destroy(proc_t *p)
16436 {
16437 	dtrace_helpers_t *help;
16438 	dtrace_vstate_t *vstate;
16439 #ifdef illumos
16440 	proc_t *p = curproc;
16441 #endif
16442 	int i;
16443 
16444 	mutex_enter(&dtrace_lock);
16445 
16446 	ASSERT(p->p_dtrace_helpers != NULL);
16447 	ASSERT(dtrace_helpers > 0);
16448 
16449 	help = p->p_dtrace_helpers;
16450 	vstate = &help->dthps_vstate;
16451 
16452 	/*
16453 	 * We're now going to lose the help from this process.
16454 	 */
16455 	p->p_dtrace_helpers = NULL;
16456 	dtrace_sync();
16457 
16458 	/*
16459 	 * Destory the helper actions.
16460 	 */
16461 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16462 		dtrace_helper_action_t *h, *next;
16463 
16464 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16465 			next = h->dtha_next;
16466 			dtrace_helper_action_destroy(h, vstate);
16467 			h = next;
16468 		}
16469 	}
16470 
16471 	mutex_exit(&dtrace_lock);
16472 
16473 	/*
16474 	 * Destroy the helper providers.
16475 	 */
16476 	if (help->dthps_maxprovs > 0) {
16477 		mutex_enter(&dtrace_meta_lock);
16478 		if (dtrace_meta_pid != NULL) {
16479 			ASSERT(dtrace_deferred_pid == NULL);
16480 
16481 			for (i = 0; i < help->dthps_nprovs; i++) {
16482 				dtrace_helper_provider_remove(
16483 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16484 			}
16485 		} else {
16486 			mutex_enter(&dtrace_lock);
16487 			ASSERT(help->dthps_deferred == 0 ||
16488 			    help->dthps_next != NULL ||
16489 			    help->dthps_prev != NULL ||
16490 			    help == dtrace_deferred_pid);
16491 
16492 			/*
16493 			 * Remove the helper from the deferred list.
16494 			 */
16495 			if (help->dthps_next != NULL)
16496 				help->dthps_next->dthps_prev = help->dthps_prev;
16497 			if (help->dthps_prev != NULL)
16498 				help->dthps_prev->dthps_next = help->dthps_next;
16499 			if (dtrace_deferred_pid == help) {
16500 				dtrace_deferred_pid = help->dthps_next;
16501 				ASSERT(help->dthps_prev == NULL);
16502 			}
16503 
16504 			mutex_exit(&dtrace_lock);
16505 		}
16506 
16507 		mutex_exit(&dtrace_meta_lock);
16508 
16509 		for (i = 0; i < help->dthps_nprovs; i++) {
16510 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16511 		}
16512 
16513 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16514 		    sizeof (dtrace_helper_provider_t *));
16515 	}
16516 
16517 	mutex_enter(&dtrace_lock);
16518 
16519 	dtrace_vstate_fini(&help->dthps_vstate);
16520 	kmem_free(help->dthps_actions,
16521 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16522 	kmem_free(help, sizeof (dtrace_helpers_t));
16523 
16524 	--dtrace_helpers;
16525 	mutex_exit(&dtrace_lock);
16526 }
16527 
16528 #ifdef illumos
16529 static
16530 #endif
16531 void
16532 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16533 {
16534 	dtrace_helpers_t *help, *newhelp;
16535 	dtrace_helper_action_t *helper, *new, *last;
16536 	dtrace_difo_t *dp;
16537 	dtrace_vstate_t *vstate;
16538 	int i, j, sz, hasprovs = 0;
16539 
16540 	mutex_enter(&dtrace_lock);
16541 	ASSERT(from->p_dtrace_helpers != NULL);
16542 	ASSERT(dtrace_helpers > 0);
16543 
16544 	help = from->p_dtrace_helpers;
16545 	newhelp = dtrace_helpers_create(to);
16546 	ASSERT(to->p_dtrace_helpers != NULL);
16547 
16548 	newhelp->dthps_generation = help->dthps_generation;
16549 	vstate = &newhelp->dthps_vstate;
16550 
16551 	/*
16552 	 * Duplicate the helper actions.
16553 	 */
16554 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16555 		if ((helper = help->dthps_actions[i]) == NULL)
16556 			continue;
16557 
16558 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16559 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16560 			    KM_SLEEP);
16561 			new->dtha_generation = helper->dtha_generation;
16562 
16563 			if ((dp = helper->dtha_predicate) != NULL) {
16564 				dp = dtrace_difo_duplicate(dp, vstate);
16565 				new->dtha_predicate = dp;
16566 			}
16567 
16568 			new->dtha_nactions = helper->dtha_nactions;
16569 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16570 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16571 
16572 			for (j = 0; j < new->dtha_nactions; j++) {
16573 				dtrace_difo_t *dp = helper->dtha_actions[j];
16574 
16575 				ASSERT(dp != NULL);
16576 				dp = dtrace_difo_duplicate(dp, vstate);
16577 				new->dtha_actions[j] = dp;
16578 			}
16579 
16580 			if (last != NULL) {
16581 				last->dtha_next = new;
16582 			} else {
16583 				newhelp->dthps_actions[i] = new;
16584 			}
16585 
16586 			last = new;
16587 		}
16588 	}
16589 
16590 	/*
16591 	 * Duplicate the helper providers and register them with the
16592 	 * DTrace framework.
16593 	 */
16594 	if (help->dthps_nprovs > 0) {
16595 		newhelp->dthps_nprovs = help->dthps_nprovs;
16596 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16597 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16598 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16599 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16600 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16601 			newhelp->dthps_provs[i]->dthp_ref++;
16602 		}
16603 
16604 		hasprovs = 1;
16605 	}
16606 
16607 	mutex_exit(&dtrace_lock);
16608 
16609 	if (hasprovs)
16610 		dtrace_helper_provider_register(to, newhelp, NULL);
16611 }
16612 
16613 /*
16614  * DTrace Hook Functions
16615  */
16616 static void
16617 dtrace_module_loaded(modctl_t *ctl)
16618 {
16619 	dtrace_provider_t *prv;
16620 
16621 	mutex_enter(&dtrace_provider_lock);
16622 #ifdef illumos
16623 	mutex_enter(&mod_lock);
16624 #endif
16625 
16626 #ifdef illumos
16627 	ASSERT(ctl->mod_busy);
16628 #endif
16629 
16630 	/*
16631 	 * We're going to call each providers per-module provide operation
16632 	 * specifying only this module.
16633 	 */
16634 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16635 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16636 
16637 #ifdef illumos
16638 	mutex_exit(&mod_lock);
16639 #endif
16640 	mutex_exit(&dtrace_provider_lock);
16641 
16642 	/*
16643 	 * If we have any retained enablings, we need to match against them.
16644 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16645 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16646 	 * module.  (In particular, this happens when loading scheduling
16647 	 * classes.)  So if we have any retained enablings, we need to dispatch
16648 	 * our task queue to do the match for us.
16649 	 */
16650 	mutex_enter(&dtrace_lock);
16651 
16652 	if (dtrace_retained == NULL) {
16653 		mutex_exit(&dtrace_lock);
16654 		return;
16655 	}
16656 
16657 	(void) taskq_dispatch(dtrace_taskq,
16658 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16659 
16660 	mutex_exit(&dtrace_lock);
16661 
16662 	/*
16663 	 * And now, for a little heuristic sleaze:  in general, we want to
16664 	 * match modules as soon as they load.  However, we cannot guarantee
16665 	 * this, because it would lead us to the lock ordering violation
16666 	 * outlined above.  The common case, of course, is that cpu_lock is
16667 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16668 	 * long enough for the task queue to do its work.  If it's not, it's
16669 	 * not a serious problem -- it just means that the module that we
16670 	 * just loaded may not be immediately instrumentable.
16671 	 */
16672 	delay(1);
16673 }
16674 
16675 static void
16676 #ifdef illumos
16677 dtrace_module_unloaded(modctl_t *ctl)
16678 #else
16679 dtrace_module_unloaded(modctl_t *ctl, int *error)
16680 #endif
16681 {
16682 	dtrace_probe_t template, *probe, *first, *next;
16683 	dtrace_provider_t *prov;
16684 #ifndef illumos
16685 	char modname[DTRACE_MODNAMELEN];
16686 	size_t len;
16687 #endif
16688 
16689 #ifdef illumos
16690 	template.dtpr_mod = ctl->mod_modname;
16691 #else
16692 	/* Handle the fact that ctl->filename may end in ".ko". */
16693 	strlcpy(modname, ctl->filename, sizeof(modname));
16694 	len = strlen(ctl->filename);
16695 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16696 		modname[len - 3] = '\0';
16697 	template.dtpr_mod = modname;
16698 #endif
16699 
16700 	mutex_enter(&dtrace_provider_lock);
16701 #ifdef illumos
16702 	mutex_enter(&mod_lock);
16703 #endif
16704 	mutex_enter(&dtrace_lock);
16705 
16706 #ifndef illumos
16707 	if (ctl->nenabled > 0) {
16708 		/* Don't allow unloads if a probe is enabled. */
16709 		mutex_exit(&dtrace_provider_lock);
16710 		mutex_exit(&dtrace_lock);
16711 		*error = -1;
16712 		printf(
16713 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16714 		return;
16715 	}
16716 #endif
16717 
16718 	if (dtrace_bymod == NULL) {
16719 		/*
16720 		 * The DTrace module is loaded (obviously) but not attached;
16721 		 * we don't have any work to do.
16722 		 */
16723 		mutex_exit(&dtrace_provider_lock);
16724 #ifdef illumos
16725 		mutex_exit(&mod_lock);
16726 #endif
16727 		mutex_exit(&dtrace_lock);
16728 		return;
16729 	}
16730 
16731 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16732 	    probe != NULL; probe = probe->dtpr_nextmod) {
16733 		if (probe->dtpr_ecb != NULL) {
16734 			mutex_exit(&dtrace_provider_lock);
16735 #ifdef illumos
16736 			mutex_exit(&mod_lock);
16737 #endif
16738 			mutex_exit(&dtrace_lock);
16739 
16740 			/*
16741 			 * This shouldn't _actually_ be possible -- we're
16742 			 * unloading a module that has an enabled probe in it.
16743 			 * (It's normally up to the provider to make sure that
16744 			 * this can't happen.)  However, because dtps_enable()
16745 			 * doesn't have a failure mode, there can be an
16746 			 * enable/unload race.  Upshot:  we don't want to
16747 			 * assert, but we're not going to disable the
16748 			 * probe, either.
16749 			 */
16750 			if (dtrace_err_verbose) {
16751 #ifdef illumos
16752 				cmn_err(CE_WARN, "unloaded module '%s' had "
16753 				    "enabled probes", ctl->mod_modname);
16754 #else
16755 				cmn_err(CE_WARN, "unloaded module '%s' had "
16756 				    "enabled probes", modname);
16757 #endif
16758 			}
16759 
16760 			return;
16761 		}
16762 	}
16763 
16764 	probe = first;
16765 
16766 	for (first = NULL; probe != NULL; probe = next) {
16767 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16768 
16769 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16770 
16771 		next = probe->dtpr_nextmod;
16772 		dtrace_hash_remove(dtrace_bymod, probe);
16773 		dtrace_hash_remove(dtrace_byfunc, probe);
16774 		dtrace_hash_remove(dtrace_byname, probe);
16775 
16776 		if (first == NULL) {
16777 			first = probe;
16778 			probe->dtpr_nextmod = NULL;
16779 		} else {
16780 			probe->dtpr_nextmod = first;
16781 			first = probe;
16782 		}
16783 	}
16784 
16785 	/*
16786 	 * We've removed all of the module's probes from the hash chains and
16787 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16788 	 * everyone has cleared out from any probe array processing.
16789 	 */
16790 	dtrace_sync();
16791 
16792 	for (probe = first; probe != NULL; probe = first) {
16793 		first = probe->dtpr_nextmod;
16794 		prov = probe->dtpr_provider;
16795 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16796 		    probe->dtpr_arg);
16797 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16798 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16799 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16800 #ifdef illumos
16801 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16802 #else
16803 		free_unr(dtrace_arena, probe->dtpr_id);
16804 #endif
16805 		kmem_free(probe, sizeof (dtrace_probe_t));
16806 	}
16807 
16808 	mutex_exit(&dtrace_lock);
16809 #ifdef illumos
16810 	mutex_exit(&mod_lock);
16811 #endif
16812 	mutex_exit(&dtrace_provider_lock);
16813 }
16814 
16815 #ifndef illumos
16816 static void
16817 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16818 {
16819 
16820 	dtrace_module_loaded(lf);
16821 }
16822 
16823 static void
16824 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16825 {
16826 
16827 	if (*error != 0)
16828 		/* We already have an error, so don't do anything. */
16829 		return;
16830 	dtrace_module_unloaded(lf, error);
16831 }
16832 #endif
16833 
16834 #ifdef illumos
16835 static void
16836 dtrace_suspend(void)
16837 {
16838 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16839 }
16840 
16841 static void
16842 dtrace_resume(void)
16843 {
16844 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16845 }
16846 #endif
16847 
16848 static int
16849 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16850 {
16851 	ASSERT(MUTEX_HELD(&cpu_lock));
16852 	mutex_enter(&dtrace_lock);
16853 
16854 	switch (what) {
16855 	case CPU_CONFIG: {
16856 		dtrace_state_t *state;
16857 		dtrace_optval_t *opt, rs, c;
16858 
16859 		/*
16860 		 * For now, we only allocate a new buffer for anonymous state.
16861 		 */
16862 		if ((state = dtrace_anon.dta_state) == NULL)
16863 			break;
16864 
16865 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16866 			break;
16867 
16868 		opt = state->dts_options;
16869 		c = opt[DTRACEOPT_CPU];
16870 
16871 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16872 			break;
16873 
16874 		/*
16875 		 * Regardless of what the actual policy is, we're going to
16876 		 * temporarily set our resize policy to be manual.  We're
16877 		 * also going to temporarily set our CPU option to denote
16878 		 * the newly configured CPU.
16879 		 */
16880 		rs = opt[DTRACEOPT_BUFRESIZE];
16881 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16882 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16883 
16884 		(void) dtrace_state_buffers(state);
16885 
16886 		opt[DTRACEOPT_BUFRESIZE] = rs;
16887 		opt[DTRACEOPT_CPU] = c;
16888 
16889 		break;
16890 	}
16891 
16892 	case CPU_UNCONFIG:
16893 		/*
16894 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16895 		 * buffer will be freed when the consumer exits.)
16896 		 */
16897 		break;
16898 
16899 	default:
16900 		break;
16901 	}
16902 
16903 	mutex_exit(&dtrace_lock);
16904 	return (0);
16905 }
16906 
16907 #ifdef illumos
16908 static void
16909 dtrace_cpu_setup_initial(processorid_t cpu)
16910 {
16911 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16912 }
16913 #endif
16914 
16915 static void
16916 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16917 {
16918 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16919 		int osize, nsize;
16920 		dtrace_toxrange_t *range;
16921 
16922 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16923 
16924 		if (osize == 0) {
16925 			ASSERT(dtrace_toxrange == NULL);
16926 			ASSERT(dtrace_toxranges_max == 0);
16927 			dtrace_toxranges_max = 1;
16928 		} else {
16929 			dtrace_toxranges_max <<= 1;
16930 		}
16931 
16932 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16933 		range = kmem_zalloc(nsize, KM_SLEEP);
16934 
16935 		if (dtrace_toxrange != NULL) {
16936 			ASSERT(osize != 0);
16937 			bcopy(dtrace_toxrange, range, osize);
16938 			kmem_free(dtrace_toxrange, osize);
16939 		}
16940 
16941 		dtrace_toxrange = range;
16942 	}
16943 
16944 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16945 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16946 
16947 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16948 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16949 	dtrace_toxranges++;
16950 }
16951 
16952 static void
16953 dtrace_getf_barrier()
16954 {
16955 #ifdef illumos
16956 	/*
16957 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16958 	 * that contain calls to getf(), this routine will be called on every
16959 	 * closef() before either the underlying vnode is released or the
16960 	 * file_t itself is freed.  By the time we are here, it is essential
16961 	 * that the file_t can no longer be accessed from a call to getf()
16962 	 * in probe context -- that assures that a dtrace_sync() can be used
16963 	 * to clear out any enablings referring to the old structures.
16964 	 */
16965 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16966 	    kcred->cr_zone->zone_dtrace_getf != 0)
16967 		dtrace_sync();
16968 #endif
16969 }
16970 
16971 /*
16972  * DTrace Driver Cookbook Functions
16973  */
16974 #ifdef illumos
16975 /*ARGSUSED*/
16976 static int
16977 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16978 {
16979 	dtrace_provider_id_t id;
16980 	dtrace_state_t *state = NULL;
16981 	dtrace_enabling_t *enab;
16982 
16983 	mutex_enter(&cpu_lock);
16984 	mutex_enter(&dtrace_provider_lock);
16985 	mutex_enter(&dtrace_lock);
16986 
16987 	if (ddi_soft_state_init(&dtrace_softstate,
16988 	    sizeof (dtrace_state_t), 0) != 0) {
16989 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16990 		mutex_exit(&cpu_lock);
16991 		mutex_exit(&dtrace_provider_lock);
16992 		mutex_exit(&dtrace_lock);
16993 		return (DDI_FAILURE);
16994 	}
16995 
16996 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16997 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16998 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16999 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17000 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17001 		ddi_remove_minor_node(devi, NULL);
17002 		ddi_soft_state_fini(&dtrace_softstate);
17003 		mutex_exit(&cpu_lock);
17004 		mutex_exit(&dtrace_provider_lock);
17005 		mutex_exit(&dtrace_lock);
17006 		return (DDI_FAILURE);
17007 	}
17008 
17009 	ddi_report_dev(devi);
17010 	dtrace_devi = devi;
17011 
17012 	dtrace_modload = dtrace_module_loaded;
17013 	dtrace_modunload = dtrace_module_unloaded;
17014 	dtrace_cpu_init = dtrace_cpu_setup_initial;
17015 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17016 	dtrace_helpers_fork = dtrace_helpers_duplicate;
17017 	dtrace_cpustart_init = dtrace_suspend;
17018 	dtrace_cpustart_fini = dtrace_resume;
17019 	dtrace_debugger_init = dtrace_suspend;
17020 	dtrace_debugger_fini = dtrace_resume;
17021 
17022 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17023 
17024 	ASSERT(MUTEX_HELD(&cpu_lock));
17025 
17026 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17027 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17028 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17029 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17030 	    VM_SLEEP | VMC_IDENTIFIER);
17031 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17032 	    1, INT_MAX, 0);
17033 
17034 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17035 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17036 	    NULL, NULL, NULL, NULL, NULL, 0);
17037 
17038 	ASSERT(MUTEX_HELD(&cpu_lock));
17039 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17040 	    offsetof(dtrace_probe_t, dtpr_nextmod),
17041 	    offsetof(dtrace_probe_t, dtpr_prevmod));
17042 
17043 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17044 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17045 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17046 
17047 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17048 	    offsetof(dtrace_probe_t, dtpr_nextname),
17049 	    offsetof(dtrace_probe_t, dtpr_prevname));
17050 
17051 	if (dtrace_retain_max < 1) {
17052 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17053 		    "setting to 1", dtrace_retain_max);
17054 		dtrace_retain_max = 1;
17055 	}
17056 
17057 	/*
17058 	 * Now discover our toxic ranges.
17059 	 */
17060 	dtrace_toxic_ranges(dtrace_toxrange_add);
17061 
17062 	/*
17063 	 * Before we register ourselves as a provider to our own framework,
17064 	 * we would like to assert that dtrace_provider is NULL -- but that's
17065 	 * not true if we were loaded as a dependency of a DTrace provider.
17066 	 * Once we've registered, we can assert that dtrace_provider is our
17067 	 * pseudo provider.
17068 	 */
17069 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17070 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17071 
17072 	ASSERT(dtrace_provider != NULL);
17073 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17074 
17075 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17076 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17077 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17078 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17079 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17080 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17081 
17082 	dtrace_anon_property();
17083 	mutex_exit(&cpu_lock);
17084 
17085 	/*
17086 	 * If there are already providers, we must ask them to provide their
17087 	 * probes, and then match any anonymous enabling against them.  Note
17088 	 * that there should be no other retained enablings at this time:
17089 	 * the only retained enablings at this time should be the anonymous
17090 	 * enabling.
17091 	 */
17092 	if (dtrace_anon.dta_enabling != NULL) {
17093 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17094 
17095 		dtrace_enabling_provide(NULL);
17096 		state = dtrace_anon.dta_state;
17097 
17098 		/*
17099 		 * We couldn't hold cpu_lock across the above call to
17100 		 * dtrace_enabling_provide(), but we must hold it to actually
17101 		 * enable the probes.  We have to drop all of our locks, pick
17102 		 * up cpu_lock, and regain our locks before matching the
17103 		 * retained anonymous enabling.
17104 		 */
17105 		mutex_exit(&dtrace_lock);
17106 		mutex_exit(&dtrace_provider_lock);
17107 
17108 		mutex_enter(&cpu_lock);
17109 		mutex_enter(&dtrace_provider_lock);
17110 		mutex_enter(&dtrace_lock);
17111 
17112 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17113 			(void) dtrace_enabling_match(enab, NULL);
17114 
17115 		mutex_exit(&cpu_lock);
17116 	}
17117 
17118 	mutex_exit(&dtrace_lock);
17119 	mutex_exit(&dtrace_provider_lock);
17120 
17121 	if (state != NULL) {
17122 		/*
17123 		 * If we created any anonymous state, set it going now.
17124 		 */
17125 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17126 	}
17127 
17128 	return (DDI_SUCCESS);
17129 }
17130 #endif	/* illumos */
17131 
17132 #ifndef illumos
17133 static void dtrace_dtr(void *);
17134 #endif
17135 
17136 /*ARGSUSED*/
17137 static int
17138 #ifdef illumos
17139 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17140 #else
17141 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17142 #endif
17143 {
17144 	dtrace_state_t *state;
17145 	uint32_t priv;
17146 	uid_t uid;
17147 	zoneid_t zoneid;
17148 
17149 #ifdef illumos
17150 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17151 		return (0);
17152 
17153 	/*
17154 	 * If this wasn't an open with the "helper" minor, then it must be
17155 	 * the "dtrace" minor.
17156 	 */
17157 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17158 		return (ENXIO);
17159 #else
17160 	cred_t *cred_p = NULL;
17161 	cred_p = dev->si_cred;
17162 
17163 	/*
17164 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17165 	 * caller lacks sufficient permission to do anything with DTrace.
17166 	 */
17167 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17168 	if (priv == DTRACE_PRIV_NONE) {
17169 #endif
17170 
17171 		return (EACCES);
17172 	}
17173 
17174 	/*
17175 	 * Ask all providers to provide all their probes.
17176 	 */
17177 	mutex_enter(&dtrace_provider_lock);
17178 	dtrace_probe_provide(NULL, NULL);
17179 	mutex_exit(&dtrace_provider_lock);
17180 
17181 	mutex_enter(&cpu_lock);
17182 	mutex_enter(&dtrace_lock);
17183 	dtrace_opens++;
17184 	dtrace_membar_producer();
17185 
17186 #ifdef illumos
17187 	/*
17188 	 * If the kernel debugger is active (that is, if the kernel debugger
17189 	 * modified text in some way), we won't allow the open.
17190 	 */
17191 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17192 		dtrace_opens--;
17193 		mutex_exit(&cpu_lock);
17194 		mutex_exit(&dtrace_lock);
17195 		return (EBUSY);
17196 	}
17197 
17198 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17199 		/*
17200 		 * If DTrace helper tracing is enabled, we need to allocate the
17201 		 * trace buffer and initialize the values.
17202 		 */
17203 		dtrace_helptrace_buffer =
17204 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17205 		dtrace_helptrace_next = 0;
17206 		dtrace_helptrace_wrapped = 0;
17207 		dtrace_helptrace_enable = 0;
17208 	}
17209 
17210 	state = dtrace_state_create(devp, cred_p);
17211 #else
17212 	state = dtrace_state_create(dev, NULL);
17213 	devfs_set_cdevpriv(state, dtrace_dtr);
17214 #endif
17215 
17216 	mutex_exit(&cpu_lock);
17217 
17218 	if (state == NULL) {
17219 #ifdef illumos
17220 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17221 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17222 #else
17223 		--dtrace_opens;
17224 #endif
17225 		mutex_exit(&dtrace_lock);
17226 		return (EAGAIN);
17227 	}
17228 
17229 	mutex_exit(&dtrace_lock);
17230 
17231 	return (0);
17232 }
17233 
17234 /*ARGSUSED*/
17235 #ifdef illumos
17236 static int
17237 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17238 #else
17239 static void
17240 dtrace_dtr(void *data)
17241 #endif
17242 {
17243 #ifdef illumos
17244 	minor_t minor = getminor(dev);
17245 	dtrace_state_t *state;
17246 #endif
17247 	dtrace_helptrace_t *buf = NULL;
17248 
17249 #ifdef illumos
17250 	if (minor == DTRACEMNRN_HELPER)
17251 		return (0);
17252 
17253 	state = ddi_get_soft_state(dtrace_softstate, minor);
17254 #else
17255 	dtrace_state_t *state = data;
17256 #endif
17257 
17258 	mutex_enter(&cpu_lock);
17259 	mutex_enter(&dtrace_lock);
17260 
17261 #ifdef illumos
17262 	if (state->dts_anon)
17263 #else
17264 	if (state != NULL && state->dts_anon)
17265 #endif
17266 	{
17267 		/*
17268 		 * There is anonymous state. Destroy that first.
17269 		 */
17270 		ASSERT(dtrace_anon.dta_state == NULL);
17271 		dtrace_state_destroy(state->dts_anon);
17272 	}
17273 
17274 	if (dtrace_helptrace_disable) {
17275 		/*
17276 		 * If we have been told to disable helper tracing, set the
17277 		 * buffer to NULL before calling into dtrace_state_destroy();
17278 		 * we take advantage of its dtrace_sync() to know that no
17279 		 * CPU is in probe context with enabled helper tracing
17280 		 * after it returns.
17281 		 */
17282 		buf = dtrace_helptrace_buffer;
17283 		dtrace_helptrace_buffer = NULL;
17284 	}
17285 
17286 #ifdef illumos
17287 	dtrace_state_destroy(state);
17288 #else
17289 	if (state != NULL) {
17290 		dtrace_state_destroy(state);
17291 		kmem_free(state, 0);
17292 	}
17293 #endif
17294 	ASSERT(dtrace_opens > 0);
17295 
17296 #ifdef illumos
17297 	/*
17298 	 * Only relinquish control of the kernel debugger interface when there
17299 	 * are no consumers and no anonymous enablings.
17300 	 */
17301 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17302 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17303 #else
17304 	--dtrace_opens;
17305 #endif
17306 
17307 	if (buf != NULL) {
17308 		kmem_free(buf, dtrace_helptrace_bufsize);
17309 		dtrace_helptrace_disable = 0;
17310 	}
17311 
17312 	mutex_exit(&dtrace_lock);
17313 	mutex_exit(&cpu_lock);
17314 
17315 #ifdef illumos
17316 	return (0);
17317 #endif
17318 }
17319 
17320 #ifdef illumos
17321 /*ARGSUSED*/
17322 static int
17323 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17324 {
17325 	int rval;
17326 	dof_helper_t help, *dhp = NULL;
17327 
17328 	switch (cmd) {
17329 	case DTRACEHIOC_ADDDOF:
17330 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17331 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17332 			return (EFAULT);
17333 		}
17334 
17335 		dhp = &help;
17336 		arg = (intptr_t)help.dofhp_dof;
17337 		/*FALLTHROUGH*/
17338 
17339 	case DTRACEHIOC_ADD: {
17340 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17341 
17342 		if (dof == NULL)
17343 			return (rval);
17344 
17345 		mutex_enter(&dtrace_lock);
17346 
17347 		/*
17348 		 * dtrace_helper_slurp() takes responsibility for the dof --
17349 		 * it may free it now or it may save it and free it later.
17350 		 */
17351 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17352 			*rv = rval;
17353 			rval = 0;
17354 		} else {
17355 			rval = EINVAL;
17356 		}
17357 
17358 		mutex_exit(&dtrace_lock);
17359 		return (rval);
17360 	}
17361 
17362 	case DTRACEHIOC_REMOVE: {
17363 		mutex_enter(&dtrace_lock);
17364 		rval = dtrace_helper_destroygen(NULL, arg);
17365 		mutex_exit(&dtrace_lock);
17366 
17367 		return (rval);
17368 	}
17369 
17370 	default:
17371 		break;
17372 	}
17373 
17374 	return (ENOTTY);
17375 }
17376 
17377 /*ARGSUSED*/
17378 static int
17379 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17380 {
17381 	minor_t minor = getminor(dev);
17382 	dtrace_state_t *state;
17383 	int rval;
17384 
17385 	if (minor == DTRACEMNRN_HELPER)
17386 		return (dtrace_ioctl_helper(cmd, arg, rv));
17387 
17388 	state = ddi_get_soft_state(dtrace_softstate, minor);
17389 
17390 	if (state->dts_anon) {
17391 		ASSERT(dtrace_anon.dta_state == NULL);
17392 		state = state->dts_anon;
17393 	}
17394 
17395 	switch (cmd) {
17396 	case DTRACEIOC_PROVIDER: {
17397 		dtrace_providerdesc_t pvd;
17398 		dtrace_provider_t *pvp;
17399 
17400 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17401 			return (EFAULT);
17402 
17403 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17404 		mutex_enter(&dtrace_provider_lock);
17405 
17406 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17407 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17408 				break;
17409 		}
17410 
17411 		mutex_exit(&dtrace_provider_lock);
17412 
17413 		if (pvp == NULL)
17414 			return (ESRCH);
17415 
17416 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17417 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17418 
17419 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17420 			return (EFAULT);
17421 
17422 		return (0);
17423 	}
17424 
17425 	case DTRACEIOC_EPROBE: {
17426 		dtrace_eprobedesc_t epdesc;
17427 		dtrace_ecb_t *ecb;
17428 		dtrace_action_t *act;
17429 		void *buf;
17430 		size_t size;
17431 		uintptr_t dest;
17432 		int nrecs;
17433 
17434 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17435 			return (EFAULT);
17436 
17437 		mutex_enter(&dtrace_lock);
17438 
17439 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17440 			mutex_exit(&dtrace_lock);
17441 			return (EINVAL);
17442 		}
17443 
17444 		if (ecb->dte_probe == NULL) {
17445 			mutex_exit(&dtrace_lock);
17446 			return (EINVAL);
17447 		}
17448 
17449 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17450 		epdesc.dtepd_uarg = ecb->dte_uarg;
17451 		epdesc.dtepd_size = ecb->dte_size;
17452 
17453 		nrecs = epdesc.dtepd_nrecs;
17454 		epdesc.dtepd_nrecs = 0;
17455 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17456 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17457 				continue;
17458 
17459 			epdesc.dtepd_nrecs++;
17460 		}
17461 
17462 		/*
17463 		 * Now that we have the size, we need to allocate a temporary
17464 		 * buffer in which to store the complete description.  We need
17465 		 * the temporary buffer to be able to drop dtrace_lock()
17466 		 * across the copyout(), below.
17467 		 */
17468 		size = sizeof (dtrace_eprobedesc_t) +
17469 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17470 
17471 		buf = kmem_alloc(size, KM_SLEEP);
17472 		dest = (uintptr_t)buf;
17473 
17474 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17475 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17476 
17477 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17478 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17479 				continue;
17480 
17481 			if (nrecs-- == 0)
17482 				break;
17483 
17484 			bcopy(&act->dta_rec, (void *)dest,
17485 			    sizeof (dtrace_recdesc_t));
17486 			dest += sizeof (dtrace_recdesc_t);
17487 		}
17488 
17489 		mutex_exit(&dtrace_lock);
17490 
17491 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17492 			kmem_free(buf, size);
17493 			return (EFAULT);
17494 		}
17495 
17496 		kmem_free(buf, size);
17497 		return (0);
17498 	}
17499 
17500 	case DTRACEIOC_AGGDESC: {
17501 		dtrace_aggdesc_t aggdesc;
17502 		dtrace_action_t *act;
17503 		dtrace_aggregation_t *agg;
17504 		int nrecs;
17505 		uint32_t offs;
17506 		dtrace_recdesc_t *lrec;
17507 		void *buf;
17508 		size_t size;
17509 		uintptr_t dest;
17510 
17511 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17512 			return (EFAULT);
17513 
17514 		mutex_enter(&dtrace_lock);
17515 
17516 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17517 			mutex_exit(&dtrace_lock);
17518 			return (EINVAL);
17519 		}
17520 
17521 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17522 
17523 		nrecs = aggdesc.dtagd_nrecs;
17524 		aggdesc.dtagd_nrecs = 0;
17525 
17526 		offs = agg->dtag_base;
17527 		lrec = &agg->dtag_action.dta_rec;
17528 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17529 
17530 		for (act = agg->dtag_first; ; act = act->dta_next) {
17531 			ASSERT(act->dta_intuple ||
17532 			    DTRACEACT_ISAGG(act->dta_kind));
17533 
17534 			/*
17535 			 * If this action has a record size of zero, it
17536 			 * denotes an argument to the aggregating action.
17537 			 * Because the presence of this record doesn't (or
17538 			 * shouldn't) affect the way the data is interpreted,
17539 			 * we don't copy it out to save user-level the
17540 			 * confusion of dealing with a zero-length record.
17541 			 */
17542 			if (act->dta_rec.dtrd_size == 0) {
17543 				ASSERT(agg->dtag_hasarg);
17544 				continue;
17545 			}
17546 
17547 			aggdesc.dtagd_nrecs++;
17548 
17549 			if (act == &agg->dtag_action)
17550 				break;
17551 		}
17552 
17553 		/*
17554 		 * Now that we have the size, we need to allocate a temporary
17555 		 * buffer in which to store the complete description.  We need
17556 		 * the temporary buffer to be able to drop dtrace_lock()
17557 		 * across the copyout(), below.
17558 		 */
17559 		size = sizeof (dtrace_aggdesc_t) +
17560 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17561 
17562 		buf = kmem_alloc(size, KM_SLEEP);
17563 		dest = (uintptr_t)buf;
17564 
17565 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17566 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17567 
17568 		for (act = agg->dtag_first; ; act = act->dta_next) {
17569 			dtrace_recdesc_t rec = act->dta_rec;
17570 
17571 			/*
17572 			 * See the comment in the above loop for why we pass
17573 			 * over zero-length records.
17574 			 */
17575 			if (rec.dtrd_size == 0) {
17576 				ASSERT(agg->dtag_hasarg);
17577 				continue;
17578 			}
17579 
17580 			if (nrecs-- == 0)
17581 				break;
17582 
17583 			rec.dtrd_offset -= offs;
17584 			bcopy(&rec, (void *)dest, sizeof (rec));
17585 			dest += sizeof (dtrace_recdesc_t);
17586 
17587 			if (act == &agg->dtag_action)
17588 				break;
17589 		}
17590 
17591 		mutex_exit(&dtrace_lock);
17592 
17593 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17594 			kmem_free(buf, size);
17595 			return (EFAULT);
17596 		}
17597 
17598 		kmem_free(buf, size);
17599 		return (0);
17600 	}
17601 
17602 	case DTRACEIOC_ENABLE: {
17603 		dof_hdr_t *dof;
17604 		dtrace_enabling_t *enab = NULL;
17605 		dtrace_vstate_t *vstate;
17606 		int err = 0;
17607 
17608 		*rv = 0;
17609 
17610 		/*
17611 		 * If a NULL argument has been passed, we take this as our
17612 		 * cue to reevaluate our enablings.
17613 		 */
17614 		if (arg == NULL) {
17615 			dtrace_enabling_matchall();
17616 
17617 			return (0);
17618 		}
17619 
17620 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17621 			return (rval);
17622 
17623 		mutex_enter(&cpu_lock);
17624 		mutex_enter(&dtrace_lock);
17625 		vstate = &state->dts_vstate;
17626 
17627 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17628 			mutex_exit(&dtrace_lock);
17629 			mutex_exit(&cpu_lock);
17630 			dtrace_dof_destroy(dof);
17631 			return (EBUSY);
17632 		}
17633 
17634 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17635 			mutex_exit(&dtrace_lock);
17636 			mutex_exit(&cpu_lock);
17637 			dtrace_dof_destroy(dof);
17638 			return (EINVAL);
17639 		}
17640 
17641 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17642 			dtrace_enabling_destroy(enab);
17643 			mutex_exit(&dtrace_lock);
17644 			mutex_exit(&cpu_lock);
17645 			dtrace_dof_destroy(dof);
17646 			return (rval);
17647 		}
17648 
17649 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17650 			err = dtrace_enabling_retain(enab);
17651 		} else {
17652 			dtrace_enabling_destroy(enab);
17653 		}
17654 
17655 		mutex_exit(&cpu_lock);
17656 		mutex_exit(&dtrace_lock);
17657 		dtrace_dof_destroy(dof);
17658 
17659 		return (err);
17660 	}
17661 
17662 	case DTRACEIOC_REPLICATE: {
17663 		dtrace_repldesc_t desc;
17664 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17665 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17666 		int err;
17667 
17668 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17669 			return (EFAULT);
17670 
17671 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17672 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17673 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17674 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17675 
17676 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17677 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17678 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17679 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17680 
17681 		mutex_enter(&dtrace_lock);
17682 		err = dtrace_enabling_replicate(state, match, create);
17683 		mutex_exit(&dtrace_lock);
17684 
17685 		return (err);
17686 	}
17687 
17688 	case DTRACEIOC_PROBEMATCH:
17689 	case DTRACEIOC_PROBES: {
17690 		dtrace_probe_t *probe = NULL;
17691 		dtrace_probedesc_t desc;
17692 		dtrace_probekey_t pkey;
17693 		dtrace_id_t i;
17694 		int m = 0;
17695 		uint32_t priv;
17696 		uid_t uid;
17697 		zoneid_t zoneid;
17698 
17699 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17700 			return (EFAULT);
17701 
17702 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17703 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17704 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17705 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17706 
17707 		/*
17708 		 * Before we attempt to match this probe, we want to give
17709 		 * all providers the opportunity to provide it.
17710 		 */
17711 		if (desc.dtpd_id == DTRACE_IDNONE) {
17712 			mutex_enter(&dtrace_provider_lock);
17713 			dtrace_probe_provide(&desc, NULL);
17714 			mutex_exit(&dtrace_provider_lock);
17715 			desc.dtpd_id++;
17716 		}
17717 
17718 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17719 			dtrace_probekey(&desc, &pkey);
17720 			pkey.dtpk_id = DTRACE_IDNONE;
17721 		}
17722 
17723 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17724 
17725 		mutex_enter(&dtrace_lock);
17726 
17727 		if (cmd == DTRACEIOC_PROBEMATCH) {
17728 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17729 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17730 				    (m = dtrace_match_probe(probe, &pkey,
17731 				    priv, uid, zoneid)) != 0)
17732 					break;
17733 			}
17734 
17735 			if (m < 0) {
17736 				mutex_exit(&dtrace_lock);
17737 				return (EINVAL);
17738 			}
17739 
17740 		} else {
17741 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17742 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17743 				    dtrace_match_priv(probe, priv, uid, zoneid))
17744 					break;
17745 			}
17746 		}
17747 
17748 		if (probe == NULL) {
17749 			mutex_exit(&dtrace_lock);
17750 			return (ESRCH);
17751 		}
17752 
17753 		dtrace_probe_description(probe, &desc);
17754 		mutex_exit(&dtrace_lock);
17755 
17756 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17757 			return (EFAULT);
17758 
17759 		return (0);
17760 	}
17761 
17762 	case DTRACEIOC_PROBEARG: {
17763 		dtrace_argdesc_t desc;
17764 		dtrace_probe_t *probe;
17765 		dtrace_provider_t *prov;
17766 
17767 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17768 			return (EFAULT);
17769 
17770 		if (desc.dtargd_id == DTRACE_IDNONE)
17771 			return (EINVAL);
17772 
17773 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17774 			return (EINVAL);
17775 
17776 		mutex_enter(&dtrace_provider_lock);
17777 		mutex_enter(&mod_lock);
17778 		mutex_enter(&dtrace_lock);
17779 
17780 		if (desc.dtargd_id > dtrace_nprobes) {
17781 			mutex_exit(&dtrace_lock);
17782 			mutex_exit(&mod_lock);
17783 			mutex_exit(&dtrace_provider_lock);
17784 			return (EINVAL);
17785 		}
17786 
17787 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17788 			mutex_exit(&dtrace_lock);
17789 			mutex_exit(&mod_lock);
17790 			mutex_exit(&dtrace_provider_lock);
17791 			return (EINVAL);
17792 		}
17793 
17794 		mutex_exit(&dtrace_lock);
17795 
17796 		prov = probe->dtpr_provider;
17797 
17798 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17799 			/*
17800 			 * There isn't any typed information for this probe.
17801 			 * Set the argument number to DTRACE_ARGNONE.
17802 			 */
17803 			desc.dtargd_ndx = DTRACE_ARGNONE;
17804 		} else {
17805 			desc.dtargd_native[0] = '\0';
17806 			desc.dtargd_xlate[0] = '\0';
17807 			desc.dtargd_mapping = desc.dtargd_ndx;
17808 
17809 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17810 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17811 		}
17812 
17813 		mutex_exit(&mod_lock);
17814 		mutex_exit(&dtrace_provider_lock);
17815 
17816 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17817 			return (EFAULT);
17818 
17819 		return (0);
17820 	}
17821 
17822 	case DTRACEIOC_GO: {
17823 		processorid_t cpuid;
17824 		rval = dtrace_state_go(state, &cpuid);
17825 
17826 		if (rval != 0)
17827 			return (rval);
17828 
17829 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17830 			return (EFAULT);
17831 
17832 		return (0);
17833 	}
17834 
17835 	case DTRACEIOC_STOP: {
17836 		processorid_t cpuid;
17837 
17838 		mutex_enter(&dtrace_lock);
17839 		rval = dtrace_state_stop(state, &cpuid);
17840 		mutex_exit(&dtrace_lock);
17841 
17842 		if (rval != 0)
17843 			return (rval);
17844 
17845 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17846 			return (EFAULT);
17847 
17848 		return (0);
17849 	}
17850 
17851 	case DTRACEIOC_DOFGET: {
17852 		dof_hdr_t hdr, *dof;
17853 		uint64_t len;
17854 
17855 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17856 			return (EFAULT);
17857 
17858 		mutex_enter(&dtrace_lock);
17859 		dof = dtrace_dof_create(state);
17860 		mutex_exit(&dtrace_lock);
17861 
17862 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17863 		rval = copyout(dof, (void *)arg, len);
17864 		dtrace_dof_destroy(dof);
17865 
17866 		return (rval == 0 ? 0 : EFAULT);
17867 	}
17868 
17869 	case DTRACEIOC_AGGSNAP:
17870 	case DTRACEIOC_BUFSNAP: {
17871 		dtrace_bufdesc_t desc;
17872 		caddr_t cached;
17873 		dtrace_buffer_t *buf;
17874 
17875 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17876 			return (EFAULT);
17877 
17878 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17879 			return (EINVAL);
17880 
17881 		mutex_enter(&dtrace_lock);
17882 
17883 		if (cmd == DTRACEIOC_BUFSNAP) {
17884 			buf = &state->dts_buffer[desc.dtbd_cpu];
17885 		} else {
17886 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17887 		}
17888 
17889 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17890 			size_t sz = buf->dtb_offset;
17891 
17892 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17893 				mutex_exit(&dtrace_lock);
17894 				return (EBUSY);
17895 			}
17896 
17897 			/*
17898 			 * If this buffer has already been consumed, we're
17899 			 * going to indicate that there's nothing left here
17900 			 * to consume.
17901 			 */
17902 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17903 				mutex_exit(&dtrace_lock);
17904 
17905 				desc.dtbd_size = 0;
17906 				desc.dtbd_drops = 0;
17907 				desc.dtbd_errors = 0;
17908 				desc.dtbd_oldest = 0;
17909 				sz = sizeof (desc);
17910 
17911 				if (copyout(&desc, (void *)arg, sz) != 0)
17912 					return (EFAULT);
17913 
17914 				return (0);
17915 			}
17916 
17917 			/*
17918 			 * If this is a ring buffer that has wrapped, we want
17919 			 * to copy the whole thing out.
17920 			 */
17921 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17922 				dtrace_buffer_polish(buf);
17923 				sz = buf->dtb_size;
17924 			}
17925 
17926 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17927 				mutex_exit(&dtrace_lock);
17928 				return (EFAULT);
17929 			}
17930 
17931 			desc.dtbd_size = sz;
17932 			desc.dtbd_drops = buf->dtb_drops;
17933 			desc.dtbd_errors = buf->dtb_errors;
17934 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17935 			desc.dtbd_timestamp = dtrace_gethrtime();
17936 
17937 			mutex_exit(&dtrace_lock);
17938 
17939 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17940 				return (EFAULT);
17941 
17942 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17943 
17944 			return (0);
17945 		}
17946 
17947 		if (buf->dtb_tomax == NULL) {
17948 			ASSERT(buf->dtb_xamot == NULL);
17949 			mutex_exit(&dtrace_lock);
17950 			return (ENOENT);
17951 		}
17952 
17953 		cached = buf->dtb_tomax;
17954 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17955 
17956 		dtrace_xcall(desc.dtbd_cpu,
17957 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17958 
17959 		state->dts_errors += buf->dtb_xamot_errors;
17960 
17961 		/*
17962 		 * If the buffers did not actually switch, then the cross call
17963 		 * did not take place -- presumably because the given CPU is
17964 		 * not in the ready set.  If this is the case, we'll return
17965 		 * ENOENT.
17966 		 */
17967 		if (buf->dtb_tomax == cached) {
17968 			ASSERT(buf->dtb_xamot != cached);
17969 			mutex_exit(&dtrace_lock);
17970 			return (ENOENT);
17971 		}
17972 
17973 		ASSERT(cached == buf->dtb_xamot);
17974 
17975 		/*
17976 		 * We have our snapshot; now copy it out.
17977 		 */
17978 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17979 		    buf->dtb_xamot_offset) != 0) {
17980 			mutex_exit(&dtrace_lock);
17981 			return (EFAULT);
17982 		}
17983 
17984 		desc.dtbd_size = buf->dtb_xamot_offset;
17985 		desc.dtbd_drops = buf->dtb_xamot_drops;
17986 		desc.dtbd_errors = buf->dtb_xamot_errors;
17987 		desc.dtbd_oldest = 0;
17988 		desc.dtbd_timestamp = buf->dtb_switched;
17989 
17990 		mutex_exit(&dtrace_lock);
17991 
17992 		/*
17993 		 * Finally, copy out the buffer description.
17994 		 */
17995 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17996 			return (EFAULT);
17997 
17998 		return (0);
17999 	}
18000 
18001 	case DTRACEIOC_CONF: {
18002 		dtrace_conf_t conf;
18003 
18004 		bzero(&conf, sizeof (conf));
18005 		conf.dtc_difversion = DIF_VERSION;
18006 		conf.dtc_difintregs = DIF_DIR_NREGS;
18007 		conf.dtc_diftupregs = DIF_DTR_NREGS;
18008 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18009 
18010 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18011 			return (EFAULT);
18012 
18013 		return (0);
18014 	}
18015 
18016 	case DTRACEIOC_STATUS: {
18017 		dtrace_status_t stat;
18018 		dtrace_dstate_t *dstate;
18019 		int i, j;
18020 		uint64_t nerrs;
18021 
18022 		/*
18023 		 * See the comment in dtrace_state_deadman() for the reason
18024 		 * for setting dts_laststatus to INT64_MAX before setting
18025 		 * it to the correct value.
18026 		 */
18027 		state->dts_laststatus = INT64_MAX;
18028 		dtrace_membar_producer();
18029 		state->dts_laststatus = dtrace_gethrtime();
18030 
18031 		bzero(&stat, sizeof (stat));
18032 
18033 		mutex_enter(&dtrace_lock);
18034 
18035 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18036 			mutex_exit(&dtrace_lock);
18037 			return (ENOENT);
18038 		}
18039 
18040 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18041 			stat.dtst_exiting = 1;
18042 
18043 		nerrs = state->dts_errors;
18044 		dstate = &state->dts_vstate.dtvs_dynvars;
18045 
18046 		for (i = 0; i < NCPU; i++) {
18047 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18048 
18049 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18050 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18051 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18052 
18053 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18054 				stat.dtst_filled++;
18055 
18056 			nerrs += state->dts_buffer[i].dtb_errors;
18057 
18058 			for (j = 0; j < state->dts_nspeculations; j++) {
18059 				dtrace_speculation_t *spec;
18060 				dtrace_buffer_t *buf;
18061 
18062 				spec = &state->dts_speculations[j];
18063 				buf = &spec->dtsp_buffer[i];
18064 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18065 			}
18066 		}
18067 
18068 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18069 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18070 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18071 		stat.dtst_dblerrors = state->dts_dblerrors;
18072 		stat.dtst_killed =
18073 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18074 		stat.dtst_errors = nerrs;
18075 
18076 		mutex_exit(&dtrace_lock);
18077 
18078 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18079 			return (EFAULT);
18080 
18081 		return (0);
18082 	}
18083 
18084 	case DTRACEIOC_FORMAT: {
18085 		dtrace_fmtdesc_t fmt;
18086 		char *str;
18087 		int len;
18088 
18089 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18090 			return (EFAULT);
18091 
18092 		mutex_enter(&dtrace_lock);
18093 
18094 		if (fmt.dtfd_format == 0 ||
18095 		    fmt.dtfd_format > state->dts_nformats) {
18096 			mutex_exit(&dtrace_lock);
18097 			return (EINVAL);
18098 		}
18099 
18100 		/*
18101 		 * Format strings are allocated contiguously and they are
18102 		 * never freed; if a format index is less than the number
18103 		 * of formats, we can assert that the format map is non-NULL
18104 		 * and that the format for the specified index is non-NULL.
18105 		 */
18106 		ASSERT(state->dts_formats != NULL);
18107 		str = state->dts_formats[fmt.dtfd_format - 1];
18108 		ASSERT(str != NULL);
18109 
18110 		len = strlen(str) + 1;
18111 
18112 		if (len > fmt.dtfd_length) {
18113 			fmt.dtfd_length = len;
18114 
18115 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18116 				mutex_exit(&dtrace_lock);
18117 				return (EINVAL);
18118 			}
18119 		} else {
18120 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18121 				mutex_exit(&dtrace_lock);
18122 				return (EINVAL);
18123 			}
18124 		}
18125 
18126 		mutex_exit(&dtrace_lock);
18127 		return (0);
18128 	}
18129 
18130 	default:
18131 		break;
18132 	}
18133 
18134 	return (ENOTTY);
18135 }
18136 
18137 /*ARGSUSED*/
18138 static int
18139 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18140 {
18141 	dtrace_state_t *state;
18142 
18143 	switch (cmd) {
18144 	case DDI_DETACH:
18145 		break;
18146 
18147 	case DDI_SUSPEND:
18148 		return (DDI_SUCCESS);
18149 
18150 	default:
18151 		return (DDI_FAILURE);
18152 	}
18153 
18154 	mutex_enter(&cpu_lock);
18155 	mutex_enter(&dtrace_provider_lock);
18156 	mutex_enter(&dtrace_lock);
18157 
18158 	ASSERT(dtrace_opens == 0);
18159 
18160 	if (dtrace_helpers > 0) {
18161 		mutex_exit(&dtrace_provider_lock);
18162 		mutex_exit(&dtrace_lock);
18163 		mutex_exit(&cpu_lock);
18164 		return (DDI_FAILURE);
18165 	}
18166 
18167 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18168 		mutex_exit(&dtrace_provider_lock);
18169 		mutex_exit(&dtrace_lock);
18170 		mutex_exit(&cpu_lock);
18171 		return (DDI_FAILURE);
18172 	}
18173 
18174 	dtrace_provider = NULL;
18175 
18176 	if ((state = dtrace_anon_grab()) != NULL) {
18177 		/*
18178 		 * If there were ECBs on this state, the provider should
18179 		 * have not been allowed to detach; assert that there is
18180 		 * none.
18181 		 */
18182 		ASSERT(state->dts_necbs == 0);
18183 		dtrace_state_destroy(state);
18184 
18185 		/*
18186 		 * If we're being detached with anonymous state, we need to
18187 		 * indicate to the kernel debugger that DTrace is now inactive.
18188 		 */
18189 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18190 	}
18191 
18192 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18193 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18194 	dtrace_cpu_init = NULL;
18195 	dtrace_helpers_cleanup = NULL;
18196 	dtrace_helpers_fork = NULL;
18197 	dtrace_cpustart_init = NULL;
18198 	dtrace_cpustart_fini = NULL;
18199 	dtrace_debugger_init = NULL;
18200 	dtrace_debugger_fini = NULL;
18201 	dtrace_modload = NULL;
18202 	dtrace_modunload = NULL;
18203 
18204 	ASSERT(dtrace_getf == 0);
18205 	ASSERT(dtrace_closef == NULL);
18206 
18207 	mutex_exit(&cpu_lock);
18208 
18209 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18210 	dtrace_probes = NULL;
18211 	dtrace_nprobes = 0;
18212 
18213 	dtrace_hash_destroy(dtrace_bymod);
18214 	dtrace_hash_destroy(dtrace_byfunc);
18215 	dtrace_hash_destroy(dtrace_byname);
18216 	dtrace_bymod = NULL;
18217 	dtrace_byfunc = NULL;
18218 	dtrace_byname = NULL;
18219 
18220 	kmem_cache_destroy(dtrace_state_cache);
18221 	vmem_destroy(dtrace_minor);
18222 	vmem_destroy(dtrace_arena);
18223 
18224 	if (dtrace_toxrange != NULL) {
18225 		kmem_free(dtrace_toxrange,
18226 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18227 		dtrace_toxrange = NULL;
18228 		dtrace_toxranges = 0;
18229 		dtrace_toxranges_max = 0;
18230 	}
18231 
18232 	ddi_remove_minor_node(dtrace_devi, NULL);
18233 	dtrace_devi = NULL;
18234 
18235 	ddi_soft_state_fini(&dtrace_softstate);
18236 
18237 	ASSERT(dtrace_vtime_references == 0);
18238 	ASSERT(dtrace_opens == 0);
18239 	ASSERT(dtrace_retained == NULL);
18240 
18241 	mutex_exit(&dtrace_lock);
18242 	mutex_exit(&dtrace_provider_lock);
18243 
18244 	/*
18245 	 * We don't destroy the task queue until after we have dropped our
18246 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18247 	 * attempting to do work after we have effectively detached but before
18248 	 * the task queue has been destroyed, all tasks dispatched via the
18249 	 * task queue must check that DTrace is still attached before
18250 	 * performing any operation.
18251 	 */
18252 	taskq_destroy(dtrace_taskq);
18253 	dtrace_taskq = NULL;
18254 
18255 	return (DDI_SUCCESS);
18256 }
18257 #endif
18258 
18259 #ifdef illumos
18260 /*ARGSUSED*/
18261 static int
18262 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18263 {
18264 	int error;
18265 
18266 	switch (infocmd) {
18267 	case DDI_INFO_DEVT2DEVINFO:
18268 		*result = (void *)dtrace_devi;
18269 		error = DDI_SUCCESS;
18270 		break;
18271 	case DDI_INFO_DEVT2INSTANCE:
18272 		*result = (void *)0;
18273 		error = DDI_SUCCESS;
18274 		break;
18275 	default:
18276 		error = DDI_FAILURE;
18277 	}
18278 	return (error);
18279 }
18280 #endif
18281 
18282 #ifdef illumos
18283 static struct cb_ops dtrace_cb_ops = {
18284 	dtrace_open,		/* open */
18285 	dtrace_close,		/* close */
18286 	nulldev,		/* strategy */
18287 	nulldev,		/* print */
18288 	nodev,			/* dump */
18289 	nodev,			/* read */
18290 	nodev,			/* write */
18291 	dtrace_ioctl,		/* ioctl */
18292 	nodev,			/* devmap */
18293 	nodev,			/* mmap */
18294 	nodev,			/* segmap */
18295 	nochpoll,		/* poll */
18296 	ddi_prop_op,		/* cb_prop_op */
18297 	0,			/* streamtab  */
18298 	D_NEW | D_MP		/* Driver compatibility flag */
18299 };
18300 
18301 static struct dev_ops dtrace_ops = {
18302 	DEVO_REV,		/* devo_rev */
18303 	0,			/* refcnt */
18304 	dtrace_info,		/* get_dev_info */
18305 	nulldev,		/* identify */
18306 	nulldev,		/* probe */
18307 	dtrace_attach,		/* attach */
18308 	dtrace_detach,		/* detach */
18309 	nodev,			/* reset */
18310 	&dtrace_cb_ops,		/* driver operations */
18311 	NULL,			/* bus operations */
18312 	nodev			/* dev power */
18313 };
18314 
18315 static struct modldrv modldrv = {
18316 	&mod_driverops,		/* module type (this is a pseudo driver) */
18317 	"Dynamic Tracing",	/* name of module */
18318 	&dtrace_ops,		/* driver ops */
18319 };
18320 
18321 static struct modlinkage modlinkage = {
18322 	MODREV_1,
18323 	(void *)&modldrv,
18324 	NULL
18325 };
18326 
18327 int
18328 _init(void)
18329 {
18330 	return (mod_install(&modlinkage));
18331 }
18332 
18333 int
18334 _info(struct modinfo *modinfop)
18335 {
18336 	return (mod_info(&modlinkage, modinfop));
18337 }
18338 
18339 int
18340 _fini(void)
18341 {
18342 	return (mod_remove(&modlinkage));
18343 }
18344 #else
18345 
18346 static d_ioctl_t	dtrace_ioctl;
18347 static d_ioctl_t	dtrace_ioctl_helper;
18348 static void		dtrace_load(void *);
18349 static int		dtrace_unload(void);
18350 static struct cdev	*dtrace_dev;
18351 static struct cdev	*helper_dev;
18352 
18353 void dtrace_invop_init(void);
18354 void dtrace_invop_uninit(void);
18355 
18356 static struct cdevsw dtrace_cdevsw = {
18357 	.d_version	= D_VERSION,
18358 	.d_ioctl	= dtrace_ioctl,
18359 	.d_open		= dtrace_open,
18360 	.d_name		= "dtrace",
18361 };
18362 
18363 static struct cdevsw helper_cdevsw = {
18364 	.d_version	= D_VERSION,
18365 	.d_ioctl	= dtrace_ioctl_helper,
18366 	.d_name		= "helper",
18367 };
18368 
18369 #include <dtrace_anon.c>
18370 #include <dtrace_ioctl.c>
18371 #include <dtrace_load.c>
18372 #include <dtrace_modevent.c>
18373 #include <dtrace_sysctl.c>
18374 #include <dtrace_unload.c>
18375 #include <dtrace_vtime.c>
18376 #include <dtrace_hacks.c>
18377 #include <dtrace_isa.c>
18378 
18379 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18380 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18381 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18382 
18383 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18384 MODULE_VERSION(dtrace, 1);
18385 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18386 #endif
18387