xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114 
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/eventhandler.h>
120 #include <sys/limits.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/sysctl.h>
125 #include <sys/lock.h>
126 #include <sys/mutex.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/dtrace_bsd.h>
130 #include <netinet/in.h>
131 #include "dtrace_cddl.h"
132 #include "dtrace_debug.c"
133 #endif
134 
135 /*
136  * DTrace Tunable Variables
137  *
138  * The following variables may be tuned by adding a line to /etc/system that
139  * includes both the name of the DTrace module ("dtrace") and the name of the
140  * variable.  For example:
141  *
142  *   set dtrace:dtrace_destructive_disallow = 1
143  *
144  * In general, the only variables that one should be tuning this way are those
145  * that affect system-wide DTrace behavior, and for which the default behavior
146  * is undesirable.  Most of these variables are tunable on a per-consumer
147  * basis using DTrace options, and need not be tuned on a system-wide basis.
148  * When tuning these variables, avoid pathological values; while some attempt
149  * is made to verify the integrity of these variables, they are not considered
150  * part of the supported interface to DTrace, and they are therefore not
151  * checked comprehensively.  Further, these variables should not be tuned
152  * dynamically via "mdb -kw" or other means; they should only be tuned via
153  * /etc/system.
154  */
155 int		dtrace_destructive_disallow = 0;
156 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
157 size_t		dtrace_difo_maxsize = (256 * 1024);
158 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
159 size_t		dtrace_global_maxsize = (16 * 1024);
160 size_t		dtrace_actions_max = (16 * 1024);
161 size_t		dtrace_retain_max = 1024;
162 dtrace_optval_t	dtrace_helper_actions_max = 128;
163 dtrace_optval_t	dtrace_helper_providers_max = 32;
164 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
165 size_t		dtrace_strsize_default = 256;
166 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
167 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
168 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
169 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
170 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
171 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
172 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
173 dtrace_optval_t	dtrace_nspec_default = 1;
174 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
175 dtrace_optval_t dtrace_stackframes_default = 20;
176 dtrace_optval_t dtrace_ustackframes_default = 20;
177 dtrace_optval_t dtrace_jstackframes_default = 50;
178 dtrace_optval_t dtrace_jstackstrsize_default = 512;
179 int		dtrace_msgdsize_max = 128;
180 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
181 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
182 int		dtrace_devdepth_max = 32;
183 int		dtrace_err_verbose;
184 hrtime_t	dtrace_deadman_interval = NANOSEC;
185 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
186 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
187 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
188 #if !defined(sun)
189 int		dtrace_memstr_max = 4096;
190 #endif
191 
192 /*
193  * DTrace External Variables
194  *
195  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
196  * available to DTrace consumers via the backtick (`) syntax.  One of these,
197  * dtrace_zero, is made deliberately so:  it is provided as a source of
198  * well-known, zero-filled memory.  While this variable is not documented,
199  * it is used by some translators as an implementation detail.
200  */
201 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
202 
203 /*
204  * DTrace Internal Variables
205  */
206 #if defined(sun)
207 static dev_info_t	*dtrace_devi;		/* device info */
208 #endif
209 #if defined(sun)
210 static vmem_t		*dtrace_arena;		/* probe ID arena */
211 static vmem_t		*dtrace_minor;		/* minor number arena */
212 #else
213 static taskq_t		*dtrace_taskq;		/* task queue */
214 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
215 #endif
216 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
217 static int		dtrace_nprobes;		/* number of probes */
218 static dtrace_provider_t *dtrace_provider;	/* provider list */
219 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
220 static int		dtrace_opens;		/* number of opens */
221 static int		dtrace_helpers;		/* number of helpers */
222 #if defined(sun)
223 static void		*dtrace_softstate;	/* softstate pointer */
224 #endif
225 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
226 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
227 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
228 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
229 static int		dtrace_toxranges;	/* number of toxic ranges */
230 static int		dtrace_toxranges_max;	/* size of toxic range array */
231 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
232 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
233 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
234 static kthread_t	*dtrace_panicked;	/* panicking thread */
235 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
236 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
237 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
238 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
239 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
240 #if !defined(sun)
241 static struct mtx	dtrace_unr_mtx;
242 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
243 int		dtrace_in_probe;	/* non-zero if executing a probe */
244 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
245 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
246 #endif
247 static eventhandler_tag	dtrace_kld_load_tag;
248 static eventhandler_tag	dtrace_kld_unload_try_tag;
249 #endif
250 
251 /*
252  * DTrace Locking
253  * DTrace is protected by three (relatively coarse-grained) locks:
254  *
255  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
256  *     including enabling state, probes, ECBs, consumer state, helper state,
257  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
258  *     probe context is lock-free -- synchronization is handled via the
259  *     dtrace_sync() cross call mechanism.
260  *
261  * (2) dtrace_provider_lock is required when manipulating provider state, or
262  *     when provider state must be held constant.
263  *
264  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
265  *     when meta provider state must be held constant.
266  *
267  * The lock ordering between these three locks is dtrace_meta_lock before
268  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
269  * several places where dtrace_provider_lock is held by the framework as it
270  * calls into the providers -- which then call back into the framework,
271  * grabbing dtrace_lock.)
272  *
273  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
274  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
275  * role as a coarse-grained lock; it is acquired before both of these locks.
276  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
277  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
278  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
279  * acquired _between_ dtrace_provider_lock and dtrace_lock.
280  */
281 static kmutex_t		dtrace_lock;		/* probe state lock */
282 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
283 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
284 
285 #if !defined(sun)
286 /* XXX FreeBSD hacks. */
287 #define cr_suid		cr_svuid
288 #define cr_sgid		cr_svgid
289 #define	ipaddr_t	in_addr_t
290 #define mod_modname	pathname
291 #define vuprintf	vprintf
292 #define ttoproc(_a)	((_a)->td_proc)
293 #define crgetzoneid(_a)	0
294 #define	NCPU		MAXCPU
295 #define SNOCD		0
296 #define CPU_ON_INTR(_a)	0
297 
298 #define PRIV_EFFECTIVE		(1 << 0)
299 #define PRIV_DTRACE_KERNEL	(1 << 1)
300 #define PRIV_DTRACE_PROC	(1 << 2)
301 #define PRIV_DTRACE_USER	(1 << 3)
302 #define PRIV_PROC_OWNER		(1 << 4)
303 #define PRIV_PROC_ZONE		(1 << 5)
304 #define PRIV_ALL		~0
305 
306 SYSCTL_DECL(_debug_dtrace);
307 SYSCTL_DECL(_kern_dtrace);
308 #endif
309 
310 #if defined(sun)
311 #define curcpu	CPU->cpu_id
312 #endif
313 
314 
315 /*
316  * DTrace Provider Variables
317  *
318  * These are the variables relating to DTrace as a provider (that is, the
319  * provider of the BEGIN, END, and ERROR probes).
320  */
321 static dtrace_pattr_t	dtrace_provider_attr = {
322 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
323 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
324 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
325 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
326 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
327 };
328 
329 static void
330 dtrace_nullop(void)
331 {}
332 
333 static dtrace_pops_t	dtrace_provider_ops = {
334 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
335 	(void (*)(void *, modctl_t *))dtrace_nullop,
336 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
337 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
338 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
339 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340 	NULL,
341 	NULL,
342 	NULL,
343 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
344 };
345 
346 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
347 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
348 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
349 
350 /*
351  * DTrace Helper Tracing Variables
352  */
353 uint32_t dtrace_helptrace_next = 0;
354 uint32_t dtrace_helptrace_nlocals;
355 char	*dtrace_helptrace_buffer;
356 int	dtrace_helptrace_bufsize = 512 * 1024;
357 
358 #ifdef DEBUG
359 int	dtrace_helptrace_enabled = 1;
360 #else
361 int	dtrace_helptrace_enabled = 0;
362 #endif
363 
364 /*
365  * DTrace Error Hashing
366  *
367  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
368  * table.  This is very useful for checking coverage of tests that are
369  * expected to induce DIF or DOF processing errors, and may be useful for
370  * debugging problems in the DIF code generator or in DOF generation .  The
371  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
372  */
373 #ifdef DEBUG
374 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
375 static const char *dtrace_errlast;
376 static kthread_t *dtrace_errthread;
377 static kmutex_t dtrace_errlock;
378 #endif
379 
380 /*
381  * DTrace Macros and Constants
382  *
383  * These are various macros that are useful in various spots in the
384  * implementation, along with a few random constants that have no meaning
385  * outside of the implementation.  There is no real structure to this cpp
386  * mishmash -- but is there ever?
387  */
388 #define	DTRACE_HASHSTR(hash, probe)	\
389 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
390 
391 #define	DTRACE_HASHNEXT(hash, probe)	\
392 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
393 
394 #define	DTRACE_HASHPREV(hash, probe)	\
395 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
396 
397 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
398 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
399 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
400 
401 #define	DTRACE_AGGHASHSIZE_SLEW		17
402 
403 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
404 
405 /*
406  * The key for a thread-local variable consists of the lower 61 bits of the
407  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
408  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
409  * equal to a variable identifier.  This is necessary (but not sufficient) to
410  * assure that global associative arrays never collide with thread-local
411  * variables.  To guarantee that they cannot collide, we must also define the
412  * order for keying dynamic variables.  That order is:
413  *
414  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
415  *
416  * Because the variable-key and the tls-key are in orthogonal spaces, there is
417  * no way for a global variable key signature to match a thread-local key
418  * signature.
419  */
420 #if defined(sun)
421 #define	DTRACE_TLS_THRKEY(where) { \
422 	uint_t intr = 0; \
423 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
424 	for (; actv; actv >>= 1) \
425 		intr++; \
426 	ASSERT(intr < (1 << 3)); \
427 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
428 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
429 }
430 #else
431 #define	DTRACE_TLS_THRKEY(where) { \
432 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
433 	uint_t intr = 0; \
434 	uint_t actv = _c->cpu_intr_actv; \
435 	for (; actv; actv >>= 1) \
436 		intr++; \
437 	ASSERT(intr < (1 << 3)); \
438 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
439 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
440 }
441 #endif
442 
443 #define	DT_BSWAP_8(x)	((x) & 0xff)
444 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
445 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
446 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
447 
448 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
449 
450 #define	DTRACE_STORE(type, tomax, offset, what) \
451 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
452 
453 #ifndef __x86
454 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
455 	if (addr & (size - 1)) {					\
456 		*flags |= CPU_DTRACE_BADALIGN;				\
457 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
458 		return (0);						\
459 	}
460 #else
461 #define	DTRACE_ALIGNCHECK(addr, size, flags)
462 #endif
463 
464 /*
465  * Test whether a range of memory starting at testaddr of size testsz falls
466  * within the range of memory described by addr, sz.  We take care to avoid
467  * problems with overflow and underflow of the unsigned quantities, and
468  * disallow all negative sizes.  Ranges of size 0 are allowed.
469  */
470 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
471 	((testaddr) - (baseaddr) < (basesz) && \
472 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
473 	(testaddr) + (testsz) >= (testaddr))
474 
475 /*
476  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
477  * alloc_sz on the righthand side of the comparison in order to avoid overflow
478  * or underflow in the comparison with it.  This is simpler than the INRANGE
479  * check above, because we know that the dtms_scratch_ptr is valid in the
480  * range.  Allocations of size zero are allowed.
481  */
482 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
483 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
484 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
485 
486 #define	DTRACE_LOADFUNC(bits)						\
487 /*CSTYLED*/								\
488 uint##bits##_t								\
489 dtrace_load##bits(uintptr_t addr)					\
490 {									\
491 	size_t size = bits / NBBY;					\
492 	/*CSTYLED*/							\
493 	uint##bits##_t rval;						\
494 	int i;								\
495 	volatile uint16_t *flags = (volatile uint16_t *)		\
496 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
497 									\
498 	DTRACE_ALIGNCHECK(addr, size, flags);				\
499 									\
500 	for (i = 0; i < dtrace_toxranges; i++) {			\
501 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
502 			continue;					\
503 									\
504 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
505 			continue;					\
506 									\
507 		/*							\
508 		 * This address falls within a toxic region; return 0.	\
509 		 */							\
510 		*flags |= CPU_DTRACE_BADADDR;				\
511 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
512 		return (0);						\
513 	}								\
514 									\
515 	*flags |= CPU_DTRACE_NOFAULT;					\
516 	/*CSTYLED*/							\
517 	rval = *((volatile uint##bits##_t *)addr);			\
518 	*flags &= ~CPU_DTRACE_NOFAULT;					\
519 									\
520 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
521 }
522 
523 #ifdef _LP64
524 #define	dtrace_loadptr	dtrace_load64
525 #else
526 #define	dtrace_loadptr	dtrace_load32
527 #endif
528 
529 #define	DTRACE_DYNHASH_FREE	0
530 #define	DTRACE_DYNHASH_SINK	1
531 #define	DTRACE_DYNHASH_VALID	2
532 
533 #define	DTRACE_MATCH_NEXT	0
534 #define	DTRACE_MATCH_DONE	1
535 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
536 #define	DTRACE_STATE_ALIGN	64
537 
538 #define	DTRACE_FLAGS2FLT(flags)						\
539 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
540 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
541 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
542 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
543 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
544 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
545 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
546 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
547 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
548 	DTRACEFLT_UNKNOWN)
549 
550 #define	DTRACEACT_ISSTRING(act)						\
551 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
552 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
553 
554 /* Function prototype definitions: */
555 static size_t dtrace_strlen(const char *, size_t);
556 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
557 static void dtrace_enabling_provide(dtrace_provider_t *);
558 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
559 static void dtrace_enabling_matchall(void);
560 static void dtrace_enabling_reap(void);
561 static dtrace_state_t *dtrace_anon_grab(void);
562 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
563     dtrace_state_t *, uint64_t, uint64_t);
564 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
565 static void dtrace_buffer_drop(dtrace_buffer_t *);
566 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
567 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
568     dtrace_state_t *, dtrace_mstate_t *);
569 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
570     dtrace_optval_t);
571 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
572 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
573 uint16_t dtrace_load16(uintptr_t);
574 uint32_t dtrace_load32(uintptr_t);
575 uint64_t dtrace_load64(uintptr_t);
576 uint8_t dtrace_load8(uintptr_t);
577 void dtrace_dynvar_clean(dtrace_dstate_t *);
578 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
579     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
580 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
581 
582 /*
583  * DTrace Probe Context Functions
584  *
585  * These functions are called from probe context.  Because probe context is
586  * any context in which C may be called, arbitrarily locks may be held,
587  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
588  * As a result, functions called from probe context may only call other DTrace
589  * support functions -- they may not interact at all with the system at large.
590  * (Note that the ASSERT macro is made probe-context safe by redefining it in
591  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
592  * loads are to be performed from probe context, they _must_ be in terms of
593  * the safe dtrace_load*() variants.
594  *
595  * Some functions in this block are not actually called from probe context;
596  * for these functions, there will be a comment above the function reading
597  * "Note:  not called from probe context."
598  */
599 void
600 dtrace_panic(const char *format, ...)
601 {
602 	va_list alist;
603 
604 	va_start(alist, format);
605 	dtrace_vpanic(format, alist);
606 	va_end(alist);
607 }
608 
609 int
610 dtrace_assfail(const char *a, const char *f, int l)
611 {
612 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
613 
614 	/*
615 	 * We just need something here that even the most clever compiler
616 	 * cannot optimize away.
617 	 */
618 	return (a[(uintptr_t)f]);
619 }
620 
621 /*
622  * Atomically increment a specified error counter from probe context.
623  */
624 static void
625 dtrace_error(uint32_t *counter)
626 {
627 	/*
628 	 * Most counters stored to in probe context are per-CPU counters.
629 	 * However, there are some error conditions that are sufficiently
630 	 * arcane that they don't merit per-CPU storage.  If these counters
631 	 * are incremented concurrently on different CPUs, scalability will be
632 	 * adversely affected -- but we don't expect them to be white-hot in a
633 	 * correctly constructed enabling...
634 	 */
635 	uint32_t oval, nval;
636 
637 	do {
638 		oval = *counter;
639 
640 		if ((nval = oval + 1) == 0) {
641 			/*
642 			 * If the counter would wrap, set it to 1 -- assuring
643 			 * that the counter is never zero when we have seen
644 			 * errors.  (The counter must be 32-bits because we
645 			 * aren't guaranteed a 64-bit compare&swap operation.)
646 			 * To save this code both the infamy of being fingered
647 			 * by a priggish news story and the indignity of being
648 			 * the target of a neo-puritan witch trial, we're
649 			 * carefully avoiding any colorful description of the
650 			 * likelihood of this condition -- but suffice it to
651 			 * say that it is only slightly more likely than the
652 			 * overflow of predicate cache IDs, as discussed in
653 			 * dtrace_predicate_create().
654 			 */
655 			nval = 1;
656 		}
657 	} while (dtrace_cas32(counter, oval, nval) != oval);
658 }
659 
660 /*
661  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
662  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
663  */
664 DTRACE_LOADFUNC(8)
665 DTRACE_LOADFUNC(16)
666 DTRACE_LOADFUNC(32)
667 DTRACE_LOADFUNC(64)
668 
669 static int
670 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
671 {
672 	if (dest < mstate->dtms_scratch_base)
673 		return (0);
674 
675 	if (dest + size < dest)
676 		return (0);
677 
678 	if (dest + size > mstate->dtms_scratch_ptr)
679 		return (0);
680 
681 	return (1);
682 }
683 
684 static int
685 dtrace_canstore_statvar(uint64_t addr, size_t sz,
686     dtrace_statvar_t **svars, int nsvars)
687 {
688 	int i;
689 
690 	for (i = 0; i < nsvars; i++) {
691 		dtrace_statvar_t *svar = svars[i];
692 
693 		if (svar == NULL || svar->dtsv_size == 0)
694 			continue;
695 
696 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
697 			return (1);
698 	}
699 
700 	return (0);
701 }
702 
703 /*
704  * Check to see if the address is within a memory region to which a store may
705  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
706  * region.  The caller of dtrace_canstore() is responsible for performing any
707  * alignment checks that are needed before stores are actually executed.
708  */
709 static int
710 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
711     dtrace_vstate_t *vstate)
712 {
713 	/*
714 	 * First, check to see if the address is in scratch space...
715 	 */
716 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
717 	    mstate->dtms_scratch_size))
718 		return (1);
719 
720 	/*
721 	 * Now check to see if it's a dynamic variable.  This check will pick
722 	 * up both thread-local variables and any global dynamically-allocated
723 	 * variables.
724 	 */
725 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
726 	    vstate->dtvs_dynvars.dtds_size)) {
727 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
728 		uintptr_t base = (uintptr_t)dstate->dtds_base +
729 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
730 		uintptr_t chunkoffs;
731 
732 		/*
733 		 * Before we assume that we can store here, we need to make
734 		 * sure that it isn't in our metadata -- storing to our
735 		 * dynamic variable metadata would corrupt our state.  For
736 		 * the range to not include any dynamic variable metadata,
737 		 * it must:
738 		 *
739 		 *	(1) Start above the hash table that is at the base of
740 		 *	the dynamic variable space
741 		 *
742 		 *	(2) Have a starting chunk offset that is beyond the
743 		 *	dtrace_dynvar_t that is at the base of every chunk
744 		 *
745 		 *	(3) Not span a chunk boundary
746 		 *
747 		 */
748 		if (addr < base)
749 			return (0);
750 
751 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
752 
753 		if (chunkoffs < sizeof (dtrace_dynvar_t))
754 			return (0);
755 
756 		if (chunkoffs + sz > dstate->dtds_chunksize)
757 			return (0);
758 
759 		return (1);
760 	}
761 
762 	/*
763 	 * Finally, check the static local and global variables.  These checks
764 	 * take the longest, so we perform them last.
765 	 */
766 	if (dtrace_canstore_statvar(addr, sz,
767 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
768 		return (1);
769 
770 	if (dtrace_canstore_statvar(addr, sz,
771 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
772 		return (1);
773 
774 	return (0);
775 }
776 
777 
778 /*
779  * Convenience routine to check to see if the address is within a memory
780  * region in which a load may be issued given the user's privilege level;
781  * if not, it sets the appropriate error flags and loads 'addr' into the
782  * illegal value slot.
783  *
784  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
785  * appropriate memory access protection.
786  */
787 static int
788 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
789     dtrace_vstate_t *vstate)
790 {
791 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
792 
793 	/*
794 	 * If we hold the privilege to read from kernel memory, then
795 	 * everything is readable.
796 	 */
797 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
798 		return (1);
799 
800 	/*
801 	 * You can obviously read that which you can store.
802 	 */
803 	if (dtrace_canstore(addr, sz, mstate, vstate))
804 		return (1);
805 
806 	/*
807 	 * We're allowed to read from our own string table.
808 	 */
809 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
810 	    mstate->dtms_difo->dtdo_strlen))
811 		return (1);
812 
813 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
814 	*illval = addr;
815 	return (0);
816 }
817 
818 /*
819  * Convenience routine to check to see if a given string is within a memory
820  * region in which a load may be issued given the user's privilege level;
821  * this exists so that we don't need to issue unnecessary dtrace_strlen()
822  * calls in the event that the user has all privileges.
823  */
824 static int
825 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
826     dtrace_vstate_t *vstate)
827 {
828 	size_t strsz;
829 
830 	/*
831 	 * If we hold the privilege to read from kernel memory, then
832 	 * everything is readable.
833 	 */
834 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
835 		return (1);
836 
837 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
838 	if (dtrace_canload(addr, strsz, mstate, vstate))
839 		return (1);
840 
841 	return (0);
842 }
843 
844 /*
845  * Convenience routine to check to see if a given variable is within a memory
846  * region in which a load may be issued given the user's privilege level.
847  */
848 static int
849 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
850     dtrace_vstate_t *vstate)
851 {
852 	size_t sz;
853 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
854 
855 	/*
856 	 * If we hold the privilege to read from kernel memory, then
857 	 * everything is readable.
858 	 */
859 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
860 		return (1);
861 
862 	if (type->dtdt_kind == DIF_TYPE_STRING)
863 		sz = dtrace_strlen(src,
864 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
865 	else
866 		sz = type->dtdt_size;
867 
868 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
869 }
870 
871 /*
872  * Compare two strings using safe loads.
873  */
874 static int
875 dtrace_strncmp(char *s1, char *s2, size_t limit)
876 {
877 	uint8_t c1, c2;
878 	volatile uint16_t *flags;
879 
880 	if (s1 == s2 || limit == 0)
881 		return (0);
882 
883 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
884 
885 	do {
886 		if (s1 == NULL) {
887 			c1 = '\0';
888 		} else {
889 			c1 = dtrace_load8((uintptr_t)s1++);
890 		}
891 
892 		if (s2 == NULL) {
893 			c2 = '\0';
894 		} else {
895 			c2 = dtrace_load8((uintptr_t)s2++);
896 		}
897 
898 		if (c1 != c2)
899 			return (c1 - c2);
900 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
901 
902 	return (0);
903 }
904 
905 /*
906  * Compute strlen(s) for a string using safe memory accesses.  The additional
907  * len parameter is used to specify a maximum length to ensure completion.
908  */
909 static size_t
910 dtrace_strlen(const char *s, size_t lim)
911 {
912 	uint_t len;
913 
914 	for (len = 0; len != lim; len++) {
915 		if (dtrace_load8((uintptr_t)s++) == '\0')
916 			break;
917 	}
918 
919 	return (len);
920 }
921 
922 /*
923  * Check if an address falls within a toxic region.
924  */
925 static int
926 dtrace_istoxic(uintptr_t kaddr, size_t size)
927 {
928 	uintptr_t taddr, tsize;
929 	int i;
930 
931 	for (i = 0; i < dtrace_toxranges; i++) {
932 		taddr = dtrace_toxrange[i].dtt_base;
933 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
934 
935 		if (kaddr - taddr < tsize) {
936 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
937 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
938 			return (1);
939 		}
940 
941 		if (taddr - kaddr < size) {
942 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
943 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
944 			return (1);
945 		}
946 	}
947 
948 	return (0);
949 }
950 
951 /*
952  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
953  * memory specified by the DIF program.  The dst is assumed to be safe memory
954  * that we can store to directly because it is managed by DTrace.  As with
955  * standard bcopy, overlapping copies are handled properly.
956  */
957 static void
958 dtrace_bcopy(const void *src, void *dst, size_t len)
959 {
960 	if (len != 0) {
961 		uint8_t *s1 = dst;
962 		const uint8_t *s2 = src;
963 
964 		if (s1 <= s2) {
965 			do {
966 				*s1++ = dtrace_load8((uintptr_t)s2++);
967 			} while (--len != 0);
968 		} else {
969 			s2 += len;
970 			s1 += len;
971 
972 			do {
973 				*--s1 = dtrace_load8((uintptr_t)--s2);
974 			} while (--len != 0);
975 		}
976 	}
977 }
978 
979 /*
980  * Copy src to dst using safe memory accesses, up to either the specified
981  * length, or the point that a nul byte is encountered.  The src is assumed to
982  * be unsafe memory specified by the DIF program.  The dst is assumed to be
983  * safe memory that we can store to directly because it is managed by DTrace.
984  * Unlike dtrace_bcopy(), overlapping regions are not handled.
985  */
986 static void
987 dtrace_strcpy(const void *src, void *dst, size_t len)
988 {
989 	if (len != 0) {
990 		uint8_t *s1 = dst, c;
991 		const uint8_t *s2 = src;
992 
993 		do {
994 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
995 		} while (--len != 0 && c != '\0');
996 	}
997 }
998 
999 /*
1000  * Copy src to dst, deriving the size and type from the specified (BYREF)
1001  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1002  * program.  The dst is assumed to be DTrace variable memory that is of the
1003  * specified type; we assume that we can store to directly.
1004  */
1005 static void
1006 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1007 {
1008 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1009 
1010 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1011 		dtrace_strcpy(src, dst, type->dtdt_size);
1012 	} else {
1013 		dtrace_bcopy(src, dst, type->dtdt_size);
1014 	}
1015 }
1016 
1017 /*
1018  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1019  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1020  * safe memory that we can access directly because it is managed by DTrace.
1021  */
1022 static int
1023 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1024 {
1025 	volatile uint16_t *flags;
1026 
1027 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1028 
1029 	if (s1 == s2)
1030 		return (0);
1031 
1032 	if (s1 == NULL || s2 == NULL)
1033 		return (1);
1034 
1035 	if (s1 != s2 && len != 0) {
1036 		const uint8_t *ps1 = s1;
1037 		const uint8_t *ps2 = s2;
1038 
1039 		do {
1040 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1041 				return (1);
1042 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1043 	}
1044 	return (0);
1045 }
1046 
1047 /*
1048  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1049  * is for safe DTrace-managed memory only.
1050  */
1051 static void
1052 dtrace_bzero(void *dst, size_t len)
1053 {
1054 	uchar_t *cp;
1055 
1056 	for (cp = dst; len != 0; len--)
1057 		*cp++ = 0;
1058 }
1059 
1060 static void
1061 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1062 {
1063 	uint64_t result[2];
1064 
1065 	result[0] = addend1[0] + addend2[0];
1066 	result[1] = addend1[1] + addend2[1] +
1067 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1068 
1069 	sum[0] = result[0];
1070 	sum[1] = result[1];
1071 }
1072 
1073 /*
1074  * Shift the 128-bit value in a by b. If b is positive, shift left.
1075  * If b is negative, shift right.
1076  */
1077 static void
1078 dtrace_shift_128(uint64_t *a, int b)
1079 {
1080 	uint64_t mask;
1081 
1082 	if (b == 0)
1083 		return;
1084 
1085 	if (b < 0) {
1086 		b = -b;
1087 		if (b >= 64) {
1088 			a[0] = a[1] >> (b - 64);
1089 			a[1] = 0;
1090 		} else {
1091 			a[0] >>= b;
1092 			mask = 1LL << (64 - b);
1093 			mask -= 1;
1094 			a[0] |= ((a[1] & mask) << (64 - b));
1095 			a[1] >>= b;
1096 		}
1097 	} else {
1098 		if (b >= 64) {
1099 			a[1] = a[0] << (b - 64);
1100 			a[0] = 0;
1101 		} else {
1102 			a[1] <<= b;
1103 			mask = a[0] >> (64 - b);
1104 			a[1] |= mask;
1105 			a[0] <<= b;
1106 		}
1107 	}
1108 }
1109 
1110 /*
1111  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1112  * use native multiplication on those, and then re-combine into the
1113  * resulting 128-bit value.
1114  *
1115  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1116  *     hi1 * hi2 << 64 +
1117  *     hi1 * lo2 << 32 +
1118  *     hi2 * lo1 << 32 +
1119  *     lo1 * lo2
1120  */
1121 static void
1122 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1123 {
1124 	uint64_t hi1, hi2, lo1, lo2;
1125 	uint64_t tmp[2];
1126 
1127 	hi1 = factor1 >> 32;
1128 	hi2 = factor2 >> 32;
1129 
1130 	lo1 = factor1 & DT_MASK_LO;
1131 	lo2 = factor2 & DT_MASK_LO;
1132 
1133 	product[0] = lo1 * lo2;
1134 	product[1] = hi1 * hi2;
1135 
1136 	tmp[0] = hi1 * lo2;
1137 	tmp[1] = 0;
1138 	dtrace_shift_128(tmp, 32);
1139 	dtrace_add_128(product, tmp, product);
1140 
1141 	tmp[0] = hi2 * lo1;
1142 	tmp[1] = 0;
1143 	dtrace_shift_128(tmp, 32);
1144 	dtrace_add_128(product, tmp, product);
1145 }
1146 
1147 /*
1148  * This privilege check should be used by actions and subroutines to
1149  * verify that the user credentials of the process that enabled the
1150  * invoking ECB match the target credentials
1151  */
1152 static int
1153 dtrace_priv_proc_common_user(dtrace_state_t *state)
1154 {
1155 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1156 
1157 	/*
1158 	 * We should always have a non-NULL state cred here, since if cred
1159 	 * is null (anonymous tracing), we fast-path bypass this routine.
1160 	 */
1161 	ASSERT(s_cr != NULL);
1162 
1163 	if ((cr = CRED()) != NULL &&
1164 	    s_cr->cr_uid == cr->cr_uid &&
1165 	    s_cr->cr_uid == cr->cr_ruid &&
1166 	    s_cr->cr_uid == cr->cr_suid &&
1167 	    s_cr->cr_gid == cr->cr_gid &&
1168 	    s_cr->cr_gid == cr->cr_rgid &&
1169 	    s_cr->cr_gid == cr->cr_sgid)
1170 		return (1);
1171 
1172 	return (0);
1173 }
1174 
1175 /*
1176  * This privilege check should be used by actions and subroutines to
1177  * verify that the zone of the process that enabled the invoking ECB
1178  * matches the target credentials
1179  */
1180 static int
1181 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1182 {
1183 #if defined(sun)
1184 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1185 
1186 	/*
1187 	 * We should always have a non-NULL state cred here, since if cred
1188 	 * is null (anonymous tracing), we fast-path bypass this routine.
1189 	 */
1190 	ASSERT(s_cr != NULL);
1191 
1192 	if ((cr = CRED()) != NULL &&
1193 	    s_cr->cr_zone == cr->cr_zone)
1194 		return (1);
1195 
1196 	return (0);
1197 #else
1198 	return (1);
1199 #endif
1200 }
1201 
1202 /*
1203  * This privilege check should be used by actions and subroutines to
1204  * verify that the process has not setuid or changed credentials.
1205  */
1206 static int
1207 dtrace_priv_proc_common_nocd(void)
1208 {
1209 	proc_t *proc;
1210 
1211 	if ((proc = ttoproc(curthread)) != NULL &&
1212 	    !(proc->p_flag & SNOCD))
1213 		return (1);
1214 
1215 	return (0);
1216 }
1217 
1218 static int
1219 dtrace_priv_proc_destructive(dtrace_state_t *state)
1220 {
1221 	int action = state->dts_cred.dcr_action;
1222 
1223 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1224 	    dtrace_priv_proc_common_zone(state) == 0)
1225 		goto bad;
1226 
1227 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1228 	    dtrace_priv_proc_common_user(state) == 0)
1229 		goto bad;
1230 
1231 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1232 	    dtrace_priv_proc_common_nocd() == 0)
1233 		goto bad;
1234 
1235 	return (1);
1236 
1237 bad:
1238 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1239 
1240 	return (0);
1241 }
1242 
1243 static int
1244 dtrace_priv_proc_control(dtrace_state_t *state)
1245 {
1246 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1247 		return (1);
1248 
1249 	if (dtrace_priv_proc_common_zone(state) &&
1250 	    dtrace_priv_proc_common_user(state) &&
1251 	    dtrace_priv_proc_common_nocd())
1252 		return (1);
1253 
1254 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1255 
1256 	return (0);
1257 }
1258 
1259 static int
1260 dtrace_priv_proc(dtrace_state_t *state)
1261 {
1262 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1263 		return (1);
1264 
1265 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1266 
1267 	return (0);
1268 }
1269 
1270 static int
1271 dtrace_priv_kernel(dtrace_state_t *state)
1272 {
1273 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1274 		return (1);
1275 
1276 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1277 
1278 	return (0);
1279 }
1280 
1281 static int
1282 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1283 {
1284 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1285 		return (1);
1286 
1287 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1288 
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Note:  not called from probe context.  This function is called
1294  * asynchronously (and at a regular interval) from outside of probe context to
1295  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1296  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1297  */
1298 void
1299 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1300 {
1301 	dtrace_dynvar_t *dirty;
1302 	dtrace_dstate_percpu_t *dcpu;
1303 	int i, work = 0;
1304 
1305 	for (i = 0; i < NCPU; i++) {
1306 		dcpu = &dstate->dtds_percpu[i];
1307 
1308 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1309 
1310 		/*
1311 		 * If the dirty list is NULL, there is no dirty work to do.
1312 		 */
1313 		if (dcpu->dtdsc_dirty == NULL)
1314 			continue;
1315 
1316 		/*
1317 		 * If the clean list is non-NULL, then we're not going to do
1318 		 * any work for this CPU -- it means that there has not been
1319 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1320 		 * since the last time we cleaned house.
1321 		 */
1322 		if (dcpu->dtdsc_clean != NULL)
1323 			continue;
1324 
1325 		work = 1;
1326 
1327 		/*
1328 		 * Atomically move the dirty list aside.
1329 		 */
1330 		do {
1331 			dirty = dcpu->dtdsc_dirty;
1332 
1333 			/*
1334 			 * Before we zap the dirty list, set the rinsing list.
1335 			 * (This allows for a potential assertion in
1336 			 * dtrace_dynvar():  if a free dynamic variable appears
1337 			 * on a hash chain, either the dirty list or the
1338 			 * rinsing list for some CPU must be non-NULL.)
1339 			 */
1340 			dcpu->dtdsc_rinsing = dirty;
1341 			dtrace_membar_producer();
1342 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1343 		    dirty, NULL) != dirty);
1344 	}
1345 
1346 	if (!work) {
1347 		/*
1348 		 * We have no work to do; we can simply return.
1349 		 */
1350 		return;
1351 	}
1352 
1353 	dtrace_sync();
1354 
1355 	for (i = 0; i < NCPU; i++) {
1356 		dcpu = &dstate->dtds_percpu[i];
1357 
1358 		if (dcpu->dtdsc_rinsing == NULL)
1359 			continue;
1360 
1361 		/*
1362 		 * We are now guaranteed that no hash chain contains a pointer
1363 		 * into this dirty list; we can make it clean.
1364 		 */
1365 		ASSERT(dcpu->dtdsc_clean == NULL);
1366 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1367 		dcpu->dtdsc_rinsing = NULL;
1368 	}
1369 
1370 	/*
1371 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1372 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1373 	 * This prevents a race whereby a CPU incorrectly decides that
1374 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1375 	 * after dtrace_dynvar_clean() has completed.
1376 	 */
1377 	dtrace_sync();
1378 
1379 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1380 }
1381 
1382 /*
1383  * Depending on the value of the op parameter, this function looks-up,
1384  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1385  * allocation is requested, this function will return a pointer to a
1386  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1387  * variable can be allocated.  If NULL is returned, the appropriate counter
1388  * will be incremented.
1389  */
1390 dtrace_dynvar_t *
1391 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1392     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1393     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1394 {
1395 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1396 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1397 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1398 	processorid_t me = curcpu, cpu = me;
1399 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1400 	size_t bucket, ksize;
1401 	size_t chunksize = dstate->dtds_chunksize;
1402 	uintptr_t kdata, lock, nstate;
1403 	uint_t i;
1404 
1405 	ASSERT(nkeys != 0);
1406 
1407 	/*
1408 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1409 	 * algorithm.  For the by-value portions, we perform the algorithm in
1410 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1411 	 * bit, and seems to have only a minute effect on distribution.  For
1412 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1413 	 * over each referenced byte.  It's painful to do this, but it's much
1414 	 * better than pathological hash distribution.  The efficacy of the
1415 	 * hashing algorithm (and a comparison with other algorithms) may be
1416 	 * found by running the ::dtrace_dynstat MDB dcmd.
1417 	 */
1418 	for (i = 0; i < nkeys; i++) {
1419 		if (key[i].dttk_size == 0) {
1420 			uint64_t val = key[i].dttk_value;
1421 
1422 			hashval += (val >> 48) & 0xffff;
1423 			hashval += (hashval << 10);
1424 			hashval ^= (hashval >> 6);
1425 
1426 			hashval += (val >> 32) & 0xffff;
1427 			hashval += (hashval << 10);
1428 			hashval ^= (hashval >> 6);
1429 
1430 			hashval += (val >> 16) & 0xffff;
1431 			hashval += (hashval << 10);
1432 			hashval ^= (hashval >> 6);
1433 
1434 			hashval += val & 0xffff;
1435 			hashval += (hashval << 10);
1436 			hashval ^= (hashval >> 6);
1437 		} else {
1438 			/*
1439 			 * This is incredibly painful, but it beats the hell
1440 			 * out of the alternative.
1441 			 */
1442 			uint64_t j, size = key[i].dttk_size;
1443 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1444 
1445 			if (!dtrace_canload(base, size, mstate, vstate))
1446 				break;
1447 
1448 			for (j = 0; j < size; j++) {
1449 				hashval += dtrace_load8(base + j);
1450 				hashval += (hashval << 10);
1451 				hashval ^= (hashval >> 6);
1452 			}
1453 		}
1454 	}
1455 
1456 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1457 		return (NULL);
1458 
1459 	hashval += (hashval << 3);
1460 	hashval ^= (hashval >> 11);
1461 	hashval += (hashval << 15);
1462 
1463 	/*
1464 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1465 	 * comes out to be one of our two sentinel hash values.  If this
1466 	 * actually happens, we set the hashval to be a value known to be a
1467 	 * non-sentinel value.
1468 	 */
1469 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1470 		hashval = DTRACE_DYNHASH_VALID;
1471 
1472 	/*
1473 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1474 	 * important here, tricks can be pulled to reduce it.  (However, it's
1475 	 * critical that hash collisions be kept to an absolute minimum;
1476 	 * they're much more painful than a divide.)  It's better to have a
1477 	 * solution that generates few collisions and still keeps things
1478 	 * relatively simple.
1479 	 */
1480 	bucket = hashval % dstate->dtds_hashsize;
1481 
1482 	if (op == DTRACE_DYNVAR_DEALLOC) {
1483 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1484 
1485 		for (;;) {
1486 			while ((lock = *lockp) & 1)
1487 				continue;
1488 
1489 			if (dtrace_casptr((volatile void *)lockp,
1490 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1491 				break;
1492 		}
1493 
1494 		dtrace_membar_producer();
1495 	}
1496 
1497 top:
1498 	prev = NULL;
1499 	lock = hash[bucket].dtdh_lock;
1500 
1501 	dtrace_membar_consumer();
1502 
1503 	start = hash[bucket].dtdh_chain;
1504 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1505 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1506 	    op != DTRACE_DYNVAR_DEALLOC));
1507 
1508 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1509 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1510 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1511 
1512 		if (dvar->dtdv_hashval != hashval) {
1513 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1514 				/*
1515 				 * We've reached the sink, and therefore the
1516 				 * end of the hash chain; we can kick out of
1517 				 * the loop knowing that we have seen a valid
1518 				 * snapshot of state.
1519 				 */
1520 				ASSERT(dvar->dtdv_next == NULL);
1521 				ASSERT(dvar == &dtrace_dynhash_sink);
1522 				break;
1523 			}
1524 
1525 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1526 				/*
1527 				 * We've gone off the rails:  somewhere along
1528 				 * the line, one of the members of this hash
1529 				 * chain was deleted.  Note that we could also
1530 				 * detect this by simply letting this loop run
1531 				 * to completion, as we would eventually hit
1532 				 * the end of the dirty list.  However, we
1533 				 * want to avoid running the length of the
1534 				 * dirty list unnecessarily (it might be quite
1535 				 * long), so we catch this as early as
1536 				 * possible by detecting the hash marker.  In
1537 				 * this case, we simply set dvar to NULL and
1538 				 * break; the conditional after the loop will
1539 				 * send us back to top.
1540 				 */
1541 				dvar = NULL;
1542 				break;
1543 			}
1544 
1545 			goto next;
1546 		}
1547 
1548 		if (dtuple->dtt_nkeys != nkeys)
1549 			goto next;
1550 
1551 		for (i = 0; i < nkeys; i++, dkey++) {
1552 			if (dkey->dttk_size != key[i].dttk_size)
1553 				goto next; /* size or type mismatch */
1554 
1555 			if (dkey->dttk_size != 0) {
1556 				if (dtrace_bcmp(
1557 				    (void *)(uintptr_t)key[i].dttk_value,
1558 				    (void *)(uintptr_t)dkey->dttk_value,
1559 				    dkey->dttk_size))
1560 					goto next;
1561 			} else {
1562 				if (dkey->dttk_value != key[i].dttk_value)
1563 					goto next;
1564 			}
1565 		}
1566 
1567 		if (op != DTRACE_DYNVAR_DEALLOC)
1568 			return (dvar);
1569 
1570 		ASSERT(dvar->dtdv_next == NULL ||
1571 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1572 
1573 		if (prev != NULL) {
1574 			ASSERT(hash[bucket].dtdh_chain != dvar);
1575 			ASSERT(start != dvar);
1576 			ASSERT(prev->dtdv_next == dvar);
1577 			prev->dtdv_next = dvar->dtdv_next;
1578 		} else {
1579 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1580 			    start, dvar->dtdv_next) != start) {
1581 				/*
1582 				 * We have failed to atomically swing the
1583 				 * hash table head pointer, presumably because
1584 				 * of a conflicting allocation on another CPU.
1585 				 * We need to reread the hash chain and try
1586 				 * again.
1587 				 */
1588 				goto top;
1589 			}
1590 		}
1591 
1592 		dtrace_membar_producer();
1593 
1594 		/*
1595 		 * Now set the hash value to indicate that it's free.
1596 		 */
1597 		ASSERT(hash[bucket].dtdh_chain != dvar);
1598 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1599 
1600 		dtrace_membar_producer();
1601 
1602 		/*
1603 		 * Set the next pointer to point at the dirty list, and
1604 		 * atomically swing the dirty pointer to the newly freed dvar.
1605 		 */
1606 		do {
1607 			next = dcpu->dtdsc_dirty;
1608 			dvar->dtdv_next = next;
1609 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1610 
1611 		/*
1612 		 * Finally, unlock this hash bucket.
1613 		 */
1614 		ASSERT(hash[bucket].dtdh_lock == lock);
1615 		ASSERT(lock & 1);
1616 		hash[bucket].dtdh_lock++;
1617 
1618 		return (NULL);
1619 next:
1620 		prev = dvar;
1621 		continue;
1622 	}
1623 
1624 	if (dvar == NULL) {
1625 		/*
1626 		 * If dvar is NULL, it is because we went off the rails:
1627 		 * one of the elements that we traversed in the hash chain
1628 		 * was deleted while we were traversing it.  In this case,
1629 		 * we assert that we aren't doing a dealloc (deallocs lock
1630 		 * the hash bucket to prevent themselves from racing with
1631 		 * one another), and retry the hash chain traversal.
1632 		 */
1633 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1634 		goto top;
1635 	}
1636 
1637 	if (op != DTRACE_DYNVAR_ALLOC) {
1638 		/*
1639 		 * If we are not to allocate a new variable, we want to
1640 		 * return NULL now.  Before we return, check that the value
1641 		 * of the lock word hasn't changed.  If it has, we may have
1642 		 * seen an inconsistent snapshot.
1643 		 */
1644 		if (op == DTRACE_DYNVAR_NOALLOC) {
1645 			if (hash[bucket].dtdh_lock != lock)
1646 				goto top;
1647 		} else {
1648 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1649 			ASSERT(hash[bucket].dtdh_lock == lock);
1650 			ASSERT(lock & 1);
1651 			hash[bucket].dtdh_lock++;
1652 		}
1653 
1654 		return (NULL);
1655 	}
1656 
1657 	/*
1658 	 * We need to allocate a new dynamic variable.  The size we need is the
1659 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1660 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1661 	 * the size of any referred-to data (dsize).  We then round the final
1662 	 * size up to the chunksize for allocation.
1663 	 */
1664 	for (ksize = 0, i = 0; i < nkeys; i++)
1665 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1666 
1667 	/*
1668 	 * This should be pretty much impossible, but could happen if, say,
1669 	 * strange DIF specified the tuple.  Ideally, this should be an
1670 	 * assertion and not an error condition -- but that requires that the
1671 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1672 	 * bullet-proof.  (That is, it must not be able to be fooled by
1673 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1674 	 * solving this would presumably not amount to solving the Halting
1675 	 * Problem -- but it still seems awfully hard.
1676 	 */
1677 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1678 	    ksize + dsize > chunksize) {
1679 		dcpu->dtdsc_drops++;
1680 		return (NULL);
1681 	}
1682 
1683 	nstate = DTRACE_DSTATE_EMPTY;
1684 
1685 	do {
1686 retry:
1687 		free = dcpu->dtdsc_free;
1688 
1689 		if (free == NULL) {
1690 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1691 			void *rval;
1692 
1693 			if (clean == NULL) {
1694 				/*
1695 				 * We're out of dynamic variable space on
1696 				 * this CPU.  Unless we have tried all CPUs,
1697 				 * we'll try to allocate from a different
1698 				 * CPU.
1699 				 */
1700 				switch (dstate->dtds_state) {
1701 				case DTRACE_DSTATE_CLEAN: {
1702 					void *sp = &dstate->dtds_state;
1703 
1704 					if (++cpu >= NCPU)
1705 						cpu = 0;
1706 
1707 					if (dcpu->dtdsc_dirty != NULL &&
1708 					    nstate == DTRACE_DSTATE_EMPTY)
1709 						nstate = DTRACE_DSTATE_DIRTY;
1710 
1711 					if (dcpu->dtdsc_rinsing != NULL)
1712 						nstate = DTRACE_DSTATE_RINSING;
1713 
1714 					dcpu = &dstate->dtds_percpu[cpu];
1715 
1716 					if (cpu != me)
1717 						goto retry;
1718 
1719 					(void) dtrace_cas32(sp,
1720 					    DTRACE_DSTATE_CLEAN, nstate);
1721 
1722 					/*
1723 					 * To increment the correct bean
1724 					 * counter, take another lap.
1725 					 */
1726 					goto retry;
1727 				}
1728 
1729 				case DTRACE_DSTATE_DIRTY:
1730 					dcpu->dtdsc_dirty_drops++;
1731 					break;
1732 
1733 				case DTRACE_DSTATE_RINSING:
1734 					dcpu->dtdsc_rinsing_drops++;
1735 					break;
1736 
1737 				case DTRACE_DSTATE_EMPTY:
1738 					dcpu->dtdsc_drops++;
1739 					break;
1740 				}
1741 
1742 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1743 				return (NULL);
1744 			}
1745 
1746 			/*
1747 			 * The clean list appears to be non-empty.  We want to
1748 			 * move the clean list to the free list; we start by
1749 			 * moving the clean pointer aside.
1750 			 */
1751 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1752 			    clean, NULL) != clean) {
1753 				/*
1754 				 * We are in one of two situations:
1755 				 *
1756 				 *  (a)	The clean list was switched to the
1757 				 *	free list by another CPU.
1758 				 *
1759 				 *  (b)	The clean list was added to by the
1760 				 *	cleansing cyclic.
1761 				 *
1762 				 * In either of these situations, we can
1763 				 * just reattempt the free list allocation.
1764 				 */
1765 				goto retry;
1766 			}
1767 
1768 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1769 
1770 			/*
1771 			 * Now we'll move the clean list to the free list.
1772 			 * It's impossible for this to fail:  the only way
1773 			 * the free list can be updated is through this
1774 			 * code path, and only one CPU can own the clean list.
1775 			 * Thus, it would only be possible for this to fail if
1776 			 * this code were racing with dtrace_dynvar_clean().
1777 			 * (That is, if dtrace_dynvar_clean() updated the clean
1778 			 * list, and we ended up racing to update the free
1779 			 * list.)  This race is prevented by the dtrace_sync()
1780 			 * in dtrace_dynvar_clean() -- which flushes the
1781 			 * owners of the clean lists out before resetting
1782 			 * the clean lists.
1783 			 */
1784 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1785 			ASSERT(rval == NULL);
1786 			goto retry;
1787 		}
1788 
1789 		dvar = free;
1790 		new_free = dvar->dtdv_next;
1791 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1792 
1793 	/*
1794 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1795 	 * tuple array and copy any referenced key data into the data space
1796 	 * following the tuple array.  As we do this, we relocate dttk_value
1797 	 * in the final tuple to point to the key data address in the chunk.
1798 	 */
1799 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1800 	dvar->dtdv_data = (void *)(kdata + ksize);
1801 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1802 
1803 	for (i = 0; i < nkeys; i++) {
1804 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1805 		size_t kesize = key[i].dttk_size;
1806 
1807 		if (kesize != 0) {
1808 			dtrace_bcopy(
1809 			    (const void *)(uintptr_t)key[i].dttk_value,
1810 			    (void *)kdata, kesize);
1811 			dkey->dttk_value = kdata;
1812 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1813 		} else {
1814 			dkey->dttk_value = key[i].dttk_value;
1815 		}
1816 
1817 		dkey->dttk_size = kesize;
1818 	}
1819 
1820 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1821 	dvar->dtdv_hashval = hashval;
1822 	dvar->dtdv_next = start;
1823 
1824 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1825 		return (dvar);
1826 
1827 	/*
1828 	 * The cas has failed.  Either another CPU is adding an element to
1829 	 * this hash chain, or another CPU is deleting an element from this
1830 	 * hash chain.  The simplest way to deal with both of these cases
1831 	 * (though not necessarily the most efficient) is to free our
1832 	 * allocated block and tail-call ourselves.  Note that the free is
1833 	 * to the dirty list and _not_ to the free list.  This is to prevent
1834 	 * races with allocators, above.
1835 	 */
1836 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1837 
1838 	dtrace_membar_producer();
1839 
1840 	do {
1841 		free = dcpu->dtdsc_dirty;
1842 		dvar->dtdv_next = free;
1843 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1844 
1845 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1846 }
1847 
1848 /*ARGSUSED*/
1849 static void
1850 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1851 {
1852 	if ((int64_t)nval < (int64_t)*oval)
1853 		*oval = nval;
1854 }
1855 
1856 /*ARGSUSED*/
1857 static void
1858 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1859 {
1860 	if ((int64_t)nval > (int64_t)*oval)
1861 		*oval = nval;
1862 }
1863 
1864 static void
1865 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1866 {
1867 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1868 	int64_t val = (int64_t)nval;
1869 
1870 	if (val < 0) {
1871 		for (i = 0; i < zero; i++) {
1872 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1873 				quanta[i] += incr;
1874 				return;
1875 			}
1876 		}
1877 	} else {
1878 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1879 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1880 				quanta[i - 1] += incr;
1881 				return;
1882 			}
1883 		}
1884 
1885 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1886 		return;
1887 	}
1888 
1889 	ASSERT(0);
1890 }
1891 
1892 static void
1893 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1894 {
1895 	uint64_t arg = *lquanta++;
1896 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1897 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1898 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1899 	int32_t val = (int32_t)nval, level;
1900 
1901 	ASSERT(step != 0);
1902 	ASSERT(levels != 0);
1903 
1904 	if (val < base) {
1905 		/*
1906 		 * This is an underflow.
1907 		 */
1908 		lquanta[0] += incr;
1909 		return;
1910 	}
1911 
1912 	level = (val - base) / step;
1913 
1914 	if (level < levels) {
1915 		lquanta[level + 1] += incr;
1916 		return;
1917 	}
1918 
1919 	/*
1920 	 * This is an overflow.
1921 	 */
1922 	lquanta[levels + 1] += incr;
1923 }
1924 
1925 static int
1926 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1927     uint16_t high, uint16_t nsteps, int64_t value)
1928 {
1929 	int64_t this = 1, last, next;
1930 	int base = 1, order;
1931 
1932 	ASSERT(factor <= nsteps);
1933 	ASSERT(nsteps % factor == 0);
1934 
1935 	for (order = 0; order < low; order++)
1936 		this *= factor;
1937 
1938 	/*
1939 	 * If our value is less than our factor taken to the power of the
1940 	 * low order of magnitude, it goes into the zeroth bucket.
1941 	 */
1942 	if (value < (last = this))
1943 		return (0);
1944 
1945 	for (this *= factor; order <= high; order++) {
1946 		int nbuckets = this > nsteps ? nsteps : this;
1947 
1948 		if ((next = this * factor) < this) {
1949 			/*
1950 			 * We should not generally get log/linear quantizations
1951 			 * with a high magnitude that allows 64-bits to
1952 			 * overflow, but we nonetheless protect against this
1953 			 * by explicitly checking for overflow, and clamping
1954 			 * our value accordingly.
1955 			 */
1956 			value = this - 1;
1957 		}
1958 
1959 		if (value < this) {
1960 			/*
1961 			 * If our value lies within this order of magnitude,
1962 			 * determine its position by taking the offset within
1963 			 * the order of magnitude, dividing by the bucket
1964 			 * width, and adding to our (accumulated) base.
1965 			 */
1966 			return (base + (value - last) / (this / nbuckets));
1967 		}
1968 
1969 		base += nbuckets - (nbuckets / factor);
1970 		last = this;
1971 		this = next;
1972 	}
1973 
1974 	/*
1975 	 * Our value is greater than or equal to our factor taken to the
1976 	 * power of one plus the high magnitude -- return the top bucket.
1977 	 */
1978 	return (base);
1979 }
1980 
1981 static void
1982 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1983 {
1984 	uint64_t arg = *llquanta++;
1985 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1986 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1987 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1988 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1989 
1990 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1991 	    low, high, nsteps, nval)] += incr;
1992 }
1993 
1994 /*ARGSUSED*/
1995 static void
1996 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1997 {
1998 	data[0]++;
1999 	data[1] += nval;
2000 }
2001 
2002 /*ARGSUSED*/
2003 static void
2004 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2005 {
2006 	int64_t snval = (int64_t)nval;
2007 	uint64_t tmp[2];
2008 
2009 	data[0]++;
2010 	data[1] += nval;
2011 
2012 	/*
2013 	 * What we want to say here is:
2014 	 *
2015 	 * data[2] += nval * nval;
2016 	 *
2017 	 * But given that nval is 64-bit, we could easily overflow, so
2018 	 * we do this as 128-bit arithmetic.
2019 	 */
2020 	if (snval < 0)
2021 		snval = -snval;
2022 
2023 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2024 	dtrace_add_128(data + 2, tmp, data + 2);
2025 }
2026 
2027 /*ARGSUSED*/
2028 static void
2029 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2030 {
2031 	*oval = *oval + 1;
2032 }
2033 
2034 /*ARGSUSED*/
2035 static void
2036 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2037 {
2038 	*oval += nval;
2039 }
2040 
2041 /*
2042  * Aggregate given the tuple in the principal data buffer, and the aggregating
2043  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2044  * buffer is specified as the buf parameter.  This routine does not return
2045  * failure; if there is no space in the aggregation buffer, the data will be
2046  * dropped, and a corresponding counter incremented.
2047  */
2048 static void
2049 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2050     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2051 {
2052 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2053 	uint32_t i, ndx, size, fsize;
2054 	uint32_t align = sizeof (uint64_t) - 1;
2055 	dtrace_aggbuffer_t *agb;
2056 	dtrace_aggkey_t *key;
2057 	uint32_t hashval = 0, limit, isstr;
2058 	caddr_t tomax, data, kdata;
2059 	dtrace_actkind_t action;
2060 	dtrace_action_t *act;
2061 	uintptr_t offs;
2062 
2063 	if (buf == NULL)
2064 		return;
2065 
2066 	if (!agg->dtag_hasarg) {
2067 		/*
2068 		 * Currently, only quantize() and lquantize() take additional
2069 		 * arguments, and they have the same semantics:  an increment
2070 		 * value that defaults to 1 when not present.  If additional
2071 		 * aggregating actions take arguments, the setting of the
2072 		 * default argument value will presumably have to become more
2073 		 * sophisticated...
2074 		 */
2075 		arg = 1;
2076 	}
2077 
2078 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2079 	size = rec->dtrd_offset - agg->dtag_base;
2080 	fsize = size + rec->dtrd_size;
2081 
2082 	ASSERT(dbuf->dtb_tomax != NULL);
2083 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2084 
2085 	if ((tomax = buf->dtb_tomax) == NULL) {
2086 		dtrace_buffer_drop(buf);
2087 		return;
2088 	}
2089 
2090 	/*
2091 	 * The metastructure is always at the bottom of the buffer.
2092 	 */
2093 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2094 	    sizeof (dtrace_aggbuffer_t));
2095 
2096 	if (buf->dtb_offset == 0) {
2097 		/*
2098 		 * We just kludge up approximately 1/8th of the size to be
2099 		 * buckets.  If this guess ends up being routinely
2100 		 * off-the-mark, we may need to dynamically readjust this
2101 		 * based on past performance.
2102 		 */
2103 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2104 
2105 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2106 		    (uintptr_t)tomax || hashsize == 0) {
2107 			/*
2108 			 * We've been given a ludicrously small buffer;
2109 			 * increment our drop count and leave.
2110 			 */
2111 			dtrace_buffer_drop(buf);
2112 			return;
2113 		}
2114 
2115 		/*
2116 		 * And now, a pathetic attempt to try to get a an odd (or
2117 		 * perchance, a prime) hash size for better hash distribution.
2118 		 */
2119 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2120 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2121 
2122 		agb->dtagb_hashsize = hashsize;
2123 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2124 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2125 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2126 
2127 		for (i = 0; i < agb->dtagb_hashsize; i++)
2128 			agb->dtagb_hash[i] = NULL;
2129 	}
2130 
2131 	ASSERT(agg->dtag_first != NULL);
2132 	ASSERT(agg->dtag_first->dta_intuple);
2133 
2134 	/*
2135 	 * Calculate the hash value based on the key.  Note that we _don't_
2136 	 * include the aggid in the hashing (but we will store it as part of
2137 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2138 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2139 	 * gets good distribution in practice.  The efficacy of the hashing
2140 	 * algorithm (and a comparison with other algorithms) may be found by
2141 	 * running the ::dtrace_aggstat MDB dcmd.
2142 	 */
2143 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2144 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2145 		limit = i + act->dta_rec.dtrd_size;
2146 		ASSERT(limit <= size);
2147 		isstr = DTRACEACT_ISSTRING(act);
2148 
2149 		for (; i < limit; i++) {
2150 			hashval += data[i];
2151 			hashval += (hashval << 10);
2152 			hashval ^= (hashval >> 6);
2153 
2154 			if (isstr && data[i] == '\0')
2155 				break;
2156 		}
2157 	}
2158 
2159 	hashval += (hashval << 3);
2160 	hashval ^= (hashval >> 11);
2161 	hashval += (hashval << 15);
2162 
2163 	/*
2164 	 * Yes, the divide here is expensive -- but it's generally the least
2165 	 * of the performance issues given the amount of data that we iterate
2166 	 * over to compute hash values, compare data, etc.
2167 	 */
2168 	ndx = hashval % agb->dtagb_hashsize;
2169 
2170 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2171 		ASSERT((caddr_t)key >= tomax);
2172 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2173 
2174 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2175 			continue;
2176 
2177 		kdata = key->dtak_data;
2178 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2179 
2180 		for (act = agg->dtag_first; act->dta_intuple;
2181 		    act = act->dta_next) {
2182 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2183 			limit = i + act->dta_rec.dtrd_size;
2184 			ASSERT(limit <= size);
2185 			isstr = DTRACEACT_ISSTRING(act);
2186 
2187 			for (; i < limit; i++) {
2188 				if (kdata[i] != data[i])
2189 					goto next;
2190 
2191 				if (isstr && data[i] == '\0')
2192 					break;
2193 			}
2194 		}
2195 
2196 		if (action != key->dtak_action) {
2197 			/*
2198 			 * We are aggregating on the same value in the same
2199 			 * aggregation with two different aggregating actions.
2200 			 * (This should have been picked up in the compiler,
2201 			 * so we may be dealing with errant or devious DIF.)
2202 			 * This is an error condition; we indicate as much,
2203 			 * and return.
2204 			 */
2205 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2206 			return;
2207 		}
2208 
2209 		/*
2210 		 * This is a hit:  we need to apply the aggregator to
2211 		 * the value at this key.
2212 		 */
2213 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2214 		return;
2215 next:
2216 		continue;
2217 	}
2218 
2219 	/*
2220 	 * We didn't find it.  We need to allocate some zero-filled space,
2221 	 * link it into the hash table appropriately, and apply the aggregator
2222 	 * to the (zero-filled) value.
2223 	 */
2224 	offs = buf->dtb_offset;
2225 	while (offs & (align - 1))
2226 		offs += sizeof (uint32_t);
2227 
2228 	/*
2229 	 * If we don't have enough room to both allocate a new key _and_
2230 	 * its associated data, increment the drop count and return.
2231 	 */
2232 	if ((uintptr_t)tomax + offs + fsize >
2233 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2234 		dtrace_buffer_drop(buf);
2235 		return;
2236 	}
2237 
2238 	/*CONSTCOND*/
2239 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2240 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2241 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2242 
2243 	key->dtak_data = kdata = tomax + offs;
2244 	buf->dtb_offset = offs + fsize;
2245 
2246 	/*
2247 	 * Now copy the data across.
2248 	 */
2249 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2250 
2251 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2252 		kdata[i] = data[i];
2253 
2254 	/*
2255 	 * Because strings are not zeroed out by default, we need to iterate
2256 	 * looking for actions that store strings, and we need to explicitly
2257 	 * pad these strings out with zeroes.
2258 	 */
2259 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2260 		int nul;
2261 
2262 		if (!DTRACEACT_ISSTRING(act))
2263 			continue;
2264 
2265 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2266 		limit = i + act->dta_rec.dtrd_size;
2267 		ASSERT(limit <= size);
2268 
2269 		for (nul = 0; i < limit; i++) {
2270 			if (nul) {
2271 				kdata[i] = '\0';
2272 				continue;
2273 			}
2274 
2275 			if (data[i] != '\0')
2276 				continue;
2277 
2278 			nul = 1;
2279 		}
2280 	}
2281 
2282 	for (i = size; i < fsize; i++)
2283 		kdata[i] = 0;
2284 
2285 	key->dtak_hashval = hashval;
2286 	key->dtak_size = size;
2287 	key->dtak_action = action;
2288 	key->dtak_next = agb->dtagb_hash[ndx];
2289 	agb->dtagb_hash[ndx] = key;
2290 
2291 	/*
2292 	 * Finally, apply the aggregator.
2293 	 */
2294 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2295 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2296 }
2297 
2298 /*
2299  * Given consumer state, this routine finds a speculation in the INACTIVE
2300  * state and transitions it into the ACTIVE state.  If there is no speculation
2301  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2302  * incremented -- it is up to the caller to take appropriate action.
2303  */
2304 static int
2305 dtrace_speculation(dtrace_state_t *state)
2306 {
2307 	int i = 0;
2308 	dtrace_speculation_state_t current;
2309 	uint32_t *stat = &state->dts_speculations_unavail, count;
2310 
2311 	while (i < state->dts_nspeculations) {
2312 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2313 
2314 		current = spec->dtsp_state;
2315 
2316 		if (current != DTRACESPEC_INACTIVE) {
2317 			if (current == DTRACESPEC_COMMITTINGMANY ||
2318 			    current == DTRACESPEC_COMMITTING ||
2319 			    current == DTRACESPEC_DISCARDING)
2320 				stat = &state->dts_speculations_busy;
2321 			i++;
2322 			continue;
2323 		}
2324 
2325 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2326 		    current, DTRACESPEC_ACTIVE) == current)
2327 			return (i + 1);
2328 	}
2329 
2330 	/*
2331 	 * We couldn't find a speculation.  If we found as much as a single
2332 	 * busy speculation buffer, we'll attribute this failure as "busy"
2333 	 * instead of "unavail".
2334 	 */
2335 	do {
2336 		count = *stat;
2337 	} while (dtrace_cas32(stat, count, count + 1) != count);
2338 
2339 	return (0);
2340 }
2341 
2342 /*
2343  * This routine commits an active speculation.  If the specified speculation
2344  * is not in a valid state to perform a commit(), this routine will silently do
2345  * nothing.  The state of the specified speculation is transitioned according
2346  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2347  */
2348 static void
2349 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2350     dtrace_specid_t which)
2351 {
2352 	dtrace_speculation_t *spec;
2353 	dtrace_buffer_t *src, *dest;
2354 	uintptr_t daddr, saddr, dlimit, slimit;
2355 	dtrace_speculation_state_t current, new = 0;
2356 	intptr_t offs;
2357 	uint64_t timestamp;
2358 
2359 	if (which == 0)
2360 		return;
2361 
2362 	if (which > state->dts_nspeculations) {
2363 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2364 		return;
2365 	}
2366 
2367 	spec = &state->dts_speculations[which - 1];
2368 	src = &spec->dtsp_buffer[cpu];
2369 	dest = &state->dts_buffer[cpu];
2370 
2371 	do {
2372 		current = spec->dtsp_state;
2373 
2374 		if (current == DTRACESPEC_COMMITTINGMANY)
2375 			break;
2376 
2377 		switch (current) {
2378 		case DTRACESPEC_INACTIVE:
2379 		case DTRACESPEC_DISCARDING:
2380 			return;
2381 
2382 		case DTRACESPEC_COMMITTING:
2383 			/*
2384 			 * This is only possible if we are (a) commit()'ing
2385 			 * without having done a prior speculate() on this CPU
2386 			 * and (b) racing with another commit() on a different
2387 			 * CPU.  There's nothing to do -- we just assert that
2388 			 * our offset is 0.
2389 			 */
2390 			ASSERT(src->dtb_offset == 0);
2391 			return;
2392 
2393 		case DTRACESPEC_ACTIVE:
2394 			new = DTRACESPEC_COMMITTING;
2395 			break;
2396 
2397 		case DTRACESPEC_ACTIVEONE:
2398 			/*
2399 			 * This speculation is active on one CPU.  If our
2400 			 * buffer offset is non-zero, we know that the one CPU
2401 			 * must be us.  Otherwise, we are committing on a
2402 			 * different CPU from the speculate(), and we must
2403 			 * rely on being asynchronously cleaned.
2404 			 */
2405 			if (src->dtb_offset != 0) {
2406 				new = DTRACESPEC_COMMITTING;
2407 				break;
2408 			}
2409 			/*FALLTHROUGH*/
2410 
2411 		case DTRACESPEC_ACTIVEMANY:
2412 			new = DTRACESPEC_COMMITTINGMANY;
2413 			break;
2414 
2415 		default:
2416 			ASSERT(0);
2417 		}
2418 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2419 	    current, new) != current);
2420 
2421 	/*
2422 	 * We have set the state to indicate that we are committing this
2423 	 * speculation.  Now reserve the necessary space in the destination
2424 	 * buffer.
2425 	 */
2426 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2427 	    sizeof (uint64_t), state, NULL)) < 0) {
2428 		dtrace_buffer_drop(dest);
2429 		goto out;
2430 	}
2431 
2432 	/*
2433 	 * We have sufficient space to copy the speculative buffer into the
2434 	 * primary buffer.  First, modify the speculative buffer, filling
2435 	 * in the timestamp of all entries with the current time.  The data
2436 	 * must have the commit() time rather than the time it was traced,
2437 	 * so that all entries in the primary buffer are in timestamp order.
2438 	 */
2439 	timestamp = dtrace_gethrtime();
2440 	saddr = (uintptr_t)src->dtb_tomax;
2441 	slimit = saddr + src->dtb_offset;
2442 	while (saddr < slimit) {
2443 		size_t size;
2444 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2445 
2446 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2447 			saddr += sizeof (dtrace_epid_t);
2448 			continue;
2449 		}
2450 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2451 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2452 
2453 		ASSERT3U(saddr + size, <=, slimit);
2454 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2455 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2456 
2457 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2458 
2459 		saddr += size;
2460 	}
2461 
2462 	/*
2463 	 * Copy the buffer across.  (Note that this is a
2464 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2465 	 * a serious performance issue, a high-performance DTrace-specific
2466 	 * bcopy() should obviously be invented.)
2467 	 */
2468 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2469 	dlimit = daddr + src->dtb_offset;
2470 	saddr = (uintptr_t)src->dtb_tomax;
2471 
2472 	/*
2473 	 * First, the aligned portion.
2474 	 */
2475 	while (dlimit - daddr >= sizeof (uint64_t)) {
2476 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2477 
2478 		daddr += sizeof (uint64_t);
2479 		saddr += sizeof (uint64_t);
2480 	}
2481 
2482 	/*
2483 	 * Now any left-over bit...
2484 	 */
2485 	while (dlimit - daddr)
2486 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2487 
2488 	/*
2489 	 * Finally, commit the reserved space in the destination buffer.
2490 	 */
2491 	dest->dtb_offset = offs + src->dtb_offset;
2492 
2493 out:
2494 	/*
2495 	 * If we're lucky enough to be the only active CPU on this speculation
2496 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2497 	 */
2498 	if (current == DTRACESPEC_ACTIVE ||
2499 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2500 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2501 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2502 
2503 		ASSERT(rval == DTRACESPEC_COMMITTING);
2504 	}
2505 
2506 	src->dtb_offset = 0;
2507 	src->dtb_xamot_drops += src->dtb_drops;
2508 	src->dtb_drops = 0;
2509 }
2510 
2511 /*
2512  * This routine discards an active speculation.  If the specified speculation
2513  * is not in a valid state to perform a discard(), this routine will silently
2514  * do nothing.  The state of the specified speculation is transitioned
2515  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2516  */
2517 static void
2518 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2519     dtrace_specid_t which)
2520 {
2521 	dtrace_speculation_t *spec;
2522 	dtrace_speculation_state_t current, new = 0;
2523 	dtrace_buffer_t *buf;
2524 
2525 	if (which == 0)
2526 		return;
2527 
2528 	if (which > state->dts_nspeculations) {
2529 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2530 		return;
2531 	}
2532 
2533 	spec = &state->dts_speculations[which - 1];
2534 	buf = &spec->dtsp_buffer[cpu];
2535 
2536 	do {
2537 		current = spec->dtsp_state;
2538 
2539 		switch (current) {
2540 		case DTRACESPEC_INACTIVE:
2541 		case DTRACESPEC_COMMITTINGMANY:
2542 		case DTRACESPEC_COMMITTING:
2543 		case DTRACESPEC_DISCARDING:
2544 			return;
2545 
2546 		case DTRACESPEC_ACTIVE:
2547 		case DTRACESPEC_ACTIVEMANY:
2548 			new = DTRACESPEC_DISCARDING;
2549 			break;
2550 
2551 		case DTRACESPEC_ACTIVEONE:
2552 			if (buf->dtb_offset != 0) {
2553 				new = DTRACESPEC_INACTIVE;
2554 			} else {
2555 				new = DTRACESPEC_DISCARDING;
2556 			}
2557 			break;
2558 
2559 		default:
2560 			ASSERT(0);
2561 		}
2562 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2563 	    current, new) != current);
2564 
2565 	buf->dtb_offset = 0;
2566 	buf->dtb_drops = 0;
2567 }
2568 
2569 /*
2570  * Note:  not called from probe context.  This function is called
2571  * asynchronously from cross call context to clean any speculations that are
2572  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2573  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2574  * speculation.
2575  */
2576 static void
2577 dtrace_speculation_clean_here(dtrace_state_t *state)
2578 {
2579 	dtrace_icookie_t cookie;
2580 	processorid_t cpu = curcpu;
2581 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2582 	dtrace_specid_t i;
2583 
2584 	cookie = dtrace_interrupt_disable();
2585 
2586 	if (dest->dtb_tomax == NULL) {
2587 		dtrace_interrupt_enable(cookie);
2588 		return;
2589 	}
2590 
2591 	for (i = 0; i < state->dts_nspeculations; i++) {
2592 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2593 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2594 
2595 		if (src->dtb_tomax == NULL)
2596 			continue;
2597 
2598 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2599 			src->dtb_offset = 0;
2600 			continue;
2601 		}
2602 
2603 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2604 			continue;
2605 
2606 		if (src->dtb_offset == 0)
2607 			continue;
2608 
2609 		dtrace_speculation_commit(state, cpu, i + 1);
2610 	}
2611 
2612 	dtrace_interrupt_enable(cookie);
2613 }
2614 
2615 /*
2616  * Note:  not called from probe context.  This function is called
2617  * asynchronously (and at a regular interval) to clean any speculations that
2618  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2619  * is work to be done, it cross calls all CPUs to perform that work;
2620  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2621  * INACTIVE state until they have been cleaned by all CPUs.
2622  */
2623 static void
2624 dtrace_speculation_clean(dtrace_state_t *state)
2625 {
2626 	int work = 0, rv;
2627 	dtrace_specid_t i;
2628 
2629 	for (i = 0; i < state->dts_nspeculations; i++) {
2630 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2631 
2632 		ASSERT(!spec->dtsp_cleaning);
2633 
2634 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2635 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2636 			continue;
2637 
2638 		work++;
2639 		spec->dtsp_cleaning = 1;
2640 	}
2641 
2642 	if (!work)
2643 		return;
2644 
2645 	dtrace_xcall(DTRACE_CPUALL,
2646 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2647 
2648 	/*
2649 	 * We now know that all CPUs have committed or discarded their
2650 	 * speculation buffers, as appropriate.  We can now set the state
2651 	 * to inactive.
2652 	 */
2653 	for (i = 0; i < state->dts_nspeculations; i++) {
2654 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2655 		dtrace_speculation_state_t current, new;
2656 
2657 		if (!spec->dtsp_cleaning)
2658 			continue;
2659 
2660 		current = spec->dtsp_state;
2661 		ASSERT(current == DTRACESPEC_DISCARDING ||
2662 		    current == DTRACESPEC_COMMITTINGMANY);
2663 
2664 		new = DTRACESPEC_INACTIVE;
2665 
2666 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2667 		ASSERT(rv == current);
2668 		spec->dtsp_cleaning = 0;
2669 	}
2670 }
2671 
2672 /*
2673  * Called as part of a speculate() to get the speculative buffer associated
2674  * with a given speculation.  Returns NULL if the specified speculation is not
2675  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2676  * the active CPU is not the specified CPU -- the speculation will be
2677  * atomically transitioned into the ACTIVEMANY state.
2678  */
2679 static dtrace_buffer_t *
2680 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2681     dtrace_specid_t which)
2682 {
2683 	dtrace_speculation_t *spec;
2684 	dtrace_speculation_state_t current, new = 0;
2685 	dtrace_buffer_t *buf;
2686 
2687 	if (which == 0)
2688 		return (NULL);
2689 
2690 	if (which > state->dts_nspeculations) {
2691 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2692 		return (NULL);
2693 	}
2694 
2695 	spec = &state->dts_speculations[which - 1];
2696 	buf = &spec->dtsp_buffer[cpuid];
2697 
2698 	do {
2699 		current = spec->dtsp_state;
2700 
2701 		switch (current) {
2702 		case DTRACESPEC_INACTIVE:
2703 		case DTRACESPEC_COMMITTINGMANY:
2704 		case DTRACESPEC_DISCARDING:
2705 			return (NULL);
2706 
2707 		case DTRACESPEC_COMMITTING:
2708 			ASSERT(buf->dtb_offset == 0);
2709 			return (NULL);
2710 
2711 		case DTRACESPEC_ACTIVEONE:
2712 			/*
2713 			 * This speculation is currently active on one CPU.
2714 			 * Check the offset in the buffer; if it's non-zero,
2715 			 * that CPU must be us (and we leave the state alone).
2716 			 * If it's zero, assume that we're starting on a new
2717 			 * CPU -- and change the state to indicate that the
2718 			 * speculation is active on more than one CPU.
2719 			 */
2720 			if (buf->dtb_offset != 0)
2721 				return (buf);
2722 
2723 			new = DTRACESPEC_ACTIVEMANY;
2724 			break;
2725 
2726 		case DTRACESPEC_ACTIVEMANY:
2727 			return (buf);
2728 
2729 		case DTRACESPEC_ACTIVE:
2730 			new = DTRACESPEC_ACTIVEONE;
2731 			break;
2732 
2733 		default:
2734 			ASSERT(0);
2735 		}
2736 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2737 	    current, new) != current);
2738 
2739 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2740 	return (buf);
2741 }
2742 
2743 /*
2744  * Return a string.  In the event that the user lacks the privilege to access
2745  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2746  * don't fail access checking.
2747  *
2748  * dtrace_dif_variable() uses this routine as a helper for various
2749  * builtin values such as 'execname' and 'probefunc.'
2750  */
2751 uintptr_t
2752 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2753     dtrace_mstate_t *mstate)
2754 {
2755 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2756 	uintptr_t ret;
2757 	size_t strsz;
2758 
2759 	/*
2760 	 * The easy case: this probe is allowed to read all of memory, so
2761 	 * we can just return this as a vanilla pointer.
2762 	 */
2763 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2764 		return (addr);
2765 
2766 	/*
2767 	 * This is the tougher case: we copy the string in question from
2768 	 * kernel memory into scratch memory and return it that way: this
2769 	 * ensures that we won't trip up when access checking tests the
2770 	 * BYREF return value.
2771 	 */
2772 	strsz = dtrace_strlen((char *)addr, size) + 1;
2773 
2774 	if (mstate->dtms_scratch_ptr + strsz >
2775 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2776 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2777 		return (0);
2778 	}
2779 
2780 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2781 	    strsz);
2782 	ret = mstate->dtms_scratch_ptr;
2783 	mstate->dtms_scratch_ptr += strsz;
2784 	return (ret);
2785 }
2786 
2787 /*
2788  * Return a string from a memoy address which is known to have one or
2789  * more concatenated, individually zero terminated, sub-strings.
2790  * In the event that the user lacks the privilege to access
2791  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2792  * don't fail access checking.
2793  *
2794  * dtrace_dif_variable() uses this routine as a helper for various
2795  * builtin values such as 'execargs'.
2796  */
2797 static uintptr_t
2798 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2799     dtrace_mstate_t *mstate)
2800 {
2801 	char *p;
2802 	size_t i;
2803 	uintptr_t ret;
2804 
2805 	if (mstate->dtms_scratch_ptr + strsz >
2806 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2807 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2808 		return (0);
2809 	}
2810 
2811 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2812 	    strsz);
2813 
2814 	/* Replace sub-string termination characters with a space. */
2815 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2816 	    p++, i++)
2817 		if (*p == '\0')
2818 			*p = ' ';
2819 
2820 	ret = mstate->dtms_scratch_ptr;
2821 	mstate->dtms_scratch_ptr += strsz;
2822 	return (ret);
2823 }
2824 
2825 /*
2826  * This function implements the DIF emulator's variable lookups.  The emulator
2827  * passes a reserved variable identifier and optional built-in array index.
2828  */
2829 static uint64_t
2830 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2831     uint64_t ndx)
2832 {
2833 	/*
2834 	 * If we're accessing one of the uncached arguments, we'll turn this
2835 	 * into a reference in the args array.
2836 	 */
2837 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2838 		ndx = v - DIF_VAR_ARG0;
2839 		v = DIF_VAR_ARGS;
2840 	}
2841 
2842 	switch (v) {
2843 	case DIF_VAR_ARGS:
2844 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2845 		if (ndx >= sizeof (mstate->dtms_arg) /
2846 		    sizeof (mstate->dtms_arg[0])) {
2847 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2848 			dtrace_provider_t *pv;
2849 			uint64_t val;
2850 
2851 			pv = mstate->dtms_probe->dtpr_provider;
2852 			if (pv->dtpv_pops.dtps_getargval != NULL)
2853 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2854 				    mstate->dtms_probe->dtpr_id,
2855 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2856 			else
2857 				val = dtrace_getarg(ndx, aframes);
2858 
2859 			/*
2860 			 * This is regrettably required to keep the compiler
2861 			 * from tail-optimizing the call to dtrace_getarg().
2862 			 * The condition always evaluates to true, but the
2863 			 * compiler has no way of figuring that out a priori.
2864 			 * (None of this would be necessary if the compiler
2865 			 * could be relied upon to _always_ tail-optimize
2866 			 * the call to dtrace_getarg() -- but it can't.)
2867 			 */
2868 			if (mstate->dtms_probe != NULL)
2869 				return (val);
2870 
2871 			ASSERT(0);
2872 		}
2873 
2874 		return (mstate->dtms_arg[ndx]);
2875 
2876 #if defined(sun)
2877 	case DIF_VAR_UREGS: {
2878 		klwp_t *lwp;
2879 
2880 		if (!dtrace_priv_proc(state))
2881 			return (0);
2882 
2883 		if ((lwp = curthread->t_lwp) == NULL) {
2884 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2885 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2886 			return (0);
2887 		}
2888 
2889 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2890 		return (0);
2891 	}
2892 #else
2893 	case DIF_VAR_UREGS: {
2894 		struct trapframe *tframe;
2895 
2896 		if (!dtrace_priv_proc(state))
2897 			return (0);
2898 
2899 		if ((tframe = curthread->td_frame) == NULL) {
2900 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2901 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2902 			return (0);
2903 		}
2904 
2905 		return (dtrace_getreg(tframe, ndx));
2906 	}
2907 #endif
2908 
2909 	case DIF_VAR_CURTHREAD:
2910 		if (!dtrace_priv_kernel(state))
2911 			return (0);
2912 		return ((uint64_t)(uintptr_t)curthread);
2913 
2914 	case DIF_VAR_TIMESTAMP:
2915 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2916 			mstate->dtms_timestamp = dtrace_gethrtime();
2917 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2918 		}
2919 		return (mstate->dtms_timestamp);
2920 
2921 	case DIF_VAR_VTIMESTAMP:
2922 		ASSERT(dtrace_vtime_references != 0);
2923 		return (curthread->t_dtrace_vtime);
2924 
2925 	case DIF_VAR_WALLTIMESTAMP:
2926 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2927 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2928 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2929 		}
2930 		return (mstate->dtms_walltimestamp);
2931 
2932 #if defined(sun)
2933 	case DIF_VAR_IPL:
2934 		if (!dtrace_priv_kernel(state))
2935 			return (0);
2936 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2937 			mstate->dtms_ipl = dtrace_getipl();
2938 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2939 		}
2940 		return (mstate->dtms_ipl);
2941 #endif
2942 
2943 	case DIF_VAR_EPID:
2944 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2945 		return (mstate->dtms_epid);
2946 
2947 	case DIF_VAR_ID:
2948 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2949 		return (mstate->dtms_probe->dtpr_id);
2950 
2951 	case DIF_VAR_STACKDEPTH:
2952 		if (!dtrace_priv_kernel(state))
2953 			return (0);
2954 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2955 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2956 
2957 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2958 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2959 		}
2960 		return (mstate->dtms_stackdepth);
2961 
2962 	case DIF_VAR_USTACKDEPTH:
2963 		if (!dtrace_priv_proc(state))
2964 			return (0);
2965 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2966 			/*
2967 			 * See comment in DIF_VAR_PID.
2968 			 */
2969 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2970 			    CPU_ON_INTR(CPU)) {
2971 				mstate->dtms_ustackdepth = 0;
2972 			} else {
2973 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2974 				mstate->dtms_ustackdepth =
2975 				    dtrace_getustackdepth();
2976 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2977 			}
2978 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2979 		}
2980 		return (mstate->dtms_ustackdepth);
2981 
2982 	case DIF_VAR_CALLER:
2983 		if (!dtrace_priv_kernel(state))
2984 			return (0);
2985 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2986 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2987 
2988 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2989 				/*
2990 				 * If this is an unanchored probe, we are
2991 				 * required to go through the slow path:
2992 				 * dtrace_caller() only guarantees correct
2993 				 * results for anchored probes.
2994 				 */
2995 				pc_t caller[2] = {0, 0};
2996 
2997 				dtrace_getpcstack(caller, 2, aframes,
2998 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2999 				mstate->dtms_caller = caller[1];
3000 			} else if ((mstate->dtms_caller =
3001 			    dtrace_caller(aframes)) == -1) {
3002 				/*
3003 				 * We have failed to do this the quick way;
3004 				 * we must resort to the slower approach of
3005 				 * calling dtrace_getpcstack().
3006 				 */
3007 				pc_t caller = 0;
3008 
3009 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3010 				mstate->dtms_caller = caller;
3011 			}
3012 
3013 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3014 		}
3015 		return (mstate->dtms_caller);
3016 
3017 	case DIF_VAR_UCALLER:
3018 		if (!dtrace_priv_proc(state))
3019 			return (0);
3020 
3021 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3022 			uint64_t ustack[3];
3023 
3024 			/*
3025 			 * dtrace_getupcstack() fills in the first uint64_t
3026 			 * with the current PID.  The second uint64_t will
3027 			 * be the program counter at user-level.  The third
3028 			 * uint64_t will contain the caller, which is what
3029 			 * we're after.
3030 			 */
3031 			ustack[2] = 0;
3032 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3033 			dtrace_getupcstack(ustack, 3);
3034 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3035 			mstate->dtms_ucaller = ustack[2];
3036 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3037 		}
3038 
3039 		return (mstate->dtms_ucaller);
3040 
3041 	case DIF_VAR_PROBEPROV:
3042 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3043 		return (dtrace_dif_varstr(
3044 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3045 		    state, mstate));
3046 
3047 	case DIF_VAR_PROBEMOD:
3048 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3049 		return (dtrace_dif_varstr(
3050 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3051 		    state, mstate));
3052 
3053 	case DIF_VAR_PROBEFUNC:
3054 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3055 		return (dtrace_dif_varstr(
3056 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3057 		    state, mstate));
3058 
3059 	case DIF_VAR_PROBENAME:
3060 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3061 		return (dtrace_dif_varstr(
3062 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3063 		    state, mstate));
3064 
3065 	case DIF_VAR_PID:
3066 		if (!dtrace_priv_proc(state))
3067 			return (0);
3068 
3069 #if defined(sun)
3070 		/*
3071 		 * Note that we are assuming that an unanchored probe is
3072 		 * always due to a high-level interrupt.  (And we're assuming
3073 		 * that there is only a single high level interrupt.)
3074 		 */
3075 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3076 			return (pid0.pid_id);
3077 
3078 		/*
3079 		 * It is always safe to dereference one's own t_procp pointer:
3080 		 * it always points to a valid, allocated proc structure.
3081 		 * Further, it is always safe to dereference the p_pidp member
3082 		 * of one's own proc structure.  (These are truisms becuase
3083 		 * threads and processes don't clean up their own state --
3084 		 * they leave that task to whomever reaps them.)
3085 		 */
3086 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3087 #else
3088 		return ((uint64_t)curproc->p_pid);
3089 #endif
3090 
3091 	case DIF_VAR_PPID:
3092 		if (!dtrace_priv_proc(state))
3093 			return (0);
3094 
3095 #if defined(sun)
3096 		/*
3097 		 * See comment in DIF_VAR_PID.
3098 		 */
3099 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3100 			return (pid0.pid_id);
3101 
3102 		/*
3103 		 * It is always safe to dereference one's own t_procp pointer:
3104 		 * it always points to a valid, allocated proc structure.
3105 		 * (This is true because threads don't clean up their own
3106 		 * state -- they leave that task to whomever reaps them.)
3107 		 */
3108 		return ((uint64_t)curthread->t_procp->p_ppid);
3109 #else
3110 		return ((uint64_t)curproc->p_pptr->p_pid);
3111 #endif
3112 
3113 	case DIF_VAR_TID:
3114 #if defined(sun)
3115 		/*
3116 		 * See comment in DIF_VAR_PID.
3117 		 */
3118 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3119 			return (0);
3120 #endif
3121 
3122 		return ((uint64_t)curthread->t_tid);
3123 
3124 	case DIF_VAR_EXECARGS: {
3125 		struct pargs *p_args = curthread->td_proc->p_args;
3126 
3127 		if (p_args == NULL)
3128 			return(0);
3129 
3130 		return (dtrace_dif_varstrz(
3131 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3132 	}
3133 
3134 	case DIF_VAR_EXECNAME:
3135 #if defined(sun)
3136 		if (!dtrace_priv_proc(state))
3137 			return (0);
3138 
3139 		/*
3140 		 * See comment in DIF_VAR_PID.
3141 		 */
3142 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3143 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3144 
3145 		/*
3146 		 * It is always safe to dereference one's own t_procp pointer:
3147 		 * it always points to a valid, allocated proc structure.
3148 		 * (This is true because threads don't clean up their own
3149 		 * state -- they leave that task to whomever reaps them.)
3150 		 */
3151 		return (dtrace_dif_varstr(
3152 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3153 		    state, mstate));
3154 #else
3155 		return (dtrace_dif_varstr(
3156 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3157 #endif
3158 
3159 	case DIF_VAR_ZONENAME:
3160 #if defined(sun)
3161 		if (!dtrace_priv_proc(state))
3162 			return (0);
3163 
3164 		/*
3165 		 * See comment in DIF_VAR_PID.
3166 		 */
3167 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3168 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3169 
3170 		/*
3171 		 * It is always safe to dereference one's own t_procp pointer:
3172 		 * it always points to a valid, allocated proc structure.
3173 		 * (This is true because threads don't clean up their own
3174 		 * state -- they leave that task to whomever reaps them.)
3175 		 */
3176 		return (dtrace_dif_varstr(
3177 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3178 		    state, mstate));
3179 #else
3180 		return (0);
3181 #endif
3182 
3183 	case DIF_VAR_UID:
3184 		if (!dtrace_priv_proc(state))
3185 			return (0);
3186 
3187 #if defined(sun)
3188 		/*
3189 		 * See comment in DIF_VAR_PID.
3190 		 */
3191 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3192 			return ((uint64_t)p0.p_cred->cr_uid);
3193 #endif
3194 
3195 		/*
3196 		 * It is always safe to dereference one's own t_procp pointer:
3197 		 * it always points to a valid, allocated proc structure.
3198 		 * (This is true because threads don't clean up their own
3199 		 * state -- they leave that task to whomever reaps them.)
3200 		 *
3201 		 * Additionally, it is safe to dereference one's own process
3202 		 * credential, since this is never NULL after process birth.
3203 		 */
3204 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3205 
3206 	case DIF_VAR_GID:
3207 		if (!dtrace_priv_proc(state))
3208 			return (0);
3209 
3210 #if defined(sun)
3211 		/*
3212 		 * See comment in DIF_VAR_PID.
3213 		 */
3214 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3215 			return ((uint64_t)p0.p_cred->cr_gid);
3216 #endif
3217 
3218 		/*
3219 		 * It is always safe to dereference one's own t_procp pointer:
3220 		 * it always points to a valid, allocated proc structure.
3221 		 * (This is true because threads don't clean up their own
3222 		 * state -- they leave that task to whomever reaps them.)
3223 		 *
3224 		 * Additionally, it is safe to dereference one's own process
3225 		 * credential, since this is never NULL after process birth.
3226 		 */
3227 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3228 
3229 	case DIF_VAR_ERRNO: {
3230 #if defined(sun)
3231 		klwp_t *lwp;
3232 		if (!dtrace_priv_proc(state))
3233 			return (0);
3234 
3235 		/*
3236 		 * See comment in DIF_VAR_PID.
3237 		 */
3238 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3239 			return (0);
3240 
3241 		/*
3242 		 * It is always safe to dereference one's own t_lwp pointer in
3243 		 * the event that this pointer is non-NULL.  (This is true
3244 		 * because threads and lwps don't clean up their own state --
3245 		 * they leave that task to whomever reaps them.)
3246 		 */
3247 		if ((lwp = curthread->t_lwp) == NULL)
3248 			return (0);
3249 
3250 		return ((uint64_t)lwp->lwp_errno);
3251 #else
3252 		return (curthread->td_errno);
3253 #endif
3254 	}
3255 #if !defined(sun)
3256 	case DIF_VAR_CPU: {
3257 		return curcpu;
3258 	}
3259 #endif
3260 	default:
3261 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3262 		return (0);
3263 	}
3264 }
3265 
3266 /*
3267  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3268  * Notice that we don't bother validating the proper number of arguments or
3269  * their types in the tuple stack.  This isn't needed because all argument
3270  * interpretation is safe because of our load safety -- the worst that can
3271  * happen is that a bogus program can obtain bogus results.
3272  */
3273 static void
3274 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3275     dtrace_key_t *tupregs, int nargs,
3276     dtrace_mstate_t *mstate, dtrace_state_t *state)
3277 {
3278 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3279 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3280 	dtrace_vstate_t *vstate = &state->dts_vstate;
3281 
3282 #if defined(sun)
3283 	union {
3284 		mutex_impl_t mi;
3285 		uint64_t mx;
3286 	} m;
3287 
3288 	union {
3289 		krwlock_t ri;
3290 		uintptr_t rw;
3291 	} r;
3292 #else
3293 	struct thread *lowner;
3294 	union {
3295 		struct lock_object *li;
3296 		uintptr_t lx;
3297 	} l;
3298 #endif
3299 
3300 	switch (subr) {
3301 	case DIF_SUBR_RAND:
3302 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3303 		break;
3304 
3305 #if defined(sun)
3306 	case DIF_SUBR_MUTEX_OWNED:
3307 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308 		    mstate, vstate)) {
3309 			regs[rd] = 0;
3310 			break;
3311 		}
3312 
3313 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3314 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3315 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3316 		else
3317 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3318 		break;
3319 
3320 	case DIF_SUBR_MUTEX_OWNER:
3321 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3322 		    mstate, vstate)) {
3323 			regs[rd] = 0;
3324 			break;
3325 		}
3326 
3327 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3328 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3329 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3330 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3331 		else
3332 			regs[rd] = 0;
3333 		break;
3334 
3335 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3336 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3337 		    mstate, vstate)) {
3338 			regs[rd] = 0;
3339 			break;
3340 		}
3341 
3342 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3343 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3344 		break;
3345 
3346 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3347 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3348 		    mstate, vstate)) {
3349 			regs[rd] = 0;
3350 			break;
3351 		}
3352 
3353 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3354 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3355 		break;
3356 
3357 	case DIF_SUBR_RW_READ_HELD: {
3358 		uintptr_t tmp;
3359 
3360 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3361 		    mstate, vstate)) {
3362 			regs[rd] = 0;
3363 			break;
3364 		}
3365 
3366 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3367 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3368 		break;
3369 	}
3370 
3371 	case DIF_SUBR_RW_WRITE_HELD:
3372 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3373 		    mstate, vstate)) {
3374 			regs[rd] = 0;
3375 			break;
3376 		}
3377 
3378 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3379 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3380 		break;
3381 
3382 	case DIF_SUBR_RW_ISWRITER:
3383 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3384 		    mstate, vstate)) {
3385 			regs[rd] = 0;
3386 			break;
3387 		}
3388 
3389 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3390 		regs[rd] = _RW_ISWRITER(&r.ri);
3391 		break;
3392 
3393 #else
3394 	case DIF_SUBR_MUTEX_OWNED:
3395 		if (!dtrace_canload(tupregs[0].dttk_value,
3396 			sizeof (struct lock_object), mstate, vstate)) {
3397 			regs[rd] = 0;
3398 			break;
3399 		}
3400 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3401 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3402 		break;
3403 
3404 	case DIF_SUBR_MUTEX_OWNER:
3405 		if (!dtrace_canload(tupregs[0].dttk_value,
3406 			sizeof (struct lock_object), mstate, vstate)) {
3407 			regs[rd] = 0;
3408 			break;
3409 		}
3410 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3411 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3412 		regs[rd] = (uintptr_t)lowner;
3413 		break;
3414 
3415 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3416 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3417 		    mstate, vstate)) {
3418 			regs[rd] = 0;
3419 			break;
3420 		}
3421 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3422 		/* XXX - should be only LC_SLEEPABLE? */
3423 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3424 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3425 		break;
3426 
3427 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3428 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3429 		    mstate, vstate)) {
3430 			regs[rd] = 0;
3431 			break;
3432 		}
3433 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3434 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3435 		break;
3436 
3437 	case DIF_SUBR_RW_READ_HELD:
3438 	case DIF_SUBR_SX_SHARED_HELD:
3439 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3440 		    mstate, vstate)) {
3441 			regs[rd] = 0;
3442 			break;
3443 		}
3444 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3445 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3446 		    lowner == NULL;
3447 		break;
3448 
3449 	case DIF_SUBR_RW_WRITE_HELD:
3450 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3451 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3452 		    mstate, vstate)) {
3453 			regs[rd] = 0;
3454 			break;
3455 		}
3456 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3457 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3458 		regs[rd] = (lowner == curthread);
3459 		break;
3460 
3461 	case DIF_SUBR_RW_ISWRITER:
3462 	case DIF_SUBR_SX_ISEXCLUSIVE:
3463 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3464 		    mstate, vstate)) {
3465 			regs[rd] = 0;
3466 			break;
3467 		}
3468 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3469 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3470 		    lowner != NULL;
3471 		break;
3472 #endif /* ! defined(sun) */
3473 
3474 	case DIF_SUBR_BCOPY: {
3475 		/*
3476 		 * We need to be sure that the destination is in the scratch
3477 		 * region -- no other region is allowed.
3478 		 */
3479 		uintptr_t src = tupregs[0].dttk_value;
3480 		uintptr_t dest = tupregs[1].dttk_value;
3481 		size_t size = tupregs[2].dttk_value;
3482 
3483 		if (!dtrace_inscratch(dest, size, mstate)) {
3484 			*flags |= CPU_DTRACE_BADADDR;
3485 			*illval = regs[rd];
3486 			break;
3487 		}
3488 
3489 		if (!dtrace_canload(src, size, mstate, vstate)) {
3490 			regs[rd] = 0;
3491 			break;
3492 		}
3493 
3494 		dtrace_bcopy((void *)src, (void *)dest, size);
3495 		break;
3496 	}
3497 
3498 	case DIF_SUBR_ALLOCA:
3499 	case DIF_SUBR_COPYIN: {
3500 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3501 		uint64_t size =
3502 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3503 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3504 
3505 		/*
3506 		 * This action doesn't require any credential checks since
3507 		 * probes will not activate in user contexts to which the
3508 		 * enabling user does not have permissions.
3509 		 */
3510 
3511 		/*
3512 		 * Rounding up the user allocation size could have overflowed
3513 		 * a large, bogus allocation (like -1ULL) to 0.
3514 		 */
3515 		if (scratch_size < size ||
3516 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3517 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3518 			regs[rd] = 0;
3519 			break;
3520 		}
3521 
3522 		if (subr == DIF_SUBR_COPYIN) {
3523 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3524 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3525 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3526 		}
3527 
3528 		mstate->dtms_scratch_ptr += scratch_size;
3529 		regs[rd] = dest;
3530 		break;
3531 	}
3532 
3533 	case DIF_SUBR_COPYINTO: {
3534 		uint64_t size = tupregs[1].dttk_value;
3535 		uintptr_t dest = tupregs[2].dttk_value;
3536 
3537 		/*
3538 		 * This action doesn't require any credential checks since
3539 		 * probes will not activate in user contexts to which the
3540 		 * enabling user does not have permissions.
3541 		 */
3542 		if (!dtrace_inscratch(dest, size, mstate)) {
3543 			*flags |= CPU_DTRACE_BADADDR;
3544 			*illval = regs[rd];
3545 			break;
3546 		}
3547 
3548 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3549 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3550 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3551 		break;
3552 	}
3553 
3554 	case DIF_SUBR_COPYINSTR: {
3555 		uintptr_t dest = mstate->dtms_scratch_ptr;
3556 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3557 
3558 		if (nargs > 1 && tupregs[1].dttk_value < size)
3559 			size = tupregs[1].dttk_value + 1;
3560 
3561 		/*
3562 		 * This action doesn't require any credential checks since
3563 		 * probes will not activate in user contexts to which the
3564 		 * enabling user does not have permissions.
3565 		 */
3566 		if (!DTRACE_INSCRATCH(mstate, size)) {
3567 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3568 			regs[rd] = 0;
3569 			break;
3570 		}
3571 
3572 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3573 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3574 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3575 
3576 		((char *)dest)[size - 1] = '\0';
3577 		mstate->dtms_scratch_ptr += size;
3578 		regs[rd] = dest;
3579 		break;
3580 	}
3581 
3582 #if defined(sun)
3583 	case DIF_SUBR_MSGSIZE:
3584 	case DIF_SUBR_MSGDSIZE: {
3585 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3586 		uintptr_t wptr, rptr;
3587 		size_t count = 0;
3588 		int cont = 0;
3589 
3590 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3591 
3592 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3593 			    vstate)) {
3594 				regs[rd] = 0;
3595 				break;
3596 			}
3597 
3598 			wptr = dtrace_loadptr(baddr +
3599 			    offsetof(mblk_t, b_wptr));
3600 
3601 			rptr = dtrace_loadptr(baddr +
3602 			    offsetof(mblk_t, b_rptr));
3603 
3604 			if (wptr < rptr) {
3605 				*flags |= CPU_DTRACE_BADADDR;
3606 				*illval = tupregs[0].dttk_value;
3607 				break;
3608 			}
3609 
3610 			daddr = dtrace_loadptr(baddr +
3611 			    offsetof(mblk_t, b_datap));
3612 
3613 			baddr = dtrace_loadptr(baddr +
3614 			    offsetof(mblk_t, b_cont));
3615 
3616 			/*
3617 			 * We want to prevent against denial-of-service here,
3618 			 * so we're only going to search the list for
3619 			 * dtrace_msgdsize_max mblks.
3620 			 */
3621 			if (cont++ > dtrace_msgdsize_max) {
3622 				*flags |= CPU_DTRACE_ILLOP;
3623 				break;
3624 			}
3625 
3626 			if (subr == DIF_SUBR_MSGDSIZE) {
3627 				if (dtrace_load8(daddr +
3628 				    offsetof(dblk_t, db_type)) != M_DATA)
3629 					continue;
3630 			}
3631 
3632 			count += wptr - rptr;
3633 		}
3634 
3635 		if (!(*flags & CPU_DTRACE_FAULT))
3636 			regs[rd] = count;
3637 
3638 		break;
3639 	}
3640 #endif
3641 
3642 	case DIF_SUBR_PROGENYOF: {
3643 		pid_t pid = tupregs[0].dttk_value;
3644 		proc_t *p;
3645 		int rval = 0;
3646 
3647 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3648 
3649 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3650 #if defined(sun)
3651 			if (p->p_pidp->pid_id == pid) {
3652 #else
3653 			if (p->p_pid == pid) {
3654 #endif
3655 				rval = 1;
3656 				break;
3657 			}
3658 		}
3659 
3660 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3661 
3662 		regs[rd] = rval;
3663 		break;
3664 	}
3665 
3666 	case DIF_SUBR_SPECULATION:
3667 		regs[rd] = dtrace_speculation(state);
3668 		break;
3669 
3670 	case DIF_SUBR_COPYOUT: {
3671 		uintptr_t kaddr = tupregs[0].dttk_value;
3672 		uintptr_t uaddr = tupregs[1].dttk_value;
3673 		uint64_t size = tupregs[2].dttk_value;
3674 
3675 		if (!dtrace_destructive_disallow &&
3676 		    dtrace_priv_proc_control(state) &&
3677 		    !dtrace_istoxic(kaddr, size)) {
3678 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3679 			dtrace_copyout(kaddr, uaddr, size, flags);
3680 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3681 		}
3682 		break;
3683 	}
3684 
3685 	case DIF_SUBR_COPYOUTSTR: {
3686 		uintptr_t kaddr = tupregs[0].dttk_value;
3687 		uintptr_t uaddr = tupregs[1].dttk_value;
3688 		uint64_t size = tupregs[2].dttk_value;
3689 
3690 		if (!dtrace_destructive_disallow &&
3691 		    dtrace_priv_proc_control(state) &&
3692 		    !dtrace_istoxic(kaddr, size)) {
3693 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3694 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3695 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3696 		}
3697 		break;
3698 	}
3699 
3700 	case DIF_SUBR_STRLEN: {
3701 		size_t sz;
3702 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3703 		sz = dtrace_strlen((char *)addr,
3704 		    state->dts_options[DTRACEOPT_STRSIZE]);
3705 
3706 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3707 			regs[rd] = 0;
3708 			break;
3709 		}
3710 
3711 		regs[rd] = sz;
3712 
3713 		break;
3714 	}
3715 
3716 	case DIF_SUBR_STRCHR:
3717 	case DIF_SUBR_STRRCHR: {
3718 		/*
3719 		 * We're going to iterate over the string looking for the
3720 		 * specified character.  We will iterate until we have reached
3721 		 * the string length or we have found the character.  If this
3722 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3723 		 * of the specified character instead of the first.
3724 		 */
3725 		uintptr_t saddr = tupregs[0].dttk_value;
3726 		uintptr_t addr = tupregs[0].dttk_value;
3727 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3728 		char c, target = (char)tupregs[1].dttk_value;
3729 
3730 		for (regs[rd] = 0; addr < limit; addr++) {
3731 			if ((c = dtrace_load8(addr)) == target) {
3732 				regs[rd] = addr;
3733 
3734 				if (subr == DIF_SUBR_STRCHR)
3735 					break;
3736 			}
3737 
3738 			if (c == '\0')
3739 				break;
3740 		}
3741 
3742 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3743 			regs[rd] = 0;
3744 			break;
3745 		}
3746 
3747 		break;
3748 	}
3749 
3750 	case DIF_SUBR_STRSTR:
3751 	case DIF_SUBR_INDEX:
3752 	case DIF_SUBR_RINDEX: {
3753 		/*
3754 		 * We're going to iterate over the string looking for the
3755 		 * specified string.  We will iterate until we have reached
3756 		 * the string length or we have found the string.  (Yes, this
3757 		 * is done in the most naive way possible -- but considering
3758 		 * that the string we're searching for is likely to be
3759 		 * relatively short, the complexity of Rabin-Karp or similar
3760 		 * hardly seems merited.)
3761 		 */
3762 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3763 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3764 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3765 		size_t len = dtrace_strlen(addr, size);
3766 		size_t sublen = dtrace_strlen(substr, size);
3767 		char *limit = addr + len, *orig = addr;
3768 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3769 		int inc = 1;
3770 
3771 		regs[rd] = notfound;
3772 
3773 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3774 			regs[rd] = 0;
3775 			break;
3776 		}
3777 
3778 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3779 		    vstate)) {
3780 			regs[rd] = 0;
3781 			break;
3782 		}
3783 
3784 		/*
3785 		 * strstr() and index()/rindex() have similar semantics if
3786 		 * both strings are the empty string: strstr() returns a
3787 		 * pointer to the (empty) string, and index() and rindex()
3788 		 * both return index 0 (regardless of any position argument).
3789 		 */
3790 		if (sublen == 0 && len == 0) {
3791 			if (subr == DIF_SUBR_STRSTR)
3792 				regs[rd] = (uintptr_t)addr;
3793 			else
3794 				regs[rd] = 0;
3795 			break;
3796 		}
3797 
3798 		if (subr != DIF_SUBR_STRSTR) {
3799 			if (subr == DIF_SUBR_RINDEX) {
3800 				limit = orig - 1;
3801 				addr += len;
3802 				inc = -1;
3803 			}
3804 
3805 			/*
3806 			 * Both index() and rindex() take an optional position
3807 			 * argument that denotes the starting position.
3808 			 */
3809 			if (nargs == 3) {
3810 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3811 
3812 				/*
3813 				 * If the position argument to index() is
3814 				 * negative, Perl implicitly clamps it at
3815 				 * zero.  This semantic is a little surprising
3816 				 * given the special meaning of negative
3817 				 * positions to similar Perl functions like
3818 				 * substr(), but it appears to reflect a
3819 				 * notion that index() can start from a
3820 				 * negative index and increment its way up to
3821 				 * the string.  Given this notion, Perl's
3822 				 * rindex() is at least self-consistent in
3823 				 * that it implicitly clamps positions greater
3824 				 * than the string length to be the string
3825 				 * length.  Where Perl completely loses
3826 				 * coherence, however, is when the specified
3827 				 * substring is the empty string ("").  In
3828 				 * this case, even if the position is
3829 				 * negative, rindex() returns 0 -- and even if
3830 				 * the position is greater than the length,
3831 				 * index() returns the string length.  These
3832 				 * semantics violate the notion that index()
3833 				 * should never return a value less than the
3834 				 * specified position and that rindex() should
3835 				 * never return a value greater than the
3836 				 * specified position.  (One assumes that
3837 				 * these semantics are artifacts of Perl's
3838 				 * implementation and not the results of
3839 				 * deliberate design -- it beggars belief that
3840 				 * even Larry Wall could desire such oddness.)
3841 				 * While in the abstract one would wish for
3842 				 * consistent position semantics across
3843 				 * substr(), index() and rindex() -- or at the
3844 				 * very least self-consistent position
3845 				 * semantics for index() and rindex() -- we
3846 				 * instead opt to keep with the extant Perl
3847 				 * semantics, in all their broken glory.  (Do
3848 				 * we have more desire to maintain Perl's
3849 				 * semantics than Perl does?  Probably.)
3850 				 */
3851 				if (subr == DIF_SUBR_RINDEX) {
3852 					if (pos < 0) {
3853 						if (sublen == 0)
3854 							regs[rd] = 0;
3855 						break;
3856 					}
3857 
3858 					if (pos > len)
3859 						pos = len;
3860 				} else {
3861 					if (pos < 0)
3862 						pos = 0;
3863 
3864 					if (pos >= len) {
3865 						if (sublen == 0)
3866 							regs[rd] = len;
3867 						break;
3868 					}
3869 				}
3870 
3871 				addr = orig + pos;
3872 			}
3873 		}
3874 
3875 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3876 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3877 				if (subr != DIF_SUBR_STRSTR) {
3878 					/*
3879 					 * As D index() and rindex() are
3880 					 * modeled on Perl (and not on awk),
3881 					 * we return a zero-based (and not a
3882 					 * one-based) index.  (For you Perl
3883 					 * weenies: no, we're not going to add
3884 					 * $[ -- and shouldn't you be at a con
3885 					 * or something?)
3886 					 */
3887 					regs[rd] = (uintptr_t)(addr - orig);
3888 					break;
3889 				}
3890 
3891 				ASSERT(subr == DIF_SUBR_STRSTR);
3892 				regs[rd] = (uintptr_t)addr;
3893 				break;
3894 			}
3895 		}
3896 
3897 		break;
3898 	}
3899 
3900 	case DIF_SUBR_STRTOK: {
3901 		uintptr_t addr = tupregs[0].dttk_value;
3902 		uintptr_t tokaddr = tupregs[1].dttk_value;
3903 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3904 		uintptr_t limit, toklimit = tokaddr + size;
3905 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3906 		char *dest = (char *)mstate->dtms_scratch_ptr;
3907 		int i;
3908 
3909 		/*
3910 		 * Check both the token buffer and (later) the input buffer,
3911 		 * since both could be non-scratch addresses.
3912 		 */
3913 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3914 			regs[rd] = 0;
3915 			break;
3916 		}
3917 
3918 		if (!DTRACE_INSCRATCH(mstate, size)) {
3919 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3920 			regs[rd] = 0;
3921 			break;
3922 		}
3923 
3924 		if (addr == 0) {
3925 			/*
3926 			 * If the address specified is NULL, we use our saved
3927 			 * strtok pointer from the mstate.  Note that this
3928 			 * means that the saved strtok pointer is _only_
3929 			 * valid within multiple enablings of the same probe --
3930 			 * it behaves like an implicit clause-local variable.
3931 			 */
3932 			addr = mstate->dtms_strtok;
3933 		} else {
3934 			/*
3935 			 * If the user-specified address is non-NULL we must
3936 			 * access check it.  This is the only time we have
3937 			 * a chance to do so, since this address may reside
3938 			 * in the string table of this clause-- future calls
3939 			 * (when we fetch addr from mstate->dtms_strtok)
3940 			 * would fail this access check.
3941 			 */
3942 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3943 				regs[rd] = 0;
3944 				break;
3945 			}
3946 		}
3947 
3948 		/*
3949 		 * First, zero the token map, and then process the token
3950 		 * string -- setting a bit in the map for every character
3951 		 * found in the token string.
3952 		 */
3953 		for (i = 0; i < sizeof (tokmap); i++)
3954 			tokmap[i] = 0;
3955 
3956 		for (; tokaddr < toklimit; tokaddr++) {
3957 			if ((c = dtrace_load8(tokaddr)) == '\0')
3958 				break;
3959 
3960 			ASSERT((c >> 3) < sizeof (tokmap));
3961 			tokmap[c >> 3] |= (1 << (c & 0x7));
3962 		}
3963 
3964 		for (limit = addr + size; addr < limit; addr++) {
3965 			/*
3966 			 * We're looking for a character that is _not_ contained
3967 			 * in the token string.
3968 			 */
3969 			if ((c = dtrace_load8(addr)) == '\0')
3970 				break;
3971 
3972 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3973 				break;
3974 		}
3975 
3976 		if (c == '\0') {
3977 			/*
3978 			 * We reached the end of the string without finding
3979 			 * any character that was not in the token string.
3980 			 * We return NULL in this case, and we set the saved
3981 			 * address to NULL as well.
3982 			 */
3983 			regs[rd] = 0;
3984 			mstate->dtms_strtok = 0;
3985 			break;
3986 		}
3987 
3988 		/*
3989 		 * From here on, we're copying into the destination string.
3990 		 */
3991 		for (i = 0; addr < limit && i < size - 1; addr++) {
3992 			if ((c = dtrace_load8(addr)) == '\0')
3993 				break;
3994 
3995 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3996 				break;
3997 
3998 			ASSERT(i < size);
3999 			dest[i++] = c;
4000 		}
4001 
4002 		ASSERT(i < size);
4003 		dest[i] = '\0';
4004 		regs[rd] = (uintptr_t)dest;
4005 		mstate->dtms_scratch_ptr += size;
4006 		mstate->dtms_strtok = addr;
4007 		break;
4008 	}
4009 
4010 	case DIF_SUBR_SUBSTR: {
4011 		uintptr_t s = tupregs[0].dttk_value;
4012 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4013 		char *d = (char *)mstate->dtms_scratch_ptr;
4014 		int64_t index = (int64_t)tupregs[1].dttk_value;
4015 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4016 		size_t len = dtrace_strlen((char *)s, size);
4017 		int64_t i = 0;
4018 
4019 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4020 			regs[rd] = 0;
4021 			break;
4022 		}
4023 
4024 		if (!DTRACE_INSCRATCH(mstate, size)) {
4025 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4026 			regs[rd] = 0;
4027 			break;
4028 		}
4029 
4030 		if (nargs <= 2)
4031 			remaining = (int64_t)size;
4032 
4033 		if (index < 0) {
4034 			index += len;
4035 
4036 			if (index < 0 && index + remaining > 0) {
4037 				remaining += index;
4038 				index = 0;
4039 			}
4040 		}
4041 
4042 		if (index >= len || index < 0) {
4043 			remaining = 0;
4044 		} else if (remaining < 0) {
4045 			remaining += len - index;
4046 		} else if (index + remaining > size) {
4047 			remaining = size - index;
4048 		}
4049 
4050 		for (i = 0; i < remaining; i++) {
4051 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4052 				break;
4053 		}
4054 
4055 		d[i] = '\0';
4056 
4057 		mstate->dtms_scratch_ptr += size;
4058 		regs[rd] = (uintptr_t)d;
4059 		break;
4060 	}
4061 
4062 	case DIF_SUBR_TOUPPER:
4063 	case DIF_SUBR_TOLOWER: {
4064 		uintptr_t s = tupregs[0].dttk_value;
4065 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4066 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4067 		size_t len = dtrace_strlen((char *)s, size);
4068 		char lower, upper, convert;
4069 		int64_t i;
4070 
4071 		if (subr == DIF_SUBR_TOUPPER) {
4072 			lower = 'a';
4073 			upper = 'z';
4074 			convert = 'A';
4075 		} else {
4076 			lower = 'A';
4077 			upper = 'Z';
4078 			convert = 'a';
4079 		}
4080 
4081 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4082 			regs[rd] = 0;
4083 			break;
4084 		}
4085 
4086 		if (!DTRACE_INSCRATCH(mstate, size)) {
4087 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4088 			regs[rd] = 0;
4089 			break;
4090 		}
4091 
4092 		for (i = 0; i < size - 1; i++) {
4093 			if ((c = dtrace_load8(s + i)) == '\0')
4094 				break;
4095 
4096 			if (c >= lower && c <= upper)
4097 				c = convert + (c - lower);
4098 
4099 			dest[i] = c;
4100 		}
4101 
4102 		ASSERT(i < size);
4103 		dest[i] = '\0';
4104 		regs[rd] = (uintptr_t)dest;
4105 		mstate->dtms_scratch_ptr += size;
4106 		break;
4107 	}
4108 
4109 #if defined(sun)
4110 	case DIF_SUBR_GETMAJOR:
4111 #ifdef _LP64
4112 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4113 #else
4114 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4115 #endif
4116 		break;
4117 
4118 	case DIF_SUBR_GETMINOR:
4119 #ifdef _LP64
4120 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4121 #else
4122 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4123 #endif
4124 		break;
4125 
4126 	case DIF_SUBR_DDI_PATHNAME: {
4127 		/*
4128 		 * This one is a galactic mess.  We are going to roughly
4129 		 * emulate ddi_pathname(), but it's made more complicated
4130 		 * by the fact that we (a) want to include the minor name and
4131 		 * (b) must proceed iteratively instead of recursively.
4132 		 */
4133 		uintptr_t dest = mstate->dtms_scratch_ptr;
4134 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4135 		char *start = (char *)dest, *end = start + size - 1;
4136 		uintptr_t daddr = tupregs[0].dttk_value;
4137 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4138 		char *s;
4139 		int i, len, depth = 0;
4140 
4141 		/*
4142 		 * Due to all the pointer jumping we do and context we must
4143 		 * rely upon, we just mandate that the user must have kernel
4144 		 * read privileges to use this routine.
4145 		 */
4146 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4147 			*flags |= CPU_DTRACE_KPRIV;
4148 			*illval = daddr;
4149 			regs[rd] = 0;
4150 		}
4151 
4152 		if (!DTRACE_INSCRATCH(mstate, size)) {
4153 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4154 			regs[rd] = 0;
4155 			break;
4156 		}
4157 
4158 		*end = '\0';
4159 
4160 		/*
4161 		 * We want to have a name for the minor.  In order to do this,
4162 		 * we need to walk the minor list from the devinfo.  We want
4163 		 * to be sure that we don't infinitely walk a circular list,
4164 		 * so we check for circularity by sending a scout pointer
4165 		 * ahead two elements for every element that we iterate over;
4166 		 * if the list is circular, these will ultimately point to the
4167 		 * same element.  You may recognize this little trick as the
4168 		 * answer to a stupid interview question -- one that always
4169 		 * seems to be asked by those who had to have it laboriously
4170 		 * explained to them, and who can't even concisely describe
4171 		 * the conditions under which one would be forced to resort to
4172 		 * this technique.  Needless to say, those conditions are
4173 		 * found here -- and probably only here.  Is this the only use
4174 		 * of this infamous trick in shipping, production code?  If it
4175 		 * isn't, it probably should be...
4176 		 */
4177 		if (minor != -1) {
4178 			uintptr_t maddr = dtrace_loadptr(daddr +
4179 			    offsetof(struct dev_info, devi_minor));
4180 
4181 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4182 			uintptr_t name = offsetof(struct ddi_minor_data,
4183 			    d_minor) + offsetof(struct ddi_minor, name);
4184 			uintptr_t dev = offsetof(struct ddi_minor_data,
4185 			    d_minor) + offsetof(struct ddi_minor, dev);
4186 			uintptr_t scout;
4187 
4188 			if (maddr != NULL)
4189 				scout = dtrace_loadptr(maddr + next);
4190 
4191 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4192 				uint64_t m;
4193 #ifdef _LP64
4194 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4195 #else
4196 				m = dtrace_load32(maddr + dev) & MAXMIN;
4197 #endif
4198 				if (m != minor) {
4199 					maddr = dtrace_loadptr(maddr + next);
4200 
4201 					if (scout == NULL)
4202 						continue;
4203 
4204 					scout = dtrace_loadptr(scout + next);
4205 
4206 					if (scout == NULL)
4207 						continue;
4208 
4209 					scout = dtrace_loadptr(scout + next);
4210 
4211 					if (scout == NULL)
4212 						continue;
4213 
4214 					if (scout == maddr) {
4215 						*flags |= CPU_DTRACE_ILLOP;
4216 						break;
4217 					}
4218 
4219 					continue;
4220 				}
4221 
4222 				/*
4223 				 * We have the minor data.  Now we need to
4224 				 * copy the minor's name into the end of the
4225 				 * pathname.
4226 				 */
4227 				s = (char *)dtrace_loadptr(maddr + name);
4228 				len = dtrace_strlen(s, size);
4229 
4230 				if (*flags & CPU_DTRACE_FAULT)
4231 					break;
4232 
4233 				if (len != 0) {
4234 					if ((end -= (len + 1)) < start)
4235 						break;
4236 
4237 					*end = ':';
4238 				}
4239 
4240 				for (i = 1; i <= len; i++)
4241 					end[i] = dtrace_load8((uintptr_t)s++);
4242 				break;
4243 			}
4244 		}
4245 
4246 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4247 			ddi_node_state_t devi_state;
4248 
4249 			devi_state = dtrace_load32(daddr +
4250 			    offsetof(struct dev_info, devi_node_state));
4251 
4252 			if (*flags & CPU_DTRACE_FAULT)
4253 				break;
4254 
4255 			if (devi_state >= DS_INITIALIZED) {
4256 				s = (char *)dtrace_loadptr(daddr +
4257 				    offsetof(struct dev_info, devi_addr));
4258 				len = dtrace_strlen(s, size);
4259 
4260 				if (*flags & CPU_DTRACE_FAULT)
4261 					break;
4262 
4263 				if (len != 0) {
4264 					if ((end -= (len + 1)) < start)
4265 						break;
4266 
4267 					*end = '@';
4268 				}
4269 
4270 				for (i = 1; i <= len; i++)
4271 					end[i] = dtrace_load8((uintptr_t)s++);
4272 			}
4273 
4274 			/*
4275 			 * Now for the node name...
4276 			 */
4277 			s = (char *)dtrace_loadptr(daddr +
4278 			    offsetof(struct dev_info, devi_node_name));
4279 
4280 			daddr = dtrace_loadptr(daddr +
4281 			    offsetof(struct dev_info, devi_parent));
4282 
4283 			/*
4284 			 * If our parent is NULL (that is, if we're the root
4285 			 * node), we're going to use the special path
4286 			 * "devices".
4287 			 */
4288 			if (daddr == 0)
4289 				s = "devices";
4290 
4291 			len = dtrace_strlen(s, size);
4292 			if (*flags & CPU_DTRACE_FAULT)
4293 				break;
4294 
4295 			if ((end -= (len + 1)) < start)
4296 				break;
4297 
4298 			for (i = 1; i <= len; i++)
4299 				end[i] = dtrace_load8((uintptr_t)s++);
4300 			*end = '/';
4301 
4302 			if (depth++ > dtrace_devdepth_max) {
4303 				*flags |= CPU_DTRACE_ILLOP;
4304 				break;
4305 			}
4306 		}
4307 
4308 		if (end < start)
4309 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4310 
4311 		if (daddr == 0) {
4312 			regs[rd] = (uintptr_t)end;
4313 			mstate->dtms_scratch_ptr += size;
4314 		}
4315 
4316 		break;
4317 	}
4318 #endif
4319 
4320 	case DIF_SUBR_STRJOIN: {
4321 		char *d = (char *)mstate->dtms_scratch_ptr;
4322 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4323 		uintptr_t s1 = tupregs[0].dttk_value;
4324 		uintptr_t s2 = tupregs[1].dttk_value;
4325 		int i = 0;
4326 
4327 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4328 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4329 			regs[rd] = 0;
4330 			break;
4331 		}
4332 
4333 		if (!DTRACE_INSCRATCH(mstate, size)) {
4334 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4335 			regs[rd] = 0;
4336 			break;
4337 		}
4338 
4339 		for (;;) {
4340 			if (i >= size) {
4341 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4342 				regs[rd] = 0;
4343 				break;
4344 			}
4345 
4346 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4347 				i--;
4348 				break;
4349 			}
4350 		}
4351 
4352 		for (;;) {
4353 			if (i >= size) {
4354 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4355 				regs[rd] = 0;
4356 				break;
4357 			}
4358 
4359 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4360 				break;
4361 		}
4362 
4363 		if (i < size) {
4364 			mstate->dtms_scratch_ptr += i;
4365 			regs[rd] = (uintptr_t)d;
4366 		}
4367 
4368 		break;
4369 	}
4370 
4371 	case DIF_SUBR_LLTOSTR: {
4372 		int64_t i = (int64_t)tupregs[0].dttk_value;
4373 		uint64_t val, digit;
4374 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4375 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4376 		int base = 10;
4377 
4378 		if (nargs > 1) {
4379 			if ((base = tupregs[1].dttk_value) <= 1 ||
4380 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4381 				*flags |= CPU_DTRACE_ILLOP;
4382 				break;
4383 			}
4384 		}
4385 
4386 		val = (base == 10 && i < 0) ? i * -1 : i;
4387 
4388 		if (!DTRACE_INSCRATCH(mstate, size)) {
4389 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4390 			regs[rd] = 0;
4391 			break;
4392 		}
4393 
4394 		for (*end-- = '\0'; val; val /= base) {
4395 			if ((digit = val % base) <= '9' - '0') {
4396 				*end-- = '0' + digit;
4397 			} else {
4398 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4399 			}
4400 		}
4401 
4402 		if (i == 0 && base == 16)
4403 			*end-- = '0';
4404 
4405 		if (base == 16)
4406 			*end-- = 'x';
4407 
4408 		if (i == 0 || base == 8 || base == 16)
4409 			*end-- = '0';
4410 
4411 		if (i < 0 && base == 10)
4412 			*end-- = '-';
4413 
4414 		regs[rd] = (uintptr_t)end + 1;
4415 		mstate->dtms_scratch_ptr += size;
4416 		break;
4417 	}
4418 
4419 	case DIF_SUBR_HTONS:
4420 	case DIF_SUBR_NTOHS:
4421 #if BYTE_ORDER == BIG_ENDIAN
4422 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4423 #else
4424 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4425 #endif
4426 		break;
4427 
4428 
4429 	case DIF_SUBR_HTONL:
4430 	case DIF_SUBR_NTOHL:
4431 #if BYTE_ORDER == BIG_ENDIAN
4432 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4433 #else
4434 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4435 #endif
4436 		break;
4437 
4438 
4439 	case DIF_SUBR_HTONLL:
4440 	case DIF_SUBR_NTOHLL:
4441 #if BYTE_ORDER == BIG_ENDIAN
4442 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4443 #else
4444 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4445 #endif
4446 		break;
4447 
4448 
4449 	case DIF_SUBR_DIRNAME:
4450 	case DIF_SUBR_BASENAME: {
4451 		char *dest = (char *)mstate->dtms_scratch_ptr;
4452 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4453 		uintptr_t src = tupregs[0].dttk_value;
4454 		int i, j, len = dtrace_strlen((char *)src, size);
4455 		int lastbase = -1, firstbase = -1, lastdir = -1;
4456 		int start, end;
4457 
4458 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4459 			regs[rd] = 0;
4460 			break;
4461 		}
4462 
4463 		if (!DTRACE_INSCRATCH(mstate, size)) {
4464 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4465 			regs[rd] = 0;
4466 			break;
4467 		}
4468 
4469 		/*
4470 		 * The basename and dirname for a zero-length string is
4471 		 * defined to be "."
4472 		 */
4473 		if (len == 0) {
4474 			len = 1;
4475 			src = (uintptr_t)".";
4476 		}
4477 
4478 		/*
4479 		 * Start from the back of the string, moving back toward the
4480 		 * front until we see a character that isn't a slash.  That
4481 		 * character is the last character in the basename.
4482 		 */
4483 		for (i = len - 1; i >= 0; i--) {
4484 			if (dtrace_load8(src + i) != '/')
4485 				break;
4486 		}
4487 
4488 		if (i >= 0)
4489 			lastbase = i;
4490 
4491 		/*
4492 		 * Starting from the last character in the basename, move
4493 		 * towards the front until we find a slash.  The character
4494 		 * that we processed immediately before that is the first
4495 		 * character in the basename.
4496 		 */
4497 		for (; i >= 0; i--) {
4498 			if (dtrace_load8(src + i) == '/')
4499 				break;
4500 		}
4501 
4502 		if (i >= 0)
4503 			firstbase = i + 1;
4504 
4505 		/*
4506 		 * Now keep going until we find a non-slash character.  That
4507 		 * character is the last character in the dirname.
4508 		 */
4509 		for (; i >= 0; i--) {
4510 			if (dtrace_load8(src + i) != '/')
4511 				break;
4512 		}
4513 
4514 		if (i >= 0)
4515 			lastdir = i;
4516 
4517 		ASSERT(!(lastbase == -1 && firstbase != -1));
4518 		ASSERT(!(firstbase == -1 && lastdir != -1));
4519 
4520 		if (lastbase == -1) {
4521 			/*
4522 			 * We didn't find a non-slash character.  We know that
4523 			 * the length is non-zero, so the whole string must be
4524 			 * slashes.  In either the dirname or the basename
4525 			 * case, we return '/'.
4526 			 */
4527 			ASSERT(firstbase == -1);
4528 			firstbase = lastbase = lastdir = 0;
4529 		}
4530 
4531 		if (firstbase == -1) {
4532 			/*
4533 			 * The entire string consists only of a basename
4534 			 * component.  If we're looking for dirname, we need
4535 			 * to change our string to be just "."; if we're
4536 			 * looking for a basename, we'll just set the first
4537 			 * character of the basename to be 0.
4538 			 */
4539 			if (subr == DIF_SUBR_DIRNAME) {
4540 				ASSERT(lastdir == -1);
4541 				src = (uintptr_t)".";
4542 				lastdir = 0;
4543 			} else {
4544 				firstbase = 0;
4545 			}
4546 		}
4547 
4548 		if (subr == DIF_SUBR_DIRNAME) {
4549 			if (lastdir == -1) {
4550 				/*
4551 				 * We know that we have a slash in the name --
4552 				 * or lastdir would be set to 0, above.  And
4553 				 * because lastdir is -1, we know that this
4554 				 * slash must be the first character.  (That
4555 				 * is, the full string must be of the form
4556 				 * "/basename".)  In this case, the last
4557 				 * character of the directory name is 0.
4558 				 */
4559 				lastdir = 0;
4560 			}
4561 
4562 			start = 0;
4563 			end = lastdir;
4564 		} else {
4565 			ASSERT(subr == DIF_SUBR_BASENAME);
4566 			ASSERT(firstbase != -1 && lastbase != -1);
4567 			start = firstbase;
4568 			end = lastbase;
4569 		}
4570 
4571 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4572 			dest[j] = dtrace_load8(src + i);
4573 
4574 		dest[j] = '\0';
4575 		regs[rd] = (uintptr_t)dest;
4576 		mstate->dtms_scratch_ptr += size;
4577 		break;
4578 	}
4579 
4580 	case DIF_SUBR_CLEANPATH: {
4581 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4582 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4583 		uintptr_t src = tupregs[0].dttk_value;
4584 		int i = 0, j = 0;
4585 
4586 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4587 			regs[rd] = 0;
4588 			break;
4589 		}
4590 
4591 		if (!DTRACE_INSCRATCH(mstate, size)) {
4592 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4593 			regs[rd] = 0;
4594 			break;
4595 		}
4596 
4597 		/*
4598 		 * Move forward, loading each character.
4599 		 */
4600 		do {
4601 			c = dtrace_load8(src + i++);
4602 next:
4603 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4604 				break;
4605 
4606 			if (c != '/') {
4607 				dest[j++] = c;
4608 				continue;
4609 			}
4610 
4611 			c = dtrace_load8(src + i++);
4612 
4613 			if (c == '/') {
4614 				/*
4615 				 * We have two slashes -- we can just advance
4616 				 * to the next character.
4617 				 */
4618 				goto next;
4619 			}
4620 
4621 			if (c != '.') {
4622 				/*
4623 				 * This is not "." and it's not ".." -- we can
4624 				 * just store the "/" and this character and
4625 				 * drive on.
4626 				 */
4627 				dest[j++] = '/';
4628 				dest[j++] = c;
4629 				continue;
4630 			}
4631 
4632 			c = dtrace_load8(src + i++);
4633 
4634 			if (c == '/') {
4635 				/*
4636 				 * This is a "/./" component.  We're not going
4637 				 * to store anything in the destination buffer;
4638 				 * we're just going to go to the next component.
4639 				 */
4640 				goto next;
4641 			}
4642 
4643 			if (c != '.') {
4644 				/*
4645 				 * This is not ".." -- we can just store the
4646 				 * "/." and this character and continue
4647 				 * processing.
4648 				 */
4649 				dest[j++] = '/';
4650 				dest[j++] = '.';
4651 				dest[j++] = c;
4652 				continue;
4653 			}
4654 
4655 			c = dtrace_load8(src + i++);
4656 
4657 			if (c != '/' && c != '\0') {
4658 				/*
4659 				 * This is not ".." -- it's "..[mumble]".
4660 				 * We'll store the "/.." and this character
4661 				 * and continue processing.
4662 				 */
4663 				dest[j++] = '/';
4664 				dest[j++] = '.';
4665 				dest[j++] = '.';
4666 				dest[j++] = c;
4667 				continue;
4668 			}
4669 
4670 			/*
4671 			 * This is "/../" or "/..\0".  We need to back up
4672 			 * our destination pointer until we find a "/".
4673 			 */
4674 			i--;
4675 			while (j != 0 && dest[--j] != '/')
4676 				continue;
4677 
4678 			if (c == '\0')
4679 				dest[++j] = '/';
4680 		} while (c != '\0');
4681 
4682 		dest[j] = '\0';
4683 		regs[rd] = (uintptr_t)dest;
4684 		mstate->dtms_scratch_ptr += size;
4685 		break;
4686 	}
4687 
4688 	case DIF_SUBR_INET_NTOA:
4689 	case DIF_SUBR_INET_NTOA6:
4690 	case DIF_SUBR_INET_NTOP: {
4691 		size_t size;
4692 		int af, argi, i;
4693 		char *base, *end;
4694 
4695 		if (subr == DIF_SUBR_INET_NTOP) {
4696 			af = (int)tupregs[0].dttk_value;
4697 			argi = 1;
4698 		} else {
4699 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4700 			argi = 0;
4701 		}
4702 
4703 		if (af == AF_INET) {
4704 			ipaddr_t ip4;
4705 			uint8_t *ptr8, val;
4706 
4707 			/*
4708 			 * Safely load the IPv4 address.
4709 			 */
4710 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4711 
4712 			/*
4713 			 * Check an IPv4 string will fit in scratch.
4714 			 */
4715 			size = INET_ADDRSTRLEN;
4716 			if (!DTRACE_INSCRATCH(mstate, size)) {
4717 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4718 				regs[rd] = 0;
4719 				break;
4720 			}
4721 			base = (char *)mstate->dtms_scratch_ptr;
4722 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4723 
4724 			/*
4725 			 * Stringify as a dotted decimal quad.
4726 			 */
4727 			*end-- = '\0';
4728 			ptr8 = (uint8_t *)&ip4;
4729 			for (i = 3; i >= 0; i--) {
4730 				val = ptr8[i];
4731 
4732 				if (val == 0) {
4733 					*end-- = '0';
4734 				} else {
4735 					for (; val; val /= 10) {
4736 						*end-- = '0' + (val % 10);
4737 					}
4738 				}
4739 
4740 				if (i > 0)
4741 					*end-- = '.';
4742 			}
4743 			ASSERT(end + 1 >= base);
4744 
4745 		} else if (af == AF_INET6) {
4746 			struct in6_addr ip6;
4747 			int firstzero, tryzero, numzero, v6end;
4748 			uint16_t val;
4749 			const char digits[] = "0123456789abcdef";
4750 
4751 			/*
4752 			 * Stringify using RFC 1884 convention 2 - 16 bit
4753 			 * hexadecimal values with a zero-run compression.
4754 			 * Lower case hexadecimal digits are used.
4755 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4756 			 * The IPv4 embedded form is returned for inet_ntop,
4757 			 * just the IPv4 string is returned for inet_ntoa6.
4758 			 */
4759 
4760 			/*
4761 			 * Safely load the IPv6 address.
4762 			 */
4763 			dtrace_bcopy(
4764 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4765 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4766 
4767 			/*
4768 			 * Check an IPv6 string will fit in scratch.
4769 			 */
4770 			size = INET6_ADDRSTRLEN;
4771 			if (!DTRACE_INSCRATCH(mstate, size)) {
4772 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4773 				regs[rd] = 0;
4774 				break;
4775 			}
4776 			base = (char *)mstate->dtms_scratch_ptr;
4777 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4778 			*end-- = '\0';
4779 
4780 			/*
4781 			 * Find the longest run of 16 bit zero values
4782 			 * for the single allowed zero compression - "::".
4783 			 */
4784 			firstzero = -1;
4785 			tryzero = -1;
4786 			numzero = 1;
4787 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4788 #if defined(sun)
4789 				if (ip6._S6_un._S6_u8[i] == 0 &&
4790 #else
4791 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4792 #endif
4793 				    tryzero == -1 && i % 2 == 0) {
4794 					tryzero = i;
4795 					continue;
4796 				}
4797 
4798 				if (tryzero != -1 &&
4799 #if defined(sun)
4800 				    (ip6._S6_un._S6_u8[i] != 0 ||
4801 #else
4802 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4803 #endif
4804 				    i == sizeof (struct in6_addr) - 1)) {
4805 
4806 					if (i - tryzero <= numzero) {
4807 						tryzero = -1;
4808 						continue;
4809 					}
4810 
4811 					firstzero = tryzero;
4812 					numzero = i - i % 2 - tryzero;
4813 					tryzero = -1;
4814 
4815 #if defined(sun)
4816 					if (ip6._S6_un._S6_u8[i] == 0 &&
4817 #else
4818 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4819 #endif
4820 					    i == sizeof (struct in6_addr) - 1)
4821 						numzero += 2;
4822 				}
4823 			}
4824 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4825 
4826 			/*
4827 			 * Check for an IPv4 embedded address.
4828 			 */
4829 			v6end = sizeof (struct in6_addr) - 2;
4830 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4831 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4832 				for (i = sizeof (struct in6_addr) - 1;
4833 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4834 					ASSERT(end >= base);
4835 
4836 #if defined(sun)
4837 					val = ip6._S6_un._S6_u8[i];
4838 #else
4839 					val = ip6.__u6_addr.__u6_addr8[i];
4840 #endif
4841 
4842 					if (val == 0) {
4843 						*end-- = '0';
4844 					} else {
4845 						for (; val; val /= 10) {
4846 							*end-- = '0' + val % 10;
4847 						}
4848 					}
4849 
4850 					if (i > DTRACE_V4MAPPED_OFFSET)
4851 						*end-- = '.';
4852 				}
4853 
4854 				if (subr == DIF_SUBR_INET_NTOA6)
4855 					goto inetout;
4856 
4857 				/*
4858 				 * Set v6end to skip the IPv4 address that
4859 				 * we have already stringified.
4860 				 */
4861 				v6end = 10;
4862 			}
4863 
4864 			/*
4865 			 * Build the IPv6 string by working through the
4866 			 * address in reverse.
4867 			 */
4868 			for (i = v6end; i >= 0; i -= 2) {
4869 				ASSERT(end >= base);
4870 
4871 				if (i == firstzero + numzero - 2) {
4872 					*end-- = ':';
4873 					*end-- = ':';
4874 					i -= numzero - 2;
4875 					continue;
4876 				}
4877 
4878 				if (i < 14 && i != firstzero - 2)
4879 					*end-- = ':';
4880 
4881 #if defined(sun)
4882 				val = (ip6._S6_un._S6_u8[i] << 8) +
4883 				    ip6._S6_un._S6_u8[i + 1];
4884 #else
4885 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4886 				    ip6.__u6_addr.__u6_addr8[i + 1];
4887 #endif
4888 
4889 				if (val == 0) {
4890 					*end-- = '0';
4891 				} else {
4892 					for (; val; val /= 16) {
4893 						*end-- = digits[val % 16];
4894 					}
4895 				}
4896 			}
4897 			ASSERT(end + 1 >= base);
4898 
4899 		} else {
4900 			/*
4901 			 * The user didn't use AH_INET or AH_INET6.
4902 			 */
4903 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4904 			regs[rd] = 0;
4905 			break;
4906 		}
4907 
4908 inetout:	regs[rd] = (uintptr_t)end + 1;
4909 		mstate->dtms_scratch_ptr += size;
4910 		break;
4911 	}
4912 
4913 	case DIF_SUBR_MEMREF: {
4914 		uintptr_t size = 2 * sizeof(uintptr_t);
4915 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4916 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4917 
4918 		/* address and length */
4919 		memref[0] = tupregs[0].dttk_value;
4920 		memref[1] = tupregs[1].dttk_value;
4921 
4922 		regs[rd] = (uintptr_t) memref;
4923 		mstate->dtms_scratch_ptr += scratch_size;
4924 		break;
4925 	}
4926 
4927 #if !defined(sun)
4928 	case DIF_SUBR_MEMSTR: {
4929 		char *str = (char *)mstate->dtms_scratch_ptr;
4930 		uintptr_t mem = tupregs[0].dttk_value;
4931 		char c = tupregs[1].dttk_value;
4932 		size_t size = tupregs[2].dttk_value;
4933 		uint8_t n;
4934 		int i;
4935 
4936 		regs[rd] = 0;
4937 
4938 		if (size == 0)
4939 			break;
4940 
4941 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
4942 			break;
4943 
4944 		if (!DTRACE_INSCRATCH(mstate, size)) {
4945 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4946 			break;
4947 		}
4948 
4949 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
4950 			*flags |= CPU_DTRACE_ILLOP;
4951 			break;
4952 		}
4953 
4954 		for (i = 0; i < size - 1; i++) {
4955 			n = dtrace_load8(mem++);
4956 			str[i] = (n == 0) ? c : n;
4957 		}
4958 		str[size - 1] = 0;
4959 
4960 		regs[rd] = (uintptr_t)str;
4961 		mstate->dtms_scratch_ptr += size;
4962 		break;
4963 	}
4964 #endif
4965 
4966 	case DIF_SUBR_TYPEREF: {
4967 		uintptr_t size = 4 * sizeof(uintptr_t);
4968 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4969 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4970 
4971 		/* address, num_elements, type_str, type_len */
4972 		typeref[0] = tupregs[0].dttk_value;
4973 		typeref[1] = tupregs[1].dttk_value;
4974 		typeref[2] = tupregs[2].dttk_value;
4975 		typeref[3] = tupregs[3].dttk_value;
4976 
4977 		regs[rd] = (uintptr_t) typeref;
4978 		mstate->dtms_scratch_ptr += scratch_size;
4979 		break;
4980 	}
4981 	}
4982 }
4983 
4984 /*
4985  * Emulate the execution of DTrace IR instructions specified by the given
4986  * DIF object.  This function is deliberately void of assertions as all of
4987  * the necessary checks are handled by a call to dtrace_difo_validate().
4988  */
4989 static uint64_t
4990 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4991     dtrace_vstate_t *vstate, dtrace_state_t *state)
4992 {
4993 	const dif_instr_t *text = difo->dtdo_buf;
4994 	const uint_t textlen = difo->dtdo_len;
4995 	const char *strtab = difo->dtdo_strtab;
4996 	const uint64_t *inttab = difo->dtdo_inttab;
4997 
4998 	uint64_t rval = 0;
4999 	dtrace_statvar_t *svar;
5000 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5001 	dtrace_difv_t *v;
5002 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5003 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5004 
5005 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5006 	uint64_t regs[DIF_DIR_NREGS];
5007 	uint64_t *tmp;
5008 
5009 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5010 	int64_t cc_r;
5011 	uint_t pc = 0, id, opc = 0;
5012 	uint8_t ttop = 0;
5013 	dif_instr_t instr;
5014 	uint_t r1, r2, rd;
5015 
5016 	/*
5017 	 * We stash the current DIF object into the machine state: we need it
5018 	 * for subsequent access checking.
5019 	 */
5020 	mstate->dtms_difo = difo;
5021 
5022 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5023 
5024 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5025 		opc = pc;
5026 
5027 		instr = text[pc++];
5028 		r1 = DIF_INSTR_R1(instr);
5029 		r2 = DIF_INSTR_R2(instr);
5030 		rd = DIF_INSTR_RD(instr);
5031 
5032 		switch (DIF_INSTR_OP(instr)) {
5033 		case DIF_OP_OR:
5034 			regs[rd] = regs[r1] | regs[r2];
5035 			break;
5036 		case DIF_OP_XOR:
5037 			regs[rd] = regs[r1] ^ regs[r2];
5038 			break;
5039 		case DIF_OP_AND:
5040 			regs[rd] = regs[r1] & regs[r2];
5041 			break;
5042 		case DIF_OP_SLL:
5043 			regs[rd] = regs[r1] << regs[r2];
5044 			break;
5045 		case DIF_OP_SRL:
5046 			regs[rd] = regs[r1] >> regs[r2];
5047 			break;
5048 		case DIF_OP_SUB:
5049 			regs[rd] = regs[r1] - regs[r2];
5050 			break;
5051 		case DIF_OP_ADD:
5052 			regs[rd] = regs[r1] + regs[r2];
5053 			break;
5054 		case DIF_OP_MUL:
5055 			regs[rd] = regs[r1] * regs[r2];
5056 			break;
5057 		case DIF_OP_SDIV:
5058 			if (regs[r2] == 0) {
5059 				regs[rd] = 0;
5060 				*flags |= CPU_DTRACE_DIVZERO;
5061 			} else {
5062 				regs[rd] = (int64_t)regs[r1] /
5063 				    (int64_t)regs[r2];
5064 			}
5065 			break;
5066 
5067 		case DIF_OP_UDIV:
5068 			if (regs[r2] == 0) {
5069 				regs[rd] = 0;
5070 				*flags |= CPU_DTRACE_DIVZERO;
5071 			} else {
5072 				regs[rd] = regs[r1] / regs[r2];
5073 			}
5074 			break;
5075 
5076 		case DIF_OP_SREM:
5077 			if (regs[r2] == 0) {
5078 				regs[rd] = 0;
5079 				*flags |= CPU_DTRACE_DIVZERO;
5080 			} else {
5081 				regs[rd] = (int64_t)regs[r1] %
5082 				    (int64_t)regs[r2];
5083 			}
5084 			break;
5085 
5086 		case DIF_OP_UREM:
5087 			if (regs[r2] == 0) {
5088 				regs[rd] = 0;
5089 				*flags |= CPU_DTRACE_DIVZERO;
5090 			} else {
5091 				regs[rd] = regs[r1] % regs[r2];
5092 			}
5093 			break;
5094 
5095 		case DIF_OP_NOT:
5096 			regs[rd] = ~regs[r1];
5097 			break;
5098 		case DIF_OP_MOV:
5099 			regs[rd] = regs[r1];
5100 			break;
5101 		case DIF_OP_CMP:
5102 			cc_r = regs[r1] - regs[r2];
5103 			cc_n = cc_r < 0;
5104 			cc_z = cc_r == 0;
5105 			cc_v = 0;
5106 			cc_c = regs[r1] < regs[r2];
5107 			break;
5108 		case DIF_OP_TST:
5109 			cc_n = cc_v = cc_c = 0;
5110 			cc_z = regs[r1] == 0;
5111 			break;
5112 		case DIF_OP_BA:
5113 			pc = DIF_INSTR_LABEL(instr);
5114 			break;
5115 		case DIF_OP_BE:
5116 			if (cc_z)
5117 				pc = DIF_INSTR_LABEL(instr);
5118 			break;
5119 		case DIF_OP_BNE:
5120 			if (cc_z == 0)
5121 				pc = DIF_INSTR_LABEL(instr);
5122 			break;
5123 		case DIF_OP_BG:
5124 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5125 				pc = DIF_INSTR_LABEL(instr);
5126 			break;
5127 		case DIF_OP_BGU:
5128 			if ((cc_c | cc_z) == 0)
5129 				pc = DIF_INSTR_LABEL(instr);
5130 			break;
5131 		case DIF_OP_BGE:
5132 			if ((cc_n ^ cc_v) == 0)
5133 				pc = DIF_INSTR_LABEL(instr);
5134 			break;
5135 		case DIF_OP_BGEU:
5136 			if (cc_c == 0)
5137 				pc = DIF_INSTR_LABEL(instr);
5138 			break;
5139 		case DIF_OP_BL:
5140 			if (cc_n ^ cc_v)
5141 				pc = DIF_INSTR_LABEL(instr);
5142 			break;
5143 		case DIF_OP_BLU:
5144 			if (cc_c)
5145 				pc = DIF_INSTR_LABEL(instr);
5146 			break;
5147 		case DIF_OP_BLE:
5148 			if (cc_z | (cc_n ^ cc_v))
5149 				pc = DIF_INSTR_LABEL(instr);
5150 			break;
5151 		case DIF_OP_BLEU:
5152 			if (cc_c | cc_z)
5153 				pc = DIF_INSTR_LABEL(instr);
5154 			break;
5155 		case DIF_OP_RLDSB:
5156 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5157 				*flags |= CPU_DTRACE_KPRIV;
5158 				*illval = regs[r1];
5159 				break;
5160 			}
5161 			/*FALLTHROUGH*/
5162 		case DIF_OP_LDSB:
5163 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5164 			break;
5165 		case DIF_OP_RLDSH:
5166 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5167 				*flags |= CPU_DTRACE_KPRIV;
5168 				*illval = regs[r1];
5169 				break;
5170 			}
5171 			/*FALLTHROUGH*/
5172 		case DIF_OP_LDSH:
5173 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5174 			break;
5175 		case DIF_OP_RLDSW:
5176 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5177 				*flags |= CPU_DTRACE_KPRIV;
5178 				*illval = regs[r1];
5179 				break;
5180 			}
5181 			/*FALLTHROUGH*/
5182 		case DIF_OP_LDSW:
5183 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5184 			break;
5185 		case DIF_OP_RLDUB:
5186 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5187 				*flags |= CPU_DTRACE_KPRIV;
5188 				*illval = regs[r1];
5189 				break;
5190 			}
5191 			/*FALLTHROUGH*/
5192 		case DIF_OP_LDUB:
5193 			regs[rd] = dtrace_load8(regs[r1]);
5194 			break;
5195 		case DIF_OP_RLDUH:
5196 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5197 				*flags |= CPU_DTRACE_KPRIV;
5198 				*illval = regs[r1];
5199 				break;
5200 			}
5201 			/*FALLTHROUGH*/
5202 		case DIF_OP_LDUH:
5203 			regs[rd] = dtrace_load16(regs[r1]);
5204 			break;
5205 		case DIF_OP_RLDUW:
5206 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5207 				*flags |= CPU_DTRACE_KPRIV;
5208 				*illval = regs[r1];
5209 				break;
5210 			}
5211 			/*FALLTHROUGH*/
5212 		case DIF_OP_LDUW:
5213 			regs[rd] = dtrace_load32(regs[r1]);
5214 			break;
5215 		case DIF_OP_RLDX:
5216 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5217 				*flags |= CPU_DTRACE_KPRIV;
5218 				*illval = regs[r1];
5219 				break;
5220 			}
5221 			/*FALLTHROUGH*/
5222 		case DIF_OP_LDX:
5223 			regs[rd] = dtrace_load64(regs[r1]);
5224 			break;
5225 		case DIF_OP_ULDSB:
5226 			regs[rd] = (int8_t)
5227 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5228 			break;
5229 		case DIF_OP_ULDSH:
5230 			regs[rd] = (int16_t)
5231 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5232 			break;
5233 		case DIF_OP_ULDSW:
5234 			regs[rd] = (int32_t)
5235 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5236 			break;
5237 		case DIF_OP_ULDUB:
5238 			regs[rd] =
5239 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5240 			break;
5241 		case DIF_OP_ULDUH:
5242 			regs[rd] =
5243 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5244 			break;
5245 		case DIF_OP_ULDUW:
5246 			regs[rd] =
5247 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5248 			break;
5249 		case DIF_OP_ULDX:
5250 			regs[rd] =
5251 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5252 			break;
5253 		case DIF_OP_RET:
5254 			rval = regs[rd];
5255 			pc = textlen;
5256 			break;
5257 		case DIF_OP_NOP:
5258 			break;
5259 		case DIF_OP_SETX:
5260 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5261 			break;
5262 		case DIF_OP_SETS:
5263 			regs[rd] = (uint64_t)(uintptr_t)
5264 			    (strtab + DIF_INSTR_STRING(instr));
5265 			break;
5266 		case DIF_OP_SCMP: {
5267 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5268 			uintptr_t s1 = regs[r1];
5269 			uintptr_t s2 = regs[r2];
5270 
5271 			if (s1 != 0 &&
5272 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5273 				break;
5274 			if (s2 != 0 &&
5275 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5276 				break;
5277 
5278 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5279 
5280 			cc_n = cc_r < 0;
5281 			cc_z = cc_r == 0;
5282 			cc_v = cc_c = 0;
5283 			break;
5284 		}
5285 		case DIF_OP_LDGA:
5286 			regs[rd] = dtrace_dif_variable(mstate, state,
5287 			    r1, regs[r2]);
5288 			break;
5289 		case DIF_OP_LDGS:
5290 			id = DIF_INSTR_VAR(instr);
5291 
5292 			if (id >= DIF_VAR_OTHER_UBASE) {
5293 				uintptr_t a;
5294 
5295 				id -= DIF_VAR_OTHER_UBASE;
5296 				svar = vstate->dtvs_globals[id];
5297 				ASSERT(svar != NULL);
5298 				v = &svar->dtsv_var;
5299 
5300 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5301 					regs[rd] = svar->dtsv_data;
5302 					break;
5303 				}
5304 
5305 				a = (uintptr_t)svar->dtsv_data;
5306 
5307 				if (*(uint8_t *)a == UINT8_MAX) {
5308 					/*
5309 					 * If the 0th byte is set to UINT8_MAX
5310 					 * then this is to be treated as a
5311 					 * reference to a NULL variable.
5312 					 */
5313 					regs[rd] = 0;
5314 				} else {
5315 					regs[rd] = a + sizeof (uint64_t);
5316 				}
5317 
5318 				break;
5319 			}
5320 
5321 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5322 			break;
5323 
5324 		case DIF_OP_STGS:
5325 			id = DIF_INSTR_VAR(instr);
5326 
5327 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5328 			id -= DIF_VAR_OTHER_UBASE;
5329 
5330 			svar = vstate->dtvs_globals[id];
5331 			ASSERT(svar != NULL);
5332 			v = &svar->dtsv_var;
5333 
5334 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5335 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5336 
5337 				ASSERT(a != 0);
5338 				ASSERT(svar->dtsv_size != 0);
5339 
5340 				if (regs[rd] == 0) {
5341 					*(uint8_t *)a = UINT8_MAX;
5342 					break;
5343 				} else {
5344 					*(uint8_t *)a = 0;
5345 					a += sizeof (uint64_t);
5346 				}
5347 				if (!dtrace_vcanload(
5348 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5349 				    mstate, vstate))
5350 					break;
5351 
5352 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5353 				    (void *)a, &v->dtdv_type);
5354 				break;
5355 			}
5356 
5357 			svar->dtsv_data = regs[rd];
5358 			break;
5359 
5360 		case DIF_OP_LDTA:
5361 			/*
5362 			 * There are no DTrace built-in thread-local arrays at
5363 			 * present.  This opcode is saved for future work.
5364 			 */
5365 			*flags |= CPU_DTRACE_ILLOP;
5366 			regs[rd] = 0;
5367 			break;
5368 
5369 		case DIF_OP_LDLS:
5370 			id = DIF_INSTR_VAR(instr);
5371 
5372 			if (id < DIF_VAR_OTHER_UBASE) {
5373 				/*
5374 				 * For now, this has no meaning.
5375 				 */
5376 				regs[rd] = 0;
5377 				break;
5378 			}
5379 
5380 			id -= DIF_VAR_OTHER_UBASE;
5381 
5382 			ASSERT(id < vstate->dtvs_nlocals);
5383 			ASSERT(vstate->dtvs_locals != NULL);
5384 
5385 			svar = vstate->dtvs_locals[id];
5386 			ASSERT(svar != NULL);
5387 			v = &svar->dtsv_var;
5388 
5389 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5390 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5391 				size_t sz = v->dtdv_type.dtdt_size;
5392 
5393 				sz += sizeof (uint64_t);
5394 				ASSERT(svar->dtsv_size == NCPU * sz);
5395 				a += curcpu * sz;
5396 
5397 				if (*(uint8_t *)a == UINT8_MAX) {
5398 					/*
5399 					 * If the 0th byte is set to UINT8_MAX
5400 					 * then this is to be treated as a
5401 					 * reference to a NULL variable.
5402 					 */
5403 					regs[rd] = 0;
5404 				} else {
5405 					regs[rd] = a + sizeof (uint64_t);
5406 				}
5407 
5408 				break;
5409 			}
5410 
5411 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5412 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5413 			regs[rd] = tmp[curcpu];
5414 			break;
5415 
5416 		case DIF_OP_STLS:
5417 			id = DIF_INSTR_VAR(instr);
5418 
5419 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5420 			id -= DIF_VAR_OTHER_UBASE;
5421 			ASSERT(id < vstate->dtvs_nlocals);
5422 
5423 			ASSERT(vstate->dtvs_locals != NULL);
5424 			svar = vstate->dtvs_locals[id];
5425 			ASSERT(svar != NULL);
5426 			v = &svar->dtsv_var;
5427 
5428 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5429 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5430 				size_t sz = v->dtdv_type.dtdt_size;
5431 
5432 				sz += sizeof (uint64_t);
5433 				ASSERT(svar->dtsv_size == NCPU * sz);
5434 				a += curcpu * sz;
5435 
5436 				if (regs[rd] == 0) {
5437 					*(uint8_t *)a = UINT8_MAX;
5438 					break;
5439 				} else {
5440 					*(uint8_t *)a = 0;
5441 					a += sizeof (uint64_t);
5442 				}
5443 
5444 				if (!dtrace_vcanload(
5445 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5446 				    mstate, vstate))
5447 					break;
5448 
5449 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5450 				    (void *)a, &v->dtdv_type);
5451 				break;
5452 			}
5453 
5454 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5455 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5456 			tmp[curcpu] = regs[rd];
5457 			break;
5458 
5459 		case DIF_OP_LDTS: {
5460 			dtrace_dynvar_t *dvar;
5461 			dtrace_key_t *key;
5462 
5463 			id = DIF_INSTR_VAR(instr);
5464 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5465 			id -= DIF_VAR_OTHER_UBASE;
5466 			v = &vstate->dtvs_tlocals[id];
5467 
5468 			key = &tupregs[DIF_DTR_NREGS];
5469 			key[0].dttk_value = (uint64_t)id;
5470 			key[0].dttk_size = 0;
5471 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5472 			key[1].dttk_size = 0;
5473 
5474 			dvar = dtrace_dynvar(dstate, 2, key,
5475 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5476 			    mstate, vstate);
5477 
5478 			if (dvar == NULL) {
5479 				regs[rd] = 0;
5480 				break;
5481 			}
5482 
5483 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5484 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5485 			} else {
5486 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5487 			}
5488 
5489 			break;
5490 		}
5491 
5492 		case DIF_OP_STTS: {
5493 			dtrace_dynvar_t *dvar;
5494 			dtrace_key_t *key;
5495 
5496 			id = DIF_INSTR_VAR(instr);
5497 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5498 			id -= DIF_VAR_OTHER_UBASE;
5499 
5500 			key = &tupregs[DIF_DTR_NREGS];
5501 			key[0].dttk_value = (uint64_t)id;
5502 			key[0].dttk_size = 0;
5503 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5504 			key[1].dttk_size = 0;
5505 			v = &vstate->dtvs_tlocals[id];
5506 
5507 			dvar = dtrace_dynvar(dstate, 2, key,
5508 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5509 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5510 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5511 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5512 
5513 			/*
5514 			 * Given that we're storing to thread-local data,
5515 			 * we need to flush our predicate cache.
5516 			 */
5517 			curthread->t_predcache = 0;
5518 
5519 			if (dvar == NULL)
5520 				break;
5521 
5522 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5523 				if (!dtrace_vcanload(
5524 				    (void *)(uintptr_t)regs[rd],
5525 				    &v->dtdv_type, mstate, vstate))
5526 					break;
5527 
5528 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5529 				    dvar->dtdv_data, &v->dtdv_type);
5530 			} else {
5531 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5532 			}
5533 
5534 			break;
5535 		}
5536 
5537 		case DIF_OP_SRA:
5538 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5539 			break;
5540 
5541 		case DIF_OP_CALL:
5542 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5543 			    regs, tupregs, ttop, mstate, state);
5544 			break;
5545 
5546 		case DIF_OP_PUSHTR:
5547 			if (ttop == DIF_DTR_NREGS) {
5548 				*flags |= CPU_DTRACE_TUPOFLOW;
5549 				break;
5550 			}
5551 
5552 			if (r1 == DIF_TYPE_STRING) {
5553 				/*
5554 				 * If this is a string type and the size is 0,
5555 				 * we'll use the system-wide default string
5556 				 * size.  Note that we are _not_ looking at
5557 				 * the value of the DTRACEOPT_STRSIZE option;
5558 				 * had this been set, we would expect to have
5559 				 * a non-zero size value in the "pushtr".
5560 				 */
5561 				tupregs[ttop].dttk_size =
5562 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5563 				    regs[r2] ? regs[r2] :
5564 				    dtrace_strsize_default) + 1;
5565 			} else {
5566 				tupregs[ttop].dttk_size = regs[r2];
5567 			}
5568 
5569 			tupregs[ttop++].dttk_value = regs[rd];
5570 			break;
5571 
5572 		case DIF_OP_PUSHTV:
5573 			if (ttop == DIF_DTR_NREGS) {
5574 				*flags |= CPU_DTRACE_TUPOFLOW;
5575 				break;
5576 			}
5577 
5578 			tupregs[ttop].dttk_value = regs[rd];
5579 			tupregs[ttop++].dttk_size = 0;
5580 			break;
5581 
5582 		case DIF_OP_POPTS:
5583 			if (ttop != 0)
5584 				ttop--;
5585 			break;
5586 
5587 		case DIF_OP_FLUSHTS:
5588 			ttop = 0;
5589 			break;
5590 
5591 		case DIF_OP_LDGAA:
5592 		case DIF_OP_LDTAA: {
5593 			dtrace_dynvar_t *dvar;
5594 			dtrace_key_t *key = tupregs;
5595 			uint_t nkeys = ttop;
5596 
5597 			id = DIF_INSTR_VAR(instr);
5598 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5599 			id -= DIF_VAR_OTHER_UBASE;
5600 
5601 			key[nkeys].dttk_value = (uint64_t)id;
5602 			key[nkeys++].dttk_size = 0;
5603 
5604 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5605 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5606 				key[nkeys++].dttk_size = 0;
5607 				v = &vstate->dtvs_tlocals[id];
5608 			} else {
5609 				v = &vstate->dtvs_globals[id]->dtsv_var;
5610 			}
5611 
5612 			dvar = dtrace_dynvar(dstate, nkeys, key,
5613 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5614 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5615 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5616 
5617 			if (dvar == NULL) {
5618 				regs[rd] = 0;
5619 				break;
5620 			}
5621 
5622 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5623 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5624 			} else {
5625 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5626 			}
5627 
5628 			break;
5629 		}
5630 
5631 		case DIF_OP_STGAA:
5632 		case DIF_OP_STTAA: {
5633 			dtrace_dynvar_t *dvar;
5634 			dtrace_key_t *key = tupregs;
5635 			uint_t nkeys = ttop;
5636 
5637 			id = DIF_INSTR_VAR(instr);
5638 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5639 			id -= DIF_VAR_OTHER_UBASE;
5640 
5641 			key[nkeys].dttk_value = (uint64_t)id;
5642 			key[nkeys++].dttk_size = 0;
5643 
5644 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5645 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5646 				key[nkeys++].dttk_size = 0;
5647 				v = &vstate->dtvs_tlocals[id];
5648 			} else {
5649 				v = &vstate->dtvs_globals[id]->dtsv_var;
5650 			}
5651 
5652 			dvar = dtrace_dynvar(dstate, nkeys, key,
5653 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5654 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5655 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5656 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5657 
5658 			if (dvar == NULL)
5659 				break;
5660 
5661 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5662 				if (!dtrace_vcanload(
5663 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5664 				    mstate, vstate))
5665 					break;
5666 
5667 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5668 				    dvar->dtdv_data, &v->dtdv_type);
5669 			} else {
5670 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5671 			}
5672 
5673 			break;
5674 		}
5675 
5676 		case DIF_OP_ALLOCS: {
5677 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5678 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5679 
5680 			/*
5681 			 * Rounding up the user allocation size could have
5682 			 * overflowed large, bogus allocations (like -1ULL) to
5683 			 * 0.
5684 			 */
5685 			if (size < regs[r1] ||
5686 			    !DTRACE_INSCRATCH(mstate, size)) {
5687 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5688 				regs[rd] = 0;
5689 				break;
5690 			}
5691 
5692 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5693 			mstate->dtms_scratch_ptr += size;
5694 			regs[rd] = ptr;
5695 			break;
5696 		}
5697 
5698 		case DIF_OP_COPYS:
5699 			if (!dtrace_canstore(regs[rd], regs[r2],
5700 			    mstate, vstate)) {
5701 				*flags |= CPU_DTRACE_BADADDR;
5702 				*illval = regs[rd];
5703 				break;
5704 			}
5705 
5706 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5707 				break;
5708 
5709 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5710 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5711 			break;
5712 
5713 		case DIF_OP_STB:
5714 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5715 				*flags |= CPU_DTRACE_BADADDR;
5716 				*illval = regs[rd];
5717 				break;
5718 			}
5719 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5720 			break;
5721 
5722 		case DIF_OP_STH:
5723 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5724 				*flags |= CPU_DTRACE_BADADDR;
5725 				*illval = regs[rd];
5726 				break;
5727 			}
5728 			if (regs[rd] & 1) {
5729 				*flags |= CPU_DTRACE_BADALIGN;
5730 				*illval = regs[rd];
5731 				break;
5732 			}
5733 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5734 			break;
5735 
5736 		case DIF_OP_STW:
5737 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5738 				*flags |= CPU_DTRACE_BADADDR;
5739 				*illval = regs[rd];
5740 				break;
5741 			}
5742 			if (regs[rd] & 3) {
5743 				*flags |= CPU_DTRACE_BADALIGN;
5744 				*illval = regs[rd];
5745 				break;
5746 			}
5747 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5748 			break;
5749 
5750 		case DIF_OP_STX:
5751 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5752 				*flags |= CPU_DTRACE_BADADDR;
5753 				*illval = regs[rd];
5754 				break;
5755 			}
5756 			if (regs[rd] & 7) {
5757 				*flags |= CPU_DTRACE_BADALIGN;
5758 				*illval = regs[rd];
5759 				break;
5760 			}
5761 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5762 			break;
5763 		}
5764 	}
5765 
5766 	if (!(*flags & CPU_DTRACE_FAULT))
5767 		return (rval);
5768 
5769 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5770 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5771 
5772 	return (0);
5773 }
5774 
5775 static void
5776 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5777 {
5778 	dtrace_probe_t *probe = ecb->dte_probe;
5779 	dtrace_provider_t *prov = probe->dtpr_provider;
5780 	char c[DTRACE_FULLNAMELEN + 80], *str;
5781 	char *msg = "dtrace: breakpoint action at probe ";
5782 	char *ecbmsg = " (ecb ";
5783 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5784 	uintptr_t val = (uintptr_t)ecb;
5785 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5786 
5787 	if (dtrace_destructive_disallow)
5788 		return;
5789 
5790 	/*
5791 	 * It's impossible to be taking action on the NULL probe.
5792 	 */
5793 	ASSERT(probe != NULL);
5794 
5795 	/*
5796 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5797 	 * print the provider name, module name, function name and name of
5798 	 * the probe, along with the hex address of the ECB with the breakpoint
5799 	 * action -- all of which we must place in the character buffer by
5800 	 * hand.
5801 	 */
5802 	while (*msg != '\0')
5803 		c[i++] = *msg++;
5804 
5805 	for (str = prov->dtpv_name; *str != '\0'; str++)
5806 		c[i++] = *str;
5807 	c[i++] = ':';
5808 
5809 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5810 		c[i++] = *str;
5811 	c[i++] = ':';
5812 
5813 	for (str = probe->dtpr_func; *str != '\0'; str++)
5814 		c[i++] = *str;
5815 	c[i++] = ':';
5816 
5817 	for (str = probe->dtpr_name; *str != '\0'; str++)
5818 		c[i++] = *str;
5819 
5820 	while (*ecbmsg != '\0')
5821 		c[i++] = *ecbmsg++;
5822 
5823 	while (shift >= 0) {
5824 		mask = (uintptr_t)0xf << shift;
5825 
5826 		if (val >= ((uintptr_t)1 << shift))
5827 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5828 		shift -= 4;
5829 	}
5830 
5831 	c[i++] = ')';
5832 	c[i] = '\0';
5833 
5834 #if defined(sun)
5835 	debug_enter(c);
5836 #else
5837 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5838 #endif
5839 }
5840 
5841 static void
5842 dtrace_action_panic(dtrace_ecb_t *ecb)
5843 {
5844 	dtrace_probe_t *probe = ecb->dte_probe;
5845 
5846 	/*
5847 	 * It's impossible to be taking action on the NULL probe.
5848 	 */
5849 	ASSERT(probe != NULL);
5850 
5851 	if (dtrace_destructive_disallow)
5852 		return;
5853 
5854 	if (dtrace_panicked != NULL)
5855 		return;
5856 
5857 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5858 		return;
5859 
5860 	/*
5861 	 * We won the right to panic.  (We want to be sure that only one
5862 	 * thread calls panic() from dtrace_probe(), and that panic() is
5863 	 * called exactly once.)
5864 	 */
5865 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5866 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5867 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5868 }
5869 
5870 static void
5871 dtrace_action_raise(uint64_t sig)
5872 {
5873 	if (dtrace_destructive_disallow)
5874 		return;
5875 
5876 	if (sig >= NSIG) {
5877 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5878 		return;
5879 	}
5880 
5881 #if defined(sun)
5882 	/*
5883 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5884 	 * invocations of the raise() action.
5885 	 */
5886 	if (curthread->t_dtrace_sig == 0)
5887 		curthread->t_dtrace_sig = (uint8_t)sig;
5888 
5889 	curthread->t_sig_check = 1;
5890 	aston(curthread);
5891 #else
5892 	struct proc *p = curproc;
5893 	PROC_LOCK(p);
5894 	kern_psignal(p, sig);
5895 	PROC_UNLOCK(p);
5896 #endif
5897 }
5898 
5899 static void
5900 dtrace_action_stop(void)
5901 {
5902 	if (dtrace_destructive_disallow)
5903 		return;
5904 
5905 #if defined(sun)
5906 	if (!curthread->t_dtrace_stop) {
5907 		curthread->t_dtrace_stop = 1;
5908 		curthread->t_sig_check = 1;
5909 		aston(curthread);
5910 	}
5911 #else
5912 	struct proc *p = curproc;
5913 	PROC_LOCK(p);
5914 	kern_psignal(p, SIGSTOP);
5915 	PROC_UNLOCK(p);
5916 #endif
5917 }
5918 
5919 static void
5920 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5921 {
5922 	hrtime_t now;
5923 	volatile uint16_t *flags;
5924 #if defined(sun)
5925 	cpu_t *cpu = CPU;
5926 #else
5927 	cpu_t *cpu = &solaris_cpu[curcpu];
5928 #endif
5929 
5930 	if (dtrace_destructive_disallow)
5931 		return;
5932 
5933 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5934 
5935 	now = dtrace_gethrtime();
5936 
5937 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5938 		/*
5939 		 * We need to advance the mark to the current time.
5940 		 */
5941 		cpu->cpu_dtrace_chillmark = now;
5942 		cpu->cpu_dtrace_chilled = 0;
5943 	}
5944 
5945 	/*
5946 	 * Now check to see if the requested chill time would take us over
5947 	 * the maximum amount of time allowed in the chill interval.  (Or
5948 	 * worse, if the calculation itself induces overflow.)
5949 	 */
5950 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5951 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5952 		*flags |= CPU_DTRACE_ILLOP;
5953 		return;
5954 	}
5955 
5956 	while (dtrace_gethrtime() - now < val)
5957 		continue;
5958 
5959 	/*
5960 	 * Normally, we assure that the value of the variable "timestamp" does
5961 	 * not change within an ECB.  The presence of chill() represents an
5962 	 * exception to this rule, however.
5963 	 */
5964 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5965 	cpu->cpu_dtrace_chilled += val;
5966 }
5967 
5968 static void
5969 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5970     uint64_t *buf, uint64_t arg)
5971 {
5972 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5973 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5974 	uint64_t *pcs = &buf[1], *fps;
5975 	char *str = (char *)&pcs[nframes];
5976 	int size, offs = 0, i, j;
5977 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5978 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5979 	char *sym;
5980 
5981 	/*
5982 	 * Should be taking a faster path if string space has not been
5983 	 * allocated.
5984 	 */
5985 	ASSERT(strsize != 0);
5986 
5987 	/*
5988 	 * We will first allocate some temporary space for the frame pointers.
5989 	 */
5990 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5991 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5992 	    (nframes * sizeof (uint64_t));
5993 
5994 	if (!DTRACE_INSCRATCH(mstate, size)) {
5995 		/*
5996 		 * Not enough room for our frame pointers -- need to indicate
5997 		 * that we ran out of scratch space.
5998 		 */
5999 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6000 		return;
6001 	}
6002 
6003 	mstate->dtms_scratch_ptr += size;
6004 	saved = mstate->dtms_scratch_ptr;
6005 
6006 	/*
6007 	 * Now get a stack with both program counters and frame pointers.
6008 	 */
6009 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6010 	dtrace_getufpstack(buf, fps, nframes + 1);
6011 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6012 
6013 	/*
6014 	 * If that faulted, we're cooked.
6015 	 */
6016 	if (*flags & CPU_DTRACE_FAULT)
6017 		goto out;
6018 
6019 	/*
6020 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6021 	 * each iteration, we restore the scratch pointer.
6022 	 */
6023 	for (i = 0; i < nframes; i++) {
6024 		mstate->dtms_scratch_ptr = saved;
6025 
6026 		if (offs >= strsize)
6027 			break;
6028 
6029 		sym = (char *)(uintptr_t)dtrace_helper(
6030 		    DTRACE_HELPER_ACTION_USTACK,
6031 		    mstate, state, pcs[i], fps[i]);
6032 
6033 		/*
6034 		 * If we faulted while running the helper, we're going to
6035 		 * clear the fault and null out the corresponding string.
6036 		 */
6037 		if (*flags & CPU_DTRACE_FAULT) {
6038 			*flags &= ~CPU_DTRACE_FAULT;
6039 			str[offs++] = '\0';
6040 			continue;
6041 		}
6042 
6043 		if (sym == NULL) {
6044 			str[offs++] = '\0';
6045 			continue;
6046 		}
6047 
6048 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6049 
6050 		/*
6051 		 * Now copy in the string that the helper returned to us.
6052 		 */
6053 		for (j = 0; offs + j < strsize; j++) {
6054 			if ((str[offs + j] = sym[j]) == '\0')
6055 				break;
6056 		}
6057 
6058 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6059 
6060 		offs += j + 1;
6061 	}
6062 
6063 	if (offs >= strsize) {
6064 		/*
6065 		 * If we didn't have room for all of the strings, we don't
6066 		 * abort processing -- this needn't be a fatal error -- but we
6067 		 * still want to increment a counter (dts_stkstroverflows) to
6068 		 * allow this condition to be warned about.  (If this is from
6069 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6070 		 */
6071 		dtrace_error(&state->dts_stkstroverflows);
6072 	}
6073 
6074 	while (offs < strsize)
6075 		str[offs++] = '\0';
6076 
6077 out:
6078 	mstate->dtms_scratch_ptr = old;
6079 }
6080 
6081 /*
6082  * If you're looking for the epicenter of DTrace, you just found it.  This
6083  * is the function called by the provider to fire a probe -- from which all
6084  * subsequent probe-context DTrace activity emanates.
6085  */
6086 void
6087 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6088     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6089 {
6090 	processorid_t cpuid;
6091 	dtrace_icookie_t cookie;
6092 	dtrace_probe_t *probe;
6093 	dtrace_mstate_t mstate;
6094 	dtrace_ecb_t *ecb;
6095 	dtrace_action_t *act;
6096 	intptr_t offs;
6097 	size_t size;
6098 	int vtime, onintr;
6099 	volatile uint16_t *flags;
6100 	hrtime_t now;
6101 
6102 	if (panicstr != NULL)
6103 		return;
6104 
6105 #if defined(sun)
6106 	/*
6107 	 * Kick out immediately if this CPU is still being born (in which case
6108 	 * curthread will be set to -1) or the current thread can't allow
6109 	 * probes in its current context.
6110 	 */
6111 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6112 		return;
6113 #endif
6114 
6115 	cookie = dtrace_interrupt_disable();
6116 	probe = dtrace_probes[id - 1];
6117 	cpuid = curcpu;
6118 	onintr = CPU_ON_INTR(CPU);
6119 
6120 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6121 	    probe->dtpr_predcache == curthread->t_predcache) {
6122 		/*
6123 		 * We have hit in the predicate cache; we know that
6124 		 * this predicate would evaluate to be false.
6125 		 */
6126 		dtrace_interrupt_enable(cookie);
6127 		return;
6128 	}
6129 
6130 #if defined(sun)
6131 	if (panic_quiesce) {
6132 #else
6133 	if (panicstr != NULL) {
6134 #endif
6135 		/*
6136 		 * We don't trace anything if we're panicking.
6137 		 */
6138 		dtrace_interrupt_enable(cookie);
6139 		return;
6140 	}
6141 
6142 	now = dtrace_gethrtime();
6143 	vtime = dtrace_vtime_references != 0;
6144 
6145 	if (vtime && curthread->t_dtrace_start)
6146 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6147 
6148 	mstate.dtms_difo = NULL;
6149 	mstate.dtms_probe = probe;
6150 	mstate.dtms_strtok = 0;
6151 	mstate.dtms_arg[0] = arg0;
6152 	mstate.dtms_arg[1] = arg1;
6153 	mstate.dtms_arg[2] = arg2;
6154 	mstate.dtms_arg[3] = arg3;
6155 	mstate.dtms_arg[4] = arg4;
6156 
6157 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6158 
6159 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6160 		dtrace_predicate_t *pred = ecb->dte_predicate;
6161 		dtrace_state_t *state = ecb->dte_state;
6162 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6163 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6164 		dtrace_vstate_t *vstate = &state->dts_vstate;
6165 		dtrace_provider_t *prov = probe->dtpr_provider;
6166 		uint64_t tracememsize = 0;
6167 		int committed = 0;
6168 		caddr_t tomax;
6169 
6170 		/*
6171 		 * A little subtlety with the following (seemingly innocuous)
6172 		 * declaration of the automatic 'val':  by looking at the
6173 		 * code, you might think that it could be declared in the
6174 		 * action processing loop, below.  (That is, it's only used in
6175 		 * the action processing loop.)  However, it must be declared
6176 		 * out of that scope because in the case of DIF expression
6177 		 * arguments to aggregating actions, one iteration of the
6178 		 * action loop will use the last iteration's value.
6179 		 */
6180 		uint64_t val = 0;
6181 
6182 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6183 		*flags &= ~CPU_DTRACE_ERROR;
6184 
6185 		if (prov == dtrace_provider) {
6186 			/*
6187 			 * If dtrace itself is the provider of this probe,
6188 			 * we're only going to continue processing the ECB if
6189 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6190 			 * creating state.  (This prevents disjoint consumers
6191 			 * from seeing one another's metaprobes.)
6192 			 */
6193 			if (arg0 != (uint64_t)(uintptr_t)state)
6194 				continue;
6195 		}
6196 
6197 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6198 			/*
6199 			 * We're not currently active.  If our provider isn't
6200 			 * the dtrace pseudo provider, we're not interested.
6201 			 */
6202 			if (prov != dtrace_provider)
6203 				continue;
6204 
6205 			/*
6206 			 * Now we must further check if we are in the BEGIN
6207 			 * probe.  If we are, we will only continue processing
6208 			 * if we're still in WARMUP -- if one BEGIN enabling
6209 			 * has invoked the exit() action, we don't want to
6210 			 * evaluate subsequent BEGIN enablings.
6211 			 */
6212 			if (probe->dtpr_id == dtrace_probeid_begin &&
6213 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6214 				ASSERT(state->dts_activity ==
6215 				    DTRACE_ACTIVITY_DRAINING);
6216 				continue;
6217 			}
6218 		}
6219 
6220 		if (ecb->dte_cond) {
6221 			/*
6222 			 * If the dte_cond bits indicate that this
6223 			 * consumer is only allowed to see user-mode firings
6224 			 * of this probe, call the provider's dtps_usermode()
6225 			 * entry point to check that the probe was fired
6226 			 * while in a user context. Skip this ECB if that's
6227 			 * not the case.
6228 			 */
6229 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6230 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6231 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6232 				continue;
6233 
6234 #if defined(sun)
6235 			/*
6236 			 * This is more subtle than it looks. We have to be
6237 			 * absolutely certain that CRED() isn't going to
6238 			 * change out from under us so it's only legit to
6239 			 * examine that structure if we're in constrained
6240 			 * situations. Currently, the only times we'll this
6241 			 * check is if a non-super-user has enabled the
6242 			 * profile or syscall providers -- providers that
6243 			 * allow visibility of all processes. For the
6244 			 * profile case, the check above will ensure that
6245 			 * we're examining a user context.
6246 			 */
6247 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6248 				cred_t *cr;
6249 				cred_t *s_cr =
6250 				    ecb->dte_state->dts_cred.dcr_cred;
6251 				proc_t *proc;
6252 
6253 				ASSERT(s_cr != NULL);
6254 
6255 				if ((cr = CRED()) == NULL ||
6256 				    s_cr->cr_uid != cr->cr_uid ||
6257 				    s_cr->cr_uid != cr->cr_ruid ||
6258 				    s_cr->cr_uid != cr->cr_suid ||
6259 				    s_cr->cr_gid != cr->cr_gid ||
6260 				    s_cr->cr_gid != cr->cr_rgid ||
6261 				    s_cr->cr_gid != cr->cr_sgid ||
6262 				    (proc = ttoproc(curthread)) == NULL ||
6263 				    (proc->p_flag & SNOCD))
6264 					continue;
6265 			}
6266 
6267 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6268 				cred_t *cr;
6269 				cred_t *s_cr =
6270 				    ecb->dte_state->dts_cred.dcr_cred;
6271 
6272 				ASSERT(s_cr != NULL);
6273 
6274 				if ((cr = CRED()) == NULL ||
6275 				    s_cr->cr_zone->zone_id !=
6276 				    cr->cr_zone->zone_id)
6277 					continue;
6278 			}
6279 #endif
6280 		}
6281 
6282 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6283 			/*
6284 			 * We seem to be dead.  Unless we (a) have kernel
6285 			 * destructive permissions (b) have explicitly enabled
6286 			 * destructive actions and (c) destructive actions have
6287 			 * not been disabled, we're going to transition into
6288 			 * the KILLED state, from which no further processing
6289 			 * on this state will be performed.
6290 			 */
6291 			if (!dtrace_priv_kernel_destructive(state) ||
6292 			    !state->dts_cred.dcr_destructive ||
6293 			    dtrace_destructive_disallow) {
6294 				void *activity = &state->dts_activity;
6295 				dtrace_activity_t current;
6296 
6297 				do {
6298 					current = state->dts_activity;
6299 				} while (dtrace_cas32(activity, current,
6300 				    DTRACE_ACTIVITY_KILLED) != current);
6301 
6302 				continue;
6303 			}
6304 		}
6305 
6306 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6307 		    ecb->dte_alignment, state, &mstate)) < 0)
6308 			continue;
6309 
6310 		tomax = buf->dtb_tomax;
6311 		ASSERT(tomax != NULL);
6312 
6313 		if (ecb->dte_size != 0) {
6314 			dtrace_rechdr_t dtrh;
6315 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6316 				mstate.dtms_timestamp = dtrace_gethrtime();
6317 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6318 			}
6319 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6320 			dtrh.dtrh_epid = ecb->dte_epid;
6321 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6322 			    mstate.dtms_timestamp);
6323 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6324 		}
6325 
6326 		mstate.dtms_epid = ecb->dte_epid;
6327 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6328 
6329 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6330 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6331 		else
6332 			mstate.dtms_access = 0;
6333 
6334 		if (pred != NULL) {
6335 			dtrace_difo_t *dp = pred->dtp_difo;
6336 			int rval;
6337 
6338 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6339 
6340 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6341 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6342 
6343 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6344 					/*
6345 					 * Update the predicate cache...
6346 					 */
6347 					ASSERT(cid == pred->dtp_cacheid);
6348 					curthread->t_predcache = cid;
6349 				}
6350 
6351 				continue;
6352 			}
6353 		}
6354 
6355 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6356 		    act != NULL; act = act->dta_next) {
6357 			size_t valoffs;
6358 			dtrace_difo_t *dp;
6359 			dtrace_recdesc_t *rec = &act->dta_rec;
6360 
6361 			size = rec->dtrd_size;
6362 			valoffs = offs + rec->dtrd_offset;
6363 
6364 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6365 				uint64_t v = 0xbad;
6366 				dtrace_aggregation_t *agg;
6367 
6368 				agg = (dtrace_aggregation_t *)act;
6369 
6370 				if ((dp = act->dta_difo) != NULL)
6371 					v = dtrace_dif_emulate(dp,
6372 					    &mstate, vstate, state);
6373 
6374 				if (*flags & CPU_DTRACE_ERROR)
6375 					continue;
6376 
6377 				/*
6378 				 * Note that we always pass the expression
6379 				 * value from the previous iteration of the
6380 				 * action loop.  This value will only be used
6381 				 * if there is an expression argument to the
6382 				 * aggregating action, denoted by the
6383 				 * dtag_hasarg field.
6384 				 */
6385 				dtrace_aggregate(agg, buf,
6386 				    offs, aggbuf, v, val);
6387 				continue;
6388 			}
6389 
6390 			switch (act->dta_kind) {
6391 			case DTRACEACT_STOP:
6392 				if (dtrace_priv_proc_destructive(state))
6393 					dtrace_action_stop();
6394 				continue;
6395 
6396 			case DTRACEACT_BREAKPOINT:
6397 				if (dtrace_priv_kernel_destructive(state))
6398 					dtrace_action_breakpoint(ecb);
6399 				continue;
6400 
6401 			case DTRACEACT_PANIC:
6402 				if (dtrace_priv_kernel_destructive(state))
6403 					dtrace_action_panic(ecb);
6404 				continue;
6405 
6406 			case DTRACEACT_STACK:
6407 				if (!dtrace_priv_kernel(state))
6408 					continue;
6409 
6410 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6411 				    size / sizeof (pc_t), probe->dtpr_aframes,
6412 				    DTRACE_ANCHORED(probe) ? NULL :
6413 				    (uint32_t *)arg0);
6414 				continue;
6415 
6416 			case DTRACEACT_JSTACK:
6417 			case DTRACEACT_USTACK:
6418 				if (!dtrace_priv_proc(state))
6419 					continue;
6420 
6421 				/*
6422 				 * See comment in DIF_VAR_PID.
6423 				 */
6424 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6425 				    CPU_ON_INTR(CPU)) {
6426 					int depth = DTRACE_USTACK_NFRAMES(
6427 					    rec->dtrd_arg) + 1;
6428 
6429 					dtrace_bzero((void *)(tomax + valoffs),
6430 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6431 					    + depth * sizeof (uint64_t));
6432 
6433 					continue;
6434 				}
6435 
6436 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6437 				    curproc->p_dtrace_helpers != NULL) {
6438 					/*
6439 					 * This is the slow path -- we have
6440 					 * allocated string space, and we're
6441 					 * getting the stack of a process that
6442 					 * has helpers.  Call into a separate
6443 					 * routine to perform this processing.
6444 					 */
6445 					dtrace_action_ustack(&mstate, state,
6446 					    (uint64_t *)(tomax + valoffs),
6447 					    rec->dtrd_arg);
6448 					continue;
6449 				}
6450 
6451 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6452 				dtrace_getupcstack((uint64_t *)
6453 				    (tomax + valoffs),
6454 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6455 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6456 				continue;
6457 
6458 			default:
6459 				break;
6460 			}
6461 
6462 			dp = act->dta_difo;
6463 			ASSERT(dp != NULL);
6464 
6465 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6466 
6467 			if (*flags & CPU_DTRACE_ERROR)
6468 				continue;
6469 
6470 			switch (act->dta_kind) {
6471 			case DTRACEACT_SPECULATE: {
6472 				dtrace_rechdr_t *dtrh;
6473 
6474 				ASSERT(buf == &state->dts_buffer[cpuid]);
6475 				buf = dtrace_speculation_buffer(state,
6476 				    cpuid, val);
6477 
6478 				if (buf == NULL) {
6479 					*flags |= CPU_DTRACE_DROP;
6480 					continue;
6481 				}
6482 
6483 				offs = dtrace_buffer_reserve(buf,
6484 				    ecb->dte_needed, ecb->dte_alignment,
6485 				    state, NULL);
6486 
6487 				if (offs < 0) {
6488 					*flags |= CPU_DTRACE_DROP;
6489 					continue;
6490 				}
6491 
6492 				tomax = buf->dtb_tomax;
6493 				ASSERT(tomax != NULL);
6494 
6495 				if (ecb->dte_size == 0)
6496 					continue;
6497 
6498 				ASSERT3U(ecb->dte_size, >=,
6499 				    sizeof (dtrace_rechdr_t));
6500 				dtrh = ((void *)(tomax + offs));
6501 				dtrh->dtrh_epid = ecb->dte_epid;
6502 				/*
6503 				 * When the speculation is committed, all of
6504 				 * the records in the speculative buffer will
6505 				 * have their timestamps set to the commit
6506 				 * time.  Until then, it is set to a sentinel
6507 				 * value, for debugability.
6508 				 */
6509 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6510 				continue;
6511 			}
6512 
6513 			case DTRACEACT_PRINTM: {
6514 				/* The DIF returns a 'memref'. */
6515 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6516 
6517 				/* Get the size from the memref. */
6518 				size = memref[1];
6519 
6520 				/*
6521 				 * Check if the size exceeds the allocated
6522 				 * buffer size.
6523 				 */
6524 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6525 					/* Flag a drop! */
6526 					*flags |= CPU_DTRACE_DROP;
6527 					continue;
6528 				}
6529 
6530 				/* Store the size in the buffer first. */
6531 				DTRACE_STORE(uintptr_t, tomax,
6532 				    valoffs, size);
6533 
6534 				/*
6535 				 * Offset the buffer address to the start
6536 				 * of the data.
6537 				 */
6538 				valoffs += sizeof(uintptr_t);
6539 
6540 				/*
6541 				 * Reset to the memory address rather than
6542 				 * the memref array, then let the BYREF
6543 				 * code below do the work to store the
6544 				 * memory data in the buffer.
6545 				 */
6546 				val = memref[0];
6547 				break;
6548 			}
6549 
6550 			case DTRACEACT_PRINTT: {
6551 				/* The DIF returns a 'typeref'. */
6552 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6553 				char c = '\0' + 1;
6554 				size_t s;
6555 
6556 				/*
6557 				 * Get the type string length and round it
6558 				 * up so that the data that follows is
6559 				 * aligned for easy access.
6560 				 */
6561 				size_t typs = strlen((char *) typeref[2]) + 1;
6562 				typs = roundup(typs,  sizeof(uintptr_t));
6563 
6564 				/*
6565 				 *Get the size from the typeref using the
6566 				 * number of elements and the type size.
6567 				 */
6568 				size = typeref[1] * typeref[3];
6569 
6570 				/*
6571 				 * Check if the size exceeds the allocated
6572 				 * buffer size.
6573 				 */
6574 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6575 					/* Flag a drop! */
6576 					*flags |= CPU_DTRACE_DROP;
6577 
6578 				}
6579 
6580 				/* Store the size in the buffer first. */
6581 				DTRACE_STORE(uintptr_t, tomax,
6582 				    valoffs, size);
6583 				valoffs += sizeof(uintptr_t);
6584 
6585 				/* Store the type size in the buffer. */
6586 				DTRACE_STORE(uintptr_t, tomax,
6587 				    valoffs, typeref[3]);
6588 				valoffs += sizeof(uintptr_t);
6589 
6590 				val = typeref[2];
6591 
6592 				for (s = 0; s < typs; s++) {
6593 					if (c != '\0')
6594 						c = dtrace_load8(val++);
6595 
6596 					DTRACE_STORE(uint8_t, tomax,
6597 					    valoffs++, c);
6598 				}
6599 
6600 				/*
6601 				 * Reset to the memory address rather than
6602 				 * the typeref array, then let the BYREF
6603 				 * code below do the work to store the
6604 				 * memory data in the buffer.
6605 				 */
6606 				val = typeref[0];
6607 				break;
6608 			}
6609 
6610 			case DTRACEACT_CHILL:
6611 				if (dtrace_priv_kernel_destructive(state))
6612 					dtrace_action_chill(&mstate, val);
6613 				continue;
6614 
6615 			case DTRACEACT_RAISE:
6616 				if (dtrace_priv_proc_destructive(state))
6617 					dtrace_action_raise(val);
6618 				continue;
6619 
6620 			case DTRACEACT_COMMIT:
6621 				ASSERT(!committed);
6622 
6623 				/*
6624 				 * We need to commit our buffer state.
6625 				 */
6626 				if (ecb->dte_size)
6627 					buf->dtb_offset = offs + ecb->dte_size;
6628 				buf = &state->dts_buffer[cpuid];
6629 				dtrace_speculation_commit(state, cpuid, val);
6630 				committed = 1;
6631 				continue;
6632 
6633 			case DTRACEACT_DISCARD:
6634 				dtrace_speculation_discard(state, cpuid, val);
6635 				continue;
6636 
6637 			case DTRACEACT_DIFEXPR:
6638 			case DTRACEACT_LIBACT:
6639 			case DTRACEACT_PRINTF:
6640 			case DTRACEACT_PRINTA:
6641 			case DTRACEACT_SYSTEM:
6642 			case DTRACEACT_FREOPEN:
6643 			case DTRACEACT_TRACEMEM:
6644 				break;
6645 
6646 			case DTRACEACT_TRACEMEM_DYNSIZE:
6647 				tracememsize = val;
6648 				break;
6649 
6650 			case DTRACEACT_SYM:
6651 			case DTRACEACT_MOD:
6652 				if (!dtrace_priv_kernel(state))
6653 					continue;
6654 				break;
6655 
6656 			case DTRACEACT_USYM:
6657 			case DTRACEACT_UMOD:
6658 			case DTRACEACT_UADDR: {
6659 #if defined(sun)
6660 				struct pid *pid = curthread->t_procp->p_pidp;
6661 #endif
6662 
6663 				if (!dtrace_priv_proc(state))
6664 					continue;
6665 
6666 				DTRACE_STORE(uint64_t, tomax,
6667 #if defined(sun)
6668 				    valoffs, (uint64_t)pid->pid_id);
6669 #else
6670 				    valoffs, (uint64_t) curproc->p_pid);
6671 #endif
6672 				DTRACE_STORE(uint64_t, tomax,
6673 				    valoffs + sizeof (uint64_t), val);
6674 
6675 				continue;
6676 			}
6677 
6678 			case DTRACEACT_EXIT: {
6679 				/*
6680 				 * For the exit action, we are going to attempt
6681 				 * to atomically set our activity to be
6682 				 * draining.  If this fails (either because
6683 				 * another CPU has beat us to the exit action,
6684 				 * or because our current activity is something
6685 				 * other than ACTIVE or WARMUP), we will
6686 				 * continue.  This assures that the exit action
6687 				 * can be successfully recorded at most once
6688 				 * when we're in the ACTIVE state.  If we're
6689 				 * encountering the exit() action while in
6690 				 * COOLDOWN, however, we want to honor the new
6691 				 * status code.  (We know that we're the only
6692 				 * thread in COOLDOWN, so there is no race.)
6693 				 */
6694 				void *activity = &state->dts_activity;
6695 				dtrace_activity_t current = state->dts_activity;
6696 
6697 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6698 					break;
6699 
6700 				if (current != DTRACE_ACTIVITY_WARMUP)
6701 					current = DTRACE_ACTIVITY_ACTIVE;
6702 
6703 				if (dtrace_cas32(activity, current,
6704 				    DTRACE_ACTIVITY_DRAINING) != current) {
6705 					*flags |= CPU_DTRACE_DROP;
6706 					continue;
6707 				}
6708 
6709 				break;
6710 			}
6711 
6712 			default:
6713 				ASSERT(0);
6714 			}
6715 
6716 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6717 				uintptr_t end = valoffs + size;
6718 
6719 				if (tracememsize != 0 &&
6720 				    valoffs + tracememsize < end) {
6721 					end = valoffs + tracememsize;
6722 					tracememsize = 0;
6723 				}
6724 
6725 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6726 				    &dp->dtdo_rtype, &mstate, vstate))
6727 					continue;
6728 
6729 				/*
6730 				 * If this is a string, we're going to only
6731 				 * load until we find the zero byte -- after
6732 				 * which we'll store zero bytes.
6733 				 */
6734 				if (dp->dtdo_rtype.dtdt_kind ==
6735 				    DIF_TYPE_STRING) {
6736 					char c = '\0' + 1;
6737 					int intuple = act->dta_intuple;
6738 					size_t s;
6739 
6740 					for (s = 0; s < size; s++) {
6741 						if (c != '\0')
6742 							c = dtrace_load8(val++);
6743 
6744 						DTRACE_STORE(uint8_t, tomax,
6745 						    valoffs++, c);
6746 
6747 						if (c == '\0' && intuple)
6748 							break;
6749 					}
6750 
6751 					continue;
6752 				}
6753 
6754 				while (valoffs < end) {
6755 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6756 					    dtrace_load8(val++));
6757 				}
6758 
6759 				continue;
6760 			}
6761 
6762 			switch (size) {
6763 			case 0:
6764 				break;
6765 
6766 			case sizeof (uint8_t):
6767 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6768 				break;
6769 			case sizeof (uint16_t):
6770 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6771 				break;
6772 			case sizeof (uint32_t):
6773 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6774 				break;
6775 			case sizeof (uint64_t):
6776 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6777 				break;
6778 			default:
6779 				/*
6780 				 * Any other size should have been returned by
6781 				 * reference, not by value.
6782 				 */
6783 				ASSERT(0);
6784 				break;
6785 			}
6786 		}
6787 
6788 		if (*flags & CPU_DTRACE_DROP)
6789 			continue;
6790 
6791 		if (*flags & CPU_DTRACE_FAULT) {
6792 			int ndx;
6793 			dtrace_action_t *err;
6794 
6795 			buf->dtb_errors++;
6796 
6797 			if (probe->dtpr_id == dtrace_probeid_error) {
6798 				/*
6799 				 * There's nothing we can do -- we had an
6800 				 * error on the error probe.  We bump an
6801 				 * error counter to at least indicate that
6802 				 * this condition happened.
6803 				 */
6804 				dtrace_error(&state->dts_dblerrors);
6805 				continue;
6806 			}
6807 
6808 			if (vtime) {
6809 				/*
6810 				 * Before recursing on dtrace_probe(), we
6811 				 * need to explicitly clear out our start
6812 				 * time to prevent it from being accumulated
6813 				 * into t_dtrace_vtime.
6814 				 */
6815 				curthread->t_dtrace_start = 0;
6816 			}
6817 
6818 			/*
6819 			 * Iterate over the actions to figure out which action
6820 			 * we were processing when we experienced the error.
6821 			 * Note that act points _past_ the faulting action; if
6822 			 * act is ecb->dte_action, the fault was in the
6823 			 * predicate, if it's ecb->dte_action->dta_next it's
6824 			 * in action #1, and so on.
6825 			 */
6826 			for (err = ecb->dte_action, ndx = 0;
6827 			    err != act; err = err->dta_next, ndx++)
6828 				continue;
6829 
6830 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6831 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6832 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6833 			    cpu_core[cpuid].cpuc_dtrace_illval);
6834 
6835 			continue;
6836 		}
6837 
6838 		if (!committed)
6839 			buf->dtb_offset = offs + ecb->dte_size;
6840 	}
6841 
6842 	if (vtime)
6843 		curthread->t_dtrace_start = dtrace_gethrtime();
6844 
6845 	dtrace_interrupt_enable(cookie);
6846 }
6847 
6848 /*
6849  * DTrace Probe Hashing Functions
6850  *
6851  * The functions in this section (and indeed, the functions in remaining
6852  * sections) are not _called_ from probe context.  (Any exceptions to this are
6853  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6854  * DTrace framework to look-up probes in, add probes to and remove probes from
6855  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6856  * probe tuple -- allowing for fast lookups, regardless of what was
6857  * specified.)
6858  */
6859 static uint_t
6860 dtrace_hash_str(const char *p)
6861 {
6862 	unsigned int g;
6863 	uint_t hval = 0;
6864 
6865 	while (*p) {
6866 		hval = (hval << 4) + *p++;
6867 		if ((g = (hval & 0xf0000000)) != 0)
6868 			hval ^= g >> 24;
6869 		hval &= ~g;
6870 	}
6871 	return (hval);
6872 }
6873 
6874 static dtrace_hash_t *
6875 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6876 {
6877 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6878 
6879 	hash->dth_stroffs = stroffs;
6880 	hash->dth_nextoffs = nextoffs;
6881 	hash->dth_prevoffs = prevoffs;
6882 
6883 	hash->dth_size = 1;
6884 	hash->dth_mask = hash->dth_size - 1;
6885 
6886 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6887 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6888 
6889 	return (hash);
6890 }
6891 
6892 static void
6893 dtrace_hash_destroy(dtrace_hash_t *hash)
6894 {
6895 #ifdef DEBUG
6896 	int i;
6897 
6898 	for (i = 0; i < hash->dth_size; i++)
6899 		ASSERT(hash->dth_tab[i] == NULL);
6900 #endif
6901 
6902 	kmem_free(hash->dth_tab,
6903 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6904 	kmem_free(hash, sizeof (dtrace_hash_t));
6905 }
6906 
6907 static void
6908 dtrace_hash_resize(dtrace_hash_t *hash)
6909 {
6910 	int size = hash->dth_size, i, ndx;
6911 	int new_size = hash->dth_size << 1;
6912 	int new_mask = new_size - 1;
6913 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6914 
6915 	ASSERT((new_size & new_mask) == 0);
6916 
6917 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6918 
6919 	for (i = 0; i < size; i++) {
6920 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6921 			dtrace_probe_t *probe = bucket->dthb_chain;
6922 
6923 			ASSERT(probe != NULL);
6924 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6925 
6926 			next = bucket->dthb_next;
6927 			bucket->dthb_next = new_tab[ndx];
6928 			new_tab[ndx] = bucket;
6929 		}
6930 	}
6931 
6932 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6933 	hash->dth_tab = new_tab;
6934 	hash->dth_size = new_size;
6935 	hash->dth_mask = new_mask;
6936 }
6937 
6938 static void
6939 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6940 {
6941 	int hashval = DTRACE_HASHSTR(hash, new);
6942 	int ndx = hashval & hash->dth_mask;
6943 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6944 	dtrace_probe_t **nextp, **prevp;
6945 
6946 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6947 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6948 			goto add;
6949 	}
6950 
6951 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6952 		dtrace_hash_resize(hash);
6953 		dtrace_hash_add(hash, new);
6954 		return;
6955 	}
6956 
6957 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6958 	bucket->dthb_next = hash->dth_tab[ndx];
6959 	hash->dth_tab[ndx] = bucket;
6960 	hash->dth_nbuckets++;
6961 
6962 add:
6963 	nextp = DTRACE_HASHNEXT(hash, new);
6964 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6965 	*nextp = bucket->dthb_chain;
6966 
6967 	if (bucket->dthb_chain != NULL) {
6968 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6969 		ASSERT(*prevp == NULL);
6970 		*prevp = new;
6971 	}
6972 
6973 	bucket->dthb_chain = new;
6974 	bucket->dthb_len++;
6975 }
6976 
6977 static dtrace_probe_t *
6978 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6979 {
6980 	int hashval = DTRACE_HASHSTR(hash, template);
6981 	int ndx = hashval & hash->dth_mask;
6982 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6983 
6984 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6985 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6986 			return (bucket->dthb_chain);
6987 	}
6988 
6989 	return (NULL);
6990 }
6991 
6992 static int
6993 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6994 {
6995 	int hashval = DTRACE_HASHSTR(hash, template);
6996 	int ndx = hashval & hash->dth_mask;
6997 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6998 
6999 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7000 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7001 			return (bucket->dthb_len);
7002 	}
7003 
7004 	return (0);
7005 }
7006 
7007 static void
7008 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7009 {
7010 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7011 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7012 
7013 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7014 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7015 
7016 	/*
7017 	 * Find the bucket that we're removing this probe from.
7018 	 */
7019 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7020 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7021 			break;
7022 	}
7023 
7024 	ASSERT(bucket != NULL);
7025 
7026 	if (*prevp == NULL) {
7027 		if (*nextp == NULL) {
7028 			/*
7029 			 * The removed probe was the only probe on this
7030 			 * bucket; we need to remove the bucket.
7031 			 */
7032 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7033 
7034 			ASSERT(bucket->dthb_chain == probe);
7035 			ASSERT(b != NULL);
7036 
7037 			if (b == bucket) {
7038 				hash->dth_tab[ndx] = bucket->dthb_next;
7039 			} else {
7040 				while (b->dthb_next != bucket)
7041 					b = b->dthb_next;
7042 				b->dthb_next = bucket->dthb_next;
7043 			}
7044 
7045 			ASSERT(hash->dth_nbuckets > 0);
7046 			hash->dth_nbuckets--;
7047 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7048 			return;
7049 		}
7050 
7051 		bucket->dthb_chain = *nextp;
7052 	} else {
7053 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7054 	}
7055 
7056 	if (*nextp != NULL)
7057 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7058 }
7059 
7060 /*
7061  * DTrace Utility Functions
7062  *
7063  * These are random utility functions that are _not_ called from probe context.
7064  */
7065 static int
7066 dtrace_badattr(const dtrace_attribute_t *a)
7067 {
7068 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7069 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7070 	    a->dtat_class > DTRACE_CLASS_MAX);
7071 }
7072 
7073 /*
7074  * Return a duplicate copy of a string.  If the specified string is NULL,
7075  * this function returns a zero-length string.
7076  */
7077 static char *
7078 dtrace_strdup(const char *str)
7079 {
7080 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7081 
7082 	if (str != NULL)
7083 		(void) strcpy(new, str);
7084 
7085 	return (new);
7086 }
7087 
7088 #define	DTRACE_ISALPHA(c)	\
7089 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7090 
7091 static int
7092 dtrace_badname(const char *s)
7093 {
7094 	char c;
7095 
7096 	if (s == NULL || (c = *s++) == '\0')
7097 		return (0);
7098 
7099 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7100 		return (1);
7101 
7102 	while ((c = *s++) != '\0') {
7103 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7104 		    c != '-' && c != '_' && c != '.' && c != '`')
7105 			return (1);
7106 	}
7107 
7108 	return (0);
7109 }
7110 
7111 static void
7112 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7113 {
7114 	uint32_t priv;
7115 
7116 #if defined(sun)
7117 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7118 		/*
7119 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7120 		 */
7121 		priv = DTRACE_PRIV_ALL;
7122 	} else {
7123 		*uidp = crgetuid(cr);
7124 		*zoneidp = crgetzoneid(cr);
7125 
7126 		priv = 0;
7127 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7128 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7129 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7130 			priv |= DTRACE_PRIV_USER;
7131 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7132 			priv |= DTRACE_PRIV_PROC;
7133 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7134 			priv |= DTRACE_PRIV_OWNER;
7135 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7136 			priv |= DTRACE_PRIV_ZONEOWNER;
7137 	}
7138 #else
7139 	priv = DTRACE_PRIV_ALL;
7140 #endif
7141 
7142 	*privp = priv;
7143 }
7144 
7145 #ifdef DTRACE_ERRDEBUG
7146 static void
7147 dtrace_errdebug(const char *str)
7148 {
7149 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7150 	int occupied = 0;
7151 
7152 	mutex_enter(&dtrace_errlock);
7153 	dtrace_errlast = str;
7154 	dtrace_errthread = curthread;
7155 
7156 	while (occupied++ < DTRACE_ERRHASHSZ) {
7157 		if (dtrace_errhash[hval].dter_msg == str) {
7158 			dtrace_errhash[hval].dter_count++;
7159 			goto out;
7160 		}
7161 
7162 		if (dtrace_errhash[hval].dter_msg != NULL) {
7163 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7164 			continue;
7165 		}
7166 
7167 		dtrace_errhash[hval].dter_msg = str;
7168 		dtrace_errhash[hval].dter_count = 1;
7169 		goto out;
7170 	}
7171 
7172 	panic("dtrace: undersized error hash");
7173 out:
7174 	mutex_exit(&dtrace_errlock);
7175 }
7176 #endif
7177 
7178 /*
7179  * DTrace Matching Functions
7180  *
7181  * These functions are used to match groups of probes, given some elements of
7182  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7183  */
7184 static int
7185 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7186     zoneid_t zoneid)
7187 {
7188 	if (priv != DTRACE_PRIV_ALL) {
7189 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7190 		uint32_t match = priv & ppriv;
7191 
7192 		/*
7193 		 * No PRIV_DTRACE_* privileges...
7194 		 */
7195 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7196 		    DTRACE_PRIV_KERNEL)) == 0)
7197 			return (0);
7198 
7199 		/*
7200 		 * No matching bits, but there were bits to match...
7201 		 */
7202 		if (match == 0 && ppriv != 0)
7203 			return (0);
7204 
7205 		/*
7206 		 * Need to have permissions to the process, but don't...
7207 		 */
7208 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7209 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7210 			return (0);
7211 		}
7212 
7213 		/*
7214 		 * Need to be in the same zone unless we possess the
7215 		 * privilege to examine all zones.
7216 		 */
7217 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7218 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7219 			return (0);
7220 		}
7221 	}
7222 
7223 	return (1);
7224 }
7225 
7226 /*
7227  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7228  * consists of input pattern strings and an ops-vector to evaluate them.
7229  * This function returns >0 for match, 0 for no match, and <0 for error.
7230  */
7231 static int
7232 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7233     uint32_t priv, uid_t uid, zoneid_t zoneid)
7234 {
7235 	dtrace_provider_t *pvp = prp->dtpr_provider;
7236 	int rv;
7237 
7238 	if (pvp->dtpv_defunct)
7239 		return (0);
7240 
7241 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7242 		return (rv);
7243 
7244 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7245 		return (rv);
7246 
7247 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7248 		return (rv);
7249 
7250 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7251 		return (rv);
7252 
7253 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7254 		return (0);
7255 
7256 	return (rv);
7257 }
7258 
7259 /*
7260  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7261  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7262  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7263  * In addition, all of the recursion cases except for '*' matching have been
7264  * unwound.  For '*', we still implement recursive evaluation, but a depth
7265  * counter is maintained and matching is aborted if we recurse too deep.
7266  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7267  */
7268 static int
7269 dtrace_match_glob(const char *s, const char *p, int depth)
7270 {
7271 	const char *olds;
7272 	char s1, c;
7273 	int gs;
7274 
7275 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7276 		return (-1);
7277 
7278 	if (s == NULL)
7279 		s = ""; /* treat NULL as empty string */
7280 
7281 top:
7282 	olds = s;
7283 	s1 = *s++;
7284 
7285 	if (p == NULL)
7286 		return (0);
7287 
7288 	if ((c = *p++) == '\0')
7289 		return (s1 == '\0');
7290 
7291 	switch (c) {
7292 	case '[': {
7293 		int ok = 0, notflag = 0;
7294 		char lc = '\0';
7295 
7296 		if (s1 == '\0')
7297 			return (0);
7298 
7299 		if (*p == '!') {
7300 			notflag = 1;
7301 			p++;
7302 		}
7303 
7304 		if ((c = *p++) == '\0')
7305 			return (0);
7306 
7307 		do {
7308 			if (c == '-' && lc != '\0' && *p != ']') {
7309 				if ((c = *p++) == '\0')
7310 					return (0);
7311 				if (c == '\\' && (c = *p++) == '\0')
7312 					return (0);
7313 
7314 				if (notflag) {
7315 					if (s1 < lc || s1 > c)
7316 						ok++;
7317 					else
7318 						return (0);
7319 				} else if (lc <= s1 && s1 <= c)
7320 					ok++;
7321 
7322 			} else if (c == '\\' && (c = *p++) == '\0')
7323 				return (0);
7324 
7325 			lc = c; /* save left-hand 'c' for next iteration */
7326 
7327 			if (notflag) {
7328 				if (s1 != c)
7329 					ok++;
7330 				else
7331 					return (0);
7332 			} else if (s1 == c)
7333 				ok++;
7334 
7335 			if ((c = *p++) == '\0')
7336 				return (0);
7337 
7338 		} while (c != ']');
7339 
7340 		if (ok)
7341 			goto top;
7342 
7343 		return (0);
7344 	}
7345 
7346 	case '\\':
7347 		if ((c = *p++) == '\0')
7348 			return (0);
7349 		/*FALLTHRU*/
7350 
7351 	default:
7352 		if (c != s1)
7353 			return (0);
7354 		/*FALLTHRU*/
7355 
7356 	case '?':
7357 		if (s1 != '\0')
7358 			goto top;
7359 		return (0);
7360 
7361 	case '*':
7362 		while (*p == '*')
7363 			p++; /* consecutive *'s are identical to a single one */
7364 
7365 		if (*p == '\0')
7366 			return (1);
7367 
7368 		for (s = olds; *s != '\0'; s++) {
7369 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7370 				return (gs);
7371 		}
7372 
7373 		return (0);
7374 	}
7375 }
7376 
7377 /*ARGSUSED*/
7378 static int
7379 dtrace_match_string(const char *s, const char *p, int depth)
7380 {
7381 	return (s != NULL && strcmp(s, p) == 0);
7382 }
7383 
7384 /*ARGSUSED*/
7385 static int
7386 dtrace_match_nul(const char *s, const char *p, int depth)
7387 {
7388 	return (1); /* always match the empty pattern */
7389 }
7390 
7391 /*ARGSUSED*/
7392 static int
7393 dtrace_match_nonzero(const char *s, const char *p, int depth)
7394 {
7395 	return (s != NULL && s[0] != '\0');
7396 }
7397 
7398 static int
7399 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7400     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7401 {
7402 	dtrace_probe_t template, *probe;
7403 	dtrace_hash_t *hash = NULL;
7404 	int len, best = INT_MAX, nmatched = 0;
7405 	dtrace_id_t i;
7406 
7407 	ASSERT(MUTEX_HELD(&dtrace_lock));
7408 
7409 	/*
7410 	 * If the probe ID is specified in the key, just lookup by ID and
7411 	 * invoke the match callback once if a matching probe is found.
7412 	 */
7413 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7414 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7415 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7416 			(void) (*matched)(probe, arg);
7417 			nmatched++;
7418 		}
7419 		return (nmatched);
7420 	}
7421 
7422 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7423 	template.dtpr_func = (char *)pkp->dtpk_func;
7424 	template.dtpr_name = (char *)pkp->dtpk_name;
7425 
7426 	/*
7427 	 * We want to find the most distinct of the module name, function
7428 	 * name, and name.  So for each one that is not a glob pattern or
7429 	 * empty string, we perform a lookup in the corresponding hash and
7430 	 * use the hash table with the fewest collisions to do our search.
7431 	 */
7432 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7433 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7434 		best = len;
7435 		hash = dtrace_bymod;
7436 	}
7437 
7438 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7439 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7440 		best = len;
7441 		hash = dtrace_byfunc;
7442 	}
7443 
7444 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7445 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7446 		best = len;
7447 		hash = dtrace_byname;
7448 	}
7449 
7450 	/*
7451 	 * If we did not select a hash table, iterate over every probe and
7452 	 * invoke our callback for each one that matches our input probe key.
7453 	 */
7454 	if (hash == NULL) {
7455 		for (i = 0; i < dtrace_nprobes; i++) {
7456 			if ((probe = dtrace_probes[i]) == NULL ||
7457 			    dtrace_match_probe(probe, pkp, priv, uid,
7458 			    zoneid) <= 0)
7459 				continue;
7460 
7461 			nmatched++;
7462 
7463 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7464 				break;
7465 		}
7466 
7467 		return (nmatched);
7468 	}
7469 
7470 	/*
7471 	 * If we selected a hash table, iterate over each probe of the same key
7472 	 * name and invoke the callback for every probe that matches the other
7473 	 * attributes of our input probe key.
7474 	 */
7475 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7476 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7477 
7478 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7479 			continue;
7480 
7481 		nmatched++;
7482 
7483 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7484 			break;
7485 	}
7486 
7487 	return (nmatched);
7488 }
7489 
7490 /*
7491  * Return the function pointer dtrace_probecmp() should use to compare the
7492  * specified pattern with a string.  For NULL or empty patterns, we select
7493  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7494  * For non-empty non-glob strings, we use dtrace_match_string().
7495  */
7496 static dtrace_probekey_f *
7497 dtrace_probekey_func(const char *p)
7498 {
7499 	char c;
7500 
7501 	if (p == NULL || *p == '\0')
7502 		return (&dtrace_match_nul);
7503 
7504 	while ((c = *p++) != '\0') {
7505 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7506 			return (&dtrace_match_glob);
7507 	}
7508 
7509 	return (&dtrace_match_string);
7510 }
7511 
7512 /*
7513  * Build a probe comparison key for use with dtrace_match_probe() from the
7514  * given probe description.  By convention, a null key only matches anchored
7515  * probes: if each field is the empty string, reset dtpk_fmatch to
7516  * dtrace_match_nonzero().
7517  */
7518 static void
7519 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7520 {
7521 	pkp->dtpk_prov = pdp->dtpd_provider;
7522 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7523 
7524 	pkp->dtpk_mod = pdp->dtpd_mod;
7525 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7526 
7527 	pkp->dtpk_func = pdp->dtpd_func;
7528 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7529 
7530 	pkp->dtpk_name = pdp->dtpd_name;
7531 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7532 
7533 	pkp->dtpk_id = pdp->dtpd_id;
7534 
7535 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7536 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7537 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7538 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7539 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7540 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7541 }
7542 
7543 /*
7544  * DTrace Provider-to-Framework API Functions
7545  *
7546  * These functions implement much of the Provider-to-Framework API, as
7547  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7548  * the functions in the API for probe management (found below), and
7549  * dtrace_probe() itself (found above).
7550  */
7551 
7552 /*
7553  * Register the calling provider with the DTrace framework.  This should
7554  * generally be called by DTrace providers in their attach(9E) entry point.
7555  */
7556 int
7557 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7558     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7559 {
7560 	dtrace_provider_t *provider;
7561 
7562 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7563 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7564 		    "arguments", name ? name : "<NULL>");
7565 		return (EINVAL);
7566 	}
7567 
7568 	if (name[0] == '\0' || dtrace_badname(name)) {
7569 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7570 		    "provider name", name);
7571 		return (EINVAL);
7572 	}
7573 
7574 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7575 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7576 	    pops->dtps_destroy == NULL ||
7577 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7578 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7579 		    "provider ops", name);
7580 		return (EINVAL);
7581 	}
7582 
7583 	if (dtrace_badattr(&pap->dtpa_provider) ||
7584 	    dtrace_badattr(&pap->dtpa_mod) ||
7585 	    dtrace_badattr(&pap->dtpa_func) ||
7586 	    dtrace_badattr(&pap->dtpa_name) ||
7587 	    dtrace_badattr(&pap->dtpa_args)) {
7588 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7589 		    "provider attributes", name);
7590 		return (EINVAL);
7591 	}
7592 
7593 	if (priv & ~DTRACE_PRIV_ALL) {
7594 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7595 		    "privilege attributes", name);
7596 		return (EINVAL);
7597 	}
7598 
7599 	if ((priv & DTRACE_PRIV_KERNEL) &&
7600 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7601 	    pops->dtps_usermode == NULL) {
7602 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7603 		    "dtps_usermode() op for given privilege attributes", name);
7604 		return (EINVAL);
7605 	}
7606 
7607 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7608 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7609 	(void) strcpy(provider->dtpv_name, name);
7610 
7611 	provider->dtpv_attr = *pap;
7612 	provider->dtpv_priv.dtpp_flags = priv;
7613 	if (cr != NULL) {
7614 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7615 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7616 	}
7617 	provider->dtpv_pops = *pops;
7618 
7619 	if (pops->dtps_provide == NULL) {
7620 		ASSERT(pops->dtps_provide_module != NULL);
7621 		provider->dtpv_pops.dtps_provide =
7622 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7623 	}
7624 
7625 	if (pops->dtps_provide_module == NULL) {
7626 		ASSERT(pops->dtps_provide != NULL);
7627 		provider->dtpv_pops.dtps_provide_module =
7628 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7629 	}
7630 
7631 	if (pops->dtps_suspend == NULL) {
7632 		ASSERT(pops->dtps_resume == NULL);
7633 		provider->dtpv_pops.dtps_suspend =
7634 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7635 		provider->dtpv_pops.dtps_resume =
7636 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7637 	}
7638 
7639 	provider->dtpv_arg = arg;
7640 	*idp = (dtrace_provider_id_t)provider;
7641 
7642 	if (pops == &dtrace_provider_ops) {
7643 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7644 		ASSERT(MUTEX_HELD(&dtrace_lock));
7645 		ASSERT(dtrace_anon.dta_enabling == NULL);
7646 
7647 		/*
7648 		 * We make sure that the DTrace provider is at the head of
7649 		 * the provider chain.
7650 		 */
7651 		provider->dtpv_next = dtrace_provider;
7652 		dtrace_provider = provider;
7653 		return (0);
7654 	}
7655 
7656 	mutex_enter(&dtrace_provider_lock);
7657 	mutex_enter(&dtrace_lock);
7658 
7659 	/*
7660 	 * If there is at least one provider registered, we'll add this
7661 	 * provider after the first provider.
7662 	 */
7663 	if (dtrace_provider != NULL) {
7664 		provider->dtpv_next = dtrace_provider->dtpv_next;
7665 		dtrace_provider->dtpv_next = provider;
7666 	} else {
7667 		dtrace_provider = provider;
7668 	}
7669 
7670 	if (dtrace_retained != NULL) {
7671 		dtrace_enabling_provide(provider);
7672 
7673 		/*
7674 		 * Now we need to call dtrace_enabling_matchall() -- which
7675 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7676 		 * to drop all of our locks before calling into it...
7677 		 */
7678 		mutex_exit(&dtrace_lock);
7679 		mutex_exit(&dtrace_provider_lock);
7680 		dtrace_enabling_matchall();
7681 
7682 		return (0);
7683 	}
7684 
7685 	mutex_exit(&dtrace_lock);
7686 	mutex_exit(&dtrace_provider_lock);
7687 
7688 	return (0);
7689 }
7690 
7691 /*
7692  * Unregister the specified provider from the DTrace framework.  This should
7693  * generally be called by DTrace providers in their detach(9E) entry point.
7694  */
7695 int
7696 dtrace_unregister(dtrace_provider_id_t id)
7697 {
7698 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7699 	dtrace_provider_t *prev = NULL;
7700 	int i, self = 0, noreap = 0;
7701 	dtrace_probe_t *probe, *first = NULL;
7702 
7703 	if (old->dtpv_pops.dtps_enable ==
7704 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7705 		/*
7706 		 * If DTrace itself is the provider, we're called with locks
7707 		 * already held.
7708 		 */
7709 		ASSERT(old == dtrace_provider);
7710 #if defined(sun)
7711 		ASSERT(dtrace_devi != NULL);
7712 #endif
7713 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7714 		ASSERT(MUTEX_HELD(&dtrace_lock));
7715 		self = 1;
7716 
7717 		if (dtrace_provider->dtpv_next != NULL) {
7718 			/*
7719 			 * There's another provider here; return failure.
7720 			 */
7721 			return (EBUSY);
7722 		}
7723 	} else {
7724 		mutex_enter(&dtrace_provider_lock);
7725 #if defined(sun)
7726 		mutex_enter(&mod_lock);
7727 #endif
7728 		mutex_enter(&dtrace_lock);
7729 	}
7730 
7731 	/*
7732 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7733 	 * probes, we refuse to let providers slither away, unless this
7734 	 * provider has already been explicitly invalidated.
7735 	 */
7736 	if (!old->dtpv_defunct &&
7737 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7738 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7739 		if (!self) {
7740 			mutex_exit(&dtrace_lock);
7741 #if defined(sun)
7742 			mutex_exit(&mod_lock);
7743 #endif
7744 			mutex_exit(&dtrace_provider_lock);
7745 		}
7746 		return (EBUSY);
7747 	}
7748 
7749 	/*
7750 	 * Attempt to destroy the probes associated with this provider.
7751 	 */
7752 	for (i = 0; i < dtrace_nprobes; i++) {
7753 		if ((probe = dtrace_probes[i]) == NULL)
7754 			continue;
7755 
7756 		if (probe->dtpr_provider != old)
7757 			continue;
7758 
7759 		if (probe->dtpr_ecb == NULL)
7760 			continue;
7761 
7762 		/*
7763 		 * If we are trying to unregister a defunct provider, and the
7764 		 * provider was made defunct within the interval dictated by
7765 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7766 		 * attempt to reap our enablings.  To denote that the provider
7767 		 * should reattempt to unregister itself at some point in the
7768 		 * future, we will return a differentiable error code (EAGAIN
7769 		 * instead of EBUSY) in this case.
7770 		 */
7771 		if (dtrace_gethrtime() - old->dtpv_defunct >
7772 		    dtrace_unregister_defunct_reap)
7773 			noreap = 1;
7774 
7775 		if (!self) {
7776 			mutex_exit(&dtrace_lock);
7777 #if defined(sun)
7778 			mutex_exit(&mod_lock);
7779 #endif
7780 			mutex_exit(&dtrace_provider_lock);
7781 		}
7782 
7783 		if (noreap)
7784 			return (EBUSY);
7785 
7786 		(void) taskq_dispatch(dtrace_taskq,
7787 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7788 
7789 		return (EAGAIN);
7790 	}
7791 
7792 	/*
7793 	 * All of the probes for this provider are disabled; we can safely
7794 	 * remove all of them from their hash chains and from the probe array.
7795 	 */
7796 	for (i = 0; i < dtrace_nprobes; i++) {
7797 		if ((probe = dtrace_probes[i]) == NULL)
7798 			continue;
7799 
7800 		if (probe->dtpr_provider != old)
7801 			continue;
7802 
7803 		dtrace_probes[i] = NULL;
7804 
7805 		dtrace_hash_remove(dtrace_bymod, probe);
7806 		dtrace_hash_remove(dtrace_byfunc, probe);
7807 		dtrace_hash_remove(dtrace_byname, probe);
7808 
7809 		if (first == NULL) {
7810 			first = probe;
7811 			probe->dtpr_nextmod = NULL;
7812 		} else {
7813 			probe->dtpr_nextmod = first;
7814 			first = probe;
7815 		}
7816 	}
7817 
7818 	/*
7819 	 * The provider's probes have been removed from the hash chains and
7820 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7821 	 * everyone has cleared out from any probe array processing.
7822 	 */
7823 	dtrace_sync();
7824 
7825 	for (probe = first; probe != NULL; probe = first) {
7826 		first = probe->dtpr_nextmod;
7827 
7828 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7829 		    probe->dtpr_arg);
7830 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7831 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7832 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7833 #if defined(sun)
7834 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7835 #else
7836 		free_unr(dtrace_arena, probe->dtpr_id);
7837 #endif
7838 		kmem_free(probe, sizeof (dtrace_probe_t));
7839 	}
7840 
7841 	if ((prev = dtrace_provider) == old) {
7842 #if defined(sun)
7843 		ASSERT(self || dtrace_devi == NULL);
7844 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7845 #endif
7846 		dtrace_provider = old->dtpv_next;
7847 	} else {
7848 		while (prev != NULL && prev->dtpv_next != old)
7849 			prev = prev->dtpv_next;
7850 
7851 		if (prev == NULL) {
7852 			panic("attempt to unregister non-existent "
7853 			    "dtrace provider %p\n", (void *)id);
7854 		}
7855 
7856 		prev->dtpv_next = old->dtpv_next;
7857 	}
7858 
7859 	if (!self) {
7860 		mutex_exit(&dtrace_lock);
7861 #if defined(sun)
7862 		mutex_exit(&mod_lock);
7863 #endif
7864 		mutex_exit(&dtrace_provider_lock);
7865 	}
7866 
7867 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7868 	kmem_free(old, sizeof (dtrace_provider_t));
7869 
7870 	return (0);
7871 }
7872 
7873 /*
7874  * Invalidate the specified provider.  All subsequent probe lookups for the
7875  * specified provider will fail, but its probes will not be removed.
7876  */
7877 void
7878 dtrace_invalidate(dtrace_provider_id_t id)
7879 {
7880 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7881 
7882 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7883 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7884 
7885 	mutex_enter(&dtrace_provider_lock);
7886 	mutex_enter(&dtrace_lock);
7887 
7888 	pvp->dtpv_defunct = dtrace_gethrtime();
7889 
7890 	mutex_exit(&dtrace_lock);
7891 	mutex_exit(&dtrace_provider_lock);
7892 }
7893 
7894 /*
7895  * Indicate whether or not DTrace has attached.
7896  */
7897 int
7898 dtrace_attached(void)
7899 {
7900 	/*
7901 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7902 	 * attached.  (It's non-NULL because DTrace is always itself a
7903 	 * provider.)
7904 	 */
7905 	return (dtrace_provider != NULL);
7906 }
7907 
7908 /*
7909  * Remove all the unenabled probes for the given provider.  This function is
7910  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7911  * -- just as many of its associated probes as it can.
7912  */
7913 int
7914 dtrace_condense(dtrace_provider_id_t id)
7915 {
7916 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7917 	int i;
7918 	dtrace_probe_t *probe;
7919 
7920 	/*
7921 	 * Make sure this isn't the dtrace provider itself.
7922 	 */
7923 	ASSERT(prov->dtpv_pops.dtps_enable !=
7924 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7925 
7926 	mutex_enter(&dtrace_provider_lock);
7927 	mutex_enter(&dtrace_lock);
7928 
7929 	/*
7930 	 * Attempt to destroy the probes associated with this provider.
7931 	 */
7932 	for (i = 0; i < dtrace_nprobes; i++) {
7933 		if ((probe = dtrace_probes[i]) == NULL)
7934 			continue;
7935 
7936 		if (probe->dtpr_provider != prov)
7937 			continue;
7938 
7939 		if (probe->dtpr_ecb != NULL)
7940 			continue;
7941 
7942 		dtrace_probes[i] = NULL;
7943 
7944 		dtrace_hash_remove(dtrace_bymod, probe);
7945 		dtrace_hash_remove(dtrace_byfunc, probe);
7946 		dtrace_hash_remove(dtrace_byname, probe);
7947 
7948 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7949 		    probe->dtpr_arg);
7950 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7951 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7952 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7953 		kmem_free(probe, sizeof (dtrace_probe_t));
7954 #if defined(sun)
7955 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7956 #else
7957 		free_unr(dtrace_arena, i + 1);
7958 #endif
7959 	}
7960 
7961 	mutex_exit(&dtrace_lock);
7962 	mutex_exit(&dtrace_provider_lock);
7963 
7964 	return (0);
7965 }
7966 
7967 /*
7968  * DTrace Probe Management Functions
7969  *
7970  * The functions in this section perform the DTrace probe management,
7971  * including functions to create probes, look-up probes, and call into the
7972  * providers to request that probes be provided.  Some of these functions are
7973  * in the Provider-to-Framework API; these functions can be identified by the
7974  * fact that they are not declared "static".
7975  */
7976 
7977 /*
7978  * Create a probe with the specified module name, function name, and name.
7979  */
7980 dtrace_id_t
7981 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7982     const char *func, const char *name, int aframes, void *arg)
7983 {
7984 	dtrace_probe_t *probe, **probes;
7985 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7986 	dtrace_id_t id;
7987 
7988 	if (provider == dtrace_provider) {
7989 		ASSERT(MUTEX_HELD(&dtrace_lock));
7990 	} else {
7991 		mutex_enter(&dtrace_lock);
7992 	}
7993 
7994 #if defined(sun)
7995 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7996 	    VM_BESTFIT | VM_SLEEP);
7997 #else
7998 	id = alloc_unr(dtrace_arena);
7999 #endif
8000 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8001 
8002 	probe->dtpr_id = id;
8003 	probe->dtpr_gen = dtrace_probegen++;
8004 	probe->dtpr_mod = dtrace_strdup(mod);
8005 	probe->dtpr_func = dtrace_strdup(func);
8006 	probe->dtpr_name = dtrace_strdup(name);
8007 	probe->dtpr_arg = arg;
8008 	probe->dtpr_aframes = aframes;
8009 	probe->dtpr_provider = provider;
8010 
8011 	dtrace_hash_add(dtrace_bymod, probe);
8012 	dtrace_hash_add(dtrace_byfunc, probe);
8013 	dtrace_hash_add(dtrace_byname, probe);
8014 
8015 	if (id - 1 >= dtrace_nprobes) {
8016 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8017 		size_t nsize = osize << 1;
8018 
8019 		if (nsize == 0) {
8020 			ASSERT(osize == 0);
8021 			ASSERT(dtrace_probes == NULL);
8022 			nsize = sizeof (dtrace_probe_t *);
8023 		}
8024 
8025 		probes = kmem_zalloc(nsize, KM_SLEEP);
8026 
8027 		if (dtrace_probes == NULL) {
8028 			ASSERT(osize == 0);
8029 			dtrace_probes = probes;
8030 			dtrace_nprobes = 1;
8031 		} else {
8032 			dtrace_probe_t **oprobes = dtrace_probes;
8033 
8034 			bcopy(oprobes, probes, osize);
8035 			dtrace_membar_producer();
8036 			dtrace_probes = probes;
8037 
8038 			dtrace_sync();
8039 
8040 			/*
8041 			 * All CPUs are now seeing the new probes array; we can
8042 			 * safely free the old array.
8043 			 */
8044 			kmem_free(oprobes, osize);
8045 			dtrace_nprobes <<= 1;
8046 		}
8047 
8048 		ASSERT(id - 1 < dtrace_nprobes);
8049 	}
8050 
8051 	ASSERT(dtrace_probes[id - 1] == NULL);
8052 	dtrace_probes[id - 1] = probe;
8053 
8054 	if (provider != dtrace_provider)
8055 		mutex_exit(&dtrace_lock);
8056 
8057 	return (id);
8058 }
8059 
8060 static dtrace_probe_t *
8061 dtrace_probe_lookup_id(dtrace_id_t id)
8062 {
8063 	ASSERT(MUTEX_HELD(&dtrace_lock));
8064 
8065 	if (id == 0 || id > dtrace_nprobes)
8066 		return (NULL);
8067 
8068 	return (dtrace_probes[id - 1]);
8069 }
8070 
8071 static int
8072 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8073 {
8074 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8075 
8076 	return (DTRACE_MATCH_DONE);
8077 }
8078 
8079 /*
8080  * Look up a probe based on provider and one or more of module name, function
8081  * name and probe name.
8082  */
8083 dtrace_id_t
8084 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8085     char *func, char *name)
8086 {
8087 	dtrace_probekey_t pkey;
8088 	dtrace_id_t id;
8089 	int match;
8090 
8091 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8092 	pkey.dtpk_pmatch = &dtrace_match_string;
8093 	pkey.dtpk_mod = mod;
8094 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8095 	pkey.dtpk_func = func;
8096 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8097 	pkey.dtpk_name = name;
8098 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8099 	pkey.dtpk_id = DTRACE_IDNONE;
8100 
8101 	mutex_enter(&dtrace_lock);
8102 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8103 	    dtrace_probe_lookup_match, &id);
8104 	mutex_exit(&dtrace_lock);
8105 
8106 	ASSERT(match == 1 || match == 0);
8107 	return (match ? id : 0);
8108 }
8109 
8110 /*
8111  * Returns the probe argument associated with the specified probe.
8112  */
8113 void *
8114 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8115 {
8116 	dtrace_probe_t *probe;
8117 	void *rval = NULL;
8118 
8119 	mutex_enter(&dtrace_lock);
8120 
8121 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8122 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8123 		rval = probe->dtpr_arg;
8124 
8125 	mutex_exit(&dtrace_lock);
8126 
8127 	return (rval);
8128 }
8129 
8130 /*
8131  * Copy a probe into a probe description.
8132  */
8133 static void
8134 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8135 {
8136 	bzero(pdp, sizeof (dtrace_probedesc_t));
8137 	pdp->dtpd_id = prp->dtpr_id;
8138 
8139 	(void) strncpy(pdp->dtpd_provider,
8140 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8141 
8142 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8143 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8144 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8145 }
8146 
8147 /*
8148  * Called to indicate that a probe -- or probes -- should be provided by a
8149  * specfied provider.  If the specified description is NULL, the provider will
8150  * be told to provide all of its probes.  (This is done whenever a new
8151  * consumer comes along, or whenever a retained enabling is to be matched.) If
8152  * the specified description is non-NULL, the provider is given the
8153  * opportunity to dynamically provide the specified probe, allowing providers
8154  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8155  * probes.)  If the provider is NULL, the operations will be applied to all
8156  * providers; if the provider is non-NULL the operations will only be applied
8157  * to the specified provider.  The dtrace_provider_lock must be held, and the
8158  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8159  * will need to grab the dtrace_lock when it reenters the framework through
8160  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8161  */
8162 static void
8163 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8164 {
8165 #if defined(sun)
8166 	modctl_t *ctl;
8167 #endif
8168 	int all = 0;
8169 
8170 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8171 
8172 	if (prv == NULL) {
8173 		all = 1;
8174 		prv = dtrace_provider;
8175 	}
8176 
8177 	do {
8178 		/*
8179 		 * First, call the blanket provide operation.
8180 		 */
8181 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8182 
8183 #if defined(sun)
8184 		/*
8185 		 * Now call the per-module provide operation.  We will grab
8186 		 * mod_lock to prevent the list from being modified.  Note
8187 		 * that this also prevents the mod_busy bits from changing.
8188 		 * (mod_busy can only be changed with mod_lock held.)
8189 		 */
8190 		mutex_enter(&mod_lock);
8191 
8192 		ctl = &modules;
8193 		do {
8194 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8195 				continue;
8196 
8197 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8198 
8199 		} while ((ctl = ctl->mod_next) != &modules);
8200 
8201 		mutex_exit(&mod_lock);
8202 #endif
8203 	} while (all && (prv = prv->dtpv_next) != NULL);
8204 }
8205 
8206 #if defined(sun)
8207 /*
8208  * Iterate over each probe, and call the Framework-to-Provider API function
8209  * denoted by offs.
8210  */
8211 static void
8212 dtrace_probe_foreach(uintptr_t offs)
8213 {
8214 	dtrace_provider_t *prov;
8215 	void (*func)(void *, dtrace_id_t, void *);
8216 	dtrace_probe_t *probe;
8217 	dtrace_icookie_t cookie;
8218 	int i;
8219 
8220 	/*
8221 	 * We disable interrupts to walk through the probe array.  This is
8222 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8223 	 * won't see stale data.
8224 	 */
8225 	cookie = dtrace_interrupt_disable();
8226 
8227 	for (i = 0; i < dtrace_nprobes; i++) {
8228 		if ((probe = dtrace_probes[i]) == NULL)
8229 			continue;
8230 
8231 		if (probe->dtpr_ecb == NULL) {
8232 			/*
8233 			 * This probe isn't enabled -- don't call the function.
8234 			 */
8235 			continue;
8236 		}
8237 
8238 		prov = probe->dtpr_provider;
8239 		func = *((void(**)(void *, dtrace_id_t, void *))
8240 		    ((uintptr_t)&prov->dtpv_pops + offs));
8241 
8242 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8243 	}
8244 
8245 	dtrace_interrupt_enable(cookie);
8246 }
8247 #endif
8248 
8249 static int
8250 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8251 {
8252 	dtrace_probekey_t pkey;
8253 	uint32_t priv;
8254 	uid_t uid;
8255 	zoneid_t zoneid;
8256 
8257 	ASSERT(MUTEX_HELD(&dtrace_lock));
8258 	dtrace_ecb_create_cache = NULL;
8259 
8260 	if (desc == NULL) {
8261 		/*
8262 		 * If we're passed a NULL description, we're being asked to
8263 		 * create an ECB with a NULL probe.
8264 		 */
8265 		(void) dtrace_ecb_create_enable(NULL, enab);
8266 		return (0);
8267 	}
8268 
8269 	dtrace_probekey(desc, &pkey);
8270 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8271 	    &priv, &uid, &zoneid);
8272 
8273 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8274 	    enab));
8275 }
8276 
8277 /*
8278  * DTrace Helper Provider Functions
8279  */
8280 static void
8281 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8282 {
8283 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8284 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8285 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8286 }
8287 
8288 static void
8289 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8290     const dof_provider_t *dofprov, char *strtab)
8291 {
8292 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8293 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8294 	    dofprov->dofpv_provattr);
8295 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8296 	    dofprov->dofpv_modattr);
8297 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8298 	    dofprov->dofpv_funcattr);
8299 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8300 	    dofprov->dofpv_nameattr);
8301 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8302 	    dofprov->dofpv_argsattr);
8303 }
8304 
8305 static void
8306 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8307 {
8308 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8309 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8310 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8311 	dof_provider_t *provider;
8312 	dof_probe_t *probe;
8313 	uint32_t *off, *enoff;
8314 	uint8_t *arg;
8315 	char *strtab;
8316 	uint_t i, nprobes;
8317 	dtrace_helper_provdesc_t dhpv;
8318 	dtrace_helper_probedesc_t dhpb;
8319 	dtrace_meta_t *meta = dtrace_meta_pid;
8320 	dtrace_mops_t *mops = &meta->dtm_mops;
8321 	void *parg;
8322 
8323 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8324 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8325 	    provider->dofpv_strtab * dof->dofh_secsize);
8326 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8327 	    provider->dofpv_probes * dof->dofh_secsize);
8328 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8329 	    provider->dofpv_prargs * dof->dofh_secsize);
8330 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8331 	    provider->dofpv_proffs * dof->dofh_secsize);
8332 
8333 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8334 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8335 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8336 	enoff = NULL;
8337 
8338 	/*
8339 	 * See dtrace_helper_provider_validate().
8340 	 */
8341 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8342 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8343 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8344 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8345 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8346 	}
8347 
8348 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8349 
8350 	/*
8351 	 * Create the provider.
8352 	 */
8353 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8354 
8355 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8356 		return;
8357 
8358 	meta->dtm_count++;
8359 
8360 	/*
8361 	 * Create the probes.
8362 	 */
8363 	for (i = 0; i < nprobes; i++) {
8364 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8365 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8366 
8367 		dhpb.dthpb_mod = dhp->dofhp_mod;
8368 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8369 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8370 		dhpb.dthpb_base = probe->dofpr_addr;
8371 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8372 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8373 		if (enoff != NULL) {
8374 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8375 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8376 		} else {
8377 			dhpb.dthpb_enoffs = NULL;
8378 			dhpb.dthpb_nenoffs = 0;
8379 		}
8380 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8381 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8382 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8383 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8384 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8385 
8386 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8387 	}
8388 }
8389 
8390 static void
8391 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8392 {
8393 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8394 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8395 	int i;
8396 
8397 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8398 
8399 	for (i = 0; i < dof->dofh_secnum; i++) {
8400 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8401 		    dof->dofh_secoff + i * dof->dofh_secsize);
8402 
8403 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8404 			continue;
8405 
8406 		dtrace_helper_provide_one(dhp, sec, pid);
8407 	}
8408 
8409 	/*
8410 	 * We may have just created probes, so we must now rematch against
8411 	 * any retained enablings.  Note that this call will acquire both
8412 	 * cpu_lock and dtrace_lock; the fact that we are holding
8413 	 * dtrace_meta_lock now is what defines the ordering with respect to
8414 	 * these three locks.
8415 	 */
8416 	dtrace_enabling_matchall();
8417 }
8418 
8419 static void
8420 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8421 {
8422 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8423 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8424 	dof_sec_t *str_sec;
8425 	dof_provider_t *provider;
8426 	char *strtab;
8427 	dtrace_helper_provdesc_t dhpv;
8428 	dtrace_meta_t *meta = dtrace_meta_pid;
8429 	dtrace_mops_t *mops = &meta->dtm_mops;
8430 
8431 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8432 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8433 	    provider->dofpv_strtab * dof->dofh_secsize);
8434 
8435 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8436 
8437 	/*
8438 	 * Create the provider.
8439 	 */
8440 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8441 
8442 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8443 
8444 	meta->dtm_count--;
8445 }
8446 
8447 static void
8448 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8449 {
8450 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8451 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8452 	int i;
8453 
8454 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8455 
8456 	for (i = 0; i < dof->dofh_secnum; i++) {
8457 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8458 		    dof->dofh_secoff + i * dof->dofh_secsize);
8459 
8460 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8461 			continue;
8462 
8463 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8464 	}
8465 }
8466 
8467 /*
8468  * DTrace Meta Provider-to-Framework API Functions
8469  *
8470  * These functions implement the Meta Provider-to-Framework API, as described
8471  * in <sys/dtrace.h>.
8472  */
8473 int
8474 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8475     dtrace_meta_provider_id_t *idp)
8476 {
8477 	dtrace_meta_t *meta;
8478 	dtrace_helpers_t *help, *next;
8479 	int i;
8480 
8481 	*idp = DTRACE_METAPROVNONE;
8482 
8483 	/*
8484 	 * We strictly don't need the name, but we hold onto it for
8485 	 * debuggability. All hail error queues!
8486 	 */
8487 	if (name == NULL) {
8488 		cmn_err(CE_WARN, "failed to register meta-provider: "
8489 		    "invalid name");
8490 		return (EINVAL);
8491 	}
8492 
8493 	if (mops == NULL ||
8494 	    mops->dtms_create_probe == NULL ||
8495 	    mops->dtms_provide_pid == NULL ||
8496 	    mops->dtms_remove_pid == NULL) {
8497 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8498 		    "invalid ops", name);
8499 		return (EINVAL);
8500 	}
8501 
8502 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8503 	meta->dtm_mops = *mops;
8504 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8505 	(void) strcpy(meta->dtm_name, name);
8506 	meta->dtm_arg = arg;
8507 
8508 	mutex_enter(&dtrace_meta_lock);
8509 	mutex_enter(&dtrace_lock);
8510 
8511 	if (dtrace_meta_pid != NULL) {
8512 		mutex_exit(&dtrace_lock);
8513 		mutex_exit(&dtrace_meta_lock);
8514 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8515 		    "user-land meta-provider exists", name);
8516 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8517 		kmem_free(meta, sizeof (dtrace_meta_t));
8518 		return (EINVAL);
8519 	}
8520 
8521 	dtrace_meta_pid = meta;
8522 	*idp = (dtrace_meta_provider_id_t)meta;
8523 
8524 	/*
8525 	 * If there are providers and probes ready to go, pass them
8526 	 * off to the new meta provider now.
8527 	 */
8528 
8529 	help = dtrace_deferred_pid;
8530 	dtrace_deferred_pid = NULL;
8531 
8532 	mutex_exit(&dtrace_lock);
8533 
8534 	while (help != NULL) {
8535 		for (i = 0; i < help->dthps_nprovs; i++) {
8536 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8537 			    help->dthps_pid);
8538 		}
8539 
8540 		next = help->dthps_next;
8541 		help->dthps_next = NULL;
8542 		help->dthps_prev = NULL;
8543 		help->dthps_deferred = 0;
8544 		help = next;
8545 	}
8546 
8547 	mutex_exit(&dtrace_meta_lock);
8548 
8549 	return (0);
8550 }
8551 
8552 int
8553 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8554 {
8555 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8556 
8557 	mutex_enter(&dtrace_meta_lock);
8558 	mutex_enter(&dtrace_lock);
8559 
8560 	if (old == dtrace_meta_pid) {
8561 		pp = &dtrace_meta_pid;
8562 	} else {
8563 		panic("attempt to unregister non-existent "
8564 		    "dtrace meta-provider %p\n", (void *)old);
8565 	}
8566 
8567 	if (old->dtm_count != 0) {
8568 		mutex_exit(&dtrace_lock);
8569 		mutex_exit(&dtrace_meta_lock);
8570 		return (EBUSY);
8571 	}
8572 
8573 	*pp = NULL;
8574 
8575 	mutex_exit(&dtrace_lock);
8576 	mutex_exit(&dtrace_meta_lock);
8577 
8578 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8579 	kmem_free(old, sizeof (dtrace_meta_t));
8580 
8581 	return (0);
8582 }
8583 
8584 
8585 /*
8586  * DTrace DIF Object Functions
8587  */
8588 static int
8589 dtrace_difo_err(uint_t pc, const char *format, ...)
8590 {
8591 	if (dtrace_err_verbose) {
8592 		va_list alist;
8593 
8594 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8595 		va_start(alist, format);
8596 		(void) vuprintf(format, alist);
8597 		va_end(alist);
8598 	}
8599 
8600 #ifdef DTRACE_ERRDEBUG
8601 	dtrace_errdebug(format);
8602 #endif
8603 	return (1);
8604 }
8605 
8606 /*
8607  * Validate a DTrace DIF object by checking the IR instructions.  The following
8608  * rules are currently enforced by dtrace_difo_validate():
8609  *
8610  * 1. Each instruction must have a valid opcode
8611  * 2. Each register, string, variable, or subroutine reference must be valid
8612  * 3. No instruction can modify register %r0 (must be zero)
8613  * 4. All instruction reserved bits must be set to zero
8614  * 5. The last instruction must be a "ret" instruction
8615  * 6. All branch targets must reference a valid instruction _after_ the branch
8616  */
8617 static int
8618 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8619     cred_t *cr)
8620 {
8621 	int err = 0, i;
8622 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8623 	int kcheckload;
8624 	uint_t pc;
8625 
8626 	kcheckload = cr == NULL ||
8627 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8628 
8629 	dp->dtdo_destructive = 0;
8630 
8631 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8632 		dif_instr_t instr = dp->dtdo_buf[pc];
8633 
8634 		uint_t r1 = DIF_INSTR_R1(instr);
8635 		uint_t r2 = DIF_INSTR_R2(instr);
8636 		uint_t rd = DIF_INSTR_RD(instr);
8637 		uint_t rs = DIF_INSTR_RS(instr);
8638 		uint_t label = DIF_INSTR_LABEL(instr);
8639 		uint_t v = DIF_INSTR_VAR(instr);
8640 		uint_t subr = DIF_INSTR_SUBR(instr);
8641 		uint_t type = DIF_INSTR_TYPE(instr);
8642 		uint_t op = DIF_INSTR_OP(instr);
8643 
8644 		switch (op) {
8645 		case DIF_OP_OR:
8646 		case DIF_OP_XOR:
8647 		case DIF_OP_AND:
8648 		case DIF_OP_SLL:
8649 		case DIF_OP_SRL:
8650 		case DIF_OP_SRA:
8651 		case DIF_OP_SUB:
8652 		case DIF_OP_ADD:
8653 		case DIF_OP_MUL:
8654 		case DIF_OP_SDIV:
8655 		case DIF_OP_UDIV:
8656 		case DIF_OP_SREM:
8657 		case DIF_OP_UREM:
8658 		case DIF_OP_COPYS:
8659 			if (r1 >= nregs)
8660 				err += efunc(pc, "invalid register %u\n", r1);
8661 			if (r2 >= nregs)
8662 				err += efunc(pc, "invalid register %u\n", r2);
8663 			if (rd >= nregs)
8664 				err += efunc(pc, "invalid register %u\n", rd);
8665 			if (rd == 0)
8666 				err += efunc(pc, "cannot write to %r0\n");
8667 			break;
8668 		case DIF_OP_NOT:
8669 		case DIF_OP_MOV:
8670 		case DIF_OP_ALLOCS:
8671 			if (r1 >= nregs)
8672 				err += efunc(pc, "invalid register %u\n", r1);
8673 			if (r2 != 0)
8674 				err += efunc(pc, "non-zero reserved bits\n");
8675 			if (rd >= nregs)
8676 				err += efunc(pc, "invalid register %u\n", rd);
8677 			if (rd == 0)
8678 				err += efunc(pc, "cannot write to %r0\n");
8679 			break;
8680 		case DIF_OP_LDSB:
8681 		case DIF_OP_LDSH:
8682 		case DIF_OP_LDSW:
8683 		case DIF_OP_LDUB:
8684 		case DIF_OP_LDUH:
8685 		case DIF_OP_LDUW:
8686 		case DIF_OP_LDX:
8687 			if (r1 >= nregs)
8688 				err += efunc(pc, "invalid register %u\n", r1);
8689 			if (r2 != 0)
8690 				err += efunc(pc, "non-zero reserved bits\n");
8691 			if (rd >= nregs)
8692 				err += efunc(pc, "invalid register %u\n", rd);
8693 			if (rd == 0)
8694 				err += efunc(pc, "cannot write to %r0\n");
8695 			if (kcheckload)
8696 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8697 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8698 			break;
8699 		case DIF_OP_RLDSB:
8700 		case DIF_OP_RLDSH:
8701 		case DIF_OP_RLDSW:
8702 		case DIF_OP_RLDUB:
8703 		case DIF_OP_RLDUH:
8704 		case DIF_OP_RLDUW:
8705 		case DIF_OP_RLDX:
8706 			if (r1 >= nregs)
8707 				err += efunc(pc, "invalid register %u\n", r1);
8708 			if (r2 != 0)
8709 				err += efunc(pc, "non-zero reserved bits\n");
8710 			if (rd >= nregs)
8711 				err += efunc(pc, "invalid register %u\n", rd);
8712 			if (rd == 0)
8713 				err += efunc(pc, "cannot write to %r0\n");
8714 			break;
8715 		case DIF_OP_ULDSB:
8716 		case DIF_OP_ULDSH:
8717 		case DIF_OP_ULDSW:
8718 		case DIF_OP_ULDUB:
8719 		case DIF_OP_ULDUH:
8720 		case DIF_OP_ULDUW:
8721 		case DIF_OP_ULDX:
8722 			if (r1 >= nregs)
8723 				err += efunc(pc, "invalid register %u\n", r1);
8724 			if (r2 != 0)
8725 				err += efunc(pc, "non-zero reserved bits\n");
8726 			if (rd >= nregs)
8727 				err += efunc(pc, "invalid register %u\n", rd);
8728 			if (rd == 0)
8729 				err += efunc(pc, "cannot write to %r0\n");
8730 			break;
8731 		case DIF_OP_STB:
8732 		case DIF_OP_STH:
8733 		case DIF_OP_STW:
8734 		case DIF_OP_STX:
8735 			if (r1 >= nregs)
8736 				err += efunc(pc, "invalid register %u\n", r1);
8737 			if (r2 != 0)
8738 				err += efunc(pc, "non-zero reserved bits\n");
8739 			if (rd >= nregs)
8740 				err += efunc(pc, "invalid register %u\n", rd);
8741 			if (rd == 0)
8742 				err += efunc(pc, "cannot write to 0 address\n");
8743 			break;
8744 		case DIF_OP_CMP:
8745 		case DIF_OP_SCMP:
8746 			if (r1 >= nregs)
8747 				err += efunc(pc, "invalid register %u\n", r1);
8748 			if (r2 >= nregs)
8749 				err += efunc(pc, "invalid register %u\n", r2);
8750 			if (rd != 0)
8751 				err += efunc(pc, "non-zero reserved bits\n");
8752 			break;
8753 		case DIF_OP_TST:
8754 			if (r1 >= nregs)
8755 				err += efunc(pc, "invalid register %u\n", r1);
8756 			if (r2 != 0 || rd != 0)
8757 				err += efunc(pc, "non-zero reserved bits\n");
8758 			break;
8759 		case DIF_OP_BA:
8760 		case DIF_OP_BE:
8761 		case DIF_OP_BNE:
8762 		case DIF_OP_BG:
8763 		case DIF_OP_BGU:
8764 		case DIF_OP_BGE:
8765 		case DIF_OP_BGEU:
8766 		case DIF_OP_BL:
8767 		case DIF_OP_BLU:
8768 		case DIF_OP_BLE:
8769 		case DIF_OP_BLEU:
8770 			if (label >= dp->dtdo_len) {
8771 				err += efunc(pc, "invalid branch target %u\n",
8772 				    label);
8773 			}
8774 			if (label <= pc) {
8775 				err += efunc(pc, "backward branch to %u\n",
8776 				    label);
8777 			}
8778 			break;
8779 		case DIF_OP_RET:
8780 			if (r1 != 0 || r2 != 0)
8781 				err += efunc(pc, "non-zero reserved bits\n");
8782 			if (rd >= nregs)
8783 				err += efunc(pc, "invalid register %u\n", rd);
8784 			break;
8785 		case DIF_OP_NOP:
8786 		case DIF_OP_POPTS:
8787 		case DIF_OP_FLUSHTS:
8788 			if (r1 != 0 || r2 != 0 || rd != 0)
8789 				err += efunc(pc, "non-zero reserved bits\n");
8790 			break;
8791 		case DIF_OP_SETX:
8792 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8793 				err += efunc(pc, "invalid integer ref %u\n",
8794 				    DIF_INSTR_INTEGER(instr));
8795 			}
8796 			if (rd >= nregs)
8797 				err += efunc(pc, "invalid register %u\n", rd);
8798 			if (rd == 0)
8799 				err += efunc(pc, "cannot write to %r0\n");
8800 			break;
8801 		case DIF_OP_SETS:
8802 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8803 				err += efunc(pc, "invalid string ref %u\n",
8804 				    DIF_INSTR_STRING(instr));
8805 			}
8806 			if (rd >= nregs)
8807 				err += efunc(pc, "invalid register %u\n", rd);
8808 			if (rd == 0)
8809 				err += efunc(pc, "cannot write to %r0\n");
8810 			break;
8811 		case DIF_OP_LDGA:
8812 		case DIF_OP_LDTA:
8813 			if (r1 > DIF_VAR_ARRAY_MAX)
8814 				err += efunc(pc, "invalid array %u\n", r1);
8815 			if (r2 >= nregs)
8816 				err += efunc(pc, "invalid register %u\n", r2);
8817 			if (rd >= nregs)
8818 				err += efunc(pc, "invalid register %u\n", rd);
8819 			if (rd == 0)
8820 				err += efunc(pc, "cannot write to %r0\n");
8821 			break;
8822 		case DIF_OP_LDGS:
8823 		case DIF_OP_LDTS:
8824 		case DIF_OP_LDLS:
8825 		case DIF_OP_LDGAA:
8826 		case DIF_OP_LDTAA:
8827 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8828 				err += efunc(pc, "invalid variable %u\n", v);
8829 			if (rd >= nregs)
8830 				err += efunc(pc, "invalid register %u\n", rd);
8831 			if (rd == 0)
8832 				err += efunc(pc, "cannot write to %r0\n");
8833 			break;
8834 		case DIF_OP_STGS:
8835 		case DIF_OP_STTS:
8836 		case DIF_OP_STLS:
8837 		case DIF_OP_STGAA:
8838 		case DIF_OP_STTAA:
8839 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8840 				err += efunc(pc, "invalid variable %u\n", v);
8841 			if (rs >= nregs)
8842 				err += efunc(pc, "invalid register %u\n", rd);
8843 			break;
8844 		case DIF_OP_CALL:
8845 			if (subr > DIF_SUBR_MAX)
8846 				err += efunc(pc, "invalid subr %u\n", subr);
8847 			if (rd >= nregs)
8848 				err += efunc(pc, "invalid register %u\n", rd);
8849 			if (rd == 0)
8850 				err += efunc(pc, "cannot write to %r0\n");
8851 
8852 			if (subr == DIF_SUBR_COPYOUT ||
8853 			    subr == DIF_SUBR_COPYOUTSTR) {
8854 				dp->dtdo_destructive = 1;
8855 			}
8856 			break;
8857 		case DIF_OP_PUSHTR:
8858 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8859 				err += efunc(pc, "invalid ref type %u\n", type);
8860 			if (r2 >= nregs)
8861 				err += efunc(pc, "invalid register %u\n", r2);
8862 			if (rs >= nregs)
8863 				err += efunc(pc, "invalid register %u\n", rs);
8864 			break;
8865 		case DIF_OP_PUSHTV:
8866 			if (type != DIF_TYPE_CTF)
8867 				err += efunc(pc, "invalid val type %u\n", type);
8868 			if (r2 >= nregs)
8869 				err += efunc(pc, "invalid register %u\n", r2);
8870 			if (rs >= nregs)
8871 				err += efunc(pc, "invalid register %u\n", rs);
8872 			break;
8873 		default:
8874 			err += efunc(pc, "invalid opcode %u\n",
8875 			    DIF_INSTR_OP(instr));
8876 		}
8877 	}
8878 
8879 	if (dp->dtdo_len != 0 &&
8880 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8881 		err += efunc(dp->dtdo_len - 1,
8882 		    "expected 'ret' as last DIF instruction\n");
8883 	}
8884 
8885 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8886 		/*
8887 		 * If we're not returning by reference, the size must be either
8888 		 * 0 or the size of one of the base types.
8889 		 */
8890 		switch (dp->dtdo_rtype.dtdt_size) {
8891 		case 0:
8892 		case sizeof (uint8_t):
8893 		case sizeof (uint16_t):
8894 		case sizeof (uint32_t):
8895 		case sizeof (uint64_t):
8896 			break;
8897 
8898 		default:
8899 			err += efunc(dp->dtdo_len - 1, "bad return size");
8900 		}
8901 	}
8902 
8903 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8904 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8905 		dtrace_diftype_t *vt, *et;
8906 		uint_t id, ndx;
8907 
8908 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8909 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8910 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8911 			err += efunc(i, "unrecognized variable scope %d\n",
8912 			    v->dtdv_scope);
8913 			break;
8914 		}
8915 
8916 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8917 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8918 			err += efunc(i, "unrecognized variable type %d\n",
8919 			    v->dtdv_kind);
8920 			break;
8921 		}
8922 
8923 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8924 			err += efunc(i, "%d exceeds variable id limit\n", id);
8925 			break;
8926 		}
8927 
8928 		if (id < DIF_VAR_OTHER_UBASE)
8929 			continue;
8930 
8931 		/*
8932 		 * For user-defined variables, we need to check that this
8933 		 * definition is identical to any previous definition that we
8934 		 * encountered.
8935 		 */
8936 		ndx = id - DIF_VAR_OTHER_UBASE;
8937 
8938 		switch (v->dtdv_scope) {
8939 		case DIFV_SCOPE_GLOBAL:
8940 			if (ndx < vstate->dtvs_nglobals) {
8941 				dtrace_statvar_t *svar;
8942 
8943 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8944 					existing = &svar->dtsv_var;
8945 			}
8946 
8947 			break;
8948 
8949 		case DIFV_SCOPE_THREAD:
8950 			if (ndx < vstate->dtvs_ntlocals)
8951 				existing = &vstate->dtvs_tlocals[ndx];
8952 			break;
8953 
8954 		case DIFV_SCOPE_LOCAL:
8955 			if (ndx < vstate->dtvs_nlocals) {
8956 				dtrace_statvar_t *svar;
8957 
8958 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8959 					existing = &svar->dtsv_var;
8960 			}
8961 
8962 			break;
8963 		}
8964 
8965 		vt = &v->dtdv_type;
8966 
8967 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8968 			if (vt->dtdt_size == 0) {
8969 				err += efunc(i, "zero-sized variable\n");
8970 				break;
8971 			}
8972 
8973 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8974 			    vt->dtdt_size > dtrace_global_maxsize) {
8975 				err += efunc(i, "oversized by-ref global\n");
8976 				break;
8977 			}
8978 		}
8979 
8980 		if (existing == NULL || existing->dtdv_id == 0)
8981 			continue;
8982 
8983 		ASSERT(existing->dtdv_id == v->dtdv_id);
8984 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8985 
8986 		if (existing->dtdv_kind != v->dtdv_kind)
8987 			err += efunc(i, "%d changed variable kind\n", id);
8988 
8989 		et = &existing->dtdv_type;
8990 
8991 		if (vt->dtdt_flags != et->dtdt_flags) {
8992 			err += efunc(i, "%d changed variable type flags\n", id);
8993 			break;
8994 		}
8995 
8996 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8997 			err += efunc(i, "%d changed variable type size\n", id);
8998 			break;
8999 		}
9000 	}
9001 
9002 	return (err);
9003 }
9004 
9005 /*
9006  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9007  * are much more constrained than normal DIFOs.  Specifically, they may
9008  * not:
9009  *
9010  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9011  *    miscellaneous string routines
9012  * 2. Access DTrace variables other than the args[] array, and the
9013  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9014  * 3. Have thread-local variables.
9015  * 4. Have dynamic variables.
9016  */
9017 static int
9018 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9019 {
9020 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9021 	int err = 0;
9022 	uint_t pc;
9023 
9024 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9025 		dif_instr_t instr = dp->dtdo_buf[pc];
9026 
9027 		uint_t v = DIF_INSTR_VAR(instr);
9028 		uint_t subr = DIF_INSTR_SUBR(instr);
9029 		uint_t op = DIF_INSTR_OP(instr);
9030 
9031 		switch (op) {
9032 		case DIF_OP_OR:
9033 		case DIF_OP_XOR:
9034 		case DIF_OP_AND:
9035 		case DIF_OP_SLL:
9036 		case DIF_OP_SRL:
9037 		case DIF_OP_SRA:
9038 		case DIF_OP_SUB:
9039 		case DIF_OP_ADD:
9040 		case DIF_OP_MUL:
9041 		case DIF_OP_SDIV:
9042 		case DIF_OP_UDIV:
9043 		case DIF_OP_SREM:
9044 		case DIF_OP_UREM:
9045 		case DIF_OP_COPYS:
9046 		case DIF_OP_NOT:
9047 		case DIF_OP_MOV:
9048 		case DIF_OP_RLDSB:
9049 		case DIF_OP_RLDSH:
9050 		case DIF_OP_RLDSW:
9051 		case DIF_OP_RLDUB:
9052 		case DIF_OP_RLDUH:
9053 		case DIF_OP_RLDUW:
9054 		case DIF_OP_RLDX:
9055 		case DIF_OP_ULDSB:
9056 		case DIF_OP_ULDSH:
9057 		case DIF_OP_ULDSW:
9058 		case DIF_OP_ULDUB:
9059 		case DIF_OP_ULDUH:
9060 		case DIF_OP_ULDUW:
9061 		case DIF_OP_ULDX:
9062 		case DIF_OP_STB:
9063 		case DIF_OP_STH:
9064 		case DIF_OP_STW:
9065 		case DIF_OP_STX:
9066 		case DIF_OP_ALLOCS:
9067 		case DIF_OP_CMP:
9068 		case DIF_OP_SCMP:
9069 		case DIF_OP_TST:
9070 		case DIF_OP_BA:
9071 		case DIF_OP_BE:
9072 		case DIF_OP_BNE:
9073 		case DIF_OP_BG:
9074 		case DIF_OP_BGU:
9075 		case DIF_OP_BGE:
9076 		case DIF_OP_BGEU:
9077 		case DIF_OP_BL:
9078 		case DIF_OP_BLU:
9079 		case DIF_OP_BLE:
9080 		case DIF_OP_BLEU:
9081 		case DIF_OP_RET:
9082 		case DIF_OP_NOP:
9083 		case DIF_OP_POPTS:
9084 		case DIF_OP_FLUSHTS:
9085 		case DIF_OP_SETX:
9086 		case DIF_OP_SETS:
9087 		case DIF_OP_LDGA:
9088 		case DIF_OP_LDLS:
9089 		case DIF_OP_STGS:
9090 		case DIF_OP_STLS:
9091 		case DIF_OP_PUSHTR:
9092 		case DIF_OP_PUSHTV:
9093 			break;
9094 
9095 		case DIF_OP_LDGS:
9096 			if (v >= DIF_VAR_OTHER_UBASE)
9097 				break;
9098 
9099 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9100 				break;
9101 
9102 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9103 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9104 			    v == DIF_VAR_EXECARGS ||
9105 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9106 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9107 				break;
9108 
9109 			err += efunc(pc, "illegal variable %u\n", v);
9110 			break;
9111 
9112 		case DIF_OP_LDTA:
9113 		case DIF_OP_LDTS:
9114 		case DIF_OP_LDGAA:
9115 		case DIF_OP_LDTAA:
9116 			err += efunc(pc, "illegal dynamic variable load\n");
9117 			break;
9118 
9119 		case DIF_OP_STTS:
9120 		case DIF_OP_STGAA:
9121 		case DIF_OP_STTAA:
9122 			err += efunc(pc, "illegal dynamic variable store\n");
9123 			break;
9124 
9125 		case DIF_OP_CALL:
9126 			if (subr == DIF_SUBR_ALLOCA ||
9127 			    subr == DIF_SUBR_BCOPY ||
9128 			    subr == DIF_SUBR_COPYIN ||
9129 			    subr == DIF_SUBR_COPYINTO ||
9130 			    subr == DIF_SUBR_COPYINSTR ||
9131 			    subr == DIF_SUBR_INDEX ||
9132 			    subr == DIF_SUBR_INET_NTOA ||
9133 			    subr == DIF_SUBR_INET_NTOA6 ||
9134 			    subr == DIF_SUBR_INET_NTOP ||
9135 			    subr == DIF_SUBR_LLTOSTR ||
9136 			    subr == DIF_SUBR_RINDEX ||
9137 			    subr == DIF_SUBR_STRCHR ||
9138 			    subr == DIF_SUBR_STRJOIN ||
9139 			    subr == DIF_SUBR_STRRCHR ||
9140 			    subr == DIF_SUBR_STRSTR ||
9141 			    subr == DIF_SUBR_HTONS ||
9142 			    subr == DIF_SUBR_HTONL ||
9143 			    subr == DIF_SUBR_HTONLL ||
9144 			    subr == DIF_SUBR_NTOHS ||
9145 			    subr == DIF_SUBR_NTOHL ||
9146 			    subr == DIF_SUBR_NTOHLL ||
9147 			    subr == DIF_SUBR_MEMREF ||
9148 #if !defined(sun)
9149 			    subr == DIF_SUBR_MEMSTR ||
9150 #endif
9151 			    subr == DIF_SUBR_TYPEREF)
9152 				break;
9153 
9154 			err += efunc(pc, "invalid subr %u\n", subr);
9155 			break;
9156 
9157 		default:
9158 			err += efunc(pc, "invalid opcode %u\n",
9159 			    DIF_INSTR_OP(instr));
9160 		}
9161 	}
9162 
9163 	return (err);
9164 }
9165 
9166 /*
9167  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9168  * basis; 0 if not.
9169  */
9170 static int
9171 dtrace_difo_cacheable(dtrace_difo_t *dp)
9172 {
9173 	int i;
9174 
9175 	if (dp == NULL)
9176 		return (0);
9177 
9178 	for (i = 0; i < dp->dtdo_varlen; i++) {
9179 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9180 
9181 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9182 			continue;
9183 
9184 		switch (v->dtdv_id) {
9185 		case DIF_VAR_CURTHREAD:
9186 		case DIF_VAR_PID:
9187 		case DIF_VAR_TID:
9188 		case DIF_VAR_EXECARGS:
9189 		case DIF_VAR_EXECNAME:
9190 		case DIF_VAR_ZONENAME:
9191 			break;
9192 
9193 		default:
9194 			return (0);
9195 		}
9196 	}
9197 
9198 	/*
9199 	 * This DIF object may be cacheable.  Now we need to look for any
9200 	 * array loading instructions, any memory loading instructions, or
9201 	 * any stores to thread-local variables.
9202 	 */
9203 	for (i = 0; i < dp->dtdo_len; i++) {
9204 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9205 
9206 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9207 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9208 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9209 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9210 			return (0);
9211 	}
9212 
9213 	return (1);
9214 }
9215 
9216 static void
9217 dtrace_difo_hold(dtrace_difo_t *dp)
9218 {
9219 	int i;
9220 
9221 	ASSERT(MUTEX_HELD(&dtrace_lock));
9222 
9223 	dp->dtdo_refcnt++;
9224 	ASSERT(dp->dtdo_refcnt != 0);
9225 
9226 	/*
9227 	 * We need to check this DIF object for references to the variable
9228 	 * DIF_VAR_VTIMESTAMP.
9229 	 */
9230 	for (i = 0; i < dp->dtdo_varlen; i++) {
9231 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9232 
9233 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9234 			continue;
9235 
9236 		if (dtrace_vtime_references++ == 0)
9237 			dtrace_vtime_enable();
9238 	}
9239 }
9240 
9241 /*
9242  * This routine calculates the dynamic variable chunksize for a given DIF
9243  * object.  The calculation is not fool-proof, and can probably be tricked by
9244  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9245  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9246  * if a dynamic variable size exceeds the chunksize.
9247  */
9248 static void
9249 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9250 {
9251 	uint64_t sval = 0;
9252 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9253 	const dif_instr_t *text = dp->dtdo_buf;
9254 	uint_t pc, srd = 0;
9255 	uint_t ttop = 0;
9256 	size_t size, ksize;
9257 	uint_t id, i;
9258 
9259 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9260 		dif_instr_t instr = text[pc];
9261 		uint_t op = DIF_INSTR_OP(instr);
9262 		uint_t rd = DIF_INSTR_RD(instr);
9263 		uint_t r1 = DIF_INSTR_R1(instr);
9264 		uint_t nkeys = 0;
9265 		uchar_t scope = 0;
9266 
9267 		dtrace_key_t *key = tupregs;
9268 
9269 		switch (op) {
9270 		case DIF_OP_SETX:
9271 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9272 			srd = rd;
9273 			continue;
9274 
9275 		case DIF_OP_STTS:
9276 			key = &tupregs[DIF_DTR_NREGS];
9277 			key[0].dttk_size = 0;
9278 			key[1].dttk_size = 0;
9279 			nkeys = 2;
9280 			scope = DIFV_SCOPE_THREAD;
9281 			break;
9282 
9283 		case DIF_OP_STGAA:
9284 		case DIF_OP_STTAA:
9285 			nkeys = ttop;
9286 
9287 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9288 				key[nkeys++].dttk_size = 0;
9289 
9290 			key[nkeys++].dttk_size = 0;
9291 
9292 			if (op == DIF_OP_STTAA) {
9293 				scope = DIFV_SCOPE_THREAD;
9294 			} else {
9295 				scope = DIFV_SCOPE_GLOBAL;
9296 			}
9297 
9298 			break;
9299 
9300 		case DIF_OP_PUSHTR:
9301 			if (ttop == DIF_DTR_NREGS)
9302 				return;
9303 
9304 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9305 				/*
9306 				 * If the register for the size of the "pushtr"
9307 				 * is %r0 (or the value is 0) and the type is
9308 				 * a string, we'll use the system-wide default
9309 				 * string size.
9310 				 */
9311 				tupregs[ttop++].dttk_size =
9312 				    dtrace_strsize_default;
9313 			} else {
9314 				if (srd == 0)
9315 					return;
9316 
9317 				tupregs[ttop++].dttk_size = sval;
9318 			}
9319 
9320 			break;
9321 
9322 		case DIF_OP_PUSHTV:
9323 			if (ttop == DIF_DTR_NREGS)
9324 				return;
9325 
9326 			tupregs[ttop++].dttk_size = 0;
9327 			break;
9328 
9329 		case DIF_OP_FLUSHTS:
9330 			ttop = 0;
9331 			break;
9332 
9333 		case DIF_OP_POPTS:
9334 			if (ttop != 0)
9335 				ttop--;
9336 			break;
9337 		}
9338 
9339 		sval = 0;
9340 		srd = 0;
9341 
9342 		if (nkeys == 0)
9343 			continue;
9344 
9345 		/*
9346 		 * We have a dynamic variable allocation; calculate its size.
9347 		 */
9348 		for (ksize = 0, i = 0; i < nkeys; i++)
9349 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9350 
9351 		size = sizeof (dtrace_dynvar_t);
9352 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9353 		size += ksize;
9354 
9355 		/*
9356 		 * Now we need to determine the size of the stored data.
9357 		 */
9358 		id = DIF_INSTR_VAR(instr);
9359 
9360 		for (i = 0; i < dp->dtdo_varlen; i++) {
9361 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9362 
9363 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9364 				size += v->dtdv_type.dtdt_size;
9365 				break;
9366 			}
9367 		}
9368 
9369 		if (i == dp->dtdo_varlen)
9370 			return;
9371 
9372 		/*
9373 		 * We have the size.  If this is larger than the chunk size
9374 		 * for our dynamic variable state, reset the chunk size.
9375 		 */
9376 		size = P2ROUNDUP(size, sizeof (uint64_t));
9377 
9378 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9379 			vstate->dtvs_dynvars.dtds_chunksize = size;
9380 	}
9381 }
9382 
9383 static void
9384 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9385 {
9386 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9387 	uint_t id;
9388 
9389 	ASSERT(MUTEX_HELD(&dtrace_lock));
9390 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9391 
9392 	for (i = 0; i < dp->dtdo_varlen; i++) {
9393 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9394 		dtrace_statvar_t *svar, ***svarp = NULL;
9395 		size_t dsize = 0;
9396 		uint8_t scope = v->dtdv_scope;
9397 		int *np = NULL;
9398 
9399 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9400 			continue;
9401 
9402 		id -= DIF_VAR_OTHER_UBASE;
9403 
9404 		switch (scope) {
9405 		case DIFV_SCOPE_THREAD:
9406 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9407 				dtrace_difv_t *tlocals;
9408 
9409 				if ((ntlocals = (otlocals << 1)) == 0)
9410 					ntlocals = 1;
9411 
9412 				osz = otlocals * sizeof (dtrace_difv_t);
9413 				nsz = ntlocals * sizeof (dtrace_difv_t);
9414 
9415 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9416 
9417 				if (osz != 0) {
9418 					bcopy(vstate->dtvs_tlocals,
9419 					    tlocals, osz);
9420 					kmem_free(vstate->dtvs_tlocals, osz);
9421 				}
9422 
9423 				vstate->dtvs_tlocals = tlocals;
9424 				vstate->dtvs_ntlocals = ntlocals;
9425 			}
9426 
9427 			vstate->dtvs_tlocals[id] = *v;
9428 			continue;
9429 
9430 		case DIFV_SCOPE_LOCAL:
9431 			np = &vstate->dtvs_nlocals;
9432 			svarp = &vstate->dtvs_locals;
9433 
9434 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9435 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9436 				    sizeof (uint64_t));
9437 			else
9438 				dsize = NCPU * sizeof (uint64_t);
9439 
9440 			break;
9441 
9442 		case DIFV_SCOPE_GLOBAL:
9443 			np = &vstate->dtvs_nglobals;
9444 			svarp = &vstate->dtvs_globals;
9445 
9446 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9447 				dsize = v->dtdv_type.dtdt_size +
9448 				    sizeof (uint64_t);
9449 
9450 			break;
9451 
9452 		default:
9453 			ASSERT(0);
9454 		}
9455 
9456 		while (id >= (oldsvars = *np)) {
9457 			dtrace_statvar_t **statics;
9458 			int newsvars, oldsize, newsize;
9459 
9460 			if ((newsvars = (oldsvars << 1)) == 0)
9461 				newsvars = 1;
9462 
9463 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9464 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9465 
9466 			statics = kmem_zalloc(newsize, KM_SLEEP);
9467 
9468 			if (oldsize != 0) {
9469 				bcopy(*svarp, statics, oldsize);
9470 				kmem_free(*svarp, oldsize);
9471 			}
9472 
9473 			*svarp = statics;
9474 			*np = newsvars;
9475 		}
9476 
9477 		if ((svar = (*svarp)[id]) == NULL) {
9478 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9479 			svar->dtsv_var = *v;
9480 
9481 			if ((svar->dtsv_size = dsize) != 0) {
9482 				svar->dtsv_data = (uint64_t)(uintptr_t)
9483 				    kmem_zalloc(dsize, KM_SLEEP);
9484 			}
9485 
9486 			(*svarp)[id] = svar;
9487 		}
9488 
9489 		svar->dtsv_refcnt++;
9490 	}
9491 
9492 	dtrace_difo_chunksize(dp, vstate);
9493 	dtrace_difo_hold(dp);
9494 }
9495 
9496 static dtrace_difo_t *
9497 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9498 {
9499 	dtrace_difo_t *new;
9500 	size_t sz;
9501 
9502 	ASSERT(dp->dtdo_buf != NULL);
9503 	ASSERT(dp->dtdo_refcnt != 0);
9504 
9505 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9506 
9507 	ASSERT(dp->dtdo_buf != NULL);
9508 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9509 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9510 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9511 	new->dtdo_len = dp->dtdo_len;
9512 
9513 	if (dp->dtdo_strtab != NULL) {
9514 		ASSERT(dp->dtdo_strlen != 0);
9515 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9516 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9517 		new->dtdo_strlen = dp->dtdo_strlen;
9518 	}
9519 
9520 	if (dp->dtdo_inttab != NULL) {
9521 		ASSERT(dp->dtdo_intlen != 0);
9522 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9523 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9524 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9525 		new->dtdo_intlen = dp->dtdo_intlen;
9526 	}
9527 
9528 	if (dp->dtdo_vartab != NULL) {
9529 		ASSERT(dp->dtdo_varlen != 0);
9530 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9531 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9532 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9533 		new->dtdo_varlen = dp->dtdo_varlen;
9534 	}
9535 
9536 	dtrace_difo_init(new, vstate);
9537 	return (new);
9538 }
9539 
9540 static void
9541 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9542 {
9543 	int i;
9544 
9545 	ASSERT(dp->dtdo_refcnt == 0);
9546 
9547 	for (i = 0; i < dp->dtdo_varlen; i++) {
9548 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9549 		dtrace_statvar_t *svar, **svarp = NULL;
9550 		uint_t id;
9551 		uint8_t scope = v->dtdv_scope;
9552 		int *np = NULL;
9553 
9554 		switch (scope) {
9555 		case DIFV_SCOPE_THREAD:
9556 			continue;
9557 
9558 		case DIFV_SCOPE_LOCAL:
9559 			np = &vstate->dtvs_nlocals;
9560 			svarp = vstate->dtvs_locals;
9561 			break;
9562 
9563 		case DIFV_SCOPE_GLOBAL:
9564 			np = &vstate->dtvs_nglobals;
9565 			svarp = vstate->dtvs_globals;
9566 			break;
9567 
9568 		default:
9569 			ASSERT(0);
9570 		}
9571 
9572 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9573 			continue;
9574 
9575 		id -= DIF_VAR_OTHER_UBASE;
9576 		ASSERT(id < *np);
9577 
9578 		svar = svarp[id];
9579 		ASSERT(svar != NULL);
9580 		ASSERT(svar->dtsv_refcnt > 0);
9581 
9582 		if (--svar->dtsv_refcnt > 0)
9583 			continue;
9584 
9585 		if (svar->dtsv_size != 0) {
9586 			ASSERT(svar->dtsv_data != 0);
9587 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9588 			    svar->dtsv_size);
9589 		}
9590 
9591 		kmem_free(svar, sizeof (dtrace_statvar_t));
9592 		svarp[id] = NULL;
9593 	}
9594 
9595 	if (dp->dtdo_buf != NULL)
9596 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9597 	if (dp->dtdo_inttab != NULL)
9598 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9599 	if (dp->dtdo_strtab != NULL)
9600 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9601 	if (dp->dtdo_vartab != NULL)
9602 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9603 
9604 	kmem_free(dp, sizeof (dtrace_difo_t));
9605 }
9606 
9607 static void
9608 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9609 {
9610 	int i;
9611 
9612 	ASSERT(MUTEX_HELD(&dtrace_lock));
9613 	ASSERT(dp->dtdo_refcnt != 0);
9614 
9615 	for (i = 0; i < dp->dtdo_varlen; i++) {
9616 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9617 
9618 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9619 			continue;
9620 
9621 		ASSERT(dtrace_vtime_references > 0);
9622 		if (--dtrace_vtime_references == 0)
9623 			dtrace_vtime_disable();
9624 	}
9625 
9626 	if (--dp->dtdo_refcnt == 0)
9627 		dtrace_difo_destroy(dp, vstate);
9628 }
9629 
9630 /*
9631  * DTrace Format Functions
9632  */
9633 static uint16_t
9634 dtrace_format_add(dtrace_state_t *state, char *str)
9635 {
9636 	char *fmt, **new;
9637 	uint16_t ndx, len = strlen(str) + 1;
9638 
9639 	fmt = kmem_zalloc(len, KM_SLEEP);
9640 	bcopy(str, fmt, len);
9641 
9642 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9643 		if (state->dts_formats[ndx] == NULL) {
9644 			state->dts_formats[ndx] = fmt;
9645 			return (ndx + 1);
9646 		}
9647 	}
9648 
9649 	if (state->dts_nformats == USHRT_MAX) {
9650 		/*
9651 		 * This is only likely if a denial-of-service attack is being
9652 		 * attempted.  As such, it's okay to fail silently here.
9653 		 */
9654 		kmem_free(fmt, len);
9655 		return (0);
9656 	}
9657 
9658 	/*
9659 	 * For simplicity, we always resize the formats array to be exactly the
9660 	 * number of formats.
9661 	 */
9662 	ndx = state->dts_nformats++;
9663 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9664 
9665 	if (state->dts_formats != NULL) {
9666 		ASSERT(ndx != 0);
9667 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9668 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9669 	}
9670 
9671 	state->dts_formats = new;
9672 	state->dts_formats[ndx] = fmt;
9673 
9674 	return (ndx + 1);
9675 }
9676 
9677 static void
9678 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9679 {
9680 	char *fmt;
9681 
9682 	ASSERT(state->dts_formats != NULL);
9683 	ASSERT(format <= state->dts_nformats);
9684 	ASSERT(state->dts_formats[format - 1] != NULL);
9685 
9686 	fmt = state->dts_formats[format - 1];
9687 	kmem_free(fmt, strlen(fmt) + 1);
9688 	state->dts_formats[format - 1] = NULL;
9689 }
9690 
9691 static void
9692 dtrace_format_destroy(dtrace_state_t *state)
9693 {
9694 	int i;
9695 
9696 	if (state->dts_nformats == 0) {
9697 		ASSERT(state->dts_formats == NULL);
9698 		return;
9699 	}
9700 
9701 	ASSERT(state->dts_formats != NULL);
9702 
9703 	for (i = 0; i < state->dts_nformats; i++) {
9704 		char *fmt = state->dts_formats[i];
9705 
9706 		if (fmt == NULL)
9707 			continue;
9708 
9709 		kmem_free(fmt, strlen(fmt) + 1);
9710 	}
9711 
9712 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9713 	state->dts_nformats = 0;
9714 	state->dts_formats = NULL;
9715 }
9716 
9717 /*
9718  * DTrace Predicate Functions
9719  */
9720 static dtrace_predicate_t *
9721 dtrace_predicate_create(dtrace_difo_t *dp)
9722 {
9723 	dtrace_predicate_t *pred;
9724 
9725 	ASSERT(MUTEX_HELD(&dtrace_lock));
9726 	ASSERT(dp->dtdo_refcnt != 0);
9727 
9728 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9729 	pred->dtp_difo = dp;
9730 	pred->dtp_refcnt = 1;
9731 
9732 	if (!dtrace_difo_cacheable(dp))
9733 		return (pred);
9734 
9735 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9736 		/*
9737 		 * This is only theoretically possible -- we have had 2^32
9738 		 * cacheable predicates on this machine.  We cannot allow any
9739 		 * more predicates to become cacheable:  as unlikely as it is,
9740 		 * there may be a thread caching a (now stale) predicate cache
9741 		 * ID. (N.B.: the temptation is being successfully resisted to
9742 		 * have this cmn_err() "Holy shit -- we executed this code!")
9743 		 */
9744 		return (pred);
9745 	}
9746 
9747 	pred->dtp_cacheid = dtrace_predcache_id++;
9748 
9749 	return (pred);
9750 }
9751 
9752 static void
9753 dtrace_predicate_hold(dtrace_predicate_t *pred)
9754 {
9755 	ASSERT(MUTEX_HELD(&dtrace_lock));
9756 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9757 	ASSERT(pred->dtp_refcnt > 0);
9758 
9759 	pred->dtp_refcnt++;
9760 }
9761 
9762 static void
9763 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9764 {
9765 	dtrace_difo_t *dp = pred->dtp_difo;
9766 
9767 	ASSERT(MUTEX_HELD(&dtrace_lock));
9768 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9769 	ASSERT(pred->dtp_refcnt > 0);
9770 
9771 	if (--pred->dtp_refcnt == 0) {
9772 		dtrace_difo_release(pred->dtp_difo, vstate);
9773 		kmem_free(pred, sizeof (dtrace_predicate_t));
9774 	}
9775 }
9776 
9777 /*
9778  * DTrace Action Description Functions
9779  */
9780 static dtrace_actdesc_t *
9781 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9782     uint64_t uarg, uint64_t arg)
9783 {
9784 	dtrace_actdesc_t *act;
9785 
9786 #if defined(sun)
9787 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9788 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9789 #endif
9790 
9791 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9792 	act->dtad_kind = kind;
9793 	act->dtad_ntuple = ntuple;
9794 	act->dtad_uarg = uarg;
9795 	act->dtad_arg = arg;
9796 	act->dtad_refcnt = 1;
9797 
9798 	return (act);
9799 }
9800 
9801 static void
9802 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9803 {
9804 	ASSERT(act->dtad_refcnt >= 1);
9805 	act->dtad_refcnt++;
9806 }
9807 
9808 static void
9809 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9810 {
9811 	dtrace_actkind_t kind = act->dtad_kind;
9812 	dtrace_difo_t *dp;
9813 
9814 	ASSERT(act->dtad_refcnt >= 1);
9815 
9816 	if (--act->dtad_refcnt != 0)
9817 		return;
9818 
9819 	if ((dp = act->dtad_difo) != NULL)
9820 		dtrace_difo_release(dp, vstate);
9821 
9822 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9823 		char *str = (char *)(uintptr_t)act->dtad_arg;
9824 
9825 #if defined(sun)
9826 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9827 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9828 #endif
9829 
9830 		if (str != NULL)
9831 			kmem_free(str, strlen(str) + 1);
9832 	}
9833 
9834 	kmem_free(act, sizeof (dtrace_actdesc_t));
9835 }
9836 
9837 /*
9838  * DTrace ECB Functions
9839  */
9840 static dtrace_ecb_t *
9841 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9842 {
9843 	dtrace_ecb_t *ecb;
9844 	dtrace_epid_t epid;
9845 
9846 	ASSERT(MUTEX_HELD(&dtrace_lock));
9847 
9848 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9849 	ecb->dte_predicate = NULL;
9850 	ecb->dte_probe = probe;
9851 
9852 	/*
9853 	 * The default size is the size of the default action: recording
9854 	 * the header.
9855 	 */
9856 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9857 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9858 
9859 	epid = state->dts_epid++;
9860 
9861 	if (epid - 1 >= state->dts_necbs) {
9862 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9863 		int necbs = state->dts_necbs << 1;
9864 
9865 		ASSERT(epid == state->dts_necbs + 1);
9866 
9867 		if (necbs == 0) {
9868 			ASSERT(oecbs == NULL);
9869 			necbs = 1;
9870 		}
9871 
9872 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9873 
9874 		if (oecbs != NULL)
9875 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9876 
9877 		dtrace_membar_producer();
9878 		state->dts_ecbs = ecbs;
9879 
9880 		if (oecbs != NULL) {
9881 			/*
9882 			 * If this state is active, we must dtrace_sync()
9883 			 * before we can free the old dts_ecbs array:  we're
9884 			 * coming in hot, and there may be active ring
9885 			 * buffer processing (which indexes into the dts_ecbs
9886 			 * array) on another CPU.
9887 			 */
9888 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9889 				dtrace_sync();
9890 
9891 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9892 		}
9893 
9894 		dtrace_membar_producer();
9895 		state->dts_necbs = necbs;
9896 	}
9897 
9898 	ecb->dte_state = state;
9899 
9900 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9901 	dtrace_membar_producer();
9902 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9903 
9904 	return (ecb);
9905 }
9906 
9907 static void
9908 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9909 {
9910 	dtrace_probe_t *probe = ecb->dte_probe;
9911 
9912 	ASSERT(MUTEX_HELD(&cpu_lock));
9913 	ASSERT(MUTEX_HELD(&dtrace_lock));
9914 	ASSERT(ecb->dte_next == NULL);
9915 
9916 	if (probe == NULL) {
9917 		/*
9918 		 * This is the NULL probe -- there's nothing to do.
9919 		 */
9920 		return;
9921 	}
9922 
9923 	if (probe->dtpr_ecb == NULL) {
9924 		dtrace_provider_t *prov = probe->dtpr_provider;
9925 
9926 		/*
9927 		 * We're the first ECB on this probe.
9928 		 */
9929 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9930 
9931 		if (ecb->dte_predicate != NULL)
9932 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9933 
9934 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9935 		    probe->dtpr_id, probe->dtpr_arg);
9936 	} else {
9937 		/*
9938 		 * This probe is already active.  Swing the last pointer to
9939 		 * point to the new ECB, and issue a dtrace_sync() to assure
9940 		 * that all CPUs have seen the change.
9941 		 */
9942 		ASSERT(probe->dtpr_ecb_last != NULL);
9943 		probe->dtpr_ecb_last->dte_next = ecb;
9944 		probe->dtpr_ecb_last = ecb;
9945 		probe->dtpr_predcache = 0;
9946 
9947 		dtrace_sync();
9948 	}
9949 }
9950 
9951 static void
9952 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9953 {
9954 	dtrace_action_t *act;
9955 	uint32_t curneeded = UINT32_MAX;
9956 	uint32_t aggbase = UINT32_MAX;
9957 
9958 	/*
9959 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9960 	 * we always record it first.)
9961 	 */
9962 	ecb->dte_size = sizeof (dtrace_rechdr_t);
9963 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9964 
9965 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9966 		dtrace_recdesc_t *rec = &act->dta_rec;
9967 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9968 
9969 		ecb->dte_alignment = MAX(ecb->dte_alignment,
9970 		    rec->dtrd_alignment);
9971 
9972 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9973 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9974 
9975 			ASSERT(rec->dtrd_size != 0);
9976 			ASSERT(agg->dtag_first != NULL);
9977 			ASSERT(act->dta_prev->dta_intuple);
9978 			ASSERT(aggbase != UINT32_MAX);
9979 			ASSERT(curneeded != UINT32_MAX);
9980 
9981 			agg->dtag_base = aggbase;
9982 
9983 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9984 			rec->dtrd_offset = curneeded;
9985 			curneeded += rec->dtrd_size;
9986 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9987 
9988 			aggbase = UINT32_MAX;
9989 			curneeded = UINT32_MAX;
9990 		} else if (act->dta_intuple) {
9991 			if (curneeded == UINT32_MAX) {
9992 				/*
9993 				 * This is the first record in a tuple.  Align
9994 				 * curneeded to be at offset 4 in an 8-byte
9995 				 * aligned block.
9996 				 */
9997 				ASSERT(act->dta_prev == NULL ||
9998 				    !act->dta_prev->dta_intuple);
9999 				ASSERT3U(aggbase, ==, UINT32_MAX);
10000 				curneeded = P2PHASEUP(ecb->dte_size,
10001 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10002 
10003 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10004 				ASSERT(IS_P2ALIGNED(aggbase,
10005 				    sizeof (uint64_t)));
10006 			}
10007 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10008 			rec->dtrd_offset = curneeded;
10009 			curneeded += rec->dtrd_size;
10010 		} else {
10011 			/* tuples must be followed by an aggregation */
10012 			ASSERT(act->dta_prev == NULL ||
10013 			    !act->dta_prev->dta_intuple);
10014 
10015 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10016 			    rec->dtrd_alignment);
10017 			rec->dtrd_offset = ecb->dte_size;
10018 			ecb->dte_size += rec->dtrd_size;
10019 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10020 		}
10021 	}
10022 
10023 	if ((act = ecb->dte_action) != NULL &&
10024 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10025 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10026 		/*
10027 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10028 		 * actions store no data; set the size to 0.
10029 		 */
10030 		ecb->dte_size = 0;
10031 	}
10032 
10033 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10034 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10035 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10036 	    ecb->dte_needed);
10037 }
10038 
10039 static dtrace_action_t *
10040 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10041 {
10042 	dtrace_aggregation_t *agg;
10043 	size_t size = sizeof (uint64_t);
10044 	int ntuple = desc->dtad_ntuple;
10045 	dtrace_action_t *act;
10046 	dtrace_recdesc_t *frec;
10047 	dtrace_aggid_t aggid;
10048 	dtrace_state_t *state = ecb->dte_state;
10049 
10050 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10051 	agg->dtag_ecb = ecb;
10052 
10053 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10054 
10055 	switch (desc->dtad_kind) {
10056 	case DTRACEAGG_MIN:
10057 		agg->dtag_initial = INT64_MAX;
10058 		agg->dtag_aggregate = dtrace_aggregate_min;
10059 		break;
10060 
10061 	case DTRACEAGG_MAX:
10062 		agg->dtag_initial = INT64_MIN;
10063 		agg->dtag_aggregate = dtrace_aggregate_max;
10064 		break;
10065 
10066 	case DTRACEAGG_COUNT:
10067 		agg->dtag_aggregate = dtrace_aggregate_count;
10068 		break;
10069 
10070 	case DTRACEAGG_QUANTIZE:
10071 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10072 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10073 		    sizeof (uint64_t);
10074 		break;
10075 
10076 	case DTRACEAGG_LQUANTIZE: {
10077 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10078 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10079 
10080 		agg->dtag_initial = desc->dtad_arg;
10081 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10082 
10083 		if (step == 0 || levels == 0)
10084 			goto err;
10085 
10086 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10087 		break;
10088 	}
10089 
10090 	case DTRACEAGG_LLQUANTIZE: {
10091 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10092 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10093 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10094 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10095 		int64_t v;
10096 
10097 		agg->dtag_initial = desc->dtad_arg;
10098 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10099 
10100 		if (factor < 2 || low >= high || nsteps < factor)
10101 			goto err;
10102 
10103 		/*
10104 		 * Now check that the number of steps evenly divides a power
10105 		 * of the factor.  (This assures both integer bucket size and
10106 		 * linearity within each magnitude.)
10107 		 */
10108 		for (v = factor; v < nsteps; v *= factor)
10109 			continue;
10110 
10111 		if ((v % nsteps) || (nsteps % factor))
10112 			goto err;
10113 
10114 		size = (dtrace_aggregate_llquantize_bucket(factor,
10115 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10116 		break;
10117 	}
10118 
10119 	case DTRACEAGG_AVG:
10120 		agg->dtag_aggregate = dtrace_aggregate_avg;
10121 		size = sizeof (uint64_t) * 2;
10122 		break;
10123 
10124 	case DTRACEAGG_STDDEV:
10125 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10126 		size = sizeof (uint64_t) * 4;
10127 		break;
10128 
10129 	case DTRACEAGG_SUM:
10130 		agg->dtag_aggregate = dtrace_aggregate_sum;
10131 		break;
10132 
10133 	default:
10134 		goto err;
10135 	}
10136 
10137 	agg->dtag_action.dta_rec.dtrd_size = size;
10138 
10139 	if (ntuple == 0)
10140 		goto err;
10141 
10142 	/*
10143 	 * We must make sure that we have enough actions for the n-tuple.
10144 	 */
10145 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10146 		if (DTRACEACT_ISAGG(act->dta_kind))
10147 			break;
10148 
10149 		if (--ntuple == 0) {
10150 			/*
10151 			 * This is the action with which our n-tuple begins.
10152 			 */
10153 			agg->dtag_first = act;
10154 			goto success;
10155 		}
10156 	}
10157 
10158 	/*
10159 	 * This n-tuple is short by ntuple elements.  Return failure.
10160 	 */
10161 	ASSERT(ntuple != 0);
10162 err:
10163 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10164 	return (NULL);
10165 
10166 success:
10167 	/*
10168 	 * If the last action in the tuple has a size of zero, it's actually
10169 	 * an expression argument for the aggregating action.
10170 	 */
10171 	ASSERT(ecb->dte_action_last != NULL);
10172 	act = ecb->dte_action_last;
10173 
10174 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10175 		ASSERT(act->dta_difo != NULL);
10176 
10177 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10178 			agg->dtag_hasarg = 1;
10179 	}
10180 
10181 	/*
10182 	 * We need to allocate an id for this aggregation.
10183 	 */
10184 #if defined(sun)
10185 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10186 	    VM_BESTFIT | VM_SLEEP);
10187 #else
10188 	aggid = alloc_unr(state->dts_aggid_arena);
10189 #endif
10190 
10191 	if (aggid - 1 >= state->dts_naggregations) {
10192 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10193 		dtrace_aggregation_t **aggs;
10194 		int naggs = state->dts_naggregations << 1;
10195 		int onaggs = state->dts_naggregations;
10196 
10197 		ASSERT(aggid == state->dts_naggregations + 1);
10198 
10199 		if (naggs == 0) {
10200 			ASSERT(oaggs == NULL);
10201 			naggs = 1;
10202 		}
10203 
10204 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10205 
10206 		if (oaggs != NULL) {
10207 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10208 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10209 		}
10210 
10211 		state->dts_aggregations = aggs;
10212 		state->dts_naggregations = naggs;
10213 	}
10214 
10215 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10216 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10217 
10218 	frec = &agg->dtag_first->dta_rec;
10219 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10220 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10221 
10222 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10223 		ASSERT(!act->dta_intuple);
10224 		act->dta_intuple = 1;
10225 	}
10226 
10227 	return (&agg->dtag_action);
10228 }
10229 
10230 static void
10231 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10232 {
10233 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10234 	dtrace_state_t *state = ecb->dte_state;
10235 	dtrace_aggid_t aggid = agg->dtag_id;
10236 
10237 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10238 #if defined(sun)
10239 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10240 #else
10241 	free_unr(state->dts_aggid_arena, aggid);
10242 #endif
10243 
10244 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10245 	state->dts_aggregations[aggid - 1] = NULL;
10246 
10247 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10248 }
10249 
10250 static int
10251 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10252 {
10253 	dtrace_action_t *action, *last;
10254 	dtrace_difo_t *dp = desc->dtad_difo;
10255 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10256 	uint16_t format = 0;
10257 	dtrace_recdesc_t *rec;
10258 	dtrace_state_t *state = ecb->dte_state;
10259 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10260 	uint64_t arg = desc->dtad_arg;
10261 
10262 	ASSERT(MUTEX_HELD(&dtrace_lock));
10263 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10264 
10265 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10266 		/*
10267 		 * If this is an aggregating action, there must be neither
10268 		 * a speculate nor a commit on the action chain.
10269 		 */
10270 		dtrace_action_t *act;
10271 
10272 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10273 			if (act->dta_kind == DTRACEACT_COMMIT)
10274 				return (EINVAL);
10275 
10276 			if (act->dta_kind == DTRACEACT_SPECULATE)
10277 				return (EINVAL);
10278 		}
10279 
10280 		action = dtrace_ecb_aggregation_create(ecb, desc);
10281 
10282 		if (action == NULL)
10283 			return (EINVAL);
10284 	} else {
10285 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10286 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10287 		    dp != NULL && dp->dtdo_destructive)) {
10288 			state->dts_destructive = 1;
10289 		}
10290 
10291 		switch (desc->dtad_kind) {
10292 		case DTRACEACT_PRINTF:
10293 		case DTRACEACT_PRINTA:
10294 		case DTRACEACT_SYSTEM:
10295 		case DTRACEACT_FREOPEN:
10296 		case DTRACEACT_DIFEXPR:
10297 			/*
10298 			 * We know that our arg is a string -- turn it into a
10299 			 * format.
10300 			 */
10301 			if (arg == 0) {
10302 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10303 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10304 				format = 0;
10305 			} else {
10306 				ASSERT(arg != 0);
10307 #if defined(sun)
10308 				ASSERT(arg > KERNELBASE);
10309 #endif
10310 				format = dtrace_format_add(state,
10311 				    (char *)(uintptr_t)arg);
10312 			}
10313 
10314 			/*FALLTHROUGH*/
10315 		case DTRACEACT_LIBACT:
10316 		case DTRACEACT_TRACEMEM:
10317 		case DTRACEACT_TRACEMEM_DYNSIZE:
10318 			if (dp == NULL)
10319 				return (EINVAL);
10320 
10321 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10322 				break;
10323 
10324 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10325 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10326 					return (EINVAL);
10327 
10328 				size = opt[DTRACEOPT_STRSIZE];
10329 			}
10330 
10331 			break;
10332 
10333 		case DTRACEACT_STACK:
10334 			if ((nframes = arg) == 0) {
10335 				nframes = opt[DTRACEOPT_STACKFRAMES];
10336 				ASSERT(nframes > 0);
10337 				arg = nframes;
10338 			}
10339 
10340 			size = nframes * sizeof (pc_t);
10341 			break;
10342 
10343 		case DTRACEACT_JSTACK:
10344 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10345 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10346 
10347 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10348 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10349 
10350 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10351 
10352 			/*FALLTHROUGH*/
10353 		case DTRACEACT_USTACK:
10354 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10355 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10356 				strsize = DTRACE_USTACK_STRSIZE(arg);
10357 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10358 				ASSERT(nframes > 0);
10359 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10360 			}
10361 
10362 			/*
10363 			 * Save a slot for the pid.
10364 			 */
10365 			size = (nframes + 1) * sizeof (uint64_t);
10366 			size += DTRACE_USTACK_STRSIZE(arg);
10367 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10368 
10369 			break;
10370 
10371 		case DTRACEACT_SYM:
10372 		case DTRACEACT_MOD:
10373 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10374 			    sizeof (uint64_t)) ||
10375 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10376 				return (EINVAL);
10377 			break;
10378 
10379 		case DTRACEACT_USYM:
10380 		case DTRACEACT_UMOD:
10381 		case DTRACEACT_UADDR:
10382 			if (dp == NULL ||
10383 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10384 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10385 				return (EINVAL);
10386 
10387 			/*
10388 			 * We have a slot for the pid, plus a slot for the
10389 			 * argument.  To keep things simple (aligned with
10390 			 * bitness-neutral sizing), we store each as a 64-bit
10391 			 * quantity.
10392 			 */
10393 			size = 2 * sizeof (uint64_t);
10394 			break;
10395 
10396 		case DTRACEACT_STOP:
10397 		case DTRACEACT_BREAKPOINT:
10398 		case DTRACEACT_PANIC:
10399 			break;
10400 
10401 		case DTRACEACT_CHILL:
10402 		case DTRACEACT_DISCARD:
10403 		case DTRACEACT_RAISE:
10404 			if (dp == NULL)
10405 				return (EINVAL);
10406 			break;
10407 
10408 		case DTRACEACT_EXIT:
10409 			if (dp == NULL ||
10410 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10411 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10412 				return (EINVAL);
10413 			break;
10414 
10415 		case DTRACEACT_SPECULATE:
10416 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10417 				return (EINVAL);
10418 
10419 			if (dp == NULL)
10420 				return (EINVAL);
10421 
10422 			state->dts_speculates = 1;
10423 			break;
10424 
10425 		case DTRACEACT_PRINTM:
10426 		    	size = dp->dtdo_rtype.dtdt_size;
10427 			break;
10428 
10429 		case DTRACEACT_PRINTT:
10430 		    	size = dp->dtdo_rtype.dtdt_size;
10431 			break;
10432 
10433 		case DTRACEACT_COMMIT: {
10434 			dtrace_action_t *act = ecb->dte_action;
10435 
10436 			for (; act != NULL; act = act->dta_next) {
10437 				if (act->dta_kind == DTRACEACT_COMMIT)
10438 					return (EINVAL);
10439 			}
10440 
10441 			if (dp == NULL)
10442 				return (EINVAL);
10443 			break;
10444 		}
10445 
10446 		default:
10447 			return (EINVAL);
10448 		}
10449 
10450 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10451 			/*
10452 			 * If this is a data-storing action or a speculate,
10453 			 * we must be sure that there isn't a commit on the
10454 			 * action chain.
10455 			 */
10456 			dtrace_action_t *act = ecb->dte_action;
10457 
10458 			for (; act != NULL; act = act->dta_next) {
10459 				if (act->dta_kind == DTRACEACT_COMMIT)
10460 					return (EINVAL);
10461 			}
10462 		}
10463 
10464 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10465 		action->dta_rec.dtrd_size = size;
10466 	}
10467 
10468 	action->dta_refcnt = 1;
10469 	rec = &action->dta_rec;
10470 	size = rec->dtrd_size;
10471 
10472 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10473 		if (!(size & mask)) {
10474 			align = mask + 1;
10475 			break;
10476 		}
10477 	}
10478 
10479 	action->dta_kind = desc->dtad_kind;
10480 
10481 	if ((action->dta_difo = dp) != NULL)
10482 		dtrace_difo_hold(dp);
10483 
10484 	rec->dtrd_action = action->dta_kind;
10485 	rec->dtrd_arg = arg;
10486 	rec->dtrd_uarg = desc->dtad_uarg;
10487 	rec->dtrd_alignment = (uint16_t)align;
10488 	rec->dtrd_format = format;
10489 
10490 	if ((last = ecb->dte_action_last) != NULL) {
10491 		ASSERT(ecb->dte_action != NULL);
10492 		action->dta_prev = last;
10493 		last->dta_next = action;
10494 	} else {
10495 		ASSERT(ecb->dte_action == NULL);
10496 		ecb->dte_action = action;
10497 	}
10498 
10499 	ecb->dte_action_last = action;
10500 
10501 	return (0);
10502 }
10503 
10504 static void
10505 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10506 {
10507 	dtrace_action_t *act = ecb->dte_action, *next;
10508 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10509 	dtrace_difo_t *dp;
10510 	uint16_t format;
10511 
10512 	if (act != NULL && act->dta_refcnt > 1) {
10513 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10514 		act->dta_refcnt--;
10515 	} else {
10516 		for (; act != NULL; act = next) {
10517 			next = act->dta_next;
10518 			ASSERT(next != NULL || act == ecb->dte_action_last);
10519 			ASSERT(act->dta_refcnt == 1);
10520 
10521 			if ((format = act->dta_rec.dtrd_format) != 0)
10522 				dtrace_format_remove(ecb->dte_state, format);
10523 
10524 			if ((dp = act->dta_difo) != NULL)
10525 				dtrace_difo_release(dp, vstate);
10526 
10527 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10528 				dtrace_ecb_aggregation_destroy(ecb, act);
10529 			} else {
10530 				kmem_free(act, sizeof (dtrace_action_t));
10531 			}
10532 		}
10533 	}
10534 
10535 	ecb->dte_action = NULL;
10536 	ecb->dte_action_last = NULL;
10537 	ecb->dte_size = 0;
10538 }
10539 
10540 static void
10541 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10542 {
10543 	/*
10544 	 * We disable the ECB by removing it from its probe.
10545 	 */
10546 	dtrace_ecb_t *pecb, *prev = NULL;
10547 	dtrace_probe_t *probe = ecb->dte_probe;
10548 
10549 	ASSERT(MUTEX_HELD(&dtrace_lock));
10550 
10551 	if (probe == NULL) {
10552 		/*
10553 		 * This is the NULL probe; there is nothing to disable.
10554 		 */
10555 		return;
10556 	}
10557 
10558 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10559 		if (pecb == ecb)
10560 			break;
10561 		prev = pecb;
10562 	}
10563 
10564 	ASSERT(pecb != NULL);
10565 
10566 	if (prev == NULL) {
10567 		probe->dtpr_ecb = ecb->dte_next;
10568 	} else {
10569 		prev->dte_next = ecb->dte_next;
10570 	}
10571 
10572 	if (ecb == probe->dtpr_ecb_last) {
10573 		ASSERT(ecb->dte_next == NULL);
10574 		probe->dtpr_ecb_last = prev;
10575 	}
10576 
10577 	/*
10578 	 * The ECB has been disconnected from the probe; now sync to assure
10579 	 * that all CPUs have seen the change before returning.
10580 	 */
10581 	dtrace_sync();
10582 
10583 	if (probe->dtpr_ecb == NULL) {
10584 		/*
10585 		 * That was the last ECB on the probe; clear the predicate
10586 		 * cache ID for the probe, disable it and sync one more time
10587 		 * to assure that we'll never hit it again.
10588 		 */
10589 		dtrace_provider_t *prov = probe->dtpr_provider;
10590 
10591 		ASSERT(ecb->dte_next == NULL);
10592 		ASSERT(probe->dtpr_ecb_last == NULL);
10593 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10594 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10595 		    probe->dtpr_id, probe->dtpr_arg);
10596 		dtrace_sync();
10597 	} else {
10598 		/*
10599 		 * There is at least one ECB remaining on the probe.  If there
10600 		 * is _exactly_ one, set the probe's predicate cache ID to be
10601 		 * the predicate cache ID of the remaining ECB.
10602 		 */
10603 		ASSERT(probe->dtpr_ecb_last != NULL);
10604 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10605 
10606 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10607 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10608 
10609 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10610 
10611 			if (p != NULL)
10612 				probe->dtpr_predcache = p->dtp_cacheid;
10613 		}
10614 
10615 		ecb->dte_next = NULL;
10616 	}
10617 }
10618 
10619 static void
10620 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10621 {
10622 	dtrace_state_t *state = ecb->dte_state;
10623 	dtrace_vstate_t *vstate = &state->dts_vstate;
10624 	dtrace_predicate_t *pred;
10625 	dtrace_epid_t epid = ecb->dte_epid;
10626 
10627 	ASSERT(MUTEX_HELD(&dtrace_lock));
10628 	ASSERT(ecb->dte_next == NULL);
10629 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10630 
10631 	if ((pred = ecb->dte_predicate) != NULL)
10632 		dtrace_predicate_release(pred, vstate);
10633 
10634 	dtrace_ecb_action_remove(ecb);
10635 
10636 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10637 	state->dts_ecbs[epid - 1] = NULL;
10638 
10639 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10640 }
10641 
10642 static dtrace_ecb_t *
10643 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10644     dtrace_enabling_t *enab)
10645 {
10646 	dtrace_ecb_t *ecb;
10647 	dtrace_predicate_t *pred;
10648 	dtrace_actdesc_t *act;
10649 	dtrace_provider_t *prov;
10650 	dtrace_ecbdesc_t *desc = enab->dten_current;
10651 
10652 	ASSERT(MUTEX_HELD(&dtrace_lock));
10653 	ASSERT(state != NULL);
10654 
10655 	ecb = dtrace_ecb_add(state, probe);
10656 	ecb->dte_uarg = desc->dted_uarg;
10657 
10658 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10659 		dtrace_predicate_hold(pred);
10660 		ecb->dte_predicate = pred;
10661 	}
10662 
10663 	if (probe != NULL) {
10664 		/*
10665 		 * If the provider shows more leg than the consumer is old
10666 		 * enough to see, we need to enable the appropriate implicit
10667 		 * predicate bits to prevent the ecb from activating at
10668 		 * revealing times.
10669 		 *
10670 		 * Providers specifying DTRACE_PRIV_USER at register time
10671 		 * are stating that they need the /proc-style privilege
10672 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10673 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10674 		 */
10675 		prov = probe->dtpr_provider;
10676 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10677 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10678 			ecb->dte_cond |= DTRACE_COND_OWNER;
10679 
10680 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10681 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10682 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10683 
10684 		/*
10685 		 * If the provider shows us kernel innards and the user
10686 		 * is lacking sufficient privilege, enable the
10687 		 * DTRACE_COND_USERMODE implicit predicate.
10688 		 */
10689 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10690 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10691 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10692 	}
10693 
10694 	if (dtrace_ecb_create_cache != NULL) {
10695 		/*
10696 		 * If we have a cached ecb, we'll use its action list instead
10697 		 * of creating our own (saving both time and space).
10698 		 */
10699 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10700 		dtrace_action_t *act = cached->dte_action;
10701 
10702 		if (act != NULL) {
10703 			ASSERT(act->dta_refcnt > 0);
10704 			act->dta_refcnt++;
10705 			ecb->dte_action = act;
10706 			ecb->dte_action_last = cached->dte_action_last;
10707 			ecb->dte_needed = cached->dte_needed;
10708 			ecb->dte_size = cached->dte_size;
10709 			ecb->dte_alignment = cached->dte_alignment;
10710 		}
10711 
10712 		return (ecb);
10713 	}
10714 
10715 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10716 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10717 			dtrace_ecb_destroy(ecb);
10718 			return (NULL);
10719 		}
10720 	}
10721 
10722 	dtrace_ecb_resize(ecb);
10723 
10724 	return (dtrace_ecb_create_cache = ecb);
10725 }
10726 
10727 static int
10728 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10729 {
10730 	dtrace_ecb_t *ecb;
10731 	dtrace_enabling_t *enab = arg;
10732 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10733 
10734 	ASSERT(state != NULL);
10735 
10736 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10737 		/*
10738 		 * This probe was created in a generation for which this
10739 		 * enabling has previously created ECBs; we don't want to
10740 		 * enable it again, so just kick out.
10741 		 */
10742 		return (DTRACE_MATCH_NEXT);
10743 	}
10744 
10745 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10746 		return (DTRACE_MATCH_DONE);
10747 
10748 	dtrace_ecb_enable(ecb);
10749 	return (DTRACE_MATCH_NEXT);
10750 }
10751 
10752 static dtrace_ecb_t *
10753 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10754 {
10755 	dtrace_ecb_t *ecb;
10756 
10757 	ASSERT(MUTEX_HELD(&dtrace_lock));
10758 
10759 	if (id == 0 || id > state->dts_necbs)
10760 		return (NULL);
10761 
10762 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10763 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10764 
10765 	return (state->dts_ecbs[id - 1]);
10766 }
10767 
10768 static dtrace_aggregation_t *
10769 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10770 {
10771 	dtrace_aggregation_t *agg;
10772 
10773 	ASSERT(MUTEX_HELD(&dtrace_lock));
10774 
10775 	if (id == 0 || id > state->dts_naggregations)
10776 		return (NULL);
10777 
10778 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10779 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10780 	    agg->dtag_id == id);
10781 
10782 	return (state->dts_aggregations[id - 1]);
10783 }
10784 
10785 /*
10786  * DTrace Buffer Functions
10787  *
10788  * The following functions manipulate DTrace buffers.  Most of these functions
10789  * are called in the context of establishing or processing consumer state;
10790  * exceptions are explicitly noted.
10791  */
10792 
10793 /*
10794  * Note:  called from cross call context.  This function switches the two
10795  * buffers on a given CPU.  The atomicity of this operation is assured by
10796  * disabling interrupts while the actual switch takes place; the disabling of
10797  * interrupts serializes the execution with any execution of dtrace_probe() on
10798  * the same CPU.
10799  */
10800 static void
10801 dtrace_buffer_switch(dtrace_buffer_t *buf)
10802 {
10803 	caddr_t tomax = buf->dtb_tomax;
10804 	caddr_t xamot = buf->dtb_xamot;
10805 	dtrace_icookie_t cookie;
10806 	hrtime_t now;
10807 
10808 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10809 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10810 
10811 	cookie = dtrace_interrupt_disable();
10812 	now = dtrace_gethrtime();
10813 	buf->dtb_tomax = xamot;
10814 	buf->dtb_xamot = tomax;
10815 	buf->dtb_xamot_drops = buf->dtb_drops;
10816 	buf->dtb_xamot_offset = buf->dtb_offset;
10817 	buf->dtb_xamot_errors = buf->dtb_errors;
10818 	buf->dtb_xamot_flags = buf->dtb_flags;
10819 	buf->dtb_offset = 0;
10820 	buf->dtb_drops = 0;
10821 	buf->dtb_errors = 0;
10822 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10823 	buf->dtb_interval = now - buf->dtb_switched;
10824 	buf->dtb_switched = now;
10825 	dtrace_interrupt_enable(cookie);
10826 }
10827 
10828 /*
10829  * Note:  called from cross call context.  This function activates a buffer
10830  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10831  * is guaranteed by the disabling of interrupts.
10832  */
10833 static void
10834 dtrace_buffer_activate(dtrace_state_t *state)
10835 {
10836 	dtrace_buffer_t *buf;
10837 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10838 
10839 	buf = &state->dts_buffer[curcpu];
10840 
10841 	if (buf->dtb_tomax != NULL) {
10842 		/*
10843 		 * We might like to assert that the buffer is marked inactive,
10844 		 * but this isn't necessarily true:  the buffer for the CPU
10845 		 * that processes the BEGIN probe has its buffer activated
10846 		 * manually.  In this case, we take the (harmless) action
10847 		 * re-clearing the bit INACTIVE bit.
10848 		 */
10849 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10850 	}
10851 
10852 	dtrace_interrupt_enable(cookie);
10853 }
10854 
10855 static int
10856 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10857     processorid_t cpu, int *factor)
10858 {
10859 #if defined(sun)
10860 	cpu_t *cp;
10861 #endif
10862 	dtrace_buffer_t *buf;
10863 	int allocated = 0, desired = 0;
10864 
10865 #if defined(sun)
10866 	ASSERT(MUTEX_HELD(&cpu_lock));
10867 	ASSERT(MUTEX_HELD(&dtrace_lock));
10868 
10869 	*factor = 1;
10870 
10871 	if (size > dtrace_nonroot_maxsize &&
10872 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10873 		return (EFBIG);
10874 
10875 	cp = cpu_list;
10876 
10877 	do {
10878 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10879 			continue;
10880 
10881 		buf = &bufs[cp->cpu_id];
10882 
10883 		/*
10884 		 * If there is already a buffer allocated for this CPU, it
10885 		 * is only possible that this is a DR event.  In this case,
10886 		 */
10887 		if (buf->dtb_tomax != NULL) {
10888 			ASSERT(buf->dtb_size == size);
10889 			continue;
10890 		}
10891 
10892 		ASSERT(buf->dtb_xamot == NULL);
10893 
10894 		if ((buf->dtb_tomax = kmem_zalloc(size,
10895 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10896 			goto err;
10897 
10898 		buf->dtb_size = size;
10899 		buf->dtb_flags = flags;
10900 		buf->dtb_offset = 0;
10901 		buf->dtb_drops = 0;
10902 
10903 		if (flags & DTRACEBUF_NOSWITCH)
10904 			continue;
10905 
10906 		if ((buf->dtb_xamot = kmem_zalloc(size,
10907 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10908 			goto err;
10909 	} while ((cp = cp->cpu_next) != cpu_list);
10910 
10911 	return (0);
10912 
10913 err:
10914 	cp = cpu_list;
10915 
10916 	do {
10917 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10918 			continue;
10919 
10920 		buf = &bufs[cp->cpu_id];
10921 		desired += 2;
10922 
10923 		if (buf->dtb_xamot != NULL) {
10924 			ASSERT(buf->dtb_tomax != NULL);
10925 			ASSERT(buf->dtb_size == size);
10926 			kmem_free(buf->dtb_xamot, size);
10927 			allocated++;
10928 		}
10929 
10930 		if (buf->dtb_tomax != NULL) {
10931 			ASSERT(buf->dtb_size == size);
10932 			kmem_free(buf->dtb_tomax, size);
10933 			allocated++;
10934 		}
10935 
10936 		buf->dtb_tomax = NULL;
10937 		buf->dtb_xamot = NULL;
10938 		buf->dtb_size = 0;
10939 	} while ((cp = cp->cpu_next) != cpu_list);
10940 #else
10941 	int i;
10942 
10943 	*factor = 1;
10944 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10945 	/*
10946 	 * FreeBSD isn't good at limiting the amount of memory we
10947 	 * ask to malloc, so let's place a limit here before trying
10948 	 * to do something that might well end in tears at bedtime.
10949 	 */
10950 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10951 		return (ENOMEM);
10952 #endif
10953 
10954 	ASSERT(MUTEX_HELD(&dtrace_lock));
10955 	CPU_FOREACH(i) {
10956 		if (cpu != DTRACE_CPUALL && cpu != i)
10957 			continue;
10958 
10959 		buf = &bufs[i];
10960 
10961 		/*
10962 		 * If there is already a buffer allocated for this CPU, it
10963 		 * is only possible that this is a DR event.  In this case,
10964 		 * the buffer size must match our specified size.
10965 		 */
10966 		if (buf->dtb_tomax != NULL) {
10967 			ASSERT(buf->dtb_size == size);
10968 			continue;
10969 		}
10970 
10971 		ASSERT(buf->dtb_xamot == NULL);
10972 
10973 		if ((buf->dtb_tomax = kmem_zalloc(size,
10974 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10975 			goto err;
10976 
10977 		buf->dtb_size = size;
10978 		buf->dtb_flags = flags;
10979 		buf->dtb_offset = 0;
10980 		buf->dtb_drops = 0;
10981 
10982 		if (flags & DTRACEBUF_NOSWITCH)
10983 			continue;
10984 
10985 		if ((buf->dtb_xamot = kmem_zalloc(size,
10986 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
10987 			goto err;
10988 	}
10989 
10990 	return (0);
10991 
10992 err:
10993 	/*
10994 	 * Error allocating memory, so free the buffers that were
10995 	 * allocated before the failed allocation.
10996 	 */
10997 	CPU_FOREACH(i) {
10998 		if (cpu != DTRACE_CPUALL && cpu != i)
10999 			continue;
11000 
11001 		buf = &bufs[i];
11002 		desired += 2;
11003 
11004 		if (buf->dtb_xamot != NULL) {
11005 			ASSERT(buf->dtb_tomax != NULL);
11006 			ASSERT(buf->dtb_size == size);
11007 			kmem_free(buf->dtb_xamot, size);
11008 			allocated++;
11009 		}
11010 
11011 		if (buf->dtb_tomax != NULL) {
11012 			ASSERT(buf->dtb_size == size);
11013 			kmem_free(buf->dtb_tomax, size);
11014 			allocated++;
11015 		}
11016 
11017 		buf->dtb_tomax = NULL;
11018 		buf->dtb_xamot = NULL;
11019 		buf->dtb_size = 0;
11020 
11021 	}
11022 #endif
11023 	*factor = desired / (allocated > 0 ? allocated : 1);
11024 
11025 	return (ENOMEM);
11026 }
11027 
11028 /*
11029  * Note:  called from probe context.  This function just increments the drop
11030  * count on a buffer.  It has been made a function to allow for the
11031  * possibility of understanding the source of mysterious drop counts.  (A
11032  * problem for which one may be particularly disappointed that DTrace cannot
11033  * be used to understand DTrace.)
11034  */
11035 static void
11036 dtrace_buffer_drop(dtrace_buffer_t *buf)
11037 {
11038 	buf->dtb_drops++;
11039 }
11040 
11041 /*
11042  * Note:  called from probe context.  This function is called to reserve space
11043  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11044  * mstate.  Returns the new offset in the buffer, or a negative value if an
11045  * error has occurred.
11046  */
11047 static intptr_t
11048 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11049     dtrace_state_t *state, dtrace_mstate_t *mstate)
11050 {
11051 	intptr_t offs = buf->dtb_offset, soffs;
11052 	intptr_t woffs;
11053 	caddr_t tomax;
11054 	size_t total;
11055 
11056 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11057 		return (-1);
11058 
11059 	if ((tomax = buf->dtb_tomax) == NULL) {
11060 		dtrace_buffer_drop(buf);
11061 		return (-1);
11062 	}
11063 
11064 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11065 		while (offs & (align - 1)) {
11066 			/*
11067 			 * Assert that our alignment is off by a number which
11068 			 * is itself sizeof (uint32_t) aligned.
11069 			 */
11070 			ASSERT(!((align - (offs & (align - 1))) &
11071 			    (sizeof (uint32_t) - 1)));
11072 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11073 			offs += sizeof (uint32_t);
11074 		}
11075 
11076 		if ((soffs = offs + needed) > buf->dtb_size) {
11077 			dtrace_buffer_drop(buf);
11078 			return (-1);
11079 		}
11080 
11081 		if (mstate == NULL)
11082 			return (offs);
11083 
11084 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11085 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11086 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11087 
11088 		return (offs);
11089 	}
11090 
11091 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11092 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11093 		    (buf->dtb_flags & DTRACEBUF_FULL))
11094 			return (-1);
11095 		goto out;
11096 	}
11097 
11098 	total = needed + (offs & (align - 1));
11099 
11100 	/*
11101 	 * For a ring buffer, life is quite a bit more complicated.  Before
11102 	 * we can store any padding, we need to adjust our wrapping offset.
11103 	 * (If we've never before wrapped or we're not about to, no adjustment
11104 	 * is required.)
11105 	 */
11106 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11107 	    offs + total > buf->dtb_size) {
11108 		woffs = buf->dtb_xamot_offset;
11109 
11110 		if (offs + total > buf->dtb_size) {
11111 			/*
11112 			 * We can't fit in the end of the buffer.  First, a
11113 			 * sanity check that we can fit in the buffer at all.
11114 			 */
11115 			if (total > buf->dtb_size) {
11116 				dtrace_buffer_drop(buf);
11117 				return (-1);
11118 			}
11119 
11120 			/*
11121 			 * We're going to be storing at the top of the buffer,
11122 			 * so now we need to deal with the wrapped offset.  We
11123 			 * only reset our wrapped offset to 0 if it is
11124 			 * currently greater than the current offset.  If it
11125 			 * is less than the current offset, it is because a
11126 			 * previous allocation induced a wrap -- but the
11127 			 * allocation didn't subsequently take the space due
11128 			 * to an error or false predicate evaluation.  In this
11129 			 * case, we'll just leave the wrapped offset alone: if
11130 			 * the wrapped offset hasn't been advanced far enough
11131 			 * for this allocation, it will be adjusted in the
11132 			 * lower loop.
11133 			 */
11134 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11135 				if (woffs >= offs)
11136 					woffs = 0;
11137 			} else {
11138 				woffs = 0;
11139 			}
11140 
11141 			/*
11142 			 * Now we know that we're going to be storing to the
11143 			 * top of the buffer and that there is room for us
11144 			 * there.  We need to clear the buffer from the current
11145 			 * offset to the end (there may be old gunk there).
11146 			 */
11147 			while (offs < buf->dtb_size)
11148 				tomax[offs++] = 0;
11149 
11150 			/*
11151 			 * We need to set our offset to zero.  And because we
11152 			 * are wrapping, we need to set the bit indicating as
11153 			 * much.  We can also adjust our needed space back
11154 			 * down to the space required by the ECB -- we know
11155 			 * that the top of the buffer is aligned.
11156 			 */
11157 			offs = 0;
11158 			total = needed;
11159 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11160 		} else {
11161 			/*
11162 			 * There is room for us in the buffer, so we simply
11163 			 * need to check the wrapped offset.
11164 			 */
11165 			if (woffs < offs) {
11166 				/*
11167 				 * The wrapped offset is less than the offset.
11168 				 * This can happen if we allocated buffer space
11169 				 * that induced a wrap, but then we didn't
11170 				 * subsequently take the space due to an error
11171 				 * or false predicate evaluation.  This is
11172 				 * okay; we know that _this_ allocation isn't
11173 				 * going to induce a wrap.  We still can't
11174 				 * reset the wrapped offset to be zero,
11175 				 * however: the space may have been trashed in
11176 				 * the previous failed probe attempt.  But at
11177 				 * least the wrapped offset doesn't need to
11178 				 * be adjusted at all...
11179 				 */
11180 				goto out;
11181 			}
11182 		}
11183 
11184 		while (offs + total > woffs) {
11185 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11186 			size_t size;
11187 
11188 			if (epid == DTRACE_EPIDNONE) {
11189 				size = sizeof (uint32_t);
11190 			} else {
11191 				ASSERT3U(epid, <=, state->dts_necbs);
11192 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11193 
11194 				size = state->dts_ecbs[epid - 1]->dte_size;
11195 			}
11196 
11197 			ASSERT(woffs + size <= buf->dtb_size);
11198 			ASSERT(size != 0);
11199 
11200 			if (woffs + size == buf->dtb_size) {
11201 				/*
11202 				 * We've reached the end of the buffer; we want
11203 				 * to set the wrapped offset to 0 and break
11204 				 * out.  However, if the offs is 0, then we're
11205 				 * in a strange edge-condition:  the amount of
11206 				 * space that we want to reserve plus the size
11207 				 * of the record that we're overwriting is
11208 				 * greater than the size of the buffer.  This
11209 				 * is problematic because if we reserve the
11210 				 * space but subsequently don't consume it (due
11211 				 * to a failed predicate or error) the wrapped
11212 				 * offset will be 0 -- yet the EPID at offset 0
11213 				 * will not be committed.  This situation is
11214 				 * relatively easy to deal with:  if we're in
11215 				 * this case, the buffer is indistinguishable
11216 				 * from one that hasn't wrapped; we need only
11217 				 * finish the job by clearing the wrapped bit,
11218 				 * explicitly setting the offset to be 0, and
11219 				 * zero'ing out the old data in the buffer.
11220 				 */
11221 				if (offs == 0) {
11222 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11223 					buf->dtb_offset = 0;
11224 					woffs = total;
11225 
11226 					while (woffs < buf->dtb_size)
11227 						tomax[woffs++] = 0;
11228 				}
11229 
11230 				woffs = 0;
11231 				break;
11232 			}
11233 
11234 			woffs += size;
11235 		}
11236 
11237 		/*
11238 		 * We have a wrapped offset.  It may be that the wrapped offset
11239 		 * has become zero -- that's okay.
11240 		 */
11241 		buf->dtb_xamot_offset = woffs;
11242 	}
11243 
11244 out:
11245 	/*
11246 	 * Now we can plow the buffer with any necessary padding.
11247 	 */
11248 	while (offs & (align - 1)) {
11249 		/*
11250 		 * Assert that our alignment is off by a number which
11251 		 * is itself sizeof (uint32_t) aligned.
11252 		 */
11253 		ASSERT(!((align - (offs & (align - 1))) &
11254 		    (sizeof (uint32_t) - 1)));
11255 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11256 		offs += sizeof (uint32_t);
11257 	}
11258 
11259 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11260 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11261 			buf->dtb_flags |= DTRACEBUF_FULL;
11262 			return (-1);
11263 		}
11264 	}
11265 
11266 	if (mstate == NULL)
11267 		return (offs);
11268 
11269 	/*
11270 	 * For ring buffers and fill buffers, the scratch space is always
11271 	 * the inactive buffer.
11272 	 */
11273 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11274 	mstate->dtms_scratch_size = buf->dtb_size;
11275 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11276 
11277 	return (offs);
11278 }
11279 
11280 static void
11281 dtrace_buffer_polish(dtrace_buffer_t *buf)
11282 {
11283 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11284 	ASSERT(MUTEX_HELD(&dtrace_lock));
11285 
11286 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11287 		return;
11288 
11289 	/*
11290 	 * We need to polish the ring buffer.  There are three cases:
11291 	 *
11292 	 * - The first (and presumably most common) is that there is no gap
11293 	 *   between the buffer offset and the wrapped offset.  In this case,
11294 	 *   there is nothing in the buffer that isn't valid data; we can
11295 	 *   mark the buffer as polished and return.
11296 	 *
11297 	 * - The second (less common than the first but still more common
11298 	 *   than the third) is that there is a gap between the buffer offset
11299 	 *   and the wrapped offset, and the wrapped offset is larger than the
11300 	 *   buffer offset.  This can happen because of an alignment issue, or
11301 	 *   can happen because of a call to dtrace_buffer_reserve() that
11302 	 *   didn't subsequently consume the buffer space.  In this case,
11303 	 *   we need to zero the data from the buffer offset to the wrapped
11304 	 *   offset.
11305 	 *
11306 	 * - The third (and least common) is that there is a gap between the
11307 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11308 	 *   _less_ than the buffer offset.  This can only happen because a
11309 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11310 	 *   was not subsequently consumed.  In this case, we need to zero the
11311 	 *   space from the offset to the end of the buffer _and_ from the
11312 	 *   top of the buffer to the wrapped offset.
11313 	 */
11314 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11315 		bzero(buf->dtb_tomax + buf->dtb_offset,
11316 		    buf->dtb_xamot_offset - buf->dtb_offset);
11317 	}
11318 
11319 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11320 		bzero(buf->dtb_tomax + buf->dtb_offset,
11321 		    buf->dtb_size - buf->dtb_offset);
11322 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11323 	}
11324 }
11325 
11326 /*
11327  * This routine determines if data generated at the specified time has likely
11328  * been entirely consumed at user-level.  This routine is called to determine
11329  * if an ECB on a defunct probe (but for an active enabling) can be safely
11330  * disabled and destroyed.
11331  */
11332 static int
11333 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11334 {
11335 	int i;
11336 
11337 	for (i = 0; i < NCPU; i++) {
11338 		dtrace_buffer_t *buf = &bufs[i];
11339 
11340 		if (buf->dtb_size == 0)
11341 			continue;
11342 
11343 		if (buf->dtb_flags & DTRACEBUF_RING)
11344 			return (0);
11345 
11346 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11347 			return (0);
11348 
11349 		if (buf->dtb_switched - buf->dtb_interval < when)
11350 			return (0);
11351 	}
11352 
11353 	return (1);
11354 }
11355 
11356 static void
11357 dtrace_buffer_free(dtrace_buffer_t *bufs)
11358 {
11359 	int i;
11360 
11361 	for (i = 0; i < NCPU; i++) {
11362 		dtrace_buffer_t *buf = &bufs[i];
11363 
11364 		if (buf->dtb_tomax == NULL) {
11365 			ASSERT(buf->dtb_xamot == NULL);
11366 			ASSERT(buf->dtb_size == 0);
11367 			continue;
11368 		}
11369 
11370 		if (buf->dtb_xamot != NULL) {
11371 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11372 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11373 		}
11374 
11375 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11376 		buf->dtb_size = 0;
11377 		buf->dtb_tomax = NULL;
11378 		buf->dtb_xamot = NULL;
11379 	}
11380 }
11381 
11382 /*
11383  * DTrace Enabling Functions
11384  */
11385 static dtrace_enabling_t *
11386 dtrace_enabling_create(dtrace_vstate_t *vstate)
11387 {
11388 	dtrace_enabling_t *enab;
11389 
11390 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11391 	enab->dten_vstate = vstate;
11392 
11393 	return (enab);
11394 }
11395 
11396 static void
11397 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11398 {
11399 	dtrace_ecbdesc_t **ndesc;
11400 	size_t osize, nsize;
11401 
11402 	/*
11403 	 * We can't add to enablings after we've enabled them, or after we've
11404 	 * retained them.
11405 	 */
11406 	ASSERT(enab->dten_probegen == 0);
11407 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11408 
11409 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11410 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11411 		return;
11412 	}
11413 
11414 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11415 
11416 	if (enab->dten_maxdesc == 0) {
11417 		enab->dten_maxdesc = 1;
11418 	} else {
11419 		enab->dten_maxdesc <<= 1;
11420 	}
11421 
11422 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11423 
11424 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11425 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11426 	bcopy(enab->dten_desc, ndesc, osize);
11427 	if (enab->dten_desc != NULL)
11428 		kmem_free(enab->dten_desc, osize);
11429 
11430 	enab->dten_desc = ndesc;
11431 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11432 }
11433 
11434 static void
11435 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11436     dtrace_probedesc_t *pd)
11437 {
11438 	dtrace_ecbdesc_t *new;
11439 	dtrace_predicate_t *pred;
11440 	dtrace_actdesc_t *act;
11441 
11442 	/*
11443 	 * We're going to create a new ECB description that matches the
11444 	 * specified ECB in every way, but has the specified probe description.
11445 	 */
11446 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11447 
11448 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11449 		dtrace_predicate_hold(pred);
11450 
11451 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11452 		dtrace_actdesc_hold(act);
11453 
11454 	new->dted_action = ecb->dted_action;
11455 	new->dted_pred = ecb->dted_pred;
11456 	new->dted_probe = *pd;
11457 	new->dted_uarg = ecb->dted_uarg;
11458 
11459 	dtrace_enabling_add(enab, new);
11460 }
11461 
11462 static void
11463 dtrace_enabling_dump(dtrace_enabling_t *enab)
11464 {
11465 	int i;
11466 
11467 	for (i = 0; i < enab->dten_ndesc; i++) {
11468 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11469 
11470 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11471 		    desc->dtpd_provider, desc->dtpd_mod,
11472 		    desc->dtpd_func, desc->dtpd_name);
11473 	}
11474 }
11475 
11476 static void
11477 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11478 {
11479 	int i;
11480 	dtrace_ecbdesc_t *ep;
11481 	dtrace_vstate_t *vstate = enab->dten_vstate;
11482 
11483 	ASSERT(MUTEX_HELD(&dtrace_lock));
11484 
11485 	for (i = 0; i < enab->dten_ndesc; i++) {
11486 		dtrace_actdesc_t *act, *next;
11487 		dtrace_predicate_t *pred;
11488 
11489 		ep = enab->dten_desc[i];
11490 
11491 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11492 			dtrace_predicate_release(pred, vstate);
11493 
11494 		for (act = ep->dted_action; act != NULL; act = next) {
11495 			next = act->dtad_next;
11496 			dtrace_actdesc_release(act, vstate);
11497 		}
11498 
11499 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11500 	}
11501 
11502 	if (enab->dten_desc != NULL)
11503 		kmem_free(enab->dten_desc,
11504 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11505 
11506 	/*
11507 	 * If this was a retained enabling, decrement the dts_nretained count
11508 	 * and take it off of the dtrace_retained list.
11509 	 */
11510 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11511 	    dtrace_retained == enab) {
11512 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11513 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11514 		enab->dten_vstate->dtvs_state->dts_nretained--;
11515 	}
11516 
11517 	if (enab->dten_prev == NULL) {
11518 		if (dtrace_retained == enab) {
11519 			dtrace_retained = enab->dten_next;
11520 
11521 			if (dtrace_retained != NULL)
11522 				dtrace_retained->dten_prev = NULL;
11523 		}
11524 	} else {
11525 		ASSERT(enab != dtrace_retained);
11526 		ASSERT(dtrace_retained != NULL);
11527 		enab->dten_prev->dten_next = enab->dten_next;
11528 	}
11529 
11530 	if (enab->dten_next != NULL) {
11531 		ASSERT(dtrace_retained != NULL);
11532 		enab->dten_next->dten_prev = enab->dten_prev;
11533 	}
11534 
11535 	kmem_free(enab, sizeof (dtrace_enabling_t));
11536 }
11537 
11538 static int
11539 dtrace_enabling_retain(dtrace_enabling_t *enab)
11540 {
11541 	dtrace_state_t *state;
11542 
11543 	ASSERT(MUTEX_HELD(&dtrace_lock));
11544 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11545 	ASSERT(enab->dten_vstate != NULL);
11546 
11547 	state = enab->dten_vstate->dtvs_state;
11548 	ASSERT(state != NULL);
11549 
11550 	/*
11551 	 * We only allow each state to retain dtrace_retain_max enablings.
11552 	 */
11553 	if (state->dts_nretained >= dtrace_retain_max)
11554 		return (ENOSPC);
11555 
11556 	state->dts_nretained++;
11557 
11558 	if (dtrace_retained == NULL) {
11559 		dtrace_retained = enab;
11560 		return (0);
11561 	}
11562 
11563 	enab->dten_next = dtrace_retained;
11564 	dtrace_retained->dten_prev = enab;
11565 	dtrace_retained = enab;
11566 
11567 	return (0);
11568 }
11569 
11570 static int
11571 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11572     dtrace_probedesc_t *create)
11573 {
11574 	dtrace_enabling_t *new, *enab;
11575 	int found = 0, err = ENOENT;
11576 
11577 	ASSERT(MUTEX_HELD(&dtrace_lock));
11578 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11579 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11580 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11581 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11582 
11583 	new = dtrace_enabling_create(&state->dts_vstate);
11584 
11585 	/*
11586 	 * Iterate over all retained enablings, looking for enablings that
11587 	 * match the specified state.
11588 	 */
11589 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11590 		int i;
11591 
11592 		/*
11593 		 * dtvs_state can only be NULL for helper enablings -- and
11594 		 * helper enablings can't be retained.
11595 		 */
11596 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11597 
11598 		if (enab->dten_vstate->dtvs_state != state)
11599 			continue;
11600 
11601 		/*
11602 		 * Now iterate over each probe description; we're looking for
11603 		 * an exact match to the specified probe description.
11604 		 */
11605 		for (i = 0; i < enab->dten_ndesc; i++) {
11606 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11607 			dtrace_probedesc_t *pd = &ep->dted_probe;
11608 
11609 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11610 				continue;
11611 
11612 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11613 				continue;
11614 
11615 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11616 				continue;
11617 
11618 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11619 				continue;
11620 
11621 			/*
11622 			 * We have a winning probe!  Add it to our growing
11623 			 * enabling.
11624 			 */
11625 			found = 1;
11626 			dtrace_enabling_addlike(new, ep, create);
11627 		}
11628 	}
11629 
11630 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11631 		dtrace_enabling_destroy(new);
11632 		return (err);
11633 	}
11634 
11635 	return (0);
11636 }
11637 
11638 static void
11639 dtrace_enabling_retract(dtrace_state_t *state)
11640 {
11641 	dtrace_enabling_t *enab, *next;
11642 
11643 	ASSERT(MUTEX_HELD(&dtrace_lock));
11644 
11645 	/*
11646 	 * Iterate over all retained enablings, destroy the enablings retained
11647 	 * for the specified state.
11648 	 */
11649 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11650 		next = enab->dten_next;
11651 
11652 		/*
11653 		 * dtvs_state can only be NULL for helper enablings -- and
11654 		 * helper enablings can't be retained.
11655 		 */
11656 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11657 
11658 		if (enab->dten_vstate->dtvs_state == state) {
11659 			ASSERT(state->dts_nretained > 0);
11660 			dtrace_enabling_destroy(enab);
11661 		}
11662 	}
11663 
11664 	ASSERT(state->dts_nretained == 0);
11665 }
11666 
11667 static int
11668 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11669 {
11670 	int i = 0;
11671 	int matched = 0;
11672 
11673 	ASSERT(MUTEX_HELD(&cpu_lock));
11674 	ASSERT(MUTEX_HELD(&dtrace_lock));
11675 
11676 	for (i = 0; i < enab->dten_ndesc; i++) {
11677 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11678 
11679 		enab->dten_current = ep;
11680 		enab->dten_error = 0;
11681 
11682 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11683 
11684 		if (enab->dten_error != 0) {
11685 			/*
11686 			 * If we get an error half-way through enabling the
11687 			 * probes, we kick out -- perhaps with some number of
11688 			 * them enabled.  Leaving enabled probes enabled may
11689 			 * be slightly confusing for user-level, but we expect
11690 			 * that no one will attempt to actually drive on in
11691 			 * the face of such errors.  If this is an anonymous
11692 			 * enabling (indicated with a NULL nmatched pointer),
11693 			 * we cmn_err() a message.  We aren't expecting to
11694 			 * get such an error -- such as it can exist at all,
11695 			 * it would be a result of corrupted DOF in the driver
11696 			 * properties.
11697 			 */
11698 			if (nmatched == NULL) {
11699 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11700 				    "error on %p: %d", (void *)ep,
11701 				    enab->dten_error);
11702 			}
11703 
11704 			return (enab->dten_error);
11705 		}
11706 	}
11707 
11708 	enab->dten_probegen = dtrace_probegen;
11709 	if (nmatched != NULL)
11710 		*nmatched = matched;
11711 
11712 	return (0);
11713 }
11714 
11715 static void
11716 dtrace_enabling_matchall(void)
11717 {
11718 	dtrace_enabling_t *enab;
11719 
11720 	mutex_enter(&cpu_lock);
11721 	mutex_enter(&dtrace_lock);
11722 
11723 	/*
11724 	 * Iterate over all retained enablings to see if any probes match
11725 	 * against them.  We only perform this operation on enablings for which
11726 	 * we have sufficient permissions by virtue of being in the global zone
11727 	 * or in the same zone as the DTrace client.  Because we can be called
11728 	 * after dtrace_detach() has been called, we cannot assert that there
11729 	 * are retained enablings.  We can safely load from dtrace_retained,
11730 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11731 	 * block pending our completion.
11732 	 */
11733 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11734 #if defined(sun)
11735 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11736 
11737 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11738 #endif
11739 			(void) dtrace_enabling_match(enab, NULL);
11740 	}
11741 
11742 	mutex_exit(&dtrace_lock);
11743 	mutex_exit(&cpu_lock);
11744 }
11745 
11746 /*
11747  * If an enabling is to be enabled without having matched probes (that is, if
11748  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11749  * enabling must be _primed_ by creating an ECB for every ECB description.
11750  * This must be done to assure that we know the number of speculations, the
11751  * number of aggregations, the minimum buffer size needed, etc. before we
11752  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11753  * enabling any probes, we create ECBs for every ECB decription, but with a
11754  * NULL probe -- which is exactly what this function does.
11755  */
11756 static void
11757 dtrace_enabling_prime(dtrace_state_t *state)
11758 {
11759 	dtrace_enabling_t *enab;
11760 	int i;
11761 
11762 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11763 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11764 
11765 		if (enab->dten_vstate->dtvs_state != state)
11766 			continue;
11767 
11768 		/*
11769 		 * We don't want to prime an enabling more than once, lest
11770 		 * we allow a malicious user to induce resource exhaustion.
11771 		 * (The ECBs that result from priming an enabling aren't
11772 		 * leaked -- but they also aren't deallocated until the
11773 		 * consumer state is destroyed.)
11774 		 */
11775 		if (enab->dten_primed)
11776 			continue;
11777 
11778 		for (i = 0; i < enab->dten_ndesc; i++) {
11779 			enab->dten_current = enab->dten_desc[i];
11780 			(void) dtrace_probe_enable(NULL, enab);
11781 		}
11782 
11783 		enab->dten_primed = 1;
11784 	}
11785 }
11786 
11787 /*
11788  * Called to indicate that probes should be provided due to retained
11789  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11790  * must take an initial lap through the enabling calling the dtps_provide()
11791  * entry point explicitly to allow for autocreated probes.
11792  */
11793 static void
11794 dtrace_enabling_provide(dtrace_provider_t *prv)
11795 {
11796 	int i, all = 0;
11797 	dtrace_probedesc_t desc;
11798 
11799 	ASSERT(MUTEX_HELD(&dtrace_lock));
11800 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11801 
11802 	if (prv == NULL) {
11803 		all = 1;
11804 		prv = dtrace_provider;
11805 	}
11806 
11807 	do {
11808 		dtrace_enabling_t *enab = dtrace_retained;
11809 		void *parg = prv->dtpv_arg;
11810 
11811 		for (; enab != NULL; enab = enab->dten_next) {
11812 			for (i = 0; i < enab->dten_ndesc; i++) {
11813 				desc = enab->dten_desc[i]->dted_probe;
11814 				mutex_exit(&dtrace_lock);
11815 				prv->dtpv_pops.dtps_provide(parg, &desc);
11816 				mutex_enter(&dtrace_lock);
11817 			}
11818 		}
11819 	} while (all && (prv = prv->dtpv_next) != NULL);
11820 
11821 	mutex_exit(&dtrace_lock);
11822 	dtrace_probe_provide(NULL, all ? NULL : prv);
11823 	mutex_enter(&dtrace_lock);
11824 }
11825 
11826 /*
11827  * Called to reap ECBs that are attached to probes from defunct providers.
11828  */
11829 static void
11830 dtrace_enabling_reap(void)
11831 {
11832 	dtrace_provider_t *prov;
11833 	dtrace_probe_t *probe;
11834 	dtrace_ecb_t *ecb;
11835 	hrtime_t when;
11836 	int i;
11837 
11838 	mutex_enter(&cpu_lock);
11839 	mutex_enter(&dtrace_lock);
11840 
11841 	for (i = 0; i < dtrace_nprobes; i++) {
11842 		if ((probe = dtrace_probes[i]) == NULL)
11843 			continue;
11844 
11845 		if (probe->dtpr_ecb == NULL)
11846 			continue;
11847 
11848 		prov = probe->dtpr_provider;
11849 
11850 		if ((when = prov->dtpv_defunct) == 0)
11851 			continue;
11852 
11853 		/*
11854 		 * We have ECBs on a defunct provider:  we want to reap these
11855 		 * ECBs to allow the provider to unregister.  The destruction
11856 		 * of these ECBs must be done carefully:  if we destroy the ECB
11857 		 * and the consumer later wishes to consume an EPID that
11858 		 * corresponds to the destroyed ECB (and if the EPID metadata
11859 		 * has not been previously consumed), the consumer will abort
11860 		 * processing on the unknown EPID.  To reduce (but not, sadly,
11861 		 * eliminate) the possibility of this, we will only destroy an
11862 		 * ECB for a defunct provider if, for the state that
11863 		 * corresponds to the ECB:
11864 		 *
11865 		 *  (a)	There is no speculative tracing (which can effectively
11866 		 *	cache an EPID for an arbitrary amount of time).
11867 		 *
11868 		 *  (b)	The principal buffers have been switched twice since the
11869 		 *	provider became defunct.
11870 		 *
11871 		 *  (c)	The aggregation buffers are of zero size or have been
11872 		 *	switched twice since the provider became defunct.
11873 		 *
11874 		 * We use dts_speculates to determine (a) and call a function
11875 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11876 		 * that as soon as we've been unable to destroy one of the ECBs
11877 		 * associated with the probe, we quit trying -- reaping is only
11878 		 * fruitful in as much as we can destroy all ECBs associated
11879 		 * with the defunct provider's probes.
11880 		 */
11881 		while ((ecb = probe->dtpr_ecb) != NULL) {
11882 			dtrace_state_t *state = ecb->dte_state;
11883 			dtrace_buffer_t *buf = state->dts_buffer;
11884 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11885 
11886 			if (state->dts_speculates)
11887 				break;
11888 
11889 			if (!dtrace_buffer_consumed(buf, when))
11890 				break;
11891 
11892 			if (!dtrace_buffer_consumed(aggbuf, when))
11893 				break;
11894 
11895 			dtrace_ecb_disable(ecb);
11896 			ASSERT(probe->dtpr_ecb != ecb);
11897 			dtrace_ecb_destroy(ecb);
11898 		}
11899 	}
11900 
11901 	mutex_exit(&dtrace_lock);
11902 	mutex_exit(&cpu_lock);
11903 }
11904 
11905 /*
11906  * DTrace DOF Functions
11907  */
11908 /*ARGSUSED*/
11909 static void
11910 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11911 {
11912 	if (dtrace_err_verbose)
11913 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11914 
11915 #ifdef DTRACE_ERRDEBUG
11916 	dtrace_errdebug(str);
11917 #endif
11918 }
11919 
11920 /*
11921  * Create DOF out of a currently enabled state.  Right now, we only create
11922  * DOF containing the run-time options -- but this could be expanded to create
11923  * complete DOF representing the enabled state.
11924  */
11925 static dof_hdr_t *
11926 dtrace_dof_create(dtrace_state_t *state)
11927 {
11928 	dof_hdr_t *dof;
11929 	dof_sec_t *sec;
11930 	dof_optdesc_t *opt;
11931 	int i, len = sizeof (dof_hdr_t) +
11932 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11933 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11934 
11935 	ASSERT(MUTEX_HELD(&dtrace_lock));
11936 
11937 	dof = kmem_zalloc(len, KM_SLEEP);
11938 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11939 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11940 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11941 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11942 
11943 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11944 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11945 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11946 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11947 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11948 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11949 
11950 	dof->dofh_flags = 0;
11951 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11952 	dof->dofh_secsize = sizeof (dof_sec_t);
11953 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11954 	dof->dofh_secoff = sizeof (dof_hdr_t);
11955 	dof->dofh_loadsz = len;
11956 	dof->dofh_filesz = len;
11957 	dof->dofh_pad = 0;
11958 
11959 	/*
11960 	 * Fill in the option section header...
11961 	 */
11962 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11963 	sec->dofs_type = DOF_SECT_OPTDESC;
11964 	sec->dofs_align = sizeof (uint64_t);
11965 	sec->dofs_flags = DOF_SECF_LOAD;
11966 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11967 
11968 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11969 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11970 
11971 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11972 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11973 
11974 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11975 		opt[i].dofo_option = i;
11976 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11977 		opt[i].dofo_value = state->dts_options[i];
11978 	}
11979 
11980 	return (dof);
11981 }
11982 
11983 static dof_hdr_t *
11984 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11985 {
11986 	dof_hdr_t hdr, *dof;
11987 
11988 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11989 
11990 	/*
11991 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11992 	 */
11993 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11994 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11995 		*errp = EFAULT;
11996 		return (NULL);
11997 	}
11998 
11999 	/*
12000 	 * Now we'll allocate the entire DOF and copy it in -- provided
12001 	 * that the length isn't outrageous.
12002 	 */
12003 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12004 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12005 		*errp = E2BIG;
12006 		return (NULL);
12007 	}
12008 
12009 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12010 		dtrace_dof_error(&hdr, "invalid load size");
12011 		*errp = EINVAL;
12012 		return (NULL);
12013 	}
12014 
12015 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12016 
12017 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
12018 		kmem_free(dof, hdr.dofh_loadsz);
12019 		*errp = EFAULT;
12020 		return (NULL);
12021 	}
12022 
12023 	return (dof);
12024 }
12025 
12026 #if !defined(sun)
12027 static __inline uchar_t
12028 dtrace_dof_char(char c) {
12029 	switch (c) {
12030 	case '0':
12031 	case '1':
12032 	case '2':
12033 	case '3':
12034 	case '4':
12035 	case '5':
12036 	case '6':
12037 	case '7':
12038 	case '8':
12039 	case '9':
12040 		return (c - '0');
12041 	case 'A':
12042 	case 'B':
12043 	case 'C':
12044 	case 'D':
12045 	case 'E':
12046 	case 'F':
12047 		return (c - 'A' + 10);
12048 	case 'a':
12049 	case 'b':
12050 	case 'c':
12051 	case 'd':
12052 	case 'e':
12053 	case 'f':
12054 		return (c - 'a' + 10);
12055 	}
12056 	/* Should not reach here. */
12057 	return (0);
12058 }
12059 #endif
12060 
12061 static dof_hdr_t *
12062 dtrace_dof_property(const char *name)
12063 {
12064 	uchar_t *buf;
12065 	uint64_t loadsz;
12066 	unsigned int len, i;
12067 	dof_hdr_t *dof;
12068 
12069 #if defined(sun)
12070 	/*
12071 	 * Unfortunately, array of values in .conf files are always (and
12072 	 * only) interpreted to be integer arrays.  We must read our DOF
12073 	 * as an integer array, and then squeeze it into a byte array.
12074 	 */
12075 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12076 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12077 		return (NULL);
12078 
12079 	for (i = 0; i < len; i++)
12080 		buf[i] = (uchar_t)(((int *)buf)[i]);
12081 
12082 	if (len < sizeof (dof_hdr_t)) {
12083 		ddi_prop_free(buf);
12084 		dtrace_dof_error(NULL, "truncated header");
12085 		return (NULL);
12086 	}
12087 
12088 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12089 		ddi_prop_free(buf);
12090 		dtrace_dof_error(NULL, "truncated DOF");
12091 		return (NULL);
12092 	}
12093 
12094 	if (loadsz >= dtrace_dof_maxsize) {
12095 		ddi_prop_free(buf);
12096 		dtrace_dof_error(NULL, "oversized DOF");
12097 		return (NULL);
12098 	}
12099 
12100 	dof = kmem_alloc(loadsz, KM_SLEEP);
12101 	bcopy(buf, dof, loadsz);
12102 	ddi_prop_free(buf);
12103 #else
12104 	char *p;
12105 	char *p_env;
12106 
12107 	if ((p_env = getenv(name)) == NULL)
12108 		return (NULL);
12109 
12110 	len = strlen(p_env) / 2;
12111 
12112 	buf = kmem_alloc(len, KM_SLEEP);
12113 
12114 	dof = (dof_hdr_t *) buf;
12115 
12116 	p = p_env;
12117 
12118 	for (i = 0; i < len; i++) {
12119 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12120 		     dtrace_dof_char(p[1]);
12121 		p += 2;
12122 	}
12123 
12124 	freeenv(p_env);
12125 
12126 	if (len < sizeof (dof_hdr_t)) {
12127 		kmem_free(buf, 0);
12128 		dtrace_dof_error(NULL, "truncated header");
12129 		return (NULL);
12130 	}
12131 
12132 	if (len < (loadsz = dof->dofh_loadsz)) {
12133 		kmem_free(buf, 0);
12134 		dtrace_dof_error(NULL, "truncated DOF");
12135 		return (NULL);
12136 	}
12137 
12138 	if (loadsz >= dtrace_dof_maxsize) {
12139 		kmem_free(buf, 0);
12140 		dtrace_dof_error(NULL, "oversized DOF");
12141 		return (NULL);
12142 	}
12143 #endif
12144 
12145 	return (dof);
12146 }
12147 
12148 static void
12149 dtrace_dof_destroy(dof_hdr_t *dof)
12150 {
12151 	kmem_free(dof, dof->dofh_loadsz);
12152 }
12153 
12154 /*
12155  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12156  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12157  * a type other than DOF_SECT_NONE is specified, the header is checked against
12158  * this type and NULL is returned if the types do not match.
12159  */
12160 static dof_sec_t *
12161 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12162 {
12163 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12164 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12165 
12166 	if (i >= dof->dofh_secnum) {
12167 		dtrace_dof_error(dof, "referenced section index is invalid");
12168 		return (NULL);
12169 	}
12170 
12171 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12172 		dtrace_dof_error(dof, "referenced section is not loadable");
12173 		return (NULL);
12174 	}
12175 
12176 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12177 		dtrace_dof_error(dof, "referenced section is the wrong type");
12178 		return (NULL);
12179 	}
12180 
12181 	return (sec);
12182 }
12183 
12184 static dtrace_probedesc_t *
12185 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12186 {
12187 	dof_probedesc_t *probe;
12188 	dof_sec_t *strtab;
12189 	uintptr_t daddr = (uintptr_t)dof;
12190 	uintptr_t str;
12191 	size_t size;
12192 
12193 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12194 		dtrace_dof_error(dof, "invalid probe section");
12195 		return (NULL);
12196 	}
12197 
12198 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12199 		dtrace_dof_error(dof, "bad alignment in probe description");
12200 		return (NULL);
12201 	}
12202 
12203 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12204 		dtrace_dof_error(dof, "truncated probe description");
12205 		return (NULL);
12206 	}
12207 
12208 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12209 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12210 
12211 	if (strtab == NULL)
12212 		return (NULL);
12213 
12214 	str = daddr + strtab->dofs_offset;
12215 	size = strtab->dofs_size;
12216 
12217 	if (probe->dofp_provider >= strtab->dofs_size) {
12218 		dtrace_dof_error(dof, "corrupt probe provider");
12219 		return (NULL);
12220 	}
12221 
12222 	(void) strncpy(desc->dtpd_provider,
12223 	    (char *)(str + probe->dofp_provider),
12224 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12225 
12226 	if (probe->dofp_mod >= strtab->dofs_size) {
12227 		dtrace_dof_error(dof, "corrupt probe module");
12228 		return (NULL);
12229 	}
12230 
12231 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12232 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12233 
12234 	if (probe->dofp_func >= strtab->dofs_size) {
12235 		dtrace_dof_error(dof, "corrupt probe function");
12236 		return (NULL);
12237 	}
12238 
12239 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12240 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12241 
12242 	if (probe->dofp_name >= strtab->dofs_size) {
12243 		dtrace_dof_error(dof, "corrupt probe name");
12244 		return (NULL);
12245 	}
12246 
12247 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12248 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12249 
12250 	return (desc);
12251 }
12252 
12253 static dtrace_difo_t *
12254 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12255     cred_t *cr)
12256 {
12257 	dtrace_difo_t *dp;
12258 	size_t ttl = 0;
12259 	dof_difohdr_t *dofd;
12260 	uintptr_t daddr = (uintptr_t)dof;
12261 	size_t max = dtrace_difo_maxsize;
12262 	int i, l, n;
12263 
12264 	static const struct {
12265 		int section;
12266 		int bufoffs;
12267 		int lenoffs;
12268 		int entsize;
12269 		int align;
12270 		const char *msg;
12271 	} difo[] = {
12272 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12273 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12274 		sizeof (dif_instr_t), "multiple DIF sections" },
12275 
12276 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12277 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12278 		sizeof (uint64_t), "multiple integer tables" },
12279 
12280 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12281 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12282 		sizeof (char), "multiple string tables" },
12283 
12284 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12285 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12286 		sizeof (uint_t), "multiple variable tables" },
12287 
12288 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12289 	};
12290 
12291 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12292 		dtrace_dof_error(dof, "invalid DIFO header section");
12293 		return (NULL);
12294 	}
12295 
12296 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12297 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12298 		return (NULL);
12299 	}
12300 
12301 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12302 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12303 		dtrace_dof_error(dof, "bad size in DIFO header");
12304 		return (NULL);
12305 	}
12306 
12307 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12308 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12309 
12310 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12311 	dp->dtdo_rtype = dofd->dofd_rtype;
12312 
12313 	for (l = 0; l < n; l++) {
12314 		dof_sec_t *subsec;
12315 		void **bufp;
12316 		uint32_t *lenp;
12317 
12318 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12319 		    dofd->dofd_links[l])) == NULL)
12320 			goto err; /* invalid section link */
12321 
12322 		if (ttl + subsec->dofs_size > max) {
12323 			dtrace_dof_error(dof, "exceeds maximum size");
12324 			goto err;
12325 		}
12326 
12327 		ttl += subsec->dofs_size;
12328 
12329 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12330 			if (subsec->dofs_type != difo[i].section)
12331 				continue;
12332 
12333 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12334 				dtrace_dof_error(dof, "section not loaded");
12335 				goto err;
12336 			}
12337 
12338 			if (subsec->dofs_align != difo[i].align) {
12339 				dtrace_dof_error(dof, "bad alignment");
12340 				goto err;
12341 			}
12342 
12343 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12344 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12345 
12346 			if (*bufp != NULL) {
12347 				dtrace_dof_error(dof, difo[i].msg);
12348 				goto err;
12349 			}
12350 
12351 			if (difo[i].entsize != subsec->dofs_entsize) {
12352 				dtrace_dof_error(dof, "entry size mismatch");
12353 				goto err;
12354 			}
12355 
12356 			if (subsec->dofs_entsize != 0 &&
12357 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12358 				dtrace_dof_error(dof, "corrupt entry size");
12359 				goto err;
12360 			}
12361 
12362 			*lenp = subsec->dofs_size;
12363 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12364 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12365 			    *bufp, subsec->dofs_size);
12366 
12367 			if (subsec->dofs_entsize != 0)
12368 				*lenp /= subsec->dofs_entsize;
12369 
12370 			break;
12371 		}
12372 
12373 		/*
12374 		 * If we encounter a loadable DIFO sub-section that is not
12375 		 * known to us, assume this is a broken program and fail.
12376 		 */
12377 		if (difo[i].section == DOF_SECT_NONE &&
12378 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12379 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12380 			goto err;
12381 		}
12382 	}
12383 
12384 	if (dp->dtdo_buf == NULL) {
12385 		/*
12386 		 * We can't have a DIF object without DIF text.
12387 		 */
12388 		dtrace_dof_error(dof, "missing DIF text");
12389 		goto err;
12390 	}
12391 
12392 	/*
12393 	 * Before we validate the DIF object, run through the variable table
12394 	 * looking for the strings -- if any of their size are under, we'll set
12395 	 * their size to be the system-wide default string size.  Note that
12396 	 * this should _not_ happen if the "strsize" option has been set --
12397 	 * in this case, the compiler should have set the size to reflect the
12398 	 * setting of the option.
12399 	 */
12400 	for (i = 0; i < dp->dtdo_varlen; i++) {
12401 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12402 		dtrace_diftype_t *t = &v->dtdv_type;
12403 
12404 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12405 			continue;
12406 
12407 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12408 			t->dtdt_size = dtrace_strsize_default;
12409 	}
12410 
12411 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12412 		goto err;
12413 
12414 	dtrace_difo_init(dp, vstate);
12415 	return (dp);
12416 
12417 err:
12418 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12419 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12420 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12421 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12422 
12423 	kmem_free(dp, sizeof (dtrace_difo_t));
12424 	return (NULL);
12425 }
12426 
12427 static dtrace_predicate_t *
12428 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12429     cred_t *cr)
12430 {
12431 	dtrace_difo_t *dp;
12432 
12433 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12434 		return (NULL);
12435 
12436 	return (dtrace_predicate_create(dp));
12437 }
12438 
12439 static dtrace_actdesc_t *
12440 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12441     cred_t *cr)
12442 {
12443 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12444 	dof_actdesc_t *desc;
12445 	dof_sec_t *difosec;
12446 	size_t offs;
12447 	uintptr_t daddr = (uintptr_t)dof;
12448 	uint64_t arg;
12449 	dtrace_actkind_t kind;
12450 
12451 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12452 		dtrace_dof_error(dof, "invalid action section");
12453 		return (NULL);
12454 	}
12455 
12456 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12457 		dtrace_dof_error(dof, "truncated action description");
12458 		return (NULL);
12459 	}
12460 
12461 	if (sec->dofs_align != sizeof (uint64_t)) {
12462 		dtrace_dof_error(dof, "bad alignment in action description");
12463 		return (NULL);
12464 	}
12465 
12466 	if (sec->dofs_size < sec->dofs_entsize) {
12467 		dtrace_dof_error(dof, "section entry size exceeds total size");
12468 		return (NULL);
12469 	}
12470 
12471 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12472 		dtrace_dof_error(dof, "bad entry size in action description");
12473 		return (NULL);
12474 	}
12475 
12476 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12477 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12478 		return (NULL);
12479 	}
12480 
12481 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12482 		desc = (dof_actdesc_t *)(daddr +
12483 		    (uintptr_t)sec->dofs_offset + offs);
12484 		kind = (dtrace_actkind_t)desc->dofa_kind;
12485 
12486 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12487 		    (kind != DTRACEACT_PRINTA ||
12488 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12489 		    (kind == DTRACEACT_DIFEXPR &&
12490 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12491 			dof_sec_t *strtab;
12492 			char *str, *fmt;
12493 			uint64_t i;
12494 
12495 			/*
12496 			 * The argument to these actions is an index into the
12497 			 * DOF string table.  For printf()-like actions, this
12498 			 * is the format string.  For print(), this is the
12499 			 * CTF type of the expression result.
12500 			 */
12501 			if ((strtab = dtrace_dof_sect(dof,
12502 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12503 				goto err;
12504 
12505 			str = (char *)((uintptr_t)dof +
12506 			    (uintptr_t)strtab->dofs_offset);
12507 
12508 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12509 				if (str[i] == '\0')
12510 					break;
12511 			}
12512 
12513 			if (i >= strtab->dofs_size) {
12514 				dtrace_dof_error(dof, "bogus format string");
12515 				goto err;
12516 			}
12517 
12518 			if (i == desc->dofa_arg) {
12519 				dtrace_dof_error(dof, "empty format string");
12520 				goto err;
12521 			}
12522 
12523 			i -= desc->dofa_arg;
12524 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12525 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12526 			arg = (uint64_t)(uintptr_t)fmt;
12527 		} else {
12528 			if (kind == DTRACEACT_PRINTA) {
12529 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12530 				arg = 0;
12531 			} else {
12532 				arg = desc->dofa_arg;
12533 			}
12534 		}
12535 
12536 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12537 		    desc->dofa_uarg, arg);
12538 
12539 		if (last != NULL) {
12540 			last->dtad_next = act;
12541 		} else {
12542 			first = act;
12543 		}
12544 
12545 		last = act;
12546 
12547 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12548 			continue;
12549 
12550 		if ((difosec = dtrace_dof_sect(dof,
12551 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12552 			goto err;
12553 
12554 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12555 
12556 		if (act->dtad_difo == NULL)
12557 			goto err;
12558 	}
12559 
12560 	ASSERT(first != NULL);
12561 	return (first);
12562 
12563 err:
12564 	for (act = first; act != NULL; act = next) {
12565 		next = act->dtad_next;
12566 		dtrace_actdesc_release(act, vstate);
12567 	}
12568 
12569 	return (NULL);
12570 }
12571 
12572 static dtrace_ecbdesc_t *
12573 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12574     cred_t *cr)
12575 {
12576 	dtrace_ecbdesc_t *ep;
12577 	dof_ecbdesc_t *ecb;
12578 	dtrace_probedesc_t *desc;
12579 	dtrace_predicate_t *pred = NULL;
12580 
12581 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12582 		dtrace_dof_error(dof, "truncated ECB description");
12583 		return (NULL);
12584 	}
12585 
12586 	if (sec->dofs_align != sizeof (uint64_t)) {
12587 		dtrace_dof_error(dof, "bad alignment in ECB description");
12588 		return (NULL);
12589 	}
12590 
12591 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12592 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12593 
12594 	if (sec == NULL)
12595 		return (NULL);
12596 
12597 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12598 	ep->dted_uarg = ecb->dofe_uarg;
12599 	desc = &ep->dted_probe;
12600 
12601 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12602 		goto err;
12603 
12604 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12605 		if ((sec = dtrace_dof_sect(dof,
12606 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12607 			goto err;
12608 
12609 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12610 			goto err;
12611 
12612 		ep->dted_pred.dtpdd_predicate = pred;
12613 	}
12614 
12615 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12616 		if ((sec = dtrace_dof_sect(dof,
12617 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12618 			goto err;
12619 
12620 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12621 
12622 		if (ep->dted_action == NULL)
12623 			goto err;
12624 	}
12625 
12626 	return (ep);
12627 
12628 err:
12629 	if (pred != NULL)
12630 		dtrace_predicate_release(pred, vstate);
12631 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12632 	return (NULL);
12633 }
12634 
12635 /*
12636  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12637  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12638  * site of any user SETX relocations to account for load object base address.
12639  * In the future, if we need other relocations, this function can be extended.
12640  */
12641 static int
12642 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12643 {
12644 	uintptr_t daddr = (uintptr_t)dof;
12645 	dof_relohdr_t *dofr =
12646 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12647 	dof_sec_t *ss, *rs, *ts;
12648 	dof_relodesc_t *r;
12649 	uint_t i, n;
12650 
12651 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12652 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12653 		dtrace_dof_error(dof, "invalid relocation header");
12654 		return (-1);
12655 	}
12656 
12657 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12658 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12659 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12660 
12661 	if (ss == NULL || rs == NULL || ts == NULL)
12662 		return (-1); /* dtrace_dof_error() has been called already */
12663 
12664 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12665 	    rs->dofs_align != sizeof (uint64_t)) {
12666 		dtrace_dof_error(dof, "invalid relocation section");
12667 		return (-1);
12668 	}
12669 
12670 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12671 	n = rs->dofs_size / rs->dofs_entsize;
12672 
12673 	for (i = 0; i < n; i++) {
12674 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12675 
12676 		switch (r->dofr_type) {
12677 		case DOF_RELO_NONE:
12678 			break;
12679 		case DOF_RELO_SETX:
12680 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12681 			    sizeof (uint64_t) > ts->dofs_size) {
12682 				dtrace_dof_error(dof, "bad relocation offset");
12683 				return (-1);
12684 			}
12685 
12686 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12687 				dtrace_dof_error(dof, "misaligned setx relo");
12688 				return (-1);
12689 			}
12690 
12691 			*(uint64_t *)taddr += ubase;
12692 			break;
12693 		default:
12694 			dtrace_dof_error(dof, "invalid relocation type");
12695 			return (-1);
12696 		}
12697 
12698 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12699 	}
12700 
12701 	return (0);
12702 }
12703 
12704 /*
12705  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12706  * header:  it should be at the front of a memory region that is at least
12707  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12708  * size.  It need not be validated in any other way.
12709  */
12710 static int
12711 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12712     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12713 {
12714 	uint64_t len = dof->dofh_loadsz, seclen;
12715 	uintptr_t daddr = (uintptr_t)dof;
12716 	dtrace_ecbdesc_t *ep;
12717 	dtrace_enabling_t *enab;
12718 	uint_t i;
12719 
12720 	ASSERT(MUTEX_HELD(&dtrace_lock));
12721 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12722 
12723 	/*
12724 	 * Check the DOF header identification bytes.  In addition to checking
12725 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12726 	 * we can use them later without fear of regressing existing binaries.
12727 	 */
12728 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12729 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12730 		dtrace_dof_error(dof, "DOF magic string mismatch");
12731 		return (-1);
12732 	}
12733 
12734 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12735 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12736 		dtrace_dof_error(dof, "DOF has invalid data model");
12737 		return (-1);
12738 	}
12739 
12740 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12741 		dtrace_dof_error(dof, "DOF encoding mismatch");
12742 		return (-1);
12743 	}
12744 
12745 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12746 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12747 		dtrace_dof_error(dof, "DOF version mismatch");
12748 		return (-1);
12749 	}
12750 
12751 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12752 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12753 		return (-1);
12754 	}
12755 
12756 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12757 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12758 		return (-1);
12759 	}
12760 
12761 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12762 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12763 		return (-1);
12764 	}
12765 
12766 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12767 		if (dof->dofh_ident[i] != 0) {
12768 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12769 			return (-1);
12770 		}
12771 	}
12772 
12773 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12774 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12775 		return (-1);
12776 	}
12777 
12778 	if (dof->dofh_secsize == 0) {
12779 		dtrace_dof_error(dof, "zero section header size");
12780 		return (-1);
12781 	}
12782 
12783 	/*
12784 	 * Check that the section headers don't exceed the amount of DOF
12785 	 * data.  Note that we cast the section size and number of sections
12786 	 * to uint64_t's to prevent possible overflow in the multiplication.
12787 	 */
12788 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12789 
12790 	if (dof->dofh_secoff > len || seclen > len ||
12791 	    dof->dofh_secoff + seclen > len) {
12792 		dtrace_dof_error(dof, "truncated section headers");
12793 		return (-1);
12794 	}
12795 
12796 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12797 		dtrace_dof_error(dof, "misaligned section headers");
12798 		return (-1);
12799 	}
12800 
12801 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12802 		dtrace_dof_error(dof, "misaligned section size");
12803 		return (-1);
12804 	}
12805 
12806 	/*
12807 	 * Take an initial pass through the section headers to be sure that
12808 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12809 	 * set, do not permit sections relating to providers, probes, or args.
12810 	 */
12811 	for (i = 0; i < dof->dofh_secnum; i++) {
12812 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12813 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12814 
12815 		if (noprobes) {
12816 			switch (sec->dofs_type) {
12817 			case DOF_SECT_PROVIDER:
12818 			case DOF_SECT_PROBES:
12819 			case DOF_SECT_PRARGS:
12820 			case DOF_SECT_PROFFS:
12821 				dtrace_dof_error(dof, "illegal sections "
12822 				    "for enabling");
12823 				return (-1);
12824 			}
12825 		}
12826 
12827 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12828 			continue; /* just ignore non-loadable sections */
12829 
12830 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12831 			dtrace_dof_error(dof, "bad section alignment");
12832 			return (-1);
12833 		}
12834 
12835 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12836 			dtrace_dof_error(dof, "misaligned section");
12837 			return (-1);
12838 		}
12839 
12840 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12841 		    sec->dofs_offset + sec->dofs_size > len) {
12842 			dtrace_dof_error(dof, "corrupt section header");
12843 			return (-1);
12844 		}
12845 
12846 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12847 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12848 			dtrace_dof_error(dof, "non-terminating string table");
12849 			return (-1);
12850 		}
12851 	}
12852 
12853 	/*
12854 	 * Take a second pass through the sections and locate and perform any
12855 	 * relocations that are present.  We do this after the first pass to
12856 	 * be sure that all sections have had their headers validated.
12857 	 */
12858 	for (i = 0; i < dof->dofh_secnum; i++) {
12859 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12860 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12861 
12862 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12863 			continue; /* skip sections that are not loadable */
12864 
12865 		switch (sec->dofs_type) {
12866 		case DOF_SECT_URELHDR:
12867 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12868 				return (-1);
12869 			break;
12870 		}
12871 	}
12872 
12873 	if ((enab = *enabp) == NULL)
12874 		enab = *enabp = dtrace_enabling_create(vstate);
12875 
12876 	for (i = 0; i < dof->dofh_secnum; i++) {
12877 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12878 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12879 
12880 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12881 			continue;
12882 
12883 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12884 			dtrace_enabling_destroy(enab);
12885 			*enabp = NULL;
12886 			return (-1);
12887 		}
12888 
12889 		dtrace_enabling_add(enab, ep);
12890 	}
12891 
12892 	return (0);
12893 }
12894 
12895 /*
12896  * Process DOF for any options.  This routine assumes that the DOF has been
12897  * at least processed by dtrace_dof_slurp().
12898  */
12899 static int
12900 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12901 {
12902 	int i, rval;
12903 	uint32_t entsize;
12904 	size_t offs;
12905 	dof_optdesc_t *desc;
12906 
12907 	for (i = 0; i < dof->dofh_secnum; i++) {
12908 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12909 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12910 
12911 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12912 			continue;
12913 
12914 		if (sec->dofs_align != sizeof (uint64_t)) {
12915 			dtrace_dof_error(dof, "bad alignment in "
12916 			    "option description");
12917 			return (EINVAL);
12918 		}
12919 
12920 		if ((entsize = sec->dofs_entsize) == 0) {
12921 			dtrace_dof_error(dof, "zeroed option entry size");
12922 			return (EINVAL);
12923 		}
12924 
12925 		if (entsize < sizeof (dof_optdesc_t)) {
12926 			dtrace_dof_error(dof, "bad option entry size");
12927 			return (EINVAL);
12928 		}
12929 
12930 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12931 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12932 			    (uintptr_t)sec->dofs_offset + offs);
12933 
12934 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12935 				dtrace_dof_error(dof, "non-zero option string");
12936 				return (EINVAL);
12937 			}
12938 
12939 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12940 				dtrace_dof_error(dof, "unset option");
12941 				return (EINVAL);
12942 			}
12943 
12944 			if ((rval = dtrace_state_option(state,
12945 			    desc->dofo_option, desc->dofo_value)) != 0) {
12946 				dtrace_dof_error(dof, "rejected option");
12947 				return (rval);
12948 			}
12949 		}
12950 	}
12951 
12952 	return (0);
12953 }
12954 
12955 /*
12956  * DTrace Consumer State Functions
12957  */
12958 static int
12959 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12960 {
12961 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12962 	void *base;
12963 	uintptr_t limit;
12964 	dtrace_dynvar_t *dvar, *next, *start;
12965 	int i;
12966 
12967 	ASSERT(MUTEX_HELD(&dtrace_lock));
12968 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12969 
12970 	bzero(dstate, sizeof (dtrace_dstate_t));
12971 
12972 	if ((dstate->dtds_chunksize = chunksize) == 0)
12973 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12974 
12975 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12976 		size = min;
12977 
12978 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12979 		return (ENOMEM);
12980 
12981 	dstate->dtds_size = size;
12982 	dstate->dtds_base = base;
12983 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12984 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12985 
12986 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12987 
12988 	if (hashsize != 1 && (hashsize & 1))
12989 		hashsize--;
12990 
12991 	dstate->dtds_hashsize = hashsize;
12992 	dstate->dtds_hash = dstate->dtds_base;
12993 
12994 	/*
12995 	 * Set all of our hash buckets to point to the single sink, and (if
12996 	 * it hasn't already been set), set the sink's hash value to be the
12997 	 * sink sentinel value.  The sink is needed for dynamic variable
12998 	 * lookups to know that they have iterated over an entire, valid hash
12999 	 * chain.
13000 	 */
13001 	for (i = 0; i < hashsize; i++)
13002 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13003 
13004 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13005 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13006 
13007 	/*
13008 	 * Determine number of active CPUs.  Divide free list evenly among
13009 	 * active CPUs.
13010 	 */
13011 	start = (dtrace_dynvar_t *)
13012 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13013 	limit = (uintptr_t)base + size;
13014 
13015 	maxper = (limit - (uintptr_t)start) / NCPU;
13016 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13017 
13018 #if !defined(sun)
13019 	CPU_FOREACH(i) {
13020 #else
13021 	for (i = 0; i < NCPU; i++) {
13022 #endif
13023 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13024 
13025 		/*
13026 		 * If we don't even have enough chunks to make it once through
13027 		 * NCPUs, we're just going to allocate everything to the first
13028 		 * CPU.  And if we're on the last CPU, we're going to allocate
13029 		 * whatever is left over.  In either case, we set the limit to
13030 		 * be the limit of the dynamic variable space.
13031 		 */
13032 		if (maxper == 0 || i == NCPU - 1) {
13033 			limit = (uintptr_t)base + size;
13034 			start = NULL;
13035 		} else {
13036 			limit = (uintptr_t)start + maxper;
13037 			start = (dtrace_dynvar_t *)limit;
13038 		}
13039 
13040 		ASSERT(limit <= (uintptr_t)base + size);
13041 
13042 		for (;;) {
13043 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13044 			    dstate->dtds_chunksize);
13045 
13046 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13047 				break;
13048 
13049 			dvar->dtdv_next = next;
13050 			dvar = next;
13051 		}
13052 
13053 		if (maxper == 0)
13054 			break;
13055 	}
13056 
13057 	return (0);
13058 }
13059 
13060 static void
13061 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13062 {
13063 	ASSERT(MUTEX_HELD(&cpu_lock));
13064 
13065 	if (dstate->dtds_base == NULL)
13066 		return;
13067 
13068 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13069 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13070 }
13071 
13072 static void
13073 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13074 {
13075 	/*
13076 	 * Logical XOR, where are you?
13077 	 */
13078 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13079 
13080 	if (vstate->dtvs_nglobals > 0) {
13081 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13082 		    sizeof (dtrace_statvar_t *));
13083 	}
13084 
13085 	if (vstate->dtvs_ntlocals > 0) {
13086 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13087 		    sizeof (dtrace_difv_t));
13088 	}
13089 
13090 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13091 
13092 	if (vstate->dtvs_nlocals > 0) {
13093 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13094 		    sizeof (dtrace_statvar_t *));
13095 	}
13096 }
13097 
13098 #if defined(sun)
13099 static void
13100 dtrace_state_clean(dtrace_state_t *state)
13101 {
13102 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13103 		return;
13104 
13105 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13106 	dtrace_speculation_clean(state);
13107 }
13108 
13109 static void
13110 dtrace_state_deadman(dtrace_state_t *state)
13111 {
13112 	hrtime_t now;
13113 
13114 	dtrace_sync();
13115 
13116 	now = dtrace_gethrtime();
13117 
13118 	if (state != dtrace_anon.dta_state &&
13119 	    now - state->dts_laststatus >= dtrace_deadman_user)
13120 		return;
13121 
13122 	/*
13123 	 * We must be sure that dts_alive never appears to be less than the
13124 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13125 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13126 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13127 	 * the new value.  This assures that dts_alive never appears to be
13128 	 * less than its true value, regardless of the order in which the
13129 	 * stores to the underlying storage are issued.
13130 	 */
13131 	state->dts_alive = INT64_MAX;
13132 	dtrace_membar_producer();
13133 	state->dts_alive = now;
13134 }
13135 #else
13136 static void
13137 dtrace_state_clean(void *arg)
13138 {
13139 	dtrace_state_t *state = arg;
13140 	dtrace_optval_t *opt = state->dts_options;
13141 
13142 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13143 		return;
13144 
13145 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13146 	dtrace_speculation_clean(state);
13147 
13148 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13149 	    dtrace_state_clean, state);
13150 }
13151 
13152 static void
13153 dtrace_state_deadman(void *arg)
13154 {
13155 	dtrace_state_t *state = arg;
13156 	hrtime_t now;
13157 
13158 	dtrace_sync();
13159 
13160 	dtrace_debug_output();
13161 
13162 	now = dtrace_gethrtime();
13163 
13164 	if (state != dtrace_anon.dta_state &&
13165 	    now - state->dts_laststatus >= dtrace_deadman_user)
13166 		return;
13167 
13168 	/*
13169 	 * We must be sure that dts_alive never appears to be less than the
13170 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13171 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13172 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13173 	 * the new value.  This assures that dts_alive never appears to be
13174 	 * less than its true value, regardless of the order in which the
13175 	 * stores to the underlying storage are issued.
13176 	 */
13177 	state->dts_alive = INT64_MAX;
13178 	dtrace_membar_producer();
13179 	state->dts_alive = now;
13180 
13181 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13182 	    dtrace_state_deadman, state);
13183 }
13184 #endif
13185 
13186 static dtrace_state_t *
13187 #if defined(sun)
13188 dtrace_state_create(dev_t *devp, cred_t *cr)
13189 #else
13190 dtrace_state_create(struct cdev *dev)
13191 #endif
13192 {
13193 #if defined(sun)
13194 	minor_t minor;
13195 	major_t major;
13196 #else
13197 	cred_t *cr = NULL;
13198 	int m = 0;
13199 #endif
13200 	char c[30];
13201 	dtrace_state_t *state;
13202 	dtrace_optval_t *opt;
13203 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13204 
13205 	ASSERT(MUTEX_HELD(&dtrace_lock));
13206 	ASSERT(MUTEX_HELD(&cpu_lock));
13207 
13208 #if defined(sun)
13209 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13210 	    VM_BESTFIT | VM_SLEEP);
13211 
13212 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13213 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13214 		return (NULL);
13215 	}
13216 
13217 	state = ddi_get_soft_state(dtrace_softstate, minor);
13218 #else
13219 	if (dev != NULL) {
13220 		cr = dev->si_cred;
13221 		m = dev2unit(dev);
13222 		}
13223 
13224 	/* Allocate memory for the state. */
13225 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13226 #endif
13227 
13228 	state->dts_epid = DTRACE_EPIDNONE + 1;
13229 
13230 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13231 #if defined(sun)
13232 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13233 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13234 
13235 	if (devp != NULL) {
13236 		major = getemajor(*devp);
13237 	} else {
13238 		major = ddi_driver_major(dtrace_devi);
13239 	}
13240 
13241 	state->dts_dev = makedevice(major, minor);
13242 
13243 	if (devp != NULL)
13244 		*devp = state->dts_dev;
13245 #else
13246 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13247 	state->dts_dev = dev;
13248 #endif
13249 
13250 	/*
13251 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13252 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13253 	 * other hand, it saves an additional memory reference in the probe
13254 	 * path.
13255 	 */
13256 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13257 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13258 
13259 #if defined(sun)
13260 	state->dts_cleaner = CYCLIC_NONE;
13261 	state->dts_deadman = CYCLIC_NONE;
13262 #else
13263 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13264 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13265 #endif
13266 	state->dts_vstate.dtvs_state = state;
13267 
13268 	for (i = 0; i < DTRACEOPT_MAX; i++)
13269 		state->dts_options[i] = DTRACEOPT_UNSET;
13270 
13271 	/*
13272 	 * Set the default options.
13273 	 */
13274 	opt = state->dts_options;
13275 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13276 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13277 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13278 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13279 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13280 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13281 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13282 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13283 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13284 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13285 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13286 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13287 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13288 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13289 
13290 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13291 
13292 	/*
13293 	 * Depending on the user credentials, we set flag bits which alter probe
13294 	 * visibility or the amount of destructiveness allowed.  In the case of
13295 	 * actual anonymous tracing, or the possession of all privileges, all of
13296 	 * the normal checks are bypassed.
13297 	 */
13298 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13299 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13300 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13301 	} else {
13302 		/*
13303 		 * Set up the credentials for this instantiation.  We take a
13304 		 * hold on the credential to prevent it from disappearing on
13305 		 * us; this in turn prevents the zone_t referenced by this
13306 		 * credential from disappearing.  This means that we can
13307 		 * examine the credential and the zone from probe context.
13308 		 */
13309 		crhold(cr);
13310 		state->dts_cred.dcr_cred = cr;
13311 
13312 		/*
13313 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13314 		 * unlocks the use of variables like pid, zonename, etc.
13315 		 */
13316 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13317 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13318 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13319 		}
13320 
13321 		/*
13322 		 * dtrace_user allows use of syscall and profile providers.
13323 		 * If the user also has proc_owner and/or proc_zone, we
13324 		 * extend the scope to include additional visibility and
13325 		 * destructive power.
13326 		 */
13327 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13328 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13329 				state->dts_cred.dcr_visible |=
13330 				    DTRACE_CRV_ALLPROC;
13331 
13332 				state->dts_cred.dcr_action |=
13333 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13334 			}
13335 
13336 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13337 				state->dts_cred.dcr_visible |=
13338 				    DTRACE_CRV_ALLZONE;
13339 
13340 				state->dts_cred.dcr_action |=
13341 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13342 			}
13343 
13344 			/*
13345 			 * If we have all privs in whatever zone this is,
13346 			 * we can do destructive things to processes which
13347 			 * have altered credentials.
13348 			 */
13349 #if defined(sun)
13350 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13351 			    cr->cr_zone->zone_privset)) {
13352 				state->dts_cred.dcr_action |=
13353 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13354 			}
13355 #endif
13356 		}
13357 
13358 		/*
13359 		 * Holding the dtrace_kernel privilege also implies that
13360 		 * the user has the dtrace_user privilege from a visibility
13361 		 * perspective.  But without further privileges, some
13362 		 * destructive actions are not available.
13363 		 */
13364 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13365 			/*
13366 			 * Make all probes in all zones visible.  However,
13367 			 * this doesn't mean that all actions become available
13368 			 * to all zones.
13369 			 */
13370 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13371 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13372 
13373 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13374 			    DTRACE_CRA_PROC;
13375 			/*
13376 			 * Holding proc_owner means that destructive actions
13377 			 * for *this* zone are allowed.
13378 			 */
13379 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13380 				state->dts_cred.dcr_action |=
13381 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13382 
13383 			/*
13384 			 * Holding proc_zone means that destructive actions
13385 			 * for this user/group ID in all zones is allowed.
13386 			 */
13387 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13388 				state->dts_cred.dcr_action |=
13389 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13390 
13391 #if defined(sun)
13392 			/*
13393 			 * If we have all privs in whatever zone this is,
13394 			 * we can do destructive things to processes which
13395 			 * have altered credentials.
13396 			 */
13397 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13398 			    cr->cr_zone->zone_privset)) {
13399 				state->dts_cred.dcr_action |=
13400 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13401 			}
13402 #endif
13403 		}
13404 
13405 		/*
13406 		 * Holding the dtrace_proc privilege gives control over fasttrap
13407 		 * and pid providers.  We need to grant wider destructive
13408 		 * privileges in the event that the user has proc_owner and/or
13409 		 * proc_zone.
13410 		 */
13411 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13412 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13413 				state->dts_cred.dcr_action |=
13414 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13415 
13416 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13417 				state->dts_cred.dcr_action |=
13418 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13419 		}
13420 	}
13421 
13422 	return (state);
13423 }
13424 
13425 static int
13426 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13427 {
13428 	dtrace_optval_t *opt = state->dts_options, size;
13429 	processorid_t cpu = 0;;
13430 	int flags = 0, rval, factor, divisor = 1;
13431 
13432 	ASSERT(MUTEX_HELD(&dtrace_lock));
13433 	ASSERT(MUTEX_HELD(&cpu_lock));
13434 	ASSERT(which < DTRACEOPT_MAX);
13435 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13436 	    (state == dtrace_anon.dta_state &&
13437 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13438 
13439 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13440 		return (0);
13441 
13442 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13443 		cpu = opt[DTRACEOPT_CPU];
13444 
13445 	if (which == DTRACEOPT_SPECSIZE)
13446 		flags |= DTRACEBUF_NOSWITCH;
13447 
13448 	if (which == DTRACEOPT_BUFSIZE) {
13449 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13450 			flags |= DTRACEBUF_RING;
13451 
13452 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13453 			flags |= DTRACEBUF_FILL;
13454 
13455 		if (state != dtrace_anon.dta_state ||
13456 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13457 			flags |= DTRACEBUF_INACTIVE;
13458 	}
13459 
13460 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13461 		/*
13462 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13463 		 * aligned, drop it down by the difference.
13464 		 */
13465 		if (size & (sizeof (uint64_t) - 1))
13466 			size -= size & (sizeof (uint64_t) - 1);
13467 
13468 		if (size < state->dts_reserve) {
13469 			/*
13470 			 * Buffers always must be large enough to accommodate
13471 			 * their prereserved space.  We return E2BIG instead
13472 			 * of ENOMEM in this case to allow for user-level
13473 			 * software to differentiate the cases.
13474 			 */
13475 			return (E2BIG);
13476 		}
13477 
13478 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13479 
13480 		if (rval != ENOMEM) {
13481 			opt[which] = size;
13482 			return (rval);
13483 		}
13484 
13485 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13486 			return (rval);
13487 
13488 		for (divisor = 2; divisor < factor; divisor <<= 1)
13489 			continue;
13490 	}
13491 
13492 	return (ENOMEM);
13493 }
13494 
13495 static int
13496 dtrace_state_buffers(dtrace_state_t *state)
13497 {
13498 	dtrace_speculation_t *spec = state->dts_speculations;
13499 	int rval, i;
13500 
13501 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13502 	    DTRACEOPT_BUFSIZE)) != 0)
13503 		return (rval);
13504 
13505 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13506 	    DTRACEOPT_AGGSIZE)) != 0)
13507 		return (rval);
13508 
13509 	for (i = 0; i < state->dts_nspeculations; i++) {
13510 		if ((rval = dtrace_state_buffer(state,
13511 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13512 			return (rval);
13513 	}
13514 
13515 	return (0);
13516 }
13517 
13518 static void
13519 dtrace_state_prereserve(dtrace_state_t *state)
13520 {
13521 	dtrace_ecb_t *ecb;
13522 	dtrace_probe_t *probe;
13523 
13524 	state->dts_reserve = 0;
13525 
13526 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13527 		return;
13528 
13529 	/*
13530 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13531 	 * prereserved space to be the space required by the END probes.
13532 	 */
13533 	probe = dtrace_probes[dtrace_probeid_end - 1];
13534 	ASSERT(probe != NULL);
13535 
13536 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13537 		if (ecb->dte_state != state)
13538 			continue;
13539 
13540 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13541 	}
13542 }
13543 
13544 static int
13545 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13546 {
13547 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13548 	dtrace_speculation_t *spec;
13549 	dtrace_buffer_t *buf;
13550 #if defined(sun)
13551 	cyc_handler_t hdlr;
13552 	cyc_time_t when;
13553 #endif
13554 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13555 	dtrace_icookie_t cookie;
13556 
13557 	mutex_enter(&cpu_lock);
13558 	mutex_enter(&dtrace_lock);
13559 
13560 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13561 		rval = EBUSY;
13562 		goto out;
13563 	}
13564 
13565 	/*
13566 	 * Before we can perform any checks, we must prime all of the
13567 	 * retained enablings that correspond to this state.
13568 	 */
13569 	dtrace_enabling_prime(state);
13570 
13571 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13572 		rval = EACCES;
13573 		goto out;
13574 	}
13575 
13576 	dtrace_state_prereserve(state);
13577 
13578 	/*
13579 	 * Now we want to do is try to allocate our speculations.
13580 	 * We do not automatically resize the number of speculations; if
13581 	 * this fails, we will fail the operation.
13582 	 */
13583 	nspec = opt[DTRACEOPT_NSPEC];
13584 	ASSERT(nspec != DTRACEOPT_UNSET);
13585 
13586 	if (nspec > INT_MAX) {
13587 		rval = ENOMEM;
13588 		goto out;
13589 	}
13590 
13591 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13592 	    KM_NOSLEEP | KM_NORMALPRI);
13593 
13594 	if (spec == NULL) {
13595 		rval = ENOMEM;
13596 		goto out;
13597 	}
13598 
13599 	state->dts_speculations = spec;
13600 	state->dts_nspeculations = (int)nspec;
13601 
13602 	for (i = 0; i < nspec; i++) {
13603 		if ((buf = kmem_zalloc(bufsize,
13604 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13605 			rval = ENOMEM;
13606 			goto err;
13607 		}
13608 
13609 		spec[i].dtsp_buffer = buf;
13610 	}
13611 
13612 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13613 		if (dtrace_anon.dta_state == NULL) {
13614 			rval = ENOENT;
13615 			goto out;
13616 		}
13617 
13618 		if (state->dts_necbs != 0) {
13619 			rval = EALREADY;
13620 			goto out;
13621 		}
13622 
13623 		state->dts_anon = dtrace_anon_grab();
13624 		ASSERT(state->dts_anon != NULL);
13625 		state = state->dts_anon;
13626 
13627 		/*
13628 		 * We want "grabanon" to be set in the grabbed state, so we'll
13629 		 * copy that option value from the grabbing state into the
13630 		 * grabbed state.
13631 		 */
13632 		state->dts_options[DTRACEOPT_GRABANON] =
13633 		    opt[DTRACEOPT_GRABANON];
13634 
13635 		*cpu = dtrace_anon.dta_beganon;
13636 
13637 		/*
13638 		 * If the anonymous state is active (as it almost certainly
13639 		 * is if the anonymous enabling ultimately matched anything),
13640 		 * we don't allow any further option processing -- but we
13641 		 * don't return failure.
13642 		 */
13643 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13644 			goto out;
13645 	}
13646 
13647 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13648 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13649 		if (state->dts_aggregations == NULL) {
13650 			/*
13651 			 * We're not going to create an aggregation buffer
13652 			 * because we don't have any ECBs that contain
13653 			 * aggregations -- set this option to 0.
13654 			 */
13655 			opt[DTRACEOPT_AGGSIZE] = 0;
13656 		} else {
13657 			/*
13658 			 * If we have an aggregation buffer, we must also have
13659 			 * a buffer to use as scratch.
13660 			 */
13661 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13662 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13663 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13664 			}
13665 		}
13666 	}
13667 
13668 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13669 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13670 		if (!state->dts_speculates) {
13671 			/*
13672 			 * We're not going to create speculation buffers
13673 			 * because we don't have any ECBs that actually
13674 			 * speculate -- set the speculation size to 0.
13675 			 */
13676 			opt[DTRACEOPT_SPECSIZE] = 0;
13677 		}
13678 	}
13679 
13680 	/*
13681 	 * The bare minimum size for any buffer that we're actually going to
13682 	 * do anything to is sizeof (uint64_t).
13683 	 */
13684 	sz = sizeof (uint64_t);
13685 
13686 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13687 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13688 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13689 		/*
13690 		 * A buffer size has been explicitly set to 0 (or to a size
13691 		 * that will be adjusted to 0) and we need the space -- we
13692 		 * need to return failure.  We return ENOSPC to differentiate
13693 		 * it from failing to allocate a buffer due to failure to meet
13694 		 * the reserve (for which we return E2BIG).
13695 		 */
13696 		rval = ENOSPC;
13697 		goto out;
13698 	}
13699 
13700 	if ((rval = dtrace_state_buffers(state)) != 0)
13701 		goto err;
13702 
13703 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13704 		sz = dtrace_dstate_defsize;
13705 
13706 	do {
13707 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13708 
13709 		if (rval == 0)
13710 			break;
13711 
13712 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13713 			goto err;
13714 	} while (sz >>= 1);
13715 
13716 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13717 
13718 	if (rval != 0)
13719 		goto err;
13720 
13721 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13722 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13723 
13724 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13725 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13726 
13727 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13728 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13729 
13730 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13731 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13732 
13733 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13734 #if defined(sun)
13735 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13736 	hdlr.cyh_arg = state;
13737 	hdlr.cyh_level = CY_LOW_LEVEL;
13738 
13739 	when.cyt_when = 0;
13740 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13741 
13742 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13743 
13744 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13745 	hdlr.cyh_arg = state;
13746 	hdlr.cyh_level = CY_LOW_LEVEL;
13747 
13748 	when.cyt_when = 0;
13749 	when.cyt_interval = dtrace_deadman_interval;
13750 
13751 	state->dts_deadman = cyclic_add(&hdlr, &when);
13752 #else
13753 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13754 	    dtrace_state_clean, state);
13755 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13756 	    dtrace_state_deadman, state);
13757 #endif
13758 
13759 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13760 
13761 	/*
13762 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13763 	 * interrupts here both to record the CPU on which we fired the BEGIN
13764 	 * probe (the data from this CPU will be processed first at user
13765 	 * level) and to manually activate the buffer for this CPU.
13766 	 */
13767 	cookie = dtrace_interrupt_disable();
13768 	*cpu = curcpu;
13769 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13770 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13771 
13772 	dtrace_probe(dtrace_probeid_begin,
13773 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13774 	dtrace_interrupt_enable(cookie);
13775 	/*
13776 	 * We may have had an exit action from a BEGIN probe; only change our
13777 	 * state to ACTIVE if we're still in WARMUP.
13778 	 */
13779 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13780 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13781 
13782 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13783 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13784 
13785 	/*
13786 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13787 	 * want each CPU to transition its principal buffer out of the
13788 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13789 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13790 	 * atomically transition from processing none of a state's ECBs to
13791 	 * processing all of them.
13792 	 */
13793 	dtrace_xcall(DTRACE_CPUALL,
13794 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13795 	goto out;
13796 
13797 err:
13798 	dtrace_buffer_free(state->dts_buffer);
13799 	dtrace_buffer_free(state->dts_aggbuffer);
13800 
13801 	if ((nspec = state->dts_nspeculations) == 0) {
13802 		ASSERT(state->dts_speculations == NULL);
13803 		goto out;
13804 	}
13805 
13806 	spec = state->dts_speculations;
13807 	ASSERT(spec != NULL);
13808 
13809 	for (i = 0; i < state->dts_nspeculations; i++) {
13810 		if ((buf = spec[i].dtsp_buffer) == NULL)
13811 			break;
13812 
13813 		dtrace_buffer_free(buf);
13814 		kmem_free(buf, bufsize);
13815 	}
13816 
13817 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13818 	state->dts_nspeculations = 0;
13819 	state->dts_speculations = NULL;
13820 
13821 out:
13822 	mutex_exit(&dtrace_lock);
13823 	mutex_exit(&cpu_lock);
13824 
13825 	return (rval);
13826 }
13827 
13828 static int
13829 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13830 {
13831 	dtrace_icookie_t cookie;
13832 
13833 	ASSERT(MUTEX_HELD(&dtrace_lock));
13834 
13835 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13836 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13837 		return (EINVAL);
13838 
13839 	/*
13840 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13841 	 * to be sure that every CPU has seen it.  See below for the details
13842 	 * on why this is done.
13843 	 */
13844 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13845 	dtrace_sync();
13846 
13847 	/*
13848 	 * By this point, it is impossible for any CPU to be still processing
13849 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13850 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13851 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13852 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13853 	 * iff we're in the END probe.
13854 	 */
13855 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13856 	dtrace_sync();
13857 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13858 
13859 	/*
13860 	 * Finally, we can release the reserve and call the END probe.  We
13861 	 * disable interrupts across calling the END probe to allow us to
13862 	 * return the CPU on which we actually called the END probe.  This
13863 	 * allows user-land to be sure that this CPU's principal buffer is
13864 	 * processed last.
13865 	 */
13866 	state->dts_reserve = 0;
13867 
13868 	cookie = dtrace_interrupt_disable();
13869 	*cpu = curcpu;
13870 	dtrace_probe(dtrace_probeid_end,
13871 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13872 	dtrace_interrupt_enable(cookie);
13873 
13874 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13875 	dtrace_sync();
13876 
13877 	return (0);
13878 }
13879 
13880 static int
13881 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13882     dtrace_optval_t val)
13883 {
13884 	ASSERT(MUTEX_HELD(&dtrace_lock));
13885 
13886 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13887 		return (EBUSY);
13888 
13889 	if (option >= DTRACEOPT_MAX)
13890 		return (EINVAL);
13891 
13892 	if (option != DTRACEOPT_CPU && val < 0)
13893 		return (EINVAL);
13894 
13895 	switch (option) {
13896 	case DTRACEOPT_DESTRUCTIVE:
13897 		if (dtrace_destructive_disallow)
13898 			return (EACCES);
13899 
13900 		state->dts_cred.dcr_destructive = 1;
13901 		break;
13902 
13903 	case DTRACEOPT_BUFSIZE:
13904 	case DTRACEOPT_DYNVARSIZE:
13905 	case DTRACEOPT_AGGSIZE:
13906 	case DTRACEOPT_SPECSIZE:
13907 	case DTRACEOPT_STRSIZE:
13908 		if (val < 0)
13909 			return (EINVAL);
13910 
13911 		if (val >= LONG_MAX) {
13912 			/*
13913 			 * If this is an otherwise negative value, set it to
13914 			 * the highest multiple of 128m less than LONG_MAX.
13915 			 * Technically, we're adjusting the size without
13916 			 * regard to the buffer resizing policy, but in fact,
13917 			 * this has no effect -- if we set the buffer size to
13918 			 * ~LONG_MAX and the buffer policy is ultimately set to
13919 			 * be "manual", the buffer allocation is guaranteed to
13920 			 * fail, if only because the allocation requires two
13921 			 * buffers.  (We set the the size to the highest
13922 			 * multiple of 128m because it ensures that the size
13923 			 * will remain a multiple of a megabyte when
13924 			 * repeatedly halved -- all the way down to 15m.)
13925 			 */
13926 			val = LONG_MAX - (1 << 27) + 1;
13927 		}
13928 	}
13929 
13930 	state->dts_options[option] = val;
13931 
13932 	return (0);
13933 }
13934 
13935 static void
13936 dtrace_state_destroy(dtrace_state_t *state)
13937 {
13938 	dtrace_ecb_t *ecb;
13939 	dtrace_vstate_t *vstate = &state->dts_vstate;
13940 #if defined(sun)
13941 	minor_t minor = getminor(state->dts_dev);
13942 #endif
13943 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13944 	dtrace_speculation_t *spec = state->dts_speculations;
13945 	int nspec = state->dts_nspeculations;
13946 	uint32_t match;
13947 
13948 	ASSERT(MUTEX_HELD(&dtrace_lock));
13949 	ASSERT(MUTEX_HELD(&cpu_lock));
13950 
13951 	/*
13952 	 * First, retract any retained enablings for this state.
13953 	 */
13954 	dtrace_enabling_retract(state);
13955 	ASSERT(state->dts_nretained == 0);
13956 
13957 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13958 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13959 		/*
13960 		 * We have managed to come into dtrace_state_destroy() on a
13961 		 * hot enabling -- almost certainly because of a disorderly
13962 		 * shutdown of a consumer.  (That is, a consumer that is
13963 		 * exiting without having called dtrace_stop().) In this case,
13964 		 * we're going to set our activity to be KILLED, and then
13965 		 * issue a sync to be sure that everyone is out of probe
13966 		 * context before we start blowing away ECBs.
13967 		 */
13968 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13969 		dtrace_sync();
13970 	}
13971 
13972 	/*
13973 	 * Release the credential hold we took in dtrace_state_create().
13974 	 */
13975 	if (state->dts_cred.dcr_cred != NULL)
13976 		crfree(state->dts_cred.dcr_cred);
13977 
13978 	/*
13979 	 * Now we can safely disable and destroy any enabled probes.  Because
13980 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13981 	 * (especially if they're all enabled), we take two passes through the
13982 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13983 	 * in the second we disable whatever is left over.
13984 	 */
13985 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13986 		for (i = 0; i < state->dts_necbs; i++) {
13987 			if ((ecb = state->dts_ecbs[i]) == NULL)
13988 				continue;
13989 
13990 			if (match && ecb->dte_probe != NULL) {
13991 				dtrace_probe_t *probe = ecb->dte_probe;
13992 				dtrace_provider_t *prov = probe->dtpr_provider;
13993 
13994 				if (!(prov->dtpv_priv.dtpp_flags & match))
13995 					continue;
13996 			}
13997 
13998 			dtrace_ecb_disable(ecb);
13999 			dtrace_ecb_destroy(ecb);
14000 		}
14001 
14002 		if (!match)
14003 			break;
14004 	}
14005 
14006 	/*
14007 	 * Before we free the buffers, perform one more sync to assure that
14008 	 * every CPU is out of probe context.
14009 	 */
14010 	dtrace_sync();
14011 
14012 	dtrace_buffer_free(state->dts_buffer);
14013 	dtrace_buffer_free(state->dts_aggbuffer);
14014 
14015 	for (i = 0; i < nspec; i++)
14016 		dtrace_buffer_free(spec[i].dtsp_buffer);
14017 
14018 #if defined(sun)
14019 	if (state->dts_cleaner != CYCLIC_NONE)
14020 		cyclic_remove(state->dts_cleaner);
14021 
14022 	if (state->dts_deadman != CYCLIC_NONE)
14023 		cyclic_remove(state->dts_deadman);
14024 #else
14025 	callout_stop(&state->dts_cleaner);
14026 	callout_drain(&state->dts_cleaner);
14027 	callout_stop(&state->dts_deadman);
14028 	callout_drain(&state->dts_deadman);
14029 #endif
14030 
14031 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14032 	dtrace_vstate_fini(vstate);
14033 	if (state->dts_ecbs != NULL)
14034 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14035 
14036 	if (state->dts_aggregations != NULL) {
14037 #ifdef DEBUG
14038 		for (i = 0; i < state->dts_naggregations; i++)
14039 			ASSERT(state->dts_aggregations[i] == NULL);
14040 #endif
14041 		ASSERT(state->dts_naggregations > 0);
14042 		kmem_free(state->dts_aggregations,
14043 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14044 	}
14045 
14046 	kmem_free(state->dts_buffer, bufsize);
14047 	kmem_free(state->dts_aggbuffer, bufsize);
14048 
14049 	for (i = 0; i < nspec; i++)
14050 		kmem_free(spec[i].dtsp_buffer, bufsize);
14051 
14052 	if (spec != NULL)
14053 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14054 
14055 	dtrace_format_destroy(state);
14056 
14057 	if (state->dts_aggid_arena != NULL) {
14058 #if defined(sun)
14059 		vmem_destroy(state->dts_aggid_arena);
14060 #else
14061 		delete_unrhdr(state->dts_aggid_arena);
14062 #endif
14063 		state->dts_aggid_arena = NULL;
14064 	}
14065 #if defined(sun)
14066 	ddi_soft_state_free(dtrace_softstate, minor);
14067 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14068 #endif
14069 }
14070 
14071 /*
14072  * DTrace Anonymous Enabling Functions
14073  */
14074 static dtrace_state_t *
14075 dtrace_anon_grab(void)
14076 {
14077 	dtrace_state_t *state;
14078 
14079 	ASSERT(MUTEX_HELD(&dtrace_lock));
14080 
14081 	if ((state = dtrace_anon.dta_state) == NULL) {
14082 		ASSERT(dtrace_anon.dta_enabling == NULL);
14083 		return (NULL);
14084 	}
14085 
14086 	ASSERT(dtrace_anon.dta_enabling != NULL);
14087 	ASSERT(dtrace_retained != NULL);
14088 
14089 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14090 	dtrace_anon.dta_enabling = NULL;
14091 	dtrace_anon.dta_state = NULL;
14092 
14093 	return (state);
14094 }
14095 
14096 static void
14097 dtrace_anon_property(void)
14098 {
14099 	int i, rv;
14100 	dtrace_state_t *state;
14101 	dof_hdr_t *dof;
14102 	char c[32];		/* enough for "dof-data-" + digits */
14103 
14104 	ASSERT(MUTEX_HELD(&dtrace_lock));
14105 	ASSERT(MUTEX_HELD(&cpu_lock));
14106 
14107 	for (i = 0; ; i++) {
14108 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14109 
14110 		dtrace_err_verbose = 1;
14111 
14112 		if ((dof = dtrace_dof_property(c)) == NULL) {
14113 			dtrace_err_verbose = 0;
14114 			break;
14115 		}
14116 
14117 #if defined(sun)
14118 		/*
14119 		 * We want to create anonymous state, so we need to transition
14120 		 * the kernel debugger to indicate that DTrace is active.  If
14121 		 * this fails (e.g. because the debugger has modified text in
14122 		 * some way), we won't continue with the processing.
14123 		 */
14124 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14125 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14126 			    "enabling ignored.");
14127 			dtrace_dof_destroy(dof);
14128 			break;
14129 		}
14130 #endif
14131 
14132 		/*
14133 		 * If we haven't allocated an anonymous state, we'll do so now.
14134 		 */
14135 		if ((state = dtrace_anon.dta_state) == NULL) {
14136 #if defined(sun)
14137 			state = dtrace_state_create(NULL, NULL);
14138 #else
14139 			state = dtrace_state_create(NULL);
14140 #endif
14141 			dtrace_anon.dta_state = state;
14142 
14143 			if (state == NULL) {
14144 				/*
14145 				 * This basically shouldn't happen:  the only
14146 				 * failure mode from dtrace_state_create() is a
14147 				 * failure of ddi_soft_state_zalloc() that
14148 				 * itself should never happen.  Still, the
14149 				 * interface allows for a failure mode, and
14150 				 * we want to fail as gracefully as possible:
14151 				 * we'll emit an error message and cease
14152 				 * processing anonymous state in this case.
14153 				 */
14154 				cmn_err(CE_WARN, "failed to create "
14155 				    "anonymous state");
14156 				dtrace_dof_destroy(dof);
14157 				break;
14158 			}
14159 		}
14160 
14161 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14162 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14163 
14164 		if (rv == 0)
14165 			rv = dtrace_dof_options(dof, state);
14166 
14167 		dtrace_err_verbose = 0;
14168 		dtrace_dof_destroy(dof);
14169 
14170 		if (rv != 0) {
14171 			/*
14172 			 * This is malformed DOF; chuck any anonymous state
14173 			 * that we created.
14174 			 */
14175 			ASSERT(dtrace_anon.dta_enabling == NULL);
14176 			dtrace_state_destroy(state);
14177 			dtrace_anon.dta_state = NULL;
14178 			break;
14179 		}
14180 
14181 		ASSERT(dtrace_anon.dta_enabling != NULL);
14182 	}
14183 
14184 	if (dtrace_anon.dta_enabling != NULL) {
14185 		int rval;
14186 
14187 		/*
14188 		 * dtrace_enabling_retain() can only fail because we are
14189 		 * trying to retain more enablings than are allowed -- but
14190 		 * we only have one anonymous enabling, and we are guaranteed
14191 		 * to be allowed at least one retained enabling; we assert
14192 		 * that dtrace_enabling_retain() returns success.
14193 		 */
14194 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14195 		ASSERT(rval == 0);
14196 
14197 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14198 	}
14199 }
14200 
14201 /*
14202  * DTrace Helper Functions
14203  */
14204 static void
14205 dtrace_helper_trace(dtrace_helper_action_t *helper,
14206     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14207 {
14208 	uint32_t size, next, nnext, i;
14209 	dtrace_helptrace_t *ent;
14210 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14211 
14212 	if (!dtrace_helptrace_enabled)
14213 		return;
14214 
14215 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14216 
14217 	/*
14218 	 * What would a tracing framework be without its own tracing
14219 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14220 	 */
14221 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14222 	    sizeof (uint64_t) - sizeof (uint64_t);
14223 
14224 	/*
14225 	 * Iterate until we can allocate a slot in the trace buffer.
14226 	 */
14227 	do {
14228 		next = dtrace_helptrace_next;
14229 
14230 		if (next + size < dtrace_helptrace_bufsize) {
14231 			nnext = next + size;
14232 		} else {
14233 			nnext = size;
14234 		}
14235 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14236 
14237 	/*
14238 	 * We have our slot; fill it in.
14239 	 */
14240 	if (nnext == size)
14241 		next = 0;
14242 
14243 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14244 	ent->dtht_helper = helper;
14245 	ent->dtht_where = where;
14246 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14247 
14248 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14249 	    mstate->dtms_fltoffs : -1;
14250 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14251 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14252 
14253 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14254 		dtrace_statvar_t *svar;
14255 
14256 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14257 			continue;
14258 
14259 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14260 		ent->dtht_locals[i] =
14261 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14262 	}
14263 }
14264 
14265 static uint64_t
14266 dtrace_helper(int which, dtrace_mstate_t *mstate,
14267     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14268 {
14269 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14270 	uint64_t sarg0 = mstate->dtms_arg[0];
14271 	uint64_t sarg1 = mstate->dtms_arg[1];
14272 	uint64_t rval = 0;
14273 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14274 	dtrace_helper_action_t *helper;
14275 	dtrace_vstate_t *vstate;
14276 	dtrace_difo_t *pred;
14277 	int i, trace = dtrace_helptrace_enabled;
14278 
14279 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14280 
14281 	if (helpers == NULL)
14282 		return (0);
14283 
14284 	if ((helper = helpers->dthps_actions[which]) == NULL)
14285 		return (0);
14286 
14287 	vstate = &helpers->dthps_vstate;
14288 	mstate->dtms_arg[0] = arg0;
14289 	mstate->dtms_arg[1] = arg1;
14290 
14291 	/*
14292 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14293 	 * we'll call the corresponding actions.  Note that the below calls
14294 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14295 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14296 	 * the stored DIF offset with its own (which is the desired behavior).
14297 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14298 	 * from machine state; this is okay, too.
14299 	 */
14300 	for (; helper != NULL; helper = helper->dtha_next) {
14301 		if ((pred = helper->dtha_predicate) != NULL) {
14302 			if (trace)
14303 				dtrace_helper_trace(helper, mstate, vstate, 0);
14304 
14305 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14306 				goto next;
14307 
14308 			if (*flags & CPU_DTRACE_FAULT)
14309 				goto err;
14310 		}
14311 
14312 		for (i = 0; i < helper->dtha_nactions; i++) {
14313 			if (trace)
14314 				dtrace_helper_trace(helper,
14315 				    mstate, vstate, i + 1);
14316 
14317 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14318 			    mstate, vstate, state);
14319 
14320 			if (*flags & CPU_DTRACE_FAULT)
14321 				goto err;
14322 		}
14323 
14324 next:
14325 		if (trace)
14326 			dtrace_helper_trace(helper, mstate, vstate,
14327 			    DTRACE_HELPTRACE_NEXT);
14328 	}
14329 
14330 	if (trace)
14331 		dtrace_helper_trace(helper, mstate, vstate,
14332 		    DTRACE_HELPTRACE_DONE);
14333 
14334 	/*
14335 	 * Restore the arg0 that we saved upon entry.
14336 	 */
14337 	mstate->dtms_arg[0] = sarg0;
14338 	mstate->dtms_arg[1] = sarg1;
14339 
14340 	return (rval);
14341 
14342 err:
14343 	if (trace)
14344 		dtrace_helper_trace(helper, mstate, vstate,
14345 		    DTRACE_HELPTRACE_ERR);
14346 
14347 	/*
14348 	 * Restore the arg0 that we saved upon entry.
14349 	 */
14350 	mstate->dtms_arg[0] = sarg0;
14351 	mstate->dtms_arg[1] = sarg1;
14352 
14353 	return (0);
14354 }
14355 
14356 static void
14357 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14358     dtrace_vstate_t *vstate)
14359 {
14360 	int i;
14361 
14362 	if (helper->dtha_predicate != NULL)
14363 		dtrace_difo_release(helper->dtha_predicate, vstate);
14364 
14365 	for (i = 0; i < helper->dtha_nactions; i++) {
14366 		ASSERT(helper->dtha_actions[i] != NULL);
14367 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14368 	}
14369 
14370 	kmem_free(helper->dtha_actions,
14371 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14372 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14373 }
14374 
14375 static int
14376 dtrace_helper_destroygen(int gen)
14377 {
14378 	proc_t *p = curproc;
14379 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14380 	dtrace_vstate_t *vstate;
14381 	int i;
14382 
14383 	ASSERT(MUTEX_HELD(&dtrace_lock));
14384 
14385 	if (help == NULL || gen > help->dthps_generation)
14386 		return (EINVAL);
14387 
14388 	vstate = &help->dthps_vstate;
14389 
14390 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14391 		dtrace_helper_action_t *last = NULL, *h, *next;
14392 
14393 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14394 			next = h->dtha_next;
14395 
14396 			if (h->dtha_generation == gen) {
14397 				if (last != NULL) {
14398 					last->dtha_next = next;
14399 				} else {
14400 					help->dthps_actions[i] = next;
14401 				}
14402 
14403 				dtrace_helper_action_destroy(h, vstate);
14404 			} else {
14405 				last = h;
14406 			}
14407 		}
14408 	}
14409 
14410 	/*
14411 	 * Interate until we've cleared out all helper providers with the
14412 	 * given generation number.
14413 	 */
14414 	for (;;) {
14415 		dtrace_helper_provider_t *prov;
14416 
14417 		/*
14418 		 * Look for a helper provider with the right generation. We
14419 		 * have to start back at the beginning of the list each time
14420 		 * because we drop dtrace_lock. It's unlikely that we'll make
14421 		 * more than two passes.
14422 		 */
14423 		for (i = 0; i < help->dthps_nprovs; i++) {
14424 			prov = help->dthps_provs[i];
14425 
14426 			if (prov->dthp_generation == gen)
14427 				break;
14428 		}
14429 
14430 		/*
14431 		 * If there were no matches, we're done.
14432 		 */
14433 		if (i == help->dthps_nprovs)
14434 			break;
14435 
14436 		/*
14437 		 * Move the last helper provider into this slot.
14438 		 */
14439 		help->dthps_nprovs--;
14440 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14441 		help->dthps_provs[help->dthps_nprovs] = NULL;
14442 
14443 		mutex_exit(&dtrace_lock);
14444 
14445 		/*
14446 		 * If we have a meta provider, remove this helper provider.
14447 		 */
14448 		mutex_enter(&dtrace_meta_lock);
14449 		if (dtrace_meta_pid != NULL) {
14450 			ASSERT(dtrace_deferred_pid == NULL);
14451 			dtrace_helper_provider_remove(&prov->dthp_prov,
14452 			    p->p_pid);
14453 		}
14454 		mutex_exit(&dtrace_meta_lock);
14455 
14456 		dtrace_helper_provider_destroy(prov);
14457 
14458 		mutex_enter(&dtrace_lock);
14459 	}
14460 
14461 	return (0);
14462 }
14463 
14464 static int
14465 dtrace_helper_validate(dtrace_helper_action_t *helper)
14466 {
14467 	int err = 0, i;
14468 	dtrace_difo_t *dp;
14469 
14470 	if ((dp = helper->dtha_predicate) != NULL)
14471 		err += dtrace_difo_validate_helper(dp);
14472 
14473 	for (i = 0; i < helper->dtha_nactions; i++)
14474 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14475 
14476 	return (err == 0);
14477 }
14478 
14479 static int
14480 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14481 {
14482 	dtrace_helpers_t *help;
14483 	dtrace_helper_action_t *helper, *last;
14484 	dtrace_actdesc_t *act;
14485 	dtrace_vstate_t *vstate;
14486 	dtrace_predicate_t *pred;
14487 	int count = 0, nactions = 0, i;
14488 
14489 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14490 		return (EINVAL);
14491 
14492 	help = curproc->p_dtrace_helpers;
14493 	last = help->dthps_actions[which];
14494 	vstate = &help->dthps_vstate;
14495 
14496 	for (count = 0; last != NULL; last = last->dtha_next) {
14497 		count++;
14498 		if (last->dtha_next == NULL)
14499 			break;
14500 	}
14501 
14502 	/*
14503 	 * If we already have dtrace_helper_actions_max helper actions for this
14504 	 * helper action type, we'll refuse to add a new one.
14505 	 */
14506 	if (count >= dtrace_helper_actions_max)
14507 		return (ENOSPC);
14508 
14509 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14510 	helper->dtha_generation = help->dthps_generation;
14511 
14512 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14513 		ASSERT(pred->dtp_difo != NULL);
14514 		dtrace_difo_hold(pred->dtp_difo);
14515 		helper->dtha_predicate = pred->dtp_difo;
14516 	}
14517 
14518 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14519 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14520 			goto err;
14521 
14522 		if (act->dtad_difo == NULL)
14523 			goto err;
14524 
14525 		nactions++;
14526 	}
14527 
14528 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14529 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14530 
14531 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14532 		dtrace_difo_hold(act->dtad_difo);
14533 		helper->dtha_actions[i++] = act->dtad_difo;
14534 	}
14535 
14536 	if (!dtrace_helper_validate(helper))
14537 		goto err;
14538 
14539 	if (last == NULL) {
14540 		help->dthps_actions[which] = helper;
14541 	} else {
14542 		last->dtha_next = helper;
14543 	}
14544 
14545 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14546 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14547 		dtrace_helptrace_next = 0;
14548 	}
14549 
14550 	return (0);
14551 err:
14552 	dtrace_helper_action_destroy(helper, vstate);
14553 	return (EINVAL);
14554 }
14555 
14556 static void
14557 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14558     dof_helper_t *dofhp)
14559 {
14560 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14561 
14562 	mutex_enter(&dtrace_meta_lock);
14563 	mutex_enter(&dtrace_lock);
14564 
14565 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14566 		/*
14567 		 * If the dtrace module is loaded but not attached, or if
14568 		 * there aren't isn't a meta provider registered to deal with
14569 		 * these provider descriptions, we need to postpone creating
14570 		 * the actual providers until later.
14571 		 */
14572 
14573 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14574 		    dtrace_deferred_pid != help) {
14575 			help->dthps_deferred = 1;
14576 			help->dthps_pid = p->p_pid;
14577 			help->dthps_next = dtrace_deferred_pid;
14578 			help->dthps_prev = NULL;
14579 			if (dtrace_deferred_pid != NULL)
14580 				dtrace_deferred_pid->dthps_prev = help;
14581 			dtrace_deferred_pid = help;
14582 		}
14583 
14584 		mutex_exit(&dtrace_lock);
14585 
14586 	} else if (dofhp != NULL) {
14587 		/*
14588 		 * If the dtrace module is loaded and we have a particular
14589 		 * helper provider description, pass that off to the
14590 		 * meta provider.
14591 		 */
14592 
14593 		mutex_exit(&dtrace_lock);
14594 
14595 		dtrace_helper_provide(dofhp, p->p_pid);
14596 
14597 	} else {
14598 		/*
14599 		 * Otherwise, just pass all the helper provider descriptions
14600 		 * off to the meta provider.
14601 		 */
14602 
14603 		int i;
14604 		mutex_exit(&dtrace_lock);
14605 
14606 		for (i = 0; i < help->dthps_nprovs; i++) {
14607 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14608 			    p->p_pid);
14609 		}
14610 	}
14611 
14612 	mutex_exit(&dtrace_meta_lock);
14613 }
14614 
14615 static int
14616 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14617 {
14618 	dtrace_helpers_t *help;
14619 	dtrace_helper_provider_t *hprov, **tmp_provs;
14620 	uint_t tmp_maxprovs, i;
14621 
14622 	ASSERT(MUTEX_HELD(&dtrace_lock));
14623 
14624 	help = curproc->p_dtrace_helpers;
14625 	ASSERT(help != NULL);
14626 
14627 	/*
14628 	 * If we already have dtrace_helper_providers_max helper providers,
14629 	 * we're refuse to add a new one.
14630 	 */
14631 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14632 		return (ENOSPC);
14633 
14634 	/*
14635 	 * Check to make sure this isn't a duplicate.
14636 	 */
14637 	for (i = 0; i < help->dthps_nprovs; i++) {
14638 		if (dofhp->dofhp_dof ==
14639 		    help->dthps_provs[i]->dthp_prov.dofhp_dof)
14640 			return (EALREADY);
14641 	}
14642 
14643 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14644 	hprov->dthp_prov = *dofhp;
14645 	hprov->dthp_ref = 1;
14646 	hprov->dthp_generation = gen;
14647 
14648 	/*
14649 	 * Allocate a bigger table for helper providers if it's already full.
14650 	 */
14651 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14652 		tmp_maxprovs = help->dthps_maxprovs;
14653 		tmp_provs = help->dthps_provs;
14654 
14655 		if (help->dthps_maxprovs == 0)
14656 			help->dthps_maxprovs = 2;
14657 		else
14658 			help->dthps_maxprovs *= 2;
14659 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14660 			help->dthps_maxprovs = dtrace_helper_providers_max;
14661 
14662 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14663 
14664 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14665 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14666 
14667 		if (tmp_provs != NULL) {
14668 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14669 			    sizeof (dtrace_helper_provider_t *));
14670 			kmem_free(tmp_provs, tmp_maxprovs *
14671 			    sizeof (dtrace_helper_provider_t *));
14672 		}
14673 	}
14674 
14675 	help->dthps_provs[help->dthps_nprovs] = hprov;
14676 	help->dthps_nprovs++;
14677 
14678 	return (0);
14679 }
14680 
14681 static void
14682 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14683 {
14684 	mutex_enter(&dtrace_lock);
14685 
14686 	if (--hprov->dthp_ref == 0) {
14687 		dof_hdr_t *dof;
14688 		mutex_exit(&dtrace_lock);
14689 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14690 		dtrace_dof_destroy(dof);
14691 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14692 	} else {
14693 		mutex_exit(&dtrace_lock);
14694 	}
14695 }
14696 
14697 static int
14698 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14699 {
14700 	uintptr_t daddr = (uintptr_t)dof;
14701 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14702 	dof_provider_t *provider;
14703 	dof_probe_t *probe;
14704 	uint8_t *arg;
14705 	char *strtab, *typestr;
14706 	dof_stridx_t typeidx;
14707 	size_t typesz;
14708 	uint_t nprobes, j, k;
14709 
14710 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14711 
14712 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14713 		dtrace_dof_error(dof, "misaligned section offset");
14714 		return (-1);
14715 	}
14716 
14717 	/*
14718 	 * The section needs to be large enough to contain the DOF provider
14719 	 * structure appropriate for the given version.
14720 	 */
14721 	if (sec->dofs_size <
14722 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14723 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14724 	    sizeof (dof_provider_t))) {
14725 		dtrace_dof_error(dof, "provider section too small");
14726 		return (-1);
14727 	}
14728 
14729 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14730 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14731 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14732 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14733 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14734 
14735 	if (str_sec == NULL || prb_sec == NULL ||
14736 	    arg_sec == NULL || off_sec == NULL)
14737 		return (-1);
14738 
14739 	enoff_sec = NULL;
14740 
14741 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14742 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14743 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14744 	    provider->dofpv_prenoffs)) == NULL)
14745 		return (-1);
14746 
14747 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14748 
14749 	if (provider->dofpv_name >= str_sec->dofs_size ||
14750 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14751 		dtrace_dof_error(dof, "invalid provider name");
14752 		return (-1);
14753 	}
14754 
14755 	if (prb_sec->dofs_entsize == 0 ||
14756 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14757 		dtrace_dof_error(dof, "invalid entry size");
14758 		return (-1);
14759 	}
14760 
14761 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14762 		dtrace_dof_error(dof, "misaligned entry size");
14763 		return (-1);
14764 	}
14765 
14766 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14767 		dtrace_dof_error(dof, "invalid entry size");
14768 		return (-1);
14769 	}
14770 
14771 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14772 		dtrace_dof_error(dof, "misaligned section offset");
14773 		return (-1);
14774 	}
14775 
14776 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14777 		dtrace_dof_error(dof, "invalid entry size");
14778 		return (-1);
14779 	}
14780 
14781 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14782 
14783 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14784 
14785 	/*
14786 	 * Take a pass through the probes to check for errors.
14787 	 */
14788 	for (j = 0; j < nprobes; j++) {
14789 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14790 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14791 
14792 		if (probe->dofpr_func >= str_sec->dofs_size) {
14793 			dtrace_dof_error(dof, "invalid function name");
14794 			return (-1);
14795 		}
14796 
14797 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14798 			dtrace_dof_error(dof, "function name too long");
14799 			return (-1);
14800 		}
14801 
14802 		if (probe->dofpr_name >= str_sec->dofs_size ||
14803 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14804 			dtrace_dof_error(dof, "invalid probe name");
14805 			return (-1);
14806 		}
14807 
14808 		/*
14809 		 * The offset count must not wrap the index, and the offsets
14810 		 * must also not overflow the section's data.
14811 		 */
14812 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14813 		    probe->dofpr_offidx ||
14814 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14815 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14816 			dtrace_dof_error(dof, "invalid probe offset");
14817 			return (-1);
14818 		}
14819 
14820 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14821 			/*
14822 			 * If there's no is-enabled offset section, make sure
14823 			 * there aren't any is-enabled offsets. Otherwise
14824 			 * perform the same checks as for probe offsets
14825 			 * (immediately above).
14826 			 */
14827 			if (enoff_sec == NULL) {
14828 				if (probe->dofpr_enoffidx != 0 ||
14829 				    probe->dofpr_nenoffs != 0) {
14830 					dtrace_dof_error(dof, "is-enabled "
14831 					    "offsets with null section");
14832 					return (-1);
14833 				}
14834 			} else if (probe->dofpr_enoffidx +
14835 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14836 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14837 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14838 				dtrace_dof_error(dof, "invalid is-enabled "
14839 				    "offset");
14840 				return (-1);
14841 			}
14842 
14843 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14844 				dtrace_dof_error(dof, "zero probe and "
14845 				    "is-enabled offsets");
14846 				return (-1);
14847 			}
14848 		} else if (probe->dofpr_noffs == 0) {
14849 			dtrace_dof_error(dof, "zero probe offsets");
14850 			return (-1);
14851 		}
14852 
14853 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14854 		    probe->dofpr_argidx ||
14855 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14856 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14857 			dtrace_dof_error(dof, "invalid args");
14858 			return (-1);
14859 		}
14860 
14861 		typeidx = probe->dofpr_nargv;
14862 		typestr = strtab + probe->dofpr_nargv;
14863 		for (k = 0; k < probe->dofpr_nargc; k++) {
14864 			if (typeidx >= str_sec->dofs_size) {
14865 				dtrace_dof_error(dof, "bad "
14866 				    "native argument type");
14867 				return (-1);
14868 			}
14869 
14870 			typesz = strlen(typestr) + 1;
14871 			if (typesz > DTRACE_ARGTYPELEN) {
14872 				dtrace_dof_error(dof, "native "
14873 				    "argument type too long");
14874 				return (-1);
14875 			}
14876 			typeidx += typesz;
14877 			typestr += typesz;
14878 		}
14879 
14880 		typeidx = probe->dofpr_xargv;
14881 		typestr = strtab + probe->dofpr_xargv;
14882 		for (k = 0; k < probe->dofpr_xargc; k++) {
14883 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14884 				dtrace_dof_error(dof, "bad "
14885 				    "native argument index");
14886 				return (-1);
14887 			}
14888 
14889 			if (typeidx >= str_sec->dofs_size) {
14890 				dtrace_dof_error(dof, "bad "
14891 				    "translated argument type");
14892 				return (-1);
14893 			}
14894 
14895 			typesz = strlen(typestr) + 1;
14896 			if (typesz > DTRACE_ARGTYPELEN) {
14897 				dtrace_dof_error(dof, "translated argument "
14898 				    "type too long");
14899 				return (-1);
14900 			}
14901 
14902 			typeidx += typesz;
14903 			typestr += typesz;
14904 		}
14905 	}
14906 
14907 	return (0);
14908 }
14909 
14910 static int
14911 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14912 {
14913 	dtrace_helpers_t *help;
14914 	dtrace_vstate_t *vstate;
14915 	dtrace_enabling_t *enab = NULL;
14916 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14917 	uintptr_t daddr = (uintptr_t)dof;
14918 
14919 	ASSERT(MUTEX_HELD(&dtrace_lock));
14920 
14921 	if ((help = curproc->p_dtrace_helpers) == NULL)
14922 		help = dtrace_helpers_create(curproc);
14923 
14924 	vstate = &help->dthps_vstate;
14925 
14926 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14927 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14928 		dtrace_dof_destroy(dof);
14929 		return (rv);
14930 	}
14931 
14932 	/*
14933 	 * Look for helper providers and validate their descriptions.
14934 	 */
14935 	if (dhp != NULL) {
14936 		for (i = 0; i < dof->dofh_secnum; i++) {
14937 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14938 			    dof->dofh_secoff + i * dof->dofh_secsize);
14939 
14940 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14941 				continue;
14942 
14943 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14944 				dtrace_enabling_destroy(enab);
14945 				dtrace_dof_destroy(dof);
14946 				return (-1);
14947 			}
14948 
14949 			nprovs++;
14950 		}
14951 	}
14952 
14953 	/*
14954 	 * Now we need to walk through the ECB descriptions in the enabling.
14955 	 */
14956 	for (i = 0; i < enab->dten_ndesc; i++) {
14957 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14958 		dtrace_probedesc_t *desc = &ep->dted_probe;
14959 
14960 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14961 			continue;
14962 
14963 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14964 			continue;
14965 
14966 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14967 			continue;
14968 
14969 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14970 		    ep)) != 0) {
14971 			/*
14972 			 * Adding this helper action failed -- we are now going
14973 			 * to rip out the entire generation and return failure.
14974 			 */
14975 			(void) dtrace_helper_destroygen(help->dthps_generation);
14976 			dtrace_enabling_destroy(enab);
14977 			dtrace_dof_destroy(dof);
14978 			return (-1);
14979 		}
14980 
14981 		nhelpers++;
14982 	}
14983 
14984 	if (nhelpers < enab->dten_ndesc)
14985 		dtrace_dof_error(dof, "unmatched helpers");
14986 
14987 	gen = help->dthps_generation++;
14988 	dtrace_enabling_destroy(enab);
14989 
14990 	if (dhp != NULL && nprovs > 0) {
14991 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14992 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14993 			mutex_exit(&dtrace_lock);
14994 			dtrace_helper_provider_register(curproc, help, dhp);
14995 			mutex_enter(&dtrace_lock);
14996 
14997 			destroy = 0;
14998 		}
14999 	}
15000 
15001 	if (destroy)
15002 		dtrace_dof_destroy(dof);
15003 
15004 	return (gen);
15005 }
15006 
15007 static dtrace_helpers_t *
15008 dtrace_helpers_create(proc_t *p)
15009 {
15010 	dtrace_helpers_t *help;
15011 
15012 	ASSERT(MUTEX_HELD(&dtrace_lock));
15013 	ASSERT(p->p_dtrace_helpers == NULL);
15014 
15015 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15016 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15017 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15018 
15019 	p->p_dtrace_helpers = help;
15020 	dtrace_helpers++;
15021 
15022 	return (help);
15023 }
15024 
15025 #if defined(sun)
15026 static
15027 #endif
15028 void
15029 dtrace_helpers_destroy(proc_t *p)
15030 {
15031 	dtrace_helpers_t *help;
15032 	dtrace_vstate_t *vstate;
15033 #if defined(sun)
15034 	proc_t *p = curproc;
15035 #endif
15036 	int i;
15037 
15038 	mutex_enter(&dtrace_lock);
15039 
15040 	ASSERT(p->p_dtrace_helpers != NULL);
15041 	ASSERT(dtrace_helpers > 0);
15042 
15043 	help = p->p_dtrace_helpers;
15044 	vstate = &help->dthps_vstate;
15045 
15046 	/*
15047 	 * We're now going to lose the help from this process.
15048 	 */
15049 	p->p_dtrace_helpers = NULL;
15050 	dtrace_sync();
15051 
15052 	/*
15053 	 * Destory the helper actions.
15054 	 */
15055 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15056 		dtrace_helper_action_t *h, *next;
15057 
15058 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15059 			next = h->dtha_next;
15060 			dtrace_helper_action_destroy(h, vstate);
15061 			h = next;
15062 		}
15063 	}
15064 
15065 	mutex_exit(&dtrace_lock);
15066 
15067 	/*
15068 	 * Destroy the helper providers.
15069 	 */
15070 	if (help->dthps_maxprovs > 0) {
15071 		mutex_enter(&dtrace_meta_lock);
15072 		if (dtrace_meta_pid != NULL) {
15073 			ASSERT(dtrace_deferred_pid == NULL);
15074 
15075 			for (i = 0; i < help->dthps_nprovs; i++) {
15076 				dtrace_helper_provider_remove(
15077 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15078 			}
15079 		} else {
15080 			mutex_enter(&dtrace_lock);
15081 			ASSERT(help->dthps_deferred == 0 ||
15082 			    help->dthps_next != NULL ||
15083 			    help->dthps_prev != NULL ||
15084 			    help == dtrace_deferred_pid);
15085 
15086 			/*
15087 			 * Remove the helper from the deferred list.
15088 			 */
15089 			if (help->dthps_next != NULL)
15090 				help->dthps_next->dthps_prev = help->dthps_prev;
15091 			if (help->dthps_prev != NULL)
15092 				help->dthps_prev->dthps_next = help->dthps_next;
15093 			if (dtrace_deferred_pid == help) {
15094 				dtrace_deferred_pid = help->dthps_next;
15095 				ASSERT(help->dthps_prev == NULL);
15096 			}
15097 
15098 			mutex_exit(&dtrace_lock);
15099 		}
15100 
15101 		mutex_exit(&dtrace_meta_lock);
15102 
15103 		for (i = 0; i < help->dthps_nprovs; i++) {
15104 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15105 		}
15106 
15107 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15108 		    sizeof (dtrace_helper_provider_t *));
15109 	}
15110 
15111 	mutex_enter(&dtrace_lock);
15112 
15113 	dtrace_vstate_fini(&help->dthps_vstate);
15114 	kmem_free(help->dthps_actions,
15115 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15116 	kmem_free(help, sizeof (dtrace_helpers_t));
15117 
15118 	--dtrace_helpers;
15119 	mutex_exit(&dtrace_lock);
15120 }
15121 
15122 #if defined(sun)
15123 static
15124 #endif
15125 void
15126 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15127 {
15128 	dtrace_helpers_t *help, *newhelp;
15129 	dtrace_helper_action_t *helper, *new, *last;
15130 	dtrace_difo_t *dp;
15131 	dtrace_vstate_t *vstate;
15132 	int i, j, sz, hasprovs = 0;
15133 
15134 	mutex_enter(&dtrace_lock);
15135 	ASSERT(from->p_dtrace_helpers != NULL);
15136 	ASSERT(dtrace_helpers > 0);
15137 
15138 	help = from->p_dtrace_helpers;
15139 	newhelp = dtrace_helpers_create(to);
15140 	ASSERT(to->p_dtrace_helpers != NULL);
15141 
15142 	newhelp->dthps_generation = help->dthps_generation;
15143 	vstate = &newhelp->dthps_vstate;
15144 
15145 	/*
15146 	 * Duplicate the helper actions.
15147 	 */
15148 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15149 		if ((helper = help->dthps_actions[i]) == NULL)
15150 			continue;
15151 
15152 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15153 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15154 			    KM_SLEEP);
15155 			new->dtha_generation = helper->dtha_generation;
15156 
15157 			if ((dp = helper->dtha_predicate) != NULL) {
15158 				dp = dtrace_difo_duplicate(dp, vstate);
15159 				new->dtha_predicate = dp;
15160 			}
15161 
15162 			new->dtha_nactions = helper->dtha_nactions;
15163 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15164 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15165 
15166 			for (j = 0; j < new->dtha_nactions; j++) {
15167 				dtrace_difo_t *dp = helper->dtha_actions[j];
15168 
15169 				ASSERT(dp != NULL);
15170 				dp = dtrace_difo_duplicate(dp, vstate);
15171 				new->dtha_actions[j] = dp;
15172 			}
15173 
15174 			if (last != NULL) {
15175 				last->dtha_next = new;
15176 			} else {
15177 				newhelp->dthps_actions[i] = new;
15178 			}
15179 
15180 			last = new;
15181 		}
15182 	}
15183 
15184 	/*
15185 	 * Duplicate the helper providers and register them with the
15186 	 * DTrace framework.
15187 	 */
15188 	if (help->dthps_nprovs > 0) {
15189 		newhelp->dthps_nprovs = help->dthps_nprovs;
15190 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15191 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15192 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15193 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15194 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15195 			newhelp->dthps_provs[i]->dthp_ref++;
15196 		}
15197 
15198 		hasprovs = 1;
15199 	}
15200 
15201 	mutex_exit(&dtrace_lock);
15202 
15203 	if (hasprovs)
15204 		dtrace_helper_provider_register(to, newhelp, NULL);
15205 }
15206 
15207 /*
15208  * DTrace Hook Functions
15209  */
15210 static void
15211 dtrace_module_loaded(modctl_t *ctl)
15212 {
15213 	dtrace_provider_t *prv;
15214 
15215 	mutex_enter(&dtrace_provider_lock);
15216 #if defined(sun)
15217 	mutex_enter(&mod_lock);
15218 #endif
15219 
15220 #if defined(sun)
15221 	ASSERT(ctl->mod_busy);
15222 #endif
15223 
15224 	/*
15225 	 * We're going to call each providers per-module provide operation
15226 	 * specifying only this module.
15227 	 */
15228 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15229 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15230 
15231 #if defined(sun)
15232 	mutex_exit(&mod_lock);
15233 #endif
15234 	mutex_exit(&dtrace_provider_lock);
15235 
15236 	/*
15237 	 * If we have any retained enablings, we need to match against them.
15238 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15239 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15240 	 * module.  (In particular, this happens when loading scheduling
15241 	 * classes.)  So if we have any retained enablings, we need to dispatch
15242 	 * our task queue to do the match for us.
15243 	 */
15244 	mutex_enter(&dtrace_lock);
15245 
15246 	if (dtrace_retained == NULL) {
15247 		mutex_exit(&dtrace_lock);
15248 		return;
15249 	}
15250 
15251 	(void) taskq_dispatch(dtrace_taskq,
15252 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15253 
15254 	mutex_exit(&dtrace_lock);
15255 
15256 	/*
15257 	 * And now, for a little heuristic sleaze:  in general, we want to
15258 	 * match modules as soon as they load.  However, we cannot guarantee
15259 	 * this, because it would lead us to the lock ordering violation
15260 	 * outlined above.  The common case, of course, is that cpu_lock is
15261 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15262 	 * long enough for the task queue to do its work.  If it's not, it's
15263 	 * not a serious problem -- it just means that the module that we
15264 	 * just loaded may not be immediately instrumentable.
15265 	 */
15266 	delay(1);
15267 }
15268 
15269 static void
15270 #if defined(sun)
15271 dtrace_module_unloaded(modctl_t *ctl)
15272 #else
15273 dtrace_module_unloaded(modctl_t *ctl, int *error)
15274 #endif
15275 {
15276 	dtrace_probe_t template, *probe, *first, *next;
15277 	dtrace_provider_t *prov;
15278 #if !defined(sun)
15279 	char modname[DTRACE_MODNAMELEN];
15280 	size_t len;
15281 #endif
15282 
15283 #if defined(sun)
15284 	template.dtpr_mod = ctl->mod_modname;
15285 #else
15286 	/* Handle the fact that ctl->filename may end in ".ko". */
15287 	strlcpy(modname, ctl->filename, sizeof(modname));
15288 	len = strlen(ctl->filename);
15289 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
15290 		modname[len - 3] = '\0';
15291 	template.dtpr_mod = modname;
15292 #endif
15293 
15294 	mutex_enter(&dtrace_provider_lock);
15295 #if defined(sun)
15296 	mutex_enter(&mod_lock);
15297 #endif
15298 	mutex_enter(&dtrace_lock);
15299 
15300 #if !defined(sun)
15301 	if (ctl->nenabled > 0) {
15302 		/* Don't allow unloads if a probe is enabled. */
15303 		mutex_exit(&dtrace_provider_lock);
15304 		mutex_exit(&dtrace_lock);
15305 		*error = -1;
15306 		printf(
15307 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
15308 		return;
15309 	}
15310 #endif
15311 
15312 	if (dtrace_bymod == NULL) {
15313 		/*
15314 		 * The DTrace module is loaded (obviously) but not attached;
15315 		 * we don't have any work to do.
15316 		 */
15317 		mutex_exit(&dtrace_provider_lock);
15318 #if defined(sun)
15319 		mutex_exit(&mod_lock);
15320 #endif
15321 		mutex_exit(&dtrace_lock);
15322 		return;
15323 	}
15324 
15325 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15326 	    probe != NULL; probe = probe->dtpr_nextmod) {
15327 		if (probe->dtpr_ecb != NULL) {
15328 			mutex_exit(&dtrace_provider_lock);
15329 #if defined(sun)
15330 			mutex_exit(&mod_lock);
15331 #endif
15332 			mutex_exit(&dtrace_lock);
15333 
15334 			/*
15335 			 * This shouldn't _actually_ be possible -- we're
15336 			 * unloading a module that has an enabled probe in it.
15337 			 * (It's normally up to the provider to make sure that
15338 			 * this can't happen.)  However, because dtps_enable()
15339 			 * doesn't have a failure mode, there can be an
15340 			 * enable/unload race.  Upshot:  we don't want to
15341 			 * assert, but we're not going to disable the
15342 			 * probe, either.
15343 			 */
15344 			if (dtrace_err_verbose) {
15345 #if defined(sun)
15346 				cmn_err(CE_WARN, "unloaded module '%s' had "
15347 				    "enabled probes", ctl->mod_modname);
15348 #else
15349 				cmn_err(CE_WARN, "unloaded module '%s' had "
15350 				    "enabled probes", modname);
15351 #endif
15352 			}
15353 
15354 			return;
15355 		}
15356 	}
15357 
15358 	probe = first;
15359 
15360 	for (first = NULL; probe != NULL; probe = next) {
15361 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15362 
15363 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15364 
15365 		next = probe->dtpr_nextmod;
15366 		dtrace_hash_remove(dtrace_bymod, probe);
15367 		dtrace_hash_remove(dtrace_byfunc, probe);
15368 		dtrace_hash_remove(dtrace_byname, probe);
15369 
15370 		if (first == NULL) {
15371 			first = probe;
15372 			probe->dtpr_nextmod = NULL;
15373 		} else {
15374 			probe->dtpr_nextmod = first;
15375 			first = probe;
15376 		}
15377 	}
15378 
15379 	/*
15380 	 * We've removed all of the module's probes from the hash chains and
15381 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15382 	 * everyone has cleared out from any probe array processing.
15383 	 */
15384 	dtrace_sync();
15385 
15386 	for (probe = first; probe != NULL; probe = first) {
15387 		first = probe->dtpr_nextmod;
15388 		prov = probe->dtpr_provider;
15389 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15390 		    probe->dtpr_arg);
15391 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15392 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15393 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15394 #if defined(sun)
15395 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15396 #else
15397 		free_unr(dtrace_arena, probe->dtpr_id);
15398 #endif
15399 		kmem_free(probe, sizeof (dtrace_probe_t));
15400 	}
15401 
15402 	mutex_exit(&dtrace_lock);
15403 #if defined(sun)
15404 	mutex_exit(&mod_lock);
15405 #endif
15406 	mutex_exit(&dtrace_provider_lock);
15407 }
15408 
15409 #if !defined(sun)
15410 static void
15411 dtrace_kld_load(void *arg __unused, linker_file_t lf)
15412 {
15413 
15414 	dtrace_module_loaded(lf);
15415 }
15416 
15417 static void
15418 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
15419 {
15420 
15421 	if (*error != 0)
15422 		/* We already have an error, so don't do anything. */
15423 		return;
15424 	dtrace_module_unloaded(lf, error);
15425 }
15426 #endif
15427 
15428 #if defined(sun)
15429 static void
15430 dtrace_suspend(void)
15431 {
15432 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15433 }
15434 
15435 static void
15436 dtrace_resume(void)
15437 {
15438 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15439 }
15440 #endif
15441 
15442 static int
15443 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15444 {
15445 	ASSERT(MUTEX_HELD(&cpu_lock));
15446 	mutex_enter(&dtrace_lock);
15447 
15448 	switch (what) {
15449 	case CPU_CONFIG: {
15450 		dtrace_state_t *state;
15451 		dtrace_optval_t *opt, rs, c;
15452 
15453 		/*
15454 		 * For now, we only allocate a new buffer for anonymous state.
15455 		 */
15456 		if ((state = dtrace_anon.dta_state) == NULL)
15457 			break;
15458 
15459 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15460 			break;
15461 
15462 		opt = state->dts_options;
15463 		c = opt[DTRACEOPT_CPU];
15464 
15465 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15466 			break;
15467 
15468 		/*
15469 		 * Regardless of what the actual policy is, we're going to
15470 		 * temporarily set our resize policy to be manual.  We're
15471 		 * also going to temporarily set our CPU option to denote
15472 		 * the newly configured CPU.
15473 		 */
15474 		rs = opt[DTRACEOPT_BUFRESIZE];
15475 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15476 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15477 
15478 		(void) dtrace_state_buffers(state);
15479 
15480 		opt[DTRACEOPT_BUFRESIZE] = rs;
15481 		opt[DTRACEOPT_CPU] = c;
15482 
15483 		break;
15484 	}
15485 
15486 	case CPU_UNCONFIG:
15487 		/*
15488 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15489 		 * buffer will be freed when the consumer exits.)
15490 		 */
15491 		break;
15492 
15493 	default:
15494 		break;
15495 	}
15496 
15497 	mutex_exit(&dtrace_lock);
15498 	return (0);
15499 }
15500 
15501 #if defined(sun)
15502 static void
15503 dtrace_cpu_setup_initial(processorid_t cpu)
15504 {
15505 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15506 }
15507 #endif
15508 
15509 static void
15510 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15511 {
15512 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15513 		int osize, nsize;
15514 		dtrace_toxrange_t *range;
15515 
15516 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15517 
15518 		if (osize == 0) {
15519 			ASSERT(dtrace_toxrange == NULL);
15520 			ASSERT(dtrace_toxranges_max == 0);
15521 			dtrace_toxranges_max = 1;
15522 		} else {
15523 			dtrace_toxranges_max <<= 1;
15524 		}
15525 
15526 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15527 		range = kmem_zalloc(nsize, KM_SLEEP);
15528 
15529 		if (dtrace_toxrange != NULL) {
15530 			ASSERT(osize != 0);
15531 			bcopy(dtrace_toxrange, range, osize);
15532 			kmem_free(dtrace_toxrange, osize);
15533 		}
15534 
15535 		dtrace_toxrange = range;
15536 	}
15537 
15538 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15539 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15540 
15541 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15542 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15543 	dtrace_toxranges++;
15544 }
15545 
15546 /*
15547  * DTrace Driver Cookbook Functions
15548  */
15549 #if defined(sun)
15550 /*ARGSUSED*/
15551 static int
15552 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15553 {
15554 	dtrace_provider_id_t id;
15555 	dtrace_state_t *state = NULL;
15556 	dtrace_enabling_t *enab;
15557 
15558 	mutex_enter(&cpu_lock);
15559 	mutex_enter(&dtrace_provider_lock);
15560 	mutex_enter(&dtrace_lock);
15561 
15562 	if (ddi_soft_state_init(&dtrace_softstate,
15563 	    sizeof (dtrace_state_t), 0) != 0) {
15564 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15565 		mutex_exit(&cpu_lock);
15566 		mutex_exit(&dtrace_provider_lock);
15567 		mutex_exit(&dtrace_lock);
15568 		return (DDI_FAILURE);
15569 	}
15570 
15571 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15572 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15573 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15574 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15575 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15576 		ddi_remove_minor_node(devi, NULL);
15577 		ddi_soft_state_fini(&dtrace_softstate);
15578 		mutex_exit(&cpu_lock);
15579 		mutex_exit(&dtrace_provider_lock);
15580 		mutex_exit(&dtrace_lock);
15581 		return (DDI_FAILURE);
15582 	}
15583 
15584 	ddi_report_dev(devi);
15585 	dtrace_devi = devi;
15586 
15587 	dtrace_modload = dtrace_module_loaded;
15588 	dtrace_modunload = dtrace_module_unloaded;
15589 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15590 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15591 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15592 	dtrace_cpustart_init = dtrace_suspend;
15593 	dtrace_cpustart_fini = dtrace_resume;
15594 	dtrace_debugger_init = dtrace_suspend;
15595 	dtrace_debugger_fini = dtrace_resume;
15596 
15597 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15598 
15599 	ASSERT(MUTEX_HELD(&cpu_lock));
15600 
15601 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15602 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15603 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15604 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15605 	    VM_SLEEP | VMC_IDENTIFIER);
15606 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15607 	    1, INT_MAX, 0);
15608 
15609 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15610 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15611 	    NULL, NULL, NULL, NULL, NULL, 0);
15612 
15613 	ASSERT(MUTEX_HELD(&cpu_lock));
15614 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15615 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15616 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15617 
15618 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15619 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15620 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15621 
15622 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15623 	    offsetof(dtrace_probe_t, dtpr_nextname),
15624 	    offsetof(dtrace_probe_t, dtpr_prevname));
15625 
15626 	if (dtrace_retain_max < 1) {
15627 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15628 		    "setting to 1", dtrace_retain_max);
15629 		dtrace_retain_max = 1;
15630 	}
15631 
15632 	/*
15633 	 * Now discover our toxic ranges.
15634 	 */
15635 	dtrace_toxic_ranges(dtrace_toxrange_add);
15636 
15637 	/*
15638 	 * Before we register ourselves as a provider to our own framework,
15639 	 * we would like to assert that dtrace_provider is NULL -- but that's
15640 	 * not true if we were loaded as a dependency of a DTrace provider.
15641 	 * Once we've registered, we can assert that dtrace_provider is our
15642 	 * pseudo provider.
15643 	 */
15644 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15645 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15646 
15647 	ASSERT(dtrace_provider != NULL);
15648 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15649 
15650 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15651 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15652 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15653 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15654 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15655 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15656 
15657 	dtrace_anon_property();
15658 	mutex_exit(&cpu_lock);
15659 
15660 	/*
15661 	 * If DTrace helper tracing is enabled, we need to allocate the
15662 	 * trace buffer and initialize the values.
15663 	 */
15664 	if (dtrace_helptrace_enabled) {
15665 		ASSERT(dtrace_helptrace_buffer == NULL);
15666 		dtrace_helptrace_buffer =
15667 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15668 		dtrace_helptrace_next = 0;
15669 	}
15670 
15671 	/*
15672 	 * If there are already providers, we must ask them to provide their
15673 	 * probes, and then match any anonymous enabling against them.  Note
15674 	 * that there should be no other retained enablings at this time:
15675 	 * the only retained enablings at this time should be the anonymous
15676 	 * enabling.
15677 	 */
15678 	if (dtrace_anon.dta_enabling != NULL) {
15679 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15680 
15681 		dtrace_enabling_provide(NULL);
15682 		state = dtrace_anon.dta_state;
15683 
15684 		/*
15685 		 * We couldn't hold cpu_lock across the above call to
15686 		 * dtrace_enabling_provide(), but we must hold it to actually
15687 		 * enable the probes.  We have to drop all of our locks, pick
15688 		 * up cpu_lock, and regain our locks before matching the
15689 		 * retained anonymous enabling.
15690 		 */
15691 		mutex_exit(&dtrace_lock);
15692 		mutex_exit(&dtrace_provider_lock);
15693 
15694 		mutex_enter(&cpu_lock);
15695 		mutex_enter(&dtrace_provider_lock);
15696 		mutex_enter(&dtrace_lock);
15697 
15698 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15699 			(void) dtrace_enabling_match(enab, NULL);
15700 
15701 		mutex_exit(&cpu_lock);
15702 	}
15703 
15704 	mutex_exit(&dtrace_lock);
15705 	mutex_exit(&dtrace_provider_lock);
15706 
15707 	if (state != NULL) {
15708 		/*
15709 		 * If we created any anonymous state, set it going now.
15710 		 */
15711 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15712 	}
15713 
15714 	return (DDI_SUCCESS);
15715 }
15716 #endif
15717 
15718 #if !defined(sun)
15719 #if __FreeBSD_version >= 800039
15720 static void dtrace_dtr(void *);
15721 #endif
15722 #endif
15723 
15724 /*ARGSUSED*/
15725 static int
15726 #if defined(sun)
15727 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15728 #else
15729 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15730 #endif
15731 {
15732 	dtrace_state_t *state;
15733 	uint32_t priv;
15734 	uid_t uid;
15735 	zoneid_t zoneid;
15736 
15737 #if defined(sun)
15738 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15739 		return (0);
15740 
15741 	/*
15742 	 * If this wasn't an open with the "helper" minor, then it must be
15743 	 * the "dtrace" minor.
15744 	 */
15745 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15746 #else
15747 	cred_t *cred_p = NULL;
15748 
15749 #if __FreeBSD_version < 800039
15750 	/*
15751 	 * The first minor device is the one that is cloned so there is
15752 	 * nothing more to do here.
15753 	 */
15754 	if (dev2unit(dev) == 0)
15755 		return 0;
15756 
15757 	/*
15758 	 * Devices are cloned, so if the DTrace state has already
15759 	 * been allocated, that means this device belongs to a
15760 	 * different client. Each client should open '/dev/dtrace'
15761 	 * to get a cloned device.
15762 	 */
15763 	if (dev->si_drv1 != NULL)
15764 		return (EBUSY);
15765 #endif
15766 
15767 	cred_p = dev->si_cred;
15768 #endif
15769 
15770 	/*
15771 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15772 	 * caller lacks sufficient permission to do anything with DTrace.
15773 	 */
15774 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15775 	if (priv == DTRACE_PRIV_NONE) {
15776 #if !defined(sun)
15777 #if __FreeBSD_version < 800039
15778 		/* Destroy the cloned device. */
15779                 destroy_dev(dev);
15780 #endif
15781 #endif
15782 
15783 		return (EACCES);
15784 	}
15785 
15786 	/*
15787 	 * Ask all providers to provide all their probes.
15788 	 */
15789 	mutex_enter(&dtrace_provider_lock);
15790 	dtrace_probe_provide(NULL, NULL);
15791 	mutex_exit(&dtrace_provider_lock);
15792 
15793 	mutex_enter(&cpu_lock);
15794 	mutex_enter(&dtrace_lock);
15795 	dtrace_opens++;
15796 	dtrace_membar_producer();
15797 
15798 #if defined(sun)
15799 	/*
15800 	 * If the kernel debugger is active (that is, if the kernel debugger
15801 	 * modified text in some way), we won't allow the open.
15802 	 */
15803 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15804 		dtrace_opens--;
15805 		mutex_exit(&cpu_lock);
15806 		mutex_exit(&dtrace_lock);
15807 		return (EBUSY);
15808 	}
15809 
15810 	state = dtrace_state_create(devp, cred_p);
15811 #else
15812 	state = dtrace_state_create(dev);
15813 #if __FreeBSD_version < 800039
15814 	dev->si_drv1 = state;
15815 #else
15816 	devfs_set_cdevpriv(state, dtrace_dtr);
15817 #endif
15818 #endif
15819 
15820 	mutex_exit(&cpu_lock);
15821 
15822 	if (state == NULL) {
15823 #if defined(sun)
15824 		if (--dtrace_opens == 0)
15825 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15826 #else
15827 		--dtrace_opens;
15828 #endif
15829 		mutex_exit(&dtrace_lock);
15830 #if !defined(sun)
15831 #if __FreeBSD_version < 800039
15832 		/* Destroy the cloned device. */
15833                 destroy_dev(dev);
15834 #endif
15835 #endif
15836 		return (EAGAIN);
15837 	}
15838 
15839 	mutex_exit(&dtrace_lock);
15840 
15841 	return (0);
15842 }
15843 
15844 /*ARGSUSED*/
15845 #if defined(sun)
15846 static int
15847 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15848 #elif __FreeBSD_version < 800039
15849 static int
15850 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15851 #else
15852 static void
15853 dtrace_dtr(void *data)
15854 #endif
15855 {
15856 #if defined(sun)
15857 	minor_t minor = getminor(dev);
15858 	dtrace_state_t *state;
15859 
15860 	if (minor == DTRACEMNRN_HELPER)
15861 		return (0);
15862 
15863 	state = ddi_get_soft_state(dtrace_softstate, minor);
15864 #else
15865 #if __FreeBSD_version < 800039
15866 	dtrace_state_t *state = dev->si_drv1;
15867 
15868 	/* Check if this is not a cloned device. */
15869 	if (dev2unit(dev) == 0)
15870 		return (0);
15871 #else
15872 	dtrace_state_t *state = data;
15873 #endif
15874 
15875 #endif
15876 
15877 	mutex_enter(&cpu_lock);
15878 	mutex_enter(&dtrace_lock);
15879 
15880 	if (state != NULL) {
15881 		if (state->dts_anon) {
15882 			/*
15883 			 * There is anonymous state. Destroy that first.
15884 			 */
15885 			ASSERT(dtrace_anon.dta_state == NULL);
15886 			dtrace_state_destroy(state->dts_anon);
15887 		}
15888 
15889 		dtrace_state_destroy(state);
15890 
15891 #if !defined(sun)
15892 		kmem_free(state, 0);
15893 #if __FreeBSD_version < 800039
15894 		dev->si_drv1 = NULL;
15895 #endif
15896 #endif
15897 	}
15898 
15899 	ASSERT(dtrace_opens > 0);
15900 #if defined(sun)
15901 	if (--dtrace_opens == 0)
15902 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15903 #else
15904 	--dtrace_opens;
15905 #endif
15906 
15907 	mutex_exit(&dtrace_lock);
15908 	mutex_exit(&cpu_lock);
15909 
15910 #if __FreeBSD_version < 800039
15911 	/* Schedule this cloned device to be destroyed. */
15912 	destroy_dev_sched(dev);
15913 #endif
15914 
15915 #if defined(sun) || __FreeBSD_version < 800039
15916 	return (0);
15917 #endif
15918 }
15919 
15920 #if defined(sun)
15921 /*ARGSUSED*/
15922 static int
15923 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15924 {
15925 	int rval;
15926 	dof_helper_t help, *dhp = NULL;
15927 
15928 	switch (cmd) {
15929 	case DTRACEHIOC_ADDDOF:
15930 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15931 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15932 			return (EFAULT);
15933 		}
15934 
15935 		dhp = &help;
15936 		arg = (intptr_t)help.dofhp_dof;
15937 		/*FALLTHROUGH*/
15938 
15939 	case DTRACEHIOC_ADD: {
15940 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15941 
15942 		if (dof == NULL)
15943 			return (rval);
15944 
15945 		mutex_enter(&dtrace_lock);
15946 
15947 		/*
15948 		 * dtrace_helper_slurp() takes responsibility for the dof --
15949 		 * it may free it now or it may save it and free it later.
15950 		 */
15951 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15952 			*rv = rval;
15953 			rval = 0;
15954 		} else {
15955 			rval = EINVAL;
15956 		}
15957 
15958 		mutex_exit(&dtrace_lock);
15959 		return (rval);
15960 	}
15961 
15962 	case DTRACEHIOC_REMOVE: {
15963 		mutex_enter(&dtrace_lock);
15964 		rval = dtrace_helper_destroygen(arg);
15965 		mutex_exit(&dtrace_lock);
15966 
15967 		return (rval);
15968 	}
15969 
15970 	default:
15971 		break;
15972 	}
15973 
15974 	return (ENOTTY);
15975 }
15976 
15977 /*ARGSUSED*/
15978 static int
15979 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15980 {
15981 	minor_t minor = getminor(dev);
15982 	dtrace_state_t *state;
15983 	int rval;
15984 
15985 	if (minor == DTRACEMNRN_HELPER)
15986 		return (dtrace_ioctl_helper(cmd, arg, rv));
15987 
15988 	state = ddi_get_soft_state(dtrace_softstate, minor);
15989 
15990 	if (state->dts_anon) {
15991 		ASSERT(dtrace_anon.dta_state == NULL);
15992 		state = state->dts_anon;
15993 	}
15994 
15995 	switch (cmd) {
15996 	case DTRACEIOC_PROVIDER: {
15997 		dtrace_providerdesc_t pvd;
15998 		dtrace_provider_t *pvp;
15999 
16000 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16001 			return (EFAULT);
16002 
16003 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16004 		mutex_enter(&dtrace_provider_lock);
16005 
16006 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16007 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16008 				break;
16009 		}
16010 
16011 		mutex_exit(&dtrace_provider_lock);
16012 
16013 		if (pvp == NULL)
16014 			return (ESRCH);
16015 
16016 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16017 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16018 
16019 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16020 			return (EFAULT);
16021 
16022 		return (0);
16023 	}
16024 
16025 	case DTRACEIOC_EPROBE: {
16026 		dtrace_eprobedesc_t epdesc;
16027 		dtrace_ecb_t *ecb;
16028 		dtrace_action_t *act;
16029 		void *buf;
16030 		size_t size;
16031 		uintptr_t dest;
16032 		int nrecs;
16033 
16034 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16035 			return (EFAULT);
16036 
16037 		mutex_enter(&dtrace_lock);
16038 
16039 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16040 			mutex_exit(&dtrace_lock);
16041 			return (EINVAL);
16042 		}
16043 
16044 		if (ecb->dte_probe == NULL) {
16045 			mutex_exit(&dtrace_lock);
16046 			return (EINVAL);
16047 		}
16048 
16049 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16050 		epdesc.dtepd_uarg = ecb->dte_uarg;
16051 		epdesc.dtepd_size = ecb->dte_size;
16052 
16053 		nrecs = epdesc.dtepd_nrecs;
16054 		epdesc.dtepd_nrecs = 0;
16055 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16056 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16057 				continue;
16058 
16059 			epdesc.dtepd_nrecs++;
16060 		}
16061 
16062 		/*
16063 		 * Now that we have the size, we need to allocate a temporary
16064 		 * buffer in which to store the complete description.  We need
16065 		 * the temporary buffer to be able to drop dtrace_lock()
16066 		 * across the copyout(), below.
16067 		 */
16068 		size = sizeof (dtrace_eprobedesc_t) +
16069 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16070 
16071 		buf = kmem_alloc(size, KM_SLEEP);
16072 		dest = (uintptr_t)buf;
16073 
16074 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16075 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16076 
16077 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16078 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16079 				continue;
16080 
16081 			if (nrecs-- == 0)
16082 				break;
16083 
16084 			bcopy(&act->dta_rec, (void *)dest,
16085 			    sizeof (dtrace_recdesc_t));
16086 			dest += sizeof (dtrace_recdesc_t);
16087 		}
16088 
16089 		mutex_exit(&dtrace_lock);
16090 
16091 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16092 			kmem_free(buf, size);
16093 			return (EFAULT);
16094 		}
16095 
16096 		kmem_free(buf, size);
16097 		return (0);
16098 	}
16099 
16100 	case DTRACEIOC_AGGDESC: {
16101 		dtrace_aggdesc_t aggdesc;
16102 		dtrace_action_t *act;
16103 		dtrace_aggregation_t *agg;
16104 		int nrecs;
16105 		uint32_t offs;
16106 		dtrace_recdesc_t *lrec;
16107 		void *buf;
16108 		size_t size;
16109 		uintptr_t dest;
16110 
16111 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16112 			return (EFAULT);
16113 
16114 		mutex_enter(&dtrace_lock);
16115 
16116 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16117 			mutex_exit(&dtrace_lock);
16118 			return (EINVAL);
16119 		}
16120 
16121 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16122 
16123 		nrecs = aggdesc.dtagd_nrecs;
16124 		aggdesc.dtagd_nrecs = 0;
16125 
16126 		offs = agg->dtag_base;
16127 		lrec = &agg->dtag_action.dta_rec;
16128 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16129 
16130 		for (act = agg->dtag_first; ; act = act->dta_next) {
16131 			ASSERT(act->dta_intuple ||
16132 			    DTRACEACT_ISAGG(act->dta_kind));
16133 
16134 			/*
16135 			 * If this action has a record size of zero, it
16136 			 * denotes an argument to the aggregating action.
16137 			 * Because the presence of this record doesn't (or
16138 			 * shouldn't) affect the way the data is interpreted,
16139 			 * we don't copy it out to save user-level the
16140 			 * confusion of dealing with a zero-length record.
16141 			 */
16142 			if (act->dta_rec.dtrd_size == 0) {
16143 				ASSERT(agg->dtag_hasarg);
16144 				continue;
16145 			}
16146 
16147 			aggdesc.dtagd_nrecs++;
16148 
16149 			if (act == &agg->dtag_action)
16150 				break;
16151 		}
16152 
16153 		/*
16154 		 * Now that we have the size, we need to allocate a temporary
16155 		 * buffer in which to store the complete description.  We need
16156 		 * the temporary buffer to be able to drop dtrace_lock()
16157 		 * across the copyout(), below.
16158 		 */
16159 		size = sizeof (dtrace_aggdesc_t) +
16160 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16161 
16162 		buf = kmem_alloc(size, KM_SLEEP);
16163 		dest = (uintptr_t)buf;
16164 
16165 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16166 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16167 
16168 		for (act = agg->dtag_first; ; act = act->dta_next) {
16169 			dtrace_recdesc_t rec = act->dta_rec;
16170 
16171 			/*
16172 			 * See the comment in the above loop for why we pass
16173 			 * over zero-length records.
16174 			 */
16175 			if (rec.dtrd_size == 0) {
16176 				ASSERT(agg->dtag_hasarg);
16177 				continue;
16178 			}
16179 
16180 			if (nrecs-- == 0)
16181 				break;
16182 
16183 			rec.dtrd_offset -= offs;
16184 			bcopy(&rec, (void *)dest, sizeof (rec));
16185 			dest += sizeof (dtrace_recdesc_t);
16186 
16187 			if (act == &agg->dtag_action)
16188 				break;
16189 		}
16190 
16191 		mutex_exit(&dtrace_lock);
16192 
16193 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16194 			kmem_free(buf, size);
16195 			return (EFAULT);
16196 		}
16197 
16198 		kmem_free(buf, size);
16199 		return (0);
16200 	}
16201 
16202 	case DTRACEIOC_ENABLE: {
16203 		dof_hdr_t *dof;
16204 		dtrace_enabling_t *enab = NULL;
16205 		dtrace_vstate_t *vstate;
16206 		int err = 0;
16207 
16208 		*rv = 0;
16209 
16210 		/*
16211 		 * If a NULL argument has been passed, we take this as our
16212 		 * cue to reevaluate our enablings.
16213 		 */
16214 		if (arg == NULL) {
16215 			dtrace_enabling_matchall();
16216 
16217 			return (0);
16218 		}
16219 
16220 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16221 			return (rval);
16222 
16223 		mutex_enter(&cpu_lock);
16224 		mutex_enter(&dtrace_lock);
16225 		vstate = &state->dts_vstate;
16226 
16227 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16228 			mutex_exit(&dtrace_lock);
16229 			mutex_exit(&cpu_lock);
16230 			dtrace_dof_destroy(dof);
16231 			return (EBUSY);
16232 		}
16233 
16234 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16235 			mutex_exit(&dtrace_lock);
16236 			mutex_exit(&cpu_lock);
16237 			dtrace_dof_destroy(dof);
16238 			return (EINVAL);
16239 		}
16240 
16241 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16242 			dtrace_enabling_destroy(enab);
16243 			mutex_exit(&dtrace_lock);
16244 			mutex_exit(&cpu_lock);
16245 			dtrace_dof_destroy(dof);
16246 			return (rval);
16247 		}
16248 
16249 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16250 			err = dtrace_enabling_retain(enab);
16251 		} else {
16252 			dtrace_enabling_destroy(enab);
16253 		}
16254 
16255 		mutex_exit(&cpu_lock);
16256 		mutex_exit(&dtrace_lock);
16257 		dtrace_dof_destroy(dof);
16258 
16259 		return (err);
16260 	}
16261 
16262 	case DTRACEIOC_REPLICATE: {
16263 		dtrace_repldesc_t desc;
16264 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16265 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16266 		int err;
16267 
16268 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16269 			return (EFAULT);
16270 
16271 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16272 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16273 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16274 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16275 
16276 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16277 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16278 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16279 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16280 
16281 		mutex_enter(&dtrace_lock);
16282 		err = dtrace_enabling_replicate(state, match, create);
16283 		mutex_exit(&dtrace_lock);
16284 
16285 		return (err);
16286 	}
16287 
16288 	case DTRACEIOC_PROBEMATCH:
16289 	case DTRACEIOC_PROBES: {
16290 		dtrace_probe_t *probe = NULL;
16291 		dtrace_probedesc_t desc;
16292 		dtrace_probekey_t pkey;
16293 		dtrace_id_t i;
16294 		int m = 0;
16295 		uint32_t priv;
16296 		uid_t uid;
16297 		zoneid_t zoneid;
16298 
16299 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16300 			return (EFAULT);
16301 
16302 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16303 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16304 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16305 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16306 
16307 		/*
16308 		 * Before we attempt to match this probe, we want to give
16309 		 * all providers the opportunity to provide it.
16310 		 */
16311 		if (desc.dtpd_id == DTRACE_IDNONE) {
16312 			mutex_enter(&dtrace_provider_lock);
16313 			dtrace_probe_provide(&desc, NULL);
16314 			mutex_exit(&dtrace_provider_lock);
16315 			desc.dtpd_id++;
16316 		}
16317 
16318 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16319 			dtrace_probekey(&desc, &pkey);
16320 			pkey.dtpk_id = DTRACE_IDNONE;
16321 		}
16322 
16323 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16324 
16325 		mutex_enter(&dtrace_lock);
16326 
16327 		if (cmd == DTRACEIOC_PROBEMATCH) {
16328 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16329 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16330 				    (m = dtrace_match_probe(probe, &pkey,
16331 				    priv, uid, zoneid)) != 0)
16332 					break;
16333 			}
16334 
16335 			if (m < 0) {
16336 				mutex_exit(&dtrace_lock);
16337 				return (EINVAL);
16338 			}
16339 
16340 		} else {
16341 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16342 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16343 				    dtrace_match_priv(probe, priv, uid, zoneid))
16344 					break;
16345 			}
16346 		}
16347 
16348 		if (probe == NULL) {
16349 			mutex_exit(&dtrace_lock);
16350 			return (ESRCH);
16351 		}
16352 
16353 		dtrace_probe_description(probe, &desc);
16354 		mutex_exit(&dtrace_lock);
16355 
16356 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16357 			return (EFAULT);
16358 
16359 		return (0);
16360 	}
16361 
16362 	case DTRACEIOC_PROBEARG: {
16363 		dtrace_argdesc_t desc;
16364 		dtrace_probe_t *probe;
16365 		dtrace_provider_t *prov;
16366 
16367 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16368 			return (EFAULT);
16369 
16370 		if (desc.dtargd_id == DTRACE_IDNONE)
16371 			return (EINVAL);
16372 
16373 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16374 			return (EINVAL);
16375 
16376 		mutex_enter(&dtrace_provider_lock);
16377 		mutex_enter(&mod_lock);
16378 		mutex_enter(&dtrace_lock);
16379 
16380 		if (desc.dtargd_id > dtrace_nprobes) {
16381 			mutex_exit(&dtrace_lock);
16382 			mutex_exit(&mod_lock);
16383 			mutex_exit(&dtrace_provider_lock);
16384 			return (EINVAL);
16385 		}
16386 
16387 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16388 			mutex_exit(&dtrace_lock);
16389 			mutex_exit(&mod_lock);
16390 			mutex_exit(&dtrace_provider_lock);
16391 			return (EINVAL);
16392 		}
16393 
16394 		mutex_exit(&dtrace_lock);
16395 
16396 		prov = probe->dtpr_provider;
16397 
16398 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16399 			/*
16400 			 * There isn't any typed information for this probe.
16401 			 * Set the argument number to DTRACE_ARGNONE.
16402 			 */
16403 			desc.dtargd_ndx = DTRACE_ARGNONE;
16404 		} else {
16405 			desc.dtargd_native[0] = '\0';
16406 			desc.dtargd_xlate[0] = '\0';
16407 			desc.dtargd_mapping = desc.dtargd_ndx;
16408 
16409 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16410 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16411 		}
16412 
16413 		mutex_exit(&mod_lock);
16414 		mutex_exit(&dtrace_provider_lock);
16415 
16416 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16417 			return (EFAULT);
16418 
16419 		return (0);
16420 	}
16421 
16422 	case DTRACEIOC_GO: {
16423 		processorid_t cpuid;
16424 		rval = dtrace_state_go(state, &cpuid);
16425 
16426 		if (rval != 0)
16427 			return (rval);
16428 
16429 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16430 			return (EFAULT);
16431 
16432 		return (0);
16433 	}
16434 
16435 	case DTRACEIOC_STOP: {
16436 		processorid_t cpuid;
16437 
16438 		mutex_enter(&dtrace_lock);
16439 		rval = dtrace_state_stop(state, &cpuid);
16440 		mutex_exit(&dtrace_lock);
16441 
16442 		if (rval != 0)
16443 			return (rval);
16444 
16445 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16446 			return (EFAULT);
16447 
16448 		return (0);
16449 	}
16450 
16451 	case DTRACEIOC_DOFGET: {
16452 		dof_hdr_t hdr, *dof;
16453 		uint64_t len;
16454 
16455 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16456 			return (EFAULT);
16457 
16458 		mutex_enter(&dtrace_lock);
16459 		dof = dtrace_dof_create(state);
16460 		mutex_exit(&dtrace_lock);
16461 
16462 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16463 		rval = copyout(dof, (void *)arg, len);
16464 		dtrace_dof_destroy(dof);
16465 
16466 		return (rval == 0 ? 0 : EFAULT);
16467 	}
16468 
16469 	case DTRACEIOC_AGGSNAP:
16470 	case DTRACEIOC_BUFSNAP: {
16471 		dtrace_bufdesc_t desc;
16472 		caddr_t cached;
16473 		dtrace_buffer_t *buf;
16474 
16475 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16476 			return (EFAULT);
16477 
16478 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16479 			return (EINVAL);
16480 
16481 		mutex_enter(&dtrace_lock);
16482 
16483 		if (cmd == DTRACEIOC_BUFSNAP) {
16484 			buf = &state->dts_buffer[desc.dtbd_cpu];
16485 		} else {
16486 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16487 		}
16488 
16489 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16490 			size_t sz = buf->dtb_offset;
16491 
16492 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16493 				mutex_exit(&dtrace_lock);
16494 				return (EBUSY);
16495 			}
16496 
16497 			/*
16498 			 * If this buffer has already been consumed, we're
16499 			 * going to indicate that there's nothing left here
16500 			 * to consume.
16501 			 */
16502 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16503 				mutex_exit(&dtrace_lock);
16504 
16505 				desc.dtbd_size = 0;
16506 				desc.dtbd_drops = 0;
16507 				desc.dtbd_errors = 0;
16508 				desc.dtbd_oldest = 0;
16509 				sz = sizeof (desc);
16510 
16511 				if (copyout(&desc, (void *)arg, sz) != 0)
16512 					return (EFAULT);
16513 
16514 				return (0);
16515 			}
16516 
16517 			/*
16518 			 * If this is a ring buffer that has wrapped, we want
16519 			 * to copy the whole thing out.
16520 			 */
16521 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16522 				dtrace_buffer_polish(buf);
16523 				sz = buf->dtb_size;
16524 			}
16525 
16526 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16527 				mutex_exit(&dtrace_lock);
16528 				return (EFAULT);
16529 			}
16530 
16531 			desc.dtbd_size = sz;
16532 			desc.dtbd_drops = buf->dtb_drops;
16533 			desc.dtbd_errors = buf->dtb_errors;
16534 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16535 			desc.dtbd_timestamp = dtrace_gethrtime();
16536 
16537 			mutex_exit(&dtrace_lock);
16538 
16539 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16540 				return (EFAULT);
16541 
16542 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16543 
16544 			return (0);
16545 		}
16546 
16547 		if (buf->dtb_tomax == NULL) {
16548 			ASSERT(buf->dtb_xamot == NULL);
16549 			mutex_exit(&dtrace_lock);
16550 			return (ENOENT);
16551 		}
16552 
16553 		cached = buf->dtb_tomax;
16554 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16555 
16556 		dtrace_xcall(desc.dtbd_cpu,
16557 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16558 
16559 		state->dts_errors += buf->dtb_xamot_errors;
16560 
16561 		/*
16562 		 * If the buffers did not actually switch, then the cross call
16563 		 * did not take place -- presumably because the given CPU is
16564 		 * not in the ready set.  If this is the case, we'll return
16565 		 * ENOENT.
16566 		 */
16567 		if (buf->dtb_tomax == cached) {
16568 			ASSERT(buf->dtb_xamot != cached);
16569 			mutex_exit(&dtrace_lock);
16570 			return (ENOENT);
16571 		}
16572 
16573 		ASSERT(cached == buf->dtb_xamot);
16574 
16575 		/*
16576 		 * We have our snapshot; now copy it out.
16577 		 */
16578 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16579 		    buf->dtb_xamot_offset) != 0) {
16580 			mutex_exit(&dtrace_lock);
16581 			return (EFAULT);
16582 		}
16583 
16584 		desc.dtbd_size = buf->dtb_xamot_offset;
16585 		desc.dtbd_drops = buf->dtb_xamot_drops;
16586 		desc.dtbd_errors = buf->dtb_xamot_errors;
16587 		desc.dtbd_oldest = 0;
16588 		desc.dtbd_timestamp = buf->dtb_switched;
16589 
16590 		mutex_exit(&dtrace_lock);
16591 
16592 		/*
16593 		 * Finally, copy out the buffer description.
16594 		 */
16595 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16596 			return (EFAULT);
16597 
16598 		return (0);
16599 	}
16600 
16601 	case DTRACEIOC_CONF: {
16602 		dtrace_conf_t conf;
16603 
16604 		bzero(&conf, sizeof (conf));
16605 		conf.dtc_difversion = DIF_VERSION;
16606 		conf.dtc_difintregs = DIF_DIR_NREGS;
16607 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16608 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16609 
16610 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16611 			return (EFAULT);
16612 
16613 		return (0);
16614 	}
16615 
16616 	case DTRACEIOC_STATUS: {
16617 		dtrace_status_t stat;
16618 		dtrace_dstate_t *dstate;
16619 		int i, j;
16620 		uint64_t nerrs;
16621 
16622 		/*
16623 		 * See the comment in dtrace_state_deadman() for the reason
16624 		 * for setting dts_laststatus to INT64_MAX before setting
16625 		 * it to the correct value.
16626 		 */
16627 		state->dts_laststatus = INT64_MAX;
16628 		dtrace_membar_producer();
16629 		state->dts_laststatus = dtrace_gethrtime();
16630 
16631 		bzero(&stat, sizeof (stat));
16632 
16633 		mutex_enter(&dtrace_lock);
16634 
16635 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16636 			mutex_exit(&dtrace_lock);
16637 			return (ENOENT);
16638 		}
16639 
16640 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16641 			stat.dtst_exiting = 1;
16642 
16643 		nerrs = state->dts_errors;
16644 		dstate = &state->dts_vstate.dtvs_dynvars;
16645 
16646 		for (i = 0; i < NCPU; i++) {
16647 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16648 
16649 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16650 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16651 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16652 
16653 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16654 				stat.dtst_filled++;
16655 
16656 			nerrs += state->dts_buffer[i].dtb_errors;
16657 
16658 			for (j = 0; j < state->dts_nspeculations; j++) {
16659 				dtrace_speculation_t *spec;
16660 				dtrace_buffer_t *buf;
16661 
16662 				spec = &state->dts_speculations[j];
16663 				buf = &spec->dtsp_buffer[i];
16664 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16665 			}
16666 		}
16667 
16668 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16669 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16670 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16671 		stat.dtst_dblerrors = state->dts_dblerrors;
16672 		stat.dtst_killed =
16673 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16674 		stat.dtst_errors = nerrs;
16675 
16676 		mutex_exit(&dtrace_lock);
16677 
16678 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16679 			return (EFAULT);
16680 
16681 		return (0);
16682 	}
16683 
16684 	case DTRACEIOC_FORMAT: {
16685 		dtrace_fmtdesc_t fmt;
16686 		char *str;
16687 		int len;
16688 
16689 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16690 			return (EFAULT);
16691 
16692 		mutex_enter(&dtrace_lock);
16693 
16694 		if (fmt.dtfd_format == 0 ||
16695 		    fmt.dtfd_format > state->dts_nformats) {
16696 			mutex_exit(&dtrace_lock);
16697 			return (EINVAL);
16698 		}
16699 
16700 		/*
16701 		 * Format strings are allocated contiguously and they are
16702 		 * never freed; if a format index is less than the number
16703 		 * of formats, we can assert that the format map is non-NULL
16704 		 * and that the format for the specified index is non-NULL.
16705 		 */
16706 		ASSERT(state->dts_formats != NULL);
16707 		str = state->dts_formats[fmt.dtfd_format - 1];
16708 		ASSERT(str != NULL);
16709 
16710 		len = strlen(str) + 1;
16711 
16712 		if (len > fmt.dtfd_length) {
16713 			fmt.dtfd_length = len;
16714 
16715 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16716 				mutex_exit(&dtrace_lock);
16717 				return (EINVAL);
16718 			}
16719 		} else {
16720 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16721 				mutex_exit(&dtrace_lock);
16722 				return (EINVAL);
16723 			}
16724 		}
16725 
16726 		mutex_exit(&dtrace_lock);
16727 		return (0);
16728 	}
16729 
16730 	default:
16731 		break;
16732 	}
16733 
16734 	return (ENOTTY);
16735 }
16736 
16737 /*ARGSUSED*/
16738 static int
16739 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16740 {
16741 	dtrace_state_t *state;
16742 
16743 	switch (cmd) {
16744 	case DDI_DETACH:
16745 		break;
16746 
16747 	case DDI_SUSPEND:
16748 		return (DDI_SUCCESS);
16749 
16750 	default:
16751 		return (DDI_FAILURE);
16752 	}
16753 
16754 	mutex_enter(&cpu_lock);
16755 	mutex_enter(&dtrace_provider_lock);
16756 	mutex_enter(&dtrace_lock);
16757 
16758 	ASSERT(dtrace_opens == 0);
16759 
16760 	if (dtrace_helpers > 0) {
16761 		mutex_exit(&dtrace_provider_lock);
16762 		mutex_exit(&dtrace_lock);
16763 		mutex_exit(&cpu_lock);
16764 		return (DDI_FAILURE);
16765 	}
16766 
16767 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16768 		mutex_exit(&dtrace_provider_lock);
16769 		mutex_exit(&dtrace_lock);
16770 		mutex_exit(&cpu_lock);
16771 		return (DDI_FAILURE);
16772 	}
16773 
16774 	dtrace_provider = NULL;
16775 
16776 	if ((state = dtrace_anon_grab()) != NULL) {
16777 		/*
16778 		 * If there were ECBs on this state, the provider should
16779 		 * have not been allowed to detach; assert that there is
16780 		 * none.
16781 		 */
16782 		ASSERT(state->dts_necbs == 0);
16783 		dtrace_state_destroy(state);
16784 
16785 		/*
16786 		 * If we're being detached with anonymous state, we need to
16787 		 * indicate to the kernel debugger that DTrace is now inactive.
16788 		 */
16789 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16790 	}
16791 
16792 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16793 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16794 	dtrace_cpu_init = NULL;
16795 	dtrace_helpers_cleanup = NULL;
16796 	dtrace_helpers_fork = NULL;
16797 	dtrace_cpustart_init = NULL;
16798 	dtrace_cpustart_fini = NULL;
16799 	dtrace_debugger_init = NULL;
16800 	dtrace_debugger_fini = NULL;
16801 	dtrace_modload = NULL;
16802 	dtrace_modunload = NULL;
16803 
16804 	mutex_exit(&cpu_lock);
16805 
16806 	if (dtrace_helptrace_enabled) {
16807 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16808 		dtrace_helptrace_buffer = NULL;
16809 	}
16810 
16811 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16812 	dtrace_probes = NULL;
16813 	dtrace_nprobes = 0;
16814 
16815 	dtrace_hash_destroy(dtrace_bymod);
16816 	dtrace_hash_destroy(dtrace_byfunc);
16817 	dtrace_hash_destroy(dtrace_byname);
16818 	dtrace_bymod = NULL;
16819 	dtrace_byfunc = NULL;
16820 	dtrace_byname = NULL;
16821 
16822 	kmem_cache_destroy(dtrace_state_cache);
16823 	vmem_destroy(dtrace_minor);
16824 	vmem_destroy(dtrace_arena);
16825 
16826 	if (dtrace_toxrange != NULL) {
16827 		kmem_free(dtrace_toxrange,
16828 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16829 		dtrace_toxrange = NULL;
16830 		dtrace_toxranges = 0;
16831 		dtrace_toxranges_max = 0;
16832 	}
16833 
16834 	ddi_remove_minor_node(dtrace_devi, NULL);
16835 	dtrace_devi = NULL;
16836 
16837 	ddi_soft_state_fini(&dtrace_softstate);
16838 
16839 	ASSERT(dtrace_vtime_references == 0);
16840 	ASSERT(dtrace_opens == 0);
16841 	ASSERT(dtrace_retained == NULL);
16842 
16843 	mutex_exit(&dtrace_lock);
16844 	mutex_exit(&dtrace_provider_lock);
16845 
16846 	/*
16847 	 * We don't destroy the task queue until after we have dropped our
16848 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16849 	 * attempting to do work after we have effectively detached but before
16850 	 * the task queue has been destroyed, all tasks dispatched via the
16851 	 * task queue must check that DTrace is still attached before
16852 	 * performing any operation.
16853 	 */
16854 	taskq_destroy(dtrace_taskq);
16855 	dtrace_taskq = NULL;
16856 
16857 	return (DDI_SUCCESS);
16858 }
16859 #endif
16860 
16861 #if defined(sun)
16862 /*ARGSUSED*/
16863 static int
16864 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16865 {
16866 	int error;
16867 
16868 	switch (infocmd) {
16869 	case DDI_INFO_DEVT2DEVINFO:
16870 		*result = (void *)dtrace_devi;
16871 		error = DDI_SUCCESS;
16872 		break;
16873 	case DDI_INFO_DEVT2INSTANCE:
16874 		*result = (void *)0;
16875 		error = DDI_SUCCESS;
16876 		break;
16877 	default:
16878 		error = DDI_FAILURE;
16879 	}
16880 	return (error);
16881 }
16882 #endif
16883 
16884 #if defined(sun)
16885 static struct cb_ops dtrace_cb_ops = {
16886 	dtrace_open,		/* open */
16887 	dtrace_close,		/* close */
16888 	nulldev,		/* strategy */
16889 	nulldev,		/* print */
16890 	nodev,			/* dump */
16891 	nodev,			/* read */
16892 	nodev,			/* write */
16893 	dtrace_ioctl,		/* ioctl */
16894 	nodev,			/* devmap */
16895 	nodev,			/* mmap */
16896 	nodev,			/* segmap */
16897 	nochpoll,		/* poll */
16898 	ddi_prop_op,		/* cb_prop_op */
16899 	0,			/* streamtab  */
16900 	D_NEW | D_MP		/* Driver compatibility flag */
16901 };
16902 
16903 static struct dev_ops dtrace_ops = {
16904 	DEVO_REV,		/* devo_rev */
16905 	0,			/* refcnt */
16906 	dtrace_info,		/* get_dev_info */
16907 	nulldev,		/* identify */
16908 	nulldev,		/* probe */
16909 	dtrace_attach,		/* attach */
16910 	dtrace_detach,		/* detach */
16911 	nodev,			/* reset */
16912 	&dtrace_cb_ops,		/* driver operations */
16913 	NULL,			/* bus operations */
16914 	nodev			/* dev power */
16915 };
16916 
16917 static struct modldrv modldrv = {
16918 	&mod_driverops,		/* module type (this is a pseudo driver) */
16919 	"Dynamic Tracing",	/* name of module */
16920 	&dtrace_ops,		/* driver ops */
16921 };
16922 
16923 static struct modlinkage modlinkage = {
16924 	MODREV_1,
16925 	(void *)&modldrv,
16926 	NULL
16927 };
16928 
16929 int
16930 _init(void)
16931 {
16932 	return (mod_install(&modlinkage));
16933 }
16934 
16935 int
16936 _info(struct modinfo *modinfop)
16937 {
16938 	return (mod_info(&modlinkage, modinfop));
16939 }
16940 
16941 int
16942 _fini(void)
16943 {
16944 	return (mod_remove(&modlinkage));
16945 }
16946 #else
16947 
16948 static d_ioctl_t	dtrace_ioctl;
16949 static d_ioctl_t	dtrace_ioctl_helper;
16950 static void		dtrace_load(void *);
16951 static int		dtrace_unload(void);
16952 #if __FreeBSD_version < 800039
16953 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16954 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16955 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16956 #else
16957 static struct cdev	*dtrace_dev;
16958 static struct cdev	*helper_dev;
16959 #endif
16960 
16961 void dtrace_invop_init(void);
16962 void dtrace_invop_uninit(void);
16963 
16964 static struct cdevsw dtrace_cdevsw = {
16965 	.d_version	= D_VERSION,
16966 #if __FreeBSD_version < 800039
16967 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16968 	.d_close	= dtrace_close,
16969 #endif
16970 	.d_ioctl	= dtrace_ioctl,
16971 	.d_open		= dtrace_open,
16972 	.d_name		= "dtrace",
16973 };
16974 
16975 static struct cdevsw helper_cdevsw = {
16976 	.d_version	= D_VERSION,
16977 	.d_ioctl	= dtrace_ioctl_helper,
16978 	.d_name		= "helper",
16979 };
16980 
16981 #include <dtrace_anon.c>
16982 #if __FreeBSD_version < 800039
16983 #include <dtrace_clone.c>
16984 #endif
16985 #include <dtrace_ioctl.c>
16986 #include <dtrace_load.c>
16987 #include <dtrace_modevent.c>
16988 #include <dtrace_sysctl.c>
16989 #include <dtrace_unload.c>
16990 #include <dtrace_vtime.c>
16991 #include <dtrace_hacks.c>
16992 #include <dtrace_isa.c>
16993 
16994 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16995 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16996 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16997 
16998 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16999 MODULE_VERSION(dtrace, 1);
17000 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
17001 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
17002 #endif
17003