1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 __compiler_membar(); \ 553 *flags |= CPU_DTRACE_NOFAULT; \ 554 /*CSTYLED*/ \ 555 rval = *((volatile uint##bits##_t *)addr); \ 556 *flags &= ~CPU_DTRACE_NOFAULT; \ 557 __compiler_membar(); \ 558 \ 559 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 560 } 561 562 #ifdef _LP64 563 #define dtrace_loadptr dtrace_load64 564 #else 565 #define dtrace_loadptr dtrace_load32 566 #endif 567 568 #define DTRACE_DYNHASH_FREE 0 569 #define DTRACE_DYNHASH_SINK 1 570 #define DTRACE_DYNHASH_VALID 2 571 572 #define DTRACE_MATCH_NEXT 0 573 #define DTRACE_MATCH_DONE 1 574 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 575 #define DTRACE_STATE_ALIGN 64 576 577 #define DTRACE_FLAGS2FLT(flags) \ 578 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 579 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 580 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 581 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 582 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 583 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 584 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 585 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 586 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 587 DTRACEFLT_UNKNOWN) 588 589 #define DTRACEACT_ISSTRING(act) \ 590 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 591 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 592 593 /* Function prototype definitions: */ 594 static size_t dtrace_strlen(const char *, size_t); 595 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 596 static void dtrace_enabling_provide(dtrace_provider_t *); 597 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 598 static void dtrace_enabling_matchall(void); 599 static void dtrace_enabling_matchall_task(void *); 600 static void dtrace_enabling_reap(void *); 601 static dtrace_state_t *dtrace_anon_grab(void); 602 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 603 dtrace_state_t *, uint64_t, uint64_t); 604 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 605 static void dtrace_buffer_drop(dtrace_buffer_t *); 606 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 607 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 608 dtrace_state_t *, dtrace_mstate_t *); 609 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 610 dtrace_optval_t); 611 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 612 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 613 uint16_t dtrace_load16(uintptr_t); 614 uint32_t dtrace_load32(uintptr_t); 615 uint64_t dtrace_load64(uintptr_t); 616 uint8_t dtrace_load8(uintptr_t); 617 void dtrace_dynvar_clean(dtrace_dstate_t *); 618 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 619 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 620 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 621 static int dtrace_priv_proc(dtrace_state_t *); 622 static void dtrace_getf_barrier(void); 623 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 624 dtrace_mstate_t *, dtrace_vstate_t *); 625 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 626 dtrace_mstate_t *, dtrace_vstate_t *); 627 628 /* 629 * DTrace Probe Context Functions 630 * 631 * These functions are called from probe context. Because probe context is 632 * any context in which C may be called, arbitrarily locks may be held, 633 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 634 * As a result, functions called from probe context may only call other DTrace 635 * support functions -- they may not interact at all with the system at large. 636 * (Note that the ASSERT macro is made probe-context safe by redefining it in 637 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 638 * loads are to be performed from probe context, they _must_ be in terms of 639 * the safe dtrace_load*() variants. 640 * 641 * Some functions in this block are not actually called from probe context; 642 * for these functions, there will be a comment above the function reading 643 * "Note: not called from probe context." 644 */ 645 void 646 dtrace_panic(const char *format, ...) 647 { 648 va_list alist; 649 650 va_start(alist, format); 651 #ifdef __FreeBSD__ 652 vpanic(format, alist); 653 #else 654 dtrace_vpanic(format, alist); 655 #endif 656 va_end(alist); 657 } 658 659 int 660 dtrace_assfail(const char *a, const char *f, int l) 661 { 662 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 663 664 /* 665 * We just need something here that even the most clever compiler 666 * cannot optimize away. 667 */ 668 return (a[(uintptr_t)f]); 669 } 670 671 /* 672 * Atomically increment a specified error counter from probe context. 673 */ 674 static void 675 dtrace_error(uint32_t *counter) 676 { 677 /* 678 * Most counters stored to in probe context are per-CPU counters. 679 * However, there are some error conditions that are sufficiently 680 * arcane that they don't merit per-CPU storage. If these counters 681 * are incremented concurrently on different CPUs, scalability will be 682 * adversely affected -- but we don't expect them to be white-hot in a 683 * correctly constructed enabling... 684 */ 685 uint32_t oval, nval; 686 687 do { 688 oval = *counter; 689 690 if ((nval = oval + 1) == 0) { 691 /* 692 * If the counter would wrap, set it to 1 -- assuring 693 * that the counter is never zero when we have seen 694 * errors. (The counter must be 32-bits because we 695 * aren't guaranteed a 64-bit compare&swap operation.) 696 * To save this code both the infamy of being fingered 697 * by a priggish news story and the indignity of being 698 * the target of a neo-puritan witch trial, we're 699 * carefully avoiding any colorful description of the 700 * likelihood of this condition -- but suffice it to 701 * say that it is only slightly more likely than the 702 * overflow of predicate cache IDs, as discussed in 703 * dtrace_predicate_create(). 704 */ 705 nval = 1; 706 } 707 } while (dtrace_cas32(counter, oval, nval) != oval); 708 } 709 710 /* 711 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 712 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 713 */ 714 /* BEGIN CSTYLED */ 715 DTRACE_LOADFUNC(8) 716 DTRACE_LOADFUNC(16) 717 DTRACE_LOADFUNC(32) 718 DTRACE_LOADFUNC(64) 719 /* END CSTYLED */ 720 721 static int 722 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 723 { 724 if (dest < mstate->dtms_scratch_base) 725 return (0); 726 727 if (dest + size < dest) 728 return (0); 729 730 if (dest + size > mstate->dtms_scratch_ptr) 731 return (0); 732 733 return (1); 734 } 735 736 static int 737 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 738 dtrace_statvar_t **svars, int nsvars) 739 { 740 int i; 741 size_t maxglobalsize, maxlocalsize; 742 743 if (nsvars == 0) 744 return (0); 745 746 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 747 maxlocalsize = maxglobalsize * (mp_maxid + 1); 748 749 for (i = 0; i < nsvars; i++) { 750 dtrace_statvar_t *svar = svars[i]; 751 uint8_t scope; 752 size_t size; 753 754 if (svar == NULL || (size = svar->dtsv_size) == 0) 755 continue; 756 757 scope = svar->dtsv_var.dtdv_scope; 758 759 /* 760 * We verify that our size is valid in the spirit of providing 761 * defense in depth: we want to prevent attackers from using 762 * DTrace to escalate an orthogonal kernel heap corruption bug 763 * into the ability to store to arbitrary locations in memory. 764 */ 765 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 766 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 767 768 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 769 svar->dtsv_size)) { 770 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 771 svar->dtsv_size); 772 return (1); 773 } 774 } 775 776 return (0); 777 } 778 779 /* 780 * Check to see if the address is within a memory region to which a store may 781 * be issued. This includes the DTrace scratch areas, and any DTrace variable 782 * region. The caller of dtrace_canstore() is responsible for performing any 783 * alignment checks that are needed before stores are actually executed. 784 */ 785 static int 786 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 787 dtrace_vstate_t *vstate) 788 { 789 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 790 } 791 792 /* 793 * Implementation of dtrace_canstore which communicates the upper bound of the 794 * allowed memory region. 795 */ 796 static int 797 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 798 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 799 { 800 /* 801 * First, check to see if the address is in scratch space... 802 */ 803 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 804 mstate->dtms_scratch_size)) { 805 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 806 mstate->dtms_scratch_size); 807 return (1); 808 } 809 810 /* 811 * Now check to see if it's a dynamic variable. This check will pick 812 * up both thread-local variables and any global dynamically-allocated 813 * variables. 814 */ 815 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 816 vstate->dtvs_dynvars.dtds_size)) { 817 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 818 uintptr_t base = (uintptr_t)dstate->dtds_base + 819 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 820 uintptr_t chunkoffs; 821 dtrace_dynvar_t *dvar; 822 823 /* 824 * Before we assume that we can store here, we need to make 825 * sure that it isn't in our metadata -- storing to our 826 * dynamic variable metadata would corrupt our state. For 827 * the range to not include any dynamic variable metadata, 828 * it must: 829 * 830 * (1) Start above the hash table that is at the base of 831 * the dynamic variable space 832 * 833 * (2) Have a starting chunk offset that is beyond the 834 * dtrace_dynvar_t that is at the base of every chunk 835 * 836 * (3) Not span a chunk boundary 837 * 838 * (4) Not be in the tuple space of a dynamic variable 839 * 840 */ 841 if (addr < base) 842 return (0); 843 844 chunkoffs = (addr - base) % dstate->dtds_chunksize; 845 846 if (chunkoffs < sizeof (dtrace_dynvar_t)) 847 return (0); 848 849 if (chunkoffs + sz > dstate->dtds_chunksize) 850 return (0); 851 852 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 853 854 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 855 return (0); 856 857 if (chunkoffs < sizeof (dtrace_dynvar_t) + 858 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 859 return (0); 860 861 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 862 return (1); 863 } 864 865 /* 866 * Finally, check the static local and global variables. These checks 867 * take the longest, so we perform them last. 868 */ 869 if (dtrace_canstore_statvar(addr, sz, remain, 870 vstate->dtvs_locals, vstate->dtvs_nlocals)) 871 return (1); 872 873 if (dtrace_canstore_statvar(addr, sz, remain, 874 vstate->dtvs_globals, vstate->dtvs_nglobals)) 875 return (1); 876 877 return (0); 878 } 879 880 881 /* 882 * Convenience routine to check to see if the address is within a memory 883 * region in which a load may be issued given the user's privilege level; 884 * if not, it sets the appropriate error flags and loads 'addr' into the 885 * illegal value slot. 886 * 887 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 888 * appropriate memory access protection. 889 */ 890 static int 891 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 892 dtrace_vstate_t *vstate) 893 { 894 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 895 } 896 897 /* 898 * Implementation of dtrace_canload which communicates the uppoer bound of the 899 * allowed memory region. 900 */ 901 static int 902 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 903 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 904 { 905 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 906 file_t *fp; 907 908 /* 909 * If we hold the privilege to read from kernel memory, then 910 * everything is readable. 911 */ 912 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 913 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 914 return (1); 915 } 916 917 /* 918 * You can obviously read that which you can store. 919 */ 920 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 921 return (1); 922 923 /* 924 * We're allowed to read from our own string table. 925 */ 926 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 927 mstate->dtms_difo->dtdo_strlen)) { 928 DTRACE_RANGE_REMAIN(remain, addr, 929 mstate->dtms_difo->dtdo_strtab, 930 mstate->dtms_difo->dtdo_strlen); 931 return (1); 932 } 933 934 if (vstate->dtvs_state != NULL && 935 dtrace_priv_proc(vstate->dtvs_state)) { 936 proc_t *p; 937 938 /* 939 * When we have privileges to the current process, there are 940 * several context-related kernel structures that are safe to 941 * read, even absent the privilege to read from kernel memory. 942 * These reads are safe because these structures contain only 943 * state that (1) we're permitted to read, (2) is harmless or 944 * (3) contains pointers to additional kernel state that we're 945 * not permitted to read (and as such, do not present an 946 * opportunity for privilege escalation). Finally (and 947 * critically), because of the nature of their relation with 948 * the current thread context, the memory associated with these 949 * structures cannot change over the duration of probe context, 950 * and it is therefore impossible for this memory to be 951 * deallocated and reallocated as something else while it's 952 * being operated upon. 953 */ 954 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 955 DTRACE_RANGE_REMAIN(remain, addr, curthread, 956 sizeof (kthread_t)); 957 return (1); 958 } 959 960 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 961 sz, curthread->t_procp, sizeof (proc_t))) { 962 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 963 sizeof (proc_t)); 964 return (1); 965 } 966 967 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 968 curthread->t_cred, sizeof (cred_t))) { 969 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 970 sizeof (cred_t)); 971 return (1); 972 } 973 974 #ifdef illumos 975 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 976 &(p->p_pidp->pid_id), sizeof (pid_t))) { 977 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 978 sizeof (pid_t)); 979 return (1); 980 } 981 982 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 983 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 984 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 985 offsetof(cpu_t, cpu_pause_thread)); 986 return (1); 987 } 988 #endif 989 } 990 991 if ((fp = mstate->dtms_getf) != NULL) { 992 uintptr_t psz = sizeof (void *); 993 vnode_t *vp; 994 vnodeops_t *op; 995 996 /* 997 * When getf() returns a file_t, the enabling is implicitly 998 * granted the (transient) right to read the returned file_t 999 * as well as the v_path and v_op->vnop_name of the underlying 1000 * vnode. These accesses are allowed after a successful 1001 * getf() because the members that they refer to cannot change 1002 * once set -- and the barrier logic in the kernel's closef() 1003 * path assures that the file_t and its referenced vode_t 1004 * cannot themselves be stale (that is, it impossible for 1005 * either dtms_getf itself or its f_vnode member to reference 1006 * freed memory). 1007 */ 1008 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1009 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1010 return (1); 1011 } 1012 1013 if ((vp = fp->f_vnode) != NULL) { 1014 size_t slen; 1015 #ifdef illumos 1016 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1017 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1018 psz); 1019 return (1); 1020 } 1021 slen = strlen(vp->v_path) + 1; 1022 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1023 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1024 slen); 1025 return (1); 1026 } 1027 #endif 1028 1029 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1030 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1031 psz); 1032 return (1); 1033 } 1034 1035 #ifdef illumos 1036 if ((op = vp->v_op) != NULL && 1037 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1038 DTRACE_RANGE_REMAIN(remain, addr, 1039 &op->vnop_name, psz); 1040 return (1); 1041 } 1042 1043 if (op != NULL && op->vnop_name != NULL && 1044 DTRACE_INRANGE(addr, sz, op->vnop_name, 1045 (slen = strlen(op->vnop_name) + 1))) { 1046 DTRACE_RANGE_REMAIN(remain, addr, 1047 op->vnop_name, slen); 1048 return (1); 1049 } 1050 #endif 1051 } 1052 } 1053 1054 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1055 *illval = addr; 1056 return (0); 1057 } 1058 1059 /* 1060 * Convenience routine to check to see if a given string is within a memory 1061 * region in which a load may be issued given the user's privilege level; 1062 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1063 * calls in the event that the user has all privileges. 1064 */ 1065 static int 1066 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1067 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1068 { 1069 size_t rsize; 1070 1071 /* 1072 * If we hold the privilege to read from kernel memory, then 1073 * everything is readable. 1074 */ 1075 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1076 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1077 return (1); 1078 } 1079 1080 /* 1081 * Even if the caller is uninterested in querying the remaining valid 1082 * range, it is required to ensure that the access is allowed. 1083 */ 1084 if (remain == NULL) { 1085 remain = &rsize; 1086 } 1087 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1088 size_t strsz; 1089 /* 1090 * Perform the strlen after determining the length of the 1091 * memory region which is accessible. This prevents timing 1092 * information from being used to find NULs in memory which is 1093 * not accessible to the caller. 1094 */ 1095 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1096 MIN(sz, *remain)); 1097 if (strsz <= *remain) { 1098 return (1); 1099 } 1100 } 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Convenience routine to check to see if a given variable is within a memory 1107 * region in which a load may be issued given the user's privilege level. 1108 */ 1109 static int 1110 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1111 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1112 { 1113 size_t sz; 1114 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1115 1116 /* 1117 * Calculate the max size before performing any checks since even 1118 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1119 * return the max length via 'remain'. 1120 */ 1121 if (type->dtdt_kind == DIF_TYPE_STRING) { 1122 dtrace_state_t *state = vstate->dtvs_state; 1123 1124 if (state != NULL) { 1125 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1126 } else { 1127 /* 1128 * In helper context, we have a NULL state; fall back 1129 * to using the system-wide default for the string size 1130 * in this case. 1131 */ 1132 sz = dtrace_strsize_default; 1133 } 1134 } else { 1135 sz = type->dtdt_size; 1136 } 1137 1138 /* 1139 * If we hold the privilege to read from kernel memory, then 1140 * everything is readable. 1141 */ 1142 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1143 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1144 return (1); 1145 } 1146 1147 if (type->dtdt_kind == DIF_TYPE_STRING) { 1148 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1149 vstate)); 1150 } 1151 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1152 vstate)); 1153 } 1154 1155 /* 1156 * Convert a string to a signed integer using safe loads. 1157 * 1158 * NOTE: This function uses various macros from strtolctype.h to manipulate 1159 * digit values, etc -- these have all been checked to ensure they make 1160 * no additional function calls. 1161 */ 1162 static int64_t 1163 dtrace_strtoll(char *input, int base, size_t limit) 1164 { 1165 uintptr_t pos = (uintptr_t)input; 1166 int64_t val = 0; 1167 int x; 1168 boolean_t neg = B_FALSE; 1169 char c, cc, ccc; 1170 uintptr_t end = pos + limit; 1171 1172 /* 1173 * Consume any whitespace preceding digits. 1174 */ 1175 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1176 pos++; 1177 1178 /* 1179 * Handle an explicit sign if one is present. 1180 */ 1181 if (c == '-' || c == '+') { 1182 if (c == '-') 1183 neg = B_TRUE; 1184 c = dtrace_load8(++pos); 1185 } 1186 1187 /* 1188 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1189 * if present. 1190 */ 1191 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1192 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1193 pos += 2; 1194 c = ccc; 1195 } 1196 1197 /* 1198 * Read in contiguous digits until the first non-digit character. 1199 */ 1200 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1201 c = dtrace_load8(++pos)) 1202 val = val * base + x; 1203 1204 return (neg ? -val : val); 1205 } 1206 1207 /* 1208 * Compare two strings using safe loads. 1209 */ 1210 static int 1211 dtrace_strncmp(char *s1, char *s2, size_t limit) 1212 { 1213 uint8_t c1, c2; 1214 volatile uint16_t *flags; 1215 1216 if (s1 == s2 || limit == 0) 1217 return (0); 1218 1219 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1220 1221 do { 1222 if (s1 == NULL) { 1223 c1 = '\0'; 1224 } else { 1225 c1 = dtrace_load8((uintptr_t)s1++); 1226 } 1227 1228 if (s2 == NULL) { 1229 c2 = '\0'; 1230 } else { 1231 c2 = dtrace_load8((uintptr_t)s2++); 1232 } 1233 1234 if (c1 != c2) 1235 return (c1 - c2); 1236 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1237 1238 return (0); 1239 } 1240 1241 /* 1242 * Compute strlen(s) for a string using safe memory accesses. The additional 1243 * len parameter is used to specify a maximum length to ensure completion. 1244 */ 1245 static size_t 1246 dtrace_strlen(const char *s, size_t lim) 1247 { 1248 uint_t len; 1249 1250 for (len = 0; len != lim; len++) { 1251 if (dtrace_load8((uintptr_t)s++) == '\0') 1252 break; 1253 } 1254 1255 return (len); 1256 } 1257 1258 /* 1259 * Check if an address falls within a toxic region. 1260 */ 1261 static int 1262 dtrace_istoxic(uintptr_t kaddr, size_t size) 1263 { 1264 uintptr_t taddr, tsize; 1265 int i; 1266 1267 for (i = 0; i < dtrace_toxranges; i++) { 1268 taddr = dtrace_toxrange[i].dtt_base; 1269 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1270 1271 if (kaddr - taddr < tsize) { 1272 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1273 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1274 return (1); 1275 } 1276 1277 if (taddr - kaddr < size) { 1278 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1279 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1280 return (1); 1281 } 1282 } 1283 1284 return (0); 1285 } 1286 1287 /* 1288 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1289 * memory specified by the DIF program. The dst is assumed to be safe memory 1290 * that we can store to directly because it is managed by DTrace. As with 1291 * standard bcopy, overlapping copies are handled properly. 1292 */ 1293 static void 1294 dtrace_bcopy(const void *src, void *dst, size_t len) 1295 { 1296 if (len != 0) { 1297 uint8_t *s1 = dst; 1298 const uint8_t *s2 = src; 1299 1300 if (s1 <= s2) { 1301 do { 1302 *s1++ = dtrace_load8((uintptr_t)s2++); 1303 } while (--len != 0); 1304 } else { 1305 s2 += len; 1306 s1 += len; 1307 1308 do { 1309 *--s1 = dtrace_load8((uintptr_t)--s2); 1310 } while (--len != 0); 1311 } 1312 } 1313 } 1314 1315 /* 1316 * Copy src to dst using safe memory accesses, up to either the specified 1317 * length, or the point that a nul byte is encountered. The src is assumed to 1318 * be unsafe memory specified by the DIF program. The dst is assumed to be 1319 * safe memory that we can store to directly because it is managed by DTrace. 1320 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1321 */ 1322 static void 1323 dtrace_strcpy(const void *src, void *dst, size_t len) 1324 { 1325 if (len != 0) { 1326 uint8_t *s1 = dst, c; 1327 const uint8_t *s2 = src; 1328 1329 do { 1330 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1331 } while (--len != 0 && c != '\0'); 1332 } 1333 } 1334 1335 /* 1336 * Copy src to dst, deriving the size and type from the specified (BYREF) 1337 * variable type. The src is assumed to be unsafe memory specified by the DIF 1338 * program. The dst is assumed to be DTrace variable memory that is of the 1339 * specified type; we assume that we can store to directly. 1340 */ 1341 static void 1342 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1343 { 1344 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1345 1346 if (type->dtdt_kind == DIF_TYPE_STRING) { 1347 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1348 } else { 1349 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1350 } 1351 } 1352 1353 /* 1354 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1355 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1356 * safe memory that we can access directly because it is managed by DTrace. 1357 */ 1358 static int 1359 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1360 { 1361 volatile uint16_t *flags; 1362 1363 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1364 1365 if (s1 == s2) 1366 return (0); 1367 1368 if (s1 == NULL || s2 == NULL) 1369 return (1); 1370 1371 if (s1 != s2 && len != 0) { 1372 const uint8_t *ps1 = s1; 1373 const uint8_t *ps2 = s2; 1374 1375 do { 1376 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1377 return (1); 1378 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1379 } 1380 return (0); 1381 } 1382 1383 /* 1384 * Zero the specified region using a simple byte-by-byte loop. Note that this 1385 * is for safe DTrace-managed memory only. 1386 */ 1387 static void 1388 dtrace_bzero(void *dst, size_t len) 1389 { 1390 uchar_t *cp; 1391 1392 for (cp = dst; len != 0; len--) 1393 *cp++ = 0; 1394 } 1395 1396 static void 1397 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1398 { 1399 uint64_t result[2]; 1400 1401 result[0] = addend1[0] + addend2[0]; 1402 result[1] = addend1[1] + addend2[1] + 1403 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1404 1405 sum[0] = result[0]; 1406 sum[1] = result[1]; 1407 } 1408 1409 /* 1410 * Shift the 128-bit value in a by b. If b is positive, shift left. 1411 * If b is negative, shift right. 1412 */ 1413 static void 1414 dtrace_shift_128(uint64_t *a, int b) 1415 { 1416 uint64_t mask; 1417 1418 if (b == 0) 1419 return; 1420 1421 if (b < 0) { 1422 b = -b; 1423 if (b >= 64) { 1424 a[0] = a[1] >> (b - 64); 1425 a[1] = 0; 1426 } else { 1427 a[0] >>= b; 1428 mask = 1LL << (64 - b); 1429 mask -= 1; 1430 a[0] |= ((a[1] & mask) << (64 - b)); 1431 a[1] >>= b; 1432 } 1433 } else { 1434 if (b >= 64) { 1435 a[1] = a[0] << (b - 64); 1436 a[0] = 0; 1437 } else { 1438 a[1] <<= b; 1439 mask = a[0] >> (64 - b); 1440 a[1] |= mask; 1441 a[0] <<= b; 1442 } 1443 } 1444 } 1445 1446 /* 1447 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1448 * use native multiplication on those, and then re-combine into the 1449 * resulting 128-bit value. 1450 * 1451 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1452 * hi1 * hi2 << 64 + 1453 * hi1 * lo2 << 32 + 1454 * hi2 * lo1 << 32 + 1455 * lo1 * lo2 1456 */ 1457 static void 1458 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1459 { 1460 uint64_t hi1, hi2, lo1, lo2; 1461 uint64_t tmp[2]; 1462 1463 hi1 = factor1 >> 32; 1464 hi2 = factor2 >> 32; 1465 1466 lo1 = factor1 & DT_MASK_LO; 1467 lo2 = factor2 & DT_MASK_LO; 1468 1469 product[0] = lo1 * lo2; 1470 product[1] = hi1 * hi2; 1471 1472 tmp[0] = hi1 * lo2; 1473 tmp[1] = 0; 1474 dtrace_shift_128(tmp, 32); 1475 dtrace_add_128(product, tmp, product); 1476 1477 tmp[0] = hi2 * lo1; 1478 tmp[1] = 0; 1479 dtrace_shift_128(tmp, 32); 1480 dtrace_add_128(product, tmp, product); 1481 } 1482 1483 /* 1484 * This privilege check should be used by actions and subroutines to 1485 * verify that the user credentials of the process that enabled the 1486 * invoking ECB match the target credentials 1487 */ 1488 static int 1489 dtrace_priv_proc_common_user(dtrace_state_t *state) 1490 { 1491 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1492 1493 /* 1494 * We should always have a non-NULL state cred here, since if cred 1495 * is null (anonymous tracing), we fast-path bypass this routine. 1496 */ 1497 ASSERT(s_cr != NULL); 1498 1499 if ((cr = CRED()) != NULL && 1500 s_cr->cr_uid == cr->cr_uid && 1501 s_cr->cr_uid == cr->cr_ruid && 1502 s_cr->cr_uid == cr->cr_suid && 1503 s_cr->cr_gid == cr->cr_gid && 1504 s_cr->cr_gid == cr->cr_rgid && 1505 s_cr->cr_gid == cr->cr_sgid) 1506 return (1); 1507 1508 return (0); 1509 } 1510 1511 /* 1512 * This privilege check should be used by actions and subroutines to 1513 * verify that the zone of the process that enabled the invoking ECB 1514 * matches the target credentials 1515 */ 1516 static int 1517 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1518 { 1519 #ifdef illumos 1520 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1521 1522 /* 1523 * We should always have a non-NULL state cred here, since if cred 1524 * is null (anonymous tracing), we fast-path bypass this routine. 1525 */ 1526 ASSERT(s_cr != NULL); 1527 1528 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1529 return (1); 1530 1531 return (0); 1532 #else 1533 return (1); 1534 #endif 1535 } 1536 1537 /* 1538 * This privilege check should be used by actions and subroutines to 1539 * verify that the process has not setuid or changed credentials. 1540 */ 1541 static int 1542 dtrace_priv_proc_common_nocd(void) 1543 { 1544 proc_t *proc; 1545 1546 if ((proc = ttoproc(curthread)) != NULL && 1547 !(proc->p_flag & SNOCD)) 1548 return (1); 1549 1550 return (0); 1551 } 1552 1553 static int 1554 dtrace_priv_proc_destructive(dtrace_state_t *state) 1555 { 1556 int action = state->dts_cred.dcr_action; 1557 1558 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1559 dtrace_priv_proc_common_zone(state) == 0) 1560 goto bad; 1561 1562 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1563 dtrace_priv_proc_common_user(state) == 0) 1564 goto bad; 1565 1566 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1567 dtrace_priv_proc_common_nocd() == 0) 1568 goto bad; 1569 1570 return (1); 1571 1572 bad: 1573 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1574 1575 return (0); 1576 } 1577 1578 static int 1579 dtrace_priv_proc_control(dtrace_state_t *state) 1580 { 1581 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1582 return (1); 1583 1584 if (dtrace_priv_proc_common_zone(state) && 1585 dtrace_priv_proc_common_user(state) && 1586 dtrace_priv_proc_common_nocd()) 1587 return (1); 1588 1589 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1590 1591 return (0); 1592 } 1593 1594 static int 1595 dtrace_priv_proc(dtrace_state_t *state) 1596 { 1597 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1598 return (1); 1599 1600 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1601 1602 return (0); 1603 } 1604 1605 static int 1606 dtrace_priv_kernel(dtrace_state_t *state) 1607 { 1608 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1609 return (1); 1610 1611 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1612 1613 return (0); 1614 } 1615 1616 static int 1617 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1618 { 1619 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1620 return (1); 1621 1622 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1623 1624 return (0); 1625 } 1626 1627 /* 1628 * Determine if the dte_cond of the specified ECB allows for processing of 1629 * the current probe to continue. Note that this routine may allow continued 1630 * processing, but with access(es) stripped from the mstate's dtms_access 1631 * field. 1632 */ 1633 static int 1634 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1635 dtrace_ecb_t *ecb) 1636 { 1637 dtrace_probe_t *probe = ecb->dte_probe; 1638 dtrace_provider_t *prov = probe->dtpr_provider; 1639 dtrace_pops_t *pops = &prov->dtpv_pops; 1640 int mode = DTRACE_MODE_NOPRIV_DROP; 1641 1642 ASSERT(ecb->dte_cond); 1643 1644 #ifdef illumos 1645 if (pops->dtps_mode != NULL) { 1646 mode = pops->dtps_mode(prov->dtpv_arg, 1647 probe->dtpr_id, probe->dtpr_arg); 1648 1649 ASSERT((mode & DTRACE_MODE_USER) || 1650 (mode & DTRACE_MODE_KERNEL)); 1651 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1652 (mode & DTRACE_MODE_NOPRIV_DROP)); 1653 } 1654 1655 /* 1656 * If the dte_cond bits indicate that this consumer is only allowed to 1657 * see user-mode firings of this probe, call the provider's dtps_mode() 1658 * entry point to check that the probe was fired while in a user 1659 * context. If that's not the case, use the policy specified by the 1660 * provider to determine if we drop the probe or merely restrict 1661 * operation. 1662 */ 1663 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1664 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1665 1666 if (!(mode & DTRACE_MODE_USER)) { 1667 if (mode & DTRACE_MODE_NOPRIV_DROP) 1668 return (0); 1669 1670 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1671 } 1672 } 1673 #endif 1674 1675 /* 1676 * This is more subtle than it looks. We have to be absolutely certain 1677 * that CRED() isn't going to change out from under us so it's only 1678 * legit to examine that structure if we're in constrained situations. 1679 * Currently, the only times we'll this check is if a non-super-user 1680 * has enabled the profile or syscall providers -- providers that 1681 * allow visibility of all processes. For the profile case, the check 1682 * above will ensure that we're examining a user context. 1683 */ 1684 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1685 cred_t *cr; 1686 cred_t *s_cr = state->dts_cred.dcr_cred; 1687 proc_t *proc; 1688 1689 ASSERT(s_cr != NULL); 1690 1691 if ((cr = CRED()) == NULL || 1692 s_cr->cr_uid != cr->cr_uid || 1693 s_cr->cr_uid != cr->cr_ruid || 1694 s_cr->cr_uid != cr->cr_suid || 1695 s_cr->cr_gid != cr->cr_gid || 1696 s_cr->cr_gid != cr->cr_rgid || 1697 s_cr->cr_gid != cr->cr_sgid || 1698 (proc = ttoproc(curthread)) == NULL || 1699 (proc->p_flag & SNOCD)) { 1700 if (mode & DTRACE_MODE_NOPRIV_DROP) 1701 return (0); 1702 1703 #ifdef illumos 1704 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1705 #endif 1706 } 1707 } 1708 1709 #ifdef illumos 1710 /* 1711 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1712 * in our zone, check to see if our mode policy is to restrict rather 1713 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1714 * and DTRACE_ACCESS_ARGS 1715 */ 1716 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1717 cred_t *cr; 1718 cred_t *s_cr = state->dts_cred.dcr_cred; 1719 1720 ASSERT(s_cr != NULL); 1721 1722 if ((cr = CRED()) == NULL || 1723 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1724 if (mode & DTRACE_MODE_NOPRIV_DROP) 1725 return (0); 1726 1727 mstate->dtms_access &= 1728 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1729 } 1730 } 1731 #endif 1732 1733 return (1); 1734 } 1735 1736 /* 1737 * Note: not called from probe context. This function is called 1738 * asynchronously (and at a regular interval) from outside of probe context to 1739 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1740 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1741 */ 1742 void 1743 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1744 { 1745 dtrace_dynvar_t *dirty; 1746 dtrace_dstate_percpu_t *dcpu; 1747 dtrace_dynvar_t **rinsep; 1748 int i, j, work = 0; 1749 1750 CPU_FOREACH(i) { 1751 dcpu = &dstate->dtds_percpu[i]; 1752 rinsep = &dcpu->dtdsc_rinsing; 1753 1754 /* 1755 * If the dirty list is NULL, there is no dirty work to do. 1756 */ 1757 if (dcpu->dtdsc_dirty == NULL) 1758 continue; 1759 1760 if (dcpu->dtdsc_rinsing != NULL) { 1761 /* 1762 * If the rinsing list is non-NULL, then it is because 1763 * this CPU was selected to accept another CPU's 1764 * dirty list -- and since that time, dirty buffers 1765 * have accumulated. This is a highly unlikely 1766 * condition, but we choose to ignore the dirty 1767 * buffers -- they'll be picked up a future cleanse. 1768 */ 1769 continue; 1770 } 1771 1772 if (dcpu->dtdsc_clean != NULL) { 1773 /* 1774 * If the clean list is non-NULL, then we're in a 1775 * situation where a CPU has done deallocations (we 1776 * have a non-NULL dirty list) but no allocations (we 1777 * also have a non-NULL clean list). We can't simply 1778 * move the dirty list into the clean list on this 1779 * CPU, yet we also don't want to allow this condition 1780 * to persist, lest a short clean list prevent a 1781 * massive dirty list from being cleaned (which in 1782 * turn could lead to otherwise avoidable dynamic 1783 * drops). To deal with this, we look for some CPU 1784 * with a NULL clean list, NULL dirty list, and NULL 1785 * rinsing list -- and then we borrow this CPU to 1786 * rinse our dirty list. 1787 */ 1788 CPU_FOREACH(j) { 1789 dtrace_dstate_percpu_t *rinser; 1790 1791 rinser = &dstate->dtds_percpu[j]; 1792 1793 if (rinser->dtdsc_rinsing != NULL) 1794 continue; 1795 1796 if (rinser->dtdsc_dirty != NULL) 1797 continue; 1798 1799 if (rinser->dtdsc_clean != NULL) 1800 continue; 1801 1802 rinsep = &rinser->dtdsc_rinsing; 1803 break; 1804 } 1805 1806 if (j > mp_maxid) { 1807 /* 1808 * We were unable to find another CPU that 1809 * could accept this dirty list -- we are 1810 * therefore unable to clean it now. 1811 */ 1812 dtrace_dynvar_failclean++; 1813 continue; 1814 } 1815 } 1816 1817 work = 1; 1818 1819 /* 1820 * Atomically move the dirty list aside. 1821 */ 1822 do { 1823 dirty = dcpu->dtdsc_dirty; 1824 1825 /* 1826 * Before we zap the dirty list, set the rinsing list. 1827 * (This allows for a potential assertion in 1828 * dtrace_dynvar(): if a free dynamic variable appears 1829 * on a hash chain, either the dirty list or the 1830 * rinsing list for some CPU must be non-NULL.) 1831 */ 1832 *rinsep = dirty; 1833 dtrace_membar_producer(); 1834 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1835 dirty, NULL) != dirty); 1836 } 1837 1838 if (!work) { 1839 /* 1840 * We have no work to do; we can simply return. 1841 */ 1842 return; 1843 } 1844 1845 dtrace_sync(); 1846 1847 CPU_FOREACH(i) { 1848 dcpu = &dstate->dtds_percpu[i]; 1849 1850 if (dcpu->dtdsc_rinsing == NULL) 1851 continue; 1852 1853 /* 1854 * We are now guaranteed that no hash chain contains a pointer 1855 * into this dirty list; we can make it clean. 1856 */ 1857 ASSERT(dcpu->dtdsc_clean == NULL); 1858 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1859 dcpu->dtdsc_rinsing = NULL; 1860 } 1861 1862 /* 1863 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1864 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1865 * This prevents a race whereby a CPU incorrectly decides that 1866 * the state should be something other than DTRACE_DSTATE_CLEAN 1867 * after dtrace_dynvar_clean() has completed. 1868 */ 1869 dtrace_sync(); 1870 1871 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1872 } 1873 1874 /* 1875 * Depending on the value of the op parameter, this function looks-up, 1876 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1877 * allocation is requested, this function will return a pointer to a 1878 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1879 * variable can be allocated. If NULL is returned, the appropriate counter 1880 * will be incremented. 1881 */ 1882 dtrace_dynvar_t * 1883 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1884 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1885 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1886 { 1887 uint64_t hashval = DTRACE_DYNHASH_VALID; 1888 dtrace_dynhash_t *hash = dstate->dtds_hash; 1889 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1890 processorid_t me = curcpu, cpu = me; 1891 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1892 size_t bucket, ksize; 1893 size_t chunksize = dstate->dtds_chunksize; 1894 uintptr_t kdata, lock, nstate; 1895 uint_t i; 1896 1897 ASSERT(nkeys != 0); 1898 1899 /* 1900 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1901 * algorithm. For the by-value portions, we perform the algorithm in 1902 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1903 * bit, and seems to have only a minute effect on distribution. For 1904 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1905 * over each referenced byte. It's painful to do this, but it's much 1906 * better than pathological hash distribution. The efficacy of the 1907 * hashing algorithm (and a comparison with other algorithms) may be 1908 * found by running the ::dtrace_dynstat MDB dcmd. 1909 */ 1910 for (i = 0; i < nkeys; i++) { 1911 if (key[i].dttk_size == 0) { 1912 uint64_t val = key[i].dttk_value; 1913 1914 hashval += (val >> 48) & 0xffff; 1915 hashval += (hashval << 10); 1916 hashval ^= (hashval >> 6); 1917 1918 hashval += (val >> 32) & 0xffff; 1919 hashval += (hashval << 10); 1920 hashval ^= (hashval >> 6); 1921 1922 hashval += (val >> 16) & 0xffff; 1923 hashval += (hashval << 10); 1924 hashval ^= (hashval >> 6); 1925 1926 hashval += val & 0xffff; 1927 hashval += (hashval << 10); 1928 hashval ^= (hashval >> 6); 1929 } else { 1930 /* 1931 * This is incredibly painful, but it beats the hell 1932 * out of the alternative. 1933 */ 1934 uint64_t j, size = key[i].dttk_size; 1935 uintptr_t base = (uintptr_t)key[i].dttk_value; 1936 1937 if (!dtrace_canload(base, size, mstate, vstate)) 1938 break; 1939 1940 for (j = 0; j < size; j++) { 1941 hashval += dtrace_load8(base + j); 1942 hashval += (hashval << 10); 1943 hashval ^= (hashval >> 6); 1944 } 1945 } 1946 } 1947 1948 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1949 return (NULL); 1950 1951 hashval += (hashval << 3); 1952 hashval ^= (hashval >> 11); 1953 hashval += (hashval << 15); 1954 1955 /* 1956 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1957 * comes out to be one of our two sentinel hash values. If this 1958 * actually happens, we set the hashval to be a value known to be a 1959 * non-sentinel value. 1960 */ 1961 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1962 hashval = DTRACE_DYNHASH_VALID; 1963 1964 /* 1965 * Yes, it's painful to do a divide here. If the cycle count becomes 1966 * important here, tricks can be pulled to reduce it. (However, it's 1967 * critical that hash collisions be kept to an absolute minimum; 1968 * they're much more painful than a divide.) It's better to have a 1969 * solution that generates few collisions and still keeps things 1970 * relatively simple. 1971 */ 1972 bucket = hashval % dstate->dtds_hashsize; 1973 1974 if (op == DTRACE_DYNVAR_DEALLOC) { 1975 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1976 1977 for (;;) { 1978 while ((lock = *lockp) & 1) 1979 continue; 1980 1981 if (dtrace_casptr((volatile void *)lockp, 1982 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1983 break; 1984 } 1985 1986 dtrace_membar_producer(); 1987 } 1988 1989 top: 1990 prev = NULL; 1991 lock = hash[bucket].dtdh_lock; 1992 1993 dtrace_membar_consumer(); 1994 1995 start = hash[bucket].dtdh_chain; 1996 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1997 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1998 op != DTRACE_DYNVAR_DEALLOC)); 1999 2000 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 2001 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 2002 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2003 2004 if (dvar->dtdv_hashval != hashval) { 2005 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2006 /* 2007 * We've reached the sink, and therefore the 2008 * end of the hash chain; we can kick out of 2009 * the loop knowing that we have seen a valid 2010 * snapshot of state. 2011 */ 2012 ASSERT(dvar->dtdv_next == NULL); 2013 ASSERT(dvar == &dtrace_dynhash_sink); 2014 break; 2015 } 2016 2017 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2018 /* 2019 * We've gone off the rails: somewhere along 2020 * the line, one of the members of this hash 2021 * chain was deleted. Note that we could also 2022 * detect this by simply letting this loop run 2023 * to completion, as we would eventually hit 2024 * the end of the dirty list. However, we 2025 * want to avoid running the length of the 2026 * dirty list unnecessarily (it might be quite 2027 * long), so we catch this as early as 2028 * possible by detecting the hash marker. In 2029 * this case, we simply set dvar to NULL and 2030 * break; the conditional after the loop will 2031 * send us back to top. 2032 */ 2033 dvar = NULL; 2034 break; 2035 } 2036 2037 goto next; 2038 } 2039 2040 if (dtuple->dtt_nkeys != nkeys) 2041 goto next; 2042 2043 for (i = 0; i < nkeys; i++, dkey++) { 2044 if (dkey->dttk_size != key[i].dttk_size) 2045 goto next; /* size or type mismatch */ 2046 2047 if (dkey->dttk_size != 0) { 2048 if (dtrace_bcmp( 2049 (void *)(uintptr_t)key[i].dttk_value, 2050 (void *)(uintptr_t)dkey->dttk_value, 2051 dkey->dttk_size)) 2052 goto next; 2053 } else { 2054 if (dkey->dttk_value != key[i].dttk_value) 2055 goto next; 2056 } 2057 } 2058 2059 if (op != DTRACE_DYNVAR_DEALLOC) 2060 return (dvar); 2061 2062 ASSERT(dvar->dtdv_next == NULL || 2063 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2064 2065 if (prev != NULL) { 2066 ASSERT(hash[bucket].dtdh_chain != dvar); 2067 ASSERT(start != dvar); 2068 ASSERT(prev->dtdv_next == dvar); 2069 prev->dtdv_next = dvar->dtdv_next; 2070 } else { 2071 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2072 start, dvar->dtdv_next) != start) { 2073 /* 2074 * We have failed to atomically swing the 2075 * hash table head pointer, presumably because 2076 * of a conflicting allocation on another CPU. 2077 * We need to reread the hash chain and try 2078 * again. 2079 */ 2080 goto top; 2081 } 2082 } 2083 2084 dtrace_membar_producer(); 2085 2086 /* 2087 * Now set the hash value to indicate that it's free. 2088 */ 2089 ASSERT(hash[bucket].dtdh_chain != dvar); 2090 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2091 2092 dtrace_membar_producer(); 2093 2094 /* 2095 * Set the next pointer to point at the dirty list, and 2096 * atomically swing the dirty pointer to the newly freed dvar. 2097 */ 2098 do { 2099 next = dcpu->dtdsc_dirty; 2100 dvar->dtdv_next = next; 2101 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2102 2103 /* 2104 * Finally, unlock this hash bucket. 2105 */ 2106 ASSERT(hash[bucket].dtdh_lock == lock); 2107 ASSERT(lock & 1); 2108 hash[bucket].dtdh_lock++; 2109 2110 return (NULL); 2111 next: 2112 prev = dvar; 2113 continue; 2114 } 2115 2116 if (dvar == NULL) { 2117 /* 2118 * If dvar is NULL, it is because we went off the rails: 2119 * one of the elements that we traversed in the hash chain 2120 * was deleted while we were traversing it. In this case, 2121 * we assert that we aren't doing a dealloc (deallocs lock 2122 * the hash bucket to prevent themselves from racing with 2123 * one another), and retry the hash chain traversal. 2124 */ 2125 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2126 goto top; 2127 } 2128 2129 if (op != DTRACE_DYNVAR_ALLOC) { 2130 /* 2131 * If we are not to allocate a new variable, we want to 2132 * return NULL now. Before we return, check that the value 2133 * of the lock word hasn't changed. If it has, we may have 2134 * seen an inconsistent snapshot. 2135 */ 2136 if (op == DTRACE_DYNVAR_NOALLOC) { 2137 if (hash[bucket].dtdh_lock != lock) 2138 goto top; 2139 } else { 2140 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2141 ASSERT(hash[bucket].dtdh_lock == lock); 2142 ASSERT(lock & 1); 2143 hash[bucket].dtdh_lock++; 2144 } 2145 2146 return (NULL); 2147 } 2148 2149 /* 2150 * We need to allocate a new dynamic variable. The size we need is the 2151 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2152 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2153 * the size of any referred-to data (dsize). We then round the final 2154 * size up to the chunksize for allocation. 2155 */ 2156 for (ksize = 0, i = 0; i < nkeys; i++) 2157 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2158 2159 /* 2160 * This should be pretty much impossible, but could happen if, say, 2161 * strange DIF specified the tuple. Ideally, this should be an 2162 * assertion and not an error condition -- but that requires that the 2163 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2164 * bullet-proof. (That is, it must not be able to be fooled by 2165 * malicious DIF.) Given the lack of backwards branches in DIF, 2166 * solving this would presumably not amount to solving the Halting 2167 * Problem -- but it still seems awfully hard. 2168 */ 2169 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2170 ksize + dsize > chunksize) { 2171 dcpu->dtdsc_drops++; 2172 return (NULL); 2173 } 2174 2175 nstate = DTRACE_DSTATE_EMPTY; 2176 2177 do { 2178 retry: 2179 free = dcpu->dtdsc_free; 2180 2181 if (free == NULL) { 2182 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2183 void *rval; 2184 2185 if (clean == NULL) { 2186 /* 2187 * We're out of dynamic variable space on 2188 * this CPU. Unless we have tried all CPUs, 2189 * we'll try to allocate from a different 2190 * CPU. 2191 */ 2192 switch (dstate->dtds_state) { 2193 case DTRACE_DSTATE_CLEAN: { 2194 void *sp = &dstate->dtds_state; 2195 2196 if (++cpu > mp_maxid) 2197 cpu = 0; 2198 2199 if (dcpu->dtdsc_dirty != NULL && 2200 nstate == DTRACE_DSTATE_EMPTY) 2201 nstate = DTRACE_DSTATE_DIRTY; 2202 2203 if (dcpu->dtdsc_rinsing != NULL) 2204 nstate = DTRACE_DSTATE_RINSING; 2205 2206 dcpu = &dstate->dtds_percpu[cpu]; 2207 2208 if (cpu != me) 2209 goto retry; 2210 2211 (void) dtrace_cas32(sp, 2212 DTRACE_DSTATE_CLEAN, nstate); 2213 2214 /* 2215 * To increment the correct bean 2216 * counter, take another lap. 2217 */ 2218 goto retry; 2219 } 2220 2221 case DTRACE_DSTATE_DIRTY: 2222 dcpu->dtdsc_dirty_drops++; 2223 break; 2224 2225 case DTRACE_DSTATE_RINSING: 2226 dcpu->dtdsc_rinsing_drops++; 2227 break; 2228 2229 case DTRACE_DSTATE_EMPTY: 2230 dcpu->dtdsc_drops++; 2231 break; 2232 } 2233 2234 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2235 return (NULL); 2236 } 2237 2238 /* 2239 * The clean list appears to be non-empty. We want to 2240 * move the clean list to the free list; we start by 2241 * moving the clean pointer aside. 2242 */ 2243 if (dtrace_casptr(&dcpu->dtdsc_clean, 2244 clean, NULL) != clean) { 2245 /* 2246 * We are in one of two situations: 2247 * 2248 * (a) The clean list was switched to the 2249 * free list by another CPU. 2250 * 2251 * (b) The clean list was added to by the 2252 * cleansing cyclic. 2253 * 2254 * In either of these situations, we can 2255 * just reattempt the free list allocation. 2256 */ 2257 goto retry; 2258 } 2259 2260 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2261 2262 /* 2263 * Now we'll move the clean list to our free list. 2264 * It's impossible for this to fail: the only way 2265 * the free list can be updated is through this 2266 * code path, and only one CPU can own the clean list. 2267 * Thus, it would only be possible for this to fail if 2268 * this code were racing with dtrace_dynvar_clean(). 2269 * (That is, if dtrace_dynvar_clean() updated the clean 2270 * list, and we ended up racing to update the free 2271 * list.) This race is prevented by the dtrace_sync() 2272 * in dtrace_dynvar_clean() -- which flushes the 2273 * owners of the clean lists out before resetting 2274 * the clean lists. 2275 */ 2276 dcpu = &dstate->dtds_percpu[me]; 2277 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2278 ASSERT(rval == NULL); 2279 goto retry; 2280 } 2281 2282 dvar = free; 2283 new_free = dvar->dtdv_next; 2284 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2285 2286 /* 2287 * We have now allocated a new chunk. We copy the tuple keys into the 2288 * tuple array and copy any referenced key data into the data space 2289 * following the tuple array. As we do this, we relocate dttk_value 2290 * in the final tuple to point to the key data address in the chunk. 2291 */ 2292 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2293 dvar->dtdv_data = (void *)(kdata + ksize); 2294 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2295 2296 for (i = 0; i < nkeys; i++) { 2297 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2298 size_t kesize = key[i].dttk_size; 2299 2300 if (kesize != 0) { 2301 dtrace_bcopy( 2302 (const void *)(uintptr_t)key[i].dttk_value, 2303 (void *)kdata, kesize); 2304 dkey->dttk_value = kdata; 2305 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2306 } else { 2307 dkey->dttk_value = key[i].dttk_value; 2308 } 2309 2310 dkey->dttk_size = kesize; 2311 } 2312 2313 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2314 dvar->dtdv_hashval = hashval; 2315 dvar->dtdv_next = start; 2316 2317 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2318 return (dvar); 2319 2320 /* 2321 * The cas has failed. Either another CPU is adding an element to 2322 * this hash chain, or another CPU is deleting an element from this 2323 * hash chain. The simplest way to deal with both of these cases 2324 * (though not necessarily the most efficient) is to free our 2325 * allocated block and re-attempt it all. Note that the free is 2326 * to the dirty list and _not_ to the free list. This is to prevent 2327 * races with allocators, above. 2328 */ 2329 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2330 2331 dtrace_membar_producer(); 2332 2333 do { 2334 free = dcpu->dtdsc_dirty; 2335 dvar->dtdv_next = free; 2336 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2337 2338 goto top; 2339 } 2340 2341 /*ARGSUSED*/ 2342 static void 2343 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2344 { 2345 if ((int64_t)nval < (int64_t)*oval) 2346 *oval = nval; 2347 } 2348 2349 /*ARGSUSED*/ 2350 static void 2351 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2352 { 2353 if ((int64_t)nval > (int64_t)*oval) 2354 *oval = nval; 2355 } 2356 2357 static void 2358 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2359 { 2360 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2361 int64_t val = (int64_t)nval; 2362 2363 if (val < 0) { 2364 for (i = 0; i < zero; i++) { 2365 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2366 quanta[i] += incr; 2367 return; 2368 } 2369 } 2370 } else { 2371 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2372 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2373 quanta[i - 1] += incr; 2374 return; 2375 } 2376 } 2377 2378 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2379 return; 2380 } 2381 2382 ASSERT(0); 2383 } 2384 2385 static void 2386 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2387 { 2388 uint64_t arg = *lquanta++; 2389 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2390 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2391 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2392 int32_t val = (int32_t)nval, level; 2393 2394 ASSERT(step != 0); 2395 ASSERT(levels != 0); 2396 2397 if (val < base) { 2398 /* 2399 * This is an underflow. 2400 */ 2401 lquanta[0] += incr; 2402 return; 2403 } 2404 2405 level = (val - base) / step; 2406 2407 if (level < levels) { 2408 lquanta[level + 1] += incr; 2409 return; 2410 } 2411 2412 /* 2413 * This is an overflow. 2414 */ 2415 lquanta[levels + 1] += incr; 2416 } 2417 2418 static int 2419 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2420 uint16_t high, uint16_t nsteps, int64_t value) 2421 { 2422 int64_t this = 1, last, next; 2423 int base = 1, order; 2424 2425 ASSERT(factor <= nsteps); 2426 ASSERT(nsteps % factor == 0); 2427 2428 for (order = 0; order < low; order++) 2429 this *= factor; 2430 2431 /* 2432 * If our value is less than our factor taken to the power of the 2433 * low order of magnitude, it goes into the zeroth bucket. 2434 */ 2435 if (value < (last = this)) 2436 return (0); 2437 2438 for (this *= factor; order <= high; order++) { 2439 int nbuckets = this > nsteps ? nsteps : this; 2440 2441 if ((next = this * factor) < this) { 2442 /* 2443 * We should not generally get log/linear quantizations 2444 * with a high magnitude that allows 64-bits to 2445 * overflow, but we nonetheless protect against this 2446 * by explicitly checking for overflow, and clamping 2447 * our value accordingly. 2448 */ 2449 value = this - 1; 2450 } 2451 2452 if (value < this) { 2453 /* 2454 * If our value lies within this order of magnitude, 2455 * determine its position by taking the offset within 2456 * the order of magnitude, dividing by the bucket 2457 * width, and adding to our (accumulated) base. 2458 */ 2459 return (base + (value - last) / (this / nbuckets)); 2460 } 2461 2462 base += nbuckets - (nbuckets / factor); 2463 last = this; 2464 this = next; 2465 } 2466 2467 /* 2468 * Our value is greater than or equal to our factor taken to the 2469 * power of one plus the high magnitude -- return the top bucket. 2470 */ 2471 return (base); 2472 } 2473 2474 static void 2475 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2476 { 2477 uint64_t arg = *llquanta++; 2478 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2479 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2480 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2481 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2482 2483 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2484 low, high, nsteps, nval)] += incr; 2485 } 2486 2487 /*ARGSUSED*/ 2488 static void 2489 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2490 { 2491 data[0]++; 2492 data[1] += nval; 2493 } 2494 2495 /*ARGSUSED*/ 2496 static void 2497 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2498 { 2499 int64_t snval = (int64_t)nval; 2500 uint64_t tmp[2]; 2501 2502 data[0]++; 2503 data[1] += nval; 2504 2505 /* 2506 * What we want to say here is: 2507 * 2508 * data[2] += nval * nval; 2509 * 2510 * But given that nval is 64-bit, we could easily overflow, so 2511 * we do this as 128-bit arithmetic. 2512 */ 2513 if (snval < 0) 2514 snval = -snval; 2515 2516 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2517 dtrace_add_128(data + 2, tmp, data + 2); 2518 } 2519 2520 /*ARGSUSED*/ 2521 static void 2522 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2523 { 2524 *oval = *oval + 1; 2525 } 2526 2527 /*ARGSUSED*/ 2528 static void 2529 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2530 { 2531 *oval += nval; 2532 } 2533 2534 /* 2535 * Aggregate given the tuple in the principal data buffer, and the aggregating 2536 * action denoted by the specified dtrace_aggregation_t. The aggregation 2537 * buffer is specified as the buf parameter. This routine does not return 2538 * failure; if there is no space in the aggregation buffer, the data will be 2539 * dropped, and a corresponding counter incremented. 2540 */ 2541 static void 2542 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2543 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2544 { 2545 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2546 uint32_t i, ndx, size, fsize; 2547 uint32_t align = sizeof (uint64_t) - 1; 2548 dtrace_aggbuffer_t *agb; 2549 dtrace_aggkey_t *key; 2550 uint32_t hashval = 0, limit, isstr; 2551 caddr_t tomax, data, kdata; 2552 dtrace_actkind_t action; 2553 dtrace_action_t *act; 2554 size_t offs; 2555 2556 if (buf == NULL) 2557 return; 2558 2559 if (!agg->dtag_hasarg) { 2560 /* 2561 * Currently, only quantize() and lquantize() take additional 2562 * arguments, and they have the same semantics: an increment 2563 * value that defaults to 1 when not present. If additional 2564 * aggregating actions take arguments, the setting of the 2565 * default argument value will presumably have to become more 2566 * sophisticated... 2567 */ 2568 arg = 1; 2569 } 2570 2571 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2572 size = rec->dtrd_offset - agg->dtag_base; 2573 fsize = size + rec->dtrd_size; 2574 2575 ASSERT(dbuf->dtb_tomax != NULL); 2576 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2577 2578 if ((tomax = buf->dtb_tomax) == NULL) { 2579 dtrace_buffer_drop(buf); 2580 return; 2581 } 2582 2583 /* 2584 * The metastructure is always at the bottom of the buffer. 2585 */ 2586 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2587 sizeof (dtrace_aggbuffer_t)); 2588 2589 if (buf->dtb_offset == 0) { 2590 /* 2591 * We just kludge up approximately 1/8th of the size to be 2592 * buckets. If this guess ends up being routinely 2593 * off-the-mark, we may need to dynamically readjust this 2594 * based on past performance. 2595 */ 2596 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2597 2598 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2599 (uintptr_t)tomax || hashsize == 0) { 2600 /* 2601 * We've been given a ludicrously small buffer; 2602 * increment our drop count and leave. 2603 */ 2604 dtrace_buffer_drop(buf); 2605 return; 2606 } 2607 2608 /* 2609 * And now, a pathetic attempt to try to get a an odd (or 2610 * perchance, a prime) hash size for better hash distribution. 2611 */ 2612 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2613 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2614 2615 agb->dtagb_hashsize = hashsize; 2616 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2617 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2618 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2619 2620 for (i = 0; i < agb->dtagb_hashsize; i++) 2621 agb->dtagb_hash[i] = NULL; 2622 } 2623 2624 ASSERT(agg->dtag_first != NULL); 2625 ASSERT(agg->dtag_first->dta_intuple); 2626 2627 /* 2628 * Calculate the hash value based on the key. Note that we _don't_ 2629 * include the aggid in the hashing (but we will store it as part of 2630 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2631 * algorithm: a simple, quick algorithm that has no known funnels, and 2632 * gets good distribution in practice. The efficacy of the hashing 2633 * algorithm (and a comparison with other algorithms) may be found by 2634 * running the ::dtrace_aggstat MDB dcmd. 2635 */ 2636 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2637 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2638 limit = i + act->dta_rec.dtrd_size; 2639 ASSERT(limit <= size); 2640 isstr = DTRACEACT_ISSTRING(act); 2641 2642 for (; i < limit; i++) { 2643 hashval += data[i]; 2644 hashval += (hashval << 10); 2645 hashval ^= (hashval >> 6); 2646 2647 if (isstr && data[i] == '\0') 2648 break; 2649 } 2650 } 2651 2652 hashval += (hashval << 3); 2653 hashval ^= (hashval >> 11); 2654 hashval += (hashval << 15); 2655 2656 /* 2657 * Yes, the divide here is expensive -- but it's generally the least 2658 * of the performance issues given the amount of data that we iterate 2659 * over to compute hash values, compare data, etc. 2660 */ 2661 ndx = hashval % agb->dtagb_hashsize; 2662 2663 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2664 ASSERT((caddr_t)key >= tomax); 2665 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2666 2667 if (hashval != key->dtak_hashval || key->dtak_size != size) 2668 continue; 2669 2670 kdata = key->dtak_data; 2671 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2672 2673 for (act = agg->dtag_first; act->dta_intuple; 2674 act = act->dta_next) { 2675 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2676 limit = i + act->dta_rec.dtrd_size; 2677 ASSERT(limit <= size); 2678 isstr = DTRACEACT_ISSTRING(act); 2679 2680 for (; i < limit; i++) { 2681 if (kdata[i] != data[i]) 2682 goto next; 2683 2684 if (isstr && data[i] == '\0') 2685 break; 2686 } 2687 } 2688 2689 if (action != key->dtak_action) { 2690 /* 2691 * We are aggregating on the same value in the same 2692 * aggregation with two different aggregating actions. 2693 * (This should have been picked up in the compiler, 2694 * so we may be dealing with errant or devious DIF.) 2695 * This is an error condition; we indicate as much, 2696 * and return. 2697 */ 2698 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2699 return; 2700 } 2701 2702 /* 2703 * This is a hit: we need to apply the aggregator to 2704 * the value at this key. 2705 */ 2706 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2707 return; 2708 next: 2709 continue; 2710 } 2711 2712 /* 2713 * We didn't find it. We need to allocate some zero-filled space, 2714 * link it into the hash table appropriately, and apply the aggregator 2715 * to the (zero-filled) value. 2716 */ 2717 offs = buf->dtb_offset; 2718 while (offs & (align - 1)) 2719 offs += sizeof (uint32_t); 2720 2721 /* 2722 * If we don't have enough room to both allocate a new key _and_ 2723 * its associated data, increment the drop count and return. 2724 */ 2725 if ((uintptr_t)tomax + offs + fsize > 2726 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2727 dtrace_buffer_drop(buf); 2728 return; 2729 } 2730 2731 /*CONSTCOND*/ 2732 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2733 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2734 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2735 2736 key->dtak_data = kdata = tomax + offs; 2737 buf->dtb_offset = offs + fsize; 2738 2739 /* 2740 * Now copy the data across. 2741 */ 2742 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2743 2744 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2745 kdata[i] = data[i]; 2746 2747 /* 2748 * Because strings are not zeroed out by default, we need to iterate 2749 * looking for actions that store strings, and we need to explicitly 2750 * pad these strings out with zeroes. 2751 */ 2752 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2753 int nul; 2754 2755 if (!DTRACEACT_ISSTRING(act)) 2756 continue; 2757 2758 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2759 limit = i + act->dta_rec.dtrd_size; 2760 ASSERT(limit <= size); 2761 2762 for (nul = 0; i < limit; i++) { 2763 if (nul) { 2764 kdata[i] = '\0'; 2765 continue; 2766 } 2767 2768 if (data[i] != '\0') 2769 continue; 2770 2771 nul = 1; 2772 } 2773 } 2774 2775 for (i = size; i < fsize; i++) 2776 kdata[i] = 0; 2777 2778 key->dtak_hashval = hashval; 2779 key->dtak_size = size; 2780 key->dtak_action = action; 2781 key->dtak_next = agb->dtagb_hash[ndx]; 2782 agb->dtagb_hash[ndx] = key; 2783 2784 /* 2785 * Finally, apply the aggregator. 2786 */ 2787 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2788 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2789 } 2790 2791 /* 2792 * Given consumer state, this routine finds a speculation in the INACTIVE 2793 * state and transitions it into the ACTIVE state. If there is no speculation 2794 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2795 * incremented -- it is up to the caller to take appropriate action. 2796 */ 2797 static int 2798 dtrace_speculation(dtrace_state_t *state) 2799 { 2800 int i = 0; 2801 dtrace_speculation_state_t curstate; 2802 uint32_t *stat = &state->dts_speculations_unavail, count; 2803 2804 while (i < state->dts_nspeculations) { 2805 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2806 2807 curstate = spec->dtsp_state; 2808 2809 if (curstate != DTRACESPEC_INACTIVE) { 2810 if (curstate == DTRACESPEC_COMMITTINGMANY || 2811 curstate == DTRACESPEC_COMMITTING || 2812 curstate == DTRACESPEC_DISCARDING) 2813 stat = &state->dts_speculations_busy; 2814 i++; 2815 continue; 2816 } 2817 2818 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2819 curstate, DTRACESPEC_ACTIVE) == curstate) 2820 return (i + 1); 2821 } 2822 2823 /* 2824 * We couldn't find a speculation. If we found as much as a single 2825 * busy speculation buffer, we'll attribute this failure as "busy" 2826 * instead of "unavail". 2827 */ 2828 do { 2829 count = *stat; 2830 } while (dtrace_cas32(stat, count, count + 1) != count); 2831 2832 return (0); 2833 } 2834 2835 /* 2836 * This routine commits an active speculation. If the specified speculation 2837 * is not in a valid state to perform a commit(), this routine will silently do 2838 * nothing. The state of the specified speculation is transitioned according 2839 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2840 */ 2841 static void 2842 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2843 dtrace_specid_t which) 2844 { 2845 dtrace_speculation_t *spec; 2846 dtrace_buffer_t *src, *dest; 2847 uintptr_t daddr, saddr, dlimit, slimit; 2848 dtrace_speculation_state_t curstate, new = 0; 2849 ssize_t offs; 2850 uint64_t timestamp; 2851 2852 if (which == 0) 2853 return; 2854 2855 if (which > state->dts_nspeculations) { 2856 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2857 return; 2858 } 2859 2860 spec = &state->dts_speculations[which - 1]; 2861 src = &spec->dtsp_buffer[cpu]; 2862 dest = &state->dts_buffer[cpu]; 2863 2864 do { 2865 curstate = spec->dtsp_state; 2866 2867 if (curstate == DTRACESPEC_COMMITTINGMANY) 2868 break; 2869 2870 switch (curstate) { 2871 case DTRACESPEC_INACTIVE: 2872 case DTRACESPEC_DISCARDING: 2873 return; 2874 2875 case DTRACESPEC_COMMITTING: 2876 /* 2877 * This is only possible if we are (a) commit()'ing 2878 * without having done a prior speculate() on this CPU 2879 * and (b) racing with another commit() on a different 2880 * CPU. There's nothing to do -- we just assert that 2881 * our offset is 0. 2882 */ 2883 ASSERT(src->dtb_offset == 0); 2884 return; 2885 2886 case DTRACESPEC_ACTIVE: 2887 new = DTRACESPEC_COMMITTING; 2888 break; 2889 2890 case DTRACESPEC_ACTIVEONE: 2891 /* 2892 * This speculation is active on one CPU. If our 2893 * buffer offset is non-zero, we know that the one CPU 2894 * must be us. Otherwise, we are committing on a 2895 * different CPU from the speculate(), and we must 2896 * rely on being asynchronously cleaned. 2897 */ 2898 if (src->dtb_offset != 0) { 2899 new = DTRACESPEC_COMMITTING; 2900 break; 2901 } 2902 /*FALLTHROUGH*/ 2903 2904 case DTRACESPEC_ACTIVEMANY: 2905 new = DTRACESPEC_COMMITTINGMANY; 2906 break; 2907 2908 default: 2909 ASSERT(0); 2910 } 2911 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2912 curstate, new) != curstate); 2913 2914 /* 2915 * We have set the state to indicate that we are committing this 2916 * speculation. Now reserve the necessary space in the destination 2917 * buffer. 2918 */ 2919 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2920 sizeof (uint64_t), state, NULL)) < 0) { 2921 dtrace_buffer_drop(dest); 2922 goto out; 2923 } 2924 2925 /* 2926 * We have sufficient space to copy the speculative buffer into the 2927 * primary buffer. First, modify the speculative buffer, filling 2928 * in the timestamp of all entries with the curstate time. The data 2929 * must have the commit() time rather than the time it was traced, 2930 * so that all entries in the primary buffer are in timestamp order. 2931 */ 2932 timestamp = dtrace_gethrtime(); 2933 saddr = (uintptr_t)src->dtb_tomax; 2934 slimit = saddr + src->dtb_offset; 2935 while (saddr < slimit) { 2936 size_t size; 2937 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2938 2939 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2940 saddr += sizeof (dtrace_epid_t); 2941 continue; 2942 } 2943 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2944 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2945 2946 ASSERT3U(saddr + size, <=, slimit); 2947 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2948 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2949 2950 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2951 2952 saddr += size; 2953 } 2954 2955 /* 2956 * Copy the buffer across. (Note that this is a 2957 * highly subobtimal bcopy(); in the unlikely event that this becomes 2958 * a serious performance issue, a high-performance DTrace-specific 2959 * bcopy() should obviously be invented.) 2960 */ 2961 daddr = (uintptr_t)dest->dtb_tomax + offs; 2962 dlimit = daddr + src->dtb_offset; 2963 saddr = (uintptr_t)src->dtb_tomax; 2964 2965 /* 2966 * First, the aligned portion. 2967 */ 2968 while (dlimit - daddr >= sizeof (uint64_t)) { 2969 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2970 2971 daddr += sizeof (uint64_t); 2972 saddr += sizeof (uint64_t); 2973 } 2974 2975 /* 2976 * Now any left-over bit... 2977 */ 2978 while (dlimit - daddr) 2979 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2980 2981 /* 2982 * Finally, commit the reserved space in the destination buffer. 2983 */ 2984 dest->dtb_offset = offs + src->dtb_offset; 2985 2986 out: 2987 /* 2988 * If we're lucky enough to be the only active CPU on this speculation 2989 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2990 */ 2991 if (curstate == DTRACESPEC_ACTIVE || 2992 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2993 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2994 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2995 2996 ASSERT(rval == DTRACESPEC_COMMITTING); 2997 } 2998 2999 src->dtb_offset = 0; 3000 src->dtb_xamot_drops += src->dtb_drops; 3001 src->dtb_drops = 0; 3002 } 3003 3004 /* 3005 * This routine discards an active speculation. If the specified speculation 3006 * is not in a valid state to perform a discard(), this routine will silently 3007 * do nothing. The state of the specified speculation is transitioned 3008 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3009 */ 3010 static void 3011 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3012 dtrace_specid_t which) 3013 { 3014 dtrace_speculation_t *spec; 3015 dtrace_speculation_state_t curstate, new = 0; 3016 dtrace_buffer_t *buf; 3017 3018 if (which == 0) 3019 return; 3020 3021 if (which > state->dts_nspeculations) { 3022 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3023 return; 3024 } 3025 3026 spec = &state->dts_speculations[which - 1]; 3027 buf = &spec->dtsp_buffer[cpu]; 3028 3029 do { 3030 curstate = spec->dtsp_state; 3031 3032 switch (curstate) { 3033 case DTRACESPEC_INACTIVE: 3034 case DTRACESPEC_COMMITTINGMANY: 3035 case DTRACESPEC_COMMITTING: 3036 case DTRACESPEC_DISCARDING: 3037 return; 3038 3039 case DTRACESPEC_ACTIVE: 3040 case DTRACESPEC_ACTIVEMANY: 3041 new = DTRACESPEC_DISCARDING; 3042 break; 3043 3044 case DTRACESPEC_ACTIVEONE: 3045 if (buf->dtb_offset != 0) { 3046 new = DTRACESPEC_INACTIVE; 3047 } else { 3048 new = DTRACESPEC_DISCARDING; 3049 } 3050 break; 3051 3052 default: 3053 ASSERT(0); 3054 } 3055 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3056 curstate, new) != curstate); 3057 3058 buf->dtb_offset = 0; 3059 buf->dtb_drops = 0; 3060 } 3061 3062 /* 3063 * Note: not called from probe context. This function is called 3064 * asynchronously from cross call context to clean any speculations that are 3065 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3066 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3067 * speculation. 3068 */ 3069 static void 3070 dtrace_speculation_clean_here(dtrace_state_t *state) 3071 { 3072 dtrace_icookie_t cookie; 3073 processorid_t cpu = curcpu; 3074 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3075 dtrace_specid_t i; 3076 3077 cookie = dtrace_interrupt_disable(); 3078 3079 if (dest->dtb_tomax == NULL) { 3080 dtrace_interrupt_enable(cookie); 3081 return; 3082 } 3083 3084 for (i = 0; i < state->dts_nspeculations; i++) { 3085 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3086 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3087 3088 if (src->dtb_tomax == NULL) 3089 continue; 3090 3091 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3092 src->dtb_offset = 0; 3093 continue; 3094 } 3095 3096 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3097 continue; 3098 3099 if (src->dtb_offset == 0) 3100 continue; 3101 3102 dtrace_speculation_commit(state, cpu, i + 1); 3103 } 3104 3105 dtrace_interrupt_enable(cookie); 3106 } 3107 3108 /* 3109 * Note: not called from probe context. This function is called 3110 * asynchronously (and at a regular interval) to clean any speculations that 3111 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3112 * is work to be done, it cross calls all CPUs to perform that work; 3113 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3114 * INACTIVE state until they have been cleaned by all CPUs. 3115 */ 3116 static void 3117 dtrace_speculation_clean(dtrace_state_t *state) 3118 { 3119 int work = 0, rv; 3120 dtrace_specid_t i; 3121 3122 for (i = 0; i < state->dts_nspeculations; i++) { 3123 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3124 3125 ASSERT(!spec->dtsp_cleaning); 3126 3127 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3128 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3129 continue; 3130 3131 work++; 3132 spec->dtsp_cleaning = 1; 3133 } 3134 3135 if (!work) 3136 return; 3137 3138 dtrace_xcall(DTRACE_CPUALL, 3139 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3140 3141 /* 3142 * We now know that all CPUs have committed or discarded their 3143 * speculation buffers, as appropriate. We can now set the state 3144 * to inactive. 3145 */ 3146 for (i = 0; i < state->dts_nspeculations; i++) { 3147 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3148 dtrace_speculation_state_t curstate, new; 3149 3150 if (!spec->dtsp_cleaning) 3151 continue; 3152 3153 curstate = spec->dtsp_state; 3154 ASSERT(curstate == DTRACESPEC_DISCARDING || 3155 curstate == DTRACESPEC_COMMITTINGMANY); 3156 3157 new = DTRACESPEC_INACTIVE; 3158 3159 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3160 ASSERT(rv == curstate); 3161 spec->dtsp_cleaning = 0; 3162 } 3163 } 3164 3165 /* 3166 * Called as part of a speculate() to get the speculative buffer associated 3167 * with a given speculation. Returns NULL if the specified speculation is not 3168 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3169 * the active CPU is not the specified CPU -- the speculation will be 3170 * atomically transitioned into the ACTIVEMANY state. 3171 */ 3172 static dtrace_buffer_t * 3173 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3174 dtrace_specid_t which) 3175 { 3176 dtrace_speculation_t *spec; 3177 dtrace_speculation_state_t curstate, new = 0; 3178 dtrace_buffer_t *buf; 3179 3180 if (which == 0) 3181 return (NULL); 3182 3183 if (which > state->dts_nspeculations) { 3184 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3185 return (NULL); 3186 } 3187 3188 spec = &state->dts_speculations[which - 1]; 3189 buf = &spec->dtsp_buffer[cpuid]; 3190 3191 do { 3192 curstate = spec->dtsp_state; 3193 3194 switch (curstate) { 3195 case DTRACESPEC_INACTIVE: 3196 case DTRACESPEC_COMMITTINGMANY: 3197 case DTRACESPEC_DISCARDING: 3198 return (NULL); 3199 3200 case DTRACESPEC_COMMITTING: 3201 ASSERT(buf->dtb_offset == 0); 3202 return (NULL); 3203 3204 case DTRACESPEC_ACTIVEONE: 3205 /* 3206 * This speculation is currently active on one CPU. 3207 * Check the offset in the buffer; if it's non-zero, 3208 * that CPU must be us (and we leave the state alone). 3209 * If it's zero, assume that we're starting on a new 3210 * CPU -- and change the state to indicate that the 3211 * speculation is active on more than one CPU. 3212 */ 3213 if (buf->dtb_offset != 0) 3214 return (buf); 3215 3216 new = DTRACESPEC_ACTIVEMANY; 3217 break; 3218 3219 case DTRACESPEC_ACTIVEMANY: 3220 return (buf); 3221 3222 case DTRACESPEC_ACTIVE: 3223 new = DTRACESPEC_ACTIVEONE; 3224 break; 3225 3226 default: 3227 ASSERT(0); 3228 } 3229 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3230 curstate, new) != curstate); 3231 3232 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3233 return (buf); 3234 } 3235 3236 /* 3237 * Return a string. In the event that the user lacks the privilege to access 3238 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3239 * don't fail access checking. 3240 * 3241 * dtrace_dif_variable() uses this routine as a helper for various 3242 * builtin values such as 'execname' and 'probefunc.' 3243 */ 3244 uintptr_t 3245 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3246 dtrace_mstate_t *mstate) 3247 { 3248 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3249 uintptr_t ret; 3250 size_t strsz; 3251 3252 /* 3253 * The easy case: this probe is allowed to read all of memory, so 3254 * we can just return this as a vanilla pointer. 3255 */ 3256 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3257 return (addr); 3258 3259 /* 3260 * This is the tougher case: we copy the string in question from 3261 * kernel memory into scratch memory and return it that way: this 3262 * ensures that we won't trip up when access checking tests the 3263 * BYREF return value. 3264 */ 3265 strsz = dtrace_strlen((char *)addr, size) + 1; 3266 3267 if (mstate->dtms_scratch_ptr + strsz > 3268 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3269 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3270 return (0); 3271 } 3272 3273 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3274 strsz); 3275 ret = mstate->dtms_scratch_ptr; 3276 mstate->dtms_scratch_ptr += strsz; 3277 return (ret); 3278 } 3279 3280 /* 3281 * Return a string from a memoy address which is known to have one or 3282 * more concatenated, individually zero terminated, sub-strings. 3283 * In the event that the user lacks the privilege to access 3284 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3285 * don't fail access checking. 3286 * 3287 * dtrace_dif_variable() uses this routine as a helper for various 3288 * builtin values such as 'execargs'. 3289 */ 3290 static uintptr_t 3291 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3292 dtrace_mstate_t *mstate) 3293 { 3294 char *p; 3295 size_t i; 3296 uintptr_t ret; 3297 3298 if (mstate->dtms_scratch_ptr + strsz > 3299 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3300 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3301 return (0); 3302 } 3303 3304 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3305 strsz); 3306 3307 /* Replace sub-string termination characters with a space. */ 3308 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3309 p++, i++) 3310 if (*p == '\0') 3311 *p = ' '; 3312 3313 ret = mstate->dtms_scratch_ptr; 3314 mstate->dtms_scratch_ptr += strsz; 3315 return (ret); 3316 } 3317 3318 /* 3319 * This function implements the DIF emulator's variable lookups. The emulator 3320 * passes a reserved variable identifier and optional built-in array index. 3321 */ 3322 static uint64_t 3323 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3324 uint64_t ndx) 3325 { 3326 /* 3327 * If we're accessing one of the uncached arguments, we'll turn this 3328 * into a reference in the args array. 3329 */ 3330 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3331 ndx = v - DIF_VAR_ARG0; 3332 v = DIF_VAR_ARGS; 3333 } 3334 3335 switch (v) { 3336 case DIF_VAR_ARGS: 3337 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3338 if (ndx >= sizeof (mstate->dtms_arg) / 3339 sizeof (mstate->dtms_arg[0])) { 3340 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3341 dtrace_provider_t *pv; 3342 uint64_t val; 3343 3344 pv = mstate->dtms_probe->dtpr_provider; 3345 if (pv->dtpv_pops.dtps_getargval != NULL) 3346 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3347 mstate->dtms_probe->dtpr_id, 3348 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3349 else 3350 val = dtrace_getarg(ndx, aframes); 3351 3352 /* 3353 * This is regrettably required to keep the compiler 3354 * from tail-optimizing the call to dtrace_getarg(). 3355 * The condition always evaluates to true, but the 3356 * compiler has no way of figuring that out a priori. 3357 * (None of this would be necessary if the compiler 3358 * could be relied upon to _always_ tail-optimize 3359 * the call to dtrace_getarg() -- but it can't.) 3360 */ 3361 if (mstate->dtms_probe != NULL) 3362 return (val); 3363 3364 ASSERT(0); 3365 } 3366 3367 return (mstate->dtms_arg[ndx]); 3368 3369 case DIF_VAR_REGS: 3370 case DIF_VAR_UREGS: { 3371 struct trapframe *tframe; 3372 3373 if (!dtrace_priv_proc(state)) 3374 return (0); 3375 3376 if (v == DIF_VAR_REGS) 3377 tframe = curthread->t_dtrace_trapframe; 3378 else 3379 tframe = curthread->td_frame; 3380 3381 if (tframe == NULL) { 3382 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3383 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3384 return (0); 3385 } 3386 3387 return (dtrace_getreg(tframe, ndx)); 3388 } 3389 3390 case DIF_VAR_CURTHREAD: 3391 if (!dtrace_priv_proc(state)) 3392 return (0); 3393 return ((uint64_t)(uintptr_t)curthread); 3394 3395 case DIF_VAR_TIMESTAMP: 3396 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3397 mstate->dtms_timestamp = dtrace_gethrtime(); 3398 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3399 } 3400 return (mstate->dtms_timestamp); 3401 3402 case DIF_VAR_VTIMESTAMP: 3403 ASSERT(dtrace_vtime_references != 0); 3404 return (curthread->t_dtrace_vtime); 3405 3406 case DIF_VAR_WALLTIMESTAMP: 3407 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3408 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3409 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3410 } 3411 return (mstate->dtms_walltimestamp); 3412 3413 #ifdef illumos 3414 case DIF_VAR_IPL: 3415 if (!dtrace_priv_kernel(state)) 3416 return (0); 3417 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3418 mstate->dtms_ipl = dtrace_getipl(); 3419 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3420 } 3421 return (mstate->dtms_ipl); 3422 #endif 3423 3424 case DIF_VAR_EPID: 3425 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3426 return (mstate->dtms_epid); 3427 3428 case DIF_VAR_ID: 3429 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3430 return (mstate->dtms_probe->dtpr_id); 3431 3432 case DIF_VAR_STACKDEPTH: 3433 if (!dtrace_priv_kernel(state)) 3434 return (0); 3435 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3436 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3437 3438 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3439 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3440 } 3441 return (mstate->dtms_stackdepth); 3442 3443 case DIF_VAR_USTACKDEPTH: 3444 if (!dtrace_priv_proc(state)) 3445 return (0); 3446 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3447 /* 3448 * See comment in DIF_VAR_PID. 3449 */ 3450 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3451 CPU_ON_INTR(CPU)) { 3452 mstate->dtms_ustackdepth = 0; 3453 } else { 3454 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3455 mstate->dtms_ustackdepth = 3456 dtrace_getustackdepth(); 3457 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3458 } 3459 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3460 } 3461 return (mstate->dtms_ustackdepth); 3462 3463 case DIF_VAR_CALLER: 3464 if (!dtrace_priv_kernel(state)) 3465 return (0); 3466 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3467 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3468 3469 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3470 /* 3471 * If this is an unanchored probe, we are 3472 * required to go through the slow path: 3473 * dtrace_caller() only guarantees correct 3474 * results for anchored probes. 3475 */ 3476 pc_t caller[2] = {0, 0}; 3477 3478 dtrace_getpcstack(caller, 2, aframes, 3479 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3480 mstate->dtms_caller = caller[1]; 3481 } else if ((mstate->dtms_caller = 3482 dtrace_caller(aframes)) == -1) { 3483 /* 3484 * We have failed to do this the quick way; 3485 * we must resort to the slower approach of 3486 * calling dtrace_getpcstack(). 3487 */ 3488 pc_t caller = 0; 3489 3490 dtrace_getpcstack(&caller, 1, aframes, NULL); 3491 mstate->dtms_caller = caller; 3492 } 3493 3494 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3495 } 3496 return (mstate->dtms_caller); 3497 3498 case DIF_VAR_UCALLER: 3499 if (!dtrace_priv_proc(state)) 3500 return (0); 3501 3502 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3503 uint64_t ustack[3]; 3504 3505 /* 3506 * dtrace_getupcstack() fills in the first uint64_t 3507 * with the current PID. The second uint64_t will 3508 * be the program counter at user-level. The third 3509 * uint64_t will contain the caller, which is what 3510 * we're after. 3511 */ 3512 ustack[2] = 0; 3513 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3514 dtrace_getupcstack(ustack, 3); 3515 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3516 mstate->dtms_ucaller = ustack[2]; 3517 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3518 } 3519 3520 return (mstate->dtms_ucaller); 3521 3522 case DIF_VAR_PROBEPROV: 3523 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3524 return (dtrace_dif_varstr( 3525 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3526 state, mstate)); 3527 3528 case DIF_VAR_PROBEMOD: 3529 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3530 return (dtrace_dif_varstr( 3531 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3532 state, mstate)); 3533 3534 case DIF_VAR_PROBEFUNC: 3535 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3536 return (dtrace_dif_varstr( 3537 (uintptr_t)mstate->dtms_probe->dtpr_func, 3538 state, mstate)); 3539 3540 case DIF_VAR_PROBENAME: 3541 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3542 return (dtrace_dif_varstr( 3543 (uintptr_t)mstate->dtms_probe->dtpr_name, 3544 state, mstate)); 3545 3546 case DIF_VAR_PID: 3547 if (!dtrace_priv_proc(state)) 3548 return (0); 3549 3550 #ifdef illumos 3551 /* 3552 * Note that we are assuming that an unanchored probe is 3553 * always due to a high-level interrupt. (And we're assuming 3554 * that there is only a single high level interrupt.) 3555 */ 3556 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3557 return (pid0.pid_id); 3558 3559 /* 3560 * It is always safe to dereference one's own t_procp pointer: 3561 * it always points to a valid, allocated proc structure. 3562 * Further, it is always safe to dereference the p_pidp member 3563 * of one's own proc structure. (These are truisms becuase 3564 * threads and processes don't clean up their own state -- 3565 * they leave that task to whomever reaps them.) 3566 */ 3567 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3568 #else 3569 return ((uint64_t)curproc->p_pid); 3570 #endif 3571 3572 case DIF_VAR_PPID: 3573 if (!dtrace_priv_proc(state)) 3574 return (0); 3575 3576 #ifdef illumos 3577 /* 3578 * See comment in DIF_VAR_PID. 3579 */ 3580 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3581 return (pid0.pid_id); 3582 3583 /* 3584 * It is always safe to dereference one's own t_procp pointer: 3585 * it always points to a valid, allocated proc structure. 3586 * (This is true because threads don't clean up their own 3587 * state -- they leave that task to whomever reaps them.) 3588 */ 3589 return ((uint64_t)curthread->t_procp->p_ppid); 3590 #else 3591 if (curproc->p_pid == proc0.p_pid) 3592 return (curproc->p_pid); 3593 else 3594 return (curproc->p_pptr->p_pid); 3595 #endif 3596 3597 case DIF_VAR_TID: 3598 #ifdef illumos 3599 /* 3600 * See comment in DIF_VAR_PID. 3601 */ 3602 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3603 return (0); 3604 #endif 3605 3606 return ((uint64_t)curthread->t_tid); 3607 3608 case DIF_VAR_EXECARGS: { 3609 struct pargs *p_args = curthread->td_proc->p_args; 3610 3611 if (p_args == NULL) 3612 return(0); 3613 3614 return (dtrace_dif_varstrz( 3615 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3616 } 3617 3618 case DIF_VAR_EXECNAME: 3619 #ifdef illumos 3620 if (!dtrace_priv_proc(state)) 3621 return (0); 3622 3623 /* 3624 * See comment in DIF_VAR_PID. 3625 */ 3626 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3627 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3628 3629 /* 3630 * It is always safe to dereference one's own t_procp pointer: 3631 * it always points to a valid, allocated proc structure. 3632 * (This is true because threads don't clean up their own 3633 * state -- they leave that task to whomever reaps them.) 3634 */ 3635 return (dtrace_dif_varstr( 3636 (uintptr_t)curthread->t_procp->p_user.u_comm, 3637 state, mstate)); 3638 #else 3639 return (dtrace_dif_varstr( 3640 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3641 #endif 3642 3643 case DIF_VAR_ZONENAME: 3644 #ifdef illumos 3645 if (!dtrace_priv_proc(state)) 3646 return (0); 3647 3648 /* 3649 * See comment in DIF_VAR_PID. 3650 */ 3651 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3652 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3653 3654 /* 3655 * It is always safe to dereference one's own t_procp pointer: 3656 * it always points to a valid, allocated proc structure. 3657 * (This is true because threads don't clean up their own 3658 * state -- they leave that task to whomever reaps them.) 3659 */ 3660 return (dtrace_dif_varstr( 3661 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3662 state, mstate)); 3663 #elif defined(__FreeBSD__) 3664 /* 3665 * On FreeBSD, we introduce compatibility to zonename by falling through 3666 * into jailname. 3667 */ 3668 case DIF_VAR_JAILNAME: 3669 if (!dtrace_priv_kernel(state)) 3670 return (0); 3671 3672 return (dtrace_dif_varstr( 3673 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3674 state, mstate)); 3675 3676 case DIF_VAR_JID: 3677 if (!dtrace_priv_kernel(state)) 3678 return (0); 3679 3680 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3681 #else 3682 return (0); 3683 #endif 3684 3685 case DIF_VAR_UID: 3686 if (!dtrace_priv_proc(state)) 3687 return (0); 3688 3689 #ifdef illumos 3690 /* 3691 * See comment in DIF_VAR_PID. 3692 */ 3693 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3694 return ((uint64_t)p0.p_cred->cr_uid); 3695 3696 /* 3697 * It is always safe to dereference one's own t_procp pointer: 3698 * it always points to a valid, allocated proc structure. 3699 * (This is true because threads don't clean up their own 3700 * state -- they leave that task to whomever reaps them.) 3701 * 3702 * Additionally, it is safe to dereference one's own process 3703 * credential, since this is never NULL after process birth. 3704 */ 3705 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3706 #else 3707 return ((uint64_t)curthread->td_ucred->cr_uid); 3708 #endif 3709 3710 case DIF_VAR_GID: 3711 if (!dtrace_priv_proc(state)) 3712 return (0); 3713 3714 #ifdef illumos 3715 /* 3716 * See comment in DIF_VAR_PID. 3717 */ 3718 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3719 return ((uint64_t)p0.p_cred->cr_gid); 3720 3721 /* 3722 * It is always safe to dereference one's own t_procp pointer: 3723 * it always points to a valid, allocated proc structure. 3724 * (This is true because threads don't clean up their own 3725 * state -- they leave that task to whomever reaps them.) 3726 * 3727 * Additionally, it is safe to dereference one's own process 3728 * credential, since this is never NULL after process birth. 3729 */ 3730 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3731 #else 3732 return ((uint64_t)curthread->td_ucred->cr_gid); 3733 #endif 3734 3735 case DIF_VAR_ERRNO: { 3736 #ifdef illumos 3737 klwp_t *lwp; 3738 if (!dtrace_priv_proc(state)) 3739 return (0); 3740 3741 /* 3742 * See comment in DIF_VAR_PID. 3743 */ 3744 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3745 return (0); 3746 3747 /* 3748 * It is always safe to dereference one's own t_lwp pointer in 3749 * the event that this pointer is non-NULL. (This is true 3750 * because threads and lwps don't clean up their own state -- 3751 * they leave that task to whomever reaps them.) 3752 */ 3753 if ((lwp = curthread->t_lwp) == NULL) 3754 return (0); 3755 3756 return ((uint64_t)lwp->lwp_errno); 3757 #else 3758 return (curthread->td_errno); 3759 #endif 3760 } 3761 #ifndef illumos 3762 case DIF_VAR_CPU: { 3763 return curcpu; 3764 } 3765 #endif 3766 default: 3767 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3768 return (0); 3769 } 3770 } 3771 3772 3773 typedef enum dtrace_json_state { 3774 DTRACE_JSON_REST = 1, 3775 DTRACE_JSON_OBJECT, 3776 DTRACE_JSON_STRING, 3777 DTRACE_JSON_STRING_ESCAPE, 3778 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3779 DTRACE_JSON_COLON, 3780 DTRACE_JSON_COMMA, 3781 DTRACE_JSON_VALUE, 3782 DTRACE_JSON_IDENTIFIER, 3783 DTRACE_JSON_NUMBER, 3784 DTRACE_JSON_NUMBER_FRAC, 3785 DTRACE_JSON_NUMBER_EXP, 3786 DTRACE_JSON_COLLECT_OBJECT 3787 } dtrace_json_state_t; 3788 3789 /* 3790 * This function possesses just enough knowledge about JSON to extract a single 3791 * value from a JSON string and store it in the scratch buffer. It is able 3792 * to extract nested object values, and members of arrays by index. 3793 * 3794 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3795 * be looked up as we descend into the object tree. e.g. 3796 * 3797 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3798 * with nelems = 5. 3799 * 3800 * The run time of this function must be bounded above by strsize to limit the 3801 * amount of work done in probe context. As such, it is implemented as a 3802 * simple state machine, reading one character at a time using safe loads 3803 * until we find the requested element, hit a parsing error or run off the 3804 * end of the object or string. 3805 * 3806 * As there is no way for a subroutine to return an error without interrupting 3807 * clause execution, we simply return NULL in the event of a missing key or any 3808 * other error condition. Each NULL return in this function is commented with 3809 * the error condition it represents -- parsing or otherwise. 3810 * 3811 * The set of states for the state machine closely matches the JSON 3812 * specification (http://json.org/). Briefly: 3813 * 3814 * DTRACE_JSON_REST: 3815 * Skip whitespace until we find either a top-level Object, moving 3816 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3817 * 3818 * DTRACE_JSON_OBJECT: 3819 * Locate the next key String in an Object. Sets a flag to denote 3820 * the next String as a key string and moves to DTRACE_JSON_STRING. 3821 * 3822 * DTRACE_JSON_COLON: 3823 * Skip whitespace until we find the colon that separates key Strings 3824 * from their values. Once found, move to DTRACE_JSON_VALUE. 3825 * 3826 * DTRACE_JSON_VALUE: 3827 * Detects the type of the next value (String, Number, Identifier, Object 3828 * or Array) and routes to the states that process that type. Here we also 3829 * deal with the element selector list if we are requested to traverse down 3830 * into the object tree. 3831 * 3832 * DTRACE_JSON_COMMA: 3833 * Skip whitespace until we find the comma that separates key-value pairs 3834 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3835 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3836 * states return to this state at the end of their value, unless otherwise 3837 * noted. 3838 * 3839 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3840 * Processes a Number literal from the JSON, including any exponent 3841 * component that may be present. Numbers are returned as strings, which 3842 * may be passed to strtoll() if an integer is required. 3843 * 3844 * DTRACE_JSON_IDENTIFIER: 3845 * Processes a "true", "false" or "null" literal in the JSON. 3846 * 3847 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3848 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3849 * Processes a String literal from the JSON, whether the String denotes 3850 * a key, a value or part of a larger Object. Handles all escape sequences 3851 * present in the specification, including four-digit unicode characters, 3852 * but merely includes the escape sequence without converting it to the 3853 * actual escaped character. If the String is flagged as a key, we 3854 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3855 * 3856 * DTRACE_JSON_COLLECT_OBJECT: 3857 * This state collects an entire Object (or Array), correctly handling 3858 * embedded strings. If the full element selector list matches this nested 3859 * object, we return the Object in full as a string. If not, we use this 3860 * state to skip to the next value at this level and continue processing. 3861 * 3862 * NOTE: This function uses various macros from strtolctype.h to manipulate 3863 * digit values, etc -- these have all been checked to ensure they make 3864 * no additional function calls. 3865 */ 3866 static char * 3867 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3868 char *dest) 3869 { 3870 dtrace_json_state_t state = DTRACE_JSON_REST; 3871 int64_t array_elem = INT64_MIN; 3872 int64_t array_pos = 0; 3873 uint8_t escape_unicount = 0; 3874 boolean_t string_is_key = B_FALSE; 3875 boolean_t collect_object = B_FALSE; 3876 boolean_t found_key = B_FALSE; 3877 boolean_t in_array = B_FALSE; 3878 uint32_t braces = 0, brackets = 0; 3879 char *elem = elemlist; 3880 char *dd = dest; 3881 uintptr_t cur; 3882 3883 for (cur = json; cur < json + size; cur++) { 3884 char cc = dtrace_load8(cur); 3885 if (cc == '\0') 3886 return (NULL); 3887 3888 switch (state) { 3889 case DTRACE_JSON_REST: 3890 if (isspace(cc)) 3891 break; 3892 3893 if (cc == '{') { 3894 state = DTRACE_JSON_OBJECT; 3895 break; 3896 } 3897 3898 if (cc == '[') { 3899 in_array = B_TRUE; 3900 array_pos = 0; 3901 array_elem = dtrace_strtoll(elem, 10, size); 3902 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3903 state = DTRACE_JSON_VALUE; 3904 break; 3905 } 3906 3907 /* 3908 * ERROR: expected to find a top-level object or array. 3909 */ 3910 return (NULL); 3911 case DTRACE_JSON_OBJECT: 3912 if (isspace(cc)) 3913 break; 3914 3915 if (cc == '"') { 3916 state = DTRACE_JSON_STRING; 3917 string_is_key = B_TRUE; 3918 break; 3919 } 3920 3921 /* 3922 * ERROR: either the object did not start with a key 3923 * string, or we've run off the end of the object 3924 * without finding the requested key. 3925 */ 3926 return (NULL); 3927 case DTRACE_JSON_STRING: 3928 if (cc == '\\') { 3929 *dd++ = '\\'; 3930 state = DTRACE_JSON_STRING_ESCAPE; 3931 break; 3932 } 3933 3934 if (cc == '"') { 3935 if (collect_object) { 3936 /* 3937 * We don't reset the dest here, as 3938 * the string is part of a larger 3939 * object being collected. 3940 */ 3941 *dd++ = cc; 3942 collect_object = B_FALSE; 3943 state = DTRACE_JSON_COLLECT_OBJECT; 3944 break; 3945 } 3946 *dd = '\0'; 3947 dd = dest; /* reset string buffer */ 3948 if (string_is_key) { 3949 if (dtrace_strncmp(dest, elem, 3950 size) == 0) 3951 found_key = B_TRUE; 3952 } else if (found_key) { 3953 if (nelems > 1) { 3954 /* 3955 * We expected an object, not 3956 * this string. 3957 */ 3958 return (NULL); 3959 } 3960 return (dest); 3961 } 3962 state = string_is_key ? DTRACE_JSON_COLON : 3963 DTRACE_JSON_COMMA; 3964 string_is_key = B_FALSE; 3965 break; 3966 } 3967 3968 *dd++ = cc; 3969 break; 3970 case DTRACE_JSON_STRING_ESCAPE: 3971 *dd++ = cc; 3972 if (cc == 'u') { 3973 escape_unicount = 0; 3974 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3975 } else { 3976 state = DTRACE_JSON_STRING; 3977 } 3978 break; 3979 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3980 if (!isxdigit(cc)) { 3981 /* 3982 * ERROR: invalid unicode escape, expected 3983 * four valid hexidecimal digits. 3984 */ 3985 return (NULL); 3986 } 3987 3988 *dd++ = cc; 3989 if (++escape_unicount == 4) 3990 state = DTRACE_JSON_STRING; 3991 break; 3992 case DTRACE_JSON_COLON: 3993 if (isspace(cc)) 3994 break; 3995 3996 if (cc == ':') { 3997 state = DTRACE_JSON_VALUE; 3998 break; 3999 } 4000 4001 /* 4002 * ERROR: expected a colon. 4003 */ 4004 return (NULL); 4005 case DTRACE_JSON_COMMA: 4006 if (isspace(cc)) 4007 break; 4008 4009 if (cc == ',') { 4010 if (in_array) { 4011 state = DTRACE_JSON_VALUE; 4012 if (++array_pos == array_elem) 4013 found_key = B_TRUE; 4014 } else { 4015 state = DTRACE_JSON_OBJECT; 4016 } 4017 break; 4018 } 4019 4020 /* 4021 * ERROR: either we hit an unexpected character, or 4022 * we reached the end of the object or array without 4023 * finding the requested key. 4024 */ 4025 return (NULL); 4026 case DTRACE_JSON_IDENTIFIER: 4027 if (islower(cc)) { 4028 *dd++ = cc; 4029 break; 4030 } 4031 4032 *dd = '\0'; 4033 dd = dest; /* reset string buffer */ 4034 4035 if (dtrace_strncmp(dest, "true", 5) == 0 || 4036 dtrace_strncmp(dest, "false", 6) == 0 || 4037 dtrace_strncmp(dest, "null", 5) == 0) { 4038 if (found_key) { 4039 if (nelems > 1) { 4040 /* 4041 * ERROR: We expected an object, 4042 * not this identifier. 4043 */ 4044 return (NULL); 4045 } 4046 return (dest); 4047 } else { 4048 cur--; 4049 state = DTRACE_JSON_COMMA; 4050 break; 4051 } 4052 } 4053 4054 /* 4055 * ERROR: we did not recognise the identifier as one 4056 * of those in the JSON specification. 4057 */ 4058 return (NULL); 4059 case DTRACE_JSON_NUMBER: 4060 if (cc == '.') { 4061 *dd++ = cc; 4062 state = DTRACE_JSON_NUMBER_FRAC; 4063 break; 4064 } 4065 4066 if (cc == 'x' || cc == 'X') { 4067 /* 4068 * ERROR: specification explicitly excludes 4069 * hexidecimal or octal numbers. 4070 */ 4071 return (NULL); 4072 } 4073 4074 /* FALLTHRU */ 4075 case DTRACE_JSON_NUMBER_FRAC: 4076 if (cc == 'e' || cc == 'E') { 4077 *dd++ = cc; 4078 state = DTRACE_JSON_NUMBER_EXP; 4079 break; 4080 } 4081 4082 if (cc == '+' || cc == '-') { 4083 /* 4084 * ERROR: expect sign as part of exponent only. 4085 */ 4086 return (NULL); 4087 } 4088 /* FALLTHRU */ 4089 case DTRACE_JSON_NUMBER_EXP: 4090 if (isdigit(cc) || cc == '+' || cc == '-') { 4091 *dd++ = cc; 4092 break; 4093 } 4094 4095 *dd = '\0'; 4096 dd = dest; /* reset string buffer */ 4097 if (found_key) { 4098 if (nelems > 1) { 4099 /* 4100 * ERROR: We expected an object, not 4101 * this number. 4102 */ 4103 return (NULL); 4104 } 4105 return (dest); 4106 } 4107 4108 cur--; 4109 state = DTRACE_JSON_COMMA; 4110 break; 4111 case DTRACE_JSON_VALUE: 4112 if (isspace(cc)) 4113 break; 4114 4115 if (cc == '{' || cc == '[') { 4116 if (nelems > 1 && found_key) { 4117 in_array = cc == '[' ? B_TRUE : B_FALSE; 4118 /* 4119 * If our element selector directs us 4120 * to descend into this nested object, 4121 * then move to the next selector 4122 * element in the list and restart the 4123 * state machine. 4124 */ 4125 while (*elem != '\0') 4126 elem++; 4127 elem++; /* skip the inter-element NUL */ 4128 nelems--; 4129 dd = dest; 4130 if (in_array) { 4131 state = DTRACE_JSON_VALUE; 4132 array_pos = 0; 4133 array_elem = dtrace_strtoll( 4134 elem, 10, size); 4135 found_key = array_elem == 0 ? 4136 B_TRUE : B_FALSE; 4137 } else { 4138 found_key = B_FALSE; 4139 state = DTRACE_JSON_OBJECT; 4140 } 4141 break; 4142 } 4143 4144 /* 4145 * Otherwise, we wish to either skip this 4146 * nested object or return it in full. 4147 */ 4148 if (cc == '[') 4149 brackets = 1; 4150 else 4151 braces = 1; 4152 *dd++ = cc; 4153 state = DTRACE_JSON_COLLECT_OBJECT; 4154 break; 4155 } 4156 4157 if (cc == '"') { 4158 state = DTRACE_JSON_STRING; 4159 break; 4160 } 4161 4162 if (islower(cc)) { 4163 /* 4164 * Here we deal with true, false and null. 4165 */ 4166 *dd++ = cc; 4167 state = DTRACE_JSON_IDENTIFIER; 4168 break; 4169 } 4170 4171 if (cc == '-' || isdigit(cc)) { 4172 *dd++ = cc; 4173 state = DTRACE_JSON_NUMBER; 4174 break; 4175 } 4176 4177 /* 4178 * ERROR: unexpected character at start of value. 4179 */ 4180 return (NULL); 4181 case DTRACE_JSON_COLLECT_OBJECT: 4182 if (cc == '\0') 4183 /* 4184 * ERROR: unexpected end of input. 4185 */ 4186 return (NULL); 4187 4188 *dd++ = cc; 4189 if (cc == '"') { 4190 collect_object = B_TRUE; 4191 state = DTRACE_JSON_STRING; 4192 break; 4193 } 4194 4195 if (cc == ']') { 4196 if (brackets-- == 0) { 4197 /* 4198 * ERROR: unbalanced brackets. 4199 */ 4200 return (NULL); 4201 } 4202 } else if (cc == '}') { 4203 if (braces-- == 0) { 4204 /* 4205 * ERROR: unbalanced braces. 4206 */ 4207 return (NULL); 4208 } 4209 } else if (cc == '{') { 4210 braces++; 4211 } else if (cc == '[') { 4212 brackets++; 4213 } 4214 4215 if (brackets == 0 && braces == 0) { 4216 if (found_key) { 4217 *dd = '\0'; 4218 return (dest); 4219 } 4220 dd = dest; /* reset string buffer */ 4221 state = DTRACE_JSON_COMMA; 4222 } 4223 break; 4224 } 4225 } 4226 return (NULL); 4227 } 4228 4229 /* 4230 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4231 * Notice that we don't bother validating the proper number of arguments or 4232 * their types in the tuple stack. This isn't needed because all argument 4233 * interpretation is safe because of our load safety -- the worst that can 4234 * happen is that a bogus program can obtain bogus results. 4235 */ 4236 static void 4237 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4238 dtrace_key_t *tupregs, int nargs, 4239 dtrace_mstate_t *mstate, dtrace_state_t *state) 4240 { 4241 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4242 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4243 dtrace_vstate_t *vstate = &state->dts_vstate; 4244 4245 #ifdef illumos 4246 union { 4247 mutex_impl_t mi; 4248 uint64_t mx; 4249 } m; 4250 4251 union { 4252 krwlock_t ri; 4253 uintptr_t rw; 4254 } r; 4255 #else 4256 struct thread *lowner; 4257 union { 4258 struct lock_object *li; 4259 uintptr_t lx; 4260 } l; 4261 #endif 4262 4263 switch (subr) { 4264 case DIF_SUBR_RAND: 4265 regs[rd] = dtrace_xoroshiro128_plus_next( 4266 state->dts_rstate[curcpu]); 4267 break; 4268 4269 #ifdef illumos 4270 case DIF_SUBR_MUTEX_OWNED: 4271 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4272 mstate, vstate)) { 4273 regs[rd] = 0; 4274 break; 4275 } 4276 4277 m.mx = dtrace_load64(tupregs[0].dttk_value); 4278 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4279 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4280 else 4281 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4282 break; 4283 4284 case DIF_SUBR_MUTEX_OWNER: 4285 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4286 mstate, vstate)) { 4287 regs[rd] = 0; 4288 break; 4289 } 4290 4291 m.mx = dtrace_load64(tupregs[0].dttk_value); 4292 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4293 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4294 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4295 else 4296 regs[rd] = 0; 4297 break; 4298 4299 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4300 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4301 mstate, vstate)) { 4302 regs[rd] = 0; 4303 break; 4304 } 4305 4306 m.mx = dtrace_load64(tupregs[0].dttk_value); 4307 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4308 break; 4309 4310 case DIF_SUBR_MUTEX_TYPE_SPIN: 4311 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4312 mstate, vstate)) { 4313 regs[rd] = 0; 4314 break; 4315 } 4316 4317 m.mx = dtrace_load64(tupregs[0].dttk_value); 4318 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4319 break; 4320 4321 case DIF_SUBR_RW_READ_HELD: { 4322 uintptr_t tmp; 4323 4324 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4325 mstate, vstate)) { 4326 regs[rd] = 0; 4327 break; 4328 } 4329 4330 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4331 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4332 break; 4333 } 4334 4335 case DIF_SUBR_RW_WRITE_HELD: 4336 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4337 mstate, vstate)) { 4338 regs[rd] = 0; 4339 break; 4340 } 4341 4342 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4343 regs[rd] = _RW_WRITE_HELD(&r.ri); 4344 break; 4345 4346 case DIF_SUBR_RW_ISWRITER: 4347 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4348 mstate, vstate)) { 4349 regs[rd] = 0; 4350 break; 4351 } 4352 4353 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4354 regs[rd] = _RW_ISWRITER(&r.ri); 4355 break; 4356 4357 #else /* !illumos */ 4358 case DIF_SUBR_MUTEX_OWNED: 4359 if (!dtrace_canload(tupregs[0].dttk_value, 4360 sizeof (struct lock_object), mstate, vstate)) { 4361 regs[rd] = 0; 4362 break; 4363 } 4364 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4365 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4366 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4367 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4368 break; 4369 4370 case DIF_SUBR_MUTEX_OWNER: 4371 if (!dtrace_canload(tupregs[0].dttk_value, 4372 sizeof (struct lock_object), mstate, vstate)) { 4373 regs[rd] = 0; 4374 break; 4375 } 4376 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4378 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4379 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4380 regs[rd] = (uintptr_t)lowner; 4381 break; 4382 4383 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4384 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4385 mstate, vstate)) { 4386 regs[rd] = 0; 4387 break; 4388 } 4389 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4390 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4391 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4392 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4393 break; 4394 4395 case DIF_SUBR_MUTEX_TYPE_SPIN: 4396 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4397 mstate, vstate)) { 4398 regs[rd] = 0; 4399 break; 4400 } 4401 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4402 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4403 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4404 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4405 break; 4406 4407 case DIF_SUBR_RW_READ_HELD: 4408 case DIF_SUBR_SX_SHARED_HELD: 4409 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4410 mstate, vstate)) { 4411 regs[rd] = 0; 4412 break; 4413 } 4414 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4415 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4416 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4417 lowner == NULL; 4418 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4419 break; 4420 4421 case DIF_SUBR_RW_WRITE_HELD: 4422 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4423 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4424 mstate, vstate)) { 4425 regs[rd] = 0; 4426 break; 4427 } 4428 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4429 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4430 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4431 lowner != NULL; 4432 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4433 break; 4434 4435 case DIF_SUBR_RW_ISWRITER: 4436 case DIF_SUBR_SX_ISEXCLUSIVE: 4437 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4438 mstate, vstate)) { 4439 regs[rd] = 0; 4440 break; 4441 } 4442 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4443 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4444 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4445 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4446 regs[rd] = (lowner == curthread); 4447 break; 4448 #endif /* illumos */ 4449 4450 case DIF_SUBR_BCOPY: { 4451 /* 4452 * We need to be sure that the destination is in the scratch 4453 * region -- no other region is allowed. 4454 */ 4455 uintptr_t src = tupregs[0].dttk_value; 4456 uintptr_t dest = tupregs[1].dttk_value; 4457 size_t size = tupregs[2].dttk_value; 4458 4459 if (!dtrace_inscratch(dest, size, mstate)) { 4460 *flags |= CPU_DTRACE_BADADDR; 4461 *illval = regs[rd]; 4462 break; 4463 } 4464 4465 if (!dtrace_canload(src, size, mstate, vstate)) { 4466 regs[rd] = 0; 4467 break; 4468 } 4469 4470 dtrace_bcopy((void *)src, (void *)dest, size); 4471 break; 4472 } 4473 4474 case DIF_SUBR_ALLOCA: 4475 case DIF_SUBR_COPYIN: { 4476 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4477 uint64_t size = 4478 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4479 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4480 4481 /* 4482 * This action doesn't require any credential checks since 4483 * probes will not activate in user contexts to which the 4484 * enabling user does not have permissions. 4485 */ 4486 4487 /* 4488 * Rounding up the user allocation size could have overflowed 4489 * a large, bogus allocation (like -1ULL) to 0. 4490 */ 4491 if (scratch_size < size || 4492 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4493 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4494 regs[rd] = 0; 4495 break; 4496 } 4497 4498 if (subr == DIF_SUBR_COPYIN) { 4499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4500 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4501 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4502 } 4503 4504 mstate->dtms_scratch_ptr += scratch_size; 4505 regs[rd] = dest; 4506 break; 4507 } 4508 4509 case DIF_SUBR_COPYINTO: { 4510 uint64_t size = tupregs[1].dttk_value; 4511 uintptr_t dest = tupregs[2].dttk_value; 4512 4513 /* 4514 * This action doesn't require any credential checks since 4515 * probes will not activate in user contexts to which the 4516 * enabling user does not have permissions. 4517 */ 4518 if (!dtrace_inscratch(dest, size, mstate)) { 4519 *flags |= CPU_DTRACE_BADADDR; 4520 *illval = regs[rd]; 4521 break; 4522 } 4523 4524 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4525 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4526 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4527 break; 4528 } 4529 4530 case DIF_SUBR_COPYINSTR: { 4531 uintptr_t dest = mstate->dtms_scratch_ptr; 4532 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4533 4534 if (nargs > 1 && tupregs[1].dttk_value < size) 4535 size = tupregs[1].dttk_value + 1; 4536 4537 /* 4538 * This action doesn't require any credential checks since 4539 * probes will not activate in user contexts to which the 4540 * enabling user does not have permissions. 4541 */ 4542 if (!DTRACE_INSCRATCH(mstate, size)) { 4543 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4544 regs[rd] = 0; 4545 break; 4546 } 4547 4548 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4549 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4550 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4551 4552 ((char *)dest)[size - 1] = '\0'; 4553 mstate->dtms_scratch_ptr += size; 4554 regs[rd] = dest; 4555 break; 4556 } 4557 4558 #ifdef illumos 4559 case DIF_SUBR_MSGSIZE: 4560 case DIF_SUBR_MSGDSIZE: { 4561 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4562 uintptr_t wptr, rptr; 4563 size_t count = 0; 4564 int cont = 0; 4565 4566 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4567 4568 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4569 vstate)) { 4570 regs[rd] = 0; 4571 break; 4572 } 4573 4574 wptr = dtrace_loadptr(baddr + 4575 offsetof(mblk_t, b_wptr)); 4576 4577 rptr = dtrace_loadptr(baddr + 4578 offsetof(mblk_t, b_rptr)); 4579 4580 if (wptr < rptr) { 4581 *flags |= CPU_DTRACE_BADADDR; 4582 *illval = tupregs[0].dttk_value; 4583 break; 4584 } 4585 4586 daddr = dtrace_loadptr(baddr + 4587 offsetof(mblk_t, b_datap)); 4588 4589 baddr = dtrace_loadptr(baddr + 4590 offsetof(mblk_t, b_cont)); 4591 4592 /* 4593 * We want to prevent against denial-of-service here, 4594 * so we're only going to search the list for 4595 * dtrace_msgdsize_max mblks. 4596 */ 4597 if (cont++ > dtrace_msgdsize_max) { 4598 *flags |= CPU_DTRACE_ILLOP; 4599 break; 4600 } 4601 4602 if (subr == DIF_SUBR_MSGDSIZE) { 4603 if (dtrace_load8(daddr + 4604 offsetof(dblk_t, db_type)) != M_DATA) 4605 continue; 4606 } 4607 4608 count += wptr - rptr; 4609 } 4610 4611 if (!(*flags & CPU_DTRACE_FAULT)) 4612 regs[rd] = count; 4613 4614 break; 4615 } 4616 #endif 4617 4618 case DIF_SUBR_PROGENYOF: { 4619 pid_t pid = tupregs[0].dttk_value; 4620 proc_t *p; 4621 int rval = 0; 4622 4623 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4624 4625 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4626 #ifdef illumos 4627 if (p->p_pidp->pid_id == pid) { 4628 #else 4629 if (p->p_pid == pid) { 4630 #endif 4631 rval = 1; 4632 break; 4633 } 4634 } 4635 4636 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4637 4638 regs[rd] = rval; 4639 break; 4640 } 4641 4642 case DIF_SUBR_SPECULATION: 4643 regs[rd] = dtrace_speculation(state); 4644 break; 4645 4646 case DIF_SUBR_COPYOUT: { 4647 uintptr_t kaddr = tupregs[0].dttk_value; 4648 uintptr_t uaddr = tupregs[1].dttk_value; 4649 uint64_t size = tupregs[2].dttk_value; 4650 4651 if (!dtrace_destructive_disallow && 4652 dtrace_priv_proc_control(state) && 4653 !dtrace_istoxic(kaddr, size) && 4654 dtrace_canload(kaddr, size, mstate, vstate)) { 4655 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4656 dtrace_copyout(kaddr, uaddr, size, flags); 4657 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4658 } 4659 break; 4660 } 4661 4662 case DIF_SUBR_COPYOUTSTR: { 4663 uintptr_t kaddr = tupregs[0].dttk_value; 4664 uintptr_t uaddr = tupregs[1].dttk_value; 4665 uint64_t size = tupregs[2].dttk_value; 4666 size_t lim; 4667 4668 if (!dtrace_destructive_disallow && 4669 dtrace_priv_proc_control(state) && 4670 !dtrace_istoxic(kaddr, size) && 4671 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4672 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4673 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4674 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4675 } 4676 break; 4677 } 4678 4679 case DIF_SUBR_STRLEN: { 4680 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4681 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4682 size_t lim; 4683 4684 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4685 regs[rd] = 0; 4686 break; 4687 } 4688 4689 regs[rd] = dtrace_strlen((char *)addr, lim); 4690 break; 4691 } 4692 4693 case DIF_SUBR_STRCHR: 4694 case DIF_SUBR_STRRCHR: { 4695 /* 4696 * We're going to iterate over the string looking for the 4697 * specified character. We will iterate until we have reached 4698 * the string length or we have found the character. If this 4699 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4700 * of the specified character instead of the first. 4701 */ 4702 uintptr_t addr = tupregs[0].dttk_value; 4703 uintptr_t addr_limit; 4704 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4705 size_t lim; 4706 char c, target = (char)tupregs[1].dttk_value; 4707 4708 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4709 regs[rd] = 0; 4710 break; 4711 } 4712 addr_limit = addr + lim; 4713 4714 for (regs[rd] = 0; addr < addr_limit; addr++) { 4715 if ((c = dtrace_load8(addr)) == target) { 4716 regs[rd] = addr; 4717 4718 if (subr == DIF_SUBR_STRCHR) 4719 break; 4720 } 4721 4722 if (c == '\0') 4723 break; 4724 } 4725 break; 4726 } 4727 4728 case DIF_SUBR_STRSTR: 4729 case DIF_SUBR_INDEX: 4730 case DIF_SUBR_RINDEX: { 4731 /* 4732 * We're going to iterate over the string looking for the 4733 * specified string. We will iterate until we have reached 4734 * the string length or we have found the string. (Yes, this 4735 * is done in the most naive way possible -- but considering 4736 * that the string we're searching for is likely to be 4737 * relatively short, the complexity of Rabin-Karp or similar 4738 * hardly seems merited.) 4739 */ 4740 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4741 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4742 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4743 size_t len = dtrace_strlen(addr, size); 4744 size_t sublen = dtrace_strlen(substr, size); 4745 char *limit = addr + len, *orig = addr; 4746 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4747 int inc = 1; 4748 4749 regs[rd] = notfound; 4750 4751 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4752 regs[rd] = 0; 4753 break; 4754 } 4755 4756 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4757 vstate)) { 4758 regs[rd] = 0; 4759 break; 4760 } 4761 4762 /* 4763 * strstr() and index()/rindex() have similar semantics if 4764 * both strings are the empty string: strstr() returns a 4765 * pointer to the (empty) string, and index() and rindex() 4766 * both return index 0 (regardless of any position argument). 4767 */ 4768 if (sublen == 0 && len == 0) { 4769 if (subr == DIF_SUBR_STRSTR) 4770 regs[rd] = (uintptr_t)addr; 4771 else 4772 regs[rd] = 0; 4773 break; 4774 } 4775 4776 if (subr != DIF_SUBR_STRSTR) { 4777 if (subr == DIF_SUBR_RINDEX) { 4778 limit = orig - 1; 4779 addr += len; 4780 inc = -1; 4781 } 4782 4783 /* 4784 * Both index() and rindex() take an optional position 4785 * argument that denotes the starting position. 4786 */ 4787 if (nargs == 3) { 4788 int64_t pos = (int64_t)tupregs[2].dttk_value; 4789 4790 /* 4791 * If the position argument to index() is 4792 * negative, Perl implicitly clamps it at 4793 * zero. This semantic is a little surprising 4794 * given the special meaning of negative 4795 * positions to similar Perl functions like 4796 * substr(), but it appears to reflect a 4797 * notion that index() can start from a 4798 * negative index and increment its way up to 4799 * the string. Given this notion, Perl's 4800 * rindex() is at least self-consistent in 4801 * that it implicitly clamps positions greater 4802 * than the string length to be the string 4803 * length. Where Perl completely loses 4804 * coherence, however, is when the specified 4805 * substring is the empty string (""). In 4806 * this case, even if the position is 4807 * negative, rindex() returns 0 -- and even if 4808 * the position is greater than the length, 4809 * index() returns the string length. These 4810 * semantics violate the notion that index() 4811 * should never return a value less than the 4812 * specified position and that rindex() should 4813 * never return a value greater than the 4814 * specified position. (One assumes that 4815 * these semantics are artifacts of Perl's 4816 * implementation and not the results of 4817 * deliberate design -- it beggars belief that 4818 * even Larry Wall could desire such oddness.) 4819 * While in the abstract one would wish for 4820 * consistent position semantics across 4821 * substr(), index() and rindex() -- or at the 4822 * very least self-consistent position 4823 * semantics for index() and rindex() -- we 4824 * instead opt to keep with the extant Perl 4825 * semantics, in all their broken glory. (Do 4826 * we have more desire to maintain Perl's 4827 * semantics than Perl does? Probably.) 4828 */ 4829 if (subr == DIF_SUBR_RINDEX) { 4830 if (pos < 0) { 4831 if (sublen == 0) 4832 regs[rd] = 0; 4833 break; 4834 } 4835 4836 if (pos > len) 4837 pos = len; 4838 } else { 4839 if (pos < 0) 4840 pos = 0; 4841 4842 if (pos >= len) { 4843 if (sublen == 0) 4844 regs[rd] = len; 4845 break; 4846 } 4847 } 4848 4849 addr = orig + pos; 4850 } 4851 } 4852 4853 for (regs[rd] = notfound; addr != limit; addr += inc) { 4854 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4855 if (subr != DIF_SUBR_STRSTR) { 4856 /* 4857 * As D index() and rindex() are 4858 * modeled on Perl (and not on awk), 4859 * we return a zero-based (and not a 4860 * one-based) index. (For you Perl 4861 * weenies: no, we're not going to add 4862 * $[ -- and shouldn't you be at a con 4863 * or something?) 4864 */ 4865 regs[rd] = (uintptr_t)(addr - orig); 4866 break; 4867 } 4868 4869 ASSERT(subr == DIF_SUBR_STRSTR); 4870 regs[rd] = (uintptr_t)addr; 4871 break; 4872 } 4873 } 4874 4875 break; 4876 } 4877 4878 case DIF_SUBR_STRTOK: { 4879 uintptr_t addr = tupregs[0].dttk_value; 4880 uintptr_t tokaddr = tupregs[1].dttk_value; 4881 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4882 uintptr_t limit, toklimit; 4883 size_t clim; 4884 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4885 char *dest = (char *)mstate->dtms_scratch_ptr; 4886 int i; 4887 4888 /* 4889 * Check both the token buffer and (later) the input buffer, 4890 * since both could be non-scratch addresses. 4891 */ 4892 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4893 regs[rd] = 0; 4894 break; 4895 } 4896 toklimit = tokaddr + clim; 4897 4898 if (!DTRACE_INSCRATCH(mstate, size)) { 4899 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4900 regs[rd] = 0; 4901 break; 4902 } 4903 4904 if (addr == 0) { 4905 /* 4906 * If the address specified is NULL, we use our saved 4907 * strtok pointer from the mstate. Note that this 4908 * means that the saved strtok pointer is _only_ 4909 * valid within multiple enablings of the same probe -- 4910 * it behaves like an implicit clause-local variable. 4911 */ 4912 addr = mstate->dtms_strtok; 4913 limit = mstate->dtms_strtok_limit; 4914 } else { 4915 /* 4916 * If the user-specified address is non-NULL we must 4917 * access check it. This is the only time we have 4918 * a chance to do so, since this address may reside 4919 * in the string table of this clause-- future calls 4920 * (when we fetch addr from mstate->dtms_strtok) 4921 * would fail this access check. 4922 */ 4923 if (!dtrace_strcanload(addr, size, &clim, mstate, 4924 vstate)) { 4925 regs[rd] = 0; 4926 break; 4927 } 4928 limit = addr + clim; 4929 } 4930 4931 /* 4932 * First, zero the token map, and then process the token 4933 * string -- setting a bit in the map for every character 4934 * found in the token string. 4935 */ 4936 for (i = 0; i < sizeof (tokmap); i++) 4937 tokmap[i] = 0; 4938 4939 for (; tokaddr < toklimit; tokaddr++) { 4940 if ((c = dtrace_load8(tokaddr)) == '\0') 4941 break; 4942 4943 ASSERT((c >> 3) < sizeof (tokmap)); 4944 tokmap[c >> 3] |= (1 << (c & 0x7)); 4945 } 4946 4947 for (; addr < limit; addr++) { 4948 /* 4949 * We're looking for a character that is _not_ 4950 * contained in the token string. 4951 */ 4952 if ((c = dtrace_load8(addr)) == '\0') 4953 break; 4954 4955 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4956 break; 4957 } 4958 4959 if (c == '\0') { 4960 /* 4961 * We reached the end of the string without finding 4962 * any character that was not in the token string. 4963 * We return NULL in this case, and we set the saved 4964 * address to NULL as well. 4965 */ 4966 regs[rd] = 0; 4967 mstate->dtms_strtok = 0; 4968 mstate->dtms_strtok_limit = 0; 4969 break; 4970 } 4971 4972 /* 4973 * From here on, we're copying into the destination string. 4974 */ 4975 for (i = 0; addr < limit && i < size - 1; addr++) { 4976 if ((c = dtrace_load8(addr)) == '\0') 4977 break; 4978 4979 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4980 break; 4981 4982 ASSERT(i < size); 4983 dest[i++] = c; 4984 } 4985 4986 ASSERT(i < size); 4987 dest[i] = '\0'; 4988 regs[rd] = (uintptr_t)dest; 4989 mstate->dtms_scratch_ptr += size; 4990 mstate->dtms_strtok = addr; 4991 mstate->dtms_strtok_limit = limit; 4992 break; 4993 } 4994 4995 case DIF_SUBR_SUBSTR: { 4996 uintptr_t s = tupregs[0].dttk_value; 4997 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4998 char *d = (char *)mstate->dtms_scratch_ptr; 4999 int64_t index = (int64_t)tupregs[1].dttk_value; 5000 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5001 size_t len = dtrace_strlen((char *)s, size); 5002 int64_t i; 5003 5004 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5005 regs[rd] = 0; 5006 break; 5007 } 5008 5009 if (!DTRACE_INSCRATCH(mstate, size)) { 5010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5011 regs[rd] = 0; 5012 break; 5013 } 5014 5015 if (nargs <= 2) 5016 remaining = (int64_t)size; 5017 5018 if (index < 0) { 5019 index += len; 5020 5021 if (index < 0 && index + remaining > 0) { 5022 remaining += index; 5023 index = 0; 5024 } 5025 } 5026 5027 if (index >= len || index < 0) { 5028 remaining = 0; 5029 } else if (remaining < 0) { 5030 remaining += len - index; 5031 } else if (index + remaining > size) { 5032 remaining = size - index; 5033 } 5034 5035 for (i = 0; i < remaining; i++) { 5036 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5037 break; 5038 } 5039 5040 d[i] = '\0'; 5041 5042 mstate->dtms_scratch_ptr += size; 5043 regs[rd] = (uintptr_t)d; 5044 break; 5045 } 5046 5047 case DIF_SUBR_JSON: { 5048 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5049 uintptr_t json = tupregs[0].dttk_value; 5050 size_t jsonlen = dtrace_strlen((char *)json, size); 5051 uintptr_t elem = tupregs[1].dttk_value; 5052 size_t elemlen = dtrace_strlen((char *)elem, size); 5053 5054 char *dest = (char *)mstate->dtms_scratch_ptr; 5055 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5056 char *ee = elemlist; 5057 int nelems = 1; 5058 uintptr_t cur; 5059 5060 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5061 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5062 regs[rd] = 0; 5063 break; 5064 } 5065 5066 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5067 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5068 regs[rd] = 0; 5069 break; 5070 } 5071 5072 /* 5073 * Read the element selector and split it up into a packed list 5074 * of strings. 5075 */ 5076 for (cur = elem; cur < elem + elemlen; cur++) { 5077 char cc = dtrace_load8(cur); 5078 5079 if (cur == elem && cc == '[') { 5080 /* 5081 * If the first element selector key is 5082 * actually an array index then ignore the 5083 * bracket. 5084 */ 5085 continue; 5086 } 5087 5088 if (cc == ']') 5089 continue; 5090 5091 if (cc == '.' || cc == '[') { 5092 nelems++; 5093 cc = '\0'; 5094 } 5095 5096 *ee++ = cc; 5097 } 5098 *ee++ = '\0'; 5099 5100 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5101 nelems, dest)) != 0) 5102 mstate->dtms_scratch_ptr += jsonlen + 1; 5103 break; 5104 } 5105 5106 case DIF_SUBR_TOUPPER: 5107 case DIF_SUBR_TOLOWER: { 5108 uintptr_t s = tupregs[0].dttk_value; 5109 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5110 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5111 size_t len = dtrace_strlen((char *)s, size); 5112 char lower, upper, convert; 5113 int64_t i; 5114 5115 if (subr == DIF_SUBR_TOUPPER) { 5116 lower = 'a'; 5117 upper = 'z'; 5118 convert = 'A'; 5119 } else { 5120 lower = 'A'; 5121 upper = 'Z'; 5122 convert = 'a'; 5123 } 5124 5125 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5126 regs[rd] = 0; 5127 break; 5128 } 5129 5130 if (!DTRACE_INSCRATCH(mstate, size)) { 5131 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5132 regs[rd] = 0; 5133 break; 5134 } 5135 5136 for (i = 0; i < size - 1; i++) { 5137 if ((c = dtrace_load8(s + i)) == '\0') 5138 break; 5139 5140 if (c >= lower && c <= upper) 5141 c = convert + (c - lower); 5142 5143 dest[i] = c; 5144 } 5145 5146 ASSERT(i < size); 5147 dest[i] = '\0'; 5148 regs[rd] = (uintptr_t)dest; 5149 mstate->dtms_scratch_ptr += size; 5150 break; 5151 } 5152 5153 #ifdef illumos 5154 case DIF_SUBR_GETMAJOR: 5155 #ifdef _LP64 5156 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5157 #else 5158 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5159 #endif 5160 break; 5161 5162 case DIF_SUBR_GETMINOR: 5163 #ifdef _LP64 5164 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5165 #else 5166 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5167 #endif 5168 break; 5169 5170 case DIF_SUBR_DDI_PATHNAME: { 5171 /* 5172 * This one is a galactic mess. We are going to roughly 5173 * emulate ddi_pathname(), but it's made more complicated 5174 * by the fact that we (a) want to include the minor name and 5175 * (b) must proceed iteratively instead of recursively. 5176 */ 5177 uintptr_t dest = mstate->dtms_scratch_ptr; 5178 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5179 char *start = (char *)dest, *end = start + size - 1; 5180 uintptr_t daddr = tupregs[0].dttk_value; 5181 int64_t minor = (int64_t)tupregs[1].dttk_value; 5182 char *s; 5183 int i, len, depth = 0; 5184 5185 /* 5186 * Due to all the pointer jumping we do and context we must 5187 * rely upon, we just mandate that the user must have kernel 5188 * read privileges to use this routine. 5189 */ 5190 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5191 *flags |= CPU_DTRACE_KPRIV; 5192 *illval = daddr; 5193 regs[rd] = 0; 5194 } 5195 5196 if (!DTRACE_INSCRATCH(mstate, size)) { 5197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5198 regs[rd] = 0; 5199 break; 5200 } 5201 5202 *end = '\0'; 5203 5204 /* 5205 * We want to have a name for the minor. In order to do this, 5206 * we need to walk the minor list from the devinfo. We want 5207 * to be sure that we don't infinitely walk a circular list, 5208 * so we check for circularity by sending a scout pointer 5209 * ahead two elements for every element that we iterate over; 5210 * if the list is circular, these will ultimately point to the 5211 * same element. You may recognize this little trick as the 5212 * answer to a stupid interview question -- one that always 5213 * seems to be asked by those who had to have it laboriously 5214 * explained to them, and who can't even concisely describe 5215 * the conditions under which one would be forced to resort to 5216 * this technique. Needless to say, those conditions are 5217 * found here -- and probably only here. Is this the only use 5218 * of this infamous trick in shipping, production code? If it 5219 * isn't, it probably should be... 5220 */ 5221 if (minor != -1) { 5222 uintptr_t maddr = dtrace_loadptr(daddr + 5223 offsetof(struct dev_info, devi_minor)); 5224 5225 uintptr_t next = offsetof(struct ddi_minor_data, next); 5226 uintptr_t name = offsetof(struct ddi_minor_data, 5227 d_minor) + offsetof(struct ddi_minor, name); 5228 uintptr_t dev = offsetof(struct ddi_minor_data, 5229 d_minor) + offsetof(struct ddi_minor, dev); 5230 uintptr_t scout; 5231 5232 if (maddr != NULL) 5233 scout = dtrace_loadptr(maddr + next); 5234 5235 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5236 uint64_t m; 5237 #ifdef _LP64 5238 m = dtrace_load64(maddr + dev) & MAXMIN64; 5239 #else 5240 m = dtrace_load32(maddr + dev) & MAXMIN; 5241 #endif 5242 if (m != minor) { 5243 maddr = dtrace_loadptr(maddr + next); 5244 5245 if (scout == NULL) 5246 continue; 5247 5248 scout = dtrace_loadptr(scout + next); 5249 5250 if (scout == NULL) 5251 continue; 5252 5253 scout = dtrace_loadptr(scout + next); 5254 5255 if (scout == NULL) 5256 continue; 5257 5258 if (scout == maddr) { 5259 *flags |= CPU_DTRACE_ILLOP; 5260 break; 5261 } 5262 5263 continue; 5264 } 5265 5266 /* 5267 * We have the minor data. Now we need to 5268 * copy the minor's name into the end of the 5269 * pathname. 5270 */ 5271 s = (char *)dtrace_loadptr(maddr + name); 5272 len = dtrace_strlen(s, size); 5273 5274 if (*flags & CPU_DTRACE_FAULT) 5275 break; 5276 5277 if (len != 0) { 5278 if ((end -= (len + 1)) < start) 5279 break; 5280 5281 *end = ':'; 5282 } 5283 5284 for (i = 1; i <= len; i++) 5285 end[i] = dtrace_load8((uintptr_t)s++); 5286 break; 5287 } 5288 } 5289 5290 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5291 ddi_node_state_t devi_state; 5292 5293 devi_state = dtrace_load32(daddr + 5294 offsetof(struct dev_info, devi_node_state)); 5295 5296 if (*flags & CPU_DTRACE_FAULT) 5297 break; 5298 5299 if (devi_state >= DS_INITIALIZED) { 5300 s = (char *)dtrace_loadptr(daddr + 5301 offsetof(struct dev_info, devi_addr)); 5302 len = dtrace_strlen(s, size); 5303 5304 if (*flags & CPU_DTRACE_FAULT) 5305 break; 5306 5307 if (len != 0) { 5308 if ((end -= (len + 1)) < start) 5309 break; 5310 5311 *end = '@'; 5312 } 5313 5314 for (i = 1; i <= len; i++) 5315 end[i] = dtrace_load8((uintptr_t)s++); 5316 } 5317 5318 /* 5319 * Now for the node name... 5320 */ 5321 s = (char *)dtrace_loadptr(daddr + 5322 offsetof(struct dev_info, devi_node_name)); 5323 5324 daddr = dtrace_loadptr(daddr + 5325 offsetof(struct dev_info, devi_parent)); 5326 5327 /* 5328 * If our parent is NULL (that is, if we're the root 5329 * node), we're going to use the special path 5330 * "devices". 5331 */ 5332 if (daddr == 0) 5333 s = "devices"; 5334 5335 len = dtrace_strlen(s, size); 5336 if (*flags & CPU_DTRACE_FAULT) 5337 break; 5338 5339 if ((end -= (len + 1)) < start) 5340 break; 5341 5342 for (i = 1; i <= len; i++) 5343 end[i] = dtrace_load8((uintptr_t)s++); 5344 *end = '/'; 5345 5346 if (depth++ > dtrace_devdepth_max) { 5347 *flags |= CPU_DTRACE_ILLOP; 5348 break; 5349 } 5350 } 5351 5352 if (end < start) 5353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5354 5355 if (daddr == 0) { 5356 regs[rd] = (uintptr_t)end; 5357 mstate->dtms_scratch_ptr += size; 5358 } 5359 5360 break; 5361 } 5362 #endif 5363 5364 case DIF_SUBR_STRJOIN: { 5365 char *d = (char *)mstate->dtms_scratch_ptr; 5366 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5367 uintptr_t s1 = tupregs[0].dttk_value; 5368 uintptr_t s2 = tupregs[1].dttk_value; 5369 int i = 0, j = 0; 5370 size_t lim1, lim2; 5371 char c; 5372 5373 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5374 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5375 regs[rd] = 0; 5376 break; 5377 } 5378 5379 if (!DTRACE_INSCRATCH(mstate, size)) { 5380 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5381 regs[rd] = 0; 5382 break; 5383 } 5384 5385 for (;;) { 5386 if (i >= size) { 5387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5388 regs[rd] = 0; 5389 break; 5390 } 5391 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5392 if ((d[i++] = c) == '\0') { 5393 i--; 5394 break; 5395 } 5396 } 5397 5398 for (;;) { 5399 if (i >= size) { 5400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5401 regs[rd] = 0; 5402 break; 5403 } 5404 5405 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5406 if ((d[i++] = c) == '\0') 5407 break; 5408 } 5409 5410 if (i < size) { 5411 mstate->dtms_scratch_ptr += i; 5412 regs[rd] = (uintptr_t)d; 5413 } 5414 5415 break; 5416 } 5417 5418 case DIF_SUBR_STRTOLL: { 5419 uintptr_t s = tupregs[0].dttk_value; 5420 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5421 size_t lim; 5422 int base = 10; 5423 5424 if (nargs > 1) { 5425 if ((base = tupregs[1].dttk_value) <= 1 || 5426 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5427 *flags |= CPU_DTRACE_ILLOP; 5428 break; 5429 } 5430 } 5431 5432 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5433 regs[rd] = INT64_MIN; 5434 break; 5435 } 5436 5437 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5438 break; 5439 } 5440 5441 case DIF_SUBR_LLTOSTR: { 5442 int64_t i = (int64_t)tupregs[0].dttk_value; 5443 uint64_t val, digit; 5444 uint64_t size = 65; /* enough room for 2^64 in binary */ 5445 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5446 int base = 10; 5447 5448 if (nargs > 1) { 5449 if ((base = tupregs[1].dttk_value) <= 1 || 5450 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5451 *flags |= CPU_DTRACE_ILLOP; 5452 break; 5453 } 5454 } 5455 5456 val = (base == 10 && i < 0) ? i * -1 : i; 5457 5458 if (!DTRACE_INSCRATCH(mstate, size)) { 5459 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5460 regs[rd] = 0; 5461 break; 5462 } 5463 5464 for (*end-- = '\0'; val; val /= base) { 5465 if ((digit = val % base) <= '9' - '0') { 5466 *end-- = '0' + digit; 5467 } else { 5468 *end-- = 'a' + (digit - ('9' - '0') - 1); 5469 } 5470 } 5471 5472 if (i == 0 && base == 16) 5473 *end-- = '0'; 5474 5475 if (base == 16) 5476 *end-- = 'x'; 5477 5478 if (i == 0 || base == 8 || base == 16) 5479 *end-- = '0'; 5480 5481 if (i < 0 && base == 10) 5482 *end-- = '-'; 5483 5484 regs[rd] = (uintptr_t)end + 1; 5485 mstate->dtms_scratch_ptr += size; 5486 break; 5487 } 5488 5489 case DIF_SUBR_HTONS: 5490 case DIF_SUBR_NTOHS: 5491 #if BYTE_ORDER == BIG_ENDIAN 5492 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5493 #else 5494 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5495 #endif 5496 break; 5497 5498 5499 case DIF_SUBR_HTONL: 5500 case DIF_SUBR_NTOHL: 5501 #if BYTE_ORDER == BIG_ENDIAN 5502 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5503 #else 5504 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5505 #endif 5506 break; 5507 5508 5509 case DIF_SUBR_HTONLL: 5510 case DIF_SUBR_NTOHLL: 5511 #if BYTE_ORDER == BIG_ENDIAN 5512 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5513 #else 5514 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5515 #endif 5516 break; 5517 5518 5519 case DIF_SUBR_DIRNAME: 5520 case DIF_SUBR_BASENAME: { 5521 char *dest = (char *)mstate->dtms_scratch_ptr; 5522 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5523 uintptr_t src = tupregs[0].dttk_value; 5524 int i, j, len = dtrace_strlen((char *)src, size); 5525 int lastbase = -1, firstbase = -1, lastdir = -1; 5526 int start, end; 5527 5528 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5529 regs[rd] = 0; 5530 break; 5531 } 5532 5533 if (!DTRACE_INSCRATCH(mstate, size)) { 5534 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5535 regs[rd] = 0; 5536 break; 5537 } 5538 5539 /* 5540 * The basename and dirname for a zero-length string is 5541 * defined to be "." 5542 */ 5543 if (len == 0) { 5544 len = 1; 5545 src = (uintptr_t)"."; 5546 } 5547 5548 /* 5549 * Start from the back of the string, moving back toward the 5550 * front until we see a character that isn't a slash. That 5551 * character is the last character in the basename. 5552 */ 5553 for (i = len - 1; i >= 0; i--) { 5554 if (dtrace_load8(src + i) != '/') 5555 break; 5556 } 5557 5558 if (i >= 0) 5559 lastbase = i; 5560 5561 /* 5562 * Starting from the last character in the basename, move 5563 * towards the front until we find a slash. The character 5564 * that we processed immediately before that is the first 5565 * character in the basename. 5566 */ 5567 for (; i >= 0; i--) { 5568 if (dtrace_load8(src + i) == '/') 5569 break; 5570 } 5571 5572 if (i >= 0) 5573 firstbase = i + 1; 5574 5575 /* 5576 * Now keep going until we find a non-slash character. That 5577 * character is the last character in the dirname. 5578 */ 5579 for (; i >= 0; i--) { 5580 if (dtrace_load8(src + i) != '/') 5581 break; 5582 } 5583 5584 if (i >= 0) 5585 lastdir = i; 5586 5587 ASSERT(!(lastbase == -1 && firstbase != -1)); 5588 ASSERT(!(firstbase == -1 && lastdir != -1)); 5589 5590 if (lastbase == -1) { 5591 /* 5592 * We didn't find a non-slash character. We know that 5593 * the length is non-zero, so the whole string must be 5594 * slashes. In either the dirname or the basename 5595 * case, we return '/'. 5596 */ 5597 ASSERT(firstbase == -1); 5598 firstbase = lastbase = lastdir = 0; 5599 } 5600 5601 if (firstbase == -1) { 5602 /* 5603 * The entire string consists only of a basename 5604 * component. If we're looking for dirname, we need 5605 * to change our string to be just "."; if we're 5606 * looking for a basename, we'll just set the first 5607 * character of the basename to be 0. 5608 */ 5609 if (subr == DIF_SUBR_DIRNAME) { 5610 ASSERT(lastdir == -1); 5611 src = (uintptr_t)"."; 5612 lastdir = 0; 5613 } else { 5614 firstbase = 0; 5615 } 5616 } 5617 5618 if (subr == DIF_SUBR_DIRNAME) { 5619 if (lastdir == -1) { 5620 /* 5621 * We know that we have a slash in the name -- 5622 * or lastdir would be set to 0, above. And 5623 * because lastdir is -1, we know that this 5624 * slash must be the first character. (That 5625 * is, the full string must be of the form 5626 * "/basename".) In this case, the last 5627 * character of the directory name is 0. 5628 */ 5629 lastdir = 0; 5630 } 5631 5632 start = 0; 5633 end = lastdir; 5634 } else { 5635 ASSERT(subr == DIF_SUBR_BASENAME); 5636 ASSERT(firstbase != -1 && lastbase != -1); 5637 start = firstbase; 5638 end = lastbase; 5639 } 5640 5641 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5642 dest[j] = dtrace_load8(src + i); 5643 5644 dest[j] = '\0'; 5645 regs[rd] = (uintptr_t)dest; 5646 mstate->dtms_scratch_ptr += size; 5647 break; 5648 } 5649 5650 case DIF_SUBR_GETF: { 5651 uintptr_t fd = tupregs[0].dttk_value; 5652 struct filedesc *fdp; 5653 file_t *fp; 5654 5655 if (!dtrace_priv_proc(state)) { 5656 regs[rd] = 0; 5657 break; 5658 } 5659 fdp = curproc->p_fd; 5660 FILEDESC_SLOCK(fdp); 5661 /* 5662 * XXXMJG this looks broken as no ref is taken. 5663 */ 5664 fp = fget_noref(fdp, fd); 5665 mstate->dtms_getf = fp; 5666 regs[rd] = (uintptr_t)fp; 5667 FILEDESC_SUNLOCK(fdp); 5668 break; 5669 } 5670 5671 case DIF_SUBR_CLEANPATH: { 5672 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5673 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5674 uintptr_t src = tupregs[0].dttk_value; 5675 size_t lim; 5676 int i = 0, j = 0; 5677 #ifdef illumos 5678 zone_t *z; 5679 #endif 5680 5681 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5682 regs[rd] = 0; 5683 break; 5684 } 5685 5686 if (!DTRACE_INSCRATCH(mstate, size)) { 5687 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5688 regs[rd] = 0; 5689 break; 5690 } 5691 5692 /* 5693 * Move forward, loading each character. 5694 */ 5695 do { 5696 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5697 next: 5698 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5699 break; 5700 5701 if (c != '/') { 5702 dest[j++] = c; 5703 continue; 5704 } 5705 5706 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5707 5708 if (c == '/') { 5709 /* 5710 * We have two slashes -- we can just advance 5711 * to the next character. 5712 */ 5713 goto next; 5714 } 5715 5716 if (c != '.') { 5717 /* 5718 * This is not "." and it's not ".." -- we can 5719 * just store the "/" and this character and 5720 * drive on. 5721 */ 5722 dest[j++] = '/'; 5723 dest[j++] = c; 5724 continue; 5725 } 5726 5727 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5728 5729 if (c == '/') { 5730 /* 5731 * This is a "/./" component. We're not going 5732 * to store anything in the destination buffer; 5733 * we're just going to go to the next component. 5734 */ 5735 goto next; 5736 } 5737 5738 if (c != '.') { 5739 /* 5740 * This is not ".." -- we can just store the 5741 * "/." and this character and continue 5742 * processing. 5743 */ 5744 dest[j++] = '/'; 5745 dest[j++] = '.'; 5746 dest[j++] = c; 5747 continue; 5748 } 5749 5750 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5751 5752 if (c != '/' && c != '\0') { 5753 /* 5754 * This is not ".." -- it's "..[mumble]". 5755 * We'll store the "/.." and this character 5756 * and continue processing. 5757 */ 5758 dest[j++] = '/'; 5759 dest[j++] = '.'; 5760 dest[j++] = '.'; 5761 dest[j++] = c; 5762 continue; 5763 } 5764 5765 /* 5766 * This is "/../" or "/..\0". We need to back up 5767 * our destination pointer until we find a "/". 5768 */ 5769 i--; 5770 while (j != 0 && dest[--j] != '/') 5771 continue; 5772 5773 if (c == '\0') 5774 dest[++j] = '/'; 5775 } while (c != '\0'); 5776 5777 dest[j] = '\0'; 5778 5779 #ifdef illumos 5780 if (mstate->dtms_getf != NULL && 5781 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5782 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5783 /* 5784 * If we've done a getf() as a part of this ECB and we 5785 * don't have kernel access (and we're not in the global 5786 * zone), check if the path we cleaned up begins with 5787 * the zone's root path, and trim it off if so. Note 5788 * that this is an output cleanliness issue, not a 5789 * security issue: knowing one's zone root path does 5790 * not enable privilege escalation. 5791 */ 5792 if (strstr(dest, z->zone_rootpath) == dest) 5793 dest += strlen(z->zone_rootpath) - 1; 5794 } 5795 #endif 5796 5797 regs[rd] = (uintptr_t)dest; 5798 mstate->dtms_scratch_ptr += size; 5799 break; 5800 } 5801 5802 case DIF_SUBR_INET_NTOA: 5803 case DIF_SUBR_INET_NTOA6: 5804 case DIF_SUBR_INET_NTOP: { 5805 size_t size; 5806 int af, argi, i; 5807 char *base, *end; 5808 5809 if (subr == DIF_SUBR_INET_NTOP) { 5810 af = (int)tupregs[0].dttk_value; 5811 argi = 1; 5812 } else { 5813 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5814 argi = 0; 5815 } 5816 5817 if (af == AF_INET) { 5818 ipaddr_t ip4; 5819 uint8_t *ptr8, val; 5820 5821 if (!dtrace_canload(tupregs[argi].dttk_value, 5822 sizeof (ipaddr_t), mstate, vstate)) { 5823 regs[rd] = 0; 5824 break; 5825 } 5826 5827 /* 5828 * Safely load the IPv4 address. 5829 */ 5830 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5831 5832 /* 5833 * Check an IPv4 string will fit in scratch. 5834 */ 5835 size = INET_ADDRSTRLEN; 5836 if (!DTRACE_INSCRATCH(mstate, size)) { 5837 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5838 regs[rd] = 0; 5839 break; 5840 } 5841 base = (char *)mstate->dtms_scratch_ptr; 5842 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5843 5844 /* 5845 * Stringify as a dotted decimal quad. 5846 */ 5847 *end-- = '\0'; 5848 ptr8 = (uint8_t *)&ip4; 5849 for (i = 3; i >= 0; i--) { 5850 val = ptr8[i]; 5851 5852 if (val == 0) { 5853 *end-- = '0'; 5854 } else { 5855 for (; val; val /= 10) { 5856 *end-- = '0' + (val % 10); 5857 } 5858 } 5859 5860 if (i > 0) 5861 *end-- = '.'; 5862 } 5863 ASSERT(end + 1 >= base); 5864 5865 } else if (af == AF_INET6) { 5866 struct in6_addr ip6; 5867 int firstzero, tryzero, numzero, v6end; 5868 uint16_t val; 5869 const char digits[] = "0123456789abcdef"; 5870 5871 /* 5872 * Stringify using RFC 1884 convention 2 - 16 bit 5873 * hexadecimal values with a zero-run compression. 5874 * Lower case hexadecimal digits are used. 5875 * eg, fe80::214:4fff:fe0b:76c8. 5876 * The IPv4 embedded form is returned for inet_ntop, 5877 * just the IPv4 string is returned for inet_ntoa6. 5878 */ 5879 5880 if (!dtrace_canload(tupregs[argi].dttk_value, 5881 sizeof (struct in6_addr), mstate, vstate)) { 5882 regs[rd] = 0; 5883 break; 5884 } 5885 5886 /* 5887 * Safely load the IPv6 address. 5888 */ 5889 dtrace_bcopy( 5890 (void *)(uintptr_t)tupregs[argi].dttk_value, 5891 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5892 5893 /* 5894 * Check an IPv6 string will fit in scratch. 5895 */ 5896 size = INET6_ADDRSTRLEN; 5897 if (!DTRACE_INSCRATCH(mstate, size)) { 5898 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5899 regs[rd] = 0; 5900 break; 5901 } 5902 base = (char *)mstate->dtms_scratch_ptr; 5903 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5904 *end-- = '\0'; 5905 5906 /* 5907 * Find the longest run of 16 bit zero values 5908 * for the single allowed zero compression - "::". 5909 */ 5910 firstzero = -1; 5911 tryzero = -1; 5912 numzero = 1; 5913 for (i = 0; i < sizeof (struct in6_addr); i++) { 5914 #ifdef illumos 5915 if (ip6._S6_un._S6_u8[i] == 0 && 5916 #else 5917 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5918 #endif 5919 tryzero == -1 && i % 2 == 0) { 5920 tryzero = i; 5921 continue; 5922 } 5923 5924 if (tryzero != -1 && 5925 #ifdef illumos 5926 (ip6._S6_un._S6_u8[i] != 0 || 5927 #else 5928 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5929 #endif 5930 i == sizeof (struct in6_addr) - 1)) { 5931 5932 if (i - tryzero <= numzero) { 5933 tryzero = -1; 5934 continue; 5935 } 5936 5937 firstzero = tryzero; 5938 numzero = i - i % 2 - tryzero; 5939 tryzero = -1; 5940 5941 #ifdef illumos 5942 if (ip6._S6_un._S6_u8[i] == 0 && 5943 #else 5944 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5945 #endif 5946 i == sizeof (struct in6_addr) - 1) 5947 numzero += 2; 5948 } 5949 } 5950 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5951 5952 /* 5953 * Check for an IPv4 embedded address. 5954 */ 5955 v6end = sizeof (struct in6_addr) - 2; 5956 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5957 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5958 for (i = sizeof (struct in6_addr) - 1; 5959 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5960 ASSERT(end >= base); 5961 5962 #ifdef illumos 5963 val = ip6._S6_un._S6_u8[i]; 5964 #else 5965 val = ip6.__u6_addr.__u6_addr8[i]; 5966 #endif 5967 5968 if (val == 0) { 5969 *end-- = '0'; 5970 } else { 5971 for (; val; val /= 10) { 5972 *end-- = '0' + val % 10; 5973 } 5974 } 5975 5976 if (i > DTRACE_V4MAPPED_OFFSET) 5977 *end-- = '.'; 5978 } 5979 5980 if (subr == DIF_SUBR_INET_NTOA6) 5981 goto inetout; 5982 5983 /* 5984 * Set v6end to skip the IPv4 address that 5985 * we have already stringified. 5986 */ 5987 v6end = 10; 5988 } 5989 5990 /* 5991 * Build the IPv6 string by working through the 5992 * address in reverse. 5993 */ 5994 for (i = v6end; i >= 0; i -= 2) { 5995 ASSERT(end >= base); 5996 5997 if (i == firstzero + numzero - 2) { 5998 *end-- = ':'; 5999 *end-- = ':'; 6000 i -= numzero - 2; 6001 continue; 6002 } 6003 6004 if (i < 14 && i != firstzero - 2) 6005 *end-- = ':'; 6006 6007 #ifdef illumos 6008 val = (ip6._S6_un._S6_u8[i] << 8) + 6009 ip6._S6_un._S6_u8[i + 1]; 6010 #else 6011 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6012 ip6.__u6_addr.__u6_addr8[i + 1]; 6013 #endif 6014 6015 if (val == 0) { 6016 *end-- = '0'; 6017 } else { 6018 for (; val; val /= 16) { 6019 *end-- = digits[val % 16]; 6020 } 6021 } 6022 } 6023 ASSERT(end + 1 >= base); 6024 6025 } else { 6026 /* 6027 * The user didn't use AH_INET or AH_INET6. 6028 */ 6029 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6030 regs[rd] = 0; 6031 break; 6032 } 6033 6034 inetout: regs[rd] = (uintptr_t)end + 1; 6035 mstate->dtms_scratch_ptr += size; 6036 break; 6037 } 6038 6039 case DIF_SUBR_MEMREF: { 6040 uintptr_t size = 2 * sizeof(uintptr_t); 6041 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6042 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6043 6044 /* address and length */ 6045 memref[0] = tupregs[0].dttk_value; 6046 memref[1] = tupregs[1].dttk_value; 6047 6048 regs[rd] = (uintptr_t) memref; 6049 mstate->dtms_scratch_ptr += scratch_size; 6050 break; 6051 } 6052 6053 #ifndef illumos 6054 case DIF_SUBR_MEMSTR: { 6055 char *str = (char *)mstate->dtms_scratch_ptr; 6056 uintptr_t mem = tupregs[0].dttk_value; 6057 char c = tupregs[1].dttk_value; 6058 size_t size = tupregs[2].dttk_value; 6059 uint8_t n; 6060 int i; 6061 6062 regs[rd] = 0; 6063 6064 if (size == 0) 6065 break; 6066 6067 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6068 break; 6069 6070 if (!DTRACE_INSCRATCH(mstate, size)) { 6071 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6072 break; 6073 } 6074 6075 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6076 *flags |= CPU_DTRACE_ILLOP; 6077 break; 6078 } 6079 6080 for (i = 0; i < size - 1; i++) { 6081 n = dtrace_load8(mem++); 6082 str[i] = (n == 0) ? c : n; 6083 } 6084 str[size - 1] = 0; 6085 6086 regs[rd] = (uintptr_t)str; 6087 mstate->dtms_scratch_ptr += size; 6088 break; 6089 } 6090 #endif 6091 } 6092 } 6093 6094 /* 6095 * Emulate the execution of DTrace IR instructions specified by the given 6096 * DIF object. This function is deliberately void of assertions as all of 6097 * the necessary checks are handled by a call to dtrace_difo_validate(). 6098 */ 6099 static uint64_t 6100 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6101 dtrace_vstate_t *vstate, dtrace_state_t *state) 6102 { 6103 const dif_instr_t *text = difo->dtdo_buf; 6104 const uint_t textlen = difo->dtdo_len; 6105 const char *strtab = difo->dtdo_strtab; 6106 const uint64_t *inttab = difo->dtdo_inttab; 6107 6108 uint64_t rval = 0; 6109 dtrace_statvar_t *svar; 6110 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6111 dtrace_difv_t *v; 6112 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6113 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6114 6115 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6116 uint64_t regs[DIF_DIR_NREGS]; 6117 uint64_t *tmp; 6118 6119 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6120 int64_t cc_r; 6121 uint_t pc = 0, id, opc = 0; 6122 uint8_t ttop = 0; 6123 dif_instr_t instr; 6124 uint_t r1, r2, rd; 6125 6126 /* 6127 * We stash the current DIF object into the machine state: we need it 6128 * for subsequent access checking. 6129 */ 6130 mstate->dtms_difo = difo; 6131 6132 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6133 6134 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6135 opc = pc; 6136 6137 instr = text[pc++]; 6138 r1 = DIF_INSTR_R1(instr); 6139 r2 = DIF_INSTR_R2(instr); 6140 rd = DIF_INSTR_RD(instr); 6141 6142 switch (DIF_INSTR_OP(instr)) { 6143 case DIF_OP_OR: 6144 regs[rd] = regs[r1] | regs[r2]; 6145 break; 6146 case DIF_OP_XOR: 6147 regs[rd] = regs[r1] ^ regs[r2]; 6148 break; 6149 case DIF_OP_AND: 6150 regs[rd] = regs[r1] & regs[r2]; 6151 break; 6152 case DIF_OP_SLL: 6153 regs[rd] = regs[r1] << regs[r2]; 6154 break; 6155 case DIF_OP_SRL: 6156 regs[rd] = regs[r1] >> regs[r2]; 6157 break; 6158 case DIF_OP_SUB: 6159 regs[rd] = regs[r1] - regs[r2]; 6160 break; 6161 case DIF_OP_ADD: 6162 regs[rd] = regs[r1] + regs[r2]; 6163 break; 6164 case DIF_OP_MUL: 6165 regs[rd] = regs[r1] * regs[r2]; 6166 break; 6167 case DIF_OP_SDIV: 6168 if (regs[r2] == 0) { 6169 regs[rd] = 0; 6170 *flags |= CPU_DTRACE_DIVZERO; 6171 } else { 6172 regs[rd] = (int64_t)regs[r1] / 6173 (int64_t)regs[r2]; 6174 } 6175 break; 6176 6177 case DIF_OP_UDIV: 6178 if (regs[r2] == 0) { 6179 regs[rd] = 0; 6180 *flags |= CPU_DTRACE_DIVZERO; 6181 } else { 6182 regs[rd] = regs[r1] / regs[r2]; 6183 } 6184 break; 6185 6186 case DIF_OP_SREM: 6187 if (regs[r2] == 0) { 6188 regs[rd] = 0; 6189 *flags |= CPU_DTRACE_DIVZERO; 6190 } else { 6191 regs[rd] = (int64_t)regs[r1] % 6192 (int64_t)regs[r2]; 6193 } 6194 break; 6195 6196 case DIF_OP_UREM: 6197 if (regs[r2] == 0) { 6198 regs[rd] = 0; 6199 *flags |= CPU_DTRACE_DIVZERO; 6200 } else { 6201 regs[rd] = regs[r1] % regs[r2]; 6202 } 6203 break; 6204 6205 case DIF_OP_NOT: 6206 regs[rd] = ~regs[r1]; 6207 break; 6208 case DIF_OP_MOV: 6209 regs[rd] = regs[r1]; 6210 break; 6211 case DIF_OP_CMP: 6212 cc_r = regs[r1] - regs[r2]; 6213 cc_n = cc_r < 0; 6214 cc_z = cc_r == 0; 6215 cc_v = 0; 6216 cc_c = regs[r1] < regs[r2]; 6217 break; 6218 case DIF_OP_TST: 6219 cc_n = cc_v = cc_c = 0; 6220 cc_z = regs[r1] == 0; 6221 break; 6222 case DIF_OP_BA: 6223 pc = DIF_INSTR_LABEL(instr); 6224 break; 6225 case DIF_OP_BE: 6226 if (cc_z) 6227 pc = DIF_INSTR_LABEL(instr); 6228 break; 6229 case DIF_OP_BNE: 6230 if (cc_z == 0) 6231 pc = DIF_INSTR_LABEL(instr); 6232 break; 6233 case DIF_OP_BG: 6234 if ((cc_z | (cc_n ^ cc_v)) == 0) 6235 pc = DIF_INSTR_LABEL(instr); 6236 break; 6237 case DIF_OP_BGU: 6238 if ((cc_c | cc_z) == 0) 6239 pc = DIF_INSTR_LABEL(instr); 6240 break; 6241 case DIF_OP_BGE: 6242 if ((cc_n ^ cc_v) == 0) 6243 pc = DIF_INSTR_LABEL(instr); 6244 break; 6245 case DIF_OP_BGEU: 6246 if (cc_c == 0) 6247 pc = DIF_INSTR_LABEL(instr); 6248 break; 6249 case DIF_OP_BL: 6250 if (cc_n ^ cc_v) 6251 pc = DIF_INSTR_LABEL(instr); 6252 break; 6253 case DIF_OP_BLU: 6254 if (cc_c) 6255 pc = DIF_INSTR_LABEL(instr); 6256 break; 6257 case DIF_OP_BLE: 6258 if (cc_z | (cc_n ^ cc_v)) 6259 pc = DIF_INSTR_LABEL(instr); 6260 break; 6261 case DIF_OP_BLEU: 6262 if (cc_c | cc_z) 6263 pc = DIF_INSTR_LABEL(instr); 6264 break; 6265 case DIF_OP_RLDSB: 6266 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6267 break; 6268 /*FALLTHROUGH*/ 6269 case DIF_OP_LDSB: 6270 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6271 break; 6272 case DIF_OP_RLDSH: 6273 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6274 break; 6275 /*FALLTHROUGH*/ 6276 case DIF_OP_LDSH: 6277 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6278 break; 6279 case DIF_OP_RLDSW: 6280 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6281 break; 6282 /*FALLTHROUGH*/ 6283 case DIF_OP_LDSW: 6284 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6285 break; 6286 case DIF_OP_RLDUB: 6287 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6288 break; 6289 /*FALLTHROUGH*/ 6290 case DIF_OP_LDUB: 6291 regs[rd] = dtrace_load8(regs[r1]); 6292 break; 6293 case DIF_OP_RLDUH: 6294 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6295 break; 6296 /*FALLTHROUGH*/ 6297 case DIF_OP_LDUH: 6298 regs[rd] = dtrace_load16(regs[r1]); 6299 break; 6300 case DIF_OP_RLDUW: 6301 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6302 break; 6303 /*FALLTHROUGH*/ 6304 case DIF_OP_LDUW: 6305 regs[rd] = dtrace_load32(regs[r1]); 6306 break; 6307 case DIF_OP_RLDX: 6308 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6309 break; 6310 /*FALLTHROUGH*/ 6311 case DIF_OP_LDX: 6312 regs[rd] = dtrace_load64(regs[r1]); 6313 break; 6314 case DIF_OP_ULDSB: 6315 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6316 regs[rd] = (int8_t) 6317 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6318 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6319 break; 6320 case DIF_OP_ULDSH: 6321 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6322 regs[rd] = (int16_t) 6323 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6324 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6325 break; 6326 case DIF_OP_ULDSW: 6327 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6328 regs[rd] = (int32_t) 6329 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6330 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6331 break; 6332 case DIF_OP_ULDUB: 6333 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6334 regs[rd] = 6335 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6336 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6337 break; 6338 case DIF_OP_ULDUH: 6339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6340 regs[rd] = 6341 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6342 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6343 break; 6344 case DIF_OP_ULDUW: 6345 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6346 regs[rd] = 6347 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6348 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6349 break; 6350 case DIF_OP_ULDX: 6351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6352 regs[rd] = 6353 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6354 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6355 break; 6356 case DIF_OP_RET: 6357 rval = regs[rd]; 6358 pc = textlen; 6359 break; 6360 case DIF_OP_NOP: 6361 break; 6362 case DIF_OP_SETX: 6363 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6364 break; 6365 case DIF_OP_SETS: 6366 regs[rd] = (uint64_t)(uintptr_t) 6367 (strtab + DIF_INSTR_STRING(instr)); 6368 break; 6369 case DIF_OP_SCMP: { 6370 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6371 uintptr_t s1 = regs[r1]; 6372 uintptr_t s2 = regs[r2]; 6373 size_t lim1, lim2; 6374 6375 /* 6376 * If one of the strings is NULL then the limit becomes 6377 * 0 which compares 0 characters in dtrace_strncmp() 6378 * resulting in a false positive. dtrace_strncmp() 6379 * treats a NULL as an empty 1-char string. 6380 */ 6381 lim1 = lim2 = 1; 6382 6383 if (s1 != 0 && 6384 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6385 break; 6386 if (s2 != 0 && 6387 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6388 break; 6389 6390 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6391 MIN(lim1, lim2)); 6392 6393 cc_n = cc_r < 0; 6394 cc_z = cc_r == 0; 6395 cc_v = cc_c = 0; 6396 break; 6397 } 6398 case DIF_OP_LDGA: 6399 regs[rd] = dtrace_dif_variable(mstate, state, 6400 r1, regs[r2]); 6401 break; 6402 case DIF_OP_LDGS: 6403 id = DIF_INSTR_VAR(instr); 6404 6405 if (id >= DIF_VAR_OTHER_UBASE) { 6406 uintptr_t a; 6407 6408 id -= DIF_VAR_OTHER_UBASE; 6409 svar = vstate->dtvs_globals[id]; 6410 ASSERT(svar != NULL); 6411 v = &svar->dtsv_var; 6412 6413 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6414 regs[rd] = svar->dtsv_data; 6415 break; 6416 } 6417 6418 a = (uintptr_t)svar->dtsv_data; 6419 6420 if (*(uint8_t *)a == UINT8_MAX) { 6421 /* 6422 * If the 0th byte is set to UINT8_MAX 6423 * then this is to be treated as a 6424 * reference to a NULL variable. 6425 */ 6426 regs[rd] = 0; 6427 } else { 6428 regs[rd] = a + sizeof (uint64_t); 6429 } 6430 6431 break; 6432 } 6433 6434 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6435 break; 6436 6437 case DIF_OP_STGS: 6438 id = DIF_INSTR_VAR(instr); 6439 6440 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6441 id -= DIF_VAR_OTHER_UBASE; 6442 6443 VERIFY(id < vstate->dtvs_nglobals); 6444 svar = vstate->dtvs_globals[id]; 6445 ASSERT(svar != NULL); 6446 v = &svar->dtsv_var; 6447 6448 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6449 uintptr_t a = (uintptr_t)svar->dtsv_data; 6450 size_t lim; 6451 6452 ASSERT(a != 0); 6453 ASSERT(svar->dtsv_size != 0); 6454 6455 if (regs[rd] == 0) { 6456 *(uint8_t *)a = UINT8_MAX; 6457 break; 6458 } else { 6459 *(uint8_t *)a = 0; 6460 a += sizeof (uint64_t); 6461 } 6462 if (!dtrace_vcanload( 6463 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6464 &lim, mstate, vstate)) 6465 break; 6466 6467 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6468 (void *)a, &v->dtdv_type, lim); 6469 break; 6470 } 6471 6472 svar->dtsv_data = regs[rd]; 6473 break; 6474 6475 case DIF_OP_LDTA: 6476 /* 6477 * There are no DTrace built-in thread-local arrays at 6478 * present. This opcode is saved for future work. 6479 */ 6480 *flags |= CPU_DTRACE_ILLOP; 6481 regs[rd] = 0; 6482 break; 6483 6484 case DIF_OP_LDLS: 6485 id = DIF_INSTR_VAR(instr); 6486 6487 if (id < DIF_VAR_OTHER_UBASE) { 6488 /* 6489 * For now, this has no meaning. 6490 */ 6491 regs[rd] = 0; 6492 break; 6493 } 6494 6495 id -= DIF_VAR_OTHER_UBASE; 6496 6497 ASSERT(id < vstate->dtvs_nlocals); 6498 ASSERT(vstate->dtvs_locals != NULL); 6499 6500 svar = vstate->dtvs_locals[id]; 6501 ASSERT(svar != NULL); 6502 v = &svar->dtsv_var; 6503 6504 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6505 uintptr_t a = (uintptr_t)svar->dtsv_data; 6506 size_t sz = v->dtdv_type.dtdt_size; 6507 size_t lim; 6508 6509 sz += sizeof (uint64_t); 6510 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6511 a += curcpu * sz; 6512 6513 if (*(uint8_t *)a == UINT8_MAX) { 6514 /* 6515 * If the 0th byte is set to UINT8_MAX 6516 * then this is to be treated as a 6517 * reference to a NULL variable. 6518 */ 6519 regs[rd] = 0; 6520 } else { 6521 regs[rd] = a + sizeof (uint64_t); 6522 } 6523 6524 break; 6525 } 6526 6527 ASSERT(svar->dtsv_size == 6528 (mp_maxid + 1) * sizeof (uint64_t)); 6529 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6530 regs[rd] = tmp[curcpu]; 6531 break; 6532 6533 case DIF_OP_STLS: 6534 id = DIF_INSTR_VAR(instr); 6535 6536 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6537 id -= DIF_VAR_OTHER_UBASE; 6538 VERIFY(id < vstate->dtvs_nlocals); 6539 6540 ASSERT(vstate->dtvs_locals != NULL); 6541 svar = vstate->dtvs_locals[id]; 6542 ASSERT(svar != NULL); 6543 v = &svar->dtsv_var; 6544 6545 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6546 uintptr_t a = (uintptr_t)svar->dtsv_data; 6547 size_t sz = v->dtdv_type.dtdt_size; 6548 size_t lim; 6549 6550 sz += sizeof (uint64_t); 6551 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz); 6552 a += curcpu * sz; 6553 6554 if (regs[rd] == 0) { 6555 *(uint8_t *)a = UINT8_MAX; 6556 break; 6557 } else { 6558 *(uint8_t *)a = 0; 6559 a += sizeof (uint64_t); 6560 } 6561 6562 if (!dtrace_vcanload( 6563 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6564 &lim, mstate, vstate)) 6565 break; 6566 6567 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6568 (void *)a, &v->dtdv_type, lim); 6569 break; 6570 } 6571 6572 ASSERT(svar->dtsv_size == 6573 (mp_maxid + 1) * sizeof (uint64_t)); 6574 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6575 tmp[curcpu] = regs[rd]; 6576 break; 6577 6578 case DIF_OP_LDTS: { 6579 dtrace_dynvar_t *dvar; 6580 dtrace_key_t *key; 6581 6582 id = DIF_INSTR_VAR(instr); 6583 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6584 id -= DIF_VAR_OTHER_UBASE; 6585 v = &vstate->dtvs_tlocals[id]; 6586 6587 key = &tupregs[DIF_DTR_NREGS]; 6588 key[0].dttk_value = (uint64_t)id; 6589 key[0].dttk_size = 0; 6590 DTRACE_TLS_THRKEY(key[1].dttk_value); 6591 key[1].dttk_size = 0; 6592 6593 dvar = dtrace_dynvar(dstate, 2, key, 6594 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6595 mstate, vstate); 6596 6597 if (dvar == NULL) { 6598 regs[rd] = 0; 6599 break; 6600 } 6601 6602 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6603 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6604 } else { 6605 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6606 } 6607 6608 break; 6609 } 6610 6611 case DIF_OP_STTS: { 6612 dtrace_dynvar_t *dvar; 6613 dtrace_key_t *key; 6614 6615 id = DIF_INSTR_VAR(instr); 6616 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6617 id -= DIF_VAR_OTHER_UBASE; 6618 VERIFY(id < vstate->dtvs_ntlocals); 6619 6620 key = &tupregs[DIF_DTR_NREGS]; 6621 key[0].dttk_value = (uint64_t)id; 6622 key[0].dttk_size = 0; 6623 DTRACE_TLS_THRKEY(key[1].dttk_value); 6624 key[1].dttk_size = 0; 6625 v = &vstate->dtvs_tlocals[id]; 6626 6627 dvar = dtrace_dynvar(dstate, 2, key, 6628 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6629 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6630 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6631 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6632 6633 /* 6634 * Given that we're storing to thread-local data, 6635 * we need to flush our predicate cache. 6636 */ 6637 curthread->t_predcache = 0; 6638 6639 if (dvar == NULL) 6640 break; 6641 6642 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6643 size_t lim; 6644 6645 if (!dtrace_vcanload( 6646 (void *)(uintptr_t)regs[rd], 6647 &v->dtdv_type, &lim, mstate, vstate)) 6648 break; 6649 6650 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6651 dvar->dtdv_data, &v->dtdv_type, lim); 6652 } else { 6653 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6654 } 6655 6656 break; 6657 } 6658 6659 case DIF_OP_SRA: 6660 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6661 break; 6662 6663 case DIF_OP_CALL: 6664 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6665 regs, tupregs, ttop, mstate, state); 6666 break; 6667 6668 case DIF_OP_PUSHTR: 6669 if (ttop == DIF_DTR_NREGS) { 6670 *flags |= CPU_DTRACE_TUPOFLOW; 6671 break; 6672 } 6673 6674 if (r1 == DIF_TYPE_STRING) { 6675 /* 6676 * If this is a string type and the size is 0, 6677 * we'll use the system-wide default string 6678 * size. Note that we are _not_ looking at 6679 * the value of the DTRACEOPT_STRSIZE option; 6680 * had this been set, we would expect to have 6681 * a non-zero size value in the "pushtr". 6682 */ 6683 tupregs[ttop].dttk_size = 6684 dtrace_strlen((char *)(uintptr_t)regs[rd], 6685 regs[r2] ? regs[r2] : 6686 dtrace_strsize_default) + 1; 6687 } else { 6688 if (regs[r2] > LONG_MAX) { 6689 *flags |= CPU_DTRACE_ILLOP; 6690 break; 6691 } 6692 6693 tupregs[ttop].dttk_size = regs[r2]; 6694 } 6695 6696 tupregs[ttop++].dttk_value = regs[rd]; 6697 break; 6698 6699 case DIF_OP_PUSHTV: 6700 if (ttop == DIF_DTR_NREGS) { 6701 *flags |= CPU_DTRACE_TUPOFLOW; 6702 break; 6703 } 6704 6705 tupregs[ttop].dttk_value = regs[rd]; 6706 tupregs[ttop++].dttk_size = 0; 6707 break; 6708 6709 case DIF_OP_POPTS: 6710 if (ttop != 0) 6711 ttop--; 6712 break; 6713 6714 case DIF_OP_FLUSHTS: 6715 ttop = 0; 6716 break; 6717 6718 case DIF_OP_LDGAA: 6719 case DIF_OP_LDTAA: { 6720 dtrace_dynvar_t *dvar; 6721 dtrace_key_t *key = tupregs; 6722 uint_t nkeys = ttop; 6723 6724 id = DIF_INSTR_VAR(instr); 6725 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6726 id -= DIF_VAR_OTHER_UBASE; 6727 6728 key[nkeys].dttk_value = (uint64_t)id; 6729 key[nkeys++].dttk_size = 0; 6730 6731 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6732 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6733 key[nkeys++].dttk_size = 0; 6734 VERIFY(id < vstate->dtvs_ntlocals); 6735 v = &vstate->dtvs_tlocals[id]; 6736 } else { 6737 VERIFY(id < vstate->dtvs_nglobals); 6738 v = &vstate->dtvs_globals[id]->dtsv_var; 6739 } 6740 6741 dvar = dtrace_dynvar(dstate, nkeys, key, 6742 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6743 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6744 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6745 6746 if (dvar == NULL) { 6747 regs[rd] = 0; 6748 break; 6749 } 6750 6751 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6752 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6753 } else { 6754 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6755 } 6756 6757 break; 6758 } 6759 6760 case DIF_OP_STGAA: 6761 case DIF_OP_STTAA: { 6762 dtrace_dynvar_t *dvar; 6763 dtrace_key_t *key = tupregs; 6764 uint_t nkeys = ttop; 6765 6766 id = DIF_INSTR_VAR(instr); 6767 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6768 id -= DIF_VAR_OTHER_UBASE; 6769 6770 key[nkeys].dttk_value = (uint64_t)id; 6771 key[nkeys++].dttk_size = 0; 6772 6773 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6774 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6775 key[nkeys++].dttk_size = 0; 6776 VERIFY(id < vstate->dtvs_ntlocals); 6777 v = &vstate->dtvs_tlocals[id]; 6778 } else { 6779 VERIFY(id < vstate->dtvs_nglobals); 6780 v = &vstate->dtvs_globals[id]->dtsv_var; 6781 } 6782 6783 dvar = dtrace_dynvar(dstate, nkeys, key, 6784 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6785 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6786 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6787 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6788 6789 if (dvar == NULL) 6790 break; 6791 6792 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6793 size_t lim; 6794 6795 if (!dtrace_vcanload( 6796 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6797 &lim, mstate, vstate)) 6798 break; 6799 6800 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6801 dvar->dtdv_data, &v->dtdv_type, lim); 6802 } else { 6803 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6804 } 6805 6806 break; 6807 } 6808 6809 case DIF_OP_ALLOCS: { 6810 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6811 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6812 6813 /* 6814 * Rounding up the user allocation size could have 6815 * overflowed large, bogus allocations (like -1ULL) to 6816 * 0. 6817 */ 6818 if (size < regs[r1] || 6819 !DTRACE_INSCRATCH(mstate, size)) { 6820 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6821 regs[rd] = 0; 6822 break; 6823 } 6824 6825 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6826 mstate->dtms_scratch_ptr += size; 6827 regs[rd] = ptr; 6828 break; 6829 } 6830 6831 case DIF_OP_COPYS: 6832 if (!dtrace_canstore(regs[rd], regs[r2], 6833 mstate, vstate)) { 6834 *flags |= CPU_DTRACE_BADADDR; 6835 *illval = regs[rd]; 6836 break; 6837 } 6838 6839 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6840 break; 6841 6842 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6843 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6844 break; 6845 6846 case DIF_OP_STB: 6847 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6848 *flags |= CPU_DTRACE_BADADDR; 6849 *illval = regs[rd]; 6850 break; 6851 } 6852 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6853 break; 6854 6855 case DIF_OP_STH: 6856 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6857 *flags |= CPU_DTRACE_BADADDR; 6858 *illval = regs[rd]; 6859 break; 6860 } 6861 if (regs[rd] & 1) { 6862 *flags |= CPU_DTRACE_BADALIGN; 6863 *illval = regs[rd]; 6864 break; 6865 } 6866 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6867 break; 6868 6869 case DIF_OP_STW: 6870 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6871 *flags |= CPU_DTRACE_BADADDR; 6872 *illval = regs[rd]; 6873 break; 6874 } 6875 if (regs[rd] & 3) { 6876 *flags |= CPU_DTRACE_BADALIGN; 6877 *illval = regs[rd]; 6878 break; 6879 } 6880 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6881 break; 6882 6883 case DIF_OP_STX: 6884 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6885 *flags |= CPU_DTRACE_BADADDR; 6886 *illval = regs[rd]; 6887 break; 6888 } 6889 if (regs[rd] & 7) { 6890 *flags |= CPU_DTRACE_BADALIGN; 6891 *illval = regs[rd]; 6892 break; 6893 } 6894 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6895 break; 6896 } 6897 } 6898 6899 if (!(*flags & CPU_DTRACE_FAULT)) 6900 return (rval); 6901 6902 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6903 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6904 6905 return (0); 6906 } 6907 6908 static void 6909 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6910 { 6911 dtrace_probe_t *probe = ecb->dte_probe; 6912 dtrace_provider_t *prov = probe->dtpr_provider; 6913 char c[DTRACE_FULLNAMELEN + 80], *str; 6914 char *msg = "dtrace: breakpoint action at probe "; 6915 char *ecbmsg = " (ecb "; 6916 uintptr_t val = (uintptr_t)ecb; 6917 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6918 6919 if (dtrace_destructive_disallow) 6920 return; 6921 6922 /* 6923 * It's impossible to be taking action on the NULL probe. 6924 */ 6925 ASSERT(probe != NULL); 6926 6927 /* 6928 * This is a poor man's (destitute man's?) sprintf(): we want to 6929 * print the provider name, module name, function name and name of 6930 * the probe, along with the hex address of the ECB with the breakpoint 6931 * action -- all of which we must place in the character buffer by 6932 * hand. 6933 */ 6934 while (*msg != '\0') 6935 c[i++] = *msg++; 6936 6937 for (str = prov->dtpv_name; *str != '\0'; str++) 6938 c[i++] = *str; 6939 c[i++] = ':'; 6940 6941 for (str = probe->dtpr_mod; *str != '\0'; str++) 6942 c[i++] = *str; 6943 c[i++] = ':'; 6944 6945 for (str = probe->dtpr_func; *str != '\0'; str++) 6946 c[i++] = *str; 6947 c[i++] = ':'; 6948 6949 for (str = probe->dtpr_name; *str != '\0'; str++) 6950 c[i++] = *str; 6951 6952 while (*ecbmsg != '\0') 6953 c[i++] = *ecbmsg++; 6954 6955 while (shift >= 0) { 6956 size_t mask = (size_t)0xf << shift; 6957 6958 if (val >= ((size_t)1 << shift)) 6959 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6960 shift -= 4; 6961 } 6962 6963 c[i++] = ')'; 6964 c[i] = '\0'; 6965 6966 #ifdef illumos 6967 debug_enter(c); 6968 #else 6969 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6970 #endif 6971 } 6972 6973 static void 6974 dtrace_action_panic(dtrace_ecb_t *ecb) 6975 { 6976 dtrace_probe_t *probe = ecb->dte_probe; 6977 6978 /* 6979 * It's impossible to be taking action on the NULL probe. 6980 */ 6981 ASSERT(probe != NULL); 6982 6983 if (dtrace_destructive_disallow) 6984 return; 6985 6986 if (dtrace_panicked != NULL) 6987 return; 6988 6989 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6990 return; 6991 6992 /* 6993 * We won the right to panic. (We want to be sure that only one 6994 * thread calls panic() from dtrace_probe(), and that panic() is 6995 * called exactly once.) 6996 */ 6997 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6998 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6999 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7000 } 7001 7002 static void 7003 dtrace_action_raise(uint64_t sig) 7004 { 7005 if (dtrace_destructive_disallow) 7006 return; 7007 7008 if (sig >= NSIG) { 7009 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7010 return; 7011 } 7012 7013 #ifdef illumos 7014 /* 7015 * raise() has a queue depth of 1 -- we ignore all subsequent 7016 * invocations of the raise() action. 7017 */ 7018 if (curthread->t_dtrace_sig == 0) 7019 curthread->t_dtrace_sig = (uint8_t)sig; 7020 7021 curthread->t_sig_check = 1; 7022 aston(curthread); 7023 #else 7024 struct proc *p = curproc; 7025 PROC_LOCK(p); 7026 kern_psignal(p, sig); 7027 PROC_UNLOCK(p); 7028 #endif 7029 } 7030 7031 static void 7032 dtrace_action_stop(void) 7033 { 7034 if (dtrace_destructive_disallow) 7035 return; 7036 7037 #ifdef illumos 7038 if (!curthread->t_dtrace_stop) { 7039 curthread->t_dtrace_stop = 1; 7040 curthread->t_sig_check = 1; 7041 aston(curthread); 7042 } 7043 #else 7044 struct proc *p = curproc; 7045 PROC_LOCK(p); 7046 kern_psignal(p, SIGSTOP); 7047 PROC_UNLOCK(p); 7048 #endif 7049 } 7050 7051 static void 7052 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7053 { 7054 hrtime_t now; 7055 volatile uint16_t *flags; 7056 #ifdef illumos 7057 cpu_t *cpu = CPU; 7058 #else 7059 cpu_t *cpu = &solaris_cpu[curcpu]; 7060 #endif 7061 7062 if (dtrace_destructive_disallow) 7063 return; 7064 7065 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7066 7067 now = dtrace_gethrtime(); 7068 7069 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7070 /* 7071 * We need to advance the mark to the current time. 7072 */ 7073 cpu->cpu_dtrace_chillmark = now; 7074 cpu->cpu_dtrace_chilled = 0; 7075 } 7076 7077 /* 7078 * Now check to see if the requested chill time would take us over 7079 * the maximum amount of time allowed in the chill interval. (Or 7080 * worse, if the calculation itself induces overflow.) 7081 */ 7082 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7083 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7084 *flags |= CPU_DTRACE_ILLOP; 7085 return; 7086 } 7087 7088 while (dtrace_gethrtime() - now < val) 7089 continue; 7090 7091 /* 7092 * Normally, we assure that the value of the variable "timestamp" does 7093 * not change within an ECB. The presence of chill() represents an 7094 * exception to this rule, however. 7095 */ 7096 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7097 cpu->cpu_dtrace_chilled += val; 7098 } 7099 7100 static void 7101 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7102 uint64_t *buf, uint64_t arg) 7103 { 7104 int nframes = DTRACE_USTACK_NFRAMES(arg); 7105 int strsize = DTRACE_USTACK_STRSIZE(arg); 7106 uint64_t *pcs = &buf[1], *fps; 7107 char *str = (char *)&pcs[nframes]; 7108 int size, offs = 0, i, j; 7109 size_t rem; 7110 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7111 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7112 char *sym; 7113 7114 /* 7115 * Should be taking a faster path if string space has not been 7116 * allocated. 7117 */ 7118 ASSERT(strsize != 0); 7119 7120 /* 7121 * We will first allocate some temporary space for the frame pointers. 7122 */ 7123 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7124 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7125 (nframes * sizeof (uint64_t)); 7126 7127 if (!DTRACE_INSCRATCH(mstate, size)) { 7128 /* 7129 * Not enough room for our frame pointers -- need to indicate 7130 * that we ran out of scratch space. 7131 */ 7132 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7133 return; 7134 } 7135 7136 mstate->dtms_scratch_ptr += size; 7137 saved = mstate->dtms_scratch_ptr; 7138 7139 /* 7140 * Now get a stack with both program counters and frame pointers. 7141 */ 7142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7143 dtrace_getufpstack(buf, fps, nframes + 1); 7144 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7145 7146 /* 7147 * If that faulted, we're cooked. 7148 */ 7149 if (*flags & CPU_DTRACE_FAULT) 7150 goto out; 7151 7152 /* 7153 * Now we want to walk up the stack, calling the USTACK helper. For 7154 * each iteration, we restore the scratch pointer. 7155 */ 7156 for (i = 0; i < nframes; i++) { 7157 mstate->dtms_scratch_ptr = saved; 7158 7159 if (offs >= strsize) 7160 break; 7161 7162 sym = (char *)(uintptr_t)dtrace_helper( 7163 DTRACE_HELPER_ACTION_USTACK, 7164 mstate, state, pcs[i], fps[i]); 7165 7166 /* 7167 * If we faulted while running the helper, we're going to 7168 * clear the fault and null out the corresponding string. 7169 */ 7170 if (*flags & CPU_DTRACE_FAULT) { 7171 *flags &= ~CPU_DTRACE_FAULT; 7172 str[offs++] = '\0'; 7173 continue; 7174 } 7175 7176 if (sym == NULL) { 7177 str[offs++] = '\0'; 7178 continue; 7179 } 7180 7181 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7182 &(state->dts_vstate))) { 7183 str[offs++] = '\0'; 7184 continue; 7185 } 7186 7187 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7188 7189 /* 7190 * Now copy in the string that the helper returned to us. 7191 */ 7192 for (j = 0; offs + j < strsize && j < rem; j++) { 7193 if ((str[offs + j] = sym[j]) == '\0') 7194 break; 7195 } 7196 7197 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7198 7199 offs += j + 1; 7200 } 7201 7202 if (offs >= strsize) { 7203 /* 7204 * If we didn't have room for all of the strings, we don't 7205 * abort processing -- this needn't be a fatal error -- but we 7206 * still want to increment a counter (dts_stkstroverflows) to 7207 * allow this condition to be warned about. (If this is from 7208 * a jstack() action, it is easily tuned via jstackstrsize.) 7209 */ 7210 dtrace_error(&state->dts_stkstroverflows); 7211 } 7212 7213 while (offs < strsize) 7214 str[offs++] = '\0'; 7215 7216 out: 7217 mstate->dtms_scratch_ptr = old; 7218 } 7219 7220 static void 7221 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7222 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7223 { 7224 volatile uint16_t *flags; 7225 uint64_t val = *valp; 7226 size_t valoffs = *valoffsp; 7227 7228 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7229 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7230 7231 /* 7232 * If this is a string, we're going to only load until we find the zero 7233 * byte -- after which we'll store zero bytes. 7234 */ 7235 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7236 char c = '\0' + 1; 7237 size_t s; 7238 7239 for (s = 0; s < size; s++) { 7240 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7241 c = dtrace_load8(val++); 7242 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7243 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7244 c = dtrace_fuword8((void *)(uintptr_t)val++); 7245 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7246 if (*flags & CPU_DTRACE_FAULT) 7247 break; 7248 } 7249 7250 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7251 7252 if (c == '\0' && intuple) 7253 break; 7254 } 7255 } else { 7256 uint8_t c; 7257 while (valoffs < end) { 7258 if (dtkind == DIF_TF_BYREF) { 7259 c = dtrace_load8(val++); 7260 } else if (dtkind == DIF_TF_BYUREF) { 7261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7262 c = dtrace_fuword8((void *)(uintptr_t)val++); 7263 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7264 if (*flags & CPU_DTRACE_FAULT) 7265 break; 7266 } 7267 7268 DTRACE_STORE(uint8_t, tomax, 7269 valoffs++, c); 7270 } 7271 } 7272 7273 *valp = val; 7274 *valoffsp = valoffs; 7275 } 7276 7277 /* 7278 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7279 * defined, we also assert that we are not recursing unless the probe ID is an 7280 * error probe. 7281 */ 7282 static dtrace_icookie_t 7283 dtrace_probe_enter(dtrace_id_t id) 7284 { 7285 dtrace_icookie_t cookie; 7286 7287 cookie = dtrace_interrupt_disable(); 7288 7289 /* 7290 * Unless this is an ERROR probe, we are not allowed to recurse in 7291 * dtrace_probe(). Recursing into DTrace probe usually means that a 7292 * function is instrumented that should not have been instrumented or 7293 * that the ordering guarantee of the records will be violated, 7294 * resulting in unexpected output. If there is an exception to this 7295 * assertion, a new case should be added. 7296 */ 7297 ASSERT(curthread->t_dtrace_inprobe == 0 || 7298 id == dtrace_probeid_error); 7299 curthread->t_dtrace_inprobe = 1; 7300 7301 return (cookie); 7302 } 7303 7304 /* 7305 * Clears the per-thread inprobe flag and enables interrupts. 7306 */ 7307 static void 7308 dtrace_probe_exit(dtrace_icookie_t cookie) 7309 { 7310 7311 curthread->t_dtrace_inprobe = 0; 7312 dtrace_interrupt_enable(cookie); 7313 } 7314 7315 /* 7316 * If you're looking for the epicenter of DTrace, you just found it. This 7317 * is the function called by the provider to fire a probe -- from which all 7318 * subsequent probe-context DTrace activity emanates. 7319 */ 7320 void 7321 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7322 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7323 { 7324 processorid_t cpuid; 7325 dtrace_icookie_t cookie; 7326 dtrace_probe_t *probe; 7327 dtrace_mstate_t mstate; 7328 dtrace_ecb_t *ecb; 7329 dtrace_action_t *act; 7330 intptr_t offs; 7331 size_t size; 7332 int vtime, onintr; 7333 volatile uint16_t *flags; 7334 hrtime_t now; 7335 7336 if (KERNEL_PANICKED()) 7337 return; 7338 7339 #ifdef illumos 7340 /* 7341 * Kick out immediately if this CPU is still being born (in which case 7342 * curthread will be set to -1) or the current thread can't allow 7343 * probes in its current context. 7344 */ 7345 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7346 return; 7347 #endif 7348 7349 cookie = dtrace_probe_enter(id); 7350 probe = dtrace_probes[id - 1]; 7351 cpuid = curcpu; 7352 onintr = CPU_ON_INTR(CPU); 7353 7354 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7355 probe->dtpr_predcache == curthread->t_predcache) { 7356 /* 7357 * We have hit in the predicate cache; we know that 7358 * this predicate would evaluate to be false. 7359 */ 7360 dtrace_probe_exit(cookie); 7361 return; 7362 } 7363 7364 #ifdef illumos 7365 if (panic_quiesce) { 7366 #else 7367 if (KERNEL_PANICKED()) { 7368 #endif 7369 /* 7370 * We don't trace anything if we're panicking. 7371 */ 7372 dtrace_probe_exit(cookie); 7373 return; 7374 } 7375 7376 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7377 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7378 vtime = dtrace_vtime_references != 0; 7379 7380 if (vtime && curthread->t_dtrace_start) 7381 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7382 7383 mstate.dtms_difo = NULL; 7384 mstate.dtms_probe = probe; 7385 mstate.dtms_strtok = 0; 7386 mstate.dtms_arg[0] = arg0; 7387 mstate.dtms_arg[1] = arg1; 7388 mstate.dtms_arg[2] = arg2; 7389 mstate.dtms_arg[3] = arg3; 7390 mstate.dtms_arg[4] = arg4; 7391 7392 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7393 7394 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7395 dtrace_predicate_t *pred = ecb->dte_predicate; 7396 dtrace_state_t *state = ecb->dte_state; 7397 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7398 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7399 dtrace_vstate_t *vstate = &state->dts_vstate; 7400 dtrace_provider_t *prov = probe->dtpr_provider; 7401 uint64_t tracememsize = 0; 7402 int committed = 0; 7403 caddr_t tomax; 7404 7405 /* 7406 * A little subtlety with the following (seemingly innocuous) 7407 * declaration of the automatic 'val': by looking at the 7408 * code, you might think that it could be declared in the 7409 * action processing loop, below. (That is, it's only used in 7410 * the action processing loop.) However, it must be declared 7411 * out of that scope because in the case of DIF expression 7412 * arguments to aggregating actions, one iteration of the 7413 * action loop will use the last iteration's value. 7414 */ 7415 uint64_t val = 0; 7416 7417 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7418 mstate.dtms_getf = NULL; 7419 7420 *flags &= ~CPU_DTRACE_ERROR; 7421 7422 if (prov == dtrace_provider) { 7423 /* 7424 * If dtrace itself is the provider of this probe, 7425 * we're only going to continue processing the ECB if 7426 * arg0 (the dtrace_state_t) is equal to the ECB's 7427 * creating state. (This prevents disjoint consumers 7428 * from seeing one another's metaprobes.) 7429 */ 7430 if (arg0 != (uint64_t)(uintptr_t)state) 7431 continue; 7432 } 7433 7434 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7435 /* 7436 * We're not currently active. If our provider isn't 7437 * the dtrace pseudo provider, we're not interested. 7438 */ 7439 if (prov != dtrace_provider) 7440 continue; 7441 7442 /* 7443 * Now we must further check if we are in the BEGIN 7444 * probe. If we are, we will only continue processing 7445 * if we're still in WARMUP -- if one BEGIN enabling 7446 * has invoked the exit() action, we don't want to 7447 * evaluate subsequent BEGIN enablings. 7448 */ 7449 if (probe->dtpr_id == dtrace_probeid_begin && 7450 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7451 ASSERT(state->dts_activity == 7452 DTRACE_ACTIVITY_DRAINING); 7453 continue; 7454 } 7455 } 7456 7457 if (ecb->dte_cond) { 7458 /* 7459 * If the dte_cond bits indicate that this 7460 * consumer is only allowed to see user-mode firings 7461 * of this probe, call the provider's dtps_usermode() 7462 * entry point to check that the probe was fired 7463 * while in a user context. Skip this ECB if that's 7464 * not the case. 7465 */ 7466 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7467 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7468 probe->dtpr_id, probe->dtpr_arg) == 0) 7469 continue; 7470 7471 #ifdef illumos 7472 /* 7473 * This is more subtle than it looks. We have to be 7474 * absolutely certain that CRED() isn't going to 7475 * change out from under us so it's only legit to 7476 * examine that structure if we're in constrained 7477 * situations. Currently, the only times we'll this 7478 * check is if a non-super-user has enabled the 7479 * profile or syscall providers -- providers that 7480 * allow visibility of all processes. For the 7481 * profile case, the check above will ensure that 7482 * we're examining a user context. 7483 */ 7484 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7485 cred_t *cr; 7486 cred_t *s_cr = 7487 ecb->dte_state->dts_cred.dcr_cred; 7488 proc_t *proc; 7489 7490 ASSERT(s_cr != NULL); 7491 7492 if ((cr = CRED()) == NULL || 7493 s_cr->cr_uid != cr->cr_uid || 7494 s_cr->cr_uid != cr->cr_ruid || 7495 s_cr->cr_uid != cr->cr_suid || 7496 s_cr->cr_gid != cr->cr_gid || 7497 s_cr->cr_gid != cr->cr_rgid || 7498 s_cr->cr_gid != cr->cr_sgid || 7499 (proc = ttoproc(curthread)) == NULL || 7500 (proc->p_flag & SNOCD)) 7501 continue; 7502 } 7503 7504 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7505 cred_t *cr; 7506 cred_t *s_cr = 7507 ecb->dte_state->dts_cred.dcr_cred; 7508 7509 ASSERT(s_cr != NULL); 7510 7511 if ((cr = CRED()) == NULL || 7512 s_cr->cr_zone->zone_id != 7513 cr->cr_zone->zone_id) 7514 continue; 7515 } 7516 #endif 7517 } 7518 7519 if (now - state->dts_alive > dtrace_deadman_timeout) { 7520 /* 7521 * We seem to be dead. Unless we (a) have kernel 7522 * destructive permissions (b) have explicitly enabled 7523 * destructive actions and (c) destructive actions have 7524 * not been disabled, we're going to transition into 7525 * the KILLED state, from which no further processing 7526 * on this state will be performed. 7527 */ 7528 if (!dtrace_priv_kernel_destructive(state) || 7529 !state->dts_cred.dcr_destructive || 7530 dtrace_destructive_disallow) { 7531 void *activity = &state->dts_activity; 7532 dtrace_activity_t curstate; 7533 7534 do { 7535 curstate = state->dts_activity; 7536 } while (dtrace_cas32(activity, curstate, 7537 DTRACE_ACTIVITY_KILLED) != curstate); 7538 7539 continue; 7540 } 7541 } 7542 7543 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7544 ecb->dte_alignment, state, &mstate)) < 0) 7545 continue; 7546 7547 tomax = buf->dtb_tomax; 7548 ASSERT(tomax != NULL); 7549 7550 if (ecb->dte_size != 0) { 7551 dtrace_rechdr_t dtrh; 7552 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7553 mstate.dtms_timestamp = dtrace_gethrtime(); 7554 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7555 } 7556 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7557 dtrh.dtrh_epid = ecb->dte_epid; 7558 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7559 mstate.dtms_timestamp); 7560 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7561 } 7562 7563 mstate.dtms_epid = ecb->dte_epid; 7564 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7565 7566 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7567 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7568 else 7569 mstate.dtms_access = 0; 7570 7571 if (pred != NULL) { 7572 dtrace_difo_t *dp = pred->dtp_difo; 7573 uint64_t rval; 7574 7575 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7576 7577 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7578 dtrace_cacheid_t cid = probe->dtpr_predcache; 7579 7580 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7581 /* 7582 * Update the predicate cache... 7583 */ 7584 ASSERT(cid == pred->dtp_cacheid); 7585 curthread->t_predcache = cid; 7586 } 7587 7588 continue; 7589 } 7590 } 7591 7592 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7593 act != NULL; act = act->dta_next) { 7594 size_t valoffs; 7595 dtrace_difo_t *dp; 7596 dtrace_recdesc_t *rec = &act->dta_rec; 7597 7598 size = rec->dtrd_size; 7599 valoffs = offs + rec->dtrd_offset; 7600 7601 if (DTRACEACT_ISAGG(act->dta_kind)) { 7602 uint64_t v = 0xbad; 7603 dtrace_aggregation_t *agg; 7604 7605 agg = (dtrace_aggregation_t *)act; 7606 7607 if ((dp = act->dta_difo) != NULL) 7608 v = dtrace_dif_emulate(dp, 7609 &mstate, vstate, state); 7610 7611 if (*flags & CPU_DTRACE_ERROR) 7612 continue; 7613 7614 /* 7615 * Note that we always pass the expression 7616 * value from the previous iteration of the 7617 * action loop. This value will only be used 7618 * if there is an expression argument to the 7619 * aggregating action, denoted by the 7620 * dtag_hasarg field. 7621 */ 7622 dtrace_aggregate(agg, buf, 7623 offs, aggbuf, v, val); 7624 continue; 7625 } 7626 7627 switch (act->dta_kind) { 7628 case DTRACEACT_STOP: 7629 if (dtrace_priv_proc_destructive(state)) 7630 dtrace_action_stop(); 7631 continue; 7632 7633 case DTRACEACT_BREAKPOINT: 7634 if (dtrace_priv_kernel_destructive(state)) 7635 dtrace_action_breakpoint(ecb); 7636 continue; 7637 7638 case DTRACEACT_PANIC: 7639 if (dtrace_priv_kernel_destructive(state)) 7640 dtrace_action_panic(ecb); 7641 continue; 7642 7643 case DTRACEACT_STACK: 7644 if (!dtrace_priv_kernel(state)) 7645 continue; 7646 7647 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7648 size / sizeof (pc_t), probe->dtpr_aframes, 7649 DTRACE_ANCHORED(probe) ? NULL : 7650 (uint32_t *)arg0); 7651 continue; 7652 7653 case DTRACEACT_JSTACK: 7654 case DTRACEACT_USTACK: 7655 if (!dtrace_priv_proc(state)) 7656 continue; 7657 7658 /* 7659 * See comment in DIF_VAR_PID. 7660 */ 7661 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7662 CPU_ON_INTR(CPU)) { 7663 int depth = DTRACE_USTACK_NFRAMES( 7664 rec->dtrd_arg) + 1; 7665 7666 dtrace_bzero((void *)(tomax + valoffs), 7667 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7668 + depth * sizeof (uint64_t)); 7669 7670 continue; 7671 } 7672 7673 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7674 curproc->p_dtrace_helpers != NULL) { 7675 /* 7676 * This is the slow path -- we have 7677 * allocated string space, and we're 7678 * getting the stack of a process that 7679 * has helpers. Call into a separate 7680 * routine to perform this processing. 7681 */ 7682 dtrace_action_ustack(&mstate, state, 7683 (uint64_t *)(tomax + valoffs), 7684 rec->dtrd_arg); 7685 continue; 7686 } 7687 7688 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7689 dtrace_getupcstack((uint64_t *) 7690 (tomax + valoffs), 7691 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7692 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7693 continue; 7694 7695 default: 7696 break; 7697 } 7698 7699 dp = act->dta_difo; 7700 ASSERT(dp != NULL); 7701 7702 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7703 7704 if (*flags & CPU_DTRACE_ERROR) 7705 continue; 7706 7707 switch (act->dta_kind) { 7708 case DTRACEACT_SPECULATE: { 7709 dtrace_rechdr_t *dtrh; 7710 7711 ASSERT(buf == &state->dts_buffer[cpuid]); 7712 buf = dtrace_speculation_buffer(state, 7713 cpuid, val); 7714 7715 if (buf == NULL) { 7716 *flags |= CPU_DTRACE_DROP; 7717 continue; 7718 } 7719 7720 offs = dtrace_buffer_reserve(buf, 7721 ecb->dte_needed, ecb->dte_alignment, 7722 state, NULL); 7723 7724 if (offs < 0) { 7725 *flags |= CPU_DTRACE_DROP; 7726 continue; 7727 } 7728 7729 tomax = buf->dtb_tomax; 7730 ASSERT(tomax != NULL); 7731 7732 if (ecb->dte_size == 0) 7733 continue; 7734 7735 ASSERT3U(ecb->dte_size, >=, 7736 sizeof (dtrace_rechdr_t)); 7737 dtrh = ((void *)(tomax + offs)); 7738 dtrh->dtrh_epid = ecb->dte_epid; 7739 /* 7740 * When the speculation is committed, all of 7741 * the records in the speculative buffer will 7742 * have their timestamps set to the commit 7743 * time. Until then, it is set to a sentinel 7744 * value, for debugability. 7745 */ 7746 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7747 continue; 7748 } 7749 7750 case DTRACEACT_PRINTM: { 7751 /* 7752 * printm() assumes that the DIF returns a 7753 * pointer returned by memref(). memref() is a 7754 * subroutine that is used to get around the 7755 * single-valued returns of DIF and is assumed 7756 * to always be allocated in the scratch space. 7757 * Therefore, we need to validate that the 7758 * pointer given to printm() is in the scratch 7759 * space in order to avoid a potential panic. 7760 */ 7761 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7762 7763 if (!DTRACE_INSCRATCHPTR(&mstate, 7764 (uintptr_t) memref, 7765 sizeof (uintptr_t) + sizeof (size_t))) { 7766 *flags |= CPU_DTRACE_BADADDR; 7767 continue; 7768 } 7769 7770 /* Get the size from the memref. */ 7771 size = memref[1]; 7772 7773 /* 7774 * Check if the size exceeds the allocated 7775 * buffer size. 7776 */ 7777 if (size + sizeof (size_t) > 7778 dp->dtdo_rtype.dtdt_size) { 7779 /* Flag a drop! */ 7780 *flags |= CPU_DTRACE_DROP; 7781 continue; 7782 } 7783 7784 /* Store the size in the buffer first. */ 7785 DTRACE_STORE(size_t, tomax, valoffs, size); 7786 7787 /* 7788 * Offset the buffer address to the start 7789 * of the data. 7790 */ 7791 valoffs += sizeof(size_t); 7792 7793 /* 7794 * Reset to the memory address rather than 7795 * the memref array, then let the BYREF 7796 * code below do the work to store the 7797 * memory data in the buffer. 7798 */ 7799 val = memref[0]; 7800 break; 7801 } 7802 7803 case DTRACEACT_CHILL: 7804 if (dtrace_priv_kernel_destructive(state)) 7805 dtrace_action_chill(&mstate, val); 7806 continue; 7807 7808 case DTRACEACT_RAISE: 7809 if (dtrace_priv_proc_destructive(state)) 7810 dtrace_action_raise(val); 7811 continue; 7812 7813 case DTRACEACT_COMMIT: 7814 ASSERT(!committed); 7815 7816 /* 7817 * We need to commit our buffer state. 7818 */ 7819 if (ecb->dte_size) 7820 buf->dtb_offset = offs + ecb->dte_size; 7821 buf = &state->dts_buffer[cpuid]; 7822 dtrace_speculation_commit(state, cpuid, val); 7823 committed = 1; 7824 continue; 7825 7826 case DTRACEACT_DISCARD: 7827 dtrace_speculation_discard(state, cpuid, val); 7828 continue; 7829 7830 case DTRACEACT_DIFEXPR: 7831 case DTRACEACT_LIBACT: 7832 case DTRACEACT_PRINTF: 7833 case DTRACEACT_PRINTA: 7834 case DTRACEACT_SYSTEM: 7835 case DTRACEACT_FREOPEN: 7836 case DTRACEACT_TRACEMEM: 7837 break; 7838 7839 case DTRACEACT_TRACEMEM_DYNSIZE: 7840 tracememsize = val; 7841 break; 7842 7843 case DTRACEACT_SYM: 7844 case DTRACEACT_MOD: 7845 if (!dtrace_priv_kernel(state)) 7846 continue; 7847 break; 7848 7849 case DTRACEACT_USYM: 7850 case DTRACEACT_UMOD: 7851 case DTRACEACT_UADDR: { 7852 #ifdef illumos 7853 struct pid *pid = curthread->t_procp->p_pidp; 7854 #endif 7855 7856 if (!dtrace_priv_proc(state)) 7857 continue; 7858 7859 DTRACE_STORE(uint64_t, tomax, 7860 #ifdef illumos 7861 valoffs, (uint64_t)pid->pid_id); 7862 #else 7863 valoffs, (uint64_t) curproc->p_pid); 7864 #endif 7865 DTRACE_STORE(uint64_t, tomax, 7866 valoffs + sizeof (uint64_t), val); 7867 7868 continue; 7869 } 7870 7871 case DTRACEACT_EXIT: { 7872 /* 7873 * For the exit action, we are going to attempt 7874 * to atomically set our activity to be 7875 * draining. If this fails (either because 7876 * another CPU has beat us to the exit action, 7877 * or because our current activity is something 7878 * other than ACTIVE or WARMUP), we will 7879 * continue. This assures that the exit action 7880 * can be successfully recorded at most once 7881 * when we're in the ACTIVE state. If we're 7882 * encountering the exit() action while in 7883 * COOLDOWN, however, we want to honor the new 7884 * status code. (We know that we're the only 7885 * thread in COOLDOWN, so there is no race.) 7886 */ 7887 void *activity = &state->dts_activity; 7888 dtrace_activity_t curstate = state->dts_activity; 7889 7890 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7891 break; 7892 7893 if (curstate != DTRACE_ACTIVITY_WARMUP) 7894 curstate = DTRACE_ACTIVITY_ACTIVE; 7895 7896 if (dtrace_cas32(activity, curstate, 7897 DTRACE_ACTIVITY_DRAINING) != curstate) { 7898 *flags |= CPU_DTRACE_DROP; 7899 continue; 7900 } 7901 7902 break; 7903 } 7904 7905 default: 7906 ASSERT(0); 7907 } 7908 7909 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7910 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7911 uintptr_t end = valoffs + size; 7912 7913 if (tracememsize != 0 && 7914 valoffs + tracememsize < end) { 7915 end = valoffs + tracememsize; 7916 tracememsize = 0; 7917 } 7918 7919 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7920 !dtrace_vcanload((void *)(uintptr_t)val, 7921 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7922 continue; 7923 7924 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7925 &val, end, act->dta_intuple, 7926 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7927 DIF_TF_BYREF: DIF_TF_BYUREF); 7928 continue; 7929 } 7930 7931 switch (size) { 7932 case 0: 7933 break; 7934 7935 case sizeof (uint8_t): 7936 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7937 break; 7938 case sizeof (uint16_t): 7939 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7940 break; 7941 case sizeof (uint32_t): 7942 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7943 break; 7944 case sizeof (uint64_t): 7945 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7946 break; 7947 default: 7948 /* 7949 * Any other size should have been returned by 7950 * reference, not by value. 7951 */ 7952 ASSERT(0); 7953 break; 7954 } 7955 } 7956 7957 if (*flags & CPU_DTRACE_DROP) 7958 continue; 7959 7960 if (*flags & CPU_DTRACE_FAULT) { 7961 int ndx; 7962 dtrace_action_t *err; 7963 7964 buf->dtb_errors++; 7965 7966 if (probe->dtpr_id == dtrace_probeid_error) { 7967 /* 7968 * There's nothing we can do -- we had an 7969 * error on the error probe. We bump an 7970 * error counter to at least indicate that 7971 * this condition happened. 7972 */ 7973 dtrace_error(&state->dts_dblerrors); 7974 continue; 7975 } 7976 7977 if (vtime) { 7978 /* 7979 * Before recursing on dtrace_probe(), we 7980 * need to explicitly clear out our start 7981 * time to prevent it from being accumulated 7982 * into t_dtrace_vtime. 7983 */ 7984 curthread->t_dtrace_start = 0; 7985 } 7986 7987 /* 7988 * Iterate over the actions to figure out which action 7989 * we were processing when we experienced the error. 7990 * Note that act points _past_ the faulting action; if 7991 * act is ecb->dte_action, the fault was in the 7992 * predicate, if it's ecb->dte_action->dta_next it's 7993 * in action #1, and so on. 7994 */ 7995 for (err = ecb->dte_action, ndx = 0; 7996 err != act; err = err->dta_next, ndx++) 7997 continue; 7998 7999 dtrace_probe_error(state, ecb->dte_epid, ndx, 8000 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 8001 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 8002 cpu_core[cpuid].cpuc_dtrace_illval); 8003 8004 continue; 8005 } 8006 8007 if (!committed) 8008 buf->dtb_offset = offs + ecb->dte_size; 8009 } 8010 8011 if (vtime) 8012 curthread->t_dtrace_start = dtrace_gethrtime(); 8013 8014 dtrace_probe_exit(cookie); 8015 } 8016 8017 /* 8018 * DTrace Probe Hashing Functions 8019 * 8020 * The functions in this section (and indeed, the functions in remaining 8021 * sections) are not _called_ from probe context. (Any exceptions to this are 8022 * marked with a "Note:".) Rather, they are called from elsewhere in the 8023 * DTrace framework to look-up probes in, add probes to and remove probes from 8024 * the DTrace probe hashes. (Each probe is hashed by each element of the 8025 * probe tuple -- allowing for fast lookups, regardless of what was 8026 * specified.) 8027 */ 8028 static uint_t 8029 dtrace_hash_str(const char *p) 8030 { 8031 unsigned int g; 8032 uint_t hval = 0; 8033 8034 while (*p) { 8035 hval = (hval << 4) + *p++; 8036 if ((g = (hval & 0xf0000000)) != 0) 8037 hval ^= g >> 24; 8038 hval &= ~g; 8039 } 8040 return (hval); 8041 } 8042 8043 static dtrace_hash_t * 8044 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs) 8045 { 8046 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8047 8048 hash->dth_stroffs = stroffs; 8049 hash->dth_nextoffs = nextoffs; 8050 hash->dth_prevoffs = prevoffs; 8051 8052 hash->dth_size = 1; 8053 hash->dth_mask = hash->dth_size - 1; 8054 8055 hash->dth_tab = kmem_zalloc(hash->dth_size * 8056 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8057 8058 return (hash); 8059 } 8060 8061 static void 8062 dtrace_hash_destroy(dtrace_hash_t *hash) 8063 { 8064 #ifdef DEBUG 8065 int i; 8066 8067 for (i = 0; i < hash->dth_size; i++) 8068 ASSERT(hash->dth_tab[i] == NULL); 8069 #endif 8070 8071 kmem_free(hash->dth_tab, 8072 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8073 kmem_free(hash, sizeof (dtrace_hash_t)); 8074 } 8075 8076 static void 8077 dtrace_hash_resize(dtrace_hash_t *hash) 8078 { 8079 int size = hash->dth_size, i, ndx; 8080 int new_size = hash->dth_size << 1; 8081 int new_mask = new_size - 1; 8082 dtrace_hashbucket_t **new_tab, *bucket, *next; 8083 8084 ASSERT((new_size & new_mask) == 0); 8085 8086 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8087 8088 for (i = 0; i < size; i++) { 8089 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8090 dtrace_probe_t *probe = bucket->dthb_chain; 8091 8092 ASSERT(probe != NULL); 8093 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8094 8095 next = bucket->dthb_next; 8096 bucket->dthb_next = new_tab[ndx]; 8097 new_tab[ndx] = bucket; 8098 } 8099 } 8100 8101 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8102 hash->dth_tab = new_tab; 8103 hash->dth_size = new_size; 8104 hash->dth_mask = new_mask; 8105 } 8106 8107 static void 8108 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8109 { 8110 int hashval = DTRACE_HASHSTR(hash, new); 8111 int ndx = hashval & hash->dth_mask; 8112 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8113 dtrace_probe_t **nextp, **prevp; 8114 8115 for (; bucket != NULL; bucket = bucket->dthb_next) { 8116 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8117 goto add; 8118 } 8119 8120 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8121 dtrace_hash_resize(hash); 8122 dtrace_hash_add(hash, new); 8123 return; 8124 } 8125 8126 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8127 bucket->dthb_next = hash->dth_tab[ndx]; 8128 hash->dth_tab[ndx] = bucket; 8129 hash->dth_nbuckets++; 8130 8131 add: 8132 nextp = DTRACE_HASHNEXT(hash, new); 8133 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8134 *nextp = bucket->dthb_chain; 8135 8136 if (bucket->dthb_chain != NULL) { 8137 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8138 ASSERT(*prevp == NULL); 8139 *prevp = new; 8140 } 8141 8142 bucket->dthb_chain = new; 8143 bucket->dthb_len++; 8144 } 8145 8146 static dtrace_probe_t * 8147 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8148 { 8149 int hashval = DTRACE_HASHSTR(hash, template); 8150 int ndx = hashval & hash->dth_mask; 8151 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8152 8153 for (; bucket != NULL; bucket = bucket->dthb_next) { 8154 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8155 return (bucket->dthb_chain); 8156 } 8157 8158 return (NULL); 8159 } 8160 8161 static int 8162 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8163 { 8164 int hashval = DTRACE_HASHSTR(hash, template); 8165 int ndx = hashval & hash->dth_mask; 8166 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8167 8168 for (; bucket != NULL; bucket = bucket->dthb_next) { 8169 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8170 return (bucket->dthb_len); 8171 } 8172 8173 return (0); 8174 } 8175 8176 static void 8177 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8178 { 8179 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8180 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8181 8182 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8183 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8184 8185 /* 8186 * Find the bucket that we're removing this probe from. 8187 */ 8188 for (; bucket != NULL; bucket = bucket->dthb_next) { 8189 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8190 break; 8191 } 8192 8193 ASSERT(bucket != NULL); 8194 8195 if (*prevp == NULL) { 8196 if (*nextp == NULL) { 8197 /* 8198 * The removed probe was the only probe on this 8199 * bucket; we need to remove the bucket. 8200 */ 8201 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8202 8203 ASSERT(bucket->dthb_chain == probe); 8204 ASSERT(b != NULL); 8205 8206 if (b == bucket) { 8207 hash->dth_tab[ndx] = bucket->dthb_next; 8208 } else { 8209 while (b->dthb_next != bucket) 8210 b = b->dthb_next; 8211 b->dthb_next = bucket->dthb_next; 8212 } 8213 8214 ASSERT(hash->dth_nbuckets > 0); 8215 hash->dth_nbuckets--; 8216 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8217 return; 8218 } 8219 8220 bucket->dthb_chain = *nextp; 8221 } else { 8222 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8223 } 8224 8225 if (*nextp != NULL) 8226 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8227 } 8228 8229 /* 8230 * DTrace Utility Functions 8231 * 8232 * These are random utility functions that are _not_ called from probe context. 8233 */ 8234 static int 8235 dtrace_badattr(const dtrace_attribute_t *a) 8236 { 8237 return (a->dtat_name > DTRACE_STABILITY_MAX || 8238 a->dtat_data > DTRACE_STABILITY_MAX || 8239 a->dtat_class > DTRACE_CLASS_MAX); 8240 } 8241 8242 /* 8243 * Return a duplicate copy of a string. If the specified string is NULL, 8244 * this function returns a zero-length string. 8245 */ 8246 static char * 8247 dtrace_strdup(const char *str) 8248 { 8249 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8250 8251 if (str != NULL) 8252 (void) strcpy(new, str); 8253 8254 return (new); 8255 } 8256 8257 #define DTRACE_ISALPHA(c) \ 8258 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8259 8260 static int 8261 dtrace_badname(const char *s) 8262 { 8263 char c; 8264 8265 if (s == NULL || (c = *s++) == '\0') 8266 return (0); 8267 8268 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8269 return (1); 8270 8271 while ((c = *s++) != '\0') { 8272 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8273 c != '-' && c != '_' && c != '.' && c != '`') 8274 return (1); 8275 } 8276 8277 return (0); 8278 } 8279 8280 static void 8281 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8282 { 8283 uint32_t priv; 8284 8285 #ifdef illumos 8286 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8287 /* 8288 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8289 */ 8290 priv = DTRACE_PRIV_ALL; 8291 } else { 8292 *uidp = crgetuid(cr); 8293 *zoneidp = crgetzoneid(cr); 8294 8295 priv = 0; 8296 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8297 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8298 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8299 priv |= DTRACE_PRIV_USER; 8300 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8301 priv |= DTRACE_PRIV_PROC; 8302 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8303 priv |= DTRACE_PRIV_OWNER; 8304 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8305 priv |= DTRACE_PRIV_ZONEOWNER; 8306 } 8307 #else 8308 priv = DTRACE_PRIV_ALL; 8309 #endif 8310 8311 *privp = priv; 8312 } 8313 8314 #ifdef DTRACE_ERRDEBUG 8315 static void 8316 dtrace_errdebug(const char *str) 8317 { 8318 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8319 int occupied = 0; 8320 8321 mutex_enter(&dtrace_errlock); 8322 dtrace_errlast = str; 8323 dtrace_errthread = curthread; 8324 8325 while (occupied++ < DTRACE_ERRHASHSZ) { 8326 if (dtrace_errhash[hval].dter_msg == str) { 8327 dtrace_errhash[hval].dter_count++; 8328 goto out; 8329 } 8330 8331 if (dtrace_errhash[hval].dter_msg != NULL) { 8332 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8333 continue; 8334 } 8335 8336 dtrace_errhash[hval].dter_msg = str; 8337 dtrace_errhash[hval].dter_count = 1; 8338 goto out; 8339 } 8340 8341 panic("dtrace: undersized error hash"); 8342 out: 8343 mutex_exit(&dtrace_errlock); 8344 } 8345 #endif 8346 8347 /* 8348 * DTrace Matching Functions 8349 * 8350 * These functions are used to match groups of probes, given some elements of 8351 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8352 */ 8353 static int 8354 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8355 zoneid_t zoneid) 8356 { 8357 if (priv != DTRACE_PRIV_ALL) { 8358 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8359 uint32_t match = priv & ppriv; 8360 8361 /* 8362 * No PRIV_DTRACE_* privileges... 8363 */ 8364 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8365 DTRACE_PRIV_KERNEL)) == 0) 8366 return (0); 8367 8368 /* 8369 * No matching bits, but there were bits to match... 8370 */ 8371 if (match == 0 && ppriv != 0) 8372 return (0); 8373 8374 /* 8375 * Need to have permissions to the process, but don't... 8376 */ 8377 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8378 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8379 return (0); 8380 } 8381 8382 /* 8383 * Need to be in the same zone unless we possess the 8384 * privilege to examine all zones. 8385 */ 8386 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8387 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8388 return (0); 8389 } 8390 } 8391 8392 return (1); 8393 } 8394 8395 /* 8396 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8397 * consists of input pattern strings and an ops-vector to evaluate them. 8398 * This function returns >0 for match, 0 for no match, and <0 for error. 8399 */ 8400 static int 8401 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8402 uint32_t priv, uid_t uid, zoneid_t zoneid) 8403 { 8404 dtrace_provider_t *pvp = prp->dtpr_provider; 8405 int rv; 8406 8407 if (pvp->dtpv_defunct) 8408 return (0); 8409 8410 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8411 return (rv); 8412 8413 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8414 return (rv); 8415 8416 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8417 return (rv); 8418 8419 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8420 return (rv); 8421 8422 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8423 return (0); 8424 8425 return (rv); 8426 } 8427 8428 /* 8429 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8430 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8431 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8432 * In addition, all of the recursion cases except for '*' matching have been 8433 * unwound. For '*', we still implement recursive evaluation, but a depth 8434 * counter is maintained and matching is aborted if we recurse too deep. 8435 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8436 */ 8437 static int 8438 dtrace_match_glob(const char *s, const char *p, int depth) 8439 { 8440 const char *olds; 8441 char s1, c; 8442 int gs; 8443 8444 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8445 return (-1); 8446 8447 if (s == NULL) 8448 s = ""; /* treat NULL as empty string */ 8449 8450 top: 8451 olds = s; 8452 s1 = *s++; 8453 8454 if (p == NULL) 8455 return (0); 8456 8457 if ((c = *p++) == '\0') 8458 return (s1 == '\0'); 8459 8460 switch (c) { 8461 case '[': { 8462 int ok = 0, notflag = 0; 8463 char lc = '\0'; 8464 8465 if (s1 == '\0') 8466 return (0); 8467 8468 if (*p == '!') { 8469 notflag = 1; 8470 p++; 8471 } 8472 8473 if ((c = *p++) == '\0') 8474 return (0); 8475 8476 do { 8477 if (c == '-' && lc != '\0' && *p != ']') { 8478 if ((c = *p++) == '\0') 8479 return (0); 8480 if (c == '\\' && (c = *p++) == '\0') 8481 return (0); 8482 8483 if (notflag) { 8484 if (s1 < lc || s1 > c) 8485 ok++; 8486 else 8487 return (0); 8488 } else if (lc <= s1 && s1 <= c) 8489 ok++; 8490 8491 } else if (c == '\\' && (c = *p++) == '\0') 8492 return (0); 8493 8494 lc = c; /* save left-hand 'c' for next iteration */ 8495 8496 if (notflag) { 8497 if (s1 != c) 8498 ok++; 8499 else 8500 return (0); 8501 } else if (s1 == c) 8502 ok++; 8503 8504 if ((c = *p++) == '\0') 8505 return (0); 8506 8507 } while (c != ']'); 8508 8509 if (ok) 8510 goto top; 8511 8512 return (0); 8513 } 8514 8515 case '\\': 8516 if ((c = *p++) == '\0') 8517 return (0); 8518 /*FALLTHRU*/ 8519 8520 default: 8521 if (c != s1) 8522 return (0); 8523 /*FALLTHRU*/ 8524 8525 case '?': 8526 if (s1 != '\0') 8527 goto top; 8528 return (0); 8529 8530 case '*': 8531 while (*p == '*') 8532 p++; /* consecutive *'s are identical to a single one */ 8533 8534 if (*p == '\0') 8535 return (1); 8536 8537 for (s = olds; *s != '\0'; s++) { 8538 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8539 return (gs); 8540 } 8541 8542 return (0); 8543 } 8544 } 8545 8546 /*ARGSUSED*/ 8547 static int 8548 dtrace_match_string(const char *s, const char *p, int depth) 8549 { 8550 return (s != NULL && strcmp(s, p) == 0); 8551 } 8552 8553 /*ARGSUSED*/ 8554 static int 8555 dtrace_match_nul(const char *s, const char *p, int depth) 8556 { 8557 return (1); /* always match the empty pattern */ 8558 } 8559 8560 /*ARGSUSED*/ 8561 static int 8562 dtrace_match_nonzero(const char *s, const char *p, int depth) 8563 { 8564 return (s != NULL && s[0] != '\0'); 8565 } 8566 8567 static int 8568 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8569 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8570 { 8571 dtrace_probe_t template, *probe; 8572 dtrace_hash_t *hash = NULL; 8573 int len, best = INT_MAX, nmatched = 0; 8574 dtrace_id_t i; 8575 8576 ASSERT(MUTEX_HELD(&dtrace_lock)); 8577 8578 /* 8579 * If the probe ID is specified in the key, just lookup by ID and 8580 * invoke the match callback once if a matching probe is found. 8581 */ 8582 if (pkp->dtpk_id != DTRACE_IDNONE) { 8583 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8584 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8585 (void) (*matched)(probe, arg); 8586 nmatched++; 8587 } 8588 return (nmatched); 8589 } 8590 8591 template.dtpr_mod = (char *)pkp->dtpk_mod; 8592 template.dtpr_func = (char *)pkp->dtpk_func; 8593 template.dtpr_name = (char *)pkp->dtpk_name; 8594 8595 /* 8596 * We want to find the most distinct of the module name, function 8597 * name, and name. So for each one that is not a glob pattern or 8598 * empty string, we perform a lookup in the corresponding hash and 8599 * use the hash table with the fewest collisions to do our search. 8600 */ 8601 if (pkp->dtpk_mmatch == &dtrace_match_string && 8602 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8603 best = len; 8604 hash = dtrace_bymod; 8605 } 8606 8607 if (pkp->dtpk_fmatch == &dtrace_match_string && 8608 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8609 best = len; 8610 hash = dtrace_byfunc; 8611 } 8612 8613 if (pkp->dtpk_nmatch == &dtrace_match_string && 8614 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8615 best = len; 8616 hash = dtrace_byname; 8617 } 8618 8619 /* 8620 * If we did not select a hash table, iterate over every probe and 8621 * invoke our callback for each one that matches our input probe key. 8622 */ 8623 if (hash == NULL) { 8624 for (i = 0; i < dtrace_nprobes; i++) { 8625 if ((probe = dtrace_probes[i]) == NULL || 8626 dtrace_match_probe(probe, pkp, priv, uid, 8627 zoneid) <= 0) 8628 continue; 8629 8630 nmatched++; 8631 8632 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8633 break; 8634 } 8635 8636 return (nmatched); 8637 } 8638 8639 /* 8640 * If we selected a hash table, iterate over each probe of the same key 8641 * name and invoke the callback for every probe that matches the other 8642 * attributes of our input probe key. 8643 */ 8644 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8645 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8646 8647 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8648 continue; 8649 8650 nmatched++; 8651 8652 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8653 break; 8654 } 8655 8656 return (nmatched); 8657 } 8658 8659 /* 8660 * Return the function pointer dtrace_probecmp() should use to compare the 8661 * specified pattern with a string. For NULL or empty patterns, we select 8662 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8663 * For non-empty non-glob strings, we use dtrace_match_string(). 8664 */ 8665 static dtrace_probekey_f * 8666 dtrace_probekey_func(const char *p) 8667 { 8668 char c; 8669 8670 if (p == NULL || *p == '\0') 8671 return (&dtrace_match_nul); 8672 8673 while ((c = *p++) != '\0') { 8674 if (c == '[' || c == '?' || c == '*' || c == '\\') 8675 return (&dtrace_match_glob); 8676 } 8677 8678 return (&dtrace_match_string); 8679 } 8680 8681 /* 8682 * Build a probe comparison key for use with dtrace_match_probe() from the 8683 * given probe description. By convention, a null key only matches anchored 8684 * probes: if each field is the empty string, reset dtpk_fmatch to 8685 * dtrace_match_nonzero(). 8686 */ 8687 static void 8688 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8689 { 8690 pkp->dtpk_prov = pdp->dtpd_provider; 8691 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8692 8693 pkp->dtpk_mod = pdp->dtpd_mod; 8694 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8695 8696 pkp->dtpk_func = pdp->dtpd_func; 8697 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8698 8699 pkp->dtpk_name = pdp->dtpd_name; 8700 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8701 8702 pkp->dtpk_id = pdp->dtpd_id; 8703 8704 if (pkp->dtpk_id == DTRACE_IDNONE && 8705 pkp->dtpk_pmatch == &dtrace_match_nul && 8706 pkp->dtpk_mmatch == &dtrace_match_nul && 8707 pkp->dtpk_fmatch == &dtrace_match_nul && 8708 pkp->dtpk_nmatch == &dtrace_match_nul) 8709 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8710 } 8711 8712 /* 8713 * DTrace Provider-to-Framework API Functions 8714 * 8715 * These functions implement much of the Provider-to-Framework API, as 8716 * described in <sys/dtrace.h>. The parts of the API not in this section are 8717 * the functions in the API for probe management (found below), and 8718 * dtrace_probe() itself (found above). 8719 */ 8720 8721 /* 8722 * Register the calling provider with the DTrace framework. This should 8723 * generally be called by DTrace providers in their attach(9E) entry point. 8724 */ 8725 int 8726 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8727 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8728 { 8729 dtrace_provider_t *provider; 8730 8731 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8732 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8733 "arguments", name ? name : "<NULL>"); 8734 return (EINVAL); 8735 } 8736 8737 if (name[0] == '\0' || dtrace_badname(name)) { 8738 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8739 "provider name", name); 8740 return (EINVAL); 8741 } 8742 8743 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8744 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8745 pops->dtps_destroy == NULL || 8746 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8747 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8748 "provider ops", name); 8749 return (EINVAL); 8750 } 8751 8752 if (dtrace_badattr(&pap->dtpa_provider) || 8753 dtrace_badattr(&pap->dtpa_mod) || 8754 dtrace_badattr(&pap->dtpa_func) || 8755 dtrace_badattr(&pap->dtpa_name) || 8756 dtrace_badattr(&pap->dtpa_args)) { 8757 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8758 "provider attributes", name); 8759 return (EINVAL); 8760 } 8761 8762 if (priv & ~DTRACE_PRIV_ALL) { 8763 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8764 "privilege attributes", name); 8765 return (EINVAL); 8766 } 8767 8768 if ((priv & DTRACE_PRIV_KERNEL) && 8769 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8770 pops->dtps_usermode == NULL) { 8771 cmn_err(CE_WARN, "failed to register provider '%s': need " 8772 "dtps_usermode() op for given privilege attributes", name); 8773 return (EINVAL); 8774 } 8775 8776 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8777 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8778 (void) strcpy(provider->dtpv_name, name); 8779 8780 provider->dtpv_attr = *pap; 8781 provider->dtpv_priv.dtpp_flags = priv; 8782 if (cr != NULL) { 8783 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8784 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8785 } 8786 provider->dtpv_pops = *pops; 8787 8788 if (pops->dtps_provide == NULL) { 8789 ASSERT(pops->dtps_provide_module != NULL); 8790 provider->dtpv_pops.dtps_provide = 8791 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8792 } 8793 8794 if (pops->dtps_provide_module == NULL) { 8795 ASSERT(pops->dtps_provide != NULL); 8796 provider->dtpv_pops.dtps_provide_module = 8797 (void (*)(void *, modctl_t *))dtrace_nullop; 8798 } 8799 8800 if (pops->dtps_suspend == NULL) { 8801 ASSERT(pops->dtps_resume == NULL); 8802 provider->dtpv_pops.dtps_suspend = 8803 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8804 provider->dtpv_pops.dtps_resume = 8805 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8806 } 8807 8808 provider->dtpv_arg = arg; 8809 *idp = (dtrace_provider_id_t)provider; 8810 8811 if (pops == &dtrace_provider_ops) { 8812 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8813 ASSERT(MUTEX_HELD(&dtrace_lock)); 8814 ASSERT(dtrace_anon.dta_enabling == NULL); 8815 8816 /* 8817 * We make sure that the DTrace provider is at the head of 8818 * the provider chain. 8819 */ 8820 provider->dtpv_next = dtrace_provider; 8821 dtrace_provider = provider; 8822 return (0); 8823 } 8824 8825 mutex_enter(&dtrace_provider_lock); 8826 mutex_enter(&dtrace_lock); 8827 8828 /* 8829 * If there is at least one provider registered, we'll add this 8830 * provider after the first provider. 8831 */ 8832 if (dtrace_provider != NULL) { 8833 provider->dtpv_next = dtrace_provider->dtpv_next; 8834 dtrace_provider->dtpv_next = provider; 8835 } else { 8836 dtrace_provider = provider; 8837 } 8838 8839 if (dtrace_retained != NULL) { 8840 dtrace_enabling_provide(provider); 8841 8842 /* 8843 * Now we need to call dtrace_enabling_matchall() -- which 8844 * will acquire cpu_lock and dtrace_lock. We therefore need 8845 * to drop all of our locks before calling into it... 8846 */ 8847 mutex_exit(&dtrace_lock); 8848 mutex_exit(&dtrace_provider_lock); 8849 dtrace_enabling_matchall(); 8850 8851 return (0); 8852 } 8853 8854 mutex_exit(&dtrace_lock); 8855 mutex_exit(&dtrace_provider_lock); 8856 8857 return (0); 8858 } 8859 8860 /* 8861 * Unregister the specified provider from the DTrace framework. This should 8862 * generally be called by DTrace providers in their detach(9E) entry point. 8863 */ 8864 int 8865 dtrace_unregister(dtrace_provider_id_t id) 8866 { 8867 dtrace_provider_t *old = (dtrace_provider_t *)id; 8868 dtrace_provider_t *prev = NULL; 8869 int i, self = 0, noreap = 0; 8870 dtrace_probe_t *probe, *first = NULL; 8871 8872 if (old->dtpv_pops.dtps_enable == 8873 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8874 /* 8875 * If DTrace itself is the provider, we're called with locks 8876 * already held. 8877 */ 8878 ASSERT(old == dtrace_provider); 8879 #ifdef illumos 8880 ASSERT(dtrace_devi != NULL); 8881 #endif 8882 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8883 ASSERT(MUTEX_HELD(&dtrace_lock)); 8884 self = 1; 8885 8886 if (dtrace_provider->dtpv_next != NULL) { 8887 /* 8888 * There's another provider here; return failure. 8889 */ 8890 return (EBUSY); 8891 } 8892 } else { 8893 mutex_enter(&dtrace_provider_lock); 8894 #ifdef illumos 8895 mutex_enter(&mod_lock); 8896 #endif 8897 mutex_enter(&dtrace_lock); 8898 } 8899 8900 /* 8901 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8902 * probes, we refuse to let providers slither away, unless this 8903 * provider has already been explicitly invalidated. 8904 */ 8905 if (!old->dtpv_defunct && 8906 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8907 dtrace_anon.dta_state->dts_necbs > 0))) { 8908 if (!self) { 8909 mutex_exit(&dtrace_lock); 8910 #ifdef illumos 8911 mutex_exit(&mod_lock); 8912 #endif 8913 mutex_exit(&dtrace_provider_lock); 8914 } 8915 return (EBUSY); 8916 } 8917 8918 /* 8919 * Attempt to destroy the probes associated with this provider. 8920 */ 8921 for (i = 0; i < dtrace_nprobes; i++) { 8922 if ((probe = dtrace_probes[i]) == NULL) 8923 continue; 8924 8925 if (probe->dtpr_provider != old) 8926 continue; 8927 8928 if (probe->dtpr_ecb == NULL) 8929 continue; 8930 8931 /* 8932 * If we are trying to unregister a defunct provider, and the 8933 * provider was made defunct within the interval dictated by 8934 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8935 * attempt to reap our enablings. To denote that the provider 8936 * should reattempt to unregister itself at some point in the 8937 * future, we will return a differentiable error code (EAGAIN 8938 * instead of EBUSY) in this case. 8939 */ 8940 if (dtrace_gethrtime() - old->dtpv_defunct > 8941 dtrace_unregister_defunct_reap) 8942 noreap = 1; 8943 8944 if (!self) { 8945 mutex_exit(&dtrace_lock); 8946 #ifdef illumos 8947 mutex_exit(&mod_lock); 8948 #endif 8949 mutex_exit(&dtrace_provider_lock); 8950 } 8951 8952 if (noreap) 8953 return (EBUSY); 8954 8955 (void) taskq_dispatch(dtrace_taskq, 8956 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8957 8958 return (EAGAIN); 8959 } 8960 8961 /* 8962 * All of the probes for this provider are disabled; we can safely 8963 * remove all of them from their hash chains and from the probe array. 8964 */ 8965 for (i = 0; i < dtrace_nprobes; i++) { 8966 if ((probe = dtrace_probes[i]) == NULL) 8967 continue; 8968 8969 if (probe->dtpr_provider != old) 8970 continue; 8971 8972 dtrace_probes[i] = NULL; 8973 8974 dtrace_hash_remove(dtrace_bymod, probe); 8975 dtrace_hash_remove(dtrace_byfunc, probe); 8976 dtrace_hash_remove(dtrace_byname, probe); 8977 8978 if (first == NULL) { 8979 first = probe; 8980 probe->dtpr_nextmod = NULL; 8981 } else { 8982 probe->dtpr_nextmod = first; 8983 first = probe; 8984 } 8985 } 8986 8987 /* 8988 * The provider's probes have been removed from the hash chains and 8989 * from the probe array. Now issue a dtrace_sync() to be sure that 8990 * everyone has cleared out from any probe array processing. 8991 */ 8992 dtrace_sync(); 8993 8994 for (probe = first; probe != NULL; probe = first) { 8995 first = probe->dtpr_nextmod; 8996 8997 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8998 probe->dtpr_arg); 8999 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9000 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9001 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9002 #ifdef illumos 9003 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 9004 #else 9005 free_unr(dtrace_arena, probe->dtpr_id); 9006 #endif 9007 kmem_free(probe, sizeof (dtrace_probe_t)); 9008 } 9009 9010 if ((prev = dtrace_provider) == old) { 9011 #ifdef illumos 9012 ASSERT(self || dtrace_devi == NULL); 9013 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9014 #endif 9015 dtrace_provider = old->dtpv_next; 9016 } else { 9017 while (prev != NULL && prev->dtpv_next != old) 9018 prev = prev->dtpv_next; 9019 9020 if (prev == NULL) { 9021 panic("attempt to unregister non-existent " 9022 "dtrace provider %p\n", (void *)id); 9023 } 9024 9025 prev->dtpv_next = old->dtpv_next; 9026 } 9027 9028 if (!self) { 9029 mutex_exit(&dtrace_lock); 9030 #ifdef illumos 9031 mutex_exit(&mod_lock); 9032 #endif 9033 mutex_exit(&dtrace_provider_lock); 9034 } 9035 9036 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9037 kmem_free(old, sizeof (dtrace_provider_t)); 9038 9039 return (0); 9040 } 9041 9042 /* 9043 * Invalidate the specified provider. All subsequent probe lookups for the 9044 * specified provider will fail, but its probes will not be removed. 9045 */ 9046 void 9047 dtrace_invalidate(dtrace_provider_id_t id) 9048 { 9049 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9050 9051 ASSERT(pvp->dtpv_pops.dtps_enable != 9052 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9053 9054 mutex_enter(&dtrace_provider_lock); 9055 mutex_enter(&dtrace_lock); 9056 9057 pvp->dtpv_defunct = dtrace_gethrtime(); 9058 9059 mutex_exit(&dtrace_lock); 9060 mutex_exit(&dtrace_provider_lock); 9061 } 9062 9063 /* 9064 * Indicate whether or not DTrace has attached. 9065 */ 9066 int 9067 dtrace_attached(void) 9068 { 9069 /* 9070 * dtrace_provider will be non-NULL iff the DTrace driver has 9071 * attached. (It's non-NULL because DTrace is always itself a 9072 * provider.) 9073 */ 9074 return (dtrace_provider != NULL); 9075 } 9076 9077 /* 9078 * Remove all the unenabled probes for the given provider. This function is 9079 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9080 * -- just as many of its associated probes as it can. 9081 */ 9082 int 9083 dtrace_condense(dtrace_provider_id_t id) 9084 { 9085 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9086 int i; 9087 dtrace_probe_t *probe; 9088 9089 /* 9090 * Make sure this isn't the dtrace provider itself. 9091 */ 9092 ASSERT(prov->dtpv_pops.dtps_enable != 9093 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9094 9095 mutex_enter(&dtrace_provider_lock); 9096 mutex_enter(&dtrace_lock); 9097 9098 /* 9099 * Attempt to destroy the probes associated with this provider. 9100 */ 9101 for (i = 0; i < dtrace_nprobes; i++) { 9102 if ((probe = dtrace_probes[i]) == NULL) 9103 continue; 9104 9105 if (probe->dtpr_provider != prov) 9106 continue; 9107 9108 if (probe->dtpr_ecb != NULL) 9109 continue; 9110 9111 dtrace_probes[i] = NULL; 9112 9113 dtrace_hash_remove(dtrace_bymod, probe); 9114 dtrace_hash_remove(dtrace_byfunc, probe); 9115 dtrace_hash_remove(dtrace_byname, probe); 9116 9117 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9118 probe->dtpr_arg); 9119 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9120 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9121 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9122 kmem_free(probe, sizeof (dtrace_probe_t)); 9123 #ifdef illumos 9124 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9125 #else 9126 free_unr(dtrace_arena, i + 1); 9127 #endif 9128 } 9129 9130 mutex_exit(&dtrace_lock); 9131 mutex_exit(&dtrace_provider_lock); 9132 9133 return (0); 9134 } 9135 9136 /* 9137 * DTrace Probe Management Functions 9138 * 9139 * The functions in this section perform the DTrace probe management, 9140 * including functions to create probes, look-up probes, and call into the 9141 * providers to request that probes be provided. Some of these functions are 9142 * in the Provider-to-Framework API; these functions can be identified by the 9143 * fact that they are not declared "static". 9144 */ 9145 9146 /* 9147 * Create a probe with the specified module name, function name, and name. 9148 */ 9149 dtrace_id_t 9150 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9151 const char *func, const char *name, int aframes, void *arg) 9152 { 9153 dtrace_probe_t *probe, **probes; 9154 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9155 dtrace_id_t id; 9156 9157 if (provider == dtrace_provider) { 9158 ASSERT(MUTEX_HELD(&dtrace_lock)); 9159 } else { 9160 mutex_enter(&dtrace_lock); 9161 } 9162 9163 #ifdef illumos 9164 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9165 VM_BESTFIT | VM_SLEEP); 9166 #else 9167 id = alloc_unr(dtrace_arena); 9168 #endif 9169 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9170 9171 probe->dtpr_id = id; 9172 probe->dtpr_gen = dtrace_probegen++; 9173 probe->dtpr_mod = dtrace_strdup(mod); 9174 probe->dtpr_func = dtrace_strdup(func); 9175 probe->dtpr_name = dtrace_strdup(name); 9176 probe->dtpr_arg = arg; 9177 probe->dtpr_aframes = aframes; 9178 probe->dtpr_provider = provider; 9179 9180 dtrace_hash_add(dtrace_bymod, probe); 9181 dtrace_hash_add(dtrace_byfunc, probe); 9182 dtrace_hash_add(dtrace_byname, probe); 9183 9184 if (id - 1 >= dtrace_nprobes) { 9185 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9186 size_t nsize = osize << 1; 9187 9188 if (nsize == 0) { 9189 ASSERT(osize == 0); 9190 ASSERT(dtrace_probes == NULL); 9191 nsize = sizeof (dtrace_probe_t *); 9192 } 9193 9194 probes = kmem_zalloc(nsize, KM_SLEEP); 9195 9196 if (dtrace_probes == NULL) { 9197 ASSERT(osize == 0); 9198 dtrace_probes = probes; 9199 dtrace_nprobes = 1; 9200 } else { 9201 dtrace_probe_t **oprobes = dtrace_probes; 9202 9203 bcopy(oprobes, probes, osize); 9204 dtrace_membar_producer(); 9205 dtrace_probes = probes; 9206 9207 dtrace_sync(); 9208 9209 /* 9210 * All CPUs are now seeing the new probes array; we can 9211 * safely free the old array. 9212 */ 9213 kmem_free(oprobes, osize); 9214 dtrace_nprobes <<= 1; 9215 } 9216 9217 ASSERT(id - 1 < dtrace_nprobes); 9218 } 9219 9220 ASSERT(dtrace_probes[id - 1] == NULL); 9221 dtrace_probes[id - 1] = probe; 9222 9223 if (provider != dtrace_provider) 9224 mutex_exit(&dtrace_lock); 9225 9226 return (id); 9227 } 9228 9229 static dtrace_probe_t * 9230 dtrace_probe_lookup_id(dtrace_id_t id) 9231 { 9232 ASSERT(MUTEX_HELD(&dtrace_lock)); 9233 9234 if (id == 0 || id > dtrace_nprobes) 9235 return (NULL); 9236 9237 return (dtrace_probes[id - 1]); 9238 } 9239 9240 static int 9241 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9242 { 9243 *((dtrace_id_t *)arg) = probe->dtpr_id; 9244 9245 return (DTRACE_MATCH_DONE); 9246 } 9247 9248 /* 9249 * Look up a probe based on provider and one or more of module name, function 9250 * name and probe name. 9251 */ 9252 dtrace_id_t 9253 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9254 char *func, char *name) 9255 { 9256 dtrace_probekey_t pkey; 9257 dtrace_id_t id; 9258 int match; 9259 9260 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9261 pkey.dtpk_pmatch = &dtrace_match_string; 9262 pkey.dtpk_mod = mod; 9263 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9264 pkey.dtpk_func = func; 9265 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9266 pkey.dtpk_name = name; 9267 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9268 pkey.dtpk_id = DTRACE_IDNONE; 9269 9270 mutex_enter(&dtrace_lock); 9271 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9272 dtrace_probe_lookup_match, &id); 9273 mutex_exit(&dtrace_lock); 9274 9275 ASSERT(match == 1 || match == 0); 9276 return (match ? id : 0); 9277 } 9278 9279 /* 9280 * Returns the probe argument associated with the specified probe. 9281 */ 9282 void * 9283 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9284 { 9285 dtrace_probe_t *probe; 9286 void *rval = NULL; 9287 9288 mutex_enter(&dtrace_lock); 9289 9290 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9291 probe->dtpr_provider == (dtrace_provider_t *)id) 9292 rval = probe->dtpr_arg; 9293 9294 mutex_exit(&dtrace_lock); 9295 9296 return (rval); 9297 } 9298 9299 /* 9300 * Copy a probe into a probe description. 9301 */ 9302 static void 9303 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9304 { 9305 bzero(pdp, sizeof (dtrace_probedesc_t)); 9306 pdp->dtpd_id = prp->dtpr_id; 9307 9308 (void) strncpy(pdp->dtpd_provider, 9309 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9310 9311 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9312 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9313 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9314 } 9315 9316 /* 9317 * Called to indicate that a probe -- or probes -- should be provided by a 9318 * specfied provider. If the specified description is NULL, the provider will 9319 * be told to provide all of its probes. (This is done whenever a new 9320 * consumer comes along, or whenever a retained enabling is to be matched.) If 9321 * the specified description is non-NULL, the provider is given the 9322 * opportunity to dynamically provide the specified probe, allowing providers 9323 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9324 * probes.) If the provider is NULL, the operations will be applied to all 9325 * providers; if the provider is non-NULL the operations will only be applied 9326 * to the specified provider. The dtrace_provider_lock must be held, and the 9327 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9328 * will need to grab the dtrace_lock when it reenters the framework through 9329 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9330 */ 9331 static void 9332 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9333 { 9334 #ifdef illumos 9335 modctl_t *ctl; 9336 #endif 9337 int all = 0; 9338 9339 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9340 9341 if (prv == NULL) { 9342 all = 1; 9343 prv = dtrace_provider; 9344 } 9345 9346 do { 9347 /* 9348 * First, call the blanket provide operation. 9349 */ 9350 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9351 9352 #ifdef illumos 9353 /* 9354 * Now call the per-module provide operation. We will grab 9355 * mod_lock to prevent the list from being modified. Note 9356 * that this also prevents the mod_busy bits from changing. 9357 * (mod_busy can only be changed with mod_lock held.) 9358 */ 9359 mutex_enter(&mod_lock); 9360 9361 ctl = &modules; 9362 do { 9363 if (ctl->mod_busy || ctl->mod_mp == NULL) 9364 continue; 9365 9366 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9367 9368 } while ((ctl = ctl->mod_next) != &modules); 9369 9370 mutex_exit(&mod_lock); 9371 #endif 9372 } while (all && (prv = prv->dtpv_next) != NULL); 9373 } 9374 9375 #ifdef illumos 9376 /* 9377 * Iterate over each probe, and call the Framework-to-Provider API function 9378 * denoted by offs. 9379 */ 9380 static void 9381 dtrace_probe_foreach(uintptr_t offs) 9382 { 9383 dtrace_provider_t *prov; 9384 void (*func)(void *, dtrace_id_t, void *); 9385 dtrace_probe_t *probe; 9386 dtrace_icookie_t cookie; 9387 int i; 9388 9389 /* 9390 * We disable interrupts to walk through the probe array. This is 9391 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9392 * won't see stale data. 9393 */ 9394 cookie = dtrace_interrupt_disable(); 9395 9396 for (i = 0; i < dtrace_nprobes; i++) { 9397 if ((probe = dtrace_probes[i]) == NULL) 9398 continue; 9399 9400 if (probe->dtpr_ecb == NULL) { 9401 /* 9402 * This probe isn't enabled -- don't call the function. 9403 */ 9404 continue; 9405 } 9406 9407 prov = probe->dtpr_provider; 9408 func = *((void(**)(void *, dtrace_id_t, void *)) 9409 ((uintptr_t)&prov->dtpv_pops + offs)); 9410 9411 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9412 } 9413 9414 dtrace_interrupt_enable(cookie); 9415 } 9416 #endif 9417 9418 static int 9419 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9420 { 9421 dtrace_probekey_t pkey; 9422 uint32_t priv; 9423 uid_t uid; 9424 zoneid_t zoneid; 9425 9426 ASSERT(MUTEX_HELD(&dtrace_lock)); 9427 dtrace_ecb_create_cache = NULL; 9428 9429 if (desc == NULL) { 9430 /* 9431 * If we're passed a NULL description, we're being asked to 9432 * create an ECB with a NULL probe. 9433 */ 9434 (void) dtrace_ecb_create_enable(NULL, enab); 9435 return (0); 9436 } 9437 9438 dtrace_probekey(desc, &pkey); 9439 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9440 &priv, &uid, &zoneid); 9441 9442 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9443 enab)); 9444 } 9445 9446 /* 9447 * DTrace Helper Provider Functions 9448 */ 9449 static void 9450 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9451 { 9452 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9453 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9454 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9455 } 9456 9457 static void 9458 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9459 const dof_provider_t *dofprov, char *strtab) 9460 { 9461 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9462 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9463 dofprov->dofpv_provattr); 9464 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9465 dofprov->dofpv_modattr); 9466 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9467 dofprov->dofpv_funcattr); 9468 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9469 dofprov->dofpv_nameattr); 9470 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9471 dofprov->dofpv_argsattr); 9472 } 9473 9474 static void 9475 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9476 { 9477 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9478 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9479 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9480 dof_provider_t *provider; 9481 dof_probe_t *probe; 9482 uint32_t *off, *enoff; 9483 uint8_t *arg; 9484 char *strtab; 9485 uint_t i, nprobes; 9486 dtrace_helper_provdesc_t dhpv; 9487 dtrace_helper_probedesc_t dhpb; 9488 dtrace_meta_t *meta = dtrace_meta_pid; 9489 dtrace_mops_t *mops = &meta->dtm_mops; 9490 void *parg; 9491 9492 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9493 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9494 provider->dofpv_strtab * dof->dofh_secsize); 9495 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9496 provider->dofpv_probes * dof->dofh_secsize); 9497 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9498 provider->dofpv_prargs * dof->dofh_secsize); 9499 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9500 provider->dofpv_proffs * dof->dofh_secsize); 9501 9502 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9503 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9504 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9505 enoff = NULL; 9506 9507 /* 9508 * See dtrace_helper_provider_validate(). 9509 */ 9510 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9511 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9512 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9513 provider->dofpv_prenoffs * dof->dofh_secsize); 9514 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9515 } 9516 9517 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9518 9519 /* 9520 * Create the provider. 9521 */ 9522 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9523 9524 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9525 return; 9526 9527 meta->dtm_count++; 9528 9529 /* 9530 * Create the probes. 9531 */ 9532 for (i = 0; i < nprobes; i++) { 9533 probe = (dof_probe_t *)(uintptr_t)(daddr + 9534 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9535 9536 /* See the check in dtrace_helper_provider_validate(). */ 9537 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9538 continue; 9539 9540 dhpb.dthpb_mod = dhp->dofhp_mod; 9541 dhpb.dthpb_func = strtab + probe->dofpr_func; 9542 dhpb.dthpb_name = strtab + probe->dofpr_name; 9543 dhpb.dthpb_base = probe->dofpr_addr; 9544 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9545 dhpb.dthpb_noffs = probe->dofpr_noffs; 9546 if (enoff != NULL) { 9547 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9548 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9549 } else { 9550 dhpb.dthpb_enoffs = NULL; 9551 dhpb.dthpb_nenoffs = 0; 9552 } 9553 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9554 dhpb.dthpb_nargc = probe->dofpr_nargc; 9555 dhpb.dthpb_xargc = probe->dofpr_xargc; 9556 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9557 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9558 9559 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9560 } 9561 } 9562 9563 static void 9564 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9565 { 9566 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9567 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9568 int i; 9569 9570 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9571 9572 for (i = 0; i < dof->dofh_secnum; i++) { 9573 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9574 dof->dofh_secoff + i * dof->dofh_secsize); 9575 9576 if (sec->dofs_type != DOF_SECT_PROVIDER) 9577 continue; 9578 9579 dtrace_helper_provide_one(dhp, sec, pid); 9580 } 9581 9582 /* 9583 * We may have just created probes, so we must now rematch against 9584 * any retained enablings. Note that this call will acquire both 9585 * cpu_lock and dtrace_lock; the fact that we are holding 9586 * dtrace_meta_lock now is what defines the ordering with respect to 9587 * these three locks. 9588 */ 9589 dtrace_enabling_matchall(); 9590 } 9591 9592 static void 9593 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9594 { 9595 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9596 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9597 dof_sec_t *str_sec; 9598 dof_provider_t *provider; 9599 char *strtab; 9600 dtrace_helper_provdesc_t dhpv; 9601 dtrace_meta_t *meta = dtrace_meta_pid; 9602 dtrace_mops_t *mops = &meta->dtm_mops; 9603 9604 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9605 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9606 provider->dofpv_strtab * dof->dofh_secsize); 9607 9608 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9609 9610 /* 9611 * Create the provider. 9612 */ 9613 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9614 9615 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9616 9617 meta->dtm_count--; 9618 } 9619 9620 static void 9621 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9622 { 9623 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9624 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9625 int i; 9626 9627 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9628 9629 for (i = 0; i < dof->dofh_secnum; i++) { 9630 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9631 dof->dofh_secoff + i * dof->dofh_secsize); 9632 9633 if (sec->dofs_type != DOF_SECT_PROVIDER) 9634 continue; 9635 9636 dtrace_helper_provider_remove_one(dhp, sec, pid); 9637 } 9638 } 9639 9640 /* 9641 * DTrace Meta Provider-to-Framework API Functions 9642 * 9643 * These functions implement the Meta Provider-to-Framework API, as described 9644 * in <sys/dtrace.h>. 9645 */ 9646 int 9647 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9648 dtrace_meta_provider_id_t *idp) 9649 { 9650 dtrace_meta_t *meta; 9651 dtrace_helpers_t *help, *next; 9652 int i; 9653 9654 *idp = DTRACE_METAPROVNONE; 9655 9656 /* 9657 * We strictly don't need the name, but we hold onto it for 9658 * debuggability. All hail error queues! 9659 */ 9660 if (name == NULL) { 9661 cmn_err(CE_WARN, "failed to register meta-provider: " 9662 "invalid name"); 9663 return (EINVAL); 9664 } 9665 9666 if (mops == NULL || 9667 mops->dtms_create_probe == NULL || 9668 mops->dtms_provide_pid == NULL || 9669 mops->dtms_remove_pid == NULL) { 9670 cmn_err(CE_WARN, "failed to register meta-register %s: " 9671 "invalid ops", name); 9672 return (EINVAL); 9673 } 9674 9675 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9676 meta->dtm_mops = *mops; 9677 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9678 (void) strcpy(meta->dtm_name, name); 9679 meta->dtm_arg = arg; 9680 9681 mutex_enter(&dtrace_meta_lock); 9682 mutex_enter(&dtrace_lock); 9683 9684 if (dtrace_meta_pid != NULL) { 9685 mutex_exit(&dtrace_lock); 9686 mutex_exit(&dtrace_meta_lock); 9687 cmn_err(CE_WARN, "failed to register meta-register %s: " 9688 "user-land meta-provider exists", name); 9689 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9690 kmem_free(meta, sizeof (dtrace_meta_t)); 9691 return (EINVAL); 9692 } 9693 9694 dtrace_meta_pid = meta; 9695 *idp = (dtrace_meta_provider_id_t)meta; 9696 9697 /* 9698 * If there are providers and probes ready to go, pass them 9699 * off to the new meta provider now. 9700 */ 9701 9702 help = dtrace_deferred_pid; 9703 dtrace_deferred_pid = NULL; 9704 9705 mutex_exit(&dtrace_lock); 9706 9707 while (help != NULL) { 9708 for (i = 0; i < help->dthps_nprovs; i++) { 9709 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9710 help->dthps_pid); 9711 } 9712 9713 next = help->dthps_next; 9714 help->dthps_next = NULL; 9715 help->dthps_prev = NULL; 9716 help->dthps_deferred = 0; 9717 help = next; 9718 } 9719 9720 mutex_exit(&dtrace_meta_lock); 9721 9722 return (0); 9723 } 9724 9725 int 9726 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9727 { 9728 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9729 9730 mutex_enter(&dtrace_meta_lock); 9731 mutex_enter(&dtrace_lock); 9732 9733 if (old == dtrace_meta_pid) { 9734 pp = &dtrace_meta_pid; 9735 } else { 9736 panic("attempt to unregister non-existent " 9737 "dtrace meta-provider %p\n", (void *)old); 9738 } 9739 9740 if (old->dtm_count != 0) { 9741 mutex_exit(&dtrace_lock); 9742 mutex_exit(&dtrace_meta_lock); 9743 return (EBUSY); 9744 } 9745 9746 *pp = NULL; 9747 9748 mutex_exit(&dtrace_lock); 9749 mutex_exit(&dtrace_meta_lock); 9750 9751 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9752 kmem_free(old, sizeof (dtrace_meta_t)); 9753 9754 return (0); 9755 } 9756 9757 9758 /* 9759 * DTrace DIF Object Functions 9760 */ 9761 static int 9762 dtrace_difo_err(uint_t pc, const char *format, ...) 9763 { 9764 if (dtrace_err_verbose) { 9765 va_list alist; 9766 9767 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9768 va_start(alist, format); 9769 (void) vuprintf(format, alist); 9770 va_end(alist); 9771 } 9772 9773 #ifdef DTRACE_ERRDEBUG 9774 dtrace_errdebug(format); 9775 #endif 9776 return (1); 9777 } 9778 9779 /* 9780 * Validate a DTrace DIF object by checking the IR instructions. The following 9781 * rules are currently enforced by dtrace_difo_validate(): 9782 * 9783 * 1. Each instruction must have a valid opcode 9784 * 2. Each register, string, variable, or subroutine reference must be valid 9785 * 3. No instruction can modify register %r0 (must be zero) 9786 * 4. All instruction reserved bits must be set to zero 9787 * 5. The last instruction must be a "ret" instruction 9788 * 6. All branch targets must reference a valid instruction _after_ the branch 9789 */ 9790 static int 9791 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9792 cred_t *cr) 9793 { 9794 int err = 0, i; 9795 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9796 int kcheckload; 9797 uint_t pc; 9798 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9799 9800 kcheckload = cr == NULL || 9801 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9802 9803 dp->dtdo_destructive = 0; 9804 9805 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9806 dif_instr_t instr = dp->dtdo_buf[pc]; 9807 9808 uint_t r1 = DIF_INSTR_R1(instr); 9809 uint_t r2 = DIF_INSTR_R2(instr); 9810 uint_t rd = DIF_INSTR_RD(instr); 9811 uint_t rs = DIF_INSTR_RS(instr); 9812 uint_t label = DIF_INSTR_LABEL(instr); 9813 uint_t v = DIF_INSTR_VAR(instr); 9814 uint_t subr = DIF_INSTR_SUBR(instr); 9815 uint_t type = DIF_INSTR_TYPE(instr); 9816 uint_t op = DIF_INSTR_OP(instr); 9817 9818 switch (op) { 9819 case DIF_OP_OR: 9820 case DIF_OP_XOR: 9821 case DIF_OP_AND: 9822 case DIF_OP_SLL: 9823 case DIF_OP_SRL: 9824 case DIF_OP_SRA: 9825 case DIF_OP_SUB: 9826 case DIF_OP_ADD: 9827 case DIF_OP_MUL: 9828 case DIF_OP_SDIV: 9829 case DIF_OP_UDIV: 9830 case DIF_OP_SREM: 9831 case DIF_OP_UREM: 9832 case DIF_OP_COPYS: 9833 if (r1 >= nregs) 9834 err += efunc(pc, "invalid register %u\n", r1); 9835 if (r2 >= nregs) 9836 err += efunc(pc, "invalid register %u\n", r2); 9837 if (rd >= nregs) 9838 err += efunc(pc, "invalid register %u\n", rd); 9839 if (rd == 0) 9840 err += efunc(pc, "cannot write to %%r0\n"); 9841 break; 9842 case DIF_OP_NOT: 9843 case DIF_OP_MOV: 9844 case DIF_OP_ALLOCS: 9845 if (r1 >= nregs) 9846 err += efunc(pc, "invalid register %u\n", r1); 9847 if (r2 != 0) 9848 err += efunc(pc, "non-zero reserved bits\n"); 9849 if (rd >= nregs) 9850 err += efunc(pc, "invalid register %u\n", rd); 9851 if (rd == 0) 9852 err += efunc(pc, "cannot write to %%r0\n"); 9853 break; 9854 case DIF_OP_LDSB: 9855 case DIF_OP_LDSH: 9856 case DIF_OP_LDSW: 9857 case DIF_OP_LDUB: 9858 case DIF_OP_LDUH: 9859 case DIF_OP_LDUW: 9860 case DIF_OP_LDX: 9861 if (r1 >= nregs) 9862 err += efunc(pc, "invalid register %u\n", r1); 9863 if (r2 != 0) 9864 err += efunc(pc, "non-zero reserved bits\n"); 9865 if (rd >= nregs) 9866 err += efunc(pc, "invalid register %u\n", rd); 9867 if (rd == 0) 9868 err += efunc(pc, "cannot write to %%r0\n"); 9869 if (kcheckload) 9870 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9871 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9872 break; 9873 case DIF_OP_RLDSB: 9874 case DIF_OP_RLDSH: 9875 case DIF_OP_RLDSW: 9876 case DIF_OP_RLDUB: 9877 case DIF_OP_RLDUH: 9878 case DIF_OP_RLDUW: 9879 case DIF_OP_RLDX: 9880 if (r1 >= nregs) 9881 err += efunc(pc, "invalid register %u\n", r1); 9882 if (r2 != 0) 9883 err += efunc(pc, "non-zero reserved bits\n"); 9884 if (rd >= nregs) 9885 err += efunc(pc, "invalid register %u\n", rd); 9886 if (rd == 0) 9887 err += efunc(pc, "cannot write to %%r0\n"); 9888 break; 9889 case DIF_OP_ULDSB: 9890 case DIF_OP_ULDSH: 9891 case DIF_OP_ULDSW: 9892 case DIF_OP_ULDUB: 9893 case DIF_OP_ULDUH: 9894 case DIF_OP_ULDUW: 9895 case DIF_OP_ULDX: 9896 if (r1 >= nregs) 9897 err += efunc(pc, "invalid register %u\n", r1); 9898 if (r2 != 0) 9899 err += efunc(pc, "non-zero reserved bits\n"); 9900 if (rd >= nregs) 9901 err += efunc(pc, "invalid register %u\n", rd); 9902 if (rd == 0) 9903 err += efunc(pc, "cannot write to %%r0\n"); 9904 break; 9905 case DIF_OP_STB: 9906 case DIF_OP_STH: 9907 case DIF_OP_STW: 9908 case DIF_OP_STX: 9909 if (r1 >= nregs) 9910 err += efunc(pc, "invalid register %u\n", r1); 9911 if (r2 != 0) 9912 err += efunc(pc, "non-zero reserved bits\n"); 9913 if (rd >= nregs) 9914 err += efunc(pc, "invalid register %u\n", rd); 9915 if (rd == 0) 9916 err += efunc(pc, "cannot write to 0 address\n"); 9917 break; 9918 case DIF_OP_CMP: 9919 case DIF_OP_SCMP: 9920 if (r1 >= nregs) 9921 err += efunc(pc, "invalid register %u\n", r1); 9922 if (r2 >= nregs) 9923 err += efunc(pc, "invalid register %u\n", r2); 9924 if (rd != 0) 9925 err += efunc(pc, "non-zero reserved bits\n"); 9926 break; 9927 case DIF_OP_TST: 9928 if (r1 >= nregs) 9929 err += efunc(pc, "invalid register %u\n", r1); 9930 if (r2 != 0 || rd != 0) 9931 err += efunc(pc, "non-zero reserved bits\n"); 9932 break; 9933 case DIF_OP_BA: 9934 case DIF_OP_BE: 9935 case DIF_OP_BNE: 9936 case DIF_OP_BG: 9937 case DIF_OP_BGU: 9938 case DIF_OP_BGE: 9939 case DIF_OP_BGEU: 9940 case DIF_OP_BL: 9941 case DIF_OP_BLU: 9942 case DIF_OP_BLE: 9943 case DIF_OP_BLEU: 9944 if (label >= dp->dtdo_len) { 9945 err += efunc(pc, "invalid branch target %u\n", 9946 label); 9947 } 9948 if (label <= pc) { 9949 err += efunc(pc, "backward branch to %u\n", 9950 label); 9951 } 9952 break; 9953 case DIF_OP_RET: 9954 if (r1 != 0 || r2 != 0) 9955 err += efunc(pc, "non-zero reserved bits\n"); 9956 if (rd >= nregs) 9957 err += efunc(pc, "invalid register %u\n", rd); 9958 break; 9959 case DIF_OP_NOP: 9960 case DIF_OP_POPTS: 9961 case DIF_OP_FLUSHTS: 9962 if (r1 != 0 || r2 != 0 || rd != 0) 9963 err += efunc(pc, "non-zero reserved bits\n"); 9964 break; 9965 case DIF_OP_SETX: 9966 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9967 err += efunc(pc, "invalid integer ref %u\n", 9968 DIF_INSTR_INTEGER(instr)); 9969 } 9970 if (rd >= nregs) 9971 err += efunc(pc, "invalid register %u\n", rd); 9972 if (rd == 0) 9973 err += efunc(pc, "cannot write to %%r0\n"); 9974 break; 9975 case DIF_OP_SETS: 9976 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9977 err += efunc(pc, "invalid string ref %u\n", 9978 DIF_INSTR_STRING(instr)); 9979 } 9980 if (rd >= nregs) 9981 err += efunc(pc, "invalid register %u\n", rd); 9982 if (rd == 0) 9983 err += efunc(pc, "cannot write to %%r0\n"); 9984 break; 9985 case DIF_OP_LDGA: 9986 case DIF_OP_LDTA: 9987 if (r1 > DIF_VAR_ARRAY_MAX) 9988 err += efunc(pc, "invalid array %u\n", r1); 9989 if (r2 >= nregs) 9990 err += efunc(pc, "invalid register %u\n", r2); 9991 if (rd >= nregs) 9992 err += efunc(pc, "invalid register %u\n", rd); 9993 if (rd == 0) 9994 err += efunc(pc, "cannot write to %%r0\n"); 9995 break; 9996 case DIF_OP_LDGS: 9997 case DIF_OP_LDTS: 9998 case DIF_OP_LDLS: 9999 case DIF_OP_LDGAA: 10000 case DIF_OP_LDTAA: 10001 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 10002 err += efunc(pc, "invalid variable %u\n", v); 10003 if (rd >= nregs) 10004 err += efunc(pc, "invalid register %u\n", rd); 10005 if (rd == 0) 10006 err += efunc(pc, "cannot write to %%r0\n"); 10007 break; 10008 case DIF_OP_STGS: 10009 case DIF_OP_STTS: 10010 case DIF_OP_STLS: 10011 case DIF_OP_STGAA: 10012 case DIF_OP_STTAA: 10013 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10014 err += efunc(pc, "invalid variable %u\n", v); 10015 if (rs >= nregs) 10016 err += efunc(pc, "invalid register %u\n", rd); 10017 break; 10018 case DIF_OP_CALL: 10019 if (subr > DIF_SUBR_MAX) 10020 err += efunc(pc, "invalid subr %u\n", subr); 10021 if (rd >= nregs) 10022 err += efunc(pc, "invalid register %u\n", rd); 10023 if (rd == 0) 10024 err += efunc(pc, "cannot write to %%r0\n"); 10025 10026 if (subr == DIF_SUBR_COPYOUT || 10027 subr == DIF_SUBR_COPYOUTSTR) { 10028 dp->dtdo_destructive = 1; 10029 } 10030 10031 if (subr == DIF_SUBR_GETF) { 10032 #ifdef __FreeBSD__ 10033 err += efunc(pc, "getf() not supported"); 10034 #else 10035 /* 10036 * If we have a getf() we need to record that 10037 * in our state. Note that our state can be 10038 * NULL if this is a helper -- but in that 10039 * case, the call to getf() is itself illegal, 10040 * and will be caught (slightly later) when 10041 * the helper is validated. 10042 */ 10043 if (vstate->dtvs_state != NULL) 10044 vstate->dtvs_state->dts_getf++; 10045 #endif 10046 } 10047 10048 break; 10049 case DIF_OP_PUSHTR: 10050 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10051 err += efunc(pc, "invalid ref type %u\n", type); 10052 if (r2 >= nregs) 10053 err += efunc(pc, "invalid register %u\n", r2); 10054 if (rs >= nregs) 10055 err += efunc(pc, "invalid register %u\n", rs); 10056 break; 10057 case DIF_OP_PUSHTV: 10058 if (type != DIF_TYPE_CTF) 10059 err += efunc(pc, "invalid val type %u\n", type); 10060 if (r2 >= nregs) 10061 err += efunc(pc, "invalid register %u\n", r2); 10062 if (rs >= nregs) 10063 err += efunc(pc, "invalid register %u\n", rs); 10064 break; 10065 default: 10066 err += efunc(pc, "invalid opcode %u\n", 10067 DIF_INSTR_OP(instr)); 10068 } 10069 } 10070 10071 if (dp->dtdo_len != 0 && 10072 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10073 err += efunc(dp->dtdo_len - 1, 10074 "expected 'ret' as last DIF instruction\n"); 10075 } 10076 10077 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10078 /* 10079 * If we're not returning by reference, the size must be either 10080 * 0 or the size of one of the base types. 10081 */ 10082 switch (dp->dtdo_rtype.dtdt_size) { 10083 case 0: 10084 case sizeof (uint8_t): 10085 case sizeof (uint16_t): 10086 case sizeof (uint32_t): 10087 case sizeof (uint64_t): 10088 break; 10089 10090 default: 10091 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10092 } 10093 } 10094 10095 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10096 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10097 dtrace_diftype_t *vt, *et; 10098 uint_t id, ndx; 10099 10100 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10101 v->dtdv_scope != DIFV_SCOPE_THREAD && 10102 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10103 err += efunc(i, "unrecognized variable scope %d\n", 10104 v->dtdv_scope); 10105 break; 10106 } 10107 10108 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10109 v->dtdv_kind != DIFV_KIND_SCALAR) { 10110 err += efunc(i, "unrecognized variable type %d\n", 10111 v->dtdv_kind); 10112 break; 10113 } 10114 10115 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10116 err += efunc(i, "%d exceeds variable id limit\n", id); 10117 break; 10118 } 10119 10120 if (id < DIF_VAR_OTHER_UBASE) 10121 continue; 10122 10123 /* 10124 * For user-defined variables, we need to check that this 10125 * definition is identical to any previous definition that we 10126 * encountered. 10127 */ 10128 ndx = id - DIF_VAR_OTHER_UBASE; 10129 10130 switch (v->dtdv_scope) { 10131 case DIFV_SCOPE_GLOBAL: 10132 if (maxglobal == -1 || ndx > maxglobal) 10133 maxglobal = ndx; 10134 10135 if (ndx < vstate->dtvs_nglobals) { 10136 dtrace_statvar_t *svar; 10137 10138 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10139 existing = &svar->dtsv_var; 10140 } 10141 10142 break; 10143 10144 case DIFV_SCOPE_THREAD: 10145 if (maxtlocal == -1 || ndx > maxtlocal) 10146 maxtlocal = ndx; 10147 10148 if (ndx < vstate->dtvs_ntlocals) 10149 existing = &vstate->dtvs_tlocals[ndx]; 10150 break; 10151 10152 case DIFV_SCOPE_LOCAL: 10153 if (maxlocal == -1 || ndx > maxlocal) 10154 maxlocal = ndx; 10155 10156 if (ndx < vstate->dtvs_nlocals) { 10157 dtrace_statvar_t *svar; 10158 10159 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10160 existing = &svar->dtsv_var; 10161 } 10162 10163 break; 10164 } 10165 10166 vt = &v->dtdv_type; 10167 10168 if (vt->dtdt_flags & DIF_TF_BYREF) { 10169 if (vt->dtdt_size == 0) { 10170 err += efunc(i, "zero-sized variable\n"); 10171 break; 10172 } 10173 10174 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10175 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10176 vt->dtdt_size > dtrace_statvar_maxsize) { 10177 err += efunc(i, "oversized by-ref static\n"); 10178 break; 10179 } 10180 } 10181 10182 if (existing == NULL || existing->dtdv_id == 0) 10183 continue; 10184 10185 ASSERT(existing->dtdv_id == v->dtdv_id); 10186 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10187 10188 if (existing->dtdv_kind != v->dtdv_kind) 10189 err += efunc(i, "%d changed variable kind\n", id); 10190 10191 et = &existing->dtdv_type; 10192 10193 if (vt->dtdt_flags != et->dtdt_flags) { 10194 err += efunc(i, "%d changed variable type flags\n", id); 10195 break; 10196 } 10197 10198 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10199 err += efunc(i, "%d changed variable type size\n", id); 10200 break; 10201 } 10202 } 10203 10204 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10205 dif_instr_t instr = dp->dtdo_buf[pc]; 10206 10207 uint_t v = DIF_INSTR_VAR(instr); 10208 uint_t op = DIF_INSTR_OP(instr); 10209 10210 switch (op) { 10211 case DIF_OP_LDGS: 10212 case DIF_OP_LDGAA: 10213 case DIF_OP_STGS: 10214 case DIF_OP_STGAA: 10215 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10216 err += efunc(pc, "invalid variable %u\n", v); 10217 break; 10218 case DIF_OP_LDTS: 10219 case DIF_OP_LDTAA: 10220 case DIF_OP_STTS: 10221 case DIF_OP_STTAA: 10222 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10223 err += efunc(pc, "invalid variable %u\n", v); 10224 break; 10225 case DIF_OP_LDLS: 10226 case DIF_OP_STLS: 10227 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10228 err += efunc(pc, "invalid variable %u\n", v); 10229 break; 10230 default: 10231 break; 10232 } 10233 } 10234 10235 return (err); 10236 } 10237 10238 /* 10239 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10240 * are much more constrained than normal DIFOs. Specifically, they may 10241 * not: 10242 * 10243 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10244 * miscellaneous string routines 10245 * 2. Access DTrace variables other than the args[] array, and the 10246 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10247 * 3. Have thread-local variables. 10248 * 4. Have dynamic variables. 10249 */ 10250 static int 10251 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10252 { 10253 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10254 int err = 0; 10255 uint_t pc; 10256 10257 for (pc = 0; pc < dp->dtdo_len; pc++) { 10258 dif_instr_t instr = dp->dtdo_buf[pc]; 10259 10260 uint_t v = DIF_INSTR_VAR(instr); 10261 uint_t subr = DIF_INSTR_SUBR(instr); 10262 uint_t op = DIF_INSTR_OP(instr); 10263 10264 switch (op) { 10265 case DIF_OP_OR: 10266 case DIF_OP_XOR: 10267 case DIF_OP_AND: 10268 case DIF_OP_SLL: 10269 case DIF_OP_SRL: 10270 case DIF_OP_SRA: 10271 case DIF_OP_SUB: 10272 case DIF_OP_ADD: 10273 case DIF_OP_MUL: 10274 case DIF_OP_SDIV: 10275 case DIF_OP_UDIV: 10276 case DIF_OP_SREM: 10277 case DIF_OP_UREM: 10278 case DIF_OP_COPYS: 10279 case DIF_OP_NOT: 10280 case DIF_OP_MOV: 10281 case DIF_OP_RLDSB: 10282 case DIF_OP_RLDSH: 10283 case DIF_OP_RLDSW: 10284 case DIF_OP_RLDUB: 10285 case DIF_OP_RLDUH: 10286 case DIF_OP_RLDUW: 10287 case DIF_OP_RLDX: 10288 case DIF_OP_ULDSB: 10289 case DIF_OP_ULDSH: 10290 case DIF_OP_ULDSW: 10291 case DIF_OP_ULDUB: 10292 case DIF_OP_ULDUH: 10293 case DIF_OP_ULDUW: 10294 case DIF_OP_ULDX: 10295 case DIF_OP_STB: 10296 case DIF_OP_STH: 10297 case DIF_OP_STW: 10298 case DIF_OP_STX: 10299 case DIF_OP_ALLOCS: 10300 case DIF_OP_CMP: 10301 case DIF_OP_SCMP: 10302 case DIF_OP_TST: 10303 case DIF_OP_BA: 10304 case DIF_OP_BE: 10305 case DIF_OP_BNE: 10306 case DIF_OP_BG: 10307 case DIF_OP_BGU: 10308 case DIF_OP_BGE: 10309 case DIF_OP_BGEU: 10310 case DIF_OP_BL: 10311 case DIF_OP_BLU: 10312 case DIF_OP_BLE: 10313 case DIF_OP_BLEU: 10314 case DIF_OP_RET: 10315 case DIF_OP_NOP: 10316 case DIF_OP_POPTS: 10317 case DIF_OP_FLUSHTS: 10318 case DIF_OP_SETX: 10319 case DIF_OP_SETS: 10320 case DIF_OP_LDGA: 10321 case DIF_OP_LDLS: 10322 case DIF_OP_STGS: 10323 case DIF_OP_STLS: 10324 case DIF_OP_PUSHTR: 10325 case DIF_OP_PUSHTV: 10326 break; 10327 10328 case DIF_OP_LDGS: 10329 if (v >= DIF_VAR_OTHER_UBASE) 10330 break; 10331 10332 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10333 break; 10334 10335 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10336 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10337 v == DIF_VAR_EXECARGS || 10338 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10339 v == DIF_VAR_UID || v == DIF_VAR_GID) 10340 break; 10341 10342 err += efunc(pc, "illegal variable %u\n", v); 10343 break; 10344 10345 case DIF_OP_LDTA: 10346 case DIF_OP_LDTS: 10347 case DIF_OP_LDGAA: 10348 case DIF_OP_LDTAA: 10349 err += efunc(pc, "illegal dynamic variable load\n"); 10350 break; 10351 10352 case DIF_OP_STTS: 10353 case DIF_OP_STGAA: 10354 case DIF_OP_STTAA: 10355 err += efunc(pc, "illegal dynamic variable store\n"); 10356 break; 10357 10358 case DIF_OP_CALL: 10359 if (subr == DIF_SUBR_ALLOCA || 10360 subr == DIF_SUBR_BCOPY || 10361 subr == DIF_SUBR_COPYIN || 10362 subr == DIF_SUBR_COPYINTO || 10363 subr == DIF_SUBR_COPYINSTR || 10364 subr == DIF_SUBR_INDEX || 10365 subr == DIF_SUBR_INET_NTOA || 10366 subr == DIF_SUBR_INET_NTOA6 || 10367 subr == DIF_SUBR_INET_NTOP || 10368 subr == DIF_SUBR_JSON || 10369 subr == DIF_SUBR_LLTOSTR || 10370 subr == DIF_SUBR_STRTOLL || 10371 subr == DIF_SUBR_RINDEX || 10372 subr == DIF_SUBR_STRCHR || 10373 subr == DIF_SUBR_STRJOIN || 10374 subr == DIF_SUBR_STRRCHR || 10375 subr == DIF_SUBR_STRSTR || 10376 subr == DIF_SUBR_HTONS || 10377 subr == DIF_SUBR_HTONL || 10378 subr == DIF_SUBR_HTONLL || 10379 subr == DIF_SUBR_NTOHS || 10380 subr == DIF_SUBR_NTOHL || 10381 subr == DIF_SUBR_NTOHLL || 10382 subr == DIF_SUBR_MEMREF) 10383 break; 10384 #ifdef __FreeBSD__ 10385 if (subr == DIF_SUBR_MEMSTR) 10386 break; 10387 #endif 10388 10389 err += efunc(pc, "invalid subr %u\n", subr); 10390 break; 10391 10392 default: 10393 err += efunc(pc, "invalid opcode %u\n", 10394 DIF_INSTR_OP(instr)); 10395 } 10396 } 10397 10398 return (err); 10399 } 10400 10401 /* 10402 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10403 * basis; 0 if not. 10404 */ 10405 static int 10406 dtrace_difo_cacheable(dtrace_difo_t *dp) 10407 { 10408 int i; 10409 10410 if (dp == NULL) 10411 return (0); 10412 10413 for (i = 0; i < dp->dtdo_varlen; i++) { 10414 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10415 10416 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10417 continue; 10418 10419 switch (v->dtdv_id) { 10420 case DIF_VAR_CURTHREAD: 10421 case DIF_VAR_PID: 10422 case DIF_VAR_TID: 10423 case DIF_VAR_EXECARGS: 10424 case DIF_VAR_EXECNAME: 10425 case DIF_VAR_ZONENAME: 10426 break; 10427 10428 default: 10429 return (0); 10430 } 10431 } 10432 10433 /* 10434 * This DIF object may be cacheable. Now we need to look for any 10435 * array loading instructions, any memory loading instructions, or 10436 * any stores to thread-local variables. 10437 */ 10438 for (i = 0; i < dp->dtdo_len; i++) { 10439 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10440 10441 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10442 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10443 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10444 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10445 return (0); 10446 } 10447 10448 return (1); 10449 } 10450 10451 static void 10452 dtrace_difo_hold(dtrace_difo_t *dp) 10453 { 10454 int i; 10455 10456 ASSERT(MUTEX_HELD(&dtrace_lock)); 10457 10458 dp->dtdo_refcnt++; 10459 ASSERT(dp->dtdo_refcnt != 0); 10460 10461 /* 10462 * We need to check this DIF object for references to the variable 10463 * DIF_VAR_VTIMESTAMP. 10464 */ 10465 for (i = 0; i < dp->dtdo_varlen; i++) { 10466 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10467 10468 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10469 continue; 10470 10471 if (dtrace_vtime_references++ == 0) 10472 dtrace_vtime_enable(); 10473 } 10474 } 10475 10476 /* 10477 * This routine calculates the dynamic variable chunksize for a given DIF 10478 * object. The calculation is not fool-proof, and can probably be tricked by 10479 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10480 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10481 * if a dynamic variable size exceeds the chunksize. 10482 */ 10483 static void 10484 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10485 { 10486 uint64_t sval = 0; 10487 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10488 const dif_instr_t *text = dp->dtdo_buf; 10489 uint_t pc, srd = 0; 10490 uint_t ttop = 0; 10491 size_t size, ksize; 10492 uint_t id, i; 10493 10494 for (pc = 0; pc < dp->dtdo_len; pc++) { 10495 dif_instr_t instr = text[pc]; 10496 uint_t op = DIF_INSTR_OP(instr); 10497 uint_t rd = DIF_INSTR_RD(instr); 10498 uint_t r1 = DIF_INSTR_R1(instr); 10499 uint_t nkeys = 0; 10500 uchar_t scope = 0; 10501 10502 dtrace_key_t *key = tupregs; 10503 10504 switch (op) { 10505 case DIF_OP_SETX: 10506 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10507 srd = rd; 10508 continue; 10509 10510 case DIF_OP_STTS: 10511 key = &tupregs[DIF_DTR_NREGS]; 10512 key[0].dttk_size = 0; 10513 key[1].dttk_size = 0; 10514 nkeys = 2; 10515 scope = DIFV_SCOPE_THREAD; 10516 break; 10517 10518 case DIF_OP_STGAA: 10519 case DIF_OP_STTAA: 10520 nkeys = ttop; 10521 10522 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10523 key[nkeys++].dttk_size = 0; 10524 10525 key[nkeys++].dttk_size = 0; 10526 10527 if (op == DIF_OP_STTAA) { 10528 scope = DIFV_SCOPE_THREAD; 10529 } else { 10530 scope = DIFV_SCOPE_GLOBAL; 10531 } 10532 10533 break; 10534 10535 case DIF_OP_PUSHTR: 10536 if (ttop == DIF_DTR_NREGS) 10537 return; 10538 10539 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10540 /* 10541 * If the register for the size of the "pushtr" 10542 * is %r0 (or the value is 0) and the type is 10543 * a string, we'll use the system-wide default 10544 * string size. 10545 */ 10546 tupregs[ttop++].dttk_size = 10547 dtrace_strsize_default; 10548 } else { 10549 if (srd == 0) 10550 return; 10551 10552 if (sval > LONG_MAX) 10553 return; 10554 10555 tupregs[ttop++].dttk_size = sval; 10556 } 10557 10558 break; 10559 10560 case DIF_OP_PUSHTV: 10561 if (ttop == DIF_DTR_NREGS) 10562 return; 10563 10564 tupregs[ttop++].dttk_size = 0; 10565 break; 10566 10567 case DIF_OP_FLUSHTS: 10568 ttop = 0; 10569 break; 10570 10571 case DIF_OP_POPTS: 10572 if (ttop != 0) 10573 ttop--; 10574 break; 10575 } 10576 10577 sval = 0; 10578 srd = 0; 10579 10580 if (nkeys == 0) 10581 continue; 10582 10583 /* 10584 * We have a dynamic variable allocation; calculate its size. 10585 */ 10586 for (ksize = 0, i = 0; i < nkeys; i++) 10587 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10588 10589 size = sizeof (dtrace_dynvar_t); 10590 size += sizeof (dtrace_key_t) * (nkeys - 1); 10591 size += ksize; 10592 10593 /* 10594 * Now we need to determine the size of the stored data. 10595 */ 10596 id = DIF_INSTR_VAR(instr); 10597 10598 for (i = 0; i < dp->dtdo_varlen; i++) { 10599 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10600 10601 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10602 size += v->dtdv_type.dtdt_size; 10603 break; 10604 } 10605 } 10606 10607 if (i == dp->dtdo_varlen) 10608 return; 10609 10610 /* 10611 * We have the size. If this is larger than the chunk size 10612 * for our dynamic variable state, reset the chunk size. 10613 */ 10614 size = P2ROUNDUP(size, sizeof (uint64_t)); 10615 10616 /* 10617 * Before setting the chunk size, check that we're not going 10618 * to set it to a negative value... 10619 */ 10620 if (size > LONG_MAX) 10621 return; 10622 10623 /* 10624 * ...and make certain that we didn't badly overflow. 10625 */ 10626 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10627 return; 10628 10629 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10630 vstate->dtvs_dynvars.dtds_chunksize = size; 10631 } 10632 } 10633 10634 static void 10635 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10636 { 10637 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10638 uint_t id; 10639 10640 ASSERT(MUTEX_HELD(&dtrace_lock)); 10641 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10642 10643 for (i = 0; i < dp->dtdo_varlen; i++) { 10644 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10645 dtrace_statvar_t *svar, ***svarp = NULL; 10646 size_t dsize = 0; 10647 uint8_t scope = v->dtdv_scope; 10648 int *np = NULL; 10649 10650 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10651 continue; 10652 10653 id -= DIF_VAR_OTHER_UBASE; 10654 10655 switch (scope) { 10656 case DIFV_SCOPE_THREAD: 10657 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10658 dtrace_difv_t *tlocals; 10659 10660 if ((ntlocals = (otlocals << 1)) == 0) 10661 ntlocals = 1; 10662 10663 osz = otlocals * sizeof (dtrace_difv_t); 10664 nsz = ntlocals * sizeof (dtrace_difv_t); 10665 10666 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10667 10668 if (osz != 0) { 10669 bcopy(vstate->dtvs_tlocals, 10670 tlocals, osz); 10671 kmem_free(vstate->dtvs_tlocals, osz); 10672 } 10673 10674 vstate->dtvs_tlocals = tlocals; 10675 vstate->dtvs_ntlocals = ntlocals; 10676 } 10677 10678 vstate->dtvs_tlocals[id] = *v; 10679 continue; 10680 10681 case DIFV_SCOPE_LOCAL: 10682 np = &vstate->dtvs_nlocals; 10683 svarp = &vstate->dtvs_locals; 10684 10685 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10686 dsize = (mp_maxid + 1) * 10687 (v->dtdv_type.dtdt_size + 10688 sizeof (uint64_t)); 10689 else 10690 dsize = (mp_maxid + 1) * sizeof (uint64_t); 10691 10692 break; 10693 10694 case DIFV_SCOPE_GLOBAL: 10695 np = &vstate->dtvs_nglobals; 10696 svarp = &vstate->dtvs_globals; 10697 10698 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10699 dsize = v->dtdv_type.dtdt_size + 10700 sizeof (uint64_t); 10701 10702 break; 10703 10704 default: 10705 ASSERT(0); 10706 } 10707 10708 while (id >= (oldsvars = *np)) { 10709 dtrace_statvar_t **statics; 10710 int newsvars, oldsize, newsize; 10711 10712 if ((newsvars = (oldsvars << 1)) == 0) 10713 newsvars = 1; 10714 10715 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10716 newsize = newsvars * sizeof (dtrace_statvar_t *); 10717 10718 statics = kmem_zalloc(newsize, KM_SLEEP); 10719 10720 if (oldsize != 0) { 10721 bcopy(*svarp, statics, oldsize); 10722 kmem_free(*svarp, oldsize); 10723 } 10724 10725 *svarp = statics; 10726 *np = newsvars; 10727 } 10728 10729 if ((svar = (*svarp)[id]) == NULL) { 10730 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10731 svar->dtsv_var = *v; 10732 10733 if ((svar->dtsv_size = dsize) != 0) { 10734 svar->dtsv_data = (uint64_t)(uintptr_t) 10735 kmem_zalloc(dsize, KM_SLEEP); 10736 } 10737 10738 (*svarp)[id] = svar; 10739 } 10740 10741 svar->dtsv_refcnt++; 10742 } 10743 10744 dtrace_difo_chunksize(dp, vstate); 10745 dtrace_difo_hold(dp); 10746 } 10747 10748 static dtrace_difo_t * 10749 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10750 { 10751 dtrace_difo_t *new; 10752 size_t sz; 10753 10754 ASSERT(dp->dtdo_buf != NULL); 10755 ASSERT(dp->dtdo_refcnt != 0); 10756 10757 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10758 10759 ASSERT(dp->dtdo_buf != NULL); 10760 sz = dp->dtdo_len * sizeof (dif_instr_t); 10761 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10762 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10763 new->dtdo_len = dp->dtdo_len; 10764 10765 if (dp->dtdo_strtab != NULL) { 10766 ASSERT(dp->dtdo_strlen != 0); 10767 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10768 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10769 new->dtdo_strlen = dp->dtdo_strlen; 10770 } 10771 10772 if (dp->dtdo_inttab != NULL) { 10773 ASSERT(dp->dtdo_intlen != 0); 10774 sz = dp->dtdo_intlen * sizeof (uint64_t); 10775 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10776 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10777 new->dtdo_intlen = dp->dtdo_intlen; 10778 } 10779 10780 if (dp->dtdo_vartab != NULL) { 10781 ASSERT(dp->dtdo_varlen != 0); 10782 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10783 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10784 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10785 new->dtdo_varlen = dp->dtdo_varlen; 10786 } 10787 10788 dtrace_difo_init(new, vstate); 10789 return (new); 10790 } 10791 10792 static void 10793 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10794 { 10795 int i; 10796 10797 ASSERT(dp->dtdo_refcnt == 0); 10798 10799 for (i = 0; i < dp->dtdo_varlen; i++) { 10800 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10801 dtrace_statvar_t *svar, **svarp = NULL; 10802 uint_t id; 10803 uint8_t scope = v->dtdv_scope; 10804 int *np = NULL; 10805 10806 switch (scope) { 10807 case DIFV_SCOPE_THREAD: 10808 continue; 10809 10810 case DIFV_SCOPE_LOCAL: 10811 np = &vstate->dtvs_nlocals; 10812 svarp = vstate->dtvs_locals; 10813 break; 10814 10815 case DIFV_SCOPE_GLOBAL: 10816 np = &vstate->dtvs_nglobals; 10817 svarp = vstate->dtvs_globals; 10818 break; 10819 10820 default: 10821 ASSERT(0); 10822 } 10823 10824 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10825 continue; 10826 10827 id -= DIF_VAR_OTHER_UBASE; 10828 ASSERT(id < *np); 10829 10830 svar = svarp[id]; 10831 ASSERT(svar != NULL); 10832 ASSERT(svar->dtsv_refcnt > 0); 10833 10834 if (--svar->dtsv_refcnt > 0) 10835 continue; 10836 10837 if (svar->dtsv_size != 0) { 10838 ASSERT(svar->dtsv_data != 0); 10839 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10840 svar->dtsv_size); 10841 } 10842 10843 kmem_free(svar, sizeof (dtrace_statvar_t)); 10844 svarp[id] = NULL; 10845 } 10846 10847 if (dp->dtdo_buf != NULL) 10848 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10849 if (dp->dtdo_inttab != NULL) 10850 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10851 if (dp->dtdo_strtab != NULL) 10852 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10853 if (dp->dtdo_vartab != NULL) 10854 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10855 10856 kmem_free(dp, sizeof (dtrace_difo_t)); 10857 } 10858 10859 static void 10860 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10861 { 10862 int i; 10863 10864 ASSERT(MUTEX_HELD(&dtrace_lock)); 10865 ASSERT(dp->dtdo_refcnt != 0); 10866 10867 for (i = 0; i < dp->dtdo_varlen; i++) { 10868 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10869 10870 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10871 continue; 10872 10873 ASSERT(dtrace_vtime_references > 0); 10874 if (--dtrace_vtime_references == 0) 10875 dtrace_vtime_disable(); 10876 } 10877 10878 if (--dp->dtdo_refcnt == 0) 10879 dtrace_difo_destroy(dp, vstate); 10880 } 10881 10882 /* 10883 * DTrace Format Functions 10884 */ 10885 static uint16_t 10886 dtrace_format_add(dtrace_state_t *state, char *str) 10887 { 10888 char *fmt, **new; 10889 uint16_t ndx, len = strlen(str) + 1; 10890 10891 fmt = kmem_zalloc(len, KM_SLEEP); 10892 bcopy(str, fmt, len); 10893 10894 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10895 if (state->dts_formats[ndx] == NULL) { 10896 state->dts_formats[ndx] = fmt; 10897 return (ndx + 1); 10898 } 10899 } 10900 10901 if (state->dts_nformats == USHRT_MAX) { 10902 /* 10903 * This is only likely if a denial-of-service attack is being 10904 * attempted. As such, it's okay to fail silently here. 10905 */ 10906 kmem_free(fmt, len); 10907 return (0); 10908 } 10909 10910 /* 10911 * For simplicity, we always resize the formats array to be exactly the 10912 * number of formats. 10913 */ 10914 ndx = state->dts_nformats++; 10915 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10916 10917 if (state->dts_formats != NULL) { 10918 ASSERT(ndx != 0); 10919 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10920 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10921 } 10922 10923 state->dts_formats = new; 10924 state->dts_formats[ndx] = fmt; 10925 10926 return (ndx + 1); 10927 } 10928 10929 static void 10930 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10931 { 10932 char *fmt; 10933 10934 ASSERT(state->dts_formats != NULL); 10935 ASSERT(format <= state->dts_nformats); 10936 ASSERT(state->dts_formats[format - 1] != NULL); 10937 10938 fmt = state->dts_formats[format - 1]; 10939 kmem_free(fmt, strlen(fmt) + 1); 10940 state->dts_formats[format - 1] = NULL; 10941 } 10942 10943 static void 10944 dtrace_format_destroy(dtrace_state_t *state) 10945 { 10946 int i; 10947 10948 if (state->dts_nformats == 0) { 10949 ASSERT(state->dts_formats == NULL); 10950 return; 10951 } 10952 10953 ASSERT(state->dts_formats != NULL); 10954 10955 for (i = 0; i < state->dts_nformats; i++) { 10956 char *fmt = state->dts_formats[i]; 10957 10958 if (fmt == NULL) 10959 continue; 10960 10961 kmem_free(fmt, strlen(fmt) + 1); 10962 } 10963 10964 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10965 state->dts_nformats = 0; 10966 state->dts_formats = NULL; 10967 } 10968 10969 /* 10970 * DTrace Predicate Functions 10971 */ 10972 static dtrace_predicate_t * 10973 dtrace_predicate_create(dtrace_difo_t *dp) 10974 { 10975 dtrace_predicate_t *pred; 10976 10977 ASSERT(MUTEX_HELD(&dtrace_lock)); 10978 ASSERT(dp->dtdo_refcnt != 0); 10979 10980 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10981 pred->dtp_difo = dp; 10982 pred->dtp_refcnt = 1; 10983 10984 if (!dtrace_difo_cacheable(dp)) 10985 return (pred); 10986 10987 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10988 /* 10989 * This is only theoretically possible -- we have had 2^32 10990 * cacheable predicates on this machine. We cannot allow any 10991 * more predicates to become cacheable: as unlikely as it is, 10992 * there may be a thread caching a (now stale) predicate cache 10993 * ID. (N.B.: the temptation is being successfully resisted to 10994 * have this cmn_err() "Holy shit -- we executed this code!") 10995 */ 10996 return (pred); 10997 } 10998 10999 pred->dtp_cacheid = dtrace_predcache_id++; 11000 11001 return (pred); 11002 } 11003 11004 static void 11005 dtrace_predicate_hold(dtrace_predicate_t *pred) 11006 { 11007 ASSERT(MUTEX_HELD(&dtrace_lock)); 11008 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11009 ASSERT(pred->dtp_refcnt > 0); 11010 11011 pred->dtp_refcnt++; 11012 } 11013 11014 static void 11015 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11016 { 11017 dtrace_difo_t *dp = pred->dtp_difo; 11018 11019 ASSERT(MUTEX_HELD(&dtrace_lock)); 11020 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11021 ASSERT(pred->dtp_refcnt > 0); 11022 11023 if (--pred->dtp_refcnt == 0) { 11024 dtrace_difo_release(pred->dtp_difo, vstate); 11025 kmem_free(pred, sizeof (dtrace_predicate_t)); 11026 } 11027 } 11028 11029 /* 11030 * DTrace Action Description Functions 11031 */ 11032 static dtrace_actdesc_t * 11033 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11034 uint64_t uarg, uint64_t arg) 11035 { 11036 dtrace_actdesc_t *act; 11037 11038 #ifdef illumos 11039 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11040 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11041 #endif 11042 11043 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11044 act->dtad_kind = kind; 11045 act->dtad_ntuple = ntuple; 11046 act->dtad_uarg = uarg; 11047 act->dtad_arg = arg; 11048 act->dtad_refcnt = 1; 11049 11050 return (act); 11051 } 11052 11053 static void 11054 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11055 { 11056 ASSERT(act->dtad_refcnt >= 1); 11057 act->dtad_refcnt++; 11058 } 11059 11060 static void 11061 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11062 { 11063 dtrace_actkind_t kind = act->dtad_kind; 11064 dtrace_difo_t *dp; 11065 11066 ASSERT(act->dtad_refcnt >= 1); 11067 11068 if (--act->dtad_refcnt != 0) 11069 return; 11070 11071 if ((dp = act->dtad_difo) != NULL) 11072 dtrace_difo_release(dp, vstate); 11073 11074 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11075 char *str = (char *)(uintptr_t)act->dtad_arg; 11076 11077 #ifdef illumos 11078 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11079 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11080 #endif 11081 11082 if (str != NULL) 11083 kmem_free(str, strlen(str) + 1); 11084 } 11085 11086 kmem_free(act, sizeof (dtrace_actdesc_t)); 11087 } 11088 11089 /* 11090 * DTrace ECB Functions 11091 */ 11092 static dtrace_ecb_t * 11093 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11094 { 11095 dtrace_ecb_t *ecb; 11096 dtrace_epid_t epid; 11097 11098 ASSERT(MUTEX_HELD(&dtrace_lock)); 11099 11100 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11101 ecb->dte_predicate = NULL; 11102 ecb->dte_probe = probe; 11103 11104 /* 11105 * The default size is the size of the default action: recording 11106 * the header. 11107 */ 11108 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11109 ecb->dte_alignment = sizeof (dtrace_epid_t); 11110 11111 epid = state->dts_epid++; 11112 11113 if (epid - 1 >= state->dts_necbs) { 11114 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11115 int necbs = state->dts_necbs << 1; 11116 11117 ASSERT(epid == state->dts_necbs + 1); 11118 11119 if (necbs == 0) { 11120 ASSERT(oecbs == NULL); 11121 necbs = 1; 11122 } 11123 11124 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11125 11126 if (oecbs != NULL) 11127 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11128 11129 dtrace_membar_producer(); 11130 state->dts_ecbs = ecbs; 11131 11132 if (oecbs != NULL) { 11133 /* 11134 * If this state is active, we must dtrace_sync() 11135 * before we can free the old dts_ecbs array: we're 11136 * coming in hot, and there may be active ring 11137 * buffer processing (which indexes into the dts_ecbs 11138 * array) on another CPU. 11139 */ 11140 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11141 dtrace_sync(); 11142 11143 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11144 } 11145 11146 dtrace_membar_producer(); 11147 state->dts_necbs = necbs; 11148 } 11149 11150 ecb->dte_state = state; 11151 11152 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11153 dtrace_membar_producer(); 11154 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11155 11156 return (ecb); 11157 } 11158 11159 static void 11160 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11161 { 11162 dtrace_probe_t *probe = ecb->dte_probe; 11163 11164 ASSERT(MUTEX_HELD(&cpu_lock)); 11165 ASSERT(MUTEX_HELD(&dtrace_lock)); 11166 ASSERT(ecb->dte_next == NULL); 11167 11168 if (probe == NULL) { 11169 /* 11170 * This is the NULL probe -- there's nothing to do. 11171 */ 11172 return; 11173 } 11174 11175 if (probe->dtpr_ecb == NULL) { 11176 dtrace_provider_t *prov = probe->dtpr_provider; 11177 11178 /* 11179 * We're the first ECB on this probe. 11180 */ 11181 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11182 11183 if (ecb->dte_predicate != NULL) 11184 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11185 11186 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11187 probe->dtpr_id, probe->dtpr_arg); 11188 } else { 11189 /* 11190 * This probe is already active. Swing the last pointer to 11191 * point to the new ECB, and issue a dtrace_sync() to assure 11192 * that all CPUs have seen the change. 11193 */ 11194 ASSERT(probe->dtpr_ecb_last != NULL); 11195 probe->dtpr_ecb_last->dte_next = ecb; 11196 probe->dtpr_ecb_last = ecb; 11197 probe->dtpr_predcache = 0; 11198 11199 dtrace_sync(); 11200 } 11201 } 11202 11203 static int 11204 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11205 { 11206 dtrace_action_t *act; 11207 uint32_t curneeded = UINT32_MAX; 11208 uint32_t aggbase = UINT32_MAX; 11209 11210 /* 11211 * If we record anything, we always record the dtrace_rechdr_t. (And 11212 * we always record it first.) 11213 */ 11214 ecb->dte_size = sizeof (dtrace_rechdr_t); 11215 ecb->dte_alignment = sizeof (dtrace_epid_t); 11216 11217 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11218 dtrace_recdesc_t *rec = &act->dta_rec; 11219 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11220 11221 ecb->dte_alignment = MAX(ecb->dte_alignment, 11222 rec->dtrd_alignment); 11223 11224 if (DTRACEACT_ISAGG(act->dta_kind)) { 11225 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11226 11227 ASSERT(rec->dtrd_size != 0); 11228 ASSERT(agg->dtag_first != NULL); 11229 ASSERT(act->dta_prev->dta_intuple); 11230 ASSERT(aggbase != UINT32_MAX); 11231 ASSERT(curneeded != UINT32_MAX); 11232 11233 agg->dtag_base = aggbase; 11234 11235 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11236 rec->dtrd_offset = curneeded; 11237 if (curneeded + rec->dtrd_size < curneeded) 11238 return (EINVAL); 11239 curneeded += rec->dtrd_size; 11240 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11241 11242 aggbase = UINT32_MAX; 11243 curneeded = UINT32_MAX; 11244 } else if (act->dta_intuple) { 11245 if (curneeded == UINT32_MAX) { 11246 /* 11247 * This is the first record in a tuple. Align 11248 * curneeded to be at offset 4 in an 8-byte 11249 * aligned block. 11250 */ 11251 ASSERT(act->dta_prev == NULL || 11252 !act->dta_prev->dta_intuple); 11253 ASSERT3U(aggbase, ==, UINT32_MAX); 11254 curneeded = P2PHASEUP(ecb->dte_size, 11255 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11256 11257 aggbase = curneeded - sizeof (dtrace_aggid_t); 11258 ASSERT(IS_P2ALIGNED(aggbase, 11259 sizeof (uint64_t))); 11260 } 11261 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11262 rec->dtrd_offset = curneeded; 11263 if (curneeded + rec->dtrd_size < curneeded) 11264 return (EINVAL); 11265 curneeded += rec->dtrd_size; 11266 } else { 11267 /* tuples must be followed by an aggregation */ 11268 ASSERT(act->dta_prev == NULL || 11269 !act->dta_prev->dta_intuple); 11270 11271 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11272 rec->dtrd_alignment); 11273 rec->dtrd_offset = ecb->dte_size; 11274 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11275 return (EINVAL); 11276 ecb->dte_size += rec->dtrd_size; 11277 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11278 } 11279 } 11280 11281 if ((act = ecb->dte_action) != NULL && 11282 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11283 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11284 /* 11285 * If the size is still sizeof (dtrace_rechdr_t), then all 11286 * actions store no data; set the size to 0. 11287 */ 11288 ecb->dte_size = 0; 11289 } 11290 11291 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11292 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11293 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11294 ecb->dte_needed); 11295 return (0); 11296 } 11297 11298 static dtrace_action_t * 11299 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11300 { 11301 dtrace_aggregation_t *agg; 11302 size_t size = sizeof (uint64_t); 11303 int ntuple = desc->dtad_ntuple; 11304 dtrace_action_t *act; 11305 dtrace_recdesc_t *frec; 11306 dtrace_aggid_t aggid; 11307 dtrace_state_t *state = ecb->dte_state; 11308 11309 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11310 agg->dtag_ecb = ecb; 11311 11312 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11313 11314 switch (desc->dtad_kind) { 11315 case DTRACEAGG_MIN: 11316 agg->dtag_initial = INT64_MAX; 11317 agg->dtag_aggregate = dtrace_aggregate_min; 11318 break; 11319 11320 case DTRACEAGG_MAX: 11321 agg->dtag_initial = INT64_MIN; 11322 agg->dtag_aggregate = dtrace_aggregate_max; 11323 break; 11324 11325 case DTRACEAGG_COUNT: 11326 agg->dtag_aggregate = dtrace_aggregate_count; 11327 break; 11328 11329 case DTRACEAGG_QUANTIZE: 11330 agg->dtag_aggregate = dtrace_aggregate_quantize; 11331 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11332 sizeof (uint64_t); 11333 break; 11334 11335 case DTRACEAGG_LQUANTIZE: { 11336 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11337 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11338 11339 agg->dtag_initial = desc->dtad_arg; 11340 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11341 11342 if (step == 0 || levels == 0) 11343 goto err; 11344 11345 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11346 break; 11347 } 11348 11349 case DTRACEAGG_LLQUANTIZE: { 11350 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11351 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11352 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11353 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11354 int64_t v; 11355 11356 agg->dtag_initial = desc->dtad_arg; 11357 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11358 11359 if (factor < 2 || low >= high || nsteps < factor) 11360 goto err; 11361 11362 /* 11363 * Now check that the number of steps evenly divides a power 11364 * of the factor. (This assures both integer bucket size and 11365 * linearity within each magnitude.) 11366 */ 11367 for (v = factor; v < nsteps; v *= factor) 11368 continue; 11369 11370 if ((v % nsteps) || (nsteps % factor)) 11371 goto err; 11372 11373 size = (dtrace_aggregate_llquantize_bucket(factor, 11374 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11375 break; 11376 } 11377 11378 case DTRACEAGG_AVG: 11379 agg->dtag_aggregate = dtrace_aggregate_avg; 11380 size = sizeof (uint64_t) * 2; 11381 break; 11382 11383 case DTRACEAGG_STDDEV: 11384 agg->dtag_aggregate = dtrace_aggregate_stddev; 11385 size = sizeof (uint64_t) * 4; 11386 break; 11387 11388 case DTRACEAGG_SUM: 11389 agg->dtag_aggregate = dtrace_aggregate_sum; 11390 break; 11391 11392 default: 11393 goto err; 11394 } 11395 11396 agg->dtag_action.dta_rec.dtrd_size = size; 11397 11398 if (ntuple == 0) 11399 goto err; 11400 11401 /* 11402 * We must make sure that we have enough actions for the n-tuple. 11403 */ 11404 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11405 if (DTRACEACT_ISAGG(act->dta_kind)) 11406 break; 11407 11408 if (--ntuple == 0) { 11409 /* 11410 * This is the action with which our n-tuple begins. 11411 */ 11412 agg->dtag_first = act; 11413 goto success; 11414 } 11415 } 11416 11417 /* 11418 * This n-tuple is short by ntuple elements. Return failure. 11419 */ 11420 ASSERT(ntuple != 0); 11421 err: 11422 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11423 return (NULL); 11424 11425 success: 11426 /* 11427 * If the last action in the tuple has a size of zero, it's actually 11428 * an expression argument for the aggregating action. 11429 */ 11430 ASSERT(ecb->dte_action_last != NULL); 11431 act = ecb->dte_action_last; 11432 11433 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11434 ASSERT(act->dta_difo != NULL); 11435 11436 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11437 agg->dtag_hasarg = 1; 11438 } 11439 11440 /* 11441 * We need to allocate an id for this aggregation. 11442 */ 11443 #ifdef illumos 11444 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11445 VM_BESTFIT | VM_SLEEP); 11446 #else 11447 aggid = alloc_unr(state->dts_aggid_arena); 11448 #endif 11449 11450 if (aggid - 1 >= state->dts_naggregations) { 11451 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11452 dtrace_aggregation_t **aggs; 11453 int naggs = state->dts_naggregations << 1; 11454 int onaggs = state->dts_naggregations; 11455 11456 ASSERT(aggid == state->dts_naggregations + 1); 11457 11458 if (naggs == 0) { 11459 ASSERT(oaggs == NULL); 11460 naggs = 1; 11461 } 11462 11463 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11464 11465 if (oaggs != NULL) { 11466 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11467 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11468 } 11469 11470 state->dts_aggregations = aggs; 11471 state->dts_naggregations = naggs; 11472 } 11473 11474 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11475 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11476 11477 frec = &agg->dtag_first->dta_rec; 11478 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11479 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11480 11481 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11482 ASSERT(!act->dta_intuple); 11483 act->dta_intuple = 1; 11484 } 11485 11486 return (&agg->dtag_action); 11487 } 11488 11489 static void 11490 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11491 { 11492 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11493 dtrace_state_t *state = ecb->dte_state; 11494 dtrace_aggid_t aggid = agg->dtag_id; 11495 11496 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11497 #ifdef illumos 11498 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11499 #else 11500 free_unr(state->dts_aggid_arena, aggid); 11501 #endif 11502 11503 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11504 state->dts_aggregations[aggid - 1] = NULL; 11505 11506 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11507 } 11508 11509 static int 11510 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11511 { 11512 dtrace_action_t *action, *last; 11513 dtrace_difo_t *dp = desc->dtad_difo; 11514 uint32_t size = 0, align = sizeof (uint8_t), mask; 11515 uint16_t format = 0; 11516 dtrace_recdesc_t *rec; 11517 dtrace_state_t *state = ecb->dte_state; 11518 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11519 uint64_t arg = desc->dtad_arg; 11520 11521 ASSERT(MUTEX_HELD(&dtrace_lock)); 11522 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11523 11524 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11525 /* 11526 * If this is an aggregating action, there must be neither 11527 * a speculate nor a commit on the action chain. 11528 */ 11529 dtrace_action_t *act; 11530 11531 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11532 if (act->dta_kind == DTRACEACT_COMMIT) 11533 return (EINVAL); 11534 11535 if (act->dta_kind == DTRACEACT_SPECULATE) 11536 return (EINVAL); 11537 } 11538 11539 action = dtrace_ecb_aggregation_create(ecb, desc); 11540 11541 if (action == NULL) 11542 return (EINVAL); 11543 } else { 11544 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11545 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11546 dp != NULL && dp->dtdo_destructive)) { 11547 state->dts_destructive = 1; 11548 } 11549 11550 switch (desc->dtad_kind) { 11551 case DTRACEACT_PRINTF: 11552 case DTRACEACT_PRINTA: 11553 case DTRACEACT_SYSTEM: 11554 case DTRACEACT_FREOPEN: 11555 case DTRACEACT_DIFEXPR: 11556 /* 11557 * We know that our arg is a string -- turn it into a 11558 * format. 11559 */ 11560 if (arg == 0) { 11561 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11562 desc->dtad_kind == DTRACEACT_DIFEXPR); 11563 format = 0; 11564 } else { 11565 ASSERT(arg != 0); 11566 #ifdef illumos 11567 ASSERT(arg > KERNELBASE); 11568 #endif 11569 format = dtrace_format_add(state, 11570 (char *)(uintptr_t)arg); 11571 } 11572 11573 /*FALLTHROUGH*/ 11574 case DTRACEACT_LIBACT: 11575 case DTRACEACT_TRACEMEM: 11576 case DTRACEACT_TRACEMEM_DYNSIZE: 11577 if (dp == NULL) 11578 return (EINVAL); 11579 11580 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11581 break; 11582 11583 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11584 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11585 return (EINVAL); 11586 11587 size = opt[DTRACEOPT_STRSIZE]; 11588 } 11589 11590 break; 11591 11592 case DTRACEACT_STACK: 11593 if ((nframes = arg) == 0) { 11594 nframes = opt[DTRACEOPT_STACKFRAMES]; 11595 ASSERT(nframes > 0); 11596 arg = nframes; 11597 } 11598 11599 size = nframes * sizeof (pc_t); 11600 break; 11601 11602 case DTRACEACT_JSTACK: 11603 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11604 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11605 11606 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11607 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11608 11609 arg = DTRACE_USTACK_ARG(nframes, strsize); 11610 11611 /*FALLTHROUGH*/ 11612 case DTRACEACT_USTACK: 11613 if (desc->dtad_kind != DTRACEACT_JSTACK && 11614 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11615 strsize = DTRACE_USTACK_STRSIZE(arg); 11616 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11617 ASSERT(nframes > 0); 11618 arg = DTRACE_USTACK_ARG(nframes, strsize); 11619 } 11620 11621 /* 11622 * Save a slot for the pid. 11623 */ 11624 size = (nframes + 1) * sizeof (uint64_t); 11625 size += DTRACE_USTACK_STRSIZE(arg); 11626 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11627 11628 break; 11629 11630 case DTRACEACT_SYM: 11631 case DTRACEACT_MOD: 11632 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11633 sizeof (uint64_t)) || 11634 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11635 return (EINVAL); 11636 break; 11637 11638 case DTRACEACT_USYM: 11639 case DTRACEACT_UMOD: 11640 case DTRACEACT_UADDR: 11641 if (dp == NULL || 11642 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11643 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11644 return (EINVAL); 11645 11646 /* 11647 * We have a slot for the pid, plus a slot for the 11648 * argument. To keep things simple (aligned with 11649 * bitness-neutral sizing), we store each as a 64-bit 11650 * quantity. 11651 */ 11652 size = 2 * sizeof (uint64_t); 11653 break; 11654 11655 case DTRACEACT_STOP: 11656 case DTRACEACT_BREAKPOINT: 11657 case DTRACEACT_PANIC: 11658 break; 11659 11660 case DTRACEACT_CHILL: 11661 case DTRACEACT_DISCARD: 11662 case DTRACEACT_RAISE: 11663 if (dp == NULL) 11664 return (EINVAL); 11665 break; 11666 11667 case DTRACEACT_EXIT: 11668 if (dp == NULL || 11669 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11670 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11671 return (EINVAL); 11672 break; 11673 11674 case DTRACEACT_SPECULATE: 11675 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11676 return (EINVAL); 11677 11678 if (dp == NULL) 11679 return (EINVAL); 11680 11681 state->dts_speculates = 1; 11682 break; 11683 11684 case DTRACEACT_PRINTM: 11685 size = dp->dtdo_rtype.dtdt_size; 11686 break; 11687 11688 case DTRACEACT_COMMIT: { 11689 dtrace_action_t *act = ecb->dte_action; 11690 11691 for (; act != NULL; act = act->dta_next) { 11692 if (act->dta_kind == DTRACEACT_COMMIT) 11693 return (EINVAL); 11694 } 11695 11696 if (dp == NULL) 11697 return (EINVAL); 11698 break; 11699 } 11700 11701 default: 11702 return (EINVAL); 11703 } 11704 11705 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11706 /* 11707 * If this is a data-storing action or a speculate, 11708 * we must be sure that there isn't a commit on the 11709 * action chain. 11710 */ 11711 dtrace_action_t *act = ecb->dte_action; 11712 11713 for (; act != NULL; act = act->dta_next) { 11714 if (act->dta_kind == DTRACEACT_COMMIT) 11715 return (EINVAL); 11716 } 11717 } 11718 11719 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11720 action->dta_rec.dtrd_size = size; 11721 } 11722 11723 action->dta_refcnt = 1; 11724 rec = &action->dta_rec; 11725 size = rec->dtrd_size; 11726 11727 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11728 if (!(size & mask)) { 11729 align = mask + 1; 11730 break; 11731 } 11732 } 11733 11734 action->dta_kind = desc->dtad_kind; 11735 11736 if ((action->dta_difo = dp) != NULL) 11737 dtrace_difo_hold(dp); 11738 11739 rec->dtrd_action = action->dta_kind; 11740 rec->dtrd_arg = arg; 11741 rec->dtrd_uarg = desc->dtad_uarg; 11742 rec->dtrd_alignment = (uint16_t)align; 11743 rec->dtrd_format = format; 11744 11745 if ((last = ecb->dte_action_last) != NULL) { 11746 ASSERT(ecb->dte_action != NULL); 11747 action->dta_prev = last; 11748 last->dta_next = action; 11749 } else { 11750 ASSERT(ecb->dte_action == NULL); 11751 ecb->dte_action = action; 11752 } 11753 11754 ecb->dte_action_last = action; 11755 11756 return (0); 11757 } 11758 11759 static void 11760 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11761 { 11762 dtrace_action_t *act = ecb->dte_action, *next; 11763 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11764 dtrace_difo_t *dp; 11765 uint16_t format; 11766 11767 if (act != NULL && act->dta_refcnt > 1) { 11768 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11769 act->dta_refcnt--; 11770 } else { 11771 for (; act != NULL; act = next) { 11772 next = act->dta_next; 11773 ASSERT(next != NULL || act == ecb->dte_action_last); 11774 ASSERT(act->dta_refcnt == 1); 11775 11776 if ((format = act->dta_rec.dtrd_format) != 0) 11777 dtrace_format_remove(ecb->dte_state, format); 11778 11779 if ((dp = act->dta_difo) != NULL) 11780 dtrace_difo_release(dp, vstate); 11781 11782 if (DTRACEACT_ISAGG(act->dta_kind)) { 11783 dtrace_ecb_aggregation_destroy(ecb, act); 11784 } else { 11785 kmem_free(act, sizeof (dtrace_action_t)); 11786 } 11787 } 11788 } 11789 11790 ecb->dte_action = NULL; 11791 ecb->dte_action_last = NULL; 11792 ecb->dte_size = 0; 11793 } 11794 11795 static void 11796 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11797 { 11798 /* 11799 * We disable the ECB by removing it from its probe. 11800 */ 11801 dtrace_ecb_t *pecb, *prev = NULL; 11802 dtrace_probe_t *probe = ecb->dte_probe; 11803 11804 ASSERT(MUTEX_HELD(&dtrace_lock)); 11805 11806 if (probe == NULL) { 11807 /* 11808 * This is the NULL probe; there is nothing to disable. 11809 */ 11810 return; 11811 } 11812 11813 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11814 if (pecb == ecb) 11815 break; 11816 prev = pecb; 11817 } 11818 11819 ASSERT(pecb != NULL); 11820 11821 if (prev == NULL) { 11822 probe->dtpr_ecb = ecb->dte_next; 11823 } else { 11824 prev->dte_next = ecb->dte_next; 11825 } 11826 11827 if (ecb == probe->dtpr_ecb_last) { 11828 ASSERT(ecb->dte_next == NULL); 11829 probe->dtpr_ecb_last = prev; 11830 } 11831 11832 /* 11833 * The ECB has been disconnected from the probe; now sync to assure 11834 * that all CPUs have seen the change before returning. 11835 */ 11836 dtrace_sync(); 11837 11838 if (probe->dtpr_ecb == NULL) { 11839 /* 11840 * That was the last ECB on the probe; clear the predicate 11841 * cache ID for the probe, disable it and sync one more time 11842 * to assure that we'll never hit it again. 11843 */ 11844 dtrace_provider_t *prov = probe->dtpr_provider; 11845 11846 ASSERT(ecb->dte_next == NULL); 11847 ASSERT(probe->dtpr_ecb_last == NULL); 11848 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11849 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11850 probe->dtpr_id, probe->dtpr_arg); 11851 dtrace_sync(); 11852 } else { 11853 /* 11854 * There is at least one ECB remaining on the probe. If there 11855 * is _exactly_ one, set the probe's predicate cache ID to be 11856 * the predicate cache ID of the remaining ECB. 11857 */ 11858 ASSERT(probe->dtpr_ecb_last != NULL); 11859 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11860 11861 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11862 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11863 11864 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11865 11866 if (p != NULL) 11867 probe->dtpr_predcache = p->dtp_cacheid; 11868 } 11869 11870 ecb->dte_next = NULL; 11871 } 11872 } 11873 11874 static void 11875 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11876 { 11877 dtrace_state_t *state = ecb->dte_state; 11878 dtrace_vstate_t *vstate = &state->dts_vstate; 11879 dtrace_predicate_t *pred; 11880 dtrace_epid_t epid = ecb->dte_epid; 11881 11882 ASSERT(MUTEX_HELD(&dtrace_lock)); 11883 ASSERT(ecb->dte_next == NULL); 11884 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11885 11886 if ((pred = ecb->dte_predicate) != NULL) 11887 dtrace_predicate_release(pred, vstate); 11888 11889 dtrace_ecb_action_remove(ecb); 11890 11891 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11892 state->dts_ecbs[epid - 1] = NULL; 11893 11894 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11895 } 11896 11897 static dtrace_ecb_t * 11898 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11899 dtrace_enabling_t *enab) 11900 { 11901 dtrace_ecb_t *ecb; 11902 dtrace_predicate_t *pred; 11903 dtrace_actdesc_t *act; 11904 dtrace_provider_t *prov; 11905 dtrace_ecbdesc_t *desc = enab->dten_current; 11906 11907 ASSERT(MUTEX_HELD(&dtrace_lock)); 11908 ASSERT(state != NULL); 11909 11910 ecb = dtrace_ecb_add(state, probe); 11911 ecb->dte_uarg = desc->dted_uarg; 11912 11913 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11914 dtrace_predicate_hold(pred); 11915 ecb->dte_predicate = pred; 11916 } 11917 11918 if (probe != NULL) { 11919 /* 11920 * If the provider shows more leg than the consumer is old 11921 * enough to see, we need to enable the appropriate implicit 11922 * predicate bits to prevent the ecb from activating at 11923 * revealing times. 11924 * 11925 * Providers specifying DTRACE_PRIV_USER at register time 11926 * are stating that they need the /proc-style privilege 11927 * model to be enforced, and this is what DTRACE_COND_OWNER 11928 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11929 */ 11930 prov = probe->dtpr_provider; 11931 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11932 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11933 ecb->dte_cond |= DTRACE_COND_OWNER; 11934 11935 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11936 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11937 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11938 11939 /* 11940 * If the provider shows us kernel innards and the user 11941 * is lacking sufficient privilege, enable the 11942 * DTRACE_COND_USERMODE implicit predicate. 11943 */ 11944 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11945 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11946 ecb->dte_cond |= DTRACE_COND_USERMODE; 11947 } 11948 11949 if (dtrace_ecb_create_cache != NULL) { 11950 /* 11951 * If we have a cached ecb, we'll use its action list instead 11952 * of creating our own (saving both time and space). 11953 */ 11954 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11955 dtrace_action_t *act = cached->dte_action; 11956 11957 if (act != NULL) { 11958 ASSERT(act->dta_refcnt > 0); 11959 act->dta_refcnt++; 11960 ecb->dte_action = act; 11961 ecb->dte_action_last = cached->dte_action_last; 11962 ecb->dte_needed = cached->dte_needed; 11963 ecb->dte_size = cached->dte_size; 11964 ecb->dte_alignment = cached->dte_alignment; 11965 } 11966 11967 return (ecb); 11968 } 11969 11970 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11971 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11972 dtrace_ecb_destroy(ecb); 11973 return (NULL); 11974 } 11975 } 11976 11977 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11978 dtrace_ecb_destroy(ecb); 11979 return (NULL); 11980 } 11981 11982 return (dtrace_ecb_create_cache = ecb); 11983 } 11984 11985 static int 11986 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11987 { 11988 dtrace_ecb_t *ecb; 11989 dtrace_enabling_t *enab = arg; 11990 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11991 11992 ASSERT(state != NULL); 11993 11994 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11995 /* 11996 * This probe was created in a generation for which this 11997 * enabling has previously created ECBs; we don't want to 11998 * enable it again, so just kick out. 11999 */ 12000 return (DTRACE_MATCH_NEXT); 12001 } 12002 12003 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 12004 return (DTRACE_MATCH_DONE); 12005 12006 dtrace_ecb_enable(ecb); 12007 return (DTRACE_MATCH_NEXT); 12008 } 12009 12010 static dtrace_ecb_t * 12011 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12012 { 12013 dtrace_ecb_t *ecb; 12014 12015 ASSERT(MUTEX_HELD(&dtrace_lock)); 12016 12017 if (id == 0 || id > state->dts_necbs) 12018 return (NULL); 12019 12020 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12021 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12022 12023 return (state->dts_ecbs[id - 1]); 12024 } 12025 12026 static dtrace_aggregation_t * 12027 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12028 { 12029 dtrace_aggregation_t *agg; 12030 12031 ASSERT(MUTEX_HELD(&dtrace_lock)); 12032 12033 if (id == 0 || id > state->dts_naggregations) 12034 return (NULL); 12035 12036 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12037 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12038 agg->dtag_id == id); 12039 12040 return (state->dts_aggregations[id - 1]); 12041 } 12042 12043 /* 12044 * DTrace Buffer Functions 12045 * 12046 * The following functions manipulate DTrace buffers. Most of these functions 12047 * are called in the context of establishing or processing consumer state; 12048 * exceptions are explicitly noted. 12049 */ 12050 12051 /* 12052 * Note: called from cross call context. This function switches the two 12053 * buffers on a given CPU. The atomicity of this operation is assured by 12054 * disabling interrupts while the actual switch takes place; the disabling of 12055 * interrupts serializes the execution with any execution of dtrace_probe() on 12056 * the same CPU. 12057 */ 12058 static void 12059 dtrace_buffer_switch(dtrace_buffer_t *buf) 12060 { 12061 caddr_t tomax = buf->dtb_tomax; 12062 caddr_t xamot = buf->dtb_xamot; 12063 dtrace_icookie_t cookie; 12064 hrtime_t now; 12065 12066 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12067 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12068 12069 cookie = dtrace_interrupt_disable(); 12070 now = dtrace_gethrtime(); 12071 buf->dtb_tomax = xamot; 12072 buf->dtb_xamot = tomax; 12073 buf->dtb_xamot_drops = buf->dtb_drops; 12074 buf->dtb_xamot_offset = buf->dtb_offset; 12075 buf->dtb_xamot_errors = buf->dtb_errors; 12076 buf->dtb_xamot_flags = buf->dtb_flags; 12077 buf->dtb_offset = 0; 12078 buf->dtb_drops = 0; 12079 buf->dtb_errors = 0; 12080 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12081 buf->dtb_interval = now - buf->dtb_switched; 12082 buf->dtb_switched = now; 12083 dtrace_interrupt_enable(cookie); 12084 } 12085 12086 /* 12087 * Note: called from cross call context. This function activates a buffer 12088 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12089 * is guaranteed by the disabling of interrupts. 12090 */ 12091 static void 12092 dtrace_buffer_activate(dtrace_state_t *state) 12093 { 12094 dtrace_buffer_t *buf; 12095 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12096 12097 buf = &state->dts_buffer[curcpu]; 12098 12099 if (buf->dtb_tomax != NULL) { 12100 /* 12101 * We might like to assert that the buffer is marked inactive, 12102 * but this isn't necessarily true: the buffer for the CPU 12103 * that processes the BEGIN probe has its buffer activated 12104 * manually. In this case, we take the (harmless) action 12105 * re-clearing the bit INACTIVE bit. 12106 */ 12107 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12108 } 12109 12110 dtrace_interrupt_enable(cookie); 12111 } 12112 12113 #ifdef __FreeBSD__ 12114 /* 12115 * Activate the specified per-CPU buffer. This is used instead of 12116 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12117 * activating anonymous state. 12118 */ 12119 static void 12120 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12121 { 12122 12123 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12124 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12125 } 12126 #endif 12127 12128 static int 12129 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12130 processorid_t cpu, int *factor) 12131 { 12132 #ifdef illumos 12133 cpu_t *cp; 12134 #endif 12135 dtrace_buffer_t *buf; 12136 int allocated = 0, desired = 0; 12137 12138 #ifdef illumos 12139 ASSERT(MUTEX_HELD(&cpu_lock)); 12140 ASSERT(MUTEX_HELD(&dtrace_lock)); 12141 12142 *factor = 1; 12143 12144 if (size > dtrace_nonroot_maxsize && 12145 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12146 return (EFBIG); 12147 12148 cp = cpu_list; 12149 12150 do { 12151 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12152 continue; 12153 12154 buf = &bufs[cp->cpu_id]; 12155 12156 /* 12157 * If there is already a buffer allocated for this CPU, it 12158 * is only possible that this is a DR event. In this case, 12159 */ 12160 if (buf->dtb_tomax != NULL) { 12161 ASSERT(buf->dtb_size == size); 12162 continue; 12163 } 12164 12165 ASSERT(buf->dtb_xamot == NULL); 12166 12167 if ((buf->dtb_tomax = kmem_zalloc(size, 12168 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12169 goto err; 12170 12171 buf->dtb_size = size; 12172 buf->dtb_flags = flags; 12173 buf->dtb_offset = 0; 12174 buf->dtb_drops = 0; 12175 12176 if (flags & DTRACEBUF_NOSWITCH) 12177 continue; 12178 12179 if ((buf->dtb_xamot = kmem_zalloc(size, 12180 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12181 goto err; 12182 } while ((cp = cp->cpu_next) != cpu_list); 12183 12184 return (0); 12185 12186 err: 12187 cp = cpu_list; 12188 12189 do { 12190 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12191 continue; 12192 12193 buf = &bufs[cp->cpu_id]; 12194 desired += 2; 12195 12196 if (buf->dtb_xamot != NULL) { 12197 ASSERT(buf->dtb_tomax != NULL); 12198 ASSERT(buf->dtb_size == size); 12199 kmem_free(buf->dtb_xamot, size); 12200 allocated++; 12201 } 12202 12203 if (buf->dtb_tomax != NULL) { 12204 ASSERT(buf->dtb_size == size); 12205 kmem_free(buf->dtb_tomax, size); 12206 allocated++; 12207 } 12208 12209 buf->dtb_tomax = NULL; 12210 buf->dtb_xamot = NULL; 12211 buf->dtb_size = 0; 12212 } while ((cp = cp->cpu_next) != cpu_list); 12213 #else 12214 int i; 12215 12216 *factor = 1; 12217 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12218 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12219 /* 12220 * FreeBSD isn't good at limiting the amount of memory we 12221 * ask to malloc, so let's place a limit here before trying 12222 * to do something that might well end in tears at bedtime. 12223 */ 12224 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12225 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12226 return (ENOMEM); 12227 #endif 12228 12229 ASSERT(MUTEX_HELD(&dtrace_lock)); 12230 CPU_FOREACH(i) { 12231 if (cpu != DTRACE_CPUALL && cpu != i) 12232 continue; 12233 12234 buf = &bufs[i]; 12235 12236 /* 12237 * If there is already a buffer allocated for this CPU, it 12238 * is only possible that this is a DR event. In this case, 12239 * the buffer size must match our specified size. 12240 */ 12241 if (buf->dtb_tomax != NULL) { 12242 ASSERT(buf->dtb_size == size); 12243 continue; 12244 } 12245 12246 ASSERT(buf->dtb_xamot == NULL); 12247 12248 if ((buf->dtb_tomax = kmem_zalloc(size, 12249 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12250 goto err; 12251 12252 buf->dtb_size = size; 12253 buf->dtb_flags = flags; 12254 buf->dtb_offset = 0; 12255 buf->dtb_drops = 0; 12256 12257 if (flags & DTRACEBUF_NOSWITCH) 12258 continue; 12259 12260 if ((buf->dtb_xamot = kmem_zalloc(size, 12261 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12262 goto err; 12263 } 12264 12265 return (0); 12266 12267 err: 12268 /* 12269 * Error allocating memory, so free the buffers that were 12270 * allocated before the failed allocation. 12271 */ 12272 CPU_FOREACH(i) { 12273 if (cpu != DTRACE_CPUALL && cpu != i) 12274 continue; 12275 12276 buf = &bufs[i]; 12277 desired += 2; 12278 12279 if (buf->dtb_xamot != NULL) { 12280 ASSERT(buf->dtb_tomax != NULL); 12281 ASSERT(buf->dtb_size == size); 12282 kmem_free(buf->dtb_xamot, size); 12283 allocated++; 12284 } 12285 12286 if (buf->dtb_tomax != NULL) { 12287 ASSERT(buf->dtb_size == size); 12288 kmem_free(buf->dtb_tomax, size); 12289 allocated++; 12290 } 12291 12292 buf->dtb_tomax = NULL; 12293 buf->dtb_xamot = NULL; 12294 buf->dtb_size = 0; 12295 12296 } 12297 #endif 12298 *factor = desired / (allocated > 0 ? allocated : 1); 12299 12300 return (ENOMEM); 12301 } 12302 12303 /* 12304 * Note: called from probe context. This function just increments the drop 12305 * count on a buffer. It has been made a function to allow for the 12306 * possibility of understanding the source of mysterious drop counts. (A 12307 * problem for which one may be particularly disappointed that DTrace cannot 12308 * be used to understand DTrace.) 12309 */ 12310 static void 12311 dtrace_buffer_drop(dtrace_buffer_t *buf) 12312 { 12313 buf->dtb_drops++; 12314 } 12315 12316 /* 12317 * Note: called from probe context. This function is called to reserve space 12318 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12319 * mstate. Returns the new offset in the buffer, or a negative value if an 12320 * error has occurred. 12321 */ 12322 static ssize_t 12323 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12324 dtrace_state_t *state, dtrace_mstate_t *mstate) 12325 { 12326 ssize_t offs = buf->dtb_offset, soffs; 12327 intptr_t woffs; 12328 caddr_t tomax; 12329 size_t total; 12330 12331 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12332 return (-1); 12333 12334 if ((tomax = buf->dtb_tomax) == NULL) { 12335 dtrace_buffer_drop(buf); 12336 return (-1); 12337 } 12338 12339 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12340 while (offs & (align - 1)) { 12341 /* 12342 * Assert that our alignment is off by a number which 12343 * is itself sizeof (uint32_t) aligned. 12344 */ 12345 ASSERT(!((align - (offs & (align - 1))) & 12346 (sizeof (uint32_t) - 1))); 12347 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12348 offs += sizeof (uint32_t); 12349 } 12350 12351 if ((soffs = offs + needed) > buf->dtb_size) { 12352 dtrace_buffer_drop(buf); 12353 return (-1); 12354 } 12355 12356 if (mstate == NULL) 12357 return (offs); 12358 12359 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12360 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12361 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12362 12363 return (offs); 12364 } 12365 12366 if (buf->dtb_flags & DTRACEBUF_FILL) { 12367 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12368 (buf->dtb_flags & DTRACEBUF_FULL)) 12369 return (-1); 12370 goto out; 12371 } 12372 12373 total = needed + (offs & (align - 1)); 12374 12375 /* 12376 * For a ring buffer, life is quite a bit more complicated. Before 12377 * we can store any padding, we need to adjust our wrapping offset. 12378 * (If we've never before wrapped or we're not about to, no adjustment 12379 * is required.) 12380 */ 12381 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12382 offs + total > buf->dtb_size) { 12383 woffs = buf->dtb_xamot_offset; 12384 12385 if (offs + total > buf->dtb_size) { 12386 /* 12387 * We can't fit in the end of the buffer. First, a 12388 * sanity check that we can fit in the buffer at all. 12389 */ 12390 if (total > buf->dtb_size) { 12391 dtrace_buffer_drop(buf); 12392 return (-1); 12393 } 12394 12395 /* 12396 * We're going to be storing at the top of the buffer, 12397 * so now we need to deal with the wrapped offset. We 12398 * only reset our wrapped offset to 0 if it is 12399 * currently greater than the current offset. If it 12400 * is less than the current offset, it is because a 12401 * previous allocation induced a wrap -- but the 12402 * allocation didn't subsequently take the space due 12403 * to an error or false predicate evaluation. In this 12404 * case, we'll just leave the wrapped offset alone: if 12405 * the wrapped offset hasn't been advanced far enough 12406 * for this allocation, it will be adjusted in the 12407 * lower loop. 12408 */ 12409 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12410 if (woffs >= offs) 12411 woffs = 0; 12412 } else { 12413 woffs = 0; 12414 } 12415 12416 /* 12417 * Now we know that we're going to be storing to the 12418 * top of the buffer and that there is room for us 12419 * there. We need to clear the buffer from the current 12420 * offset to the end (there may be old gunk there). 12421 */ 12422 while (offs < buf->dtb_size) 12423 tomax[offs++] = 0; 12424 12425 /* 12426 * We need to set our offset to zero. And because we 12427 * are wrapping, we need to set the bit indicating as 12428 * much. We can also adjust our needed space back 12429 * down to the space required by the ECB -- we know 12430 * that the top of the buffer is aligned. 12431 */ 12432 offs = 0; 12433 total = needed; 12434 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12435 } else { 12436 /* 12437 * There is room for us in the buffer, so we simply 12438 * need to check the wrapped offset. 12439 */ 12440 if (woffs < offs) { 12441 /* 12442 * The wrapped offset is less than the offset. 12443 * This can happen if we allocated buffer space 12444 * that induced a wrap, but then we didn't 12445 * subsequently take the space due to an error 12446 * or false predicate evaluation. This is 12447 * okay; we know that _this_ allocation isn't 12448 * going to induce a wrap. We still can't 12449 * reset the wrapped offset to be zero, 12450 * however: the space may have been trashed in 12451 * the previous failed probe attempt. But at 12452 * least the wrapped offset doesn't need to 12453 * be adjusted at all... 12454 */ 12455 goto out; 12456 } 12457 } 12458 12459 while (offs + total > woffs) { 12460 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12461 size_t size; 12462 12463 if (epid == DTRACE_EPIDNONE) { 12464 size = sizeof (uint32_t); 12465 } else { 12466 ASSERT3U(epid, <=, state->dts_necbs); 12467 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12468 12469 size = state->dts_ecbs[epid - 1]->dte_size; 12470 } 12471 12472 ASSERT(woffs + size <= buf->dtb_size); 12473 ASSERT(size != 0); 12474 12475 if (woffs + size == buf->dtb_size) { 12476 /* 12477 * We've reached the end of the buffer; we want 12478 * to set the wrapped offset to 0 and break 12479 * out. However, if the offs is 0, then we're 12480 * in a strange edge-condition: the amount of 12481 * space that we want to reserve plus the size 12482 * of the record that we're overwriting is 12483 * greater than the size of the buffer. This 12484 * is problematic because if we reserve the 12485 * space but subsequently don't consume it (due 12486 * to a failed predicate or error) the wrapped 12487 * offset will be 0 -- yet the EPID at offset 0 12488 * will not be committed. This situation is 12489 * relatively easy to deal with: if we're in 12490 * this case, the buffer is indistinguishable 12491 * from one that hasn't wrapped; we need only 12492 * finish the job by clearing the wrapped bit, 12493 * explicitly setting the offset to be 0, and 12494 * zero'ing out the old data in the buffer. 12495 */ 12496 if (offs == 0) { 12497 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12498 buf->dtb_offset = 0; 12499 woffs = total; 12500 12501 while (woffs < buf->dtb_size) 12502 tomax[woffs++] = 0; 12503 } 12504 12505 woffs = 0; 12506 break; 12507 } 12508 12509 woffs += size; 12510 } 12511 12512 /* 12513 * We have a wrapped offset. It may be that the wrapped offset 12514 * has become zero -- that's okay. 12515 */ 12516 buf->dtb_xamot_offset = woffs; 12517 } 12518 12519 out: 12520 /* 12521 * Now we can plow the buffer with any necessary padding. 12522 */ 12523 while (offs & (align - 1)) { 12524 /* 12525 * Assert that our alignment is off by a number which 12526 * is itself sizeof (uint32_t) aligned. 12527 */ 12528 ASSERT(!((align - (offs & (align - 1))) & 12529 (sizeof (uint32_t) - 1))); 12530 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12531 offs += sizeof (uint32_t); 12532 } 12533 12534 if (buf->dtb_flags & DTRACEBUF_FILL) { 12535 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12536 buf->dtb_flags |= DTRACEBUF_FULL; 12537 return (-1); 12538 } 12539 } 12540 12541 if (mstate == NULL) 12542 return (offs); 12543 12544 /* 12545 * For ring buffers and fill buffers, the scratch space is always 12546 * the inactive buffer. 12547 */ 12548 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12549 mstate->dtms_scratch_size = buf->dtb_size; 12550 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12551 12552 return (offs); 12553 } 12554 12555 static void 12556 dtrace_buffer_polish(dtrace_buffer_t *buf) 12557 { 12558 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12559 ASSERT(MUTEX_HELD(&dtrace_lock)); 12560 12561 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12562 return; 12563 12564 /* 12565 * We need to polish the ring buffer. There are three cases: 12566 * 12567 * - The first (and presumably most common) is that there is no gap 12568 * between the buffer offset and the wrapped offset. In this case, 12569 * there is nothing in the buffer that isn't valid data; we can 12570 * mark the buffer as polished and return. 12571 * 12572 * - The second (less common than the first but still more common 12573 * than the third) is that there is a gap between the buffer offset 12574 * and the wrapped offset, and the wrapped offset is larger than the 12575 * buffer offset. This can happen because of an alignment issue, or 12576 * can happen because of a call to dtrace_buffer_reserve() that 12577 * didn't subsequently consume the buffer space. In this case, 12578 * we need to zero the data from the buffer offset to the wrapped 12579 * offset. 12580 * 12581 * - The third (and least common) is that there is a gap between the 12582 * buffer offset and the wrapped offset, but the wrapped offset is 12583 * _less_ than the buffer offset. This can only happen because a 12584 * call to dtrace_buffer_reserve() induced a wrap, but the space 12585 * was not subsequently consumed. In this case, we need to zero the 12586 * space from the offset to the end of the buffer _and_ from the 12587 * top of the buffer to the wrapped offset. 12588 */ 12589 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12590 bzero(buf->dtb_tomax + buf->dtb_offset, 12591 buf->dtb_xamot_offset - buf->dtb_offset); 12592 } 12593 12594 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12595 bzero(buf->dtb_tomax + buf->dtb_offset, 12596 buf->dtb_size - buf->dtb_offset); 12597 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12598 } 12599 } 12600 12601 /* 12602 * This routine determines if data generated at the specified time has likely 12603 * been entirely consumed at user-level. This routine is called to determine 12604 * if an ECB on a defunct probe (but for an active enabling) can be safely 12605 * disabled and destroyed. 12606 */ 12607 static int 12608 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12609 { 12610 int i; 12611 12612 CPU_FOREACH(i) { 12613 dtrace_buffer_t *buf = &bufs[i]; 12614 12615 if (buf->dtb_size == 0) 12616 continue; 12617 12618 if (buf->dtb_flags & DTRACEBUF_RING) 12619 return (0); 12620 12621 if (!buf->dtb_switched && buf->dtb_offset != 0) 12622 return (0); 12623 12624 if (buf->dtb_switched - buf->dtb_interval < when) 12625 return (0); 12626 } 12627 12628 return (1); 12629 } 12630 12631 static void 12632 dtrace_buffer_free(dtrace_buffer_t *bufs) 12633 { 12634 int i; 12635 12636 CPU_FOREACH(i) { 12637 dtrace_buffer_t *buf = &bufs[i]; 12638 12639 if (buf->dtb_tomax == NULL) { 12640 ASSERT(buf->dtb_xamot == NULL); 12641 ASSERT(buf->dtb_size == 0); 12642 continue; 12643 } 12644 12645 if (buf->dtb_xamot != NULL) { 12646 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12647 kmem_free(buf->dtb_xamot, buf->dtb_size); 12648 } 12649 12650 kmem_free(buf->dtb_tomax, buf->dtb_size); 12651 buf->dtb_size = 0; 12652 buf->dtb_tomax = NULL; 12653 buf->dtb_xamot = NULL; 12654 } 12655 } 12656 12657 /* 12658 * DTrace Enabling Functions 12659 */ 12660 static dtrace_enabling_t * 12661 dtrace_enabling_create(dtrace_vstate_t *vstate) 12662 { 12663 dtrace_enabling_t *enab; 12664 12665 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12666 enab->dten_vstate = vstate; 12667 12668 return (enab); 12669 } 12670 12671 static void 12672 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12673 { 12674 dtrace_ecbdesc_t **ndesc; 12675 size_t osize, nsize; 12676 12677 /* 12678 * We can't add to enablings after we've enabled them, or after we've 12679 * retained them. 12680 */ 12681 ASSERT(enab->dten_probegen == 0); 12682 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12683 12684 if (enab->dten_ndesc < enab->dten_maxdesc) { 12685 enab->dten_desc[enab->dten_ndesc++] = ecb; 12686 return; 12687 } 12688 12689 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12690 12691 if (enab->dten_maxdesc == 0) { 12692 enab->dten_maxdesc = 1; 12693 } else { 12694 enab->dten_maxdesc <<= 1; 12695 } 12696 12697 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12698 12699 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12700 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12701 bcopy(enab->dten_desc, ndesc, osize); 12702 if (enab->dten_desc != NULL) 12703 kmem_free(enab->dten_desc, osize); 12704 12705 enab->dten_desc = ndesc; 12706 enab->dten_desc[enab->dten_ndesc++] = ecb; 12707 } 12708 12709 static void 12710 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12711 dtrace_probedesc_t *pd) 12712 { 12713 dtrace_ecbdesc_t *new; 12714 dtrace_predicate_t *pred; 12715 dtrace_actdesc_t *act; 12716 12717 /* 12718 * We're going to create a new ECB description that matches the 12719 * specified ECB in every way, but has the specified probe description. 12720 */ 12721 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12722 12723 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12724 dtrace_predicate_hold(pred); 12725 12726 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12727 dtrace_actdesc_hold(act); 12728 12729 new->dted_action = ecb->dted_action; 12730 new->dted_pred = ecb->dted_pred; 12731 new->dted_probe = *pd; 12732 new->dted_uarg = ecb->dted_uarg; 12733 12734 dtrace_enabling_add(enab, new); 12735 } 12736 12737 static void 12738 dtrace_enabling_dump(dtrace_enabling_t *enab) 12739 { 12740 int i; 12741 12742 for (i = 0; i < enab->dten_ndesc; i++) { 12743 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12744 12745 #ifdef __FreeBSD__ 12746 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12747 desc->dtpd_provider, desc->dtpd_mod, 12748 desc->dtpd_func, desc->dtpd_name); 12749 #else 12750 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12751 desc->dtpd_provider, desc->dtpd_mod, 12752 desc->dtpd_func, desc->dtpd_name); 12753 #endif 12754 } 12755 } 12756 12757 static void 12758 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12759 { 12760 int i; 12761 dtrace_ecbdesc_t *ep; 12762 dtrace_vstate_t *vstate = enab->dten_vstate; 12763 12764 ASSERT(MUTEX_HELD(&dtrace_lock)); 12765 12766 for (i = 0; i < enab->dten_ndesc; i++) { 12767 dtrace_actdesc_t *act, *next; 12768 dtrace_predicate_t *pred; 12769 12770 ep = enab->dten_desc[i]; 12771 12772 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12773 dtrace_predicate_release(pred, vstate); 12774 12775 for (act = ep->dted_action; act != NULL; act = next) { 12776 next = act->dtad_next; 12777 dtrace_actdesc_release(act, vstate); 12778 } 12779 12780 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12781 } 12782 12783 if (enab->dten_desc != NULL) 12784 kmem_free(enab->dten_desc, 12785 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12786 12787 /* 12788 * If this was a retained enabling, decrement the dts_nretained count 12789 * and take it off of the dtrace_retained list. 12790 */ 12791 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12792 dtrace_retained == enab) { 12793 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12794 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12795 enab->dten_vstate->dtvs_state->dts_nretained--; 12796 dtrace_retained_gen++; 12797 } 12798 12799 if (enab->dten_prev == NULL) { 12800 if (dtrace_retained == enab) { 12801 dtrace_retained = enab->dten_next; 12802 12803 if (dtrace_retained != NULL) 12804 dtrace_retained->dten_prev = NULL; 12805 } 12806 } else { 12807 ASSERT(enab != dtrace_retained); 12808 ASSERT(dtrace_retained != NULL); 12809 enab->dten_prev->dten_next = enab->dten_next; 12810 } 12811 12812 if (enab->dten_next != NULL) { 12813 ASSERT(dtrace_retained != NULL); 12814 enab->dten_next->dten_prev = enab->dten_prev; 12815 } 12816 12817 kmem_free(enab, sizeof (dtrace_enabling_t)); 12818 } 12819 12820 static int 12821 dtrace_enabling_retain(dtrace_enabling_t *enab) 12822 { 12823 dtrace_state_t *state; 12824 12825 ASSERT(MUTEX_HELD(&dtrace_lock)); 12826 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12827 ASSERT(enab->dten_vstate != NULL); 12828 12829 state = enab->dten_vstate->dtvs_state; 12830 ASSERT(state != NULL); 12831 12832 /* 12833 * We only allow each state to retain dtrace_retain_max enablings. 12834 */ 12835 if (state->dts_nretained >= dtrace_retain_max) 12836 return (ENOSPC); 12837 12838 state->dts_nretained++; 12839 dtrace_retained_gen++; 12840 12841 if (dtrace_retained == NULL) { 12842 dtrace_retained = enab; 12843 return (0); 12844 } 12845 12846 enab->dten_next = dtrace_retained; 12847 dtrace_retained->dten_prev = enab; 12848 dtrace_retained = enab; 12849 12850 return (0); 12851 } 12852 12853 static int 12854 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12855 dtrace_probedesc_t *create) 12856 { 12857 dtrace_enabling_t *new, *enab; 12858 int found = 0, err = ENOENT; 12859 12860 ASSERT(MUTEX_HELD(&dtrace_lock)); 12861 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12862 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12863 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12864 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12865 12866 new = dtrace_enabling_create(&state->dts_vstate); 12867 12868 /* 12869 * Iterate over all retained enablings, looking for enablings that 12870 * match the specified state. 12871 */ 12872 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12873 int i; 12874 12875 /* 12876 * dtvs_state can only be NULL for helper enablings -- and 12877 * helper enablings can't be retained. 12878 */ 12879 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12880 12881 if (enab->dten_vstate->dtvs_state != state) 12882 continue; 12883 12884 /* 12885 * Now iterate over each probe description; we're looking for 12886 * an exact match to the specified probe description. 12887 */ 12888 for (i = 0; i < enab->dten_ndesc; i++) { 12889 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12890 dtrace_probedesc_t *pd = &ep->dted_probe; 12891 12892 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12893 continue; 12894 12895 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12896 continue; 12897 12898 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12899 continue; 12900 12901 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12902 continue; 12903 12904 /* 12905 * We have a winning probe! Add it to our growing 12906 * enabling. 12907 */ 12908 found = 1; 12909 dtrace_enabling_addlike(new, ep, create); 12910 } 12911 } 12912 12913 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12914 dtrace_enabling_destroy(new); 12915 return (err); 12916 } 12917 12918 return (0); 12919 } 12920 12921 static void 12922 dtrace_enabling_retract(dtrace_state_t *state) 12923 { 12924 dtrace_enabling_t *enab, *next; 12925 12926 ASSERT(MUTEX_HELD(&dtrace_lock)); 12927 12928 /* 12929 * Iterate over all retained enablings, destroy the enablings retained 12930 * for the specified state. 12931 */ 12932 for (enab = dtrace_retained; enab != NULL; enab = next) { 12933 next = enab->dten_next; 12934 12935 /* 12936 * dtvs_state can only be NULL for helper enablings -- and 12937 * helper enablings can't be retained. 12938 */ 12939 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12940 12941 if (enab->dten_vstate->dtvs_state == state) { 12942 ASSERT(state->dts_nretained > 0); 12943 dtrace_enabling_destroy(enab); 12944 } 12945 } 12946 12947 ASSERT(state->dts_nretained == 0); 12948 } 12949 12950 static int 12951 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12952 { 12953 int i = 0; 12954 int matched = 0; 12955 12956 ASSERT(MUTEX_HELD(&cpu_lock)); 12957 ASSERT(MUTEX_HELD(&dtrace_lock)); 12958 12959 for (i = 0; i < enab->dten_ndesc; i++) { 12960 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12961 12962 enab->dten_current = ep; 12963 enab->dten_error = 0; 12964 12965 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12966 12967 if (enab->dten_error != 0) { 12968 /* 12969 * If we get an error half-way through enabling the 12970 * probes, we kick out -- perhaps with some number of 12971 * them enabled. Leaving enabled probes enabled may 12972 * be slightly confusing for user-level, but we expect 12973 * that no one will attempt to actually drive on in 12974 * the face of such errors. If this is an anonymous 12975 * enabling (indicated with a NULL nmatched pointer), 12976 * we cmn_err() a message. We aren't expecting to 12977 * get such an error -- such as it can exist at all, 12978 * it would be a result of corrupted DOF in the driver 12979 * properties. 12980 */ 12981 if (nmatched == NULL) { 12982 cmn_err(CE_WARN, "dtrace_enabling_match() " 12983 "error on %p: %d", (void *)ep, 12984 enab->dten_error); 12985 } 12986 12987 return (enab->dten_error); 12988 } 12989 } 12990 12991 enab->dten_probegen = dtrace_probegen; 12992 if (nmatched != NULL) 12993 *nmatched = matched; 12994 12995 return (0); 12996 } 12997 12998 static void 12999 dtrace_enabling_matchall_task(void *args __unused) 13000 { 13001 dtrace_enabling_matchall(); 13002 } 13003 13004 static void 13005 dtrace_enabling_matchall(void) 13006 { 13007 dtrace_enabling_t *enab; 13008 13009 mutex_enter(&cpu_lock); 13010 mutex_enter(&dtrace_lock); 13011 13012 /* 13013 * Iterate over all retained enablings to see if any probes match 13014 * against them. We only perform this operation on enablings for which 13015 * we have sufficient permissions by virtue of being in the global zone 13016 * or in the same zone as the DTrace client. Because we can be called 13017 * after dtrace_detach() has been called, we cannot assert that there 13018 * are retained enablings. We can safely load from dtrace_retained, 13019 * however: the taskq_destroy() at the end of dtrace_detach() will 13020 * block pending our completion. 13021 */ 13022 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13023 #ifdef illumos 13024 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13025 13026 if (INGLOBALZONE(curproc) || 13027 cr != NULL && getzoneid() == crgetzoneid(cr)) 13028 #endif 13029 (void) dtrace_enabling_match(enab, NULL); 13030 } 13031 13032 mutex_exit(&dtrace_lock); 13033 mutex_exit(&cpu_lock); 13034 } 13035 13036 /* 13037 * If an enabling is to be enabled without having matched probes (that is, if 13038 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13039 * enabling must be _primed_ by creating an ECB for every ECB description. 13040 * This must be done to assure that we know the number of speculations, the 13041 * number of aggregations, the minimum buffer size needed, etc. before we 13042 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13043 * enabling any probes, we create ECBs for every ECB decription, but with a 13044 * NULL probe -- which is exactly what this function does. 13045 */ 13046 static void 13047 dtrace_enabling_prime(dtrace_state_t *state) 13048 { 13049 dtrace_enabling_t *enab; 13050 int i; 13051 13052 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13053 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13054 13055 if (enab->dten_vstate->dtvs_state != state) 13056 continue; 13057 13058 /* 13059 * We don't want to prime an enabling more than once, lest 13060 * we allow a malicious user to induce resource exhaustion. 13061 * (The ECBs that result from priming an enabling aren't 13062 * leaked -- but they also aren't deallocated until the 13063 * consumer state is destroyed.) 13064 */ 13065 if (enab->dten_primed) 13066 continue; 13067 13068 for (i = 0; i < enab->dten_ndesc; i++) { 13069 enab->dten_current = enab->dten_desc[i]; 13070 (void) dtrace_probe_enable(NULL, enab); 13071 } 13072 13073 enab->dten_primed = 1; 13074 } 13075 } 13076 13077 /* 13078 * Called to indicate that probes should be provided due to retained 13079 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13080 * must take an initial lap through the enabling calling the dtps_provide() 13081 * entry point explicitly to allow for autocreated probes. 13082 */ 13083 static void 13084 dtrace_enabling_provide(dtrace_provider_t *prv) 13085 { 13086 int i, all = 0; 13087 dtrace_probedesc_t desc; 13088 dtrace_genid_t gen; 13089 13090 ASSERT(MUTEX_HELD(&dtrace_lock)); 13091 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13092 13093 if (prv == NULL) { 13094 all = 1; 13095 prv = dtrace_provider; 13096 } 13097 13098 do { 13099 dtrace_enabling_t *enab; 13100 void *parg = prv->dtpv_arg; 13101 13102 retry: 13103 gen = dtrace_retained_gen; 13104 for (enab = dtrace_retained; enab != NULL; 13105 enab = enab->dten_next) { 13106 for (i = 0; i < enab->dten_ndesc; i++) { 13107 desc = enab->dten_desc[i]->dted_probe; 13108 mutex_exit(&dtrace_lock); 13109 prv->dtpv_pops.dtps_provide(parg, &desc); 13110 mutex_enter(&dtrace_lock); 13111 /* 13112 * Process the retained enablings again if 13113 * they have changed while we weren't holding 13114 * dtrace_lock. 13115 */ 13116 if (gen != dtrace_retained_gen) 13117 goto retry; 13118 } 13119 } 13120 } while (all && (prv = prv->dtpv_next) != NULL); 13121 13122 mutex_exit(&dtrace_lock); 13123 dtrace_probe_provide(NULL, all ? NULL : prv); 13124 mutex_enter(&dtrace_lock); 13125 } 13126 13127 /* 13128 * Called to reap ECBs that are attached to probes from defunct providers. 13129 */ 13130 static void 13131 dtrace_enabling_reap(void *args __unused) 13132 { 13133 dtrace_provider_t *prov; 13134 dtrace_probe_t *probe; 13135 dtrace_ecb_t *ecb; 13136 hrtime_t when; 13137 int i; 13138 13139 mutex_enter(&cpu_lock); 13140 mutex_enter(&dtrace_lock); 13141 13142 for (i = 0; i < dtrace_nprobes; i++) { 13143 if ((probe = dtrace_probes[i]) == NULL) 13144 continue; 13145 13146 if (probe->dtpr_ecb == NULL) 13147 continue; 13148 13149 prov = probe->dtpr_provider; 13150 13151 if ((when = prov->dtpv_defunct) == 0) 13152 continue; 13153 13154 /* 13155 * We have ECBs on a defunct provider: we want to reap these 13156 * ECBs to allow the provider to unregister. The destruction 13157 * of these ECBs must be done carefully: if we destroy the ECB 13158 * and the consumer later wishes to consume an EPID that 13159 * corresponds to the destroyed ECB (and if the EPID metadata 13160 * has not been previously consumed), the consumer will abort 13161 * processing on the unknown EPID. To reduce (but not, sadly, 13162 * eliminate) the possibility of this, we will only destroy an 13163 * ECB for a defunct provider if, for the state that 13164 * corresponds to the ECB: 13165 * 13166 * (a) There is no speculative tracing (which can effectively 13167 * cache an EPID for an arbitrary amount of time). 13168 * 13169 * (b) The principal buffers have been switched twice since the 13170 * provider became defunct. 13171 * 13172 * (c) The aggregation buffers are of zero size or have been 13173 * switched twice since the provider became defunct. 13174 * 13175 * We use dts_speculates to determine (a) and call a function 13176 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13177 * that as soon as we've been unable to destroy one of the ECBs 13178 * associated with the probe, we quit trying -- reaping is only 13179 * fruitful in as much as we can destroy all ECBs associated 13180 * with the defunct provider's probes. 13181 */ 13182 while ((ecb = probe->dtpr_ecb) != NULL) { 13183 dtrace_state_t *state = ecb->dte_state; 13184 dtrace_buffer_t *buf = state->dts_buffer; 13185 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13186 13187 if (state->dts_speculates) 13188 break; 13189 13190 if (!dtrace_buffer_consumed(buf, when)) 13191 break; 13192 13193 if (!dtrace_buffer_consumed(aggbuf, when)) 13194 break; 13195 13196 dtrace_ecb_disable(ecb); 13197 ASSERT(probe->dtpr_ecb != ecb); 13198 dtrace_ecb_destroy(ecb); 13199 } 13200 } 13201 13202 mutex_exit(&dtrace_lock); 13203 mutex_exit(&cpu_lock); 13204 } 13205 13206 /* 13207 * DTrace DOF Functions 13208 */ 13209 /*ARGSUSED*/ 13210 static void 13211 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13212 { 13213 if (dtrace_err_verbose) 13214 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13215 13216 #ifdef DTRACE_ERRDEBUG 13217 dtrace_errdebug(str); 13218 #endif 13219 } 13220 13221 /* 13222 * Create DOF out of a currently enabled state. Right now, we only create 13223 * DOF containing the run-time options -- but this could be expanded to create 13224 * complete DOF representing the enabled state. 13225 */ 13226 static dof_hdr_t * 13227 dtrace_dof_create(dtrace_state_t *state) 13228 { 13229 dof_hdr_t *dof; 13230 dof_sec_t *sec; 13231 dof_optdesc_t *opt; 13232 int i, len = sizeof (dof_hdr_t) + 13233 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13234 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13235 13236 ASSERT(MUTEX_HELD(&dtrace_lock)); 13237 13238 dof = kmem_zalloc(len, KM_SLEEP); 13239 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13240 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13241 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13242 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13243 13244 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13245 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13246 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13247 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13248 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13249 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13250 13251 dof->dofh_flags = 0; 13252 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13253 dof->dofh_secsize = sizeof (dof_sec_t); 13254 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13255 dof->dofh_secoff = sizeof (dof_hdr_t); 13256 dof->dofh_loadsz = len; 13257 dof->dofh_filesz = len; 13258 dof->dofh_pad = 0; 13259 13260 /* 13261 * Fill in the option section header... 13262 */ 13263 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13264 sec->dofs_type = DOF_SECT_OPTDESC; 13265 sec->dofs_align = sizeof (uint64_t); 13266 sec->dofs_flags = DOF_SECF_LOAD; 13267 sec->dofs_entsize = sizeof (dof_optdesc_t); 13268 13269 opt = (dof_optdesc_t *)((uintptr_t)sec + 13270 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13271 13272 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13273 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13274 13275 for (i = 0; i < DTRACEOPT_MAX; i++) { 13276 opt[i].dofo_option = i; 13277 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13278 opt[i].dofo_value = state->dts_options[i]; 13279 } 13280 13281 return (dof); 13282 } 13283 13284 static dof_hdr_t * 13285 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13286 { 13287 dof_hdr_t hdr, *dof; 13288 13289 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13290 13291 /* 13292 * First, we're going to copyin() the sizeof (dof_hdr_t). 13293 */ 13294 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13295 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13296 *errp = EFAULT; 13297 return (NULL); 13298 } 13299 13300 /* 13301 * Now we'll allocate the entire DOF and copy it in -- provided 13302 * that the length isn't outrageous. 13303 */ 13304 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13305 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13306 *errp = E2BIG; 13307 return (NULL); 13308 } 13309 13310 if (hdr.dofh_loadsz < sizeof (hdr)) { 13311 dtrace_dof_error(&hdr, "invalid load size"); 13312 *errp = EINVAL; 13313 return (NULL); 13314 } 13315 13316 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13317 13318 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13319 dof->dofh_loadsz != hdr.dofh_loadsz) { 13320 kmem_free(dof, hdr.dofh_loadsz); 13321 *errp = EFAULT; 13322 return (NULL); 13323 } 13324 13325 return (dof); 13326 } 13327 13328 #ifdef __FreeBSD__ 13329 static dof_hdr_t * 13330 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13331 { 13332 dof_hdr_t hdr, *dof; 13333 struct thread *td; 13334 size_t loadsz; 13335 13336 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13337 13338 td = curthread; 13339 13340 /* 13341 * First, we're going to copyin() the sizeof (dof_hdr_t). 13342 */ 13343 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13344 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13345 *errp = EFAULT; 13346 return (NULL); 13347 } 13348 13349 /* 13350 * Now we'll allocate the entire DOF and copy it in -- provided 13351 * that the length isn't outrageous. 13352 */ 13353 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13354 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13355 *errp = E2BIG; 13356 return (NULL); 13357 } 13358 loadsz = (size_t)hdr.dofh_loadsz; 13359 13360 if (loadsz < sizeof (hdr)) { 13361 dtrace_dof_error(&hdr, "invalid load size"); 13362 *errp = EINVAL; 13363 return (NULL); 13364 } 13365 13366 dof = kmem_alloc(loadsz, KM_SLEEP); 13367 13368 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13369 dof->dofh_loadsz != loadsz) { 13370 kmem_free(dof, hdr.dofh_loadsz); 13371 *errp = EFAULT; 13372 return (NULL); 13373 } 13374 13375 return (dof); 13376 } 13377 13378 static __inline uchar_t 13379 dtrace_dof_char(char c) 13380 { 13381 13382 switch (c) { 13383 case '0': 13384 case '1': 13385 case '2': 13386 case '3': 13387 case '4': 13388 case '5': 13389 case '6': 13390 case '7': 13391 case '8': 13392 case '9': 13393 return (c - '0'); 13394 case 'A': 13395 case 'B': 13396 case 'C': 13397 case 'D': 13398 case 'E': 13399 case 'F': 13400 return (c - 'A' + 10); 13401 case 'a': 13402 case 'b': 13403 case 'c': 13404 case 'd': 13405 case 'e': 13406 case 'f': 13407 return (c - 'a' + 10); 13408 } 13409 /* Should not reach here. */ 13410 return (UCHAR_MAX); 13411 } 13412 #endif /* __FreeBSD__ */ 13413 13414 static dof_hdr_t * 13415 dtrace_dof_property(const char *name) 13416 { 13417 #ifdef __FreeBSD__ 13418 uint8_t *dofbuf; 13419 u_char *data, *eol; 13420 caddr_t doffile; 13421 size_t bytes, len, i; 13422 dof_hdr_t *dof; 13423 u_char c1, c2; 13424 13425 dof = NULL; 13426 13427 doffile = preload_search_by_type("dtrace_dof"); 13428 if (doffile == NULL) 13429 return (NULL); 13430 13431 data = preload_fetch_addr(doffile); 13432 len = preload_fetch_size(doffile); 13433 for (;;) { 13434 /* Look for the end of the line. All lines end in a newline. */ 13435 eol = memchr(data, '\n', len); 13436 if (eol == NULL) 13437 return (NULL); 13438 13439 if (strncmp(name, data, strlen(name)) == 0) 13440 break; 13441 13442 eol++; /* skip past the newline */ 13443 len -= eol - data; 13444 data = eol; 13445 } 13446 13447 /* We've found the data corresponding to the specified key. */ 13448 13449 data += strlen(name) + 1; /* skip past the '=' */ 13450 len = eol - data; 13451 if (len % 2 != 0) { 13452 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13453 goto doferr; 13454 } 13455 bytes = len / 2; 13456 if (bytes < sizeof(dof_hdr_t)) { 13457 dtrace_dof_error(NULL, "truncated header"); 13458 goto doferr; 13459 } 13460 13461 /* 13462 * Each byte is represented by the two ASCII characters in its hex 13463 * representation. 13464 */ 13465 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13466 for (i = 0; i < bytes; i++) { 13467 c1 = dtrace_dof_char(data[i * 2]); 13468 c2 = dtrace_dof_char(data[i * 2 + 1]); 13469 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13470 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13471 goto doferr; 13472 } 13473 dofbuf[i] = c1 * 16 + c2; 13474 } 13475 13476 dof = (dof_hdr_t *)dofbuf; 13477 if (bytes < dof->dofh_loadsz) { 13478 dtrace_dof_error(NULL, "truncated DOF"); 13479 goto doferr; 13480 } 13481 13482 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13483 dtrace_dof_error(NULL, "oversized DOF"); 13484 goto doferr; 13485 } 13486 13487 return (dof); 13488 13489 doferr: 13490 free(dof, M_SOLARIS); 13491 return (NULL); 13492 #else /* __FreeBSD__ */ 13493 uchar_t *buf; 13494 uint64_t loadsz; 13495 unsigned int len, i; 13496 dof_hdr_t *dof; 13497 13498 /* 13499 * Unfortunately, array of values in .conf files are always (and 13500 * only) interpreted to be integer arrays. We must read our DOF 13501 * as an integer array, and then squeeze it into a byte array. 13502 */ 13503 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13504 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13505 return (NULL); 13506 13507 for (i = 0; i < len; i++) 13508 buf[i] = (uchar_t)(((int *)buf)[i]); 13509 13510 if (len < sizeof (dof_hdr_t)) { 13511 ddi_prop_free(buf); 13512 dtrace_dof_error(NULL, "truncated header"); 13513 return (NULL); 13514 } 13515 13516 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13517 ddi_prop_free(buf); 13518 dtrace_dof_error(NULL, "truncated DOF"); 13519 return (NULL); 13520 } 13521 13522 if (loadsz >= dtrace_dof_maxsize) { 13523 ddi_prop_free(buf); 13524 dtrace_dof_error(NULL, "oversized DOF"); 13525 return (NULL); 13526 } 13527 13528 dof = kmem_alloc(loadsz, KM_SLEEP); 13529 bcopy(buf, dof, loadsz); 13530 ddi_prop_free(buf); 13531 13532 return (dof); 13533 #endif /* !__FreeBSD__ */ 13534 } 13535 13536 static void 13537 dtrace_dof_destroy(dof_hdr_t *dof) 13538 { 13539 kmem_free(dof, dof->dofh_loadsz); 13540 } 13541 13542 /* 13543 * Return the dof_sec_t pointer corresponding to a given section index. If the 13544 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13545 * a type other than DOF_SECT_NONE is specified, the header is checked against 13546 * this type and NULL is returned if the types do not match. 13547 */ 13548 static dof_sec_t * 13549 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13550 { 13551 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13552 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13553 13554 if (i >= dof->dofh_secnum) { 13555 dtrace_dof_error(dof, "referenced section index is invalid"); 13556 return (NULL); 13557 } 13558 13559 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13560 dtrace_dof_error(dof, "referenced section is not loadable"); 13561 return (NULL); 13562 } 13563 13564 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13565 dtrace_dof_error(dof, "referenced section is the wrong type"); 13566 return (NULL); 13567 } 13568 13569 return (sec); 13570 } 13571 13572 static dtrace_probedesc_t * 13573 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13574 { 13575 dof_probedesc_t *probe; 13576 dof_sec_t *strtab; 13577 uintptr_t daddr = (uintptr_t)dof; 13578 uintptr_t str; 13579 size_t size; 13580 13581 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13582 dtrace_dof_error(dof, "invalid probe section"); 13583 return (NULL); 13584 } 13585 13586 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13587 dtrace_dof_error(dof, "bad alignment in probe description"); 13588 return (NULL); 13589 } 13590 13591 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13592 dtrace_dof_error(dof, "truncated probe description"); 13593 return (NULL); 13594 } 13595 13596 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13597 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13598 13599 if (strtab == NULL) 13600 return (NULL); 13601 13602 str = daddr + strtab->dofs_offset; 13603 size = strtab->dofs_size; 13604 13605 if (probe->dofp_provider >= strtab->dofs_size) { 13606 dtrace_dof_error(dof, "corrupt probe provider"); 13607 return (NULL); 13608 } 13609 13610 (void) strncpy(desc->dtpd_provider, 13611 (char *)(str + probe->dofp_provider), 13612 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13613 13614 if (probe->dofp_mod >= strtab->dofs_size) { 13615 dtrace_dof_error(dof, "corrupt probe module"); 13616 return (NULL); 13617 } 13618 13619 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13620 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13621 13622 if (probe->dofp_func >= strtab->dofs_size) { 13623 dtrace_dof_error(dof, "corrupt probe function"); 13624 return (NULL); 13625 } 13626 13627 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13628 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13629 13630 if (probe->dofp_name >= strtab->dofs_size) { 13631 dtrace_dof_error(dof, "corrupt probe name"); 13632 return (NULL); 13633 } 13634 13635 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13636 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13637 13638 return (desc); 13639 } 13640 13641 static dtrace_difo_t * 13642 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13643 cred_t *cr) 13644 { 13645 dtrace_difo_t *dp; 13646 size_t ttl = 0; 13647 dof_difohdr_t *dofd; 13648 uintptr_t daddr = (uintptr_t)dof; 13649 size_t max = dtrace_difo_maxsize; 13650 int i, l, n; 13651 13652 static const struct { 13653 int section; 13654 int bufoffs; 13655 int lenoffs; 13656 int entsize; 13657 int align; 13658 const char *msg; 13659 } difo[] = { 13660 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13661 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13662 sizeof (dif_instr_t), "multiple DIF sections" }, 13663 13664 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13665 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13666 sizeof (uint64_t), "multiple integer tables" }, 13667 13668 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13669 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13670 sizeof (char), "multiple string tables" }, 13671 13672 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13673 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13674 sizeof (uint_t), "multiple variable tables" }, 13675 13676 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13677 }; 13678 13679 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13680 dtrace_dof_error(dof, "invalid DIFO header section"); 13681 return (NULL); 13682 } 13683 13684 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13685 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13686 return (NULL); 13687 } 13688 13689 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13690 sec->dofs_size % sizeof (dof_secidx_t)) { 13691 dtrace_dof_error(dof, "bad size in DIFO header"); 13692 return (NULL); 13693 } 13694 13695 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13696 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13697 13698 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13699 dp->dtdo_rtype = dofd->dofd_rtype; 13700 13701 for (l = 0; l < n; l++) { 13702 dof_sec_t *subsec; 13703 void **bufp; 13704 uint32_t *lenp; 13705 13706 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13707 dofd->dofd_links[l])) == NULL) 13708 goto err; /* invalid section link */ 13709 13710 if (ttl + subsec->dofs_size > max) { 13711 dtrace_dof_error(dof, "exceeds maximum size"); 13712 goto err; 13713 } 13714 13715 ttl += subsec->dofs_size; 13716 13717 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13718 if (subsec->dofs_type != difo[i].section) 13719 continue; 13720 13721 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13722 dtrace_dof_error(dof, "section not loaded"); 13723 goto err; 13724 } 13725 13726 if (subsec->dofs_align != difo[i].align) { 13727 dtrace_dof_error(dof, "bad alignment"); 13728 goto err; 13729 } 13730 13731 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13732 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13733 13734 if (*bufp != NULL) { 13735 dtrace_dof_error(dof, difo[i].msg); 13736 goto err; 13737 } 13738 13739 if (difo[i].entsize != subsec->dofs_entsize) { 13740 dtrace_dof_error(dof, "entry size mismatch"); 13741 goto err; 13742 } 13743 13744 if (subsec->dofs_entsize != 0 && 13745 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13746 dtrace_dof_error(dof, "corrupt entry size"); 13747 goto err; 13748 } 13749 13750 *lenp = subsec->dofs_size; 13751 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13752 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13753 *bufp, subsec->dofs_size); 13754 13755 if (subsec->dofs_entsize != 0) 13756 *lenp /= subsec->dofs_entsize; 13757 13758 break; 13759 } 13760 13761 /* 13762 * If we encounter a loadable DIFO sub-section that is not 13763 * known to us, assume this is a broken program and fail. 13764 */ 13765 if (difo[i].section == DOF_SECT_NONE && 13766 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13767 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13768 goto err; 13769 } 13770 } 13771 13772 if (dp->dtdo_buf == NULL) { 13773 /* 13774 * We can't have a DIF object without DIF text. 13775 */ 13776 dtrace_dof_error(dof, "missing DIF text"); 13777 goto err; 13778 } 13779 13780 /* 13781 * Before we validate the DIF object, run through the variable table 13782 * looking for the strings -- if any of their size are under, we'll set 13783 * their size to be the system-wide default string size. Note that 13784 * this should _not_ happen if the "strsize" option has been set -- 13785 * in this case, the compiler should have set the size to reflect the 13786 * setting of the option. 13787 */ 13788 for (i = 0; i < dp->dtdo_varlen; i++) { 13789 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13790 dtrace_diftype_t *t = &v->dtdv_type; 13791 13792 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13793 continue; 13794 13795 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13796 t->dtdt_size = dtrace_strsize_default; 13797 } 13798 13799 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13800 goto err; 13801 13802 dtrace_difo_init(dp, vstate); 13803 return (dp); 13804 13805 err: 13806 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13807 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13808 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13809 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13810 13811 kmem_free(dp, sizeof (dtrace_difo_t)); 13812 return (NULL); 13813 } 13814 13815 static dtrace_predicate_t * 13816 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13817 cred_t *cr) 13818 { 13819 dtrace_difo_t *dp; 13820 13821 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13822 return (NULL); 13823 13824 return (dtrace_predicate_create(dp)); 13825 } 13826 13827 static dtrace_actdesc_t * 13828 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13829 cred_t *cr) 13830 { 13831 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13832 dof_actdesc_t *desc; 13833 dof_sec_t *difosec; 13834 size_t offs; 13835 uintptr_t daddr = (uintptr_t)dof; 13836 uint64_t arg; 13837 dtrace_actkind_t kind; 13838 13839 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13840 dtrace_dof_error(dof, "invalid action section"); 13841 return (NULL); 13842 } 13843 13844 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13845 dtrace_dof_error(dof, "truncated action description"); 13846 return (NULL); 13847 } 13848 13849 if (sec->dofs_align != sizeof (uint64_t)) { 13850 dtrace_dof_error(dof, "bad alignment in action description"); 13851 return (NULL); 13852 } 13853 13854 if (sec->dofs_size < sec->dofs_entsize) { 13855 dtrace_dof_error(dof, "section entry size exceeds total size"); 13856 return (NULL); 13857 } 13858 13859 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13860 dtrace_dof_error(dof, "bad entry size in action description"); 13861 return (NULL); 13862 } 13863 13864 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13865 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13866 return (NULL); 13867 } 13868 13869 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13870 desc = (dof_actdesc_t *)(daddr + 13871 (uintptr_t)sec->dofs_offset + offs); 13872 kind = (dtrace_actkind_t)desc->dofa_kind; 13873 13874 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13875 (kind != DTRACEACT_PRINTA || 13876 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13877 (kind == DTRACEACT_DIFEXPR && 13878 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13879 dof_sec_t *strtab; 13880 char *str, *fmt; 13881 uint64_t i; 13882 13883 /* 13884 * The argument to these actions is an index into the 13885 * DOF string table. For printf()-like actions, this 13886 * is the format string. For print(), this is the 13887 * CTF type of the expression result. 13888 */ 13889 if ((strtab = dtrace_dof_sect(dof, 13890 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13891 goto err; 13892 13893 str = (char *)((uintptr_t)dof + 13894 (uintptr_t)strtab->dofs_offset); 13895 13896 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13897 if (str[i] == '\0') 13898 break; 13899 } 13900 13901 if (i >= strtab->dofs_size) { 13902 dtrace_dof_error(dof, "bogus format string"); 13903 goto err; 13904 } 13905 13906 if (i == desc->dofa_arg) { 13907 dtrace_dof_error(dof, "empty format string"); 13908 goto err; 13909 } 13910 13911 i -= desc->dofa_arg; 13912 fmt = kmem_alloc(i + 1, KM_SLEEP); 13913 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13914 arg = (uint64_t)(uintptr_t)fmt; 13915 } else { 13916 if (kind == DTRACEACT_PRINTA) { 13917 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13918 arg = 0; 13919 } else { 13920 arg = desc->dofa_arg; 13921 } 13922 } 13923 13924 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13925 desc->dofa_uarg, arg); 13926 13927 if (last != NULL) { 13928 last->dtad_next = act; 13929 } else { 13930 first = act; 13931 } 13932 13933 last = act; 13934 13935 if (desc->dofa_difo == DOF_SECIDX_NONE) 13936 continue; 13937 13938 if ((difosec = dtrace_dof_sect(dof, 13939 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13940 goto err; 13941 13942 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13943 13944 if (act->dtad_difo == NULL) 13945 goto err; 13946 } 13947 13948 ASSERT(first != NULL); 13949 return (first); 13950 13951 err: 13952 for (act = first; act != NULL; act = next) { 13953 next = act->dtad_next; 13954 dtrace_actdesc_release(act, vstate); 13955 } 13956 13957 return (NULL); 13958 } 13959 13960 static dtrace_ecbdesc_t * 13961 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13962 cred_t *cr) 13963 { 13964 dtrace_ecbdesc_t *ep; 13965 dof_ecbdesc_t *ecb; 13966 dtrace_probedesc_t *desc; 13967 dtrace_predicate_t *pred = NULL; 13968 13969 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13970 dtrace_dof_error(dof, "truncated ECB description"); 13971 return (NULL); 13972 } 13973 13974 if (sec->dofs_align != sizeof (uint64_t)) { 13975 dtrace_dof_error(dof, "bad alignment in ECB description"); 13976 return (NULL); 13977 } 13978 13979 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13980 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13981 13982 if (sec == NULL) 13983 return (NULL); 13984 13985 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13986 ep->dted_uarg = ecb->dofe_uarg; 13987 desc = &ep->dted_probe; 13988 13989 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13990 goto err; 13991 13992 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13993 if ((sec = dtrace_dof_sect(dof, 13994 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13995 goto err; 13996 13997 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13998 goto err; 13999 14000 ep->dted_pred.dtpdd_predicate = pred; 14001 } 14002 14003 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 14004 if ((sec = dtrace_dof_sect(dof, 14005 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 14006 goto err; 14007 14008 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 14009 14010 if (ep->dted_action == NULL) 14011 goto err; 14012 } 14013 14014 return (ep); 14015 14016 err: 14017 if (pred != NULL) 14018 dtrace_predicate_release(pred, vstate); 14019 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14020 return (NULL); 14021 } 14022 14023 /* 14024 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14025 * specified DOF. SETX relocations are computed using 'ubase', the base load 14026 * address of the object containing the DOF, and DOFREL relocations are relative 14027 * to the relocation offset within the DOF. 14028 */ 14029 static int 14030 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14031 uint64_t udaddr) 14032 { 14033 uintptr_t daddr = (uintptr_t)dof; 14034 uintptr_t ts_end; 14035 dof_relohdr_t *dofr = 14036 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14037 dof_sec_t *ss, *rs, *ts; 14038 dof_relodesc_t *r; 14039 uint_t i, n; 14040 14041 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14042 sec->dofs_align != sizeof (dof_secidx_t)) { 14043 dtrace_dof_error(dof, "invalid relocation header"); 14044 return (-1); 14045 } 14046 14047 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14048 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14049 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14050 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14051 14052 if (ss == NULL || rs == NULL || ts == NULL) 14053 return (-1); /* dtrace_dof_error() has been called already */ 14054 14055 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14056 rs->dofs_align != sizeof (uint64_t)) { 14057 dtrace_dof_error(dof, "invalid relocation section"); 14058 return (-1); 14059 } 14060 14061 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14062 n = rs->dofs_size / rs->dofs_entsize; 14063 14064 for (i = 0; i < n; i++) { 14065 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14066 14067 switch (r->dofr_type) { 14068 case DOF_RELO_NONE: 14069 break; 14070 case DOF_RELO_SETX: 14071 case DOF_RELO_DOFREL: 14072 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14073 sizeof (uint64_t) > ts->dofs_size) { 14074 dtrace_dof_error(dof, "bad relocation offset"); 14075 return (-1); 14076 } 14077 14078 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14079 dtrace_dof_error(dof, "bad relocation offset"); 14080 return (-1); 14081 } 14082 14083 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14084 dtrace_dof_error(dof, "misaligned setx relo"); 14085 return (-1); 14086 } 14087 14088 if (r->dofr_type == DOF_RELO_SETX) 14089 *(uint64_t *)taddr += ubase; 14090 else 14091 *(uint64_t *)taddr += 14092 udaddr + ts->dofs_offset + r->dofr_offset; 14093 break; 14094 default: 14095 dtrace_dof_error(dof, "invalid relocation type"); 14096 return (-1); 14097 } 14098 14099 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14100 } 14101 14102 return (0); 14103 } 14104 14105 /* 14106 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14107 * header: it should be at the front of a memory region that is at least 14108 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14109 * size. It need not be validated in any other way. 14110 */ 14111 static int 14112 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14113 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14114 { 14115 uint64_t len = dof->dofh_loadsz, seclen; 14116 uintptr_t daddr = (uintptr_t)dof; 14117 dtrace_ecbdesc_t *ep; 14118 dtrace_enabling_t *enab; 14119 uint_t i; 14120 14121 ASSERT(MUTEX_HELD(&dtrace_lock)); 14122 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14123 14124 /* 14125 * Check the DOF header identification bytes. In addition to checking 14126 * valid settings, we also verify that unused bits/bytes are zeroed so 14127 * we can use them later without fear of regressing existing binaries. 14128 */ 14129 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14130 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14131 dtrace_dof_error(dof, "DOF magic string mismatch"); 14132 return (-1); 14133 } 14134 14135 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14136 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14137 dtrace_dof_error(dof, "DOF has invalid data model"); 14138 return (-1); 14139 } 14140 14141 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14142 dtrace_dof_error(dof, "DOF encoding mismatch"); 14143 return (-1); 14144 } 14145 14146 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14147 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14148 dtrace_dof_error(dof, "DOF version mismatch"); 14149 return (-1); 14150 } 14151 14152 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14153 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14154 return (-1); 14155 } 14156 14157 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14158 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14159 return (-1); 14160 } 14161 14162 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14163 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14164 return (-1); 14165 } 14166 14167 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14168 if (dof->dofh_ident[i] != 0) { 14169 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14170 return (-1); 14171 } 14172 } 14173 14174 if (dof->dofh_flags & ~DOF_FL_VALID) { 14175 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14176 return (-1); 14177 } 14178 14179 if (dof->dofh_secsize == 0) { 14180 dtrace_dof_error(dof, "zero section header size"); 14181 return (-1); 14182 } 14183 14184 /* 14185 * Check that the section headers don't exceed the amount of DOF 14186 * data. Note that we cast the section size and number of sections 14187 * to uint64_t's to prevent possible overflow in the multiplication. 14188 */ 14189 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14190 14191 if (dof->dofh_secoff > len || seclen > len || 14192 dof->dofh_secoff + seclen > len) { 14193 dtrace_dof_error(dof, "truncated section headers"); 14194 return (-1); 14195 } 14196 14197 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14198 dtrace_dof_error(dof, "misaligned section headers"); 14199 return (-1); 14200 } 14201 14202 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14203 dtrace_dof_error(dof, "misaligned section size"); 14204 return (-1); 14205 } 14206 14207 /* 14208 * Take an initial pass through the section headers to be sure that 14209 * the headers don't have stray offsets. If the 'noprobes' flag is 14210 * set, do not permit sections relating to providers, probes, or args. 14211 */ 14212 for (i = 0; i < dof->dofh_secnum; i++) { 14213 dof_sec_t *sec = (dof_sec_t *)(daddr + 14214 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14215 14216 if (noprobes) { 14217 switch (sec->dofs_type) { 14218 case DOF_SECT_PROVIDER: 14219 case DOF_SECT_PROBES: 14220 case DOF_SECT_PRARGS: 14221 case DOF_SECT_PROFFS: 14222 dtrace_dof_error(dof, "illegal sections " 14223 "for enabling"); 14224 return (-1); 14225 } 14226 } 14227 14228 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14229 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14230 dtrace_dof_error(dof, "loadable section with load " 14231 "flag unset"); 14232 return (-1); 14233 } 14234 14235 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14236 continue; /* just ignore non-loadable sections */ 14237 14238 if (!ISP2(sec->dofs_align)) { 14239 dtrace_dof_error(dof, "bad section alignment"); 14240 return (-1); 14241 } 14242 14243 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14244 dtrace_dof_error(dof, "misaligned section"); 14245 return (-1); 14246 } 14247 14248 if (sec->dofs_offset > len || sec->dofs_size > len || 14249 sec->dofs_offset + sec->dofs_size > len) { 14250 dtrace_dof_error(dof, "corrupt section header"); 14251 return (-1); 14252 } 14253 14254 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14255 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14256 dtrace_dof_error(dof, "non-terminating string table"); 14257 return (-1); 14258 } 14259 } 14260 14261 /* 14262 * Take a second pass through the sections and locate and perform any 14263 * relocations that are present. We do this after the first pass to 14264 * be sure that all sections have had their headers validated. 14265 */ 14266 for (i = 0; i < dof->dofh_secnum; i++) { 14267 dof_sec_t *sec = (dof_sec_t *)(daddr + 14268 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14269 14270 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14271 continue; /* skip sections that are not loadable */ 14272 14273 switch (sec->dofs_type) { 14274 case DOF_SECT_URELHDR: 14275 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14276 return (-1); 14277 break; 14278 } 14279 } 14280 14281 if ((enab = *enabp) == NULL) 14282 enab = *enabp = dtrace_enabling_create(vstate); 14283 14284 for (i = 0; i < dof->dofh_secnum; i++) { 14285 dof_sec_t *sec = (dof_sec_t *)(daddr + 14286 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14287 14288 if (sec->dofs_type != DOF_SECT_ECBDESC) 14289 continue; 14290 14291 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14292 dtrace_enabling_destroy(enab); 14293 *enabp = NULL; 14294 return (-1); 14295 } 14296 14297 dtrace_enabling_add(enab, ep); 14298 } 14299 14300 return (0); 14301 } 14302 14303 /* 14304 * Process DOF for any options. This routine assumes that the DOF has been 14305 * at least processed by dtrace_dof_slurp(). 14306 */ 14307 static int 14308 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14309 { 14310 int i, rval; 14311 uint32_t entsize; 14312 size_t offs; 14313 dof_optdesc_t *desc; 14314 14315 for (i = 0; i < dof->dofh_secnum; i++) { 14316 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14317 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14318 14319 if (sec->dofs_type != DOF_SECT_OPTDESC) 14320 continue; 14321 14322 if (sec->dofs_align != sizeof (uint64_t)) { 14323 dtrace_dof_error(dof, "bad alignment in " 14324 "option description"); 14325 return (EINVAL); 14326 } 14327 14328 if ((entsize = sec->dofs_entsize) == 0) { 14329 dtrace_dof_error(dof, "zeroed option entry size"); 14330 return (EINVAL); 14331 } 14332 14333 if (entsize < sizeof (dof_optdesc_t)) { 14334 dtrace_dof_error(dof, "bad option entry size"); 14335 return (EINVAL); 14336 } 14337 14338 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14339 desc = (dof_optdesc_t *)((uintptr_t)dof + 14340 (uintptr_t)sec->dofs_offset + offs); 14341 14342 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14343 dtrace_dof_error(dof, "non-zero option string"); 14344 return (EINVAL); 14345 } 14346 14347 if (desc->dofo_value == DTRACEOPT_UNSET) { 14348 dtrace_dof_error(dof, "unset option"); 14349 return (EINVAL); 14350 } 14351 14352 if ((rval = dtrace_state_option(state, 14353 desc->dofo_option, desc->dofo_value)) != 0) { 14354 dtrace_dof_error(dof, "rejected option"); 14355 return (rval); 14356 } 14357 } 14358 } 14359 14360 return (0); 14361 } 14362 14363 /* 14364 * DTrace Consumer State Functions 14365 */ 14366 static int 14367 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14368 { 14369 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14370 void *base; 14371 uintptr_t limit; 14372 dtrace_dynvar_t *dvar, *next, *start; 14373 int i; 14374 14375 ASSERT(MUTEX_HELD(&dtrace_lock)); 14376 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14377 14378 bzero(dstate, sizeof (dtrace_dstate_t)); 14379 14380 if ((dstate->dtds_chunksize = chunksize) == 0) 14381 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14382 14383 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14384 14385 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14386 size = min; 14387 14388 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14389 return (ENOMEM); 14390 14391 dstate->dtds_size = size; 14392 dstate->dtds_base = base; 14393 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14394 bzero(dstate->dtds_percpu, 14395 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t)); 14396 14397 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14398 14399 if (hashsize != 1 && (hashsize & 1)) 14400 hashsize--; 14401 14402 dstate->dtds_hashsize = hashsize; 14403 dstate->dtds_hash = dstate->dtds_base; 14404 14405 /* 14406 * Set all of our hash buckets to point to the single sink, and (if 14407 * it hasn't already been set), set the sink's hash value to be the 14408 * sink sentinel value. The sink is needed for dynamic variable 14409 * lookups to know that they have iterated over an entire, valid hash 14410 * chain. 14411 */ 14412 for (i = 0; i < hashsize; i++) 14413 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14414 14415 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14416 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14417 14418 /* 14419 * Determine number of active CPUs. Divide free list evenly among 14420 * active CPUs. 14421 */ 14422 start = (dtrace_dynvar_t *) 14423 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14424 limit = (uintptr_t)base + size; 14425 14426 VERIFY((uintptr_t)start < limit); 14427 VERIFY((uintptr_t)start >= (uintptr_t)base); 14428 14429 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1); 14430 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14431 14432 CPU_FOREACH(i) { 14433 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14434 14435 /* 14436 * If we don't even have enough chunks to make it once through 14437 * NCPUs, we're just going to allocate everything to the first 14438 * CPU. And if we're on the last CPU, we're going to allocate 14439 * whatever is left over. In either case, we set the limit to 14440 * be the limit of the dynamic variable space. 14441 */ 14442 if (maxper == 0 || i == mp_maxid) { 14443 limit = (uintptr_t)base + size; 14444 start = NULL; 14445 } else { 14446 limit = (uintptr_t)start + maxper; 14447 start = (dtrace_dynvar_t *)limit; 14448 } 14449 14450 VERIFY(limit <= (uintptr_t)base + size); 14451 14452 for (;;) { 14453 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14454 dstate->dtds_chunksize); 14455 14456 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14457 break; 14458 14459 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14460 (uintptr_t)dvar <= (uintptr_t)base + size); 14461 dvar->dtdv_next = next; 14462 dvar = next; 14463 } 14464 14465 if (maxper == 0) 14466 break; 14467 } 14468 14469 return (0); 14470 } 14471 14472 static void 14473 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14474 { 14475 ASSERT(MUTEX_HELD(&cpu_lock)); 14476 14477 if (dstate->dtds_base == NULL) 14478 return; 14479 14480 kmem_free(dstate->dtds_base, dstate->dtds_size); 14481 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14482 } 14483 14484 static void 14485 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14486 { 14487 /* 14488 * Logical XOR, where are you? 14489 */ 14490 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14491 14492 if (vstate->dtvs_nglobals > 0) { 14493 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14494 sizeof (dtrace_statvar_t *)); 14495 } 14496 14497 if (vstate->dtvs_ntlocals > 0) { 14498 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14499 sizeof (dtrace_difv_t)); 14500 } 14501 14502 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14503 14504 if (vstate->dtvs_nlocals > 0) { 14505 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14506 sizeof (dtrace_statvar_t *)); 14507 } 14508 } 14509 14510 #ifdef illumos 14511 static void 14512 dtrace_state_clean(dtrace_state_t *state) 14513 { 14514 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14515 return; 14516 14517 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14518 dtrace_speculation_clean(state); 14519 } 14520 14521 static void 14522 dtrace_state_deadman(dtrace_state_t *state) 14523 { 14524 hrtime_t now; 14525 14526 dtrace_sync(); 14527 14528 now = dtrace_gethrtime(); 14529 14530 if (state != dtrace_anon.dta_state && 14531 now - state->dts_laststatus >= dtrace_deadman_user) 14532 return; 14533 14534 /* 14535 * We must be sure that dts_alive never appears to be less than the 14536 * value upon entry to dtrace_state_deadman(), and because we lack a 14537 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14538 * store INT64_MAX to it, followed by a memory barrier, followed by 14539 * the new value. This assures that dts_alive never appears to be 14540 * less than its true value, regardless of the order in which the 14541 * stores to the underlying storage are issued. 14542 */ 14543 state->dts_alive = INT64_MAX; 14544 dtrace_membar_producer(); 14545 state->dts_alive = now; 14546 } 14547 #else /* !illumos */ 14548 static void 14549 dtrace_state_clean(void *arg) 14550 { 14551 dtrace_state_t *state = arg; 14552 dtrace_optval_t *opt = state->dts_options; 14553 14554 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14555 return; 14556 14557 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14558 dtrace_speculation_clean(state); 14559 14560 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14561 dtrace_state_clean, state); 14562 } 14563 14564 static void 14565 dtrace_state_deadman(void *arg) 14566 { 14567 dtrace_state_t *state = arg; 14568 hrtime_t now; 14569 14570 dtrace_sync(); 14571 14572 dtrace_debug_output(); 14573 14574 now = dtrace_gethrtime(); 14575 14576 if (state != dtrace_anon.dta_state && 14577 now - state->dts_laststatus >= dtrace_deadman_user) 14578 return; 14579 14580 /* 14581 * We must be sure that dts_alive never appears to be less than the 14582 * value upon entry to dtrace_state_deadman(), and because we lack a 14583 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14584 * store INT64_MAX to it, followed by a memory barrier, followed by 14585 * the new value. This assures that dts_alive never appears to be 14586 * less than its true value, regardless of the order in which the 14587 * stores to the underlying storage are issued. 14588 */ 14589 state->dts_alive = INT64_MAX; 14590 dtrace_membar_producer(); 14591 state->dts_alive = now; 14592 14593 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14594 dtrace_state_deadman, state); 14595 } 14596 #endif /* illumos */ 14597 14598 static dtrace_state_t * 14599 #ifdef illumos 14600 dtrace_state_create(dev_t *devp, cred_t *cr) 14601 #else 14602 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14603 #endif 14604 { 14605 #ifdef illumos 14606 minor_t minor; 14607 major_t major; 14608 #else 14609 cred_t *cr = NULL; 14610 int m = 0; 14611 #endif 14612 char c[30]; 14613 dtrace_state_t *state; 14614 dtrace_optval_t *opt; 14615 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i; 14616 int cpu_it; 14617 14618 ASSERT(MUTEX_HELD(&dtrace_lock)); 14619 ASSERT(MUTEX_HELD(&cpu_lock)); 14620 14621 #ifdef illumos 14622 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14623 VM_BESTFIT | VM_SLEEP); 14624 14625 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14626 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14627 return (NULL); 14628 } 14629 14630 state = ddi_get_soft_state(dtrace_softstate, minor); 14631 #else 14632 if (dev != NULL) { 14633 cr = dev->si_cred; 14634 m = dev2unit(dev); 14635 } 14636 14637 /* Allocate memory for the state. */ 14638 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14639 #endif 14640 14641 state->dts_epid = DTRACE_EPIDNONE + 1; 14642 14643 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14644 #ifdef illumos 14645 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14646 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14647 14648 if (devp != NULL) { 14649 major = getemajor(*devp); 14650 } else { 14651 major = ddi_driver_major(dtrace_devi); 14652 } 14653 14654 state->dts_dev = makedevice(major, minor); 14655 14656 if (devp != NULL) 14657 *devp = state->dts_dev; 14658 #else 14659 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14660 state->dts_dev = dev; 14661 #endif 14662 14663 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14664 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14665 14666 /* 14667 * Allocate and initialise the per-process per-CPU random state. 14668 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14669 * assumed to be seeded at this point (if from Fortuna seed file). 14670 */ 14671 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14672 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) { 14673 /* 14674 * Each CPU is assigned a 2^64 period, non-overlapping 14675 * subsequence. 14676 */ 14677 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1], 14678 state->dts_rstate[cpu_it]); 14679 } 14680 14681 #ifdef illumos 14682 state->dts_cleaner = CYCLIC_NONE; 14683 state->dts_deadman = CYCLIC_NONE; 14684 #else 14685 callout_init(&state->dts_cleaner, 1); 14686 callout_init(&state->dts_deadman, 1); 14687 #endif 14688 state->dts_vstate.dtvs_state = state; 14689 14690 for (i = 0; i < DTRACEOPT_MAX; i++) 14691 state->dts_options[i] = DTRACEOPT_UNSET; 14692 14693 /* 14694 * Set the default options. 14695 */ 14696 opt = state->dts_options; 14697 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14698 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14699 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14700 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14701 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14702 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14703 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14704 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14705 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14706 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14707 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14708 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14709 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14710 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14711 14712 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14713 14714 /* 14715 * Depending on the user credentials, we set flag bits which alter probe 14716 * visibility or the amount of destructiveness allowed. In the case of 14717 * actual anonymous tracing, or the possession of all privileges, all of 14718 * the normal checks are bypassed. 14719 */ 14720 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14721 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14722 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14723 } else { 14724 /* 14725 * Set up the credentials for this instantiation. We take a 14726 * hold on the credential to prevent it from disappearing on 14727 * us; this in turn prevents the zone_t referenced by this 14728 * credential from disappearing. This means that we can 14729 * examine the credential and the zone from probe context. 14730 */ 14731 crhold(cr); 14732 state->dts_cred.dcr_cred = cr; 14733 14734 /* 14735 * CRA_PROC means "we have *some* privilege for dtrace" and 14736 * unlocks the use of variables like pid, zonename, etc. 14737 */ 14738 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14739 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14740 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14741 } 14742 14743 /* 14744 * dtrace_user allows use of syscall and profile providers. 14745 * If the user also has proc_owner and/or proc_zone, we 14746 * extend the scope to include additional visibility and 14747 * destructive power. 14748 */ 14749 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14750 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14751 state->dts_cred.dcr_visible |= 14752 DTRACE_CRV_ALLPROC; 14753 14754 state->dts_cred.dcr_action |= 14755 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14756 } 14757 14758 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14759 state->dts_cred.dcr_visible |= 14760 DTRACE_CRV_ALLZONE; 14761 14762 state->dts_cred.dcr_action |= 14763 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14764 } 14765 14766 /* 14767 * If we have all privs in whatever zone this is, 14768 * we can do destructive things to processes which 14769 * have altered credentials. 14770 */ 14771 #ifdef illumos 14772 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14773 cr->cr_zone->zone_privset)) { 14774 state->dts_cred.dcr_action |= 14775 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14776 } 14777 #endif 14778 } 14779 14780 /* 14781 * Holding the dtrace_kernel privilege also implies that 14782 * the user has the dtrace_user privilege from a visibility 14783 * perspective. But without further privileges, some 14784 * destructive actions are not available. 14785 */ 14786 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14787 /* 14788 * Make all probes in all zones visible. However, 14789 * this doesn't mean that all actions become available 14790 * to all zones. 14791 */ 14792 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14793 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14794 14795 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14796 DTRACE_CRA_PROC; 14797 /* 14798 * Holding proc_owner means that destructive actions 14799 * for *this* zone are allowed. 14800 */ 14801 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14802 state->dts_cred.dcr_action |= 14803 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14804 14805 /* 14806 * Holding proc_zone means that destructive actions 14807 * for this user/group ID in all zones is allowed. 14808 */ 14809 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14810 state->dts_cred.dcr_action |= 14811 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14812 14813 #ifdef illumos 14814 /* 14815 * If we have all privs in whatever zone this is, 14816 * we can do destructive things to processes which 14817 * have altered credentials. 14818 */ 14819 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14820 cr->cr_zone->zone_privset)) { 14821 state->dts_cred.dcr_action |= 14822 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14823 } 14824 #endif 14825 } 14826 14827 /* 14828 * Holding the dtrace_proc privilege gives control over fasttrap 14829 * and pid providers. We need to grant wider destructive 14830 * privileges in the event that the user has proc_owner and/or 14831 * proc_zone. 14832 */ 14833 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14834 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14835 state->dts_cred.dcr_action |= 14836 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14837 14838 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14839 state->dts_cred.dcr_action |= 14840 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14841 } 14842 } 14843 14844 return (state); 14845 } 14846 14847 static int 14848 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14849 { 14850 dtrace_optval_t *opt = state->dts_options, size; 14851 processorid_t cpu = 0; 14852 int flags = 0, rval, factor, divisor = 1; 14853 14854 ASSERT(MUTEX_HELD(&dtrace_lock)); 14855 ASSERT(MUTEX_HELD(&cpu_lock)); 14856 ASSERT(which < DTRACEOPT_MAX); 14857 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14858 (state == dtrace_anon.dta_state && 14859 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14860 14861 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14862 return (0); 14863 14864 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14865 cpu = opt[DTRACEOPT_CPU]; 14866 14867 if (which == DTRACEOPT_SPECSIZE) 14868 flags |= DTRACEBUF_NOSWITCH; 14869 14870 if (which == DTRACEOPT_BUFSIZE) { 14871 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14872 flags |= DTRACEBUF_RING; 14873 14874 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14875 flags |= DTRACEBUF_FILL; 14876 14877 if (state != dtrace_anon.dta_state || 14878 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14879 flags |= DTRACEBUF_INACTIVE; 14880 } 14881 14882 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14883 /* 14884 * The size must be 8-byte aligned. If the size is not 8-byte 14885 * aligned, drop it down by the difference. 14886 */ 14887 if (size & (sizeof (uint64_t) - 1)) 14888 size -= size & (sizeof (uint64_t) - 1); 14889 14890 if (size < state->dts_reserve) { 14891 /* 14892 * Buffers always must be large enough to accommodate 14893 * their prereserved space. We return E2BIG instead 14894 * of ENOMEM in this case to allow for user-level 14895 * software to differentiate the cases. 14896 */ 14897 return (E2BIG); 14898 } 14899 14900 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14901 14902 if (rval != ENOMEM) { 14903 opt[which] = size; 14904 return (rval); 14905 } 14906 14907 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14908 return (rval); 14909 14910 for (divisor = 2; divisor < factor; divisor <<= 1) 14911 continue; 14912 } 14913 14914 return (ENOMEM); 14915 } 14916 14917 static int 14918 dtrace_state_buffers(dtrace_state_t *state) 14919 { 14920 dtrace_speculation_t *spec = state->dts_speculations; 14921 int rval, i; 14922 14923 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14924 DTRACEOPT_BUFSIZE)) != 0) 14925 return (rval); 14926 14927 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14928 DTRACEOPT_AGGSIZE)) != 0) 14929 return (rval); 14930 14931 for (i = 0; i < state->dts_nspeculations; i++) { 14932 if ((rval = dtrace_state_buffer(state, 14933 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14934 return (rval); 14935 } 14936 14937 return (0); 14938 } 14939 14940 static void 14941 dtrace_state_prereserve(dtrace_state_t *state) 14942 { 14943 dtrace_ecb_t *ecb; 14944 dtrace_probe_t *probe; 14945 14946 state->dts_reserve = 0; 14947 14948 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14949 return; 14950 14951 /* 14952 * If our buffer policy is a "fill" buffer policy, we need to set the 14953 * prereserved space to be the space required by the END probes. 14954 */ 14955 probe = dtrace_probes[dtrace_probeid_end - 1]; 14956 ASSERT(probe != NULL); 14957 14958 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14959 if (ecb->dte_state != state) 14960 continue; 14961 14962 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14963 } 14964 } 14965 14966 static int 14967 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14968 { 14969 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14970 dtrace_speculation_t *spec; 14971 dtrace_buffer_t *buf; 14972 #ifdef illumos 14973 cyc_handler_t hdlr; 14974 cyc_time_t when; 14975 #endif 14976 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 14977 dtrace_icookie_t cookie; 14978 14979 mutex_enter(&cpu_lock); 14980 mutex_enter(&dtrace_lock); 14981 14982 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14983 rval = EBUSY; 14984 goto out; 14985 } 14986 14987 /* 14988 * Before we can perform any checks, we must prime all of the 14989 * retained enablings that correspond to this state. 14990 */ 14991 dtrace_enabling_prime(state); 14992 14993 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14994 rval = EACCES; 14995 goto out; 14996 } 14997 14998 dtrace_state_prereserve(state); 14999 15000 /* 15001 * Now we want to do is try to allocate our speculations. 15002 * We do not automatically resize the number of speculations; if 15003 * this fails, we will fail the operation. 15004 */ 15005 nspec = opt[DTRACEOPT_NSPEC]; 15006 ASSERT(nspec != DTRACEOPT_UNSET); 15007 15008 if (nspec > INT_MAX) { 15009 rval = ENOMEM; 15010 goto out; 15011 } 15012 15013 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15014 KM_NOSLEEP | KM_NORMALPRI); 15015 15016 if (spec == NULL) { 15017 rval = ENOMEM; 15018 goto out; 15019 } 15020 15021 state->dts_speculations = spec; 15022 state->dts_nspeculations = (int)nspec; 15023 15024 for (i = 0; i < nspec; i++) { 15025 if ((buf = kmem_zalloc(bufsize, 15026 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15027 rval = ENOMEM; 15028 goto err; 15029 } 15030 15031 spec[i].dtsp_buffer = buf; 15032 } 15033 15034 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15035 if (dtrace_anon.dta_state == NULL) { 15036 rval = ENOENT; 15037 goto out; 15038 } 15039 15040 if (state->dts_necbs != 0) { 15041 rval = EALREADY; 15042 goto out; 15043 } 15044 15045 state->dts_anon = dtrace_anon_grab(); 15046 ASSERT(state->dts_anon != NULL); 15047 state = state->dts_anon; 15048 15049 /* 15050 * We want "grabanon" to be set in the grabbed state, so we'll 15051 * copy that option value from the grabbing state into the 15052 * grabbed state. 15053 */ 15054 state->dts_options[DTRACEOPT_GRABANON] = 15055 opt[DTRACEOPT_GRABANON]; 15056 15057 *cpu = dtrace_anon.dta_beganon; 15058 15059 /* 15060 * If the anonymous state is active (as it almost certainly 15061 * is if the anonymous enabling ultimately matched anything), 15062 * we don't allow any further option processing -- but we 15063 * don't return failure. 15064 */ 15065 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15066 goto out; 15067 } 15068 15069 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15070 opt[DTRACEOPT_AGGSIZE] != 0) { 15071 if (state->dts_aggregations == NULL) { 15072 /* 15073 * We're not going to create an aggregation buffer 15074 * because we don't have any ECBs that contain 15075 * aggregations -- set this option to 0. 15076 */ 15077 opt[DTRACEOPT_AGGSIZE] = 0; 15078 } else { 15079 /* 15080 * If we have an aggregation buffer, we must also have 15081 * a buffer to use as scratch. 15082 */ 15083 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15084 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15085 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15086 } 15087 } 15088 } 15089 15090 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15091 opt[DTRACEOPT_SPECSIZE] != 0) { 15092 if (!state->dts_speculates) { 15093 /* 15094 * We're not going to create speculation buffers 15095 * because we don't have any ECBs that actually 15096 * speculate -- set the speculation size to 0. 15097 */ 15098 opt[DTRACEOPT_SPECSIZE] = 0; 15099 } 15100 } 15101 15102 /* 15103 * The bare minimum size for any buffer that we're actually going to 15104 * do anything to is sizeof (uint64_t). 15105 */ 15106 sz = sizeof (uint64_t); 15107 15108 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15109 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15110 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15111 /* 15112 * A buffer size has been explicitly set to 0 (or to a size 15113 * that will be adjusted to 0) and we need the space -- we 15114 * need to return failure. We return ENOSPC to differentiate 15115 * it from failing to allocate a buffer due to failure to meet 15116 * the reserve (for which we return E2BIG). 15117 */ 15118 rval = ENOSPC; 15119 goto out; 15120 } 15121 15122 if ((rval = dtrace_state_buffers(state)) != 0) 15123 goto err; 15124 15125 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15126 sz = dtrace_dstate_defsize; 15127 15128 do { 15129 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15130 15131 if (rval == 0) 15132 break; 15133 15134 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15135 goto err; 15136 } while (sz >>= 1); 15137 15138 opt[DTRACEOPT_DYNVARSIZE] = sz; 15139 15140 if (rval != 0) 15141 goto err; 15142 15143 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15144 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15145 15146 if (opt[DTRACEOPT_CLEANRATE] == 0) 15147 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15148 15149 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15150 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15151 15152 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15153 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15154 15155 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15156 #ifdef illumos 15157 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15158 hdlr.cyh_arg = state; 15159 hdlr.cyh_level = CY_LOW_LEVEL; 15160 15161 when.cyt_when = 0; 15162 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15163 15164 state->dts_cleaner = cyclic_add(&hdlr, &when); 15165 15166 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15167 hdlr.cyh_arg = state; 15168 hdlr.cyh_level = CY_LOW_LEVEL; 15169 15170 when.cyt_when = 0; 15171 when.cyt_interval = dtrace_deadman_interval; 15172 15173 state->dts_deadman = cyclic_add(&hdlr, &when); 15174 #else 15175 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15176 dtrace_state_clean, state); 15177 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15178 dtrace_state_deadman, state); 15179 #endif 15180 15181 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15182 15183 #ifdef illumos 15184 if (state->dts_getf != 0 && 15185 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15186 /* 15187 * We don't have kernel privs but we have at least one call 15188 * to getf(); we need to bump our zone's count, and (if 15189 * this is the first enabling to have an unprivileged call 15190 * to getf()) we need to hook into closef(). 15191 */ 15192 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15193 15194 if (dtrace_getf++ == 0) { 15195 ASSERT(dtrace_closef == NULL); 15196 dtrace_closef = dtrace_getf_barrier; 15197 } 15198 } 15199 #endif 15200 15201 /* 15202 * Now it's time to actually fire the BEGIN probe. We need to disable 15203 * interrupts here both to record the CPU on which we fired the BEGIN 15204 * probe (the data from this CPU will be processed first at user 15205 * level) and to manually activate the buffer for this CPU. 15206 */ 15207 cookie = dtrace_interrupt_disable(); 15208 *cpu = curcpu; 15209 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15210 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15211 15212 dtrace_probe(dtrace_probeid_begin, 15213 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15214 dtrace_interrupt_enable(cookie); 15215 /* 15216 * We may have had an exit action from a BEGIN probe; only change our 15217 * state to ACTIVE if we're still in WARMUP. 15218 */ 15219 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15220 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15221 15222 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15223 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15224 15225 #ifdef __FreeBSD__ 15226 /* 15227 * We enable anonymous tracing before APs are started, so we must 15228 * activate buffers using the current CPU. 15229 */ 15230 if (state == dtrace_anon.dta_state) { 15231 CPU_FOREACH(i) 15232 dtrace_buffer_activate_cpu(state, i); 15233 } else 15234 dtrace_xcall(DTRACE_CPUALL, 15235 (dtrace_xcall_t)dtrace_buffer_activate, state); 15236 #else 15237 /* 15238 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15239 * want each CPU to transition its principal buffer out of the 15240 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15241 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15242 * atomically transition from processing none of a state's ECBs to 15243 * processing all of them. 15244 */ 15245 dtrace_xcall(DTRACE_CPUALL, 15246 (dtrace_xcall_t)dtrace_buffer_activate, state); 15247 #endif 15248 goto out; 15249 15250 err: 15251 dtrace_buffer_free(state->dts_buffer); 15252 dtrace_buffer_free(state->dts_aggbuffer); 15253 15254 if ((nspec = state->dts_nspeculations) == 0) { 15255 ASSERT(state->dts_speculations == NULL); 15256 goto out; 15257 } 15258 15259 spec = state->dts_speculations; 15260 ASSERT(spec != NULL); 15261 15262 for (i = 0; i < state->dts_nspeculations; i++) { 15263 if ((buf = spec[i].dtsp_buffer) == NULL) 15264 break; 15265 15266 dtrace_buffer_free(buf); 15267 kmem_free(buf, bufsize); 15268 } 15269 15270 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15271 state->dts_nspeculations = 0; 15272 state->dts_speculations = NULL; 15273 15274 out: 15275 mutex_exit(&dtrace_lock); 15276 mutex_exit(&cpu_lock); 15277 15278 return (rval); 15279 } 15280 15281 static int 15282 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15283 { 15284 dtrace_icookie_t cookie; 15285 15286 ASSERT(MUTEX_HELD(&dtrace_lock)); 15287 15288 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15289 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15290 return (EINVAL); 15291 15292 /* 15293 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15294 * to be sure that every CPU has seen it. See below for the details 15295 * on why this is done. 15296 */ 15297 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15298 dtrace_sync(); 15299 15300 /* 15301 * By this point, it is impossible for any CPU to be still processing 15302 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15303 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15304 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15305 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15306 * iff we're in the END probe. 15307 */ 15308 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15309 dtrace_sync(); 15310 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15311 15312 /* 15313 * Finally, we can release the reserve and call the END probe. We 15314 * disable interrupts across calling the END probe to allow us to 15315 * return the CPU on which we actually called the END probe. This 15316 * allows user-land to be sure that this CPU's principal buffer is 15317 * processed last. 15318 */ 15319 state->dts_reserve = 0; 15320 15321 cookie = dtrace_interrupt_disable(); 15322 *cpu = curcpu; 15323 dtrace_probe(dtrace_probeid_end, 15324 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15325 dtrace_interrupt_enable(cookie); 15326 15327 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15328 dtrace_sync(); 15329 15330 #ifdef illumos 15331 if (state->dts_getf != 0 && 15332 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15333 /* 15334 * We don't have kernel privs but we have at least one call 15335 * to getf(); we need to lower our zone's count, and (if 15336 * this is the last enabling to have an unprivileged call 15337 * to getf()) we need to clear the closef() hook. 15338 */ 15339 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15340 ASSERT(dtrace_closef == dtrace_getf_barrier); 15341 ASSERT(dtrace_getf > 0); 15342 15343 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15344 15345 if (--dtrace_getf == 0) 15346 dtrace_closef = NULL; 15347 } 15348 #endif 15349 15350 return (0); 15351 } 15352 15353 static int 15354 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15355 dtrace_optval_t val) 15356 { 15357 ASSERT(MUTEX_HELD(&dtrace_lock)); 15358 15359 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15360 return (EBUSY); 15361 15362 if (option >= DTRACEOPT_MAX) 15363 return (EINVAL); 15364 15365 if (option != DTRACEOPT_CPU && val < 0) 15366 return (EINVAL); 15367 15368 switch (option) { 15369 case DTRACEOPT_DESTRUCTIVE: 15370 if (dtrace_destructive_disallow) 15371 return (EACCES); 15372 15373 state->dts_cred.dcr_destructive = 1; 15374 break; 15375 15376 case DTRACEOPT_BUFSIZE: 15377 case DTRACEOPT_DYNVARSIZE: 15378 case DTRACEOPT_AGGSIZE: 15379 case DTRACEOPT_SPECSIZE: 15380 case DTRACEOPT_STRSIZE: 15381 if (val < 0) 15382 return (EINVAL); 15383 15384 if (val >= LONG_MAX) { 15385 /* 15386 * If this is an otherwise negative value, set it to 15387 * the highest multiple of 128m less than LONG_MAX. 15388 * Technically, we're adjusting the size without 15389 * regard to the buffer resizing policy, but in fact, 15390 * this has no effect -- if we set the buffer size to 15391 * ~LONG_MAX and the buffer policy is ultimately set to 15392 * be "manual", the buffer allocation is guaranteed to 15393 * fail, if only because the allocation requires two 15394 * buffers. (We set the the size to the highest 15395 * multiple of 128m because it ensures that the size 15396 * will remain a multiple of a megabyte when 15397 * repeatedly halved -- all the way down to 15m.) 15398 */ 15399 val = LONG_MAX - (1 << 27) + 1; 15400 } 15401 } 15402 15403 state->dts_options[option] = val; 15404 15405 return (0); 15406 } 15407 15408 static void 15409 dtrace_state_destroy(dtrace_state_t *state) 15410 { 15411 dtrace_ecb_t *ecb; 15412 dtrace_vstate_t *vstate = &state->dts_vstate; 15413 #ifdef illumos 15414 minor_t minor = getminor(state->dts_dev); 15415 #endif 15416 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t); 15417 dtrace_speculation_t *spec = state->dts_speculations; 15418 int nspec = state->dts_nspeculations; 15419 uint32_t match; 15420 15421 ASSERT(MUTEX_HELD(&dtrace_lock)); 15422 ASSERT(MUTEX_HELD(&cpu_lock)); 15423 15424 /* 15425 * First, retract any retained enablings for this state. 15426 */ 15427 dtrace_enabling_retract(state); 15428 ASSERT(state->dts_nretained == 0); 15429 15430 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15431 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15432 /* 15433 * We have managed to come into dtrace_state_destroy() on a 15434 * hot enabling -- almost certainly because of a disorderly 15435 * shutdown of a consumer. (That is, a consumer that is 15436 * exiting without having called dtrace_stop().) In this case, 15437 * we're going to set our activity to be KILLED, and then 15438 * issue a sync to be sure that everyone is out of probe 15439 * context before we start blowing away ECBs. 15440 */ 15441 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15442 dtrace_sync(); 15443 } 15444 15445 /* 15446 * Release the credential hold we took in dtrace_state_create(). 15447 */ 15448 if (state->dts_cred.dcr_cred != NULL) 15449 crfree(state->dts_cred.dcr_cred); 15450 15451 /* 15452 * Now we can safely disable and destroy any enabled probes. Because 15453 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15454 * (especially if they're all enabled), we take two passes through the 15455 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15456 * in the second we disable whatever is left over. 15457 */ 15458 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15459 for (i = 0; i < state->dts_necbs; i++) { 15460 if ((ecb = state->dts_ecbs[i]) == NULL) 15461 continue; 15462 15463 if (match && ecb->dte_probe != NULL) { 15464 dtrace_probe_t *probe = ecb->dte_probe; 15465 dtrace_provider_t *prov = probe->dtpr_provider; 15466 15467 if (!(prov->dtpv_priv.dtpp_flags & match)) 15468 continue; 15469 } 15470 15471 dtrace_ecb_disable(ecb); 15472 dtrace_ecb_destroy(ecb); 15473 } 15474 15475 if (!match) 15476 break; 15477 } 15478 15479 /* 15480 * Before we free the buffers, perform one more sync to assure that 15481 * every CPU is out of probe context. 15482 */ 15483 dtrace_sync(); 15484 15485 dtrace_buffer_free(state->dts_buffer); 15486 dtrace_buffer_free(state->dts_aggbuffer); 15487 15488 for (i = 0; i < nspec; i++) 15489 dtrace_buffer_free(spec[i].dtsp_buffer); 15490 15491 #ifdef illumos 15492 if (state->dts_cleaner != CYCLIC_NONE) 15493 cyclic_remove(state->dts_cleaner); 15494 15495 if (state->dts_deadman != CYCLIC_NONE) 15496 cyclic_remove(state->dts_deadman); 15497 #else 15498 callout_stop(&state->dts_cleaner); 15499 callout_drain(&state->dts_cleaner); 15500 callout_stop(&state->dts_deadman); 15501 callout_drain(&state->dts_deadman); 15502 #endif 15503 15504 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15505 dtrace_vstate_fini(vstate); 15506 if (state->dts_ecbs != NULL) 15507 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15508 15509 if (state->dts_aggregations != NULL) { 15510 #ifdef DEBUG 15511 for (i = 0; i < state->dts_naggregations; i++) 15512 ASSERT(state->dts_aggregations[i] == NULL); 15513 #endif 15514 ASSERT(state->dts_naggregations > 0); 15515 kmem_free(state->dts_aggregations, 15516 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15517 } 15518 15519 kmem_free(state->dts_buffer, bufsize); 15520 kmem_free(state->dts_aggbuffer, bufsize); 15521 15522 for (i = 0; i < nspec; i++) 15523 kmem_free(spec[i].dtsp_buffer, bufsize); 15524 15525 if (spec != NULL) 15526 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15527 15528 dtrace_format_destroy(state); 15529 15530 if (state->dts_aggid_arena != NULL) { 15531 #ifdef illumos 15532 vmem_destroy(state->dts_aggid_arena); 15533 #else 15534 delete_unrhdr(state->dts_aggid_arena); 15535 #endif 15536 state->dts_aggid_arena = NULL; 15537 } 15538 #ifdef illumos 15539 ddi_soft_state_free(dtrace_softstate, minor); 15540 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15541 #endif 15542 } 15543 15544 /* 15545 * DTrace Anonymous Enabling Functions 15546 */ 15547 static dtrace_state_t * 15548 dtrace_anon_grab(void) 15549 { 15550 dtrace_state_t *state; 15551 15552 ASSERT(MUTEX_HELD(&dtrace_lock)); 15553 15554 if ((state = dtrace_anon.dta_state) == NULL) { 15555 ASSERT(dtrace_anon.dta_enabling == NULL); 15556 return (NULL); 15557 } 15558 15559 ASSERT(dtrace_anon.dta_enabling != NULL); 15560 ASSERT(dtrace_retained != NULL); 15561 15562 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15563 dtrace_anon.dta_enabling = NULL; 15564 dtrace_anon.dta_state = NULL; 15565 15566 return (state); 15567 } 15568 15569 static void 15570 dtrace_anon_property(void) 15571 { 15572 int i, rv; 15573 dtrace_state_t *state; 15574 dof_hdr_t *dof; 15575 char c[32]; /* enough for "dof-data-" + digits */ 15576 15577 ASSERT(MUTEX_HELD(&dtrace_lock)); 15578 ASSERT(MUTEX_HELD(&cpu_lock)); 15579 15580 for (i = 0; ; i++) { 15581 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15582 15583 dtrace_err_verbose = 1; 15584 15585 if ((dof = dtrace_dof_property(c)) == NULL) { 15586 dtrace_err_verbose = 0; 15587 break; 15588 } 15589 15590 #ifdef illumos 15591 /* 15592 * We want to create anonymous state, so we need to transition 15593 * the kernel debugger to indicate that DTrace is active. If 15594 * this fails (e.g. because the debugger has modified text in 15595 * some way), we won't continue with the processing. 15596 */ 15597 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15598 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15599 "enabling ignored."); 15600 dtrace_dof_destroy(dof); 15601 break; 15602 } 15603 #endif 15604 15605 /* 15606 * If we haven't allocated an anonymous state, we'll do so now. 15607 */ 15608 if ((state = dtrace_anon.dta_state) == NULL) { 15609 state = dtrace_state_create(NULL, NULL); 15610 dtrace_anon.dta_state = state; 15611 15612 if (state == NULL) { 15613 /* 15614 * This basically shouldn't happen: the only 15615 * failure mode from dtrace_state_create() is a 15616 * failure of ddi_soft_state_zalloc() that 15617 * itself should never happen. Still, the 15618 * interface allows for a failure mode, and 15619 * we want to fail as gracefully as possible: 15620 * we'll emit an error message and cease 15621 * processing anonymous state in this case. 15622 */ 15623 cmn_err(CE_WARN, "failed to create " 15624 "anonymous state"); 15625 dtrace_dof_destroy(dof); 15626 break; 15627 } 15628 } 15629 15630 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15631 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15632 15633 if (rv == 0) 15634 rv = dtrace_dof_options(dof, state); 15635 15636 dtrace_err_verbose = 0; 15637 dtrace_dof_destroy(dof); 15638 15639 if (rv != 0) { 15640 /* 15641 * This is malformed DOF; chuck any anonymous state 15642 * that we created. 15643 */ 15644 ASSERT(dtrace_anon.dta_enabling == NULL); 15645 dtrace_state_destroy(state); 15646 dtrace_anon.dta_state = NULL; 15647 break; 15648 } 15649 15650 ASSERT(dtrace_anon.dta_enabling != NULL); 15651 } 15652 15653 if (dtrace_anon.dta_enabling != NULL) { 15654 int rval; 15655 15656 /* 15657 * dtrace_enabling_retain() can only fail because we are 15658 * trying to retain more enablings than are allowed -- but 15659 * we only have one anonymous enabling, and we are guaranteed 15660 * to be allowed at least one retained enabling; we assert 15661 * that dtrace_enabling_retain() returns success. 15662 */ 15663 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15664 ASSERT(rval == 0); 15665 15666 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15667 } 15668 } 15669 15670 /* 15671 * DTrace Helper Functions 15672 */ 15673 static void 15674 dtrace_helper_trace(dtrace_helper_action_t *helper, 15675 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15676 { 15677 uint32_t size, next, nnext, i; 15678 dtrace_helptrace_t *ent, *buffer; 15679 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15680 15681 if ((buffer = dtrace_helptrace_buffer) == NULL) 15682 return; 15683 15684 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15685 15686 /* 15687 * What would a tracing framework be without its own tracing 15688 * framework? (Well, a hell of a lot simpler, for starters...) 15689 */ 15690 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15691 sizeof (uint64_t) - sizeof (uint64_t); 15692 15693 /* 15694 * Iterate until we can allocate a slot in the trace buffer. 15695 */ 15696 do { 15697 next = dtrace_helptrace_next; 15698 15699 if (next + size < dtrace_helptrace_bufsize) { 15700 nnext = next + size; 15701 } else { 15702 nnext = size; 15703 } 15704 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15705 15706 /* 15707 * We have our slot; fill it in. 15708 */ 15709 if (nnext == size) { 15710 dtrace_helptrace_wrapped++; 15711 next = 0; 15712 } 15713 15714 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15715 ent->dtht_helper = helper; 15716 ent->dtht_where = where; 15717 ent->dtht_nlocals = vstate->dtvs_nlocals; 15718 15719 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15720 mstate->dtms_fltoffs : -1; 15721 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15722 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15723 15724 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15725 dtrace_statvar_t *svar; 15726 15727 if ((svar = vstate->dtvs_locals[i]) == NULL) 15728 continue; 15729 15730 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t)); 15731 ent->dtht_locals[i] = 15732 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15733 } 15734 } 15735 15736 static uint64_t 15737 dtrace_helper(int which, dtrace_mstate_t *mstate, 15738 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15739 { 15740 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15741 uint64_t sarg0 = mstate->dtms_arg[0]; 15742 uint64_t sarg1 = mstate->dtms_arg[1]; 15743 uint64_t rval = 0; 15744 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15745 dtrace_helper_action_t *helper; 15746 dtrace_vstate_t *vstate; 15747 dtrace_difo_t *pred; 15748 int i, trace = dtrace_helptrace_buffer != NULL; 15749 15750 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15751 15752 if (helpers == NULL) 15753 return (0); 15754 15755 if ((helper = helpers->dthps_actions[which]) == NULL) 15756 return (0); 15757 15758 vstate = &helpers->dthps_vstate; 15759 mstate->dtms_arg[0] = arg0; 15760 mstate->dtms_arg[1] = arg1; 15761 15762 /* 15763 * Now iterate over each helper. If its predicate evaluates to 'true', 15764 * we'll call the corresponding actions. Note that the below calls 15765 * to dtrace_dif_emulate() may set faults in machine state. This is 15766 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15767 * the stored DIF offset with its own (which is the desired behavior). 15768 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15769 * from machine state; this is okay, too. 15770 */ 15771 for (; helper != NULL; helper = helper->dtha_next) { 15772 if ((pred = helper->dtha_predicate) != NULL) { 15773 if (trace) 15774 dtrace_helper_trace(helper, mstate, vstate, 0); 15775 15776 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15777 goto next; 15778 15779 if (*flags & CPU_DTRACE_FAULT) 15780 goto err; 15781 } 15782 15783 for (i = 0; i < helper->dtha_nactions; i++) { 15784 if (trace) 15785 dtrace_helper_trace(helper, 15786 mstate, vstate, i + 1); 15787 15788 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15789 mstate, vstate, state); 15790 15791 if (*flags & CPU_DTRACE_FAULT) 15792 goto err; 15793 } 15794 15795 next: 15796 if (trace) 15797 dtrace_helper_trace(helper, mstate, vstate, 15798 DTRACE_HELPTRACE_NEXT); 15799 } 15800 15801 if (trace) 15802 dtrace_helper_trace(helper, mstate, vstate, 15803 DTRACE_HELPTRACE_DONE); 15804 15805 /* 15806 * Restore the arg0 that we saved upon entry. 15807 */ 15808 mstate->dtms_arg[0] = sarg0; 15809 mstate->dtms_arg[1] = sarg1; 15810 15811 return (rval); 15812 15813 err: 15814 if (trace) 15815 dtrace_helper_trace(helper, mstate, vstate, 15816 DTRACE_HELPTRACE_ERR); 15817 15818 /* 15819 * Restore the arg0 that we saved upon entry. 15820 */ 15821 mstate->dtms_arg[0] = sarg0; 15822 mstate->dtms_arg[1] = sarg1; 15823 15824 return (0); 15825 } 15826 15827 static void 15828 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15829 dtrace_vstate_t *vstate) 15830 { 15831 int i; 15832 15833 if (helper->dtha_predicate != NULL) 15834 dtrace_difo_release(helper->dtha_predicate, vstate); 15835 15836 for (i = 0; i < helper->dtha_nactions; i++) { 15837 ASSERT(helper->dtha_actions[i] != NULL); 15838 dtrace_difo_release(helper->dtha_actions[i], vstate); 15839 } 15840 15841 kmem_free(helper->dtha_actions, 15842 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15843 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15844 } 15845 15846 static int 15847 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15848 { 15849 proc_t *p = curproc; 15850 dtrace_vstate_t *vstate; 15851 int i; 15852 15853 if (help == NULL) 15854 help = p->p_dtrace_helpers; 15855 15856 ASSERT(MUTEX_HELD(&dtrace_lock)); 15857 15858 if (help == NULL || gen > help->dthps_generation) 15859 return (EINVAL); 15860 15861 vstate = &help->dthps_vstate; 15862 15863 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15864 dtrace_helper_action_t *last = NULL, *h, *next; 15865 15866 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15867 next = h->dtha_next; 15868 15869 if (h->dtha_generation == gen) { 15870 if (last != NULL) { 15871 last->dtha_next = next; 15872 } else { 15873 help->dthps_actions[i] = next; 15874 } 15875 15876 dtrace_helper_action_destroy(h, vstate); 15877 } else { 15878 last = h; 15879 } 15880 } 15881 } 15882 15883 /* 15884 * Interate until we've cleared out all helper providers with the 15885 * given generation number. 15886 */ 15887 for (;;) { 15888 dtrace_helper_provider_t *prov; 15889 15890 /* 15891 * Look for a helper provider with the right generation. We 15892 * have to start back at the beginning of the list each time 15893 * because we drop dtrace_lock. It's unlikely that we'll make 15894 * more than two passes. 15895 */ 15896 for (i = 0; i < help->dthps_nprovs; i++) { 15897 prov = help->dthps_provs[i]; 15898 15899 if (prov->dthp_generation == gen) 15900 break; 15901 } 15902 15903 /* 15904 * If there were no matches, we're done. 15905 */ 15906 if (i == help->dthps_nprovs) 15907 break; 15908 15909 /* 15910 * Move the last helper provider into this slot. 15911 */ 15912 help->dthps_nprovs--; 15913 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15914 help->dthps_provs[help->dthps_nprovs] = NULL; 15915 15916 mutex_exit(&dtrace_lock); 15917 15918 /* 15919 * If we have a meta provider, remove this helper provider. 15920 */ 15921 mutex_enter(&dtrace_meta_lock); 15922 if (dtrace_meta_pid != NULL) { 15923 ASSERT(dtrace_deferred_pid == NULL); 15924 dtrace_helper_provider_remove(&prov->dthp_prov, 15925 p->p_pid); 15926 } 15927 mutex_exit(&dtrace_meta_lock); 15928 15929 dtrace_helper_provider_destroy(prov); 15930 15931 mutex_enter(&dtrace_lock); 15932 } 15933 15934 return (0); 15935 } 15936 15937 static int 15938 dtrace_helper_validate(dtrace_helper_action_t *helper) 15939 { 15940 int err = 0, i; 15941 dtrace_difo_t *dp; 15942 15943 if ((dp = helper->dtha_predicate) != NULL) 15944 err += dtrace_difo_validate_helper(dp); 15945 15946 for (i = 0; i < helper->dtha_nactions; i++) 15947 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15948 15949 return (err == 0); 15950 } 15951 15952 static int 15953 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15954 dtrace_helpers_t *help) 15955 { 15956 dtrace_helper_action_t *helper, *last; 15957 dtrace_actdesc_t *act; 15958 dtrace_vstate_t *vstate; 15959 dtrace_predicate_t *pred; 15960 int count = 0, nactions = 0, i; 15961 15962 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15963 return (EINVAL); 15964 15965 last = help->dthps_actions[which]; 15966 vstate = &help->dthps_vstate; 15967 15968 for (count = 0; last != NULL; last = last->dtha_next) { 15969 count++; 15970 if (last->dtha_next == NULL) 15971 break; 15972 } 15973 15974 /* 15975 * If we already have dtrace_helper_actions_max helper actions for this 15976 * helper action type, we'll refuse to add a new one. 15977 */ 15978 if (count >= dtrace_helper_actions_max) 15979 return (ENOSPC); 15980 15981 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15982 helper->dtha_generation = help->dthps_generation; 15983 15984 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15985 ASSERT(pred->dtp_difo != NULL); 15986 dtrace_difo_hold(pred->dtp_difo); 15987 helper->dtha_predicate = pred->dtp_difo; 15988 } 15989 15990 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15991 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15992 goto err; 15993 15994 if (act->dtad_difo == NULL) 15995 goto err; 15996 15997 nactions++; 15998 } 15999 16000 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 16001 (helper->dtha_nactions = nactions), KM_SLEEP); 16002 16003 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 16004 dtrace_difo_hold(act->dtad_difo); 16005 helper->dtha_actions[i++] = act->dtad_difo; 16006 } 16007 16008 if (!dtrace_helper_validate(helper)) 16009 goto err; 16010 16011 if (last == NULL) { 16012 help->dthps_actions[which] = helper; 16013 } else { 16014 last->dtha_next = helper; 16015 } 16016 16017 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16018 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16019 dtrace_helptrace_next = 0; 16020 } 16021 16022 return (0); 16023 err: 16024 dtrace_helper_action_destroy(helper, vstate); 16025 return (EINVAL); 16026 } 16027 16028 static void 16029 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16030 dof_helper_t *dofhp) 16031 { 16032 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16033 16034 mutex_enter(&dtrace_meta_lock); 16035 mutex_enter(&dtrace_lock); 16036 16037 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16038 /* 16039 * If the dtrace module is loaded but not attached, or if 16040 * there aren't isn't a meta provider registered to deal with 16041 * these provider descriptions, we need to postpone creating 16042 * the actual providers until later. 16043 */ 16044 16045 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16046 dtrace_deferred_pid != help) { 16047 help->dthps_deferred = 1; 16048 help->dthps_pid = p->p_pid; 16049 help->dthps_next = dtrace_deferred_pid; 16050 help->dthps_prev = NULL; 16051 if (dtrace_deferred_pid != NULL) 16052 dtrace_deferred_pid->dthps_prev = help; 16053 dtrace_deferred_pid = help; 16054 } 16055 16056 mutex_exit(&dtrace_lock); 16057 16058 } else if (dofhp != NULL) { 16059 /* 16060 * If the dtrace module is loaded and we have a particular 16061 * helper provider description, pass that off to the 16062 * meta provider. 16063 */ 16064 16065 mutex_exit(&dtrace_lock); 16066 16067 dtrace_helper_provide(dofhp, p->p_pid); 16068 16069 } else { 16070 /* 16071 * Otherwise, just pass all the helper provider descriptions 16072 * off to the meta provider. 16073 */ 16074 16075 int i; 16076 mutex_exit(&dtrace_lock); 16077 16078 for (i = 0; i < help->dthps_nprovs; i++) { 16079 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16080 p->p_pid); 16081 } 16082 } 16083 16084 mutex_exit(&dtrace_meta_lock); 16085 } 16086 16087 static int 16088 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16089 { 16090 dtrace_helper_provider_t *hprov, **tmp_provs; 16091 uint_t tmp_maxprovs, i; 16092 16093 ASSERT(MUTEX_HELD(&dtrace_lock)); 16094 ASSERT(help != NULL); 16095 16096 /* 16097 * If we already have dtrace_helper_providers_max helper providers, 16098 * we're refuse to add a new one. 16099 */ 16100 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16101 return (ENOSPC); 16102 16103 /* 16104 * Check to make sure this isn't a duplicate. 16105 */ 16106 for (i = 0; i < help->dthps_nprovs; i++) { 16107 if (dofhp->dofhp_addr == 16108 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16109 return (EALREADY); 16110 } 16111 16112 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16113 hprov->dthp_prov = *dofhp; 16114 hprov->dthp_ref = 1; 16115 hprov->dthp_generation = gen; 16116 16117 /* 16118 * Allocate a bigger table for helper providers if it's already full. 16119 */ 16120 if (help->dthps_maxprovs == help->dthps_nprovs) { 16121 tmp_maxprovs = help->dthps_maxprovs; 16122 tmp_provs = help->dthps_provs; 16123 16124 if (help->dthps_maxprovs == 0) 16125 help->dthps_maxprovs = 2; 16126 else 16127 help->dthps_maxprovs *= 2; 16128 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16129 help->dthps_maxprovs = dtrace_helper_providers_max; 16130 16131 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16132 16133 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16134 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16135 16136 if (tmp_provs != NULL) { 16137 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16138 sizeof (dtrace_helper_provider_t *)); 16139 kmem_free(tmp_provs, tmp_maxprovs * 16140 sizeof (dtrace_helper_provider_t *)); 16141 } 16142 } 16143 16144 help->dthps_provs[help->dthps_nprovs] = hprov; 16145 help->dthps_nprovs++; 16146 16147 return (0); 16148 } 16149 16150 static void 16151 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16152 { 16153 mutex_enter(&dtrace_lock); 16154 16155 if (--hprov->dthp_ref == 0) { 16156 dof_hdr_t *dof; 16157 mutex_exit(&dtrace_lock); 16158 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16159 dtrace_dof_destroy(dof); 16160 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16161 } else { 16162 mutex_exit(&dtrace_lock); 16163 } 16164 } 16165 16166 static int 16167 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16168 { 16169 uintptr_t daddr = (uintptr_t)dof; 16170 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16171 dof_provider_t *provider; 16172 dof_probe_t *probe; 16173 uint8_t *arg; 16174 char *strtab, *typestr; 16175 dof_stridx_t typeidx; 16176 size_t typesz; 16177 uint_t nprobes, j, k; 16178 16179 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16180 16181 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16182 dtrace_dof_error(dof, "misaligned section offset"); 16183 return (-1); 16184 } 16185 16186 /* 16187 * The section needs to be large enough to contain the DOF provider 16188 * structure appropriate for the given version. 16189 */ 16190 if (sec->dofs_size < 16191 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16192 offsetof(dof_provider_t, dofpv_prenoffs) : 16193 sizeof (dof_provider_t))) { 16194 dtrace_dof_error(dof, "provider section too small"); 16195 return (-1); 16196 } 16197 16198 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16199 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16200 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16201 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16202 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16203 16204 if (str_sec == NULL || prb_sec == NULL || 16205 arg_sec == NULL || off_sec == NULL) 16206 return (-1); 16207 16208 enoff_sec = NULL; 16209 16210 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16211 provider->dofpv_prenoffs != DOF_SECT_NONE && 16212 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16213 provider->dofpv_prenoffs)) == NULL) 16214 return (-1); 16215 16216 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16217 16218 if (provider->dofpv_name >= str_sec->dofs_size || 16219 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16220 dtrace_dof_error(dof, "invalid provider name"); 16221 return (-1); 16222 } 16223 16224 if (prb_sec->dofs_entsize == 0 || 16225 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16226 dtrace_dof_error(dof, "invalid entry size"); 16227 return (-1); 16228 } 16229 16230 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16231 dtrace_dof_error(dof, "misaligned entry size"); 16232 return (-1); 16233 } 16234 16235 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16236 dtrace_dof_error(dof, "invalid entry size"); 16237 return (-1); 16238 } 16239 16240 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16241 dtrace_dof_error(dof, "misaligned section offset"); 16242 return (-1); 16243 } 16244 16245 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16246 dtrace_dof_error(dof, "invalid entry size"); 16247 return (-1); 16248 } 16249 16250 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16251 16252 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16253 16254 /* 16255 * Take a pass through the probes to check for errors. 16256 */ 16257 for (j = 0; j < nprobes; j++) { 16258 probe = (dof_probe_t *)(uintptr_t)(daddr + 16259 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16260 16261 if (probe->dofpr_func >= str_sec->dofs_size) { 16262 dtrace_dof_error(dof, "invalid function name"); 16263 return (-1); 16264 } 16265 16266 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16267 dtrace_dof_error(dof, "function name too long"); 16268 /* 16269 * Keep going if the function name is too long. 16270 * Unlike provider and probe names, we cannot reasonably 16271 * impose restrictions on function names, since they're 16272 * a property of the code being instrumented. We will 16273 * skip this probe in dtrace_helper_provide_one(). 16274 */ 16275 } 16276 16277 if (probe->dofpr_name >= str_sec->dofs_size || 16278 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16279 dtrace_dof_error(dof, "invalid probe name"); 16280 return (-1); 16281 } 16282 16283 /* 16284 * The offset count must not wrap the index, and the offsets 16285 * must also not overflow the section's data. 16286 */ 16287 if (probe->dofpr_offidx + probe->dofpr_noffs < 16288 probe->dofpr_offidx || 16289 (probe->dofpr_offidx + probe->dofpr_noffs) * 16290 off_sec->dofs_entsize > off_sec->dofs_size) { 16291 dtrace_dof_error(dof, "invalid probe offset"); 16292 return (-1); 16293 } 16294 16295 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16296 /* 16297 * If there's no is-enabled offset section, make sure 16298 * there aren't any is-enabled offsets. Otherwise 16299 * perform the same checks as for probe offsets 16300 * (immediately above). 16301 */ 16302 if (enoff_sec == NULL) { 16303 if (probe->dofpr_enoffidx != 0 || 16304 probe->dofpr_nenoffs != 0) { 16305 dtrace_dof_error(dof, "is-enabled " 16306 "offsets with null section"); 16307 return (-1); 16308 } 16309 } else if (probe->dofpr_enoffidx + 16310 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16311 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16312 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16313 dtrace_dof_error(dof, "invalid is-enabled " 16314 "offset"); 16315 return (-1); 16316 } 16317 16318 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16319 dtrace_dof_error(dof, "zero probe and " 16320 "is-enabled offsets"); 16321 return (-1); 16322 } 16323 } else if (probe->dofpr_noffs == 0) { 16324 dtrace_dof_error(dof, "zero probe offsets"); 16325 return (-1); 16326 } 16327 16328 if (probe->dofpr_argidx + probe->dofpr_xargc < 16329 probe->dofpr_argidx || 16330 (probe->dofpr_argidx + probe->dofpr_xargc) * 16331 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16332 dtrace_dof_error(dof, "invalid args"); 16333 return (-1); 16334 } 16335 16336 typeidx = probe->dofpr_nargv; 16337 typestr = strtab + probe->dofpr_nargv; 16338 for (k = 0; k < probe->dofpr_nargc; k++) { 16339 if (typeidx >= str_sec->dofs_size) { 16340 dtrace_dof_error(dof, "bad " 16341 "native argument type"); 16342 return (-1); 16343 } 16344 16345 typesz = strlen(typestr) + 1; 16346 if (typesz > DTRACE_ARGTYPELEN) { 16347 dtrace_dof_error(dof, "native " 16348 "argument type too long"); 16349 return (-1); 16350 } 16351 typeidx += typesz; 16352 typestr += typesz; 16353 } 16354 16355 typeidx = probe->dofpr_xargv; 16356 typestr = strtab + probe->dofpr_xargv; 16357 for (k = 0; k < probe->dofpr_xargc; k++) { 16358 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16359 dtrace_dof_error(dof, "bad " 16360 "native argument index"); 16361 return (-1); 16362 } 16363 16364 if (typeidx >= str_sec->dofs_size) { 16365 dtrace_dof_error(dof, "bad " 16366 "translated argument type"); 16367 return (-1); 16368 } 16369 16370 typesz = strlen(typestr) + 1; 16371 if (typesz > DTRACE_ARGTYPELEN) { 16372 dtrace_dof_error(dof, "translated argument " 16373 "type too long"); 16374 return (-1); 16375 } 16376 16377 typeidx += typesz; 16378 typestr += typesz; 16379 } 16380 } 16381 16382 return (0); 16383 } 16384 16385 static int 16386 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16387 { 16388 dtrace_helpers_t *help; 16389 dtrace_vstate_t *vstate; 16390 dtrace_enabling_t *enab = NULL; 16391 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16392 uintptr_t daddr = (uintptr_t)dof; 16393 16394 ASSERT(MUTEX_HELD(&dtrace_lock)); 16395 16396 if ((help = p->p_dtrace_helpers) == NULL) 16397 help = dtrace_helpers_create(p); 16398 16399 vstate = &help->dthps_vstate; 16400 16401 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16402 dhp->dofhp_dof, B_FALSE)) != 0) { 16403 dtrace_dof_destroy(dof); 16404 return (rv); 16405 } 16406 16407 /* 16408 * Look for helper providers and validate their descriptions. 16409 */ 16410 for (i = 0; i < dof->dofh_secnum; i++) { 16411 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16412 dof->dofh_secoff + i * dof->dofh_secsize); 16413 16414 if (sec->dofs_type != DOF_SECT_PROVIDER) 16415 continue; 16416 16417 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16418 dtrace_enabling_destroy(enab); 16419 dtrace_dof_destroy(dof); 16420 return (-1); 16421 } 16422 16423 nprovs++; 16424 } 16425 16426 /* 16427 * Now we need to walk through the ECB descriptions in the enabling. 16428 */ 16429 for (i = 0; i < enab->dten_ndesc; i++) { 16430 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16431 dtrace_probedesc_t *desc = &ep->dted_probe; 16432 16433 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16434 continue; 16435 16436 if (strcmp(desc->dtpd_mod, "helper") != 0) 16437 continue; 16438 16439 if (strcmp(desc->dtpd_func, "ustack") != 0) 16440 continue; 16441 16442 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16443 ep, help)) != 0) { 16444 /* 16445 * Adding this helper action failed -- we are now going 16446 * to rip out the entire generation and return failure. 16447 */ 16448 (void) dtrace_helper_destroygen(help, 16449 help->dthps_generation); 16450 dtrace_enabling_destroy(enab); 16451 dtrace_dof_destroy(dof); 16452 return (-1); 16453 } 16454 16455 nhelpers++; 16456 } 16457 16458 if (nhelpers < enab->dten_ndesc) 16459 dtrace_dof_error(dof, "unmatched helpers"); 16460 16461 gen = help->dthps_generation++; 16462 dtrace_enabling_destroy(enab); 16463 16464 if (nprovs > 0) { 16465 /* 16466 * Now that this is in-kernel, we change the sense of the 16467 * members: dofhp_dof denotes the in-kernel copy of the DOF 16468 * and dofhp_addr denotes the address at user-level. 16469 */ 16470 dhp->dofhp_addr = dhp->dofhp_dof; 16471 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16472 16473 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16474 mutex_exit(&dtrace_lock); 16475 dtrace_helper_provider_register(p, help, dhp); 16476 mutex_enter(&dtrace_lock); 16477 16478 destroy = 0; 16479 } 16480 } 16481 16482 if (destroy) 16483 dtrace_dof_destroy(dof); 16484 16485 return (gen); 16486 } 16487 16488 static dtrace_helpers_t * 16489 dtrace_helpers_create(proc_t *p) 16490 { 16491 dtrace_helpers_t *help; 16492 16493 ASSERT(MUTEX_HELD(&dtrace_lock)); 16494 ASSERT(p->p_dtrace_helpers == NULL); 16495 16496 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16497 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16498 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16499 16500 p->p_dtrace_helpers = help; 16501 dtrace_helpers++; 16502 16503 return (help); 16504 } 16505 16506 #ifdef illumos 16507 static 16508 #endif 16509 void 16510 dtrace_helpers_destroy(proc_t *p) 16511 { 16512 dtrace_helpers_t *help; 16513 dtrace_vstate_t *vstate; 16514 #ifdef illumos 16515 proc_t *p = curproc; 16516 #endif 16517 int i; 16518 16519 mutex_enter(&dtrace_lock); 16520 16521 ASSERT(p->p_dtrace_helpers != NULL); 16522 ASSERT(dtrace_helpers > 0); 16523 16524 help = p->p_dtrace_helpers; 16525 vstate = &help->dthps_vstate; 16526 16527 /* 16528 * We're now going to lose the help from this process. 16529 */ 16530 p->p_dtrace_helpers = NULL; 16531 dtrace_sync(); 16532 16533 /* 16534 * Destory the helper actions. 16535 */ 16536 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16537 dtrace_helper_action_t *h, *next; 16538 16539 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16540 next = h->dtha_next; 16541 dtrace_helper_action_destroy(h, vstate); 16542 h = next; 16543 } 16544 } 16545 16546 mutex_exit(&dtrace_lock); 16547 16548 /* 16549 * Destroy the helper providers. 16550 */ 16551 if (help->dthps_maxprovs > 0) { 16552 mutex_enter(&dtrace_meta_lock); 16553 if (dtrace_meta_pid != NULL) { 16554 ASSERT(dtrace_deferred_pid == NULL); 16555 16556 for (i = 0; i < help->dthps_nprovs; i++) { 16557 dtrace_helper_provider_remove( 16558 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16559 } 16560 } else { 16561 mutex_enter(&dtrace_lock); 16562 ASSERT(help->dthps_deferred == 0 || 16563 help->dthps_next != NULL || 16564 help->dthps_prev != NULL || 16565 help == dtrace_deferred_pid); 16566 16567 /* 16568 * Remove the helper from the deferred list. 16569 */ 16570 if (help->dthps_next != NULL) 16571 help->dthps_next->dthps_prev = help->dthps_prev; 16572 if (help->dthps_prev != NULL) 16573 help->dthps_prev->dthps_next = help->dthps_next; 16574 if (dtrace_deferred_pid == help) { 16575 dtrace_deferred_pid = help->dthps_next; 16576 ASSERT(help->dthps_prev == NULL); 16577 } 16578 16579 mutex_exit(&dtrace_lock); 16580 } 16581 16582 mutex_exit(&dtrace_meta_lock); 16583 16584 for (i = 0; i < help->dthps_nprovs; i++) { 16585 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16586 } 16587 16588 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16589 sizeof (dtrace_helper_provider_t *)); 16590 } 16591 16592 mutex_enter(&dtrace_lock); 16593 16594 dtrace_vstate_fini(&help->dthps_vstate); 16595 kmem_free(help->dthps_actions, 16596 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16597 kmem_free(help, sizeof (dtrace_helpers_t)); 16598 16599 --dtrace_helpers; 16600 mutex_exit(&dtrace_lock); 16601 } 16602 16603 #ifdef illumos 16604 static 16605 #endif 16606 void 16607 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16608 { 16609 dtrace_helpers_t *help, *newhelp; 16610 dtrace_helper_action_t *helper, *new, *last; 16611 dtrace_difo_t *dp; 16612 dtrace_vstate_t *vstate; 16613 int i, j, sz, hasprovs = 0; 16614 16615 mutex_enter(&dtrace_lock); 16616 ASSERT(from->p_dtrace_helpers != NULL); 16617 ASSERT(dtrace_helpers > 0); 16618 16619 help = from->p_dtrace_helpers; 16620 newhelp = dtrace_helpers_create(to); 16621 ASSERT(to->p_dtrace_helpers != NULL); 16622 16623 newhelp->dthps_generation = help->dthps_generation; 16624 vstate = &newhelp->dthps_vstate; 16625 16626 /* 16627 * Duplicate the helper actions. 16628 */ 16629 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16630 if ((helper = help->dthps_actions[i]) == NULL) 16631 continue; 16632 16633 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16634 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16635 KM_SLEEP); 16636 new->dtha_generation = helper->dtha_generation; 16637 16638 if ((dp = helper->dtha_predicate) != NULL) { 16639 dp = dtrace_difo_duplicate(dp, vstate); 16640 new->dtha_predicate = dp; 16641 } 16642 16643 new->dtha_nactions = helper->dtha_nactions; 16644 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16645 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16646 16647 for (j = 0; j < new->dtha_nactions; j++) { 16648 dtrace_difo_t *dp = helper->dtha_actions[j]; 16649 16650 ASSERT(dp != NULL); 16651 dp = dtrace_difo_duplicate(dp, vstate); 16652 new->dtha_actions[j] = dp; 16653 } 16654 16655 if (last != NULL) { 16656 last->dtha_next = new; 16657 } else { 16658 newhelp->dthps_actions[i] = new; 16659 } 16660 16661 last = new; 16662 } 16663 } 16664 16665 /* 16666 * Duplicate the helper providers and register them with the 16667 * DTrace framework. 16668 */ 16669 if (help->dthps_nprovs > 0) { 16670 newhelp->dthps_nprovs = help->dthps_nprovs; 16671 newhelp->dthps_maxprovs = help->dthps_nprovs; 16672 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16673 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16674 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16675 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16676 newhelp->dthps_provs[i]->dthp_ref++; 16677 } 16678 16679 hasprovs = 1; 16680 } 16681 16682 mutex_exit(&dtrace_lock); 16683 16684 if (hasprovs) 16685 dtrace_helper_provider_register(to, newhelp, NULL); 16686 } 16687 16688 /* 16689 * DTrace Hook Functions 16690 */ 16691 static void 16692 dtrace_module_loaded(modctl_t *ctl) 16693 { 16694 dtrace_provider_t *prv; 16695 16696 mutex_enter(&dtrace_provider_lock); 16697 #ifdef illumos 16698 mutex_enter(&mod_lock); 16699 #endif 16700 16701 #ifdef illumos 16702 ASSERT(ctl->mod_busy); 16703 #endif 16704 16705 /* 16706 * We're going to call each providers per-module provide operation 16707 * specifying only this module. 16708 */ 16709 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16710 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16711 16712 #ifdef illumos 16713 mutex_exit(&mod_lock); 16714 #endif 16715 mutex_exit(&dtrace_provider_lock); 16716 16717 /* 16718 * If we have any retained enablings, we need to match against them. 16719 * Enabling probes requires that cpu_lock be held, and we cannot hold 16720 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16721 * module. (In particular, this happens when loading scheduling 16722 * classes.) So if we have any retained enablings, we need to dispatch 16723 * our task queue to do the match for us. 16724 */ 16725 mutex_enter(&dtrace_lock); 16726 16727 if (dtrace_retained == NULL) { 16728 mutex_exit(&dtrace_lock); 16729 return; 16730 } 16731 16732 (void)taskq_dispatch(dtrace_taskq, 16733 (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP); 16734 16735 mutex_exit(&dtrace_lock); 16736 16737 /* 16738 * And now, for a little heuristic sleaze: in general, we want to 16739 * match modules as soon as they load. However, we cannot guarantee 16740 * this, because it would lead us to the lock ordering violation 16741 * outlined above. The common case, of course, is that cpu_lock is 16742 * _not_ held -- so we delay here for a clock tick, hoping that that's 16743 * long enough for the task queue to do its work. If it's not, it's 16744 * not a serious problem -- it just means that the module that we 16745 * just loaded may not be immediately instrumentable. 16746 */ 16747 delay(1); 16748 } 16749 16750 static void 16751 #ifdef illumos 16752 dtrace_module_unloaded(modctl_t *ctl) 16753 #else 16754 dtrace_module_unloaded(modctl_t *ctl, int *error) 16755 #endif 16756 { 16757 dtrace_probe_t template, *probe, *first, *next; 16758 dtrace_provider_t *prov; 16759 #ifndef illumos 16760 char modname[DTRACE_MODNAMELEN]; 16761 size_t len; 16762 #endif 16763 16764 #ifdef illumos 16765 template.dtpr_mod = ctl->mod_modname; 16766 #else 16767 /* Handle the fact that ctl->filename may end in ".ko". */ 16768 strlcpy(modname, ctl->filename, sizeof(modname)); 16769 len = strlen(ctl->filename); 16770 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16771 modname[len - 3] = '\0'; 16772 template.dtpr_mod = modname; 16773 #endif 16774 16775 mutex_enter(&dtrace_provider_lock); 16776 #ifdef illumos 16777 mutex_enter(&mod_lock); 16778 #endif 16779 mutex_enter(&dtrace_lock); 16780 16781 #ifndef illumos 16782 if (ctl->nenabled > 0) { 16783 /* Don't allow unloads if a probe is enabled. */ 16784 mutex_exit(&dtrace_provider_lock); 16785 mutex_exit(&dtrace_lock); 16786 *error = -1; 16787 printf( 16788 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16789 return; 16790 } 16791 #endif 16792 16793 if (dtrace_bymod == NULL) { 16794 /* 16795 * The DTrace module is loaded (obviously) but not attached; 16796 * we don't have any work to do. 16797 */ 16798 mutex_exit(&dtrace_provider_lock); 16799 #ifdef illumos 16800 mutex_exit(&mod_lock); 16801 #endif 16802 mutex_exit(&dtrace_lock); 16803 return; 16804 } 16805 16806 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16807 probe != NULL; probe = probe->dtpr_nextmod) { 16808 if (probe->dtpr_ecb != NULL) { 16809 mutex_exit(&dtrace_provider_lock); 16810 #ifdef illumos 16811 mutex_exit(&mod_lock); 16812 #endif 16813 mutex_exit(&dtrace_lock); 16814 16815 /* 16816 * This shouldn't _actually_ be possible -- we're 16817 * unloading a module that has an enabled probe in it. 16818 * (It's normally up to the provider to make sure that 16819 * this can't happen.) However, because dtps_enable() 16820 * doesn't have a failure mode, there can be an 16821 * enable/unload race. Upshot: we don't want to 16822 * assert, but we're not going to disable the 16823 * probe, either. 16824 */ 16825 if (dtrace_err_verbose) { 16826 #ifdef illumos 16827 cmn_err(CE_WARN, "unloaded module '%s' had " 16828 "enabled probes", ctl->mod_modname); 16829 #else 16830 cmn_err(CE_WARN, "unloaded module '%s' had " 16831 "enabled probes", modname); 16832 #endif 16833 } 16834 16835 return; 16836 } 16837 } 16838 16839 probe = first; 16840 16841 for (first = NULL; probe != NULL; probe = next) { 16842 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16843 16844 dtrace_probes[probe->dtpr_id - 1] = NULL; 16845 16846 next = probe->dtpr_nextmod; 16847 dtrace_hash_remove(dtrace_bymod, probe); 16848 dtrace_hash_remove(dtrace_byfunc, probe); 16849 dtrace_hash_remove(dtrace_byname, probe); 16850 16851 if (first == NULL) { 16852 first = probe; 16853 probe->dtpr_nextmod = NULL; 16854 } else { 16855 probe->dtpr_nextmod = first; 16856 first = probe; 16857 } 16858 } 16859 16860 /* 16861 * We've removed all of the module's probes from the hash chains and 16862 * from the probe array. Now issue a dtrace_sync() to be sure that 16863 * everyone has cleared out from any probe array processing. 16864 */ 16865 dtrace_sync(); 16866 16867 for (probe = first; probe != NULL; probe = first) { 16868 first = probe->dtpr_nextmod; 16869 prov = probe->dtpr_provider; 16870 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16871 probe->dtpr_arg); 16872 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16873 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16874 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16875 #ifdef illumos 16876 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16877 #else 16878 free_unr(dtrace_arena, probe->dtpr_id); 16879 #endif 16880 kmem_free(probe, sizeof (dtrace_probe_t)); 16881 } 16882 16883 mutex_exit(&dtrace_lock); 16884 #ifdef illumos 16885 mutex_exit(&mod_lock); 16886 #endif 16887 mutex_exit(&dtrace_provider_lock); 16888 } 16889 16890 #ifndef illumos 16891 static void 16892 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16893 { 16894 16895 dtrace_module_loaded(lf); 16896 } 16897 16898 static void 16899 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16900 { 16901 16902 if (*error != 0) 16903 /* We already have an error, so don't do anything. */ 16904 return; 16905 dtrace_module_unloaded(lf, error); 16906 } 16907 #endif 16908 16909 #ifdef illumos 16910 static void 16911 dtrace_suspend(void) 16912 { 16913 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16914 } 16915 16916 static void 16917 dtrace_resume(void) 16918 { 16919 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16920 } 16921 #endif 16922 16923 static int 16924 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16925 { 16926 ASSERT(MUTEX_HELD(&cpu_lock)); 16927 mutex_enter(&dtrace_lock); 16928 16929 switch (what) { 16930 case CPU_CONFIG: { 16931 dtrace_state_t *state; 16932 dtrace_optval_t *opt, rs, c; 16933 16934 /* 16935 * For now, we only allocate a new buffer for anonymous state. 16936 */ 16937 if ((state = dtrace_anon.dta_state) == NULL) 16938 break; 16939 16940 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16941 break; 16942 16943 opt = state->dts_options; 16944 c = opt[DTRACEOPT_CPU]; 16945 16946 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16947 break; 16948 16949 /* 16950 * Regardless of what the actual policy is, we're going to 16951 * temporarily set our resize policy to be manual. We're 16952 * also going to temporarily set our CPU option to denote 16953 * the newly configured CPU. 16954 */ 16955 rs = opt[DTRACEOPT_BUFRESIZE]; 16956 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16957 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16958 16959 (void) dtrace_state_buffers(state); 16960 16961 opt[DTRACEOPT_BUFRESIZE] = rs; 16962 opt[DTRACEOPT_CPU] = c; 16963 16964 break; 16965 } 16966 16967 case CPU_UNCONFIG: 16968 /* 16969 * We don't free the buffer in the CPU_UNCONFIG case. (The 16970 * buffer will be freed when the consumer exits.) 16971 */ 16972 break; 16973 16974 default: 16975 break; 16976 } 16977 16978 mutex_exit(&dtrace_lock); 16979 return (0); 16980 } 16981 16982 #ifdef illumos 16983 static void 16984 dtrace_cpu_setup_initial(processorid_t cpu) 16985 { 16986 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16987 } 16988 #endif 16989 16990 static void 16991 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16992 { 16993 if (dtrace_toxranges >= dtrace_toxranges_max) { 16994 int osize, nsize; 16995 dtrace_toxrange_t *range; 16996 16997 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16998 16999 if (osize == 0) { 17000 ASSERT(dtrace_toxrange == NULL); 17001 ASSERT(dtrace_toxranges_max == 0); 17002 dtrace_toxranges_max = 1; 17003 } else { 17004 dtrace_toxranges_max <<= 1; 17005 } 17006 17007 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17008 range = kmem_zalloc(nsize, KM_SLEEP); 17009 17010 if (dtrace_toxrange != NULL) { 17011 ASSERT(osize != 0); 17012 bcopy(dtrace_toxrange, range, osize); 17013 kmem_free(dtrace_toxrange, osize); 17014 } 17015 17016 dtrace_toxrange = range; 17017 } 17018 17019 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17020 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17021 17022 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17023 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17024 dtrace_toxranges++; 17025 } 17026 17027 static void 17028 dtrace_getf_barrier(void) 17029 { 17030 #ifdef illumos 17031 /* 17032 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17033 * that contain calls to getf(), this routine will be called on every 17034 * closef() before either the underlying vnode is released or the 17035 * file_t itself is freed. By the time we are here, it is essential 17036 * that the file_t can no longer be accessed from a call to getf() 17037 * in probe context -- that assures that a dtrace_sync() can be used 17038 * to clear out any enablings referring to the old structures. 17039 */ 17040 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17041 kcred->cr_zone->zone_dtrace_getf != 0) 17042 dtrace_sync(); 17043 #endif 17044 } 17045 17046 /* 17047 * DTrace Driver Cookbook Functions 17048 */ 17049 #ifdef illumos 17050 /*ARGSUSED*/ 17051 static int 17052 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17053 { 17054 dtrace_provider_id_t id; 17055 dtrace_state_t *state = NULL; 17056 dtrace_enabling_t *enab; 17057 17058 mutex_enter(&cpu_lock); 17059 mutex_enter(&dtrace_provider_lock); 17060 mutex_enter(&dtrace_lock); 17061 17062 if (ddi_soft_state_init(&dtrace_softstate, 17063 sizeof (dtrace_state_t), 0) != 0) { 17064 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17065 mutex_exit(&cpu_lock); 17066 mutex_exit(&dtrace_provider_lock); 17067 mutex_exit(&dtrace_lock); 17068 return (DDI_FAILURE); 17069 } 17070 17071 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17072 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17073 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17074 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17075 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17076 ddi_remove_minor_node(devi, NULL); 17077 ddi_soft_state_fini(&dtrace_softstate); 17078 mutex_exit(&cpu_lock); 17079 mutex_exit(&dtrace_provider_lock); 17080 mutex_exit(&dtrace_lock); 17081 return (DDI_FAILURE); 17082 } 17083 17084 ddi_report_dev(devi); 17085 dtrace_devi = devi; 17086 17087 dtrace_modload = dtrace_module_loaded; 17088 dtrace_modunload = dtrace_module_unloaded; 17089 dtrace_cpu_init = dtrace_cpu_setup_initial; 17090 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17091 dtrace_helpers_fork = dtrace_helpers_duplicate; 17092 dtrace_cpustart_init = dtrace_suspend; 17093 dtrace_cpustart_fini = dtrace_resume; 17094 dtrace_debugger_init = dtrace_suspend; 17095 dtrace_debugger_fini = dtrace_resume; 17096 17097 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17098 17099 ASSERT(MUTEX_HELD(&cpu_lock)); 17100 17101 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17102 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17103 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17104 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17105 VM_SLEEP | VMC_IDENTIFIER); 17106 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17107 1, INT_MAX, 0); 17108 17109 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17110 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17111 NULL, NULL, NULL, NULL, NULL, 0); 17112 17113 ASSERT(MUTEX_HELD(&cpu_lock)); 17114 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17115 offsetof(dtrace_probe_t, dtpr_nextmod), 17116 offsetof(dtrace_probe_t, dtpr_prevmod)); 17117 17118 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17119 offsetof(dtrace_probe_t, dtpr_nextfunc), 17120 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17121 17122 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17123 offsetof(dtrace_probe_t, dtpr_nextname), 17124 offsetof(dtrace_probe_t, dtpr_prevname)); 17125 17126 if (dtrace_retain_max < 1) { 17127 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17128 "setting to 1", dtrace_retain_max); 17129 dtrace_retain_max = 1; 17130 } 17131 17132 /* 17133 * Now discover our toxic ranges. 17134 */ 17135 dtrace_toxic_ranges(dtrace_toxrange_add); 17136 17137 /* 17138 * Before we register ourselves as a provider to our own framework, 17139 * we would like to assert that dtrace_provider is NULL -- but that's 17140 * not true if we were loaded as a dependency of a DTrace provider. 17141 * Once we've registered, we can assert that dtrace_provider is our 17142 * pseudo provider. 17143 */ 17144 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17145 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17146 17147 ASSERT(dtrace_provider != NULL); 17148 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17149 17150 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17151 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17152 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17153 dtrace_provider, NULL, NULL, "END", 0, NULL); 17154 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17155 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17156 17157 dtrace_anon_property(); 17158 mutex_exit(&cpu_lock); 17159 17160 /* 17161 * If there are already providers, we must ask them to provide their 17162 * probes, and then match any anonymous enabling against them. Note 17163 * that there should be no other retained enablings at this time: 17164 * the only retained enablings at this time should be the anonymous 17165 * enabling. 17166 */ 17167 if (dtrace_anon.dta_enabling != NULL) { 17168 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17169 17170 dtrace_enabling_provide(NULL); 17171 state = dtrace_anon.dta_state; 17172 17173 /* 17174 * We couldn't hold cpu_lock across the above call to 17175 * dtrace_enabling_provide(), but we must hold it to actually 17176 * enable the probes. We have to drop all of our locks, pick 17177 * up cpu_lock, and regain our locks before matching the 17178 * retained anonymous enabling. 17179 */ 17180 mutex_exit(&dtrace_lock); 17181 mutex_exit(&dtrace_provider_lock); 17182 17183 mutex_enter(&cpu_lock); 17184 mutex_enter(&dtrace_provider_lock); 17185 mutex_enter(&dtrace_lock); 17186 17187 if ((enab = dtrace_anon.dta_enabling) != NULL) 17188 (void) dtrace_enabling_match(enab, NULL); 17189 17190 mutex_exit(&cpu_lock); 17191 } 17192 17193 mutex_exit(&dtrace_lock); 17194 mutex_exit(&dtrace_provider_lock); 17195 17196 if (state != NULL) { 17197 /* 17198 * If we created any anonymous state, set it going now. 17199 */ 17200 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17201 } 17202 17203 return (DDI_SUCCESS); 17204 } 17205 #endif /* illumos */ 17206 17207 #ifndef illumos 17208 static void dtrace_dtr(void *); 17209 #endif 17210 17211 /*ARGSUSED*/ 17212 static int 17213 #ifdef illumos 17214 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17215 #else 17216 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17217 #endif 17218 { 17219 dtrace_state_t *state; 17220 uint32_t priv; 17221 uid_t uid; 17222 zoneid_t zoneid; 17223 17224 #ifdef illumos 17225 if (getminor(*devp) == DTRACEMNRN_HELPER) 17226 return (0); 17227 17228 /* 17229 * If this wasn't an open with the "helper" minor, then it must be 17230 * the "dtrace" minor. 17231 */ 17232 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17233 return (ENXIO); 17234 #else 17235 cred_t *cred_p = NULL; 17236 cred_p = dev->si_cred; 17237 17238 /* 17239 * If no DTRACE_PRIV_* bits are set in the credential, then the 17240 * caller lacks sufficient permission to do anything with DTrace. 17241 */ 17242 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17243 if (priv == DTRACE_PRIV_NONE) { 17244 #endif 17245 17246 return (EACCES); 17247 } 17248 17249 /* 17250 * Ask all providers to provide all their probes. 17251 */ 17252 mutex_enter(&dtrace_provider_lock); 17253 dtrace_probe_provide(NULL, NULL); 17254 mutex_exit(&dtrace_provider_lock); 17255 17256 mutex_enter(&cpu_lock); 17257 mutex_enter(&dtrace_lock); 17258 dtrace_opens++; 17259 dtrace_membar_producer(); 17260 17261 #ifdef illumos 17262 /* 17263 * If the kernel debugger is active (that is, if the kernel debugger 17264 * modified text in some way), we won't allow the open. 17265 */ 17266 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17267 dtrace_opens--; 17268 mutex_exit(&cpu_lock); 17269 mutex_exit(&dtrace_lock); 17270 return (EBUSY); 17271 } 17272 17273 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17274 /* 17275 * If DTrace helper tracing is enabled, we need to allocate the 17276 * trace buffer and initialize the values. 17277 */ 17278 dtrace_helptrace_buffer = 17279 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17280 dtrace_helptrace_next = 0; 17281 dtrace_helptrace_wrapped = 0; 17282 dtrace_helptrace_enable = 0; 17283 } 17284 17285 state = dtrace_state_create(devp, cred_p); 17286 #else 17287 state = dtrace_state_create(dev, NULL); 17288 devfs_set_cdevpriv(state, dtrace_dtr); 17289 #endif 17290 17291 mutex_exit(&cpu_lock); 17292 17293 if (state == NULL) { 17294 #ifdef illumos 17295 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17296 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17297 #else 17298 --dtrace_opens; 17299 #endif 17300 mutex_exit(&dtrace_lock); 17301 return (EAGAIN); 17302 } 17303 17304 mutex_exit(&dtrace_lock); 17305 17306 return (0); 17307 } 17308 17309 /*ARGSUSED*/ 17310 #ifdef illumos 17311 static int 17312 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17313 #else 17314 static void 17315 dtrace_dtr(void *data) 17316 #endif 17317 { 17318 #ifdef illumos 17319 minor_t minor = getminor(dev); 17320 dtrace_state_t *state; 17321 #endif 17322 dtrace_helptrace_t *buf = NULL; 17323 17324 #ifdef illumos 17325 if (minor == DTRACEMNRN_HELPER) 17326 return (0); 17327 17328 state = ddi_get_soft_state(dtrace_softstate, minor); 17329 #else 17330 dtrace_state_t *state = data; 17331 #endif 17332 17333 mutex_enter(&cpu_lock); 17334 mutex_enter(&dtrace_lock); 17335 17336 #ifdef illumos 17337 if (state->dts_anon) 17338 #else 17339 if (state != NULL && state->dts_anon) 17340 #endif 17341 { 17342 /* 17343 * There is anonymous state. Destroy that first. 17344 */ 17345 ASSERT(dtrace_anon.dta_state == NULL); 17346 dtrace_state_destroy(state->dts_anon); 17347 } 17348 17349 if (dtrace_helptrace_disable) { 17350 /* 17351 * If we have been told to disable helper tracing, set the 17352 * buffer to NULL before calling into dtrace_state_destroy(); 17353 * we take advantage of its dtrace_sync() to know that no 17354 * CPU is in probe context with enabled helper tracing 17355 * after it returns. 17356 */ 17357 buf = dtrace_helptrace_buffer; 17358 dtrace_helptrace_buffer = NULL; 17359 } 17360 17361 #ifdef illumos 17362 dtrace_state_destroy(state); 17363 #else 17364 if (state != NULL) { 17365 dtrace_state_destroy(state); 17366 kmem_free(state, 0); 17367 } 17368 #endif 17369 ASSERT(dtrace_opens > 0); 17370 17371 #ifdef illumos 17372 /* 17373 * Only relinquish control of the kernel debugger interface when there 17374 * are no consumers and no anonymous enablings. 17375 */ 17376 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17377 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17378 #else 17379 --dtrace_opens; 17380 #endif 17381 17382 if (buf != NULL) { 17383 kmem_free(buf, dtrace_helptrace_bufsize); 17384 dtrace_helptrace_disable = 0; 17385 } 17386 17387 mutex_exit(&dtrace_lock); 17388 mutex_exit(&cpu_lock); 17389 17390 #ifdef illumos 17391 return (0); 17392 #endif 17393 } 17394 17395 #ifdef illumos 17396 /*ARGSUSED*/ 17397 static int 17398 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17399 { 17400 int rval; 17401 dof_helper_t help, *dhp = NULL; 17402 17403 switch (cmd) { 17404 case DTRACEHIOC_ADDDOF: 17405 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17406 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17407 return (EFAULT); 17408 } 17409 17410 dhp = &help; 17411 arg = (intptr_t)help.dofhp_dof; 17412 /*FALLTHROUGH*/ 17413 17414 case DTRACEHIOC_ADD: { 17415 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17416 17417 if (dof == NULL) 17418 return (rval); 17419 17420 mutex_enter(&dtrace_lock); 17421 17422 /* 17423 * dtrace_helper_slurp() takes responsibility for the dof -- 17424 * it may free it now or it may save it and free it later. 17425 */ 17426 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17427 *rv = rval; 17428 rval = 0; 17429 } else { 17430 rval = EINVAL; 17431 } 17432 17433 mutex_exit(&dtrace_lock); 17434 return (rval); 17435 } 17436 17437 case DTRACEHIOC_REMOVE: { 17438 mutex_enter(&dtrace_lock); 17439 rval = dtrace_helper_destroygen(NULL, arg); 17440 mutex_exit(&dtrace_lock); 17441 17442 return (rval); 17443 } 17444 17445 default: 17446 break; 17447 } 17448 17449 return (ENOTTY); 17450 } 17451 17452 /*ARGSUSED*/ 17453 static int 17454 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17455 { 17456 minor_t minor = getminor(dev); 17457 dtrace_state_t *state; 17458 int rval; 17459 17460 if (minor == DTRACEMNRN_HELPER) 17461 return (dtrace_ioctl_helper(cmd, arg, rv)); 17462 17463 state = ddi_get_soft_state(dtrace_softstate, minor); 17464 17465 if (state->dts_anon) { 17466 ASSERT(dtrace_anon.dta_state == NULL); 17467 state = state->dts_anon; 17468 } 17469 17470 switch (cmd) { 17471 case DTRACEIOC_PROVIDER: { 17472 dtrace_providerdesc_t pvd; 17473 dtrace_provider_t *pvp; 17474 17475 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17476 return (EFAULT); 17477 17478 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17479 mutex_enter(&dtrace_provider_lock); 17480 17481 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17482 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17483 break; 17484 } 17485 17486 mutex_exit(&dtrace_provider_lock); 17487 17488 if (pvp == NULL) 17489 return (ESRCH); 17490 17491 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17492 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17493 17494 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17495 return (EFAULT); 17496 17497 return (0); 17498 } 17499 17500 case DTRACEIOC_EPROBE: { 17501 dtrace_eprobedesc_t epdesc; 17502 dtrace_ecb_t *ecb; 17503 dtrace_action_t *act; 17504 void *buf; 17505 size_t size; 17506 uintptr_t dest; 17507 int nrecs; 17508 17509 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17510 return (EFAULT); 17511 17512 mutex_enter(&dtrace_lock); 17513 17514 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17515 mutex_exit(&dtrace_lock); 17516 return (EINVAL); 17517 } 17518 17519 if (ecb->dte_probe == NULL) { 17520 mutex_exit(&dtrace_lock); 17521 return (EINVAL); 17522 } 17523 17524 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17525 epdesc.dtepd_uarg = ecb->dte_uarg; 17526 epdesc.dtepd_size = ecb->dte_size; 17527 17528 nrecs = epdesc.dtepd_nrecs; 17529 epdesc.dtepd_nrecs = 0; 17530 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17531 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17532 continue; 17533 17534 epdesc.dtepd_nrecs++; 17535 } 17536 17537 /* 17538 * Now that we have the size, we need to allocate a temporary 17539 * buffer in which to store the complete description. We need 17540 * the temporary buffer to be able to drop dtrace_lock() 17541 * across the copyout(), below. 17542 */ 17543 size = sizeof (dtrace_eprobedesc_t) + 17544 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17545 17546 buf = kmem_alloc(size, KM_SLEEP); 17547 dest = (uintptr_t)buf; 17548 17549 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17550 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17551 17552 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17553 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17554 continue; 17555 17556 if (nrecs-- == 0) 17557 break; 17558 17559 bcopy(&act->dta_rec, (void *)dest, 17560 sizeof (dtrace_recdesc_t)); 17561 dest += sizeof (dtrace_recdesc_t); 17562 } 17563 17564 mutex_exit(&dtrace_lock); 17565 17566 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17567 kmem_free(buf, size); 17568 return (EFAULT); 17569 } 17570 17571 kmem_free(buf, size); 17572 return (0); 17573 } 17574 17575 case DTRACEIOC_AGGDESC: { 17576 dtrace_aggdesc_t aggdesc; 17577 dtrace_action_t *act; 17578 dtrace_aggregation_t *agg; 17579 int nrecs; 17580 uint32_t offs; 17581 dtrace_recdesc_t *lrec; 17582 void *buf; 17583 size_t size; 17584 uintptr_t dest; 17585 17586 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17587 return (EFAULT); 17588 17589 mutex_enter(&dtrace_lock); 17590 17591 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17592 mutex_exit(&dtrace_lock); 17593 return (EINVAL); 17594 } 17595 17596 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17597 17598 nrecs = aggdesc.dtagd_nrecs; 17599 aggdesc.dtagd_nrecs = 0; 17600 17601 offs = agg->dtag_base; 17602 lrec = &agg->dtag_action.dta_rec; 17603 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17604 17605 for (act = agg->dtag_first; ; act = act->dta_next) { 17606 ASSERT(act->dta_intuple || 17607 DTRACEACT_ISAGG(act->dta_kind)); 17608 17609 /* 17610 * If this action has a record size of zero, it 17611 * denotes an argument to the aggregating action. 17612 * Because the presence of this record doesn't (or 17613 * shouldn't) affect the way the data is interpreted, 17614 * we don't copy it out to save user-level the 17615 * confusion of dealing with a zero-length record. 17616 */ 17617 if (act->dta_rec.dtrd_size == 0) { 17618 ASSERT(agg->dtag_hasarg); 17619 continue; 17620 } 17621 17622 aggdesc.dtagd_nrecs++; 17623 17624 if (act == &agg->dtag_action) 17625 break; 17626 } 17627 17628 /* 17629 * Now that we have the size, we need to allocate a temporary 17630 * buffer in which to store the complete description. We need 17631 * the temporary buffer to be able to drop dtrace_lock() 17632 * across the copyout(), below. 17633 */ 17634 size = sizeof (dtrace_aggdesc_t) + 17635 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17636 17637 buf = kmem_alloc(size, KM_SLEEP); 17638 dest = (uintptr_t)buf; 17639 17640 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17641 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17642 17643 for (act = agg->dtag_first; ; act = act->dta_next) { 17644 dtrace_recdesc_t rec = act->dta_rec; 17645 17646 /* 17647 * See the comment in the above loop for why we pass 17648 * over zero-length records. 17649 */ 17650 if (rec.dtrd_size == 0) { 17651 ASSERT(agg->dtag_hasarg); 17652 continue; 17653 } 17654 17655 if (nrecs-- == 0) 17656 break; 17657 17658 rec.dtrd_offset -= offs; 17659 bcopy(&rec, (void *)dest, sizeof (rec)); 17660 dest += sizeof (dtrace_recdesc_t); 17661 17662 if (act == &agg->dtag_action) 17663 break; 17664 } 17665 17666 mutex_exit(&dtrace_lock); 17667 17668 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17669 kmem_free(buf, size); 17670 return (EFAULT); 17671 } 17672 17673 kmem_free(buf, size); 17674 return (0); 17675 } 17676 17677 case DTRACEIOC_ENABLE: { 17678 dof_hdr_t *dof; 17679 dtrace_enabling_t *enab = NULL; 17680 dtrace_vstate_t *vstate; 17681 int err = 0; 17682 17683 *rv = 0; 17684 17685 /* 17686 * If a NULL argument has been passed, we take this as our 17687 * cue to reevaluate our enablings. 17688 */ 17689 if (arg == NULL) { 17690 dtrace_enabling_matchall(); 17691 17692 return (0); 17693 } 17694 17695 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17696 return (rval); 17697 17698 mutex_enter(&cpu_lock); 17699 mutex_enter(&dtrace_lock); 17700 vstate = &state->dts_vstate; 17701 17702 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17703 mutex_exit(&dtrace_lock); 17704 mutex_exit(&cpu_lock); 17705 dtrace_dof_destroy(dof); 17706 return (EBUSY); 17707 } 17708 17709 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17710 mutex_exit(&dtrace_lock); 17711 mutex_exit(&cpu_lock); 17712 dtrace_dof_destroy(dof); 17713 return (EINVAL); 17714 } 17715 17716 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17717 dtrace_enabling_destroy(enab); 17718 mutex_exit(&dtrace_lock); 17719 mutex_exit(&cpu_lock); 17720 dtrace_dof_destroy(dof); 17721 return (rval); 17722 } 17723 17724 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17725 err = dtrace_enabling_retain(enab); 17726 } else { 17727 dtrace_enabling_destroy(enab); 17728 } 17729 17730 mutex_exit(&cpu_lock); 17731 mutex_exit(&dtrace_lock); 17732 dtrace_dof_destroy(dof); 17733 17734 return (err); 17735 } 17736 17737 case DTRACEIOC_REPLICATE: { 17738 dtrace_repldesc_t desc; 17739 dtrace_probedesc_t *match = &desc.dtrpd_match; 17740 dtrace_probedesc_t *create = &desc.dtrpd_create; 17741 int err; 17742 17743 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17744 return (EFAULT); 17745 17746 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17747 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17748 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17749 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17750 17751 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17752 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17753 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17754 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17755 17756 mutex_enter(&dtrace_lock); 17757 err = dtrace_enabling_replicate(state, match, create); 17758 mutex_exit(&dtrace_lock); 17759 17760 return (err); 17761 } 17762 17763 case DTRACEIOC_PROBEMATCH: 17764 case DTRACEIOC_PROBES: { 17765 dtrace_probe_t *probe = NULL; 17766 dtrace_probedesc_t desc; 17767 dtrace_probekey_t pkey; 17768 dtrace_id_t i; 17769 int m = 0; 17770 uint32_t priv; 17771 uid_t uid; 17772 zoneid_t zoneid; 17773 17774 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17775 return (EFAULT); 17776 17777 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17778 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17779 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17780 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17781 17782 /* 17783 * Before we attempt to match this probe, we want to give 17784 * all providers the opportunity to provide it. 17785 */ 17786 if (desc.dtpd_id == DTRACE_IDNONE) { 17787 mutex_enter(&dtrace_provider_lock); 17788 dtrace_probe_provide(&desc, NULL); 17789 mutex_exit(&dtrace_provider_lock); 17790 desc.dtpd_id++; 17791 } 17792 17793 if (cmd == DTRACEIOC_PROBEMATCH) { 17794 dtrace_probekey(&desc, &pkey); 17795 pkey.dtpk_id = DTRACE_IDNONE; 17796 } 17797 17798 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17799 17800 mutex_enter(&dtrace_lock); 17801 17802 if (cmd == DTRACEIOC_PROBEMATCH) { 17803 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17804 if ((probe = dtrace_probes[i - 1]) != NULL && 17805 (m = dtrace_match_probe(probe, &pkey, 17806 priv, uid, zoneid)) != 0) 17807 break; 17808 } 17809 17810 if (m < 0) { 17811 mutex_exit(&dtrace_lock); 17812 return (EINVAL); 17813 } 17814 17815 } else { 17816 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17817 if ((probe = dtrace_probes[i - 1]) != NULL && 17818 dtrace_match_priv(probe, priv, uid, zoneid)) 17819 break; 17820 } 17821 } 17822 17823 if (probe == NULL) { 17824 mutex_exit(&dtrace_lock); 17825 return (ESRCH); 17826 } 17827 17828 dtrace_probe_description(probe, &desc); 17829 mutex_exit(&dtrace_lock); 17830 17831 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17832 return (EFAULT); 17833 17834 return (0); 17835 } 17836 17837 case DTRACEIOC_PROBEARG: { 17838 dtrace_argdesc_t desc; 17839 dtrace_probe_t *probe; 17840 dtrace_provider_t *prov; 17841 17842 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17843 return (EFAULT); 17844 17845 if (desc.dtargd_id == DTRACE_IDNONE) 17846 return (EINVAL); 17847 17848 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17849 return (EINVAL); 17850 17851 mutex_enter(&dtrace_provider_lock); 17852 mutex_enter(&mod_lock); 17853 mutex_enter(&dtrace_lock); 17854 17855 if (desc.dtargd_id > dtrace_nprobes) { 17856 mutex_exit(&dtrace_lock); 17857 mutex_exit(&mod_lock); 17858 mutex_exit(&dtrace_provider_lock); 17859 return (EINVAL); 17860 } 17861 17862 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17863 mutex_exit(&dtrace_lock); 17864 mutex_exit(&mod_lock); 17865 mutex_exit(&dtrace_provider_lock); 17866 return (EINVAL); 17867 } 17868 17869 mutex_exit(&dtrace_lock); 17870 17871 prov = probe->dtpr_provider; 17872 17873 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17874 /* 17875 * There isn't any typed information for this probe. 17876 * Set the argument number to DTRACE_ARGNONE. 17877 */ 17878 desc.dtargd_ndx = DTRACE_ARGNONE; 17879 } else { 17880 desc.dtargd_native[0] = '\0'; 17881 desc.dtargd_xlate[0] = '\0'; 17882 desc.dtargd_mapping = desc.dtargd_ndx; 17883 17884 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17885 probe->dtpr_id, probe->dtpr_arg, &desc); 17886 } 17887 17888 mutex_exit(&mod_lock); 17889 mutex_exit(&dtrace_provider_lock); 17890 17891 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17892 return (EFAULT); 17893 17894 return (0); 17895 } 17896 17897 case DTRACEIOC_GO: { 17898 processorid_t cpuid; 17899 rval = dtrace_state_go(state, &cpuid); 17900 17901 if (rval != 0) 17902 return (rval); 17903 17904 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17905 return (EFAULT); 17906 17907 return (0); 17908 } 17909 17910 case DTRACEIOC_STOP: { 17911 processorid_t cpuid; 17912 17913 mutex_enter(&dtrace_lock); 17914 rval = dtrace_state_stop(state, &cpuid); 17915 mutex_exit(&dtrace_lock); 17916 17917 if (rval != 0) 17918 return (rval); 17919 17920 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17921 return (EFAULT); 17922 17923 return (0); 17924 } 17925 17926 case DTRACEIOC_DOFGET: { 17927 dof_hdr_t hdr, *dof; 17928 uint64_t len; 17929 17930 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17931 return (EFAULT); 17932 17933 mutex_enter(&dtrace_lock); 17934 dof = dtrace_dof_create(state); 17935 mutex_exit(&dtrace_lock); 17936 17937 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17938 rval = copyout(dof, (void *)arg, len); 17939 dtrace_dof_destroy(dof); 17940 17941 return (rval == 0 ? 0 : EFAULT); 17942 } 17943 17944 case DTRACEIOC_AGGSNAP: 17945 case DTRACEIOC_BUFSNAP: { 17946 dtrace_bufdesc_t desc; 17947 caddr_t cached; 17948 dtrace_buffer_t *buf; 17949 17950 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17951 return (EFAULT); 17952 17953 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17954 return (EINVAL); 17955 17956 mutex_enter(&dtrace_lock); 17957 17958 if (cmd == DTRACEIOC_BUFSNAP) { 17959 buf = &state->dts_buffer[desc.dtbd_cpu]; 17960 } else { 17961 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17962 } 17963 17964 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17965 size_t sz = buf->dtb_offset; 17966 17967 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17968 mutex_exit(&dtrace_lock); 17969 return (EBUSY); 17970 } 17971 17972 /* 17973 * If this buffer has already been consumed, we're 17974 * going to indicate that there's nothing left here 17975 * to consume. 17976 */ 17977 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17978 mutex_exit(&dtrace_lock); 17979 17980 desc.dtbd_size = 0; 17981 desc.dtbd_drops = 0; 17982 desc.dtbd_errors = 0; 17983 desc.dtbd_oldest = 0; 17984 sz = sizeof (desc); 17985 17986 if (copyout(&desc, (void *)arg, sz) != 0) 17987 return (EFAULT); 17988 17989 return (0); 17990 } 17991 17992 /* 17993 * If this is a ring buffer that has wrapped, we want 17994 * to copy the whole thing out. 17995 */ 17996 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17997 dtrace_buffer_polish(buf); 17998 sz = buf->dtb_size; 17999 } 18000 18001 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 18002 mutex_exit(&dtrace_lock); 18003 return (EFAULT); 18004 } 18005 18006 desc.dtbd_size = sz; 18007 desc.dtbd_drops = buf->dtb_drops; 18008 desc.dtbd_errors = buf->dtb_errors; 18009 desc.dtbd_oldest = buf->dtb_xamot_offset; 18010 desc.dtbd_timestamp = dtrace_gethrtime(); 18011 18012 mutex_exit(&dtrace_lock); 18013 18014 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18015 return (EFAULT); 18016 18017 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18018 18019 return (0); 18020 } 18021 18022 if (buf->dtb_tomax == NULL) { 18023 ASSERT(buf->dtb_xamot == NULL); 18024 mutex_exit(&dtrace_lock); 18025 return (ENOENT); 18026 } 18027 18028 cached = buf->dtb_tomax; 18029 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18030 18031 dtrace_xcall(desc.dtbd_cpu, 18032 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18033 18034 state->dts_errors += buf->dtb_xamot_errors; 18035 18036 /* 18037 * If the buffers did not actually switch, then the cross call 18038 * did not take place -- presumably because the given CPU is 18039 * not in the ready set. If this is the case, we'll return 18040 * ENOENT. 18041 */ 18042 if (buf->dtb_tomax == cached) { 18043 ASSERT(buf->dtb_xamot != cached); 18044 mutex_exit(&dtrace_lock); 18045 return (ENOENT); 18046 } 18047 18048 ASSERT(cached == buf->dtb_xamot); 18049 18050 /* 18051 * We have our snapshot; now copy it out. 18052 */ 18053 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18054 buf->dtb_xamot_offset) != 0) { 18055 mutex_exit(&dtrace_lock); 18056 return (EFAULT); 18057 } 18058 18059 desc.dtbd_size = buf->dtb_xamot_offset; 18060 desc.dtbd_drops = buf->dtb_xamot_drops; 18061 desc.dtbd_errors = buf->dtb_xamot_errors; 18062 desc.dtbd_oldest = 0; 18063 desc.dtbd_timestamp = buf->dtb_switched; 18064 18065 mutex_exit(&dtrace_lock); 18066 18067 /* 18068 * Finally, copy out the buffer description. 18069 */ 18070 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18071 return (EFAULT); 18072 18073 return (0); 18074 } 18075 18076 case DTRACEIOC_CONF: { 18077 dtrace_conf_t conf; 18078 18079 bzero(&conf, sizeof (conf)); 18080 conf.dtc_difversion = DIF_VERSION; 18081 conf.dtc_difintregs = DIF_DIR_NREGS; 18082 conf.dtc_diftupregs = DIF_DTR_NREGS; 18083 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18084 18085 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18086 return (EFAULT); 18087 18088 return (0); 18089 } 18090 18091 case DTRACEIOC_STATUS: { 18092 dtrace_status_t stat; 18093 dtrace_dstate_t *dstate; 18094 int i, j; 18095 uint64_t nerrs; 18096 18097 /* 18098 * See the comment in dtrace_state_deadman() for the reason 18099 * for setting dts_laststatus to INT64_MAX before setting 18100 * it to the correct value. 18101 */ 18102 state->dts_laststatus = INT64_MAX; 18103 dtrace_membar_producer(); 18104 state->dts_laststatus = dtrace_gethrtime(); 18105 18106 bzero(&stat, sizeof (stat)); 18107 18108 mutex_enter(&dtrace_lock); 18109 18110 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18111 mutex_exit(&dtrace_lock); 18112 return (ENOENT); 18113 } 18114 18115 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18116 stat.dtst_exiting = 1; 18117 18118 nerrs = state->dts_errors; 18119 dstate = &state->dts_vstate.dtvs_dynvars; 18120 18121 for (i = 0; i < NCPU; i++) { 18122 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18123 18124 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18125 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18126 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18127 18128 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18129 stat.dtst_filled++; 18130 18131 nerrs += state->dts_buffer[i].dtb_errors; 18132 18133 for (j = 0; j < state->dts_nspeculations; j++) { 18134 dtrace_speculation_t *spec; 18135 dtrace_buffer_t *buf; 18136 18137 spec = &state->dts_speculations[j]; 18138 buf = &spec->dtsp_buffer[i]; 18139 stat.dtst_specdrops += buf->dtb_xamot_drops; 18140 } 18141 } 18142 18143 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18144 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18145 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18146 stat.dtst_dblerrors = state->dts_dblerrors; 18147 stat.dtst_killed = 18148 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18149 stat.dtst_errors = nerrs; 18150 18151 mutex_exit(&dtrace_lock); 18152 18153 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18154 return (EFAULT); 18155 18156 return (0); 18157 } 18158 18159 case DTRACEIOC_FORMAT: { 18160 dtrace_fmtdesc_t fmt; 18161 char *str; 18162 int len; 18163 18164 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18165 return (EFAULT); 18166 18167 mutex_enter(&dtrace_lock); 18168 18169 if (fmt.dtfd_format == 0 || 18170 fmt.dtfd_format > state->dts_nformats) { 18171 mutex_exit(&dtrace_lock); 18172 return (EINVAL); 18173 } 18174 18175 /* 18176 * Format strings are allocated contiguously and they are 18177 * never freed; if a format index is less than the number 18178 * of formats, we can assert that the format map is non-NULL 18179 * and that the format for the specified index is non-NULL. 18180 */ 18181 ASSERT(state->dts_formats != NULL); 18182 str = state->dts_formats[fmt.dtfd_format - 1]; 18183 ASSERT(str != NULL); 18184 18185 len = strlen(str) + 1; 18186 18187 if (len > fmt.dtfd_length) { 18188 fmt.dtfd_length = len; 18189 18190 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18191 mutex_exit(&dtrace_lock); 18192 return (EINVAL); 18193 } 18194 } else { 18195 if (copyout(str, fmt.dtfd_string, len) != 0) { 18196 mutex_exit(&dtrace_lock); 18197 return (EINVAL); 18198 } 18199 } 18200 18201 mutex_exit(&dtrace_lock); 18202 return (0); 18203 } 18204 18205 default: 18206 break; 18207 } 18208 18209 return (ENOTTY); 18210 } 18211 18212 /*ARGSUSED*/ 18213 static int 18214 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18215 { 18216 dtrace_state_t *state; 18217 18218 switch (cmd) { 18219 case DDI_DETACH: 18220 break; 18221 18222 case DDI_SUSPEND: 18223 return (DDI_SUCCESS); 18224 18225 default: 18226 return (DDI_FAILURE); 18227 } 18228 18229 mutex_enter(&cpu_lock); 18230 mutex_enter(&dtrace_provider_lock); 18231 mutex_enter(&dtrace_lock); 18232 18233 ASSERT(dtrace_opens == 0); 18234 18235 if (dtrace_helpers > 0) { 18236 mutex_exit(&dtrace_provider_lock); 18237 mutex_exit(&dtrace_lock); 18238 mutex_exit(&cpu_lock); 18239 return (DDI_FAILURE); 18240 } 18241 18242 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18243 mutex_exit(&dtrace_provider_lock); 18244 mutex_exit(&dtrace_lock); 18245 mutex_exit(&cpu_lock); 18246 return (DDI_FAILURE); 18247 } 18248 18249 dtrace_provider = NULL; 18250 18251 if ((state = dtrace_anon_grab()) != NULL) { 18252 /* 18253 * If there were ECBs on this state, the provider should 18254 * have not been allowed to detach; assert that there is 18255 * none. 18256 */ 18257 ASSERT(state->dts_necbs == 0); 18258 dtrace_state_destroy(state); 18259 18260 /* 18261 * If we're being detached with anonymous state, we need to 18262 * indicate to the kernel debugger that DTrace is now inactive. 18263 */ 18264 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18265 } 18266 18267 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18268 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18269 dtrace_cpu_init = NULL; 18270 dtrace_helpers_cleanup = NULL; 18271 dtrace_helpers_fork = NULL; 18272 dtrace_cpustart_init = NULL; 18273 dtrace_cpustart_fini = NULL; 18274 dtrace_debugger_init = NULL; 18275 dtrace_debugger_fini = NULL; 18276 dtrace_modload = NULL; 18277 dtrace_modunload = NULL; 18278 18279 ASSERT(dtrace_getf == 0); 18280 ASSERT(dtrace_closef == NULL); 18281 18282 mutex_exit(&cpu_lock); 18283 18284 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18285 dtrace_probes = NULL; 18286 dtrace_nprobes = 0; 18287 18288 dtrace_hash_destroy(dtrace_bymod); 18289 dtrace_hash_destroy(dtrace_byfunc); 18290 dtrace_hash_destroy(dtrace_byname); 18291 dtrace_bymod = NULL; 18292 dtrace_byfunc = NULL; 18293 dtrace_byname = NULL; 18294 18295 kmem_cache_destroy(dtrace_state_cache); 18296 vmem_destroy(dtrace_minor); 18297 vmem_destroy(dtrace_arena); 18298 18299 if (dtrace_toxrange != NULL) { 18300 kmem_free(dtrace_toxrange, 18301 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18302 dtrace_toxrange = NULL; 18303 dtrace_toxranges = 0; 18304 dtrace_toxranges_max = 0; 18305 } 18306 18307 ddi_remove_minor_node(dtrace_devi, NULL); 18308 dtrace_devi = NULL; 18309 18310 ddi_soft_state_fini(&dtrace_softstate); 18311 18312 ASSERT(dtrace_vtime_references == 0); 18313 ASSERT(dtrace_opens == 0); 18314 ASSERT(dtrace_retained == NULL); 18315 18316 mutex_exit(&dtrace_lock); 18317 mutex_exit(&dtrace_provider_lock); 18318 18319 /* 18320 * We don't destroy the task queue until after we have dropped our 18321 * locks (taskq_destroy() may block on running tasks). To prevent 18322 * attempting to do work after we have effectively detached but before 18323 * the task queue has been destroyed, all tasks dispatched via the 18324 * task queue must check that DTrace is still attached before 18325 * performing any operation. 18326 */ 18327 taskq_destroy(dtrace_taskq); 18328 dtrace_taskq = NULL; 18329 18330 return (DDI_SUCCESS); 18331 } 18332 #endif 18333 18334 #ifdef illumos 18335 /*ARGSUSED*/ 18336 static int 18337 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18338 { 18339 int error; 18340 18341 switch (infocmd) { 18342 case DDI_INFO_DEVT2DEVINFO: 18343 *result = (void *)dtrace_devi; 18344 error = DDI_SUCCESS; 18345 break; 18346 case DDI_INFO_DEVT2INSTANCE: 18347 *result = (void *)0; 18348 error = DDI_SUCCESS; 18349 break; 18350 default: 18351 error = DDI_FAILURE; 18352 } 18353 return (error); 18354 } 18355 #endif 18356 18357 #ifdef illumos 18358 static struct cb_ops dtrace_cb_ops = { 18359 dtrace_open, /* open */ 18360 dtrace_close, /* close */ 18361 nulldev, /* strategy */ 18362 nulldev, /* print */ 18363 nodev, /* dump */ 18364 nodev, /* read */ 18365 nodev, /* write */ 18366 dtrace_ioctl, /* ioctl */ 18367 nodev, /* devmap */ 18368 nodev, /* mmap */ 18369 nodev, /* segmap */ 18370 nochpoll, /* poll */ 18371 ddi_prop_op, /* cb_prop_op */ 18372 0, /* streamtab */ 18373 D_NEW | D_MP /* Driver compatibility flag */ 18374 }; 18375 18376 static struct dev_ops dtrace_ops = { 18377 DEVO_REV, /* devo_rev */ 18378 0, /* refcnt */ 18379 dtrace_info, /* get_dev_info */ 18380 nulldev, /* identify */ 18381 nulldev, /* probe */ 18382 dtrace_attach, /* attach */ 18383 dtrace_detach, /* detach */ 18384 nodev, /* reset */ 18385 &dtrace_cb_ops, /* driver operations */ 18386 NULL, /* bus operations */ 18387 nodev /* dev power */ 18388 }; 18389 18390 static struct modldrv modldrv = { 18391 &mod_driverops, /* module type (this is a pseudo driver) */ 18392 "Dynamic Tracing", /* name of module */ 18393 &dtrace_ops, /* driver ops */ 18394 }; 18395 18396 static struct modlinkage modlinkage = { 18397 MODREV_1, 18398 (void *)&modldrv, 18399 NULL 18400 }; 18401 18402 int 18403 _init(void) 18404 { 18405 return (mod_install(&modlinkage)); 18406 } 18407 18408 int 18409 _info(struct modinfo *modinfop) 18410 { 18411 return (mod_info(&modlinkage, modinfop)); 18412 } 18413 18414 int 18415 _fini(void) 18416 { 18417 return (mod_remove(&modlinkage)); 18418 } 18419 #else 18420 18421 static d_ioctl_t dtrace_ioctl; 18422 static d_ioctl_t dtrace_ioctl_helper; 18423 static void dtrace_load(void *); 18424 static int dtrace_unload(void); 18425 static struct cdev *dtrace_dev; 18426 static struct cdev *helper_dev; 18427 18428 void dtrace_invop_init(void); 18429 void dtrace_invop_uninit(void); 18430 18431 static struct cdevsw dtrace_cdevsw = { 18432 .d_version = D_VERSION, 18433 .d_ioctl = dtrace_ioctl, 18434 .d_open = dtrace_open, 18435 .d_name = "dtrace", 18436 }; 18437 18438 static struct cdevsw helper_cdevsw = { 18439 .d_version = D_VERSION, 18440 .d_ioctl = dtrace_ioctl_helper, 18441 .d_name = "helper", 18442 }; 18443 18444 #include <dtrace_anon.c> 18445 #include <dtrace_ioctl.c> 18446 #include <dtrace_load.c> 18447 #include <dtrace_modevent.c> 18448 #include <dtrace_sysctl.c> 18449 #include <dtrace_unload.c> 18450 #include <dtrace_vtime.c> 18451 #include <dtrace_hacks.c> 18452 18453 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18454 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18455 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18456 18457 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18458 MODULE_VERSION(dtrace, 1); 18459 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18460 #endif 18461