xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 273c26a3c3bea87a241d6879abd4f991db180bf0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/linker.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/sysctl.h>
130 
131 #include <sys/dtrace_bsd.h>
132 
133 #include <netinet/in.h>
134 
135 #include "dtrace_cddl.h"
136 #include "dtrace_debug.c"
137 #endif
138 
139 /*
140  * DTrace Tunable Variables
141  *
142  * The following variables may be tuned by adding a line to /etc/system that
143  * includes both the name of the DTrace module ("dtrace") and the name of the
144  * variable.  For example:
145  *
146  *   set dtrace:dtrace_destructive_disallow = 1
147  *
148  * In general, the only variables that one should be tuning this way are those
149  * that affect system-wide DTrace behavior, and for which the default behavior
150  * is undesirable.  Most of these variables are tunable on a per-consumer
151  * basis using DTrace options, and need not be tuned on a system-wide basis.
152  * When tuning these variables, avoid pathological values; while some attempt
153  * is made to verify the integrity of these variables, they are not considered
154  * part of the supported interface to DTrace, and they are therefore not
155  * checked comprehensively.  Further, these variables should not be tuned
156  * dynamically via "mdb -kw" or other means; they should only be tuned via
157  * /etc/system.
158  */
159 int		dtrace_destructive_disallow = 0;
160 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
161 size_t		dtrace_difo_maxsize = (256 * 1024);
162 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
163 size_t		dtrace_statvar_maxsize = (16 * 1024);
164 size_t		dtrace_actions_max = (16 * 1024);
165 size_t		dtrace_retain_max = 1024;
166 dtrace_optval_t	dtrace_helper_actions_max = 128;
167 dtrace_optval_t	dtrace_helper_providers_max = 32;
168 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
169 size_t		dtrace_strsize_default = 256;
170 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
171 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
172 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
173 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
174 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
175 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
176 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
177 dtrace_optval_t	dtrace_nspec_default = 1;
178 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
179 dtrace_optval_t dtrace_stackframes_default = 20;
180 dtrace_optval_t dtrace_ustackframes_default = 20;
181 dtrace_optval_t dtrace_jstackframes_default = 50;
182 dtrace_optval_t dtrace_jstackstrsize_default = 512;
183 int		dtrace_msgdsize_max = 128;
184 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
185 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
186 int		dtrace_devdepth_max = 32;
187 int		dtrace_err_verbose;
188 hrtime_t	dtrace_deadman_interval = NANOSEC;
189 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
190 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
191 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
192 #ifndef illumos
193 int		dtrace_memstr_max = 4096;
194 #endif
195 
196 /*
197  * DTrace External Variables
198  *
199  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
200  * available to DTrace consumers via the backtick (`) syntax.  One of these,
201  * dtrace_zero, is made deliberately so:  it is provided as a source of
202  * well-known, zero-filled memory.  While this variable is not documented,
203  * it is used by some translators as an implementation detail.
204  */
205 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
206 
207 /*
208  * DTrace Internal Variables
209  */
210 #ifdef illumos
211 static dev_info_t	*dtrace_devi;		/* device info */
212 #endif
213 #ifdef illumos
214 static vmem_t		*dtrace_arena;		/* probe ID arena */
215 static vmem_t		*dtrace_minor;		/* minor number arena */
216 #else
217 static taskq_t		*dtrace_taskq;		/* task queue */
218 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
219 #endif
220 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
221 static int		dtrace_nprobes;		/* number of probes */
222 static dtrace_provider_t *dtrace_provider;	/* provider list */
223 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
224 static int		dtrace_opens;		/* number of opens */
225 static int		dtrace_helpers;		/* number of helpers */
226 static int		dtrace_getf;		/* number of unpriv getf()s */
227 #ifdef illumos
228 static void		*dtrace_softstate;	/* softstate pointer */
229 #endif
230 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
231 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
232 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
233 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
234 static int		dtrace_toxranges;	/* number of toxic ranges */
235 static int		dtrace_toxranges_max;	/* size of toxic range array */
236 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
237 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
238 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
239 static kthread_t	*dtrace_panicked;	/* panicking thread */
240 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
241 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
242 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
243 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
244 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
245 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
246 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
247 #ifndef illumos
248 static struct mtx	dtrace_unr_mtx;
249 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
250 static eventhandler_tag	dtrace_kld_load_tag;
251 static eventhandler_tag	dtrace_kld_unload_try_tag;
252 #endif
253 
254 /*
255  * DTrace Locking
256  * DTrace is protected by three (relatively coarse-grained) locks:
257  *
258  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
259  *     including enabling state, probes, ECBs, consumer state, helper state,
260  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
261  *     probe context is lock-free -- synchronization is handled via the
262  *     dtrace_sync() cross call mechanism.
263  *
264  * (2) dtrace_provider_lock is required when manipulating provider state, or
265  *     when provider state must be held constant.
266  *
267  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
268  *     when meta provider state must be held constant.
269  *
270  * The lock ordering between these three locks is dtrace_meta_lock before
271  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
272  * several places where dtrace_provider_lock is held by the framework as it
273  * calls into the providers -- which then call back into the framework,
274  * grabbing dtrace_lock.)
275  *
276  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
277  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
278  * role as a coarse-grained lock; it is acquired before both of these locks.
279  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
280  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
281  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
282  * acquired _between_ dtrace_provider_lock and dtrace_lock.
283  */
284 static kmutex_t		dtrace_lock;		/* probe state lock */
285 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
286 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
287 
288 #ifndef illumos
289 /* XXX FreeBSD hacks. */
290 #define cr_suid		cr_svuid
291 #define cr_sgid		cr_svgid
292 #define	ipaddr_t	in_addr_t
293 #define mod_modname	pathname
294 #define vuprintf	vprintf
295 #define ttoproc(_a)	((_a)->td_proc)
296 #define crgetzoneid(_a)	0
297 #define	NCPU		MAXCPU
298 #define SNOCD		0
299 #define CPU_ON_INTR(_a)	0
300 
301 #define PRIV_EFFECTIVE		(1 << 0)
302 #define PRIV_DTRACE_KERNEL	(1 << 1)
303 #define PRIV_DTRACE_PROC	(1 << 2)
304 #define PRIV_DTRACE_USER	(1 << 3)
305 #define PRIV_PROC_OWNER		(1 << 4)
306 #define PRIV_PROC_ZONE		(1 << 5)
307 #define PRIV_ALL		~0
308 
309 SYSCTL_DECL(_debug_dtrace);
310 SYSCTL_DECL(_kern_dtrace);
311 #endif
312 
313 #ifdef illumos
314 #define curcpu	CPU->cpu_id
315 #endif
316 
317 
318 /*
319  * DTrace Provider Variables
320  *
321  * These are the variables relating to DTrace as a provider (that is, the
322  * provider of the BEGIN, END, and ERROR probes).
323  */
324 static dtrace_pattr_t	dtrace_provider_attr = {
325 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
326 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
327 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
330 };
331 
332 static void
333 dtrace_nullop(void)
334 {}
335 
336 static dtrace_pops_t	dtrace_provider_ops = {
337 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
338 	(void (*)(void *, modctl_t *))dtrace_nullop,
339 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
340 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
341 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
342 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
343 	NULL,
344 	NULL,
345 	NULL,
346 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
347 };
348 
349 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
350 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
351 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
352 
353 /*
354  * DTrace Helper Tracing Variables
355  *
356  * These variables should be set dynamically to enable helper tracing.  The
357  * only variables that should be set are dtrace_helptrace_enable (which should
358  * be set to a non-zero value to allocate helper tracing buffers on the next
359  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
360  * non-zero value to deallocate helper tracing buffers on the next close of
361  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
362  * buffer size may also be set via dtrace_helptrace_bufsize.
363  */
364 int			dtrace_helptrace_enable = 0;
365 int			dtrace_helptrace_disable = 0;
366 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
367 uint32_t		dtrace_helptrace_nlocals;
368 static dtrace_helptrace_t *dtrace_helptrace_buffer;
369 static uint32_t		dtrace_helptrace_next = 0;
370 static int		dtrace_helptrace_wrapped = 0;
371 
372 /*
373  * DTrace Error Hashing
374  *
375  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
376  * table.  This is very useful for checking coverage of tests that are
377  * expected to induce DIF or DOF processing errors, and may be useful for
378  * debugging problems in the DIF code generator or in DOF generation .  The
379  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
380  */
381 #ifdef DEBUG
382 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
383 static const char *dtrace_errlast;
384 static kthread_t *dtrace_errthread;
385 static kmutex_t dtrace_errlock;
386 #endif
387 
388 /*
389  * DTrace Macros and Constants
390  *
391  * These are various macros that are useful in various spots in the
392  * implementation, along with a few random constants that have no meaning
393  * outside of the implementation.  There is no real structure to this cpp
394  * mishmash -- but is there ever?
395  */
396 #define	DTRACE_HASHSTR(hash, probe)	\
397 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
398 
399 #define	DTRACE_HASHNEXT(hash, probe)	\
400 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
401 
402 #define	DTRACE_HASHPREV(hash, probe)	\
403 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
404 
405 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
406 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
407 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
408 
409 #define	DTRACE_AGGHASHSIZE_SLEW		17
410 
411 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
412 
413 /*
414  * The key for a thread-local variable consists of the lower 61 bits of the
415  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
416  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
417  * equal to a variable identifier.  This is necessary (but not sufficient) to
418  * assure that global associative arrays never collide with thread-local
419  * variables.  To guarantee that they cannot collide, we must also define the
420  * order for keying dynamic variables.  That order is:
421  *
422  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
423  *
424  * Because the variable-key and the tls-key are in orthogonal spaces, there is
425  * no way for a global variable key signature to match a thread-local key
426  * signature.
427  */
428 #ifdef illumos
429 #define	DTRACE_TLS_THRKEY(where) { \
430 	uint_t intr = 0; \
431 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
432 	for (; actv; actv >>= 1) \
433 		intr++; \
434 	ASSERT(intr < (1 << 3)); \
435 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
436 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437 }
438 #else
439 #define	DTRACE_TLS_THRKEY(where) { \
440 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
441 	uint_t intr = 0; \
442 	uint_t actv = _c->cpu_intr_actv; \
443 	for (; actv; actv >>= 1) \
444 		intr++; \
445 	ASSERT(intr < (1 << 3)); \
446 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
447 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
448 }
449 #endif
450 
451 #define	DT_BSWAP_8(x)	((x) & 0xff)
452 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
453 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
454 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
455 
456 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
457 
458 #define	DTRACE_STORE(type, tomax, offset, what) \
459 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
460 
461 #ifndef __x86
462 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
463 	if (addr & (size - 1)) {					\
464 		*flags |= CPU_DTRACE_BADALIGN;				\
465 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
466 		return (0);						\
467 	}
468 #else
469 #define	DTRACE_ALIGNCHECK(addr, size, flags)
470 #endif
471 
472 /*
473  * Test whether a range of memory starting at testaddr of size testsz falls
474  * within the range of memory described by addr, sz.  We take care to avoid
475  * problems with overflow and underflow of the unsigned quantities, and
476  * disallow all negative sizes.  Ranges of size 0 are allowed.
477  */
478 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
479 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
480 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
481 	(testaddr) + (testsz) >= (testaddr))
482 
483 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
484 do {									\
485 	if ((remp) != NULL) {						\
486 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
487 	}								\
488 _NOTE(CONSTCOND) } while (0)
489 
490 
491 /*
492  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
493  * alloc_sz on the righthand side of the comparison in order to avoid overflow
494  * or underflow in the comparison with it.  This is simpler than the INRANGE
495  * check above, because we know that the dtms_scratch_ptr is valid in the
496  * range.  Allocations of size zero are allowed.
497  */
498 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
499 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
500 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
501 
502 #define	DTRACE_LOADFUNC(bits)						\
503 /*CSTYLED*/								\
504 uint##bits##_t								\
505 dtrace_load##bits(uintptr_t addr)					\
506 {									\
507 	size_t size = bits / NBBY;					\
508 	/*CSTYLED*/							\
509 	uint##bits##_t rval;						\
510 	int i;								\
511 	volatile uint16_t *flags = (volatile uint16_t *)		\
512 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
513 									\
514 	DTRACE_ALIGNCHECK(addr, size, flags);				\
515 									\
516 	for (i = 0; i < dtrace_toxranges; i++) {			\
517 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
518 			continue;					\
519 									\
520 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
521 			continue;					\
522 									\
523 		/*							\
524 		 * This address falls within a toxic region; return 0.	\
525 		 */							\
526 		*flags |= CPU_DTRACE_BADADDR;				\
527 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
528 		return (0);						\
529 	}								\
530 									\
531 	*flags |= CPU_DTRACE_NOFAULT;					\
532 	/*CSTYLED*/							\
533 	rval = *((volatile uint##bits##_t *)addr);			\
534 	*flags &= ~CPU_DTRACE_NOFAULT;					\
535 									\
536 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
537 }
538 
539 #ifdef _LP64
540 #define	dtrace_loadptr	dtrace_load64
541 #else
542 #define	dtrace_loadptr	dtrace_load32
543 #endif
544 
545 #define	DTRACE_DYNHASH_FREE	0
546 #define	DTRACE_DYNHASH_SINK	1
547 #define	DTRACE_DYNHASH_VALID	2
548 
549 #define	DTRACE_MATCH_NEXT	0
550 #define	DTRACE_MATCH_DONE	1
551 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
552 #define	DTRACE_STATE_ALIGN	64
553 
554 #define	DTRACE_FLAGS2FLT(flags)						\
555 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
556 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
557 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
558 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
559 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
560 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
561 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
562 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
563 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
564 	DTRACEFLT_UNKNOWN)
565 
566 #define	DTRACEACT_ISSTRING(act)						\
567 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
568 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
569 
570 /* Function prototype definitions: */
571 static size_t dtrace_strlen(const char *, size_t);
572 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
573 static void dtrace_enabling_provide(dtrace_provider_t *);
574 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
575 static void dtrace_enabling_matchall(void);
576 static void dtrace_enabling_reap(void);
577 static dtrace_state_t *dtrace_anon_grab(void);
578 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
579     dtrace_state_t *, uint64_t, uint64_t);
580 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
581 static void dtrace_buffer_drop(dtrace_buffer_t *);
582 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
583 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
584     dtrace_state_t *, dtrace_mstate_t *);
585 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
586     dtrace_optval_t);
587 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
588 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
589 uint16_t dtrace_load16(uintptr_t);
590 uint32_t dtrace_load32(uintptr_t);
591 uint64_t dtrace_load64(uintptr_t);
592 uint8_t dtrace_load8(uintptr_t);
593 void dtrace_dynvar_clean(dtrace_dstate_t *);
594 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
595     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
596 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
597 static int dtrace_priv_proc(dtrace_state_t *);
598 static void dtrace_getf_barrier(void);
599 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
600     dtrace_mstate_t *, dtrace_vstate_t *);
601 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
602     dtrace_mstate_t *, dtrace_vstate_t *);
603 
604 /*
605  * DTrace Probe Context Functions
606  *
607  * These functions are called from probe context.  Because probe context is
608  * any context in which C may be called, arbitrarily locks may be held,
609  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
610  * As a result, functions called from probe context may only call other DTrace
611  * support functions -- they may not interact at all with the system at large.
612  * (Note that the ASSERT macro is made probe-context safe by redefining it in
613  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
614  * loads are to be performed from probe context, they _must_ be in terms of
615  * the safe dtrace_load*() variants.
616  *
617  * Some functions in this block are not actually called from probe context;
618  * for these functions, there will be a comment above the function reading
619  * "Note:  not called from probe context."
620  */
621 void
622 dtrace_panic(const char *format, ...)
623 {
624 	va_list alist;
625 
626 	va_start(alist, format);
627 #ifdef __FreeBSD__
628 	vpanic(format, alist);
629 #else
630 	dtrace_vpanic(format, alist);
631 #endif
632 	va_end(alist);
633 }
634 
635 int
636 dtrace_assfail(const char *a, const char *f, int l)
637 {
638 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
639 
640 	/*
641 	 * We just need something here that even the most clever compiler
642 	 * cannot optimize away.
643 	 */
644 	return (a[(uintptr_t)f]);
645 }
646 
647 /*
648  * Atomically increment a specified error counter from probe context.
649  */
650 static void
651 dtrace_error(uint32_t *counter)
652 {
653 	/*
654 	 * Most counters stored to in probe context are per-CPU counters.
655 	 * However, there are some error conditions that are sufficiently
656 	 * arcane that they don't merit per-CPU storage.  If these counters
657 	 * are incremented concurrently on different CPUs, scalability will be
658 	 * adversely affected -- but we don't expect them to be white-hot in a
659 	 * correctly constructed enabling...
660 	 */
661 	uint32_t oval, nval;
662 
663 	do {
664 		oval = *counter;
665 
666 		if ((nval = oval + 1) == 0) {
667 			/*
668 			 * If the counter would wrap, set it to 1 -- assuring
669 			 * that the counter is never zero when we have seen
670 			 * errors.  (The counter must be 32-bits because we
671 			 * aren't guaranteed a 64-bit compare&swap operation.)
672 			 * To save this code both the infamy of being fingered
673 			 * by a priggish news story and the indignity of being
674 			 * the target of a neo-puritan witch trial, we're
675 			 * carefully avoiding any colorful description of the
676 			 * likelihood of this condition -- but suffice it to
677 			 * say that it is only slightly more likely than the
678 			 * overflow of predicate cache IDs, as discussed in
679 			 * dtrace_predicate_create().
680 			 */
681 			nval = 1;
682 		}
683 	} while (dtrace_cas32(counter, oval, nval) != oval);
684 }
685 
686 /*
687  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
688  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
689  */
690 /* BEGIN CSTYLED */
691 DTRACE_LOADFUNC(8)
692 DTRACE_LOADFUNC(16)
693 DTRACE_LOADFUNC(32)
694 DTRACE_LOADFUNC(64)
695 /* END CSTYLED */
696 
697 static int
698 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
699 {
700 	if (dest < mstate->dtms_scratch_base)
701 		return (0);
702 
703 	if (dest + size < dest)
704 		return (0);
705 
706 	if (dest + size > mstate->dtms_scratch_ptr)
707 		return (0);
708 
709 	return (1);
710 }
711 
712 static int
713 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
714     dtrace_statvar_t **svars, int nsvars)
715 {
716 	int i;
717 	size_t maxglobalsize, maxlocalsize;
718 
719 	if (nsvars == 0)
720 		return (0);
721 
722 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
723 	maxlocalsize = maxglobalsize * NCPU;
724 
725 	for (i = 0; i < nsvars; i++) {
726 		dtrace_statvar_t *svar = svars[i];
727 		uint8_t scope;
728 		size_t size;
729 
730 		if (svar == NULL || (size = svar->dtsv_size) == 0)
731 			continue;
732 
733 		scope = svar->dtsv_var.dtdv_scope;
734 
735 		/*
736 		 * We verify that our size is valid in the spirit of providing
737 		 * defense in depth:  we want to prevent attackers from using
738 		 * DTrace to escalate an orthogonal kernel heap corruption bug
739 		 * into the ability to store to arbitrary locations in memory.
740 		 */
741 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
742 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
743 
744 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
745 		    svar->dtsv_size)) {
746 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
747 			    svar->dtsv_size);
748 			return (1);
749 		}
750 	}
751 
752 	return (0);
753 }
754 
755 /*
756  * Check to see if the address is within a memory region to which a store may
757  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
758  * region.  The caller of dtrace_canstore() is responsible for performing any
759  * alignment checks that are needed before stores are actually executed.
760  */
761 static int
762 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
763     dtrace_vstate_t *vstate)
764 {
765 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
766 }
767 
768 /*
769  * Implementation of dtrace_canstore which communicates the upper bound of the
770  * allowed memory region.
771  */
772 static int
773 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
774     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
775 {
776 	/*
777 	 * First, check to see if the address is in scratch space...
778 	 */
779 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
780 	    mstate->dtms_scratch_size)) {
781 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
782 		    mstate->dtms_scratch_size);
783 		return (1);
784 	}
785 
786 	/*
787 	 * Now check to see if it's a dynamic variable.  This check will pick
788 	 * up both thread-local variables and any global dynamically-allocated
789 	 * variables.
790 	 */
791 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
792 	    vstate->dtvs_dynvars.dtds_size)) {
793 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
794 		uintptr_t base = (uintptr_t)dstate->dtds_base +
795 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
796 		uintptr_t chunkoffs;
797 		dtrace_dynvar_t *dvar;
798 
799 		/*
800 		 * Before we assume that we can store here, we need to make
801 		 * sure that it isn't in our metadata -- storing to our
802 		 * dynamic variable metadata would corrupt our state.  For
803 		 * the range to not include any dynamic variable metadata,
804 		 * it must:
805 		 *
806 		 *	(1) Start above the hash table that is at the base of
807 		 *	the dynamic variable space
808 		 *
809 		 *	(2) Have a starting chunk offset that is beyond the
810 		 *	dtrace_dynvar_t that is at the base of every chunk
811 		 *
812 		 *	(3) Not span a chunk boundary
813 		 *
814 		 *	(4) Not be in the tuple space of a dynamic variable
815 		 *
816 		 */
817 		if (addr < base)
818 			return (0);
819 
820 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
821 
822 		if (chunkoffs < sizeof (dtrace_dynvar_t))
823 			return (0);
824 
825 		if (chunkoffs + sz > dstate->dtds_chunksize)
826 			return (0);
827 
828 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
829 
830 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
831 			return (0);
832 
833 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
834 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
835 			return (0);
836 
837 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
838 		return (1);
839 	}
840 
841 	/*
842 	 * Finally, check the static local and global variables.  These checks
843 	 * take the longest, so we perform them last.
844 	 */
845 	if (dtrace_canstore_statvar(addr, sz, remain,
846 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
847 		return (1);
848 
849 	if (dtrace_canstore_statvar(addr, sz, remain,
850 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
851 		return (1);
852 
853 	return (0);
854 }
855 
856 
857 /*
858  * Convenience routine to check to see if the address is within a memory
859  * region in which a load may be issued given the user's privilege level;
860  * if not, it sets the appropriate error flags and loads 'addr' into the
861  * illegal value slot.
862  *
863  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
864  * appropriate memory access protection.
865  */
866 static int
867 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
868     dtrace_vstate_t *vstate)
869 {
870 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
871 }
872 
873 /*
874  * Implementation of dtrace_canload which communicates the uppoer bound of the
875  * allowed memory region.
876  */
877 static int
878 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
879     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
880 {
881 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
882 	file_t *fp;
883 
884 	/*
885 	 * If we hold the privilege to read from kernel memory, then
886 	 * everything is readable.
887 	 */
888 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
889 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
890 		return (1);
891 	}
892 
893 	/*
894 	 * You can obviously read that which you can store.
895 	 */
896 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
897 		return (1);
898 
899 	/*
900 	 * We're allowed to read from our own string table.
901 	 */
902 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
903 	    mstate->dtms_difo->dtdo_strlen)) {
904 		DTRACE_RANGE_REMAIN(remain, addr,
905 		    mstate->dtms_difo->dtdo_strtab,
906 		    mstate->dtms_difo->dtdo_strlen);
907 		return (1);
908 	}
909 
910 	if (vstate->dtvs_state != NULL &&
911 	    dtrace_priv_proc(vstate->dtvs_state)) {
912 		proc_t *p;
913 
914 		/*
915 		 * When we have privileges to the current process, there are
916 		 * several context-related kernel structures that are safe to
917 		 * read, even absent the privilege to read from kernel memory.
918 		 * These reads are safe because these structures contain only
919 		 * state that (1) we're permitted to read, (2) is harmless or
920 		 * (3) contains pointers to additional kernel state that we're
921 		 * not permitted to read (and as such, do not present an
922 		 * opportunity for privilege escalation).  Finally (and
923 		 * critically), because of the nature of their relation with
924 		 * the current thread context, the memory associated with these
925 		 * structures cannot change over the duration of probe context,
926 		 * and it is therefore impossible for this memory to be
927 		 * deallocated and reallocated as something else while it's
928 		 * being operated upon.
929 		 */
930 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
931 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
932 			    sizeof (kthread_t));
933 			return (1);
934 		}
935 
936 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
937 		    sz, curthread->t_procp, sizeof (proc_t))) {
938 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
939 			    sizeof (proc_t));
940 			return (1);
941 		}
942 
943 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
944 		    curthread->t_cred, sizeof (cred_t))) {
945 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
946 			    sizeof (cred_t));
947 			return (1);
948 		}
949 
950 #ifdef illumos
951 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
952 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
953 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
954 			    sizeof (pid_t));
955 			return (1);
956 		}
957 
958 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
959 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
960 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
961 			    offsetof(cpu_t, cpu_pause_thread));
962 			return (1);
963 		}
964 #endif
965 	}
966 
967 	if ((fp = mstate->dtms_getf) != NULL) {
968 		uintptr_t psz = sizeof (void *);
969 		vnode_t *vp;
970 		vnodeops_t *op;
971 
972 		/*
973 		 * When getf() returns a file_t, the enabling is implicitly
974 		 * granted the (transient) right to read the returned file_t
975 		 * as well as the v_path and v_op->vnop_name of the underlying
976 		 * vnode.  These accesses are allowed after a successful
977 		 * getf() because the members that they refer to cannot change
978 		 * once set -- and the barrier logic in the kernel's closef()
979 		 * path assures that the file_t and its referenced vode_t
980 		 * cannot themselves be stale (that is, it impossible for
981 		 * either dtms_getf itself or its f_vnode member to reference
982 		 * freed memory).
983 		 */
984 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
985 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
986 			return (1);
987 		}
988 
989 		if ((vp = fp->f_vnode) != NULL) {
990 			size_t slen;
991 #ifdef illumos
992 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
993 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
994 				    psz);
995 				return (1);
996 			}
997 			slen = strlen(vp->v_path) + 1;
998 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
999 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1000 				    slen);
1001 				return (1);
1002 			}
1003 #endif
1004 
1005 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1006 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1007 				    psz);
1008 				return (1);
1009 			}
1010 
1011 #ifdef illumos
1012 			if ((op = vp->v_op) != NULL &&
1013 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1014 				DTRACE_RANGE_REMAIN(remain, addr,
1015 				    &op->vnop_name, psz);
1016 				return (1);
1017 			}
1018 
1019 			if (op != NULL && op->vnop_name != NULL &&
1020 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1021 			    (slen = strlen(op->vnop_name) + 1))) {
1022 				DTRACE_RANGE_REMAIN(remain, addr,
1023 				    op->vnop_name, slen);
1024 				return (1);
1025 			}
1026 #endif
1027 		}
1028 	}
1029 
1030 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1031 	*illval = addr;
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Convenience routine to check to see if a given string is within a memory
1037  * region in which a load may be issued given the user's privilege level;
1038  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1039  * calls in the event that the user has all privileges.
1040  */
1041 static int
1042 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1043     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1044 {
1045 	size_t rsize;
1046 
1047 	/*
1048 	 * If we hold the privilege to read from kernel memory, then
1049 	 * everything is readable.
1050 	 */
1051 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1052 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1053 		return (1);
1054 	}
1055 
1056 	/*
1057 	 * Even if the caller is uninterested in querying the remaining valid
1058 	 * range, it is required to ensure that the access is allowed.
1059 	 */
1060 	if (remain == NULL) {
1061 		remain = &rsize;
1062 	}
1063 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1064 		size_t strsz;
1065 		/*
1066 		 * Perform the strlen after determining the length of the
1067 		 * memory region which is accessible.  This prevents timing
1068 		 * information from being used to find NULs in memory which is
1069 		 * not accessible to the caller.
1070 		 */
1071 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1072 		    MIN(sz, *remain));
1073 		if (strsz <= *remain) {
1074 			return (1);
1075 		}
1076 	}
1077 
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Convenience routine to check to see if a given variable is within a memory
1083  * region in which a load may be issued given the user's privilege level.
1084  */
1085 static int
1086 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1087     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1088 {
1089 	size_t sz;
1090 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1091 
1092 	/*
1093 	 * Calculate the max size before performing any checks since even
1094 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1095 	 * return the max length via 'remain'.
1096 	 */
1097 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1098 		dtrace_state_t *state = vstate->dtvs_state;
1099 
1100 		if (state != NULL) {
1101 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1102 		} else {
1103 			/*
1104 			 * In helper context, we have a NULL state; fall back
1105 			 * to using the system-wide default for the string size
1106 			 * in this case.
1107 			 */
1108 			sz = dtrace_strsize_default;
1109 		}
1110 	} else {
1111 		sz = type->dtdt_size;
1112 	}
1113 
1114 	/*
1115 	 * If we hold the privilege to read from kernel memory, then
1116 	 * everything is readable.
1117 	 */
1118 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1119 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1120 		return (1);
1121 	}
1122 
1123 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1124 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1125 		    vstate));
1126 	}
1127 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1128 	    vstate));
1129 }
1130 
1131 /*
1132  * Convert a string to a signed integer using safe loads.
1133  *
1134  * NOTE: This function uses various macros from strtolctype.h to manipulate
1135  * digit values, etc -- these have all been checked to ensure they make
1136  * no additional function calls.
1137  */
1138 static int64_t
1139 dtrace_strtoll(char *input, int base, size_t limit)
1140 {
1141 	uintptr_t pos = (uintptr_t)input;
1142 	int64_t val = 0;
1143 	int x;
1144 	boolean_t neg = B_FALSE;
1145 	char c, cc, ccc;
1146 	uintptr_t end = pos + limit;
1147 
1148 	/*
1149 	 * Consume any whitespace preceding digits.
1150 	 */
1151 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1152 		pos++;
1153 
1154 	/*
1155 	 * Handle an explicit sign if one is present.
1156 	 */
1157 	if (c == '-' || c == '+') {
1158 		if (c == '-')
1159 			neg = B_TRUE;
1160 		c = dtrace_load8(++pos);
1161 	}
1162 
1163 	/*
1164 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1165 	 * if present.
1166 	 */
1167 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1168 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1169 		pos += 2;
1170 		c = ccc;
1171 	}
1172 
1173 	/*
1174 	 * Read in contiguous digits until the first non-digit character.
1175 	 */
1176 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1177 	    c = dtrace_load8(++pos))
1178 		val = val * base + x;
1179 
1180 	return (neg ? -val : val);
1181 }
1182 
1183 /*
1184  * Compare two strings using safe loads.
1185  */
1186 static int
1187 dtrace_strncmp(char *s1, char *s2, size_t limit)
1188 {
1189 	uint8_t c1, c2;
1190 	volatile uint16_t *flags;
1191 
1192 	if (s1 == s2 || limit == 0)
1193 		return (0);
1194 
1195 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1196 
1197 	do {
1198 		if (s1 == NULL) {
1199 			c1 = '\0';
1200 		} else {
1201 			c1 = dtrace_load8((uintptr_t)s1++);
1202 		}
1203 
1204 		if (s2 == NULL) {
1205 			c2 = '\0';
1206 		} else {
1207 			c2 = dtrace_load8((uintptr_t)s2++);
1208 		}
1209 
1210 		if (c1 != c2)
1211 			return (c1 - c2);
1212 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1213 
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Compute strlen(s) for a string using safe memory accesses.  The additional
1219  * len parameter is used to specify a maximum length to ensure completion.
1220  */
1221 static size_t
1222 dtrace_strlen(const char *s, size_t lim)
1223 {
1224 	uint_t len;
1225 
1226 	for (len = 0; len != lim; len++) {
1227 		if (dtrace_load8((uintptr_t)s++) == '\0')
1228 			break;
1229 	}
1230 
1231 	return (len);
1232 }
1233 
1234 /*
1235  * Check if an address falls within a toxic region.
1236  */
1237 static int
1238 dtrace_istoxic(uintptr_t kaddr, size_t size)
1239 {
1240 	uintptr_t taddr, tsize;
1241 	int i;
1242 
1243 	for (i = 0; i < dtrace_toxranges; i++) {
1244 		taddr = dtrace_toxrange[i].dtt_base;
1245 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1246 
1247 		if (kaddr - taddr < tsize) {
1248 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1249 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1250 			return (1);
1251 		}
1252 
1253 		if (taddr - kaddr < size) {
1254 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1255 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1256 			return (1);
1257 		}
1258 	}
1259 
1260 	return (0);
1261 }
1262 
1263 /*
1264  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1265  * memory specified by the DIF program.  The dst is assumed to be safe memory
1266  * that we can store to directly because it is managed by DTrace.  As with
1267  * standard bcopy, overlapping copies are handled properly.
1268  */
1269 static void
1270 dtrace_bcopy(const void *src, void *dst, size_t len)
1271 {
1272 	if (len != 0) {
1273 		uint8_t *s1 = dst;
1274 		const uint8_t *s2 = src;
1275 
1276 		if (s1 <= s2) {
1277 			do {
1278 				*s1++ = dtrace_load8((uintptr_t)s2++);
1279 			} while (--len != 0);
1280 		} else {
1281 			s2 += len;
1282 			s1 += len;
1283 
1284 			do {
1285 				*--s1 = dtrace_load8((uintptr_t)--s2);
1286 			} while (--len != 0);
1287 		}
1288 	}
1289 }
1290 
1291 /*
1292  * Copy src to dst using safe memory accesses, up to either the specified
1293  * length, or the point that a nul byte is encountered.  The src is assumed to
1294  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1295  * safe memory that we can store to directly because it is managed by DTrace.
1296  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1297  */
1298 static void
1299 dtrace_strcpy(const void *src, void *dst, size_t len)
1300 {
1301 	if (len != 0) {
1302 		uint8_t *s1 = dst, c;
1303 		const uint8_t *s2 = src;
1304 
1305 		do {
1306 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1307 		} while (--len != 0 && c != '\0');
1308 	}
1309 }
1310 
1311 /*
1312  * Copy src to dst, deriving the size and type from the specified (BYREF)
1313  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1314  * program.  The dst is assumed to be DTrace variable memory that is of the
1315  * specified type; we assume that we can store to directly.
1316  */
1317 static void
1318 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1319 {
1320 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1321 
1322 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1323 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1324 	} else {
1325 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1326 	}
1327 }
1328 
1329 /*
1330  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1331  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1332  * safe memory that we can access directly because it is managed by DTrace.
1333  */
1334 static int
1335 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1336 {
1337 	volatile uint16_t *flags;
1338 
1339 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1340 
1341 	if (s1 == s2)
1342 		return (0);
1343 
1344 	if (s1 == NULL || s2 == NULL)
1345 		return (1);
1346 
1347 	if (s1 != s2 && len != 0) {
1348 		const uint8_t *ps1 = s1;
1349 		const uint8_t *ps2 = s2;
1350 
1351 		do {
1352 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1353 				return (1);
1354 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1355 	}
1356 	return (0);
1357 }
1358 
1359 /*
1360  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1361  * is for safe DTrace-managed memory only.
1362  */
1363 static void
1364 dtrace_bzero(void *dst, size_t len)
1365 {
1366 	uchar_t *cp;
1367 
1368 	for (cp = dst; len != 0; len--)
1369 		*cp++ = 0;
1370 }
1371 
1372 static void
1373 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1374 {
1375 	uint64_t result[2];
1376 
1377 	result[0] = addend1[0] + addend2[0];
1378 	result[1] = addend1[1] + addend2[1] +
1379 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1380 
1381 	sum[0] = result[0];
1382 	sum[1] = result[1];
1383 }
1384 
1385 /*
1386  * Shift the 128-bit value in a by b. If b is positive, shift left.
1387  * If b is negative, shift right.
1388  */
1389 static void
1390 dtrace_shift_128(uint64_t *a, int b)
1391 {
1392 	uint64_t mask;
1393 
1394 	if (b == 0)
1395 		return;
1396 
1397 	if (b < 0) {
1398 		b = -b;
1399 		if (b >= 64) {
1400 			a[0] = a[1] >> (b - 64);
1401 			a[1] = 0;
1402 		} else {
1403 			a[0] >>= b;
1404 			mask = 1LL << (64 - b);
1405 			mask -= 1;
1406 			a[0] |= ((a[1] & mask) << (64 - b));
1407 			a[1] >>= b;
1408 		}
1409 	} else {
1410 		if (b >= 64) {
1411 			a[1] = a[0] << (b - 64);
1412 			a[0] = 0;
1413 		} else {
1414 			a[1] <<= b;
1415 			mask = a[0] >> (64 - b);
1416 			a[1] |= mask;
1417 			a[0] <<= b;
1418 		}
1419 	}
1420 }
1421 
1422 /*
1423  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1424  * use native multiplication on those, and then re-combine into the
1425  * resulting 128-bit value.
1426  *
1427  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1428  *     hi1 * hi2 << 64 +
1429  *     hi1 * lo2 << 32 +
1430  *     hi2 * lo1 << 32 +
1431  *     lo1 * lo2
1432  */
1433 static void
1434 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1435 {
1436 	uint64_t hi1, hi2, lo1, lo2;
1437 	uint64_t tmp[2];
1438 
1439 	hi1 = factor1 >> 32;
1440 	hi2 = factor2 >> 32;
1441 
1442 	lo1 = factor1 & DT_MASK_LO;
1443 	lo2 = factor2 & DT_MASK_LO;
1444 
1445 	product[0] = lo1 * lo2;
1446 	product[1] = hi1 * hi2;
1447 
1448 	tmp[0] = hi1 * lo2;
1449 	tmp[1] = 0;
1450 	dtrace_shift_128(tmp, 32);
1451 	dtrace_add_128(product, tmp, product);
1452 
1453 	tmp[0] = hi2 * lo1;
1454 	tmp[1] = 0;
1455 	dtrace_shift_128(tmp, 32);
1456 	dtrace_add_128(product, tmp, product);
1457 }
1458 
1459 /*
1460  * This privilege check should be used by actions and subroutines to
1461  * verify that the user credentials of the process that enabled the
1462  * invoking ECB match the target credentials
1463  */
1464 static int
1465 dtrace_priv_proc_common_user(dtrace_state_t *state)
1466 {
1467 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1468 
1469 	/*
1470 	 * We should always have a non-NULL state cred here, since if cred
1471 	 * is null (anonymous tracing), we fast-path bypass this routine.
1472 	 */
1473 	ASSERT(s_cr != NULL);
1474 
1475 	if ((cr = CRED()) != NULL &&
1476 	    s_cr->cr_uid == cr->cr_uid &&
1477 	    s_cr->cr_uid == cr->cr_ruid &&
1478 	    s_cr->cr_uid == cr->cr_suid &&
1479 	    s_cr->cr_gid == cr->cr_gid &&
1480 	    s_cr->cr_gid == cr->cr_rgid &&
1481 	    s_cr->cr_gid == cr->cr_sgid)
1482 		return (1);
1483 
1484 	return (0);
1485 }
1486 
1487 /*
1488  * This privilege check should be used by actions and subroutines to
1489  * verify that the zone of the process that enabled the invoking ECB
1490  * matches the target credentials
1491  */
1492 static int
1493 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1494 {
1495 #ifdef illumos
1496 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1497 
1498 	/*
1499 	 * We should always have a non-NULL state cred here, since if cred
1500 	 * is null (anonymous tracing), we fast-path bypass this routine.
1501 	 */
1502 	ASSERT(s_cr != NULL);
1503 
1504 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1505 		return (1);
1506 
1507 	return (0);
1508 #else
1509 	return (1);
1510 #endif
1511 }
1512 
1513 /*
1514  * This privilege check should be used by actions and subroutines to
1515  * verify that the process has not setuid or changed credentials.
1516  */
1517 static int
1518 dtrace_priv_proc_common_nocd(void)
1519 {
1520 	proc_t *proc;
1521 
1522 	if ((proc = ttoproc(curthread)) != NULL &&
1523 	    !(proc->p_flag & SNOCD))
1524 		return (1);
1525 
1526 	return (0);
1527 }
1528 
1529 static int
1530 dtrace_priv_proc_destructive(dtrace_state_t *state)
1531 {
1532 	int action = state->dts_cred.dcr_action;
1533 
1534 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1535 	    dtrace_priv_proc_common_zone(state) == 0)
1536 		goto bad;
1537 
1538 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1539 	    dtrace_priv_proc_common_user(state) == 0)
1540 		goto bad;
1541 
1542 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1543 	    dtrace_priv_proc_common_nocd() == 0)
1544 		goto bad;
1545 
1546 	return (1);
1547 
1548 bad:
1549 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1550 
1551 	return (0);
1552 }
1553 
1554 static int
1555 dtrace_priv_proc_control(dtrace_state_t *state)
1556 {
1557 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1558 		return (1);
1559 
1560 	if (dtrace_priv_proc_common_zone(state) &&
1561 	    dtrace_priv_proc_common_user(state) &&
1562 	    dtrace_priv_proc_common_nocd())
1563 		return (1);
1564 
1565 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1566 
1567 	return (0);
1568 }
1569 
1570 static int
1571 dtrace_priv_proc(dtrace_state_t *state)
1572 {
1573 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1574 		return (1);
1575 
1576 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1577 
1578 	return (0);
1579 }
1580 
1581 static int
1582 dtrace_priv_kernel(dtrace_state_t *state)
1583 {
1584 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1585 		return (1);
1586 
1587 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1588 
1589 	return (0);
1590 }
1591 
1592 static int
1593 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1594 {
1595 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1596 		return (1);
1597 
1598 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1599 
1600 	return (0);
1601 }
1602 
1603 /*
1604  * Determine if the dte_cond of the specified ECB allows for processing of
1605  * the current probe to continue.  Note that this routine may allow continued
1606  * processing, but with access(es) stripped from the mstate's dtms_access
1607  * field.
1608  */
1609 static int
1610 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1611     dtrace_ecb_t *ecb)
1612 {
1613 	dtrace_probe_t *probe = ecb->dte_probe;
1614 	dtrace_provider_t *prov = probe->dtpr_provider;
1615 	dtrace_pops_t *pops = &prov->dtpv_pops;
1616 	int mode = DTRACE_MODE_NOPRIV_DROP;
1617 
1618 	ASSERT(ecb->dte_cond);
1619 
1620 #ifdef illumos
1621 	if (pops->dtps_mode != NULL) {
1622 		mode = pops->dtps_mode(prov->dtpv_arg,
1623 		    probe->dtpr_id, probe->dtpr_arg);
1624 
1625 		ASSERT((mode & DTRACE_MODE_USER) ||
1626 		    (mode & DTRACE_MODE_KERNEL));
1627 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1628 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1629 	}
1630 
1631 	/*
1632 	 * If the dte_cond bits indicate that this consumer is only allowed to
1633 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1634 	 * entry point to check that the probe was fired while in a user
1635 	 * context.  If that's not the case, use the policy specified by the
1636 	 * provider to determine if we drop the probe or merely restrict
1637 	 * operation.
1638 	 */
1639 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1640 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1641 
1642 		if (!(mode & DTRACE_MODE_USER)) {
1643 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1644 				return (0);
1645 
1646 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1647 		}
1648 	}
1649 #endif
1650 
1651 	/*
1652 	 * This is more subtle than it looks. We have to be absolutely certain
1653 	 * that CRED() isn't going to change out from under us so it's only
1654 	 * legit to examine that structure if we're in constrained situations.
1655 	 * Currently, the only times we'll this check is if a non-super-user
1656 	 * has enabled the profile or syscall providers -- providers that
1657 	 * allow visibility of all processes. For the profile case, the check
1658 	 * above will ensure that we're examining a user context.
1659 	 */
1660 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1661 		cred_t *cr;
1662 		cred_t *s_cr = state->dts_cred.dcr_cred;
1663 		proc_t *proc;
1664 
1665 		ASSERT(s_cr != NULL);
1666 
1667 		if ((cr = CRED()) == NULL ||
1668 		    s_cr->cr_uid != cr->cr_uid ||
1669 		    s_cr->cr_uid != cr->cr_ruid ||
1670 		    s_cr->cr_uid != cr->cr_suid ||
1671 		    s_cr->cr_gid != cr->cr_gid ||
1672 		    s_cr->cr_gid != cr->cr_rgid ||
1673 		    s_cr->cr_gid != cr->cr_sgid ||
1674 		    (proc = ttoproc(curthread)) == NULL ||
1675 		    (proc->p_flag & SNOCD)) {
1676 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1677 				return (0);
1678 
1679 #ifdef illumos
1680 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1681 #endif
1682 		}
1683 	}
1684 
1685 #ifdef illumos
1686 	/*
1687 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1688 	 * in our zone, check to see if our mode policy is to restrict rather
1689 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1690 	 * and DTRACE_ACCESS_ARGS
1691 	 */
1692 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1693 		cred_t *cr;
1694 		cred_t *s_cr = state->dts_cred.dcr_cred;
1695 
1696 		ASSERT(s_cr != NULL);
1697 
1698 		if ((cr = CRED()) == NULL ||
1699 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1700 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1701 				return (0);
1702 
1703 			mstate->dtms_access &=
1704 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1705 		}
1706 	}
1707 #endif
1708 
1709 	return (1);
1710 }
1711 
1712 /*
1713  * Note:  not called from probe context.  This function is called
1714  * asynchronously (and at a regular interval) from outside of probe context to
1715  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1716  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1717  */
1718 void
1719 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1720 {
1721 	dtrace_dynvar_t *dirty;
1722 	dtrace_dstate_percpu_t *dcpu;
1723 	dtrace_dynvar_t **rinsep;
1724 	int i, j, work = 0;
1725 
1726 	for (i = 0; i < NCPU; i++) {
1727 		dcpu = &dstate->dtds_percpu[i];
1728 		rinsep = &dcpu->dtdsc_rinsing;
1729 
1730 		/*
1731 		 * If the dirty list is NULL, there is no dirty work to do.
1732 		 */
1733 		if (dcpu->dtdsc_dirty == NULL)
1734 			continue;
1735 
1736 		if (dcpu->dtdsc_rinsing != NULL) {
1737 			/*
1738 			 * If the rinsing list is non-NULL, then it is because
1739 			 * this CPU was selected to accept another CPU's
1740 			 * dirty list -- and since that time, dirty buffers
1741 			 * have accumulated.  This is a highly unlikely
1742 			 * condition, but we choose to ignore the dirty
1743 			 * buffers -- they'll be picked up a future cleanse.
1744 			 */
1745 			continue;
1746 		}
1747 
1748 		if (dcpu->dtdsc_clean != NULL) {
1749 			/*
1750 			 * If the clean list is non-NULL, then we're in a
1751 			 * situation where a CPU has done deallocations (we
1752 			 * have a non-NULL dirty list) but no allocations (we
1753 			 * also have a non-NULL clean list).  We can't simply
1754 			 * move the dirty list into the clean list on this
1755 			 * CPU, yet we also don't want to allow this condition
1756 			 * to persist, lest a short clean list prevent a
1757 			 * massive dirty list from being cleaned (which in
1758 			 * turn could lead to otherwise avoidable dynamic
1759 			 * drops).  To deal with this, we look for some CPU
1760 			 * with a NULL clean list, NULL dirty list, and NULL
1761 			 * rinsing list -- and then we borrow this CPU to
1762 			 * rinse our dirty list.
1763 			 */
1764 			for (j = 0; j < NCPU; j++) {
1765 				dtrace_dstate_percpu_t *rinser;
1766 
1767 				rinser = &dstate->dtds_percpu[j];
1768 
1769 				if (rinser->dtdsc_rinsing != NULL)
1770 					continue;
1771 
1772 				if (rinser->dtdsc_dirty != NULL)
1773 					continue;
1774 
1775 				if (rinser->dtdsc_clean != NULL)
1776 					continue;
1777 
1778 				rinsep = &rinser->dtdsc_rinsing;
1779 				break;
1780 			}
1781 
1782 			if (j == NCPU) {
1783 				/*
1784 				 * We were unable to find another CPU that
1785 				 * could accept this dirty list -- we are
1786 				 * therefore unable to clean it now.
1787 				 */
1788 				dtrace_dynvar_failclean++;
1789 				continue;
1790 			}
1791 		}
1792 
1793 		work = 1;
1794 
1795 		/*
1796 		 * Atomically move the dirty list aside.
1797 		 */
1798 		do {
1799 			dirty = dcpu->dtdsc_dirty;
1800 
1801 			/*
1802 			 * Before we zap the dirty list, set the rinsing list.
1803 			 * (This allows for a potential assertion in
1804 			 * dtrace_dynvar():  if a free dynamic variable appears
1805 			 * on a hash chain, either the dirty list or the
1806 			 * rinsing list for some CPU must be non-NULL.)
1807 			 */
1808 			*rinsep = dirty;
1809 			dtrace_membar_producer();
1810 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1811 		    dirty, NULL) != dirty);
1812 	}
1813 
1814 	if (!work) {
1815 		/*
1816 		 * We have no work to do; we can simply return.
1817 		 */
1818 		return;
1819 	}
1820 
1821 	dtrace_sync();
1822 
1823 	for (i = 0; i < NCPU; i++) {
1824 		dcpu = &dstate->dtds_percpu[i];
1825 
1826 		if (dcpu->dtdsc_rinsing == NULL)
1827 			continue;
1828 
1829 		/*
1830 		 * We are now guaranteed that no hash chain contains a pointer
1831 		 * into this dirty list; we can make it clean.
1832 		 */
1833 		ASSERT(dcpu->dtdsc_clean == NULL);
1834 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1835 		dcpu->dtdsc_rinsing = NULL;
1836 	}
1837 
1838 	/*
1839 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1840 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1841 	 * This prevents a race whereby a CPU incorrectly decides that
1842 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1843 	 * after dtrace_dynvar_clean() has completed.
1844 	 */
1845 	dtrace_sync();
1846 
1847 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1848 }
1849 
1850 /*
1851  * Depending on the value of the op parameter, this function looks-up,
1852  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1853  * allocation is requested, this function will return a pointer to a
1854  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1855  * variable can be allocated.  If NULL is returned, the appropriate counter
1856  * will be incremented.
1857  */
1858 dtrace_dynvar_t *
1859 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1860     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1861     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1862 {
1863 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1864 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1865 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1866 	processorid_t me = curcpu, cpu = me;
1867 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1868 	size_t bucket, ksize;
1869 	size_t chunksize = dstate->dtds_chunksize;
1870 	uintptr_t kdata, lock, nstate;
1871 	uint_t i;
1872 
1873 	ASSERT(nkeys != 0);
1874 
1875 	/*
1876 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1877 	 * algorithm.  For the by-value portions, we perform the algorithm in
1878 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1879 	 * bit, and seems to have only a minute effect on distribution.  For
1880 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1881 	 * over each referenced byte.  It's painful to do this, but it's much
1882 	 * better than pathological hash distribution.  The efficacy of the
1883 	 * hashing algorithm (and a comparison with other algorithms) may be
1884 	 * found by running the ::dtrace_dynstat MDB dcmd.
1885 	 */
1886 	for (i = 0; i < nkeys; i++) {
1887 		if (key[i].dttk_size == 0) {
1888 			uint64_t val = key[i].dttk_value;
1889 
1890 			hashval += (val >> 48) & 0xffff;
1891 			hashval += (hashval << 10);
1892 			hashval ^= (hashval >> 6);
1893 
1894 			hashval += (val >> 32) & 0xffff;
1895 			hashval += (hashval << 10);
1896 			hashval ^= (hashval >> 6);
1897 
1898 			hashval += (val >> 16) & 0xffff;
1899 			hashval += (hashval << 10);
1900 			hashval ^= (hashval >> 6);
1901 
1902 			hashval += val & 0xffff;
1903 			hashval += (hashval << 10);
1904 			hashval ^= (hashval >> 6);
1905 		} else {
1906 			/*
1907 			 * This is incredibly painful, but it beats the hell
1908 			 * out of the alternative.
1909 			 */
1910 			uint64_t j, size = key[i].dttk_size;
1911 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1912 
1913 			if (!dtrace_canload(base, size, mstate, vstate))
1914 				break;
1915 
1916 			for (j = 0; j < size; j++) {
1917 				hashval += dtrace_load8(base + j);
1918 				hashval += (hashval << 10);
1919 				hashval ^= (hashval >> 6);
1920 			}
1921 		}
1922 	}
1923 
1924 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1925 		return (NULL);
1926 
1927 	hashval += (hashval << 3);
1928 	hashval ^= (hashval >> 11);
1929 	hashval += (hashval << 15);
1930 
1931 	/*
1932 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1933 	 * comes out to be one of our two sentinel hash values.  If this
1934 	 * actually happens, we set the hashval to be a value known to be a
1935 	 * non-sentinel value.
1936 	 */
1937 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1938 		hashval = DTRACE_DYNHASH_VALID;
1939 
1940 	/*
1941 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1942 	 * important here, tricks can be pulled to reduce it.  (However, it's
1943 	 * critical that hash collisions be kept to an absolute minimum;
1944 	 * they're much more painful than a divide.)  It's better to have a
1945 	 * solution that generates few collisions and still keeps things
1946 	 * relatively simple.
1947 	 */
1948 	bucket = hashval % dstate->dtds_hashsize;
1949 
1950 	if (op == DTRACE_DYNVAR_DEALLOC) {
1951 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1952 
1953 		for (;;) {
1954 			while ((lock = *lockp) & 1)
1955 				continue;
1956 
1957 			if (dtrace_casptr((volatile void *)lockp,
1958 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1959 				break;
1960 		}
1961 
1962 		dtrace_membar_producer();
1963 	}
1964 
1965 top:
1966 	prev = NULL;
1967 	lock = hash[bucket].dtdh_lock;
1968 
1969 	dtrace_membar_consumer();
1970 
1971 	start = hash[bucket].dtdh_chain;
1972 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1973 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1974 	    op != DTRACE_DYNVAR_DEALLOC));
1975 
1976 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1977 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1978 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1979 
1980 		if (dvar->dtdv_hashval != hashval) {
1981 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1982 				/*
1983 				 * We've reached the sink, and therefore the
1984 				 * end of the hash chain; we can kick out of
1985 				 * the loop knowing that we have seen a valid
1986 				 * snapshot of state.
1987 				 */
1988 				ASSERT(dvar->dtdv_next == NULL);
1989 				ASSERT(dvar == &dtrace_dynhash_sink);
1990 				break;
1991 			}
1992 
1993 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1994 				/*
1995 				 * We've gone off the rails:  somewhere along
1996 				 * the line, one of the members of this hash
1997 				 * chain was deleted.  Note that we could also
1998 				 * detect this by simply letting this loop run
1999 				 * to completion, as we would eventually hit
2000 				 * the end of the dirty list.  However, we
2001 				 * want to avoid running the length of the
2002 				 * dirty list unnecessarily (it might be quite
2003 				 * long), so we catch this as early as
2004 				 * possible by detecting the hash marker.  In
2005 				 * this case, we simply set dvar to NULL and
2006 				 * break; the conditional after the loop will
2007 				 * send us back to top.
2008 				 */
2009 				dvar = NULL;
2010 				break;
2011 			}
2012 
2013 			goto next;
2014 		}
2015 
2016 		if (dtuple->dtt_nkeys != nkeys)
2017 			goto next;
2018 
2019 		for (i = 0; i < nkeys; i++, dkey++) {
2020 			if (dkey->dttk_size != key[i].dttk_size)
2021 				goto next; /* size or type mismatch */
2022 
2023 			if (dkey->dttk_size != 0) {
2024 				if (dtrace_bcmp(
2025 				    (void *)(uintptr_t)key[i].dttk_value,
2026 				    (void *)(uintptr_t)dkey->dttk_value,
2027 				    dkey->dttk_size))
2028 					goto next;
2029 			} else {
2030 				if (dkey->dttk_value != key[i].dttk_value)
2031 					goto next;
2032 			}
2033 		}
2034 
2035 		if (op != DTRACE_DYNVAR_DEALLOC)
2036 			return (dvar);
2037 
2038 		ASSERT(dvar->dtdv_next == NULL ||
2039 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2040 
2041 		if (prev != NULL) {
2042 			ASSERT(hash[bucket].dtdh_chain != dvar);
2043 			ASSERT(start != dvar);
2044 			ASSERT(prev->dtdv_next == dvar);
2045 			prev->dtdv_next = dvar->dtdv_next;
2046 		} else {
2047 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2048 			    start, dvar->dtdv_next) != start) {
2049 				/*
2050 				 * We have failed to atomically swing the
2051 				 * hash table head pointer, presumably because
2052 				 * of a conflicting allocation on another CPU.
2053 				 * We need to reread the hash chain and try
2054 				 * again.
2055 				 */
2056 				goto top;
2057 			}
2058 		}
2059 
2060 		dtrace_membar_producer();
2061 
2062 		/*
2063 		 * Now set the hash value to indicate that it's free.
2064 		 */
2065 		ASSERT(hash[bucket].dtdh_chain != dvar);
2066 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2067 
2068 		dtrace_membar_producer();
2069 
2070 		/*
2071 		 * Set the next pointer to point at the dirty list, and
2072 		 * atomically swing the dirty pointer to the newly freed dvar.
2073 		 */
2074 		do {
2075 			next = dcpu->dtdsc_dirty;
2076 			dvar->dtdv_next = next;
2077 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2078 
2079 		/*
2080 		 * Finally, unlock this hash bucket.
2081 		 */
2082 		ASSERT(hash[bucket].dtdh_lock == lock);
2083 		ASSERT(lock & 1);
2084 		hash[bucket].dtdh_lock++;
2085 
2086 		return (NULL);
2087 next:
2088 		prev = dvar;
2089 		continue;
2090 	}
2091 
2092 	if (dvar == NULL) {
2093 		/*
2094 		 * If dvar is NULL, it is because we went off the rails:
2095 		 * one of the elements that we traversed in the hash chain
2096 		 * was deleted while we were traversing it.  In this case,
2097 		 * we assert that we aren't doing a dealloc (deallocs lock
2098 		 * the hash bucket to prevent themselves from racing with
2099 		 * one another), and retry the hash chain traversal.
2100 		 */
2101 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2102 		goto top;
2103 	}
2104 
2105 	if (op != DTRACE_DYNVAR_ALLOC) {
2106 		/*
2107 		 * If we are not to allocate a new variable, we want to
2108 		 * return NULL now.  Before we return, check that the value
2109 		 * of the lock word hasn't changed.  If it has, we may have
2110 		 * seen an inconsistent snapshot.
2111 		 */
2112 		if (op == DTRACE_DYNVAR_NOALLOC) {
2113 			if (hash[bucket].dtdh_lock != lock)
2114 				goto top;
2115 		} else {
2116 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2117 			ASSERT(hash[bucket].dtdh_lock == lock);
2118 			ASSERT(lock & 1);
2119 			hash[bucket].dtdh_lock++;
2120 		}
2121 
2122 		return (NULL);
2123 	}
2124 
2125 	/*
2126 	 * We need to allocate a new dynamic variable.  The size we need is the
2127 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2128 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2129 	 * the size of any referred-to data (dsize).  We then round the final
2130 	 * size up to the chunksize for allocation.
2131 	 */
2132 	for (ksize = 0, i = 0; i < nkeys; i++)
2133 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2134 
2135 	/*
2136 	 * This should be pretty much impossible, but could happen if, say,
2137 	 * strange DIF specified the tuple.  Ideally, this should be an
2138 	 * assertion and not an error condition -- but that requires that the
2139 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2140 	 * bullet-proof.  (That is, it must not be able to be fooled by
2141 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2142 	 * solving this would presumably not amount to solving the Halting
2143 	 * Problem -- but it still seems awfully hard.
2144 	 */
2145 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2146 	    ksize + dsize > chunksize) {
2147 		dcpu->dtdsc_drops++;
2148 		return (NULL);
2149 	}
2150 
2151 	nstate = DTRACE_DSTATE_EMPTY;
2152 
2153 	do {
2154 retry:
2155 		free = dcpu->dtdsc_free;
2156 
2157 		if (free == NULL) {
2158 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2159 			void *rval;
2160 
2161 			if (clean == NULL) {
2162 				/*
2163 				 * We're out of dynamic variable space on
2164 				 * this CPU.  Unless we have tried all CPUs,
2165 				 * we'll try to allocate from a different
2166 				 * CPU.
2167 				 */
2168 				switch (dstate->dtds_state) {
2169 				case DTRACE_DSTATE_CLEAN: {
2170 					void *sp = &dstate->dtds_state;
2171 
2172 					if (++cpu >= NCPU)
2173 						cpu = 0;
2174 
2175 					if (dcpu->dtdsc_dirty != NULL &&
2176 					    nstate == DTRACE_DSTATE_EMPTY)
2177 						nstate = DTRACE_DSTATE_DIRTY;
2178 
2179 					if (dcpu->dtdsc_rinsing != NULL)
2180 						nstate = DTRACE_DSTATE_RINSING;
2181 
2182 					dcpu = &dstate->dtds_percpu[cpu];
2183 
2184 					if (cpu != me)
2185 						goto retry;
2186 
2187 					(void) dtrace_cas32(sp,
2188 					    DTRACE_DSTATE_CLEAN, nstate);
2189 
2190 					/*
2191 					 * To increment the correct bean
2192 					 * counter, take another lap.
2193 					 */
2194 					goto retry;
2195 				}
2196 
2197 				case DTRACE_DSTATE_DIRTY:
2198 					dcpu->dtdsc_dirty_drops++;
2199 					break;
2200 
2201 				case DTRACE_DSTATE_RINSING:
2202 					dcpu->dtdsc_rinsing_drops++;
2203 					break;
2204 
2205 				case DTRACE_DSTATE_EMPTY:
2206 					dcpu->dtdsc_drops++;
2207 					break;
2208 				}
2209 
2210 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2211 				return (NULL);
2212 			}
2213 
2214 			/*
2215 			 * The clean list appears to be non-empty.  We want to
2216 			 * move the clean list to the free list; we start by
2217 			 * moving the clean pointer aside.
2218 			 */
2219 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2220 			    clean, NULL) != clean) {
2221 				/*
2222 				 * We are in one of two situations:
2223 				 *
2224 				 *  (a)	The clean list was switched to the
2225 				 *	free list by another CPU.
2226 				 *
2227 				 *  (b)	The clean list was added to by the
2228 				 *	cleansing cyclic.
2229 				 *
2230 				 * In either of these situations, we can
2231 				 * just reattempt the free list allocation.
2232 				 */
2233 				goto retry;
2234 			}
2235 
2236 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2237 
2238 			/*
2239 			 * Now we'll move the clean list to our free list.
2240 			 * It's impossible for this to fail:  the only way
2241 			 * the free list can be updated is through this
2242 			 * code path, and only one CPU can own the clean list.
2243 			 * Thus, it would only be possible for this to fail if
2244 			 * this code were racing with dtrace_dynvar_clean().
2245 			 * (That is, if dtrace_dynvar_clean() updated the clean
2246 			 * list, and we ended up racing to update the free
2247 			 * list.)  This race is prevented by the dtrace_sync()
2248 			 * in dtrace_dynvar_clean() -- which flushes the
2249 			 * owners of the clean lists out before resetting
2250 			 * the clean lists.
2251 			 */
2252 			dcpu = &dstate->dtds_percpu[me];
2253 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2254 			ASSERT(rval == NULL);
2255 			goto retry;
2256 		}
2257 
2258 		dvar = free;
2259 		new_free = dvar->dtdv_next;
2260 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2261 
2262 	/*
2263 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2264 	 * tuple array and copy any referenced key data into the data space
2265 	 * following the tuple array.  As we do this, we relocate dttk_value
2266 	 * in the final tuple to point to the key data address in the chunk.
2267 	 */
2268 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2269 	dvar->dtdv_data = (void *)(kdata + ksize);
2270 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2271 
2272 	for (i = 0; i < nkeys; i++) {
2273 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2274 		size_t kesize = key[i].dttk_size;
2275 
2276 		if (kesize != 0) {
2277 			dtrace_bcopy(
2278 			    (const void *)(uintptr_t)key[i].dttk_value,
2279 			    (void *)kdata, kesize);
2280 			dkey->dttk_value = kdata;
2281 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2282 		} else {
2283 			dkey->dttk_value = key[i].dttk_value;
2284 		}
2285 
2286 		dkey->dttk_size = kesize;
2287 	}
2288 
2289 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2290 	dvar->dtdv_hashval = hashval;
2291 	dvar->dtdv_next = start;
2292 
2293 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2294 		return (dvar);
2295 
2296 	/*
2297 	 * The cas has failed.  Either another CPU is adding an element to
2298 	 * this hash chain, or another CPU is deleting an element from this
2299 	 * hash chain.  The simplest way to deal with both of these cases
2300 	 * (though not necessarily the most efficient) is to free our
2301 	 * allocated block and re-attempt it all.  Note that the free is
2302 	 * to the dirty list and _not_ to the free list.  This is to prevent
2303 	 * races with allocators, above.
2304 	 */
2305 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2306 
2307 	dtrace_membar_producer();
2308 
2309 	do {
2310 		free = dcpu->dtdsc_dirty;
2311 		dvar->dtdv_next = free;
2312 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2313 
2314 	goto top;
2315 }
2316 
2317 /*ARGSUSED*/
2318 static void
2319 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2320 {
2321 	if ((int64_t)nval < (int64_t)*oval)
2322 		*oval = nval;
2323 }
2324 
2325 /*ARGSUSED*/
2326 static void
2327 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2328 {
2329 	if ((int64_t)nval > (int64_t)*oval)
2330 		*oval = nval;
2331 }
2332 
2333 static void
2334 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2335 {
2336 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2337 	int64_t val = (int64_t)nval;
2338 
2339 	if (val < 0) {
2340 		for (i = 0; i < zero; i++) {
2341 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2342 				quanta[i] += incr;
2343 				return;
2344 			}
2345 		}
2346 	} else {
2347 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2348 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2349 				quanta[i - 1] += incr;
2350 				return;
2351 			}
2352 		}
2353 
2354 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2355 		return;
2356 	}
2357 
2358 	ASSERT(0);
2359 }
2360 
2361 static void
2362 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2363 {
2364 	uint64_t arg = *lquanta++;
2365 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2366 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2367 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2368 	int32_t val = (int32_t)nval, level;
2369 
2370 	ASSERT(step != 0);
2371 	ASSERT(levels != 0);
2372 
2373 	if (val < base) {
2374 		/*
2375 		 * This is an underflow.
2376 		 */
2377 		lquanta[0] += incr;
2378 		return;
2379 	}
2380 
2381 	level = (val - base) / step;
2382 
2383 	if (level < levels) {
2384 		lquanta[level + 1] += incr;
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * This is an overflow.
2390 	 */
2391 	lquanta[levels + 1] += incr;
2392 }
2393 
2394 static int
2395 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2396     uint16_t high, uint16_t nsteps, int64_t value)
2397 {
2398 	int64_t this = 1, last, next;
2399 	int base = 1, order;
2400 
2401 	ASSERT(factor <= nsteps);
2402 	ASSERT(nsteps % factor == 0);
2403 
2404 	for (order = 0; order < low; order++)
2405 		this *= factor;
2406 
2407 	/*
2408 	 * If our value is less than our factor taken to the power of the
2409 	 * low order of magnitude, it goes into the zeroth bucket.
2410 	 */
2411 	if (value < (last = this))
2412 		return (0);
2413 
2414 	for (this *= factor; order <= high; order++) {
2415 		int nbuckets = this > nsteps ? nsteps : this;
2416 
2417 		if ((next = this * factor) < this) {
2418 			/*
2419 			 * We should not generally get log/linear quantizations
2420 			 * with a high magnitude that allows 64-bits to
2421 			 * overflow, but we nonetheless protect against this
2422 			 * by explicitly checking for overflow, and clamping
2423 			 * our value accordingly.
2424 			 */
2425 			value = this - 1;
2426 		}
2427 
2428 		if (value < this) {
2429 			/*
2430 			 * If our value lies within this order of magnitude,
2431 			 * determine its position by taking the offset within
2432 			 * the order of magnitude, dividing by the bucket
2433 			 * width, and adding to our (accumulated) base.
2434 			 */
2435 			return (base + (value - last) / (this / nbuckets));
2436 		}
2437 
2438 		base += nbuckets - (nbuckets / factor);
2439 		last = this;
2440 		this = next;
2441 	}
2442 
2443 	/*
2444 	 * Our value is greater than or equal to our factor taken to the
2445 	 * power of one plus the high magnitude -- return the top bucket.
2446 	 */
2447 	return (base);
2448 }
2449 
2450 static void
2451 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2452 {
2453 	uint64_t arg = *llquanta++;
2454 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2455 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2456 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2457 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2458 
2459 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2460 	    low, high, nsteps, nval)] += incr;
2461 }
2462 
2463 /*ARGSUSED*/
2464 static void
2465 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2466 {
2467 	data[0]++;
2468 	data[1] += nval;
2469 }
2470 
2471 /*ARGSUSED*/
2472 static void
2473 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2474 {
2475 	int64_t snval = (int64_t)nval;
2476 	uint64_t tmp[2];
2477 
2478 	data[0]++;
2479 	data[1] += nval;
2480 
2481 	/*
2482 	 * What we want to say here is:
2483 	 *
2484 	 * data[2] += nval * nval;
2485 	 *
2486 	 * But given that nval is 64-bit, we could easily overflow, so
2487 	 * we do this as 128-bit arithmetic.
2488 	 */
2489 	if (snval < 0)
2490 		snval = -snval;
2491 
2492 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2493 	dtrace_add_128(data + 2, tmp, data + 2);
2494 }
2495 
2496 /*ARGSUSED*/
2497 static void
2498 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2499 {
2500 	*oval = *oval + 1;
2501 }
2502 
2503 /*ARGSUSED*/
2504 static void
2505 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2506 {
2507 	*oval += nval;
2508 }
2509 
2510 /*
2511  * Aggregate given the tuple in the principal data buffer, and the aggregating
2512  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2513  * buffer is specified as the buf parameter.  This routine does not return
2514  * failure; if there is no space in the aggregation buffer, the data will be
2515  * dropped, and a corresponding counter incremented.
2516  */
2517 static void
2518 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2519     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2520 {
2521 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2522 	uint32_t i, ndx, size, fsize;
2523 	uint32_t align = sizeof (uint64_t) - 1;
2524 	dtrace_aggbuffer_t *agb;
2525 	dtrace_aggkey_t *key;
2526 	uint32_t hashval = 0, limit, isstr;
2527 	caddr_t tomax, data, kdata;
2528 	dtrace_actkind_t action;
2529 	dtrace_action_t *act;
2530 	uintptr_t offs;
2531 
2532 	if (buf == NULL)
2533 		return;
2534 
2535 	if (!agg->dtag_hasarg) {
2536 		/*
2537 		 * Currently, only quantize() and lquantize() take additional
2538 		 * arguments, and they have the same semantics:  an increment
2539 		 * value that defaults to 1 when not present.  If additional
2540 		 * aggregating actions take arguments, the setting of the
2541 		 * default argument value will presumably have to become more
2542 		 * sophisticated...
2543 		 */
2544 		arg = 1;
2545 	}
2546 
2547 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2548 	size = rec->dtrd_offset - agg->dtag_base;
2549 	fsize = size + rec->dtrd_size;
2550 
2551 	ASSERT(dbuf->dtb_tomax != NULL);
2552 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2553 
2554 	if ((tomax = buf->dtb_tomax) == NULL) {
2555 		dtrace_buffer_drop(buf);
2556 		return;
2557 	}
2558 
2559 	/*
2560 	 * The metastructure is always at the bottom of the buffer.
2561 	 */
2562 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2563 	    sizeof (dtrace_aggbuffer_t));
2564 
2565 	if (buf->dtb_offset == 0) {
2566 		/*
2567 		 * We just kludge up approximately 1/8th of the size to be
2568 		 * buckets.  If this guess ends up being routinely
2569 		 * off-the-mark, we may need to dynamically readjust this
2570 		 * based on past performance.
2571 		 */
2572 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2573 
2574 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2575 		    (uintptr_t)tomax || hashsize == 0) {
2576 			/*
2577 			 * We've been given a ludicrously small buffer;
2578 			 * increment our drop count and leave.
2579 			 */
2580 			dtrace_buffer_drop(buf);
2581 			return;
2582 		}
2583 
2584 		/*
2585 		 * And now, a pathetic attempt to try to get a an odd (or
2586 		 * perchance, a prime) hash size for better hash distribution.
2587 		 */
2588 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2589 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2590 
2591 		agb->dtagb_hashsize = hashsize;
2592 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2593 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2594 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2595 
2596 		for (i = 0; i < agb->dtagb_hashsize; i++)
2597 			agb->dtagb_hash[i] = NULL;
2598 	}
2599 
2600 	ASSERT(agg->dtag_first != NULL);
2601 	ASSERT(agg->dtag_first->dta_intuple);
2602 
2603 	/*
2604 	 * Calculate the hash value based on the key.  Note that we _don't_
2605 	 * include the aggid in the hashing (but we will store it as part of
2606 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2607 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2608 	 * gets good distribution in practice.  The efficacy of the hashing
2609 	 * algorithm (and a comparison with other algorithms) may be found by
2610 	 * running the ::dtrace_aggstat MDB dcmd.
2611 	 */
2612 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2613 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2614 		limit = i + act->dta_rec.dtrd_size;
2615 		ASSERT(limit <= size);
2616 		isstr = DTRACEACT_ISSTRING(act);
2617 
2618 		for (; i < limit; i++) {
2619 			hashval += data[i];
2620 			hashval += (hashval << 10);
2621 			hashval ^= (hashval >> 6);
2622 
2623 			if (isstr && data[i] == '\0')
2624 				break;
2625 		}
2626 	}
2627 
2628 	hashval += (hashval << 3);
2629 	hashval ^= (hashval >> 11);
2630 	hashval += (hashval << 15);
2631 
2632 	/*
2633 	 * Yes, the divide here is expensive -- but it's generally the least
2634 	 * of the performance issues given the amount of data that we iterate
2635 	 * over to compute hash values, compare data, etc.
2636 	 */
2637 	ndx = hashval % agb->dtagb_hashsize;
2638 
2639 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2640 		ASSERT((caddr_t)key >= tomax);
2641 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2642 
2643 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2644 			continue;
2645 
2646 		kdata = key->dtak_data;
2647 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2648 
2649 		for (act = agg->dtag_first; act->dta_intuple;
2650 		    act = act->dta_next) {
2651 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2652 			limit = i + act->dta_rec.dtrd_size;
2653 			ASSERT(limit <= size);
2654 			isstr = DTRACEACT_ISSTRING(act);
2655 
2656 			for (; i < limit; i++) {
2657 				if (kdata[i] != data[i])
2658 					goto next;
2659 
2660 				if (isstr && data[i] == '\0')
2661 					break;
2662 			}
2663 		}
2664 
2665 		if (action != key->dtak_action) {
2666 			/*
2667 			 * We are aggregating on the same value in the same
2668 			 * aggregation with two different aggregating actions.
2669 			 * (This should have been picked up in the compiler,
2670 			 * so we may be dealing with errant or devious DIF.)
2671 			 * This is an error condition; we indicate as much,
2672 			 * and return.
2673 			 */
2674 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2675 			return;
2676 		}
2677 
2678 		/*
2679 		 * This is a hit:  we need to apply the aggregator to
2680 		 * the value at this key.
2681 		 */
2682 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2683 		return;
2684 next:
2685 		continue;
2686 	}
2687 
2688 	/*
2689 	 * We didn't find it.  We need to allocate some zero-filled space,
2690 	 * link it into the hash table appropriately, and apply the aggregator
2691 	 * to the (zero-filled) value.
2692 	 */
2693 	offs = buf->dtb_offset;
2694 	while (offs & (align - 1))
2695 		offs += sizeof (uint32_t);
2696 
2697 	/*
2698 	 * If we don't have enough room to both allocate a new key _and_
2699 	 * its associated data, increment the drop count and return.
2700 	 */
2701 	if ((uintptr_t)tomax + offs + fsize >
2702 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2703 		dtrace_buffer_drop(buf);
2704 		return;
2705 	}
2706 
2707 	/*CONSTCOND*/
2708 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2709 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2710 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2711 
2712 	key->dtak_data = kdata = tomax + offs;
2713 	buf->dtb_offset = offs + fsize;
2714 
2715 	/*
2716 	 * Now copy the data across.
2717 	 */
2718 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2719 
2720 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2721 		kdata[i] = data[i];
2722 
2723 	/*
2724 	 * Because strings are not zeroed out by default, we need to iterate
2725 	 * looking for actions that store strings, and we need to explicitly
2726 	 * pad these strings out with zeroes.
2727 	 */
2728 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2729 		int nul;
2730 
2731 		if (!DTRACEACT_ISSTRING(act))
2732 			continue;
2733 
2734 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2735 		limit = i + act->dta_rec.dtrd_size;
2736 		ASSERT(limit <= size);
2737 
2738 		for (nul = 0; i < limit; i++) {
2739 			if (nul) {
2740 				kdata[i] = '\0';
2741 				continue;
2742 			}
2743 
2744 			if (data[i] != '\0')
2745 				continue;
2746 
2747 			nul = 1;
2748 		}
2749 	}
2750 
2751 	for (i = size; i < fsize; i++)
2752 		kdata[i] = 0;
2753 
2754 	key->dtak_hashval = hashval;
2755 	key->dtak_size = size;
2756 	key->dtak_action = action;
2757 	key->dtak_next = agb->dtagb_hash[ndx];
2758 	agb->dtagb_hash[ndx] = key;
2759 
2760 	/*
2761 	 * Finally, apply the aggregator.
2762 	 */
2763 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2764 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2765 }
2766 
2767 /*
2768  * Given consumer state, this routine finds a speculation in the INACTIVE
2769  * state and transitions it into the ACTIVE state.  If there is no speculation
2770  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2771  * incremented -- it is up to the caller to take appropriate action.
2772  */
2773 static int
2774 dtrace_speculation(dtrace_state_t *state)
2775 {
2776 	int i = 0;
2777 	dtrace_speculation_state_t current;
2778 	uint32_t *stat = &state->dts_speculations_unavail, count;
2779 
2780 	while (i < state->dts_nspeculations) {
2781 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2782 
2783 		current = spec->dtsp_state;
2784 
2785 		if (current != DTRACESPEC_INACTIVE) {
2786 			if (current == DTRACESPEC_COMMITTINGMANY ||
2787 			    current == DTRACESPEC_COMMITTING ||
2788 			    current == DTRACESPEC_DISCARDING)
2789 				stat = &state->dts_speculations_busy;
2790 			i++;
2791 			continue;
2792 		}
2793 
2794 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2795 		    current, DTRACESPEC_ACTIVE) == current)
2796 			return (i + 1);
2797 	}
2798 
2799 	/*
2800 	 * We couldn't find a speculation.  If we found as much as a single
2801 	 * busy speculation buffer, we'll attribute this failure as "busy"
2802 	 * instead of "unavail".
2803 	 */
2804 	do {
2805 		count = *stat;
2806 	} while (dtrace_cas32(stat, count, count + 1) != count);
2807 
2808 	return (0);
2809 }
2810 
2811 /*
2812  * This routine commits an active speculation.  If the specified speculation
2813  * is not in a valid state to perform a commit(), this routine will silently do
2814  * nothing.  The state of the specified speculation is transitioned according
2815  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2816  */
2817 static void
2818 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2819     dtrace_specid_t which)
2820 {
2821 	dtrace_speculation_t *spec;
2822 	dtrace_buffer_t *src, *dest;
2823 	uintptr_t daddr, saddr, dlimit, slimit;
2824 	dtrace_speculation_state_t current, new = 0;
2825 	intptr_t offs;
2826 	uint64_t timestamp;
2827 
2828 	if (which == 0)
2829 		return;
2830 
2831 	if (which > state->dts_nspeculations) {
2832 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2833 		return;
2834 	}
2835 
2836 	spec = &state->dts_speculations[which - 1];
2837 	src = &spec->dtsp_buffer[cpu];
2838 	dest = &state->dts_buffer[cpu];
2839 
2840 	do {
2841 		current = spec->dtsp_state;
2842 
2843 		if (current == DTRACESPEC_COMMITTINGMANY)
2844 			break;
2845 
2846 		switch (current) {
2847 		case DTRACESPEC_INACTIVE:
2848 		case DTRACESPEC_DISCARDING:
2849 			return;
2850 
2851 		case DTRACESPEC_COMMITTING:
2852 			/*
2853 			 * This is only possible if we are (a) commit()'ing
2854 			 * without having done a prior speculate() on this CPU
2855 			 * and (b) racing with another commit() on a different
2856 			 * CPU.  There's nothing to do -- we just assert that
2857 			 * our offset is 0.
2858 			 */
2859 			ASSERT(src->dtb_offset == 0);
2860 			return;
2861 
2862 		case DTRACESPEC_ACTIVE:
2863 			new = DTRACESPEC_COMMITTING;
2864 			break;
2865 
2866 		case DTRACESPEC_ACTIVEONE:
2867 			/*
2868 			 * This speculation is active on one CPU.  If our
2869 			 * buffer offset is non-zero, we know that the one CPU
2870 			 * must be us.  Otherwise, we are committing on a
2871 			 * different CPU from the speculate(), and we must
2872 			 * rely on being asynchronously cleaned.
2873 			 */
2874 			if (src->dtb_offset != 0) {
2875 				new = DTRACESPEC_COMMITTING;
2876 				break;
2877 			}
2878 			/*FALLTHROUGH*/
2879 
2880 		case DTRACESPEC_ACTIVEMANY:
2881 			new = DTRACESPEC_COMMITTINGMANY;
2882 			break;
2883 
2884 		default:
2885 			ASSERT(0);
2886 		}
2887 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2888 	    current, new) != current);
2889 
2890 	/*
2891 	 * We have set the state to indicate that we are committing this
2892 	 * speculation.  Now reserve the necessary space in the destination
2893 	 * buffer.
2894 	 */
2895 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2896 	    sizeof (uint64_t), state, NULL)) < 0) {
2897 		dtrace_buffer_drop(dest);
2898 		goto out;
2899 	}
2900 
2901 	/*
2902 	 * We have sufficient space to copy the speculative buffer into the
2903 	 * primary buffer.  First, modify the speculative buffer, filling
2904 	 * in the timestamp of all entries with the current time.  The data
2905 	 * must have the commit() time rather than the time it was traced,
2906 	 * so that all entries in the primary buffer are in timestamp order.
2907 	 */
2908 	timestamp = dtrace_gethrtime();
2909 	saddr = (uintptr_t)src->dtb_tomax;
2910 	slimit = saddr + src->dtb_offset;
2911 	while (saddr < slimit) {
2912 		size_t size;
2913 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2914 
2915 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2916 			saddr += sizeof (dtrace_epid_t);
2917 			continue;
2918 		}
2919 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2920 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2921 
2922 		ASSERT3U(saddr + size, <=, slimit);
2923 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2924 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2925 
2926 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2927 
2928 		saddr += size;
2929 	}
2930 
2931 	/*
2932 	 * Copy the buffer across.  (Note that this is a
2933 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2934 	 * a serious performance issue, a high-performance DTrace-specific
2935 	 * bcopy() should obviously be invented.)
2936 	 */
2937 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2938 	dlimit = daddr + src->dtb_offset;
2939 	saddr = (uintptr_t)src->dtb_tomax;
2940 
2941 	/*
2942 	 * First, the aligned portion.
2943 	 */
2944 	while (dlimit - daddr >= sizeof (uint64_t)) {
2945 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2946 
2947 		daddr += sizeof (uint64_t);
2948 		saddr += sizeof (uint64_t);
2949 	}
2950 
2951 	/*
2952 	 * Now any left-over bit...
2953 	 */
2954 	while (dlimit - daddr)
2955 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2956 
2957 	/*
2958 	 * Finally, commit the reserved space in the destination buffer.
2959 	 */
2960 	dest->dtb_offset = offs + src->dtb_offset;
2961 
2962 out:
2963 	/*
2964 	 * If we're lucky enough to be the only active CPU on this speculation
2965 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2966 	 */
2967 	if (current == DTRACESPEC_ACTIVE ||
2968 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2969 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2970 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2971 
2972 		ASSERT(rval == DTRACESPEC_COMMITTING);
2973 	}
2974 
2975 	src->dtb_offset = 0;
2976 	src->dtb_xamot_drops += src->dtb_drops;
2977 	src->dtb_drops = 0;
2978 }
2979 
2980 /*
2981  * This routine discards an active speculation.  If the specified speculation
2982  * is not in a valid state to perform a discard(), this routine will silently
2983  * do nothing.  The state of the specified speculation is transitioned
2984  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2985  */
2986 static void
2987 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2988     dtrace_specid_t which)
2989 {
2990 	dtrace_speculation_t *spec;
2991 	dtrace_speculation_state_t current, new = 0;
2992 	dtrace_buffer_t *buf;
2993 
2994 	if (which == 0)
2995 		return;
2996 
2997 	if (which > state->dts_nspeculations) {
2998 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2999 		return;
3000 	}
3001 
3002 	spec = &state->dts_speculations[which - 1];
3003 	buf = &spec->dtsp_buffer[cpu];
3004 
3005 	do {
3006 		current = spec->dtsp_state;
3007 
3008 		switch (current) {
3009 		case DTRACESPEC_INACTIVE:
3010 		case DTRACESPEC_COMMITTINGMANY:
3011 		case DTRACESPEC_COMMITTING:
3012 		case DTRACESPEC_DISCARDING:
3013 			return;
3014 
3015 		case DTRACESPEC_ACTIVE:
3016 		case DTRACESPEC_ACTIVEMANY:
3017 			new = DTRACESPEC_DISCARDING;
3018 			break;
3019 
3020 		case DTRACESPEC_ACTIVEONE:
3021 			if (buf->dtb_offset != 0) {
3022 				new = DTRACESPEC_INACTIVE;
3023 			} else {
3024 				new = DTRACESPEC_DISCARDING;
3025 			}
3026 			break;
3027 
3028 		default:
3029 			ASSERT(0);
3030 		}
3031 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3032 	    current, new) != current);
3033 
3034 	buf->dtb_offset = 0;
3035 	buf->dtb_drops = 0;
3036 }
3037 
3038 /*
3039  * Note:  not called from probe context.  This function is called
3040  * asynchronously from cross call context to clean any speculations that are
3041  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3042  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3043  * speculation.
3044  */
3045 static void
3046 dtrace_speculation_clean_here(dtrace_state_t *state)
3047 {
3048 	dtrace_icookie_t cookie;
3049 	processorid_t cpu = curcpu;
3050 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3051 	dtrace_specid_t i;
3052 
3053 	cookie = dtrace_interrupt_disable();
3054 
3055 	if (dest->dtb_tomax == NULL) {
3056 		dtrace_interrupt_enable(cookie);
3057 		return;
3058 	}
3059 
3060 	for (i = 0; i < state->dts_nspeculations; i++) {
3061 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3062 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3063 
3064 		if (src->dtb_tomax == NULL)
3065 			continue;
3066 
3067 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3068 			src->dtb_offset = 0;
3069 			continue;
3070 		}
3071 
3072 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3073 			continue;
3074 
3075 		if (src->dtb_offset == 0)
3076 			continue;
3077 
3078 		dtrace_speculation_commit(state, cpu, i + 1);
3079 	}
3080 
3081 	dtrace_interrupt_enable(cookie);
3082 }
3083 
3084 /*
3085  * Note:  not called from probe context.  This function is called
3086  * asynchronously (and at a regular interval) to clean any speculations that
3087  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3088  * is work to be done, it cross calls all CPUs to perform that work;
3089  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3090  * INACTIVE state until they have been cleaned by all CPUs.
3091  */
3092 static void
3093 dtrace_speculation_clean(dtrace_state_t *state)
3094 {
3095 	int work = 0, rv;
3096 	dtrace_specid_t i;
3097 
3098 	for (i = 0; i < state->dts_nspeculations; i++) {
3099 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3100 
3101 		ASSERT(!spec->dtsp_cleaning);
3102 
3103 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3104 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3105 			continue;
3106 
3107 		work++;
3108 		spec->dtsp_cleaning = 1;
3109 	}
3110 
3111 	if (!work)
3112 		return;
3113 
3114 	dtrace_xcall(DTRACE_CPUALL,
3115 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3116 
3117 	/*
3118 	 * We now know that all CPUs have committed or discarded their
3119 	 * speculation buffers, as appropriate.  We can now set the state
3120 	 * to inactive.
3121 	 */
3122 	for (i = 0; i < state->dts_nspeculations; i++) {
3123 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3124 		dtrace_speculation_state_t current, new;
3125 
3126 		if (!spec->dtsp_cleaning)
3127 			continue;
3128 
3129 		current = spec->dtsp_state;
3130 		ASSERT(current == DTRACESPEC_DISCARDING ||
3131 		    current == DTRACESPEC_COMMITTINGMANY);
3132 
3133 		new = DTRACESPEC_INACTIVE;
3134 
3135 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3136 		ASSERT(rv == current);
3137 		spec->dtsp_cleaning = 0;
3138 	}
3139 }
3140 
3141 /*
3142  * Called as part of a speculate() to get the speculative buffer associated
3143  * with a given speculation.  Returns NULL if the specified speculation is not
3144  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3145  * the active CPU is not the specified CPU -- the speculation will be
3146  * atomically transitioned into the ACTIVEMANY state.
3147  */
3148 static dtrace_buffer_t *
3149 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3150     dtrace_specid_t which)
3151 {
3152 	dtrace_speculation_t *spec;
3153 	dtrace_speculation_state_t current, new = 0;
3154 	dtrace_buffer_t *buf;
3155 
3156 	if (which == 0)
3157 		return (NULL);
3158 
3159 	if (which > state->dts_nspeculations) {
3160 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3161 		return (NULL);
3162 	}
3163 
3164 	spec = &state->dts_speculations[which - 1];
3165 	buf = &spec->dtsp_buffer[cpuid];
3166 
3167 	do {
3168 		current = spec->dtsp_state;
3169 
3170 		switch (current) {
3171 		case DTRACESPEC_INACTIVE:
3172 		case DTRACESPEC_COMMITTINGMANY:
3173 		case DTRACESPEC_DISCARDING:
3174 			return (NULL);
3175 
3176 		case DTRACESPEC_COMMITTING:
3177 			ASSERT(buf->dtb_offset == 0);
3178 			return (NULL);
3179 
3180 		case DTRACESPEC_ACTIVEONE:
3181 			/*
3182 			 * This speculation is currently active on one CPU.
3183 			 * Check the offset in the buffer; if it's non-zero,
3184 			 * that CPU must be us (and we leave the state alone).
3185 			 * If it's zero, assume that we're starting on a new
3186 			 * CPU -- and change the state to indicate that the
3187 			 * speculation is active on more than one CPU.
3188 			 */
3189 			if (buf->dtb_offset != 0)
3190 				return (buf);
3191 
3192 			new = DTRACESPEC_ACTIVEMANY;
3193 			break;
3194 
3195 		case DTRACESPEC_ACTIVEMANY:
3196 			return (buf);
3197 
3198 		case DTRACESPEC_ACTIVE:
3199 			new = DTRACESPEC_ACTIVEONE;
3200 			break;
3201 
3202 		default:
3203 			ASSERT(0);
3204 		}
3205 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3206 	    current, new) != current);
3207 
3208 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3209 	return (buf);
3210 }
3211 
3212 /*
3213  * Return a string.  In the event that the user lacks the privilege to access
3214  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3215  * don't fail access checking.
3216  *
3217  * dtrace_dif_variable() uses this routine as a helper for various
3218  * builtin values such as 'execname' and 'probefunc.'
3219  */
3220 uintptr_t
3221 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3222     dtrace_mstate_t *mstate)
3223 {
3224 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3225 	uintptr_t ret;
3226 	size_t strsz;
3227 
3228 	/*
3229 	 * The easy case: this probe is allowed to read all of memory, so
3230 	 * we can just return this as a vanilla pointer.
3231 	 */
3232 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3233 		return (addr);
3234 
3235 	/*
3236 	 * This is the tougher case: we copy the string in question from
3237 	 * kernel memory into scratch memory and return it that way: this
3238 	 * ensures that we won't trip up when access checking tests the
3239 	 * BYREF return value.
3240 	 */
3241 	strsz = dtrace_strlen((char *)addr, size) + 1;
3242 
3243 	if (mstate->dtms_scratch_ptr + strsz >
3244 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3245 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3246 		return (0);
3247 	}
3248 
3249 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3250 	    strsz);
3251 	ret = mstate->dtms_scratch_ptr;
3252 	mstate->dtms_scratch_ptr += strsz;
3253 	return (ret);
3254 }
3255 
3256 /*
3257  * Return a string from a memoy address which is known to have one or
3258  * more concatenated, individually zero terminated, sub-strings.
3259  * In the event that the user lacks the privilege to access
3260  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3261  * don't fail access checking.
3262  *
3263  * dtrace_dif_variable() uses this routine as a helper for various
3264  * builtin values such as 'execargs'.
3265  */
3266 static uintptr_t
3267 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3268     dtrace_mstate_t *mstate)
3269 {
3270 	char *p;
3271 	size_t i;
3272 	uintptr_t ret;
3273 
3274 	if (mstate->dtms_scratch_ptr + strsz >
3275 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3276 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3277 		return (0);
3278 	}
3279 
3280 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3281 	    strsz);
3282 
3283 	/* Replace sub-string termination characters with a space. */
3284 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3285 	    p++, i++)
3286 		if (*p == '\0')
3287 			*p = ' ';
3288 
3289 	ret = mstate->dtms_scratch_ptr;
3290 	mstate->dtms_scratch_ptr += strsz;
3291 	return (ret);
3292 }
3293 
3294 /*
3295  * This function implements the DIF emulator's variable lookups.  The emulator
3296  * passes a reserved variable identifier and optional built-in array index.
3297  */
3298 static uint64_t
3299 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3300     uint64_t ndx)
3301 {
3302 	/*
3303 	 * If we're accessing one of the uncached arguments, we'll turn this
3304 	 * into a reference in the args array.
3305 	 */
3306 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3307 		ndx = v - DIF_VAR_ARG0;
3308 		v = DIF_VAR_ARGS;
3309 	}
3310 
3311 	switch (v) {
3312 	case DIF_VAR_ARGS:
3313 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3314 		if (ndx >= sizeof (mstate->dtms_arg) /
3315 		    sizeof (mstate->dtms_arg[0])) {
3316 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3317 			dtrace_provider_t *pv;
3318 			uint64_t val;
3319 
3320 			pv = mstate->dtms_probe->dtpr_provider;
3321 			if (pv->dtpv_pops.dtps_getargval != NULL)
3322 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3323 				    mstate->dtms_probe->dtpr_id,
3324 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3325 			else
3326 				val = dtrace_getarg(ndx, aframes);
3327 
3328 			/*
3329 			 * This is regrettably required to keep the compiler
3330 			 * from tail-optimizing the call to dtrace_getarg().
3331 			 * The condition always evaluates to true, but the
3332 			 * compiler has no way of figuring that out a priori.
3333 			 * (None of this would be necessary if the compiler
3334 			 * could be relied upon to _always_ tail-optimize
3335 			 * the call to dtrace_getarg() -- but it can't.)
3336 			 */
3337 			if (mstate->dtms_probe != NULL)
3338 				return (val);
3339 
3340 			ASSERT(0);
3341 		}
3342 
3343 		return (mstate->dtms_arg[ndx]);
3344 
3345 #ifdef illumos
3346 	case DIF_VAR_UREGS: {
3347 		klwp_t *lwp;
3348 
3349 		if (!dtrace_priv_proc(state))
3350 			return (0);
3351 
3352 		if ((lwp = curthread->t_lwp) == NULL) {
3353 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3354 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3355 			return (0);
3356 		}
3357 
3358 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3359 		return (0);
3360 	}
3361 #else
3362 	case DIF_VAR_UREGS: {
3363 		struct trapframe *tframe;
3364 
3365 		if (!dtrace_priv_proc(state))
3366 			return (0);
3367 
3368 		if ((tframe = curthread->td_frame) == NULL) {
3369 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3370 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3371 			return (0);
3372 		}
3373 
3374 		return (dtrace_getreg(tframe, ndx));
3375 	}
3376 #endif
3377 
3378 	case DIF_VAR_CURTHREAD:
3379 		if (!dtrace_priv_proc(state))
3380 			return (0);
3381 		return ((uint64_t)(uintptr_t)curthread);
3382 
3383 	case DIF_VAR_TIMESTAMP:
3384 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3385 			mstate->dtms_timestamp = dtrace_gethrtime();
3386 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3387 		}
3388 		return (mstate->dtms_timestamp);
3389 
3390 	case DIF_VAR_VTIMESTAMP:
3391 		ASSERT(dtrace_vtime_references != 0);
3392 		return (curthread->t_dtrace_vtime);
3393 
3394 	case DIF_VAR_WALLTIMESTAMP:
3395 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3396 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3397 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3398 		}
3399 		return (mstate->dtms_walltimestamp);
3400 
3401 #ifdef illumos
3402 	case DIF_VAR_IPL:
3403 		if (!dtrace_priv_kernel(state))
3404 			return (0);
3405 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3406 			mstate->dtms_ipl = dtrace_getipl();
3407 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3408 		}
3409 		return (mstate->dtms_ipl);
3410 #endif
3411 
3412 	case DIF_VAR_EPID:
3413 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3414 		return (mstate->dtms_epid);
3415 
3416 	case DIF_VAR_ID:
3417 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3418 		return (mstate->dtms_probe->dtpr_id);
3419 
3420 	case DIF_VAR_STACKDEPTH:
3421 		if (!dtrace_priv_kernel(state))
3422 			return (0);
3423 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3424 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3425 
3426 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3427 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3428 		}
3429 		return (mstate->dtms_stackdepth);
3430 
3431 	case DIF_VAR_USTACKDEPTH:
3432 		if (!dtrace_priv_proc(state))
3433 			return (0);
3434 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3435 			/*
3436 			 * See comment in DIF_VAR_PID.
3437 			 */
3438 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3439 			    CPU_ON_INTR(CPU)) {
3440 				mstate->dtms_ustackdepth = 0;
3441 			} else {
3442 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3443 				mstate->dtms_ustackdepth =
3444 				    dtrace_getustackdepth();
3445 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3446 			}
3447 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3448 		}
3449 		return (mstate->dtms_ustackdepth);
3450 
3451 	case DIF_VAR_CALLER:
3452 		if (!dtrace_priv_kernel(state))
3453 			return (0);
3454 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3455 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3456 
3457 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3458 				/*
3459 				 * If this is an unanchored probe, we are
3460 				 * required to go through the slow path:
3461 				 * dtrace_caller() only guarantees correct
3462 				 * results for anchored probes.
3463 				 */
3464 				pc_t caller[2] = {0, 0};
3465 
3466 				dtrace_getpcstack(caller, 2, aframes,
3467 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3468 				mstate->dtms_caller = caller[1];
3469 			} else if ((mstate->dtms_caller =
3470 			    dtrace_caller(aframes)) == -1) {
3471 				/*
3472 				 * We have failed to do this the quick way;
3473 				 * we must resort to the slower approach of
3474 				 * calling dtrace_getpcstack().
3475 				 */
3476 				pc_t caller = 0;
3477 
3478 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3479 				mstate->dtms_caller = caller;
3480 			}
3481 
3482 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3483 		}
3484 		return (mstate->dtms_caller);
3485 
3486 	case DIF_VAR_UCALLER:
3487 		if (!dtrace_priv_proc(state))
3488 			return (0);
3489 
3490 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3491 			uint64_t ustack[3];
3492 
3493 			/*
3494 			 * dtrace_getupcstack() fills in the first uint64_t
3495 			 * with the current PID.  The second uint64_t will
3496 			 * be the program counter at user-level.  The third
3497 			 * uint64_t will contain the caller, which is what
3498 			 * we're after.
3499 			 */
3500 			ustack[2] = 0;
3501 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3502 			dtrace_getupcstack(ustack, 3);
3503 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3504 			mstate->dtms_ucaller = ustack[2];
3505 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3506 		}
3507 
3508 		return (mstate->dtms_ucaller);
3509 
3510 	case DIF_VAR_PROBEPROV:
3511 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3512 		return (dtrace_dif_varstr(
3513 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3514 		    state, mstate));
3515 
3516 	case DIF_VAR_PROBEMOD:
3517 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3518 		return (dtrace_dif_varstr(
3519 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3520 		    state, mstate));
3521 
3522 	case DIF_VAR_PROBEFUNC:
3523 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3524 		return (dtrace_dif_varstr(
3525 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3526 		    state, mstate));
3527 
3528 	case DIF_VAR_PROBENAME:
3529 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3530 		return (dtrace_dif_varstr(
3531 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3532 		    state, mstate));
3533 
3534 	case DIF_VAR_PID:
3535 		if (!dtrace_priv_proc(state))
3536 			return (0);
3537 
3538 #ifdef illumos
3539 		/*
3540 		 * Note that we are assuming that an unanchored probe is
3541 		 * always due to a high-level interrupt.  (And we're assuming
3542 		 * that there is only a single high level interrupt.)
3543 		 */
3544 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3545 			return (pid0.pid_id);
3546 
3547 		/*
3548 		 * It is always safe to dereference one's own t_procp pointer:
3549 		 * it always points to a valid, allocated proc structure.
3550 		 * Further, it is always safe to dereference the p_pidp member
3551 		 * of one's own proc structure.  (These are truisms becuase
3552 		 * threads and processes don't clean up their own state --
3553 		 * they leave that task to whomever reaps them.)
3554 		 */
3555 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3556 #else
3557 		return ((uint64_t)curproc->p_pid);
3558 #endif
3559 
3560 	case DIF_VAR_PPID:
3561 		if (!dtrace_priv_proc(state))
3562 			return (0);
3563 
3564 #ifdef illumos
3565 		/*
3566 		 * See comment in DIF_VAR_PID.
3567 		 */
3568 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3569 			return (pid0.pid_id);
3570 
3571 		/*
3572 		 * It is always safe to dereference one's own t_procp pointer:
3573 		 * it always points to a valid, allocated proc structure.
3574 		 * (This is true because threads don't clean up their own
3575 		 * state -- they leave that task to whomever reaps them.)
3576 		 */
3577 		return ((uint64_t)curthread->t_procp->p_ppid);
3578 #else
3579 		if (curproc->p_pid == proc0.p_pid)
3580 			return (curproc->p_pid);
3581 		else
3582 			return (curproc->p_pptr->p_pid);
3583 #endif
3584 
3585 	case DIF_VAR_TID:
3586 #ifdef illumos
3587 		/*
3588 		 * See comment in DIF_VAR_PID.
3589 		 */
3590 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3591 			return (0);
3592 #endif
3593 
3594 		return ((uint64_t)curthread->t_tid);
3595 
3596 	case DIF_VAR_EXECARGS: {
3597 		struct pargs *p_args = curthread->td_proc->p_args;
3598 
3599 		if (p_args == NULL)
3600 			return(0);
3601 
3602 		return (dtrace_dif_varstrz(
3603 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3604 	}
3605 
3606 	case DIF_VAR_EXECNAME:
3607 #ifdef illumos
3608 		if (!dtrace_priv_proc(state))
3609 			return (0);
3610 
3611 		/*
3612 		 * See comment in DIF_VAR_PID.
3613 		 */
3614 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3615 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3616 
3617 		/*
3618 		 * It is always safe to dereference one's own t_procp pointer:
3619 		 * it always points to a valid, allocated proc structure.
3620 		 * (This is true because threads don't clean up their own
3621 		 * state -- they leave that task to whomever reaps them.)
3622 		 */
3623 		return (dtrace_dif_varstr(
3624 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3625 		    state, mstate));
3626 #else
3627 		return (dtrace_dif_varstr(
3628 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3629 #endif
3630 
3631 	case DIF_VAR_ZONENAME:
3632 #ifdef illumos
3633 		if (!dtrace_priv_proc(state))
3634 			return (0);
3635 
3636 		/*
3637 		 * See comment in DIF_VAR_PID.
3638 		 */
3639 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3640 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3641 
3642 		/*
3643 		 * It is always safe to dereference one's own t_procp pointer:
3644 		 * it always points to a valid, allocated proc structure.
3645 		 * (This is true because threads don't clean up their own
3646 		 * state -- they leave that task to whomever reaps them.)
3647 		 */
3648 		return (dtrace_dif_varstr(
3649 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3650 		    state, mstate));
3651 #else
3652 		return (0);
3653 #endif
3654 
3655 	case DIF_VAR_UID:
3656 		if (!dtrace_priv_proc(state))
3657 			return (0);
3658 
3659 #ifdef illumos
3660 		/*
3661 		 * See comment in DIF_VAR_PID.
3662 		 */
3663 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3664 			return ((uint64_t)p0.p_cred->cr_uid);
3665 
3666 		/*
3667 		 * It is always safe to dereference one's own t_procp pointer:
3668 		 * it always points to a valid, allocated proc structure.
3669 		 * (This is true because threads don't clean up their own
3670 		 * state -- they leave that task to whomever reaps them.)
3671 		 *
3672 		 * Additionally, it is safe to dereference one's own process
3673 		 * credential, since this is never NULL after process birth.
3674 		 */
3675 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3676 #else
3677 		return ((uint64_t)curthread->td_ucred->cr_uid);
3678 #endif
3679 
3680 	case DIF_VAR_GID:
3681 		if (!dtrace_priv_proc(state))
3682 			return (0);
3683 
3684 #ifdef illumos
3685 		/*
3686 		 * See comment in DIF_VAR_PID.
3687 		 */
3688 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3689 			return ((uint64_t)p0.p_cred->cr_gid);
3690 
3691 		/*
3692 		 * It is always safe to dereference one's own t_procp pointer:
3693 		 * it always points to a valid, allocated proc structure.
3694 		 * (This is true because threads don't clean up their own
3695 		 * state -- they leave that task to whomever reaps them.)
3696 		 *
3697 		 * Additionally, it is safe to dereference one's own process
3698 		 * credential, since this is never NULL after process birth.
3699 		 */
3700 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3701 #else
3702 		return ((uint64_t)curthread->td_ucred->cr_gid);
3703 #endif
3704 
3705 	case DIF_VAR_ERRNO: {
3706 #ifdef illumos
3707 		klwp_t *lwp;
3708 		if (!dtrace_priv_proc(state))
3709 			return (0);
3710 
3711 		/*
3712 		 * See comment in DIF_VAR_PID.
3713 		 */
3714 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3715 			return (0);
3716 
3717 		/*
3718 		 * It is always safe to dereference one's own t_lwp pointer in
3719 		 * the event that this pointer is non-NULL.  (This is true
3720 		 * because threads and lwps don't clean up their own state --
3721 		 * they leave that task to whomever reaps them.)
3722 		 */
3723 		if ((lwp = curthread->t_lwp) == NULL)
3724 			return (0);
3725 
3726 		return ((uint64_t)lwp->lwp_errno);
3727 #else
3728 		return (curthread->td_errno);
3729 #endif
3730 	}
3731 #ifndef illumos
3732 	case DIF_VAR_CPU: {
3733 		return curcpu;
3734 	}
3735 #endif
3736 	default:
3737 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3738 		return (0);
3739 	}
3740 }
3741 
3742 
3743 typedef enum dtrace_json_state {
3744 	DTRACE_JSON_REST = 1,
3745 	DTRACE_JSON_OBJECT,
3746 	DTRACE_JSON_STRING,
3747 	DTRACE_JSON_STRING_ESCAPE,
3748 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3749 	DTRACE_JSON_COLON,
3750 	DTRACE_JSON_COMMA,
3751 	DTRACE_JSON_VALUE,
3752 	DTRACE_JSON_IDENTIFIER,
3753 	DTRACE_JSON_NUMBER,
3754 	DTRACE_JSON_NUMBER_FRAC,
3755 	DTRACE_JSON_NUMBER_EXP,
3756 	DTRACE_JSON_COLLECT_OBJECT
3757 } dtrace_json_state_t;
3758 
3759 /*
3760  * This function possesses just enough knowledge about JSON to extract a single
3761  * value from a JSON string and store it in the scratch buffer.  It is able
3762  * to extract nested object values, and members of arrays by index.
3763  *
3764  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3765  * be looked up as we descend into the object tree.  e.g.
3766  *
3767  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3768  *       with nelems = 5.
3769  *
3770  * The run time of this function must be bounded above by strsize to limit the
3771  * amount of work done in probe context.  As such, it is implemented as a
3772  * simple state machine, reading one character at a time using safe loads
3773  * until we find the requested element, hit a parsing error or run off the
3774  * end of the object or string.
3775  *
3776  * As there is no way for a subroutine to return an error without interrupting
3777  * clause execution, we simply return NULL in the event of a missing key or any
3778  * other error condition.  Each NULL return in this function is commented with
3779  * the error condition it represents -- parsing or otherwise.
3780  *
3781  * The set of states for the state machine closely matches the JSON
3782  * specification (http://json.org/).  Briefly:
3783  *
3784  *   DTRACE_JSON_REST:
3785  *     Skip whitespace until we find either a top-level Object, moving
3786  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3787  *
3788  *   DTRACE_JSON_OBJECT:
3789  *     Locate the next key String in an Object.  Sets a flag to denote
3790  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3791  *
3792  *   DTRACE_JSON_COLON:
3793  *     Skip whitespace until we find the colon that separates key Strings
3794  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3795  *
3796  *   DTRACE_JSON_VALUE:
3797  *     Detects the type of the next value (String, Number, Identifier, Object
3798  *     or Array) and routes to the states that process that type.  Here we also
3799  *     deal with the element selector list if we are requested to traverse down
3800  *     into the object tree.
3801  *
3802  *   DTRACE_JSON_COMMA:
3803  *     Skip whitespace until we find the comma that separates key-value pairs
3804  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3805  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3806  *     states return to this state at the end of their value, unless otherwise
3807  *     noted.
3808  *
3809  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3810  *     Processes a Number literal from the JSON, including any exponent
3811  *     component that may be present.  Numbers are returned as strings, which
3812  *     may be passed to strtoll() if an integer is required.
3813  *
3814  *   DTRACE_JSON_IDENTIFIER:
3815  *     Processes a "true", "false" or "null" literal in the JSON.
3816  *
3817  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3818  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3819  *     Processes a String literal from the JSON, whether the String denotes
3820  *     a key, a value or part of a larger Object.  Handles all escape sequences
3821  *     present in the specification, including four-digit unicode characters,
3822  *     but merely includes the escape sequence without converting it to the
3823  *     actual escaped character.  If the String is flagged as a key, we
3824  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3825  *
3826  *   DTRACE_JSON_COLLECT_OBJECT:
3827  *     This state collects an entire Object (or Array), correctly handling
3828  *     embedded strings.  If the full element selector list matches this nested
3829  *     object, we return the Object in full as a string.  If not, we use this
3830  *     state to skip to the next value at this level and continue processing.
3831  *
3832  * NOTE: This function uses various macros from strtolctype.h to manipulate
3833  * digit values, etc -- these have all been checked to ensure they make
3834  * no additional function calls.
3835  */
3836 static char *
3837 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3838     char *dest)
3839 {
3840 	dtrace_json_state_t state = DTRACE_JSON_REST;
3841 	int64_t array_elem = INT64_MIN;
3842 	int64_t array_pos = 0;
3843 	uint8_t escape_unicount = 0;
3844 	boolean_t string_is_key = B_FALSE;
3845 	boolean_t collect_object = B_FALSE;
3846 	boolean_t found_key = B_FALSE;
3847 	boolean_t in_array = B_FALSE;
3848 	uint32_t braces = 0, brackets = 0;
3849 	char *elem = elemlist;
3850 	char *dd = dest;
3851 	uintptr_t cur;
3852 
3853 	for (cur = json; cur < json + size; cur++) {
3854 		char cc = dtrace_load8(cur);
3855 		if (cc == '\0')
3856 			return (NULL);
3857 
3858 		switch (state) {
3859 		case DTRACE_JSON_REST:
3860 			if (isspace(cc))
3861 				break;
3862 
3863 			if (cc == '{') {
3864 				state = DTRACE_JSON_OBJECT;
3865 				break;
3866 			}
3867 
3868 			if (cc == '[') {
3869 				in_array = B_TRUE;
3870 				array_pos = 0;
3871 				array_elem = dtrace_strtoll(elem, 10, size);
3872 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3873 				state = DTRACE_JSON_VALUE;
3874 				break;
3875 			}
3876 
3877 			/*
3878 			 * ERROR: expected to find a top-level object or array.
3879 			 */
3880 			return (NULL);
3881 		case DTRACE_JSON_OBJECT:
3882 			if (isspace(cc))
3883 				break;
3884 
3885 			if (cc == '"') {
3886 				state = DTRACE_JSON_STRING;
3887 				string_is_key = B_TRUE;
3888 				break;
3889 			}
3890 
3891 			/*
3892 			 * ERROR: either the object did not start with a key
3893 			 * string, or we've run off the end of the object
3894 			 * without finding the requested key.
3895 			 */
3896 			return (NULL);
3897 		case DTRACE_JSON_STRING:
3898 			if (cc == '\\') {
3899 				*dd++ = '\\';
3900 				state = DTRACE_JSON_STRING_ESCAPE;
3901 				break;
3902 			}
3903 
3904 			if (cc == '"') {
3905 				if (collect_object) {
3906 					/*
3907 					 * We don't reset the dest here, as
3908 					 * the string is part of a larger
3909 					 * object being collected.
3910 					 */
3911 					*dd++ = cc;
3912 					collect_object = B_FALSE;
3913 					state = DTRACE_JSON_COLLECT_OBJECT;
3914 					break;
3915 				}
3916 				*dd = '\0';
3917 				dd = dest; /* reset string buffer */
3918 				if (string_is_key) {
3919 					if (dtrace_strncmp(dest, elem,
3920 					    size) == 0)
3921 						found_key = B_TRUE;
3922 				} else if (found_key) {
3923 					if (nelems > 1) {
3924 						/*
3925 						 * We expected an object, not
3926 						 * this string.
3927 						 */
3928 						return (NULL);
3929 					}
3930 					return (dest);
3931 				}
3932 				state = string_is_key ? DTRACE_JSON_COLON :
3933 				    DTRACE_JSON_COMMA;
3934 				string_is_key = B_FALSE;
3935 				break;
3936 			}
3937 
3938 			*dd++ = cc;
3939 			break;
3940 		case DTRACE_JSON_STRING_ESCAPE:
3941 			*dd++ = cc;
3942 			if (cc == 'u') {
3943 				escape_unicount = 0;
3944 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3945 			} else {
3946 				state = DTRACE_JSON_STRING;
3947 			}
3948 			break;
3949 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3950 			if (!isxdigit(cc)) {
3951 				/*
3952 				 * ERROR: invalid unicode escape, expected
3953 				 * four valid hexidecimal digits.
3954 				 */
3955 				return (NULL);
3956 			}
3957 
3958 			*dd++ = cc;
3959 			if (++escape_unicount == 4)
3960 				state = DTRACE_JSON_STRING;
3961 			break;
3962 		case DTRACE_JSON_COLON:
3963 			if (isspace(cc))
3964 				break;
3965 
3966 			if (cc == ':') {
3967 				state = DTRACE_JSON_VALUE;
3968 				break;
3969 			}
3970 
3971 			/*
3972 			 * ERROR: expected a colon.
3973 			 */
3974 			return (NULL);
3975 		case DTRACE_JSON_COMMA:
3976 			if (isspace(cc))
3977 				break;
3978 
3979 			if (cc == ',') {
3980 				if (in_array) {
3981 					state = DTRACE_JSON_VALUE;
3982 					if (++array_pos == array_elem)
3983 						found_key = B_TRUE;
3984 				} else {
3985 					state = DTRACE_JSON_OBJECT;
3986 				}
3987 				break;
3988 			}
3989 
3990 			/*
3991 			 * ERROR: either we hit an unexpected character, or
3992 			 * we reached the end of the object or array without
3993 			 * finding the requested key.
3994 			 */
3995 			return (NULL);
3996 		case DTRACE_JSON_IDENTIFIER:
3997 			if (islower(cc)) {
3998 				*dd++ = cc;
3999 				break;
4000 			}
4001 
4002 			*dd = '\0';
4003 			dd = dest; /* reset string buffer */
4004 
4005 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4006 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4007 			    dtrace_strncmp(dest, "null", 5) == 0) {
4008 				if (found_key) {
4009 					if (nelems > 1) {
4010 						/*
4011 						 * ERROR: We expected an object,
4012 						 * not this identifier.
4013 						 */
4014 						return (NULL);
4015 					}
4016 					return (dest);
4017 				} else {
4018 					cur--;
4019 					state = DTRACE_JSON_COMMA;
4020 					break;
4021 				}
4022 			}
4023 
4024 			/*
4025 			 * ERROR: we did not recognise the identifier as one
4026 			 * of those in the JSON specification.
4027 			 */
4028 			return (NULL);
4029 		case DTRACE_JSON_NUMBER:
4030 			if (cc == '.') {
4031 				*dd++ = cc;
4032 				state = DTRACE_JSON_NUMBER_FRAC;
4033 				break;
4034 			}
4035 
4036 			if (cc == 'x' || cc == 'X') {
4037 				/*
4038 				 * ERROR: specification explicitly excludes
4039 				 * hexidecimal or octal numbers.
4040 				 */
4041 				return (NULL);
4042 			}
4043 
4044 			/* FALLTHRU */
4045 		case DTRACE_JSON_NUMBER_FRAC:
4046 			if (cc == 'e' || cc == 'E') {
4047 				*dd++ = cc;
4048 				state = DTRACE_JSON_NUMBER_EXP;
4049 				break;
4050 			}
4051 
4052 			if (cc == '+' || cc == '-') {
4053 				/*
4054 				 * ERROR: expect sign as part of exponent only.
4055 				 */
4056 				return (NULL);
4057 			}
4058 			/* FALLTHRU */
4059 		case DTRACE_JSON_NUMBER_EXP:
4060 			if (isdigit(cc) || cc == '+' || cc == '-') {
4061 				*dd++ = cc;
4062 				break;
4063 			}
4064 
4065 			*dd = '\0';
4066 			dd = dest; /* reset string buffer */
4067 			if (found_key) {
4068 				if (nelems > 1) {
4069 					/*
4070 					 * ERROR: We expected an object, not
4071 					 * this number.
4072 					 */
4073 					return (NULL);
4074 				}
4075 				return (dest);
4076 			}
4077 
4078 			cur--;
4079 			state = DTRACE_JSON_COMMA;
4080 			break;
4081 		case DTRACE_JSON_VALUE:
4082 			if (isspace(cc))
4083 				break;
4084 
4085 			if (cc == '{' || cc == '[') {
4086 				if (nelems > 1 && found_key) {
4087 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4088 					/*
4089 					 * If our element selector directs us
4090 					 * to descend into this nested object,
4091 					 * then move to the next selector
4092 					 * element in the list and restart the
4093 					 * state machine.
4094 					 */
4095 					while (*elem != '\0')
4096 						elem++;
4097 					elem++; /* skip the inter-element NUL */
4098 					nelems--;
4099 					dd = dest;
4100 					if (in_array) {
4101 						state = DTRACE_JSON_VALUE;
4102 						array_pos = 0;
4103 						array_elem = dtrace_strtoll(
4104 						    elem, 10, size);
4105 						found_key = array_elem == 0 ?
4106 						    B_TRUE : B_FALSE;
4107 					} else {
4108 						found_key = B_FALSE;
4109 						state = DTRACE_JSON_OBJECT;
4110 					}
4111 					break;
4112 				}
4113 
4114 				/*
4115 				 * Otherwise, we wish to either skip this
4116 				 * nested object or return it in full.
4117 				 */
4118 				if (cc == '[')
4119 					brackets = 1;
4120 				else
4121 					braces = 1;
4122 				*dd++ = cc;
4123 				state = DTRACE_JSON_COLLECT_OBJECT;
4124 				break;
4125 			}
4126 
4127 			if (cc == '"') {
4128 				state = DTRACE_JSON_STRING;
4129 				break;
4130 			}
4131 
4132 			if (islower(cc)) {
4133 				/*
4134 				 * Here we deal with true, false and null.
4135 				 */
4136 				*dd++ = cc;
4137 				state = DTRACE_JSON_IDENTIFIER;
4138 				break;
4139 			}
4140 
4141 			if (cc == '-' || isdigit(cc)) {
4142 				*dd++ = cc;
4143 				state = DTRACE_JSON_NUMBER;
4144 				break;
4145 			}
4146 
4147 			/*
4148 			 * ERROR: unexpected character at start of value.
4149 			 */
4150 			return (NULL);
4151 		case DTRACE_JSON_COLLECT_OBJECT:
4152 			if (cc == '\0')
4153 				/*
4154 				 * ERROR: unexpected end of input.
4155 				 */
4156 				return (NULL);
4157 
4158 			*dd++ = cc;
4159 			if (cc == '"') {
4160 				collect_object = B_TRUE;
4161 				state = DTRACE_JSON_STRING;
4162 				break;
4163 			}
4164 
4165 			if (cc == ']') {
4166 				if (brackets-- == 0) {
4167 					/*
4168 					 * ERROR: unbalanced brackets.
4169 					 */
4170 					return (NULL);
4171 				}
4172 			} else if (cc == '}') {
4173 				if (braces-- == 0) {
4174 					/*
4175 					 * ERROR: unbalanced braces.
4176 					 */
4177 					return (NULL);
4178 				}
4179 			} else if (cc == '{') {
4180 				braces++;
4181 			} else if (cc == '[') {
4182 				brackets++;
4183 			}
4184 
4185 			if (brackets == 0 && braces == 0) {
4186 				if (found_key) {
4187 					*dd = '\0';
4188 					return (dest);
4189 				}
4190 				dd = dest; /* reset string buffer */
4191 				state = DTRACE_JSON_COMMA;
4192 			}
4193 			break;
4194 		}
4195 	}
4196 	return (NULL);
4197 }
4198 
4199 /*
4200  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4201  * Notice that we don't bother validating the proper number of arguments or
4202  * their types in the tuple stack.  This isn't needed because all argument
4203  * interpretation is safe because of our load safety -- the worst that can
4204  * happen is that a bogus program can obtain bogus results.
4205  */
4206 static void
4207 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4208     dtrace_key_t *tupregs, int nargs,
4209     dtrace_mstate_t *mstate, dtrace_state_t *state)
4210 {
4211 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4212 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4213 	dtrace_vstate_t *vstate = &state->dts_vstate;
4214 
4215 #ifdef illumos
4216 	union {
4217 		mutex_impl_t mi;
4218 		uint64_t mx;
4219 	} m;
4220 
4221 	union {
4222 		krwlock_t ri;
4223 		uintptr_t rw;
4224 	} r;
4225 #else
4226 	struct thread *lowner;
4227 	union {
4228 		struct lock_object *li;
4229 		uintptr_t lx;
4230 	} l;
4231 #endif
4232 
4233 	switch (subr) {
4234 	case DIF_SUBR_RAND:
4235 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4236 		break;
4237 
4238 #ifdef illumos
4239 	case DIF_SUBR_MUTEX_OWNED:
4240 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4241 		    mstate, vstate)) {
4242 			regs[rd] = 0;
4243 			break;
4244 		}
4245 
4246 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4247 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4248 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4249 		else
4250 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4251 		break;
4252 
4253 	case DIF_SUBR_MUTEX_OWNER:
4254 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4255 		    mstate, vstate)) {
4256 			regs[rd] = 0;
4257 			break;
4258 		}
4259 
4260 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4261 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4262 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4263 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4264 		else
4265 			regs[rd] = 0;
4266 		break;
4267 
4268 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4269 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4270 		    mstate, vstate)) {
4271 			regs[rd] = 0;
4272 			break;
4273 		}
4274 
4275 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4276 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4277 		break;
4278 
4279 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4280 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4281 		    mstate, vstate)) {
4282 			regs[rd] = 0;
4283 			break;
4284 		}
4285 
4286 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4287 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4288 		break;
4289 
4290 	case DIF_SUBR_RW_READ_HELD: {
4291 		uintptr_t tmp;
4292 
4293 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4294 		    mstate, vstate)) {
4295 			regs[rd] = 0;
4296 			break;
4297 		}
4298 
4299 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4300 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4301 		break;
4302 	}
4303 
4304 	case DIF_SUBR_RW_WRITE_HELD:
4305 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4306 		    mstate, vstate)) {
4307 			regs[rd] = 0;
4308 			break;
4309 		}
4310 
4311 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4312 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4313 		break;
4314 
4315 	case DIF_SUBR_RW_ISWRITER:
4316 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4317 		    mstate, vstate)) {
4318 			regs[rd] = 0;
4319 			break;
4320 		}
4321 
4322 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4323 		regs[rd] = _RW_ISWRITER(&r.ri);
4324 		break;
4325 
4326 #else /* !illumos */
4327 	case DIF_SUBR_MUTEX_OWNED:
4328 		if (!dtrace_canload(tupregs[0].dttk_value,
4329 			sizeof (struct lock_object), mstate, vstate)) {
4330 			regs[rd] = 0;
4331 			break;
4332 		}
4333 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4334 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4335 		break;
4336 
4337 	case DIF_SUBR_MUTEX_OWNER:
4338 		if (!dtrace_canload(tupregs[0].dttk_value,
4339 			sizeof (struct lock_object), mstate, vstate)) {
4340 			regs[rd] = 0;
4341 			break;
4342 		}
4343 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4344 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4345 		regs[rd] = (uintptr_t)lowner;
4346 		break;
4347 
4348 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4349 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4350 		    mstate, vstate)) {
4351 			regs[rd] = 0;
4352 			break;
4353 		}
4354 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4355 		/* XXX - should be only LC_SLEEPABLE? */
4356 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4357 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4358 		break;
4359 
4360 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4361 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4362 		    mstate, vstate)) {
4363 			regs[rd] = 0;
4364 			break;
4365 		}
4366 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4367 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4368 		break;
4369 
4370 	case DIF_SUBR_RW_READ_HELD:
4371 	case DIF_SUBR_SX_SHARED_HELD:
4372 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4373 		    mstate, vstate)) {
4374 			regs[rd] = 0;
4375 			break;
4376 		}
4377 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4378 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4379 		    lowner == NULL;
4380 		break;
4381 
4382 	case DIF_SUBR_RW_WRITE_HELD:
4383 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4384 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4385 		    mstate, vstate)) {
4386 			regs[rd] = 0;
4387 			break;
4388 		}
4389 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4390 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4391 		regs[rd] = (lowner == curthread);
4392 		break;
4393 
4394 	case DIF_SUBR_RW_ISWRITER:
4395 	case DIF_SUBR_SX_ISEXCLUSIVE:
4396 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4397 		    mstate, vstate)) {
4398 			regs[rd] = 0;
4399 			break;
4400 		}
4401 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4402 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4403 		    lowner != NULL;
4404 		break;
4405 #endif /* illumos */
4406 
4407 	case DIF_SUBR_BCOPY: {
4408 		/*
4409 		 * We need to be sure that the destination is in the scratch
4410 		 * region -- no other region is allowed.
4411 		 */
4412 		uintptr_t src = tupregs[0].dttk_value;
4413 		uintptr_t dest = tupregs[1].dttk_value;
4414 		size_t size = tupregs[2].dttk_value;
4415 
4416 		if (!dtrace_inscratch(dest, size, mstate)) {
4417 			*flags |= CPU_DTRACE_BADADDR;
4418 			*illval = regs[rd];
4419 			break;
4420 		}
4421 
4422 		if (!dtrace_canload(src, size, mstate, vstate)) {
4423 			regs[rd] = 0;
4424 			break;
4425 		}
4426 
4427 		dtrace_bcopy((void *)src, (void *)dest, size);
4428 		break;
4429 	}
4430 
4431 	case DIF_SUBR_ALLOCA:
4432 	case DIF_SUBR_COPYIN: {
4433 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4434 		uint64_t size =
4435 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4436 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4437 
4438 		/*
4439 		 * This action doesn't require any credential checks since
4440 		 * probes will not activate in user contexts to which the
4441 		 * enabling user does not have permissions.
4442 		 */
4443 
4444 		/*
4445 		 * Rounding up the user allocation size could have overflowed
4446 		 * a large, bogus allocation (like -1ULL) to 0.
4447 		 */
4448 		if (scratch_size < size ||
4449 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4450 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4451 			regs[rd] = 0;
4452 			break;
4453 		}
4454 
4455 		if (subr == DIF_SUBR_COPYIN) {
4456 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4457 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4458 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4459 		}
4460 
4461 		mstate->dtms_scratch_ptr += scratch_size;
4462 		regs[rd] = dest;
4463 		break;
4464 	}
4465 
4466 	case DIF_SUBR_COPYINTO: {
4467 		uint64_t size = tupregs[1].dttk_value;
4468 		uintptr_t dest = tupregs[2].dttk_value;
4469 
4470 		/*
4471 		 * This action doesn't require any credential checks since
4472 		 * probes will not activate in user contexts to which the
4473 		 * enabling user does not have permissions.
4474 		 */
4475 		if (!dtrace_inscratch(dest, size, mstate)) {
4476 			*flags |= CPU_DTRACE_BADADDR;
4477 			*illval = regs[rd];
4478 			break;
4479 		}
4480 
4481 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4482 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4483 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4484 		break;
4485 	}
4486 
4487 	case DIF_SUBR_COPYINSTR: {
4488 		uintptr_t dest = mstate->dtms_scratch_ptr;
4489 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4490 
4491 		if (nargs > 1 && tupregs[1].dttk_value < size)
4492 			size = tupregs[1].dttk_value + 1;
4493 
4494 		/*
4495 		 * This action doesn't require any credential checks since
4496 		 * probes will not activate in user contexts to which the
4497 		 * enabling user does not have permissions.
4498 		 */
4499 		if (!DTRACE_INSCRATCH(mstate, size)) {
4500 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4501 			regs[rd] = 0;
4502 			break;
4503 		}
4504 
4505 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4506 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4507 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4508 
4509 		((char *)dest)[size - 1] = '\0';
4510 		mstate->dtms_scratch_ptr += size;
4511 		regs[rd] = dest;
4512 		break;
4513 	}
4514 
4515 #ifdef illumos
4516 	case DIF_SUBR_MSGSIZE:
4517 	case DIF_SUBR_MSGDSIZE: {
4518 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4519 		uintptr_t wptr, rptr;
4520 		size_t count = 0;
4521 		int cont = 0;
4522 
4523 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4524 
4525 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4526 			    vstate)) {
4527 				regs[rd] = 0;
4528 				break;
4529 			}
4530 
4531 			wptr = dtrace_loadptr(baddr +
4532 			    offsetof(mblk_t, b_wptr));
4533 
4534 			rptr = dtrace_loadptr(baddr +
4535 			    offsetof(mblk_t, b_rptr));
4536 
4537 			if (wptr < rptr) {
4538 				*flags |= CPU_DTRACE_BADADDR;
4539 				*illval = tupregs[0].dttk_value;
4540 				break;
4541 			}
4542 
4543 			daddr = dtrace_loadptr(baddr +
4544 			    offsetof(mblk_t, b_datap));
4545 
4546 			baddr = dtrace_loadptr(baddr +
4547 			    offsetof(mblk_t, b_cont));
4548 
4549 			/*
4550 			 * We want to prevent against denial-of-service here,
4551 			 * so we're only going to search the list for
4552 			 * dtrace_msgdsize_max mblks.
4553 			 */
4554 			if (cont++ > dtrace_msgdsize_max) {
4555 				*flags |= CPU_DTRACE_ILLOP;
4556 				break;
4557 			}
4558 
4559 			if (subr == DIF_SUBR_MSGDSIZE) {
4560 				if (dtrace_load8(daddr +
4561 				    offsetof(dblk_t, db_type)) != M_DATA)
4562 					continue;
4563 			}
4564 
4565 			count += wptr - rptr;
4566 		}
4567 
4568 		if (!(*flags & CPU_DTRACE_FAULT))
4569 			regs[rd] = count;
4570 
4571 		break;
4572 	}
4573 #endif
4574 
4575 	case DIF_SUBR_PROGENYOF: {
4576 		pid_t pid = tupregs[0].dttk_value;
4577 		proc_t *p;
4578 		int rval = 0;
4579 
4580 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4581 
4582 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4583 #ifdef illumos
4584 			if (p->p_pidp->pid_id == pid) {
4585 #else
4586 			if (p->p_pid == pid) {
4587 #endif
4588 				rval = 1;
4589 				break;
4590 			}
4591 		}
4592 
4593 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4594 
4595 		regs[rd] = rval;
4596 		break;
4597 	}
4598 
4599 	case DIF_SUBR_SPECULATION:
4600 		regs[rd] = dtrace_speculation(state);
4601 		break;
4602 
4603 	case DIF_SUBR_COPYOUT: {
4604 		uintptr_t kaddr = tupregs[0].dttk_value;
4605 		uintptr_t uaddr = tupregs[1].dttk_value;
4606 		uint64_t size = tupregs[2].dttk_value;
4607 
4608 		if (!dtrace_destructive_disallow &&
4609 		    dtrace_priv_proc_control(state) &&
4610 		    !dtrace_istoxic(kaddr, size) &&
4611 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4612 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4613 			dtrace_copyout(kaddr, uaddr, size, flags);
4614 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4615 		}
4616 		break;
4617 	}
4618 
4619 	case DIF_SUBR_COPYOUTSTR: {
4620 		uintptr_t kaddr = tupregs[0].dttk_value;
4621 		uintptr_t uaddr = tupregs[1].dttk_value;
4622 		uint64_t size = tupregs[2].dttk_value;
4623 		size_t lim;
4624 
4625 		if (!dtrace_destructive_disallow &&
4626 		    dtrace_priv_proc_control(state) &&
4627 		    !dtrace_istoxic(kaddr, size) &&
4628 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4629 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4630 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4631 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4632 		}
4633 		break;
4634 	}
4635 
4636 	case DIF_SUBR_STRLEN: {
4637 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4638 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4639 		size_t lim;
4640 
4641 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4642 			regs[rd] = 0;
4643 			break;
4644 		}
4645 
4646 		regs[rd] = dtrace_strlen((char *)addr, lim);
4647 		break;
4648 	}
4649 
4650 	case DIF_SUBR_STRCHR:
4651 	case DIF_SUBR_STRRCHR: {
4652 		/*
4653 		 * We're going to iterate over the string looking for the
4654 		 * specified character.  We will iterate until we have reached
4655 		 * the string length or we have found the character.  If this
4656 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4657 		 * of the specified character instead of the first.
4658 		 */
4659 		uintptr_t addr = tupregs[0].dttk_value;
4660 		uintptr_t addr_limit;
4661 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4662 		size_t lim;
4663 		char c, target = (char)tupregs[1].dttk_value;
4664 
4665 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4666 			regs[rd] = 0;
4667 			break;
4668 		}
4669 		addr_limit = addr + lim;
4670 
4671 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4672 			if ((c = dtrace_load8(addr)) == target) {
4673 				regs[rd] = addr;
4674 
4675 				if (subr == DIF_SUBR_STRCHR)
4676 					break;
4677 			}
4678 
4679 			if (c == '\0')
4680 				break;
4681 		}
4682 		break;
4683 	}
4684 
4685 	case DIF_SUBR_STRSTR:
4686 	case DIF_SUBR_INDEX:
4687 	case DIF_SUBR_RINDEX: {
4688 		/*
4689 		 * We're going to iterate over the string looking for the
4690 		 * specified string.  We will iterate until we have reached
4691 		 * the string length or we have found the string.  (Yes, this
4692 		 * is done in the most naive way possible -- but considering
4693 		 * that the string we're searching for is likely to be
4694 		 * relatively short, the complexity of Rabin-Karp or similar
4695 		 * hardly seems merited.)
4696 		 */
4697 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4698 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4699 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4700 		size_t len = dtrace_strlen(addr, size);
4701 		size_t sublen = dtrace_strlen(substr, size);
4702 		char *limit = addr + len, *orig = addr;
4703 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4704 		int inc = 1;
4705 
4706 		regs[rd] = notfound;
4707 
4708 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4709 			regs[rd] = 0;
4710 			break;
4711 		}
4712 
4713 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4714 		    vstate)) {
4715 			regs[rd] = 0;
4716 			break;
4717 		}
4718 
4719 		/*
4720 		 * strstr() and index()/rindex() have similar semantics if
4721 		 * both strings are the empty string: strstr() returns a
4722 		 * pointer to the (empty) string, and index() and rindex()
4723 		 * both return index 0 (regardless of any position argument).
4724 		 */
4725 		if (sublen == 0 && len == 0) {
4726 			if (subr == DIF_SUBR_STRSTR)
4727 				regs[rd] = (uintptr_t)addr;
4728 			else
4729 				regs[rd] = 0;
4730 			break;
4731 		}
4732 
4733 		if (subr != DIF_SUBR_STRSTR) {
4734 			if (subr == DIF_SUBR_RINDEX) {
4735 				limit = orig - 1;
4736 				addr += len;
4737 				inc = -1;
4738 			}
4739 
4740 			/*
4741 			 * Both index() and rindex() take an optional position
4742 			 * argument that denotes the starting position.
4743 			 */
4744 			if (nargs == 3) {
4745 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4746 
4747 				/*
4748 				 * If the position argument to index() is
4749 				 * negative, Perl implicitly clamps it at
4750 				 * zero.  This semantic is a little surprising
4751 				 * given the special meaning of negative
4752 				 * positions to similar Perl functions like
4753 				 * substr(), but it appears to reflect a
4754 				 * notion that index() can start from a
4755 				 * negative index and increment its way up to
4756 				 * the string.  Given this notion, Perl's
4757 				 * rindex() is at least self-consistent in
4758 				 * that it implicitly clamps positions greater
4759 				 * than the string length to be the string
4760 				 * length.  Where Perl completely loses
4761 				 * coherence, however, is when the specified
4762 				 * substring is the empty string ("").  In
4763 				 * this case, even if the position is
4764 				 * negative, rindex() returns 0 -- and even if
4765 				 * the position is greater than the length,
4766 				 * index() returns the string length.  These
4767 				 * semantics violate the notion that index()
4768 				 * should never return a value less than the
4769 				 * specified position and that rindex() should
4770 				 * never return a value greater than the
4771 				 * specified position.  (One assumes that
4772 				 * these semantics are artifacts of Perl's
4773 				 * implementation and not the results of
4774 				 * deliberate design -- it beggars belief that
4775 				 * even Larry Wall could desire such oddness.)
4776 				 * While in the abstract one would wish for
4777 				 * consistent position semantics across
4778 				 * substr(), index() and rindex() -- or at the
4779 				 * very least self-consistent position
4780 				 * semantics for index() and rindex() -- we
4781 				 * instead opt to keep with the extant Perl
4782 				 * semantics, in all their broken glory.  (Do
4783 				 * we have more desire to maintain Perl's
4784 				 * semantics than Perl does?  Probably.)
4785 				 */
4786 				if (subr == DIF_SUBR_RINDEX) {
4787 					if (pos < 0) {
4788 						if (sublen == 0)
4789 							regs[rd] = 0;
4790 						break;
4791 					}
4792 
4793 					if (pos > len)
4794 						pos = len;
4795 				} else {
4796 					if (pos < 0)
4797 						pos = 0;
4798 
4799 					if (pos >= len) {
4800 						if (sublen == 0)
4801 							regs[rd] = len;
4802 						break;
4803 					}
4804 				}
4805 
4806 				addr = orig + pos;
4807 			}
4808 		}
4809 
4810 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4811 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4812 				if (subr != DIF_SUBR_STRSTR) {
4813 					/*
4814 					 * As D index() and rindex() are
4815 					 * modeled on Perl (and not on awk),
4816 					 * we return a zero-based (and not a
4817 					 * one-based) index.  (For you Perl
4818 					 * weenies: no, we're not going to add
4819 					 * $[ -- and shouldn't you be at a con
4820 					 * or something?)
4821 					 */
4822 					regs[rd] = (uintptr_t)(addr - orig);
4823 					break;
4824 				}
4825 
4826 				ASSERT(subr == DIF_SUBR_STRSTR);
4827 				regs[rd] = (uintptr_t)addr;
4828 				break;
4829 			}
4830 		}
4831 
4832 		break;
4833 	}
4834 
4835 	case DIF_SUBR_STRTOK: {
4836 		uintptr_t addr = tupregs[0].dttk_value;
4837 		uintptr_t tokaddr = tupregs[1].dttk_value;
4838 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4839 		uintptr_t limit, toklimit;
4840 		size_t clim;
4841 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4842 		char *dest = (char *)mstate->dtms_scratch_ptr;
4843 		int i;
4844 
4845 		/*
4846 		 * Check both the token buffer and (later) the input buffer,
4847 		 * since both could be non-scratch addresses.
4848 		 */
4849 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4850 			regs[rd] = 0;
4851 			break;
4852 		}
4853 		toklimit = tokaddr + clim;
4854 
4855 		if (!DTRACE_INSCRATCH(mstate, size)) {
4856 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4857 			regs[rd] = 0;
4858 			break;
4859 		}
4860 
4861 		if (addr == 0) {
4862 			/*
4863 			 * If the address specified is NULL, we use our saved
4864 			 * strtok pointer from the mstate.  Note that this
4865 			 * means that the saved strtok pointer is _only_
4866 			 * valid within multiple enablings of the same probe --
4867 			 * it behaves like an implicit clause-local variable.
4868 			 */
4869 			addr = mstate->dtms_strtok;
4870 			limit = mstate->dtms_strtok_limit;
4871 		} else {
4872 			/*
4873 			 * If the user-specified address is non-NULL we must
4874 			 * access check it.  This is the only time we have
4875 			 * a chance to do so, since this address may reside
4876 			 * in the string table of this clause-- future calls
4877 			 * (when we fetch addr from mstate->dtms_strtok)
4878 			 * would fail this access check.
4879 			 */
4880 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4881 			    vstate)) {
4882 				regs[rd] = 0;
4883 				break;
4884 			}
4885 			limit = addr + clim;
4886 		}
4887 
4888 		/*
4889 		 * First, zero the token map, and then process the token
4890 		 * string -- setting a bit in the map for every character
4891 		 * found in the token string.
4892 		 */
4893 		for (i = 0; i < sizeof (tokmap); i++)
4894 			tokmap[i] = 0;
4895 
4896 		for (; tokaddr < toklimit; tokaddr++) {
4897 			if ((c = dtrace_load8(tokaddr)) == '\0')
4898 				break;
4899 
4900 			ASSERT((c >> 3) < sizeof (tokmap));
4901 			tokmap[c >> 3] |= (1 << (c & 0x7));
4902 		}
4903 
4904 		for (; addr < limit; addr++) {
4905 			/*
4906 			 * We're looking for a character that is _not_
4907 			 * contained in the token string.
4908 			 */
4909 			if ((c = dtrace_load8(addr)) == '\0')
4910 				break;
4911 
4912 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4913 				break;
4914 		}
4915 
4916 		if (c == '\0') {
4917 			/*
4918 			 * We reached the end of the string without finding
4919 			 * any character that was not in the token string.
4920 			 * We return NULL in this case, and we set the saved
4921 			 * address to NULL as well.
4922 			 */
4923 			regs[rd] = 0;
4924 			mstate->dtms_strtok = 0;
4925 			mstate->dtms_strtok_limit = 0;
4926 			break;
4927 		}
4928 
4929 		/*
4930 		 * From here on, we're copying into the destination string.
4931 		 */
4932 		for (i = 0; addr < limit && i < size - 1; addr++) {
4933 			if ((c = dtrace_load8(addr)) == '\0')
4934 				break;
4935 
4936 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4937 				break;
4938 
4939 			ASSERT(i < size);
4940 			dest[i++] = c;
4941 		}
4942 
4943 		ASSERT(i < size);
4944 		dest[i] = '\0';
4945 		regs[rd] = (uintptr_t)dest;
4946 		mstate->dtms_scratch_ptr += size;
4947 		mstate->dtms_strtok = addr;
4948 		mstate->dtms_strtok_limit = limit;
4949 		break;
4950 	}
4951 
4952 	case DIF_SUBR_SUBSTR: {
4953 		uintptr_t s = tupregs[0].dttk_value;
4954 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4955 		char *d = (char *)mstate->dtms_scratch_ptr;
4956 		int64_t index = (int64_t)tupregs[1].dttk_value;
4957 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4958 		size_t len = dtrace_strlen((char *)s, size);
4959 		int64_t i;
4960 
4961 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4962 			regs[rd] = 0;
4963 			break;
4964 		}
4965 
4966 		if (!DTRACE_INSCRATCH(mstate, size)) {
4967 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4968 			regs[rd] = 0;
4969 			break;
4970 		}
4971 
4972 		if (nargs <= 2)
4973 			remaining = (int64_t)size;
4974 
4975 		if (index < 0) {
4976 			index += len;
4977 
4978 			if (index < 0 && index + remaining > 0) {
4979 				remaining += index;
4980 				index = 0;
4981 			}
4982 		}
4983 
4984 		if (index >= len || index < 0) {
4985 			remaining = 0;
4986 		} else if (remaining < 0) {
4987 			remaining += len - index;
4988 		} else if (index + remaining > size) {
4989 			remaining = size - index;
4990 		}
4991 
4992 		for (i = 0; i < remaining; i++) {
4993 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4994 				break;
4995 		}
4996 
4997 		d[i] = '\0';
4998 
4999 		mstate->dtms_scratch_ptr += size;
5000 		regs[rd] = (uintptr_t)d;
5001 		break;
5002 	}
5003 
5004 	case DIF_SUBR_JSON: {
5005 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5006 		uintptr_t json = tupregs[0].dttk_value;
5007 		size_t jsonlen = dtrace_strlen((char *)json, size);
5008 		uintptr_t elem = tupregs[1].dttk_value;
5009 		size_t elemlen = dtrace_strlen((char *)elem, size);
5010 
5011 		char *dest = (char *)mstate->dtms_scratch_ptr;
5012 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5013 		char *ee = elemlist;
5014 		int nelems = 1;
5015 		uintptr_t cur;
5016 
5017 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5018 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5019 			regs[rd] = 0;
5020 			break;
5021 		}
5022 
5023 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5024 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5025 			regs[rd] = 0;
5026 			break;
5027 		}
5028 
5029 		/*
5030 		 * Read the element selector and split it up into a packed list
5031 		 * of strings.
5032 		 */
5033 		for (cur = elem; cur < elem + elemlen; cur++) {
5034 			char cc = dtrace_load8(cur);
5035 
5036 			if (cur == elem && cc == '[') {
5037 				/*
5038 				 * If the first element selector key is
5039 				 * actually an array index then ignore the
5040 				 * bracket.
5041 				 */
5042 				continue;
5043 			}
5044 
5045 			if (cc == ']')
5046 				continue;
5047 
5048 			if (cc == '.' || cc == '[') {
5049 				nelems++;
5050 				cc = '\0';
5051 			}
5052 
5053 			*ee++ = cc;
5054 		}
5055 		*ee++ = '\0';
5056 
5057 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5058 		    nelems, dest)) != 0)
5059 			mstate->dtms_scratch_ptr += jsonlen + 1;
5060 		break;
5061 	}
5062 
5063 	case DIF_SUBR_TOUPPER:
5064 	case DIF_SUBR_TOLOWER: {
5065 		uintptr_t s = tupregs[0].dttk_value;
5066 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5067 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5068 		size_t len = dtrace_strlen((char *)s, size);
5069 		char lower, upper, convert;
5070 		int64_t i;
5071 
5072 		if (subr == DIF_SUBR_TOUPPER) {
5073 			lower = 'a';
5074 			upper = 'z';
5075 			convert = 'A';
5076 		} else {
5077 			lower = 'A';
5078 			upper = 'Z';
5079 			convert = 'a';
5080 		}
5081 
5082 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5083 			regs[rd] = 0;
5084 			break;
5085 		}
5086 
5087 		if (!DTRACE_INSCRATCH(mstate, size)) {
5088 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5089 			regs[rd] = 0;
5090 			break;
5091 		}
5092 
5093 		for (i = 0; i < size - 1; i++) {
5094 			if ((c = dtrace_load8(s + i)) == '\0')
5095 				break;
5096 
5097 			if (c >= lower && c <= upper)
5098 				c = convert + (c - lower);
5099 
5100 			dest[i] = c;
5101 		}
5102 
5103 		ASSERT(i < size);
5104 		dest[i] = '\0';
5105 		regs[rd] = (uintptr_t)dest;
5106 		mstate->dtms_scratch_ptr += size;
5107 		break;
5108 	}
5109 
5110 #ifdef illumos
5111 	case DIF_SUBR_GETMAJOR:
5112 #ifdef _LP64
5113 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5114 #else
5115 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5116 #endif
5117 		break;
5118 
5119 	case DIF_SUBR_GETMINOR:
5120 #ifdef _LP64
5121 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5122 #else
5123 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5124 #endif
5125 		break;
5126 
5127 	case DIF_SUBR_DDI_PATHNAME: {
5128 		/*
5129 		 * This one is a galactic mess.  We are going to roughly
5130 		 * emulate ddi_pathname(), but it's made more complicated
5131 		 * by the fact that we (a) want to include the minor name and
5132 		 * (b) must proceed iteratively instead of recursively.
5133 		 */
5134 		uintptr_t dest = mstate->dtms_scratch_ptr;
5135 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5136 		char *start = (char *)dest, *end = start + size - 1;
5137 		uintptr_t daddr = tupregs[0].dttk_value;
5138 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5139 		char *s;
5140 		int i, len, depth = 0;
5141 
5142 		/*
5143 		 * Due to all the pointer jumping we do and context we must
5144 		 * rely upon, we just mandate that the user must have kernel
5145 		 * read privileges to use this routine.
5146 		 */
5147 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5148 			*flags |= CPU_DTRACE_KPRIV;
5149 			*illval = daddr;
5150 			regs[rd] = 0;
5151 		}
5152 
5153 		if (!DTRACE_INSCRATCH(mstate, size)) {
5154 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5155 			regs[rd] = 0;
5156 			break;
5157 		}
5158 
5159 		*end = '\0';
5160 
5161 		/*
5162 		 * We want to have a name for the minor.  In order to do this,
5163 		 * we need to walk the minor list from the devinfo.  We want
5164 		 * to be sure that we don't infinitely walk a circular list,
5165 		 * so we check for circularity by sending a scout pointer
5166 		 * ahead two elements for every element that we iterate over;
5167 		 * if the list is circular, these will ultimately point to the
5168 		 * same element.  You may recognize this little trick as the
5169 		 * answer to a stupid interview question -- one that always
5170 		 * seems to be asked by those who had to have it laboriously
5171 		 * explained to them, and who can't even concisely describe
5172 		 * the conditions under which one would be forced to resort to
5173 		 * this technique.  Needless to say, those conditions are
5174 		 * found here -- and probably only here.  Is this the only use
5175 		 * of this infamous trick in shipping, production code?  If it
5176 		 * isn't, it probably should be...
5177 		 */
5178 		if (minor != -1) {
5179 			uintptr_t maddr = dtrace_loadptr(daddr +
5180 			    offsetof(struct dev_info, devi_minor));
5181 
5182 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5183 			uintptr_t name = offsetof(struct ddi_minor_data,
5184 			    d_minor) + offsetof(struct ddi_minor, name);
5185 			uintptr_t dev = offsetof(struct ddi_minor_data,
5186 			    d_minor) + offsetof(struct ddi_minor, dev);
5187 			uintptr_t scout;
5188 
5189 			if (maddr != NULL)
5190 				scout = dtrace_loadptr(maddr + next);
5191 
5192 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5193 				uint64_t m;
5194 #ifdef _LP64
5195 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5196 #else
5197 				m = dtrace_load32(maddr + dev) & MAXMIN;
5198 #endif
5199 				if (m != minor) {
5200 					maddr = dtrace_loadptr(maddr + next);
5201 
5202 					if (scout == NULL)
5203 						continue;
5204 
5205 					scout = dtrace_loadptr(scout + next);
5206 
5207 					if (scout == NULL)
5208 						continue;
5209 
5210 					scout = dtrace_loadptr(scout + next);
5211 
5212 					if (scout == NULL)
5213 						continue;
5214 
5215 					if (scout == maddr) {
5216 						*flags |= CPU_DTRACE_ILLOP;
5217 						break;
5218 					}
5219 
5220 					continue;
5221 				}
5222 
5223 				/*
5224 				 * We have the minor data.  Now we need to
5225 				 * copy the minor's name into the end of the
5226 				 * pathname.
5227 				 */
5228 				s = (char *)dtrace_loadptr(maddr + name);
5229 				len = dtrace_strlen(s, size);
5230 
5231 				if (*flags & CPU_DTRACE_FAULT)
5232 					break;
5233 
5234 				if (len != 0) {
5235 					if ((end -= (len + 1)) < start)
5236 						break;
5237 
5238 					*end = ':';
5239 				}
5240 
5241 				for (i = 1; i <= len; i++)
5242 					end[i] = dtrace_load8((uintptr_t)s++);
5243 				break;
5244 			}
5245 		}
5246 
5247 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5248 			ddi_node_state_t devi_state;
5249 
5250 			devi_state = dtrace_load32(daddr +
5251 			    offsetof(struct dev_info, devi_node_state));
5252 
5253 			if (*flags & CPU_DTRACE_FAULT)
5254 				break;
5255 
5256 			if (devi_state >= DS_INITIALIZED) {
5257 				s = (char *)dtrace_loadptr(daddr +
5258 				    offsetof(struct dev_info, devi_addr));
5259 				len = dtrace_strlen(s, size);
5260 
5261 				if (*flags & CPU_DTRACE_FAULT)
5262 					break;
5263 
5264 				if (len != 0) {
5265 					if ((end -= (len + 1)) < start)
5266 						break;
5267 
5268 					*end = '@';
5269 				}
5270 
5271 				for (i = 1; i <= len; i++)
5272 					end[i] = dtrace_load8((uintptr_t)s++);
5273 			}
5274 
5275 			/*
5276 			 * Now for the node name...
5277 			 */
5278 			s = (char *)dtrace_loadptr(daddr +
5279 			    offsetof(struct dev_info, devi_node_name));
5280 
5281 			daddr = dtrace_loadptr(daddr +
5282 			    offsetof(struct dev_info, devi_parent));
5283 
5284 			/*
5285 			 * If our parent is NULL (that is, if we're the root
5286 			 * node), we're going to use the special path
5287 			 * "devices".
5288 			 */
5289 			if (daddr == 0)
5290 				s = "devices";
5291 
5292 			len = dtrace_strlen(s, size);
5293 			if (*flags & CPU_DTRACE_FAULT)
5294 				break;
5295 
5296 			if ((end -= (len + 1)) < start)
5297 				break;
5298 
5299 			for (i = 1; i <= len; i++)
5300 				end[i] = dtrace_load8((uintptr_t)s++);
5301 			*end = '/';
5302 
5303 			if (depth++ > dtrace_devdepth_max) {
5304 				*flags |= CPU_DTRACE_ILLOP;
5305 				break;
5306 			}
5307 		}
5308 
5309 		if (end < start)
5310 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5311 
5312 		if (daddr == 0) {
5313 			regs[rd] = (uintptr_t)end;
5314 			mstate->dtms_scratch_ptr += size;
5315 		}
5316 
5317 		break;
5318 	}
5319 #endif
5320 
5321 	case DIF_SUBR_STRJOIN: {
5322 		char *d = (char *)mstate->dtms_scratch_ptr;
5323 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5324 		uintptr_t s1 = tupregs[0].dttk_value;
5325 		uintptr_t s2 = tupregs[1].dttk_value;
5326 		int i = 0, j = 0;
5327 		size_t lim1, lim2;
5328 		char c;
5329 
5330 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5331 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5332 			regs[rd] = 0;
5333 			break;
5334 		}
5335 
5336 		if (!DTRACE_INSCRATCH(mstate, size)) {
5337 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5338 			regs[rd] = 0;
5339 			break;
5340 		}
5341 
5342 		for (;;) {
5343 			if (i >= size) {
5344 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5345 				regs[rd] = 0;
5346 				break;
5347 			}
5348 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5349 			if ((d[i++] = c) == '\0') {
5350 				i--;
5351 				break;
5352 			}
5353 		}
5354 
5355 		for (;;) {
5356 			if (i >= size) {
5357 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5358 				regs[rd] = 0;
5359 				break;
5360 			}
5361 
5362 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5363 			if ((d[i++] = c) == '\0')
5364 				break;
5365 		}
5366 
5367 		if (i < size) {
5368 			mstate->dtms_scratch_ptr += i;
5369 			regs[rd] = (uintptr_t)d;
5370 		}
5371 
5372 		break;
5373 	}
5374 
5375 	case DIF_SUBR_STRTOLL: {
5376 		uintptr_t s = tupregs[0].dttk_value;
5377 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5378 		size_t lim;
5379 		int base = 10;
5380 
5381 		if (nargs > 1) {
5382 			if ((base = tupregs[1].dttk_value) <= 1 ||
5383 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5384 				*flags |= CPU_DTRACE_ILLOP;
5385 				break;
5386 			}
5387 		}
5388 
5389 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5390 			regs[rd] = INT64_MIN;
5391 			break;
5392 		}
5393 
5394 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5395 		break;
5396 	}
5397 
5398 	case DIF_SUBR_LLTOSTR: {
5399 		int64_t i = (int64_t)tupregs[0].dttk_value;
5400 		uint64_t val, digit;
5401 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5402 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5403 		int base = 10;
5404 
5405 		if (nargs > 1) {
5406 			if ((base = tupregs[1].dttk_value) <= 1 ||
5407 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5408 				*flags |= CPU_DTRACE_ILLOP;
5409 				break;
5410 			}
5411 		}
5412 
5413 		val = (base == 10 && i < 0) ? i * -1 : i;
5414 
5415 		if (!DTRACE_INSCRATCH(mstate, size)) {
5416 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5417 			regs[rd] = 0;
5418 			break;
5419 		}
5420 
5421 		for (*end-- = '\0'; val; val /= base) {
5422 			if ((digit = val % base) <= '9' - '0') {
5423 				*end-- = '0' + digit;
5424 			} else {
5425 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5426 			}
5427 		}
5428 
5429 		if (i == 0 && base == 16)
5430 			*end-- = '0';
5431 
5432 		if (base == 16)
5433 			*end-- = 'x';
5434 
5435 		if (i == 0 || base == 8 || base == 16)
5436 			*end-- = '0';
5437 
5438 		if (i < 0 && base == 10)
5439 			*end-- = '-';
5440 
5441 		regs[rd] = (uintptr_t)end + 1;
5442 		mstate->dtms_scratch_ptr += size;
5443 		break;
5444 	}
5445 
5446 	case DIF_SUBR_HTONS:
5447 	case DIF_SUBR_NTOHS:
5448 #if BYTE_ORDER == BIG_ENDIAN
5449 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5450 #else
5451 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5452 #endif
5453 		break;
5454 
5455 
5456 	case DIF_SUBR_HTONL:
5457 	case DIF_SUBR_NTOHL:
5458 #if BYTE_ORDER == BIG_ENDIAN
5459 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5460 #else
5461 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5462 #endif
5463 		break;
5464 
5465 
5466 	case DIF_SUBR_HTONLL:
5467 	case DIF_SUBR_NTOHLL:
5468 #if BYTE_ORDER == BIG_ENDIAN
5469 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5470 #else
5471 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5472 #endif
5473 		break;
5474 
5475 
5476 	case DIF_SUBR_DIRNAME:
5477 	case DIF_SUBR_BASENAME: {
5478 		char *dest = (char *)mstate->dtms_scratch_ptr;
5479 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5480 		uintptr_t src = tupregs[0].dttk_value;
5481 		int i, j, len = dtrace_strlen((char *)src, size);
5482 		int lastbase = -1, firstbase = -1, lastdir = -1;
5483 		int start, end;
5484 
5485 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5486 			regs[rd] = 0;
5487 			break;
5488 		}
5489 
5490 		if (!DTRACE_INSCRATCH(mstate, size)) {
5491 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5492 			regs[rd] = 0;
5493 			break;
5494 		}
5495 
5496 		/*
5497 		 * The basename and dirname for a zero-length string is
5498 		 * defined to be "."
5499 		 */
5500 		if (len == 0) {
5501 			len = 1;
5502 			src = (uintptr_t)".";
5503 		}
5504 
5505 		/*
5506 		 * Start from the back of the string, moving back toward the
5507 		 * front until we see a character that isn't a slash.  That
5508 		 * character is the last character in the basename.
5509 		 */
5510 		for (i = len - 1; i >= 0; i--) {
5511 			if (dtrace_load8(src + i) != '/')
5512 				break;
5513 		}
5514 
5515 		if (i >= 0)
5516 			lastbase = i;
5517 
5518 		/*
5519 		 * Starting from the last character in the basename, move
5520 		 * towards the front until we find a slash.  The character
5521 		 * that we processed immediately before that is the first
5522 		 * character in the basename.
5523 		 */
5524 		for (; i >= 0; i--) {
5525 			if (dtrace_load8(src + i) == '/')
5526 				break;
5527 		}
5528 
5529 		if (i >= 0)
5530 			firstbase = i + 1;
5531 
5532 		/*
5533 		 * Now keep going until we find a non-slash character.  That
5534 		 * character is the last character in the dirname.
5535 		 */
5536 		for (; i >= 0; i--) {
5537 			if (dtrace_load8(src + i) != '/')
5538 				break;
5539 		}
5540 
5541 		if (i >= 0)
5542 			lastdir = i;
5543 
5544 		ASSERT(!(lastbase == -1 && firstbase != -1));
5545 		ASSERT(!(firstbase == -1 && lastdir != -1));
5546 
5547 		if (lastbase == -1) {
5548 			/*
5549 			 * We didn't find a non-slash character.  We know that
5550 			 * the length is non-zero, so the whole string must be
5551 			 * slashes.  In either the dirname or the basename
5552 			 * case, we return '/'.
5553 			 */
5554 			ASSERT(firstbase == -1);
5555 			firstbase = lastbase = lastdir = 0;
5556 		}
5557 
5558 		if (firstbase == -1) {
5559 			/*
5560 			 * The entire string consists only of a basename
5561 			 * component.  If we're looking for dirname, we need
5562 			 * to change our string to be just "."; if we're
5563 			 * looking for a basename, we'll just set the first
5564 			 * character of the basename to be 0.
5565 			 */
5566 			if (subr == DIF_SUBR_DIRNAME) {
5567 				ASSERT(lastdir == -1);
5568 				src = (uintptr_t)".";
5569 				lastdir = 0;
5570 			} else {
5571 				firstbase = 0;
5572 			}
5573 		}
5574 
5575 		if (subr == DIF_SUBR_DIRNAME) {
5576 			if (lastdir == -1) {
5577 				/*
5578 				 * We know that we have a slash in the name --
5579 				 * or lastdir would be set to 0, above.  And
5580 				 * because lastdir is -1, we know that this
5581 				 * slash must be the first character.  (That
5582 				 * is, the full string must be of the form
5583 				 * "/basename".)  In this case, the last
5584 				 * character of the directory name is 0.
5585 				 */
5586 				lastdir = 0;
5587 			}
5588 
5589 			start = 0;
5590 			end = lastdir;
5591 		} else {
5592 			ASSERT(subr == DIF_SUBR_BASENAME);
5593 			ASSERT(firstbase != -1 && lastbase != -1);
5594 			start = firstbase;
5595 			end = lastbase;
5596 		}
5597 
5598 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5599 			dest[j] = dtrace_load8(src + i);
5600 
5601 		dest[j] = '\0';
5602 		regs[rd] = (uintptr_t)dest;
5603 		mstate->dtms_scratch_ptr += size;
5604 		break;
5605 	}
5606 
5607 	case DIF_SUBR_GETF: {
5608 		uintptr_t fd = tupregs[0].dttk_value;
5609 		struct filedesc *fdp;
5610 		file_t *fp;
5611 
5612 		if (!dtrace_priv_proc(state)) {
5613 			regs[rd] = 0;
5614 			break;
5615 		}
5616 		fdp = curproc->p_fd;
5617 		FILEDESC_SLOCK(fdp);
5618 		fp = fget_locked(fdp, fd);
5619 		mstate->dtms_getf = fp;
5620 		regs[rd] = (uintptr_t)fp;
5621 		FILEDESC_SUNLOCK(fdp);
5622 		break;
5623 	}
5624 
5625 	case DIF_SUBR_CLEANPATH: {
5626 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5627 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5628 		uintptr_t src = tupregs[0].dttk_value;
5629 		size_t lim;
5630 		int i = 0, j = 0;
5631 #ifdef illumos
5632 		zone_t *z;
5633 #endif
5634 
5635 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5636 			regs[rd] = 0;
5637 			break;
5638 		}
5639 
5640 		if (!DTRACE_INSCRATCH(mstate, size)) {
5641 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5642 			regs[rd] = 0;
5643 			break;
5644 		}
5645 
5646 		/*
5647 		 * Move forward, loading each character.
5648 		 */
5649 		do {
5650 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5651 next:
5652 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5653 				break;
5654 
5655 			if (c != '/') {
5656 				dest[j++] = c;
5657 				continue;
5658 			}
5659 
5660 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5661 
5662 			if (c == '/') {
5663 				/*
5664 				 * We have two slashes -- we can just advance
5665 				 * to the next character.
5666 				 */
5667 				goto next;
5668 			}
5669 
5670 			if (c != '.') {
5671 				/*
5672 				 * This is not "." and it's not ".." -- we can
5673 				 * just store the "/" and this character and
5674 				 * drive on.
5675 				 */
5676 				dest[j++] = '/';
5677 				dest[j++] = c;
5678 				continue;
5679 			}
5680 
5681 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5682 
5683 			if (c == '/') {
5684 				/*
5685 				 * This is a "/./" component.  We're not going
5686 				 * to store anything in the destination buffer;
5687 				 * we're just going to go to the next component.
5688 				 */
5689 				goto next;
5690 			}
5691 
5692 			if (c != '.') {
5693 				/*
5694 				 * This is not ".." -- we can just store the
5695 				 * "/." and this character and continue
5696 				 * processing.
5697 				 */
5698 				dest[j++] = '/';
5699 				dest[j++] = '.';
5700 				dest[j++] = c;
5701 				continue;
5702 			}
5703 
5704 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5705 
5706 			if (c != '/' && c != '\0') {
5707 				/*
5708 				 * This is not ".." -- it's "..[mumble]".
5709 				 * We'll store the "/.." and this character
5710 				 * and continue processing.
5711 				 */
5712 				dest[j++] = '/';
5713 				dest[j++] = '.';
5714 				dest[j++] = '.';
5715 				dest[j++] = c;
5716 				continue;
5717 			}
5718 
5719 			/*
5720 			 * This is "/../" or "/..\0".  We need to back up
5721 			 * our destination pointer until we find a "/".
5722 			 */
5723 			i--;
5724 			while (j != 0 && dest[--j] != '/')
5725 				continue;
5726 
5727 			if (c == '\0')
5728 				dest[++j] = '/';
5729 		} while (c != '\0');
5730 
5731 		dest[j] = '\0';
5732 
5733 #ifdef illumos
5734 		if (mstate->dtms_getf != NULL &&
5735 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5736 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5737 			/*
5738 			 * If we've done a getf() as a part of this ECB and we
5739 			 * don't have kernel access (and we're not in the global
5740 			 * zone), check if the path we cleaned up begins with
5741 			 * the zone's root path, and trim it off if so.  Note
5742 			 * that this is an output cleanliness issue, not a
5743 			 * security issue: knowing one's zone root path does
5744 			 * not enable privilege escalation.
5745 			 */
5746 			if (strstr(dest, z->zone_rootpath) == dest)
5747 				dest += strlen(z->zone_rootpath) - 1;
5748 		}
5749 #endif
5750 
5751 		regs[rd] = (uintptr_t)dest;
5752 		mstate->dtms_scratch_ptr += size;
5753 		break;
5754 	}
5755 
5756 	case DIF_SUBR_INET_NTOA:
5757 	case DIF_SUBR_INET_NTOA6:
5758 	case DIF_SUBR_INET_NTOP: {
5759 		size_t size;
5760 		int af, argi, i;
5761 		char *base, *end;
5762 
5763 		if (subr == DIF_SUBR_INET_NTOP) {
5764 			af = (int)tupregs[0].dttk_value;
5765 			argi = 1;
5766 		} else {
5767 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5768 			argi = 0;
5769 		}
5770 
5771 		if (af == AF_INET) {
5772 			ipaddr_t ip4;
5773 			uint8_t *ptr8, val;
5774 
5775 			if (!dtrace_canload(tupregs[argi].dttk_value,
5776 			    sizeof (ipaddr_t), mstate, vstate)) {
5777 				regs[rd] = 0;
5778 				break;
5779 			}
5780 
5781 			/*
5782 			 * Safely load the IPv4 address.
5783 			 */
5784 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5785 
5786 			/*
5787 			 * Check an IPv4 string will fit in scratch.
5788 			 */
5789 			size = INET_ADDRSTRLEN;
5790 			if (!DTRACE_INSCRATCH(mstate, size)) {
5791 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5792 				regs[rd] = 0;
5793 				break;
5794 			}
5795 			base = (char *)mstate->dtms_scratch_ptr;
5796 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5797 
5798 			/*
5799 			 * Stringify as a dotted decimal quad.
5800 			 */
5801 			*end-- = '\0';
5802 			ptr8 = (uint8_t *)&ip4;
5803 			for (i = 3; i >= 0; i--) {
5804 				val = ptr8[i];
5805 
5806 				if (val == 0) {
5807 					*end-- = '0';
5808 				} else {
5809 					for (; val; val /= 10) {
5810 						*end-- = '0' + (val % 10);
5811 					}
5812 				}
5813 
5814 				if (i > 0)
5815 					*end-- = '.';
5816 			}
5817 			ASSERT(end + 1 >= base);
5818 
5819 		} else if (af == AF_INET6) {
5820 			struct in6_addr ip6;
5821 			int firstzero, tryzero, numzero, v6end;
5822 			uint16_t val;
5823 			const char digits[] = "0123456789abcdef";
5824 
5825 			/*
5826 			 * Stringify using RFC 1884 convention 2 - 16 bit
5827 			 * hexadecimal values with a zero-run compression.
5828 			 * Lower case hexadecimal digits are used.
5829 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5830 			 * The IPv4 embedded form is returned for inet_ntop,
5831 			 * just the IPv4 string is returned for inet_ntoa6.
5832 			 */
5833 
5834 			if (!dtrace_canload(tupregs[argi].dttk_value,
5835 			    sizeof (struct in6_addr), mstate, vstate)) {
5836 				regs[rd] = 0;
5837 				break;
5838 			}
5839 
5840 			/*
5841 			 * Safely load the IPv6 address.
5842 			 */
5843 			dtrace_bcopy(
5844 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5845 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5846 
5847 			/*
5848 			 * Check an IPv6 string will fit in scratch.
5849 			 */
5850 			size = INET6_ADDRSTRLEN;
5851 			if (!DTRACE_INSCRATCH(mstate, size)) {
5852 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5853 				regs[rd] = 0;
5854 				break;
5855 			}
5856 			base = (char *)mstate->dtms_scratch_ptr;
5857 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5858 			*end-- = '\0';
5859 
5860 			/*
5861 			 * Find the longest run of 16 bit zero values
5862 			 * for the single allowed zero compression - "::".
5863 			 */
5864 			firstzero = -1;
5865 			tryzero = -1;
5866 			numzero = 1;
5867 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5868 #ifdef illumos
5869 				if (ip6._S6_un._S6_u8[i] == 0 &&
5870 #else
5871 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5872 #endif
5873 				    tryzero == -1 && i % 2 == 0) {
5874 					tryzero = i;
5875 					continue;
5876 				}
5877 
5878 				if (tryzero != -1 &&
5879 #ifdef illumos
5880 				    (ip6._S6_un._S6_u8[i] != 0 ||
5881 #else
5882 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5883 #endif
5884 				    i == sizeof (struct in6_addr) - 1)) {
5885 
5886 					if (i - tryzero <= numzero) {
5887 						tryzero = -1;
5888 						continue;
5889 					}
5890 
5891 					firstzero = tryzero;
5892 					numzero = i - i % 2 - tryzero;
5893 					tryzero = -1;
5894 
5895 #ifdef illumos
5896 					if (ip6._S6_un._S6_u8[i] == 0 &&
5897 #else
5898 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5899 #endif
5900 					    i == sizeof (struct in6_addr) - 1)
5901 						numzero += 2;
5902 				}
5903 			}
5904 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5905 
5906 			/*
5907 			 * Check for an IPv4 embedded address.
5908 			 */
5909 			v6end = sizeof (struct in6_addr) - 2;
5910 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5911 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5912 				for (i = sizeof (struct in6_addr) - 1;
5913 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5914 					ASSERT(end >= base);
5915 
5916 #ifdef illumos
5917 					val = ip6._S6_un._S6_u8[i];
5918 #else
5919 					val = ip6.__u6_addr.__u6_addr8[i];
5920 #endif
5921 
5922 					if (val == 0) {
5923 						*end-- = '0';
5924 					} else {
5925 						for (; val; val /= 10) {
5926 							*end-- = '0' + val % 10;
5927 						}
5928 					}
5929 
5930 					if (i > DTRACE_V4MAPPED_OFFSET)
5931 						*end-- = '.';
5932 				}
5933 
5934 				if (subr == DIF_SUBR_INET_NTOA6)
5935 					goto inetout;
5936 
5937 				/*
5938 				 * Set v6end to skip the IPv4 address that
5939 				 * we have already stringified.
5940 				 */
5941 				v6end = 10;
5942 			}
5943 
5944 			/*
5945 			 * Build the IPv6 string by working through the
5946 			 * address in reverse.
5947 			 */
5948 			for (i = v6end; i >= 0; i -= 2) {
5949 				ASSERT(end >= base);
5950 
5951 				if (i == firstzero + numzero - 2) {
5952 					*end-- = ':';
5953 					*end-- = ':';
5954 					i -= numzero - 2;
5955 					continue;
5956 				}
5957 
5958 				if (i < 14 && i != firstzero - 2)
5959 					*end-- = ':';
5960 
5961 #ifdef illumos
5962 				val = (ip6._S6_un._S6_u8[i] << 8) +
5963 				    ip6._S6_un._S6_u8[i + 1];
5964 #else
5965 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5966 				    ip6.__u6_addr.__u6_addr8[i + 1];
5967 #endif
5968 
5969 				if (val == 0) {
5970 					*end-- = '0';
5971 				} else {
5972 					for (; val; val /= 16) {
5973 						*end-- = digits[val % 16];
5974 					}
5975 				}
5976 			}
5977 			ASSERT(end + 1 >= base);
5978 
5979 		} else {
5980 			/*
5981 			 * The user didn't use AH_INET or AH_INET6.
5982 			 */
5983 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5984 			regs[rd] = 0;
5985 			break;
5986 		}
5987 
5988 inetout:	regs[rd] = (uintptr_t)end + 1;
5989 		mstate->dtms_scratch_ptr += size;
5990 		break;
5991 	}
5992 
5993 	case DIF_SUBR_MEMREF: {
5994 		uintptr_t size = 2 * sizeof(uintptr_t);
5995 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5996 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5997 
5998 		/* address and length */
5999 		memref[0] = tupregs[0].dttk_value;
6000 		memref[1] = tupregs[1].dttk_value;
6001 
6002 		regs[rd] = (uintptr_t) memref;
6003 		mstate->dtms_scratch_ptr += scratch_size;
6004 		break;
6005 	}
6006 
6007 #ifndef illumos
6008 	case DIF_SUBR_MEMSTR: {
6009 		char *str = (char *)mstate->dtms_scratch_ptr;
6010 		uintptr_t mem = tupregs[0].dttk_value;
6011 		char c = tupregs[1].dttk_value;
6012 		size_t size = tupregs[2].dttk_value;
6013 		uint8_t n;
6014 		int i;
6015 
6016 		regs[rd] = 0;
6017 
6018 		if (size == 0)
6019 			break;
6020 
6021 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6022 			break;
6023 
6024 		if (!DTRACE_INSCRATCH(mstate, size)) {
6025 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6026 			break;
6027 		}
6028 
6029 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6030 			*flags |= CPU_DTRACE_ILLOP;
6031 			break;
6032 		}
6033 
6034 		for (i = 0; i < size - 1; i++) {
6035 			n = dtrace_load8(mem++);
6036 			str[i] = (n == 0) ? c : n;
6037 		}
6038 		str[size - 1] = 0;
6039 
6040 		regs[rd] = (uintptr_t)str;
6041 		mstate->dtms_scratch_ptr += size;
6042 		break;
6043 	}
6044 #endif
6045 
6046 	case DIF_SUBR_TYPEREF: {
6047 		uintptr_t size = 4 * sizeof(uintptr_t);
6048 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6049 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
6050 
6051 		/* address, num_elements, type_str, type_len */
6052 		typeref[0] = tupregs[0].dttk_value;
6053 		typeref[1] = tupregs[1].dttk_value;
6054 		typeref[2] = tupregs[2].dttk_value;
6055 		typeref[3] = tupregs[3].dttk_value;
6056 
6057 		regs[rd] = (uintptr_t) typeref;
6058 		mstate->dtms_scratch_ptr += scratch_size;
6059 		break;
6060 	}
6061 	}
6062 }
6063 
6064 /*
6065  * Emulate the execution of DTrace IR instructions specified by the given
6066  * DIF object.  This function is deliberately void of assertions as all of
6067  * the necessary checks are handled by a call to dtrace_difo_validate().
6068  */
6069 static uint64_t
6070 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6071     dtrace_vstate_t *vstate, dtrace_state_t *state)
6072 {
6073 	const dif_instr_t *text = difo->dtdo_buf;
6074 	const uint_t textlen = difo->dtdo_len;
6075 	const char *strtab = difo->dtdo_strtab;
6076 	const uint64_t *inttab = difo->dtdo_inttab;
6077 
6078 	uint64_t rval = 0;
6079 	dtrace_statvar_t *svar;
6080 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6081 	dtrace_difv_t *v;
6082 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6083 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6084 
6085 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6086 	uint64_t regs[DIF_DIR_NREGS];
6087 	uint64_t *tmp;
6088 
6089 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6090 	int64_t cc_r;
6091 	uint_t pc = 0, id, opc = 0;
6092 	uint8_t ttop = 0;
6093 	dif_instr_t instr;
6094 	uint_t r1, r2, rd;
6095 
6096 	/*
6097 	 * We stash the current DIF object into the machine state: we need it
6098 	 * for subsequent access checking.
6099 	 */
6100 	mstate->dtms_difo = difo;
6101 
6102 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6103 
6104 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6105 		opc = pc;
6106 
6107 		instr = text[pc++];
6108 		r1 = DIF_INSTR_R1(instr);
6109 		r2 = DIF_INSTR_R2(instr);
6110 		rd = DIF_INSTR_RD(instr);
6111 
6112 		switch (DIF_INSTR_OP(instr)) {
6113 		case DIF_OP_OR:
6114 			regs[rd] = regs[r1] | regs[r2];
6115 			break;
6116 		case DIF_OP_XOR:
6117 			regs[rd] = regs[r1] ^ regs[r2];
6118 			break;
6119 		case DIF_OP_AND:
6120 			regs[rd] = regs[r1] & regs[r2];
6121 			break;
6122 		case DIF_OP_SLL:
6123 			regs[rd] = regs[r1] << regs[r2];
6124 			break;
6125 		case DIF_OP_SRL:
6126 			regs[rd] = regs[r1] >> regs[r2];
6127 			break;
6128 		case DIF_OP_SUB:
6129 			regs[rd] = regs[r1] - regs[r2];
6130 			break;
6131 		case DIF_OP_ADD:
6132 			regs[rd] = regs[r1] + regs[r2];
6133 			break;
6134 		case DIF_OP_MUL:
6135 			regs[rd] = regs[r1] * regs[r2];
6136 			break;
6137 		case DIF_OP_SDIV:
6138 			if (regs[r2] == 0) {
6139 				regs[rd] = 0;
6140 				*flags |= CPU_DTRACE_DIVZERO;
6141 			} else {
6142 				regs[rd] = (int64_t)regs[r1] /
6143 				    (int64_t)regs[r2];
6144 			}
6145 			break;
6146 
6147 		case DIF_OP_UDIV:
6148 			if (regs[r2] == 0) {
6149 				regs[rd] = 0;
6150 				*flags |= CPU_DTRACE_DIVZERO;
6151 			} else {
6152 				regs[rd] = regs[r1] / regs[r2];
6153 			}
6154 			break;
6155 
6156 		case DIF_OP_SREM:
6157 			if (regs[r2] == 0) {
6158 				regs[rd] = 0;
6159 				*flags |= CPU_DTRACE_DIVZERO;
6160 			} else {
6161 				regs[rd] = (int64_t)regs[r1] %
6162 				    (int64_t)regs[r2];
6163 			}
6164 			break;
6165 
6166 		case DIF_OP_UREM:
6167 			if (regs[r2] == 0) {
6168 				regs[rd] = 0;
6169 				*flags |= CPU_DTRACE_DIVZERO;
6170 			} else {
6171 				regs[rd] = regs[r1] % regs[r2];
6172 			}
6173 			break;
6174 
6175 		case DIF_OP_NOT:
6176 			regs[rd] = ~regs[r1];
6177 			break;
6178 		case DIF_OP_MOV:
6179 			regs[rd] = regs[r1];
6180 			break;
6181 		case DIF_OP_CMP:
6182 			cc_r = regs[r1] - regs[r2];
6183 			cc_n = cc_r < 0;
6184 			cc_z = cc_r == 0;
6185 			cc_v = 0;
6186 			cc_c = regs[r1] < regs[r2];
6187 			break;
6188 		case DIF_OP_TST:
6189 			cc_n = cc_v = cc_c = 0;
6190 			cc_z = regs[r1] == 0;
6191 			break;
6192 		case DIF_OP_BA:
6193 			pc = DIF_INSTR_LABEL(instr);
6194 			break;
6195 		case DIF_OP_BE:
6196 			if (cc_z)
6197 				pc = DIF_INSTR_LABEL(instr);
6198 			break;
6199 		case DIF_OP_BNE:
6200 			if (cc_z == 0)
6201 				pc = DIF_INSTR_LABEL(instr);
6202 			break;
6203 		case DIF_OP_BG:
6204 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6205 				pc = DIF_INSTR_LABEL(instr);
6206 			break;
6207 		case DIF_OP_BGU:
6208 			if ((cc_c | cc_z) == 0)
6209 				pc = DIF_INSTR_LABEL(instr);
6210 			break;
6211 		case DIF_OP_BGE:
6212 			if ((cc_n ^ cc_v) == 0)
6213 				pc = DIF_INSTR_LABEL(instr);
6214 			break;
6215 		case DIF_OP_BGEU:
6216 			if (cc_c == 0)
6217 				pc = DIF_INSTR_LABEL(instr);
6218 			break;
6219 		case DIF_OP_BL:
6220 			if (cc_n ^ cc_v)
6221 				pc = DIF_INSTR_LABEL(instr);
6222 			break;
6223 		case DIF_OP_BLU:
6224 			if (cc_c)
6225 				pc = DIF_INSTR_LABEL(instr);
6226 			break;
6227 		case DIF_OP_BLE:
6228 			if (cc_z | (cc_n ^ cc_v))
6229 				pc = DIF_INSTR_LABEL(instr);
6230 			break;
6231 		case DIF_OP_BLEU:
6232 			if (cc_c | cc_z)
6233 				pc = DIF_INSTR_LABEL(instr);
6234 			break;
6235 		case DIF_OP_RLDSB:
6236 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6237 				break;
6238 			/*FALLTHROUGH*/
6239 		case DIF_OP_LDSB:
6240 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6241 			break;
6242 		case DIF_OP_RLDSH:
6243 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6244 				break;
6245 			/*FALLTHROUGH*/
6246 		case DIF_OP_LDSH:
6247 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6248 			break;
6249 		case DIF_OP_RLDSW:
6250 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6251 				break;
6252 			/*FALLTHROUGH*/
6253 		case DIF_OP_LDSW:
6254 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6255 			break;
6256 		case DIF_OP_RLDUB:
6257 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6258 				break;
6259 			/*FALLTHROUGH*/
6260 		case DIF_OP_LDUB:
6261 			regs[rd] = dtrace_load8(regs[r1]);
6262 			break;
6263 		case DIF_OP_RLDUH:
6264 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6265 				break;
6266 			/*FALLTHROUGH*/
6267 		case DIF_OP_LDUH:
6268 			regs[rd] = dtrace_load16(regs[r1]);
6269 			break;
6270 		case DIF_OP_RLDUW:
6271 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6272 				break;
6273 			/*FALLTHROUGH*/
6274 		case DIF_OP_LDUW:
6275 			regs[rd] = dtrace_load32(regs[r1]);
6276 			break;
6277 		case DIF_OP_RLDX:
6278 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6279 				break;
6280 			/*FALLTHROUGH*/
6281 		case DIF_OP_LDX:
6282 			regs[rd] = dtrace_load64(regs[r1]);
6283 			break;
6284 		case DIF_OP_ULDSB:
6285 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6286 			regs[rd] = (int8_t)
6287 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6288 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6289 			break;
6290 		case DIF_OP_ULDSH:
6291 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6292 			regs[rd] = (int16_t)
6293 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6294 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6295 			break;
6296 		case DIF_OP_ULDSW:
6297 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6298 			regs[rd] = (int32_t)
6299 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6300 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6301 			break;
6302 		case DIF_OP_ULDUB:
6303 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6304 			regs[rd] =
6305 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6306 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6307 			break;
6308 		case DIF_OP_ULDUH:
6309 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6310 			regs[rd] =
6311 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6312 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6313 			break;
6314 		case DIF_OP_ULDUW:
6315 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6316 			regs[rd] =
6317 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6318 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6319 			break;
6320 		case DIF_OP_ULDX:
6321 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6322 			regs[rd] =
6323 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6324 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6325 			break;
6326 		case DIF_OP_RET:
6327 			rval = regs[rd];
6328 			pc = textlen;
6329 			break;
6330 		case DIF_OP_NOP:
6331 			break;
6332 		case DIF_OP_SETX:
6333 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6334 			break;
6335 		case DIF_OP_SETS:
6336 			regs[rd] = (uint64_t)(uintptr_t)
6337 			    (strtab + DIF_INSTR_STRING(instr));
6338 			break;
6339 		case DIF_OP_SCMP: {
6340 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6341 			uintptr_t s1 = regs[r1];
6342 			uintptr_t s2 = regs[r2];
6343 			size_t lim1, lim2;
6344 
6345 			if (s1 != 0 &&
6346 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6347 				break;
6348 			if (s2 != 0 &&
6349 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6350 				break;
6351 
6352 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6353 			    MIN(lim1, lim2));
6354 
6355 			cc_n = cc_r < 0;
6356 			cc_z = cc_r == 0;
6357 			cc_v = cc_c = 0;
6358 			break;
6359 		}
6360 		case DIF_OP_LDGA:
6361 			regs[rd] = dtrace_dif_variable(mstate, state,
6362 			    r1, regs[r2]);
6363 			break;
6364 		case DIF_OP_LDGS:
6365 			id = DIF_INSTR_VAR(instr);
6366 
6367 			if (id >= DIF_VAR_OTHER_UBASE) {
6368 				uintptr_t a;
6369 
6370 				id -= DIF_VAR_OTHER_UBASE;
6371 				svar = vstate->dtvs_globals[id];
6372 				ASSERT(svar != NULL);
6373 				v = &svar->dtsv_var;
6374 
6375 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6376 					regs[rd] = svar->dtsv_data;
6377 					break;
6378 				}
6379 
6380 				a = (uintptr_t)svar->dtsv_data;
6381 
6382 				if (*(uint8_t *)a == UINT8_MAX) {
6383 					/*
6384 					 * If the 0th byte is set to UINT8_MAX
6385 					 * then this is to be treated as a
6386 					 * reference to a NULL variable.
6387 					 */
6388 					regs[rd] = 0;
6389 				} else {
6390 					regs[rd] = a + sizeof (uint64_t);
6391 				}
6392 
6393 				break;
6394 			}
6395 
6396 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6397 			break;
6398 
6399 		case DIF_OP_STGS:
6400 			id = DIF_INSTR_VAR(instr);
6401 
6402 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6403 			id -= DIF_VAR_OTHER_UBASE;
6404 
6405 			VERIFY(id < vstate->dtvs_nglobals);
6406 			svar = vstate->dtvs_globals[id];
6407 			ASSERT(svar != NULL);
6408 			v = &svar->dtsv_var;
6409 
6410 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6411 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6412 				size_t lim;
6413 
6414 				ASSERT(a != 0);
6415 				ASSERT(svar->dtsv_size != 0);
6416 
6417 				if (regs[rd] == 0) {
6418 					*(uint8_t *)a = UINT8_MAX;
6419 					break;
6420 				} else {
6421 					*(uint8_t *)a = 0;
6422 					a += sizeof (uint64_t);
6423 				}
6424 				if (!dtrace_vcanload(
6425 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6426 				    &lim, mstate, vstate))
6427 					break;
6428 
6429 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6430 				    (void *)a, &v->dtdv_type, lim);
6431 				break;
6432 			}
6433 
6434 			svar->dtsv_data = regs[rd];
6435 			break;
6436 
6437 		case DIF_OP_LDTA:
6438 			/*
6439 			 * There are no DTrace built-in thread-local arrays at
6440 			 * present.  This opcode is saved for future work.
6441 			 */
6442 			*flags |= CPU_DTRACE_ILLOP;
6443 			regs[rd] = 0;
6444 			break;
6445 
6446 		case DIF_OP_LDLS:
6447 			id = DIF_INSTR_VAR(instr);
6448 
6449 			if (id < DIF_VAR_OTHER_UBASE) {
6450 				/*
6451 				 * For now, this has no meaning.
6452 				 */
6453 				regs[rd] = 0;
6454 				break;
6455 			}
6456 
6457 			id -= DIF_VAR_OTHER_UBASE;
6458 
6459 			ASSERT(id < vstate->dtvs_nlocals);
6460 			ASSERT(vstate->dtvs_locals != NULL);
6461 
6462 			svar = vstate->dtvs_locals[id];
6463 			ASSERT(svar != NULL);
6464 			v = &svar->dtsv_var;
6465 
6466 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6467 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6468 				size_t sz = v->dtdv_type.dtdt_size;
6469 				size_t lim;
6470 
6471 				sz += sizeof (uint64_t);
6472 				ASSERT(svar->dtsv_size == NCPU * sz);
6473 				a += curcpu * sz;
6474 
6475 				if (*(uint8_t *)a == UINT8_MAX) {
6476 					/*
6477 					 * If the 0th byte is set to UINT8_MAX
6478 					 * then this is to be treated as a
6479 					 * reference to a NULL variable.
6480 					 */
6481 					regs[rd] = 0;
6482 				} else {
6483 					regs[rd] = a + sizeof (uint64_t);
6484 				}
6485 
6486 				break;
6487 			}
6488 
6489 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6490 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6491 			regs[rd] = tmp[curcpu];
6492 			break;
6493 
6494 		case DIF_OP_STLS:
6495 			id = DIF_INSTR_VAR(instr);
6496 
6497 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6498 			id -= DIF_VAR_OTHER_UBASE;
6499 			VERIFY(id < vstate->dtvs_nlocals);
6500 
6501 			ASSERT(vstate->dtvs_locals != NULL);
6502 			svar = vstate->dtvs_locals[id];
6503 			ASSERT(svar != NULL);
6504 			v = &svar->dtsv_var;
6505 
6506 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6507 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6508 				size_t sz = v->dtdv_type.dtdt_size;
6509 				size_t lim;
6510 
6511 				sz += sizeof (uint64_t);
6512 				ASSERT(svar->dtsv_size == NCPU * sz);
6513 				a += curcpu * sz;
6514 
6515 				if (regs[rd] == 0) {
6516 					*(uint8_t *)a = UINT8_MAX;
6517 					break;
6518 				} else {
6519 					*(uint8_t *)a = 0;
6520 					a += sizeof (uint64_t);
6521 				}
6522 
6523 				if (!dtrace_vcanload(
6524 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6525 				    &lim, mstate, vstate))
6526 					break;
6527 
6528 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6529 				    (void *)a, &v->dtdv_type, lim);
6530 				break;
6531 			}
6532 
6533 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6534 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6535 			tmp[curcpu] = regs[rd];
6536 			break;
6537 
6538 		case DIF_OP_LDTS: {
6539 			dtrace_dynvar_t *dvar;
6540 			dtrace_key_t *key;
6541 
6542 			id = DIF_INSTR_VAR(instr);
6543 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6544 			id -= DIF_VAR_OTHER_UBASE;
6545 			v = &vstate->dtvs_tlocals[id];
6546 
6547 			key = &tupregs[DIF_DTR_NREGS];
6548 			key[0].dttk_value = (uint64_t)id;
6549 			key[0].dttk_size = 0;
6550 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6551 			key[1].dttk_size = 0;
6552 
6553 			dvar = dtrace_dynvar(dstate, 2, key,
6554 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6555 			    mstate, vstate);
6556 
6557 			if (dvar == NULL) {
6558 				regs[rd] = 0;
6559 				break;
6560 			}
6561 
6562 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6563 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6564 			} else {
6565 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6566 			}
6567 
6568 			break;
6569 		}
6570 
6571 		case DIF_OP_STTS: {
6572 			dtrace_dynvar_t *dvar;
6573 			dtrace_key_t *key;
6574 
6575 			id = DIF_INSTR_VAR(instr);
6576 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6577 			id -= DIF_VAR_OTHER_UBASE;
6578 			VERIFY(id < vstate->dtvs_ntlocals);
6579 
6580 			key = &tupregs[DIF_DTR_NREGS];
6581 			key[0].dttk_value = (uint64_t)id;
6582 			key[0].dttk_size = 0;
6583 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6584 			key[1].dttk_size = 0;
6585 			v = &vstate->dtvs_tlocals[id];
6586 
6587 			dvar = dtrace_dynvar(dstate, 2, key,
6588 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6589 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6590 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6591 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6592 
6593 			/*
6594 			 * Given that we're storing to thread-local data,
6595 			 * we need to flush our predicate cache.
6596 			 */
6597 			curthread->t_predcache = 0;
6598 
6599 			if (dvar == NULL)
6600 				break;
6601 
6602 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6603 				size_t lim;
6604 
6605 				if (!dtrace_vcanload(
6606 				    (void *)(uintptr_t)regs[rd],
6607 				    &v->dtdv_type, &lim, mstate, vstate))
6608 					break;
6609 
6610 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6611 				    dvar->dtdv_data, &v->dtdv_type, lim);
6612 			} else {
6613 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6614 			}
6615 
6616 			break;
6617 		}
6618 
6619 		case DIF_OP_SRA:
6620 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6621 			break;
6622 
6623 		case DIF_OP_CALL:
6624 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6625 			    regs, tupregs, ttop, mstate, state);
6626 			break;
6627 
6628 		case DIF_OP_PUSHTR:
6629 			if (ttop == DIF_DTR_NREGS) {
6630 				*flags |= CPU_DTRACE_TUPOFLOW;
6631 				break;
6632 			}
6633 
6634 			if (r1 == DIF_TYPE_STRING) {
6635 				/*
6636 				 * If this is a string type and the size is 0,
6637 				 * we'll use the system-wide default string
6638 				 * size.  Note that we are _not_ looking at
6639 				 * the value of the DTRACEOPT_STRSIZE option;
6640 				 * had this been set, we would expect to have
6641 				 * a non-zero size value in the "pushtr".
6642 				 */
6643 				tupregs[ttop].dttk_size =
6644 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6645 				    regs[r2] ? regs[r2] :
6646 				    dtrace_strsize_default) + 1;
6647 			} else {
6648 				if (regs[r2] > LONG_MAX) {
6649 					*flags |= CPU_DTRACE_ILLOP;
6650 					break;
6651 				}
6652 
6653 				tupregs[ttop].dttk_size = regs[r2];
6654 			}
6655 
6656 			tupregs[ttop++].dttk_value = regs[rd];
6657 			break;
6658 
6659 		case DIF_OP_PUSHTV:
6660 			if (ttop == DIF_DTR_NREGS) {
6661 				*flags |= CPU_DTRACE_TUPOFLOW;
6662 				break;
6663 			}
6664 
6665 			tupregs[ttop].dttk_value = regs[rd];
6666 			tupregs[ttop++].dttk_size = 0;
6667 			break;
6668 
6669 		case DIF_OP_POPTS:
6670 			if (ttop != 0)
6671 				ttop--;
6672 			break;
6673 
6674 		case DIF_OP_FLUSHTS:
6675 			ttop = 0;
6676 			break;
6677 
6678 		case DIF_OP_LDGAA:
6679 		case DIF_OP_LDTAA: {
6680 			dtrace_dynvar_t *dvar;
6681 			dtrace_key_t *key = tupregs;
6682 			uint_t nkeys = ttop;
6683 
6684 			id = DIF_INSTR_VAR(instr);
6685 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6686 			id -= DIF_VAR_OTHER_UBASE;
6687 
6688 			key[nkeys].dttk_value = (uint64_t)id;
6689 			key[nkeys++].dttk_size = 0;
6690 
6691 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6692 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6693 				key[nkeys++].dttk_size = 0;
6694 				VERIFY(id < vstate->dtvs_ntlocals);
6695 				v = &vstate->dtvs_tlocals[id];
6696 			} else {
6697 				VERIFY(id < vstate->dtvs_nglobals);
6698 				v = &vstate->dtvs_globals[id]->dtsv_var;
6699 			}
6700 
6701 			dvar = dtrace_dynvar(dstate, nkeys, key,
6702 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6703 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6704 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6705 
6706 			if (dvar == NULL) {
6707 				regs[rd] = 0;
6708 				break;
6709 			}
6710 
6711 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6712 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6713 			} else {
6714 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6715 			}
6716 
6717 			break;
6718 		}
6719 
6720 		case DIF_OP_STGAA:
6721 		case DIF_OP_STTAA: {
6722 			dtrace_dynvar_t *dvar;
6723 			dtrace_key_t *key = tupregs;
6724 			uint_t nkeys = ttop;
6725 
6726 			id = DIF_INSTR_VAR(instr);
6727 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6728 			id -= DIF_VAR_OTHER_UBASE;
6729 
6730 			key[nkeys].dttk_value = (uint64_t)id;
6731 			key[nkeys++].dttk_size = 0;
6732 
6733 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6734 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6735 				key[nkeys++].dttk_size = 0;
6736 				VERIFY(id < vstate->dtvs_ntlocals);
6737 				v = &vstate->dtvs_tlocals[id];
6738 			} else {
6739 				VERIFY(id < vstate->dtvs_nglobals);
6740 				v = &vstate->dtvs_globals[id]->dtsv_var;
6741 			}
6742 
6743 			dvar = dtrace_dynvar(dstate, nkeys, key,
6744 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6745 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6746 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6747 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6748 
6749 			if (dvar == NULL)
6750 				break;
6751 
6752 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6753 				size_t lim;
6754 
6755 				if (!dtrace_vcanload(
6756 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6757 				    &lim, mstate, vstate))
6758 					break;
6759 
6760 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6761 				    dvar->dtdv_data, &v->dtdv_type, lim);
6762 			} else {
6763 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6764 			}
6765 
6766 			break;
6767 		}
6768 
6769 		case DIF_OP_ALLOCS: {
6770 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6771 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6772 
6773 			/*
6774 			 * Rounding up the user allocation size could have
6775 			 * overflowed large, bogus allocations (like -1ULL) to
6776 			 * 0.
6777 			 */
6778 			if (size < regs[r1] ||
6779 			    !DTRACE_INSCRATCH(mstate, size)) {
6780 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6781 				regs[rd] = 0;
6782 				break;
6783 			}
6784 
6785 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6786 			mstate->dtms_scratch_ptr += size;
6787 			regs[rd] = ptr;
6788 			break;
6789 		}
6790 
6791 		case DIF_OP_COPYS:
6792 			if (!dtrace_canstore(regs[rd], regs[r2],
6793 			    mstate, vstate)) {
6794 				*flags |= CPU_DTRACE_BADADDR;
6795 				*illval = regs[rd];
6796 				break;
6797 			}
6798 
6799 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6800 				break;
6801 
6802 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6803 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6804 			break;
6805 
6806 		case DIF_OP_STB:
6807 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6808 				*flags |= CPU_DTRACE_BADADDR;
6809 				*illval = regs[rd];
6810 				break;
6811 			}
6812 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6813 			break;
6814 
6815 		case DIF_OP_STH:
6816 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6817 				*flags |= CPU_DTRACE_BADADDR;
6818 				*illval = regs[rd];
6819 				break;
6820 			}
6821 			if (regs[rd] & 1) {
6822 				*flags |= CPU_DTRACE_BADALIGN;
6823 				*illval = regs[rd];
6824 				break;
6825 			}
6826 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6827 			break;
6828 
6829 		case DIF_OP_STW:
6830 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6831 				*flags |= CPU_DTRACE_BADADDR;
6832 				*illval = regs[rd];
6833 				break;
6834 			}
6835 			if (regs[rd] & 3) {
6836 				*flags |= CPU_DTRACE_BADALIGN;
6837 				*illval = regs[rd];
6838 				break;
6839 			}
6840 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6841 			break;
6842 
6843 		case DIF_OP_STX:
6844 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6845 				*flags |= CPU_DTRACE_BADADDR;
6846 				*illval = regs[rd];
6847 				break;
6848 			}
6849 			if (regs[rd] & 7) {
6850 				*flags |= CPU_DTRACE_BADALIGN;
6851 				*illval = regs[rd];
6852 				break;
6853 			}
6854 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6855 			break;
6856 		}
6857 	}
6858 
6859 	if (!(*flags & CPU_DTRACE_FAULT))
6860 		return (rval);
6861 
6862 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6863 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6864 
6865 	return (0);
6866 }
6867 
6868 static void
6869 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6870 {
6871 	dtrace_probe_t *probe = ecb->dte_probe;
6872 	dtrace_provider_t *prov = probe->dtpr_provider;
6873 	char c[DTRACE_FULLNAMELEN + 80], *str;
6874 	char *msg = "dtrace: breakpoint action at probe ";
6875 	char *ecbmsg = " (ecb ";
6876 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6877 	uintptr_t val = (uintptr_t)ecb;
6878 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6879 
6880 	if (dtrace_destructive_disallow)
6881 		return;
6882 
6883 	/*
6884 	 * It's impossible to be taking action on the NULL probe.
6885 	 */
6886 	ASSERT(probe != NULL);
6887 
6888 	/*
6889 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6890 	 * print the provider name, module name, function name and name of
6891 	 * the probe, along with the hex address of the ECB with the breakpoint
6892 	 * action -- all of which we must place in the character buffer by
6893 	 * hand.
6894 	 */
6895 	while (*msg != '\0')
6896 		c[i++] = *msg++;
6897 
6898 	for (str = prov->dtpv_name; *str != '\0'; str++)
6899 		c[i++] = *str;
6900 	c[i++] = ':';
6901 
6902 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6903 		c[i++] = *str;
6904 	c[i++] = ':';
6905 
6906 	for (str = probe->dtpr_func; *str != '\0'; str++)
6907 		c[i++] = *str;
6908 	c[i++] = ':';
6909 
6910 	for (str = probe->dtpr_name; *str != '\0'; str++)
6911 		c[i++] = *str;
6912 
6913 	while (*ecbmsg != '\0')
6914 		c[i++] = *ecbmsg++;
6915 
6916 	while (shift >= 0) {
6917 		mask = (uintptr_t)0xf << shift;
6918 
6919 		if (val >= ((uintptr_t)1 << shift))
6920 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6921 		shift -= 4;
6922 	}
6923 
6924 	c[i++] = ')';
6925 	c[i] = '\0';
6926 
6927 #ifdef illumos
6928 	debug_enter(c);
6929 #else
6930 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6931 #endif
6932 }
6933 
6934 static void
6935 dtrace_action_panic(dtrace_ecb_t *ecb)
6936 {
6937 	dtrace_probe_t *probe = ecb->dte_probe;
6938 
6939 	/*
6940 	 * It's impossible to be taking action on the NULL probe.
6941 	 */
6942 	ASSERT(probe != NULL);
6943 
6944 	if (dtrace_destructive_disallow)
6945 		return;
6946 
6947 	if (dtrace_panicked != NULL)
6948 		return;
6949 
6950 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6951 		return;
6952 
6953 	/*
6954 	 * We won the right to panic.  (We want to be sure that only one
6955 	 * thread calls panic() from dtrace_probe(), and that panic() is
6956 	 * called exactly once.)
6957 	 */
6958 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6959 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6960 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6961 }
6962 
6963 static void
6964 dtrace_action_raise(uint64_t sig)
6965 {
6966 	if (dtrace_destructive_disallow)
6967 		return;
6968 
6969 	if (sig >= NSIG) {
6970 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6971 		return;
6972 	}
6973 
6974 #ifdef illumos
6975 	/*
6976 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6977 	 * invocations of the raise() action.
6978 	 */
6979 	if (curthread->t_dtrace_sig == 0)
6980 		curthread->t_dtrace_sig = (uint8_t)sig;
6981 
6982 	curthread->t_sig_check = 1;
6983 	aston(curthread);
6984 #else
6985 	struct proc *p = curproc;
6986 	PROC_LOCK(p);
6987 	kern_psignal(p, sig);
6988 	PROC_UNLOCK(p);
6989 #endif
6990 }
6991 
6992 static void
6993 dtrace_action_stop(void)
6994 {
6995 	if (dtrace_destructive_disallow)
6996 		return;
6997 
6998 #ifdef illumos
6999 	if (!curthread->t_dtrace_stop) {
7000 		curthread->t_dtrace_stop = 1;
7001 		curthread->t_sig_check = 1;
7002 		aston(curthread);
7003 	}
7004 #else
7005 	struct proc *p = curproc;
7006 	PROC_LOCK(p);
7007 	kern_psignal(p, SIGSTOP);
7008 	PROC_UNLOCK(p);
7009 #endif
7010 }
7011 
7012 static void
7013 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7014 {
7015 	hrtime_t now;
7016 	volatile uint16_t *flags;
7017 #ifdef illumos
7018 	cpu_t *cpu = CPU;
7019 #else
7020 	cpu_t *cpu = &solaris_cpu[curcpu];
7021 #endif
7022 
7023 	if (dtrace_destructive_disallow)
7024 		return;
7025 
7026 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7027 
7028 	now = dtrace_gethrtime();
7029 
7030 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7031 		/*
7032 		 * We need to advance the mark to the current time.
7033 		 */
7034 		cpu->cpu_dtrace_chillmark = now;
7035 		cpu->cpu_dtrace_chilled = 0;
7036 	}
7037 
7038 	/*
7039 	 * Now check to see if the requested chill time would take us over
7040 	 * the maximum amount of time allowed in the chill interval.  (Or
7041 	 * worse, if the calculation itself induces overflow.)
7042 	 */
7043 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7044 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7045 		*flags |= CPU_DTRACE_ILLOP;
7046 		return;
7047 	}
7048 
7049 	while (dtrace_gethrtime() - now < val)
7050 		continue;
7051 
7052 	/*
7053 	 * Normally, we assure that the value of the variable "timestamp" does
7054 	 * not change within an ECB.  The presence of chill() represents an
7055 	 * exception to this rule, however.
7056 	 */
7057 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7058 	cpu->cpu_dtrace_chilled += val;
7059 }
7060 
7061 static void
7062 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7063     uint64_t *buf, uint64_t arg)
7064 {
7065 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7066 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7067 	uint64_t *pcs = &buf[1], *fps;
7068 	char *str = (char *)&pcs[nframes];
7069 	int size, offs = 0, i, j;
7070 	size_t rem;
7071 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7072 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7073 	char *sym;
7074 
7075 	/*
7076 	 * Should be taking a faster path if string space has not been
7077 	 * allocated.
7078 	 */
7079 	ASSERT(strsize != 0);
7080 
7081 	/*
7082 	 * We will first allocate some temporary space for the frame pointers.
7083 	 */
7084 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7085 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7086 	    (nframes * sizeof (uint64_t));
7087 
7088 	if (!DTRACE_INSCRATCH(mstate, size)) {
7089 		/*
7090 		 * Not enough room for our frame pointers -- need to indicate
7091 		 * that we ran out of scratch space.
7092 		 */
7093 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7094 		return;
7095 	}
7096 
7097 	mstate->dtms_scratch_ptr += size;
7098 	saved = mstate->dtms_scratch_ptr;
7099 
7100 	/*
7101 	 * Now get a stack with both program counters and frame pointers.
7102 	 */
7103 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7104 	dtrace_getufpstack(buf, fps, nframes + 1);
7105 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7106 
7107 	/*
7108 	 * If that faulted, we're cooked.
7109 	 */
7110 	if (*flags & CPU_DTRACE_FAULT)
7111 		goto out;
7112 
7113 	/*
7114 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7115 	 * each iteration, we restore the scratch pointer.
7116 	 */
7117 	for (i = 0; i < nframes; i++) {
7118 		mstate->dtms_scratch_ptr = saved;
7119 
7120 		if (offs >= strsize)
7121 			break;
7122 
7123 		sym = (char *)(uintptr_t)dtrace_helper(
7124 		    DTRACE_HELPER_ACTION_USTACK,
7125 		    mstate, state, pcs[i], fps[i]);
7126 
7127 		/*
7128 		 * If we faulted while running the helper, we're going to
7129 		 * clear the fault and null out the corresponding string.
7130 		 */
7131 		if (*flags & CPU_DTRACE_FAULT) {
7132 			*flags &= ~CPU_DTRACE_FAULT;
7133 			str[offs++] = '\0';
7134 			continue;
7135 		}
7136 
7137 		if (sym == NULL) {
7138 			str[offs++] = '\0';
7139 			continue;
7140 		}
7141 
7142 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7143 		    &(state->dts_vstate))) {
7144 			str[offs++] = '\0';
7145 			continue;
7146 		}
7147 
7148 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7149 
7150 		/*
7151 		 * Now copy in the string that the helper returned to us.
7152 		 */
7153 		for (j = 0; offs + j < strsize && j < rem; j++) {
7154 			if ((str[offs + j] = sym[j]) == '\0')
7155 				break;
7156 		}
7157 
7158 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7159 
7160 		offs += j + 1;
7161 	}
7162 
7163 	if (offs >= strsize) {
7164 		/*
7165 		 * If we didn't have room for all of the strings, we don't
7166 		 * abort processing -- this needn't be a fatal error -- but we
7167 		 * still want to increment a counter (dts_stkstroverflows) to
7168 		 * allow this condition to be warned about.  (If this is from
7169 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7170 		 */
7171 		dtrace_error(&state->dts_stkstroverflows);
7172 	}
7173 
7174 	while (offs < strsize)
7175 		str[offs++] = '\0';
7176 
7177 out:
7178 	mstate->dtms_scratch_ptr = old;
7179 }
7180 
7181 static void
7182 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7183     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7184 {
7185 	volatile uint16_t *flags;
7186 	uint64_t val = *valp;
7187 	size_t valoffs = *valoffsp;
7188 
7189 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7190 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7191 
7192 	/*
7193 	 * If this is a string, we're going to only load until we find the zero
7194 	 * byte -- after which we'll store zero bytes.
7195 	 */
7196 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7197 		char c = '\0' + 1;
7198 		size_t s;
7199 
7200 		for (s = 0; s < size; s++) {
7201 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7202 				c = dtrace_load8(val++);
7203 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7204 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7205 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7206 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7207 				if (*flags & CPU_DTRACE_FAULT)
7208 					break;
7209 			}
7210 
7211 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7212 
7213 			if (c == '\0' && intuple)
7214 				break;
7215 		}
7216 	} else {
7217 		uint8_t c;
7218 		while (valoffs < end) {
7219 			if (dtkind == DIF_TF_BYREF) {
7220 				c = dtrace_load8(val++);
7221 			} else if (dtkind == DIF_TF_BYUREF) {
7222 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7223 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7224 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7225 				if (*flags & CPU_DTRACE_FAULT)
7226 					break;
7227 			}
7228 
7229 			DTRACE_STORE(uint8_t, tomax,
7230 			    valoffs++, c);
7231 		}
7232 	}
7233 
7234 	*valp = val;
7235 	*valoffsp = valoffs;
7236 }
7237 
7238 /*
7239  * If you're looking for the epicenter of DTrace, you just found it.  This
7240  * is the function called by the provider to fire a probe -- from which all
7241  * subsequent probe-context DTrace activity emanates.
7242  */
7243 void
7244 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7245     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7246 {
7247 	processorid_t cpuid;
7248 	dtrace_icookie_t cookie;
7249 	dtrace_probe_t *probe;
7250 	dtrace_mstate_t mstate;
7251 	dtrace_ecb_t *ecb;
7252 	dtrace_action_t *act;
7253 	intptr_t offs;
7254 	size_t size;
7255 	int vtime, onintr;
7256 	volatile uint16_t *flags;
7257 	hrtime_t now;
7258 
7259 	if (panicstr != NULL)
7260 		return;
7261 
7262 #ifdef illumos
7263 	/*
7264 	 * Kick out immediately if this CPU is still being born (in which case
7265 	 * curthread will be set to -1) or the current thread can't allow
7266 	 * probes in its current context.
7267 	 */
7268 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7269 		return;
7270 #endif
7271 
7272 	cookie = dtrace_interrupt_disable();
7273 	probe = dtrace_probes[id - 1];
7274 	cpuid = curcpu;
7275 	onintr = CPU_ON_INTR(CPU);
7276 
7277 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7278 	    probe->dtpr_predcache == curthread->t_predcache) {
7279 		/*
7280 		 * We have hit in the predicate cache; we know that
7281 		 * this predicate would evaluate to be false.
7282 		 */
7283 		dtrace_interrupt_enable(cookie);
7284 		return;
7285 	}
7286 
7287 #ifdef illumos
7288 	if (panic_quiesce) {
7289 #else
7290 	if (panicstr != NULL) {
7291 #endif
7292 		/*
7293 		 * We don't trace anything if we're panicking.
7294 		 */
7295 		dtrace_interrupt_enable(cookie);
7296 		return;
7297 	}
7298 
7299 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7300 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7301 	vtime = dtrace_vtime_references != 0;
7302 
7303 	if (vtime && curthread->t_dtrace_start)
7304 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7305 
7306 	mstate.dtms_difo = NULL;
7307 	mstate.dtms_probe = probe;
7308 	mstate.dtms_strtok = 0;
7309 	mstate.dtms_arg[0] = arg0;
7310 	mstate.dtms_arg[1] = arg1;
7311 	mstate.dtms_arg[2] = arg2;
7312 	mstate.dtms_arg[3] = arg3;
7313 	mstate.dtms_arg[4] = arg4;
7314 
7315 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7316 
7317 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7318 		dtrace_predicate_t *pred = ecb->dte_predicate;
7319 		dtrace_state_t *state = ecb->dte_state;
7320 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7321 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7322 		dtrace_vstate_t *vstate = &state->dts_vstate;
7323 		dtrace_provider_t *prov = probe->dtpr_provider;
7324 		uint64_t tracememsize = 0;
7325 		int committed = 0;
7326 		caddr_t tomax;
7327 
7328 		/*
7329 		 * A little subtlety with the following (seemingly innocuous)
7330 		 * declaration of the automatic 'val':  by looking at the
7331 		 * code, you might think that it could be declared in the
7332 		 * action processing loop, below.  (That is, it's only used in
7333 		 * the action processing loop.)  However, it must be declared
7334 		 * out of that scope because in the case of DIF expression
7335 		 * arguments to aggregating actions, one iteration of the
7336 		 * action loop will use the last iteration's value.
7337 		 */
7338 		uint64_t val = 0;
7339 
7340 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7341 		mstate.dtms_getf = NULL;
7342 
7343 		*flags &= ~CPU_DTRACE_ERROR;
7344 
7345 		if (prov == dtrace_provider) {
7346 			/*
7347 			 * If dtrace itself is the provider of this probe,
7348 			 * we're only going to continue processing the ECB if
7349 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7350 			 * creating state.  (This prevents disjoint consumers
7351 			 * from seeing one another's metaprobes.)
7352 			 */
7353 			if (arg0 != (uint64_t)(uintptr_t)state)
7354 				continue;
7355 		}
7356 
7357 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7358 			/*
7359 			 * We're not currently active.  If our provider isn't
7360 			 * the dtrace pseudo provider, we're not interested.
7361 			 */
7362 			if (prov != dtrace_provider)
7363 				continue;
7364 
7365 			/*
7366 			 * Now we must further check if we are in the BEGIN
7367 			 * probe.  If we are, we will only continue processing
7368 			 * if we're still in WARMUP -- if one BEGIN enabling
7369 			 * has invoked the exit() action, we don't want to
7370 			 * evaluate subsequent BEGIN enablings.
7371 			 */
7372 			if (probe->dtpr_id == dtrace_probeid_begin &&
7373 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7374 				ASSERT(state->dts_activity ==
7375 				    DTRACE_ACTIVITY_DRAINING);
7376 				continue;
7377 			}
7378 		}
7379 
7380 		if (ecb->dte_cond) {
7381 			/*
7382 			 * If the dte_cond bits indicate that this
7383 			 * consumer is only allowed to see user-mode firings
7384 			 * of this probe, call the provider's dtps_usermode()
7385 			 * entry point to check that the probe was fired
7386 			 * while in a user context. Skip this ECB if that's
7387 			 * not the case.
7388 			 */
7389 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7390 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7391 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7392 				continue;
7393 
7394 #ifdef illumos
7395 			/*
7396 			 * This is more subtle than it looks. We have to be
7397 			 * absolutely certain that CRED() isn't going to
7398 			 * change out from under us so it's only legit to
7399 			 * examine that structure if we're in constrained
7400 			 * situations. Currently, the only times we'll this
7401 			 * check is if a non-super-user has enabled the
7402 			 * profile or syscall providers -- providers that
7403 			 * allow visibility of all processes. For the
7404 			 * profile case, the check above will ensure that
7405 			 * we're examining a user context.
7406 			 */
7407 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7408 				cred_t *cr;
7409 				cred_t *s_cr =
7410 				    ecb->dte_state->dts_cred.dcr_cred;
7411 				proc_t *proc;
7412 
7413 				ASSERT(s_cr != NULL);
7414 
7415 				if ((cr = CRED()) == NULL ||
7416 				    s_cr->cr_uid != cr->cr_uid ||
7417 				    s_cr->cr_uid != cr->cr_ruid ||
7418 				    s_cr->cr_uid != cr->cr_suid ||
7419 				    s_cr->cr_gid != cr->cr_gid ||
7420 				    s_cr->cr_gid != cr->cr_rgid ||
7421 				    s_cr->cr_gid != cr->cr_sgid ||
7422 				    (proc = ttoproc(curthread)) == NULL ||
7423 				    (proc->p_flag & SNOCD))
7424 					continue;
7425 			}
7426 
7427 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7428 				cred_t *cr;
7429 				cred_t *s_cr =
7430 				    ecb->dte_state->dts_cred.dcr_cred;
7431 
7432 				ASSERT(s_cr != NULL);
7433 
7434 				if ((cr = CRED()) == NULL ||
7435 				    s_cr->cr_zone->zone_id !=
7436 				    cr->cr_zone->zone_id)
7437 					continue;
7438 			}
7439 #endif
7440 		}
7441 
7442 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7443 			/*
7444 			 * We seem to be dead.  Unless we (a) have kernel
7445 			 * destructive permissions (b) have explicitly enabled
7446 			 * destructive actions and (c) destructive actions have
7447 			 * not been disabled, we're going to transition into
7448 			 * the KILLED state, from which no further processing
7449 			 * on this state will be performed.
7450 			 */
7451 			if (!dtrace_priv_kernel_destructive(state) ||
7452 			    !state->dts_cred.dcr_destructive ||
7453 			    dtrace_destructive_disallow) {
7454 				void *activity = &state->dts_activity;
7455 				dtrace_activity_t current;
7456 
7457 				do {
7458 					current = state->dts_activity;
7459 				} while (dtrace_cas32(activity, current,
7460 				    DTRACE_ACTIVITY_KILLED) != current);
7461 
7462 				continue;
7463 			}
7464 		}
7465 
7466 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7467 		    ecb->dte_alignment, state, &mstate)) < 0)
7468 			continue;
7469 
7470 		tomax = buf->dtb_tomax;
7471 		ASSERT(tomax != NULL);
7472 
7473 		if (ecb->dte_size != 0) {
7474 			dtrace_rechdr_t dtrh;
7475 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7476 				mstate.dtms_timestamp = dtrace_gethrtime();
7477 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7478 			}
7479 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7480 			dtrh.dtrh_epid = ecb->dte_epid;
7481 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7482 			    mstate.dtms_timestamp);
7483 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7484 		}
7485 
7486 		mstate.dtms_epid = ecb->dte_epid;
7487 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7488 
7489 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7490 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7491 		else
7492 			mstate.dtms_access = 0;
7493 
7494 		if (pred != NULL) {
7495 			dtrace_difo_t *dp = pred->dtp_difo;
7496 			uint64_t rval;
7497 
7498 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7499 
7500 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7501 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7502 
7503 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7504 					/*
7505 					 * Update the predicate cache...
7506 					 */
7507 					ASSERT(cid == pred->dtp_cacheid);
7508 					curthread->t_predcache = cid;
7509 				}
7510 
7511 				continue;
7512 			}
7513 		}
7514 
7515 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7516 		    act != NULL; act = act->dta_next) {
7517 			size_t valoffs;
7518 			dtrace_difo_t *dp;
7519 			dtrace_recdesc_t *rec = &act->dta_rec;
7520 
7521 			size = rec->dtrd_size;
7522 			valoffs = offs + rec->dtrd_offset;
7523 
7524 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7525 				uint64_t v = 0xbad;
7526 				dtrace_aggregation_t *agg;
7527 
7528 				agg = (dtrace_aggregation_t *)act;
7529 
7530 				if ((dp = act->dta_difo) != NULL)
7531 					v = dtrace_dif_emulate(dp,
7532 					    &mstate, vstate, state);
7533 
7534 				if (*flags & CPU_DTRACE_ERROR)
7535 					continue;
7536 
7537 				/*
7538 				 * Note that we always pass the expression
7539 				 * value from the previous iteration of the
7540 				 * action loop.  This value will only be used
7541 				 * if there is an expression argument to the
7542 				 * aggregating action, denoted by the
7543 				 * dtag_hasarg field.
7544 				 */
7545 				dtrace_aggregate(agg, buf,
7546 				    offs, aggbuf, v, val);
7547 				continue;
7548 			}
7549 
7550 			switch (act->dta_kind) {
7551 			case DTRACEACT_STOP:
7552 				if (dtrace_priv_proc_destructive(state))
7553 					dtrace_action_stop();
7554 				continue;
7555 
7556 			case DTRACEACT_BREAKPOINT:
7557 				if (dtrace_priv_kernel_destructive(state))
7558 					dtrace_action_breakpoint(ecb);
7559 				continue;
7560 
7561 			case DTRACEACT_PANIC:
7562 				if (dtrace_priv_kernel_destructive(state))
7563 					dtrace_action_panic(ecb);
7564 				continue;
7565 
7566 			case DTRACEACT_STACK:
7567 				if (!dtrace_priv_kernel(state))
7568 					continue;
7569 
7570 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7571 				    size / sizeof (pc_t), probe->dtpr_aframes,
7572 				    DTRACE_ANCHORED(probe) ? NULL :
7573 				    (uint32_t *)arg0);
7574 				continue;
7575 
7576 			case DTRACEACT_JSTACK:
7577 			case DTRACEACT_USTACK:
7578 				if (!dtrace_priv_proc(state))
7579 					continue;
7580 
7581 				/*
7582 				 * See comment in DIF_VAR_PID.
7583 				 */
7584 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7585 				    CPU_ON_INTR(CPU)) {
7586 					int depth = DTRACE_USTACK_NFRAMES(
7587 					    rec->dtrd_arg) + 1;
7588 
7589 					dtrace_bzero((void *)(tomax + valoffs),
7590 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7591 					    + depth * sizeof (uint64_t));
7592 
7593 					continue;
7594 				}
7595 
7596 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7597 				    curproc->p_dtrace_helpers != NULL) {
7598 					/*
7599 					 * This is the slow path -- we have
7600 					 * allocated string space, and we're
7601 					 * getting the stack of a process that
7602 					 * has helpers.  Call into a separate
7603 					 * routine to perform this processing.
7604 					 */
7605 					dtrace_action_ustack(&mstate, state,
7606 					    (uint64_t *)(tomax + valoffs),
7607 					    rec->dtrd_arg);
7608 					continue;
7609 				}
7610 
7611 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7612 				dtrace_getupcstack((uint64_t *)
7613 				    (tomax + valoffs),
7614 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7615 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7616 				continue;
7617 
7618 			default:
7619 				break;
7620 			}
7621 
7622 			dp = act->dta_difo;
7623 			ASSERT(dp != NULL);
7624 
7625 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7626 
7627 			if (*flags & CPU_DTRACE_ERROR)
7628 				continue;
7629 
7630 			switch (act->dta_kind) {
7631 			case DTRACEACT_SPECULATE: {
7632 				dtrace_rechdr_t *dtrh;
7633 
7634 				ASSERT(buf == &state->dts_buffer[cpuid]);
7635 				buf = dtrace_speculation_buffer(state,
7636 				    cpuid, val);
7637 
7638 				if (buf == NULL) {
7639 					*flags |= CPU_DTRACE_DROP;
7640 					continue;
7641 				}
7642 
7643 				offs = dtrace_buffer_reserve(buf,
7644 				    ecb->dte_needed, ecb->dte_alignment,
7645 				    state, NULL);
7646 
7647 				if (offs < 0) {
7648 					*flags |= CPU_DTRACE_DROP;
7649 					continue;
7650 				}
7651 
7652 				tomax = buf->dtb_tomax;
7653 				ASSERT(tomax != NULL);
7654 
7655 				if (ecb->dte_size == 0)
7656 					continue;
7657 
7658 				ASSERT3U(ecb->dte_size, >=,
7659 				    sizeof (dtrace_rechdr_t));
7660 				dtrh = ((void *)(tomax + offs));
7661 				dtrh->dtrh_epid = ecb->dte_epid;
7662 				/*
7663 				 * When the speculation is committed, all of
7664 				 * the records in the speculative buffer will
7665 				 * have their timestamps set to the commit
7666 				 * time.  Until then, it is set to a sentinel
7667 				 * value, for debugability.
7668 				 */
7669 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7670 				continue;
7671 			}
7672 
7673 			case DTRACEACT_PRINTM: {
7674 				/* The DIF returns a 'memref'. */
7675 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7676 
7677 				/* Get the size from the memref. */
7678 				size = memref[1];
7679 
7680 				/*
7681 				 * Check if the size exceeds the allocated
7682 				 * buffer size.
7683 				 */
7684 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7685 					/* Flag a drop! */
7686 					*flags |= CPU_DTRACE_DROP;
7687 					continue;
7688 				}
7689 
7690 				/* Store the size in the buffer first. */
7691 				DTRACE_STORE(uintptr_t, tomax,
7692 				    valoffs, size);
7693 
7694 				/*
7695 				 * Offset the buffer address to the start
7696 				 * of the data.
7697 				 */
7698 				valoffs += sizeof(uintptr_t);
7699 
7700 				/*
7701 				 * Reset to the memory address rather than
7702 				 * the memref array, then let the BYREF
7703 				 * code below do the work to store the
7704 				 * memory data in the buffer.
7705 				 */
7706 				val = memref[0];
7707 				break;
7708 			}
7709 
7710 			case DTRACEACT_PRINTT: {
7711 				/* The DIF returns a 'typeref'. */
7712 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7713 				char c = '\0' + 1;
7714 				size_t s;
7715 
7716 				/*
7717 				 * Get the type string length and round it
7718 				 * up so that the data that follows is
7719 				 * aligned for easy access.
7720 				 */
7721 				size_t typs = strlen((char *) typeref[2]) + 1;
7722 				typs = roundup(typs,  sizeof(uintptr_t));
7723 
7724 				/*
7725 				 *Get the size from the typeref using the
7726 				 * number of elements and the type size.
7727 				 */
7728 				size = typeref[1] * typeref[3];
7729 
7730 				/*
7731 				 * Check if the size exceeds the allocated
7732 				 * buffer size.
7733 				 */
7734 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7735 					/* Flag a drop! */
7736 					*flags |= CPU_DTRACE_DROP;
7737 
7738 				}
7739 
7740 				/* Store the size in the buffer first. */
7741 				DTRACE_STORE(uintptr_t, tomax,
7742 				    valoffs, size);
7743 				valoffs += sizeof(uintptr_t);
7744 
7745 				/* Store the type size in the buffer. */
7746 				DTRACE_STORE(uintptr_t, tomax,
7747 				    valoffs, typeref[3]);
7748 				valoffs += sizeof(uintptr_t);
7749 
7750 				val = typeref[2];
7751 
7752 				for (s = 0; s < typs; s++) {
7753 					if (c != '\0')
7754 						c = dtrace_load8(val++);
7755 
7756 					DTRACE_STORE(uint8_t, tomax,
7757 					    valoffs++, c);
7758 				}
7759 
7760 				/*
7761 				 * Reset to the memory address rather than
7762 				 * the typeref array, then let the BYREF
7763 				 * code below do the work to store the
7764 				 * memory data in the buffer.
7765 				 */
7766 				val = typeref[0];
7767 				break;
7768 			}
7769 
7770 			case DTRACEACT_CHILL:
7771 				if (dtrace_priv_kernel_destructive(state))
7772 					dtrace_action_chill(&mstate, val);
7773 				continue;
7774 
7775 			case DTRACEACT_RAISE:
7776 				if (dtrace_priv_proc_destructive(state))
7777 					dtrace_action_raise(val);
7778 				continue;
7779 
7780 			case DTRACEACT_COMMIT:
7781 				ASSERT(!committed);
7782 
7783 				/*
7784 				 * We need to commit our buffer state.
7785 				 */
7786 				if (ecb->dte_size)
7787 					buf->dtb_offset = offs + ecb->dte_size;
7788 				buf = &state->dts_buffer[cpuid];
7789 				dtrace_speculation_commit(state, cpuid, val);
7790 				committed = 1;
7791 				continue;
7792 
7793 			case DTRACEACT_DISCARD:
7794 				dtrace_speculation_discard(state, cpuid, val);
7795 				continue;
7796 
7797 			case DTRACEACT_DIFEXPR:
7798 			case DTRACEACT_LIBACT:
7799 			case DTRACEACT_PRINTF:
7800 			case DTRACEACT_PRINTA:
7801 			case DTRACEACT_SYSTEM:
7802 			case DTRACEACT_FREOPEN:
7803 			case DTRACEACT_TRACEMEM:
7804 				break;
7805 
7806 			case DTRACEACT_TRACEMEM_DYNSIZE:
7807 				tracememsize = val;
7808 				break;
7809 
7810 			case DTRACEACT_SYM:
7811 			case DTRACEACT_MOD:
7812 				if (!dtrace_priv_kernel(state))
7813 					continue;
7814 				break;
7815 
7816 			case DTRACEACT_USYM:
7817 			case DTRACEACT_UMOD:
7818 			case DTRACEACT_UADDR: {
7819 #ifdef illumos
7820 				struct pid *pid = curthread->t_procp->p_pidp;
7821 #endif
7822 
7823 				if (!dtrace_priv_proc(state))
7824 					continue;
7825 
7826 				DTRACE_STORE(uint64_t, tomax,
7827 #ifdef illumos
7828 				    valoffs, (uint64_t)pid->pid_id);
7829 #else
7830 				    valoffs, (uint64_t) curproc->p_pid);
7831 #endif
7832 				DTRACE_STORE(uint64_t, tomax,
7833 				    valoffs + sizeof (uint64_t), val);
7834 
7835 				continue;
7836 			}
7837 
7838 			case DTRACEACT_EXIT: {
7839 				/*
7840 				 * For the exit action, we are going to attempt
7841 				 * to atomically set our activity to be
7842 				 * draining.  If this fails (either because
7843 				 * another CPU has beat us to the exit action,
7844 				 * or because our current activity is something
7845 				 * other than ACTIVE or WARMUP), we will
7846 				 * continue.  This assures that the exit action
7847 				 * can be successfully recorded at most once
7848 				 * when we're in the ACTIVE state.  If we're
7849 				 * encountering the exit() action while in
7850 				 * COOLDOWN, however, we want to honor the new
7851 				 * status code.  (We know that we're the only
7852 				 * thread in COOLDOWN, so there is no race.)
7853 				 */
7854 				void *activity = &state->dts_activity;
7855 				dtrace_activity_t current = state->dts_activity;
7856 
7857 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7858 					break;
7859 
7860 				if (current != DTRACE_ACTIVITY_WARMUP)
7861 					current = DTRACE_ACTIVITY_ACTIVE;
7862 
7863 				if (dtrace_cas32(activity, current,
7864 				    DTRACE_ACTIVITY_DRAINING) != current) {
7865 					*flags |= CPU_DTRACE_DROP;
7866 					continue;
7867 				}
7868 
7869 				break;
7870 			}
7871 
7872 			default:
7873 				ASSERT(0);
7874 			}
7875 
7876 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7877 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7878 				uintptr_t end = valoffs + size;
7879 
7880 				if (tracememsize != 0 &&
7881 				    valoffs + tracememsize < end) {
7882 					end = valoffs + tracememsize;
7883 					tracememsize = 0;
7884 				}
7885 
7886 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7887 				    !dtrace_vcanload((void *)(uintptr_t)val,
7888 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7889 					continue;
7890 
7891 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7892 				    &val, end, act->dta_intuple,
7893 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7894 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7895 				continue;
7896 			}
7897 
7898 			switch (size) {
7899 			case 0:
7900 				break;
7901 
7902 			case sizeof (uint8_t):
7903 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7904 				break;
7905 			case sizeof (uint16_t):
7906 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7907 				break;
7908 			case sizeof (uint32_t):
7909 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7910 				break;
7911 			case sizeof (uint64_t):
7912 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7913 				break;
7914 			default:
7915 				/*
7916 				 * Any other size should have been returned by
7917 				 * reference, not by value.
7918 				 */
7919 				ASSERT(0);
7920 				break;
7921 			}
7922 		}
7923 
7924 		if (*flags & CPU_DTRACE_DROP)
7925 			continue;
7926 
7927 		if (*flags & CPU_DTRACE_FAULT) {
7928 			int ndx;
7929 			dtrace_action_t *err;
7930 
7931 			buf->dtb_errors++;
7932 
7933 			if (probe->dtpr_id == dtrace_probeid_error) {
7934 				/*
7935 				 * There's nothing we can do -- we had an
7936 				 * error on the error probe.  We bump an
7937 				 * error counter to at least indicate that
7938 				 * this condition happened.
7939 				 */
7940 				dtrace_error(&state->dts_dblerrors);
7941 				continue;
7942 			}
7943 
7944 			if (vtime) {
7945 				/*
7946 				 * Before recursing on dtrace_probe(), we
7947 				 * need to explicitly clear out our start
7948 				 * time to prevent it from being accumulated
7949 				 * into t_dtrace_vtime.
7950 				 */
7951 				curthread->t_dtrace_start = 0;
7952 			}
7953 
7954 			/*
7955 			 * Iterate over the actions to figure out which action
7956 			 * we were processing when we experienced the error.
7957 			 * Note that act points _past_ the faulting action; if
7958 			 * act is ecb->dte_action, the fault was in the
7959 			 * predicate, if it's ecb->dte_action->dta_next it's
7960 			 * in action #1, and so on.
7961 			 */
7962 			for (err = ecb->dte_action, ndx = 0;
7963 			    err != act; err = err->dta_next, ndx++)
7964 				continue;
7965 
7966 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7967 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7968 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7969 			    cpu_core[cpuid].cpuc_dtrace_illval);
7970 
7971 			continue;
7972 		}
7973 
7974 		if (!committed)
7975 			buf->dtb_offset = offs + ecb->dte_size;
7976 	}
7977 
7978 	if (vtime)
7979 		curthread->t_dtrace_start = dtrace_gethrtime();
7980 
7981 	dtrace_interrupt_enable(cookie);
7982 }
7983 
7984 /*
7985  * DTrace Probe Hashing Functions
7986  *
7987  * The functions in this section (and indeed, the functions in remaining
7988  * sections) are not _called_ from probe context.  (Any exceptions to this are
7989  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7990  * DTrace framework to look-up probes in, add probes to and remove probes from
7991  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7992  * probe tuple -- allowing for fast lookups, regardless of what was
7993  * specified.)
7994  */
7995 static uint_t
7996 dtrace_hash_str(const char *p)
7997 {
7998 	unsigned int g;
7999 	uint_t hval = 0;
8000 
8001 	while (*p) {
8002 		hval = (hval << 4) + *p++;
8003 		if ((g = (hval & 0xf0000000)) != 0)
8004 			hval ^= g >> 24;
8005 		hval &= ~g;
8006 	}
8007 	return (hval);
8008 }
8009 
8010 static dtrace_hash_t *
8011 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
8012 {
8013 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8014 
8015 	hash->dth_stroffs = stroffs;
8016 	hash->dth_nextoffs = nextoffs;
8017 	hash->dth_prevoffs = prevoffs;
8018 
8019 	hash->dth_size = 1;
8020 	hash->dth_mask = hash->dth_size - 1;
8021 
8022 	hash->dth_tab = kmem_zalloc(hash->dth_size *
8023 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8024 
8025 	return (hash);
8026 }
8027 
8028 static void
8029 dtrace_hash_destroy(dtrace_hash_t *hash)
8030 {
8031 #ifdef DEBUG
8032 	int i;
8033 
8034 	for (i = 0; i < hash->dth_size; i++)
8035 		ASSERT(hash->dth_tab[i] == NULL);
8036 #endif
8037 
8038 	kmem_free(hash->dth_tab,
8039 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
8040 	kmem_free(hash, sizeof (dtrace_hash_t));
8041 }
8042 
8043 static void
8044 dtrace_hash_resize(dtrace_hash_t *hash)
8045 {
8046 	int size = hash->dth_size, i, ndx;
8047 	int new_size = hash->dth_size << 1;
8048 	int new_mask = new_size - 1;
8049 	dtrace_hashbucket_t **new_tab, *bucket, *next;
8050 
8051 	ASSERT((new_size & new_mask) == 0);
8052 
8053 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8054 
8055 	for (i = 0; i < size; i++) {
8056 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8057 			dtrace_probe_t *probe = bucket->dthb_chain;
8058 
8059 			ASSERT(probe != NULL);
8060 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8061 
8062 			next = bucket->dthb_next;
8063 			bucket->dthb_next = new_tab[ndx];
8064 			new_tab[ndx] = bucket;
8065 		}
8066 	}
8067 
8068 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8069 	hash->dth_tab = new_tab;
8070 	hash->dth_size = new_size;
8071 	hash->dth_mask = new_mask;
8072 }
8073 
8074 static void
8075 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8076 {
8077 	int hashval = DTRACE_HASHSTR(hash, new);
8078 	int ndx = hashval & hash->dth_mask;
8079 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8080 	dtrace_probe_t **nextp, **prevp;
8081 
8082 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8083 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8084 			goto add;
8085 	}
8086 
8087 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8088 		dtrace_hash_resize(hash);
8089 		dtrace_hash_add(hash, new);
8090 		return;
8091 	}
8092 
8093 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8094 	bucket->dthb_next = hash->dth_tab[ndx];
8095 	hash->dth_tab[ndx] = bucket;
8096 	hash->dth_nbuckets++;
8097 
8098 add:
8099 	nextp = DTRACE_HASHNEXT(hash, new);
8100 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8101 	*nextp = bucket->dthb_chain;
8102 
8103 	if (bucket->dthb_chain != NULL) {
8104 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8105 		ASSERT(*prevp == NULL);
8106 		*prevp = new;
8107 	}
8108 
8109 	bucket->dthb_chain = new;
8110 	bucket->dthb_len++;
8111 }
8112 
8113 static dtrace_probe_t *
8114 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8115 {
8116 	int hashval = DTRACE_HASHSTR(hash, template);
8117 	int ndx = hashval & hash->dth_mask;
8118 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8119 
8120 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8121 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8122 			return (bucket->dthb_chain);
8123 	}
8124 
8125 	return (NULL);
8126 }
8127 
8128 static int
8129 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8130 {
8131 	int hashval = DTRACE_HASHSTR(hash, template);
8132 	int ndx = hashval & hash->dth_mask;
8133 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8134 
8135 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8136 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8137 			return (bucket->dthb_len);
8138 	}
8139 
8140 	return (0);
8141 }
8142 
8143 static void
8144 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8145 {
8146 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8147 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8148 
8149 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8150 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8151 
8152 	/*
8153 	 * Find the bucket that we're removing this probe from.
8154 	 */
8155 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8156 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8157 			break;
8158 	}
8159 
8160 	ASSERT(bucket != NULL);
8161 
8162 	if (*prevp == NULL) {
8163 		if (*nextp == NULL) {
8164 			/*
8165 			 * The removed probe was the only probe on this
8166 			 * bucket; we need to remove the bucket.
8167 			 */
8168 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8169 
8170 			ASSERT(bucket->dthb_chain == probe);
8171 			ASSERT(b != NULL);
8172 
8173 			if (b == bucket) {
8174 				hash->dth_tab[ndx] = bucket->dthb_next;
8175 			} else {
8176 				while (b->dthb_next != bucket)
8177 					b = b->dthb_next;
8178 				b->dthb_next = bucket->dthb_next;
8179 			}
8180 
8181 			ASSERT(hash->dth_nbuckets > 0);
8182 			hash->dth_nbuckets--;
8183 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8184 			return;
8185 		}
8186 
8187 		bucket->dthb_chain = *nextp;
8188 	} else {
8189 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8190 	}
8191 
8192 	if (*nextp != NULL)
8193 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8194 }
8195 
8196 /*
8197  * DTrace Utility Functions
8198  *
8199  * These are random utility functions that are _not_ called from probe context.
8200  */
8201 static int
8202 dtrace_badattr(const dtrace_attribute_t *a)
8203 {
8204 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8205 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8206 	    a->dtat_class > DTRACE_CLASS_MAX);
8207 }
8208 
8209 /*
8210  * Return a duplicate copy of a string.  If the specified string is NULL,
8211  * this function returns a zero-length string.
8212  */
8213 static char *
8214 dtrace_strdup(const char *str)
8215 {
8216 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8217 
8218 	if (str != NULL)
8219 		(void) strcpy(new, str);
8220 
8221 	return (new);
8222 }
8223 
8224 #define	DTRACE_ISALPHA(c)	\
8225 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8226 
8227 static int
8228 dtrace_badname(const char *s)
8229 {
8230 	char c;
8231 
8232 	if (s == NULL || (c = *s++) == '\0')
8233 		return (0);
8234 
8235 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8236 		return (1);
8237 
8238 	while ((c = *s++) != '\0') {
8239 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8240 		    c != '-' && c != '_' && c != '.' && c != '`')
8241 			return (1);
8242 	}
8243 
8244 	return (0);
8245 }
8246 
8247 static void
8248 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8249 {
8250 	uint32_t priv;
8251 
8252 #ifdef illumos
8253 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8254 		/*
8255 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8256 		 */
8257 		priv = DTRACE_PRIV_ALL;
8258 	} else {
8259 		*uidp = crgetuid(cr);
8260 		*zoneidp = crgetzoneid(cr);
8261 
8262 		priv = 0;
8263 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8264 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8265 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8266 			priv |= DTRACE_PRIV_USER;
8267 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8268 			priv |= DTRACE_PRIV_PROC;
8269 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8270 			priv |= DTRACE_PRIV_OWNER;
8271 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8272 			priv |= DTRACE_PRIV_ZONEOWNER;
8273 	}
8274 #else
8275 	priv = DTRACE_PRIV_ALL;
8276 #endif
8277 
8278 	*privp = priv;
8279 }
8280 
8281 #ifdef DTRACE_ERRDEBUG
8282 static void
8283 dtrace_errdebug(const char *str)
8284 {
8285 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8286 	int occupied = 0;
8287 
8288 	mutex_enter(&dtrace_errlock);
8289 	dtrace_errlast = str;
8290 	dtrace_errthread = curthread;
8291 
8292 	while (occupied++ < DTRACE_ERRHASHSZ) {
8293 		if (dtrace_errhash[hval].dter_msg == str) {
8294 			dtrace_errhash[hval].dter_count++;
8295 			goto out;
8296 		}
8297 
8298 		if (dtrace_errhash[hval].dter_msg != NULL) {
8299 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8300 			continue;
8301 		}
8302 
8303 		dtrace_errhash[hval].dter_msg = str;
8304 		dtrace_errhash[hval].dter_count = 1;
8305 		goto out;
8306 	}
8307 
8308 	panic("dtrace: undersized error hash");
8309 out:
8310 	mutex_exit(&dtrace_errlock);
8311 }
8312 #endif
8313 
8314 /*
8315  * DTrace Matching Functions
8316  *
8317  * These functions are used to match groups of probes, given some elements of
8318  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8319  */
8320 static int
8321 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8322     zoneid_t zoneid)
8323 {
8324 	if (priv != DTRACE_PRIV_ALL) {
8325 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8326 		uint32_t match = priv & ppriv;
8327 
8328 		/*
8329 		 * No PRIV_DTRACE_* privileges...
8330 		 */
8331 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8332 		    DTRACE_PRIV_KERNEL)) == 0)
8333 			return (0);
8334 
8335 		/*
8336 		 * No matching bits, but there were bits to match...
8337 		 */
8338 		if (match == 0 && ppriv != 0)
8339 			return (0);
8340 
8341 		/*
8342 		 * Need to have permissions to the process, but don't...
8343 		 */
8344 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8345 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8346 			return (0);
8347 		}
8348 
8349 		/*
8350 		 * Need to be in the same zone unless we possess the
8351 		 * privilege to examine all zones.
8352 		 */
8353 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8354 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8355 			return (0);
8356 		}
8357 	}
8358 
8359 	return (1);
8360 }
8361 
8362 /*
8363  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8364  * consists of input pattern strings and an ops-vector to evaluate them.
8365  * This function returns >0 for match, 0 for no match, and <0 for error.
8366  */
8367 static int
8368 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8369     uint32_t priv, uid_t uid, zoneid_t zoneid)
8370 {
8371 	dtrace_provider_t *pvp = prp->dtpr_provider;
8372 	int rv;
8373 
8374 	if (pvp->dtpv_defunct)
8375 		return (0);
8376 
8377 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8378 		return (rv);
8379 
8380 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8381 		return (rv);
8382 
8383 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8384 		return (rv);
8385 
8386 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8387 		return (rv);
8388 
8389 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8390 		return (0);
8391 
8392 	return (rv);
8393 }
8394 
8395 /*
8396  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8397  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8398  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8399  * In addition, all of the recursion cases except for '*' matching have been
8400  * unwound.  For '*', we still implement recursive evaluation, but a depth
8401  * counter is maintained and matching is aborted if we recurse too deep.
8402  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8403  */
8404 static int
8405 dtrace_match_glob(const char *s, const char *p, int depth)
8406 {
8407 	const char *olds;
8408 	char s1, c;
8409 	int gs;
8410 
8411 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8412 		return (-1);
8413 
8414 	if (s == NULL)
8415 		s = ""; /* treat NULL as empty string */
8416 
8417 top:
8418 	olds = s;
8419 	s1 = *s++;
8420 
8421 	if (p == NULL)
8422 		return (0);
8423 
8424 	if ((c = *p++) == '\0')
8425 		return (s1 == '\0');
8426 
8427 	switch (c) {
8428 	case '[': {
8429 		int ok = 0, notflag = 0;
8430 		char lc = '\0';
8431 
8432 		if (s1 == '\0')
8433 			return (0);
8434 
8435 		if (*p == '!') {
8436 			notflag = 1;
8437 			p++;
8438 		}
8439 
8440 		if ((c = *p++) == '\0')
8441 			return (0);
8442 
8443 		do {
8444 			if (c == '-' && lc != '\0' && *p != ']') {
8445 				if ((c = *p++) == '\0')
8446 					return (0);
8447 				if (c == '\\' && (c = *p++) == '\0')
8448 					return (0);
8449 
8450 				if (notflag) {
8451 					if (s1 < lc || s1 > c)
8452 						ok++;
8453 					else
8454 						return (0);
8455 				} else if (lc <= s1 && s1 <= c)
8456 					ok++;
8457 
8458 			} else if (c == '\\' && (c = *p++) == '\0')
8459 				return (0);
8460 
8461 			lc = c; /* save left-hand 'c' for next iteration */
8462 
8463 			if (notflag) {
8464 				if (s1 != c)
8465 					ok++;
8466 				else
8467 					return (0);
8468 			} else if (s1 == c)
8469 				ok++;
8470 
8471 			if ((c = *p++) == '\0')
8472 				return (0);
8473 
8474 		} while (c != ']');
8475 
8476 		if (ok)
8477 			goto top;
8478 
8479 		return (0);
8480 	}
8481 
8482 	case '\\':
8483 		if ((c = *p++) == '\0')
8484 			return (0);
8485 		/*FALLTHRU*/
8486 
8487 	default:
8488 		if (c != s1)
8489 			return (0);
8490 		/*FALLTHRU*/
8491 
8492 	case '?':
8493 		if (s1 != '\0')
8494 			goto top;
8495 		return (0);
8496 
8497 	case '*':
8498 		while (*p == '*')
8499 			p++; /* consecutive *'s are identical to a single one */
8500 
8501 		if (*p == '\0')
8502 			return (1);
8503 
8504 		for (s = olds; *s != '\0'; s++) {
8505 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8506 				return (gs);
8507 		}
8508 
8509 		return (0);
8510 	}
8511 }
8512 
8513 /*ARGSUSED*/
8514 static int
8515 dtrace_match_string(const char *s, const char *p, int depth)
8516 {
8517 	return (s != NULL && strcmp(s, p) == 0);
8518 }
8519 
8520 /*ARGSUSED*/
8521 static int
8522 dtrace_match_nul(const char *s, const char *p, int depth)
8523 {
8524 	return (1); /* always match the empty pattern */
8525 }
8526 
8527 /*ARGSUSED*/
8528 static int
8529 dtrace_match_nonzero(const char *s, const char *p, int depth)
8530 {
8531 	return (s != NULL && s[0] != '\0');
8532 }
8533 
8534 static int
8535 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8536     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8537 {
8538 	dtrace_probe_t template, *probe;
8539 	dtrace_hash_t *hash = NULL;
8540 	int len, best = INT_MAX, nmatched = 0;
8541 	dtrace_id_t i;
8542 
8543 	ASSERT(MUTEX_HELD(&dtrace_lock));
8544 
8545 	/*
8546 	 * If the probe ID is specified in the key, just lookup by ID and
8547 	 * invoke the match callback once if a matching probe is found.
8548 	 */
8549 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8550 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8551 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8552 			(void) (*matched)(probe, arg);
8553 			nmatched++;
8554 		}
8555 		return (nmatched);
8556 	}
8557 
8558 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8559 	template.dtpr_func = (char *)pkp->dtpk_func;
8560 	template.dtpr_name = (char *)pkp->dtpk_name;
8561 
8562 	/*
8563 	 * We want to find the most distinct of the module name, function
8564 	 * name, and name.  So for each one that is not a glob pattern or
8565 	 * empty string, we perform a lookup in the corresponding hash and
8566 	 * use the hash table with the fewest collisions to do our search.
8567 	 */
8568 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8569 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8570 		best = len;
8571 		hash = dtrace_bymod;
8572 	}
8573 
8574 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8575 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8576 		best = len;
8577 		hash = dtrace_byfunc;
8578 	}
8579 
8580 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8581 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8582 		best = len;
8583 		hash = dtrace_byname;
8584 	}
8585 
8586 	/*
8587 	 * If we did not select a hash table, iterate over every probe and
8588 	 * invoke our callback for each one that matches our input probe key.
8589 	 */
8590 	if (hash == NULL) {
8591 		for (i = 0; i < dtrace_nprobes; i++) {
8592 			if ((probe = dtrace_probes[i]) == NULL ||
8593 			    dtrace_match_probe(probe, pkp, priv, uid,
8594 			    zoneid) <= 0)
8595 				continue;
8596 
8597 			nmatched++;
8598 
8599 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8600 				break;
8601 		}
8602 
8603 		return (nmatched);
8604 	}
8605 
8606 	/*
8607 	 * If we selected a hash table, iterate over each probe of the same key
8608 	 * name and invoke the callback for every probe that matches the other
8609 	 * attributes of our input probe key.
8610 	 */
8611 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8612 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8613 
8614 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8615 			continue;
8616 
8617 		nmatched++;
8618 
8619 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8620 			break;
8621 	}
8622 
8623 	return (nmatched);
8624 }
8625 
8626 /*
8627  * Return the function pointer dtrace_probecmp() should use to compare the
8628  * specified pattern with a string.  For NULL or empty patterns, we select
8629  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8630  * For non-empty non-glob strings, we use dtrace_match_string().
8631  */
8632 static dtrace_probekey_f *
8633 dtrace_probekey_func(const char *p)
8634 {
8635 	char c;
8636 
8637 	if (p == NULL || *p == '\0')
8638 		return (&dtrace_match_nul);
8639 
8640 	while ((c = *p++) != '\0') {
8641 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8642 			return (&dtrace_match_glob);
8643 	}
8644 
8645 	return (&dtrace_match_string);
8646 }
8647 
8648 /*
8649  * Build a probe comparison key for use with dtrace_match_probe() from the
8650  * given probe description.  By convention, a null key only matches anchored
8651  * probes: if each field is the empty string, reset dtpk_fmatch to
8652  * dtrace_match_nonzero().
8653  */
8654 static void
8655 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8656 {
8657 	pkp->dtpk_prov = pdp->dtpd_provider;
8658 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8659 
8660 	pkp->dtpk_mod = pdp->dtpd_mod;
8661 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8662 
8663 	pkp->dtpk_func = pdp->dtpd_func;
8664 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8665 
8666 	pkp->dtpk_name = pdp->dtpd_name;
8667 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8668 
8669 	pkp->dtpk_id = pdp->dtpd_id;
8670 
8671 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8672 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8673 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8674 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8675 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8676 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8677 }
8678 
8679 /*
8680  * DTrace Provider-to-Framework API Functions
8681  *
8682  * These functions implement much of the Provider-to-Framework API, as
8683  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8684  * the functions in the API for probe management (found below), and
8685  * dtrace_probe() itself (found above).
8686  */
8687 
8688 /*
8689  * Register the calling provider with the DTrace framework.  This should
8690  * generally be called by DTrace providers in their attach(9E) entry point.
8691  */
8692 int
8693 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8694     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8695 {
8696 	dtrace_provider_t *provider;
8697 
8698 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8699 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8700 		    "arguments", name ? name : "<NULL>");
8701 		return (EINVAL);
8702 	}
8703 
8704 	if (name[0] == '\0' || dtrace_badname(name)) {
8705 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8706 		    "provider name", name);
8707 		return (EINVAL);
8708 	}
8709 
8710 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8711 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8712 	    pops->dtps_destroy == NULL ||
8713 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8714 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8715 		    "provider ops", name);
8716 		return (EINVAL);
8717 	}
8718 
8719 	if (dtrace_badattr(&pap->dtpa_provider) ||
8720 	    dtrace_badattr(&pap->dtpa_mod) ||
8721 	    dtrace_badattr(&pap->dtpa_func) ||
8722 	    dtrace_badattr(&pap->dtpa_name) ||
8723 	    dtrace_badattr(&pap->dtpa_args)) {
8724 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8725 		    "provider attributes", name);
8726 		return (EINVAL);
8727 	}
8728 
8729 	if (priv & ~DTRACE_PRIV_ALL) {
8730 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8731 		    "privilege attributes", name);
8732 		return (EINVAL);
8733 	}
8734 
8735 	if ((priv & DTRACE_PRIV_KERNEL) &&
8736 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8737 	    pops->dtps_usermode == NULL) {
8738 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8739 		    "dtps_usermode() op for given privilege attributes", name);
8740 		return (EINVAL);
8741 	}
8742 
8743 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8744 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8745 	(void) strcpy(provider->dtpv_name, name);
8746 
8747 	provider->dtpv_attr = *pap;
8748 	provider->dtpv_priv.dtpp_flags = priv;
8749 	if (cr != NULL) {
8750 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8751 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8752 	}
8753 	provider->dtpv_pops = *pops;
8754 
8755 	if (pops->dtps_provide == NULL) {
8756 		ASSERT(pops->dtps_provide_module != NULL);
8757 		provider->dtpv_pops.dtps_provide =
8758 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8759 	}
8760 
8761 	if (pops->dtps_provide_module == NULL) {
8762 		ASSERT(pops->dtps_provide != NULL);
8763 		provider->dtpv_pops.dtps_provide_module =
8764 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8765 	}
8766 
8767 	if (pops->dtps_suspend == NULL) {
8768 		ASSERT(pops->dtps_resume == NULL);
8769 		provider->dtpv_pops.dtps_suspend =
8770 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8771 		provider->dtpv_pops.dtps_resume =
8772 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8773 	}
8774 
8775 	provider->dtpv_arg = arg;
8776 	*idp = (dtrace_provider_id_t)provider;
8777 
8778 	if (pops == &dtrace_provider_ops) {
8779 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8780 		ASSERT(MUTEX_HELD(&dtrace_lock));
8781 		ASSERT(dtrace_anon.dta_enabling == NULL);
8782 
8783 		/*
8784 		 * We make sure that the DTrace provider is at the head of
8785 		 * the provider chain.
8786 		 */
8787 		provider->dtpv_next = dtrace_provider;
8788 		dtrace_provider = provider;
8789 		return (0);
8790 	}
8791 
8792 	mutex_enter(&dtrace_provider_lock);
8793 	mutex_enter(&dtrace_lock);
8794 
8795 	/*
8796 	 * If there is at least one provider registered, we'll add this
8797 	 * provider after the first provider.
8798 	 */
8799 	if (dtrace_provider != NULL) {
8800 		provider->dtpv_next = dtrace_provider->dtpv_next;
8801 		dtrace_provider->dtpv_next = provider;
8802 	} else {
8803 		dtrace_provider = provider;
8804 	}
8805 
8806 	if (dtrace_retained != NULL) {
8807 		dtrace_enabling_provide(provider);
8808 
8809 		/*
8810 		 * Now we need to call dtrace_enabling_matchall() -- which
8811 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8812 		 * to drop all of our locks before calling into it...
8813 		 */
8814 		mutex_exit(&dtrace_lock);
8815 		mutex_exit(&dtrace_provider_lock);
8816 		dtrace_enabling_matchall();
8817 
8818 		return (0);
8819 	}
8820 
8821 	mutex_exit(&dtrace_lock);
8822 	mutex_exit(&dtrace_provider_lock);
8823 
8824 	return (0);
8825 }
8826 
8827 /*
8828  * Unregister the specified provider from the DTrace framework.  This should
8829  * generally be called by DTrace providers in their detach(9E) entry point.
8830  */
8831 int
8832 dtrace_unregister(dtrace_provider_id_t id)
8833 {
8834 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8835 	dtrace_provider_t *prev = NULL;
8836 	int i, self = 0, noreap = 0;
8837 	dtrace_probe_t *probe, *first = NULL;
8838 
8839 	if (old->dtpv_pops.dtps_enable ==
8840 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8841 		/*
8842 		 * If DTrace itself is the provider, we're called with locks
8843 		 * already held.
8844 		 */
8845 		ASSERT(old == dtrace_provider);
8846 #ifdef illumos
8847 		ASSERT(dtrace_devi != NULL);
8848 #endif
8849 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8850 		ASSERT(MUTEX_HELD(&dtrace_lock));
8851 		self = 1;
8852 
8853 		if (dtrace_provider->dtpv_next != NULL) {
8854 			/*
8855 			 * There's another provider here; return failure.
8856 			 */
8857 			return (EBUSY);
8858 		}
8859 	} else {
8860 		mutex_enter(&dtrace_provider_lock);
8861 #ifdef illumos
8862 		mutex_enter(&mod_lock);
8863 #endif
8864 		mutex_enter(&dtrace_lock);
8865 	}
8866 
8867 	/*
8868 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8869 	 * probes, we refuse to let providers slither away, unless this
8870 	 * provider has already been explicitly invalidated.
8871 	 */
8872 	if (!old->dtpv_defunct &&
8873 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8874 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8875 		if (!self) {
8876 			mutex_exit(&dtrace_lock);
8877 #ifdef illumos
8878 			mutex_exit(&mod_lock);
8879 #endif
8880 			mutex_exit(&dtrace_provider_lock);
8881 		}
8882 		return (EBUSY);
8883 	}
8884 
8885 	/*
8886 	 * Attempt to destroy the probes associated with this provider.
8887 	 */
8888 	for (i = 0; i < dtrace_nprobes; i++) {
8889 		if ((probe = dtrace_probes[i]) == NULL)
8890 			continue;
8891 
8892 		if (probe->dtpr_provider != old)
8893 			continue;
8894 
8895 		if (probe->dtpr_ecb == NULL)
8896 			continue;
8897 
8898 		/*
8899 		 * If we are trying to unregister a defunct provider, and the
8900 		 * provider was made defunct within the interval dictated by
8901 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8902 		 * attempt to reap our enablings.  To denote that the provider
8903 		 * should reattempt to unregister itself at some point in the
8904 		 * future, we will return a differentiable error code (EAGAIN
8905 		 * instead of EBUSY) in this case.
8906 		 */
8907 		if (dtrace_gethrtime() - old->dtpv_defunct >
8908 		    dtrace_unregister_defunct_reap)
8909 			noreap = 1;
8910 
8911 		if (!self) {
8912 			mutex_exit(&dtrace_lock);
8913 #ifdef illumos
8914 			mutex_exit(&mod_lock);
8915 #endif
8916 			mutex_exit(&dtrace_provider_lock);
8917 		}
8918 
8919 		if (noreap)
8920 			return (EBUSY);
8921 
8922 		(void) taskq_dispatch(dtrace_taskq,
8923 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8924 
8925 		return (EAGAIN);
8926 	}
8927 
8928 	/*
8929 	 * All of the probes for this provider are disabled; we can safely
8930 	 * remove all of them from their hash chains and from the probe array.
8931 	 */
8932 	for (i = 0; i < dtrace_nprobes; i++) {
8933 		if ((probe = dtrace_probes[i]) == NULL)
8934 			continue;
8935 
8936 		if (probe->dtpr_provider != old)
8937 			continue;
8938 
8939 		dtrace_probes[i] = NULL;
8940 
8941 		dtrace_hash_remove(dtrace_bymod, probe);
8942 		dtrace_hash_remove(dtrace_byfunc, probe);
8943 		dtrace_hash_remove(dtrace_byname, probe);
8944 
8945 		if (first == NULL) {
8946 			first = probe;
8947 			probe->dtpr_nextmod = NULL;
8948 		} else {
8949 			probe->dtpr_nextmod = first;
8950 			first = probe;
8951 		}
8952 	}
8953 
8954 	/*
8955 	 * The provider's probes have been removed from the hash chains and
8956 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8957 	 * everyone has cleared out from any probe array processing.
8958 	 */
8959 	dtrace_sync();
8960 
8961 	for (probe = first; probe != NULL; probe = first) {
8962 		first = probe->dtpr_nextmod;
8963 
8964 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8965 		    probe->dtpr_arg);
8966 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8967 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8968 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8969 #ifdef illumos
8970 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8971 #else
8972 		free_unr(dtrace_arena, probe->dtpr_id);
8973 #endif
8974 		kmem_free(probe, sizeof (dtrace_probe_t));
8975 	}
8976 
8977 	if ((prev = dtrace_provider) == old) {
8978 #ifdef illumos
8979 		ASSERT(self || dtrace_devi == NULL);
8980 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8981 #endif
8982 		dtrace_provider = old->dtpv_next;
8983 	} else {
8984 		while (prev != NULL && prev->dtpv_next != old)
8985 			prev = prev->dtpv_next;
8986 
8987 		if (prev == NULL) {
8988 			panic("attempt to unregister non-existent "
8989 			    "dtrace provider %p\n", (void *)id);
8990 		}
8991 
8992 		prev->dtpv_next = old->dtpv_next;
8993 	}
8994 
8995 	if (!self) {
8996 		mutex_exit(&dtrace_lock);
8997 #ifdef illumos
8998 		mutex_exit(&mod_lock);
8999 #endif
9000 		mutex_exit(&dtrace_provider_lock);
9001 	}
9002 
9003 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9004 	kmem_free(old, sizeof (dtrace_provider_t));
9005 
9006 	return (0);
9007 }
9008 
9009 /*
9010  * Invalidate the specified provider.  All subsequent probe lookups for the
9011  * specified provider will fail, but its probes will not be removed.
9012  */
9013 void
9014 dtrace_invalidate(dtrace_provider_id_t id)
9015 {
9016 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9017 
9018 	ASSERT(pvp->dtpv_pops.dtps_enable !=
9019 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9020 
9021 	mutex_enter(&dtrace_provider_lock);
9022 	mutex_enter(&dtrace_lock);
9023 
9024 	pvp->dtpv_defunct = dtrace_gethrtime();
9025 
9026 	mutex_exit(&dtrace_lock);
9027 	mutex_exit(&dtrace_provider_lock);
9028 }
9029 
9030 /*
9031  * Indicate whether or not DTrace has attached.
9032  */
9033 int
9034 dtrace_attached(void)
9035 {
9036 	/*
9037 	 * dtrace_provider will be non-NULL iff the DTrace driver has
9038 	 * attached.  (It's non-NULL because DTrace is always itself a
9039 	 * provider.)
9040 	 */
9041 	return (dtrace_provider != NULL);
9042 }
9043 
9044 /*
9045  * Remove all the unenabled probes for the given provider.  This function is
9046  * not unlike dtrace_unregister(), except that it doesn't remove the provider
9047  * -- just as many of its associated probes as it can.
9048  */
9049 int
9050 dtrace_condense(dtrace_provider_id_t id)
9051 {
9052 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
9053 	int i;
9054 	dtrace_probe_t *probe;
9055 
9056 	/*
9057 	 * Make sure this isn't the dtrace provider itself.
9058 	 */
9059 	ASSERT(prov->dtpv_pops.dtps_enable !=
9060 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9061 
9062 	mutex_enter(&dtrace_provider_lock);
9063 	mutex_enter(&dtrace_lock);
9064 
9065 	/*
9066 	 * Attempt to destroy the probes associated with this provider.
9067 	 */
9068 	for (i = 0; i < dtrace_nprobes; i++) {
9069 		if ((probe = dtrace_probes[i]) == NULL)
9070 			continue;
9071 
9072 		if (probe->dtpr_provider != prov)
9073 			continue;
9074 
9075 		if (probe->dtpr_ecb != NULL)
9076 			continue;
9077 
9078 		dtrace_probes[i] = NULL;
9079 
9080 		dtrace_hash_remove(dtrace_bymod, probe);
9081 		dtrace_hash_remove(dtrace_byfunc, probe);
9082 		dtrace_hash_remove(dtrace_byname, probe);
9083 
9084 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9085 		    probe->dtpr_arg);
9086 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9087 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9088 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9089 		kmem_free(probe, sizeof (dtrace_probe_t));
9090 #ifdef illumos
9091 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9092 #else
9093 		free_unr(dtrace_arena, i + 1);
9094 #endif
9095 	}
9096 
9097 	mutex_exit(&dtrace_lock);
9098 	mutex_exit(&dtrace_provider_lock);
9099 
9100 	return (0);
9101 }
9102 
9103 /*
9104  * DTrace Probe Management Functions
9105  *
9106  * The functions in this section perform the DTrace probe management,
9107  * including functions to create probes, look-up probes, and call into the
9108  * providers to request that probes be provided.  Some of these functions are
9109  * in the Provider-to-Framework API; these functions can be identified by the
9110  * fact that they are not declared "static".
9111  */
9112 
9113 /*
9114  * Create a probe with the specified module name, function name, and name.
9115  */
9116 dtrace_id_t
9117 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9118     const char *func, const char *name, int aframes, void *arg)
9119 {
9120 	dtrace_probe_t *probe, **probes;
9121 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9122 	dtrace_id_t id;
9123 
9124 	if (provider == dtrace_provider) {
9125 		ASSERT(MUTEX_HELD(&dtrace_lock));
9126 	} else {
9127 		mutex_enter(&dtrace_lock);
9128 	}
9129 
9130 #ifdef illumos
9131 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9132 	    VM_BESTFIT | VM_SLEEP);
9133 #else
9134 	id = alloc_unr(dtrace_arena);
9135 #endif
9136 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9137 
9138 	probe->dtpr_id = id;
9139 	probe->dtpr_gen = dtrace_probegen++;
9140 	probe->dtpr_mod = dtrace_strdup(mod);
9141 	probe->dtpr_func = dtrace_strdup(func);
9142 	probe->dtpr_name = dtrace_strdup(name);
9143 	probe->dtpr_arg = arg;
9144 	probe->dtpr_aframes = aframes;
9145 	probe->dtpr_provider = provider;
9146 
9147 	dtrace_hash_add(dtrace_bymod, probe);
9148 	dtrace_hash_add(dtrace_byfunc, probe);
9149 	dtrace_hash_add(dtrace_byname, probe);
9150 
9151 	if (id - 1 >= dtrace_nprobes) {
9152 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9153 		size_t nsize = osize << 1;
9154 
9155 		if (nsize == 0) {
9156 			ASSERT(osize == 0);
9157 			ASSERT(dtrace_probes == NULL);
9158 			nsize = sizeof (dtrace_probe_t *);
9159 		}
9160 
9161 		probes = kmem_zalloc(nsize, KM_SLEEP);
9162 
9163 		if (dtrace_probes == NULL) {
9164 			ASSERT(osize == 0);
9165 			dtrace_probes = probes;
9166 			dtrace_nprobes = 1;
9167 		} else {
9168 			dtrace_probe_t **oprobes = dtrace_probes;
9169 
9170 			bcopy(oprobes, probes, osize);
9171 			dtrace_membar_producer();
9172 			dtrace_probes = probes;
9173 
9174 			dtrace_sync();
9175 
9176 			/*
9177 			 * All CPUs are now seeing the new probes array; we can
9178 			 * safely free the old array.
9179 			 */
9180 			kmem_free(oprobes, osize);
9181 			dtrace_nprobes <<= 1;
9182 		}
9183 
9184 		ASSERT(id - 1 < dtrace_nprobes);
9185 	}
9186 
9187 	ASSERT(dtrace_probes[id - 1] == NULL);
9188 	dtrace_probes[id - 1] = probe;
9189 
9190 	if (provider != dtrace_provider)
9191 		mutex_exit(&dtrace_lock);
9192 
9193 	return (id);
9194 }
9195 
9196 static dtrace_probe_t *
9197 dtrace_probe_lookup_id(dtrace_id_t id)
9198 {
9199 	ASSERT(MUTEX_HELD(&dtrace_lock));
9200 
9201 	if (id == 0 || id > dtrace_nprobes)
9202 		return (NULL);
9203 
9204 	return (dtrace_probes[id - 1]);
9205 }
9206 
9207 static int
9208 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9209 {
9210 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9211 
9212 	return (DTRACE_MATCH_DONE);
9213 }
9214 
9215 /*
9216  * Look up a probe based on provider and one or more of module name, function
9217  * name and probe name.
9218  */
9219 dtrace_id_t
9220 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9221     char *func, char *name)
9222 {
9223 	dtrace_probekey_t pkey;
9224 	dtrace_id_t id;
9225 	int match;
9226 
9227 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9228 	pkey.dtpk_pmatch = &dtrace_match_string;
9229 	pkey.dtpk_mod = mod;
9230 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9231 	pkey.dtpk_func = func;
9232 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9233 	pkey.dtpk_name = name;
9234 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9235 	pkey.dtpk_id = DTRACE_IDNONE;
9236 
9237 	mutex_enter(&dtrace_lock);
9238 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9239 	    dtrace_probe_lookup_match, &id);
9240 	mutex_exit(&dtrace_lock);
9241 
9242 	ASSERT(match == 1 || match == 0);
9243 	return (match ? id : 0);
9244 }
9245 
9246 /*
9247  * Returns the probe argument associated with the specified probe.
9248  */
9249 void *
9250 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9251 {
9252 	dtrace_probe_t *probe;
9253 	void *rval = NULL;
9254 
9255 	mutex_enter(&dtrace_lock);
9256 
9257 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9258 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9259 		rval = probe->dtpr_arg;
9260 
9261 	mutex_exit(&dtrace_lock);
9262 
9263 	return (rval);
9264 }
9265 
9266 /*
9267  * Copy a probe into a probe description.
9268  */
9269 static void
9270 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9271 {
9272 	bzero(pdp, sizeof (dtrace_probedesc_t));
9273 	pdp->dtpd_id = prp->dtpr_id;
9274 
9275 	(void) strncpy(pdp->dtpd_provider,
9276 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9277 
9278 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9279 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9280 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9281 }
9282 
9283 /*
9284  * Called to indicate that a probe -- or probes -- should be provided by a
9285  * specfied provider.  If the specified description is NULL, the provider will
9286  * be told to provide all of its probes.  (This is done whenever a new
9287  * consumer comes along, or whenever a retained enabling is to be matched.) If
9288  * the specified description is non-NULL, the provider is given the
9289  * opportunity to dynamically provide the specified probe, allowing providers
9290  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9291  * probes.)  If the provider is NULL, the operations will be applied to all
9292  * providers; if the provider is non-NULL the operations will only be applied
9293  * to the specified provider.  The dtrace_provider_lock must be held, and the
9294  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9295  * will need to grab the dtrace_lock when it reenters the framework through
9296  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9297  */
9298 static void
9299 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9300 {
9301 #ifdef illumos
9302 	modctl_t *ctl;
9303 #endif
9304 	int all = 0;
9305 
9306 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9307 
9308 	if (prv == NULL) {
9309 		all = 1;
9310 		prv = dtrace_provider;
9311 	}
9312 
9313 	do {
9314 		/*
9315 		 * First, call the blanket provide operation.
9316 		 */
9317 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9318 
9319 #ifdef illumos
9320 		/*
9321 		 * Now call the per-module provide operation.  We will grab
9322 		 * mod_lock to prevent the list from being modified.  Note
9323 		 * that this also prevents the mod_busy bits from changing.
9324 		 * (mod_busy can only be changed with mod_lock held.)
9325 		 */
9326 		mutex_enter(&mod_lock);
9327 
9328 		ctl = &modules;
9329 		do {
9330 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9331 				continue;
9332 
9333 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9334 
9335 		} while ((ctl = ctl->mod_next) != &modules);
9336 
9337 		mutex_exit(&mod_lock);
9338 #endif
9339 	} while (all && (prv = prv->dtpv_next) != NULL);
9340 }
9341 
9342 #ifdef illumos
9343 /*
9344  * Iterate over each probe, and call the Framework-to-Provider API function
9345  * denoted by offs.
9346  */
9347 static void
9348 dtrace_probe_foreach(uintptr_t offs)
9349 {
9350 	dtrace_provider_t *prov;
9351 	void (*func)(void *, dtrace_id_t, void *);
9352 	dtrace_probe_t *probe;
9353 	dtrace_icookie_t cookie;
9354 	int i;
9355 
9356 	/*
9357 	 * We disable interrupts to walk through the probe array.  This is
9358 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9359 	 * won't see stale data.
9360 	 */
9361 	cookie = dtrace_interrupt_disable();
9362 
9363 	for (i = 0; i < dtrace_nprobes; i++) {
9364 		if ((probe = dtrace_probes[i]) == NULL)
9365 			continue;
9366 
9367 		if (probe->dtpr_ecb == NULL) {
9368 			/*
9369 			 * This probe isn't enabled -- don't call the function.
9370 			 */
9371 			continue;
9372 		}
9373 
9374 		prov = probe->dtpr_provider;
9375 		func = *((void(**)(void *, dtrace_id_t, void *))
9376 		    ((uintptr_t)&prov->dtpv_pops + offs));
9377 
9378 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9379 	}
9380 
9381 	dtrace_interrupt_enable(cookie);
9382 }
9383 #endif
9384 
9385 static int
9386 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9387 {
9388 	dtrace_probekey_t pkey;
9389 	uint32_t priv;
9390 	uid_t uid;
9391 	zoneid_t zoneid;
9392 
9393 	ASSERT(MUTEX_HELD(&dtrace_lock));
9394 	dtrace_ecb_create_cache = NULL;
9395 
9396 	if (desc == NULL) {
9397 		/*
9398 		 * If we're passed a NULL description, we're being asked to
9399 		 * create an ECB with a NULL probe.
9400 		 */
9401 		(void) dtrace_ecb_create_enable(NULL, enab);
9402 		return (0);
9403 	}
9404 
9405 	dtrace_probekey(desc, &pkey);
9406 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9407 	    &priv, &uid, &zoneid);
9408 
9409 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9410 	    enab));
9411 }
9412 
9413 /*
9414  * DTrace Helper Provider Functions
9415  */
9416 static void
9417 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9418 {
9419 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9420 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9421 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9422 }
9423 
9424 static void
9425 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9426     const dof_provider_t *dofprov, char *strtab)
9427 {
9428 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9429 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9430 	    dofprov->dofpv_provattr);
9431 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9432 	    dofprov->dofpv_modattr);
9433 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9434 	    dofprov->dofpv_funcattr);
9435 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9436 	    dofprov->dofpv_nameattr);
9437 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9438 	    dofprov->dofpv_argsattr);
9439 }
9440 
9441 static void
9442 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9443 {
9444 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9445 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9446 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9447 	dof_provider_t *provider;
9448 	dof_probe_t *probe;
9449 	uint32_t *off, *enoff;
9450 	uint8_t *arg;
9451 	char *strtab;
9452 	uint_t i, nprobes;
9453 	dtrace_helper_provdesc_t dhpv;
9454 	dtrace_helper_probedesc_t dhpb;
9455 	dtrace_meta_t *meta = dtrace_meta_pid;
9456 	dtrace_mops_t *mops = &meta->dtm_mops;
9457 	void *parg;
9458 
9459 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9460 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9461 	    provider->dofpv_strtab * dof->dofh_secsize);
9462 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9463 	    provider->dofpv_probes * dof->dofh_secsize);
9464 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9465 	    provider->dofpv_prargs * dof->dofh_secsize);
9466 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9467 	    provider->dofpv_proffs * dof->dofh_secsize);
9468 
9469 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9470 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9471 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9472 	enoff = NULL;
9473 
9474 	/*
9475 	 * See dtrace_helper_provider_validate().
9476 	 */
9477 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9478 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9479 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9480 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9481 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9482 	}
9483 
9484 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9485 
9486 	/*
9487 	 * Create the provider.
9488 	 */
9489 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9490 
9491 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9492 		return;
9493 
9494 	meta->dtm_count++;
9495 
9496 	/*
9497 	 * Create the probes.
9498 	 */
9499 	for (i = 0; i < nprobes; i++) {
9500 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9501 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9502 
9503 		/* See the check in dtrace_helper_provider_validate(). */
9504 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9505 			continue;
9506 
9507 		dhpb.dthpb_mod = dhp->dofhp_mod;
9508 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9509 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9510 		dhpb.dthpb_base = probe->dofpr_addr;
9511 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9512 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9513 		if (enoff != NULL) {
9514 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9515 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9516 		} else {
9517 			dhpb.dthpb_enoffs = NULL;
9518 			dhpb.dthpb_nenoffs = 0;
9519 		}
9520 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9521 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9522 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9523 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9524 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9525 
9526 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9527 	}
9528 }
9529 
9530 static void
9531 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9532 {
9533 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9534 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9535 	int i;
9536 
9537 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9538 
9539 	for (i = 0; i < dof->dofh_secnum; i++) {
9540 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9541 		    dof->dofh_secoff + i * dof->dofh_secsize);
9542 
9543 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9544 			continue;
9545 
9546 		dtrace_helper_provide_one(dhp, sec, pid);
9547 	}
9548 
9549 	/*
9550 	 * We may have just created probes, so we must now rematch against
9551 	 * any retained enablings.  Note that this call will acquire both
9552 	 * cpu_lock and dtrace_lock; the fact that we are holding
9553 	 * dtrace_meta_lock now is what defines the ordering with respect to
9554 	 * these three locks.
9555 	 */
9556 	dtrace_enabling_matchall();
9557 }
9558 
9559 static void
9560 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9561 {
9562 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9563 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9564 	dof_sec_t *str_sec;
9565 	dof_provider_t *provider;
9566 	char *strtab;
9567 	dtrace_helper_provdesc_t dhpv;
9568 	dtrace_meta_t *meta = dtrace_meta_pid;
9569 	dtrace_mops_t *mops = &meta->dtm_mops;
9570 
9571 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9572 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9573 	    provider->dofpv_strtab * dof->dofh_secsize);
9574 
9575 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9576 
9577 	/*
9578 	 * Create the provider.
9579 	 */
9580 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9581 
9582 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9583 
9584 	meta->dtm_count--;
9585 }
9586 
9587 static void
9588 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9589 {
9590 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9591 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9592 	int i;
9593 
9594 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9595 
9596 	for (i = 0; i < dof->dofh_secnum; i++) {
9597 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9598 		    dof->dofh_secoff + i * dof->dofh_secsize);
9599 
9600 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9601 			continue;
9602 
9603 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9604 	}
9605 }
9606 
9607 /*
9608  * DTrace Meta Provider-to-Framework API Functions
9609  *
9610  * These functions implement the Meta Provider-to-Framework API, as described
9611  * in <sys/dtrace.h>.
9612  */
9613 int
9614 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9615     dtrace_meta_provider_id_t *idp)
9616 {
9617 	dtrace_meta_t *meta;
9618 	dtrace_helpers_t *help, *next;
9619 	int i;
9620 
9621 	*idp = DTRACE_METAPROVNONE;
9622 
9623 	/*
9624 	 * We strictly don't need the name, but we hold onto it for
9625 	 * debuggability. All hail error queues!
9626 	 */
9627 	if (name == NULL) {
9628 		cmn_err(CE_WARN, "failed to register meta-provider: "
9629 		    "invalid name");
9630 		return (EINVAL);
9631 	}
9632 
9633 	if (mops == NULL ||
9634 	    mops->dtms_create_probe == NULL ||
9635 	    mops->dtms_provide_pid == NULL ||
9636 	    mops->dtms_remove_pid == NULL) {
9637 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9638 		    "invalid ops", name);
9639 		return (EINVAL);
9640 	}
9641 
9642 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9643 	meta->dtm_mops = *mops;
9644 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9645 	(void) strcpy(meta->dtm_name, name);
9646 	meta->dtm_arg = arg;
9647 
9648 	mutex_enter(&dtrace_meta_lock);
9649 	mutex_enter(&dtrace_lock);
9650 
9651 	if (dtrace_meta_pid != NULL) {
9652 		mutex_exit(&dtrace_lock);
9653 		mutex_exit(&dtrace_meta_lock);
9654 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9655 		    "user-land meta-provider exists", name);
9656 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9657 		kmem_free(meta, sizeof (dtrace_meta_t));
9658 		return (EINVAL);
9659 	}
9660 
9661 	dtrace_meta_pid = meta;
9662 	*idp = (dtrace_meta_provider_id_t)meta;
9663 
9664 	/*
9665 	 * If there are providers and probes ready to go, pass them
9666 	 * off to the new meta provider now.
9667 	 */
9668 
9669 	help = dtrace_deferred_pid;
9670 	dtrace_deferred_pid = NULL;
9671 
9672 	mutex_exit(&dtrace_lock);
9673 
9674 	while (help != NULL) {
9675 		for (i = 0; i < help->dthps_nprovs; i++) {
9676 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9677 			    help->dthps_pid);
9678 		}
9679 
9680 		next = help->dthps_next;
9681 		help->dthps_next = NULL;
9682 		help->dthps_prev = NULL;
9683 		help->dthps_deferred = 0;
9684 		help = next;
9685 	}
9686 
9687 	mutex_exit(&dtrace_meta_lock);
9688 
9689 	return (0);
9690 }
9691 
9692 int
9693 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9694 {
9695 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9696 
9697 	mutex_enter(&dtrace_meta_lock);
9698 	mutex_enter(&dtrace_lock);
9699 
9700 	if (old == dtrace_meta_pid) {
9701 		pp = &dtrace_meta_pid;
9702 	} else {
9703 		panic("attempt to unregister non-existent "
9704 		    "dtrace meta-provider %p\n", (void *)old);
9705 	}
9706 
9707 	if (old->dtm_count != 0) {
9708 		mutex_exit(&dtrace_lock);
9709 		mutex_exit(&dtrace_meta_lock);
9710 		return (EBUSY);
9711 	}
9712 
9713 	*pp = NULL;
9714 
9715 	mutex_exit(&dtrace_lock);
9716 	mutex_exit(&dtrace_meta_lock);
9717 
9718 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9719 	kmem_free(old, sizeof (dtrace_meta_t));
9720 
9721 	return (0);
9722 }
9723 
9724 
9725 /*
9726  * DTrace DIF Object Functions
9727  */
9728 static int
9729 dtrace_difo_err(uint_t pc, const char *format, ...)
9730 {
9731 	if (dtrace_err_verbose) {
9732 		va_list alist;
9733 
9734 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9735 		va_start(alist, format);
9736 		(void) vuprintf(format, alist);
9737 		va_end(alist);
9738 	}
9739 
9740 #ifdef DTRACE_ERRDEBUG
9741 	dtrace_errdebug(format);
9742 #endif
9743 	return (1);
9744 }
9745 
9746 /*
9747  * Validate a DTrace DIF object by checking the IR instructions.  The following
9748  * rules are currently enforced by dtrace_difo_validate():
9749  *
9750  * 1. Each instruction must have a valid opcode
9751  * 2. Each register, string, variable, or subroutine reference must be valid
9752  * 3. No instruction can modify register %r0 (must be zero)
9753  * 4. All instruction reserved bits must be set to zero
9754  * 5. The last instruction must be a "ret" instruction
9755  * 6. All branch targets must reference a valid instruction _after_ the branch
9756  */
9757 static int
9758 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9759     cred_t *cr)
9760 {
9761 	int err = 0, i;
9762 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9763 	int kcheckload;
9764 	uint_t pc;
9765 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9766 
9767 	kcheckload = cr == NULL ||
9768 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9769 
9770 	dp->dtdo_destructive = 0;
9771 
9772 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9773 		dif_instr_t instr = dp->dtdo_buf[pc];
9774 
9775 		uint_t r1 = DIF_INSTR_R1(instr);
9776 		uint_t r2 = DIF_INSTR_R2(instr);
9777 		uint_t rd = DIF_INSTR_RD(instr);
9778 		uint_t rs = DIF_INSTR_RS(instr);
9779 		uint_t label = DIF_INSTR_LABEL(instr);
9780 		uint_t v = DIF_INSTR_VAR(instr);
9781 		uint_t subr = DIF_INSTR_SUBR(instr);
9782 		uint_t type = DIF_INSTR_TYPE(instr);
9783 		uint_t op = DIF_INSTR_OP(instr);
9784 
9785 		switch (op) {
9786 		case DIF_OP_OR:
9787 		case DIF_OP_XOR:
9788 		case DIF_OP_AND:
9789 		case DIF_OP_SLL:
9790 		case DIF_OP_SRL:
9791 		case DIF_OP_SRA:
9792 		case DIF_OP_SUB:
9793 		case DIF_OP_ADD:
9794 		case DIF_OP_MUL:
9795 		case DIF_OP_SDIV:
9796 		case DIF_OP_UDIV:
9797 		case DIF_OP_SREM:
9798 		case DIF_OP_UREM:
9799 		case DIF_OP_COPYS:
9800 			if (r1 >= nregs)
9801 				err += efunc(pc, "invalid register %u\n", r1);
9802 			if (r2 >= nregs)
9803 				err += efunc(pc, "invalid register %u\n", r2);
9804 			if (rd >= nregs)
9805 				err += efunc(pc, "invalid register %u\n", rd);
9806 			if (rd == 0)
9807 				err += efunc(pc, "cannot write to %r0\n");
9808 			break;
9809 		case DIF_OP_NOT:
9810 		case DIF_OP_MOV:
9811 		case DIF_OP_ALLOCS:
9812 			if (r1 >= nregs)
9813 				err += efunc(pc, "invalid register %u\n", r1);
9814 			if (r2 != 0)
9815 				err += efunc(pc, "non-zero reserved bits\n");
9816 			if (rd >= nregs)
9817 				err += efunc(pc, "invalid register %u\n", rd);
9818 			if (rd == 0)
9819 				err += efunc(pc, "cannot write to %r0\n");
9820 			break;
9821 		case DIF_OP_LDSB:
9822 		case DIF_OP_LDSH:
9823 		case DIF_OP_LDSW:
9824 		case DIF_OP_LDUB:
9825 		case DIF_OP_LDUH:
9826 		case DIF_OP_LDUW:
9827 		case DIF_OP_LDX:
9828 			if (r1 >= nregs)
9829 				err += efunc(pc, "invalid register %u\n", r1);
9830 			if (r2 != 0)
9831 				err += efunc(pc, "non-zero reserved bits\n");
9832 			if (rd >= nregs)
9833 				err += efunc(pc, "invalid register %u\n", rd);
9834 			if (rd == 0)
9835 				err += efunc(pc, "cannot write to %r0\n");
9836 			if (kcheckload)
9837 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9838 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9839 			break;
9840 		case DIF_OP_RLDSB:
9841 		case DIF_OP_RLDSH:
9842 		case DIF_OP_RLDSW:
9843 		case DIF_OP_RLDUB:
9844 		case DIF_OP_RLDUH:
9845 		case DIF_OP_RLDUW:
9846 		case DIF_OP_RLDX:
9847 			if (r1 >= nregs)
9848 				err += efunc(pc, "invalid register %u\n", r1);
9849 			if (r2 != 0)
9850 				err += efunc(pc, "non-zero reserved bits\n");
9851 			if (rd >= nregs)
9852 				err += efunc(pc, "invalid register %u\n", rd);
9853 			if (rd == 0)
9854 				err += efunc(pc, "cannot write to %r0\n");
9855 			break;
9856 		case DIF_OP_ULDSB:
9857 		case DIF_OP_ULDSH:
9858 		case DIF_OP_ULDSW:
9859 		case DIF_OP_ULDUB:
9860 		case DIF_OP_ULDUH:
9861 		case DIF_OP_ULDUW:
9862 		case DIF_OP_ULDX:
9863 			if (r1 >= nregs)
9864 				err += efunc(pc, "invalid register %u\n", r1);
9865 			if (r2 != 0)
9866 				err += efunc(pc, "non-zero reserved bits\n");
9867 			if (rd >= nregs)
9868 				err += efunc(pc, "invalid register %u\n", rd);
9869 			if (rd == 0)
9870 				err += efunc(pc, "cannot write to %r0\n");
9871 			break;
9872 		case DIF_OP_STB:
9873 		case DIF_OP_STH:
9874 		case DIF_OP_STW:
9875 		case DIF_OP_STX:
9876 			if (r1 >= nregs)
9877 				err += efunc(pc, "invalid register %u\n", r1);
9878 			if (r2 != 0)
9879 				err += efunc(pc, "non-zero reserved bits\n");
9880 			if (rd >= nregs)
9881 				err += efunc(pc, "invalid register %u\n", rd);
9882 			if (rd == 0)
9883 				err += efunc(pc, "cannot write to 0 address\n");
9884 			break;
9885 		case DIF_OP_CMP:
9886 		case DIF_OP_SCMP:
9887 			if (r1 >= nregs)
9888 				err += efunc(pc, "invalid register %u\n", r1);
9889 			if (r2 >= nregs)
9890 				err += efunc(pc, "invalid register %u\n", r2);
9891 			if (rd != 0)
9892 				err += efunc(pc, "non-zero reserved bits\n");
9893 			break;
9894 		case DIF_OP_TST:
9895 			if (r1 >= nregs)
9896 				err += efunc(pc, "invalid register %u\n", r1);
9897 			if (r2 != 0 || rd != 0)
9898 				err += efunc(pc, "non-zero reserved bits\n");
9899 			break;
9900 		case DIF_OP_BA:
9901 		case DIF_OP_BE:
9902 		case DIF_OP_BNE:
9903 		case DIF_OP_BG:
9904 		case DIF_OP_BGU:
9905 		case DIF_OP_BGE:
9906 		case DIF_OP_BGEU:
9907 		case DIF_OP_BL:
9908 		case DIF_OP_BLU:
9909 		case DIF_OP_BLE:
9910 		case DIF_OP_BLEU:
9911 			if (label >= dp->dtdo_len) {
9912 				err += efunc(pc, "invalid branch target %u\n",
9913 				    label);
9914 			}
9915 			if (label <= pc) {
9916 				err += efunc(pc, "backward branch to %u\n",
9917 				    label);
9918 			}
9919 			break;
9920 		case DIF_OP_RET:
9921 			if (r1 != 0 || r2 != 0)
9922 				err += efunc(pc, "non-zero reserved bits\n");
9923 			if (rd >= nregs)
9924 				err += efunc(pc, "invalid register %u\n", rd);
9925 			break;
9926 		case DIF_OP_NOP:
9927 		case DIF_OP_POPTS:
9928 		case DIF_OP_FLUSHTS:
9929 			if (r1 != 0 || r2 != 0 || rd != 0)
9930 				err += efunc(pc, "non-zero reserved bits\n");
9931 			break;
9932 		case DIF_OP_SETX:
9933 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9934 				err += efunc(pc, "invalid integer ref %u\n",
9935 				    DIF_INSTR_INTEGER(instr));
9936 			}
9937 			if (rd >= nregs)
9938 				err += efunc(pc, "invalid register %u\n", rd);
9939 			if (rd == 0)
9940 				err += efunc(pc, "cannot write to %r0\n");
9941 			break;
9942 		case DIF_OP_SETS:
9943 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9944 				err += efunc(pc, "invalid string ref %u\n",
9945 				    DIF_INSTR_STRING(instr));
9946 			}
9947 			if (rd >= nregs)
9948 				err += efunc(pc, "invalid register %u\n", rd);
9949 			if (rd == 0)
9950 				err += efunc(pc, "cannot write to %r0\n");
9951 			break;
9952 		case DIF_OP_LDGA:
9953 		case DIF_OP_LDTA:
9954 			if (r1 > DIF_VAR_ARRAY_MAX)
9955 				err += efunc(pc, "invalid array %u\n", r1);
9956 			if (r2 >= nregs)
9957 				err += efunc(pc, "invalid register %u\n", r2);
9958 			if (rd >= nregs)
9959 				err += efunc(pc, "invalid register %u\n", rd);
9960 			if (rd == 0)
9961 				err += efunc(pc, "cannot write to %r0\n");
9962 			break;
9963 		case DIF_OP_LDGS:
9964 		case DIF_OP_LDTS:
9965 		case DIF_OP_LDLS:
9966 		case DIF_OP_LDGAA:
9967 		case DIF_OP_LDTAA:
9968 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9969 				err += efunc(pc, "invalid variable %u\n", v);
9970 			if (rd >= nregs)
9971 				err += efunc(pc, "invalid register %u\n", rd);
9972 			if (rd == 0)
9973 				err += efunc(pc, "cannot write to %r0\n");
9974 			break;
9975 		case DIF_OP_STGS:
9976 		case DIF_OP_STTS:
9977 		case DIF_OP_STLS:
9978 		case DIF_OP_STGAA:
9979 		case DIF_OP_STTAA:
9980 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9981 				err += efunc(pc, "invalid variable %u\n", v);
9982 			if (rs >= nregs)
9983 				err += efunc(pc, "invalid register %u\n", rd);
9984 			break;
9985 		case DIF_OP_CALL:
9986 			if (subr > DIF_SUBR_MAX)
9987 				err += efunc(pc, "invalid subr %u\n", subr);
9988 			if (rd >= nregs)
9989 				err += efunc(pc, "invalid register %u\n", rd);
9990 			if (rd == 0)
9991 				err += efunc(pc, "cannot write to %r0\n");
9992 
9993 			if (subr == DIF_SUBR_COPYOUT ||
9994 			    subr == DIF_SUBR_COPYOUTSTR) {
9995 				dp->dtdo_destructive = 1;
9996 			}
9997 
9998 			if (subr == DIF_SUBR_GETF) {
9999 				/*
10000 				 * If we have a getf() we need to record that
10001 				 * in our state.  Note that our state can be
10002 				 * NULL if this is a helper -- but in that
10003 				 * case, the call to getf() is itself illegal,
10004 				 * and will be caught (slightly later) when
10005 				 * the helper is validated.
10006 				 */
10007 				if (vstate->dtvs_state != NULL)
10008 					vstate->dtvs_state->dts_getf++;
10009 			}
10010 
10011 			break;
10012 		case DIF_OP_PUSHTR:
10013 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10014 				err += efunc(pc, "invalid ref type %u\n", type);
10015 			if (r2 >= nregs)
10016 				err += efunc(pc, "invalid register %u\n", r2);
10017 			if (rs >= nregs)
10018 				err += efunc(pc, "invalid register %u\n", rs);
10019 			break;
10020 		case DIF_OP_PUSHTV:
10021 			if (type != DIF_TYPE_CTF)
10022 				err += efunc(pc, "invalid val type %u\n", type);
10023 			if (r2 >= nregs)
10024 				err += efunc(pc, "invalid register %u\n", r2);
10025 			if (rs >= nregs)
10026 				err += efunc(pc, "invalid register %u\n", rs);
10027 			break;
10028 		default:
10029 			err += efunc(pc, "invalid opcode %u\n",
10030 			    DIF_INSTR_OP(instr));
10031 		}
10032 	}
10033 
10034 	if (dp->dtdo_len != 0 &&
10035 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10036 		err += efunc(dp->dtdo_len - 1,
10037 		    "expected 'ret' as last DIF instruction\n");
10038 	}
10039 
10040 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10041 		/*
10042 		 * If we're not returning by reference, the size must be either
10043 		 * 0 or the size of one of the base types.
10044 		 */
10045 		switch (dp->dtdo_rtype.dtdt_size) {
10046 		case 0:
10047 		case sizeof (uint8_t):
10048 		case sizeof (uint16_t):
10049 		case sizeof (uint32_t):
10050 		case sizeof (uint64_t):
10051 			break;
10052 
10053 		default:
10054 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
10055 		}
10056 	}
10057 
10058 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10059 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10060 		dtrace_diftype_t *vt, *et;
10061 		uint_t id, ndx;
10062 
10063 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10064 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10065 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10066 			err += efunc(i, "unrecognized variable scope %d\n",
10067 			    v->dtdv_scope);
10068 			break;
10069 		}
10070 
10071 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10072 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10073 			err += efunc(i, "unrecognized variable type %d\n",
10074 			    v->dtdv_kind);
10075 			break;
10076 		}
10077 
10078 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10079 			err += efunc(i, "%d exceeds variable id limit\n", id);
10080 			break;
10081 		}
10082 
10083 		if (id < DIF_VAR_OTHER_UBASE)
10084 			continue;
10085 
10086 		/*
10087 		 * For user-defined variables, we need to check that this
10088 		 * definition is identical to any previous definition that we
10089 		 * encountered.
10090 		 */
10091 		ndx = id - DIF_VAR_OTHER_UBASE;
10092 
10093 		switch (v->dtdv_scope) {
10094 		case DIFV_SCOPE_GLOBAL:
10095 			if (maxglobal == -1 || ndx > maxglobal)
10096 				maxglobal = ndx;
10097 
10098 			if (ndx < vstate->dtvs_nglobals) {
10099 				dtrace_statvar_t *svar;
10100 
10101 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10102 					existing = &svar->dtsv_var;
10103 			}
10104 
10105 			break;
10106 
10107 		case DIFV_SCOPE_THREAD:
10108 			if (maxtlocal == -1 || ndx > maxtlocal)
10109 				maxtlocal = ndx;
10110 
10111 			if (ndx < vstate->dtvs_ntlocals)
10112 				existing = &vstate->dtvs_tlocals[ndx];
10113 			break;
10114 
10115 		case DIFV_SCOPE_LOCAL:
10116 			if (maxlocal == -1 || ndx > maxlocal)
10117 				maxlocal = ndx;
10118 
10119 			if (ndx < vstate->dtvs_nlocals) {
10120 				dtrace_statvar_t *svar;
10121 
10122 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10123 					existing = &svar->dtsv_var;
10124 			}
10125 
10126 			break;
10127 		}
10128 
10129 		vt = &v->dtdv_type;
10130 
10131 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10132 			if (vt->dtdt_size == 0) {
10133 				err += efunc(i, "zero-sized variable\n");
10134 				break;
10135 			}
10136 
10137 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10138 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10139 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10140 				err += efunc(i, "oversized by-ref static\n");
10141 				break;
10142 			}
10143 		}
10144 
10145 		if (existing == NULL || existing->dtdv_id == 0)
10146 			continue;
10147 
10148 		ASSERT(existing->dtdv_id == v->dtdv_id);
10149 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10150 
10151 		if (existing->dtdv_kind != v->dtdv_kind)
10152 			err += efunc(i, "%d changed variable kind\n", id);
10153 
10154 		et = &existing->dtdv_type;
10155 
10156 		if (vt->dtdt_flags != et->dtdt_flags) {
10157 			err += efunc(i, "%d changed variable type flags\n", id);
10158 			break;
10159 		}
10160 
10161 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10162 			err += efunc(i, "%d changed variable type size\n", id);
10163 			break;
10164 		}
10165 	}
10166 
10167 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10168 		dif_instr_t instr = dp->dtdo_buf[pc];
10169 
10170 		uint_t v = DIF_INSTR_VAR(instr);
10171 		uint_t op = DIF_INSTR_OP(instr);
10172 
10173 		switch (op) {
10174 		case DIF_OP_LDGS:
10175 		case DIF_OP_LDGAA:
10176 		case DIF_OP_STGS:
10177 		case DIF_OP_STGAA:
10178 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10179 				err += efunc(pc, "invalid variable %u\n", v);
10180 			break;
10181 		case DIF_OP_LDTS:
10182 		case DIF_OP_LDTAA:
10183 		case DIF_OP_STTS:
10184 		case DIF_OP_STTAA:
10185 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10186 				err += efunc(pc, "invalid variable %u\n", v);
10187 			break;
10188 		case DIF_OP_LDLS:
10189 		case DIF_OP_STLS:
10190 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10191 				err += efunc(pc, "invalid variable %u\n", v);
10192 			break;
10193 		default:
10194 			break;
10195 		}
10196 	}
10197 
10198 	return (err);
10199 }
10200 
10201 /*
10202  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10203  * are much more constrained than normal DIFOs.  Specifically, they may
10204  * not:
10205  *
10206  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10207  *    miscellaneous string routines
10208  * 2. Access DTrace variables other than the args[] array, and the
10209  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10210  * 3. Have thread-local variables.
10211  * 4. Have dynamic variables.
10212  */
10213 static int
10214 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10215 {
10216 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10217 	int err = 0;
10218 	uint_t pc;
10219 
10220 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10221 		dif_instr_t instr = dp->dtdo_buf[pc];
10222 
10223 		uint_t v = DIF_INSTR_VAR(instr);
10224 		uint_t subr = DIF_INSTR_SUBR(instr);
10225 		uint_t op = DIF_INSTR_OP(instr);
10226 
10227 		switch (op) {
10228 		case DIF_OP_OR:
10229 		case DIF_OP_XOR:
10230 		case DIF_OP_AND:
10231 		case DIF_OP_SLL:
10232 		case DIF_OP_SRL:
10233 		case DIF_OP_SRA:
10234 		case DIF_OP_SUB:
10235 		case DIF_OP_ADD:
10236 		case DIF_OP_MUL:
10237 		case DIF_OP_SDIV:
10238 		case DIF_OP_UDIV:
10239 		case DIF_OP_SREM:
10240 		case DIF_OP_UREM:
10241 		case DIF_OP_COPYS:
10242 		case DIF_OP_NOT:
10243 		case DIF_OP_MOV:
10244 		case DIF_OP_RLDSB:
10245 		case DIF_OP_RLDSH:
10246 		case DIF_OP_RLDSW:
10247 		case DIF_OP_RLDUB:
10248 		case DIF_OP_RLDUH:
10249 		case DIF_OP_RLDUW:
10250 		case DIF_OP_RLDX:
10251 		case DIF_OP_ULDSB:
10252 		case DIF_OP_ULDSH:
10253 		case DIF_OP_ULDSW:
10254 		case DIF_OP_ULDUB:
10255 		case DIF_OP_ULDUH:
10256 		case DIF_OP_ULDUW:
10257 		case DIF_OP_ULDX:
10258 		case DIF_OP_STB:
10259 		case DIF_OP_STH:
10260 		case DIF_OP_STW:
10261 		case DIF_OP_STX:
10262 		case DIF_OP_ALLOCS:
10263 		case DIF_OP_CMP:
10264 		case DIF_OP_SCMP:
10265 		case DIF_OP_TST:
10266 		case DIF_OP_BA:
10267 		case DIF_OP_BE:
10268 		case DIF_OP_BNE:
10269 		case DIF_OP_BG:
10270 		case DIF_OP_BGU:
10271 		case DIF_OP_BGE:
10272 		case DIF_OP_BGEU:
10273 		case DIF_OP_BL:
10274 		case DIF_OP_BLU:
10275 		case DIF_OP_BLE:
10276 		case DIF_OP_BLEU:
10277 		case DIF_OP_RET:
10278 		case DIF_OP_NOP:
10279 		case DIF_OP_POPTS:
10280 		case DIF_OP_FLUSHTS:
10281 		case DIF_OP_SETX:
10282 		case DIF_OP_SETS:
10283 		case DIF_OP_LDGA:
10284 		case DIF_OP_LDLS:
10285 		case DIF_OP_STGS:
10286 		case DIF_OP_STLS:
10287 		case DIF_OP_PUSHTR:
10288 		case DIF_OP_PUSHTV:
10289 			break;
10290 
10291 		case DIF_OP_LDGS:
10292 			if (v >= DIF_VAR_OTHER_UBASE)
10293 				break;
10294 
10295 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10296 				break;
10297 
10298 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10299 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10300 			    v == DIF_VAR_EXECARGS ||
10301 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10302 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10303 				break;
10304 
10305 			err += efunc(pc, "illegal variable %u\n", v);
10306 			break;
10307 
10308 		case DIF_OP_LDTA:
10309 		case DIF_OP_LDTS:
10310 		case DIF_OP_LDGAA:
10311 		case DIF_OP_LDTAA:
10312 			err += efunc(pc, "illegal dynamic variable load\n");
10313 			break;
10314 
10315 		case DIF_OP_STTS:
10316 		case DIF_OP_STGAA:
10317 		case DIF_OP_STTAA:
10318 			err += efunc(pc, "illegal dynamic variable store\n");
10319 			break;
10320 
10321 		case DIF_OP_CALL:
10322 			if (subr == DIF_SUBR_ALLOCA ||
10323 			    subr == DIF_SUBR_BCOPY ||
10324 			    subr == DIF_SUBR_COPYIN ||
10325 			    subr == DIF_SUBR_COPYINTO ||
10326 			    subr == DIF_SUBR_COPYINSTR ||
10327 			    subr == DIF_SUBR_INDEX ||
10328 			    subr == DIF_SUBR_INET_NTOA ||
10329 			    subr == DIF_SUBR_INET_NTOA6 ||
10330 			    subr == DIF_SUBR_INET_NTOP ||
10331 			    subr == DIF_SUBR_JSON ||
10332 			    subr == DIF_SUBR_LLTOSTR ||
10333 			    subr == DIF_SUBR_STRTOLL ||
10334 			    subr == DIF_SUBR_RINDEX ||
10335 			    subr == DIF_SUBR_STRCHR ||
10336 			    subr == DIF_SUBR_STRJOIN ||
10337 			    subr == DIF_SUBR_STRRCHR ||
10338 			    subr == DIF_SUBR_STRSTR ||
10339 			    subr == DIF_SUBR_HTONS ||
10340 			    subr == DIF_SUBR_HTONL ||
10341 			    subr == DIF_SUBR_HTONLL ||
10342 			    subr == DIF_SUBR_NTOHS ||
10343 			    subr == DIF_SUBR_NTOHL ||
10344 			    subr == DIF_SUBR_NTOHLL ||
10345 			    subr == DIF_SUBR_MEMREF ||
10346 #ifndef illumos
10347 			    subr == DIF_SUBR_MEMSTR ||
10348 #endif
10349 			    subr == DIF_SUBR_TYPEREF)
10350 				break;
10351 
10352 			err += efunc(pc, "invalid subr %u\n", subr);
10353 			break;
10354 
10355 		default:
10356 			err += efunc(pc, "invalid opcode %u\n",
10357 			    DIF_INSTR_OP(instr));
10358 		}
10359 	}
10360 
10361 	return (err);
10362 }
10363 
10364 /*
10365  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10366  * basis; 0 if not.
10367  */
10368 static int
10369 dtrace_difo_cacheable(dtrace_difo_t *dp)
10370 {
10371 	int i;
10372 
10373 	if (dp == NULL)
10374 		return (0);
10375 
10376 	for (i = 0; i < dp->dtdo_varlen; i++) {
10377 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10378 
10379 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10380 			continue;
10381 
10382 		switch (v->dtdv_id) {
10383 		case DIF_VAR_CURTHREAD:
10384 		case DIF_VAR_PID:
10385 		case DIF_VAR_TID:
10386 		case DIF_VAR_EXECARGS:
10387 		case DIF_VAR_EXECNAME:
10388 		case DIF_VAR_ZONENAME:
10389 			break;
10390 
10391 		default:
10392 			return (0);
10393 		}
10394 	}
10395 
10396 	/*
10397 	 * This DIF object may be cacheable.  Now we need to look for any
10398 	 * array loading instructions, any memory loading instructions, or
10399 	 * any stores to thread-local variables.
10400 	 */
10401 	for (i = 0; i < dp->dtdo_len; i++) {
10402 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10403 
10404 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10405 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10406 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10407 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10408 			return (0);
10409 	}
10410 
10411 	return (1);
10412 }
10413 
10414 static void
10415 dtrace_difo_hold(dtrace_difo_t *dp)
10416 {
10417 	int i;
10418 
10419 	ASSERT(MUTEX_HELD(&dtrace_lock));
10420 
10421 	dp->dtdo_refcnt++;
10422 	ASSERT(dp->dtdo_refcnt != 0);
10423 
10424 	/*
10425 	 * We need to check this DIF object for references to the variable
10426 	 * DIF_VAR_VTIMESTAMP.
10427 	 */
10428 	for (i = 0; i < dp->dtdo_varlen; i++) {
10429 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10430 
10431 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10432 			continue;
10433 
10434 		if (dtrace_vtime_references++ == 0)
10435 			dtrace_vtime_enable();
10436 	}
10437 }
10438 
10439 /*
10440  * This routine calculates the dynamic variable chunksize for a given DIF
10441  * object.  The calculation is not fool-proof, and can probably be tricked by
10442  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10443  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10444  * if a dynamic variable size exceeds the chunksize.
10445  */
10446 static void
10447 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10448 {
10449 	uint64_t sval = 0;
10450 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10451 	const dif_instr_t *text = dp->dtdo_buf;
10452 	uint_t pc, srd = 0;
10453 	uint_t ttop = 0;
10454 	size_t size, ksize;
10455 	uint_t id, i;
10456 
10457 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10458 		dif_instr_t instr = text[pc];
10459 		uint_t op = DIF_INSTR_OP(instr);
10460 		uint_t rd = DIF_INSTR_RD(instr);
10461 		uint_t r1 = DIF_INSTR_R1(instr);
10462 		uint_t nkeys = 0;
10463 		uchar_t scope = 0;
10464 
10465 		dtrace_key_t *key = tupregs;
10466 
10467 		switch (op) {
10468 		case DIF_OP_SETX:
10469 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10470 			srd = rd;
10471 			continue;
10472 
10473 		case DIF_OP_STTS:
10474 			key = &tupregs[DIF_DTR_NREGS];
10475 			key[0].dttk_size = 0;
10476 			key[1].dttk_size = 0;
10477 			nkeys = 2;
10478 			scope = DIFV_SCOPE_THREAD;
10479 			break;
10480 
10481 		case DIF_OP_STGAA:
10482 		case DIF_OP_STTAA:
10483 			nkeys = ttop;
10484 
10485 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10486 				key[nkeys++].dttk_size = 0;
10487 
10488 			key[nkeys++].dttk_size = 0;
10489 
10490 			if (op == DIF_OP_STTAA) {
10491 				scope = DIFV_SCOPE_THREAD;
10492 			} else {
10493 				scope = DIFV_SCOPE_GLOBAL;
10494 			}
10495 
10496 			break;
10497 
10498 		case DIF_OP_PUSHTR:
10499 			if (ttop == DIF_DTR_NREGS)
10500 				return;
10501 
10502 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10503 				/*
10504 				 * If the register for the size of the "pushtr"
10505 				 * is %r0 (or the value is 0) and the type is
10506 				 * a string, we'll use the system-wide default
10507 				 * string size.
10508 				 */
10509 				tupregs[ttop++].dttk_size =
10510 				    dtrace_strsize_default;
10511 			} else {
10512 				if (srd == 0)
10513 					return;
10514 
10515 				if (sval > LONG_MAX)
10516 					return;
10517 
10518 				tupregs[ttop++].dttk_size = sval;
10519 			}
10520 
10521 			break;
10522 
10523 		case DIF_OP_PUSHTV:
10524 			if (ttop == DIF_DTR_NREGS)
10525 				return;
10526 
10527 			tupregs[ttop++].dttk_size = 0;
10528 			break;
10529 
10530 		case DIF_OP_FLUSHTS:
10531 			ttop = 0;
10532 			break;
10533 
10534 		case DIF_OP_POPTS:
10535 			if (ttop != 0)
10536 				ttop--;
10537 			break;
10538 		}
10539 
10540 		sval = 0;
10541 		srd = 0;
10542 
10543 		if (nkeys == 0)
10544 			continue;
10545 
10546 		/*
10547 		 * We have a dynamic variable allocation; calculate its size.
10548 		 */
10549 		for (ksize = 0, i = 0; i < nkeys; i++)
10550 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10551 
10552 		size = sizeof (dtrace_dynvar_t);
10553 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10554 		size += ksize;
10555 
10556 		/*
10557 		 * Now we need to determine the size of the stored data.
10558 		 */
10559 		id = DIF_INSTR_VAR(instr);
10560 
10561 		for (i = 0; i < dp->dtdo_varlen; i++) {
10562 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10563 
10564 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10565 				size += v->dtdv_type.dtdt_size;
10566 				break;
10567 			}
10568 		}
10569 
10570 		if (i == dp->dtdo_varlen)
10571 			return;
10572 
10573 		/*
10574 		 * We have the size.  If this is larger than the chunk size
10575 		 * for our dynamic variable state, reset the chunk size.
10576 		 */
10577 		size = P2ROUNDUP(size, sizeof (uint64_t));
10578 
10579 		/*
10580 		 * Before setting the chunk size, check that we're not going
10581 		 * to set it to a negative value...
10582 		 */
10583 		if (size > LONG_MAX)
10584 			return;
10585 
10586 		/*
10587 		 * ...and make certain that we didn't badly overflow.
10588 		 */
10589 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10590 			return;
10591 
10592 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10593 			vstate->dtvs_dynvars.dtds_chunksize = size;
10594 	}
10595 }
10596 
10597 static void
10598 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10599 {
10600 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10601 	uint_t id;
10602 
10603 	ASSERT(MUTEX_HELD(&dtrace_lock));
10604 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10605 
10606 	for (i = 0; i < dp->dtdo_varlen; i++) {
10607 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10608 		dtrace_statvar_t *svar, ***svarp = NULL;
10609 		size_t dsize = 0;
10610 		uint8_t scope = v->dtdv_scope;
10611 		int *np = NULL;
10612 
10613 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10614 			continue;
10615 
10616 		id -= DIF_VAR_OTHER_UBASE;
10617 
10618 		switch (scope) {
10619 		case DIFV_SCOPE_THREAD:
10620 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10621 				dtrace_difv_t *tlocals;
10622 
10623 				if ((ntlocals = (otlocals << 1)) == 0)
10624 					ntlocals = 1;
10625 
10626 				osz = otlocals * sizeof (dtrace_difv_t);
10627 				nsz = ntlocals * sizeof (dtrace_difv_t);
10628 
10629 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10630 
10631 				if (osz != 0) {
10632 					bcopy(vstate->dtvs_tlocals,
10633 					    tlocals, osz);
10634 					kmem_free(vstate->dtvs_tlocals, osz);
10635 				}
10636 
10637 				vstate->dtvs_tlocals = tlocals;
10638 				vstate->dtvs_ntlocals = ntlocals;
10639 			}
10640 
10641 			vstate->dtvs_tlocals[id] = *v;
10642 			continue;
10643 
10644 		case DIFV_SCOPE_LOCAL:
10645 			np = &vstate->dtvs_nlocals;
10646 			svarp = &vstate->dtvs_locals;
10647 
10648 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10649 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10650 				    sizeof (uint64_t));
10651 			else
10652 				dsize = NCPU * sizeof (uint64_t);
10653 
10654 			break;
10655 
10656 		case DIFV_SCOPE_GLOBAL:
10657 			np = &vstate->dtvs_nglobals;
10658 			svarp = &vstate->dtvs_globals;
10659 
10660 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10661 				dsize = v->dtdv_type.dtdt_size +
10662 				    sizeof (uint64_t);
10663 
10664 			break;
10665 
10666 		default:
10667 			ASSERT(0);
10668 		}
10669 
10670 		while (id >= (oldsvars = *np)) {
10671 			dtrace_statvar_t **statics;
10672 			int newsvars, oldsize, newsize;
10673 
10674 			if ((newsvars = (oldsvars << 1)) == 0)
10675 				newsvars = 1;
10676 
10677 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10678 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10679 
10680 			statics = kmem_zalloc(newsize, KM_SLEEP);
10681 
10682 			if (oldsize != 0) {
10683 				bcopy(*svarp, statics, oldsize);
10684 				kmem_free(*svarp, oldsize);
10685 			}
10686 
10687 			*svarp = statics;
10688 			*np = newsvars;
10689 		}
10690 
10691 		if ((svar = (*svarp)[id]) == NULL) {
10692 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10693 			svar->dtsv_var = *v;
10694 
10695 			if ((svar->dtsv_size = dsize) != 0) {
10696 				svar->dtsv_data = (uint64_t)(uintptr_t)
10697 				    kmem_zalloc(dsize, KM_SLEEP);
10698 			}
10699 
10700 			(*svarp)[id] = svar;
10701 		}
10702 
10703 		svar->dtsv_refcnt++;
10704 	}
10705 
10706 	dtrace_difo_chunksize(dp, vstate);
10707 	dtrace_difo_hold(dp);
10708 }
10709 
10710 static dtrace_difo_t *
10711 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10712 {
10713 	dtrace_difo_t *new;
10714 	size_t sz;
10715 
10716 	ASSERT(dp->dtdo_buf != NULL);
10717 	ASSERT(dp->dtdo_refcnt != 0);
10718 
10719 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10720 
10721 	ASSERT(dp->dtdo_buf != NULL);
10722 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10723 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10724 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10725 	new->dtdo_len = dp->dtdo_len;
10726 
10727 	if (dp->dtdo_strtab != NULL) {
10728 		ASSERT(dp->dtdo_strlen != 0);
10729 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10730 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10731 		new->dtdo_strlen = dp->dtdo_strlen;
10732 	}
10733 
10734 	if (dp->dtdo_inttab != NULL) {
10735 		ASSERT(dp->dtdo_intlen != 0);
10736 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10737 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10738 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10739 		new->dtdo_intlen = dp->dtdo_intlen;
10740 	}
10741 
10742 	if (dp->dtdo_vartab != NULL) {
10743 		ASSERT(dp->dtdo_varlen != 0);
10744 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10745 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10746 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10747 		new->dtdo_varlen = dp->dtdo_varlen;
10748 	}
10749 
10750 	dtrace_difo_init(new, vstate);
10751 	return (new);
10752 }
10753 
10754 static void
10755 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10756 {
10757 	int i;
10758 
10759 	ASSERT(dp->dtdo_refcnt == 0);
10760 
10761 	for (i = 0; i < dp->dtdo_varlen; i++) {
10762 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10763 		dtrace_statvar_t *svar, **svarp = NULL;
10764 		uint_t id;
10765 		uint8_t scope = v->dtdv_scope;
10766 		int *np = NULL;
10767 
10768 		switch (scope) {
10769 		case DIFV_SCOPE_THREAD:
10770 			continue;
10771 
10772 		case DIFV_SCOPE_LOCAL:
10773 			np = &vstate->dtvs_nlocals;
10774 			svarp = vstate->dtvs_locals;
10775 			break;
10776 
10777 		case DIFV_SCOPE_GLOBAL:
10778 			np = &vstate->dtvs_nglobals;
10779 			svarp = vstate->dtvs_globals;
10780 			break;
10781 
10782 		default:
10783 			ASSERT(0);
10784 		}
10785 
10786 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10787 			continue;
10788 
10789 		id -= DIF_VAR_OTHER_UBASE;
10790 		ASSERT(id < *np);
10791 
10792 		svar = svarp[id];
10793 		ASSERT(svar != NULL);
10794 		ASSERT(svar->dtsv_refcnt > 0);
10795 
10796 		if (--svar->dtsv_refcnt > 0)
10797 			continue;
10798 
10799 		if (svar->dtsv_size != 0) {
10800 			ASSERT(svar->dtsv_data != 0);
10801 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10802 			    svar->dtsv_size);
10803 		}
10804 
10805 		kmem_free(svar, sizeof (dtrace_statvar_t));
10806 		svarp[id] = NULL;
10807 	}
10808 
10809 	if (dp->dtdo_buf != NULL)
10810 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10811 	if (dp->dtdo_inttab != NULL)
10812 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10813 	if (dp->dtdo_strtab != NULL)
10814 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10815 	if (dp->dtdo_vartab != NULL)
10816 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10817 
10818 	kmem_free(dp, sizeof (dtrace_difo_t));
10819 }
10820 
10821 static void
10822 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10823 {
10824 	int i;
10825 
10826 	ASSERT(MUTEX_HELD(&dtrace_lock));
10827 	ASSERT(dp->dtdo_refcnt != 0);
10828 
10829 	for (i = 0; i < dp->dtdo_varlen; i++) {
10830 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10831 
10832 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10833 			continue;
10834 
10835 		ASSERT(dtrace_vtime_references > 0);
10836 		if (--dtrace_vtime_references == 0)
10837 			dtrace_vtime_disable();
10838 	}
10839 
10840 	if (--dp->dtdo_refcnt == 0)
10841 		dtrace_difo_destroy(dp, vstate);
10842 }
10843 
10844 /*
10845  * DTrace Format Functions
10846  */
10847 static uint16_t
10848 dtrace_format_add(dtrace_state_t *state, char *str)
10849 {
10850 	char *fmt, **new;
10851 	uint16_t ndx, len = strlen(str) + 1;
10852 
10853 	fmt = kmem_zalloc(len, KM_SLEEP);
10854 	bcopy(str, fmt, len);
10855 
10856 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10857 		if (state->dts_formats[ndx] == NULL) {
10858 			state->dts_formats[ndx] = fmt;
10859 			return (ndx + 1);
10860 		}
10861 	}
10862 
10863 	if (state->dts_nformats == USHRT_MAX) {
10864 		/*
10865 		 * This is only likely if a denial-of-service attack is being
10866 		 * attempted.  As such, it's okay to fail silently here.
10867 		 */
10868 		kmem_free(fmt, len);
10869 		return (0);
10870 	}
10871 
10872 	/*
10873 	 * For simplicity, we always resize the formats array to be exactly the
10874 	 * number of formats.
10875 	 */
10876 	ndx = state->dts_nformats++;
10877 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10878 
10879 	if (state->dts_formats != NULL) {
10880 		ASSERT(ndx != 0);
10881 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10882 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10883 	}
10884 
10885 	state->dts_formats = new;
10886 	state->dts_formats[ndx] = fmt;
10887 
10888 	return (ndx + 1);
10889 }
10890 
10891 static void
10892 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10893 {
10894 	char *fmt;
10895 
10896 	ASSERT(state->dts_formats != NULL);
10897 	ASSERT(format <= state->dts_nformats);
10898 	ASSERT(state->dts_formats[format - 1] != NULL);
10899 
10900 	fmt = state->dts_formats[format - 1];
10901 	kmem_free(fmt, strlen(fmt) + 1);
10902 	state->dts_formats[format - 1] = NULL;
10903 }
10904 
10905 static void
10906 dtrace_format_destroy(dtrace_state_t *state)
10907 {
10908 	int i;
10909 
10910 	if (state->dts_nformats == 0) {
10911 		ASSERT(state->dts_formats == NULL);
10912 		return;
10913 	}
10914 
10915 	ASSERT(state->dts_formats != NULL);
10916 
10917 	for (i = 0; i < state->dts_nformats; i++) {
10918 		char *fmt = state->dts_formats[i];
10919 
10920 		if (fmt == NULL)
10921 			continue;
10922 
10923 		kmem_free(fmt, strlen(fmt) + 1);
10924 	}
10925 
10926 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10927 	state->dts_nformats = 0;
10928 	state->dts_formats = NULL;
10929 }
10930 
10931 /*
10932  * DTrace Predicate Functions
10933  */
10934 static dtrace_predicate_t *
10935 dtrace_predicate_create(dtrace_difo_t *dp)
10936 {
10937 	dtrace_predicate_t *pred;
10938 
10939 	ASSERT(MUTEX_HELD(&dtrace_lock));
10940 	ASSERT(dp->dtdo_refcnt != 0);
10941 
10942 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10943 	pred->dtp_difo = dp;
10944 	pred->dtp_refcnt = 1;
10945 
10946 	if (!dtrace_difo_cacheable(dp))
10947 		return (pred);
10948 
10949 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10950 		/*
10951 		 * This is only theoretically possible -- we have had 2^32
10952 		 * cacheable predicates on this machine.  We cannot allow any
10953 		 * more predicates to become cacheable:  as unlikely as it is,
10954 		 * there may be a thread caching a (now stale) predicate cache
10955 		 * ID. (N.B.: the temptation is being successfully resisted to
10956 		 * have this cmn_err() "Holy shit -- we executed this code!")
10957 		 */
10958 		return (pred);
10959 	}
10960 
10961 	pred->dtp_cacheid = dtrace_predcache_id++;
10962 
10963 	return (pred);
10964 }
10965 
10966 static void
10967 dtrace_predicate_hold(dtrace_predicate_t *pred)
10968 {
10969 	ASSERT(MUTEX_HELD(&dtrace_lock));
10970 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10971 	ASSERT(pred->dtp_refcnt > 0);
10972 
10973 	pred->dtp_refcnt++;
10974 }
10975 
10976 static void
10977 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10978 {
10979 	dtrace_difo_t *dp = pred->dtp_difo;
10980 
10981 	ASSERT(MUTEX_HELD(&dtrace_lock));
10982 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10983 	ASSERT(pred->dtp_refcnt > 0);
10984 
10985 	if (--pred->dtp_refcnt == 0) {
10986 		dtrace_difo_release(pred->dtp_difo, vstate);
10987 		kmem_free(pred, sizeof (dtrace_predicate_t));
10988 	}
10989 }
10990 
10991 /*
10992  * DTrace Action Description Functions
10993  */
10994 static dtrace_actdesc_t *
10995 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10996     uint64_t uarg, uint64_t arg)
10997 {
10998 	dtrace_actdesc_t *act;
10999 
11000 #ifdef illumos
11001 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11002 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11003 #endif
11004 
11005 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11006 	act->dtad_kind = kind;
11007 	act->dtad_ntuple = ntuple;
11008 	act->dtad_uarg = uarg;
11009 	act->dtad_arg = arg;
11010 	act->dtad_refcnt = 1;
11011 
11012 	return (act);
11013 }
11014 
11015 static void
11016 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11017 {
11018 	ASSERT(act->dtad_refcnt >= 1);
11019 	act->dtad_refcnt++;
11020 }
11021 
11022 static void
11023 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11024 {
11025 	dtrace_actkind_t kind = act->dtad_kind;
11026 	dtrace_difo_t *dp;
11027 
11028 	ASSERT(act->dtad_refcnt >= 1);
11029 
11030 	if (--act->dtad_refcnt != 0)
11031 		return;
11032 
11033 	if ((dp = act->dtad_difo) != NULL)
11034 		dtrace_difo_release(dp, vstate);
11035 
11036 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
11037 		char *str = (char *)(uintptr_t)act->dtad_arg;
11038 
11039 #ifdef illumos
11040 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11041 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11042 #endif
11043 
11044 		if (str != NULL)
11045 			kmem_free(str, strlen(str) + 1);
11046 	}
11047 
11048 	kmem_free(act, sizeof (dtrace_actdesc_t));
11049 }
11050 
11051 /*
11052  * DTrace ECB Functions
11053  */
11054 static dtrace_ecb_t *
11055 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11056 {
11057 	dtrace_ecb_t *ecb;
11058 	dtrace_epid_t epid;
11059 
11060 	ASSERT(MUTEX_HELD(&dtrace_lock));
11061 
11062 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11063 	ecb->dte_predicate = NULL;
11064 	ecb->dte_probe = probe;
11065 
11066 	/*
11067 	 * The default size is the size of the default action: recording
11068 	 * the header.
11069 	 */
11070 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11071 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11072 
11073 	epid = state->dts_epid++;
11074 
11075 	if (epid - 1 >= state->dts_necbs) {
11076 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11077 		int necbs = state->dts_necbs << 1;
11078 
11079 		ASSERT(epid == state->dts_necbs + 1);
11080 
11081 		if (necbs == 0) {
11082 			ASSERT(oecbs == NULL);
11083 			necbs = 1;
11084 		}
11085 
11086 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11087 
11088 		if (oecbs != NULL)
11089 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11090 
11091 		dtrace_membar_producer();
11092 		state->dts_ecbs = ecbs;
11093 
11094 		if (oecbs != NULL) {
11095 			/*
11096 			 * If this state is active, we must dtrace_sync()
11097 			 * before we can free the old dts_ecbs array:  we're
11098 			 * coming in hot, and there may be active ring
11099 			 * buffer processing (which indexes into the dts_ecbs
11100 			 * array) on another CPU.
11101 			 */
11102 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11103 				dtrace_sync();
11104 
11105 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11106 		}
11107 
11108 		dtrace_membar_producer();
11109 		state->dts_necbs = necbs;
11110 	}
11111 
11112 	ecb->dte_state = state;
11113 
11114 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11115 	dtrace_membar_producer();
11116 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11117 
11118 	return (ecb);
11119 }
11120 
11121 static void
11122 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11123 {
11124 	dtrace_probe_t *probe = ecb->dte_probe;
11125 
11126 	ASSERT(MUTEX_HELD(&cpu_lock));
11127 	ASSERT(MUTEX_HELD(&dtrace_lock));
11128 	ASSERT(ecb->dte_next == NULL);
11129 
11130 	if (probe == NULL) {
11131 		/*
11132 		 * This is the NULL probe -- there's nothing to do.
11133 		 */
11134 		return;
11135 	}
11136 
11137 	if (probe->dtpr_ecb == NULL) {
11138 		dtrace_provider_t *prov = probe->dtpr_provider;
11139 
11140 		/*
11141 		 * We're the first ECB on this probe.
11142 		 */
11143 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11144 
11145 		if (ecb->dte_predicate != NULL)
11146 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11147 
11148 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11149 		    probe->dtpr_id, probe->dtpr_arg);
11150 	} else {
11151 		/*
11152 		 * This probe is already active.  Swing the last pointer to
11153 		 * point to the new ECB, and issue a dtrace_sync() to assure
11154 		 * that all CPUs have seen the change.
11155 		 */
11156 		ASSERT(probe->dtpr_ecb_last != NULL);
11157 		probe->dtpr_ecb_last->dte_next = ecb;
11158 		probe->dtpr_ecb_last = ecb;
11159 		probe->dtpr_predcache = 0;
11160 
11161 		dtrace_sync();
11162 	}
11163 }
11164 
11165 static int
11166 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11167 {
11168 	dtrace_action_t *act;
11169 	uint32_t curneeded = UINT32_MAX;
11170 	uint32_t aggbase = UINT32_MAX;
11171 
11172 	/*
11173 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11174 	 * we always record it first.)
11175 	 */
11176 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11177 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11178 
11179 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11180 		dtrace_recdesc_t *rec = &act->dta_rec;
11181 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11182 
11183 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11184 		    rec->dtrd_alignment);
11185 
11186 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11187 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11188 
11189 			ASSERT(rec->dtrd_size != 0);
11190 			ASSERT(agg->dtag_first != NULL);
11191 			ASSERT(act->dta_prev->dta_intuple);
11192 			ASSERT(aggbase != UINT32_MAX);
11193 			ASSERT(curneeded != UINT32_MAX);
11194 
11195 			agg->dtag_base = aggbase;
11196 
11197 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11198 			rec->dtrd_offset = curneeded;
11199 			if (curneeded + rec->dtrd_size < curneeded)
11200 				return (EINVAL);
11201 			curneeded += rec->dtrd_size;
11202 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11203 
11204 			aggbase = UINT32_MAX;
11205 			curneeded = UINT32_MAX;
11206 		} else if (act->dta_intuple) {
11207 			if (curneeded == UINT32_MAX) {
11208 				/*
11209 				 * This is the first record in a tuple.  Align
11210 				 * curneeded to be at offset 4 in an 8-byte
11211 				 * aligned block.
11212 				 */
11213 				ASSERT(act->dta_prev == NULL ||
11214 				    !act->dta_prev->dta_intuple);
11215 				ASSERT3U(aggbase, ==, UINT32_MAX);
11216 				curneeded = P2PHASEUP(ecb->dte_size,
11217 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11218 
11219 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11220 				ASSERT(IS_P2ALIGNED(aggbase,
11221 				    sizeof (uint64_t)));
11222 			}
11223 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11224 			rec->dtrd_offset = curneeded;
11225 			if (curneeded + rec->dtrd_size < curneeded)
11226 				return (EINVAL);
11227 			curneeded += rec->dtrd_size;
11228 		} else {
11229 			/* tuples must be followed by an aggregation */
11230 			ASSERT(act->dta_prev == NULL ||
11231 			    !act->dta_prev->dta_intuple);
11232 
11233 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11234 			    rec->dtrd_alignment);
11235 			rec->dtrd_offset = ecb->dte_size;
11236 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11237 				return (EINVAL);
11238 			ecb->dte_size += rec->dtrd_size;
11239 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11240 		}
11241 	}
11242 
11243 	if ((act = ecb->dte_action) != NULL &&
11244 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11245 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11246 		/*
11247 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11248 		 * actions store no data; set the size to 0.
11249 		 */
11250 		ecb->dte_size = 0;
11251 	}
11252 
11253 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11254 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11255 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11256 	    ecb->dte_needed);
11257 	return (0);
11258 }
11259 
11260 static dtrace_action_t *
11261 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11262 {
11263 	dtrace_aggregation_t *agg;
11264 	size_t size = sizeof (uint64_t);
11265 	int ntuple = desc->dtad_ntuple;
11266 	dtrace_action_t *act;
11267 	dtrace_recdesc_t *frec;
11268 	dtrace_aggid_t aggid;
11269 	dtrace_state_t *state = ecb->dte_state;
11270 
11271 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11272 	agg->dtag_ecb = ecb;
11273 
11274 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11275 
11276 	switch (desc->dtad_kind) {
11277 	case DTRACEAGG_MIN:
11278 		agg->dtag_initial = INT64_MAX;
11279 		agg->dtag_aggregate = dtrace_aggregate_min;
11280 		break;
11281 
11282 	case DTRACEAGG_MAX:
11283 		agg->dtag_initial = INT64_MIN;
11284 		agg->dtag_aggregate = dtrace_aggregate_max;
11285 		break;
11286 
11287 	case DTRACEAGG_COUNT:
11288 		agg->dtag_aggregate = dtrace_aggregate_count;
11289 		break;
11290 
11291 	case DTRACEAGG_QUANTIZE:
11292 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11293 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11294 		    sizeof (uint64_t);
11295 		break;
11296 
11297 	case DTRACEAGG_LQUANTIZE: {
11298 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11299 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11300 
11301 		agg->dtag_initial = desc->dtad_arg;
11302 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11303 
11304 		if (step == 0 || levels == 0)
11305 			goto err;
11306 
11307 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11308 		break;
11309 	}
11310 
11311 	case DTRACEAGG_LLQUANTIZE: {
11312 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11313 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11314 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11315 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11316 		int64_t v;
11317 
11318 		agg->dtag_initial = desc->dtad_arg;
11319 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11320 
11321 		if (factor < 2 || low >= high || nsteps < factor)
11322 			goto err;
11323 
11324 		/*
11325 		 * Now check that the number of steps evenly divides a power
11326 		 * of the factor.  (This assures both integer bucket size and
11327 		 * linearity within each magnitude.)
11328 		 */
11329 		for (v = factor; v < nsteps; v *= factor)
11330 			continue;
11331 
11332 		if ((v % nsteps) || (nsteps % factor))
11333 			goto err;
11334 
11335 		size = (dtrace_aggregate_llquantize_bucket(factor,
11336 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11337 		break;
11338 	}
11339 
11340 	case DTRACEAGG_AVG:
11341 		agg->dtag_aggregate = dtrace_aggregate_avg;
11342 		size = sizeof (uint64_t) * 2;
11343 		break;
11344 
11345 	case DTRACEAGG_STDDEV:
11346 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11347 		size = sizeof (uint64_t) * 4;
11348 		break;
11349 
11350 	case DTRACEAGG_SUM:
11351 		agg->dtag_aggregate = dtrace_aggregate_sum;
11352 		break;
11353 
11354 	default:
11355 		goto err;
11356 	}
11357 
11358 	agg->dtag_action.dta_rec.dtrd_size = size;
11359 
11360 	if (ntuple == 0)
11361 		goto err;
11362 
11363 	/*
11364 	 * We must make sure that we have enough actions for the n-tuple.
11365 	 */
11366 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11367 		if (DTRACEACT_ISAGG(act->dta_kind))
11368 			break;
11369 
11370 		if (--ntuple == 0) {
11371 			/*
11372 			 * This is the action with which our n-tuple begins.
11373 			 */
11374 			agg->dtag_first = act;
11375 			goto success;
11376 		}
11377 	}
11378 
11379 	/*
11380 	 * This n-tuple is short by ntuple elements.  Return failure.
11381 	 */
11382 	ASSERT(ntuple != 0);
11383 err:
11384 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11385 	return (NULL);
11386 
11387 success:
11388 	/*
11389 	 * If the last action in the tuple has a size of zero, it's actually
11390 	 * an expression argument for the aggregating action.
11391 	 */
11392 	ASSERT(ecb->dte_action_last != NULL);
11393 	act = ecb->dte_action_last;
11394 
11395 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11396 		ASSERT(act->dta_difo != NULL);
11397 
11398 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11399 			agg->dtag_hasarg = 1;
11400 	}
11401 
11402 	/*
11403 	 * We need to allocate an id for this aggregation.
11404 	 */
11405 #ifdef illumos
11406 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11407 	    VM_BESTFIT | VM_SLEEP);
11408 #else
11409 	aggid = alloc_unr(state->dts_aggid_arena);
11410 #endif
11411 
11412 	if (aggid - 1 >= state->dts_naggregations) {
11413 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11414 		dtrace_aggregation_t **aggs;
11415 		int naggs = state->dts_naggregations << 1;
11416 		int onaggs = state->dts_naggregations;
11417 
11418 		ASSERT(aggid == state->dts_naggregations + 1);
11419 
11420 		if (naggs == 0) {
11421 			ASSERT(oaggs == NULL);
11422 			naggs = 1;
11423 		}
11424 
11425 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11426 
11427 		if (oaggs != NULL) {
11428 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11429 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11430 		}
11431 
11432 		state->dts_aggregations = aggs;
11433 		state->dts_naggregations = naggs;
11434 	}
11435 
11436 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11437 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11438 
11439 	frec = &agg->dtag_first->dta_rec;
11440 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11441 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11442 
11443 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11444 		ASSERT(!act->dta_intuple);
11445 		act->dta_intuple = 1;
11446 	}
11447 
11448 	return (&agg->dtag_action);
11449 }
11450 
11451 static void
11452 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11453 {
11454 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11455 	dtrace_state_t *state = ecb->dte_state;
11456 	dtrace_aggid_t aggid = agg->dtag_id;
11457 
11458 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11459 #ifdef illumos
11460 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11461 #else
11462 	free_unr(state->dts_aggid_arena, aggid);
11463 #endif
11464 
11465 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11466 	state->dts_aggregations[aggid - 1] = NULL;
11467 
11468 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11469 }
11470 
11471 static int
11472 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11473 {
11474 	dtrace_action_t *action, *last;
11475 	dtrace_difo_t *dp = desc->dtad_difo;
11476 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11477 	uint16_t format = 0;
11478 	dtrace_recdesc_t *rec;
11479 	dtrace_state_t *state = ecb->dte_state;
11480 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11481 	uint64_t arg = desc->dtad_arg;
11482 
11483 	ASSERT(MUTEX_HELD(&dtrace_lock));
11484 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11485 
11486 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11487 		/*
11488 		 * If this is an aggregating action, there must be neither
11489 		 * a speculate nor a commit on the action chain.
11490 		 */
11491 		dtrace_action_t *act;
11492 
11493 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11494 			if (act->dta_kind == DTRACEACT_COMMIT)
11495 				return (EINVAL);
11496 
11497 			if (act->dta_kind == DTRACEACT_SPECULATE)
11498 				return (EINVAL);
11499 		}
11500 
11501 		action = dtrace_ecb_aggregation_create(ecb, desc);
11502 
11503 		if (action == NULL)
11504 			return (EINVAL);
11505 	} else {
11506 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11507 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11508 		    dp != NULL && dp->dtdo_destructive)) {
11509 			state->dts_destructive = 1;
11510 		}
11511 
11512 		switch (desc->dtad_kind) {
11513 		case DTRACEACT_PRINTF:
11514 		case DTRACEACT_PRINTA:
11515 		case DTRACEACT_SYSTEM:
11516 		case DTRACEACT_FREOPEN:
11517 		case DTRACEACT_DIFEXPR:
11518 			/*
11519 			 * We know that our arg is a string -- turn it into a
11520 			 * format.
11521 			 */
11522 			if (arg == 0) {
11523 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11524 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11525 				format = 0;
11526 			} else {
11527 				ASSERT(arg != 0);
11528 #ifdef illumos
11529 				ASSERT(arg > KERNELBASE);
11530 #endif
11531 				format = dtrace_format_add(state,
11532 				    (char *)(uintptr_t)arg);
11533 			}
11534 
11535 			/*FALLTHROUGH*/
11536 		case DTRACEACT_LIBACT:
11537 		case DTRACEACT_TRACEMEM:
11538 		case DTRACEACT_TRACEMEM_DYNSIZE:
11539 			if (dp == NULL)
11540 				return (EINVAL);
11541 
11542 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11543 				break;
11544 
11545 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11546 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11547 					return (EINVAL);
11548 
11549 				size = opt[DTRACEOPT_STRSIZE];
11550 			}
11551 
11552 			break;
11553 
11554 		case DTRACEACT_STACK:
11555 			if ((nframes = arg) == 0) {
11556 				nframes = opt[DTRACEOPT_STACKFRAMES];
11557 				ASSERT(nframes > 0);
11558 				arg = nframes;
11559 			}
11560 
11561 			size = nframes * sizeof (pc_t);
11562 			break;
11563 
11564 		case DTRACEACT_JSTACK:
11565 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11566 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11567 
11568 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11569 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11570 
11571 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11572 
11573 			/*FALLTHROUGH*/
11574 		case DTRACEACT_USTACK:
11575 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11576 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11577 				strsize = DTRACE_USTACK_STRSIZE(arg);
11578 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11579 				ASSERT(nframes > 0);
11580 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11581 			}
11582 
11583 			/*
11584 			 * Save a slot for the pid.
11585 			 */
11586 			size = (nframes + 1) * sizeof (uint64_t);
11587 			size += DTRACE_USTACK_STRSIZE(arg);
11588 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11589 
11590 			break;
11591 
11592 		case DTRACEACT_SYM:
11593 		case DTRACEACT_MOD:
11594 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11595 			    sizeof (uint64_t)) ||
11596 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11597 				return (EINVAL);
11598 			break;
11599 
11600 		case DTRACEACT_USYM:
11601 		case DTRACEACT_UMOD:
11602 		case DTRACEACT_UADDR:
11603 			if (dp == NULL ||
11604 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11605 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11606 				return (EINVAL);
11607 
11608 			/*
11609 			 * We have a slot for the pid, plus a slot for the
11610 			 * argument.  To keep things simple (aligned with
11611 			 * bitness-neutral sizing), we store each as a 64-bit
11612 			 * quantity.
11613 			 */
11614 			size = 2 * sizeof (uint64_t);
11615 			break;
11616 
11617 		case DTRACEACT_STOP:
11618 		case DTRACEACT_BREAKPOINT:
11619 		case DTRACEACT_PANIC:
11620 			break;
11621 
11622 		case DTRACEACT_CHILL:
11623 		case DTRACEACT_DISCARD:
11624 		case DTRACEACT_RAISE:
11625 			if (dp == NULL)
11626 				return (EINVAL);
11627 			break;
11628 
11629 		case DTRACEACT_EXIT:
11630 			if (dp == NULL ||
11631 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11632 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11633 				return (EINVAL);
11634 			break;
11635 
11636 		case DTRACEACT_SPECULATE:
11637 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11638 				return (EINVAL);
11639 
11640 			if (dp == NULL)
11641 				return (EINVAL);
11642 
11643 			state->dts_speculates = 1;
11644 			break;
11645 
11646 		case DTRACEACT_PRINTM:
11647 		    	size = dp->dtdo_rtype.dtdt_size;
11648 			break;
11649 
11650 		case DTRACEACT_PRINTT:
11651 		    	size = dp->dtdo_rtype.dtdt_size;
11652 			break;
11653 
11654 		case DTRACEACT_COMMIT: {
11655 			dtrace_action_t *act = ecb->dte_action;
11656 
11657 			for (; act != NULL; act = act->dta_next) {
11658 				if (act->dta_kind == DTRACEACT_COMMIT)
11659 					return (EINVAL);
11660 			}
11661 
11662 			if (dp == NULL)
11663 				return (EINVAL);
11664 			break;
11665 		}
11666 
11667 		default:
11668 			return (EINVAL);
11669 		}
11670 
11671 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11672 			/*
11673 			 * If this is a data-storing action or a speculate,
11674 			 * we must be sure that there isn't a commit on the
11675 			 * action chain.
11676 			 */
11677 			dtrace_action_t *act = ecb->dte_action;
11678 
11679 			for (; act != NULL; act = act->dta_next) {
11680 				if (act->dta_kind == DTRACEACT_COMMIT)
11681 					return (EINVAL);
11682 			}
11683 		}
11684 
11685 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11686 		action->dta_rec.dtrd_size = size;
11687 	}
11688 
11689 	action->dta_refcnt = 1;
11690 	rec = &action->dta_rec;
11691 	size = rec->dtrd_size;
11692 
11693 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11694 		if (!(size & mask)) {
11695 			align = mask + 1;
11696 			break;
11697 		}
11698 	}
11699 
11700 	action->dta_kind = desc->dtad_kind;
11701 
11702 	if ((action->dta_difo = dp) != NULL)
11703 		dtrace_difo_hold(dp);
11704 
11705 	rec->dtrd_action = action->dta_kind;
11706 	rec->dtrd_arg = arg;
11707 	rec->dtrd_uarg = desc->dtad_uarg;
11708 	rec->dtrd_alignment = (uint16_t)align;
11709 	rec->dtrd_format = format;
11710 
11711 	if ((last = ecb->dte_action_last) != NULL) {
11712 		ASSERT(ecb->dte_action != NULL);
11713 		action->dta_prev = last;
11714 		last->dta_next = action;
11715 	} else {
11716 		ASSERT(ecb->dte_action == NULL);
11717 		ecb->dte_action = action;
11718 	}
11719 
11720 	ecb->dte_action_last = action;
11721 
11722 	return (0);
11723 }
11724 
11725 static void
11726 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11727 {
11728 	dtrace_action_t *act = ecb->dte_action, *next;
11729 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11730 	dtrace_difo_t *dp;
11731 	uint16_t format;
11732 
11733 	if (act != NULL && act->dta_refcnt > 1) {
11734 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11735 		act->dta_refcnt--;
11736 	} else {
11737 		for (; act != NULL; act = next) {
11738 			next = act->dta_next;
11739 			ASSERT(next != NULL || act == ecb->dte_action_last);
11740 			ASSERT(act->dta_refcnt == 1);
11741 
11742 			if ((format = act->dta_rec.dtrd_format) != 0)
11743 				dtrace_format_remove(ecb->dte_state, format);
11744 
11745 			if ((dp = act->dta_difo) != NULL)
11746 				dtrace_difo_release(dp, vstate);
11747 
11748 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11749 				dtrace_ecb_aggregation_destroy(ecb, act);
11750 			} else {
11751 				kmem_free(act, sizeof (dtrace_action_t));
11752 			}
11753 		}
11754 	}
11755 
11756 	ecb->dte_action = NULL;
11757 	ecb->dte_action_last = NULL;
11758 	ecb->dte_size = 0;
11759 }
11760 
11761 static void
11762 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11763 {
11764 	/*
11765 	 * We disable the ECB by removing it from its probe.
11766 	 */
11767 	dtrace_ecb_t *pecb, *prev = NULL;
11768 	dtrace_probe_t *probe = ecb->dte_probe;
11769 
11770 	ASSERT(MUTEX_HELD(&dtrace_lock));
11771 
11772 	if (probe == NULL) {
11773 		/*
11774 		 * This is the NULL probe; there is nothing to disable.
11775 		 */
11776 		return;
11777 	}
11778 
11779 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11780 		if (pecb == ecb)
11781 			break;
11782 		prev = pecb;
11783 	}
11784 
11785 	ASSERT(pecb != NULL);
11786 
11787 	if (prev == NULL) {
11788 		probe->dtpr_ecb = ecb->dte_next;
11789 	} else {
11790 		prev->dte_next = ecb->dte_next;
11791 	}
11792 
11793 	if (ecb == probe->dtpr_ecb_last) {
11794 		ASSERT(ecb->dte_next == NULL);
11795 		probe->dtpr_ecb_last = prev;
11796 	}
11797 
11798 	/*
11799 	 * The ECB has been disconnected from the probe; now sync to assure
11800 	 * that all CPUs have seen the change before returning.
11801 	 */
11802 	dtrace_sync();
11803 
11804 	if (probe->dtpr_ecb == NULL) {
11805 		/*
11806 		 * That was the last ECB on the probe; clear the predicate
11807 		 * cache ID for the probe, disable it and sync one more time
11808 		 * to assure that we'll never hit it again.
11809 		 */
11810 		dtrace_provider_t *prov = probe->dtpr_provider;
11811 
11812 		ASSERT(ecb->dte_next == NULL);
11813 		ASSERT(probe->dtpr_ecb_last == NULL);
11814 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11815 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11816 		    probe->dtpr_id, probe->dtpr_arg);
11817 		dtrace_sync();
11818 	} else {
11819 		/*
11820 		 * There is at least one ECB remaining on the probe.  If there
11821 		 * is _exactly_ one, set the probe's predicate cache ID to be
11822 		 * the predicate cache ID of the remaining ECB.
11823 		 */
11824 		ASSERT(probe->dtpr_ecb_last != NULL);
11825 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11826 
11827 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11828 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11829 
11830 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11831 
11832 			if (p != NULL)
11833 				probe->dtpr_predcache = p->dtp_cacheid;
11834 		}
11835 
11836 		ecb->dte_next = NULL;
11837 	}
11838 }
11839 
11840 static void
11841 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11842 {
11843 	dtrace_state_t *state = ecb->dte_state;
11844 	dtrace_vstate_t *vstate = &state->dts_vstate;
11845 	dtrace_predicate_t *pred;
11846 	dtrace_epid_t epid = ecb->dte_epid;
11847 
11848 	ASSERT(MUTEX_HELD(&dtrace_lock));
11849 	ASSERT(ecb->dte_next == NULL);
11850 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11851 
11852 	if ((pred = ecb->dte_predicate) != NULL)
11853 		dtrace_predicate_release(pred, vstate);
11854 
11855 	dtrace_ecb_action_remove(ecb);
11856 
11857 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11858 	state->dts_ecbs[epid - 1] = NULL;
11859 
11860 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11861 }
11862 
11863 static dtrace_ecb_t *
11864 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11865     dtrace_enabling_t *enab)
11866 {
11867 	dtrace_ecb_t *ecb;
11868 	dtrace_predicate_t *pred;
11869 	dtrace_actdesc_t *act;
11870 	dtrace_provider_t *prov;
11871 	dtrace_ecbdesc_t *desc = enab->dten_current;
11872 
11873 	ASSERT(MUTEX_HELD(&dtrace_lock));
11874 	ASSERT(state != NULL);
11875 
11876 	ecb = dtrace_ecb_add(state, probe);
11877 	ecb->dte_uarg = desc->dted_uarg;
11878 
11879 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11880 		dtrace_predicate_hold(pred);
11881 		ecb->dte_predicate = pred;
11882 	}
11883 
11884 	if (probe != NULL) {
11885 		/*
11886 		 * If the provider shows more leg than the consumer is old
11887 		 * enough to see, we need to enable the appropriate implicit
11888 		 * predicate bits to prevent the ecb from activating at
11889 		 * revealing times.
11890 		 *
11891 		 * Providers specifying DTRACE_PRIV_USER at register time
11892 		 * are stating that they need the /proc-style privilege
11893 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11894 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11895 		 */
11896 		prov = probe->dtpr_provider;
11897 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11898 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11899 			ecb->dte_cond |= DTRACE_COND_OWNER;
11900 
11901 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11902 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11903 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11904 
11905 		/*
11906 		 * If the provider shows us kernel innards and the user
11907 		 * is lacking sufficient privilege, enable the
11908 		 * DTRACE_COND_USERMODE implicit predicate.
11909 		 */
11910 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11911 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11912 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11913 	}
11914 
11915 	if (dtrace_ecb_create_cache != NULL) {
11916 		/*
11917 		 * If we have a cached ecb, we'll use its action list instead
11918 		 * of creating our own (saving both time and space).
11919 		 */
11920 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11921 		dtrace_action_t *act = cached->dte_action;
11922 
11923 		if (act != NULL) {
11924 			ASSERT(act->dta_refcnt > 0);
11925 			act->dta_refcnt++;
11926 			ecb->dte_action = act;
11927 			ecb->dte_action_last = cached->dte_action_last;
11928 			ecb->dte_needed = cached->dte_needed;
11929 			ecb->dte_size = cached->dte_size;
11930 			ecb->dte_alignment = cached->dte_alignment;
11931 		}
11932 
11933 		return (ecb);
11934 	}
11935 
11936 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11937 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11938 			dtrace_ecb_destroy(ecb);
11939 			return (NULL);
11940 		}
11941 	}
11942 
11943 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11944 		dtrace_ecb_destroy(ecb);
11945 		return (NULL);
11946 	}
11947 
11948 	return (dtrace_ecb_create_cache = ecb);
11949 }
11950 
11951 static int
11952 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11953 {
11954 	dtrace_ecb_t *ecb;
11955 	dtrace_enabling_t *enab = arg;
11956 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11957 
11958 	ASSERT(state != NULL);
11959 
11960 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11961 		/*
11962 		 * This probe was created in a generation for which this
11963 		 * enabling has previously created ECBs; we don't want to
11964 		 * enable it again, so just kick out.
11965 		 */
11966 		return (DTRACE_MATCH_NEXT);
11967 	}
11968 
11969 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11970 		return (DTRACE_MATCH_DONE);
11971 
11972 	dtrace_ecb_enable(ecb);
11973 	return (DTRACE_MATCH_NEXT);
11974 }
11975 
11976 static dtrace_ecb_t *
11977 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11978 {
11979 	dtrace_ecb_t *ecb;
11980 
11981 	ASSERT(MUTEX_HELD(&dtrace_lock));
11982 
11983 	if (id == 0 || id > state->dts_necbs)
11984 		return (NULL);
11985 
11986 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11987 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11988 
11989 	return (state->dts_ecbs[id - 1]);
11990 }
11991 
11992 static dtrace_aggregation_t *
11993 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11994 {
11995 	dtrace_aggregation_t *agg;
11996 
11997 	ASSERT(MUTEX_HELD(&dtrace_lock));
11998 
11999 	if (id == 0 || id > state->dts_naggregations)
12000 		return (NULL);
12001 
12002 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12003 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12004 	    agg->dtag_id == id);
12005 
12006 	return (state->dts_aggregations[id - 1]);
12007 }
12008 
12009 /*
12010  * DTrace Buffer Functions
12011  *
12012  * The following functions manipulate DTrace buffers.  Most of these functions
12013  * are called in the context of establishing or processing consumer state;
12014  * exceptions are explicitly noted.
12015  */
12016 
12017 /*
12018  * Note:  called from cross call context.  This function switches the two
12019  * buffers on a given CPU.  The atomicity of this operation is assured by
12020  * disabling interrupts while the actual switch takes place; the disabling of
12021  * interrupts serializes the execution with any execution of dtrace_probe() on
12022  * the same CPU.
12023  */
12024 static void
12025 dtrace_buffer_switch(dtrace_buffer_t *buf)
12026 {
12027 	caddr_t tomax = buf->dtb_tomax;
12028 	caddr_t xamot = buf->dtb_xamot;
12029 	dtrace_icookie_t cookie;
12030 	hrtime_t now;
12031 
12032 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12033 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12034 
12035 	cookie = dtrace_interrupt_disable();
12036 	now = dtrace_gethrtime();
12037 	buf->dtb_tomax = xamot;
12038 	buf->dtb_xamot = tomax;
12039 	buf->dtb_xamot_drops = buf->dtb_drops;
12040 	buf->dtb_xamot_offset = buf->dtb_offset;
12041 	buf->dtb_xamot_errors = buf->dtb_errors;
12042 	buf->dtb_xamot_flags = buf->dtb_flags;
12043 	buf->dtb_offset = 0;
12044 	buf->dtb_drops = 0;
12045 	buf->dtb_errors = 0;
12046 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12047 	buf->dtb_interval = now - buf->dtb_switched;
12048 	buf->dtb_switched = now;
12049 	dtrace_interrupt_enable(cookie);
12050 }
12051 
12052 /*
12053  * Note:  called from cross call context.  This function activates a buffer
12054  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
12055  * is guaranteed by the disabling of interrupts.
12056  */
12057 static void
12058 dtrace_buffer_activate(dtrace_state_t *state)
12059 {
12060 	dtrace_buffer_t *buf;
12061 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
12062 
12063 	buf = &state->dts_buffer[curcpu];
12064 
12065 	if (buf->dtb_tomax != NULL) {
12066 		/*
12067 		 * We might like to assert that the buffer is marked inactive,
12068 		 * but this isn't necessarily true:  the buffer for the CPU
12069 		 * that processes the BEGIN probe has its buffer activated
12070 		 * manually.  In this case, we take the (harmless) action
12071 		 * re-clearing the bit INACTIVE bit.
12072 		 */
12073 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12074 	}
12075 
12076 	dtrace_interrupt_enable(cookie);
12077 }
12078 
12079 #ifdef __FreeBSD__
12080 /*
12081  * Activate the specified per-CPU buffer.  This is used instead of
12082  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12083  * activating anonymous state.
12084  */
12085 static void
12086 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12087 {
12088 
12089 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12090 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12091 }
12092 #endif
12093 
12094 static int
12095 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12096     processorid_t cpu, int *factor)
12097 {
12098 #ifdef illumos
12099 	cpu_t *cp;
12100 #endif
12101 	dtrace_buffer_t *buf;
12102 	int allocated = 0, desired = 0;
12103 
12104 #ifdef illumos
12105 	ASSERT(MUTEX_HELD(&cpu_lock));
12106 	ASSERT(MUTEX_HELD(&dtrace_lock));
12107 
12108 	*factor = 1;
12109 
12110 	if (size > dtrace_nonroot_maxsize &&
12111 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12112 		return (EFBIG);
12113 
12114 	cp = cpu_list;
12115 
12116 	do {
12117 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12118 			continue;
12119 
12120 		buf = &bufs[cp->cpu_id];
12121 
12122 		/*
12123 		 * If there is already a buffer allocated for this CPU, it
12124 		 * is only possible that this is a DR event.  In this case,
12125 		 */
12126 		if (buf->dtb_tomax != NULL) {
12127 			ASSERT(buf->dtb_size == size);
12128 			continue;
12129 		}
12130 
12131 		ASSERT(buf->dtb_xamot == NULL);
12132 
12133 		if ((buf->dtb_tomax = kmem_zalloc(size,
12134 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12135 			goto err;
12136 
12137 		buf->dtb_size = size;
12138 		buf->dtb_flags = flags;
12139 		buf->dtb_offset = 0;
12140 		buf->dtb_drops = 0;
12141 
12142 		if (flags & DTRACEBUF_NOSWITCH)
12143 			continue;
12144 
12145 		if ((buf->dtb_xamot = kmem_zalloc(size,
12146 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12147 			goto err;
12148 	} while ((cp = cp->cpu_next) != cpu_list);
12149 
12150 	return (0);
12151 
12152 err:
12153 	cp = cpu_list;
12154 
12155 	do {
12156 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12157 			continue;
12158 
12159 		buf = &bufs[cp->cpu_id];
12160 		desired += 2;
12161 
12162 		if (buf->dtb_xamot != NULL) {
12163 			ASSERT(buf->dtb_tomax != NULL);
12164 			ASSERT(buf->dtb_size == size);
12165 			kmem_free(buf->dtb_xamot, size);
12166 			allocated++;
12167 		}
12168 
12169 		if (buf->dtb_tomax != NULL) {
12170 			ASSERT(buf->dtb_size == size);
12171 			kmem_free(buf->dtb_tomax, size);
12172 			allocated++;
12173 		}
12174 
12175 		buf->dtb_tomax = NULL;
12176 		buf->dtb_xamot = NULL;
12177 		buf->dtb_size = 0;
12178 	} while ((cp = cp->cpu_next) != cpu_list);
12179 #else
12180 	int i;
12181 
12182 	*factor = 1;
12183 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12184     defined(__mips__) || defined(__powerpc__) || defined(__riscv__)
12185 	/*
12186 	 * FreeBSD isn't good at limiting the amount of memory we
12187 	 * ask to malloc, so let's place a limit here before trying
12188 	 * to do something that might well end in tears at bedtime.
12189 	 */
12190 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12191 		return (ENOMEM);
12192 #endif
12193 
12194 	ASSERT(MUTEX_HELD(&dtrace_lock));
12195 	CPU_FOREACH(i) {
12196 		if (cpu != DTRACE_CPUALL && cpu != i)
12197 			continue;
12198 
12199 		buf = &bufs[i];
12200 
12201 		/*
12202 		 * If there is already a buffer allocated for this CPU, it
12203 		 * is only possible that this is a DR event.  In this case,
12204 		 * the buffer size must match our specified size.
12205 		 */
12206 		if (buf->dtb_tomax != NULL) {
12207 			ASSERT(buf->dtb_size == size);
12208 			continue;
12209 		}
12210 
12211 		ASSERT(buf->dtb_xamot == NULL);
12212 
12213 		if ((buf->dtb_tomax = kmem_zalloc(size,
12214 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12215 			goto err;
12216 
12217 		buf->dtb_size = size;
12218 		buf->dtb_flags = flags;
12219 		buf->dtb_offset = 0;
12220 		buf->dtb_drops = 0;
12221 
12222 		if (flags & DTRACEBUF_NOSWITCH)
12223 			continue;
12224 
12225 		if ((buf->dtb_xamot = kmem_zalloc(size,
12226 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12227 			goto err;
12228 	}
12229 
12230 	return (0);
12231 
12232 err:
12233 	/*
12234 	 * Error allocating memory, so free the buffers that were
12235 	 * allocated before the failed allocation.
12236 	 */
12237 	CPU_FOREACH(i) {
12238 		if (cpu != DTRACE_CPUALL && cpu != i)
12239 			continue;
12240 
12241 		buf = &bufs[i];
12242 		desired += 2;
12243 
12244 		if (buf->dtb_xamot != NULL) {
12245 			ASSERT(buf->dtb_tomax != NULL);
12246 			ASSERT(buf->dtb_size == size);
12247 			kmem_free(buf->dtb_xamot, size);
12248 			allocated++;
12249 		}
12250 
12251 		if (buf->dtb_tomax != NULL) {
12252 			ASSERT(buf->dtb_size == size);
12253 			kmem_free(buf->dtb_tomax, size);
12254 			allocated++;
12255 		}
12256 
12257 		buf->dtb_tomax = NULL;
12258 		buf->dtb_xamot = NULL;
12259 		buf->dtb_size = 0;
12260 
12261 	}
12262 #endif
12263 	*factor = desired / (allocated > 0 ? allocated : 1);
12264 
12265 	return (ENOMEM);
12266 }
12267 
12268 /*
12269  * Note:  called from probe context.  This function just increments the drop
12270  * count on a buffer.  It has been made a function to allow for the
12271  * possibility of understanding the source of mysterious drop counts.  (A
12272  * problem for which one may be particularly disappointed that DTrace cannot
12273  * be used to understand DTrace.)
12274  */
12275 static void
12276 dtrace_buffer_drop(dtrace_buffer_t *buf)
12277 {
12278 	buf->dtb_drops++;
12279 }
12280 
12281 /*
12282  * Note:  called from probe context.  This function is called to reserve space
12283  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12284  * mstate.  Returns the new offset in the buffer, or a negative value if an
12285  * error has occurred.
12286  */
12287 static intptr_t
12288 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12289     dtrace_state_t *state, dtrace_mstate_t *mstate)
12290 {
12291 	intptr_t offs = buf->dtb_offset, soffs;
12292 	intptr_t woffs;
12293 	caddr_t tomax;
12294 	size_t total;
12295 
12296 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12297 		return (-1);
12298 
12299 	if ((tomax = buf->dtb_tomax) == NULL) {
12300 		dtrace_buffer_drop(buf);
12301 		return (-1);
12302 	}
12303 
12304 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12305 		while (offs & (align - 1)) {
12306 			/*
12307 			 * Assert that our alignment is off by a number which
12308 			 * is itself sizeof (uint32_t) aligned.
12309 			 */
12310 			ASSERT(!((align - (offs & (align - 1))) &
12311 			    (sizeof (uint32_t) - 1)));
12312 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12313 			offs += sizeof (uint32_t);
12314 		}
12315 
12316 		if ((soffs = offs + needed) > buf->dtb_size) {
12317 			dtrace_buffer_drop(buf);
12318 			return (-1);
12319 		}
12320 
12321 		if (mstate == NULL)
12322 			return (offs);
12323 
12324 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12325 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12326 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12327 
12328 		return (offs);
12329 	}
12330 
12331 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12332 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12333 		    (buf->dtb_flags & DTRACEBUF_FULL))
12334 			return (-1);
12335 		goto out;
12336 	}
12337 
12338 	total = needed + (offs & (align - 1));
12339 
12340 	/*
12341 	 * For a ring buffer, life is quite a bit more complicated.  Before
12342 	 * we can store any padding, we need to adjust our wrapping offset.
12343 	 * (If we've never before wrapped or we're not about to, no adjustment
12344 	 * is required.)
12345 	 */
12346 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12347 	    offs + total > buf->dtb_size) {
12348 		woffs = buf->dtb_xamot_offset;
12349 
12350 		if (offs + total > buf->dtb_size) {
12351 			/*
12352 			 * We can't fit in the end of the buffer.  First, a
12353 			 * sanity check that we can fit in the buffer at all.
12354 			 */
12355 			if (total > buf->dtb_size) {
12356 				dtrace_buffer_drop(buf);
12357 				return (-1);
12358 			}
12359 
12360 			/*
12361 			 * We're going to be storing at the top of the buffer,
12362 			 * so now we need to deal with the wrapped offset.  We
12363 			 * only reset our wrapped offset to 0 if it is
12364 			 * currently greater than the current offset.  If it
12365 			 * is less than the current offset, it is because a
12366 			 * previous allocation induced a wrap -- but the
12367 			 * allocation didn't subsequently take the space due
12368 			 * to an error or false predicate evaluation.  In this
12369 			 * case, we'll just leave the wrapped offset alone: if
12370 			 * the wrapped offset hasn't been advanced far enough
12371 			 * for this allocation, it will be adjusted in the
12372 			 * lower loop.
12373 			 */
12374 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12375 				if (woffs >= offs)
12376 					woffs = 0;
12377 			} else {
12378 				woffs = 0;
12379 			}
12380 
12381 			/*
12382 			 * Now we know that we're going to be storing to the
12383 			 * top of the buffer and that there is room for us
12384 			 * there.  We need to clear the buffer from the current
12385 			 * offset to the end (there may be old gunk there).
12386 			 */
12387 			while (offs < buf->dtb_size)
12388 				tomax[offs++] = 0;
12389 
12390 			/*
12391 			 * We need to set our offset to zero.  And because we
12392 			 * are wrapping, we need to set the bit indicating as
12393 			 * much.  We can also adjust our needed space back
12394 			 * down to the space required by the ECB -- we know
12395 			 * that the top of the buffer is aligned.
12396 			 */
12397 			offs = 0;
12398 			total = needed;
12399 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12400 		} else {
12401 			/*
12402 			 * There is room for us in the buffer, so we simply
12403 			 * need to check the wrapped offset.
12404 			 */
12405 			if (woffs < offs) {
12406 				/*
12407 				 * The wrapped offset is less than the offset.
12408 				 * This can happen if we allocated buffer space
12409 				 * that induced a wrap, but then we didn't
12410 				 * subsequently take the space due to an error
12411 				 * or false predicate evaluation.  This is
12412 				 * okay; we know that _this_ allocation isn't
12413 				 * going to induce a wrap.  We still can't
12414 				 * reset the wrapped offset to be zero,
12415 				 * however: the space may have been trashed in
12416 				 * the previous failed probe attempt.  But at
12417 				 * least the wrapped offset doesn't need to
12418 				 * be adjusted at all...
12419 				 */
12420 				goto out;
12421 			}
12422 		}
12423 
12424 		while (offs + total > woffs) {
12425 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12426 			size_t size;
12427 
12428 			if (epid == DTRACE_EPIDNONE) {
12429 				size = sizeof (uint32_t);
12430 			} else {
12431 				ASSERT3U(epid, <=, state->dts_necbs);
12432 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12433 
12434 				size = state->dts_ecbs[epid - 1]->dte_size;
12435 			}
12436 
12437 			ASSERT(woffs + size <= buf->dtb_size);
12438 			ASSERT(size != 0);
12439 
12440 			if (woffs + size == buf->dtb_size) {
12441 				/*
12442 				 * We've reached the end of the buffer; we want
12443 				 * to set the wrapped offset to 0 and break
12444 				 * out.  However, if the offs is 0, then we're
12445 				 * in a strange edge-condition:  the amount of
12446 				 * space that we want to reserve plus the size
12447 				 * of the record that we're overwriting is
12448 				 * greater than the size of the buffer.  This
12449 				 * is problematic because if we reserve the
12450 				 * space but subsequently don't consume it (due
12451 				 * to a failed predicate or error) the wrapped
12452 				 * offset will be 0 -- yet the EPID at offset 0
12453 				 * will not be committed.  This situation is
12454 				 * relatively easy to deal with:  if we're in
12455 				 * this case, the buffer is indistinguishable
12456 				 * from one that hasn't wrapped; we need only
12457 				 * finish the job by clearing the wrapped bit,
12458 				 * explicitly setting the offset to be 0, and
12459 				 * zero'ing out the old data in the buffer.
12460 				 */
12461 				if (offs == 0) {
12462 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12463 					buf->dtb_offset = 0;
12464 					woffs = total;
12465 
12466 					while (woffs < buf->dtb_size)
12467 						tomax[woffs++] = 0;
12468 				}
12469 
12470 				woffs = 0;
12471 				break;
12472 			}
12473 
12474 			woffs += size;
12475 		}
12476 
12477 		/*
12478 		 * We have a wrapped offset.  It may be that the wrapped offset
12479 		 * has become zero -- that's okay.
12480 		 */
12481 		buf->dtb_xamot_offset = woffs;
12482 	}
12483 
12484 out:
12485 	/*
12486 	 * Now we can plow the buffer with any necessary padding.
12487 	 */
12488 	while (offs & (align - 1)) {
12489 		/*
12490 		 * Assert that our alignment is off by a number which
12491 		 * is itself sizeof (uint32_t) aligned.
12492 		 */
12493 		ASSERT(!((align - (offs & (align - 1))) &
12494 		    (sizeof (uint32_t) - 1)));
12495 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12496 		offs += sizeof (uint32_t);
12497 	}
12498 
12499 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12500 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12501 			buf->dtb_flags |= DTRACEBUF_FULL;
12502 			return (-1);
12503 		}
12504 	}
12505 
12506 	if (mstate == NULL)
12507 		return (offs);
12508 
12509 	/*
12510 	 * For ring buffers and fill buffers, the scratch space is always
12511 	 * the inactive buffer.
12512 	 */
12513 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12514 	mstate->dtms_scratch_size = buf->dtb_size;
12515 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12516 
12517 	return (offs);
12518 }
12519 
12520 static void
12521 dtrace_buffer_polish(dtrace_buffer_t *buf)
12522 {
12523 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12524 	ASSERT(MUTEX_HELD(&dtrace_lock));
12525 
12526 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12527 		return;
12528 
12529 	/*
12530 	 * We need to polish the ring buffer.  There are three cases:
12531 	 *
12532 	 * - The first (and presumably most common) is that there is no gap
12533 	 *   between the buffer offset and the wrapped offset.  In this case,
12534 	 *   there is nothing in the buffer that isn't valid data; we can
12535 	 *   mark the buffer as polished and return.
12536 	 *
12537 	 * - The second (less common than the first but still more common
12538 	 *   than the third) is that there is a gap between the buffer offset
12539 	 *   and the wrapped offset, and the wrapped offset is larger than the
12540 	 *   buffer offset.  This can happen because of an alignment issue, or
12541 	 *   can happen because of a call to dtrace_buffer_reserve() that
12542 	 *   didn't subsequently consume the buffer space.  In this case,
12543 	 *   we need to zero the data from the buffer offset to the wrapped
12544 	 *   offset.
12545 	 *
12546 	 * - The third (and least common) is that there is a gap between the
12547 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12548 	 *   _less_ than the buffer offset.  This can only happen because a
12549 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12550 	 *   was not subsequently consumed.  In this case, we need to zero the
12551 	 *   space from the offset to the end of the buffer _and_ from the
12552 	 *   top of the buffer to the wrapped offset.
12553 	 */
12554 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12555 		bzero(buf->dtb_tomax + buf->dtb_offset,
12556 		    buf->dtb_xamot_offset - buf->dtb_offset);
12557 	}
12558 
12559 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12560 		bzero(buf->dtb_tomax + buf->dtb_offset,
12561 		    buf->dtb_size - buf->dtb_offset);
12562 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12563 	}
12564 }
12565 
12566 /*
12567  * This routine determines if data generated at the specified time has likely
12568  * been entirely consumed at user-level.  This routine is called to determine
12569  * if an ECB on a defunct probe (but for an active enabling) can be safely
12570  * disabled and destroyed.
12571  */
12572 static int
12573 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12574 {
12575 	int i;
12576 
12577 	for (i = 0; i < NCPU; i++) {
12578 		dtrace_buffer_t *buf = &bufs[i];
12579 
12580 		if (buf->dtb_size == 0)
12581 			continue;
12582 
12583 		if (buf->dtb_flags & DTRACEBUF_RING)
12584 			return (0);
12585 
12586 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12587 			return (0);
12588 
12589 		if (buf->dtb_switched - buf->dtb_interval < when)
12590 			return (0);
12591 	}
12592 
12593 	return (1);
12594 }
12595 
12596 static void
12597 dtrace_buffer_free(dtrace_buffer_t *bufs)
12598 {
12599 	int i;
12600 
12601 	for (i = 0; i < NCPU; i++) {
12602 		dtrace_buffer_t *buf = &bufs[i];
12603 
12604 		if (buf->dtb_tomax == NULL) {
12605 			ASSERT(buf->dtb_xamot == NULL);
12606 			ASSERT(buf->dtb_size == 0);
12607 			continue;
12608 		}
12609 
12610 		if (buf->dtb_xamot != NULL) {
12611 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12612 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12613 		}
12614 
12615 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12616 		buf->dtb_size = 0;
12617 		buf->dtb_tomax = NULL;
12618 		buf->dtb_xamot = NULL;
12619 	}
12620 }
12621 
12622 /*
12623  * DTrace Enabling Functions
12624  */
12625 static dtrace_enabling_t *
12626 dtrace_enabling_create(dtrace_vstate_t *vstate)
12627 {
12628 	dtrace_enabling_t *enab;
12629 
12630 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12631 	enab->dten_vstate = vstate;
12632 
12633 	return (enab);
12634 }
12635 
12636 static void
12637 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12638 {
12639 	dtrace_ecbdesc_t **ndesc;
12640 	size_t osize, nsize;
12641 
12642 	/*
12643 	 * We can't add to enablings after we've enabled them, or after we've
12644 	 * retained them.
12645 	 */
12646 	ASSERT(enab->dten_probegen == 0);
12647 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12648 
12649 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12650 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12651 		return;
12652 	}
12653 
12654 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12655 
12656 	if (enab->dten_maxdesc == 0) {
12657 		enab->dten_maxdesc = 1;
12658 	} else {
12659 		enab->dten_maxdesc <<= 1;
12660 	}
12661 
12662 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12663 
12664 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12665 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12666 	bcopy(enab->dten_desc, ndesc, osize);
12667 	if (enab->dten_desc != NULL)
12668 		kmem_free(enab->dten_desc, osize);
12669 
12670 	enab->dten_desc = ndesc;
12671 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12672 }
12673 
12674 static void
12675 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12676     dtrace_probedesc_t *pd)
12677 {
12678 	dtrace_ecbdesc_t *new;
12679 	dtrace_predicate_t *pred;
12680 	dtrace_actdesc_t *act;
12681 
12682 	/*
12683 	 * We're going to create a new ECB description that matches the
12684 	 * specified ECB in every way, but has the specified probe description.
12685 	 */
12686 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12687 
12688 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12689 		dtrace_predicate_hold(pred);
12690 
12691 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12692 		dtrace_actdesc_hold(act);
12693 
12694 	new->dted_action = ecb->dted_action;
12695 	new->dted_pred = ecb->dted_pred;
12696 	new->dted_probe = *pd;
12697 	new->dted_uarg = ecb->dted_uarg;
12698 
12699 	dtrace_enabling_add(enab, new);
12700 }
12701 
12702 static void
12703 dtrace_enabling_dump(dtrace_enabling_t *enab)
12704 {
12705 	int i;
12706 
12707 	for (i = 0; i < enab->dten_ndesc; i++) {
12708 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12709 
12710 #ifdef __FreeBSD__
12711 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12712 		    desc->dtpd_provider, desc->dtpd_mod,
12713 		    desc->dtpd_func, desc->dtpd_name);
12714 #else
12715 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12716 		    desc->dtpd_provider, desc->dtpd_mod,
12717 		    desc->dtpd_func, desc->dtpd_name);
12718 #endif
12719 	}
12720 }
12721 
12722 static void
12723 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12724 {
12725 	int i;
12726 	dtrace_ecbdesc_t *ep;
12727 	dtrace_vstate_t *vstate = enab->dten_vstate;
12728 
12729 	ASSERT(MUTEX_HELD(&dtrace_lock));
12730 
12731 	for (i = 0; i < enab->dten_ndesc; i++) {
12732 		dtrace_actdesc_t *act, *next;
12733 		dtrace_predicate_t *pred;
12734 
12735 		ep = enab->dten_desc[i];
12736 
12737 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12738 			dtrace_predicate_release(pred, vstate);
12739 
12740 		for (act = ep->dted_action; act != NULL; act = next) {
12741 			next = act->dtad_next;
12742 			dtrace_actdesc_release(act, vstate);
12743 		}
12744 
12745 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12746 	}
12747 
12748 	if (enab->dten_desc != NULL)
12749 		kmem_free(enab->dten_desc,
12750 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12751 
12752 	/*
12753 	 * If this was a retained enabling, decrement the dts_nretained count
12754 	 * and take it off of the dtrace_retained list.
12755 	 */
12756 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12757 	    dtrace_retained == enab) {
12758 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12759 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12760 		enab->dten_vstate->dtvs_state->dts_nretained--;
12761 		dtrace_retained_gen++;
12762 	}
12763 
12764 	if (enab->dten_prev == NULL) {
12765 		if (dtrace_retained == enab) {
12766 			dtrace_retained = enab->dten_next;
12767 
12768 			if (dtrace_retained != NULL)
12769 				dtrace_retained->dten_prev = NULL;
12770 		}
12771 	} else {
12772 		ASSERT(enab != dtrace_retained);
12773 		ASSERT(dtrace_retained != NULL);
12774 		enab->dten_prev->dten_next = enab->dten_next;
12775 	}
12776 
12777 	if (enab->dten_next != NULL) {
12778 		ASSERT(dtrace_retained != NULL);
12779 		enab->dten_next->dten_prev = enab->dten_prev;
12780 	}
12781 
12782 	kmem_free(enab, sizeof (dtrace_enabling_t));
12783 }
12784 
12785 static int
12786 dtrace_enabling_retain(dtrace_enabling_t *enab)
12787 {
12788 	dtrace_state_t *state;
12789 
12790 	ASSERT(MUTEX_HELD(&dtrace_lock));
12791 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12792 	ASSERT(enab->dten_vstate != NULL);
12793 
12794 	state = enab->dten_vstate->dtvs_state;
12795 	ASSERT(state != NULL);
12796 
12797 	/*
12798 	 * We only allow each state to retain dtrace_retain_max enablings.
12799 	 */
12800 	if (state->dts_nretained >= dtrace_retain_max)
12801 		return (ENOSPC);
12802 
12803 	state->dts_nretained++;
12804 	dtrace_retained_gen++;
12805 
12806 	if (dtrace_retained == NULL) {
12807 		dtrace_retained = enab;
12808 		return (0);
12809 	}
12810 
12811 	enab->dten_next = dtrace_retained;
12812 	dtrace_retained->dten_prev = enab;
12813 	dtrace_retained = enab;
12814 
12815 	return (0);
12816 }
12817 
12818 static int
12819 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12820     dtrace_probedesc_t *create)
12821 {
12822 	dtrace_enabling_t *new, *enab;
12823 	int found = 0, err = ENOENT;
12824 
12825 	ASSERT(MUTEX_HELD(&dtrace_lock));
12826 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12827 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12828 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12829 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12830 
12831 	new = dtrace_enabling_create(&state->dts_vstate);
12832 
12833 	/*
12834 	 * Iterate over all retained enablings, looking for enablings that
12835 	 * match the specified state.
12836 	 */
12837 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12838 		int i;
12839 
12840 		/*
12841 		 * dtvs_state can only be NULL for helper enablings -- and
12842 		 * helper enablings can't be retained.
12843 		 */
12844 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12845 
12846 		if (enab->dten_vstate->dtvs_state != state)
12847 			continue;
12848 
12849 		/*
12850 		 * Now iterate over each probe description; we're looking for
12851 		 * an exact match to the specified probe description.
12852 		 */
12853 		for (i = 0; i < enab->dten_ndesc; i++) {
12854 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12855 			dtrace_probedesc_t *pd = &ep->dted_probe;
12856 
12857 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12858 				continue;
12859 
12860 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12861 				continue;
12862 
12863 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12864 				continue;
12865 
12866 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12867 				continue;
12868 
12869 			/*
12870 			 * We have a winning probe!  Add it to our growing
12871 			 * enabling.
12872 			 */
12873 			found = 1;
12874 			dtrace_enabling_addlike(new, ep, create);
12875 		}
12876 	}
12877 
12878 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12879 		dtrace_enabling_destroy(new);
12880 		return (err);
12881 	}
12882 
12883 	return (0);
12884 }
12885 
12886 static void
12887 dtrace_enabling_retract(dtrace_state_t *state)
12888 {
12889 	dtrace_enabling_t *enab, *next;
12890 
12891 	ASSERT(MUTEX_HELD(&dtrace_lock));
12892 
12893 	/*
12894 	 * Iterate over all retained enablings, destroy the enablings retained
12895 	 * for the specified state.
12896 	 */
12897 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12898 		next = enab->dten_next;
12899 
12900 		/*
12901 		 * dtvs_state can only be NULL for helper enablings -- and
12902 		 * helper enablings can't be retained.
12903 		 */
12904 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12905 
12906 		if (enab->dten_vstate->dtvs_state == state) {
12907 			ASSERT(state->dts_nretained > 0);
12908 			dtrace_enabling_destroy(enab);
12909 		}
12910 	}
12911 
12912 	ASSERT(state->dts_nretained == 0);
12913 }
12914 
12915 static int
12916 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12917 {
12918 	int i = 0;
12919 	int matched = 0;
12920 
12921 	ASSERT(MUTEX_HELD(&cpu_lock));
12922 	ASSERT(MUTEX_HELD(&dtrace_lock));
12923 
12924 	for (i = 0; i < enab->dten_ndesc; i++) {
12925 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12926 
12927 		enab->dten_current = ep;
12928 		enab->dten_error = 0;
12929 
12930 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12931 
12932 		if (enab->dten_error != 0) {
12933 			/*
12934 			 * If we get an error half-way through enabling the
12935 			 * probes, we kick out -- perhaps with some number of
12936 			 * them enabled.  Leaving enabled probes enabled may
12937 			 * be slightly confusing for user-level, but we expect
12938 			 * that no one will attempt to actually drive on in
12939 			 * the face of such errors.  If this is an anonymous
12940 			 * enabling (indicated with a NULL nmatched pointer),
12941 			 * we cmn_err() a message.  We aren't expecting to
12942 			 * get such an error -- such as it can exist at all,
12943 			 * it would be a result of corrupted DOF in the driver
12944 			 * properties.
12945 			 */
12946 			if (nmatched == NULL) {
12947 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12948 				    "error on %p: %d", (void *)ep,
12949 				    enab->dten_error);
12950 			}
12951 
12952 			return (enab->dten_error);
12953 		}
12954 	}
12955 
12956 	enab->dten_probegen = dtrace_probegen;
12957 	if (nmatched != NULL)
12958 		*nmatched = matched;
12959 
12960 	return (0);
12961 }
12962 
12963 static void
12964 dtrace_enabling_matchall(void)
12965 {
12966 	dtrace_enabling_t *enab;
12967 
12968 	mutex_enter(&cpu_lock);
12969 	mutex_enter(&dtrace_lock);
12970 
12971 	/*
12972 	 * Iterate over all retained enablings to see if any probes match
12973 	 * against them.  We only perform this operation on enablings for which
12974 	 * we have sufficient permissions by virtue of being in the global zone
12975 	 * or in the same zone as the DTrace client.  Because we can be called
12976 	 * after dtrace_detach() has been called, we cannot assert that there
12977 	 * are retained enablings.  We can safely load from dtrace_retained,
12978 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12979 	 * block pending our completion.
12980 	 */
12981 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12982 #ifdef illumos
12983 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12984 
12985 		if (INGLOBALZONE(curproc) ||
12986 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12987 #endif
12988 			(void) dtrace_enabling_match(enab, NULL);
12989 	}
12990 
12991 	mutex_exit(&dtrace_lock);
12992 	mutex_exit(&cpu_lock);
12993 }
12994 
12995 /*
12996  * If an enabling is to be enabled without having matched probes (that is, if
12997  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12998  * enabling must be _primed_ by creating an ECB for every ECB description.
12999  * This must be done to assure that we know the number of speculations, the
13000  * number of aggregations, the minimum buffer size needed, etc. before we
13001  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
13002  * enabling any probes, we create ECBs for every ECB decription, but with a
13003  * NULL probe -- which is exactly what this function does.
13004  */
13005 static void
13006 dtrace_enabling_prime(dtrace_state_t *state)
13007 {
13008 	dtrace_enabling_t *enab;
13009 	int i;
13010 
13011 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13012 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
13013 
13014 		if (enab->dten_vstate->dtvs_state != state)
13015 			continue;
13016 
13017 		/*
13018 		 * We don't want to prime an enabling more than once, lest
13019 		 * we allow a malicious user to induce resource exhaustion.
13020 		 * (The ECBs that result from priming an enabling aren't
13021 		 * leaked -- but they also aren't deallocated until the
13022 		 * consumer state is destroyed.)
13023 		 */
13024 		if (enab->dten_primed)
13025 			continue;
13026 
13027 		for (i = 0; i < enab->dten_ndesc; i++) {
13028 			enab->dten_current = enab->dten_desc[i];
13029 			(void) dtrace_probe_enable(NULL, enab);
13030 		}
13031 
13032 		enab->dten_primed = 1;
13033 	}
13034 }
13035 
13036 /*
13037  * Called to indicate that probes should be provided due to retained
13038  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
13039  * must take an initial lap through the enabling calling the dtps_provide()
13040  * entry point explicitly to allow for autocreated probes.
13041  */
13042 static void
13043 dtrace_enabling_provide(dtrace_provider_t *prv)
13044 {
13045 	int i, all = 0;
13046 	dtrace_probedesc_t desc;
13047 	dtrace_genid_t gen;
13048 
13049 	ASSERT(MUTEX_HELD(&dtrace_lock));
13050 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13051 
13052 	if (prv == NULL) {
13053 		all = 1;
13054 		prv = dtrace_provider;
13055 	}
13056 
13057 	do {
13058 		dtrace_enabling_t *enab;
13059 		void *parg = prv->dtpv_arg;
13060 
13061 retry:
13062 		gen = dtrace_retained_gen;
13063 		for (enab = dtrace_retained; enab != NULL;
13064 		    enab = enab->dten_next) {
13065 			for (i = 0; i < enab->dten_ndesc; i++) {
13066 				desc = enab->dten_desc[i]->dted_probe;
13067 				mutex_exit(&dtrace_lock);
13068 				prv->dtpv_pops.dtps_provide(parg, &desc);
13069 				mutex_enter(&dtrace_lock);
13070 				/*
13071 				 * Process the retained enablings again if
13072 				 * they have changed while we weren't holding
13073 				 * dtrace_lock.
13074 				 */
13075 				if (gen != dtrace_retained_gen)
13076 					goto retry;
13077 			}
13078 		}
13079 	} while (all && (prv = prv->dtpv_next) != NULL);
13080 
13081 	mutex_exit(&dtrace_lock);
13082 	dtrace_probe_provide(NULL, all ? NULL : prv);
13083 	mutex_enter(&dtrace_lock);
13084 }
13085 
13086 /*
13087  * Called to reap ECBs that are attached to probes from defunct providers.
13088  */
13089 static void
13090 dtrace_enabling_reap(void)
13091 {
13092 	dtrace_provider_t *prov;
13093 	dtrace_probe_t *probe;
13094 	dtrace_ecb_t *ecb;
13095 	hrtime_t when;
13096 	int i;
13097 
13098 	mutex_enter(&cpu_lock);
13099 	mutex_enter(&dtrace_lock);
13100 
13101 	for (i = 0; i < dtrace_nprobes; i++) {
13102 		if ((probe = dtrace_probes[i]) == NULL)
13103 			continue;
13104 
13105 		if (probe->dtpr_ecb == NULL)
13106 			continue;
13107 
13108 		prov = probe->dtpr_provider;
13109 
13110 		if ((when = prov->dtpv_defunct) == 0)
13111 			continue;
13112 
13113 		/*
13114 		 * We have ECBs on a defunct provider:  we want to reap these
13115 		 * ECBs to allow the provider to unregister.  The destruction
13116 		 * of these ECBs must be done carefully:  if we destroy the ECB
13117 		 * and the consumer later wishes to consume an EPID that
13118 		 * corresponds to the destroyed ECB (and if the EPID metadata
13119 		 * has not been previously consumed), the consumer will abort
13120 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13121 		 * eliminate) the possibility of this, we will only destroy an
13122 		 * ECB for a defunct provider if, for the state that
13123 		 * corresponds to the ECB:
13124 		 *
13125 		 *  (a)	There is no speculative tracing (which can effectively
13126 		 *	cache an EPID for an arbitrary amount of time).
13127 		 *
13128 		 *  (b)	The principal buffers have been switched twice since the
13129 		 *	provider became defunct.
13130 		 *
13131 		 *  (c)	The aggregation buffers are of zero size or have been
13132 		 *	switched twice since the provider became defunct.
13133 		 *
13134 		 * We use dts_speculates to determine (a) and call a function
13135 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13136 		 * that as soon as we've been unable to destroy one of the ECBs
13137 		 * associated with the probe, we quit trying -- reaping is only
13138 		 * fruitful in as much as we can destroy all ECBs associated
13139 		 * with the defunct provider's probes.
13140 		 */
13141 		while ((ecb = probe->dtpr_ecb) != NULL) {
13142 			dtrace_state_t *state = ecb->dte_state;
13143 			dtrace_buffer_t *buf = state->dts_buffer;
13144 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13145 
13146 			if (state->dts_speculates)
13147 				break;
13148 
13149 			if (!dtrace_buffer_consumed(buf, when))
13150 				break;
13151 
13152 			if (!dtrace_buffer_consumed(aggbuf, when))
13153 				break;
13154 
13155 			dtrace_ecb_disable(ecb);
13156 			ASSERT(probe->dtpr_ecb != ecb);
13157 			dtrace_ecb_destroy(ecb);
13158 		}
13159 	}
13160 
13161 	mutex_exit(&dtrace_lock);
13162 	mutex_exit(&cpu_lock);
13163 }
13164 
13165 /*
13166  * DTrace DOF Functions
13167  */
13168 /*ARGSUSED*/
13169 static void
13170 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13171 {
13172 	if (dtrace_err_verbose)
13173 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13174 
13175 #ifdef DTRACE_ERRDEBUG
13176 	dtrace_errdebug(str);
13177 #endif
13178 }
13179 
13180 /*
13181  * Create DOF out of a currently enabled state.  Right now, we only create
13182  * DOF containing the run-time options -- but this could be expanded to create
13183  * complete DOF representing the enabled state.
13184  */
13185 static dof_hdr_t *
13186 dtrace_dof_create(dtrace_state_t *state)
13187 {
13188 	dof_hdr_t *dof;
13189 	dof_sec_t *sec;
13190 	dof_optdesc_t *opt;
13191 	int i, len = sizeof (dof_hdr_t) +
13192 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13193 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13194 
13195 	ASSERT(MUTEX_HELD(&dtrace_lock));
13196 
13197 	dof = kmem_zalloc(len, KM_SLEEP);
13198 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13199 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13200 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13201 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13202 
13203 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13204 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13205 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13206 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13207 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13208 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13209 
13210 	dof->dofh_flags = 0;
13211 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13212 	dof->dofh_secsize = sizeof (dof_sec_t);
13213 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13214 	dof->dofh_secoff = sizeof (dof_hdr_t);
13215 	dof->dofh_loadsz = len;
13216 	dof->dofh_filesz = len;
13217 	dof->dofh_pad = 0;
13218 
13219 	/*
13220 	 * Fill in the option section header...
13221 	 */
13222 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13223 	sec->dofs_type = DOF_SECT_OPTDESC;
13224 	sec->dofs_align = sizeof (uint64_t);
13225 	sec->dofs_flags = DOF_SECF_LOAD;
13226 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13227 
13228 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13229 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13230 
13231 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13232 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13233 
13234 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13235 		opt[i].dofo_option = i;
13236 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13237 		opt[i].dofo_value = state->dts_options[i];
13238 	}
13239 
13240 	return (dof);
13241 }
13242 
13243 static dof_hdr_t *
13244 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13245 {
13246 	dof_hdr_t hdr, *dof;
13247 
13248 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13249 
13250 	/*
13251 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13252 	 */
13253 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13254 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13255 		*errp = EFAULT;
13256 		return (NULL);
13257 	}
13258 
13259 	/*
13260 	 * Now we'll allocate the entire DOF and copy it in -- provided
13261 	 * that the length isn't outrageous.
13262 	 */
13263 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13264 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13265 		*errp = E2BIG;
13266 		return (NULL);
13267 	}
13268 
13269 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13270 		dtrace_dof_error(&hdr, "invalid load size");
13271 		*errp = EINVAL;
13272 		return (NULL);
13273 	}
13274 
13275 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13276 
13277 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13278 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13279 		kmem_free(dof, hdr.dofh_loadsz);
13280 		*errp = EFAULT;
13281 		return (NULL);
13282 	}
13283 
13284 	return (dof);
13285 }
13286 
13287 #ifdef __FreeBSD__
13288 static dof_hdr_t *
13289 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13290 {
13291 	dof_hdr_t hdr, *dof;
13292 	struct thread *td;
13293 	size_t loadsz;
13294 
13295 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13296 
13297 	td = curthread;
13298 
13299 	/*
13300 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13301 	 */
13302 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13303 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13304 		*errp = EFAULT;
13305 		return (NULL);
13306 	}
13307 
13308 	/*
13309 	 * Now we'll allocate the entire DOF and copy it in -- provided
13310 	 * that the length isn't outrageous.
13311 	 */
13312 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13313 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13314 		*errp = E2BIG;
13315 		return (NULL);
13316 	}
13317 	loadsz = (size_t)hdr.dofh_loadsz;
13318 
13319 	if (loadsz < sizeof (hdr)) {
13320 		dtrace_dof_error(&hdr, "invalid load size");
13321 		*errp = EINVAL;
13322 		return (NULL);
13323 	}
13324 
13325 	dof = kmem_alloc(loadsz, KM_SLEEP);
13326 
13327 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13328 	    dof->dofh_loadsz != loadsz) {
13329 		kmem_free(dof, hdr.dofh_loadsz);
13330 		*errp = EFAULT;
13331 		return (NULL);
13332 	}
13333 
13334 	return (dof);
13335 }
13336 
13337 static __inline uchar_t
13338 dtrace_dof_char(char c)
13339 {
13340 
13341 	switch (c) {
13342 	case '0':
13343 	case '1':
13344 	case '2':
13345 	case '3':
13346 	case '4':
13347 	case '5':
13348 	case '6':
13349 	case '7':
13350 	case '8':
13351 	case '9':
13352 		return (c - '0');
13353 	case 'A':
13354 	case 'B':
13355 	case 'C':
13356 	case 'D':
13357 	case 'E':
13358 	case 'F':
13359 		return (c - 'A' + 10);
13360 	case 'a':
13361 	case 'b':
13362 	case 'c':
13363 	case 'd':
13364 	case 'e':
13365 	case 'f':
13366 		return (c - 'a' + 10);
13367 	}
13368 	/* Should not reach here. */
13369 	return (UCHAR_MAX);
13370 }
13371 #endif /* __FreeBSD__ */
13372 
13373 static dof_hdr_t *
13374 dtrace_dof_property(const char *name)
13375 {
13376 #ifdef __FreeBSD__
13377 	uint8_t *dofbuf;
13378 	u_char *data, *eol;
13379 	caddr_t doffile;
13380 	size_t bytes, len, i;
13381 	dof_hdr_t *dof;
13382 	u_char c1, c2;
13383 
13384 	dof = NULL;
13385 
13386 	doffile = preload_search_by_type("dtrace_dof");
13387 	if (doffile == NULL)
13388 		return (NULL);
13389 
13390 	data = preload_fetch_addr(doffile);
13391 	len = preload_fetch_size(doffile);
13392 	for (;;) {
13393 		/* Look for the end of the line. All lines end in a newline. */
13394 		eol = memchr(data, '\n', len);
13395 		if (eol == NULL)
13396 			return (NULL);
13397 
13398 		if (strncmp(name, data, strlen(name)) == 0)
13399 			break;
13400 
13401 		eol++; /* skip past the newline */
13402 		len -= eol - data;
13403 		data = eol;
13404 	}
13405 
13406 	/* We've found the data corresponding to the specified key. */
13407 
13408 	data += strlen(name) + 1; /* skip past the '=' */
13409 	len = eol - data;
13410 	bytes = len / 2;
13411 
13412 	if (bytes < sizeof(dof_hdr_t)) {
13413 		dtrace_dof_error(NULL, "truncated header");
13414 		goto doferr;
13415 	}
13416 
13417 	/*
13418 	 * Each byte is represented by the two ASCII characters in its hex
13419 	 * representation.
13420 	 */
13421 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13422 	for (i = 0; i < bytes; i++) {
13423 		c1 = dtrace_dof_char(data[i * 2]);
13424 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13425 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13426 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13427 			goto doferr;
13428 		}
13429 		dofbuf[i] = c1 * 16 + c2;
13430 	}
13431 
13432 	dof = (dof_hdr_t *)dofbuf;
13433 	if (bytes < dof->dofh_loadsz) {
13434 		dtrace_dof_error(NULL, "truncated DOF");
13435 		goto doferr;
13436 	}
13437 
13438 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13439 		dtrace_dof_error(NULL, "oversized DOF");
13440 		goto doferr;
13441 	}
13442 
13443 	return (dof);
13444 
13445 doferr:
13446 	free(dof, M_SOLARIS);
13447 	return (NULL);
13448 #else /* __FreeBSD__ */
13449 	uchar_t *buf;
13450 	uint64_t loadsz;
13451 	unsigned int len, i;
13452 	dof_hdr_t *dof;
13453 
13454 	/*
13455 	 * Unfortunately, array of values in .conf files are always (and
13456 	 * only) interpreted to be integer arrays.  We must read our DOF
13457 	 * as an integer array, and then squeeze it into a byte array.
13458 	 */
13459 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13460 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13461 		return (NULL);
13462 
13463 	for (i = 0; i < len; i++)
13464 		buf[i] = (uchar_t)(((int *)buf)[i]);
13465 
13466 	if (len < sizeof (dof_hdr_t)) {
13467 		ddi_prop_free(buf);
13468 		dtrace_dof_error(NULL, "truncated header");
13469 		return (NULL);
13470 	}
13471 
13472 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13473 		ddi_prop_free(buf);
13474 		dtrace_dof_error(NULL, "truncated DOF");
13475 		return (NULL);
13476 	}
13477 
13478 	if (loadsz >= dtrace_dof_maxsize) {
13479 		ddi_prop_free(buf);
13480 		dtrace_dof_error(NULL, "oversized DOF");
13481 		return (NULL);
13482 	}
13483 
13484 	dof = kmem_alloc(loadsz, KM_SLEEP);
13485 	bcopy(buf, dof, loadsz);
13486 	ddi_prop_free(buf);
13487 
13488 	return (dof);
13489 #endif /* !__FreeBSD__ */
13490 }
13491 
13492 static void
13493 dtrace_dof_destroy(dof_hdr_t *dof)
13494 {
13495 	kmem_free(dof, dof->dofh_loadsz);
13496 }
13497 
13498 /*
13499  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13500  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13501  * a type other than DOF_SECT_NONE is specified, the header is checked against
13502  * this type and NULL is returned if the types do not match.
13503  */
13504 static dof_sec_t *
13505 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13506 {
13507 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13508 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13509 
13510 	if (i >= dof->dofh_secnum) {
13511 		dtrace_dof_error(dof, "referenced section index is invalid");
13512 		return (NULL);
13513 	}
13514 
13515 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13516 		dtrace_dof_error(dof, "referenced section is not loadable");
13517 		return (NULL);
13518 	}
13519 
13520 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13521 		dtrace_dof_error(dof, "referenced section is the wrong type");
13522 		return (NULL);
13523 	}
13524 
13525 	return (sec);
13526 }
13527 
13528 static dtrace_probedesc_t *
13529 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13530 {
13531 	dof_probedesc_t *probe;
13532 	dof_sec_t *strtab;
13533 	uintptr_t daddr = (uintptr_t)dof;
13534 	uintptr_t str;
13535 	size_t size;
13536 
13537 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13538 		dtrace_dof_error(dof, "invalid probe section");
13539 		return (NULL);
13540 	}
13541 
13542 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13543 		dtrace_dof_error(dof, "bad alignment in probe description");
13544 		return (NULL);
13545 	}
13546 
13547 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13548 		dtrace_dof_error(dof, "truncated probe description");
13549 		return (NULL);
13550 	}
13551 
13552 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13553 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13554 
13555 	if (strtab == NULL)
13556 		return (NULL);
13557 
13558 	str = daddr + strtab->dofs_offset;
13559 	size = strtab->dofs_size;
13560 
13561 	if (probe->dofp_provider >= strtab->dofs_size) {
13562 		dtrace_dof_error(dof, "corrupt probe provider");
13563 		return (NULL);
13564 	}
13565 
13566 	(void) strncpy(desc->dtpd_provider,
13567 	    (char *)(str + probe->dofp_provider),
13568 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13569 
13570 	if (probe->dofp_mod >= strtab->dofs_size) {
13571 		dtrace_dof_error(dof, "corrupt probe module");
13572 		return (NULL);
13573 	}
13574 
13575 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13576 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13577 
13578 	if (probe->dofp_func >= strtab->dofs_size) {
13579 		dtrace_dof_error(dof, "corrupt probe function");
13580 		return (NULL);
13581 	}
13582 
13583 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13584 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13585 
13586 	if (probe->dofp_name >= strtab->dofs_size) {
13587 		dtrace_dof_error(dof, "corrupt probe name");
13588 		return (NULL);
13589 	}
13590 
13591 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13592 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13593 
13594 	return (desc);
13595 }
13596 
13597 static dtrace_difo_t *
13598 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13599     cred_t *cr)
13600 {
13601 	dtrace_difo_t *dp;
13602 	size_t ttl = 0;
13603 	dof_difohdr_t *dofd;
13604 	uintptr_t daddr = (uintptr_t)dof;
13605 	size_t max = dtrace_difo_maxsize;
13606 	int i, l, n;
13607 
13608 	static const struct {
13609 		int section;
13610 		int bufoffs;
13611 		int lenoffs;
13612 		int entsize;
13613 		int align;
13614 		const char *msg;
13615 	} difo[] = {
13616 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13617 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13618 		sizeof (dif_instr_t), "multiple DIF sections" },
13619 
13620 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13621 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13622 		sizeof (uint64_t), "multiple integer tables" },
13623 
13624 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13625 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13626 		sizeof (char), "multiple string tables" },
13627 
13628 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13629 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13630 		sizeof (uint_t), "multiple variable tables" },
13631 
13632 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13633 	};
13634 
13635 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13636 		dtrace_dof_error(dof, "invalid DIFO header section");
13637 		return (NULL);
13638 	}
13639 
13640 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13641 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13642 		return (NULL);
13643 	}
13644 
13645 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13646 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13647 		dtrace_dof_error(dof, "bad size in DIFO header");
13648 		return (NULL);
13649 	}
13650 
13651 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13652 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13653 
13654 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13655 	dp->dtdo_rtype = dofd->dofd_rtype;
13656 
13657 	for (l = 0; l < n; l++) {
13658 		dof_sec_t *subsec;
13659 		void **bufp;
13660 		uint32_t *lenp;
13661 
13662 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13663 		    dofd->dofd_links[l])) == NULL)
13664 			goto err; /* invalid section link */
13665 
13666 		if (ttl + subsec->dofs_size > max) {
13667 			dtrace_dof_error(dof, "exceeds maximum size");
13668 			goto err;
13669 		}
13670 
13671 		ttl += subsec->dofs_size;
13672 
13673 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13674 			if (subsec->dofs_type != difo[i].section)
13675 				continue;
13676 
13677 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13678 				dtrace_dof_error(dof, "section not loaded");
13679 				goto err;
13680 			}
13681 
13682 			if (subsec->dofs_align != difo[i].align) {
13683 				dtrace_dof_error(dof, "bad alignment");
13684 				goto err;
13685 			}
13686 
13687 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13688 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13689 
13690 			if (*bufp != NULL) {
13691 				dtrace_dof_error(dof, difo[i].msg);
13692 				goto err;
13693 			}
13694 
13695 			if (difo[i].entsize != subsec->dofs_entsize) {
13696 				dtrace_dof_error(dof, "entry size mismatch");
13697 				goto err;
13698 			}
13699 
13700 			if (subsec->dofs_entsize != 0 &&
13701 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13702 				dtrace_dof_error(dof, "corrupt entry size");
13703 				goto err;
13704 			}
13705 
13706 			*lenp = subsec->dofs_size;
13707 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13708 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13709 			    *bufp, subsec->dofs_size);
13710 
13711 			if (subsec->dofs_entsize != 0)
13712 				*lenp /= subsec->dofs_entsize;
13713 
13714 			break;
13715 		}
13716 
13717 		/*
13718 		 * If we encounter a loadable DIFO sub-section that is not
13719 		 * known to us, assume this is a broken program and fail.
13720 		 */
13721 		if (difo[i].section == DOF_SECT_NONE &&
13722 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13723 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13724 			goto err;
13725 		}
13726 	}
13727 
13728 	if (dp->dtdo_buf == NULL) {
13729 		/*
13730 		 * We can't have a DIF object without DIF text.
13731 		 */
13732 		dtrace_dof_error(dof, "missing DIF text");
13733 		goto err;
13734 	}
13735 
13736 	/*
13737 	 * Before we validate the DIF object, run through the variable table
13738 	 * looking for the strings -- if any of their size are under, we'll set
13739 	 * their size to be the system-wide default string size.  Note that
13740 	 * this should _not_ happen if the "strsize" option has been set --
13741 	 * in this case, the compiler should have set the size to reflect the
13742 	 * setting of the option.
13743 	 */
13744 	for (i = 0; i < dp->dtdo_varlen; i++) {
13745 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13746 		dtrace_diftype_t *t = &v->dtdv_type;
13747 
13748 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13749 			continue;
13750 
13751 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13752 			t->dtdt_size = dtrace_strsize_default;
13753 	}
13754 
13755 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13756 		goto err;
13757 
13758 	dtrace_difo_init(dp, vstate);
13759 	return (dp);
13760 
13761 err:
13762 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13763 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13764 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13765 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13766 
13767 	kmem_free(dp, sizeof (dtrace_difo_t));
13768 	return (NULL);
13769 }
13770 
13771 static dtrace_predicate_t *
13772 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13773     cred_t *cr)
13774 {
13775 	dtrace_difo_t *dp;
13776 
13777 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13778 		return (NULL);
13779 
13780 	return (dtrace_predicate_create(dp));
13781 }
13782 
13783 static dtrace_actdesc_t *
13784 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13785     cred_t *cr)
13786 {
13787 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13788 	dof_actdesc_t *desc;
13789 	dof_sec_t *difosec;
13790 	size_t offs;
13791 	uintptr_t daddr = (uintptr_t)dof;
13792 	uint64_t arg;
13793 	dtrace_actkind_t kind;
13794 
13795 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13796 		dtrace_dof_error(dof, "invalid action section");
13797 		return (NULL);
13798 	}
13799 
13800 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13801 		dtrace_dof_error(dof, "truncated action description");
13802 		return (NULL);
13803 	}
13804 
13805 	if (sec->dofs_align != sizeof (uint64_t)) {
13806 		dtrace_dof_error(dof, "bad alignment in action description");
13807 		return (NULL);
13808 	}
13809 
13810 	if (sec->dofs_size < sec->dofs_entsize) {
13811 		dtrace_dof_error(dof, "section entry size exceeds total size");
13812 		return (NULL);
13813 	}
13814 
13815 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13816 		dtrace_dof_error(dof, "bad entry size in action description");
13817 		return (NULL);
13818 	}
13819 
13820 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13821 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13822 		return (NULL);
13823 	}
13824 
13825 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13826 		desc = (dof_actdesc_t *)(daddr +
13827 		    (uintptr_t)sec->dofs_offset + offs);
13828 		kind = (dtrace_actkind_t)desc->dofa_kind;
13829 
13830 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13831 		    (kind != DTRACEACT_PRINTA ||
13832 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13833 		    (kind == DTRACEACT_DIFEXPR &&
13834 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13835 			dof_sec_t *strtab;
13836 			char *str, *fmt;
13837 			uint64_t i;
13838 
13839 			/*
13840 			 * The argument to these actions is an index into the
13841 			 * DOF string table.  For printf()-like actions, this
13842 			 * is the format string.  For print(), this is the
13843 			 * CTF type of the expression result.
13844 			 */
13845 			if ((strtab = dtrace_dof_sect(dof,
13846 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13847 				goto err;
13848 
13849 			str = (char *)((uintptr_t)dof +
13850 			    (uintptr_t)strtab->dofs_offset);
13851 
13852 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13853 				if (str[i] == '\0')
13854 					break;
13855 			}
13856 
13857 			if (i >= strtab->dofs_size) {
13858 				dtrace_dof_error(dof, "bogus format string");
13859 				goto err;
13860 			}
13861 
13862 			if (i == desc->dofa_arg) {
13863 				dtrace_dof_error(dof, "empty format string");
13864 				goto err;
13865 			}
13866 
13867 			i -= desc->dofa_arg;
13868 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13869 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13870 			arg = (uint64_t)(uintptr_t)fmt;
13871 		} else {
13872 			if (kind == DTRACEACT_PRINTA) {
13873 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13874 				arg = 0;
13875 			} else {
13876 				arg = desc->dofa_arg;
13877 			}
13878 		}
13879 
13880 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13881 		    desc->dofa_uarg, arg);
13882 
13883 		if (last != NULL) {
13884 			last->dtad_next = act;
13885 		} else {
13886 			first = act;
13887 		}
13888 
13889 		last = act;
13890 
13891 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13892 			continue;
13893 
13894 		if ((difosec = dtrace_dof_sect(dof,
13895 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13896 			goto err;
13897 
13898 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13899 
13900 		if (act->dtad_difo == NULL)
13901 			goto err;
13902 	}
13903 
13904 	ASSERT(first != NULL);
13905 	return (first);
13906 
13907 err:
13908 	for (act = first; act != NULL; act = next) {
13909 		next = act->dtad_next;
13910 		dtrace_actdesc_release(act, vstate);
13911 	}
13912 
13913 	return (NULL);
13914 }
13915 
13916 static dtrace_ecbdesc_t *
13917 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13918     cred_t *cr)
13919 {
13920 	dtrace_ecbdesc_t *ep;
13921 	dof_ecbdesc_t *ecb;
13922 	dtrace_probedesc_t *desc;
13923 	dtrace_predicate_t *pred = NULL;
13924 
13925 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13926 		dtrace_dof_error(dof, "truncated ECB description");
13927 		return (NULL);
13928 	}
13929 
13930 	if (sec->dofs_align != sizeof (uint64_t)) {
13931 		dtrace_dof_error(dof, "bad alignment in ECB description");
13932 		return (NULL);
13933 	}
13934 
13935 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13936 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13937 
13938 	if (sec == NULL)
13939 		return (NULL);
13940 
13941 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13942 	ep->dted_uarg = ecb->dofe_uarg;
13943 	desc = &ep->dted_probe;
13944 
13945 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13946 		goto err;
13947 
13948 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13949 		if ((sec = dtrace_dof_sect(dof,
13950 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13951 			goto err;
13952 
13953 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13954 			goto err;
13955 
13956 		ep->dted_pred.dtpdd_predicate = pred;
13957 	}
13958 
13959 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13960 		if ((sec = dtrace_dof_sect(dof,
13961 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13962 			goto err;
13963 
13964 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13965 
13966 		if (ep->dted_action == NULL)
13967 			goto err;
13968 	}
13969 
13970 	return (ep);
13971 
13972 err:
13973 	if (pred != NULL)
13974 		dtrace_predicate_release(pred, vstate);
13975 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13976 	return (NULL);
13977 }
13978 
13979 /*
13980  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13981  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13982  * site of any user SETX relocations to account for load object base address.
13983  * In the future, if we need other relocations, this function can be extended.
13984  */
13985 static int
13986 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13987 {
13988 	uintptr_t daddr = (uintptr_t)dof;
13989 	dof_relohdr_t *dofr =
13990 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13991 	dof_sec_t *ss, *rs, *ts;
13992 	dof_relodesc_t *r;
13993 	uint_t i, n;
13994 
13995 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13996 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13997 		dtrace_dof_error(dof, "invalid relocation header");
13998 		return (-1);
13999 	}
14000 
14001 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14002 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14003 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14004 
14005 	if (ss == NULL || rs == NULL || ts == NULL)
14006 		return (-1); /* dtrace_dof_error() has been called already */
14007 
14008 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14009 	    rs->dofs_align != sizeof (uint64_t)) {
14010 		dtrace_dof_error(dof, "invalid relocation section");
14011 		return (-1);
14012 	}
14013 
14014 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14015 	n = rs->dofs_size / rs->dofs_entsize;
14016 
14017 	for (i = 0; i < n; i++) {
14018 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14019 
14020 		switch (r->dofr_type) {
14021 		case DOF_RELO_NONE:
14022 			break;
14023 		case DOF_RELO_SETX:
14024 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14025 			    sizeof (uint64_t) > ts->dofs_size) {
14026 				dtrace_dof_error(dof, "bad relocation offset");
14027 				return (-1);
14028 			}
14029 
14030 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14031 				dtrace_dof_error(dof, "misaligned setx relo");
14032 				return (-1);
14033 			}
14034 
14035 			*(uint64_t *)taddr += ubase;
14036 			break;
14037 		default:
14038 			dtrace_dof_error(dof, "invalid relocation type");
14039 			return (-1);
14040 		}
14041 
14042 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14043 	}
14044 
14045 	return (0);
14046 }
14047 
14048 /*
14049  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14050  * header:  it should be at the front of a memory region that is at least
14051  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14052  * size.  It need not be validated in any other way.
14053  */
14054 static int
14055 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14056     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
14057 {
14058 	uint64_t len = dof->dofh_loadsz, seclen;
14059 	uintptr_t daddr = (uintptr_t)dof;
14060 	dtrace_ecbdesc_t *ep;
14061 	dtrace_enabling_t *enab;
14062 	uint_t i;
14063 
14064 	ASSERT(MUTEX_HELD(&dtrace_lock));
14065 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14066 
14067 	/*
14068 	 * Check the DOF header identification bytes.  In addition to checking
14069 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14070 	 * we can use them later without fear of regressing existing binaries.
14071 	 */
14072 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14073 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14074 		dtrace_dof_error(dof, "DOF magic string mismatch");
14075 		return (-1);
14076 	}
14077 
14078 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14079 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14080 		dtrace_dof_error(dof, "DOF has invalid data model");
14081 		return (-1);
14082 	}
14083 
14084 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14085 		dtrace_dof_error(dof, "DOF encoding mismatch");
14086 		return (-1);
14087 	}
14088 
14089 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14090 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14091 		dtrace_dof_error(dof, "DOF version mismatch");
14092 		return (-1);
14093 	}
14094 
14095 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14096 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14097 		return (-1);
14098 	}
14099 
14100 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14101 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14102 		return (-1);
14103 	}
14104 
14105 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14106 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14107 		return (-1);
14108 	}
14109 
14110 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14111 		if (dof->dofh_ident[i] != 0) {
14112 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14113 			return (-1);
14114 		}
14115 	}
14116 
14117 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14118 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14119 		return (-1);
14120 	}
14121 
14122 	if (dof->dofh_secsize == 0) {
14123 		dtrace_dof_error(dof, "zero section header size");
14124 		return (-1);
14125 	}
14126 
14127 	/*
14128 	 * Check that the section headers don't exceed the amount of DOF
14129 	 * data.  Note that we cast the section size and number of sections
14130 	 * to uint64_t's to prevent possible overflow in the multiplication.
14131 	 */
14132 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14133 
14134 	if (dof->dofh_secoff > len || seclen > len ||
14135 	    dof->dofh_secoff + seclen > len) {
14136 		dtrace_dof_error(dof, "truncated section headers");
14137 		return (-1);
14138 	}
14139 
14140 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14141 		dtrace_dof_error(dof, "misaligned section headers");
14142 		return (-1);
14143 	}
14144 
14145 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14146 		dtrace_dof_error(dof, "misaligned section size");
14147 		return (-1);
14148 	}
14149 
14150 	/*
14151 	 * Take an initial pass through the section headers to be sure that
14152 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14153 	 * set, do not permit sections relating to providers, probes, or args.
14154 	 */
14155 	for (i = 0; i < dof->dofh_secnum; i++) {
14156 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14157 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14158 
14159 		if (noprobes) {
14160 			switch (sec->dofs_type) {
14161 			case DOF_SECT_PROVIDER:
14162 			case DOF_SECT_PROBES:
14163 			case DOF_SECT_PRARGS:
14164 			case DOF_SECT_PROFFS:
14165 				dtrace_dof_error(dof, "illegal sections "
14166 				    "for enabling");
14167 				return (-1);
14168 			}
14169 		}
14170 
14171 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14172 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14173 			dtrace_dof_error(dof, "loadable section with load "
14174 			    "flag unset");
14175 			return (-1);
14176 		}
14177 
14178 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14179 			continue; /* just ignore non-loadable sections */
14180 
14181 		if (!ISP2(sec->dofs_align)) {
14182 			dtrace_dof_error(dof, "bad section alignment");
14183 			return (-1);
14184 		}
14185 
14186 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14187 			dtrace_dof_error(dof, "misaligned section");
14188 			return (-1);
14189 		}
14190 
14191 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14192 		    sec->dofs_offset + sec->dofs_size > len) {
14193 			dtrace_dof_error(dof, "corrupt section header");
14194 			return (-1);
14195 		}
14196 
14197 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14198 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14199 			dtrace_dof_error(dof, "non-terminating string table");
14200 			return (-1);
14201 		}
14202 	}
14203 
14204 	/*
14205 	 * Take a second pass through the sections and locate and perform any
14206 	 * relocations that are present.  We do this after the first pass to
14207 	 * be sure that all sections have had their headers validated.
14208 	 */
14209 	for (i = 0; i < dof->dofh_secnum; i++) {
14210 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14211 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14212 
14213 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14214 			continue; /* skip sections that are not loadable */
14215 
14216 		switch (sec->dofs_type) {
14217 		case DOF_SECT_URELHDR:
14218 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
14219 				return (-1);
14220 			break;
14221 		}
14222 	}
14223 
14224 	if ((enab = *enabp) == NULL)
14225 		enab = *enabp = dtrace_enabling_create(vstate);
14226 
14227 	for (i = 0; i < dof->dofh_secnum; i++) {
14228 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14229 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14230 
14231 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14232 			continue;
14233 
14234 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14235 			dtrace_enabling_destroy(enab);
14236 			*enabp = NULL;
14237 			return (-1);
14238 		}
14239 
14240 		dtrace_enabling_add(enab, ep);
14241 	}
14242 
14243 	return (0);
14244 }
14245 
14246 /*
14247  * Process DOF for any options.  This routine assumes that the DOF has been
14248  * at least processed by dtrace_dof_slurp().
14249  */
14250 static int
14251 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14252 {
14253 	int i, rval;
14254 	uint32_t entsize;
14255 	size_t offs;
14256 	dof_optdesc_t *desc;
14257 
14258 	for (i = 0; i < dof->dofh_secnum; i++) {
14259 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14260 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14261 
14262 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14263 			continue;
14264 
14265 		if (sec->dofs_align != sizeof (uint64_t)) {
14266 			dtrace_dof_error(dof, "bad alignment in "
14267 			    "option description");
14268 			return (EINVAL);
14269 		}
14270 
14271 		if ((entsize = sec->dofs_entsize) == 0) {
14272 			dtrace_dof_error(dof, "zeroed option entry size");
14273 			return (EINVAL);
14274 		}
14275 
14276 		if (entsize < sizeof (dof_optdesc_t)) {
14277 			dtrace_dof_error(dof, "bad option entry size");
14278 			return (EINVAL);
14279 		}
14280 
14281 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14282 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14283 			    (uintptr_t)sec->dofs_offset + offs);
14284 
14285 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14286 				dtrace_dof_error(dof, "non-zero option string");
14287 				return (EINVAL);
14288 			}
14289 
14290 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14291 				dtrace_dof_error(dof, "unset option");
14292 				return (EINVAL);
14293 			}
14294 
14295 			if ((rval = dtrace_state_option(state,
14296 			    desc->dofo_option, desc->dofo_value)) != 0) {
14297 				dtrace_dof_error(dof, "rejected option");
14298 				return (rval);
14299 			}
14300 		}
14301 	}
14302 
14303 	return (0);
14304 }
14305 
14306 /*
14307  * DTrace Consumer State Functions
14308  */
14309 static int
14310 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14311 {
14312 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14313 	void *base;
14314 	uintptr_t limit;
14315 	dtrace_dynvar_t *dvar, *next, *start;
14316 	int i;
14317 
14318 	ASSERT(MUTEX_HELD(&dtrace_lock));
14319 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14320 
14321 	bzero(dstate, sizeof (dtrace_dstate_t));
14322 
14323 	if ((dstate->dtds_chunksize = chunksize) == 0)
14324 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14325 
14326 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14327 
14328 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14329 		size = min;
14330 
14331 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14332 		return (ENOMEM);
14333 
14334 	dstate->dtds_size = size;
14335 	dstate->dtds_base = base;
14336 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14337 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14338 
14339 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14340 
14341 	if (hashsize != 1 && (hashsize & 1))
14342 		hashsize--;
14343 
14344 	dstate->dtds_hashsize = hashsize;
14345 	dstate->dtds_hash = dstate->dtds_base;
14346 
14347 	/*
14348 	 * Set all of our hash buckets to point to the single sink, and (if
14349 	 * it hasn't already been set), set the sink's hash value to be the
14350 	 * sink sentinel value.  The sink is needed for dynamic variable
14351 	 * lookups to know that they have iterated over an entire, valid hash
14352 	 * chain.
14353 	 */
14354 	for (i = 0; i < hashsize; i++)
14355 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14356 
14357 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14358 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14359 
14360 	/*
14361 	 * Determine number of active CPUs.  Divide free list evenly among
14362 	 * active CPUs.
14363 	 */
14364 	start = (dtrace_dynvar_t *)
14365 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14366 	limit = (uintptr_t)base + size;
14367 
14368 	VERIFY((uintptr_t)start < limit);
14369 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14370 
14371 	maxper = (limit - (uintptr_t)start) / NCPU;
14372 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14373 
14374 #ifndef illumos
14375 	CPU_FOREACH(i) {
14376 #else
14377 	for (i = 0; i < NCPU; i++) {
14378 #endif
14379 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14380 
14381 		/*
14382 		 * If we don't even have enough chunks to make it once through
14383 		 * NCPUs, we're just going to allocate everything to the first
14384 		 * CPU.  And if we're on the last CPU, we're going to allocate
14385 		 * whatever is left over.  In either case, we set the limit to
14386 		 * be the limit of the dynamic variable space.
14387 		 */
14388 		if (maxper == 0 || i == NCPU - 1) {
14389 			limit = (uintptr_t)base + size;
14390 			start = NULL;
14391 		} else {
14392 			limit = (uintptr_t)start + maxper;
14393 			start = (dtrace_dynvar_t *)limit;
14394 		}
14395 
14396 		VERIFY(limit <= (uintptr_t)base + size);
14397 
14398 		for (;;) {
14399 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14400 			    dstate->dtds_chunksize);
14401 
14402 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14403 				break;
14404 
14405 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14406 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14407 			dvar->dtdv_next = next;
14408 			dvar = next;
14409 		}
14410 
14411 		if (maxper == 0)
14412 			break;
14413 	}
14414 
14415 	return (0);
14416 }
14417 
14418 static void
14419 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14420 {
14421 	ASSERT(MUTEX_HELD(&cpu_lock));
14422 
14423 	if (dstate->dtds_base == NULL)
14424 		return;
14425 
14426 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14427 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14428 }
14429 
14430 static void
14431 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14432 {
14433 	/*
14434 	 * Logical XOR, where are you?
14435 	 */
14436 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14437 
14438 	if (vstate->dtvs_nglobals > 0) {
14439 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14440 		    sizeof (dtrace_statvar_t *));
14441 	}
14442 
14443 	if (vstate->dtvs_ntlocals > 0) {
14444 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14445 		    sizeof (dtrace_difv_t));
14446 	}
14447 
14448 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14449 
14450 	if (vstate->dtvs_nlocals > 0) {
14451 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14452 		    sizeof (dtrace_statvar_t *));
14453 	}
14454 }
14455 
14456 #ifdef illumos
14457 static void
14458 dtrace_state_clean(dtrace_state_t *state)
14459 {
14460 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14461 		return;
14462 
14463 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14464 	dtrace_speculation_clean(state);
14465 }
14466 
14467 static void
14468 dtrace_state_deadman(dtrace_state_t *state)
14469 {
14470 	hrtime_t now;
14471 
14472 	dtrace_sync();
14473 
14474 	now = dtrace_gethrtime();
14475 
14476 	if (state != dtrace_anon.dta_state &&
14477 	    now - state->dts_laststatus >= dtrace_deadman_user)
14478 		return;
14479 
14480 	/*
14481 	 * We must be sure that dts_alive never appears to be less than the
14482 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14483 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14484 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14485 	 * the new value.  This assures that dts_alive never appears to be
14486 	 * less than its true value, regardless of the order in which the
14487 	 * stores to the underlying storage are issued.
14488 	 */
14489 	state->dts_alive = INT64_MAX;
14490 	dtrace_membar_producer();
14491 	state->dts_alive = now;
14492 }
14493 #else	/* !illumos */
14494 static void
14495 dtrace_state_clean(void *arg)
14496 {
14497 	dtrace_state_t *state = arg;
14498 	dtrace_optval_t *opt = state->dts_options;
14499 
14500 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14501 		return;
14502 
14503 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14504 	dtrace_speculation_clean(state);
14505 
14506 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14507 	    dtrace_state_clean, state);
14508 }
14509 
14510 static void
14511 dtrace_state_deadman(void *arg)
14512 {
14513 	dtrace_state_t *state = arg;
14514 	hrtime_t now;
14515 
14516 	dtrace_sync();
14517 
14518 	dtrace_debug_output();
14519 
14520 	now = dtrace_gethrtime();
14521 
14522 	if (state != dtrace_anon.dta_state &&
14523 	    now - state->dts_laststatus >= dtrace_deadman_user)
14524 		return;
14525 
14526 	/*
14527 	 * We must be sure that dts_alive never appears to be less than the
14528 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14529 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14530 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14531 	 * the new value.  This assures that dts_alive never appears to be
14532 	 * less than its true value, regardless of the order in which the
14533 	 * stores to the underlying storage are issued.
14534 	 */
14535 	state->dts_alive = INT64_MAX;
14536 	dtrace_membar_producer();
14537 	state->dts_alive = now;
14538 
14539 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14540 	    dtrace_state_deadman, state);
14541 }
14542 #endif	/* illumos */
14543 
14544 static dtrace_state_t *
14545 #ifdef illumos
14546 dtrace_state_create(dev_t *devp, cred_t *cr)
14547 #else
14548 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14549 #endif
14550 {
14551 #ifdef illumos
14552 	minor_t minor;
14553 	major_t major;
14554 #else
14555 	cred_t *cr = NULL;
14556 	int m = 0;
14557 #endif
14558 	char c[30];
14559 	dtrace_state_t *state;
14560 	dtrace_optval_t *opt;
14561 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14562 
14563 	ASSERT(MUTEX_HELD(&dtrace_lock));
14564 	ASSERT(MUTEX_HELD(&cpu_lock));
14565 
14566 #ifdef illumos
14567 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14568 	    VM_BESTFIT | VM_SLEEP);
14569 
14570 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14571 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14572 		return (NULL);
14573 	}
14574 
14575 	state = ddi_get_soft_state(dtrace_softstate, minor);
14576 #else
14577 	if (dev != NULL) {
14578 		cr = dev->si_cred;
14579 		m = dev2unit(dev);
14580 	}
14581 
14582 	/* Allocate memory for the state. */
14583 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14584 #endif
14585 
14586 	state->dts_epid = DTRACE_EPIDNONE + 1;
14587 
14588 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14589 #ifdef illumos
14590 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14591 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14592 
14593 	if (devp != NULL) {
14594 		major = getemajor(*devp);
14595 	} else {
14596 		major = ddi_driver_major(dtrace_devi);
14597 	}
14598 
14599 	state->dts_dev = makedevice(major, minor);
14600 
14601 	if (devp != NULL)
14602 		*devp = state->dts_dev;
14603 #else
14604 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14605 	state->dts_dev = dev;
14606 #endif
14607 
14608 	/*
14609 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14610 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14611 	 * other hand, it saves an additional memory reference in the probe
14612 	 * path.
14613 	 */
14614 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14615 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14616 
14617 #ifdef illumos
14618 	state->dts_cleaner = CYCLIC_NONE;
14619 	state->dts_deadman = CYCLIC_NONE;
14620 #else
14621 	callout_init(&state->dts_cleaner, 1);
14622 	callout_init(&state->dts_deadman, 1);
14623 #endif
14624 	state->dts_vstate.dtvs_state = state;
14625 
14626 	for (i = 0; i < DTRACEOPT_MAX; i++)
14627 		state->dts_options[i] = DTRACEOPT_UNSET;
14628 
14629 	/*
14630 	 * Set the default options.
14631 	 */
14632 	opt = state->dts_options;
14633 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14634 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14635 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14636 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14637 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14638 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14639 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14640 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14641 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14642 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14643 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14644 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14645 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14646 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14647 
14648 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14649 
14650 	/*
14651 	 * Depending on the user credentials, we set flag bits which alter probe
14652 	 * visibility or the amount of destructiveness allowed.  In the case of
14653 	 * actual anonymous tracing, or the possession of all privileges, all of
14654 	 * the normal checks are bypassed.
14655 	 */
14656 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14657 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14658 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14659 	} else {
14660 		/*
14661 		 * Set up the credentials for this instantiation.  We take a
14662 		 * hold on the credential to prevent it from disappearing on
14663 		 * us; this in turn prevents the zone_t referenced by this
14664 		 * credential from disappearing.  This means that we can
14665 		 * examine the credential and the zone from probe context.
14666 		 */
14667 		crhold(cr);
14668 		state->dts_cred.dcr_cred = cr;
14669 
14670 		/*
14671 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14672 		 * unlocks the use of variables like pid, zonename, etc.
14673 		 */
14674 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14675 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14676 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14677 		}
14678 
14679 		/*
14680 		 * dtrace_user allows use of syscall and profile providers.
14681 		 * If the user also has proc_owner and/or proc_zone, we
14682 		 * extend the scope to include additional visibility and
14683 		 * destructive power.
14684 		 */
14685 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14686 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14687 				state->dts_cred.dcr_visible |=
14688 				    DTRACE_CRV_ALLPROC;
14689 
14690 				state->dts_cred.dcr_action |=
14691 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14692 			}
14693 
14694 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14695 				state->dts_cred.dcr_visible |=
14696 				    DTRACE_CRV_ALLZONE;
14697 
14698 				state->dts_cred.dcr_action |=
14699 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14700 			}
14701 
14702 			/*
14703 			 * If we have all privs in whatever zone this is,
14704 			 * we can do destructive things to processes which
14705 			 * have altered credentials.
14706 			 */
14707 #ifdef illumos
14708 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14709 			    cr->cr_zone->zone_privset)) {
14710 				state->dts_cred.dcr_action |=
14711 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14712 			}
14713 #endif
14714 		}
14715 
14716 		/*
14717 		 * Holding the dtrace_kernel privilege also implies that
14718 		 * the user has the dtrace_user privilege from a visibility
14719 		 * perspective.  But without further privileges, some
14720 		 * destructive actions are not available.
14721 		 */
14722 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14723 			/*
14724 			 * Make all probes in all zones visible.  However,
14725 			 * this doesn't mean that all actions become available
14726 			 * to all zones.
14727 			 */
14728 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14729 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14730 
14731 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14732 			    DTRACE_CRA_PROC;
14733 			/*
14734 			 * Holding proc_owner means that destructive actions
14735 			 * for *this* zone are allowed.
14736 			 */
14737 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14738 				state->dts_cred.dcr_action |=
14739 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14740 
14741 			/*
14742 			 * Holding proc_zone means that destructive actions
14743 			 * for this user/group ID in all zones is allowed.
14744 			 */
14745 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14746 				state->dts_cred.dcr_action |=
14747 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14748 
14749 #ifdef illumos
14750 			/*
14751 			 * If we have all privs in whatever zone this is,
14752 			 * we can do destructive things to processes which
14753 			 * have altered credentials.
14754 			 */
14755 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14756 			    cr->cr_zone->zone_privset)) {
14757 				state->dts_cred.dcr_action |=
14758 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14759 			}
14760 #endif
14761 		}
14762 
14763 		/*
14764 		 * Holding the dtrace_proc privilege gives control over fasttrap
14765 		 * and pid providers.  We need to grant wider destructive
14766 		 * privileges in the event that the user has proc_owner and/or
14767 		 * proc_zone.
14768 		 */
14769 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14770 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14771 				state->dts_cred.dcr_action |=
14772 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14773 
14774 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14775 				state->dts_cred.dcr_action |=
14776 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14777 		}
14778 	}
14779 
14780 	return (state);
14781 }
14782 
14783 static int
14784 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14785 {
14786 	dtrace_optval_t *opt = state->dts_options, size;
14787 	processorid_t cpu = 0;;
14788 	int flags = 0, rval, factor, divisor = 1;
14789 
14790 	ASSERT(MUTEX_HELD(&dtrace_lock));
14791 	ASSERT(MUTEX_HELD(&cpu_lock));
14792 	ASSERT(which < DTRACEOPT_MAX);
14793 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14794 	    (state == dtrace_anon.dta_state &&
14795 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14796 
14797 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14798 		return (0);
14799 
14800 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14801 		cpu = opt[DTRACEOPT_CPU];
14802 
14803 	if (which == DTRACEOPT_SPECSIZE)
14804 		flags |= DTRACEBUF_NOSWITCH;
14805 
14806 	if (which == DTRACEOPT_BUFSIZE) {
14807 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14808 			flags |= DTRACEBUF_RING;
14809 
14810 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14811 			flags |= DTRACEBUF_FILL;
14812 
14813 		if (state != dtrace_anon.dta_state ||
14814 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14815 			flags |= DTRACEBUF_INACTIVE;
14816 	}
14817 
14818 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14819 		/*
14820 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14821 		 * aligned, drop it down by the difference.
14822 		 */
14823 		if (size & (sizeof (uint64_t) - 1))
14824 			size -= size & (sizeof (uint64_t) - 1);
14825 
14826 		if (size < state->dts_reserve) {
14827 			/*
14828 			 * Buffers always must be large enough to accommodate
14829 			 * their prereserved space.  We return E2BIG instead
14830 			 * of ENOMEM in this case to allow for user-level
14831 			 * software to differentiate the cases.
14832 			 */
14833 			return (E2BIG);
14834 		}
14835 
14836 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14837 
14838 		if (rval != ENOMEM) {
14839 			opt[which] = size;
14840 			return (rval);
14841 		}
14842 
14843 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14844 			return (rval);
14845 
14846 		for (divisor = 2; divisor < factor; divisor <<= 1)
14847 			continue;
14848 	}
14849 
14850 	return (ENOMEM);
14851 }
14852 
14853 static int
14854 dtrace_state_buffers(dtrace_state_t *state)
14855 {
14856 	dtrace_speculation_t *spec = state->dts_speculations;
14857 	int rval, i;
14858 
14859 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14860 	    DTRACEOPT_BUFSIZE)) != 0)
14861 		return (rval);
14862 
14863 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14864 	    DTRACEOPT_AGGSIZE)) != 0)
14865 		return (rval);
14866 
14867 	for (i = 0; i < state->dts_nspeculations; i++) {
14868 		if ((rval = dtrace_state_buffer(state,
14869 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14870 			return (rval);
14871 	}
14872 
14873 	return (0);
14874 }
14875 
14876 static void
14877 dtrace_state_prereserve(dtrace_state_t *state)
14878 {
14879 	dtrace_ecb_t *ecb;
14880 	dtrace_probe_t *probe;
14881 
14882 	state->dts_reserve = 0;
14883 
14884 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14885 		return;
14886 
14887 	/*
14888 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14889 	 * prereserved space to be the space required by the END probes.
14890 	 */
14891 	probe = dtrace_probes[dtrace_probeid_end - 1];
14892 	ASSERT(probe != NULL);
14893 
14894 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14895 		if (ecb->dte_state != state)
14896 			continue;
14897 
14898 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14899 	}
14900 }
14901 
14902 static int
14903 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14904 {
14905 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14906 	dtrace_speculation_t *spec;
14907 	dtrace_buffer_t *buf;
14908 #ifdef illumos
14909 	cyc_handler_t hdlr;
14910 	cyc_time_t when;
14911 #endif
14912 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14913 	dtrace_icookie_t cookie;
14914 
14915 	mutex_enter(&cpu_lock);
14916 	mutex_enter(&dtrace_lock);
14917 
14918 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14919 		rval = EBUSY;
14920 		goto out;
14921 	}
14922 
14923 	/*
14924 	 * Before we can perform any checks, we must prime all of the
14925 	 * retained enablings that correspond to this state.
14926 	 */
14927 	dtrace_enabling_prime(state);
14928 
14929 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14930 		rval = EACCES;
14931 		goto out;
14932 	}
14933 
14934 	dtrace_state_prereserve(state);
14935 
14936 	/*
14937 	 * Now we want to do is try to allocate our speculations.
14938 	 * We do not automatically resize the number of speculations; if
14939 	 * this fails, we will fail the operation.
14940 	 */
14941 	nspec = opt[DTRACEOPT_NSPEC];
14942 	ASSERT(nspec != DTRACEOPT_UNSET);
14943 
14944 	if (nspec > INT_MAX) {
14945 		rval = ENOMEM;
14946 		goto out;
14947 	}
14948 
14949 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14950 	    KM_NOSLEEP | KM_NORMALPRI);
14951 
14952 	if (spec == NULL) {
14953 		rval = ENOMEM;
14954 		goto out;
14955 	}
14956 
14957 	state->dts_speculations = spec;
14958 	state->dts_nspeculations = (int)nspec;
14959 
14960 	for (i = 0; i < nspec; i++) {
14961 		if ((buf = kmem_zalloc(bufsize,
14962 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14963 			rval = ENOMEM;
14964 			goto err;
14965 		}
14966 
14967 		spec[i].dtsp_buffer = buf;
14968 	}
14969 
14970 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14971 		if (dtrace_anon.dta_state == NULL) {
14972 			rval = ENOENT;
14973 			goto out;
14974 		}
14975 
14976 		if (state->dts_necbs != 0) {
14977 			rval = EALREADY;
14978 			goto out;
14979 		}
14980 
14981 		state->dts_anon = dtrace_anon_grab();
14982 		ASSERT(state->dts_anon != NULL);
14983 		state = state->dts_anon;
14984 
14985 		/*
14986 		 * We want "grabanon" to be set in the grabbed state, so we'll
14987 		 * copy that option value from the grabbing state into the
14988 		 * grabbed state.
14989 		 */
14990 		state->dts_options[DTRACEOPT_GRABANON] =
14991 		    opt[DTRACEOPT_GRABANON];
14992 
14993 		*cpu = dtrace_anon.dta_beganon;
14994 
14995 		/*
14996 		 * If the anonymous state is active (as it almost certainly
14997 		 * is if the anonymous enabling ultimately matched anything),
14998 		 * we don't allow any further option processing -- but we
14999 		 * don't return failure.
15000 		 */
15001 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15002 			goto out;
15003 	}
15004 
15005 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15006 	    opt[DTRACEOPT_AGGSIZE] != 0) {
15007 		if (state->dts_aggregations == NULL) {
15008 			/*
15009 			 * We're not going to create an aggregation buffer
15010 			 * because we don't have any ECBs that contain
15011 			 * aggregations -- set this option to 0.
15012 			 */
15013 			opt[DTRACEOPT_AGGSIZE] = 0;
15014 		} else {
15015 			/*
15016 			 * If we have an aggregation buffer, we must also have
15017 			 * a buffer to use as scratch.
15018 			 */
15019 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15020 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15021 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15022 			}
15023 		}
15024 	}
15025 
15026 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15027 	    opt[DTRACEOPT_SPECSIZE] != 0) {
15028 		if (!state->dts_speculates) {
15029 			/*
15030 			 * We're not going to create speculation buffers
15031 			 * because we don't have any ECBs that actually
15032 			 * speculate -- set the speculation size to 0.
15033 			 */
15034 			opt[DTRACEOPT_SPECSIZE] = 0;
15035 		}
15036 	}
15037 
15038 	/*
15039 	 * The bare minimum size for any buffer that we're actually going to
15040 	 * do anything to is sizeof (uint64_t).
15041 	 */
15042 	sz = sizeof (uint64_t);
15043 
15044 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15045 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15046 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15047 		/*
15048 		 * A buffer size has been explicitly set to 0 (or to a size
15049 		 * that will be adjusted to 0) and we need the space -- we
15050 		 * need to return failure.  We return ENOSPC to differentiate
15051 		 * it from failing to allocate a buffer due to failure to meet
15052 		 * the reserve (for which we return E2BIG).
15053 		 */
15054 		rval = ENOSPC;
15055 		goto out;
15056 	}
15057 
15058 	if ((rval = dtrace_state_buffers(state)) != 0)
15059 		goto err;
15060 
15061 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15062 		sz = dtrace_dstate_defsize;
15063 
15064 	do {
15065 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15066 
15067 		if (rval == 0)
15068 			break;
15069 
15070 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15071 			goto err;
15072 	} while (sz >>= 1);
15073 
15074 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15075 
15076 	if (rval != 0)
15077 		goto err;
15078 
15079 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15080 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15081 
15082 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15083 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15084 
15085 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15086 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15087 
15088 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15089 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15090 
15091 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15092 #ifdef illumos
15093 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15094 	hdlr.cyh_arg = state;
15095 	hdlr.cyh_level = CY_LOW_LEVEL;
15096 
15097 	when.cyt_when = 0;
15098 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15099 
15100 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15101 
15102 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15103 	hdlr.cyh_arg = state;
15104 	hdlr.cyh_level = CY_LOW_LEVEL;
15105 
15106 	when.cyt_when = 0;
15107 	when.cyt_interval = dtrace_deadman_interval;
15108 
15109 	state->dts_deadman = cyclic_add(&hdlr, &when);
15110 #else
15111 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15112 	    dtrace_state_clean, state);
15113 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15114 	    dtrace_state_deadman, state);
15115 #endif
15116 
15117 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15118 
15119 #ifdef illumos
15120 	if (state->dts_getf != 0 &&
15121 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15122 		/*
15123 		 * We don't have kernel privs but we have at least one call
15124 		 * to getf(); we need to bump our zone's count, and (if
15125 		 * this is the first enabling to have an unprivileged call
15126 		 * to getf()) we need to hook into closef().
15127 		 */
15128 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15129 
15130 		if (dtrace_getf++ == 0) {
15131 			ASSERT(dtrace_closef == NULL);
15132 			dtrace_closef = dtrace_getf_barrier;
15133 		}
15134 	}
15135 #endif
15136 
15137 	/*
15138 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15139 	 * interrupts here both to record the CPU on which we fired the BEGIN
15140 	 * probe (the data from this CPU will be processed first at user
15141 	 * level) and to manually activate the buffer for this CPU.
15142 	 */
15143 	cookie = dtrace_interrupt_disable();
15144 	*cpu = curcpu;
15145 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15146 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15147 
15148 	dtrace_probe(dtrace_probeid_begin,
15149 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15150 	dtrace_interrupt_enable(cookie);
15151 	/*
15152 	 * We may have had an exit action from a BEGIN probe; only change our
15153 	 * state to ACTIVE if we're still in WARMUP.
15154 	 */
15155 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15156 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15157 
15158 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15159 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15160 
15161 #ifdef __FreeBSD__
15162 	/*
15163 	 * We enable anonymous tracing before APs are started, so we must
15164 	 * activate buffers using the current CPU.
15165 	 */
15166 	if (state == dtrace_anon.dta_state)
15167 		for (int i = 0; i < NCPU; i++)
15168 			dtrace_buffer_activate_cpu(state, i);
15169 	else
15170 		dtrace_xcall(DTRACE_CPUALL,
15171 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15172 #else
15173 	/*
15174 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15175 	 * want each CPU to transition its principal buffer out of the
15176 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15177 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15178 	 * atomically transition from processing none of a state's ECBs to
15179 	 * processing all of them.
15180 	 */
15181 	dtrace_xcall(DTRACE_CPUALL,
15182 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15183 #endif
15184 	goto out;
15185 
15186 err:
15187 	dtrace_buffer_free(state->dts_buffer);
15188 	dtrace_buffer_free(state->dts_aggbuffer);
15189 
15190 	if ((nspec = state->dts_nspeculations) == 0) {
15191 		ASSERT(state->dts_speculations == NULL);
15192 		goto out;
15193 	}
15194 
15195 	spec = state->dts_speculations;
15196 	ASSERT(spec != NULL);
15197 
15198 	for (i = 0; i < state->dts_nspeculations; i++) {
15199 		if ((buf = spec[i].dtsp_buffer) == NULL)
15200 			break;
15201 
15202 		dtrace_buffer_free(buf);
15203 		kmem_free(buf, bufsize);
15204 	}
15205 
15206 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15207 	state->dts_nspeculations = 0;
15208 	state->dts_speculations = NULL;
15209 
15210 out:
15211 	mutex_exit(&dtrace_lock);
15212 	mutex_exit(&cpu_lock);
15213 
15214 	return (rval);
15215 }
15216 
15217 static int
15218 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15219 {
15220 	dtrace_icookie_t cookie;
15221 
15222 	ASSERT(MUTEX_HELD(&dtrace_lock));
15223 
15224 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15225 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15226 		return (EINVAL);
15227 
15228 	/*
15229 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15230 	 * to be sure that every CPU has seen it.  See below for the details
15231 	 * on why this is done.
15232 	 */
15233 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15234 	dtrace_sync();
15235 
15236 	/*
15237 	 * By this point, it is impossible for any CPU to be still processing
15238 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15239 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15240 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15241 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15242 	 * iff we're in the END probe.
15243 	 */
15244 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15245 	dtrace_sync();
15246 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15247 
15248 	/*
15249 	 * Finally, we can release the reserve and call the END probe.  We
15250 	 * disable interrupts across calling the END probe to allow us to
15251 	 * return the CPU on which we actually called the END probe.  This
15252 	 * allows user-land to be sure that this CPU's principal buffer is
15253 	 * processed last.
15254 	 */
15255 	state->dts_reserve = 0;
15256 
15257 	cookie = dtrace_interrupt_disable();
15258 	*cpu = curcpu;
15259 	dtrace_probe(dtrace_probeid_end,
15260 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15261 	dtrace_interrupt_enable(cookie);
15262 
15263 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15264 	dtrace_sync();
15265 
15266 #ifdef illumos
15267 	if (state->dts_getf != 0 &&
15268 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15269 		/*
15270 		 * We don't have kernel privs but we have at least one call
15271 		 * to getf(); we need to lower our zone's count, and (if
15272 		 * this is the last enabling to have an unprivileged call
15273 		 * to getf()) we need to clear the closef() hook.
15274 		 */
15275 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15276 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15277 		ASSERT(dtrace_getf > 0);
15278 
15279 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15280 
15281 		if (--dtrace_getf == 0)
15282 			dtrace_closef = NULL;
15283 	}
15284 #endif
15285 
15286 	return (0);
15287 }
15288 
15289 static int
15290 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15291     dtrace_optval_t val)
15292 {
15293 	ASSERT(MUTEX_HELD(&dtrace_lock));
15294 
15295 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15296 		return (EBUSY);
15297 
15298 	if (option >= DTRACEOPT_MAX)
15299 		return (EINVAL);
15300 
15301 	if (option != DTRACEOPT_CPU && val < 0)
15302 		return (EINVAL);
15303 
15304 	switch (option) {
15305 	case DTRACEOPT_DESTRUCTIVE:
15306 		if (dtrace_destructive_disallow)
15307 			return (EACCES);
15308 
15309 		state->dts_cred.dcr_destructive = 1;
15310 		break;
15311 
15312 	case DTRACEOPT_BUFSIZE:
15313 	case DTRACEOPT_DYNVARSIZE:
15314 	case DTRACEOPT_AGGSIZE:
15315 	case DTRACEOPT_SPECSIZE:
15316 	case DTRACEOPT_STRSIZE:
15317 		if (val < 0)
15318 			return (EINVAL);
15319 
15320 		if (val >= LONG_MAX) {
15321 			/*
15322 			 * If this is an otherwise negative value, set it to
15323 			 * the highest multiple of 128m less than LONG_MAX.
15324 			 * Technically, we're adjusting the size without
15325 			 * regard to the buffer resizing policy, but in fact,
15326 			 * this has no effect -- if we set the buffer size to
15327 			 * ~LONG_MAX and the buffer policy is ultimately set to
15328 			 * be "manual", the buffer allocation is guaranteed to
15329 			 * fail, if only because the allocation requires two
15330 			 * buffers.  (We set the the size to the highest
15331 			 * multiple of 128m because it ensures that the size
15332 			 * will remain a multiple of a megabyte when
15333 			 * repeatedly halved -- all the way down to 15m.)
15334 			 */
15335 			val = LONG_MAX - (1 << 27) + 1;
15336 		}
15337 	}
15338 
15339 	state->dts_options[option] = val;
15340 
15341 	return (0);
15342 }
15343 
15344 static void
15345 dtrace_state_destroy(dtrace_state_t *state)
15346 {
15347 	dtrace_ecb_t *ecb;
15348 	dtrace_vstate_t *vstate = &state->dts_vstate;
15349 #ifdef illumos
15350 	minor_t minor = getminor(state->dts_dev);
15351 #endif
15352 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15353 	dtrace_speculation_t *spec = state->dts_speculations;
15354 	int nspec = state->dts_nspeculations;
15355 	uint32_t match;
15356 
15357 	ASSERT(MUTEX_HELD(&dtrace_lock));
15358 	ASSERT(MUTEX_HELD(&cpu_lock));
15359 
15360 	/*
15361 	 * First, retract any retained enablings for this state.
15362 	 */
15363 	dtrace_enabling_retract(state);
15364 	ASSERT(state->dts_nretained == 0);
15365 
15366 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15367 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15368 		/*
15369 		 * We have managed to come into dtrace_state_destroy() on a
15370 		 * hot enabling -- almost certainly because of a disorderly
15371 		 * shutdown of a consumer.  (That is, a consumer that is
15372 		 * exiting without having called dtrace_stop().) In this case,
15373 		 * we're going to set our activity to be KILLED, and then
15374 		 * issue a sync to be sure that everyone is out of probe
15375 		 * context before we start blowing away ECBs.
15376 		 */
15377 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15378 		dtrace_sync();
15379 	}
15380 
15381 	/*
15382 	 * Release the credential hold we took in dtrace_state_create().
15383 	 */
15384 	if (state->dts_cred.dcr_cred != NULL)
15385 		crfree(state->dts_cred.dcr_cred);
15386 
15387 	/*
15388 	 * Now we can safely disable and destroy any enabled probes.  Because
15389 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15390 	 * (especially if they're all enabled), we take two passes through the
15391 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15392 	 * in the second we disable whatever is left over.
15393 	 */
15394 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15395 		for (i = 0; i < state->dts_necbs; i++) {
15396 			if ((ecb = state->dts_ecbs[i]) == NULL)
15397 				continue;
15398 
15399 			if (match && ecb->dte_probe != NULL) {
15400 				dtrace_probe_t *probe = ecb->dte_probe;
15401 				dtrace_provider_t *prov = probe->dtpr_provider;
15402 
15403 				if (!(prov->dtpv_priv.dtpp_flags & match))
15404 					continue;
15405 			}
15406 
15407 			dtrace_ecb_disable(ecb);
15408 			dtrace_ecb_destroy(ecb);
15409 		}
15410 
15411 		if (!match)
15412 			break;
15413 	}
15414 
15415 	/*
15416 	 * Before we free the buffers, perform one more sync to assure that
15417 	 * every CPU is out of probe context.
15418 	 */
15419 	dtrace_sync();
15420 
15421 	dtrace_buffer_free(state->dts_buffer);
15422 	dtrace_buffer_free(state->dts_aggbuffer);
15423 
15424 	for (i = 0; i < nspec; i++)
15425 		dtrace_buffer_free(spec[i].dtsp_buffer);
15426 
15427 #ifdef illumos
15428 	if (state->dts_cleaner != CYCLIC_NONE)
15429 		cyclic_remove(state->dts_cleaner);
15430 
15431 	if (state->dts_deadman != CYCLIC_NONE)
15432 		cyclic_remove(state->dts_deadman);
15433 #else
15434 	callout_stop(&state->dts_cleaner);
15435 	callout_drain(&state->dts_cleaner);
15436 	callout_stop(&state->dts_deadman);
15437 	callout_drain(&state->dts_deadman);
15438 #endif
15439 
15440 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15441 	dtrace_vstate_fini(vstate);
15442 	if (state->dts_ecbs != NULL)
15443 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15444 
15445 	if (state->dts_aggregations != NULL) {
15446 #ifdef DEBUG
15447 		for (i = 0; i < state->dts_naggregations; i++)
15448 			ASSERT(state->dts_aggregations[i] == NULL);
15449 #endif
15450 		ASSERT(state->dts_naggregations > 0);
15451 		kmem_free(state->dts_aggregations,
15452 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15453 	}
15454 
15455 	kmem_free(state->dts_buffer, bufsize);
15456 	kmem_free(state->dts_aggbuffer, bufsize);
15457 
15458 	for (i = 0; i < nspec; i++)
15459 		kmem_free(spec[i].dtsp_buffer, bufsize);
15460 
15461 	if (spec != NULL)
15462 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15463 
15464 	dtrace_format_destroy(state);
15465 
15466 	if (state->dts_aggid_arena != NULL) {
15467 #ifdef illumos
15468 		vmem_destroy(state->dts_aggid_arena);
15469 #else
15470 		delete_unrhdr(state->dts_aggid_arena);
15471 #endif
15472 		state->dts_aggid_arena = NULL;
15473 	}
15474 #ifdef illumos
15475 	ddi_soft_state_free(dtrace_softstate, minor);
15476 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15477 #endif
15478 }
15479 
15480 /*
15481  * DTrace Anonymous Enabling Functions
15482  */
15483 static dtrace_state_t *
15484 dtrace_anon_grab(void)
15485 {
15486 	dtrace_state_t *state;
15487 
15488 	ASSERT(MUTEX_HELD(&dtrace_lock));
15489 
15490 	if ((state = dtrace_anon.dta_state) == NULL) {
15491 		ASSERT(dtrace_anon.dta_enabling == NULL);
15492 		return (NULL);
15493 	}
15494 
15495 	ASSERT(dtrace_anon.dta_enabling != NULL);
15496 	ASSERT(dtrace_retained != NULL);
15497 
15498 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15499 	dtrace_anon.dta_enabling = NULL;
15500 	dtrace_anon.dta_state = NULL;
15501 
15502 	return (state);
15503 }
15504 
15505 static void
15506 dtrace_anon_property(void)
15507 {
15508 	int i, rv;
15509 	dtrace_state_t *state;
15510 	dof_hdr_t *dof;
15511 	char c[32];		/* enough for "dof-data-" + digits */
15512 
15513 	ASSERT(MUTEX_HELD(&dtrace_lock));
15514 	ASSERT(MUTEX_HELD(&cpu_lock));
15515 
15516 	for (i = 0; ; i++) {
15517 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15518 
15519 		dtrace_err_verbose = 1;
15520 
15521 		if ((dof = dtrace_dof_property(c)) == NULL) {
15522 			dtrace_err_verbose = 0;
15523 			break;
15524 		}
15525 
15526 #ifdef illumos
15527 		/*
15528 		 * We want to create anonymous state, so we need to transition
15529 		 * the kernel debugger to indicate that DTrace is active.  If
15530 		 * this fails (e.g. because the debugger has modified text in
15531 		 * some way), we won't continue with the processing.
15532 		 */
15533 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15534 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15535 			    "enabling ignored.");
15536 			dtrace_dof_destroy(dof);
15537 			break;
15538 		}
15539 #endif
15540 
15541 		/*
15542 		 * If we haven't allocated an anonymous state, we'll do so now.
15543 		 */
15544 		if ((state = dtrace_anon.dta_state) == NULL) {
15545 			state = dtrace_state_create(NULL, NULL);
15546 			dtrace_anon.dta_state = state;
15547 
15548 			if (state == NULL) {
15549 				/*
15550 				 * This basically shouldn't happen:  the only
15551 				 * failure mode from dtrace_state_create() is a
15552 				 * failure of ddi_soft_state_zalloc() that
15553 				 * itself should never happen.  Still, the
15554 				 * interface allows for a failure mode, and
15555 				 * we want to fail as gracefully as possible:
15556 				 * we'll emit an error message and cease
15557 				 * processing anonymous state in this case.
15558 				 */
15559 				cmn_err(CE_WARN, "failed to create "
15560 				    "anonymous state");
15561 				dtrace_dof_destroy(dof);
15562 				break;
15563 			}
15564 		}
15565 
15566 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15567 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15568 
15569 		if (rv == 0)
15570 			rv = dtrace_dof_options(dof, state);
15571 
15572 		dtrace_err_verbose = 0;
15573 		dtrace_dof_destroy(dof);
15574 
15575 		if (rv != 0) {
15576 			/*
15577 			 * This is malformed DOF; chuck any anonymous state
15578 			 * that we created.
15579 			 */
15580 			ASSERT(dtrace_anon.dta_enabling == NULL);
15581 			dtrace_state_destroy(state);
15582 			dtrace_anon.dta_state = NULL;
15583 			break;
15584 		}
15585 
15586 		ASSERT(dtrace_anon.dta_enabling != NULL);
15587 	}
15588 
15589 	if (dtrace_anon.dta_enabling != NULL) {
15590 		int rval;
15591 
15592 		/*
15593 		 * dtrace_enabling_retain() can only fail because we are
15594 		 * trying to retain more enablings than are allowed -- but
15595 		 * we only have one anonymous enabling, and we are guaranteed
15596 		 * to be allowed at least one retained enabling; we assert
15597 		 * that dtrace_enabling_retain() returns success.
15598 		 */
15599 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15600 		ASSERT(rval == 0);
15601 
15602 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15603 	}
15604 }
15605 
15606 /*
15607  * DTrace Helper Functions
15608  */
15609 static void
15610 dtrace_helper_trace(dtrace_helper_action_t *helper,
15611     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15612 {
15613 	uint32_t size, next, nnext, i;
15614 	dtrace_helptrace_t *ent, *buffer;
15615 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15616 
15617 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15618 		return;
15619 
15620 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15621 
15622 	/*
15623 	 * What would a tracing framework be without its own tracing
15624 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15625 	 */
15626 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15627 	    sizeof (uint64_t) - sizeof (uint64_t);
15628 
15629 	/*
15630 	 * Iterate until we can allocate a slot in the trace buffer.
15631 	 */
15632 	do {
15633 		next = dtrace_helptrace_next;
15634 
15635 		if (next + size < dtrace_helptrace_bufsize) {
15636 			nnext = next + size;
15637 		} else {
15638 			nnext = size;
15639 		}
15640 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15641 
15642 	/*
15643 	 * We have our slot; fill it in.
15644 	 */
15645 	if (nnext == size) {
15646 		dtrace_helptrace_wrapped++;
15647 		next = 0;
15648 	}
15649 
15650 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15651 	ent->dtht_helper = helper;
15652 	ent->dtht_where = where;
15653 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15654 
15655 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15656 	    mstate->dtms_fltoffs : -1;
15657 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15658 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15659 
15660 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15661 		dtrace_statvar_t *svar;
15662 
15663 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15664 			continue;
15665 
15666 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15667 		ent->dtht_locals[i] =
15668 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15669 	}
15670 }
15671 
15672 static uint64_t
15673 dtrace_helper(int which, dtrace_mstate_t *mstate,
15674     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15675 {
15676 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15677 	uint64_t sarg0 = mstate->dtms_arg[0];
15678 	uint64_t sarg1 = mstate->dtms_arg[1];
15679 	uint64_t rval = 0;
15680 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15681 	dtrace_helper_action_t *helper;
15682 	dtrace_vstate_t *vstate;
15683 	dtrace_difo_t *pred;
15684 	int i, trace = dtrace_helptrace_buffer != NULL;
15685 
15686 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15687 
15688 	if (helpers == NULL)
15689 		return (0);
15690 
15691 	if ((helper = helpers->dthps_actions[which]) == NULL)
15692 		return (0);
15693 
15694 	vstate = &helpers->dthps_vstate;
15695 	mstate->dtms_arg[0] = arg0;
15696 	mstate->dtms_arg[1] = arg1;
15697 
15698 	/*
15699 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15700 	 * we'll call the corresponding actions.  Note that the below calls
15701 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15702 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15703 	 * the stored DIF offset with its own (which is the desired behavior).
15704 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15705 	 * from machine state; this is okay, too.
15706 	 */
15707 	for (; helper != NULL; helper = helper->dtha_next) {
15708 		if ((pred = helper->dtha_predicate) != NULL) {
15709 			if (trace)
15710 				dtrace_helper_trace(helper, mstate, vstate, 0);
15711 
15712 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15713 				goto next;
15714 
15715 			if (*flags & CPU_DTRACE_FAULT)
15716 				goto err;
15717 		}
15718 
15719 		for (i = 0; i < helper->dtha_nactions; i++) {
15720 			if (trace)
15721 				dtrace_helper_trace(helper,
15722 				    mstate, vstate, i + 1);
15723 
15724 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15725 			    mstate, vstate, state);
15726 
15727 			if (*flags & CPU_DTRACE_FAULT)
15728 				goto err;
15729 		}
15730 
15731 next:
15732 		if (trace)
15733 			dtrace_helper_trace(helper, mstate, vstate,
15734 			    DTRACE_HELPTRACE_NEXT);
15735 	}
15736 
15737 	if (trace)
15738 		dtrace_helper_trace(helper, mstate, vstate,
15739 		    DTRACE_HELPTRACE_DONE);
15740 
15741 	/*
15742 	 * Restore the arg0 that we saved upon entry.
15743 	 */
15744 	mstate->dtms_arg[0] = sarg0;
15745 	mstate->dtms_arg[1] = sarg1;
15746 
15747 	return (rval);
15748 
15749 err:
15750 	if (trace)
15751 		dtrace_helper_trace(helper, mstate, vstate,
15752 		    DTRACE_HELPTRACE_ERR);
15753 
15754 	/*
15755 	 * Restore the arg0 that we saved upon entry.
15756 	 */
15757 	mstate->dtms_arg[0] = sarg0;
15758 	mstate->dtms_arg[1] = sarg1;
15759 
15760 	return (0);
15761 }
15762 
15763 static void
15764 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15765     dtrace_vstate_t *vstate)
15766 {
15767 	int i;
15768 
15769 	if (helper->dtha_predicate != NULL)
15770 		dtrace_difo_release(helper->dtha_predicate, vstate);
15771 
15772 	for (i = 0; i < helper->dtha_nactions; i++) {
15773 		ASSERT(helper->dtha_actions[i] != NULL);
15774 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15775 	}
15776 
15777 	kmem_free(helper->dtha_actions,
15778 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15779 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15780 }
15781 
15782 static int
15783 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15784 {
15785 	proc_t *p = curproc;
15786 	dtrace_vstate_t *vstate;
15787 	int i;
15788 
15789 	if (help == NULL)
15790 		help = p->p_dtrace_helpers;
15791 
15792 	ASSERT(MUTEX_HELD(&dtrace_lock));
15793 
15794 	if (help == NULL || gen > help->dthps_generation)
15795 		return (EINVAL);
15796 
15797 	vstate = &help->dthps_vstate;
15798 
15799 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15800 		dtrace_helper_action_t *last = NULL, *h, *next;
15801 
15802 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15803 			next = h->dtha_next;
15804 
15805 			if (h->dtha_generation == gen) {
15806 				if (last != NULL) {
15807 					last->dtha_next = next;
15808 				} else {
15809 					help->dthps_actions[i] = next;
15810 				}
15811 
15812 				dtrace_helper_action_destroy(h, vstate);
15813 			} else {
15814 				last = h;
15815 			}
15816 		}
15817 	}
15818 
15819 	/*
15820 	 * Interate until we've cleared out all helper providers with the
15821 	 * given generation number.
15822 	 */
15823 	for (;;) {
15824 		dtrace_helper_provider_t *prov;
15825 
15826 		/*
15827 		 * Look for a helper provider with the right generation. We
15828 		 * have to start back at the beginning of the list each time
15829 		 * because we drop dtrace_lock. It's unlikely that we'll make
15830 		 * more than two passes.
15831 		 */
15832 		for (i = 0; i < help->dthps_nprovs; i++) {
15833 			prov = help->dthps_provs[i];
15834 
15835 			if (prov->dthp_generation == gen)
15836 				break;
15837 		}
15838 
15839 		/*
15840 		 * If there were no matches, we're done.
15841 		 */
15842 		if (i == help->dthps_nprovs)
15843 			break;
15844 
15845 		/*
15846 		 * Move the last helper provider into this slot.
15847 		 */
15848 		help->dthps_nprovs--;
15849 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15850 		help->dthps_provs[help->dthps_nprovs] = NULL;
15851 
15852 		mutex_exit(&dtrace_lock);
15853 
15854 		/*
15855 		 * If we have a meta provider, remove this helper provider.
15856 		 */
15857 		mutex_enter(&dtrace_meta_lock);
15858 		if (dtrace_meta_pid != NULL) {
15859 			ASSERT(dtrace_deferred_pid == NULL);
15860 			dtrace_helper_provider_remove(&prov->dthp_prov,
15861 			    p->p_pid);
15862 		}
15863 		mutex_exit(&dtrace_meta_lock);
15864 
15865 		dtrace_helper_provider_destroy(prov);
15866 
15867 		mutex_enter(&dtrace_lock);
15868 	}
15869 
15870 	return (0);
15871 }
15872 
15873 static int
15874 dtrace_helper_validate(dtrace_helper_action_t *helper)
15875 {
15876 	int err = 0, i;
15877 	dtrace_difo_t *dp;
15878 
15879 	if ((dp = helper->dtha_predicate) != NULL)
15880 		err += dtrace_difo_validate_helper(dp);
15881 
15882 	for (i = 0; i < helper->dtha_nactions; i++)
15883 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15884 
15885 	return (err == 0);
15886 }
15887 
15888 static int
15889 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15890     dtrace_helpers_t *help)
15891 {
15892 	dtrace_helper_action_t *helper, *last;
15893 	dtrace_actdesc_t *act;
15894 	dtrace_vstate_t *vstate;
15895 	dtrace_predicate_t *pred;
15896 	int count = 0, nactions = 0, i;
15897 
15898 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15899 		return (EINVAL);
15900 
15901 	last = help->dthps_actions[which];
15902 	vstate = &help->dthps_vstate;
15903 
15904 	for (count = 0; last != NULL; last = last->dtha_next) {
15905 		count++;
15906 		if (last->dtha_next == NULL)
15907 			break;
15908 	}
15909 
15910 	/*
15911 	 * If we already have dtrace_helper_actions_max helper actions for this
15912 	 * helper action type, we'll refuse to add a new one.
15913 	 */
15914 	if (count >= dtrace_helper_actions_max)
15915 		return (ENOSPC);
15916 
15917 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15918 	helper->dtha_generation = help->dthps_generation;
15919 
15920 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15921 		ASSERT(pred->dtp_difo != NULL);
15922 		dtrace_difo_hold(pred->dtp_difo);
15923 		helper->dtha_predicate = pred->dtp_difo;
15924 	}
15925 
15926 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15927 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15928 			goto err;
15929 
15930 		if (act->dtad_difo == NULL)
15931 			goto err;
15932 
15933 		nactions++;
15934 	}
15935 
15936 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15937 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15938 
15939 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15940 		dtrace_difo_hold(act->dtad_difo);
15941 		helper->dtha_actions[i++] = act->dtad_difo;
15942 	}
15943 
15944 	if (!dtrace_helper_validate(helper))
15945 		goto err;
15946 
15947 	if (last == NULL) {
15948 		help->dthps_actions[which] = helper;
15949 	} else {
15950 		last->dtha_next = helper;
15951 	}
15952 
15953 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15954 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15955 		dtrace_helptrace_next = 0;
15956 	}
15957 
15958 	return (0);
15959 err:
15960 	dtrace_helper_action_destroy(helper, vstate);
15961 	return (EINVAL);
15962 }
15963 
15964 static void
15965 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15966     dof_helper_t *dofhp)
15967 {
15968 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15969 
15970 	mutex_enter(&dtrace_meta_lock);
15971 	mutex_enter(&dtrace_lock);
15972 
15973 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15974 		/*
15975 		 * If the dtrace module is loaded but not attached, or if
15976 		 * there aren't isn't a meta provider registered to deal with
15977 		 * these provider descriptions, we need to postpone creating
15978 		 * the actual providers until later.
15979 		 */
15980 
15981 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15982 		    dtrace_deferred_pid != help) {
15983 			help->dthps_deferred = 1;
15984 			help->dthps_pid = p->p_pid;
15985 			help->dthps_next = dtrace_deferred_pid;
15986 			help->dthps_prev = NULL;
15987 			if (dtrace_deferred_pid != NULL)
15988 				dtrace_deferred_pid->dthps_prev = help;
15989 			dtrace_deferred_pid = help;
15990 		}
15991 
15992 		mutex_exit(&dtrace_lock);
15993 
15994 	} else if (dofhp != NULL) {
15995 		/*
15996 		 * If the dtrace module is loaded and we have a particular
15997 		 * helper provider description, pass that off to the
15998 		 * meta provider.
15999 		 */
16000 
16001 		mutex_exit(&dtrace_lock);
16002 
16003 		dtrace_helper_provide(dofhp, p->p_pid);
16004 
16005 	} else {
16006 		/*
16007 		 * Otherwise, just pass all the helper provider descriptions
16008 		 * off to the meta provider.
16009 		 */
16010 
16011 		int i;
16012 		mutex_exit(&dtrace_lock);
16013 
16014 		for (i = 0; i < help->dthps_nprovs; i++) {
16015 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16016 			    p->p_pid);
16017 		}
16018 	}
16019 
16020 	mutex_exit(&dtrace_meta_lock);
16021 }
16022 
16023 static int
16024 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16025 {
16026 	dtrace_helper_provider_t *hprov, **tmp_provs;
16027 	uint_t tmp_maxprovs, i;
16028 
16029 	ASSERT(MUTEX_HELD(&dtrace_lock));
16030 	ASSERT(help != NULL);
16031 
16032 	/*
16033 	 * If we already have dtrace_helper_providers_max helper providers,
16034 	 * we're refuse to add a new one.
16035 	 */
16036 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
16037 		return (ENOSPC);
16038 
16039 	/*
16040 	 * Check to make sure this isn't a duplicate.
16041 	 */
16042 	for (i = 0; i < help->dthps_nprovs; i++) {
16043 		if (dofhp->dofhp_addr ==
16044 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
16045 			return (EALREADY);
16046 	}
16047 
16048 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16049 	hprov->dthp_prov = *dofhp;
16050 	hprov->dthp_ref = 1;
16051 	hprov->dthp_generation = gen;
16052 
16053 	/*
16054 	 * Allocate a bigger table for helper providers if it's already full.
16055 	 */
16056 	if (help->dthps_maxprovs == help->dthps_nprovs) {
16057 		tmp_maxprovs = help->dthps_maxprovs;
16058 		tmp_provs = help->dthps_provs;
16059 
16060 		if (help->dthps_maxprovs == 0)
16061 			help->dthps_maxprovs = 2;
16062 		else
16063 			help->dthps_maxprovs *= 2;
16064 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16065 			help->dthps_maxprovs = dtrace_helper_providers_max;
16066 
16067 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16068 
16069 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16070 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16071 
16072 		if (tmp_provs != NULL) {
16073 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16074 			    sizeof (dtrace_helper_provider_t *));
16075 			kmem_free(tmp_provs, tmp_maxprovs *
16076 			    sizeof (dtrace_helper_provider_t *));
16077 		}
16078 	}
16079 
16080 	help->dthps_provs[help->dthps_nprovs] = hprov;
16081 	help->dthps_nprovs++;
16082 
16083 	return (0);
16084 }
16085 
16086 static void
16087 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16088 {
16089 	mutex_enter(&dtrace_lock);
16090 
16091 	if (--hprov->dthp_ref == 0) {
16092 		dof_hdr_t *dof;
16093 		mutex_exit(&dtrace_lock);
16094 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16095 		dtrace_dof_destroy(dof);
16096 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16097 	} else {
16098 		mutex_exit(&dtrace_lock);
16099 	}
16100 }
16101 
16102 static int
16103 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16104 {
16105 	uintptr_t daddr = (uintptr_t)dof;
16106 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16107 	dof_provider_t *provider;
16108 	dof_probe_t *probe;
16109 	uint8_t *arg;
16110 	char *strtab, *typestr;
16111 	dof_stridx_t typeidx;
16112 	size_t typesz;
16113 	uint_t nprobes, j, k;
16114 
16115 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16116 
16117 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16118 		dtrace_dof_error(dof, "misaligned section offset");
16119 		return (-1);
16120 	}
16121 
16122 	/*
16123 	 * The section needs to be large enough to contain the DOF provider
16124 	 * structure appropriate for the given version.
16125 	 */
16126 	if (sec->dofs_size <
16127 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16128 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16129 	    sizeof (dof_provider_t))) {
16130 		dtrace_dof_error(dof, "provider section too small");
16131 		return (-1);
16132 	}
16133 
16134 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16135 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16136 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16137 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16138 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16139 
16140 	if (str_sec == NULL || prb_sec == NULL ||
16141 	    arg_sec == NULL || off_sec == NULL)
16142 		return (-1);
16143 
16144 	enoff_sec = NULL;
16145 
16146 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16147 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16148 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16149 	    provider->dofpv_prenoffs)) == NULL)
16150 		return (-1);
16151 
16152 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16153 
16154 	if (provider->dofpv_name >= str_sec->dofs_size ||
16155 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16156 		dtrace_dof_error(dof, "invalid provider name");
16157 		return (-1);
16158 	}
16159 
16160 	if (prb_sec->dofs_entsize == 0 ||
16161 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16162 		dtrace_dof_error(dof, "invalid entry size");
16163 		return (-1);
16164 	}
16165 
16166 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16167 		dtrace_dof_error(dof, "misaligned entry size");
16168 		return (-1);
16169 	}
16170 
16171 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16172 		dtrace_dof_error(dof, "invalid entry size");
16173 		return (-1);
16174 	}
16175 
16176 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16177 		dtrace_dof_error(dof, "misaligned section offset");
16178 		return (-1);
16179 	}
16180 
16181 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16182 		dtrace_dof_error(dof, "invalid entry size");
16183 		return (-1);
16184 	}
16185 
16186 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16187 
16188 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16189 
16190 	/*
16191 	 * Take a pass through the probes to check for errors.
16192 	 */
16193 	for (j = 0; j < nprobes; j++) {
16194 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16195 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16196 
16197 		if (probe->dofpr_func >= str_sec->dofs_size) {
16198 			dtrace_dof_error(dof, "invalid function name");
16199 			return (-1);
16200 		}
16201 
16202 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16203 			dtrace_dof_error(dof, "function name too long");
16204 			/*
16205 			 * Keep going if the function name is too long.
16206 			 * Unlike provider and probe names, we cannot reasonably
16207 			 * impose restrictions on function names, since they're
16208 			 * a property of the code being instrumented. We will
16209 			 * skip this probe in dtrace_helper_provide_one().
16210 			 */
16211 		}
16212 
16213 		if (probe->dofpr_name >= str_sec->dofs_size ||
16214 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16215 			dtrace_dof_error(dof, "invalid probe name");
16216 			return (-1);
16217 		}
16218 
16219 		/*
16220 		 * The offset count must not wrap the index, and the offsets
16221 		 * must also not overflow the section's data.
16222 		 */
16223 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16224 		    probe->dofpr_offidx ||
16225 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16226 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16227 			dtrace_dof_error(dof, "invalid probe offset");
16228 			return (-1);
16229 		}
16230 
16231 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16232 			/*
16233 			 * If there's no is-enabled offset section, make sure
16234 			 * there aren't any is-enabled offsets. Otherwise
16235 			 * perform the same checks as for probe offsets
16236 			 * (immediately above).
16237 			 */
16238 			if (enoff_sec == NULL) {
16239 				if (probe->dofpr_enoffidx != 0 ||
16240 				    probe->dofpr_nenoffs != 0) {
16241 					dtrace_dof_error(dof, "is-enabled "
16242 					    "offsets with null section");
16243 					return (-1);
16244 				}
16245 			} else if (probe->dofpr_enoffidx +
16246 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16247 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16248 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16249 				dtrace_dof_error(dof, "invalid is-enabled "
16250 				    "offset");
16251 				return (-1);
16252 			}
16253 
16254 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16255 				dtrace_dof_error(dof, "zero probe and "
16256 				    "is-enabled offsets");
16257 				return (-1);
16258 			}
16259 		} else if (probe->dofpr_noffs == 0) {
16260 			dtrace_dof_error(dof, "zero probe offsets");
16261 			return (-1);
16262 		}
16263 
16264 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16265 		    probe->dofpr_argidx ||
16266 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16267 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16268 			dtrace_dof_error(dof, "invalid args");
16269 			return (-1);
16270 		}
16271 
16272 		typeidx = probe->dofpr_nargv;
16273 		typestr = strtab + probe->dofpr_nargv;
16274 		for (k = 0; k < probe->dofpr_nargc; k++) {
16275 			if (typeidx >= str_sec->dofs_size) {
16276 				dtrace_dof_error(dof, "bad "
16277 				    "native argument type");
16278 				return (-1);
16279 			}
16280 
16281 			typesz = strlen(typestr) + 1;
16282 			if (typesz > DTRACE_ARGTYPELEN) {
16283 				dtrace_dof_error(dof, "native "
16284 				    "argument type too long");
16285 				return (-1);
16286 			}
16287 			typeidx += typesz;
16288 			typestr += typesz;
16289 		}
16290 
16291 		typeidx = probe->dofpr_xargv;
16292 		typestr = strtab + probe->dofpr_xargv;
16293 		for (k = 0; k < probe->dofpr_xargc; k++) {
16294 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16295 				dtrace_dof_error(dof, "bad "
16296 				    "native argument index");
16297 				return (-1);
16298 			}
16299 
16300 			if (typeidx >= str_sec->dofs_size) {
16301 				dtrace_dof_error(dof, "bad "
16302 				    "translated argument type");
16303 				return (-1);
16304 			}
16305 
16306 			typesz = strlen(typestr) + 1;
16307 			if (typesz > DTRACE_ARGTYPELEN) {
16308 				dtrace_dof_error(dof, "translated argument "
16309 				    "type too long");
16310 				return (-1);
16311 			}
16312 
16313 			typeidx += typesz;
16314 			typestr += typesz;
16315 		}
16316 	}
16317 
16318 	return (0);
16319 }
16320 
16321 static int
16322 #ifdef __FreeBSD__
16323 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16324 #else
16325 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
16326 #endif
16327 {
16328 	dtrace_helpers_t *help;
16329 	dtrace_vstate_t *vstate;
16330 	dtrace_enabling_t *enab = NULL;
16331 #ifndef __FreeBSD__
16332 	proc_t *p = curproc;
16333 #endif
16334 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16335 	uintptr_t daddr = (uintptr_t)dof;
16336 
16337 	ASSERT(MUTEX_HELD(&dtrace_lock));
16338 
16339 	if ((help = p->p_dtrace_helpers) == NULL)
16340 		help = dtrace_helpers_create(p);
16341 
16342 	vstate = &help->dthps_vstate;
16343 
16344 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
16345 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
16346 		dtrace_dof_destroy(dof);
16347 		return (rv);
16348 	}
16349 
16350 	/*
16351 	 * Look for helper providers and validate their descriptions.
16352 	 */
16353 	if (dhp != NULL) {
16354 		for (i = 0; i < dof->dofh_secnum; i++) {
16355 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16356 			    dof->dofh_secoff + i * dof->dofh_secsize);
16357 
16358 			if (sec->dofs_type != DOF_SECT_PROVIDER)
16359 				continue;
16360 
16361 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
16362 				dtrace_enabling_destroy(enab);
16363 				dtrace_dof_destroy(dof);
16364 				return (-1);
16365 			}
16366 
16367 			nprovs++;
16368 		}
16369 	}
16370 
16371 	/*
16372 	 * Now we need to walk through the ECB descriptions in the enabling.
16373 	 */
16374 	for (i = 0; i < enab->dten_ndesc; i++) {
16375 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16376 		dtrace_probedesc_t *desc = &ep->dted_probe;
16377 
16378 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16379 			continue;
16380 
16381 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16382 			continue;
16383 
16384 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16385 			continue;
16386 
16387 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16388 		    ep, help)) != 0) {
16389 			/*
16390 			 * Adding this helper action failed -- we are now going
16391 			 * to rip out the entire generation and return failure.
16392 			 */
16393 			(void) dtrace_helper_destroygen(help,
16394 			    help->dthps_generation);
16395 			dtrace_enabling_destroy(enab);
16396 			dtrace_dof_destroy(dof);
16397 			return (-1);
16398 		}
16399 
16400 		nhelpers++;
16401 	}
16402 
16403 	if (nhelpers < enab->dten_ndesc)
16404 		dtrace_dof_error(dof, "unmatched helpers");
16405 
16406 	gen = help->dthps_generation++;
16407 	dtrace_enabling_destroy(enab);
16408 
16409 	if (dhp != NULL && nprovs > 0) {
16410 		/*
16411 		 * Now that this is in-kernel, we change the sense of the
16412 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16413 		 * and dofhp_addr denotes the address at user-level.
16414 		 */
16415 		dhp->dofhp_addr = dhp->dofhp_dof;
16416 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16417 
16418 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16419 			mutex_exit(&dtrace_lock);
16420 			dtrace_helper_provider_register(p, help, dhp);
16421 			mutex_enter(&dtrace_lock);
16422 
16423 			destroy = 0;
16424 		}
16425 	}
16426 
16427 	if (destroy)
16428 		dtrace_dof_destroy(dof);
16429 
16430 	return (gen);
16431 }
16432 
16433 static dtrace_helpers_t *
16434 dtrace_helpers_create(proc_t *p)
16435 {
16436 	dtrace_helpers_t *help;
16437 
16438 	ASSERT(MUTEX_HELD(&dtrace_lock));
16439 	ASSERT(p->p_dtrace_helpers == NULL);
16440 
16441 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16442 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16443 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16444 
16445 	p->p_dtrace_helpers = help;
16446 	dtrace_helpers++;
16447 
16448 	return (help);
16449 }
16450 
16451 #ifdef illumos
16452 static
16453 #endif
16454 void
16455 dtrace_helpers_destroy(proc_t *p)
16456 {
16457 	dtrace_helpers_t *help;
16458 	dtrace_vstate_t *vstate;
16459 #ifdef illumos
16460 	proc_t *p = curproc;
16461 #endif
16462 	int i;
16463 
16464 	mutex_enter(&dtrace_lock);
16465 
16466 	ASSERT(p->p_dtrace_helpers != NULL);
16467 	ASSERT(dtrace_helpers > 0);
16468 
16469 	help = p->p_dtrace_helpers;
16470 	vstate = &help->dthps_vstate;
16471 
16472 	/*
16473 	 * We're now going to lose the help from this process.
16474 	 */
16475 	p->p_dtrace_helpers = NULL;
16476 	dtrace_sync();
16477 
16478 	/*
16479 	 * Destory the helper actions.
16480 	 */
16481 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16482 		dtrace_helper_action_t *h, *next;
16483 
16484 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16485 			next = h->dtha_next;
16486 			dtrace_helper_action_destroy(h, vstate);
16487 			h = next;
16488 		}
16489 	}
16490 
16491 	mutex_exit(&dtrace_lock);
16492 
16493 	/*
16494 	 * Destroy the helper providers.
16495 	 */
16496 	if (help->dthps_maxprovs > 0) {
16497 		mutex_enter(&dtrace_meta_lock);
16498 		if (dtrace_meta_pid != NULL) {
16499 			ASSERT(dtrace_deferred_pid == NULL);
16500 
16501 			for (i = 0; i < help->dthps_nprovs; i++) {
16502 				dtrace_helper_provider_remove(
16503 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16504 			}
16505 		} else {
16506 			mutex_enter(&dtrace_lock);
16507 			ASSERT(help->dthps_deferred == 0 ||
16508 			    help->dthps_next != NULL ||
16509 			    help->dthps_prev != NULL ||
16510 			    help == dtrace_deferred_pid);
16511 
16512 			/*
16513 			 * Remove the helper from the deferred list.
16514 			 */
16515 			if (help->dthps_next != NULL)
16516 				help->dthps_next->dthps_prev = help->dthps_prev;
16517 			if (help->dthps_prev != NULL)
16518 				help->dthps_prev->dthps_next = help->dthps_next;
16519 			if (dtrace_deferred_pid == help) {
16520 				dtrace_deferred_pid = help->dthps_next;
16521 				ASSERT(help->dthps_prev == NULL);
16522 			}
16523 
16524 			mutex_exit(&dtrace_lock);
16525 		}
16526 
16527 		mutex_exit(&dtrace_meta_lock);
16528 
16529 		for (i = 0; i < help->dthps_nprovs; i++) {
16530 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16531 		}
16532 
16533 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16534 		    sizeof (dtrace_helper_provider_t *));
16535 	}
16536 
16537 	mutex_enter(&dtrace_lock);
16538 
16539 	dtrace_vstate_fini(&help->dthps_vstate);
16540 	kmem_free(help->dthps_actions,
16541 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16542 	kmem_free(help, sizeof (dtrace_helpers_t));
16543 
16544 	--dtrace_helpers;
16545 	mutex_exit(&dtrace_lock);
16546 }
16547 
16548 #ifdef illumos
16549 static
16550 #endif
16551 void
16552 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16553 {
16554 	dtrace_helpers_t *help, *newhelp;
16555 	dtrace_helper_action_t *helper, *new, *last;
16556 	dtrace_difo_t *dp;
16557 	dtrace_vstate_t *vstate;
16558 	int i, j, sz, hasprovs = 0;
16559 
16560 	mutex_enter(&dtrace_lock);
16561 	ASSERT(from->p_dtrace_helpers != NULL);
16562 	ASSERT(dtrace_helpers > 0);
16563 
16564 	help = from->p_dtrace_helpers;
16565 	newhelp = dtrace_helpers_create(to);
16566 	ASSERT(to->p_dtrace_helpers != NULL);
16567 
16568 	newhelp->dthps_generation = help->dthps_generation;
16569 	vstate = &newhelp->dthps_vstate;
16570 
16571 	/*
16572 	 * Duplicate the helper actions.
16573 	 */
16574 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16575 		if ((helper = help->dthps_actions[i]) == NULL)
16576 			continue;
16577 
16578 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16579 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16580 			    KM_SLEEP);
16581 			new->dtha_generation = helper->dtha_generation;
16582 
16583 			if ((dp = helper->dtha_predicate) != NULL) {
16584 				dp = dtrace_difo_duplicate(dp, vstate);
16585 				new->dtha_predicate = dp;
16586 			}
16587 
16588 			new->dtha_nactions = helper->dtha_nactions;
16589 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16590 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16591 
16592 			for (j = 0; j < new->dtha_nactions; j++) {
16593 				dtrace_difo_t *dp = helper->dtha_actions[j];
16594 
16595 				ASSERT(dp != NULL);
16596 				dp = dtrace_difo_duplicate(dp, vstate);
16597 				new->dtha_actions[j] = dp;
16598 			}
16599 
16600 			if (last != NULL) {
16601 				last->dtha_next = new;
16602 			} else {
16603 				newhelp->dthps_actions[i] = new;
16604 			}
16605 
16606 			last = new;
16607 		}
16608 	}
16609 
16610 	/*
16611 	 * Duplicate the helper providers and register them with the
16612 	 * DTrace framework.
16613 	 */
16614 	if (help->dthps_nprovs > 0) {
16615 		newhelp->dthps_nprovs = help->dthps_nprovs;
16616 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16617 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16618 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16619 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16620 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16621 			newhelp->dthps_provs[i]->dthp_ref++;
16622 		}
16623 
16624 		hasprovs = 1;
16625 	}
16626 
16627 	mutex_exit(&dtrace_lock);
16628 
16629 	if (hasprovs)
16630 		dtrace_helper_provider_register(to, newhelp, NULL);
16631 }
16632 
16633 /*
16634  * DTrace Hook Functions
16635  */
16636 static void
16637 dtrace_module_loaded(modctl_t *ctl)
16638 {
16639 	dtrace_provider_t *prv;
16640 
16641 	mutex_enter(&dtrace_provider_lock);
16642 #ifdef illumos
16643 	mutex_enter(&mod_lock);
16644 #endif
16645 
16646 #ifdef illumos
16647 	ASSERT(ctl->mod_busy);
16648 #endif
16649 
16650 	/*
16651 	 * We're going to call each providers per-module provide operation
16652 	 * specifying only this module.
16653 	 */
16654 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16655 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16656 
16657 #ifdef illumos
16658 	mutex_exit(&mod_lock);
16659 #endif
16660 	mutex_exit(&dtrace_provider_lock);
16661 
16662 	/*
16663 	 * If we have any retained enablings, we need to match against them.
16664 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16665 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16666 	 * module.  (In particular, this happens when loading scheduling
16667 	 * classes.)  So if we have any retained enablings, we need to dispatch
16668 	 * our task queue to do the match for us.
16669 	 */
16670 	mutex_enter(&dtrace_lock);
16671 
16672 	if (dtrace_retained == NULL) {
16673 		mutex_exit(&dtrace_lock);
16674 		return;
16675 	}
16676 
16677 	(void) taskq_dispatch(dtrace_taskq,
16678 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16679 
16680 	mutex_exit(&dtrace_lock);
16681 
16682 	/*
16683 	 * And now, for a little heuristic sleaze:  in general, we want to
16684 	 * match modules as soon as they load.  However, we cannot guarantee
16685 	 * this, because it would lead us to the lock ordering violation
16686 	 * outlined above.  The common case, of course, is that cpu_lock is
16687 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16688 	 * long enough for the task queue to do its work.  If it's not, it's
16689 	 * not a serious problem -- it just means that the module that we
16690 	 * just loaded may not be immediately instrumentable.
16691 	 */
16692 	delay(1);
16693 }
16694 
16695 static void
16696 #ifdef illumos
16697 dtrace_module_unloaded(modctl_t *ctl)
16698 #else
16699 dtrace_module_unloaded(modctl_t *ctl, int *error)
16700 #endif
16701 {
16702 	dtrace_probe_t template, *probe, *first, *next;
16703 	dtrace_provider_t *prov;
16704 #ifndef illumos
16705 	char modname[DTRACE_MODNAMELEN];
16706 	size_t len;
16707 #endif
16708 
16709 #ifdef illumos
16710 	template.dtpr_mod = ctl->mod_modname;
16711 #else
16712 	/* Handle the fact that ctl->filename may end in ".ko". */
16713 	strlcpy(modname, ctl->filename, sizeof(modname));
16714 	len = strlen(ctl->filename);
16715 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16716 		modname[len - 3] = '\0';
16717 	template.dtpr_mod = modname;
16718 #endif
16719 
16720 	mutex_enter(&dtrace_provider_lock);
16721 #ifdef illumos
16722 	mutex_enter(&mod_lock);
16723 #endif
16724 	mutex_enter(&dtrace_lock);
16725 
16726 #ifndef illumos
16727 	if (ctl->nenabled > 0) {
16728 		/* Don't allow unloads if a probe is enabled. */
16729 		mutex_exit(&dtrace_provider_lock);
16730 		mutex_exit(&dtrace_lock);
16731 		*error = -1;
16732 		printf(
16733 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16734 		return;
16735 	}
16736 #endif
16737 
16738 	if (dtrace_bymod == NULL) {
16739 		/*
16740 		 * The DTrace module is loaded (obviously) but not attached;
16741 		 * we don't have any work to do.
16742 		 */
16743 		mutex_exit(&dtrace_provider_lock);
16744 #ifdef illumos
16745 		mutex_exit(&mod_lock);
16746 #endif
16747 		mutex_exit(&dtrace_lock);
16748 		return;
16749 	}
16750 
16751 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16752 	    probe != NULL; probe = probe->dtpr_nextmod) {
16753 		if (probe->dtpr_ecb != NULL) {
16754 			mutex_exit(&dtrace_provider_lock);
16755 #ifdef illumos
16756 			mutex_exit(&mod_lock);
16757 #endif
16758 			mutex_exit(&dtrace_lock);
16759 
16760 			/*
16761 			 * This shouldn't _actually_ be possible -- we're
16762 			 * unloading a module that has an enabled probe in it.
16763 			 * (It's normally up to the provider to make sure that
16764 			 * this can't happen.)  However, because dtps_enable()
16765 			 * doesn't have a failure mode, there can be an
16766 			 * enable/unload race.  Upshot:  we don't want to
16767 			 * assert, but we're not going to disable the
16768 			 * probe, either.
16769 			 */
16770 			if (dtrace_err_verbose) {
16771 #ifdef illumos
16772 				cmn_err(CE_WARN, "unloaded module '%s' had "
16773 				    "enabled probes", ctl->mod_modname);
16774 #else
16775 				cmn_err(CE_WARN, "unloaded module '%s' had "
16776 				    "enabled probes", modname);
16777 #endif
16778 			}
16779 
16780 			return;
16781 		}
16782 	}
16783 
16784 	probe = first;
16785 
16786 	for (first = NULL; probe != NULL; probe = next) {
16787 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16788 
16789 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16790 
16791 		next = probe->dtpr_nextmod;
16792 		dtrace_hash_remove(dtrace_bymod, probe);
16793 		dtrace_hash_remove(dtrace_byfunc, probe);
16794 		dtrace_hash_remove(dtrace_byname, probe);
16795 
16796 		if (first == NULL) {
16797 			first = probe;
16798 			probe->dtpr_nextmod = NULL;
16799 		} else {
16800 			probe->dtpr_nextmod = first;
16801 			first = probe;
16802 		}
16803 	}
16804 
16805 	/*
16806 	 * We've removed all of the module's probes from the hash chains and
16807 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16808 	 * everyone has cleared out from any probe array processing.
16809 	 */
16810 	dtrace_sync();
16811 
16812 	for (probe = first; probe != NULL; probe = first) {
16813 		first = probe->dtpr_nextmod;
16814 		prov = probe->dtpr_provider;
16815 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16816 		    probe->dtpr_arg);
16817 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16818 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16819 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16820 #ifdef illumos
16821 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16822 #else
16823 		free_unr(dtrace_arena, probe->dtpr_id);
16824 #endif
16825 		kmem_free(probe, sizeof (dtrace_probe_t));
16826 	}
16827 
16828 	mutex_exit(&dtrace_lock);
16829 #ifdef illumos
16830 	mutex_exit(&mod_lock);
16831 #endif
16832 	mutex_exit(&dtrace_provider_lock);
16833 }
16834 
16835 #ifndef illumos
16836 static void
16837 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16838 {
16839 
16840 	dtrace_module_loaded(lf);
16841 }
16842 
16843 static void
16844 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16845 {
16846 
16847 	if (*error != 0)
16848 		/* We already have an error, so don't do anything. */
16849 		return;
16850 	dtrace_module_unloaded(lf, error);
16851 }
16852 #endif
16853 
16854 #ifdef illumos
16855 static void
16856 dtrace_suspend(void)
16857 {
16858 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16859 }
16860 
16861 static void
16862 dtrace_resume(void)
16863 {
16864 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16865 }
16866 #endif
16867 
16868 static int
16869 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16870 {
16871 	ASSERT(MUTEX_HELD(&cpu_lock));
16872 	mutex_enter(&dtrace_lock);
16873 
16874 	switch (what) {
16875 	case CPU_CONFIG: {
16876 		dtrace_state_t *state;
16877 		dtrace_optval_t *opt, rs, c;
16878 
16879 		/*
16880 		 * For now, we only allocate a new buffer for anonymous state.
16881 		 */
16882 		if ((state = dtrace_anon.dta_state) == NULL)
16883 			break;
16884 
16885 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16886 			break;
16887 
16888 		opt = state->dts_options;
16889 		c = opt[DTRACEOPT_CPU];
16890 
16891 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16892 			break;
16893 
16894 		/*
16895 		 * Regardless of what the actual policy is, we're going to
16896 		 * temporarily set our resize policy to be manual.  We're
16897 		 * also going to temporarily set our CPU option to denote
16898 		 * the newly configured CPU.
16899 		 */
16900 		rs = opt[DTRACEOPT_BUFRESIZE];
16901 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16902 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16903 
16904 		(void) dtrace_state_buffers(state);
16905 
16906 		opt[DTRACEOPT_BUFRESIZE] = rs;
16907 		opt[DTRACEOPT_CPU] = c;
16908 
16909 		break;
16910 	}
16911 
16912 	case CPU_UNCONFIG:
16913 		/*
16914 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16915 		 * buffer will be freed when the consumer exits.)
16916 		 */
16917 		break;
16918 
16919 	default:
16920 		break;
16921 	}
16922 
16923 	mutex_exit(&dtrace_lock);
16924 	return (0);
16925 }
16926 
16927 #ifdef illumos
16928 static void
16929 dtrace_cpu_setup_initial(processorid_t cpu)
16930 {
16931 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16932 }
16933 #endif
16934 
16935 static void
16936 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16937 {
16938 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16939 		int osize, nsize;
16940 		dtrace_toxrange_t *range;
16941 
16942 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16943 
16944 		if (osize == 0) {
16945 			ASSERT(dtrace_toxrange == NULL);
16946 			ASSERT(dtrace_toxranges_max == 0);
16947 			dtrace_toxranges_max = 1;
16948 		} else {
16949 			dtrace_toxranges_max <<= 1;
16950 		}
16951 
16952 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16953 		range = kmem_zalloc(nsize, KM_SLEEP);
16954 
16955 		if (dtrace_toxrange != NULL) {
16956 			ASSERT(osize != 0);
16957 			bcopy(dtrace_toxrange, range, osize);
16958 			kmem_free(dtrace_toxrange, osize);
16959 		}
16960 
16961 		dtrace_toxrange = range;
16962 	}
16963 
16964 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16965 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16966 
16967 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16968 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16969 	dtrace_toxranges++;
16970 }
16971 
16972 static void
16973 dtrace_getf_barrier()
16974 {
16975 #ifdef illumos
16976 	/*
16977 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16978 	 * that contain calls to getf(), this routine will be called on every
16979 	 * closef() before either the underlying vnode is released or the
16980 	 * file_t itself is freed.  By the time we are here, it is essential
16981 	 * that the file_t can no longer be accessed from a call to getf()
16982 	 * in probe context -- that assures that a dtrace_sync() can be used
16983 	 * to clear out any enablings referring to the old structures.
16984 	 */
16985 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16986 	    kcred->cr_zone->zone_dtrace_getf != 0)
16987 		dtrace_sync();
16988 #endif
16989 }
16990 
16991 /*
16992  * DTrace Driver Cookbook Functions
16993  */
16994 #ifdef illumos
16995 /*ARGSUSED*/
16996 static int
16997 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16998 {
16999 	dtrace_provider_id_t id;
17000 	dtrace_state_t *state = NULL;
17001 	dtrace_enabling_t *enab;
17002 
17003 	mutex_enter(&cpu_lock);
17004 	mutex_enter(&dtrace_provider_lock);
17005 	mutex_enter(&dtrace_lock);
17006 
17007 	if (ddi_soft_state_init(&dtrace_softstate,
17008 	    sizeof (dtrace_state_t), 0) != 0) {
17009 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17010 		mutex_exit(&cpu_lock);
17011 		mutex_exit(&dtrace_provider_lock);
17012 		mutex_exit(&dtrace_lock);
17013 		return (DDI_FAILURE);
17014 	}
17015 
17016 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17017 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17018 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17019 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17020 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17021 		ddi_remove_minor_node(devi, NULL);
17022 		ddi_soft_state_fini(&dtrace_softstate);
17023 		mutex_exit(&cpu_lock);
17024 		mutex_exit(&dtrace_provider_lock);
17025 		mutex_exit(&dtrace_lock);
17026 		return (DDI_FAILURE);
17027 	}
17028 
17029 	ddi_report_dev(devi);
17030 	dtrace_devi = devi;
17031 
17032 	dtrace_modload = dtrace_module_loaded;
17033 	dtrace_modunload = dtrace_module_unloaded;
17034 	dtrace_cpu_init = dtrace_cpu_setup_initial;
17035 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
17036 	dtrace_helpers_fork = dtrace_helpers_duplicate;
17037 	dtrace_cpustart_init = dtrace_suspend;
17038 	dtrace_cpustart_fini = dtrace_resume;
17039 	dtrace_debugger_init = dtrace_suspend;
17040 	dtrace_debugger_fini = dtrace_resume;
17041 
17042 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17043 
17044 	ASSERT(MUTEX_HELD(&cpu_lock));
17045 
17046 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17047 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17048 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17049 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17050 	    VM_SLEEP | VMC_IDENTIFIER);
17051 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17052 	    1, INT_MAX, 0);
17053 
17054 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17055 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17056 	    NULL, NULL, NULL, NULL, NULL, 0);
17057 
17058 	ASSERT(MUTEX_HELD(&cpu_lock));
17059 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17060 	    offsetof(dtrace_probe_t, dtpr_nextmod),
17061 	    offsetof(dtrace_probe_t, dtpr_prevmod));
17062 
17063 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17064 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17065 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17066 
17067 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17068 	    offsetof(dtrace_probe_t, dtpr_nextname),
17069 	    offsetof(dtrace_probe_t, dtpr_prevname));
17070 
17071 	if (dtrace_retain_max < 1) {
17072 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17073 		    "setting to 1", dtrace_retain_max);
17074 		dtrace_retain_max = 1;
17075 	}
17076 
17077 	/*
17078 	 * Now discover our toxic ranges.
17079 	 */
17080 	dtrace_toxic_ranges(dtrace_toxrange_add);
17081 
17082 	/*
17083 	 * Before we register ourselves as a provider to our own framework,
17084 	 * we would like to assert that dtrace_provider is NULL -- but that's
17085 	 * not true if we were loaded as a dependency of a DTrace provider.
17086 	 * Once we've registered, we can assert that dtrace_provider is our
17087 	 * pseudo provider.
17088 	 */
17089 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17090 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17091 
17092 	ASSERT(dtrace_provider != NULL);
17093 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17094 
17095 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17096 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17097 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17098 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17099 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17100 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17101 
17102 	dtrace_anon_property();
17103 	mutex_exit(&cpu_lock);
17104 
17105 	/*
17106 	 * If there are already providers, we must ask them to provide their
17107 	 * probes, and then match any anonymous enabling against them.  Note
17108 	 * that there should be no other retained enablings at this time:
17109 	 * the only retained enablings at this time should be the anonymous
17110 	 * enabling.
17111 	 */
17112 	if (dtrace_anon.dta_enabling != NULL) {
17113 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17114 
17115 		dtrace_enabling_provide(NULL);
17116 		state = dtrace_anon.dta_state;
17117 
17118 		/*
17119 		 * We couldn't hold cpu_lock across the above call to
17120 		 * dtrace_enabling_provide(), but we must hold it to actually
17121 		 * enable the probes.  We have to drop all of our locks, pick
17122 		 * up cpu_lock, and regain our locks before matching the
17123 		 * retained anonymous enabling.
17124 		 */
17125 		mutex_exit(&dtrace_lock);
17126 		mutex_exit(&dtrace_provider_lock);
17127 
17128 		mutex_enter(&cpu_lock);
17129 		mutex_enter(&dtrace_provider_lock);
17130 		mutex_enter(&dtrace_lock);
17131 
17132 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17133 			(void) dtrace_enabling_match(enab, NULL);
17134 
17135 		mutex_exit(&cpu_lock);
17136 	}
17137 
17138 	mutex_exit(&dtrace_lock);
17139 	mutex_exit(&dtrace_provider_lock);
17140 
17141 	if (state != NULL) {
17142 		/*
17143 		 * If we created any anonymous state, set it going now.
17144 		 */
17145 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17146 	}
17147 
17148 	return (DDI_SUCCESS);
17149 }
17150 #endif	/* illumos */
17151 
17152 #ifndef illumos
17153 static void dtrace_dtr(void *);
17154 #endif
17155 
17156 /*ARGSUSED*/
17157 static int
17158 #ifdef illumos
17159 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17160 #else
17161 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17162 #endif
17163 {
17164 	dtrace_state_t *state;
17165 	uint32_t priv;
17166 	uid_t uid;
17167 	zoneid_t zoneid;
17168 
17169 #ifdef illumos
17170 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17171 		return (0);
17172 
17173 	/*
17174 	 * If this wasn't an open with the "helper" minor, then it must be
17175 	 * the "dtrace" minor.
17176 	 */
17177 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17178 		return (ENXIO);
17179 #else
17180 	cred_t *cred_p = NULL;
17181 	cred_p = dev->si_cred;
17182 
17183 	/*
17184 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17185 	 * caller lacks sufficient permission to do anything with DTrace.
17186 	 */
17187 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17188 	if (priv == DTRACE_PRIV_NONE) {
17189 #endif
17190 
17191 		return (EACCES);
17192 	}
17193 
17194 	/*
17195 	 * Ask all providers to provide all their probes.
17196 	 */
17197 	mutex_enter(&dtrace_provider_lock);
17198 	dtrace_probe_provide(NULL, NULL);
17199 	mutex_exit(&dtrace_provider_lock);
17200 
17201 	mutex_enter(&cpu_lock);
17202 	mutex_enter(&dtrace_lock);
17203 	dtrace_opens++;
17204 	dtrace_membar_producer();
17205 
17206 #ifdef illumos
17207 	/*
17208 	 * If the kernel debugger is active (that is, if the kernel debugger
17209 	 * modified text in some way), we won't allow the open.
17210 	 */
17211 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17212 		dtrace_opens--;
17213 		mutex_exit(&cpu_lock);
17214 		mutex_exit(&dtrace_lock);
17215 		return (EBUSY);
17216 	}
17217 
17218 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17219 		/*
17220 		 * If DTrace helper tracing is enabled, we need to allocate the
17221 		 * trace buffer and initialize the values.
17222 		 */
17223 		dtrace_helptrace_buffer =
17224 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17225 		dtrace_helptrace_next = 0;
17226 		dtrace_helptrace_wrapped = 0;
17227 		dtrace_helptrace_enable = 0;
17228 	}
17229 
17230 	state = dtrace_state_create(devp, cred_p);
17231 #else
17232 	state = dtrace_state_create(dev, NULL);
17233 	devfs_set_cdevpriv(state, dtrace_dtr);
17234 #endif
17235 
17236 	mutex_exit(&cpu_lock);
17237 
17238 	if (state == NULL) {
17239 #ifdef illumos
17240 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17241 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17242 #else
17243 		--dtrace_opens;
17244 #endif
17245 		mutex_exit(&dtrace_lock);
17246 		return (EAGAIN);
17247 	}
17248 
17249 	mutex_exit(&dtrace_lock);
17250 
17251 	return (0);
17252 }
17253 
17254 /*ARGSUSED*/
17255 #ifdef illumos
17256 static int
17257 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17258 #else
17259 static void
17260 dtrace_dtr(void *data)
17261 #endif
17262 {
17263 #ifdef illumos
17264 	minor_t minor = getminor(dev);
17265 	dtrace_state_t *state;
17266 #endif
17267 	dtrace_helptrace_t *buf = NULL;
17268 
17269 #ifdef illumos
17270 	if (minor == DTRACEMNRN_HELPER)
17271 		return (0);
17272 
17273 	state = ddi_get_soft_state(dtrace_softstate, minor);
17274 #else
17275 	dtrace_state_t *state = data;
17276 #endif
17277 
17278 	mutex_enter(&cpu_lock);
17279 	mutex_enter(&dtrace_lock);
17280 
17281 #ifdef illumos
17282 	if (state->dts_anon)
17283 #else
17284 	if (state != NULL && state->dts_anon)
17285 #endif
17286 	{
17287 		/*
17288 		 * There is anonymous state. Destroy that first.
17289 		 */
17290 		ASSERT(dtrace_anon.dta_state == NULL);
17291 		dtrace_state_destroy(state->dts_anon);
17292 	}
17293 
17294 	if (dtrace_helptrace_disable) {
17295 		/*
17296 		 * If we have been told to disable helper tracing, set the
17297 		 * buffer to NULL before calling into dtrace_state_destroy();
17298 		 * we take advantage of its dtrace_sync() to know that no
17299 		 * CPU is in probe context with enabled helper tracing
17300 		 * after it returns.
17301 		 */
17302 		buf = dtrace_helptrace_buffer;
17303 		dtrace_helptrace_buffer = NULL;
17304 	}
17305 
17306 #ifdef illumos
17307 	dtrace_state_destroy(state);
17308 #else
17309 	if (state != NULL) {
17310 		dtrace_state_destroy(state);
17311 		kmem_free(state, 0);
17312 	}
17313 #endif
17314 	ASSERT(dtrace_opens > 0);
17315 
17316 #ifdef illumos
17317 	/*
17318 	 * Only relinquish control of the kernel debugger interface when there
17319 	 * are no consumers and no anonymous enablings.
17320 	 */
17321 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17322 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17323 #else
17324 	--dtrace_opens;
17325 #endif
17326 
17327 	if (buf != NULL) {
17328 		kmem_free(buf, dtrace_helptrace_bufsize);
17329 		dtrace_helptrace_disable = 0;
17330 	}
17331 
17332 	mutex_exit(&dtrace_lock);
17333 	mutex_exit(&cpu_lock);
17334 
17335 #ifdef illumos
17336 	return (0);
17337 #endif
17338 }
17339 
17340 #ifdef illumos
17341 /*ARGSUSED*/
17342 static int
17343 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17344 {
17345 	int rval;
17346 	dof_helper_t help, *dhp = NULL;
17347 
17348 	switch (cmd) {
17349 	case DTRACEHIOC_ADDDOF:
17350 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17351 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17352 			return (EFAULT);
17353 		}
17354 
17355 		dhp = &help;
17356 		arg = (intptr_t)help.dofhp_dof;
17357 		/*FALLTHROUGH*/
17358 
17359 	case DTRACEHIOC_ADD: {
17360 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17361 
17362 		if (dof == NULL)
17363 			return (rval);
17364 
17365 		mutex_enter(&dtrace_lock);
17366 
17367 		/*
17368 		 * dtrace_helper_slurp() takes responsibility for the dof --
17369 		 * it may free it now or it may save it and free it later.
17370 		 */
17371 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17372 			*rv = rval;
17373 			rval = 0;
17374 		} else {
17375 			rval = EINVAL;
17376 		}
17377 
17378 		mutex_exit(&dtrace_lock);
17379 		return (rval);
17380 	}
17381 
17382 	case DTRACEHIOC_REMOVE: {
17383 		mutex_enter(&dtrace_lock);
17384 		rval = dtrace_helper_destroygen(NULL, arg);
17385 		mutex_exit(&dtrace_lock);
17386 
17387 		return (rval);
17388 	}
17389 
17390 	default:
17391 		break;
17392 	}
17393 
17394 	return (ENOTTY);
17395 }
17396 
17397 /*ARGSUSED*/
17398 static int
17399 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17400 {
17401 	minor_t minor = getminor(dev);
17402 	dtrace_state_t *state;
17403 	int rval;
17404 
17405 	if (minor == DTRACEMNRN_HELPER)
17406 		return (dtrace_ioctl_helper(cmd, arg, rv));
17407 
17408 	state = ddi_get_soft_state(dtrace_softstate, minor);
17409 
17410 	if (state->dts_anon) {
17411 		ASSERT(dtrace_anon.dta_state == NULL);
17412 		state = state->dts_anon;
17413 	}
17414 
17415 	switch (cmd) {
17416 	case DTRACEIOC_PROVIDER: {
17417 		dtrace_providerdesc_t pvd;
17418 		dtrace_provider_t *pvp;
17419 
17420 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17421 			return (EFAULT);
17422 
17423 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17424 		mutex_enter(&dtrace_provider_lock);
17425 
17426 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17427 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17428 				break;
17429 		}
17430 
17431 		mutex_exit(&dtrace_provider_lock);
17432 
17433 		if (pvp == NULL)
17434 			return (ESRCH);
17435 
17436 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17437 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17438 
17439 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17440 			return (EFAULT);
17441 
17442 		return (0);
17443 	}
17444 
17445 	case DTRACEIOC_EPROBE: {
17446 		dtrace_eprobedesc_t epdesc;
17447 		dtrace_ecb_t *ecb;
17448 		dtrace_action_t *act;
17449 		void *buf;
17450 		size_t size;
17451 		uintptr_t dest;
17452 		int nrecs;
17453 
17454 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17455 			return (EFAULT);
17456 
17457 		mutex_enter(&dtrace_lock);
17458 
17459 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17460 			mutex_exit(&dtrace_lock);
17461 			return (EINVAL);
17462 		}
17463 
17464 		if (ecb->dte_probe == NULL) {
17465 			mutex_exit(&dtrace_lock);
17466 			return (EINVAL);
17467 		}
17468 
17469 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17470 		epdesc.dtepd_uarg = ecb->dte_uarg;
17471 		epdesc.dtepd_size = ecb->dte_size;
17472 
17473 		nrecs = epdesc.dtepd_nrecs;
17474 		epdesc.dtepd_nrecs = 0;
17475 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17476 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17477 				continue;
17478 
17479 			epdesc.dtepd_nrecs++;
17480 		}
17481 
17482 		/*
17483 		 * Now that we have the size, we need to allocate a temporary
17484 		 * buffer in which to store the complete description.  We need
17485 		 * the temporary buffer to be able to drop dtrace_lock()
17486 		 * across the copyout(), below.
17487 		 */
17488 		size = sizeof (dtrace_eprobedesc_t) +
17489 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17490 
17491 		buf = kmem_alloc(size, KM_SLEEP);
17492 		dest = (uintptr_t)buf;
17493 
17494 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17495 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17496 
17497 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17498 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17499 				continue;
17500 
17501 			if (nrecs-- == 0)
17502 				break;
17503 
17504 			bcopy(&act->dta_rec, (void *)dest,
17505 			    sizeof (dtrace_recdesc_t));
17506 			dest += sizeof (dtrace_recdesc_t);
17507 		}
17508 
17509 		mutex_exit(&dtrace_lock);
17510 
17511 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17512 			kmem_free(buf, size);
17513 			return (EFAULT);
17514 		}
17515 
17516 		kmem_free(buf, size);
17517 		return (0);
17518 	}
17519 
17520 	case DTRACEIOC_AGGDESC: {
17521 		dtrace_aggdesc_t aggdesc;
17522 		dtrace_action_t *act;
17523 		dtrace_aggregation_t *agg;
17524 		int nrecs;
17525 		uint32_t offs;
17526 		dtrace_recdesc_t *lrec;
17527 		void *buf;
17528 		size_t size;
17529 		uintptr_t dest;
17530 
17531 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17532 			return (EFAULT);
17533 
17534 		mutex_enter(&dtrace_lock);
17535 
17536 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17537 			mutex_exit(&dtrace_lock);
17538 			return (EINVAL);
17539 		}
17540 
17541 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17542 
17543 		nrecs = aggdesc.dtagd_nrecs;
17544 		aggdesc.dtagd_nrecs = 0;
17545 
17546 		offs = agg->dtag_base;
17547 		lrec = &agg->dtag_action.dta_rec;
17548 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17549 
17550 		for (act = agg->dtag_first; ; act = act->dta_next) {
17551 			ASSERT(act->dta_intuple ||
17552 			    DTRACEACT_ISAGG(act->dta_kind));
17553 
17554 			/*
17555 			 * If this action has a record size of zero, it
17556 			 * denotes an argument to the aggregating action.
17557 			 * Because the presence of this record doesn't (or
17558 			 * shouldn't) affect the way the data is interpreted,
17559 			 * we don't copy it out to save user-level the
17560 			 * confusion of dealing with a zero-length record.
17561 			 */
17562 			if (act->dta_rec.dtrd_size == 0) {
17563 				ASSERT(agg->dtag_hasarg);
17564 				continue;
17565 			}
17566 
17567 			aggdesc.dtagd_nrecs++;
17568 
17569 			if (act == &agg->dtag_action)
17570 				break;
17571 		}
17572 
17573 		/*
17574 		 * Now that we have the size, we need to allocate a temporary
17575 		 * buffer in which to store the complete description.  We need
17576 		 * the temporary buffer to be able to drop dtrace_lock()
17577 		 * across the copyout(), below.
17578 		 */
17579 		size = sizeof (dtrace_aggdesc_t) +
17580 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17581 
17582 		buf = kmem_alloc(size, KM_SLEEP);
17583 		dest = (uintptr_t)buf;
17584 
17585 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17586 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17587 
17588 		for (act = agg->dtag_first; ; act = act->dta_next) {
17589 			dtrace_recdesc_t rec = act->dta_rec;
17590 
17591 			/*
17592 			 * See the comment in the above loop for why we pass
17593 			 * over zero-length records.
17594 			 */
17595 			if (rec.dtrd_size == 0) {
17596 				ASSERT(agg->dtag_hasarg);
17597 				continue;
17598 			}
17599 
17600 			if (nrecs-- == 0)
17601 				break;
17602 
17603 			rec.dtrd_offset -= offs;
17604 			bcopy(&rec, (void *)dest, sizeof (rec));
17605 			dest += sizeof (dtrace_recdesc_t);
17606 
17607 			if (act == &agg->dtag_action)
17608 				break;
17609 		}
17610 
17611 		mutex_exit(&dtrace_lock);
17612 
17613 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17614 			kmem_free(buf, size);
17615 			return (EFAULT);
17616 		}
17617 
17618 		kmem_free(buf, size);
17619 		return (0);
17620 	}
17621 
17622 	case DTRACEIOC_ENABLE: {
17623 		dof_hdr_t *dof;
17624 		dtrace_enabling_t *enab = NULL;
17625 		dtrace_vstate_t *vstate;
17626 		int err = 0;
17627 
17628 		*rv = 0;
17629 
17630 		/*
17631 		 * If a NULL argument has been passed, we take this as our
17632 		 * cue to reevaluate our enablings.
17633 		 */
17634 		if (arg == NULL) {
17635 			dtrace_enabling_matchall();
17636 
17637 			return (0);
17638 		}
17639 
17640 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17641 			return (rval);
17642 
17643 		mutex_enter(&cpu_lock);
17644 		mutex_enter(&dtrace_lock);
17645 		vstate = &state->dts_vstate;
17646 
17647 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17648 			mutex_exit(&dtrace_lock);
17649 			mutex_exit(&cpu_lock);
17650 			dtrace_dof_destroy(dof);
17651 			return (EBUSY);
17652 		}
17653 
17654 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17655 			mutex_exit(&dtrace_lock);
17656 			mutex_exit(&cpu_lock);
17657 			dtrace_dof_destroy(dof);
17658 			return (EINVAL);
17659 		}
17660 
17661 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17662 			dtrace_enabling_destroy(enab);
17663 			mutex_exit(&dtrace_lock);
17664 			mutex_exit(&cpu_lock);
17665 			dtrace_dof_destroy(dof);
17666 			return (rval);
17667 		}
17668 
17669 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17670 			err = dtrace_enabling_retain(enab);
17671 		} else {
17672 			dtrace_enabling_destroy(enab);
17673 		}
17674 
17675 		mutex_exit(&cpu_lock);
17676 		mutex_exit(&dtrace_lock);
17677 		dtrace_dof_destroy(dof);
17678 
17679 		return (err);
17680 	}
17681 
17682 	case DTRACEIOC_REPLICATE: {
17683 		dtrace_repldesc_t desc;
17684 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17685 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17686 		int err;
17687 
17688 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17689 			return (EFAULT);
17690 
17691 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17692 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17693 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17694 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17695 
17696 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17697 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17698 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17699 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17700 
17701 		mutex_enter(&dtrace_lock);
17702 		err = dtrace_enabling_replicate(state, match, create);
17703 		mutex_exit(&dtrace_lock);
17704 
17705 		return (err);
17706 	}
17707 
17708 	case DTRACEIOC_PROBEMATCH:
17709 	case DTRACEIOC_PROBES: {
17710 		dtrace_probe_t *probe = NULL;
17711 		dtrace_probedesc_t desc;
17712 		dtrace_probekey_t pkey;
17713 		dtrace_id_t i;
17714 		int m = 0;
17715 		uint32_t priv;
17716 		uid_t uid;
17717 		zoneid_t zoneid;
17718 
17719 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17720 			return (EFAULT);
17721 
17722 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17723 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17724 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17725 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17726 
17727 		/*
17728 		 * Before we attempt to match this probe, we want to give
17729 		 * all providers the opportunity to provide it.
17730 		 */
17731 		if (desc.dtpd_id == DTRACE_IDNONE) {
17732 			mutex_enter(&dtrace_provider_lock);
17733 			dtrace_probe_provide(&desc, NULL);
17734 			mutex_exit(&dtrace_provider_lock);
17735 			desc.dtpd_id++;
17736 		}
17737 
17738 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17739 			dtrace_probekey(&desc, &pkey);
17740 			pkey.dtpk_id = DTRACE_IDNONE;
17741 		}
17742 
17743 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17744 
17745 		mutex_enter(&dtrace_lock);
17746 
17747 		if (cmd == DTRACEIOC_PROBEMATCH) {
17748 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17749 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17750 				    (m = dtrace_match_probe(probe, &pkey,
17751 				    priv, uid, zoneid)) != 0)
17752 					break;
17753 			}
17754 
17755 			if (m < 0) {
17756 				mutex_exit(&dtrace_lock);
17757 				return (EINVAL);
17758 			}
17759 
17760 		} else {
17761 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17762 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17763 				    dtrace_match_priv(probe, priv, uid, zoneid))
17764 					break;
17765 			}
17766 		}
17767 
17768 		if (probe == NULL) {
17769 			mutex_exit(&dtrace_lock);
17770 			return (ESRCH);
17771 		}
17772 
17773 		dtrace_probe_description(probe, &desc);
17774 		mutex_exit(&dtrace_lock);
17775 
17776 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17777 			return (EFAULT);
17778 
17779 		return (0);
17780 	}
17781 
17782 	case DTRACEIOC_PROBEARG: {
17783 		dtrace_argdesc_t desc;
17784 		dtrace_probe_t *probe;
17785 		dtrace_provider_t *prov;
17786 
17787 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17788 			return (EFAULT);
17789 
17790 		if (desc.dtargd_id == DTRACE_IDNONE)
17791 			return (EINVAL);
17792 
17793 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17794 			return (EINVAL);
17795 
17796 		mutex_enter(&dtrace_provider_lock);
17797 		mutex_enter(&mod_lock);
17798 		mutex_enter(&dtrace_lock);
17799 
17800 		if (desc.dtargd_id > dtrace_nprobes) {
17801 			mutex_exit(&dtrace_lock);
17802 			mutex_exit(&mod_lock);
17803 			mutex_exit(&dtrace_provider_lock);
17804 			return (EINVAL);
17805 		}
17806 
17807 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17808 			mutex_exit(&dtrace_lock);
17809 			mutex_exit(&mod_lock);
17810 			mutex_exit(&dtrace_provider_lock);
17811 			return (EINVAL);
17812 		}
17813 
17814 		mutex_exit(&dtrace_lock);
17815 
17816 		prov = probe->dtpr_provider;
17817 
17818 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17819 			/*
17820 			 * There isn't any typed information for this probe.
17821 			 * Set the argument number to DTRACE_ARGNONE.
17822 			 */
17823 			desc.dtargd_ndx = DTRACE_ARGNONE;
17824 		} else {
17825 			desc.dtargd_native[0] = '\0';
17826 			desc.dtargd_xlate[0] = '\0';
17827 			desc.dtargd_mapping = desc.dtargd_ndx;
17828 
17829 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17830 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17831 		}
17832 
17833 		mutex_exit(&mod_lock);
17834 		mutex_exit(&dtrace_provider_lock);
17835 
17836 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17837 			return (EFAULT);
17838 
17839 		return (0);
17840 	}
17841 
17842 	case DTRACEIOC_GO: {
17843 		processorid_t cpuid;
17844 		rval = dtrace_state_go(state, &cpuid);
17845 
17846 		if (rval != 0)
17847 			return (rval);
17848 
17849 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17850 			return (EFAULT);
17851 
17852 		return (0);
17853 	}
17854 
17855 	case DTRACEIOC_STOP: {
17856 		processorid_t cpuid;
17857 
17858 		mutex_enter(&dtrace_lock);
17859 		rval = dtrace_state_stop(state, &cpuid);
17860 		mutex_exit(&dtrace_lock);
17861 
17862 		if (rval != 0)
17863 			return (rval);
17864 
17865 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17866 			return (EFAULT);
17867 
17868 		return (0);
17869 	}
17870 
17871 	case DTRACEIOC_DOFGET: {
17872 		dof_hdr_t hdr, *dof;
17873 		uint64_t len;
17874 
17875 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17876 			return (EFAULT);
17877 
17878 		mutex_enter(&dtrace_lock);
17879 		dof = dtrace_dof_create(state);
17880 		mutex_exit(&dtrace_lock);
17881 
17882 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17883 		rval = copyout(dof, (void *)arg, len);
17884 		dtrace_dof_destroy(dof);
17885 
17886 		return (rval == 0 ? 0 : EFAULT);
17887 	}
17888 
17889 	case DTRACEIOC_AGGSNAP:
17890 	case DTRACEIOC_BUFSNAP: {
17891 		dtrace_bufdesc_t desc;
17892 		caddr_t cached;
17893 		dtrace_buffer_t *buf;
17894 
17895 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17896 			return (EFAULT);
17897 
17898 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17899 			return (EINVAL);
17900 
17901 		mutex_enter(&dtrace_lock);
17902 
17903 		if (cmd == DTRACEIOC_BUFSNAP) {
17904 			buf = &state->dts_buffer[desc.dtbd_cpu];
17905 		} else {
17906 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17907 		}
17908 
17909 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17910 			size_t sz = buf->dtb_offset;
17911 
17912 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17913 				mutex_exit(&dtrace_lock);
17914 				return (EBUSY);
17915 			}
17916 
17917 			/*
17918 			 * If this buffer has already been consumed, we're
17919 			 * going to indicate that there's nothing left here
17920 			 * to consume.
17921 			 */
17922 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17923 				mutex_exit(&dtrace_lock);
17924 
17925 				desc.dtbd_size = 0;
17926 				desc.dtbd_drops = 0;
17927 				desc.dtbd_errors = 0;
17928 				desc.dtbd_oldest = 0;
17929 				sz = sizeof (desc);
17930 
17931 				if (copyout(&desc, (void *)arg, sz) != 0)
17932 					return (EFAULT);
17933 
17934 				return (0);
17935 			}
17936 
17937 			/*
17938 			 * If this is a ring buffer that has wrapped, we want
17939 			 * to copy the whole thing out.
17940 			 */
17941 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17942 				dtrace_buffer_polish(buf);
17943 				sz = buf->dtb_size;
17944 			}
17945 
17946 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17947 				mutex_exit(&dtrace_lock);
17948 				return (EFAULT);
17949 			}
17950 
17951 			desc.dtbd_size = sz;
17952 			desc.dtbd_drops = buf->dtb_drops;
17953 			desc.dtbd_errors = buf->dtb_errors;
17954 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17955 			desc.dtbd_timestamp = dtrace_gethrtime();
17956 
17957 			mutex_exit(&dtrace_lock);
17958 
17959 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17960 				return (EFAULT);
17961 
17962 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17963 
17964 			return (0);
17965 		}
17966 
17967 		if (buf->dtb_tomax == NULL) {
17968 			ASSERT(buf->dtb_xamot == NULL);
17969 			mutex_exit(&dtrace_lock);
17970 			return (ENOENT);
17971 		}
17972 
17973 		cached = buf->dtb_tomax;
17974 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17975 
17976 		dtrace_xcall(desc.dtbd_cpu,
17977 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17978 
17979 		state->dts_errors += buf->dtb_xamot_errors;
17980 
17981 		/*
17982 		 * If the buffers did not actually switch, then the cross call
17983 		 * did not take place -- presumably because the given CPU is
17984 		 * not in the ready set.  If this is the case, we'll return
17985 		 * ENOENT.
17986 		 */
17987 		if (buf->dtb_tomax == cached) {
17988 			ASSERT(buf->dtb_xamot != cached);
17989 			mutex_exit(&dtrace_lock);
17990 			return (ENOENT);
17991 		}
17992 
17993 		ASSERT(cached == buf->dtb_xamot);
17994 
17995 		/*
17996 		 * We have our snapshot; now copy it out.
17997 		 */
17998 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17999 		    buf->dtb_xamot_offset) != 0) {
18000 			mutex_exit(&dtrace_lock);
18001 			return (EFAULT);
18002 		}
18003 
18004 		desc.dtbd_size = buf->dtb_xamot_offset;
18005 		desc.dtbd_drops = buf->dtb_xamot_drops;
18006 		desc.dtbd_errors = buf->dtb_xamot_errors;
18007 		desc.dtbd_oldest = 0;
18008 		desc.dtbd_timestamp = buf->dtb_switched;
18009 
18010 		mutex_exit(&dtrace_lock);
18011 
18012 		/*
18013 		 * Finally, copy out the buffer description.
18014 		 */
18015 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18016 			return (EFAULT);
18017 
18018 		return (0);
18019 	}
18020 
18021 	case DTRACEIOC_CONF: {
18022 		dtrace_conf_t conf;
18023 
18024 		bzero(&conf, sizeof (conf));
18025 		conf.dtc_difversion = DIF_VERSION;
18026 		conf.dtc_difintregs = DIF_DIR_NREGS;
18027 		conf.dtc_diftupregs = DIF_DTR_NREGS;
18028 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18029 
18030 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18031 			return (EFAULT);
18032 
18033 		return (0);
18034 	}
18035 
18036 	case DTRACEIOC_STATUS: {
18037 		dtrace_status_t stat;
18038 		dtrace_dstate_t *dstate;
18039 		int i, j;
18040 		uint64_t nerrs;
18041 
18042 		/*
18043 		 * See the comment in dtrace_state_deadman() for the reason
18044 		 * for setting dts_laststatus to INT64_MAX before setting
18045 		 * it to the correct value.
18046 		 */
18047 		state->dts_laststatus = INT64_MAX;
18048 		dtrace_membar_producer();
18049 		state->dts_laststatus = dtrace_gethrtime();
18050 
18051 		bzero(&stat, sizeof (stat));
18052 
18053 		mutex_enter(&dtrace_lock);
18054 
18055 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18056 			mutex_exit(&dtrace_lock);
18057 			return (ENOENT);
18058 		}
18059 
18060 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18061 			stat.dtst_exiting = 1;
18062 
18063 		nerrs = state->dts_errors;
18064 		dstate = &state->dts_vstate.dtvs_dynvars;
18065 
18066 		for (i = 0; i < NCPU; i++) {
18067 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18068 
18069 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18070 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18071 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18072 
18073 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18074 				stat.dtst_filled++;
18075 
18076 			nerrs += state->dts_buffer[i].dtb_errors;
18077 
18078 			for (j = 0; j < state->dts_nspeculations; j++) {
18079 				dtrace_speculation_t *spec;
18080 				dtrace_buffer_t *buf;
18081 
18082 				spec = &state->dts_speculations[j];
18083 				buf = &spec->dtsp_buffer[i];
18084 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18085 			}
18086 		}
18087 
18088 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18089 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18090 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18091 		stat.dtst_dblerrors = state->dts_dblerrors;
18092 		stat.dtst_killed =
18093 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18094 		stat.dtst_errors = nerrs;
18095 
18096 		mutex_exit(&dtrace_lock);
18097 
18098 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18099 			return (EFAULT);
18100 
18101 		return (0);
18102 	}
18103 
18104 	case DTRACEIOC_FORMAT: {
18105 		dtrace_fmtdesc_t fmt;
18106 		char *str;
18107 		int len;
18108 
18109 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18110 			return (EFAULT);
18111 
18112 		mutex_enter(&dtrace_lock);
18113 
18114 		if (fmt.dtfd_format == 0 ||
18115 		    fmt.dtfd_format > state->dts_nformats) {
18116 			mutex_exit(&dtrace_lock);
18117 			return (EINVAL);
18118 		}
18119 
18120 		/*
18121 		 * Format strings are allocated contiguously and they are
18122 		 * never freed; if a format index is less than the number
18123 		 * of formats, we can assert that the format map is non-NULL
18124 		 * and that the format for the specified index is non-NULL.
18125 		 */
18126 		ASSERT(state->dts_formats != NULL);
18127 		str = state->dts_formats[fmt.dtfd_format - 1];
18128 		ASSERT(str != NULL);
18129 
18130 		len = strlen(str) + 1;
18131 
18132 		if (len > fmt.dtfd_length) {
18133 			fmt.dtfd_length = len;
18134 
18135 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18136 				mutex_exit(&dtrace_lock);
18137 				return (EINVAL);
18138 			}
18139 		} else {
18140 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18141 				mutex_exit(&dtrace_lock);
18142 				return (EINVAL);
18143 			}
18144 		}
18145 
18146 		mutex_exit(&dtrace_lock);
18147 		return (0);
18148 	}
18149 
18150 	default:
18151 		break;
18152 	}
18153 
18154 	return (ENOTTY);
18155 }
18156 
18157 /*ARGSUSED*/
18158 static int
18159 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18160 {
18161 	dtrace_state_t *state;
18162 
18163 	switch (cmd) {
18164 	case DDI_DETACH:
18165 		break;
18166 
18167 	case DDI_SUSPEND:
18168 		return (DDI_SUCCESS);
18169 
18170 	default:
18171 		return (DDI_FAILURE);
18172 	}
18173 
18174 	mutex_enter(&cpu_lock);
18175 	mutex_enter(&dtrace_provider_lock);
18176 	mutex_enter(&dtrace_lock);
18177 
18178 	ASSERT(dtrace_opens == 0);
18179 
18180 	if (dtrace_helpers > 0) {
18181 		mutex_exit(&dtrace_provider_lock);
18182 		mutex_exit(&dtrace_lock);
18183 		mutex_exit(&cpu_lock);
18184 		return (DDI_FAILURE);
18185 	}
18186 
18187 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18188 		mutex_exit(&dtrace_provider_lock);
18189 		mutex_exit(&dtrace_lock);
18190 		mutex_exit(&cpu_lock);
18191 		return (DDI_FAILURE);
18192 	}
18193 
18194 	dtrace_provider = NULL;
18195 
18196 	if ((state = dtrace_anon_grab()) != NULL) {
18197 		/*
18198 		 * If there were ECBs on this state, the provider should
18199 		 * have not been allowed to detach; assert that there is
18200 		 * none.
18201 		 */
18202 		ASSERT(state->dts_necbs == 0);
18203 		dtrace_state_destroy(state);
18204 
18205 		/*
18206 		 * If we're being detached with anonymous state, we need to
18207 		 * indicate to the kernel debugger that DTrace is now inactive.
18208 		 */
18209 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18210 	}
18211 
18212 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18213 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18214 	dtrace_cpu_init = NULL;
18215 	dtrace_helpers_cleanup = NULL;
18216 	dtrace_helpers_fork = NULL;
18217 	dtrace_cpustart_init = NULL;
18218 	dtrace_cpustart_fini = NULL;
18219 	dtrace_debugger_init = NULL;
18220 	dtrace_debugger_fini = NULL;
18221 	dtrace_modload = NULL;
18222 	dtrace_modunload = NULL;
18223 
18224 	ASSERT(dtrace_getf == 0);
18225 	ASSERT(dtrace_closef == NULL);
18226 
18227 	mutex_exit(&cpu_lock);
18228 
18229 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18230 	dtrace_probes = NULL;
18231 	dtrace_nprobes = 0;
18232 
18233 	dtrace_hash_destroy(dtrace_bymod);
18234 	dtrace_hash_destroy(dtrace_byfunc);
18235 	dtrace_hash_destroy(dtrace_byname);
18236 	dtrace_bymod = NULL;
18237 	dtrace_byfunc = NULL;
18238 	dtrace_byname = NULL;
18239 
18240 	kmem_cache_destroy(dtrace_state_cache);
18241 	vmem_destroy(dtrace_minor);
18242 	vmem_destroy(dtrace_arena);
18243 
18244 	if (dtrace_toxrange != NULL) {
18245 		kmem_free(dtrace_toxrange,
18246 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18247 		dtrace_toxrange = NULL;
18248 		dtrace_toxranges = 0;
18249 		dtrace_toxranges_max = 0;
18250 	}
18251 
18252 	ddi_remove_minor_node(dtrace_devi, NULL);
18253 	dtrace_devi = NULL;
18254 
18255 	ddi_soft_state_fini(&dtrace_softstate);
18256 
18257 	ASSERT(dtrace_vtime_references == 0);
18258 	ASSERT(dtrace_opens == 0);
18259 	ASSERT(dtrace_retained == NULL);
18260 
18261 	mutex_exit(&dtrace_lock);
18262 	mutex_exit(&dtrace_provider_lock);
18263 
18264 	/*
18265 	 * We don't destroy the task queue until after we have dropped our
18266 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18267 	 * attempting to do work after we have effectively detached but before
18268 	 * the task queue has been destroyed, all tasks dispatched via the
18269 	 * task queue must check that DTrace is still attached before
18270 	 * performing any operation.
18271 	 */
18272 	taskq_destroy(dtrace_taskq);
18273 	dtrace_taskq = NULL;
18274 
18275 	return (DDI_SUCCESS);
18276 }
18277 #endif
18278 
18279 #ifdef illumos
18280 /*ARGSUSED*/
18281 static int
18282 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18283 {
18284 	int error;
18285 
18286 	switch (infocmd) {
18287 	case DDI_INFO_DEVT2DEVINFO:
18288 		*result = (void *)dtrace_devi;
18289 		error = DDI_SUCCESS;
18290 		break;
18291 	case DDI_INFO_DEVT2INSTANCE:
18292 		*result = (void *)0;
18293 		error = DDI_SUCCESS;
18294 		break;
18295 	default:
18296 		error = DDI_FAILURE;
18297 	}
18298 	return (error);
18299 }
18300 #endif
18301 
18302 #ifdef illumos
18303 static struct cb_ops dtrace_cb_ops = {
18304 	dtrace_open,		/* open */
18305 	dtrace_close,		/* close */
18306 	nulldev,		/* strategy */
18307 	nulldev,		/* print */
18308 	nodev,			/* dump */
18309 	nodev,			/* read */
18310 	nodev,			/* write */
18311 	dtrace_ioctl,		/* ioctl */
18312 	nodev,			/* devmap */
18313 	nodev,			/* mmap */
18314 	nodev,			/* segmap */
18315 	nochpoll,		/* poll */
18316 	ddi_prop_op,		/* cb_prop_op */
18317 	0,			/* streamtab  */
18318 	D_NEW | D_MP		/* Driver compatibility flag */
18319 };
18320 
18321 static struct dev_ops dtrace_ops = {
18322 	DEVO_REV,		/* devo_rev */
18323 	0,			/* refcnt */
18324 	dtrace_info,		/* get_dev_info */
18325 	nulldev,		/* identify */
18326 	nulldev,		/* probe */
18327 	dtrace_attach,		/* attach */
18328 	dtrace_detach,		/* detach */
18329 	nodev,			/* reset */
18330 	&dtrace_cb_ops,		/* driver operations */
18331 	NULL,			/* bus operations */
18332 	nodev			/* dev power */
18333 };
18334 
18335 static struct modldrv modldrv = {
18336 	&mod_driverops,		/* module type (this is a pseudo driver) */
18337 	"Dynamic Tracing",	/* name of module */
18338 	&dtrace_ops,		/* driver ops */
18339 };
18340 
18341 static struct modlinkage modlinkage = {
18342 	MODREV_1,
18343 	(void *)&modldrv,
18344 	NULL
18345 };
18346 
18347 int
18348 _init(void)
18349 {
18350 	return (mod_install(&modlinkage));
18351 }
18352 
18353 int
18354 _info(struct modinfo *modinfop)
18355 {
18356 	return (mod_info(&modlinkage, modinfop));
18357 }
18358 
18359 int
18360 _fini(void)
18361 {
18362 	return (mod_remove(&modlinkage));
18363 }
18364 #else
18365 
18366 static d_ioctl_t	dtrace_ioctl;
18367 static d_ioctl_t	dtrace_ioctl_helper;
18368 static void		dtrace_load(void *);
18369 static int		dtrace_unload(void);
18370 static struct cdev	*dtrace_dev;
18371 static struct cdev	*helper_dev;
18372 
18373 void dtrace_invop_init(void);
18374 void dtrace_invop_uninit(void);
18375 
18376 static struct cdevsw dtrace_cdevsw = {
18377 	.d_version	= D_VERSION,
18378 	.d_ioctl	= dtrace_ioctl,
18379 	.d_open		= dtrace_open,
18380 	.d_name		= "dtrace",
18381 };
18382 
18383 static struct cdevsw helper_cdevsw = {
18384 	.d_version	= D_VERSION,
18385 	.d_ioctl	= dtrace_ioctl_helper,
18386 	.d_name		= "helper",
18387 };
18388 
18389 #include <dtrace_anon.c>
18390 #include <dtrace_ioctl.c>
18391 #include <dtrace_load.c>
18392 #include <dtrace_modevent.c>
18393 #include <dtrace_sysctl.c>
18394 #include <dtrace_unload.c>
18395 #include <dtrace_vtime.c>
18396 #include <dtrace_hacks.c>
18397 #include <dtrace_isa.c>
18398 
18399 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18400 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18401 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18402 
18403 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18404 MODULE_VERSION(dtrace, 1);
18405 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18406 #endif
18407