1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \ 519 ((ptr) >= (mstate)->dtms_scratch_base && \ 520 (ptr) <= \ 521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany))) 522 523 #define DTRACE_LOADFUNC(bits) \ 524 /*CSTYLED*/ \ 525 uint##bits##_t \ 526 dtrace_load##bits(uintptr_t addr) \ 527 { \ 528 size_t size = bits / NBBY; \ 529 /*CSTYLED*/ \ 530 uint##bits##_t rval; \ 531 int i; \ 532 volatile uint16_t *flags = (volatile uint16_t *) \ 533 &cpu_core[curcpu].cpuc_dtrace_flags; \ 534 \ 535 DTRACE_ALIGNCHECK(addr, size, flags); \ 536 \ 537 for (i = 0; i < dtrace_toxranges; i++) { \ 538 if (addr >= dtrace_toxrange[i].dtt_limit) \ 539 continue; \ 540 \ 541 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 542 continue; \ 543 \ 544 /* \ 545 * This address falls within a toxic region; return 0. \ 546 */ \ 547 *flags |= CPU_DTRACE_BADADDR; \ 548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 549 return (0); \ 550 } \ 551 \ 552 *flags |= CPU_DTRACE_NOFAULT; \ 553 /*CSTYLED*/ \ 554 rval = *((volatile uint##bits##_t *)addr); \ 555 *flags &= ~CPU_DTRACE_NOFAULT; \ 556 \ 557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 558 } 559 560 #ifdef _LP64 561 #define dtrace_loadptr dtrace_load64 562 #else 563 #define dtrace_loadptr dtrace_load32 564 #endif 565 566 #define DTRACE_DYNHASH_FREE 0 567 #define DTRACE_DYNHASH_SINK 1 568 #define DTRACE_DYNHASH_VALID 2 569 570 #define DTRACE_MATCH_NEXT 0 571 #define DTRACE_MATCH_DONE 1 572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 573 #define DTRACE_STATE_ALIGN 64 574 575 #define DTRACE_FLAGS2FLT(flags) \ 576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 585 DTRACEFLT_UNKNOWN) 586 587 #define DTRACEACT_ISSTRING(act) \ 588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 590 591 /* Function prototype definitions: */ 592 static size_t dtrace_strlen(const char *, size_t); 593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 594 static void dtrace_enabling_provide(dtrace_provider_t *); 595 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 596 static void dtrace_enabling_matchall(void); 597 static void dtrace_enabling_reap(void); 598 static dtrace_state_t *dtrace_anon_grab(void); 599 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 600 dtrace_state_t *, uint64_t, uint64_t); 601 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 602 static void dtrace_buffer_drop(dtrace_buffer_t *); 603 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 604 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 605 dtrace_state_t *, dtrace_mstate_t *); 606 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 607 dtrace_optval_t); 608 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 609 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 610 uint16_t dtrace_load16(uintptr_t); 611 uint32_t dtrace_load32(uintptr_t); 612 uint64_t dtrace_load64(uintptr_t); 613 uint8_t dtrace_load8(uintptr_t); 614 void dtrace_dynvar_clean(dtrace_dstate_t *); 615 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 616 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 617 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 618 static int dtrace_priv_proc(dtrace_state_t *); 619 static void dtrace_getf_barrier(void); 620 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 621 dtrace_mstate_t *, dtrace_vstate_t *); 622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 623 dtrace_mstate_t *, dtrace_vstate_t *); 624 625 /* 626 * DTrace Probe Context Functions 627 * 628 * These functions are called from probe context. Because probe context is 629 * any context in which C may be called, arbitrarily locks may be held, 630 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 631 * As a result, functions called from probe context may only call other DTrace 632 * support functions -- they may not interact at all with the system at large. 633 * (Note that the ASSERT macro is made probe-context safe by redefining it in 634 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 635 * loads are to be performed from probe context, they _must_ be in terms of 636 * the safe dtrace_load*() variants. 637 * 638 * Some functions in this block are not actually called from probe context; 639 * for these functions, there will be a comment above the function reading 640 * "Note: not called from probe context." 641 */ 642 void 643 dtrace_panic(const char *format, ...) 644 { 645 va_list alist; 646 647 va_start(alist, format); 648 #ifdef __FreeBSD__ 649 vpanic(format, alist); 650 #else 651 dtrace_vpanic(format, alist); 652 #endif 653 va_end(alist); 654 } 655 656 int 657 dtrace_assfail(const char *a, const char *f, int l) 658 { 659 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 660 661 /* 662 * We just need something here that even the most clever compiler 663 * cannot optimize away. 664 */ 665 return (a[(uintptr_t)f]); 666 } 667 668 /* 669 * Atomically increment a specified error counter from probe context. 670 */ 671 static void 672 dtrace_error(uint32_t *counter) 673 { 674 /* 675 * Most counters stored to in probe context are per-CPU counters. 676 * However, there are some error conditions that are sufficiently 677 * arcane that they don't merit per-CPU storage. If these counters 678 * are incremented concurrently on different CPUs, scalability will be 679 * adversely affected -- but we don't expect them to be white-hot in a 680 * correctly constructed enabling... 681 */ 682 uint32_t oval, nval; 683 684 do { 685 oval = *counter; 686 687 if ((nval = oval + 1) == 0) { 688 /* 689 * If the counter would wrap, set it to 1 -- assuring 690 * that the counter is never zero when we have seen 691 * errors. (The counter must be 32-bits because we 692 * aren't guaranteed a 64-bit compare&swap operation.) 693 * To save this code both the infamy of being fingered 694 * by a priggish news story and the indignity of being 695 * the target of a neo-puritan witch trial, we're 696 * carefully avoiding any colorful description of the 697 * likelihood of this condition -- but suffice it to 698 * say that it is only slightly more likely than the 699 * overflow of predicate cache IDs, as discussed in 700 * dtrace_predicate_create(). 701 */ 702 nval = 1; 703 } 704 } while (dtrace_cas32(counter, oval, nval) != oval); 705 } 706 707 /* 708 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 709 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 710 */ 711 /* BEGIN CSTYLED */ 712 DTRACE_LOADFUNC(8) 713 DTRACE_LOADFUNC(16) 714 DTRACE_LOADFUNC(32) 715 DTRACE_LOADFUNC(64) 716 /* END CSTYLED */ 717 718 static int 719 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 720 { 721 if (dest < mstate->dtms_scratch_base) 722 return (0); 723 724 if (dest + size < dest) 725 return (0); 726 727 if (dest + size > mstate->dtms_scratch_ptr) 728 return (0); 729 730 return (1); 731 } 732 733 static int 734 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 735 dtrace_statvar_t **svars, int nsvars) 736 { 737 int i; 738 size_t maxglobalsize, maxlocalsize; 739 740 if (nsvars == 0) 741 return (0); 742 743 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 744 maxlocalsize = maxglobalsize * NCPU; 745 746 for (i = 0; i < nsvars; i++) { 747 dtrace_statvar_t *svar = svars[i]; 748 uint8_t scope; 749 size_t size; 750 751 if (svar == NULL || (size = svar->dtsv_size) == 0) 752 continue; 753 754 scope = svar->dtsv_var.dtdv_scope; 755 756 /* 757 * We verify that our size is valid in the spirit of providing 758 * defense in depth: we want to prevent attackers from using 759 * DTrace to escalate an orthogonal kernel heap corruption bug 760 * into the ability to store to arbitrary locations in memory. 761 */ 762 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 763 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 764 765 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 766 svar->dtsv_size)) { 767 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 768 svar->dtsv_size); 769 return (1); 770 } 771 } 772 773 return (0); 774 } 775 776 /* 777 * Check to see if the address is within a memory region to which a store may 778 * be issued. This includes the DTrace scratch areas, and any DTrace variable 779 * region. The caller of dtrace_canstore() is responsible for performing any 780 * alignment checks that are needed before stores are actually executed. 781 */ 782 static int 783 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 784 dtrace_vstate_t *vstate) 785 { 786 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 787 } 788 789 /* 790 * Implementation of dtrace_canstore which communicates the upper bound of the 791 * allowed memory region. 792 */ 793 static int 794 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 795 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 796 { 797 /* 798 * First, check to see if the address is in scratch space... 799 */ 800 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 801 mstate->dtms_scratch_size)) { 802 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 803 mstate->dtms_scratch_size); 804 return (1); 805 } 806 807 /* 808 * Now check to see if it's a dynamic variable. This check will pick 809 * up both thread-local variables and any global dynamically-allocated 810 * variables. 811 */ 812 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 813 vstate->dtvs_dynvars.dtds_size)) { 814 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 815 uintptr_t base = (uintptr_t)dstate->dtds_base + 816 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 817 uintptr_t chunkoffs; 818 dtrace_dynvar_t *dvar; 819 820 /* 821 * Before we assume that we can store here, we need to make 822 * sure that it isn't in our metadata -- storing to our 823 * dynamic variable metadata would corrupt our state. For 824 * the range to not include any dynamic variable metadata, 825 * it must: 826 * 827 * (1) Start above the hash table that is at the base of 828 * the dynamic variable space 829 * 830 * (2) Have a starting chunk offset that is beyond the 831 * dtrace_dynvar_t that is at the base of every chunk 832 * 833 * (3) Not span a chunk boundary 834 * 835 * (4) Not be in the tuple space of a dynamic variable 836 * 837 */ 838 if (addr < base) 839 return (0); 840 841 chunkoffs = (addr - base) % dstate->dtds_chunksize; 842 843 if (chunkoffs < sizeof (dtrace_dynvar_t)) 844 return (0); 845 846 if (chunkoffs + sz > dstate->dtds_chunksize) 847 return (0); 848 849 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 850 851 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 852 return (0); 853 854 if (chunkoffs < sizeof (dtrace_dynvar_t) + 855 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 856 return (0); 857 858 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 859 return (1); 860 } 861 862 /* 863 * Finally, check the static local and global variables. These checks 864 * take the longest, so we perform them last. 865 */ 866 if (dtrace_canstore_statvar(addr, sz, remain, 867 vstate->dtvs_locals, vstate->dtvs_nlocals)) 868 return (1); 869 870 if (dtrace_canstore_statvar(addr, sz, remain, 871 vstate->dtvs_globals, vstate->dtvs_nglobals)) 872 return (1); 873 874 return (0); 875 } 876 877 878 /* 879 * Convenience routine to check to see if the address is within a memory 880 * region in which a load may be issued given the user's privilege level; 881 * if not, it sets the appropriate error flags and loads 'addr' into the 882 * illegal value slot. 883 * 884 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 885 * appropriate memory access protection. 886 */ 887 static int 888 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 889 dtrace_vstate_t *vstate) 890 { 891 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 892 } 893 894 /* 895 * Implementation of dtrace_canload which communicates the uppoer bound of the 896 * allowed memory region. 897 */ 898 static int 899 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 900 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 901 { 902 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 903 file_t *fp; 904 905 /* 906 * If we hold the privilege to read from kernel memory, then 907 * everything is readable. 908 */ 909 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 910 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 911 return (1); 912 } 913 914 /* 915 * You can obviously read that which you can store. 916 */ 917 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 918 return (1); 919 920 /* 921 * We're allowed to read from our own string table. 922 */ 923 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 924 mstate->dtms_difo->dtdo_strlen)) { 925 DTRACE_RANGE_REMAIN(remain, addr, 926 mstate->dtms_difo->dtdo_strtab, 927 mstate->dtms_difo->dtdo_strlen); 928 return (1); 929 } 930 931 if (vstate->dtvs_state != NULL && 932 dtrace_priv_proc(vstate->dtvs_state)) { 933 proc_t *p; 934 935 /* 936 * When we have privileges to the current process, there are 937 * several context-related kernel structures that are safe to 938 * read, even absent the privilege to read from kernel memory. 939 * These reads are safe because these structures contain only 940 * state that (1) we're permitted to read, (2) is harmless or 941 * (3) contains pointers to additional kernel state that we're 942 * not permitted to read (and as such, do not present an 943 * opportunity for privilege escalation). Finally (and 944 * critically), because of the nature of their relation with 945 * the current thread context, the memory associated with these 946 * structures cannot change over the duration of probe context, 947 * and it is therefore impossible for this memory to be 948 * deallocated and reallocated as something else while it's 949 * being operated upon. 950 */ 951 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 952 DTRACE_RANGE_REMAIN(remain, addr, curthread, 953 sizeof (kthread_t)); 954 return (1); 955 } 956 957 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 958 sz, curthread->t_procp, sizeof (proc_t))) { 959 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 960 sizeof (proc_t)); 961 return (1); 962 } 963 964 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 965 curthread->t_cred, sizeof (cred_t))) { 966 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 967 sizeof (cred_t)); 968 return (1); 969 } 970 971 #ifdef illumos 972 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 973 &(p->p_pidp->pid_id), sizeof (pid_t))) { 974 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 975 sizeof (pid_t)); 976 return (1); 977 } 978 979 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 980 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 981 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 982 offsetof(cpu_t, cpu_pause_thread)); 983 return (1); 984 } 985 #endif 986 } 987 988 if ((fp = mstate->dtms_getf) != NULL) { 989 uintptr_t psz = sizeof (void *); 990 vnode_t *vp; 991 vnodeops_t *op; 992 993 /* 994 * When getf() returns a file_t, the enabling is implicitly 995 * granted the (transient) right to read the returned file_t 996 * as well as the v_path and v_op->vnop_name of the underlying 997 * vnode. These accesses are allowed after a successful 998 * getf() because the members that they refer to cannot change 999 * once set -- and the barrier logic in the kernel's closef() 1000 * path assures that the file_t and its referenced vode_t 1001 * cannot themselves be stale (that is, it impossible for 1002 * either dtms_getf itself or its f_vnode member to reference 1003 * freed memory). 1004 */ 1005 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1006 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1007 return (1); 1008 } 1009 1010 if ((vp = fp->f_vnode) != NULL) { 1011 size_t slen; 1012 #ifdef illumos 1013 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1014 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1015 psz); 1016 return (1); 1017 } 1018 slen = strlen(vp->v_path) + 1; 1019 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1020 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1021 slen); 1022 return (1); 1023 } 1024 #endif 1025 1026 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1027 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1028 psz); 1029 return (1); 1030 } 1031 1032 #ifdef illumos 1033 if ((op = vp->v_op) != NULL && 1034 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1035 DTRACE_RANGE_REMAIN(remain, addr, 1036 &op->vnop_name, psz); 1037 return (1); 1038 } 1039 1040 if (op != NULL && op->vnop_name != NULL && 1041 DTRACE_INRANGE(addr, sz, op->vnop_name, 1042 (slen = strlen(op->vnop_name) + 1))) { 1043 DTRACE_RANGE_REMAIN(remain, addr, 1044 op->vnop_name, slen); 1045 return (1); 1046 } 1047 #endif 1048 } 1049 } 1050 1051 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1052 *illval = addr; 1053 return (0); 1054 } 1055 1056 /* 1057 * Convenience routine to check to see if a given string is within a memory 1058 * region in which a load may be issued given the user's privilege level; 1059 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1060 * calls in the event that the user has all privileges. 1061 */ 1062 static int 1063 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1064 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1065 { 1066 size_t rsize; 1067 1068 /* 1069 * If we hold the privilege to read from kernel memory, then 1070 * everything is readable. 1071 */ 1072 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1073 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1074 return (1); 1075 } 1076 1077 /* 1078 * Even if the caller is uninterested in querying the remaining valid 1079 * range, it is required to ensure that the access is allowed. 1080 */ 1081 if (remain == NULL) { 1082 remain = &rsize; 1083 } 1084 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1085 size_t strsz; 1086 /* 1087 * Perform the strlen after determining the length of the 1088 * memory region which is accessible. This prevents timing 1089 * information from being used to find NULs in memory which is 1090 * not accessible to the caller. 1091 */ 1092 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1093 MIN(sz, *remain)); 1094 if (strsz <= *remain) { 1095 return (1); 1096 } 1097 } 1098 1099 return (0); 1100 } 1101 1102 /* 1103 * Convenience routine to check to see if a given variable is within a memory 1104 * region in which a load may be issued given the user's privilege level. 1105 */ 1106 static int 1107 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1108 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1109 { 1110 size_t sz; 1111 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1112 1113 /* 1114 * Calculate the max size before performing any checks since even 1115 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1116 * return the max length via 'remain'. 1117 */ 1118 if (type->dtdt_kind == DIF_TYPE_STRING) { 1119 dtrace_state_t *state = vstate->dtvs_state; 1120 1121 if (state != NULL) { 1122 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1123 } else { 1124 /* 1125 * In helper context, we have a NULL state; fall back 1126 * to using the system-wide default for the string size 1127 * in this case. 1128 */ 1129 sz = dtrace_strsize_default; 1130 } 1131 } else { 1132 sz = type->dtdt_size; 1133 } 1134 1135 /* 1136 * If we hold the privilege to read from kernel memory, then 1137 * everything is readable. 1138 */ 1139 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1140 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1141 return (1); 1142 } 1143 1144 if (type->dtdt_kind == DIF_TYPE_STRING) { 1145 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1146 vstate)); 1147 } 1148 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1149 vstate)); 1150 } 1151 1152 /* 1153 * Convert a string to a signed integer using safe loads. 1154 * 1155 * NOTE: This function uses various macros from strtolctype.h to manipulate 1156 * digit values, etc -- these have all been checked to ensure they make 1157 * no additional function calls. 1158 */ 1159 static int64_t 1160 dtrace_strtoll(char *input, int base, size_t limit) 1161 { 1162 uintptr_t pos = (uintptr_t)input; 1163 int64_t val = 0; 1164 int x; 1165 boolean_t neg = B_FALSE; 1166 char c, cc, ccc; 1167 uintptr_t end = pos + limit; 1168 1169 /* 1170 * Consume any whitespace preceding digits. 1171 */ 1172 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1173 pos++; 1174 1175 /* 1176 * Handle an explicit sign if one is present. 1177 */ 1178 if (c == '-' || c == '+') { 1179 if (c == '-') 1180 neg = B_TRUE; 1181 c = dtrace_load8(++pos); 1182 } 1183 1184 /* 1185 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1186 * if present. 1187 */ 1188 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1189 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1190 pos += 2; 1191 c = ccc; 1192 } 1193 1194 /* 1195 * Read in contiguous digits until the first non-digit character. 1196 */ 1197 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1198 c = dtrace_load8(++pos)) 1199 val = val * base + x; 1200 1201 return (neg ? -val : val); 1202 } 1203 1204 /* 1205 * Compare two strings using safe loads. 1206 */ 1207 static int 1208 dtrace_strncmp(char *s1, char *s2, size_t limit) 1209 { 1210 uint8_t c1, c2; 1211 volatile uint16_t *flags; 1212 1213 if (s1 == s2 || limit == 0) 1214 return (0); 1215 1216 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1217 1218 do { 1219 if (s1 == NULL) { 1220 c1 = '\0'; 1221 } else { 1222 c1 = dtrace_load8((uintptr_t)s1++); 1223 } 1224 1225 if (s2 == NULL) { 1226 c2 = '\0'; 1227 } else { 1228 c2 = dtrace_load8((uintptr_t)s2++); 1229 } 1230 1231 if (c1 != c2) 1232 return (c1 - c2); 1233 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1234 1235 return (0); 1236 } 1237 1238 /* 1239 * Compute strlen(s) for a string using safe memory accesses. The additional 1240 * len parameter is used to specify a maximum length to ensure completion. 1241 */ 1242 static size_t 1243 dtrace_strlen(const char *s, size_t lim) 1244 { 1245 uint_t len; 1246 1247 for (len = 0; len != lim; len++) { 1248 if (dtrace_load8((uintptr_t)s++) == '\0') 1249 break; 1250 } 1251 1252 return (len); 1253 } 1254 1255 /* 1256 * Check if an address falls within a toxic region. 1257 */ 1258 static int 1259 dtrace_istoxic(uintptr_t kaddr, size_t size) 1260 { 1261 uintptr_t taddr, tsize; 1262 int i; 1263 1264 for (i = 0; i < dtrace_toxranges; i++) { 1265 taddr = dtrace_toxrange[i].dtt_base; 1266 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1267 1268 if (kaddr - taddr < tsize) { 1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1270 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1271 return (1); 1272 } 1273 1274 if (taddr - kaddr < size) { 1275 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1276 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1277 return (1); 1278 } 1279 } 1280 1281 return (0); 1282 } 1283 1284 /* 1285 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1286 * memory specified by the DIF program. The dst is assumed to be safe memory 1287 * that we can store to directly because it is managed by DTrace. As with 1288 * standard bcopy, overlapping copies are handled properly. 1289 */ 1290 static void 1291 dtrace_bcopy(const void *src, void *dst, size_t len) 1292 { 1293 if (len != 0) { 1294 uint8_t *s1 = dst; 1295 const uint8_t *s2 = src; 1296 1297 if (s1 <= s2) { 1298 do { 1299 *s1++ = dtrace_load8((uintptr_t)s2++); 1300 } while (--len != 0); 1301 } else { 1302 s2 += len; 1303 s1 += len; 1304 1305 do { 1306 *--s1 = dtrace_load8((uintptr_t)--s2); 1307 } while (--len != 0); 1308 } 1309 } 1310 } 1311 1312 /* 1313 * Copy src to dst using safe memory accesses, up to either the specified 1314 * length, or the point that a nul byte is encountered. The src is assumed to 1315 * be unsafe memory specified by the DIF program. The dst is assumed to be 1316 * safe memory that we can store to directly because it is managed by DTrace. 1317 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1318 */ 1319 static void 1320 dtrace_strcpy(const void *src, void *dst, size_t len) 1321 { 1322 if (len != 0) { 1323 uint8_t *s1 = dst, c; 1324 const uint8_t *s2 = src; 1325 1326 do { 1327 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1328 } while (--len != 0 && c != '\0'); 1329 } 1330 } 1331 1332 /* 1333 * Copy src to dst, deriving the size and type from the specified (BYREF) 1334 * variable type. The src is assumed to be unsafe memory specified by the DIF 1335 * program. The dst is assumed to be DTrace variable memory that is of the 1336 * specified type; we assume that we can store to directly. 1337 */ 1338 static void 1339 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1340 { 1341 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1342 1343 if (type->dtdt_kind == DIF_TYPE_STRING) { 1344 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1345 } else { 1346 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1347 } 1348 } 1349 1350 /* 1351 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1352 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1353 * safe memory that we can access directly because it is managed by DTrace. 1354 */ 1355 static int 1356 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1357 { 1358 volatile uint16_t *flags; 1359 1360 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1361 1362 if (s1 == s2) 1363 return (0); 1364 1365 if (s1 == NULL || s2 == NULL) 1366 return (1); 1367 1368 if (s1 != s2 && len != 0) { 1369 const uint8_t *ps1 = s1; 1370 const uint8_t *ps2 = s2; 1371 1372 do { 1373 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1374 return (1); 1375 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1376 } 1377 return (0); 1378 } 1379 1380 /* 1381 * Zero the specified region using a simple byte-by-byte loop. Note that this 1382 * is for safe DTrace-managed memory only. 1383 */ 1384 static void 1385 dtrace_bzero(void *dst, size_t len) 1386 { 1387 uchar_t *cp; 1388 1389 for (cp = dst; len != 0; len--) 1390 *cp++ = 0; 1391 } 1392 1393 static void 1394 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1395 { 1396 uint64_t result[2]; 1397 1398 result[0] = addend1[0] + addend2[0]; 1399 result[1] = addend1[1] + addend2[1] + 1400 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1401 1402 sum[0] = result[0]; 1403 sum[1] = result[1]; 1404 } 1405 1406 /* 1407 * Shift the 128-bit value in a by b. If b is positive, shift left. 1408 * If b is negative, shift right. 1409 */ 1410 static void 1411 dtrace_shift_128(uint64_t *a, int b) 1412 { 1413 uint64_t mask; 1414 1415 if (b == 0) 1416 return; 1417 1418 if (b < 0) { 1419 b = -b; 1420 if (b >= 64) { 1421 a[0] = a[1] >> (b - 64); 1422 a[1] = 0; 1423 } else { 1424 a[0] >>= b; 1425 mask = 1LL << (64 - b); 1426 mask -= 1; 1427 a[0] |= ((a[1] & mask) << (64 - b)); 1428 a[1] >>= b; 1429 } 1430 } else { 1431 if (b >= 64) { 1432 a[1] = a[0] << (b - 64); 1433 a[0] = 0; 1434 } else { 1435 a[1] <<= b; 1436 mask = a[0] >> (64 - b); 1437 a[1] |= mask; 1438 a[0] <<= b; 1439 } 1440 } 1441 } 1442 1443 /* 1444 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1445 * use native multiplication on those, and then re-combine into the 1446 * resulting 128-bit value. 1447 * 1448 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1449 * hi1 * hi2 << 64 + 1450 * hi1 * lo2 << 32 + 1451 * hi2 * lo1 << 32 + 1452 * lo1 * lo2 1453 */ 1454 static void 1455 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1456 { 1457 uint64_t hi1, hi2, lo1, lo2; 1458 uint64_t tmp[2]; 1459 1460 hi1 = factor1 >> 32; 1461 hi2 = factor2 >> 32; 1462 1463 lo1 = factor1 & DT_MASK_LO; 1464 lo2 = factor2 & DT_MASK_LO; 1465 1466 product[0] = lo1 * lo2; 1467 product[1] = hi1 * hi2; 1468 1469 tmp[0] = hi1 * lo2; 1470 tmp[1] = 0; 1471 dtrace_shift_128(tmp, 32); 1472 dtrace_add_128(product, tmp, product); 1473 1474 tmp[0] = hi2 * lo1; 1475 tmp[1] = 0; 1476 dtrace_shift_128(tmp, 32); 1477 dtrace_add_128(product, tmp, product); 1478 } 1479 1480 /* 1481 * This privilege check should be used by actions and subroutines to 1482 * verify that the user credentials of the process that enabled the 1483 * invoking ECB match the target credentials 1484 */ 1485 static int 1486 dtrace_priv_proc_common_user(dtrace_state_t *state) 1487 { 1488 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1489 1490 /* 1491 * We should always have a non-NULL state cred here, since if cred 1492 * is null (anonymous tracing), we fast-path bypass this routine. 1493 */ 1494 ASSERT(s_cr != NULL); 1495 1496 if ((cr = CRED()) != NULL && 1497 s_cr->cr_uid == cr->cr_uid && 1498 s_cr->cr_uid == cr->cr_ruid && 1499 s_cr->cr_uid == cr->cr_suid && 1500 s_cr->cr_gid == cr->cr_gid && 1501 s_cr->cr_gid == cr->cr_rgid && 1502 s_cr->cr_gid == cr->cr_sgid) 1503 return (1); 1504 1505 return (0); 1506 } 1507 1508 /* 1509 * This privilege check should be used by actions and subroutines to 1510 * verify that the zone of the process that enabled the invoking ECB 1511 * matches the target credentials 1512 */ 1513 static int 1514 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1515 { 1516 #ifdef illumos 1517 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1518 1519 /* 1520 * We should always have a non-NULL state cred here, since if cred 1521 * is null (anonymous tracing), we fast-path bypass this routine. 1522 */ 1523 ASSERT(s_cr != NULL); 1524 1525 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1526 return (1); 1527 1528 return (0); 1529 #else 1530 return (1); 1531 #endif 1532 } 1533 1534 /* 1535 * This privilege check should be used by actions and subroutines to 1536 * verify that the process has not setuid or changed credentials. 1537 */ 1538 static int 1539 dtrace_priv_proc_common_nocd(void) 1540 { 1541 proc_t *proc; 1542 1543 if ((proc = ttoproc(curthread)) != NULL && 1544 !(proc->p_flag & SNOCD)) 1545 return (1); 1546 1547 return (0); 1548 } 1549 1550 static int 1551 dtrace_priv_proc_destructive(dtrace_state_t *state) 1552 { 1553 int action = state->dts_cred.dcr_action; 1554 1555 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1556 dtrace_priv_proc_common_zone(state) == 0) 1557 goto bad; 1558 1559 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1560 dtrace_priv_proc_common_user(state) == 0) 1561 goto bad; 1562 1563 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1564 dtrace_priv_proc_common_nocd() == 0) 1565 goto bad; 1566 1567 return (1); 1568 1569 bad: 1570 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1571 1572 return (0); 1573 } 1574 1575 static int 1576 dtrace_priv_proc_control(dtrace_state_t *state) 1577 { 1578 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1579 return (1); 1580 1581 if (dtrace_priv_proc_common_zone(state) && 1582 dtrace_priv_proc_common_user(state) && 1583 dtrace_priv_proc_common_nocd()) 1584 return (1); 1585 1586 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1587 1588 return (0); 1589 } 1590 1591 static int 1592 dtrace_priv_proc(dtrace_state_t *state) 1593 { 1594 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1595 return (1); 1596 1597 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1598 1599 return (0); 1600 } 1601 1602 static int 1603 dtrace_priv_kernel(dtrace_state_t *state) 1604 { 1605 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1606 return (1); 1607 1608 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1609 1610 return (0); 1611 } 1612 1613 static int 1614 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1615 { 1616 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1617 return (1); 1618 1619 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1620 1621 return (0); 1622 } 1623 1624 /* 1625 * Determine if the dte_cond of the specified ECB allows for processing of 1626 * the current probe to continue. Note that this routine may allow continued 1627 * processing, but with access(es) stripped from the mstate's dtms_access 1628 * field. 1629 */ 1630 static int 1631 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1632 dtrace_ecb_t *ecb) 1633 { 1634 dtrace_probe_t *probe = ecb->dte_probe; 1635 dtrace_provider_t *prov = probe->dtpr_provider; 1636 dtrace_pops_t *pops = &prov->dtpv_pops; 1637 int mode = DTRACE_MODE_NOPRIV_DROP; 1638 1639 ASSERT(ecb->dte_cond); 1640 1641 #ifdef illumos 1642 if (pops->dtps_mode != NULL) { 1643 mode = pops->dtps_mode(prov->dtpv_arg, 1644 probe->dtpr_id, probe->dtpr_arg); 1645 1646 ASSERT((mode & DTRACE_MODE_USER) || 1647 (mode & DTRACE_MODE_KERNEL)); 1648 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1649 (mode & DTRACE_MODE_NOPRIV_DROP)); 1650 } 1651 1652 /* 1653 * If the dte_cond bits indicate that this consumer is only allowed to 1654 * see user-mode firings of this probe, call the provider's dtps_mode() 1655 * entry point to check that the probe was fired while in a user 1656 * context. If that's not the case, use the policy specified by the 1657 * provider to determine if we drop the probe or merely restrict 1658 * operation. 1659 */ 1660 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1661 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1662 1663 if (!(mode & DTRACE_MODE_USER)) { 1664 if (mode & DTRACE_MODE_NOPRIV_DROP) 1665 return (0); 1666 1667 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1668 } 1669 } 1670 #endif 1671 1672 /* 1673 * This is more subtle than it looks. We have to be absolutely certain 1674 * that CRED() isn't going to change out from under us so it's only 1675 * legit to examine that structure if we're in constrained situations. 1676 * Currently, the only times we'll this check is if a non-super-user 1677 * has enabled the profile or syscall providers -- providers that 1678 * allow visibility of all processes. For the profile case, the check 1679 * above will ensure that we're examining a user context. 1680 */ 1681 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1682 cred_t *cr; 1683 cred_t *s_cr = state->dts_cred.dcr_cred; 1684 proc_t *proc; 1685 1686 ASSERT(s_cr != NULL); 1687 1688 if ((cr = CRED()) == NULL || 1689 s_cr->cr_uid != cr->cr_uid || 1690 s_cr->cr_uid != cr->cr_ruid || 1691 s_cr->cr_uid != cr->cr_suid || 1692 s_cr->cr_gid != cr->cr_gid || 1693 s_cr->cr_gid != cr->cr_rgid || 1694 s_cr->cr_gid != cr->cr_sgid || 1695 (proc = ttoproc(curthread)) == NULL || 1696 (proc->p_flag & SNOCD)) { 1697 if (mode & DTRACE_MODE_NOPRIV_DROP) 1698 return (0); 1699 1700 #ifdef illumos 1701 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1702 #endif 1703 } 1704 } 1705 1706 #ifdef illumos 1707 /* 1708 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1709 * in our zone, check to see if our mode policy is to restrict rather 1710 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1711 * and DTRACE_ACCESS_ARGS 1712 */ 1713 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1714 cred_t *cr; 1715 cred_t *s_cr = state->dts_cred.dcr_cred; 1716 1717 ASSERT(s_cr != NULL); 1718 1719 if ((cr = CRED()) == NULL || 1720 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1721 if (mode & DTRACE_MODE_NOPRIV_DROP) 1722 return (0); 1723 1724 mstate->dtms_access &= 1725 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1726 } 1727 } 1728 #endif 1729 1730 return (1); 1731 } 1732 1733 /* 1734 * Note: not called from probe context. This function is called 1735 * asynchronously (and at a regular interval) from outside of probe context to 1736 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1737 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1738 */ 1739 void 1740 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1741 { 1742 dtrace_dynvar_t *dirty; 1743 dtrace_dstate_percpu_t *dcpu; 1744 dtrace_dynvar_t **rinsep; 1745 int i, j, work = 0; 1746 1747 for (i = 0; i < NCPU; i++) { 1748 dcpu = &dstate->dtds_percpu[i]; 1749 rinsep = &dcpu->dtdsc_rinsing; 1750 1751 /* 1752 * If the dirty list is NULL, there is no dirty work to do. 1753 */ 1754 if (dcpu->dtdsc_dirty == NULL) 1755 continue; 1756 1757 if (dcpu->dtdsc_rinsing != NULL) { 1758 /* 1759 * If the rinsing list is non-NULL, then it is because 1760 * this CPU was selected to accept another CPU's 1761 * dirty list -- and since that time, dirty buffers 1762 * have accumulated. This is a highly unlikely 1763 * condition, but we choose to ignore the dirty 1764 * buffers -- they'll be picked up a future cleanse. 1765 */ 1766 continue; 1767 } 1768 1769 if (dcpu->dtdsc_clean != NULL) { 1770 /* 1771 * If the clean list is non-NULL, then we're in a 1772 * situation where a CPU has done deallocations (we 1773 * have a non-NULL dirty list) but no allocations (we 1774 * also have a non-NULL clean list). We can't simply 1775 * move the dirty list into the clean list on this 1776 * CPU, yet we also don't want to allow this condition 1777 * to persist, lest a short clean list prevent a 1778 * massive dirty list from being cleaned (which in 1779 * turn could lead to otherwise avoidable dynamic 1780 * drops). To deal with this, we look for some CPU 1781 * with a NULL clean list, NULL dirty list, and NULL 1782 * rinsing list -- and then we borrow this CPU to 1783 * rinse our dirty list. 1784 */ 1785 for (j = 0; j < NCPU; j++) { 1786 dtrace_dstate_percpu_t *rinser; 1787 1788 rinser = &dstate->dtds_percpu[j]; 1789 1790 if (rinser->dtdsc_rinsing != NULL) 1791 continue; 1792 1793 if (rinser->dtdsc_dirty != NULL) 1794 continue; 1795 1796 if (rinser->dtdsc_clean != NULL) 1797 continue; 1798 1799 rinsep = &rinser->dtdsc_rinsing; 1800 break; 1801 } 1802 1803 if (j == NCPU) { 1804 /* 1805 * We were unable to find another CPU that 1806 * could accept this dirty list -- we are 1807 * therefore unable to clean it now. 1808 */ 1809 dtrace_dynvar_failclean++; 1810 continue; 1811 } 1812 } 1813 1814 work = 1; 1815 1816 /* 1817 * Atomically move the dirty list aside. 1818 */ 1819 do { 1820 dirty = dcpu->dtdsc_dirty; 1821 1822 /* 1823 * Before we zap the dirty list, set the rinsing list. 1824 * (This allows for a potential assertion in 1825 * dtrace_dynvar(): if a free dynamic variable appears 1826 * on a hash chain, either the dirty list or the 1827 * rinsing list for some CPU must be non-NULL.) 1828 */ 1829 *rinsep = dirty; 1830 dtrace_membar_producer(); 1831 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1832 dirty, NULL) != dirty); 1833 } 1834 1835 if (!work) { 1836 /* 1837 * We have no work to do; we can simply return. 1838 */ 1839 return; 1840 } 1841 1842 dtrace_sync(); 1843 1844 for (i = 0; i < NCPU; i++) { 1845 dcpu = &dstate->dtds_percpu[i]; 1846 1847 if (dcpu->dtdsc_rinsing == NULL) 1848 continue; 1849 1850 /* 1851 * We are now guaranteed that no hash chain contains a pointer 1852 * into this dirty list; we can make it clean. 1853 */ 1854 ASSERT(dcpu->dtdsc_clean == NULL); 1855 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1856 dcpu->dtdsc_rinsing = NULL; 1857 } 1858 1859 /* 1860 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1861 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1862 * This prevents a race whereby a CPU incorrectly decides that 1863 * the state should be something other than DTRACE_DSTATE_CLEAN 1864 * after dtrace_dynvar_clean() has completed. 1865 */ 1866 dtrace_sync(); 1867 1868 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1869 } 1870 1871 /* 1872 * Depending on the value of the op parameter, this function looks-up, 1873 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1874 * allocation is requested, this function will return a pointer to a 1875 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1876 * variable can be allocated. If NULL is returned, the appropriate counter 1877 * will be incremented. 1878 */ 1879 dtrace_dynvar_t * 1880 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1881 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1882 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1883 { 1884 uint64_t hashval = DTRACE_DYNHASH_VALID; 1885 dtrace_dynhash_t *hash = dstate->dtds_hash; 1886 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1887 processorid_t me = curcpu, cpu = me; 1888 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1889 size_t bucket, ksize; 1890 size_t chunksize = dstate->dtds_chunksize; 1891 uintptr_t kdata, lock, nstate; 1892 uint_t i; 1893 1894 ASSERT(nkeys != 0); 1895 1896 /* 1897 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1898 * algorithm. For the by-value portions, we perform the algorithm in 1899 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1900 * bit, and seems to have only a minute effect on distribution. For 1901 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1902 * over each referenced byte. It's painful to do this, but it's much 1903 * better than pathological hash distribution. The efficacy of the 1904 * hashing algorithm (and a comparison with other algorithms) may be 1905 * found by running the ::dtrace_dynstat MDB dcmd. 1906 */ 1907 for (i = 0; i < nkeys; i++) { 1908 if (key[i].dttk_size == 0) { 1909 uint64_t val = key[i].dttk_value; 1910 1911 hashval += (val >> 48) & 0xffff; 1912 hashval += (hashval << 10); 1913 hashval ^= (hashval >> 6); 1914 1915 hashval += (val >> 32) & 0xffff; 1916 hashval += (hashval << 10); 1917 hashval ^= (hashval >> 6); 1918 1919 hashval += (val >> 16) & 0xffff; 1920 hashval += (hashval << 10); 1921 hashval ^= (hashval >> 6); 1922 1923 hashval += val & 0xffff; 1924 hashval += (hashval << 10); 1925 hashval ^= (hashval >> 6); 1926 } else { 1927 /* 1928 * This is incredibly painful, but it beats the hell 1929 * out of the alternative. 1930 */ 1931 uint64_t j, size = key[i].dttk_size; 1932 uintptr_t base = (uintptr_t)key[i].dttk_value; 1933 1934 if (!dtrace_canload(base, size, mstate, vstate)) 1935 break; 1936 1937 for (j = 0; j < size; j++) { 1938 hashval += dtrace_load8(base + j); 1939 hashval += (hashval << 10); 1940 hashval ^= (hashval >> 6); 1941 } 1942 } 1943 } 1944 1945 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1946 return (NULL); 1947 1948 hashval += (hashval << 3); 1949 hashval ^= (hashval >> 11); 1950 hashval += (hashval << 15); 1951 1952 /* 1953 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1954 * comes out to be one of our two sentinel hash values. If this 1955 * actually happens, we set the hashval to be a value known to be a 1956 * non-sentinel value. 1957 */ 1958 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1959 hashval = DTRACE_DYNHASH_VALID; 1960 1961 /* 1962 * Yes, it's painful to do a divide here. If the cycle count becomes 1963 * important here, tricks can be pulled to reduce it. (However, it's 1964 * critical that hash collisions be kept to an absolute minimum; 1965 * they're much more painful than a divide.) It's better to have a 1966 * solution that generates few collisions and still keeps things 1967 * relatively simple. 1968 */ 1969 bucket = hashval % dstate->dtds_hashsize; 1970 1971 if (op == DTRACE_DYNVAR_DEALLOC) { 1972 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1973 1974 for (;;) { 1975 while ((lock = *lockp) & 1) 1976 continue; 1977 1978 if (dtrace_casptr((volatile void *)lockp, 1979 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1980 break; 1981 } 1982 1983 dtrace_membar_producer(); 1984 } 1985 1986 top: 1987 prev = NULL; 1988 lock = hash[bucket].dtdh_lock; 1989 1990 dtrace_membar_consumer(); 1991 1992 start = hash[bucket].dtdh_chain; 1993 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1994 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1995 op != DTRACE_DYNVAR_DEALLOC)); 1996 1997 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1998 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1999 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 2000 2001 if (dvar->dtdv_hashval != hashval) { 2002 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2003 /* 2004 * We've reached the sink, and therefore the 2005 * end of the hash chain; we can kick out of 2006 * the loop knowing that we have seen a valid 2007 * snapshot of state. 2008 */ 2009 ASSERT(dvar->dtdv_next == NULL); 2010 ASSERT(dvar == &dtrace_dynhash_sink); 2011 break; 2012 } 2013 2014 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2015 /* 2016 * We've gone off the rails: somewhere along 2017 * the line, one of the members of this hash 2018 * chain was deleted. Note that we could also 2019 * detect this by simply letting this loop run 2020 * to completion, as we would eventually hit 2021 * the end of the dirty list. However, we 2022 * want to avoid running the length of the 2023 * dirty list unnecessarily (it might be quite 2024 * long), so we catch this as early as 2025 * possible by detecting the hash marker. In 2026 * this case, we simply set dvar to NULL and 2027 * break; the conditional after the loop will 2028 * send us back to top. 2029 */ 2030 dvar = NULL; 2031 break; 2032 } 2033 2034 goto next; 2035 } 2036 2037 if (dtuple->dtt_nkeys != nkeys) 2038 goto next; 2039 2040 for (i = 0; i < nkeys; i++, dkey++) { 2041 if (dkey->dttk_size != key[i].dttk_size) 2042 goto next; /* size or type mismatch */ 2043 2044 if (dkey->dttk_size != 0) { 2045 if (dtrace_bcmp( 2046 (void *)(uintptr_t)key[i].dttk_value, 2047 (void *)(uintptr_t)dkey->dttk_value, 2048 dkey->dttk_size)) 2049 goto next; 2050 } else { 2051 if (dkey->dttk_value != key[i].dttk_value) 2052 goto next; 2053 } 2054 } 2055 2056 if (op != DTRACE_DYNVAR_DEALLOC) 2057 return (dvar); 2058 2059 ASSERT(dvar->dtdv_next == NULL || 2060 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2061 2062 if (prev != NULL) { 2063 ASSERT(hash[bucket].dtdh_chain != dvar); 2064 ASSERT(start != dvar); 2065 ASSERT(prev->dtdv_next == dvar); 2066 prev->dtdv_next = dvar->dtdv_next; 2067 } else { 2068 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2069 start, dvar->dtdv_next) != start) { 2070 /* 2071 * We have failed to atomically swing the 2072 * hash table head pointer, presumably because 2073 * of a conflicting allocation on another CPU. 2074 * We need to reread the hash chain and try 2075 * again. 2076 */ 2077 goto top; 2078 } 2079 } 2080 2081 dtrace_membar_producer(); 2082 2083 /* 2084 * Now set the hash value to indicate that it's free. 2085 */ 2086 ASSERT(hash[bucket].dtdh_chain != dvar); 2087 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2088 2089 dtrace_membar_producer(); 2090 2091 /* 2092 * Set the next pointer to point at the dirty list, and 2093 * atomically swing the dirty pointer to the newly freed dvar. 2094 */ 2095 do { 2096 next = dcpu->dtdsc_dirty; 2097 dvar->dtdv_next = next; 2098 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2099 2100 /* 2101 * Finally, unlock this hash bucket. 2102 */ 2103 ASSERT(hash[bucket].dtdh_lock == lock); 2104 ASSERT(lock & 1); 2105 hash[bucket].dtdh_lock++; 2106 2107 return (NULL); 2108 next: 2109 prev = dvar; 2110 continue; 2111 } 2112 2113 if (dvar == NULL) { 2114 /* 2115 * If dvar is NULL, it is because we went off the rails: 2116 * one of the elements that we traversed in the hash chain 2117 * was deleted while we were traversing it. In this case, 2118 * we assert that we aren't doing a dealloc (deallocs lock 2119 * the hash bucket to prevent themselves from racing with 2120 * one another), and retry the hash chain traversal. 2121 */ 2122 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2123 goto top; 2124 } 2125 2126 if (op != DTRACE_DYNVAR_ALLOC) { 2127 /* 2128 * If we are not to allocate a new variable, we want to 2129 * return NULL now. Before we return, check that the value 2130 * of the lock word hasn't changed. If it has, we may have 2131 * seen an inconsistent snapshot. 2132 */ 2133 if (op == DTRACE_DYNVAR_NOALLOC) { 2134 if (hash[bucket].dtdh_lock != lock) 2135 goto top; 2136 } else { 2137 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2138 ASSERT(hash[bucket].dtdh_lock == lock); 2139 ASSERT(lock & 1); 2140 hash[bucket].dtdh_lock++; 2141 } 2142 2143 return (NULL); 2144 } 2145 2146 /* 2147 * We need to allocate a new dynamic variable. The size we need is the 2148 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2149 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2150 * the size of any referred-to data (dsize). We then round the final 2151 * size up to the chunksize for allocation. 2152 */ 2153 for (ksize = 0, i = 0; i < nkeys; i++) 2154 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2155 2156 /* 2157 * This should be pretty much impossible, but could happen if, say, 2158 * strange DIF specified the tuple. Ideally, this should be an 2159 * assertion and not an error condition -- but that requires that the 2160 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2161 * bullet-proof. (That is, it must not be able to be fooled by 2162 * malicious DIF.) Given the lack of backwards branches in DIF, 2163 * solving this would presumably not amount to solving the Halting 2164 * Problem -- but it still seems awfully hard. 2165 */ 2166 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2167 ksize + dsize > chunksize) { 2168 dcpu->dtdsc_drops++; 2169 return (NULL); 2170 } 2171 2172 nstate = DTRACE_DSTATE_EMPTY; 2173 2174 do { 2175 retry: 2176 free = dcpu->dtdsc_free; 2177 2178 if (free == NULL) { 2179 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2180 void *rval; 2181 2182 if (clean == NULL) { 2183 /* 2184 * We're out of dynamic variable space on 2185 * this CPU. Unless we have tried all CPUs, 2186 * we'll try to allocate from a different 2187 * CPU. 2188 */ 2189 switch (dstate->dtds_state) { 2190 case DTRACE_DSTATE_CLEAN: { 2191 void *sp = &dstate->dtds_state; 2192 2193 if (++cpu >= NCPU) 2194 cpu = 0; 2195 2196 if (dcpu->dtdsc_dirty != NULL && 2197 nstate == DTRACE_DSTATE_EMPTY) 2198 nstate = DTRACE_DSTATE_DIRTY; 2199 2200 if (dcpu->dtdsc_rinsing != NULL) 2201 nstate = DTRACE_DSTATE_RINSING; 2202 2203 dcpu = &dstate->dtds_percpu[cpu]; 2204 2205 if (cpu != me) 2206 goto retry; 2207 2208 (void) dtrace_cas32(sp, 2209 DTRACE_DSTATE_CLEAN, nstate); 2210 2211 /* 2212 * To increment the correct bean 2213 * counter, take another lap. 2214 */ 2215 goto retry; 2216 } 2217 2218 case DTRACE_DSTATE_DIRTY: 2219 dcpu->dtdsc_dirty_drops++; 2220 break; 2221 2222 case DTRACE_DSTATE_RINSING: 2223 dcpu->dtdsc_rinsing_drops++; 2224 break; 2225 2226 case DTRACE_DSTATE_EMPTY: 2227 dcpu->dtdsc_drops++; 2228 break; 2229 } 2230 2231 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2232 return (NULL); 2233 } 2234 2235 /* 2236 * The clean list appears to be non-empty. We want to 2237 * move the clean list to the free list; we start by 2238 * moving the clean pointer aside. 2239 */ 2240 if (dtrace_casptr(&dcpu->dtdsc_clean, 2241 clean, NULL) != clean) { 2242 /* 2243 * We are in one of two situations: 2244 * 2245 * (a) The clean list was switched to the 2246 * free list by another CPU. 2247 * 2248 * (b) The clean list was added to by the 2249 * cleansing cyclic. 2250 * 2251 * In either of these situations, we can 2252 * just reattempt the free list allocation. 2253 */ 2254 goto retry; 2255 } 2256 2257 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2258 2259 /* 2260 * Now we'll move the clean list to our free list. 2261 * It's impossible for this to fail: the only way 2262 * the free list can be updated is through this 2263 * code path, and only one CPU can own the clean list. 2264 * Thus, it would only be possible for this to fail if 2265 * this code were racing with dtrace_dynvar_clean(). 2266 * (That is, if dtrace_dynvar_clean() updated the clean 2267 * list, and we ended up racing to update the free 2268 * list.) This race is prevented by the dtrace_sync() 2269 * in dtrace_dynvar_clean() -- which flushes the 2270 * owners of the clean lists out before resetting 2271 * the clean lists. 2272 */ 2273 dcpu = &dstate->dtds_percpu[me]; 2274 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2275 ASSERT(rval == NULL); 2276 goto retry; 2277 } 2278 2279 dvar = free; 2280 new_free = dvar->dtdv_next; 2281 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2282 2283 /* 2284 * We have now allocated a new chunk. We copy the tuple keys into the 2285 * tuple array and copy any referenced key data into the data space 2286 * following the tuple array. As we do this, we relocate dttk_value 2287 * in the final tuple to point to the key data address in the chunk. 2288 */ 2289 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2290 dvar->dtdv_data = (void *)(kdata + ksize); 2291 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2292 2293 for (i = 0; i < nkeys; i++) { 2294 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2295 size_t kesize = key[i].dttk_size; 2296 2297 if (kesize != 0) { 2298 dtrace_bcopy( 2299 (const void *)(uintptr_t)key[i].dttk_value, 2300 (void *)kdata, kesize); 2301 dkey->dttk_value = kdata; 2302 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2303 } else { 2304 dkey->dttk_value = key[i].dttk_value; 2305 } 2306 2307 dkey->dttk_size = kesize; 2308 } 2309 2310 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2311 dvar->dtdv_hashval = hashval; 2312 dvar->dtdv_next = start; 2313 2314 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2315 return (dvar); 2316 2317 /* 2318 * The cas has failed. Either another CPU is adding an element to 2319 * this hash chain, or another CPU is deleting an element from this 2320 * hash chain. The simplest way to deal with both of these cases 2321 * (though not necessarily the most efficient) is to free our 2322 * allocated block and re-attempt it all. Note that the free is 2323 * to the dirty list and _not_ to the free list. This is to prevent 2324 * races with allocators, above. 2325 */ 2326 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2327 2328 dtrace_membar_producer(); 2329 2330 do { 2331 free = dcpu->dtdsc_dirty; 2332 dvar->dtdv_next = free; 2333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2334 2335 goto top; 2336 } 2337 2338 /*ARGSUSED*/ 2339 static void 2340 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2341 { 2342 if ((int64_t)nval < (int64_t)*oval) 2343 *oval = nval; 2344 } 2345 2346 /*ARGSUSED*/ 2347 static void 2348 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2349 { 2350 if ((int64_t)nval > (int64_t)*oval) 2351 *oval = nval; 2352 } 2353 2354 static void 2355 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2356 { 2357 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2358 int64_t val = (int64_t)nval; 2359 2360 if (val < 0) { 2361 for (i = 0; i < zero; i++) { 2362 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2363 quanta[i] += incr; 2364 return; 2365 } 2366 } 2367 } else { 2368 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2369 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2370 quanta[i - 1] += incr; 2371 return; 2372 } 2373 } 2374 2375 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2376 return; 2377 } 2378 2379 ASSERT(0); 2380 } 2381 2382 static void 2383 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2384 { 2385 uint64_t arg = *lquanta++; 2386 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2387 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2388 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2389 int32_t val = (int32_t)nval, level; 2390 2391 ASSERT(step != 0); 2392 ASSERT(levels != 0); 2393 2394 if (val < base) { 2395 /* 2396 * This is an underflow. 2397 */ 2398 lquanta[0] += incr; 2399 return; 2400 } 2401 2402 level = (val - base) / step; 2403 2404 if (level < levels) { 2405 lquanta[level + 1] += incr; 2406 return; 2407 } 2408 2409 /* 2410 * This is an overflow. 2411 */ 2412 lquanta[levels + 1] += incr; 2413 } 2414 2415 static int 2416 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2417 uint16_t high, uint16_t nsteps, int64_t value) 2418 { 2419 int64_t this = 1, last, next; 2420 int base = 1, order; 2421 2422 ASSERT(factor <= nsteps); 2423 ASSERT(nsteps % factor == 0); 2424 2425 for (order = 0; order < low; order++) 2426 this *= factor; 2427 2428 /* 2429 * If our value is less than our factor taken to the power of the 2430 * low order of magnitude, it goes into the zeroth bucket. 2431 */ 2432 if (value < (last = this)) 2433 return (0); 2434 2435 for (this *= factor; order <= high; order++) { 2436 int nbuckets = this > nsteps ? nsteps : this; 2437 2438 if ((next = this * factor) < this) { 2439 /* 2440 * We should not generally get log/linear quantizations 2441 * with a high magnitude that allows 64-bits to 2442 * overflow, but we nonetheless protect against this 2443 * by explicitly checking for overflow, and clamping 2444 * our value accordingly. 2445 */ 2446 value = this - 1; 2447 } 2448 2449 if (value < this) { 2450 /* 2451 * If our value lies within this order of magnitude, 2452 * determine its position by taking the offset within 2453 * the order of magnitude, dividing by the bucket 2454 * width, and adding to our (accumulated) base. 2455 */ 2456 return (base + (value - last) / (this / nbuckets)); 2457 } 2458 2459 base += nbuckets - (nbuckets / factor); 2460 last = this; 2461 this = next; 2462 } 2463 2464 /* 2465 * Our value is greater than or equal to our factor taken to the 2466 * power of one plus the high magnitude -- return the top bucket. 2467 */ 2468 return (base); 2469 } 2470 2471 static void 2472 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2473 { 2474 uint64_t arg = *llquanta++; 2475 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2476 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2477 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2478 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2479 2480 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2481 low, high, nsteps, nval)] += incr; 2482 } 2483 2484 /*ARGSUSED*/ 2485 static void 2486 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2487 { 2488 data[0]++; 2489 data[1] += nval; 2490 } 2491 2492 /*ARGSUSED*/ 2493 static void 2494 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2495 { 2496 int64_t snval = (int64_t)nval; 2497 uint64_t tmp[2]; 2498 2499 data[0]++; 2500 data[1] += nval; 2501 2502 /* 2503 * What we want to say here is: 2504 * 2505 * data[2] += nval * nval; 2506 * 2507 * But given that nval is 64-bit, we could easily overflow, so 2508 * we do this as 128-bit arithmetic. 2509 */ 2510 if (snval < 0) 2511 snval = -snval; 2512 2513 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2514 dtrace_add_128(data + 2, tmp, data + 2); 2515 } 2516 2517 /*ARGSUSED*/ 2518 static void 2519 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2520 { 2521 *oval = *oval + 1; 2522 } 2523 2524 /*ARGSUSED*/ 2525 static void 2526 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2527 { 2528 *oval += nval; 2529 } 2530 2531 /* 2532 * Aggregate given the tuple in the principal data buffer, and the aggregating 2533 * action denoted by the specified dtrace_aggregation_t. The aggregation 2534 * buffer is specified as the buf parameter. This routine does not return 2535 * failure; if there is no space in the aggregation buffer, the data will be 2536 * dropped, and a corresponding counter incremented. 2537 */ 2538 static void 2539 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2540 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2541 { 2542 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2543 uint32_t i, ndx, size, fsize; 2544 uint32_t align = sizeof (uint64_t) - 1; 2545 dtrace_aggbuffer_t *agb; 2546 dtrace_aggkey_t *key; 2547 uint32_t hashval = 0, limit, isstr; 2548 caddr_t tomax, data, kdata; 2549 dtrace_actkind_t action; 2550 dtrace_action_t *act; 2551 uintptr_t offs; 2552 2553 if (buf == NULL) 2554 return; 2555 2556 if (!agg->dtag_hasarg) { 2557 /* 2558 * Currently, only quantize() and lquantize() take additional 2559 * arguments, and they have the same semantics: an increment 2560 * value that defaults to 1 when not present. If additional 2561 * aggregating actions take arguments, the setting of the 2562 * default argument value will presumably have to become more 2563 * sophisticated... 2564 */ 2565 arg = 1; 2566 } 2567 2568 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2569 size = rec->dtrd_offset - agg->dtag_base; 2570 fsize = size + rec->dtrd_size; 2571 2572 ASSERT(dbuf->dtb_tomax != NULL); 2573 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2574 2575 if ((tomax = buf->dtb_tomax) == NULL) { 2576 dtrace_buffer_drop(buf); 2577 return; 2578 } 2579 2580 /* 2581 * The metastructure is always at the bottom of the buffer. 2582 */ 2583 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2584 sizeof (dtrace_aggbuffer_t)); 2585 2586 if (buf->dtb_offset == 0) { 2587 /* 2588 * We just kludge up approximately 1/8th of the size to be 2589 * buckets. If this guess ends up being routinely 2590 * off-the-mark, we may need to dynamically readjust this 2591 * based on past performance. 2592 */ 2593 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2594 2595 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2596 (uintptr_t)tomax || hashsize == 0) { 2597 /* 2598 * We've been given a ludicrously small buffer; 2599 * increment our drop count and leave. 2600 */ 2601 dtrace_buffer_drop(buf); 2602 return; 2603 } 2604 2605 /* 2606 * And now, a pathetic attempt to try to get a an odd (or 2607 * perchance, a prime) hash size for better hash distribution. 2608 */ 2609 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2610 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2611 2612 agb->dtagb_hashsize = hashsize; 2613 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2614 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2615 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2616 2617 for (i = 0; i < agb->dtagb_hashsize; i++) 2618 agb->dtagb_hash[i] = NULL; 2619 } 2620 2621 ASSERT(agg->dtag_first != NULL); 2622 ASSERT(agg->dtag_first->dta_intuple); 2623 2624 /* 2625 * Calculate the hash value based on the key. Note that we _don't_ 2626 * include the aggid in the hashing (but we will store it as part of 2627 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2628 * algorithm: a simple, quick algorithm that has no known funnels, and 2629 * gets good distribution in practice. The efficacy of the hashing 2630 * algorithm (and a comparison with other algorithms) may be found by 2631 * running the ::dtrace_aggstat MDB dcmd. 2632 */ 2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2634 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2635 limit = i + act->dta_rec.dtrd_size; 2636 ASSERT(limit <= size); 2637 isstr = DTRACEACT_ISSTRING(act); 2638 2639 for (; i < limit; i++) { 2640 hashval += data[i]; 2641 hashval += (hashval << 10); 2642 hashval ^= (hashval >> 6); 2643 2644 if (isstr && data[i] == '\0') 2645 break; 2646 } 2647 } 2648 2649 hashval += (hashval << 3); 2650 hashval ^= (hashval >> 11); 2651 hashval += (hashval << 15); 2652 2653 /* 2654 * Yes, the divide here is expensive -- but it's generally the least 2655 * of the performance issues given the amount of data that we iterate 2656 * over to compute hash values, compare data, etc. 2657 */ 2658 ndx = hashval % agb->dtagb_hashsize; 2659 2660 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2661 ASSERT((caddr_t)key >= tomax); 2662 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2663 2664 if (hashval != key->dtak_hashval || key->dtak_size != size) 2665 continue; 2666 2667 kdata = key->dtak_data; 2668 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2669 2670 for (act = agg->dtag_first; act->dta_intuple; 2671 act = act->dta_next) { 2672 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2673 limit = i + act->dta_rec.dtrd_size; 2674 ASSERT(limit <= size); 2675 isstr = DTRACEACT_ISSTRING(act); 2676 2677 for (; i < limit; i++) { 2678 if (kdata[i] != data[i]) 2679 goto next; 2680 2681 if (isstr && data[i] == '\0') 2682 break; 2683 } 2684 } 2685 2686 if (action != key->dtak_action) { 2687 /* 2688 * We are aggregating on the same value in the same 2689 * aggregation with two different aggregating actions. 2690 * (This should have been picked up in the compiler, 2691 * so we may be dealing with errant or devious DIF.) 2692 * This is an error condition; we indicate as much, 2693 * and return. 2694 */ 2695 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2696 return; 2697 } 2698 2699 /* 2700 * This is a hit: we need to apply the aggregator to 2701 * the value at this key. 2702 */ 2703 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2704 return; 2705 next: 2706 continue; 2707 } 2708 2709 /* 2710 * We didn't find it. We need to allocate some zero-filled space, 2711 * link it into the hash table appropriately, and apply the aggregator 2712 * to the (zero-filled) value. 2713 */ 2714 offs = buf->dtb_offset; 2715 while (offs & (align - 1)) 2716 offs += sizeof (uint32_t); 2717 2718 /* 2719 * If we don't have enough room to both allocate a new key _and_ 2720 * its associated data, increment the drop count and return. 2721 */ 2722 if ((uintptr_t)tomax + offs + fsize > 2723 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2724 dtrace_buffer_drop(buf); 2725 return; 2726 } 2727 2728 /*CONSTCOND*/ 2729 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2730 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2731 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2732 2733 key->dtak_data = kdata = tomax + offs; 2734 buf->dtb_offset = offs + fsize; 2735 2736 /* 2737 * Now copy the data across. 2738 */ 2739 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2740 2741 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2742 kdata[i] = data[i]; 2743 2744 /* 2745 * Because strings are not zeroed out by default, we need to iterate 2746 * looking for actions that store strings, and we need to explicitly 2747 * pad these strings out with zeroes. 2748 */ 2749 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2750 int nul; 2751 2752 if (!DTRACEACT_ISSTRING(act)) 2753 continue; 2754 2755 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2756 limit = i + act->dta_rec.dtrd_size; 2757 ASSERT(limit <= size); 2758 2759 for (nul = 0; i < limit; i++) { 2760 if (nul) { 2761 kdata[i] = '\0'; 2762 continue; 2763 } 2764 2765 if (data[i] != '\0') 2766 continue; 2767 2768 nul = 1; 2769 } 2770 } 2771 2772 for (i = size; i < fsize; i++) 2773 kdata[i] = 0; 2774 2775 key->dtak_hashval = hashval; 2776 key->dtak_size = size; 2777 key->dtak_action = action; 2778 key->dtak_next = agb->dtagb_hash[ndx]; 2779 agb->dtagb_hash[ndx] = key; 2780 2781 /* 2782 * Finally, apply the aggregator. 2783 */ 2784 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2785 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2786 } 2787 2788 /* 2789 * Given consumer state, this routine finds a speculation in the INACTIVE 2790 * state and transitions it into the ACTIVE state. If there is no speculation 2791 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2792 * incremented -- it is up to the caller to take appropriate action. 2793 */ 2794 static int 2795 dtrace_speculation(dtrace_state_t *state) 2796 { 2797 int i = 0; 2798 dtrace_speculation_state_t curstate; 2799 uint32_t *stat = &state->dts_speculations_unavail, count; 2800 2801 while (i < state->dts_nspeculations) { 2802 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2803 2804 curstate = spec->dtsp_state; 2805 2806 if (curstate != DTRACESPEC_INACTIVE) { 2807 if (curstate == DTRACESPEC_COMMITTINGMANY || 2808 curstate == DTRACESPEC_COMMITTING || 2809 curstate == DTRACESPEC_DISCARDING) 2810 stat = &state->dts_speculations_busy; 2811 i++; 2812 continue; 2813 } 2814 2815 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2816 curstate, DTRACESPEC_ACTIVE) == curstate) 2817 return (i + 1); 2818 } 2819 2820 /* 2821 * We couldn't find a speculation. If we found as much as a single 2822 * busy speculation buffer, we'll attribute this failure as "busy" 2823 * instead of "unavail". 2824 */ 2825 do { 2826 count = *stat; 2827 } while (dtrace_cas32(stat, count, count + 1) != count); 2828 2829 return (0); 2830 } 2831 2832 /* 2833 * This routine commits an active speculation. If the specified speculation 2834 * is not in a valid state to perform a commit(), this routine will silently do 2835 * nothing. The state of the specified speculation is transitioned according 2836 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2837 */ 2838 static void 2839 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2840 dtrace_specid_t which) 2841 { 2842 dtrace_speculation_t *spec; 2843 dtrace_buffer_t *src, *dest; 2844 uintptr_t daddr, saddr, dlimit, slimit; 2845 dtrace_speculation_state_t curstate, new = 0; 2846 intptr_t offs; 2847 uint64_t timestamp; 2848 2849 if (which == 0) 2850 return; 2851 2852 if (which > state->dts_nspeculations) { 2853 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2854 return; 2855 } 2856 2857 spec = &state->dts_speculations[which - 1]; 2858 src = &spec->dtsp_buffer[cpu]; 2859 dest = &state->dts_buffer[cpu]; 2860 2861 do { 2862 curstate = spec->dtsp_state; 2863 2864 if (curstate == DTRACESPEC_COMMITTINGMANY) 2865 break; 2866 2867 switch (curstate) { 2868 case DTRACESPEC_INACTIVE: 2869 case DTRACESPEC_DISCARDING: 2870 return; 2871 2872 case DTRACESPEC_COMMITTING: 2873 /* 2874 * This is only possible if we are (a) commit()'ing 2875 * without having done a prior speculate() on this CPU 2876 * and (b) racing with another commit() on a different 2877 * CPU. There's nothing to do -- we just assert that 2878 * our offset is 0. 2879 */ 2880 ASSERT(src->dtb_offset == 0); 2881 return; 2882 2883 case DTRACESPEC_ACTIVE: 2884 new = DTRACESPEC_COMMITTING; 2885 break; 2886 2887 case DTRACESPEC_ACTIVEONE: 2888 /* 2889 * This speculation is active on one CPU. If our 2890 * buffer offset is non-zero, we know that the one CPU 2891 * must be us. Otherwise, we are committing on a 2892 * different CPU from the speculate(), and we must 2893 * rely on being asynchronously cleaned. 2894 */ 2895 if (src->dtb_offset != 0) { 2896 new = DTRACESPEC_COMMITTING; 2897 break; 2898 } 2899 /*FALLTHROUGH*/ 2900 2901 case DTRACESPEC_ACTIVEMANY: 2902 new = DTRACESPEC_COMMITTINGMANY; 2903 break; 2904 2905 default: 2906 ASSERT(0); 2907 } 2908 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2909 curstate, new) != curstate); 2910 2911 /* 2912 * We have set the state to indicate that we are committing this 2913 * speculation. Now reserve the necessary space in the destination 2914 * buffer. 2915 */ 2916 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2917 sizeof (uint64_t), state, NULL)) < 0) { 2918 dtrace_buffer_drop(dest); 2919 goto out; 2920 } 2921 2922 /* 2923 * We have sufficient space to copy the speculative buffer into the 2924 * primary buffer. First, modify the speculative buffer, filling 2925 * in the timestamp of all entries with the curstate time. The data 2926 * must have the commit() time rather than the time it was traced, 2927 * so that all entries in the primary buffer are in timestamp order. 2928 */ 2929 timestamp = dtrace_gethrtime(); 2930 saddr = (uintptr_t)src->dtb_tomax; 2931 slimit = saddr + src->dtb_offset; 2932 while (saddr < slimit) { 2933 size_t size; 2934 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2935 2936 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2937 saddr += sizeof (dtrace_epid_t); 2938 continue; 2939 } 2940 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2941 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2942 2943 ASSERT3U(saddr + size, <=, slimit); 2944 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2945 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2946 2947 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2948 2949 saddr += size; 2950 } 2951 2952 /* 2953 * Copy the buffer across. (Note that this is a 2954 * highly subobtimal bcopy(); in the unlikely event that this becomes 2955 * a serious performance issue, a high-performance DTrace-specific 2956 * bcopy() should obviously be invented.) 2957 */ 2958 daddr = (uintptr_t)dest->dtb_tomax + offs; 2959 dlimit = daddr + src->dtb_offset; 2960 saddr = (uintptr_t)src->dtb_tomax; 2961 2962 /* 2963 * First, the aligned portion. 2964 */ 2965 while (dlimit - daddr >= sizeof (uint64_t)) { 2966 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2967 2968 daddr += sizeof (uint64_t); 2969 saddr += sizeof (uint64_t); 2970 } 2971 2972 /* 2973 * Now any left-over bit... 2974 */ 2975 while (dlimit - daddr) 2976 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2977 2978 /* 2979 * Finally, commit the reserved space in the destination buffer. 2980 */ 2981 dest->dtb_offset = offs + src->dtb_offset; 2982 2983 out: 2984 /* 2985 * If we're lucky enough to be the only active CPU on this speculation 2986 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2987 */ 2988 if (curstate == DTRACESPEC_ACTIVE || 2989 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2990 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2991 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2992 2993 ASSERT(rval == DTRACESPEC_COMMITTING); 2994 } 2995 2996 src->dtb_offset = 0; 2997 src->dtb_xamot_drops += src->dtb_drops; 2998 src->dtb_drops = 0; 2999 } 3000 3001 /* 3002 * This routine discards an active speculation. If the specified speculation 3003 * is not in a valid state to perform a discard(), this routine will silently 3004 * do nothing. The state of the specified speculation is transitioned 3005 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3006 */ 3007 static void 3008 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3009 dtrace_specid_t which) 3010 { 3011 dtrace_speculation_t *spec; 3012 dtrace_speculation_state_t curstate, new = 0; 3013 dtrace_buffer_t *buf; 3014 3015 if (which == 0) 3016 return; 3017 3018 if (which > state->dts_nspeculations) { 3019 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3020 return; 3021 } 3022 3023 spec = &state->dts_speculations[which - 1]; 3024 buf = &spec->dtsp_buffer[cpu]; 3025 3026 do { 3027 curstate = spec->dtsp_state; 3028 3029 switch (curstate) { 3030 case DTRACESPEC_INACTIVE: 3031 case DTRACESPEC_COMMITTINGMANY: 3032 case DTRACESPEC_COMMITTING: 3033 case DTRACESPEC_DISCARDING: 3034 return; 3035 3036 case DTRACESPEC_ACTIVE: 3037 case DTRACESPEC_ACTIVEMANY: 3038 new = DTRACESPEC_DISCARDING; 3039 break; 3040 3041 case DTRACESPEC_ACTIVEONE: 3042 if (buf->dtb_offset != 0) { 3043 new = DTRACESPEC_INACTIVE; 3044 } else { 3045 new = DTRACESPEC_DISCARDING; 3046 } 3047 break; 3048 3049 default: 3050 ASSERT(0); 3051 } 3052 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3053 curstate, new) != curstate); 3054 3055 buf->dtb_offset = 0; 3056 buf->dtb_drops = 0; 3057 } 3058 3059 /* 3060 * Note: not called from probe context. This function is called 3061 * asynchronously from cross call context to clean any speculations that are 3062 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3063 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3064 * speculation. 3065 */ 3066 static void 3067 dtrace_speculation_clean_here(dtrace_state_t *state) 3068 { 3069 dtrace_icookie_t cookie; 3070 processorid_t cpu = curcpu; 3071 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3072 dtrace_specid_t i; 3073 3074 cookie = dtrace_interrupt_disable(); 3075 3076 if (dest->dtb_tomax == NULL) { 3077 dtrace_interrupt_enable(cookie); 3078 return; 3079 } 3080 3081 for (i = 0; i < state->dts_nspeculations; i++) { 3082 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3083 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3084 3085 if (src->dtb_tomax == NULL) 3086 continue; 3087 3088 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3089 src->dtb_offset = 0; 3090 continue; 3091 } 3092 3093 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3094 continue; 3095 3096 if (src->dtb_offset == 0) 3097 continue; 3098 3099 dtrace_speculation_commit(state, cpu, i + 1); 3100 } 3101 3102 dtrace_interrupt_enable(cookie); 3103 } 3104 3105 /* 3106 * Note: not called from probe context. This function is called 3107 * asynchronously (and at a regular interval) to clean any speculations that 3108 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3109 * is work to be done, it cross calls all CPUs to perform that work; 3110 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3111 * INACTIVE state until they have been cleaned by all CPUs. 3112 */ 3113 static void 3114 dtrace_speculation_clean(dtrace_state_t *state) 3115 { 3116 int work = 0, rv; 3117 dtrace_specid_t i; 3118 3119 for (i = 0; i < state->dts_nspeculations; i++) { 3120 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3121 3122 ASSERT(!spec->dtsp_cleaning); 3123 3124 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3125 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3126 continue; 3127 3128 work++; 3129 spec->dtsp_cleaning = 1; 3130 } 3131 3132 if (!work) 3133 return; 3134 3135 dtrace_xcall(DTRACE_CPUALL, 3136 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3137 3138 /* 3139 * We now know that all CPUs have committed or discarded their 3140 * speculation buffers, as appropriate. We can now set the state 3141 * to inactive. 3142 */ 3143 for (i = 0; i < state->dts_nspeculations; i++) { 3144 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3145 dtrace_speculation_state_t curstate, new; 3146 3147 if (!spec->dtsp_cleaning) 3148 continue; 3149 3150 curstate = spec->dtsp_state; 3151 ASSERT(curstate == DTRACESPEC_DISCARDING || 3152 curstate == DTRACESPEC_COMMITTINGMANY); 3153 3154 new = DTRACESPEC_INACTIVE; 3155 3156 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3157 ASSERT(rv == curstate); 3158 spec->dtsp_cleaning = 0; 3159 } 3160 } 3161 3162 /* 3163 * Called as part of a speculate() to get the speculative buffer associated 3164 * with a given speculation. Returns NULL if the specified speculation is not 3165 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3166 * the active CPU is not the specified CPU -- the speculation will be 3167 * atomically transitioned into the ACTIVEMANY state. 3168 */ 3169 static dtrace_buffer_t * 3170 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3171 dtrace_specid_t which) 3172 { 3173 dtrace_speculation_t *spec; 3174 dtrace_speculation_state_t curstate, new = 0; 3175 dtrace_buffer_t *buf; 3176 3177 if (which == 0) 3178 return (NULL); 3179 3180 if (which > state->dts_nspeculations) { 3181 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3182 return (NULL); 3183 } 3184 3185 spec = &state->dts_speculations[which - 1]; 3186 buf = &spec->dtsp_buffer[cpuid]; 3187 3188 do { 3189 curstate = spec->dtsp_state; 3190 3191 switch (curstate) { 3192 case DTRACESPEC_INACTIVE: 3193 case DTRACESPEC_COMMITTINGMANY: 3194 case DTRACESPEC_DISCARDING: 3195 return (NULL); 3196 3197 case DTRACESPEC_COMMITTING: 3198 ASSERT(buf->dtb_offset == 0); 3199 return (NULL); 3200 3201 case DTRACESPEC_ACTIVEONE: 3202 /* 3203 * This speculation is currently active on one CPU. 3204 * Check the offset in the buffer; if it's non-zero, 3205 * that CPU must be us (and we leave the state alone). 3206 * If it's zero, assume that we're starting on a new 3207 * CPU -- and change the state to indicate that the 3208 * speculation is active on more than one CPU. 3209 */ 3210 if (buf->dtb_offset != 0) 3211 return (buf); 3212 3213 new = DTRACESPEC_ACTIVEMANY; 3214 break; 3215 3216 case DTRACESPEC_ACTIVEMANY: 3217 return (buf); 3218 3219 case DTRACESPEC_ACTIVE: 3220 new = DTRACESPEC_ACTIVEONE; 3221 break; 3222 3223 default: 3224 ASSERT(0); 3225 } 3226 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3227 curstate, new) != curstate); 3228 3229 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3230 return (buf); 3231 } 3232 3233 /* 3234 * Return a string. In the event that the user lacks the privilege to access 3235 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3236 * don't fail access checking. 3237 * 3238 * dtrace_dif_variable() uses this routine as a helper for various 3239 * builtin values such as 'execname' and 'probefunc.' 3240 */ 3241 uintptr_t 3242 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3243 dtrace_mstate_t *mstate) 3244 { 3245 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3246 uintptr_t ret; 3247 size_t strsz; 3248 3249 /* 3250 * The easy case: this probe is allowed to read all of memory, so 3251 * we can just return this as a vanilla pointer. 3252 */ 3253 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3254 return (addr); 3255 3256 /* 3257 * This is the tougher case: we copy the string in question from 3258 * kernel memory into scratch memory and return it that way: this 3259 * ensures that we won't trip up when access checking tests the 3260 * BYREF return value. 3261 */ 3262 strsz = dtrace_strlen((char *)addr, size) + 1; 3263 3264 if (mstate->dtms_scratch_ptr + strsz > 3265 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3267 return (0); 3268 } 3269 3270 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3271 strsz); 3272 ret = mstate->dtms_scratch_ptr; 3273 mstate->dtms_scratch_ptr += strsz; 3274 return (ret); 3275 } 3276 3277 /* 3278 * Return a string from a memoy address which is known to have one or 3279 * more concatenated, individually zero terminated, sub-strings. 3280 * In the event that the user lacks the privilege to access 3281 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3282 * don't fail access checking. 3283 * 3284 * dtrace_dif_variable() uses this routine as a helper for various 3285 * builtin values such as 'execargs'. 3286 */ 3287 static uintptr_t 3288 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3289 dtrace_mstate_t *mstate) 3290 { 3291 char *p; 3292 size_t i; 3293 uintptr_t ret; 3294 3295 if (mstate->dtms_scratch_ptr + strsz > 3296 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3298 return (0); 3299 } 3300 3301 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3302 strsz); 3303 3304 /* Replace sub-string termination characters with a space. */ 3305 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3306 p++, i++) 3307 if (*p == '\0') 3308 *p = ' '; 3309 3310 ret = mstate->dtms_scratch_ptr; 3311 mstate->dtms_scratch_ptr += strsz; 3312 return (ret); 3313 } 3314 3315 /* 3316 * This function implements the DIF emulator's variable lookups. The emulator 3317 * passes a reserved variable identifier and optional built-in array index. 3318 */ 3319 static uint64_t 3320 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3321 uint64_t ndx) 3322 { 3323 /* 3324 * If we're accessing one of the uncached arguments, we'll turn this 3325 * into a reference in the args array. 3326 */ 3327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3328 ndx = v - DIF_VAR_ARG0; 3329 v = DIF_VAR_ARGS; 3330 } 3331 3332 switch (v) { 3333 case DIF_VAR_ARGS: 3334 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3335 if (ndx >= sizeof (mstate->dtms_arg) / 3336 sizeof (mstate->dtms_arg[0])) { 3337 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3338 dtrace_provider_t *pv; 3339 uint64_t val; 3340 3341 pv = mstate->dtms_probe->dtpr_provider; 3342 if (pv->dtpv_pops.dtps_getargval != NULL) 3343 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3344 mstate->dtms_probe->dtpr_id, 3345 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3346 else 3347 val = dtrace_getarg(ndx, aframes); 3348 3349 /* 3350 * This is regrettably required to keep the compiler 3351 * from tail-optimizing the call to dtrace_getarg(). 3352 * The condition always evaluates to true, but the 3353 * compiler has no way of figuring that out a priori. 3354 * (None of this would be necessary if the compiler 3355 * could be relied upon to _always_ tail-optimize 3356 * the call to dtrace_getarg() -- but it can't.) 3357 */ 3358 if (mstate->dtms_probe != NULL) 3359 return (val); 3360 3361 ASSERT(0); 3362 } 3363 3364 return (mstate->dtms_arg[ndx]); 3365 3366 case DIF_VAR_REGS: 3367 case DIF_VAR_UREGS: { 3368 struct trapframe *tframe; 3369 3370 if (!dtrace_priv_proc(state)) 3371 return (0); 3372 3373 if (v == DIF_VAR_REGS) 3374 tframe = curthread->t_dtrace_trapframe; 3375 else 3376 tframe = curthread->td_frame; 3377 3378 if (tframe == NULL) { 3379 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3380 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3381 return (0); 3382 } 3383 3384 return (dtrace_getreg(tframe, ndx)); 3385 } 3386 3387 case DIF_VAR_CURTHREAD: 3388 if (!dtrace_priv_proc(state)) 3389 return (0); 3390 return ((uint64_t)(uintptr_t)curthread); 3391 3392 case DIF_VAR_TIMESTAMP: 3393 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3394 mstate->dtms_timestamp = dtrace_gethrtime(); 3395 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3396 } 3397 return (mstate->dtms_timestamp); 3398 3399 case DIF_VAR_VTIMESTAMP: 3400 ASSERT(dtrace_vtime_references != 0); 3401 return (curthread->t_dtrace_vtime); 3402 3403 case DIF_VAR_WALLTIMESTAMP: 3404 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3405 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3406 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3407 } 3408 return (mstate->dtms_walltimestamp); 3409 3410 #ifdef illumos 3411 case DIF_VAR_IPL: 3412 if (!dtrace_priv_kernel(state)) 3413 return (0); 3414 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3415 mstate->dtms_ipl = dtrace_getipl(); 3416 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3417 } 3418 return (mstate->dtms_ipl); 3419 #endif 3420 3421 case DIF_VAR_EPID: 3422 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3423 return (mstate->dtms_epid); 3424 3425 case DIF_VAR_ID: 3426 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3427 return (mstate->dtms_probe->dtpr_id); 3428 3429 case DIF_VAR_STACKDEPTH: 3430 if (!dtrace_priv_kernel(state)) 3431 return (0); 3432 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3433 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3434 3435 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3436 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3437 } 3438 return (mstate->dtms_stackdepth); 3439 3440 case DIF_VAR_USTACKDEPTH: 3441 if (!dtrace_priv_proc(state)) 3442 return (0); 3443 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3444 /* 3445 * See comment in DIF_VAR_PID. 3446 */ 3447 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3448 CPU_ON_INTR(CPU)) { 3449 mstate->dtms_ustackdepth = 0; 3450 } else { 3451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3452 mstate->dtms_ustackdepth = 3453 dtrace_getustackdepth(); 3454 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3455 } 3456 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3457 } 3458 return (mstate->dtms_ustackdepth); 3459 3460 case DIF_VAR_CALLER: 3461 if (!dtrace_priv_kernel(state)) 3462 return (0); 3463 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3464 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3465 3466 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3467 /* 3468 * If this is an unanchored probe, we are 3469 * required to go through the slow path: 3470 * dtrace_caller() only guarantees correct 3471 * results for anchored probes. 3472 */ 3473 pc_t caller[2] = {0, 0}; 3474 3475 dtrace_getpcstack(caller, 2, aframes, 3476 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3477 mstate->dtms_caller = caller[1]; 3478 } else if ((mstate->dtms_caller = 3479 dtrace_caller(aframes)) == -1) { 3480 /* 3481 * We have failed to do this the quick way; 3482 * we must resort to the slower approach of 3483 * calling dtrace_getpcstack(). 3484 */ 3485 pc_t caller = 0; 3486 3487 dtrace_getpcstack(&caller, 1, aframes, NULL); 3488 mstate->dtms_caller = caller; 3489 } 3490 3491 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3492 } 3493 return (mstate->dtms_caller); 3494 3495 case DIF_VAR_UCALLER: 3496 if (!dtrace_priv_proc(state)) 3497 return (0); 3498 3499 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3500 uint64_t ustack[3]; 3501 3502 /* 3503 * dtrace_getupcstack() fills in the first uint64_t 3504 * with the current PID. The second uint64_t will 3505 * be the program counter at user-level. The third 3506 * uint64_t will contain the caller, which is what 3507 * we're after. 3508 */ 3509 ustack[2] = 0; 3510 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3511 dtrace_getupcstack(ustack, 3); 3512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3513 mstate->dtms_ucaller = ustack[2]; 3514 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3515 } 3516 3517 return (mstate->dtms_ucaller); 3518 3519 case DIF_VAR_PROBEPROV: 3520 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3521 return (dtrace_dif_varstr( 3522 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3523 state, mstate)); 3524 3525 case DIF_VAR_PROBEMOD: 3526 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3527 return (dtrace_dif_varstr( 3528 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3529 state, mstate)); 3530 3531 case DIF_VAR_PROBEFUNC: 3532 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3533 return (dtrace_dif_varstr( 3534 (uintptr_t)mstate->dtms_probe->dtpr_func, 3535 state, mstate)); 3536 3537 case DIF_VAR_PROBENAME: 3538 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3539 return (dtrace_dif_varstr( 3540 (uintptr_t)mstate->dtms_probe->dtpr_name, 3541 state, mstate)); 3542 3543 case DIF_VAR_PID: 3544 if (!dtrace_priv_proc(state)) 3545 return (0); 3546 3547 #ifdef illumos 3548 /* 3549 * Note that we are assuming that an unanchored probe is 3550 * always due to a high-level interrupt. (And we're assuming 3551 * that there is only a single high level interrupt.) 3552 */ 3553 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3554 return (pid0.pid_id); 3555 3556 /* 3557 * It is always safe to dereference one's own t_procp pointer: 3558 * it always points to a valid, allocated proc structure. 3559 * Further, it is always safe to dereference the p_pidp member 3560 * of one's own proc structure. (These are truisms becuase 3561 * threads and processes don't clean up their own state -- 3562 * they leave that task to whomever reaps them.) 3563 */ 3564 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3565 #else 3566 return ((uint64_t)curproc->p_pid); 3567 #endif 3568 3569 case DIF_VAR_PPID: 3570 if (!dtrace_priv_proc(state)) 3571 return (0); 3572 3573 #ifdef illumos 3574 /* 3575 * See comment in DIF_VAR_PID. 3576 */ 3577 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3578 return (pid0.pid_id); 3579 3580 /* 3581 * It is always safe to dereference one's own t_procp pointer: 3582 * it always points to a valid, allocated proc structure. 3583 * (This is true because threads don't clean up their own 3584 * state -- they leave that task to whomever reaps them.) 3585 */ 3586 return ((uint64_t)curthread->t_procp->p_ppid); 3587 #else 3588 if (curproc->p_pid == proc0.p_pid) 3589 return (curproc->p_pid); 3590 else 3591 return (curproc->p_pptr->p_pid); 3592 #endif 3593 3594 case DIF_VAR_TID: 3595 #ifdef illumos 3596 /* 3597 * See comment in DIF_VAR_PID. 3598 */ 3599 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3600 return (0); 3601 #endif 3602 3603 return ((uint64_t)curthread->t_tid); 3604 3605 case DIF_VAR_EXECARGS: { 3606 struct pargs *p_args = curthread->td_proc->p_args; 3607 3608 if (p_args == NULL) 3609 return(0); 3610 3611 return (dtrace_dif_varstrz( 3612 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3613 } 3614 3615 case DIF_VAR_EXECNAME: 3616 #ifdef illumos 3617 if (!dtrace_priv_proc(state)) 3618 return (0); 3619 3620 /* 3621 * See comment in DIF_VAR_PID. 3622 */ 3623 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3624 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3625 3626 /* 3627 * It is always safe to dereference one's own t_procp pointer: 3628 * it always points to a valid, allocated proc structure. 3629 * (This is true because threads don't clean up their own 3630 * state -- they leave that task to whomever reaps them.) 3631 */ 3632 return (dtrace_dif_varstr( 3633 (uintptr_t)curthread->t_procp->p_user.u_comm, 3634 state, mstate)); 3635 #else 3636 return (dtrace_dif_varstr( 3637 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3638 #endif 3639 3640 case DIF_VAR_ZONENAME: 3641 #ifdef illumos 3642 if (!dtrace_priv_proc(state)) 3643 return (0); 3644 3645 /* 3646 * See comment in DIF_VAR_PID. 3647 */ 3648 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3649 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3650 3651 /* 3652 * It is always safe to dereference one's own t_procp pointer: 3653 * it always points to a valid, allocated proc structure. 3654 * (This is true because threads don't clean up their own 3655 * state -- they leave that task to whomever reaps them.) 3656 */ 3657 return (dtrace_dif_varstr( 3658 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3659 state, mstate)); 3660 #elif defined(__FreeBSD__) 3661 /* 3662 * On FreeBSD, we introduce compatibility to zonename by falling through 3663 * into jailname. 3664 */ 3665 case DIF_VAR_JAILNAME: 3666 if (!dtrace_priv_kernel(state)) 3667 return (0); 3668 3669 return (dtrace_dif_varstr( 3670 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3671 state, mstate)); 3672 3673 case DIF_VAR_JID: 3674 if (!dtrace_priv_kernel(state)) 3675 return (0); 3676 3677 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3678 #else 3679 return (0); 3680 #endif 3681 3682 case DIF_VAR_UID: 3683 if (!dtrace_priv_proc(state)) 3684 return (0); 3685 3686 #ifdef illumos 3687 /* 3688 * See comment in DIF_VAR_PID. 3689 */ 3690 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3691 return ((uint64_t)p0.p_cred->cr_uid); 3692 3693 /* 3694 * It is always safe to dereference one's own t_procp pointer: 3695 * it always points to a valid, allocated proc structure. 3696 * (This is true because threads don't clean up their own 3697 * state -- they leave that task to whomever reaps them.) 3698 * 3699 * Additionally, it is safe to dereference one's own process 3700 * credential, since this is never NULL after process birth. 3701 */ 3702 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3703 #else 3704 return ((uint64_t)curthread->td_ucred->cr_uid); 3705 #endif 3706 3707 case DIF_VAR_GID: 3708 if (!dtrace_priv_proc(state)) 3709 return (0); 3710 3711 #ifdef illumos 3712 /* 3713 * See comment in DIF_VAR_PID. 3714 */ 3715 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3716 return ((uint64_t)p0.p_cred->cr_gid); 3717 3718 /* 3719 * It is always safe to dereference one's own t_procp pointer: 3720 * it always points to a valid, allocated proc structure. 3721 * (This is true because threads don't clean up their own 3722 * state -- they leave that task to whomever reaps them.) 3723 * 3724 * Additionally, it is safe to dereference one's own process 3725 * credential, since this is never NULL after process birth. 3726 */ 3727 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3728 #else 3729 return ((uint64_t)curthread->td_ucred->cr_gid); 3730 #endif 3731 3732 case DIF_VAR_ERRNO: { 3733 #ifdef illumos 3734 klwp_t *lwp; 3735 if (!dtrace_priv_proc(state)) 3736 return (0); 3737 3738 /* 3739 * See comment in DIF_VAR_PID. 3740 */ 3741 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3742 return (0); 3743 3744 /* 3745 * It is always safe to dereference one's own t_lwp pointer in 3746 * the event that this pointer is non-NULL. (This is true 3747 * because threads and lwps don't clean up their own state -- 3748 * they leave that task to whomever reaps them.) 3749 */ 3750 if ((lwp = curthread->t_lwp) == NULL) 3751 return (0); 3752 3753 return ((uint64_t)lwp->lwp_errno); 3754 #else 3755 return (curthread->td_errno); 3756 #endif 3757 } 3758 #ifndef illumos 3759 case DIF_VAR_CPU: { 3760 return curcpu; 3761 } 3762 #endif 3763 default: 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3765 return (0); 3766 } 3767 } 3768 3769 3770 typedef enum dtrace_json_state { 3771 DTRACE_JSON_REST = 1, 3772 DTRACE_JSON_OBJECT, 3773 DTRACE_JSON_STRING, 3774 DTRACE_JSON_STRING_ESCAPE, 3775 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3776 DTRACE_JSON_COLON, 3777 DTRACE_JSON_COMMA, 3778 DTRACE_JSON_VALUE, 3779 DTRACE_JSON_IDENTIFIER, 3780 DTRACE_JSON_NUMBER, 3781 DTRACE_JSON_NUMBER_FRAC, 3782 DTRACE_JSON_NUMBER_EXP, 3783 DTRACE_JSON_COLLECT_OBJECT 3784 } dtrace_json_state_t; 3785 3786 /* 3787 * This function possesses just enough knowledge about JSON to extract a single 3788 * value from a JSON string and store it in the scratch buffer. It is able 3789 * to extract nested object values, and members of arrays by index. 3790 * 3791 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3792 * be looked up as we descend into the object tree. e.g. 3793 * 3794 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3795 * with nelems = 5. 3796 * 3797 * The run time of this function must be bounded above by strsize to limit the 3798 * amount of work done in probe context. As such, it is implemented as a 3799 * simple state machine, reading one character at a time using safe loads 3800 * until we find the requested element, hit a parsing error or run off the 3801 * end of the object or string. 3802 * 3803 * As there is no way for a subroutine to return an error without interrupting 3804 * clause execution, we simply return NULL in the event of a missing key or any 3805 * other error condition. Each NULL return in this function is commented with 3806 * the error condition it represents -- parsing or otherwise. 3807 * 3808 * The set of states for the state machine closely matches the JSON 3809 * specification (http://json.org/). Briefly: 3810 * 3811 * DTRACE_JSON_REST: 3812 * Skip whitespace until we find either a top-level Object, moving 3813 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3814 * 3815 * DTRACE_JSON_OBJECT: 3816 * Locate the next key String in an Object. Sets a flag to denote 3817 * the next String as a key string and moves to DTRACE_JSON_STRING. 3818 * 3819 * DTRACE_JSON_COLON: 3820 * Skip whitespace until we find the colon that separates key Strings 3821 * from their values. Once found, move to DTRACE_JSON_VALUE. 3822 * 3823 * DTRACE_JSON_VALUE: 3824 * Detects the type of the next value (String, Number, Identifier, Object 3825 * or Array) and routes to the states that process that type. Here we also 3826 * deal with the element selector list if we are requested to traverse down 3827 * into the object tree. 3828 * 3829 * DTRACE_JSON_COMMA: 3830 * Skip whitespace until we find the comma that separates key-value pairs 3831 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3832 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3833 * states return to this state at the end of their value, unless otherwise 3834 * noted. 3835 * 3836 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3837 * Processes a Number literal from the JSON, including any exponent 3838 * component that may be present. Numbers are returned as strings, which 3839 * may be passed to strtoll() if an integer is required. 3840 * 3841 * DTRACE_JSON_IDENTIFIER: 3842 * Processes a "true", "false" or "null" literal in the JSON. 3843 * 3844 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3845 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3846 * Processes a String literal from the JSON, whether the String denotes 3847 * a key, a value or part of a larger Object. Handles all escape sequences 3848 * present in the specification, including four-digit unicode characters, 3849 * but merely includes the escape sequence without converting it to the 3850 * actual escaped character. If the String is flagged as a key, we 3851 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3852 * 3853 * DTRACE_JSON_COLLECT_OBJECT: 3854 * This state collects an entire Object (or Array), correctly handling 3855 * embedded strings. If the full element selector list matches this nested 3856 * object, we return the Object in full as a string. If not, we use this 3857 * state to skip to the next value at this level and continue processing. 3858 * 3859 * NOTE: This function uses various macros from strtolctype.h to manipulate 3860 * digit values, etc -- these have all been checked to ensure they make 3861 * no additional function calls. 3862 */ 3863 static char * 3864 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3865 char *dest) 3866 { 3867 dtrace_json_state_t state = DTRACE_JSON_REST; 3868 int64_t array_elem = INT64_MIN; 3869 int64_t array_pos = 0; 3870 uint8_t escape_unicount = 0; 3871 boolean_t string_is_key = B_FALSE; 3872 boolean_t collect_object = B_FALSE; 3873 boolean_t found_key = B_FALSE; 3874 boolean_t in_array = B_FALSE; 3875 uint32_t braces = 0, brackets = 0; 3876 char *elem = elemlist; 3877 char *dd = dest; 3878 uintptr_t cur; 3879 3880 for (cur = json; cur < json + size; cur++) { 3881 char cc = dtrace_load8(cur); 3882 if (cc == '\0') 3883 return (NULL); 3884 3885 switch (state) { 3886 case DTRACE_JSON_REST: 3887 if (isspace(cc)) 3888 break; 3889 3890 if (cc == '{') { 3891 state = DTRACE_JSON_OBJECT; 3892 break; 3893 } 3894 3895 if (cc == '[') { 3896 in_array = B_TRUE; 3897 array_pos = 0; 3898 array_elem = dtrace_strtoll(elem, 10, size); 3899 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3900 state = DTRACE_JSON_VALUE; 3901 break; 3902 } 3903 3904 /* 3905 * ERROR: expected to find a top-level object or array. 3906 */ 3907 return (NULL); 3908 case DTRACE_JSON_OBJECT: 3909 if (isspace(cc)) 3910 break; 3911 3912 if (cc == '"') { 3913 state = DTRACE_JSON_STRING; 3914 string_is_key = B_TRUE; 3915 break; 3916 } 3917 3918 /* 3919 * ERROR: either the object did not start with a key 3920 * string, or we've run off the end of the object 3921 * without finding the requested key. 3922 */ 3923 return (NULL); 3924 case DTRACE_JSON_STRING: 3925 if (cc == '\\') { 3926 *dd++ = '\\'; 3927 state = DTRACE_JSON_STRING_ESCAPE; 3928 break; 3929 } 3930 3931 if (cc == '"') { 3932 if (collect_object) { 3933 /* 3934 * We don't reset the dest here, as 3935 * the string is part of a larger 3936 * object being collected. 3937 */ 3938 *dd++ = cc; 3939 collect_object = B_FALSE; 3940 state = DTRACE_JSON_COLLECT_OBJECT; 3941 break; 3942 } 3943 *dd = '\0'; 3944 dd = dest; /* reset string buffer */ 3945 if (string_is_key) { 3946 if (dtrace_strncmp(dest, elem, 3947 size) == 0) 3948 found_key = B_TRUE; 3949 } else if (found_key) { 3950 if (nelems > 1) { 3951 /* 3952 * We expected an object, not 3953 * this string. 3954 */ 3955 return (NULL); 3956 } 3957 return (dest); 3958 } 3959 state = string_is_key ? DTRACE_JSON_COLON : 3960 DTRACE_JSON_COMMA; 3961 string_is_key = B_FALSE; 3962 break; 3963 } 3964 3965 *dd++ = cc; 3966 break; 3967 case DTRACE_JSON_STRING_ESCAPE: 3968 *dd++ = cc; 3969 if (cc == 'u') { 3970 escape_unicount = 0; 3971 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3972 } else { 3973 state = DTRACE_JSON_STRING; 3974 } 3975 break; 3976 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3977 if (!isxdigit(cc)) { 3978 /* 3979 * ERROR: invalid unicode escape, expected 3980 * four valid hexidecimal digits. 3981 */ 3982 return (NULL); 3983 } 3984 3985 *dd++ = cc; 3986 if (++escape_unicount == 4) 3987 state = DTRACE_JSON_STRING; 3988 break; 3989 case DTRACE_JSON_COLON: 3990 if (isspace(cc)) 3991 break; 3992 3993 if (cc == ':') { 3994 state = DTRACE_JSON_VALUE; 3995 break; 3996 } 3997 3998 /* 3999 * ERROR: expected a colon. 4000 */ 4001 return (NULL); 4002 case DTRACE_JSON_COMMA: 4003 if (isspace(cc)) 4004 break; 4005 4006 if (cc == ',') { 4007 if (in_array) { 4008 state = DTRACE_JSON_VALUE; 4009 if (++array_pos == array_elem) 4010 found_key = B_TRUE; 4011 } else { 4012 state = DTRACE_JSON_OBJECT; 4013 } 4014 break; 4015 } 4016 4017 /* 4018 * ERROR: either we hit an unexpected character, or 4019 * we reached the end of the object or array without 4020 * finding the requested key. 4021 */ 4022 return (NULL); 4023 case DTRACE_JSON_IDENTIFIER: 4024 if (islower(cc)) { 4025 *dd++ = cc; 4026 break; 4027 } 4028 4029 *dd = '\0'; 4030 dd = dest; /* reset string buffer */ 4031 4032 if (dtrace_strncmp(dest, "true", 5) == 0 || 4033 dtrace_strncmp(dest, "false", 6) == 0 || 4034 dtrace_strncmp(dest, "null", 5) == 0) { 4035 if (found_key) { 4036 if (nelems > 1) { 4037 /* 4038 * ERROR: We expected an object, 4039 * not this identifier. 4040 */ 4041 return (NULL); 4042 } 4043 return (dest); 4044 } else { 4045 cur--; 4046 state = DTRACE_JSON_COMMA; 4047 break; 4048 } 4049 } 4050 4051 /* 4052 * ERROR: we did not recognise the identifier as one 4053 * of those in the JSON specification. 4054 */ 4055 return (NULL); 4056 case DTRACE_JSON_NUMBER: 4057 if (cc == '.') { 4058 *dd++ = cc; 4059 state = DTRACE_JSON_NUMBER_FRAC; 4060 break; 4061 } 4062 4063 if (cc == 'x' || cc == 'X') { 4064 /* 4065 * ERROR: specification explicitly excludes 4066 * hexidecimal or octal numbers. 4067 */ 4068 return (NULL); 4069 } 4070 4071 /* FALLTHRU */ 4072 case DTRACE_JSON_NUMBER_FRAC: 4073 if (cc == 'e' || cc == 'E') { 4074 *dd++ = cc; 4075 state = DTRACE_JSON_NUMBER_EXP; 4076 break; 4077 } 4078 4079 if (cc == '+' || cc == '-') { 4080 /* 4081 * ERROR: expect sign as part of exponent only. 4082 */ 4083 return (NULL); 4084 } 4085 /* FALLTHRU */ 4086 case DTRACE_JSON_NUMBER_EXP: 4087 if (isdigit(cc) || cc == '+' || cc == '-') { 4088 *dd++ = cc; 4089 break; 4090 } 4091 4092 *dd = '\0'; 4093 dd = dest; /* reset string buffer */ 4094 if (found_key) { 4095 if (nelems > 1) { 4096 /* 4097 * ERROR: We expected an object, not 4098 * this number. 4099 */ 4100 return (NULL); 4101 } 4102 return (dest); 4103 } 4104 4105 cur--; 4106 state = DTRACE_JSON_COMMA; 4107 break; 4108 case DTRACE_JSON_VALUE: 4109 if (isspace(cc)) 4110 break; 4111 4112 if (cc == '{' || cc == '[') { 4113 if (nelems > 1 && found_key) { 4114 in_array = cc == '[' ? B_TRUE : B_FALSE; 4115 /* 4116 * If our element selector directs us 4117 * to descend into this nested object, 4118 * then move to the next selector 4119 * element in the list and restart the 4120 * state machine. 4121 */ 4122 while (*elem != '\0') 4123 elem++; 4124 elem++; /* skip the inter-element NUL */ 4125 nelems--; 4126 dd = dest; 4127 if (in_array) { 4128 state = DTRACE_JSON_VALUE; 4129 array_pos = 0; 4130 array_elem = dtrace_strtoll( 4131 elem, 10, size); 4132 found_key = array_elem == 0 ? 4133 B_TRUE : B_FALSE; 4134 } else { 4135 found_key = B_FALSE; 4136 state = DTRACE_JSON_OBJECT; 4137 } 4138 break; 4139 } 4140 4141 /* 4142 * Otherwise, we wish to either skip this 4143 * nested object or return it in full. 4144 */ 4145 if (cc == '[') 4146 brackets = 1; 4147 else 4148 braces = 1; 4149 *dd++ = cc; 4150 state = DTRACE_JSON_COLLECT_OBJECT; 4151 break; 4152 } 4153 4154 if (cc == '"') { 4155 state = DTRACE_JSON_STRING; 4156 break; 4157 } 4158 4159 if (islower(cc)) { 4160 /* 4161 * Here we deal with true, false and null. 4162 */ 4163 *dd++ = cc; 4164 state = DTRACE_JSON_IDENTIFIER; 4165 break; 4166 } 4167 4168 if (cc == '-' || isdigit(cc)) { 4169 *dd++ = cc; 4170 state = DTRACE_JSON_NUMBER; 4171 break; 4172 } 4173 4174 /* 4175 * ERROR: unexpected character at start of value. 4176 */ 4177 return (NULL); 4178 case DTRACE_JSON_COLLECT_OBJECT: 4179 if (cc == '\0') 4180 /* 4181 * ERROR: unexpected end of input. 4182 */ 4183 return (NULL); 4184 4185 *dd++ = cc; 4186 if (cc == '"') { 4187 collect_object = B_TRUE; 4188 state = DTRACE_JSON_STRING; 4189 break; 4190 } 4191 4192 if (cc == ']') { 4193 if (brackets-- == 0) { 4194 /* 4195 * ERROR: unbalanced brackets. 4196 */ 4197 return (NULL); 4198 } 4199 } else if (cc == '}') { 4200 if (braces-- == 0) { 4201 /* 4202 * ERROR: unbalanced braces. 4203 */ 4204 return (NULL); 4205 } 4206 } else if (cc == '{') { 4207 braces++; 4208 } else if (cc == '[') { 4209 brackets++; 4210 } 4211 4212 if (brackets == 0 && braces == 0) { 4213 if (found_key) { 4214 *dd = '\0'; 4215 return (dest); 4216 } 4217 dd = dest; /* reset string buffer */ 4218 state = DTRACE_JSON_COMMA; 4219 } 4220 break; 4221 } 4222 } 4223 return (NULL); 4224 } 4225 4226 /* 4227 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4228 * Notice that we don't bother validating the proper number of arguments or 4229 * their types in the tuple stack. This isn't needed because all argument 4230 * interpretation is safe because of our load safety -- the worst that can 4231 * happen is that a bogus program can obtain bogus results. 4232 */ 4233 static void 4234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4235 dtrace_key_t *tupregs, int nargs, 4236 dtrace_mstate_t *mstate, dtrace_state_t *state) 4237 { 4238 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4239 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4240 dtrace_vstate_t *vstate = &state->dts_vstate; 4241 4242 #ifdef illumos 4243 union { 4244 mutex_impl_t mi; 4245 uint64_t mx; 4246 } m; 4247 4248 union { 4249 krwlock_t ri; 4250 uintptr_t rw; 4251 } r; 4252 #else 4253 struct thread *lowner; 4254 union { 4255 struct lock_object *li; 4256 uintptr_t lx; 4257 } l; 4258 #endif 4259 4260 switch (subr) { 4261 case DIF_SUBR_RAND: 4262 regs[rd] = dtrace_xoroshiro128_plus_next( 4263 state->dts_rstate[curcpu]); 4264 break; 4265 4266 #ifdef illumos 4267 case DIF_SUBR_MUTEX_OWNED: 4268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4269 mstate, vstate)) { 4270 regs[rd] = 0; 4271 break; 4272 } 4273 4274 m.mx = dtrace_load64(tupregs[0].dttk_value); 4275 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4276 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4277 else 4278 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4279 break; 4280 4281 case DIF_SUBR_MUTEX_OWNER: 4282 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4283 mstate, vstate)) { 4284 regs[rd] = 0; 4285 break; 4286 } 4287 4288 m.mx = dtrace_load64(tupregs[0].dttk_value); 4289 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4290 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4291 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4292 else 4293 regs[rd] = 0; 4294 break; 4295 4296 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4297 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4298 mstate, vstate)) { 4299 regs[rd] = 0; 4300 break; 4301 } 4302 4303 m.mx = dtrace_load64(tupregs[0].dttk_value); 4304 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4305 break; 4306 4307 case DIF_SUBR_MUTEX_TYPE_SPIN: 4308 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4309 mstate, vstate)) { 4310 regs[rd] = 0; 4311 break; 4312 } 4313 4314 m.mx = dtrace_load64(tupregs[0].dttk_value); 4315 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4316 break; 4317 4318 case DIF_SUBR_RW_READ_HELD: { 4319 uintptr_t tmp; 4320 4321 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4322 mstate, vstate)) { 4323 regs[rd] = 0; 4324 break; 4325 } 4326 4327 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4328 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4329 break; 4330 } 4331 4332 case DIF_SUBR_RW_WRITE_HELD: 4333 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4334 mstate, vstate)) { 4335 regs[rd] = 0; 4336 break; 4337 } 4338 4339 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4340 regs[rd] = _RW_WRITE_HELD(&r.ri); 4341 break; 4342 4343 case DIF_SUBR_RW_ISWRITER: 4344 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4345 mstate, vstate)) { 4346 regs[rd] = 0; 4347 break; 4348 } 4349 4350 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4351 regs[rd] = _RW_ISWRITER(&r.ri); 4352 break; 4353 4354 #else /* !illumos */ 4355 case DIF_SUBR_MUTEX_OWNED: 4356 if (!dtrace_canload(tupregs[0].dttk_value, 4357 sizeof (struct lock_object), mstate, vstate)) { 4358 regs[rd] = 0; 4359 break; 4360 } 4361 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4362 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4363 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4365 break; 4366 4367 case DIF_SUBR_MUTEX_OWNER: 4368 if (!dtrace_canload(tupregs[0].dttk_value, 4369 sizeof (struct lock_object), mstate, vstate)) { 4370 regs[rd] = 0; 4371 break; 4372 } 4373 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4375 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4377 regs[rd] = (uintptr_t)lowner; 4378 break; 4379 4380 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4381 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4382 mstate, vstate)) { 4383 regs[rd] = 0; 4384 break; 4385 } 4386 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4387 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4388 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4389 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4390 break; 4391 4392 case DIF_SUBR_MUTEX_TYPE_SPIN: 4393 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4394 mstate, vstate)) { 4395 regs[rd] = 0; 4396 break; 4397 } 4398 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4400 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4402 break; 4403 4404 case DIF_SUBR_RW_READ_HELD: 4405 case DIF_SUBR_SX_SHARED_HELD: 4406 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4407 mstate, vstate)) { 4408 regs[rd] = 0; 4409 break; 4410 } 4411 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4412 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4413 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4414 lowner == NULL; 4415 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4416 break; 4417 4418 case DIF_SUBR_RW_WRITE_HELD: 4419 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4420 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4421 mstate, vstate)) { 4422 regs[rd] = 0; 4423 break; 4424 } 4425 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4426 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4427 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4428 lowner != NULL; 4429 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4430 break; 4431 4432 case DIF_SUBR_RW_ISWRITER: 4433 case DIF_SUBR_SX_ISEXCLUSIVE: 4434 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4435 mstate, vstate)) { 4436 regs[rd] = 0; 4437 break; 4438 } 4439 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4440 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4441 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4442 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4443 regs[rd] = (lowner == curthread); 4444 break; 4445 #endif /* illumos */ 4446 4447 case DIF_SUBR_BCOPY: { 4448 /* 4449 * We need to be sure that the destination is in the scratch 4450 * region -- no other region is allowed. 4451 */ 4452 uintptr_t src = tupregs[0].dttk_value; 4453 uintptr_t dest = tupregs[1].dttk_value; 4454 size_t size = tupregs[2].dttk_value; 4455 4456 if (!dtrace_inscratch(dest, size, mstate)) { 4457 *flags |= CPU_DTRACE_BADADDR; 4458 *illval = regs[rd]; 4459 break; 4460 } 4461 4462 if (!dtrace_canload(src, size, mstate, vstate)) { 4463 regs[rd] = 0; 4464 break; 4465 } 4466 4467 dtrace_bcopy((void *)src, (void *)dest, size); 4468 break; 4469 } 4470 4471 case DIF_SUBR_ALLOCA: 4472 case DIF_SUBR_COPYIN: { 4473 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4474 uint64_t size = 4475 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4476 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4477 4478 /* 4479 * This action doesn't require any credential checks since 4480 * probes will not activate in user contexts to which the 4481 * enabling user does not have permissions. 4482 */ 4483 4484 /* 4485 * Rounding up the user allocation size could have overflowed 4486 * a large, bogus allocation (like -1ULL) to 0. 4487 */ 4488 if (scratch_size < size || 4489 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4490 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4491 regs[rd] = 0; 4492 break; 4493 } 4494 4495 if (subr == DIF_SUBR_COPYIN) { 4496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4497 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4498 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4499 } 4500 4501 mstate->dtms_scratch_ptr += scratch_size; 4502 regs[rd] = dest; 4503 break; 4504 } 4505 4506 case DIF_SUBR_COPYINTO: { 4507 uint64_t size = tupregs[1].dttk_value; 4508 uintptr_t dest = tupregs[2].dttk_value; 4509 4510 /* 4511 * This action doesn't require any credential checks since 4512 * probes will not activate in user contexts to which the 4513 * enabling user does not have permissions. 4514 */ 4515 if (!dtrace_inscratch(dest, size, mstate)) { 4516 *flags |= CPU_DTRACE_BADADDR; 4517 *illval = regs[rd]; 4518 break; 4519 } 4520 4521 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4522 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4523 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4524 break; 4525 } 4526 4527 case DIF_SUBR_COPYINSTR: { 4528 uintptr_t dest = mstate->dtms_scratch_ptr; 4529 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4530 4531 if (nargs > 1 && tupregs[1].dttk_value < size) 4532 size = tupregs[1].dttk_value + 1; 4533 4534 /* 4535 * This action doesn't require any credential checks since 4536 * probes will not activate in user contexts to which the 4537 * enabling user does not have permissions. 4538 */ 4539 if (!DTRACE_INSCRATCH(mstate, size)) { 4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4541 regs[rd] = 0; 4542 break; 4543 } 4544 4545 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4546 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4547 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4548 4549 ((char *)dest)[size - 1] = '\0'; 4550 mstate->dtms_scratch_ptr += size; 4551 regs[rd] = dest; 4552 break; 4553 } 4554 4555 #ifdef illumos 4556 case DIF_SUBR_MSGSIZE: 4557 case DIF_SUBR_MSGDSIZE: { 4558 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4559 uintptr_t wptr, rptr; 4560 size_t count = 0; 4561 int cont = 0; 4562 4563 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4564 4565 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4566 vstate)) { 4567 regs[rd] = 0; 4568 break; 4569 } 4570 4571 wptr = dtrace_loadptr(baddr + 4572 offsetof(mblk_t, b_wptr)); 4573 4574 rptr = dtrace_loadptr(baddr + 4575 offsetof(mblk_t, b_rptr)); 4576 4577 if (wptr < rptr) { 4578 *flags |= CPU_DTRACE_BADADDR; 4579 *illval = tupregs[0].dttk_value; 4580 break; 4581 } 4582 4583 daddr = dtrace_loadptr(baddr + 4584 offsetof(mblk_t, b_datap)); 4585 4586 baddr = dtrace_loadptr(baddr + 4587 offsetof(mblk_t, b_cont)); 4588 4589 /* 4590 * We want to prevent against denial-of-service here, 4591 * so we're only going to search the list for 4592 * dtrace_msgdsize_max mblks. 4593 */ 4594 if (cont++ > dtrace_msgdsize_max) { 4595 *flags |= CPU_DTRACE_ILLOP; 4596 break; 4597 } 4598 4599 if (subr == DIF_SUBR_MSGDSIZE) { 4600 if (dtrace_load8(daddr + 4601 offsetof(dblk_t, db_type)) != M_DATA) 4602 continue; 4603 } 4604 4605 count += wptr - rptr; 4606 } 4607 4608 if (!(*flags & CPU_DTRACE_FAULT)) 4609 regs[rd] = count; 4610 4611 break; 4612 } 4613 #endif 4614 4615 case DIF_SUBR_PROGENYOF: { 4616 pid_t pid = tupregs[0].dttk_value; 4617 proc_t *p; 4618 int rval = 0; 4619 4620 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4621 4622 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4623 #ifdef illumos 4624 if (p->p_pidp->pid_id == pid) { 4625 #else 4626 if (p->p_pid == pid) { 4627 #endif 4628 rval = 1; 4629 break; 4630 } 4631 } 4632 4633 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4634 4635 regs[rd] = rval; 4636 break; 4637 } 4638 4639 case DIF_SUBR_SPECULATION: 4640 regs[rd] = dtrace_speculation(state); 4641 break; 4642 4643 case DIF_SUBR_COPYOUT: { 4644 uintptr_t kaddr = tupregs[0].dttk_value; 4645 uintptr_t uaddr = tupregs[1].dttk_value; 4646 uint64_t size = tupregs[2].dttk_value; 4647 4648 if (!dtrace_destructive_disallow && 4649 dtrace_priv_proc_control(state) && 4650 !dtrace_istoxic(kaddr, size) && 4651 dtrace_canload(kaddr, size, mstate, vstate)) { 4652 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4653 dtrace_copyout(kaddr, uaddr, size, flags); 4654 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4655 } 4656 break; 4657 } 4658 4659 case DIF_SUBR_COPYOUTSTR: { 4660 uintptr_t kaddr = tupregs[0].dttk_value; 4661 uintptr_t uaddr = tupregs[1].dttk_value; 4662 uint64_t size = tupregs[2].dttk_value; 4663 size_t lim; 4664 4665 if (!dtrace_destructive_disallow && 4666 dtrace_priv_proc_control(state) && 4667 !dtrace_istoxic(kaddr, size) && 4668 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4669 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4670 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4671 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4672 } 4673 break; 4674 } 4675 4676 case DIF_SUBR_STRLEN: { 4677 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4678 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4679 size_t lim; 4680 4681 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4682 regs[rd] = 0; 4683 break; 4684 } 4685 4686 regs[rd] = dtrace_strlen((char *)addr, lim); 4687 break; 4688 } 4689 4690 case DIF_SUBR_STRCHR: 4691 case DIF_SUBR_STRRCHR: { 4692 /* 4693 * We're going to iterate over the string looking for the 4694 * specified character. We will iterate until we have reached 4695 * the string length or we have found the character. If this 4696 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4697 * of the specified character instead of the first. 4698 */ 4699 uintptr_t addr = tupregs[0].dttk_value; 4700 uintptr_t addr_limit; 4701 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4702 size_t lim; 4703 char c, target = (char)tupregs[1].dttk_value; 4704 4705 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4706 regs[rd] = 0; 4707 break; 4708 } 4709 addr_limit = addr + lim; 4710 4711 for (regs[rd] = 0; addr < addr_limit; addr++) { 4712 if ((c = dtrace_load8(addr)) == target) { 4713 regs[rd] = addr; 4714 4715 if (subr == DIF_SUBR_STRCHR) 4716 break; 4717 } 4718 4719 if (c == '\0') 4720 break; 4721 } 4722 break; 4723 } 4724 4725 case DIF_SUBR_STRSTR: 4726 case DIF_SUBR_INDEX: 4727 case DIF_SUBR_RINDEX: { 4728 /* 4729 * We're going to iterate over the string looking for the 4730 * specified string. We will iterate until we have reached 4731 * the string length or we have found the string. (Yes, this 4732 * is done in the most naive way possible -- but considering 4733 * that the string we're searching for is likely to be 4734 * relatively short, the complexity of Rabin-Karp or similar 4735 * hardly seems merited.) 4736 */ 4737 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4738 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4739 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4740 size_t len = dtrace_strlen(addr, size); 4741 size_t sublen = dtrace_strlen(substr, size); 4742 char *limit = addr + len, *orig = addr; 4743 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4744 int inc = 1; 4745 4746 regs[rd] = notfound; 4747 4748 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4749 regs[rd] = 0; 4750 break; 4751 } 4752 4753 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4754 vstate)) { 4755 regs[rd] = 0; 4756 break; 4757 } 4758 4759 /* 4760 * strstr() and index()/rindex() have similar semantics if 4761 * both strings are the empty string: strstr() returns a 4762 * pointer to the (empty) string, and index() and rindex() 4763 * both return index 0 (regardless of any position argument). 4764 */ 4765 if (sublen == 0 && len == 0) { 4766 if (subr == DIF_SUBR_STRSTR) 4767 regs[rd] = (uintptr_t)addr; 4768 else 4769 regs[rd] = 0; 4770 break; 4771 } 4772 4773 if (subr != DIF_SUBR_STRSTR) { 4774 if (subr == DIF_SUBR_RINDEX) { 4775 limit = orig - 1; 4776 addr += len; 4777 inc = -1; 4778 } 4779 4780 /* 4781 * Both index() and rindex() take an optional position 4782 * argument that denotes the starting position. 4783 */ 4784 if (nargs == 3) { 4785 int64_t pos = (int64_t)tupregs[2].dttk_value; 4786 4787 /* 4788 * If the position argument to index() is 4789 * negative, Perl implicitly clamps it at 4790 * zero. This semantic is a little surprising 4791 * given the special meaning of negative 4792 * positions to similar Perl functions like 4793 * substr(), but it appears to reflect a 4794 * notion that index() can start from a 4795 * negative index and increment its way up to 4796 * the string. Given this notion, Perl's 4797 * rindex() is at least self-consistent in 4798 * that it implicitly clamps positions greater 4799 * than the string length to be the string 4800 * length. Where Perl completely loses 4801 * coherence, however, is when the specified 4802 * substring is the empty string (""). In 4803 * this case, even if the position is 4804 * negative, rindex() returns 0 -- and even if 4805 * the position is greater than the length, 4806 * index() returns the string length. These 4807 * semantics violate the notion that index() 4808 * should never return a value less than the 4809 * specified position and that rindex() should 4810 * never return a value greater than the 4811 * specified position. (One assumes that 4812 * these semantics are artifacts of Perl's 4813 * implementation and not the results of 4814 * deliberate design -- it beggars belief that 4815 * even Larry Wall could desire such oddness.) 4816 * While in the abstract one would wish for 4817 * consistent position semantics across 4818 * substr(), index() and rindex() -- or at the 4819 * very least self-consistent position 4820 * semantics for index() and rindex() -- we 4821 * instead opt to keep with the extant Perl 4822 * semantics, in all their broken glory. (Do 4823 * we have more desire to maintain Perl's 4824 * semantics than Perl does? Probably.) 4825 */ 4826 if (subr == DIF_SUBR_RINDEX) { 4827 if (pos < 0) { 4828 if (sublen == 0) 4829 regs[rd] = 0; 4830 break; 4831 } 4832 4833 if (pos > len) 4834 pos = len; 4835 } else { 4836 if (pos < 0) 4837 pos = 0; 4838 4839 if (pos >= len) { 4840 if (sublen == 0) 4841 regs[rd] = len; 4842 break; 4843 } 4844 } 4845 4846 addr = orig + pos; 4847 } 4848 } 4849 4850 for (regs[rd] = notfound; addr != limit; addr += inc) { 4851 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4852 if (subr != DIF_SUBR_STRSTR) { 4853 /* 4854 * As D index() and rindex() are 4855 * modeled on Perl (and not on awk), 4856 * we return a zero-based (and not a 4857 * one-based) index. (For you Perl 4858 * weenies: no, we're not going to add 4859 * $[ -- and shouldn't you be at a con 4860 * or something?) 4861 */ 4862 regs[rd] = (uintptr_t)(addr - orig); 4863 break; 4864 } 4865 4866 ASSERT(subr == DIF_SUBR_STRSTR); 4867 regs[rd] = (uintptr_t)addr; 4868 break; 4869 } 4870 } 4871 4872 break; 4873 } 4874 4875 case DIF_SUBR_STRTOK: { 4876 uintptr_t addr = tupregs[0].dttk_value; 4877 uintptr_t tokaddr = tupregs[1].dttk_value; 4878 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4879 uintptr_t limit, toklimit; 4880 size_t clim; 4881 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4882 char *dest = (char *)mstate->dtms_scratch_ptr; 4883 int i; 4884 4885 /* 4886 * Check both the token buffer and (later) the input buffer, 4887 * since both could be non-scratch addresses. 4888 */ 4889 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4890 regs[rd] = 0; 4891 break; 4892 } 4893 toklimit = tokaddr + clim; 4894 4895 if (!DTRACE_INSCRATCH(mstate, size)) { 4896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4897 regs[rd] = 0; 4898 break; 4899 } 4900 4901 if (addr == 0) { 4902 /* 4903 * If the address specified is NULL, we use our saved 4904 * strtok pointer from the mstate. Note that this 4905 * means that the saved strtok pointer is _only_ 4906 * valid within multiple enablings of the same probe -- 4907 * it behaves like an implicit clause-local variable. 4908 */ 4909 addr = mstate->dtms_strtok; 4910 limit = mstate->dtms_strtok_limit; 4911 } else { 4912 /* 4913 * If the user-specified address is non-NULL we must 4914 * access check it. This is the only time we have 4915 * a chance to do so, since this address may reside 4916 * in the string table of this clause-- future calls 4917 * (when we fetch addr from mstate->dtms_strtok) 4918 * would fail this access check. 4919 */ 4920 if (!dtrace_strcanload(addr, size, &clim, mstate, 4921 vstate)) { 4922 regs[rd] = 0; 4923 break; 4924 } 4925 limit = addr + clim; 4926 } 4927 4928 /* 4929 * First, zero the token map, and then process the token 4930 * string -- setting a bit in the map for every character 4931 * found in the token string. 4932 */ 4933 for (i = 0; i < sizeof (tokmap); i++) 4934 tokmap[i] = 0; 4935 4936 for (; tokaddr < toklimit; tokaddr++) { 4937 if ((c = dtrace_load8(tokaddr)) == '\0') 4938 break; 4939 4940 ASSERT((c >> 3) < sizeof (tokmap)); 4941 tokmap[c >> 3] |= (1 << (c & 0x7)); 4942 } 4943 4944 for (; addr < limit; addr++) { 4945 /* 4946 * We're looking for a character that is _not_ 4947 * contained in the token string. 4948 */ 4949 if ((c = dtrace_load8(addr)) == '\0') 4950 break; 4951 4952 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4953 break; 4954 } 4955 4956 if (c == '\0') { 4957 /* 4958 * We reached the end of the string without finding 4959 * any character that was not in the token string. 4960 * We return NULL in this case, and we set the saved 4961 * address to NULL as well. 4962 */ 4963 regs[rd] = 0; 4964 mstate->dtms_strtok = 0; 4965 mstate->dtms_strtok_limit = 0; 4966 break; 4967 } 4968 4969 /* 4970 * From here on, we're copying into the destination string. 4971 */ 4972 for (i = 0; addr < limit && i < size - 1; addr++) { 4973 if ((c = dtrace_load8(addr)) == '\0') 4974 break; 4975 4976 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4977 break; 4978 4979 ASSERT(i < size); 4980 dest[i++] = c; 4981 } 4982 4983 ASSERT(i < size); 4984 dest[i] = '\0'; 4985 regs[rd] = (uintptr_t)dest; 4986 mstate->dtms_scratch_ptr += size; 4987 mstate->dtms_strtok = addr; 4988 mstate->dtms_strtok_limit = limit; 4989 break; 4990 } 4991 4992 case DIF_SUBR_SUBSTR: { 4993 uintptr_t s = tupregs[0].dttk_value; 4994 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4995 char *d = (char *)mstate->dtms_scratch_ptr; 4996 int64_t index = (int64_t)tupregs[1].dttk_value; 4997 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4998 size_t len = dtrace_strlen((char *)s, size); 4999 int64_t i; 5000 5001 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5002 regs[rd] = 0; 5003 break; 5004 } 5005 5006 if (!DTRACE_INSCRATCH(mstate, size)) { 5007 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5008 regs[rd] = 0; 5009 break; 5010 } 5011 5012 if (nargs <= 2) 5013 remaining = (int64_t)size; 5014 5015 if (index < 0) { 5016 index += len; 5017 5018 if (index < 0 && index + remaining > 0) { 5019 remaining += index; 5020 index = 0; 5021 } 5022 } 5023 5024 if (index >= len || index < 0) { 5025 remaining = 0; 5026 } else if (remaining < 0) { 5027 remaining += len - index; 5028 } else if (index + remaining > size) { 5029 remaining = size - index; 5030 } 5031 5032 for (i = 0; i < remaining; i++) { 5033 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5034 break; 5035 } 5036 5037 d[i] = '\0'; 5038 5039 mstate->dtms_scratch_ptr += size; 5040 regs[rd] = (uintptr_t)d; 5041 break; 5042 } 5043 5044 case DIF_SUBR_JSON: { 5045 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5046 uintptr_t json = tupregs[0].dttk_value; 5047 size_t jsonlen = dtrace_strlen((char *)json, size); 5048 uintptr_t elem = tupregs[1].dttk_value; 5049 size_t elemlen = dtrace_strlen((char *)elem, size); 5050 5051 char *dest = (char *)mstate->dtms_scratch_ptr; 5052 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5053 char *ee = elemlist; 5054 int nelems = 1; 5055 uintptr_t cur; 5056 5057 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5058 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5059 regs[rd] = 0; 5060 break; 5061 } 5062 5063 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5065 regs[rd] = 0; 5066 break; 5067 } 5068 5069 /* 5070 * Read the element selector and split it up into a packed list 5071 * of strings. 5072 */ 5073 for (cur = elem; cur < elem + elemlen; cur++) { 5074 char cc = dtrace_load8(cur); 5075 5076 if (cur == elem && cc == '[') { 5077 /* 5078 * If the first element selector key is 5079 * actually an array index then ignore the 5080 * bracket. 5081 */ 5082 continue; 5083 } 5084 5085 if (cc == ']') 5086 continue; 5087 5088 if (cc == '.' || cc == '[') { 5089 nelems++; 5090 cc = '\0'; 5091 } 5092 5093 *ee++ = cc; 5094 } 5095 *ee++ = '\0'; 5096 5097 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5098 nelems, dest)) != 0) 5099 mstate->dtms_scratch_ptr += jsonlen + 1; 5100 break; 5101 } 5102 5103 case DIF_SUBR_TOUPPER: 5104 case DIF_SUBR_TOLOWER: { 5105 uintptr_t s = tupregs[0].dttk_value; 5106 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5107 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5108 size_t len = dtrace_strlen((char *)s, size); 5109 char lower, upper, convert; 5110 int64_t i; 5111 5112 if (subr == DIF_SUBR_TOUPPER) { 5113 lower = 'a'; 5114 upper = 'z'; 5115 convert = 'A'; 5116 } else { 5117 lower = 'A'; 5118 upper = 'Z'; 5119 convert = 'a'; 5120 } 5121 5122 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5123 regs[rd] = 0; 5124 break; 5125 } 5126 5127 if (!DTRACE_INSCRATCH(mstate, size)) { 5128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5129 regs[rd] = 0; 5130 break; 5131 } 5132 5133 for (i = 0; i < size - 1; i++) { 5134 if ((c = dtrace_load8(s + i)) == '\0') 5135 break; 5136 5137 if (c >= lower && c <= upper) 5138 c = convert + (c - lower); 5139 5140 dest[i] = c; 5141 } 5142 5143 ASSERT(i < size); 5144 dest[i] = '\0'; 5145 regs[rd] = (uintptr_t)dest; 5146 mstate->dtms_scratch_ptr += size; 5147 break; 5148 } 5149 5150 #ifdef illumos 5151 case DIF_SUBR_GETMAJOR: 5152 #ifdef _LP64 5153 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5154 #else 5155 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5156 #endif 5157 break; 5158 5159 case DIF_SUBR_GETMINOR: 5160 #ifdef _LP64 5161 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5162 #else 5163 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5164 #endif 5165 break; 5166 5167 case DIF_SUBR_DDI_PATHNAME: { 5168 /* 5169 * This one is a galactic mess. We are going to roughly 5170 * emulate ddi_pathname(), but it's made more complicated 5171 * by the fact that we (a) want to include the minor name and 5172 * (b) must proceed iteratively instead of recursively. 5173 */ 5174 uintptr_t dest = mstate->dtms_scratch_ptr; 5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5176 char *start = (char *)dest, *end = start + size - 1; 5177 uintptr_t daddr = tupregs[0].dttk_value; 5178 int64_t minor = (int64_t)tupregs[1].dttk_value; 5179 char *s; 5180 int i, len, depth = 0; 5181 5182 /* 5183 * Due to all the pointer jumping we do and context we must 5184 * rely upon, we just mandate that the user must have kernel 5185 * read privileges to use this routine. 5186 */ 5187 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5188 *flags |= CPU_DTRACE_KPRIV; 5189 *illval = daddr; 5190 regs[rd] = 0; 5191 } 5192 5193 if (!DTRACE_INSCRATCH(mstate, size)) { 5194 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5195 regs[rd] = 0; 5196 break; 5197 } 5198 5199 *end = '\0'; 5200 5201 /* 5202 * We want to have a name for the minor. In order to do this, 5203 * we need to walk the minor list from the devinfo. We want 5204 * to be sure that we don't infinitely walk a circular list, 5205 * so we check for circularity by sending a scout pointer 5206 * ahead two elements for every element that we iterate over; 5207 * if the list is circular, these will ultimately point to the 5208 * same element. You may recognize this little trick as the 5209 * answer to a stupid interview question -- one that always 5210 * seems to be asked by those who had to have it laboriously 5211 * explained to them, and who can't even concisely describe 5212 * the conditions under which one would be forced to resort to 5213 * this technique. Needless to say, those conditions are 5214 * found here -- and probably only here. Is this the only use 5215 * of this infamous trick in shipping, production code? If it 5216 * isn't, it probably should be... 5217 */ 5218 if (minor != -1) { 5219 uintptr_t maddr = dtrace_loadptr(daddr + 5220 offsetof(struct dev_info, devi_minor)); 5221 5222 uintptr_t next = offsetof(struct ddi_minor_data, next); 5223 uintptr_t name = offsetof(struct ddi_minor_data, 5224 d_minor) + offsetof(struct ddi_minor, name); 5225 uintptr_t dev = offsetof(struct ddi_minor_data, 5226 d_minor) + offsetof(struct ddi_minor, dev); 5227 uintptr_t scout; 5228 5229 if (maddr != NULL) 5230 scout = dtrace_loadptr(maddr + next); 5231 5232 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5233 uint64_t m; 5234 #ifdef _LP64 5235 m = dtrace_load64(maddr + dev) & MAXMIN64; 5236 #else 5237 m = dtrace_load32(maddr + dev) & MAXMIN; 5238 #endif 5239 if (m != minor) { 5240 maddr = dtrace_loadptr(maddr + next); 5241 5242 if (scout == NULL) 5243 continue; 5244 5245 scout = dtrace_loadptr(scout + next); 5246 5247 if (scout == NULL) 5248 continue; 5249 5250 scout = dtrace_loadptr(scout + next); 5251 5252 if (scout == NULL) 5253 continue; 5254 5255 if (scout == maddr) { 5256 *flags |= CPU_DTRACE_ILLOP; 5257 break; 5258 } 5259 5260 continue; 5261 } 5262 5263 /* 5264 * We have the minor data. Now we need to 5265 * copy the minor's name into the end of the 5266 * pathname. 5267 */ 5268 s = (char *)dtrace_loadptr(maddr + name); 5269 len = dtrace_strlen(s, size); 5270 5271 if (*flags & CPU_DTRACE_FAULT) 5272 break; 5273 5274 if (len != 0) { 5275 if ((end -= (len + 1)) < start) 5276 break; 5277 5278 *end = ':'; 5279 } 5280 5281 for (i = 1; i <= len; i++) 5282 end[i] = dtrace_load8((uintptr_t)s++); 5283 break; 5284 } 5285 } 5286 5287 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5288 ddi_node_state_t devi_state; 5289 5290 devi_state = dtrace_load32(daddr + 5291 offsetof(struct dev_info, devi_node_state)); 5292 5293 if (*flags & CPU_DTRACE_FAULT) 5294 break; 5295 5296 if (devi_state >= DS_INITIALIZED) { 5297 s = (char *)dtrace_loadptr(daddr + 5298 offsetof(struct dev_info, devi_addr)); 5299 len = dtrace_strlen(s, size); 5300 5301 if (*flags & CPU_DTRACE_FAULT) 5302 break; 5303 5304 if (len != 0) { 5305 if ((end -= (len + 1)) < start) 5306 break; 5307 5308 *end = '@'; 5309 } 5310 5311 for (i = 1; i <= len; i++) 5312 end[i] = dtrace_load8((uintptr_t)s++); 5313 } 5314 5315 /* 5316 * Now for the node name... 5317 */ 5318 s = (char *)dtrace_loadptr(daddr + 5319 offsetof(struct dev_info, devi_node_name)); 5320 5321 daddr = dtrace_loadptr(daddr + 5322 offsetof(struct dev_info, devi_parent)); 5323 5324 /* 5325 * If our parent is NULL (that is, if we're the root 5326 * node), we're going to use the special path 5327 * "devices". 5328 */ 5329 if (daddr == 0) 5330 s = "devices"; 5331 5332 len = dtrace_strlen(s, size); 5333 if (*flags & CPU_DTRACE_FAULT) 5334 break; 5335 5336 if ((end -= (len + 1)) < start) 5337 break; 5338 5339 for (i = 1; i <= len; i++) 5340 end[i] = dtrace_load8((uintptr_t)s++); 5341 *end = '/'; 5342 5343 if (depth++ > dtrace_devdepth_max) { 5344 *flags |= CPU_DTRACE_ILLOP; 5345 break; 5346 } 5347 } 5348 5349 if (end < start) 5350 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5351 5352 if (daddr == 0) { 5353 regs[rd] = (uintptr_t)end; 5354 mstate->dtms_scratch_ptr += size; 5355 } 5356 5357 break; 5358 } 5359 #endif 5360 5361 case DIF_SUBR_STRJOIN: { 5362 char *d = (char *)mstate->dtms_scratch_ptr; 5363 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5364 uintptr_t s1 = tupregs[0].dttk_value; 5365 uintptr_t s2 = tupregs[1].dttk_value; 5366 int i = 0, j = 0; 5367 size_t lim1, lim2; 5368 char c; 5369 5370 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5371 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5372 regs[rd] = 0; 5373 break; 5374 } 5375 5376 if (!DTRACE_INSCRATCH(mstate, size)) { 5377 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5378 regs[rd] = 0; 5379 break; 5380 } 5381 5382 for (;;) { 5383 if (i >= size) { 5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5385 regs[rd] = 0; 5386 break; 5387 } 5388 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5389 if ((d[i++] = c) == '\0') { 5390 i--; 5391 break; 5392 } 5393 } 5394 5395 for (;;) { 5396 if (i >= size) { 5397 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5398 regs[rd] = 0; 5399 break; 5400 } 5401 5402 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5403 if ((d[i++] = c) == '\0') 5404 break; 5405 } 5406 5407 if (i < size) { 5408 mstate->dtms_scratch_ptr += i; 5409 regs[rd] = (uintptr_t)d; 5410 } 5411 5412 break; 5413 } 5414 5415 case DIF_SUBR_STRTOLL: { 5416 uintptr_t s = tupregs[0].dttk_value; 5417 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5418 size_t lim; 5419 int base = 10; 5420 5421 if (nargs > 1) { 5422 if ((base = tupregs[1].dttk_value) <= 1 || 5423 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5424 *flags |= CPU_DTRACE_ILLOP; 5425 break; 5426 } 5427 } 5428 5429 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5430 regs[rd] = INT64_MIN; 5431 break; 5432 } 5433 5434 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5435 break; 5436 } 5437 5438 case DIF_SUBR_LLTOSTR: { 5439 int64_t i = (int64_t)tupregs[0].dttk_value; 5440 uint64_t val, digit; 5441 uint64_t size = 65; /* enough room for 2^64 in binary */ 5442 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5443 int base = 10; 5444 5445 if (nargs > 1) { 5446 if ((base = tupregs[1].dttk_value) <= 1 || 5447 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5448 *flags |= CPU_DTRACE_ILLOP; 5449 break; 5450 } 5451 } 5452 5453 val = (base == 10 && i < 0) ? i * -1 : i; 5454 5455 if (!DTRACE_INSCRATCH(mstate, size)) { 5456 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5457 regs[rd] = 0; 5458 break; 5459 } 5460 5461 for (*end-- = '\0'; val; val /= base) { 5462 if ((digit = val % base) <= '9' - '0') { 5463 *end-- = '0' + digit; 5464 } else { 5465 *end-- = 'a' + (digit - ('9' - '0') - 1); 5466 } 5467 } 5468 5469 if (i == 0 && base == 16) 5470 *end-- = '0'; 5471 5472 if (base == 16) 5473 *end-- = 'x'; 5474 5475 if (i == 0 || base == 8 || base == 16) 5476 *end-- = '0'; 5477 5478 if (i < 0 && base == 10) 5479 *end-- = '-'; 5480 5481 regs[rd] = (uintptr_t)end + 1; 5482 mstate->dtms_scratch_ptr += size; 5483 break; 5484 } 5485 5486 case DIF_SUBR_HTONS: 5487 case DIF_SUBR_NTOHS: 5488 #if BYTE_ORDER == BIG_ENDIAN 5489 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5490 #else 5491 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5492 #endif 5493 break; 5494 5495 5496 case DIF_SUBR_HTONL: 5497 case DIF_SUBR_NTOHL: 5498 #if BYTE_ORDER == BIG_ENDIAN 5499 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5500 #else 5501 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5502 #endif 5503 break; 5504 5505 5506 case DIF_SUBR_HTONLL: 5507 case DIF_SUBR_NTOHLL: 5508 #if BYTE_ORDER == BIG_ENDIAN 5509 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5510 #else 5511 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5512 #endif 5513 break; 5514 5515 5516 case DIF_SUBR_DIRNAME: 5517 case DIF_SUBR_BASENAME: { 5518 char *dest = (char *)mstate->dtms_scratch_ptr; 5519 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5520 uintptr_t src = tupregs[0].dttk_value; 5521 int i, j, len = dtrace_strlen((char *)src, size); 5522 int lastbase = -1, firstbase = -1, lastdir = -1; 5523 int start, end; 5524 5525 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5526 regs[rd] = 0; 5527 break; 5528 } 5529 5530 if (!DTRACE_INSCRATCH(mstate, size)) { 5531 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5532 regs[rd] = 0; 5533 break; 5534 } 5535 5536 /* 5537 * The basename and dirname for a zero-length string is 5538 * defined to be "." 5539 */ 5540 if (len == 0) { 5541 len = 1; 5542 src = (uintptr_t)"."; 5543 } 5544 5545 /* 5546 * Start from the back of the string, moving back toward the 5547 * front until we see a character that isn't a slash. That 5548 * character is the last character in the basename. 5549 */ 5550 for (i = len - 1; i >= 0; i--) { 5551 if (dtrace_load8(src + i) != '/') 5552 break; 5553 } 5554 5555 if (i >= 0) 5556 lastbase = i; 5557 5558 /* 5559 * Starting from the last character in the basename, move 5560 * towards the front until we find a slash. The character 5561 * that we processed immediately before that is the first 5562 * character in the basename. 5563 */ 5564 for (; i >= 0; i--) { 5565 if (dtrace_load8(src + i) == '/') 5566 break; 5567 } 5568 5569 if (i >= 0) 5570 firstbase = i + 1; 5571 5572 /* 5573 * Now keep going until we find a non-slash character. That 5574 * character is the last character in the dirname. 5575 */ 5576 for (; i >= 0; i--) { 5577 if (dtrace_load8(src + i) != '/') 5578 break; 5579 } 5580 5581 if (i >= 0) 5582 lastdir = i; 5583 5584 ASSERT(!(lastbase == -1 && firstbase != -1)); 5585 ASSERT(!(firstbase == -1 && lastdir != -1)); 5586 5587 if (lastbase == -1) { 5588 /* 5589 * We didn't find a non-slash character. We know that 5590 * the length is non-zero, so the whole string must be 5591 * slashes. In either the dirname or the basename 5592 * case, we return '/'. 5593 */ 5594 ASSERT(firstbase == -1); 5595 firstbase = lastbase = lastdir = 0; 5596 } 5597 5598 if (firstbase == -1) { 5599 /* 5600 * The entire string consists only of a basename 5601 * component. If we're looking for dirname, we need 5602 * to change our string to be just "."; if we're 5603 * looking for a basename, we'll just set the first 5604 * character of the basename to be 0. 5605 */ 5606 if (subr == DIF_SUBR_DIRNAME) { 5607 ASSERT(lastdir == -1); 5608 src = (uintptr_t)"."; 5609 lastdir = 0; 5610 } else { 5611 firstbase = 0; 5612 } 5613 } 5614 5615 if (subr == DIF_SUBR_DIRNAME) { 5616 if (lastdir == -1) { 5617 /* 5618 * We know that we have a slash in the name -- 5619 * or lastdir would be set to 0, above. And 5620 * because lastdir is -1, we know that this 5621 * slash must be the first character. (That 5622 * is, the full string must be of the form 5623 * "/basename".) In this case, the last 5624 * character of the directory name is 0. 5625 */ 5626 lastdir = 0; 5627 } 5628 5629 start = 0; 5630 end = lastdir; 5631 } else { 5632 ASSERT(subr == DIF_SUBR_BASENAME); 5633 ASSERT(firstbase != -1 && lastbase != -1); 5634 start = firstbase; 5635 end = lastbase; 5636 } 5637 5638 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5639 dest[j] = dtrace_load8(src + i); 5640 5641 dest[j] = '\0'; 5642 regs[rd] = (uintptr_t)dest; 5643 mstate->dtms_scratch_ptr += size; 5644 break; 5645 } 5646 5647 case DIF_SUBR_GETF: { 5648 uintptr_t fd = tupregs[0].dttk_value; 5649 struct filedesc *fdp; 5650 file_t *fp; 5651 5652 if (!dtrace_priv_proc(state)) { 5653 regs[rd] = 0; 5654 break; 5655 } 5656 fdp = curproc->p_fd; 5657 FILEDESC_SLOCK(fdp); 5658 /* 5659 * XXXMJG this looks broken as no ref is taken. 5660 */ 5661 fp = fget_noref(fdp, fd); 5662 mstate->dtms_getf = fp; 5663 regs[rd] = (uintptr_t)fp; 5664 FILEDESC_SUNLOCK(fdp); 5665 break; 5666 } 5667 5668 case DIF_SUBR_CLEANPATH: { 5669 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5671 uintptr_t src = tupregs[0].dttk_value; 5672 size_t lim; 5673 int i = 0, j = 0; 5674 #ifdef illumos 5675 zone_t *z; 5676 #endif 5677 5678 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5679 regs[rd] = 0; 5680 break; 5681 } 5682 5683 if (!DTRACE_INSCRATCH(mstate, size)) { 5684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5685 regs[rd] = 0; 5686 break; 5687 } 5688 5689 /* 5690 * Move forward, loading each character. 5691 */ 5692 do { 5693 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5694 next: 5695 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5696 break; 5697 5698 if (c != '/') { 5699 dest[j++] = c; 5700 continue; 5701 } 5702 5703 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5704 5705 if (c == '/') { 5706 /* 5707 * We have two slashes -- we can just advance 5708 * to the next character. 5709 */ 5710 goto next; 5711 } 5712 5713 if (c != '.') { 5714 /* 5715 * This is not "." and it's not ".." -- we can 5716 * just store the "/" and this character and 5717 * drive on. 5718 */ 5719 dest[j++] = '/'; 5720 dest[j++] = c; 5721 continue; 5722 } 5723 5724 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5725 5726 if (c == '/') { 5727 /* 5728 * This is a "/./" component. We're not going 5729 * to store anything in the destination buffer; 5730 * we're just going to go to the next component. 5731 */ 5732 goto next; 5733 } 5734 5735 if (c != '.') { 5736 /* 5737 * This is not ".." -- we can just store the 5738 * "/." and this character and continue 5739 * processing. 5740 */ 5741 dest[j++] = '/'; 5742 dest[j++] = '.'; 5743 dest[j++] = c; 5744 continue; 5745 } 5746 5747 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5748 5749 if (c != '/' && c != '\0') { 5750 /* 5751 * This is not ".." -- it's "..[mumble]". 5752 * We'll store the "/.." and this character 5753 * and continue processing. 5754 */ 5755 dest[j++] = '/'; 5756 dest[j++] = '.'; 5757 dest[j++] = '.'; 5758 dest[j++] = c; 5759 continue; 5760 } 5761 5762 /* 5763 * This is "/../" or "/..\0". We need to back up 5764 * our destination pointer until we find a "/". 5765 */ 5766 i--; 5767 while (j != 0 && dest[--j] != '/') 5768 continue; 5769 5770 if (c == '\0') 5771 dest[++j] = '/'; 5772 } while (c != '\0'); 5773 5774 dest[j] = '\0'; 5775 5776 #ifdef illumos 5777 if (mstate->dtms_getf != NULL && 5778 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5779 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5780 /* 5781 * If we've done a getf() as a part of this ECB and we 5782 * don't have kernel access (and we're not in the global 5783 * zone), check if the path we cleaned up begins with 5784 * the zone's root path, and trim it off if so. Note 5785 * that this is an output cleanliness issue, not a 5786 * security issue: knowing one's zone root path does 5787 * not enable privilege escalation. 5788 */ 5789 if (strstr(dest, z->zone_rootpath) == dest) 5790 dest += strlen(z->zone_rootpath) - 1; 5791 } 5792 #endif 5793 5794 regs[rd] = (uintptr_t)dest; 5795 mstate->dtms_scratch_ptr += size; 5796 break; 5797 } 5798 5799 case DIF_SUBR_INET_NTOA: 5800 case DIF_SUBR_INET_NTOA6: 5801 case DIF_SUBR_INET_NTOP: { 5802 size_t size; 5803 int af, argi, i; 5804 char *base, *end; 5805 5806 if (subr == DIF_SUBR_INET_NTOP) { 5807 af = (int)tupregs[0].dttk_value; 5808 argi = 1; 5809 } else { 5810 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5811 argi = 0; 5812 } 5813 5814 if (af == AF_INET) { 5815 ipaddr_t ip4; 5816 uint8_t *ptr8, val; 5817 5818 if (!dtrace_canload(tupregs[argi].dttk_value, 5819 sizeof (ipaddr_t), mstate, vstate)) { 5820 regs[rd] = 0; 5821 break; 5822 } 5823 5824 /* 5825 * Safely load the IPv4 address. 5826 */ 5827 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5828 5829 /* 5830 * Check an IPv4 string will fit in scratch. 5831 */ 5832 size = INET_ADDRSTRLEN; 5833 if (!DTRACE_INSCRATCH(mstate, size)) { 5834 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5835 regs[rd] = 0; 5836 break; 5837 } 5838 base = (char *)mstate->dtms_scratch_ptr; 5839 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5840 5841 /* 5842 * Stringify as a dotted decimal quad. 5843 */ 5844 *end-- = '\0'; 5845 ptr8 = (uint8_t *)&ip4; 5846 for (i = 3; i >= 0; i--) { 5847 val = ptr8[i]; 5848 5849 if (val == 0) { 5850 *end-- = '0'; 5851 } else { 5852 for (; val; val /= 10) { 5853 *end-- = '0' + (val % 10); 5854 } 5855 } 5856 5857 if (i > 0) 5858 *end-- = '.'; 5859 } 5860 ASSERT(end + 1 >= base); 5861 5862 } else if (af == AF_INET6) { 5863 struct in6_addr ip6; 5864 int firstzero, tryzero, numzero, v6end; 5865 uint16_t val; 5866 const char digits[] = "0123456789abcdef"; 5867 5868 /* 5869 * Stringify using RFC 1884 convention 2 - 16 bit 5870 * hexadecimal values with a zero-run compression. 5871 * Lower case hexadecimal digits are used. 5872 * eg, fe80::214:4fff:fe0b:76c8. 5873 * The IPv4 embedded form is returned for inet_ntop, 5874 * just the IPv4 string is returned for inet_ntoa6. 5875 */ 5876 5877 if (!dtrace_canload(tupregs[argi].dttk_value, 5878 sizeof (struct in6_addr), mstate, vstate)) { 5879 regs[rd] = 0; 5880 break; 5881 } 5882 5883 /* 5884 * Safely load the IPv6 address. 5885 */ 5886 dtrace_bcopy( 5887 (void *)(uintptr_t)tupregs[argi].dttk_value, 5888 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5889 5890 /* 5891 * Check an IPv6 string will fit in scratch. 5892 */ 5893 size = INET6_ADDRSTRLEN; 5894 if (!DTRACE_INSCRATCH(mstate, size)) { 5895 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5896 regs[rd] = 0; 5897 break; 5898 } 5899 base = (char *)mstate->dtms_scratch_ptr; 5900 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5901 *end-- = '\0'; 5902 5903 /* 5904 * Find the longest run of 16 bit zero values 5905 * for the single allowed zero compression - "::". 5906 */ 5907 firstzero = -1; 5908 tryzero = -1; 5909 numzero = 1; 5910 for (i = 0; i < sizeof (struct in6_addr); i++) { 5911 #ifdef illumos 5912 if (ip6._S6_un._S6_u8[i] == 0 && 5913 #else 5914 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5915 #endif 5916 tryzero == -1 && i % 2 == 0) { 5917 tryzero = i; 5918 continue; 5919 } 5920 5921 if (tryzero != -1 && 5922 #ifdef illumos 5923 (ip6._S6_un._S6_u8[i] != 0 || 5924 #else 5925 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5926 #endif 5927 i == sizeof (struct in6_addr) - 1)) { 5928 5929 if (i - tryzero <= numzero) { 5930 tryzero = -1; 5931 continue; 5932 } 5933 5934 firstzero = tryzero; 5935 numzero = i - i % 2 - tryzero; 5936 tryzero = -1; 5937 5938 #ifdef illumos 5939 if (ip6._S6_un._S6_u8[i] == 0 && 5940 #else 5941 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5942 #endif 5943 i == sizeof (struct in6_addr) - 1) 5944 numzero += 2; 5945 } 5946 } 5947 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5948 5949 /* 5950 * Check for an IPv4 embedded address. 5951 */ 5952 v6end = sizeof (struct in6_addr) - 2; 5953 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5954 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5955 for (i = sizeof (struct in6_addr) - 1; 5956 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5957 ASSERT(end >= base); 5958 5959 #ifdef illumos 5960 val = ip6._S6_un._S6_u8[i]; 5961 #else 5962 val = ip6.__u6_addr.__u6_addr8[i]; 5963 #endif 5964 5965 if (val == 0) { 5966 *end-- = '0'; 5967 } else { 5968 for (; val; val /= 10) { 5969 *end-- = '0' + val % 10; 5970 } 5971 } 5972 5973 if (i > DTRACE_V4MAPPED_OFFSET) 5974 *end-- = '.'; 5975 } 5976 5977 if (subr == DIF_SUBR_INET_NTOA6) 5978 goto inetout; 5979 5980 /* 5981 * Set v6end to skip the IPv4 address that 5982 * we have already stringified. 5983 */ 5984 v6end = 10; 5985 } 5986 5987 /* 5988 * Build the IPv6 string by working through the 5989 * address in reverse. 5990 */ 5991 for (i = v6end; i >= 0; i -= 2) { 5992 ASSERT(end >= base); 5993 5994 if (i == firstzero + numzero - 2) { 5995 *end-- = ':'; 5996 *end-- = ':'; 5997 i -= numzero - 2; 5998 continue; 5999 } 6000 6001 if (i < 14 && i != firstzero - 2) 6002 *end-- = ':'; 6003 6004 #ifdef illumos 6005 val = (ip6._S6_un._S6_u8[i] << 8) + 6006 ip6._S6_un._S6_u8[i + 1]; 6007 #else 6008 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6009 ip6.__u6_addr.__u6_addr8[i + 1]; 6010 #endif 6011 6012 if (val == 0) { 6013 *end-- = '0'; 6014 } else { 6015 for (; val; val /= 16) { 6016 *end-- = digits[val % 16]; 6017 } 6018 } 6019 } 6020 ASSERT(end + 1 >= base); 6021 6022 } else { 6023 /* 6024 * The user didn't use AH_INET or AH_INET6. 6025 */ 6026 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6027 regs[rd] = 0; 6028 break; 6029 } 6030 6031 inetout: regs[rd] = (uintptr_t)end + 1; 6032 mstate->dtms_scratch_ptr += size; 6033 break; 6034 } 6035 6036 case DIF_SUBR_MEMREF: { 6037 uintptr_t size = 2 * sizeof(uintptr_t); 6038 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6039 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6040 6041 /* address and length */ 6042 memref[0] = tupregs[0].dttk_value; 6043 memref[1] = tupregs[1].dttk_value; 6044 6045 regs[rd] = (uintptr_t) memref; 6046 mstate->dtms_scratch_ptr += scratch_size; 6047 break; 6048 } 6049 6050 #ifndef illumos 6051 case DIF_SUBR_MEMSTR: { 6052 char *str = (char *)mstate->dtms_scratch_ptr; 6053 uintptr_t mem = tupregs[0].dttk_value; 6054 char c = tupregs[1].dttk_value; 6055 size_t size = tupregs[2].dttk_value; 6056 uint8_t n; 6057 int i; 6058 6059 regs[rd] = 0; 6060 6061 if (size == 0) 6062 break; 6063 6064 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6065 break; 6066 6067 if (!DTRACE_INSCRATCH(mstate, size)) { 6068 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6069 break; 6070 } 6071 6072 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6073 *flags |= CPU_DTRACE_ILLOP; 6074 break; 6075 } 6076 6077 for (i = 0; i < size - 1; i++) { 6078 n = dtrace_load8(mem++); 6079 str[i] = (n == 0) ? c : n; 6080 } 6081 str[size - 1] = 0; 6082 6083 regs[rd] = (uintptr_t)str; 6084 mstate->dtms_scratch_ptr += size; 6085 break; 6086 } 6087 #endif 6088 } 6089 } 6090 6091 /* 6092 * Emulate the execution of DTrace IR instructions specified by the given 6093 * DIF object. This function is deliberately void of assertions as all of 6094 * the necessary checks are handled by a call to dtrace_difo_validate(). 6095 */ 6096 static uint64_t 6097 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6098 dtrace_vstate_t *vstate, dtrace_state_t *state) 6099 { 6100 const dif_instr_t *text = difo->dtdo_buf; 6101 const uint_t textlen = difo->dtdo_len; 6102 const char *strtab = difo->dtdo_strtab; 6103 const uint64_t *inttab = difo->dtdo_inttab; 6104 6105 uint64_t rval = 0; 6106 dtrace_statvar_t *svar; 6107 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6108 dtrace_difv_t *v; 6109 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6110 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6111 6112 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6113 uint64_t regs[DIF_DIR_NREGS]; 6114 uint64_t *tmp; 6115 6116 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6117 int64_t cc_r; 6118 uint_t pc = 0, id, opc = 0; 6119 uint8_t ttop = 0; 6120 dif_instr_t instr; 6121 uint_t r1, r2, rd; 6122 6123 /* 6124 * We stash the current DIF object into the machine state: we need it 6125 * for subsequent access checking. 6126 */ 6127 mstate->dtms_difo = difo; 6128 6129 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6130 6131 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6132 opc = pc; 6133 6134 instr = text[pc++]; 6135 r1 = DIF_INSTR_R1(instr); 6136 r2 = DIF_INSTR_R2(instr); 6137 rd = DIF_INSTR_RD(instr); 6138 6139 switch (DIF_INSTR_OP(instr)) { 6140 case DIF_OP_OR: 6141 regs[rd] = regs[r1] | regs[r2]; 6142 break; 6143 case DIF_OP_XOR: 6144 regs[rd] = regs[r1] ^ regs[r2]; 6145 break; 6146 case DIF_OP_AND: 6147 regs[rd] = regs[r1] & regs[r2]; 6148 break; 6149 case DIF_OP_SLL: 6150 regs[rd] = regs[r1] << regs[r2]; 6151 break; 6152 case DIF_OP_SRL: 6153 regs[rd] = regs[r1] >> regs[r2]; 6154 break; 6155 case DIF_OP_SUB: 6156 regs[rd] = regs[r1] - regs[r2]; 6157 break; 6158 case DIF_OP_ADD: 6159 regs[rd] = regs[r1] + regs[r2]; 6160 break; 6161 case DIF_OP_MUL: 6162 regs[rd] = regs[r1] * regs[r2]; 6163 break; 6164 case DIF_OP_SDIV: 6165 if (regs[r2] == 0) { 6166 regs[rd] = 0; 6167 *flags |= CPU_DTRACE_DIVZERO; 6168 } else { 6169 regs[rd] = (int64_t)regs[r1] / 6170 (int64_t)regs[r2]; 6171 } 6172 break; 6173 6174 case DIF_OP_UDIV: 6175 if (regs[r2] == 0) { 6176 regs[rd] = 0; 6177 *flags |= CPU_DTRACE_DIVZERO; 6178 } else { 6179 regs[rd] = regs[r1] / regs[r2]; 6180 } 6181 break; 6182 6183 case DIF_OP_SREM: 6184 if (regs[r2] == 0) { 6185 regs[rd] = 0; 6186 *flags |= CPU_DTRACE_DIVZERO; 6187 } else { 6188 regs[rd] = (int64_t)regs[r1] % 6189 (int64_t)regs[r2]; 6190 } 6191 break; 6192 6193 case DIF_OP_UREM: 6194 if (regs[r2] == 0) { 6195 regs[rd] = 0; 6196 *flags |= CPU_DTRACE_DIVZERO; 6197 } else { 6198 regs[rd] = regs[r1] % regs[r2]; 6199 } 6200 break; 6201 6202 case DIF_OP_NOT: 6203 regs[rd] = ~regs[r1]; 6204 break; 6205 case DIF_OP_MOV: 6206 regs[rd] = regs[r1]; 6207 break; 6208 case DIF_OP_CMP: 6209 cc_r = regs[r1] - regs[r2]; 6210 cc_n = cc_r < 0; 6211 cc_z = cc_r == 0; 6212 cc_v = 0; 6213 cc_c = regs[r1] < regs[r2]; 6214 break; 6215 case DIF_OP_TST: 6216 cc_n = cc_v = cc_c = 0; 6217 cc_z = regs[r1] == 0; 6218 break; 6219 case DIF_OP_BA: 6220 pc = DIF_INSTR_LABEL(instr); 6221 break; 6222 case DIF_OP_BE: 6223 if (cc_z) 6224 pc = DIF_INSTR_LABEL(instr); 6225 break; 6226 case DIF_OP_BNE: 6227 if (cc_z == 0) 6228 pc = DIF_INSTR_LABEL(instr); 6229 break; 6230 case DIF_OP_BG: 6231 if ((cc_z | (cc_n ^ cc_v)) == 0) 6232 pc = DIF_INSTR_LABEL(instr); 6233 break; 6234 case DIF_OP_BGU: 6235 if ((cc_c | cc_z) == 0) 6236 pc = DIF_INSTR_LABEL(instr); 6237 break; 6238 case DIF_OP_BGE: 6239 if ((cc_n ^ cc_v) == 0) 6240 pc = DIF_INSTR_LABEL(instr); 6241 break; 6242 case DIF_OP_BGEU: 6243 if (cc_c == 0) 6244 pc = DIF_INSTR_LABEL(instr); 6245 break; 6246 case DIF_OP_BL: 6247 if (cc_n ^ cc_v) 6248 pc = DIF_INSTR_LABEL(instr); 6249 break; 6250 case DIF_OP_BLU: 6251 if (cc_c) 6252 pc = DIF_INSTR_LABEL(instr); 6253 break; 6254 case DIF_OP_BLE: 6255 if (cc_z | (cc_n ^ cc_v)) 6256 pc = DIF_INSTR_LABEL(instr); 6257 break; 6258 case DIF_OP_BLEU: 6259 if (cc_c | cc_z) 6260 pc = DIF_INSTR_LABEL(instr); 6261 break; 6262 case DIF_OP_RLDSB: 6263 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6264 break; 6265 /*FALLTHROUGH*/ 6266 case DIF_OP_LDSB: 6267 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6268 break; 6269 case DIF_OP_RLDSH: 6270 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6271 break; 6272 /*FALLTHROUGH*/ 6273 case DIF_OP_LDSH: 6274 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6275 break; 6276 case DIF_OP_RLDSW: 6277 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6278 break; 6279 /*FALLTHROUGH*/ 6280 case DIF_OP_LDSW: 6281 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6282 break; 6283 case DIF_OP_RLDUB: 6284 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6285 break; 6286 /*FALLTHROUGH*/ 6287 case DIF_OP_LDUB: 6288 regs[rd] = dtrace_load8(regs[r1]); 6289 break; 6290 case DIF_OP_RLDUH: 6291 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6292 break; 6293 /*FALLTHROUGH*/ 6294 case DIF_OP_LDUH: 6295 regs[rd] = dtrace_load16(regs[r1]); 6296 break; 6297 case DIF_OP_RLDUW: 6298 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6299 break; 6300 /*FALLTHROUGH*/ 6301 case DIF_OP_LDUW: 6302 regs[rd] = dtrace_load32(regs[r1]); 6303 break; 6304 case DIF_OP_RLDX: 6305 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6306 break; 6307 /*FALLTHROUGH*/ 6308 case DIF_OP_LDX: 6309 regs[rd] = dtrace_load64(regs[r1]); 6310 break; 6311 case DIF_OP_ULDSB: 6312 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6313 regs[rd] = (int8_t) 6314 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6315 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6316 break; 6317 case DIF_OP_ULDSH: 6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6319 regs[rd] = (int16_t) 6320 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6322 break; 6323 case DIF_OP_ULDSW: 6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6325 regs[rd] = (int32_t) 6326 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6328 break; 6329 case DIF_OP_ULDUB: 6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6331 regs[rd] = 6332 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6334 break; 6335 case DIF_OP_ULDUH: 6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6337 regs[rd] = 6338 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6340 break; 6341 case DIF_OP_ULDUW: 6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6343 regs[rd] = 6344 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6346 break; 6347 case DIF_OP_ULDX: 6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6349 regs[rd] = 6350 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6352 break; 6353 case DIF_OP_RET: 6354 rval = regs[rd]; 6355 pc = textlen; 6356 break; 6357 case DIF_OP_NOP: 6358 break; 6359 case DIF_OP_SETX: 6360 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6361 break; 6362 case DIF_OP_SETS: 6363 regs[rd] = (uint64_t)(uintptr_t) 6364 (strtab + DIF_INSTR_STRING(instr)); 6365 break; 6366 case DIF_OP_SCMP: { 6367 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6368 uintptr_t s1 = regs[r1]; 6369 uintptr_t s2 = regs[r2]; 6370 size_t lim1, lim2; 6371 6372 /* 6373 * If one of the strings is NULL then the limit becomes 6374 * 0 which compares 0 characters in dtrace_strncmp() 6375 * resulting in a false positive. dtrace_strncmp() 6376 * treats a NULL as an empty 1-char string. 6377 */ 6378 lim1 = lim2 = 1; 6379 6380 if (s1 != 0 && 6381 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6382 break; 6383 if (s2 != 0 && 6384 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6385 break; 6386 6387 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6388 MIN(lim1, lim2)); 6389 6390 cc_n = cc_r < 0; 6391 cc_z = cc_r == 0; 6392 cc_v = cc_c = 0; 6393 break; 6394 } 6395 case DIF_OP_LDGA: 6396 regs[rd] = dtrace_dif_variable(mstate, state, 6397 r1, regs[r2]); 6398 break; 6399 case DIF_OP_LDGS: 6400 id = DIF_INSTR_VAR(instr); 6401 6402 if (id >= DIF_VAR_OTHER_UBASE) { 6403 uintptr_t a; 6404 6405 id -= DIF_VAR_OTHER_UBASE; 6406 svar = vstate->dtvs_globals[id]; 6407 ASSERT(svar != NULL); 6408 v = &svar->dtsv_var; 6409 6410 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6411 regs[rd] = svar->dtsv_data; 6412 break; 6413 } 6414 6415 a = (uintptr_t)svar->dtsv_data; 6416 6417 if (*(uint8_t *)a == UINT8_MAX) { 6418 /* 6419 * If the 0th byte is set to UINT8_MAX 6420 * then this is to be treated as a 6421 * reference to a NULL variable. 6422 */ 6423 regs[rd] = 0; 6424 } else { 6425 regs[rd] = a + sizeof (uint64_t); 6426 } 6427 6428 break; 6429 } 6430 6431 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6432 break; 6433 6434 case DIF_OP_STGS: 6435 id = DIF_INSTR_VAR(instr); 6436 6437 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6438 id -= DIF_VAR_OTHER_UBASE; 6439 6440 VERIFY(id < vstate->dtvs_nglobals); 6441 svar = vstate->dtvs_globals[id]; 6442 ASSERT(svar != NULL); 6443 v = &svar->dtsv_var; 6444 6445 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6446 uintptr_t a = (uintptr_t)svar->dtsv_data; 6447 size_t lim; 6448 6449 ASSERT(a != 0); 6450 ASSERT(svar->dtsv_size != 0); 6451 6452 if (regs[rd] == 0) { 6453 *(uint8_t *)a = UINT8_MAX; 6454 break; 6455 } else { 6456 *(uint8_t *)a = 0; 6457 a += sizeof (uint64_t); 6458 } 6459 if (!dtrace_vcanload( 6460 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6461 &lim, mstate, vstate)) 6462 break; 6463 6464 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6465 (void *)a, &v->dtdv_type, lim); 6466 break; 6467 } 6468 6469 svar->dtsv_data = regs[rd]; 6470 break; 6471 6472 case DIF_OP_LDTA: 6473 /* 6474 * There are no DTrace built-in thread-local arrays at 6475 * present. This opcode is saved for future work. 6476 */ 6477 *flags |= CPU_DTRACE_ILLOP; 6478 regs[rd] = 0; 6479 break; 6480 6481 case DIF_OP_LDLS: 6482 id = DIF_INSTR_VAR(instr); 6483 6484 if (id < DIF_VAR_OTHER_UBASE) { 6485 /* 6486 * For now, this has no meaning. 6487 */ 6488 regs[rd] = 0; 6489 break; 6490 } 6491 6492 id -= DIF_VAR_OTHER_UBASE; 6493 6494 ASSERT(id < vstate->dtvs_nlocals); 6495 ASSERT(vstate->dtvs_locals != NULL); 6496 6497 svar = vstate->dtvs_locals[id]; 6498 ASSERT(svar != NULL); 6499 v = &svar->dtsv_var; 6500 6501 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6502 uintptr_t a = (uintptr_t)svar->dtsv_data; 6503 size_t sz = v->dtdv_type.dtdt_size; 6504 size_t lim; 6505 6506 sz += sizeof (uint64_t); 6507 ASSERT(svar->dtsv_size == NCPU * sz); 6508 a += curcpu * sz; 6509 6510 if (*(uint8_t *)a == UINT8_MAX) { 6511 /* 6512 * If the 0th byte is set to UINT8_MAX 6513 * then this is to be treated as a 6514 * reference to a NULL variable. 6515 */ 6516 regs[rd] = 0; 6517 } else { 6518 regs[rd] = a + sizeof (uint64_t); 6519 } 6520 6521 break; 6522 } 6523 6524 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6525 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6526 regs[rd] = tmp[curcpu]; 6527 break; 6528 6529 case DIF_OP_STLS: 6530 id = DIF_INSTR_VAR(instr); 6531 6532 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6533 id -= DIF_VAR_OTHER_UBASE; 6534 VERIFY(id < vstate->dtvs_nlocals); 6535 6536 ASSERT(vstate->dtvs_locals != NULL); 6537 svar = vstate->dtvs_locals[id]; 6538 ASSERT(svar != NULL); 6539 v = &svar->dtsv_var; 6540 6541 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6542 uintptr_t a = (uintptr_t)svar->dtsv_data; 6543 size_t sz = v->dtdv_type.dtdt_size; 6544 size_t lim; 6545 6546 sz += sizeof (uint64_t); 6547 ASSERT(svar->dtsv_size == NCPU * sz); 6548 a += curcpu * sz; 6549 6550 if (regs[rd] == 0) { 6551 *(uint8_t *)a = UINT8_MAX; 6552 break; 6553 } else { 6554 *(uint8_t *)a = 0; 6555 a += sizeof (uint64_t); 6556 } 6557 6558 if (!dtrace_vcanload( 6559 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6560 &lim, mstate, vstate)) 6561 break; 6562 6563 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6564 (void *)a, &v->dtdv_type, lim); 6565 break; 6566 } 6567 6568 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6569 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6570 tmp[curcpu] = regs[rd]; 6571 break; 6572 6573 case DIF_OP_LDTS: { 6574 dtrace_dynvar_t *dvar; 6575 dtrace_key_t *key; 6576 6577 id = DIF_INSTR_VAR(instr); 6578 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6579 id -= DIF_VAR_OTHER_UBASE; 6580 v = &vstate->dtvs_tlocals[id]; 6581 6582 key = &tupregs[DIF_DTR_NREGS]; 6583 key[0].dttk_value = (uint64_t)id; 6584 key[0].dttk_size = 0; 6585 DTRACE_TLS_THRKEY(key[1].dttk_value); 6586 key[1].dttk_size = 0; 6587 6588 dvar = dtrace_dynvar(dstate, 2, key, 6589 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6590 mstate, vstate); 6591 6592 if (dvar == NULL) { 6593 regs[rd] = 0; 6594 break; 6595 } 6596 6597 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6598 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6599 } else { 6600 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6601 } 6602 6603 break; 6604 } 6605 6606 case DIF_OP_STTS: { 6607 dtrace_dynvar_t *dvar; 6608 dtrace_key_t *key; 6609 6610 id = DIF_INSTR_VAR(instr); 6611 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6612 id -= DIF_VAR_OTHER_UBASE; 6613 VERIFY(id < vstate->dtvs_ntlocals); 6614 6615 key = &tupregs[DIF_DTR_NREGS]; 6616 key[0].dttk_value = (uint64_t)id; 6617 key[0].dttk_size = 0; 6618 DTRACE_TLS_THRKEY(key[1].dttk_value); 6619 key[1].dttk_size = 0; 6620 v = &vstate->dtvs_tlocals[id]; 6621 6622 dvar = dtrace_dynvar(dstate, 2, key, 6623 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6624 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6625 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6626 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6627 6628 /* 6629 * Given that we're storing to thread-local data, 6630 * we need to flush our predicate cache. 6631 */ 6632 curthread->t_predcache = 0; 6633 6634 if (dvar == NULL) 6635 break; 6636 6637 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6638 size_t lim; 6639 6640 if (!dtrace_vcanload( 6641 (void *)(uintptr_t)regs[rd], 6642 &v->dtdv_type, &lim, mstate, vstate)) 6643 break; 6644 6645 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6646 dvar->dtdv_data, &v->dtdv_type, lim); 6647 } else { 6648 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6649 } 6650 6651 break; 6652 } 6653 6654 case DIF_OP_SRA: 6655 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6656 break; 6657 6658 case DIF_OP_CALL: 6659 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6660 regs, tupregs, ttop, mstate, state); 6661 break; 6662 6663 case DIF_OP_PUSHTR: 6664 if (ttop == DIF_DTR_NREGS) { 6665 *flags |= CPU_DTRACE_TUPOFLOW; 6666 break; 6667 } 6668 6669 if (r1 == DIF_TYPE_STRING) { 6670 /* 6671 * If this is a string type and the size is 0, 6672 * we'll use the system-wide default string 6673 * size. Note that we are _not_ looking at 6674 * the value of the DTRACEOPT_STRSIZE option; 6675 * had this been set, we would expect to have 6676 * a non-zero size value in the "pushtr". 6677 */ 6678 tupregs[ttop].dttk_size = 6679 dtrace_strlen((char *)(uintptr_t)regs[rd], 6680 regs[r2] ? regs[r2] : 6681 dtrace_strsize_default) + 1; 6682 } else { 6683 if (regs[r2] > LONG_MAX) { 6684 *flags |= CPU_DTRACE_ILLOP; 6685 break; 6686 } 6687 6688 tupregs[ttop].dttk_size = regs[r2]; 6689 } 6690 6691 tupregs[ttop++].dttk_value = regs[rd]; 6692 break; 6693 6694 case DIF_OP_PUSHTV: 6695 if (ttop == DIF_DTR_NREGS) { 6696 *flags |= CPU_DTRACE_TUPOFLOW; 6697 break; 6698 } 6699 6700 tupregs[ttop].dttk_value = regs[rd]; 6701 tupregs[ttop++].dttk_size = 0; 6702 break; 6703 6704 case DIF_OP_POPTS: 6705 if (ttop != 0) 6706 ttop--; 6707 break; 6708 6709 case DIF_OP_FLUSHTS: 6710 ttop = 0; 6711 break; 6712 6713 case DIF_OP_LDGAA: 6714 case DIF_OP_LDTAA: { 6715 dtrace_dynvar_t *dvar; 6716 dtrace_key_t *key = tupregs; 6717 uint_t nkeys = ttop; 6718 6719 id = DIF_INSTR_VAR(instr); 6720 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6721 id -= DIF_VAR_OTHER_UBASE; 6722 6723 key[nkeys].dttk_value = (uint64_t)id; 6724 key[nkeys++].dttk_size = 0; 6725 6726 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6727 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6728 key[nkeys++].dttk_size = 0; 6729 VERIFY(id < vstate->dtvs_ntlocals); 6730 v = &vstate->dtvs_tlocals[id]; 6731 } else { 6732 VERIFY(id < vstate->dtvs_nglobals); 6733 v = &vstate->dtvs_globals[id]->dtsv_var; 6734 } 6735 6736 dvar = dtrace_dynvar(dstate, nkeys, key, 6737 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6738 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6739 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6740 6741 if (dvar == NULL) { 6742 regs[rd] = 0; 6743 break; 6744 } 6745 6746 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6747 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6748 } else { 6749 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6750 } 6751 6752 break; 6753 } 6754 6755 case DIF_OP_STGAA: 6756 case DIF_OP_STTAA: { 6757 dtrace_dynvar_t *dvar; 6758 dtrace_key_t *key = tupregs; 6759 uint_t nkeys = ttop; 6760 6761 id = DIF_INSTR_VAR(instr); 6762 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6763 id -= DIF_VAR_OTHER_UBASE; 6764 6765 key[nkeys].dttk_value = (uint64_t)id; 6766 key[nkeys++].dttk_size = 0; 6767 6768 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6769 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6770 key[nkeys++].dttk_size = 0; 6771 VERIFY(id < vstate->dtvs_ntlocals); 6772 v = &vstate->dtvs_tlocals[id]; 6773 } else { 6774 VERIFY(id < vstate->dtvs_nglobals); 6775 v = &vstate->dtvs_globals[id]->dtsv_var; 6776 } 6777 6778 dvar = dtrace_dynvar(dstate, nkeys, key, 6779 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6780 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6781 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6782 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6783 6784 if (dvar == NULL) 6785 break; 6786 6787 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6788 size_t lim; 6789 6790 if (!dtrace_vcanload( 6791 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6792 &lim, mstate, vstate)) 6793 break; 6794 6795 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6796 dvar->dtdv_data, &v->dtdv_type, lim); 6797 } else { 6798 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6799 } 6800 6801 break; 6802 } 6803 6804 case DIF_OP_ALLOCS: { 6805 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6806 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6807 6808 /* 6809 * Rounding up the user allocation size could have 6810 * overflowed large, bogus allocations (like -1ULL) to 6811 * 0. 6812 */ 6813 if (size < regs[r1] || 6814 !DTRACE_INSCRATCH(mstate, size)) { 6815 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6816 regs[rd] = 0; 6817 break; 6818 } 6819 6820 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6821 mstate->dtms_scratch_ptr += size; 6822 regs[rd] = ptr; 6823 break; 6824 } 6825 6826 case DIF_OP_COPYS: 6827 if (!dtrace_canstore(regs[rd], regs[r2], 6828 mstate, vstate)) { 6829 *flags |= CPU_DTRACE_BADADDR; 6830 *illval = regs[rd]; 6831 break; 6832 } 6833 6834 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6835 break; 6836 6837 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6838 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6839 break; 6840 6841 case DIF_OP_STB: 6842 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6843 *flags |= CPU_DTRACE_BADADDR; 6844 *illval = regs[rd]; 6845 break; 6846 } 6847 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6848 break; 6849 6850 case DIF_OP_STH: 6851 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6852 *flags |= CPU_DTRACE_BADADDR; 6853 *illval = regs[rd]; 6854 break; 6855 } 6856 if (regs[rd] & 1) { 6857 *flags |= CPU_DTRACE_BADALIGN; 6858 *illval = regs[rd]; 6859 break; 6860 } 6861 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6862 break; 6863 6864 case DIF_OP_STW: 6865 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6866 *flags |= CPU_DTRACE_BADADDR; 6867 *illval = regs[rd]; 6868 break; 6869 } 6870 if (regs[rd] & 3) { 6871 *flags |= CPU_DTRACE_BADALIGN; 6872 *illval = regs[rd]; 6873 break; 6874 } 6875 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6876 break; 6877 6878 case DIF_OP_STX: 6879 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6880 *flags |= CPU_DTRACE_BADADDR; 6881 *illval = regs[rd]; 6882 break; 6883 } 6884 if (regs[rd] & 7) { 6885 *flags |= CPU_DTRACE_BADALIGN; 6886 *illval = regs[rd]; 6887 break; 6888 } 6889 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6890 break; 6891 } 6892 } 6893 6894 if (!(*flags & CPU_DTRACE_FAULT)) 6895 return (rval); 6896 6897 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6898 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6899 6900 return (0); 6901 } 6902 6903 static void 6904 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6905 { 6906 dtrace_probe_t *probe = ecb->dte_probe; 6907 dtrace_provider_t *prov = probe->dtpr_provider; 6908 char c[DTRACE_FULLNAMELEN + 80], *str; 6909 char *msg = "dtrace: breakpoint action at probe "; 6910 char *ecbmsg = " (ecb "; 6911 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6912 uintptr_t val = (uintptr_t)ecb; 6913 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6914 6915 if (dtrace_destructive_disallow) 6916 return; 6917 6918 /* 6919 * It's impossible to be taking action on the NULL probe. 6920 */ 6921 ASSERT(probe != NULL); 6922 6923 /* 6924 * This is a poor man's (destitute man's?) sprintf(): we want to 6925 * print the provider name, module name, function name and name of 6926 * the probe, along with the hex address of the ECB with the breakpoint 6927 * action -- all of which we must place in the character buffer by 6928 * hand. 6929 */ 6930 while (*msg != '\0') 6931 c[i++] = *msg++; 6932 6933 for (str = prov->dtpv_name; *str != '\0'; str++) 6934 c[i++] = *str; 6935 c[i++] = ':'; 6936 6937 for (str = probe->dtpr_mod; *str != '\0'; str++) 6938 c[i++] = *str; 6939 c[i++] = ':'; 6940 6941 for (str = probe->dtpr_func; *str != '\0'; str++) 6942 c[i++] = *str; 6943 c[i++] = ':'; 6944 6945 for (str = probe->dtpr_name; *str != '\0'; str++) 6946 c[i++] = *str; 6947 6948 while (*ecbmsg != '\0') 6949 c[i++] = *ecbmsg++; 6950 6951 while (shift >= 0) { 6952 mask = (uintptr_t)0xf << shift; 6953 6954 if (val >= ((uintptr_t)1 << shift)) 6955 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6956 shift -= 4; 6957 } 6958 6959 c[i++] = ')'; 6960 c[i] = '\0'; 6961 6962 #ifdef illumos 6963 debug_enter(c); 6964 #else 6965 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6966 #endif 6967 } 6968 6969 static void 6970 dtrace_action_panic(dtrace_ecb_t *ecb) 6971 { 6972 dtrace_probe_t *probe = ecb->dte_probe; 6973 6974 /* 6975 * It's impossible to be taking action on the NULL probe. 6976 */ 6977 ASSERT(probe != NULL); 6978 6979 if (dtrace_destructive_disallow) 6980 return; 6981 6982 if (dtrace_panicked != NULL) 6983 return; 6984 6985 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6986 return; 6987 6988 /* 6989 * We won the right to panic. (We want to be sure that only one 6990 * thread calls panic() from dtrace_probe(), and that panic() is 6991 * called exactly once.) 6992 */ 6993 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6994 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6995 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6996 } 6997 6998 static void 6999 dtrace_action_raise(uint64_t sig) 7000 { 7001 if (dtrace_destructive_disallow) 7002 return; 7003 7004 if (sig >= NSIG) { 7005 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7006 return; 7007 } 7008 7009 #ifdef illumos 7010 /* 7011 * raise() has a queue depth of 1 -- we ignore all subsequent 7012 * invocations of the raise() action. 7013 */ 7014 if (curthread->t_dtrace_sig == 0) 7015 curthread->t_dtrace_sig = (uint8_t)sig; 7016 7017 curthread->t_sig_check = 1; 7018 aston(curthread); 7019 #else 7020 struct proc *p = curproc; 7021 PROC_LOCK(p); 7022 kern_psignal(p, sig); 7023 PROC_UNLOCK(p); 7024 #endif 7025 } 7026 7027 static void 7028 dtrace_action_stop(void) 7029 { 7030 if (dtrace_destructive_disallow) 7031 return; 7032 7033 #ifdef illumos 7034 if (!curthread->t_dtrace_stop) { 7035 curthread->t_dtrace_stop = 1; 7036 curthread->t_sig_check = 1; 7037 aston(curthread); 7038 } 7039 #else 7040 struct proc *p = curproc; 7041 PROC_LOCK(p); 7042 kern_psignal(p, SIGSTOP); 7043 PROC_UNLOCK(p); 7044 #endif 7045 } 7046 7047 static void 7048 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7049 { 7050 hrtime_t now; 7051 volatile uint16_t *flags; 7052 #ifdef illumos 7053 cpu_t *cpu = CPU; 7054 #else 7055 cpu_t *cpu = &solaris_cpu[curcpu]; 7056 #endif 7057 7058 if (dtrace_destructive_disallow) 7059 return; 7060 7061 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7062 7063 now = dtrace_gethrtime(); 7064 7065 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7066 /* 7067 * We need to advance the mark to the current time. 7068 */ 7069 cpu->cpu_dtrace_chillmark = now; 7070 cpu->cpu_dtrace_chilled = 0; 7071 } 7072 7073 /* 7074 * Now check to see if the requested chill time would take us over 7075 * the maximum amount of time allowed in the chill interval. (Or 7076 * worse, if the calculation itself induces overflow.) 7077 */ 7078 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7079 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7080 *flags |= CPU_DTRACE_ILLOP; 7081 return; 7082 } 7083 7084 while (dtrace_gethrtime() - now < val) 7085 continue; 7086 7087 /* 7088 * Normally, we assure that the value of the variable "timestamp" does 7089 * not change within an ECB. The presence of chill() represents an 7090 * exception to this rule, however. 7091 */ 7092 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7093 cpu->cpu_dtrace_chilled += val; 7094 } 7095 7096 static void 7097 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7098 uint64_t *buf, uint64_t arg) 7099 { 7100 int nframes = DTRACE_USTACK_NFRAMES(arg); 7101 int strsize = DTRACE_USTACK_STRSIZE(arg); 7102 uint64_t *pcs = &buf[1], *fps; 7103 char *str = (char *)&pcs[nframes]; 7104 int size, offs = 0, i, j; 7105 size_t rem; 7106 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7107 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7108 char *sym; 7109 7110 /* 7111 * Should be taking a faster path if string space has not been 7112 * allocated. 7113 */ 7114 ASSERT(strsize != 0); 7115 7116 /* 7117 * We will first allocate some temporary space for the frame pointers. 7118 */ 7119 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7120 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7121 (nframes * sizeof (uint64_t)); 7122 7123 if (!DTRACE_INSCRATCH(mstate, size)) { 7124 /* 7125 * Not enough room for our frame pointers -- need to indicate 7126 * that we ran out of scratch space. 7127 */ 7128 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7129 return; 7130 } 7131 7132 mstate->dtms_scratch_ptr += size; 7133 saved = mstate->dtms_scratch_ptr; 7134 7135 /* 7136 * Now get a stack with both program counters and frame pointers. 7137 */ 7138 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7139 dtrace_getufpstack(buf, fps, nframes + 1); 7140 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7141 7142 /* 7143 * If that faulted, we're cooked. 7144 */ 7145 if (*flags & CPU_DTRACE_FAULT) 7146 goto out; 7147 7148 /* 7149 * Now we want to walk up the stack, calling the USTACK helper. For 7150 * each iteration, we restore the scratch pointer. 7151 */ 7152 for (i = 0; i < nframes; i++) { 7153 mstate->dtms_scratch_ptr = saved; 7154 7155 if (offs >= strsize) 7156 break; 7157 7158 sym = (char *)(uintptr_t)dtrace_helper( 7159 DTRACE_HELPER_ACTION_USTACK, 7160 mstate, state, pcs[i], fps[i]); 7161 7162 /* 7163 * If we faulted while running the helper, we're going to 7164 * clear the fault and null out the corresponding string. 7165 */ 7166 if (*flags & CPU_DTRACE_FAULT) { 7167 *flags &= ~CPU_DTRACE_FAULT; 7168 str[offs++] = '\0'; 7169 continue; 7170 } 7171 7172 if (sym == NULL) { 7173 str[offs++] = '\0'; 7174 continue; 7175 } 7176 7177 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7178 &(state->dts_vstate))) { 7179 str[offs++] = '\0'; 7180 continue; 7181 } 7182 7183 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7184 7185 /* 7186 * Now copy in the string that the helper returned to us. 7187 */ 7188 for (j = 0; offs + j < strsize && j < rem; j++) { 7189 if ((str[offs + j] = sym[j]) == '\0') 7190 break; 7191 } 7192 7193 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7194 7195 offs += j + 1; 7196 } 7197 7198 if (offs >= strsize) { 7199 /* 7200 * If we didn't have room for all of the strings, we don't 7201 * abort processing -- this needn't be a fatal error -- but we 7202 * still want to increment a counter (dts_stkstroverflows) to 7203 * allow this condition to be warned about. (If this is from 7204 * a jstack() action, it is easily tuned via jstackstrsize.) 7205 */ 7206 dtrace_error(&state->dts_stkstroverflows); 7207 } 7208 7209 while (offs < strsize) 7210 str[offs++] = '\0'; 7211 7212 out: 7213 mstate->dtms_scratch_ptr = old; 7214 } 7215 7216 static void 7217 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7218 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7219 { 7220 volatile uint16_t *flags; 7221 uint64_t val = *valp; 7222 size_t valoffs = *valoffsp; 7223 7224 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7225 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7226 7227 /* 7228 * If this is a string, we're going to only load until we find the zero 7229 * byte -- after which we'll store zero bytes. 7230 */ 7231 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7232 char c = '\0' + 1; 7233 size_t s; 7234 7235 for (s = 0; s < size; s++) { 7236 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7237 c = dtrace_load8(val++); 7238 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7239 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7240 c = dtrace_fuword8((void *)(uintptr_t)val++); 7241 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7242 if (*flags & CPU_DTRACE_FAULT) 7243 break; 7244 } 7245 7246 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7247 7248 if (c == '\0' && intuple) 7249 break; 7250 } 7251 } else { 7252 uint8_t c; 7253 while (valoffs < end) { 7254 if (dtkind == DIF_TF_BYREF) { 7255 c = dtrace_load8(val++); 7256 } else if (dtkind == DIF_TF_BYUREF) { 7257 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7258 c = dtrace_fuword8((void *)(uintptr_t)val++); 7259 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7260 if (*flags & CPU_DTRACE_FAULT) 7261 break; 7262 } 7263 7264 DTRACE_STORE(uint8_t, tomax, 7265 valoffs++, c); 7266 } 7267 } 7268 7269 *valp = val; 7270 *valoffsp = valoffs; 7271 } 7272 7273 /* 7274 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7275 * defined, we also assert that we are not recursing unless the probe ID is an 7276 * error probe. 7277 */ 7278 static dtrace_icookie_t 7279 dtrace_probe_enter(dtrace_id_t id) 7280 { 7281 dtrace_icookie_t cookie; 7282 7283 cookie = dtrace_interrupt_disable(); 7284 7285 /* 7286 * Unless this is an ERROR probe, we are not allowed to recurse in 7287 * dtrace_probe(). Recursing into DTrace probe usually means that a 7288 * function is instrumented that should not have been instrumented or 7289 * that the ordering guarantee of the records will be violated, 7290 * resulting in unexpected output. If there is an exception to this 7291 * assertion, a new case should be added. 7292 */ 7293 ASSERT(curthread->t_dtrace_inprobe == 0 || 7294 id == dtrace_probeid_error); 7295 curthread->t_dtrace_inprobe = 1; 7296 7297 return (cookie); 7298 } 7299 7300 /* 7301 * Clears the per-thread inprobe flag and enables interrupts. 7302 */ 7303 static void 7304 dtrace_probe_exit(dtrace_icookie_t cookie) 7305 { 7306 7307 curthread->t_dtrace_inprobe = 0; 7308 dtrace_interrupt_enable(cookie); 7309 } 7310 7311 /* 7312 * If you're looking for the epicenter of DTrace, you just found it. This 7313 * is the function called by the provider to fire a probe -- from which all 7314 * subsequent probe-context DTrace activity emanates. 7315 */ 7316 void 7317 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7318 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7319 { 7320 processorid_t cpuid; 7321 dtrace_icookie_t cookie; 7322 dtrace_probe_t *probe; 7323 dtrace_mstate_t mstate; 7324 dtrace_ecb_t *ecb; 7325 dtrace_action_t *act; 7326 intptr_t offs; 7327 size_t size; 7328 int vtime, onintr; 7329 volatile uint16_t *flags; 7330 hrtime_t now; 7331 7332 if (KERNEL_PANICKED()) 7333 return; 7334 7335 #ifdef illumos 7336 /* 7337 * Kick out immediately if this CPU is still being born (in which case 7338 * curthread will be set to -1) or the current thread can't allow 7339 * probes in its current context. 7340 */ 7341 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7342 return; 7343 #endif 7344 7345 cookie = dtrace_probe_enter(id); 7346 probe = dtrace_probes[id - 1]; 7347 cpuid = curcpu; 7348 onintr = CPU_ON_INTR(CPU); 7349 7350 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7351 probe->dtpr_predcache == curthread->t_predcache) { 7352 /* 7353 * We have hit in the predicate cache; we know that 7354 * this predicate would evaluate to be false. 7355 */ 7356 dtrace_probe_exit(cookie); 7357 return; 7358 } 7359 7360 #ifdef illumos 7361 if (panic_quiesce) { 7362 #else 7363 if (KERNEL_PANICKED()) { 7364 #endif 7365 /* 7366 * We don't trace anything if we're panicking. 7367 */ 7368 dtrace_probe_exit(cookie); 7369 return; 7370 } 7371 7372 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7373 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7374 vtime = dtrace_vtime_references != 0; 7375 7376 if (vtime && curthread->t_dtrace_start) 7377 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7378 7379 mstate.dtms_difo = NULL; 7380 mstate.dtms_probe = probe; 7381 mstate.dtms_strtok = 0; 7382 mstate.dtms_arg[0] = arg0; 7383 mstate.dtms_arg[1] = arg1; 7384 mstate.dtms_arg[2] = arg2; 7385 mstate.dtms_arg[3] = arg3; 7386 mstate.dtms_arg[4] = arg4; 7387 7388 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7389 7390 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7391 dtrace_predicate_t *pred = ecb->dte_predicate; 7392 dtrace_state_t *state = ecb->dte_state; 7393 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7394 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7395 dtrace_vstate_t *vstate = &state->dts_vstate; 7396 dtrace_provider_t *prov = probe->dtpr_provider; 7397 uint64_t tracememsize = 0; 7398 int committed = 0; 7399 caddr_t tomax; 7400 7401 /* 7402 * A little subtlety with the following (seemingly innocuous) 7403 * declaration of the automatic 'val': by looking at the 7404 * code, you might think that it could be declared in the 7405 * action processing loop, below. (That is, it's only used in 7406 * the action processing loop.) However, it must be declared 7407 * out of that scope because in the case of DIF expression 7408 * arguments to aggregating actions, one iteration of the 7409 * action loop will use the last iteration's value. 7410 */ 7411 uint64_t val = 0; 7412 7413 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7414 mstate.dtms_getf = NULL; 7415 7416 *flags &= ~CPU_DTRACE_ERROR; 7417 7418 if (prov == dtrace_provider) { 7419 /* 7420 * If dtrace itself is the provider of this probe, 7421 * we're only going to continue processing the ECB if 7422 * arg0 (the dtrace_state_t) is equal to the ECB's 7423 * creating state. (This prevents disjoint consumers 7424 * from seeing one another's metaprobes.) 7425 */ 7426 if (arg0 != (uint64_t)(uintptr_t)state) 7427 continue; 7428 } 7429 7430 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7431 /* 7432 * We're not currently active. If our provider isn't 7433 * the dtrace pseudo provider, we're not interested. 7434 */ 7435 if (prov != dtrace_provider) 7436 continue; 7437 7438 /* 7439 * Now we must further check if we are in the BEGIN 7440 * probe. If we are, we will only continue processing 7441 * if we're still in WARMUP -- if one BEGIN enabling 7442 * has invoked the exit() action, we don't want to 7443 * evaluate subsequent BEGIN enablings. 7444 */ 7445 if (probe->dtpr_id == dtrace_probeid_begin && 7446 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7447 ASSERT(state->dts_activity == 7448 DTRACE_ACTIVITY_DRAINING); 7449 continue; 7450 } 7451 } 7452 7453 if (ecb->dte_cond) { 7454 /* 7455 * If the dte_cond bits indicate that this 7456 * consumer is only allowed to see user-mode firings 7457 * of this probe, call the provider's dtps_usermode() 7458 * entry point to check that the probe was fired 7459 * while in a user context. Skip this ECB if that's 7460 * not the case. 7461 */ 7462 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7463 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7464 probe->dtpr_id, probe->dtpr_arg) == 0) 7465 continue; 7466 7467 #ifdef illumos 7468 /* 7469 * This is more subtle than it looks. We have to be 7470 * absolutely certain that CRED() isn't going to 7471 * change out from under us so it's only legit to 7472 * examine that structure if we're in constrained 7473 * situations. Currently, the only times we'll this 7474 * check is if a non-super-user has enabled the 7475 * profile or syscall providers -- providers that 7476 * allow visibility of all processes. For the 7477 * profile case, the check above will ensure that 7478 * we're examining a user context. 7479 */ 7480 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7481 cred_t *cr; 7482 cred_t *s_cr = 7483 ecb->dte_state->dts_cred.dcr_cred; 7484 proc_t *proc; 7485 7486 ASSERT(s_cr != NULL); 7487 7488 if ((cr = CRED()) == NULL || 7489 s_cr->cr_uid != cr->cr_uid || 7490 s_cr->cr_uid != cr->cr_ruid || 7491 s_cr->cr_uid != cr->cr_suid || 7492 s_cr->cr_gid != cr->cr_gid || 7493 s_cr->cr_gid != cr->cr_rgid || 7494 s_cr->cr_gid != cr->cr_sgid || 7495 (proc = ttoproc(curthread)) == NULL || 7496 (proc->p_flag & SNOCD)) 7497 continue; 7498 } 7499 7500 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7501 cred_t *cr; 7502 cred_t *s_cr = 7503 ecb->dte_state->dts_cred.dcr_cred; 7504 7505 ASSERT(s_cr != NULL); 7506 7507 if ((cr = CRED()) == NULL || 7508 s_cr->cr_zone->zone_id != 7509 cr->cr_zone->zone_id) 7510 continue; 7511 } 7512 #endif 7513 } 7514 7515 if (now - state->dts_alive > dtrace_deadman_timeout) { 7516 /* 7517 * We seem to be dead. Unless we (a) have kernel 7518 * destructive permissions (b) have explicitly enabled 7519 * destructive actions and (c) destructive actions have 7520 * not been disabled, we're going to transition into 7521 * the KILLED state, from which no further processing 7522 * on this state will be performed. 7523 */ 7524 if (!dtrace_priv_kernel_destructive(state) || 7525 !state->dts_cred.dcr_destructive || 7526 dtrace_destructive_disallow) { 7527 void *activity = &state->dts_activity; 7528 dtrace_activity_t curstate; 7529 7530 do { 7531 curstate = state->dts_activity; 7532 } while (dtrace_cas32(activity, curstate, 7533 DTRACE_ACTIVITY_KILLED) != curstate); 7534 7535 continue; 7536 } 7537 } 7538 7539 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7540 ecb->dte_alignment, state, &mstate)) < 0) 7541 continue; 7542 7543 tomax = buf->dtb_tomax; 7544 ASSERT(tomax != NULL); 7545 7546 if (ecb->dte_size != 0) { 7547 dtrace_rechdr_t dtrh; 7548 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7549 mstate.dtms_timestamp = dtrace_gethrtime(); 7550 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7551 } 7552 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7553 dtrh.dtrh_epid = ecb->dte_epid; 7554 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7555 mstate.dtms_timestamp); 7556 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7557 } 7558 7559 mstate.dtms_epid = ecb->dte_epid; 7560 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7561 7562 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7563 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7564 else 7565 mstate.dtms_access = 0; 7566 7567 if (pred != NULL) { 7568 dtrace_difo_t *dp = pred->dtp_difo; 7569 uint64_t rval; 7570 7571 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7572 7573 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7574 dtrace_cacheid_t cid = probe->dtpr_predcache; 7575 7576 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7577 /* 7578 * Update the predicate cache... 7579 */ 7580 ASSERT(cid == pred->dtp_cacheid); 7581 curthread->t_predcache = cid; 7582 } 7583 7584 continue; 7585 } 7586 } 7587 7588 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7589 act != NULL; act = act->dta_next) { 7590 size_t valoffs; 7591 dtrace_difo_t *dp; 7592 dtrace_recdesc_t *rec = &act->dta_rec; 7593 7594 size = rec->dtrd_size; 7595 valoffs = offs + rec->dtrd_offset; 7596 7597 if (DTRACEACT_ISAGG(act->dta_kind)) { 7598 uint64_t v = 0xbad; 7599 dtrace_aggregation_t *agg; 7600 7601 agg = (dtrace_aggregation_t *)act; 7602 7603 if ((dp = act->dta_difo) != NULL) 7604 v = dtrace_dif_emulate(dp, 7605 &mstate, vstate, state); 7606 7607 if (*flags & CPU_DTRACE_ERROR) 7608 continue; 7609 7610 /* 7611 * Note that we always pass the expression 7612 * value from the previous iteration of the 7613 * action loop. This value will only be used 7614 * if there is an expression argument to the 7615 * aggregating action, denoted by the 7616 * dtag_hasarg field. 7617 */ 7618 dtrace_aggregate(agg, buf, 7619 offs, aggbuf, v, val); 7620 continue; 7621 } 7622 7623 switch (act->dta_kind) { 7624 case DTRACEACT_STOP: 7625 if (dtrace_priv_proc_destructive(state)) 7626 dtrace_action_stop(); 7627 continue; 7628 7629 case DTRACEACT_BREAKPOINT: 7630 if (dtrace_priv_kernel_destructive(state)) 7631 dtrace_action_breakpoint(ecb); 7632 continue; 7633 7634 case DTRACEACT_PANIC: 7635 if (dtrace_priv_kernel_destructive(state)) 7636 dtrace_action_panic(ecb); 7637 continue; 7638 7639 case DTRACEACT_STACK: 7640 if (!dtrace_priv_kernel(state)) 7641 continue; 7642 7643 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7644 size / sizeof (pc_t), probe->dtpr_aframes, 7645 DTRACE_ANCHORED(probe) ? NULL : 7646 (uint32_t *)arg0); 7647 continue; 7648 7649 case DTRACEACT_JSTACK: 7650 case DTRACEACT_USTACK: 7651 if (!dtrace_priv_proc(state)) 7652 continue; 7653 7654 /* 7655 * See comment in DIF_VAR_PID. 7656 */ 7657 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7658 CPU_ON_INTR(CPU)) { 7659 int depth = DTRACE_USTACK_NFRAMES( 7660 rec->dtrd_arg) + 1; 7661 7662 dtrace_bzero((void *)(tomax + valoffs), 7663 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7664 + depth * sizeof (uint64_t)); 7665 7666 continue; 7667 } 7668 7669 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7670 curproc->p_dtrace_helpers != NULL) { 7671 /* 7672 * This is the slow path -- we have 7673 * allocated string space, and we're 7674 * getting the stack of a process that 7675 * has helpers. Call into a separate 7676 * routine to perform this processing. 7677 */ 7678 dtrace_action_ustack(&mstate, state, 7679 (uint64_t *)(tomax + valoffs), 7680 rec->dtrd_arg); 7681 continue; 7682 } 7683 7684 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7685 dtrace_getupcstack((uint64_t *) 7686 (tomax + valoffs), 7687 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7688 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7689 continue; 7690 7691 default: 7692 break; 7693 } 7694 7695 dp = act->dta_difo; 7696 ASSERT(dp != NULL); 7697 7698 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7699 7700 if (*flags & CPU_DTRACE_ERROR) 7701 continue; 7702 7703 switch (act->dta_kind) { 7704 case DTRACEACT_SPECULATE: { 7705 dtrace_rechdr_t *dtrh; 7706 7707 ASSERT(buf == &state->dts_buffer[cpuid]); 7708 buf = dtrace_speculation_buffer(state, 7709 cpuid, val); 7710 7711 if (buf == NULL) { 7712 *flags |= CPU_DTRACE_DROP; 7713 continue; 7714 } 7715 7716 offs = dtrace_buffer_reserve(buf, 7717 ecb->dte_needed, ecb->dte_alignment, 7718 state, NULL); 7719 7720 if (offs < 0) { 7721 *flags |= CPU_DTRACE_DROP; 7722 continue; 7723 } 7724 7725 tomax = buf->dtb_tomax; 7726 ASSERT(tomax != NULL); 7727 7728 if (ecb->dte_size == 0) 7729 continue; 7730 7731 ASSERT3U(ecb->dte_size, >=, 7732 sizeof (dtrace_rechdr_t)); 7733 dtrh = ((void *)(tomax + offs)); 7734 dtrh->dtrh_epid = ecb->dte_epid; 7735 /* 7736 * When the speculation is committed, all of 7737 * the records in the speculative buffer will 7738 * have their timestamps set to the commit 7739 * time. Until then, it is set to a sentinel 7740 * value, for debugability. 7741 */ 7742 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7743 continue; 7744 } 7745 7746 case DTRACEACT_PRINTM: { 7747 /* 7748 * printm() assumes that the DIF returns a 7749 * pointer returned by memref(). memref() is a 7750 * subroutine that is used to get around the 7751 * single-valued returns of DIF and is assumed 7752 * to always be allocated in the scratch space. 7753 * Therefore, we need to validate that the 7754 * pointer given to printm() is in the scratch 7755 * space in order to avoid a potential panic. 7756 */ 7757 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7758 7759 if (!DTRACE_INSCRATCHPTR(&mstate, 7760 (uintptr_t)memref, 2 * sizeof(uintptr_t))) { 7761 *flags |= CPU_DTRACE_BADADDR; 7762 continue; 7763 } 7764 7765 /* Get the size from the memref. */ 7766 size = memref[1]; 7767 7768 /* 7769 * Check if the size exceeds the allocated 7770 * buffer size. 7771 */ 7772 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7773 /* Flag a drop! */ 7774 *flags |= CPU_DTRACE_DROP; 7775 continue; 7776 } 7777 7778 /* Store the size in the buffer first. */ 7779 DTRACE_STORE(uintptr_t, tomax, 7780 valoffs, size); 7781 7782 /* 7783 * Offset the buffer address to the start 7784 * of the data. 7785 */ 7786 valoffs += sizeof(uintptr_t); 7787 7788 /* 7789 * Reset to the memory address rather than 7790 * the memref array, then let the BYREF 7791 * code below do the work to store the 7792 * memory data in the buffer. 7793 */ 7794 val = memref[0]; 7795 break; 7796 } 7797 7798 case DTRACEACT_CHILL: 7799 if (dtrace_priv_kernel_destructive(state)) 7800 dtrace_action_chill(&mstate, val); 7801 continue; 7802 7803 case DTRACEACT_RAISE: 7804 if (dtrace_priv_proc_destructive(state)) 7805 dtrace_action_raise(val); 7806 continue; 7807 7808 case DTRACEACT_COMMIT: 7809 ASSERT(!committed); 7810 7811 /* 7812 * We need to commit our buffer state. 7813 */ 7814 if (ecb->dte_size) 7815 buf->dtb_offset = offs + ecb->dte_size; 7816 buf = &state->dts_buffer[cpuid]; 7817 dtrace_speculation_commit(state, cpuid, val); 7818 committed = 1; 7819 continue; 7820 7821 case DTRACEACT_DISCARD: 7822 dtrace_speculation_discard(state, cpuid, val); 7823 continue; 7824 7825 case DTRACEACT_DIFEXPR: 7826 case DTRACEACT_LIBACT: 7827 case DTRACEACT_PRINTF: 7828 case DTRACEACT_PRINTA: 7829 case DTRACEACT_SYSTEM: 7830 case DTRACEACT_FREOPEN: 7831 case DTRACEACT_TRACEMEM: 7832 break; 7833 7834 case DTRACEACT_TRACEMEM_DYNSIZE: 7835 tracememsize = val; 7836 break; 7837 7838 case DTRACEACT_SYM: 7839 case DTRACEACT_MOD: 7840 if (!dtrace_priv_kernel(state)) 7841 continue; 7842 break; 7843 7844 case DTRACEACT_USYM: 7845 case DTRACEACT_UMOD: 7846 case DTRACEACT_UADDR: { 7847 #ifdef illumos 7848 struct pid *pid = curthread->t_procp->p_pidp; 7849 #endif 7850 7851 if (!dtrace_priv_proc(state)) 7852 continue; 7853 7854 DTRACE_STORE(uint64_t, tomax, 7855 #ifdef illumos 7856 valoffs, (uint64_t)pid->pid_id); 7857 #else 7858 valoffs, (uint64_t) curproc->p_pid); 7859 #endif 7860 DTRACE_STORE(uint64_t, tomax, 7861 valoffs + sizeof (uint64_t), val); 7862 7863 continue; 7864 } 7865 7866 case DTRACEACT_EXIT: { 7867 /* 7868 * For the exit action, we are going to attempt 7869 * to atomically set our activity to be 7870 * draining. If this fails (either because 7871 * another CPU has beat us to the exit action, 7872 * or because our current activity is something 7873 * other than ACTIVE or WARMUP), we will 7874 * continue. This assures that the exit action 7875 * can be successfully recorded at most once 7876 * when we're in the ACTIVE state. If we're 7877 * encountering the exit() action while in 7878 * COOLDOWN, however, we want to honor the new 7879 * status code. (We know that we're the only 7880 * thread in COOLDOWN, so there is no race.) 7881 */ 7882 void *activity = &state->dts_activity; 7883 dtrace_activity_t curstate = state->dts_activity; 7884 7885 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7886 break; 7887 7888 if (curstate != DTRACE_ACTIVITY_WARMUP) 7889 curstate = DTRACE_ACTIVITY_ACTIVE; 7890 7891 if (dtrace_cas32(activity, curstate, 7892 DTRACE_ACTIVITY_DRAINING) != curstate) { 7893 *flags |= CPU_DTRACE_DROP; 7894 continue; 7895 } 7896 7897 break; 7898 } 7899 7900 default: 7901 ASSERT(0); 7902 } 7903 7904 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7905 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7906 uintptr_t end = valoffs + size; 7907 7908 if (tracememsize != 0 && 7909 valoffs + tracememsize < end) { 7910 end = valoffs + tracememsize; 7911 tracememsize = 0; 7912 } 7913 7914 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7915 !dtrace_vcanload((void *)(uintptr_t)val, 7916 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7917 continue; 7918 7919 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7920 &val, end, act->dta_intuple, 7921 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7922 DIF_TF_BYREF: DIF_TF_BYUREF); 7923 continue; 7924 } 7925 7926 switch (size) { 7927 case 0: 7928 break; 7929 7930 case sizeof (uint8_t): 7931 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7932 break; 7933 case sizeof (uint16_t): 7934 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7935 break; 7936 case sizeof (uint32_t): 7937 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7938 break; 7939 case sizeof (uint64_t): 7940 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7941 break; 7942 default: 7943 /* 7944 * Any other size should have been returned by 7945 * reference, not by value. 7946 */ 7947 ASSERT(0); 7948 break; 7949 } 7950 } 7951 7952 if (*flags & CPU_DTRACE_DROP) 7953 continue; 7954 7955 if (*flags & CPU_DTRACE_FAULT) { 7956 int ndx; 7957 dtrace_action_t *err; 7958 7959 buf->dtb_errors++; 7960 7961 if (probe->dtpr_id == dtrace_probeid_error) { 7962 /* 7963 * There's nothing we can do -- we had an 7964 * error on the error probe. We bump an 7965 * error counter to at least indicate that 7966 * this condition happened. 7967 */ 7968 dtrace_error(&state->dts_dblerrors); 7969 continue; 7970 } 7971 7972 if (vtime) { 7973 /* 7974 * Before recursing on dtrace_probe(), we 7975 * need to explicitly clear out our start 7976 * time to prevent it from being accumulated 7977 * into t_dtrace_vtime. 7978 */ 7979 curthread->t_dtrace_start = 0; 7980 } 7981 7982 /* 7983 * Iterate over the actions to figure out which action 7984 * we were processing when we experienced the error. 7985 * Note that act points _past_ the faulting action; if 7986 * act is ecb->dte_action, the fault was in the 7987 * predicate, if it's ecb->dte_action->dta_next it's 7988 * in action #1, and so on. 7989 */ 7990 for (err = ecb->dte_action, ndx = 0; 7991 err != act; err = err->dta_next, ndx++) 7992 continue; 7993 7994 dtrace_probe_error(state, ecb->dte_epid, ndx, 7995 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7996 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7997 cpu_core[cpuid].cpuc_dtrace_illval); 7998 7999 continue; 8000 } 8001 8002 if (!committed) 8003 buf->dtb_offset = offs + ecb->dte_size; 8004 } 8005 8006 if (vtime) 8007 curthread->t_dtrace_start = dtrace_gethrtime(); 8008 8009 dtrace_probe_exit(cookie); 8010 } 8011 8012 /* 8013 * DTrace Probe Hashing Functions 8014 * 8015 * The functions in this section (and indeed, the functions in remaining 8016 * sections) are not _called_ from probe context. (Any exceptions to this are 8017 * marked with a "Note:".) Rather, they are called from elsewhere in the 8018 * DTrace framework to look-up probes in, add probes to and remove probes from 8019 * the DTrace probe hashes. (Each probe is hashed by each element of the 8020 * probe tuple -- allowing for fast lookups, regardless of what was 8021 * specified.) 8022 */ 8023 static uint_t 8024 dtrace_hash_str(const char *p) 8025 { 8026 unsigned int g; 8027 uint_t hval = 0; 8028 8029 while (*p) { 8030 hval = (hval << 4) + *p++; 8031 if ((g = (hval & 0xf0000000)) != 0) 8032 hval ^= g >> 24; 8033 hval &= ~g; 8034 } 8035 return (hval); 8036 } 8037 8038 static dtrace_hash_t * 8039 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8040 { 8041 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8042 8043 hash->dth_stroffs = stroffs; 8044 hash->dth_nextoffs = nextoffs; 8045 hash->dth_prevoffs = prevoffs; 8046 8047 hash->dth_size = 1; 8048 hash->dth_mask = hash->dth_size - 1; 8049 8050 hash->dth_tab = kmem_zalloc(hash->dth_size * 8051 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8052 8053 return (hash); 8054 } 8055 8056 static void 8057 dtrace_hash_destroy(dtrace_hash_t *hash) 8058 { 8059 #ifdef DEBUG 8060 int i; 8061 8062 for (i = 0; i < hash->dth_size; i++) 8063 ASSERT(hash->dth_tab[i] == NULL); 8064 #endif 8065 8066 kmem_free(hash->dth_tab, 8067 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8068 kmem_free(hash, sizeof (dtrace_hash_t)); 8069 } 8070 8071 static void 8072 dtrace_hash_resize(dtrace_hash_t *hash) 8073 { 8074 int size = hash->dth_size, i, ndx; 8075 int new_size = hash->dth_size << 1; 8076 int new_mask = new_size - 1; 8077 dtrace_hashbucket_t **new_tab, *bucket, *next; 8078 8079 ASSERT((new_size & new_mask) == 0); 8080 8081 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8082 8083 for (i = 0; i < size; i++) { 8084 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8085 dtrace_probe_t *probe = bucket->dthb_chain; 8086 8087 ASSERT(probe != NULL); 8088 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8089 8090 next = bucket->dthb_next; 8091 bucket->dthb_next = new_tab[ndx]; 8092 new_tab[ndx] = bucket; 8093 } 8094 } 8095 8096 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8097 hash->dth_tab = new_tab; 8098 hash->dth_size = new_size; 8099 hash->dth_mask = new_mask; 8100 } 8101 8102 static void 8103 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8104 { 8105 int hashval = DTRACE_HASHSTR(hash, new); 8106 int ndx = hashval & hash->dth_mask; 8107 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8108 dtrace_probe_t **nextp, **prevp; 8109 8110 for (; bucket != NULL; bucket = bucket->dthb_next) { 8111 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8112 goto add; 8113 } 8114 8115 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8116 dtrace_hash_resize(hash); 8117 dtrace_hash_add(hash, new); 8118 return; 8119 } 8120 8121 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8122 bucket->dthb_next = hash->dth_tab[ndx]; 8123 hash->dth_tab[ndx] = bucket; 8124 hash->dth_nbuckets++; 8125 8126 add: 8127 nextp = DTRACE_HASHNEXT(hash, new); 8128 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8129 *nextp = bucket->dthb_chain; 8130 8131 if (bucket->dthb_chain != NULL) { 8132 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8133 ASSERT(*prevp == NULL); 8134 *prevp = new; 8135 } 8136 8137 bucket->dthb_chain = new; 8138 bucket->dthb_len++; 8139 } 8140 8141 static dtrace_probe_t * 8142 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8143 { 8144 int hashval = DTRACE_HASHSTR(hash, template); 8145 int ndx = hashval & hash->dth_mask; 8146 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8147 8148 for (; bucket != NULL; bucket = bucket->dthb_next) { 8149 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8150 return (bucket->dthb_chain); 8151 } 8152 8153 return (NULL); 8154 } 8155 8156 static int 8157 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8158 { 8159 int hashval = DTRACE_HASHSTR(hash, template); 8160 int ndx = hashval & hash->dth_mask; 8161 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8162 8163 for (; bucket != NULL; bucket = bucket->dthb_next) { 8164 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8165 return (bucket->dthb_len); 8166 } 8167 8168 return (0); 8169 } 8170 8171 static void 8172 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8173 { 8174 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8175 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8176 8177 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8178 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8179 8180 /* 8181 * Find the bucket that we're removing this probe from. 8182 */ 8183 for (; bucket != NULL; bucket = bucket->dthb_next) { 8184 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8185 break; 8186 } 8187 8188 ASSERT(bucket != NULL); 8189 8190 if (*prevp == NULL) { 8191 if (*nextp == NULL) { 8192 /* 8193 * The removed probe was the only probe on this 8194 * bucket; we need to remove the bucket. 8195 */ 8196 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8197 8198 ASSERT(bucket->dthb_chain == probe); 8199 ASSERT(b != NULL); 8200 8201 if (b == bucket) { 8202 hash->dth_tab[ndx] = bucket->dthb_next; 8203 } else { 8204 while (b->dthb_next != bucket) 8205 b = b->dthb_next; 8206 b->dthb_next = bucket->dthb_next; 8207 } 8208 8209 ASSERT(hash->dth_nbuckets > 0); 8210 hash->dth_nbuckets--; 8211 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8212 return; 8213 } 8214 8215 bucket->dthb_chain = *nextp; 8216 } else { 8217 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8218 } 8219 8220 if (*nextp != NULL) 8221 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8222 } 8223 8224 /* 8225 * DTrace Utility Functions 8226 * 8227 * These are random utility functions that are _not_ called from probe context. 8228 */ 8229 static int 8230 dtrace_badattr(const dtrace_attribute_t *a) 8231 { 8232 return (a->dtat_name > DTRACE_STABILITY_MAX || 8233 a->dtat_data > DTRACE_STABILITY_MAX || 8234 a->dtat_class > DTRACE_CLASS_MAX); 8235 } 8236 8237 /* 8238 * Return a duplicate copy of a string. If the specified string is NULL, 8239 * this function returns a zero-length string. 8240 */ 8241 static char * 8242 dtrace_strdup(const char *str) 8243 { 8244 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8245 8246 if (str != NULL) 8247 (void) strcpy(new, str); 8248 8249 return (new); 8250 } 8251 8252 #define DTRACE_ISALPHA(c) \ 8253 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8254 8255 static int 8256 dtrace_badname(const char *s) 8257 { 8258 char c; 8259 8260 if (s == NULL || (c = *s++) == '\0') 8261 return (0); 8262 8263 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8264 return (1); 8265 8266 while ((c = *s++) != '\0') { 8267 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8268 c != '-' && c != '_' && c != '.' && c != '`') 8269 return (1); 8270 } 8271 8272 return (0); 8273 } 8274 8275 static void 8276 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8277 { 8278 uint32_t priv; 8279 8280 #ifdef illumos 8281 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8282 /* 8283 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8284 */ 8285 priv = DTRACE_PRIV_ALL; 8286 } else { 8287 *uidp = crgetuid(cr); 8288 *zoneidp = crgetzoneid(cr); 8289 8290 priv = 0; 8291 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8292 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8293 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8294 priv |= DTRACE_PRIV_USER; 8295 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8296 priv |= DTRACE_PRIV_PROC; 8297 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8298 priv |= DTRACE_PRIV_OWNER; 8299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8300 priv |= DTRACE_PRIV_ZONEOWNER; 8301 } 8302 #else 8303 priv = DTRACE_PRIV_ALL; 8304 #endif 8305 8306 *privp = priv; 8307 } 8308 8309 #ifdef DTRACE_ERRDEBUG 8310 static void 8311 dtrace_errdebug(const char *str) 8312 { 8313 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8314 int occupied = 0; 8315 8316 mutex_enter(&dtrace_errlock); 8317 dtrace_errlast = str; 8318 dtrace_errthread = curthread; 8319 8320 while (occupied++ < DTRACE_ERRHASHSZ) { 8321 if (dtrace_errhash[hval].dter_msg == str) { 8322 dtrace_errhash[hval].dter_count++; 8323 goto out; 8324 } 8325 8326 if (dtrace_errhash[hval].dter_msg != NULL) { 8327 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8328 continue; 8329 } 8330 8331 dtrace_errhash[hval].dter_msg = str; 8332 dtrace_errhash[hval].dter_count = 1; 8333 goto out; 8334 } 8335 8336 panic("dtrace: undersized error hash"); 8337 out: 8338 mutex_exit(&dtrace_errlock); 8339 } 8340 #endif 8341 8342 /* 8343 * DTrace Matching Functions 8344 * 8345 * These functions are used to match groups of probes, given some elements of 8346 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8347 */ 8348 static int 8349 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8350 zoneid_t zoneid) 8351 { 8352 if (priv != DTRACE_PRIV_ALL) { 8353 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8354 uint32_t match = priv & ppriv; 8355 8356 /* 8357 * No PRIV_DTRACE_* privileges... 8358 */ 8359 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8360 DTRACE_PRIV_KERNEL)) == 0) 8361 return (0); 8362 8363 /* 8364 * No matching bits, but there were bits to match... 8365 */ 8366 if (match == 0 && ppriv != 0) 8367 return (0); 8368 8369 /* 8370 * Need to have permissions to the process, but don't... 8371 */ 8372 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8373 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8374 return (0); 8375 } 8376 8377 /* 8378 * Need to be in the same zone unless we possess the 8379 * privilege to examine all zones. 8380 */ 8381 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8382 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8383 return (0); 8384 } 8385 } 8386 8387 return (1); 8388 } 8389 8390 /* 8391 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8392 * consists of input pattern strings and an ops-vector to evaluate them. 8393 * This function returns >0 for match, 0 for no match, and <0 for error. 8394 */ 8395 static int 8396 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8397 uint32_t priv, uid_t uid, zoneid_t zoneid) 8398 { 8399 dtrace_provider_t *pvp = prp->dtpr_provider; 8400 int rv; 8401 8402 if (pvp->dtpv_defunct) 8403 return (0); 8404 8405 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8406 return (rv); 8407 8408 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8409 return (rv); 8410 8411 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8412 return (rv); 8413 8414 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8415 return (rv); 8416 8417 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8418 return (0); 8419 8420 return (rv); 8421 } 8422 8423 /* 8424 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8425 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8426 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8427 * In addition, all of the recursion cases except for '*' matching have been 8428 * unwound. For '*', we still implement recursive evaluation, but a depth 8429 * counter is maintained and matching is aborted if we recurse too deep. 8430 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8431 */ 8432 static int 8433 dtrace_match_glob(const char *s, const char *p, int depth) 8434 { 8435 const char *olds; 8436 char s1, c; 8437 int gs; 8438 8439 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8440 return (-1); 8441 8442 if (s == NULL) 8443 s = ""; /* treat NULL as empty string */ 8444 8445 top: 8446 olds = s; 8447 s1 = *s++; 8448 8449 if (p == NULL) 8450 return (0); 8451 8452 if ((c = *p++) == '\0') 8453 return (s1 == '\0'); 8454 8455 switch (c) { 8456 case '[': { 8457 int ok = 0, notflag = 0; 8458 char lc = '\0'; 8459 8460 if (s1 == '\0') 8461 return (0); 8462 8463 if (*p == '!') { 8464 notflag = 1; 8465 p++; 8466 } 8467 8468 if ((c = *p++) == '\0') 8469 return (0); 8470 8471 do { 8472 if (c == '-' && lc != '\0' && *p != ']') { 8473 if ((c = *p++) == '\0') 8474 return (0); 8475 if (c == '\\' && (c = *p++) == '\0') 8476 return (0); 8477 8478 if (notflag) { 8479 if (s1 < lc || s1 > c) 8480 ok++; 8481 else 8482 return (0); 8483 } else if (lc <= s1 && s1 <= c) 8484 ok++; 8485 8486 } else if (c == '\\' && (c = *p++) == '\0') 8487 return (0); 8488 8489 lc = c; /* save left-hand 'c' for next iteration */ 8490 8491 if (notflag) { 8492 if (s1 != c) 8493 ok++; 8494 else 8495 return (0); 8496 } else if (s1 == c) 8497 ok++; 8498 8499 if ((c = *p++) == '\0') 8500 return (0); 8501 8502 } while (c != ']'); 8503 8504 if (ok) 8505 goto top; 8506 8507 return (0); 8508 } 8509 8510 case '\\': 8511 if ((c = *p++) == '\0') 8512 return (0); 8513 /*FALLTHRU*/ 8514 8515 default: 8516 if (c != s1) 8517 return (0); 8518 /*FALLTHRU*/ 8519 8520 case '?': 8521 if (s1 != '\0') 8522 goto top; 8523 return (0); 8524 8525 case '*': 8526 while (*p == '*') 8527 p++; /* consecutive *'s are identical to a single one */ 8528 8529 if (*p == '\0') 8530 return (1); 8531 8532 for (s = olds; *s != '\0'; s++) { 8533 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8534 return (gs); 8535 } 8536 8537 return (0); 8538 } 8539 } 8540 8541 /*ARGSUSED*/ 8542 static int 8543 dtrace_match_string(const char *s, const char *p, int depth) 8544 { 8545 return (s != NULL && strcmp(s, p) == 0); 8546 } 8547 8548 /*ARGSUSED*/ 8549 static int 8550 dtrace_match_nul(const char *s, const char *p, int depth) 8551 { 8552 return (1); /* always match the empty pattern */ 8553 } 8554 8555 /*ARGSUSED*/ 8556 static int 8557 dtrace_match_nonzero(const char *s, const char *p, int depth) 8558 { 8559 return (s != NULL && s[0] != '\0'); 8560 } 8561 8562 static int 8563 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8564 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8565 { 8566 dtrace_probe_t template, *probe; 8567 dtrace_hash_t *hash = NULL; 8568 int len, best = INT_MAX, nmatched = 0; 8569 dtrace_id_t i; 8570 8571 ASSERT(MUTEX_HELD(&dtrace_lock)); 8572 8573 /* 8574 * If the probe ID is specified in the key, just lookup by ID and 8575 * invoke the match callback once if a matching probe is found. 8576 */ 8577 if (pkp->dtpk_id != DTRACE_IDNONE) { 8578 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8579 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8580 (void) (*matched)(probe, arg); 8581 nmatched++; 8582 } 8583 return (nmatched); 8584 } 8585 8586 template.dtpr_mod = (char *)pkp->dtpk_mod; 8587 template.dtpr_func = (char *)pkp->dtpk_func; 8588 template.dtpr_name = (char *)pkp->dtpk_name; 8589 8590 /* 8591 * We want to find the most distinct of the module name, function 8592 * name, and name. So for each one that is not a glob pattern or 8593 * empty string, we perform a lookup in the corresponding hash and 8594 * use the hash table with the fewest collisions to do our search. 8595 */ 8596 if (pkp->dtpk_mmatch == &dtrace_match_string && 8597 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8598 best = len; 8599 hash = dtrace_bymod; 8600 } 8601 8602 if (pkp->dtpk_fmatch == &dtrace_match_string && 8603 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8604 best = len; 8605 hash = dtrace_byfunc; 8606 } 8607 8608 if (pkp->dtpk_nmatch == &dtrace_match_string && 8609 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8610 best = len; 8611 hash = dtrace_byname; 8612 } 8613 8614 /* 8615 * If we did not select a hash table, iterate over every probe and 8616 * invoke our callback for each one that matches our input probe key. 8617 */ 8618 if (hash == NULL) { 8619 for (i = 0; i < dtrace_nprobes; i++) { 8620 if ((probe = dtrace_probes[i]) == NULL || 8621 dtrace_match_probe(probe, pkp, priv, uid, 8622 zoneid) <= 0) 8623 continue; 8624 8625 nmatched++; 8626 8627 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8628 break; 8629 } 8630 8631 return (nmatched); 8632 } 8633 8634 /* 8635 * If we selected a hash table, iterate over each probe of the same key 8636 * name and invoke the callback for every probe that matches the other 8637 * attributes of our input probe key. 8638 */ 8639 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8640 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8641 8642 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8643 continue; 8644 8645 nmatched++; 8646 8647 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8648 break; 8649 } 8650 8651 return (nmatched); 8652 } 8653 8654 /* 8655 * Return the function pointer dtrace_probecmp() should use to compare the 8656 * specified pattern with a string. For NULL or empty patterns, we select 8657 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8658 * For non-empty non-glob strings, we use dtrace_match_string(). 8659 */ 8660 static dtrace_probekey_f * 8661 dtrace_probekey_func(const char *p) 8662 { 8663 char c; 8664 8665 if (p == NULL || *p == '\0') 8666 return (&dtrace_match_nul); 8667 8668 while ((c = *p++) != '\0') { 8669 if (c == '[' || c == '?' || c == '*' || c == '\\') 8670 return (&dtrace_match_glob); 8671 } 8672 8673 return (&dtrace_match_string); 8674 } 8675 8676 /* 8677 * Build a probe comparison key for use with dtrace_match_probe() from the 8678 * given probe description. By convention, a null key only matches anchored 8679 * probes: if each field is the empty string, reset dtpk_fmatch to 8680 * dtrace_match_nonzero(). 8681 */ 8682 static void 8683 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8684 { 8685 pkp->dtpk_prov = pdp->dtpd_provider; 8686 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8687 8688 pkp->dtpk_mod = pdp->dtpd_mod; 8689 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8690 8691 pkp->dtpk_func = pdp->dtpd_func; 8692 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8693 8694 pkp->dtpk_name = pdp->dtpd_name; 8695 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8696 8697 pkp->dtpk_id = pdp->dtpd_id; 8698 8699 if (pkp->dtpk_id == DTRACE_IDNONE && 8700 pkp->dtpk_pmatch == &dtrace_match_nul && 8701 pkp->dtpk_mmatch == &dtrace_match_nul && 8702 pkp->dtpk_fmatch == &dtrace_match_nul && 8703 pkp->dtpk_nmatch == &dtrace_match_nul) 8704 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8705 } 8706 8707 /* 8708 * DTrace Provider-to-Framework API Functions 8709 * 8710 * These functions implement much of the Provider-to-Framework API, as 8711 * described in <sys/dtrace.h>. The parts of the API not in this section are 8712 * the functions in the API for probe management (found below), and 8713 * dtrace_probe() itself (found above). 8714 */ 8715 8716 /* 8717 * Register the calling provider with the DTrace framework. This should 8718 * generally be called by DTrace providers in their attach(9E) entry point. 8719 */ 8720 int 8721 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8722 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8723 { 8724 dtrace_provider_t *provider; 8725 8726 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8727 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8728 "arguments", name ? name : "<NULL>"); 8729 return (EINVAL); 8730 } 8731 8732 if (name[0] == '\0' || dtrace_badname(name)) { 8733 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8734 "provider name", name); 8735 return (EINVAL); 8736 } 8737 8738 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8739 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8740 pops->dtps_destroy == NULL || 8741 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8742 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8743 "provider ops", name); 8744 return (EINVAL); 8745 } 8746 8747 if (dtrace_badattr(&pap->dtpa_provider) || 8748 dtrace_badattr(&pap->dtpa_mod) || 8749 dtrace_badattr(&pap->dtpa_func) || 8750 dtrace_badattr(&pap->dtpa_name) || 8751 dtrace_badattr(&pap->dtpa_args)) { 8752 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8753 "provider attributes", name); 8754 return (EINVAL); 8755 } 8756 8757 if (priv & ~DTRACE_PRIV_ALL) { 8758 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8759 "privilege attributes", name); 8760 return (EINVAL); 8761 } 8762 8763 if ((priv & DTRACE_PRIV_KERNEL) && 8764 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8765 pops->dtps_usermode == NULL) { 8766 cmn_err(CE_WARN, "failed to register provider '%s': need " 8767 "dtps_usermode() op for given privilege attributes", name); 8768 return (EINVAL); 8769 } 8770 8771 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8772 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8773 (void) strcpy(provider->dtpv_name, name); 8774 8775 provider->dtpv_attr = *pap; 8776 provider->dtpv_priv.dtpp_flags = priv; 8777 if (cr != NULL) { 8778 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8779 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8780 } 8781 provider->dtpv_pops = *pops; 8782 8783 if (pops->dtps_provide == NULL) { 8784 ASSERT(pops->dtps_provide_module != NULL); 8785 provider->dtpv_pops.dtps_provide = 8786 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8787 } 8788 8789 if (pops->dtps_provide_module == NULL) { 8790 ASSERT(pops->dtps_provide != NULL); 8791 provider->dtpv_pops.dtps_provide_module = 8792 (void (*)(void *, modctl_t *))dtrace_nullop; 8793 } 8794 8795 if (pops->dtps_suspend == NULL) { 8796 ASSERT(pops->dtps_resume == NULL); 8797 provider->dtpv_pops.dtps_suspend = 8798 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8799 provider->dtpv_pops.dtps_resume = 8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8801 } 8802 8803 provider->dtpv_arg = arg; 8804 *idp = (dtrace_provider_id_t)provider; 8805 8806 if (pops == &dtrace_provider_ops) { 8807 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8808 ASSERT(MUTEX_HELD(&dtrace_lock)); 8809 ASSERT(dtrace_anon.dta_enabling == NULL); 8810 8811 /* 8812 * We make sure that the DTrace provider is at the head of 8813 * the provider chain. 8814 */ 8815 provider->dtpv_next = dtrace_provider; 8816 dtrace_provider = provider; 8817 return (0); 8818 } 8819 8820 mutex_enter(&dtrace_provider_lock); 8821 mutex_enter(&dtrace_lock); 8822 8823 /* 8824 * If there is at least one provider registered, we'll add this 8825 * provider after the first provider. 8826 */ 8827 if (dtrace_provider != NULL) { 8828 provider->dtpv_next = dtrace_provider->dtpv_next; 8829 dtrace_provider->dtpv_next = provider; 8830 } else { 8831 dtrace_provider = provider; 8832 } 8833 8834 if (dtrace_retained != NULL) { 8835 dtrace_enabling_provide(provider); 8836 8837 /* 8838 * Now we need to call dtrace_enabling_matchall() -- which 8839 * will acquire cpu_lock and dtrace_lock. We therefore need 8840 * to drop all of our locks before calling into it... 8841 */ 8842 mutex_exit(&dtrace_lock); 8843 mutex_exit(&dtrace_provider_lock); 8844 dtrace_enabling_matchall(); 8845 8846 return (0); 8847 } 8848 8849 mutex_exit(&dtrace_lock); 8850 mutex_exit(&dtrace_provider_lock); 8851 8852 return (0); 8853 } 8854 8855 /* 8856 * Unregister the specified provider from the DTrace framework. This should 8857 * generally be called by DTrace providers in their detach(9E) entry point. 8858 */ 8859 int 8860 dtrace_unregister(dtrace_provider_id_t id) 8861 { 8862 dtrace_provider_t *old = (dtrace_provider_t *)id; 8863 dtrace_provider_t *prev = NULL; 8864 int i, self = 0, noreap = 0; 8865 dtrace_probe_t *probe, *first = NULL; 8866 8867 if (old->dtpv_pops.dtps_enable == 8868 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8869 /* 8870 * If DTrace itself is the provider, we're called with locks 8871 * already held. 8872 */ 8873 ASSERT(old == dtrace_provider); 8874 #ifdef illumos 8875 ASSERT(dtrace_devi != NULL); 8876 #endif 8877 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8878 ASSERT(MUTEX_HELD(&dtrace_lock)); 8879 self = 1; 8880 8881 if (dtrace_provider->dtpv_next != NULL) { 8882 /* 8883 * There's another provider here; return failure. 8884 */ 8885 return (EBUSY); 8886 } 8887 } else { 8888 mutex_enter(&dtrace_provider_lock); 8889 #ifdef illumos 8890 mutex_enter(&mod_lock); 8891 #endif 8892 mutex_enter(&dtrace_lock); 8893 } 8894 8895 /* 8896 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8897 * probes, we refuse to let providers slither away, unless this 8898 * provider has already been explicitly invalidated. 8899 */ 8900 if (!old->dtpv_defunct && 8901 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8902 dtrace_anon.dta_state->dts_necbs > 0))) { 8903 if (!self) { 8904 mutex_exit(&dtrace_lock); 8905 #ifdef illumos 8906 mutex_exit(&mod_lock); 8907 #endif 8908 mutex_exit(&dtrace_provider_lock); 8909 } 8910 return (EBUSY); 8911 } 8912 8913 /* 8914 * Attempt to destroy the probes associated with this provider. 8915 */ 8916 for (i = 0; i < dtrace_nprobes; i++) { 8917 if ((probe = dtrace_probes[i]) == NULL) 8918 continue; 8919 8920 if (probe->dtpr_provider != old) 8921 continue; 8922 8923 if (probe->dtpr_ecb == NULL) 8924 continue; 8925 8926 /* 8927 * If we are trying to unregister a defunct provider, and the 8928 * provider was made defunct within the interval dictated by 8929 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8930 * attempt to reap our enablings. To denote that the provider 8931 * should reattempt to unregister itself at some point in the 8932 * future, we will return a differentiable error code (EAGAIN 8933 * instead of EBUSY) in this case. 8934 */ 8935 if (dtrace_gethrtime() - old->dtpv_defunct > 8936 dtrace_unregister_defunct_reap) 8937 noreap = 1; 8938 8939 if (!self) { 8940 mutex_exit(&dtrace_lock); 8941 #ifdef illumos 8942 mutex_exit(&mod_lock); 8943 #endif 8944 mutex_exit(&dtrace_provider_lock); 8945 } 8946 8947 if (noreap) 8948 return (EBUSY); 8949 8950 (void) taskq_dispatch(dtrace_taskq, 8951 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8952 8953 return (EAGAIN); 8954 } 8955 8956 /* 8957 * All of the probes for this provider are disabled; we can safely 8958 * remove all of them from their hash chains and from the probe array. 8959 */ 8960 for (i = 0; i < dtrace_nprobes; i++) { 8961 if ((probe = dtrace_probes[i]) == NULL) 8962 continue; 8963 8964 if (probe->dtpr_provider != old) 8965 continue; 8966 8967 dtrace_probes[i] = NULL; 8968 8969 dtrace_hash_remove(dtrace_bymod, probe); 8970 dtrace_hash_remove(dtrace_byfunc, probe); 8971 dtrace_hash_remove(dtrace_byname, probe); 8972 8973 if (first == NULL) { 8974 first = probe; 8975 probe->dtpr_nextmod = NULL; 8976 } else { 8977 probe->dtpr_nextmod = first; 8978 first = probe; 8979 } 8980 } 8981 8982 /* 8983 * The provider's probes have been removed from the hash chains and 8984 * from the probe array. Now issue a dtrace_sync() to be sure that 8985 * everyone has cleared out from any probe array processing. 8986 */ 8987 dtrace_sync(); 8988 8989 for (probe = first; probe != NULL; probe = first) { 8990 first = probe->dtpr_nextmod; 8991 8992 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8993 probe->dtpr_arg); 8994 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8995 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8996 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8997 #ifdef illumos 8998 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8999 #else 9000 free_unr(dtrace_arena, probe->dtpr_id); 9001 #endif 9002 kmem_free(probe, sizeof (dtrace_probe_t)); 9003 } 9004 9005 if ((prev = dtrace_provider) == old) { 9006 #ifdef illumos 9007 ASSERT(self || dtrace_devi == NULL); 9008 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9009 #endif 9010 dtrace_provider = old->dtpv_next; 9011 } else { 9012 while (prev != NULL && prev->dtpv_next != old) 9013 prev = prev->dtpv_next; 9014 9015 if (prev == NULL) { 9016 panic("attempt to unregister non-existent " 9017 "dtrace provider %p\n", (void *)id); 9018 } 9019 9020 prev->dtpv_next = old->dtpv_next; 9021 } 9022 9023 if (!self) { 9024 mutex_exit(&dtrace_lock); 9025 #ifdef illumos 9026 mutex_exit(&mod_lock); 9027 #endif 9028 mutex_exit(&dtrace_provider_lock); 9029 } 9030 9031 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9032 kmem_free(old, sizeof (dtrace_provider_t)); 9033 9034 return (0); 9035 } 9036 9037 /* 9038 * Invalidate the specified provider. All subsequent probe lookups for the 9039 * specified provider will fail, but its probes will not be removed. 9040 */ 9041 void 9042 dtrace_invalidate(dtrace_provider_id_t id) 9043 { 9044 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9045 9046 ASSERT(pvp->dtpv_pops.dtps_enable != 9047 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9048 9049 mutex_enter(&dtrace_provider_lock); 9050 mutex_enter(&dtrace_lock); 9051 9052 pvp->dtpv_defunct = dtrace_gethrtime(); 9053 9054 mutex_exit(&dtrace_lock); 9055 mutex_exit(&dtrace_provider_lock); 9056 } 9057 9058 /* 9059 * Indicate whether or not DTrace has attached. 9060 */ 9061 int 9062 dtrace_attached(void) 9063 { 9064 /* 9065 * dtrace_provider will be non-NULL iff the DTrace driver has 9066 * attached. (It's non-NULL because DTrace is always itself a 9067 * provider.) 9068 */ 9069 return (dtrace_provider != NULL); 9070 } 9071 9072 /* 9073 * Remove all the unenabled probes for the given provider. This function is 9074 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9075 * -- just as many of its associated probes as it can. 9076 */ 9077 int 9078 dtrace_condense(dtrace_provider_id_t id) 9079 { 9080 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9081 int i; 9082 dtrace_probe_t *probe; 9083 9084 /* 9085 * Make sure this isn't the dtrace provider itself. 9086 */ 9087 ASSERT(prov->dtpv_pops.dtps_enable != 9088 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9089 9090 mutex_enter(&dtrace_provider_lock); 9091 mutex_enter(&dtrace_lock); 9092 9093 /* 9094 * Attempt to destroy the probes associated with this provider. 9095 */ 9096 for (i = 0; i < dtrace_nprobes; i++) { 9097 if ((probe = dtrace_probes[i]) == NULL) 9098 continue; 9099 9100 if (probe->dtpr_provider != prov) 9101 continue; 9102 9103 if (probe->dtpr_ecb != NULL) 9104 continue; 9105 9106 dtrace_probes[i] = NULL; 9107 9108 dtrace_hash_remove(dtrace_bymod, probe); 9109 dtrace_hash_remove(dtrace_byfunc, probe); 9110 dtrace_hash_remove(dtrace_byname, probe); 9111 9112 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9113 probe->dtpr_arg); 9114 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9115 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9116 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9117 kmem_free(probe, sizeof (dtrace_probe_t)); 9118 #ifdef illumos 9119 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9120 #else 9121 free_unr(dtrace_arena, i + 1); 9122 #endif 9123 } 9124 9125 mutex_exit(&dtrace_lock); 9126 mutex_exit(&dtrace_provider_lock); 9127 9128 return (0); 9129 } 9130 9131 /* 9132 * DTrace Probe Management Functions 9133 * 9134 * The functions in this section perform the DTrace probe management, 9135 * including functions to create probes, look-up probes, and call into the 9136 * providers to request that probes be provided. Some of these functions are 9137 * in the Provider-to-Framework API; these functions can be identified by the 9138 * fact that they are not declared "static". 9139 */ 9140 9141 /* 9142 * Create a probe with the specified module name, function name, and name. 9143 */ 9144 dtrace_id_t 9145 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9146 const char *func, const char *name, int aframes, void *arg) 9147 { 9148 dtrace_probe_t *probe, **probes; 9149 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9150 dtrace_id_t id; 9151 9152 if (provider == dtrace_provider) { 9153 ASSERT(MUTEX_HELD(&dtrace_lock)); 9154 } else { 9155 mutex_enter(&dtrace_lock); 9156 } 9157 9158 #ifdef illumos 9159 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9160 VM_BESTFIT | VM_SLEEP); 9161 #else 9162 id = alloc_unr(dtrace_arena); 9163 #endif 9164 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9165 9166 probe->dtpr_id = id; 9167 probe->dtpr_gen = dtrace_probegen++; 9168 probe->dtpr_mod = dtrace_strdup(mod); 9169 probe->dtpr_func = dtrace_strdup(func); 9170 probe->dtpr_name = dtrace_strdup(name); 9171 probe->dtpr_arg = arg; 9172 probe->dtpr_aframes = aframes; 9173 probe->dtpr_provider = provider; 9174 9175 dtrace_hash_add(dtrace_bymod, probe); 9176 dtrace_hash_add(dtrace_byfunc, probe); 9177 dtrace_hash_add(dtrace_byname, probe); 9178 9179 if (id - 1 >= dtrace_nprobes) { 9180 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9181 size_t nsize = osize << 1; 9182 9183 if (nsize == 0) { 9184 ASSERT(osize == 0); 9185 ASSERT(dtrace_probes == NULL); 9186 nsize = sizeof (dtrace_probe_t *); 9187 } 9188 9189 probes = kmem_zalloc(nsize, KM_SLEEP); 9190 9191 if (dtrace_probes == NULL) { 9192 ASSERT(osize == 0); 9193 dtrace_probes = probes; 9194 dtrace_nprobes = 1; 9195 } else { 9196 dtrace_probe_t **oprobes = dtrace_probes; 9197 9198 bcopy(oprobes, probes, osize); 9199 dtrace_membar_producer(); 9200 dtrace_probes = probes; 9201 9202 dtrace_sync(); 9203 9204 /* 9205 * All CPUs are now seeing the new probes array; we can 9206 * safely free the old array. 9207 */ 9208 kmem_free(oprobes, osize); 9209 dtrace_nprobes <<= 1; 9210 } 9211 9212 ASSERT(id - 1 < dtrace_nprobes); 9213 } 9214 9215 ASSERT(dtrace_probes[id - 1] == NULL); 9216 dtrace_probes[id - 1] = probe; 9217 9218 if (provider != dtrace_provider) 9219 mutex_exit(&dtrace_lock); 9220 9221 return (id); 9222 } 9223 9224 static dtrace_probe_t * 9225 dtrace_probe_lookup_id(dtrace_id_t id) 9226 { 9227 ASSERT(MUTEX_HELD(&dtrace_lock)); 9228 9229 if (id == 0 || id > dtrace_nprobes) 9230 return (NULL); 9231 9232 return (dtrace_probes[id - 1]); 9233 } 9234 9235 static int 9236 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9237 { 9238 *((dtrace_id_t *)arg) = probe->dtpr_id; 9239 9240 return (DTRACE_MATCH_DONE); 9241 } 9242 9243 /* 9244 * Look up a probe based on provider and one or more of module name, function 9245 * name and probe name. 9246 */ 9247 dtrace_id_t 9248 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9249 char *func, char *name) 9250 { 9251 dtrace_probekey_t pkey; 9252 dtrace_id_t id; 9253 int match; 9254 9255 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9256 pkey.dtpk_pmatch = &dtrace_match_string; 9257 pkey.dtpk_mod = mod; 9258 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9259 pkey.dtpk_func = func; 9260 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9261 pkey.dtpk_name = name; 9262 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9263 pkey.dtpk_id = DTRACE_IDNONE; 9264 9265 mutex_enter(&dtrace_lock); 9266 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9267 dtrace_probe_lookup_match, &id); 9268 mutex_exit(&dtrace_lock); 9269 9270 ASSERT(match == 1 || match == 0); 9271 return (match ? id : 0); 9272 } 9273 9274 /* 9275 * Returns the probe argument associated with the specified probe. 9276 */ 9277 void * 9278 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9279 { 9280 dtrace_probe_t *probe; 9281 void *rval = NULL; 9282 9283 mutex_enter(&dtrace_lock); 9284 9285 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9286 probe->dtpr_provider == (dtrace_provider_t *)id) 9287 rval = probe->dtpr_arg; 9288 9289 mutex_exit(&dtrace_lock); 9290 9291 return (rval); 9292 } 9293 9294 /* 9295 * Copy a probe into a probe description. 9296 */ 9297 static void 9298 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9299 { 9300 bzero(pdp, sizeof (dtrace_probedesc_t)); 9301 pdp->dtpd_id = prp->dtpr_id; 9302 9303 (void) strncpy(pdp->dtpd_provider, 9304 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9305 9306 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9307 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9308 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9309 } 9310 9311 /* 9312 * Called to indicate that a probe -- or probes -- should be provided by a 9313 * specfied provider. If the specified description is NULL, the provider will 9314 * be told to provide all of its probes. (This is done whenever a new 9315 * consumer comes along, or whenever a retained enabling is to be matched.) If 9316 * the specified description is non-NULL, the provider is given the 9317 * opportunity to dynamically provide the specified probe, allowing providers 9318 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9319 * probes.) If the provider is NULL, the operations will be applied to all 9320 * providers; if the provider is non-NULL the operations will only be applied 9321 * to the specified provider. The dtrace_provider_lock must be held, and the 9322 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9323 * will need to grab the dtrace_lock when it reenters the framework through 9324 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9325 */ 9326 static void 9327 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9328 { 9329 #ifdef illumos 9330 modctl_t *ctl; 9331 #endif 9332 int all = 0; 9333 9334 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9335 9336 if (prv == NULL) { 9337 all = 1; 9338 prv = dtrace_provider; 9339 } 9340 9341 do { 9342 /* 9343 * First, call the blanket provide operation. 9344 */ 9345 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9346 9347 #ifdef illumos 9348 /* 9349 * Now call the per-module provide operation. We will grab 9350 * mod_lock to prevent the list from being modified. Note 9351 * that this also prevents the mod_busy bits from changing. 9352 * (mod_busy can only be changed with mod_lock held.) 9353 */ 9354 mutex_enter(&mod_lock); 9355 9356 ctl = &modules; 9357 do { 9358 if (ctl->mod_busy || ctl->mod_mp == NULL) 9359 continue; 9360 9361 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9362 9363 } while ((ctl = ctl->mod_next) != &modules); 9364 9365 mutex_exit(&mod_lock); 9366 #endif 9367 } while (all && (prv = prv->dtpv_next) != NULL); 9368 } 9369 9370 #ifdef illumos 9371 /* 9372 * Iterate over each probe, and call the Framework-to-Provider API function 9373 * denoted by offs. 9374 */ 9375 static void 9376 dtrace_probe_foreach(uintptr_t offs) 9377 { 9378 dtrace_provider_t *prov; 9379 void (*func)(void *, dtrace_id_t, void *); 9380 dtrace_probe_t *probe; 9381 dtrace_icookie_t cookie; 9382 int i; 9383 9384 /* 9385 * We disable interrupts to walk through the probe array. This is 9386 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9387 * won't see stale data. 9388 */ 9389 cookie = dtrace_interrupt_disable(); 9390 9391 for (i = 0; i < dtrace_nprobes; i++) { 9392 if ((probe = dtrace_probes[i]) == NULL) 9393 continue; 9394 9395 if (probe->dtpr_ecb == NULL) { 9396 /* 9397 * This probe isn't enabled -- don't call the function. 9398 */ 9399 continue; 9400 } 9401 9402 prov = probe->dtpr_provider; 9403 func = *((void(**)(void *, dtrace_id_t, void *)) 9404 ((uintptr_t)&prov->dtpv_pops + offs)); 9405 9406 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9407 } 9408 9409 dtrace_interrupt_enable(cookie); 9410 } 9411 #endif 9412 9413 static int 9414 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9415 { 9416 dtrace_probekey_t pkey; 9417 uint32_t priv; 9418 uid_t uid; 9419 zoneid_t zoneid; 9420 9421 ASSERT(MUTEX_HELD(&dtrace_lock)); 9422 dtrace_ecb_create_cache = NULL; 9423 9424 if (desc == NULL) { 9425 /* 9426 * If we're passed a NULL description, we're being asked to 9427 * create an ECB with a NULL probe. 9428 */ 9429 (void) dtrace_ecb_create_enable(NULL, enab); 9430 return (0); 9431 } 9432 9433 dtrace_probekey(desc, &pkey); 9434 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9435 &priv, &uid, &zoneid); 9436 9437 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9438 enab)); 9439 } 9440 9441 /* 9442 * DTrace Helper Provider Functions 9443 */ 9444 static void 9445 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9446 { 9447 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9448 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9449 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9450 } 9451 9452 static void 9453 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9454 const dof_provider_t *dofprov, char *strtab) 9455 { 9456 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9457 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9458 dofprov->dofpv_provattr); 9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9460 dofprov->dofpv_modattr); 9461 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9462 dofprov->dofpv_funcattr); 9463 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9464 dofprov->dofpv_nameattr); 9465 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9466 dofprov->dofpv_argsattr); 9467 } 9468 9469 static void 9470 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9471 { 9472 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9473 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9474 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9475 dof_provider_t *provider; 9476 dof_probe_t *probe; 9477 uint32_t *off, *enoff; 9478 uint8_t *arg; 9479 char *strtab; 9480 uint_t i, nprobes; 9481 dtrace_helper_provdesc_t dhpv; 9482 dtrace_helper_probedesc_t dhpb; 9483 dtrace_meta_t *meta = dtrace_meta_pid; 9484 dtrace_mops_t *mops = &meta->dtm_mops; 9485 void *parg; 9486 9487 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9488 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9489 provider->dofpv_strtab * dof->dofh_secsize); 9490 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9491 provider->dofpv_probes * dof->dofh_secsize); 9492 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9493 provider->dofpv_prargs * dof->dofh_secsize); 9494 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9495 provider->dofpv_proffs * dof->dofh_secsize); 9496 9497 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9498 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9499 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9500 enoff = NULL; 9501 9502 /* 9503 * See dtrace_helper_provider_validate(). 9504 */ 9505 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9506 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9507 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9508 provider->dofpv_prenoffs * dof->dofh_secsize); 9509 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9510 } 9511 9512 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9513 9514 /* 9515 * Create the provider. 9516 */ 9517 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9518 9519 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9520 return; 9521 9522 meta->dtm_count++; 9523 9524 /* 9525 * Create the probes. 9526 */ 9527 for (i = 0; i < nprobes; i++) { 9528 probe = (dof_probe_t *)(uintptr_t)(daddr + 9529 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9530 9531 /* See the check in dtrace_helper_provider_validate(). */ 9532 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9533 continue; 9534 9535 dhpb.dthpb_mod = dhp->dofhp_mod; 9536 dhpb.dthpb_func = strtab + probe->dofpr_func; 9537 dhpb.dthpb_name = strtab + probe->dofpr_name; 9538 dhpb.dthpb_base = probe->dofpr_addr; 9539 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9540 dhpb.dthpb_noffs = probe->dofpr_noffs; 9541 if (enoff != NULL) { 9542 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9543 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9544 } else { 9545 dhpb.dthpb_enoffs = NULL; 9546 dhpb.dthpb_nenoffs = 0; 9547 } 9548 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9549 dhpb.dthpb_nargc = probe->dofpr_nargc; 9550 dhpb.dthpb_xargc = probe->dofpr_xargc; 9551 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9552 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9553 9554 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9555 } 9556 } 9557 9558 static void 9559 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9560 { 9561 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9562 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9563 int i; 9564 9565 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9566 9567 for (i = 0; i < dof->dofh_secnum; i++) { 9568 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9569 dof->dofh_secoff + i * dof->dofh_secsize); 9570 9571 if (sec->dofs_type != DOF_SECT_PROVIDER) 9572 continue; 9573 9574 dtrace_helper_provide_one(dhp, sec, pid); 9575 } 9576 9577 /* 9578 * We may have just created probes, so we must now rematch against 9579 * any retained enablings. Note that this call will acquire both 9580 * cpu_lock and dtrace_lock; the fact that we are holding 9581 * dtrace_meta_lock now is what defines the ordering with respect to 9582 * these three locks. 9583 */ 9584 dtrace_enabling_matchall(); 9585 } 9586 9587 static void 9588 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9589 { 9590 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9591 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9592 dof_sec_t *str_sec; 9593 dof_provider_t *provider; 9594 char *strtab; 9595 dtrace_helper_provdesc_t dhpv; 9596 dtrace_meta_t *meta = dtrace_meta_pid; 9597 dtrace_mops_t *mops = &meta->dtm_mops; 9598 9599 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9600 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9601 provider->dofpv_strtab * dof->dofh_secsize); 9602 9603 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9604 9605 /* 9606 * Create the provider. 9607 */ 9608 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9609 9610 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9611 9612 meta->dtm_count--; 9613 } 9614 9615 static void 9616 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9617 { 9618 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9619 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9620 int i; 9621 9622 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9623 9624 for (i = 0; i < dof->dofh_secnum; i++) { 9625 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9626 dof->dofh_secoff + i * dof->dofh_secsize); 9627 9628 if (sec->dofs_type != DOF_SECT_PROVIDER) 9629 continue; 9630 9631 dtrace_helper_provider_remove_one(dhp, sec, pid); 9632 } 9633 } 9634 9635 /* 9636 * DTrace Meta Provider-to-Framework API Functions 9637 * 9638 * These functions implement the Meta Provider-to-Framework API, as described 9639 * in <sys/dtrace.h>. 9640 */ 9641 int 9642 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9643 dtrace_meta_provider_id_t *idp) 9644 { 9645 dtrace_meta_t *meta; 9646 dtrace_helpers_t *help, *next; 9647 int i; 9648 9649 *idp = DTRACE_METAPROVNONE; 9650 9651 /* 9652 * We strictly don't need the name, but we hold onto it for 9653 * debuggability. All hail error queues! 9654 */ 9655 if (name == NULL) { 9656 cmn_err(CE_WARN, "failed to register meta-provider: " 9657 "invalid name"); 9658 return (EINVAL); 9659 } 9660 9661 if (mops == NULL || 9662 mops->dtms_create_probe == NULL || 9663 mops->dtms_provide_pid == NULL || 9664 mops->dtms_remove_pid == NULL) { 9665 cmn_err(CE_WARN, "failed to register meta-register %s: " 9666 "invalid ops", name); 9667 return (EINVAL); 9668 } 9669 9670 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9671 meta->dtm_mops = *mops; 9672 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9673 (void) strcpy(meta->dtm_name, name); 9674 meta->dtm_arg = arg; 9675 9676 mutex_enter(&dtrace_meta_lock); 9677 mutex_enter(&dtrace_lock); 9678 9679 if (dtrace_meta_pid != NULL) { 9680 mutex_exit(&dtrace_lock); 9681 mutex_exit(&dtrace_meta_lock); 9682 cmn_err(CE_WARN, "failed to register meta-register %s: " 9683 "user-land meta-provider exists", name); 9684 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9685 kmem_free(meta, sizeof (dtrace_meta_t)); 9686 return (EINVAL); 9687 } 9688 9689 dtrace_meta_pid = meta; 9690 *idp = (dtrace_meta_provider_id_t)meta; 9691 9692 /* 9693 * If there are providers and probes ready to go, pass them 9694 * off to the new meta provider now. 9695 */ 9696 9697 help = dtrace_deferred_pid; 9698 dtrace_deferred_pid = NULL; 9699 9700 mutex_exit(&dtrace_lock); 9701 9702 while (help != NULL) { 9703 for (i = 0; i < help->dthps_nprovs; i++) { 9704 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9705 help->dthps_pid); 9706 } 9707 9708 next = help->dthps_next; 9709 help->dthps_next = NULL; 9710 help->dthps_prev = NULL; 9711 help->dthps_deferred = 0; 9712 help = next; 9713 } 9714 9715 mutex_exit(&dtrace_meta_lock); 9716 9717 return (0); 9718 } 9719 9720 int 9721 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9722 { 9723 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9724 9725 mutex_enter(&dtrace_meta_lock); 9726 mutex_enter(&dtrace_lock); 9727 9728 if (old == dtrace_meta_pid) { 9729 pp = &dtrace_meta_pid; 9730 } else { 9731 panic("attempt to unregister non-existent " 9732 "dtrace meta-provider %p\n", (void *)old); 9733 } 9734 9735 if (old->dtm_count != 0) { 9736 mutex_exit(&dtrace_lock); 9737 mutex_exit(&dtrace_meta_lock); 9738 return (EBUSY); 9739 } 9740 9741 *pp = NULL; 9742 9743 mutex_exit(&dtrace_lock); 9744 mutex_exit(&dtrace_meta_lock); 9745 9746 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9747 kmem_free(old, sizeof (dtrace_meta_t)); 9748 9749 return (0); 9750 } 9751 9752 9753 /* 9754 * DTrace DIF Object Functions 9755 */ 9756 static int 9757 dtrace_difo_err(uint_t pc, const char *format, ...) 9758 { 9759 if (dtrace_err_verbose) { 9760 va_list alist; 9761 9762 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9763 va_start(alist, format); 9764 (void) vuprintf(format, alist); 9765 va_end(alist); 9766 } 9767 9768 #ifdef DTRACE_ERRDEBUG 9769 dtrace_errdebug(format); 9770 #endif 9771 return (1); 9772 } 9773 9774 /* 9775 * Validate a DTrace DIF object by checking the IR instructions. The following 9776 * rules are currently enforced by dtrace_difo_validate(): 9777 * 9778 * 1. Each instruction must have a valid opcode 9779 * 2. Each register, string, variable, or subroutine reference must be valid 9780 * 3. No instruction can modify register %r0 (must be zero) 9781 * 4. All instruction reserved bits must be set to zero 9782 * 5. The last instruction must be a "ret" instruction 9783 * 6. All branch targets must reference a valid instruction _after_ the branch 9784 */ 9785 static int 9786 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9787 cred_t *cr) 9788 { 9789 int err = 0, i; 9790 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9791 int kcheckload; 9792 uint_t pc; 9793 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9794 9795 kcheckload = cr == NULL || 9796 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9797 9798 dp->dtdo_destructive = 0; 9799 9800 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9801 dif_instr_t instr = dp->dtdo_buf[pc]; 9802 9803 uint_t r1 = DIF_INSTR_R1(instr); 9804 uint_t r2 = DIF_INSTR_R2(instr); 9805 uint_t rd = DIF_INSTR_RD(instr); 9806 uint_t rs = DIF_INSTR_RS(instr); 9807 uint_t label = DIF_INSTR_LABEL(instr); 9808 uint_t v = DIF_INSTR_VAR(instr); 9809 uint_t subr = DIF_INSTR_SUBR(instr); 9810 uint_t type = DIF_INSTR_TYPE(instr); 9811 uint_t op = DIF_INSTR_OP(instr); 9812 9813 switch (op) { 9814 case DIF_OP_OR: 9815 case DIF_OP_XOR: 9816 case DIF_OP_AND: 9817 case DIF_OP_SLL: 9818 case DIF_OP_SRL: 9819 case DIF_OP_SRA: 9820 case DIF_OP_SUB: 9821 case DIF_OP_ADD: 9822 case DIF_OP_MUL: 9823 case DIF_OP_SDIV: 9824 case DIF_OP_UDIV: 9825 case DIF_OP_SREM: 9826 case DIF_OP_UREM: 9827 case DIF_OP_COPYS: 9828 if (r1 >= nregs) 9829 err += efunc(pc, "invalid register %u\n", r1); 9830 if (r2 >= nregs) 9831 err += efunc(pc, "invalid register %u\n", r2); 9832 if (rd >= nregs) 9833 err += efunc(pc, "invalid register %u\n", rd); 9834 if (rd == 0) 9835 err += efunc(pc, "cannot write to %%r0\n"); 9836 break; 9837 case DIF_OP_NOT: 9838 case DIF_OP_MOV: 9839 case DIF_OP_ALLOCS: 9840 if (r1 >= nregs) 9841 err += efunc(pc, "invalid register %u\n", r1); 9842 if (r2 != 0) 9843 err += efunc(pc, "non-zero reserved bits\n"); 9844 if (rd >= nregs) 9845 err += efunc(pc, "invalid register %u\n", rd); 9846 if (rd == 0) 9847 err += efunc(pc, "cannot write to %%r0\n"); 9848 break; 9849 case DIF_OP_LDSB: 9850 case DIF_OP_LDSH: 9851 case DIF_OP_LDSW: 9852 case DIF_OP_LDUB: 9853 case DIF_OP_LDUH: 9854 case DIF_OP_LDUW: 9855 case DIF_OP_LDX: 9856 if (r1 >= nregs) 9857 err += efunc(pc, "invalid register %u\n", r1); 9858 if (r2 != 0) 9859 err += efunc(pc, "non-zero reserved bits\n"); 9860 if (rd >= nregs) 9861 err += efunc(pc, "invalid register %u\n", rd); 9862 if (rd == 0) 9863 err += efunc(pc, "cannot write to %%r0\n"); 9864 if (kcheckload) 9865 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9866 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9867 break; 9868 case DIF_OP_RLDSB: 9869 case DIF_OP_RLDSH: 9870 case DIF_OP_RLDSW: 9871 case DIF_OP_RLDUB: 9872 case DIF_OP_RLDUH: 9873 case DIF_OP_RLDUW: 9874 case DIF_OP_RLDX: 9875 if (r1 >= nregs) 9876 err += efunc(pc, "invalid register %u\n", r1); 9877 if (r2 != 0) 9878 err += efunc(pc, "non-zero reserved bits\n"); 9879 if (rd >= nregs) 9880 err += efunc(pc, "invalid register %u\n", rd); 9881 if (rd == 0) 9882 err += efunc(pc, "cannot write to %%r0\n"); 9883 break; 9884 case DIF_OP_ULDSB: 9885 case DIF_OP_ULDSH: 9886 case DIF_OP_ULDSW: 9887 case DIF_OP_ULDUB: 9888 case DIF_OP_ULDUH: 9889 case DIF_OP_ULDUW: 9890 case DIF_OP_ULDX: 9891 if (r1 >= nregs) 9892 err += efunc(pc, "invalid register %u\n", r1); 9893 if (r2 != 0) 9894 err += efunc(pc, "non-zero reserved bits\n"); 9895 if (rd >= nregs) 9896 err += efunc(pc, "invalid register %u\n", rd); 9897 if (rd == 0) 9898 err += efunc(pc, "cannot write to %%r0\n"); 9899 break; 9900 case DIF_OP_STB: 9901 case DIF_OP_STH: 9902 case DIF_OP_STW: 9903 case DIF_OP_STX: 9904 if (r1 >= nregs) 9905 err += efunc(pc, "invalid register %u\n", r1); 9906 if (r2 != 0) 9907 err += efunc(pc, "non-zero reserved bits\n"); 9908 if (rd >= nregs) 9909 err += efunc(pc, "invalid register %u\n", rd); 9910 if (rd == 0) 9911 err += efunc(pc, "cannot write to 0 address\n"); 9912 break; 9913 case DIF_OP_CMP: 9914 case DIF_OP_SCMP: 9915 if (r1 >= nregs) 9916 err += efunc(pc, "invalid register %u\n", r1); 9917 if (r2 >= nregs) 9918 err += efunc(pc, "invalid register %u\n", r2); 9919 if (rd != 0) 9920 err += efunc(pc, "non-zero reserved bits\n"); 9921 break; 9922 case DIF_OP_TST: 9923 if (r1 >= nregs) 9924 err += efunc(pc, "invalid register %u\n", r1); 9925 if (r2 != 0 || rd != 0) 9926 err += efunc(pc, "non-zero reserved bits\n"); 9927 break; 9928 case DIF_OP_BA: 9929 case DIF_OP_BE: 9930 case DIF_OP_BNE: 9931 case DIF_OP_BG: 9932 case DIF_OP_BGU: 9933 case DIF_OP_BGE: 9934 case DIF_OP_BGEU: 9935 case DIF_OP_BL: 9936 case DIF_OP_BLU: 9937 case DIF_OP_BLE: 9938 case DIF_OP_BLEU: 9939 if (label >= dp->dtdo_len) { 9940 err += efunc(pc, "invalid branch target %u\n", 9941 label); 9942 } 9943 if (label <= pc) { 9944 err += efunc(pc, "backward branch to %u\n", 9945 label); 9946 } 9947 break; 9948 case DIF_OP_RET: 9949 if (r1 != 0 || r2 != 0) 9950 err += efunc(pc, "non-zero reserved bits\n"); 9951 if (rd >= nregs) 9952 err += efunc(pc, "invalid register %u\n", rd); 9953 break; 9954 case DIF_OP_NOP: 9955 case DIF_OP_POPTS: 9956 case DIF_OP_FLUSHTS: 9957 if (r1 != 0 || r2 != 0 || rd != 0) 9958 err += efunc(pc, "non-zero reserved bits\n"); 9959 break; 9960 case DIF_OP_SETX: 9961 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9962 err += efunc(pc, "invalid integer ref %u\n", 9963 DIF_INSTR_INTEGER(instr)); 9964 } 9965 if (rd >= nregs) 9966 err += efunc(pc, "invalid register %u\n", rd); 9967 if (rd == 0) 9968 err += efunc(pc, "cannot write to %%r0\n"); 9969 break; 9970 case DIF_OP_SETS: 9971 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9972 err += efunc(pc, "invalid string ref %u\n", 9973 DIF_INSTR_STRING(instr)); 9974 } 9975 if (rd >= nregs) 9976 err += efunc(pc, "invalid register %u\n", rd); 9977 if (rd == 0) 9978 err += efunc(pc, "cannot write to %%r0\n"); 9979 break; 9980 case DIF_OP_LDGA: 9981 case DIF_OP_LDTA: 9982 if (r1 > DIF_VAR_ARRAY_MAX) 9983 err += efunc(pc, "invalid array %u\n", r1); 9984 if (r2 >= nregs) 9985 err += efunc(pc, "invalid register %u\n", r2); 9986 if (rd >= nregs) 9987 err += efunc(pc, "invalid register %u\n", rd); 9988 if (rd == 0) 9989 err += efunc(pc, "cannot write to %%r0\n"); 9990 break; 9991 case DIF_OP_LDGS: 9992 case DIF_OP_LDTS: 9993 case DIF_OP_LDLS: 9994 case DIF_OP_LDGAA: 9995 case DIF_OP_LDTAA: 9996 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9997 err += efunc(pc, "invalid variable %u\n", v); 9998 if (rd >= nregs) 9999 err += efunc(pc, "invalid register %u\n", rd); 10000 if (rd == 0) 10001 err += efunc(pc, "cannot write to %%r0\n"); 10002 break; 10003 case DIF_OP_STGS: 10004 case DIF_OP_STTS: 10005 case DIF_OP_STLS: 10006 case DIF_OP_STGAA: 10007 case DIF_OP_STTAA: 10008 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10009 err += efunc(pc, "invalid variable %u\n", v); 10010 if (rs >= nregs) 10011 err += efunc(pc, "invalid register %u\n", rd); 10012 break; 10013 case DIF_OP_CALL: 10014 if (subr > DIF_SUBR_MAX) 10015 err += efunc(pc, "invalid subr %u\n", subr); 10016 if (rd >= nregs) 10017 err += efunc(pc, "invalid register %u\n", rd); 10018 if (rd == 0) 10019 err += efunc(pc, "cannot write to %%r0\n"); 10020 10021 if (subr == DIF_SUBR_COPYOUT || 10022 subr == DIF_SUBR_COPYOUTSTR) { 10023 dp->dtdo_destructive = 1; 10024 } 10025 10026 if (subr == DIF_SUBR_GETF) { 10027 #ifdef __FreeBSD__ 10028 err += efunc(pc, "getf() not supported"); 10029 #else 10030 /* 10031 * If we have a getf() we need to record that 10032 * in our state. Note that our state can be 10033 * NULL if this is a helper -- but in that 10034 * case, the call to getf() is itself illegal, 10035 * and will be caught (slightly later) when 10036 * the helper is validated. 10037 */ 10038 if (vstate->dtvs_state != NULL) 10039 vstate->dtvs_state->dts_getf++; 10040 #endif 10041 } 10042 10043 break; 10044 case DIF_OP_PUSHTR: 10045 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10046 err += efunc(pc, "invalid ref type %u\n", type); 10047 if (r2 >= nregs) 10048 err += efunc(pc, "invalid register %u\n", r2); 10049 if (rs >= nregs) 10050 err += efunc(pc, "invalid register %u\n", rs); 10051 break; 10052 case DIF_OP_PUSHTV: 10053 if (type != DIF_TYPE_CTF) 10054 err += efunc(pc, "invalid val type %u\n", type); 10055 if (r2 >= nregs) 10056 err += efunc(pc, "invalid register %u\n", r2); 10057 if (rs >= nregs) 10058 err += efunc(pc, "invalid register %u\n", rs); 10059 break; 10060 default: 10061 err += efunc(pc, "invalid opcode %u\n", 10062 DIF_INSTR_OP(instr)); 10063 } 10064 } 10065 10066 if (dp->dtdo_len != 0 && 10067 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10068 err += efunc(dp->dtdo_len - 1, 10069 "expected 'ret' as last DIF instruction\n"); 10070 } 10071 10072 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10073 /* 10074 * If we're not returning by reference, the size must be either 10075 * 0 or the size of one of the base types. 10076 */ 10077 switch (dp->dtdo_rtype.dtdt_size) { 10078 case 0: 10079 case sizeof (uint8_t): 10080 case sizeof (uint16_t): 10081 case sizeof (uint32_t): 10082 case sizeof (uint64_t): 10083 break; 10084 10085 default: 10086 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10087 } 10088 } 10089 10090 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10091 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10092 dtrace_diftype_t *vt, *et; 10093 uint_t id, ndx; 10094 10095 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10096 v->dtdv_scope != DIFV_SCOPE_THREAD && 10097 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10098 err += efunc(i, "unrecognized variable scope %d\n", 10099 v->dtdv_scope); 10100 break; 10101 } 10102 10103 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10104 v->dtdv_kind != DIFV_KIND_SCALAR) { 10105 err += efunc(i, "unrecognized variable type %d\n", 10106 v->dtdv_kind); 10107 break; 10108 } 10109 10110 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10111 err += efunc(i, "%d exceeds variable id limit\n", id); 10112 break; 10113 } 10114 10115 if (id < DIF_VAR_OTHER_UBASE) 10116 continue; 10117 10118 /* 10119 * For user-defined variables, we need to check that this 10120 * definition is identical to any previous definition that we 10121 * encountered. 10122 */ 10123 ndx = id - DIF_VAR_OTHER_UBASE; 10124 10125 switch (v->dtdv_scope) { 10126 case DIFV_SCOPE_GLOBAL: 10127 if (maxglobal == -1 || ndx > maxglobal) 10128 maxglobal = ndx; 10129 10130 if (ndx < vstate->dtvs_nglobals) { 10131 dtrace_statvar_t *svar; 10132 10133 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10134 existing = &svar->dtsv_var; 10135 } 10136 10137 break; 10138 10139 case DIFV_SCOPE_THREAD: 10140 if (maxtlocal == -1 || ndx > maxtlocal) 10141 maxtlocal = ndx; 10142 10143 if (ndx < vstate->dtvs_ntlocals) 10144 existing = &vstate->dtvs_tlocals[ndx]; 10145 break; 10146 10147 case DIFV_SCOPE_LOCAL: 10148 if (maxlocal == -1 || ndx > maxlocal) 10149 maxlocal = ndx; 10150 10151 if (ndx < vstate->dtvs_nlocals) { 10152 dtrace_statvar_t *svar; 10153 10154 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10155 existing = &svar->dtsv_var; 10156 } 10157 10158 break; 10159 } 10160 10161 vt = &v->dtdv_type; 10162 10163 if (vt->dtdt_flags & DIF_TF_BYREF) { 10164 if (vt->dtdt_size == 0) { 10165 err += efunc(i, "zero-sized variable\n"); 10166 break; 10167 } 10168 10169 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10170 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10171 vt->dtdt_size > dtrace_statvar_maxsize) { 10172 err += efunc(i, "oversized by-ref static\n"); 10173 break; 10174 } 10175 } 10176 10177 if (existing == NULL || existing->dtdv_id == 0) 10178 continue; 10179 10180 ASSERT(existing->dtdv_id == v->dtdv_id); 10181 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10182 10183 if (existing->dtdv_kind != v->dtdv_kind) 10184 err += efunc(i, "%d changed variable kind\n", id); 10185 10186 et = &existing->dtdv_type; 10187 10188 if (vt->dtdt_flags != et->dtdt_flags) { 10189 err += efunc(i, "%d changed variable type flags\n", id); 10190 break; 10191 } 10192 10193 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10194 err += efunc(i, "%d changed variable type size\n", id); 10195 break; 10196 } 10197 } 10198 10199 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10200 dif_instr_t instr = dp->dtdo_buf[pc]; 10201 10202 uint_t v = DIF_INSTR_VAR(instr); 10203 uint_t op = DIF_INSTR_OP(instr); 10204 10205 switch (op) { 10206 case DIF_OP_LDGS: 10207 case DIF_OP_LDGAA: 10208 case DIF_OP_STGS: 10209 case DIF_OP_STGAA: 10210 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10211 err += efunc(pc, "invalid variable %u\n", v); 10212 break; 10213 case DIF_OP_LDTS: 10214 case DIF_OP_LDTAA: 10215 case DIF_OP_STTS: 10216 case DIF_OP_STTAA: 10217 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10218 err += efunc(pc, "invalid variable %u\n", v); 10219 break; 10220 case DIF_OP_LDLS: 10221 case DIF_OP_STLS: 10222 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10223 err += efunc(pc, "invalid variable %u\n", v); 10224 break; 10225 default: 10226 break; 10227 } 10228 } 10229 10230 return (err); 10231 } 10232 10233 /* 10234 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10235 * are much more constrained than normal DIFOs. Specifically, they may 10236 * not: 10237 * 10238 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10239 * miscellaneous string routines 10240 * 2. Access DTrace variables other than the args[] array, and the 10241 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10242 * 3. Have thread-local variables. 10243 * 4. Have dynamic variables. 10244 */ 10245 static int 10246 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10247 { 10248 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10249 int err = 0; 10250 uint_t pc; 10251 10252 for (pc = 0; pc < dp->dtdo_len; pc++) { 10253 dif_instr_t instr = dp->dtdo_buf[pc]; 10254 10255 uint_t v = DIF_INSTR_VAR(instr); 10256 uint_t subr = DIF_INSTR_SUBR(instr); 10257 uint_t op = DIF_INSTR_OP(instr); 10258 10259 switch (op) { 10260 case DIF_OP_OR: 10261 case DIF_OP_XOR: 10262 case DIF_OP_AND: 10263 case DIF_OP_SLL: 10264 case DIF_OP_SRL: 10265 case DIF_OP_SRA: 10266 case DIF_OP_SUB: 10267 case DIF_OP_ADD: 10268 case DIF_OP_MUL: 10269 case DIF_OP_SDIV: 10270 case DIF_OP_UDIV: 10271 case DIF_OP_SREM: 10272 case DIF_OP_UREM: 10273 case DIF_OP_COPYS: 10274 case DIF_OP_NOT: 10275 case DIF_OP_MOV: 10276 case DIF_OP_RLDSB: 10277 case DIF_OP_RLDSH: 10278 case DIF_OP_RLDSW: 10279 case DIF_OP_RLDUB: 10280 case DIF_OP_RLDUH: 10281 case DIF_OP_RLDUW: 10282 case DIF_OP_RLDX: 10283 case DIF_OP_ULDSB: 10284 case DIF_OP_ULDSH: 10285 case DIF_OP_ULDSW: 10286 case DIF_OP_ULDUB: 10287 case DIF_OP_ULDUH: 10288 case DIF_OP_ULDUW: 10289 case DIF_OP_ULDX: 10290 case DIF_OP_STB: 10291 case DIF_OP_STH: 10292 case DIF_OP_STW: 10293 case DIF_OP_STX: 10294 case DIF_OP_ALLOCS: 10295 case DIF_OP_CMP: 10296 case DIF_OP_SCMP: 10297 case DIF_OP_TST: 10298 case DIF_OP_BA: 10299 case DIF_OP_BE: 10300 case DIF_OP_BNE: 10301 case DIF_OP_BG: 10302 case DIF_OP_BGU: 10303 case DIF_OP_BGE: 10304 case DIF_OP_BGEU: 10305 case DIF_OP_BL: 10306 case DIF_OP_BLU: 10307 case DIF_OP_BLE: 10308 case DIF_OP_BLEU: 10309 case DIF_OP_RET: 10310 case DIF_OP_NOP: 10311 case DIF_OP_POPTS: 10312 case DIF_OP_FLUSHTS: 10313 case DIF_OP_SETX: 10314 case DIF_OP_SETS: 10315 case DIF_OP_LDGA: 10316 case DIF_OP_LDLS: 10317 case DIF_OP_STGS: 10318 case DIF_OP_STLS: 10319 case DIF_OP_PUSHTR: 10320 case DIF_OP_PUSHTV: 10321 break; 10322 10323 case DIF_OP_LDGS: 10324 if (v >= DIF_VAR_OTHER_UBASE) 10325 break; 10326 10327 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10328 break; 10329 10330 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10331 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10332 v == DIF_VAR_EXECARGS || 10333 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10334 v == DIF_VAR_UID || v == DIF_VAR_GID) 10335 break; 10336 10337 err += efunc(pc, "illegal variable %u\n", v); 10338 break; 10339 10340 case DIF_OP_LDTA: 10341 case DIF_OP_LDTS: 10342 case DIF_OP_LDGAA: 10343 case DIF_OP_LDTAA: 10344 err += efunc(pc, "illegal dynamic variable load\n"); 10345 break; 10346 10347 case DIF_OP_STTS: 10348 case DIF_OP_STGAA: 10349 case DIF_OP_STTAA: 10350 err += efunc(pc, "illegal dynamic variable store\n"); 10351 break; 10352 10353 case DIF_OP_CALL: 10354 if (subr == DIF_SUBR_ALLOCA || 10355 subr == DIF_SUBR_BCOPY || 10356 subr == DIF_SUBR_COPYIN || 10357 subr == DIF_SUBR_COPYINTO || 10358 subr == DIF_SUBR_COPYINSTR || 10359 subr == DIF_SUBR_INDEX || 10360 subr == DIF_SUBR_INET_NTOA || 10361 subr == DIF_SUBR_INET_NTOA6 || 10362 subr == DIF_SUBR_INET_NTOP || 10363 subr == DIF_SUBR_JSON || 10364 subr == DIF_SUBR_LLTOSTR || 10365 subr == DIF_SUBR_STRTOLL || 10366 subr == DIF_SUBR_RINDEX || 10367 subr == DIF_SUBR_STRCHR || 10368 subr == DIF_SUBR_STRJOIN || 10369 subr == DIF_SUBR_STRRCHR || 10370 subr == DIF_SUBR_STRSTR || 10371 subr == DIF_SUBR_HTONS || 10372 subr == DIF_SUBR_HTONL || 10373 subr == DIF_SUBR_HTONLL || 10374 subr == DIF_SUBR_NTOHS || 10375 subr == DIF_SUBR_NTOHL || 10376 subr == DIF_SUBR_NTOHLL || 10377 subr == DIF_SUBR_MEMREF) 10378 break; 10379 #ifdef __FreeBSD__ 10380 if (subr == DIF_SUBR_MEMSTR) 10381 break; 10382 #endif 10383 10384 err += efunc(pc, "invalid subr %u\n", subr); 10385 break; 10386 10387 default: 10388 err += efunc(pc, "invalid opcode %u\n", 10389 DIF_INSTR_OP(instr)); 10390 } 10391 } 10392 10393 return (err); 10394 } 10395 10396 /* 10397 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10398 * basis; 0 if not. 10399 */ 10400 static int 10401 dtrace_difo_cacheable(dtrace_difo_t *dp) 10402 { 10403 int i; 10404 10405 if (dp == NULL) 10406 return (0); 10407 10408 for (i = 0; i < dp->dtdo_varlen; i++) { 10409 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10410 10411 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10412 continue; 10413 10414 switch (v->dtdv_id) { 10415 case DIF_VAR_CURTHREAD: 10416 case DIF_VAR_PID: 10417 case DIF_VAR_TID: 10418 case DIF_VAR_EXECARGS: 10419 case DIF_VAR_EXECNAME: 10420 case DIF_VAR_ZONENAME: 10421 break; 10422 10423 default: 10424 return (0); 10425 } 10426 } 10427 10428 /* 10429 * This DIF object may be cacheable. Now we need to look for any 10430 * array loading instructions, any memory loading instructions, or 10431 * any stores to thread-local variables. 10432 */ 10433 for (i = 0; i < dp->dtdo_len; i++) { 10434 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10435 10436 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10437 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10438 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10439 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10440 return (0); 10441 } 10442 10443 return (1); 10444 } 10445 10446 static void 10447 dtrace_difo_hold(dtrace_difo_t *dp) 10448 { 10449 int i; 10450 10451 ASSERT(MUTEX_HELD(&dtrace_lock)); 10452 10453 dp->dtdo_refcnt++; 10454 ASSERT(dp->dtdo_refcnt != 0); 10455 10456 /* 10457 * We need to check this DIF object for references to the variable 10458 * DIF_VAR_VTIMESTAMP. 10459 */ 10460 for (i = 0; i < dp->dtdo_varlen; i++) { 10461 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10462 10463 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10464 continue; 10465 10466 if (dtrace_vtime_references++ == 0) 10467 dtrace_vtime_enable(); 10468 } 10469 } 10470 10471 /* 10472 * This routine calculates the dynamic variable chunksize for a given DIF 10473 * object. The calculation is not fool-proof, and can probably be tricked by 10474 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10475 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10476 * if a dynamic variable size exceeds the chunksize. 10477 */ 10478 static void 10479 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10480 { 10481 uint64_t sval = 0; 10482 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10483 const dif_instr_t *text = dp->dtdo_buf; 10484 uint_t pc, srd = 0; 10485 uint_t ttop = 0; 10486 size_t size, ksize; 10487 uint_t id, i; 10488 10489 for (pc = 0; pc < dp->dtdo_len; pc++) { 10490 dif_instr_t instr = text[pc]; 10491 uint_t op = DIF_INSTR_OP(instr); 10492 uint_t rd = DIF_INSTR_RD(instr); 10493 uint_t r1 = DIF_INSTR_R1(instr); 10494 uint_t nkeys = 0; 10495 uchar_t scope = 0; 10496 10497 dtrace_key_t *key = tupregs; 10498 10499 switch (op) { 10500 case DIF_OP_SETX: 10501 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10502 srd = rd; 10503 continue; 10504 10505 case DIF_OP_STTS: 10506 key = &tupregs[DIF_DTR_NREGS]; 10507 key[0].dttk_size = 0; 10508 key[1].dttk_size = 0; 10509 nkeys = 2; 10510 scope = DIFV_SCOPE_THREAD; 10511 break; 10512 10513 case DIF_OP_STGAA: 10514 case DIF_OP_STTAA: 10515 nkeys = ttop; 10516 10517 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10518 key[nkeys++].dttk_size = 0; 10519 10520 key[nkeys++].dttk_size = 0; 10521 10522 if (op == DIF_OP_STTAA) { 10523 scope = DIFV_SCOPE_THREAD; 10524 } else { 10525 scope = DIFV_SCOPE_GLOBAL; 10526 } 10527 10528 break; 10529 10530 case DIF_OP_PUSHTR: 10531 if (ttop == DIF_DTR_NREGS) 10532 return; 10533 10534 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10535 /* 10536 * If the register for the size of the "pushtr" 10537 * is %r0 (or the value is 0) and the type is 10538 * a string, we'll use the system-wide default 10539 * string size. 10540 */ 10541 tupregs[ttop++].dttk_size = 10542 dtrace_strsize_default; 10543 } else { 10544 if (srd == 0) 10545 return; 10546 10547 if (sval > LONG_MAX) 10548 return; 10549 10550 tupregs[ttop++].dttk_size = sval; 10551 } 10552 10553 break; 10554 10555 case DIF_OP_PUSHTV: 10556 if (ttop == DIF_DTR_NREGS) 10557 return; 10558 10559 tupregs[ttop++].dttk_size = 0; 10560 break; 10561 10562 case DIF_OP_FLUSHTS: 10563 ttop = 0; 10564 break; 10565 10566 case DIF_OP_POPTS: 10567 if (ttop != 0) 10568 ttop--; 10569 break; 10570 } 10571 10572 sval = 0; 10573 srd = 0; 10574 10575 if (nkeys == 0) 10576 continue; 10577 10578 /* 10579 * We have a dynamic variable allocation; calculate its size. 10580 */ 10581 for (ksize = 0, i = 0; i < nkeys; i++) 10582 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10583 10584 size = sizeof (dtrace_dynvar_t); 10585 size += sizeof (dtrace_key_t) * (nkeys - 1); 10586 size += ksize; 10587 10588 /* 10589 * Now we need to determine the size of the stored data. 10590 */ 10591 id = DIF_INSTR_VAR(instr); 10592 10593 for (i = 0; i < dp->dtdo_varlen; i++) { 10594 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10595 10596 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10597 size += v->dtdv_type.dtdt_size; 10598 break; 10599 } 10600 } 10601 10602 if (i == dp->dtdo_varlen) 10603 return; 10604 10605 /* 10606 * We have the size. If this is larger than the chunk size 10607 * for our dynamic variable state, reset the chunk size. 10608 */ 10609 size = P2ROUNDUP(size, sizeof (uint64_t)); 10610 10611 /* 10612 * Before setting the chunk size, check that we're not going 10613 * to set it to a negative value... 10614 */ 10615 if (size > LONG_MAX) 10616 return; 10617 10618 /* 10619 * ...and make certain that we didn't badly overflow. 10620 */ 10621 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10622 return; 10623 10624 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10625 vstate->dtvs_dynvars.dtds_chunksize = size; 10626 } 10627 } 10628 10629 static void 10630 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10631 { 10632 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10633 uint_t id; 10634 10635 ASSERT(MUTEX_HELD(&dtrace_lock)); 10636 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10637 10638 for (i = 0; i < dp->dtdo_varlen; i++) { 10639 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10640 dtrace_statvar_t *svar, ***svarp = NULL; 10641 size_t dsize = 0; 10642 uint8_t scope = v->dtdv_scope; 10643 int *np = NULL; 10644 10645 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10646 continue; 10647 10648 id -= DIF_VAR_OTHER_UBASE; 10649 10650 switch (scope) { 10651 case DIFV_SCOPE_THREAD: 10652 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10653 dtrace_difv_t *tlocals; 10654 10655 if ((ntlocals = (otlocals << 1)) == 0) 10656 ntlocals = 1; 10657 10658 osz = otlocals * sizeof (dtrace_difv_t); 10659 nsz = ntlocals * sizeof (dtrace_difv_t); 10660 10661 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10662 10663 if (osz != 0) { 10664 bcopy(vstate->dtvs_tlocals, 10665 tlocals, osz); 10666 kmem_free(vstate->dtvs_tlocals, osz); 10667 } 10668 10669 vstate->dtvs_tlocals = tlocals; 10670 vstate->dtvs_ntlocals = ntlocals; 10671 } 10672 10673 vstate->dtvs_tlocals[id] = *v; 10674 continue; 10675 10676 case DIFV_SCOPE_LOCAL: 10677 np = &vstate->dtvs_nlocals; 10678 svarp = &vstate->dtvs_locals; 10679 10680 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10681 dsize = NCPU * (v->dtdv_type.dtdt_size + 10682 sizeof (uint64_t)); 10683 else 10684 dsize = NCPU * sizeof (uint64_t); 10685 10686 break; 10687 10688 case DIFV_SCOPE_GLOBAL: 10689 np = &vstate->dtvs_nglobals; 10690 svarp = &vstate->dtvs_globals; 10691 10692 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10693 dsize = v->dtdv_type.dtdt_size + 10694 sizeof (uint64_t); 10695 10696 break; 10697 10698 default: 10699 ASSERT(0); 10700 } 10701 10702 while (id >= (oldsvars = *np)) { 10703 dtrace_statvar_t **statics; 10704 int newsvars, oldsize, newsize; 10705 10706 if ((newsvars = (oldsvars << 1)) == 0) 10707 newsvars = 1; 10708 10709 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10710 newsize = newsvars * sizeof (dtrace_statvar_t *); 10711 10712 statics = kmem_zalloc(newsize, KM_SLEEP); 10713 10714 if (oldsize != 0) { 10715 bcopy(*svarp, statics, oldsize); 10716 kmem_free(*svarp, oldsize); 10717 } 10718 10719 *svarp = statics; 10720 *np = newsvars; 10721 } 10722 10723 if ((svar = (*svarp)[id]) == NULL) { 10724 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10725 svar->dtsv_var = *v; 10726 10727 if ((svar->dtsv_size = dsize) != 0) { 10728 svar->dtsv_data = (uint64_t)(uintptr_t) 10729 kmem_zalloc(dsize, KM_SLEEP); 10730 } 10731 10732 (*svarp)[id] = svar; 10733 } 10734 10735 svar->dtsv_refcnt++; 10736 } 10737 10738 dtrace_difo_chunksize(dp, vstate); 10739 dtrace_difo_hold(dp); 10740 } 10741 10742 static dtrace_difo_t * 10743 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10744 { 10745 dtrace_difo_t *new; 10746 size_t sz; 10747 10748 ASSERT(dp->dtdo_buf != NULL); 10749 ASSERT(dp->dtdo_refcnt != 0); 10750 10751 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10752 10753 ASSERT(dp->dtdo_buf != NULL); 10754 sz = dp->dtdo_len * sizeof (dif_instr_t); 10755 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10756 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10757 new->dtdo_len = dp->dtdo_len; 10758 10759 if (dp->dtdo_strtab != NULL) { 10760 ASSERT(dp->dtdo_strlen != 0); 10761 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10762 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10763 new->dtdo_strlen = dp->dtdo_strlen; 10764 } 10765 10766 if (dp->dtdo_inttab != NULL) { 10767 ASSERT(dp->dtdo_intlen != 0); 10768 sz = dp->dtdo_intlen * sizeof (uint64_t); 10769 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10770 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10771 new->dtdo_intlen = dp->dtdo_intlen; 10772 } 10773 10774 if (dp->dtdo_vartab != NULL) { 10775 ASSERT(dp->dtdo_varlen != 0); 10776 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10777 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10778 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10779 new->dtdo_varlen = dp->dtdo_varlen; 10780 } 10781 10782 dtrace_difo_init(new, vstate); 10783 return (new); 10784 } 10785 10786 static void 10787 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10788 { 10789 int i; 10790 10791 ASSERT(dp->dtdo_refcnt == 0); 10792 10793 for (i = 0; i < dp->dtdo_varlen; i++) { 10794 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10795 dtrace_statvar_t *svar, **svarp = NULL; 10796 uint_t id; 10797 uint8_t scope = v->dtdv_scope; 10798 int *np = NULL; 10799 10800 switch (scope) { 10801 case DIFV_SCOPE_THREAD: 10802 continue; 10803 10804 case DIFV_SCOPE_LOCAL: 10805 np = &vstate->dtvs_nlocals; 10806 svarp = vstate->dtvs_locals; 10807 break; 10808 10809 case DIFV_SCOPE_GLOBAL: 10810 np = &vstate->dtvs_nglobals; 10811 svarp = vstate->dtvs_globals; 10812 break; 10813 10814 default: 10815 ASSERT(0); 10816 } 10817 10818 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10819 continue; 10820 10821 id -= DIF_VAR_OTHER_UBASE; 10822 ASSERT(id < *np); 10823 10824 svar = svarp[id]; 10825 ASSERT(svar != NULL); 10826 ASSERT(svar->dtsv_refcnt > 0); 10827 10828 if (--svar->dtsv_refcnt > 0) 10829 continue; 10830 10831 if (svar->dtsv_size != 0) { 10832 ASSERT(svar->dtsv_data != 0); 10833 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10834 svar->dtsv_size); 10835 } 10836 10837 kmem_free(svar, sizeof (dtrace_statvar_t)); 10838 svarp[id] = NULL; 10839 } 10840 10841 if (dp->dtdo_buf != NULL) 10842 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10843 if (dp->dtdo_inttab != NULL) 10844 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10845 if (dp->dtdo_strtab != NULL) 10846 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10847 if (dp->dtdo_vartab != NULL) 10848 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10849 10850 kmem_free(dp, sizeof (dtrace_difo_t)); 10851 } 10852 10853 static void 10854 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10855 { 10856 int i; 10857 10858 ASSERT(MUTEX_HELD(&dtrace_lock)); 10859 ASSERT(dp->dtdo_refcnt != 0); 10860 10861 for (i = 0; i < dp->dtdo_varlen; i++) { 10862 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10863 10864 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10865 continue; 10866 10867 ASSERT(dtrace_vtime_references > 0); 10868 if (--dtrace_vtime_references == 0) 10869 dtrace_vtime_disable(); 10870 } 10871 10872 if (--dp->dtdo_refcnt == 0) 10873 dtrace_difo_destroy(dp, vstate); 10874 } 10875 10876 /* 10877 * DTrace Format Functions 10878 */ 10879 static uint16_t 10880 dtrace_format_add(dtrace_state_t *state, char *str) 10881 { 10882 char *fmt, **new; 10883 uint16_t ndx, len = strlen(str) + 1; 10884 10885 fmt = kmem_zalloc(len, KM_SLEEP); 10886 bcopy(str, fmt, len); 10887 10888 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10889 if (state->dts_formats[ndx] == NULL) { 10890 state->dts_formats[ndx] = fmt; 10891 return (ndx + 1); 10892 } 10893 } 10894 10895 if (state->dts_nformats == USHRT_MAX) { 10896 /* 10897 * This is only likely if a denial-of-service attack is being 10898 * attempted. As such, it's okay to fail silently here. 10899 */ 10900 kmem_free(fmt, len); 10901 return (0); 10902 } 10903 10904 /* 10905 * For simplicity, we always resize the formats array to be exactly the 10906 * number of formats. 10907 */ 10908 ndx = state->dts_nformats++; 10909 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10910 10911 if (state->dts_formats != NULL) { 10912 ASSERT(ndx != 0); 10913 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10914 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10915 } 10916 10917 state->dts_formats = new; 10918 state->dts_formats[ndx] = fmt; 10919 10920 return (ndx + 1); 10921 } 10922 10923 static void 10924 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10925 { 10926 char *fmt; 10927 10928 ASSERT(state->dts_formats != NULL); 10929 ASSERT(format <= state->dts_nformats); 10930 ASSERT(state->dts_formats[format - 1] != NULL); 10931 10932 fmt = state->dts_formats[format - 1]; 10933 kmem_free(fmt, strlen(fmt) + 1); 10934 state->dts_formats[format - 1] = NULL; 10935 } 10936 10937 static void 10938 dtrace_format_destroy(dtrace_state_t *state) 10939 { 10940 int i; 10941 10942 if (state->dts_nformats == 0) { 10943 ASSERT(state->dts_formats == NULL); 10944 return; 10945 } 10946 10947 ASSERT(state->dts_formats != NULL); 10948 10949 for (i = 0; i < state->dts_nformats; i++) { 10950 char *fmt = state->dts_formats[i]; 10951 10952 if (fmt == NULL) 10953 continue; 10954 10955 kmem_free(fmt, strlen(fmt) + 1); 10956 } 10957 10958 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10959 state->dts_nformats = 0; 10960 state->dts_formats = NULL; 10961 } 10962 10963 /* 10964 * DTrace Predicate Functions 10965 */ 10966 static dtrace_predicate_t * 10967 dtrace_predicate_create(dtrace_difo_t *dp) 10968 { 10969 dtrace_predicate_t *pred; 10970 10971 ASSERT(MUTEX_HELD(&dtrace_lock)); 10972 ASSERT(dp->dtdo_refcnt != 0); 10973 10974 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10975 pred->dtp_difo = dp; 10976 pred->dtp_refcnt = 1; 10977 10978 if (!dtrace_difo_cacheable(dp)) 10979 return (pred); 10980 10981 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10982 /* 10983 * This is only theoretically possible -- we have had 2^32 10984 * cacheable predicates on this machine. We cannot allow any 10985 * more predicates to become cacheable: as unlikely as it is, 10986 * there may be a thread caching a (now stale) predicate cache 10987 * ID. (N.B.: the temptation is being successfully resisted to 10988 * have this cmn_err() "Holy shit -- we executed this code!") 10989 */ 10990 return (pred); 10991 } 10992 10993 pred->dtp_cacheid = dtrace_predcache_id++; 10994 10995 return (pred); 10996 } 10997 10998 static void 10999 dtrace_predicate_hold(dtrace_predicate_t *pred) 11000 { 11001 ASSERT(MUTEX_HELD(&dtrace_lock)); 11002 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 11003 ASSERT(pred->dtp_refcnt > 0); 11004 11005 pred->dtp_refcnt++; 11006 } 11007 11008 static void 11009 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11010 { 11011 dtrace_difo_t *dp = pred->dtp_difo; 11012 11013 ASSERT(MUTEX_HELD(&dtrace_lock)); 11014 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11015 ASSERT(pred->dtp_refcnt > 0); 11016 11017 if (--pred->dtp_refcnt == 0) { 11018 dtrace_difo_release(pred->dtp_difo, vstate); 11019 kmem_free(pred, sizeof (dtrace_predicate_t)); 11020 } 11021 } 11022 11023 /* 11024 * DTrace Action Description Functions 11025 */ 11026 static dtrace_actdesc_t * 11027 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11028 uint64_t uarg, uint64_t arg) 11029 { 11030 dtrace_actdesc_t *act; 11031 11032 #ifdef illumos 11033 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11034 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11035 #endif 11036 11037 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11038 act->dtad_kind = kind; 11039 act->dtad_ntuple = ntuple; 11040 act->dtad_uarg = uarg; 11041 act->dtad_arg = arg; 11042 act->dtad_refcnt = 1; 11043 11044 return (act); 11045 } 11046 11047 static void 11048 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11049 { 11050 ASSERT(act->dtad_refcnt >= 1); 11051 act->dtad_refcnt++; 11052 } 11053 11054 static void 11055 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11056 { 11057 dtrace_actkind_t kind = act->dtad_kind; 11058 dtrace_difo_t *dp; 11059 11060 ASSERT(act->dtad_refcnt >= 1); 11061 11062 if (--act->dtad_refcnt != 0) 11063 return; 11064 11065 if ((dp = act->dtad_difo) != NULL) 11066 dtrace_difo_release(dp, vstate); 11067 11068 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11069 char *str = (char *)(uintptr_t)act->dtad_arg; 11070 11071 #ifdef illumos 11072 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11073 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11074 #endif 11075 11076 if (str != NULL) 11077 kmem_free(str, strlen(str) + 1); 11078 } 11079 11080 kmem_free(act, sizeof (dtrace_actdesc_t)); 11081 } 11082 11083 /* 11084 * DTrace ECB Functions 11085 */ 11086 static dtrace_ecb_t * 11087 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11088 { 11089 dtrace_ecb_t *ecb; 11090 dtrace_epid_t epid; 11091 11092 ASSERT(MUTEX_HELD(&dtrace_lock)); 11093 11094 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11095 ecb->dte_predicate = NULL; 11096 ecb->dte_probe = probe; 11097 11098 /* 11099 * The default size is the size of the default action: recording 11100 * the header. 11101 */ 11102 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11103 ecb->dte_alignment = sizeof (dtrace_epid_t); 11104 11105 epid = state->dts_epid++; 11106 11107 if (epid - 1 >= state->dts_necbs) { 11108 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11109 int necbs = state->dts_necbs << 1; 11110 11111 ASSERT(epid == state->dts_necbs + 1); 11112 11113 if (necbs == 0) { 11114 ASSERT(oecbs == NULL); 11115 necbs = 1; 11116 } 11117 11118 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11119 11120 if (oecbs != NULL) 11121 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11122 11123 dtrace_membar_producer(); 11124 state->dts_ecbs = ecbs; 11125 11126 if (oecbs != NULL) { 11127 /* 11128 * If this state is active, we must dtrace_sync() 11129 * before we can free the old dts_ecbs array: we're 11130 * coming in hot, and there may be active ring 11131 * buffer processing (which indexes into the dts_ecbs 11132 * array) on another CPU. 11133 */ 11134 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11135 dtrace_sync(); 11136 11137 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11138 } 11139 11140 dtrace_membar_producer(); 11141 state->dts_necbs = necbs; 11142 } 11143 11144 ecb->dte_state = state; 11145 11146 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11147 dtrace_membar_producer(); 11148 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11149 11150 return (ecb); 11151 } 11152 11153 static void 11154 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11155 { 11156 dtrace_probe_t *probe = ecb->dte_probe; 11157 11158 ASSERT(MUTEX_HELD(&cpu_lock)); 11159 ASSERT(MUTEX_HELD(&dtrace_lock)); 11160 ASSERT(ecb->dte_next == NULL); 11161 11162 if (probe == NULL) { 11163 /* 11164 * This is the NULL probe -- there's nothing to do. 11165 */ 11166 return; 11167 } 11168 11169 if (probe->dtpr_ecb == NULL) { 11170 dtrace_provider_t *prov = probe->dtpr_provider; 11171 11172 /* 11173 * We're the first ECB on this probe. 11174 */ 11175 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11176 11177 if (ecb->dte_predicate != NULL) 11178 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11179 11180 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11181 probe->dtpr_id, probe->dtpr_arg); 11182 } else { 11183 /* 11184 * This probe is already active. Swing the last pointer to 11185 * point to the new ECB, and issue a dtrace_sync() to assure 11186 * that all CPUs have seen the change. 11187 */ 11188 ASSERT(probe->dtpr_ecb_last != NULL); 11189 probe->dtpr_ecb_last->dte_next = ecb; 11190 probe->dtpr_ecb_last = ecb; 11191 probe->dtpr_predcache = 0; 11192 11193 dtrace_sync(); 11194 } 11195 } 11196 11197 static int 11198 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11199 { 11200 dtrace_action_t *act; 11201 uint32_t curneeded = UINT32_MAX; 11202 uint32_t aggbase = UINT32_MAX; 11203 11204 /* 11205 * If we record anything, we always record the dtrace_rechdr_t. (And 11206 * we always record it first.) 11207 */ 11208 ecb->dte_size = sizeof (dtrace_rechdr_t); 11209 ecb->dte_alignment = sizeof (dtrace_epid_t); 11210 11211 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11212 dtrace_recdesc_t *rec = &act->dta_rec; 11213 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11214 11215 ecb->dte_alignment = MAX(ecb->dte_alignment, 11216 rec->dtrd_alignment); 11217 11218 if (DTRACEACT_ISAGG(act->dta_kind)) { 11219 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11220 11221 ASSERT(rec->dtrd_size != 0); 11222 ASSERT(agg->dtag_first != NULL); 11223 ASSERT(act->dta_prev->dta_intuple); 11224 ASSERT(aggbase != UINT32_MAX); 11225 ASSERT(curneeded != UINT32_MAX); 11226 11227 agg->dtag_base = aggbase; 11228 11229 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11230 rec->dtrd_offset = curneeded; 11231 if (curneeded + rec->dtrd_size < curneeded) 11232 return (EINVAL); 11233 curneeded += rec->dtrd_size; 11234 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11235 11236 aggbase = UINT32_MAX; 11237 curneeded = UINT32_MAX; 11238 } else if (act->dta_intuple) { 11239 if (curneeded == UINT32_MAX) { 11240 /* 11241 * This is the first record in a tuple. Align 11242 * curneeded to be at offset 4 in an 8-byte 11243 * aligned block. 11244 */ 11245 ASSERT(act->dta_prev == NULL || 11246 !act->dta_prev->dta_intuple); 11247 ASSERT3U(aggbase, ==, UINT32_MAX); 11248 curneeded = P2PHASEUP(ecb->dte_size, 11249 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11250 11251 aggbase = curneeded - sizeof (dtrace_aggid_t); 11252 ASSERT(IS_P2ALIGNED(aggbase, 11253 sizeof (uint64_t))); 11254 } 11255 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11256 rec->dtrd_offset = curneeded; 11257 if (curneeded + rec->dtrd_size < curneeded) 11258 return (EINVAL); 11259 curneeded += rec->dtrd_size; 11260 } else { 11261 /* tuples must be followed by an aggregation */ 11262 ASSERT(act->dta_prev == NULL || 11263 !act->dta_prev->dta_intuple); 11264 11265 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11266 rec->dtrd_alignment); 11267 rec->dtrd_offset = ecb->dte_size; 11268 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11269 return (EINVAL); 11270 ecb->dte_size += rec->dtrd_size; 11271 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11272 } 11273 } 11274 11275 if ((act = ecb->dte_action) != NULL && 11276 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11277 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11278 /* 11279 * If the size is still sizeof (dtrace_rechdr_t), then all 11280 * actions store no data; set the size to 0. 11281 */ 11282 ecb->dte_size = 0; 11283 } 11284 11285 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11286 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11287 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11288 ecb->dte_needed); 11289 return (0); 11290 } 11291 11292 static dtrace_action_t * 11293 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11294 { 11295 dtrace_aggregation_t *agg; 11296 size_t size = sizeof (uint64_t); 11297 int ntuple = desc->dtad_ntuple; 11298 dtrace_action_t *act; 11299 dtrace_recdesc_t *frec; 11300 dtrace_aggid_t aggid; 11301 dtrace_state_t *state = ecb->dte_state; 11302 11303 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11304 agg->dtag_ecb = ecb; 11305 11306 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11307 11308 switch (desc->dtad_kind) { 11309 case DTRACEAGG_MIN: 11310 agg->dtag_initial = INT64_MAX; 11311 agg->dtag_aggregate = dtrace_aggregate_min; 11312 break; 11313 11314 case DTRACEAGG_MAX: 11315 agg->dtag_initial = INT64_MIN; 11316 agg->dtag_aggregate = dtrace_aggregate_max; 11317 break; 11318 11319 case DTRACEAGG_COUNT: 11320 agg->dtag_aggregate = dtrace_aggregate_count; 11321 break; 11322 11323 case DTRACEAGG_QUANTIZE: 11324 agg->dtag_aggregate = dtrace_aggregate_quantize; 11325 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11326 sizeof (uint64_t); 11327 break; 11328 11329 case DTRACEAGG_LQUANTIZE: { 11330 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11331 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11332 11333 agg->dtag_initial = desc->dtad_arg; 11334 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11335 11336 if (step == 0 || levels == 0) 11337 goto err; 11338 11339 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11340 break; 11341 } 11342 11343 case DTRACEAGG_LLQUANTIZE: { 11344 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11345 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11346 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11347 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11348 int64_t v; 11349 11350 agg->dtag_initial = desc->dtad_arg; 11351 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11352 11353 if (factor < 2 || low >= high || nsteps < factor) 11354 goto err; 11355 11356 /* 11357 * Now check that the number of steps evenly divides a power 11358 * of the factor. (This assures both integer bucket size and 11359 * linearity within each magnitude.) 11360 */ 11361 for (v = factor; v < nsteps; v *= factor) 11362 continue; 11363 11364 if ((v % nsteps) || (nsteps % factor)) 11365 goto err; 11366 11367 size = (dtrace_aggregate_llquantize_bucket(factor, 11368 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11369 break; 11370 } 11371 11372 case DTRACEAGG_AVG: 11373 agg->dtag_aggregate = dtrace_aggregate_avg; 11374 size = sizeof (uint64_t) * 2; 11375 break; 11376 11377 case DTRACEAGG_STDDEV: 11378 agg->dtag_aggregate = dtrace_aggregate_stddev; 11379 size = sizeof (uint64_t) * 4; 11380 break; 11381 11382 case DTRACEAGG_SUM: 11383 agg->dtag_aggregate = dtrace_aggregate_sum; 11384 break; 11385 11386 default: 11387 goto err; 11388 } 11389 11390 agg->dtag_action.dta_rec.dtrd_size = size; 11391 11392 if (ntuple == 0) 11393 goto err; 11394 11395 /* 11396 * We must make sure that we have enough actions for the n-tuple. 11397 */ 11398 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11399 if (DTRACEACT_ISAGG(act->dta_kind)) 11400 break; 11401 11402 if (--ntuple == 0) { 11403 /* 11404 * This is the action with which our n-tuple begins. 11405 */ 11406 agg->dtag_first = act; 11407 goto success; 11408 } 11409 } 11410 11411 /* 11412 * This n-tuple is short by ntuple elements. Return failure. 11413 */ 11414 ASSERT(ntuple != 0); 11415 err: 11416 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11417 return (NULL); 11418 11419 success: 11420 /* 11421 * If the last action in the tuple has a size of zero, it's actually 11422 * an expression argument for the aggregating action. 11423 */ 11424 ASSERT(ecb->dte_action_last != NULL); 11425 act = ecb->dte_action_last; 11426 11427 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11428 ASSERT(act->dta_difo != NULL); 11429 11430 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11431 agg->dtag_hasarg = 1; 11432 } 11433 11434 /* 11435 * We need to allocate an id for this aggregation. 11436 */ 11437 #ifdef illumos 11438 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11439 VM_BESTFIT | VM_SLEEP); 11440 #else 11441 aggid = alloc_unr(state->dts_aggid_arena); 11442 #endif 11443 11444 if (aggid - 1 >= state->dts_naggregations) { 11445 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11446 dtrace_aggregation_t **aggs; 11447 int naggs = state->dts_naggregations << 1; 11448 int onaggs = state->dts_naggregations; 11449 11450 ASSERT(aggid == state->dts_naggregations + 1); 11451 11452 if (naggs == 0) { 11453 ASSERT(oaggs == NULL); 11454 naggs = 1; 11455 } 11456 11457 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11458 11459 if (oaggs != NULL) { 11460 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11461 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11462 } 11463 11464 state->dts_aggregations = aggs; 11465 state->dts_naggregations = naggs; 11466 } 11467 11468 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11469 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11470 11471 frec = &agg->dtag_first->dta_rec; 11472 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11473 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11474 11475 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11476 ASSERT(!act->dta_intuple); 11477 act->dta_intuple = 1; 11478 } 11479 11480 return (&agg->dtag_action); 11481 } 11482 11483 static void 11484 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11485 { 11486 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11487 dtrace_state_t *state = ecb->dte_state; 11488 dtrace_aggid_t aggid = agg->dtag_id; 11489 11490 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11491 #ifdef illumos 11492 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11493 #else 11494 free_unr(state->dts_aggid_arena, aggid); 11495 #endif 11496 11497 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11498 state->dts_aggregations[aggid - 1] = NULL; 11499 11500 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11501 } 11502 11503 static int 11504 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11505 { 11506 dtrace_action_t *action, *last; 11507 dtrace_difo_t *dp = desc->dtad_difo; 11508 uint32_t size = 0, align = sizeof (uint8_t), mask; 11509 uint16_t format = 0; 11510 dtrace_recdesc_t *rec; 11511 dtrace_state_t *state = ecb->dte_state; 11512 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11513 uint64_t arg = desc->dtad_arg; 11514 11515 ASSERT(MUTEX_HELD(&dtrace_lock)); 11516 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11517 11518 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11519 /* 11520 * If this is an aggregating action, there must be neither 11521 * a speculate nor a commit on the action chain. 11522 */ 11523 dtrace_action_t *act; 11524 11525 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11526 if (act->dta_kind == DTRACEACT_COMMIT) 11527 return (EINVAL); 11528 11529 if (act->dta_kind == DTRACEACT_SPECULATE) 11530 return (EINVAL); 11531 } 11532 11533 action = dtrace_ecb_aggregation_create(ecb, desc); 11534 11535 if (action == NULL) 11536 return (EINVAL); 11537 } else { 11538 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11539 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11540 dp != NULL && dp->dtdo_destructive)) { 11541 state->dts_destructive = 1; 11542 } 11543 11544 switch (desc->dtad_kind) { 11545 case DTRACEACT_PRINTF: 11546 case DTRACEACT_PRINTA: 11547 case DTRACEACT_SYSTEM: 11548 case DTRACEACT_FREOPEN: 11549 case DTRACEACT_DIFEXPR: 11550 /* 11551 * We know that our arg is a string -- turn it into a 11552 * format. 11553 */ 11554 if (arg == 0) { 11555 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11556 desc->dtad_kind == DTRACEACT_DIFEXPR); 11557 format = 0; 11558 } else { 11559 ASSERT(arg != 0); 11560 #ifdef illumos 11561 ASSERT(arg > KERNELBASE); 11562 #endif 11563 format = dtrace_format_add(state, 11564 (char *)(uintptr_t)arg); 11565 } 11566 11567 /*FALLTHROUGH*/ 11568 case DTRACEACT_LIBACT: 11569 case DTRACEACT_TRACEMEM: 11570 case DTRACEACT_TRACEMEM_DYNSIZE: 11571 if (dp == NULL) 11572 return (EINVAL); 11573 11574 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11575 break; 11576 11577 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11578 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11579 return (EINVAL); 11580 11581 size = opt[DTRACEOPT_STRSIZE]; 11582 } 11583 11584 break; 11585 11586 case DTRACEACT_STACK: 11587 if ((nframes = arg) == 0) { 11588 nframes = opt[DTRACEOPT_STACKFRAMES]; 11589 ASSERT(nframes > 0); 11590 arg = nframes; 11591 } 11592 11593 size = nframes * sizeof (pc_t); 11594 break; 11595 11596 case DTRACEACT_JSTACK: 11597 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11598 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11599 11600 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11601 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11602 11603 arg = DTRACE_USTACK_ARG(nframes, strsize); 11604 11605 /*FALLTHROUGH*/ 11606 case DTRACEACT_USTACK: 11607 if (desc->dtad_kind != DTRACEACT_JSTACK && 11608 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11609 strsize = DTRACE_USTACK_STRSIZE(arg); 11610 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11611 ASSERT(nframes > 0); 11612 arg = DTRACE_USTACK_ARG(nframes, strsize); 11613 } 11614 11615 /* 11616 * Save a slot for the pid. 11617 */ 11618 size = (nframes + 1) * sizeof (uint64_t); 11619 size += DTRACE_USTACK_STRSIZE(arg); 11620 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11621 11622 break; 11623 11624 case DTRACEACT_SYM: 11625 case DTRACEACT_MOD: 11626 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11627 sizeof (uint64_t)) || 11628 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11629 return (EINVAL); 11630 break; 11631 11632 case DTRACEACT_USYM: 11633 case DTRACEACT_UMOD: 11634 case DTRACEACT_UADDR: 11635 if (dp == NULL || 11636 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11637 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11638 return (EINVAL); 11639 11640 /* 11641 * We have a slot for the pid, plus a slot for the 11642 * argument. To keep things simple (aligned with 11643 * bitness-neutral sizing), we store each as a 64-bit 11644 * quantity. 11645 */ 11646 size = 2 * sizeof (uint64_t); 11647 break; 11648 11649 case DTRACEACT_STOP: 11650 case DTRACEACT_BREAKPOINT: 11651 case DTRACEACT_PANIC: 11652 break; 11653 11654 case DTRACEACT_CHILL: 11655 case DTRACEACT_DISCARD: 11656 case DTRACEACT_RAISE: 11657 if (dp == NULL) 11658 return (EINVAL); 11659 break; 11660 11661 case DTRACEACT_EXIT: 11662 if (dp == NULL || 11663 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11664 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11665 return (EINVAL); 11666 break; 11667 11668 case DTRACEACT_SPECULATE: 11669 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11670 return (EINVAL); 11671 11672 if (dp == NULL) 11673 return (EINVAL); 11674 11675 state->dts_speculates = 1; 11676 break; 11677 11678 case DTRACEACT_PRINTM: 11679 size = dp->dtdo_rtype.dtdt_size; 11680 break; 11681 11682 case DTRACEACT_COMMIT: { 11683 dtrace_action_t *act = ecb->dte_action; 11684 11685 for (; act != NULL; act = act->dta_next) { 11686 if (act->dta_kind == DTRACEACT_COMMIT) 11687 return (EINVAL); 11688 } 11689 11690 if (dp == NULL) 11691 return (EINVAL); 11692 break; 11693 } 11694 11695 default: 11696 return (EINVAL); 11697 } 11698 11699 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11700 /* 11701 * If this is a data-storing action or a speculate, 11702 * we must be sure that there isn't a commit on the 11703 * action chain. 11704 */ 11705 dtrace_action_t *act = ecb->dte_action; 11706 11707 for (; act != NULL; act = act->dta_next) { 11708 if (act->dta_kind == DTRACEACT_COMMIT) 11709 return (EINVAL); 11710 } 11711 } 11712 11713 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11714 action->dta_rec.dtrd_size = size; 11715 } 11716 11717 action->dta_refcnt = 1; 11718 rec = &action->dta_rec; 11719 size = rec->dtrd_size; 11720 11721 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11722 if (!(size & mask)) { 11723 align = mask + 1; 11724 break; 11725 } 11726 } 11727 11728 action->dta_kind = desc->dtad_kind; 11729 11730 if ((action->dta_difo = dp) != NULL) 11731 dtrace_difo_hold(dp); 11732 11733 rec->dtrd_action = action->dta_kind; 11734 rec->dtrd_arg = arg; 11735 rec->dtrd_uarg = desc->dtad_uarg; 11736 rec->dtrd_alignment = (uint16_t)align; 11737 rec->dtrd_format = format; 11738 11739 if ((last = ecb->dte_action_last) != NULL) { 11740 ASSERT(ecb->dte_action != NULL); 11741 action->dta_prev = last; 11742 last->dta_next = action; 11743 } else { 11744 ASSERT(ecb->dte_action == NULL); 11745 ecb->dte_action = action; 11746 } 11747 11748 ecb->dte_action_last = action; 11749 11750 return (0); 11751 } 11752 11753 static void 11754 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11755 { 11756 dtrace_action_t *act = ecb->dte_action, *next; 11757 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11758 dtrace_difo_t *dp; 11759 uint16_t format; 11760 11761 if (act != NULL && act->dta_refcnt > 1) { 11762 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11763 act->dta_refcnt--; 11764 } else { 11765 for (; act != NULL; act = next) { 11766 next = act->dta_next; 11767 ASSERT(next != NULL || act == ecb->dte_action_last); 11768 ASSERT(act->dta_refcnt == 1); 11769 11770 if ((format = act->dta_rec.dtrd_format) != 0) 11771 dtrace_format_remove(ecb->dte_state, format); 11772 11773 if ((dp = act->dta_difo) != NULL) 11774 dtrace_difo_release(dp, vstate); 11775 11776 if (DTRACEACT_ISAGG(act->dta_kind)) { 11777 dtrace_ecb_aggregation_destroy(ecb, act); 11778 } else { 11779 kmem_free(act, sizeof (dtrace_action_t)); 11780 } 11781 } 11782 } 11783 11784 ecb->dte_action = NULL; 11785 ecb->dte_action_last = NULL; 11786 ecb->dte_size = 0; 11787 } 11788 11789 static void 11790 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11791 { 11792 /* 11793 * We disable the ECB by removing it from its probe. 11794 */ 11795 dtrace_ecb_t *pecb, *prev = NULL; 11796 dtrace_probe_t *probe = ecb->dte_probe; 11797 11798 ASSERT(MUTEX_HELD(&dtrace_lock)); 11799 11800 if (probe == NULL) { 11801 /* 11802 * This is the NULL probe; there is nothing to disable. 11803 */ 11804 return; 11805 } 11806 11807 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11808 if (pecb == ecb) 11809 break; 11810 prev = pecb; 11811 } 11812 11813 ASSERT(pecb != NULL); 11814 11815 if (prev == NULL) { 11816 probe->dtpr_ecb = ecb->dte_next; 11817 } else { 11818 prev->dte_next = ecb->dte_next; 11819 } 11820 11821 if (ecb == probe->dtpr_ecb_last) { 11822 ASSERT(ecb->dte_next == NULL); 11823 probe->dtpr_ecb_last = prev; 11824 } 11825 11826 /* 11827 * The ECB has been disconnected from the probe; now sync to assure 11828 * that all CPUs have seen the change before returning. 11829 */ 11830 dtrace_sync(); 11831 11832 if (probe->dtpr_ecb == NULL) { 11833 /* 11834 * That was the last ECB on the probe; clear the predicate 11835 * cache ID for the probe, disable it and sync one more time 11836 * to assure that we'll never hit it again. 11837 */ 11838 dtrace_provider_t *prov = probe->dtpr_provider; 11839 11840 ASSERT(ecb->dte_next == NULL); 11841 ASSERT(probe->dtpr_ecb_last == NULL); 11842 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11843 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11844 probe->dtpr_id, probe->dtpr_arg); 11845 dtrace_sync(); 11846 } else { 11847 /* 11848 * There is at least one ECB remaining on the probe. If there 11849 * is _exactly_ one, set the probe's predicate cache ID to be 11850 * the predicate cache ID of the remaining ECB. 11851 */ 11852 ASSERT(probe->dtpr_ecb_last != NULL); 11853 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11854 11855 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11856 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11857 11858 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11859 11860 if (p != NULL) 11861 probe->dtpr_predcache = p->dtp_cacheid; 11862 } 11863 11864 ecb->dte_next = NULL; 11865 } 11866 } 11867 11868 static void 11869 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11870 { 11871 dtrace_state_t *state = ecb->dte_state; 11872 dtrace_vstate_t *vstate = &state->dts_vstate; 11873 dtrace_predicate_t *pred; 11874 dtrace_epid_t epid = ecb->dte_epid; 11875 11876 ASSERT(MUTEX_HELD(&dtrace_lock)); 11877 ASSERT(ecb->dte_next == NULL); 11878 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11879 11880 if ((pred = ecb->dte_predicate) != NULL) 11881 dtrace_predicate_release(pred, vstate); 11882 11883 dtrace_ecb_action_remove(ecb); 11884 11885 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11886 state->dts_ecbs[epid - 1] = NULL; 11887 11888 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11889 } 11890 11891 static dtrace_ecb_t * 11892 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11893 dtrace_enabling_t *enab) 11894 { 11895 dtrace_ecb_t *ecb; 11896 dtrace_predicate_t *pred; 11897 dtrace_actdesc_t *act; 11898 dtrace_provider_t *prov; 11899 dtrace_ecbdesc_t *desc = enab->dten_current; 11900 11901 ASSERT(MUTEX_HELD(&dtrace_lock)); 11902 ASSERT(state != NULL); 11903 11904 ecb = dtrace_ecb_add(state, probe); 11905 ecb->dte_uarg = desc->dted_uarg; 11906 11907 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11908 dtrace_predicate_hold(pred); 11909 ecb->dte_predicate = pred; 11910 } 11911 11912 if (probe != NULL) { 11913 /* 11914 * If the provider shows more leg than the consumer is old 11915 * enough to see, we need to enable the appropriate implicit 11916 * predicate bits to prevent the ecb from activating at 11917 * revealing times. 11918 * 11919 * Providers specifying DTRACE_PRIV_USER at register time 11920 * are stating that they need the /proc-style privilege 11921 * model to be enforced, and this is what DTRACE_COND_OWNER 11922 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11923 */ 11924 prov = probe->dtpr_provider; 11925 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11926 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11927 ecb->dte_cond |= DTRACE_COND_OWNER; 11928 11929 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11930 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11931 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11932 11933 /* 11934 * If the provider shows us kernel innards and the user 11935 * is lacking sufficient privilege, enable the 11936 * DTRACE_COND_USERMODE implicit predicate. 11937 */ 11938 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11939 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11940 ecb->dte_cond |= DTRACE_COND_USERMODE; 11941 } 11942 11943 if (dtrace_ecb_create_cache != NULL) { 11944 /* 11945 * If we have a cached ecb, we'll use its action list instead 11946 * of creating our own (saving both time and space). 11947 */ 11948 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11949 dtrace_action_t *act = cached->dte_action; 11950 11951 if (act != NULL) { 11952 ASSERT(act->dta_refcnt > 0); 11953 act->dta_refcnt++; 11954 ecb->dte_action = act; 11955 ecb->dte_action_last = cached->dte_action_last; 11956 ecb->dte_needed = cached->dte_needed; 11957 ecb->dte_size = cached->dte_size; 11958 ecb->dte_alignment = cached->dte_alignment; 11959 } 11960 11961 return (ecb); 11962 } 11963 11964 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11965 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11966 dtrace_ecb_destroy(ecb); 11967 return (NULL); 11968 } 11969 } 11970 11971 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11972 dtrace_ecb_destroy(ecb); 11973 return (NULL); 11974 } 11975 11976 return (dtrace_ecb_create_cache = ecb); 11977 } 11978 11979 static int 11980 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11981 { 11982 dtrace_ecb_t *ecb; 11983 dtrace_enabling_t *enab = arg; 11984 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11985 11986 ASSERT(state != NULL); 11987 11988 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11989 /* 11990 * This probe was created in a generation for which this 11991 * enabling has previously created ECBs; we don't want to 11992 * enable it again, so just kick out. 11993 */ 11994 return (DTRACE_MATCH_NEXT); 11995 } 11996 11997 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11998 return (DTRACE_MATCH_DONE); 11999 12000 dtrace_ecb_enable(ecb); 12001 return (DTRACE_MATCH_NEXT); 12002 } 12003 12004 static dtrace_ecb_t * 12005 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12006 { 12007 dtrace_ecb_t *ecb; 12008 12009 ASSERT(MUTEX_HELD(&dtrace_lock)); 12010 12011 if (id == 0 || id > state->dts_necbs) 12012 return (NULL); 12013 12014 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12015 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12016 12017 return (state->dts_ecbs[id - 1]); 12018 } 12019 12020 static dtrace_aggregation_t * 12021 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12022 { 12023 dtrace_aggregation_t *agg; 12024 12025 ASSERT(MUTEX_HELD(&dtrace_lock)); 12026 12027 if (id == 0 || id > state->dts_naggregations) 12028 return (NULL); 12029 12030 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12031 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12032 agg->dtag_id == id); 12033 12034 return (state->dts_aggregations[id - 1]); 12035 } 12036 12037 /* 12038 * DTrace Buffer Functions 12039 * 12040 * The following functions manipulate DTrace buffers. Most of these functions 12041 * are called in the context of establishing or processing consumer state; 12042 * exceptions are explicitly noted. 12043 */ 12044 12045 /* 12046 * Note: called from cross call context. This function switches the two 12047 * buffers on a given CPU. The atomicity of this operation is assured by 12048 * disabling interrupts while the actual switch takes place; the disabling of 12049 * interrupts serializes the execution with any execution of dtrace_probe() on 12050 * the same CPU. 12051 */ 12052 static void 12053 dtrace_buffer_switch(dtrace_buffer_t *buf) 12054 { 12055 caddr_t tomax = buf->dtb_tomax; 12056 caddr_t xamot = buf->dtb_xamot; 12057 dtrace_icookie_t cookie; 12058 hrtime_t now; 12059 12060 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12061 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12062 12063 cookie = dtrace_interrupt_disable(); 12064 now = dtrace_gethrtime(); 12065 buf->dtb_tomax = xamot; 12066 buf->dtb_xamot = tomax; 12067 buf->dtb_xamot_drops = buf->dtb_drops; 12068 buf->dtb_xamot_offset = buf->dtb_offset; 12069 buf->dtb_xamot_errors = buf->dtb_errors; 12070 buf->dtb_xamot_flags = buf->dtb_flags; 12071 buf->dtb_offset = 0; 12072 buf->dtb_drops = 0; 12073 buf->dtb_errors = 0; 12074 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12075 buf->dtb_interval = now - buf->dtb_switched; 12076 buf->dtb_switched = now; 12077 dtrace_interrupt_enable(cookie); 12078 } 12079 12080 /* 12081 * Note: called from cross call context. This function activates a buffer 12082 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12083 * is guaranteed by the disabling of interrupts. 12084 */ 12085 static void 12086 dtrace_buffer_activate(dtrace_state_t *state) 12087 { 12088 dtrace_buffer_t *buf; 12089 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12090 12091 buf = &state->dts_buffer[curcpu]; 12092 12093 if (buf->dtb_tomax != NULL) { 12094 /* 12095 * We might like to assert that the buffer is marked inactive, 12096 * but this isn't necessarily true: the buffer for the CPU 12097 * that processes the BEGIN probe has its buffer activated 12098 * manually. In this case, we take the (harmless) action 12099 * re-clearing the bit INACTIVE bit. 12100 */ 12101 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12102 } 12103 12104 dtrace_interrupt_enable(cookie); 12105 } 12106 12107 #ifdef __FreeBSD__ 12108 /* 12109 * Activate the specified per-CPU buffer. This is used instead of 12110 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12111 * activating anonymous state. 12112 */ 12113 static void 12114 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12115 { 12116 12117 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12118 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12119 } 12120 #endif 12121 12122 static int 12123 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12124 processorid_t cpu, int *factor) 12125 { 12126 #ifdef illumos 12127 cpu_t *cp; 12128 #endif 12129 dtrace_buffer_t *buf; 12130 int allocated = 0, desired = 0; 12131 12132 #ifdef illumos 12133 ASSERT(MUTEX_HELD(&cpu_lock)); 12134 ASSERT(MUTEX_HELD(&dtrace_lock)); 12135 12136 *factor = 1; 12137 12138 if (size > dtrace_nonroot_maxsize && 12139 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12140 return (EFBIG); 12141 12142 cp = cpu_list; 12143 12144 do { 12145 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12146 continue; 12147 12148 buf = &bufs[cp->cpu_id]; 12149 12150 /* 12151 * If there is already a buffer allocated for this CPU, it 12152 * is only possible that this is a DR event. In this case, 12153 */ 12154 if (buf->dtb_tomax != NULL) { 12155 ASSERT(buf->dtb_size == size); 12156 continue; 12157 } 12158 12159 ASSERT(buf->dtb_xamot == NULL); 12160 12161 if ((buf->dtb_tomax = kmem_zalloc(size, 12162 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12163 goto err; 12164 12165 buf->dtb_size = size; 12166 buf->dtb_flags = flags; 12167 buf->dtb_offset = 0; 12168 buf->dtb_drops = 0; 12169 12170 if (flags & DTRACEBUF_NOSWITCH) 12171 continue; 12172 12173 if ((buf->dtb_xamot = kmem_zalloc(size, 12174 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12175 goto err; 12176 } while ((cp = cp->cpu_next) != cpu_list); 12177 12178 return (0); 12179 12180 err: 12181 cp = cpu_list; 12182 12183 do { 12184 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12185 continue; 12186 12187 buf = &bufs[cp->cpu_id]; 12188 desired += 2; 12189 12190 if (buf->dtb_xamot != NULL) { 12191 ASSERT(buf->dtb_tomax != NULL); 12192 ASSERT(buf->dtb_size == size); 12193 kmem_free(buf->dtb_xamot, size); 12194 allocated++; 12195 } 12196 12197 if (buf->dtb_tomax != NULL) { 12198 ASSERT(buf->dtb_size == size); 12199 kmem_free(buf->dtb_tomax, size); 12200 allocated++; 12201 } 12202 12203 buf->dtb_tomax = NULL; 12204 buf->dtb_xamot = NULL; 12205 buf->dtb_size = 0; 12206 } while ((cp = cp->cpu_next) != cpu_list); 12207 #else 12208 int i; 12209 12210 *factor = 1; 12211 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12212 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12213 /* 12214 * FreeBSD isn't good at limiting the amount of memory we 12215 * ask to malloc, so let's place a limit here before trying 12216 * to do something that might well end in tears at bedtime. 12217 */ 12218 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12219 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12220 return (ENOMEM); 12221 #endif 12222 12223 ASSERT(MUTEX_HELD(&dtrace_lock)); 12224 CPU_FOREACH(i) { 12225 if (cpu != DTRACE_CPUALL && cpu != i) 12226 continue; 12227 12228 buf = &bufs[i]; 12229 12230 /* 12231 * If there is already a buffer allocated for this CPU, it 12232 * is only possible that this is a DR event. In this case, 12233 * the buffer size must match our specified size. 12234 */ 12235 if (buf->dtb_tomax != NULL) { 12236 ASSERT(buf->dtb_size == size); 12237 continue; 12238 } 12239 12240 ASSERT(buf->dtb_xamot == NULL); 12241 12242 if ((buf->dtb_tomax = kmem_zalloc(size, 12243 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12244 goto err; 12245 12246 buf->dtb_size = size; 12247 buf->dtb_flags = flags; 12248 buf->dtb_offset = 0; 12249 buf->dtb_drops = 0; 12250 12251 if (flags & DTRACEBUF_NOSWITCH) 12252 continue; 12253 12254 if ((buf->dtb_xamot = kmem_zalloc(size, 12255 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12256 goto err; 12257 } 12258 12259 return (0); 12260 12261 err: 12262 /* 12263 * Error allocating memory, so free the buffers that were 12264 * allocated before the failed allocation. 12265 */ 12266 CPU_FOREACH(i) { 12267 if (cpu != DTRACE_CPUALL && cpu != i) 12268 continue; 12269 12270 buf = &bufs[i]; 12271 desired += 2; 12272 12273 if (buf->dtb_xamot != NULL) { 12274 ASSERT(buf->dtb_tomax != NULL); 12275 ASSERT(buf->dtb_size == size); 12276 kmem_free(buf->dtb_xamot, size); 12277 allocated++; 12278 } 12279 12280 if (buf->dtb_tomax != NULL) { 12281 ASSERT(buf->dtb_size == size); 12282 kmem_free(buf->dtb_tomax, size); 12283 allocated++; 12284 } 12285 12286 buf->dtb_tomax = NULL; 12287 buf->dtb_xamot = NULL; 12288 buf->dtb_size = 0; 12289 12290 } 12291 #endif 12292 *factor = desired / (allocated > 0 ? allocated : 1); 12293 12294 return (ENOMEM); 12295 } 12296 12297 /* 12298 * Note: called from probe context. This function just increments the drop 12299 * count on a buffer. It has been made a function to allow for the 12300 * possibility of understanding the source of mysterious drop counts. (A 12301 * problem for which one may be particularly disappointed that DTrace cannot 12302 * be used to understand DTrace.) 12303 */ 12304 static void 12305 dtrace_buffer_drop(dtrace_buffer_t *buf) 12306 { 12307 buf->dtb_drops++; 12308 } 12309 12310 /* 12311 * Note: called from probe context. This function is called to reserve space 12312 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12313 * mstate. Returns the new offset in the buffer, or a negative value if an 12314 * error has occurred. 12315 */ 12316 static intptr_t 12317 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12318 dtrace_state_t *state, dtrace_mstate_t *mstate) 12319 { 12320 intptr_t offs = buf->dtb_offset, soffs; 12321 intptr_t woffs; 12322 caddr_t tomax; 12323 size_t total; 12324 12325 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12326 return (-1); 12327 12328 if ((tomax = buf->dtb_tomax) == NULL) { 12329 dtrace_buffer_drop(buf); 12330 return (-1); 12331 } 12332 12333 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12334 while (offs & (align - 1)) { 12335 /* 12336 * Assert that our alignment is off by a number which 12337 * is itself sizeof (uint32_t) aligned. 12338 */ 12339 ASSERT(!((align - (offs & (align - 1))) & 12340 (sizeof (uint32_t) - 1))); 12341 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12342 offs += sizeof (uint32_t); 12343 } 12344 12345 if ((soffs = offs + needed) > buf->dtb_size) { 12346 dtrace_buffer_drop(buf); 12347 return (-1); 12348 } 12349 12350 if (mstate == NULL) 12351 return (offs); 12352 12353 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12354 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12355 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12356 12357 return (offs); 12358 } 12359 12360 if (buf->dtb_flags & DTRACEBUF_FILL) { 12361 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12362 (buf->dtb_flags & DTRACEBUF_FULL)) 12363 return (-1); 12364 goto out; 12365 } 12366 12367 total = needed + (offs & (align - 1)); 12368 12369 /* 12370 * For a ring buffer, life is quite a bit more complicated. Before 12371 * we can store any padding, we need to adjust our wrapping offset. 12372 * (If we've never before wrapped or we're not about to, no adjustment 12373 * is required.) 12374 */ 12375 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12376 offs + total > buf->dtb_size) { 12377 woffs = buf->dtb_xamot_offset; 12378 12379 if (offs + total > buf->dtb_size) { 12380 /* 12381 * We can't fit in the end of the buffer. First, a 12382 * sanity check that we can fit in the buffer at all. 12383 */ 12384 if (total > buf->dtb_size) { 12385 dtrace_buffer_drop(buf); 12386 return (-1); 12387 } 12388 12389 /* 12390 * We're going to be storing at the top of the buffer, 12391 * so now we need to deal with the wrapped offset. We 12392 * only reset our wrapped offset to 0 if it is 12393 * currently greater than the current offset. If it 12394 * is less than the current offset, it is because a 12395 * previous allocation induced a wrap -- but the 12396 * allocation didn't subsequently take the space due 12397 * to an error or false predicate evaluation. In this 12398 * case, we'll just leave the wrapped offset alone: if 12399 * the wrapped offset hasn't been advanced far enough 12400 * for this allocation, it will be adjusted in the 12401 * lower loop. 12402 */ 12403 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12404 if (woffs >= offs) 12405 woffs = 0; 12406 } else { 12407 woffs = 0; 12408 } 12409 12410 /* 12411 * Now we know that we're going to be storing to the 12412 * top of the buffer and that there is room for us 12413 * there. We need to clear the buffer from the current 12414 * offset to the end (there may be old gunk there). 12415 */ 12416 while (offs < buf->dtb_size) 12417 tomax[offs++] = 0; 12418 12419 /* 12420 * We need to set our offset to zero. And because we 12421 * are wrapping, we need to set the bit indicating as 12422 * much. We can also adjust our needed space back 12423 * down to the space required by the ECB -- we know 12424 * that the top of the buffer is aligned. 12425 */ 12426 offs = 0; 12427 total = needed; 12428 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12429 } else { 12430 /* 12431 * There is room for us in the buffer, so we simply 12432 * need to check the wrapped offset. 12433 */ 12434 if (woffs < offs) { 12435 /* 12436 * The wrapped offset is less than the offset. 12437 * This can happen if we allocated buffer space 12438 * that induced a wrap, but then we didn't 12439 * subsequently take the space due to an error 12440 * or false predicate evaluation. This is 12441 * okay; we know that _this_ allocation isn't 12442 * going to induce a wrap. We still can't 12443 * reset the wrapped offset to be zero, 12444 * however: the space may have been trashed in 12445 * the previous failed probe attempt. But at 12446 * least the wrapped offset doesn't need to 12447 * be adjusted at all... 12448 */ 12449 goto out; 12450 } 12451 } 12452 12453 while (offs + total > woffs) { 12454 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12455 size_t size; 12456 12457 if (epid == DTRACE_EPIDNONE) { 12458 size = sizeof (uint32_t); 12459 } else { 12460 ASSERT3U(epid, <=, state->dts_necbs); 12461 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12462 12463 size = state->dts_ecbs[epid - 1]->dte_size; 12464 } 12465 12466 ASSERT(woffs + size <= buf->dtb_size); 12467 ASSERT(size != 0); 12468 12469 if (woffs + size == buf->dtb_size) { 12470 /* 12471 * We've reached the end of the buffer; we want 12472 * to set the wrapped offset to 0 and break 12473 * out. However, if the offs is 0, then we're 12474 * in a strange edge-condition: the amount of 12475 * space that we want to reserve plus the size 12476 * of the record that we're overwriting is 12477 * greater than the size of the buffer. This 12478 * is problematic because if we reserve the 12479 * space but subsequently don't consume it (due 12480 * to a failed predicate or error) the wrapped 12481 * offset will be 0 -- yet the EPID at offset 0 12482 * will not be committed. This situation is 12483 * relatively easy to deal with: if we're in 12484 * this case, the buffer is indistinguishable 12485 * from one that hasn't wrapped; we need only 12486 * finish the job by clearing the wrapped bit, 12487 * explicitly setting the offset to be 0, and 12488 * zero'ing out the old data in the buffer. 12489 */ 12490 if (offs == 0) { 12491 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12492 buf->dtb_offset = 0; 12493 woffs = total; 12494 12495 while (woffs < buf->dtb_size) 12496 tomax[woffs++] = 0; 12497 } 12498 12499 woffs = 0; 12500 break; 12501 } 12502 12503 woffs += size; 12504 } 12505 12506 /* 12507 * We have a wrapped offset. It may be that the wrapped offset 12508 * has become zero -- that's okay. 12509 */ 12510 buf->dtb_xamot_offset = woffs; 12511 } 12512 12513 out: 12514 /* 12515 * Now we can plow the buffer with any necessary padding. 12516 */ 12517 while (offs & (align - 1)) { 12518 /* 12519 * Assert that our alignment is off by a number which 12520 * is itself sizeof (uint32_t) aligned. 12521 */ 12522 ASSERT(!((align - (offs & (align - 1))) & 12523 (sizeof (uint32_t) - 1))); 12524 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12525 offs += sizeof (uint32_t); 12526 } 12527 12528 if (buf->dtb_flags & DTRACEBUF_FILL) { 12529 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12530 buf->dtb_flags |= DTRACEBUF_FULL; 12531 return (-1); 12532 } 12533 } 12534 12535 if (mstate == NULL) 12536 return (offs); 12537 12538 /* 12539 * For ring buffers and fill buffers, the scratch space is always 12540 * the inactive buffer. 12541 */ 12542 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12543 mstate->dtms_scratch_size = buf->dtb_size; 12544 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12545 12546 return (offs); 12547 } 12548 12549 static void 12550 dtrace_buffer_polish(dtrace_buffer_t *buf) 12551 { 12552 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12553 ASSERT(MUTEX_HELD(&dtrace_lock)); 12554 12555 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12556 return; 12557 12558 /* 12559 * We need to polish the ring buffer. There are three cases: 12560 * 12561 * - The first (and presumably most common) is that there is no gap 12562 * between the buffer offset and the wrapped offset. In this case, 12563 * there is nothing in the buffer that isn't valid data; we can 12564 * mark the buffer as polished and return. 12565 * 12566 * - The second (less common than the first but still more common 12567 * than the third) is that there is a gap between the buffer offset 12568 * and the wrapped offset, and the wrapped offset is larger than the 12569 * buffer offset. This can happen because of an alignment issue, or 12570 * can happen because of a call to dtrace_buffer_reserve() that 12571 * didn't subsequently consume the buffer space. In this case, 12572 * we need to zero the data from the buffer offset to the wrapped 12573 * offset. 12574 * 12575 * - The third (and least common) is that there is a gap between the 12576 * buffer offset and the wrapped offset, but the wrapped offset is 12577 * _less_ than the buffer offset. This can only happen because a 12578 * call to dtrace_buffer_reserve() induced a wrap, but the space 12579 * was not subsequently consumed. In this case, we need to zero the 12580 * space from the offset to the end of the buffer _and_ from the 12581 * top of the buffer to the wrapped offset. 12582 */ 12583 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12584 bzero(buf->dtb_tomax + buf->dtb_offset, 12585 buf->dtb_xamot_offset - buf->dtb_offset); 12586 } 12587 12588 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12589 bzero(buf->dtb_tomax + buf->dtb_offset, 12590 buf->dtb_size - buf->dtb_offset); 12591 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12592 } 12593 } 12594 12595 /* 12596 * This routine determines if data generated at the specified time has likely 12597 * been entirely consumed at user-level. This routine is called to determine 12598 * if an ECB on a defunct probe (but for an active enabling) can be safely 12599 * disabled and destroyed. 12600 */ 12601 static int 12602 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12603 { 12604 int i; 12605 12606 for (i = 0; i < NCPU; i++) { 12607 dtrace_buffer_t *buf = &bufs[i]; 12608 12609 if (buf->dtb_size == 0) 12610 continue; 12611 12612 if (buf->dtb_flags & DTRACEBUF_RING) 12613 return (0); 12614 12615 if (!buf->dtb_switched && buf->dtb_offset != 0) 12616 return (0); 12617 12618 if (buf->dtb_switched - buf->dtb_interval < when) 12619 return (0); 12620 } 12621 12622 return (1); 12623 } 12624 12625 static void 12626 dtrace_buffer_free(dtrace_buffer_t *bufs) 12627 { 12628 int i; 12629 12630 for (i = 0; i < NCPU; i++) { 12631 dtrace_buffer_t *buf = &bufs[i]; 12632 12633 if (buf->dtb_tomax == NULL) { 12634 ASSERT(buf->dtb_xamot == NULL); 12635 ASSERT(buf->dtb_size == 0); 12636 continue; 12637 } 12638 12639 if (buf->dtb_xamot != NULL) { 12640 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12641 kmem_free(buf->dtb_xamot, buf->dtb_size); 12642 } 12643 12644 kmem_free(buf->dtb_tomax, buf->dtb_size); 12645 buf->dtb_size = 0; 12646 buf->dtb_tomax = NULL; 12647 buf->dtb_xamot = NULL; 12648 } 12649 } 12650 12651 /* 12652 * DTrace Enabling Functions 12653 */ 12654 static dtrace_enabling_t * 12655 dtrace_enabling_create(dtrace_vstate_t *vstate) 12656 { 12657 dtrace_enabling_t *enab; 12658 12659 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12660 enab->dten_vstate = vstate; 12661 12662 return (enab); 12663 } 12664 12665 static void 12666 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12667 { 12668 dtrace_ecbdesc_t **ndesc; 12669 size_t osize, nsize; 12670 12671 /* 12672 * We can't add to enablings after we've enabled them, or after we've 12673 * retained them. 12674 */ 12675 ASSERT(enab->dten_probegen == 0); 12676 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12677 12678 if (enab->dten_ndesc < enab->dten_maxdesc) { 12679 enab->dten_desc[enab->dten_ndesc++] = ecb; 12680 return; 12681 } 12682 12683 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12684 12685 if (enab->dten_maxdesc == 0) { 12686 enab->dten_maxdesc = 1; 12687 } else { 12688 enab->dten_maxdesc <<= 1; 12689 } 12690 12691 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12692 12693 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12694 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12695 bcopy(enab->dten_desc, ndesc, osize); 12696 if (enab->dten_desc != NULL) 12697 kmem_free(enab->dten_desc, osize); 12698 12699 enab->dten_desc = ndesc; 12700 enab->dten_desc[enab->dten_ndesc++] = ecb; 12701 } 12702 12703 static void 12704 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12705 dtrace_probedesc_t *pd) 12706 { 12707 dtrace_ecbdesc_t *new; 12708 dtrace_predicate_t *pred; 12709 dtrace_actdesc_t *act; 12710 12711 /* 12712 * We're going to create a new ECB description that matches the 12713 * specified ECB in every way, but has the specified probe description. 12714 */ 12715 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12716 12717 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12718 dtrace_predicate_hold(pred); 12719 12720 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12721 dtrace_actdesc_hold(act); 12722 12723 new->dted_action = ecb->dted_action; 12724 new->dted_pred = ecb->dted_pred; 12725 new->dted_probe = *pd; 12726 new->dted_uarg = ecb->dted_uarg; 12727 12728 dtrace_enabling_add(enab, new); 12729 } 12730 12731 static void 12732 dtrace_enabling_dump(dtrace_enabling_t *enab) 12733 { 12734 int i; 12735 12736 for (i = 0; i < enab->dten_ndesc; i++) { 12737 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12738 12739 #ifdef __FreeBSD__ 12740 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12741 desc->dtpd_provider, desc->dtpd_mod, 12742 desc->dtpd_func, desc->dtpd_name); 12743 #else 12744 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12745 desc->dtpd_provider, desc->dtpd_mod, 12746 desc->dtpd_func, desc->dtpd_name); 12747 #endif 12748 } 12749 } 12750 12751 static void 12752 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12753 { 12754 int i; 12755 dtrace_ecbdesc_t *ep; 12756 dtrace_vstate_t *vstate = enab->dten_vstate; 12757 12758 ASSERT(MUTEX_HELD(&dtrace_lock)); 12759 12760 for (i = 0; i < enab->dten_ndesc; i++) { 12761 dtrace_actdesc_t *act, *next; 12762 dtrace_predicate_t *pred; 12763 12764 ep = enab->dten_desc[i]; 12765 12766 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12767 dtrace_predicate_release(pred, vstate); 12768 12769 for (act = ep->dted_action; act != NULL; act = next) { 12770 next = act->dtad_next; 12771 dtrace_actdesc_release(act, vstate); 12772 } 12773 12774 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12775 } 12776 12777 if (enab->dten_desc != NULL) 12778 kmem_free(enab->dten_desc, 12779 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12780 12781 /* 12782 * If this was a retained enabling, decrement the dts_nretained count 12783 * and take it off of the dtrace_retained list. 12784 */ 12785 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12786 dtrace_retained == enab) { 12787 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12788 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12789 enab->dten_vstate->dtvs_state->dts_nretained--; 12790 dtrace_retained_gen++; 12791 } 12792 12793 if (enab->dten_prev == NULL) { 12794 if (dtrace_retained == enab) { 12795 dtrace_retained = enab->dten_next; 12796 12797 if (dtrace_retained != NULL) 12798 dtrace_retained->dten_prev = NULL; 12799 } 12800 } else { 12801 ASSERT(enab != dtrace_retained); 12802 ASSERT(dtrace_retained != NULL); 12803 enab->dten_prev->dten_next = enab->dten_next; 12804 } 12805 12806 if (enab->dten_next != NULL) { 12807 ASSERT(dtrace_retained != NULL); 12808 enab->dten_next->dten_prev = enab->dten_prev; 12809 } 12810 12811 kmem_free(enab, sizeof (dtrace_enabling_t)); 12812 } 12813 12814 static int 12815 dtrace_enabling_retain(dtrace_enabling_t *enab) 12816 { 12817 dtrace_state_t *state; 12818 12819 ASSERT(MUTEX_HELD(&dtrace_lock)); 12820 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12821 ASSERT(enab->dten_vstate != NULL); 12822 12823 state = enab->dten_vstate->dtvs_state; 12824 ASSERT(state != NULL); 12825 12826 /* 12827 * We only allow each state to retain dtrace_retain_max enablings. 12828 */ 12829 if (state->dts_nretained >= dtrace_retain_max) 12830 return (ENOSPC); 12831 12832 state->dts_nretained++; 12833 dtrace_retained_gen++; 12834 12835 if (dtrace_retained == NULL) { 12836 dtrace_retained = enab; 12837 return (0); 12838 } 12839 12840 enab->dten_next = dtrace_retained; 12841 dtrace_retained->dten_prev = enab; 12842 dtrace_retained = enab; 12843 12844 return (0); 12845 } 12846 12847 static int 12848 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12849 dtrace_probedesc_t *create) 12850 { 12851 dtrace_enabling_t *new, *enab; 12852 int found = 0, err = ENOENT; 12853 12854 ASSERT(MUTEX_HELD(&dtrace_lock)); 12855 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12856 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12857 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12858 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12859 12860 new = dtrace_enabling_create(&state->dts_vstate); 12861 12862 /* 12863 * Iterate over all retained enablings, looking for enablings that 12864 * match the specified state. 12865 */ 12866 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12867 int i; 12868 12869 /* 12870 * dtvs_state can only be NULL for helper enablings -- and 12871 * helper enablings can't be retained. 12872 */ 12873 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12874 12875 if (enab->dten_vstate->dtvs_state != state) 12876 continue; 12877 12878 /* 12879 * Now iterate over each probe description; we're looking for 12880 * an exact match to the specified probe description. 12881 */ 12882 for (i = 0; i < enab->dten_ndesc; i++) { 12883 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12884 dtrace_probedesc_t *pd = &ep->dted_probe; 12885 12886 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12887 continue; 12888 12889 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12890 continue; 12891 12892 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12893 continue; 12894 12895 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12896 continue; 12897 12898 /* 12899 * We have a winning probe! Add it to our growing 12900 * enabling. 12901 */ 12902 found = 1; 12903 dtrace_enabling_addlike(new, ep, create); 12904 } 12905 } 12906 12907 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12908 dtrace_enabling_destroy(new); 12909 return (err); 12910 } 12911 12912 return (0); 12913 } 12914 12915 static void 12916 dtrace_enabling_retract(dtrace_state_t *state) 12917 { 12918 dtrace_enabling_t *enab, *next; 12919 12920 ASSERT(MUTEX_HELD(&dtrace_lock)); 12921 12922 /* 12923 * Iterate over all retained enablings, destroy the enablings retained 12924 * for the specified state. 12925 */ 12926 for (enab = dtrace_retained; enab != NULL; enab = next) { 12927 next = enab->dten_next; 12928 12929 /* 12930 * dtvs_state can only be NULL for helper enablings -- and 12931 * helper enablings can't be retained. 12932 */ 12933 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12934 12935 if (enab->dten_vstate->dtvs_state == state) { 12936 ASSERT(state->dts_nretained > 0); 12937 dtrace_enabling_destroy(enab); 12938 } 12939 } 12940 12941 ASSERT(state->dts_nretained == 0); 12942 } 12943 12944 static int 12945 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12946 { 12947 int i = 0; 12948 int matched = 0; 12949 12950 ASSERT(MUTEX_HELD(&cpu_lock)); 12951 ASSERT(MUTEX_HELD(&dtrace_lock)); 12952 12953 for (i = 0; i < enab->dten_ndesc; i++) { 12954 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12955 12956 enab->dten_current = ep; 12957 enab->dten_error = 0; 12958 12959 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12960 12961 if (enab->dten_error != 0) { 12962 /* 12963 * If we get an error half-way through enabling the 12964 * probes, we kick out -- perhaps with some number of 12965 * them enabled. Leaving enabled probes enabled may 12966 * be slightly confusing for user-level, but we expect 12967 * that no one will attempt to actually drive on in 12968 * the face of such errors. If this is an anonymous 12969 * enabling (indicated with a NULL nmatched pointer), 12970 * we cmn_err() a message. We aren't expecting to 12971 * get such an error -- such as it can exist at all, 12972 * it would be a result of corrupted DOF in the driver 12973 * properties. 12974 */ 12975 if (nmatched == NULL) { 12976 cmn_err(CE_WARN, "dtrace_enabling_match() " 12977 "error on %p: %d", (void *)ep, 12978 enab->dten_error); 12979 } 12980 12981 return (enab->dten_error); 12982 } 12983 } 12984 12985 enab->dten_probegen = dtrace_probegen; 12986 if (nmatched != NULL) 12987 *nmatched = matched; 12988 12989 return (0); 12990 } 12991 12992 static void 12993 dtrace_enabling_matchall(void) 12994 { 12995 dtrace_enabling_t *enab; 12996 12997 mutex_enter(&cpu_lock); 12998 mutex_enter(&dtrace_lock); 12999 13000 /* 13001 * Iterate over all retained enablings to see if any probes match 13002 * against them. We only perform this operation on enablings for which 13003 * we have sufficient permissions by virtue of being in the global zone 13004 * or in the same zone as the DTrace client. Because we can be called 13005 * after dtrace_detach() has been called, we cannot assert that there 13006 * are retained enablings. We can safely load from dtrace_retained, 13007 * however: the taskq_destroy() at the end of dtrace_detach() will 13008 * block pending our completion. 13009 */ 13010 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13011 #ifdef illumos 13012 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13013 13014 if (INGLOBALZONE(curproc) || 13015 cr != NULL && getzoneid() == crgetzoneid(cr)) 13016 #endif 13017 (void) dtrace_enabling_match(enab, NULL); 13018 } 13019 13020 mutex_exit(&dtrace_lock); 13021 mutex_exit(&cpu_lock); 13022 } 13023 13024 /* 13025 * If an enabling is to be enabled without having matched probes (that is, if 13026 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13027 * enabling must be _primed_ by creating an ECB for every ECB description. 13028 * This must be done to assure that we know the number of speculations, the 13029 * number of aggregations, the minimum buffer size needed, etc. before we 13030 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13031 * enabling any probes, we create ECBs for every ECB decription, but with a 13032 * NULL probe -- which is exactly what this function does. 13033 */ 13034 static void 13035 dtrace_enabling_prime(dtrace_state_t *state) 13036 { 13037 dtrace_enabling_t *enab; 13038 int i; 13039 13040 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13041 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13042 13043 if (enab->dten_vstate->dtvs_state != state) 13044 continue; 13045 13046 /* 13047 * We don't want to prime an enabling more than once, lest 13048 * we allow a malicious user to induce resource exhaustion. 13049 * (The ECBs that result from priming an enabling aren't 13050 * leaked -- but they also aren't deallocated until the 13051 * consumer state is destroyed.) 13052 */ 13053 if (enab->dten_primed) 13054 continue; 13055 13056 for (i = 0; i < enab->dten_ndesc; i++) { 13057 enab->dten_current = enab->dten_desc[i]; 13058 (void) dtrace_probe_enable(NULL, enab); 13059 } 13060 13061 enab->dten_primed = 1; 13062 } 13063 } 13064 13065 /* 13066 * Called to indicate that probes should be provided due to retained 13067 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13068 * must take an initial lap through the enabling calling the dtps_provide() 13069 * entry point explicitly to allow for autocreated probes. 13070 */ 13071 static void 13072 dtrace_enabling_provide(dtrace_provider_t *prv) 13073 { 13074 int i, all = 0; 13075 dtrace_probedesc_t desc; 13076 dtrace_genid_t gen; 13077 13078 ASSERT(MUTEX_HELD(&dtrace_lock)); 13079 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13080 13081 if (prv == NULL) { 13082 all = 1; 13083 prv = dtrace_provider; 13084 } 13085 13086 do { 13087 dtrace_enabling_t *enab; 13088 void *parg = prv->dtpv_arg; 13089 13090 retry: 13091 gen = dtrace_retained_gen; 13092 for (enab = dtrace_retained; enab != NULL; 13093 enab = enab->dten_next) { 13094 for (i = 0; i < enab->dten_ndesc; i++) { 13095 desc = enab->dten_desc[i]->dted_probe; 13096 mutex_exit(&dtrace_lock); 13097 prv->dtpv_pops.dtps_provide(parg, &desc); 13098 mutex_enter(&dtrace_lock); 13099 /* 13100 * Process the retained enablings again if 13101 * they have changed while we weren't holding 13102 * dtrace_lock. 13103 */ 13104 if (gen != dtrace_retained_gen) 13105 goto retry; 13106 } 13107 } 13108 } while (all && (prv = prv->dtpv_next) != NULL); 13109 13110 mutex_exit(&dtrace_lock); 13111 dtrace_probe_provide(NULL, all ? NULL : prv); 13112 mutex_enter(&dtrace_lock); 13113 } 13114 13115 /* 13116 * Called to reap ECBs that are attached to probes from defunct providers. 13117 */ 13118 static void 13119 dtrace_enabling_reap(void) 13120 { 13121 dtrace_provider_t *prov; 13122 dtrace_probe_t *probe; 13123 dtrace_ecb_t *ecb; 13124 hrtime_t when; 13125 int i; 13126 13127 mutex_enter(&cpu_lock); 13128 mutex_enter(&dtrace_lock); 13129 13130 for (i = 0; i < dtrace_nprobes; i++) { 13131 if ((probe = dtrace_probes[i]) == NULL) 13132 continue; 13133 13134 if (probe->dtpr_ecb == NULL) 13135 continue; 13136 13137 prov = probe->dtpr_provider; 13138 13139 if ((when = prov->dtpv_defunct) == 0) 13140 continue; 13141 13142 /* 13143 * We have ECBs on a defunct provider: we want to reap these 13144 * ECBs to allow the provider to unregister. The destruction 13145 * of these ECBs must be done carefully: if we destroy the ECB 13146 * and the consumer later wishes to consume an EPID that 13147 * corresponds to the destroyed ECB (and if the EPID metadata 13148 * has not been previously consumed), the consumer will abort 13149 * processing on the unknown EPID. To reduce (but not, sadly, 13150 * eliminate) the possibility of this, we will only destroy an 13151 * ECB for a defunct provider if, for the state that 13152 * corresponds to the ECB: 13153 * 13154 * (a) There is no speculative tracing (which can effectively 13155 * cache an EPID for an arbitrary amount of time). 13156 * 13157 * (b) The principal buffers have been switched twice since the 13158 * provider became defunct. 13159 * 13160 * (c) The aggregation buffers are of zero size or have been 13161 * switched twice since the provider became defunct. 13162 * 13163 * We use dts_speculates to determine (a) and call a function 13164 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13165 * that as soon as we've been unable to destroy one of the ECBs 13166 * associated with the probe, we quit trying -- reaping is only 13167 * fruitful in as much as we can destroy all ECBs associated 13168 * with the defunct provider's probes. 13169 */ 13170 while ((ecb = probe->dtpr_ecb) != NULL) { 13171 dtrace_state_t *state = ecb->dte_state; 13172 dtrace_buffer_t *buf = state->dts_buffer; 13173 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13174 13175 if (state->dts_speculates) 13176 break; 13177 13178 if (!dtrace_buffer_consumed(buf, when)) 13179 break; 13180 13181 if (!dtrace_buffer_consumed(aggbuf, when)) 13182 break; 13183 13184 dtrace_ecb_disable(ecb); 13185 ASSERT(probe->dtpr_ecb != ecb); 13186 dtrace_ecb_destroy(ecb); 13187 } 13188 } 13189 13190 mutex_exit(&dtrace_lock); 13191 mutex_exit(&cpu_lock); 13192 } 13193 13194 /* 13195 * DTrace DOF Functions 13196 */ 13197 /*ARGSUSED*/ 13198 static void 13199 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13200 { 13201 if (dtrace_err_verbose) 13202 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13203 13204 #ifdef DTRACE_ERRDEBUG 13205 dtrace_errdebug(str); 13206 #endif 13207 } 13208 13209 /* 13210 * Create DOF out of a currently enabled state. Right now, we only create 13211 * DOF containing the run-time options -- but this could be expanded to create 13212 * complete DOF representing the enabled state. 13213 */ 13214 static dof_hdr_t * 13215 dtrace_dof_create(dtrace_state_t *state) 13216 { 13217 dof_hdr_t *dof; 13218 dof_sec_t *sec; 13219 dof_optdesc_t *opt; 13220 int i, len = sizeof (dof_hdr_t) + 13221 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13222 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13223 13224 ASSERT(MUTEX_HELD(&dtrace_lock)); 13225 13226 dof = kmem_zalloc(len, KM_SLEEP); 13227 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13228 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13229 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13230 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13231 13232 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13233 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13234 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13235 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13236 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13237 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13238 13239 dof->dofh_flags = 0; 13240 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13241 dof->dofh_secsize = sizeof (dof_sec_t); 13242 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13243 dof->dofh_secoff = sizeof (dof_hdr_t); 13244 dof->dofh_loadsz = len; 13245 dof->dofh_filesz = len; 13246 dof->dofh_pad = 0; 13247 13248 /* 13249 * Fill in the option section header... 13250 */ 13251 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13252 sec->dofs_type = DOF_SECT_OPTDESC; 13253 sec->dofs_align = sizeof (uint64_t); 13254 sec->dofs_flags = DOF_SECF_LOAD; 13255 sec->dofs_entsize = sizeof (dof_optdesc_t); 13256 13257 opt = (dof_optdesc_t *)((uintptr_t)sec + 13258 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13259 13260 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13261 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13262 13263 for (i = 0; i < DTRACEOPT_MAX; i++) { 13264 opt[i].dofo_option = i; 13265 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13266 opt[i].dofo_value = state->dts_options[i]; 13267 } 13268 13269 return (dof); 13270 } 13271 13272 static dof_hdr_t * 13273 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13274 { 13275 dof_hdr_t hdr, *dof; 13276 13277 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13278 13279 /* 13280 * First, we're going to copyin() the sizeof (dof_hdr_t). 13281 */ 13282 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13283 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13284 *errp = EFAULT; 13285 return (NULL); 13286 } 13287 13288 /* 13289 * Now we'll allocate the entire DOF and copy it in -- provided 13290 * that the length isn't outrageous. 13291 */ 13292 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13293 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13294 *errp = E2BIG; 13295 return (NULL); 13296 } 13297 13298 if (hdr.dofh_loadsz < sizeof (hdr)) { 13299 dtrace_dof_error(&hdr, "invalid load size"); 13300 *errp = EINVAL; 13301 return (NULL); 13302 } 13303 13304 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13305 13306 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13307 dof->dofh_loadsz != hdr.dofh_loadsz) { 13308 kmem_free(dof, hdr.dofh_loadsz); 13309 *errp = EFAULT; 13310 return (NULL); 13311 } 13312 13313 return (dof); 13314 } 13315 13316 #ifdef __FreeBSD__ 13317 static dof_hdr_t * 13318 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13319 { 13320 dof_hdr_t hdr, *dof; 13321 struct thread *td; 13322 size_t loadsz; 13323 13324 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13325 13326 td = curthread; 13327 13328 /* 13329 * First, we're going to copyin() the sizeof (dof_hdr_t). 13330 */ 13331 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13332 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13333 *errp = EFAULT; 13334 return (NULL); 13335 } 13336 13337 /* 13338 * Now we'll allocate the entire DOF and copy it in -- provided 13339 * that the length isn't outrageous. 13340 */ 13341 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13342 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13343 *errp = E2BIG; 13344 return (NULL); 13345 } 13346 loadsz = (size_t)hdr.dofh_loadsz; 13347 13348 if (loadsz < sizeof (hdr)) { 13349 dtrace_dof_error(&hdr, "invalid load size"); 13350 *errp = EINVAL; 13351 return (NULL); 13352 } 13353 13354 dof = kmem_alloc(loadsz, KM_SLEEP); 13355 13356 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13357 dof->dofh_loadsz != loadsz) { 13358 kmem_free(dof, hdr.dofh_loadsz); 13359 *errp = EFAULT; 13360 return (NULL); 13361 } 13362 13363 return (dof); 13364 } 13365 13366 static __inline uchar_t 13367 dtrace_dof_char(char c) 13368 { 13369 13370 switch (c) { 13371 case '0': 13372 case '1': 13373 case '2': 13374 case '3': 13375 case '4': 13376 case '5': 13377 case '6': 13378 case '7': 13379 case '8': 13380 case '9': 13381 return (c - '0'); 13382 case 'A': 13383 case 'B': 13384 case 'C': 13385 case 'D': 13386 case 'E': 13387 case 'F': 13388 return (c - 'A' + 10); 13389 case 'a': 13390 case 'b': 13391 case 'c': 13392 case 'd': 13393 case 'e': 13394 case 'f': 13395 return (c - 'a' + 10); 13396 } 13397 /* Should not reach here. */ 13398 return (UCHAR_MAX); 13399 } 13400 #endif /* __FreeBSD__ */ 13401 13402 static dof_hdr_t * 13403 dtrace_dof_property(const char *name) 13404 { 13405 #ifdef __FreeBSD__ 13406 uint8_t *dofbuf; 13407 u_char *data, *eol; 13408 caddr_t doffile; 13409 size_t bytes, len, i; 13410 dof_hdr_t *dof; 13411 u_char c1, c2; 13412 13413 dof = NULL; 13414 13415 doffile = preload_search_by_type("dtrace_dof"); 13416 if (doffile == NULL) 13417 return (NULL); 13418 13419 data = preload_fetch_addr(doffile); 13420 len = preload_fetch_size(doffile); 13421 for (;;) { 13422 /* Look for the end of the line. All lines end in a newline. */ 13423 eol = memchr(data, '\n', len); 13424 if (eol == NULL) 13425 return (NULL); 13426 13427 if (strncmp(name, data, strlen(name)) == 0) 13428 break; 13429 13430 eol++; /* skip past the newline */ 13431 len -= eol - data; 13432 data = eol; 13433 } 13434 13435 /* We've found the data corresponding to the specified key. */ 13436 13437 data += strlen(name) + 1; /* skip past the '=' */ 13438 len = eol - data; 13439 if (len % 2 != 0) { 13440 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13441 goto doferr; 13442 } 13443 bytes = len / 2; 13444 if (bytes < sizeof(dof_hdr_t)) { 13445 dtrace_dof_error(NULL, "truncated header"); 13446 goto doferr; 13447 } 13448 13449 /* 13450 * Each byte is represented by the two ASCII characters in its hex 13451 * representation. 13452 */ 13453 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13454 for (i = 0; i < bytes; i++) { 13455 c1 = dtrace_dof_char(data[i * 2]); 13456 c2 = dtrace_dof_char(data[i * 2 + 1]); 13457 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13458 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13459 goto doferr; 13460 } 13461 dofbuf[i] = c1 * 16 + c2; 13462 } 13463 13464 dof = (dof_hdr_t *)dofbuf; 13465 if (bytes < dof->dofh_loadsz) { 13466 dtrace_dof_error(NULL, "truncated DOF"); 13467 goto doferr; 13468 } 13469 13470 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13471 dtrace_dof_error(NULL, "oversized DOF"); 13472 goto doferr; 13473 } 13474 13475 return (dof); 13476 13477 doferr: 13478 free(dof, M_SOLARIS); 13479 return (NULL); 13480 #else /* __FreeBSD__ */ 13481 uchar_t *buf; 13482 uint64_t loadsz; 13483 unsigned int len, i; 13484 dof_hdr_t *dof; 13485 13486 /* 13487 * Unfortunately, array of values in .conf files are always (and 13488 * only) interpreted to be integer arrays. We must read our DOF 13489 * as an integer array, and then squeeze it into a byte array. 13490 */ 13491 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13492 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13493 return (NULL); 13494 13495 for (i = 0; i < len; i++) 13496 buf[i] = (uchar_t)(((int *)buf)[i]); 13497 13498 if (len < sizeof (dof_hdr_t)) { 13499 ddi_prop_free(buf); 13500 dtrace_dof_error(NULL, "truncated header"); 13501 return (NULL); 13502 } 13503 13504 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13505 ddi_prop_free(buf); 13506 dtrace_dof_error(NULL, "truncated DOF"); 13507 return (NULL); 13508 } 13509 13510 if (loadsz >= dtrace_dof_maxsize) { 13511 ddi_prop_free(buf); 13512 dtrace_dof_error(NULL, "oversized DOF"); 13513 return (NULL); 13514 } 13515 13516 dof = kmem_alloc(loadsz, KM_SLEEP); 13517 bcopy(buf, dof, loadsz); 13518 ddi_prop_free(buf); 13519 13520 return (dof); 13521 #endif /* !__FreeBSD__ */ 13522 } 13523 13524 static void 13525 dtrace_dof_destroy(dof_hdr_t *dof) 13526 { 13527 kmem_free(dof, dof->dofh_loadsz); 13528 } 13529 13530 /* 13531 * Return the dof_sec_t pointer corresponding to a given section index. If the 13532 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13533 * a type other than DOF_SECT_NONE is specified, the header is checked against 13534 * this type and NULL is returned if the types do not match. 13535 */ 13536 static dof_sec_t * 13537 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13538 { 13539 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13540 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13541 13542 if (i >= dof->dofh_secnum) { 13543 dtrace_dof_error(dof, "referenced section index is invalid"); 13544 return (NULL); 13545 } 13546 13547 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13548 dtrace_dof_error(dof, "referenced section is not loadable"); 13549 return (NULL); 13550 } 13551 13552 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13553 dtrace_dof_error(dof, "referenced section is the wrong type"); 13554 return (NULL); 13555 } 13556 13557 return (sec); 13558 } 13559 13560 static dtrace_probedesc_t * 13561 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13562 { 13563 dof_probedesc_t *probe; 13564 dof_sec_t *strtab; 13565 uintptr_t daddr = (uintptr_t)dof; 13566 uintptr_t str; 13567 size_t size; 13568 13569 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13570 dtrace_dof_error(dof, "invalid probe section"); 13571 return (NULL); 13572 } 13573 13574 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13575 dtrace_dof_error(dof, "bad alignment in probe description"); 13576 return (NULL); 13577 } 13578 13579 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13580 dtrace_dof_error(dof, "truncated probe description"); 13581 return (NULL); 13582 } 13583 13584 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13585 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13586 13587 if (strtab == NULL) 13588 return (NULL); 13589 13590 str = daddr + strtab->dofs_offset; 13591 size = strtab->dofs_size; 13592 13593 if (probe->dofp_provider >= strtab->dofs_size) { 13594 dtrace_dof_error(dof, "corrupt probe provider"); 13595 return (NULL); 13596 } 13597 13598 (void) strncpy(desc->dtpd_provider, 13599 (char *)(str + probe->dofp_provider), 13600 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13601 13602 if (probe->dofp_mod >= strtab->dofs_size) { 13603 dtrace_dof_error(dof, "corrupt probe module"); 13604 return (NULL); 13605 } 13606 13607 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13608 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13609 13610 if (probe->dofp_func >= strtab->dofs_size) { 13611 dtrace_dof_error(dof, "corrupt probe function"); 13612 return (NULL); 13613 } 13614 13615 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13616 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13617 13618 if (probe->dofp_name >= strtab->dofs_size) { 13619 dtrace_dof_error(dof, "corrupt probe name"); 13620 return (NULL); 13621 } 13622 13623 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13624 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13625 13626 return (desc); 13627 } 13628 13629 static dtrace_difo_t * 13630 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13631 cred_t *cr) 13632 { 13633 dtrace_difo_t *dp; 13634 size_t ttl = 0; 13635 dof_difohdr_t *dofd; 13636 uintptr_t daddr = (uintptr_t)dof; 13637 size_t max = dtrace_difo_maxsize; 13638 int i, l, n; 13639 13640 static const struct { 13641 int section; 13642 int bufoffs; 13643 int lenoffs; 13644 int entsize; 13645 int align; 13646 const char *msg; 13647 } difo[] = { 13648 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13649 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13650 sizeof (dif_instr_t), "multiple DIF sections" }, 13651 13652 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13653 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13654 sizeof (uint64_t), "multiple integer tables" }, 13655 13656 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13657 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13658 sizeof (char), "multiple string tables" }, 13659 13660 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13661 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13662 sizeof (uint_t), "multiple variable tables" }, 13663 13664 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13665 }; 13666 13667 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13668 dtrace_dof_error(dof, "invalid DIFO header section"); 13669 return (NULL); 13670 } 13671 13672 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13673 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13674 return (NULL); 13675 } 13676 13677 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13678 sec->dofs_size % sizeof (dof_secidx_t)) { 13679 dtrace_dof_error(dof, "bad size in DIFO header"); 13680 return (NULL); 13681 } 13682 13683 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13684 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13685 13686 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13687 dp->dtdo_rtype = dofd->dofd_rtype; 13688 13689 for (l = 0; l < n; l++) { 13690 dof_sec_t *subsec; 13691 void **bufp; 13692 uint32_t *lenp; 13693 13694 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13695 dofd->dofd_links[l])) == NULL) 13696 goto err; /* invalid section link */ 13697 13698 if (ttl + subsec->dofs_size > max) { 13699 dtrace_dof_error(dof, "exceeds maximum size"); 13700 goto err; 13701 } 13702 13703 ttl += subsec->dofs_size; 13704 13705 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13706 if (subsec->dofs_type != difo[i].section) 13707 continue; 13708 13709 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13710 dtrace_dof_error(dof, "section not loaded"); 13711 goto err; 13712 } 13713 13714 if (subsec->dofs_align != difo[i].align) { 13715 dtrace_dof_error(dof, "bad alignment"); 13716 goto err; 13717 } 13718 13719 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13720 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13721 13722 if (*bufp != NULL) { 13723 dtrace_dof_error(dof, difo[i].msg); 13724 goto err; 13725 } 13726 13727 if (difo[i].entsize != subsec->dofs_entsize) { 13728 dtrace_dof_error(dof, "entry size mismatch"); 13729 goto err; 13730 } 13731 13732 if (subsec->dofs_entsize != 0 && 13733 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13734 dtrace_dof_error(dof, "corrupt entry size"); 13735 goto err; 13736 } 13737 13738 *lenp = subsec->dofs_size; 13739 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13740 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13741 *bufp, subsec->dofs_size); 13742 13743 if (subsec->dofs_entsize != 0) 13744 *lenp /= subsec->dofs_entsize; 13745 13746 break; 13747 } 13748 13749 /* 13750 * If we encounter a loadable DIFO sub-section that is not 13751 * known to us, assume this is a broken program and fail. 13752 */ 13753 if (difo[i].section == DOF_SECT_NONE && 13754 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13755 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13756 goto err; 13757 } 13758 } 13759 13760 if (dp->dtdo_buf == NULL) { 13761 /* 13762 * We can't have a DIF object without DIF text. 13763 */ 13764 dtrace_dof_error(dof, "missing DIF text"); 13765 goto err; 13766 } 13767 13768 /* 13769 * Before we validate the DIF object, run through the variable table 13770 * looking for the strings -- if any of their size are under, we'll set 13771 * their size to be the system-wide default string size. Note that 13772 * this should _not_ happen if the "strsize" option has been set -- 13773 * in this case, the compiler should have set the size to reflect the 13774 * setting of the option. 13775 */ 13776 for (i = 0; i < dp->dtdo_varlen; i++) { 13777 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13778 dtrace_diftype_t *t = &v->dtdv_type; 13779 13780 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13781 continue; 13782 13783 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13784 t->dtdt_size = dtrace_strsize_default; 13785 } 13786 13787 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13788 goto err; 13789 13790 dtrace_difo_init(dp, vstate); 13791 return (dp); 13792 13793 err: 13794 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13795 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13796 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13797 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13798 13799 kmem_free(dp, sizeof (dtrace_difo_t)); 13800 return (NULL); 13801 } 13802 13803 static dtrace_predicate_t * 13804 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13805 cred_t *cr) 13806 { 13807 dtrace_difo_t *dp; 13808 13809 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13810 return (NULL); 13811 13812 return (dtrace_predicate_create(dp)); 13813 } 13814 13815 static dtrace_actdesc_t * 13816 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13817 cred_t *cr) 13818 { 13819 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13820 dof_actdesc_t *desc; 13821 dof_sec_t *difosec; 13822 size_t offs; 13823 uintptr_t daddr = (uintptr_t)dof; 13824 uint64_t arg; 13825 dtrace_actkind_t kind; 13826 13827 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13828 dtrace_dof_error(dof, "invalid action section"); 13829 return (NULL); 13830 } 13831 13832 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13833 dtrace_dof_error(dof, "truncated action description"); 13834 return (NULL); 13835 } 13836 13837 if (sec->dofs_align != sizeof (uint64_t)) { 13838 dtrace_dof_error(dof, "bad alignment in action description"); 13839 return (NULL); 13840 } 13841 13842 if (sec->dofs_size < sec->dofs_entsize) { 13843 dtrace_dof_error(dof, "section entry size exceeds total size"); 13844 return (NULL); 13845 } 13846 13847 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13848 dtrace_dof_error(dof, "bad entry size in action description"); 13849 return (NULL); 13850 } 13851 13852 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13853 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13854 return (NULL); 13855 } 13856 13857 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13858 desc = (dof_actdesc_t *)(daddr + 13859 (uintptr_t)sec->dofs_offset + offs); 13860 kind = (dtrace_actkind_t)desc->dofa_kind; 13861 13862 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13863 (kind != DTRACEACT_PRINTA || 13864 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13865 (kind == DTRACEACT_DIFEXPR && 13866 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13867 dof_sec_t *strtab; 13868 char *str, *fmt; 13869 uint64_t i; 13870 13871 /* 13872 * The argument to these actions is an index into the 13873 * DOF string table. For printf()-like actions, this 13874 * is the format string. For print(), this is the 13875 * CTF type of the expression result. 13876 */ 13877 if ((strtab = dtrace_dof_sect(dof, 13878 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13879 goto err; 13880 13881 str = (char *)((uintptr_t)dof + 13882 (uintptr_t)strtab->dofs_offset); 13883 13884 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13885 if (str[i] == '\0') 13886 break; 13887 } 13888 13889 if (i >= strtab->dofs_size) { 13890 dtrace_dof_error(dof, "bogus format string"); 13891 goto err; 13892 } 13893 13894 if (i == desc->dofa_arg) { 13895 dtrace_dof_error(dof, "empty format string"); 13896 goto err; 13897 } 13898 13899 i -= desc->dofa_arg; 13900 fmt = kmem_alloc(i + 1, KM_SLEEP); 13901 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13902 arg = (uint64_t)(uintptr_t)fmt; 13903 } else { 13904 if (kind == DTRACEACT_PRINTA) { 13905 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13906 arg = 0; 13907 } else { 13908 arg = desc->dofa_arg; 13909 } 13910 } 13911 13912 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13913 desc->dofa_uarg, arg); 13914 13915 if (last != NULL) { 13916 last->dtad_next = act; 13917 } else { 13918 first = act; 13919 } 13920 13921 last = act; 13922 13923 if (desc->dofa_difo == DOF_SECIDX_NONE) 13924 continue; 13925 13926 if ((difosec = dtrace_dof_sect(dof, 13927 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13928 goto err; 13929 13930 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13931 13932 if (act->dtad_difo == NULL) 13933 goto err; 13934 } 13935 13936 ASSERT(first != NULL); 13937 return (first); 13938 13939 err: 13940 for (act = first; act != NULL; act = next) { 13941 next = act->dtad_next; 13942 dtrace_actdesc_release(act, vstate); 13943 } 13944 13945 return (NULL); 13946 } 13947 13948 static dtrace_ecbdesc_t * 13949 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13950 cred_t *cr) 13951 { 13952 dtrace_ecbdesc_t *ep; 13953 dof_ecbdesc_t *ecb; 13954 dtrace_probedesc_t *desc; 13955 dtrace_predicate_t *pred = NULL; 13956 13957 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13958 dtrace_dof_error(dof, "truncated ECB description"); 13959 return (NULL); 13960 } 13961 13962 if (sec->dofs_align != sizeof (uint64_t)) { 13963 dtrace_dof_error(dof, "bad alignment in ECB description"); 13964 return (NULL); 13965 } 13966 13967 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13968 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13969 13970 if (sec == NULL) 13971 return (NULL); 13972 13973 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13974 ep->dted_uarg = ecb->dofe_uarg; 13975 desc = &ep->dted_probe; 13976 13977 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13978 goto err; 13979 13980 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13981 if ((sec = dtrace_dof_sect(dof, 13982 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13983 goto err; 13984 13985 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13986 goto err; 13987 13988 ep->dted_pred.dtpdd_predicate = pred; 13989 } 13990 13991 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13992 if ((sec = dtrace_dof_sect(dof, 13993 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13994 goto err; 13995 13996 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13997 13998 if (ep->dted_action == NULL) 13999 goto err; 14000 } 14001 14002 return (ep); 14003 14004 err: 14005 if (pred != NULL) 14006 dtrace_predicate_release(pred, vstate); 14007 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14008 return (NULL); 14009 } 14010 14011 /* 14012 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14013 * specified DOF. SETX relocations are computed using 'ubase', the base load 14014 * address of the object containing the DOF, and DOFREL relocations are relative 14015 * to the relocation offset within the DOF. 14016 */ 14017 static int 14018 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14019 uint64_t udaddr) 14020 { 14021 uintptr_t daddr = (uintptr_t)dof; 14022 uintptr_t ts_end; 14023 dof_relohdr_t *dofr = 14024 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14025 dof_sec_t *ss, *rs, *ts; 14026 dof_relodesc_t *r; 14027 uint_t i, n; 14028 14029 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14030 sec->dofs_align != sizeof (dof_secidx_t)) { 14031 dtrace_dof_error(dof, "invalid relocation header"); 14032 return (-1); 14033 } 14034 14035 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14036 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14037 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14038 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14039 14040 if (ss == NULL || rs == NULL || ts == NULL) 14041 return (-1); /* dtrace_dof_error() has been called already */ 14042 14043 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14044 rs->dofs_align != sizeof (uint64_t)) { 14045 dtrace_dof_error(dof, "invalid relocation section"); 14046 return (-1); 14047 } 14048 14049 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14050 n = rs->dofs_size / rs->dofs_entsize; 14051 14052 for (i = 0; i < n; i++) { 14053 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14054 14055 switch (r->dofr_type) { 14056 case DOF_RELO_NONE: 14057 break; 14058 case DOF_RELO_SETX: 14059 case DOF_RELO_DOFREL: 14060 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14061 sizeof (uint64_t) > ts->dofs_size) { 14062 dtrace_dof_error(dof, "bad relocation offset"); 14063 return (-1); 14064 } 14065 14066 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14067 dtrace_dof_error(dof, "bad relocation offset"); 14068 return (-1); 14069 } 14070 14071 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14072 dtrace_dof_error(dof, "misaligned setx relo"); 14073 return (-1); 14074 } 14075 14076 if (r->dofr_type == DOF_RELO_SETX) 14077 *(uint64_t *)taddr += ubase; 14078 else 14079 *(uint64_t *)taddr += 14080 udaddr + ts->dofs_offset + r->dofr_offset; 14081 break; 14082 default: 14083 dtrace_dof_error(dof, "invalid relocation type"); 14084 return (-1); 14085 } 14086 14087 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14088 } 14089 14090 return (0); 14091 } 14092 14093 /* 14094 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14095 * header: it should be at the front of a memory region that is at least 14096 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14097 * size. It need not be validated in any other way. 14098 */ 14099 static int 14100 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14101 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14102 { 14103 uint64_t len = dof->dofh_loadsz, seclen; 14104 uintptr_t daddr = (uintptr_t)dof; 14105 dtrace_ecbdesc_t *ep; 14106 dtrace_enabling_t *enab; 14107 uint_t i; 14108 14109 ASSERT(MUTEX_HELD(&dtrace_lock)); 14110 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14111 14112 /* 14113 * Check the DOF header identification bytes. In addition to checking 14114 * valid settings, we also verify that unused bits/bytes are zeroed so 14115 * we can use them later without fear of regressing existing binaries. 14116 */ 14117 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14118 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14119 dtrace_dof_error(dof, "DOF magic string mismatch"); 14120 return (-1); 14121 } 14122 14123 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14124 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14125 dtrace_dof_error(dof, "DOF has invalid data model"); 14126 return (-1); 14127 } 14128 14129 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14130 dtrace_dof_error(dof, "DOF encoding mismatch"); 14131 return (-1); 14132 } 14133 14134 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14135 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14136 dtrace_dof_error(dof, "DOF version mismatch"); 14137 return (-1); 14138 } 14139 14140 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14141 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14142 return (-1); 14143 } 14144 14145 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14146 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14147 return (-1); 14148 } 14149 14150 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14151 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14152 return (-1); 14153 } 14154 14155 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14156 if (dof->dofh_ident[i] != 0) { 14157 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14158 return (-1); 14159 } 14160 } 14161 14162 if (dof->dofh_flags & ~DOF_FL_VALID) { 14163 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14164 return (-1); 14165 } 14166 14167 if (dof->dofh_secsize == 0) { 14168 dtrace_dof_error(dof, "zero section header size"); 14169 return (-1); 14170 } 14171 14172 /* 14173 * Check that the section headers don't exceed the amount of DOF 14174 * data. Note that we cast the section size and number of sections 14175 * to uint64_t's to prevent possible overflow in the multiplication. 14176 */ 14177 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14178 14179 if (dof->dofh_secoff > len || seclen > len || 14180 dof->dofh_secoff + seclen > len) { 14181 dtrace_dof_error(dof, "truncated section headers"); 14182 return (-1); 14183 } 14184 14185 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14186 dtrace_dof_error(dof, "misaligned section headers"); 14187 return (-1); 14188 } 14189 14190 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14191 dtrace_dof_error(dof, "misaligned section size"); 14192 return (-1); 14193 } 14194 14195 /* 14196 * Take an initial pass through the section headers to be sure that 14197 * the headers don't have stray offsets. If the 'noprobes' flag is 14198 * set, do not permit sections relating to providers, probes, or args. 14199 */ 14200 for (i = 0; i < dof->dofh_secnum; i++) { 14201 dof_sec_t *sec = (dof_sec_t *)(daddr + 14202 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14203 14204 if (noprobes) { 14205 switch (sec->dofs_type) { 14206 case DOF_SECT_PROVIDER: 14207 case DOF_SECT_PROBES: 14208 case DOF_SECT_PRARGS: 14209 case DOF_SECT_PROFFS: 14210 dtrace_dof_error(dof, "illegal sections " 14211 "for enabling"); 14212 return (-1); 14213 } 14214 } 14215 14216 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14217 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14218 dtrace_dof_error(dof, "loadable section with load " 14219 "flag unset"); 14220 return (-1); 14221 } 14222 14223 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14224 continue; /* just ignore non-loadable sections */ 14225 14226 if (!ISP2(sec->dofs_align)) { 14227 dtrace_dof_error(dof, "bad section alignment"); 14228 return (-1); 14229 } 14230 14231 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14232 dtrace_dof_error(dof, "misaligned section"); 14233 return (-1); 14234 } 14235 14236 if (sec->dofs_offset > len || sec->dofs_size > len || 14237 sec->dofs_offset + sec->dofs_size > len) { 14238 dtrace_dof_error(dof, "corrupt section header"); 14239 return (-1); 14240 } 14241 14242 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14243 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14244 dtrace_dof_error(dof, "non-terminating string table"); 14245 return (-1); 14246 } 14247 } 14248 14249 /* 14250 * Take a second pass through the sections and locate and perform any 14251 * relocations that are present. We do this after the first pass to 14252 * be sure that all sections have had their headers validated. 14253 */ 14254 for (i = 0; i < dof->dofh_secnum; i++) { 14255 dof_sec_t *sec = (dof_sec_t *)(daddr + 14256 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14257 14258 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14259 continue; /* skip sections that are not loadable */ 14260 14261 switch (sec->dofs_type) { 14262 case DOF_SECT_URELHDR: 14263 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14264 return (-1); 14265 break; 14266 } 14267 } 14268 14269 if ((enab = *enabp) == NULL) 14270 enab = *enabp = dtrace_enabling_create(vstate); 14271 14272 for (i = 0; i < dof->dofh_secnum; i++) { 14273 dof_sec_t *sec = (dof_sec_t *)(daddr + 14274 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14275 14276 if (sec->dofs_type != DOF_SECT_ECBDESC) 14277 continue; 14278 14279 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14280 dtrace_enabling_destroy(enab); 14281 *enabp = NULL; 14282 return (-1); 14283 } 14284 14285 dtrace_enabling_add(enab, ep); 14286 } 14287 14288 return (0); 14289 } 14290 14291 /* 14292 * Process DOF for any options. This routine assumes that the DOF has been 14293 * at least processed by dtrace_dof_slurp(). 14294 */ 14295 static int 14296 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14297 { 14298 int i, rval; 14299 uint32_t entsize; 14300 size_t offs; 14301 dof_optdesc_t *desc; 14302 14303 for (i = 0; i < dof->dofh_secnum; i++) { 14304 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14305 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14306 14307 if (sec->dofs_type != DOF_SECT_OPTDESC) 14308 continue; 14309 14310 if (sec->dofs_align != sizeof (uint64_t)) { 14311 dtrace_dof_error(dof, "bad alignment in " 14312 "option description"); 14313 return (EINVAL); 14314 } 14315 14316 if ((entsize = sec->dofs_entsize) == 0) { 14317 dtrace_dof_error(dof, "zeroed option entry size"); 14318 return (EINVAL); 14319 } 14320 14321 if (entsize < sizeof (dof_optdesc_t)) { 14322 dtrace_dof_error(dof, "bad option entry size"); 14323 return (EINVAL); 14324 } 14325 14326 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14327 desc = (dof_optdesc_t *)((uintptr_t)dof + 14328 (uintptr_t)sec->dofs_offset + offs); 14329 14330 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14331 dtrace_dof_error(dof, "non-zero option string"); 14332 return (EINVAL); 14333 } 14334 14335 if (desc->dofo_value == DTRACEOPT_UNSET) { 14336 dtrace_dof_error(dof, "unset option"); 14337 return (EINVAL); 14338 } 14339 14340 if ((rval = dtrace_state_option(state, 14341 desc->dofo_option, desc->dofo_value)) != 0) { 14342 dtrace_dof_error(dof, "rejected option"); 14343 return (rval); 14344 } 14345 } 14346 } 14347 14348 return (0); 14349 } 14350 14351 /* 14352 * DTrace Consumer State Functions 14353 */ 14354 static int 14355 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14356 { 14357 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14358 void *base; 14359 uintptr_t limit; 14360 dtrace_dynvar_t *dvar, *next, *start; 14361 int i; 14362 14363 ASSERT(MUTEX_HELD(&dtrace_lock)); 14364 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14365 14366 bzero(dstate, sizeof (dtrace_dstate_t)); 14367 14368 if ((dstate->dtds_chunksize = chunksize) == 0) 14369 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14370 14371 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14372 14373 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14374 size = min; 14375 14376 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14377 return (ENOMEM); 14378 14379 dstate->dtds_size = size; 14380 dstate->dtds_base = base; 14381 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14382 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14383 14384 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14385 14386 if (hashsize != 1 && (hashsize & 1)) 14387 hashsize--; 14388 14389 dstate->dtds_hashsize = hashsize; 14390 dstate->dtds_hash = dstate->dtds_base; 14391 14392 /* 14393 * Set all of our hash buckets to point to the single sink, and (if 14394 * it hasn't already been set), set the sink's hash value to be the 14395 * sink sentinel value. The sink is needed for dynamic variable 14396 * lookups to know that they have iterated over an entire, valid hash 14397 * chain. 14398 */ 14399 for (i = 0; i < hashsize; i++) 14400 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14401 14402 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14403 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14404 14405 /* 14406 * Determine number of active CPUs. Divide free list evenly among 14407 * active CPUs. 14408 */ 14409 start = (dtrace_dynvar_t *) 14410 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14411 limit = (uintptr_t)base + size; 14412 14413 VERIFY((uintptr_t)start < limit); 14414 VERIFY((uintptr_t)start >= (uintptr_t)base); 14415 14416 maxper = (limit - (uintptr_t)start) / NCPU; 14417 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14418 14419 #ifndef illumos 14420 CPU_FOREACH(i) { 14421 #else 14422 for (i = 0; i < NCPU; i++) { 14423 #endif 14424 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14425 14426 /* 14427 * If we don't even have enough chunks to make it once through 14428 * NCPUs, we're just going to allocate everything to the first 14429 * CPU. And if we're on the last CPU, we're going to allocate 14430 * whatever is left over. In either case, we set the limit to 14431 * be the limit of the dynamic variable space. 14432 */ 14433 if (maxper == 0 || i == NCPU - 1) { 14434 limit = (uintptr_t)base + size; 14435 start = NULL; 14436 } else { 14437 limit = (uintptr_t)start + maxper; 14438 start = (dtrace_dynvar_t *)limit; 14439 } 14440 14441 VERIFY(limit <= (uintptr_t)base + size); 14442 14443 for (;;) { 14444 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14445 dstate->dtds_chunksize); 14446 14447 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14448 break; 14449 14450 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14451 (uintptr_t)dvar <= (uintptr_t)base + size); 14452 dvar->dtdv_next = next; 14453 dvar = next; 14454 } 14455 14456 if (maxper == 0) 14457 break; 14458 } 14459 14460 return (0); 14461 } 14462 14463 static void 14464 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14465 { 14466 ASSERT(MUTEX_HELD(&cpu_lock)); 14467 14468 if (dstate->dtds_base == NULL) 14469 return; 14470 14471 kmem_free(dstate->dtds_base, dstate->dtds_size); 14472 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14473 } 14474 14475 static void 14476 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14477 { 14478 /* 14479 * Logical XOR, where are you? 14480 */ 14481 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14482 14483 if (vstate->dtvs_nglobals > 0) { 14484 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14485 sizeof (dtrace_statvar_t *)); 14486 } 14487 14488 if (vstate->dtvs_ntlocals > 0) { 14489 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14490 sizeof (dtrace_difv_t)); 14491 } 14492 14493 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14494 14495 if (vstate->dtvs_nlocals > 0) { 14496 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14497 sizeof (dtrace_statvar_t *)); 14498 } 14499 } 14500 14501 #ifdef illumos 14502 static void 14503 dtrace_state_clean(dtrace_state_t *state) 14504 { 14505 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14506 return; 14507 14508 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14509 dtrace_speculation_clean(state); 14510 } 14511 14512 static void 14513 dtrace_state_deadman(dtrace_state_t *state) 14514 { 14515 hrtime_t now; 14516 14517 dtrace_sync(); 14518 14519 now = dtrace_gethrtime(); 14520 14521 if (state != dtrace_anon.dta_state && 14522 now - state->dts_laststatus >= dtrace_deadman_user) 14523 return; 14524 14525 /* 14526 * We must be sure that dts_alive never appears to be less than the 14527 * value upon entry to dtrace_state_deadman(), and because we lack a 14528 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14529 * store INT64_MAX to it, followed by a memory barrier, followed by 14530 * the new value. This assures that dts_alive never appears to be 14531 * less than its true value, regardless of the order in which the 14532 * stores to the underlying storage are issued. 14533 */ 14534 state->dts_alive = INT64_MAX; 14535 dtrace_membar_producer(); 14536 state->dts_alive = now; 14537 } 14538 #else /* !illumos */ 14539 static void 14540 dtrace_state_clean(void *arg) 14541 { 14542 dtrace_state_t *state = arg; 14543 dtrace_optval_t *opt = state->dts_options; 14544 14545 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14546 return; 14547 14548 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14549 dtrace_speculation_clean(state); 14550 14551 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14552 dtrace_state_clean, state); 14553 } 14554 14555 static void 14556 dtrace_state_deadman(void *arg) 14557 { 14558 dtrace_state_t *state = arg; 14559 hrtime_t now; 14560 14561 dtrace_sync(); 14562 14563 dtrace_debug_output(); 14564 14565 now = dtrace_gethrtime(); 14566 14567 if (state != dtrace_anon.dta_state && 14568 now - state->dts_laststatus >= dtrace_deadman_user) 14569 return; 14570 14571 /* 14572 * We must be sure that dts_alive never appears to be less than the 14573 * value upon entry to dtrace_state_deadman(), and because we lack a 14574 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14575 * store INT64_MAX to it, followed by a memory barrier, followed by 14576 * the new value. This assures that dts_alive never appears to be 14577 * less than its true value, regardless of the order in which the 14578 * stores to the underlying storage are issued. 14579 */ 14580 state->dts_alive = INT64_MAX; 14581 dtrace_membar_producer(); 14582 state->dts_alive = now; 14583 14584 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14585 dtrace_state_deadman, state); 14586 } 14587 #endif /* illumos */ 14588 14589 static dtrace_state_t * 14590 #ifdef illumos 14591 dtrace_state_create(dev_t *devp, cred_t *cr) 14592 #else 14593 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14594 #endif 14595 { 14596 #ifdef illumos 14597 minor_t minor; 14598 major_t major; 14599 #else 14600 cred_t *cr = NULL; 14601 int m = 0; 14602 #endif 14603 char c[30]; 14604 dtrace_state_t *state; 14605 dtrace_optval_t *opt; 14606 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14607 int cpu_it; 14608 14609 ASSERT(MUTEX_HELD(&dtrace_lock)); 14610 ASSERT(MUTEX_HELD(&cpu_lock)); 14611 14612 #ifdef illumos 14613 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14614 VM_BESTFIT | VM_SLEEP); 14615 14616 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14617 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14618 return (NULL); 14619 } 14620 14621 state = ddi_get_soft_state(dtrace_softstate, minor); 14622 #else 14623 if (dev != NULL) { 14624 cr = dev->si_cred; 14625 m = dev2unit(dev); 14626 } 14627 14628 /* Allocate memory for the state. */ 14629 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14630 #endif 14631 14632 state->dts_epid = DTRACE_EPIDNONE + 1; 14633 14634 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14635 #ifdef illumos 14636 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14637 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14638 14639 if (devp != NULL) { 14640 major = getemajor(*devp); 14641 } else { 14642 major = ddi_driver_major(dtrace_devi); 14643 } 14644 14645 state->dts_dev = makedevice(major, minor); 14646 14647 if (devp != NULL) 14648 *devp = state->dts_dev; 14649 #else 14650 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14651 state->dts_dev = dev; 14652 #endif 14653 14654 /* 14655 * We allocate NCPU buffers. On the one hand, this can be quite 14656 * a bit of memory per instance (nearly 36K on a Starcat). On the 14657 * other hand, it saves an additional memory reference in the probe 14658 * path. 14659 */ 14660 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14661 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14662 14663 /* 14664 * Allocate and initialise the per-process per-CPU random state. 14665 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14666 * assumed to be seeded at this point (if from Fortuna seed file). 14667 */ 14668 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14669 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 14670 /* 14671 * Each CPU is assigned a 2^64 period, non-overlapping 14672 * subsequence. 14673 */ 14674 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 14675 state->dts_rstate[cpu_it]); 14676 } 14677 14678 #ifdef illumos 14679 state->dts_cleaner = CYCLIC_NONE; 14680 state->dts_deadman = CYCLIC_NONE; 14681 #else 14682 callout_init(&state->dts_cleaner, 1); 14683 callout_init(&state->dts_deadman, 1); 14684 #endif 14685 state->dts_vstate.dtvs_state = state; 14686 14687 for (i = 0; i < DTRACEOPT_MAX; i++) 14688 state->dts_options[i] = DTRACEOPT_UNSET; 14689 14690 /* 14691 * Set the default options. 14692 */ 14693 opt = state->dts_options; 14694 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14695 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14696 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14697 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14698 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14699 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14700 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14701 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14702 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14703 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14704 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14705 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14706 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14707 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14708 14709 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14710 14711 /* 14712 * Depending on the user credentials, we set flag bits which alter probe 14713 * visibility or the amount of destructiveness allowed. In the case of 14714 * actual anonymous tracing, or the possession of all privileges, all of 14715 * the normal checks are bypassed. 14716 */ 14717 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14718 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14719 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14720 } else { 14721 /* 14722 * Set up the credentials for this instantiation. We take a 14723 * hold on the credential to prevent it from disappearing on 14724 * us; this in turn prevents the zone_t referenced by this 14725 * credential from disappearing. This means that we can 14726 * examine the credential and the zone from probe context. 14727 */ 14728 crhold(cr); 14729 state->dts_cred.dcr_cred = cr; 14730 14731 /* 14732 * CRA_PROC means "we have *some* privilege for dtrace" and 14733 * unlocks the use of variables like pid, zonename, etc. 14734 */ 14735 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14736 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14737 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14738 } 14739 14740 /* 14741 * dtrace_user allows use of syscall and profile providers. 14742 * If the user also has proc_owner and/or proc_zone, we 14743 * extend the scope to include additional visibility and 14744 * destructive power. 14745 */ 14746 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14747 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14748 state->dts_cred.dcr_visible |= 14749 DTRACE_CRV_ALLPROC; 14750 14751 state->dts_cred.dcr_action |= 14752 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14753 } 14754 14755 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14756 state->dts_cred.dcr_visible |= 14757 DTRACE_CRV_ALLZONE; 14758 14759 state->dts_cred.dcr_action |= 14760 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14761 } 14762 14763 /* 14764 * If we have all privs in whatever zone this is, 14765 * we can do destructive things to processes which 14766 * have altered credentials. 14767 */ 14768 #ifdef illumos 14769 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14770 cr->cr_zone->zone_privset)) { 14771 state->dts_cred.dcr_action |= 14772 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14773 } 14774 #endif 14775 } 14776 14777 /* 14778 * Holding the dtrace_kernel privilege also implies that 14779 * the user has the dtrace_user privilege from a visibility 14780 * perspective. But without further privileges, some 14781 * destructive actions are not available. 14782 */ 14783 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14784 /* 14785 * Make all probes in all zones visible. However, 14786 * this doesn't mean that all actions become available 14787 * to all zones. 14788 */ 14789 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14790 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14791 14792 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14793 DTRACE_CRA_PROC; 14794 /* 14795 * Holding proc_owner means that destructive actions 14796 * for *this* zone are allowed. 14797 */ 14798 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14799 state->dts_cred.dcr_action |= 14800 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14801 14802 /* 14803 * Holding proc_zone means that destructive actions 14804 * for this user/group ID in all zones is allowed. 14805 */ 14806 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14807 state->dts_cred.dcr_action |= 14808 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14809 14810 #ifdef illumos 14811 /* 14812 * If we have all privs in whatever zone this is, 14813 * we can do destructive things to processes which 14814 * have altered credentials. 14815 */ 14816 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14817 cr->cr_zone->zone_privset)) { 14818 state->dts_cred.dcr_action |= 14819 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14820 } 14821 #endif 14822 } 14823 14824 /* 14825 * Holding the dtrace_proc privilege gives control over fasttrap 14826 * and pid providers. We need to grant wider destructive 14827 * privileges in the event that the user has proc_owner and/or 14828 * proc_zone. 14829 */ 14830 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14831 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14832 state->dts_cred.dcr_action |= 14833 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14834 14835 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14836 state->dts_cred.dcr_action |= 14837 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14838 } 14839 } 14840 14841 return (state); 14842 } 14843 14844 static int 14845 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14846 { 14847 dtrace_optval_t *opt = state->dts_options, size; 14848 processorid_t cpu = 0; 14849 int flags = 0, rval, factor, divisor = 1; 14850 14851 ASSERT(MUTEX_HELD(&dtrace_lock)); 14852 ASSERT(MUTEX_HELD(&cpu_lock)); 14853 ASSERT(which < DTRACEOPT_MAX); 14854 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14855 (state == dtrace_anon.dta_state && 14856 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14857 14858 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14859 return (0); 14860 14861 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14862 cpu = opt[DTRACEOPT_CPU]; 14863 14864 if (which == DTRACEOPT_SPECSIZE) 14865 flags |= DTRACEBUF_NOSWITCH; 14866 14867 if (which == DTRACEOPT_BUFSIZE) { 14868 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14869 flags |= DTRACEBUF_RING; 14870 14871 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14872 flags |= DTRACEBUF_FILL; 14873 14874 if (state != dtrace_anon.dta_state || 14875 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14876 flags |= DTRACEBUF_INACTIVE; 14877 } 14878 14879 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14880 /* 14881 * The size must be 8-byte aligned. If the size is not 8-byte 14882 * aligned, drop it down by the difference. 14883 */ 14884 if (size & (sizeof (uint64_t) - 1)) 14885 size -= size & (sizeof (uint64_t) - 1); 14886 14887 if (size < state->dts_reserve) { 14888 /* 14889 * Buffers always must be large enough to accommodate 14890 * their prereserved space. We return E2BIG instead 14891 * of ENOMEM in this case to allow for user-level 14892 * software to differentiate the cases. 14893 */ 14894 return (E2BIG); 14895 } 14896 14897 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14898 14899 if (rval != ENOMEM) { 14900 opt[which] = size; 14901 return (rval); 14902 } 14903 14904 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14905 return (rval); 14906 14907 for (divisor = 2; divisor < factor; divisor <<= 1) 14908 continue; 14909 } 14910 14911 return (ENOMEM); 14912 } 14913 14914 static int 14915 dtrace_state_buffers(dtrace_state_t *state) 14916 { 14917 dtrace_speculation_t *spec = state->dts_speculations; 14918 int rval, i; 14919 14920 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14921 DTRACEOPT_BUFSIZE)) != 0) 14922 return (rval); 14923 14924 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14925 DTRACEOPT_AGGSIZE)) != 0) 14926 return (rval); 14927 14928 for (i = 0; i < state->dts_nspeculations; i++) { 14929 if ((rval = dtrace_state_buffer(state, 14930 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14931 return (rval); 14932 } 14933 14934 return (0); 14935 } 14936 14937 static void 14938 dtrace_state_prereserve(dtrace_state_t *state) 14939 { 14940 dtrace_ecb_t *ecb; 14941 dtrace_probe_t *probe; 14942 14943 state->dts_reserve = 0; 14944 14945 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14946 return; 14947 14948 /* 14949 * If our buffer policy is a "fill" buffer policy, we need to set the 14950 * prereserved space to be the space required by the END probes. 14951 */ 14952 probe = dtrace_probes[dtrace_probeid_end - 1]; 14953 ASSERT(probe != NULL); 14954 14955 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14956 if (ecb->dte_state != state) 14957 continue; 14958 14959 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14960 } 14961 } 14962 14963 static int 14964 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14965 { 14966 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14967 dtrace_speculation_t *spec; 14968 dtrace_buffer_t *buf; 14969 #ifdef illumos 14970 cyc_handler_t hdlr; 14971 cyc_time_t when; 14972 #endif 14973 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14974 dtrace_icookie_t cookie; 14975 14976 mutex_enter(&cpu_lock); 14977 mutex_enter(&dtrace_lock); 14978 14979 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14980 rval = EBUSY; 14981 goto out; 14982 } 14983 14984 /* 14985 * Before we can perform any checks, we must prime all of the 14986 * retained enablings that correspond to this state. 14987 */ 14988 dtrace_enabling_prime(state); 14989 14990 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14991 rval = EACCES; 14992 goto out; 14993 } 14994 14995 dtrace_state_prereserve(state); 14996 14997 /* 14998 * Now we want to do is try to allocate our speculations. 14999 * We do not automatically resize the number of speculations; if 15000 * this fails, we will fail the operation. 15001 */ 15002 nspec = opt[DTRACEOPT_NSPEC]; 15003 ASSERT(nspec != DTRACEOPT_UNSET); 15004 15005 if (nspec > INT_MAX) { 15006 rval = ENOMEM; 15007 goto out; 15008 } 15009 15010 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15011 KM_NOSLEEP | KM_NORMALPRI); 15012 15013 if (spec == NULL) { 15014 rval = ENOMEM; 15015 goto out; 15016 } 15017 15018 state->dts_speculations = spec; 15019 state->dts_nspeculations = (int)nspec; 15020 15021 for (i = 0; i < nspec; i++) { 15022 if ((buf = kmem_zalloc(bufsize, 15023 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15024 rval = ENOMEM; 15025 goto err; 15026 } 15027 15028 spec[i].dtsp_buffer = buf; 15029 } 15030 15031 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15032 if (dtrace_anon.dta_state == NULL) { 15033 rval = ENOENT; 15034 goto out; 15035 } 15036 15037 if (state->dts_necbs != 0) { 15038 rval = EALREADY; 15039 goto out; 15040 } 15041 15042 state->dts_anon = dtrace_anon_grab(); 15043 ASSERT(state->dts_anon != NULL); 15044 state = state->dts_anon; 15045 15046 /* 15047 * We want "grabanon" to be set in the grabbed state, so we'll 15048 * copy that option value from the grabbing state into the 15049 * grabbed state. 15050 */ 15051 state->dts_options[DTRACEOPT_GRABANON] = 15052 opt[DTRACEOPT_GRABANON]; 15053 15054 *cpu = dtrace_anon.dta_beganon; 15055 15056 /* 15057 * If the anonymous state is active (as it almost certainly 15058 * is if the anonymous enabling ultimately matched anything), 15059 * we don't allow any further option processing -- but we 15060 * don't return failure. 15061 */ 15062 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15063 goto out; 15064 } 15065 15066 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15067 opt[DTRACEOPT_AGGSIZE] != 0) { 15068 if (state->dts_aggregations == NULL) { 15069 /* 15070 * We're not going to create an aggregation buffer 15071 * because we don't have any ECBs that contain 15072 * aggregations -- set this option to 0. 15073 */ 15074 opt[DTRACEOPT_AGGSIZE] = 0; 15075 } else { 15076 /* 15077 * If we have an aggregation buffer, we must also have 15078 * a buffer to use as scratch. 15079 */ 15080 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15081 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15082 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15083 } 15084 } 15085 } 15086 15087 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15088 opt[DTRACEOPT_SPECSIZE] != 0) { 15089 if (!state->dts_speculates) { 15090 /* 15091 * We're not going to create speculation buffers 15092 * because we don't have any ECBs that actually 15093 * speculate -- set the speculation size to 0. 15094 */ 15095 opt[DTRACEOPT_SPECSIZE] = 0; 15096 } 15097 } 15098 15099 /* 15100 * The bare minimum size for any buffer that we're actually going to 15101 * do anything to is sizeof (uint64_t). 15102 */ 15103 sz = sizeof (uint64_t); 15104 15105 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15106 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15107 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15108 /* 15109 * A buffer size has been explicitly set to 0 (or to a size 15110 * that will be adjusted to 0) and we need the space -- we 15111 * need to return failure. We return ENOSPC to differentiate 15112 * it from failing to allocate a buffer due to failure to meet 15113 * the reserve (for which we return E2BIG). 15114 */ 15115 rval = ENOSPC; 15116 goto out; 15117 } 15118 15119 if ((rval = dtrace_state_buffers(state)) != 0) 15120 goto err; 15121 15122 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15123 sz = dtrace_dstate_defsize; 15124 15125 do { 15126 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15127 15128 if (rval == 0) 15129 break; 15130 15131 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15132 goto err; 15133 } while (sz >>= 1); 15134 15135 opt[DTRACEOPT_DYNVARSIZE] = sz; 15136 15137 if (rval != 0) 15138 goto err; 15139 15140 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15141 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15142 15143 if (opt[DTRACEOPT_CLEANRATE] == 0) 15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15145 15146 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15147 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15148 15149 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15150 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15151 15152 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15153 #ifdef illumos 15154 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15155 hdlr.cyh_arg = state; 15156 hdlr.cyh_level = CY_LOW_LEVEL; 15157 15158 when.cyt_when = 0; 15159 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15160 15161 state->dts_cleaner = cyclic_add(&hdlr, &when); 15162 15163 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15164 hdlr.cyh_arg = state; 15165 hdlr.cyh_level = CY_LOW_LEVEL; 15166 15167 when.cyt_when = 0; 15168 when.cyt_interval = dtrace_deadman_interval; 15169 15170 state->dts_deadman = cyclic_add(&hdlr, &when); 15171 #else 15172 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15173 dtrace_state_clean, state); 15174 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15175 dtrace_state_deadman, state); 15176 #endif 15177 15178 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15179 15180 #ifdef illumos 15181 if (state->dts_getf != 0 && 15182 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15183 /* 15184 * We don't have kernel privs but we have at least one call 15185 * to getf(); we need to bump our zone's count, and (if 15186 * this is the first enabling to have an unprivileged call 15187 * to getf()) we need to hook into closef(). 15188 */ 15189 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15190 15191 if (dtrace_getf++ == 0) { 15192 ASSERT(dtrace_closef == NULL); 15193 dtrace_closef = dtrace_getf_barrier; 15194 } 15195 } 15196 #endif 15197 15198 /* 15199 * Now it's time to actually fire the BEGIN probe. We need to disable 15200 * interrupts here both to record the CPU on which we fired the BEGIN 15201 * probe (the data from this CPU will be processed first at user 15202 * level) and to manually activate the buffer for this CPU. 15203 */ 15204 cookie = dtrace_interrupt_disable(); 15205 *cpu = curcpu; 15206 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15207 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15208 15209 dtrace_probe(dtrace_probeid_begin, 15210 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15211 dtrace_interrupt_enable(cookie); 15212 /* 15213 * We may have had an exit action from a BEGIN probe; only change our 15214 * state to ACTIVE if we're still in WARMUP. 15215 */ 15216 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15217 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15218 15219 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15220 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15221 15222 #ifdef __FreeBSD__ 15223 /* 15224 * We enable anonymous tracing before APs are started, so we must 15225 * activate buffers using the current CPU. 15226 */ 15227 if (state == dtrace_anon.dta_state) 15228 for (int i = 0; i < NCPU; i++) 15229 dtrace_buffer_activate_cpu(state, i); 15230 else 15231 dtrace_xcall(DTRACE_CPUALL, 15232 (dtrace_xcall_t)dtrace_buffer_activate, state); 15233 #else 15234 /* 15235 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15236 * want each CPU to transition its principal buffer out of the 15237 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15238 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15239 * atomically transition from processing none of a state's ECBs to 15240 * processing all of them. 15241 */ 15242 dtrace_xcall(DTRACE_CPUALL, 15243 (dtrace_xcall_t)dtrace_buffer_activate, state); 15244 #endif 15245 goto out; 15246 15247 err: 15248 dtrace_buffer_free(state->dts_buffer); 15249 dtrace_buffer_free(state->dts_aggbuffer); 15250 15251 if ((nspec = state->dts_nspeculations) == 0) { 15252 ASSERT(state->dts_speculations == NULL); 15253 goto out; 15254 } 15255 15256 spec = state->dts_speculations; 15257 ASSERT(spec != NULL); 15258 15259 for (i = 0; i < state->dts_nspeculations; i++) { 15260 if ((buf = spec[i].dtsp_buffer) == NULL) 15261 break; 15262 15263 dtrace_buffer_free(buf); 15264 kmem_free(buf, bufsize); 15265 } 15266 15267 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15268 state->dts_nspeculations = 0; 15269 state->dts_speculations = NULL; 15270 15271 out: 15272 mutex_exit(&dtrace_lock); 15273 mutex_exit(&cpu_lock); 15274 15275 return (rval); 15276 } 15277 15278 static int 15279 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15280 { 15281 dtrace_icookie_t cookie; 15282 15283 ASSERT(MUTEX_HELD(&dtrace_lock)); 15284 15285 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15286 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15287 return (EINVAL); 15288 15289 /* 15290 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15291 * to be sure that every CPU has seen it. See below for the details 15292 * on why this is done. 15293 */ 15294 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15295 dtrace_sync(); 15296 15297 /* 15298 * By this point, it is impossible for any CPU to be still processing 15299 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15300 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15301 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15302 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15303 * iff we're in the END probe. 15304 */ 15305 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15306 dtrace_sync(); 15307 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15308 15309 /* 15310 * Finally, we can release the reserve and call the END probe. We 15311 * disable interrupts across calling the END probe to allow us to 15312 * return the CPU on which we actually called the END probe. This 15313 * allows user-land to be sure that this CPU's principal buffer is 15314 * processed last. 15315 */ 15316 state->dts_reserve = 0; 15317 15318 cookie = dtrace_interrupt_disable(); 15319 *cpu = curcpu; 15320 dtrace_probe(dtrace_probeid_end, 15321 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15322 dtrace_interrupt_enable(cookie); 15323 15324 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15325 dtrace_sync(); 15326 15327 #ifdef illumos 15328 if (state->dts_getf != 0 && 15329 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15330 /* 15331 * We don't have kernel privs but we have at least one call 15332 * to getf(); we need to lower our zone's count, and (if 15333 * this is the last enabling to have an unprivileged call 15334 * to getf()) we need to clear the closef() hook. 15335 */ 15336 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15337 ASSERT(dtrace_closef == dtrace_getf_barrier); 15338 ASSERT(dtrace_getf > 0); 15339 15340 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15341 15342 if (--dtrace_getf == 0) 15343 dtrace_closef = NULL; 15344 } 15345 #endif 15346 15347 return (0); 15348 } 15349 15350 static int 15351 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15352 dtrace_optval_t val) 15353 { 15354 ASSERT(MUTEX_HELD(&dtrace_lock)); 15355 15356 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15357 return (EBUSY); 15358 15359 if (option >= DTRACEOPT_MAX) 15360 return (EINVAL); 15361 15362 if (option != DTRACEOPT_CPU && val < 0) 15363 return (EINVAL); 15364 15365 switch (option) { 15366 case DTRACEOPT_DESTRUCTIVE: 15367 if (dtrace_destructive_disallow) 15368 return (EACCES); 15369 15370 state->dts_cred.dcr_destructive = 1; 15371 break; 15372 15373 case DTRACEOPT_BUFSIZE: 15374 case DTRACEOPT_DYNVARSIZE: 15375 case DTRACEOPT_AGGSIZE: 15376 case DTRACEOPT_SPECSIZE: 15377 case DTRACEOPT_STRSIZE: 15378 if (val < 0) 15379 return (EINVAL); 15380 15381 if (val >= LONG_MAX) { 15382 /* 15383 * If this is an otherwise negative value, set it to 15384 * the highest multiple of 128m less than LONG_MAX. 15385 * Technically, we're adjusting the size without 15386 * regard to the buffer resizing policy, but in fact, 15387 * this has no effect -- if we set the buffer size to 15388 * ~LONG_MAX and the buffer policy is ultimately set to 15389 * be "manual", the buffer allocation is guaranteed to 15390 * fail, if only because the allocation requires two 15391 * buffers. (We set the the size to the highest 15392 * multiple of 128m because it ensures that the size 15393 * will remain a multiple of a megabyte when 15394 * repeatedly halved -- all the way down to 15m.) 15395 */ 15396 val = LONG_MAX - (1 << 27) + 1; 15397 } 15398 } 15399 15400 state->dts_options[option] = val; 15401 15402 return (0); 15403 } 15404 15405 static void 15406 dtrace_state_destroy(dtrace_state_t *state) 15407 { 15408 dtrace_ecb_t *ecb; 15409 dtrace_vstate_t *vstate = &state->dts_vstate; 15410 #ifdef illumos 15411 minor_t minor = getminor(state->dts_dev); 15412 #endif 15413 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15414 dtrace_speculation_t *spec = state->dts_speculations; 15415 int nspec = state->dts_nspeculations; 15416 uint32_t match; 15417 15418 ASSERT(MUTEX_HELD(&dtrace_lock)); 15419 ASSERT(MUTEX_HELD(&cpu_lock)); 15420 15421 /* 15422 * First, retract any retained enablings for this state. 15423 */ 15424 dtrace_enabling_retract(state); 15425 ASSERT(state->dts_nretained == 0); 15426 15427 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15428 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15429 /* 15430 * We have managed to come into dtrace_state_destroy() on a 15431 * hot enabling -- almost certainly because of a disorderly 15432 * shutdown of a consumer. (That is, a consumer that is 15433 * exiting without having called dtrace_stop().) In this case, 15434 * we're going to set our activity to be KILLED, and then 15435 * issue a sync to be sure that everyone is out of probe 15436 * context before we start blowing away ECBs. 15437 */ 15438 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15439 dtrace_sync(); 15440 } 15441 15442 /* 15443 * Release the credential hold we took in dtrace_state_create(). 15444 */ 15445 if (state->dts_cred.dcr_cred != NULL) 15446 crfree(state->dts_cred.dcr_cred); 15447 15448 /* 15449 * Now we can safely disable and destroy any enabled probes. Because 15450 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15451 * (especially if they're all enabled), we take two passes through the 15452 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15453 * in the second we disable whatever is left over. 15454 */ 15455 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15456 for (i = 0; i < state->dts_necbs; i++) { 15457 if ((ecb = state->dts_ecbs[i]) == NULL) 15458 continue; 15459 15460 if (match && ecb->dte_probe != NULL) { 15461 dtrace_probe_t *probe = ecb->dte_probe; 15462 dtrace_provider_t *prov = probe->dtpr_provider; 15463 15464 if (!(prov->dtpv_priv.dtpp_flags & match)) 15465 continue; 15466 } 15467 15468 dtrace_ecb_disable(ecb); 15469 dtrace_ecb_destroy(ecb); 15470 } 15471 15472 if (!match) 15473 break; 15474 } 15475 15476 /* 15477 * Before we free the buffers, perform one more sync to assure that 15478 * every CPU is out of probe context. 15479 */ 15480 dtrace_sync(); 15481 15482 dtrace_buffer_free(state->dts_buffer); 15483 dtrace_buffer_free(state->dts_aggbuffer); 15484 15485 for (i = 0; i < nspec; i++) 15486 dtrace_buffer_free(spec[i].dtsp_buffer); 15487 15488 #ifdef illumos 15489 if (state->dts_cleaner != CYCLIC_NONE) 15490 cyclic_remove(state->dts_cleaner); 15491 15492 if (state->dts_deadman != CYCLIC_NONE) 15493 cyclic_remove(state->dts_deadman); 15494 #else 15495 callout_stop(&state->dts_cleaner); 15496 callout_drain(&state->dts_cleaner); 15497 callout_stop(&state->dts_deadman); 15498 callout_drain(&state->dts_deadman); 15499 #endif 15500 15501 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15502 dtrace_vstate_fini(vstate); 15503 if (state->dts_ecbs != NULL) 15504 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15505 15506 if (state->dts_aggregations != NULL) { 15507 #ifdef DEBUG 15508 for (i = 0; i < state->dts_naggregations; i++) 15509 ASSERT(state->dts_aggregations[i] == NULL); 15510 #endif 15511 ASSERT(state->dts_naggregations > 0); 15512 kmem_free(state->dts_aggregations, 15513 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15514 } 15515 15516 kmem_free(state->dts_buffer, bufsize); 15517 kmem_free(state->dts_aggbuffer, bufsize); 15518 15519 for (i = 0; i < nspec; i++) 15520 kmem_free(spec[i].dtsp_buffer, bufsize); 15521 15522 if (spec != NULL) 15523 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15524 15525 dtrace_format_destroy(state); 15526 15527 if (state->dts_aggid_arena != NULL) { 15528 #ifdef illumos 15529 vmem_destroy(state->dts_aggid_arena); 15530 #else 15531 delete_unrhdr(state->dts_aggid_arena); 15532 #endif 15533 state->dts_aggid_arena = NULL; 15534 } 15535 #ifdef illumos 15536 ddi_soft_state_free(dtrace_softstate, minor); 15537 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15538 #endif 15539 } 15540 15541 /* 15542 * DTrace Anonymous Enabling Functions 15543 */ 15544 static dtrace_state_t * 15545 dtrace_anon_grab(void) 15546 { 15547 dtrace_state_t *state; 15548 15549 ASSERT(MUTEX_HELD(&dtrace_lock)); 15550 15551 if ((state = dtrace_anon.dta_state) == NULL) { 15552 ASSERT(dtrace_anon.dta_enabling == NULL); 15553 return (NULL); 15554 } 15555 15556 ASSERT(dtrace_anon.dta_enabling != NULL); 15557 ASSERT(dtrace_retained != NULL); 15558 15559 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15560 dtrace_anon.dta_enabling = NULL; 15561 dtrace_anon.dta_state = NULL; 15562 15563 return (state); 15564 } 15565 15566 static void 15567 dtrace_anon_property(void) 15568 { 15569 int i, rv; 15570 dtrace_state_t *state; 15571 dof_hdr_t *dof; 15572 char c[32]; /* enough for "dof-data-" + digits */ 15573 15574 ASSERT(MUTEX_HELD(&dtrace_lock)); 15575 ASSERT(MUTEX_HELD(&cpu_lock)); 15576 15577 for (i = 0; ; i++) { 15578 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15579 15580 dtrace_err_verbose = 1; 15581 15582 if ((dof = dtrace_dof_property(c)) == NULL) { 15583 dtrace_err_verbose = 0; 15584 break; 15585 } 15586 15587 #ifdef illumos 15588 /* 15589 * We want to create anonymous state, so we need to transition 15590 * the kernel debugger to indicate that DTrace is active. If 15591 * this fails (e.g. because the debugger has modified text in 15592 * some way), we won't continue with the processing. 15593 */ 15594 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15595 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15596 "enabling ignored."); 15597 dtrace_dof_destroy(dof); 15598 break; 15599 } 15600 #endif 15601 15602 /* 15603 * If we haven't allocated an anonymous state, we'll do so now. 15604 */ 15605 if ((state = dtrace_anon.dta_state) == NULL) { 15606 state = dtrace_state_create(NULL, NULL); 15607 dtrace_anon.dta_state = state; 15608 15609 if (state == NULL) { 15610 /* 15611 * This basically shouldn't happen: the only 15612 * failure mode from dtrace_state_create() is a 15613 * failure of ddi_soft_state_zalloc() that 15614 * itself should never happen. Still, the 15615 * interface allows for a failure mode, and 15616 * we want to fail as gracefully as possible: 15617 * we'll emit an error message and cease 15618 * processing anonymous state in this case. 15619 */ 15620 cmn_err(CE_WARN, "failed to create " 15621 "anonymous state"); 15622 dtrace_dof_destroy(dof); 15623 break; 15624 } 15625 } 15626 15627 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15628 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15629 15630 if (rv == 0) 15631 rv = dtrace_dof_options(dof, state); 15632 15633 dtrace_err_verbose = 0; 15634 dtrace_dof_destroy(dof); 15635 15636 if (rv != 0) { 15637 /* 15638 * This is malformed DOF; chuck any anonymous state 15639 * that we created. 15640 */ 15641 ASSERT(dtrace_anon.dta_enabling == NULL); 15642 dtrace_state_destroy(state); 15643 dtrace_anon.dta_state = NULL; 15644 break; 15645 } 15646 15647 ASSERT(dtrace_anon.dta_enabling != NULL); 15648 } 15649 15650 if (dtrace_anon.dta_enabling != NULL) { 15651 int rval; 15652 15653 /* 15654 * dtrace_enabling_retain() can only fail because we are 15655 * trying to retain more enablings than are allowed -- but 15656 * we only have one anonymous enabling, and we are guaranteed 15657 * to be allowed at least one retained enabling; we assert 15658 * that dtrace_enabling_retain() returns success. 15659 */ 15660 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15661 ASSERT(rval == 0); 15662 15663 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15664 } 15665 } 15666 15667 /* 15668 * DTrace Helper Functions 15669 */ 15670 static void 15671 dtrace_helper_trace(dtrace_helper_action_t *helper, 15672 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15673 { 15674 uint32_t size, next, nnext, i; 15675 dtrace_helptrace_t *ent, *buffer; 15676 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15677 15678 if ((buffer = dtrace_helptrace_buffer) == NULL) 15679 return; 15680 15681 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15682 15683 /* 15684 * What would a tracing framework be without its own tracing 15685 * framework? (Well, a hell of a lot simpler, for starters...) 15686 */ 15687 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15688 sizeof (uint64_t) - sizeof (uint64_t); 15689 15690 /* 15691 * Iterate until we can allocate a slot in the trace buffer. 15692 */ 15693 do { 15694 next = dtrace_helptrace_next; 15695 15696 if (next + size < dtrace_helptrace_bufsize) { 15697 nnext = next + size; 15698 } else { 15699 nnext = size; 15700 } 15701 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15702 15703 /* 15704 * We have our slot; fill it in. 15705 */ 15706 if (nnext == size) { 15707 dtrace_helptrace_wrapped++; 15708 next = 0; 15709 } 15710 15711 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15712 ent->dtht_helper = helper; 15713 ent->dtht_where = where; 15714 ent->dtht_nlocals = vstate->dtvs_nlocals; 15715 15716 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15717 mstate->dtms_fltoffs : -1; 15718 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15719 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15720 15721 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15722 dtrace_statvar_t *svar; 15723 15724 if ((svar = vstate->dtvs_locals[i]) == NULL) 15725 continue; 15726 15727 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15728 ent->dtht_locals[i] = 15729 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15730 } 15731 } 15732 15733 static uint64_t 15734 dtrace_helper(int which, dtrace_mstate_t *mstate, 15735 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15736 { 15737 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15738 uint64_t sarg0 = mstate->dtms_arg[0]; 15739 uint64_t sarg1 = mstate->dtms_arg[1]; 15740 uint64_t rval = 0; 15741 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15742 dtrace_helper_action_t *helper; 15743 dtrace_vstate_t *vstate; 15744 dtrace_difo_t *pred; 15745 int i, trace = dtrace_helptrace_buffer != NULL; 15746 15747 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15748 15749 if (helpers == NULL) 15750 return (0); 15751 15752 if ((helper = helpers->dthps_actions[which]) == NULL) 15753 return (0); 15754 15755 vstate = &helpers->dthps_vstate; 15756 mstate->dtms_arg[0] = arg0; 15757 mstate->dtms_arg[1] = arg1; 15758 15759 /* 15760 * Now iterate over each helper. If its predicate evaluates to 'true', 15761 * we'll call the corresponding actions. Note that the below calls 15762 * to dtrace_dif_emulate() may set faults in machine state. This is 15763 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15764 * the stored DIF offset with its own (which is the desired behavior). 15765 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15766 * from machine state; this is okay, too. 15767 */ 15768 for (; helper != NULL; helper = helper->dtha_next) { 15769 if ((pred = helper->dtha_predicate) != NULL) { 15770 if (trace) 15771 dtrace_helper_trace(helper, mstate, vstate, 0); 15772 15773 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15774 goto next; 15775 15776 if (*flags & CPU_DTRACE_FAULT) 15777 goto err; 15778 } 15779 15780 for (i = 0; i < helper->dtha_nactions; i++) { 15781 if (trace) 15782 dtrace_helper_trace(helper, 15783 mstate, vstate, i + 1); 15784 15785 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15786 mstate, vstate, state); 15787 15788 if (*flags & CPU_DTRACE_FAULT) 15789 goto err; 15790 } 15791 15792 next: 15793 if (trace) 15794 dtrace_helper_trace(helper, mstate, vstate, 15795 DTRACE_HELPTRACE_NEXT); 15796 } 15797 15798 if (trace) 15799 dtrace_helper_trace(helper, mstate, vstate, 15800 DTRACE_HELPTRACE_DONE); 15801 15802 /* 15803 * Restore the arg0 that we saved upon entry. 15804 */ 15805 mstate->dtms_arg[0] = sarg0; 15806 mstate->dtms_arg[1] = sarg1; 15807 15808 return (rval); 15809 15810 err: 15811 if (trace) 15812 dtrace_helper_trace(helper, mstate, vstate, 15813 DTRACE_HELPTRACE_ERR); 15814 15815 /* 15816 * Restore the arg0 that we saved upon entry. 15817 */ 15818 mstate->dtms_arg[0] = sarg0; 15819 mstate->dtms_arg[1] = sarg1; 15820 15821 return (0); 15822 } 15823 15824 static void 15825 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15826 dtrace_vstate_t *vstate) 15827 { 15828 int i; 15829 15830 if (helper->dtha_predicate != NULL) 15831 dtrace_difo_release(helper->dtha_predicate, vstate); 15832 15833 for (i = 0; i < helper->dtha_nactions; i++) { 15834 ASSERT(helper->dtha_actions[i] != NULL); 15835 dtrace_difo_release(helper->dtha_actions[i], vstate); 15836 } 15837 15838 kmem_free(helper->dtha_actions, 15839 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15840 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15841 } 15842 15843 static int 15844 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15845 { 15846 proc_t *p = curproc; 15847 dtrace_vstate_t *vstate; 15848 int i; 15849 15850 if (help == NULL) 15851 help = p->p_dtrace_helpers; 15852 15853 ASSERT(MUTEX_HELD(&dtrace_lock)); 15854 15855 if (help == NULL || gen > help->dthps_generation) 15856 return (EINVAL); 15857 15858 vstate = &help->dthps_vstate; 15859 15860 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15861 dtrace_helper_action_t *last = NULL, *h, *next; 15862 15863 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15864 next = h->dtha_next; 15865 15866 if (h->dtha_generation == gen) { 15867 if (last != NULL) { 15868 last->dtha_next = next; 15869 } else { 15870 help->dthps_actions[i] = next; 15871 } 15872 15873 dtrace_helper_action_destroy(h, vstate); 15874 } else { 15875 last = h; 15876 } 15877 } 15878 } 15879 15880 /* 15881 * Interate until we've cleared out all helper providers with the 15882 * given generation number. 15883 */ 15884 for (;;) { 15885 dtrace_helper_provider_t *prov; 15886 15887 /* 15888 * Look for a helper provider with the right generation. We 15889 * have to start back at the beginning of the list each time 15890 * because we drop dtrace_lock. It's unlikely that we'll make 15891 * more than two passes. 15892 */ 15893 for (i = 0; i < help->dthps_nprovs; i++) { 15894 prov = help->dthps_provs[i]; 15895 15896 if (prov->dthp_generation == gen) 15897 break; 15898 } 15899 15900 /* 15901 * If there were no matches, we're done. 15902 */ 15903 if (i == help->dthps_nprovs) 15904 break; 15905 15906 /* 15907 * Move the last helper provider into this slot. 15908 */ 15909 help->dthps_nprovs--; 15910 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15911 help->dthps_provs[help->dthps_nprovs] = NULL; 15912 15913 mutex_exit(&dtrace_lock); 15914 15915 /* 15916 * If we have a meta provider, remove this helper provider. 15917 */ 15918 mutex_enter(&dtrace_meta_lock); 15919 if (dtrace_meta_pid != NULL) { 15920 ASSERT(dtrace_deferred_pid == NULL); 15921 dtrace_helper_provider_remove(&prov->dthp_prov, 15922 p->p_pid); 15923 } 15924 mutex_exit(&dtrace_meta_lock); 15925 15926 dtrace_helper_provider_destroy(prov); 15927 15928 mutex_enter(&dtrace_lock); 15929 } 15930 15931 return (0); 15932 } 15933 15934 static int 15935 dtrace_helper_validate(dtrace_helper_action_t *helper) 15936 { 15937 int err = 0, i; 15938 dtrace_difo_t *dp; 15939 15940 if ((dp = helper->dtha_predicate) != NULL) 15941 err += dtrace_difo_validate_helper(dp); 15942 15943 for (i = 0; i < helper->dtha_nactions; i++) 15944 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15945 15946 return (err == 0); 15947 } 15948 15949 static int 15950 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15951 dtrace_helpers_t *help) 15952 { 15953 dtrace_helper_action_t *helper, *last; 15954 dtrace_actdesc_t *act; 15955 dtrace_vstate_t *vstate; 15956 dtrace_predicate_t *pred; 15957 int count = 0, nactions = 0, i; 15958 15959 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15960 return (EINVAL); 15961 15962 last = help->dthps_actions[which]; 15963 vstate = &help->dthps_vstate; 15964 15965 for (count = 0; last != NULL; last = last->dtha_next) { 15966 count++; 15967 if (last->dtha_next == NULL) 15968 break; 15969 } 15970 15971 /* 15972 * If we already have dtrace_helper_actions_max helper actions for this 15973 * helper action type, we'll refuse to add a new one. 15974 */ 15975 if (count >= dtrace_helper_actions_max) 15976 return (ENOSPC); 15977 15978 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15979 helper->dtha_generation = help->dthps_generation; 15980 15981 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15982 ASSERT(pred->dtp_difo != NULL); 15983 dtrace_difo_hold(pred->dtp_difo); 15984 helper->dtha_predicate = pred->dtp_difo; 15985 } 15986 15987 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15988 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15989 goto err; 15990 15991 if (act->dtad_difo == NULL) 15992 goto err; 15993 15994 nactions++; 15995 } 15996 15997 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15998 (helper->dtha_nactions = nactions), KM_SLEEP); 15999 16000 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 16001 dtrace_difo_hold(act->dtad_difo); 16002 helper->dtha_actions[i++] = act->dtad_difo; 16003 } 16004 16005 if (!dtrace_helper_validate(helper)) 16006 goto err; 16007 16008 if (last == NULL) { 16009 help->dthps_actions[which] = helper; 16010 } else { 16011 last->dtha_next = helper; 16012 } 16013 16014 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16015 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16016 dtrace_helptrace_next = 0; 16017 } 16018 16019 return (0); 16020 err: 16021 dtrace_helper_action_destroy(helper, vstate); 16022 return (EINVAL); 16023 } 16024 16025 static void 16026 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16027 dof_helper_t *dofhp) 16028 { 16029 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16030 16031 mutex_enter(&dtrace_meta_lock); 16032 mutex_enter(&dtrace_lock); 16033 16034 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16035 /* 16036 * If the dtrace module is loaded but not attached, or if 16037 * there aren't isn't a meta provider registered to deal with 16038 * these provider descriptions, we need to postpone creating 16039 * the actual providers until later. 16040 */ 16041 16042 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16043 dtrace_deferred_pid != help) { 16044 help->dthps_deferred = 1; 16045 help->dthps_pid = p->p_pid; 16046 help->dthps_next = dtrace_deferred_pid; 16047 help->dthps_prev = NULL; 16048 if (dtrace_deferred_pid != NULL) 16049 dtrace_deferred_pid->dthps_prev = help; 16050 dtrace_deferred_pid = help; 16051 } 16052 16053 mutex_exit(&dtrace_lock); 16054 16055 } else if (dofhp != NULL) { 16056 /* 16057 * If the dtrace module is loaded and we have a particular 16058 * helper provider description, pass that off to the 16059 * meta provider. 16060 */ 16061 16062 mutex_exit(&dtrace_lock); 16063 16064 dtrace_helper_provide(dofhp, p->p_pid); 16065 16066 } else { 16067 /* 16068 * Otherwise, just pass all the helper provider descriptions 16069 * off to the meta provider. 16070 */ 16071 16072 int i; 16073 mutex_exit(&dtrace_lock); 16074 16075 for (i = 0; i < help->dthps_nprovs; i++) { 16076 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16077 p->p_pid); 16078 } 16079 } 16080 16081 mutex_exit(&dtrace_meta_lock); 16082 } 16083 16084 static int 16085 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16086 { 16087 dtrace_helper_provider_t *hprov, **tmp_provs; 16088 uint_t tmp_maxprovs, i; 16089 16090 ASSERT(MUTEX_HELD(&dtrace_lock)); 16091 ASSERT(help != NULL); 16092 16093 /* 16094 * If we already have dtrace_helper_providers_max helper providers, 16095 * we're refuse to add a new one. 16096 */ 16097 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16098 return (ENOSPC); 16099 16100 /* 16101 * Check to make sure this isn't a duplicate. 16102 */ 16103 for (i = 0; i < help->dthps_nprovs; i++) { 16104 if (dofhp->dofhp_addr == 16105 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16106 return (EALREADY); 16107 } 16108 16109 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16110 hprov->dthp_prov = *dofhp; 16111 hprov->dthp_ref = 1; 16112 hprov->dthp_generation = gen; 16113 16114 /* 16115 * Allocate a bigger table for helper providers if it's already full. 16116 */ 16117 if (help->dthps_maxprovs == help->dthps_nprovs) { 16118 tmp_maxprovs = help->dthps_maxprovs; 16119 tmp_provs = help->dthps_provs; 16120 16121 if (help->dthps_maxprovs == 0) 16122 help->dthps_maxprovs = 2; 16123 else 16124 help->dthps_maxprovs *= 2; 16125 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16126 help->dthps_maxprovs = dtrace_helper_providers_max; 16127 16128 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16129 16130 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16131 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16132 16133 if (tmp_provs != NULL) { 16134 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16135 sizeof (dtrace_helper_provider_t *)); 16136 kmem_free(tmp_provs, tmp_maxprovs * 16137 sizeof (dtrace_helper_provider_t *)); 16138 } 16139 } 16140 16141 help->dthps_provs[help->dthps_nprovs] = hprov; 16142 help->dthps_nprovs++; 16143 16144 return (0); 16145 } 16146 16147 static void 16148 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16149 { 16150 mutex_enter(&dtrace_lock); 16151 16152 if (--hprov->dthp_ref == 0) { 16153 dof_hdr_t *dof; 16154 mutex_exit(&dtrace_lock); 16155 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16156 dtrace_dof_destroy(dof); 16157 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16158 } else { 16159 mutex_exit(&dtrace_lock); 16160 } 16161 } 16162 16163 static int 16164 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16165 { 16166 uintptr_t daddr = (uintptr_t)dof; 16167 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16168 dof_provider_t *provider; 16169 dof_probe_t *probe; 16170 uint8_t *arg; 16171 char *strtab, *typestr; 16172 dof_stridx_t typeidx; 16173 size_t typesz; 16174 uint_t nprobes, j, k; 16175 16176 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16177 16178 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16179 dtrace_dof_error(dof, "misaligned section offset"); 16180 return (-1); 16181 } 16182 16183 /* 16184 * The section needs to be large enough to contain the DOF provider 16185 * structure appropriate for the given version. 16186 */ 16187 if (sec->dofs_size < 16188 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16189 offsetof(dof_provider_t, dofpv_prenoffs) : 16190 sizeof (dof_provider_t))) { 16191 dtrace_dof_error(dof, "provider section too small"); 16192 return (-1); 16193 } 16194 16195 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16196 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16197 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16198 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16199 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16200 16201 if (str_sec == NULL || prb_sec == NULL || 16202 arg_sec == NULL || off_sec == NULL) 16203 return (-1); 16204 16205 enoff_sec = NULL; 16206 16207 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16208 provider->dofpv_prenoffs != DOF_SECT_NONE && 16209 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16210 provider->dofpv_prenoffs)) == NULL) 16211 return (-1); 16212 16213 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16214 16215 if (provider->dofpv_name >= str_sec->dofs_size || 16216 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16217 dtrace_dof_error(dof, "invalid provider name"); 16218 return (-1); 16219 } 16220 16221 if (prb_sec->dofs_entsize == 0 || 16222 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16223 dtrace_dof_error(dof, "invalid entry size"); 16224 return (-1); 16225 } 16226 16227 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16228 dtrace_dof_error(dof, "misaligned entry size"); 16229 return (-1); 16230 } 16231 16232 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16233 dtrace_dof_error(dof, "invalid entry size"); 16234 return (-1); 16235 } 16236 16237 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16238 dtrace_dof_error(dof, "misaligned section offset"); 16239 return (-1); 16240 } 16241 16242 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16243 dtrace_dof_error(dof, "invalid entry size"); 16244 return (-1); 16245 } 16246 16247 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16248 16249 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16250 16251 /* 16252 * Take a pass through the probes to check for errors. 16253 */ 16254 for (j = 0; j < nprobes; j++) { 16255 probe = (dof_probe_t *)(uintptr_t)(daddr + 16256 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16257 16258 if (probe->dofpr_func >= str_sec->dofs_size) { 16259 dtrace_dof_error(dof, "invalid function name"); 16260 return (-1); 16261 } 16262 16263 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16264 dtrace_dof_error(dof, "function name too long"); 16265 /* 16266 * Keep going if the function name is too long. 16267 * Unlike provider and probe names, we cannot reasonably 16268 * impose restrictions on function names, since they're 16269 * a property of the code being instrumented. We will 16270 * skip this probe in dtrace_helper_provide_one(). 16271 */ 16272 } 16273 16274 if (probe->dofpr_name >= str_sec->dofs_size || 16275 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16276 dtrace_dof_error(dof, "invalid probe name"); 16277 return (-1); 16278 } 16279 16280 /* 16281 * The offset count must not wrap the index, and the offsets 16282 * must also not overflow the section's data. 16283 */ 16284 if (probe->dofpr_offidx + probe->dofpr_noffs < 16285 probe->dofpr_offidx || 16286 (probe->dofpr_offidx + probe->dofpr_noffs) * 16287 off_sec->dofs_entsize > off_sec->dofs_size) { 16288 dtrace_dof_error(dof, "invalid probe offset"); 16289 return (-1); 16290 } 16291 16292 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16293 /* 16294 * If there's no is-enabled offset section, make sure 16295 * there aren't any is-enabled offsets. Otherwise 16296 * perform the same checks as for probe offsets 16297 * (immediately above). 16298 */ 16299 if (enoff_sec == NULL) { 16300 if (probe->dofpr_enoffidx != 0 || 16301 probe->dofpr_nenoffs != 0) { 16302 dtrace_dof_error(dof, "is-enabled " 16303 "offsets with null section"); 16304 return (-1); 16305 } 16306 } else if (probe->dofpr_enoffidx + 16307 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16308 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16309 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16310 dtrace_dof_error(dof, "invalid is-enabled " 16311 "offset"); 16312 return (-1); 16313 } 16314 16315 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16316 dtrace_dof_error(dof, "zero probe and " 16317 "is-enabled offsets"); 16318 return (-1); 16319 } 16320 } else if (probe->dofpr_noffs == 0) { 16321 dtrace_dof_error(dof, "zero probe offsets"); 16322 return (-1); 16323 } 16324 16325 if (probe->dofpr_argidx + probe->dofpr_xargc < 16326 probe->dofpr_argidx || 16327 (probe->dofpr_argidx + probe->dofpr_xargc) * 16328 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16329 dtrace_dof_error(dof, "invalid args"); 16330 return (-1); 16331 } 16332 16333 typeidx = probe->dofpr_nargv; 16334 typestr = strtab + probe->dofpr_nargv; 16335 for (k = 0; k < probe->dofpr_nargc; k++) { 16336 if (typeidx >= str_sec->dofs_size) { 16337 dtrace_dof_error(dof, "bad " 16338 "native argument type"); 16339 return (-1); 16340 } 16341 16342 typesz = strlen(typestr) + 1; 16343 if (typesz > DTRACE_ARGTYPELEN) { 16344 dtrace_dof_error(dof, "native " 16345 "argument type too long"); 16346 return (-1); 16347 } 16348 typeidx += typesz; 16349 typestr += typesz; 16350 } 16351 16352 typeidx = probe->dofpr_xargv; 16353 typestr = strtab + probe->dofpr_xargv; 16354 for (k = 0; k < probe->dofpr_xargc; k++) { 16355 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16356 dtrace_dof_error(dof, "bad " 16357 "native argument index"); 16358 return (-1); 16359 } 16360 16361 if (typeidx >= str_sec->dofs_size) { 16362 dtrace_dof_error(dof, "bad " 16363 "translated argument type"); 16364 return (-1); 16365 } 16366 16367 typesz = strlen(typestr) + 1; 16368 if (typesz > DTRACE_ARGTYPELEN) { 16369 dtrace_dof_error(dof, "translated argument " 16370 "type too long"); 16371 return (-1); 16372 } 16373 16374 typeidx += typesz; 16375 typestr += typesz; 16376 } 16377 } 16378 16379 return (0); 16380 } 16381 16382 static int 16383 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16384 { 16385 dtrace_helpers_t *help; 16386 dtrace_vstate_t *vstate; 16387 dtrace_enabling_t *enab = NULL; 16388 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16389 uintptr_t daddr = (uintptr_t)dof; 16390 16391 ASSERT(MUTEX_HELD(&dtrace_lock)); 16392 16393 if ((help = p->p_dtrace_helpers) == NULL) 16394 help = dtrace_helpers_create(p); 16395 16396 vstate = &help->dthps_vstate; 16397 16398 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16399 dhp->dofhp_dof, B_FALSE)) != 0) { 16400 dtrace_dof_destroy(dof); 16401 return (rv); 16402 } 16403 16404 /* 16405 * Look for helper providers and validate their descriptions. 16406 */ 16407 for (i = 0; i < dof->dofh_secnum; i++) { 16408 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16409 dof->dofh_secoff + i * dof->dofh_secsize); 16410 16411 if (sec->dofs_type != DOF_SECT_PROVIDER) 16412 continue; 16413 16414 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16415 dtrace_enabling_destroy(enab); 16416 dtrace_dof_destroy(dof); 16417 return (-1); 16418 } 16419 16420 nprovs++; 16421 } 16422 16423 /* 16424 * Now we need to walk through the ECB descriptions in the enabling. 16425 */ 16426 for (i = 0; i < enab->dten_ndesc; i++) { 16427 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16428 dtrace_probedesc_t *desc = &ep->dted_probe; 16429 16430 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16431 continue; 16432 16433 if (strcmp(desc->dtpd_mod, "helper") != 0) 16434 continue; 16435 16436 if (strcmp(desc->dtpd_func, "ustack") != 0) 16437 continue; 16438 16439 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16440 ep, help)) != 0) { 16441 /* 16442 * Adding this helper action failed -- we are now going 16443 * to rip out the entire generation and return failure. 16444 */ 16445 (void) dtrace_helper_destroygen(help, 16446 help->dthps_generation); 16447 dtrace_enabling_destroy(enab); 16448 dtrace_dof_destroy(dof); 16449 return (-1); 16450 } 16451 16452 nhelpers++; 16453 } 16454 16455 if (nhelpers < enab->dten_ndesc) 16456 dtrace_dof_error(dof, "unmatched helpers"); 16457 16458 gen = help->dthps_generation++; 16459 dtrace_enabling_destroy(enab); 16460 16461 if (nprovs > 0) { 16462 /* 16463 * Now that this is in-kernel, we change the sense of the 16464 * members: dofhp_dof denotes the in-kernel copy of the DOF 16465 * and dofhp_addr denotes the address at user-level. 16466 */ 16467 dhp->dofhp_addr = dhp->dofhp_dof; 16468 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16469 16470 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16471 mutex_exit(&dtrace_lock); 16472 dtrace_helper_provider_register(p, help, dhp); 16473 mutex_enter(&dtrace_lock); 16474 16475 destroy = 0; 16476 } 16477 } 16478 16479 if (destroy) 16480 dtrace_dof_destroy(dof); 16481 16482 return (gen); 16483 } 16484 16485 static dtrace_helpers_t * 16486 dtrace_helpers_create(proc_t *p) 16487 { 16488 dtrace_helpers_t *help; 16489 16490 ASSERT(MUTEX_HELD(&dtrace_lock)); 16491 ASSERT(p->p_dtrace_helpers == NULL); 16492 16493 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16494 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16495 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16496 16497 p->p_dtrace_helpers = help; 16498 dtrace_helpers++; 16499 16500 return (help); 16501 } 16502 16503 #ifdef illumos 16504 static 16505 #endif 16506 void 16507 dtrace_helpers_destroy(proc_t *p) 16508 { 16509 dtrace_helpers_t *help; 16510 dtrace_vstate_t *vstate; 16511 #ifdef illumos 16512 proc_t *p = curproc; 16513 #endif 16514 int i; 16515 16516 mutex_enter(&dtrace_lock); 16517 16518 ASSERT(p->p_dtrace_helpers != NULL); 16519 ASSERT(dtrace_helpers > 0); 16520 16521 help = p->p_dtrace_helpers; 16522 vstate = &help->dthps_vstate; 16523 16524 /* 16525 * We're now going to lose the help from this process. 16526 */ 16527 p->p_dtrace_helpers = NULL; 16528 dtrace_sync(); 16529 16530 /* 16531 * Destory the helper actions. 16532 */ 16533 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16534 dtrace_helper_action_t *h, *next; 16535 16536 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16537 next = h->dtha_next; 16538 dtrace_helper_action_destroy(h, vstate); 16539 h = next; 16540 } 16541 } 16542 16543 mutex_exit(&dtrace_lock); 16544 16545 /* 16546 * Destroy the helper providers. 16547 */ 16548 if (help->dthps_maxprovs > 0) { 16549 mutex_enter(&dtrace_meta_lock); 16550 if (dtrace_meta_pid != NULL) { 16551 ASSERT(dtrace_deferred_pid == NULL); 16552 16553 for (i = 0; i < help->dthps_nprovs; i++) { 16554 dtrace_helper_provider_remove( 16555 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16556 } 16557 } else { 16558 mutex_enter(&dtrace_lock); 16559 ASSERT(help->dthps_deferred == 0 || 16560 help->dthps_next != NULL || 16561 help->dthps_prev != NULL || 16562 help == dtrace_deferred_pid); 16563 16564 /* 16565 * Remove the helper from the deferred list. 16566 */ 16567 if (help->dthps_next != NULL) 16568 help->dthps_next->dthps_prev = help->dthps_prev; 16569 if (help->dthps_prev != NULL) 16570 help->dthps_prev->dthps_next = help->dthps_next; 16571 if (dtrace_deferred_pid == help) { 16572 dtrace_deferred_pid = help->dthps_next; 16573 ASSERT(help->dthps_prev == NULL); 16574 } 16575 16576 mutex_exit(&dtrace_lock); 16577 } 16578 16579 mutex_exit(&dtrace_meta_lock); 16580 16581 for (i = 0; i < help->dthps_nprovs; i++) { 16582 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16583 } 16584 16585 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16586 sizeof (dtrace_helper_provider_t *)); 16587 } 16588 16589 mutex_enter(&dtrace_lock); 16590 16591 dtrace_vstate_fini(&help->dthps_vstate); 16592 kmem_free(help->dthps_actions, 16593 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16594 kmem_free(help, sizeof (dtrace_helpers_t)); 16595 16596 --dtrace_helpers; 16597 mutex_exit(&dtrace_lock); 16598 } 16599 16600 #ifdef illumos 16601 static 16602 #endif 16603 void 16604 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16605 { 16606 dtrace_helpers_t *help, *newhelp; 16607 dtrace_helper_action_t *helper, *new, *last; 16608 dtrace_difo_t *dp; 16609 dtrace_vstate_t *vstate; 16610 int i, j, sz, hasprovs = 0; 16611 16612 mutex_enter(&dtrace_lock); 16613 ASSERT(from->p_dtrace_helpers != NULL); 16614 ASSERT(dtrace_helpers > 0); 16615 16616 help = from->p_dtrace_helpers; 16617 newhelp = dtrace_helpers_create(to); 16618 ASSERT(to->p_dtrace_helpers != NULL); 16619 16620 newhelp->dthps_generation = help->dthps_generation; 16621 vstate = &newhelp->dthps_vstate; 16622 16623 /* 16624 * Duplicate the helper actions. 16625 */ 16626 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16627 if ((helper = help->dthps_actions[i]) == NULL) 16628 continue; 16629 16630 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16631 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16632 KM_SLEEP); 16633 new->dtha_generation = helper->dtha_generation; 16634 16635 if ((dp = helper->dtha_predicate) != NULL) { 16636 dp = dtrace_difo_duplicate(dp, vstate); 16637 new->dtha_predicate = dp; 16638 } 16639 16640 new->dtha_nactions = helper->dtha_nactions; 16641 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16642 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16643 16644 for (j = 0; j < new->dtha_nactions; j++) { 16645 dtrace_difo_t *dp = helper->dtha_actions[j]; 16646 16647 ASSERT(dp != NULL); 16648 dp = dtrace_difo_duplicate(dp, vstate); 16649 new->dtha_actions[j] = dp; 16650 } 16651 16652 if (last != NULL) { 16653 last->dtha_next = new; 16654 } else { 16655 newhelp->dthps_actions[i] = new; 16656 } 16657 16658 last = new; 16659 } 16660 } 16661 16662 /* 16663 * Duplicate the helper providers and register them with the 16664 * DTrace framework. 16665 */ 16666 if (help->dthps_nprovs > 0) { 16667 newhelp->dthps_nprovs = help->dthps_nprovs; 16668 newhelp->dthps_maxprovs = help->dthps_nprovs; 16669 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16670 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16671 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16672 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16673 newhelp->dthps_provs[i]->dthp_ref++; 16674 } 16675 16676 hasprovs = 1; 16677 } 16678 16679 mutex_exit(&dtrace_lock); 16680 16681 if (hasprovs) 16682 dtrace_helper_provider_register(to, newhelp, NULL); 16683 } 16684 16685 /* 16686 * DTrace Hook Functions 16687 */ 16688 static void 16689 dtrace_module_loaded(modctl_t *ctl) 16690 { 16691 dtrace_provider_t *prv; 16692 16693 mutex_enter(&dtrace_provider_lock); 16694 #ifdef illumos 16695 mutex_enter(&mod_lock); 16696 #endif 16697 16698 #ifdef illumos 16699 ASSERT(ctl->mod_busy); 16700 #endif 16701 16702 /* 16703 * We're going to call each providers per-module provide operation 16704 * specifying only this module. 16705 */ 16706 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16707 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16708 16709 #ifdef illumos 16710 mutex_exit(&mod_lock); 16711 #endif 16712 mutex_exit(&dtrace_provider_lock); 16713 16714 /* 16715 * If we have any retained enablings, we need to match against them. 16716 * Enabling probes requires that cpu_lock be held, and we cannot hold 16717 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16718 * module. (In particular, this happens when loading scheduling 16719 * classes.) So if we have any retained enablings, we need to dispatch 16720 * our task queue to do the match for us. 16721 */ 16722 mutex_enter(&dtrace_lock); 16723 16724 if (dtrace_retained == NULL) { 16725 mutex_exit(&dtrace_lock); 16726 return; 16727 } 16728 16729 (void) taskq_dispatch(dtrace_taskq, 16730 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16731 16732 mutex_exit(&dtrace_lock); 16733 16734 /* 16735 * And now, for a little heuristic sleaze: in general, we want to 16736 * match modules as soon as they load. However, we cannot guarantee 16737 * this, because it would lead us to the lock ordering violation 16738 * outlined above. The common case, of course, is that cpu_lock is 16739 * _not_ held -- so we delay here for a clock tick, hoping that that's 16740 * long enough for the task queue to do its work. If it's not, it's 16741 * not a serious problem -- it just means that the module that we 16742 * just loaded may not be immediately instrumentable. 16743 */ 16744 delay(1); 16745 } 16746 16747 static void 16748 #ifdef illumos 16749 dtrace_module_unloaded(modctl_t *ctl) 16750 #else 16751 dtrace_module_unloaded(modctl_t *ctl, int *error) 16752 #endif 16753 { 16754 dtrace_probe_t template, *probe, *first, *next; 16755 dtrace_provider_t *prov; 16756 #ifndef illumos 16757 char modname[DTRACE_MODNAMELEN]; 16758 size_t len; 16759 #endif 16760 16761 #ifdef illumos 16762 template.dtpr_mod = ctl->mod_modname; 16763 #else 16764 /* Handle the fact that ctl->filename may end in ".ko". */ 16765 strlcpy(modname, ctl->filename, sizeof(modname)); 16766 len = strlen(ctl->filename); 16767 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16768 modname[len - 3] = '\0'; 16769 template.dtpr_mod = modname; 16770 #endif 16771 16772 mutex_enter(&dtrace_provider_lock); 16773 #ifdef illumos 16774 mutex_enter(&mod_lock); 16775 #endif 16776 mutex_enter(&dtrace_lock); 16777 16778 #ifndef illumos 16779 if (ctl->nenabled > 0) { 16780 /* Don't allow unloads if a probe is enabled. */ 16781 mutex_exit(&dtrace_provider_lock); 16782 mutex_exit(&dtrace_lock); 16783 *error = -1; 16784 printf( 16785 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16786 return; 16787 } 16788 #endif 16789 16790 if (dtrace_bymod == NULL) { 16791 /* 16792 * The DTrace module is loaded (obviously) but not attached; 16793 * we don't have any work to do. 16794 */ 16795 mutex_exit(&dtrace_provider_lock); 16796 #ifdef illumos 16797 mutex_exit(&mod_lock); 16798 #endif 16799 mutex_exit(&dtrace_lock); 16800 return; 16801 } 16802 16803 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16804 probe != NULL; probe = probe->dtpr_nextmod) { 16805 if (probe->dtpr_ecb != NULL) { 16806 mutex_exit(&dtrace_provider_lock); 16807 #ifdef illumos 16808 mutex_exit(&mod_lock); 16809 #endif 16810 mutex_exit(&dtrace_lock); 16811 16812 /* 16813 * This shouldn't _actually_ be possible -- we're 16814 * unloading a module that has an enabled probe in it. 16815 * (It's normally up to the provider to make sure that 16816 * this can't happen.) However, because dtps_enable() 16817 * doesn't have a failure mode, there can be an 16818 * enable/unload race. Upshot: we don't want to 16819 * assert, but we're not going to disable the 16820 * probe, either. 16821 */ 16822 if (dtrace_err_verbose) { 16823 #ifdef illumos 16824 cmn_err(CE_WARN, "unloaded module '%s' had " 16825 "enabled probes", ctl->mod_modname); 16826 #else 16827 cmn_err(CE_WARN, "unloaded module '%s' had " 16828 "enabled probes", modname); 16829 #endif 16830 } 16831 16832 return; 16833 } 16834 } 16835 16836 probe = first; 16837 16838 for (first = NULL; probe != NULL; probe = next) { 16839 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16840 16841 dtrace_probes[probe->dtpr_id - 1] = NULL; 16842 16843 next = probe->dtpr_nextmod; 16844 dtrace_hash_remove(dtrace_bymod, probe); 16845 dtrace_hash_remove(dtrace_byfunc, probe); 16846 dtrace_hash_remove(dtrace_byname, probe); 16847 16848 if (first == NULL) { 16849 first = probe; 16850 probe->dtpr_nextmod = NULL; 16851 } else { 16852 probe->dtpr_nextmod = first; 16853 first = probe; 16854 } 16855 } 16856 16857 /* 16858 * We've removed all of the module's probes from the hash chains and 16859 * from the probe array. Now issue a dtrace_sync() to be sure that 16860 * everyone has cleared out from any probe array processing. 16861 */ 16862 dtrace_sync(); 16863 16864 for (probe = first; probe != NULL; probe = first) { 16865 first = probe->dtpr_nextmod; 16866 prov = probe->dtpr_provider; 16867 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16868 probe->dtpr_arg); 16869 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16870 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16871 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16872 #ifdef illumos 16873 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16874 #else 16875 free_unr(dtrace_arena, probe->dtpr_id); 16876 #endif 16877 kmem_free(probe, sizeof (dtrace_probe_t)); 16878 } 16879 16880 mutex_exit(&dtrace_lock); 16881 #ifdef illumos 16882 mutex_exit(&mod_lock); 16883 #endif 16884 mutex_exit(&dtrace_provider_lock); 16885 } 16886 16887 #ifndef illumos 16888 static void 16889 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16890 { 16891 16892 dtrace_module_loaded(lf); 16893 } 16894 16895 static void 16896 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16897 { 16898 16899 if (*error != 0) 16900 /* We already have an error, so don't do anything. */ 16901 return; 16902 dtrace_module_unloaded(lf, error); 16903 } 16904 #endif 16905 16906 #ifdef illumos 16907 static void 16908 dtrace_suspend(void) 16909 { 16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16911 } 16912 16913 static void 16914 dtrace_resume(void) 16915 { 16916 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16917 } 16918 #endif 16919 16920 static int 16921 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16922 { 16923 ASSERT(MUTEX_HELD(&cpu_lock)); 16924 mutex_enter(&dtrace_lock); 16925 16926 switch (what) { 16927 case CPU_CONFIG: { 16928 dtrace_state_t *state; 16929 dtrace_optval_t *opt, rs, c; 16930 16931 /* 16932 * For now, we only allocate a new buffer for anonymous state. 16933 */ 16934 if ((state = dtrace_anon.dta_state) == NULL) 16935 break; 16936 16937 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16938 break; 16939 16940 opt = state->dts_options; 16941 c = opt[DTRACEOPT_CPU]; 16942 16943 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16944 break; 16945 16946 /* 16947 * Regardless of what the actual policy is, we're going to 16948 * temporarily set our resize policy to be manual. We're 16949 * also going to temporarily set our CPU option to denote 16950 * the newly configured CPU. 16951 */ 16952 rs = opt[DTRACEOPT_BUFRESIZE]; 16953 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16954 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16955 16956 (void) dtrace_state_buffers(state); 16957 16958 opt[DTRACEOPT_BUFRESIZE] = rs; 16959 opt[DTRACEOPT_CPU] = c; 16960 16961 break; 16962 } 16963 16964 case CPU_UNCONFIG: 16965 /* 16966 * We don't free the buffer in the CPU_UNCONFIG case. (The 16967 * buffer will be freed when the consumer exits.) 16968 */ 16969 break; 16970 16971 default: 16972 break; 16973 } 16974 16975 mutex_exit(&dtrace_lock); 16976 return (0); 16977 } 16978 16979 #ifdef illumos 16980 static void 16981 dtrace_cpu_setup_initial(processorid_t cpu) 16982 { 16983 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16984 } 16985 #endif 16986 16987 static void 16988 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16989 { 16990 if (dtrace_toxranges >= dtrace_toxranges_max) { 16991 int osize, nsize; 16992 dtrace_toxrange_t *range; 16993 16994 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16995 16996 if (osize == 0) { 16997 ASSERT(dtrace_toxrange == NULL); 16998 ASSERT(dtrace_toxranges_max == 0); 16999 dtrace_toxranges_max = 1; 17000 } else { 17001 dtrace_toxranges_max <<= 1; 17002 } 17003 17004 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 17005 range = kmem_zalloc(nsize, KM_SLEEP); 17006 17007 if (dtrace_toxrange != NULL) { 17008 ASSERT(osize != 0); 17009 bcopy(dtrace_toxrange, range, osize); 17010 kmem_free(dtrace_toxrange, osize); 17011 } 17012 17013 dtrace_toxrange = range; 17014 } 17015 17016 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17017 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17018 17019 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17020 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17021 dtrace_toxranges++; 17022 } 17023 17024 static void 17025 dtrace_getf_barrier(void) 17026 { 17027 #ifdef illumos 17028 /* 17029 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17030 * that contain calls to getf(), this routine will be called on every 17031 * closef() before either the underlying vnode is released or the 17032 * file_t itself is freed. By the time we are here, it is essential 17033 * that the file_t can no longer be accessed from a call to getf() 17034 * in probe context -- that assures that a dtrace_sync() can be used 17035 * to clear out any enablings referring to the old structures. 17036 */ 17037 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17038 kcred->cr_zone->zone_dtrace_getf != 0) 17039 dtrace_sync(); 17040 #endif 17041 } 17042 17043 /* 17044 * DTrace Driver Cookbook Functions 17045 */ 17046 #ifdef illumos 17047 /*ARGSUSED*/ 17048 static int 17049 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17050 { 17051 dtrace_provider_id_t id; 17052 dtrace_state_t *state = NULL; 17053 dtrace_enabling_t *enab; 17054 17055 mutex_enter(&cpu_lock); 17056 mutex_enter(&dtrace_provider_lock); 17057 mutex_enter(&dtrace_lock); 17058 17059 if (ddi_soft_state_init(&dtrace_softstate, 17060 sizeof (dtrace_state_t), 0) != 0) { 17061 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17062 mutex_exit(&cpu_lock); 17063 mutex_exit(&dtrace_provider_lock); 17064 mutex_exit(&dtrace_lock); 17065 return (DDI_FAILURE); 17066 } 17067 17068 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17069 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17070 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17071 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17072 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17073 ddi_remove_minor_node(devi, NULL); 17074 ddi_soft_state_fini(&dtrace_softstate); 17075 mutex_exit(&cpu_lock); 17076 mutex_exit(&dtrace_provider_lock); 17077 mutex_exit(&dtrace_lock); 17078 return (DDI_FAILURE); 17079 } 17080 17081 ddi_report_dev(devi); 17082 dtrace_devi = devi; 17083 17084 dtrace_modload = dtrace_module_loaded; 17085 dtrace_modunload = dtrace_module_unloaded; 17086 dtrace_cpu_init = dtrace_cpu_setup_initial; 17087 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17088 dtrace_helpers_fork = dtrace_helpers_duplicate; 17089 dtrace_cpustart_init = dtrace_suspend; 17090 dtrace_cpustart_fini = dtrace_resume; 17091 dtrace_debugger_init = dtrace_suspend; 17092 dtrace_debugger_fini = dtrace_resume; 17093 17094 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17095 17096 ASSERT(MUTEX_HELD(&cpu_lock)); 17097 17098 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17099 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17100 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17101 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17102 VM_SLEEP | VMC_IDENTIFIER); 17103 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17104 1, INT_MAX, 0); 17105 17106 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17107 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17108 NULL, NULL, NULL, NULL, NULL, 0); 17109 17110 ASSERT(MUTEX_HELD(&cpu_lock)); 17111 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17112 offsetof(dtrace_probe_t, dtpr_nextmod), 17113 offsetof(dtrace_probe_t, dtpr_prevmod)); 17114 17115 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17116 offsetof(dtrace_probe_t, dtpr_nextfunc), 17117 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17118 17119 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17120 offsetof(dtrace_probe_t, dtpr_nextname), 17121 offsetof(dtrace_probe_t, dtpr_prevname)); 17122 17123 if (dtrace_retain_max < 1) { 17124 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17125 "setting to 1", dtrace_retain_max); 17126 dtrace_retain_max = 1; 17127 } 17128 17129 /* 17130 * Now discover our toxic ranges. 17131 */ 17132 dtrace_toxic_ranges(dtrace_toxrange_add); 17133 17134 /* 17135 * Before we register ourselves as a provider to our own framework, 17136 * we would like to assert that dtrace_provider is NULL -- but that's 17137 * not true if we were loaded as a dependency of a DTrace provider. 17138 * Once we've registered, we can assert that dtrace_provider is our 17139 * pseudo provider. 17140 */ 17141 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17142 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17143 17144 ASSERT(dtrace_provider != NULL); 17145 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17146 17147 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17148 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17149 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17150 dtrace_provider, NULL, NULL, "END", 0, NULL); 17151 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17152 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17153 17154 dtrace_anon_property(); 17155 mutex_exit(&cpu_lock); 17156 17157 /* 17158 * If there are already providers, we must ask them to provide their 17159 * probes, and then match any anonymous enabling against them. Note 17160 * that there should be no other retained enablings at this time: 17161 * the only retained enablings at this time should be the anonymous 17162 * enabling. 17163 */ 17164 if (dtrace_anon.dta_enabling != NULL) { 17165 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17166 17167 dtrace_enabling_provide(NULL); 17168 state = dtrace_anon.dta_state; 17169 17170 /* 17171 * We couldn't hold cpu_lock across the above call to 17172 * dtrace_enabling_provide(), but we must hold it to actually 17173 * enable the probes. We have to drop all of our locks, pick 17174 * up cpu_lock, and regain our locks before matching the 17175 * retained anonymous enabling. 17176 */ 17177 mutex_exit(&dtrace_lock); 17178 mutex_exit(&dtrace_provider_lock); 17179 17180 mutex_enter(&cpu_lock); 17181 mutex_enter(&dtrace_provider_lock); 17182 mutex_enter(&dtrace_lock); 17183 17184 if ((enab = dtrace_anon.dta_enabling) != NULL) 17185 (void) dtrace_enabling_match(enab, NULL); 17186 17187 mutex_exit(&cpu_lock); 17188 } 17189 17190 mutex_exit(&dtrace_lock); 17191 mutex_exit(&dtrace_provider_lock); 17192 17193 if (state != NULL) { 17194 /* 17195 * If we created any anonymous state, set it going now. 17196 */ 17197 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17198 } 17199 17200 return (DDI_SUCCESS); 17201 } 17202 #endif /* illumos */ 17203 17204 #ifndef illumos 17205 static void dtrace_dtr(void *); 17206 #endif 17207 17208 /*ARGSUSED*/ 17209 static int 17210 #ifdef illumos 17211 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17212 #else 17213 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17214 #endif 17215 { 17216 dtrace_state_t *state; 17217 uint32_t priv; 17218 uid_t uid; 17219 zoneid_t zoneid; 17220 17221 #ifdef illumos 17222 if (getminor(*devp) == DTRACEMNRN_HELPER) 17223 return (0); 17224 17225 /* 17226 * If this wasn't an open with the "helper" minor, then it must be 17227 * the "dtrace" minor. 17228 */ 17229 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17230 return (ENXIO); 17231 #else 17232 cred_t *cred_p = NULL; 17233 cred_p = dev->si_cred; 17234 17235 /* 17236 * If no DTRACE_PRIV_* bits are set in the credential, then the 17237 * caller lacks sufficient permission to do anything with DTrace. 17238 */ 17239 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17240 if (priv == DTRACE_PRIV_NONE) { 17241 #endif 17242 17243 return (EACCES); 17244 } 17245 17246 /* 17247 * Ask all providers to provide all their probes. 17248 */ 17249 mutex_enter(&dtrace_provider_lock); 17250 dtrace_probe_provide(NULL, NULL); 17251 mutex_exit(&dtrace_provider_lock); 17252 17253 mutex_enter(&cpu_lock); 17254 mutex_enter(&dtrace_lock); 17255 dtrace_opens++; 17256 dtrace_membar_producer(); 17257 17258 #ifdef illumos 17259 /* 17260 * If the kernel debugger is active (that is, if the kernel debugger 17261 * modified text in some way), we won't allow the open. 17262 */ 17263 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17264 dtrace_opens--; 17265 mutex_exit(&cpu_lock); 17266 mutex_exit(&dtrace_lock); 17267 return (EBUSY); 17268 } 17269 17270 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17271 /* 17272 * If DTrace helper tracing is enabled, we need to allocate the 17273 * trace buffer and initialize the values. 17274 */ 17275 dtrace_helptrace_buffer = 17276 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17277 dtrace_helptrace_next = 0; 17278 dtrace_helptrace_wrapped = 0; 17279 dtrace_helptrace_enable = 0; 17280 } 17281 17282 state = dtrace_state_create(devp, cred_p); 17283 #else 17284 state = dtrace_state_create(dev, NULL); 17285 devfs_set_cdevpriv(state, dtrace_dtr); 17286 #endif 17287 17288 mutex_exit(&cpu_lock); 17289 17290 if (state == NULL) { 17291 #ifdef illumos 17292 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17293 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17294 #else 17295 --dtrace_opens; 17296 #endif 17297 mutex_exit(&dtrace_lock); 17298 return (EAGAIN); 17299 } 17300 17301 mutex_exit(&dtrace_lock); 17302 17303 return (0); 17304 } 17305 17306 /*ARGSUSED*/ 17307 #ifdef illumos 17308 static int 17309 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17310 #else 17311 static void 17312 dtrace_dtr(void *data) 17313 #endif 17314 { 17315 #ifdef illumos 17316 minor_t minor = getminor(dev); 17317 dtrace_state_t *state; 17318 #endif 17319 dtrace_helptrace_t *buf = NULL; 17320 17321 #ifdef illumos 17322 if (minor == DTRACEMNRN_HELPER) 17323 return (0); 17324 17325 state = ddi_get_soft_state(dtrace_softstate, minor); 17326 #else 17327 dtrace_state_t *state = data; 17328 #endif 17329 17330 mutex_enter(&cpu_lock); 17331 mutex_enter(&dtrace_lock); 17332 17333 #ifdef illumos 17334 if (state->dts_anon) 17335 #else 17336 if (state != NULL && state->dts_anon) 17337 #endif 17338 { 17339 /* 17340 * There is anonymous state. Destroy that first. 17341 */ 17342 ASSERT(dtrace_anon.dta_state == NULL); 17343 dtrace_state_destroy(state->dts_anon); 17344 } 17345 17346 if (dtrace_helptrace_disable) { 17347 /* 17348 * If we have been told to disable helper tracing, set the 17349 * buffer to NULL before calling into dtrace_state_destroy(); 17350 * we take advantage of its dtrace_sync() to know that no 17351 * CPU is in probe context with enabled helper tracing 17352 * after it returns. 17353 */ 17354 buf = dtrace_helptrace_buffer; 17355 dtrace_helptrace_buffer = NULL; 17356 } 17357 17358 #ifdef illumos 17359 dtrace_state_destroy(state); 17360 #else 17361 if (state != NULL) { 17362 dtrace_state_destroy(state); 17363 kmem_free(state, 0); 17364 } 17365 #endif 17366 ASSERT(dtrace_opens > 0); 17367 17368 #ifdef illumos 17369 /* 17370 * Only relinquish control of the kernel debugger interface when there 17371 * are no consumers and no anonymous enablings. 17372 */ 17373 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17374 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17375 #else 17376 --dtrace_opens; 17377 #endif 17378 17379 if (buf != NULL) { 17380 kmem_free(buf, dtrace_helptrace_bufsize); 17381 dtrace_helptrace_disable = 0; 17382 } 17383 17384 mutex_exit(&dtrace_lock); 17385 mutex_exit(&cpu_lock); 17386 17387 #ifdef illumos 17388 return (0); 17389 #endif 17390 } 17391 17392 #ifdef illumos 17393 /*ARGSUSED*/ 17394 static int 17395 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17396 { 17397 int rval; 17398 dof_helper_t help, *dhp = NULL; 17399 17400 switch (cmd) { 17401 case DTRACEHIOC_ADDDOF: 17402 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17403 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17404 return (EFAULT); 17405 } 17406 17407 dhp = &help; 17408 arg = (intptr_t)help.dofhp_dof; 17409 /*FALLTHROUGH*/ 17410 17411 case DTRACEHIOC_ADD: { 17412 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17413 17414 if (dof == NULL) 17415 return (rval); 17416 17417 mutex_enter(&dtrace_lock); 17418 17419 /* 17420 * dtrace_helper_slurp() takes responsibility for the dof -- 17421 * it may free it now or it may save it and free it later. 17422 */ 17423 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17424 *rv = rval; 17425 rval = 0; 17426 } else { 17427 rval = EINVAL; 17428 } 17429 17430 mutex_exit(&dtrace_lock); 17431 return (rval); 17432 } 17433 17434 case DTRACEHIOC_REMOVE: { 17435 mutex_enter(&dtrace_lock); 17436 rval = dtrace_helper_destroygen(NULL, arg); 17437 mutex_exit(&dtrace_lock); 17438 17439 return (rval); 17440 } 17441 17442 default: 17443 break; 17444 } 17445 17446 return (ENOTTY); 17447 } 17448 17449 /*ARGSUSED*/ 17450 static int 17451 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17452 { 17453 minor_t minor = getminor(dev); 17454 dtrace_state_t *state; 17455 int rval; 17456 17457 if (minor == DTRACEMNRN_HELPER) 17458 return (dtrace_ioctl_helper(cmd, arg, rv)); 17459 17460 state = ddi_get_soft_state(dtrace_softstate, minor); 17461 17462 if (state->dts_anon) { 17463 ASSERT(dtrace_anon.dta_state == NULL); 17464 state = state->dts_anon; 17465 } 17466 17467 switch (cmd) { 17468 case DTRACEIOC_PROVIDER: { 17469 dtrace_providerdesc_t pvd; 17470 dtrace_provider_t *pvp; 17471 17472 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17473 return (EFAULT); 17474 17475 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17476 mutex_enter(&dtrace_provider_lock); 17477 17478 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17479 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17480 break; 17481 } 17482 17483 mutex_exit(&dtrace_provider_lock); 17484 17485 if (pvp == NULL) 17486 return (ESRCH); 17487 17488 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17489 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17490 17491 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17492 return (EFAULT); 17493 17494 return (0); 17495 } 17496 17497 case DTRACEIOC_EPROBE: { 17498 dtrace_eprobedesc_t epdesc; 17499 dtrace_ecb_t *ecb; 17500 dtrace_action_t *act; 17501 void *buf; 17502 size_t size; 17503 uintptr_t dest; 17504 int nrecs; 17505 17506 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17507 return (EFAULT); 17508 17509 mutex_enter(&dtrace_lock); 17510 17511 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17512 mutex_exit(&dtrace_lock); 17513 return (EINVAL); 17514 } 17515 17516 if (ecb->dte_probe == NULL) { 17517 mutex_exit(&dtrace_lock); 17518 return (EINVAL); 17519 } 17520 17521 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17522 epdesc.dtepd_uarg = ecb->dte_uarg; 17523 epdesc.dtepd_size = ecb->dte_size; 17524 17525 nrecs = epdesc.dtepd_nrecs; 17526 epdesc.dtepd_nrecs = 0; 17527 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17528 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17529 continue; 17530 17531 epdesc.dtepd_nrecs++; 17532 } 17533 17534 /* 17535 * Now that we have the size, we need to allocate a temporary 17536 * buffer in which to store the complete description. We need 17537 * the temporary buffer to be able to drop dtrace_lock() 17538 * across the copyout(), below. 17539 */ 17540 size = sizeof (dtrace_eprobedesc_t) + 17541 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17542 17543 buf = kmem_alloc(size, KM_SLEEP); 17544 dest = (uintptr_t)buf; 17545 17546 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17547 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17548 17549 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17550 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17551 continue; 17552 17553 if (nrecs-- == 0) 17554 break; 17555 17556 bcopy(&act->dta_rec, (void *)dest, 17557 sizeof (dtrace_recdesc_t)); 17558 dest += sizeof (dtrace_recdesc_t); 17559 } 17560 17561 mutex_exit(&dtrace_lock); 17562 17563 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17564 kmem_free(buf, size); 17565 return (EFAULT); 17566 } 17567 17568 kmem_free(buf, size); 17569 return (0); 17570 } 17571 17572 case DTRACEIOC_AGGDESC: { 17573 dtrace_aggdesc_t aggdesc; 17574 dtrace_action_t *act; 17575 dtrace_aggregation_t *agg; 17576 int nrecs; 17577 uint32_t offs; 17578 dtrace_recdesc_t *lrec; 17579 void *buf; 17580 size_t size; 17581 uintptr_t dest; 17582 17583 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17584 return (EFAULT); 17585 17586 mutex_enter(&dtrace_lock); 17587 17588 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17589 mutex_exit(&dtrace_lock); 17590 return (EINVAL); 17591 } 17592 17593 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17594 17595 nrecs = aggdesc.dtagd_nrecs; 17596 aggdesc.dtagd_nrecs = 0; 17597 17598 offs = agg->dtag_base; 17599 lrec = &agg->dtag_action.dta_rec; 17600 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17601 17602 for (act = agg->dtag_first; ; act = act->dta_next) { 17603 ASSERT(act->dta_intuple || 17604 DTRACEACT_ISAGG(act->dta_kind)); 17605 17606 /* 17607 * If this action has a record size of zero, it 17608 * denotes an argument to the aggregating action. 17609 * Because the presence of this record doesn't (or 17610 * shouldn't) affect the way the data is interpreted, 17611 * we don't copy it out to save user-level the 17612 * confusion of dealing with a zero-length record. 17613 */ 17614 if (act->dta_rec.dtrd_size == 0) { 17615 ASSERT(agg->dtag_hasarg); 17616 continue; 17617 } 17618 17619 aggdesc.dtagd_nrecs++; 17620 17621 if (act == &agg->dtag_action) 17622 break; 17623 } 17624 17625 /* 17626 * Now that we have the size, we need to allocate a temporary 17627 * buffer in which to store the complete description. We need 17628 * the temporary buffer to be able to drop dtrace_lock() 17629 * across the copyout(), below. 17630 */ 17631 size = sizeof (dtrace_aggdesc_t) + 17632 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17633 17634 buf = kmem_alloc(size, KM_SLEEP); 17635 dest = (uintptr_t)buf; 17636 17637 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17638 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17639 17640 for (act = agg->dtag_first; ; act = act->dta_next) { 17641 dtrace_recdesc_t rec = act->dta_rec; 17642 17643 /* 17644 * See the comment in the above loop for why we pass 17645 * over zero-length records. 17646 */ 17647 if (rec.dtrd_size == 0) { 17648 ASSERT(agg->dtag_hasarg); 17649 continue; 17650 } 17651 17652 if (nrecs-- == 0) 17653 break; 17654 17655 rec.dtrd_offset -= offs; 17656 bcopy(&rec, (void *)dest, sizeof (rec)); 17657 dest += sizeof (dtrace_recdesc_t); 17658 17659 if (act == &agg->dtag_action) 17660 break; 17661 } 17662 17663 mutex_exit(&dtrace_lock); 17664 17665 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17666 kmem_free(buf, size); 17667 return (EFAULT); 17668 } 17669 17670 kmem_free(buf, size); 17671 return (0); 17672 } 17673 17674 case DTRACEIOC_ENABLE: { 17675 dof_hdr_t *dof; 17676 dtrace_enabling_t *enab = NULL; 17677 dtrace_vstate_t *vstate; 17678 int err = 0; 17679 17680 *rv = 0; 17681 17682 /* 17683 * If a NULL argument has been passed, we take this as our 17684 * cue to reevaluate our enablings. 17685 */ 17686 if (arg == NULL) { 17687 dtrace_enabling_matchall(); 17688 17689 return (0); 17690 } 17691 17692 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17693 return (rval); 17694 17695 mutex_enter(&cpu_lock); 17696 mutex_enter(&dtrace_lock); 17697 vstate = &state->dts_vstate; 17698 17699 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17700 mutex_exit(&dtrace_lock); 17701 mutex_exit(&cpu_lock); 17702 dtrace_dof_destroy(dof); 17703 return (EBUSY); 17704 } 17705 17706 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17707 mutex_exit(&dtrace_lock); 17708 mutex_exit(&cpu_lock); 17709 dtrace_dof_destroy(dof); 17710 return (EINVAL); 17711 } 17712 17713 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17714 dtrace_enabling_destroy(enab); 17715 mutex_exit(&dtrace_lock); 17716 mutex_exit(&cpu_lock); 17717 dtrace_dof_destroy(dof); 17718 return (rval); 17719 } 17720 17721 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17722 err = dtrace_enabling_retain(enab); 17723 } else { 17724 dtrace_enabling_destroy(enab); 17725 } 17726 17727 mutex_exit(&cpu_lock); 17728 mutex_exit(&dtrace_lock); 17729 dtrace_dof_destroy(dof); 17730 17731 return (err); 17732 } 17733 17734 case DTRACEIOC_REPLICATE: { 17735 dtrace_repldesc_t desc; 17736 dtrace_probedesc_t *match = &desc.dtrpd_match; 17737 dtrace_probedesc_t *create = &desc.dtrpd_create; 17738 int err; 17739 17740 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17741 return (EFAULT); 17742 17743 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17744 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17745 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17746 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17747 17748 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17749 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17750 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17751 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17752 17753 mutex_enter(&dtrace_lock); 17754 err = dtrace_enabling_replicate(state, match, create); 17755 mutex_exit(&dtrace_lock); 17756 17757 return (err); 17758 } 17759 17760 case DTRACEIOC_PROBEMATCH: 17761 case DTRACEIOC_PROBES: { 17762 dtrace_probe_t *probe = NULL; 17763 dtrace_probedesc_t desc; 17764 dtrace_probekey_t pkey; 17765 dtrace_id_t i; 17766 int m = 0; 17767 uint32_t priv; 17768 uid_t uid; 17769 zoneid_t zoneid; 17770 17771 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17772 return (EFAULT); 17773 17774 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17775 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17776 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17777 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17778 17779 /* 17780 * Before we attempt to match this probe, we want to give 17781 * all providers the opportunity to provide it. 17782 */ 17783 if (desc.dtpd_id == DTRACE_IDNONE) { 17784 mutex_enter(&dtrace_provider_lock); 17785 dtrace_probe_provide(&desc, NULL); 17786 mutex_exit(&dtrace_provider_lock); 17787 desc.dtpd_id++; 17788 } 17789 17790 if (cmd == DTRACEIOC_PROBEMATCH) { 17791 dtrace_probekey(&desc, &pkey); 17792 pkey.dtpk_id = DTRACE_IDNONE; 17793 } 17794 17795 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17796 17797 mutex_enter(&dtrace_lock); 17798 17799 if (cmd == DTRACEIOC_PROBEMATCH) { 17800 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17801 if ((probe = dtrace_probes[i - 1]) != NULL && 17802 (m = dtrace_match_probe(probe, &pkey, 17803 priv, uid, zoneid)) != 0) 17804 break; 17805 } 17806 17807 if (m < 0) { 17808 mutex_exit(&dtrace_lock); 17809 return (EINVAL); 17810 } 17811 17812 } else { 17813 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17814 if ((probe = dtrace_probes[i - 1]) != NULL && 17815 dtrace_match_priv(probe, priv, uid, zoneid)) 17816 break; 17817 } 17818 } 17819 17820 if (probe == NULL) { 17821 mutex_exit(&dtrace_lock); 17822 return (ESRCH); 17823 } 17824 17825 dtrace_probe_description(probe, &desc); 17826 mutex_exit(&dtrace_lock); 17827 17828 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17829 return (EFAULT); 17830 17831 return (0); 17832 } 17833 17834 case DTRACEIOC_PROBEARG: { 17835 dtrace_argdesc_t desc; 17836 dtrace_probe_t *probe; 17837 dtrace_provider_t *prov; 17838 17839 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17840 return (EFAULT); 17841 17842 if (desc.dtargd_id == DTRACE_IDNONE) 17843 return (EINVAL); 17844 17845 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17846 return (EINVAL); 17847 17848 mutex_enter(&dtrace_provider_lock); 17849 mutex_enter(&mod_lock); 17850 mutex_enter(&dtrace_lock); 17851 17852 if (desc.dtargd_id > dtrace_nprobes) { 17853 mutex_exit(&dtrace_lock); 17854 mutex_exit(&mod_lock); 17855 mutex_exit(&dtrace_provider_lock); 17856 return (EINVAL); 17857 } 17858 17859 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17860 mutex_exit(&dtrace_lock); 17861 mutex_exit(&mod_lock); 17862 mutex_exit(&dtrace_provider_lock); 17863 return (EINVAL); 17864 } 17865 17866 mutex_exit(&dtrace_lock); 17867 17868 prov = probe->dtpr_provider; 17869 17870 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17871 /* 17872 * There isn't any typed information for this probe. 17873 * Set the argument number to DTRACE_ARGNONE. 17874 */ 17875 desc.dtargd_ndx = DTRACE_ARGNONE; 17876 } else { 17877 desc.dtargd_native[0] = '\0'; 17878 desc.dtargd_xlate[0] = '\0'; 17879 desc.dtargd_mapping = desc.dtargd_ndx; 17880 17881 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17882 probe->dtpr_id, probe->dtpr_arg, &desc); 17883 } 17884 17885 mutex_exit(&mod_lock); 17886 mutex_exit(&dtrace_provider_lock); 17887 17888 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17889 return (EFAULT); 17890 17891 return (0); 17892 } 17893 17894 case DTRACEIOC_GO: { 17895 processorid_t cpuid; 17896 rval = dtrace_state_go(state, &cpuid); 17897 17898 if (rval != 0) 17899 return (rval); 17900 17901 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17902 return (EFAULT); 17903 17904 return (0); 17905 } 17906 17907 case DTRACEIOC_STOP: { 17908 processorid_t cpuid; 17909 17910 mutex_enter(&dtrace_lock); 17911 rval = dtrace_state_stop(state, &cpuid); 17912 mutex_exit(&dtrace_lock); 17913 17914 if (rval != 0) 17915 return (rval); 17916 17917 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17918 return (EFAULT); 17919 17920 return (0); 17921 } 17922 17923 case DTRACEIOC_DOFGET: { 17924 dof_hdr_t hdr, *dof; 17925 uint64_t len; 17926 17927 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17928 return (EFAULT); 17929 17930 mutex_enter(&dtrace_lock); 17931 dof = dtrace_dof_create(state); 17932 mutex_exit(&dtrace_lock); 17933 17934 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17935 rval = copyout(dof, (void *)arg, len); 17936 dtrace_dof_destroy(dof); 17937 17938 return (rval == 0 ? 0 : EFAULT); 17939 } 17940 17941 case DTRACEIOC_AGGSNAP: 17942 case DTRACEIOC_BUFSNAP: { 17943 dtrace_bufdesc_t desc; 17944 caddr_t cached; 17945 dtrace_buffer_t *buf; 17946 17947 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17948 return (EFAULT); 17949 17950 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17951 return (EINVAL); 17952 17953 mutex_enter(&dtrace_lock); 17954 17955 if (cmd == DTRACEIOC_BUFSNAP) { 17956 buf = &state->dts_buffer[desc.dtbd_cpu]; 17957 } else { 17958 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17959 } 17960 17961 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17962 size_t sz = buf->dtb_offset; 17963 17964 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17965 mutex_exit(&dtrace_lock); 17966 return (EBUSY); 17967 } 17968 17969 /* 17970 * If this buffer has already been consumed, we're 17971 * going to indicate that there's nothing left here 17972 * to consume. 17973 */ 17974 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17975 mutex_exit(&dtrace_lock); 17976 17977 desc.dtbd_size = 0; 17978 desc.dtbd_drops = 0; 17979 desc.dtbd_errors = 0; 17980 desc.dtbd_oldest = 0; 17981 sz = sizeof (desc); 17982 17983 if (copyout(&desc, (void *)arg, sz) != 0) 17984 return (EFAULT); 17985 17986 return (0); 17987 } 17988 17989 /* 17990 * If this is a ring buffer that has wrapped, we want 17991 * to copy the whole thing out. 17992 */ 17993 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17994 dtrace_buffer_polish(buf); 17995 sz = buf->dtb_size; 17996 } 17997 17998 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17999 mutex_exit(&dtrace_lock); 18000 return (EFAULT); 18001 } 18002 18003 desc.dtbd_size = sz; 18004 desc.dtbd_drops = buf->dtb_drops; 18005 desc.dtbd_errors = buf->dtb_errors; 18006 desc.dtbd_oldest = buf->dtb_xamot_offset; 18007 desc.dtbd_timestamp = dtrace_gethrtime(); 18008 18009 mutex_exit(&dtrace_lock); 18010 18011 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18012 return (EFAULT); 18013 18014 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18015 18016 return (0); 18017 } 18018 18019 if (buf->dtb_tomax == NULL) { 18020 ASSERT(buf->dtb_xamot == NULL); 18021 mutex_exit(&dtrace_lock); 18022 return (ENOENT); 18023 } 18024 18025 cached = buf->dtb_tomax; 18026 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18027 18028 dtrace_xcall(desc.dtbd_cpu, 18029 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18030 18031 state->dts_errors += buf->dtb_xamot_errors; 18032 18033 /* 18034 * If the buffers did not actually switch, then the cross call 18035 * did not take place -- presumably because the given CPU is 18036 * not in the ready set. If this is the case, we'll return 18037 * ENOENT. 18038 */ 18039 if (buf->dtb_tomax == cached) { 18040 ASSERT(buf->dtb_xamot != cached); 18041 mutex_exit(&dtrace_lock); 18042 return (ENOENT); 18043 } 18044 18045 ASSERT(cached == buf->dtb_xamot); 18046 18047 /* 18048 * We have our snapshot; now copy it out. 18049 */ 18050 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18051 buf->dtb_xamot_offset) != 0) { 18052 mutex_exit(&dtrace_lock); 18053 return (EFAULT); 18054 } 18055 18056 desc.dtbd_size = buf->dtb_xamot_offset; 18057 desc.dtbd_drops = buf->dtb_xamot_drops; 18058 desc.dtbd_errors = buf->dtb_xamot_errors; 18059 desc.dtbd_oldest = 0; 18060 desc.dtbd_timestamp = buf->dtb_switched; 18061 18062 mutex_exit(&dtrace_lock); 18063 18064 /* 18065 * Finally, copy out the buffer description. 18066 */ 18067 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18068 return (EFAULT); 18069 18070 return (0); 18071 } 18072 18073 case DTRACEIOC_CONF: { 18074 dtrace_conf_t conf; 18075 18076 bzero(&conf, sizeof (conf)); 18077 conf.dtc_difversion = DIF_VERSION; 18078 conf.dtc_difintregs = DIF_DIR_NREGS; 18079 conf.dtc_diftupregs = DIF_DTR_NREGS; 18080 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18081 18082 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18083 return (EFAULT); 18084 18085 return (0); 18086 } 18087 18088 case DTRACEIOC_STATUS: { 18089 dtrace_status_t stat; 18090 dtrace_dstate_t *dstate; 18091 int i, j; 18092 uint64_t nerrs; 18093 18094 /* 18095 * See the comment in dtrace_state_deadman() for the reason 18096 * for setting dts_laststatus to INT64_MAX before setting 18097 * it to the correct value. 18098 */ 18099 state->dts_laststatus = INT64_MAX; 18100 dtrace_membar_producer(); 18101 state->dts_laststatus = dtrace_gethrtime(); 18102 18103 bzero(&stat, sizeof (stat)); 18104 18105 mutex_enter(&dtrace_lock); 18106 18107 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18108 mutex_exit(&dtrace_lock); 18109 return (ENOENT); 18110 } 18111 18112 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18113 stat.dtst_exiting = 1; 18114 18115 nerrs = state->dts_errors; 18116 dstate = &state->dts_vstate.dtvs_dynvars; 18117 18118 for (i = 0; i < NCPU; i++) { 18119 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18120 18121 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18122 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18123 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18124 18125 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18126 stat.dtst_filled++; 18127 18128 nerrs += state->dts_buffer[i].dtb_errors; 18129 18130 for (j = 0; j < state->dts_nspeculations; j++) { 18131 dtrace_speculation_t *spec; 18132 dtrace_buffer_t *buf; 18133 18134 spec = &state->dts_speculations[j]; 18135 buf = &spec->dtsp_buffer[i]; 18136 stat.dtst_specdrops += buf->dtb_xamot_drops; 18137 } 18138 } 18139 18140 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18141 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18142 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18143 stat.dtst_dblerrors = state->dts_dblerrors; 18144 stat.dtst_killed = 18145 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18146 stat.dtst_errors = nerrs; 18147 18148 mutex_exit(&dtrace_lock); 18149 18150 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18151 return (EFAULT); 18152 18153 return (0); 18154 } 18155 18156 case DTRACEIOC_FORMAT: { 18157 dtrace_fmtdesc_t fmt; 18158 char *str; 18159 int len; 18160 18161 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18162 return (EFAULT); 18163 18164 mutex_enter(&dtrace_lock); 18165 18166 if (fmt.dtfd_format == 0 || 18167 fmt.dtfd_format > state->dts_nformats) { 18168 mutex_exit(&dtrace_lock); 18169 return (EINVAL); 18170 } 18171 18172 /* 18173 * Format strings are allocated contiguously and they are 18174 * never freed; if a format index is less than the number 18175 * of formats, we can assert that the format map is non-NULL 18176 * and that the format for the specified index is non-NULL. 18177 */ 18178 ASSERT(state->dts_formats != NULL); 18179 str = state->dts_formats[fmt.dtfd_format - 1]; 18180 ASSERT(str != NULL); 18181 18182 len = strlen(str) + 1; 18183 18184 if (len > fmt.dtfd_length) { 18185 fmt.dtfd_length = len; 18186 18187 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18188 mutex_exit(&dtrace_lock); 18189 return (EINVAL); 18190 } 18191 } else { 18192 if (copyout(str, fmt.dtfd_string, len) != 0) { 18193 mutex_exit(&dtrace_lock); 18194 return (EINVAL); 18195 } 18196 } 18197 18198 mutex_exit(&dtrace_lock); 18199 return (0); 18200 } 18201 18202 default: 18203 break; 18204 } 18205 18206 return (ENOTTY); 18207 } 18208 18209 /*ARGSUSED*/ 18210 static int 18211 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18212 { 18213 dtrace_state_t *state; 18214 18215 switch (cmd) { 18216 case DDI_DETACH: 18217 break; 18218 18219 case DDI_SUSPEND: 18220 return (DDI_SUCCESS); 18221 18222 default: 18223 return (DDI_FAILURE); 18224 } 18225 18226 mutex_enter(&cpu_lock); 18227 mutex_enter(&dtrace_provider_lock); 18228 mutex_enter(&dtrace_lock); 18229 18230 ASSERT(dtrace_opens == 0); 18231 18232 if (dtrace_helpers > 0) { 18233 mutex_exit(&dtrace_provider_lock); 18234 mutex_exit(&dtrace_lock); 18235 mutex_exit(&cpu_lock); 18236 return (DDI_FAILURE); 18237 } 18238 18239 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18240 mutex_exit(&dtrace_provider_lock); 18241 mutex_exit(&dtrace_lock); 18242 mutex_exit(&cpu_lock); 18243 return (DDI_FAILURE); 18244 } 18245 18246 dtrace_provider = NULL; 18247 18248 if ((state = dtrace_anon_grab()) != NULL) { 18249 /* 18250 * If there were ECBs on this state, the provider should 18251 * have not been allowed to detach; assert that there is 18252 * none. 18253 */ 18254 ASSERT(state->dts_necbs == 0); 18255 dtrace_state_destroy(state); 18256 18257 /* 18258 * If we're being detached with anonymous state, we need to 18259 * indicate to the kernel debugger that DTrace is now inactive. 18260 */ 18261 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18262 } 18263 18264 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18265 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18266 dtrace_cpu_init = NULL; 18267 dtrace_helpers_cleanup = NULL; 18268 dtrace_helpers_fork = NULL; 18269 dtrace_cpustart_init = NULL; 18270 dtrace_cpustart_fini = NULL; 18271 dtrace_debugger_init = NULL; 18272 dtrace_debugger_fini = NULL; 18273 dtrace_modload = NULL; 18274 dtrace_modunload = NULL; 18275 18276 ASSERT(dtrace_getf == 0); 18277 ASSERT(dtrace_closef == NULL); 18278 18279 mutex_exit(&cpu_lock); 18280 18281 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18282 dtrace_probes = NULL; 18283 dtrace_nprobes = 0; 18284 18285 dtrace_hash_destroy(dtrace_bymod); 18286 dtrace_hash_destroy(dtrace_byfunc); 18287 dtrace_hash_destroy(dtrace_byname); 18288 dtrace_bymod = NULL; 18289 dtrace_byfunc = NULL; 18290 dtrace_byname = NULL; 18291 18292 kmem_cache_destroy(dtrace_state_cache); 18293 vmem_destroy(dtrace_minor); 18294 vmem_destroy(dtrace_arena); 18295 18296 if (dtrace_toxrange != NULL) { 18297 kmem_free(dtrace_toxrange, 18298 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18299 dtrace_toxrange = NULL; 18300 dtrace_toxranges = 0; 18301 dtrace_toxranges_max = 0; 18302 } 18303 18304 ddi_remove_minor_node(dtrace_devi, NULL); 18305 dtrace_devi = NULL; 18306 18307 ddi_soft_state_fini(&dtrace_softstate); 18308 18309 ASSERT(dtrace_vtime_references == 0); 18310 ASSERT(dtrace_opens == 0); 18311 ASSERT(dtrace_retained == NULL); 18312 18313 mutex_exit(&dtrace_lock); 18314 mutex_exit(&dtrace_provider_lock); 18315 18316 /* 18317 * We don't destroy the task queue until after we have dropped our 18318 * locks (taskq_destroy() may block on running tasks). To prevent 18319 * attempting to do work after we have effectively detached but before 18320 * the task queue has been destroyed, all tasks dispatched via the 18321 * task queue must check that DTrace is still attached before 18322 * performing any operation. 18323 */ 18324 taskq_destroy(dtrace_taskq); 18325 dtrace_taskq = NULL; 18326 18327 return (DDI_SUCCESS); 18328 } 18329 #endif 18330 18331 #ifdef illumos 18332 /*ARGSUSED*/ 18333 static int 18334 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18335 { 18336 int error; 18337 18338 switch (infocmd) { 18339 case DDI_INFO_DEVT2DEVINFO: 18340 *result = (void *)dtrace_devi; 18341 error = DDI_SUCCESS; 18342 break; 18343 case DDI_INFO_DEVT2INSTANCE: 18344 *result = (void *)0; 18345 error = DDI_SUCCESS; 18346 break; 18347 default: 18348 error = DDI_FAILURE; 18349 } 18350 return (error); 18351 } 18352 #endif 18353 18354 #ifdef illumos 18355 static struct cb_ops dtrace_cb_ops = { 18356 dtrace_open, /* open */ 18357 dtrace_close, /* close */ 18358 nulldev, /* strategy */ 18359 nulldev, /* print */ 18360 nodev, /* dump */ 18361 nodev, /* read */ 18362 nodev, /* write */ 18363 dtrace_ioctl, /* ioctl */ 18364 nodev, /* devmap */ 18365 nodev, /* mmap */ 18366 nodev, /* segmap */ 18367 nochpoll, /* poll */ 18368 ddi_prop_op, /* cb_prop_op */ 18369 0, /* streamtab */ 18370 D_NEW | D_MP /* Driver compatibility flag */ 18371 }; 18372 18373 static struct dev_ops dtrace_ops = { 18374 DEVO_REV, /* devo_rev */ 18375 0, /* refcnt */ 18376 dtrace_info, /* get_dev_info */ 18377 nulldev, /* identify */ 18378 nulldev, /* probe */ 18379 dtrace_attach, /* attach */ 18380 dtrace_detach, /* detach */ 18381 nodev, /* reset */ 18382 &dtrace_cb_ops, /* driver operations */ 18383 NULL, /* bus operations */ 18384 nodev /* dev power */ 18385 }; 18386 18387 static struct modldrv modldrv = { 18388 &mod_driverops, /* module type (this is a pseudo driver) */ 18389 "Dynamic Tracing", /* name of module */ 18390 &dtrace_ops, /* driver ops */ 18391 }; 18392 18393 static struct modlinkage modlinkage = { 18394 MODREV_1, 18395 (void *)&modldrv, 18396 NULL 18397 }; 18398 18399 int 18400 _init(void) 18401 { 18402 return (mod_install(&modlinkage)); 18403 } 18404 18405 int 18406 _info(struct modinfo *modinfop) 18407 { 18408 return (mod_info(&modlinkage, modinfop)); 18409 } 18410 18411 int 18412 _fini(void) 18413 { 18414 return (mod_remove(&modlinkage)); 18415 } 18416 #else 18417 18418 static d_ioctl_t dtrace_ioctl; 18419 static d_ioctl_t dtrace_ioctl_helper; 18420 static void dtrace_load(void *); 18421 static int dtrace_unload(void); 18422 static struct cdev *dtrace_dev; 18423 static struct cdev *helper_dev; 18424 18425 void dtrace_invop_init(void); 18426 void dtrace_invop_uninit(void); 18427 18428 static struct cdevsw dtrace_cdevsw = { 18429 .d_version = D_VERSION, 18430 .d_ioctl = dtrace_ioctl, 18431 .d_open = dtrace_open, 18432 .d_name = "dtrace", 18433 }; 18434 18435 static struct cdevsw helper_cdevsw = { 18436 .d_version = D_VERSION, 18437 .d_ioctl = dtrace_ioctl_helper, 18438 .d_name = "helper", 18439 }; 18440 18441 #include <dtrace_anon.c> 18442 #include <dtrace_ioctl.c> 18443 #include <dtrace_load.c> 18444 #include <dtrace_modevent.c> 18445 #include <dtrace_sysctl.c> 18446 #include <dtrace_unload.c> 18447 #include <dtrace_vtime.c> 18448 #include <dtrace_hacks.c> 18449 #include <dtrace_isa.c> 18450 18451 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18452 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18453 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18454 18455 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18456 MODULE_VERSION(dtrace, 1); 18457 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18458 #endif 18459