1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #include <sys/errno.h> 70 #include <sys/param.h> 71 #include <sys/types.h> 72 #ifndef illumos 73 #include <sys/time.h> 74 #endif 75 #include <sys/stat.h> 76 #include <sys/conf.h> 77 #include <sys/systm.h> 78 #include <sys/endian.h> 79 #ifdef illumos 80 #include <sys/ddi.h> 81 #include <sys/sunddi.h> 82 #endif 83 #include <sys/cpuvar.h> 84 #include <sys/kmem.h> 85 #ifdef illumos 86 #include <sys/strsubr.h> 87 #endif 88 #include <sys/sysmacros.h> 89 #include <sys/dtrace_impl.h> 90 #include <sys/atomic.h> 91 #include <sys/cmn_err.h> 92 #ifdef illumos 93 #include <sys/mutex_impl.h> 94 #include <sys/rwlock_impl.h> 95 #endif 96 #include <sys/ctf_api.h> 97 #ifdef illumos 98 #include <sys/panic.h> 99 #include <sys/priv_impl.h> 100 #endif 101 #ifdef illumos 102 #include <sys/cred_impl.h> 103 #include <sys/procfs_isa.h> 104 #endif 105 #include <sys/taskq.h> 106 #ifdef illumos 107 #include <sys/mkdev.h> 108 #include <sys/kdi.h> 109 #endif 110 #include <sys/zone.h> 111 #include <sys/socket.h> 112 #include <netinet/in.h> 113 #include "strtolctype.h" 114 115 /* FreeBSD includes: */ 116 #ifndef illumos 117 #include <sys/callout.h> 118 #include <sys/ctype.h> 119 #include <sys/eventhandler.h> 120 #include <sys/limits.h> 121 #include <sys/linker.h> 122 #include <sys/kdb.h> 123 #include <sys/jail.h> 124 #include <sys/kernel.h> 125 #include <sys/malloc.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/ptrace.h> 129 #include <sys/random.h> 130 #include <sys/rwlock.h> 131 #include <sys/sx.h> 132 #include <sys/sysctl.h> 133 134 135 #include <sys/mount.h> 136 #undef AT_UID 137 #undef AT_GID 138 #include <sys/vnode.h> 139 #include <sys/cred.h> 140 141 #include <sys/dtrace_bsd.h> 142 143 #include <netinet/in.h> 144 145 #include "dtrace_cddl.h" 146 #include "dtrace_debug.c" 147 #endif 148 149 #include "dtrace_xoroshiro128_plus.h" 150 151 /* 152 * DTrace Tunable Variables 153 * 154 * The following variables may be tuned by adding a line to /etc/system that 155 * includes both the name of the DTrace module ("dtrace") and the name of the 156 * variable. For example: 157 * 158 * set dtrace:dtrace_destructive_disallow = 1 159 * 160 * In general, the only variables that one should be tuning this way are those 161 * that affect system-wide DTrace behavior, and for which the default behavior 162 * is undesirable. Most of these variables are tunable on a per-consumer 163 * basis using DTrace options, and need not be tuned on a system-wide basis. 164 * When tuning these variables, avoid pathological values; while some attempt 165 * is made to verify the integrity of these variables, they are not considered 166 * part of the supported interface to DTrace, and they are therefore not 167 * checked comprehensively. Further, these variables should not be tuned 168 * dynamically via "mdb -kw" or other means; they should only be tuned via 169 * /etc/system. 170 */ 171 int dtrace_destructive_disallow = 0; 172 #ifndef illumos 173 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 174 int dtrace_allow_destructive = 1; 175 #endif 176 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 177 size_t dtrace_difo_maxsize = (256 * 1024); 178 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 179 size_t dtrace_statvar_maxsize = (16 * 1024); 180 size_t dtrace_actions_max = (16 * 1024); 181 size_t dtrace_retain_max = 1024; 182 dtrace_optval_t dtrace_helper_actions_max = 128; 183 dtrace_optval_t dtrace_helper_providers_max = 32; 184 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 185 size_t dtrace_strsize_default = 256; 186 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 187 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 188 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 189 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 190 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 192 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 193 dtrace_optval_t dtrace_nspec_default = 1; 194 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 195 dtrace_optval_t dtrace_stackframes_default = 20; 196 dtrace_optval_t dtrace_ustackframes_default = 20; 197 dtrace_optval_t dtrace_jstackframes_default = 50; 198 dtrace_optval_t dtrace_jstackstrsize_default = 512; 199 int dtrace_msgdsize_max = 128; 200 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 201 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 202 int dtrace_devdepth_max = 32; 203 int dtrace_err_verbose; 204 hrtime_t dtrace_deadman_interval = NANOSEC; 205 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 206 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 207 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 208 #ifndef illumos 209 int dtrace_memstr_max = 4096; 210 int dtrace_bufsize_max_frac = 128; 211 #endif 212 213 /* 214 * DTrace External Variables 215 * 216 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 217 * available to DTrace consumers via the backtick (`) syntax. One of these, 218 * dtrace_zero, is made deliberately so: it is provided as a source of 219 * well-known, zero-filled memory. While this variable is not documented, 220 * it is used by some translators as an implementation detail. 221 */ 222 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 223 224 /* 225 * DTrace Internal Variables 226 */ 227 #ifdef illumos 228 static dev_info_t *dtrace_devi; /* device info */ 229 #endif 230 #ifdef illumos 231 static vmem_t *dtrace_arena; /* probe ID arena */ 232 static vmem_t *dtrace_minor; /* minor number arena */ 233 #else 234 static taskq_t *dtrace_taskq; /* task queue */ 235 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 236 #endif 237 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 238 static int dtrace_nprobes; /* number of probes */ 239 static dtrace_provider_t *dtrace_provider; /* provider list */ 240 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 241 static int dtrace_opens; /* number of opens */ 242 static int dtrace_helpers; /* number of helpers */ 243 static int dtrace_getf; /* number of unpriv getf()s */ 244 #ifdef illumos 245 static void *dtrace_softstate; /* softstate pointer */ 246 #endif 247 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 248 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 249 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 250 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 251 static int dtrace_toxranges; /* number of toxic ranges */ 252 static int dtrace_toxranges_max; /* size of toxic range array */ 253 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 254 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 255 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 256 static kthread_t *dtrace_panicked; /* panicking thread */ 257 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 258 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 259 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 260 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 261 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 262 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 263 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 264 #ifndef illumos 265 static struct mtx dtrace_unr_mtx; 266 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 267 static eventhandler_tag dtrace_kld_load_tag; 268 static eventhandler_tag dtrace_kld_unload_try_tag; 269 #endif 270 271 /* 272 * DTrace Locking 273 * DTrace is protected by three (relatively coarse-grained) locks: 274 * 275 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 276 * including enabling state, probes, ECBs, consumer state, helper state, 277 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 278 * probe context is lock-free -- synchronization is handled via the 279 * dtrace_sync() cross call mechanism. 280 * 281 * (2) dtrace_provider_lock is required when manipulating provider state, or 282 * when provider state must be held constant. 283 * 284 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 285 * when meta provider state must be held constant. 286 * 287 * The lock ordering between these three locks is dtrace_meta_lock before 288 * dtrace_provider_lock before dtrace_lock. (In particular, there are 289 * several places where dtrace_provider_lock is held by the framework as it 290 * calls into the providers -- which then call back into the framework, 291 * grabbing dtrace_lock.) 292 * 293 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 294 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 295 * role as a coarse-grained lock; it is acquired before both of these locks. 296 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 297 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 298 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 299 * acquired _between_ dtrace_provider_lock and dtrace_lock. 300 */ 301 static kmutex_t dtrace_lock; /* probe state lock */ 302 static kmutex_t dtrace_provider_lock; /* provider state lock */ 303 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 304 305 #ifndef illumos 306 /* XXX FreeBSD hacks. */ 307 #define cr_suid cr_svuid 308 #define cr_sgid cr_svgid 309 #define ipaddr_t in_addr_t 310 #define mod_modname pathname 311 #define vuprintf vprintf 312 #ifndef crgetzoneid 313 #define crgetzoneid(_a) 0 314 #endif 315 #define ttoproc(_a) ((_a)->td_proc) 316 #define SNOCD 0 317 #define CPU_ON_INTR(_a) 0 318 319 #define PRIV_EFFECTIVE (1 << 0) 320 #define PRIV_DTRACE_KERNEL (1 << 1) 321 #define PRIV_DTRACE_PROC (1 << 2) 322 #define PRIV_DTRACE_USER (1 << 3) 323 #define PRIV_PROC_OWNER (1 << 4) 324 #define PRIV_PROC_ZONE (1 << 5) 325 #define PRIV_ALL ~0 326 327 SYSCTL_DECL(_debug_dtrace); 328 SYSCTL_DECL(_kern_dtrace); 329 #endif 330 331 #ifdef illumos 332 #define curcpu CPU->cpu_id 333 #endif 334 335 336 /* 337 * DTrace Provider Variables 338 * 339 * These are the variables relating to DTrace as a provider (that is, the 340 * provider of the BEGIN, END, and ERROR probes). 341 */ 342 static dtrace_pattr_t dtrace_provider_attr = { 343 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 344 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 345 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 346 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 347 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 348 }; 349 350 static void 351 dtrace_nullop(void) 352 {} 353 354 static dtrace_pops_t dtrace_provider_ops = { 355 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 356 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 357 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 360 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 361 .dtps_getargdesc = NULL, 362 .dtps_getargval = NULL, 363 .dtps_usermode = NULL, 364 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 365 }; 366 367 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 368 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 369 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 370 371 /* 372 * DTrace Helper Tracing Variables 373 * 374 * These variables should be set dynamically to enable helper tracing. The 375 * only variables that should be set are dtrace_helptrace_enable (which should 376 * be set to a non-zero value to allocate helper tracing buffers on the next 377 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 378 * non-zero value to deallocate helper tracing buffers on the next close of 379 * /dev/dtrace). When (and only when) helper tracing is disabled, the 380 * buffer size may also be set via dtrace_helptrace_bufsize. 381 */ 382 int dtrace_helptrace_enable = 0; 383 int dtrace_helptrace_disable = 0; 384 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 385 uint32_t dtrace_helptrace_nlocals; 386 static dtrace_helptrace_t *dtrace_helptrace_buffer; 387 static uint32_t dtrace_helptrace_next = 0; 388 static int dtrace_helptrace_wrapped = 0; 389 390 /* 391 * DTrace Error Hashing 392 * 393 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 394 * table. This is very useful for checking coverage of tests that are 395 * expected to induce DIF or DOF processing errors, and may be useful for 396 * debugging problems in the DIF code generator or in DOF generation . The 397 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 398 */ 399 #ifdef DEBUG 400 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 401 static const char *dtrace_errlast; 402 static kthread_t *dtrace_errthread; 403 static kmutex_t dtrace_errlock; 404 #endif 405 406 /* 407 * DTrace Macros and Constants 408 * 409 * These are various macros that are useful in various spots in the 410 * implementation, along with a few random constants that have no meaning 411 * outside of the implementation. There is no real structure to this cpp 412 * mishmash -- but is there ever? 413 */ 414 #define DTRACE_HASHSTR(hash, probe) \ 415 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 416 417 #define DTRACE_HASHNEXT(hash, probe) \ 418 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 419 420 #define DTRACE_HASHPREV(hash, probe) \ 421 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 422 423 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 424 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 425 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 426 427 #define DTRACE_AGGHASHSIZE_SLEW 17 428 429 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 430 431 /* 432 * The key for a thread-local variable consists of the lower 61 bits of the 433 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 434 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 435 * equal to a variable identifier. This is necessary (but not sufficient) to 436 * assure that global associative arrays never collide with thread-local 437 * variables. To guarantee that they cannot collide, we must also define the 438 * order for keying dynamic variables. That order is: 439 * 440 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 441 * 442 * Because the variable-key and the tls-key are in orthogonal spaces, there is 443 * no way for a global variable key signature to match a thread-local key 444 * signature. 445 */ 446 #ifdef illumos 447 #define DTRACE_TLS_THRKEY(where) { \ 448 uint_t intr = 0; \ 449 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 450 for (; actv; actv >>= 1) \ 451 intr++; \ 452 ASSERT(intr < (1 << 3)); \ 453 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 454 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 455 } 456 #else 457 #define DTRACE_TLS_THRKEY(where) { \ 458 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 459 uint_t intr = 0; \ 460 uint_t actv = _c->cpu_intr_actv; \ 461 for (; actv; actv >>= 1) \ 462 intr++; \ 463 ASSERT(intr < (1 << 3)); \ 464 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 465 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 466 } 467 #endif 468 469 #define DT_BSWAP_8(x) ((x) & 0xff) 470 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 471 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 472 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 473 474 #define DT_MASK_LO 0x00000000FFFFFFFFULL 475 476 #define DTRACE_STORE(type, tomax, offset, what) \ 477 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 478 479 #if !defined(__x86) && !defined(__aarch64__) 480 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 481 if (addr & (size - 1)) { \ 482 *flags |= CPU_DTRACE_BADALIGN; \ 483 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 484 return (0); \ 485 } 486 #else 487 #define DTRACE_ALIGNCHECK(addr, size, flags) 488 #endif 489 490 /* 491 * Test whether a range of memory starting at testaddr of size testsz falls 492 * within the range of memory described by addr, sz. We take care to avoid 493 * problems with overflow and underflow of the unsigned quantities, and 494 * disallow all negative sizes. Ranges of size 0 are allowed. 495 */ 496 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 497 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 498 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 499 (testaddr) + (testsz) >= (testaddr)) 500 501 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 502 do { \ 503 if ((remp) != NULL) { \ 504 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 505 } \ 506 } while (0) 507 508 509 /* 510 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 511 * alloc_sz on the righthand side of the comparison in order to avoid overflow 512 * or underflow in the comparison with it. This is simpler than the INRANGE 513 * check above, because we know that the dtms_scratch_ptr is valid in the 514 * range. Allocations of size zero are allowed. 515 */ 516 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 517 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 518 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 519 520 #define DTRACE_LOADFUNC(bits) \ 521 /*CSTYLED*/ \ 522 uint##bits##_t \ 523 dtrace_load##bits(uintptr_t addr) \ 524 { \ 525 size_t size = bits / NBBY; \ 526 /*CSTYLED*/ \ 527 uint##bits##_t rval; \ 528 int i; \ 529 volatile uint16_t *flags = (volatile uint16_t *) \ 530 &cpu_core[curcpu].cpuc_dtrace_flags; \ 531 \ 532 DTRACE_ALIGNCHECK(addr, size, flags); \ 533 \ 534 for (i = 0; i < dtrace_toxranges; i++) { \ 535 if (addr >= dtrace_toxrange[i].dtt_limit) \ 536 continue; \ 537 \ 538 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 539 continue; \ 540 \ 541 /* \ 542 * This address falls within a toxic region; return 0. \ 543 */ \ 544 *flags |= CPU_DTRACE_BADADDR; \ 545 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 546 return (0); \ 547 } \ 548 \ 549 *flags |= CPU_DTRACE_NOFAULT; \ 550 /*CSTYLED*/ \ 551 rval = *((volatile uint##bits##_t *)addr); \ 552 *flags &= ~CPU_DTRACE_NOFAULT; \ 553 \ 554 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 555 } 556 557 #ifdef _LP64 558 #define dtrace_loadptr dtrace_load64 559 #else 560 #define dtrace_loadptr dtrace_load32 561 #endif 562 563 #define DTRACE_DYNHASH_FREE 0 564 #define DTRACE_DYNHASH_SINK 1 565 #define DTRACE_DYNHASH_VALID 2 566 567 #define DTRACE_MATCH_NEXT 0 568 #define DTRACE_MATCH_DONE 1 569 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 570 #define DTRACE_STATE_ALIGN 64 571 572 #define DTRACE_FLAGS2FLT(flags) \ 573 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 574 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 575 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 576 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 577 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 578 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 579 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 580 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 581 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 582 DTRACEFLT_UNKNOWN) 583 584 #define DTRACEACT_ISSTRING(act) \ 585 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 586 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 587 588 /* Function prototype definitions: */ 589 static size_t dtrace_strlen(const char *, size_t); 590 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 591 static void dtrace_enabling_provide(dtrace_provider_t *); 592 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 593 static void dtrace_enabling_matchall(void); 594 static void dtrace_enabling_reap(void); 595 static dtrace_state_t *dtrace_anon_grab(void); 596 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 597 dtrace_state_t *, uint64_t, uint64_t); 598 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 599 static void dtrace_buffer_drop(dtrace_buffer_t *); 600 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 601 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 602 dtrace_state_t *, dtrace_mstate_t *); 603 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 604 dtrace_optval_t); 605 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 606 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 607 uint16_t dtrace_load16(uintptr_t); 608 uint32_t dtrace_load32(uintptr_t); 609 uint64_t dtrace_load64(uintptr_t); 610 uint8_t dtrace_load8(uintptr_t); 611 void dtrace_dynvar_clean(dtrace_dstate_t *); 612 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 613 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 614 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 615 static int dtrace_priv_proc(dtrace_state_t *); 616 static void dtrace_getf_barrier(void); 617 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 618 dtrace_mstate_t *, dtrace_vstate_t *); 619 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 620 dtrace_mstate_t *, dtrace_vstate_t *); 621 622 /* 623 * DTrace Probe Context Functions 624 * 625 * These functions are called from probe context. Because probe context is 626 * any context in which C may be called, arbitrarily locks may be held, 627 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 628 * As a result, functions called from probe context may only call other DTrace 629 * support functions -- they may not interact at all with the system at large. 630 * (Note that the ASSERT macro is made probe-context safe by redefining it in 631 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 632 * loads are to be performed from probe context, they _must_ be in terms of 633 * the safe dtrace_load*() variants. 634 * 635 * Some functions in this block are not actually called from probe context; 636 * for these functions, there will be a comment above the function reading 637 * "Note: not called from probe context." 638 */ 639 void 640 dtrace_panic(const char *format, ...) 641 { 642 va_list alist; 643 644 va_start(alist, format); 645 #ifdef __FreeBSD__ 646 vpanic(format, alist); 647 #else 648 dtrace_vpanic(format, alist); 649 #endif 650 va_end(alist); 651 } 652 653 int 654 dtrace_assfail(const char *a, const char *f, int l) 655 { 656 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 657 658 /* 659 * We just need something here that even the most clever compiler 660 * cannot optimize away. 661 */ 662 return (a[(uintptr_t)f]); 663 } 664 665 /* 666 * Atomically increment a specified error counter from probe context. 667 */ 668 static void 669 dtrace_error(uint32_t *counter) 670 { 671 /* 672 * Most counters stored to in probe context are per-CPU counters. 673 * However, there are some error conditions that are sufficiently 674 * arcane that they don't merit per-CPU storage. If these counters 675 * are incremented concurrently on different CPUs, scalability will be 676 * adversely affected -- but we don't expect them to be white-hot in a 677 * correctly constructed enabling... 678 */ 679 uint32_t oval, nval; 680 681 do { 682 oval = *counter; 683 684 if ((nval = oval + 1) == 0) { 685 /* 686 * If the counter would wrap, set it to 1 -- assuring 687 * that the counter is never zero when we have seen 688 * errors. (The counter must be 32-bits because we 689 * aren't guaranteed a 64-bit compare&swap operation.) 690 * To save this code both the infamy of being fingered 691 * by a priggish news story and the indignity of being 692 * the target of a neo-puritan witch trial, we're 693 * carefully avoiding any colorful description of the 694 * likelihood of this condition -- but suffice it to 695 * say that it is only slightly more likely than the 696 * overflow of predicate cache IDs, as discussed in 697 * dtrace_predicate_create(). 698 */ 699 nval = 1; 700 } 701 } while (dtrace_cas32(counter, oval, nval) != oval); 702 } 703 704 /* 705 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 706 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 707 */ 708 /* BEGIN CSTYLED */ 709 DTRACE_LOADFUNC(8) 710 DTRACE_LOADFUNC(16) 711 DTRACE_LOADFUNC(32) 712 DTRACE_LOADFUNC(64) 713 /* END CSTYLED */ 714 715 static int 716 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 717 { 718 if (dest < mstate->dtms_scratch_base) 719 return (0); 720 721 if (dest + size < dest) 722 return (0); 723 724 if (dest + size > mstate->dtms_scratch_ptr) 725 return (0); 726 727 return (1); 728 } 729 730 static int 731 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 732 dtrace_statvar_t **svars, int nsvars) 733 { 734 int i; 735 size_t maxglobalsize, maxlocalsize; 736 737 if (nsvars == 0) 738 return (0); 739 740 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 741 maxlocalsize = maxglobalsize * NCPU; 742 743 for (i = 0; i < nsvars; i++) { 744 dtrace_statvar_t *svar = svars[i]; 745 uint8_t scope; 746 size_t size; 747 748 if (svar == NULL || (size = svar->dtsv_size) == 0) 749 continue; 750 751 scope = svar->dtsv_var.dtdv_scope; 752 753 /* 754 * We verify that our size is valid in the spirit of providing 755 * defense in depth: we want to prevent attackers from using 756 * DTrace to escalate an orthogonal kernel heap corruption bug 757 * into the ability to store to arbitrary locations in memory. 758 */ 759 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 760 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 761 762 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 763 svar->dtsv_size)) { 764 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 765 svar->dtsv_size); 766 return (1); 767 } 768 } 769 770 return (0); 771 } 772 773 /* 774 * Check to see if the address is within a memory region to which a store may 775 * be issued. This includes the DTrace scratch areas, and any DTrace variable 776 * region. The caller of dtrace_canstore() is responsible for performing any 777 * alignment checks that are needed before stores are actually executed. 778 */ 779 static int 780 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 781 dtrace_vstate_t *vstate) 782 { 783 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 784 } 785 786 /* 787 * Implementation of dtrace_canstore which communicates the upper bound of the 788 * allowed memory region. 789 */ 790 static int 791 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 792 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 793 { 794 /* 795 * First, check to see if the address is in scratch space... 796 */ 797 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 798 mstate->dtms_scratch_size)) { 799 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 800 mstate->dtms_scratch_size); 801 return (1); 802 } 803 804 /* 805 * Now check to see if it's a dynamic variable. This check will pick 806 * up both thread-local variables and any global dynamically-allocated 807 * variables. 808 */ 809 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 810 vstate->dtvs_dynvars.dtds_size)) { 811 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 812 uintptr_t base = (uintptr_t)dstate->dtds_base + 813 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 814 uintptr_t chunkoffs; 815 dtrace_dynvar_t *dvar; 816 817 /* 818 * Before we assume that we can store here, we need to make 819 * sure that it isn't in our metadata -- storing to our 820 * dynamic variable metadata would corrupt our state. For 821 * the range to not include any dynamic variable metadata, 822 * it must: 823 * 824 * (1) Start above the hash table that is at the base of 825 * the dynamic variable space 826 * 827 * (2) Have a starting chunk offset that is beyond the 828 * dtrace_dynvar_t that is at the base of every chunk 829 * 830 * (3) Not span a chunk boundary 831 * 832 * (4) Not be in the tuple space of a dynamic variable 833 * 834 */ 835 if (addr < base) 836 return (0); 837 838 chunkoffs = (addr - base) % dstate->dtds_chunksize; 839 840 if (chunkoffs < sizeof (dtrace_dynvar_t)) 841 return (0); 842 843 if (chunkoffs + sz > dstate->dtds_chunksize) 844 return (0); 845 846 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 847 848 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 849 return (0); 850 851 if (chunkoffs < sizeof (dtrace_dynvar_t) + 852 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 853 return (0); 854 855 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 856 return (1); 857 } 858 859 /* 860 * Finally, check the static local and global variables. These checks 861 * take the longest, so we perform them last. 862 */ 863 if (dtrace_canstore_statvar(addr, sz, remain, 864 vstate->dtvs_locals, vstate->dtvs_nlocals)) 865 return (1); 866 867 if (dtrace_canstore_statvar(addr, sz, remain, 868 vstate->dtvs_globals, vstate->dtvs_nglobals)) 869 return (1); 870 871 return (0); 872 } 873 874 875 /* 876 * Convenience routine to check to see if the address is within a memory 877 * region in which a load may be issued given the user's privilege level; 878 * if not, it sets the appropriate error flags and loads 'addr' into the 879 * illegal value slot. 880 * 881 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 882 * appropriate memory access protection. 883 */ 884 static int 885 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 886 dtrace_vstate_t *vstate) 887 { 888 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 889 } 890 891 /* 892 * Implementation of dtrace_canload which communicates the uppoer bound of the 893 * allowed memory region. 894 */ 895 static int 896 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 897 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 898 { 899 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 900 file_t *fp; 901 902 /* 903 * If we hold the privilege to read from kernel memory, then 904 * everything is readable. 905 */ 906 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 907 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 908 return (1); 909 } 910 911 /* 912 * You can obviously read that which you can store. 913 */ 914 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 915 return (1); 916 917 /* 918 * We're allowed to read from our own string table. 919 */ 920 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 921 mstate->dtms_difo->dtdo_strlen)) { 922 DTRACE_RANGE_REMAIN(remain, addr, 923 mstate->dtms_difo->dtdo_strtab, 924 mstate->dtms_difo->dtdo_strlen); 925 return (1); 926 } 927 928 if (vstate->dtvs_state != NULL && 929 dtrace_priv_proc(vstate->dtvs_state)) { 930 proc_t *p; 931 932 /* 933 * When we have privileges to the current process, there are 934 * several context-related kernel structures that are safe to 935 * read, even absent the privilege to read from kernel memory. 936 * These reads are safe because these structures contain only 937 * state that (1) we're permitted to read, (2) is harmless or 938 * (3) contains pointers to additional kernel state that we're 939 * not permitted to read (and as such, do not present an 940 * opportunity for privilege escalation). Finally (and 941 * critically), because of the nature of their relation with 942 * the current thread context, the memory associated with these 943 * structures cannot change over the duration of probe context, 944 * and it is therefore impossible for this memory to be 945 * deallocated and reallocated as something else while it's 946 * being operated upon. 947 */ 948 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 949 DTRACE_RANGE_REMAIN(remain, addr, curthread, 950 sizeof (kthread_t)); 951 return (1); 952 } 953 954 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 955 sz, curthread->t_procp, sizeof (proc_t))) { 956 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 957 sizeof (proc_t)); 958 return (1); 959 } 960 961 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 962 curthread->t_cred, sizeof (cred_t))) { 963 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 964 sizeof (cred_t)); 965 return (1); 966 } 967 968 #ifdef illumos 969 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 970 &(p->p_pidp->pid_id), sizeof (pid_t))) { 971 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 972 sizeof (pid_t)); 973 return (1); 974 } 975 976 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 977 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 978 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 979 offsetof(cpu_t, cpu_pause_thread)); 980 return (1); 981 } 982 #endif 983 } 984 985 if ((fp = mstate->dtms_getf) != NULL) { 986 uintptr_t psz = sizeof (void *); 987 vnode_t *vp; 988 vnodeops_t *op; 989 990 /* 991 * When getf() returns a file_t, the enabling is implicitly 992 * granted the (transient) right to read the returned file_t 993 * as well as the v_path and v_op->vnop_name of the underlying 994 * vnode. These accesses are allowed after a successful 995 * getf() because the members that they refer to cannot change 996 * once set -- and the barrier logic in the kernel's closef() 997 * path assures that the file_t and its referenced vode_t 998 * cannot themselves be stale (that is, it impossible for 999 * either dtms_getf itself or its f_vnode member to reference 1000 * freed memory). 1001 */ 1002 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1003 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1004 return (1); 1005 } 1006 1007 if ((vp = fp->f_vnode) != NULL) { 1008 size_t slen; 1009 #ifdef illumos 1010 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1011 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1012 psz); 1013 return (1); 1014 } 1015 slen = strlen(vp->v_path) + 1; 1016 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1017 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1018 slen); 1019 return (1); 1020 } 1021 #endif 1022 1023 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1024 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1025 psz); 1026 return (1); 1027 } 1028 1029 #ifdef illumos 1030 if ((op = vp->v_op) != NULL && 1031 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1032 DTRACE_RANGE_REMAIN(remain, addr, 1033 &op->vnop_name, psz); 1034 return (1); 1035 } 1036 1037 if (op != NULL && op->vnop_name != NULL && 1038 DTRACE_INRANGE(addr, sz, op->vnop_name, 1039 (slen = strlen(op->vnop_name) + 1))) { 1040 DTRACE_RANGE_REMAIN(remain, addr, 1041 op->vnop_name, slen); 1042 return (1); 1043 } 1044 #endif 1045 } 1046 } 1047 1048 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1049 *illval = addr; 1050 return (0); 1051 } 1052 1053 /* 1054 * Convenience routine to check to see if a given string is within a memory 1055 * region in which a load may be issued given the user's privilege level; 1056 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1057 * calls in the event that the user has all privileges. 1058 */ 1059 static int 1060 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1061 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1062 { 1063 size_t rsize; 1064 1065 /* 1066 * If we hold the privilege to read from kernel memory, then 1067 * everything is readable. 1068 */ 1069 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1070 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1071 return (1); 1072 } 1073 1074 /* 1075 * Even if the caller is uninterested in querying the remaining valid 1076 * range, it is required to ensure that the access is allowed. 1077 */ 1078 if (remain == NULL) { 1079 remain = &rsize; 1080 } 1081 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1082 size_t strsz; 1083 /* 1084 * Perform the strlen after determining the length of the 1085 * memory region which is accessible. This prevents timing 1086 * information from being used to find NULs in memory which is 1087 * not accessible to the caller. 1088 */ 1089 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1090 MIN(sz, *remain)); 1091 if (strsz <= *remain) { 1092 return (1); 1093 } 1094 } 1095 1096 return (0); 1097 } 1098 1099 /* 1100 * Convenience routine to check to see if a given variable is within a memory 1101 * region in which a load may be issued given the user's privilege level. 1102 */ 1103 static int 1104 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1105 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1106 { 1107 size_t sz; 1108 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1109 1110 /* 1111 * Calculate the max size before performing any checks since even 1112 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1113 * return the max length via 'remain'. 1114 */ 1115 if (type->dtdt_kind == DIF_TYPE_STRING) { 1116 dtrace_state_t *state = vstate->dtvs_state; 1117 1118 if (state != NULL) { 1119 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1120 } else { 1121 /* 1122 * In helper context, we have a NULL state; fall back 1123 * to using the system-wide default for the string size 1124 * in this case. 1125 */ 1126 sz = dtrace_strsize_default; 1127 } 1128 } else { 1129 sz = type->dtdt_size; 1130 } 1131 1132 /* 1133 * If we hold the privilege to read from kernel memory, then 1134 * everything is readable. 1135 */ 1136 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1137 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1138 return (1); 1139 } 1140 1141 if (type->dtdt_kind == DIF_TYPE_STRING) { 1142 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1143 vstate)); 1144 } 1145 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1146 vstate)); 1147 } 1148 1149 /* 1150 * Convert a string to a signed integer using safe loads. 1151 * 1152 * NOTE: This function uses various macros from strtolctype.h to manipulate 1153 * digit values, etc -- these have all been checked to ensure they make 1154 * no additional function calls. 1155 */ 1156 static int64_t 1157 dtrace_strtoll(char *input, int base, size_t limit) 1158 { 1159 uintptr_t pos = (uintptr_t)input; 1160 int64_t val = 0; 1161 int x; 1162 boolean_t neg = B_FALSE; 1163 char c, cc, ccc; 1164 uintptr_t end = pos + limit; 1165 1166 /* 1167 * Consume any whitespace preceding digits. 1168 */ 1169 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1170 pos++; 1171 1172 /* 1173 * Handle an explicit sign if one is present. 1174 */ 1175 if (c == '-' || c == '+') { 1176 if (c == '-') 1177 neg = B_TRUE; 1178 c = dtrace_load8(++pos); 1179 } 1180 1181 /* 1182 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1183 * if present. 1184 */ 1185 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1186 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1187 pos += 2; 1188 c = ccc; 1189 } 1190 1191 /* 1192 * Read in contiguous digits until the first non-digit character. 1193 */ 1194 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1195 c = dtrace_load8(++pos)) 1196 val = val * base + x; 1197 1198 return (neg ? -val : val); 1199 } 1200 1201 /* 1202 * Compare two strings using safe loads. 1203 */ 1204 static int 1205 dtrace_strncmp(char *s1, char *s2, size_t limit) 1206 { 1207 uint8_t c1, c2; 1208 volatile uint16_t *flags; 1209 1210 if (s1 == s2 || limit == 0) 1211 return (0); 1212 1213 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1214 1215 do { 1216 if (s1 == NULL) { 1217 c1 = '\0'; 1218 } else { 1219 c1 = dtrace_load8((uintptr_t)s1++); 1220 } 1221 1222 if (s2 == NULL) { 1223 c2 = '\0'; 1224 } else { 1225 c2 = dtrace_load8((uintptr_t)s2++); 1226 } 1227 1228 if (c1 != c2) 1229 return (c1 - c2); 1230 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Compute strlen(s) for a string using safe memory accesses. The additional 1237 * len parameter is used to specify a maximum length to ensure completion. 1238 */ 1239 static size_t 1240 dtrace_strlen(const char *s, size_t lim) 1241 { 1242 uint_t len; 1243 1244 for (len = 0; len != lim; len++) { 1245 if (dtrace_load8((uintptr_t)s++) == '\0') 1246 break; 1247 } 1248 1249 return (len); 1250 } 1251 1252 /* 1253 * Check if an address falls within a toxic region. 1254 */ 1255 static int 1256 dtrace_istoxic(uintptr_t kaddr, size_t size) 1257 { 1258 uintptr_t taddr, tsize; 1259 int i; 1260 1261 for (i = 0; i < dtrace_toxranges; i++) { 1262 taddr = dtrace_toxrange[i].dtt_base; 1263 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1264 1265 if (kaddr - taddr < tsize) { 1266 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1267 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1268 return (1); 1269 } 1270 1271 if (taddr - kaddr < size) { 1272 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1273 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1274 return (1); 1275 } 1276 } 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1283 * memory specified by the DIF program. The dst is assumed to be safe memory 1284 * that we can store to directly because it is managed by DTrace. As with 1285 * standard bcopy, overlapping copies are handled properly. 1286 */ 1287 static void 1288 dtrace_bcopy(const void *src, void *dst, size_t len) 1289 { 1290 if (len != 0) { 1291 uint8_t *s1 = dst; 1292 const uint8_t *s2 = src; 1293 1294 if (s1 <= s2) { 1295 do { 1296 *s1++ = dtrace_load8((uintptr_t)s2++); 1297 } while (--len != 0); 1298 } else { 1299 s2 += len; 1300 s1 += len; 1301 1302 do { 1303 *--s1 = dtrace_load8((uintptr_t)--s2); 1304 } while (--len != 0); 1305 } 1306 } 1307 } 1308 1309 /* 1310 * Copy src to dst using safe memory accesses, up to either the specified 1311 * length, or the point that a nul byte is encountered. The src is assumed to 1312 * be unsafe memory specified by the DIF program. The dst is assumed to be 1313 * safe memory that we can store to directly because it is managed by DTrace. 1314 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1315 */ 1316 static void 1317 dtrace_strcpy(const void *src, void *dst, size_t len) 1318 { 1319 if (len != 0) { 1320 uint8_t *s1 = dst, c; 1321 const uint8_t *s2 = src; 1322 1323 do { 1324 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1325 } while (--len != 0 && c != '\0'); 1326 } 1327 } 1328 1329 /* 1330 * Copy src to dst, deriving the size and type from the specified (BYREF) 1331 * variable type. The src is assumed to be unsafe memory specified by the DIF 1332 * program. The dst is assumed to be DTrace variable memory that is of the 1333 * specified type; we assume that we can store to directly. 1334 */ 1335 static void 1336 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1337 { 1338 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1339 1340 if (type->dtdt_kind == DIF_TYPE_STRING) { 1341 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1342 } else { 1343 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1344 } 1345 } 1346 1347 /* 1348 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1349 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1350 * safe memory that we can access directly because it is managed by DTrace. 1351 */ 1352 static int 1353 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1354 { 1355 volatile uint16_t *flags; 1356 1357 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1358 1359 if (s1 == s2) 1360 return (0); 1361 1362 if (s1 == NULL || s2 == NULL) 1363 return (1); 1364 1365 if (s1 != s2 && len != 0) { 1366 const uint8_t *ps1 = s1; 1367 const uint8_t *ps2 = s2; 1368 1369 do { 1370 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1371 return (1); 1372 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1373 } 1374 return (0); 1375 } 1376 1377 /* 1378 * Zero the specified region using a simple byte-by-byte loop. Note that this 1379 * is for safe DTrace-managed memory only. 1380 */ 1381 static void 1382 dtrace_bzero(void *dst, size_t len) 1383 { 1384 uchar_t *cp; 1385 1386 for (cp = dst; len != 0; len--) 1387 *cp++ = 0; 1388 } 1389 1390 static void 1391 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1392 { 1393 uint64_t result[2]; 1394 1395 result[0] = addend1[0] + addend2[0]; 1396 result[1] = addend1[1] + addend2[1] + 1397 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1398 1399 sum[0] = result[0]; 1400 sum[1] = result[1]; 1401 } 1402 1403 /* 1404 * Shift the 128-bit value in a by b. If b is positive, shift left. 1405 * If b is negative, shift right. 1406 */ 1407 static void 1408 dtrace_shift_128(uint64_t *a, int b) 1409 { 1410 uint64_t mask; 1411 1412 if (b == 0) 1413 return; 1414 1415 if (b < 0) { 1416 b = -b; 1417 if (b >= 64) { 1418 a[0] = a[1] >> (b - 64); 1419 a[1] = 0; 1420 } else { 1421 a[0] >>= b; 1422 mask = 1LL << (64 - b); 1423 mask -= 1; 1424 a[0] |= ((a[1] & mask) << (64 - b)); 1425 a[1] >>= b; 1426 } 1427 } else { 1428 if (b >= 64) { 1429 a[1] = a[0] << (b - 64); 1430 a[0] = 0; 1431 } else { 1432 a[1] <<= b; 1433 mask = a[0] >> (64 - b); 1434 a[1] |= mask; 1435 a[0] <<= b; 1436 } 1437 } 1438 } 1439 1440 /* 1441 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1442 * use native multiplication on those, and then re-combine into the 1443 * resulting 128-bit value. 1444 * 1445 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1446 * hi1 * hi2 << 64 + 1447 * hi1 * lo2 << 32 + 1448 * hi2 * lo1 << 32 + 1449 * lo1 * lo2 1450 */ 1451 static void 1452 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1453 { 1454 uint64_t hi1, hi2, lo1, lo2; 1455 uint64_t tmp[2]; 1456 1457 hi1 = factor1 >> 32; 1458 hi2 = factor2 >> 32; 1459 1460 lo1 = factor1 & DT_MASK_LO; 1461 lo2 = factor2 & DT_MASK_LO; 1462 1463 product[0] = lo1 * lo2; 1464 product[1] = hi1 * hi2; 1465 1466 tmp[0] = hi1 * lo2; 1467 tmp[1] = 0; 1468 dtrace_shift_128(tmp, 32); 1469 dtrace_add_128(product, tmp, product); 1470 1471 tmp[0] = hi2 * lo1; 1472 tmp[1] = 0; 1473 dtrace_shift_128(tmp, 32); 1474 dtrace_add_128(product, tmp, product); 1475 } 1476 1477 /* 1478 * This privilege check should be used by actions and subroutines to 1479 * verify that the user credentials of the process that enabled the 1480 * invoking ECB match the target credentials 1481 */ 1482 static int 1483 dtrace_priv_proc_common_user(dtrace_state_t *state) 1484 { 1485 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1486 1487 /* 1488 * We should always have a non-NULL state cred here, since if cred 1489 * is null (anonymous tracing), we fast-path bypass this routine. 1490 */ 1491 ASSERT(s_cr != NULL); 1492 1493 if ((cr = CRED()) != NULL && 1494 s_cr->cr_uid == cr->cr_uid && 1495 s_cr->cr_uid == cr->cr_ruid && 1496 s_cr->cr_uid == cr->cr_suid && 1497 s_cr->cr_gid == cr->cr_gid && 1498 s_cr->cr_gid == cr->cr_rgid && 1499 s_cr->cr_gid == cr->cr_sgid) 1500 return (1); 1501 1502 return (0); 1503 } 1504 1505 /* 1506 * This privilege check should be used by actions and subroutines to 1507 * verify that the zone of the process that enabled the invoking ECB 1508 * matches the target credentials 1509 */ 1510 static int 1511 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1512 { 1513 #ifdef illumos 1514 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1515 1516 /* 1517 * We should always have a non-NULL state cred here, since if cred 1518 * is null (anonymous tracing), we fast-path bypass this routine. 1519 */ 1520 ASSERT(s_cr != NULL); 1521 1522 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1523 return (1); 1524 1525 return (0); 1526 #else 1527 return (1); 1528 #endif 1529 } 1530 1531 /* 1532 * This privilege check should be used by actions and subroutines to 1533 * verify that the process has not setuid or changed credentials. 1534 */ 1535 static int 1536 dtrace_priv_proc_common_nocd(void) 1537 { 1538 proc_t *proc; 1539 1540 if ((proc = ttoproc(curthread)) != NULL && 1541 !(proc->p_flag & SNOCD)) 1542 return (1); 1543 1544 return (0); 1545 } 1546 1547 static int 1548 dtrace_priv_proc_destructive(dtrace_state_t *state) 1549 { 1550 int action = state->dts_cred.dcr_action; 1551 1552 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1553 dtrace_priv_proc_common_zone(state) == 0) 1554 goto bad; 1555 1556 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1557 dtrace_priv_proc_common_user(state) == 0) 1558 goto bad; 1559 1560 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1561 dtrace_priv_proc_common_nocd() == 0) 1562 goto bad; 1563 1564 return (1); 1565 1566 bad: 1567 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1568 1569 return (0); 1570 } 1571 1572 static int 1573 dtrace_priv_proc_control(dtrace_state_t *state) 1574 { 1575 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1576 return (1); 1577 1578 if (dtrace_priv_proc_common_zone(state) && 1579 dtrace_priv_proc_common_user(state) && 1580 dtrace_priv_proc_common_nocd()) 1581 return (1); 1582 1583 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1584 1585 return (0); 1586 } 1587 1588 static int 1589 dtrace_priv_proc(dtrace_state_t *state) 1590 { 1591 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1592 return (1); 1593 1594 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1595 1596 return (0); 1597 } 1598 1599 static int 1600 dtrace_priv_kernel(dtrace_state_t *state) 1601 { 1602 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1603 return (1); 1604 1605 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1606 1607 return (0); 1608 } 1609 1610 static int 1611 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1612 { 1613 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1614 return (1); 1615 1616 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1617 1618 return (0); 1619 } 1620 1621 /* 1622 * Determine if the dte_cond of the specified ECB allows for processing of 1623 * the current probe to continue. Note that this routine may allow continued 1624 * processing, but with access(es) stripped from the mstate's dtms_access 1625 * field. 1626 */ 1627 static int 1628 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1629 dtrace_ecb_t *ecb) 1630 { 1631 dtrace_probe_t *probe = ecb->dte_probe; 1632 dtrace_provider_t *prov = probe->dtpr_provider; 1633 dtrace_pops_t *pops = &prov->dtpv_pops; 1634 int mode = DTRACE_MODE_NOPRIV_DROP; 1635 1636 ASSERT(ecb->dte_cond); 1637 1638 #ifdef illumos 1639 if (pops->dtps_mode != NULL) { 1640 mode = pops->dtps_mode(prov->dtpv_arg, 1641 probe->dtpr_id, probe->dtpr_arg); 1642 1643 ASSERT((mode & DTRACE_MODE_USER) || 1644 (mode & DTRACE_MODE_KERNEL)); 1645 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1646 (mode & DTRACE_MODE_NOPRIV_DROP)); 1647 } 1648 1649 /* 1650 * If the dte_cond bits indicate that this consumer is only allowed to 1651 * see user-mode firings of this probe, call the provider's dtps_mode() 1652 * entry point to check that the probe was fired while in a user 1653 * context. If that's not the case, use the policy specified by the 1654 * provider to determine if we drop the probe or merely restrict 1655 * operation. 1656 */ 1657 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1658 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1659 1660 if (!(mode & DTRACE_MODE_USER)) { 1661 if (mode & DTRACE_MODE_NOPRIV_DROP) 1662 return (0); 1663 1664 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1665 } 1666 } 1667 #endif 1668 1669 /* 1670 * This is more subtle than it looks. We have to be absolutely certain 1671 * that CRED() isn't going to change out from under us so it's only 1672 * legit to examine that structure if we're in constrained situations. 1673 * Currently, the only times we'll this check is if a non-super-user 1674 * has enabled the profile or syscall providers -- providers that 1675 * allow visibility of all processes. For the profile case, the check 1676 * above will ensure that we're examining a user context. 1677 */ 1678 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1679 cred_t *cr; 1680 cred_t *s_cr = state->dts_cred.dcr_cred; 1681 proc_t *proc; 1682 1683 ASSERT(s_cr != NULL); 1684 1685 if ((cr = CRED()) == NULL || 1686 s_cr->cr_uid != cr->cr_uid || 1687 s_cr->cr_uid != cr->cr_ruid || 1688 s_cr->cr_uid != cr->cr_suid || 1689 s_cr->cr_gid != cr->cr_gid || 1690 s_cr->cr_gid != cr->cr_rgid || 1691 s_cr->cr_gid != cr->cr_sgid || 1692 (proc = ttoproc(curthread)) == NULL || 1693 (proc->p_flag & SNOCD)) { 1694 if (mode & DTRACE_MODE_NOPRIV_DROP) 1695 return (0); 1696 1697 #ifdef illumos 1698 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1699 #endif 1700 } 1701 } 1702 1703 #ifdef illumos 1704 /* 1705 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1706 * in our zone, check to see if our mode policy is to restrict rather 1707 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1708 * and DTRACE_ACCESS_ARGS 1709 */ 1710 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1711 cred_t *cr; 1712 cred_t *s_cr = state->dts_cred.dcr_cred; 1713 1714 ASSERT(s_cr != NULL); 1715 1716 if ((cr = CRED()) == NULL || 1717 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1718 if (mode & DTRACE_MODE_NOPRIV_DROP) 1719 return (0); 1720 1721 mstate->dtms_access &= 1722 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1723 } 1724 } 1725 #endif 1726 1727 return (1); 1728 } 1729 1730 /* 1731 * Note: not called from probe context. This function is called 1732 * asynchronously (and at a regular interval) from outside of probe context to 1733 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1734 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1735 */ 1736 void 1737 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1738 { 1739 dtrace_dynvar_t *dirty; 1740 dtrace_dstate_percpu_t *dcpu; 1741 dtrace_dynvar_t **rinsep; 1742 int i, j, work = 0; 1743 1744 for (i = 0; i < NCPU; i++) { 1745 dcpu = &dstate->dtds_percpu[i]; 1746 rinsep = &dcpu->dtdsc_rinsing; 1747 1748 /* 1749 * If the dirty list is NULL, there is no dirty work to do. 1750 */ 1751 if (dcpu->dtdsc_dirty == NULL) 1752 continue; 1753 1754 if (dcpu->dtdsc_rinsing != NULL) { 1755 /* 1756 * If the rinsing list is non-NULL, then it is because 1757 * this CPU was selected to accept another CPU's 1758 * dirty list -- and since that time, dirty buffers 1759 * have accumulated. This is a highly unlikely 1760 * condition, but we choose to ignore the dirty 1761 * buffers -- they'll be picked up a future cleanse. 1762 */ 1763 continue; 1764 } 1765 1766 if (dcpu->dtdsc_clean != NULL) { 1767 /* 1768 * If the clean list is non-NULL, then we're in a 1769 * situation where a CPU has done deallocations (we 1770 * have a non-NULL dirty list) but no allocations (we 1771 * also have a non-NULL clean list). We can't simply 1772 * move the dirty list into the clean list on this 1773 * CPU, yet we also don't want to allow this condition 1774 * to persist, lest a short clean list prevent a 1775 * massive dirty list from being cleaned (which in 1776 * turn could lead to otherwise avoidable dynamic 1777 * drops). To deal with this, we look for some CPU 1778 * with a NULL clean list, NULL dirty list, and NULL 1779 * rinsing list -- and then we borrow this CPU to 1780 * rinse our dirty list. 1781 */ 1782 for (j = 0; j < NCPU; j++) { 1783 dtrace_dstate_percpu_t *rinser; 1784 1785 rinser = &dstate->dtds_percpu[j]; 1786 1787 if (rinser->dtdsc_rinsing != NULL) 1788 continue; 1789 1790 if (rinser->dtdsc_dirty != NULL) 1791 continue; 1792 1793 if (rinser->dtdsc_clean != NULL) 1794 continue; 1795 1796 rinsep = &rinser->dtdsc_rinsing; 1797 break; 1798 } 1799 1800 if (j == NCPU) { 1801 /* 1802 * We were unable to find another CPU that 1803 * could accept this dirty list -- we are 1804 * therefore unable to clean it now. 1805 */ 1806 dtrace_dynvar_failclean++; 1807 continue; 1808 } 1809 } 1810 1811 work = 1; 1812 1813 /* 1814 * Atomically move the dirty list aside. 1815 */ 1816 do { 1817 dirty = dcpu->dtdsc_dirty; 1818 1819 /* 1820 * Before we zap the dirty list, set the rinsing list. 1821 * (This allows for a potential assertion in 1822 * dtrace_dynvar(): if a free dynamic variable appears 1823 * on a hash chain, either the dirty list or the 1824 * rinsing list for some CPU must be non-NULL.) 1825 */ 1826 *rinsep = dirty; 1827 dtrace_membar_producer(); 1828 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1829 dirty, NULL) != dirty); 1830 } 1831 1832 if (!work) { 1833 /* 1834 * We have no work to do; we can simply return. 1835 */ 1836 return; 1837 } 1838 1839 dtrace_sync(); 1840 1841 for (i = 0; i < NCPU; i++) { 1842 dcpu = &dstate->dtds_percpu[i]; 1843 1844 if (dcpu->dtdsc_rinsing == NULL) 1845 continue; 1846 1847 /* 1848 * We are now guaranteed that no hash chain contains a pointer 1849 * into this dirty list; we can make it clean. 1850 */ 1851 ASSERT(dcpu->dtdsc_clean == NULL); 1852 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1853 dcpu->dtdsc_rinsing = NULL; 1854 } 1855 1856 /* 1857 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1858 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1859 * This prevents a race whereby a CPU incorrectly decides that 1860 * the state should be something other than DTRACE_DSTATE_CLEAN 1861 * after dtrace_dynvar_clean() has completed. 1862 */ 1863 dtrace_sync(); 1864 1865 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1866 } 1867 1868 /* 1869 * Depending on the value of the op parameter, this function looks-up, 1870 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1871 * allocation is requested, this function will return a pointer to a 1872 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1873 * variable can be allocated. If NULL is returned, the appropriate counter 1874 * will be incremented. 1875 */ 1876 dtrace_dynvar_t * 1877 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1878 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1879 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1880 { 1881 uint64_t hashval = DTRACE_DYNHASH_VALID; 1882 dtrace_dynhash_t *hash = dstate->dtds_hash; 1883 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1884 processorid_t me = curcpu, cpu = me; 1885 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1886 size_t bucket, ksize; 1887 size_t chunksize = dstate->dtds_chunksize; 1888 uintptr_t kdata, lock, nstate; 1889 uint_t i; 1890 1891 ASSERT(nkeys != 0); 1892 1893 /* 1894 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1895 * algorithm. For the by-value portions, we perform the algorithm in 1896 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1897 * bit, and seems to have only a minute effect on distribution. For 1898 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1899 * over each referenced byte. It's painful to do this, but it's much 1900 * better than pathological hash distribution. The efficacy of the 1901 * hashing algorithm (and a comparison with other algorithms) may be 1902 * found by running the ::dtrace_dynstat MDB dcmd. 1903 */ 1904 for (i = 0; i < nkeys; i++) { 1905 if (key[i].dttk_size == 0) { 1906 uint64_t val = key[i].dttk_value; 1907 1908 hashval += (val >> 48) & 0xffff; 1909 hashval += (hashval << 10); 1910 hashval ^= (hashval >> 6); 1911 1912 hashval += (val >> 32) & 0xffff; 1913 hashval += (hashval << 10); 1914 hashval ^= (hashval >> 6); 1915 1916 hashval += (val >> 16) & 0xffff; 1917 hashval += (hashval << 10); 1918 hashval ^= (hashval >> 6); 1919 1920 hashval += val & 0xffff; 1921 hashval += (hashval << 10); 1922 hashval ^= (hashval >> 6); 1923 } else { 1924 /* 1925 * This is incredibly painful, but it beats the hell 1926 * out of the alternative. 1927 */ 1928 uint64_t j, size = key[i].dttk_size; 1929 uintptr_t base = (uintptr_t)key[i].dttk_value; 1930 1931 if (!dtrace_canload(base, size, mstate, vstate)) 1932 break; 1933 1934 for (j = 0; j < size; j++) { 1935 hashval += dtrace_load8(base + j); 1936 hashval += (hashval << 10); 1937 hashval ^= (hashval >> 6); 1938 } 1939 } 1940 } 1941 1942 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1943 return (NULL); 1944 1945 hashval += (hashval << 3); 1946 hashval ^= (hashval >> 11); 1947 hashval += (hashval << 15); 1948 1949 /* 1950 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1951 * comes out to be one of our two sentinel hash values. If this 1952 * actually happens, we set the hashval to be a value known to be a 1953 * non-sentinel value. 1954 */ 1955 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1956 hashval = DTRACE_DYNHASH_VALID; 1957 1958 /* 1959 * Yes, it's painful to do a divide here. If the cycle count becomes 1960 * important here, tricks can be pulled to reduce it. (However, it's 1961 * critical that hash collisions be kept to an absolute minimum; 1962 * they're much more painful than a divide.) It's better to have a 1963 * solution that generates few collisions and still keeps things 1964 * relatively simple. 1965 */ 1966 bucket = hashval % dstate->dtds_hashsize; 1967 1968 if (op == DTRACE_DYNVAR_DEALLOC) { 1969 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1970 1971 for (;;) { 1972 while ((lock = *lockp) & 1) 1973 continue; 1974 1975 if (dtrace_casptr((volatile void *)lockp, 1976 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1977 break; 1978 } 1979 1980 dtrace_membar_producer(); 1981 } 1982 1983 top: 1984 prev = NULL; 1985 lock = hash[bucket].dtdh_lock; 1986 1987 dtrace_membar_consumer(); 1988 1989 start = hash[bucket].dtdh_chain; 1990 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1991 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1992 op != DTRACE_DYNVAR_DEALLOC)); 1993 1994 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1995 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1996 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1997 1998 if (dvar->dtdv_hashval != hashval) { 1999 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2000 /* 2001 * We've reached the sink, and therefore the 2002 * end of the hash chain; we can kick out of 2003 * the loop knowing that we have seen a valid 2004 * snapshot of state. 2005 */ 2006 ASSERT(dvar->dtdv_next == NULL); 2007 ASSERT(dvar == &dtrace_dynhash_sink); 2008 break; 2009 } 2010 2011 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2012 /* 2013 * We've gone off the rails: somewhere along 2014 * the line, one of the members of this hash 2015 * chain was deleted. Note that we could also 2016 * detect this by simply letting this loop run 2017 * to completion, as we would eventually hit 2018 * the end of the dirty list. However, we 2019 * want to avoid running the length of the 2020 * dirty list unnecessarily (it might be quite 2021 * long), so we catch this as early as 2022 * possible by detecting the hash marker. In 2023 * this case, we simply set dvar to NULL and 2024 * break; the conditional after the loop will 2025 * send us back to top. 2026 */ 2027 dvar = NULL; 2028 break; 2029 } 2030 2031 goto next; 2032 } 2033 2034 if (dtuple->dtt_nkeys != nkeys) 2035 goto next; 2036 2037 for (i = 0; i < nkeys; i++, dkey++) { 2038 if (dkey->dttk_size != key[i].dttk_size) 2039 goto next; /* size or type mismatch */ 2040 2041 if (dkey->dttk_size != 0) { 2042 if (dtrace_bcmp( 2043 (void *)(uintptr_t)key[i].dttk_value, 2044 (void *)(uintptr_t)dkey->dttk_value, 2045 dkey->dttk_size)) 2046 goto next; 2047 } else { 2048 if (dkey->dttk_value != key[i].dttk_value) 2049 goto next; 2050 } 2051 } 2052 2053 if (op != DTRACE_DYNVAR_DEALLOC) 2054 return (dvar); 2055 2056 ASSERT(dvar->dtdv_next == NULL || 2057 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2058 2059 if (prev != NULL) { 2060 ASSERT(hash[bucket].dtdh_chain != dvar); 2061 ASSERT(start != dvar); 2062 ASSERT(prev->dtdv_next == dvar); 2063 prev->dtdv_next = dvar->dtdv_next; 2064 } else { 2065 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2066 start, dvar->dtdv_next) != start) { 2067 /* 2068 * We have failed to atomically swing the 2069 * hash table head pointer, presumably because 2070 * of a conflicting allocation on another CPU. 2071 * We need to reread the hash chain and try 2072 * again. 2073 */ 2074 goto top; 2075 } 2076 } 2077 2078 dtrace_membar_producer(); 2079 2080 /* 2081 * Now set the hash value to indicate that it's free. 2082 */ 2083 ASSERT(hash[bucket].dtdh_chain != dvar); 2084 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2085 2086 dtrace_membar_producer(); 2087 2088 /* 2089 * Set the next pointer to point at the dirty list, and 2090 * atomically swing the dirty pointer to the newly freed dvar. 2091 */ 2092 do { 2093 next = dcpu->dtdsc_dirty; 2094 dvar->dtdv_next = next; 2095 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2096 2097 /* 2098 * Finally, unlock this hash bucket. 2099 */ 2100 ASSERT(hash[bucket].dtdh_lock == lock); 2101 ASSERT(lock & 1); 2102 hash[bucket].dtdh_lock++; 2103 2104 return (NULL); 2105 next: 2106 prev = dvar; 2107 continue; 2108 } 2109 2110 if (dvar == NULL) { 2111 /* 2112 * If dvar is NULL, it is because we went off the rails: 2113 * one of the elements that we traversed in the hash chain 2114 * was deleted while we were traversing it. In this case, 2115 * we assert that we aren't doing a dealloc (deallocs lock 2116 * the hash bucket to prevent themselves from racing with 2117 * one another), and retry the hash chain traversal. 2118 */ 2119 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2120 goto top; 2121 } 2122 2123 if (op != DTRACE_DYNVAR_ALLOC) { 2124 /* 2125 * If we are not to allocate a new variable, we want to 2126 * return NULL now. Before we return, check that the value 2127 * of the lock word hasn't changed. If it has, we may have 2128 * seen an inconsistent snapshot. 2129 */ 2130 if (op == DTRACE_DYNVAR_NOALLOC) { 2131 if (hash[bucket].dtdh_lock != lock) 2132 goto top; 2133 } else { 2134 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2135 ASSERT(hash[bucket].dtdh_lock == lock); 2136 ASSERT(lock & 1); 2137 hash[bucket].dtdh_lock++; 2138 } 2139 2140 return (NULL); 2141 } 2142 2143 /* 2144 * We need to allocate a new dynamic variable. The size we need is the 2145 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2146 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2147 * the size of any referred-to data (dsize). We then round the final 2148 * size up to the chunksize for allocation. 2149 */ 2150 for (ksize = 0, i = 0; i < nkeys; i++) 2151 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2152 2153 /* 2154 * This should be pretty much impossible, but could happen if, say, 2155 * strange DIF specified the tuple. Ideally, this should be an 2156 * assertion and not an error condition -- but that requires that the 2157 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2158 * bullet-proof. (That is, it must not be able to be fooled by 2159 * malicious DIF.) Given the lack of backwards branches in DIF, 2160 * solving this would presumably not amount to solving the Halting 2161 * Problem -- but it still seems awfully hard. 2162 */ 2163 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2164 ksize + dsize > chunksize) { 2165 dcpu->dtdsc_drops++; 2166 return (NULL); 2167 } 2168 2169 nstate = DTRACE_DSTATE_EMPTY; 2170 2171 do { 2172 retry: 2173 free = dcpu->dtdsc_free; 2174 2175 if (free == NULL) { 2176 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2177 void *rval; 2178 2179 if (clean == NULL) { 2180 /* 2181 * We're out of dynamic variable space on 2182 * this CPU. Unless we have tried all CPUs, 2183 * we'll try to allocate from a different 2184 * CPU. 2185 */ 2186 switch (dstate->dtds_state) { 2187 case DTRACE_DSTATE_CLEAN: { 2188 void *sp = &dstate->dtds_state; 2189 2190 if (++cpu >= NCPU) 2191 cpu = 0; 2192 2193 if (dcpu->dtdsc_dirty != NULL && 2194 nstate == DTRACE_DSTATE_EMPTY) 2195 nstate = DTRACE_DSTATE_DIRTY; 2196 2197 if (dcpu->dtdsc_rinsing != NULL) 2198 nstate = DTRACE_DSTATE_RINSING; 2199 2200 dcpu = &dstate->dtds_percpu[cpu]; 2201 2202 if (cpu != me) 2203 goto retry; 2204 2205 (void) dtrace_cas32(sp, 2206 DTRACE_DSTATE_CLEAN, nstate); 2207 2208 /* 2209 * To increment the correct bean 2210 * counter, take another lap. 2211 */ 2212 goto retry; 2213 } 2214 2215 case DTRACE_DSTATE_DIRTY: 2216 dcpu->dtdsc_dirty_drops++; 2217 break; 2218 2219 case DTRACE_DSTATE_RINSING: 2220 dcpu->dtdsc_rinsing_drops++; 2221 break; 2222 2223 case DTRACE_DSTATE_EMPTY: 2224 dcpu->dtdsc_drops++; 2225 break; 2226 } 2227 2228 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2229 return (NULL); 2230 } 2231 2232 /* 2233 * The clean list appears to be non-empty. We want to 2234 * move the clean list to the free list; we start by 2235 * moving the clean pointer aside. 2236 */ 2237 if (dtrace_casptr(&dcpu->dtdsc_clean, 2238 clean, NULL) != clean) { 2239 /* 2240 * We are in one of two situations: 2241 * 2242 * (a) The clean list was switched to the 2243 * free list by another CPU. 2244 * 2245 * (b) The clean list was added to by the 2246 * cleansing cyclic. 2247 * 2248 * In either of these situations, we can 2249 * just reattempt the free list allocation. 2250 */ 2251 goto retry; 2252 } 2253 2254 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2255 2256 /* 2257 * Now we'll move the clean list to our free list. 2258 * It's impossible for this to fail: the only way 2259 * the free list can be updated is through this 2260 * code path, and only one CPU can own the clean list. 2261 * Thus, it would only be possible for this to fail if 2262 * this code were racing with dtrace_dynvar_clean(). 2263 * (That is, if dtrace_dynvar_clean() updated the clean 2264 * list, and we ended up racing to update the free 2265 * list.) This race is prevented by the dtrace_sync() 2266 * in dtrace_dynvar_clean() -- which flushes the 2267 * owners of the clean lists out before resetting 2268 * the clean lists. 2269 */ 2270 dcpu = &dstate->dtds_percpu[me]; 2271 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2272 ASSERT(rval == NULL); 2273 goto retry; 2274 } 2275 2276 dvar = free; 2277 new_free = dvar->dtdv_next; 2278 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2279 2280 /* 2281 * We have now allocated a new chunk. We copy the tuple keys into the 2282 * tuple array and copy any referenced key data into the data space 2283 * following the tuple array. As we do this, we relocate dttk_value 2284 * in the final tuple to point to the key data address in the chunk. 2285 */ 2286 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2287 dvar->dtdv_data = (void *)(kdata + ksize); 2288 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2289 2290 for (i = 0; i < nkeys; i++) { 2291 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2292 size_t kesize = key[i].dttk_size; 2293 2294 if (kesize != 0) { 2295 dtrace_bcopy( 2296 (const void *)(uintptr_t)key[i].dttk_value, 2297 (void *)kdata, kesize); 2298 dkey->dttk_value = kdata; 2299 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2300 } else { 2301 dkey->dttk_value = key[i].dttk_value; 2302 } 2303 2304 dkey->dttk_size = kesize; 2305 } 2306 2307 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2308 dvar->dtdv_hashval = hashval; 2309 dvar->dtdv_next = start; 2310 2311 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2312 return (dvar); 2313 2314 /* 2315 * The cas has failed. Either another CPU is adding an element to 2316 * this hash chain, or another CPU is deleting an element from this 2317 * hash chain. The simplest way to deal with both of these cases 2318 * (though not necessarily the most efficient) is to free our 2319 * allocated block and re-attempt it all. Note that the free is 2320 * to the dirty list and _not_ to the free list. This is to prevent 2321 * races with allocators, above. 2322 */ 2323 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2324 2325 dtrace_membar_producer(); 2326 2327 do { 2328 free = dcpu->dtdsc_dirty; 2329 dvar->dtdv_next = free; 2330 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2331 2332 goto top; 2333 } 2334 2335 /*ARGSUSED*/ 2336 static void 2337 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2338 { 2339 if ((int64_t)nval < (int64_t)*oval) 2340 *oval = nval; 2341 } 2342 2343 /*ARGSUSED*/ 2344 static void 2345 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2346 { 2347 if ((int64_t)nval > (int64_t)*oval) 2348 *oval = nval; 2349 } 2350 2351 static void 2352 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2353 { 2354 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2355 int64_t val = (int64_t)nval; 2356 2357 if (val < 0) { 2358 for (i = 0; i < zero; i++) { 2359 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2360 quanta[i] += incr; 2361 return; 2362 } 2363 } 2364 } else { 2365 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2366 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2367 quanta[i - 1] += incr; 2368 return; 2369 } 2370 } 2371 2372 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2373 return; 2374 } 2375 2376 ASSERT(0); 2377 } 2378 2379 static void 2380 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2381 { 2382 uint64_t arg = *lquanta++; 2383 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2384 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2385 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2386 int32_t val = (int32_t)nval, level; 2387 2388 ASSERT(step != 0); 2389 ASSERT(levels != 0); 2390 2391 if (val < base) { 2392 /* 2393 * This is an underflow. 2394 */ 2395 lquanta[0] += incr; 2396 return; 2397 } 2398 2399 level = (val - base) / step; 2400 2401 if (level < levels) { 2402 lquanta[level + 1] += incr; 2403 return; 2404 } 2405 2406 /* 2407 * This is an overflow. 2408 */ 2409 lquanta[levels + 1] += incr; 2410 } 2411 2412 static int 2413 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2414 uint16_t high, uint16_t nsteps, int64_t value) 2415 { 2416 int64_t this = 1, last, next; 2417 int base = 1, order; 2418 2419 ASSERT(factor <= nsteps); 2420 ASSERT(nsteps % factor == 0); 2421 2422 for (order = 0; order < low; order++) 2423 this *= factor; 2424 2425 /* 2426 * If our value is less than our factor taken to the power of the 2427 * low order of magnitude, it goes into the zeroth bucket. 2428 */ 2429 if (value < (last = this)) 2430 return (0); 2431 2432 for (this *= factor; order <= high; order++) { 2433 int nbuckets = this > nsteps ? nsteps : this; 2434 2435 if ((next = this * factor) < this) { 2436 /* 2437 * We should not generally get log/linear quantizations 2438 * with a high magnitude that allows 64-bits to 2439 * overflow, but we nonetheless protect against this 2440 * by explicitly checking for overflow, and clamping 2441 * our value accordingly. 2442 */ 2443 value = this - 1; 2444 } 2445 2446 if (value < this) { 2447 /* 2448 * If our value lies within this order of magnitude, 2449 * determine its position by taking the offset within 2450 * the order of magnitude, dividing by the bucket 2451 * width, and adding to our (accumulated) base. 2452 */ 2453 return (base + (value - last) / (this / nbuckets)); 2454 } 2455 2456 base += nbuckets - (nbuckets / factor); 2457 last = this; 2458 this = next; 2459 } 2460 2461 /* 2462 * Our value is greater than or equal to our factor taken to the 2463 * power of one plus the high magnitude -- return the top bucket. 2464 */ 2465 return (base); 2466 } 2467 2468 static void 2469 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2470 { 2471 uint64_t arg = *llquanta++; 2472 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2473 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2474 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2475 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2476 2477 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2478 low, high, nsteps, nval)] += incr; 2479 } 2480 2481 /*ARGSUSED*/ 2482 static void 2483 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2484 { 2485 data[0]++; 2486 data[1] += nval; 2487 } 2488 2489 /*ARGSUSED*/ 2490 static void 2491 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2492 { 2493 int64_t snval = (int64_t)nval; 2494 uint64_t tmp[2]; 2495 2496 data[0]++; 2497 data[1] += nval; 2498 2499 /* 2500 * What we want to say here is: 2501 * 2502 * data[2] += nval * nval; 2503 * 2504 * But given that nval is 64-bit, we could easily overflow, so 2505 * we do this as 128-bit arithmetic. 2506 */ 2507 if (snval < 0) 2508 snval = -snval; 2509 2510 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2511 dtrace_add_128(data + 2, tmp, data + 2); 2512 } 2513 2514 /*ARGSUSED*/ 2515 static void 2516 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2517 { 2518 *oval = *oval + 1; 2519 } 2520 2521 /*ARGSUSED*/ 2522 static void 2523 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2524 { 2525 *oval += nval; 2526 } 2527 2528 /* 2529 * Aggregate given the tuple in the principal data buffer, and the aggregating 2530 * action denoted by the specified dtrace_aggregation_t. The aggregation 2531 * buffer is specified as the buf parameter. This routine does not return 2532 * failure; if there is no space in the aggregation buffer, the data will be 2533 * dropped, and a corresponding counter incremented. 2534 */ 2535 static void 2536 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2537 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2538 { 2539 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2540 uint32_t i, ndx, size, fsize; 2541 uint32_t align = sizeof (uint64_t) - 1; 2542 dtrace_aggbuffer_t *agb; 2543 dtrace_aggkey_t *key; 2544 uint32_t hashval = 0, limit, isstr; 2545 caddr_t tomax, data, kdata; 2546 dtrace_actkind_t action; 2547 dtrace_action_t *act; 2548 uintptr_t offs; 2549 2550 if (buf == NULL) 2551 return; 2552 2553 if (!agg->dtag_hasarg) { 2554 /* 2555 * Currently, only quantize() and lquantize() take additional 2556 * arguments, and they have the same semantics: an increment 2557 * value that defaults to 1 when not present. If additional 2558 * aggregating actions take arguments, the setting of the 2559 * default argument value will presumably have to become more 2560 * sophisticated... 2561 */ 2562 arg = 1; 2563 } 2564 2565 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2566 size = rec->dtrd_offset - agg->dtag_base; 2567 fsize = size + rec->dtrd_size; 2568 2569 ASSERT(dbuf->dtb_tomax != NULL); 2570 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2571 2572 if ((tomax = buf->dtb_tomax) == NULL) { 2573 dtrace_buffer_drop(buf); 2574 return; 2575 } 2576 2577 /* 2578 * The metastructure is always at the bottom of the buffer. 2579 */ 2580 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2581 sizeof (dtrace_aggbuffer_t)); 2582 2583 if (buf->dtb_offset == 0) { 2584 /* 2585 * We just kludge up approximately 1/8th of the size to be 2586 * buckets. If this guess ends up being routinely 2587 * off-the-mark, we may need to dynamically readjust this 2588 * based on past performance. 2589 */ 2590 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2591 2592 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2593 (uintptr_t)tomax || hashsize == 0) { 2594 /* 2595 * We've been given a ludicrously small buffer; 2596 * increment our drop count and leave. 2597 */ 2598 dtrace_buffer_drop(buf); 2599 return; 2600 } 2601 2602 /* 2603 * And now, a pathetic attempt to try to get a an odd (or 2604 * perchance, a prime) hash size for better hash distribution. 2605 */ 2606 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2607 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2608 2609 agb->dtagb_hashsize = hashsize; 2610 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2611 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2612 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2613 2614 for (i = 0; i < agb->dtagb_hashsize; i++) 2615 agb->dtagb_hash[i] = NULL; 2616 } 2617 2618 ASSERT(agg->dtag_first != NULL); 2619 ASSERT(agg->dtag_first->dta_intuple); 2620 2621 /* 2622 * Calculate the hash value based on the key. Note that we _don't_ 2623 * include the aggid in the hashing (but we will store it as part of 2624 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2625 * algorithm: a simple, quick algorithm that has no known funnels, and 2626 * gets good distribution in practice. The efficacy of the hashing 2627 * algorithm (and a comparison with other algorithms) may be found by 2628 * running the ::dtrace_aggstat MDB dcmd. 2629 */ 2630 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2631 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2632 limit = i + act->dta_rec.dtrd_size; 2633 ASSERT(limit <= size); 2634 isstr = DTRACEACT_ISSTRING(act); 2635 2636 for (; i < limit; i++) { 2637 hashval += data[i]; 2638 hashval += (hashval << 10); 2639 hashval ^= (hashval >> 6); 2640 2641 if (isstr && data[i] == '\0') 2642 break; 2643 } 2644 } 2645 2646 hashval += (hashval << 3); 2647 hashval ^= (hashval >> 11); 2648 hashval += (hashval << 15); 2649 2650 /* 2651 * Yes, the divide here is expensive -- but it's generally the least 2652 * of the performance issues given the amount of data that we iterate 2653 * over to compute hash values, compare data, etc. 2654 */ 2655 ndx = hashval % agb->dtagb_hashsize; 2656 2657 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2658 ASSERT((caddr_t)key >= tomax); 2659 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2660 2661 if (hashval != key->dtak_hashval || key->dtak_size != size) 2662 continue; 2663 2664 kdata = key->dtak_data; 2665 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2666 2667 for (act = agg->dtag_first; act->dta_intuple; 2668 act = act->dta_next) { 2669 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2670 limit = i + act->dta_rec.dtrd_size; 2671 ASSERT(limit <= size); 2672 isstr = DTRACEACT_ISSTRING(act); 2673 2674 for (; i < limit; i++) { 2675 if (kdata[i] != data[i]) 2676 goto next; 2677 2678 if (isstr && data[i] == '\0') 2679 break; 2680 } 2681 } 2682 2683 if (action != key->dtak_action) { 2684 /* 2685 * We are aggregating on the same value in the same 2686 * aggregation with two different aggregating actions. 2687 * (This should have been picked up in the compiler, 2688 * so we may be dealing with errant or devious DIF.) 2689 * This is an error condition; we indicate as much, 2690 * and return. 2691 */ 2692 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2693 return; 2694 } 2695 2696 /* 2697 * This is a hit: we need to apply the aggregator to 2698 * the value at this key. 2699 */ 2700 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2701 return; 2702 next: 2703 continue; 2704 } 2705 2706 /* 2707 * We didn't find it. We need to allocate some zero-filled space, 2708 * link it into the hash table appropriately, and apply the aggregator 2709 * to the (zero-filled) value. 2710 */ 2711 offs = buf->dtb_offset; 2712 while (offs & (align - 1)) 2713 offs += sizeof (uint32_t); 2714 2715 /* 2716 * If we don't have enough room to both allocate a new key _and_ 2717 * its associated data, increment the drop count and return. 2718 */ 2719 if ((uintptr_t)tomax + offs + fsize > 2720 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2721 dtrace_buffer_drop(buf); 2722 return; 2723 } 2724 2725 /*CONSTCOND*/ 2726 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2727 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2728 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2729 2730 key->dtak_data = kdata = tomax + offs; 2731 buf->dtb_offset = offs + fsize; 2732 2733 /* 2734 * Now copy the data across. 2735 */ 2736 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2737 2738 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2739 kdata[i] = data[i]; 2740 2741 /* 2742 * Because strings are not zeroed out by default, we need to iterate 2743 * looking for actions that store strings, and we need to explicitly 2744 * pad these strings out with zeroes. 2745 */ 2746 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2747 int nul; 2748 2749 if (!DTRACEACT_ISSTRING(act)) 2750 continue; 2751 2752 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2753 limit = i + act->dta_rec.dtrd_size; 2754 ASSERT(limit <= size); 2755 2756 for (nul = 0; i < limit; i++) { 2757 if (nul) { 2758 kdata[i] = '\0'; 2759 continue; 2760 } 2761 2762 if (data[i] != '\0') 2763 continue; 2764 2765 nul = 1; 2766 } 2767 } 2768 2769 for (i = size; i < fsize; i++) 2770 kdata[i] = 0; 2771 2772 key->dtak_hashval = hashval; 2773 key->dtak_size = size; 2774 key->dtak_action = action; 2775 key->dtak_next = agb->dtagb_hash[ndx]; 2776 agb->dtagb_hash[ndx] = key; 2777 2778 /* 2779 * Finally, apply the aggregator. 2780 */ 2781 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2782 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2783 } 2784 2785 /* 2786 * Given consumer state, this routine finds a speculation in the INACTIVE 2787 * state and transitions it into the ACTIVE state. If there is no speculation 2788 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2789 * incremented -- it is up to the caller to take appropriate action. 2790 */ 2791 static int 2792 dtrace_speculation(dtrace_state_t *state) 2793 { 2794 int i = 0; 2795 dtrace_speculation_state_t curstate; 2796 uint32_t *stat = &state->dts_speculations_unavail, count; 2797 2798 while (i < state->dts_nspeculations) { 2799 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2800 2801 curstate = spec->dtsp_state; 2802 2803 if (curstate != DTRACESPEC_INACTIVE) { 2804 if (curstate == DTRACESPEC_COMMITTINGMANY || 2805 curstate == DTRACESPEC_COMMITTING || 2806 curstate == DTRACESPEC_DISCARDING) 2807 stat = &state->dts_speculations_busy; 2808 i++; 2809 continue; 2810 } 2811 2812 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2813 curstate, DTRACESPEC_ACTIVE) == curstate) 2814 return (i + 1); 2815 } 2816 2817 /* 2818 * We couldn't find a speculation. If we found as much as a single 2819 * busy speculation buffer, we'll attribute this failure as "busy" 2820 * instead of "unavail". 2821 */ 2822 do { 2823 count = *stat; 2824 } while (dtrace_cas32(stat, count, count + 1) != count); 2825 2826 return (0); 2827 } 2828 2829 /* 2830 * This routine commits an active speculation. If the specified speculation 2831 * is not in a valid state to perform a commit(), this routine will silently do 2832 * nothing. The state of the specified speculation is transitioned according 2833 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2834 */ 2835 static void 2836 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2837 dtrace_specid_t which) 2838 { 2839 dtrace_speculation_t *spec; 2840 dtrace_buffer_t *src, *dest; 2841 uintptr_t daddr, saddr, dlimit, slimit; 2842 dtrace_speculation_state_t curstate, new = 0; 2843 intptr_t offs; 2844 uint64_t timestamp; 2845 2846 if (which == 0) 2847 return; 2848 2849 if (which > state->dts_nspeculations) { 2850 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2851 return; 2852 } 2853 2854 spec = &state->dts_speculations[which - 1]; 2855 src = &spec->dtsp_buffer[cpu]; 2856 dest = &state->dts_buffer[cpu]; 2857 2858 do { 2859 curstate = spec->dtsp_state; 2860 2861 if (curstate == DTRACESPEC_COMMITTINGMANY) 2862 break; 2863 2864 switch (curstate) { 2865 case DTRACESPEC_INACTIVE: 2866 case DTRACESPEC_DISCARDING: 2867 return; 2868 2869 case DTRACESPEC_COMMITTING: 2870 /* 2871 * This is only possible if we are (a) commit()'ing 2872 * without having done a prior speculate() on this CPU 2873 * and (b) racing with another commit() on a different 2874 * CPU. There's nothing to do -- we just assert that 2875 * our offset is 0. 2876 */ 2877 ASSERT(src->dtb_offset == 0); 2878 return; 2879 2880 case DTRACESPEC_ACTIVE: 2881 new = DTRACESPEC_COMMITTING; 2882 break; 2883 2884 case DTRACESPEC_ACTIVEONE: 2885 /* 2886 * This speculation is active on one CPU. If our 2887 * buffer offset is non-zero, we know that the one CPU 2888 * must be us. Otherwise, we are committing on a 2889 * different CPU from the speculate(), and we must 2890 * rely on being asynchronously cleaned. 2891 */ 2892 if (src->dtb_offset != 0) { 2893 new = DTRACESPEC_COMMITTING; 2894 break; 2895 } 2896 /*FALLTHROUGH*/ 2897 2898 case DTRACESPEC_ACTIVEMANY: 2899 new = DTRACESPEC_COMMITTINGMANY; 2900 break; 2901 2902 default: 2903 ASSERT(0); 2904 } 2905 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2906 curstate, new) != curstate); 2907 2908 /* 2909 * We have set the state to indicate that we are committing this 2910 * speculation. Now reserve the necessary space in the destination 2911 * buffer. 2912 */ 2913 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2914 sizeof (uint64_t), state, NULL)) < 0) { 2915 dtrace_buffer_drop(dest); 2916 goto out; 2917 } 2918 2919 /* 2920 * We have sufficient space to copy the speculative buffer into the 2921 * primary buffer. First, modify the speculative buffer, filling 2922 * in the timestamp of all entries with the curstate time. The data 2923 * must have the commit() time rather than the time it was traced, 2924 * so that all entries in the primary buffer are in timestamp order. 2925 */ 2926 timestamp = dtrace_gethrtime(); 2927 saddr = (uintptr_t)src->dtb_tomax; 2928 slimit = saddr + src->dtb_offset; 2929 while (saddr < slimit) { 2930 size_t size; 2931 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2932 2933 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2934 saddr += sizeof (dtrace_epid_t); 2935 continue; 2936 } 2937 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2938 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2939 2940 ASSERT3U(saddr + size, <=, slimit); 2941 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2942 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2943 2944 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2945 2946 saddr += size; 2947 } 2948 2949 /* 2950 * Copy the buffer across. (Note that this is a 2951 * highly subobtimal bcopy(); in the unlikely event that this becomes 2952 * a serious performance issue, a high-performance DTrace-specific 2953 * bcopy() should obviously be invented.) 2954 */ 2955 daddr = (uintptr_t)dest->dtb_tomax + offs; 2956 dlimit = daddr + src->dtb_offset; 2957 saddr = (uintptr_t)src->dtb_tomax; 2958 2959 /* 2960 * First, the aligned portion. 2961 */ 2962 while (dlimit - daddr >= sizeof (uint64_t)) { 2963 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2964 2965 daddr += sizeof (uint64_t); 2966 saddr += sizeof (uint64_t); 2967 } 2968 2969 /* 2970 * Now any left-over bit... 2971 */ 2972 while (dlimit - daddr) 2973 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2974 2975 /* 2976 * Finally, commit the reserved space in the destination buffer. 2977 */ 2978 dest->dtb_offset = offs + src->dtb_offset; 2979 2980 out: 2981 /* 2982 * If we're lucky enough to be the only active CPU on this speculation 2983 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2984 */ 2985 if (curstate == DTRACESPEC_ACTIVE || 2986 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2987 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2988 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2989 2990 ASSERT(rval == DTRACESPEC_COMMITTING); 2991 } 2992 2993 src->dtb_offset = 0; 2994 src->dtb_xamot_drops += src->dtb_drops; 2995 src->dtb_drops = 0; 2996 } 2997 2998 /* 2999 * This routine discards an active speculation. If the specified speculation 3000 * is not in a valid state to perform a discard(), this routine will silently 3001 * do nothing. The state of the specified speculation is transitioned 3002 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3003 */ 3004 static void 3005 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3006 dtrace_specid_t which) 3007 { 3008 dtrace_speculation_t *spec; 3009 dtrace_speculation_state_t curstate, new = 0; 3010 dtrace_buffer_t *buf; 3011 3012 if (which == 0) 3013 return; 3014 3015 if (which > state->dts_nspeculations) { 3016 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3017 return; 3018 } 3019 3020 spec = &state->dts_speculations[which - 1]; 3021 buf = &spec->dtsp_buffer[cpu]; 3022 3023 do { 3024 curstate = spec->dtsp_state; 3025 3026 switch (curstate) { 3027 case DTRACESPEC_INACTIVE: 3028 case DTRACESPEC_COMMITTINGMANY: 3029 case DTRACESPEC_COMMITTING: 3030 case DTRACESPEC_DISCARDING: 3031 return; 3032 3033 case DTRACESPEC_ACTIVE: 3034 case DTRACESPEC_ACTIVEMANY: 3035 new = DTRACESPEC_DISCARDING; 3036 break; 3037 3038 case DTRACESPEC_ACTIVEONE: 3039 if (buf->dtb_offset != 0) { 3040 new = DTRACESPEC_INACTIVE; 3041 } else { 3042 new = DTRACESPEC_DISCARDING; 3043 } 3044 break; 3045 3046 default: 3047 ASSERT(0); 3048 } 3049 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3050 curstate, new) != curstate); 3051 3052 buf->dtb_offset = 0; 3053 buf->dtb_drops = 0; 3054 } 3055 3056 /* 3057 * Note: not called from probe context. This function is called 3058 * asynchronously from cross call context to clean any speculations that are 3059 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3060 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3061 * speculation. 3062 */ 3063 static void 3064 dtrace_speculation_clean_here(dtrace_state_t *state) 3065 { 3066 dtrace_icookie_t cookie; 3067 processorid_t cpu = curcpu; 3068 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3069 dtrace_specid_t i; 3070 3071 cookie = dtrace_interrupt_disable(); 3072 3073 if (dest->dtb_tomax == NULL) { 3074 dtrace_interrupt_enable(cookie); 3075 return; 3076 } 3077 3078 for (i = 0; i < state->dts_nspeculations; i++) { 3079 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3080 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3081 3082 if (src->dtb_tomax == NULL) 3083 continue; 3084 3085 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3086 src->dtb_offset = 0; 3087 continue; 3088 } 3089 3090 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3091 continue; 3092 3093 if (src->dtb_offset == 0) 3094 continue; 3095 3096 dtrace_speculation_commit(state, cpu, i + 1); 3097 } 3098 3099 dtrace_interrupt_enable(cookie); 3100 } 3101 3102 /* 3103 * Note: not called from probe context. This function is called 3104 * asynchronously (and at a regular interval) to clean any speculations that 3105 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3106 * is work to be done, it cross calls all CPUs to perform that work; 3107 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3108 * INACTIVE state until they have been cleaned by all CPUs. 3109 */ 3110 static void 3111 dtrace_speculation_clean(dtrace_state_t *state) 3112 { 3113 int work = 0, rv; 3114 dtrace_specid_t i; 3115 3116 for (i = 0; i < state->dts_nspeculations; i++) { 3117 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3118 3119 ASSERT(!spec->dtsp_cleaning); 3120 3121 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3122 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3123 continue; 3124 3125 work++; 3126 spec->dtsp_cleaning = 1; 3127 } 3128 3129 if (!work) 3130 return; 3131 3132 dtrace_xcall(DTRACE_CPUALL, 3133 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3134 3135 /* 3136 * We now know that all CPUs have committed or discarded their 3137 * speculation buffers, as appropriate. We can now set the state 3138 * to inactive. 3139 */ 3140 for (i = 0; i < state->dts_nspeculations; i++) { 3141 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3142 dtrace_speculation_state_t curstate, new; 3143 3144 if (!spec->dtsp_cleaning) 3145 continue; 3146 3147 curstate = spec->dtsp_state; 3148 ASSERT(curstate == DTRACESPEC_DISCARDING || 3149 curstate == DTRACESPEC_COMMITTINGMANY); 3150 3151 new = DTRACESPEC_INACTIVE; 3152 3153 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3154 ASSERT(rv == curstate); 3155 spec->dtsp_cleaning = 0; 3156 } 3157 } 3158 3159 /* 3160 * Called as part of a speculate() to get the speculative buffer associated 3161 * with a given speculation. Returns NULL if the specified speculation is not 3162 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3163 * the active CPU is not the specified CPU -- the speculation will be 3164 * atomically transitioned into the ACTIVEMANY state. 3165 */ 3166 static dtrace_buffer_t * 3167 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3168 dtrace_specid_t which) 3169 { 3170 dtrace_speculation_t *spec; 3171 dtrace_speculation_state_t curstate, new = 0; 3172 dtrace_buffer_t *buf; 3173 3174 if (which == 0) 3175 return (NULL); 3176 3177 if (which > state->dts_nspeculations) { 3178 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3179 return (NULL); 3180 } 3181 3182 spec = &state->dts_speculations[which - 1]; 3183 buf = &spec->dtsp_buffer[cpuid]; 3184 3185 do { 3186 curstate = spec->dtsp_state; 3187 3188 switch (curstate) { 3189 case DTRACESPEC_INACTIVE: 3190 case DTRACESPEC_COMMITTINGMANY: 3191 case DTRACESPEC_DISCARDING: 3192 return (NULL); 3193 3194 case DTRACESPEC_COMMITTING: 3195 ASSERT(buf->dtb_offset == 0); 3196 return (NULL); 3197 3198 case DTRACESPEC_ACTIVEONE: 3199 /* 3200 * This speculation is currently active on one CPU. 3201 * Check the offset in the buffer; if it's non-zero, 3202 * that CPU must be us (and we leave the state alone). 3203 * If it's zero, assume that we're starting on a new 3204 * CPU -- and change the state to indicate that the 3205 * speculation is active on more than one CPU. 3206 */ 3207 if (buf->dtb_offset != 0) 3208 return (buf); 3209 3210 new = DTRACESPEC_ACTIVEMANY; 3211 break; 3212 3213 case DTRACESPEC_ACTIVEMANY: 3214 return (buf); 3215 3216 case DTRACESPEC_ACTIVE: 3217 new = DTRACESPEC_ACTIVEONE; 3218 break; 3219 3220 default: 3221 ASSERT(0); 3222 } 3223 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3224 curstate, new) != curstate); 3225 3226 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3227 return (buf); 3228 } 3229 3230 /* 3231 * Return a string. In the event that the user lacks the privilege to access 3232 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3233 * don't fail access checking. 3234 * 3235 * dtrace_dif_variable() uses this routine as a helper for various 3236 * builtin values such as 'execname' and 'probefunc.' 3237 */ 3238 uintptr_t 3239 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3240 dtrace_mstate_t *mstate) 3241 { 3242 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3243 uintptr_t ret; 3244 size_t strsz; 3245 3246 /* 3247 * The easy case: this probe is allowed to read all of memory, so 3248 * we can just return this as a vanilla pointer. 3249 */ 3250 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3251 return (addr); 3252 3253 /* 3254 * This is the tougher case: we copy the string in question from 3255 * kernel memory into scratch memory and return it that way: this 3256 * ensures that we won't trip up when access checking tests the 3257 * BYREF return value. 3258 */ 3259 strsz = dtrace_strlen((char *)addr, size) + 1; 3260 3261 if (mstate->dtms_scratch_ptr + strsz > 3262 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3264 return (0); 3265 } 3266 3267 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3268 strsz); 3269 ret = mstate->dtms_scratch_ptr; 3270 mstate->dtms_scratch_ptr += strsz; 3271 return (ret); 3272 } 3273 3274 /* 3275 * Return a string from a memoy address which is known to have one or 3276 * more concatenated, individually zero terminated, sub-strings. 3277 * In the event that the user lacks the privilege to access 3278 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3279 * don't fail access checking. 3280 * 3281 * dtrace_dif_variable() uses this routine as a helper for various 3282 * builtin values such as 'execargs'. 3283 */ 3284 static uintptr_t 3285 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3286 dtrace_mstate_t *mstate) 3287 { 3288 char *p; 3289 size_t i; 3290 uintptr_t ret; 3291 3292 if (mstate->dtms_scratch_ptr + strsz > 3293 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3295 return (0); 3296 } 3297 3298 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3299 strsz); 3300 3301 /* Replace sub-string termination characters with a space. */ 3302 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3303 p++, i++) 3304 if (*p == '\0') 3305 *p = ' '; 3306 3307 ret = mstate->dtms_scratch_ptr; 3308 mstate->dtms_scratch_ptr += strsz; 3309 return (ret); 3310 } 3311 3312 /* 3313 * This function implements the DIF emulator's variable lookups. The emulator 3314 * passes a reserved variable identifier and optional built-in array index. 3315 */ 3316 static uint64_t 3317 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3318 uint64_t ndx) 3319 { 3320 /* 3321 * If we're accessing one of the uncached arguments, we'll turn this 3322 * into a reference in the args array. 3323 */ 3324 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3325 ndx = v - DIF_VAR_ARG0; 3326 v = DIF_VAR_ARGS; 3327 } 3328 3329 switch (v) { 3330 case DIF_VAR_ARGS: 3331 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3332 if (ndx >= sizeof (mstate->dtms_arg) / 3333 sizeof (mstate->dtms_arg[0])) { 3334 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3335 dtrace_provider_t *pv; 3336 uint64_t val; 3337 3338 pv = mstate->dtms_probe->dtpr_provider; 3339 if (pv->dtpv_pops.dtps_getargval != NULL) 3340 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3341 mstate->dtms_probe->dtpr_id, 3342 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3343 else 3344 val = dtrace_getarg(ndx, aframes); 3345 3346 /* 3347 * This is regrettably required to keep the compiler 3348 * from tail-optimizing the call to dtrace_getarg(). 3349 * The condition always evaluates to true, but the 3350 * compiler has no way of figuring that out a priori. 3351 * (None of this would be necessary if the compiler 3352 * could be relied upon to _always_ tail-optimize 3353 * the call to dtrace_getarg() -- but it can't.) 3354 */ 3355 if (mstate->dtms_probe != NULL) 3356 return (val); 3357 3358 ASSERT(0); 3359 } 3360 3361 return (mstate->dtms_arg[ndx]); 3362 3363 #ifdef illumos 3364 case DIF_VAR_UREGS: { 3365 klwp_t *lwp; 3366 3367 if (!dtrace_priv_proc(state)) 3368 return (0); 3369 3370 if ((lwp = curthread->t_lwp) == NULL) { 3371 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3372 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 3373 return (0); 3374 } 3375 3376 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3377 return (0); 3378 } 3379 #else 3380 case DIF_VAR_UREGS: { 3381 struct trapframe *tframe; 3382 3383 if (!dtrace_priv_proc(state)) 3384 return (0); 3385 3386 if ((tframe = curthread->td_frame) == NULL) { 3387 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3388 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3389 return (0); 3390 } 3391 3392 return (dtrace_getreg(tframe, ndx)); 3393 } 3394 #endif 3395 3396 case DIF_VAR_CURTHREAD: 3397 if (!dtrace_priv_proc(state)) 3398 return (0); 3399 return ((uint64_t)(uintptr_t)curthread); 3400 3401 case DIF_VAR_TIMESTAMP: 3402 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3403 mstate->dtms_timestamp = dtrace_gethrtime(); 3404 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3405 } 3406 return (mstate->dtms_timestamp); 3407 3408 case DIF_VAR_VTIMESTAMP: 3409 ASSERT(dtrace_vtime_references != 0); 3410 return (curthread->t_dtrace_vtime); 3411 3412 case DIF_VAR_WALLTIMESTAMP: 3413 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3414 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3415 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3416 } 3417 return (mstate->dtms_walltimestamp); 3418 3419 #ifdef illumos 3420 case DIF_VAR_IPL: 3421 if (!dtrace_priv_kernel(state)) 3422 return (0); 3423 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3424 mstate->dtms_ipl = dtrace_getipl(); 3425 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3426 } 3427 return (mstate->dtms_ipl); 3428 #endif 3429 3430 case DIF_VAR_EPID: 3431 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3432 return (mstate->dtms_epid); 3433 3434 case DIF_VAR_ID: 3435 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3436 return (mstate->dtms_probe->dtpr_id); 3437 3438 case DIF_VAR_STACKDEPTH: 3439 if (!dtrace_priv_kernel(state)) 3440 return (0); 3441 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3442 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3443 3444 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3445 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3446 } 3447 return (mstate->dtms_stackdepth); 3448 3449 case DIF_VAR_USTACKDEPTH: 3450 if (!dtrace_priv_proc(state)) 3451 return (0); 3452 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3453 /* 3454 * See comment in DIF_VAR_PID. 3455 */ 3456 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3457 CPU_ON_INTR(CPU)) { 3458 mstate->dtms_ustackdepth = 0; 3459 } else { 3460 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3461 mstate->dtms_ustackdepth = 3462 dtrace_getustackdepth(); 3463 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3464 } 3465 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3466 } 3467 return (mstate->dtms_ustackdepth); 3468 3469 case DIF_VAR_CALLER: 3470 if (!dtrace_priv_kernel(state)) 3471 return (0); 3472 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3473 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3474 3475 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3476 /* 3477 * If this is an unanchored probe, we are 3478 * required to go through the slow path: 3479 * dtrace_caller() only guarantees correct 3480 * results for anchored probes. 3481 */ 3482 pc_t caller[2] = {0, 0}; 3483 3484 dtrace_getpcstack(caller, 2, aframes, 3485 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3486 mstate->dtms_caller = caller[1]; 3487 } else if ((mstate->dtms_caller = 3488 dtrace_caller(aframes)) == -1) { 3489 /* 3490 * We have failed to do this the quick way; 3491 * we must resort to the slower approach of 3492 * calling dtrace_getpcstack(). 3493 */ 3494 pc_t caller = 0; 3495 3496 dtrace_getpcstack(&caller, 1, aframes, NULL); 3497 mstate->dtms_caller = caller; 3498 } 3499 3500 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3501 } 3502 return (mstate->dtms_caller); 3503 3504 case DIF_VAR_UCALLER: 3505 if (!dtrace_priv_proc(state)) 3506 return (0); 3507 3508 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3509 uint64_t ustack[3]; 3510 3511 /* 3512 * dtrace_getupcstack() fills in the first uint64_t 3513 * with the current PID. The second uint64_t will 3514 * be the program counter at user-level. The third 3515 * uint64_t will contain the caller, which is what 3516 * we're after. 3517 */ 3518 ustack[2] = 0; 3519 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3520 dtrace_getupcstack(ustack, 3); 3521 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3522 mstate->dtms_ucaller = ustack[2]; 3523 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3524 } 3525 3526 return (mstate->dtms_ucaller); 3527 3528 case DIF_VAR_PROBEPROV: 3529 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3530 return (dtrace_dif_varstr( 3531 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3532 state, mstate)); 3533 3534 case DIF_VAR_PROBEMOD: 3535 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3536 return (dtrace_dif_varstr( 3537 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3538 state, mstate)); 3539 3540 case DIF_VAR_PROBEFUNC: 3541 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3542 return (dtrace_dif_varstr( 3543 (uintptr_t)mstate->dtms_probe->dtpr_func, 3544 state, mstate)); 3545 3546 case DIF_VAR_PROBENAME: 3547 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3548 return (dtrace_dif_varstr( 3549 (uintptr_t)mstate->dtms_probe->dtpr_name, 3550 state, mstate)); 3551 3552 case DIF_VAR_PID: 3553 if (!dtrace_priv_proc(state)) 3554 return (0); 3555 3556 #ifdef illumos 3557 /* 3558 * Note that we are assuming that an unanchored probe is 3559 * always due to a high-level interrupt. (And we're assuming 3560 * that there is only a single high level interrupt.) 3561 */ 3562 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3563 return (pid0.pid_id); 3564 3565 /* 3566 * It is always safe to dereference one's own t_procp pointer: 3567 * it always points to a valid, allocated proc structure. 3568 * Further, it is always safe to dereference the p_pidp member 3569 * of one's own proc structure. (These are truisms becuase 3570 * threads and processes don't clean up their own state -- 3571 * they leave that task to whomever reaps them.) 3572 */ 3573 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3574 #else 3575 return ((uint64_t)curproc->p_pid); 3576 #endif 3577 3578 case DIF_VAR_PPID: 3579 if (!dtrace_priv_proc(state)) 3580 return (0); 3581 3582 #ifdef illumos 3583 /* 3584 * See comment in DIF_VAR_PID. 3585 */ 3586 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3587 return (pid0.pid_id); 3588 3589 /* 3590 * It is always safe to dereference one's own t_procp pointer: 3591 * it always points to a valid, allocated proc structure. 3592 * (This is true because threads don't clean up their own 3593 * state -- they leave that task to whomever reaps them.) 3594 */ 3595 return ((uint64_t)curthread->t_procp->p_ppid); 3596 #else 3597 if (curproc->p_pid == proc0.p_pid) 3598 return (curproc->p_pid); 3599 else 3600 return (curproc->p_pptr->p_pid); 3601 #endif 3602 3603 case DIF_VAR_TID: 3604 #ifdef illumos 3605 /* 3606 * See comment in DIF_VAR_PID. 3607 */ 3608 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3609 return (0); 3610 #endif 3611 3612 return ((uint64_t)curthread->t_tid); 3613 3614 case DIF_VAR_EXECARGS: { 3615 struct pargs *p_args = curthread->td_proc->p_args; 3616 3617 if (p_args == NULL) 3618 return(0); 3619 3620 return (dtrace_dif_varstrz( 3621 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3622 } 3623 3624 case DIF_VAR_EXECNAME: 3625 #ifdef illumos 3626 if (!dtrace_priv_proc(state)) 3627 return (0); 3628 3629 /* 3630 * See comment in DIF_VAR_PID. 3631 */ 3632 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3633 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3634 3635 /* 3636 * It is always safe to dereference one's own t_procp pointer: 3637 * it always points to a valid, allocated proc structure. 3638 * (This is true because threads don't clean up their own 3639 * state -- they leave that task to whomever reaps them.) 3640 */ 3641 return (dtrace_dif_varstr( 3642 (uintptr_t)curthread->t_procp->p_user.u_comm, 3643 state, mstate)); 3644 #else 3645 return (dtrace_dif_varstr( 3646 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3647 #endif 3648 3649 case DIF_VAR_ZONENAME: 3650 #ifdef illumos 3651 if (!dtrace_priv_proc(state)) 3652 return (0); 3653 3654 /* 3655 * See comment in DIF_VAR_PID. 3656 */ 3657 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3658 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3659 3660 /* 3661 * It is always safe to dereference one's own t_procp pointer: 3662 * it always points to a valid, allocated proc structure. 3663 * (This is true because threads don't clean up their own 3664 * state -- they leave that task to whomever reaps them.) 3665 */ 3666 return (dtrace_dif_varstr( 3667 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3668 state, mstate)); 3669 #elif defined(__FreeBSD__) 3670 /* 3671 * On FreeBSD, we introduce compatibility to zonename by falling through 3672 * into jailname. 3673 */ 3674 case DIF_VAR_JAILNAME: 3675 if (!dtrace_priv_kernel(state)) 3676 return (0); 3677 3678 return (dtrace_dif_varstr( 3679 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3680 state, mstate)); 3681 3682 case DIF_VAR_JID: 3683 if (!dtrace_priv_kernel(state)) 3684 return (0); 3685 3686 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3687 #else 3688 return (0); 3689 #endif 3690 3691 case DIF_VAR_UID: 3692 if (!dtrace_priv_proc(state)) 3693 return (0); 3694 3695 #ifdef illumos 3696 /* 3697 * See comment in DIF_VAR_PID. 3698 */ 3699 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3700 return ((uint64_t)p0.p_cred->cr_uid); 3701 3702 /* 3703 * It is always safe to dereference one's own t_procp pointer: 3704 * it always points to a valid, allocated proc structure. 3705 * (This is true because threads don't clean up their own 3706 * state -- they leave that task to whomever reaps them.) 3707 * 3708 * Additionally, it is safe to dereference one's own process 3709 * credential, since this is never NULL after process birth. 3710 */ 3711 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3712 #else 3713 return ((uint64_t)curthread->td_ucred->cr_uid); 3714 #endif 3715 3716 case DIF_VAR_GID: 3717 if (!dtrace_priv_proc(state)) 3718 return (0); 3719 3720 #ifdef illumos 3721 /* 3722 * See comment in DIF_VAR_PID. 3723 */ 3724 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3725 return ((uint64_t)p0.p_cred->cr_gid); 3726 3727 /* 3728 * It is always safe to dereference one's own t_procp pointer: 3729 * it always points to a valid, allocated proc structure. 3730 * (This is true because threads don't clean up their own 3731 * state -- they leave that task to whomever reaps them.) 3732 * 3733 * Additionally, it is safe to dereference one's own process 3734 * credential, since this is never NULL after process birth. 3735 */ 3736 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3737 #else 3738 return ((uint64_t)curthread->td_ucred->cr_gid); 3739 #endif 3740 3741 case DIF_VAR_ERRNO: { 3742 #ifdef illumos 3743 klwp_t *lwp; 3744 if (!dtrace_priv_proc(state)) 3745 return (0); 3746 3747 /* 3748 * See comment in DIF_VAR_PID. 3749 */ 3750 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3751 return (0); 3752 3753 /* 3754 * It is always safe to dereference one's own t_lwp pointer in 3755 * the event that this pointer is non-NULL. (This is true 3756 * because threads and lwps don't clean up their own state -- 3757 * they leave that task to whomever reaps them.) 3758 */ 3759 if ((lwp = curthread->t_lwp) == NULL) 3760 return (0); 3761 3762 return ((uint64_t)lwp->lwp_errno); 3763 #else 3764 return (curthread->td_errno); 3765 #endif 3766 } 3767 #ifndef illumos 3768 case DIF_VAR_CPU: { 3769 return curcpu; 3770 } 3771 #endif 3772 default: 3773 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3774 return (0); 3775 } 3776 } 3777 3778 3779 typedef enum dtrace_json_state { 3780 DTRACE_JSON_REST = 1, 3781 DTRACE_JSON_OBJECT, 3782 DTRACE_JSON_STRING, 3783 DTRACE_JSON_STRING_ESCAPE, 3784 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3785 DTRACE_JSON_COLON, 3786 DTRACE_JSON_COMMA, 3787 DTRACE_JSON_VALUE, 3788 DTRACE_JSON_IDENTIFIER, 3789 DTRACE_JSON_NUMBER, 3790 DTRACE_JSON_NUMBER_FRAC, 3791 DTRACE_JSON_NUMBER_EXP, 3792 DTRACE_JSON_COLLECT_OBJECT 3793 } dtrace_json_state_t; 3794 3795 /* 3796 * This function possesses just enough knowledge about JSON to extract a single 3797 * value from a JSON string and store it in the scratch buffer. It is able 3798 * to extract nested object values, and members of arrays by index. 3799 * 3800 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3801 * be looked up as we descend into the object tree. e.g. 3802 * 3803 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3804 * with nelems = 5. 3805 * 3806 * The run time of this function must be bounded above by strsize to limit the 3807 * amount of work done in probe context. As such, it is implemented as a 3808 * simple state machine, reading one character at a time using safe loads 3809 * until we find the requested element, hit a parsing error or run off the 3810 * end of the object or string. 3811 * 3812 * As there is no way for a subroutine to return an error without interrupting 3813 * clause execution, we simply return NULL in the event of a missing key or any 3814 * other error condition. Each NULL return in this function is commented with 3815 * the error condition it represents -- parsing or otherwise. 3816 * 3817 * The set of states for the state machine closely matches the JSON 3818 * specification (http://json.org/). Briefly: 3819 * 3820 * DTRACE_JSON_REST: 3821 * Skip whitespace until we find either a top-level Object, moving 3822 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3823 * 3824 * DTRACE_JSON_OBJECT: 3825 * Locate the next key String in an Object. Sets a flag to denote 3826 * the next String as a key string and moves to DTRACE_JSON_STRING. 3827 * 3828 * DTRACE_JSON_COLON: 3829 * Skip whitespace until we find the colon that separates key Strings 3830 * from their values. Once found, move to DTRACE_JSON_VALUE. 3831 * 3832 * DTRACE_JSON_VALUE: 3833 * Detects the type of the next value (String, Number, Identifier, Object 3834 * or Array) and routes to the states that process that type. Here we also 3835 * deal with the element selector list if we are requested to traverse down 3836 * into the object tree. 3837 * 3838 * DTRACE_JSON_COMMA: 3839 * Skip whitespace until we find the comma that separates key-value pairs 3840 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3841 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3842 * states return to this state at the end of their value, unless otherwise 3843 * noted. 3844 * 3845 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3846 * Processes a Number literal from the JSON, including any exponent 3847 * component that may be present. Numbers are returned as strings, which 3848 * may be passed to strtoll() if an integer is required. 3849 * 3850 * DTRACE_JSON_IDENTIFIER: 3851 * Processes a "true", "false" or "null" literal in the JSON. 3852 * 3853 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3854 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3855 * Processes a String literal from the JSON, whether the String denotes 3856 * a key, a value or part of a larger Object. Handles all escape sequences 3857 * present in the specification, including four-digit unicode characters, 3858 * but merely includes the escape sequence without converting it to the 3859 * actual escaped character. If the String is flagged as a key, we 3860 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3861 * 3862 * DTRACE_JSON_COLLECT_OBJECT: 3863 * This state collects an entire Object (or Array), correctly handling 3864 * embedded strings. If the full element selector list matches this nested 3865 * object, we return the Object in full as a string. If not, we use this 3866 * state to skip to the next value at this level and continue processing. 3867 * 3868 * NOTE: This function uses various macros from strtolctype.h to manipulate 3869 * digit values, etc -- these have all been checked to ensure they make 3870 * no additional function calls. 3871 */ 3872 static char * 3873 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3874 char *dest) 3875 { 3876 dtrace_json_state_t state = DTRACE_JSON_REST; 3877 int64_t array_elem = INT64_MIN; 3878 int64_t array_pos = 0; 3879 uint8_t escape_unicount = 0; 3880 boolean_t string_is_key = B_FALSE; 3881 boolean_t collect_object = B_FALSE; 3882 boolean_t found_key = B_FALSE; 3883 boolean_t in_array = B_FALSE; 3884 uint32_t braces = 0, brackets = 0; 3885 char *elem = elemlist; 3886 char *dd = dest; 3887 uintptr_t cur; 3888 3889 for (cur = json; cur < json + size; cur++) { 3890 char cc = dtrace_load8(cur); 3891 if (cc == '\0') 3892 return (NULL); 3893 3894 switch (state) { 3895 case DTRACE_JSON_REST: 3896 if (isspace(cc)) 3897 break; 3898 3899 if (cc == '{') { 3900 state = DTRACE_JSON_OBJECT; 3901 break; 3902 } 3903 3904 if (cc == '[') { 3905 in_array = B_TRUE; 3906 array_pos = 0; 3907 array_elem = dtrace_strtoll(elem, 10, size); 3908 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3909 state = DTRACE_JSON_VALUE; 3910 break; 3911 } 3912 3913 /* 3914 * ERROR: expected to find a top-level object or array. 3915 */ 3916 return (NULL); 3917 case DTRACE_JSON_OBJECT: 3918 if (isspace(cc)) 3919 break; 3920 3921 if (cc == '"') { 3922 state = DTRACE_JSON_STRING; 3923 string_is_key = B_TRUE; 3924 break; 3925 } 3926 3927 /* 3928 * ERROR: either the object did not start with a key 3929 * string, or we've run off the end of the object 3930 * without finding the requested key. 3931 */ 3932 return (NULL); 3933 case DTRACE_JSON_STRING: 3934 if (cc == '\\') { 3935 *dd++ = '\\'; 3936 state = DTRACE_JSON_STRING_ESCAPE; 3937 break; 3938 } 3939 3940 if (cc == '"') { 3941 if (collect_object) { 3942 /* 3943 * We don't reset the dest here, as 3944 * the string is part of a larger 3945 * object being collected. 3946 */ 3947 *dd++ = cc; 3948 collect_object = B_FALSE; 3949 state = DTRACE_JSON_COLLECT_OBJECT; 3950 break; 3951 } 3952 *dd = '\0'; 3953 dd = dest; /* reset string buffer */ 3954 if (string_is_key) { 3955 if (dtrace_strncmp(dest, elem, 3956 size) == 0) 3957 found_key = B_TRUE; 3958 } else if (found_key) { 3959 if (nelems > 1) { 3960 /* 3961 * We expected an object, not 3962 * this string. 3963 */ 3964 return (NULL); 3965 } 3966 return (dest); 3967 } 3968 state = string_is_key ? DTRACE_JSON_COLON : 3969 DTRACE_JSON_COMMA; 3970 string_is_key = B_FALSE; 3971 break; 3972 } 3973 3974 *dd++ = cc; 3975 break; 3976 case DTRACE_JSON_STRING_ESCAPE: 3977 *dd++ = cc; 3978 if (cc == 'u') { 3979 escape_unicount = 0; 3980 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3981 } else { 3982 state = DTRACE_JSON_STRING; 3983 } 3984 break; 3985 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3986 if (!isxdigit(cc)) { 3987 /* 3988 * ERROR: invalid unicode escape, expected 3989 * four valid hexidecimal digits. 3990 */ 3991 return (NULL); 3992 } 3993 3994 *dd++ = cc; 3995 if (++escape_unicount == 4) 3996 state = DTRACE_JSON_STRING; 3997 break; 3998 case DTRACE_JSON_COLON: 3999 if (isspace(cc)) 4000 break; 4001 4002 if (cc == ':') { 4003 state = DTRACE_JSON_VALUE; 4004 break; 4005 } 4006 4007 /* 4008 * ERROR: expected a colon. 4009 */ 4010 return (NULL); 4011 case DTRACE_JSON_COMMA: 4012 if (isspace(cc)) 4013 break; 4014 4015 if (cc == ',') { 4016 if (in_array) { 4017 state = DTRACE_JSON_VALUE; 4018 if (++array_pos == array_elem) 4019 found_key = B_TRUE; 4020 } else { 4021 state = DTRACE_JSON_OBJECT; 4022 } 4023 break; 4024 } 4025 4026 /* 4027 * ERROR: either we hit an unexpected character, or 4028 * we reached the end of the object or array without 4029 * finding the requested key. 4030 */ 4031 return (NULL); 4032 case DTRACE_JSON_IDENTIFIER: 4033 if (islower(cc)) { 4034 *dd++ = cc; 4035 break; 4036 } 4037 4038 *dd = '\0'; 4039 dd = dest; /* reset string buffer */ 4040 4041 if (dtrace_strncmp(dest, "true", 5) == 0 || 4042 dtrace_strncmp(dest, "false", 6) == 0 || 4043 dtrace_strncmp(dest, "null", 5) == 0) { 4044 if (found_key) { 4045 if (nelems > 1) { 4046 /* 4047 * ERROR: We expected an object, 4048 * not this identifier. 4049 */ 4050 return (NULL); 4051 } 4052 return (dest); 4053 } else { 4054 cur--; 4055 state = DTRACE_JSON_COMMA; 4056 break; 4057 } 4058 } 4059 4060 /* 4061 * ERROR: we did not recognise the identifier as one 4062 * of those in the JSON specification. 4063 */ 4064 return (NULL); 4065 case DTRACE_JSON_NUMBER: 4066 if (cc == '.') { 4067 *dd++ = cc; 4068 state = DTRACE_JSON_NUMBER_FRAC; 4069 break; 4070 } 4071 4072 if (cc == 'x' || cc == 'X') { 4073 /* 4074 * ERROR: specification explicitly excludes 4075 * hexidecimal or octal numbers. 4076 */ 4077 return (NULL); 4078 } 4079 4080 /* FALLTHRU */ 4081 case DTRACE_JSON_NUMBER_FRAC: 4082 if (cc == 'e' || cc == 'E') { 4083 *dd++ = cc; 4084 state = DTRACE_JSON_NUMBER_EXP; 4085 break; 4086 } 4087 4088 if (cc == '+' || cc == '-') { 4089 /* 4090 * ERROR: expect sign as part of exponent only. 4091 */ 4092 return (NULL); 4093 } 4094 /* FALLTHRU */ 4095 case DTRACE_JSON_NUMBER_EXP: 4096 if (isdigit(cc) || cc == '+' || cc == '-') { 4097 *dd++ = cc; 4098 break; 4099 } 4100 4101 *dd = '\0'; 4102 dd = dest; /* reset string buffer */ 4103 if (found_key) { 4104 if (nelems > 1) { 4105 /* 4106 * ERROR: We expected an object, not 4107 * this number. 4108 */ 4109 return (NULL); 4110 } 4111 return (dest); 4112 } 4113 4114 cur--; 4115 state = DTRACE_JSON_COMMA; 4116 break; 4117 case DTRACE_JSON_VALUE: 4118 if (isspace(cc)) 4119 break; 4120 4121 if (cc == '{' || cc == '[') { 4122 if (nelems > 1 && found_key) { 4123 in_array = cc == '[' ? B_TRUE : B_FALSE; 4124 /* 4125 * If our element selector directs us 4126 * to descend into this nested object, 4127 * then move to the next selector 4128 * element in the list and restart the 4129 * state machine. 4130 */ 4131 while (*elem != '\0') 4132 elem++; 4133 elem++; /* skip the inter-element NUL */ 4134 nelems--; 4135 dd = dest; 4136 if (in_array) { 4137 state = DTRACE_JSON_VALUE; 4138 array_pos = 0; 4139 array_elem = dtrace_strtoll( 4140 elem, 10, size); 4141 found_key = array_elem == 0 ? 4142 B_TRUE : B_FALSE; 4143 } else { 4144 found_key = B_FALSE; 4145 state = DTRACE_JSON_OBJECT; 4146 } 4147 break; 4148 } 4149 4150 /* 4151 * Otherwise, we wish to either skip this 4152 * nested object or return it in full. 4153 */ 4154 if (cc == '[') 4155 brackets = 1; 4156 else 4157 braces = 1; 4158 *dd++ = cc; 4159 state = DTRACE_JSON_COLLECT_OBJECT; 4160 break; 4161 } 4162 4163 if (cc == '"') { 4164 state = DTRACE_JSON_STRING; 4165 break; 4166 } 4167 4168 if (islower(cc)) { 4169 /* 4170 * Here we deal with true, false and null. 4171 */ 4172 *dd++ = cc; 4173 state = DTRACE_JSON_IDENTIFIER; 4174 break; 4175 } 4176 4177 if (cc == '-' || isdigit(cc)) { 4178 *dd++ = cc; 4179 state = DTRACE_JSON_NUMBER; 4180 break; 4181 } 4182 4183 /* 4184 * ERROR: unexpected character at start of value. 4185 */ 4186 return (NULL); 4187 case DTRACE_JSON_COLLECT_OBJECT: 4188 if (cc == '\0') 4189 /* 4190 * ERROR: unexpected end of input. 4191 */ 4192 return (NULL); 4193 4194 *dd++ = cc; 4195 if (cc == '"') { 4196 collect_object = B_TRUE; 4197 state = DTRACE_JSON_STRING; 4198 break; 4199 } 4200 4201 if (cc == ']') { 4202 if (brackets-- == 0) { 4203 /* 4204 * ERROR: unbalanced brackets. 4205 */ 4206 return (NULL); 4207 } 4208 } else if (cc == '}') { 4209 if (braces-- == 0) { 4210 /* 4211 * ERROR: unbalanced braces. 4212 */ 4213 return (NULL); 4214 } 4215 } else if (cc == '{') { 4216 braces++; 4217 } else if (cc == '[') { 4218 brackets++; 4219 } 4220 4221 if (brackets == 0 && braces == 0) { 4222 if (found_key) { 4223 *dd = '\0'; 4224 return (dest); 4225 } 4226 dd = dest; /* reset string buffer */ 4227 state = DTRACE_JSON_COMMA; 4228 } 4229 break; 4230 } 4231 } 4232 return (NULL); 4233 } 4234 4235 /* 4236 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4237 * Notice that we don't bother validating the proper number of arguments or 4238 * their types in the tuple stack. This isn't needed because all argument 4239 * interpretation is safe because of our load safety -- the worst that can 4240 * happen is that a bogus program can obtain bogus results. 4241 */ 4242 static void 4243 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4244 dtrace_key_t *tupregs, int nargs, 4245 dtrace_mstate_t *mstate, dtrace_state_t *state) 4246 { 4247 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4248 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4249 dtrace_vstate_t *vstate = &state->dts_vstate; 4250 4251 #ifdef illumos 4252 union { 4253 mutex_impl_t mi; 4254 uint64_t mx; 4255 } m; 4256 4257 union { 4258 krwlock_t ri; 4259 uintptr_t rw; 4260 } r; 4261 #else 4262 struct thread *lowner; 4263 union { 4264 struct lock_object *li; 4265 uintptr_t lx; 4266 } l; 4267 #endif 4268 4269 switch (subr) { 4270 case DIF_SUBR_RAND: 4271 regs[rd] = dtrace_xoroshiro128_plus_next( 4272 state->dts_rstate[curcpu]); 4273 break; 4274 4275 #ifdef illumos 4276 case DIF_SUBR_MUTEX_OWNED: 4277 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4278 mstate, vstate)) { 4279 regs[rd] = 0; 4280 break; 4281 } 4282 4283 m.mx = dtrace_load64(tupregs[0].dttk_value); 4284 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4285 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4286 else 4287 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4288 break; 4289 4290 case DIF_SUBR_MUTEX_OWNER: 4291 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4292 mstate, vstate)) { 4293 regs[rd] = 0; 4294 break; 4295 } 4296 4297 m.mx = dtrace_load64(tupregs[0].dttk_value); 4298 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4299 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4300 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4301 else 4302 regs[rd] = 0; 4303 break; 4304 4305 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4306 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4307 mstate, vstate)) { 4308 regs[rd] = 0; 4309 break; 4310 } 4311 4312 m.mx = dtrace_load64(tupregs[0].dttk_value); 4313 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4314 break; 4315 4316 case DIF_SUBR_MUTEX_TYPE_SPIN: 4317 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4318 mstate, vstate)) { 4319 regs[rd] = 0; 4320 break; 4321 } 4322 4323 m.mx = dtrace_load64(tupregs[0].dttk_value); 4324 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4325 break; 4326 4327 case DIF_SUBR_RW_READ_HELD: { 4328 uintptr_t tmp; 4329 4330 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4331 mstate, vstate)) { 4332 regs[rd] = 0; 4333 break; 4334 } 4335 4336 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4337 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4338 break; 4339 } 4340 4341 case DIF_SUBR_RW_WRITE_HELD: 4342 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4343 mstate, vstate)) { 4344 regs[rd] = 0; 4345 break; 4346 } 4347 4348 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4349 regs[rd] = _RW_WRITE_HELD(&r.ri); 4350 break; 4351 4352 case DIF_SUBR_RW_ISWRITER: 4353 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4354 mstate, vstate)) { 4355 regs[rd] = 0; 4356 break; 4357 } 4358 4359 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4360 regs[rd] = _RW_ISWRITER(&r.ri); 4361 break; 4362 4363 #else /* !illumos */ 4364 case DIF_SUBR_MUTEX_OWNED: 4365 if (!dtrace_canload(tupregs[0].dttk_value, 4366 sizeof (struct lock_object), mstate, vstate)) { 4367 regs[rd] = 0; 4368 break; 4369 } 4370 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4371 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4372 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4373 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4374 break; 4375 4376 case DIF_SUBR_MUTEX_OWNER: 4377 if (!dtrace_canload(tupregs[0].dttk_value, 4378 sizeof (struct lock_object), mstate, vstate)) { 4379 regs[rd] = 0; 4380 break; 4381 } 4382 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4384 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4385 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4386 regs[rd] = (uintptr_t)lowner; 4387 break; 4388 4389 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4390 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4391 mstate, vstate)) { 4392 regs[rd] = 0; 4393 break; 4394 } 4395 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4396 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4397 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4398 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4399 break; 4400 4401 case DIF_SUBR_MUTEX_TYPE_SPIN: 4402 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4403 mstate, vstate)) { 4404 regs[rd] = 0; 4405 break; 4406 } 4407 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4408 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4409 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4410 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4411 break; 4412 4413 case DIF_SUBR_RW_READ_HELD: 4414 case DIF_SUBR_SX_SHARED_HELD: 4415 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4416 mstate, vstate)) { 4417 regs[rd] = 0; 4418 break; 4419 } 4420 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4421 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4422 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4423 lowner == NULL; 4424 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4425 break; 4426 4427 case DIF_SUBR_RW_WRITE_HELD: 4428 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4429 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4430 mstate, vstate)) { 4431 regs[rd] = 0; 4432 break; 4433 } 4434 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4435 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4436 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4437 lowner != NULL; 4438 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4439 break; 4440 4441 case DIF_SUBR_RW_ISWRITER: 4442 case DIF_SUBR_SX_ISEXCLUSIVE: 4443 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4444 mstate, vstate)) { 4445 regs[rd] = 0; 4446 break; 4447 } 4448 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4449 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4450 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4451 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4452 regs[rd] = (lowner == curthread); 4453 break; 4454 #endif /* illumos */ 4455 4456 case DIF_SUBR_BCOPY: { 4457 /* 4458 * We need to be sure that the destination is in the scratch 4459 * region -- no other region is allowed. 4460 */ 4461 uintptr_t src = tupregs[0].dttk_value; 4462 uintptr_t dest = tupregs[1].dttk_value; 4463 size_t size = tupregs[2].dttk_value; 4464 4465 if (!dtrace_inscratch(dest, size, mstate)) { 4466 *flags |= CPU_DTRACE_BADADDR; 4467 *illval = regs[rd]; 4468 break; 4469 } 4470 4471 if (!dtrace_canload(src, size, mstate, vstate)) { 4472 regs[rd] = 0; 4473 break; 4474 } 4475 4476 dtrace_bcopy((void *)src, (void *)dest, size); 4477 break; 4478 } 4479 4480 case DIF_SUBR_ALLOCA: 4481 case DIF_SUBR_COPYIN: { 4482 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4483 uint64_t size = 4484 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4485 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4486 4487 /* 4488 * This action doesn't require any credential checks since 4489 * probes will not activate in user contexts to which the 4490 * enabling user does not have permissions. 4491 */ 4492 4493 /* 4494 * Rounding up the user allocation size could have overflowed 4495 * a large, bogus allocation (like -1ULL) to 0. 4496 */ 4497 if (scratch_size < size || 4498 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4500 regs[rd] = 0; 4501 break; 4502 } 4503 4504 if (subr == DIF_SUBR_COPYIN) { 4505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4506 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4507 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4508 } 4509 4510 mstate->dtms_scratch_ptr += scratch_size; 4511 regs[rd] = dest; 4512 break; 4513 } 4514 4515 case DIF_SUBR_COPYINTO: { 4516 uint64_t size = tupregs[1].dttk_value; 4517 uintptr_t dest = tupregs[2].dttk_value; 4518 4519 /* 4520 * This action doesn't require any credential checks since 4521 * probes will not activate in user contexts to which the 4522 * enabling user does not have permissions. 4523 */ 4524 if (!dtrace_inscratch(dest, size, mstate)) { 4525 *flags |= CPU_DTRACE_BADADDR; 4526 *illval = regs[rd]; 4527 break; 4528 } 4529 4530 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4531 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4532 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4533 break; 4534 } 4535 4536 case DIF_SUBR_COPYINSTR: { 4537 uintptr_t dest = mstate->dtms_scratch_ptr; 4538 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4539 4540 if (nargs > 1 && tupregs[1].dttk_value < size) 4541 size = tupregs[1].dttk_value + 1; 4542 4543 /* 4544 * This action doesn't require any credential checks since 4545 * probes will not activate in user contexts to which the 4546 * enabling user does not have permissions. 4547 */ 4548 if (!DTRACE_INSCRATCH(mstate, size)) { 4549 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4550 regs[rd] = 0; 4551 break; 4552 } 4553 4554 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4555 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4556 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4557 4558 ((char *)dest)[size - 1] = '\0'; 4559 mstate->dtms_scratch_ptr += size; 4560 regs[rd] = dest; 4561 break; 4562 } 4563 4564 #ifdef illumos 4565 case DIF_SUBR_MSGSIZE: 4566 case DIF_SUBR_MSGDSIZE: { 4567 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4568 uintptr_t wptr, rptr; 4569 size_t count = 0; 4570 int cont = 0; 4571 4572 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4573 4574 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4575 vstate)) { 4576 regs[rd] = 0; 4577 break; 4578 } 4579 4580 wptr = dtrace_loadptr(baddr + 4581 offsetof(mblk_t, b_wptr)); 4582 4583 rptr = dtrace_loadptr(baddr + 4584 offsetof(mblk_t, b_rptr)); 4585 4586 if (wptr < rptr) { 4587 *flags |= CPU_DTRACE_BADADDR; 4588 *illval = tupregs[0].dttk_value; 4589 break; 4590 } 4591 4592 daddr = dtrace_loadptr(baddr + 4593 offsetof(mblk_t, b_datap)); 4594 4595 baddr = dtrace_loadptr(baddr + 4596 offsetof(mblk_t, b_cont)); 4597 4598 /* 4599 * We want to prevent against denial-of-service here, 4600 * so we're only going to search the list for 4601 * dtrace_msgdsize_max mblks. 4602 */ 4603 if (cont++ > dtrace_msgdsize_max) { 4604 *flags |= CPU_DTRACE_ILLOP; 4605 break; 4606 } 4607 4608 if (subr == DIF_SUBR_MSGDSIZE) { 4609 if (dtrace_load8(daddr + 4610 offsetof(dblk_t, db_type)) != M_DATA) 4611 continue; 4612 } 4613 4614 count += wptr - rptr; 4615 } 4616 4617 if (!(*flags & CPU_DTRACE_FAULT)) 4618 regs[rd] = count; 4619 4620 break; 4621 } 4622 #endif 4623 4624 case DIF_SUBR_PROGENYOF: { 4625 pid_t pid = tupregs[0].dttk_value; 4626 proc_t *p; 4627 int rval = 0; 4628 4629 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4630 4631 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4632 #ifdef illumos 4633 if (p->p_pidp->pid_id == pid) { 4634 #else 4635 if (p->p_pid == pid) { 4636 #endif 4637 rval = 1; 4638 break; 4639 } 4640 } 4641 4642 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4643 4644 regs[rd] = rval; 4645 break; 4646 } 4647 4648 case DIF_SUBR_SPECULATION: 4649 regs[rd] = dtrace_speculation(state); 4650 break; 4651 4652 case DIF_SUBR_COPYOUT: { 4653 uintptr_t kaddr = tupregs[0].dttk_value; 4654 uintptr_t uaddr = tupregs[1].dttk_value; 4655 uint64_t size = tupregs[2].dttk_value; 4656 4657 if (!dtrace_destructive_disallow && 4658 dtrace_priv_proc_control(state) && 4659 !dtrace_istoxic(kaddr, size) && 4660 dtrace_canload(kaddr, size, mstate, vstate)) { 4661 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4662 dtrace_copyout(kaddr, uaddr, size, flags); 4663 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4664 } 4665 break; 4666 } 4667 4668 case DIF_SUBR_COPYOUTSTR: { 4669 uintptr_t kaddr = tupregs[0].dttk_value; 4670 uintptr_t uaddr = tupregs[1].dttk_value; 4671 uint64_t size = tupregs[2].dttk_value; 4672 size_t lim; 4673 4674 if (!dtrace_destructive_disallow && 4675 dtrace_priv_proc_control(state) && 4676 !dtrace_istoxic(kaddr, size) && 4677 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4678 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4679 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4680 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4681 } 4682 break; 4683 } 4684 4685 case DIF_SUBR_STRLEN: { 4686 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4687 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4688 size_t lim; 4689 4690 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4691 regs[rd] = 0; 4692 break; 4693 } 4694 4695 regs[rd] = dtrace_strlen((char *)addr, lim); 4696 break; 4697 } 4698 4699 case DIF_SUBR_STRCHR: 4700 case DIF_SUBR_STRRCHR: { 4701 /* 4702 * We're going to iterate over the string looking for the 4703 * specified character. We will iterate until we have reached 4704 * the string length or we have found the character. If this 4705 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4706 * of the specified character instead of the first. 4707 */ 4708 uintptr_t addr = tupregs[0].dttk_value; 4709 uintptr_t addr_limit; 4710 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4711 size_t lim; 4712 char c, target = (char)tupregs[1].dttk_value; 4713 4714 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4715 regs[rd] = 0; 4716 break; 4717 } 4718 addr_limit = addr + lim; 4719 4720 for (regs[rd] = 0; addr < addr_limit; addr++) { 4721 if ((c = dtrace_load8(addr)) == target) { 4722 regs[rd] = addr; 4723 4724 if (subr == DIF_SUBR_STRCHR) 4725 break; 4726 } 4727 4728 if (c == '\0') 4729 break; 4730 } 4731 break; 4732 } 4733 4734 case DIF_SUBR_STRSTR: 4735 case DIF_SUBR_INDEX: 4736 case DIF_SUBR_RINDEX: { 4737 /* 4738 * We're going to iterate over the string looking for the 4739 * specified string. We will iterate until we have reached 4740 * the string length or we have found the string. (Yes, this 4741 * is done in the most naive way possible -- but considering 4742 * that the string we're searching for is likely to be 4743 * relatively short, the complexity of Rabin-Karp or similar 4744 * hardly seems merited.) 4745 */ 4746 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4747 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4749 size_t len = dtrace_strlen(addr, size); 4750 size_t sublen = dtrace_strlen(substr, size); 4751 char *limit = addr + len, *orig = addr; 4752 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4753 int inc = 1; 4754 4755 regs[rd] = notfound; 4756 4757 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4758 regs[rd] = 0; 4759 break; 4760 } 4761 4762 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4763 vstate)) { 4764 regs[rd] = 0; 4765 break; 4766 } 4767 4768 /* 4769 * strstr() and index()/rindex() have similar semantics if 4770 * both strings are the empty string: strstr() returns a 4771 * pointer to the (empty) string, and index() and rindex() 4772 * both return index 0 (regardless of any position argument). 4773 */ 4774 if (sublen == 0 && len == 0) { 4775 if (subr == DIF_SUBR_STRSTR) 4776 regs[rd] = (uintptr_t)addr; 4777 else 4778 regs[rd] = 0; 4779 break; 4780 } 4781 4782 if (subr != DIF_SUBR_STRSTR) { 4783 if (subr == DIF_SUBR_RINDEX) { 4784 limit = orig - 1; 4785 addr += len; 4786 inc = -1; 4787 } 4788 4789 /* 4790 * Both index() and rindex() take an optional position 4791 * argument that denotes the starting position. 4792 */ 4793 if (nargs == 3) { 4794 int64_t pos = (int64_t)tupregs[2].dttk_value; 4795 4796 /* 4797 * If the position argument to index() is 4798 * negative, Perl implicitly clamps it at 4799 * zero. This semantic is a little surprising 4800 * given the special meaning of negative 4801 * positions to similar Perl functions like 4802 * substr(), but it appears to reflect a 4803 * notion that index() can start from a 4804 * negative index and increment its way up to 4805 * the string. Given this notion, Perl's 4806 * rindex() is at least self-consistent in 4807 * that it implicitly clamps positions greater 4808 * than the string length to be the string 4809 * length. Where Perl completely loses 4810 * coherence, however, is when the specified 4811 * substring is the empty string (""). In 4812 * this case, even if the position is 4813 * negative, rindex() returns 0 -- and even if 4814 * the position is greater than the length, 4815 * index() returns the string length. These 4816 * semantics violate the notion that index() 4817 * should never return a value less than the 4818 * specified position and that rindex() should 4819 * never return a value greater than the 4820 * specified position. (One assumes that 4821 * these semantics are artifacts of Perl's 4822 * implementation and not the results of 4823 * deliberate design -- it beggars belief that 4824 * even Larry Wall could desire such oddness.) 4825 * While in the abstract one would wish for 4826 * consistent position semantics across 4827 * substr(), index() and rindex() -- or at the 4828 * very least self-consistent position 4829 * semantics for index() and rindex() -- we 4830 * instead opt to keep with the extant Perl 4831 * semantics, in all their broken glory. (Do 4832 * we have more desire to maintain Perl's 4833 * semantics than Perl does? Probably.) 4834 */ 4835 if (subr == DIF_SUBR_RINDEX) { 4836 if (pos < 0) { 4837 if (sublen == 0) 4838 regs[rd] = 0; 4839 break; 4840 } 4841 4842 if (pos > len) 4843 pos = len; 4844 } else { 4845 if (pos < 0) 4846 pos = 0; 4847 4848 if (pos >= len) { 4849 if (sublen == 0) 4850 regs[rd] = len; 4851 break; 4852 } 4853 } 4854 4855 addr = orig + pos; 4856 } 4857 } 4858 4859 for (regs[rd] = notfound; addr != limit; addr += inc) { 4860 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4861 if (subr != DIF_SUBR_STRSTR) { 4862 /* 4863 * As D index() and rindex() are 4864 * modeled on Perl (and not on awk), 4865 * we return a zero-based (and not a 4866 * one-based) index. (For you Perl 4867 * weenies: no, we're not going to add 4868 * $[ -- and shouldn't you be at a con 4869 * or something?) 4870 */ 4871 regs[rd] = (uintptr_t)(addr - orig); 4872 break; 4873 } 4874 4875 ASSERT(subr == DIF_SUBR_STRSTR); 4876 regs[rd] = (uintptr_t)addr; 4877 break; 4878 } 4879 } 4880 4881 break; 4882 } 4883 4884 case DIF_SUBR_STRTOK: { 4885 uintptr_t addr = tupregs[0].dttk_value; 4886 uintptr_t tokaddr = tupregs[1].dttk_value; 4887 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4888 uintptr_t limit, toklimit; 4889 size_t clim; 4890 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4891 char *dest = (char *)mstate->dtms_scratch_ptr; 4892 int i; 4893 4894 /* 4895 * Check both the token buffer and (later) the input buffer, 4896 * since both could be non-scratch addresses. 4897 */ 4898 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4899 regs[rd] = 0; 4900 break; 4901 } 4902 toklimit = tokaddr + clim; 4903 4904 if (!DTRACE_INSCRATCH(mstate, size)) { 4905 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4906 regs[rd] = 0; 4907 break; 4908 } 4909 4910 if (addr == 0) { 4911 /* 4912 * If the address specified is NULL, we use our saved 4913 * strtok pointer from the mstate. Note that this 4914 * means that the saved strtok pointer is _only_ 4915 * valid within multiple enablings of the same probe -- 4916 * it behaves like an implicit clause-local variable. 4917 */ 4918 addr = mstate->dtms_strtok; 4919 limit = mstate->dtms_strtok_limit; 4920 } else { 4921 /* 4922 * If the user-specified address is non-NULL we must 4923 * access check it. This is the only time we have 4924 * a chance to do so, since this address may reside 4925 * in the string table of this clause-- future calls 4926 * (when we fetch addr from mstate->dtms_strtok) 4927 * would fail this access check. 4928 */ 4929 if (!dtrace_strcanload(addr, size, &clim, mstate, 4930 vstate)) { 4931 regs[rd] = 0; 4932 break; 4933 } 4934 limit = addr + clim; 4935 } 4936 4937 /* 4938 * First, zero the token map, and then process the token 4939 * string -- setting a bit in the map for every character 4940 * found in the token string. 4941 */ 4942 for (i = 0; i < sizeof (tokmap); i++) 4943 tokmap[i] = 0; 4944 4945 for (; tokaddr < toklimit; tokaddr++) { 4946 if ((c = dtrace_load8(tokaddr)) == '\0') 4947 break; 4948 4949 ASSERT((c >> 3) < sizeof (tokmap)); 4950 tokmap[c >> 3] |= (1 << (c & 0x7)); 4951 } 4952 4953 for (; addr < limit; addr++) { 4954 /* 4955 * We're looking for a character that is _not_ 4956 * contained in the token string. 4957 */ 4958 if ((c = dtrace_load8(addr)) == '\0') 4959 break; 4960 4961 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4962 break; 4963 } 4964 4965 if (c == '\0') { 4966 /* 4967 * We reached the end of the string without finding 4968 * any character that was not in the token string. 4969 * We return NULL in this case, and we set the saved 4970 * address to NULL as well. 4971 */ 4972 regs[rd] = 0; 4973 mstate->dtms_strtok = 0; 4974 mstate->dtms_strtok_limit = 0; 4975 break; 4976 } 4977 4978 /* 4979 * From here on, we're copying into the destination string. 4980 */ 4981 for (i = 0; addr < limit && i < size - 1; addr++) { 4982 if ((c = dtrace_load8(addr)) == '\0') 4983 break; 4984 4985 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4986 break; 4987 4988 ASSERT(i < size); 4989 dest[i++] = c; 4990 } 4991 4992 ASSERT(i < size); 4993 dest[i] = '\0'; 4994 regs[rd] = (uintptr_t)dest; 4995 mstate->dtms_scratch_ptr += size; 4996 mstate->dtms_strtok = addr; 4997 mstate->dtms_strtok_limit = limit; 4998 break; 4999 } 5000 5001 case DIF_SUBR_SUBSTR: { 5002 uintptr_t s = tupregs[0].dttk_value; 5003 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5004 char *d = (char *)mstate->dtms_scratch_ptr; 5005 int64_t index = (int64_t)tupregs[1].dttk_value; 5006 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5007 size_t len = dtrace_strlen((char *)s, size); 5008 int64_t i; 5009 5010 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5011 regs[rd] = 0; 5012 break; 5013 } 5014 5015 if (!DTRACE_INSCRATCH(mstate, size)) { 5016 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5017 regs[rd] = 0; 5018 break; 5019 } 5020 5021 if (nargs <= 2) 5022 remaining = (int64_t)size; 5023 5024 if (index < 0) { 5025 index += len; 5026 5027 if (index < 0 && index + remaining > 0) { 5028 remaining += index; 5029 index = 0; 5030 } 5031 } 5032 5033 if (index >= len || index < 0) { 5034 remaining = 0; 5035 } else if (remaining < 0) { 5036 remaining += len - index; 5037 } else if (index + remaining > size) { 5038 remaining = size - index; 5039 } 5040 5041 for (i = 0; i < remaining; i++) { 5042 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5043 break; 5044 } 5045 5046 d[i] = '\0'; 5047 5048 mstate->dtms_scratch_ptr += size; 5049 regs[rd] = (uintptr_t)d; 5050 break; 5051 } 5052 5053 case DIF_SUBR_JSON: { 5054 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5055 uintptr_t json = tupregs[0].dttk_value; 5056 size_t jsonlen = dtrace_strlen((char *)json, size); 5057 uintptr_t elem = tupregs[1].dttk_value; 5058 size_t elemlen = dtrace_strlen((char *)elem, size); 5059 5060 char *dest = (char *)mstate->dtms_scratch_ptr; 5061 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5062 char *ee = elemlist; 5063 int nelems = 1; 5064 uintptr_t cur; 5065 5066 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5067 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5068 regs[rd] = 0; 5069 break; 5070 } 5071 5072 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5074 regs[rd] = 0; 5075 break; 5076 } 5077 5078 /* 5079 * Read the element selector and split it up into a packed list 5080 * of strings. 5081 */ 5082 for (cur = elem; cur < elem + elemlen; cur++) { 5083 char cc = dtrace_load8(cur); 5084 5085 if (cur == elem && cc == '[') { 5086 /* 5087 * If the first element selector key is 5088 * actually an array index then ignore the 5089 * bracket. 5090 */ 5091 continue; 5092 } 5093 5094 if (cc == ']') 5095 continue; 5096 5097 if (cc == '.' || cc == '[') { 5098 nelems++; 5099 cc = '\0'; 5100 } 5101 5102 *ee++ = cc; 5103 } 5104 *ee++ = '\0'; 5105 5106 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5107 nelems, dest)) != 0) 5108 mstate->dtms_scratch_ptr += jsonlen + 1; 5109 break; 5110 } 5111 5112 case DIF_SUBR_TOUPPER: 5113 case DIF_SUBR_TOLOWER: { 5114 uintptr_t s = tupregs[0].dttk_value; 5115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5116 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5117 size_t len = dtrace_strlen((char *)s, size); 5118 char lower, upper, convert; 5119 int64_t i; 5120 5121 if (subr == DIF_SUBR_TOUPPER) { 5122 lower = 'a'; 5123 upper = 'z'; 5124 convert = 'A'; 5125 } else { 5126 lower = 'A'; 5127 upper = 'Z'; 5128 convert = 'a'; 5129 } 5130 5131 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5132 regs[rd] = 0; 5133 break; 5134 } 5135 5136 if (!DTRACE_INSCRATCH(mstate, size)) { 5137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5138 regs[rd] = 0; 5139 break; 5140 } 5141 5142 for (i = 0; i < size - 1; i++) { 5143 if ((c = dtrace_load8(s + i)) == '\0') 5144 break; 5145 5146 if (c >= lower && c <= upper) 5147 c = convert + (c - lower); 5148 5149 dest[i] = c; 5150 } 5151 5152 ASSERT(i < size); 5153 dest[i] = '\0'; 5154 regs[rd] = (uintptr_t)dest; 5155 mstate->dtms_scratch_ptr += size; 5156 break; 5157 } 5158 5159 #ifdef illumos 5160 case DIF_SUBR_GETMAJOR: 5161 #ifdef _LP64 5162 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5163 #else 5164 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5165 #endif 5166 break; 5167 5168 case DIF_SUBR_GETMINOR: 5169 #ifdef _LP64 5170 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5171 #else 5172 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5173 #endif 5174 break; 5175 5176 case DIF_SUBR_DDI_PATHNAME: { 5177 /* 5178 * This one is a galactic mess. We are going to roughly 5179 * emulate ddi_pathname(), but it's made more complicated 5180 * by the fact that we (a) want to include the minor name and 5181 * (b) must proceed iteratively instead of recursively. 5182 */ 5183 uintptr_t dest = mstate->dtms_scratch_ptr; 5184 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5185 char *start = (char *)dest, *end = start + size - 1; 5186 uintptr_t daddr = tupregs[0].dttk_value; 5187 int64_t minor = (int64_t)tupregs[1].dttk_value; 5188 char *s; 5189 int i, len, depth = 0; 5190 5191 /* 5192 * Due to all the pointer jumping we do and context we must 5193 * rely upon, we just mandate that the user must have kernel 5194 * read privileges to use this routine. 5195 */ 5196 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5197 *flags |= CPU_DTRACE_KPRIV; 5198 *illval = daddr; 5199 regs[rd] = 0; 5200 } 5201 5202 if (!DTRACE_INSCRATCH(mstate, size)) { 5203 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5204 regs[rd] = 0; 5205 break; 5206 } 5207 5208 *end = '\0'; 5209 5210 /* 5211 * We want to have a name for the minor. In order to do this, 5212 * we need to walk the minor list from the devinfo. We want 5213 * to be sure that we don't infinitely walk a circular list, 5214 * so we check for circularity by sending a scout pointer 5215 * ahead two elements for every element that we iterate over; 5216 * if the list is circular, these will ultimately point to the 5217 * same element. You may recognize this little trick as the 5218 * answer to a stupid interview question -- one that always 5219 * seems to be asked by those who had to have it laboriously 5220 * explained to them, and who can't even concisely describe 5221 * the conditions under which one would be forced to resort to 5222 * this technique. Needless to say, those conditions are 5223 * found here -- and probably only here. Is this the only use 5224 * of this infamous trick in shipping, production code? If it 5225 * isn't, it probably should be... 5226 */ 5227 if (minor != -1) { 5228 uintptr_t maddr = dtrace_loadptr(daddr + 5229 offsetof(struct dev_info, devi_minor)); 5230 5231 uintptr_t next = offsetof(struct ddi_minor_data, next); 5232 uintptr_t name = offsetof(struct ddi_minor_data, 5233 d_minor) + offsetof(struct ddi_minor, name); 5234 uintptr_t dev = offsetof(struct ddi_minor_data, 5235 d_minor) + offsetof(struct ddi_minor, dev); 5236 uintptr_t scout; 5237 5238 if (maddr != NULL) 5239 scout = dtrace_loadptr(maddr + next); 5240 5241 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5242 uint64_t m; 5243 #ifdef _LP64 5244 m = dtrace_load64(maddr + dev) & MAXMIN64; 5245 #else 5246 m = dtrace_load32(maddr + dev) & MAXMIN; 5247 #endif 5248 if (m != minor) { 5249 maddr = dtrace_loadptr(maddr + next); 5250 5251 if (scout == NULL) 5252 continue; 5253 5254 scout = dtrace_loadptr(scout + next); 5255 5256 if (scout == NULL) 5257 continue; 5258 5259 scout = dtrace_loadptr(scout + next); 5260 5261 if (scout == NULL) 5262 continue; 5263 5264 if (scout == maddr) { 5265 *flags |= CPU_DTRACE_ILLOP; 5266 break; 5267 } 5268 5269 continue; 5270 } 5271 5272 /* 5273 * We have the minor data. Now we need to 5274 * copy the minor's name into the end of the 5275 * pathname. 5276 */ 5277 s = (char *)dtrace_loadptr(maddr + name); 5278 len = dtrace_strlen(s, size); 5279 5280 if (*flags & CPU_DTRACE_FAULT) 5281 break; 5282 5283 if (len != 0) { 5284 if ((end -= (len + 1)) < start) 5285 break; 5286 5287 *end = ':'; 5288 } 5289 5290 for (i = 1; i <= len; i++) 5291 end[i] = dtrace_load8((uintptr_t)s++); 5292 break; 5293 } 5294 } 5295 5296 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5297 ddi_node_state_t devi_state; 5298 5299 devi_state = dtrace_load32(daddr + 5300 offsetof(struct dev_info, devi_node_state)); 5301 5302 if (*flags & CPU_DTRACE_FAULT) 5303 break; 5304 5305 if (devi_state >= DS_INITIALIZED) { 5306 s = (char *)dtrace_loadptr(daddr + 5307 offsetof(struct dev_info, devi_addr)); 5308 len = dtrace_strlen(s, size); 5309 5310 if (*flags & CPU_DTRACE_FAULT) 5311 break; 5312 5313 if (len != 0) { 5314 if ((end -= (len + 1)) < start) 5315 break; 5316 5317 *end = '@'; 5318 } 5319 5320 for (i = 1; i <= len; i++) 5321 end[i] = dtrace_load8((uintptr_t)s++); 5322 } 5323 5324 /* 5325 * Now for the node name... 5326 */ 5327 s = (char *)dtrace_loadptr(daddr + 5328 offsetof(struct dev_info, devi_node_name)); 5329 5330 daddr = dtrace_loadptr(daddr + 5331 offsetof(struct dev_info, devi_parent)); 5332 5333 /* 5334 * If our parent is NULL (that is, if we're the root 5335 * node), we're going to use the special path 5336 * "devices". 5337 */ 5338 if (daddr == 0) 5339 s = "devices"; 5340 5341 len = dtrace_strlen(s, size); 5342 if (*flags & CPU_DTRACE_FAULT) 5343 break; 5344 5345 if ((end -= (len + 1)) < start) 5346 break; 5347 5348 for (i = 1; i <= len; i++) 5349 end[i] = dtrace_load8((uintptr_t)s++); 5350 *end = '/'; 5351 5352 if (depth++ > dtrace_devdepth_max) { 5353 *flags |= CPU_DTRACE_ILLOP; 5354 break; 5355 } 5356 } 5357 5358 if (end < start) 5359 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5360 5361 if (daddr == 0) { 5362 regs[rd] = (uintptr_t)end; 5363 mstate->dtms_scratch_ptr += size; 5364 } 5365 5366 break; 5367 } 5368 #endif 5369 5370 case DIF_SUBR_STRJOIN: { 5371 char *d = (char *)mstate->dtms_scratch_ptr; 5372 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5373 uintptr_t s1 = tupregs[0].dttk_value; 5374 uintptr_t s2 = tupregs[1].dttk_value; 5375 int i = 0, j = 0; 5376 size_t lim1, lim2; 5377 char c; 5378 5379 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5380 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5381 regs[rd] = 0; 5382 break; 5383 } 5384 5385 if (!DTRACE_INSCRATCH(mstate, size)) { 5386 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5387 regs[rd] = 0; 5388 break; 5389 } 5390 5391 for (;;) { 5392 if (i >= size) { 5393 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5394 regs[rd] = 0; 5395 break; 5396 } 5397 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5398 if ((d[i++] = c) == '\0') { 5399 i--; 5400 break; 5401 } 5402 } 5403 5404 for (;;) { 5405 if (i >= size) { 5406 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5407 regs[rd] = 0; 5408 break; 5409 } 5410 5411 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5412 if ((d[i++] = c) == '\0') 5413 break; 5414 } 5415 5416 if (i < size) { 5417 mstate->dtms_scratch_ptr += i; 5418 regs[rd] = (uintptr_t)d; 5419 } 5420 5421 break; 5422 } 5423 5424 case DIF_SUBR_STRTOLL: { 5425 uintptr_t s = tupregs[0].dttk_value; 5426 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5427 size_t lim; 5428 int base = 10; 5429 5430 if (nargs > 1) { 5431 if ((base = tupregs[1].dttk_value) <= 1 || 5432 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5433 *flags |= CPU_DTRACE_ILLOP; 5434 break; 5435 } 5436 } 5437 5438 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5439 regs[rd] = INT64_MIN; 5440 break; 5441 } 5442 5443 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5444 break; 5445 } 5446 5447 case DIF_SUBR_LLTOSTR: { 5448 int64_t i = (int64_t)tupregs[0].dttk_value; 5449 uint64_t val, digit; 5450 uint64_t size = 65; /* enough room for 2^64 in binary */ 5451 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5452 int base = 10; 5453 5454 if (nargs > 1) { 5455 if ((base = tupregs[1].dttk_value) <= 1 || 5456 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5457 *flags |= CPU_DTRACE_ILLOP; 5458 break; 5459 } 5460 } 5461 5462 val = (base == 10 && i < 0) ? i * -1 : i; 5463 5464 if (!DTRACE_INSCRATCH(mstate, size)) { 5465 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5466 regs[rd] = 0; 5467 break; 5468 } 5469 5470 for (*end-- = '\0'; val; val /= base) { 5471 if ((digit = val % base) <= '9' - '0') { 5472 *end-- = '0' + digit; 5473 } else { 5474 *end-- = 'a' + (digit - ('9' - '0') - 1); 5475 } 5476 } 5477 5478 if (i == 0 && base == 16) 5479 *end-- = '0'; 5480 5481 if (base == 16) 5482 *end-- = 'x'; 5483 5484 if (i == 0 || base == 8 || base == 16) 5485 *end-- = '0'; 5486 5487 if (i < 0 && base == 10) 5488 *end-- = '-'; 5489 5490 regs[rd] = (uintptr_t)end + 1; 5491 mstate->dtms_scratch_ptr += size; 5492 break; 5493 } 5494 5495 case DIF_SUBR_HTONS: 5496 case DIF_SUBR_NTOHS: 5497 #if BYTE_ORDER == BIG_ENDIAN 5498 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5499 #else 5500 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5501 #endif 5502 break; 5503 5504 5505 case DIF_SUBR_HTONL: 5506 case DIF_SUBR_NTOHL: 5507 #if BYTE_ORDER == BIG_ENDIAN 5508 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5509 #else 5510 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5511 #endif 5512 break; 5513 5514 5515 case DIF_SUBR_HTONLL: 5516 case DIF_SUBR_NTOHLL: 5517 #if BYTE_ORDER == BIG_ENDIAN 5518 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5519 #else 5520 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5521 #endif 5522 break; 5523 5524 5525 case DIF_SUBR_DIRNAME: 5526 case DIF_SUBR_BASENAME: { 5527 char *dest = (char *)mstate->dtms_scratch_ptr; 5528 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5529 uintptr_t src = tupregs[0].dttk_value; 5530 int i, j, len = dtrace_strlen((char *)src, size); 5531 int lastbase = -1, firstbase = -1, lastdir = -1; 5532 int start, end; 5533 5534 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5535 regs[rd] = 0; 5536 break; 5537 } 5538 5539 if (!DTRACE_INSCRATCH(mstate, size)) { 5540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5541 regs[rd] = 0; 5542 break; 5543 } 5544 5545 /* 5546 * The basename and dirname for a zero-length string is 5547 * defined to be "." 5548 */ 5549 if (len == 0) { 5550 len = 1; 5551 src = (uintptr_t)"."; 5552 } 5553 5554 /* 5555 * Start from the back of the string, moving back toward the 5556 * front until we see a character that isn't a slash. That 5557 * character is the last character in the basename. 5558 */ 5559 for (i = len - 1; i >= 0; i--) { 5560 if (dtrace_load8(src + i) != '/') 5561 break; 5562 } 5563 5564 if (i >= 0) 5565 lastbase = i; 5566 5567 /* 5568 * Starting from the last character in the basename, move 5569 * towards the front until we find a slash. The character 5570 * that we processed immediately before that is the first 5571 * character in the basename. 5572 */ 5573 for (; i >= 0; i--) { 5574 if (dtrace_load8(src + i) == '/') 5575 break; 5576 } 5577 5578 if (i >= 0) 5579 firstbase = i + 1; 5580 5581 /* 5582 * Now keep going until we find a non-slash character. That 5583 * character is the last character in the dirname. 5584 */ 5585 for (; i >= 0; i--) { 5586 if (dtrace_load8(src + i) != '/') 5587 break; 5588 } 5589 5590 if (i >= 0) 5591 lastdir = i; 5592 5593 ASSERT(!(lastbase == -1 && firstbase != -1)); 5594 ASSERT(!(firstbase == -1 && lastdir != -1)); 5595 5596 if (lastbase == -1) { 5597 /* 5598 * We didn't find a non-slash character. We know that 5599 * the length is non-zero, so the whole string must be 5600 * slashes. In either the dirname or the basename 5601 * case, we return '/'. 5602 */ 5603 ASSERT(firstbase == -1); 5604 firstbase = lastbase = lastdir = 0; 5605 } 5606 5607 if (firstbase == -1) { 5608 /* 5609 * The entire string consists only of a basename 5610 * component. If we're looking for dirname, we need 5611 * to change our string to be just "."; if we're 5612 * looking for a basename, we'll just set the first 5613 * character of the basename to be 0. 5614 */ 5615 if (subr == DIF_SUBR_DIRNAME) { 5616 ASSERT(lastdir == -1); 5617 src = (uintptr_t)"."; 5618 lastdir = 0; 5619 } else { 5620 firstbase = 0; 5621 } 5622 } 5623 5624 if (subr == DIF_SUBR_DIRNAME) { 5625 if (lastdir == -1) { 5626 /* 5627 * We know that we have a slash in the name -- 5628 * or lastdir would be set to 0, above. And 5629 * because lastdir is -1, we know that this 5630 * slash must be the first character. (That 5631 * is, the full string must be of the form 5632 * "/basename".) In this case, the last 5633 * character of the directory name is 0. 5634 */ 5635 lastdir = 0; 5636 } 5637 5638 start = 0; 5639 end = lastdir; 5640 } else { 5641 ASSERT(subr == DIF_SUBR_BASENAME); 5642 ASSERT(firstbase != -1 && lastbase != -1); 5643 start = firstbase; 5644 end = lastbase; 5645 } 5646 5647 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5648 dest[j] = dtrace_load8(src + i); 5649 5650 dest[j] = '\0'; 5651 regs[rd] = (uintptr_t)dest; 5652 mstate->dtms_scratch_ptr += size; 5653 break; 5654 } 5655 5656 case DIF_SUBR_GETF: { 5657 uintptr_t fd = tupregs[0].dttk_value; 5658 struct filedesc *fdp; 5659 file_t *fp; 5660 5661 if (!dtrace_priv_proc(state)) { 5662 regs[rd] = 0; 5663 break; 5664 } 5665 fdp = curproc->p_fd; 5666 FILEDESC_SLOCK(fdp); 5667 /* 5668 * XXXMJG this looks broken as no ref is taken. 5669 */ 5670 fp = fget_noref(fdp, fd); 5671 mstate->dtms_getf = fp; 5672 regs[rd] = (uintptr_t)fp; 5673 FILEDESC_SUNLOCK(fdp); 5674 break; 5675 } 5676 5677 case DIF_SUBR_CLEANPATH: { 5678 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5679 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5680 uintptr_t src = tupregs[0].dttk_value; 5681 size_t lim; 5682 int i = 0, j = 0; 5683 #ifdef illumos 5684 zone_t *z; 5685 #endif 5686 5687 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5688 regs[rd] = 0; 5689 break; 5690 } 5691 5692 if (!DTRACE_INSCRATCH(mstate, size)) { 5693 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5694 regs[rd] = 0; 5695 break; 5696 } 5697 5698 /* 5699 * Move forward, loading each character. 5700 */ 5701 do { 5702 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5703 next: 5704 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5705 break; 5706 5707 if (c != '/') { 5708 dest[j++] = c; 5709 continue; 5710 } 5711 5712 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5713 5714 if (c == '/') { 5715 /* 5716 * We have two slashes -- we can just advance 5717 * to the next character. 5718 */ 5719 goto next; 5720 } 5721 5722 if (c != '.') { 5723 /* 5724 * This is not "." and it's not ".." -- we can 5725 * just store the "/" and this character and 5726 * drive on. 5727 */ 5728 dest[j++] = '/'; 5729 dest[j++] = c; 5730 continue; 5731 } 5732 5733 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5734 5735 if (c == '/') { 5736 /* 5737 * This is a "/./" component. We're not going 5738 * to store anything in the destination buffer; 5739 * we're just going to go to the next component. 5740 */ 5741 goto next; 5742 } 5743 5744 if (c != '.') { 5745 /* 5746 * This is not ".." -- we can just store the 5747 * "/." and this character and continue 5748 * processing. 5749 */ 5750 dest[j++] = '/'; 5751 dest[j++] = '.'; 5752 dest[j++] = c; 5753 continue; 5754 } 5755 5756 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5757 5758 if (c != '/' && c != '\0') { 5759 /* 5760 * This is not ".." -- it's "..[mumble]". 5761 * We'll store the "/.." and this character 5762 * and continue processing. 5763 */ 5764 dest[j++] = '/'; 5765 dest[j++] = '.'; 5766 dest[j++] = '.'; 5767 dest[j++] = c; 5768 continue; 5769 } 5770 5771 /* 5772 * This is "/../" or "/..\0". We need to back up 5773 * our destination pointer until we find a "/". 5774 */ 5775 i--; 5776 while (j != 0 && dest[--j] != '/') 5777 continue; 5778 5779 if (c == '\0') 5780 dest[++j] = '/'; 5781 } while (c != '\0'); 5782 5783 dest[j] = '\0'; 5784 5785 #ifdef illumos 5786 if (mstate->dtms_getf != NULL && 5787 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5788 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5789 /* 5790 * If we've done a getf() as a part of this ECB and we 5791 * don't have kernel access (and we're not in the global 5792 * zone), check if the path we cleaned up begins with 5793 * the zone's root path, and trim it off if so. Note 5794 * that this is an output cleanliness issue, not a 5795 * security issue: knowing one's zone root path does 5796 * not enable privilege escalation. 5797 */ 5798 if (strstr(dest, z->zone_rootpath) == dest) 5799 dest += strlen(z->zone_rootpath) - 1; 5800 } 5801 #endif 5802 5803 regs[rd] = (uintptr_t)dest; 5804 mstate->dtms_scratch_ptr += size; 5805 break; 5806 } 5807 5808 case DIF_SUBR_INET_NTOA: 5809 case DIF_SUBR_INET_NTOA6: 5810 case DIF_SUBR_INET_NTOP: { 5811 size_t size; 5812 int af, argi, i; 5813 char *base, *end; 5814 5815 if (subr == DIF_SUBR_INET_NTOP) { 5816 af = (int)tupregs[0].dttk_value; 5817 argi = 1; 5818 } else { 5819 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5820 argi = 0; 5821 } 5822 5823 if (af == AF_INET) { 5824 ipaddr_t ip4; 5825 uint8_t *ptr8, val; 5826 5827 if (!dtrace_canload(tupregs[argi].dttk_value, 5828 sizeof (ipaddr_t), mstate, vstate)) { 5829 regs[rd] = 0; 5830 break; 5831 } 5832 5833 /* 5834 * Safely load the IPv4 address. 5835 */ 5836 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5837 5838 /* 5839 * Check an IPv4 string will fit in scratch. 5840 */ 5841 size = INET_ADDRSTRLEN; 5842 if (!DTRACE_INSCRATCH(mstate, size)) { 5843 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5844 regs[rd] = 0; 5845 break; 5846 } 5847 base = (char *)mstate->dtms_scratch_ptr; 5848 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5849 5850 /* 5851 * Stringify as a dotted decimal quad. 5852 */ 5853 *end-- = '\0'; 5854 ptr8 = (uint8_t *)&ip4; 5855 for (i = 3; i >= 0; i--) { 5856 val = ptr8[i]; 5857 5858 if (val == 0) { 5859 *end-- = '0'; 5860 } else { 5861 for (; val; val /= 10) { 5862 *end-- = '0' + (val % 10); 5863 } 5864 } 5865 5866 if (i > 0) 5867 *end-- = '.'; 5868 } 5869 ASSERT(end + 1 >= base); 5870 5871 } else if (af == AF_INET6) { 5872 struct in6_addr ip6; 5873 int firstzero, tryzero, numzero, v6end; 5874 uint16_t val; 5875 const char digits[] = "0123456789abcdef"; 5876 5877 /* 5878 * Stringify using RFC 1884 convention 2 - 16 bit 5879 * hexadecimal values with a zero-run compression. 5880 * Lower case hexadecimal digits are used. 5881 * eg, fe80::214:4fff:fe0b:76c8. 5882 * The IPv4 embedded form is returned for inet_ntop, 5883 * just the IPv4 string is returned for inet_ntoa6. 5884 */ 5885 5886 if (!dtrace_canload(tupregs[argi].dttk_value, 5887 sizeof (struct in6_addr), mstate, vstate)) { 5888 regs[rd] = 0; 5889 break; 5890 } 5891 5892 /* 5893 * Safely load the IPv6 address. 5894 */ 5895 dtrace_bcopy( 5896 (void *)(uintptr_t)tupregs[argi].dttk_value, 5897 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5898 5899 /* 5900 * Check an IPv6 string will fit in scratch. 5901 */ 5902 size = INET6_ADDRSTRLEN; 5903 if (!DTRACE_INSCRATCH(mstate, size)) { 5904 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5905 regs[rd] = 0; 5906 break; 5907 } 5908 base = (char *)mstate->dtms_scratch_ptr; 5909 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5910 *end-- = '\0'; 5911 5912 /* 5913 * Find the longest run of 16 bit zero values 5914 * for the single allowed zero compression - "::". 5915 */ 5916 firstzero = -1; 5917 tryzero = -1; 5918 numzero = 1; 5919 for (i = 0; i < sizeof (struct in6_addr); i++) { 5920 #ifdef illumos 5921 if (ip6._S6_un._S6_u8[i] == 0 && 5922 #else 5923 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5924 #endif 5925 tryzero == -1 && i % 2 == 0) { 5926 tryzero = i; 5927 continue; 5928 } 5929 5930 if (tryzero != -1 && 5931 #ifdef illumos 5932 (ip6._S6_un._S6_u8[i] != 0 || 5933 #else 5934 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5935 #endif 5936 i == sizeof (struct in6_addr) - 1)) { 5937 5938 if (i - tryzero <= numzero) { 5939 tryzero = -1; 5940 continue; 5941 } 5942 5943 firstzero = tryzero; 5944 numzero = i - i % 2 - tryzero; 5945 tryzero = -1; 5946 5947 #ifdef illumos 5948 if (ip6._S6_un._S6_u8[i] == 0 && 5949 #else 5950 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5951 #endif 5952 i == sizeof (struct in6_addr) - 1) 5953 numzero += 2; 5954 } 5955 } 5956 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5957 5958 /* 5959 * Check for an IPv4 embedded address. 5960 */ 5961 v6end = sizeof (struct in6_addr) - 2; 5962 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5963 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5964 for (i = sizeof (struct in6_addr) - 1; 5965 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5966 ASSERT(end >= base); 5967 5968 #ifdef illumos 5969 val = ip6._S6_un._S6_u8[i]; 5970 #else 5971 val = ip6.__u6_addr.__u6_addr8[i]; 5972 #endif 5973 5974 if (val == 0) { 5975 *end-- = '0'; 5976 } else { 5977 for (; val; val /= 10) { 5978 *end-- = '0' + val % 10; 5979 } 5980 } 5981 5982 if (i > DTRACE_V4MAPPED_OFFSET) 5983 *end-- = '.'; 5984 } 5985 5986 if (subr == DIF_SUBR_INET_NTOA6) 5987 goto inetout; 5988 5989 /* 5990 * Set v6end to skip the IPv4 address that 5991 * we have already stringified. 5992 */ 5993 v6end = 10; 5994 } 5995 5996 /* 5997 * Build the IPv6 string by working through the 5998 * address in reverse. 5999 */ 6000 for (i = v6end; i >= 0; i -= 2) { 6001 ASSERT(end >= base); 6002 6003 if (i == firstzero + numzero - 2) { 6004 *end-- = ':'; 6005 *end-- = ':'; 6006 i -= numzero - 2; 6007 continue; 6008 } 6009 6010 if (i < 14 && i != firstzero - 2) 6011 *end-- = ':'; 6012 6013 #ifdef illumos 6014 val = (ip6._S6_un._S6_u8[i] << 8) + 6015 ip6._S6_un._S6_u8[i + 1]; 6016 #else 6017 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6018 ip6.__u6_addr.__u6_addr8[i + 1]; 6019 #endif 6020 6021 if (val == 0) { 6022 *end-- = '0'; 6023 } else { 6024 for (; val; val /= 16) { 6025 *end-- = digits[val % 16]; 6026 } 6027 } 6028 } 6029 ASSERT(end + 1 >= base); 6030 6031 } else { 6032 /* 6033 * The user didn't use AH_INET or AH_INET6. 6034 */ 6035 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6036 regs[rd] = 0; 6037 break; 6038 } 6039 6040 inetout: regs[rd] = (uintptr_t)end + 1; 6041 mstate->dtms_scratch_ptr += size; 6042 break; 6043 } 6044 6045 case DIF_SUBR_MEMREF: { 6046 uintptr_t size = 2 * sizeof(uintptr_t); 6047 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6048 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6049 6050 /* address and length */ 6051 memref[0] = tupregs[0].dttk_value; 6052 memref[1] = tupregs[1].dttk_value; 6053 6054 regs[rd] = (uintptr_t) memref; 6055 mstate->dtms_scratch_ptr += scratch_size; 6056 break; 6057 } 6058 6059 #ifndef illumos 6060 case DIF_SUBR_MEMSTR: { 6061 char *str = (char *)mstate->dtms_scratch_ptr; 6062 uintptr_t mem = tupregs[0].dttk_value; 6063 char c = tupregs[1].dttk_value; 6064 size_t size = tupregs[2].dttk_value; 6065 uint8_t n; 6066 int i; 6067 6068 regs[rd] = 0; 6069 6070 if (size == 0) 6071 break; 6072 6073 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6074 break; 6075 6076 if (!DTRACE_INSCRATCH(mstate, size)) { 6077 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6078 break; 6079 } 6080 6081 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6082 *flags |= CPU_DTRACE_ILLOP; 6083 break; 6084 } 6085 6086 for (i = 0; i < size - 1; i++) { 6087 n = dtrace_load8(mem++); 6088 str[i] = (n == 0) ? c : n; 6089 } 6090 str[size - 1] = 0; 6091 6092 regs[rd] = (uintptr_t)str; 6093 mstate->dtms_scratch_ptr += size; 6094 break; 6095 } 6096 #endif 6097 } 6098 } 6099 6100 /* 6101 * Emulate the execution of DTrace IR instructions specified by the given 6102 * DIF object. This function is deliberately void of assertions as all of 6103 * the necessary checks are handled by a call to dtrace_difo_validate(). 6104 */ 6105 static uint64_t 6106 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6107 dtrace_vstate_t *vstate, dtrace_state_t *state) 6108 { 6109 const dif_instr_t *text = difo->dtdo_buf; 6110 const uint_t textlen = difo->dtdo_len; 6111 const char *strtab = difo->dtdo_strtab; 6112 const uint64_t *inttab = difo->dtdo_inttab; 6113 6114 uint64_t rval = 0; 6115 dtrace_statvar_t *svar; 6116 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6117 dtrace_difv_t *v; 6118 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6119 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6120 6121 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6122 uint64_t regs[DIF_DIR_NREGS]; 6123 uint64_t *tmp; 6124 6125 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6126 int64_t cc_r; 6127 uint_t pc = 0, id, opc = 0; 6128 uint8_t ttop = 0; 6129 dif_instr_t instr; 6130 uint_t r1, r2, rd; 6131 6132 /* 6133 * We stash the current DIF object into the machine state: we need it 6134 * for subsequent access checking. 6135 */ 6136 mstate->dtms_difo = difo; 6137 6138 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6139 6140 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6141 opc = pc; 6142 6143 instr = text[pc++]; 6144 r1 = DIF_INSTR_R1(instr); 6145 r2 = DIF_INSTR_R2(instr); 6146 rd = DIF_INSTR_RD(instr); 6147 6148 switch (DIF_INSTR_OP(instr)) { 6149 case DIF_OP_OR: 6150 regs[rd] = regs[r1] | regs[r2]; 6151 break; 6152 case DIF_OP_XOR: 6153 regs[rd] = regs[r1] ^ regs[r2]; 6154 break; 6155 case DIF_OP_AND: 6156 regs[rd] = regs[r1] & regs[r2]; 6157 break; 6158 case DIF_OP_SLL: 6159 regs[rd] = regs[r1] << regs[r2]; 6160 break; 6161 case DIF_OP_SRL: 6162 regs[rd] = regs[r1] >> regs[r2]; 6163 break; 6164 case DIF_OP_SUB: 6165 regs[rd] = regs[r1] - regs[r2]; 6166 break; 6167 case DIF_OP_ADD: 6168 regs[rd] = regs[r1] + regs[r2]; 6169 break; 6170 case DIF_OP_MUL: 6171 regs[rd] = regs[r1] * regs[r2]; 6172 break; 6173 case DIF_OP_SDIV: 6174 if (regs[r2] == 0) { 6175 regs[rd] = 0; 6176 *flags |= CPU_DTRACE_DIVZERO; 6177 } else { 6178 regs[rd] = (int64_t)regs[r1] / 6179 (int64_t)regs[r2]; 6180 } 6181 break; 6182 6183 case DIF_OP_UDIV: 6184 if (regs[r2] == 0) { 6185 regs[rd] = 0; 6186 *flags |= CPU_DTRACE_DIVZERO; 6187 } else { 6188 regs[rd] = regs[r1] / regs[r2]; 6189 } 6190 break; 6191 6192 case DIF_OP_SREM: 6193 if (regs[r2] == 0) { 6194 regs[rd] = 0; 6195 *flags |= CPU_DTRACE_DIVZERO; 6196 } else { 6197 regs[rd] = (int64_t)regs[r1] % 6198 (int64_t)regs[r2]; 6199 } 6200 break; 6201 6202 case DIF_OP_UREM: 6203 if (regs[r2] == 0) { 6204 regs[rd] = 0; 6205 *flags |= CPU_DTRACE_DIVZERO; 6206 } else { 6207 regs[rd] = regs[r1] % regs[r2]; 6208 } 6209 break; 6210 6211 case DIF_OP_NOT: 6212 regs[rd] = ~regs[r1]; 6213 break; 6214 case DIF_OP_MOV: 6215 regs[rd] = regs[r1]; 6216 break; 6217 case DIF_OP_CMP: 6218 cc_r = regs[r1] - regs[r2]; 6219 cc_n = cc_r < 0; 6220 cc_z = cc_r == 0; 6221 cc_v = 0; 6222 cc_c = regs[r1] < regs[r2]; 6223 break; 6224 case DIF_OP_TST: 6225 cc_n = cc_v = cc_c = 0; 6226 cc_z = regs[r1] == 0; 6227 break; 6228 case DIF_OP_BA: 6229 pc = DIF_INSTR_LABEL(instr); 6230 break; 6231 case DIF_OP_BE: 6232 if (cc_z) 6233 pc = DIF_INSTR_LABEL(instr); 6234 break; 6235 case DIF_OP_BNE: 6236 if (cc_z == 0) 6237 pc = DIF_INSTR_LABEL(instr); 6238 break; 6239 case DIF_OP_BG: 6240 if ((cc_z | (cc_n ^ cc_v)) == 0) 6241 pc = DIF_INSTR_LABEL(instr); 6242 break; 6243 case DIF_OP_BGU: 6244 if ((cc_c | cc_z) == 0) 6245 pc = DIF_INSTR_LABEL(instr); 6246 break; 6247 case DIF_OP_BGE: 6248 if ((cc_n ^ cc_v) == 0) 6249 pc = DIF_INSTR_LABEL(instr); 6250 break; 6251 case DIF_OP_BGEU: 6252 if (cc_c == 0) 6253 pc = DIF_INSTR_LABEL(instr); 6254 break; 6255 case DIF_OP_BL: 6256 if (cc_n ^ cc_v) 6257 pc = DIF_INSTR_LABEL(instr); 6258 break; 6259 case DIF_OP_BLU: 6260 if (cc_c) 6261 pc = DIF_INSTR_LABEL(instr); 6262 break; 6263 case DIF_OP_BLE: 6264 if (cc_z | (cc_n ^ cc_v)) 6265 pc = DIF_INSTR_LABEL(instr); 6266 break; 6267 case DIF_OP_BLEU: 6268 if (cc_c | cc_z) 6269 pc = DIF_INSTR_LABEL(instr); 6270 break; 6271 case DIF_OP_RLDSB: 6272 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6273 break; 6274 /*FALLTHROUGH*/ 6275 case DIF_OP_LDSB: 6276 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6277 break; 6278 case DIF_OP_RLDSH: 6279 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6280 break; 6281 /*FALLTHROUGH*/ 6282 case DIF_OP_LDSH: 6283 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6284 break; 6285 case DIF_OP_RLDSW: 6286 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6287 break; 6288 /*FALLTHROUGH*/ 6289 case DIF_OP_LDSW: 6290 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6291 break; 6292 case DIF_OP_RLDUB: 6293 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6294 break; 6295 /*FALLTHROUGH*/ 6296 case DIF_OP_LDUB: 6297 regs[rd] = dtrace_load8(regs[r1]); 6298 break; 6299 case DIF_OP_RLDUH: 6300 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6301 break; 6302 /*FALLTHROUGH*/ 6303 case DIF_OP_LDUH: 6304 regs[rd] = dtrace_load16(regs[r1]); 6305 break; 6306 case DIF_OP_RLDUW: 6307 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6308 break; 6309 /*FALLTHROUGH*/ 6310 case DIF_OP_LDUW: 6311 regs[rd] = dtrace_load32(regs[r1]); 6312 break; 6313 case DIF_OP_RLDX: 6314 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6315 break; 6316 /*FALLTHROUGH*/ 6317 case DIF_OP_LDX: 6318 regs[rd] = dtrace_load64(regs[r1]); 6319 break; 6320 case DIF_OP_ULDSB: 6321 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6322 regs[rd] = (int8_t) 6323 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6324 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6325 break; 6326 case DIF_OP_ULDSH: 6327 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6328 regs[rd] = (int16_t) 6329 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6330 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6331 break; 6332 case DIF_OP_ULDSW: 6333 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6334 regs[rd] = (int32_t) 6335 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6336 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6337 break; 6338 case DIF_OP_ULDUB: 6339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6340 regs[rd] = 6341 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6342 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6343 break; 6344 case DIF_OP_ULDUH: 6345 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6346 regs[rd] = 6347 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6348 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6349 break; 6350 case DIF_OP_ULDUW: 6351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6352 regs[rd] = 6353 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6354 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6355 break; 6356 case DIF_OP_ULDX: 6357 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6358 regs[rd] = 6359 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6360 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6361 break; 6362 case DIF_OP_RET: 6363 rval = regs[rd]; 6364 pc = textlen; 6365 break; 6366 case DIF_OP_NOP: 6367 break; 6368 case DIF_OP_SETX: 6369 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6370 break; 6371 case DIF_OP_SETS: 6372 regs[rd] = (uint64_t)(uintptr_t) 6373 (strtab + DIF_INSTR_STRING(instr)); 6374 break; 6375 case DIF_OP_SCMP: { 6376 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6377 uintptr_t s1 = regs[r1]; 6378 uintptr_t s2 = regs[r2]; 6379 size_t lim1, lim2; 6380 6381 /* 6382 * If one of the strings is NULL then the limit becomes 6383 * 0 which compares 0 characters in dtrace_strncmp() 6384 * resulting in a false positive. dtrace_strncmp() 6385 * treats a NULL as an empty 1-char string. 6386 */ 6387 lim1 = lim2 = 1; 6388 6389 if (s1 != 0 && 6390 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6391 break; 6392 if (s2 != 0 && 6393 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6394 break; 6395 6396 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6397 MIN(lim1, lim2)); 6398 6399 cc_n = cc_r < 0; 6400 cc_z = cc_r == 0; 6401 cc_v = cc_c = 0; 6402 break; 6403 } 6404 case DIF_OP_LDGA: 6405 regs[rd] = dtrace_dif_variable(mstate, state, 6406 r1, regs[r2]); 6407 break; 6408 case DIF_OP_LDGS: 6409 id = DIF_INSTR_VAR(instr); 6410 6411 if (id >= DIF_VAR_OTHER_UBASE) { 6412 uintptr_t a; 6413 6414 id -= DIF_VAR_OTHER_UBASE; 6415 svar = vstate->dtvs_globals[id]; 6416 ASSERT(svar != NULL); 6417 v = &svar->dtsv_var; 6418 6419 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6420 regs[rd] = svar->dtsv_data; 6421 break; 6422 } 6423 6424 a = (uintptr_t)svar->dtsv_data; 6425 6426 if (*(uint8_t *)a == UINT8_MAX) { 6427 /* 6428 * If the 0th byte is set to UINT8_MAX 6429 * then this is to be treated as a 6430 * reference to a NULL variable. 6431 */ 6432 regs[rd] = 0; 6433 } else { 6434 regs[rd] = a + sizeof (uint64_t); 6435 } 6436 6437 break; 6438 } 6439 6440 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6441 break; 6442 6443 case DIF_OP_STGS: 6444 id = DIF_INSTR_VAR(instr); 6445 6446 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6447 id -= DIF_VAR_OTHER_UBASE; 6448 6449 VERIFY(id < vstate->dtvs_nglobals); 6450 svar = vstate->dtvs_globals[id]; 6451 ASSERT(svar != NULL); 6452 v = &svar->dtsv_var; 6453 6454 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6455 uintptr_t a = (uintptr_t)svar->dtsv_data; 6456 size_t lim; 6457 6458 ASSERT(a != 0); 6459 ASSERT(svar->dtsv_size != 0); 6460 6461 if (regs[rd] == 0) { 6462 *(uint8_t *)a = UINT8_MAX; 6463 break; 6464 } else { 6465 *(uint8_t *)a = 0; 6466 a += sizeof (uint64_t); 6467 } 6468 if (!dtrace_vcanload( 6469 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6470 &lim, mstate, vstate)) 6471 break; 6472 6473 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6474 (void *)a, &v->dtdv_type, lim); 6475 break; 6476 } 6477 6478 svar->dtsv_data = regs[rd]; 6479 break; 6480 6481 case DIF_OP_LDTA: 6482 /* 6483 * There are no DTrace built-in thread-local arrays at 6484 * present. This opcode is saved for future work. 6485 */ 6486 *flags |= CPU_DTRACE_ILLOP; 6487 regs[rd] = 0; 6488 break; 6489 6490 case DIF_OP_LDLS: 6491 id = DIF_INSTR_VAR(instr); 6492 6493 if (id < DIF_VAR_OTHER_UBASE) { 6494 /* 6495 * For now, this has no meaning. 6496 */ 6497 regs[rd] = 0; 6498 break; 6499 } 6500 6501 id -= DIF_VAR_OTHER_UBASE; 6502 6503 ASSERT(id < vstate->dtvs_nlocals); 6504 ASSERT(vstate->dtvs_locals != NULL); 6505 6506 svar = vstate->dtvs_locals[id]; 6507 ASSERT(svar != NULL); 6508 v = &svar->dtsv_var; 6509 6510 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6511 uintptr_t a = (uintptr_t)svar->dtsv_data; 6512 size_t sz = v->dtdv_type.dtdt_size; 6513 size_t lim; 6514 6515 sz += sizeof (uint64_t); 6516 ASSERT(svar->dtsv_size == NCPU * sz); 6517 a += curcpu * sz; 6518 6519 if (*(uint8_t *)a == UINT8_MAX) { 6520 /* 6521 * If the 0th byte is set to UINT8_MAX 6522 * then this is to be treated as a 6523 * reference to a NULL variable. 6524 */ 6525 regs[rd] = 0; 6526 } else { 6527 regs[rd] = a + sizeof (uint64_t); 6528 } 6529 6530 break; 6531 } 6532 6533 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6534 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6535 regs[rd] = tmp[curcpu]; 6536 break; 6537 6538 case DIF_OP_STLS: 6539 id = DIF_INSTR_VAR(instr); 6540 6541 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6542 id -= DIF_VAR_OTHER_UBASE; 6543 VERIFY(id < vstate->dtvs_nlocals); 6544 6545 ASSERT(vstate->dtvs_locals != NULL); 6546 svar = vstate->dtvs_locals[id]; 6547 ASSERT(svar != NULL); 6548 v = &svar->dtsv_var; 6549 6550 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6551 uintptr_t a = (uintptr_t)svar->dtsv_data; 6552 size_t sz = v->dtdv_type.dtdt_size; 6553 size_t lim; 6554 6555 sz += sizeof (uint64_t); 6556 ASSERT(svar->dtsv_size == NCPU * sz); 6557 a += curcpu * sz; 6558 6559 if (regs[rd] == 0) { 6560 *(uint8_t *)a = UINT8_MAX; 6561 break; 6562 } else { 6563 *(uint8_t *)a = 0; 6564 a += sizeof (uint64_t); 6565 } 6566 6567 if (!dtrace_vcanload( 6568 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6569 &lim, mstate, vstate)) 6570 break; 6571 6572 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6573 (void *)a, &v->dtdv_type, lim); 6574 break; 6575 } 6576 6577 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6578 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6579 tmp[curcpu] = regs[rd]; 6580 break; 6581 6582 case DIF_OP_LDTS: { 6583 dtrace_dynvar_t *dvar; 6584 dtrace_key_t *key; 6585 6586 id = DIF_INSTR_VAR(instr); 6587 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6588 id -= DIF_VAR_OTHER_UBASE; 6589 v = &vstate->dtvs_tlocals[id]; 6590 6591 key = &tupregs[DIF_DTR_NREGS]; 6592 key[0].dttk_value = (uint64_t)id; 6593 key[0].dttk_size = 0; 6594 DTRACE_TLS_THRKEY(key[1].dttk_value); 6595 key[1].dttk_size = 0; 6596 6597 dvar = dtrace_dynvar(dstate, 2, key, 6598 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6599 mstate, vstate); 6600 6601 if (dvar == NULL) { 6602 regs[rd] = 0; 6603 break; 6604 } 6605 6606 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6607 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6608 } else { 6609 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6610 } 6611 6612 break; 6613 } 6614 6615 case DIF_OP_STTS: { 6616 dtrace_dynvar_t *dvar; 6617 dtrace_key_t *key; 6618 6619 id = DIF_INSTR_VAR(instr); 6620 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6621 id -= DIF_VAR_OTHER_UBASE; 6622 VERIFY(id < vstate->dtvs_ntlocals); 6623 6624 key = &tupregs[DIF_DTR_NREGS]; 6625 key[0].dttk_value = (uint64_t)id; 6626 key[0].dttk_size = 0; 6627 DTRACE_TLS_THRKEY(key[1].dttk_value); 6628 key[1].dttk_size = 0; 6629 v = &vstate->dtvs_tlocals[id]; 6630 6631 dvar = dtrace_dynvar(dstate, 2, key, 6632 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6633 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6634 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6635 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6636 6637 /* 6638 * Given that we're storing to thread-local data, 6639 * we need to flush our predicate cache. 6640 */ 6641 curthread->t_predcache = 0; 6642 6643 if (dvar == NULL) 6644 break; 6645 6646 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6647 size_t lim; 6648 6649 if (!dtrace_vcanload( 6650 (void *)(uintptr_t)regs[rd], 6651 &v->dtdv_type, &lim, mstate, vstate)) 6652 break; 6653 6654 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6655 dvar->dtdv_data, &v->dtdv_type, lim); 6656 } else { 6657 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6658 } 6659 6660 break; 6661 } 6662 6663 case DIF_OP_SRA: 6664 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6665 break; 6666 6667 case DIF_OP_CALL: 6668 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6669 regs, tupregs, ttop, mstate, state); 6670 break; 6671 6672 case DIF_OP_PUSHTR: 6673 if (ttop == DIF_DTR_NREGS) { 6674 *flags |= CPU_DTRACE_TUPOFLOW; 6675 break; 6676 } 6677 6678 if (r1 == DIF_TYPE_STRING) { 6679 /* 6680 * If this is a string type and the size is 0, 6681 * we'll use the system-wide default string 6682 * size. Note that we are _not_ looking at 6683 * the value of the DTRACEOPT_STRSIZE option; 6684 * had this been set, we would expect to have 6685 * a non-zero size value in the "pushtr". 6686 */ 6687 tupregs[ttop].dttk_size = 6688 dtrace_strlen((char *)(uintptr_t)regs[rd], 6689 regs[r2] ? regs[r2] : 6690 dtrace_strsize_default) + 1; 6691 } else { 6692 if (regs[r2] > LONG_MAX) { 6693 *flags |= CPU_DTRACE_ILLOP; 6694 break; 6695 } 6696 6697 tupregs[ttop].dttk_size = regs[r2]; 6698 } 6699 6700 tupregs[ttop++].dttk_value = regs[rd]; 6701 break; 6702 6703 case DIF_OP_PUSHTV: 6704 if (ttop == DIF_DTR_NREGS) { 6705 *flags |= CPU_DTRACE_TUPOFLOW; 6706 break; 6707 } 6708 6709 tupregs[ttop].dttk_value = regs[rd]; 6710 tupregs[ttop++].dttk_size = 0; 6711 break; 6712 6713 case DIF_OP_POPTS: 6714 if (ttop != 0) 6715 ttop--; 6716 break; 6717 6718 case DIF_OP_FLUSHTS: 6719 ttop = 0; 6720 break; 6721 6722 case DIF_OP_LDGAA: 6723 case DIF_OP_LDTAA: { 6724 dtrace_dynvar_t *dvar; 6725 dtrace_key_t *key = tupregs; 6726 uint_t nkeys = ttop; 6727 6728 id = DIF_INSTR_VAR(instr); 6729 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6730 id -= DIF_VAR_OTHER_UBASE; 6731 6732 key[nkeys].dttk_value = (uint64_t)id; 6733 key[nkeys++].dttk_size = 0; 6734 6735 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6736 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6737 key[nkeys++].dttk_size = 0; 6738 VERIFY(id < vstate->dtvs_ntlocals); 6739 v = &vstate->dtvs_tlocals[id]; 6740 } else { 6741 VERIFY(id < vstate->dtvs_nglobals); 6742 v = &vstate->dtvs_globals[id]->dtsv_var; 6743 } 6744 6745 dvar = dtrace_dynvar(dstate, nkeys, key, 6746 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6747 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6748 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6749 6750 if (dvar == NULL) { 6751 regs[rd] = 0; 6752 break; 6753 } 6754 6755 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6756 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6757 } else { 6758 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6759 } 6760 6761 break; 6762 } 6763 6764 case DIF_OP_STGAA: 6765 case DIF_OP_STTAA: { 6766 dtrace_dynvar_t *dvar; 6767 dtrace_key_t *key = tupregs; 6768 uint_t nkeys = ttop; 6769 6770 id = DIF_INSTR_VAR(instr); 6771 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6772 id -= DIF_VAR_OTHER_UBASE; 6773 6774 key[nkeys].dttk_value = (uint64_t)id; 6775 key[nkeys++].dttk_size = 0; 6776 6777 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6778 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6779 key[nkeys++].dttk_size = 0; 6780 VERIFY(id < vstate->dtvs_ntlocals); 6781 v = &vstate->dtvs_tlocals[id]; 6782 } else { 6783 VERIFY(id < vstate->dtvs_nglobals); 6784 v = &vstate->dtvs_globals[id]->dtsv_var; 6785 } 6786 6787 dvar = dtrace_dynvar(dstate, nkeys, key, 6788 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6789 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6790 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6791 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6792 6793 if (dvar == NULL) 6794 break; 6795 6796 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6797 size_t lim; 6798 6799 if (!dtrace_vcanload( 6800 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6801 &lim, mstate, vstate)) 6802 break; 6803 6804 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6805 dvar->dtdv_data, &v->dtdv_type, lim); 6806 } else { 6807 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6808 } 6809 6810 break; 6811 } 6812 6813 case DIF_OP_ALLOCS: { 6814 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6815 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6816 6817 /* 6818 * Rounding up the user allocation size could have 6819 * overflowed large, bogus allocations (like -1ULL) to 6820 * 0. 6821 */ 6822 if (size < regs[r1] || 6823 !DTRACE_INSCRATCH(mstate, size)) { 6824 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6825 regs[rd] = 0; 6826 break; 6827 } 6828 6829 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6830 mstate->dtms_scratch_ptr += size; 6831 regs[rd] = ptr; 6832 break; 6833 } 6834 6835 case DIF_OP_COPYS: 6836 if (!dtrace_canstore(regs[rd], regs[r2], 6837 mstate, vstate)) { 6838 *flags |= CPU_DTRACE_BADADDR; 6839 *illval = regs[rd]; 6840 break; 6841 } 6842 6843 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6844 break; 6845 6846 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6847 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6848 break; 6849 6850 case DIF_OP_STB: 6851 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6852 *flags |= CPU_DTRACE_BADADDR; 6853 *illval = regs[rd]; 6854 break; 6855 } 6856 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6857 break; 6858 6859 case DIF_OP_STH: 6860 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6861 *flags |= CPU_DTRACE_BADADDR; 6862 *illval = regs[rd]; 6863 break; 6864 } 6865 if (regs[rd] & 1) { 6866 *flags |= CPU_DTRACE_BADALIGN; 6867 *illval = regs[rd]; 6868 break; 6869 } 6870 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6871 break; 6872 6873 case DIF_OP_STW: 6874 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6875 *flags |= CPU_DTRACE_BADADDR; 6876 *illval = regs[rd]; 6877 break; 6878 } 6879 if (regs[rd] & 3) { 6880 *flags |= CPU_DTRACE_BADALIGN; 6881 *illval = regs[rd]; 6882 break; 6883 } 6884 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6885 break; 6886 6887 case DIF_OP_STX: 6888 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6889 *flags |= CPU_DTRACE_BADADDR; 6890 *illval = regs[rd]; 6891 break; 6892 } 6893 if (regs[rd] & 7) { 6894 *flags |= CPU_DTRACE_BADALIGN; 6895 *illval = regs[rd]; 6896 break; 6897 } 6898 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6899 break; 6900 } 6901 } 6902 6903 if (!(*flags & CPU_DTRACE_FAULT)) 6904 return (rval); 6905 6906 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6907 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6908 6909 return (0); 6910 } 6911 6912 static void 6913 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6914 { 6915 dtrace_probe_t *probe = ecb->dte_probe; 6916 dtrace_provider_t *prov = probe->dtpr_provider; 6917 char c[DTRACE_FULLNAMELEN + 80], *str; 6918 char *msg = "dtrace: breakpoint action at probe "; 6919 char *ecbmsg = " (ecb "; 6920 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6921 uintptr_t val = (uintptr_t)ecb; 6922 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6923 6924 if (dtrace_destructive_disallow) 6925 return; 6926 6927 /* 6928 * It's impossible to be taking action on the NULL probe. 6929 */ 6930 ASSERT(probe != NULL); 6931 6932 /* 6933 * This is a poor man's (destitute man's?) sprintf(): we want to 6934 * print the provider name, module name, function name and name of 6935 * the probe, along with the hex address of the ECB with the breakpoint 6936 * action -- all of which we must place in the character buffer by 6937 * hand. 6938 */ 6939 while (*msg != '\0') 6940 c[i++] = *msg++; 6941 6942 for (str = prov->dtpv_name; *str != '\0'; str++) 6943 c[i++] = *str; 6944 c[i++] = ':'; 6945 6946 for (str = probe->dtpr_mod; *str != '\0'; str++) 6947 c[i++] = *str; 6948 c[i++] = ':'; 6949 6950 for (str = probe->dtpr_func; *str != '\0'; str++) 6951 c[i++] = *str; 6952 c[i++] = ':'; 6953 6954 for (str = probe->dtpr_name; *str != '\0'; str++) 6955 c[i++] = *str; 6956 6957 while (*ecbmsg != '\0') 6958 c[i++] = *ecbmsg++; 6959 6960 while (shift >= 0) { 6961 mask = (uintptr_t)0xf << shift; 6962 6963 if (val >= ((uintptr_t)1 << shift)) 6964 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6965 shift -= 4; 6966 } 6967 6968 c[i++] = ')'; 6969 c[i] = '\0'; 6970 6971 #ifdef illumos 6972 debug_enter(c); 6973 #else 6974 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6975 #endif 6976 } 6977 6978 static void 6979 dtrace_action_panic(dtrace_ecb_t *ecb) 6980 { 6981 dtrace_probe_t *probe = ecb->dte_probe; 6982 6983 /* 6984 * It's impossible to be taking action on the NULL probe. 6985 */ 6986 ASSERT(probe != NULL); 6987 6988 if (dtrace_destructive_disallow) 6989 return; 6990 6991 if (dtrace_panicked != NULL) 6992 return; 6993 6994 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6995 return; 6996 6997 /* 6998 * We won the right to panic. (We want to be sure that only one 6999 * thread calls panic() from dtrace_probe(), and that panic() is 7000 * called exactly once.) 7001 */ 7002 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 7003 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 7004 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7005 } 7006 7007 static void 7008 dtrace_action_raise(uint64_t sig) 7009 { 7010 if (dtrace_destructive_disallow) 7011 return; 7012 7013 if (sig >= NSIG) { 7014 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7015 return; 7016 } 7017 7018 #ifdef illumos 7019 /* 7020 * raise() has a queue depth of 1 -- we ignore all subsequent 7021 * invocations of the raise() action. 7022 */ 7023 if (curthread->t_dtrace_sig == 0) 7024 curthread->t_dtrace_sig = (uint8_t)sig; 7025 7026 curthread->t_sig_check = 1; 7027 aston(curthread); 7028 #else 7029 struct proc *p = curproc; 7030 PROC_LOCK(p); 7031 kern_psignal(p, sig); 7032 PROC_UNLOCK(p); 7033 #endif 7034 } 7035 7036 static void 7037 dtrace_action_stop(void) 7038 { 7039 if (dtrace_destructive_disallow) 7040 return; 7041 7042 #ifdef illumos 7043 if (!curthread->t_dtrace_stop) { 7044 curthread->t_dtrace_stop = 1; 7045 curthread->t_sig_check = 1; 7046 aston(curthread); 7047 } 7048 #else 7049 struct proc *p = curproc; 7050 PROC_LOCK(p); 7051 kern_psignal(p, SIGSTOP); 7052 PROC_UNLOCK(p); 7053 #endif 7054 } 7055 7056 static void 7057 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7058 { 7059 hrtime_t now; 7060 volatile uint16_t *flags; 7061 #ifdef illumos 7062 cpu_t *cpu = CPU; 7063 #else 7064 cpu_t *cpu = &solaris_cpu[curcpu]; 7065 #endif 7066 7067 if (dtrace_destructive_disallow) 7068 return; 7069 7070 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7071 7072 now = dtrace_gethrtime(); 7073 7074 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7075 /* 7076 * We need to advance the mark to the current time. 7077 */ 7078 cpu->cpu_dtrace_chillmark = now; 7079 cpu->cpu_dtrace_chilled = 0; 7080 } 7081 7082 /* 7083 * Now check to see if the requested chill time would take us over 7084 * the maximum amount of time allowed in the chill interval. (Or 7085 * worse, if the calculation itself induces overflow.) 7086 */ 7087 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7088 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7089 *flags |= CPU_DTRACE_ILLOP; 7090 return; 7091 } 7092 7093 while (dtrace_gethrtime() - now < val) 7094 continue; 7095 7096 /* 7097 * Normally, we assure that the value of the variable "timestamp" does 7098 * not change within an ECB. The presence of chill() represents an 7099 * exception to this rule, however. 7100 */ 7101 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7102 cpu->cpu_dtrace_chilled += val; 7103 } 7104 7105 static void 7106 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7107 uint64_t *buf, uint64_t arg) 7108 { 7109 int nframes = DTRACE_USTACK_NFRAMES(arg); 7110 int strsize = DTRACE_USTACK_STRSIZE(arg); 7111 uint64_t *pcs = &buf[1], *fps; 7112 char *str = (char *)&pcs[nframes]; 7113 int size, offs = 0, i, j; 7114 size_t rem; 7115 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7116 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7117 char *sym; 7118 7119 /* 7120 * Should be taking a faster path if string space has not been 7121 * allocated. 7122 */ 7123 ASSERT(strsize != 0); 7124 7125 /* 7126 * We will first allocate some temporary space for the frame pointers. 7127 */ 7128 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7129 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7130 (nframes * sizeof (uint64_t)); 7131 7132 if (!DTRACE_INSCRATCH(mstate, size)) { 7133 /* 7134 * Not enough room for our frame pointers -- need to indicate 7135 * that we ran out of scratch space. 7136 */ 7137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7138 return; 7139 } 7140 7141 mstate->dtms_scratch_ptr += size; 7142 saved = mstate->dtms_scratch_ptr; 7143 7144 /* 7145 * Now get a stack with both program counters and frame pointers. 7146 */ 7147 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7148 dtrace_getufpstack(buf, fps, nframes + 1); 7149 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7150 7151 /* 7152 * If that faulted, we're cooked. 7153 */ 7154 if (*flags & CPU_DTRACE_FAULT) 7155 goto out; 7156 7157 /* 7158 * Now we want to walk up the stack, calling the USTACK helper. For 7159 * each iteration, we restore the scratch pointer. 7160 */ 7161 for (i = 0; i < nframes; i++) { 7162 mstate->dtms_scratch_ptr = saved; 7163 7164 if (offs >= strsize) 7165 break; 7166 7167 sym = (char *)(uintptr_t)dtrace_helper( 7168 DTRACE_HELPER_ACTION_USTACK, 7169 mstate, state, pcs[i], fps[i]); 7170 7171 /* 7172 * If we faulted while running the helper, we're going to 7173 * clear the fault and null out the corresponding string. 7174 */ 7175 if (*flags & CPU_DTRACE_FAULT) { 7176 *flags &= ~CPU_DTRACE_FAULT; 7177 str[offs++] = '\0'; 7178 continue; 7179 } 7180 7181 if (sym == NULL) { 7182 str[offs++] = '\0'; 7183 continue; 7184 } 7185 7186 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7187 &(state->dts_vstate))) { 7188 str[offs++] = '\0'; 7189 continue; 7190 } 7191 7192 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7193 7194 /* 7195 * Now copy in the string that the helper returned to us. 7196 */ 7197 for (j = 0; offs + j < strsize && j < rem; j++) { 7198 if ((str[offs + j] = sym[j]) == '\0') 7199 break; 7200 } 7201 7202 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7203 7204 offs += j + 1; 7205 } 7206 7207 if (offs >= strsize) { 7208 /* 7209 * If we didn't have room for all of the strings, we don't 7210 * abort processing -- this needn't be a fatal error -- but we 7211 * still want to increment a counter (dts_stkstroverflows) to 7212 * allow this condition to be warned about. (If this is from 7213 * a jstack() action, it is easily tuned via jstackstrsize.) 7214 */ 7215 dtrace_error(&state->dts_stkstroverflows); 7216 } 7217 7218 while (offs < strsize) 7219 str[offs++] = '\0'; 7220 7221 out: 7222 mstate->dtms_scratch_ptr = old; 7223 } 7224 7225 static void 7226 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7227 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7228 { 7229 volatile uint16_t *flags; 7230 uint64_t val = *valp; 7231 size_t valoffs = *valoffsp; 7232 7233 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7234 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7235 7236 /* 7237 * If this is a string, we're going to only load until we find the zero 7238 * byte -- after which we'll store zero bytes. 7239 */ 7240 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7241 char c = '\0' + 1; 7242 size_t s; 7243 7244 for (s = 0; s < size; s++) { 7245 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7246 c = dtrace_load8(val++); 7247 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7248 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7249 c = dtrace_fuword8((void *)(uintptr_t)val++); 7250 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7251 if (*flags & CPU_DTRACE_FAULT) 7252 break; 7253 } 7254 7255 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7256 7257 if (c == '\0' && intuple) 7258 break; 7259 } 7260 } else { 7261 uint8_t c; 7262 while (valoffs < end) { 7263 if (dtkind == DIF_TF_BYREF) { 7264 c = dtrace_load8(val++); 7265 } else if (dtkind == DIF_TF_BYUREF) { 7266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7267 c = dtrace_fuword8((void *)(uintptr_t)val++); 7268 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7269 if (*flags & CPU_DTRACE_FAULT) 7270 break; 7271 } 7272 7273 DTRACE_STORE(uint8_t, tomax, 7274 valoffs++, c); 7275 } 7276 } 7277 7278 *valp = val; 7279 *valoffsp = valoffs; 7280 } 7281 7282 /* 7283 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7284 * defined, we also assert that we are not recursing unless the probe ID is an 7285 * error probe. 7286 */ 7287 static dtrace_icookie_t 7288 dtrace_probe_enter(dtrace_id_t id) 7289 { 7290 dtrace_icookie_t cookie; 7291 7292 cookie = dtrace_interrupt_disable(); 7293 7294 /* 7295 * Unless this is an ERROR probe, we are not allowed to recurse in 7296 * dtrace_probe(). Recursing into DTrace probe usually means that a 7297 * function is instrumented that should not have been instrumented or 7298 * that the ordering guarantee of the records will be violated, 7299 * resulting in unexpected output. If there is an exception to this 7300 * assertion, a new case should be added. 7301 */ 7302 ASSERT(curthread->t_dtrace_inprobe == 0 || 7303 id == dtrace_probeid_error); 7304 curthread->t_dtrace_inprobe = 1; 7305 7306 return (cookie); 7307 } 7308 7309 /* 7310 * Clears the per-thread inprobe flag and enables interrupts. 7311 */ 7312 static void 7313 dtrace_probe_exit(dtrace_icookie_t cookie) 7314 { 7315 7316 curthread->t_dtrace_inprobe = 0; 7317 dtrace_interrupt_enable(cookie); 7318 } 7319 7320 /* 7321 * If you're looking for the epicenter of DTrace, you just found it. This 7322 * is the function called by the provider to fire a probe -- from which all 7323 * subsequent probe-context DTrace activity emanates. 7324 */ 7325 void 7326 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7327 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7328 { 7329 processorid_t cpuid; 7330 dtrace_icookie_t cookie; 7331 dtrace_probe_t *probe; 7332 dtrace_mstate_t mstate; 7333 dtrace_ecb_t *ecb; 7334 dtrace_action_t *act; 7335 intptr_t offs; 7336 size_t size; 7337 int vtime, onintr; 7338 volatile uint16_t *flags; 7339 hrtime_t now; 7340 7341 if (KERNEL_PANICKED()) 7342 return; 7343 7344 #ifdef illumos 7345 /* 7346 * Kick out immediately if this CPU is still being born (in which case 7347 * curthread will be set to -1) or the current thread can't allow 7348 * probes in its current context. 7349 */ 7350 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7351 return; 7352 #endif 7353 7354 cookie = dtrace_probe_enter(id); 7355 probe = dtrace_probes[id - 1]; 7356 cpuid = curcpu; 7357 onintr = CPU_ON_INTR(CPU); 7358 7359 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7360 probe->dtpr_predcache == curthread->t_predcache) { 7361 /* 7362 * We have hit in the predicate cache; we know that 7363 * this predicate would evaluate to be false. 7364 */ 7365 dtrace_probe_exit(cookie); 7366 return; 7367 } 7368 7369 #ifdef illumos 7370 if (panic_quiesce) { 7371 #else 7372 if (KERNEL_PANICKED()) { 7373 #endif 7374 /* 7375 * We don't trace anything if we're panicking. 7376 */ 7377 dtrace_probe_exit(cookie); 7378 return; 7379 } 7380 7381 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7382 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7383 vtime = dtrace_vtime_references != 0; 7384 7385 if (vtime && curthread->t_dtrace_start) 7386 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7387 7388 mstate.dtms_difo = NULL; 7389 mstate.dtms_probe = probe; 7390 mstate.dtms_strtok = 0; 7391 mstate.dtms_arg[0] = arg0; 7392 mstate.dtms_arg[1] = arg1; 7393 mstate.dtms_arg[2] = arg2; 7394 mstate.dtms_arg[3] = arg3; 7395 mstate.dtms_arg[4] = arg4; 7396 7397 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7398 7399 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7400 dtrace_predicate_t *pred = ecb->dte_predicate; 7401 dtrace_state_t *state = ecb->dte_state; 7402 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7403 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7404 dtrace_vstate_t *vstate = &state->dts_vstate; 7405 dtrace_provider_t *prov = probe->dtpr_provider; 7406 uint64_t tracememsize = 0; 7407 int committed = 0; 7408 caddr_t tomax; 7409 7410 /* 7411 * A little subtlety with the following (seemingly innocuous) 7412 * declaration of the automatic 'val': by looking at the 7413 * code, you might think that it could be declared in the 7414 * action processing loop, below. (That is, it's only used in 7415 * the action processing loop.) However, it must be declared 7416 * out of that scope because in the case of DIF expression 7417 * arguments to aggregating actions, one iteration of the 7418 * action loop will use the last iteration's value. 7419 */ 7420 uint64_t val = 0; 7421 7422 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7423 mstate.dtms_getf = NULL; 7424 7425 *flags &= ~CPU_DTRACE_ERROR; 7426 7427 if (prov == dtrace_provider) { 7428 /* 7429 * If dtrace itself is the provider of this probe, 7430 * we're only going to continue processing the ECB if 7431 * arg0 (the dtrace_state_t) is equal to the ECB's 7432 * creating state. (This prevents disjoint consumers 7433 * from seeing one another's metaprobes.) 7434 */ 7435 if (arg0 != (uint64_t)(uintptr_t)state) 7436 continue; 7437 } 7438 7439 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7440 /* 7441 * We're not currently active. If our provider isn't 7442 * the dtrace pseudo provider, we're not interested. 7443 */ 7444 if (prov != dtrace_provider) 7445 continue; 7446 7447 /* 7448 * Now we must further check if we are in the BEGIN 7449 * probe. If we are, we will only continue processing 7450 * if we're still in WARMUP -- if one BEGIN enabling 7451 * has invoked the exit() action, we don't want to 7452 * evaluate subsequent BEGIN enablings. 7453 */ 7454 if (probe->dtpr_id == dtrace_probeid_begin && 7455 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7456 ASSERT(state->dts_activity == 7457 DTRACE_ACTIVITY_DRAINING); 7458 continue; 7459 } 7460 } 7461 7462 if (ecb->dte_cond) { 7463 /* 7464 * If the dte_cond bits indicate that this 7465 * consumer is only allowed to see user-mode firings 7466 * of this probe, call the provider's dtps_usermode() 7467 * entry point to check that the probe was fired 7468 * while in a user context. Skip this ECB if that's 7469 * not the case. 7470 */ 7471 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7472 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7473 probe->dtpr_id, probe->dtpr_arg) == 0) 7474 continue; 7475 7476 #ifdef illumos 7477 /* 7478 * This is more subtle than it looks. We have to be 7479 * absolutely certain that CRED() isn't going to 7480 * change out from under us so it's only legit to 7481 * examine that structure if we're in constrained 7482 * situations. Currently, the only times we'll this 7483 * check is if a non-super-user has enabled the 7484 * profile or syscall providers -- providers that 7485 * allow visibility of all processes. For the 7486 * profile case, the check above will ensure that 7487 * we're examining a user context. 7488 */ 7489 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7490 cred_t *cr; 7491 cred_t *s_cr = 7492 ecb->dte_state->dts_cred.dcr_cred; 7493 proc_t *proc; 7494 7495 ASSERT(s_cr != NULL); 7496 7497 if ((cr = CRED()) == NULL || 7498 s_cr->cr_uid != cr->cr_uid || 7499 s_cr->cr_uid != cr->cr_ruid || 7500 s_cr->cr_uid != cr->cr_suid || 7501 s_cr->cr_gid != cr->cr_gid || 7502 s_cr->cr_gid != cr->cr_rgid || 7503 s_cr->cr_gid != cr->cr_sgid || 7504 (proc = ttoproc(curthread)) == NULL || 7505 (proc->p_flag & SNOCD)) 7506 continue; 7507 } 7508 7509 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7510 cred_t *cr; 7511 cred_t *s_cr = 7512 ecb->dte_state->dts_cred.dcr_cred; 7513 7514 ASSERT(s_cr != NULL); 7515 7516 if ((cr = CRED()) == NULL || 7517 s_cr->cr_zone->zone_id != 7518 cr->cr_zone->zone_id) 7519 continue; 7520 } 7521 #endif 7522 } 7523 7524 if (now - state->dts_alive > dtrace_deadman_timeout) { 7525 /* 7526 * We seem to be dead. Unless we (a) have kernel 7527 * destructive permissions (b) have explicitly enabled 7528 * destructive actions and (c) destructive actions have 7529 * not been disabled, we're going to transition into 7530 * the KILLED state, from which no further processing 7531 * on this state will be performed. 7532 */ 7533 if (!dtrace_priv_kernel_destructive(state) || 7534 !state->dts_cred.dcr_destructive || 7535 dtrace_destructive_disallow) { 7536 void *activity = &state->dts_activity; 7537 dtrace_activity_t curstate; 7538 7539 do { 7540 curstate = state->dts_activity; 7541 } while (dtrace_cas32(activity, curstate, 7542 DTRACE_ACTIVITY_KILLED) != curstate); 7543 7544 continue; 7545 } 7546 } 7547 7548 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7549 ecb->dte_alignment, state, &mstate)) < 0) 7550 continue; 7551 7552 tomax = buf->dtb_tomax; 7553 ASSERT(tomax != NULL); 7554 7555 if (ecb->dte_size != 0) { 7556 dtrace_rechdr_t dtrh; 7557 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7558 mstate.dtms_timestamp = dtrace_gethrtime(); 7559 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7560 } 7561 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7562 dtrh.dtrh_epid = ecb->dte_epid; 7563 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7564 mstate.dtms_timestamp); 7565 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7566 } 7567 7568 mstate.dtms_epid = ecb->dte_epid; 7569 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7570 7571 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7572 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7573 else 7574 mstate.dtms_access = 0; 7575 7576 if (pred != NULL) { 7577 dtrace_difo_t *dp = pred->dtp_difo; 7578 uint64_t rval; 7579 7580 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7581 7582 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7583 dtrace_cacheid_t cid = probe->dtpr_predcache; 7584 7585 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7586 /* 7587 * Update the predicate cache... 7588 */ 7589 ASSERT(cid == pred->dtp_cacheid); 7590 curthread->t_predcache = cid; 7591 } 7592 7593 continue; 7594 } 7595 } 7596 7597 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7598 act != NULL; act = act->dta_next) { 7599 size_t valoffs; 7600 dtrace_difo_t *dp; 7601 dtrace_recdesc_t *rec = &act->dta_rec; 7602 7603 size = rec->dtrd_size; 7604 valoffs = offs + rec->dtrd_offset; 7605 7606 if (DTRACEACT_ISAGG(act->dta_kind)) { 7607 uint64_t v = 0xbad; 7608 dtrace_aggregation_t *agg; 7609 7610 agg = (dtrace_aggregation_t *)act; 7611 7612 if ((dp = act->dta_difo) != NULL) 7613 v = dtrace_dif_emulate(dp, 7614 &mstate, vstate, state); 7615 7616 if (*flags & CPU_DTRACE_ERROR) 7617 continue; 7618 7619 /* 7620 * Note that we always pass the expression 7621 * value from the previous iteration of the 7622 * action loop. This value will only be used 7623 * if there is an expression argument to the 7624 * aggregating action, denoted by the 7625 * dtag_hasarg field. 7626 */ 7627 dtrace_aggregate(agg, buf, 7628 offs, aggbuf, v, val); 7629 continue; 7630 } 7631 7632 switch (act->dta_kind) { 7633 case DTRACEACT_STOP: 7634 if (dtrace_priv_proc_destructive(state)) 7635 dtrace_action_stop(); 7636 continue; 7637 7638 case DTRACEACT_BREAKPOINT: 7639 if (dtrace_priv_kernel_destructive(state)) 7640 dtrace_action_breakpoint(ecb); 7641 continue; 7642 7643 case DTRACEACT_PANIC: 7644 if (dtrace_priv_kernel_destructive(state)) 7645 dtrace_action_panic(ecb); 7646 continue; 7647 7648 case DTRACEACT_STACK: 7649 if (!dtrace_priv_kernel(state)) 7650 continue; 7651 7652 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7653 size / sizeof (pc_t), probe->dtpr_aframes, 7654 DTRACE_ANCHORED(probe) ? NULL : 7655 (uint32_t *)arg0); 7656 continue; 7657 7658 case DTRACEACT_JSTACK: 7659 case DTRACEACT_USTACK: 7660 if (!dtrace_priv_proc(state)) 7661 continue; 7662 7663 /* 7664 * See comment in DIF_VAR_PID. 7665 */ 7666 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7667 CPU_ON_INTR(CPU)) { 7668 int depth = DTRACE_USTACK_NFRAMES( 7669 rec->dtrd_arg) + 1; 7670 7671 dtrace_bzero((void *)(tomax + valoffs), 7672 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7673 + depth * sizeof (uint64_t)); 7674 7675 continue; 7676 } 7677 7678 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7679 curproc->p_dtrace_helpers != NULL) { 7680 /* 7681 * This is the slow path -- we have 7682 * allocated string space, and we're 7683 * getting the stack of a process that 7684 * has helpers. Call into a separate 7685 * routine to perform this processing. 7686 */ 7687 dtrace_action_ustack(&mstate, state, 7688 (uint64_t *)(tomax + valoffs), 7689 rec->dtrd_arg); 7690 continue; 7691 } 7692 7693 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7694 dtrace_getupcstack((uint64_t *) 7695 (tomax + valoffs), 7696 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7697 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7698 continue; 7699 7700 default: 7701 break; 7702 } 7703 7704 dp = act->dta_difo; 7705 ASSERT(dp != NULL); 7706 7707 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7708 7709 if (*flags & CPU_DTRACE_ERROR) 7710 continue; 7711 7712 switch (act->dta_kind) { 7713 case DTRACEACT_SPECULATE: { 7714 dtrace_rechdr_t *dtrh; 7715 7716 ASSERT(buf == &state->dts_buffer[cpuid]); 7717 buf = dtrace_speculation_buffer(state, 7718 cpuid, val); 7719 7720 if (buf == NULL) { 7721 *flags |= CPU_DTRACE_DROP; 7722 continue; 7723 } 7724 7725 offs = dtrace_buffer_reserve(buf, 7726 ecb->dte_needed, ecb->dte_alignment, 7727 state, NULL); 7728 7729 if (offs < 0) { 7730 *flags |= CPU_DTRACE_DROP; 7731 continue; 7732 } 7733 7734 tomax = buf->dtb_tomax; 7735 ASSERT(tomax != NULL); 7736 7737 if (ecb->dte_size == 0) 7738 continue; 7739 7740 ASSERT3U(ecb->dte_size, >=, 7741 sizeof (dtrace_rechdr_t)); 7742 dtrh = ((void *)(tomax + offs)); 7743 dtrh->dtrh_epid = ecb->dte_epid; 7744 /* 7745 * When the speculation is committed, all of 7746 * the records in the speculative buffer will 7747 * have their timestamps set to the commit 7748 * time. Until then, it is set to a sentinel 7749 * value, for debugability. 7750 */ 7751 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7752 continue; 7753 } 7754 7755 case DTRACEACT_PRINTM: { 7756 /* The DIF returns a 'memref'. */ 7757 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7758 7759 /* Get the size from the memref. */ 7760 size = memref[1]; 7761 7762 /* 7763 * Check if the size exceeds the allocated 7764 * buffer size. 7765 */ 7766 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7767 /* Flag a drop! */ 7768 *flags |= CPU_DTRACE_DROP; 7769 continue; 7770 } 7771 7772 /* Store the size in the buffer first. */ 7773 DTRACE_STORE(uintptr_t, tomax, 7774 valoffs, size); 7775 7776 /* 7777 * Offset the buffer address to the start 7778 * of the data. 7779 */ 7780 valoffs += sizeof(uintptr_t); 7781 7782 /* 7783 * Reset to the memory address rather than 7784 * the memref array, then let the BYREF 7785 * code below do the work to store the 7786 * memory data in the buffer. 7787 */ 7788 val = memref[0]; 7789 break; 7790 } 7791 7792 case DTRACEACT_CHILL: 7793 if (dtrace_priv_kernel_destructive(state)) 7794 dtrace_action_chill(&mstate, val); 7795 continue; 7796 7797 case DTRACEACT_RAISE: 7798 if (dtrace_priv_proc_destructive(state)) 7799 dtrace_action_raise(val); 7800 continue; 7801 7802 case DTRACEACT_COMMIT: 7803 ASSERT(!committed); 7804 7805 /* 7806 * We need to commit our buffer state. 7807 */ 7808 if (ecb->dte_size) 7809 buf->dtb_offset = offs + ecb->dte_size; 7810 buf = &state->dts_buffer[cpuid]; 7811 dtrace_speculation_commit(state, cpuid, val); 7812 committed = 1; 7813 continue; 7814 7815 case DTRACEACT_DISCARD: 7816 dtrace_speculation_discard(state, cpuid, val); 7817 continue; 7818 7819 case DTRACEACT_DIFEXPR: 7820 case DTRACEACT_LIBACT: 7821 case DTRACEACT_PRINTF: 7822 case DTRACEACT_PRINTA: 7823 case DTRACEACT_SYSTEM: 7824 case DTRACEACT_FREOPEN: 7825 case DTRACEACT_TRACEMEM: 7826 break; 7827 7828 case DTRACEACT_TRACEMEM_DYNSIZE: 7829 tracememsize = val; 7830 break; 7831 7832 case DTRACEACT_SYM: 7833 case DTRACEACT_MOD: 7834 if (!dtrace_priv_kernel(state)) 7835 continue; 7836 break; 7837 7838 case DTRACEACT_USYM: 7839 case DTRACEACT_UMOD: 7840 case DTRACEACT_UADDR: { 7841 #ifdef illumos 7842 struct pid *pid = curthread->t_procp->p_pidp; 7843 #endif 7844 7845 if (!dtrace_priv_proc(state)) 7846 continue; 7847 7848 DTRACE_STORE(uint64_t, tomax, 7849 #ifdef illumos 7850 valoffs, (uint64_t)pid->pid_id); 7851 #else 7852 valoffs, (uint64_t) curproc->p_pid); 7853 #endif 7854 DTRACE_STORE(uint64_t, tomax, 7855 valoffs + sizeof (uint64_t), val); 7856 7857 continue; 7858 } 7859 7860 case DTRACEACT_EXIT: { 7861 /* 7862 * For the exit action, we are going to attempt 7863 * to atomically set our activity to be 7864 * draining. If this fails (either because 7865 * another CPU has beat us to the exit action, 7866 * or because our current activity is something 7867 * other than ACTIVE or WARMUP), we will 7868 * continue. This assures that the exit action 7869 * can be successfully recorded at most once 7870 * when we're in the ACTIVE state. If we're 7871 * encountering the exit() action while in 7872 * COOLDOWN, however, we want to honor the new 7873 * status code. (We know that we're the only 7874 * thread in COOLDOWN, so there is no race.) 7875 */ 7876 void *activity = &state->dts_activity; 7877 dtrace_activity_t curstate = state->dts_activity; 7878 7879 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7880 break; 7881 7882 if (curstate != DTRACE_ACTIVITY_WARMUP) 7883 curstate = DTRACE_ACTIVITY_ACTIVE; 7884 7885 if (dtrace_cas32(activity, curstate, 7886 DTRACE_ACTIVITY_DRAINING) != curstate) { 7887 *flags |= CPU_DTRACE_DROP; 7888 continue; 7889 } 7890 7891 break; 7892 } 7893 7894 default: 7895 ASSERT(0); 7896 } 7897 7898 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7899 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7900 uintptr_t end = valoffs + size; 7901 7902 if (tracememsize != 0 && 7903 valoffs + tracememsize < end) { 7904 end = valoffs + tracememsize; 7905 tracememsize = 0; 7906 } 7907 7908 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7909 !dtrace_vcanload((void *)(uintptr_t)val, 7910 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7911 continue; 7912 7913 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7914 &val, end, act->dta_intuple, 7915 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7916 DIF_TF_BYREF: DIF_TF_BYUREF); 7917 continue; 7918 } 7919 7920 switch (size) { 7921 case 0: 7922 break; 7923 7924 case sizeof (uint8_t): 7925 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7926 break; 7927 case sizeof (uint16_t): 7928 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7929 break; 7930 case sizeof (uint32_t): 7931 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7932 break; 7933 case sizeof (uint64_t): 7934 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7935 break; 7936 default: 7937 /* 7938 * Any other size should have been returned by 7939 * reference, not by value. 7940 */ 7941 ASSERT(0); 7942 break; 7943 } 7944 } 7945 7946 if (*flags & CPU_DTRACE_DROP) 7947 continue; 7948 7949 if (*flags & CPU_DTRACE_FAULT) { 7950 int ndx; 7951 dtrace_action_t *err; 7952 7953 buf->dtb_errors++; 7954 7955 if (probe->dtpr_id == dtrace_probeid_error) { 7956 /* 7957 * There's nothing we can do -- we had an 7958 * error on the error probe. We bump an 7959 * error counter to at least indicate that 7960 * this condition happened. 7961 */ 7962 dtrace_error(&state->dts_dblerrors); 7963 continue; 7964 } 7965 7966 if (vtime) { 7967 /* 7968 * Before recursing on dtrace_probe(), we 7969 * need to explicitly clear out our start 7970 * time to prevent it from being accumulated 7971 * into t_dtrace_vtime. 7972 */ 7973 curthread->t_dtrace_start = 0; 7974 } 7975 7976 /* 7977 * Iterate over the actions to figure out which action 7978 * we were processing when we experienced the error. 7979 * Note that act points _past_ the faulting action; if 7980 * act is ecb->dte_action, the fault was in the 7981 * predicate, if it's ecb->dte_action->dta_next it's 7982 * in action #1, and so on. 7983 */ 7984 for (err = ecb->dte_action, ndx = 0; 7985 err != act; err = err->dta_next, ndx++) 7986 continue; 7987 7988 dtrace_probe_error(state, ecb->dte_epid, ndx, 7989 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7990 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7991 cpu_core[cpuid].cpuc_dtrace_illval); 7992 7993 continue; 7994 } 7995 7996 if (!committed) 7997 buf->dtb_offset = offs + ecb->dte_size; 7998 } 7999 8000 if (vtime) 8001 curthread->t_dtrace_start = dtrace_gethrtime(); 8002 8003 dtrace_probe_exit(cookie); 8004 } 8005 8006 /* 8007 * DTrace Probe Hashing Functions 8008 * 8009 * The functions in this section (and indeed, the functions in remaining 8010 * sections) are not _called_ from probe context. (Any exceptions to this are 8011 * marked with a "Note:".) Rather, they are called from elsewhere in the 8012 * DTrace framework to look-up probes in, add probes to and remove probes from 8013 * the DTrace probe hashes. (Each probe is hashed by each element of the 8014 * probe tuple -- allowing for fast lookups, regardless of what was 8015 * specified.) 8016 */ 8017 static uint_t 8018 dtrace_hash_str(const char *p) 8019 { 8020 unsigned int g; 8021 uint_t hval = 0; 8022 8023 while (*p) { 8024 hval = (hval << 4) + *p++; 8025 if ((g = (hval & 0xf0000000)) != 0) 8026 hval ^= g >> 24; 8027 hval &= ~g; 8028 } 8029 return (hval); 8030 } 8031 8032 static dtrace_hash_t * 8033 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8034 { 8035 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8036 8037 hash->dth_stroffs = stroffs; 8038 hash->dth_nextoffs = nextoffs; 8039 hash->dth_prevoffs = prevoffs; 8040 8041 hash->dth_size = 1; 8042 hash->dth_mask = hash->dth_size - 1; 8043 8044 hash->dth_tab = kmem_zalloc(hash->dth_size * 8045 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8046 8047 return (hash); 8048 } 8049 8050 static void 8051 dtrace_hash_destroy(dtrace_hash_t *hash) 8052 { 8053 #ifdef DEBUG 8054 int i; 8055 8056 for (i = 0; i < hash->dth_size; i++) 8057 ASSERT(hash->dth_tab[i] == NULL); 8058 #endif 8059 8060 kmem_free(hash->dth_tab, 8061 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8062 kmem_free(hash, sizeof (dtrace_hash_t)); 8063 } 8064 8065 static void 8066 dtrace_hash_resize(dtrace_hash_t *hash) 8067 { 8068 int size = hash->dth_size, i, ndx; 8069 int new_size = hash->dth_size << 1; 8070 int new_mask = new_size - 1; 8071 dtrace_hashbucket_t **new_tab, *bucket, *next; 8072 8073 ASSERT((new_size & new_mask) == 0); 8074 8075 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8076 8077 for (i = 0; i < size; i++) { 8078 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8079 dtrace_probe_t *probe = bucket->dthb_chain; 8080 8081 ASSERT(probe != NULL); 8082 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8083 8084 next = bucket->dthb_next; 8085 bucket->dthb_next = new_tab[ndx]; 8086 new_tab[ndx] = bucket; 8087 } 8088 } 8089 8090 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8091 hash->dth_tab = new_tab; 8092 hash->dth_size = new_size; 8093 hash->dth_mask = new_mask; 8094 } 8095 8096 static void 8097 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8098 { 8099 int hashval = DTRACE_HASHSTR(hash, new); 8100 int ndx = hashval & hash->dth_mask; 8101 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8102 dtrace_probe_t **nextp, **prevp; 8103 8104 for (; bucket != NULL; bucket = bucket->dthb_next) { 8105 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8106 goto add; 8107 } 8108 8109 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8110 dtrace_hash_resize(hash); 8111 dtrace_hash_add(hash, new); 8112 return; 8113 } 8114 8115 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8116 bucket->dthb_next = hash->dth_tab[ndx]; 8117 hash->dth_tab[ndx] = bucket; 8118 hash->dth_nbuckets++; 8119 8120 add: 8121 nextp = DTRACE_HASHNEXT(hash, new); 8122 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8123 *nextp = bucket->dthb_chain; 8124 8125 if (bucket->dthb_chain != NULL) { 8126 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8127 ASSERT(*prevp == NULL); 8128 *prevp = new; 8129 } 8130 8131 bucket->dthb_chain = new; 8132 bucket->dthb_len++; 8133 } 8134 8135 static dtrace_probe_t * 8136 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8137 { 8138 int hashval = DTRACE_HASHSTR(hash, template); 8139 int ndx = hashval & hash->dth_mask; 8140 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8141 8142 for (; bucket != NULL; bucket = bucket->dthb_next) { 8143 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8144 return (bucket->dthb_chain); 8145 } 8146 8147 return (NULL); 8148 } 8149 8150 static int 8151 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8152 { 8153 int hashval = DTRACE_HASHSTR(hash, template); 8154 int ndx = hashval & hash->dth_mask; 8155 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8156 8157 for (; bucket != NULL; bucket = bucket->dthb_next) { 8158 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8159 return (bucket->dthb_len); 8160 } 8161 8162 return (0); 8163 } 8164 8165 static void 8166 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8167 { 8168 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8169 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8170 8171 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8172 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8173 8174 /* 8175 * Find the bucket that we're removing this probe from. 8176 */ 8177 for (; bucket != NULL; bucket = bucket->dthb_next) { 8178 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8179 break; 8180 } 8181 8182 ASSERT(bucket != NULL); 8183 8184 if (*prevp == NULL) { 8185 if (*nextp == NULL) { 8186 /* 8187 * The removed probe was the only probe on this 8188 * bucket; we need to remove the bucket. 8189 */ 8190 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8191 8192 ASSERT(bucket->dthb_chain == probe); 8193 ASSERT(b != NULL); 8194 8195 if (b == bucket) { 8196 hash->dth_tab[ndx] = bucket->dthb_next; 8197 } else { 8198 while (b->dthb_next != bucket) 8199 b = b->dthb_next; 8200 b->dthb_next = bucket->dthb_next; 8201 } 8202 8203 ASSERT(hash->dth_nbuckets > 0); 8204 hash->dth_nbuckets--; 8205 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8206 return; 8207 } 8208 8209 bucket->dthb_chain = *nextp; 8210 } else { 8211 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8212 } 8213 8214 if (*nextp != NULL) 8215 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8216 } 8217 8218 /* 8219 * DTrace Utility Functions 8220 * 8221 * These are random utility functions that are _not_ called from probe context. 8222 */ 8223 static int 8224 dtrace_badattr(const dtrace_attribute_t *a) 8225 { 8226 return (a->dtat_name > DTRACE_STABILITY_MAX || 8227 a->dtat_data > DTRACE_STABILITY_MAX || 8228 a->dtat_class > DTRACE_CLASS_MAX); 8229 } 8230 8231 /* 8232 * Return a duplicate copy of a string. If the specified string is NULL, 8233 * this function returns a zero-length string. 8234 */ 8235 static char * 8236 dtrace_strdup(const char *str) 8237 { 8238 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8239 8240 if (str != NULL) 8241 (void) strcpy(new, str); 8242 8243 return (new); 8244 } 8245 8246 #define DTRACE_ISALPHA(c) \ 8247 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8248 8249 static int 8250 dtrace_badname(const char *s) 8251 { 8252 char c; 8253 8254 if (s == NULL || (c = *s++) == '\0') 8255 return (0); 8256 8257 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8258 return (1); 8259 8260 while ((c = *s++) != '\0') { 8261 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8262 c != '-' && c != '_' && c != '.' && c != '`') 8263 return (1); 8264 } 8265 8266 return (0); 8267 } 8268 8269 static void 8270 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8271 { 8272 uint32_t priv; 8273 8274 #ifdef illumos 8275 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8276 /* 8277 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8278 */ 8279 priv = DTRACE_PRIV_ALL; 8280 } else { 8281 *uidp = crgetuid(cr); 8282 *zoneidp = crgetzoneid(cr); 8283 8284 priv = 0; 8285 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8286 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8287 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8288 priv |= DTRACE_PRIV_USER; 8289 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8290 priv |= DTRACE_PRIV_PROC; 8291 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8292 priv |= DTRACE_PRIV_OWNER; 8293 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8294 priv |= DTRACE_PRIV_ZONEOWNER; 8295 } 8296 #else 8297 priv = DTRACE_PRIV_ALL; 8298 #endif 8299 8300 *privp = priv; 8301 } 8302 8303 #ifdef DTRACE_ERRDEBUG 8304 static void 8305 dtrace_errdebug(const char *str) 8306 { 8307 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8308 int occupied = 0; 8309 8310 mutex_enter(&dtrace_errlock); 8311 dtrace_errlast = str; 8312 dtrace_errthread = curthread; 8313 8314 while (occupied++ < DTRACE_ERRHASHSZ) { 8315 if (dtrace_errhash[hval].dter_msg == str) { 8316 dtrace_errhash[hval].dter_count++; 8317 goto out; 8318 } 8319 8320 if (dtrace_errhash[hval].dter_msg != NULL) { 8321 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8322 continue; 8323 } 8324 8325 dtrace_errhash[hval].dter_msg = str; 8326 dtrace_errhash[hval].dter_count = 1; 8327 goto out; 8328 } 8329 8330 panic("dtrace: undersized error hash"); 8331 out: 8332 mutex_exit(&dtrace_errlock); 8333 } 8334 #endif 8335 8336 /* 8337 * DTrace Matching Functions 8338 * 8339 * These functions are used to match groups of probes, given some elements of 8340 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8341 */ 8342 static int 8343 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8344 zoneid_t zoneid) 8345 { 8346 if (priv != DTRACE_PRIV_ALL) { 8347 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8348 uint32_t match = priv & ppriv; 8349 8350 /* 8351 * No PRIV_DTRACE_* privileges... 8352 */ 8353 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8354 DTRACE_PRIV_KERNEL)) == 0) 8355 return (0); 8356 8357 /* 8358 * No matching bits, but there were bits to match... 8359 */ 8360 if (match == 0 && ppriv != 0) 8361 return (0); 8362 8363 /* 8364 * Need to have permissions to the process, but don't... 8365 */ 8366 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8367 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8368 return (0); 8369 } 8370 8371 /* 8372 * Need to be in the same zone unless we possess the 8373 * privilege to examine all zones. 8374 */ 8375 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8376 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8377 return (0); 8378 } 8379 } 8380 8381 return (1); 8382 } 8383 8384 /* 8385 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8386 * consists of input pattern strings and an ops-vector to evaluate them. 8387 * This function returns >0 for match, 0 for no match, and <0 for error. 8388 */ 8389 static int 8390 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8391 uint32_t priv, uid_t uid, zoneid_t zoneid) 8392 { 8393 dtrace_provider_t *pvp = prp->dtpr_provider; 8394 int rv; 8395 8396 if (pvp->dtpv_defunct) 8397 return (0); 8398 8399 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8400 return (rv); 8401 8402 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8403 return (rv); 8404 8405 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8406 return (rv); 8407 8408 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8409 return (rv); 8410 8411 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8412 return (0); 8413 8414 return (rv); 8415 } 8416 8417 /* 8418 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8419 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8420 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8421 * In addition, all of the recursion cases except for '*' matching have been 8422 * unwound. For '*', we still implement recursive evaluation, but a depth 8423 * counter is maintained and matching is aborted if we recurse too deep. 8424 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8425 */ 8426 static int 8427 dtrace_match_glob(const char *s, const char *p, int depth) 8428 { 8429 const char *olds; 8430 char s1, c; 8431 int gs; 8432 8433 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8434 return (-1); 8435 8436 if (s == NULL) 8437 s = ""; /* treat NULL as empty string */ 8438 8439 top: 8440 olds = s; 8441 s1 = *s++; 8442 8443 if (p == NULL) 8444 return (0); 8445 8446 if ((c = *p++) == '\0') 8447 return (s1 == '\0'); 8448 8449 switch (c) { 8450 case '[': { 8451 int ok = 0, notflag = 0; 8452 char lc = '\0'; 8453 8454 if (s1 == '\0') 8455 return (0); 8456 8457 if (*p == '!') { 8458 notflag = 1; 8459 p++; 8460 } 8461 8462 if ((c = *p++) == '\0') 8463 return (0); 8464 8465 do { 8466 if (c == '-' && lc != '\0' && *p != ']') { 8467 if ((c = *p++) == '\0') 8468 return (0); 8469 if (c == '\\' && (c = *p++) == '\0') 8470 return (0); 8471 8472 if (notflag) { 8473 if (s1 < lc || s1 > c) 8474 ok++; 8475 else 8476 return (0); 8477 } else if (lc <= s1 && s1 <= c) 8478 ok++; 8479 8480 } else if (c == '\\' && (c = *p++) == '\0') 8481 return (0); 8482 8483 lc = c; /* save left-hand 'c' for next iteration */ 8484 8485 if (notflag) { 8486 if (s1 != c) 8487 ok++; 8488 else 8489 return (0); 8490 } else if (s1 == c) 8491 ok++; 8492 8493 if ((c = *p++) == '\0') 8494 return (0); 8495 8496 } while (c != ']'); 8497 8498 if (ok) 8499 goto top; 8500 8501 return (0); 8502 } 8503 8504 case '\\': 8505 if ((c = *p++) == '\0') 8506 return (0); 8507 /*FALLTHRU*/ 8508 8509 default: 8510 if (c != s1) 8511 return (0); 8512 /*FALLTHRU*/ 8513 8514 case '?': 8515 if (s1 != '\0') 8516 goto top; 8517 return (0); 8518 8519 case '*': 8520 while (*p == '*') 8521 p++; /* consecutive *'s are identical to a single one */ 8522 8523 if (*p == '\0') 8524 return (1); 8525 8526 for (s = olds; *s != '\0'; s++) { 8527 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8528 return (gs); 8529 } 8530 8531 return (0); 8532 } 8533 } 8534 8535 /*ARGSUSED*/ 8536 static int 8537 dtrace_match_string(const char *s, const char *p, int depth) 8538 { 8539 return (s != NULL && strcmp(s, p) == 0); 8540 } 8541 8542 /*ARGSUSED*/ 8543 static int 8544 dtrace_match_nul(const char *s, const char *p, int depth) 8545 { 8546 return (1); /* always match the empty pattern */ 8547 } 8548 8549 /*ARGSUSED*/ 8550 static int 8551 dtrace_match_nonzero(const char *s, const char *p, int depth) 8552 { 8553 return (s != NULL && s[0] != '\0'); 8554 } 8555 8556 static int 8557 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8558 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8559 { 8560 dtrace_probe_t template, *probe; 8561 dtrace_hash_t *hash = NULL; 8562 int len, best = INT_MAX, nmatched = 0; 8563 dtrace_id_t i; 8564 8565 ASSERT(MUTEX_HELD(&dtrace_lock)); 8566 8567 /* 8568 * If the probe ID is specified in the key, just lookup by ID and 8569 * invoke the match callback once if a matching probe is found. 8570 */ 8571 if (pkp->dtpk_id != DTRACE_IDNONE) { 8572 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8573 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8574 (void) (*matched)(probe, arg); 8575 nmatched++; 8576 } 8577 return (nmatched); 8578 } 8579 8580 template.dtpr_mod = (char *)pkp->dtpk_mod; 8581 template.dtpr_func = (char *)pkp->dtpk_func; 8582 template.dtpr_name = (char *)pkp->dtpk_name; 8583 8584 /* 8585 * We want to find the most distinct of the module name, function 8586 * name, and name. So for each one that is not a glob pattern or 8587 * empty string, we perform a lookup in the corresponding hash and 8588 * use the hash table with the fewest collisions to do our search. 8589 */ 8590 if (pkp->dtpk_mmatch == &dtrace_match_string && 8591 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8592 best = len; 8593 hash = dtrace_bymod; 8594 } 8595 8596 if (pkp->dtpk_fmatch == &dtrace_match_string && 8597 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8598 best = len; 8599 hash = dtrace_byfunc; 8600 } 8601 8602 if (pkp->dtpk_nmatch == &dtrace_match_string && 8603 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8604 best = len; 8605 hash = dtrace_byname; 8606 } 8607 8608 /* 8609 * If we did not select a hash table, iterate over every probe and 8610 * invoke our callback for each one that matches our input probe key. 8611 */ 8612 if (hash == NULL) { 8613 for (i = 0; i < dtrace_nprobes; i++) { 8614 if ((probe = dtrace_probes[i]) == NULL || 8615 dtrace_match_probe(probe, pkp, priv, uid, 8616 zoneid) <= 0) 8617 continue; 8618 8619 nmatched++; 8620 8621 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8622 break; 8623 } 8624 8625 return (nmatched); 8626 } 8627 8628 /* 8629 * If we selected a hash table, iterate over each probe of the same key 8630 * name and invoke the callback for every probe that matches the other 8631 * attributes of our input probe key. 8632 */ 8633 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8634 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8635 8636 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8637 continue; 8638 8639 nmatched++; 8640 8641 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8642 break; 8643 } 8644 8645 return (nmatched); 8646 } 8647 8648 /* 8649 * Return the function pointer dtrace_probecmp() should use to compare the 8650 * specified pattern with a string. For NULL or empty patterns, we select 8651 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8652 * For non-empty non-glob strings, we use dtrace_match_string(). 8653 */ 8654 static dtrace_probekey_f * 8655 dtrace_probekey_func(const char *p) 8656 { 8657 char c; 8658 8659 if (p == NULL || *p == '\0') 8660 return (&dtrace_match_nul); 8661 8662 while ((c = *p++) != '\0') { 8663 if (c == '[' || c == '?' || c == '*' || c == '\\') 8664 return (&dtrace_match_glob); 8665 } 8666 8667 return (&dtrace_match_string); 8668 } 8669 8670 /* 8671 * Build a probe comparison key for use with dtrace_match_probe() from the 8672 * given probe description. By convention, a null key only matches anchored 8673 * probes: if each field is the empty string, reset dtpk_fmatch to 8674 * dtrace_match_nonzero(). 8675 */ 8676 static void 8677 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8678 { 8679 pkp->dtpk_prov = pdp->dtpd_provider; 8680 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8681 8682 pkp->dtpk_mod = pdp->dtpd_mod; 8683 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8684 8685 pkp->dtpk_func = pdp->dtpd_func; 8686 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8687 8688 pkp->dtpk_name = pdp->dtpd_name; 8689 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8690 8691 pkp->dtpk_id = pdp->dtpd_id; 8692 8693 if (pkp->dtpk_id == DTRACE_IDNONE && 8694 pkp->dtpk_pmatch == &dtrace_match_nul && 8695 pkp->dtpk_mmatch == &dtrace_match_nul && 8696 pkp->dtpk_fmatch == &dtrace_match_nul && 8697 pkp->dtpk_nmatch == &dtrace_match_nul) 8698 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8699 } 8700 8701 /* 8702 * DTrace Provider-to-Framework API Functions 8703 * 8704 * These functions implement much of the Provider-to-Framework API, as 8705 * described in <sys/dtrace.h>. The parts of the API not in this section are 8706 * the functions in the API for probe management (found below), and 8707 * dtrace_probe() itself (found above). 8708 */ 8709 8710 /* 8711 * Register the calling provider with the DTrace framework. This should 8712 * generally be called by DTrace providers in their attach(9E) entry point. 8713 */ 8714 int 8715 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8716 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8717 { 8718 dtrace_provider_t *provider; 8719 8720 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8721 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8722 "arguments", name ? name : "<NULL>"); 8723 return (EINVAL); 8724 } 8725 8726 if (name[0] == '\0' || dtrace_badname(name)) { 8727 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8728 "provider name", name); 8729 return (EINVAL); 8730 } 8731 8732 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8733 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8734 pops->dtps_destroy == NULL || 8735 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8736 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8737 "provider ops", name); 8738 return (EINVAL); 8739 } 8740 8741 if (dtrace_badattr(&pap->dtpa_provider) || 8742 dtrace_badattr(&pap->dtpa_mod) || 8743 dtrace_badattr(&pap->dtpa_func) || 8744 dtrace_badattr(&pap->dtpa_name) || 8745 dtrace_badattr(&pap->dtpa_args)) { 8746 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8747 "provider attributes", name); 8748 return (EINVAL); 8749 } 8750 8751 if (priv & ~DTRACE_PRIV_ALL) { 8752 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8753 "privilege attributes", name); 8754 return (EINVAL); 8755 } 8756 8757 if ((priv & DTRACE_PRIV_KERNEL) && 8758 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8759 pops->dtps_usermode == NULL) { 8760 cmn_err(CE_WARN, "failed to register provider '%s': need " 8761 "dtps_usermode() op for given privilege attributes", name); 8762 return (EINVAL); 8763 } 8764 8765 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8766 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8767 (void) strcpy(provider->dtpv_name, name); 8768 8769 provider->dtpv_attr = *pap; 8770 provider->dtpv_priv.dtpp_flags = priv; 8771 if (cr != NULL) { 8772 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8773 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8774 } 8775 provider->dtpv_pops = *pops; 8776 8777 if (pops->dtps_provide == NULL) { 8778 ASSERT(pops->dtps_provide_module != NULL); 8779 provider->dtpv_pops.dtps_provide = 8780 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8781 } 8782 8783 if (pops->dtps_provide_module == NULL) { 8784 ASSERT(pops->dtps_provide != NULL); 8785 provider->dtpv_pops.dtps_provide_module = 8786 (void (*)(void *, modctl_t *))dtrace_nullop; 8787 } 8788 8789 if (pops->dtps_suspend == NULL) { 8790 ASSERT(pops->dtps_resume == NULL); 8791 provider->dtpv_pops.dtps_suspend = 8792 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8793 provider->dtpv_pops.dtps_resume = 8794 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8795 } 8796 8797 provider->dtpv_arg = arg; 8798 *idp = (dtrace_provider_id_t)provider; 8799 8800 if (pops == &dtrace_provider_ops) { 8801 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8802 ASSERT(MUTEX_HELD(&dtrace_lock)); 8803 ASSERT(dtrace_anon.dta_enabling == NULL); 8804 8805 /* 8806 * We make sure that the DTrace provider is at the head of 8807 * the provider chain. 8808 */ 8809 provider->dtpv_next = dtrace_provider; 8810 dtrace_provider = provider; 8811 return (0); 8812 } 8813 8814 mutex_enter(&dtrace_provider_lock); 8815 mutex_enter(&dtrace_lock); 8816 8817 /* 8818 * If there is at least one provider registered, we'll add this 8819 * provider after the first provider. 8820 */ 8821 if (dtrace_provider != NULL) { 8822 provider->dtpv_next = dtrace_provider->dtpv_next; 8823 dtrace_provider->dtpv_next = provider; 8824 } else { 8825 dtrace_provider = provider; 8826 } 8827 8828 if (dtrace_retained != NULL) { 8829 dtrace_enabling_provide(provider); 8830 8831 /* 8832 * Now we need to call dtrace_enabling_matchall() -- which 8833 * will acquire cpu_lock and dtrace_lock. We therefore need 8834 * to drop all of our locks before calling into it... 8835 */ 8836 mutex_exit(&dtrace_lock); 8837 mutex_exit(&dtrace_provider_lock); 8838 dtrace_enabling_matchall(); 8839 8840 return (0); 8841 } 8842 8843 mutex_exit(&dtrace_lock); 8844 mutex_exit(&dtrace_provider_lock); 8845 8846 return (0); 8847 } 8848 8849 /* 8850 * Unregister the specified provider from the DTrace framework. This should 8851 * generally be called by DTrace providers in their detach(9E) entry point. 8852 */ 8853 int 8854 dtrace_unregister(dtrace_provider_id_t id) 8855 { 8856 dtrace_provider_t *old = (dtrace_provider_t *)id; 8857 dtrace_provider_t *prev = NULL; 8858 int i, self = 0, noreap = 0; 8859 dtrace_probe_t *probe, *first = NULL; 8860 8861 if (old->dtpv_pops.dtps_enable == 8862 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8863 /* 8864 * If DTrace itself is the provider, we're called with locks 8865 * already held. 8866 */ 8867 ASSERT(old == dtrace_provider); 8868 #ifdef illumos 8869 ASSERT(dtrace_devi != NULL); 8870 #endif 8871 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8872 ASSERT(MUTEX_HELD(&dtrace_lock)); 8873 self = 1; 8874 8875 if (dtrace_provider->dtpv_next != NULL) { 8876 /* 8877 * There's another provider here; return failure. 8878 */ 8879 return (EBUSY); 8880 } 8881 } else { 8882 mutex_enter(&dtrace_provider_lock); 8883 #ifdef illumos 8884 mutex_enter(&mod_lock); 8885 #endif 8886 mutex_enter(&dtrace_lock); 8887 } 8888 8889 /* 8890 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8891 * probes, we refuse to let providers slither away, unless this 8892 * provider has already been explicitly invalidated. 8893 */ 8894 if (!old->dtpv_defunct && 8895 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8896 dtrace_anon.dta_state->dts_necbs > 0))) { 8897 if (!self) { 8898 mutex_exit(&dtrace_lock); 8899 #ifdef illumos 8900 mutex_exit(&mod_lock); 8901 #endif 8902 mutex_exit(&dtrace_provider_lock); 8903 } 8904 return (EBUSY); 8905 } 8906 8907 /* 8908 * Attempt to destroy the probes associated with this provider. 8909 */ 8910 for (i = 0; i < dtrace_nprobes; i++) { 8911 if ((probe = dtrace_probes[i]) == NULL) 8912 continue; 8913 8914 if (probe->dtpr_provider != old) 8915 continue; 8916 8917 if (probe->dtpr_ecb == NULL) 8918 continue; 8919 8920 /* 8921 * If we are trying to unregister a defunct provider, and the 8922 * provider was made defunct within the interval dictated by 8923 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8924 * attempt to reap our enablings. To denote that the provider 8925 * should reattempt to unregister itself at some point in the 8926 * future, we will return a differentiable error code (EAGAIN 8927 * instead of EBUSY) in this case. 8928 */ 8929 if (dtrace_gethrtime() - old->dtpv_defunct > 8930 dtrace_unregister_defunct_reap) 8931 noreap = 1; 8932 8933 if (!self) { 8934 mutex_exit(&dtrace_lock); 8935 #ifdef illumos 8936 mutex_exit(&mod_lock); 8937 #endif 8938 mutex_exit(&dtrace_provider_lock); 8939 } 8940 8941 if (noreap) 8942 return (EBUSY); 8943 8944 (void) taskq_dispatch(dtrace_taskq, 8945 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8946 8947 return (EAGAIN); 8948 } 8949 8950 /* 8951 * All of the probes for this provider are disabled; we can safely 8952 * remove all of them from their hash chains and from the probe array. 8953 */ 8954 for (i = 0; i < dtrace_nprobes; i++) { 8955 if ((probe = dtrace_probes[i]) == NULL) 8956 continue; 8957 8958 if (probe->dtpr_provider != old) 8959 continue; 8960 8961 dtrace_probes[i] = NULL; 8962 8963 dtrace_hash_remove(dtrace_bymod, probe); 8964 dtrace_hash_remove(dtrace_byfunc, probe); 8965 dtrace_hash_remove(dtrace_byname, probe); 8966 8967 if (first == NULL) { 8968 first = probe; 8969 probe->dtpr_nextmod = NULL; 8970 } else { 8971 probe->dtpr_nextmod = first; 8972 first = probe; 8973 } 8974 } 8975 8976 /* 8977 * The provider's probes have been removed from the hash chains and 8978 * from the probe array. Now issue a dtrace_sync() to be sure that 8979 * everyone has cleared out from any probe array processing. 8980 */ 8981 dtrace_sync(); 8982 8983 for (probe = first; probe != NULL; probe = first) { 8984 first = probe->dtpr_nextmod; 8985 8986 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8987 probe->dtpr_arg); 8988 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8989 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8990 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8991 #ifdef illumos 8992 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8993 #else 8994 free_unr(dtrace_arena, probe->dtpr_id); 8995 #endif 8996 kmem_free(probe, sizeof (dtrace_probe_t)); 8997 } 8998 8999 if ((prev = dtrace_provider) == old) { 9000 #ifdef illumos 9001 ASSERT(self || dtrace_devi == NULL); 9002 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9003 #endif 9004 dtrace_provider = old->dtpv_next; 9005 } else { 9006 while (prev != NULL && prev->dtpv_next != old) 9007 prev = prev->dtpv_next; 9008 9009 if (prev == NULL) { 9010 panic("attempt to unregister non-existent " 9011 "dtrace provider %p\n", (void *)id); 9012 } 9013 9014 prev->dtpv_next = old->dtpv_next; 9015 } 9016 9017 if (!self) { 9018 mutex_exit(&dtrace_lock); 9019 #ifdef illumos 9020 mutex_exit(&mod_lock); 9021 #endif 9022 mutex_exit(&dtrace_provider_lock); 9023 } 9024 9025 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9026 kmem_free(old, sizeof (dtrace_provider_t)); 9027 9028 return (0); 9029 } 9030 9031 /* 9032 * Invalidate the specified provider. All subsequent probe lookups for the 9033 * specified provider will fail, but its probes will not be removed. 9034 */ 9035 void 9036 dtrace_invalidate(dtrace_provider_id_t id) 9037 { 9038 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9039 9040 ASSERT(pvp->dtpv_pops.dtps_enable != 9041 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9042 9043 mutex_enter(&dtrace_provider_lock); 9044 mutex_enter(&dtrace_lock); 9045 9046 pvp->dtpv_defunct = dtrace_gethrtime(); 9047 9048 mutex_exit(&dtrace_lock); 9049 mutex_exit(&dtrace_provider_lock); 9050 } 9051 9052 /* 9053 * Indicate whether or not DTrace has attached. 9054 */ 9055 int 9056 dtrace_attached(void) 9057 { 9058 /* 9059 * dtrace_provider will be non-NULL iff the DTrace driver has 9060 * attached. (It's non-NULL because DTrace is always itself a 9061 * provider.) 9062 */ 9063 return (dtrace_provider != NULL); 9064 } 9065 9066 /* 9067 * Remove all the unenabled probes for the given provider. This function is 9068 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9069 * -- just as many of its associated probes as it can. 9070 */ 9071 int 9072 dtrace_condense(dtrace_provider_id_t id) 9073 { 9074 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9075 int i; 9076 dtrace_probe_t *probe; 9077 9078 /* 9079 * Make sure this isn't the dtrace provider itself. 9080 */ 9081 ASSERT(prov->dtpv_pops.dtps_enable != 9082 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9083 9084 mutex_enter(&dtrace_provider_lock); 9085 mutex_enter(&dtrace_lock); 9086 9087 /* 9088 * Attempt to destroy the probes associated with this provider. 9089 */ 9090 for (i = 0; i < dtrace_nprobes; i++) { 9091 if ((probe = dtrace_probes[i]) == NULL) 9092 continue; 9093 9094 if (probe->dtpr_provider != prov) 9095 continue; 9096 9097 if (probe->dtpr_ecb != NULL) 9098 continue; 9099 9100 dtrace_probes[i] = NULL; 9101 9102 dtrace_hash_remove(dtrace_bymod, probe); 9103 dtrace_hash_remove(dtrace_byfunc, probe); 9104 dtrace_hash_remove(dtrace_byname, probe); 9105 9106 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9107 probe->dtpr_arg); 9108 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9109 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9110 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9111 kmem_free(probe, sizeof (dtrace_probe_t)); 9112 #ifdef illumos 9113 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9114 #else 9115 free_unr(dtrace_arena, i + 1); 9116 #endif 9117 } 9118 9119 mutex_exit(&dtrace_lock); 9120 mutex_exit(&dtrace_provider_lock); 9121 9122 return (0); 9123 } 9124 9125 /* 9126 * DTrace Probe Management Functions 9127 * 9128 * The functions in this section perform the DTrace probe management, 9129 * including functions to create probes, look-up probes, and call into the 9130 * providers to request that probes be provided. Some of these functions are 9131 * in the Provider-to-Framework API; these functions can be identified by the 9132 * fact that they are not declared "static". 9133 */ 9134 9135 /* 9136 * Create a probe with the specified module name, function name, and name. 9137 */ 9138 dtrace_id_t 9139 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9140 const char *func, const char *name, int aframes, void *arg) 9141 { 9142 dtrace_probe_t *probe, **probes; 9143 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9144 dtrace_id_t id; 9145 9146 if (provider == dtrace_provider) { 9147 ASSERT(MUTEX_HELD(&dtrace_lock)); 9148 } else { 9149 mutex_enter(&dtrace_lock); 9150 } 9151 9152 #ifdef illumos 9153 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9154 VM_BESTFIT | VM_SLEEP); 9155 #else 9156 id = alloc_unr(dtrace_arena); 9157 #endif 9158 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9159 9160 probe->dtpr_id = id; 9161 probe->dtpr_gen = dtrace_probegen++; 9162 probe->dtpr_mod = dtrace_strdup(mod); 9163 probe->dtpr_func = dtrace_strdup(func); 9164 probe->dtpr_name = dtrace_strdup(name); 9165 probe->dtpr_arg = arg; 9166 probe->dtpr_aframes = aframes; 9167 probe->dtpr_provider = provider; 9168 9169 dtrace_hash_add(dtrace_bymod, probe); 9170 dtrace_hash_add(dtrace_byfunc, probe); 9171 dtrace_hash_add(dtrace_byname, probe); 9172 9173 if (id - 1 >= dtrace_nprobes) { 9174 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9175 size_t nsize = osize << 1; 9176 9177 if (nsize == 0) { 9178 ASSERT(osize == 0); 9179 ASSERT(dtrace_probes == NULL); 9180 nsize = sizeof (dtrace_probe_t *); 9181 } 9182 9183 probes = kmem_zalloc(nsize, KM_SLEEP); 9184 9185 if (dtrace_probes == NULL) { 9186 ASSERT(osize == 0); 9187 dtrace_probes = probes; 9188 dtrace_nprobes = 1; 9189 } else { 9190 dtrace_probe_t **oprobes = dtrace_probes; 9191 9192 bcopy(oprobes, probes, osize); 9193 dtrace_membar_producer(); 9194 dtrace_probes = probes; 9195 9196 dtrace_sync(); 9197 9198 /* 9199 * All CPUs are now seeing the new probes array; we can 9200 * safely free the old array. 9201 */ 9202 kmem_free(oprobes, osize); 9203 dtrace_nprobes <<= 1; 9204 } 9205 9206 ASSERT(id - 1 < dtrace_nprobes); 9207 } 9208 9209 ASSERT(dtrace_probes[id - 1] == NULL); 9210 dtrace_probes[id - 1] = probe; 9211 9212 if (provider != dtrace_provider) 9213 mutex_exit(&dtrace_lock); 9214 9215 return (id); 9216 } 9217 9218 static dtrace_probe_t * 9219 dtrace_probe_lookup_id(dtrace_id_t id) 9220 { 9221 ASSERT(MUTEX_HELD(&dtrace_lock)); 9222 9223 if (id == 0 || id > dtrace_nprobes) 9224 return (NULL); 9225 9226 return (dtrace_probes[id - 1]); 9227 } 9228 9229 static int 9230 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9231 { 9232 *((dtrace_id_t *)arg) = probe->dtpr_id; 9233 9234 return (DTRACE_MATCH_DONE); 9235 } 9236 9237 /* 9238 * Look up a probe based on provider and one or more of module name, function 9239 * name and probe name. 9240 */ 9241 dtrace_id_t 9242 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9243 char *func, char *name) 9244 { 9245 dtrace_probekey_t pkey; 9246 dtrace_id_t id; 9247 int match; 9248 9249 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9250 pkey.dtpk_pmatch = &dtrace_match_string; 9251 pkey.dtpk_mod = mod; 9252 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9253 pkey.dtpk_func = func; 9254 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9255 pkey.dtpk_name = name; 9256 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9257 pkey.dtpk_id = DTRACE_IDNONE; 9258 9259 mutex_enter(&dtrace_lock); 9260 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9261 dtrace_probe_lookup_match, &id); 9262 mutex_exit(&dtrace_lock); 9263 9264 ASSERT(match == 1 || match == 0); 9265 return (match ? id : 0); 9266 } 9267 9268 /* 9269 * Returns the probe argument associated with the specified probe. 9270 */ 9271 void * 9272 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9273 { 9274 dtrace_probe_t *probe; 9275 void *rval = NULL; 9276 9277 mutex_enter(&dtrace_lock); 9278 9279 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9280 probe->dtpr_provider == (dtrace_provider_t *)id) 9281 rval = probe->dtpr_arg; 9282 9283 mutex_exit(&dtrace_lock); 9284 9285 return (rval); 9286 } 9287 9288 /* 9289 * Copy a probe into a probe description. 9290 */ 9291 static void 9292 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9293 { 9294 bzero(pdp, sizeof (dtrace_probedesc_t)); 9295 pdp->dtpd_id = prp->dtpr_id; 9296 9297 (void) strncpy(pdp->dtpd_provider, 9298 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9299 9300 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9301 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9302 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9303 } 9304 9305 /* 9306 * Called to indicate that a probe -- or probes -- should be provided by a 9307 * specfied provider. If the specified description is NULL, the provider will 9308 * be told to provide all of its probes. (This is done whenever a new 9309 * consumer comes along, or whenever a retained enabling is to be matched.) If 9310 * the specified description is non-NULL, the provider is given the 9311 * opportunity to dynamically provide the specified probe, allowing providers 9312 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9313 * probes.) If the provider is NULL, the operations will be applied to all 9314 * providers; if the provider is non-NULL the operations will only be applied 9315 * to the specified provider. The dtrace_provider_lock must be held, and the 9316 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9317 * will need to grab the dtrace_lock when it reenters the framework through 9318 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9319 */ 9320 static void 9321 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9322 { 9323 #ifdef illumos 9324 modctl_t *ctl; 9325 #endif 9326 int all = 0; 9327 9328 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9329 9330 if (prv == NULL) { 9331 all = 1; 9332 prv = dtrace_provider; 9333 } 9334 9335 do { 9336 /* 9337 * First, call the blanket provide operation. 9338 */ 9339 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9340 9341 #ifdef illumos 9342 /* 9343 * Now call the per-module provide operation. We will grab 9344 * mod_lock to prevent the list from being modified. Note 9345 * that this also prevents the mod_busy bits from changing. 9346 * (mod_busy can only be changed with mod_lock held.) 9347 */ 9348 mutex_enter(&mod_lock); 9349 9350 ctl = &modules; 9351 do { 9352 if (ctl->mod_busy || ctl->mod_mp == NULL) 9353 continue; 9354 9355 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9356 9357 } while ((ctl = ctl->mod_next) != &modules); 9358 9359 mutex_exit(&mod_lock); 9360 #endif 9361 } while (all && (prv = prv->dtpv_next) != NULL); 9362 } 9363 9364 #ifdef illumos 9365 /* 9366 * Iterate over each probe, and call the Framework-to-Provider API function 9367 * denoted by offs. 9368 */ 9369 static void 9370 dtrace_probe_foreach(uintptr_t offs) 9371 { 9372 dtrace_provider_t *prov; 9373 void (*func)(void *, dtrace_id_t, void *); 9374 dtrace_probe_t *probe; 9375 dtrace_icookie_t cookie; 9376 int i; 9377 9378 /* 9379 * We disable interrupts to walk through the probe array. This is 9380 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9381 * won't see stale data. 9382 */ 9383 cookie = dtrace_interrupt_disable(); 9384 9385 for (i = 0; i < dtrace_nprobes; i++) { 9386 if ((probe = dtrace_probes[i]) == NULL) 9387 continue; 9388 9389 if (probe->dtpr_ecb == NULL) { 9390 /* 9391 * This probe isn't enabled -- don't call the function. 9392 */ 9393 continue; 9394 } 9395 9396 prov = probe->dtpr_provider; 9397 func = *((void(**)(void *, dtrace_id_t, void *)) 9398 ((uintptr_t)&prov->dtpv_pops + offs)); 9399 9400 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9401 } 9402 9403 dtrace_interrupt_enable(cookie); 9404 } 9405 #endif 9406 9407 static int 9408 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9409 { 9410 dtrace_probekey_t pkey; 9411 uint32_t priv; 9412 uid_t uid; 9413 zoneid_t zoneid; 9414 9415 ASSERT(MUTEX_HELD(&dtrace_lock)); 9416 dtrace_ecb_create_cache = NULL; 9417 9418 if (desc == NULL) { 9419 /* 9420 * If we're passed a NULL description, we're being asked to 9421 * create an ECB with a NULL probe. 9422 */ 9423 (void) dtrace_ecb_create_enable(NULL, enab); 9424 return (0); 9425 } 9426 9427 dtrace_probekey(desc, &pkey); 9428 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9429 &priv, &uid, &zoneid); 9430 9431 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9432 enab)); 9433 } 9434 9435 /* 9436 * DTrace Helper Provider Functions 9437 */ 9438 static void 9439 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9440 { 9441 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9442 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9443 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9444 } 9445 9446 static void 9447 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9448 const dof_provider_t *dofprov, char *strtab) 9449 { 9450 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9451 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9452 dofprov->dofpv_provattr); 9453 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9454 dofprov->dofpv_modattr); 9455 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9456 dofprov->dofpv_funcattr); 9457 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9458 dofprov->dofpv_nameattr); 9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9460 dofprov->dofpv_argsattr); 9461 } 9462 9463 static void 9464 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9465 { 9466 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9467 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9468 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9469 dof_provider_t *provider; 9470 dof_probe_t *probe; 9471 uint32_t *off, *enoff; 9472 uint8_t *arg; 9473 char *strtab; 9474 uint_t i, nprobes; 9475 dtrace_helper_provdesc_t dhpv; 9476 dtrace_helper_probedesc_t dhpb; 9477 dtrace_meta_t *meta = dtrace_meta_pid; 9478 dtrace_mops_t *mops = &meta->dtm_mops; 9479 void *parg; 9480 9481 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9482 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9483 provider->dofpv_strtab * dof->dofh_secsize); 9484 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9485 provider->dofpv_probes * dof->dofh_secsize); 9486 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9487 provider->dofpv_prargs * dof->dofh_secsize); 9488 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9489 provider->dofpv_proffs * dof->dofh_secsize); 9490 9491 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9492 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9493 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9494 enoff = NULL; 9495 9496 /* 9497 * See dtrace_helper_provider_validate(). 9498 */ 9499 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9500 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9501 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9502 provider->dofpv_prenoffs * dof->dofh_secsize); 9503 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9504 } 9505 9506 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9507 9508 /* 9509 * Create the provider. 9510 */ 9511 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9512 9513 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9514 return; 9515 9516 meta->dtm_count++; 9517 9518 /* 9519 * Create the probes. 9520 */ 9521 for (i = 0; i < nprobes; i++) { 9522 probe = (dof_probe_t *)(uintptr_t)(daddr + 9523 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9524 9525 /* See the check in dtrace_helper_provider_validate(). */ 9526 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9527 continue; 9528 9529 dhpb.dthpb_mod = dhp->dofhp_mod; 9530 dhpb.dthpb_func = strtab + probe->dofpr_func; 9531 dhpb.dthpb_name = strtab + probe->dofpr_name; 9532 dhpb.dthpb_base = probe->dofpr_addr; 9533 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9534 dhpb.dthpb_noffs = probe->dofpr_noffs; 9535 if (enoff != NULL) { 9536 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9537 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9538 } else { 9539 dhpb.dthpb_enoffs = NULL; 9540 dhpb.dthpb_nenoffs = 0; 9541 } 9542 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9543 dhpb.dthpb_nargc = probe->dofpr_nargc; 9544 dhpb.dthpb_xargc = probe->dofpr_xargc; 9545 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9546 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9547 9548 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9549 } 9550 } 9551 9552 static void 9553 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9554 { 9555 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9556 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9557 int i; 9558 9559 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9560 9561 for (i = 0; i < dof->dofh_secnum; i++) { 9562 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9563 dof->dofh_secoff + i * dof->dofh_secsize); 9564 9565 if (sec->dofs_type != DOF_SECT_PROVIDER) 9566 continue; 9567 9568 dtrace_helper_provide_one(dhp, sec, pid); 9569 } 9570 9571 /* 9572 * We may have just created probes, so we must now rematch against 9573 * any retained enablings. Note that this call will acquire both 9574 * cpu_lock and dtrace_lock; the fact that we are holding 9575 * dtrace_meta_lock now is what defines the ordering with respect to 9576 * these three locks. 9577 */ 9578 dtrace_enabling_matchall(); 9579 } 9580 9581 static void 9582 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9583 { 9584 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9585 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9586 dof_sec_t *str_sec; 9587 dof_provider_t *provider; 9588 char *strtab; 9589 dtrace_helper_provdesc_t dhpv; 9590 dtrace_meta_t *meta = dtrace_meta_pid; 9591 dtrace_mops_t *mops = &meta->dtm_mops; 9592 9593 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9594 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9595 provider->dofpv_strtab * dof->dofh_secsize); 9596 9597 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9598 9599 /* 9600 * Create the provider. 9601 */ 9602 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9603 9604 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9605 9606 meta->dtm_count--; 9607 } 9608 9609 static void 9610 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9611 { 9612 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9613 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9614 int i; 9615 9616 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9617 9618 for (i = 0; i < dof->dofh_secnum; i++) { 9619 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9620 dof->dofh_secoff + i * dof->dofh_secsize); 9621 9622 if (sec->dofs_type != DOF_SECT_PROVIDER) 9623 continue; 9624 9625 dtrace_helper_provider_remove_one(dhp, sec, pid); 9626 } 9627 } 9628 9629 /* 9630 * DTrace Meta Provider-to-Framework API Functions 9631 * 9632 * These functions implement the Meta Provider-to-Framework API, as described 9633 * in <sys/dtrace.h>. 9634 */ 9635 int 9636 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9637 dtrace_meta_provider_id_t *idp) 9638 { 9639 dtrace_meta_t *meta; 9640 dtrace_helpers_t *help, *next; 9641 int i; 9642 9643 *idp = DTRACE_METAPROVNONE; 9644 9645 /* 9646 * We strictly don't need the name, but we hold onto it for 9647 * debuggability. All hail error queues! 9648 */ 9649 if (name == NULL) { 9650 cmn_err(CE_WARN, "failed to register meta-provider: " 9651 "invalid name"); 9652 return (EINVAL); 9653 } 9654 9655 if (mops == NULL || 9656 mops->dtms_create_probe == NULL || 9657 mops->dtms_provide_pid == NULL || 9658 mops->dtms_remove_pid == NULL) { 9659 cmn_err(CE_WARN, "failed to register meta-register %s: " 9660 "invalid ops", name); 9661 return (EINVAL); 9662 } 9663 9664 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9665 meta->dtm_mops = *mops; 9666 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9667 (void) strcpy(meta->dtm_name, name); 9668 meta->dtm_arg = arg; 9669 9670 mutex_enter(&dtrace_meta_lock); 9671 mutex_enter(&dtrace_lock); 9672 9673 if (dtrace_meta_pid != NULL) { 9674 mutex_exit(&dtrace_lock); 9675 mutex_exit(&dtrace_meta_lock); 9676 cmn_err(CE_WARN, "failed to register meta-register %s: " 9677 "user-land meta-provider exists", name); 9678 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9679 kmem_free(meta, sizeof (dtrace_meta_t)); 9680 return (EINVAL); 9681 } 9682 9683 dtrace_meta_pid = meta; 9684 *idp = (dtrace_meta_provider_id_t)meta; 9685 9686 /* 9687 * If there are providers and probes ready to go, pass them 9688 * off to the new meta provider now. 9689 */ 9690 9691 help = dtrace_deferred_pid; 9692 dtrace_deferred_pid = NULL; 9693 9694 mutex_exit(&dtrace_lock); 9695 9696 while (help != NULL) { 9697 for (i = 0; i < help->dthps_nprovs; i++) { 9698 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9699 help->dthps_pid); 9700 } 9701 9702 next = help->dthps_next; 9703 help->dthps_next = NULL; 9704 help->dthps_prev = NULL; 9705 help->dthps_deferred = 0; 9706 help = next; 9707 } 9708 9709 mutex_exit(&dtrace_meta_lock); 9710 9711 return (0); 9712 } 9713 9714 int 9715 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9716 { 9717 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9718 9719 mutex_enter(&dtrace_meta_lock); 9720 mutex_enter(&dtrace_lock); 9721 9722 if (old == dtrace_meta_pid) { 9723 pp = &dtrace_meta_pid; 9724 } else { 9725 panic("attempt to unregister non-existent " 9726 "dtrace meta-provider %p\n", (void *)old); 9727 } 9728 9729 if (old->dtm_count != 0) { 9730 mutex_exit(&dtrace_lock); 9731 mutex_exit(&dtrace_meta_lock); 9732 return (EBUSY); 9733 } 9734 9735 *pp = NULL; 9736 9737 mutex_exit(&dtrace_lock); 9738 mutex_exit(&dtrace_meta_lock); 9739 9740 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9741 kmem_free(old, sizeof (dtrace_meta_t)); 9742 9743 return (0); 9744 } 9745 9746 9747 /* 9748 * DTrace DIF Object Functions 9749 */ 9750 static int 9751 dtrace_difo_err(uint_t pc, const char *format, ...) 9752 { 9753 if (dtrace_err_verbose) { 9754 va_list alist; 9755 9756 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9757 va_start(alist, format); 9758 (void) vuprintf(format, alist); 9759 va_end(alist); 9760 } 9761 9762 #ifdef DTRACE_ERRDEBUG 9763 dtrace_errdebug(format); 9764 #endif 9765 return (1); 9766 } 9767 9768 /* 9769 * Validate a DTrace DIF object by checking the IR instructions. The following 9770 * rules are currently enforced by dtrace_difo_validate(): 9771 * 9772 * 1. Each instruction must have a valid opcode 9773 * 2. Each register, string, variable, or subroutine reference must be valid 9774 * 3. No instruction can modify register %r0 (must be zero) 9775 * 4. All instruction reserved bits must be set to zero 9776 * 5. The last instruction must be a "ret" instruction 9777 * 6. All branch targets must reference a valid instruction _after_ the branch 9778 */ 9779 static int 9780 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9781 cred_t *cr) 9782 { 9783 int err = 0, i; 9784 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9785 int kcheckload; 9786 uint_t pc; 9787 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9788 9789 kcheckload = cr == NULL || 9790 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9791 9792 dp->dtdo_destructive = 0; 9793 9794 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9795 dif_instr_t instr = dp->dtdo_buf[pc]; 9796 9797 uint_t r1 = DIF_INSTR_R1(instr); 9798 uint_t r2 = DIF_INSTR_R2(instr); 9799 uint_t rd = DIF_INSTR_RD(instr); 9800 uint_t rs = DIF_INSTR_RS(instr); 9801 uint_t label = DIF_INSTR_LABEL(instr); 9802 uint_t v = DIF_INSTR_VAR(instr); 9803 uint_t subr = DIF_INSTR_SUBR(instr); 9804 uint_t type = DIF_INSTR_TYPE(instr); 9805 uint_t op = DIF_INSTR_OP(instr); 9806 9807 switch (op) { 9808 case DIF_OP_OR: 9809 case DIF_OP_XOR: 9810 case DIF_OP_AND: 9811 case DIF_OP_SLL: 9812 case DIF_OP_SRL: 9813 case DIF_OP_SRA: 9814 case DIF_OP_SUB: 9815 case DIF_OP_ADD: 9816 case DIF_OP_MUL: 9817 case DIF_OP_SDIV: 9818 case DIF_OP_UDIV: 9819 case DIF_OP_SREM: 9820 case DIF_OP_UREM: 9821 case DIF_OP_COPYS: 9822 if (r1 >= nregs) 9823 err += efunc(pc, "invalid register %u\n", r1); 9824 if (r2 >= nregs) 9825 err += efunc(pc, "invalid register %u\n", r2); 9826 if (rd >= nregs) 9827 err += efunc(pc, "invalid register %u\n", rd); 9828 if (rd == 0) 9829 err += efunc(pc, "cannot write to %r0\n"); 9830 break; 9831 case DIF_OP_NOT: 9832 case DIF_OP_MOV: 9833 case DIF_OP_ALLOCS: 9834 if (r1 >= nregs) 9835 err += efunc(pc, "invalid register %u\n", r1); 9836 if (r2 != 0) 9837 err += efunc(pc, "non-zero reserved bits\n"); 9838 if (rd >= nregs) 9839 err += efunc(pc, "invalid register %u\n", rd); 9840 if (rd == 0) 9841 err += efunc(pc, "cannot write to %r0\n"); 9842 break; 9843 case DIF_OP_LDSB: 9844 case DIF_OP_LDSH: 9845 case DIF_OP_LDSW: 9846 case DIF_OP_LDUB: 9847 case DIF_OP_LDUH: 9848 case DIF_OP_LDUW: 9849 case DIF_OP_LDX: 9850 if (r1 >= nregs) 9851 err += efunc(pc, "invalid register %u\n", r1); 9852 if (r2 != 0) 9853 err += efunc(pc, "non-zero reserved bits\n"); 9854 if (rd >= nregs) 9855 err += efunc(pc, "invalid register %u\n", rd); 9856 if (rd == 0) 9857 err += efunc(pc, "cannot write to %r0\n"); 9858 if (kcheckload) 9859 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9860 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9861 break; 9862 case DIF_OP_RLDSB: 9863 case DIF_OP_RLDSH: 9864 case DIF_OP_RLDSW: 9865 case DIF_OP_RLDUB: 9866 case DIF_OP_RLDUH: 9867 case DIF_OP_RLDUW: 9868 case DIF_OP_RLDX: 9869 if (r1 >= nregs) 9870 err += efunc(pc, "invalid register %u\n", r1); 9871 if (r2 != 0) 9872 err += efunc(pc, "non-zero reserved bits\n"); 9873 if (rd >= nregs) 9874 err += efunc(pc, "invalid register %u\n", rd); 9875 if (rd == 0) 9876 err += efunc(pc, "cannot write to %r0\n"); 9877 break; 9878 case DIF_OP_ULDSB: 9879 case DIF_OP_ULDSH: 9880 case DIF_OP_ULDSW: 9881 case DIF_OP_ULDUB: 9882 case DIF_OP_ULDUH: 9883 case DIF_OP_ULDUW: 9884 case DIF_OP_ULDX: 9885 if (r1 >= nregs) 9886 err += efunc(pc, "invalid register %u\n", r1); 9887 if (r2 != 0) 9888 err += efunc(pc, "non-zero reserved bits\n"); 9889 if (rd >= nregs) 9890 err += efunc(pc, "invalid register %u\n", rd); 9891 if (rd == 0) 9892 err += efunc(pc, "cannot write to %r0\n"); 9893 break; 9894 case DIF_OP_STB: 9895 case DIF_OP_STH: 9896 case DIF_OP_STW: 9897 case DIF_OP_STX: 9898 if (r1 >= nregs) 9899 err += efunc(pc, "invalid register %u\n", r1); 9900 if (r2 != 0) 9901 err += efunc(pc, "non-zero reserved bits\n"); 9902 if (rd >= nregs) 9903 err += efunc(pc, "invalid register %u\n", rd); 9904 if (rd == 0) 9905 err += efunc(pc, "cannot write to 0 address\n"); 9906 break; 9907 case DIF_OP_CMP: 9908 case DIF_OP_SCMP: 9909 if (r1 >= nregs) 9910 err += efunc(pc, "invalid register %u\n", r1); 9911 if (r2 >= nregs) 9912 err += efunc(pc, "invalid register %u\n", r2); 9913 if (rd != 0) 9914 err += efunc(pc, "non-zero reserved bits\n"); 9915 break; 9916 case DIF_OP_TST: 9917 if (r1 >= nregs) 9918 err += efunc(pc, "invalid register %u\n", r1); 9919 if (r2 != 0 || rd != 0) 9920 err += efunc(pc, "non-zero reserved bits\n"); 9921 break; 9922 case DIF_OP_BA: 9923 case DIF_OP_BE: 9924 case DIF_OP_BNE: 9925 case DIF_OP_BG: 9926 case DIF_OP_BGU: 9927 case DIF_OP_BGE: 9928 case DIF_OP_BGEU: 9929 case DIF_OP_BL: 9930 case DIF_OP_BLU: 9931 case DIF_OP_BLE: 9932 case DIF_OP_BLEU: 9933 if (label >= dp->dtdo_len) { 9934 err += efunc(pc, "invalid branch target %u\n", 9935 label); 9936 } 9937 if (label <= pc) { 9938 err += efunc(pc, "backward branch to %u\n", 9939 label); 9940 } 9941 break; 9942 case DIF_OP_RET: 9943 if (r1 != 0 || r2 != 0) 9944 err += efunc(pc, "non-zero reserved bits\n"); 9945 if (rd >= nregs) 9946 err += efunc(pc, "invalid register %u\n", rd); 9947 break; 9948 case DIF_OP_NOP: 9949 case DIF_OP_POPTS: 9950 case DIF_OP_FLUSHTS: 9951 if (r1 != 0 || r2 != 0 || rd != 0) 9952 err += efunc(pc, "non-zero reserved bits\n"); 9953 break; 9954 case DIF_OP_SETX: 9955 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9956 err += efunc(pc, "invalid integer ref %u\n", 9957 DIF_INSTR_INTEGER(instr)); 9958 } 9959 if (rd >= nregs) 9960 err += efunc(pc, "invalid register %u\n", rd); 9961 if (rd == 0) 9962 err += efunc(pc, "cannot write to %r0\n"); 9963 break; 9964 case DIF_OP_SETS: 9965 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9966 err += efunc(pc, "invalid string ref %u\n", 9967 DIF_INSTR_STRING(instr)); 9968 } 9969 if (rd >= nregs) 9970 err += efunc(pc, "invalid register %u\n", rd); 9971 if (rd == 0) 9972 err += efunc(pc, "cannot write to %r0\n"); 9973 break; 9974 case DIF_OP_LDGA: 9975 case DIF_OP_LDTA: 9976 if (r1 > DIF_VAR_ARRAY_MAX) 9977 err += efunc(pc, "invalid array %u\n", r1); 9978 if (r2 >= nregs) 9979 err += efunc(pc, "invalid register %u\n", r2); 9980 if (rd >= nregs) 9981 err += efunc(pc, "invalid register %u\n", rd); 9982 if (rd == 0) 9983 err += efunc(pc, "cannot write to %r0\n"); 9984 break; 9985 case DIF_OP_LDGS: 9986 case DIF_OP_LDTS: 9987 case DIF_OP_LDLS: 9988 case DIF_OP_LDGAA: 9989 case DIF_OP_LDTAA: 9990 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9991 err += efunc(pc, "invalid variable %u\n", v); 9992 if (rd >= nregs) 9993 err += efunc(pc, "invalid register %u\n", rd); 9994 if (rd == 0) 9995 err += efunc(pc, "cannot write to %r0\n"); 9996 break; 9997 case DIF_OP_STGS: 9998 case DIF_OP_STTS: 9999 case DIF_OP_STLS: 10000 case DIF_OP_STGAA: 10001 case DIF_OP_STTAA: 10002 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10003 err += efunc(pc, "invalid variable %u\n", v); 10004 if (rs >= nregs) 10005 err += efunc(pc, "invalid register %u\n", rd); 10006 break; 10007 case DIF_OP_CALL: 10008 if (subr > DIF_SUBR_MAX) 10009 err += efunc(pc, "invalid subr %u\n", subr); 10010 if (rd >= nregs) 10011 err += efunc(pc, "invalid register %u\n", rd); 10012 if (rd == 0) 10013 err += efunc(pc, "cannot write to %r0\n"); 10014 10015 if (subr == DIF_SUBR_COPYOUT || 10016 subr == DIF_SUBR_COPYOUTSTR) { 10017 dp->dtdo_destructive = 1; 10018 } 10019 10020 if (subr == DIF_SUBR_GETF) { 10021 #ifdef __FreeBSD__ 10022 err += efunc(pc, "getf() not supported"); 10023 #else 10024 /* 10025 * If we have a getf() we need to record that 10026 * in our state. Note that our state can be 10027 * NULL if this is a helper -- but in that 10028 * case, the call to getf() is itself illegal, 10029 * and will be caught (slightly later) when 10030 * the helper is validated. 10031 */ 10032 if (vstate->dtvs_state != NULL) 10033 vstate->dtvs_state->dts_getf++; 10034 #endif 10035 } 10036 10037 break; 10038 case DIF_OP_PUSHTR: 10039 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10040 err += efunc(pc, "invalid ref type %u\n", type); 10041 if (r2 >= nregs) 10042 err += efunc(pc, "invalid register %u\n", r2); 10043 if (rs >= nregs) 10044 err += efunc(pc, "invalid register %u\n", rs); 10045 break; 10046 case DIF_OP_PUSHTV: 10047 if (type != DIF_TYPE_CTF) 10048 err += efunc(pc, "invalid val type %u\n", type); 10049 if (r2 >= nregs) 10050 err += efunc(pc, "invalid register %u\n", r2); 10051 if (rs >= nregs) 10052 err += efunc(pc, "invalid register %u\n", rs); 10053 break; 10054 default: 10055 err += efunc(pc, "invalid opcode %u\n", 10056 DIF_INSTR_OP(instr)); 10057 } 10058 } 10059 10060 if (dp->dtdo_len != 0 && 10061 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10062 err += efunc(dp->dtdo_len - 1, 10063 "expected 'ret' as last DIF instruction\n"); 10064 } 10065 10066 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10067 /* 10068 * If we're not returning by reference, the size must be either 10069 * 0 or the size of one of the base types. 10070 */ 10071 switch (dp->dtdo_rtype.dtdt_size) { 10072 case 0: 10073 case sizeof (uint8_t): 10074 case sizeof (uint16_t): 10075 case sizeof (uint32_t): 10076 case sizeof (uint64_t): 10077 break; 10078 10079 default: 10080 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10081 } 10082 } 10083 10084 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10085 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10086 dtrace_diftype_t *vt, *et; 10087 uint_t id, ndx; 10088 10089 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10090 v->dtdv_scope != DIFV_SCOPE_THREAD && 10091 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10092 err += efunc(i, "unrecognized variable scope %d\n", 10093 v->dtdv_scope); 10094 break; 10095 } 10096 10097 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10098 v->dtdv_kind != DIFV_KIND_SCALAR) { 10099 err += efunc(i, "unrecognized variable type %d\n", 10100 v->dtdv_kind); 10101 break; 10102 } 10103 10104 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10105 err += efunc(i, "%d exceeds variable id limit\n", id); 10106 break; 10107 } 10108 10109 if (id < DIF_VAR_OTHER_UBASE) 10110 continue; 10111 10112 /* 10113 * For user-defined variables, we need to check that this 10114 * definition is identical to any previous definition that we 10115 * encountered. 10116 */ 10117 ndx = id - DIF_VAR_OTHER_UBASE; 10118 10119 switch (v->dtdv_scope) { 10120 case DIFV_SCOPE_GLOBAL: 10121 if (maxglobal == -1 || ndx > maxglobal) 10122 maxglobal = ndx; 10123 10124 if (ndx < vstate->dtvs_nglobals) { 10125 dtrace_statvar_t *svar; 10126 10127 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10128 existing = &svar->dtsv_var; 10129 } 10130 10131 break; 10132 10133 case DIFV_SCOPE_THREAD: 10134 if (maxtlocal == -1 || ndx > maxtlocal) 10135 maxtlocal = ndx; 10136 10137 if (ndx < vstate->dtvs_ntlocals) 10138 existing = &vstate->dtvs_tlocals[ndx]; 10139 break; 10140 10141 case DIFV_SCOPE_LOCAL: 10142 if (maxlocal == -1 || ndx > maxlocal) 10143 maxlocal = ndx; 10144 10145 if (ndx < vstate->dtvs_nlocals) { 10146 dtrace_statvar_t *svar; 10147 10148 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10149 existing = &svar->dtsv_var; 10150 } 10151 10152 break; 10153 } 10154 10155 vt = &v->dtdv_type; 10156 10157 if (vt->dtdt_flags & DIF_TF_BYREF) { 10158 if (vt->dtdt_size == 0) { 10159 err += efunc(i, "zero-sized variable\n"); 10160 break; 10161 } 10162 10163 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10164 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10165 vt->dtdt_size > dtrace_statvar_maxsize) { 10166 err += efunc(i, "oversized by-ref static\n"); 10167 break; 10168 } 10169 } 10170 10171 if (existing == NULL || existing->dtdv_id == 0) 10172 continue; 10173 10174 ASSERT(existing->dtdv_id == v->dtdv_id); 10175 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10176 10177 if (existing->dtdv_kind != v->dtdv_kind) 10178 err += efunc(i, "%d changed variable kind\n", id); 10179 10180 et = &existing->dtdv_type; 10181 10182 if (vt->dtdt_flags != et->dtdt_flags) { 10183 err += efunc(i, "%d changed variable type flags\n", id); 10184 break; 10185 } 10186 10187 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10188 err += efunc(i, "%d changed variable type size\n", id); 10189 break; 10190 } 10191 } 10192 10193 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10194 dif_instr_t instr = dp->dtdo_buf[pc]; 10195 10196 uint_t v = DIF_INSTR_VAR(instr); 10197 uint_t op = DIF_INSTR_OP(instr); 10198 10199 switch (op) { 10200 case DIF_OP_LDGS: 10201 case DIF_OP_LDGAA: 10202 case DIF_OP_STGS: 10203 case DIF_OP_STGAA: 10204 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10205 err += efunc(pc, "invalid variable %u\n", v); 10206 break; 10207 case DIF_OP_LDTS: 10208 case DIF_OP_LDTAA: 10209 case DIF_OP_STTS: 10210 case DIF_OP_STTAA: 10211 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10212 err += efunc(pc, "invalid variable %u\n", v); 10213 break; 10214 case DIF_OP_LDLS: 10215 case DIF_OP_STLS: 10216 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10217 err += efunc(pc, "invalid variable %u\n", v); 10218 break; 10219 default: 10220 break; 10221 } 10222 } 10223 10224 return (err); 10225 } 10226 10227 /* 10228 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10229 * are much more constrained than normal DIFOs. Specifically, they may 10230 * not: 10231 * 10232 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10233 * miscellaneous string routines 10234 * 2. Access DTrace variables other than the args[] array, and the 10235 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10236 * 3. Have thread-local variables. 10237 * 4. Have dynamic variables. 10238 */ 10239 static int 10240 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10241 { 10242 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10243 int err = 0; 10244 uint_t pc; 10245 10246 for (pc = 0; pc < dp->dtdo_len; pc++) { 10247 dif_instr_t instr = dp->dtdo_buf[pc]; 10248 10249 uint_t v = DIF_INSTR_VAR(instr); 10250 uint_t subr = DIF_INSTR_SUBR(instr); 10251 uint_t op = DIF_INSTR_OP(instr); 10252 10253 switch (op) { 10254 case DIF_OP_OR: 10255 case DIF_OP_XOR: 10256 case DIF_OP_AND: 10257 case DIF_OP_SLL: 10258 case DIF_OP_SRL: 10259 case DIF_OP_SRA: 10260 case DIF_OP_SUB: 10261 case DIF_OP_ADD: 10262 case DIF_OP_MUL: 10263 case DIF_OP_SDIV: 10264 case DIF_OP_UDIV: 10265 case DIF_OP_SREM: 10266 case DIF_OP_UREM: 10267 case DIF_OP_COPYS: 10268 case DIF_OP_NOT: 10269 case DIF_OP_MOV: 10270 case DIF_OP_RLDSB: 10271 case DIF_OP_RLDSH: 10272 case DIF_OP_RLDSW: 10273 case DIF_OP_RLDUB: 10274 case DIF_OP_RLDUH: 10275 case DIF_OP_RLDUW: 10276 case DIF_OP_RLDX: 10277 case DIF_OP_ULDSB: 10278 case DIF_OP_ULDSH: 10279 case DIF_OP_ULDSW: 10280 case DIF_OP_ULDUB: 10281 case DIF_OP_ULDUH: 10282 case DIF_OP_ULDUW: 10283 case DIF_OP_ULDX: 10284 case DIF_OP_STB: 10285 case DIF_OP_STH: 10286 case DIF_OP_STW: 10287 case DIF_OP_STX: 10288 case DIF_OP_ALLOCS: 10289 case DIF_OP_CMP: 10290 case DIF_OP_SCMP: 10291 case DIF_OP_TST: 10292 case DIF_OP_BA: 10293 case DIF_OP_BE: 10294 case DIF_OP_BNE: 10295 case DIF_OP_BG: 10296 case DIF_OP_BGU: 10297 case DIF_OP_BGE: 10298 case DIF_OP_BGEU: 10299 case DIF_OP_BL: 10300 case DIF_OP_BLU: 10301 case DIF_OP_BLE: 10302 case DIF_OP_BLEU: 10303 case DIF_OP_RET: 10304 case DIF_OP_NOP: 10305 case DIF_OP_POPTS: 10306 case DIF_OP_FLUSHTS: 10307 case DIF_OP_SETX: 10308 case DIF_OP_SETS: 10309 case DIF_OP_LDGA: 10310 case DIF_OP_LDLS: 10311 case DIF_OP_STGS: 10312 case DIF_OP_STLS: 10313 case DIF_OP_PUSHTR: 10314 case DIF_OP_PUSHTV: 10315 break; 10316 10317 case DIF_OP_LDGS: 10318 if (v >= DIF_VAR_OTHER_UBASE) 10319 break; 10320 10321 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10322 break; 10323 10324 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10325 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10326 v == DIF_VAR_EXECARGS || 10327 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10328 v == DIF_VAR_UID || v == DIF_VAR_GID) 10329 break; 10330 10331 err += efunc(pc, "illegal variable %u\n", v); 10332 break; 10333 10334 case DIF_OP_LDTA: 10335 case DIF_OP_LDTS: 10336 case DIF_OP_LDGAA: 10337 case DIF_OP_LDTAA: 10338 err += efunc(pc, "illegal dynamic variable load\n"); 10339 break; 10340 10341 case DIF_OP_STTS: 10342 case DIF_OP_STGAA: 10343 case DIF_OP_STTAA: 10344 err += efunc(pc, "illegal dynamic variable store\n"); 10345 break; 10346 10347 case DIF_OP_CALL: 10348 if (subr == DIF_SUBR_ALLOCA || 10349 subr == DIF_SUBR_BCOPY || 10350 subr == DIF_SUBR_COPYIN || 10351 subr == DIF_SUBR_COPYINTO || 10352 subr == DIF_SUBR_COPYINSTR || 10353 subr == DIF_SUBR_INDEX || 10354 subr == DIF_SUBR_INET_NTOA || 10355 subr == DIF_SUBR_INET_NTOA6 || 10356 subr == DIF_SUBR_INET_NTOP || 10357 subr == DIF_SUBR_JSON || 10358 subr == DIF_SUBR_LLTOSTR || 10359 subr == DIF_SUBR_STRTOLL || 10360 subr == DIF_SUBR_RINDEX || 10361 subr == DIF_SUBR_STRCHR || 10362 subr == DIF_SUBR_STRJOIN || 10363 subr == DIF_SUBR_STRRCHR || 10364 subr == DIF_SUBR_STRSTR || 10365 subr == DIF_SUBR_HTONS || 10366 subr == DIF_SUBR_HTONL || 10367 subr == DIF_SUBR_HTONLL || 10368 subr == DIF_SUBR_NTOHS || 10369 subr == DIF_SUBR_NTOHL || 10370 subr == DIF_SUBR_NTOHLL || 10371 subr == DIF_SUBR_MEMREF) 10372 break; 10373 #ifdef __FreeBSD__ 10374 if (subr == DIF_SUBR_MEMSTR) 10375 break; 10376 #endif 10377 10378 err += efunc(pc, "invalid subr %u\n", subr); 10379 break; 10380 10381 default: 10382 err += efunc(pc, "invalid opcode %u\n", 10383 DIF_INSTR_OP(instr)); 10384 } 10385 } 10386 10387 return (err); 10388 } 10389 10390 /* 10391 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10392 * basis; 0 if not. 10393 */ 10394 static int 10395 dtrace_difo_cacheable(dtrace_difo_t *dp) 10396 { 10397 int i; 10398 10399 if (dp == NULL) 10400 return (0); 10401 10402 for (i = 0; i < dp->dtdo_varlen; i++) { 10403 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10404 10405 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10406 continue; 10407 10408 switch (v->dtdv_id) { 10409 case DIF_VAR_CURTHREAD: 10410 case DIF_VAR_PID: 10411 case DIF_VAR_TID: 10412 case DIF_VAR_EXECARGS: 10413 case DIF_VAR_EXECNAME: 10414 case DIF_VAR_ZONENAME: 10415 break; 10416 10417 default: 10418 return (0); 10419 } 10420 } 10421 10422 /* 10423 * This DIF object may be cacheable. Now we need to look for any 10424 * array loading instructions, any memory loading instructions, or 10425 * any stores to thread-local variables. 10426 */ 10427 for (i = 0; i < dp->dtdo_len; i++) { 10428 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10429 10430 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10431 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10432 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10433 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10434 return (0); 10435 } 10436 10437 return (1); 10438 } 10439 10440 static void 10441 dtrace_difo_hold(dtrace_difo_t *dp) 10442 { 10443 int i; 10444 10445 ASSERT(MUTEX_HELD(&dtrace_lock)); 10446 10447 dp->dtdo_refcnt++; 10448 ASSERT(dp->dtdo_refcnt != 0); 10449 10450 /* 10451 * We need to check this DIF object for references to the variable 10452 * DIF_VAR_VTIMESTAMP. 10453 */ 10454 for (i = 0; i < dp->dtdo_varlen; i++) { 10455 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10456 10457 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10458 continue; 10459 10460 if (dtrace_vtime_references++ == 0) 10461 dtrace_vtime_enable(); 10462 } 10463 } 10464 10465 /* 10466 * This routine calculates the dynamic variable chunksize for a given DIF 10467 * object. The calculation is not fool-proof, and can probably be tricked by 10468 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10469 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10470 * if a dynamic variable size exceeds the chunksize. 10471 */ 10472 static void 10473 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10474 { 10475 uint64_t sval = 0; 10476 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10477 const dif_instr_t *text = dp->dtdo_buf; 10478 uint_t pc, srd = 0; 10479 uint_t ttop = 0; 10480 size_t size, ksize; 10481 uint_t id, i; 10482 10483 for (pc = 0; pc < dp->dtdo_len; pc++) { 10484 dif_instr_t instr = text[pc]; 10485 uint_t op = DIF_INSTR_OP(instr); 10486 uint_t rd = DIF_INSTR_RD(instr); 10487 uint_t r1 = DIF_INSTR_R1(instr); 10488 uint_t nkeys = 0; 10489 uchar_t scope = 0; 10490 10491 dtrace_key_t *key = tupregs; 10492 10493 switch (op) { 10494 case DIF_OP_SETX: 10495 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10496 srd = rd; 10497 continue; 10498 10499 case DIF_OP_STTS: 10500 key = &tupregs[DIF_DTR_NREGS]; 10501 key[0].dttk_size = 0; 10502 key[1].dttk_size = 0; 10503 nkeys = 2; 10504 scope = DIFV_SCOPE_THREAD; 10505 break; 10506 10507 case DIF_OP_STGAA: 10508 case DIF_OP_STTAA: 10509 nkeys = ttop; 10510 10511 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10512 key[nkeys++].dttk_size = 0; 10513 10514 key[nkeys++].dttk_size = 0; 10515 10516 if (op == DIF_OP_STTAA) { 10517 scope = DIFV_SCOPE_THREAD; 10518 } else { 10519 scope = DIFV_SCOPE_GLOBAL; 10520 } 10521 10522 break; 10523 10524 case DIF_OP_PUSHTR: 10525 if (ttop == DIF_DTR_NREGS) 10526 return; 10527 10528 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10529 /* 10530 * If the register for the size of the "pushtr" 10531 * is %r0 (or the value is 0) and the type is 10532 * a string, we'll use the system-wide default 10533 * string size. 10534 */ 10535 tupregs[ttop++].dttk_size = 10536 dtrace_strsize_default; 10537 } else { 10538 if (srd == 0) 10539 return; 10540 10541 if (sval > LONG_MAX) 10542 return; 10543 10544 tupregs[ttop++].dttk_size = sval; 10545 } 10546 10547 break; 10548 10549 case DIF_OP_PUSHTV: 10550 if (ttop == DIF_DTR_NREGS) 10551 return; 10552 10553 tupregs[ttop++].dttk_size = 0; 10554 break; 10555 10556 case DIF_OP_FLUSHTS: 10557 ttop = 0; 10558 break; 10559 10560 case DIF_OP_POPTS: 10561 if (ttop != 0) 10562 ttop--; 10563 break; 10564 } 10565 10566 sval = 0; 10567 srd = 0; 10568 10569 if (nkeys == 0) 10570 continue; 10571 10572 /* 10573 * We have a dynamic variable allocation; calculate its size. 10574 */ 10575 for (ksize = 0, i = 0; i < nkeys; i++) 10576 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10577 10578 size = sizeof (dtrace_dynvar_t); 10579 size += sizeof (dtrace_key_t) * (nkeys - 1); 10580 size += ksize; 10581 10582 /* 10583 * Now we need to determine the size of the stored data. 10584 */ 10585 id = DIF_INSTR_VAR(instr); 10586 10587 for (i = 0; i < dp->dtdo_varlen; i++) { 10588 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10589 10590 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10591 size += v->dtdv_type.dtdt_size; 10592 break; 10593 } 10594 } 10595 10596 if (i == dp->dtdo_varlen) 10597 return; 10598 10599 /* 10600 * We have the size. If this is larger than the chunk size 10601 * for our dynamic variable state, reset the chunk size. 10602 */ 10603 size = P2ROUNDUP(size, sizeof (uint64_t)); 10604 10605 /* 10606 * Before setting the chunk size, check that we're not going 10607 * to set it to a negative value... 10608 */ 10609 if (size > LONG_MAX) 10610 return; 10611 10612 /* 10613 * ...and make certain that we didn't badly overflow. 10614 */ 10615 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10616 return; 10617 10618 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10619 vstate->dtvs_dynvars.dtds_chunksize = size; 10620 } 10621 } 10622 10623 static void 10624 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10625 { 10626 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10627 uint_t id; 10628 10629 ASSERT(MUTEX_HELD(&dtrace_lock)); 10630 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10631 10632 for (i = 0; i < dp->dtdo_varlen; i++) { 10633 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10634 dtrace_statvar_t *svar, ***svarp = NULL; 10635 size_t dsize = 0; 10636 uint8_t scope = v->dtdv_scope; 10637 int *np = NULL; 10638 10639 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10640 continue; 10641 10642 id -= DIF_VAR_OTHER_UBASE; 10643 10644 switch (scope) { 10645 case DIFV_SCOPE_THREAD: 10646 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10647 dtrace_difv_t *tlocals; 10648 10649 if ((ntlocals = (otlocals << 1)) == 0) 10650 ntlocals = 1; 10651 10652 osz = otlocals * sizeof (dtrace_difv_t); 10653 nsz = ntlocals * sizeof (dtrace_difv_t); 10654 10655 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10656 10657 if (osz != 0) { 10658 bcopy(vstate->dtvs_tlocals, 10659 tlocals, osz); 10660 kmem_free(vstate->dtvs_tlocals, osz); 10661 } 10662 10663 vstate->dtvs_tlocals = tlocals; 10664 vstate->dtvs_ntlocals = ntlocals; 10665 } 10666 10667 vstate->dtvs_tlocals[id] = *v; 10668 continue; 10669 10670 case DIFV_SCOPE_LOCAL: 10671 np = &vstate->dtvs_nlocals; 10672 svarp = &vstate->dtvs_locals; 10673 10674 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10675 dsize = NCPU * (v->dtdv_type.dtdt_size + 10676 sizeof (uint64_t)); 10677 else 10678 dsize = NCPU * sizeof (uint64_t); 10679 10680 break; 10681 10682 case DIFV_SCOPE_GLOBAL: 10683 np = &vstate->dtvs_nglobals; 10684 svarp = &vstate->dtvs_globals; 10685 10686 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10687 dsize = v->dtdv_type.dtdt_size + 10688 sizeof (uint64_t); 10689 10690 break; 10691 10692 default: 10693 ASSERT(0); 10694 } 10695 10696 while (id >= (oldsvars = *np)) { 10697 dtrace_statvar_t **statics; 10698 int newsvars, oldsize, newsize; 10699 10700 if ((newsvars = (oldsvars << 1)) == 0) 10701 newsvars = 1; 10702 10703 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10704 newsize = newsvars * sizeof (dtrace_statvar_t *); 10705 10706 statics = kmem_zalloc(newsize, KM_SLEEP); 10707 10708 if (oldsize != 0) { 10709 bcopy(*svarp, statics, oldsize); 10710 kmem_free(*svarp, oldsize); 10711 } 10712 10713 *svarp = statics; 10714 *np = newsvars; 10715 } 10716 10717 if ((svar = (*svarp)[id]) == NULL) { 10718 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10719 svar->dtsv_var = *v; 10720 10721 if ((svar->dtsv_size = dsize) != 0) { 10722 svar->dtsv_data = (uint64_t)(uintptr_t) 10723 kmem_zalloc(dsize, KM_SLEEP); 10724 } 10725 10726 (*svarp)[id] = svar; 10727 } 10728 10729 svar->dtsv_refcnt++; 10730 } 10731 10732 dtrace_difo_chunksize(dp, vstate); 10733 dtrace_difo_hold(dp); 10734 } 10735 10736 static dtrace_difo_t * 10737 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10738 { 10739 dtrace_difo_t *new; 10740 size_t sz; 10741 10742 ASSERT(dp->dtdo_buf != NULL); 10743 ASSERT(dp->dtdo_refcnt != 0); 10744 10745 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10746 10747 ASSERT(dp->dtdo_buf != NULL); 10748 sz = dp->dtdo_len * sizeof (dif_instr_t); 10749 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10750 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10751 new->dtdo_len = dp->dtdo_len; 10752 10753 if (dp->dtdo_strtab != NULL) { 10754 ASSERT(dp->dtdo_strlen != 0); 10755 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10756 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10757 new->dtdo_strlen = dp->dtdo_strlen; 10758 } 10759 10760 if (dp->dtdo_inttab != NULL) { 10761 ASSERT(dp->dtdo_intlen != 0); 10762 sz = dp->dtdo_intlen * sizeof (uint64_t); 10763 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10764 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10765 new->dtdo_intlen = dp->dtdo_intlen; 10766 } 10767 10768 if (dp->dtdo_vartab != NULL) { 10769 ASSERT(dp->dtdo_varlen != 0); 10770 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10771 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10772 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10773 new->dtdo_varlen = dp->dtdo_varlen; 10774 } 10775 10776 dtrace_difo_init(new, vstate); 10777 return (new); 10778 } 10779 10780 static void 10781 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10782 { 10783 int i; 10784 10785 ASSERT(dp->dtdo_refcnt == 0); 10786 10787 for (i = 0; i < dp->dtdo_varlen; i++) { 10788 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10789 dtrace_statvar_t *svar, **svarp = NULL; 10790 uint_t id; 10791 uint8_t scope = v->dtdv_scope; 10792 int *np = NULL; 10793 10794 switch (scope) { 10795 case DIFV_SCOPE_THREAD: 10796 continue; 10797 10798 case DIFV_SCOPE_LOCAL: 10799 np = &vstate->dtvs_nlocals; 10800 svarp = vstate->dtvs_locals; 10801 break; 10802 10803 case DIFV_SCOPE_GLOBAL: 10804 np = &vstate->dtvs_nglobals; 10805 svarp = vstate->dtvs_globals; 10806 break; 10807 10808 default: 10809 ASSERT(0); 10810 } 10811 10812 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10813 continue; 10814 10815 id -= DIF_VAR_OTHER_UBASE; 10816 ASSERT(id < *np); 10817 10818 svar = svarp[id]; 10819 ASSERT(svar != NULL); 10820 ASSERT(svar->dtsv_refcnt > 0); 10821 10822 if (--svar->dtsv_refcnt > 0) 10823 continue; 10824 10825 if (svar->dtsv_size != 0) { 10826 ASSERT(svar->dtsv_data != 0); 10827 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10828 svar->dtsv_size); 10829 } 10830 10831 kmem_free(svar, sizeof (dtrace_statvar_t)); 10832 svarp[id] = NULL; 10833 } 10834 10835 if (dp->dtdo_buf != NULL) 10836 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10837 if (dp->dtdo_inttab != NULL) 10838 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10839 if (dp->dtdo_strtab != NULL) 10840 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10841 if (dp->dtdo_vartab != NULL) 10842 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10843 10844 kmem_free(dp, sizeof (dtrace_difo_t)); 10845 } 10846 10847 static void 10848 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10849 { 10850 int i; 10851 10852 ASSERT(MUTEX_HELD(&dtrace_lock)); 10853 ASSERT(dp->dtdo_refcnt != 0); 10854 10855 for (i = 0; i < dp->dtdo_varlen; i++) { 10856 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10857 10858 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10859 continue; 10860 10861 ASSERT(dtrace_vtime_references > 0); 10862 if (--dtrace_vtime_references == 0) 10863 dtrace_vtime_disable(); 10864 } 10865 10866 if (--dp->dtdo_refcnt == 0) 10867 dtrace_difo_destroy(dp, vstate); 10868 } 10869 10870 /* 10871 * DTrace Format Functions 10872 */ 10873 static uint16_t 10874 dtrace_format_add(dtrace_state_t *state, char *str) 10875 { 10876 char *fmt, **new; 10877 uint16_t ndx, len = strlen(str) + 1; 10878 10879 fmt = kmem_zalloc(len, KM_SLEEP); 10880 bcopy(str, fmt, len); 10881 10882 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10883 if (state->dts_formats[ndx] == NULL) { 10884 state->dts_formats[ndx] = fmt; 10885 return (ndx + 1); 10886 } 10887 } 10888 10889 if (state->dts_nformats == USHRT_MAX) { 10890 /* 10891 * This is only likely if a denial-of-service attack is being 10892 * attempted. As such, it's okay to fail silently here. 10893 */ 10894 kmem_free(fmt, len); 10895 return (0); 10896 } 10897 10898 /* 10899 * For simplicity, we always resize the formats array to be exactly the 10900 * number of formats. 10901 */ 10902 ndx = state->dts_nformats++; 10903 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10904 10905 if (state->dts_formats != NULL) { 10906 ASSERT(ndx != 0); 10907 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10908 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10909 } 10910 10911 state->dts_formats = new; 10912 state->dts_formats[ndx] = fmt; 10913 10914 return (ndx + 1); 10915 } 10916 10917 static void 10918 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10919 { 10920 char *fmt; 10921 10922 ASSERT(state->dts_formats != NULL); 10923 ASSERT(format <= state->dts_nformats); 10924 ASSERT(state->dts_formats[format - 1] != NULL); 10925 10926 fmt = state->dts_formats[format - 1]; 10927 kmem_free(fmt, strlen(fmt) + 1); 10928 state->dts_formats[format - 1] = NULL; 10929 } 10930 10931 static void 10932 dtrace_format_destroy(dtrace_state_t *state) 10933 { 10934 int i; 10935 10936 if (state->dts_nformats == 0) { 10937 ASSERT(state->dts_formats == NULL); 10938 return; 10939 } 10940 10941 ASSERT(state->dts_formats != NULL); 10942 10943 for (i = 0; i < state->dts_nformats; i++) { 10944 char *fmt = state->dts_formats[i]; 10945 10946 if (fmt == NULL) 10947 continue; 10948 10949 kmem_free(fmt, strlen(fmt) + 1); 10950 } 10951 10952 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10953 state->dts_nformats = 0; 10954 state->dts_formats = NULL; 10955 } 10956 10957 /* 10958 * DTrace Predicate Functions 10959 */ 10960 static dtrace_predicate_t * 10961 dtrace_predicate_create(dtrace_difo_t *dp) 10962 { 10963 dtrace_predicate_t *pred; 10964 10965 ASSERT(MUTEX_HELD(&dtrace_lock)); 10966 ASSERT(dp->dtdo_refcnt != 0); 10967 10968 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10969 pred->dtp_difo = dp; 10970 pred->dtp_refcnt = 1; 10971 10972 if (!dtrace_difo_cacheable(dp)) 10973 return (pred); 10974 10975 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10976 /* 10977 * This is only theoretically possible -- we have had 2^32 10978 * cacheable predicates on this machine. We cannot allow any 10979 * more predicates to become cacheable: as unlikely as it is, 10980 * there may be a thread caching a (now stale) predicate cache 10981 * ID. (N.B.: the temptation is being successfully resisted to 10982 * have this cmn_err() "Holy shit -- we executed this code!") 10983 */ 10984 return (pred); 10985 } 10986 10987 pred->dtp_cacheid = dtrace_predcache_id++; 10988 10989 return (pred); 10990 } 10991 10992 static void 10993 dtrace_predicate_hold(dtrace_predicate_t *pred) 10994 { 10995 ASSERT(MUTEX_HELD(&dtrace_lock)); 10996 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10997 ASSERT(pred->dtp_refcnt > 0); 10998 10999 pred->dtp_refcnt++; 11000 } 11001 11002 static void 11003 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11004 { 11005 dtrace_difo_t *dp = pred->dtp_difo; 11006 11007 ASSERT(MUTEX_HELD(&dtrace_lock)); 11008 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11009 ASSERT(pred->dtp_refcnt > 0); 11010 11011 if (--pred->dtp_refcnt == 0) { 11012 dtrace_difo_release(pred->dtp_difo, vstate); 11013 kmem_free(pred, sizeof (dtrace_predicate_t)); 11014 } 11015 } 11016 11017 /* 11018 * DTrace Action Description Functions 11019 */ 11020 static dtrace_actdesc_t * 11021 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11022 uint64_t uarg, uint64_t arg) 11023 { 11024 dtrace_actdesc_t *act; 11025 11026 #ifdef illumos 11027 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11028 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11029 #endif 11030 11031 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11032 act->dtad_kind = kind; 11033 act->dtad_ntuple = ntuple; 11034 act->dtad_uarg = uarg; 11035 act->dtad_arg = arg; 11036 act->dtad_refcnt = 1; 11037 11038 return (act); 11039 } 11040 11041 static void 11042 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11043 { 11044 ASSERT(act->dtad_refcnt >= 1); 11045 act->dtad_refcnt++; 11046 } 11047 11048 static void 11049 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11050 { 11051 dtrace_actkind_t kind = act->dtad_kind; 11052 dtrace_difo_t *dp; 11053 11054 ASSERT(act->dtad_refcnt >= 1); 11055 11056 if (--act->dtad_refcnt != 0) 11057 return; 11058 11059 if ((dp = act->dtad_difo) != NULL) 11060 dtrace_difo_release(dp, vstate); 11061 11062 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11063 char *str = (char *)(uintptr_t)act->dtad_arg; 11064 11065 #ifdef illumos 11066 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11067 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11068 #endif 11069 11070 if (str != NULL) 11071 kmem_free(str, strlen(str) + 1); 11072 } 11073 11074 kmem_free(act, sizeof (dtrace_actdesc_t)); 11075 } 11076 11077 /* 11078 * DTrace ECB Functions 11079 */ 11080 static dtrace_ecb_t * 11081 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11082 { 11083 dtrace_ecb_t *ecb; 11084 dtrace_epid_t epid; 11085 11086 ASSERT(MUTEX_HELD(&dtrace_lock)); 11087 11088 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11089 ecb->dte_predicate = NULL; 11090 ecb->dte_probe = probe; 11091 11092 /* 11093 * The default size is the size of the default action: recording 11094 * the header. 11095 */ 11096 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11097 ecb->dte_alignment = sizeof (dtrace_epid_t); 11098 11099 epid = state->dts_epid++; 11100 11101 if (epid - 1 >= state->dts_necbs) { 11102 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11103 int necbs = state->dts_necbs << 1; 11104 11105 ASSERT(epid == state->dts_necbs + 1); 11106 11107 if (necbs == 0) { 11108 ASSERT(oecbs == NULL); 11109 necbs = 1; 11110 } 11111 11112 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11113 11114 if (oecbs != NULL) 11115 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11116 11117 dtrace_membar_producer(); 11118 state->dts_ecbs = ecbs; 11119 11120 if (oecbs != NULL) { 11121 /* 11122 * If this state is active, we must dtrace_sync() 11123 * before we can free the old dts_ecbs array: we're 11124 * coming in hot, and there may be active ring 11125 * buffer processing (which indexes into the dts_ecbs 11126 * array) on another CPU. 11127 */ 11128 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11129 dtrace_sync(); 11130 11131 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11132 } 11133 11134 dtrace_membar_producer(); 11135 state->dts_necbs = necbs; 11136 } 11137 11138 ecb->dte_state = state; 11139 11140 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11141 dtrace_membar_producer(); 11142 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11143 11144 return (ecb); 11145 } 11146 11147 static void 11148 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11149 { 11150 dtrace_probe_t *probe = ecb->dte_probe; 11151 11152 ASSERT(MUTEX_HELD(&cpu_lock)); 11153 ASSERT(MUTEX_HELD(&dtrace_lock)); 11154 ASSERT(ecb->dte_next == NULL); 11155 11156 if (probe == NULL) { 11157 /* 11158 * This is the NULL probe -- there's nothing to do. 11159 */ 11160 return; 11161 } 11162 11163 if (probe->dtpr_ecb == NULL) { 11164 dtrace_provider_t *prov = probe->dtpr_provider; 11165 11166 /* 11167 * We're the first ECB on this probe. 11168 */ 11169 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11170 11171 if (ecb->dte_predicate != NULL) 11172 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11173 11174 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11175 probe->dtpr_id, probe->dtpr_arg); 11176 } else { 11177 /* 11178 * This probe is already active. Swing the last pointer to 11179 * point to the new ECB, and issue a dtrace_sync() to assure 11180 * that all CPUs have seen the change. 11181 */ 11182 ASSERT(probe->dtpr_ecb_last != NULL); 11183 probe->dtpr_ecb_last->dte_next = ecb; 11184 probe->dtpr_ecb_last = ecb; 11185 probe->dtpr_predcache = 0; 11186 11187 dtrace_sync(); 11188 } 11189 } 11190 11191 static int 11192 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11193 { 11194 dtrace_action_t *act; 11195 uint32_t curneeded = UINT32_MAX; 11196 uint32_t aggbase = UINT32_MAX; 11197 11198 /* 11199 * If we record anything, we always record the dtrace_rechdr_t. (And 11200 * we always record it first.) 11201 */ 11202 ecb->dte_size = sizeof (dtrace_rechdr_t); 11203 ecb->dte_alignment = sizeof (dtrace_epid_t); 11204 11205 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11206 dtrace_recdesc_t *rec = &act->dta_rec; 11207 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11208 11209 ecb->dte_alignment = MAX(ecb->dte_alignment, 11210 rec->dtrd_alignment); 11211 11212 if (DTRACEACT_ISAGG(act->dta_kind)) { 11213 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11214 11215 ASSERT(rec->dtrd_size != 0); 11216 ASSERT(agg->dtag_first != NULL); 11217 ASSERT(act->dta_prev->dta_intuple); 11218 ASSERT(aggbase != UINT32_MAX); 11219 ASSERT(curneeded != UINT32_MAX); 11220 11221 agg->dtag_base = aggbase; 11222 11223 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11224 rec->dtrd_offset = curneeded; 11225 if (curneeded + rec->dtrd_size < curneeded) 11226 return (EINVAL); 11227 curneeded += rec->dtrd_size; 11228 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11229 11230 aggbase = UINT32_MAX; 11231 curneeded = UINT32_MAX; 11232 } else if (act->dta_intuple) { 11233 if (curneeded == UINT32_MAX) { 11234 /* 11235 * This is the first record in a tuple. Align 11236 * curneeded to be at offset 4 in an 8-byte 11237 * aligned block. 11238 */ 11239 ASSERT(act->dta_prev == NULL || 11240 !act->dta_prev->dta_intuple); 11241 ASSERT3U(aggbase, ==, UINT32_MAX); 11242 curneeded = P2PHASEUP(ecb->dte_size, 11243 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11244 11245 aggbase = curneeded - sizeof (dtrace_aggid_t); 11246 ASSERT(IS_P2ALIGNED(aggbase, 11247 sizeof (uint64_t))); 11248 } 11249 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11250 rec->dtrd_offset = curneeded; 11251 if (curneeded + rec->dtrd_size < curneeded) 11252 return (EINVAL); 11253 curneeded += rec->dtrd_size; 11254 } else { 11255 /* tuples must be followed by an aggregation */ 11256 ASSERT(act->dta_prev == NULL || 11257 !act->dta_prev->dta_intuple); 11258 11259 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11260 rec->dtrd_alignment); 11261 rec->dtrd_offset = ecb->dte_size; 11262 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11263 return (EINVAL); 11264 ecb->dte_size += rec->dtrd_size; 11265 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11266 } 11267 } 11268 11269 if ((act = ecb->dte_action) != NULL && 11270 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11271 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11272 /* 11273 * If the size is still sizeof (dtrace_rechdr_t), then all 11274 * actions store no data; set the size to 0. 11275 */ 11276 ecb->dte_size = 0; 11277 } 11278 11279 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11280 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11281 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11282 ecb->dte_needed); 11283 return (0); 11284 } 11285 11286 static dtrace_action_t * 11287 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11288 { 11289 dtrace_aggregation_t *agg; 11290 size_t size = sizeof (uint64_t); 11291 int ntuple = desc->dtad_ntuple; 11292 dtrace_action_t *act; 11293 dtrace_recdesc_t *frec; 11294 dtrace_aggid_t aggid; 11295 dtrace_state_t *state = ecb->dte_state; 11296 11297 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11298 agg->dtag_ecb = ecb; 11299 11300 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11301 11302 switch (desc->dtad_kind) { 11303 case DTRACEAGG_MIN: 11304 agg->dtag_initial = INT64_MAX; 11305 agg->dtag_aggregate = dtrace_aggregate_min; 11306 break; 11307 11308 case DTRACEAGG_MAX: 11309 agg->dtag_initial = INT64_MIN; 11310 agg->dtag_aggregate = dtrace_aggregate_max; 11311 break; 11312 11313 case DTRACEAGG_COUNT: 11314 agg->dtag_aggregate = dtrace_aggregate_count; 11315 break; 11316 11317 case DTRACEAGG_QUANTIZE: 11318 agg->dtag_aggregate = dtrace_aggregate_quantize; 11319 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11320 sizeof (uint64_t); 11321 break; 11322 11323 case DTRACEAGG_LQUANTIZE: { 11324 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11325 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11326 11327 agg->dtag_initial = desc->dtad_arg; 11328 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11329 11330 if (step == 0 || levels == 0) 11331 goto err; 11332 11333 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11334 break; 11335 } 11336 11337 case DTRACEAGG_LLQUANTIZE: { 11338 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11339 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11340 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11341 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11342 int64_t v; 11343 11344 agg->dtag_initial = desc->dtad_arg; 11345 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11346 11347 if (factor < 2 || low >= high || nsteps < factor) 11348 goto err; 11349 11350 /* 11351 * Now check that the number of steps evenly divides a power 11352 * of the factor. (This assures both integer bucket size and 11353 * linearity within each magnitude.) 11354 */ 11355 for (v = factor; v < nsteps; v *= factor) 11356 continue; 11357 11358 if ((v % nsteps) || (nsteps % factor)) 11359 goto err; 11360 11361 size = (dtrace_aggregate_llquantize_bucket(factor, 11362 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11363 break; 11364 } 11365 11366 case DTRACEAGG_AVG: 11367 agg->dtag_aggregate = dtrace_aggregate_avg; 11368 size = sizeof (uint64_t) * 2; 11369 break; 11370 11371 case DTRACEAGG_STDDEV: 11372 agg->dtag_aggregate = dtrace_aggregate_stddev; 11373 size = sizeof (uint64_t) * 4; 11374 break; 11375 11376 case DTRACEAGG_SUM: 11377 agg->dtag_aggregate = dtrace_aggregate_sum; 11378 break; 11379 11380 default: 11381 goto err; 11382 } 11383 11384 agg->dtag_action.dta_rec.dtrd_size = size; 11385 11386 if (ntuple == 0) 11387 goto err; 11388 11389 /* 11390 * We must make sure that we have enough actions for the n-tuple. 11391 */ 11392 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11393 if (DTRACEACT_ISAGG(act->dta_kind)) 11394 break; 11395 11396 if (--ntuple == 0) { 11397 /* 11398 * This is the action with which our n-tuple begins. 11399 */ 11400 agg->dtag_first = act; 11401 goto success; 11402 } 11403 } 11404 11405 /* 11406 * This n-tuple is short by ntuple elements. Return failure. 11407 */ 11408 ASSERT(ntuple != 0); 11409 err: 11410 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11411 return (NULL); 11412 11413 success: 11414 /* 11415 * If the last action in the tuple has a size of zero, it's actually 11416 * an expression argument for the aggregating action. 11417 */ 11418 ASSERT(ecb->dte_action_last != NULL); 11419 act = ecb->dte_action_last; 11420 11421 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11422 ASSERT(act->dta_difo != NULL); 11423 11424 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11425 agg->dtag_hasarg = 1; 11426 } 11427 11428 /* 11429 * We need to allocate an id for this aggregation. 11430 */ 11431 #ifdef illumos 11432 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11433 VM_BESTFIT | VM_SLEEP); 11434 #else 11435 aggid = alloc_unr(state->dts_aggid_arena); 11436 #endif 11437 11438 if (aggid - 1 >= state->dts_naggregations) { 11439 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11440 dtrace_aggregation_t **aggs; 11441 int naggs = state->dts_naggregations << 1; 11442 int onaggs = state->dts_naggregations; 11443 11444 ASSERT(aggid == state->dts_naggregations + 1); 11445 11446 if (naggs == 0) { 11447 ASSERT(oaggs == NULL); 11448 naggs = 1; 11449 } 11450 11451 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11452 11453 if (oaggs != NULL) { 11454 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11455 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11456 } 11457 11458 state->dts_aggregations = aggs; 11459 state->dts_naggregations = naggs; 11460 } 11461 11462 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11463 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11464 11465 frec = &agg->dtag_first->dta_rec; 11466 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11467 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11468 11469 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11470 ASSERT(!act->dta_intuple); 11471 act->dta_intuple = 1; 11472 } 11473 11474 return (&agg->dtag_action); 11475 } 11476 11477 static void 11478 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11479 { 11480 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11481 dtrace_state_t *state = ecb->dte_state; 11482 dtrace_aggid_t aggid = agg->dtag_id; 11483 11484 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11485 #ifdef illumos 11486 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11487 #else 11488 free_unr(state->dts_aggid_arena, aggid); 11489 #endif 11490 11491 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11492 state->dts_aggregations[aggid - 1] = NULL; 11493 11494 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11495 } 11496 11497 static int 11498 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11499 { 11500 dtrace_action_t *action, *last; 11501 dtrace_difo_t *dp = desc->dtad_difo; 11502 uint32_t size = 0, align = sizeof (uint8_t), mask; 11503 uint16_t format = 0; 11504 dtrace_recdesc_t *rec; 11505 dtrace_state_t *state = ecb->dte_state; 11506 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11507 uint64_t arg = desc->dtad_arg; 11508 11509 ASSERT(MUTEX_HELD(&dtrace_lock)); 11510 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11511 11512 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11513 /* 11514 * If this is an aggregating action, there must be neither 11515 * a speculate nor a commit on the action chain. 11516 */ 11517 dtrace_action_t *act; 11518 11519 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11520 if (act->dta_kind == DTRACEACT_COMMIT) 11521 return (EINVAL); 11522 11523 if (act->dta_kind == DTRACEACT_SPECULATE) 11524 return (EINVAL); 11525 } 11526 11527 action = dtrace_ecb_aggregation_create(ecb, desc); 11528 11529 if (action == NULL) 11530 return (EINVAL); 11531 } else { 11532 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11533 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11534 dp != NULL && dp->dtdo_destructive)) { 11535 state->dts_destructive = 1; 11536 } 11537 11538 switch (desc->dtad_kind) { 11539 case DTRACEACT_PRINTF: 11540 case DTRACEACT_PRINTA: 11541 case DTRACEACT_SYSTEM: 11542 case DTRACEACT_FREOPEN: 11543 case DTRACEACT_DIFEXPR: 11544 /* 11545 * We know that our arg is a string -- turn it into a 11546 * format. 11547 */ 11548 if (arg == 0) { 11549 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11550 desc->dtad_kind == DTRACEACT_DIFEXPR); 11551 format = 0; 11552 } else { 11553 ASSERT(arg != 0); 11554 #ifdef illumos 11555 ASSERT(arg > KERNELBASE); 11556 #endif 11557 format = dtrace_format_add(state, 11558 (char *)(uintptr_t)arg); 11559 } 11560 11561 /*FALLTHROUGH*/ 11562 case DTRACEACT_LIBACT: 11563 case DTRACEACT_TRACEMEM: 11564 case DTRACEACT_TRACEMEM_DYNSIZE: 11565 if (dp == NULL) 11566 return (EINVAL); 11567 11568 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11569 break; 11570 11571 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11572 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11573 return (EINVAL); 11574 11575 size = opt[DTRACEOPT_STRSIZE]; 11576 } 11577 11578 break; 11579 11580 case DTRACEACT_STACK: 11581 if ((nframes = arg) == 0) { 11582 nframes = opt[DTRACEOPT_STACKFRAMES]; 11583 ASSERT(nframes > 0); 11584 arg = nframes; 11585 } 11586 11587 size = nframes * sizeof (pc_t); 11588 break; 11589 11590 case DTRACEACT_JSTACK: 11591 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11592 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11593 11594 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11595 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11596 11597 arg = DTRACE_USTACK_ARG(nframes, strsize); 11598 11599 /*FALLTHROUGH*/ 11600 case DTRACEACT_USTACK: 11601 if (desc->dtad_kind != DTRACEACT_JSTACK && 11602 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11603 strsize = DTRACE_USTACK_STRSIZE(arg); 11604 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11605 ASSERT(nframes > 0); 11606 arg = DTRACE_USTACK_ARG(nframes, strsize); 11607 } 11608 11609 /* 11610 * Save a slot for the pid. 11611 */ 11612 size = (nframes + 1) * sizeof (uint64_t); 11613 size += DTRACE_USTACK_STRSIZE(arg); 11614 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11615 11616 break; 11617 11618 case DTRACEACT_SYM: 11619 case DTRACEACT_MOD: 11620 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11621 sizeof (uint64_t)) || 11622 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11623 return (EINVAL); 11624 break; 11625 11626 case DTRACEACT_USYM: 11627 case DTRACEACT_UMOD: 11628 case DTRACEACT_UADDR: 11629 if (dp == NULL || 11630 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11632 return (EINVAL); 11633 11634 /* 11635 * We have a slot for the pid, plus a slot for the 11636 * argument. To keep things simple (aligned with 11637 * bitness-neutral sizing), we store each as a 64-bit 11638 * quantity. 11639 */ 11640 size = 2 * sizeof (uint64_t); 11641 break; 11642 11643 case DTRACEACT_STOP: 11644 case DTRACEACT_BREAKPOINT: 11645 case DTRACEACT_PANIC: 11646 break; 11647 11648 case DTRACEACT_CHILL: 11649 case DTRACEACT_DISCARD: 11650 case DTRACEACT_RAISE: 11651 if (dp == NULL) 11652 return (EINVAL); 11653 break; 11654 11655 case DTRACEACT_EXIT: 11656 if (dp == NULL || 11657 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11658 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11659 return (EINVAL); 11660 break; 11661 11662 case DTRACEACT_SPECULATE: 11663 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11664 return (EINVAL); 11665 11666 if (dp == NULL) 11667 return (EINVAL); 11668 11669 state->dts_speculates = 1; 11670 break; 11671 11672 case DTRACEACT_PRINTM: 11673 size = dp->dtdo_rtype.dtdt_size; 11674 break; 11675 11676 case DTRACEACT_COMMIT: { 11677 dtrace_action_t *act = ecb->dte_action; 11678 11679 for (; act != NULL; act = act->dta_next) { 11680 if (act->dta_kind == DTRACEACT_COMMIT) 11681 return (EINVAL); 11682 } 11683 11684 if (dp == NULL) 11685 return (EINVAL); 11686 break; 11687 } 11688 11689 default: 11690 return (EINVAL); 11691 } 11692 11693 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11694 /* 11695 * If this is a data-storing action or a speculate, 11696 * we must be sure that there isn't a commit on the 11697 * action chain. 11698 */ 11699 dtrace_action_t *act = ecb->dte_action; 11700 11701 for (; act != NULL; act = act->dta_next) { 11702 if (act->dta_kind == DTRACEACT_COMMIT) 11703 return (EINVAL); 11704 } 11705 } 11706 11707 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11708 action->dta_rec.dtrd_size = size; 11709 } 11710 11711 action->dta_refcnt = 1; 11712 rec = &action->dta_rec; 11713 size = rec->dtrd_size; 11714 11715 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11716 if (!(size & mask)) { 11717 align = mask + 1; 11718 break; 11719 } 11720 } 11721 11722 action->dta_kind = desc->dtad_kind; 11723 11724 if ((action->dta_difo = dp) != NULL) 11725 dtrace_difo_hold(dp); 11726 11727 rec->dtrd_action = action->dta_kind; 11728 rec->dtrd_arg = arg; 11729 rec->dtrd_uarg = desc->dtad_uarg; 11730 rec->dtrd_alignment = (uint16_t)align; 11731 rec->dtrd_format = format; 11732 11733 if ((last = ecb->dte_action_last) != NULL) { 11734 ASSERT(ecb->dte_action != NULL); 11735 action->dta_prev = last; 11736 last->dta_next = action; 11737 } else { 11738 ASSERT(ecb->dte_action == NULL); 11739 ecb->dte_action = action; 11740 } 11741 11742 ecb->dte_action_last = action; 11743 11744 return (0); 11745 } 11746 11747 static void 11748 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11749 { 11750 dtrace_action_t *act = ecb->dte_action, *next; 11751 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11752 dtrace_difo_t *dp; 11753 uint16_t format; 11754 11755 if (act != NULL && act->dta_refcnt > 1) { 11756 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11757 act->dta_refcnt--; 11758 } else { 11759 for (; act != NULL; act = next) { 11760 next = act->dta_next; 11761 ASSERT(next != NULL || act == ecb->dte_action_last); 11762 ASSERT(act->dta_refcnt == 1); 11763 11764 if ((format = act->dta_rec.dtrd_format) != 0) 11765 dtrace_format_remove(ecb->dte_state, format); 11766 11767 if ((dp = act->dta_difo) != NULL) 11768 dtrace_difo_release(dp, vstate); 11769 11770 if (DTRACEACT_ISAGG(act->dta_kind)) { 11771 dtrace_ecb_aggregation_destroy(ecb, act); 11772 } else { 11773 kmem_free(act, sizeof (dtrace_action_t)); 11774 } 11775 } 11776 } 11777 11778 ecb->dte_action = NULL; 11779 ecb->dte_action_last = NULL; 11780 ecb->dte_size = 0; 11781 } 11782 11783 static void 11784 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11785 { 11786 /* 11787 * We disable the ECB by removing it from its probe. 11788 */ 11789 dtrace_ecb_t *pecb, *prev = NULL; 11790 dtrace_probe_t *probe = ecb->dte_probe; 11791 11792 ASSERT(MUTEX_HELD(&dtrace_lock)); 11793 11794 if (probe == NULL) { 11795 /* 11796 * This is the NULL probe; there is nothing to disable. 11797 */ 11798 return; 11799 } 11800 11801 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11802 if (pecb == ecb) 11803 break; 11804 prev = pecb; 11805 } 11806 11807 ASSERT(pecb != NULL); 11808 11809 if (prev == NULL) { 11810 probe->dtpr_ecb = ecb->dte_next; 11811 } else { 11812 prev->dte_next = ecb->dte_next; 11813 } 11814 11815 if (ecb == probe->dtpr_ecb_last) { 11816 ASSERT(ecb->dte_next == NULL); 11817 probe->dtpr_ecb_last = prev; 11818 } 11819 11820 /* 11821 * The ECB has been disconnected from the probe; now sync to assure 11822 * that all CPUs have seen the change before returning. 11823 */ 11824 dtrace_sync(); 11825 11826 if (probe->dtpr_ecb == NULL) { 11827 /* 11828 * That was the last ECB on the probe; clear the predicate 11829 * cache ID for the probe, disable it and sync one more time 11830 * to assure that we'll never hit it again. 11831 */ 11832 dtrace_provider_t *prov = probe->dtpr_provider; 11833 11834 ASSERT(ecb->dte_next == NULL); 11835 ASSERT(probe->dtpr_ecb_last == NULL); 11836 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11837 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11838 probe->dtpr_id, probe->dtpr_arg); 11839 dtrace_sync(); 11840 } else { 11841 /* 11842 * There is at least one ECB remaining on the probe. If there 11843 * is _exactly_ one, set the probe's predicate cache ID to be 11844 * the predicate cache ID of the remaining ECB. 11845 */ 11846 ASSERT(probe->dtpr_ecb_last != NULL); 11847 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11848 11849 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11850 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11851 11852 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11853 11854 if (p != NULL) 11855 probe->dtpr_predcache = p->dtp_cacheid; 11856 } 11857 11858 ecb->dte_next = NULL; 11859 } 11860 } 11861 11862 static void 11863 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11864 { 11865 dtrace_state_t *state = ecb->dte_state; 11866 dtrace_vstate_t *vstate = &state->dts_vstate; 11867 dtrace_predicate_t *pred; 11868 dtrace_epid_t epid = ecb->dte_epid; 11869 11870 ASSERT(MUTEX_HELD(&dtrace_lock)); 11871 ASSERT(ecb->dte_next == NULL); 11872 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11873 11874 if ((pred = ecb->dte_predicate) != NULL) 11875 dtrace_predicate_release(pred, vstate); 11876 11877 dtrace_ecb_action_remove(ecb); 11878 11879 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11880 state->dts_ecbs[epid - 1] = NULL; 11881 11882 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11883 } 11884 11885 static dtrace_ecb_t * 11886 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11887 dtrace_enabling_t *enab) 11888 { 11889 dtrace_ecb_t *ecb; 11890 dtrace_predicate_t *pred; 11891 dtrace_actdesc_t *act; 11892 dtrace_provider_t *prov; 11893 dtrace_ecbdesc_t *desc = enab->dten_current; 11894 11895 ASSERT(MUTEX_HELD(&dtrace_lock)); 11896 ASSERT(state != NULL); 11897 11898 ecb = dtrace_ecb_add(state, probe); 11899 ecb->dte_uarg = desc->dted_uarg; 11900 11901 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11902 dtrace_predicate_hold(pred); 11903 ecb->dte_predicate = pred; 11904 } 11905 11906 if (probe != NULL) { 11907 /* 11908 * If the provider shows more leg than the consumer is old 11909 * enough to see, we need to enable the appropriate implicit 11910 * predicate bits to prevent the ecb from activating at 11911 * revealing times. 11912 * 11913 * Providers specifying DTRACE_PRIV_USER at register time 11914 * are stating that they need the /proc-style privilege 11915 * model to be enforced, and this is what DTRACE_COND_OWNER 11916 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11917 */ 11918 prov = probe->dtpr_provider; 11919 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11920 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11921 ecb->dte_cond |= DTRACE_COND_OWNER; 11922 11923 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11924 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11925 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11926 11927 /* 11928 * If the provider shows us kernel innards and the user 11929 * is lacking sufficient privilege, enable the 11930 * DTRACE_COND_USERMODE implicit predicate. 11931 */ 11932 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11933 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11934 ecb->dte_cond |= DTRACE_COND_USERMODE; 11935 } 11936 11937 if (dtrace_ecb_create_cache != NULL) { 11938 /* 11939 * If we have a cached ecb, we'll use its action list instead 11940 * of creating our own (saving both time and space). 11941 */ 11942 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11943 dtrace_action_t *act = cached->dte_action; 11944 11945 if (act != NULL) { 11946 ASSERT(act->dta_refcnt > 0); 11947 act->dta_refcnt++; 11948 ecb->dte_action = act; 11949 ecb->dte_action_last = cached->dte_action_last; 11950 ecb->dte_needed = cached->dte_needed; 11951 ecb->dte_size = cached->dte_size; 11952 ecb->dte_alignment = cached->dte_alignment; 11953 } 11954 11955 return (ecb); 11956 } 11957 11958 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11959 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11960 dtrace_ecb_destroy(ecb); 11961 return (NULL); 11962 } 11963 } 11964 11965 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11966 dtrace_ecb_destroy(ecb); 11967 return (NULL); 11968 } 11969 11970 return (dtrace_ecb_create_cache = ecb); 11971 } 11972 11973 static int 11974 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11975 { 11976 dtrace_ecb_t *ecb; 11977 dtrace_enabling_t *enab = arg; 11978 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11979 11980 ASSERT(state != NULL); 11981 11982 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11983 /* 11984 * This probe was created in a generation for which this 11985 * enabling has previously created ECBs; we don't want to 11986 * enable it again, so just kick out. 11987 */ 11988 return (DTRACE_MATCH_NEXT); 11989 } 11990 11991 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11992 return (DTRACE_MATCH_DONE); 11993 11994 dtrace_ecb_enable(ecb); 11995 return (DTRACE_MATCH_NEXT); 11996 } 11997 11998 static dtrace_ecb_t * 11999 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 12000 { 12001 dtrace_ecb_t *ecb; 12002 12003 ASSERT(MUTEX_HELD(&dtrace_lock)); 12004 12005 if (id == 0 || id > state->dts_necbs) 12006 return (NULL); 12007 12008 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12009 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12010 12011 return (state->dts_ecbs[id - 1]); 12012 } 12013 12014 static dtrace_aggregation_t * 12015 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12016 { 12017 dtrace_aggregation_t *agg; 12018 12019 ASSERT(MUTEX_HELD(&dtrace_lock)); 12020 12021 if (id == 0 || id > state->dts_naggregations) 12022 return (NULL); 12023 12024 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12025 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12026 agg->dtag_id == id); 12027 12028 return (state->dts_aggregations[id - 1]); 12029 } 12030 12031 /* 12032 * DTrace Buffer Functions 12033 * 12034 * The following functions manipulate DTrace buffers. Most of these functions 12035 * are called in the context of establishing or processing consumer state; 12036 * exceptions are explicitly noted. 12037 */ 12038 12039 /* 12040 * Note: called from cross call context. This function switches the two 12041 * buffers on a given CPU. The atomicity of this operation is assured by 12042 * disabling interrupts while the actual switch takes place; the disabling of 12043 * interrupts serializes the execution with any execution of dtrace_probe() on 12044 * the same CPU. 12045 */ 12046 static void 12047 dtrace_buffer_switch(dtrace_buffer_t *buf) 12048 { 12049 caddr_t tomax = buf->dtb_tomax; 12050 caddr_t xamot = buf->dtb_xamot; 12051 dtrace_icookie_t cookie; 12052 hrtime_t now; 12053 12054 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12055 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12056 12057 cookie = dtrace_interrupt_disable(); 12058 now = dtrace_gethrtime(); 12059 buf->dtb_tomax = xamot; 12060 buf->dtb_xamot = tomax; 12061 buf->dtb_xamot_drops = buf->dtb_drops; 12062 buf->dtb_xamot_offset = buf->dtb_offset; 12063 buf->dtb_xamot_errors = buf->dtb_errors; 12064 buf->dtb_xamot_flags = buf->dtb_flags; 12065 buf->dtb_offset = 0; 12066 buf->dtb_drops = 0; 12067 buf->dtb_errors = 0; 12068 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12069 buf->dtb_interval = now - buf->dtb_switched; 12070 buf->dtb_switched = now; 12071 dtrace_interrupt_enable(cookie); 12072 } 12073 12074 /* 12075 * Note: called from cross call context. This function activates a buffer 12076 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12077 * is guaranteed by the disabling of interrupts. 12078 */ 12079 static void 12080 dtrace_buffer_activate(dtrace_state_t *state) 12081 { 12082 dtrace_buffer_t *buf; 12083 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12084 12085 buf = &state->dts_buffer[curcpu]; 12086 12087 if (buf->dtb_tomax != NULL) { 12088 /* 12089 * We might like to assert that the buffer is marked inactive, 12090 * but this isn't necessarily true: the buffer for the CPU 12091 * that processes the BEGIN probe has its buffer activated 12092 * manually. In this case, we take the (harmless) action 12093 * re-clearing the bit INACTIVE bit. 12094 */ 12095 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12096 } 12097 12098 dtrace_interrupt_enable(cookie); 12099 } 12100 12101 #ifdef __FreeBSD__ 12102 /* 12103 * Activate the specified per-CPU buffer. This is used instead of 12104 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12105 * activating anonymous state. 12106 */ 12107 static void 12108 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12109 { 12110 12111 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12112 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12113 } 12114 #endif 12115 12116 static int 12117 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12118 processorid_t cpu, int *factor) 12119 { 12120 #ifdef illumos 12121 cpu_t *cp; 12122 #endif 12123 dtrace_buffer_t *buf; 12124 int allocated = 0, desired = 0; 12125 12126 #ifdef illumos 12127 ASSERT(MUTEX_HELD(&cpu_lock)); 12128 ASSERT(MUTEX_HELD(&dtrace_lock)); 12129 12130 *factor = 1; 12131 12132 if (size > dtrace_nonroot_maxsize && 12133 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12134 return (EFBIG); 12135 12136 cp = cpu_list; 12137 12138 do { 12139 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12140 continue; 12141 12142 buf = &bufs[cp->cpu_id]; 12143 12144 /* 12145 * If there is already a buffer allocated for this CPU, it 12146 * is only possible that this is a DR event. In this case, 12147 */ 12148 if (buf->dtb_tomax != NULL) { 12149 ASSERT(buf->dtb_size == size); 12150 continue; 12151 } 12152 12153 ASSERT(buf->dtb_xamot == NULL); 12154 12155 if ((buf->dtb_tomax = kmem_zalloc(size, 12156 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12157 goto err; 12158 12159 buf->dtb_size = size; 12160 buf->dtb_flags = flags; 12161 buf->dtb_offset = 0; 12162 buf->dtb_drops = 0; 12163 12164 if (flags & DTRACEBUF_NOSWITCH) 12165 continue; 12166 12167 if ((buf->dtb_xamot = kmem_zalloc(size, 12168 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12169 goto err; 12170 } while ((cp = cp->cpu_next) != cpu_list); 12171 12172 return (0); 12173 12174 err: 12175 cp = cpu_list; 12176 12177 do { 12178 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12179 continue; 12180 12181 buf = &bufs[cp->cpu_id]; 12182 desired += 2; 12183 12184 if (buf->dtb_xamot != NULL) { 12185 ASSERT(buf->dtb_tomax != NULL); 12186 ASSERT(buf->dtb_size == size); 12187 kmem_free(buf->dtb_xamot, size); 12188 allocated++; 12189 } 12190 12191 if (buf->dtb_tomax != NULL) { 12192 ASSERT(buf->dtb_size == size); 12193 kmem_free(buf->dtb_tomax, size); 12194 allocated++; 12195 } 12196 12197 buf->dtb_tomax = NULL; 12198 buf->dtb_xamot = NULL; 12199 buf->dtb_size = 0; 12200 } while ((cp = cp->cpu_next) != cpu_list); 12201 #else 12202 int i; 12203 12204 *factor = 1; 12205 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12206 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12207 /* 12208 * FreeBSD isn't good at limiting the amount of memory we 12209 * ask to malloc, so let's place a limit here before trying 12210 * to do something that might well end in tears at bedtime. 12211 */ 12212 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12213 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12214 return (ENOMEM); 12215 #endif 12216 12217 ASSERT(MUTEX_HELD(&dtrace_lock)); 12218 CPU_FOREACH(i) { 12219 if (cpu != DTRACE_CPUALL && cpu != i) 12220 continue; 12221 12222 buf = &bufs[i]; 12223 12224 /* 12225 * If there is already a buffer allocated for this CPU, it 12226 * is only possible that this is a DR event. In this case, 12227 * the buffer size must match our specified size. 12228 */ 12229 if (buf->dtb_tomax != NULL) { 12230 ASSERT(buf->dtb_size == size); 12231 continue; 12232 } 12233 12234 ASSERT(buf->dtb_xamot == NULL); 12235 12236 if ((buf->dtb_tomax = kmem_zalloc(size, 12237 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12238 goto err; 12239 12240 buf->dtb_size = size; 12241 buf->dtb_flags = flags; 12242 buf->dtb_offset = 0; 12243 buf->dtb_drops = 0; 12244 12245 if (flags & DTRACEBUF_NOSWITCH) 12246 continue; 12247 12248 if ((buf->dtb_xamot = kmem_zalloc(size, 12249 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12250 goto err; 12251 } 12252 12253 return (0); 12254 12255 err: 12256 /* 12257 * Error allocating memory, so free the buffers that were 12258 * allocated before the failed allocation. 12259 */ 12260 CPU_FOREACH(i) { 12261 if (cpu != DTRACE_CPUALL && cpu != i) 12262 continue; 12263 12264 buf = &bufs[i]; 12265 desired += 2; 12266 12267 if (buf->dtb_xamot != NULL) { 12268 ASSERT(buf->dtb_tomax != NULL); 12269 ASSERT(buf->dtb_size == size); 12270 kmem_free(buf->dtb_xamot, size); 12271 allocated++; 12272 } 12273 12274 if (buf->dtb_tomax != NULL) { 12275 ASSERT(buf->dtb_size == size); 12276 kmem_free(buf->dtb_tomax, size); 12277 allocated++; 12278 } 12279 12280 buf->dtb_tomax = NULL; 12281 buf->dtb_xamot = NULL; 12282 buf->dtb_size = 0; 12283 12284 } 12285 #endif 12286 *factor = desired / (allocated > 0 ? allocated : 1); 12287 12288 return (ENOMEM); 12289 } 12290 12291 /* 12292 * Note: called from probe context. This function just increments the drop 12293 * count on a buffer. It has been made a function to allow for the 12294 * possibility of understanding the source of mysterious drop counts. (A 12295 * problem for which one may be particularly disappointed that DTrace cannot 12296 * be used to understand DTrace.) 12297 */ 12298 static void 12299 dtrace_buffer_drop(dtrace_buffer_t *buf) 12300 { 12301 buf->dtb_drops++; 12302 } 12303 12304 /* 12305 * Note: called from probe context. This function is called to reserve space 12306 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12307 * mstate. Returns the new offset in the buffer, or a negative value if an 12308 * error has occurred. 12309 */ 12310 static intptr_t 12311 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12312 dtrace_state_t *state, dtrace_mstate_t *mstate) 12313 { 12314 intptr_t offs = buf->dtb_offset, soffs; 12315 intptr_t woffs; 12316 caddr_t tomax; 12317 size_t total; 12318 12319 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12320 return (-1); 12321 12322 if ((tomax = buf->dtb_tomax) == NULL) { 12323 dtrace_buffer_drop(buf); 12324 return (-1); 12325 } 12326 12327 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12328 while (offs & (align - 1)) { 12329 /* 12330 * Assert that our alignment is off by a number which 12331 * is itself sizeof (uint32_t) aligned. 12332 */ 12333 ASSERT(!((align - (offs & (align - 1))) & 12334 (sizeof (uint32_t) - 1))); 12335 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12336 offs += sizeof (uint32_t); 12337 } 12338 12339 if ((soffs = offs + needed) > buf->dtb_size) { 12340 dtrace_buffer_drop(buf); 12341 return (-1); 12342 } 12343 12344 if (mstate == NULL) 12345 return (offs); 12346 12347 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12348 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12349 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12350 12351 return (offs); 12352 } 12353 12354 if (buf->dtb_flags & DTRACEBUF_FILL) { 12355 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12356 (buf->dtb_flags & DTRACEBUF_FULL)) 12357 return (-1); 12358 goto out; 12359 } 12360 12361 total = needed + (offs & (align - 1)); 12362 12363 /* 12364 * For a ring buffer, life is quite a bit more complicated. Before 12365 * we can store any padding, we need to adjust our wrapping offset. 12366 * (If we've never before wrapped or we're not about to, no adjustment 12367 * is required.) 12368 */ 12369 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12370 offs + total > buf->dtb_size) { 12371 woffs = buf->dtb_xamot_offset; 12372 12373 if (offs + total > buf->dtb_size) { 12374 /* 12375 * We can't fit in the end of the buffer. First, a 12376 * sanity check that we can fit in the buffer at all. 12377 */ 12378 if (total > buf->dtb_size) { 12379 dtrace_buffer_drop(buf); 12380 return (-1); 12381 } 12382 12383 /* 12384 * We're going to be storing at the top of the buffer, 12385 * so now we need to deal with the wrapped offset. We 12386 * only reset our wrapped offset to 0 if it is 12387 * currently greater than the current offset. If it 12388 * is less than the current offset, it is because a 12389 * previous allocation induced a wrap -- but the 12390 * allocation didn't subsequently take the space due 12391 * to an error or false predicate evaluation. In this 12392 * case, we'll just leave the wrapped offset alone: if 12393 * the wrapped offset hasn't been advanced far enough 12394 * for this allocation, it will be adjusted in the 12395 * lower loop. 12396 */ 12397 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12398 if (woffs >= offs) 12399 woffs = 0; 12400 } else { 12401 woffs = 0; 12402 } 12403 12404 /* 12405 * Now we know that we're going to be storing to the 12406 * top of the buffer and that there is room for us 12407 * there. We need to clear the buffer from the current 12408 * offset to the end (there may be old gunk there). 12409 */ 12410 while (offs < buf->dtb_size) 12411 tomax[offs++] = 0; 12412 12413 /* 12414 * We need to set our offset to zero. And because we 12415 * are wrapping, we need to set the bit indicating as 12416 * much. We can also adjust our needed space back 12417 * down to the space required by the ECB -- we know 12418 * that the top of the buffer is aligned. 12419 */ 12420 offs = 0; 12421 total = needed; 12422 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12423 } else { 12424 /* 12425 * There is room for us in the buffer, so we simply 12426 * need to check the wrapped offset. 12427 */ 12428 if (woffs < offs) { 12429 /* 12430 * The wrapped offset is less than the offset. 12431 * This can happen if we allocated buffer space 12432 * that induced a wrap, but then we didn't 12433 * subsequently take the space due to an error 12434 * or false predicate evaluation. This is 12435 * okay; we know that _this_ allocation isn't 12436 * going to induce a wrap. We still can't 12437 * reset the wrapped offset to be zero, 12438 * however: the space may have been trashed in 12439 * the previous failed probe attempt. But at 12440 * least the wrapped offset doesn't need to 12441 * be adjusted at all... 12442 */ 12443 goto out; 12444 } 12445 } 12446 12447 while (offs + total > woffs) { 12448 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12449 size_t size; 12450 12451 if (epid == DTRACE_EPIDNONE) { 12452 size = sizeof (uint32_t); 12453 } else { 12454 ASSERT3U(epid, <=, state->dts_necbs); 12455 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12456 12457 size = state->dts_ecbs[epid - 1]->dte_size; 12458 } 12459 12460 ASSERT(woffs + size <= buf->dtb_size); 12461 ASSERT(size != 0); 12462 12463 if (woffs + size == buf->dtb_size) { 12464 /* 12465 * We've reached the end of the buffer; we want 12466 * to set the wrapped offset to 0 and break 12467 * out. However, if the offs is 0, then we're 12468 * in a strange edge-condition: the amount of 12469 * space that we want to reserve plus the size 12470 * of the record that we're overwriting is 12471 * greater than the size of the buffer. This 12472 * is problematic because if we reserve the 12473 * space but subsequently don't consume it (due 12474 * to a failed predicate or error) the wrapped 12475 * offset will be 0 -- yet the EPID at offset 0 12476 * will not be committed. This situation is 12477 * relatively easy to deal with: if we're in 12478 * this case, the buffer is indistinguishable 12479 * from one that hasn't wrapped; we need only 12480 * finish the job by clearing the wrapped bit, 12481 * explicitly setting the offset to be 0, and 12482 * zero'ing out the old data in the buffer. 12483 */ 12484 if (offs == 0) { 12485 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12486 buf->dtb_offset = 0; 12487 woffs = total; 12488 12489 while (woffs < buf->dtb_size) 12490 tomax[woffs++] = 0; 12491 } 12492 12493 woffs = 0; 12494 break; 12495 } 12496 12497 woffs += size; 12498 } 12499 12500 /* 12501 * We have a wrapped offset. It may be that the wrapped offset 12502 * has become zero -- that's okay. 12503 */ 12504 buf->dtb_xamot_offset = woffs; 12505 } 12506 12507 out: 12508 /* 12509 * Now we can plow the buffer with any necessary padding. 12510 */ 12511 while (offs & (align - 1)) { 12512 /* 12513 * Assert that our alignment is off by a number which 12514 * is itself sizeof (uint32_t) aligned. 12515 */ 12516 ASSERT(!((align - (offs & (align - 1))) & 12517 (sizeof (uint32_t) - 1))); 12518 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12519 offs += sizeof (uint32_t); 12520 } 12521 12522 if (buf->dtb_flags & DTRACEBUF_FILL) { 12523 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12524 buf->dtb_flags |= DTRACEBUF_FULL; 12525 return (-1); 12526 } 12527 } 12528 12529 if (mstate == NULL) 12530 return (offs); 12531 12532 /* 12533 * For ring buffers and fill buffers, the scratch space is always 12534 * the inactive buffer. 12535 */ 12536 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12537 mstate->dtms_scratch_size = buf->dtb_size; 12538 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12539 12540 return (offs); 12541 } 12542 12543 static void 12544 dtrace_buffer_polish(dtrace_buffer_t *buf) 12545 { 12546 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12547 ASSERT(MUTEX_HELD(&dtrace_lock)); 12548 12549 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12550 return; 12551 12552 /* 12553 * We need to polish the ring buffer. There are three cases: 12554 * 12555 * - The first (and presumably most common) is that there is no gap 12556 * between the buffer offset and the wrapped offset. In this case, 12557 * there is nothing in the buffer that isn't valid data; we can 12558 * mark the buffer as polished and return. 12559 * 12560 * - The second (less common than the first but still more common 12561 * than the third) is that there is a gap between the buffer offset 12562 * and the wrapped offset, and the wrapped offset is larger than the 12563 * buffer offset. This can happen because of an alignment issue, or 12564 * can happen because of a call to dtrace_buffer_reserve() that 12565 * didn't subsequently consume the buffer space. In this case, 12566 * we need to zero the data from the buffer offset to the wrapped 12567 * offset. 12568 * 12569 * - The third (and least common) is that there is a gap between the 12570 * buffer offset and the wrapped offset, but the wrapped offset is 12571 * _less_ than the buffer offset. This can only happen because a 12572 * call to dtrace_buffer_reserve() induced a wrap, but the space 12573 * was not subsequently consumed. In this case, we need to zero the 12574 * space from the offset to the end of the buffer _and_ from the 12575 * top of the buffer to the wrapped offset. 12576 */ 12577 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12578 bzero(buf->dtb_tomax + buf->dtb_offset, 12579 buf->dtb_xamot_offset - buf->dtb_offset); 12580 } 12581 12582 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12583 bzero(buf->dtb_tomax + buf->dtb_offset, 12584 buf->dtb_size - buf->dtb_offset); 12585 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12586 } 12587 } 12588 12589 /* 12590 * This routine determines if data generated at the specified time has likely 12591 * been entirely consumed at user-level. This routine is called to determine 12592 * if an ECB on a defunct probe (but for an active enabling) can be safely 12593 * disabled and destroyed. 12594 */ 12595 static int 12596 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12597 { 12598 int i; 12599 12600 for (i = 0; i < NCPU; i++) { 12601 dtrace_buffer_t *buf = &bufs[i]; 12602 12603 if (buf->dtb_size == 0) 12604 continue; 12605 12606 if (buf->dtb_flags & DTRACEBUF_RING) 12607 return (0); 12608 12609 if (!buf->dtb_switched && buf->dtb_offset != 0) 12610 return (0); 12611 12612 if (buf->dtb_switched - buf->dtb_interval < when) 12613 return (0); 12614 } 12615 12616 return (1); 12617 } 12618 12619 static void 12620 dtrace_buffer_free(dtrace_buffer_t *bufs) 12621 { 12622 int i; 12623 12624 for (i = 0; i < NCPU; i++) { 12625 dtrace_buffer_t *buf = &bufs[i]; 12626 12627 if (buf->dtb_tomax == NULL) { 12628 ASSERT(buf->dtb_xamot == NULL); 12629 ASSERT(buf->dtb_size == 0); 12630 continue; 12631 } 12632 12633 if (buf->dtb_xamot != NULL) { 12634 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12635 kmem_free(buf->dtb_xamot, buf->dtb_size); 12636 } 12637 12638 kmem_free(buf->dtb_tomax, buf->dtb_size); 12639 buf->dtb_size = 0; 12640 buf->dtb_tomax = NULL; 12641 buf->dtb_xamot = NULL; 12642 } 12643 } 12644 12645 /* 12646 * DTrace Enabling Functions 12647 */ 12648 static dtrace_enabling_t * 12649 dtrace_enabling_create(dtrace_vstate_t *vstate) 12650 { 12651 dtrace_enabling_t *enab; 12652 12653 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12654 enab->dten_vstate = vstate; 12655 12656 return (enab); 12657 } 12658 12659 static void 12660 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12661 { 12662 dtrace_ecbdesc_t **ndesc; 12663 size_t osize, nsize; 12664 12665 /* 12666 * We can't add to enablings after we've enabled them, or after we've 12667 * retained them. 12668 */ 12669 ASSERT(enab->dten_probegen == 0); 12670 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12671 12672 if (enab->dten_ndesc < enab->dten_maxdesc) { 12673 enab->dten_desc[enab->dten_ndesc++] = ecb; 12674 return; 12675 } 12676 12677 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12678 12679 if (enab->dten_maxdesc == 0) { 12680 enab->dten_maxdesc = 1; 12681 } else { 12682 enab->dten_maxdesc <<= 1; 12683 } 12684 12685 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12686 12687 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12688 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12689 bcopy(enab->dten_desc, ndesc, osize); 12690 if (enab->dten_desc != NULL) 12691 kmem_free(enab->dten_desc, osize); 12692 12693 enab->dten_desc = ndesc; 12694 enab->dten_desc[enab->dten_ndesc++] = ecb; 12695 } 12696 12697 static void 12698 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12699 dtrace_probedesc_t *pd) 12700 { 12701 dtrace_ecbdesc_t *new; 12702 dtrace_predicate_t *pred; 12703 dtrace_actdesc_t *act; 12704 12705 /* 12706 * We're going to create a new ECB description that matches the 12707 * specified ECB in every way, but has the specified probe description. 12708 */ 12709 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12710 12711 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12712 dtrace_predicate_hold(pred); 12713 12714 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12715 dtrace_actdesc_hold(act); 12716 12717 new->dted_action = ecb->dted_action; 12718 new->dted_pred = ecb->dted_pred; 12719 new->dted_probe = *pd; 12720 new->dted_uarg = ecb->dted_uarg; 12721 12722 dtrace_enabling_add(enab, new); 12723 } 12724 12725 static void 12726 dtrace_enabling_dump(dtrace_enabling_t *enab) 12727 { 12728 int i; 12729 12730 for (i = 0; i < enab->dten_ndesc; i++) { 12731 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12732 12733 #ifdef __FreeBSD__ 12734 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12735 desc->dtpd_provider, desc->dtpd_mod, 12736 desc->dtpd_func, desc->dtpd_name); 12737 #else 12738 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12739 desc->dtpd_provider, desc->dtpd_mod, 12740 desc->dtpd_func, desc->dtpd_name); 12741 #endif 12742 } 12743 } 12744 12745 static void 12746 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12747 { 12748 int i; 12749 dtrace_ecbdesc_t *ep; 12750 dtrace_vstate_t *vstate = enab->dten_vstate; 12751 12752 ASSERT(MUTEX_HELD(&dtrace_lock)); 12753 12754 for (i = 0; i < enab->dten_ndesc; i++) { 12755 dtrace_actdesc_t *act, *next; 12756 dtrace_predicate_t *pred; 12757 12758 ep = enab->dten_desc[i]; 12759 12760 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12761 dtrace_predicate_release(pred, vstate); 12762 12763 for (act = ep->dted_action; act != NULL; act = next) { 12764 next = act->dtad_next; 12765 dtrace_actdesc_release(act, vstate); 12766 } 12767 12768 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12769 } 12770 12771 if (enab->dten_desc != NULL) 12772 kmem_free(enab->dten_desc, 12773 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12774 12775 /* 12776 * If this was a retained enabling, decrement the dts_nretained count 12777 * and take it off of the dtrace_retained list. 12778 */ 12779 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12780 dtrace_retained == enab) { 12781 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12782 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12783 enab->dten_vstate->dtvs_state->dts_nretained--; 12784 dtrace_retained_gen++; 12785 } 12786 12787 if (enab->dten_prev == NULL) { 12788 if (dtrace_retained == enab) { 12789 dtrace_retained = enab->dten_next; 12790 12791 if (dtrace_retained != NULL) 12792 dtrace_retained->dten_prev = NULL; 12793 } 12794 } else { 12795 ASSERT(enab != dtrace_retained); 12796 ASSERT(dtrace_retained != NULL); 12797 enab->dten_prev->dten_next = enab->dten_next; 12798 } 12799 12800 if (enab->dten_next != NULL) { 12801 ASSERT(dtrace_retained != NULL); 12802 enab->dten_next->dten_prev = enab->dten_prev; 12803 } 12804 12805 kmem_free(enab, sizeof (dtrace_enabling_t)); 12806 } 12807 12808 static int 12809 dtrace_enabling_retain(dtrace_enabling_t *enab) 12810 { 12811 dtrace_state_t *state; 12812 12813 ASSERT(MUTEX_HELD(&dtrace_lock)); 12814 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12815 ASSERT(enab->dten_vstate != NULL); 12816 12817 state = enab->dten_vstate->dtvs_state; 12818 ASSERT(state != NULL); 12819 12820 /* 12821 * We only allow each state to retain dtrace_retain_max enablings. 12822 */ 12823 if (state->dts_nretained >= dtrace_retain_max) 12824 return (ENOSPC); 12825 12826 state->dts_nretained++; 12827 dtrace_retained_gen++; 12828 12829 if (dtrace_retained == NULL) { 12830 dtrace_retained = enab; 12831 return (0); 12832 } 12833 12834 enab->dten_next = dtrace_retained; 12835 dtrace_retained->dten_prev = enab; 12836 dtrace_retained = enab; 12837 12838 return (0); 12839 } 12840 12841 static int 12842 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12843 dtrace_probedesc_t *create) 12844 { 12845 dtrace_enabling_t *new, *enab; 12846 int found = 0, err = ENOENT; 12847 12848 ASSERT(MUTEX_HELD(&dtrace_lock)); 12849 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12850 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12851 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12852 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12853 12854 new = dtrace_enabling_create(&state->dts_vstate); 12855 12856 /* 12857 * Iterate over all retained enablings, looking for enablings that 12858 * match the specified state. 12859 */ 12860 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12861 int i; 12862 12863 /* 12864 * dtvs_state can only be NULL for helper enablings -- and 12865 * helper enablings can't be retained. 12866 */ 12867 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12868 12869 if (enab->dten_vstate->dtvs_state != state) 12870 continue; 12871 12872 /* 12873 * Now iterate over each probe description; we're looking for 12874 * an exact match to the specified probe description. 12875 */ 12876 for (i = 0; i < enab->dten_ndesc; i++) { 12877 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12878 dtrace_probedesc_t *pd = &ep->dted_probe; 12879 12880 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12881 continue; 12882 12883 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12884 continue; 12885 12886 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12887 continue; 12888 12889 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12890 continue; 12891 12892 /* 12893 * We have a winning probe! Add it to our growing 12894 * enabling. 12895 */ 12896 found = 1; 12897 dtrace_enabling_addlike(new, ep, create); 12898 } 12899 } 12900 12901 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12902 dtrace_enabling_destroy(new); 12903 return (err); 12904 } 12905 12906 return (0); 12907 } 12908 12909 static void 12910 dtrace_enabling_retract(dtrace_state_t *state) 12911 { 12912 dtrace_enabling_t *enab, *next; 12913 12914 ASSERT(MUTEX_HELD(&dtrace_lock)); 12915 12916 /* 12917 * Iterate over all retained enablings, destroy the enablings retained 12918 * for the specified state. 12919 */ 12920 for (enab = dtrace_retained; enab != NULL; enab = next) { 12921 next = enab->dten_next; 12922 12923 /* 12924 * dtvs_state can only be NULL for helper enablings -- and 12925 * helper enablings can't be retained. 12926 */ 12927 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12928 12929 if (enab->dten_vstate->dtvs_state == state) { 12930 ASSERT(state->dts_nretained > 0); 12931 dtrace_enabling_destroy(enab); 12932 } 12933 } 12934 12935 ASSERT(state->dts_nretained == 0); 12936 } 12937 12938 static int 12939 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12940 { 12941 int i = 0; 12942 int matched = 0; 12943 12944 ASSERT(MUTEX_HELD(&cpu_lock)); 12945 ASSERT(MUTEX_HELD(&dtrace_lock)); 12946 12947 for (i = 0; i < enab->dten_ndesc; i++) { 12948 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12949 12950 enab->dten_current = ep; 12951 enab->dten_error = 0; 12952 12953 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12954 12955 if (enab->dten_error != 0) { 12956 /* 12957 * If we get an error half-way through enabling the 12958 * probes, we kick out -- perhaps with some number of 12959 * them enabled. Leaving enabled probes enabled may 12960 * be slightly confusing for user-level, but we expect 12961 * that no one will attempt to actually drive on in 12962 * the face of such errors. If this is an anonymous 12963 * enabling (indicated with a NULL nmatched pointer), 12964 * we cmn_err() a message. We aren't expecting to 12965 * get such an error -- such as it can exist at all, 12966 * it would be a result of corrupted DOF in the driver 12967 * properties. 12968 */ 12969 if (nmatched == NULL) { 12970 cmn_err(CE_WARN, "dtrace_enabling_match() " 12971 "error on %p: %d", (void *)ep, 12972 enab->dten_error); 12973 } 12974 12975 return (enab->dten_error); 12976 } 12977 } 12978 12979 enab->dten_probegen = dtrace_probegen; 12980 if (nmatched != NULL) 12981 *nmatched = matched; 12982 12983 return (0); 12984 } 12985 12986 static void 12987 dtrace_enabling_matchall(void) 12988 { 12989 dtrace_enabling_t *enab; 12990 12991 mutex_enter(&cpu_lock); 12992 mutex_enter(&dtrace_lock); 12993 12994 /* 12995 * Iterate over all retained enablings to see if any probes match 12996 * against them. We only perform this operation on enablings for which 12997 * we have sufficient permissions by virtue of being in the global zone 12998 * or in the same zone as the DTrace client. Because we can be called 12999 * after dtrace_detach() has been called, we cannot assert that there 13000 * are retained enablings. We can safely load from dtrace_retained, 13001 * however: the taskq_destroy() at the end of dtrace_detach() will 13002 * block pending our completion. 13003 */ 13004 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13005 #ifdef illumos 13006 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13007 13008 if (INGLOBALZONE(curproc) || 13009 cr != NULL && getzoneid() == crgetzoneid(cr)) 13010 #endif 13011 (void) dtrace_enabling_match(enab, NULL); 13012 } 13013 13014 mutex_exit(&dtrace_lock); 13015 mutex_exit(&cpu_lock); 13016 } 13017 13018 /* 13019 * If an enabling is to be enabled without having matched probes (that is, if 13020 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13021 * enabling must be _primed_ by creating an ECB for every ECB description. 13022 * This must be done to assure that we know the number of speculations, the 13023 * number of aggregations, the minimum buffer size needed, etc. before we 13024 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13025 * enabling any probes, we create ECBs for every ECB decription, but with a 13026 * NULL probe -- which is exactly what this function does. 13027 */ 13028 static void 13029 dtrace_enabling_prime(dtrace_state_t *state) 13030 { 13031 dtrace_enabling_t *enab; 13032 int i; 13033 13034 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13035 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13036 13037 if (enab->dten_vstate->dtvs_state != state) 13038 continue; 13039 13040 /* 13041 * We don't want to prime an enabling more than once, lest 13042 * we allow a malicious user to induce resource exhaustion. 13043 * (The ECBs that result from priming an enabling aren't 13044 * leaked -- but they also aren't deallocated until the 13045 * consumer state is destroyed.) 13046 */ 13047 if (enab->dten_primed) 13048 continue; 13049 13050 for (i = 0; i < enab->dten_ndesc; i++) { 13051 enab->dten_current = enab->dten_desc[i]; 13052 (void) dtrace_probe_enable(NULL, enab); 13053 } 13054 13055 enab->dten_primed = 1; 13056 } 13057 } 13058 13059 /* 13060 * Called to indicate that probes should be provided due to retained 13061 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13062 * must take an initial lap through the enabling calling the dtps_provide() 13063 * entry point explicitly to allow for autocreated probes. 13064 */ 13065 static void 13066 dtrace_enabling_provide(dtrace_provider_t *prv) 13067 { 13068 int i, all = 0; 13069 dtrace_probedesc_t desc; 13070 dtrace_genid_t gen; 13071 13072 ASSERT(MUTEX_HELD(&dtrace_lock)); 13073 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13074 13075 if (prv == NULL) { 13076 all = 1; 13077 prv = dtrace_provider; 13078 } 13079 13080 do { 13081 dtrace_enabling_t *enab; 13082 void *parg = prv->dtpv_arg; 13083 13084 retry: 13085 gen = dtrace_retained_gen; 13086 for (enab = dtrace_retained; enab != NULL; 13087 enab = enab->dten_next) { 13088 for (i = 0; i < enab->dten_ndesc; i++) { 13089 desc = enab->dten_desc[i]->dted_probe; 13090 mutex_exit(&dtrace_lock); 13091 prv->dtpv_pops.dtps_provide(parg, &desc); 13092 mutex_enter(&dtrace_lock); 13093 /* 13094 * Process the retained enablings again if 13095 * they have changed while we weren't holding 13096 * dtrace_lock. 13097 */ 13098 if (gen != dtrace_retained_gen) 13099 goto retry; 13100 } 13101 } 13102 } while (all && (prv = prv->dtpv_next) != NULL); 13103 13104 mutex_exit(&dtrace_lock); 13105 dtrace_probe_provide(NULL, all ? NULL : prv); 13106 mutex_enter(&dtrace_lock); 13107 } 13108 13109 /* 13110 * Called to reap ECBs that are attached to probes from defunct providers. 13111 */ 13112 static void 13113 dtrace_enabling_reap(void) 13114 { 13115 dtrace_provider_t *prov; 13116 dtrace_probe_t *probe; 13117 dtrace_ecb_t *ecb; 13118 hrtime_t when; 13119 int i; 13120 13121 mutex_enter(&cpu_lock); 13122 mutex_enter(&dtrace_lock); 13123 13124 for (i = 0; i < dtrace_nprobes; i++) { 13125 if ((probe = dtrace_probes[i]) == NULL) 13126 continue; 13127 13128 if (probe->dtpr_ecb == NULL) 13129 continue; 13130 13131 prov = probe->dtpr_provider; 13132 13133 if ((when = prov->dtpv_defunct) == 0) 13134 continue; 13135 13136 /* 13137 * We have ECBs on a defunct provider: we want to reap these 13138 * ECBs to allow the provider to unregister. The destruction 13139 * of these ECBs must be done carefully: if we destroy the ECB 13140 * and the consumer later wishes to consume an EPID that 13141 * corresponds to the destroyed ECB (and if the EPID metadata 13142 * has not been previously consumed), the consumer will abort 13143 * processing on the unknown EPID. To reduce (but not, sadly, 13144 * eliminate) the possibility of this, we will only destroy an 13145 * ECB for a defunct provider if, for the state that 13146 * corresponds to the ECB: 13147 * 13148 * (a) There is no speculative tracing (which can effectively 13149 * cache an EPID for an arbitrary amount of time). 13150 * 13151 * (b) The principal buffers have been switched twice since the 13152 * provider became defunct. 13153 * 13154 * (c) The aggregation buffers are of zero size or have been 13155 * switched twice since the provider became defunct. 13156 * 13157 * We use dts_speculates to determine (a) and call a function 13158 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13159 * that as soon as we've been unable to destroy one of the ECBs 13160 * associated with the probe, we quit trying -- reaping is only 13161 * fruitful in as much as we can destroy all ECBs associated 13162 * with the defunct provider's probes. 13163 */ 13164 while ((ecb = probe->dtpr_ecb) != NULL) { 13165 dtrace_state_t *state = ecb->dte_state; 13166 dtrace_buffer_t *buf = state->dts_buffer; 13167 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13168 13169 if (state->dts_speculates) 13170 break; 13171 13172 if (!dtrace_buffer_consumed(buf, when)) 13173 break; 13174 13175 if (!dtrace_buffer_consumed(aggbuf, when)) 13176 break; 13177 13178 dtrace_ecb_disable(ecb); 13179 ASSERT(probe->dtpr_ecb != ecb); 13180 dtrace_ecb_destroy(ecb); 13181 } 13182 } 13183 13184 mutex_exit(&dtrace_lock); 13185 mutex_exit(&cpu_lock); 13186 } 13187 13188 /* 13189 * DTrace DOF Functions 13190 */ 13191 /*ARGSUSED*/ 13192 static void 13193 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13194 { 13195 if (dtrace_err_verbose) 13196 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13197 13198 #ifdef DTRACE_ERRDEBUG 13199 dtrace_errdebug(str); 13200 #endif 13201 } 13202 13203 /* 13204 * Create DOF out of a currently enabled state. Right now, we only create 13205 * DOF containing the run-time options -- but this could be expanded to create 13206 * complete DOF representing the enabled state. 13207 */ 13208 static dof_hdr_t * 13209 dtrace_dof_create(dtrace_state_t *state) 13210 { 13211 dof_hdr_t *dof; 13212 dof_sec_t *sec; 13213 dof_optdesc_t *opt; 13214 int i, len = sizeof (dof_hdr_t) + 13215 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13216 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13217 13218 ASSERT(MUTEX_HELD(&dtrace_lock)); 13219 13220 dof = kmem_zalloc(len, KM_SLEEP); 13221 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13222 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13223 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13224 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13225 13226 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13227 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13228 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13229 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13230 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13231 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13232 13233 dof->dofh_flags = 0; 13234 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13235 dof->dofh_secsize = sizeof (dof_sec_t); 13236 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13237 dof->dofh_secoff = sizeof (dof_hdr_t); 13238 dof->dofh_loadsz = len; 13239 dof->dofh_filesz = len; 13240 dof->dofh_pad = 0; 13241 13242 /* 13243 * Fill in the option section header... 13244 */ 13245 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13246 sec->dofs_type = DOF_SECT_OPTDESC; 13247 sec->dofs_align = sizeof (uint64_t); 13248 sec->dofs_flags = DOF_SECF_LOAD; 13249 sec->dofs_entsize = sizeof (dof_optdesc_t); 13250 13251 opt = (dof_optdesc_t *)((uintptr_t)sec + 13252 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13253 13254 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13255 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13256 13257 for (i = 0; i < DTRACEOPT_MAX; i++) { 13258 opt[i].dofo_option = i; 13259 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13260 opt[i].dofo_value = state->dts_options[i]; 13261 } 13262 13263 return (dof); 13264 } 13265 13266 static dof_hdr_t * 13267 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13268 { 13269 dof_hdr_t hdr, *dof; 13270 13271 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13272 13273 /* 13274 * First, we're going to copyin() the sizeof (dof_hdr_t). 13275 */ 13276 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13277 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13278 *errp = EFAULT; 13279 return (NULL); 13280 } 13281 13282 /* 13283 * Now we'll allocate the entire DOF and copy it in -- provided 13284 * that the length isn't outrageous. 13285 */ 13286 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13287 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13288 *errp = E2BIG; 13289 return (NULL); 13290 } 13291 13292 if (hdr.dofh_loadsz < sizeof (hdr)) { 13293 dtrace_dof_error(&hdr, "invalid load size"); 13294 *errp = EINVAL; 13295 return (NULL); 13296 } 13297 13298 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13299 13300 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13301 dof->dofh_loadsz != hdr.dofh_loadsz) { 13302 kmem_free(dof, hdr.dofh_loadsz); 13303 *errp = EFAULT; 13304 return (NULL); 13305 } 13306 13307 return (dof); 13308 } 13309 13310 #ifdef __FreeBSD__ 13311 static dof_hdr_t * 13312 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13313 { 13314 dof_hdr_t hdr, *dof; 13315 struct thread *td; 13316 size_t loadsz; 13317 13318 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13319 13320 td = curthread; 13321 13322 /* 13323 * First, we're going to copyin() the sizeof (dof_hdr_t). 13324 */ 13325 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13326 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13327 *errp = EFAULT; 13328 return (NULL); 13329 } 13330 13331 /* 13332 * Now we'll allocate the entire DOF and copy it in -- provided 13333 * that the length isn't outrageous. 13334 */ 13335 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13336 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13337 *errp = E2BIG; 13338 return (NULL); 13339 } 13340 loadsz = (size_t)hdr.dofh_loadsz; 13341 13342 if (loadsz < sizeof (hdr)) { 13343 dtrace_dof_error(&hdr, "invalid load size"); 13344 *errp = EINVAL; 13345 return (NULL); 13346 } 13347 13348 dof = kmem_alloc(loadsz, KM_SLEEP); 13349 13350 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13351 dof->dofh_loadsz != loadsz) { 13352 kmem_free(dof, hdr.dofh_loadsz); 13353 *errp = EFAULT; 13354 return (NULL); 13355 } 13356 13357 return (dof); 13358 } 13359 13360 static __inline uchar_t 13361 dtrace_dof_char(char c) 13362 { 13363 13364 switch (c) { 13365 case '0': 13366 case '1': 13367 case '2': 13368 case '3': 13369 case '4': 13370 case '5': 13371 case '6': 13372 case '7': 13373 case '8': 13374 case '9': 13375 return (c - '0'); 13376 case 'A': 13377 case 'B': 13378 case 'C': 13379 case 'D': 13380 case 'E': 13381 case 'F': 13382 return (c - 'A' + 10); 13383 case 'a': 13384 case 'b': 13385 case 'c': 13386 case 'd': 13387 case 'e': 13388 case 'f': 13389 return (c - 'a' + 10); 13390 } 13391 /* Should not reach here. */ 13392 return (UCHAR_MAX); 13393 } 13394 #endif /* __FreeBSD__ */ 13395 13396 static dof_hdr_t * 13397 dtrace_dof_property(const char *name) 13398 { 13399 #ifdef __FreeBSD__ 13400 uint8_t *dofbuf; 13401 u_char *data, *eol; 13402 caddr_t doffile; 13403 size_t bytes, len, i; 13404 dof_hdr_t *dof; 13405 u_char c1, c2; 13406 13407 dof = NULL; 13408 13409 doffile = preload_search_by_type("dtrace_dof"); 13410 if (doffile == NULL) 13411 return (NULL); 13412 13413 data = preload_fetch_addr(doffile); 13414 len = preload_fetch_size(doffile); 13415 for (;;) { 13416 /* Look for the end of the line. All lines end in a newline. */ 13417 eol = memchr(data, '\n', len); 13418 if (eol == NULL) 13419 return (NULL); 13420 13421 if (strncmp(name, data, strlen(name)) == 0) 13422 break; 13423 13424 eol++; /* skip past the newline */ 13425 len -= eol - data; 13426 data = eol; 13427 } 13428 13429 /* We've found the data corresponding to the specified key. */ 13430 13431 data += strlen(name) + 1; /* skip past the '=' */ 13432 len = eol - data; 13433 if (len % 2 != 0) { 13434 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13435 goto doferr; 13436 } 13437 bytes = len / 2; 13438 if (bytes < sizeof(dof_hdr_t)) { 13439 dtrace_dof_error(NULL, "truncated header"); 13440 goto doferr; 13441 } 13442 13443 /* 13444 * Each byte is represented by the two ASCII characters in its hex 13445 * representation. 13446 */ 13447 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13448 for (i = 0; i < bytes; i++) { 13449 c1 = dtrace_dof_char(data[i * 2]); 13450 c2 = dtrace_dof_char(data[i * 2 + 1]); 13451 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13452 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13453 goto doferr; 13454 } 13455 dofbuf[i] = c1 * 16 + c2; 13456 } 13457 13458 dof = (dof_hdr_t *)dofbuf; 13459 if (bytes < dof->dofh_loadsz) { 13460 dtrace_dof_error(NULL, "truncated DOF"); 13461 goto doferr; 13462 } 13463 13464 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13465 dtrace_dof_error(NULL, "oversized DOF"); 13466 goto doferr; 13467 } 13468 13469 return (dof); 13470 13471 doferr: 13472 free(dof, M_SOLARIS); 13473 return (NULL); 13474 #else /* __FreeBSD__ */ 13475 uchar_t *buf; 13476 uint64_t loadsz; 13477 unsigned int len, i; 13478 dof_hdr_t *dof; 13479 13480 /* 13481 * Unfortunately, array of values in .conf files are always (and 13482 * only) interpreted to be integer arrays. We must read our DOF 13483 * as an integer array, and then squeeze it into a byte array. 13484 */ 13485 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13486 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13487 return (NULL); 13488 13489 for (i = 0; i < len; i++) 13490 buf[i] = (uchar_t)(((int *)buf)[i]); 13491 13492 if (len < sizeof (dof_hdr_t)) { 13493 ddi_prop_free(buf); 13494 dtrace_dof_error(NULL, "truncated header"); 13495 return (NULL); 13496 } 13497 13498 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13499 ddi_prop_free(buf); 13500 dtrace_dof_error(NULL, "truncated DOF"); 13501 return (NULL); 13502 } 13503 13504 if (loadsz >= dtrace_dof_maxsize) { 13505 ddi_prop_free(buf); 13506 dtrace_dof_error(NULL, "oversized DOF"); 13507 return (NULL); 13508 } 13509 13510 dof = kmem_alloc(loadsz, KM_SLEEP); 13511 bcopy(buf, dof, loadsz); 13512 ddi_prop_free(buf); 13513 13514 return (dof); 13515 #endif /* !__FreeBSD__ */ 13516 } 13517 13518 static void 13519 dtrace_dof_destroy(dof_hdr_t *dof) 13520 { 13521 kmem_free(dof, dof->dofh_loadsz); 13522 } 13523 13524 /* 13525 * Return the dof_sec_t pointer corresponding to a given section index. If the 13526 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13527 * a type other than DOF_SECT_NONE is specified, the header is checked against 13528 * this type and NULL is returned if the types do not match. 13529 */ 13530 static dof_sec_t * 13531 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13532 { 13533 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13534 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13535 13536 if (i >= dof->dofh_secnum) { 13537 dtrace_dof_error(dof, "referenced section index is invalid"); 13538 return (NULL); 13539 } 13540 13541 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13542 dtrace_dof_error(dof, "referenced section is not loadable"); 13543 return (NULL); 13544 } 13545 13546 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13547 dtrace_dof_error(dof, "referenced section is the wrong type"); 13548 return (NULL); 13549 } 13550 13551 return (sec); 13552 } 13553 13554 static dtrace_probedesc_t * 13555 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13556 { 13557 dof_probedesc_t *probe; 13558 dof_sec_t *strtab; 13559 uintptr_t daddr = (uintptr_t)dof; 13560 uintptr_t str; 13561 size_t size; 13562 13563 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13564 dtrace_dof_error(dof, "invalid probe section"); 13565 return (NULL); 13566 } 13567 13568 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13569 dtrace_dof_error(dof, "bad alignment in probe description"); 13570 return (NULL); 13571 } 13572 13573 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13574 dtrace_dof_error(dof, "truncated probe description"); 13575 return (NULL); 13576 } 13577 13578 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13579 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13580 13581 if (strtab == NULL) 13582 return (NULL); 13583 13584 str = daddr + strtab->dofs_offset; 13585 size = strtab->dofs_size; 13586 13587 if (probe->dofp_provider >= strtab->dofs_size) { 13588 dtrace_dof_error(dof, "corrupt probe provider"); 13589 return (NULL); 13590 } 13591 13592 (void) strncpy(desc->dtpd_provider, 13593 (char *)(str + probe->dofp_provider), 13594 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13595 13596 if (probe->dofp_mod >= strtab->dofs_size) { 13597 dtrace_dof_error(dof, "corrupt probe module"); 13598 return (NULL); 13599 } 13600 13601 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13602 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13603 13604 if (probe->dofp_func >= strtab->dofs_size) { 13605 dtrace_dof_error(dof, "corrupt probe function"); 13606 return (NULL); 13607 } 13608 13609 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13610 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13611 13612 if (probe->dofp_name >= strtab->dofs_size) { 13613 dtrace_dof_error(dof, "corrupt probe name"); 13614 return (NULL); 13615 } 13616 13617 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13618 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13619 13620 return (desc); 13621 } 13622 13623 static dtrace_difo_t * 13624 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13625 cred_t *cr) 13626 { 13627 dtrace_difo_t *dp; 13628 size_t ttl = 0; 13629 dof_difohdr_t *dofd; 13630 uintptr_t daddr = (uintptr_t)dof; 13631 size_t max = dtrace_difo_maxsize; 13632 int i, l, n; 13633 13634 static const struct { 13635 int section; 13636 int bufoffs; 13637 int lenoffs; 13638 int entsize; 13639 int align; 13640 const char *msg; 13641 } difo[] = { 13642 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13643 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13644 sizeof (dif_instr_t), "multiple DIF sections" }, 13645 13646 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13647 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13648 sizeof (uint64_t), "multiple integer tables" }, 13649 13650 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13651 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13652 sizeof (char), "multiple string tables" }, 13653 13654 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13655 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13656 sizeof (uint_t), "multiple variable tables" }, 13657 13658 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13659 }; 13660 13661 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13662 dtrace_dof_error(dof, "invalid DIFO header section"); 13663 return (NULL); 13664 } 13665 13666 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13667 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13668 return (NULL); 13669 } 13670 13671 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13672 sec->dofs_size % sizeof (dof_secidx_t)) { 13673 dtrace_dof_error(dof, "bad size in DIFO header"); 13674 return (NULL); 13675 } 13676 13677 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13678 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13679 13680 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13681 dp->dtdo_rtype = dofd->dofd_rtype; 13682 13683 for (l = 0; l < n; l++) { 13684 dof_sec_t *subsec; 13685 void **bufp; 13686 uint32_t *lenp; 13687 13688 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13689 dofd->dofd_links[l])) == NULL) 13690 goto err; /* invalid section link */ 13691 13692 if (ttl + subsec->dofs_size > max) { 13693 dtrace_dof_error(dof, "exceeds maximum size"); 13694 goto err; 13695 } 13696 13697 ttl += subsec->dofs_size; 13698 13699 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13700 if (subsec->dofs_type != difo[i].section) 13701 continue; 13702 13703 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13704 dtrace_dof_error(dof, "section not loaded"); 13705 goto err; 13706 } 13707 13708 if (subsec->dofs_align != difo[i].align) { 13709 dtrace_dof_error(dof, "bad alignment"); 13710 goto err; 13711 } 13712 13713 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13714 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13715 13716 if (*bufp != NULL) { 13717 dtrace_dof_error(dof, difo[i].msg); 13718 goto err; 13719 } 13720 13721 if (difo[i].entsize != subsec->dofs_entsize) { 13722 dtrace_dof_error(dof, "entry size mismatch"); 13723 goto err; 13724 } 13725 13726 if (subsec->dofs_entsize != 0 && 13727 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13728 dtrace_dof_error(dof, "corrupt entry size"); 13729 goto err; 13730 } 13731 13732 *lenp = subsec->dofs_size; 13733 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13734 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13735 *bufp, subsec->dofs_size); 13736 13737 if (subsec->dofs_entsize != 0) 13738 *lenp /= subsec->dofs_entsize; 13739 13740 break; 13741 } 13742 13743 /* 13744 * If we encounter a loadable DIFO sub-section that is not 13745 * known to us, assume this is a broken program and fail. 13746 */ 13747 if (difo[i].section == DOF_SECT_NONE && 13748 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13749 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13750 goto err; 13751 } 13752 } 13753 13754 if (dp->dtdo_buf == NULL) { 13755 /* 13756 * We can't have a DIF object without DIF text. 13757 */ 13758 dtrace_dof_error(dof, "missing DIF text"); 13759 goto err; 13760 } 13761 13762 /* 13763 * Before we validate the DIF object, run through the variable table 13764 * looking for the strings -- if any of their size are under, we'll set 13765 * their size to be the system-wide default string size. Note that 13766 * this should _not_ happen if the "strsize" option has been set -- 13767 * in this case, the compiler should have set the size to reflect the 13768 * setting of the option. 13769 */ 13770 for (i = 0; i < dp->dtdo_varlen; i++) { 13771 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13772 dtrace_diftype_t *t = &v->dtdv_type; 13773 13774 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13775 continue; 13776 13777 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13778 t->dtdt_size = dtrace_strsize_default; 13779 } 13780 13781 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13782 goto err; 13783 13784 dtrace_difo_init(dp, vstate); 13785 return (dp); 13786 13787 err: 13788 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13789 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13790 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13791 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13792 13793 kmem_free(dp, sizeof (dtrace_difo_t)); 13794 return (NULL); 13795 } 13796 13797 static dtrace_predicate_t * 13798 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13799 cred_t *cr) 13800 { 13801 dtrace_difo_t *dp; 13802 13803 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13804 return (NULL); 13805 13806 return (dtrace_predicate_create(dp)); 13807 } 13808 13809 static dtrace_actdesc_t * 13810 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13811 cred_t *cr) 13812 { 13813 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13814 dof_actdesc_t *desc; 13815 dof_sec_t *difosec; 13816 size_t offs; 13817 uintptr_t daddr = (uintptr_t)dof; 13818 uint64_t arg; 13819 dtrace_actkind_t kind; 13820 13821 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13822 dtrace_dof_error(dof, "invalid action section"); 13823 return (NULL); 13824 } 13825 13826 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13827 dtrace_dof_error(dof, "truncated action description"); 13828 return (NULL); 13829 } 13830 13831 if (sec->dofs_align != sizeof (uint64_t)) { 13832 dtrace_dof_error(dof, "bad alignment in action description"); 13833 return (NULL); 13834 } 13835 13836 if (sec->dofs_size < sec->dofs_entsize) { 13837 dtrace_dof_error(dof, "section entry size exceeds total size"); 13838 return (NULL); 13839 } 13840 13841 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13842 dtrace_dof_error(dof, "bad entry size in action description"); 13843 return (NULL); 13844 } 13845 13846 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13847 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13848 return (NULL); 13849 } 13850 13851 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13852 desc = (dof_actdesc_t *)(daddr + 13853 (uintptr_t)sec->dofs_offset + offs); 13854 kind = (dtrace_actkind_t)desc->dofa_kind; 13855 13856 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13857 (kind != DTRACEACT_PRINTA || 13858 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13859 (kind == DTRACEACT_DIFEXPR && 13860 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13861 dof_sec_t *strtab; 13862 char *str, *fmt; 13863 uint64_t i; 13864 13865 /* 13866 * The argument to these actions is an index into the 13867 * DOF string table. For printf()-like actions, this 13868 * is the format string. For print(), this is the 13869 * CTF type of the expression result. 13870 */ 13871 if ((strtab = dtrace_dof_sect(dof, 13872 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13873 goto err; 13874 13875 str = (char *)((uintptr_t)dof + 13876 (uintptr_t)strtab->dofs_offset); 13877 13878 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13879 if (str[i] == '\0') 13880 break; 13881 } 13882 13883 if (i >= strtab->dofs_size) { 13884 dtrace_dof_error(dof, "bogus format string"); 13885 goto err; 13886 } 13887 13888 if (i == desc->dofa_arg) { 13889 dtrace_dof_error(dof, "empty format string"); 13890 goto err; 13891 } 13892 13893 i -= desc->dofa_arg; 13894 fmt = kmem_alloc(i + 1, KM_SLEEP); 13895 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13896 arg = (uint64_t)(uintptr_t)fmt; 13897 } else { 13898 if (kind == DTRACEACT_PRINTA) { 13899 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13900 arg = 0; 13901 } else { 13902 arg = desc->dofa_arg; 13903 } 13904 } 13905 13906 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13907 desc->dofa_uarg, arg); 13908 13909 if (last != NULL) { 13910 last->dtad_next = act; 13911 } else { 13912 first = act; 13913 } 13914 13915 last = act; 13916 13917 if (desc->dofa_difo == DOF_SECIDX_NONE) 13918 continue; 13919 13920 if ((difosec = dtrace_dof_sect(dof, 13921 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13922 goto err; 13923 13924 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13925 13926 if (act->dtad_difo == NULL) 13927 goto err; 13928 } 13929 13930 ASSERT(first != NULL); 13931 return (first); 13932 13933 err: 13934 for (act = first; act != NULL; act = next) { 13935 next = act->dtad_next; 13936 dtrace_actdesc_release(act, vstate); 13937 } 13938 13939 return (NULL); 13940 } 13941 13942 static dtrace_ecbdesc_t * 13943 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13944 cred_t *cr) 13945 { 13946 dtrace_ecbdesc_t *ep; 13947 dof_ecbdesc_t *ecb; 13948 dtrace_probedesc_t *desc; 13949 dtrace_predicate_t *pred = NULL; 13950 13951 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13952 dtrace_dof_error(dof, "truncated ECB description"); 13953 return (NULL); 13954 } 13955 13956 if (sec->dofs_align != sizeof (uint64_t)) { 13957 dtrace_dof_error(dof, "bad alignment in ECB description"); 13958 return (NULL); 13959 } 13960 13961 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13962 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13963 13964 if (sec == NULL) 13965 return (NULL); 13966 13967 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13968 ep->dted_uarg = ecb->dofe_uarg; 13969 desc = &ep->dted_probe; 13970 13971 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13972 goto err; 13973 13974 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13975 if ((sec = dtrace_dof_sect(dof, 13976 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13977 goto err; 13978 13979 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13980 goto err; 13981 13982 ep->dted_pred.dtpdd_predicate = pred; 13983 } 13984 13985 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13986 if ((sec = dtrace_dof_sect(dof, 13987 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13988 goto err; 13989 13990 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13991 13992 if (ep->dted_action == NULL) 13993 goto err; 13994 } 13995 13996 return (ep); 13997 13998 err: 13999 if (pred != NULL) 14000 dtrace_predicate_release(pred, vstate); 14001 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 14002 return (NULL); 14003 } 14004 14005 /* 14006 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14007 * specified DOF. SETX relocations are computed using 'ubase', the base load 14008 * address of the object containing the DOF, and DOFREL relocations are relative 14009 * to the relocation offset within the DOF. 14010 */ 14011 static int 14012 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14013 uint64_t udaddr) 14014 { 14015 uintptr_t daddr = (uintptr_t)dof; 14016 uintptr_t ts_end; 14017 dof_relohdr_t *dofr = 14018 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14019 dof_sec_t *ss, *rs, *ts; 14020 dof_relodesc_t *r; 14021 uint_t i, n; 14022 14023 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14024 sec->dofs_align != sizeof (dof_secidx_t)) { 14025 dtrace_dof_error(dof, "invalid relocation header"); 14026 return (-1); 14027 } 14028 14029 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14030 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14031 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14032 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14033 14034 if (ss == NULL || rs == NULL || ts == NULL) 14035 return (-1); /* dtrace_dof_error() has been called already */ 14036 14037 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14038 rs->dofs_align != sizeof (uint64_t)) { 14039 dtrace_dof_error(dof, "invalid relocation section"); 14040 return (-1); 14041 } 14042 14043 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14044 n = rs->dofs_size / rs->dofs_entsize; 14045 14046 for (i = 0; i < n; i++) { 14047 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14048 14049 switch (r->dofr_type) { 14050 case DOF_RELO_NONE: 14051 break; 14052 case DOF_RELO_SETX: 14053 case DOF_RELO_DOFREL: 14054 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14055 sizeof (uint64_t) > ts->dofs_size) { 14056 dtrace_dof_error(dof, "bad relocation offset"); 14057 return (-1); 14058 } 14059 14060 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14061 dtrace_dof_error(dof, "bad relocation offset"); 14062 return (-1); 14063 } 14064 14065 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14066 dtrace_dof_error(dof, "misaligned setx relo"); 14067 return (-1); 14068 } 14069 14070 if (r->dofr_type == DOF_RELO_SETX) 14071 *(uint64_t *)taddr += ubase; 14072 else 14073 *(uint64_t *)taddr += 14074 udaddr + ts->dofs_offset + r->dofr_offset; 14075 break; 14076 default: 14077 dtrace_dof_error(dof, "invalid relocation type"); 14078 return (-1); 14079 } 14080 14081 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14082 } 14083 14084 return (0); 14085 } 14086 14087 /* 14088 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14089 * header: it should be at the front of a memory region that is at least 14090 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14091 * size. It need not be validated in any other way. 14092 */ 14093 static int 14094 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14095 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14096 { 14097 uint64_t len = dof->dofh_loadsz, seclen; 14098 uintptr_t daddr = (uintptr_t)dof; 14099 dtrace_ecbdesc_t *ep; 14100 dtrace_enabling_t *enab; 14101 uint_t i; 14102 14103 ASSERT(MUTEX_HELD(&dtrace_lock)); 14104 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14105 14106 /* 14107 * Check the DOF header identification bytes. In addition to checking 14108 * valid settings, we also verify that unused bits/bytes are zeroed so 14109 * we can use them later without fear of regressing existing binaries. 14110 */ 14111 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14112 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14113 dtrace_dof_error(dof, "DOF magic string mismatch"); 14114 return (-1); 14115 } 14116 14117 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14118 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14119 dtrace_dof_error(dof, "DOF has invalid data model"); 14120 return (-1); 14121 } 14122 14123 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14124 dtrace_dof_error(dof, "DOF encoding mismatch"); 14125 return (-1); 14126 } 14127 14128 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14129 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14130 dtrace_dof_error(dof, "DOF version mismatch"); 14131 return (-1); 14132 } 14133 14134 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14135 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14136 return (-1); 14137 } 14138 14139 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14140 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14141 return (-1); 14142 } 14143 14144 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14145 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14146 return (-1); 14147 } 14148 14149 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14150 if (dof->dofh_ident[i] != 0) { 14151 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14152 return (-1); 14153 } 14154 } 14155 14156 if (dof->dofh_flags & ~DOF_FL_VALID) { 14157 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14158 return (-1); 14159 } 14160 14161 if (dof->dofh_secsize == 0) { 14162 dtrace_dof_error(dof, "zero section header size"); 14163 return (-1); 14164 } 14165 14166 /* 14167 * Check that the section headers don't exceed the amount of DOF 14168 * data. Note that we cast the section size and number of sections 14169 * to uint64_t's to prevent possible overflow in the multiplication. 14170 */ 14171 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14172 14173 if (dof->dofh_secoff > len || seclen > len || 14174 dof->dofh_secoff + seclen > len) { 14175 dtrace_dof_error(dof, "truncated section headers"); 14176 return (-1); 14177 } 14178 14179 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14180 dtrace_dof_error(dof, "misaligned section headers"); 14181 return (-1); 14182 } 14183 14184 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14185 dtrace_dof_error(dof, "misaligned section size"); 14186 return (-1); 14187 } 14188 14189 /* 14190 * Take an initial pass through the section headers to be sure that 14191 * the headers don't have stray offsets. If the 'noprobes' flag is 14192 * set, do not permit sections relating to providers, probes, or args. 14193 */ 14194 for (i = 0; i < dof->dofh_secnum; i++) { 14195 dof_sec_t *sec = (dof_sec_t *)(daddr + 14196 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14197 14198 if (noprobes) { 14199 switch (sec->dofs_type) { 14200 case DOF_SECT_PROVIDER: 14201 case DOF_SECT_PROBES: 14202 case DOF_SECT_PRARGS: 14203 case DOF_SECT_PROFFS: 14204 dtrace_dof_error(dof, "illegal sections " 14205 "for enabling"); 14206 return (-1); 14207 } 14208 } 14209 14210 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14211 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14212 dtrace_dof_error(dof, "loadable section with load " 14213 "flag unset"); 14214 return (-1); 14215 } 14216 14217 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14218 continue; /* just ignore non-loadable sections */ 14219 14220 if (!ISP2(sec->dofs_align)) { 14221 dtrace_dof_error(dof, "bad section alignment"); 14222 return (-1); 14223 } 14224 14225 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14226 dtrace_dof_error(dof, "misaligned section"); 14227 return (-1); 14228 } 14229 14230 if (sec->dofs_offset > len || sec->dofs_size > len || 14231 sec->dofs_offset + sec->dofs_size > len) { 14232 dtrace_dof_error(dof, "corrupt section header"); 14233 return (-1); 14234 } 14235 14236 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14237 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14238 dtrace_dof_error(dof, "non-terminating string table"); 14239 return (-1); 14240 } 14241 } 14242 14243 /* 14244 * Take a second pass through the sections and locate and perform any 14245 * relocations that are present. We do this after the first pass to 14246 * be sure that all sections have had their headers validated. 14247 */ 14248 for (i = 0; i < dof->dofh_secnum; i++) { 14249 dof_sec_t *sec = (dof_sec_t *)(daddr + 14250 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14251 14252 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14253 continue; /* skip sections that are not loadable */ 14254 14255 switch (sec->dofs_type) { 14256 case DOF_SECT_URELHDR: 14257 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14258 return (-1); 14259 break; 14260 } 14261 } 14262 14263 if ((enab = *enabp) == NULL) 14264 enab = *enabp = dtrace_enabling_create(vstate); 14265 14266 for (i = 0; i < dof->dofh_secnum; i++) { 14267 dof_sec_t *sec = (dof_sec_t *)(daddr + 14268 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14269 14270 if (sec->dofs_type != DOF_SECT_ECBDESC) 14271 continue; 14272 14273 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14274 dtrace_enabling_destroy(enab); 14275 *enabp = NULL; 14276 return (-1); 14277 } 14278 14279 dtrace_enabling_add(enab, ep); 14280 } 14281 14282 return (0); 14283 } 14284 14285 /* 14286 * Process DOF for any options. This routine assumes that the DOF has been 14287 * at least processed by dtrace_dof_slurp(). 14288 */ 14289 static int 14290 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14291 { 14292 int i, rval; 14293 uint32_t entsize; 14294 size_t offs; 14295 dof_optdesc_t *desc; 14296 14297 for (i = 0; i < dof->dofh_secnum; i++) { 14298 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14299 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14300 14301 if (sec->dofs_type != DOF_SECT_OPTDESC) 14302 continue; 14303 14304 if (sec->dofs_align != sizeof (uint64_t)) { 14305 dtrace_dof_error(dof, "bad alignment in " 14306 "option description"); 14307 return (EINVAL); 14308 } 14309 14310 if ((entsize = sec->dofs_entsize) == 0) { 14311 dtrace_dof_error(dof, "zeroed option entry size"); 14312 return (EINVAL); 14313 } 14314 14315 if (entsize < sizeof (dof_optdesc_t)) { 14316 dtrace_dof_error(dof, "bad option entry size"); 14317 return (EINVAL); 14318 } 14319 14320 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14321 desc = (dof_optdesc_t *)((uintptr_t)dof + 14322 (uintptr_t)sec->dofs_offset + offs); 14323 14324 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14325 dtrace_dof_error(dof, "non-zero option string"); 14326 return (EINVAL); 14327 } 14328 14329 if (desc->dofo_value == DTRACEOPT_UNSET) { 14330 dtrace_dof_error(dof, "unset option"); 14331 return (EINVAL); 14332 } 14333 14334 if ((rval = dtrace_state_option(state, 14335 desc->dofo_option, desc->dofo_value)) != 0) { 14336 dtrace_dof_error(dof, "rejected option"); 14337 return (rval); 14338 } 14339 } 14340 } 14341 14342 return (0); 14343 } 14344 14345 /* 14346 * DTrace Consumer State Functions 14347 */ 14348 static int 14349 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14350 { 14351 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14352 void *base; 14353 uintptr_t limit; 14354 dtrace_dynvar_t *dvar, *next, *start; 14355 int i; 14356 14357 ASSERT(MUTEX_HELD(&dtrace_lock)); 14358 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14359 14360 bzero(dstate, sizeof (dtrace_dstate_t)); 14361 14362 if ((dstate->dtds_chunksize = chunksize) == 0) 14363 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14364 14365 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14366 14367 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14368 size = min; 14369 14370 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14371 return (ENOMEM); 14372 14373 dstate->dtds_size = size; 14374 dstate->dtds_base = base; 14375 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14376 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14377 14378 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14379 14380 if (hashsize != 1 && (hashsize & 1)) 14381 hashsize--; 14382 14383 dstate->dtds_hashsize = hashsize; 14384 dstate->dtds_hash = dstate->dtds_base; 14385 14386 /* 14387 * Set all of our hash buckets to point to the single sink, and (if 14388 * it hasn't already been set), set the sink's hash value to be the 14389 * sink sentinel value. The sink is needed for dynamic variable 14390 * lookups to know that they have iterated over an entire, valid hash 14391 * chain. 14392 */ 14393 for (i = 0; i < hashsize; i++) 14394 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14395 14396 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14397 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14398 14399 /* 14400 * Determine number of active CPUs. Divide free list evenly among 14401 * active CPUs. 14402 */ 14403 start = (dtrace_dynvar_t *) 14404 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14405 limit = (uintptr_t)base + size; 14406 14407 VERIFY((uintptr_t)start < limit); 14408 VERIFY((uintptr_t)start >= (uintptr_t)base); 14409 14410 maxper = (limit - (uintptr_t)start) / NCPU; 14411 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14412 14413 #ifndef illumos 14414 CPU_FOREACH(i) { 14415 #else 14416 for (i = 0; i < NCPU; i++) { 14417 #endif 14418 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14419 14420 /* 14421 * If we don't even have enough chunks to make it once through 14422 * NCPUs, we're just going to allocate everything to the first 14423 * CPU. And if we're on the last CPU, we're going to allocate 14424 * whatever is left over. In either case, we set the limit to 14425 * be the limit of the dynamic variable space. 14426 */ 14427 if (maxper == 0 || i == NCPU - 1) { 14428 limit = (uintptr_t)base + size; 14429 start = NULL; 14430 } else { 14431 limit = (uintptr_t)start + maxper; 14432 start = (dtrace_dynvar_t *)limit; 14433 } 14434 14435 VERIFY(limit <= (uintptr_t)base + size); 14436 14437 for (;;) { 14438 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14439 dstate->dtds_chunksize); 14440 14441 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14442 break; 14443 14444 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14445 (uintptr_t)dvar <= (uintptr_t)base + size); 14446 dvar->dtdv_next = next; 14447 dvar = next; 14448 } 14449 14450 if (maxper == 0) 14451 break; 14452 } 14453 14454 return (0); 14455 } 14456 14457 static void 14458 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14459 { 14460 ASSERT(MUTEX_HELD(&cpu_lock)); 14461 14462 if (dstate->dtds_base == NULL) 14463 return; 14464 14465 kmem_free(dstate->dtds_base, dstate->dtds_size); 14466 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14467 } 14468 14469 static void 14470 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14471 { 14472 /* 14473 * Logical XOR, where are you? 14474 */ 14475 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14476 14477 if (vstate->dtvs_nglobals > 0) { 14478 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14479 sizeof (dtrace_statvar_t *)); 14480 } 14481 14482 if (vstate->dtvs_ntlocals > 0) { 14483 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14484 sizeof (dtrace_difv_t)); 14485 } 14486 14487 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14488 14489 if (vstate->dtvs_nlocals > 0) { 14490 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14491 sizeof (dtrace_statvar_t *)); 14492 } 14493 } 14494 14495 #ifdef illumos 14496 static void 14497 dtrace_state_clean(dtrace_state_t *state) 14498 { 14499 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14500 return; 14501 14502 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14503 dtrace_speculation_clean(state); 14504 } 14505 14506 static void 14507 dtrace_state_deadman(dtrace_state_t *state) 14508 { 14509 hrtime_t now; 14510 14511 dtrace_sync(); 14512 14513 now = dtrace_gethrtime(); 14514 14515 if (state != dtrace_anon.dta_state && 14516 now - state->dts_laststatus >= dtrace_deadman_user) 14517 return; 14518 14519 /* 14520 * We must be sure that dts_alive never appears to be less than the 14521 * value upon entry to dtrace_state_deadman(), and because we lack a 14522 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14523 * store INT64_MAX to it, followed by a memory barrier, followed by 14524 * the new value. This assures that dts_alive never appears to be 14525 * less than its true value, regardless of the order in which the 14526 * stores to the underlying storage are issued. 14527 */ 14528 state->dts_alive = INT64_MAX; 14529 dtrace_membar_producer(); 14530 state->dts_alive = now; 14531 } 14532 #else /* !illumos */ 14533 static void 14534 dtrace_state_clean(void *arg) 14535 { 14536 dtrace_state_t *state = arg; 14537 dtrace_optval_t *opt = state->dts_options; 14538 14539 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14540 return; 14541 14542 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14543 dtrace_speculation_clean(state); 14544 14545 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14546 dtrace_state_clean, state); 14547 } 14548 14549 static void 14550 dtrace_state_deadman(void *arg) 14551 { 14552 dtrace_state_t *state = arg; 14553 hrtime_t now; 14554 14555 dtrace_sync(); 14556 14557 dtrace_debug_output(); 14558 14559 now = dtrace_gethrtime(); 14560 14561 if (state != dtrace_anon.dta_state && 14562 now - state->dts_laststatus >= dtrace_deadman_user) 14563 return; 14564 14565 /* 14566 * We must be sure that dts_alive never appears to be less than the 14567 * value upon entry to dtrace_state_deadman(), and because we lack a 14568 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14569 * store INT64_MAX to it, followed by a memory barrier, followed by 14570 * the new value. This assures that dts_alive never appears to be 14571 * less than its true value, regardless of the order in which the 14572 * stores to the underlying storage are issued. 14573 */ 14574 state->dts_alive = INT64_MAX; 14575 dtrace_membar_producer(); 14576 state->dts_alive = now; 14577 14578 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14579 dtrace_state_deadman, state); 14580 } 14581 #endif /* illumos */ 14582 14583 static dtrace_state_t * 14584 #ifdef illumos 14585 dtrace_state_create(dev_t *devp, cred_t *cr) 14586 #else 14587 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14588 #endif 14589 { 14590 #ifdef illumos 14591 minor_t minor; 14592 major_t major; 14593 #else 14594 cred_t *cr = NULL; 14595 int m = 0; 14596 #endif 14597 char c[30]; 14598 dtrace_state_t *state; 14599 dtrace_optval_t *opt; 14600 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14601 int cpu_it; 14602 14603 ASSERT(MUTEX_HELD(&dtrace_lock)); 14604 ASSERT(MUTEX_HELD(&cpu_lock)); 14605 14606 #ifdef illumos 14607 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14608 VM_BESTFIT | VM_SLEEP); 14609 14610 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14611 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14612 return (NULL); 14613 } 14614 14615 state = ddi_get_soft_state(dtrace_softstate, minor); 14616 #else 14617 if (dev != NULL) { 14618 cr = dev->si_cred; 14619 m = dev2unit(dev); 14620 } 14621 14622 /* Allocate memory for the state. */ 14623 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14624 #endif 14625 14626 state->dts_epid = DTRACE_EPIDNONE + 1; 14627 14628 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14629 #ifdef illumos 14630 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14631 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14632 14633 if (devp != NULL) { 14634 major = getemajor(*devp); 14635 } else { 14636 major = ddi_driver_major(dtrace_devi); 14637 } 14638 14639 state->dts_dev = makedevice(major, minor); 14640 14641 if (devp != NULL) 14642 *devp = state->dts_dev; 14643 #else 14644 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14645 state->dts_dev = dev; 14646 #endif 14647 14648 /* 14649 * We allocate NCPU buffers. On the one hand, this can be quite 14650 * a bit of memory per instance (nearly 36K on a Starcat). On the 14651 * other hand, it saves an additional memory reference in the probe 14652 * path. 14653 */ 14654 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14655 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14656 14657 /* 14658 * Allocate and initialise the per-process per-CPU random state. 14659 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14660 * assumed to be seeded at this point (if from Fortuna seed file). 14661 */ 14662 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14663 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 14664 /* 14665 * Each CPU is assigned a 2^64 period, non-overlapping 14666 * subsequence. 14667 */ 14668 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 14669 state->dts_rstate[cpu_it]); 14670 } 14671 14672 #ifdef illumos 14673 state->dts_cleaner = CYCLIC_NONE; 14674 state->dts_deadman = CYCLIC_NONE; 14675 #else 14676 callout_init(&state->dts_cleaner, 1); 14677 callout_init(&state->dts_deadman, 1); 14678 #endif 14679 state->dts_vstate.dtvs_state = state; 14680 14681 for (i = 0; i < DTRACEOPT_MAX; i++) 14682 state->dts_options[i] = DTRACEOPT_UNSET; 14683 14684 /* 14685 * Set the default options. 14686 */ 14687 opt = state->dts_options; 14688 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14689 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14690 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14691 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14692 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14693 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14694 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14695 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14696 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14697 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14698 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14699 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14700 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14701 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14702 14703 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14704 14705 /* 14706 * Depending on the user credentials, we set flag bits which alter probe 14707 * visibility or the amount of destructiveness allowed. In the case of 14708 * actual anonymous tracing, or the possession of all privileges, all of 14709 * the normal checks are bypassed. 14710 */ 14711 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14712 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14713 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14714 } else { 14715 /* 14716 * Set up the credentials for this instantiation. We take a 14717 * hold on the credential to prevent it from disappearing on 14718 * us; this in turn prevents the zone_t referenced by this 14719 * credential from disappearing. This means that we can 14720 * examine the credential and the zone from probe context. 14721 */ 14722 crhold(cr); 14723 state->dts_cred.dcr_cred = cr; 14724 14725 /* 14726 * CRA_PROC means "we have *some* privilege for dtrace" and 14727 * unlocks the use of variables like pid, zonename, etc. 14728 */ 14729 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14730 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14731 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14732 } 14733 14734 /* 14735 * dtrace_user allows use of syscall and profile providers. 14736 * If the user also has proc_owner and/or proc_zone, we 14737 * extend the scope to include additional visibility and 14738 * destructive power. 14739 */ 14740 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14741 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14742 state->dts_cred.dcr_visible |= 14743 DTRACE_CRV_ALLPROC; 14744 14745 state->dts_cred.dcr_action |= 14746 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14747 } 14748 14749 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14750 state->dts_cred.dcr_visible |= 14751 DTRACE_CRV_ALLZONE; 14752 14753 state->dts_cred.dcr_action |= 14754 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14755 } 14756 14757 /* 14758 * If we have all privs in whatever zone this is, 14759 * we can do destructive things to processes which 14760 * have altered credentials. 14761 */ 14762 #ifdef illumos 14763 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14764 cr->cr_zone->zone_privset)) { 14765 state->dts_cred.dcr_action |= 14766 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14767 } 14768 #endif 14769 } 14770 14771 /* 14772 * Holding the dtrace_kernel privilege also implies that 14773 * the user has the dtrace_user privilege from a visibility 14774 * perspective. But without further privileges, some 14775 * destructive actions are not available. 14776 */ 14777 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14778 /* 14779 * Make all probes in all zones visible. However, 14780 * this doesn't mean that all actions become available 14781 * to all zones. 14782 */ 14783 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14784 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14785 14786 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14787 DTRACE_CRA_PROC; 14788 /* 14789 * Holding proc_owner means that destructive actions 14790 * for *this* zone are allowed. 14791 */ 14792 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14793 state->dts_cred.dcr_action |= 14794 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14795 14796 /* 14797 * Holding proc_zone means that destructive actions 14798 * for this user/group ID in all zones is allowed. 14799 */ 14800 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14801 state->dts_cred.dcr_action |= 14802 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14803 14804 #ifdef illumos 14805 /* 14806 * If we have all privs in whatever zone this is, 14807 * we can do destructive things to processes which 14808 * have altered credentials. 14809 */ 14810 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14811 cr->cr_zone->zone_privset)) { 14812 state->dts_cred.dcr_action |= 14813 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14814 } 14815 #endif 14816 } 14817 14818 /* 14819 * Holding the dtrace_proc privilege gives control over fasttrap 14820 * and pid providers. We need to grant wider destructive 14821 * privileges in the event that the user has proc_owner and/or 14822 * proc_zone. 14823 */ 14824 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14825 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14826 state->dts_cred.dcr_action |= 14827 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14828 14829 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14830 state->dts_cred.dcr_action |= 14831 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14832 } 14833 } 14834 14835 return (state); 14836 } 14837 14838 static int 14839 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14840 { 14841 dtrace_optval_t *opt = state->dts_options, size; 14842 processorid_t cpu = 0; 14843 int flags = 0, rval, factor, divisor = 1; 14844 14845 ASSERT(MUTEX_HELD(&dtrace_lock)); 14846 ASSERT(MUTEX_HELD(&cpu_lock)); 14847 ASSERT(which < DTRACEOPT_MAX); 14848 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14849 (state == dtrace_anon.dta_state && 14850 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14851 14852 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14853 return (0); 14854 14855 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14856 cpu = opt[DTRACEOPT_CPU]; 14857 14858 if (which == DTRACEOPT_SPECSIZE) 14859 flags |= DTRACEBUF_NOSWITCH; 14860 14861 if (which == DTRACEOPT_BUFSIZE) { 14862 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14863 flags |= DTRACEBUF_RING; 14864 14865 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14866 flags |= DTRACEBUF_FILL; 14867 14868 if (state != dtrace_anon.dta_state || 14869 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14870 flags |= DTRACEBUF_INACTIVE; 14871 } 14872 14873 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14874 /* 14875 * The size must be 8-byte aligned. If the size is not 8-byte 14876 * aligned, drop it down by the difference. 14877 */ 14878 if (size & (sizeof (uint64_t) - 1)) 14879 size -= size & (sizeof (uint64_t) - 1); 14880 14881 if (size < state->dts_reserve) { 14882 /* 14883 * Buffers always must be large enough to accommodate 14884 * their prereserved space. We return E2BIG instead 14885 * of ENOMEM in this case to allow for user-level 14886 * software to differentiate the cases. 14887 */ 14888 return (E2BIG); 14889 } 14890 14891 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14892 14893 if (rval != ENOMEM) { 14894 opt[which] = size; 14895 return (rval); 14896 } 14897 14898 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14899 return (rval); 14900 14901 for (divisor = 2; divisor < factor; divisor <<= 1) 14902 continue; 14903 } 14904 14905 return (ENOMEM); 14906 } 14907 14908 static int 14909 dtrace_state_buffers(dtrace_state_t *state) 14910 { 14911 dtrace_speculation_t *spec = state->dts_speculations; 14912 int rval, i; 14913 14914 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14915 DTRACEOPT_BUFSIZE)) != 0) 14916 return (rval); 14917 14918 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14919 DTRACEOPT_AGGSIZE)) != 0) 14920 return (rval); 14921 14922 for (i = 0; i < state->dts_nspeculations; i++) { 14923 if ((rval = dtrace_state_buffer(state, 14924 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14925 return (rval); 14926 } 14927 14928 return (0); 14929 } 14930 14931 static void 14932 dtrace_state_prereserve(dtrace_state_t *state) 14933 { 14934 dtrace_ecb_t *ecb; 14935 dtrace_probe_t *probe; 14936 14937 state->dts_reserve = 0; 14938 14939 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14940 return; 14941 14942 /* 14943 * If our buffer policy is a "fill" buffer policy, we need to set the 14944 * prereserved space to be the space required by the END probes. 14945 */ 14946 probe = dtrace_probes[dtrace_probeid_end - 1]; 14947 ASSERT(probe != NULL); 14948 14949 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14950 if (ecb->dte_state != state) 14951 continue; 14952 14953 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14954 } 14955 } 14956 14957 static int 14958 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14959 { 14960 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14961 dtrace_speculation_t *spec; 14962 dtrace_buffer_t *buf; 14963 #ifdef illumos 14964 cyc_handler_t hdlr; 14965 cyc_time_t when; 14966 #endif 14967 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14968 dtrace_icookie_t cookie; 14969 14970 mutex_enter(&cpu_lock); 14971 mutex_enter(&dtrace_lock); 14972 14973 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14974 rval = EBUSY; 14975 goto out; 14976 } 14977 14978 /* 14979 * Before we can perform any checks, we must prime all of the 14980 * retained enablings that correspond to this state. 14981 */ 14982 dtrace_enabling_prime(state); 14983 14984 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14985 rval = EACCES; 14986 goto out; 14987 } 14988 14989 dtrace_state_prereserve(state); 14990 14991 /* 14992 * Now we want to do is try to allocate our speculations. 14993 * We do not automatically resize the number of speculations; if 14994 * this fails, we will fail the operation. 14995 */ 14996 nspec = opt[DTRACEOPT_NSPEC]; 14997 ASSERT(nspec != DTRACEOPT_UNSET); 14998 14999 if (nspec > INT_MAX) { 15000 rval = ENOMEM; 15001 goto out; 15002 } 15003 15004 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15005 KM_NOSLEEP | KM_NORMALPRI); 15006 15007 if (spec == NULL) { 15008 rval = ENOMEM; 15009 goto out; 15010 } 15011 15012 state->dts_speculations = spec; 15013 state->dts_nspeculations = (int)nspec; 15014 15015 for (i = 0; i < nspec; i++) { 15016 if ((buf = kmem_zalloc(bufsize, 15017 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15018 rval = ENOMEM; 15019 goto err; 15020 } 15021 15022 spec[i].dtsp_buffer = buf; 15023 } 15024 15025 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15026 if (dtrace_anon.dta_state == NULL) { 15027 rval = ENOENT; 15028 goto out; 15029 } 15030 15031 if (state->dts_necbs != 0) { 15032 rval = EALREADY; 15033 goto out; 15034 } 15035 15036 state->dts_anon = dtrace_anon_grab(); 15037 ASSERT(state->dts_anon != NULL); 15038 state = state->dts_anon; 15039 15040 /* 15041 * We want "grabanon" to be set in the grabbed state, so we'll 15042 * copy that option value from the grabbing state into the 15043 * grabbed state. 15044 */ 15045 state->dts_options[DTRACEOPT_GRABANON] = 15046 opt[DTRACEOPT_GRABANON]; 15047 15048 *cpu = dtrace_anon.dta_beganon; 15049 15050 /* 15051 * If the anonymous state is active (as it almost certainly 15052 * is if the anonymous enabling ultimately matched anything), 15053 * we don't allow any further option processing -- but we 15054 * don't return failure. 15055 */ 15056 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15057 goto out; 15058 } 15059 15060 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15061 opt[DTRACEOPT_AGGSIZE] != 0) { 15062 if (state->dts_aggregations == NULL) { 15063 /* 15064 * We're not going to create an aggregation buffer 15065 * because we don't have any ECBs that contain 15066 * aggregations -- set this option to 0. 15067 */ 15068 opt[DTRACEOPT_AGGSIZE] = 0; 15069 } else { 15070 /* 15071 * If we have an aggregation buffer, we must also have 15072 * a buffer to use as scratch. 15073 */ 15074 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15075 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15076 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15077 } 15078 } 15079 } 15080 15081 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15082 opt[DTRACEOPT_SPECSIZE] != 0) { 15083 if (!state->dts_speculates) { 15084 /* 15085 * We're not going to create speculation buffers 15086 * because we don't have any ECBs that actually 15087 * speculate -- set the speculation size to 0. 15088 */ 15089 opt[DTRACEOPT_SPECSIZE] = 0; 15090 } 15091 } 15092 15093 /* 15094 * The bare minimum size for any buffer that we're actually going to 15095 * do anything to is sizeof (uint64_t). 15096 */ 15097 sz = sizeof (uint64_t); 15098 15099 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15100 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15101 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15102 /* 15103 * A buffer size has been explicitly set to 0 (or to a size 15104 * that will be adjusted to 0) and we need the space -- we 15105 * need to return failure. We return ENOSPC to differentiate 15106 * it from failing to allocate a buffer due to failure to meet 15107 * the reserve (for which we return E2BIG). 15108 */ 15109 rval = ENOSPC; 15110 goto out; 15111 } 15112 15113 if ((rval = dtrace_state_buffers(state)) != 0) 15114 goto err; 15115 15116 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15117 sz = dtrace_dstate_defsize; 15118 15119 do { 15120 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15121 15122 if (rval == 0) 15123 break; 15124 15125 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15126 goto err; 15127 } while (sz >>= 1); 15128 15129 opt[DTRACEOPT_DYNVARSIZE] = sz; 15130 15131 if (rval != 0) 15132 goto err; 15133 15134 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15135 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15136 15137 if (opt[DTRACEOPT_CLEANRATE] == 0) 15138 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15139 15140 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15141 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15142 15143 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15145 15146 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15147 #ifdef illumos 15148 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15149 hdlr.cyh_arg = state; 15150 hdlr.cyh_level = CY_LOW_LEVEL; 15151 15152 when.cyt_when = 0; 15153 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15154 15155 state->dts_cleaner = cyclic_add(&hdlr, &when); 15156 15157 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15158 hdlr.cyh_arg = state; 15159 hdlr.cyh_level = CY_LOW_LEVEL; 15160 15161 when.cyt_when = 0; 15162 when.cyt_interval = dtrace_deadman_interval; 15163 15164 state->dts_deadman = cyclic_add(&hdlr, &when); 15165 #else 15166 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15167 dtrace_state_clean, state); 15168 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15169 dtrace_state_deadman, state); 15170 #endif 15171 15172 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15173 15174 #ifdef illumos 15175 if (state->dts_getf != 0 && 15176 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15177 /* 15178 * We don't have kernel privs but we have at least one call 15179 * to getf(); we need to bump our zone's count, and (if 15180 * this is the first enabling to have an unprivileged call 15181 * to getf()) we need to hook into closef(). 15182 */ 15183 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15184 15185 if (dtrace_getf++ == 0) { 15186 ASSERT(dtrace_closef == NULL); 15187 dtrace_closef = dtrace_getf_barrier; 15188 } 15189 } 15190 #endif 15191 15192 /* 15193 * Now it's time to actually fire the BEGIN probe. We need to disable 15194 * interrupts here both to record the CPU on which we fired the BEGIN 15195 * probe (the data from this CPU will be processed first at user 15196 * level) and to manually activate the buffer for this CPU. 15197 */ 15198 cookie = dtrace_interrupt_disable(); 15199 *cpu = curcpu; 15200 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15201 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15202 15203 dtrace_probe(dtrace_probeid_begin, 15204 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15205 dtrace_interrupt_enable(cookie); 15206 /* 15207 * We may have had an exit action from a BEGIN probe; only change our 15208 * state to ACTIVE if we're still in WARMUP. 15209 */ 15210 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15211 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15212 15213 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15214 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15215 15216 #ifdef __FreeBSD__ 15217 /* 15218 * We enable anonymous tracing before APs are started, so we must 15219 * activate buffers using the current CPU. 15220 */ 15221 if (state == dtrace_anon.dta_state) 15222 for (int i = 0; i < NCPU; i++) 15223 dtrace_buffer_activate_cpu(state, i); 15224 else 15225 dtrace_xcall(DTRACE_CPUALL, 15226 (dtrace_xcall_t)dtrace_buffer_activate, state); 15227 #else 15228 /* 15229 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15230 * want each CPU to transition its principal buffer out of the 15231 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15232 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15233 * atomically transition from processing none of a state's ECBs to 15234 * processing all of them. 15235 */ 15236 dtrace_xcall(DTRACE_CPUALL, 15237 (dtrace_xcall_t)dtrace_buffer_activate, state); 15238 #endif 15239 goto out; 15240 15241 err: 15242 dtrace_buffer_free(state->dts_buffer); 15243 dtrace_buffer_free(state->dts_aggbuffer); 15244 15245 if ((nspec = state->dts_nspeculations) == 0) { 15246 ASSERT(state->dts_speculations == NULL); 15247 goto out; 15248 } 15249 15250 spec = state->dts_speculations; 15251 ASSERT(spec != NULL); 15252 15253 for (i = 0; i < state->dts_nspeculations; i++) { 15254 if ((buf = spec[i].dtsp_buffer) == NULL) 15255 break; 15256 15257 dtrace_buffer_free(buf); 15258 kmem_free(buf, bufsize); 15259 } 15260 15261 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15262 state->dts_nspeculations = 0; 15263 state->dts_speculations = NULL; 15264 15265 out: 15266 mutex_exit(&dtrace_lock); 15267 mutex_exit(&cpu_lock); 15268 15269 return (rval); 15270 } 15271 15272 static int 15273 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15274 { 15275 dtrace_icookie_t cookie; 15276 15277 ASSERT(MUTEX_HELD(&dtrace_lock)); 15278 15279 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15280 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15281 return (EINVAL); 15282 15283 /* 15284 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15285 * to be sure that every CPU has seen it. See below for the details 15286 * on why this is done. 15287 */ 15288 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15289 dtrace_sync(); 15290 15291 /* 15292 * By this point, it is impossible for any CPU to be still processing 15293 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15294 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15295 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15296 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15297 * iff we're in the END probe. 15298 */ 15299 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15300 dtrace_sync(); 15301 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15302 15303 /* 15304 * Finally, we can release the reserve and call the END probe. We 15305 * disable interrupts across calling the END probe to allow us to 15306 * return the CPU on which we actually called the END probe. This 15307 * allows user-land to be sure that this CPU's principal buffer is 15308 * processed last. 15309 */ 15310 state->dts_reserve = 0; 15311 15312 cookie = dtrace_interrupt_disable(); 15313 *cpu = curcpu; 15314 dtrace_probe(dtrace_probeid_end, 15315 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15316 dtrace_interrupt_enable(cookie); 15317 15318 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15319 dtrace_sync(); 15320 15321 #ifdef illumos 15322 if (state->dts_getf != 0 && 15323 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15324 /* 15325 * We don't have kernel privs but we have at least one call 15326 * to getf(); we need to lower our zone's count, and (if 15327 * this is the last enabling to have an unprivileged call 15328 * to getf()) we need to clear the closef() hook. 15329 */ 15330 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15331 ASSERT(dtrace_closef == dtrace_getf_barrier); 15332 ASSERT(dtrace_getf > 0); 15333 15334 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15335 15336 if (--dtrace_getf == 0) 15337 dtrace_closef = NULL; 15338 } 15339 #endif 15340 15341 return (0); 15342 } 15343 15344 static int 15345 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15346 dtrace_optval_t val) 15347 { 15348 ASSERT(MUTEX_HELD(&dtrace_lock)); 15349 15350 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15351 return (EBUSY); 15352 15353 if (option >= DTRACEOPT_MAX) 15354 return (EINVAL); 15355 15356 if (option != DTRACEOPT_CPU && val < 0) 15357 return (EINVAL); 15358 15359 switch (option) { 15360 case DTRACEOPT_DESTRUCTIVE: 15361 if (dtrace_destructive_disallow) 15362 return (EACCES); 15363 15364 state->dts_cred.dcr_destructive = 1; 15365 break; 15366 15367 case DTRACEOPT_BUFSIZE: 15368 case DTRACEOPT_DYNVARSIZE: 15369 case DTRACEOPT_AGGSIZE: 15370 case DTRACEOPT_SPECSIZE: 15371 case DTRACEOPT_STRSIZE: 15372 if (val < 0) 15373 return (EINVAL); 15374 15375 if (val >= LONG_MAX) { 15376 /* 15377 * If this is an otherwise negative value, set it to 15378 * the highest multiple of 128m less than LONG_MAX. 15379 * Technically, we're adjusting the size without 15380 * regard to the buffer resizing policy, but in fact, 15381 * this has no effect -- if we set the buffer size to 15382 * ~LONG_MAX and the buffer policy is ultimately set to 15383 * be "manual", the buffer allocation is guaranteed to 15384 * fail, if only because the allocation requires two 15385 * buffers. (We set the the size to the highest 15386 * multiple of 128m because it ensures that the size 15387 * will remain a multiple of a megabyte when 15388 * repeatedly halved -- all the way down to 15m.) 15389 */ 15390 val = LONG_MAX - (1 << 27) + 1; 15391 } 15392 } 15393 15394 state->dts_options[option] = val; 15395 15396 return (0); 15397 } 15398 15399 static void 15400 dtrace_state_destroy(dtrace_state_t *state) 15401 { 15402 dtrace_ecb_t *ecb; 15403 dtrace_vstate_t *vstate = &state->dts_vstate; 15404 #ifdef illumos 15405 minor_t minor = getminor(state->dts_dev); 15406 #endif 15407 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15408 dtrace_speculation_t *spec = state->dts_speculations; 15409 int nspec = state->dts_nspeculations; 15410 uint32_t match; 15411 15412 ASSERT(MUTEX_HELD(&dtrace_lock)); 15413 ASSERT(MUTEX_HELD(&cpu_lock)); 15414 15415 /* 15416 * First, retract any retained enablings for this state. 15417 */ 15418 dtrace_enabling_retract(state); 15419 ASSERT(state->dts_nretained == 0); 15420 15421 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15422 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15423 /* 15424 * We have managed to come into dtrace_state_destroy() on a 15425 * hot enabling -- almost certainly because of a disorderly 15426 * shutdown of a consumer. (That is, a consumer that is 15427 * exiting without having called dtrace_stop().) In this case, 15428 * we're going to set our activity to be KILLED, and then 15429 * issue a sync to be sure that everyone is out of probe 15430 * context before we start blowing away ECBs. 15431 */ 15432 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15433 dtrace_sync(); 15434 } 15435 15436 /* 15437 * Release the credential hold we took in dtrace_state_create(). 15438 */ 15439 if (state->dts_cred.dcr_cred != NULL) 15440 crfree(state->dts_cred.dcr_cred); 15441 15442 /* 15443 * Now we can safely disable and destroy any enabled probes. Because 15444 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15445 * (especially if they're all enabled), we take two passes through the 15446 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15447 * in the second we disable whatever is left over. 15448 */ 15449 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15450 for (i = 0; i < state->dts_necbs; i++) { 15451 if ((ecb = state->dts_ecbs[i]) == NULL) 15452 continue; 15453 15454 if (match && ecb->dte_probe != NULL) { 15455 dtrace_probe_t *probe = ecb->dte_probe; 15456 dtrace_provider_t *prov = probe->dtpr_provider; 15457 15458 if (!(prov->dtpv_priv.dtpp_flags & match)) 15459 continue; 15460 } 15461 15462 dtrace_ecb_disable(ecb); 15463 dtrace_ecb_destroy(ecb); 15464 } 15465 15466 if (!match) 15467 break; 15468 } 15469 15470 /* 15471 * Before we free the buffers, perform one more sync to assure that 15472 * every CPU is out of probe context. 15473 */ 15474 dtrace_sync(); 15475 15476 dtrace_buffer_free(state->dts_buffer); 15477 dtrace_buffer_free(state->dts_aggbuffer); 15478 15479 for (i = 0; i < nspec; i++) 15480 dtrace_buffer_free(spec[i].dtsp_buffer); 15481 15482 #ifdef illumos 15483 if (state->dts_cleaner != CYCLIC_NONE) 15484 cyclic_remove(state->dts_cleaner); 15485 15486 if (state->dts_deadman != CYCLIC_NONE) 15487 cyclic_remove(state->dts_deadman); 15488 #else 15489 callout_stop(&state->dts_cleaner); 15490 callout_drain(&state->dts_cleaner); 15491 callout_stop(&state->dts_deadman); 15492 callout_drain(&state->dts_deadman); 15493 #endif 15494 15495 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15496 dtrace_vstate_fini(vstate); 15497 if (state->dts_ecbs != NULL) 15498 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15499 15500 if (state->dts_aggregations != NULL) { 15501 #ifdef DEBUG 15502 for (i = 0; i < state->dts_naggregations; i++) 15503 ASSERT(state->dts_aggregations[i] == NULL); 15504 #endif 15505 ASSERT(state->dts_naggregations > 0); 15506 kmem_free(state->dts_aggregations, 15507 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15508 } 15509 15510 kmem_free(state->dts_buffer, bufsize); 15511 kmem_free(state->dts_aggbuffer, bufsize); 15512 15513 for (i = 0; i < nspec; i++) 15514 kmem_free(spec[i].dtsp_buffer, bufsize); 15515 15516 if (spec != NULL) 15517 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15518 15519 dtrace_format_destroy(state); 15520 15521 if (state->dts_aggid_arena != NULL) { 15522 #ifdef illumos 15523 vmem_destroy(state->dts_aggid_arena); 15524 #else 15525 delete_unrhdr(state->dts_aggid_arena); 15526 #endif 15527 state->dts_aggid_arena = NULL; 15528 } 15529 #ifdef illumos 15530 ddi_soft_state_free(dtrace_softstate, minor); 15531 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15532 #endif 15533 } 15534 15535 /* 15536 * DTrace Anonymous Enabling Functions 15537 */ 15538 static dtrace_state_t * 15539 dtrace_anon_grab(void) 15540 { 15541 dtrace_state_t *state; 15542 15543 ASSERT(MUTEX_HELD(&dtrace_lock)); 15544 15545 if ((state = dtrace_anon.dta_state) == NULL) { 15546 ASSERT(dtrace_anon.dta_enabling == NULL); 15547 return (NULL); 15548 } 15549 15550 ASSERT(dtrace_anon.dta_enabling != NULL); 15551 ASSERT(dtrace_retained != NULL); 15552 15553 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15554 dtrace_anon.dta_enabling = NULL; 15555 dtrace_anon.dta_state = NULL; 15556 15557 return (state); 15558 } 15559 15560 static void 15561 dtrace_anon_property(void) 15562 { 15563 int i, rv; 15564 dtrace_state_t *state; 15565 dof_hdr_t *dof; 15566 char c[32]; /* enough for "dof-data-" + digits */ 15567 15568 ASSERT(MUTEX_HELD(&dtrace_lock)); 15569 ASSERT(MUTEX_HELD(&cpu_lock)); 15570 15571 for (i = 0; ; i++) { 15572 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15573 15574 dtrace_err_verbose = 1; 15575 15576 if ((dof = dtrace_dof_property(c)) == NULL) { 15577 dtrace_err_verbose = 0; 15578 break; 15579 } 15580 15581 #ifdef illumos 15582 /* 15583 * We want to create anonymous state, so we need to transition 15584 * the kernel debugger to indicate that DTrace is active. If 15585 * this fails (e.g. because the debugger has modified text in 15586 * some way), we won't continue with the processing. 15587 */ 15588 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15589 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15590 "enabling ignored."); 15591 dtrace_dof_destroy(dof); 15592 break; 15593 } 15594 #endif 15595 15596 /* 15597 * If we haven't allocated an anonymous state, we'll do so now. 15598 */ 15599 if ((state = dtrace_anon.dta_state) == NULL) { 15600 state = dtrace_state_create(NULL, NULL); 15601 dtrace_anon.dta_state = state; 15602 15603 if (state == NULL) { 15604 /* 15605 * This basically shouldn't happen: the only 15606 * failure mode from dtrace_state_create() is a 15607 * failure of ddi_soft_state_zalloc() that 15608 * itself should never happen. Still, the 15609 * interface allows for a failure mode, and 15610 * we want to fail as gracefully as possible: 15611 * we'll emit an error message and cease 15612 * processing anonymous state in this case. 15613 */ 15614 cmn_err(CE_WARN, "failed to create " 15615 "anonymous state"); 15616 dtrace_dof_destroy(dof); 15617 break; 15618 } 15619 } 15620 15621 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15622 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15623 15624 if (rv == 0) 15625 rv = dtrace_dof_options(dof, state); 15626 15627 dtrace_err_verbose = 0; 15628 dtrace_dof_destroy(dof); 15629 15630 if (rv != 0) { 15631 /* 15632 * This is malformed DOF; chuck any anonymous state 15633 * that we created. 15634 */ 15635 ASSERT(dtrace_anon.dta_enabling == NULL); 15636 dtrace_state_destroy(state); 15637 dtrace_anon.dta_state = NULL; 15638 break; 15639 } 15640 15641 ASSERT(dtrace_anon.dta_enabling != NULL); 15642 } 15643 15644 if (dtrace_anon.dta_enabling != NULL) { 15645 int rval; 15646 15647 /* 15648 * dtrace_enabling_retain() can only fail because we are 15649 * trying to retain more enablings than are allowed -- but 15650 * we only have one anonymous enabling, and we are guaranteed 15651 * to be allowed at least one retained enabling; we assert 15652 * that dtrace_enabling_retain() returns success. 15653 */ 15654 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15655 ASSERT(rval == 0); 15656 15657 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15658 } 15659 } 15660 15661 /* 15662 * DTrace Helper Functions 15663 */ 15664 static void 15665 dtrace_helper_trace(dtrace_helper_action_t *helper, 15666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15667 { 15668 uint32_t size, next, nnext, i; 15669 dtrace_helptrace_t *ent, *buffer; 15670 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15671 15672 if ((buffer = dtrace_helptrace_buffer) == NULL) 15673 return; 15674 15675 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15676 15677 /* 15678 * What would a tracing framework be without its own tracing 15679 * framework? (Well, a hell of a lot simpler, for starters...) 15680 */ 15681 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15682 sizeof (uint64_t) - sizeof (uint64_t); 15683 15684 /* 15685 * Iterate until we can allocate a slot in the trace buffer. 15686 */ 15687 do { 15688 next = dtrace_helptrace_next; 15689 15690 if (next + size < dtrace_helptrace_bufsize) { 15691 nnext = next + size; 15692 } else { 15693 nnext = size; 15694 } 15695 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15696 15697 /* 15698 * We have our slot; fill it in. 15699 */ 15700 if (nnext == size) { 15701 dtrace_helptrace_wrapped++; 15702 next = 0; 15703 } 15704 15705 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15706 ent->dtht_helper = helper; 15707 ent->dtht_where = where; 15708 ent->dtht_nlocals = vstate->dtvs_nlocals; 15709 15710 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15711 mstate->dtms_fltoffs : -1; 15712 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15713 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15714 15715 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15716 dtrace_statvar_t *svar; 15717 15718 if ((svar = vstate->dtvs_locals[i]) == NULL) 15719 continue; 15720 15721 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15722 ent->dtht_locals[i] = 15723 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15724 } 15725 } 15726 15727 static uint64_t 15728 dtrace_helper(int which, dtrace_mstate_t *mstate, 15729 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15730 { 15731 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15732 uint64_t sarg0 = mstate->dtms_arg[0]; 15733 uint64_t sarg1 = mstate->dtms_arg[1]; 15734 uint64_t rval = 0; 15735 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15736 dtrace_helper_action_t *helper; 15737 dtrace_vstate_t *vstate; 15738 dtrace_difo_t *pred; 15739 int i, trace = dtrace_helptrace_buffer != NULL; 15740 15741 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15742 15743 if (helpers == NULL) 15744 return (0); 15745 15746 if ((helper = helpers->dthps_actions[which]) == NULL) 15747 return (0); 15748 15749 vstate = &helpers->dthps_vstate; 15750 mstate->dtms_arg[0] = arg0; 15751 mstate->dtms_arg[1] = arg1; 15752 15753 /* 15754 * Now iterate over each helper. If its predicate evaluates to 'true', 15755 * we'll call the corresponding actions. Note that the below calls 15756 * to dtrace_dif_emulate() may set faults in machine state. This is 15757 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15758 * the stored DIF offset with its own (which is the desired behavior). 15759 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15760 * from machine state; this is okay, too. 15761 */ 15762 for (; helper != NULL; helper = helper->dtha_next) { 15763 if ((pred = helper->dtha_predicate) != NULL) { 15764 if (trace) 15765 dtrace_helper_trace(helper, mstate, vstate, 0); 15766 15767 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15768 goto next; 15769 15770 if (*flags & CPU_DTRACE_FAULT) 15771 goto err; 15772 } 15773 15774 for (i = 0; i < helper->dtha_nactions; i++) { 15775 if (trace) 15776 dtrace_helper_trace(helper, 15777 mstate, vstate, i + 1); 15778 15779 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15780 mstate, vstate, state); 15781 15782 if (*flags & CPU_DTRACE_FAULT) 15783 goto err; 15784 } 15785 15786 next: 15787 if (trace) 15788 dtrace_helper_trace(helper, mstate, vstate, 15789 DTRACE_HELPTRACE_NEXT); 15790 } 15791 15792 if (trace) 15793 dtrace_helper_trace(helper, mstate, vstate, 15794 DTRACE_HELPTRACE_DONE); 15795 15796 /* 15797 * Restore the arg0 that we saved upon entry. 15798 */ 15799 mstate->dtms_arg[0] = sarg0; 15800 mstate->dtms_arg[1] = sarg1; 15801 15802 return (rval); 15803 15804 err: 15805 if (trace) 15806 dtrace_helper_trace(helper, mstate, vstate, 15807 DTRACE_HELPTRACE_ERR); 15808 15809 /* 15810 * Restore the arg0 that we saved upon entry. 15811 */ 15812 mstate->dtms_arg[0] = sarg0; 15813 mstate->dtms_arg[1] = sarg1; 15814 15815 return (0); 15816 } 15817 15818 static void 15819 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15820 dtrace_vstate_t *vstate) 15821 { 15822 int i; 15823 15824 if (helper->dtha_predicate != NULL) 15825 dtrace_difo_release(helper->dtha_predicate, vstate); 15826 15827 for (i = 0; i < helper->dtha_nactions; i++) { 15828 ASSERT(helper->dtha_actions[i] != NULL); 15829 dtrace_difo_release(helper->dtha_actions[i], vstate); 15830 } 15831 15832 kmem_free(helper->dtha_actions, 15833 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15834 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15835 } 15836 15837 static int 15838 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15839 { 15840 proc_t *p = curproc; 15841 dtrace_vstate_t *vstate; 15842 int i; 15843 15844 if (help == NULL) 15845 help = p->p_dtrace_helpers; 15846 15847 ASSERT(MUTEX_HELD(&dtrace_lock)); 15848 15849 if (help == NULL || gen > help->dthps_generation) 15850 return (EINVAL); 15851 15852 vstate = &help->dthps_vstate; 15853 15854 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15855 dtrace_helper_action_t *last = NULL, *h, *next; 15856 15857 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15858 next = h->dtha_next; 15859 15860 if (h->dtha_generation == gen) { 15861 if (last != NULL) { 15862 last->dtha_next = next; 15863 } else { 15864 help->dthps_actions[i] = next; 15865 } 15866 15867 dtrace_helper_action_destroy(h, vstate); 15868 } else { 15869 last = h; 15870 } 15871 } 15872 } 15873 15874 /* 15875 * Interate until we've cleared out all helper providers with the 15876 * given generation number. 15877 */ 15878 for (;;) { 15879 dtrace_helper_provider_t *prov; 15880 15881 /* 15882 * Look for a helper provider with the right generation. We 15883 * have to start back at the beginning of the list each time 15884 * because we drop dtrace_lock. It's unlikely that we'll make 15885 * more than two passes. 15886 */ 15887 for (i = 0; i < help->dthps_nprovs; i++) { 15888 prov = help->dthps_provs[i]; 15889 15890 if (prov->dthp_generation == gen) 15891 break; 15892 } 15893 15894 /* 15895 * If there were no matches, we're done. 15896 */ 15897 if (i == help->dthps_nprovs) 15898 break; 15899 15900 /* 15901 * Move the last helper provider into this slot. 15902 */ 15903 help->dthps_nprovs--; 15904 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15905 help->dthps_provs[help->dthps_nprovs] = NULL; 15906 15907 mutex_exit(&dtrace_lock); 15908 15909 /* 15910 * If we have a meta provider, remove this helper provider. 15911 */ 15912 mutex_enter(&dtrace_meta_lock); 15913 if (dtrace_meta_pid != NULL) { 15914 ASSERT(dtrace_deferred_pid == NULL); 15915 dtrace_helper_provider_remove(&prov->dthp_prov, 15916 p->p_pid); 15917 } 15918 mutex_exit(&dtrace_meta_lock); 15919 15920 dtrace_helper_provider_destroy(prov); 15921 15922 mutex_enter(&dtrace_lock); 15923 } 15924 15925 return (0); 15926 } 15927 15928 static int 15929 dtrace_helper_validate(dtrace_helper_action_t *helper) 15930 { 15931 int err = 0, i; 15932 dtrace_difo_t *dp; 15933 15934 if ((dp = helper->dtha_predicate) != NULL) 15935 err += dtrace_difo_validate_helper(dp); 15936 15937 for (i = 0; i < helper->dtha_nactions; i++) 15938 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15939 15940 return (err == 0); 15941 } 15942 15943 static int 15944 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15945 dtrace_helpers_t *help) 15946 { 15947 dtrace_helper_action_t *helper, *last; 15948 dtrace_actdesc_t *act; 15949 dtrace_vstate_t *vstate; 15950 dtrace_predicate_t *pred; 15951 int count = 0, nactions = 0, i; 15952 15953 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15954 return (EINVAL); 15955 15956 last = help->dthps_actions[which]; 15957 vstate = &help->dthps_vstate; 15958 15959 for (count = 0; last != NULL; last = last->dtha_next) { 15960 count++; 15961 if (last->dtha_next == NULL) 15962 break; 15963 } 15964 15965 /* 15966 * If we already have dtrace_helper_actions_max helper actions for this 15967 * helper action type, we'll refuse to add a new one. 15968 */ 15969 if (count >= dtrace_helper_actions_max) 15970 return (ENOSPC); 15971 15972 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15973 helper->dtha_generation = help->dthps_generation; 15974 15975 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15976 ASSERT(pred->dtp_difo != NULL); 15977 dtrace_difo_hold(pred->dtp_difo); 15978 helper->dtha_predicate = pred->dtp_difo; 15979 } 15980 15981 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15982 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15983 goto err; 15984 15985 if (act->dtad_difo == NULL) 15986 goto err; 15987 15988 nactions++; 15989 } 15990 15991 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15992 (helper->dtha_nactions = nactions), KM_SLEEP); 15993 15994 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15995 dtrace_difo_hold(act->dtad_difo); 15996 helper->dtha_actions[i++] = act->dtad_difo; 15997 } 15998 15999 if (!dtrace_helper_validate(helper)) 16000 goto err; 16001 16002 if (last == NULL) { 16003 help->dthps_actions[which] = helper; 16004 } else { 16005 last->dtha_next = helper; 16006 } 16007 16008 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16009 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16010 dtrace_helptrace_next = 0; 16011 } 16012 16013 return (0); 16014 err: 16015 dtrace_helper_action_destroy(helper, vstate); 16016 return (EINVAL); 16017 } 16018 16019 static void 16020 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16021 dof_helper_t *dofhp) 16022 { 16023 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16024 16025 mutex_enter(&dtrace_meta_lock); 16026 mutex_enter(&dtrace_lock); 16027 16028 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16029 /* 16030 * If the dtrace module is loaded but not attached, or if 16031 * there aren't isn't a meta provider registered to deal with 16032 * these provider descriptions, we need to postpone creating 16033 * the actual providers until later. 16034 */ 16035 16036 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16037 dtrace_deferred_pid != help) { 16038 help->dthps_deferred = 1; 16039 help->dthps_pid = p->p_pid; 16040 help->dthps_next = dtrace_deferred_pid; 16041 help->dthps_prev = NULL; 16042 if (dtrace_deferred_pid != NULL) 16043 dtrace_deferred_pid->dthps_prev = help; 16044 dtrace_deferred_pid = help; 16045 } 16046 16047 mutex_exit(&dtrace_lock); 16048 16049 } else if (dofhp != NULL) { 16050 /* 16051 * If the dtrace module is loaded and we have a particular 16052 * helper provider description, pass that off to the 16053 * meta provider. 16054 */ 16055 16056 mutex_exit(&dtrace_lock); 16057 16058 dtrace_helper_provide(dofhp, p->p_pid); 16059 16060 } else { 16061 /* 16062 * Otherwise, just pass all the helper provider descriptions 16063 * off to the meta provider. 16064 */ 16065 16066 int i; 16067 mutex_exit(&dtrace_lock); 16068 16069 for (i = 0; i < help->dthps_nprovs; i++) { 16070 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16071 p->p_pid); 16072 } 16073 } 16074 16075 mutex_exit(&dtrace_meta_lock); 16076 } 16077 16078 static int 16079 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16080 { 16081 dtrace_helper_provider_t *hprov, **tmp_provs; 16082 uint_t tmp_maxprovs, i; 16083 16084 ASSERT(MUTEX_HELD(&dtrace_lock)); 16085 ASSERT(help != NULL); 16086 16087 /* 16088 * If we already have dtrace_helper_providers_max helper providers, 16089 * we're refuse to add a new one. 16090 */ 16091 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16092 return (ENOSPC); 16093 16094 /* 16095 * Check to make sure this isn't a duplicate. 16096 */ 16097 for (i = 0; i < help->dthps_nprovs; i++) { 16098 if (dofhp->dofhp_addr == 16099 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16100 return (EALREADY); 16101 } 16102 16103 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16104 hprov->dthp_prov = *dofhp; 16105 hprov->dthp_ref = 1; 16106 hprov->dthp_generation = gen; 16107 16108 /* 16109 * Allocate a bigger table for helper providers if it's already full. 16110 */ 16111 if (help->dthps_maxprovs == help->dthps_nprovs) { 16112 tmp_maxprovs = help->dthps_maxprovs; 16113 tmp_provs = help->dthps_provs; 16114 16115 if (help->dthps_maxprovs == 0) 16116 help->dthps_maxprovs = 2; 16117 else 16118 help->dthps_maxprovs *= 2; 16119 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16120 help->dthps_maxprovs = dtrace_helper_providers_max; 16121 16122 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16123 16124 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16125 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16126 16127 if (tmp_provs != NULL) { 16128 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16129 sizeof (dtrace_helper_provider_t *)); 16130 kmem_free(tmp_provs, tmp_maxprovs * 16131 sizeof (dtrace_helper_provider_t *)); 16132 } 16133 } 16134 16135 help->dthps_provs[help->dthps_nprovs] = hprov; 16136 help->dthps_nprovs++; 16137 16138 return (0); 16139 } 16140 16141 static void 16142 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16143 { 16144 mutex_enter(&dtrace_lock); 16145 16146 if (--hprov->dthp_ref == 0) { 16147 dof_hdr_t *dof; 16148 mutex_exit(&dtrace_lock); 16149 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16150 dtrace_dof_destroy(dof); 16151 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16152 } else { 16153 mutex_exit(&dtrace_lock); 16154 } 16155 } 16156 16157 static int 16158 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16159 { 16160 uintptr_t daddr = (uintptr_t)dof; 16161 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16162 dof_provider_t *provider; 16163 dof_probe_t *probe; 16164 uint8_t *arg; 16165 char *strtab, *typestr; 16166 dof_stridx_t typeidx; 16167 size_t typesz; 16168 uint_t nprobes, j, k; 16169 16170 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16171 16172 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16173 dtrace_dof_error(dof, "misaligned section offset"); 16174 return (-1); 16175 } 16176 16177 /* 16178 * The section needs to be large enough to contain the DOF provider 16179 * structure appropriate for the given version. 16180 */ 16181 if (sec->dofs_size < 16182 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16183 offsetof(dof_provider_t, dofpv_prenoffs) : 16184 sizeof (dof_provider_t))) { 16185 dtrace_dof_error(dof, "provider section too small"); 16186 return (-1); 16187 } 16188 16189 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16190 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16191 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16192 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16193 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16194 16195 if (str_sec == NULL || prb_sec == NULL || 16196 arg_sec == NULL || off_sec == NULL) 16197 return (-1); 16198 16199 enoff_sec = NULL; 16200 16201 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16202 provider->dofpv_prenoffs != DOF_SECT_NONE && 16203 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16204 provider->dofpv_prenoffs)) == NULL) 16205 return (-1); 16206 16207 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16208 16209 if (provider->dofpv_name >= str_sec->dofs_size || 16210 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16211 dtrace_dof_error(dof, "invalid provider name"); 16212 return (-1); 16213 } 16214 16215 if (prb_sec->dofs_entsize == 0 || 16216 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16217 dtrace_dof_error(dof, "invalid entry size"); 16218 return (-1); 16219 } 16220 16221 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16222 dtrace_dof_error(dof, "misaligned entry size"); 16223 return (-1); 16224 } 16225 16226 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16227 dtrace_dof_error(dof, "invalid entry size"); 16228 return (-1); 16229 } 16230 16231 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16232 dtrace_dof_error(dof, "misaligned section offset"); 16233 return (-1); 16234 } 16235 16236 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16237 dtrace_dof_error(dof, "invalid entry size"); 16238 return (-1); 16239 } 16240 16241 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16242 16243 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16244 16245 /* 16246 * Take a pass through the probes to check for errors. 16247 */ 16248 for (j = 0; j < nprobes; j++) { 16249 probe = (dof_probe_t *)(uintptr_t)(daddr + 16250 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16251 16252 if (probe->dofpr_func >= str_sec->dofs_size) { 16253 dtrace_dof_error(dof, "invalid function name"); 16254 return (-1); 16255 } 16256 16257 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16258 dtrace_dof_error(dof, "function name too long"); 16259 /* 16260 * Keep going if the function name is too long. 16261 * Unlike provider and probe names, we cannot reasonably 16262 * impose restrictions on function names, since they're 16263 * a property of the code being instrumented. We will 16264 * skip this probe in dtrace_helper_provide_one(). 16265 */ 16266 } 16267 16268 if (probe->dofpr_name >= str_sec->dofs_size || 16269 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16270 dtrace_dof_error(dof, "invalid probe name"); 16271 return (-1); 16272 } 16273 16274 /* 16275 * The offset count must not wrap the index, and the offsets 16276 * must also not overflow the section's data. 16277 */ 16278 if (probe->dofpr_offidx + probe->dofpr_noffs < 16279 probe->dofpr_offidx || 16280 (probe->dofpr_offidx + probe->dofpr_noffs) * 16281 off_sec->dofs_entsize > off_sec->dofs_size) { 16282 dtrace_dof_error(dof, "invalid probe offset"); 16283 return (-1); 16284 } 16285 16286 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16287 /* 16288 * If there's no is-enabled offset section, make sure 16289 * there aren't any is-enabled offsets. Otherwise 16290 * perform the same checks as for probe offsets 16291 * (immediately above). 16292 */ 16293 if (enoff_sec == NULL) { 16294 if (probe->dofpr_enoffidx != 0 || 16295 probe->dofpr_nenoffs != 0) { 16296 dtrace_dof_error(dof, "is-enabled " 16297 "offsets with null section"); 16298 return (-1); 16299 } 16300 } else if (probe->dofpr_enoffidx + 16301 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16302 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16303 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16304 dtrace_dof_error(dof, "invalid is-enabled " 16305 "offset"); 16306 return (-1); 16307 } 16308 16309 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16310 dtrace_dof_error(dof, "zero probe and " 16311 "is-enabled offsets"); 16312 return (-1); 16313 } 16314 } else if (probe->dofpr_noffs == 0) { 16315 dtrace_dof_error(dof, "zero probe offsets"); 16316 return (-1); 16317 } 16318 16319 if (probe->dofpr_argidx + probe->dofpr_xargc < 16320 probe->dofpr_argidx || 16321 (probe->dofpr_argidx + probe->dofpr_xargc) * 16322 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16323 dtrace_dof_error(dof, "invalid args"); 16324 return (-1); 16325 } 16326 16327 typeidx = probe->dofpr_nargv; 16328 typestr = strtab + probe->dofpr_nargv; 16329 for (k = 0; k < probe->dofpr_nargc; k++) { 16330 if (typeidx >= str_sec->dofs_size) { 16331 dtrace_dof_error(dof, "bad " 16332 "native argument type"); 16333 return (-1); 16334 } 16335 16336 typesz = strlen(typestr) + 1; 16337 if (typesz > DTRACE_ARGTYPELEN) { 16338 dtrace_dof_error(dof, "native " 16339 "argument type too long"); 16340 return (-1); 16341 } 16342 typeidx += typesz; 16343 typestr += typesz; 16344 } 16345 16346 typeidx = probe->dofpr_xargv; 16347 typestr = strtab + probe->dofpr_xargv; 16348 for (k = 0; k < probe->dofpr_xargc; k++) { 16349 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16350 dtrace_dof_error(dof, "bad " 16351 "native argument index"); 16352 return (-1); 16353 } 16354 16355 if (typeidx >= str_sec->dofs_size) { 16356 dtrace_dof_error(dof, "bad " 16357 "translated argument type"); 16358 return (-1); 16359 } 16360 16361 typesz = strlen(typestr) + 1; 16362 if (typesz > DTRACE_ARGTYPELEN) { 16363 dtrace_dof_error(dof, "translated argument " 16364 "type too long"); 16365 return (-1); 16366 } 16367 16368 typeidx += typesz; 16369 typestr += typesz; 16370 } 16371 } 16372 16373 return (0); 16374 } 16375 16376 static int 16377 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16378 { 16379 dtrace_helpers_t *help; 16380 dtrace_vstate_t *vstate; 16381 dtrace_enabling_t *enab = NULL; 16382 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16383 uintptr_t daddr = (uintptr_t)dof; 16384 16385 ASSERT(MUTEX_HELD(&dtrace_lock)); 16386 16387 if ((help = p->p_dtrace_helpers) == NULL) 16388 help = dtrace_helpers_create(p); 16389 16390 vstate = &help->dthps_vstate; 16391 16392 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16393 dhp->dofhp_dof, B_FALSE)) != 0) { 16394 dtrace_dof_destroy(dof); 16395 return (rv); 16396 } 16397 16398 /* 16399 * Look for helper providers and validate their descriptions. 16400 */ 16401 for (i = 0; i < dof->dofh_secnum; i++) { 16402 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16403 dof->dofh_secoff + i * dof->dofh_secsize); 16404 16405 if (sec->dofs_type != DOF_SECT_PROVIDER) 16406 continue; 16407 16408 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16409 dtrace_enabling_destroy(enab); 16410 dtrace_dof_destroy(dof); 16411 return (-1); 16412 } 16413 16414 nprovs++; 16415 } 16416 16417 /* 16418 * Now we need to walk through the ECB descriptions in the enabling. 16419 */ 16420 for (i = 0; i < enab->dten_ndesc; i++) { 16421 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16422 dtrace_probedesc_t *desc = &ep->dted_probe; 16423 16424 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16425 continue; 16426 16427 if (strcmp(desc->dtpd_mod, "helper") != 0) 16428 continue; 16429 16430 if (strcmp(desc->dtpd_func, "ustack") != 0) 16431 continue; 16432 16433 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16434 ep, help)) != 0) { 16435 /* 16436 * Adding this helper action failed -- we are now going 16437 * to rip out the entire generation and return failure. 16438 */ 16439 (void) dtrace_helper_destroygen(help, 16440 help->dthps_generation); 16441 dtrace_enabling_destroy(enab); 16442 dtrace_dof_destroy(dof); 16443 return (-1); 16444 } 16445 16446 nhelpers++; 16447 } 16448 16449 if (nhelpers < enab->dten_ndesc) 16450 dtrace_dof_error(dof, "unmatched helpers"); 16451 16452 gen = help->dthps_generation++; 16453 dtrace_enabling_destroy(enab); 16454 16455 if (nprovs > 0) { 16456 /* 16457 * Now that this is in-kernel, we change the sense of the 16458 * members: dofhp_dof denotes the in-kernel copy of the DOF 16459 * and dofhp_addr denotes the address at user-level. 16460 */ 16461 dhp->dofhp_addr = dhp->dofhp_dof; 16462 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16463 16464 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16465 mutex_exit(&dtrace_lock); 16466 dtrace_helper_provider_register(p, help, dhp); 16467 mutex_enter(&dtrace_lock); 16468 16469 destroy = 0; 16470 } 16471 } 16472 16473 if (destroy) 16474 dtrace_dof_destroy(dof); 16475 16476 return (gen); 16477 } 16478 16479 static dtrace_helpers_t * 16480 dtrace_helpers_create(proc_t *p) 16481 { 16482 dtrace_helpers_t *help; 16483 16484 ASSERT(MUTEX_HELD(&dtrace_lock)); 16485 ASSERT(p->p_dtrace_helpers == NULL); 16486 16487 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16488 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16489 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16490 16491 p->p_dtrace_helpers = help; 16492 dtrace_helpers++; 16493 16494 return (help); 16495 } 16496 16497 #ifdef illumos 16498 static 16499 #endif 16500 void 16501 dtrace_helpers_destroy(proc_t *p) 16502 { 16503 dtrace_helpers_t *help; 16504 dtrace_vstate_t *vstate; 16505 #ifdef illumos 16506 proc_t *p = curproc; 16507 #endif 16508 int i; 16509 16510 mutex_enter(&dtrace_lock); 16511 16512 ASSERT(p->p_dtrace_helpers != NULL); 16513 ASSERT(dtrace_helpers > 0); 16514 16515 help = p->p_dtrace_helpers; 16516 vstate = &help->dthps_vstate; 16517 16518 /* 16519 * We're now going to lose the help from this process. 16520 */ 16521 p->p_dtrace_helpers = NULL; 16522 dtrace_sync(); 16523 16524 /* 16525 * Destory the helper actions. 16526 */ 16527 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16528 dtrace_helper_action_t *h, *next; 16529 16530 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16531 next = h->dtha_next; 16532 dtrace_helper_action_destroy(h, vstate); 16533 h = next; 16534 } 16535 } 16536 16537 mutex_exit(&dtrace_lock); 16538 16539 /* 16540 * Destroy the helper providers. 16541 */ 16542 if (help->dthps_maxprovs > 0) { 16543 mutex_enter(&dtrace_meta_lock); 16544 if (dtrace_meta_pid != NULL) { 16545 ASSERT(dtrace_deferred_pid == NULL); 16546 16547 for (i = 0; i < help->dthps_nprovs; i++) { 16548 dtrace_helper_provider_remove( 16549 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16550 } 16551 } else { 16552 mutex_enter(&dtrace_lock); 16553 ASSERT(help->dthps_deferred == 0 || 16554 help->dthps_next != NULL || 16555 help->dthps_prev != NULL || 16556 help == dtrace_deferred_pid); 16557 16558 /* 16559 * Remove the helper from the deferred list. 16560 */ 16561 if (help->dthps_next != NULL) 16562 help->dthps_next->dthps_prev = help->dthps_prev; 16563 if (help->dthps_prev != NULL) 16564 help->dthps_prev->dthps_next = help->dthps_next; 16565 if (dtrace_deferred_pid == help) { 16566 dtrace_deferred_pid = help->dthps_next; 16567 ASSERT(help->dthps_prev == NULL); 16568 } 16569 16570 mutex_exit(&dtrace_lock); 16571 } 16572 16573 mutex_exit(&dtrace_meta_lock); 16574 16575 for (i = 0; i < help->dthps_nprovs; i++) { 16576 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16577 } 16578 16579 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16580 sizeof (dtrace_helper_provider_t *)); 16581 } 16582 16583 mutex_enter(&dtrace_lock); 16584 16585 dtrace_vstate_fini(&help->dthps_vstate); 16586 kmem_free(help->dthps_actions, 16587 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16588 kmem_free(help, sizeof (dtrace_helpers_t)); 16589 16590 --dtrace_helpers; 16591 mutex_exit(&dtrace_lock); 16592 } 16593 16594 #ifdef illumos 16595 static 16596 #endif 16597 void 16598 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16599 { 16600 dtrace_helpers_t *help, *newhelp; 16601 dtrace_helper_action_t *helper, *new, *last; 16602 dtrace_difo_t *dp; 16603 dtrace_vstate_t *vstate; 16604 int i, j, sz, hasprovs = 0; 16605 16606 mutex_enter(&dtrace_lock); 16607 ASSERT(from->p_dtrace_helpers != NULL); 16608 ASSERT(dtrace_helpers > 0); 16609 16610 help = from->p_dtrace_helpers; 16611 newhelp = dtrace_helpers_create(to); 16612 ASSERT(to->p_dtrace_helpers != NULL); 16613 16614 newhelp->dthps_generation = help->dthps_generation; 16615 vstate = &newhelp->dthps_vstate; 16616 16617 /* 16618 * Duplicate the helper actions. 16619 */ 16620 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16621 if ((helper = help->dthps_actions[i]) == NULL) 16622 continue; 16623 16624 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16625 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16626 KM_SLEEP); 16627 new->dtha_generation = helper->dtha_generation; 16628 16629 if ((dp = helper->dtha_predicate) != NULL) { 16630 dp = dtrace_difo_duplicate(dp, vstate); 16631 new->dtha_predicate = dp; 16632 } 16633 16634 new->dtha_nactions = helper->dtha_nactions; 16635 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16636 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16637 16638 for (j = 0; j < new->dtha_nactions; j++) { 16639 dtrace_difo_t *dp = helper->dtha_actions[j]; 16640 16641 ASSERT(dp != NULL); 16642 dp = dtrace_difo_duplicate(dp, vstate); 16643 new->dtha_actions[j] = dp; 16644 } 16645 16646 if (last != NULL) { 16647 last->dtha_next = new; 16648 } else { 16649 newhelp->dthps_actions[i] = new; 16650 } 16651 16652 last = new; 16653 } 16654 } 16655 16656 /* 16657 * Duplicate the helper providers and register them with the 16658 * DTrace framework. 16659 */ 16660 if (help->dthps_nprovs > 0) { 16661 newhelp->dthps_nprovs = help->dthps_nprovs; 16662 newhelp->dthps_maxprovs = help->dthps_nprovs; 16663 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16664 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16665 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16666 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16667 newhelp->dthps_provs[i]->dthp_ref++; 16668 } 16669 16670 hasprovs = 1; 16671 } 16672 16673 mutex_exit(&dtrace_lock); 16674 16675 if (hasprovs) 16676 dtrace_helper_provider_register(to, newhelp, NULL); 16677 } 16678 16679 /* 16680 * DTrace Hook Functions 16681 */ 16682 static void 16683 dtrace_module_loaded(modctl_t *ctl) 16684 { 16685 dtrace_provider_t *prv; 16686 16687 mutex_enter(&dtrace_provider_lock); 16688 #ifdef illumos 16689 mutex_enter(&mod_lock); 16690 #endif 16691 16692 #ifdef illumos 16693 ASSERT(ctl->mod_busy); 16694 #endif 16695 16696 /* 16697 * We're going to call each providers per-module provide operation 16698 * specifying only this module. 16699 */ 16700 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16701 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16702 16703 #ifdef illumos 16704 mutex_exit(&mod_lock); 16705 #endif 16706 mutex_exit(&dtrace_provider_lock); 16707 16708 /* 16709 * If we have any retained enablings, we need to match against them. 16710 * Enabling probes requires that cpu_lock be held, and we cannot hold 16711 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16712 * module. (In particular, this happens when loading scheduling 16713 * classes.) So if we have any retained enablings, we need to dispatch 16714 * our task queue to do the match for us. 16715 */ 16716 mutex_enter(&dtrace_lock); 16717 16718 if (dtrace_retained == NULL) { 16719 mutex_exit(&dtrace_lock); 16720 return; 16721 } 16722 16723 (void) taskq_dispatch(dtrace_taskq, 16724 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16725 16726 mutex_exit(&dtrace_lock); 16727 16728 /* 16729 * And now, for a little heuristic sleaze: in general, we want to 16730 * match modules as soon as they load. However, we cannot guarantee 16731 * this, because it would lead us to the lock ordering violation 16732 * outlined above. The common case, of course, is that cpu_lock is 16733 * _not_ held -- so we delay here for a clock tick, hoping that that's 16734 * long enough for the task queue to do its work. If it's not, it's 16735 * not a serious problem -- it just means that the module that we 16736 * just loaded may not be immediately instrumentable. 16737 */ 16738 delay(1); 16739 } 16740 16741 static void 16742 #ifdef illumos 16743 dtrace_module_unloaded(modctl_t *ctl) 16744 #else 16745 dtrace_module_unloaded(modctl_t *ctl, int *error) 16746 #endif 16747 { 16748 dtrace_probe_t template, *probe, *first, *next; 16749 dtrace_provider_t *prov; 16750 #ifndef illumos 16751 char modname[DTRACE_MODNAMELEN]; 16752 size_t len; 16753 #endif 16754 16755 #ifdef illumos 16756 template.dtpr_mod = ctl->mod_modname; 16757 #else 16758 /* Handle the fact that ctl->filename may end in ".ko". */ 16759 strlcpy(modname, ctl->filename, sizeof(modname)); 16760 len = strlen(ctl->filename); 16761 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16762 modname[len - 3] = '\0'; 16763 template.dtpr_mod = modname; 16764 #endif 16765 16766 mutex_enter(&dtrace_provider_lock); 16767 #ifdef illumos 16768 mutex_enter(&mod_lock); 16769 #endif 16770 mutex_enter(&dtrace_lock); 16771 16772 #ifndef illumos 16773 if (ctl->nenabled > 0) { 16774 /* Don't allow unloads if a probe is enabled. */ 16775 mutex_exit(&dtrace_provider_lock); 16776 mutex_exit(&dtrace_lock); 16777 *error = -1; 16778 printf( 16779 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16780 return; 16781 } 16782 #endif 16783 16784 if (dtrace_bymod == NULL) { 16785 /* 16786 * The DTrace module is loaded (obviously) but not attached; 16787 * we don't have any work to do. 16788 */ 16789 mutex_exit(&dtrace_provider_lock); 16790 #ifdef illumos 16791 mutex_exit(&mod_lock); 16792 #endif 16793 mutex_exit(&dtrace_lock); 16794 return; 16795 } 16796 16797 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16798 probe != NULL; probe = probe->dtpr_nextmod) { 16799 if (probe->dtpr_ecb != NULL) { 16800 mutex_exit(&dtrace_provider_lock); 16801 #ifdef illumos 16802 mutex_exit(&mod_lock); 16803 #endif 16804 mutex_exit(&dtrace_lock); 16805 16806 /* 16807 * This shouldn't _actually_ be possible -- we're 16808 * unloading a module that has an enabled probe in it. 16809 * (It's normally up to the provider to make sure that 16810 * this can't happen.) However, because dtps_enable() 16811 * doesn't have a failure mode, there can be an 16812 * enable/unload race. Upshot: we don't want to 16813 * assert, but we're not going to disable the 16814 * probe, either. 16815 */ 16816 if (dtrace_err_verbose) { 16817 #ifdef illumos 16818 cmn_err(CE_WARN, "unloaded module '%s' had " 16819 "enabled probes", ctl->mod_modname); 16820 #else 16821 cmn_err(CE_WARN, "unloaded module '%s' had " 16822 "enabled probes", modname); 16823 #endif 16824 } 16825 16826 return; 16827 } 16828 } 16829 16830 probe = first; 16831 16832 for (first = NULL; probe != NULL; probe = next) { 16833 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16834 16835 dtrace_probes[probe->dtpr_id - 1] = NULL; 16836 16837 next = probe->dtpr_nextmod; 16838 dtrace_hash_remove(dtrace_bymod, probe); 16839 dtrace_hash_remove(dtrace_byfunc, probe); 16840 dtrace_hash_remove(dtrace_byname, probe); 16841 16842 if (first == NULL) { 16843 first = probe; 16844 probe->dtpr_nextmod = NULL; 16845 } else { 16846 probe->dtpr_nextmod = first; 16847 first = probe; 16848 } 16849 } 16850 16851 /* 16852 * We've removed all of the module's probes from the hash chains and 16853 * from the probe array. Now issue a dtrace_sync() to be sure that 16854 * everyone has cleared out from any probe array processing. 16855 */ 16856 dtrace_sync(); 16857 16858 for (probe = first; probe != NULL; probe = first) { 16859 first = probe->dtpr_nextmod; 16860 prov = probe->dtpr_provider; 16861 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16862 probe->dtpr_arg); 16863 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16864 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16865 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16866 #ifdef illumos 16867 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16868 #else 16869 free_unr(dtrace_arena, probe->dtpr_id); 16870 #endif 16871 kmem_free(probe, sizeof (dtrace_probe_t)); 16872 } 16873 16874 mutex_exit(&dtrace_lock); 16875 #ifdef illumos 16876 mutex_exit(&mod_lock); 16877 #endif 16878 mutex_exit(&dtrace_provider_lock); 16879 } 16880 16881 #ifndef illumos 16882 static void 16883 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16884 { 16885 16886 dtrace_module_loaded(lf); 16887 } 16888 16889 static void 16890 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16891 { 16892 16893 if (*error != 0) 16894 /* We already have an error, so don't do anything. */ 16895 return; 16896 dtrace_module_unloaded(lf, error); 16897 } 16898 #endif 16899 16900 #ifdef illumos 16901 static void 16902 dtrace_suspend(void) 16903 { 16904 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16905 } 16906 16907 static void 16908 dtrace_resume(void) 16909 { 16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16911 } 16912 #endif 16913 16914 static int 16915 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16916 { 16917 ASSERT(MUTEX_HELD(&cpu_lock)); 16918 mutex_enter(&dtrace_lock); 16919 16920 switch (what) { 16921 case CPU_CONFIG: { 16922 dtrace_state_t *state; 16923 dtrace_optval_t *opt, rs, c; 16924 16925 /* 16926 * For now, we only allocate a new buffer for anonymous state. 16927 */ 16928 if ((state = dtrace_anon.dta_state) == NULL) 16929 break; 16930 16931 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16932 break; 16933 16934 opt = state->dts_options; 16935 c = opt[DTRACEOPT_CPU]; 16936 16937 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16938 break; 16939 16940 /* 16941 * Regardless of what the actual policy is, we're going to 16942 * temporarily set our resize policy to be manual. We're 16943 * also going to temporarily set our CPU option to denote 16944 * the newly configured CPU. 16945 */ 16946 rs = opt[DTRACEOPT_BUFRESIZE]; 16947 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16948 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16949 16950 (void) dtrace_state_buffers(state); 16951 16952 opt[DTRACEOPT_BUFRESIZE] = rs; 16953 opt[DTRACEOPT_CPU] = c; 16954 16955 break; 16956 } 16957 16958 case CPU_UNCONFIG: 16959 /* 16960 * We don't free the buffer in the CPU_UNCONFIG case. (The 16961 * buffer will be freed when the consumer exits.) 16962 */ 16963 break; 16964 16965 default: 16966 break; 16967 } 16968 16969 mutex_exit(&dtrace_lock); 16970 return (0); 16971 } 16972 16973 #ifdef illumos 16974 static void 16975 dtrace_cpu_setup_initial(processorid_t cpu) 16976 { 16977 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16978 } 16979 #endif 16980 16981 static void 16982 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16983 { 16984 if (dtrace_toxranges >= dtrace_toxranges_max) { 16985 int osize, nsize; 16986 dtrace_toxrange_t *range; 16987 16988 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16989 16990 if (osize == 0) { 16991 ASSERT(dtrace_toxrange == NULL); 16992 ASSERT(dtrace_toxranges_max == 0); 16993 dtrace_toxranges_max = 1; 16994 } else { 16995 dtrace_toxranges_max <<= 1; 16996 } 16997 16998 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16999 range = kmem_zalloc(nsize, KM_SLEEP); 17000 17001 if (dtrace_toxrange != NULL) { 17002 ASSERT(osize != 0); 17003 bcopy(dtrace_toxrange, range, osize); 17004 kmem_free(dtrace_toxrange, osize); 17005 } 17006 17007 dtrace_toxrange = range; 17008 } 17009 17010 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17011 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17012 17013 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17014 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17015 dtrace_toxranges++; 17016 } 17017 17018 static void 17019 dtrace_getf_barrier() 17020 { 17021 #ifdef illumos 17022 /* 17023 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17024 * that contain calls to getf(), this routine will be called on every 17025 * closef() before either the underlying vnode is released or the 17026 * file_t itself is freed. By the time we are here, it is essential 17027 * that the file_t can no longer be accessed from a call to getf() 17028 * in probe context -- that assures that a dtrace_sync() can be used 17029 * to clear out any enablings referring to the old structures. 17030 */ 17031 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17032 kcred->cr_zone->zone_dtrace_getf != 0) 17033 dtrace_sync(); 17034 #endif 17035 } 17036 17037 /* 17038 * DTrace Driver Cookbook Functions 17039 */ 17040 #ifdef illumos 17041 /*ARGSUSED*/ 17042 static int 17043 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17044 { 17045 dtrace_provider_id_t id; 17046 dtrace_state_t *state = NULL; 17047 dtrace_enabling_t *enab; 17048 17049 mutex_enter(&cpu_lock); 17050 mutex_enter(&dtrace_provider_lock); 17051 mutex_enter(&dtrace_lock); 17052 17053 if (ddi_soft_state_init(&dtrace_softstate, 17054 sizeof (dtrace_state_t), 0) != 0) { 17055 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17056 mutex_exit(&cpu_lock); 17057 mutex_exit(&dtrace_provider_lock); 17058 mutex_exit(&dtrace_lock); 17059 return (DDI_FAILURE); 17060 } 17061 17062 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17063 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17064 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17065 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17066 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17067 ddi_remove_minor_node(devi, NULL); 17068 ddi_soft_state_fini(&dtrace_softstate); 17069 mutex_exit(&cpu_lock); 17070 mutex_exit(&dtrace_provider_lock); 17071 mutex_exit(&dtrace_lock); 17072 return (DDI_FAILURE); 17073 } 17074 17075 ddi_report_dev(devi); 17076 dtrace_devi = devi; 17077 17078 dtrace_modload = dtrace_module_loaded; 17079 dtrace_modunload = dtrace_module_unloaded; 17080 dtrace_cpu_init = dtrace_cpu_setup_initial; 17081 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17082 dtrace_helpers_fork = dtrace_helpers_duplicate; 17083 dtrace_cpustart_init = dtrace_suspend; 17084 dtrace_cpustart_fini = dtrace_resume; 17085 dtrace_debugger_init = dtrace_suspend; 17086 dtrace_debugger_fini = dtrace_resume; 17087 17088 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17089 17090 ASSERT(MUTEX_HELD(&cpu_lock)); 17091 17092 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17093 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17094 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17095 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17096 VM_SLEEP | VMC_IDENTIFIER); 17097 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17098 1, INT_MAX, 0); 17099 17100 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17101 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17102 NULL, NULL, NULL, NULL, NULL, 0); 17103 17104 ASSERT(MUTEX_HELD(&cpu_lock)); 17105 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17106 offsetof(dtrace_probe_t, dtpr_nextmod), 17107 offsetof(dtrace_probe_t, dtpr_prevmod)); 17108 17109 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17110 offsetof(dtrace_probe_t, dtpr_nextfunc), 17111 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17112 17113 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17114 offsetof(dtrace_probe_t, dtpr_nextname), 17115 offsetof(dtrace_probe_t, dtpr_prevname)); 17116 17117 if (dtrace_retain_max < 1) { 17118 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17119 "setting to 1", dtrace_retain_max); 17120 dtrace_retain_max = 1; 17121 } 17122 17123 /* 17124 * Now discover our toxic ranges. 17125 */ 17126 dtrace_toxic_ranges(dtrace_toxrange_add); 17127 17128 /* 17129 * Before we register ourselves as a provider to our own framework, 17130 * we would like to assert that dtrace_provider is NULL -- but that's 17131 * not true if we were loaded as a dependency of a DTrace provider. 17132 * Once we've registered, we can assert that dtrace_provider is our 17133 * pseudo provider. 17134 */ 17135 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17136 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17137 17138 ASSERT(dtrace_provider != NULL); 17139 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17140 17141 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17142 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17143 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17144 dtrace_provider, NULL, NULL, "END", 0, NULL); 17145 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17146 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17147 17148 dtrace_anon_property(); 17149 mutex_exit(&cpu_lock); 17150 17151 /* 17152 * If there are already providers, we must ask them to provide their 17153 * probes, and then match any anonymous enabling against them. Note 17154 * that there should be no other retained enablings at this time: 17155 * the only retained enablings at this time should be the anonymous 17156 * enabling. 17157 */ 17158 if (dtrace_anon.dta_enabling != NULL) { 17159 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17160 17161 dtrace_enabling_provide(NULL); 17162 state = dtrace_anon.dta_state; 17163 17164 /* 17165 * We couldn't hold cpu_lock across the above call to 17166 * dtrace_enabling_provide(), but we must hold it to actually 17167 * enable the probes. We have to drop all of our locks, pick 17168 * up cpu_lock, and regain our locks before matching the 17169 * retained anonymous enabling. 17170 */ 17171 mutex_exit(&dtrace_lock); 17172 mutex_exit(&dtrace_provider_lock); 17173 17174 mutex_enter(&cpu_lock); 17175 mutex_enter(&dtrace_provider_lock); 17176 mutex_enter(&dtrace_lock); 17177 17178 if ((enab = dtrace_anon.dta_enabling) != NULL) 17179 (void) dtrace_enabling_match(enab, NULL); 17180 17181 mutex_exit(&cpu_lock); 17182 } 17183 17184 mutex_exit(&dtrace_lock); 17185 mutex_exit(&dtrace_provider_lock); 17186 17187 if (state != NULL) { 17188 /* 17189 * If we created any anonymous state, set it going now. 17190 */ 17191 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17192 } 17193 17194 return (DDI_SUCCESS); 17195 } 17196 #endif /* illumos */ 17197 17198 #ifndef illumos 17199 static void dtrace_dtr(void *); 17200 #endif 17201 17202 /*ARGSUSED*/ 17203 static int 17204 #ifdef illumos 17205 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17206 #else 17207 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17208 #endif 17209 { 17210 dtrace_state_t *state; 17211 uint32_t priv; 17212 uid_t uid; 17213 zoneid_t zoneid; 17214 17215 #ifdef illumos 17216 if (getminor(*devp) == DTRACEMNRN_HELPER) 17217 return (0); 17218 17219 /* 17220 * If this wasn't an open with the "helper" minor, then it must be 17221 * the "dtrace" minor. 17222 */ 17223 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17224 return (ENXIO); 17225 #else 17226 cred_t *cred_p = NULL; 17227 cred_p = dev->si_cred; 17228 17229 /* 17230 * If no DTRACE_PRIV_* bits are set in the credential, then the 17231 * caller lacks sufficient permission to do anything with DTrace. 17232 */ 17233 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17234 if (priv == DTRACE_PRIV_NONE) { 17235 #endif 17236 17237 return (EACCES); 17238 } 17239 17240 /* 17241 * Ask all providers to provide all their probes. 17242 */ 17243 mutex_enter(&dtrace_provider_lock); 17244 dtrace_probe_provide(NULL, NULL); 17245 mutex_exit(&dtrace_provider_lock); 17246 17247 mutex_enter(&cpu_lock); 17248 mutex_enter(&dtrace_lock); 17249 dtrace_opens++; 17250 dtrace_membar_producer(); 17251 17252 #ifdef illumos 17253 /* 17254 * If the kernel debugger is active (that is, if the kernel debugger 17255 * modified text in some way), we won't allow the open. 17256 */ 17257 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17258 dtrace_opens--; 17259 mutex_exit(&cpu_lock); 17260 mutex_exit(&dtrace_lock); 17261 return (EBUSY); 17262 } 17263 17264 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17265 /* 17266 * If DTrace helper tracing is enabled, we need to allocate the 17267 * trace buffer and initialize the values. 17268 */ 17269 dtrace_helptrace_buffer = 17270 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17271 dtrace_helptrace_next = 0; 17272 dtrace_helptrace_wrapped = 0; 17273 dtrace_helptrace_enable = 0; 17274 } 17275 17276 state = dtrace_state_create(devp, cred_p); 17277 #else 17278 state = dtrace_state_create(dev, NULL); 17279 devfs_set_cdevpriv(state, dtrace_dtr); 17280 #endif 17281 17282 mutex_exit(&cpu_lock); 17283 17284 if (state == NULL) { 17285 #ifdef illumos 17286 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17287 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17288 #else 17289 --dtrace_opens; 17290 #endif 17291 mutex_exit(&dtrace_lock); 17292 return (EAGAIN); 17293 } 17294 17295 mutex_exit(&dtrace_lock); 17296 17297 return (0); 17298 } 17299 17300 /*ARGSUSED*/ 17301 #ifdef illumos 17302 static int 17303 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17304 #else 17305 static void 17306 dtrace_dtr(void *data) 17307 #endif 17308 { 17309 #ifdef illumos 17310 minor_t minor = getminor(dev); 17311 dtrace_state_t *state; 17312 #endif 17313 dtrace_helptrace_t *buf = NULL; 17314 17315 #ifdef illumos 17316 if (minor == DTRACEMNRN_HELPER) 17317 return (0); 17318 17319 state = ddi_get_soft_state(dtrace_softstate, minor); 17320 #else 17321 dtrace_state_t *state = data; 17322 #endif 17323 17324 mutex_enter(&cpu_lock); 17325 mutex_enter(&dtrace_lock); 17326 17327 #ifdef illumos 17328 if (state->dts_anon) 17329 #else 17330 if (state != NULL && state->dts_anon) 17331 #endif 17332 { 17333 /* 17334 * There is anonymous state. Destroy that first. 17335 */ 17336 ASSERT(dtrace_anon.dta_state == NULL); 17337 dtrace_state_destroy(state->dts_anon); 17338 } 17339 17340 if (dtrace_helptrace_disable) { 17341 /* 17342 * If we have been told to disable helper tracing, set the 17343 * buffer to NULL before calling into dtrace_state_destroy(); 17344 * we take advantage of its dtrace_sync() to know that no 17345 * CPU is in probe context with enabled helper tracing 17346 * after it returns. 17347 */ 17348 buf = dtrace_helptrace_buffer; 17349 dtrace_helptrace_buffer = NULL; 17350 } 17351 17352 #ifdef illumos 17353 dtrace_state_destroy(state); 17354 #else 17355 if (state != NULL) { 17356 dtrace_state_destroy(state); 17357 kmem_free(state, 0); 17358 } 17359 #endif 17360 ASSERT(dtrace_opens > 0); 17361 17362 #ifdef illumos 17363 /* 17364 * Only relinquish control of the kernel debugger interface when there 17365 * are no consumers and no anonymous enablings. 17366 */ 17367 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17368 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17369 #else 17370 --dtrace_opens; 17371 #endif 17372 17373 if (buf != NULL) { 17374 kmem_free(buf, dtrace_helptrace_bufsize); 17375 dtrace_helptrace_disable = 0; 17376 } 17377 17378 mutex_exit(&dtrace_lock); 17379 mutex_exit(&cpu_lock); 17380 17381 #ifdef illumos 17382 return (0); 17383 #endif 17384 } 17385 17386 #ifdef illumos 17387 /*ARGSUSED*/ 17388 static int 17389 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17390 { 17391 int rval; 17392 dof_helper_t help, *dhp = NULL; 17393 17394 switch (cmd) { 17395 case DTRACEHIOC_ADDDOF: 17396 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17397 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17398 return (EFAULT); 17399 } 17400 17401 dhp = &help; 17402 arg = (intptr_t)help.dofhp_dof; 17403 /*FALLTHROUGH*/ 17404 17405 case DTRACEHIOC_ADD: { 17406 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17407 17408 if (dof == NULL) 17409 return (rval); 17410 17411 mutex_enter(&dtrace_lock); 17412 17413 /* 17414 * dtrace_helper_slurp() takes responsibility for the dof -- 17415 * it may free it now or it may save it and free it later. 17416 */ 17417 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17418 *rv = rval; 17419 rval = 0; 17420 } else { 17421 rval = EINVAL; 17422 } 17423 17424 mutex_exit(&dtrace_lock); 17425 return (rval); 17426 } 17427 17428 case DTRACEHIOC_REMOVE: { 17429 mutex_enter(&dtrace_lock); 17430 rval = dtrace_helper_destroygen(NULL, arg); 17431 mutex_exit(&dtrace_lock); 17432 17433 return (rval); 17434 } 17435 17436 default: 17437 break; 17438 } 17439 17440 return (ENOTTY); 17441 } 17442 17443 /*ARGSUSED*/ 17444 static int 17445 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17446 { 17447 minor_t minor = getminor(dev); 17448 dtrace_state_t *state; 17449 int rval; 17450 17451 if (minor == DTRACEMNRN_HELPER) 17452 return (dtrace_ioctl_helper(cmd, arg, rv)); 17453 17454 state = ddi_get_soft_state(dtrace_softstate, minor); 17455 17456 if (state->dts_anon) { 17457 ASSERT(dtrace_anon.dta_state == NULL); 17458 state = state->dts_anon; 17459 } 17460 17461 switch (cmd) { 17462 case DTRACEIOC_PROVIDER: { 17463 dtrace_providerdesc_t pvd; 17464 dtrace_provider_t *pvp; 17465 17466 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17467 return (EFAULT); 17468 17469 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17470 mutex_enter(&dtrace_provider_lock); 17471 17472 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17473 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17474 break; 17475 } 17476 17477 mutex_exit(&dtrace_provider_lock); 17478 17479 if (pvp == NULL) 17480 return (ESRCH); 17481 17482 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17483 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17484 17485 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17486 return (EFAULT); 17487 17488 return (0); 17489 } 17490 17491 case DTRACEIOC_EPROBE: { 17492 dtrace_eprobedesc_t epdesc; 17493 dtrace_ecb_t *ecb; 17494 dtrace_action_t *act; 17495 void *buf; 17496 size_t size; 17497 uintptr_t dest; 17498 int nrecs; 17499 17500 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17501 return (EFAULT); 17502 17503 mutex_enter(&dtrace_lock); 17504 17505 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17506 mutex_exit(&dtrace_lock); 17507 return (EINVAL); 17508 } 17509 17510 if (ecb->dte_probe == NULL) { 17511 mutex_exit(&dtrace_lock); 17512 return (EINVAL); 17513 } 17514 17515 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17516 epdesc.dtepd_uarg = ecb->dte_uarg; 17517 epdesc.dtepd_size = ecb->dte_size; 17518 17519 nrecs = epdesc.dtepd_nrecs; 17520 epdesc.dtepd_nrecs = 0; 17521 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17522 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17523 continue; 17524 17525 epdesc.dtepd_nrecs++; 17526 } 17527 17528 /* 17529 * Now that we have the size, we need to allocate a temporary 17530 * buffer in which to store the complete description. We need 17531 * the temporary buffer to be able to drop dtrace_lock() 17532 * across the copyout(), below. 17533 */ 17534 size = sizeof (dtrace_eprobedesc_t) + 17535 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17536 17537 buf = kmem_alloc(size, KM_SLEEP); 17538 dest = (uintptr_t)buf; 17539 17540 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17541 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17542 17543 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17544 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17545 continue; 17546 17547 if (nrecs-- == 0) 17548 break; 17549 17550 bcopy(&act->dta_rec, (void *)dest, 17551 sizeof (dtrace_recdesc_t)); 17552 dest += sizeof (dtrace_recdesc_t); 17553 } 17554 17555 mutex_exit(&dtrace_lock); 17556 17557 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17558 kmem_free(buf, size); 17559 return (EFAULT); 17560 } 17561 17562 kmem_free(buf, size); 17563 return (0); 17564 } 17565 17566 case DTRACEIOC_AGGDESC: { 17567 dtrace_aggdesc_t aggdesc; 17568 dtrace_action_t *act; 17569 dtrace_aggregation_t *agg; 17570 int nrecs; 17571 uint32_t offs; 17572 dtrace_recdesc_t *lrec; 17573 void *buf; 17574 size_t size; 17575 uintptr_t dest; 17576 17577 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17578 return (EFAULT); 17579 17580 mutex_enter(&dtrace_lock); 17581 17582 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17583 mutex_exit(&dtrace_lock); 17584 return (EINVAL); 17585 } 17586 17587 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17588 17589 nrecs = aggdesc.dtagd_nrecs; 17590 aggdesc.dtagd_nrecs = 0; 17591 17592 offs = agg->dtag_base; 17593 lrec = &agg->dtag_action.dta_rec; 17594 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17595 17596 for (act = agg->dtag_first; ; act = act->dta_next) { 17597 ASSERT(act->dta_intuple || 17598 DTRACEACT_ISAGG(act->dta_kind)); 17599 17600 /* 17601 * If this action has a record size of zero, it 17602 * denotes an argument to the aggregating action. 17603 * Because the presence of this record doesn't (or 17604 * shouldn't) affect the way the data is interpreted, 17605 * we don't copy it out to save user-level the 17606 * confusion of dealing with a zero-length record. 17607 */ 17608 if (act->dta_rec.dtrd_size == 0) { 17609 ASSERT(agg->dtag_hasarg); 17610 continue; 17611 } 17612 17613 aggdesc.dtagd_nrecs++; 17614 17615 if (act == &agg->dtag_action) 17616 break; 17617 } 17618 17619 /* 17620 * Now that we have the size, we need to allocate a temporary 17621 * buffer in which to store the complete description. We need 17622 * the temporary buffer to be able to drop dtrace_lock() 17623 * across the copyout(), below. 17624 */ 17625 size = sizeof (dtrace_aggdesc_t) + 17626 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17627 17628 buf = kmem_alloc(size, KM_SLEEP); 17629 dest = (uintptr_t)buf; 17630 17631 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17632 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17633 17634 for (act = agg->dtag_first; ; act = act->dta_next) { 17635 dtrace_recdesc_t rec = act->dta_rec; 17636 17637 /* 17638 * See the comment in the above loop for why we pass 17639 * over zero-length records. 17640 */ 17641 if (rec.dtrd_size == 0) { 17642 ASSERT(agg->dtag_hasarg); 17643 continue; 17644 } 17645 17646 if (nrecs-- == 0) 17647 break; 17648 17649 rec.dtrd_offset -= offs; 17650 bcopy(&rec, (void *)dest, sizeof (rec)); 17651 dest += sizeof (dtrace_recdesc_t); 17652 17653 if (act == &agg->dtag_action) 17654 break; 17655 } 17656 17657 mutex_exit(&dtrace_lock); 17658 17659 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17660 kmem_free(buf, size); 17661 return (EFAULT); 17662 } 17663 17664 kmem_free(buf, size); 17665 return (0); 17666 } 17667 17668 case DTRACEIOC_ENABLE: { 17669 dof_hdr_t *dof; 17670 dtrace_enabling_t *enab = NULL; 17671 dtrace_vstate_t *vstate; 17672 int err = 0; 17673 17674 *rv = 0; 17675 17676 /* 17677 * If a NULL argument has been passed, we take this as our 17678 * cue to reevaluate our enablings. 17679 */ 17680 if (arg == NULL) { 17681 dtrace_enabling_matchall(); 17682 17683 return (0); 17684 } 17685 17686 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17687 return (rval); 17688 17689 mutex_enter(&cpu_lock); 17690 mutex_enter(&dtrace_lock); 17691 vstate = &state->dts_vstate; 17692 17693 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17694 mutex_exit(&dtrace_lock); 17695 mutex_exit(&cpu_lock); 17696 dtrace_dof_destroy(dof); 17697 return (EBUSY); 17698 } 17699 17700 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17701 mutex_exit(&dtrace_lock); 17702 mutex_exit(&cpu_lock); 17703 dtrace_dof_destroy(dof); 17704 return (EINVAL); 17705 } 17706 17707 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17708 dtrace_enabling_destroy(enab); 17709 mutex_exit(&dtrace_lock); 17710 mutex_exit(&cpu_lock); 17711 dtrace_dof_destroy(dof); 17712 return (rval); 17713 } 17714 17715 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17716 err = dtrace_enabling_retain(enab); 17717 } else { 17718 dtrace_enabling_destroy(enab); 17719 } 17720 17721 mutex_exit(&cpu_lock); 17722 mutex_exit(&dtrace_lock); 17723 dtrace_dof_destroy(dof); 17724 17725 return (err); 17726 } 17727 17728 case DTRACEIOC_REPLICATE: { 17729 dtrace_repldesc_t desc; 17730 dtrace_probedesc_t *match = &desc.dtrpd_match; 17731 dtrace_probedesc_t *create = &desc.dtrpd_create; 17732 int err; 17733 17734 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17735 return (EFAULT); 17736 17737 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17738 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17739 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17740 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17741 17742 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17743 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17744 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17745 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17746 17747 mutex_enter(&dtrace_lock); 17748 err = dtrace_enabling_replicate(state, match, create); 17749 mutex_exit(&dtrace_lock); 17750 17751 return (err); 17752 } 17753 17754 case DTRACEIOC_PROBEMATCH: 17755 case DTRACEIOC_PROBES: { 17756 dtrace_probe_t *probe = NULL; 17757 dtrace_probedesc_t desc; 17758 dtrace_probekey_t pkey; 17759 dtrace_id_t i; 17760 int m = 0; 17761 uint32_t priv; 17762 uid_t uid; 17763 zoneid_t zoneid; 17764 17765 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17766 return (EFAULT); 17767 17768 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17769 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17770 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17771 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17772 17773 /* 17774 * Before we attempt to match this probe, we want to give 17775 * all providers the opportunity to provide it. 17776 */ 17777 if (desc.dtpd_id == DTRACE_IDNONE) { 17778 mutex_enter(&dtrace_provider_lock); 17779 dtrace_probe_provide(&desc, NULL); 17780 mutex_exit(&dtrace_provider_lock); 17781 desc.dtpd_id++; 17782 } 17783 17784 if (cmd == DTRACEIOC_PROBEMATCH) { 17785 dtrace_probekey(&desc, &pkey); 17786 pkey.dtpk_id = DTRACE_IDNONE; 17787 } 17788 17789 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17790 17791 mutex_enter(&dtrace_lock); 17792 17793 if (cmd == DTRACEIOC_PROBEMATCH) { 17794 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17795 if ((probe = dtrace_probes[i - 1]) != NULL && 17796 (m = dtrace_match_probe(probe, &pkey, 17797 priv, uid, zoneid)) != 0) 17798 break; 17799 } 17800 17801 if (m < 0) { 17802 mutex_exit(&dtrace_lock); 17803 return (EINVAL); 17804 } 17805 17806 } else { 17807 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17808 if ((probe = dtrace_probes[i - 1]) != NULL && 17809 dtrace_match_priv(probe, priv, uid, zoneid)) 17810 break; 17811 } 17812 } 17813 17814 if (probe == NULL) { 17815 mutex_exit(&dtrace_lock); 17816 return (ESRCH); 17817 } 17818 17819 dtrace_probe_description(probe, &desc); 17820 mutex_exit(&dtrace_lock); 17821 17822 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17823 return (EFAULT); 17824 17825 return (0); 17826 } 17827 17828 case DTRACEIOC_PROBEARG: { 17829 dtrace_argdesc_t desc; 17830 dtrace_probe_t *probe; 17831 dtrace_provider_t *prov; 17832 17833 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17834 return (EFAULT); 17835 17836 if (desc.dtargd_id == DTRACE_IDNONE) 17837 return (EINVAL); 17838 17839 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17840 return (EINVAL); 17841 17842 mutex_enter(&dtrace_provider_lock); 17843 mutex_enter(&mod_lock); 17844 mutex_enter(&dtrace_lock); 17845 17846 if (desc.dtargd_id > dtrace_nprobes) { 17847 mutex_exit(&dtrace_lock); 17848 mutex_exit(&mod_lock); 17849 mutex_exit(&dtrace_provider_lock); 17850 return (EINVAL); 17851 } 17852 17853 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17854 mutex_exit(&dtrace_lock); 17855 mutex_exit(&mod_lock); 17856 mutex_exit(&dtrace_provider_lock); 17857 return (EINVAL); 17858 } 17859 17860 mutex_exit(&dtrace_lock); 17861 17862 prov = probe->dtpr_provider; 17863 17864 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17865 /* 17866 * There isn't any typed information for this probe. 17867 * Set the argument number to DTRACE_ARGNONE. 17868 */ 17869 desc.dtargd_ndx = DTRACE_ARGNONE; 17870 } else { 17871 desc.dtargd_native[0] = '\0'; 17872 desc.dtargd_xlate[0] = '\0'; 17873 desc.dtargd_mapping = desc.dtargd_ndx; 17874 17875 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17876 probe->dtpr_id, probe->dtpr_arg, &desc); 17877 } 17878 17879 mutex_exit(&mod_lock); 17880 mutex_exit(&dtrace_provider_lock); 17881 17882 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17883 return (EFAULT); 17884 17885 return (0); 17886 } 17887 17888 case DTRACEIOC_GO: { 17889 processorid_t cpuid; 17890 rval = dtrace_state_go(state, &cpuid); 17891 17892 if (rval != 0) 17893 return (rval); 17894 17895 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17896 return (EFAULT); 17897 17898 return (0); 17899 } 17900 17901 case DTRACEIOC_STOP: { 17902 processorid_t cpuid; 17903 17904 mutex_enter(&dtrace_lock); 17905 rval = dtrace_state_stop(state, &cpuid); 17906 mutex_exit(&dtrace_lock); 17907 17908 if (rval != 0) 17909 return (rval); 17910 17911 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17912 return (EFAULT); 17913 17914 return (0); 17915 } 17916 17917 case DTRACEIOC_DOFGET: { 17918 dof_hdr_t hdr, *dof; 17919 uint64_t len; 17920 17921 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17922 return (EFAULT); 17923 17924 mutex_enter(&dtrace_lock); 17925 dof = dtrace_dof_create(state); 17926 mutex_exit(&dtrace_lock); 17927 17928 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17929 rval = copyout(dof, (void *)arg, len); 17930 dtrace_dof_destroy(dof); 17931 17932 return (rval == 0 ? 0 : EFAULT); 17933 } 17934 17935 case DTRACEIOC_AGGSNAP: 17936 case DTRACEIOC_BUFSNAP: { 17937 dtrace_bufdesc_t desc; 17938 caddr_t cached; 17939 dtrace_buffer_t *buf; 17940 17941 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17942 return (EFAULT); 17943 17944 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17945 return (EINVAL); 17946 17947 mutex_enter(&dtrace_lock); 17948 17949 if (cmd == DTRACEIOC_BUFSNAP) { 17950 buf = &state->dts_buffer[desc.dtbd_cpu]; 17951 } else { 17952 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17953 } 17954 17955 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17956 size_t sz = buf->dtb_offset; 17957 17958 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17959 mutex_exit(&dtrace_lock); 17960 return (EBUSY); 17961 } 17962 17963 /* 17964 * If this buffer has already been consumed, we're 17965 * going to indicate that there's nothing left here 17966 * to consume. 17967 */ 17968 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17969 mutex_exit(&dtrace_lock); 17970 17971 desc.dtbd_size = 0; 17972 desc.dtbd_drops = 0; 17973 desc.dtbd_errors = 0; 17974 desc.dtbd_oldest = 0; 17975 sz = sizeof (desc); 17976 17977 if (copyout(&desc, (void *)arg, sz) != 0) 17978 return (EFAULT); 17979 17980 return (0); 17981 } 17982 17983 /* 17984 * If this is a ring buffer that has wrapped, we want 17985 * to copy the whole thing out. 17986 */ 17987 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17988 dtrace_buffer_polish(buf); 17989 sz = buf->dtb_size; 17990 } 17991 17992 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17993 mutex_exit(&dtrace_lock); 17994 return (EFAULT); 17995 } 17996 17997 desc.dtbd_size = sz; 17998 desc.dtbd_drops = buf->dtb_drops; 17999 desc.dtbd_errors = buf->dtb_errors; 18000 desc.dtbd_oldest = buf->dtb_xamot_offset; 18001 desc.dtbd_timestamp = dtrace_gethrtime(); 18002 18003 mutex_exit(&dtrace_lock); 18004 18005 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18006 return (EFAULT); 18007 18008 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18009 18010 return (0); 18011 } 18012 18013 if (buf->dtb_tomax == NULL) { 18014 ASSERT(buf->dtb_xamot == NULL); 18015 mutex_exit(&dtrace_lock); 18016 return (ENOENT); 18017 } 18018 18019 cached = buf->dtb_tomax; 18020 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18021 18022 dtrace_xcall(desc.dtbd_cpu, 18023 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18024 18025 state->dts_errors += buf->dtb_xamot_errors; 18026 18027 /* 18028 * If the buffers did not actually switch, then the cross call 18029 * did not take place -- presumably because the given CPU is 18030 * not in the ready set. If this is the case, we'll return 18031 * ENOENT. 18032 */ 18033 if (buf->dtb_tomax == cached) { 18034 ASSERT(buf->dtb_xamot != cached); 18035 mutex_exit(&dtrace_lock); 18036 return (ENOENT); 18037 } 18038 18039 ASSERT(cached == buf->dtb_xamot); 18040 18041 /* 18042 * We have our snapshot; now copy it out. 18043 */ 18044 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18045 buf->dtb_xamot_offset) != 0) { 18046 mutex_exit(&dtrace_lock); 18047 return (EFAULT); 18048 } 18049 18050 desc.dtbd_size = buf->dtb_xamot_offset; 18051 desc.dtbd_drops = buf->dtb_xamot_drops; 18052 desc.dtbd_errors = buf->dtb_xamot_errors; 18053 desc.dtbd_oldest = 0; 18054 desc.dtbd_timestamp = buf->dtb_switched; 18055 18056 mutex_exit(&dtrace_lock); 18057 18058 /* 18059 * Finally, copy out the buffer description. 18060 */ 18061 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18062 return (EFAULT); 18063 18064 return (0); 18065 } 18066 18067 case DTRACEIOC_CONF: { 18068 dtrace_conf_t conf; 18069 18070 bzero(&conf, sizeof (conf)); 18071 conf.dtc_difversion = DIF_VERSION; 18072 conf.dtc_difintregs = DIF_DIR_NREGS; 18073 conf.dtc_diftupregs = DIF_DTR_NREGS; 18074 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18075 18076 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18077 return (EFAULT); 18078 18079 return (0); 18080 } 18081 18082 case DTRACEIOC_STATUS: { 18083 dtrace_status_t stat; 18084 dtrace_dstate_t *dstate; 18085 int i, j; 18086 uint64_t nerrs; 18087 18088 /* 18089 * See the comment in dtrace_state_deadman() for the reason 18090 * for setting dts_laststatus to INT64_MAX before setting 18091 * it to the correct value. 18092 */ 18093 state->dts_laststatus = INT64_MAX; 18094 dtrace_membar_producer(); 18095 state->dts_laststatus = dtrace_gethrtime(); 18096 18097 bzero(&stat, sizeof (stat)); 18098 18099 mutex_enter(&dtrace_lock); 18100 18101 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18102 mutex_exit(&dtrace_lock); 18103 return (ENOENT); 18104 } 18105 18106 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18107 stat.dtst_exiting = 1; 18108 18109 nerrs = state->dts_errors; 18110 dstate = &state->dts_vstate.dtvs_dynvars; 18111 18112 for (i = 0; i < NCPU; i++) { 18113 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18114 18115 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18116 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18117 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18118 18119 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18120 stat.dtst_filled++; 18121 18122 nerrs += state->dts_buffer[i].dtb_errors; 18123 18124 for (j = 0; j < state->dts_nspeculations; j++) { 18125 dtrace_speculation_t *spec; 18126 dtrace_buffer_t *buf; 18127 18128 spec = &state->dts_speculations[j]; 18129 buf = &spec->dtsp_buffer[i]; 18130 stat.dtst_specdrops += buf->dtb_xamot_drops; 18131 } 18132 } 18133 18134 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18135 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18136 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18137 stat.dtst_dblerrors = state->dts_dblerrors; 18138 stat.dtst_killed = 18139 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18140 stat.dtst_errors = nerrs; 18141 18142 mutex_exit(&dtrace_lock); 18143 18144 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18145 return (EFAULT); 18146 18147 return (0); 18148 } 18149 18150 case DTRACEIOC_FORMAT: { 18151 dtrace_fmtdesc_t fmt; 18152 char *str; 18153 int len; 18154 18155 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18156 return (EFAULT); 18157 18158 mutex_enter(&dtrace_lock); 18159 18160 if (fmt.dtfd_format == 0 || 18161 fmt.dtfd_format > state->dts_nformats) { 18162 mutex_exit(&dtrace_lock); 18163 return (EINVAL); 18164 } 18165 18166 /* 18167 * Format strings are allocated contiguously and they are 18168 * never freed; if a format index is less than the number 18169 * of formats, we can assert that the format map is non-NULL 18170 * and that the format for the specified index is non-NULL. 18171 */ 18172 ASSERT(state->dts_formats != NULL); 18173 str = state->dts_formats[fmt.dtfd_format - 1]; 18174 ASSERT(str != NULL); 18175 18176 len = strlen(str) + 1; 18177 18178 if (len > fmt.dtfd_length) { 18179 fmt.dtfd_length = len; 18180 18181 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18182 mutex_exit(&dtrace_lock); 18183 return (EINVAL); 18184 } 18185 } else { 18186 if (copyout(str, fmt.dtfd_string, len) != 0) { 18187 mutex_exit(&dtrace_lock); 18188 return (EINVAL); 18189 } 18190 } 18191 18192 mutex_exit(&dtrace_lock); 18193 return (0); 18194 } 18195 18196 default: 18197 break; 18198 } 18199 18200 return (ENOTTY); 18201 } 18202 18203 /*ARGSUSED*/ 18204 static int 18205 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18206 { 18207 dtrace_state_t *state; 18208 18209 switch (cmd) { 18210 case DDI_DETACH: 18211 break; 18212 18213 case DDI_SUSPEND: 18214 return (DDI_SUCCESS); 18215 18216 default: 18217 return (DDI_FAILURE); 18218 } 18219 18220 mutex_enter(&cpu_lock); 18221 mutex_enter(&dtrace_provider_lock); 18222 mutex_enter(&dtrace_lock); 18223 18224 ASSERT(dtrace_opens == 0); 18225 18226 if (dtrace_helpers > 0) { 18227 mutex_exit(&dtrace_provider_lock); 18228 mutex_exit(&dtrace_lock); 18229 mutex_exit(&cpu_lock); 18230 return (DDI_FAILURE); 18231 } 18232 18233 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18234 mutex_exit(&dtrace_provider_lock); 18235 mutex_exit(&dtrace_lock); 18236 mutex_exit(&cpu_lock); 18237 return (DDI_FAILURE); 18238 } 18239 18240 dtrace_provider = NULL; 18241 18242 if ((state = dtrace_anon_grab()) != NULL) { 18243 /* 18244 * If there were ECBs on this state, the provider should 18245 * have not been allowed to detach; assert that there is 18246 * none. 18247 */ 18248 ASSERT(state->dts_necbs == 0); 18249 dtrace_state_destroy(state); 18250 18251 /* 18252 * If we're being detached with anonymous state, we need to 18253 * indicate to the kernel debugger that DTrace is now inactive. 18254 */ 18255 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18256 } 18257 18258 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18259 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18260 dtrace_cpu_init = NULL; 18261 dtrace_helpers_cleanup = NULL; 18262 dtrace_helpers_fork = NULL; 18263 dtrace_cpustart_init = NULL; 18264 dtrace_cpustart_fini = NULL; 18265 dtrace_debugger_init = NULL; 18266 dtrace_debugger_fini = NULL; 18267 dtrace_modload = NULL; 18268 dtrace_modunload = NULL; 18269 18270 ASSERT(dtrace_getf == 0); 18271 ASSERT(dtrace_closef == NULL); 18272 18273 mutex_exit(&cpu_lock); 18274 18275 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18276 dtrace_probes = NULL; 18277 dtrace_nprobes = 0; 18278 18279 dtrace_hash_destroy(dtrace_bymod); 18280 dtrace_hash_destroy(dtrace_byfunc); 18281 dtrace_hash_destroy(dtrace_byname); 18282 dtrace_bymod = NULL; 18283 dtrace_byfunc = NULL; 18284 dtrace_byname = NULL; 18285 18286 kmem_cache_destroy(dtrace_state_cache); 18287 vmem_destroy(dtrace_minor); 18288 vmem_destroy(dtrace_arena); 18289 18290 if (dtrace_toxrange != NULL) { 18291 kmem_free(dtrace_toxrange, 18292 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18293 dtrace_toxrange = NULL; 18294 dtrace_toxranges = 0; 18295 dtrace_toxranges_max = 0; 18296 } 18297 18298 ddi_remove_minor_node(dtrace_devi, NULL); 18299 dtrace_devi = NULL; 18300 18301 ddi_soft_state_fini(&dtrace_softstate); 18302 18303 ASSERT(dtrace_vtime_references == 0); 18304 ASSERT(dtrace_opens == 0); 18305 ASSERT(dtrace_retained == NULL); 18306 18307 mutex_exit(&dtrace_lock); 18308 mutex_exit(&dtrace_provider_lock); 18309 18310 /* 18311 * We don't destroy the task queue until after we have dropped our 18312 * locks (taskq_destroy() may block on running tasks). To prevent 18313 * attempting to do work after we have effectively detached but before 18314 * the task queue has been destroyed, all tasks dispatched via the 18315 * task queue must check that DTrace is still attached before 18316 * performing any operation. 18317 */ 18318 taskq_destroy(dtrace_taskq); 18319 dtrace_taskq = NULL; 18320 18321 return (DDI_SUCCESS); 18322 } 18323 #endif 18324 18325 #ifdef illumos 18326 /*ARGSUSED*/ 18327 static int 18328 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18329 { 18330 int error; 18331 18332 switch (infocmd) { 18333 case DDI_INFO_DEVT2DEVINFO: 18334 *result = (void *)dtrace_devi; 18335 error = DDI_SUCCESS; 18336 break; 18337 case DDI_INFO_DEVT2INSTANCE: 18338 *result = (void *)0; 18339 error = DDI_SUCCESS; 18340 break; 18341 default: 18342 error = DDI_FAILURE; 18343 } 18344 return (error); 18345 } 18346 #endif 18347 18348 #ifdef illumos 18349 static struct cb_ops dtrace_cb_ops = { 18350 dtrace_open, /* open */ 18351 dtrace_close, /* close */ 18352 nulldev, /* strategy */ 18353 nulldev, /* print */ 18354 nodev, /* dump */ 18355 nodev, /* read */ 18356 nodev, /* write */ 18357 dtrace_ioctl, /* ioctl */ 18358 nodev, /* devmap */ 18359 nodev, /* mmap */ 18360 nodev, /* segmap */ 18361 nochpoll, /* poll */ 18362 ddi_prop_op, /* cb_prop_op */ 18363 0, /* streamtab */ 18364 D_NEW | D_MP /* Driver compatibility flag */ 18365 }; 18366 18367 static struct dev_ops dtrace_ops = { 18368 DEVO_REV, /* devo_rev */ 18369 0, /* refcnt */ 18370 dtrace_info, /* get_dev_info */ 18371 nulldev, /* identify */ 18372 nulldev, /* probe */ 18373 dtrace_attach, /* attach */ 18374 dtrace_detach, /* detach */ 18375 nodev, /* reset */ 18376 &dtrace_cb_ops, /* driver operations */ 18377 NULL, /* bus operations */ 18378 nodev /* dev power */ 18379 }; 18380 18381 static struct modldrv modldrv = { 18382 &mod_driverops, /* module type (this is a pseudo driver) */ 18383 "Dynamic Tracing", /* name of module */ 18384 &dtrace_ops, /* driver ops */ 18385 }; 18386 18387 static struct modlinkage modlinkage = { 18388 MODREV_1, 18389 (void *)&modldrv, 18390 NULL 18391 }; 18392 18393 int 18394 _init(void) 18395 { 18396 return (mod_install(&modlinkage)); 18397 } 18398 18399 int 18400 _info(struct modinfo *modinfop) 18401 { 18402 return (mod_info(&modlinkage, modinfop)); 18403 } 18404 18405 int 18406 _fini(void) 18407 { 18408 return (mod_remove(&modlinkage)); 18409 } 18410 #else 18411 18412 static d_ioctl_t dtrace_ioctl; 18413 static d_ioctl_t dtrace_ioctl_helper; 18414 static void dtrace_load(void *); 18415 static int dtrace_unload(void); 18416 static struct cdev *dtrace_dev; 18417 static struct cdev *helper_dev; 18418 18419 void dtrace_invop_init(void); 18420 void dtrace_invop_uninit(void); 18421 18422 static struct cdevsw dtrace_cdevsw = { 18423 .d_version = D_VERSION, 18424 .d_ioctl = dtrace_ioctl, 18425 .d_open = dtrace_open, 18426 .d_name = "dtrace", 18427 }; 18428 18429 static struct cdevsw helper_cdevsw = { 18430 .d_version = D_VERSION, 18431 .d_ioctl = dtrace_ioctl_helper, 18432 .d_name = "helper", 18433 }; 18434 18435 #include <dtrace_anon.c> 18436 #include <dtrace_ioctl.c> 18437 #include <dtrace_load.c> 18438 #include <dtrace_modevent.c> 18439 #include <dtrace_sysctl.c> 18440 #include <dtrace_unload.c> 18441 #include <dtrace_vtime.c> 18442 #include <dtrace_hacks.c> 18443 #include <dtrace_isa.c> 18444 18445 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18446 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18447 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18448 18449 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18450 MODULE_VERSION(dtrace, 1); 18451 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18452 #endif 18453